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his motivation and immense knowledge. His ideas were always the helpful in solving
many problems that I encountered during my research and helped my writing to be
well organized. I give special thanks to David Helbert for always keeping me mo-
tivated and inspiring me during the most difficult times of my research. He always
believed in me and looked at the bright side of things. Whenever the going was tough
and I got stuck, I sought him for help, and his optimism relieved my stress. He was
always patient to give me suggestions as well as to fix all of my mistakes. I would
also like to give appreciation to Pascal Bourdon for his advice and counseling. He
was always able to point out different aspects of each problem as well. That helped
me have new ideas to solve the problem.

Special thanks to the reviewers Prof. Jean-Christophe BURIE and Jean-Pierre
DA COSTA for reviewing my thesis and providing interesting feedbacks and insight-
ful comments. The feedback helped me better prepare for the defense and improve
the manuscript as well. I am also grateful to all of the jury members for giving
me different questions and ideas which made me look at my research from different
perspectives. I am thankful to those who attended my thesis defense and those who
contributed to the celebration. You all made my day a memorable one.

Special thanks to my colleagues at the lab for the stimulating discussions and
contributing in one way or another to my PhD research. I am thankful to the

i



ii

Photonique team of the XLIM laboratory for providing the biomedical images and
supporting me in understanding the operating principle of the device.

Finally, I must especially express my gratitude to my parents for their consistent
supports and always being there for me at all times. Thanks to all my family mem-
bers, friends and loved ones for their moral support.

Hong Nhung PHAM
Chasseneuil du Poitou

February 2019



Abstract

Multiphoton microscopy has become a powerful tool in biomedical research to vi-
sualize the information of cell and tissue biology. The reasons why it has gained
popularity are the ability to obtain high resolution optical sectioning, high contrast,
and minimal phototoxicity within thick samples. This technology can be applied to
applications on living organisms using optical fibers, thus, limits surgical biopsies.
The working principle of the fiber scanner in the microendoscope device imposes an
outgoing spiral scanning from the center to the periphery of the region to be captured,
giving raw data on irregular grids. The term ”irregular grid” refers to the spatial
coordinate system of the images. Classically, images are processed on integer pixel
coordinates, so called ”regular grid”. In contrast, the images obtained by a spiral
scanning have floating coordinates and different point distributions between the cen-
ter region and the border. Ultimately, the microendoscope using optical fiber should
allow in vivo applications for assessment of dangers (such as cancers). However,
such kind of images produced by microendoscope introduces several limitations and
challenges: narrow field of view, noise, distortions due to movement of the organisms
and the device itself, irregularly sampled data by the spiral acquisition.

This research moves beyond the weaknesses and challenges of the imaging device
by introducing novel approaches to image registration and mosaics. In particular,
this thesis is formulated under the goal to enhance the field of view of the specialists.
This targeted application is considered as a procedure that consists of several steps.
It includes providing an appropriate image registration technique that accounts noise,
distortions and the irregular sampling before constructing the mosaics.

Firstly, a novel Spectral Graph Wavelet based nonrigid registration approach is
proposed to register images on regular grid. The optimization is under the well known
Log-Demons framework. The success of this method is proven by its improvements
compared to the existing methods that use the similar framework on noisy and non-
noisy images on regular grid. This is a stepping stone towards building a registration
method of images on irregular grids.

Secondly, motivated by the previous step, an innovative image registration method
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of images on irregular grids is introduced. Here, the floating coordinates of the points
and the difference in point distributions at different regions of the images can be eas-
ily taken into account thanks to the Spectral Graph Wavelet decomposition and the
Log-Demons framework. Both of these existing researches are fast and simple to
implement on different types of data.

Lastly, we construct the mosaics from the image sequence on irregular grids. The
registration of images on irregular grids is used to compensate for the motion distor-
tions as well as the local deformation within the images.

Keywords: Confocal microscopy, microendoscope, image registration, image
stitching, image mosaics, nonrigid image registration, Spectral Graph Wavelets,
Demons, Log-Demons.



Résumé

La microscopie multiphotonique est devenue un outil puissant dans la recherche
biomédicale pour visualiser les informations de la biologie cellulaire et tissulaire.
Les raisons pour lesquelles il a gagné en popularité sont la capacité à obtenir un
sectionnement optique à haute résolution, un contraste élevé et une phototoxicité
minimale dans des échantillons épais. Cette technologie peut être appliquée à des
applications sur des organismes vivants utilisant des fibres optiques. Le principe
de fonctionnement du scanner à fibres optiques dans le microendoscope impose un
balayage en spirale sortant du centre vers la périphérie de la région à capturer, four-
nissant des données brutes sur des réseaux irréguliers. Le terme ”grille irréguliére”
fait référence au système de coordonnées spatiales des images. Classiquement, les
images sont traitées en coordonnées entières de pixels, appelées ”grille régulière”. En
revanche, les images obtenues par balayage en spirale ont des coordonnées flottantes
et des distributions de points différentes entre la région centrale et la bordure. En
fin de compte, le microendoscope utilisant la fibre optique devrait permettre des
applications in vivo pour évaluer les dangers (tels que les cancers). Cependant, ce
type d’images produites par le microendoscope présente plusieurs limitations et défis:
champ de vision étroit, bruit, distorsions dues au mouvement des organismes et du
dispositif lui-même, données échantillonnées de manière irrégulière par acquisition
en spirale.

Cette recherche va au-delà des faiblesses et des défis du dispositif d’imagerie en
introduisant de nouvelles approches d’enregistrement des images et de mosäıques.
En particulier, cette thèse est formulée dans le but d’améliorer le champ de vi-
sion des spécialistes. Cette application ciblée est considérée comme une procédure
comportant plusieurs étapes. Cela inclut la fourniture d’une technique appropriée
d’enregistrement d’image prenant en compte le bruit, les distorsions et l’échantillonnage
irrégulier avant la construction des mosäıques.

Premièrement, une nouvelle approche d’enregistrement non rigide basée sur Spec-
tral Graph Wavelet est proposée pour enregistrer des images sur une grille régulière.
L’optimisation se fait dans le cadre bien connu de Log-Demons. Le succès de cette
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méthode est prouvé par ses améliorations par rapport aux méthodes existantes qui
utilisent le même cadre pour les images bruitées et non bruitées sur une grille
régulière. Il s’agit d’un tremplin vers la construction d’une méthode d’enregistrement
des images sur des grilles irrégulières.

Deuxièmement, motivé par l’étape précédente, une méthode innovante d’enregistrement
d’images sur des grilles irrégulières est introduite. Ici, les coordonnées flottantes des
points et la différence de distribution des points au niveau des différentes régions des
images peuvent être facilement prises en compte grâce à la décomposition Spectral
Graph Wavelet et au cadre Log-Demons. Ces deux recherches existantes sont rapides
et simples à mettre en œuvre sur différents types de données.

Enfin, nous construisons les mosäıques à partir de la séquence d’images sur des
grilles irrégulières. L’enregistrement des images sur des grilles irrégulières est utilisé
pour compenser les déformations de mouvement ainsi que la déformation locale au
sein des images.

Mots-clés: Microscopie confocale, microendoscope, enregistrement d’image, cou-
ture d’image, mosäıques d’images, enregistrement d’image non rigide, Spectral Graph
Wavelets, Demons, Log-Demons.
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Chapter 1

Introduction

Contents
1.1 Scientific objectives . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . 4

The context of this thesis is under the development of the multiphoton microen-
doscope which is developed by the Photonics department at XLIM laboratory. The
images taken by the novel acquisition system have a narrow field of view. The main
aim of this thesis is to construct a mosaic from the image sequence to have a full
view panorama.

The development of medical imaging has revolutionized the way physicians, biol-
ogists, scientists and patients observe organisms to assess health and diseases. The
medical equipments allow users to view inside living objects with or without cutting
them open. While some machines such as X-ray machines, MRI machines, CT and
PET scanners provide macroscopic views of body parts and organs, the microscope
technology is designed to magnify the image of cells and objects that are too small
to view with naked eyes. Thus, the microscope technology is one of the most in-
novative inventions and has always been an essential tool for assessment of cell and
tissue biology. However, a traditional microscope requires a surgical biopsy, meaning
samples of tissues must be taken out from the patient to be examined. This process,
however, is costly, takes a long time and is sometimes impossible to take samples
from all the suspect parts.

The multiphoton microscope used in conjunction with optical fibers can obtain
histological examination of living tissues in real time. Such a multiphoton microscope
can be referred to as multiphoton microendoscope. This technology overcomes the
limitations of classical microscopes in the way it removes or limits surgical biopsies.

1



2 Chapter 1. Introduction

In additions, it carries out the advantages of the multiphoton microscope technol-
ogy that could produce high resolution optical sectioning, high contrast and least
phototoxicity within a thick sample. The optical fiber of the microendoscope scans
over time on living objects. Each scan has a spiral path starting from the center to
the periphery of the region to be captured, covering a disc-shape. Consequently, the
important information, usually located at the center of the region, is emphasized.
Despite all the advantages of the multiphoton microendoscopic, processing of the
images acquired by this machine suffers from several aspects. The spiral sampling
takes place temporally along the spiral path. This process produces a list of points
on an irregular grid. The measurements are more at the center than at the borders
of the image. The absences of some pixels and information redundancies disrupt the
reconstruction of the image. Such images reveal features which introduce additional
complexities to process. In addition, the movements of the probe and of the living
tissue often cause motion distortions and local displacements.

Furthermore, although the multiphoton microendoscope can provide high reso-
lution images, it can not capture a full region of a large area at once. The clinician
needs to move the probe around the region to capture several images. It is difficult
for physicians to look at several images with a narrow field of view and give an accu-
rate assessment. Thus, it is important to construct an accurate panorama from the
image sequence in order to enhance the field of view. This will in turn help physician
have a good interpretation of the images, especially when it may relate to human
lives.

This thesis is set out towards the goal of providing an accurate wide field of view
in optical biopsy to the clinicians. There are several important building blocks in the
pipeline to construct a mosaic. Also, it is indisputable that an appropriate nonrigid
registration is necessary to compensate for the soft deformations and distortions of
the images in the sequence. This is not only true for microendoscopic images but
also for other kinds of medical images.

1.1 Scientific objectives

As mentioned earlier, the aim of this thesis is to construct a mosaic from the microen-
doscopic image sequence. This also consists of finding a supportive non-rigid image
registration technique that accounts for noise, local deformations and is adapted
with the data on irregular grids. Before providing an appropriate approach, these
questions should be answered:

� The first question is how to find a framework that is adaptable with irregu-
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larly sampled data, while to the best of our knowledge, most of the existing
applications process the images on a regular grid?

� The second question is how to account for the noise and distortions that are
unavoidable during the capture?

For such kind of irregularly sampled data, it is important to find an appropriate data
representation that helps the mathematical study of the data. In recent years, the
signal processing on graphs has been exposed to different types of data, and has been
broadened to the computer vision field. The advantage of graph representation is that
it is simple and flexible to represent data regardless of the data structure. Recently,
the graph spectrum was successfully used in spectral matching and image registration
that motivates our research on graph signal processing. This partially answers to the
first question that the data are represented by graphs and our registration problem
is cast into the graph matching problem.

However, the graph representation is normally computationally expensive and
time consuming. This pops up an additional question, which is to find a suitable
registration framework that can be adapted to the expensive computation of graphs.
A survey of the literature reveals a numerous number of innovative image registration
techniques. The Demons approach is one of the most powerful nonrigid registration
frameworks. It was found to be computationally efficient and easy to implement.
These desirable features of the Demons approach have motivated an extensive num-
ber of research to extend from the classical one. The research of Lombaert et al [70],
that uses graph spectrum under the Log-Demons framework to successfully regis-
ter images with large and complex deformations, has gained much attention in the
literature. But it was proven to be sensitive to noise [70].

The first contribution of this thesis is inspired by the success of the Spectral Log-
Demons method. The role of graph spectrum was replaced by the Spectral Graph
Wavelets while keeping the use of the Log-Demons framework. The Spectral Graph
Wavelets decomposition was recently provided by Hammond et al [48]. It is defined
through the graph spectral domains, thus, carries out the advantages of the graph
spectrum and represents the data at different scales. Our contribution outperforms
the existing methods under the Log-Demons framework when noise exists. This
answers to our second question of finding a technique that is adaptable to noise.

The second contribution of this thesis is motivated by the previous contribution.
The Log-Demons framework is cast to match points of images on irregular grids.
While the same framework fails to register the microendoscopic images on regular
grid, the method on irregular grids successfully registers the raw data without any
projection on a regular grid. Consequently, the mosaic construction with a motion
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compensation by the image registration on irregular grids can remove a part of the
shearing and misalignments appealing on the mosaic.

In conclusion, this thesis proposes a Spectral Graph Wavelet based image reg-
istration method that can be adapted to noisy images. While existing registration
methods either use the classical wavelets or the spectral constraint, our registration
method uses the Spectral Graph Wavelets decomposition. This method not only
provides an efficient tool to find correspondence between images but also gives new
perspectives in using the Graph Wavelets for registration. In addition, our registra-
tion method of images on irregular grids gives a new point of view of the way we treat
the input images in the continuous domain of the raw data instead of the discrete
domain. Ultimately, the mosaic construction from the raw data on irregular grids
captured by microendoscope with nonlinear deformation correction can provide an
accurate full view of the object to the experts to help their assessment of health.

1.2 Thesis Organization

The remainder of this manuscript is organized as follows:

� Chapter 2 introduces the image acquisition process as well as describes the
multiphoton microendoscope used to capture images. We here also describe
the scanning trajectory of the probe and later point out the properties of the
images taken by multiphoton microendoscope.

� Chapter 3 provides an exhaustive review of existing non-rigid image registration
methods. The analysis of the state-of-the-art of nonrigid image registration and
how it is classified is covered in this chapter.

� Chapter 4 gives an introduction to our methods on a regular grid. It begins
with a review of the spectral graph theory and later describes the registration
methods using graph spectrum under the Bspline framework and the Log-
Demons framework. We then introduce our contribution using Spectral Graph
Wavelets under the Log-Demons framework in the last section of this chapter.

� The registration on irregular grids is depicted in Chapter 5. We finally con-
struct the mosaic from the image sequence on irregular grids with the motion
compensation by the registration on irregular grids.

� Chapter 6 highlights the global conclusion on all the presented results and gives
future research directions.
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This chapter provides a description of the image acquisition process. Subsection
2.1 describes the multiphoton microendoscope used for capturing images. It pro-
vides the different scanning trajectory and highlights the advantages of the scanning
trajectory considered in this work. The working principle of the fiber-scanner is pre-
sented briefly. Next, a description of how the camera produces different scanning
path is given. Finally, the subsection 2.1.2 introduces how a spiral scanning tra-
jectory is obtained. The subsection 2.2 illustrates comprehensive properties of the
biomedical images used in this research work. For a more extensive understanding of
the acquisition system, we refer the interested readers to the research of Ducourthial
et al [31, 30]. The following sections are constructed and partially translated from
[31, 30].

2.1 Two photon microendoscope

Multiphoton microscopy has gained popularity in different fields of biological research
such as embryology and neurobiology. This is because it has the ability to provide

5
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high-resolution optical sectioning within thick tissue samples, high constrast, with
low level of phototoxicity. It has been reported that multiphoton microscopy enables
3D imaging with significantly high penetration depth. As an example, a penetration
depth ranging from 500 and 600 microns at 800nm is reported for given samples
[51]. In addition, they have been shown to provide reduced image photobleaching.
Photobleaching is the phenomenon of signal loss happening when the fluorophore
loses the ability to fluoresce. The numerous advantages of multiphoton microscopy
contribute to its attractiveness for use in living organisms, using an optical fiber.

Figure 2.1 describes the structure of a two photon microendoscope (TPME). As
shown in Figure 2.1, the TPME system is fed by a standard MIRA 900 Ti:Sapphire
oscillator (150fs, 76MHz, 810nm, 10nm, 2W). In order to control polarization, three
different half-wave plates are used where it is necessary in the setup. A micro-optics
(MO) is used to focus the beam at the endoscopic fiber output.

2.1.1 Double-clad air-silica microstructured endoscopic fiber

The Double-clad air-silica microstructured endoscopic fiber (DC-PCF) is designed
using smaller core size in order to improve special resolution and TPME excitation
efficiency [31]. Figure 2.2 shows the cross-section of a custom air-silica DC-PCF. It
is made of a small single-mode inner core in order to ensure high spatial resolution
while preserving the desired temporal confinement of excitation pulses. The inner
core is made of pure silica that delivers energetic infrared (IR) ultrashort pulses.
The ultrashort pulses are essential for efficient multiphoton excitation, at the output
of a several meters long optical fiber, which is required in a clinical environment.
It has a diameter of around 3.5µm, a numerical aperture (NA) of 0.13 at 800nm
and free from autofluorescence since it is made of pure silica. Light is guided in the
core using a surrounding air-silica microstructured cladding. The cladding is in turn
surrounded by a second cladding acting just like a second large area collecting core.
The second cladding allows for collecting the visible light that is useful during deep
tissues in vivo imaging. Light guidance is multimode and allowed by an air-clad i.e.
outer ring of air holes. The multimode second core has a diameter of 188µm. This
outer air hole ring has a high air-filling fraction providing a NA of 0.3 at 400nm. It
is used to guide all the light collected by the imaging micro-lens located after the
endoscopic fiber.
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Figure 2.1 – TPME system with linear and nonlinear pulse shaping [31] (a) Scheme
of the experimental setup; CM: cut mirror; DM: dichroic mirror; PZT: piezoelectric
tube. The miniature fiber-scanning imaging probe is embedded inside a 2.2mm outer
diameter (OD) stainless steel biocompatible tube. (b) Second order auto correlation
(AC) of the IR excitation pulse at the exit of the 5m long endoscopic fiber for
a delivered power of 20mW . The corresponding pulse duration is 39fs (FWHM),
assuming a deconvolution factor of 1.54.
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Figure 2.2 – Custom-design air-silica DC-PCF used as the endoscopic fiber within
the TPME [31] (a) Close view of the inner core of the fiber through scanning electron
microscopy (SEM). Pure silica is in grey and air in black. (b) SEM image of the fiber
cross-section without its outer polymer mechanical cladding. The silica jacket and
the second core diameters are respectively equal to 266µm and 188µm. The red
square denotes the inner core and its microstructured cladding which are depicted
in (a). (c) DC-PCF flexibility.

Figure 2.3 – Different scanning trajectories
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2.1.2 Scanning trajectory

There exist several possibilities of scanning trajectory by the laser spot. Figure 2.3
(left) shows a classical scanning method, where the scanning path involves rows
and columns. This allows for a homogeneous sampling of the field, but requires
a massive difference between the frequencies of the two axes of movement, with a
significantly high frequency ratio (about frequency values of hundreds). Another
sampling method, shown in Figure 2.3 (middle), follows a spiral path. This scanning
method produces a dense sampling of the center field. This scanning is useful in
cases where in-depth observation of thick sample in the center field of view and
end at the edges such as an embryo are required. Another possibility, shown in
Figure 2.3 (right), is to use a Lissajous scan by sending two sinusoidal signals of
different frequencies on the two mirrors. A major disadvantage of this approach is
that it leads to under-sampling at the center of the field and over-sample at the
image periphery.

Spiral scanning method is chosen because it is the most adequate and suitable
solution for cases where the most important information is usually located at the
center of the observed field. This helps to avoid under-sampling of vital information
in the observed field. Next, the working principle of the fiber-scanner is presented
briefly. A piezoelectric ceramic tube (PZT) revolves around the fiber, allowing for
imposing the trajectory of the last few millimetres of the fiber forming a resonating
cantilever. Thus, creating an outgoing spiral scanning pattern in two dimensions.
After optimization, it is possible to work with a large field of view without image
distortion at a rate of 8 frames per second (fps).

Y
y

X

xθ

Figure 2.4 – System axes. −→x , −→y : axes defined by the actual electrodes;
−→
X and

−→
Y :

defined axes by the virtual electrodes corresponding to the resonator’s own axes.

The optical fiber micro-scanner is excited on its own mechanical axes using virtual
electrodes (Vx, Vy). The virtual electrodes themselves correspond to a linear combi-
nation of two actual electrodes in the system. Figure 2.4 shows the virtual electrodes
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(X, Y ) which correspond to a linear combination of the two actual electrodes (x, y)
defined by the equations 2.1 and 2.2.

−→
X = cos(θ)−→x + sin(θ)−→y (2.1)
−→
Y = − sin(θ)−→x + cos(θ)−→y (2.2)

Here, (Vx, Vy) and (VX , VY ) represents voltages applied on the real and virtual elec-
trodes respectively. In Figure 2.4, the value of angle θ is determined by applying a

sinusoidal voltage solely on the axis
−→
X such as:

VX(t) = cos(ωt) (2.3)

VY (t) = 0 (2.4)

This is achieved when real voltages are applied:

On x : Vx(t) = cos(ωt) cos(θ) (2.5)

On y : Vy(t) = cos(ωt) sin(θ) (2.6)

The value of θ is varied while the shape of the trajectory obtained by the camera
is observed. If θ is zero, an elliptical trajectory is produced, serving as the starting
point from which a rectilinear trajectory can be produced. Figure 2.5 shows the path
of the fiber before and after optimization of the value of θ ( θ = 0.5585 rad = 32

degree). As displayed in Figure 2.5 (b), the angle between axis −→x and
−→
X is 31.75

degree and corresponds to the value of θ used to synthesize the control signals.

Figure 2.5 – Scanning performed by the optical fiber during excitation on a single
axis (a) in using a real axis. (b) using a virtual axis.

Spiral scanning trajectory is obtained by drawing a circular path from the object
center with increasing radius. The equations below give the definitions of the voltage
applied on the axis for circular scan:
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VX(t) = cos(ωt) (2.7)

VY (t) = sin(ωt+ φ0) (2.8)

Figure 2.6 (a) shows an ellipse oriented according to the axis. The weight of
each axis is adjusted using a simple coefficient of amplitude in order to obtain an
improved result. This is shown in Figure 2.6 (b).

Figure 2.6 – Circular scan (a) before, (b) after adjusting the weights of the two axes.

In brief, the working principle of the fiber-scanner is that a piezoelectric ceramic
tube goes around the fiber. By this, the trajectory of the last few millimetres of the
fiber forming a resonation cantilever is imposed. Thus creating an outgoing spiral
scanning pattern in two dimensions. Once the circular trajectory is obtained in a
controlled manner, it is necessary to do amplitude modulation. This is carried out in
order to obtain a spiral path starting from the center to the periphery, covering a disc-
shaped image field (Figure 2.7). The example is a scan of ten rounds. Considering
the horizontal axis, we can see twenty samples along the axis and a twofold number
of turns. In a real case, the trajectory scans 125 turns, taking 500 samples each turn,
giving 500 x 125 = 62500 pixels in total. The next section describes the characteristics
of the biological images taken by microendoscope.
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(a) Spiral scanning (b) Microendoscopic image
projected on a regular grid

Figure 2.7 – Spiral image acquisition

2.2 The microendoscopic images

Until now the acquisition system of the microendoscope has been described. It plays
an important role in forming the distinct features of the microendoscopic images.
In this section, the microendoscopic images and their characteristics in the image
processing field are depicted. Figure 2.8 shows the outcomes of the TPME tested ex
vivo on various unstained biological tissue samples.

Figure 2.8(a) and Figure 2.8(b) show the SHG images of the collagen fiber net-
work of a thick unstained intact and flesh rat tail tendon. In order to prove that
TPME provides high sensitivity, the images were obtained without averaging at 8fps
and with 5mW of power on the samples. The red arrows indicate the rectilinear
polarization impinging the sample. The SHG signal is stronger when the excitation
polarization is parallel to the collagen fibers, proving the ability of the TPME to
perform nonlinear polarization anisotropy probing. Figure 2.8(c) shows a bimodal
image of a label-free section of a mouse ear. The most paramount parts of the ear
have been identified on the figure D: dermis; E: epidermis; IC: internal cartilage.
Figure 2.8(d) shows a sample of a healthy human lung taken in the alveolar area
(i.e. alveolar wall and alveolar entrances). This sample was recorded at a depth
of 100µm below the sample surface. The extracellular matrix elastic fibers appear
in red through intrinsic 2PEF while some amount of SHG in green from collagen
is detected entangled in the main elastin fiber. The pulmonary alveolar duct and
alveolar entrances can be seen in the left part of the figure. Figure 2.8(e) shows a
perspective view of a collagen-rich tissue of a mouse aorta, while (f) to (h) shows
three perspective views of the extracellular matrix network at 3 different locations
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Figure 2.8 – Label-free microendoscopy images of fixed tissue samples ex vivo [31].
Intrinsic 2PEF in red (elastin) and SHG in green (collagen). (a) to (d): raw optical
sections. (e) to (h): perspective view from Image 3D software from a set of sixty
optical sections each one corresponding to a given depth below the tissue surface,
from depth 0µm to 300µm.

within a healthy human distal lung sample. In vivo experiment, Authors [31] ob-
served the kidney of a living anaesthetized mouse using the TPME. Figure 2.9 shows
the label-free captured images in the in vivo experiment.

As mentioned earlier, spiral sampling is preferred here because it is the most
suitable solution for cases where the most important information is usually located at
the center of the observed field. However, such images (produced by spiral scanning)
exhibit features which introduce additional complexities in processing. In order to
study the features of such images and their related problems, let us consider the
images in Figure 2.10. The images are the ones used in this work and they were
taken by the microendoscope in grayscale.

The spiral sampling may introduce a number of problems such as:

� Inaccuracy in comparing two image parts : since the point density is more at
the center and lower at the edge regions, the center of an image corresponds
to the edge region of another image. Hence, comparing the two parts may not
be accurate.

� Complexity in spiral image acquisition: this is mainly due to data complexity
and variety (or additional steps) for acquiring the images.
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Figure 2.9 – Label-free in vivo experiment [31] (a) Anaesthetized mouse with one
kidney being elevated from the body and clamped between two tongue depressors,
beneath the 2.2 mm TPME probe (red arrow). A constant power of 30mw was
launched onto the tissues. (b) SHG (in green) and 2PEF (in red) raw image of
respectively the collagen of the capsule and the intracellular flavins of epithelial cells
of the kidney tubules. (c) same as in (b) but with a larger FOV of 450µm (d)
successive optical sections of a fibrosis kidney, 6 days after fibrosis induction, taken
just after mouse death; the imaging depth below the organ surface is indicated in
the bottom in white; in (d), FOVs are 250µm wide.

� Difficulty in finding appropriate shape feature approach: this is due to deforma-
tion such as stretching, compression due to heart rate, breathing or distortions
that occurs while recording.

� Difficulty in image texture feature analysis : this is due to uneven illumination
caused by moving or spinning motion of tiny tissues.
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Figure 2.10 – Biological images taken by microendoscope

2.3 Conclusion

In this chapter, the principle of the multiphoton microendoscope with the new tech-
nology, as well as the spiral scanning trajectory of the fiber optic were briefly re-
viewed. Such scanning is preferable when important information is placed at the
center of the region to be captured. The images obtained after vivo test on living
object have disc-shape. The measurement are more at the center while there are
missing points at the regions close to the edges. Therefore, processing on microen-
doscopic images may introduce several challenges. Firstly, the difference in point
distributions of the center and the outer regions of the images makes it difficult
to find an appropriate similarity measurement between two images. Secondly, the
complexity of the spiral image acquisition makes the processing on this kind of data
more complicated. Thirdly, the images taken on soft tissues do not likely have shape
features. This is because of the deformations due to the stretching of the tissues,
movement and distortions due to heart rate and the effect of the device, making it
difficult to find an appropriate shape matching technique. Lastly, the uneven illumi-
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nation changes and the complex texture of the images are also challenging problems
to overcome.

Although the images taken by microendoscope have great resolution, and impor-
tant information is captured, the images are still limited to the narrow field of view
due to the size of the probe. The images suffer from distortions and noise due to the
movement of the sensor, breathing and heart rate of the object. The small field of
view makes it difficult for the image readers (such as doctors) to give an accurate
assessment of the patients’ diseases. A good way to enhance the image field of view
is to do image mosaics. To do that, it is important to find a supportive image regis-
tration method that can adapt to the properties of the images. Ideally, the method
should be able to register the images with a spiral acquisition.

This work proposes to develop image registration and stitching method on regular
and irregular grid. In particular, the next chapter provides an overview of different
image registration methods. After that, our contribution in image registration for
biomedical images on regular grids is described. Motivated by this contribution, an
image registration approach on irregular grids to adapt with the spiral acquisition
is then proposed. The registration on irregular grids is then used to compensate
the local distortion in our last contribution in image mosaics from the images on
irregular grids.
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Nowadays, medical image processing is indispensable in many critical medical

equipments such as microscope and endoscope, PET and CT scanners, ultrasound

and MRI machines, and X-ray machines. Medical imaging is required to be highly

accurate as it is one of the keys related to human life. The applications can help

doctors evaluate patients’ health, assist surgeries and assess dangers appearing on

the sample. The development of these equipments requires the improvements of the

image processing part as well. Image registration is a key block in any medical image

processing application and is consequently required to meet higher demands. This

chapter provides a review of different image registration methods in the literature.

Hence, showing the development of image registration in the past decades.

17
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3.1 Image Registration

Image registration is a fundamental block that spatially determines the correspon-

dence between points or regions of two images of the same scene but obtained from

different viewpoints and at different times or with different sensors (Figure 3.1). It

is considered as a valuable assistant in many applications in computer vision such as

atlas construction, image recognition and mosaicing, especially in medical imaging.

Comprehensive review can be found in previous surveys [139, 133, 132, 108, 85].

In general, image registration is recognized as rigid/affine and non-rigid depending

Image 1 Image 2
Transformation

Figure 3.1 – Image registration

on the nature of the transformation of objects in the images. The rigid/affine im-

age registration accounts for the rotational and translational transformation globally

on the entire image and the more sophisticated method is called affine registration.

In contrast, the non-rigid image registration locally measures small displacements

and finds non-uniform mappings between the images. In medical imaging, most of

the transformations are complex (e.g. deformations of body cells due to the sensor

movement and heart rate, anatomical variations in brain structures of different indi-

viduals) and recognized as non-rigid so that the rigid/affine registration is no longer

adequate. Non-rigid image registration satisfies the problem of different local geo-

metric changes. It overcomes the limitations of the rigid image registration strategy.
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This research focuses on the non-rigid image registration approach that account for

the local movements of image elements.

3.1.1 Non-rigid Image Registration

Nonrigid image registration that finds the optimal deformable mapping between two

images plays an important role in medical imaging. To explain the definition of this

task more technically, the first image is referred to as the fixed image F and the other

is called the moving image M . The application finds the optimal correspondence map

φ from F to M that maximizes the similarity between F and M ◦φ. In the literature,

the objective function is usually defined as a combination of two components, one is

the image similarity ESim between the fixed image and the moving image influenced

by the transformation map φ, while the other term is a regularization term EReg that

smooths the transformation. The transformation is then achieved by:

φopt = argminφ(ESim(F,M ◦ φ) + EReg(φ)), (3.1)

where the composition operator M ◦ φ expresses the transformation of M according

to the transformation map φ.

According to Sotiras et al [109], nonrigid image registration can be divided

into three stages: transformation model, similarity measurement, and optimization

method. Registration methodologies can be classified with respect to the divergence

of each stage according to [109]. For instance, based on the transformation model

criterion, registration methodologies can be roughly categorized into different cate-

gories such as elastic model, optical flow, spline model and diffusion model. Similarly,

according to the similarity measurement criterion, the registration can be classified

as geometric based method, intensity based method and hybrid method. The classi-

fication based on the optimization stage divides the existing methods into different

groups as Gradient descents, Gaussian Newton, Markov random fields and random

walk. This can be seen graphically in Figure 3.2
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Figure 3.2 – Image registration classification (Sotiras et al [109])

3.1.1.1 Transformation Model

The first research on optical flow motion estimation was proposed by Lucas and

Kanade in 1981 [77]. This research has since motivated a tremendous quantity of

research in image registration and alignment with different models. The simple

definition of motion is that one point is assumed to keep the same intensity value

over time, such that:

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t) (3.2)
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Lucas-Kanade algorithm supposes that the flow is constant in a local neighbor-

hood and proposed a technique that uses image intensity gradient to iteratively

compute the optical flow of a patch. On the other hand, Horn and Schunk [56] min-

imize the mean error with an additional smoothness constraint that rather relies on

the velocity of image pixel than on computing the differences in intensity. Another

method that can work in case of fast movement was introduced by Bouguet in 2000

[13] that computes optical flows at different scale levels and passes the result from a

higher level to a lower level.

A numerous number of other methods have been proposed over the past decades

to handle the non-rigid image registration problem with different models and more

sophisticated schemes. The choice of the transformation model is an important key

that decides the robustness of the optimization.

The first model we can mention is the elastic deformation model. The idea

of elastic based registration methodologies is that the moving image is deformed

until it matches the fixed image. There exist an extensive number of researches

based on this model [9, 103, 42]. Terzopoulos et al [112] introduced an approach

for shape and non-rigid body motion reconstruction using external forces as energy

constraints. Baicscy et al [9] and Shen et al [104] extended the previous works

on elastic model to hierarchical schemes. More recently, in 2007, Ashburner [3]

proposed a fast diffeomorphic registration based on elastic energy, in which the flow

field is considered as a member of Lie algebra [72] through the exponential map.

Deformations with larger magnitudes can be captured by viscous fluid models [27,

28, 20].

Since Thirion’s research [114], the diffusion model has become popular and mo-

tivated other researches on the problem of deformable image registration, especially

medical images. The registration consists of two main steps, namely the demons

force search which is similar to optical flow and the regularization by a Gaussian

kernel. Depending on how the demon forces are determined and how regularization

is operated, different alternative versions of the Demons approach can be acquired.

Pennec et al [89] provided an insight of the Demons algorithm that the energy

minimization can be considered as a second order gradient descent scheme. Cachier
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et al [14] introduced a hidden auxiliary correspondence variable to put the similarity

optimization and regularization in a well-posed optimization problem. The opti-

mization on Demons framework with stationary velocity field was combined with the

exponential map on the Lie group [72] to introduce a diffeomorphic registration [121],

and symmetric log-domains registration [122]. Lorenzi et al [73] developed a regis-

tration method based on the similar stationary velocity fields. It is built upon the

Log-Demons framework to parameterize the transformation. The method is adapted

with the similarity metric that implements a symmetric local correlation coefficient.

More recently, Hadj et al [47], motivated by [73], incorporated the similarity metric

with a confidence mask to improve the robustness of the algorithm. Fischer et al [36]

proposed a fast diffusion based registration that exploits the underlying PDE for the

regularization. Wang et al [125] recommended adaptive force strength adjustment

iteratively in the iteration process . That improves the performance of the algorithm.

The Demons framework was extended to spherical image registration in the work of

Yeo et al [135]. Locally adaptive regularization was proposed in [15, 86]. Mansi et al

[81] introduced a mathematical justification of the demons Gaussian regularization,

in which the Gaussian smoothing is replaced by an elastic-like regularization.

The common point of those methods is that, the motion estimation is inspired

by a physical model and the transformation must be consistent with some physical

properties. On the other hand, a vast number of methods are derived by some

interpolation schemes where deformations are known for some given sample points of

the image. In this case, the rest of the image is interpolated through an interpolation

function.

One of the important models is the Thin-Plate Spline (TPS), which was early

used in registration problems by Bookstein et al [12]. Rohr et al [94] take into

account the localization error of each landmark for deformation field approximation

based on TPS. Rohr et al ’s research [93] is an extension of [94]. They showed that

the estimation can tackle isotropic and anisotropic errors of the landmarks. Li et al

[67] proposed a Compact Support TPS method and the support is restricted locally.

Recently, the TPS can also be coupled with rigid/affine models to estimate dense

matching for 3D ultrasound images [78], or is used to define the transformation while
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training the images with convolutional neural networks in 3D image registration [33].

The Spline based motion model [111] takes over the majority in the class of

registrations based on an interpolation strategy. The displacement field is modulated

by a set of coefficients or a basis function and a set of control points. In other word,

the displacement vector at each pixel is a linear combination of the displacements

estimated at the control points.

The Free Form Deformation (FFD) is one of the most popular and successful

models among the existing Spline based models in medical imaging. It was early

proposed by [101]. The Bspline is the most successful among the spline based meth-

ods because it is smooth, fast and can handle hierarchical schemes [21, 64]. For

example, Rueckert et al [96] first applied Bspline into 3D MRI image registration

with a steepest gradient descent optimization, and later in [95]. The authors showed

how the deformation field can be constrained with different penalty functions, and

tested on different biomedical images. Motion estimation is sometimes performed

only on some region of interest while most of the Bspline based methods use a reg-

ular grid of control points, [126] extended the problem to a method that uses an

irregular grid of control points. The advantage of this model is that diffeomorphism

and smoothness might be guaranteed.

From a theoretical point of view, the spline based approach, especially the FFD

model allows to find smooth transformations. However, these methods suffer from

performance and complexity drawbacks because of the gradient search optimization.

In comparison, the Demons model originally does not guarantee smoothness, but it is

fast in performance and is a strong theoretical framework that can be efficiently de-

coupled with a diffeomorphic transformation. Our research includes the examination

of these two models to find the most appropriate framework to our resources.

3.1.1.2 Similarity Measurement

Concerning the similarity measurement, it can be referred as voxel intensity similarity

or image structure similarity. Therefore, with respect to the similarity measurement,

image registration can be classified as intensity based, geometric based and hybrid
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method that combines the two types of measurement.

Intensity based algorithms measure image similarity directly on the image grey

values. They can be referred to as template matching technique. The most popular

similarity measurements that can be used are cross-correlation, intensity difference

and mutual information. Intensity cross-correlation based methods estimate how

two images are linearly related. The larger the value of correlation, the better the

two images match with each other. Fonseca et al [39] measure the spatial resolution,

rotation and translation for remote sensing images. Andrew Simper [107] proposed

a more sophisticated system to correct more complex mis-registration rather than

just translation such as perspective changes and transformations caused by lens im-

perfections. Rikard Berthilsson [11] were able to formulate the correlation between

two images when there is an affine transformation. Although most cross intensity

correlation based methods are suitable for images of same modality, Van et al [118,

32] showed that this method can also be applicable to match CT and MR images.

Later, [110] applied a multi-resolutional scheme using cross correlation to adapt with

MR-PET registration. Avants et al [6] maximize the cross correlation between im-

age pairs while the moving image is iteratively warped toward the fixed image. Until

now, the work still continues to gain attraction in the field of image processing [34,

5, 127].

In contrast to the Cross-Correlation based methods that maximize the image

similarity, the intensity difference supposes two images that have the same struc-

tures should have the least difference, thus the optimization minimizes the difference

between two images. It is usually based on the sum of square difference (SSD) [4, 41,

131, 115, 129, 7, 61, 29]. For example, [128] employs SSD as an objective function to

infer the perspective transformation. [29] minimizes SSD to align HDR images with

fast translation and rotation. This is the most important and widely used similarity

measurement in the field of non-rigid image registration.

While most of the mono-modal image registration researches use the intensity

similarity/difference, the mutual information (MI) methods are present in most of

registration methods for images of different modalities [139]. In this method, im-

ages are supposed to have the maximal statistical dependence when they are best
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aligned. For example, Collignon et al [25] measure the entropy of the joint probabil-

ity distribution of the intensities of matched points in the two images. [123] presents

an approach to MR and CT image registration. Maes et al and Collignon et al

[79, 24] compute the entropy of the joint histogram. In [113], mutual information

optimization is adapted to multi-resolution image pyramids.

In contrast to the intensity based method, the geometric based method is also

known as feature based method that takes into account the geometrical structures

or landmark information (e.g. edges, shapes, contours, graphs, surfaces,...) of the

images. The feature based technique is divided into two stages: feature extraction

and feature matching. Different key point detectors to extract features were pro-

posed in the literature such as Harris [49], SIFT [74] and the variants, SURF [10]

and the variants. Region, edge, corner, point or shape can also be seen considered

as features. For example, the region feature is usually applied to nature images that

focus on image with region of interest such as forests, lakes, fields, urban areas [40,

46, 50, 57, 102]. The edge feature based approach is efficient for images where edge

information is well preserved. For instance, Li et al [66] proposed a contour-based

approach to multisensor images. Li et al [68] proposed a matching method of aerial

road network. Vujovic et al [124] identified the potential control points via detec-

tion of elongated vertical structures of mammographic images and established the

correspondence between these points. Lastly, feature extracted by wavelets is also

widely used because of its ability to support multi-resolution scheme and image rep-

resentation in both time and frequency domains, as well as its ability to characterize

texture images. In this case, the image features are extracted via wavelet decom-

position. The registration step then becomes a feature matching problem [53, 38,

134, 88]. Once the features are determined, they are put into the feature matching

problem.

In the irregular sampling context, the points have floating coordinates and the

images have different point densities at different regions of the images. It is difficult

to perform a feature matching based on a keypoint detector (e.g. SURF, SIFT)

approach. In addition, the images contain much noise and complex texture, a shape

based approach such as wavelets that can characterize the shape and texture of the
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images is more appropriate in this context. Furthermore, as stated earlier, the study

of irregular data needs a good representation that can mathematically characterize

the data structure.

Recently, graph matching became popular to formulate a feature matching prob-

lem, in which structural constraints are formulated as an attribute of graph matching

problem. Graph is a flexible and powerful tool to characterize different kinds of data

regardless of whether the data is regular or irregular. A review on graph theory and

matching is proposed in the following chapter of this thesis.

The intensity based technique is usually operated by a least squares optimization.

Thus, it has the possibility to fall into local minima of non-convex optimization and

it is computationally expensive to optimize the full image parameters. Moreover,

intensity information alone does not guarantee the matching of objects with struc-

tural changes. In other words, this method lacks geometric invariance and is only

suitable for images with small displacements. The geometric based technique is more

robust to structural changes and scene movements with global transformation. It is,

however, limited in case of local deformation and the parts of the image that are not

in the feature selection are not considered during the registration process.

Motivated by the fact that intensity based and geometric based methods comple-

ment each other, many recent works have combined the two techniques together for

more robust matching. The act of combining both methods is known as the hybrid

method. Because of the ability to capitalize the advantages of intensity based and

geometric based methods, most of the existing applications use the hybrid method

for registering images. For instance, the hybrid method can be operated in a hi-

erarchical scheme [87, 136, 58] that registers images at multiple scales. In [87],

landmark based registration is operated at a coarse scale. Then, the result is prop-

agated as initialization for Bspline registration at finer scales. In each scale in [136]

the image is registered alternatively with landmark based and intensity based meth-

ods. The resulting transformation from intensity based registration is passed to the

next landmark based registration of the next scale. Authors [16] obtained non-rigid

transformation by incorporating structural registration and grey-level registration.

Instead of splitting landmark registration and intensity registration, some methods
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utilize structural information as a constraint to optimize an objective function [54,

76, 75, 8, 106, 71].

Recently, the intensity based approach coupled with spectral matching has found

great success in terms of medical image registration [71]. This method utilizes the

Graph Spectrum to register images under the Log-Demons framework. The success of

this approach motivates our research using graph based method and the Log-Demons

framework. Let us here provide a brief review of the classical Demons method and

its variants.

3.1.2 Demons Framework and the Variants

Biomedical image registration applications are constrained with several aspects. Two

of the great important constraints are symmetry and diffeomorphism. The former

imposes that the resulting deformation does not depend on the order of the in-

put images while the later constraints the transformation to be smooth under large

deformation. However, the elastic model in general is still limited to large deforma-

tion and is not invertible while the viscous fluid model is computationally inefficient

[108]. The Demons algorithm is famous for being computationally efficient. It has

inspired a lot of research in symmetric registration and diffeomorphism [119, 73, 6],

although the original one [114] is non-diffeomorphic. Let us here briefly review differ-

ent methods based on the Demons framework from the classical one to the symmetric

diffeomorphic version.

3.1.2.1 Classical Demons

The Demons approach proposed by Thirion [114] performs a non-rigid image-to-

image matching as a diffusion process. It is a fast and efficient scheme, simple to

implement that provides linear computational complexity [138]. Thus, it has inspired

a various number of researches. The demons force was inspired from the concept of

Maxwell’s demons in the field of thermodynamics and optical flow equation in image

processing field. Classically, the goal of optical-flow based image registration is to

find the dense motion field s from the fixed image F tothe moving image M that maps
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the intensity space IF of F to the intensity space IM of M . The transformation is

acquired by optimizing the objective function that is defined according to a similarity

and a regularity measure:

E(F,M, s) = αiESim(F,M, s) + αrEReg(s), (3.3)

where the weighting parameters αi, and αr respectively control the intensity sim-

ilarity and the level of smoothness of the transformation field, and αi + αr = 1.

Classically, the intensity term can be denoted by the sum of square error or mean

square error of intensities of the two images, such that the similarity term is defined by

ESim(F,M, s) = ||IF−IM◦s||2, and the regularity term is defined by EReg(s) = ||∇s||2.

The notation ||.|| defines the L2 norm and the notation ∇s means that a Gaussian

filter is applied to s. The optimization is therefore operated in two steps. The first

step is to find the demon forces at every point under the optical flow constraint. The

second step is regularization acquired by applying a Gaussian filter to the transfor-

mation field.

3.1.2.2 Alternative to Classical Demons

The energy function in Equation 3.4 indeed leads to a well-pose problem that the

smoothness is guaranteed by the regularization term. However, the mixing of the

similarity criterion and the regularization makes it difficult to theoretically justify

how the optimization operates and makes the optimization steps computationally in-

tensive, according to [120]. For a more tractable sub-problem optimization, a hidden

auxiliary variable c is used to decouple the similarity optimization and the regular-

ization[14]. The global energy function with respect to the current transformation

and hidden correspondence is defined by:

Correspondence

Regularization (3.4)
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The second term dist(s, c)2 = ||s− c||2 helps draw the hidden variable c close to the

actual transformation field s, and αx controls the correspondence uncertainty. The

optimization is an iterative scheme. In each iteration, correspondence is obtained

through a free form update field u with an optical flow method to minimize the first

composition called ”Correspondence” as in Equation 3.4. And then the regularization

is to minimize the second composition called ”Regularization”, that is acquired by

applying a fluid like Gaussian filter with kernel (Kfluid whose standard deviation is

σfluid) to the whole transformation field (s← Kfluid ? (c+ u)).

3.1.2.3 The Log Demons

One of the limitations of the Demons method is that it does not guarantee dif-

feomorphism. Diffeomorphism maintains the topology of the object and prevent

transformation from folding onto itself. The Log-Demons registration proposed by

Vercauteren et al [121] provides an invertible and diffeomorphic registration. It is

parameterized on the Lie algebra [72] through the exponential map of a stationary

velocity field v, with s = exp(v) resulting to a smoother and invertible registration

compared to the classical Demons method. The computation of the exponential

map of velocity field is estimated with the scaling and squaring method that was

well described in [121].

3.1.2.4 Symmetric Log-Demons

The Log-Demons framework is invertible but is not symmetric. The term ”sym-

metric” refers to the transformation that ignores the roles of the input images

(sF→M = s−1
M→F ) which leads to more consistent registration. The Log-Demons

framework is diffeomorphic and invertible, thus, the inverse of the transformation

can be obtained with backward computation s−1 = exp(−v). The symmetric reg-

istration is acquired by minimizing the cost function combining computations from

forward and inverse mappings ssym = argmins(E(F,M, s) + E(M,F, s−1)), that was

introduced in [122]. The optimization is achieved by using similar operation as in the

previous version except that the velocity field is computed in forward and backward
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mappings. Although the Demons approach of the original formulation is not diffeo-

morphic and symmetric, it is still a strong theoretical and fundamental foundation

that broadens more robust methods. The underlying optimization framework allows

to easily combine the classical intensity and spatial constraints with additional con-

straint (such as shape) for robust registrations. It is, in addition, an appropriate

framework to incorporate with irregular data since it was originated by the Demons

forces of irregularly distributed points.

A more elaborate description of the Demons, the Log-Demons and the Symmetric

Log-Demons schemes will be provided in the next chapter of this manuscript.

3.2 Summary and Discussion

In this chapter, a review of the different nonrigid image registration methods is

provided. These methods were roughly classified depending on the choices of the

transformation model, the similarity measurement and the optimization method.

The choice of the transformation model can either be among a physical model or

a model derived by an interpolation scheme. The transformation based on physical

model must be consistent with some physical properties such as elastic approach

and demons approach. The transformation based on interpolation model is interpo-

lated by some known sample points such as the Spline family models, also known as

parametric models.

The Demons approach is known to be fast to execute and simple to implement

and these properties motivate an extensive number of successful researches in the

field of medical imaging. Although the classical one is limited to small deformations,

it is still a fundamental framework and a solid theoretical foundation in the literature

that allows researchers to propose much more powerful frameworks. A part of our

research is also motivated by the Demons approach that will be discussed later in

this manuscript.

The choice of similarity measurement was classified as intensity based, geometric

based and hybrid based approaches. The intensity based method and the geometric

based method alone have their own limitations. In fact, they complement each
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other. The hybrid based approach that combines both intensity and geometric based

approaches is more preferable in the literature. The graph based image processing

has been well studied in the past decades as the graph representation is simple,

flexible and efficient to model different types of data.

The graph spectrum is isometric invariant and can be exploited in a spectral

matching method, as well as in image registration method as a geometric constraint

in combination with an intensity based matching. The Spectral Log-Demons method

[70] uses the graph spectrum in combination with the Log-Demons framework. This

method can capture fast and complex deformations. However, the robustness to

noise is one of the most important aspects in medical imaging, but the Log-Demons

method was found to be sensitive to noise [70]. Our work using graph spectrum in

combination with classical registration frameworks (e.g. Demons and Bspline) on

regular grid will be described in details in the next chapter of this manuscript. We

examine the interactions of graph spectrum to registration, and to find an appropriate

transformation model as well. The contribution of this research using Spectral Graph

Wavelets for registration of noisy images is later described in the last section of the

next chapter. This method outperforms the performance of the existing Spectral

Log-Demons method.



32 Chapter 3. Overview of Image Registration Concepts



Chapter 4

Graph-based Image Registration

on a Regular Grid

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Review on Graph Theory . . . . . . . . . . . . . . . . . . 35

4.2.2 Graph definition . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.3 Spectral Graph Theory . . . . . . . . . . . . . . . . . . . 40

4.3 From Demons Framework to Spectral Demons . . . . . . 45

4.3.1 Demons Framework . . . . . . . . . . . . . . . . . . . . . 45

4.3.2 Spectral Demons . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.3 Application of the process to microscopic images . . . . . 53

4.4 Spectral Bspline . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.1 Bspline Registration . . . . . . . . . . . . . . . . . . . . . 57

4.4.2 Spectral Bspline Image Registration . . . . . . . . . . . . 61

4.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Spectral Graph Wavelet (SGW) based Image Registration 66

33



34 Chapter 4. Graph-based Image Registration on a Regular Grid

4.5.1 Objective function . . . . . . . . . . . . . . . . . . . . . . 67

4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Introduction

This chapter describes different non-rigid image registration methods on biomedical

images on regular grids with the graph approach. Let us consider that we have two

images, a fixed image F with its intensity space denoted as IF and a moving image

M with IM is its intensity space. The intensity spaces IF , IM are respectively set

on the regular Cartesian coordinate spaces XF , XM ∈ N2. The goal of registration is

to find an appropriate transformation s that maps the intensity spaces of the fixed

image and the moving image. In practice, the mapping is not only applied to the

intensity space but also to the spatial space, and more generally on the feature space

extracted from the images to guarantee the registration problem is well-posed. One

of the powerful tools that is recently utilized in the image registration problem is the

Spectral Graph theory. In the Spectral Graph theory, the graph spectrum was used

as the geometric constraint in the matching as presented in the work of Lombaert

et al [70] and the registration captures large and complex deformations although it

still suffers from noise.

This chapter begins with the introduction to the state of art of the Graph Theory

as well as an overview of the Spectral Graph Theory. Then, two well-known frame-

works Bspline and Demons in medical imaging are examined to utilize the graph

spectrum as geometric constraint for the registration of biomedical images on a reg-

ular grid. Motivated by the intuition that the graph spectrum is invariant to isometry

but sensitive to noise, this work proposes a registration method using Spectral Graph

Wavelets as geometric constraints. The Spectral Graph Wavelet decomposition pro-

posed by Hammond et al is defined through the Spectral domain. Thus, the Spectral

Graph Wavelets carry out the similar characteristics as the graph spectrum. In ad-

dition, similar to the classical wavelets, the Spectral Graph Wavelets also represent
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the image hierarchically with different levels of details. The experimental results

of the proposed method that uses Spectral Graph Wavelets outperform the existing

method that uses graph spectrum, especially when noise exists. Our contribution

”Spectral Graph Wavelet based Nonrigid Image Registration” [92] was published in

the conference ICIP (International Conference on Image Processing) taking place in

Athens, Greece, in October 2018. This method will be described in the last section

of this chapter.

4.2 Graph Theory

In the recent years, the signal processing on graphs has emerged in many different

fields with different forms of signals (e.g, computer vision, sensor networks, traffic,...)

due to the development of technology. This is because a graph is a simple and flexible

model to structurally represent different types of data. In addition, graphs do not

depend much on the data structure whether it is regular or irregular. The large

literature allows us to easily find an appropriate model for our research. This section

provides a review on graph theory and signal processing on graphs.

4.2.1 Review on Graph Theory

Graph based methods have been efficiently applied in the fields of networking, social

network, transportation, biology, sensor. In graph based methods, data are repre-

sented on vertices of weighted or unweighted graphs. The idea of applying graph

theory in image processing was known in the early 1970s [137]. Since then, many

image processing applications have been deployed thanks to pixel adjacency graphs.

Graph based approaches allow minimalistic and flexible representation of different

types of images. They provide a discrete and mathematically simple representation

to develop more efficient and accurate methods. In addition, graph based methods

allow generic representation forms that can describe the geometric structures of vox-

els, as well as pixels. Common image processing tasks such as filtering, inpainting

[18, 80], matching [37] were efficiently solved using graph representation of data.
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Signal processing on graphs is an extension of classical discrete signal processing

which is more complex and has irregular structure. Approaches to the shift operator

of graph signal can be found in [45]. Such approaches build an isometric graph

translation operator in spectral domain as a phase shifting, which shows that graph

shift shares properties with the time shift. Shuman et al [105] gave an introduction

of an emerging field of signal processing on graphs that merges algebraic and spectral

graph theoretic concepts to process high dimensional data on graph. The discrete

Signal Processing on Graphs theory such as frequency analysis can also be found in

the research of Sandryhaila et al [99].

Graph sampling theory can be found in [17, 90, 2]. Anis et al [2] extended the

Nyquist-Shannon theory of sampling to band-limited signals defined on arbitrary

graphs. The authors found a condition for a unique recovery of band-limited signal

from its samples and provided a method of computing cut-off frequency for a given

sampling set. On the contrary, [97] described a method to oversample signals defined

on a graph by using an oversampled Laplacian matrix, in which the original graph

has to be decomposed into bipartite subgraphs. Chen et al in 2015 [19] studied

signal recovery on graphs based on random sampling and experimentally designed

sampling. At the same time, the authors proposed a class of smooth bandlimited

graph signals, and accordingly proposed a recovery strategy based on a random

experimental sampling. Later, they proved the possibility of perfect recovery of

previous sampling approaches and studied the qualified sampling operator assigned

to those approaches in [17].

[48, 83, 98, 26] introduces different graph based transformations. In particular,

Crovella et al [26], Narang et al 2010 [83] and Hammond et al in 2011 [48] provided

different approaches for the graph signal wavelet transform. The graph wavelets in

Crovella et al [26] were defined on unweighted graphs for computer network traffic

analysis. The wavelet function is designed using the geodesic distance. In this

case, the value of a wavelet centered at one vertex on another depends only on the

shortest distance between the two vertices. In the research of Hammond [48], the

spectral graph wavelets decomposition is defined on a weighted graph. The spectral

graph wavelets can be approximated using Chebyshev polynomial approximation
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that avoids heavy computation for diagonalizing the Laplacian matrix.

In image processing, different graph based image denoising methods have been

proposed due to the different graph wavelet decomposition methods. For instance,

authors [80] proposed a denoising and inpainting application for color and multicom-

ponent images using the graph wavelets defined through the spectral domain. The

graph spectrum is also used in spectral matching. Spectral matching has been ap-

plied in many fields such as shape registration in images and segmentation of shapes.

Spectral matching that uses the graph spectrum to find vertex correspondence was

earlier proposed by [117], and later by Scott et al [100] Chung et al [22], and recently

used in image registration [70]. Let us here illustrate the graph definition and the

signal processing on graphs.

4.2.2 Graph definition

This section begins with the definition of a graph. Basically, a graph is defined as

G = (V , E). It consists of a finite set of vertices V = {v0, ..., vN−1} where N is

the number of vertices in the graph and a set of edges E representing the pairwise

relationships between vertices [22]. Each edge eij ∈ E connects two vertices vi and

vj with i 6= j.

A finite dataset f = {f0, ..., fN−1} is a graph signal if it is indexed by a graph

G = (V , E) where each coefficient fi in f is indexed by a vertex vi ∈ V . The

edge weights represent the relations between coefficients in f . In graph based image

processing, each vertex can be a pixel or an image region and an edge depicts the

relationships between neighboring pixels or regions.

For a better understanding of how a graph is applied to image processing, suppose

we define a graph over a simple discrete image. A graph is defined over the whole

image where each pixel is represented as a vertex and each two vertices are connected

if they are in the vicinity of Euclidean distance 1 (Figure 4.1). A weighted graph

is a graph whose each edge eij is associated with a weight value wij defined with a

function w : V → R. The graph is represented by an adjacency matrix A ∈ RN×N ,
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Figure 4.1 – Example of graph representation of digital image and the graph Lapla-
cian matrix associated with the graph.

such that:

Aij =

wij, if eij ∈ E ,

0, otherwise.
(4.1)

For an undirected graph, the adjacency matrix is a zero-diagonal symmetric ma-

trix.

The construction of the graph mainly focuses on point connectivity and the com-

putation of edge weights. A simpler definition of adjacency matrix can be uniform,

in which Aij = 1 if vi, vj are connected and Aij = 0 otherwise. Different metrics can

be applied to compute the edge weights. Commonly for digital images, weights can

be uniform. Each edge connects two neighboring vertices (pixels) vi and vj with a

weight wij = 1. In a more sophisticated case, edge weights are defined under the

influence of the intensity difference between adjacency pixels by a Gaussian kernel,

defined as:

wij =

exp
(
− (Ii−Ij)2

K2

)
if (i, j) ∈ E ,

0 otherwise.
(4.2)

Parameter K > 0 controls the sensitivity to edges in the images. In other word,

the value of K affects the influence of the difference between every two adjacent

pixels. When the value of K increases, the influence of pixel difference decreases. In

particular, when K is large, the value of the edge weight is closer to 1, and when K

is small, the value of the edge weight is closer to 0.
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If the value of K is fixed and small enough, the values of edge weights then depend

on the intensity difference between adjacency pixels. Edges that connect pixels from

different regions are given low weights and edges that connect pixels in the same

uniform intensity region are given high weights.

K is chosen depending on the noise and texture characteristics of the image.

In some cases, the edge weights also depend on the Euclidean distance between

adjacency points in the way that they are inversely proportional. The weight is,

thus, given as:

wij =


exp

(
−

(Ii−Ij)2

K2

)
||xi−xj ||2 if(i, j) ∈ E ,

0 otherwise.

(4.3)

Concerning the graph topology, there is no general rule of how points are con-

nected. In general case, one can use the k-nearest neighbor scheme to find adjacent

points, or for each point, choose its adjacent points in one circle. In the case of

regular data, such as an image, each pixel in the image is considered as one vertex

and each vertex can be connected with its four closest neighbors, or with additional

diagonal neighbors. In principle, for stronger graph connection, edges can be built

on pixels with any larger spatial distance, but the graph communication cost will

increase.

Degree di of vertex vi is the sum of the weights of all the edges incident to vertex

vi:

di =
∑
j

Ai,j. (4.4)

The degree matrix D of a graph is a diagonal matrix where each value Dii on the

diagonal is the degree of vertex vi, therefore Dii = di.

The Laplacian matrix is given as L = D−A, and represents the algebraic connec-

tivity of vertices in the graph as the adjacency matrix. In particular, each element

(of the matrix Lij or Aij) of the Laplacian matrix that is not on the diagonal indi-

cates whether the two vertices vi and vj are connected or not, and the strength of

the connection. But the spectrum of the Laplacian matrix plays an important role in

many researches in the literature (segmentation [35, 55], image retrieval ([82]) shape
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matching [62]). Next, a brief review of the spectral graph theory will be provided.

4.2.3 Spectral Graph Theory

The sets of eigenvectors and eigenvalues of the Laplacian matrix form the Laplacian

spectrum of the graph. For an undirected and non-negative weight graph, the Lapla-

cian matrix L is symmetric, and positive semidefinite. Thus, it can be represented

via the spectral theorem:

L = χΛχ>, (4.5)

where Λ is a diagonal matrix with the eigenvalues 0 ≤ λ1 ≤ λ2 ≤ ... ≤ λN on

the diagonal, and X is an orthogonal matrix whose columns are the eigenvectors

χ1, χ2, ..., χN . From now on to the following chapters of this manuscript, the term χ =

χ1, χ2, ..., χN denotes the set of eigenvectors of the Laplacian matrix, also considered

as the spectral coordinates of graph signals.

L is symmetric and the sum of each row in the matrix is equal to 0. Therefore, it is

positive semi-definite and the first eigenvalue is equal to 0. The eigenvector associated

with the second smallest eigenvalue is called Fiedler vector [22], and it is an important

tool for image segmentation. Since all the eigenvalues of the Laplacian matrix are

non-negative, they can be interpreted as the frequencies existing in the associated

graph, and the corresponding eigenvectors represent the frequency components.

Let us here give a sample of data representation on a graph and its graph spec-

trum. Suppose we have a graph signal f = (0.5, 0.8, 1, 0.4)>. The edge weights are

denoted as the absolute error between neighboring points. The adjacency matrix

and the Laplacian matrix are, thus, denoted as follows:

A =


0 0.3 0 0

0.3 0 0.2 0

0 0.2 0 0.6

0 0 0.6 0

 (4.6)
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L =


0.3 −0.3 0 0

−0.3 0.5 −0.2 0

0 −0.2 0.8 −0.6

0 0 −0.6 0.6

 (4.7)

The graph representation and graph spectrum of the signal f are respectively given

in Figure 4.2a and Figure 4.2b.

(a) Graph representation

(b) Graph spectrum

Figure 4.2 – Example of graph representation and graph spectrum of signal f =
(0.5, 0.8, 1, 0.4)>.

The discrete Laplacian operator in the graph domain is in analogy with the

standard Laplacian operator of the Euclidean domain. In fact, in the case where the
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graph signal is defined on a regular mesh, the graph Laplacian corresponds to the

Laplacian in the continuous domain. Looking at the example on Figure 4.2b, showing

the eigenvalues and the corresponding eigenvectors presented as the graph signal. It

can be seen that, as we go from low eigenvalue to high eigenvalue, we actually move

from the low frequency component to the high frequency component. Conceptually,

the eigenvectors of the Laplacian matrix are similar to the Fourier basis elements in

the Euclidean space. Therefore, they are used to define the graph Fourier transform

[65].

4.2.3.1 Graph Fourier Transform

Forward Transform: Given a graph signal f ∈ RN , according to [99] the graph

Fourier transform of the signal at frequency λ` is defined through the spectrum of

graph Laplacian matrix as:

f̂(`) =< χ`, f >=
N∑
n=1

χ`(n)f(n). (4.8)

The f̂(`) is considered as the `th graph Fourier coefficient of f .

Inverse Transform: The inverse graph Fourier transform is formulated by:

f(n) =
N∑
`=1

f̂(`)χ`(n). (4.9)

4.2.3.2 Spectral Graph Wavelet Transform

Unlike Fourier transform which encompasses frequency components of the signal, the

wavelet transform allows to simultaneously decompose the signal in both frequency

domain and spatial domain. Classically, translating and scaling are simultaneously

operated on a mother wavelet ψ in order to define an analysis basis. Wavelet co-

efficients are computed by taking inner product of the input function with these

translated and scaled waveforms. However, it is difficult to directly apply scaling

operation on signal defined on an irregular graph. To deal with this problem, Ham-
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mond et al [48] proposed a spectral graph wavelet transform that is cast into the

graph Fourier domain, in terms of the eigensystem of the graph Laplacian matrix.

The graph wavelets are modulated by a spectral graph wavelet generating kernel g,

which performs as a band-pass filter in the spectral domain. Therefore, g satisfies

g(0) = 0 and limx→∞ g(x) = 0.

Let g be the given wavelet kernel, T tg = g(tL) = χg(tλ)χ> are the wavelet operators

at scale t. According to 4.8, the Fourier transform of wavelet operator acting on

given signal f is given by:

T̂ tgf(`) = g(tλ`)f̂(`), (4.10)

and the Inverse Fourier transform is written as:

(T tgf)(n) =
N∑
`=1

g(tλ`)f̂(`)χ`(n). (4.11)

Apply spectral graph wavelets to an impulse on a single vertex i at scale t, with

notice that δi(`) = χ>i χ` and δ̂i(`) =
N∑
n=1

χ`(n)δi(n) = χ>l (i), we have:

ψt,i(n) = (T tgδi)(n) =
N∑
`=1

g(tλ`)χ
>
` (i)χ`(n). (4.12)

The coarse coefficients of graph signal f at scale t are defined as:

Wf (t, i) =< ψt,i, f >= (T tgf)(i)

=
N∑
`=1

g(tλ`)f̂(`)χ`(i).
(4.13)

Observing the computation of the wavelet coefficients, the mapping of a graph signal

f to its wavelet coefficients on a vertex i at scale t is a process of multiplying f̂ by

the kernel function, and then applying the inverse Fourier transform.

Scaling Function: As mentioned above, the kernel function g represents a band-

pass filter in the spectral domain. In order to encode the low frequencies of signal
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f , a second class of waveforms h is defined similarly to the low pass filter in classical

wavelet transform, such that: h(0) > 0 and limx→∞ h(x) = 0. The scaling functions

are denoted by:

ψsi = Tnδi = h(L)δi, (4.14)

and the wavelet coefficents of scaling function:

W s
f (i) =< ψsi , f > . (4.15)

Given a graph signal f ∈ RN , suppose we analyse graph spectral wavelets of f

at J scales, the constructed wavelets then compose of J + 1 spectral components,

each component is a vector of N elements. In this research, the same formulations

of cubic spline generating kernel function g and scaling function with [48] is utilized,

such that:

g(x) =


x2 for x < 1

−5x+ 11x− 6x2 + x3 for 1≤x≤2

4x−2 for x > 2.

(4.16)

The Spectral Graph Wavelet decomposition of a graph signal f at t scales and

with a generating kernel function g is summarized in Algorithm 1.

Input: f, t, g(x)
Output: Wf

Do:

Compute adjacency A;

L← A−D;

χ,Λ← eigendecomposition(L)

Wf (t, i)←
∑N

`=1 g(tλ`)f̂(`)χ`(i);

Algorithm 1: computeSGW ()
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4.3 From Demons Framework to Spectral Demons

The Demons framework, as mentioned earlier, is a computationally efficient and easy

to implement method. The success of Demons based methods on different types of

medical images show that it is an important and powerful technique in the field of

medical imaging. From the classical Demons which is non-diffeomorphic, different

methods were proposed to give symmetry and diffeomorphism. Lately, spectral graph

theory was embedded in a feature matching problem under the Log-Demons frame-

work to capture larger and more complex deformations by the work of Lombaert et

al [71]. This section provides the evolution from the Classical Demons framework

to the graph based Demons method called Spectral Demons image registration and

experiments of the Spectral Demons method on biomedical images.

4.3.1 Demons Framework

Recall that the classical Demons proposed by Thirion [114], the goal is to find a

dense transformation s from fixed image F to moving image M such that IF = IM◦s,

where IF and IM are respectively the intensity space of F and M . It optimizes the

objective function in an iterative scheme. Firstly, it computes a free form update

field at each step with an optical flow method. Secondly, Gaussian filter is applied

to the whole field at each step to obtain a smooth displacement field. The objective

function consists in two terms. The first term, intensity similarity measure accounts

for matching: ESim(F,M, s) = ||IF − IM◦s||2. The second term is a regularization to

ensure that the transformation is smooth and is usually formulated as: EReg(s) =

||∇s||2. Thus, the transformation is acquired by optimizing the objective function:

E(F,M, s) = αi||IF − IM◦s||2 + αr||∇s||2, (4.17)

where the weighting parameters αi, and αr respectively control the intensity similar-

ity and the level of smoothness of the transformation field.

As explained in the previous chapter, Cachier et al [14] introduced a hidden aux-

iliary variable c to mathematically clarify the decoupling of intensity correspondence
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and regularization in the optimization, as mentioned earlier. The additional term

dist(s, c)2 = ||s − c||2 accounts for the correspondence uncertainty with the weight

of αx.

The global energy function with respect to the current transformation and hidden

correspondence is defined by:

E(F,M, s, c) = αi||IF − IM◦c||2 + αx||s− c||2 + αr||∇s||2. (4.18)

The optimization is an alternate optimization over c and s. In each iteration,

correspondence is obtained by computing a free form update field (u) with an optical

flow method to minimize the first composition αiESim(F,M, c) + αxdist(s, c)2, with

respect to c, supposing s is given. The intermediate update field u is computed using

the second order of Gauss-Newton algorithm that is based on the image gradient:

u = − IF − IM◦s
||∇IM◦s||2 + αx

αi
|IF − IM◦s|2

∇IM◦s, (4.19)

where the composition operator M ◦ φ expresses the transformation of M according

to the transformation map φ. In this context, the transformation of M with respect

to s is performed by an interpolation method.

Then, the second composition αxdist(s, c)2 +αr||∇s||2 is minimized, with respect

to s, supposing c is given. This is acquired by applying a fluid like Gaussian filter

Kfluid ( with σfluid) to the whole update field. Then, an additional step of smoothing

is applied on the whole transformation field with diffusion Gaussian kernel Kdiff (with

σdiff). The optimization is illustrated in Algorithm 2 (where the notation ? accounts

for the convolution operator).

The Log-Demons registration proposed by Vercauteren et al [121] is parameter-

ized on the Lie algebra [72] through the exponential map by a stationary velocity

field v, with s = exp(v) and c = exp(vc) resulting to a smoother and invertible reg-

istration (such that s−1s = I) compared to the classical Demons method. Thus, the
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Input: F,M,maxiter
Output: s
Initialize: s← 0, i← 0
while i < maxiter do

u← − IF−IM◦s
||∇IM◦s||2+αx

αi
|IF−IM◦s|2

∇IM◦s;
u← Kfluid ? u;
c← s+ u;
s← Kdiff ? c;
i← i+ 1;

end

Algorithm 2: Classical Demons

energy function is written in the Log-Demons domain as following:

E(F,M, exp(v), exp(vc)) = αi||IF − IM◦exp(vc)||2 + αx||v − vc||2 + αr||∇v||2. (4.20)

The transformation update is alternated with an intrinsic update step on the Lie

group [72] of diffeomorphisms: s ← s ◦ exp(u) = exp(v) ◦ exp(u). This composition

can be obtained through the Baker-Campbell-Hausdorff approximation [44]: exp(v)◦
exp(u) ≈ exp(v + u).

The exponential map can be efficiently computed as explained in [52]. By that,

the exponential map of the velocity field v is approximated through the scaling and

squaring method whose approximation starts by: exp (v) = (exp(v/2N))2N . The idea

of the approximation method is to choose N such that v/2N has a norm of order 1.

The initial scaling takes place s← v/2N and then the approximation is formed by N

repeated squaring s ← s ◦ s. Consequently, s is the approximated exponential of v.

The computation of the exponential of the velocity field v is described in Algorithm 4.

The velocity field and the transformation are then updated v ← v + u, s ← exp(v)

in each iteration.

Lastly, the regularization is applied, first with a fluid like Gaussian filter (σfluid)

on the intermediate update field (u), and second on the velocity field v with diffusion

Gaussian kernel (σdiff) as in Algorithm 3.
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Input: F,M,maxiter
Output: s← exp(v)
Initialize: v ← 0, i← 0
while i < maxiter do

s← exp(v);

u← − IF−IM◦s
||∇IM◦s||2+αx

αi
|IF−IM◦s|2

∇IM◦s;
u← Kfluid ? u;
vc ← v + u;
v ← Kdiff ? vc;
i← i+ 1;

end

Algorithm 3: Log-Demons

Input: Velocity field v
Output: s← exp(v)
Do:
Choose N ∈ N | 2−Nv ≈ 0
(e.g. if maxp ||2−Nv(p)|| ≤ 0.5, N ← max(log2(||v||));
s(p)← 2−Nv(p);
i← 0;
while i < N do

s← s ◦ s;
i← i+ 1;

end

Algorithm 4: Exponential s = exp(v). Scaling and Squaring method for
computing exponential in the Lie group
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The Log-Demons framework allows an inverse computation of the transformation

s−1 = exp(−v). Therefore, a symmetric registration framework can be obtained,

where the registration does not depend on the order of the input images. This

was introduced in [122], such that: s = arg min(ESim(F,M, s) + ESim(F,M, s−1)).

This symmetric scheme splits the demons force search in each iteration into for-

ward and backward correspondences by minimizing the direct and inverse energy

ESim(F,M, s) and ESim(F,M, s−1) resulting in forward and backward update ufw

and ubw for each iteration. The overall update field u is now the average ufw and

ubw when mapping images from F to M ◦ exp(s) and from M to F ◦ exp(s−1). The

optimization of the Log-Demons method is summarized in Algorithm 5.

Input: F,M,maxiter
Output: s← exp(v)
Initialize: v ← 0, i← 0
while i < maxiter do

s← exp(v), (s−1 = exp(−v));

ufw ← − IF−IM◦s
||∇IM◦s||2+αx

αi
|IF−IM◦s|2

∇IM◦s;

ubw ← −
IM−IF◦s−1

||∇IF◦s−1 ||2+αx
αi
|IM−IF◦s−1 |2∇IF◦s−1 ;

u← 1
2
(ufw − ubw);

u← Kfluid ? u;
vc ← v + u;
v ← Kdiff ? vc;
i← i+ 1;

end

Algorithm 5: Symmetric Log-Demons

4.3.2 Spectral Demons

The previous image registration based on local iterative gradient is easy to get

trapped into local minima. In the research of Lombaert et al [71], the authors

alternate the step of searching for demon forces using Gauss-Newton optimization

with a direct feature matching technique that combines intensity, spatial, and the
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graph spectra as geometric constraints in registration. Let us briefly review this

image registration technique and provide experiments on our biomedical images.

4.3.2.1 Matching with Intensity Information

Feature matching is a process of finding correspondence between fixed set F =

{f1, f2, ..., fP} and moving set M = {m1,m2, ...,mQ} of feature points. Where each

point fp or mq is a vector of features (i.e., HOG feature, spatial coordinates fp =

(xF (p), yF (p)), image intensity, shape feature). The goal of the matching is to find

the deformation map s that minimizes the difference between the two sets in feature

space, such that s = argmin(Sim(F,M, s))

Sim(F,M, s) =
∑
p

||fp −ms(p)||2 (4.21)

(a) Matching with intensity constraint with-
out spatial constraint

(b) Matching with intensity and spatial con-
straint

Figure 4.3 – Feature matching

A direct feature matching method finds closest point in the moving set to each

point in the fixed set, such that s(p) = argminq||fp − mq||. To prevent unsmooth

transformation, the spatial coordinate of points is used in registration, apart from the

intensity information. This is because different points at far apart positions can share

similar intensity values. In this case, the registration lacks a spatial regularization

and results in an unsmooth displacement field as illustrated on Figure 4.3a. Thus,
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the optimization of intensity difference can be combined with a spatial regularity

term to prevent the motion vectors from going too far. The objective function can

be defined by:

Sim(F,M, s) = αi(IF − IM◦s)2 + αs||xF − xM◦s||2, (4.22)

Where αi controls the intensity similarity and αs defines the level of smoothness of the

deformation field. xF = (xF , yF ), xM = (xM , yM) are the set of spatial coordinates of

fixed image and moving image. Obviously, we can define the images in feature space

that composes the intensity and spatial constraints with mathematical notations,

such that for each point p in F and q in M we can define the feature vectors:

fp = (αiIF (p), αsxF (p), αsyF (p)) and mq = (αiIM(q), αsxM(q), αsyM(q)). The direct

matching finds the closest point q from the moving set Mto p in F such that:

s(p) = argminq(αi(IF (p)− IM(q))2 + αs||xF (p)− xM(q)||2), (4.23)

In other word, if point q ∈ M is closest to point p ∈ F in term of intensity and

spatial position, then s(p) = q.

4.3.2.2 Matching with Geometric Constraint

The optimization of Equation 4.22 lacks isometric invariance (neighboring points

still preserve their relative distances after transformation). The question is, how to

preserve object geometry when objects are in different poses? For the Demons and

Log-Demons frameworks, different solutions to add a geometric constraint were pro-

posed [69, 23, 106, 71]. For instance, [106] proposed to add a geometric constraint

in the space of currents jointly with iconic registration. On the other hand, Lom-

baert et al [71] use additional graph spectral representation of shape as geometric

constraint. The matching with geometric constraint finds correspondences between

F and M where each point pth in F and qth in M are respectively defined as: fp =

(αiIF (p), αsxF (p), αyyF (p)), αgGF (p)) andmq = (αiIM(q), αsxM(q), αsyM(q), αgGM(q)),

where GF and GM account for the geometric constraints of the fixed and moving im-
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ages.

The registration with geometric constraint walks toward the optimum of the

following function:

Sim(F,M, s) = αi(IF − IM◦s)2 + αs||xF − xM ◦ s||2 + αg||GF − GM◦s||2, (4.24)

The Spectral Log-Demons approach [71] considers the first k eigenvectors correspond-

ing to the lower eigenvalues of the Laplacian matrix of the graph defined on each

image as the spectral coordinates on behalf of the geometric constraint. Thus, the

objective function of the Spectral Log-Demons method is denoted as follows:

Sim(F,M, s) = αi(IF − IM◦s)2 + αs||xF − xM ◦ s||2 + αg||χF − χM◦s||2, (4.25)

where χF and χM stand for the spectral coordinates of the fixed and moving images.

The demon forces in forward and backward mappings i.e. ufw and ubw are obtained

by applying a direct point matching scheme instead of the gradient update in the

classical Demons.
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Input: F,M,maxiter
Output: s← exp(v)
Initialize: v ← 0, i← 0
while i < maxiter do

s← exp(v), (s−1 = exp(−v));
Laplacian LF◦s−1, LM◦s;
χF◦s−1 ← eigendecomposition(LF◦s−1);
χM◦s ← eigendecomposition(LM◦s);
ufw;
ubw;
u← 1

2
(ufw − ubw);

u← Kfluid ? u;
vc ← v + u;
v ← Kdiff ? vc;
i← i+ 1;

end

Algorithm 6: Spectral Log-Demons

4.3.3 Application of the process to microscopic images

This work proposes experiments on randomly deformed microscopic images (Fig-

ure 4.4) and microendoscopic images (Figure 4.5) using Spectral Demons method.

These experiments are exploited to evaluate the performance of this algorithm on

Biomedical images.

In Figure 4.4, a microscope image is randomly deformed and then the deformed

image is registered toward the original image. The spectral, spatial and intensity

weights are respectively αg = 1, αs = 4, αi = 20. The fixed and moving images are

respectively shown on Figure 4.4a and Figure 4.4b. The best restored image in term

of MSE value is chosen after 50 iterations and is depicted on Figure 4.4c. The MSE

value with respect to the number of iterations is illustrated on Figure 4.4d. As it

is obvious on the Figure 4.4d, the energy value does not monotonically increase or

decrease but fluctuates when the number of iteration increases, and the best solution

is obtained at the iteration of 45. This phenomenon is not a surprise because it was

somewhat proved in the original article [70] that the algorithm starts to fail when
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much noise occurs, and the images used in this experiment are noisy by their nature.

In Figure 4.5, we register 4 random pairs of images in the microendoscope image

sequence. Although the energy values seem to converge fast at the early iterations

and remain unchanged when it gets to the lowest value, the restored images suffer

from smoothing effect, especially in the 3rd and the 4th cases. This phenomenon

happens because of the changes in illumination of the images.

In both cases, the Spectral Demons algorithm does not properly converge. This

is due to the complex texture of the images , and changes in brightness of microendo-

scope images. Next, the interaction of the graph spectrum in the registration using

the well-known interpolation model method called Bspline approach is examined.



4.3. From Demons Framework to Spectral Demons 55

(a) Fixed image (b) Moving image

(c) Spectral Demons
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(d) MSE with respect to iteration

Figure 4.4 – Spectral Demons method on Microscopic images, ew = 1, sw = 4, iw =
20
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Figure 4.5 – Spectral Demons method on microendoscopic images
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4.4 Spectral Bspline

Apart from the Demons approach, a very well known registration model in the med-

ical imaging field is the B-spline approach. This model has advantages of producing

smooth transformation and the transformation has better physical fidelity than the

Demons model [59]. This section describes a registration based on the B-spline

method introduced in [96] with an additional graph spectral constraint. The classi-

cal Bspline registration method is first described before the registration with spectral

constraint is presented.

4.4.1 Bspline Registration

Bspline registration is inspired by Bspline warping techniques, in which an image is

derived by a grid of control points and a predefined piecewise Bspline polynomial.

To describe the Bspline algorithm, we denote: Ω = {(x, y)|0 ≤ x < m, 0 ≤ y < n} as

the domain of an image of size m× n. A set of control points is denoted on a mesh

φ of size nx × ny, overlaid on space Ω with uniform spacing. Let φi,j be the value

of the ijth control point. The transformation model function can be written as the

tensor product between cubic Bsplines and the control points.

Tφ(x, y) =
3∑
l=0

3∑
p=0

Bl(tu)Bp(tv)φi+l,j+p, (4.26)

where i =
⌊
x
nx

⌋
− 1, j =

⌊
y
ny

⌋
− 1, tu = x

nx
−
⌊
x
nx

⌋
, tv = y

ny
−
⌊
y
ny

⌋
, and Bl, Bp are

uniform cubic Bspline functions defined as:
B0(tu) = (1− tu)3/6, (4.27a)

B1(tu) = (3tu
3 − 6tu

2 + 4)/6, (4.27b)

B2(tu) = (−3tu
3 + 3tu

2 + 3tu + 1)/6, (4.27c)

B3(tu) = tu
3/6 (4.27d)
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with 0 ≤ tu < 1.

The cubic Bspline function contributes to weighting each control point to the com-

putation of transformation based on its distance to the center point (x, y). The

registration problem becomes the problem of finding the best set of control points

that minimizes the similarity between images. Bspline registration minimizes the

similarity between two images by iteratively updating the grid of control points with

subject to every point as a parameter, and deform the moving image M with it until

the minimal similarity is reached. The similarity measurement is given as:

Sim(F,M, φ) = [IM◦Tφ(x) − IF ]2, (4.28)

where F,M are respectively fixed and moving images. Tφ(x) is the transformation

function of control points.

4.4.1.1 Optimization

To optimize Equation 4.28 with respect to the grid of control points φ, φ is assumed

to be known in the current estimation. It is then iteratively incremented by ∆φ such

that the value of the objective function at φ + ∆φ decreases. In other word, the

optimization iteratively finds φ← φ+ ∆φ such that this function is minimized:

|IM◦Tφ+∆φ(x)) − IF |2. (4.29)

The optimization process is operated in several steps using a line search optimization

i.e. to find a descent direction along which the objective function will reduce. The

general optimization process to minimize a given function f(φ) with respect to φ is

described in Algorithm 7.

Different methods were proposed to find the descent direction. The Quasi-Newton

method is a non-linear optimization method triggered by a second order Taylor

approximation , where the update of φ is given by:

φk+1 ← φk − [H(φk)]
−1∇f(φk), (4.30)
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Input: f(φ)
Output: φ
Initialize: φ← φ0, k ← 0
while ∆φ < τ do

Compute ∆φ|f(φk + ∆φ) < f(φk);
φk+1 ← φk + ∆φ;
k + +;

end

Algorithm 7: General optimization

where H(φk) represents the Hessian matrix of the objective function f(φ). When the

number of variables is large, the computation of the Hessian matrix and its inverse

becomes complicated and expensive. The computation of the Hessian matrix is

replaced by the Quasi-Newton method by applying an approximation to the inverse

of the Hessian: Bk = [H(φk)]
−1 in combination with an inexact line search (such

as Wolfe conditions [130]) to find the direction αk in each iteration. The methods

in the Quasi-Newton class differ in the way they approximate the Hessian matrix

and its inverse. The general description of Quasi-Newton method is presented in

Algorithm 8.

Input: f(φ)
Output: φ
Initialize: φ← φ0, k ← 0
while ∆φ < τ do

αk ← LineSearch(φk, f) ;
Bk ← [H(φk)]

−1 (diverges);
φk+1 ← φk − αkBk∇f(φk);
k + +;

end

Algorithm 8: Quasi-Newton optimization

Among the class of Quasi-Newton methods, the Broyden–Fletcher–Goldfarb–Shanno

(BFGS) is one of the most efficient and is thus one of the most popular methods [63].

It is indeed an iterative method that seeks stationary point of a function by ap-
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proximating the Hessian matrix in each iteration, and the current Hessian update

is propagated to the next approximation. When the number of variables becomes

extensively large, such as in case of Bspline registration for 2D images, the control

points are set on a 2D grid, the updating and storing of the Hessian matrix and its in-

verse become much more computationally expensive. The so-called Limited-memory

BFGS (LBFGS) method [84] is a variant of the BFGS method that eliminates the

need for storing the Hessian matrix and its inverse matrix in memory.

4.4.1.2 Registration

The Bspline image registration using Quasi-Newton optimizer is described as in Al-

gorithm 9. It starts with the fixed and moving images, and an initialization of a grid

of control points as the input. The registration problem walks toward the minimiza-

tion of the objective function Equation 4.28. In each iteration, the transformation

field Tφ is updated as described previously in Equation 4.26. And then the moving

image is updated according to the current transformation field. Once the moving

image is updated, the new value of the objective function is therefore computed, and

thus, the new variable is updated in the current iteration.

Input: F,M,maxiter
Output: φ
Initialize: φ← φ0, k ← 0
while k < maxiter do

Tφ ←
3∑
l=0

3∑
p=0

Bl(tu)Bp(tv)φi+l,j+p;

M ←M ◦ Tφ;
αk ← LineSearch(φk, Sim(F,M, φ)) ;
Approximate Bk = [H(φk)]

−1;
φk+1 ← φk − αkBk∇f(φk);
k ← k + 1;

end

Algorithm 9: Bspline Registration
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4.4.2 Spectral Bspline Image Registration

As in classical Bspline image registration formulated in Equation 4.28, the optimiza-

tion lacks geometric constraint. Motivated by the idea that the graph spectrum can

be used for registration, this work proposes to add an additional spectral constraint

to the optimization, such that, the graph spectrum characterizes the geometric fea-

ture of the images. The registration that involves spectral constraint optimizes the

following objective function:

Sim(F,M, φ) = [IM◦Tφ(x) − IF ]2 + λg[χM◦Tφ(x) − χF ]2 (4.31)

where λg isthe spectral weight, χF and χM◦φ are the graph spectral constraints of

the fixed image and the moving image. Equation 4.31 can be minimized by using an

optimization algorithm that iteratively updates the variables towards the minimum

such as Gradient Descent, Quasi-Newton, or LBFGS method as described previously.

For low cost, not having to compute the Hessian matrix of a large number of vari-

ables, and more stable optimization, this work uses LBFGS algorithm.

The optimization takes an initial grid of control points φinit, the fixed and mov-

ing images as inputs. The output is the transformation T from F to M . In each

iteration of registration, the transformation field T is updated with respect to the

updated control points φ as in Equation 4.26. The moving image M is then updated

according to the current transformation field. After that, the graph spectrum are

computed for the moving image as described in section 4.2. Notice that, only the

moving image is deformed at each iteration. Thus, we compute the spectra of the

fixed image once at initial stage, while the spectrum of the moving image is updated

as the moving image is deformed. The update step of control points ∆φ is then found

by performing LBFGS optimization algorithm to minimize Equation 4.31. The op-

timization is summarized in Algorithm 10.
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Input: F,M,maxiter
Output: φ
Initialize: φ← φ0, k ← 0
Laplacian LF ;
χF ← eigendecomposition(LF );
while i < maxiter do

Tφ(x, y)←
3∑
l=0

3∑
p=0

Bl(tu)Bp(tv)φi+l,j+p;

M ←M ◦ Tφ(x, y);
Compute Laplacian LM ;
χM ← eigendecomposition(LM);
αk ← LineSearch(φk, Sim(F,M, φ)) ;
Bk ← [H(φk)]

−1;
φk+1 ← φk − αkBk∇f(φk);
k ← k + 1;

end

Algorithm 10: Spectral Bspline

4.4.3 Results

This section evaluates the performance of the Spectral Bspline registration method

and compares it with the classical Bspline registration method on biomedical images

with random deformations. Registration is performed on two pairs of images. The

first pair is of the original, while Gaussian noise is added to the second pair, in order

to observe how these methods operate with noise.

The graph representation of each image is constructed using eight neighbor con-

nectivity over each point. The weight of the edge that connects vertex i and vertex

j is denoted as:

wij =

exp
(
− (Ii−Ij)2

||xi−xj ||2

)
if(i, j) ∈ E ,

0 otherwise.
(4.32)

Once the graph topology and graph weights are defined, the graph Laplacian can be

computed according to section 4.2. And thus, the optimization is operated according

to Algorithm 10. The experiment is tested on biomedical images of size 64 by 64
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with a random deformation.

In order to observe the interaction of noise on the registration, a random Gaussian

noise (standard deviation σnoise = 0.01) was added to the original images. Table

4.1 depicts the MSE of the fixed image and the registered image after Bspline and

Spectral Bspline registrations.

As shown in the table, in the non-noisy case, Spectral Bspline algorithm performs

better than the Bspline algorithm when the spectral weight is λg ≤ 0.1. The Spectral

Bspline methods get the best registration at λg = 0.05, with MSE = 1.935× 10−3.

In the noisy case, a more significant improvement between Spectral Bspline and

Bspline algorithm is observed. In more details, Spectral Bspline algorithm gives

better results when the value of spectral weight is λs ≤ 0.2, and the best registration

of Spectral Bspline method falls at MSE = 17.09× 10−3 when λg = 0.05. When the

value of λg is greater than 0.5, the performance of Spectral Bspline becomes worse

than classical Bspline algorithm. This implies that the spectral weight should not

be too large, and the intensity information plays a more important role than the

spectral information.

Original images Images with Gaussian noise added
λg 0.01 0.02 0.05 0.1 0.2 0.5 0.01 0.02 0.05 0.1 0.2 0.5

Spectral Bspline
(×10−3)

1.987 1.991 1.935 1.989 2.064 2.006 18.01 18.02 17.09 17.55 17.37 23.47

Bspline
(×10−3)

2.014 18.06

Table 4.1 – Mean Square Error (MSE) between the fixed image and restored image
of Bspline and Spectral Bspline methods.

Figure 4.6 graphically presents registration results of the two mentioned methods.

Figure 4.6d and 4.6f respectively demonstrate the absolute difference between fixed

image and restored image of Bspline and Spectral Bspline techniques. We can see that

there is less error at the region covered by the green rectangle of the result obtained

by Spectral Bspline algorithm (see Figure 4.6d, 4.6f). However, the improvement

of the Spectral Bspline method is minor compared to the Bspline method. The

convergences of the Bspline and Spectral Bspline registration depend on the number

of control points initialization of the control points. It is observed that the L-BFGS
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optimization method is faster and less memory cost that can perform well in the

classical Bspline registration method. However, it is still memory limited and takes

a long time to execute the Spectral Bspline method, but gain minor improvement.

This is because the line search step has to compute the graph in each iteration

and each Hessian approximation. In contrast, a Demons based approach with an

intermediate gradient update is faster to execute than the Bspline approach, thus,

more appropriate with a graph based application. We now introduce our contribution

that is based on the Demons framework and outperforms the existing graph based

Spectral Demons method in term of noise.
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(a) Fixed image (b) Moving image

(c) Image restored by Bspline (d) Absolute Error by Bspline

(e) Image restored by Spectral
Bspline

(f) Absolute Error by Spectral
Bspline

Figure 4.6 – Comparison between Bspline registration and Spectral Bspline registra-
tion of microscopic images
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4.5 Spectral Graph Wavelet (SGW) based Image

Registration

So far in this chapter, the registrations on biomedical images with spectral con-

straint under two well-known registration frameworks: Demons and Bspline have

been described. The spectral constraint is geometric invariant, however it is limited

with noisy images. Next, a novel registration method that uses the Spectral Graph

Wavelet decomposition to capture the shape feature of the images (Figure 4.7) is pre-

sented. The Spectral Graph Wavelets decomposition defined in the graph spectral

domain was introduced by Hammond et al [48]. It allows us to utilize the benefits of

the image representation on graphs and have the similar advantages to the classical

wavelet domain. And the motion estimation is cast into a feature matching problem

under the Log-Demons framework. This work was published in the conference ICIP

(International Conference on Image Processing) held in Athens, Greece, in October

2018.
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4.5.1 Objective function

At this stage, the graph representation and construction have been briefly introduced.

In addition, the Spectral Graph Wavelet decomposition as well as the Bspline and

Demons registration methods are described. However, the registration using Bspline

is computationally expensive due to the gradient search. This is especially the case

when graph computation is applied in each line search iteration, while the Demons

method is more simple to execute. In addition, the convergence of the Bspline

method also depends on the choice of the number of control points and the control

point initialization that is sometimes difficult to predict. On the other hand, classical

intensity based methods are limited to the local scope and lacks geometric invariance.

A spectral approach that is geometric invariant is well known to adapt to non-

local deformations. Such complementary approaches motivate a hybrid method that

combines intensity and geometric information. Spectral Graph Wavelet approach is

a multiscale graph based technique, that is defined in graph spectral Fourier domain.

Therefore, Spectral Graph Wavelets are not only geometric invariant but also allow

us to analyze graph data in different frequency bands. In this section, we provide

our objective function that contains Spectral Graph Wavelet constraint for geometric

invariance. Suppose we analyze Spectral Graph Wavelets of each image at t scales,

the constructed Graph Wavelets are then composed of t+ 1 components, where the

first component is the coarse approximation, and the rest are the Spectral Graph

Wavelets coefficients at scales 1, . . . , t. The first k components at lower bands (with

k < t) are chosen for use in registration and they are denoted as WF and WM for the

fixed and moving images. The choices of t and k depend on the image characteristics

and t defines the levels of details that we want to use. The specifications of the

generating kernel function g and the scaling function h in [48] are exploited.

Once the Spectral Graph Wavelet coefficients are computed, they are embedded as

the SGW coordinates of the feature sets built for each images: F = (αiIF , αsxF , αgWF )

and M = (αiIM , αsxM , αgWM). The optimization is cast into a feature matching by

applying a nearest neighbor search (e.g, k -d tree). The optimization walks towards

the minimum of the following objective function:
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E(F,M, s) = αi||IF − IM◦s||2 + αs||xF − xM◦s||2

+αw||WF −WM◦s||2,
(4.33)

where αi, αs, and αw are respectively the intensity, regularization, and spectral wavelet

weights.

The optimization is an iterative scheme that is a trade-off between the mini-

mization correspondence search and a regularization of the motion field. In each

iteration, the transformation field is achieved by performing optimization on Lie al-

gebra through an exponential map of the stationary velocity v according to [119].

Spectral Graph Wavelets are computed for both updated images. The update fields

ufw and ubw are found in both forward (F to M ◦ s) and backward (M to F ◦ s−1)

matching. To do that, the auxiliary variable c is introduced, it plays the role of the

intermediate correspondence in the current iteration.

For instance, if c is the correspondence from F to M , c is found such that, for

each point p in F in correspondence with point q in M , we have F (p) = M(q), and

thus c(p) = q.

c(p) = argminq(αi||IF (p)−IM(q)||2+αs||xF (p)−xM(q)||2+αw||WF (p)−WM(q)||2) (4.34)

This correspondence mapping can efficiently done by a nearest neighbor search (e.g.

k-d tree). Consequently, the value of update field u at p is denoted as:

u(p) = xM(c(p)) − xF (p) (4.35)

The symmetric update field u is the average of ufw and −ubw: u = 1
2
(ufw − ubw).

The next step is to smooth the update field u with a Gaussian kernel Kfluid with

standard deviation σfluid. The velocity field v is updated by the computed update

field, and then smoothed with a Gaussian kernel Kdiff with σdiff. The registration

process can be summarized in Algorithm 11.
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Input: Fixed and moving images: F,M
Output: Transformation field s = exp(v)
Initialize: Velocity field v
while i < maxiter do

s = exp(v);
WF◦s−1 ← computeSGW (F ◦ s−1);
WM◦s ← computeSGW (M ◦ s);
cF→M◦s;
ufw;
cM→F◦s−1;
ubw;
u← 1

2
Kfluid ∗ (ufw − ubw);

v ← log(exp(v) ◦ exp(u));
v ← Kdiff ∗ v;

end

Algorithm 11: SGW Demons Registration

4.5.2 Results

Here, the proposed method is benchmarked against two existing algorithms (i.e. Log-

Demons and Spectral Log-Demons) on classical images and medical images. An eight

neighbor graph connectivity is utilized in all of the experiments. In the computation

of the edge weights as described in Session 4.2, a large value of K (K = 30) is chosen

to have an application that is less sensitive to noise. This in turn has less influence

of intensity difference on the computation of edge weight (Equation 5.3).

4.5.2.1 Experiments on Lena images

In the experiments on Lena images, we evaluate the difference between the per-

formance of our method and the existing methods Log-Demons and Spectral Log-

Demons. The moving image is obtained by randomly deforming the fixed image as

shown in Figure 4.8. Noticeably, the deformations are placed at most of the regions of

the image but the highest level of deformations are seen at the front hat region and the

neck. The algorithms use the same weighting parameters (αi = 20, αs = 4, αg = 1).

In the Spectral Demons algorithm, two eigenmodes are used while in our algorithm,
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we use three first components (k = 3) from four scales of Spectral Graph Wavelet

decomposition (t = 4).

(a) Fixed image (b) Moving image

Figure 4.8 – Lena image with a random deformed image used in this experiment

σnoise Log-Demons Spectral Log-Demons SGW Demons
0 0.0143 0.0039 0.0029

0.01 0.0232 0.0175 0.0107
0.02 0.0291 0.0239 0.0170
0.05 0.0441 0.0406 0.0344
0.07 0.0510 0.0507 0.0445
0.1 0.0602 0.0654 0.0569

Table 4.2 – MSE between the restored image and the fixed image

The focus here is more on the robustness to noise of the algorithms rather than

the robustness to the amount of deformations. To evaluate the performance of

the methods when noise exists, Gaussian noise with different values of standard

deviation (σnoise ∈ [0, 0.2]) is added to the images. The registration of the im-

ages with increasing Gaussian noise are presented in Figure 4.10 after 50 iterations,
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where each row presents the registration results of the three methods on images

with Gaussian noise added, the standard deviation values of Gaussian noise are

σnoise = 0, 0.01, 0.02, 0.05, 0.07 respectively. The first three columns of Figure 4.10

present the restored images associated with the best iterations (smallest MSE) of

the Log-Demons method, the Spectral-Log Demons method, and our method re-

spectively.

To be more objective and statistical, the iterations of the three methods are shown

numerically on the fourth column, where the MSE values between the registered

image of each method and the fixed image with respect to the number of iteration

are compared with each other. It shows that, when there is no noise, the performance

of the Spectral Log-Demons method and our method are similar (our method has

a slight improvement compared to the Spectral Log-Demons method). The neck

and front hat regions are well registered. In contrast, the Log-Demons method does

not capture the large deformations due to the slow convergence of the Gradient

update. However, when noise exists, the performance of the Spectral Log-Demons

method starts to fall while our method still keeps its advantages. For example, when

σnoise = 0.01, the larger and more complex deformed regions do not move closer to

the exact positions although the MSE values still show its convergence.

To have a better view of how each method is robust to noise, the evolution

of MSE of each method with respect to noise is demonstrated in Figure 4.9, In

addition, Table 4.2 gives some examples of the exact MSE values between the re-

stored and the fixed images. In all of the optimization, the registration chooses the

best transformation corresponding to the minimum MSE. When the noise increases

(σnoise > 0.075), the MSE value of Spectral Log-Demons registration is larger than

the Log-Demons method, while our method still keeps its advantages until σnoise

increases to 0.17. When σnoise > 0.17, our method gains larger MSE value than

the Log-Demons method. After all, our method is more robust than the Spectral

Log-Demons method in all of the tested cases on Lena image.
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Figure 4.9 – Mean Square Error (MSE) with respect to Gaussian noise, registration
of Lena image
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Figure 4.10 – Registration of Lena images with random deformations and increasing
Gaussian noise added.
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4.5.2.2 Experiments on medical images

We now evaluate the registration of T1 brain images and endomicroscopic images.

The performance of our method and the benchmarks (Log-Demons and Spectral

Log-Demons)is evaluated on medical images with the registration of a pair of the

T1 brain images and a pair of randomly deformed microendoscopic images, shown

in Figure 4.11. The first and second columns of images respectively present the

fixed and moving images and the third column graphically shows the absolute error

of the fixed and moving images. We use the same set of weighting parameters

(αi = 20, αs = 4, αg = 1. αg is the spectral weight of Spectral Log-Demons, and SGW

weight in our method). We use t = 4 number of scales for SGW computation and

choose k = 3 first components of SGW (including the scaling function component)

for our method, and k = 2 eigenmodes for Spectral Log-Demons method.

Figure 4.12 shows the comparison between the output of the proposed algorithm

and the outputs of the existing solutions. The first and second rows of Figure 4.12

show the registration results of two T1 brain images. In the first row from left to right

are the registered images of the Log-Demons, Spectral Log-Demons and the proposed

method respectively. The second row displays the corresponding graphical Absolute

Difference of the methods. The top right figure in Figure 4.12 shows the comparison

in terms of Mean Square Error (MSE) with respect to the number of iterations of

all algorithms. Similarly, the third and fourth rows show the registration results of

image microendoscope images. The fixed image is cropped from the center region of

an microendoscope image. The moving image is generated by performing a random

bspline transform on the fixed image. The bottom right figure shows the MSE

curves of the methods with respect to the number of iterations of the registration of

microendoscope images.

As can be seen in Figure 4.12, the methods with a geometric constraint (Spectral

Log-Demons method and the proposed method) move faster to the convergence of

the registration. However, in the registration of T1 images and at further iterations,

the MSE of the Log-Demons method decreases and gets close to the MSE value of

the Spectral Log-Demons method. The proposed method moves fast to the minimum
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Fixed Moving Absolute Error

Figure 4.11 – Pairs of T1 brain images and endomicroscopic images are used in this
experiment

energy (at the 5th iteration in the registration of T1 brain images and at the 17th in

registration of microendoscope images) and remains unchanged at the later iterations.

In both cases, the proposed method outperforms the benchmarking methods in term

of both visualization and energy measurement.

In order to show the robustness to noise of the registration methods of medical

images, a Gaussian noise is added to the fixed and moving images with standard

deviation σnoise ranging from 0 to 0.1 to the T1 brain images. The MSE value of

the algorithms with respect to noise is shown in Figure 4.13. To see more clearly,

the fixed (in red channel) and registered (in green channel) images of the algorithms

are blended in a RGB image when σnoise = 0.014. The significant misalignment
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of Log-Demons and Spectral Log-Demons is shown in the cropped regions (in the

blue rectangle at the forehead region, and in the yellow rectangle close to the back

neck region). And the Log-Demons method shows more misalignment on the entire

image. It is observed in the MSE graph that the performance of the Spectral Log-

Demons method fluctuates unpredictably with respect to the amount of noise. In

all of the tested cases, the proposed method provides the best results compared to

other methods.
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Figure 4.12 – Comparison between our proposal and the existing methods on T1
brain images and endomicroscopic images when no noise is added
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Figure 4.13 – MSE of Log-Demons, Spectral Log-Demons methods, and our method
with respect to Gaussian noise (standard deviation σnoise)

4.6 Conclusion

In this chapter, different graph based non-rigid image registration methods on clas-

sical images on a regular grid were described. Firstly, the fundamental graph theory
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was introduced, in order to have an overview of the use of the data representation on

graphs as well as the spectral graph theory. The classical image registration meth-

ods such as Log-Demons and Bspline based on local iterative gradient easily fall

into local minima. The Spectral-Demons method [70] utilizes the graph spectrum

as a geometric constraint to capture large deformations. It was used to examine

the registration of microendoscopic images, but failed to succeed due to the inability

to operate on images with much noise. Otherwise, this work is motivated by the

idea of using graph spectrum in registration. This work proposes a Spectral Bspline

method and examines it on microendoscopic images. However, the improvement of

the Spectral Bspline method is minor compared to the classical one, but is compu-

tationally expensive due to the graph computation in every line search step. Next,

this work proposes a new strategy that is based on the Log-Demons framework and

utilizes the Spectral Graph Wavelets decomposition as a geometric constraint instead

of the graph spectrum. The proposal outperforms the existing methods that use the

similar Demons framework. In general, the Spectral Log-Demons method and the

proposal converge faster than the classical Log-Demons framework and capture the

large deformation while the Log-Demons method converges slowly due to the gra-

dient update. However, when much noise exists, the Spectral-Log Demons method

fails to register the images. Conversely, the proposed method uses Spectral Graph

Wavelets still keeps its advantages over the Log-Demons and Spectral-Demons meth-

ods when the amount of noise increases. The experiments on T1 brain images when

increasing Gaussian noise is added shows that the Spectral Demons method is dif-

ficult to predict when it converges because the energy measurement with respect to

noise fluctuates as the noise increases.

Although registration of microendoscopic images with irregularly sampled data

is still a challenging problem to overcome, the idea of using the Spectral Graph

Wavelet decomposition in image registration motivated our research on registration

of images on irregular grids. This is because such methods have shown to provide

improvements over the existing ones. The next chapter presents a method to register

microendoscopic images on irregular grids and the solution to construct a panorama

from a sequence of images on irregular grids.
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5.1 Introduction

As it was introduced in Chapter 2, in a microendoscopic acquisition, each image

is taken by a multiphoton microendoscopic whose optical fiber scans along a spiral
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path, starting from the center to the periphery of the area. Such scanning with a

temporal sampling produces a list of raw pixels on an irregular grid with floating

coordinates. Thus, each acquired image is a set of floating point coordinates with

different point densities at different regions. In addition, the images also suffer from

noise and distortions due to the movement of the probe and the soft tissue.

Our contribution that investigates the Spectral Graph Wavelet decomposition un-

der the Log-Demons framework on a classical Cartesian grid specified two problems,

a) to find an appropriate framework that is suitable to adapt with the expensive

computation of graph, and b) to propose a method that overcomes the problem of

the existing method when registering noisy images. This is a stepping stone in our

goal to develop image registration of microendoscopic images on irregular grids.

This chapter, firstly, describes our contribution ”Image Registration for Biomed-

ical Images on Irregular Grids” [91], a registration method of images on irregular

grids that is based on our previous contribution using Spectral Graph Wavelet de-

composition under the Log-Demons framework. In our registration method, the fixed

image F and moving image M respectively contain the intensity spaces IF and IM .

IF and IM are set on the irregular floating coordinate spaces XF , XM acquired by

the spiral scanning of the microendoscope.

Secondly, we propose a panorama construction from the images on irregular grids.

The local misalignment of the images used to create a panorama is compensated by

the registration of images on irregular grids. Note that the images on irregular grids

are projected on a Cartesian grid only for visualization. The next section will begin

with the graph construction of an image on an irregular grid.

5.2 Problem Formulation

So far in the literature, rigid transformation is efficient for many panorama con-

struction applications as it globally aligns an image sequence into a right position

of the panorama. However, the local transformations due to structural changes of

objects and distortions caused by the camera sensor also need to be compensated

(Figure 5.1).



5.2. Problem Formulation 81

Our aim is to process on raw data on irregular grids. Unfortunately, the microen-

doscope system crashed during the time of this research. The physicians were able

to conserve the images in classical image format on regular grid but not the raw data

on irregular grids. Thus, the image acquisition was simulated by taking an outgoing

spiral sampling of 125 round turns (with increasing radius), 500 samples each turn,

starting from the center of each image on regular grid to obtain an image on irregular

grid, giving n = 125×500 = 62500 samples in total. A sampling frequency f = 1416

is used. Such that, the spatial coordinates of samples are defined by:Vx = r cos(ωt)

Vy = r sin(ωt),
(5.1)

where ω = 2πf , r = 0 : 1
f

: n−1
f

and t = 0 : 1
500f

: n−1
500f

.

Note that, this simulation does not give exact spatial coordinates of points as

in the real case, but give a similar spiral acquisition form. To avoid confusion and

differentiate between the image in the image sequence and the one used for regis-

tration, let us call an image in the image sequence a ”frame”, and the one used

for registration an ”image”. Once we obtain the images with spiral acquisition, the

problem is formulated as follows:

Suppose the frames in sequence are globally pairwise aligned. Each two frames

of the same scene have an overlapping part with non-rigid deformations. We need

to nonrigidly register two images cropped from the overlapping region between the

two frames in the sequence.

As an example, Figure 5.2 shows two frames of the microendoscopic sequence

of frames. The first objective of this chapter is to find the transformation between

fixed and moving images F and M cropped from the overlapping part of the two

input frames. In particular, the fixed image F is cropped from the region covered by

the red rectangle of the first frame presented on Figure 5.2, and the moving image

M is cropped from the region covered by the blue rectangle of the second frame on

Figure 5.2.

As mentioned earlier, F and M are actually two sets of points, each point contains
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the information of the intensity value and the spatial coordinates. The intensity

space IF of F and IM of M are respectively set on the irregular coordinate spaces

XF , XM ∈ R2. Subsequently, the two images have different point densities and the

graph topologies as shown in Figure 5.3.

From these images, we propose a panorama construction from the image sequence

on irregular grids. In this panorama construction, the motion distortions are com-

pensated by the non-rigid registration.

Spiral scanning

Spiral scanning Spiral scanning

Frame 1

Frame 2 Frame N

1
2

N

Figure 5.1 – Panorama construction from a sequence of frames on irregular grids
without nonrigid deformation correction.
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First frame Second frame

Figure 5.2 – Two images cropped from an overlapping region of two frames, and the
representation of points on spiral acquisition of 20 turns, 80 points/turn (the red
points belong to the first image and the blue points belong to the second image
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5.3 Graph construction for image on irregular grid

In this section, we discuss how a graph is constructed on images on irregular grids

including the graph topology and the edge weight computation. As mentioned earlier,

each image on an irregular grid is a set of points with floating coordinates.

If in the case of graph representation of images on a regular grid, it is simple to

construct the neighboring connectivity of each point, it is much more complicated to

construct the graph connectivity of image on an irregular grid. This happens because

in the regular case, the point coordinates are in analogy with the point ordering, one

can easily define the neighbors of each point. In contrast, the ordering of points on

an irregular grid is not relevant to the point coordinates.

In our research, each point of the irregular image is considered as a vertex and

the k-nearest neighbor scheme is applied to find adjacent points. Each vertex is

connected with k vertices with the shortest Euclidean distance.

Figure 5.3 presents the graph topologies with respectivelly 1, 2, 4, 8 neighbor

connectivities of two images cropped from different regions of a frame with acquisition

of 20 turns and 80 points each turn. The graph representation of the image cropped

at the center region is in blue, while the graph representation of the image cropped

at the upper left region is in red. In the case of 1 neighboring graph connectivity,

the connections between is similar to the scanning path of the system. The higher

the value of graph connectivity is, the more points at different turns of the spiral are

connected.

Once the graph neighborhood is defined, we now discuss the edge weight com-

putation. Suppose dij is the distance between two vertices vi and vj. The distance,

as stated in the previous chapter, it can be the combination of the intensity differ-

ence and the Euclidean distance. In common, dij is established by the difference

between intensity values of vertex vi and vertex vj. The edge weight between these

two vertices vi and vj is denoted as:

wij =

exp
(
− d2

ij

K2

)
if (i, j) ∈ E ,

0 otherwise,
(5.2)



5.3. Graph construction for image on irregular grid 85

The value of K, similar to the case of regular grid, affects the influence of the

distance between adjacent points to the graph weights. However, the level of redun-

dancy at the center is high while missing points exist at the border, the graph weight

computation that depends on the distance between points is expensive, complicated

to keep tract on and sensitive to noise. For simplicity, in our registration on irreg-

ular grids, we use the binary graph where 1 is given to an edge that connects two

neighboring points and 0 is given to adjacency value of points with no connection,

such that:

wij =

1 if (i, j) ∈ E ,

0 otherwise,
(5.3)

Once the graph construction as well as the computation of weights are defined,

the Spectral Graph Wavelet decomposition is obtained as it was described in the

previous chapter. In the next section, the proposed strategy to register images on

irregular grid with the Spectral Graph Wavelet constraint is described.
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(a) Fixed image (b) Moving image

(c) 1 neighborhood graph connectiv-
ity of fixed and moving images

(d) 2 neighborhood graph connectiv-
ity of fixed and moving images

(e) 4 neighborhood graph connectiv-
ity of fixed and moving images

(f) 8 neighborhood graph connectivity
of fixed and moving images

Figure 5.3 – Graph topology of images cropped at different regions of a frame with
spiral acquisition of 20 turns, 80 points/turn
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5.4 Registration for Images on Irregular Grids

In this section, the objective function that contains the SGW components for reg-

istration of images on irregular grids is proposed. Recall that each image on an

irregular grid is a set of points with floating coordinates. The SGWs of an image on

an irregular grid are computed at t scales. For each image we obtain t + 1 column

vectors, the first component is the coarse approximation, and the rest are the SGW

coefficients at scales 1, . . . , t (Figure 5.4). Each component has the same size as the

image. The first k components at lower bands are used for registration, given by

WF ∈ Rm×k and WM ∈ Rn×k for the fixed and moving images, where m,n are the

numbers of points of the images.

Figure 5.4 – Spectral Graph Wavelet Transform of image on irregular grid

Figure 5.5 shows the SGW decomposition of an image on an irregular grid with

different graph neighboring connectivities (1, 2, 4, 8, 16 neighboring connectivities

respectively from the top to the bottom) at 4 scales. Each scale is projected on a

Cartesian grid for visualization. The first column of Figure 5.5 presents the SGW

coefficients of the low-pass approximation and the following columns present the

SGW coefficients at 4 scales.

Once WF and WM are computed, each fixed and moving images on irregular grids

can be cast into the feature vectors that consist of intensity, spatial and SGW infor-
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Figure 5.5 – Spectral Graph Wavelets decomposition of a microendoscopic image on
an irregular grid , at 4 scales with respectively 1, 2, 4, 8, 16 of graph connectivities
from the top to the bottom.

mation: F = (αiIF , αrXF , αgWF ) and M = (αiIM , αrXM , αgWM). XF = (Vxf , Vyf )

and XM = (Vxm, Vym) are floating coordinates of points in fixed and moving images.

In practice, the SGWs can be replaced by any mean of geometric representation

(such as the Graph Spectra).

To overcome the problem of the gradient update scheme (mentioned in the pre-
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vious chapter) that usually falls into local minima, the registration becomes a direct

feature matching problem. The objective function with SGW constraint is defined

as:

E(F,M, s) = αi||IF − IM◦s||2 + αs||xF − xM◦s||2 + αg||WF −WM◦s||2, (5.4)

where αs is the spatial weight. The spatial term is added to prevent the motion

vector from going too far.

Note that, the two images have different point distributions. The moving image

is thus pre-interpolated to the grid of the fixed image using the scatter interpolation

technique [1] that interpolates from the irregularly sampled data.

The optimization is an iterative method under the Log-Demons framework. The

Log-Demons framework allows a diffeomorphic registration. That means the images,

as for the precedent method, are registered in both forward (F to M◦s) and backward

(M to F ◦ s−1) matching. In each iteration, SGW are computed for both updated

imagesM◦s and F◦s−1. The intermediate update field δv is the average of the update

fields in forward and backward mapping δvfw and −δvbw , where the δvfw and δvbw

are respectively given by a nearest neighbor search to minimize Equation 5.4 from F

to M ◦s and from M to F ◦s−1. δv is then smoothed by a Gaussian kernel Kfluid with

standard deviation σfluid. The velocity field v is updated by the computed update

field and then smoothed by a Gaussian kernel Kdiff with σdiff. The registration is

summarized in Algorithm 12.



90 Chapter 5. Image Registration and Mosaicing of Images on Irregular Grids

Input: F = (IF , Vxf , Vyf ), M = (IM , Vxm, Vym)
Output: Transformation field s = exp(v)
Initialize: S ← interpolate (M,Vxf , Vyf );
while i < maxiter do

WF◦s−1 ← computeSGW (F ◦ s−1);
WM◦s ← computeSGW (M ◦ s);
δvfw ← argmin(E(F,M ◦ s, δv));
δvbw ← argmin(E(M,F ◦ s−1, δv));
δv ← Kfluid ? (δvfw − δvbw);
v ← Kdiff ? log(exp(v) ◦ exp(δv));

end

Algorithm 12: registerOnIrregularGrid()

5.4.1 Experimental Results

Having briefly described the graph construction and registration of images on irreg-

ular grids, this subsection firstly compares our experimental results with the existing

registration methods on a regular grid. Then, different tests of different values of

graph connectivity using the proposed registration technique on irregular grids are

provided.

5.4.1.1 Benchmarking with existing methods

Here, the proposed method is benchmarked against the Spectral Demons algorithm

on irregular grids and the two existing methods on the regular grid (i.e. Spectral

Demons and SGW Demons). The experiments use two random pairs of the frames.

For each two consecutive frames of the sequence, global shift is obtained by a block

matching algorithm. With the known cumulative global shift between each two

frames, the target and source images are cropped from the overlapping region of two

different frames. The images are projected on 100 by 100 Cartesian grid for the

visualization and for the registration on regular grid.

The registration results are shown on Figure 5.6 with the same values of αg =

2, αs = 1 and αi = 6 for registrations on irregular grids. Each row represent each pair

of the images to be registered and their registration results. It can be clearly seen
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that the registration on a regular grid suffers from the smoothing effect and thus,

the registration fails. The Signal to Noise Ratio values with respect to the number

of iterations are presented on Figure 5.7. In both cases, the registrations on regular

grid are inconsistent. Especially, in the registration of the second pair of images,

the Spectral Demons method strongly diverges as the number of iterations increases.

In the registration on irregular grids, the SGW Demons improves approximately 3%

for the registration of the first pair of images and 1.7% for the second pair. And in

both registrations on the regular and irregular grid, the SGW gives more consistent

registration than the Graph Spectra.

Spectral Demons SGW Demons
Fixed image Moving image

Spectral Demons SGW Demons
on irregular grid on irregular gridon regular gridon regular grid

F
ir

s
t 

p
a
ir

S
e
c
o
n
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a
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Figure 5.6 – Comparison between the registered images of our method and the ex-
isting methods for two pairs of images(αg = 2, αs = 1, αi = 6 for registration on
irregular grid)

Figure 5.8 shows the comparison between Spectral Demons and SGW Demons

on irregular grids for the first pair of images with higher geometric weight (αg = 10).

It is more visible that the Graph Spectra is inconsistent and the motion field is more

affected by the point density while the SGW remains consistent. However, with

higher weight of the geometric constraint, the SNR value tends to slightly decrease.

Figure 5.9 allows us to see more clearly the result of our method applied to the

first pair of images on irregular grids. In the representation of the difference, the

target image is in the red channel, the source and registered images are in the green

channel. The region covered by the red line shows that the differences between the
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Figure 5.7 – SNR with respect to the number of iterations

registered image and the target image have an improvement compared to the initial

difference.
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Figure 5.8 – Registration with αg = 10, αs = 5, αi = 20
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Fixed image Moving image Registered image

Motion �eld Initial di�erence Di�erence after registration

Figure 5.9 – Registration result of the first pair of microendoscopic images on irreg-
ular grids

5.4.1.2 Impact of graph connectivity to the registration

In this section, we examine different values of graph connectivity to the registration.

We test on the first pair of microendoscopic images used in the previous subsection

with two sets of weighting parameters (αg = 1, αs = 5, αi = 20) and (αg = 1, αs =

1, αi = 4). In this case, in the manner of the overall weighting parameters, the

SGW weight increases (from αg = 1/26 to αg = 1/6) while the spatial and intensity

weights decrease. Figure 5.10 depicts the energy measurements of the registrations

on irregular grids with respect to the values of graph connectivity ranging from 1 to

16. With the first set of weighting parameters (αg = 1, αs = 5, αi = 20), the overall

MSE value is slightly higher than in the case of registration with the second set of
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parameters (αg = 1, αs = 1, αi = 4). However, there is no clue to conclude on the

impact of the value of graph connectivity to the effectiveness of the registration. In

particular, the MSE values fluctuate when the value of graph connectivity increases.

With the first set of parameters, the best registration according to the energy value

falls into the case of 8 neighbor graph connectivity while with the second set of the

weighting parameters, the best registration falls into the case of 7 neighbor graph

connectivity.
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(a) MSE value with respect to graph connectivity
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Figure 5.10 – MSE values after registrations of the first pair of microendoscopic
images with respect to the values of graph connectivity with two sets of weighting
parameters (αg = 1, αs = 5, αi = 20 and αg = 1, αs = 1, αi = 4)

5.5 Mosaics of images on irregular grids

The multiphoton microscopy using optical fibers is a promising and potent tool

for biologists and physicians to examine in vivo the information of cell and tissue

biology. Although it has gained popularity in the research field of medical imaging

devices because of its ability to obtain high resolution, high contrast and minimal

phototoxicity, there are still unavoidable limitations such as noise and small field of
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view (FOV). The narrow FOV limits experts’ assessments of cells to evaluate dangers

(such as cancers, ulcers). Therefore, there is a need for providing an accurate and

complete representation of the entire region that has been captured from a continuous

sequence of time.

The goal of this section is to provide a supportive mosaics construction from

an image sequence to enhance the FOV. Such images captured by microendoscope

have a spiral sampling, thus, have irregular grids of points. The rigid motion of

the optical fiber across the tissue while scanning gives rise to motion artifacts. The

movement of soft tissue due to breathing and heart rate also create local non-rigid

distortions. Therefore, the mosaics construction needs to be adapted with the non-

rigid deformations and the images on irregular grids.

5.5.1 The workflow of mosaics construction

A non-rigid registration technique of images on irregular grid has been previously

provided. This is used to compensate for the non rigid deformations during the

mosaics construction.

For the mosaic construction, firstly, the pairwise rigid motions between each two

consecutive frames are obtained by any of the block matching techniques using cross

correlation [116, 43]. Once the pairwise rigid transformation is determined for each

two successive frames, the dynamic coordinate system model is then used for the

mosaic construction. Thus, for each input frame, the current mosaics is aligned to the

coordinate system of the current input frame [60]. This model is more appropriate

with our problem because it is more adaptable with our data on irregular grids.

Existing models take one specific frame as reference frame and keep the coordinate

system of the mosaic fixed at all the iterations, where each input frame is cumulatively

aligned to the coordinate system of the reference frame. Conversely, the proposed

model aligns between coordinate systems of each two consecutive frames. This has

the advantages in the implementation of images on irregular grids where the data

structure is complex. The workflow to construct mosaics from a sequence of frames

is simply depicted as on Figure 5.11.
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Figure 5.11 – The pipeline to construct mosaic.

Our panorama construction takes the sequence of frames on irregular grids F =

{f1, f1, . . . , fN} as input in a loop that alternates between several steps. In each

iteration, a successive input frame fcur is taken as the input. It is then considered

as the fixed image while the current mosaic is considered as the moving image of the

nonrigid registration on irregular grids. The current mosaic M is then recentered to

the coordinate system of the current input frame fcur before it is updated by merging

the input frame and the registered mosaic. The mosacing steps are summarized in

Algorithm 13.

Input: Sequence of frames F = {f1, f1, . . . , fN}
Output: Mosaic M
pairwiseRigidRegistration();
Initialize: M← f1;
for fcur in F do

s← registerOnIrregularGrid(fcur,M);
M← merge(fcur,M ◦ s);

end

Algorithm 13: Mosaic construction
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5.5.2 Results

At this last stage, the proposed mosaic construction algorithm is applied to the

microendoscopic images on irregular grids. The mosaic construction from a small

number of images (two and three frames) is first presented, then the results obtained

from a sequence of images is proposed.

As a foundation of our panorama construction, the mosaic constructed from two

frames give us a better view of the effectiveness of the nonrigid deformation com-

pensation. As shown in Figure 5.12, each of the two pairs of the examined frames

have rigid motions and nonrigid deformations. The first pair of frames are randomly

selected in the sequence of 9 temporal frame difference and the second pair of frames

are two consecutive frames.

The mosaic constructed from the first pair is shown in Figure 5.13. For a better

view, the two frames are positioned in different color channels, one frame in the

red channel and the other is placed in the green channel. It can be seen that,

without nonrigid registration, the mosaic created with only rigid transformations

suffers from shearing of the object in the image. In contrast, the mosaic constructed

with nonrigid correction reduces the level of shearing at the overlapping region of the

frames. The similar outcome appears in the mosaic constructed from two temporally

neighboring frames as shown on Figure 5.14, even though it is less clear how the

nonrigid registration improves the mosaic construction than we can see in the first

case.

Once the mosaic is constructed from two frames, theoretically, there is no doubt

we can construct the mosaic from a sequence of input frames. Figure 5.15 depicts the

mosaic constructed from three frames. The left picture of this figure is the mosaic

with only rigid alignment and without a nonrigid deformation correction, while the

right picture shows the mosaic with nonrigid deformation correction. The noticeable

changes between the two mosaics are marked by the yellow and blue rectangles. Sim-

ilarly, Figure 5.16 illustrates the gain obtained from mosaic construction of twelve

frames. Figure 5.16a illustrates the proposed mosaic construction with only rigid mo-

tions and Fig 5.16b shows the improvement obtained when the nonrigid registration
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is applied to the mosaic construction. The white arrows (a, b, c, d, e, f) point to the

zones where changes between the two mosaics with and without nonrigid correction

are visually appealing.

Figure 5.12 – Two pair of random frames from the image sequence (First row: 9
frame difference, Second row: two consecutive frames)
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Without registration With registration

Figure 5.13 – Panorama created from two frames from the image sequence (9 frame
difference). (Red channel: First image, Green channel: Second image)
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Without registration With registration

Figure 5.14 – Panorama created from two frames from the image sequence (consec-
utive frames). (Red channel: First image, Green channel: Second image)
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Without 

nonrigid registration

With

nonrigid registration

Figure 5.15 – Panorama created from three frames from the image sequence.
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(b) With non-rigid registration

Figure 5.16 – Panorama constructed from a sequence of 12 frames



5.6. Conclusions 103

5.6 Conclusions

In this chapter, we firstly show that the Log-Demons framework can be adapted

to the registration of images with floating point coordinates, on irregular grids. In

addition, the proposed registration that uses Spectral Graph Wavelet decomposition

was extended to the registration on irregular grids. The experimental results show

that our application on the raw data without any projection on Cartesian coordinate

system performs better than the classical one on a regular grid. In all of the tested

cases, the registration based on Graph Wavelet decomposition is more robust than

the Graph Spectral based method.

Secondly, the problem of mosaic construction from a sequence of frames on irreg-

ular grids has been exposed in this chapter. The experimental results that compare

the mosaic constructions with and without nonrigid deformation correction show

that the mosaic with nonrigid deformation correction has improvements over the one

that uses only rigid motions with less level of shearing. This shows that the nonrigid

correction is needed in mosaic construction in medical imaging.

Related to the panorama construction, future work should focus on providing a

robust mosaic with global rigid motion correction, that aims to correct the cumulative

errors when the frame sequence gets loops back to the start. In addition, the method

should be adapted to images on irregular grids.
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Chapter 6

Conclusion and Perspectives

We have seen in Chapter 2 a brief description of the two photon microendoscope, as

well as the scanning trajectory of the probe. This technology has strong ability to

acquire high-resolution images of in vivo cells and tissues, high contrast and minimal

level of phototoxicity. The optical fiber of the microendoscope, as mentioned earlier,

has spiral scanning that centralizes important information. Such kind of scanning

produces images on irregular grids with points that are set on a floating coordinate

space. Despite the numerous benefits of this technology, processing on such kind

of images suffers from several challenges such as illumination changes, noise, soft

deformations and distortions, and the uneveness in point distributions.

It was also precised that the demand for an application to enhance the FOV of

experts (such as physicians and biologists) has ushered the research on image mosaics.

This thesis was set out with the goal of providing wide field images acquisition

from the image sequences to the experts, that is to construct a mosaic from the

image sequence. The need of an accurate mosaic construction leads to demands of

an appropriate nonrigid image registration technique to compensate for the local

deformations.

A survey in Chapter 3 revealed that there are several innovative approaches to

image processing in general, and to nonrigid image registration in particular in the

past decades. The approaches were classified in different groups according to the

choices of transformation model, similarity criterion and optimization method. The

105
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Demons approach, among the transformation model category, is known as a powerful

approach because it is fast to execute and simple to implement. In addition, the graph

based method was found to be attractive as it provides a flexible data representation

regardless of the type of data (regular or irregular). The graph spectrum has the

strong property to be invariant to isometry. It was combined with the Demons

method in the recent research of Lombaert et al [70] in order to capture large and

complex deformations. However, the robustness to noise is still an open problem.

In Chapter 4, two graph based registration methods on a regular grid were intro-

duced. The first one utilizes the graph spectrum combined with the Bspline model

but gain minor improvement compared to the classical Bspline method. In addition,

graph computations in each gradient search makes it computationally expensive. The

second one alternates the role of graph spectrum with the Spectral Graph Wavelets

under the Log-Demons framework. The Log-Demons framework is known to be

faster and simpler to implement. It is cast into a fast direct feature matching with-

out any gradient search in order to avoid extensive computations. Thus, it is suitable

to adapt with graph based method. Furthermore, the Spectral Graph Wavelet de-

composition at low frequency bands can capture the geometric feature of the image

and noise is eliminated. Consequently, our contribution outperforms the existing

methods on similar framework, and outperforms the Spectral Log-Demons method

in term of robustness to noise. This handles two problems in this research, a) to

propose a framework that is adaptable with irregularly sampled data, consequently

suitable with the expensive computation of graphs, and b) to adapt with noisy data.

The contributions in the study of images on irregular grids were revealed in Chap-

ter 5. The Log-Demons framework was proven to be adaptable to the registration

of images on irregular grids. While the registration of microendoscopic images on

regular grid fails, the registration of the raw data without any projection on regular

grid gains success. And in any of the tested cases, the application using Spectral

Graph Wavelets is more robust than the application using graph spectrum. Once

the nonrigid registration is done, the local distortions can be compensated in the

mosaic construction. It produces a full view panorama with less level of shearing

and misalignment than using only rigid alignment.
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This research introduces several advantages as mentioned previously. The Spec-

tral Graph Wavelet decomposition has been used in many application such as de-

noising, sampling and shape retrieval. To the best of my knowledge, this research

is the first to apply Spectral Graph Wavelet decomposition in image registration,

similarly to the application of images on irregular grids. I believe that our research

will motivate other researches on images on irregular grids, as well as the utilization

of Spectral Graph Wavelet decomposition in image registration. However, the ap-

plication based on graph theory is effective and adaptable to different types of data

(regular and irregular). However, it suffers from problems of computation complex-

ity and is time consuming, especially when we need to create a mosaic from a large

amount of input frames. This is still one of the most challenging problems in graph

based applications.

6.1 Future works

Our research described in this work opens new perspectives and directions for long-

term research. To point out a few of the important keys, the following open issues

can be addressed:

� Global adjustment for robust mosaicing. One of the most appealing

challenges in panorama construction is that the cumulative error occurred when

the image sequence loops back to where it starts. For this reason, it is important

to correct the misalignment between the first and the last, in order to have a

seamless panorama. In the context of regular grids, one can use any of the

existing bundle adjustment methods. However, to the best of our knowledge,

there is no justification of these methods of images on irregular grids. Therefore,

future work should include finding a robust global rigid alignment of the image

sequence on regular as well as irregular grids.

� From raw data to image view. In the registration and mosaics of image on

irregular grids, from theoretical point of view, all the information we have is
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from the raw data. However, the clinicians need to visualize the data. Conse-

quently, it is necessary to reconstruct a discrete image on a regular grid from

the raw data on irregular grids. In this thesis, the images are only projected

on a regular grid for visualization with the help of a simple nearest neighbor

interpolation and an average of intensity values is taken when redundancies are

found at one position. However, this does not give the best quality of image.

Future work can give attention to providing a more efficient reconstruction

method by applying different interpolation methods.

� Construct 3D mosaic. One of the advantages of the multiphoton microendo-

scope is that it produces images in depth of thick samples. In the context that

the depth information is provided, constructing a 3D panorama from the im-

ages is useful to the clinician to see the image in depth. To that end, it broadens

the research to register and mosaic images on irregular in 3D concept.

� Metric to evaluate constructed mosaic. In the local scope of this thesis,

constructed mosaic is only objectively evaluated without a statistical evaluation

by an appropriate metric. One can manually create a synthesized sequence of

images with prior knowledge of the displacements and a reference mosaic and

then evaluate the similarity between the estimated mosaic and the reference

mosaic. Therefore, considering the metric used in evaluating the estimated

mosaic is still an open topic. Future works may include providing an efficient

metric to evaluate mosaic construction.

� Applying deep learning. As stated previously, the graph based technique

is normally computationally expensive and time consuming. A good way to

reduce computation cost is to apply deep learning networks to either estimate

similarity measure of two images in a iterative optimization strategy or predict

transformation. Further work may extend the registration with the Spectral

Graph Wavelet constraint to optimize the similarity metric using deep learning.

� Further evaluation. With modifications of the weighting parameters and

different computation of the graphs, additional practical experiments of the
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registration method on regular and irregular grids can be performed on different

types of medical images to further evaluate our strategy.
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