
THESE DE DOCTORAT DE 
 
 

 
L'UNIVERSITE DE RENNES 1  

COMUE UNIVERSITE BRETAGNE LOIRE 
 

ECOLE DOCTORALE N° 601  
Mathématiques et Sciences et Technologies  
de l'Information et de la Communication 
Spécialité : Signal, Image, Vision 

 

Design and evaluation of sparse models and algorithms for audio 
inverse problems 

 
 
Thèse présentée et soutenue à Rennes, le 25 janvier 2019 
Unité de recherche : Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA, UMR 6074) 

Par 

Clément GAULTIER 

 

 

Rapporteurs avant soutenance : 
 
Bruno TORRÉSANI Professeur des Universités, Aix-Marseille Université 
Matthieu KOWALSKI Maître de Conférences, HDR, Université Paris Sud 
 
 
Composition du Jury :  
 
 

Président : Laurent DAUDET  Professeur des Universités, Université Paris Diderot 
 
Examinateurs :  Bruno TORRÉSANI Professeur des Universités, Aix-Marseille Université 

Matthieu KOWALSKI Maître de Conférences, Université Paris Sud 
Laurent ALBERA Maître de Conférences, Université de Rennes 1 
Laurent DAUDET Professeur des Universités, Université Paris Diderot 
 

Dir. de thèse : Rémi GRIBONVAL Directeur de recherche, Inria  
Co-dir. de thèse : Nancy BERTIN Chargée de recherche, CNRS 
 
Invités : 
 
Pavel RAJMIC  Associate Professor, Brno University of Technology 
Valentin EMIYA  Maître de Conférences, Aix-Marseille Université 









Acknowledgments

Even though I am the author of this manuscript, I will not take credit
for all the results and outcomes of this thesis work. The following
words are written as an opportunity to express my gratitude to all the
people who contributed to the success of this research work.

Je tiens à remercier en premier lieu mon directeur de thèse Rémi Gribonval ainsi que
ma co-encadrante Nancy Bertin de m’avoir si bien guidé pendant ces trois ans. Je suis
très honoré qu’ils m’aient fait confiance pour devenir l’un de leurs doctorants. Leurs
nombreux conseils et leur patience m’ont permis de réaliser cette thèse dans des condi-
tions exceptionnelles.

J’adresse mes sincères remerciements à Bruno Torrésani et Matthieu Kowalski pour
avoir accepté de rapporter ce manuscrit, pour leur expertise et leurs commentaires. Mes
remerciements vont également aux membres du jury, Laurent Daudet pour avoir accepté
de le présider, Laurent Albera, Valentin Emiya et Pavel Rajmic pour leurs précieuses re-
marques et discussions bienveillantes.

J’aimerais exprimer ma profonde gratitude envers Srđan Kitić qui m’a épaulé à mon
arrivée et transmis de précieux conseils. Sa rigueur et sa disponibilité ont sans aucun
doute facilité la découverte de nouveaux outils notamment algorithmiques. J’ai été très
heureux de pouvoir collaborer avec toi et te souhaite toute la réussite que tu mérites.

Ensuite, mes remerciements vont à Antoine Deleforge avec qui j’ai pu partager de
nombreuses idées et discussions souvent fructueuses. Merci beaucoup pour ton enthou-
siasme qui aura permis que le projet VAST voie le jour. Merci également pour nos envo-
lées scientifiques teintées de sirop d’érable ou encore de sardines grillées.

Je souhaiterais également remercier Aline Roumy et Alexey Ozerov d’avoir accepté
de former mon comité de suivi et pour leurs conseils sur mon travail.

Merci beaucoup aux collègues de l’équipe Panama : Stéphanie, Armelle, Cassio, Co-
rentin, Nicolas, Maxime, Eric, Xavier, Younes, Axel, Mohammed, Adrien, Romain, Roilhi,
Kilian, Clément, Gilles, Jérémy, Pierre, Frédéric, Yann, Nicolas, Diego, Corentin, Nathan,
Hakim, Antoine, Valentin, Andreas, Martin, Helena, Igal, Saurabh, d’avoir veillé à faire
régner la bonne humeur au travail et en dehors. Je m’excuse d’avance si j’ai oublié l’un(e)
de vous. J’adresse une mention spéciale à Ewen, Srđan, Tudor et Nicolas avec qui j’ai par-
tagé le bureau et qui ont eu quelques fois à supporter ma mauvaise foi. Merci également
aux collègues de l’équipeTea : Vania, Alexandre, Jean-Joseph, Nam, Simon, Lucas, Liang-
cong, pour les pauses café débordantes d’anecdotes. Ces trois années m’ont également
donné la chance de participer à l’organisation de la Journée Science et Musique. Je tiens



iv

à remercier toutes les personnes avec qui j’ai pu partager cette expérience enrichissante,
notamment Agnès et Catherine, les collègues des équipes Hybrid et Panama pour leur
bonne humeur et leur soutien. Le modèle de ce manuscrit est très largement basé sur ce-
lui d’Olivier. Je le remercie de me l’avoir mis à disposition et laissé m’en inspirer. Merci
à mes partenaires de grimpe Antoine, Bryan, Lauréline, Hadrien et quelques collègues
de l’équipe Visage, Giulia, Claire. Merci beaucoup à Arnaud d’avoir levé quelques unes
de mes ignorances en informatique notamment grâce à son savoir encyclopédique des
raccourcis BASH.

Merci à tous les enseignants et collègues que j’ai croisés lors de mon parcours et qui
ont su me transmettre brique par brique de nouvelles connaissances ainsi que la volonté
d’en comprendre toujours plus. Plus particulièrement, je tiens à remercier Jean-Hugh
Thomas, Stephan Bleeck, Jessica Monaghan et Tobias Goehring pour m’avoir donné le
goût pour la recherche et incité à poursuivre dans cette voie.

Un grand merci également à « La fine équipe du 7.2 » pour leur soutien sans faille
depuis toutes ces années lors de nos retrouvailles musicales et bien plus encore mais
aussi aux « Thouns » pour les bons moments passés ensemble notamment lors de nos
rencontres annuelles.

Mes remerciements vont également à Ann et Matthew. Si loin, vous avez sû rester
disponibles. Je sais pouvoir compter sur vous même à distance. Merci pour vos précieux
conseils, notamment sur les règles pour une lettre de motivation en anglais réussie.

Je remercie Lesley, Nico et Alexandre, d’avoir croisé ma route, d’entretenir notre ami-
tié parfois autour d’un billard, d’une roue de secours, d’une perceuse ou simplement d’un
vendredi soir festif. Merci de m’avoir transmis votre motivation et persévérance inatta-
quables même dans les moments où, pour citer un célèbre poète contemporain, j’ai eu
l’impression : « d’inventer l’eau tiède en laissant refroidir l’eau chaude ».

Je tiens également à remercier Micheline, Éric, Josette et bien sûr Anne-Flore, ma
famille « d’en face ». Merci pour votre compréhension, votre bienveillance et tous ces
bons moments : travail de fond qui a sans aucun doute participé à l’aboutissement de ces
trois années.

Merci à tous les membres de ma famille qui forment des piliers solides et ont large-
ment contribué à la réussite de ce travail. Merci Laurence, Christophe, Thimotey et Axel
pour vos encouragements. Merci à mes parents Sylvie et Pascal, qui m’ont toujours sou-
tenu et permis de garder les pieds sur terre. Merci de m’avoir transmis vos valeurs, merci
pour votre aide, votre éducation et votre patience. Merci à mes grands-parents Marc et
Janine qui sont très fiers de moi et Yvette et Alexis qui l’auraient été j’en suis sûr.



v

Enfin et par-dessus tout, merci à toi « Chinwia diali » qui partage ma vie. Merci pour
toutes ces chosesmerveilleuses qu’on peut vivre ensemble depuis quelques années.Merci
pour ces découvertes et ton soutien infaillible. Tu as su m’aider à trouver les ressources
pour mener à bien ces trois ans. Cette réussite est aussi la tienne, tout simplement, merci
d’être à mes côtés.

Rennes, January 25, 2019 Clément Gaultier





Résumé étendu

Ce résumé présente de manière concise en français les différents tra-
vaux abordés dans cette thèse. Les détails concernant les outils utilisés,
les méthodes proposées et les perspectives sont données dans la suite
du manuscrit en anglais.

Introduction Dans le contexte de l’analyse de scènes sonores, les humains mais aussi
les machines peuvent rencontrer des situations délicates lorsqu’il s’agit de décoder leur
environnement grâce aux observations alentours. Ceci est souvent dû à l’absence d’ob-
servations directes des informations d’intérêt. Dans la plupart des cas un lien de cause à
effet clairement identifiable entre les informations de départ et les observations manque
également. Prenons pour exemple un signal sonore. Qu’il soit utilisé comme moyen de
communication, d’alerte ou d’expression artistique, il y a très peu de situations où ce si-
gnal est directement observé depuis sa source. En effet, que le capteur soit unmicrophone
ou une oreille humaine, il existe de nombreux processus pouvant altérer ce signal. Que
l’altération provienne par exemple de l’environnement de propagation ou de la captation,
elle est rarement souhaitée et bien souvent préjudiciable à la bonne transmission d’infor-
mations. Le problème qui traite d’estimer le signal initial depuis son observation déna-
turée est communément appelé problème inverse. Malheureusement, dans de nombreux
cas, le problème est dit mal posé. Trop peu d’informations sont présentes et il est néces-
saire de s’appuyer sur des aprioris afin d’approcher une solution au problème (avec des
modèles de signaux appropriés par exemple). Les modèles très utilisés pour les signaux
sonores sont les modèles parcimonieux. La parcimonie ici suppose que les signaux (aussi
nombreux soient-ils) peuvent être décrits avec une combinaison de seulement quelques
éléments d’une collection (atomes) : c’est le modèle de parcimonie à la synthèse. Une
autre possibilité considère qu’on peut former une représentation simple d’un signal en
lui appliquant une transformation appropriée : c’est le modèle de parcimonie à l’analyse
(ou coparcimonie). Ainsi, les travaux présentés dans cette thèse portent sur la résolu-
tion de problèmes inverses en acoustique et en traitement du signal audio dans un cadre
mono ou multi-canal. L’accent est mis sur la conception et la validation d’algorithmes de
restauration de signaux sonores exploitant en particulier diverses formes de parcimonie
(à l’analyse ou à la synthèse, simple ou structurée avec des aprioris de type « parcimonie
sociale »).
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Première partie La première partie du manuscrit présente le contexte général de mo-
délisation et les concepts algorithmiques ayant attrait aux travaux présentés dans ce
document.
Le chapitre 2 (page 9) s’articule autour des différents outils et modèles de signaux qui
sont utilisés dans la suite du document. D’une part, on décrit les modèles de repré-
sentations parcimonieuses (analyse et synthèse). Ensuite, on présente leurs liens avec
les représentations fréquentielles et transformées temps-fréquence redondantes. D’autre
part, ce chapitre met l’accent sur des modèles de signaux utilisant différents types de
(co)parcimonie structurée.

Au chapitre 3 (page 23), on présente un cadre algorithmique générique pour trai-
ter des problèmes de reconstruction audio. Cet algorithme est le socle commun qui est
instancié dans les chapitres suivant pour les différentes applications. Il s’agit d’une pro-
cédure itérative s’inspirant de l’algorithme des directions alternées (ADMM). Cette mé-
thode permet ainsi d’estimer un signal en le projetant alternativement sur une contrainte
de modèle et sur une contrainte d’attache aux données. Les contraintes de modèles
étant directement liées aux modèles de signaux présentés au chapitre 2 tandis que les
contraintes d’attache aux données dépendent du problème de reconstruction considéré.
Ce chapitre détaille les différents outils nécessaires à l’estimation sous contraintes en
exprimant notamment plusieurs opérateurs de seuillage favorisant la parcimonie, la par-
cimonie sociale et la parcimonie groupée.

Une part importante de ce travail est liée à l’évaluation des algorithmes de recons-
truction. C’est pourquoi le chapitre 4 (page 31) introduit les données de test et les diffé-
rentes mesures de performance qui sont utiles pour les validations expérimentales dans
les chapitres suivants. Premièrement, le chapitre décrit les bases de données d’enregis-
trements sonores utilisées. On note par exemple un grand jeu de données rassemblant
exclusivement de la musique (RWC [Goto et al. 2002]), un autre consacré à la parole TI-
MIT ([Garofolo et al. 1993]). Un ensemble plus réduit issu du logiciel SMALLbox (SMALL
[Damnjanovic et al. 2010]) est aussi utilisé pour les comparaisons de moindre envergure.
Par la suite, le chapitre précise plusieurs mesures de performance permettant de juger la
qualité des méthodes de reconstruction. On décrit des mesures classiquement utilisées
telles que le Rapport Signal à Bruit ou le Rapport Signal à Distorsion. (Finalement), ce
chapitre présente également un bref historique des mesures objectives permettant de ju-
ger de la qualité audio, de l’intelligibilité de signaux de parole, avant de sélectionner les
mesures utilisées plus tard dans le document.

Deuxième partie Dans la deuxième partie nous nous intéressons à la résolution de
problèmes inverses pouvant provenir de distorsions relevées au niveau des capteurs.
Nous détaillons ainsi deux cas d’usage du cadre algorithmique présenté au chapitre 3
page 23.
Dans un premier temps, au chapitre 5 (page 43) nous abordons le problème de recons-
truction de signaux sonores bruités. Ce chapitre présente le problème de bruit additif
sur des enregistrements sonores et quelques méthodes existantes qui traitent le sujet
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de la réduction de bruit en audio. Ensuite, ce chapitre introduit plusieurs méthodes de
dé-bruitage développées sur la base du cadre algorithmique commun évoqué plus haut.
Notamment, nous retenons une méthode utilisant un modèle (co)parcimonieux social
adaptatif pour les représentations temps-fréquence des signaux sonores. Nous intégrons
également uneméthode utilisant unemodélisation (co)parcimonieuse plus traditionnelle
avant de comparer leurs performances sur la tâche de dé-bruitage audio. Les résultats des
comparaisons sont obtenus à la fois sur un grand jeu de données (la base RWC) et sur
des exemples plus réduits (SMALL). Ils indiquent que chaque méthode produit au moins
d’aussi bons résultats de reconstruction voire meilleurs pour les conditions les moins
dégradées qu’avec la méthode de référence « Block Thresholding » [Yu et al. 2008]. On
note également qu’avec des critères objectifs de mesure de qualité sonore, il est préfé-
rable d’utiliser la méthode incluant unmodèle coparcimonieux simple pour dé-bruiter de
la musique. En revanche, l’étude sur la qualité montre que pour traiter des signaux de pa-
role bruités, les modèles mettant en œuvre la (co)parcimonie sociale adaptative semblent
plus appropriés. On remarque enfin que les différentes méthodes de dé-bruitage déri-
vées du cadre algorithmique peuvent être mises en œuvre très efficacement pourvu que
les dictionnaires et opérateurs d’analyse satisfassent quelques propriétés simples. Ainsi,
l’utilisation de transformées fréquentielles rapides et d’outils d’algèbre tels que le repère
ajusté au sens de Parseval (Parseval tight-frame), permet une efficacité de calcul pouvant
aller plus vite que le temps réel sans pour autant sacrifier la performance de reconstruc-
tion.

Dans un second temps, le chapitre 6 (page 59) aborde le problème de reconstruction
de signaux sonores saturés en amplitude. D’abord, ce chapitre présente le problème de
saturation et ses conséquences sur le contenu fréquentiel d’un enregistrement sonore.
Nous décrivons également quelques méthodes de l’état de l’art permettant de traiter
le problème de dé-saturation en audio. Plusieurs méthodes de dé-saturation sont en-
suite proposées et permettent de traiter des cas à un seul canal ou plusieurs canaux.
Pour le cas mono-canal, les méthodes incluent des modèles temps-fréquence de signaux
(co)parcimonieux simples ou sociaux adaptatifs. Après une discussion sur les moyens de
quantifier la saturation, de nombreuses expériences comparent l’efficacité des méthodes.
Pour le cas mono-canal, la comparaisonmenée sur un grand jeu de données montre ainsi
que la méthode utilisant un modèle coparcimonieux simple est à privilégier en cas de
forte dégradation. Pour les cas de saturation plus modérée, le modèle de signal basé sur
la parcimonie simple ou sociale donne de meilleurs résultats. Ces tendances se vérifient
à la fois sur des exemples sonores de parole et de musique. On note que pour une com-
paraison sur un jeu de données plus réduit, les résultats de reconstruction sont au moins
aussi bons que ceux de méthodes issues de l’état de l’art. Comme pour le dé-bruitage,
on remarque qu’en utilisant des transformées rapides, les algorithmes restent efficients
autorisant même un calcul temps-réel pour certaines paramétrisations. Ces travaux sur
la dé-saturation audio font l’objet, avec la collaboration des ingénieurs de recherche de
l’équipe PANAMA, d’un transfert technologique. Pour le cas multi-canal, les méthodes
promeuvent un modèle fréquentiel de signal (co)parcimonieux structuré au travers des
canaux. La validation expérimentale montre que l’ajout de dépendance inter-canal per-
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met une meilleure reconstruction dans le cas d’enregistrements à plusieurs canaux (sté-
réo et jusqu’à huit canaux). Lesméthodes utilisant unmodèle de coparcimonie structurée
semblent ainsi être plus avantageuses en cas de forte dégradation. En revanche, pour des
situations ou la saturation est plus modérée, les deux versions (analyse et synthèse) du
modèle de parcimonie structurée donnent des résultats similaires. On note enfin que ces
méthodes améliorent substantiellement les résultats face à une technique employant la
coparcimonie simple. Ces performances sont mêmes obtenues dans certaines situations
avec un coût de calcul plus réduit.

Troisième partie Dans la troisième partie, notre intérêt se porte sur la résolution de
problèmes inverses dont l’origine est liée à la propagation du son entre une source et un
capteur dans un environnement clos (une pièce par exemple).
Le chapitre 7 (page 95) montre la versatilité du cadre algorithmique commun en y in-
cluant la possibilité de traiter la dé-réverbération à la lumière d’un problème inverse.
Dans un premier temps, le problème de la réverbération est présenté avec ces effets sur
le contenu d’un enregistrement sonore. Une méthode dérivée du cadre algorithmique
commun et utilisant une représentation basée sur la parcimonie simple ou sociale est en-
suite présentée. On compare l’efficacité de ces méthodes sur des signaux de parole pour
une tâche de dé-réverbération informée. Les résultats montrent la supériorité du mo-
dèle parcimonieux social pour les performances de reconstruction de qualité objective.
Ce chapitre sert plutôt de preuve de concept pour l’intégration de la dé-réverbération
comme problème de reconstruction audio pouvant être traité de manière similaire au
dé-bruitage ou à la dé-saturation. Des travaux complémentaires seraient nécessaires no-
tamment pour adresser le problème de dé-réverbération aveugle.

Au chapitre 8 (page 103) nous étudions le problème de localisation binaurale de
sources sonores. Plus indépendamment du reste de ce manuscrit nous abordons ce pro-
blème sous l’angle de l’apprentissage statistique. Dans un premier temps nous présen-
tons le problème de localisation binaurale de source sonore. Nous détaillons par la suite
quelques méthodes existantes permettant de le traiter grâce à des approches basées sur
l’estimation de différence de temps d’arrivée. Dans un second temps, le chapitre propose
une nouvelle technique de localisation de sources sonores utilisant un outil d’appren-
tissage statistique (basé sur un modèle probabiliste gaussien permettant la projection
localement linéaire d’un espace de haute dimension vers un espace de basse dimension).
Cette technique permet la prédiction de directions d’arrivées et de distance de sources
sonores grâce à l’apprentissage d’un modèle sur des réponses impulsionnelles de salles
simulées (virtuelles). Nous appelons ce principe : apprentissage d’espaces acoustiques vir-
tuels. Cette méthode de localisation est validée expérimentalement sur données réelles
et simulées. On montre ainsi qu’une telle approche produit des résultats à la fois plus
justes et plus précis pour l’estimation d’azimut comparée à une méthode plus tradition-
nelle utilisant la corrélation croisée généralisée (GCC-PHAT).
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Conclusion Ce dernier chapitre (chapitre 9) récapitule les contributions décrites dans
ce manuscrit et présente quelques perspectives de recherche futures liées aux travaux
abordés dans cette thèse. Parmi elles on note la possibilité de traiter conjointement ou
séparément d’autres tâches de reconstruction comme le masquage de perte de paquets de
données ou la dé-quantification. Un angle intéressant dans l’optique de traiter des pro-
blèmes dans le cadre multi-canal peut être la modélisation parcimonieuse multidimen-
sionnelle (temps-fréquence-canal). Pour les aspects liés à l’apprentissage virtuellement
supervisé d’espaces acoustiques, nous évoquons la généralisation à d’autres antennes de
capteurs et l’extension à l’estimation d’autres paramètres de la scène sonore.
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Chapter 1

Introduction

Human senses and machines are facing every day difficult situations to cope with when
trying to decode their environment. This is mostly due to the fact that direct observa-
tions of physical phenomena are usually unavailable. However, in some situations we
can still benefit from indirect observations. Sometimes, if these are enough for us, ma-
chines trying to mimic our behavior are struggling. A visual examples of such a scenario
can be the shadow theater. It is widely admitted for an adult that seeing the black shape
of a bird or a dog on a white backlit sheet does not necessarily mean that there is ac-
tually a dog or a bird passing behind (see: Figure 1.1). In that case, we would rather
think that someone is moving his hands behind the scene and tries to make us believe
that some animal is actually there. Now give this shadow image to a computer equipped
with an image classification system, it will return you “BIRD” or “DOG” and not “MOV-
ING HANDS”. In decoding this situation why did not we get duped? (except probably a
little child) For ages, we have been used to inferring models from indirect observations
that could explain our world. This kind of problem is called inverse problem.

Our work here will not deal with shadows or dogs and birds images but rather sound.
First of all, the word “sound” can sometimes be related to:

• a cause (e.g. a speech sound),

• an acoustic wave which can be characterized by physical quantities (e.g. a har-
monic sound whose tonal frequency is 440 Hz),

• a perception (e.g. a sound which is bright and clear).

Figure 1.1 – Indirect observations: the shadow theater example
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In this document, we will rather use the second description. More precisely, we
characterize the sound or acoustic wave by an oscillation that propagates in a supporting
media (mostly air when dealing with airborne sound propagation). Some sounds may or
may not be audible by humans due to the special characteristics of their auditory system.
The limits are often given by the frequency range. Frequency defines in that case the air
vibration rate when excited by the wave and is represented in Hertz (Hz). This notion
of frequency is crucial in modeling sounds and will be used to derive more advanced
models in chapter 2. Sounds can be registered by our auditory systems but also sensors
(e.g. a microphone) able to convert acoustic pressure to voltage. The observation of a
sound we often get is only given by this transduction. Hence, in the following we will
consider sounds as signals resulting from the conversion of acoustic pressure to voltage
by a microphone.

We also note that the shadow theater example above is certainly not the exclusive
example of indirect observation. More particularly, considering sound, there are really
few situations where the signal of interest, rather used for communication, alert or sim-
ply artistic purpose is directly observed.

The way we interact with sounds is on the verge of being completely reinvented.
Particularly, some technical changes such as the wide availability of small and cheap
acoustic sensors is strongly participating in this revolution. The growing number of
available audio data and ways to sense sound easily is triggering new technical stakes
for audio and acoustic signal processing. Usually, signal processing methods in audio
and acoustic allows machines for instance a computer, a robot, a phone to perform tasks
that we (humans) are able to address more or less easily. These machines could also be
used to assist and sometimes surpass us in analyzing sound scenes. By analyzing a sound
scene we mean here, retrieving some of the sounds, acoustic sources parameters from
the indirect observations (which can be microphone recordings). This task is itself an
inverse problem and referred to as Auditory Scene Analysis (ASA).

Ill-posed inverse problems The major issue in the context of acoustic sensing or
(computational) auditory scene analysis is that we are usually facing severely ill-posed
inverse problems to solve. Indeed, whether the sensor is a microphone or a human ear,
there are several ways a signal of interest can be altered between its emission and its
recorded version. This alteration is rarely desired and often leads to detrimental con-
sequences on transmission of information. A well known example for us is probably
listening and understanding speech in noise. This is a task that we handle on a daily
basis when trying to interact with people. In a noisy chat situation, we are able with
more or less effort to isolate and understand someone speaking to us despite the sur-
rounding hostile listening environment. Our auditory system has the stunning ability to
focus on the information of interest. However, what we hear initially is just a mixture
of the targeted speaker, background noise, other people speaking, reverberation, etc...
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If we replace the listener in the previous situation with amachine dedicated to speech
understanding or transmission (a phone, a robot, a hearing aid...), the task of estimating
the targeted speech signal from the mixture of sounds is called addressing the denoising
or speech enhancement inverse problem. More generally, all problems that need to es-
timate a signal from some observation are called inverse problems. In most of the cases
these are severely ill-posed, meaning that information is missing and there is a need to
infer a model to help solving the problem.

Sparsity Modern signal processing translated some physical models of sounds with
mathematical concepts such as sparsity. Sparsity assumes here that a signal can be de-
scribed by a linear combination of a small number of elements from a collection (atoms):
this is the sparse synthesis data model. Another alternative hypothesis is the sparse
analysis data model which considers that we can form a simple representation of a sig-
nal by applying an appropriate transformation. Some refinements of these models are
particularly useful for sound modeling and will be presented in chapter 2.

Thus, the work presented in this thesis will focus on addressing audio and acous-
tic inverse problems for single and multichannel cases. We put a particular emphasis
on design and validation of audio reconstruction algorithms relying on various form of
sparsity.

The scope for this work as presented above is quite broad. Thus, we intend to struc-
ture the document and our reflection around the following question:

What sparse model is best suited for audio reconstruction?

This thesis work was held in the PANAMA project team, a joint research team be-
tween Inria and CNRS at IRISA research center (Rennes, France). This work was jointly
funded by the European Research Council PLEASE project (ERC-StG-2011-277906) and
Région Bretagne.

Structure of the document

Part I . The first part is dedicated to introducing the appropriate signal models and
algorithmic concepts we will work with in the rest of the document.
While this chapter introduces the manuscript, as for Part I, chapter 2 will express useful
tools in signal processing that we will be using to present this work. More particularly
it will include the different signal models that are used for solving some audio signal
processing inverse problems. Among them, we detail the sparse data models, frequency
transforms and refinement of sparsity for modeling audio signals.
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In chapter 3, we present a generic algorithmic framework proposed and used to build
a versatile method that will be later used to solve various audio reconstruction problems.
This framework serves as a common baseline for the methods presented in the chapters
addressing signal reconstruction.

The chapter 4 concludes the first part of this manuscript by detailing data and mea-
sures of performance that will be used along with the experimental evaluations of the
methods presented in the second and third part of the document.

Part II . In Part II, we mainly deal with inverse problems stemming from sensor-based
degradation.
Thus, chapter 5 features a particular example of the aforementioned generic framework
to tackle single-channel audio denoising. After presenting available existing work, we
will describe a newmethod for audio denoising built on the generic framework and time-
frequency analysis/synthesis sparse priors. Finally, an adaptive structured (co)sparse
method will be introduced before comparing them on experiments involving real speech
and music audio data.

The chapter 6 extends the framework to audio declipping. After a short review on
literature, we present an audio declipping method embedding adaptive structured anal-
ysis/synthesis time-frequency sparse priors to solve the problem for single-channel sat-
urated signals. Then, we extend the work to deal with multichannel audio recordings
thanks to channel-wise structured (co)sparse modeling. Before concluding this chapter,
we present some experiments that thoroughly compare performance and parameters of
the different proposed methods.

Part III . The third part focuses on audio inverse problems arising from sound propaga-
tion within the recording environment.
In chapter 7 we add a dereverberation scenario to the generic framework introduced in
chapter 3 before including a comparison of the various signal models on a speech dere-
verberation application.

More independently from the rest of the manuscript, chapter 8 presents the concept
of virtually supervised learning in auditory scene analysis and an application to binaural
sound source localization. After reviewing some state of the art techniques, we describe
the new idea of virtually supervised learning in audio scene analysis before applying it
to binaural sound source localization with massive regression learning technique.

Finally, chapter 9 concludes this thesis and exposes possible future steps and fore-
seen extensions of this work.

Figure 1.2 displays a structured overview of the thesis and possibly an alternative
path for the reader.
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This thesis is partly inspired from the publications listed below. When
relevant, chapters start with a note on the related publications it may
share some line with.

International peer-reviewed conferences:

Clément Gaultier, Nancy Bertin and Rémi Gribonval. CASCADE: Channel-Aware Struc-
tured Cosparse Audio DEclipper. In 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 571–575, April 2018

Clément Gaultier, Srđan Kitić, Nancy Bertin and Rémi Gribonval. AUDASCITY: AUdio
Denoising by Adaptive Social CosparsITY. In 2017 25th European Signal Processing Con-
ference (EUSIPCO), pages 1265–1269, Aug 2017

Clément Gaultier, Saurabh Kataria and Antoine Deleforge. VAST: The Virtual Acoustic

Space Traveler dataset. In International Conference on Latent Variable Analysis and Sig-
nal Separation, pages 68–79. Springer, 2017

Saurabh Kataria, Clément Gaultier and Antoine Deleforge. Hearing in a shoe-box: Bin-
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The following chapter describes signal modeling concepts which are later used in
the manuscript. After introducing useful tools about sparsity and regularization, we
detail frequency transforms. Then, we present how sparsity can be used in audio signal
modeling scenarii.

2.1 Sparsity

Simple models in the spirit of the Occam’s razor principle, have been widely used in
physics or chemistry for a long time. The underlying idea behind such models is that
any attempt to explain any reasoning, to model or to verify a hypothesis with additional
elements should be as far as possible avoided. This is not to be confused with the idea
assuming that the simpler the hypothesis the better. It is only in the 1990s that it was
formalized to serve as a first corner stone to redefine modern signal processing. For
the latter, natural signals supposedly admit a simple – sparse – representation which
means that most of its elements are zeros (or close to zeros). Precisely, the wavelet ba-
sis for images or the Fourier basis for sounds offer a good sparse decomposition. These
decompositions are the starting point of JPEG or MPEG compression standards. They
benefit from the intrinsic redundancy of the complex initial signal representation to ex-
press it in a sparse manner in a transform domain. This way, only the most important
coefficients (largest) are stored. Additionally, other applicative fields verify this sparse
assumption such as magnetic resonance imaging (MRI) [Lustig et al. 2007], single pixel
imaging [Duarte et al. 2008] and many others. Such sparse decomposition z of a signalx are oftenly expressed as x = Dz also known as the sparse synthesis model. More de-
tails will be given on this model in subsection 2.1.3 and subsection 2.1.5. Even if some
novel work about continuous dictionaries learning or off-the-grid sparse recovery [Poon
et al. 2018] seems really interesting for the generalization of sparse models to continuous
domains, in the following, we will stick to discrete settings considering sampled signals
on a finite domain.

2.1.1 Matrix and vector norms

In the following subsection we list some useful norms needed to describe the data mod-
els thereafter. In this work norms can be seen as a mean to quantify several properties
of a tested vector (signal).

Particularly, to quantify the sparsity of any discrete signal stored in a vector x, using
the �0 pseudo-norm ‖⋅‖0 which counts the non-zeros elements in x, is a solution. Precisely,
this pseudo-norm is defined as follows for any vector x of size L:

‖x‖0 = L∑n=1 |xn|0. (2.1)

Even though the exact definition can vary, this special case is usually referred to as a
pseudo-norm since it does not share the homogeneity property of a regular norm. Indeed,
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for any x and any � ∈ ℝ such that � ≠ 0, � ⋅ ‖x‖0 ≠ ‖�x‖0. The same way, we define the �1
norm ‖ ⋅ ‖1, which is the sum of all absolute values of a vector by:

‖x‖1 = L∑n=1 |xn|. (2.2)

More generally, the �p norm of a vector x is expressed by:

‖x‖p = { (∑Ln=1 |xn|p) 1p for 0 ≤ p ≤ ∞,maxn |xn| for p = ∞. (2.3)

We remark that another particular case of Equation (2.3), is the �2 norm also called Eu-
clidean norm which is used to quantify the energy. Moreover, one has to note that in
this definition, the smaller p is, the more significant smaller values of x will be in the
computation of the norm. On the contrary, the importance of larger values will be em-
phasized as p gets larger.

Similarly, norm measures are defined for matrices X of size M × N. For instance, we
characterize the Frobenius norm as follows:

‖X‖F = √
M∑m=1

N∑n=1 |Xmn|2. (2.4)

This Frobenius norm can be seen as an extension of the Euclidean norm for matrices. To
go further, the �p norms generalizes for matrices to �p,q norms that are defined as:

‖X‖p,q = ( N∑n=1( M∑m=1 |Xmn|p) qp)
1q
for p, q ≥ 1. (2.5)

These �p,q norms, also calledmixed norms when p ≠ q, will be also evoked to detail group
sparse structures in section 2.3.

2.1.2 Linear inverse problems

The interest of this work will be to approach a solution of inverse problems with the help
of audio or acoustic signal processing tools. Before detailing these tools in the following
sections, we more formally define what is a linear inverse problem.

Denote y some observations and x some data or signal of interest. We can define the
direct problem that maps the data to the observations by:

y = Mx, (2.6)

whereM is often called the measurement matrix/operator and encode the forward rela-
tion between x and y.
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Addressing the linear inverse problem means estimating x from the observationsy. Such a problem could be easy to solve if it is well-posed in the sense of Hadamard
[Hadamard 1902] which would mean that:

• There exists a solution

• The solution is unique

• The solution continuously depends on the data

Unfortunately, there are really few situations where the problem described in Equa-
tion (2.6) is well-posed. If a solution exist it is likely not to be unique. Thus without
any prior on x the task turns out to be out of reach.

The two next subsections will present two data models that can help retrieving x in
the audio signal processing context.

2.1.3 The synthesis sparse model

The sparse synthesis model assumes that the signal of interest x is built from a linear
combination of atoms aggregated in a large dictionary D. We could more precisely write

x = Dz (2.7)

with x ∈ ℝL the time domain signal, D ∈ ℂL×S the dictionary and z ∈ ℂS a sparse
representation of the vector x (S ≥ L). This models considers that the number of non-
zero coefficients in z is very small compared to the size S of the vector. In other words,
one needs very few atoms of D to synthesize x from z. Figure 2.1 graphically represents
the sparse synthesis model.

= ×
Figure 2.1 – Sparse representation

2.1.4 The analysis sparse model

While synthesis approaches comprise a vastmajority of the sparsity-based time-frequency
regularization techniques, it has been demonstrated in [Nam et al. 2011] and more re-
cently in [Kitić 2015, Kitić et al. 2015] that the analysis sparse model, also known as the
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cosparse model, can turn out to be more advantageous, in particular in terms of compu-
tational cost. Instead of implicitly defining x = Dz a sparse representation z of the signalx through the sparse synthesis model, the rationale of the cosparse model is to explicitly
assume that z = Ax (2.8)

is sparse with A ∈ ℂP×L called the analysis operator (P ≥ L). The two models are equiv-
alent when P = S = L and AD = I. Figure 2.2 below describes Equation (2.8) of the
cosparse model.

× =
Figure 2.2 – Cosparse representation

2.1.5 Regularization

Generally speaking, regularization, when used for solving inverse problems is a useful
tool to either prevent overfitting or add additional knowledge on the signal one wants
to estimate. For instance, if one needs to estimate x from some measured data y, it can
be achieved by solving the following kind of optimization problem:

x̂ = minimizex fr (x) + fd (y, x). (2.9)

Here fd (⋅) usually stands for the data-fidelity term and quantifies a measure of fit be-
tween the measurement y and the solution x. fr (⋅) is called the regularizer. This term
which embeds additional information on x is also referred to as a prior.

A widely used data-fidelity measure is fd (x, y) = ‖y −Mx‖22. This squared difference,
whereM can be identified as the measurement matrix (see: Equation (2.6)), ensures that
the estimate is compatible with the observed data. If this quadratic term is used in most
of the cases, fr (⋅) has to be chosen according to the application and the model of signal
at hand.

Given a sparse assumption on any signal z to recover, the best regularizer would be
the �0 norm presented earlier and the optimization problem becomes:

ẑ = minimizez ‖y −Mz‖22 + ‖z‖0. (2.10)
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This problem suffers from inherited NP-hardness [Foucart & Rauhut 2013, page 53] and
in practice either greedy approaches or convex relaxation are used to approximate a
solution ẑ. From a synthesis sparse point of view the greedy methods are designed to
retrieve iteratively the support of the signal, namely the active atoms in M. This is
the case for the well known Matching Pursuit algorithm [Mallat & Zhang 1993] and its
variantOrthogonalMatching Pursuit (OMP) [Pati et al. 1993]. Matching Pursuit gradually
recovers the support of a sparse signal in a dictionary by comparing at each iteration
the correlation between the signal and the atoms. Among greedy methods for sparse
reconstruction, we can also cite Iterative Hard Thresholding [Blumensath & Davies 2009]
(IHT) and Compressive Sampling Matching Pursuit [Needell & Tropp 2009] (CoSaMP).
For convex relaxation, the idea is to find a penalty to replace the �0 norm that is able
to convexify Equation (2.10) while still promoting the sparsity of z. For that purpose, a
common choice is fr (z) = �‖z‖1 leading to the well known Basis Pursuit Denoising [Chen
et al. 2001] (or LASSO [Tibshirani 1996]) problem:ẑ = minimizez ‖y −Mz‖22 + �‖z‖1. (2.11)

Contrarily to the greedy approaches presented earlier, solving the LASSO problem
produces a solution which is the global minimum of Equation (2.11) (due to convexity).
This can be achieved through soft-thresholding in iterative shrinkage algorithms. Here
the parameter � indicates how aggressively to perform the regularization. Although
such sparse regularization methods were initially designed to account for the synthesis
sparse data model, the approach is generalized with its analysis counterpart. Hence,
Equation (2.10) becomes for the analysis case:x̂ = minimizex ‖y − x‖22 + ‖Ax‖0. (2.12)

Similarly, greedy approaches with, for instance, Greedy Analysis Pursuit (GAP) [Nam
et al. 2013] or convex relaxation can be used to approximate a solution of this problem.

2.2 Frequency transforms

Generally, if one has to deal with any signal, the first available data would be (in a discrete
setting) a sequence of samples representing a physical quantity which can be sensed. For
instance, in the case of a recorded sound, a microphone mirrors the acoustic pressure.
In the context of neural activity monitoring on humans, it can be electrically evoked po-
tentials. Light intensity for video or acceleration in vibration control are other examples.
Dealing with acoustic or audio signals, this first data representation evolving across time
provides some useful information. One drawback is that this representation is usually
not sparse and lacks of explicit information about the frequency content.

2.2.1 Real and complex transforms

In the audio signal processing context, frequency transforms are a crucial tool as they
are usually producing a much sparser representation of the signal than the signal itself.
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Joseph Fourier, with his work on the heat equation [Fourier 1822] introduced a first signal
representation. His tool named Fourier decomposition aims at approximating any signal
by a sum of sine and cosine waves. Among all frequency transforms, complex-valued
transforms and real-valued transforms differ. For the latter, some temporal information
is directly encoded in the magnitude of the time-frequency coefficients. This way, with
real-valued transforms, time shifts on the original signal do not produce a consistent
frequency representation. A well known real-valued transform widely used in audio
application is the Discrete Cosine Transform (DCT). Let x ∈ ℝL be a discrete time-domain
signal, its discrete cosine transform z is defined as follows:

zs = √2
L

L−1∑n=0 xn ⋅ cos (�L (s + 12)(n + 12)). (2.13)

Its inverse transform can be written as:

xn = √2
L

L−1∑s=0 zs ⋅ cos(�L (s + 12)(n + 12)). (2.14)

This defines a Type-IVDCT, other variants of this discrete cosine transform notably exist.

Similarly, a common complex-valued transform is the Discrete Fourier Transform
(DFT) which is defined as follow for x ∈ ℝL:

zs = 1√
L

L−1∑n=0 xn ⋅ exp(−2j�nsL ) . (2.15)

j denotes here the complex number defined as j2 = −1. Its inverse transform can be
written as:

xn = 1√
L

L−1∑s=0 zs ⋅ exp(2j�ns
L ) . (2.16)

We notice that Equation (2.13) to Equation (2.16) can be rewritten in matrix form.
For instance, for the forward DFT transform, we have:

z = Ax,with Ans = 1√
L
exp(−

2j�ns
L ) , (2.17)

and for the inverse DFT:

x = Dz,with Dsn = 1√
L
exp(2j�sn

L ) . (2.18)

In Equation (2.17) and Equation (2.16), x ∈ ℝL is the time-domain signal, z ∈ ℂL its
frequency representation and A ∈ ℂL×L (respectively D ∈ ℂL×L) the direct (respectively
the inverse) frequency transform.
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We notice that these two previous equations can be identified as the
sparse synthesis (Equation (2.7)) and sparse analysis (Equation (2.8))
with the forward frequency transform matrix being the analysis oper-
ator and the inverse frequency transform being the dictionary.

Equivalence with sparse data models

If these transforms are widely used nowadays, they depict the global frequency con-
tent of a signal leaving aside any possible evolution across time. For this reason, later
were introduced time-frequency transforms to account for both frequency content and
its evolution across time. The global approach of such time-frequency transforms is to
use a sliding window on a time domain signal to compute its frequency representation
for each (short-time) chunk of the windowed signal. This lead to a short-time frequency
transform of the underlying signal. More formally, denote x̃ ∈ ℝN a long discrete time-
domain signal. We consider x ∈ ℝL a frame of x̃ (L consecutive samples extracted from x̃).
We window the segment x such that x = Wx is called a windowed time-frame of x̃. HereW = diag(w) with w ∈ ℝL the weighting window. Applying a discrete frequency trans-
form on each consecutive x gives a time-frequency transform of the underlying x̃ ∈ ℝN

(N ≫ L). Namely, applying the DFT on each segment produces the Short-Time Fourier
Transform (STFT) of the initial time-domain signal. In the following we will consider allx ∈ ℝL to be windowed time-frames.

2.2.2 Redundancy

If the time-frequency transforms described above demonstrated their usefulness for au-
dio applications, they can not be arbitrarily precise in time and in frequency. Indeed, the
wider the time support is the more accurate in frequency is the representation. Equiv-
alently the shorter the time window the more precise is the transform. Figure 2.4 illus-
trates this uncertainty principle with two STFT squared modulus representation (spec-
trogram). On Figure 2.4a we notice smeared transients whereas the frequencies are
sharply represented. On the contrary, Figure 2.4b displays well defined attacks but a
larger spectral density. When using such representations one has to keep in mind this
trade off between time and frequency resolution. To alleviate the effects of this limitation,
several solutions were introduced such as multi-resolution time-frequency or time-scale
decompositions with the wavelets being the flagship of the field [Mallat 1999]. Another
solution with more classical transforms is to increase the frequency resolution through
the use of frequency redundant transforms.

In this case, the transforms presented above can no longer be represented as square
matrices. Indeed, redundancy extend the number of atoms in the dictionary so that the
synthesis sparse data model rewrites:
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x = Dz, with ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x ∈ ℝL;D ∈ ℂL×S;z ∈ ℂS;

S > L. (2.19)

Equivalently, the sparse analysis data model slightly changes to:

z = Ax, with ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x ∈ ℝL;A ∈ ℂP×L;z ∈ ℂP;

P > L. (2.20)

Such redundant dictionaries or analysis matrices are often called “overcomplete”. In
practice, products with A are done using the frequency transform of size P on a zero
padded time-domain signal x of initial length L. Similarly, products with D are done
truncating the inverse frequency transform of size S.

Notably, another property of the (time)-frequency transforms described above can
be coined by the term redundancy. Complex transforms, as they embed two numbers
for each frequency coefficient can be seen as intrinsically redundant (real and imaginary
part). Indeed, such transforms offers twice as many numbers to describe the frequency
content as the available time domain samples. In the following and more precisely for
the experimental sections as we use complex-valued transforms, redundancy will denote
overcomplete transforms.

Time
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Figure 2.3 – Time domain signal

2.2.3 Frames

Keeping the sparse data models in mind, the overcomplete dictionaries described above
become more general than a basis to decompose any signal x ∈ ℝL. However, some
properties on the dictionary matrix are still needed when used with convex or greedy
approaches for signal reconstruction.
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(a) STFT adapted for better frequency resolution
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(b) STFT adapted for better time resolution

Figure 2.4 – STFT magnitude representation of sound signal

Definition 1 (Frame). A collection of vectors (atoms) gathered in a matrix � is a frame if

there are two positive constants 0 < A ≤ B < ∞ such that for any vector vA‖v‖22 ≤ ‖�Hv‖22 ≤ B‖v‖22.
If A = B = � , the frame is tight and if � = 1,� is a Parseval tight frame. Particularly

in that case, we have the following property:

��H = I.
In the remainder of this thesis, all considered dictionarymatrices aswell as theHermitian
transpose of the analysis operators will be Parseval tight frames. However, some results
can still hold for regular tight frames (��H = �I).
2.3 Structured (Co)sparse priors

In the field of sparse representations and techniques, the notion of structure which is
basically the idea that the nonzero coefficients of expectedly sparse quantities may not
be “indifferently” distributed, is manifold. It has given rise to various definitions and
developments, all of which were initially defined in the context of sparse synthesis, but
can all be straightforwardly extended to the sparse analysis point of view. In the follow-
ing, the matrix A (resp. D) embodies a forward (resp. backward) (redundant) complex
frequency transform as described in section 2.2.

2.3.1 Time-frequency modeling

Simple synthesis sparse models as defined in Equation (2.7) may show some limitations
as it considers all the coefficients in the sparse representation independently. How-
ever, in the context of audio time-frequency modeling one can argue that coefficients
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are rather arranged in groups as shown in Figure 2.5. Structured forms of sparsity such
as group sparsity [Kowalski & Torrésani 2009b, Jenatton et al. 2011] or social sparsity
[Kowalski & Torrésani 2009a, Kowalski et al. 2013] have emerged as useful refinements
of the simple sparse synthesis technique to take into account the typical time-frequency
patterns of audio signals. For example, Figure 2.5a displays the spectrogram of a tonal
musical excerpt, where high energy coefficients are structured across time reflecting the
strong presence of harmonics. Figure 2.5b displays the spectrogram of a percussive mu-
sic sample, where the dominant coefficients gather across frequency due to transients
and beats. Consider the matrix X ∈ ℝL×T which columns are the windowed frames of an
original time-domain audio signal x̃ ∈ ℝN, and Z ∈ ℂS×T a matrix which columns are a
frequency representation of these frames. In other words, this matrix is a time-frequency
representation of the underlying audio signal x̃.

∙ Group sparsity: Consider non-overlapping groups of indexes in Z. Group sparsity
assumes that if some coefficient of thematrix is zero, then all coefficients at indexes
belonging to the same groupmust be also zero, while in “active” groups, no sparsity
is required. This prior is typically enforced by minimizing mixed-norms such as
the �2,1 norm (see Equation (2.3)).

∙ Social sparsity extends the previous structure to the case of possibly overlapping
groups, and also allows more flexible structures thanmixed norms through the use
of generic time-frequency patterns. This prior is typically enforced with the use
of appropriate specific sparsity promoting operators using dependencies between
coefficients.
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(a) Tonal music spectrogram
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(b) Percussive sounds spectrogram

Figure 2.5 – STFT magnitude representation of two music signals
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In structured sparse models, the assumed relation between Z and X becomes:

Structured analysis model Structured synthesis modelA ∈ ℂP×L, P ≥ L D ∈ ℂL×S, S ≥ LZ ≃ AX,Z ∈ ℂP×T DZ ≃ X,Z ∈ ℂS×T‖Z‖0 ≪ P × T ‖Z‖0 ≪ S × TZ is “structured”; Z is “structured”.

2.3.2 Channel-wise modeling

Aside from time-frequency modeling of monochannel audio signals, sparsity has been
used again from the synthesis sparse data model to recover multichannel signals. The
concept of joint or simultaneous sparsity was coined in the mid-2000s. Several vectors
are gathered and assumed to admit a sparse decomposition on the same dictionary.
The sparse decomposition can be jointly performed rather than vector-wise. This no-
tion is at the basis of the Simultaneous Orthogonal Matching Pursuit (SOMP) algorithm
[Tropp et al. 2006, Gribonval et al. 2008]. This work was then followed some years later
with simultaneous multichannel basis pursuit solved using convex approaches [Eldar &
Rauhut 2010].

Intuitively, we expect that a joint processing of all channels with sparsity priors
(in a multichannel signal reconstruction scenario) could be indeed more efficient than
independently processing each channel. This hypothesis was verified in [Gribonval
et al. 2008] with joint synthesis sparse priors as the reconstruction error decreasedwhile
the number of channels increased. Another hypothesis in such multichannel sparse re-
covery is a twofold prior: simultaneous (co)sparsity of all channels, and group sparsity
across channels. The underlying hypothesis behind the structure (group sparsity) here
is that nonzero coefficients are roughly distributed equivalently from frequency repre-
sentation of one channel to another involving channel-wise dependencies. Although
this hypothesis seems quite strong, it does not seem unlikely to assume that it holds
for multichannel audio recordings from compact microphones antennas. More formally,
consider X̃ ∈ ℝN×C a multichannel audio signal and X ∈ ℝL×C a matrix gathering a win-
dowed time-frame of that signal, C being the number of channels and L the time samples.
Denote Z its corresponding frequency representation. The main model characteristics
derive from the relation between Z and X as well as properties of Z. It expresses:

Structured analysis model Structured synthesis modelA ∈ ℂP×L, P ≥ L D ∈ ℂL×S, S ≥ LZ ≃ AX, Z ∈ ℂP×C DZ ≃ X, Z ∈ ℂS×C‖Z‖0 ≪ P × C ‖Z‖0 ≪ S × CZ is “structured across channels”; Z is “structured across channels”.

Figure 2.6 illustrates the group sparse prior used here. This model (new for the cosparse
case) will be used to present results on a multichannel audio declipping scenario in sec-
tion 6.3 page 69.
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Figure 2.6 – Channel-wise structured sparse modeling

Notably, a wider model can be considered here encompassing the time dimension
with tensor tools. This will not be studied in this work but we note that such tensor
models usedwith appropriate three-level structured �p,q,r mixed norms can help andwere
successfully used for magneto-/electro-encephalography source localization [Gramfort
& Kowalski 2009].

2.4 Summary

After introducing the basics of sparse modeling, this chapter detailed the two sparsity
data models (both synthesis and analysis) along with regularization methods. Then, we
described some useful tools for audio signal (co)sparse modeling. Among them, we pre-
sented possibly redundant complex frequency transforms properties. Afterwards, we
described structured synthesis sparse priors for time-frequency modeling and proposed
an extension to its cosparse counterpart. As structured sparsity is multiform and can be
used as well in a multichannel context, we broadened its application spectrum adding
channel-wise structured (co)sparse audio signals modeling.
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In this chapter we are interested in deriving a generic greedy method able to retrieve
degraded audio signals. This method is designed to account for various sparse signal
modeling priors among those described in chapter 2. The aim is also to make it versatile
to work with several audio distortion problems being induced either by the sensor or
the environment. The main algorithmic framework underlying this method is the Al-

ternating Direction Method of Multipliers (ADMM). The first section of this chapter will
describe the ADMM while the next one will feature the generic audio reconstruction
algorithm. The algorithm will be explicitly demonstrated in chapter 5, chapter 6 and
chapter 7.

3.1 Alternating Direction Method of Multipliers

Sparse signal reconstruction, whether seen from the analysis or synthesis point of view,
often uses (non-) convex optimization to address recovery problems. Initially, ADMM
was designed to solve the following convex optimization problems as stated in [Boyd
et al. 2011]:

minimizeW,Z f (W) + g(Z) subject to MW − BZ = Q, (3.1)

withW,Z,M, B, andQ generic real-valuedmatrices or vectors and f (⋅), g(⋅) convex func-
tionals.

To solve the problem described in Equation (3.1) with ADMM, we first consider the
corresponding augmented Lagrangian problem defined below:

L�(W,Z, V) = f (W) + g(Z) + ⟨V,MW − BZ − Q⟩ + �
2
‖MW − BZ − Q‖2F, (3.2)
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where � > 0. The standard method is performed on the equivalent scaled Lagrangian
expression: L�(W,Z, U) = f (W) + g(Z) + �

2
‖MW − BZ − Q + U‖2F − �

2
‖U‖2F, (3.3)

with U = V� the dual variable. The associated problem to Equation (3.1) then becomes:

maximizeU (minimizeW,Z L�(W,Z, U)). (3.4)

The interest of the ADMM procedure is that optimization over W,Z, U can be split in
three distinct steps described below:

W(i) = argminW f (W) +
�
2
‖MW − BZ(i−1) − Q + U(i−1)‖2F, (3.5)Z(i) = argminZ g(Z) + �
2
‖MW(i) − BZ − Q + U(i−1)‖2F, (3.6)U(i) = U(i−1) +MW(i) − BZ(i) − Q. (3.7)

Definition 2 (Characteristic function). Let Θ be a nonempty convex set, we denote �Θ(⋅)
the characteristic function of the set Θ i.e. for any matrix W ∈ ℂL×P:

�Θ(W) =

{
0 whenW ∈ Θ;

+∞ otherwise;
(3.8)

Definition 3 (Proximity operator). Given f a convex function, the proximity operator off is defined for any vectorsw u by:proxf (w) = argminu f (u) + 1

2
‖u −w‖22 (3.9)

Remark. Proximity operators are usually defined for vectors. We can easily extend it to

matrices replacing the Euclidean norm with the Frobenius norm.

Note that Equation (3.5) and Equation (3.6) can be identified to proximity operators
of f (⋅) and g(⋅) under certain condition onM and B, so ADMM being part of the proximal
splitting methods framework [Combettes & Pesquet 2011, Parikh & Boyd 2013].

If convergence is ensured when f (⋅) and g(⋅) are convex functionals [Eckstein &
Yao 2015], this numerical scheme is also widely used as a heuristic for non-convex op-
timization especially as proximity operators of certain non convex function are easy to
compute. Hence, numerous studies [Adler et al. 2013, Boyd et al. 2011, Chartrand &
Wohlberg 2013, Kitić et al. 2015] used ADMM as a heuristic for non-convex cases.

3.2 Generic reconstruction framework

In this section, we present a general framework using either simple sparse modeling
(analysis or synthesis based) or structured sparse priors to address reconstruction prob-
lems in audio. Given a distorted matrix of observations Y, our goal is to find means to
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recover an estimate X̂ of the frames X of the original signal. For this, one seeks X̂ that
satisfies:

• a data fidelity constraint with respect to Y, according to some distortion model
(additive noise, clipping, reverberation...);

• the modeling constraints described in chapter 2.

This is the spirit of the algorithmic framework we develop. It relies on two compo-
nents:

• a generalized projection onto the data-fidelity constraint;

• a shrinkage enforcing (structured) sparsity.

The two next paragraphs detail these components before presenting the algorithm
they are embedded in.

Shrinkages Intuitively, this operator gives an output which is “decreased” in a certain
sense, with respect to its input argument, hence somewhat promoting sparsity. Although
we will not formally exploit it for any convergence analysis, we also recall below the
notion of shrinkage, also called “thresholding rule” [Kowalski 2014].

Definition 4 (Shrinkage). (⋅), is a shrinkage iff:
1. (⋅) is an odd function;

2. 0 ≤ (x) ≤ x , for all x ∈ ℝ+.
3. ((⋅))+ is nondecreasing on ℝ+ and limx→+∞((x))+ = +∞, where (⋅)+ ∶= max(⋅, 0).
When applied to a (time-/channel- frequency) matrix, and written (Z), shrinkage is

applied entry-wise. The different shrinkages are to be adapted depending on the sparse
prior to account for (i.e. plain or structured sparsity). These shrinkage operators are
presented subsection 3.2.2.

Projections We present below the generalized projection tool that will be crucial for
fulfilling the different data-fidelity constraints in the algorithm.

Definition 5 (Generalized projection). Let Θ be a nonempty convex set, and M be a full

column rank matrix. Given a time-frequency matrix Z, we denote Θ,M(Z) the (unique)
solution of the following optimization problem:

minimizeW∈Θ ‖MW − Z‖F. (3.10)

The computation of this projection for some particular choices of constraint set Θ
and matrix M will be discussed in due time. Similarly to the shrinkages, this general-
ized projection is adapted considering the data-fidelity and the reconstruction problem
at hand. The different projections will be introduced independently when instantiating
the general algorithm for either denoising (chapter 5), declipping (chapter 6) or derever-
beration (chapter 7).
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3.2.1 Generic algorithm

Let us now consider seeking a solution for the following non-convex optimization prob-
lem which is similar to Equation (3.1):

minimizeW,Z fm(Z) + �Θ (W) subject to MW − Z = 0 (3.11)

where W,Z and M are generic real matrices. fm(⋅) can be identified to a functional em-
bodying a modeling constraint and �Θ (⋅) can be identified to a functional corresponding
to the data-fidelity term.

As a heuristic, to seek a solution of Equation (3.11), we proceed by forming aug-
mented Lagrangian [Nocedal & Wright 2006, Chapter 17]:

L�(W,Z,Q) = fm(Z) + �Θ (W) + ⟨Q,MW − Z⟩ + 1

2� ‖MW − Z‖2F, (3.12)

where Q is the dual variable and � > 0. Let U = �Q, then Equation (3.12) becomes:

L�(W,Z,U) = fm(Z) + �Θ(W) +
1

2� ‖MW − Z + U‖2F − 1

2� ‖U‖2F. (3.13)

Equation (3.13) is called the scaled Lagrangian. Standard ADMM approach is to per-
form alternate minimization on Equation (3.13) with respect to each of the primal vari-
ables (W,Z), followed by an update for U:

W(i) = argminW �Θ (W) +
1

2� ‖MW − Z(i−1) + U(i−1)‖2F (3.14)Z(i) = argminZ fm(Z) + 1

2� ‖Z −MW(i) − U(i−1)‖2F (3.15)U(i) = U(i−1) +MW(i) − Z(i), (3.16)

We note that thanks to the indicator function �Θ (⋅) the 12� factor in Equation (3.14)
does not play any role in the minimization. Hence, here the ADMM step described by
Equation (3.14) is equivalent to performing the following generalized projection:

Θ,M(Z(i−1) − U(i−1)).
Similarly, the step described by Equation (3.15) can be identified by:

� (MW(i) + U(i−1)) .
In this work we use only sparsity inducing non-convex shrinkages �(⋅). Our goal here
is not to associate any penalty fm(⋅) and/or proximity operator, which, if they exist might
be difficult to express [Gribonval & Nikolova 2018].
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3.2.2 Generic (co)sparse instantiation

In the following, we will use the three alternate minimization steps of ADMM (Equa-
tion (3.14), Equation (3.15), Equation (3.16)) to build the generic reconstruction frame-
work. In a concrete setting, the following is required to instantiate the framework:

Requirements.

• a convex setΘ and amatrixM embodying the data fidelity constraint and the domain

(time or frequency) in which it is specified;

• a parameterized family of shrinkages {�(⋅)}� , where the amount of shrinkage is

controlled by �: in the extreme cases 0(Z) = Z and ∞(Z) = 0;

• a rule F ∶ � ↦ F (�) to update the amount of shrinkage across iterations, and an

initial �(0);
• an initial estimate Z(0) of the seeked time-/channel- frequency representation;

• stopping parameters � and imax.
The proposed generic algorithm is described in Algorithm 1.

Algorithm 1 Generic Algorithm: 

Require: Θ, M, {�(⋅)}�, �(0), F (⋅), Z(0), �, imax
Initialization step:

U(0) = 0;
for i = 1 to imax do
Projection step on the data-fidelity constraint:

W(i) = Θ,M(Z(i−1) − U(i−1)) Equation (3.14)
Projection step on the modeling constraint:

Z(i) = �(i−1) (MW(i) + U(i−1)) Equation (3.15)
Update step:

if ‖MW(i)−Z(i)‖F‖MW(i)‖F ≤ � then

terminate
else

U(i) = U(i−1) +MW(i) − Z(i) Equation (3.16)
�(i) = F (�(i−1))

return W(i) [and optionally �(i), Z(i)]
The notation Z(i) highlights that the corresponding variable is in any use-case a

sparse/structured time-/channel- frequency representation. The variable U(i) is an in-
termediate time-/channel- frequency “residual” variable typical of ADMM. At iteration

i, an estimate of Z is Ẑ(i)
∶= Z(i−1) − U(i−1). The interpretation of the other variables is

use-case dependent:
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• analysis flavor: M ∶= A is the frequency analysis operator;W(i) is an estimate of
the time frames X, that satisfies the time-domain data-fidelity constraint Θ while

being closest to Ẑ(i)
in the time-/channel- frequency domain; the algorithm outputs

a time-domain estimate.

• synthesis flavor: M ∶= I; W(i) is a time-/channel- frequency estimate of Z; the
data-fidelity constraint Θ is expressed in the time-/channel- frequency domain; the
algorithm outputs a time-/channel- frequency estimate, fromwhich it is possible to
get a time-domain estimate by synthesis X̂ ∶= DW(i) with D the inverse frequency
transform operator.

Due to the expression of Θ respectively in the time domain and the time-/channel-
frequency domain, the analysis and synthesis flavors can have different computational
properties as will be further studied.

Shrinkage for plain sparsity To enforce the plain sparse data model, either analysis
or synthesis, we use the hard-thresholding operator k(Z) that sets all but the k coeffi-
cients of largest magnitude in Z to zero (see e.g. [Blumensath & Davies 2009]). In the
case of analysis (resp. synthesis) sparse modeling with A ∈ ℂP×L a forward frequency
analysis operator (resp. D ∈ ℂL×S a dictionary) we set � ∶= P−� (resp. � ∶= S−�), for
� ∈ ℕ+, 0 ≤ � ≤ P (resp. 0 ≤ � ≤ S).

Shrinkage for time-frequency structured sparsity For social sparsity (again, ei-
ther analysis or synthesis), we choose the Persistent Empirical Wiener (PEW) operator
[Kowalski 2014] successfully used in [Siedenburg et al. 2014] for audio declipping. This
shrinkage promotes specific local time-frequency structures around each time-frequency
point. Its specification explicitly requires choosing a time-frequency pattern described
as a matrix Γ ∈ ℝ(2F+1)×(2T+1) with binary entries.

Rows of Γ account for the frequency dimension and columns for the time dimension,
in local time-frequency coordinates. Let Z ∈ ℂL×(2b+1) be a time-frequency representation.
As illustrated on Figure 3.1, consider ij the coordinates of a time-frequency point in Z
and Pij ∶= [i − F, i + F] × [j − T, j + T] the indices corresponding to a time-frequency patch
of size (2F + 1) × (2T + 1) centered in ij. The matrix ZPij ∈ ℂ(2F+1)×(2T+1) is extracted from Z
on these indices, with mirror-padding on the borders if needed.
Now that we have expressed how Z, ZPij and indexes are organized, we can define PEW
using ◦ to denote the Hadamard product and (⋅)+ = max(⋅, 0) the positive part:

PEW
� (Z|Γ)ij ∶= Zij ⋅(1 −

�2‖ZPij◦Γ‖22)+ . (3.17)

Since ‖ZPij◦Γ‖2F is the energy of Z restricted to a time-frequency neighborhood of ij of
shape specified by Γ, the left hand side is zero as soon as this energy falls below �2. As
such, PEW shrinkage effectively promotes structured sparsity.

Examples of time-frequency patterns Γ chosen for music are given in Figure 3.2 and
for speech in Figure 3.3. They are similar but at different time scales, given the different
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2b + 1

i

j

i − F

i + F

j − T j + T

Z
ZPij

∙ Zij

Figure 3.1 – Schematic representation of patch extraction from matrix Z

scales of stationarity in speech and music. The structures embedded in these patterns
have various properties: Γ1, with a frequency localized and time-spread support, will
emphasize tonal content; vice-versa, Γ3 will emphasize transients and attacks; Γ2 is de-
signed [Siedenburg & Dörfler 2012] to avoid pre-echo artifacts; patterns Γ4 and Γ5 are
introduced to stress tonal transitions; finally, Γ6 serves as a default pattern when no par-
ticular structure is identified.

Remarks: Here the subscript index k for each time-frequency pattern Γk, k ∈ {1..6} is
not a time frame index but counts the patterns within the collection.
On Figure 3.2 and Figure 3.3 the unit is the time-frequency index of the DFT. In the
experimental sections, as we will take 64 ms long time-frames for music and 32 ms long
time-frames for speech, the total time span for each Γ is 320 ms for music. For speech
the total time span reduces to 96 ms.

(a) Γ1 (b) Γ2 (c) Γ3 (d) Γ4 (e) Γ5 (f) Γ6
Figure 3.2 – Extended set of time-frequency neighborhoods used for music

(a) Γ1 (b) Γ2 (c) Γ3 (d) Γ4 (e) Γ5 (f) Γ6
Figure 3.3 – Extended set of time-frequency neighborhoods used for speech
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Shrinkages for channel-aware structured sparsity For multichannel scenarii, in
order to enforce the channel-wise structured sparse modeling, we use the Group Empir-
ical Wiener (GEW) operator as in [Févotte & Kowalski 2015] as a sparsifying step in the
procedure. Let Z ∈ ℂP×K be a local multichannel frequency representation to sparsify.
Let pk be coordinates of point in such a local representation and zp ∈ ℂ1×K the p-th row
from matrix Z (corresponding to a group, as illustrated on Figure 2.6 page 21). GEW is
defined as:

GEW
� (Z)pk = Zpk ⋅(1 −

�2‖zp‖22)+ , (3.18)

with (⋅)+ = max(⋅, 0) the positive part and � the parameter controlling the amount of
shrinkage to apply. This shrinkage explicitly promotes group sparsity of Z along the
channel dimension (zp).

Additionally, we will also use another shrinkage similar to GEW and defined as:

Quad-GEW
� (Z)pk = Zpk ⋅(1 −

�2‖zp‖42)+ . (3.19)

Note that this last shrinkage just differs from GEW by the power of the norm, hence
we call this shrinkage the “Quadratic Group Empirical Wiener” (Quad-GEW) . We for-
tuitously discovered that this last shrinkage could yield better results for certain signal
reconstruction problems. It will be more specifically used within the framework for
stereo signal declipping in chapter 6.

3.3 Summary

After a short review of the ADMM iterative method, this chapter presents useful compo-
nents (generalized projection and shrinkages) for deriving a generic audio reconstruction
framework. This framework stresses the use of ADMM as a heuristic for approaching a
solution of possible non-convex optimization problems. Finally, this chapter details the
requirements of the framework and provides pseudo-code of the algorithmic procedure
(Algorithm 1). This will be the shared baseline for tackling audio reconstruction in the
next parts of this manuscript.

We can summarize Algorithm 1 as a generalized procedure:

(Θ, M, {�}� , �(0), F , Z(0), �, imax). (3.20)



Chapter 4

Test data and performance measures

Contents

4.1 Test data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Objective measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Signal-to-Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.2 Signal-to-Distortion Ratio . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Perceptually inspired measures . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 Estimating global audio quality . . . . . . . . . . . . . . . . . . . . 35

4.3.2 Estimating global speech quality . . . . . . . . . . . . . . . . . . . 36

4.3.3 Estimating the speech intelligibility . . . . . . . . . . . . . . . . . . 38

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

As the algorithmic framework presented above will be used for solving different au-
dio reconstruction problems in the rest of this thesis, one essential question is the choice
of data and performance measure to rate the effectiveness of algorithms derived from
this framework. Several factors can guide the choice of signals and metrics for perfor-
mance assessment. The data to test are often chosen depending on the signal models at
hand. With audio signal processing application in mind, the reader could probably guess
that simulated or recorded sounds will be used to illustrate the usefulness of the different
methods presented in the remainder of this thesis. The choice of the metric could be di-
rectly drawn from the target application in the case of a signal processing pipeline or be
more generic. For example if the back-end application involves speech recognition [Ra-
biner & Juang 1993], a good choice can be the “Word Error Rate” [Deléglise et al. 2009]
giving information on the failed recognized words. Otherwise, the metric can change re-
garding what kind of data is concerned. Indeed, we can easily guess that the measuring
index will not be the same depending on the information conveyed by the signal. In the
following, the reference signals and data which are used for most of the experimental
validation in this work are described. Then, we present the different measures which are
used all along this manuscript to assess the performance of the algorithms and methods.



32 Chapter 4. Test data and performance measures

4.1 Test data

Sounds in our every day life can be really diverse. Hence, it is of great concern to pay
specific attention to the choice of the audio examples used for experimental validation
on audio reconstruction methods. Audible stimuli are widely used to alert, inform, com-
municate or for artistic purposes with music for example. Although this last sentence
bounds music to its artistic dimension, some work [Hargreaves et al. 2005] reviewed its
important role in communication.

For these reasons, an obvious choice for the test audio data is both speech and mu-
sic. Even if freely available large databases existed for a long time for speech [Cole
et al. 1995], some years ago it was still missing for music. In 2002, the Real World Com-
puting partnership in Japan released a copyright-cleared dataset for research purpose.
This large database includes various music genres such as pop music, jazz music or clas-
sical music. For the pop music category the RWC database features 100 songs, it has 50
examples for the jazz and classical subsets. For the later, the genre is sub-categorized
as “symphonies” (4 pieces), “concerti” (2 pieces), “orchestral music” (4 pieces), “chamber
music” (10 pieces), “solo performances” (24 pieces) and “vocal performances” (6 pieces).
To conduct experimental studies, we choose to rearrange the classical part of the dataset.
We let the “vocal performances” category as is, as it features a quite distinct content
than the other subsets. We will call it Vocals when presenting some results. We group
the “symphonies”, “concerti” and “orchestral music” as the pieces are performed by large
groups of musicians. We will later call this subsetOrchestra. Finally, we gathered “cham-
ber music” and “solo performances” as the pieces are here played by small groups of
musicians. This grouping will be later called Chamber.

Duration for music For the tested musical content, we are targeting around 50 min-
utes of audio content for each category. Therefore, we adapt the length of each excerpt
accordingly. For that purpose, we select randomly with uniform probability a 30 second
excerpt for each song of the “Popular Music” subset which will be denoted Pop in the
experimental sections. Similarly, we choose a 1 minute sample of each song in the “Jazz
Music” subset that will be called later Jazz. For the “Classical Music”, we use the Vocals as
is. We randomly pick a 5 minute excerpt for 9 of the examples in the Orchestra subset. In
the Chamber subset, we perform uniform random selection to take a 90 second excerpt
for 35 sound examples. The list below summarizes the total audio content tested:

• Pop: 100 songs × 30 seconds (total 50 minutes);

• Jazz: 50 pieces × 60 seconds (total 50 minutes);

• Classic

– Chamber : 35 pieces × 90 seconds (total 52.5 minutes);

– Orchestra: 9 pieces × 5 minutes (total 45 minutes);



4.1. Test data 33

– Vocals: 6 songs (various lengths, total ∼ 22 minutes).

The RWC database originally features stereo recordings sampled with CD quality at
44.1 kHz. For experiments requiring mono-channel recordings, we use down-sampled
version of the audio tracks to 16 kHz as a compromise between quality and execution
time for the reconstruction algorithms. The mono-channel signals are generated by av-
eraging the original stereo signals.

Notably, other subsets are available in the RWC Music database (“Royalty-Free Mu-
sic”, “Music Genre” and “Musical Instrument Sound”) but they will not be used for this
work.

Speech For speech content, in the late 1980’s Texas Instrument at the MIT released
an acoustic and phonetic speech corpus [Garofolo et al. 1993] (TIMIT). This transcribed
speech data have beenwidely used for automatic speech recognition systems assessment
[Graves et al. 2013]. This speech database provides various American English versions
of sentences read by native speakers recorded at 16 kHz and in mono-channel. Later in
this thesis, the experiments involving speechwill feature 135 samples extracted from the
whole corpus and freely available for a total around 10 minutes of speech audio content.
This subset will be denoted as “TIMIT” in the rest of the document.

Multichannel data Additionally, for multichannel tests, we perform experiments on
8-channels recording excerpts from the VoiceHome2 Corpus [Bertin et al. 2019]1. We
use the 359 clean speech available examples (total duration: about one hour) and the
118 mixed music and speech examples (total duration: 20 minutes). This multichannel
dataset was initially designed to account for various possible smart home interactions
and features muchmore available sounds with different noisy conditions which we leave
aside in this work. It is sampled at 16 kHz. For experiments involving stereo recordings,
we use the original RWC audio data from the same categories.

Small scale database On top of these large scale audio databases, first pilot studies
are conducted on audio examples provided on the SMALL Project webpage2. These au-
dio files are distributed under Creative Commons Sampling Plus License along with the
SMALLbox software. It is featured by the audio inpainting toolbox [Adler et al. 2012].
We use the 10 speech and 10 music examples (5 second each) sampled at 16 kHz that
are used for experimental validation on this toolbox. They are later in this manuscript
referred to as “SMALL dataset” or “SMALLbox examples”.

1http://voice-home.gforge.inria.fr/voiceHome-2_corpus.html
2http://www.small-project.eu

http://voice-home.gforge.inria.fr/voiceHome-2_corpus.html
http://www.small-project.eu
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Table 4.1 summarizes the data used for experiments.

Table 4.1 – Test data summary

SMALL Pop Jazz Chamber Orchestra Vocals TIMIT voiceHome2
Duration [s] 100 3000 3000 3150 2700 1320 600 1200
Excerpts Nb. 20 100 50 35 9 6 135 477
Channel Nb. 1 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 8
Fs [kHz] 16 16 16 (44.1) 16 16 16 16 16

Finally, data used in chapter 8 for source localization will be presented in due time.
The dataset for this task is itself a contribution and is specific to this chapter, none of the
other experimental sections in this manuscript will use it.

4.2 Objective measures

Performancemeasures are typically qualified into objectivemeasure and subjective qual-
ity evaluation. On the one hand, objective evaluation requires a numerical comparison
between the original signals and the processed ones. In this way, it is possible to quantify
numerically the “divergence” between the processed or a degraded (audio) signal and a
reference. On the other hand subjective quality measures involve, for instance, features
rating by a group of listeners between reference, original/unprocessed and processed
sounds. In the following we choose to describe the objective evaluation tools which will
be used in the experimental sections.

4.2.1 Signal-to-Noise Ratio

Signal-to-Noise Ratio (SNR) is a widely used metric to compute the distance between
two signals in the context of additive noise. Let x ∈ ℝL be a reference discrete signal andy ∈ ℝL a noisy or processed signal. The SNR is usually expressed on a logarithmic scale
in dB and represents the ratio between the power of the signal of interest and the power
of the noise. For the additive noise vector sum case y = x + " the SNR writes:

SNR(x|") = ‖x‖22‖"‖22 . (4.1)

It is common to express it also in logarithmic scale:

SNRdB(x|") = 10 ⋅ log10(‖x‖22‖"‖22) , (4.2)

with lim"→0 SNRdB = +∞ in the noiseless case. In this work, as we are interested in
comparing signal reconstruction we will rather use the SNR difference (ΔSNR) wherex̂ ∈ ℝL is the estimated denoised signal:

ΔSNR = 10 ⋅ log10 ( ‖x‖22‖x − x̂‖22) − 10 ⋅ log10(‖x‖22‖"‖22) . (4.3)
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4.2.2 Signal-to-Distortion Ratio

When no additive noise is at stake, a equivalent metric called Signal-to-Distortion Ratio
(SDR) is available to quantify the gap between a degraded or reconstructed signal and its
original version. The SDR is defined similarly to Equation (4.2), the only difference can
come from the interpretation of the ‖x−y‖22 quantity. In the additive noise case, it is seen
as the noise power whereas for other scenarii, we can simply interpret it as the distance
between the two signals induced by the degradation or restoration. The SDR writes:

SDRdB(x|y) = 10 ⋅ log10 ( ‖x‖22‖x − y‖22) . (4.4)

Similarly, we are interested in comparing signal reconstruction and will rather use the
SDR difference (ΔSDR) where x̂ ∈ ℝL is the estimated reconstructed signal:

ΔSDR = SDRdB(x|x̂) − SDRdB(x|y). (4.5)

4.3 Perceptually inspired measures

An objective audio quality measure is well-founded if it correlates with subjective lis-
tening assessments. For that reason, some research work focused on finding objective
descriptors that represent what happens along the auditory pathway. In the following,
we present some of these descriptors that are used to depict global audio quality with
objectivity. Such measures will be used in most of the experimental sections of this
manuscript. If different metrics are used, they will be disambiguated in the text.

4.3.1 Estimating global audio quality

Except for speech specific methods which will be detailed in the next subsection, we
trace back only few attempts to rate quality of wide-band audio content. Triggered by
advances on the human auditory system understanding and more precisely the time-
frequency masking effects and non linearities in the ear, [Brandenburg 1987] proposed
a metric (segmental Noise-to-Mask Ratio) to rate audio quality. Later, the International
TelecommunicationUnion (ITU) started its standardization activities startingwith speech
quality measurements. The Perceptual Evaluation of Audio Quality (PEAQ) method
was proposed as a recommendation ([Thiede et al. 2000]) after some other rating tech-
niques in the 1990’s mainly relying on psychoacousticsmodels. Figure 4.1 below presents
the overall functioning of the PEAQ for rating audio quality. After producing a fre-
quency representation of the reference and tested signals with a peripheral ear model,
the method extracts features such as loudness profiles, noise-to-mask ratio, temporal
modulation.
These time-dependent descriptors are averaged to obtain a single value called the Model
Output Values (MOV). These MOV are finally mapped to an Objective Difference Grade
(ODG) rating the perceived degradation between the signals. This ODG score ranges on
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a 5-grade scale from -4 (Very annoying) to 0 (Imperceptible). For the experiments of this
thesis, we will use this PEAQ ODG descriptor to rate the audio quality. We use for that
the code3 available with the exhaustive review of PEAQ [Kabal 2002] which implements
the ITU-R BS 1387.1 recommendation.
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Figure 4.1 – PEAQ computation

As stated previously, we will be interested in the experimental sections to perform
a comparison before and after signal reconstruction. Note that PEAQ(x|y) measures the
audio quality between a clean reference x and its corrupted version y, x̂ or its restored
estimate. We will use as a comparison measure the PEAQ difference (ΔPEAQ) defined
below:

ΔPEAQ = PEAQ(x|x̂) − PEAQ(x|y). (4.6)

4.3.2 Estimating global speech quality

Due to the specificity of speech among other audio signals, some research have been
focusing on dedicated measures to rate the global quality of speech. Most of these mea-
sures are based on a short-time frame segmentation (10 to 30 ms) prior to a divergence
calculation regarding a reference signal.

For instance, we can cite attempts to take into account silences in speech through
the segmental Signal-to-Noise Ratio [Richards 1965, Hansen & Pellom 1998] (SNRseg).
We can cite spectral distance measures. These measures, based on Linear Predictive
Coding (LPC) coefficients [Vaidyanathan 2007], rely on an all-pole modeling for speech.
These objective measures, even if they are simple to get, do not reflect well the subjec-
tive quality as no auditory processing model is embedded in the computation. On the

3http://www-mmsp.ece.mcgill.ca/Documents/Software/

http://www-mmsp.ece.mcgill.ca/Documents/Software/
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contrary, the SNRseg aforementioned measure was later formulated in the frequency-
domain [Tribolet et al. 1978] opening for perceptually motivated weightings. Equiva-
lently, in [Klatt 1982], were introduced “weighted spectral slope” metrics triggered by
findings on vowels distance rating. These first steps were followed by distortion mea-
sures on auditory oriented frequency weightings such as Bark scales. Motivated by the
findings described above, a measure assumed to cover several speech degradation and
distortion was promoted in the ITU-T recommendation P.862 [ITU-T 2001]. This metric
named “Perceptual Evaluation of Speech Quality” (PESQ) is for now considered as one
of the most reliable metric to predict the overall speech quality. Figure 4.2 describes the
global functioning of the PESQ estimator. PESQ was first designed to account mainly
for network or telecommunication distortion. For this reason, in the pre-processing
step, the signals are equalized following the typical frequency response of a telephone.
The ITU recommendation was slightly modified to account for wide-band (binaural)
signals [ITU-T 2007] (ITU-T recommendation P.862.2). Practically, after applying an au-
ditory model to the signals (based on a Bark frequency scale) the loudness spectra are
estimated. From the loudness spectra differences (disturbance), the wideband PESQ pre-
dicts a Mean Opinion Score (MOS) as it could be retrieved from genuine listening tests.
PESQ output scores range from 1 (bad) to 5 (excellent). In the remainder of this thesis,
we will use this wideband PESQ descriptor to rate speech quality. We use for that the
code provided along with [Loizou 2013].
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& Gain
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Figure 4.2 – PESQ computation

Similarly, we define as a comparison measure the PESQ difference (ΔPESQ):

ΔPESQ = PESQ(x|x̂) − PESQ(x|y). (4.7)
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4.3.3 Estimating the speech intelligibility

Whereas speech quality can be highly subjective and difficult to rate accurately, speech
intelligibility provides an objective way to estimate the speech understanding. Involving
a group of people, speech intelligibility can be measured asking them to identify words
or phonemes.

Intelligibility tests with a group of listeners are very complex to handle. For instance,
for controlled testing conditions, you need proper stimuli calibration along with very
low background noise level environment and high quality sound reproduction systems.
These constraints taken into account, it is a troublesome procedure that is almost impos-
sible to handle on a large scale perspective. Various studies tried to correlate the speech
intelligibility to objective numericalmeasures that can be easily calculated. Among these
studies we can cite the initial work on Articulation Index (AI) [French & Steinberg 1947],
or later its evolution Coherence Speech Intelligibility Index (CSII) [Kates & Arehart 2005].
AI was first designed to predict non-sense syllable discrimination based on frequency
band weighted SNR. While AI was triggered by telephone applications, CSII came along
with hearing devices for speech enhancement. CSII uses power spectrum density ra-
tios between noisy or processed signals as well as auditory filters to predict speech in-
telligibility. More recently, the STOI (Short Time Objective Intelligibility) index [Taal
et al. 2010] was introduced. This index was shown to better correlate with real human
speech intelligibility than CSII [Taal et al. 2011]. It is also described as more suitable
to assess intelligibility on speech processed with time-frequency thresholding methods.
Hence, we decide to use this STOI index as a reasonably good speech intelligibility pre-
diction. To compute the STOI, we use the code available withing the Auditory Modeling

Toolbox4 [Søndergaard & Majdak 2013]. Figure 4.3 displays the global functioning of
STOI index calculation.

4http://amtoolbox.sourceforge.net

http://amtoolbox.sourceforge.net
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Figure 4.3 – STOI computation

Similarly to the ΔPEAQ and ΔPESQ we define as a comparison measure the STOI
difference (ΔSTOI) that will be used in the experimental sections:

ΔSTOI = STOI(x|x̂) − STOI(x|y). (4.8)

4.4 Summary

This short chapter presented the data used later in this manuscript for experimental
validation. This chapter is also dedicated to introduce the performancemeasures that are
used to rate the reconstruction algorithms efficiency. These differentmeasures presented
earlier are so-called intrusivemeasures as they imply comparisonwith a reference signal.
However, recent studies [Sharma et al. 2016, Andersen et al. 2017] try to present non-
intrusivemeasures embeddingmore accurate speechmodels. We do not detail these here
as they are more suitable for blind quality evaluation rather than quality comparison
involving a reference.
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This chapter will focus on the audio denoising reconstruction problem. After briefly
describing the additive noise issue, the chapter will feature a short review of available
denoising techniques. Then, we introduce applications of (structured) (co)sparsity for a
monochannel reconstruction scenario emphasizing an simple sparse or adaptive time-
frequency modeling. Each of these two applications is an instance of the generic frame-
work introduced earlier (chapter 3). Before concluding this current chapter, some exper-
iments including comparisons with a baseline denoising method will be detailed.

This chapter is inspired from [Gaultier et al. 2017a]: Clément Gaultier,
Nancy Bertin, Srđan Kitić and Rémi Gribonval. A modeling and algo-

rithmic framework for (non) social (co) sparse audio restoration. arXiv
preprint arXiv:1711.11259, 2017 and to a lesser extent from [Gaultier
et al. 2017c]: Clément Gaultier, Srđan Kitić, Nancy Bertin and Rémi
Gribonval. AUDASCITY: AUdio Denoising by Adaptive Social Cospar-

sITY. In 2017 25th European Signal Processing Conference (EUSIPCO),
pages 1265–1269, Aug 2017. More precisely, section 5.3 presents new
experimental results.
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5.1 The noise and denoising problems

This section first presents the considered noise issue in this work before reviewing the
most common noise reduction methods.

5.1.1 The noise problem on audio recordings

Denoising is one of the most intensively studied inverse problems in audio signal pro-
cessing. Whether it originates from the environment or the sensors, noise is an inevitable
(and, usually, undesirable) component of audio recordings, calling for a denoising stage
in signal processing pipelines for applications such as music transcription, sound clas-
sification, speech recognition and many others. Understanding the noise degradation
is of great importance before trying to design any noise reduction technique. Whether
it be multiplicative, additive or convolutional noise, how the noise affects the signal of
interest should drive the denoising solution to use. In this work we will focus on the
well known additive noise model defined below by the simple vector sum:y = x + n, (5.1)

where y ∈ ℝL is a noisy signal composed of x ∈ ℝL an original clean signal and n ∈ℝL. In this work, we will focus on white Gaussian noise hence n following a gaussian
distribution (n ∼  (0, � 2)).
5.1.2 Prior art on noise reduction

We can trace back the early denoising attempts mainly for speech enhancement. To
address the noise problem, numerous approaches arose. Some of these use statistical
models others use spectral subtraction, Wiener filtering or thresholding operators.

Spectral subtraction Spectral subtraction is probably one of the most studied method
for noise reduction since the end of the 1970’s [Boll 1979]. It is a frequency domain
method based on the idea that the clean signal frequency estimate can be obtained by
removing the noise spectrum from the noisy signal frequency representation. The time
domain signal is then obtained by inverse frequency transform. Eventually this method
is relatively computationally efficient as it requires only a forward and an inverse fre-
quency transform. However, it also needs an accurate estimation of the noise spectrum.
As long as signal and noise have overlapping spectral content, this method comes with
a price: the introduction of musical noise or signal distortion [Berouti et al. 1979]. Over
the years, several solutions were introduced to alleviate this effect such as performing
over-subtraction or controlling a remaining noise floor acting as a musical noise masker.

Wiener filter Wiener filtering [Wiener 1949] is a method that requires an estimation
of the signal power and the noise power (i.e. the SNR). An optimal filter (H (f )) can be
expressed for a given frequency f by:
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H (f ) =
SNRf req(f )

1 + SNRf req(f )
, (5.2)

where SNRf req(f ) denotes the SNR for a given frequency f linking the power spectra of
the noise and the signal. Even ifWiener filtering is a relatively old method, in the context
of audio denoising, it benefited from some work improving it with iterative filtering or
auditory oriented weightings [Hu & Loizou 2004].

Sparsity and thresholding As the time-frequency domain became the flag-ship for
audio denoising, in the last two decades, a body of work addressing reconstruction
and inverse problems in audio popularized sparse regularization. Additionally, it was
recognized that group sparse models. Hence, a method promoting group-sparse time-
frequency signal prior [Siedenburg & Dörfler 2012] was showing perceptual quality im-
provements compared to the Block-thresholding [Yu et al. 2008] method. The latter, uses
disjoint clusters in the time-frequency representation of noisy signals to estimate a local
time-frequency dependent SNR and then a single attenuation factor by block minimizing
an estimate of ‖y−x̂‖2. This last methodwill be the denoising baseline in our experimental
section.

5.2 (Co)sparse denoisers

In the following section we introduce several denoising methods derived from the algo-
rithmic framework presented in chapter 3. These methods will embed regular or struc-
tured time-frequency (co)sparse data models. After listing the required projection op-
erators, we instantiate the different versions of Algorithm 1. We consider the matrixY ∈ ℝL×(2b+1) containing one or more windowed frames of L samples from the observed
signal ỹ (2b + 1 ≥ 1). The denoising problem is to estimate the original clean signal
frames, similarly gathered in a matrix X of the same size.

5.2.1 Generalized projections for the denoising problem

A natural expression of the data-fidelity constraint is of the form ‖X̂ − Y‖F ≤ " for some
". Heuristics to choose " given an estimated variance � 2 will be discussed in section 5.3.

In the analysis setting, we recall that the estimate W ∈ ℝL×(2b+1) is a matrix of time-
frames. WithM ∶= A, the data-fidelity constraint yields Θ ∶= {W | ‖W−Y‖F ≤ "}. In the
synthesis setting, the estimate W ∈ ℂL×(2b+1) is a (time)-frequency representation. WithM ∶= I, we set Θ ∶= {W | ‖DW − Y‖F ≤ "}. These choices hold both for plain and social
versions.

In the analysis setting, assuming AHA = I, the desired projection can be expressed in
closed-form as:

Θ,M(Z) = AHZ − ( ‖AHZ−Y‖F−"‖AHZ−Y‖F )+ ⋅ (AHZ − Y) . (5.3)
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For the synthesis version, assuming DDH = I, the generalized projection again re-
duces algebraically to the closed-form expression:

Θ,M(Z) = Z − ( ‖DZ−Y‖F−"‖DZ−Y‖F )+ ⋅ DH(DZ − Y). (5.4)

Hence, in both case, the cost of computing the generalized projection is dominated
by matrix-vector products withMH or DHand D. When this can be done with fast trans-
forms, both flavors (analysis and synthesis) have low complexity. More details on both
projections (analysis and synthesis) are given in section A.1.

We are now ready to instantiate the general algorithm  in the different cases.

5.2.2 Plain sparse audio denoisers

We recall that as the algorithms are built to work on a frame based manner: in the plain
(co)sparse cases, Y ∈ ℝL×1 is a vector. For both the analysis and the synthesis version, we
instantiate the general algorithm  (chapter 3, Algorithm 1: page 27) with the choices
summarized in Table 5.1.

Table 5.1 – Parameters of Algorithm 1 for the Plain Sparse Denoisers

Analysis Synthesis

Θ = {W ∣ ‖W − Y‖2 ≤ "} Θ = {W ∣ ‖DW − Y‖2 ≤ "}M = A ∈ ℂP×L, P ≥ L M = I ∈ ℂL×L,D ∈ ℂL×S,
�(⋅) = P−�(⋅) �(⋅) = S−�(⋅),
�(0) = P − 1 �(0) = S − 1

F ∶ � ↦ � − 1 F ∶ � ↦ � − 1Z(0) = AY Z(0) = DHY
The choice of function F and initialization �(0) means that we start with a small num-

ber P − �(0) = 1 (resp. S − �(0) = 1) of nonzero coefficients for the sparse constraint which
we relax gradually as iterations progress.

The practical choice of the stopping parameter � is driven by a compromise between
quality and computation time and we will specify the values used in the experimental
section (section 5.3). We will also note from the experiments that the upper bound on
the iteration count imax is never used as a stopping criterion. Even if this work does
not provide any theoretical guarantees on convergence we observe empirically that the
relative norm stopping criterion � is always used to terminate the algorithm.

Algorithm 1 with these parameters yields:Ŵ ∶= (Θ,M, {�(⋅)}� , �(0), F ,Z(0), �, imax).
For the analysis version X̂ ∶= Ŵ, while for the synthesis version X̂ ∶= DŴ.
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5.2.3 Social sparse audio denoisers

For the social sparse versions of the denoising method, we change the sparsifying oper-
ator from ⋅−�(⋅) to PEW

� (⋅|Γ), as well as the update rule which becomes F� ∶ � ↦ ��.
The initial value �(0) may depend on the pattern Γ and will be specified in section 5.3.
The resulting parameters are summarized in Table 5.2.

Table 5.2 – Parameters of Algorithm 1 for the Social Sparse Denoiser

Analysis Synthesis

Θ = {W ∣ ‖W − Y‖F ≤ "} Θ = {W ∣ ‖DW − Y‖F ≤ "}M = A ∈ ℂP×L, P ≥ L M = I ∈ ℂL×L,
�(⋅) = PEW

� (⋅|Γ) �(⋅) = PEW
� (⋅|Γ),

�(0): see section 5.3 �(0): see section 5.3
F = F� ∶ � ↦ �� F = F� ∶ � ↦ ��Z(0) = AY Z(0) = DHY

A first version of the denoiser works with a predefined time-frequency pattern Γ and
is compactly written as:

⎡⎢⎢⎣
Ŵ(Γ)

�(Γ)Z(Γ) ⎤⎥⎥⎦ ∶= (Θ,M, {PEW
� (⋅|Γ)}�, �(0), F� ,Z(0), �, imax).

Choice of the time-frequency pattern Amore adaptive denoiser uses this first ver-
sion as a building brick to select the pattern Γ within a prescribed collection. Indeed, in
order to get a fully adaptive denoising procedure, we design a method to automatically
select the optimal Γ for the signal frames at stake. We call this step the “initialization
loop”. It consists in evaluating Ŵ(Γ) with a small number of iterations (e.g. ismallmax = 10)
for different patterns Γ.

Given a predefined set of time-frequency patterns {Γk}
K
k=1 and initial threshold values

�(0)k that will be specified in section 5.3, one can compute Ŵk ∶= Ŵ(Γk) for 1 ≤ k ≤ K,
and similarly �k ∶= �(Γk) and Zk ∶= Z(Γk). Then, the idea is that the best estimate Ŵk

should produce a residual with spectrum close to that of Additive White Gaussian Noise
(AWGN), which is by definition flat. Thus, we select the pattern Γk⋆ yielding a residual
with time-frequency representation of highest entropy.

For a given k, we can define the resulting time-frequency residual: Rk ∶= MŴk −Z(0). Computing a Q-bin histogram of the modulus of its entries yields p̂, an empirical
probability distribution, which (empirical) entropy is

ek = −
Q∑
q=1 p̂q log2(p̂q). (5.5)
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A heuristic to choose Q is the Herbert-Sturges rule [Sturges 1926]

Q = ⌊1 + log2(#Rk)⌋, (5.6)

where ⌊⋅⌋ is the floor function and #Rk = L×(2b+1) is the number of entries in the matrix
#Rk. The values considered in the experiments of section 5.3 lead to Q ∈ {13, 15}.

Once the best pattern Γk⋆ is chosen as just described, we run Algorithm 1 with the
parameters of Table 5.2 and warm-started �(0) and Z(0), with a sufficiently large imax (typ-
ically ilargemax = 106) to getŴ ∶= (Θ,M, {PEW

� (⋅|Γk⋆)}� , �k⋆ , F� ,Zk⋆ , �, ilargemax ).

The pseudo-code of the adaptive social denoiser for a given block of adjacent framesY ∈ ℝL×(2b+1) is given in Algorithm 2. Again, for the analysis version X̂ ∶= Ŵ, while for
the synthesis version X̂ ∶= DŴ.

Algorithm 2 Adaptive Social Sparse Denoisers

Require: Y, ", A or D, {Γk}k, {�(0)k }k, �, � , ismallmax , ilargemax
set parameters from Table 5.2
for all k do⎡⎢⎢⎣

Ŵk

�kZk

⎤⎥⎥⎦ ∶= (Θ,M, {PEW
� (⋅|Γk)}� , �(0)k , F� ,Z(0), �, ismallmax )

Compute ek as in (5.5)
k⋆ ∶= argmaxk ekŴ ∶= (Θ,M, {PEW

� (⋅|Γk⋆)}� , �k⋆ , F� ,Zk⋆ , �, ilargemax ).
return Ŵ

5.2.4 Post-processing and overlap-add synthesis

x̂n−b x̂n

X̂n

x̂n+1

X̂n+1

x̂n+b+1
Figure 5.1 – Segment processing for frame n and frame n + 1.

We recall that the denoiser is applied in a frame-based scenario. For clarity here, we
index by n the previous variables (X,Y,Z) to account for the nth frame of the underlying
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signal being processed. Given noisy frame(s)Yn, the denoisers output estimated frame(s)X̂n which need to be transformed back into a full time-domain signal x̃. For this, we first
need to extract from X̂n a single estimated frame x̂n:

• in the plain sparse case, this is straightforward as X̂n ∈ ℝL×1 is already a vector;

• for the social sparse case, we set x̂n ∶= X̂n(∶, b + 1) to be the central column of the
matrix X̂n, see Figure 5.1.

Given the estimated frames {x̂n}n, and before the final overlap-add that will lead to
the full time-domain estimate x̂, we perform a simple frequency-domainWiener filtering
on each x̂n similar to the one used in the Block-Thresholding algorithm [Yu et al. 2008]
which we will use as a comparison in section 5.3. Such a Wiener filtering requires an
estimation of the noise power � 2, as well as an estimation of the signal power, both in the
frequency domain. For the latter, we use the squared magnitudes of Ax̂ (resp. of DHx̂).
Oracle values of � 2 will be used in the experiments. Practically, we observed that this
post-processing is useful at very low SNR (i.e 0 dB) where we observe “musical noise”
effect.

Finally, overlap-add synthesis is performed, taking into account the windows that
were applied onto the frames to get the noisy frames Yn.

5.3 Experiments

This section aims at comparing effects of the different shrinkages (plain or social), the
different models (synthesis or analysis), and the degradation level on the audio denoising
performance.

Compared methods We consider the plain sparse, plain cosparse, social sparse and
social cosparse denoisers, as well as the state-of-the-art time-frequency block threshold-
ing (BT) [Yu et al. 2008]. The main parameters are set as follows:

• frame size: L = 64 ms for music L = 32 ms for speech;

• Hamming windows, overlap: 75%;

• number of overlapping segments for social denoisers: b = 5 for music (2b + 1 = 11

frames), b = 1 for speech (2b + 1 = 3 frames);

• time-frequency patterns for social denoisers: {Γk}
K
k=1 presented on Figure 3.2 for

music and Figure 3.3 for speech.

• stopping criteria � = 10−3, ismallmax = 10, ilargemax = 106;
The time-frequency synthesis/analysis operators are:

• Synthesis operator: D is the inverse DFT of redundancy R, that is to sayD ∈ ℂL×S
with S = (R × L) and Dls ∶= S−1/2ej 2� lsS . One can check that DDH = I;
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• Analysis operator: A is the forward DFT of redundancy R, that is to sayA ∈ ℂP×L
with P = (R × L) and Apl ∶= P−1/2e−j 2�plP . Again, one can check that AHA = I.

Practically, products with A (resp. DH), are done using the FFT of size P (resp. S) on a
zero-padded signal of initial length L. Similarly, products with AH (resp. D), are done by
truncating the inverse fast transform.

All denoisers require a parameter " ruling the l2 regularization for the denoising

constraint. For the plain sparse denoisers, " is set to �
√
∑L

j=1wj, with wj the jth entry of

the windoww and � 2 the known noise variance. For the adaptive social sparse denoisers,
we scale " to (2b + 1)�

√
∑L

j=1 wj.

The adaptive social sparse denoisers also require to set �(0)k and � (see Algorithm 2).
To adapt these parameters to the local peak audio level ‖vec(Y)‖∞ and to the number of
active bins in the time-frequency pattern Γk, we set

�(0)k ∶= ‖Γk‖0 × ‖vec(Y)‖∞ (5.7)

� ∶= min( �√
var(vec(Y)) , 0.99) , (5.8)

where vec(⋅) vectorizes the matrix. This parameterization reflects the “instantaneous”
SNR in the region being processed. The two parameters � and � rule how aggressively
the sparse regularization is performed.

Influence of frequency transform redundancy Given the large combinatorics of
experiments related to all possible configurations (plain/social, analysis/synthesis, re-
dundancy factor) and noise levels, we performed a first pilot study for two input noise
levels (5 dB, 20 dB). Each configuration was tested over the 10 SMALLbox music exam-
ples. The average SNR improvements, as well as the average computation times1 (relative
to the audio duration, the lower the better) are summarized in Table 5.3.

We observe that:

• For each noise level, each redundancy, and each thresholding operator, the perfor-
mance of the analysis and synthesis models in decibels is almost identical, while
the synthesis version is by 10% to nearly 40% faster that the analysis version.

• All other factors being equal, the computation time is roughly proportional to the
redundancy R, while the SNR improvement is often very limited. In the rest of the
experiments we thus choose R = 1 and R = 2, which seem to give the best com-
promise (and in fact, even the best performance in many configurations). Twice
redundant transform also enables a transparent comparison with the baseline de-
fined by block-thresholding ([Yu et al. 2008]).

1All reported computation times were measured here using a Matlabrimplementation of the algo-
rithms on a workstation equipped with a 2.4 Ghz Intelr Xeonrprocessor and 32 GB of RAM memory.
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Table 5.3 – Processing times comparison (plain/social (co)sparse denoisers)

(a) Runtime performance (ratio to realtime processing)

Input SNR: 5 dB Input SNR: 20 dB
Analysis Synthesis Analysis Synthesis

Plain Social Plain Social Plain Social Plain Social
R = 1 8.7 19.9 2.9 14.2 17.0 8.5 7.1 7.1
R = 2 13.0 49.3 4.2 35.4 24.8 30.0 10.4 24.7
R = 4 19.5 123.5 6.3 88.7 35.0 105.8 15.1 83.4

(b) Corresponding improvements (ΔSNR)
Input SNR: 5 dB Input SNR: 20 dB

Analysis Synthesis Analysis Synthesis
Plain Social Plain Social Plain Social Plain Social

R = 1 7.88 8.26 7.88 8.26 3.26 3.56 3.26 3.56
R = 2 8.38 8.30 7.77 8.29 3.29 3.41 3.50 3.42
R = 4 7.92 7.88 7.32 7.87 3.11 3.35 3.31 3.36

Figure 5.2 and Figure 5.3 display averaged SNR improvements for the music and
speech SMALL dataset examples for non redundant and twice redundant DFT over a
wide range of input SNRs ∈ {0, 1, 3, 5, 10, 15, 20, 25, 30}.
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(b) Social sparsity: ΔSNR
Figure 5.2 – SMALL Music: Redundancy study (Denoising)

For the plain sparse models, Figure 5.2a and Figure 5.3a show benefits from twice
redundant DFT as non redundant results are slightly outperformed by either the analysis
method for low input SNR or synthesis method for high input SNR. For the social sparse
models, Figure 5.2b and Figure 5.3b show similar SNR improvements and non-significant
differences for all the tested methods. We verify these trends for both music and speech
sounds.
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(b) Social sparsity: ΔSNR
Figure 5.3 – SMALL Speech: Redundancy study (Denoising)

Large scale comparison of denoising performance Given the first pilot study, we
now focus on the (co)sparse denoisers (plain and social) as well as block-thresholding, all
with redundancy R = 2. We consider nine input SNR levels in dB: {0, 1, 3, 5, 10, 15, 20, 25,
30} and work with the large scale speech and music datasets. Figure 5.4 shows averaged
SNR improvements over each of the 5 music subsets as well as the TIMIT speech dataset.

Results on Figure 5.4 show that either the social (co)sparse or the plain (co)sparse
algorithms outperform Block Thresholding (BT) on the denoising task for almost ev-
ery category of audio content for mild to high input SNR. At low input SNRs, synthe-
sis sparse flavor seems to perform worse than the other methods (cosparse and social
(co)sparse). At low SNR, the methods derived from the algorithmic framework show on
par to slightly better results compared to BT. The difference between our approaches
and BT increases with the input SNR. We note a significant contrast at high SNR where
BT underperforms by more than 6 dB in the less favorable configuration. This might be
because BT strongly relies on the noise model whereas (co)sparse and social (co)sparse
methods try to emphasize the signal itself.

We gathered standard deviation informations associated to Figure 5.4 and results
demonstrate that the plain cosparse denoiser produces less variable results as the stan-
dard deviation is the lowest for this technique in 80% of the tested cases. We also notice
that, without considering any specific algorithm, the improvement variability seems to
increase with the input SNR. Indeed, for light noise conditions, the standard deviation
reaches up to 3.29 dB for BT on the RWC “Chamber” musical excerpts.

Figure 5.5 shows averaged Δ STOI/PESQ/PEAQ performance over each of the 5 mu-
sic subsets as well as the TIMIT speech dataset. Even if Figure 5.4d and Figure 5.4f do not
show clear superiority of one or another method on SNR improvement for voice based
audio content, Figure 5.5b reveals improved objective speech quality (PESQ metric) for
both social and plain (co)sparse denoisers. More specifically, the social versions seems
to bring substantial speech quality improvement compared to the BT baseline or sim-
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Figure 5.4 – Denoising: Numerical Results Δ SNR [dB]

ple sparse denoisers. The effect is clearer for input SNR above 5 dB. On the contrary,
only the plain synthesis sparse method seems to be on par with BT for intelligibility im-
provements at low SNR (Figure 5.5a). For the musical content, we see on Figure 5.5c that
contrarily to ΔSNR measurements, all methods provide quality improvements according
to the PEAQ descriptor. Indeed, we note for all methods and all configuration a positive
ΔPEAQ. Results on global audio quality are here quite different than the ones specific to
speech quality as the plain cosparse method seems to provide better improvements for
the worse cases (low input SNRs).

Time-frequencyneighborhood selection Before comparing computational efficiency,
we focus here on the time-frequency neighborhood selection step of the adaptive social
(co)sparse methods. Figure 5.8 and Figure 5.9 display the time-frequency neighborhood
distribution from all the denoised frames of the SMALL dataset examples (speech & mu-
sic). These represent how often a time-frequency pattern Γk was selected as a Γk⋆ after
the selection step of the adaptive social (co)sparse denoising methods. These results are
obtained with the same algorithmic parameters as the previous large scale study. We re-
call for the reader convenience the available time-frequency neighborhoods collections
on Figure 5.6 and Figure 5.7. What is interesting to see is that whatever prior (analysis or
synthesis) is chosen, the neighborhood distributions are quite similar but can vary with
the input SNR. This trend is particularly verified for music. Thus, at low input SNR for
music, we remark that the first five neighborhood are roughly selected with the same
frequency and the default pattern (Γ6) is less frequently chosen. On the contrary, as the
input SNR increases, Γ6 is more and more selected. For speech, the neighborhood distri-
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Figure 5.5 – Denoising: Objective Quality and Intelligibility Results

butions are more similar from one input SNRs to another. We see that the selection step
outputs frequently the patterns emphasizing tonal (Γ1) and transient (Γ3) content.

(a) Γ1 (b) Γ2 (c) Γ3 (d) Γ4 (e) Γ5 (f) Γ6
Figure 5.6 – Extended set of time-frequency neighborhoods used for music

(a) Γ1 (b) Γ2 (c) Γ3 (d) Γ4 (e) Γ5 (f) Γ6
Figure 5.7 – Extended set of time-frequency neighborhoods used for speech

Computation time For the social case, the computational cost is driven by the shrink-
age (PEW) and the projection steps. However, evaluating PEW shrinkage is relatively
fast, as it can be computed through 2-D convolution in the time-frequency domain. Be-
sides, since we set low imax for the initialization loop, the choice of Γ is quite fast and
adds only (b− 1) × ismallmax iterations compared to the case where only one time-frequency
pattern is considered. These properties allow to expect the social cosparse denoiser to
have runtime comparable to that of the plain cosparse denoiser.

Table 5.4 displays processing times relative to real-time processing for all denois-
ing procedures. These computational comparisons are conducted and averaged on the
SMALLbox music and speech examples. The SNR improvements are in line with what
was previously observed on larger datasets with very similar performance of all methods.
However we note very different behaviors between the plain/social (co)sparse denoisers
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Figure 5.8 – SMALL Music: Time-frequency pattern distribution (Denoising)
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Figure 5.9 – SMALL Speech: Time-frequency pattern distribution (Denoising)

in terms of runtime. While the plain analysis and synthesis flavors are fastest at low SNR,
the social versions are fastest at high SNR. This suggests that in practice the choice of
one of these methods might be rather driven by speed considerations or quality ratings
(Figure 5.5) than by SNR improvement performance (the plain sparse denoiser being
twice to more than 30 times faster than the other methods in the more advantageous
case). As the DFT can be efficiently implemented with a fast transform, the computa-
tional cost of the denoising procedures mainly stems from the sparsifying step and the
projection on the denoising constraint. The different computational properties empha-
sized in Table 5.4 come from the behavior of the sparsifying operator (shrinkage) when
used inside the ADMM framework and the total number of iterations needed to finish or
converge. To give some insights on this last parameter, Figure 5.10 gives the distribution
of total number of iterations needed to finish as a function of the input SNR for every
method. It shows how often an iteration count is needed for the denoising procedures



56 Chapter 5. Denoising

Table 5.4 – Computational performance of (plain/social) (co)sparse denoisers

Input
SNR [dB]

Plain cosparse
Adaptive

social cosparse
Plain sparse

Adaptive
social sparse

Δ SNR x RT Δ SNR x RT Δ SNR x RT Δ SNR x RT
0 10.75 3.3 10.29 34.2 10.08 1.1 10.30 29.2
1 10.37 3.4 9.99 32.8 9.71 1.1 9.97 28.0
3 9.61 3.6 9.34 30.2 8.99 1.2 9.32 26.0
5 8.86 3.7 8.67 28.2 8.31 1.4 8.66 24.2
10 7.00 4.4 6.97 23.7 6.71 1.7 6.96 20.5
15 5.29 5.3 5.35 19.5 5.29 2.1 5.36 17.0
20 3.86 6.5 3.99 15.2 4.07 2.7 4.00 13.5
25 2.73 7.9 3.01 11.1 3.08 3.3 3.01 10.1
30 1.85 9.4 2.25 8.8 2.28 4.0 2.26 8.2

to stop. These results are obtained from the same tested material as Table 5.4, i.e. all the
denoised frames of the examples in the SMALLbox dataset (speech and music). It is in-
teresting to link those iteration counts distributions with the runtime results of Table 5.4.
We clearly see the computational advantage of the plain sparse method as it finishes in
less than 500 iterations for all the tested configurations. For the plain cosparse method a
higher number of iterations needed for high input SNRs support the runtime results. For
the adaptive social methods we note that in most of the cases, the algorithms terminate
in less than 50 iterations. Finally, one essential result to highlight is that for every single
tested configuration the algorithms stop way below imax = 106 iterations. This means that
for these examples, whatever flavor of the algorithmic framework is used, it terminates
thanks to the relative stopping criterion � and not the a predefined bound imax.

5.4 Summary

This chapter presented several instances of the common algorithmic framework to ad-
dress the denoising problem. In terms of reconstruction quality, our detailed large scale
study shows that consistent SNR improvements are observed. They are either on par
with or better than what the widely used Block Thresholding (BT) reference algorithm
can achieve, especially for input SNRs above 10dB. One of the possible explanation of the
better results obtained with our methods compared to BT could be that in this work we
focus on the signal model rather than on local time-frequency SNR. Different trends are
observed with perceptually-aware objective quality measures, for speech specific con-
tent, adaptive social (co)sparsemethods seems to yield better results. Onmusic examples,
the plain cosparse version appears to be more suitable for audio quality (especially for
high degradation). However further work would be needed to confirm this on subjective
listening tests. The list below gives some guidelines for denoising audio with the meth-
ods presented in this chapter.
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Figure 5.10 – SMALL: Total iteration count distribution (Denoising)

Denoising guidelines

∙ Music:

– Low SNR
If all methods seems to give similar results for SNR improvements, one should
prefer the plain cosparse method for audio quality.

– High SNR
SNR improvements results seems in favor of adaptive social (co)sparse and
plain sparsemethods, however for quality plain cosparse seems preferable.

∙ Speech:

– Low SNR
At low SNR, on should prefer adaptive social (co)sparse and plain sparse

methods, especially for quality.
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– High SNR
For high SNR, the best option appears to be the adaptive social sparse for
quality. If the target is intelligibility improvements, the choice should tend
to plain sparse.

Finally, we mention that if speed is the major concern, the plain sparse method
should be the choice.
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This chapter focuses on the audio reconstruction problem specific to magnitude satu-
ration. After briefly describing the clipping (i.e. saturation) issue, the chapter will feature
a review of available desaturation techniques. Then, one will find applications of struc-
tured (co)sparsity first for a monochannel reconstruction scenario emphasizing an adap-
tive time-frequencymodeling, secondwith channel-wise structured (co)sparse modeling
for multichannel purposes. Each of these two applications is an instance of the generic
framework introduced earlier (chapter 3). To conclude this current chapter, some exper-
iments including comparisons with state-of-the-art declipping methods on both single
and multichannel will be detailed.
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From section 6.2 this chapter is inspired from [Gaultier et al. 2017a]:
Clément Gaultier, Nancy Bertin, Srđan Kitić and Rémi Gribonval. A

modeling and algorithmic framework for (non) social (co) sparse au-

dio restoration. arXiv preprint arXiv:1711.11259, 2017. However,
it presents new experimental results (in section 6.4). Multichannel
instances of the algorithmic framework are inspired from [Gaultier
et al. 2018]: Clément Gaultier, Nancy Bertin and Rémi Gribonval. CAS-
CADE: Channel-Aware Structured Cosparse Audio DEclipper. In 2018
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 571–575, April 2018.

6.1 The saturation and desaturation problems

This section first presents the degradation itself and its consequences on audio quality.
Then, some details are given on theway to quantitatively describe the amount of clipping
before reviewing available reconstruction methods to address this problem.

6.1.1 The saturation problem on audio recordings

Clipping, also known as saturation, is a common phenomenon that can arise from hard-
ware or software limitations in any audio acquisition pipeline. It results in severely dis-
torted audio recordings. Magnitude saturation can occur at different steps in the acquisi-
tion, reproduction or analog-to-digital conversion process. Restoring a saturated signal
is of great interest for many applications in digital communications, image processing or
audio. In the latter, while light to moderate clipping cause only some audible clicks and
pops, more severe saturation highly affects original signals which sound contaminated
by rattle noise. The perceived degradation depends on the clipping level and the original
signal and can lead to significant loss in perceived audio quality [Tan et al. 2003]. More
recently, studies [Tachioka et al. 2014, Harvilla & Stern 2014] also showed the negative
impact of clipped signals when used in signal-processing pipelines for recognition, tran-
scription or classification applications. In this chapter, we use the idealized hard-clipping
model below. Although simple, it correctly approximates the magnitude saturation and
allows to easily identify the clipped and reliable samples. Let one define x ∈ ℝL a clean
original discrete signal. The saturated version y ∈ ℝL is obtained with the following
hard-clipping degradation:yi = { xi when |xi| ≤ � ;

sgn (xi)� otherwise;
(6.1)

with yi (resp. xi) a sample from y (resp. x) and � the hard-clipping level. A visual example
of such a degradation is given on Figure 6.3. In real settings where softer saturation
occurs, this model can be enforced with appropriate data pre-processing.
Most of the perceived degradation is due to additional harmonics introduced by the local
non-linear periodic discontinuities during the saturation process. This effect is some-
times called harmonic distortion. Figure 6.2 illustrates such an effect on a simple sine
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signal by showing the corresponding truncated frequency decomposition. We see that
the original and clipped signals share only the initial low frequency component whereas
all the additional harmonics belongs to the clipped one. While harmonic distortion could
be used on purpose to “enrich” the frequency spectrum for some audio engineering ap-
plication, most of the time it produces undesired artifacts. Figure 6.3 shows the effect
of clipping on a more complex musical signal. It not only shows this effect on the time-
domain waveform (Figure 6.3a) but also the completely modified frequency content (Fig-
ure 6.3c) compared to the original one (Figure 6.3b). One guess is that this frequency
content difference can be even emphasized for voice or music signals that are usually
sparse in frequency.

6.1.2 Prior art on audio declipping

While we can trace back some attempts to address this issue, e.g. with autoregressive
models [Janssen et al. 1986], to several decades, significant progress towards efficient
desaturation was recently made in several directions.

Declipping as a linear inverse problem The declipping problem was recast as an
undetermined, linear inverse problem, akin to inpainting, which could be addressed by
means of a sparse regularization [Adler et al. 2012]. This work relies on a two stage al-
gorithm based on OMP. It first estimates the active atoms of the sparse representation
on the reliable samples of the signal. Then, it imposes a declipping constraint in the
transform domain so the name Constrained Orthogonal Matching Pursuit.

Consistency constraint On this basis, algorithmic frameworks evolved from usual
greedy algorithms to thresholding [Kitić et al. 2013] approaches. For the latter, an addi-
tional penalty is extended to every iteration namely clipping consistency (already present
as a final step in [Adler et al. 2012]). This enforces the reliable parts of the initial clipped
signal and the reconstructed one to match. This was shown to drastically improve recon-
struction performance and to the current knowledge, state-of-the-art declipping meth-
ods are embedding clipping consistency constraint during iterations.

Time-frequency models In parallel, a shift from a (now) traditional sparse synthesis
approach, to a sparse analysis was proposed [Kitić et al. 2015], as well as some model
refinements exploiting notions of structured sparsity, especially that of social sparsity
[Kowalski et al. 2013] in the time-frequency domain [Siedenburg et al. 2014]. Contrar-
ily to [Adler et al. 2012, Kitić et al. 2013, Kitić et al. 2015], which rely on frame-based
processing and overlap-add for reconstruction, this last line of work processes complete
recordings to find relevant clusters in the time-frequency plane.
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These layers led to significant improvements in reconstruction accuracy and com-
putational efficiency thanks to cosparsity. Comparison of cosparsity v.s. sparsity will
be thoroughly investigated later in this chapter. Since declipping was remodeled as an
inverse problem, greedy heuristics and non-convex approaches were shown to perform
the best for signal recovery in [Kitić et al. 2013, Siedenburg et al. 2014, Kitić et al. 2015].

Convex methods Lines of work involving convex optimization were investigated
[Defraene et al. 2013]. This method uses �1 norm minimization and a perceptually ori-
ented sparse representation to perform the reconstruction. More recently in [Ávila
et al. 2017], one method based on linearly or quadratically constrained weighted least-
squares was introduced to tackle a relaxed version of declipping which is compression
(soft-clipping) compensation. Notably, another earlier attempt to alleviate clipping with�2 regularization for automated speech recognition [Harvilla & Stern 2014].

It must be noted that all these methods were developed and tested for single-channel
signals, while multichannel data now represent a large part of available audio content,
from stereo to more and more channels. To date, the multichannel joint declipping prob-
lem has only been addressed by [Ozerov et al. 2016] through a modeling of the signals
as mixtures of sound sources, in order to encompass inter-channel correlations. This
approach requires prior knowledge or estimation of the number of audio sources.

After this short review of available declipping methods in the literature1, the next
sections presents how taking the best of (co)sparsity and structured sparse thresholding
operators can lead to effective reconstruction and speed improvements for the declipping
tasks.

6.2 (A)social sparse declippers

In the following section we introduce several declipping methods derived from the al-
gorithmic framework presented in chapter 3. These methods will embody regular or
structured (co)sparse data models. After listing the required projection operators, we
instantiate the different versions of Algorithm 1. As a reminder, we consider the matrixY ∈ ℝL×(2b+1) containing one or more windowed frames of L samples from the observed
signal ỹ (2b + 1 ≥ 1). The declipping problem is to estimate the original clean signal
frames, similarly gathered in a matrix X of the same size.

The clipping degradation identifies to the hard-clipping model (Equation (6.1)) re-
called below. Yij =

{ Xij for |Xij| ≤ � ;
sgn (Xij)� otherwise;

1State-of-the-art results can be appreciated for instance from the SPADE software webpage:
https://spade.inria.fr/

and https://homepage.univie.ac.at/monika.doerfler/StrucAudio.html

https://spade.inria.fr/
 https://homepage.univie.ac.at/monika.doerfler/StrucAudio.html
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with Yij (resp. Xij) a sample from Y (resp. X) and � the hard-clipping level. Here i is the
index in a frame and j is the index of the frame.

6.2.1 Generalized projections for the declipping problem

Denote Ω+ (resp. Ω−) the collection of indices ij of the samples in matrix Y affected by
positive (resp. negative) magnitude clipping. Similarly denote Ωr the indices of the reli-
able samples (not affected by clipping), and for any of these sets Ω define VΩ the matrix
formed by keeping only the entries of V indexed by Ω and setting the rest to zero.

The data-fidelity constraint can now be expressed for the analysis setting withM ∶=A by

Θ ∶=

⎧⎪⎪⎨⎪⎪⎩W | WΩr = YΩr ;WΩ+ ≽ YΩ+ ;WΩ− ≼ YΩ− .
⎫⎪⎪⎬⎪⎪⎭

whereW is a time-domain estimate of the same size as Y. For the synthesis setting, withM ∶= I, we set
Θ ∶=

⎧⎪⎪⎨⎪⎪⎩W | (DW)Ωr = YΩr ;
(DW)Ω+ ≽ YΩ+ ;
(DW)Ω− ≼ YΩ− .

⎫⎪⎪⎬⎪⎪⎭ .

Here W will be a time-/channel- frequency estimate gathering as many frames as in Y
and S frequency points. Similarly to the denoising use-case, these choices hold for both
plain and structured versions.

In the analysis setting, the desired projection reduces to component wise magnitude
constraints (see. section A.2) and can be expressed as:

[Θ,M(Z)]ij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Yij if ij ∈ Ωr ;

(MHZ)ij if

⎧⎪⎪⎨⎪⎪⎩
ij ∈ Ω+, (MHZ)ij ≥ � ;
or
ij ∈ Ω−, (MHZ)ij ≤ −� ;

sgn (Yij)� otherwise.

In this case, matrix-vector products with MH dominates the computing cost of the
generalized projection. When this can be done with a fast transform, the analysis flavor
has low complexity.

For the synthesis case, the projection step was initially approximated with a nested
iterative procedure as explained in [Kitić 2015]. Even if it can help building an efficient
algorithm for the projection, the overall computation cost for the synthesis flavor in that
case however remains substantially higher than the analysis version (making it almost
intractable). However, very recent work ([Záviška et al. 2018]) derived a closed-form
solution for the declipping projection in the synthesis case involving a Parseval tight
frame for D.
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This projection for the synthesis version boils down to:

Θ,M(Z) = Z − DH(DZ − ΠΘ,M(Z)), (6.2)

with

[ΠΘ,M(Z)]ij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Yij if ij ∈ Ωr ;

(DZ)ij if

⎧⎪⎪⎨⎪⎪⎩
ij ∈ Ω+, (DZ)ij ≥ � ;
or
ij ∈ Ω−, (DZ)ij ≤ −� ;

sgn (Yij)� otherwise.

When products with D respectively DH can be achieved with fast transforms, this also
conveys low complexity to the synthesis flavor projection. More details on both projec-
tions are given in Appendix A section A.2.

With all the steps defined, we can now instantiate the general algorithm  in the different
cases.

6.2.2 Plain sparse audio declippers

We recall that as the algorithms are built to work on a frame based manner: in the plain
(co)sparse cases, Y ∈ ℝL×1 is a vector. Similarly to denoising, for both the analysis and
the synthesis version, we instantiate the general algorithm  (chapter 3, Algorithm 1:
page 27) by choosing the operators described in Table 6.1.

The update rule F for � is set to gradually decrease � by 1 at each iteration, starting
from �(0) = P − 1 for the analysis case (resp. �(0) = S − 1 for the synthesis case). This way,
we relax the sparse constraint the same way we do it for denoising (chapter 5 chapter 5).

Table 6.1 – Parameters of Algorithm 1 for the Plain Sparse Declipper

Analysis Synthesis

Θ =

⎧⎪⎪⎨⎪⎪⎩W | WΩr = YΩr ;WΩ+ ≽ YΩ+ ;WΩ− ≼ YΩ− .
⎫⎪⎪⎬⎪⎪⎭ Θ =

⎧⎪⎪⎨⎪⎪⎩W | (DW)Ωr = YΩr ;
(DW)Ω+ ≽ YΩ+ ;
(DW)Ω− ≼ YΩ− .

⎫⎪⎪⎬⎪⎪⎭M = A ∈ ℂP×L, P ≥ L M = I ∈ ℂL×L,D ∈ ℂL×S,
�(⋅) = P−�(⋅) �(⋅) = S−�(⋅),
�(0) = P − 1 �(0) = S − 1

F ∶ � ↦ � − 1 F ∶ � ↦ � − 1Z(0) = AY Z(0) = DHY
IteratingAlgorithm 1with the parameters described above gives a declipped estimateŴ such that: Ŵ ∶= (Θ,M, {�(⋅)}� , �(0), F ,Z(0), �, imax).
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We recall that for the analysis version X̂ ∶= Ŵ, while for the synthesis version X̂ ∶= DŴ.

Notably, this declipping method using plain sparse modeling embedded in the al-
gorithmic framework is a slightly modified version of the SPADE algorithms ([Kitić
et al. 2015]). The two main differences come from the stopping criterion and the way
the projection to the declipping constraint is computed for the synthesis case. For the
SPADE algorithms the stopping criterion is evaluated using the absolute euclidean dif-
ference between two successive time-frequency estimates. In our case, we use a relative
stopping criterion as described in Algorithm 1 making this method probably less sensi-
tive to the intrinsic dimension of thematrices (X,W,Z). The projection on the declipping
constraint for synthesis-SPADE is approximated iteratively while in this work we use the
closed-form solution presented earlier (Equation (6.2)) which requires a Parseval tight-
frame assumption on the dictionary. In the experimental section, we will see that these
modifications of the objective function used for the stopping criterion and the projection
for the synthesis case brings some benefits.

6.2.3 Social sparse audio declippers

We recall that the algorithms are built to work on a frame based manner: for the so-
cial (co)sparse cases, we set x = X(∶, b + 1) to be the central column of the matrixX ∈ ℝL×(2b+1), see Figure 5.1. Similarly to the social sparse audio denoising procedure
(chapter 5 page 43), we change the sparsifying operator to PEW

� (⋅ ∣ Γ) (Equation (3.17)
page 28) and the update rule which we set now to F� ∶ � ↦ ��. Here � plays a different
role compared to the plain sparse declipper. Indeed, � does not directly tune a sparsity
level but an energy. The initial value �(0) may also depend here on the pattern Γ and will
be precised in section 6.4.

The resulting parameters are summarized in Table 6.2.

Table 6.2 – Parameters of Algorithm 1 for the Social Sparse Declipper

Analysis Synthesis

Θ =

⎧⎪⎪⎨⎪⎪⎩W | WΩr = YΩr ;WΩ+ ≽ YΩ+ ;WΩ− ≼ YΩ− .
⎫⎪⎪⎬⎪⎪⎭ Θ =

⎧⎪⎪⎨⎪⎪⎩W | (DW)Ωr = YΩr ;
(DW)Ω+ ≽ YΩ+ ;
(DW)Ω− ≼ YΩ− .

⎫⎪⎪⎬⎪⎪⎭M = A ∈ ℂP×L, P ≥ L M = I ∈ ℂL×L,D ∈ ℂL×S,
�(⋅) = PEW

� (⋅|Γ) �(⋅) = PEW
� (⋅|Γ),

�(0): see section 6.4 �(0): see section 6.4
F = F� ∶ � ↦ �� F = F� ∶ � ↦ ��Z(0) = AY Z(0) = DHY
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The social declipper with a predefined time-frequency pattern Γ is compactly written
using Algorithm 1 as:

⎡⎢⎢⎣
Ŵ(Γ)

�(Γ)Z(Γ) ⎤⎥⎥⎦ ∶= (Θ,M, {PEW
� (⋅|Γ)}� , �(0), F� ,Z(0), �, imax),

The adaptive social declipper uses this to select the “optimal” pattern Γ within a pre-
scribed collection {Γk}

K
k=1 for the processed signal region, by running few iterations of

the algorithm (typically ismallmax = 10). The whiteness of the residual is evaluated with
the same entropy criterion (5.5) as in denoising, which maximization yields the selected
pattern Γk⋆ .

Correspondingly, the first value �(0)(k) and the update rule F� as well as the time-

frequencypatterns {Γk}
K
k=1 are essential for the algorithm to provide improvements. These

will be specified in section 6.4.
Once the best time-frequency pattern is selected, we run Algorithm 1 with the parame-
ters listed in Table 6.2 and a sufficiently large imax (typically ilargemax = 106) to getŴ ∶= (Θ,M, {PEW

� (⋅|Γk⋆)}� , �k⋆ , F� ,Zk⋆ , �, ilargemax ).

In the experimental section (section 6.4), we will note that the upper bound on the iter-
ation count ilargemax is never reached. Even if this work does not provide any theoretical
guarantees on convergence we observe empirically that the relative norm stopping cri-
terion � is always used to terminate the algorithm.

The pseudo-code of the adaptive social declipper for a given block of adjacent framesY ∈ ℝL×(2b+1) is given in Algorithm 3. Again, for the analysis version X̂ ∶= Ŵ, while for
the synthesis version X̂ ∶= DŴ.

Algorithm 3 Adaptive Social Sparse Declipper

Require: Y, ", A or D, {Γk}k, {�(0)k }k, �, � , ismallmax , ilargemax
set parameters from Table 5.2, � = 1

for all k do

⎡⎢⎢⎣
Ŵk

�kZk

⎤⎥⎥⎦ ∶= (Θ,M, {PEW
� (⋅|Γk)}� , �(0)k , F� ,Z(0), �, ismallmax )

Compute ek as in Equation (5.5)
k⋆ ∶= argmaxk ek, � = 0.99Ŵ ∶= (Θ,M, {PEW

� (⋅|Γk⋆)}� , �k⋆ , F� ,Zk⋆ , �, ilargemax ).
return Ŵ
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6.2.4 Overlap-add synthesis

As in denoising, the overall declipped signal is obtained by overlap-add, here without
any Wiener filtering post-processing.

6.3 Multichannel structured (co)sparse declipper

To extend the framework to account for multichannel declipping scenarii we now ob-
serve a time-domain multichannel clipped audio signal composed of C channels. Y ∈ℝL×C denotes a windowed frame of that signal and X ∈ ℝL×C its clean version. Equiva-
lently to the monochannel cases, we define Z a frequency representation of X. L is the
number of time-domain samples in a frame and C is the number of channels.

The hard-clipping degradation model (Equation (6.1)) for Y extended to the multi-
channel case writes: Yic =

{ Xic for |Xic| ≤ �c;
sgn (Xic)�c otherwise;

(6.3)

with Yic (resp. Xic) the ith sample recorded on the cth channel from Y (resp. X) and �c
the hard-clipping level in the cth channel. Figure 6.4 below illustrates the magnitude
saturation model in the multichannel case.
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Figure 6.4 – Multichannel hard-clipping model (Equation (6.3))

This section proposes a blind approach to joint declipping of multichannel audio,
which operates purely at the signal level and does not require any kind of spatial infor-
mation (including the microphone positions). Intuitively, we expect that a joint process-
ing of all channels could be more efficient than declipping independently each channel
with state-of-the-art single-channel algorithms presented in subsection 6.1.2. Indeed, in
the context of small/compact microphone antennas recordings, we could think that such
algorithms could benefit from the redundancy of information between channels and par-
ticularly in the frequency domain. The method is based on a (co)sparse model of data,
with the original addition of a structured sparsity prior across channels which allows to
take implicitly into account the spatial correlation (see subsection 2.3.2 page 20).
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The goal here is to simultaneously declip each channel in the observation Y to output
an estimate X̂ which satisfies:

∙ the channel-aware structured (co)sparsity modeling constraint,

∙ the data fidelity constraint regarding the clipped Y.
For that we instantiate the algorithmic frameworkwith an appropriate shrinkage and

projection operator. Projection on the (group-sparse)modeling constraint is achieved us-
ing the Group Empirical Wiener (GEW) and Quadratic Group Empirical Wiener (Quad-
GEW) operators (see Equation (3.18) and Equation (3.19) page 30). Similarly to the single
channel scenarii, the detailed parameters are listed in Table 6.3.

Table 6.3 – Parameters of Algorithm 1 for the Channel Aware Sparse Declipper

Analysis Synthesis

Θ =

⎧⎪⎪⎨⎪⎪⎩W | WΩr = YΩr ;WΩ+ ≽ YΩ+ ;WΩ− ≼ YΩ− .
⎫⎪⎪⎬⎪⎪⎭ Θ =

⎧⎪⎪⎨⎪⎪⎩W | (DW)Ωr = YΩr ;
(DW)Ω+ ≽ YΩ+ ;
(DW)Ω− ≼ YΩ− .

⎫⎪⎪⎬⎪⎪⎭M = A ∈ ℂP×L, P ≥ L M = I ∈ ℂL×L,D ∈ ℂL×S,
�(⋅) = GEW

� (⋅|Γ) �(⋅) = GEW
� (⋅|Γ),

�(0): see section 6.4 �(0): see section 6.4
F = F� ∶ � ↦ �� F = F� ∶ � ↦ ��Z(0) = AY Z(0) = DHY
Iterating Algorithm 1 with the parameters described above gives a declipped estimateŴ such that: Ŵ ∶= (Θ,M, {GEW

� (⋅)}�, �(0), F ,Z(0), �, imax).
We recall that for the analysis version X̂ ∶= Ŵ, while for the synthesis version X̂ ∶= DŴ.

6.4 Experiments

For this experimental section, we first discuss measures to rate the clipping degrada-
tion. Second, results on small scale experiments are presented to compare the effect
of frequency transform redundancy with the new declipping methods presented above.
Then, large scale benchmarking results compare the impact of the different models and
saturation levels on the declipping performance for audio signals. Some results inves-
tigating influence of the stopping criterion are presented afterwards before comparing
the algorithms with state-of-the art declipping methods. Finally, we show experiments
for multichannel recordings and investigate frequency transform redundancy as well as
sparsifying operators on declipping efficiency.
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Figure 6.5 – Clipping levels v.s. SDR comparisons (SMALLbox examples)

6.4.1 Quantifying the saturation

Keeping in mind the effect of clipping on frequency content and knowing that such a
degradation is also highly signal dependent means that quantifying the consequence of
saturation can be itself an interesting problem. Even looking at the degradation from
a signal perspective only can lead to various interpretations whether one focuses on
the clipping threshold, the distortion or the amount of affected samples. The following
paragraphwill try to relate these indexes used for rating saturation and provide clipping
scales where perceptual differences are of interest.

Commonly [Adler et al. 2012, Harvilla & Stern 2014, Siedenburg et al. 2014, Ozerov
et al. 2016], saturation is directly rated from the clipping threshold (� on Figure 6.1) as
it reflects how importantly the initial dynamic range of the signal is affected. The lower
� is the more severe will be the loss. Practically, studies usually work with normalized
magnitude data for fair comparisons and the clipping threshold takes values in [0; 1].
This value which denotes how much of the peak amplitude is left after the clipping pro-
cess is also referred to as “clipping level”.

Another tool available for measuring the effect of clipping is the added distortion to
the original signal thanks to the Signal-to-Distortion Ratio (SDR Equation (4.4)). Con-
trarily to the clipping threshold which can be dissociated from the initial signal, SDR is
highly linked to it as it takes into account the energy of the signal in the computation.
Hence, usually no clear relationship between SDR and clipping thresholds can be iden-
tified as shown in Figure 6.5 (the SDR variance for a given � is high) on the SMALLbox
examples (see chapter 4 page 31).
Extreme cases for SDR for clipping are 0 dB, the induced distortion is as important as the
initial signal energy (all the amplitude information is lost, just the sign of the samples
are left) clipping is maximum; +∞ dB, the SDR is maximum, no distortion, no clipping.
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SDR and clipping threshold are measures that require either an original clean sig-
nal to compare with or the initial dynamic range. There exists a mean to estimate the
seriousness of the degradation without any reference: by counting the parts of a sig-
nal affected by clipping. In a discrete setting, this boils down to counting the number
of clipped samples over the complete signal. This can be denoted by “ratio of clipped
samples” (%Clipped). The higher this ratio is, the more significant will be the loss as more
samples are affected.

%Clipped =
|{i ∈ (1, ..., L) ∣ |xi| ≥ �}|

L
(6.4)

Equivalently, the lower, the weaker will be the clipping. Even if this measure can be of
great interest to blindly estimate the power of the degradation, it is rarely used in studies
presenting declipping methods as it is not suited for direct comparisons or assessing
enhancement.

Degradation range As for every study involving audio content, numerical indexes
used to rate a degradation are valid if they correlate somehow to quality ratings. Un-
like for denoising, few studies focused on finding objective numerical descriptors to rate
the quality of saturated audio excerpts. Some years ago, [Defraene et al. 2013] validated
the correlation between PEAQ scores (see chapter 4 page 31) and clipped audio quality
assessments thanks to listening tests. In the following, we will briefly investigate the
relationship between clipping thresholds, SDR, PEAQ and PESQ to identify a degrada-
tion range that is of interest for this study and justifies the choice of clipping conditions.
These preliminary comparisons are also held on the SMALLbox examples. For PEAQ
scores on music excerpts, we recall that it ranges from −4 to 0. The closer the value is
from −4, the more annoying will be perceived the clipping consequences. Similarly, for
PESQ scores on speech excerpts, we recall that it ranges from 1 to 5 and the closer the
value is from 1 the worse will be the quality.

Figure 6.6 presents objective quality for the same examples as Figure 6.5 (clipping
thresholds between 0.1 and 0.9). What is clearly seen is a global trend followed for both
speech and music: the rated quality increases with the SDR. What is even more strik-
ing for music is that quality stabilizes at maximum (imperceptible degradation) for SDR
roughly above 30 dB. This certainly does not mean that there is no degradation for high
SDR but can give insights on the relevant clipping thresholds to consider when the final
application involves humans or machines. Indeed, if high SDRs produce unnoticeable
degradation for humans it can still be a struggle for machine performing automated
speech recognition, music classification, etc. With this in mind, if one compares Fig-
ure 6.6b and Figure 6.5b, it appears that most of the examples whose clipping threshold
is greater than 0.6 might not be of crucial interest for audio quality rating. For speech,
results are more moderate in the sense that there is no as clear plateau effect with the
PESQ measure as for music with PEAQ.
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Figure 6.6 – Objective quality v.s. SDR comparisons (SMALLbox examples)

Considering what quality measure one should use to describe the intensity of the
degradation caused by clipping, two main options are available:

∙ if a reference signal is available - clipping threshold or initial SDR;

∙ otherwise - ratio of clipped samples %Clipped.

When dealing with audio reconstruction methods and more precisely declipping, the
selected enhancement measure is often the SDR difference before and after processing
(ΔSDR). Consistency with the enhancement measure could be one argument to tend
towards SDR. When it comes to clipping thresholds, one has to stay careful as it might
lead to important variability in the resulting distortion as seen on Figure 6.5. A first
explanation of this variability, comes from the temporal structure of the considered audio
signals. One deduction is that a same clipping thresholdwill have different consequences
on a signal with high dynamic and a signal whose magnitude values are more uniformly
distributed. On the former, clipping will rather have a “limiting” effect affecting only a
few samples while on the latter more samples will suffer from the saturation. Another
argument in favor of SDR is that it is a measure that only the affected samples will have
effect on. Indeed, energy on the reliable parts of the signal will remain the same. Plus,
as long as clipping consistency is used for desaturation, this energy will not change
either on the processed signal reliable parts. If we consider that higher amplitude hence
higher energy portions of a signal will be affected by clipping, having a degradation
measure able to specifically target the changes for these portions should probably be
preferred compared to a measure providing an overall value (like clipping level or ratio
of clipped samples). These insights on clipping effects and quantification drive the choice
towards SDR for the tested conditions in the experimental section (subsection 6.4.2 and
subsection 6.4.3).
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6.4.2 Single channel experiments

This experimental section dedicated to single channel declipping first investigates influ-
ence of frequency transform redundancy. Then, the different sparse priors (analysis v.s.
synthesis) are compared regarding their reconstruction and runtime efficiency. These
two first studies are run on the SMALL database. After, we present a wide range com-
parison of the models on the RWC database before investigating the influence of the
stopping criterion of the algorithmic framework and running a comparison with state-
of-the-art methods.

Compared methods Similarly to the denoising section, we consider the plain sparse,
plain cosparse, social sparse and social cosparse declippers. We set the common param-
eters for the algorithms as listed below.

• Frame size L = 64 ms for music L = 32 ms for speech;

• Hamming windows, overlap: 75%;

• ismallmax = 10, ilargemax = 106;
• Analysis operator, A = DFT;

• Synthesis operator, D = inverse DFT;

• Accuracy, � = 10−3.
Considering the adaptive social sparse declipper and similarly to denoising, we set

the collection of time-frequencypatterns {Γk}
K
k=1 tomatch the one presented on Figure 3.2

for music and Figure 3.3 for speech. The specific choice of �(0)k ∶= ‖Γ‖0×(1 − ‖Y‖∞) is moti-
vated by the sparsity degree of the time-frequency neighborhood considered. With this
parameterization, the regularization behavior is initialized inversely proportional to the
maximal magnitude of the clipped signal, allowing highly clipped configurations to re-
tain sparser regularization. Contrarily to the social sparse denoising method, we notice
better improvements when the � parameter is not updated during the initialization loop
(i.e. � = 1). Once the proper Γk⋆ is selected, we obtained the best declipping results with
� following a geometric progression of common ratio � with � = 0.99. We finally set
the number of overlapping segments to b = 5 for music (i.e. Y ∈ ℝL×11), b = 1 for speech
(i.e. Y ∈ ℝL×3).
Influence of frequency transform redundancy This first study aims at comparing
reconstruction and computational efficiency of different redundancy factors. We recall
that the analysis operator A ∈ ℂP×L (respectively the dictionary DH ∈ ℂL×S) are possibly
redundant Discrete Fourier Transforms (DFT); ( P = RL or S = RL). Table 6.4 presents
processing times for non-redundant (R = 1), twice redundant (R = 2) and four times
redundant (R = 4) DFT when used with all the plain/social (co)sparse models.
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Table 6.4 – Processing times comparison (plain/social (co)sparse declippers)

(a) Runtime performance (ratio to realtime processing)

Input SDR: 5 dB Input SDR: 20 dB
Analysis Synthesis Analysis Synthesis

Plain Social Plain Social Plain Social Plain Social
R = 1 12.8 158.7 13.3 172.9 12.6 73.6 13.2 73.7
R = 2 41.1 407.6 18.4 497.1 33.3 211.4 16.9 231.5
R = 4 119.8 1.1×103 26.2 1.2×103 96.5 580.3 23.4 525.1

(b) Corresponding improvements (ΔSDR)
Input SDR: 5 dB Input SDR: 20 dB

Analysis Synthesis Analysis Synthesis
Plain Social Plain Social Plain Social Plain Social

R = 1 7.77 7.22 7.77 7.22 7.64 9.01 7.64 9.01
R = 2 8.74 6.60 7.48 6.63 7.67 8.57 8.02 9.23
R = 4 8.53 6.97 6.53 7.72 6.98 9.17 7.90 9.47

As in denoising experiments, processing times lead us to retain only the non redundant
and twice redundant setting (R = 1, R = 2) as a compromise between reconstruction and
computational efficiency for further comparisons. Indeed, the four times redundant DFT
seems to bring some improvements but with a substantial computational overcost.

Figure 6.7 and Figure 6.8 display averaged SDR improvements for the music and
speech SMALL dataset examples for non redundant and twice redundant DFT.

Input SDR [dB]

ΔSDR
[d
B
]

0 1 3 5 10 15 20 25 300
2
4
6
8
10

R = 2
R = 1
Analysis

Synthesis

(a) Plain sparsity: ΔSDR Input SDR [dB]

ΔSDR
[d
B
]

0 1 3 5 10 15 20 25 300
2
4
6
8
10

R = 2
R = 1
Analysis

Synthesis

(b) Social sparsity: ΔSDR
Figure 6.7 – SMALL Music: Redundancy study (Declipping)

For the plain sparse models, Figure 6.7a and Figure 6.8a show benefits from twice re-
dundant DFT as non redundant results are outperformed by either analysis or synthesis
methods. For the social sparse models, Figure 6.7b and Figure 6.8b show slightly superior
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Figure 6.8 – SMALL Speech: Redundancy study (Declipping)

SDR improvements for non redundant DFT when used with severe initial degradation
(input SDR ≤ 5dB). We verify this trend for both music and speech sounds.

Large scale comparison of declipping performance In order to accurately study
the influence of the (social) (co)sparse models, we extend here the study to a wide-range
comparison on RWC database excerpts. To the best of our knowledge, it is the first time
such a large scale validation is performed. Results presented on Figure 6.9 and Figure 6.10
show averaged measurements over all available sounds. Results for these experiments
are obtained with a twice redundant frequency transform (R = 2) to differentiate anal-
ysis and synthesis sparse models ; other parameters are unchanged and match those
presented earlier.

Figure 6.9 shows the behavior of the four methods as a function of the input degra-
dation level. For all the considered datasets, both declipping methods provide significant
SDR improvements (often more than 8dB) at (almost) all considered input SDRs. Unlike
for denoising, this remains the case even for relatively high input SDRs, with one excep-
tion: the Pop category, for which the Plain Cosparse brings some degradation at very
high input SDR, and the overall improvement never exceeds 8dB. This may be due to the
fact that most of the 100 unclipped excerpts in this category are mixes containing one
or more tracks of dynamically compressed drums, and that at least 21 of them contain
saturated guitar sounds.

The benefit of social modeling is clear for moderate to high input SDR (> 10dB, mild
clipping), and vice-versa there is also a distinct superiority of the plain cosparse method
for low input SDRs (strong clipping). Actually, the plain approaches perform 2 to 4 dB
better than the adaptive social methods for input SDRs ranging from 1 to 5 dB on audio
content from the RWC database. On the opposite, the trend tends to reverse above 10
dB input SDR as the social methods features improvements between 1 and 4 dB (even
7 dB for the Pop category) above the plain (co)sparse techniques. For speech content,
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Figure 6.9 – Declipping: Numerical Results Δ SDR [dB]

the difference is less obvious yet Figure 6.9f, Figure 6.10a and Figure 6.10b displays bet-
ter improvements either in terms of SDR, objective intelligibility or quality for the plain
sparse declipper.

Contrarily to denoising settings, standard deviation results (not detailed here) indi-
cate that the social cosparse declipper produces more consistent results as the standard
deviation is the lowest for this technique in 67% of the tested cases. We also observed
that, for any of the considered algorithms, the improvement variability seems be higher
for higher SDR.

The difference in performance between the plain and social cosparse declippers on
music at low input SDR might come from the nature of the degradation. Indeed, con-
trarily to additive noise, the magnitude saturation adds broadband stripes in the time-
frequency plane due to discontinuities of the derivative in the time domain. This way,
the signal’s underlying structure (embodied by a time-frequency pattern Γ) is not only
hidden as in the additive noise case, but also possibly distorted: during the initializa-
tion loop of the social approaches, it is possible that a “wrong” pattern Γ∗ is selected.
In contrast, the plain cosparse declipper cannot be affected by this type of behaviour.
Another interesting result which could support this hypothesis is that for higher SDR,
the social method is actually benefiting from the time-frequency structure identification
as it performs better.
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Figure 6.10 – Declipping: Objective Quality and Intelligibility Results

Time-frequencyneighborhoodselection To give some insights on this last hypoth-
esis, Figure 6.11 and Figure 6.12 shows the time-frequency neighborhood distributions
from all the declipped frames of the SMALL dataset examples (speech&music). These re-
sults are obtainedwith the same algorithmic parameters as the previous large scale study.
We recall that the available time-frequency neighborhoods collection are presented on
Figure 3.2 and Figure 3.3. Interestingly, we remark that whatever prior (analysis or syn-
thesis), audio content (music or speech) or input SDR, the neighborhood emphasizing
tonal structure (Γ1) is mainly selected. These results are to be compared with the neigh-
borhood distributions in the denoising case (Figure 5.8 and Figure 5.9 page 55) which
are if not uniform at least much more diverse. In the light of these results, the “wrong”
pattern selection hypothesis probably has to be balanced with other factors affecting the
declipping. Further investigations, for example in the way the hyper parameter � ruling
the sparsity constraint is set, could be interesting.
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Figure 6.11 – SMALL Music: Time-frequency pattern distribution (Declipping)

Computational aspects As the DFT can be efficiently implemented with a fast trans-
form, the computational cost of the declipping procedures mainly stems from the sparsi-
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Figure 6.12 – SMALL Speech: Time-frequency pattern distribution (Declipping)

fying step and the projection on the declipping constraint. The behavior of the sparsify-
ing operator (shrinkage) when used inside the ADMM framework and the total number
of iterations needed to finish or converge will drive the computational properties of the
methods. To give some insights on this last parameter, Figure 6.13 gives total number of
iterations distributions as a function of the input SDR for every flavor og the algorith-
mic framework. These results are obtained from the same tested material as the previous
study. More precisely, all the declipped frames of the examples in the SMALLbox dataset
(speech and music).

As a matter of interest, we note that for plain methods the number of iterations
needed to finish seems to be lower for low SDR whereas it increases at high SDR. A
reverse trend is observed for adaptive social methods. The plain sparse method globally
needs less iterations to finish as for every tested case the method stops after at most 600
iterations. This supports the observation of a similar behavior in [Záviška et al. 2018].
Finally, similarly to denoising, one crucial result is that for every single declipped frame
the algorithms stop way below imax = 106 iterations. This means that for these examples
(SMALL dataset), whatever flavor of the algorithmic framework is used, it terminates
thanks to the relative stopping criterion � and not the a predefined iterations upper
bound imax.

Influence of the stopping criterion � A less studied parameter is the stopping crite-
rion for sparse iterative reconstruction algorithms. In this part, we vary the accuracy pa-
rameter � of the algorithmic framework to detect possible different behavior when used
with (social) (co)sparse models. We recall that � is used, aside to the maximum number
of iterations imax , as a threshold to terminate Algorithm 1 (see: page 27). Figure 6.14 and
Figure 6.15 present averaged SDR improvements for different � on the SMALL sound
examples. Legend on Figure 6.14a extends to the other plots of the figure.
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Figure 6.13 – SMALL: Total iteration count distribution (Declipping)

We remark that a smaller stopping criterion does not necessarily mean better SDR
improvement. While it seems to still be the case for the social (co)sparse and plain sparse
methods (Figure 6.14b, Figure 6.14c and Figure 6.14d), decreasing the accuracy parame-
ter below � = 1 ⋅ 10−1 worsen results for moderate to light clipping conditions (SDR ≥ 10

dB). A smaller stopping criterion � allows the algorithms to retain a larger number of
iterations. In a convex optimization case, this would mean stopping closer to the global
solution and therefore a better reconstruction if the model is appropriate. On the con-
trary, for non-convex cases, a larger number of iterations would not automatically be
beneficial.

Comparison to state-of-the art declipping methods Finally, in the following we
compare the previous instances of the algorithmic framework with a baseline declip-
ping method C-IHT, Consistent Iterative Hard-Thresholding ([Kitić et al. 2013]) and state-
of-the-art methods A-SPADE, Analysis SParse Audio DEclipper ([Kitić et al. 2015]) and
Social Sparsity Declipper ([Siedenburg et al. 2014]). For the methods presented in this
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Figure 6.14 – SMALL Music: Stopping criterion study (Declipping)
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Figure 6.15 – SMALL Speech: Stopping criterion study (Declipping)
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Table 6.5 – Computational performance of declipping methods (Ratio to real-time pro-
cessing ×RT)

Input
SDR
[dB]

Plain
cosparse

Adaptive
social

cosparse

Plain
sparse

Adaptive
social
sparse

Social Sparsity
[Siedenburg et al. 2014]

LTFAT

Social Sparsity
[Siedenburg et al. 2014]

Compiled LTFAT

A-SPADE
[Kitić et al. 2015]

C-IHT
[Kitić et al. 2013]

0 33.4 535.5 11.9 643.6 754.2 62.1 0.07 19.4
1 32.4 401.1 11.9 471.4 753.3 62.2 17.7 19.0
3 37.4 442.2 17.9 532.1 754.8 62.2 24.9 17.2
5 38.4 401.8 16.5 463.7 754.5 62.1 27.3 14.9
10 26.4 271.5 16.3 316.8 755.4 62.1 24.4 9.8
15 20.3 131.1 10.7 110.0 754.6 62.1 16.5 5.7
20 12.4 64.7 4.8 72.1 756.1 62.2 10.4 3.4
25 7.8 37.6 4.2 42.7 754.6 62.1 6.6 2.2
30 4.0 16.3 2.5 21.7 756.4 62.2 4.2 1.3

manuscript, we chose for this last study:

• twice redundant DFT,

• stopping criterion � providing the best averaged SDR improvement for each of our
algorithms.
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Figure 6.16 – Declipping: State-of-the-art comparison (Numerical results Δ SDR)

Figure 6.16 displays average SDR improvements for all the aforementioned methods
on the SMALL sound examples. We note that for severe clipping, plain (co)sparse models
provide better SDR improvements than social sparse models. On the opposite, we notice
superiority of methods including social sparse models for lighter degradation (input SDR≥ 15 dB). This confirms the observed trend on the large-scale comparison with RWC
dataset on Figure 6.9.

To conclude these experiments dedicated to single-channel declipping, Table 6.5 presents
computational efficiency corresponding to the results obtained on Figure 6.17b. All the
experiments were performed using a Matlabrimplementation of the algorithms on a
workstation equippedwith a 2.4 Ghz Intelr Xeonrprocessor and 32 GB of RAMmemory.
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Figure 6.17 – Declipping: State-of-the-art comparison (Objective Quality and Intelligi-
bility Results)
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We note that the method provided in [Siedenburg et al. 2014] uses the Structured Spar-
sity Toolbox2 relying on the Large Time-Frequency Analysis Toolbox3 ([Søndergaard
et al. 2012]). This last toolbox can either be used directly from its initial Matlabr imple-
mentation or a compiled version using some optimized backend C functions. For this
reason, we include results with the regular LTFAT toolbox and its compiled version. We
note that for almost all methods, starting from 5 dB, the processing time seems to be in-
versely proportional to the input SDR. The exception is for [Siedenburg et al. 2014] which
computational efficiency seems to be independent from the input SDR. The plausible ex-
planation is that contrarily to the other methods, it only relies on an upper bound on the
iteration count to stop the algorithm. Hence, the corresponding higher computational
time could certainly be drastically reduced by lowering the maximum iteration count.
We emphasize that tuning the parameterization of the plain (co)sparse methods allows
real-time processing on a regular laptop computer. We also note that for [Siedenburg
et al. 2014] some code optimization (i.e. C backend) can drastically improve the compu-
tational performances. Therefore, this is a solution that is currently being investigated as
part of an industrial partnership for a technology transfer of the plain cosparse method
(some information should be available at: https://spade.inria.fr).

6.4.3 Multichannel experiments

This experimental section dedicated to multichannel declipping first investigates declip-
ping and computational efficiency on 8-channel recordings of structured (co)sparse al-
gorithms. Then, we present a study involving stereo recordings.

Comparedmethods Weconsider the channel-aware structured sparse and structured
cosparse declippers as well as the A-SPADE ([Kitić et al. 2015]) method (done separately
on each channel) for comparison. We set the common parameters for the algorithms as
listed below.

• Frame size L = 64 ms;

• Hamming windows, overlap: 75%;

• imax = 106;
• Analysis operator, A = DFT;

• Synthesis operator, D = inverse DFT;

• Redundancy: see below.

Considering the structured (co)sparse algorithmswe chose theGroup EmpiricalWiener
shrinkage and the Quadratic Group EmpiricalWiener (Equation (3.18) and Equation (3.19))
to enforce the structured (co)sparsity prior across channels.

2https://homepage.univie.ac.at/monika.doerfler/StrucAudio.html
3http://ltfat.github.io

https://spade.inria.fr
https://homepage.univie.ac.at/monika.doerfler/StrucAudio.html
http://ltfat.github.io
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Figure 6.18 – VoiceHome2: Multichannel speech declipping (Numerical results Δ SDR
[dB])
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Figure 6.19 – VoiceHome2: Multichannel mixed speech & music declipping (Numerical
results Δ SDR [dB])
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We perform experiments on 8-channel recordings from the VoiceHome2 Corpus. We
artificially saturate all the excerpts at five input SDR levels in dB: 5, 10, 15, 20, 25. The
analysis operator A ∈ ℂP×L (respectively the dictionary DH ∈ ℂS×L) are possibly redun-
dant Discrete Fourier Transforms (DFT); indeed, we study the effect of the frequency
transform redundancy by comparing two redundancy factors: R = 1, R = 2 (we recall
that P = RL or S = RL). A first pilot study (data not shown) allowed us to choose the
best parameters � and �(0). The best results are obtained with �(0) = L and � = 0.99. As a
reminder, L the frame size is directly linked to the sampling frequency of the considered
audio signal so is �(0). We confront the channel-aware structured (co)sparse instances of
the algorithmic framework with the A-SPADE [Kitić et al. 2015] state-of-the-art declip-
per (which uses a simple cosparse prior and operates on each channel separately) and
compare results channel-by-channel. Performance is assessed by ΔSDR for reconstruc-
tion and ratio to real-time processing (×RT) for runtime.

Comparison of declipping performance SDR improvement results are presented
in Figure 6.18 (for speech only subset) and Figure 6.19 (for mixed music and speech).
Legend on Figure 6.18a and Figure 6.19a extends to the other ones. Plain lines displays
averaged results for twice redundant DFT while dotted lines represent results for non-
redundant transform. Stars displays ΔSDR for the analysis version of the channel-aware
structured sparse method and circles shows it for the synthesis version. Crosses displays
results for A-SPADE. We observe that both the analysis and synthesis structured sparse
multichannel declipping methods outperforms the A-SPADE algorithm by 1 dB to more
than 3 dB in all settings. The improvement brought by the multichannel declipper over
A-SPADE is even more salient on mixed speech and music data (which is the most dif-
ficult subset, with a globally lower performance for both algorithms, compared to that
obtained on speech only data.). Finally, results appear to be consistent from one channel
to another.

Redundancy: analysis v.s. synthesis The effect of a redundant DFT transform (R =

2) appears to be slightly different for each method. We note that twice redundant DFT
provides at least as good results as non redundant DFT for A-SPADE. For the methods
embedding structured sparsity across channels, the twice redundant synthesis and anal-
ysis versions seem to perform similarly on speech only content. Nonetheless, for mixed
speech and music, the synthesis approach seems to slightly outperform the analysis ver-
sion and especially for low input SDR. Non-redundant DFT seems to be detrimental on
the ΔSDR for low input degradation. This effect is clearer for every channels with mixed
speech and music on figure Figure 6.19. For low input SDR non redundant structured
sparse methods performs at least as good as the structured cosparse method.

Computational Aspects As the DFT can be efficiently implementedwith a fast trans-
form, the computational cost of the declipping procedure mainly stems from the spar-
sifying step and the projection on the declipping constraint. For this runtime compar-
isons, we choose a subset of 25 excerpts (totalizing 3 minutes of audio) from the dataset
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Table 6.6 – VoiceHome2: runtime tests numerical results (multichannel declipping)

(a) Runtime performance (ratio to realtime processing ×RT)
Algorithm Structured (Co)sparse A-SPADE [Kitić et al. 2015]
Redundancy R = 1 R = 2

R = 1 R = 2
Prior Analysis Synthesis Analysis Synthesis

In
pu

t
SD

R
[d
B
] 5 94 94 206 287 73 190

10 61 61 135 200 59 148
15 40 40 89 134 42 103
20 26 26 58 89 29 72
25 18 18 37 57 20 50

(b) Corresponding improvements (ΔSDR)
Algorithm Structured (Co)sparse A-SPADE [Kitić et al. 2015]
Redundancy R = 1 R = 2

R = 1 R = 2
Prior Analysis Synthesis Analysis Synthesis

In
pu

t
SD

R
[d
B
] 5 9.52 9.52 9.26 11.14 9.31 9.63

10 12.06 12.06 11.94 12.53 10.57 10.79
15 13.20 13.20 13.11 13.43 11.27 11.37
20 13.82 13.82 13.78 14.16 11.67 11.79
25 14.06 14.06 13.91 14.39 11.73 11.68

and compare the computing time of the multichannel declippers and the A-SPADE al-
gorithms. The runtime tests are performed on workstations running the Matlabr asso-
ciated code in single-thread mode. The computers are equipped with IntelrXeonr CPU
5140 @2.33 GHz with 2 GB available ram memory. Table 6.6a shows runtime perfor-
mances and Table 6.6b the corresponding SDR improvements (ΔSDR) averaged on the
eight channels and the 25 excerpts. We clearly note higher computing times for both
methods with twice redundant DFT. The A-SPADE method is 10% to 50% faster than
the structured sparse version in this case. Except for the lowest input SDR, the struc-
tured cosparse method is 5% to 25% faster than A-SPADE. For 5dB input SDR, we observe
that substantial improvements given by the multichannel algorithm are achieved at the
cost of only slightly lower computational efficiency (10% to 30% slower than A-SPADE).
These different computation time characteristics might come from the properties of the
sparsifying operator when used inside the ADMM framework and the total number of
iterations needed to finish or converge. Similarly to the single-channel methods we em-
phasize that using multi-threading and a different parametrization (especially reducing
� ) allows (sub) real-time processing.

Stereo declipping For these last declipping experiments, we consider the channel-
aware (co)sparse methods from the framework as well as A-SPADE. We keep unchanged
the common parameters as stated for the previous 8-channel experiments. Here we com-
pare efficiency of the Group Empirical Wiener (GEW) and Quadratic Group Empirical



90 Chapter 6. Declipping

Wiener (Quad-GEW) shrinkages on large scale simultaneous stereo declipping (the RWC
Jazz subset). Figure 6.20 displays averaged ΔSDR results compared to those of A-SPADE
based on a simple cosparse prior independently on each channel. Results below are pre-
sented only for twice-redundant DFT.
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Figure 6.20 – RWC Jazz: Stereo declipping (Numerical results Δ SDR [dB])

Notably, Figure 6.20 shows SDR improvements for all tested methods and for all
degradation conditions. From 10 dB input SDR, both methods embodying channel-wise
structured (co)sparse priors outperform A-SPADE by 1dB to 4 dB. Below, the Quadratic
Group EmpiricalWiener shrinkage only seems to yield better results still aboveA-SPADE
but to a lesser extent (by 0.5 dB to 2 dB). SDR improvements do not appear to drasti-
cally depend on the analysis or synthesis sparse prior, however, for the two lowest input
SDRs, the Quad-GEW synthesis sparse method provides better improvement. We gath-
ered standard deviation results which, along with the averaged improvement, increases
with the input SDR (up to more than 8 dB for A-SPADE with the 30 dB input SDR condi-
tion). Finally, we notice that the results are consistent from one channel to another. Both
audio quality descriptors and SDR improvements legitimate this channel-wise structured
(co)sparse declipping method for stereo to more channels saturated audio recordings. A
validation on a wider number of stereo sounds excerpts (i.e. the other categories of the
RWC database) could be envisioned for further work.

Figure 6.21 describes averaged quality improvement measured with the PEAQ de-
scriptor. What is interesting to see here is that as opposed to the ΔSDR results, the
channel-aware declippers seems to give worse results for 15 dB input SDR and above.
We also note that the new methods presented here worsen audio quality for the two
lightest clipping conditions. These results should be considered carefully due to high
variability. Indeed, highest standard deviation on Δ PEAQ are obtained for 15 dB input
SDR and above (around 1.0). For 10 dB input SDRs and below, it appears to be slightly
advantageous to use the cosparse method with the Quadratic Empirical Wiener shrink-
age. Finally, informal listening tests does not reveal striking quality differences between
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Figure 6.21 – RWC Jazz: Stereo declipping (Quality results Δ PEAQ)

methods. These interesting differing results between audio quality index and ΔSDR for
light clipping conditions should be further studied trough subjective listening experi-
ments.

6.5 Summary

This chapter presented several instances of the common algorithmic framework to tackle
the declipping problem either in the mono- or multi-channel case. For the monochannel
case, in terms of quality, our detailed study of the (social) (co)sparse versions for declip-
ping shows SDR improvements consistently exceeding 8dB for various types of speech
and music and a wide range of saturation levels. The only notable exception is the Pop
dataset, possibly due to the presence of dynamically compressed drums and saturated
guitar sounds. SDR improvements are observed that are either on par with or better
than what state-of-the-art methods can achieve, especially for low input SDRs.

This chapter also showed that adding across-channel structure on top of (co)sparse
modelingwas bringing considerable reconstruction improvements compared to a cospar-
sity based state-of-the-art method applied channel-wise. This was verified from stereo
to more channel audio recordings. In addition, we showed that performance can be im-
proved by the use of a redundant frequency transform when the saturation is moderate.
Finally, we demonstrated that the method implies a very limited runtime overhead or is
faster compared to a state-of-the-art method using simple cosparsity data model ([Kitić
et al. 2015]). Future studies could include perceptual assessments, and model integra-
tion of time-frequency structures on top of structured (co)sparsity across channels. The
following list gives some guidelines for declipping audio with the methods presented in
this chapter.
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Declipping guidelines

∙ Single-channel

– Music
For music, at low input SDR, the plain cosparsemethod seems a good option.
For high input SDR, one can choose the adaptive social sparse method.

– Speech
For speech, at low input SDR, the plain cosparse declipper should be cho-
sen for quality. For intelligibility improvements, the plain sparse method
seems a better choice. At high input SDR, plain and adaptive social sparse
declippers should be preferred.

∙ Multi-channel

– Music
At low input SDR, structured (co)sparse methods with Quad-GEW shrink-

age seems to be the best choice. For high input SDR, structured (co)sparse
methods with GEW shrinkage should be preferred.

– Speech
At low and high input SDR, as long as one considers using redundant DFT,
both structured sparse and cosparse methods using GEW shrinkage are
good choices.
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This chapter will focus on the reconstruction of audio signals corrupted by reverber-
ation in the sound propagation environment. After briefly describing the reverberation
issue, the chapter will feature a short review of available dereverberation techniques.
Then, we introduce applications of (structured) sparsity for a monochannel reconstruc-
tion scenario emphasizing an simple sparse or social sparse time-frequency modeling.
Each of these two applications is an instance of the generic framework introduced ear-
lier (chapter 3). Before concluding this current chapter, some experiments comparing
the two models will be presented on speech examples.

This chapter presents the dereverberation problem in the light of an
inverse problem and compares simple sparse and social sparse time-
frequency models. This work is not derived from any publication and
rather give a proof of concept that the dereverberation problem can be
included in the generic framework than thoroughly studying the issue.
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7.1 Reverberation and room compensation

This section first presents briefly indoor sound propagation and its consequence: rever-
beration. Then, we describe some prior art methods used to handle this problem.

7.1.1 The reverberation problem

When sound propagates in a closed environment from a source to a sensor the recorded
signal at the microphone is the resulting mixture of the direct sound, the early reflec-
tions and late reverberation [Kuttruff 2009]. Figure 7.1 displays a schematic view of such
a scenario with the source being someone speaking (“Speaker”). The early reflections are
due to the first reflections on the walls and can also be referred to as “first order echoes”.
The late reverberation is related to the multiple paths of the sound due to higher or-
ders echoes and diffusion on objects like furniture for example. Early reflections can
be useful for improving speech intelligibility [Arweiler & Buchholz 2011] or for source
localization [Kitić et al. 2014]. On the contrary, late reverberation can be detrimental
for speech quality, intelligibility [Warzybok et al. 2013] and systems designed for au-
tomatic speech recognition [Yoshioka et al. 2012]. As an example, Figure 7.2a displays
an anechoic speech signal and Figure 6.3b shows its STFT representation. We see on
Figure 7.2c the STFT of the same speech occurrence recorded in a relatively reverber-
ant room. By the observation that the frequency content and the time onsets appear
smeared, understandably, reverberation has a non negligible impact on sound. The pro-
cess of propagation between the source and the microphone is described by the impulse
response often called Room Impulse Response (RIR). This term can be ambiguous as the
RIR does not directly describe the room itself but rather the multiple acoustic paths be-
tween a given source and a given sensor in a room. If the following, we will refer to
the RIR equivalently by “acoustic channel” or “(acoustic) filter”. Denoting h ∈ ℝM a RIR,x ∈ ℝL an anechoic signal, the corresponding reverberant signal y ∈ ℝL can be obtained
by the following convolution process:

y = h ⋆ x. (7.1)

with ⋆ modeling the convolution.

The amount of reverberation in a room is often characterized by the reverberation
time (RT60) which is the amount of time needed for the acoustic energy to decay by 60 dB
after a steady-state excitation source stops. The larger is the RT60 the more reverberant
will be the room. We will use this index to rate the effectiveness the reverberation in the
experimental section (section 7.3).

7.1.2 Prior art on audio dereverberation

Audio dereverberation, also called in the literature by “room equalization”, “room inver-
sion” or sometimes “room compensation” is the process of designing signal processing
techniques able to retrieve the direct sound from a source to a microphone in closed
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Figure 7.1 – Indoor sound propagation
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(c) Frequency transform (reverberant speech)

Figure 7.2 – Reverberated speech example
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environments recordings. In practice it often boils down to alleviating the effects of the
room (reflections) on the recordings. This is a blind problem if the acoustic path (Room
Impulse Response, RIR) between the source and the sensor(s) is unknown. Two main
categories of methods have been used for single-channel dereverberation.

Time-frequency enhancement As single-channel dereverberation is mainly used
for speech enhancement, somemethods share the same line of work than noise reduction
techniques. For instance, spectral subtraction [Boll 1979] which was initially applied for
noise reduction is adapted towork for dereverberation. Denoising relies on an estimation
of the noise spectrum to “remove” it by subtraction from a (time)-frequency transform of
a noisy signal. Spectral subtraction for dereverberation works the same way but relying
on an estimation of the spectral content due to the late reverberations [Lebart et al. 2001].

Inverse filtering Methods sharing the acoustic channel inversion principle need ei-
ther a measurement or a good estimation of the RIR as the basic idea is to perform de-
convolution from the RIR to get the original source. However, even if the RIR is perfectly
known, the inverse problem is still ill-posed as direct inversion of the acoustic filter is
not straightforward. Indeed, for realistic wall sound absorption values the RIR is non-
minimum phase [Neely & Allen 1979] hence, in the single source case no exact inverse
RIR can be derived. A direct inversionwould cause instability at high frequencies [Kaipio
& Somersalo 2006]. Several techniques were investigated to alleviate the artifacts intro-
duced by the mixed-phase inverse filter. Among them we note least squares minimiza-
tion [Mourjopoulos et al. 1982] or homomorphic filtering [Radlovic & Kennedy 2000]
just to cite a few (an exhaustive review of Room Response Equalization can be found
in [Cecchi et al. 2018]). More recently, we note a method [Kodrasi et al. 2014] using a
frequency-domain inverse filtering technique coupled with speech enhancement post-
processing. This frequency-domain technique rely on the narrow-band approximation
for the convolution and allows to rewrite Equation (7.1) after applying the STFT on both
sides such that: Ȳ = H × Z, (7.2)

and Ȳ ∈ ℂF×T is the STFT representation of the reverberant signal, Z ∈ ℂF×T is the STFT
representation of the initial anechoic signal x and H = diag(H (f )) is the corresponding
frequency response of the RIR h.

This approximation usually holds when most of the RIR energy is concentrated in
a time scale comparable with the STFT window. This assumption is no longer verified
for relatively reverberant filters. In the context of multichannel deconvolution novel ap-
proach [Kowalski et al. 2010] was proposed some years ago considering minimization
of convex sparse promoting function and a wide-band data-fidelity term modeling the
time domain convolution process rather than the narrow-band frequency-wise product
approximation (Equation (7.2)). This method was successfully applied on quite rever-
berant mixtures. For this reason, the next section will present a dereverberation method
using the same wide-band data-fidelity term but different sparse models.
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7.2 Sparsity for audio dereverberation

In the following section we introduce a method for audio dereverberation that inte-
grates in the algorithmic framework presented in chapter 3. This method embodies
time-frequency regular or structured (social) sparse data models and wide-band mod-
eling of the convolution process. Our goal here is mainly to compare the validity of the
signal models, so we consider the informed case where the acoustic channel h is known.
Indeed, the estimation of the filter is already a complex task and RIR mismatch could
alter the dereverberation performance.

After listing the required projection operator, we instantiate the different versions
of Algorithm 1. Similarly to denoising and declipping, we consider the matrix Y ∈ ℝT×L
containing T windowed frames of L samples from the observed signal ỹ. The derever-
beration problem here consists in estimating the original clean signal frames, similarly
gathered in a matrix X of the same size.

Denote (⋅) ∶ ℝL×T ↦ ℝL×T the operator performing the convolution process such
that Equation (7.1) rewritten for a matrix of time frames Y gives:

vec(Y) = h ⋆ vec(X) = vec((X)). (7.3)

We recall that vec(⋅) is the matrix vectorization operator. Finally, the adjoint convolu-
tional operator (⋅) ∶ ℝL×T ↦ ℝL×T defines the operator performing convolution with
the time-reversed filter.

7.2.1 Generalized projection for the dereverberation problem

Similarly to [Kowalski et al. 2010] and [Arberet et al. 2013] the data-fidelity constraint is
of the form (X̂) = Y.

We consider only the synthesis setting, withM ∶= I, we set Θ ∶= {W |(DW) = Y}.
These choices hold both for plain and structured versions.
As in [Kowalski et al. 2010], we define the operator  ∶ ℂS×T ↦ ℝL×T such that:

 (Z) = (DZ), (7.4)

and the corresponding adjoint operator  ∗ ∶ ℝL×T ↦ ℂS×T defined as:

 ∗(Y) = DH(∗(Y)). (7.5)

Assuming DDH = I, the generalized projection reduces to:

Θ,M(Z) = Z −
1

t
 ∗(Y −  (Z)) (7.6)

Note that t is the highest absolute singular value associated to  ∗ and is computed with
the power iteration algorithm as in [Kowalski et al. 2010] and [Arberet et al. 2013] (see:
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Appendix B). With all the steps defined, we can now instantiate the general algorithm
 in the different cases.

7.2.2 Wide-band Plain/Social sparsity dereverberation

Similarly to denoising or declipping, we instantiate the general algorithm  by choosing
the operators described in Table 7.1.

Table 7.1 – Parameters of Algorithm 1 for the wide-band sparse dereverberation method

Plain Social

Θ ∶= {W |(DW) = Y} Θ ∶= {W |(DW) = Y}

M = I ∈ ℂL×L,D ∈ ℂL×S M = I ∈ ℂL×L,D ∈ ℂL×S,
�(⋅) = S−�(⋅) �(⋅) = PEW

� (⋅|Γ),
�(0) = S − 1 �(0): see section 7.3
F ∶ � ↦ � − 1 F = F� ∶ � ↦ ��
Z(0) = DHY Z(0) = DHY

7.3 Experiments

For this experimental section, first results on speech dereverberation will be presented
to compare the two methods presented above.

Compared methods We consider here the plain sparse and social sparse methods.
We set the common parameters for the algorithms as listed below.

• Frame size L = 32 ms;

• Overlap, 75%;

• imax = 106;
• Synthesis operator, D = twice redundant inverse DFT;

• Accuracy, � = 10−3.
Considering the social sparse method, we set the time-frequency pattern Γ to match

the one presented on Figure 5.6b with the intuition that it will provide better results as
it was shown to be useful in avoiding pre-echo artifacts in [Siedenburg & Dörfler 2012]).
The choice of �(0) ∶= L and � = 0.99 are similar to those used in the multichannel declip-
ping methods.

To evaluate the different sparse modelings, we use the shrinkages (Hard Threshold-
ing and PEW). We also set the room’s RT60 to account for different degrees of audio
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degradation. For that, we consider four RT60 in ms: {250, 500, 750, 1000}. Each speech
excerpt from TIMIT is convolved with the corresponding room filter of every tested con-
figuration.

Comparison of dereverberation performance SDR improvement results are pre-
sented on Figure 7.3a and speech quality improvements (ΔPESQ) are presented on Fig-
ure 7.3b. Finally, intelligibility improvements are shown on Figure 7.3c. Plain dark lines
displays averaged results for the synthesis plain sparse method while blue dashed lines
presents results for the social sparse method. We note that the social sparse method per-
forms 10 dB to 20 dB better in the most reverberant case than the plain sparse method in
terms of SDR improvement. We gathered standard deviation results which are slightly
lower for the plain sparse version (ranging from 1.85 dB to 2.07 dB) than the social sparse
version (ranging from 2.06 dB to 3.28 dB). For quality measurements, results are here also
in favor of the social version especially for the most reverberant condition. In contrast,
intelligibility results do not show any superiority of one or another method.

RT60 [ms]

ΔSDR
[d
B
]

250 500 750 100020
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40
50

Plain Sparse
Social Sparse

(a) Numerical reconstruction results (ΔSDR) RT60 [ms]

ΔPESQ

250 500 750 1000
2
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(b) Objective quality results (ΔPESQ)
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ΔSTO
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(c) Objective intelligibility results (ΔSTOI)
Figure 7.3 – TIMIT: Speech numerical results (Dereverberation)
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7.4 Summary

In this short chapter, we showed that the algorithmic framework could be easily ex-
tended to address the single-channel dereverberation problem. Results demonstrated
that the wide-band data-fidelity term for convolution along with sparse models were
able to handle the speech dereverberation inverse problem for moderately to highly re-
verberant environments. However, it must be noted that, as we considered only the
non-blind case, further investigations are needed for instance to rate the robustness of
the method to errors in the filter. Extension to the multichannel case and promoting
different sparse structures thanks to the PEW could also be an interesting axis.



Chapter 8

Binaural sound source localization
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Human listeners have the stunning ability to understand complex auditory scenes
using only two ears, i.e. , with binaural hearing. Advanced tasks such as sound source
direction and distance estimation or speech deciphering in multi-source, noisy and re-
verberant environments are performed daily by humans, while they are still a challenge
for artificial (two-microphone) binaural systems. After presentingwhat has already been
done for binaural machine hearing, this chapter will introduce a new method to address
the binaural sound source localization inverse problem.
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From section 8.5, this chapter is mainly inspired from the following
publications: [Gaultier et al. 2017b]: Clément Gaultier, Saurabh Kataria
and Antoine Deleforge. VAST: The Virtual Acoustic Space Traveler

dataset. In International Conference on Latent Variable Analysis and
Signal Separation, pages 68–79. Springer, 2017 and [Kataria et al. 2017]:
SaurabhKataria, Clément Gaultier andAntoine Deleforge. Hearing in a
shoe-box: Binaural source position and wall absorption estimation using

virtually supervised learning. In 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 226–230,
March 2017.

8.1 Source localization

The sound source localization problem can bemany-foldwhetherwe consider long range
sound propagation or sound inside enclosed environments. In the following we will con-
sider sound propagating from a source to sensors in indoor environments (like a room).
Hence, the problem we will try to address here is the estimation of sound source posi-
tion in a room. More precisely, we will examine the binaural sound source localization
issue: estimating the position like we humans do it with our two ears (i.e. with only
two sensors and a pair of transfer functions related to our head and torso morphology
namedHead Related Transfer Function, HRTF). Figure 8.1 gives a schematic view of such
a problem. In this simplified 2D scenario, localizing the source boils down to estimating
the azimuth angle � and the distance to the sensor r . In a 3D scenario, we can add to
that the elevation angle between the source and the sensors.

r

�

Source

Sensors

Figure 8.1 – 2D indoor sound source localization problem
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Most of the localization methods involving two (or more) microphones make use of
the time shifts with which the sound source signal arrives at the different microphones to
predict the direction of the source (� on Figure 8.1). This time is called Time-Difference
Of Arrival (TDOA). In the next section, we present some methods and how they use this
TDOA for (binaural) source localization.

8.2 Prior art

The main line of research in machine binaural source localization along the past decades
has been to estimate the Time-Difference Of Arrival (TDOA) of the signal of interest at
the two microphones. An estimated TDOA can be mapped to the azimuth angle of a
frontal source if the distance between microphones is known, assuming free-field and
far-field conditions. Free-field means that the sound propagates from the source to the
microphones through a single direct path, without interfering objects or reverberations.
Far-field means that the source is placed far enough from the receiver so that the effect
of distance on recorded audio features is negligible. Far-field is usually described by the
Faunhofer zone for electromagnetic waves for example, were the wave front is consid-
ered as planar. Figure 8.2 illustrates a binaural azimuthal plane with far-field / close-field
conditions. Considering the far field assumption (Figure 8.2a), if we denote � the TDOA
between the two microphones of the head (ears), the Direction Of Arrival (DOA) � can
be estimated geometrically with:

� = arccos(c ⋅ �d ) , (8.1)

with c the sound speed and d the distance between the two ears. Notably, in the context
of binaural hearing, TDOA is equivalently refereed to as the Interaural Time Difference
(ITD). We also find Interchannel Time Difference in the general multi-sensor context.

It is important to remark that for a fixed distance between sensors (d), � only depends
on � . Therefore, when sensor array geometry is known, localization methods using
goniometry rely on an estimation of the TDOA. Below are presented some widely used
methods for TDOA estimation.

Estimating the TDOA in the time-domain A standard way to estimate the TDOA
between to microphones is to maximize the cross-correlation function of the two signals
retrieved at the sensors. Let one consider y1 ∈ ℝN and y2 ∈ ℝN discrete time signals mea-
sured at microphone 1 and 2 in the binaural setting of Figure 8.2, the cross-correlation
(CC) function is defined as:

ry1 ,y2(� ) = N∑n=1 y1(n)y2(n − � ). (8.2)

The estimated time-delay �̂ between y1 and y2 is then deduced from:

�̂ = argmax
�

ry1 ,y2(� ). (8.3)
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While this estimate is easy to compute, it is highly sensitive to noise and gain differences
between y1 and y2. To alleviate this issue, an option is to maximize the Normalized Cross
Correlation (NCC) function instead. However, as state-of-the art methods are based on
frequency-domain methods to estimate the TDOA, we will note detail NCC here.

Estimating the TDOA in the frequency-domain Amore flexible way of estimating
the time delays between microphones than the classical time-domain cross correlation is
Generalized Cross Correlation (GCC). A time delay can be identified with a phase-shift
in the frequency domain. Equivalently to cross correlation, the cross Power Spectral
Density (cross-PSD) is defined in the frequency domain. TDOA can then be estimated
in the frequency domain by the phase shift which maximizes the cross-PSD function
between two signals over all the frequencies. More formally, if we denote Z1 ∈ ℂF×T and
Z2 ∈ ℂF×T the STFT over T time frames of the previous y1 and y2 signals, the cross-PSD
writes for a given frequency f:

ΨZ1 ,Z2(f ) = 1

T

T∑n=1Z1(f, n)Z∗
2(f, n). (8.4)

The cross-correlation function in the frequency domain results then from Equation (8.4):

RZ1,Z2(� ) = F∑
f=1

ΨZ1,Z2(f ) exp(−j2�f� ). (8.5)

What is interesting working in the frequency domain is that the initial signals y1 and
y2 can be easily prefiltered. Knowing the frequency responses (H1(f ) and H2(f )) of the
filters applied to y1 and y2 leads to: {

Z̃1 = H1Z1

Z̃2 = H2Z2
(8.6)

with Z̃1 ∈ ℂF×T and Z̃2 ∈ ℂF×T the frequency transforms of the prefiltered signals and
Hi = diag(Hi(f )). The cross-correlation function adapts then to:

R̃GZ1,Z2(� ) = RZ̃1,Z̃2(� ) = F∑
f=1

G(f )ΨZ1,Z2(f ) exp(−j2�f� ). (8.7)

with G(f ) = H1(f )H2(f ) the filter (frequency weighting) applied to the initial signals.
Equation (8.3) becomes for frequency domain TDOA estimation:

�̂ = argmax
�

R̃GZ1,Z2(� ). (8.8)

Among the widely used weighting functions G(f ), the PHAse Transform (PHAT) func-
tion is probably the most common:

GPHAT(f ) =
1|ΨZ1 ,Z2(f )| . (8.9)

This PHAT transform was shown to be efficient for TDOA estimation in reverberant en-
vironments [Brandstein &Ward 2001] as it leads only the phase information to be taken
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into account in the computation of R̃GZ1 ,Z2(� ). If the GCC-PHAT method performs well in
reverberant condition, it is more likely to fail in noisy conditions and especially when
the noise PSD differs between the two microphone signals. To overcome this problem,
other appropriate filtering functions G(f ) can be preferred among which the Smooth
COherent Transform (SCOT) defined as follows:

GSCOT(f ) =
1√

ΨZ1 ,Z1(f ) ⋅ ΨZ2,Z2(f ) . (8.10)

Limits Even though the aforementioned TDOA-based methods yield correct results
for speaker localization for example [DiBiase et al. 2001], two important limits of the
underlying assumption on the acoustic field (free field & far-field) can be identified. First,
these assumptions are both violated in most practical scenarios. In the example of an
indoor binaural hearing robot, users are typically likely to engage interaction in both
far- and near-field, and non-direct sound paths exist due to reflections and diffusion on
walls, ceiling, floor, other objects in the room and the robot itself. Second, the intrinsic
symmetries of a free-field/far-field binaural system restrict any geometrical estimation to
that of a frontal azimuth angle. Hence, 3D source position (azimuth, elevation, distance)
is out of reach in this scope, let alone additional properties such as source orientation,
receiver position or room shape. Finally, one has to note that some other work focusing
on subspace methods such as MUSIC or later ESPRIT were used for sound localization
in an array processing perspective for robot hearing (a review is available in [Argentieri
et al. 2015]).

d
�
r

(a) Far-field assumption

d
�1 �2r1 r2

(b) Close-field assumption

Figure 8.2 – Acoustic field assumptions for TDOA localization methods

To overcome intrinsic limitations of TDOA, richer binaural features have been in-
vestigated. These include frequency-dependent phase and level differences [Viste &
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Evangelista 2003, Deleforge et al. 2015c], spectral notches [Raykar et al. 2005, Horn-
stein et al. 2006] or the direct to reverberant ratio [Lu & Cooke 2010]. To overcome
the free-field/far-field assumptions, advanced mapping techniques from these features
to audio scene properties have been considered. These mapping techniques divide in
two categories. The first one is physics-driven, i.e., the mapping is inferred from an ap-
proximate sound propagation model such as the Woodworth’s spherical head formula
[Viste & Evangelista 2003], its extensions [Aaronson&Hartmann 2014], or the full wave-
propagation equation [Kitić et al. 2014]. The second category of mapping is data-driven.
This approach is sometimes referred to as supervised sound source localization [Talmon
et al. 2011], or more generally acoustic space learning [Deleforge et al. 2015a]. These
methods bypass the use of an explicit, approximate physical model by directly learning
amapping from audio features to audio properties usingmanually recorded training data
[Talmon et al. 2011, Deleforge et al. 2015c]. They generally yield excellent results, but
because obtaining sufficient training data is very time consuming, they only work for a
specific room and setup and are hard to generalize in practice. Unlike artificial systems,
human listeners benefit from years of adaptive auditory learning in a multitude of acous-
tic environments. While machine learning recently showed tremendous success in the
field of speech recognition using massive amounts of annotated data, equivalent train-
ing sets do not exist for audio scene geometry estimation, with only a few specialized
manually annotated ones [Deleforge et al. 2015a, Deleforge et al. 2015c]. Interestingly, a
recent data-driven method [Parada et al. 2016] used both real and simulated data to esti-
mate room acoustic parameters and improve speech recognition performance, although
it was not designed for sound localization.

8.3 Virtually supervised learning

This chapter proposes here a new paradigm that aims at making the best of physics-
driven and data-driven approaches, referred to as virtual acoustic space learning. The idea
is to use a physics-based room-acoustic simulator to generate arbitrary large datasets of
room-impulse responses corresponding to various acoustic environments, adapted to
the physical audio system considered. Such impulse responses can be easily convolved
with natural sounds to generate a wide variety of audio scenes including cocktail-party

like scenarios. The obtained corpus can be used to learn a mapping from audio fea-
tures to various audio scene properties. The virtually-learned mapping can then be used
to efficiently perform real-world auditory scene analysis tasks with the corresponding
physical system. Inspired by the idea of an artificial system learning to hear by explor-
ing virtual acoustic environments, this proposal was named the Virtual Acoustic Space

Traveler (VAST) project. We initiated it by publicly releasing a dedicated project page1

and a first example of VAST dataset.

1http://theVASTproject.inria.fr

http://theVASTproject.inria.fr
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In order to perform virtually supervised learning one needs a training dataset to
learn a mapping between a set of high dimensional audio data ({yn}

N
n=1 ∈ ℝD) and low

dimensional audio scene properties ({un}
N
n=1 ∈ ×ℝL). We consider a training dataset

composed of N pairs {(yn, un)}
N
n=1 ∈ ℝD ×ℝL, L ≪ D. A mapping needs to be learned from

this dataset such that given a new test observation ỹt ∈ ℝD, an associated parameter
vector ũt can be estimated.

8.4 Gaussian Locally Linear Mapping

In our line of work, we use the high- to low-dimensional regression method Gaussian

locally-linearmapping (GLLiM) proposed in [Deleforge et al. 2015b]. GLLiMwas success-
fully applied to supervised 2D sound source localization on a real dataset in [Deleforge
et al. 2015c]. The next two paragraphs will present the basic principles of (multivariate)
linear regression underlying GLLiM.

Linear regression If one considers the previous set {(yn, un)}
N
n=1 ∈ ℝD×ℝL, performing

a regular (forward) linear regression between {un}
N
n=1 ∈ ℝL and {yn}Nn=1 ∈ ℝD corresponds

to finding the affine transformation (un = Ayn + b, A ∈ ℝL×D, b ∈ ℝL and D ≫ L).
One drawback of performing such a forward (low to high) regression is that it requires
to estimate A and b (i.e. L(D + 1) coefficients) from LN equations. To invert this system
we would need at least N = D + 1 available training pairs. D reflects to what extent the
high dimension feature vectors {yn}Nn=1 encompass initial information. One has to keep
in mind that D could be possibly large and at the same time N.

One solution to overcome this situation is to perform the linear regression the other
way around from the high dimension vectors to the low dimensional data. This changes
to finding the affine transformation (yn = A∗un + b∗, A∗ ∈ ℝD×L, b∗ ∈ ℝD and D ≫ L).
Here performing the high-to-low (inverse) regression requires the estimation ofA∗ and b∗
(i.e. D(L+1) coefficients) from DN equations. This system is invertible if at least N = L+1

equations are available. In that case, we recall that L is the dimension of the audio scene
properties, intrinsically much smaller than D. This “reversed” linear regression makes
it easier to find a solution as it requires theoretically a significantly lower number of
training pairs. The learning method GLLiM [Deleforge et al. 2015b] that we use later on
to apply the VAST concept is based on this “reversed” linear regression principle as well
as piecewise linear modeling presented below.

Piece-wise linear regression One limitation of the inverse linear regression pre-
sented above is that it is more likely to fail if the relationship between the high dimension
vectors and the low dimension features of the dataset can not be modeled with just a sin-
gle affine transformation (a single A∗ and a single b∗). One solution used in [Deleforge
et al. 2015b] and further developed in [Perthame et al. 2018] is to consider piecewise
affine transformations between the high and low dimension training data. Denote the
pairs {(yn, un)}

N
n=1 ∈ ℝD ×ℝL any realization of random variables Y and U . We no longer
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consider a single possible transformation but a mixture of K local affine transformations
from the space of U to the space of Y modeled by

Y =
K∑
k=1

ic(z = k)(A∗
kU + b∗k) (8.11)

where A∗
k ∈ ℝD×L and b∗k embody the kth affine relationship coefficients. ic(z = k) is the

indicator function such that ic(z = k) = 1 when z = k and 0 otherwise.

Assuming Gaussian distribution on U and Y , GLLiM estimates a locally linear map-
ping function g ∶ U ↦ g(U ) such that Y = g(U ) using the model of a mixture of K
Gaussian (so the name Gaussian Locally Linear Mapping). The complete method uses
Probabilistic Piecewise Affine Mapping (PPAM) to estimate the parameters of the map-
ping thanks to an Expectation-Minimization algorithm. This mapping yields an effi-
cient estimator of U given Y . Practically, in the rest of the document GLLiM will denote
throughmisuse of language thewhole mapping estimation procedure encompassing also
the PPAM step. Theoretical details on this method can be found in [Deleforge 2013, Dele-
forge et al. 2015b] while technical parameterization for our use on sound source local-
ization will be detailed in section 8.6.

8.5 The VAST dataset

In order to apply this new paradigm of virtually supervised learning to source localiza-
tion or more generally to sound scene analysis, one needs to use proper simulated data
generated from sound propagation physics models. The following section introduces a
novel dataset of Room Impulse Responses (RIRs) specifically designed to be used in a
virtually supervised setting for acoustic inverse problems.

8.5.1 General Principles

The space of all possible acoustic scenes is vast. Therefore, some trade-offs between the
size and the representativity of the datasetmust bemadewhen building a training corpus
for audio scene geometry estimation. During the process of designing the dataset, we
imposed on ourselves the following guidelines:

∙ The dataset should consist of room impulse responses (RIR). This is a more generic
representation than, e.g., specific audio features or audio scenes involving specific
sounds. Each RIR should be annotated by all the source, receiver and room prop-
erties defining it.

∙ Virtual acoustic space traveling aims at building a dataset for a specific audio

system in a variety of environments. Following this idea, some intrinsic properties
of the receiver such as its distance to the ground and its (head)-related transfer
functions are kept fixed throughout the simulations. For this first dataset, called
VAST_KEMAR_0, we chose the emblematic KEMAR acoustic dummy-head, whose
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measured HRTFs are publicly available. It was placed at 1.70 from the ground, the
average human’s height.

∙ We are interested in modeling acoustic environments which are typically encoun-
tered in an office building, a university, a hotel or a modern habitation. Acoustics
of the type encountered in a cathedral, a massive hangar, a recording studio or
outdoor are deliberately left aside here. Surface materials and diffusion profiles
are chosen accordingly.

∙ To make the dataset easily manipulable on a simple laptop, we aimed at keeping
its total size under 10 GigaBytes. To handle datasets of larger order of magnitudes
would require users to have access to specific hardware and software which is not
desired here. VAST_KEMAR_0 weights 6.4 GB.

8.5.2 Room Simulation and Data Generation

The efficientC++/MATLAB “shoebox” 3D acoustic room simulator ROOMSIMdeveloped
by Schimmel et al. is selected for simulations [Schimmel et al. 2009]. This software takes
as input a room dimension (width, depth and height), a source and receiver position and
orientation, a receiver’s (HRTF) model, and frequency-dependent absorption and diffu-
sion coefficients for each surface. It outputs a corresponding pair of RIR at each ear of
the binaural receiver. Specular reflections are modeled using the image-source method
[Allen & Berkley 1979], while diffusion is modeled using the so-called rain-diffusion al-
gorithm. In the latter, sound rays uniformly sampled on the sphere are sent from the
emitter and bounced on the walls according to specular laws, taking into account surface
absorption. At each impact, each ray is also randomly bounced towards the receiverwith
a specified probability (the frequency-dependent diffusion coefficient of the surface). The
total received energy at each frequency is then aggregated using histograms. This model
was notably shown to realistically account for sound scattering due to the presence of
objects, by comparing simulated RIRs with measured ones in [Wabnitz et al. 2010]. The
study [Kataria et al. 2017] suggests that such diffusion effects play an important role
in sound source localization performance. VAST_KEMAR_0 contains over 110, 000 RIR,
which required about 700 CPU-hours of computation. This was done using a massively
parallelized implementation on a large computing grid (IGRIDA2) available for research
teams at IRISA (Rennes, France).

8.5.3 Room Properties: Size and Surfaces

An obvious choice to generate virtual rooms with maximal variability would be to draw
a random room size and random frequency-dependent absorption and diffusion profiles
of surfaces for each generated RIR. This approach however, has several drawbacks. First,
it makes impossible the generation of realistic audio scenes containing several sources,
for which the receiver position and the roommust be fixed. Second, the space of possible
rooms is so vast that reliably sampling it at random is unrealistic. Third, changing source,

2http://igrida.gforge.inria.fr

http://igrida.gforge.inria.fr
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Figure 8.3 – Top views of training rooms with receiver positions and orientations
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Table 8.1 – Description of simulated training rooms in VAST

Room

Number
Floor Ceiling Walls

Width

[m]

Depth

[m]

Height

[m]

1 Thin Carpet Perforated 27 mm gypsum board Walls Hard Surfaces Average 9 6 3.5
2 Thin Carpet Perforated 27 mm gypsum board Gypsum Board with Mineral Filling 9 6 3.5
3 Thin Carpet Perforated 27 mm gypsum board Fabric-Covered Panel with Rockwool Core 9 6 3.5
4 Thin Carpet Perforated 27 mm gypsum board Thin Plywood Paneling 9 6 3.5
5 Linoleum Perforated 27 mm gypsum board Walls Hard Surfaces Average 9 6 3.5
6 Linoleum Perforated 27 mm gypsum board Gypsum Board with Mineral Filling 9 6 3.5
7 Linoleum Perforated 27 mm gypsum board Fabric-Covered Panel with Rockwool Core 9 6 3.5
8 Linoleum Perforated 27 mm gypsum board Thin Plywood Paneling 9 6 3.5
9 Thin Carpet Perforated 27 mm gypsum board Walls Hard Surfaces Average 3.5 5 2.5
10 Thin Carpet Perforated 27 mm gypsum board Gypsum Board with Mineral Filling 3.5 5 2.5
11 Thin Carpet Perforated 27 mm gypsum board Fabric-Covered Panel with Rockwool Core 3.5 5 2.5
12 Thin Carpet Perforated 27 mm gypsum board Thin Plywood Paneling 3.5 5 2.5
13 Linoleum Perforated 27 mm gypsum board Walls Hard Surfaces Average 3.5 5 2.5
14 Linoleum Perforated 27 mm gypsum board Gypsum Board with Mineral Filling 3.5 5 2.5
15 Linoleum Perforated 27 mm gypsum board Fabric-Covered Panel with Rockwool Core 3.5 5 2.5
16 Linoleum Perforated 27 mm gypsum board Thin Plywood Paneling 3.5 5 2.5
0 Anechoic room

receiver and room parameters all at the same time prevents from getting insights on the
individual influence of these parameters. On the other hand, sampling all combinations
of parameters in an exhaustive way quickly leads to enormous data size. As a trade-off,
we designed 16 realistic rooms representative of typical reverberation time (RT60) and
surface absorption profiles encountered in modern buildings. Two room sizes were con-
sidered: a small one corresponding to a typical office or bedroom (Figure 8.3a), and a
larger one corresponding to a lecture or entrance hall (Figure 8.3b). For each room, floor,
ceiling andwall materials which are representative in terms of absorption profile and are
commonly encountered in nowadays buildings were chosen from [Vorländer 2007]. The
graph on Figure 8.4 displays the absorption profiles of the selected materials, namely, 4
for the walls, 2 for the floor and 1 for the ceiling. The gypsum board material chosen
for the ceiling was kept fixed throughout the dataset, as it represents well typical ceiling
absorption profiles [Vorländer 2007]. “Walls hard surface average” is in fact an average
profile over many surfaces such as brick or plaster [Vorländer 2007]. Combining all pos-
sible floors, walls and room sizes yielded the 16 rooms listed in Table 8.1.

Importantly, typical rooms also contain furniture and other objects responsible for
random sound scattering effects, i.e., diffusion. Following the acoustic study in [Faiz
et al. 2012], a unique frequency-dependent diffusion profile was used for all surfaces.
The chosen profile is the average of the 8 configurations measured in [Faiz et al. 2012],
corresponding to varying numbers of chairs, table, computers and people in a room.
Both absorption and diffusion profiles are piecewise-linearly interpolated from 8 Octave
bands from 125 Hz to 4 kHz.

8.5.4 Reverberation Time

A common acoustic descriptor for rooms is the reverberation time (RT60 described in
chapter 7). Figure 8.5 displays the estimated RT60 distribution across the VAST Training
Dataset. Figure 8.5 shows the RT60 for each room by octave band. RT60’s were estimated
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Figure 8.5 – Reverberation Time distributions

from the room impulse responses following the recommendations in [Schroeder 1965].
From these estimations, we decided to crop the room impulse responses provided in the
datasets above the RT60, with a 30msmargin. This technique allows to shrink the dataset
while keeping data points of interest and discarding the rest. To further complies with
memory limitations, we chose to encode the room impulse response samples with single
floats (16 bit). As can be seen in Figure 8.5 the 16 chosen rooms present a quite good
variability in terms of reverberation times in the range 100ms-400ms. Larger RT60 of the
order of 1 second could be obtain by using highly reflective materials on all surfaces,
creating an echoic chamber. However, this rarely occurs in realistic buildings.

8.5.5 Source and Receiver Positions

A relatively poorly-studied though important effect in sound source localization is the
influence of the receiver’s position in the room, especially its distance to the nearest
surface. In order to accurately capture this effect, 9 receiver positions are used for each
of the 16 rooms, while the height of the receiver is fixed at 1.7 m. Figure 8.3 shows top
views of the rooms with receiver positions. Positions from R1 to R8 are set 50 cm from
the nearest wall(s) whereas R9 is approximately placed in the middle of the room. Per-
fectly symmetrical configurations are avoided to make the dataset as generic as possible,
without singularities. The receiver is always facing the north wall as a convention. For
each of the 9 receiver positions, sources are placed on spherical grids centered on the re-
ceiver. Each sphere consists of regularly-spaced elevation lines each containing sources
at regularly-spaced azimuths, with a spacing of 9◦. The equator elevation line and the
first azimuth angle of each line are randomly offset by −4.5◦ to +4.5◦ in order to obtain
a dense sphere sampling throughout the dataset. Six spherical grid radii are considered,
yielding source distances of 1, 1.5, 2, 3, 4 and 6 meters. Sources falling outside of the
room or less than 20 cm from a surface are removed.
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Table 8.2 – Simulated test sets description

VAST Testing Set 1 VAST Testing Set 2 VAST Testing Set 3 VAST Testing Set 4

Receiver Position
Random 2D
(fixed height)

Random 2D
(fixed height)

Random 2D (fixed height) Random 2D (fixed height)

Receiver Orientation Same as Training Random Yaw Angle Same as Training Random Yaw Angle
Source Position Random 3D Random 3D Random 3D Random 3D
RoomWidth [m] Same as Training Same as Training Random in [3,10] Random in [3,10]
Room Depth [m] Same as Training Same as Training Random in [3,10] Random in [3,10]
Room Height [m] Same as Training Same as Training Random in [2,4] Random in [2,4]
Ceiling Material Same as Training Same as Training Same as Training Same as Training
Floor Covering Same as Training Same as Training Random From The Training Set Random From The Training Set

Walls Material Same as Training Same as Training
Random From The Training Set

(for each wall)
Random From The Training Set

(for each wall)
Number of Points 1000 (x 16 Rooms) 1000 (x 16 Rooms) 10 000 10 000

8.5.6 Test Sets

To test the generalizability of mappings learned on the VAST_KEMAR_0 dataset, we built
four simulated test sets differing from the training dataset on various levels. A first chal-
lenge is to test robustness to random positioning, since the training set is built with
regular spherical source grids and fixed listener positions. Hence, the 4 testing sets con-
tain completely random source and receiver positions in the room. Only the receiver’s
height is fixed to 1.7 m, and both receiver and source are set within a 20 cm safetymargin
within the room boundaries. Test sets 2 and 4 feature random receiver orientation (yaw
angle), as opposed to the receiver facing north in the training set. Test 1 and 2 contain
1,000 binaural RIRs (BRIRs) for each of the 16 rooms of Table 8.1. Finally, test sets 3 and 4
contain 10,000 BRIRs, each corresponding to a random room size (walls from 3m×2m to
10m × 4m) and random absorption properties of walls and floor picked from Figure 8.4.
Different surfaces for all 4 walls are allowed.

Note that the KEMAR HRTF measurements used to simulate the VAST dataset was
recorded by yet another team, in MIT’s anechoic chamber in 1994, as described in [Gard-
ner & Martin 1995].
While this section presented the details of the dataset, a visual description of the orga-
nization is available on Figure C.1, Appendix C.

8.6 Localizing sound sources through learning on sim-

ulated data

In order to validate the VAST approach on auditory scene analysis, one obvious choice
regarding a low-dimension acoustic scene properties prediction was sound source posi-
tion. In addition to these simulated test sets, three binaural RIR datasets recorded with
the KEMAR dummy head in real rooms have been selected, as listed below:

∙ Auditorium3 [Ma et al. 2015]was recorded at TU Berlin in 2014 in a trapezium-
shaped lecture room of dimensions 9.3m × 9m and RT60 ≈ 0.7s. 3 individual sources
placed 1.5m from the receiver at different azimuth and 0◦ elevation were recorded.
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For each source, one pair of binaural RIR is recorded for each receivers’ head yaw
angle from −90◦ to +90◦, with 1◦ steps;

∙ Spirit [Ma et al. 2015] was recorded at TU Berlin in 2014 in a small rectangular
office room of size 4.3m × 5m, RT60 ≈ 0.5s, containing various objects, surfaces
and furniture near the receiver. The protocol is the same as Auditorium 3 except
sources are placed 2 m from the receiver;

∙ Classroom [Shinn-Cunningham et al. 2005] was recorded at Boston Univer-
sity in 2005 in a 5m × 9m × 3.5m carpeted classroom with 3 concrete walls and one
sound-absorptive wall (RT60 = 565ms). The receiver is placed in 4 locations of the
room including 3 with at least one nearby wall.

For all experiments in this section, all training and test sets used are reduced to con-
tain only frontal sources (azimuth in [−90◦, +90◦]) with elevation in [−45◦, +45◦] and dis-
tances between 1 and 3 meters.

8.6.1 Binaural features

As mentioned earlier, sound source localization thanks to virtually supervised learning
consists in two steps: calculating high dimensional features from (binaural) signals fol-
lowed by mapping these features to a source position. As one might not want to use the
full RIR as input, in the current binaural scenario, a choice for high dimensional data
are auditory features. Even if their dimension is already smaller compared to the initial
RIRs, auditory features such as Interaural Level Difference (ILD) or Interaural Phase Dif-
ference (IPD) still convey important information about sound scenes. Shortly, ILD and
IPD account for level and time (phase) differences at the two ears due to the head shadow
and the spatial distribution of the source(s). Thus, both ILD and IPD were shown to be
important cues for sound localization and speech intelligibility in noise. Robustly esti-
mating features can be difficult when dealing with additive noise, sources with sparse
spectra such as speech or music, and source mixtures. We leave this problematic aside in
this paper, and focus on mapping clean features to source positions. Hence, we use ideal
features directly calculated from the clean room impulse responses in all experiments.
We detail below how they are computed from the raw RIR.

Let un ∈ ℝ3 be a parameter vector containing the source’s azimuth, elevation and dis-
tance absorption. We denote the associated generated left and right RIR by (hL(un), hR(un)).
Each of these pairs is convolved with a 1 second random white Gaussian noise signal,
and the result is resampled at 8kHz. The STFT is then applied to both signals, using a
64ms sliding time window with 50% overlap. This results in a left-microphone spectro-
gram {L(f, t)}F,Tf=1,t=1 and a right-microphone spectrogram {L(f, t)}F,Tf=1,t=1, where F = 256

and T = 32. If {S(f, t)}F,Tf=1,t=1 denotes the emitted white-noise spectrogram, under the
assumption that most of the RIR energy is concentrated on the first 64ms, we have the
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following approximate multiplicative model:{ L(f, t) ≈ h̄L
(f, un)S(f, t)R(f, t) ≈ h̄R
(f, un)S(f, t) (8.12)

where ⋅̄ denotes the discrete Fourier transform. The interaural level difference (ILD) and
interaural phase difference (IPD) spectrograms are defined by{ ILD(f, t) = 20 ∗ log(|L(f, t)|/|R(f, t)|) ∈ ℝ

IPD(f, t) = L(f,t)/|L(f,t)|R(f,t)/|R(f,t)| ∈ ℂ. (8.13)

Using the approximation Equation (8.12), it is easily seen that both ILD and IPD solely
depend on the parameter vector un and do not depend on the emitted signal. Similarly to
[Deleforge et al. 2015c], the ILD and IPD spectrograms are vertically concatenated and
averaged over time to form a high-dimensional feature vector yn ∈ ℝD associated to the
low-dimensional parameter vector un ∈ ℝL (L = 3 for 3D coordinates for instance).

8.6.2 Experiments

We first make an experiment to put forward some intrinsic limitations of TDOA-based
azimuth estimation. Figure 8.6 plots TDOAs against the source’s azimuth angle for dif-
ferent subsets of VAST. TDOAs were computed as the delay maximizing the correlation
between the first 500 samples of the left and the right impulse responses. As can be seen
in Figure 8.6, a near-linear relationship between frontal azimuth and TDOA exists in the
anechoic case, regardless of the elevation. This matches previously observed results in
binaural sound localization [Viste & Evangelista 2003, Sanchez-Riera et al. 2012, Dele-
forge et al. 2015c]. When the receiver is placed in the middle of the 16 reverberant
rooms, (Figure 8.6b), some outliers appear due to reflections. This effect is dramatically
increased when the receiver is placed 50 centimeters from a wall (Figure 8.6c and Fig-
ure 8.6d), where stronger early reflections are present. This suggests that the TDOA,
even when ideally estimated, is not adapted to binaural sound source localization in re-
alistic indoor environments.

We then compare azimuth estimation errors obtained with the TDOA-based method
described above, a learning-based method trained on anechoic HRTF measurements
(Room 0), and a learning-based method trained on VAST, using the 4 simulated and 3
real test sets described in subsection 8.5.6. TDOAs were mapped to azimuth values us-
ing the affine regression coefficients corresponding to the red line in Figure 8.6a. If we
denote � the azimuth and � the TDOA, this red fitting curve models the following affine
relation:

� = a ⋅ � + b. (8.14)

with a = 1.37 ⋅ 10−7s.deg−1 and b = −7.38 ⋅ 10−6s. The chosen learning-based sound
source localization method is the one described earlier in section 8.4. It uses GLLiM, to
map high-dimensional feature vectors containing frequency-dependent interaural level
and phase differences from 0 to 8000 Hz to low-dimensional source positions. In our
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Figure 8.6 – TDOA as a function of source azimuth in various settings

case, the GLLiM model with K locally-linear components was trained on N interaural
feature vectors of dimension D = 1537 associated to 3-dimensional source positions in
spherical coordinate (azimuth, elevation and distance). K1 = 8 components were used
for the anechoic training set (N1 = 181) and K2 = 100 for the (reduced) VAST dataset
(N2 ≈ 41, 000). All 3 methods showed comparably low testing computational times, in
the order of 10ms for 1 second of input signal.

Table 8.3 – Azimuth absolute estimation errors in degrees with 3 different methods,
showed in the form avg ± std(out%), where avg and std denote the mean and standard
deviation of inlying absolute errors (< 30◦) while out denotes the percentage of outliers.
Test data ↓ TDOA GLLiM (Anech. train.) GLLiM (VAST train.)
VAST Testing Set 1 5.49 ± 4.6(5.6%) 8.63 ± 7.6(12%) 4.38 ± 4.9(1.8%)
VAST Testing Set 2 5.37 ± 4.4(6.0%) 8.09 ± 7.5(12%) 4.32 ± 4.7(1.6%)
VAST Testing Set 3 5.21 ± 4.5(4.6%) 8.46 ± 7.5(5.2%) 4.23 ± 4.4(1.8%)
VAST Testing Set 4 5.14 ± 4.4(3.3%) 8.21 ± 7.2(4.8%) 4.25 ± 4.4(0.6%)
Auditorium 3 [Ma et al. 2015] 7.02 ± 4.7(1.4%) 8.01 ± 7.0(5.9%) 5.03 ± 4.5(0.0%)
Spirit [Ma et al. 2015] 5.19 ± 3.4(0.0%) 12.2 ± 8.3(15%) 4.50 ± 5.6(0.4%)
Classroom [Shinn-Cunningham et al. 2005] 5.71 ± 3.7(3.7%) 9.47 ± 7.3(5.2%) 6.50 ± 5.9(0.0%)
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Table 8.3 summarizes obtained azimuth estimation errors. As can be seen, the learn-
ing method trained on VAST outperforms the two others on all datasets, with signifi-
cantly less outliers and a globally reduced average error of inliers. This is encouraging
considering the variety of testing data used.

Table 8.4 – Elevation and distance absolute estimation errors obtained with GLLiM
trained on VAST. Outliers correspond to errors larger than 15◦ or 1m.

Test data ↓ Elevation (◦) Distance (m)
VAST Testing Set 1 5.91 ± 4.1(23%) 0.43 ± 0.3(19%)
VAST Testing Set 2 6.05 ± 4.2(27%) 0.44 ± 0.3(20%)
VAST Testing Set 3 6.05 ± 4.1(27%) 0.43 ± 0.3(21%)
VAST Testing Set 4 6.03 ± 4.2(26%) 0.44 ± 0.3(21%)
Auditorium 3 [Ma et al. 2015] 7.92 ± 4.4(44%) 0.45 ± 0.3(23%)
Spirit [Ma et al. 2015] 7.44 ± 4.3(30%) 0.52 ± 0.3(25%)
Classroom [Shinn-Cunningham et al. 2005] 8.40 ± 4.1(45%) 0.41 ± 0.3(6.5%)
In addition, Table 8.4 shows that GLLiM trained on VAST is capable of approximately

estimating the elevation and distance of the source, which is known to be particularly
difficult from binaural data. While elevation estimation on real data remains a challenge,
results obtained on simulated sets are promising.

8.7 Summary

We introduced the new concept of virtual acoustic space traveling and released a first
dataset dedicated to it. A methodology to efficiently design such a dataset was provided,
making extensions and improvements of the current version easily implementable in
the future. Results show that a learning-based sound source localization method trained
on this dataset yields better localization results than when trained on anechoic HRTF
measurements, and performs better than a TDOA-based approach in azimuth estima-
tion while being able to estimate source elevation and distance. Considering the current
knowledge, this is the first time a method trained on simulated data is successfully used
on real data for (binaural) sound source localization, validating the new concept of vir-
tual acoustic space traveling. The learning approach could still be significantly improved
by considering other features, by better adapting the mapping technique to spherical
coordinates and by annotating training data with further acoustic information. Other
learning methods such as deep neural networks may also be investigated. In that line,
we note a recent attempt to learn such a mapping with Convolutional Recurrent Neu-
ral Networks using RIRs recorded within AMBISONICS sound representations [Perotin
et al. 2018]. Considering additional tasks to achieve, room characterization involving
wall position or absorption prediction could possibly be interesting to study.
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The main line of the work presented in this manuscript was to gather
tools and models in a general framework able to handle different au-
dio and acoustic inverse problems. Building this framework, we con-
sidered three applications relying on (structured) (co)sparsity: audio
denoising, audio desaturation and audio dereverberation. More inde-
pendently, we proposed a new line of work to cope with the sound
source localization problem based on virtual acoustic space learning.
This last chapter summarizes the central contributions and expresses
some possible future research directions.

9.1 Conclusions

After chapter 1 which was the main introduction of this thesis, Part I presented sev-
eral tools used in this work. In chapter 2, we detailed various existing models based on
sparsity (both analysis and synthesis based) for audio signal time-frequency modeling.
This chapter also presented an extension of the sparse models in the multichannel audio
context adding structure across channels.

In chapter 3 we introduced a generic algorithmic framework able to embed differ-
ent (co)sparse data models thanks to appropriate sparsity inducing shrinkages. This
versatile framework was designed to address several audio reconstruction problems by
approaching a solution of the associated non-convex optimization problem. Since the
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main purpose of this framework is audio reconstruction, chapter 4 discussed the differ-
ent measures and data available for experimental validation on audio signals.

Part II focused on addressing inverse problems induced fromdifferent types of sensor-
based distortions. In chapter 5 we instantiated the framework to account for a first au-
dio reconstruction application: denoising. We alternatively studied the impact of the
different time-frequency models (plain sparsity v.s. social sparsity), priors (analysis v.s.
synthesis) and frequency transform redundancy on the denoising performance. Results
were compared on small scale and large scale datasets of music and speech sound exam-
ples. Numerical results show advantage of the plain cosparse method on global audio
quality for music while on speech, the adaptive social (co)sparse methods seem worth-
while. For speech intelligibility improvements and also computational performance, the
plain sparse method appears to be preferable. We also insisted on competitive (even bet-
ter for high SNR) denoising performance compared with a baseline method.

As an extension of the framework, chapter 6 discussed audio desaturation. We first
gave some insights on saturation range and ways to quantify clipping. We selected SDR
as more adapted than clipping threshold to rate distortion induced by clipping. We thor-
oughly studied the different flavors of the chapter 3 framework on a large scale speech
and music dataset for the single-channel case. While the plain cosparse method gives
better SDR improvements for highly degraded scenarii, the adaptive social sparse algo-
rithm seems preferable for moderate to light clipping conditions. When the analysis
operator or the Hermitian transpose of the dictionary forms a Parseval tight-frame, we
stress the low computational cost of the algorithms and validate this showing runtime
performance. With the activework and efforts of the research engineers of the PANAMA
team and industrial transfer division of Inria/IRISA Rennes research center, this work on
single-channel declipping is currently being adapted to work as a declipping plug-in for
professional audio restoration softwares1. We also encompassed multichannel declip-
ping cases in the framework. Therefore, we studied the legitimacy of the channel-aware
structured (co)sparsity signal models on multichannel declipping scenarii. This model
was validated on stereo and 8-channel recordings. The resulting algorithms, using the
Group Empirical Wiener and the Quadratic Group Empirical Wiener as sparsifying op-
erators, showed better reconstruction performance (SDR improvement) than a state-of-
the-art method relying on simple cosparse prior. We also demonstrate better computa-
tional efficiency for some configurations.

Part III was devoted to inverse problems caused by indoor environment sound prop-
agation. In chapter 7, we addressed the audio dereverberation issue including it in the
common framework of chapter 3. As a proof of concept, we presented dereverberation
results using wide-band plain/social sparse time-frequency modeling. SDR improve-
ments demonstrated superiority of the social sparse modeling. This effect was more
salient in highly reverberant configurations.

1Ademonstration of the application is available as a web-service at: https://spade.inria.frthanks
to the A||GO platform.

https://spade.inria.fr
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More independently from the rest of this manuscript, chapter 8 was committed to
binaural sound source localization. We introduced the new concept of virtual acoustic
space learning taking the best of both physics-driven and data driven worlds to learn
models from acoustic features in simulated environments. This concept was success-
fully applied to binaural sound source localization in realistic rooms and validated on
both simulated and real recordings. The method shows really competitive results in az-
imuth estimation compared to the widely usedmore traditional GCC-PHAT. Themethod
using virtual acoustic space learning was shown to be able to provide also elevation and
distance estimation. This is known to be a very difficult task especially with only two
sensors.

9.2 Further work

For this last section, we foresee some future research possibilities for the different issues
we considered in this work.

9.2.1 Inpainting tasks

Due to the versatility of the framework we developed in this thesis, we can think of
interesting extensions to other signal reconstruction problems.

Packet loss concealment We showed that declipping as a specific audio inpainting
task could be addressed by the framework. A comparable problem that could be handled
is completion of missing samples. With the growing number of applications involving
transmission of digital audio streams, this is probably a task that is of interest to allevi-
ate the packet loss problem. In that sense, some recent studies involving sparse [Mokrỳ
et al. 2018] and structured sparse [Lieb & Stark 2018] models provided encouraging re-
sults for this inpainting task.

Including it in the framework would only need a new generalized projection Θ,M(Z)
adapted to the data-fidelity constraint for the inpainting case. Denote Ωr the indices of
the reliable samples (not missing) in matrix Y.
The data-fidelity constraint for the inpainting task would be expressed for the analysis
setting with M ∶= A by

Θ ∶=
{W | WΩr = YΩr }

whereW is a time-domain estimate of the same size as Y. For the synthesis setting, withM ∶= I, we set
Θ ∶=

{W | (DW)Ωr = YΩr } .
HereWwould be a time-/channel- frequency estimate gathering as many frames as in Y.
Similarly to the declipping projection, the corresponding generalized projection could be
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done component wise retaining low complexity. Multichannel instance of the inpaint-
ing problem could also be treated at little cost relying on the channel-wise structured
(co)sparse models.

Towards simultaneous reconstruction tasks More difficult issues could be inves-
tigated. As audio signals can easily be corrupted simultaneously by noise, reverberation
and clipping there is a need to address reconstruction problems considering concurrent
degradation. While working on our framework, unsuccessful attempts were tried to
perform joint declipping and denoising or joint dereverberation and declipping on au-
dio recordings. Building a hybrid generalized projection accounting for both denoising
and declipping data-fidelity constraints is probably not that straightforward. Fusing the
declipping and denoising projections in a naive way did not give expected results. Very
recent work on audio de-quantization [Rencker et al. 2018] with sparse priors can be an
interesting starting point.

Joint time-frequency / channel (co)sparse models Structured (co)sparsity showed
independently good performances in modeling diversity of audio signals in the time-
frequency domain or channel-frequency domain. Acoustic sensing is currently being
redesigned with the generalization of stereo to more and more channel recordings. In
that sense, we can think of designing more complete multichannel signal models pro-
moting at the same time structured (co)sparsity across channels and social sparsity in
time-frequency representations. For that purpose, tensor tools which were successfully
used for audio signal modeling in the context of source separation [Ozerov et al. 2011]
may be considered.

9.2.2 Algorithmic aspects

Despite the good experimental results of the framework for various audio reconstruction
tasks, no theoretical guarantees are provided. Convergence proof for the framework
might be interesting to derive as empirical results show that the different algorithms stop
with a convergence threshold parameter (�) while the upper bound on the iteration count
(imax) is never reached. However, this stopping criterion (�) seems to play an important
role in the final reconstruction performance as shown for declipping (see: Figure 6.14
and Figure 6.15, chapter 6). This observation alongside with the non-convexity of a
possible underlying problem stresses the difficulty of deriving a convergence proof for
the framework. As a first step, a (possibly easier) convergence study of the framework
equipped with non-overlapping (structured) shrinkages could be envisioned.
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9.2.3 Virtual acoustic space learning

Concerning acoustic space learning, several axes can be chosen for further investiga-
tions.

Generalizing source localization It will not have escaped the attentive reader that
the concept of virtual acoustic space learningwas validated on binaural recordingswhich
is quite restrictive compared to the wide variety of available microphone arrays. One
idea could be to adapt the method to account for a more generic sensing array. A first
idea could be testing a blinder approach for the learning method without providing it
with a fully detailed parametrization of the sensor array. We can think of adapting the
learning step to be able to learn a model from multichannel recordings gathered with
samples from just a pair of sensors. However, with this idea it could probably be difficult
to generalize to other than linear arrays. Concerning the learning method itself, some
comparison could be held with one or more learning methods from the deep neural net-
work framework as it seems to be also a good alternative for source localization [Perotin
et al. 2018].

In the line of generalization, one could think of multi-source and/or dynamic scenarii
where the task would extend to locating multiple static sources or in a more difficult case
providing tracking for moving sources. Some work [Laufer-Goldshtein et al. 2017] using
jointly manifold learning along with Kalman filtering provided interesting results for
such an application.

Room parameters estimation On top of source position, lower level audio scene
parameters estimation can be interesting to look at. For instance, room geometry, ab-
sorption/diffusion properties. For that purpose and considering the generalization to
larger arrays, different acoustic features could be envisioned. In a binaural setting, inter
microphone time delays and level differences are widely used. The choice of acoustic
features to learn a model from is a crucial question. Hence, turning towards Direct-to-
Reverberant Ratio to improve source distance estimation or room properties could be
a first option. Another interesting longer term perspective in that sense could be the
design of new acoustic features.

With this work we probably did not win the sparse wars but certainly
took a step forward in legitimating some signal models. These find-
ings could be useful in case of joining forces with the machine learn-
ing community in a possible near future. Hopefully, this could lead to
interesting applications for those needing a little help to enhance the
way they process sound.
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Appendix A

Generalized projections

A.1 Generalized projection for denoising

The goal is to solve Equation (3.10), i.e.,

minimizeW∈Θ
‖MW − Z‖F.

with M = A, Θ = {W ∶ ‖W − Y‖F ≤ "} for the analysis case, and M = I and Θ = {W ∶
‖DW − Y‖F ≤ "} for the synthesis case. For the synthesis case, this is more explicitly

minimizeW ‖W − Z‖2F subject to ‖DW − Y‖2F ≤ "2.

Let us now show that in the analysis case the optimization problem can be cast to a
similar form. Sincewe consider a Parseval tight frameAHA = I, the orthogonal projection
onto the linear span of A is PA = AAH and for anyW,Z,

‖AW − Z‖2F = ‖AW − PAZ + (I − PA)Z‖2F
= ‖AW − PAZ‖2F + ‖(I − PA)Z‖2F
= ‖A(W − AHZ)‖2F + ‖(I − PA)Z‖2F
= ‖W − AHZ‖2F + ‖(I − PA)Z‖2F.

Minimizing the left hand side with the constraintW ∈ Θ is thus equivalent to

minimizeW ‖W − AHZ‖2F subject to ‖W − Y‖2F ≤ "2.
Both cases boil down to an optimization problem

Ŵ = argminW ‖W − B‖2F subject to ‖FW − Y‖F ≤ " (A.1)

with B = AHZ and F = I for the analysis case, while B = Z and F = D for the synthesis
case. When F is a Parseval tight frame, Equation (A.1) has a closed form solution [Yang
& Yuan 2013, Section 2]

Ŵ = B −(‖FB − Y‖F − "‖FB − Y‖F )
+

⋅ FH(FB − Y). (A.2)
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A.2 Generalized projection for declipping

The goal is to solve Equation (3.10), i.e.,

minimizeW∈Θ
‖MW − Z‖F.

with some constraint set Θ.
In the analysis case, as shown in section A.1, as soon as AHA = I, minimizing ‖AW −Z‖2F under the constraint

W ∈ Θ ∶=
⎧⎪⎪⎨⎪⎪⎩

Wij = Yij, ij ∈ Ωr ;W ∣ Wij ≥ � , ij ∈ Ω+;Wij ≤ −� , ij ∈ Ω−.
⎫⎪⎪⎬⎪⎪⎭

is equivalent to minimizing ‖W − AHZ‖2F under the constraint W ∈ Θ. As the constraint
is written component-wise, the optimization can be done component-wise yielding

Ŵ(ij) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Yij if ij ∈ Ωr ;

(AHZ)ij if

⎧⎪⎪⎨⎪⎪⎩
ij ∈ Ω+, (AHZ)ij ≥ � ;
or
ij ∈ Ω−, (AHZ)ij ≤ −� ;

sgn (Yij)� otherwise.

(A.3)

For the synthesis case,M = I and
Θ ∶=

⎧⎪⎪⎨⎪⎪⎩W | (DW)Ωr = YΩr ;
(DW)Ω+ ≽ YΩ+ ;
(DW)Ω− ≼ YΩ− .

⎫⎪⎪⎬⎪⎪⎭ .
The corresponding optimization problem for the synthesis case writes:Ŵ = argminW ‖W − Z‖2F subject to W ∈ Θ. (A.4)

which can be recast as:Ŵ = argminW ‖W − Z‖2F subject to DW ∈ Θ̃ (A.5)

and

Θ̃ ∶=
⎧⎪⎪⎨⎪⎪⎩DW | (DW)Ωr = YΩr ;

(DW)Ω+ ≽ YΩ+ ;
(DW)Ω− ≼ YΩ− .

⎫⎪⎪⎬⎪⎪⎭ .
As used in [Záviška et al. 2018, Šorel & Bartoš 2016] in the case where DDH = I and
Θ̃ embodies a multidimensional interval constraint the closed-form solution for Equa-
tion (A.5) writes: Ŵ = Z − DH(DZ − ΠΘ,M(Z)), (A.6)
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with

[ΠΘ,M(Z)]ij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Yij if ij ∈ Ωr ;

(DZ)ij if

⎧⎪⎪⎨⎪⎪⎩
ij ∈ Ω+, (DZ)ij ≥ � ;
or
ij ∈ Ω−, (DZ)ij ≤ −� ;

sgn (Yij)� otherwise.





Appendix B

Power iteration algorithm

We recall below the power iteration algorithm as used in the dereverberation projection
Equation (7.6) page 99. It estimates the highest singular value associated to  ∗ .

Algorithm 4 Power iteration algorithm

Require: D, Z(0),  (⋅),  ∗(⋅), imax

for i = 1 to imax doW =  ∗( (DZ(i−1))
t = ‖W‖∞Z(i) = W

t

return t

D ∈ ℂL×S is the DFT operatorZ(0) ∈ ℂS×T‖W‖∞ corresponds to the highest magnitude value of W





Appendix C

VAST dataset structure

Figure C.1 coming next describes how is organized technically the VAST dataset pre-
sented earlier page 110 and successfully used for sound source localization (section 8.6).
The figure below graphically presents a “VAST” dataset with N room impulse responses
and details the fields available for annotating them as well as general informative fields
about the data. Among the global parameters, “FreqBin” stores the central octave band
frequencies used to provide frequency dependent sound absorption and diffusion pro-
files. Those central frequencies are also used to provide frequency dependent reverber-
ation time (“FreqRT60”). For the receiver, the field “Position” is the 3D location of the
sensor(s) in the cartesian coordinate system of the room. The source position is also
given in the room referential in the field “AbsolutePos”. The fields “Azimuth”, “Eleva-
tion” and “Distance” are given in the receiver referential. Additionally, on the VAST
training dataset (VAST_KEMAR_0 and possible future release) there is a “Spot” field for
the receiver which denotes the position inside the room from R1 to R9 (see Figure 8.3).
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VAST

GlobalParams

SamplingFrequency {1x1 double}

FreqBin {1x6 double}

RIRLengthTime {1x1 double}

RIR
Left {LxN single}

Right {LxN single}

Room

Size {3xN single}

FreqRT60 {6xN single}

GlobalRT60 {1xN single}

Absorption

NorthWall {6xN single}

WestWall {6xN single}

SouthWall {6xN single}

EastWall {6xN single}

Ceiling {6xN single}

Floor {6xN single}

Diffusion {6xN single}

Source

Azimuth {1xN single}

Elevation {1xN single}

Distance {1xN single}

AbsolutePos {3xN single}

Receiver

Spot {1xN cell} - Only on VAST Training

Orientation {1xN single}

HRTF

Fs {1x1 double}

Left {128x710 double}

Right {128x710 double}

Position {3xN single}

Figure C.1 – VAST dataset structure organization
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Titre : Conception et évaluation de modèles parcimonieux et d'algorithmes pour la résolution de 
problèmes inverses en audio 

Mots clés : problèmes inverses, parcimonie, traitement du signal, multicanal, restauration sonore 

Résumé : Dans le contexte général de la réso-
lution de problèmes inverses en acoustique et 
traitement du signal audio les défis sont nom-
breux. Pour la résolution de ces problèmes, leur 
caractère souvent mal-posé nécessite de consi-
dérer des modèles de signaux appropriés. Les 
travaux de cette thèse montrent sur la base d'un 
cadre algorithmique générique polyvalent com-
ment les différentes formes de parcimonie (à 
l'analyse ou à la synthèse, simple, structurée ou 
sociale) sont particulièrement adaptées à la 
reconstruction de signaux sonores dans un 
cadre mono ou multicanal. Le cœur des travaux 
de thèse permet de mettre en évidence les 
limites des conditions d'évaluation de l'état de 
l'art  pour  le  problème  de  dé-saturation  et  de  

mettre en place un protocole rigoureux d'éva-
luation à grande échelle pour identifier les mé-
thodes les plus appropriées en fonction du con-
texte (musique ou parole, signaux fortement ou 
faiblement dégradés). On démontre des amé-
liorations de qualité substantielles par rapport à 
l'état de l'art dans certains régimes avec des 
configurations qui n'avaient pas été précé-
demment considérées, nous obtenons égale-
ment des accélérations conséquentes. Enfin, 
un volet des travaux aborde la localisation de 
sources sonores sous l'angle de l'apprentis-
sage statistique « virtuellement supervisé ». On 
montre avec cette méthode des résultats en-
courageants sur l'estimation de directions d'ar-
rivée et de distance. 

 

 

Title: Design and evaluation of sparse models and algorithms for audio inverse problems 

Keywords: inverse problems, sparsity, signal processing, multichannel, audio restoration 

Abstract: Today's challenges in the context of 
audio and acoustic signal processing inverse 
problems are multiform. Addressing these prob-
lems often requires additional appropriate signal 
models due to their inherent ill-posedness. This 
work focuses on designing and evaluating audio 
reconstruction algorithms. Thus, it shows how 
various sparse models (analysis, synthesis, 
plain, structured or “social”) are particularly 
suited for single or multichannel audio signal 
reconstruction. The core of this work notably 
identifies the limits of state-of-the-art methods 
evaluation for audio declipping and proposes a 
rigourous  large-scale  evaluation protocol to de- 

termine the more appropriate methods depend-
ing on the context (music or speech, moderate-
ly or highly degraded signals). Experimental 
results demonstrate substantial quality im-
provements for some newly considered testing 
configurations. We also show computational 
efficiency of the different methods and consid-
erable speed improvements. Additionally, a 
part of this work is dedicated to the sound 
source localization problem. We address it with 
a “virtually supervised” machine learning tech-
nique. Experiments show with this method 
promising results on distance and direction of 
arrival estimation. 
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