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Avant propos

Mon parcours professionnel a débuté par une thèse effectuée sous la direction
de Sergey Skipetrov au Laboratoire de Physique et Modélisation des Milieux Con-
densés à Grenoble entre 2006 et 2009. Pendant cette période je me suis intéressé au
transport cohérent des ondes classiques dans les milieux désordonnés, avec l’objectif
notable de chercher et caractériser théoriquement des signatures expérimentalement
mesurables de la localisation d’Anderson de la lumière dans les milieux de taille finie.

Suite à l’obtention d’une bourse post-doctorale de la fondation Alexander von
Humboldt, j’ai ensuite rejoint le groupe d’Andreas Buchleitner à l’Université de
Freiburg. Pendant ce post-doctorat, ma recherche s’est orientée vers des problèmes
d’optique quantique en présence de désordre. Un des enjeux était alors de com-
prendre les manifestations de propriétés purement quantiques de la lumière telles
que l’intrication ou l’indiscernabilité des photons dans les speckles optiques observés
en sortie de milieux désordonnés. Ces travaux étant quelque peu différents de mes
activités ultérieures, ils ne seront pas évoqués dans ce manuscript.

En 2011, j’ai eu la chance de rencontrer Christian Miniatura et Cord Müller au
Centre de Technologies Quantiques (CQT) de Singapour. C’est à cette époque que
mon activité de recherche sur le désordre a sérieusement basculé dans le domaine
des atomes froids. La collaboration avec le CQT qui a suivi a été extrêmement
fructueuse. Elle a conduit à la proposition d’un schéma expérimental visant à
détecter la rétro-diffusion cohérente des ondes de matière, observée peu après par
Vincent Josse et ses collaborateurs à l’Institut d’Optique. Nous avons ensuite
découvert théoriquement le phénomène de diffusion cohérente vers l’avant. Ces
travaux sont présentés dans les chapitres 2 et 3 de ce manuscript.

Au cours de nos tentatives de compréhension de la diffusion cohérente vers l’avant
en 2012, j’ai été amené à entrer en contact avec Dominique Delande, qui m’a proposé
de le rejoindre au Laboratoire Kastler Brossel. Cela a été pour moi le début d’un
second post-doctorat, écourté par mon recrutement au CNRS en 2013. Pendant ce
post-doctorat, ma recherche s’est brièvement portée sur l’effet des interactions sur
l’expansion des paquets d’ondes d’atomes dans les potentiels désordonnés. Ce sujet
est discuté dans le chapitre 5.
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Depuis 2013, je poursuis mon étude des ondes de matière désordonnées, qui a
notamment donné lieu à une collaboration avec le groupe de Jean Claude Garreau
et Pascal Szriftgizer à Lille, dont quelques résultats sont mentionnés dans le chapitre
4. Néanmoins, je travaille désormais également sur d’autres projets comme:

• la diffusion de la lumière dans les nuages d’atomes

• les forces de Casimir impliquant des matériaux hétérogènes

• les systèmes analogues optiques simulant les ondes de matière.

Mon travail sur les systèmes optiques simulant les ondes de matière, en particulier,
est récent et amené à prendre plus de place dans mes activités futures. Pour cette
raison il est évoqué dans le chapitre 6 avec quelques résultats. En revanche, par
souci de maintenir une cohérence thématique j’ai choisi de ne pas discuter dans ce
manuscript mes travaux sur la diffusion de la lumière dans les nuages atomiques
et sur les forces de Casimir, bien qu’ils constituent une partie non négligeable de
mon activité de recherche. Le lecteur intéressé par ces sujets pourra consulter la
page web https://sites.google.com/site/nicolascherroret/publications, où toutes les
publications associées sont listées.

https://sites.google.com/site/nicolascherroret/publications
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CHAPTER 1

Introduction

1.1 Coherent multiple scattering of waves

Waves in disordered media do not propagate along straight lines but are scattered in
all directions. If the source that emits the wave is coherent, this multiple scattering
process produces an interference pattern known as a speckle, which results from the
coherent sum of scattered wavelets with random phases. Speckles are the fingerprint
of a disordered material and are frequently encountered in optics. In mesoscopic
solids where conduction electrons behave like coherent waves, the question of how
interference in multiple scattering manifest themselves in routinely measured ob-
servables like the conductance has been a central question in the 1980s [Datta 95].
In conductors at room temperature, these manifestations are usually negligible due
to the very small electron coherence length Lφ: the conductance faithfully obeys the
well known Ohm’s law, which describes electron multiple scattering as a classical
diffusive (random walk) process through the material’s impurities. The conductance
is also self-averaging: its value is independent of the specific configuration of impuri-
ties because the material behaves as a superposition of many incoherent sub-systems
of size Lφ (the speckle is averaged out). The situation changes in the mesoscopic
regime where Lφ exceeds the conductor size and electrons genuinely behave like
coherent waves: the conductance is no longer self-averaging and fluctuates from a
sample to another, so that its determination requires a proper statistical approach.
An important theoretical contribution to this problem is due to Gor’kov, Larkin,
and Khmel’nitskii [Gor’kov 79], who calculated the disorder-average conductivity of
a mesoscopic sample and found a small negative deviation from the classical Drude
result (i.e. from the Ohm’s law). This deviation, known as the weak localization
correction, stems from the enhanced probability for electrons to return to a point
already explored by constructive interference between reversed multiple scattering
trajectories. The weak localization correction was observed in many systems, es-
pecially in 2D thin films where a magnetic field can be applied perpendicular to
the film and used a knob to turn weak localization on and off in a controlled way
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2 Chapter 1. Introduction

[Bergmann 84]. As the weak localization correction also depends on Lφ, its mea-
surement constitutes a valuable tool to assess electronic coherence in mesoscopic
conductors, still used today [Niimi 09, Capron 13].

One reason for the smallness of the weak localization correction is the global
character of the conductivity as a transport quantity. In the early 1980s though, it
was realized that if single incident kin and outgoing kout particle directions could be
addressed, one would be able to observe a large weak localization effect when kout =
−kin. Performing such a local measurement is hard with electrons in solids but easy
in optics, where one can illuminate a disordered material with a plane wave and
measure the average intensity in the exact backscattering direction. In this setup, the
constructive interference between reversed paths leads to a coherent enhancement
of intensity in the vicinity of backscattering known as the coherent backscattering
(CBS) effect. CBS of light was first described theoretically in [Golubentsev 84,
Akkermans 85], and observed experimentally soon after [Albada 85, Maret 85]. CBS
subsequently gave rise to an impressive amount of works, especially in optics (for a
review see, e.g., [Aegerter 09]) and even found applications in daily life [Verma 14].

Beyond weak localization and coherent backscattering, many other “mesoscopic”
effects in disorder have been investigated, both for electrons in dirty conductors or
for classical waves (light, microwaves, ultrasound etc.) in various heterogeneous
media. We may cite, without pretending to be exhaustive: universal conduc-
tance fluctuations [Stone 85, Licini 85] or nonlinear current-voltage characteristics
[Altshuler 85] in mesoscopic conductors, spatial [Feng 91, Berkovits 94] or tempo-
ral [Scheffold 97, Scheffold 98] intensity correlations in optical speckle patterns or
mesoscopic echoes in reverberant chaotic cavities [Rosny 00, Weaver 00]. In optics
and acoustics, the understanding of mesoscopic effects in wave transport has led to
many applications such as focusing or imaging through complex media [Rotter 17].

1.2 Anderson localization

1.2.1 Electron localization

Anderson discovered in 1958 that conduction of non-interacting electrons is stopped
in certain disordered networks [Anderson 58]. In three dimensions, Anderson locali-
zation manifests itself as a quantum phase transition: the electron spectrum displays
a mobility edge (a concept introduced by Mott soon after Anderson’s paper), a
critical energy above which the eigenstates of the disordered system are spatially
extended, and below which they are exponentially localized.

The activity on Anderson localization surged after a seminal article by Abra-
hams et al. [Abrahams 79], who developed a phenomenological scaling theory of
Anderson localization in conductors of finite size, based on precursory works by
Thouless [Thouless 74]. Beyond providing a very elegant description of Anderson
localization in terms of scaling arguments, this approach also predicted, in addition
to the presence of a mobility edge in 3D, the localization of all eigenstates in 1D
and 2D disordered systems. Furthermore, the scaling theory made contact between
Anderson localization and the weak localization correction to the conductivity, de-
scribing the latter as a precursor of the former. Soon after, the first experimental
signatures of the Anderson transition in 3D solids appeared, usually observed as
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a vanishing of the electron conductivity for a critical value of the carrier density
[Hertel 83, Paalanen 83, Rosenbaum 94, Katsumoto 87]. On the theoretical side,
several descriptions of the localization problem were also developed, based on di-
agrammatic formalisms [Berezinskii 74], random-matrix approaches [Dorokhov 82,
Mello 88], field theories [Efetov 80], and self-consistent treatments [Vollhardt 80a].
Since the late 2000s finally, a broad class of localization phenomena and Anderson
transitions have been identified beyond the historical “Wigner-Dyson” ensembles
of disordered systems where only the fundamental time-reversal and spin-rotation
symmetries matter [Altland 97, Evers 08], and continue to be explored in a large
spectrum of condensed-matter systems.

1.2.2 The success of classical waves, the question of light

Today, it is well established that Anderson localization stems from the proliferation
of destructive interference of multiply scattered waves in a disordered medium. As
such, it is not specific to electrons in solids but may, on paper, occur for classical
waves as well [John 84, Anderson 85, John 87]. Searching for Anderson localization
of classical waves has several advantages as compared to electrons in solids: one
avoids particle interactions which modify the localization scenario (see below) and
uncontrolled coupling to other degrees of freedom like phonons. Experiments with
classical waves also allow to probe local observables (specific intensity, spatial corre-
lations etc.), to perform time-resolved measurements and to engineer various types of
incident beams. The description of Anderson localization of classical waves is how-
ever more delicate, for classical waves are easily absorbed in materials. Moreover, un-
like de Broglie waves they cannot be bound in potential wells, which prevents their lo-
calization at low energies [Skipetrov 09]. Despite these difficulties, several successful
experimental observations of localization of microwaves [Chabanov 00, Laurent 07,
Peña 14] and light [Schwartz 07, Lahini 08, Mookherjea 08, Boguslawski 13] have
been reported in 1D and 2D. Recently, a series of experiments on ultrasound in elas-
tic networks also beautifully demonstrated Anderson localization and the associated
phase transition in 3D [Hu 08, Faez 09, Cobus 16].

The question of Anderson localization of light in 3D has a more turbulent history.
First observations based of stationary transmission measurements [Wiersma 97] (see
also [Genack 91]) were questioned [Scheffold 99] due to the presence of absorption
in the samples, which mimics the effect of Anderson localization. This difficulty
was later circumvented by time-resolved measurements carried out in the group of
G. Maret in Konstanz [Störzer 06, Sperling 13]. Unfortunately, it was eventually
realized that the observed presumed signatures of 3D Anderson localization were
in fact due to fluorescence [Sperling 16, Skipetrov 16]. At the same time, it was
demonstrated numerically that in 3D random ensembles of point scatterers the vec-
tor nature of light prevents localization [Skipetrov 14, Bellando 14]. This surprising
result was so far missed by theoreticians, for almost all descriptions of Anderson
localization relied on scalar models for light. At the moment, it is not yet clear on
which precise microscopic mechanism(s) the absence of 3D light localization found
in [Skipetrov 14, Bellando 14] is based on, and whether it constitutes an exception
or a general rule. A clear experimental observation of 3D localization of light is, on
the other hand, still lacking.
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1.3 Atomic matter waves in random potentials

1.3.1 Anderson localization of cold atoms

The first experimental studies on Anderson localization of atomic matter waves date
back from the early 2000s. These experiments involve clouds of cold atoms evolving
in far-detuned spatially disordered optical potentials usually produced from laser
speckles or bichromatic lattices. As compared to classical waves, cold-atom setups
have the decisive advantage of offering for a great control of the disorder. In addition,
while the detection of classical-wave localization most often involves transmission
or reflection measurements whose interpretation is severely complicated by interface
effects, experiments on cold atoms allow to probe localization inside the disordered
environment (“bulk” measurements). Last, but not least, atomic interactions can
be to some extent controlled in cold gases, and therefore studied in a systematic
way [Bloch 08, Sanchez-Palencia 10]. This has to be contrasted with electronic
conductors, where interactions are always present and cannot be turned off.

Anderson localization of non-interacting atomic matter waves was observed in
1D in [Billy 08, Roati 08] after several attempts. These experiments were accompa-
nied by a number of theoretical works, [Sanchez-Palencia 07, Kuhn 07, Skipetrov 07]
to cite few. In 3D, three experiments reported on Anderson localization of cold
atoms as well [Jendrzejewski 12b, Kondov 11, Semeghini 15], although the results of
[Kondov 11] have been severely questioned [Pasek 17]. These experimental achieve-
ments were all based on the direct observation of a fundamental signature of An-
derson localization, the temporal freezing of the diffusive spreading of wave packets.
Though rather successful, these works were nevertheless not able to characterize
precisely the properties of the Anderson quantum phase transition. This task was
accomplished in a different setup, known as the “atomic kicked rotor”, in a series
of beautiful experiments at the PhLAM laboratory in Lille [Chabé 08, Lemarié 10,
Lopez 12] (see also [Manai 15] for a recent experiment in 2D). Interestingly, in the
cold-atom context the observations of Anderson localization predated the detec-
tion of weak localization. The latter was first observed and characterized in 2012
via the (atomic) coherent backscattering effect [Jendrzejewski 12, Labeyrie 12], fol-
lowed a few years later by an observation of a related effect, the mesoscopic echo
[Hainaut 17], in an experiment of atomic kicked rotor. Along with these works, a
recent experimental feat was the ability to selectively break the interference between
time-reversed trajectories at play in weak localization by means of a controlled de-
phasing or an artificial gauge field for cold atoms [Müller 15, Hainaut 17], in the
spirit of the conductivity measurements performed in mesoscopic physics.

1.3.2 Cold atoms as a tool for probing interacting disor-
dered systems

The interplay between disorder and interactions is a rich and multiform problem on
which we presently have only a fragmentary picture. The great potential of cold-
atom setups for addressing this question was quickly identified, for in certain atomic
species interactions can be tuned via Feschbach resonances. On the effect of interac-
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tions, different types of questions may be asked. A first one concerns the equilibri-
um properties of interacting disordered gases. In this context, the low-temperature
phase diagram of bosons attracted a lot attention to identify insulating, superfluid
or Bose-glass phases [Fallani 07, White 09, Deissler 10, Pasienski 10]. Another type
of problem concerns the out-of equilibrium properties of interacting disordered gases
ensuing from a quench [Polkovnikov 11, Altman 12]. A central question is then how
and to which state the quenched system will evolve at long times. Generally spea-
king, this type of question is ultimately connected with the localization properties
of isolated many-body disordered systems. Since 2006 an important theoretical
activity has flourished on this topic, motivated by pioneering works [Gornyi 05,
Basko 06] which established that the spectrum of 1D disordered many-body systems
may display a transition between a conducting phase and an insulating “many-
body localized” phase characterized, in particular, by nonthermal states. Seminal
experiments already reported on its observation [Schreiber 15, Bordia 16, Choi 16].
The number of theoretical articles exploring the physics of many-body localization
is today enormous and listing them here would not be reasonable. The interested
reader may consult the recent reviews [Nandkishore 15, Altman 15, Alet 18].

1.4 Content of the manuscript

This manuscript presents a selection of works carried out between my arrival at La-
boratoire Kastler Brossel as a postdoc in 2012 and today on the coherent evolution
of atomic matter waves in random potentials. Precisely, a number of interference,
“mesoscopic” phenomena surviving a disorder average in these systems is discussed,
in particular in the regime where Anderson localization shows up: the coherent
backscattering effect (chapter 2), the coherent forward scattering effect (chapter 3),
the mesoscopic echo and the quantum boomerang effect (chapter 4). Two of those
(the coherent forward scattering effect and the quantum boomerang) were not known
until these works. The interplay between weak atomic interactions and Anderson
localization is touched upon in chapter 5, for the particular problem of atomic
wave packets spreading in random potentials, a scenario frequently considered in
experiments. Chapter 6, finally, gives an overview of very recent works by the
author, some not yet published, on multiple scattering of light in media of dimension
“(2+1)”. These peculiar systems, originally introduced to demonstrate Anderson
localization of light in 2D [Raedt 89, Schwartz 07, Boguslawski 13], have sparked a
growing interest in the recent years for light propagation is governed by an effective
Schrödinger equation and thus mimics the behavior of a matter wave. In chapter
6, it is shown that when the vector character of light is properly taken into account
these systems in fact display a physics much richer than the one pertained to this
sole analogy.
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CHAPTER 2

Coherent backscattering of matter waves

This chapter is based on the following articles:

• N. Cherroret, T. Karpiuk, C. A. Müller, B. Grémaud, C. Miniatura, Coherent backscat-
tering of ultracold matter waves: momentum space signatures, Phys. Rev. A 85, 011604
(2012)

• N. Cherroret, D. Delande, Backscattering echo of correlated wave packets, Phys. Rev.
A 88, 035602 (2013)

• S. Ghosh, D. Delande, C. Miniatura, N. Cherroret, Coherent backscattering reveals the
Anderson transition, Phys. Rev. Lett. 115, 200602 (2015)

Coherent backscattering is an essential marker of the coherent nature of wave
transport in a disordered medium. While this phenomenon was routinely observed
with classical waves since the late 1980s, its first experimental observation with
(atomic) matter waves dates back to 2012 only. It was achieved at Institut d’Optique
in Palaiseau, following a proposal imagined by the author and his coworkers. Mo-
tivated by this success and by the first experimental observations of 3D Anderson
localization of cold atoms that appeared in the same period, in 2015 we decided
to investigate theoretically the behavior of the atomic coherent backscattering peak
across the Anderson transition. I summarize these developments in this chapter.

2.1 Coherent backscattering in a nutshell

Coherent backscattering (CBS) is an interference peak visible near the backscat-
tering direction of the far-field, average intensity pattern produced by a collimated
beam reflected from a spatially disordered material. This phenomenon was ob-
served in a number of experiments involving classical waves, in particular in optics
[Albada 85, Maret 85, Wolf 88, Wiersma 95, Labeyrie 99] and in acoustics [Bayer 93,
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8 Chapter 2. Coherent backscattering of matter waves

Tourin 97, Cobus 16]. Let us first remind the qualitative description of CBS. Con-
sider a short wave pulse of well-defined wave vector k0, emitted at t = 0 through
a semi-infinite disordered material. Within the latter, the wave field Ψ =

∑
i ψi

can be decomposed into a superposition of elementary amplitudes ψi = |ψi| exp(iφi)
associated with multiple scattering paths i. The intensity |Ψ|2 =

∑
i,j |ψiψj|ei(φi−φj)

then consists of a complicated interference pattern known as a speckle. Now con-
sider the disorder average of this quantity. The phases differences φi − φj typically
fluctuate by an amount k0`, where ` is the mean free path. In usual situations
this product is very large1, so that one expects only the paths i = j to survive the
average, |Ψ|2 '

∑
i |ψi|2. These “incoherent” contributions are displayed in Fig.

2.1(a), in a typical configuration where the signal is detected in reflection at time t,
in a direction k around −k0. In time-reversal invariant systems however, incoherent

(b)

in
terface

(a)

Figure 2.1: (a) Incoherent (j = i) and (b) coherent (j = ī) contributions to the
average intensity reflected from a disordered medium. (b) involves the interference
between two counter-propagating wave paths and gives rise to the CBS peak.

terms are only one part of the reflection signal. Indeed, one must also take into
account pairs of time-reversed paths j = i. Such contributions are displayed in Fig.
2.1(b). At exact backscattering k = −k0 they satisfy φi = φī so that eventually

|Ψ|2 = 2
∑
i

|ψi|2 (k = −k0). (2.1)

The doubling of intensity at backscattering due to the interference of time-reversed
paths constitutes the CBS effect. The reasoning can pushed one step further to
evaluate the angular shape of the CBS peak: when k 6= −k0, the two time-reversed
paths accumulate the finite phase shift

∆φ = (k0 + k) · (rN − r1). (2.2)

For a given disorder configuration, the interference pertained to Eq. (2.2) produces
a cosine-like fringe pattern in reflection, Fig. 2.2(a). Since |k0 + k| ∼ k0θ at
small backscattering angle, the fringe spacing is ∆θ ∼ 2π/(k0|rN − r1|). The CBS
peak appears when summing over disorder configurations: the fringes add up to

1For electrons in a good metal like gold, kF` > 100. For light in clouds or fog, k` ∼ 108.
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Figure 2.2: (a) For each disorder configuration, the interference between time-
reversed paths produces a periodic pattern with random fringe spacing. The central
fringe is bright for all configurations. (b) CBS results from averaging over all fringe
patterns.

zero except near θ = 0 where the fringe is always bright. Since the propagation is
diffusive on average (|rN − r1| ∼

√
Dt), adding up the fringe patterns yields a CBS

peak of angular width

∆θ ∼ 1

k0

√
Dt

. (2.3)

The width decreases with time because waves detected at longer times have traveled
along longer paths, corresponding to a smaller fringe spacing. The total reflection
profile (CBS and incoherent background) is sketched in Fig. 2.2(b).

The CBS peak described here follows from the reflection of a short pulse, a sce-
nario that was experimentally realized in acoustics [Bayer 93, Tourin 97, Cobus 16].
It is also the closest to the matter-wave setup that will be discussed in the next sec-
tion. In optics, it is more customary to measure CBS using continuous beams. For-
mally, such a situation amounts to summing the profile in Fig. 2.2(b) over all times.
This results in a stationary CBS peak of width ∆θ ∼ 1/(k0`), displaying a triangular
cusp near θ = 0 (“CBS cone”) [Golubentsev 84, Akkermans 85, Akkermans 88].

2.2 Coherent backscattering of matter waves

In experiments using classical waves (light, acoustics etc), the detection of CBS in
reflection involves an interface separating the disordered medium from the region the
wave is coming from. In general, this interface severely complicates the quantitative
description of CBS. In 2012, in the context of a collaboration with Cord Müller,
Tomasz Karpiuk, Benôıt Grémaud and Christian Miniatura, we proposed a new
setup for detecting CBS of an atomic matter wave in a disordered potential without
resorting to any interface [Cherroret 12]. This approach is well suited for cold-atom
systems but, as we will see in chapter 6, it can be adapted to optics as well.

2.2.1 Observing CBS with cold atoms

In the setup of Fig. 2.1, CBS is observed by sending a beam of well-defined di-
rection k0 into a disordered material and looking at the angular distribution of the
reflected signal. In the language of cold atoms, having a well-defined direction means
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Figure 2.3: Disorder-average momentum distribution (2.5) obtained by numerical
propagation of a quasi plane-wave state of mean momentum k0 in a 2D speckle
potential. Here k0/∆k � 1 and k0`� 1. (a) Distribution at short times t ∼ τ and
(b) after a few τ .

preparing an atomic cloud in a state |Ψ(t = 0)〉 ' |k0〉, which can be done by com-
municating a mean momentum to the gas while making its dispersion of momenta
around k0 very small. Information about the angular distribution of scattered par-
ticles is then contained in the average momentum distribution nk(t) ≡ |〈k|Ψ(t)〉|2.
This suggests the following experimental protocol. A gas is prepared in the state
|k0〉, let evolve in a spatially disordered potential and finally imaged by time of
flight at the desired time. The good point is that no interface is involved in this
scenario, as the time-of-flight imaging technique naturally provides a measurement
nk(t) inside the disorder! Let us now be more precise on the initial state of the gas
to be used. To detect a well contrasted CBS peak, the dispersion ∆k of particle
momenta must be smaller than the CBS width k0∆θ ∼ 1/` , imposing

(∆k)−1 � `. (2.4)

Typical disordered optical potentials used in cold-atom setups have mean free paths
on the order of a few µm [Fallani 08]. For a thermal gas of Rubidium atoms (∆k ∼√

2mkBT/~), condition (2.4) then leads to a temperature T . few nK. Therefore, a
clean observation of CBS requires to use an ultracold cloud.

2.2.2 Numerical experiment

In [Cherroret 12] we computed the distribution nk(t) in two dimensions, by numer-
ically evolving in time a quasi plane-wave state |Ψ(t = 0)〉 with the Hamiltonian
H = p2/(2m) + V (r), choosing a speckle statistics for the random potential V (r)
to stick to real experimental conditions:

nk(t) = |〈k|e−iHt/~|Ψ(t = 0)〉|2. (2.5)

In these simulations we started from a Gaussian distribution nk(t = 0) ≡ |〈k|Ψ(t =
0)〉|2 ∝ exp[−(k − k0)2/2∆k2] of width ∆k satisfying Eq. (2.4), and chose disorder
parameters so that k0` � 1 (weak disorder). The distributions obtained at two
different times are reproduced in Fig. 2.3. At short times t ∼ τ , Fig. 2.3(a), the
initial distribution, centered on k0, gets depleted as exp(−t/τ) because atoms are
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elastically scattered out of the initial mode at a rate given by the scattering mean
free time τ ≡ `/(~k0/m). These scattered atoms populate all other accessible k-
space modes and thus distribute within a ring of radius |k| = |k0|. Even for a perfect
plane wave and although scattering is elastic, this ring as a finite width: the atomic
energy is broadened due to the dispersion of potential’s energies. After a few2 τ ,
the dynamics becomes diffusive: the memory of the initial direction of propagation
gets erased and the momentum distribution becomes more and more isotropic on
average, except for the CBS peak that grows around k = −k0. Eventually, at t� τ
the initial state is totally depleted, the diffusive background is fully isotropic and
the CBS peak is the dominant feature, Fig. 2.3(b).

Figure 2.4: CBS contrast (blue dots) and angular width (red dots) deduced from
numerical momentum distributions like the one in Fig. 2.3(b). Solid curves are the
theoretical prediction for the contrast, Eq. (2.7), and the width, extracted from Eq.
(2.7). Deviation of the initial state from a plane wave makes the contrast decay
algebraically and the width saturate at ∆k/k0 when t� t∆ (dashed line).

2.2.3 Theory

At weak disorder the momentum distribution can be also calculated analytically
with the impurity-diagram technique [Montambaux 07]. In the hydrodynamic limit
t� τ where atomic momenta are fully randomized, this leads to [Cherroret 12]

nk(t)'A(Ek,k0)

2πν

[
1 +

∫
ddk′

(2π)d
exp

[
−D(k + k′)2t

]
nk′(0)

]
, (2.6)

where ν stands for the density-of-states per unit volume and d is the dimensionality.
The quantity A(Ek,k0) is called the spectral function. It can be interpreted as the
probability for an atom of initial momentum k0 to acquire the energy Ek ≡ ~2k2/2m
in the random potential3. The spectral function describes the ring in Fig. 2.3(b). At
weak disorder it has a Lorentzian shape, A(Ek,k0) = (2~/τ)/[(Ek − E0)2 + ~2/τ 2],
indicating a broadening ∼ ~/τ of atomic energies with respect to the free-space

2Precisely when t is on the order of the transport mean free time.
3The formal definition is A(E,k) ≡ 2π〈k|δ(E −H)|k〉. A recent experiment reported on the

direct measurement of this quantity for cold atoms in disordered potentials [Volchkov18].
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value E0 ≡ ~2k2
0/2m. The second term in the brackets is the contribution of the

CBS peak. Its contrast (ratio of the CBS and ring heights) is

CCBS(t) =

∫
ddk′

(2π)d
exp

[
−D(k0 + k′)2t

]
nk′(0). (2.7)

The exponential in Eq. (2.7) stems from the averaging of the phase factor ei(k+k′)·∆r

accumulated by a plane-wave component |k′〉 of the initial cloud between r1 and
rN = r1 + ∆r [see Fig. 2.1(b)] over the distribution exp(−∆r2/2dDt)/(4πDt)d/2 of
diffusive path lengths. The total CBS peak then results from of the incoherent sum
of all k′ components. This sum can be interpreted as a lack of “spatial coherence”
of the initial cloud as it deviates from a pure plane wave. In practice this deviation
shows up at a characteristic time

t∆ ∼ (D∆k2)−1. (2.8)

When t � t∆, the CBS peak is fully contrasted and its width coincides with the
result (2.3) expected for a perfect plane wave. When t� t∆ on the other hand, the
peak contrast is reduced by a factor (t∆/t)

d/2 � 1 and ∆θ saturates at ∆k/k0. Fig.
2.4 compares the prediction (2.7) for the CBS contrast and the CBS width with
numerical simulations at weak disorder. The agreement is good, except at short
times t ∼ τ where the hydrodynamic description breaks down. The description of
short times requires a special treatment that was undertaken in [Plisson 13].

2.2.4 Experiments

CBS of cold atoms was experimentally observed in 2012 at Institut d’Optique
[Jendrzejewski 12] and at INLN [Labeyrie 12] shortly after our initial proposal. We
first focus on the results of [Jendrzejewski 12], obtained in somewhat cleaner condi-
tions. This experiment used a non-interacting Rb atomic gas, obtained after dilution
of an interacting Bose-Einstein condensate (BEC) by a preliminary free expansion.
To achieve the quasi plane-wave state required for observing CBS, the gas was sub-
jected to a brief harmonic pulse so to narrow its momentum distribution down to

Figure 2.5: Experimental momentum distribution measured at different times in
[Jendrzejewski 12], for a non-interacting gas evolving in a 2D optical speckle po-
tential. In this experiment τ ' 0.33 ms and k0` ' 5. The isotropization of the
distribution and the CBS peak are well visible.
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∆v = ∆k/~ = 0.12 mm.s−1 (“delta-kick cooling” technique [Ammann 97]). In
addition to cooling the cloud, the kick also breaks the atom position-momentum
correlations that accumulate during the initial cloud’s expansion, which turns out
to facilitate the characterization of CBS. This point will be discussed in Sec. 2.3. A
magnetic-field gradient was subsequently applied to cloud, transferring him a mean
velocity v0 = 3.3 mm.s−1. The momentum distribution was finally measured by
time-of-flight imaging. It is displayed in Fig. 2.5 at various experimental times.
These images nicely reproduce the dynamical scenario discussed in Sec. 2.2.2: a
rapid isotropization of momenta over a few τ , and a diffusive ring accompanied by
a CBS peak at times t ∼ a few ms� τ . The exceptional resolution achieved in this
experiment is due to a long time-of-flight duration (Ttof ∼ 150 ms), made possible
by the use of a levitation setup to compensate for gravity.

2.3 The backscattering echo

In 2012, the group of G. Labeyrie at INLN (now INPHYNI) also reported on an
observation of CBS of cold atoms in a 2D speckle potential [Labeyrie 12]. A major
difference with the Palaiseau setup was the absence of magnetic levitation, which
imposed a smaller time of flight (∼ 42 ms). More crucially, in this experiment no
delta-kick cooling was applied to the cloud after its initial expansion, so that signi-
ficant position-momentum correlations were present in the gas. To understand why
such correlations may be problematic for identifying the CBS peak unambiguously,
we sketch in Fig. 2.6 the complete experimental protocol of [Labeyrie 12], in 1D
for clarity. At t = 0 first, a BEC of mean momentum k0 is released from its trap
and starts a free expansion4 of duration Ti. During this stage, the cloud develops

Figure 2.6: Left: in [Labeyrie 12], a BEC is first let expand freely from t = 0 to
Ti (blue profiles), and thereby develops position-momentum correlations. It is then
subjected to a disordered potential for a short duration ∆t. When the latter is turned
off, the wave packet experiences a free flight of duration Ttof. At Ttof ' Ti, particles
scattered forward (in green) generate a broad density profile, while backscattered
particles (in red) refocus: this is the BSE effect. Right: density plot of Eq. (2.9)
together with experimental and numerical distributions of [Labeyrie 12].

4We here forget particle interactions, which do not play an essential role in the reasoning.
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strong position-momentum correlations: atomic positions r and momenta k are
related through r = ~kTi/m. At t = Ti, the speckle potential is applied, say
for a duration ∆t. Particles are scattered either in the forward direction +x or
in the backward direction −x. Then when the random potential is turned off,
at Ti + ∆t, backscattered particles (depicted in red in Fig. 2.6) all refocus and
reform the initial wave packet after a time of flight Ttof ∼ Ti. We have called this
(classical) phenomenon the backscattering echo (BSE). It is only when Ttof � Ti
that time-of-flight imaging indeed captures the true momentum distribution (2.6).
In [Labeyrie 12], the time of flight used was not too far from Ti, so that a BSE was
present together with the CBS peak in the measured distribution.

In this description, a BSE shows up only if position-momentum correlations
survive the evolution in the speckle potential, which is indeed the case when the
cloud size ∆r �

√
D∆t. In this limit, it is possible to derive an analytical expression

of the spatial distribution detected at Ttof ' Ti [Cherroret 13]:

nR(Ti) '
1

2π3/2∆r|R + R0|
exp

[
− (R2 −R2

0)

4∆r2(R + R0)2

]
, (2.9)

where R0 ≡ ~k0Ti/m. A density plot of Eq. (2.9) is shown in the right panel of
Fig. 2.6 (lower plot). It features a squeezed ring that displays a singularity around
the backscattering direction θ = π. This singularity signals the BSE [CBS is not
accounted for in Eq. (2.9)]. For comparison we also show in the figure a typical
experimental distribution as well as a numerical simulation obtained with the same
parameters in [Labeyrie 12]. These distributions do display a squeezing and an
enhancement at θ = π due to the BSE. Note, however, that Eq. (2.9) corresponds
to a limit where the refocusing of the cloud is perfect (infinitely narrow BSE). This
idealized scenario originates from the assumption that correlations fully survive the
application of the disordered potential (∆r/

√
Dt→ 0) and is of course never strictly

realized. A refined calculation [Cherroret 13] shows that the BSE has in fact a finite
width ∼

√
D∆t, which increases with the time spent by the cloud in the disorder.

Such a scaling is markedly different from the one of the CBS width, Eq. (2.3).

2.4 CBS across the Anderson transition

Motivated by the experimental observations of atomic CBS and the first realizations
of 3D Anderson localization of atomic wave packets in the same period (see chapter
5) [Jendrzejewski 12b, Semeghini 15], we later investigated numerically the behavior
of the atomic CBS peak in the vicinity of the Anderson phase transition. This
work was done during the PhD thesis of Sanjib Ghosh, co-supervised by Christian
Miniatura (Majulab), Dominique Delande and myself (LKB) [Ghosh 15].

A quantum particle of energy E evolving in a 3D random potential experiences an
Anderson transition at a critical energy Ec known as the mobility edge. Its motion
is diffusive when E > Ec, spatially localized when E < Ec, and sub-diffusive when
E = Ec. In Eq. (2.6), these different behaviors manifest themselves as a change in
the path-length distribution exp(−∆r2/6Dt)/(4πDt)3/2, whose mean square width
〈∆r2〉 ∝ Dt becomes ∝ ξ2 in the localization regime (with ξ the localization length)
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and ∝ t2/3 at the mobility edge (these properties will be discussed in detail in chapter
5). This modifies the CBS angular width as:

k0∆θ ∼


1/
√
Dt E > Ec

1/t1/3 E = Ec

1/ξ E < Ec.

(2.10)

The different temporal scalings (2.10) can be used to pinpoint the Anderson tran-
sition. This task was accomplished by S. Ghosh during its PhD, through numerical
simulations of the momentum distribution in a 3D speckle potential [Ghosh 15]. The
CBS angular width extracted from these simulations is shown in the left plot of Fig.
2.7 for three energies5 E around Ec, and confirms the scaling laws (2.10).

Figure 2.7: Left: CBS angular width as a function of time extracted from numerical
simulations of CBS in a 3D speckle potential, for three energies around the mobility
edge [Ghosh 15]. Right: Parameter Λ, defined in Eq. (2.11), computed numerically
from the CBS width and plotted as a function of energy for various times. All curves
cross at the mobility edge Ec. Here times and energies are respectively measured in
units of the correlation time and of the correlation energy of the speckle potential.

In the vicinity of Ec, D(E) ∝ |E − Ec|ν and ξ(E) ∝ |E − Ec|−ν , where ν is
the critical exponent of the Anderson transition. The three laws (2.10) can then be
recast under the unified form

Λ ≡ 1

t1/3k0∆θ
= F

[
χ(E)t 1/3ν

]
, (2.11)

where χ(E) ∝ E−Ec and F is a function characteristic of the transition. Eq. (2.11)
indicates that the dynamics of the CBS width is governed by a single parameter,
which was not a priori obvious since the problem involves at least the two parameters
E and t. This property is reminiscent of the celebrated single-parameter scaling
theory Anderson localization [Abrahams 79]. A direct consequence is that when

5In the diffusion regime, the spectral function is narrow so the energy E is roughly ~2k20/2m.
In the localization regime on the other hand, energy is strongly broadened and the selection of a
well-defined E is more tricky. In [Ghosh 15] this was achieved by application of a numerical filter.
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ln Λ is plotted against E, the curves at different times should cross at E = Ec. This
is indeed observed numerically, see the right plot in Fig. 2.7.

The CBS width in 3D can also be exploited to extract an accurate numerical
estimate of the mobility edge and of the critical exponent. To achieve this goal, a
strategy consists in postulating that the single-parameter scaling law (2.11) holds
not only in the close vicinity of the mobility edge, but also away from it, with
the functions χ and F unknown. One then Taylor expands χ and F in powers
of E − Ec and t1/3ν , and fits this expansion with numerical data of Λ, using Ec,
ν and the coefficients of the Taylor expansion as fit parameters. Applying this
procedure to the CBS width yields ν = 1.61 ± 0.03 and, for instance, Ec ' −0.48
for a disorder amplitude V0 = 1 [Ghosh 15]6. These values are in good agreement
with the best numerical estimates available based on transfer-matrix calculations
[Slevin 14, Delande 14] which give, in particular ν = 1.57± 0.01 [Slevin 14].

The idea of using the CBS width for characterizing the Anderson transition was
implemented experimentally recently in [Cobus 16]. This experiment did not use
cold atoms but elastic waves propagating in a network of Aluminium beads, see Fig.
2.8(a). To detect the Anderson transition, an acoustic pulse is sent through this

Figure 2.8: (a) Principle of the measurement of CBS with acoustic waves carried
out in [Cobus 16]. (b) CBS profiles measured in the diffusion (top) and localization
(bottom) regimes at increasing times.

network, and the reflected signal is detected as a function of time by an array of
transducers. Fig. 2.8(b) shows measured CBS profiles in the diffusion (top) and
localization (bottom) regimes7. The saturation of the CBS width in the localization
regime is well visible. A critical exponent was also extracted from the data, although
a too low value ν ' 1 was found. It should be noted, however, that in this setup
the data analysis is complicated by the interface and by the finite thickness of the
sample, which alter the CBS profile. In this respect, cold atoms again constitute an
asset.

6These value of Ec and V0 refer to a blue-detuned speckle potential, and are measured with
respect to the average value of the potential and in units of the speckle correlation energy.

7Here one switches from a regime to the other by changing the carrier frequency of the pulse
(the energy E in the language of matter waves).
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The coherent forward scattering effect

This chapter is based on the following articles:

• T. Karpiuk, N. Cherroret, K. L. Lee, B. Grémaud, C. A. Müller, C. Miniatura, Coherent
forward scattering peak induced by Anderson localization, Phys. Rev. Lett. 109, 190601
(2012)

• S. Ghosh, N. Cherroret, B. Grémaud, C. Miniatura, D. Delande, Coherent forward
scattering in two-dimensional disordered systems, Phys. Rev. A 90, 063602 (2014)

• S. Ghosh, C. Miniatura, N. Cherroret, D. Delande, Coherent forward scattering as a
signature of Anderson metal-insulator transitions, Phys. Rev. A 95, 041602(R) (2017)

We discovered the coherent forward scattering (CFS) effect in 2012, shortly after
our characterization of CBS in momentum space. CFS refers to an interference
peak that grows symmetrically to the CBS peak in the momentum distribution of a
matter wave released with a finite mean momentum in a disordered potential. Unlike
CBS, which is triggered by weak localization, the full growth of the CFS peak is
associated with Anderson localization. In this chapter I summarize its physics, to
which I devoted a significant part of my activity since 2012.

3.1 A numerical experiment

We discovered the CFS peak when seeking the manifestations of Anderson localiza-
tion in the momentum distribution of Fig. 2.3. This question was partly answered
in Sec. 2.4: Anderson localization qualitatively modifies the shape of the CBS peak,
in particular the time dependence of its angular width. There is, however, another
manifestation: at the onset of Anderson localization, which occurs at a characteristic
time tloc in general much longer than the scattering time, a new peak grows around
the forward direction k ' +k0. We first observed this phenomenon in 2D numerical

17
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Figure 3.1: Momentum distribution (2.5) obtained by numerical propagation of a
plane-wave state |k0〉 in a 2D speckle potential. The disorder amplitude is here five
times larger than in Fig. 2.3. At long times, a “CFS” peak grows around k = +k0.

momentum distributions [Karpiuk 12], reproduced in Fig. 3.1. These distributions
were obtained for a disorder (speckle) amplitude five times larger than in Fig. 2.3
so to reduce the localization time tloc. Incidentally, the scattering mean free time is
also smaller than in Fig. 2.3, which explains why the ring looks thicker. The distri-
butions in Fig. 3.1 correspond to three successive times beyond the establishment
of the structure {ring+CBS peak}. In the upper plot, only the ring and the CBS
peak are present. In the middle plot, the CFS peak grows around k = k0. The
lower distribution is the asymptotic one: the CFS peak has grown to its maximum
value and has become symmetric to the CBS peak.

3.2 Theory

3.2.1 Insufficiency of the one-loop approximation

To understand the origin of the CFS peak, let us come back to the description of
atom transport in terms of scattering paths. In chapter 2 we modeled nk(t) as the
sum of an incoherent –Fig. 2.2(a)– and a coherent –Fig. 2.2(b)– contribution, in
which the paths ψi and ψj propagate along the same scattering sequence respectively
in the same or in opposite directions. These contributions are known as “diffuson”
and “cooperon”. They are reproduced diagrammatically in Figs. 3.2(a) and (b) in
two equivalent representations (the upper ones explicitly display the dotted impurity
lines that connect the scattering events shared by the two paths).

As a matter of fact, diagrams (a) and (b) are only the leading-order (zeroth and
first-order) terms of a weak-localization perturbation expansion of nk(t). These dia-
grams have a different spatial structure in k space: the diffuson (a) is smooth while
the cooperon (b) is peaked around k = −k0. Higher-order terms involve diagrams
with these two structures as well. Those that are peaked around k = −k0 modify
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Figure 3.2: Diagrams describing (a) classical diffusion and (b) CBS. (c) and (d) are
the leading-order diagrams contributing to the CFS peak.

the CBS peak (they are precisely responsible for the change of the CBS shape at the
onset of Anderson localization discussed in Sec. 2.4), while the smooth ones modify
the diffusive background, we will discuss them in chapter 5. There exists, however,
another interesting category of diagrams : their spatial structure is peaked around
k = +k0. At second order there are two such diagrams. They are shown in Figs.
3.2(c) and (d), again in two equivalent representations. The approximation that
consists in taking them into account is referred to as a “two-loop approximation”
[Hikami 81]. Diagram (c) involves the direct concatenation of two cooperons. For
this reason, an atom with initial momentum k0 is twice backscattered and ends up
with a momentum k0 after the multiple scattering sequence: the diagram is peaked
around k = +k0. The other correction (d) is the time-reversed version of diagram
(c): both are thus strictly equal in a time-reversal invariant system.

The two-loop interference diagrams (c) and (d), peaked around k = k0, consti-
tute the leading-order contributions to the CFS peak. This was initially postulated
in [Karpiuk 12]1, and later proven rigorously in [Micklitz 14] with the field-theoretic
approach to disordered systems (nonlinear σ-model) in a quasi-1D geometry, by
perturbation of the σ-model action.

3.2.2 Emergence of CFS at the localization time

It remains to clarify why the CFS diagrams apparently manifest themselves only
at long times, in general well beyond the establishment of the CBS peak as ob-
served in numerical simulations. For this purpose, we can make use of a simple
geometrical argument where an atom trajectory in the random potential is seen as
a semi-classical“tube” of cross-section λ2

0 and length v0t (v0 = ~k0/m, k0 = 2π/λ0)
[Montambaux 07]. The probability for the interference in Fig. 3.2(c) to occur is then
essentially the geometrical probability for the cooperon loop (b) to cross itself at
some point along the trajectory. This probability P2-loop ∼ (λd−1

0 v0t)/Vtot is given by
the ratio of the tube volume to the total volume accessible to the atom. The latter
is Vtot ∼ (Dt)d/2 in the diffusion regime, and Vtot ∼ ξd in the Anderson localization

1In fact, only diagram (c) was identified in this paper. It is only in subsequent works
[Micklitz 14, Ghosh 14] that it was realized that diagram (d) should be also accounted for.
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regime, so that:

P2-loop ∼


1

(k0`)d−1

(
t

τ

)1−d/2

diffusion

k0`

(k0ξ)d
t

τ
localization.

(3.1)

In the diffusion regime, this prediction reproduces the result of a rigorous, micro-
scopic calculation of diagrams 3.2(c) and (d) [Karpiuk 12], and shows that the pro-
bability for a two-loop interference to occur is negligible when d = 2, 3 (in 3D P2-loop

even decays with time). In the localization regime, the result (3.1) is only qualita-
tive, but nevertheless clearly indicates that P2-loop increases with time. This confirms
that the CFS peak appears when Anderson localization sets in. The characteristic
time at which the CFS peak is fully contrasted can be estimated by extrapolating
the result obtained in the localization regime to P2-loop ∼ 1:

t ∼ mkd−2
0

~
ξd ∼ hνξd ≡ tloc, (3.2)

which is precisely the general expression of the localization time in dimension d.

3.2.3 Beyond perturbation theory: the long-time limit

Strictly speaking, the perturbative diagrams (c) and (d) solely describe the CFS
peak as long as their magnitude P2-loop remains small compared to 1, i.e. as long as
t� tloc. When t ∼ tloc, higher-order loop diagrams come into play to build up the
full structure of the CFS peak. Re-summing the complete series of CFS diagrams is
a formidable task that has not been accomplished yet. Nonetheless, it turns out that
some insight about the long-time limit t � tloc can be inferred from a simple non-
perturbative argument based on the expansion of the state vector |Ψ(t)〉 of the gas
over the basis of the disordered system’s eigenstates, |Ψ(t)〉 =

∑
n〈φn|k0〉e−iEnt/~|φn〉

[Lee 14, Ghosh 14]. From this expansion it follows that:

nk(t)=
∑
m,n

φ∗n(k0)φm(k0)φn(k)φ∗m(k)e−i(En−Em)t/~ '
t�tloc

∑
n

|φn(k0)|2|φn(k)|2. (3.3)

To write the second equality, we explicitly used that the atomic motion becomes
confined to a volume ξd at long times, due to Anderson localization. In this regime,
localized eigenstates are typically separated by |En − Em| ∼ (νξd)−1 ≡ 2π~/tloc.
Therefore, when t � tloc the off-diagonal phase factors oscillate very fast and va-
nish after disorder averaging. Eq. (3.3) immediately tells us how the momen-
tum distribution looks like at t � tloc. Indeed, in a generic disordered system the
eigenstates φn(k) are complex random Gaussian variables2, uncorrelated at different
k. Furthermore, due to time-reversal invariance the additional symmetry relation
φn(k) = φ∗n(−k) applies. Put together, these two properties lead to:

nk0(t� tloc) = n−k0(t� tloc) = 2nk 6=±k0 ≡ 2nring. (3.4)

2This statistical property can be inferred from the spatial structure of localized modes: φn(r) ∼
eiϕn(r)e−|r|/ξ, where the random phases ϕn(r) fluctuate at the scale of `� ξ.
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In other words, the asymptotic distribution consists of a smooth background nring

and of two peaks at k = ±k0, in agreement with the numerical result of Fig. 3.13. In
passing, time-reversal invariance also implies that nk = n−k in the long-time limit,
which confirms the symmetric structure of the asymptotic CBS and CFS peaks
visible in the lower distribution of Fig. 3.1.

We now have an almost complete picture of the behavior of CFS in time: its
contrast, CCFS(t) ≡ [nk0(t)−nring]/nring, grows at times t ∼ tloc [Eq. (3.1)] and then
saturates at 1 when t� tloc [Eq. (3.4)]. The question of how it evolves in between
these two limits is more tricky. It can be reformulated in a slightly different way
by inserting the density of states (dos) ρ in the mode expansion (3.3), assuming
a statistical independence of eigenfunctions and eigenenergies [Lee 14, Ghosh 14].
This procedure leads to

CCFS(t) = 2π~ρ
∫
dω

2π
e−iωt

δρ(E0)δρ(E0 + ~ω)

ρ(E0)
2 . (3.5)

Eq. (3.5) underlines an interesting –and unexpected– connection between the CFS
peak contrast and the Fourier transform of the correlator of dos fluctuations, a quan-
tity known as the form factor. This relation could be exploited experimentally to get
information about the statistics of energy levels of a disordered system from measure-
ment of the CFS peak. From a more theoretical point of view, the time dependence
of the CFS contrast can conversely be inferred from the calculation of the dos corre-
lator. Such a calculation is still a complicated theoretical problem in general. It was
nevertheless recently solved by means of the field-theoretic approach to disordered
systems [Micklitz 14, Marinho 18], albeit the analytical results obtained in these
works are only valid for quasi-1D geometries. In 2D and 3D, only approximate ex-
pressions are available, and only for t� tloc. Indeed, in this limit the form factor is
dominated by the correlation of nearby levels in the spectrum (|~ω| � 1/νξd). This
correlation can be estimated by diagonalizing the 2 × 2 hybridization Hamiltonian
coupling such pairs of levels, with a coupling strength governed by the overlap of the
two associated localized wave functions [Mott 70, Sivan 87, Altland 14, Ghosh 14].
In 2D, this approach gives:

CCFS(t� tloc) ' 1− α ln(t/tloc)

t/tloc

, (3.6)

where α is a phenomenological prefactor whose precise determination would require
a microscopic calculation. Fig. 3.3 compares numerical results for the CFS contrast
as a function of time with Eq. (3.6) (α and tloc are taken as fit parameters). Note
that at the time scale of the figure, the CBS contrast is always equal to 1 (we remind
that the CBS peak grows over a few τ , where the scattering time τ � tloc in 2D).

3Strictly speaking, the CFS peak is a consequence of Anderson localization in unbounded systems
only. Indeed, the attentive reader will notice that in the reasoning leading to (3.4), what matters
is the existence of a finite mean-level spacing. Therefore, a CFS peak will also show up for a gas
evolving in a spatially-limited disordered potential, for instance in a steep trap, even in the absence
of Anderson localization. In this case however, the localization time is replaced by the Heisenberg
time and the CFS peak has different dynamical properties [Ghosh 14].
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Figure 3.3: Contrast of the CBS (green symbols) and CFS (red symbols) peaks as
a function of t/tloc, obtained from numerical simulations in a 2D speckle potential.
The solid curve is a fit to Eq. (3.6). The dashed line is a guide to the eye.

The CFS peak has not yet been observed experimentally in disordered potentials.
In particular, it was not visible in the distributions measured in [Jendrzejewski 12]
(see Fig. 2.5) because the evolution time was limited to a few ms in this experiment
(for comparison, in experiments that reported on 3D localization of cold atoms tloc

was on the order of a few seconds; in 2D under the same conditions it would be
much longer). Nevertheless, the counterpart of the CFS peak in position space, the
mesoscopic echo in the localization regime (see next chapter), was observed in 2018,
in an experimental setup based on the atomic kicked rotor [Hainaut 18]. We will
briefly discuss this experiment in Sec. 4.2.2.

3.3 CFS across the Anderson transition

The arguments of Sec. 3.2 indicate that the CFS peak shows up only beyond the lo-
calization time, when Anderson localization of eigenstates gives rise to a finite mean-
level spacing. In the diffusion regime, states are extended: no mean-level spacing
can be defined and no CFS peak is expected. Applied to 3D, this reasoning suggests
that the CFS peak can be used as a clear marker of the Anderson transition: on the
diffusive side of the transition, no CFS peak should be visible in the momentum dis-
tribution, whereas on the localized side a CFS peak should be present (at t� tloc).
In other words, at a fixed (long) time the CFS peak contrast should display a jump
as the critical point is crossed. In [Ghosh 17] we indeed observed this phenomenon
in numerical simulations of the 3D Anderson model, which describes the hopping
of a quantum particle (hopping strength J) on a cubic lattice with random onsite
energies uniformly distributed over an interval W [Anderson 58]. At energy E = 0,
this model displays an Anderson transition at a critical value W = Wc ' 16.5J .

Numerical momentum distributions obtained for this model at a fixed long time
are displayed in Fig. 3.4(a,b,c) in the diffusion (W < Wc), critical (W = Wc) and
localization (W > Wc) phases, and confirm the CFS jump. These distributions were
calculated by S. Ghosh during his PhD. Panels (d-f) also display the CFS contrast
as a function of time. In the localization regime we recover the slow growth seen in
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Figure 3.4: (a-c): Long-time limit of the average momentum distribution nk(t)
calculated numerically in the diffusion (W < 12J), critical (W = 16.5J) and local-
ization (W > Wc = 20J) phases of the cubic 3D Anderson model (tunneling rate
J , disorder strength W , energy E = 0). The CFS and CBS peaks are visible at
+k0 and −k0 respectively. The solid curve is a cut along the direction of k0. (d-f):
Evolution of the CFS contrast with time in the three phases.

2D. In the diffusion regime, a small CFS peak shows up a short times, but it quickly
fades away as predicted by Eq. (3.1) for d = 3. What happens at the critical point is
more surprising: a CFS peak is present at long times, though with a reduced contrast
CCFS ' 0.34. By assuming that the equality (3.5) between the CFS contrast and
the form factor still holds at the critical point, one can show that the value of CFS
contrast at long times in fact coincides with the spectral compressibility χ of the
disordered system [Chalker 96a, Chalker 96b]. In a complex system, this quantity
quantifies the fluctuations of the number of levels with respect to their mean in a
given energy interval. It plays, in particular, an important role in the context of
random-matrix theory [Mehta 91, Bohigas 91]. The level-number fluctuations are
typically suppressed in the diffusion regime (χ = 0, the spectrum is said to be
“rigid”), whereas they are typically strong in the localization regime (χ = 1). The
intermediate critical value χ ' 0.34 carries information on the multifractal character
of eigenstates at the mobility edge and appears to be universal [Zharekeshev 95].
This universality was indeed observed numerically in [Ghosh 17], where the CFS
contrast was calculated at the critical point of the Anderson transition for various
types of disorder potentials.
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CHAPTER 4

Mesoscopic echo and quantum boomerang

This chapter is based on the following articles:

• C. Hainaut, I. Manai, R. Chicireanu, J.-F. Clément, S. Zemmouri, J. C. Garreau, P.
Szriftgiser, G. Lemarié, N. Cherroret, and D. Delande, Return to the origin as a probe
of atomic phase coherence, Phys. Rev. Lett. 118, 184101 (2017)

• C. Hainaut, I. Manai, J.-F. Clément, J. C. Garreau, P. Szriftgiser, G. Lemarié, N.
Cherroret, D. Delande, and R. Chicireanu, Controlling symmetry and localization with
an artificial gauge field in a disordered quantum system, Nature Comm. 9, 1382 (2018)

• T. Prat, D. Delande, and N. Cherroret, The Quantum Boomerang: an unexpected sig-
nature of Anderson localization, arXiv 1704.05241 (2018)

Coherent back and forward scattering are manifestations of weak and Anderson
localization in momentum space. Their observation with cold atoms requires a
specific procedure to prepare the gas in a plane-wave state. So far however, the
majority of experiments that reported on atom localization considered it in position
space, exploiting another of its signatures: the “freezing” of wave-packet spreading.
This phenomenon, which was observed experimentally in 1D [Billy 08, Roati 08]
and 3D [Jendrzejewski 12b, Semeghini 15] disordered potentials as well as in clouds
subjected to pulsed standing waves (a system known as the kicked rotor) [Chabé 08,
Manai 15], will be the object of the next chapter. Beyond the freezing of spreading
wave packets however, it is also interesting to investigate how the CBS and CFS
peaks of chapters 2 and 3 manifest themselves in position space. This question,
perhaps less known, is addressed in the present chapter.

4.1 The mesoscopic echo

4.1.1 Diffusion regime

When a wave packet is let spread in a random potential, the weak localization
interference at play in CBS manifests itself as a narrow peak at the origin of the
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density profile, standing on top of a diffusive background. This peak is due to the
enhanced probability for the particles to return to their starting point by constructive
interference between counter-propagating trajectories. In the following we refer to
this phenomenon as the “mesoscopic echo”, borrowing the terminology introduced
in [Prigodin 94]. The mesoscopic echo can be observed in the density distribution
of a wave packet evolving according to the Hamiltonian H = p2/(2m) + V (r):

nr(t) ≡ |〈r|Ψ(t)〉|2 = |〈r|e−iHt/~|Ψ(t = 0)〉|2. (4.1)

Fig. 4.1(a) shows the distribution (4.1) obtained after a few mean free times by
numerically propagating a Gaussian wave packet nr(0) ∝ exp[−(r−r0)2/2∆r2] in a
2D speckle potential V (r). It displays a broad diffusive pedestal and a narrow peak
around the origin r = r0. Note that the initial state considered here is the exact

Figure 4.1: (a) Spatial distribution (4.1) obtained by numerical propagation of a
narrow wave packet in a 2D speckle potential after a few τ . The mesoscopic echo is
visible. (b) Shape of the distribution at long times. When t � tloc the mesoscopic
echo is due to the cooperon diagram, yielding an enhancement factor of 2. When
t� tloc, higher-loop diagrams proliferate, yielding an enhancement factor of 3.

opposite of the plane-wave state needed to observe CBS in the far field. Precisely,
the wave-packet width ∆r must be much smaller than the mean free path ` [compare
with criterion (2.4) for CBS]. When this condition is fulfilled, the density distribution
in the diffusion regime is given by [Montambaux 07]:

nr(t) =
e−(r−r0)2/2dDt

(4πDt)d/2

[
1 +

∫
ddr′g2(|r − r′|)nr′(0)

]
, (4.2)

where the function g(|r|) decays on the scale of the mean de Broglie wavelength
λ0 = 2π/k0 of the wave packet: g(|r|) = J0(k0|r|) exp(−|r|/2`) in 2D1. The Gaussian
prefactor in Eq. (4.2) is the classical diffusive background associated with pairs of
paths propagating along the same scattering sequence (diffuson). The second term
in the brackets is the mesoscopic echo, associated with pairs of paths propagating
along the same scattering sequence but in opposite directions (cooperon), see Fig.
4.1(b). The peak contrast (ratio of the cooperon and diffuson at r = r0) is

CME =

∫
ddr′g2(|r0 − r′|)nr′(0). (4.3)

1see, e.g., [Montambaux 07] for the expression of g(|r|) in any dimension.
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CME = 1 in the ideal case of a initial wave packet of width ∆r � λ0. When this
condition is not met, the peak contrast is reduced by the convolution (loss of spatial
coherence). With classical waves, the condition ∆r � λ0 can be readily realized by
using a narrow quasi-monochromatic pulse impinging on a disordered sample. The
mesoscopic echo was thus observed long ago in acoustics [Rosny 00, Weaver 00]2. A
beautiful experiment also reported on this phenomenon in the near-field intensity
profile of seismic waves propagating in earth’s crust [Larose 04].

4.1.2 Localization regime

The description of the mesoscopic echo in terms of a cooperon must be revisited at
the onset of Anderson localization t ∼ tloc, where interference diagrams involving
more than one loop start to proliferate. One of them is shown in Fig. 4.1(b): it is
the exact counterpart of the CFS diagram (c) in Fig. 3.2. In position space, such a
higher-loop diagram makes the contrast of the mesoscopic echo grow beyond 1. The
fate of the peak in the limit t� tloc can be inferred by a mode decomposition analog
to that used in Sec. 3.2.3: |Ψ(t)〉 =

∑
n〈φn|r0〉e−iEnt/~|φn〉. From this decomposition

we can express the spatial density nr(t) = |〈r|Ψ(t)〉|2 and, as in Sec. 3.2.3, neglect
the oscillating phase factors beyond the localization time:

nr(t) '
t�tloc

∑
n

|φn(r0)|2|φn(r)|2. (4.4)

We then use that the localized wave functions are random Gaussian variables, un-
correlated at different positions. This is the same argument as in momentum space,
except for one detail: the spatial eigenstates are here real due the time-reversal
invariance of the disordered system. This implies:

nr0(t� tloc) = 3nr 6=r0 . (4.5)

In other words, from t ∼ tloc onward, the mesoscopic echo grows beyond the factor-2
enhancement expected from the sole account of the cooperon, and reaches a factor-
3 enhancement at long times. This phenomenon, which is the counterpart of the
growth of the CFS peak in momentum space, is schematized in Fig. 4.1(b). As
for CFS it constitutes a signature of Anderson localization in unbounded disordered
media3. The growth of the mesoscopic echo in time is governed by the same curves
as in Fig. 3.3: the factor-2 enhancement due to the cooperon shows up over a few
scattering times τ , while the establishment of the factor 3 takes place over tloc.

4.2 Experimental observations with cold atoms

Observing the mesoscopic echo with an atomic matter wave is challenging because
the spatial distributions of cold gases in optical traps are in general too large for the
criterion ∆r � λ0 to be satisfied. Even worse, the energy distribution of cold gases

2These experiments did not involve disorder in the strict sense but a chaotic cavity.
3As for the CFS peak, a similar enhancement can be observed for diffusive waves in closed

systems. This was shown experimentally with ultrasound in a chaotic cavity [Weaver 00].
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in random potentials is not naturally peaked around a well-defined E0 = ~2k2
0/2m,

as we implicitly assumed so far [in particular when writing Eq. (4.2)], but is instead
rather smooth. For these reasons, the mesoscopic echo is in general poorly contrasted
and, incidentally, it was not visible in any of the experiments on disordered cold gases
reported in the past ten years. The first successful observation is recent, and was
achieved in an experimental realization of the atomic “kicked rotor” that we discuss
below.

4.2.1 Diffusion regime

The mesoscopic echo was first measured with cold atoms in the diffusion regime in
2017, during the PhD thesis of Clément Hainaut at PhLAM [Hainaut 17]. In this
experiment no spatial disorder was used, but rather a temporal form of disorder
where the atoms are subjected to an optical standing wave modulated by a peri-
odic sequence of pulses. This setup, known as the atomic kicked rotor, has played
an important role in the quest for Anderson localization of cold atoms (more de-
tails will be given in chapter 5). Its physics is the following. When subjected to
a kick, an atom undergoes a change in momentum, whose value becomes quickly
unpredictable after a few kicks. This corresponds to a chaotic motion, similar to a
multiple scattering process but in momentum space. Like in spatially disordered sys-
tems, interference between scattering paths may also occur and lead to localization.
In the atomic kicked rotor, the mesoscopic echo shows up around the point p = 0 of
the momentum distribution np(t) ≡ |〈p|Ψ(t)〉|2. Observing a well-contrasted peak
in this system requires np(t = 0) to be as narrow as possible, i.e. a gas as cold as
possible.

The experiment [Hainaut 17] used a gas a of Cs atoms cooled down to ∼ 2µK.
Even at this low temperature though, the contrast of the mesoscopic echo is sig-
nificantly decreased. For this reason, a differential measurement of the peak was
proposed. Precisely, the following Hamiltonian4, inspired of [Tian 05], was realized:

H=
p2

2
+K

∑
n

[cosx δ(t−2n) + cos(x+a) δ(t−2n+1)] . (4.6)

Eq. (4.6) slightly differs from the standard kicked-rotor Hamiltonian [Casati 79], ow-
ing to the additional spatial phase a (the usual kicked rotor is recovered when a = 0).
In [Hainaut 17], the blinking standing wave is produced by two counter-propagating
lasers periodically switched on and off. The phase a is obtained by spatially shifting
the standing wave every second pulse. The mesoscopic echo, then, is observed by
time-of-flight imaging of the momentum distribution np(t) ≡ |〈p|Ψ(t)〉|2. Experi-
mental distributions at two successive kicks are shown in Fig. 4.2 (left panel). The
value of the distribution at p = 0 is also shown in the right panel as a function of
time. The interest of using a phase shift a appears: the mesoscopic echo periodi-
cally disappears and reappears every second kick. It can therefore be well identified,
despite its low contrast. The blinking of the mesoscopic echo is due to an additional

4In Eq. (4.6) time is measured in units of the standing-wave pulse period T , space in units of
the laser wave number (2kL)−1 and momenta in units of m/(2kLT ).
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Figure 4.2: Left: experimental distribution np(t) measured in [Hainaut 17] at two
successive kicks. Right: np=0(t) as a function of time, which shows an oscillation of
the mesoscopic echo.

phase exp(iΦ) = exp(iaδp) imprinted to an atom when its momentum is scattered
by δp. The effect of this phase on the interference between time-reversed paths is
illustrated in Fig. 4.3. Panel (a) shows an interference sequence of 4 kicks. The

Figure 4.3: Cooperon diagram in the kicked-rotor model (4.6), at an even (a) and an
odd (b) kick number. Vertical lines refer to the kicks, which change the momentum,
and horizontal lines to free propagation between the kicks. For an even kick number,
the two counter-propagating paths accumulate the same phase, so that the interfer-
ence is constructive. For an odd kick number, the two paths accumulate opposite
phases, yielding a finite phase difference and a suppression of the mesoscopic echo.

direct (black) and reversed (dashed red) paths accumulate the same total phase
Φdir = Φrev = 8a: the interference is constructive, Φ ≡ Φdir − Φrev = 0. In con-
trast, for a sequence of 5 kicks, panel (b), the accumulated phases Φdir and Φrev

have opposite signs, so that a finite phase difference Φ subsists: the interference is
not constructive and the average over all paths suppresses the mesoscopic echo in
general (provided a is large enough, see below).

The periodic suppression and revival of the peak can also be analytically cal-
culated with the impurity-diagram technique. This approach, originally developed
for spatially disordered systems, was adapted to the kicked rotor by A. Altland
in [Altland 93]. We used it to calculate the contrast of the mesoscopic echo per-
tained to model (4.6). This calculation requires to consider separately the series of



30 Chapter 4. Mesoscopic echo and quantum boomerang

crossed diagrams for an odd and an even number of kicks. In the ideal case of an
infinitely narrow initial wave packet, this yields, in the diffusion regime:

np=0(t) ' 1√
4πDt

[
1 +

{
1 t even

e−a
2Dt t odd

]
, (4.7)

where D is the diffusion coefficient. The second term in the brackets is the contri-
bution of the mesoscopic echo. We recover that for finite a this contribution is only
visible at even kicks. At odd kicks, the peak has a low contrast e−a

2Dt, which stems
from the average of the phase factor exp(iaδp) accumulated by the time-reversed
sequences in Fig. 4.3(b) over the diffusive distribution of path lengths δp.

Figure 4.4: (a) Experimental distributions np(t) measured in [Hainaut 18]. In this
experiment the kick strength K is modulated periodically in time so to temporally
separate the contributions of the cooperon and of higher-loop diagrams to the meso-
scopic echo. (b) Contributions of the cooperon (green) and of higher-loop diagrams
(red) to the contrast of the mesoscopic echo, extracted with this procedure. The
difference with Fig. 3.3 is due to the presence of decoherence.

4.2.2 Localization regime

In Sec. 4.1.2 we saw that the enhancement factor of the mesoscopic echo crosses-
over from a factor 2 to a factor 3 at the onset of Anderson localization. At first
sight, distinguishing experimentally between these two regimes seems hard since the
peak is anyhow strongly suppressed by the too broad size of the initial wave packet.
A clever way to circumvent this difficulty was proposed in [Hainaut 18], based on
the idea that the cooperon disappears when the temporal symmetry of the kick
sequence is broken. Precisely, in [Hainaut 18] the kick amplitude K in Eq. (4.6)
was further periodically modulated in time. This modulation was chosen so to break
the time-reversal symmetry of the kick sequence except at specific kicks where the
cooperon becomes nonzero. Fig. 4.4(a), for instance, shows a configuration with
a period-5 modulation, where the cooperon is only visible at kicks t = 6 mod 10
(again no echo shows up at even kicks). With this strategy it becomes possible to
temporally separate the contributions of the cooperon and of higher-loop diagrams,
and in particular to access their individual time dependence. Those are shown in
Fig. 4.4(b). The difference with Fig. 3.3 is explained by the presence of stray
decoherence, which kills the mesoscopic echo exponentially at long times.
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4.3 The quantum boomerang

We have so far discussed two configurations corresponding to two ways of preparing
a cold gas in a disordered potential. In chapters 2 and 3, we considered a cloud
prepared in a (quasi) plane-wave state, nk(t = 0) ' δ(k − k0). The interesting
physics then takes place in momentum space. In the second scenario (this chapter),
the cloud is prepared in a wave-packet state, nr(t = 0) ' δ(r − r0), and the
interesting physics is in position space. In between these two limits however, there
is a third intermediate configuration. Suppose, indeed, that one prepares the gas in
a wave-packet state to which a finite momentum is impulsed:

〈r|Ψ(t = 0)〉 ∝ e−r
2/2∆r2+ik0·r ≡ 〈r|Ψk0〉, (4.8)

where the width ∆r � ` (we here set r0 = 0 without loss of generality). Describing
the dynamics of such a state in a random potential was the objet of the PhD thesis
of Tony Prat, defended in 2017. Because the wave packet now has a finite mean
momentum k0 (unlike in Sec. 4.1), we intuitively expect that it will not only spread
but also move along the direction of k0 when released in the random potential.
To characterize this motion, a natural observable is the average center of mass,
〈r〉 ≡ 〈Ψ(t)|r|Ψ(t)〉, where the overbar again refers to disorder averaging.

To begin with, let consider the time evolution of the center mass within a purely
classical description where the atoms in the cloud behave like Boltzmann particles.
Upon application of the random potential, these particles experience a diffusive
motion which randomizes the directions of their momenta. This randomization
roughly takes place over a transport mean free time τ , and during this process the
wave packet typically moves of one transport mean free path `. A simple calculation
based on the Boltzmann kinetic equation confirms this scenario [Prat 18]:

|〈r〉| = `
(
1− e−t/τ

)
. (4.9)

The Boltzmann picture, however, neglects interference and in particular localization
effects. In the left plot of Fig. 4.5, the classical prediction (4.9) is compared with
exact numerical simulations of the Schrödinger equation in 1D. The difference be-
tween the two results is striking: in the quantum system, the center of mass does not
saturate at ` but goes to zero at long times. In other words, despite the wave packet
has been initially “pushed” forward, it returns to its starting point at long times.
We have called this phenomenon the quantum boomerang. To understand why the
wave packet returns to the origin, one can again resort to the eigenstate expansion
|Ψ(t)〉 =

∑
n〈φn|Ψk0〉e−iEnt/~|φn〉 to express the center of mass 〈Ψ(t)|x|Ψ(t)〉. At

times longer than tloc (which is on the order of τ in 1D), we infer:

〈x〉 '
t�tloc

∑
n

|〈φn|Ψk0〉|2〈φn|x|φn〉. (4.10)

To see that quantity is actually zero, we have to make use of the symmetry properties
of the system. Due to time-reversal invariance, first, the eigenfunctions φn(x) are
real. This implies that 〈φn|Ψk0〉 = 〈φn|Ψ−k0〉∗, such that Eq. (4.10) is invariant
upon k0 → −k0. In other words, the long-time limit of the average center of mass
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Figure 4.5: Left: numerical center of mass compared with the analytical result of
Berezinskii approach at long times. The dashed curve is the classical prediction
(4.9). Right: x > 0 (blue) and x < 0 parts of the density profile of the moving wave
packet at three successive times. The dashed curve is the asymptotic distribution
calculated by Gogolin in [Gogolin 82].

is the same for right- and left-moving wave packets. Due to the parity-invariance of
the system on average, this property necessarily implies that 〈x〉 is zero. Note that
the argument presented here is not specific to 1D but also applies to the localization
regime of 2D and 3D systems [Prat 18].

The quantum boomerang is a manifestation of Anderson localization that mixes
both large and short scales (the motion takes place within one mean free path but
over long times). This makes its quantitative description difficult in general. In
particular, usual diagrammatic approaches or nonlinear σ-models seem of limited
use as they apply to scales beyond ` in general. In 1D nevertheless, 〈x〉 be calcu-
lated analytically by means of an exact solution of the localization problem due to
Berezinskii [Berezinskii 74]. This approach consists in a complete resummation of
interference contributions based on an ordering of 1D impurity diagrams. For t� τ ,
it leads to 〈x〉 ' 64` ln(t/4τ)(τ/t)2 . This prediction agrees well with the numerics,
see the red curve in the left panel of Fig. 4.5. The logarithm is captured as well, as
shown in the inset.

The right panel of Fig. 4.5 finally shows how the density profile nx(t) evolves as
the boomerang effect occurs. nx(t) is displayed at three successive times, for a wave
packet of initial momentum along +x. Blue curves are the x > 0 part of the profile,
and red curves the x < 0 part. The profiles exhibit a ballistic peak responsible
for the increase of 〈x〉 at short times. After this peak has been attenuated, the
profile re-symmetrizes itself around x = 0. This demonstrates that the boomerang
effect does not rely on a global forth-and-back motion of the wave packet, as one
could have expected, but rather on a re-symmetrization of the profile around x = 0.
Precisely, at very long times nx(t) converges to the same asymptotic distribution as
for k0 = 0, the so-called Gogolin profile [Gogolin 82], shown as a dashed curve in
the right panel of Fig. 4.5.
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Weakly interacting disordered matter waves

This chapter is based on the following articles:

• N. Cherroret, B. Vermersch, J. C. Garreau, D. Delande, How nonlinear interactions
challenge the 3D Anderson transition, Phys. Rev. Lett. 112, 170603 (2014)

• N. Cherroret, A self-consistent theory of localization in nonlinear random media, J. of
Phys.: Cond. Mat. 20, 024002 (2016)

• N. Cherroret, T. Karpiuk, B. Grémaud, C. Miniatura, Thermalization of matter waves
in random potentials, Phys. Rev. A 92, 063614 (2015)

The effect of particle interactions on localization phenomena is a difficult pro-
blem for which we do not have yet a general understanding. In weakly disor-
dered conductors, one effect of electron-electron collisions is to introduce deco-
herence in the counter-propagating interference trajectories responsible for weak
localization [Altshuler 82]1. In systems of atomic bosons, interactions were also
shown to partially destroy coherent backscattering [Hartung 08]. The interplay be-
tween interactions and Anderson localization is, on the other hand, a much more
complicated problem. Since 2006, an important theoretical activity on the gene-
ral localization properties of isolated many-body disordered systems has flourished
(see [Nandkishore 15, Altman 15, Alet 18] for reviews), motivated by seminal works
[Gornyi 05, Basko 06] which established that the spectrum of 1D disordered many-
body systems may display a transition between a conducting phase and an insulating
“many-body localized” phase. The experimental observation of many-body locali-
zation has already been claimed [Schreiber 15, Bordia 16, Choi 16]. In this chapter
though, we will be less ambitious and only touch upon the question of interactions.
To this aim we will restrict ourselves to weakly interacting gases of bosons at the
mean-field (single-particle) level, and address the particular question of the dynami-
cal evolution of atomic wave packets in random potentials.

1Electron interactions also bring an additional (negative) coherent contribution to the conduc-
tivity, known as the Altshuler-Aronov correction [Altshuler 80].
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5.1 Localization of non-interacting wave packets

5.1.1 Reminders

When subjected to a random potential, a non-interacting atomic wave packet of
mean energy E spreads according to Eq. (4.2) in the diffusion regime. In the pre-
vious chapter, we were mostly interested in the mesoscopic echo that grows around
r = r0. We now focus on the shape of the profile at r 6= r0. In the diffusion
regime, this profile is nr(t) ≡ PE(r, r0, t) ' exp[−(r − r0)2/2dDt]/(4πDt)d/2. It is
governed by the diffusion coefficient D = v`/d and has a mean square width

〈∆r2〉 ≡
∫
ddr (r − r0)2nr(t) ' 2dDt. (5.1)

At the onset of Anderson localization, diffusion breaks down, the wave packet stops
expanding and its spatial distribution becomes exponentially localized, PE(r, r0, t) ∝
exp(−|r − r0|/ξ), with

〈∆r2〉 ∝ ξ2. (5.2)

The condition for wave-packet localization strongly depends on dimensionality. In
2D this happens through a cross-over: localization occurs when t ∼ tloc � τ . In
1D the localization time is on the order of τ , so that the diffusion regime does not
even exist and localization is the rule. In 3D finally, localization shows up through
a phase transition at a critical energy Ec, the mobility edge: a wave packet of
mean energy E > Ec spreads according to Eq. (5.1) up to arbitrarily long times,
whereas if E < Ec it gets localized. At the mobility edge E = Ec finally, there is no
characteristic time scale and the expansion is sub-diffusive:

〈∆r2〉 ∝ t2/3. (5.3)

The critical properties of the Anderson transition manifest themselves in the energy
dependence of D and ξ. The diffusion coefficient vanishes in the vicinity of the
critical point, while the localization length diverges: D ∝ (E − Ec)

ν and ξ ∝
(Ec−E)−ν . These scalings are algebraic, governed by the critical exponent ν ' 1.58.

5.1.2 Experiments

The first experimental observation of the three laws (5.1), (5.2) and (5.3) for cold
atoms was achieved in 2008, exploiting a modified version of the atomic kicked-
rotor [Chabé 08]. We remind that the kicked-rotor Hamiltonian, Ĥ = p̂2/2 +
K cos x̂

∑
n δ(t − n), describes a particle subjected to a blinking standing wave.

Its quantum dynamics displays a phenomenon known as dynamical localization
[Casati 79], which is formally equivalent to 1D Anderson localization except that
it takes place in momentum space [Fishman 84]. When the kick strength is addi-
tionally modulated in a quasi-periodic fashion, K → K[1 + ε cos(ω1t) cos(ω2t)], see
Fig. 5.1(a), the dynamics of the kicked rotor becomes equivalent to the one of a
3D disordered system [Shepelyansky 89, Lemarié 09], the Anderson transition ta-
king place at a critical value K = Kc. Fig. 5.1(b) shows experimental mean square
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widths 〈∆p2〉 of a cloud of Cs atoms measured in [Chabé 08] for three values of K
in the diffusion (K > Kc), localization (K < Kc) and critical (K = Kc) regimes.
The three scaling laws (5.1), (5.2) and (5.3) are well visible.

Figure 5.1: (a) In [Chabé 08], a cold gas is subjected to a periodic sequence of pulsed
standing waves, the amplitude of which are quasi-periodically modulated in time.
This leads to an effective 3D dynamical spreading of the momentum distribution
of the gas. (b) Mean square width of the momentum distribution measured in this
experiment, for three kick strengths K around the critical point Kc.

After this work, several experiments reported on Anderson localization of atomic
wave packets in spatially disordered optical potentials in 1D [Billy 08, Roati 08] and
3D [Jendrzejewski 12b, Semeghini 15]. These observations were all based on the sa-
turation criterion (5.2), see Fig. 5.2. An important bottleneck of these experiments,
however, is that atoms of various energies around Ec were present in the clouds. For
this reason a clear separation of the three regimes (5.1), (5.2) and (5.3) was not seen
in 3D. We will come back to this point in Sec. 5.3.

Figure 5.2: (a) 1D Anderson localization observed in [Billy 08]. A Bose-Einstein
condensate is released from its trap at t = 0, and constrained to spread along a 1D
optical guide on which an optical speckle potential is superimposed. The spreading is
observed as a function of time by fluorescence imaging. (b) 3D Anderson localization
of a condensate observed in [Jendrzejewski 12b]. At weak disorder (top), the atomic
wave packet is essentially above the mobility edge and thus spreads diffusively. At
stronger disorder (bottom), the wave packet is essentially below the mobility edge
and gets spatially localized.
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5.1.3 Self-consistent theory of Anderson localization

On the theory side, Eqs. (5.1), (5.2) and (5.3) can be proven in the framework of the
self-consistent theory (SCT) of localization. We here briefly remind the spirit of this
approach. As seen in chapter 4, in the diffusion regime pairs of counter-propagating

Figure 5.3: (a) Diagrammatic representation of weak localization: the diffusion
coefficient is reduced owing to the occurrence of cooperon loops in the propagation.
(b) At the onset of Anderson localization, interference proliferate. In the SCT, this
proliferation is treated by a nesting of cooperon loops.

paths (cooperon) give rise to a mesoscopic echo at the center r = r0 of the profile
nr(t). To leading-order however, the cooperon also affects the diffusive profile at
r 6= r0 by virtue the mechanism in Fig. 4.1(a)2: two amplitudes travel from r′ by
diffusion, then undergo a crossing followed by a propagation sequence along reversed
paths, and finally recombine before detection at r. The net effect of the loop thus
constructed is a decrease of the diffusion coefficient from D0 ≡ v`/d to D0+δD<D0

known as weak localization [Gor’kov 79, Bergmann 84]. The relative change δD/D0

can be estimated from the geometrical probability for an atom trajectory to cross
itself at some point. This probability is given by the product of the semi-classical
volume λd−1vdt spanned by an atom over a time t with the probability density
PE(r, r, t) of making a loop, integrated over all possible times:

δD

D0

=

∫
λd−1vdt× PE(r, r, t) ∼ 1

πν~

∫
ddQ

−iω +D0Q
2

∣∣∣∣
ω→0

. (5.4)

The perturbative correction (5.4) contains the premises of Anderson localization.
Indeed, the integral over Q displays an infrared divergence in 1D and 2D, which
signals that diffusion always break down in the thermodynamic limit in these di-
mensions. In 3D on the other hand, δD/D0 ∼ −1/(k`)2, which suggests the critical
point of the Anderson transition (D ≡ D0 + δD → 0) if one extrapolates to k` ∼ 1.

A prescription to go beyond the perturbative result (5.4) and thus to describe
Anderson localization was proposed by Vollhardt and Wölfle in 1980 [Vollhardt 80a,
Vollhardt 80b, Vollhardt 92, Wolfle 10], and is today known as the SCT of localiza-
tion. The strategy consists in substituting the renormalized D for D0 in the weak
localization correction:

1

D
=

1

D0

+
1

πν~D0

∫
ddQ

(2π)d
1

−iω +DQ2 . (5.5)

2These processes indeed minimize the path-length difference (∼ `) between the two paths.
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This procedure describes a nesting of localization loops, as illustrated in Fig. 5.3(b).
Although approximate, the SCT rather accurately predicts the phase diagram of the
Anderson model [Kroha 90], can be engineered to describe real systems (with various
shapes/boundary conditions etc.) [van Tiggelen 07, Cherroret 08], and provides a
quantitative basis for the phenomenological scaling theory [Vollhardt 82]. A conse-
quence of the renormalization procedure (5.5) is that the diffusion coefficient D natu-
rally acquires an ω dependence. Once D(ω) is found from Eq. (5.4), the density dis-
tribution of a wave packet follows from PE(r, r0, t) =

∫
dωddq/(2π)d+1eiq·(r−r0)−iωt×

1/[−iω + D(ω)q2]. In 1D for instance, the resolution of Eq. (5.5) leads to D(ω) =
−iωξ2, from which we immediately recover PE(x, x0, t) ∝ exp(−|x− x0|/ξ) and Eq.
(5.2). In 3D, Eq. (5.5) also predicts a critical point at a certain value3 E = Ec
with D(ω) = −iωξ2 for E < Ec, D(ω) = D0 for E � Ec and D(ω) ∝ (−iω)1/3 for
E = Ec, which again leads Eqs. (5.1), (5.2) and (5.3). The SCT thus fairly well
describes the dynamics of wave packets at the onset of Anderson localization. One
should keep in mind, however, that the approach remains approximate since only a
certain class of diagrams is accounted for while many others are neglected4. In par-
ticular, it fails to describe the large fluctuations in the vicinity of the critical point
in 3D, and in particular gives the wrong estimation ν = 1 of the critical exponent.

5.2 Spreading of weakly-interacting bosons

5.2.1 Sub-diffusion

Clarifying how weak particle interactions modify the spreading of wave packets in
disorder has occupied several groups since two seminal articles published in 2008
[Pikovsky 08, Kopidakis 08]. From a theoretical point of view, this problem is most
easily tackled with bosons, which obey the nonlinear Gross-Pitaevskii equation at
low temperatures. Despite the relative simplicity of the Gross-Pitaevskii equation,
the problem turned out to be non-trivial, even in 1D, at both the numerical and
theoretical levels. In [Pikovsky 08, Kopidakis 08], it was numerically found that for a
small nonlinearity and at strong disorder, wave packets are no longer localized at long
times but spread sub-diffusively, 〈∆r2〉 ∝ tα with α < 1. In other words, Anderson
localization is destroyed, but diffusion is not fully recovered. The precise value of
α was somewhat debated [Pikovsky 08, Kopidakis 08, Flach 09, Garcia-Mata 09],
for the sub-diffusion process establishes very slowly and the precise estimation of
α requires to run simulations over enormously long times5. Numerics nevertheless
seems to suggest α = 0.3−0.4. The question is not fully clarified though, since other
works also put forward that sub-diffusion could be non-algebraic and eventually
become slower than any power law at arbitrarily long times [Wang 09, Basko 11].
Experimentally, signatures of sub-diffusion of a weakly interacting Bose-Einstein
condensate were found in [Lucioni 11].

3The value of Ec depends on the ultraviolet cutoff needed to regularize Eq. (5.5) at short scales,
and is thus non-universal: it must be determined for each model of disorder.

4In particular, the 2-loop diagrams responsible for the CFS peak are not included in the SCT.
5In the latest numerical experiment aimed to determine α [Vakulchyk 18], the time scale probed

would correspond to 109s in a real experiment!
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5.2.2 Nonlinear self-consistent theory

In 2014 we developed a generalized SCT of localization aimed to take into ac-
count the interaction potential g|Ψ(r, t)|2 (g > 0) of the Gross-Pitaevskii equa-
tion [Cherroret 14, Cherroret 16]. This approach is based on previous theoreti-
cal works which established, in a context of nonlinear optics, that for continuous
light beams propagating in disordered materials a weak Kerr nonlinearity dephases
the cooperon but leaves the diffuson unaffected. A consequence is, in particu-
lar, that the coherent backscattering peak is reduced, while diffusion is hardly af-
fected [Agranovich 91, Hartung 08, Wellens 08]. In short, nonlinear interactions
can be implemented into the SCT (5.5) by adding a dephasing-like term of the type
ignr(ω) in the denominator of the weak localization correction in Eq. (5.5)6. Such
an approach however relies on the essential assumption that the wave packet energy
distribution is peaked around a mean energy E and that it remains so in the course
of time (absence of thermalization), an approximation that cannot be true up to
arbitrarily long times. We will address this point in Sec. 5.3. Even with this approx-
imation, the nonlinear SCT thus designed [see Eq. (5.6)] is involved and can only be
solved using an homogeneity approximation for the nonlinear term [Cherroret 16].
In 1D, this leads to the curves in Fig. 5.4(a) for the mean square width 〈∆x2〉
of a spreading wave packet. They show that when g 6= 0 〈∆x2〉 starts to increase
sub-diffusively beyond a characteristic time7 τNL ∼ ξ/gN , reaching 〈∆x2〉 ∼ t1/2

when t� τNL. This behavior is qualitatively similar to the predictions of numerical
simulations [Pikovsky 08, Kopidakis 08, Flach 09, Garcia-Mata 09]. The obtained
sub-diffusive exponent is however slightly too large (0.5 instead of 0.3− 0.4), which
may be explained, in particular, by the neglect of energy thermalization.

5.2.3 Sub-diffusion in 3D

In 3D, the nonlinear SCT provides interesting predictions for 〈∆r2〉, shown in Fig.
5.4(b): the nonlinearity has no visible effect for E > Ec. In particular, the asymp-

6More quantitatively, one must take into account that in the self-consistent scheme of Fig.
5.3 loops are nested according to a diffuson/cooperon alternation. The non-equivalence between
diffuson P and cooperon P ′ when g 6= 0 then requires to introduce a set of self-consistent equations,
with a renormalized diffusion coefficient D for P and another D′ for P ′, leading to:

[
−iω −D∇2

r

]
P (r′, r, ω) = δ(r − r′)

1

D
=

1

D0
+

1

πνD0
P ′(r, r, ω)[

−iω −D′∇2
r − i

g

~
nr(ω)∗

]
R′(r′, r, ω) =

1

2πντ2
δ(r − r′)

1

D′
=

1

D0
+

1

πνD0
P (r, r, ω),

(5.6)

where P ′(r′, r, t) = 2πντ2Re [R′(r′, r, t)] and the wave-packet density is nr(t) =∫
ddr′P (r′, r, t)nr′(t = 0). Eqs. (5.6) highlight the dephasing φ ∝ gnr by which interactions

compete with localization: φ alters the Cooperon P ′ via a frequency convolution ∗ reminiscent of
the multiplicative potential g|Ψ(r, t)|2 in the Gross-Pitaevskii equation. In the limit g = 0, the
equations for (P,D) and (P ′, D′) become identical and Eq. (5.5) is recovered.

7~/τNL can be interpreted as the interaction energy in a localization volume. A similar time
scale ∼ 1/g beyond which sub-diffusion prevails was predicted in [Iomin 09].
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Figure 5.4: (a) Mean square width 〈∆x2〉 predicted by the nonlinear SCT for g = 0
(blue curve), gN`/D0 = 10−4 (green curve) and 10−3 (red curve) in 1D. (b) 〈∆r2〉
predicted by the SCT in 3D, for E > Ec, E < Ec and E = Ec. Colored curves
correspond to different values of gN/(D0`), increasing from bottom to top. Only for
E < Ec do interactions qualitatively modify the long-time asymptotics, indicated
by dashed lines. (c) 〈∆p2〉 obtained from numerical simulations of the nonlinear
quasi-periodic kicked rotor.

totic laws (5.1) and (5.3) are robust against interactions. In contrast, for E < Ec
localization is destroyed in favor of sub-diffusion at times t � τNL ∼ ξ3/gN . The
robustness of Eqs. (5.1) and (5.3) can be qualitatively understood by the fact that
the nonlinear dephasing φ ∼ gnr(t) quickly tends to zero as the wave packet gets
diluted in these regimes. On the contrary, the emergence of sub-diffusion below the
critical point is the result of a trade-off between interference due to disorder and de-
phasing due to interactions as the packet spreads: on the one hand, interference tend
to localize the packet and thus to reinforce the dephasing mechanism by preventing
φ from decreasing to zero as time grows. On the other hand, interactions tend to
delocalize the packet, which makes φ decrease and in turn reinforces interference.

Fig. 5.4(c) shows simulations of wave-packet spreading performed by Benôıt Ver-
mersch during his PhD [Vermersch 13]. These simulations do not use a 3D disordered
potential though, but are based on the quasi-periodic kicked-rotor model discussed
in Sec. 5.1.2, to which a nonlinear potential g|Ψ(p, t)|2 is added. Although this
system is not strictly identical8, the results qualitatively reproduce the prediction
of the nonlinear SCT: interactions do not affect much the dynamics in the diffusion
regime and at the critical point, while they turn localization into sub-diffusion9.

To analyze more closely the effect of nonlinear interactions on the Anderson
transition, a possible strategy consists in probing the scaling properties of the sys-
tem, in the spirit of the scaling theory of localization [Abrahams 79]. The latter was
originally developed to provide a criterion for Anderson localization in disordered
electronic conductors of finite size [Abrahams 79], and relies on the scaling of the
conductance G with the conductor size L. For instance, in a 3D good metal the con-
ductance G ∝ DL increases with L, while in an Anderson insulator G ∝ exp(−L/ξ)

8The equivalence between the quasi-periodic kicked rotor and a 3D Anderson problem disap-
pears when a local nonlinear term is added in both models.

9Note that the fact that both the nonlinear SCT in 3D and the simulations of the nonlinear
quasi-periodic kicked rotor give the same sub-diffusive exponent α ' 0.4 is probably fortuitous.
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decreases with L. At the critical point finally, the system is scale-invariant and
G = const. These three behaviors are encapsulated in the so-called scaling function

β(G) =
d lnG(L)

d lnL
. (5.7)

In 3D, β(G) is positive above the critical point and negative below. In between,
the vanishing of β(G) signals the presence of the critical point. The same approach
can be applied to the scenario of wave-packet spreading. The role of the system
size is played by the wave packet width, L ≡ 〈∆r2〉1/2, and the “conductance” is
defined as G ∝ D×L = 〈∆r2〉3/2/t, in analogy with its expression for an electronic
conductor. The predictions of the nonlinear SCT for β(G) are shown in Fig. 5.5(a),

Figure 5.5: (a) Scaling function calculated with the nonlinear SCT for g = 0
(black curve) and for five finite values of gN/(D0`) (colored curves, the nonlinearity
increases from bottom to top). (b) Numerical simulations of β(G) in the nonlinear
quasi-periodic kicked rotor.

to be compared with numerical simulations of the nonlinear quasi-periodic kicked
rotor, Fig. 5.5(b). For g = 0 (black curve) β is monotonic, positive in the diffusion
regime, negative in the localization regime and zero at the critical point as expected.
Far in the diffusive phase β(G)→ 1 since 〈∆r2〉 ∼ D0t. For g 6= 0, we observe that
for all curves the point where β vanishes is still present and unmodified, suggesting
that a phase transition still exists at E = Ec. In the diffusion regime, β remains un-
affected by interactions. In contrast, below the critical point the shape of β changes:
interactions give rise to a minimum associated with a breakdown of monotonicity.
This minimum corresponds to the temporal cross-over t ∼ τNL ≡ ξ3/gN where the
system turns from localized to sub-diffusive. The limit β(G → 0) → const < 0,
finally, corresponds to the sub-diffusive law 〈∆r2〉 ∼ tα at long times.

We finally mention an interesting feature of the plots in Fig. 5.5: different
values of g generate different β functions. This result is in marked contrast with
what is expected for non-interacting disordered systems, where the sole parameter
G is sufficient to describe the scaling of the system with size [Abrahams 79]: in the
nonlinear problem, the single-parameter scaling hypothesis breaks down.
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5.3 Thermalization

5.3.1 The energy distribution

As mentioned previously, the energy distribution f(E) of atomic clouds in disordered
potentials is in general not peaked around a well-defined energy E0 but is instead
broad. For a non-interacting wave packet initially located around r0, the density
distribution reads generally [Shapiro 12]:

nr(t) =

∫
dEf(E)PE(r, r0, t), (5.8)

with an energy distribution f(E) ≡ 1/(2π)×
∫
ddk′nk′(t = 0)A(E,k′) 6= δ(E−E0).

f(E) depends on both the momentum distribution of the gas at t = 0, nk′(t = 0),
and on the spectral function A(E,k′). The latter carries information on how atomic
energies ~2k′2/2m are broadened when the atoms are subjected to the disordered
potential at t = 0 (see footnote 3 in chapter 2). We emphasized in the previous
chapter that a broad energy distribution makes the mesoscopic echo hard to observe
in spatially disordered potentials. A similar experimental difficulty arises when one
aims to probe the Anderson transition in 3D from the freezing of a wave packet, since
a broad mixture of atom energies around Ec gives rise to a complicated wave-packet
dynamics in place of Eqs. (5.1), (5.2) and (5.3) [Jendrzejewski 12b, Semeghini 15].
This issue also makes the determination of the mobility edge Ec quite challeng-
ing, and partly explains the remaining discrepancy between theory and experiments
regarding the value of Ec in speckle potentials [Pasek 17].

5.3.2 Thermalization of interacting clouds

For non-interacting atoms, the energy distribution f(E) is set once for all after
disorder has been turned on. In the presence of interactions on the contrary, f(E, t)
changes in time owing to particle collisions. Thermalization of atomic energies was
not accounted for in the nonlinear SCT of spreading wave packets discussed in Sec.
5.2.2, but it definitely occurs at long times. A consequence of thermalization, in
particular, might be a smoothing of the nonlinear transition in Fig. 5.5.

To our knowledge, an exact theory describing the spreading of weakly interact-
ing wave packets in a random potential is not yet available. The specific question
of thermalization, however, can be more straightforwardly investigated in momen-
tum space, following the time evolution of plane-wave states as in chapters 2 and
3. In 1D it was addressed in nonlinear discrete disordered chains in [Oganesyan 09,
Mulansky 09, Kottos 11, Mulansky 13, Basko 11]. In 2015, we also briefly explored
this problem in 2D, by revisiting the setup discussed in chapters 2 and 3 in the
presence of weak interactions: we considered the evolution of the average momen-
tum distribution nk(t) of a gas prepared in the state |k0〉 and evolving in a 2D
speckle potential according to the Gross-Pitaevskii equation [Cherroret 15]. Fig.
5.6(a) shows numerical simulations of nk(t) carried out in this way by a colleague,
Tomasz Karpiuk. At short times, the distribution displays the ring and the CBS
peak discussed in chapter 2. At longer times, the picture changes: the CBS peak
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Figure 5.6: (a) Momentum distribution of a cold gas after time evolution of the
state |k0〉 with the Gross-Pitaevskii equation (courtesy of Tomasz Karpiuk). At
short times we distinguish the diffusive ring and the CBS peak discussed in chapter
2. At longer times both disappear and the distribution becomes smooth and centered
on k = 0. (b) Possible equilibrium phase diagram of a quenched interacting boson
gas after it has evolved over long times in a 2D random potential.

disappears and, eventually, the diffusive ring itself evolves toward a smooth distri-
bution centered on k = 0. This phenomenon is due to slow evolution of f(E, t) to
a thermal profile.

Beyond the mean-field level however, it is not yet clear (at least to the author)
to what state a quenched interacting gas of bosons in a 2D random potential should
converge at long times. A possible equilibrium phase diagram is sketched in Fig.
5.6(b). We conclude this chapter by briefly commenting on it. For generic initial
conditions first (i.e. initial values of the kinetic ~2k2

0/2m, disorder and interaction
energies), we expect f(E, t) to converge to a thermal distribution, characterized by
an effective temperature and a chemical potential that depend on these initial condi-
tions10. At small disorder strengths, the equilibrium temperature is correspondingly
small so that a BKT transition should occur. What are the precise properties of
the gas in this phase is not well known (see however [Allard 12] and [Carleo 13]
for recent experimental and theoretical works addressing this question for a disor-
dered gas at equilibrium in a trap). What happens at strong disorder is even less
clear, but one might find there a many-body localized phase, known to be present
in the spectrum of certain many-body disordered systems at strong enough disorder
[Alet 18]. If this phase exists11, the associated distribution f(E, t → ∞) should
display a non-thermal character.

10Note that since the equilibrium temperature in particular depends on the amplitude of the
disorder potential the gas is initially subjected to, it is strictly positive as soon as disorder is
nonzero, hence the forbidden gray region in Fig. 5.6(b).

11This statement is open for at least two reasons: it is not yet clear whether many-body localiza-
tion can occur in dimensions larger than 1 [Alet 18], as well as in continuous systems [Gornyi 17].



CHAPTER 6

Light scattering in (2+1) dimensions

This chapter is based on the following article:

• N. Cherroret, Coherent multiple scattering of light in (2+1) dimensions, Phys. Rev. A
98, 013805 (2018)

In chapter 2 we discussed a configuration where the coherent backscattering peak
is observed in the momentum space of a bulk disordered system by propagation of
a plane atomic matter wave. It turns out that this configuration is not restricted
to cold atoms but can be realized in optics as well, in media of dimension “(2+1)”,
which display spatial fluctuations of their refractive index in two directions but are
homogeneous along the third one1. In fact, beyond the mere question of disorder
this type of medium has attracted a growing interest in the recent years, for in the
paraxial limit light mimics the behavior of a matter wave in an external potential,
with the possible implementation of effective photon interactions [Carusotto 13]. In
2017 I started a theoretical analysis of these systems, which turn out to be extremely
rich, in particular when the polarization degree of freedom is taken into account.

6.1 Paraxial scattering in (2+1) dimensions

6.1.1 The paraxial approximation

The propagation of a beam in a disordered dielectric medium of dimension (2+1) is
illustrated in Fig. 6.1(a). Such a medium is characterized by a permittivity profile
ε = ε+ δε(r⊥), which displays spatial variations in the plane r⊥ ≡ (x, y) around an
average value ε̄ but is, on the other hand, homogeneous along the “optical axis” z.
Evolution of the electric field is described by the Helmholtz equation[

∆δij −∇i∇j + k2δij − V (r⊥)δij
]
Ej(r) = 0, (6.1)

1Let us also mention the case of exciton-polaritons in 2D microcavities, which offer a third
alternative [Langbein 02].
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where k2 = ω2ε̄/c2, with ω the light carrier frequency, and the “potential” V (r⊥) ≡
−k2δε(r⊥)/ε̄. For a beam almost aligned with the z-axis, it is common, in this
geometry, to make use of a paraxial approximation. The latter consists in writing
the electric field as E(r) = E(r)eikz [r ≡ (r⊥, z)] and assuming slow variations
of its envelope along z, |∂2E/∂z2| � k|∂E/∂z|, and of the in-plane permittivity,
|∇⊥ε| � k [Agrawal 95, Rosanov 02]. Under these conditions, the envelope E is
mostly transverse and the Helmholtz equation (6.1) simplifies to

i
∂E
∂z

=

[
−∆⊥ +

1

2k
V (r⊥)

]
E(r), (6.2)

which constitutes the paraxial wave equation. The latter is similar to a 2D time-
dependent Schrödinger equation, where z plays the role of time and the permittivity
profile δε(r⊥) the one of an external potential.

Figure 6.1: (a) Photo-refractive disordered material of dimension (2+1) (from
[Schwartz 07]). The medium displays spatial variations of its permittivity in the
plane (x, y) but is homogeneous along z. Here a narrow, focused incident beam at
z = 0 undergoes a spreading in the plane (x, y). 2D localization of its spatial profile
|E(r⊥, z)|2 is observed when δε(r⊥) is made sufficiently disordered. (b) Transverse
localization observed in a disordered optical fiber [Karbasi 12, Karbasi 14, Mafi 14].
Here many points constituting an image (“2”, “3”, or “4”) are transported along
the fiber thanks to transverse localization.

6.1.2 Experiments

When δε(r⊥) is made random, the correspondence between Eq. (6.2) and a Schrö-
dinger equation provides a strategy to study, within an optical context, bulk time-
dependent localization phenomena like in cold-atom setups. For instance, by il-
luminating the medium with a stationary focused beam one effectively produces a
narrow wave packet whose subsequent spreading in the plane (x, y) can display loca-
lization at large enough z, an idea originally proposed in the group of A. Lagendijk
[Raedt 89]. This configuration was first implemented in [Schwartz 07] to demon-
strate 2D transverse Anderson localization of light in a photo-refractive crystal on
which a (2+1)-dimensional random refractive-index distribution was imprinted with
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Figure 6.2: Left: medium of dimension (2+1) illuminated by a tilted collimated
(“plane-wave”) beam of transverse wave vector k0 and polarization ε at z = 0. Right:
optical distribution |E(k⊥, z)|2 of transverse momenta measured in [Boguslawski 13]
in a such a geometry, at fixed z and for increasing tilts of the incident beam (i.e.
increasing k0). A diffusive ring and a CBS peak appear at large enough tilts.

a writing beam. This phenomenon is shown in the lower-right image of Fig. 6.1(a):
one observes a spatial localization of the wave packet profile |E(r⊥, z)|2 at strong
enough disorder. Note that the observation of 2D Anderson localization is here fa-
cilitated by the fact that the localization length ξ ∝ exp(π∆k⊥`/2) is controlled by
the inverse width ∆k⊥ of the wave packet rather than by the wave number k � ∆k⊥
itself, and can thus easily be made small2. Transverse localization of light was also
observed in [Boguslawski 13] in a photo-refractive material, as well as in disordered
optical fibers in [Karbasi 12]. In [Karbasi 14, Mafi 14], transverse localization was
even proposed as a means for transporting multiplexed signals through disorder
fibers, see Fig. 6.1(b).

One can also take advantage of the paraxial equation to study the CBS peak in
the 2D bulk configuration of chapter 2, by illuminating the medium with a broad,
tilted collimated beam, as illustrated in the left panel of Fig. 6.2. As the beam
evolves along the effective time z, the transverse projection k0 of its wave vector is
randomized due to multiple scattering in the plane (x, y). The optical distribution
|E(k⊥, z)|2 measured in transmission in the far field then has the structure of Fig.
2.3, with a diffusive ring and a CBS on top of it. This effect was observed experi-
mentally recently [Boguslawski 17]. Momentum distributions observed in this work
are reproduced in Fig. 6.2 for various inclinations κ = k0/kt of the incident beam
(kt is a normalization factor related to the correlation length of the disorder). The
diffusive ring and CBS peak become clearly visible at nonzero tilt.

Let us mention, finally, that studying Eq. (6.2) is also very interesting in non-
linear Kerr materials where δε(r⊥) ∝ |E(r⊥)|2: the paraxial equation becomes for-
mally equivalent to the Gross-Pitaevskii equation that governs weakly-interacting
Bose-Einstein condensates. This analogy was recently exploited for studying optical
analogues of quantum matter-wave phenomena such as interactions-driven thermali-
zation [Sun 12, Kaiser 18] or superfluidity [Michel 18].

2It should be noted, however, that the effective velocity of the transverse beam is proportional
to ∆k⊥, such that the classical diffusion coefficient D0 ∝ ∆k2⊥ is also very small: there is a risk of
confusion between Anderson localization and slow diffusion in this system.
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6.2 Beyond the paraxial approximation

6.2.1 Motivation

Although widely used in the literature, the paraxial equation (6.2) should be taken
with care. For a disordered potential V (r⊥) especially, it is not clear when this
equation breaks down. In this respect, the assumptions of “slow variations” of the
field envelope along z and of the in-plane permittivity mentioned above are not very
enlightening. The latter seems even dangerous at the onset of Anderson localiza-
tion. In addition, the paraxial wave equation completely neglects the vector nature
of light. Clarifying how polarization effects manifest themselves beyond the paraxial
approximation is essential for experiments that operate close to the paraxial limit.
More generally, understanding the role of the vector nature of light in heterogeneous
media is required for a proper characterization of disorder-induced interference ef-
fects like CBS, known to be sensitive to polarization in general [Stephen 86, Wolf 88].
The question is even crucial for Anderson localization of light, which was shown to be
severely altered in random ensembles of scatterers when vector effects are accounted
for [Skipetrov 14, Bellando 14, Maximo 15].

6.2.2 Theory

It turns out that electromagnetic wave propagation in a weakly disordered medium
of dimension (2+1) can be rigorously described using the tensor impurity-diagram
technique based on the Helmholtz equation (6.1). This approach was previously used
in 3D isotropic disordered media to unveil the role of light polarization in the physics
of diffusion and of CBS [Stephen 86, Barabanenkov 95, Lubatsch 05, Sheng 06]. In
(2+1) dimensions the problem is considerably more difficult due to the anisotropic
character of the medium on average, but can still be solved. In the configuration of
Fig. 6.2 for instance, i.e. for an incident collimated beam of transverse momentum
k0 and polarization ε, the average distribution of transverse momenta measured at
the coordinate z and along a polarization axis ε′ is given by [Cherroret 18]

|ε′ ·E(k⊥, z)|2 =
k/2zsε

∗
αε
′
γε
∗′
β εδ

(2k/zs)2+(k2
⊥−k2

0)2

∑
n=1,2,3

e−z/zn
[
Π

(n)
αβ,γδ+Π

(n)
αδ,γβe

−D(k⊥+k0)2z
]

(6.3)

where zs is the scattering mean free time (analogous to τ in the previous chapters)
and D = k̂2

0zs/2 is the diffusion coefficient3. The dimensionless number k̂0 ≡ k0/k
can be interpreted as the effective mean velocity of the incident beam in the plane
(x, y). Eq. (6.3) is the optical counterpart of Eq. (2.6)4. The Lorentzian prefactor
is the optical spectral function and is responsible for the diffusive ring in Fig. 6.2,
whose width is governed by the scattering mean free time. The second term in the
brackets describes the CBS peak, centered around k⊥ = −k0. As in chapter 2, see
Eq. (2.3), the CBS width decays as 1/

√
Dz.

3Disorder is here assumed uncorrelated.
4Like Eq. (2.6), Eq. (6.3) holds in the hydrodynamic limit z � zs, i.e. after transverse momenta

have been randomized by multiple scattering in the plane (x, y). It also assumes k̂0/k � 1, i.e.
that the incident beam has a small inclination with the optical axis. The momentum distribution
in the regime k̂0/k ∼ 1 can be described analytically as well but has a more complicated expression.
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6.2.3 Scalar-to-vector cross-over

The most interesting feature of Eq. (6.3) is the polarization dependence of the
diffusive ring and CBS peak, governed by three dimensionless four-rank tensors
Π

(n)
αβ,γδ contracted with the incident ε and detection ε′ polarizations vectors. These

tensors have lifetimes zn which obey

z1 ∼ z2 ∼ zp ≡
zs

k̂4
0

and z3 =∞, (6.4)

The finite lifetime zp signals that the system undergoes a cross-over at z ∼ zp � zs.
Indeed, when z � zp the exponentials in Eq. (6.3) all approximate to 1. The three

tensors Π(n) then have equal weights and obey
∑

n Π
(n)
αβ,γδ = δαγδβδ, such that

|ε′ · E(k⊥, z � zp)|2 ∝ |ε · ε′∗|2
[
1 + e−D(k⊥+k0)2z

]
. (6.5)

This result characterizes the behavior of a scalar wave, and in fact coincides with the
prediction of the paraxial equation (6.2): the light polarization stays fixed during
the multiple scattering process, hence the prefactor |ε · ε′∗|2, which only depends
on the relative positions of input and output polarizers. We give in the first two
rows of Table 6.1 the explicit value of |ε · ε′∗|2 of both the diffusive and CBS signals
in four main experimental setups where linearly polarized light is analyzed along
the parallel (l ‖ l) or perpendicular (l ⊥ l) channels, or where circularly polarized
light is analyzed in channels of same (σ ‖ σ) or opposite (σ ⊥ σ) polarization. As
intuition suggests, the diffusive ring and the CBS peak are visible in the l ‖ l and
σ ‖ σ channels only (ε′ = ε).

channels σ ‖ σ σ ⊥ σ l ‖ l l ⊥ l

ring(z � zp) 1 0 1 0

CBS(z � zp) 1 0 1 0

ring(z � zp) 1/2 1/2 1/2 1/2

CBS(z � zp) 0 1/2 1/2 0

Table 6.1: Diffusive and CBS signals in the four polarization channels, for z � zp
(scalar regime) and z � zp (vector regime).

The regime z � zp, in strong contrast, cannot be described by the paraxial wave
equation. In this limit, the tensors Π(1) and Π(2) have decayed and the polarization
structure of the distribution is solely governed by Π

(3)
αβ,γδ = 1

2
δαβδγδ. We then have:

|ε′ · E(k⊥, z � zp)|2 ∝
1

2

[
1 + |ε · ε′|2e−D(k⊥+k0)2z

]
. (6.6)

The amplitudes 1/2 and |ε ·ε′|2/2 of the diffusive and CBS signals in the four polari-
zation channels are displayed in the last two rows of Table 6.1: the diffusive signal is
visible with the same probability in all channels. This indicates that polarization has
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been randomized by the multiple scattering process. The behavior of the CBS peak
is more unexpected: it is only visible in the channels l ‖ l and, surprisingly, σ ⊥ σ
(ε′ = ε∗). This somewhat counter-intuitive behavior can be understood by general
arguments based on time-reversal symmetry and on the homogeneity of the medium
along z: let us consider the wave amplitude A1→N(k0, ε;k⊥, ε

′; kz) associated with
a multiple scattering sequence 1→ N from the initial state (k0, ε) to the final state
(k⊥, ε

′), with kz conserved. The CBS interference is constructed by pairing this
amplitude with its counter-propagating partner AN→1(k0, ε;k⊥, ε

′; kz). To find the
condition of constructive interference, we first apply the reciprocity theorem that
pertains to time-reversal symmetry [Saxon 55, Montambaux 07]:

AN→1(k0, ε;k⊥, ε
′; kz) = A1→N(−k⊥, ε′∗;−k0, ε

∗;−kz). (6.7)

Owing to the independence of disorder on the longitudinal coordinate z, the right-
hand side of Eq. (6.7) is also parity-symmetric with respect to the variable kz.
The CBS interference is therefore constructive provided A1→N(k0, ε;k⊥, ε

′; kz) =
A1→N(−k⊥, ε′∗;−k0, ε

∗; kz). This equality is obviously satisfied when:

k⊥ = −k0, ε
′ = ε∗, (6.8)

i.e. the CBS peak is indeed fully contrasted in the channels l ‖ l and σ ⊥ σ.

6.2.4 Randomization of polarization

The effective time scale zp = zs/k̂
4
0 ∼ zs/θ

4 is inversely proportional to the fourth
power of the angle θ made by the incident beam with the optical axis (see Fig. 6.2).
We have seen that it separates a scalar regime where polarization is fixed, from
a vector regime where polarization is randomized. zp can therefore be interpreted
as the time needed to randomize the direction of polarization in (2+1) dimensions.
This interpretation can be confirmed by the following qualitative argument. The
incident beam, of wave vector k = (k0, kz), has the polarization ε. After the first
scattering event on a refractive-index fluctuation, the beam is scattered into a direc-
tion k̂′ and acquires a unit polarization ε′ which fulfills the law of parallel transport
[MacKintosh 89]:

ε′ =
ε− (k̂

′
· ε)k̂

′√
1− |k′ · ε|2

. (6.9)

In the right-hand side, the dot products k̂
′
· ε ≡ k′⊥ · ε⊥ + εzk̂z ∼ k̂0, since |k̂z| ∼

|ε⊥| ∼ 1 and |εz| ∼ |k̂
′
⊥| ∼ k̂0 ≡ k0/k for a paraxial incident beam. To leading order

in k̂0 � 1, the change in polarization in the plane (x, y), ∆ε⊥ ≡ ε′⊥− ε⊥, is thus on
the order of

|∆ε⊥| ∼ k̂2
0. (6.10)

After a random walk of N = z/zs scattering events, the polarization subsequently
changes by an amount |∆ε⊥(N)| ∼

√
N |∆ε⊥| ∼

√
Nk̂2

0. The randomization of
polarization is realized when this quantity is on the order of 1. This happens when

N ∼ 1

k̂4
0

⇔ z ∼ zs

k̂4
0

≡ zp, (6.11)
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which confirms the interpretation of zp given above. It is interesting to note that zp is
much larger than the mean free time zs in this system. This must be contrasted with
conventional 3D disordered media, where both time scales are on the same order5.
The geometry (2+1) thus offers the opportunity to study separately, within a single
setup, the behavior of both scalar and vector light in the presence of disorder. This
is particularly appealing in view of the question of Anderson localization of light,
which was experimentally observed in (2+1) dimensions in [Schwartz 07], while it
was shown to be absent for vector waves, at least in three dimensions [Skipetrov 14].

Figure 6.3: (a) In the geometry of Fig. 6.2, the ballistic signal associated with a
circularly polarized incident beam experiences an helicity-dependent deflection as it
deviates from paraxiality. This phenomenon constitutes an optical version of the
electronic spin Hall effect in solids, (b): a charge current is converted into a spin
current due to the spin-orbit interaction.

6.3 Disorder and spin-orbit interactions of light

We conclude this chapter by a prospective discussion aiming to emphasize the rich-
ness of light propagation in (2+1) dimensions. The results presented from here on
are preliminary and should be regarded as such. They are part of the PhD thesis of
Tamara Bardon-Brun, which started in 2017.

In (2+1) dimensions, we have seen that the paraxial equation fails to describe
diffusive light propagation at long z, when vector effects become important. In the
same way, the ballistic component of light, i.e. the part of the incident beam that
is not scattered, also experiences deviations from the scalar description. We remind
that in a disordered medium, the ballistic signal stems from the average component
E of the random light field E = E + δE, and constitutes the main contribution to
the intensity |E|2 at short times z . zs, when light has not yet been scattered much.
Beyond zs, the ballistic signal decays exponentially (Beer-Lambert law) as photons
are scattered and feed the diffusive halo δE, and at long times z � zs the latter
becomes the main contribution to |E|2. Let us now come back to the scenario in
Fig. 6.2, i.e a collimated beam of small transverse wave vector k0, and consider the

5More precisely, in a 3D disorder the time to randomize the polarization direction is on the
order of the transport mean free time.
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center of mass of the ballistic beam in the the plane (x, y), see Fig. 6.3(a):

R(z) ≡
∫
d2r⊥r⊥|E(r⊥, z)|2∫
d2r⊥|E(r⊥, z)|2

. (6.12)

The impurity-diagram technique [Montambaux 07] applied to the paraxial equation
(6.2) readily gives R(z) = k̂0z, as expected intuitively: the ballistic signal propa-
gates along a straight line. As the beam deviates from paraxiality however, an inter-
esting phenomenon shows up for circularly polarized light: ballistic light experiences
an helicity-dependent deflection. This effect is captured by the impurity-diagram
technique applied to the Helmholtz equation (6.1), which gives [Bardon-Brun 18]:

R(z) = k̂0z +
σ

k0

[
1− 1

cosh(zk̂2
0/2zs)

]
ey, (6.13)

where σ = ±1 is the helicity. The correction term in Eq. (6.13) is a consequence
of effective spin-orbit interactions of light in this system: the in-plane spatial inho-
mogeneity induces a coupling between the optical “spin” (circular polarization) and
the beam trajectory6.

The trajectory described by Eq. (6.13) is illustrated in Fig. 6.3(a): the beam
is deflected toward the direction of rotation of the electric field. This deflection
constitutes an optical version of the spin Hall effect [Sinova 15]. The spin Hall
effect arises in certain conductors that display spin-orbit coupling, and is illustrated
in Fig. 6.3(b) for a 2D electron gas accelerated by an external electric field. Spin-
up electrons are deflected to one side of the conductor and spin-down electrons to
the other side, which results in a transverse spin current. At a qualitative level,
the electronic spin Hall effect can be described with the semi-classical spin-orbit
Hamiltonian H = p2/2m+ V (r) +A(p×∇V ) · S, where A > 0 is a constant that
depends on the material and V is the electric-field potential energy [Dyakonov 10].
In the 2D geometry of Fig. 6.3(b), Hamilton’s equations lead to the Newton’s law

mv̇ = −∇V (r) +mA∆⊥V (r)(v× S), (6.14)

which involves an effective Lorentz force that indeed deflects electron trajectories.
The 2D spin Hall effect thus described can be translated to our optical scenario with
the following correspondences. The 2D plane of the electron gas corresponds to the
plane (x, y) in Fig. 6.2, the initial electron velocity v(t = 0) to the optical transverse
wave vector k0 at z = 0, the electric potential V (r⊥) to the permittivity fluctuations
δε(r⊥) and the electron spin S to σ = ±1. An important subtlety of the optical
scheme, however, is that the deflection is observed on the disorder-averaged field
E, which normally describes light propagation in an effective (i.e. homogeneous)
medium. In other words the deflection survives the disorder average, a result under
current investigation. Let us conclude by noting that the spin Hall effect of light
is not specific to our system. Similar deflections have been identified in various
inhomogeneous media [Liberman 92, Andrews 13, Bliokh 15]. To our knowledge
however, Eq. (6.13) constitutes to the first demonstration of the spin Hall effect
of light in the presence of disorder, and arises interesting questions regarding the
properties of Anderson localization in dimension (2+1).

6This coupling is naturally present in the Helmholtz equation, through the term ∇∇ ·E.



CHAPTER 7

Conclusion and outlook

In this manuscript I have described, essentially in a cold-atom context, a few em-
blematic interference phenomena that show up when a matter wave evolves in a
random potential: coherent backscattering, coherent forward scattering, mesoscopic
echo and quantum boomerang. One interesting lesson of these works is that although
the physics of non-interacting disordered systems is today relatively well understood,
it can still reveal surprises and worth pursuing theoretical and experimental inves-
tigations. The coherent forward scattering and the quantum boomerang effects are
two clear examples of this statement: although relatively simple, they have been
discovered only recently (and are not yet observed experimentally). In the same
spirit, the experimental observation and characterization of the mesoscopic echo in
the localization regime were only achieved a year ago!

Looking at such mesoscopic effects for probing the localization properties of mat-
ter waves is interesting for at least two reasons. First, these phenomena manifest
themselves a spectacular signatures of coherent transport and are rather straightfor-
wardly accessible to the experimentalist by measurement of simple transport obser-
vables. Second, they are in general highly sensitive to perturbations of the coherent
multiple scattering process. The latter property naturally calls for the investigation
of the robustness of the coherent backscattering, the coherent forward scattering,
the mesoscopic echo or the quantum boomerang against interactions in atomic sys-
tems. This task will most probably be part of my future activities. In the context
of light scattering, understanding the role of vector effects in media of dimension
(2+1) is another of my research perspectives. The preliminary results presented in
this manuscript show that there is much to do in this context: exploring the role of
vector effects in light localization away from the paraxial regime, the possibility of
exploiting the polarization degree of freedom for simulating artificial gauge fields for
light or the implementation of effective photon interactions via a χ(3) nonlinearity
are just a few examples of open problems.
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[Lee 14] K. L. Lee, B. Grémaud, and C. Miniatura, Dynamics of localized waves in one-
dimensional random potentials: statistical theory of the coherent forward scattering
peak, Phys. Rev. A 90, 043605 (2014).

[Lemarié 09] G. Lemarié, J. Chabé, P. Szriftgiser, J.-C. Garreau, B. Grémaud, and D.
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[Wolfle 10] P. Wölfle and D. Vollhardt, Self-consistent theory of Anderson localization:
general formalism and applications, Int. J. Mod. Phys. B 24, 1526 (2010).

[Zharekeshev 95] I. K. Zharekeshev and B. Kramer, Universal fluctuations in spectra of
disordered systems at the Anderson transition, Jpn J. Appl. Phys. 34, 4361 (1995).


	Introduction
	Coherent multiple scattering of waves
	Anderson localization
	Electron localization
	The success of classical waves, the question of light

	Atomic matter waves in random potentials
	Anderson localization of cold atoms
	Cold atoms as a tool for probing interacting disordered systems

	Content of the manuscript

	Coherent backscattering of matter waves
	Coherent backscattering in a nutshell
	Coherent backscattering of matter waves
	Observing CBS with cold atoms
	Numerical experiment
	Theory
	Experiments

	The backscattering echo
	CBS across the Anderson transition

	The coherent forward scattering effect
	A numerical experiment
	Theory
	Insufficiency of the one-loop approximation
	Emergence of CFS at the localization time
	Beyond perturbation theory: the long-time limit

	CFS across the Anderson transition

	Mesoscopic echo and quantum boomerang
	The mesoscopic echo
	Diffusion regime
	Localization regime

	Experimental observations with cold atoms
	Diffusion regime
	Localization regime

	The quantum boomerang

	Weakly interacting disordered matter waves
	Localization of non-interacting wave packets
	Reminders
	Experiments
	Self-consistent theory of Anderson localization

	Spreading of weakly-interacting bosons
	Sub-diffusion
	Nonlinear self-consistent theory
	Sub-diffusion in 3D

	Thermalization
	The energy distribution
	Thermalization of interacting clouds


	Light scattering in (2+1) dimensions
	Paraxial scattering in (2+1) dimensions
	The paraxial approximation
	Experiments

	Beyond the paraxial approximation
	Motivation
	Theory
	Scalar-to-vector cross-over
	Randomization of polarization

	Disorder and spin-orbit interactions of light

	Conclusion and outlook

