
HAL Id: tel-02151885
https://theses.hal.science/tel-02151885

Submitted on 10 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamics of Argumentation Frameworks
Jean-Guy Mailly

To cite this version:
Jean-Guy Mailly. Dynamics of Argumentation Frameworks. Artificial Intelligence [cs.AI]. Université
d’Artois, 2015. English. �NNT : �. �tel-02151885�

https://theses.hal.science/tel-02151885
https://hal.archives-ouvertes.fr

Dynamics of Argumentation

Frameworks

THÈSE

présentée et soutenue publiquement le 30 septembre 2015

en vue de l’obtention du

Doctorat de l’Université d’Artois

(Spécialité Informatique)

par

Jean-Guy Mailly

Composition du jury

Rapporteurs : Gerhard Brewka University of Leipzig
Stefan Woltran Vienna University of Technology

Examinateurs : Salem Benferhat Université d’Artois
Andreas Herzig CNRS - Université Paul Sabatier
Anthony Hunter University College London

Encadrants : Sylvie Coste-Marquis Université d’Artois
Sébastien Konieczny CNRS - Université d’Artois
Pierre Marquis Université d’Artois

CENTRE DE RECHERCHE EN INFORMATIQUE DE LENS – CNRS UMR 8188

Université d’Artois, rue Jean Souvraz, S.P. 18 F-62307, Lens Cedex France

Secrétariat : Tél.: +33 (0)3 21 79 17 23 – Fax : +33 (0)3 21 79 17 70

http://www.cril.fr

Mise en page avec memcril (B. Mazure, CRIL) et thloria (D. Roegel, LORIA).

Remerciements

You know that in nine hundred years of time and space I’ve never met anybody who wasn’t

important before.

The Doctor – Doctor Who - A Christmas Carol

La thèse est une longue aventure, semée d’embûches, et que je n’aurais pas pu surmonter seul. Dans
un premier temps, je ne peux pas ne pas remercier mes encadrants, Sylvie Coste-Marquis, Sébastien
Konieczny, et Pierre Marquis. Trois ans à bénéficier de leurs conseils m’ont fait évoluer et, j’espère,
donné quelques compétences pour la carrière qui m’attends (j’espère aussi !). Travailler avec eux a été
une expérience enrichissante, à la fois d’un point de vue professionnel et scientifique, mais aussi d’un
point de vue humain. Merci à tous les trois pour leur gentilesse et leur patience, lorsque mon travail ne
suivait pas la route (que j’aurais voulue droite) qui va d’une piste à un résultat, mais faisait au contraire
des détours par quelques culs-de-sac.

D’autres chercheurs ont manifesté de l’intérêt à mes travaux, et m’ont d’une façon ou d’une autre
aidé à avancer au fil de cette aventure. Je tiens en particulier à remercier Gerhard Brewka et Stefan
Woltran, qui m’ont fait l’honneur d’être rapporteurs de cette thèse, ainsi que Salem Benferhat, Andreas
Herzig et Anthony Hunter, qui participent à mon jury de soutenance en tant qu’examinateurs. Je n’aurais
pu rêver d’une telle assemblée face à moi au moment de soutenir cette thèse.

Les nombreuses discussions que j’ai eues avec des collègues rencontrés lors des missions m’ont ap-
porté énormément. Il me faudrait une place déraisonnable, et un travail de mémoire phénoménal, pour
n’oublier personne. Je tiens tout de même à remercier les membres du projet AMANDE, et en particulier
Sylvie Doutre, qui m’a proposé de me joindre à Laurent Perrussel et elle-même pour un premier travail
réalisé sans mes encadrants. Merci aussi à Jean-Marie Lagniez et Emmanuel Lonca, grâce à qui le projet
CoQuiAAS a vu le jour.

Un grand merci à tous les collègues du CRIL, mes anciens professeurs, qui m’ont fait m’intéresser
à l’informatique, et à la recherche en IA en particulier. Merci aussi à mes camarades doctorants, en
particuliers mes partenaires du MIT : Long, Manu, Zied, Nicolas et Éric ; ainsi que ceux avec qui j’ai
fait mes études, à commencer par mon binôme de Licence, Thomas. Certains d’entre eux m’ont appris
beaucoup sur moi-même, en particulier les limites de ma patience ! Je suppose qu’au final, ça n’a pas de
prix, ça fait aussi partie de l’expérience de la thèse !

Et car il n’y a pas que le travail dans la vie, je tiens à remercier les personnes qui m’ont permis de
tenir le rythme, hors du travail. Les plus importants sont sans aucun doute mes parents, et toute ma
famille, qui m’ont soutenu, bien qu’il ne soit pas toujours évident pour eux de comprendre ce que je fais
(et je ne leur en veux pas, il n’y a pas si longtemps que ça, je n’aurais pas compris non plus !).

Merci aussi à toutes les personnes que j’ai fréquentées, toutes celles qui m’ont accompagné et qui
m’ont apporté quelque chose durant ces années. Mes amis de l’aventure The Geeks and The Girls ainsi
que de l’aventure Acoustica se reconnaîtront. Malheureusement tout ça a du s’arrêter à un moment, mais
ça m’a permis de me ressourcer dans la musique quand le travail était trop envahissant, et ça m’a surtout
permis de rencontrer des amis inoubliables. Merci à toute la bande du Nautilus, en particulier ses gérants
et employés, qui ont créé cet endroit magique où je peux m’offrir un bol d’air frais quand j’en ai besoin.

i

Enfin, même s’ils ne liront pas ces mots, merci à tous les artistes dont j’ai écouté les œuvres en
travaillant.

ii

Je dédie cette thèse à mon père,

qui aurait sans doute dit "Very well, my Lord",

en voyant dans quelle langue je l’ai écrite.

iii

iv

Contents

Introduction 1

1 Non-Monotonic Reasoning in Artificial Intelligence: the Role

of Argumentation and Belief Change . 1

2 Research Question . 2

3 Organization of the Thesis . 4

Part I State of the Art

Chapter 1 Abstract Argumentation 8

1.1 Dung’s Framework . 9

1.1.1 Argumentation Framework and Acceptability of Arguments 9

1.1.2 Inference Tasks and their Complexity . 15

1.1.3 Propositional Encoding of Argumentation Frameworks 16

1.2 Realizability of a Set of Candidates . 18

1.3 Applications of Argumentation . 20

1.3.1 Argumentation and Decision Making . 20

1.3.2 Argumentation and Goal-Oriented Persuasion 21

1.3.3 Argumentation and Resources Allocation 23

1.4 Conclusion . 24

v

Contents

Chapter 2 Belief Change 25

2.1 AGM Framework . 26

2.1.1 Belief Status, Belief Change . 26

2.1.2 Rationality Postulates and Links between Operations 27

2.1.3 Representation Theorems . 30

2.2 Belief Change in Propositional Logic . 33

2.2.1 From Theories to Propositional Formulae 33

2.2.2 Belief Revision in Propositional Logic . 34

2.2.3 Belief Update: Another Way to Incorporate a New Piece of Information . . 36

2.2.4 Dynamic Logic of Propositional Assignments and Belief Change 39

2.3 Conclusion . 41

Chapter 3 Existing Approaches on Dynamics of Argumentation Frameworks 42

3.1 Properties of Atomic Change in Argumentation Frameworks 43

3.1.1 Refinement and Abstraction Principles . 43

3.1.2 Adding or Removing an Argument . 45

3.2 Extension Enforcement . 49

3.2.1 Normal, Strong and Weak Expansion . 49

3.2.2 Using Expansion to Enforce a Set of Arguments 50

3.2.3 Minimal Change Enforcement . 51

3.3 Intervention and Observation in Argumentation . 53

3.4 Goal-Oriented Change in Argumentation . 55

3.5 Change in Argumentation through Belief Update 58

3.5.1 Updating an Argumentation Framework through Propositional Encoding . . 58

3.5.2 Updating Argumentation Frameworks through DLPA programs 59

3.6 Change in Argumentation through Belief Revision 60

3.6.1 A Labelling-based Integrity Constraint . 61

3.6.2 Removed Set-Based Revision . 62

3.6.3 Structure-Based AGM Revision . 65

3.7 On Minimal Change of Arguments Statuses and Change of the Attack Relation . . . 68

Part II Contributions to the Dynamics of Argumentation Frameworks

vi

Chapter 4 Adapting the AGM Framework for Abstract Argumentation 72

4.1 Revision at the Extension Level . 73

4.1.1 On Revision Formulae . 73

4.1.2 Extension-Based Revision Operators . 75

4.1.3 Distance-Based Revision . 76

4.2 Revision at the System Level . 78

4.2.1 Extension-Based Generation . 79

4.2.2 Some Computational Aspects . 83

4.3 Labelling-Based Revision of Argumentation Frameworks 84

4.3.1 Labelling-based Postulates . 84

4.3.2 Labelling-Based Generation . 87

4.4 Constrained Open World Revision . 89

4.5 On the Unicity of the Outcome . 90

4.6 Related Work . 93

4.7 Conclusion . 94

Chapter 5 AGM Revision as a Tool to Revise Argumentation Frameworks 96

5.1 A Translation-Based Approach . 97

5.1.1 A Propositional Encoding . 97

5.1.2 Encoding Revision Operators with Logical Constraints 100

5.2 Rationality Postulates in the acc Case . 104

5.3 Related Work . 107

5.4 Conclusion . 108

Chapter 6 Extension Enforcement 109

6.1 Weaknesses of the Existing Enforcement Approaches 110

6.2 Argument-Fixed and General Enforcement . 111

6.2.1 Argument-Fixed Enforcement . 111

6.2.2 Minimal Change . 112

6.3 Enforcement as Satisfaction and Optimization Problems 112

6.3.1 Complexity of Enforcement . 112

6.3.2 Enforcement as Boolean Satisfaction . 113

6.3.3 Minimal Change Enforcement as Pseudo-Boolean Optimization 115

6.3.4 Constrained Enforcement . 117

6.4 Experimental Results . 117

6.5 Related Work . 121

6.6 Conclusion . 122

vii

Contents

Chapter 7 On Constraints and Change in Argumentation 124

7.1 Argumentation System . 125

7.2 Three Kinds of Constraints . 126

7.2.1 Structural Constraints . 126

7.2.2 Acceptability Constraints . 128

7.2.3 Semantic Constraints . 129

7.2.4 Combinations of Constraints . 130

7.3 Quality of Enforcement . 131

7.3.1 Minimal Change . 131

7.3.2 Combining Minimality Criteria . 133

7.3.3 Rationality Postulates for Constraint Enforcement 133

7.4 Towards Generalized Enforcement . 134

7.4.1 Formal Setting . 134

7.4.2 Propositional Encoding of Constraint Enforcement Operators 135

7.5 Conclusion . 136

Conclusion 138

Appendix

Appendix A Background Notions 143

A.1 Sets and Relations . 144

A.2 Propositional Logic . 145

A.3 Graph Notions . 149

A.4 Computational Complexity . 151

A.4.1 Turing Machines and Decidability . 151

A.4.2 Determinism, Hardness, Completeness and Polynomial Hierarchy 153

A.4.3 Complexity of Function Problems . 157

A.4.4 Complexity of Well-Known Problems: Constraint Satisfaction and Opti-

mization . 157

Appendix B Proofs of the Results from Chapter 4 160

viii

Appendix C Proofs of the Results from Chapter 5 171

Appendix D Proofs of the Results from Chapter 6 174

List of Figures 176

List of Tables 178

Bibliography 179

ix

Contents

x

Introduction

First things first, but not necessarily in that order.

The Doctor – Doctor Who - Meglos

1 Non-Monotonic Reasoning in Artificial Intelligence: the Role

of Argumentation and Belief Change

Artificial intelligence (AI) is the topic of computer science which aims at computing with machines
some complex tasks which require some reasoning abilities, usually associated with human beings. In
particular, the thematic of non-monotonic reasoning (NMR) gathers numerous approaches to deal with
pieces of information which may contradict the rules of classical logic. The most famous example to
illustrate and motivate researches in this domain is Tweety example. If Tweety is a bird, then Tweety can
fly. However, we know that penguins are birds, and that they cannot fly, and it is the case that Tweety is
a penguin. Using classical logic, we deduce from these sentences that Tweety can fly and Tweety cannot
fly, which is not consistent. Numerous ways to model this kind of problem have been pointed out. For
instance, default logic [Rei80] allows to define the sentence "In general, birds can fly", as it is the case
with most of the non-monotonic reasoning inference relations [KLM90]. So, the fact that Tweety is a
penguin is an exception to the general case, and we can deduce without any contradiction that Tweety
cannot fly.

In this thesis, we are interested in a specific non-monotonic reasoning setting: argumentation, espe-
cially abstract argumentation [Dun95]. Dung defines an argumentation framework as a set of abstract
entities, called arguments, representing any piece of information (beliefs, actions to be performed,. . .),
linked with some attacks, which indicate the existence of conflicts between the arguments. Conflicts are
generally oriented, so that an attack from argument ai to argument aj means that if ai is accepted, then
aj should be rejected. From such an argumentation framework, some sets of arguments which can be
considered as accepted can be deduced (for instance, the agent’s beliefs or some actions to be done).
There are called extensions. In the case of Tweety, we can model the situation with two arguments:
a1 = "Tweety is a bird, so it can fly"; a2 = "Tweety is a penguin, and penguin cannot fly", linked by an
attack from a2 to a1. Then, reasoning with this argumentation framework, we can accept the argument
a2, and deduce that Tweety cannot fly.

a1 a2

Figure 1: The Tweety example

1

Introduction

This setting is particulary interesting in a multiagent scenario: when several agents share some pieces
of information, even if each of them is consistent are considered separately, their dialog can lead to gather
some conflicting pieces of information. It is even more often the case when the agents have some di-
vergent goals. A very usual example is the one concerning a group of friends who try to choose an
activity for the evening: John wants to watch a movie, Paul prefers to go to a good restaurant, and
George prefers to go to a concert. Ringo, at last, is exhausted and wants to go home without looking
like he is neglecting his friends. Each of John, Paul and George has to state some arguments to con-
vince the other ones that his solution is the one which should be accepted, while Ringo has to convince
them that none of these solutions is good. There are numerous works on argumentative dialog protocols
[KMM04, AH06, KBM+13, KBMM14].

Another setting related to non-monotonic reasoning is belief revision. It is quite usual, for an in-
dividual, to have to change her beliefs about the world when some reliable new piece of information
contradicts her previous beliefs. Using again Tweety example, if an ornithologist tells us "This bird can-
not fly", then we can suppose that this information is reliable. So it is reasonable to change our beliefs
to deduce that Tweety cannot fly. Belief revision approaches, as well as other kind of belief change
operations, have been characterized in the 1980s and 1990s when the agent’s beliefs are represented in a
logical setting [AGM85, KM91, KM92]: some rationality postulates have been stated (axiomatic char-
acterization), and methods to define exactly the change operators which satisfy the postulates have been
identified (constructivist characterization).

2 Research Question

Recently, the researchers working on argumentation have studied a question which is a kind of bridge
between belief change and argumentation: the dynamics of argumentation frameworks. The aim of these
first studies is to incorporate a new piece of information in an argumentation framework, sometimes bor-
rowing some properties to belief change theory, like minimal change or success principle. But none of
them has deeply studied the links between belief change and argumentation.
For instance, the first works on this topic are concerned with some theoretical properties of change op-
erators in argumentation frameworks [BKvdT09b, BKvdT09a, CdSCLS10, BCdSCLS11]. These works
study what happens in the argumentation framework when some new argument is added to the frame-
work.
Another approach of dynamics of argumentation frameworks is enforcement [BB10, Bau12]. It has been
defined as change in an argumentation framework to ensure that a given set of arguments is an extension.
Existing enforcement operators are useful when the scenario is a classical debate. The debate players
state their arguments, one after the other, with the attacks concerning them, without modifying the exist-
ing attack relation between the arguments which have been previously stated. The aim of enforcement is
to know how some new argument must be added to satisfy some goal concerning the arguments accep-
tance.

In this thesis, we tackle several aspects of the dynamics of argumentation frameworks. First of all,
we propose to study the impact of a new piece of information about the arguments statuses, like it is the
case with enforcement approaches. But contrary to enforcement, we do not want to express that "this
particular set of arguments should be an extension", we want to be able to incorporate more complex
information about the arguments statuses. For instance, an agent should be able to incorporate to her
beliefs (represented by the argumentation framework and its extensions) an information such that "this
particular argument must not be accepted, unless if this other one is accepted", or "these two arguments

2

2. Research Question

must be accepted together, while this third one is not". This is while we have been, in a first time, inter-
ested in belief change: is it possible to use the AGM framework, suited to logical settings, in the setting

of abstract argumentation? And if it is the case, how can we use it to revise argumentation frameworks

by such complex pieces of information? These questions are at the origin of our two first contributions.

Even if they are sometimes discussed and questionned [Fer99], the properties from the AGM frame-
work are accepted by the community of researchers on belief change as the foundation of most work
on rational change. So it seems very useful to adapt these properties to abstract argumentation. This
adaptation particulary makes sense when an agents considers that the extensions of the argumentation
framework, which express the acceptance statuses of arguments, are the most important pieces of in-
formation for her, rather than the structure of the argumentation framework. Then, it is possible to
make a parallel between the classical model-based approach from the AGM framework (where the belief
change operators are represented as a ranking between propositional interpretations) and an extension-
based approach to revise argumentation frameworks, where the argumentation framework is revised by
a propositional formula which expresses some information about arguments statuses.

Revision of argumentation frameworks can benefit from the AGM framework in another way. Indeed,
since it is well-known in logical settings, we can benefit from existing work on the logical encodings of
argumentation frameworks to represent an argumentation framework revision as a three-step process:
encoding the argumentation framework in a logical setting, then using classical revision in the logical
setting, and finally decoding the result of the revision to obtain the result of the revision. Depending on
the exact encoding which is used, the nature of the revision formulae may be different. We propose to
study a propositional encoding which makes the link between the structure of the argumentation frame-
work (the attacks) and the skeptically accepted arguments (which are the arguments belonging to every
extension).

As we explained previously, enforcement as it has been studied until now is really useful in a debate-
like scenario: several agents discuss a topic and add some new arguments to support their point of view.
However, every scenario related to argumentation does not share this characteristic. For instance, an
interesting scenario concerns a single agent use of argumentation to decide between different pieces of
information she received, possibly inconsistent due to the divergence of the sources of information. In
this case, it is conceivable that the agent receives a new piece of information which is not a new argument,
but an information such that "a given set of arguments should be an extension". In this case, which is
related to belief revision, there is no need of new arguments, as it is for Baumann and Brewka’s enforce-
ment. It is perfectly sensible to question the attacks between the arguments previously known. We study
the problem of enforcing a set of arguments, highlighting some limitations of the existing enforcement
operators, and we present some new ones which are more satisfying in our scenario. To do so, we apply
a method similar to our second revision approach: the use of propositional encodings to represent the
argumentation framework and the semantics. Then, performing an enforcement is equivalent to solving
a satisfaction or an optimization problem.

With the contributions described previously, we propose several new families of change operators
for argumentation frameworks, more or less inspired by belief revision operators. These new operators
allow to tackle new scenarios of the dynamics of argumentation frameworks, giving to the agent the
capability to incorporate different kinds of complex information to her beliefs; moreover these complex
informations can be incorporated in many different ways, depending on the properties that the agent
expects from the change operator.

3

Introduction

3 Organization of the Thesis

We present in Part I (State of the Art) the notions required for a good understanding of our work.
Chapter 1 (Abstract Argumentation) presents the bases of the theory of abstract argumentation. We
focus on Dung’s framework [Dun95]. We give a brief overview of the main acceptability semantics and
a presentation of some logical encodings defined by [BD04], which are the bases of some of our works.
Chapter 2 (Belief Change) is a detailed presentation of the AGM framework [AGM85]: rationality
postulates for the different belief change operations are given, together with some representation the-
orems. Then we focus on the adaptation of this framework to belief change in propositional logic
[KM91, KM92]. This particular version of the AGM framework is used in our works.
Chapter 3 (Existing Approaches on Dynamics of Argumentation Frameworks) describes some of
the numerous aspects of change in argumentation frameworks which have been studied in the recent
years.

In this thesis, we consider change in argumentation frameworks under some new points of view,
which are presented in Part II (Contributions to the Dynamics of Argumentation Frameworks).
First of all, we study different ways to benefit from the well-known belief revision operators from logi-
cal settings. Our methods ensure that our revision operators satisfy some desirable properties which are
usual for belief revision: primacy of update, consistency and minimal change.
Our first approach is developped in Chapter 4 (Adapting the AGM Framework for Abstract Argu-

mentation). It consists of a faithful adaptation of the AGM framework, especially the version suited to
finite propositional logic proposed by Katsuno and Mendelzon [KM91]. It is well suited for some scenar-
ios when the new piece of information only concerns the agents beliefs, meaning the acceptance statuses
of arguments. Rationality postulates ensure that the revision operators satisfy some expected properties.
These revision operators do not revise directly the argumentation framework, but they perform a two step
process. As a first step, the "beliefs” of the agent are revised, represented by the set of extensions of the
argumentation framework. Then, a second step generates the revised argumentation frameworks from
the revised extensions.
Chapter 5 (AGM Revision as a Tool to Revise Argumentation Frameworks) presents a translation-
based approach using logical encodings to revise argumentation frameworks. In this approach, informa-
tion about the structure of the framework (the attack relation) and its semantics (the arguments acceptance
statuses) are encoded into a logical formula. Then, we use revision operators from the AGM framework
(especially, the Katsuno and Mendelzon’s version) on this encoding. A decoding step allow to obtain
the revised argumentation frameworks from the revised formula. This translation-based method has the
advantage to allow argumentation frameworks to change because new pieces of information about argu-
ments acceptance statuses and about the attacks can be considered simultaneously.
Our third contribution, described in Chapter 6 (Extension Enforcement) concerns the notion of en-
forcement of a set of arguments in an argumentation framework. We study the properties of these en-
forcement operators, and we are interested in some of their limitations. We prove that there are some
situations when strict enforcement of a set of arguments is impossible with the existing enforcement
approaches. Moreover, even if the existing enforcement operators are well-suited to most debate-like
argumentation scenarios, they are not sufficient for some scenarios. Especially, when the agent does not
have some new arguments available. We present some new operators which ensure that an agent can
perform an enforcement in any situation without any possibility of failure. Some links with our second
contribution on belief revision appear. In particular, we use some logical encodings of enforcement op-
erators (the ones previously defined by Baumann and Brewka, and the new ones that we introduce) to
translate them into some constraint optimization problems. These well-known problems can be solved
with some very efficient methods, so we can benefit from the power of some state-of-the-art constraint

4

3. Organization of the Thesis

solvers to implement enforcement operators.
Last, Chapter 7 (On Constraints and Change in Argumentation) presents a categorization of the
different kinds of constraints which can be enforced in argumentation frameworks, and which kinds of
change must be performed to satisfy these constraints. Each kind of constraints is exemplified with
the existing approaches about dynamics of argumentation frameworks which correspond to it. We also
sketch some new kinds of constraints which have not been considered until now, leading to some in-
teresting tracks for future research. Dung’s argumentation framework using an extension-based or a
labelling-based semantics has been the main study cases in the existing work, but we also point out some
original ideas to enforce a constraint in some enrichments of Dung’s framework, showing that our typol-
ogy is general enough to work with any kind of abstract argumentation framework. We present a first
step to define a generalized family of constraint enforcement operators through logical encodings.

The Conclusion of the thesis points out some very interesting future works which are related to the
contributions described in this document, and also some completely new research tracks which have not
been explored until now.

The appendices present some additional material. First, Appendix A (Background Notions) intro-
duces some concepts concerning set-theoretical relations, propositional logic and graph theory. A more
substantial part of this chapter is the introduction to complexity theory, which is required to evaluate
the computational hardness of the tasks that we are studying. This part is not mandatory if the reader is
already familiar with these notions, but it can help a non-expert reader to understand some mathematical
concepts. Many notations and writing conventions are defined in this appendix. The other parts of the
appendices present the proofs of the propositions, which are separated from the contribution chapters for
a matter of readability.

5

Introduction

6

Part I

State of the Art

7

Chapter 1

Abstract Argumentation

The purpose of argument is to change the nature of truth.

Frank Herbert – Children of Dune

Argumentation is a field of research particulary interesting for the Artificial Intelligence community.
It concerns the ability, for an agent (a human being, a machine, a piece of software,. . .), to understand a
topic, to reason about it, taking into account every (possibly contradictory) piece of information on this
topic. Of course, argumentation is also a way to convince another agent to change her mind. In both
cases, argumentation can be a tool for decision making. More generally, argumentation can be used to
model any kind of reasoning, as soon as there is some notion of incompatibility between the data of the
problem.

In this chapter, we introduce the basic notions of abstract argumentation as presented by [Dun95].
We explain the different ways to deduce some information from an argumentation framework, defined by
acceptability semantics. These semantics allow to generate some sets of arguments, called extensions,
which can be accepted together. Extensions can be refined through the notion of labellings [Cam06],
which map each argument in the framework to a label indicating if it has to be accepted, rejected, or if
the agent cannot decide between the first two options. We explain then the approach from [BD04] to
map each pair of an argumentation framework and a semantics to a propositional formula. This kind of
encoding is at the core of some of our contributions.

Lastly, we present some examples of applications of argumentation frameworks, like the case of de-
cision making [ADM08] and goal-oriented persuasion [BMM14]. To conclude, we present an example
of application of Dung’s framework which concerns an unusual scenario: resource allocation.

Contents

1.1 Dung’s Framework . 9

1.1.1 Argumentation Framework and Acceptability of Arguments 9

1.1.2 Inference Tasks and their Complexity 15

1.1.3 Propositional Encoding of Argumentation Frameworks 16

1.2 Realizability of a Set of Candidates . 18

1.3 Applications of Argumentation . 20

1.3.1 Argumentation and Decision Making . 20

1.3.2 Argumentation and Goal-Oriented Persuasion 21

1.3.3 Argumentation and Resources Allocation 23

8

1.1. Dung’s Framework

1.4 Conclusion . 24

1.1 Dung’s Framework

There is not a single formalization of argumentation. Dung’s abstract framework focuses on the relations
between arguments exchanged by the agents rather than their origin and how they are built. The question
here is not to know how to obtain the arguments, but to know how to define their acceptance status. This
section aims at presenting the main approaches to determine the statuses of arguments.

1.1.1 Argumentation Framework and Acceptability of Arguments

In [Dun95], Dung formalizes argumentation through an abstract framework which focuses on the relation
between arguments rather than their nature. An argumentation framework is composed of two kinds of
elements:

• arguments are abstract entities representing some pieces of informations which may be conflicting
with each other;

• attacks are pair of arguments which are conflicting; such a pair is oriented, meaning that the first
argument is the one which attacks the second one.

Formally:

Definition 1 (Abstract Argumentation Framework).
Given a set A of arguments and a binary relation R on A (R ⊆ A × A), we call the pair 〈A,R〉 an
(abstract) argumentation framework (AF).
Given two argumentation frameworks F = 〈A,R〉 and F ′ = 〈A′, R′〉, we use the following notations:

• F ⊑ F ′ if and only if A ⊆ A′ and R ⊆ R′

• F ⊔ F ′ = 〈A ∪A′, R ∪R′〉

We suppose in this thesis that A is finite.

Intuitively, if ai and aj are two elements from A, (ai, aj) ∈ R means that if the agent considers that
ai can be accepted, then the argument aj should be rejected. Argumentation frameworks are naturally
represented as digraphs, the nodes being the arguments and the edges representing the attacks.

Example 1 (Example borrowed from [Tou58]).
For instance, we have three pieces of information:

(a) Harry was born in Bermuda, so he is a British citizen.

(b) Harry lives in United States, he may have received the US nationality.

(c) Harry has obtained a Green Card, so he can live in United States without the US nationality.

The first piece of information can be represented as an argument a. It is attacked by the argument b:
Harry may have US nationality, if it is the case, he is not (not any longer) a British citizen. However, a
third piece of information c attacks b, and so defends a against b.
The graph corresponding to these arguments is given at Figure 1.1.

9

Chapter 1. Abstract Argumentation

a b c

Figure 1.1: Example of Argumentation Framework as a Digraph

We define formally the notions of attack and defense:

Definition 2 (Attack, Defense).
Let F = 〈A,R〉 be an argumentation framework.

• Let ai ∈ A be an argument. We say that aj ∈ A (respectively the set of arguments S ⊆ A) attacks
ai if (aj , ai) ∈ R (respectively if ∃aj ∈ S such that aj attacks a).

• Let ai, aj ∈ A be two arguments such that aj attacks ai. We say that argument ak ∈ A (respec-
tively the set of arguments S ⊆ A) defends ai against aj if ak (respectively S) attacks aj .

Generally speaking, it is not easy to deduce from an argumentation framework which arguments can
be accepted. For this purpose, Dung defines several notions allowing to select "good" sets of arguments.
Depending on the properties expected to be satisfied by these good sets, we define different acceptability

semantics, each of them given a (possibly) different set of extensions as the outcome of the argumenta-
tion process.

The first of these interesting properties is conflict-freeness: it is desirable to accept together some
arguments if they do not attack each other.

Definition 3 (Conflict-free Set).
Let F = 〈A,R〉 be an argumentation framework. The set of arguments S ⊆ A is conflict-free in F if and
only if ∀a ∈ A, ∀b ∈ A, (a, b) 6∈ R. The set of all conflict-free sets of arguments in F is denoted cf(F).

Example 1 Continued.

In the argumentation framework, the set {a, c} is conflict-free (neither (a, c) nor (c, a) belong to the
attack relation), but {a, b, c} is not conflict-free (because of the attacks (b, a) and (c, b)).

Dung extends the notion of defense to define the acceptability of an argument with respect to a set of
arguments:

Definition 4 (Acceptable Argument).
Let F = 〈A,R〉 be an argumentation framework. An argument a ∈ A is acceptable with respect to
S ⊆ A in F if and only if for each argument b ∈ A such that b attacks a, S attacks b.

Example 1 Continued.

In the previous argumentation framework, argument a is acceptable with respect to S = {c} since S
defends a against each attack (here, the attack from b to a).

These two notions are used to define admissibility. Admissibility is usually the minimal condition to
accept a set of arguments.

Definition 5 (Admissible Set).
Let F = 〈A,R〉 be an argumentation framework. A set of arguments S ⊆ A is admissible in F if and
only if S is conflict-free in F , and for each argument a ∈ S, a is acceptable with respect to S in F .

Example 1 Continued.

In the argumentation framework from the previous example, the set S = {a, c} is conflict-free, and a
and c are acceptable with respect to S, so S is admissible.

10

1.1. Dung’s Framework

If it is true that admissibility is required for an agent to accept a set of arguments (to avoid accepting
conflicting pieces of information – conflict-freeness – or some pieces of information unable to defend
themselves against attacks – acceptability), it is not always enough. Dung’s semantics refine admissibility
to chose admissible sets which satisfy some additional properties.

Definition 6 (Extensions).
Let F = 〈A,R〉 be an argumentation framework.

• The set of arguments S ⊆ A is a complete extension of F if and only if it is an admissible set of
F , and for each argument a which is acceptable with respect to S, a ∈ S.

• The set of arguments S ⊆ A is a preferred extension of F if and only if S is maximal (with respect
to set-theoretical inclusion ⊆) among admissible sets of F .

• The set of arguments S ⊆ A is a stable extension of F if and only if it is conflift-free in F and S
attacks each argument a ∈ A\S.

• The set of arguments S ⊆ A is a grounded extension of F if and only if it is a minimal element
(with respect to set-theoretical inclusion ⊆) among the complete extensions of F .

In this thesis, we use the abbreviations co, pr, st, gr to denote respectively the complete, preferred, stable
and grounded semantics. Some works consider that admissibility is enough to define a semantics. Then,
ad denotes the admissible semantics.
We consider only semantics which satisfy admissibility: the set of extensions must be a subset of the
admissible sets of the argumentation framework.

It is also known that preferred extensions are exactly the maximal elements (with respect to⊆) among
the complete extensions. Other acceptability semantics have been defined;1 we do not introduce them
here because we focus on the four classical Dung’s semantics in the rest of this thesis, but all our work
can be adapted to any semantics. Given a semantics σ, Extσ(F) denotes the set of σ-extensions of the
argumentation framework F .

Dung has presented some interesting properties for his semantics:

Proposition 1 ([Dun95]).

1. Every argumentation framework possesses at least one preferred extension.

2. Every argumentation framework possesses a single grounded extension.

3. Each stable extension of an argumentation framework F is a preferred extension of F (but the

converse is not true).

4. Each preferred extension of an argumentation framework F is a complete extension of F (but the

converse is not true).

We can represent inclusions between semantics as in Figure 1.2. X −→ Y means: for all argumen-
tation framework F , ExtX(F) ⊆ ExtY (F).

1For instance, see [DMT07] for the ideal semantics and [Cam07] for the eager semantics.

11

Chapter 1. Abstract Argumentation

Stable

Preferred

Complete

Grounded

Admissible

Figure 1.2: Inclusion between Dung’s Semantics

In the general case, these semantics give different sets of extensions, as we can see on the following
example.

Example 2 (Different Extensions for Different Semantics).
Let F be the argumentation framework given on Figure 1.3.

a1 a2 a3 a4 a5

a6

a7

Figure 1.3: An Argumentation Framework with Non-Matching Semantics

The extensions for the different semantics are:

• Extgr(F) = {{a1}}

• Extst(F) = {{a1, a4, a6}}

• Extpr(F) = {{a1, a3}, {a1, a4, a6}}

• Extco(F) = {{a1}, {a1, a3}, {a1, a4, a6}}

In some cases, different semantics match with each other. Dung has given some sufficient conditions
for some semantics to coincide:

Definition 7 (Well-Founded Argumentation Framework).
Let F = 〈A,R〉 be an argumentation framework. F is well-founded if and only if there is no infinite
sequence of arguments a0, a1, . . . , ak, . . . from A such that ∀i ∈ N, (ai, ai+1) ∈ R. 2

Proposition 2.

Every well-founded argumentation framework has exactly one extension which is grounded, stable, pre-

ferred and complete.

This particular case allows to decide which arguments are accepted through a simple algorithm;

• accept the unattacked arguments;

2For finite argumentation framework, it corresponds to acyclicity.

12

1.1. Dung’s Framework

• accept the arguments which are defended by the accepted arguments, reject the ones which are
attacked by an accepted argument;

• iterate until each argument is accepted or rejected.

Example 3.

Let us consider the argumentation framework represented on Figure 1.4. a and b are not attacked, so they

a

b

c

d

e f

Figure 1.4: A Well-Founded Argumentation Framework

are accepted. Consequently, c and d must be rejected. It allows e to be accepted, since it is defended
against all its attackers. So, f is rejected, due to the attack from e. Hence, the single extension for all the
semantics is {a, b, e}.

Let us continue this part on background of argumentation with a presentation of labellings. This no-
tion is a refinement of the notion of extension. Rather than associating each argument a status "accepted"
or "rejected", a labelling determines if the argument is accepted (in), rejected (out), or none of them
(undec). Intuitively, the difference between out and undec is that, in the first case, the agent has a good
reason to reject the argument; while in the second case, the agent cannot accept the argument, but she
does not have a good reason to reject it either.
Such a mapping from arguments to labels makes sense if it takes into account the attack relation (for
instance, labelling in two arguments which attack each other does not make sense, nor labelling out an
argument which is not attacked).
The notion of reinstatement labelling allows to ensure that the mapping takes the attack relation into
account: an argument is in if and only if all its attackers are out ; an argument is out if and only if it is
attacked by at least on argument in; it is undec in the remaining case.

Definition 8 (Labelling, Reinstatement Labelling [Cam06]).
Let F = 〈A,R〉 be an argumentation framework.

• L is a labelling of F if and only if L is a mapping from A to {in, out , undec}.

• The labelling L is a reinstatement labelling of F if and only if

– ∀a ∈ A, L(a) = out if and only if ∃b ∈ A such that (b, a) ∈ R and L(b) = in;

– ∀a ∈ A, L(a) = in if and only if ∀b ∈ A such that (b, a) ∈ R, L(b) = out .

L can also be represented by the set of pairs {(a, L(a)) | a ∈ A}.

Such a reinstatement labelling L can be used to partition the set of arguments A:

• in(L) = {a ∈ A | L(a) = in}

• out(L) = {a ∈ A | L(a) = out}

13

Chapter 1. Abstract Argumentation

• undec(L) = {a ∈ A | L(a) = undec}

Caminada proved that there is a matching between reinstatement labellings and complete extensions.
Indeed, each complete extension can be built from a reinstatement labellingL keeping only the arguments
which are in in L; conversely, a labelling can be built from an extension ε: the arguments in ε are in ,
while the arguments attacked by ε are out and the remaining ones are undec.

Proposition 3 (Matching between Reinstatement Labellings and Complete Extensions [Cam06]).
Let F = 〈A,R〉 be an argumentation framework.

• Let L be a reinstatement labelling of F . E(L) = in(L) is a complete extension of F .

• Let ε be a complete extension of F . We denote

IN = {(a, in) | a ∈ ε}
OUT = {(a, out) | a is attacked by ε}
UNDEC = {(a, undec) | a /∈ ε and a is not attacked by ε}

Lab(ε) = IN ∪OUT ∪ UNDEC is a reinstatement labelling of F .

So, reinstatement labellings match complete extensions in a bijective way. Caminada showed that
such relations exist between extensions for the other semantics and some particular families of rein-
statement labellings. For this reason, we use σ-labellings in the rest of this document to name the la-
bellings corresponding to the σ-extensions of an argumentation framework, and reinstatement labellings
are called complete labellings.

Proposition 4 (Matching between Labellings and σ-Extensions [Cam06]).
Let F = 〈A,R〉 be an argumentation framework. Given ε a σ-extension of F ,

• if σ is the stable semantics, L(ε) is a complete labelling such that undec(L) = ∅;

• if σ is the preferred semantics, L(ε) is a complete labelling such that in(L) is maximal;

• if σ is the grounded semantics, L(ε) is a complete labelling such that in(L) is minimal.

Given L a complete labelling of F ,

• if undec(L) = ∅, then E(L) is a stable extension of F ;

• if in(L) is maximal, then E(L) is a preferred extension of F ;

• if in(L) is minimal, then E(L) is the grounded extension of F .

For each semantics σ, Labsσ(F) denotes the set of labellings associated to the argumentation framework

with respect to σ.

Example 2 Continued.

Let us consider again the argumentation framework given at Figure 1.3. The labellings for the different
semantics are:

• Labsgr(F) = {L
gr
1 } with

in(Lgr1) = {a1}; out(L
gr
1) = {a2}; undec(L

gr
1) = {a3, a4, a5, a6, a7}

14

1.1. Dung’s Framework

• Labsst(F) = {L
st
1 } with

in(Lst1) = {a1, a4, a6}; out(L
st
1) = {a2, a3, a5, a7}; undec(L

st
1) = ∅

• Labspr(F) = {L
pr
1 , L

pr
2 } with

in(Lpr1) = {a1, a3}; out(L
pr
1) = {a2, a4}; undec(L

pr
1) = {a5, a6, a7}

in(Lpr2) = {a1, a4, a6}; out(L
pr
2) = {a2, a3, a5, a7}; undec(L

pr
2) = ∅

• Labsco(F) = {L
co
1 , L

co
2 , L

co
3 } with

in(Lco1) = {a1}; out(L
co
1) = {a2}; undec(L

co
1) = {a3, a4, a5, a6, a7}

in(Lco2) = {a1, a3}; out(L
co
2) = {a2, a4}; undec(L

co
2) = {a5, a6, a7}

in(Lco3) = {a1, a4, a6}; out(L
co
3) = {a2, a3, a5, a7}; undec(L

co
3) = ∅

The very value of labellings is to be able to distinguish, among the arguments which do not belong to
an extension (those which are not in), those which are "really" rejected (out) from those which are not
formally rejected, but are not reliable enough to be accepted (undec). This can be useful to define more
expressive distances for instance.

1.1.2 Inference Tasks and their Complexity

Several inference tasks can interest an agent who reasons with argumentation frameworks. The most
usual one is to determine whether an argument is accepted or not. We can distinguish between two kinds
of acceptance. Given an argumentation framework F = 〈A,R〉:

Credulous Acceptance (DC) Given a ∈ A an argument and σ a semantics does it exist some ε ∈
Extσ(F) such that a ∈ ε?

Skeptical Acceptance (DS) Given a ∈ A an argument and σ a semantics, does ∀ε ∈ Extσ(F), a ∈ ε
hold?

Intuitively, the credulously accepted arguments are the ones which are supported by at least one exten-
sion. They can be accepted if the agent does not need an absolute certainty about their status. On the
opposite, the skeptically accepted arguments3 are the arguments which belong to each extension, and
then cannot be questionned. Both inference policies have some weakness, depending on the particular
application where they are used. When using credulous acceptance, the agent may accept two arguments
a1 and a2 even if they are conflicting, as soon as each of them belongs to an extension. On the opposite,
using the skeptical acceptance, the agent may reject every argument, since it is not always the case that
an argument belongs to each extension.
The set of credulously accepted arguments and the set of skeptically accepted arguments are respectively
defined like this:

Crσ(F) =
⋃

ε∈Extσ(F)

ε

Scσ(F) =
⋂

ε∈Extσ(F)

ε

Some other interesting inference problems have been defined:

3We also call them " skeptical consequences" of an argumentation framework.

15

Chapter 1. Abstract Argumentation

Existence (Exist) Given σ a semantics, does it exist a σ-extension of F ?

Non Trivial Existence (Exist∅) Given σ a semantics, does it exist a non-empty σ-extension of F ?

Verification (Ver) Given e ⊆ A a set of arguments and σ a semantics, does e ∈ Extσ(F) hold?

Studies have been conducted to identify the complexity of these problems for different semantics.

Proposition 5 ([CDM05, DW09]).
The complexity of DC, DS, Exist, Exist∅ and Ver, for the grounded, stable, preferred and complete

semantics, are the ones given at Table 1.1. Given a complexity class C, C−c means that the problem is

complete for the class C. "Trivial" means that the solution of the problem is known from the definition of

the semantics.

Semantics gr st pr co

DC P NP−c NP−c NP−c

DS P coNP−c ΠP2 − c P−c

Exist Trivial NP−c Trivial Trivial
Exist∅ P NP−c NP−c NP−c

Ver P P coNP−c P

Table 1.1: Complexity of Inference Problems for the Usual Semantics

1.1.3 Propositional Encoding of Argumentation Frameworks

In this section, we present some results from [BD04] on the encoding, through propositional logic, of
the most usual semantics. The main idea is to check, given an argumentation framework F , a semantics
σ and a set of arguments E, if E is a σ-extension of F . Three different approaches are presented. The
first one consists in verifying that the set E satisfies some particular equation. We do not explain this
approach in details.

We present more in depth the second approach, which checks if a particular propositional formula,
depending on the parameters F , σ and E, is satisfiable. Besnard and Doutre call this approach "Satisfia-
bility Checking Approach". The Boolean variables defined in this encoding correspond to the arguments
in the set A = {a1, . . . , an}, and their intuitive meaning is that argument ai is accepted if the associated
Boolean variable is true.

Let us illustate this method on a simple example: conflict-freeness. First, we recall that a set E ⊆ A
is conflict-free in F = 〈A,R〉 if and only if there is no pair of arguments c = (ai, aj) such that both
arguments belong toE and c belongs to the attack relationR. So, we can define the propositional formula
ΨE
F,cf which is satisfiable if and only if E is conflict-free in F :

ΨE
F,cf =

∧

ai∈E

[ai ∧ (
∧

aj :(aj ,ai)∈R

¬aj)]

An example may help to understand:

Example 4.

Let F = 〈A,R〉 be the argumentation framework given on Figure 1.5. Given the set of arguments
E1 = {a1, a3} (which is not conflict-free), we build the propositional formula ΨE1

F,cf = [a1 ∧ (¬a2 ∧

16

1.1. Dung’s Framework

¬a3)] ∧ [a3 ∧ (¬a4)], which is obviously not satisfiable.
The conflict-free set E2 = {a1, a4} is associated with the formula ΨE2

F,cf = [a1 ∧ (¬a2 ∧ ¬a3)] ∧ [a4],
which is satisfiable. For instance, the valuation of a1 and a4 as true; a2 and a3 as false is a model.

a1

a2

a3

a4

Figure 1.5: The Argumentation Framework F

Similarly, Besnard and Doutre presented encodings for the stable, complete and admissible seman-
tics: E is a σ-extension of F is and only if ΨE

F,σ is satisfiable.

This approach is extended in [BDH14], which gives the required tools to define ΨE
F,σ when the semantics

σ is defined through a notion of set-theoretical minimality or maximality (as it is the case of preferred
and grounded semantics).

Last, we finish this presentation of logical encodings by the third approach proposed by Besnard and
Doutre: the "Model Checking Approach". Now, the propositional formula ΦF,σ such that each of its
models corresponds to an extension of F is built. So, for the verification problem, propagating the truth
values of Boolean variables allows to know if a particular set of arguments is a σ-extension.
We can also consider some other applications of this approach: thanks to the power of modern SAT
solvers, computing an extension – or even the set of all the extensions – of an argumentation framework
can often be done very efficiently.

We give here the details about the encodings for the stable and complete semantics, and we illustrate
them on a concrete example.

Proposition 6 ([BD04]).
Let F = 〈A,R〉 be an argumentation framework. A set of arguments E ⊆ A is a stable extension of F
if and only if E is a model of the formula

ΦF,st =
∧

ai∈A

[ai ⇔ (
∧

aj :(aj ,ai)∈R

¬aj)]

Example 4 Continued.

Let us come back to the argumentation framework described at Figure 1.5. The encoding of the stable
semantics for this argumentation framework gives:

ΦF,st = [a1 ⇔ (¬a2 ∧ ¬a3)]
∧[a2 ⇔ (¬a1)]
∧[a3 ⇔ (¬a4)]
∧[a4 ⇔ (true)]

It is easy to check that its models are exactly

Mod(ΦF,st) = {{a1, a4}, {a2, a4}}

which correspond to the stable extensions of F .

17

Chapter 1. Abstract Argumentation

Proposition 7 ([BD04]).
Let F = 〈A,R〉 be an argumentation framework. A set of arguments E ⊆ A is a complete extension of

F if and only if E is a model of the formula

ΦF,co =
∧

ai∈A

[(ai ⇒ (
∧

aj :(aj ,ai)∈R

¬aj)) ∧ (ai ⇔ (
∧

aj :(aj ,ai)∈R

∨

al:(al,aj)∈R

al))]

Example 4 Continued.

Continuing the previous example, the encoding of the complete semantics for this argumentation frame-
work F gives:

ΦF,co = [(a1 ⇒ (¬a2 ∧ ¬a3)) ∧ (a1 ⇔ (a1 ∧ a4))]
∧[(a2 ⇒ (¬a1)) ∧ (a2 ⇔ (a2)]
∧[(a3 ⇒ (¬a4)) ∧ (a3 ⇔ (false)]
∧[(a4 ⇒ (true)) ∧ (a4 ⇔ (true)]

This time, the models are
Mod(ΦF,st) = {{a1, a4}, {a2, a4}, {a4}}

which correspond to the complete extensions of F .

Besnard and Doutre also pointed out some encodings for the preferred and grounded semantics, but
there is not exact correspondance between the extensions and the models of the formula. This comes
from the notion of minimality and maximality which define these semantics. The authors presented an
encoding of admissible sets of arguments (we note this encoding ΦF,ad). A set E is then a preferred
extension of the argumentation framework F if and only if E is a maximal model (with respect to ⊆) of
the formula ΦF,ad.
In a similar way, E is the grounded extension of the argumentation framework F if and only if it is the
minimal model of ΦF,co with respect to inclusion.

1.2 Realizability of a Set of Candidates

A last notion which is related to the contributions presented in this thesis is the realizability of a set of
sets of arguments called extension-sets4[DDLW14].

Definition 9 (σ-Realizability).
Let σ be a semantics. The extension-set C is said to be realizable with respect to σ (or σ-realizable) if
and only if there exists an argumentation framework F such that Extσ(F) = C.

It is not always the case that an extension-set corresponds to the set of extensions of an argumentation
framework with respect to a given semantics. This is illustrated by Example 5.

Example 5.

Given the set of arguments A = {a1, a2, a3, a4, a5}, the extension-set C = {∅, {a2, a4}, {a1, a3, a5}}
is realizable with respect to the complete semantics (for instance, it is the set of complete extensions of
the argumentation framework given at Figure 1.6), but it is not realizable with respect to the preferred
semantics (since the empty set is not maximal with respect to set inclusion).

Dunne and colleagues study the expressiveness of the different semantics. To this aim, they define
the signature of a semantics.

4In our contributions, we call a set of arguments a candidate, meaning "candidate to be an extension", since it cannot be
considered as an extension if it is not related to an argumentation framework and a semantics.

18

1.2. Realizability of a Set of Candidates

a1 a2 a3 a4 a5

Figure 1.6: An Argumentation Framework Corresponding to C

Definition 10 (σ-Signature).
The signature of the semantics σ (or σ-signature) Σσ is the set of extension-sets {C1, . . . , Cn} which are
σ-realizable.

Then, they identify exactly the properties of the σ-signature for the most usual semantics. First, let
us introduce some properties of extension-sets.

Definition 11 (Downward-closure and Incomparability).
Let C be an extension-set. The downward-closure of C is dcl(C) = {c′ ⊆ c | c ∈ C}. C is called
downward-closed if and only if C = dcl(C), and incomparable if and only if for each c, c′ ∈ C, c ⊆ c′

implies c = c′.

Definition 12 (Tightness).
Given an extension-set C, ArgC denotes

⋃

c∈C c while PairsC denotes the set {(ai, aj) | ∃c ∈ C such
that {a, b} ∈ c}.
C is tight if and only if for each c ∈ C and each ai ∈ ArgC , if c ∪ {ai} /∈ C then there exists an aj ∈ c
such that (ai, aj) /∈ PairsC .

Definition 13 (adm-Closeness).
An extension-set C is called adm-closed if and only if for each c1, c2 ∈ C, if (ai, aj) ∈ PairsC for each
ai, aj ∈ c1 ∪ c2, then c1 ∪ c2 ∈ C.

Now, we identify the signatures of the usual semantics.

Proposition 8 (σ-Signature of the Usual Semantics).
The following collections of extension-sets are the signatures of the considered semantics.5

• Σcf = {C | C is downward-closed and tight }

• Σstb = {C | C is incomparable and tight }

• Σadm = {C | C is adm-closed and contains ∅}

• Σpref = {C | C is incomparable and adm-closed }

The complete-signature is not fully characterized, but it is known that Σadm ⊂ Σco.

We conclude the introduction to realizability with an interesting complexity result.

Proposition 9.

For the semantics σ ∈ {cf, stb, adm, pref}, given a set of candidates C, testing if C ∈ Σσ is a

polynomial-time decision problem.6

5Dunne and colleagues also identify the signatures of other semantics which are not presented in this thesis.
6Let us notice that it is also the case for the other semantics considered in [DDLW14], except the complete semantics.

19

Chapter 1. Abstract Argumentation

1.3 Applications of Argumentation

In this last section, we introduce in an informal way several possible applications of abstract argumenta-
tion frameworks. These toy examples are related to problems where argumentation is useful, and we can
use them to explain and motivate the intervention of the dynamics of argumentation frameworks.
First, argumentation can be used to determine, among a set of conficting options, which one must be
chosen. A typical kind of scenario is the choice of an action to perform.
A second application of argumentation is a form of persuasion. When several agents have to take a
common decision, but disagree about which option is the best, a rational way to find an agreement is to
discuss, each agent setting in the debate some arguments to persuade the other agents that her option is
the best one.
At last, we present a less intuitive application of abstract argumentation: resource allocation. We show
that the allocations of some resources between several agents can be represented as some conflicts, sim-
ilar to attacks in an argumentation scenario. Then, the different semantics can be used to choose the
"good" allocation.

1.3.1 Argumentation and Decision Making

Let us suppose that an agent has to choose between several conflicting options an action (or a list of
actions) to perform. The reasons to choose an option rather than another one can be modelled through
arguments attacking each other, some of them representing directly a particular action. If one of these
arguments is accepted, with respect to the semantics used by the agent, then the action associated with
the argument is performed by the agent.

This application requires the agent to have a set of options along with the argumentation framework
F = 〈A,R〉, each one representing an action to perform: O = {o1, . . . , op} and a set of rules rai,oj
meaning intuitively "if argument ai is accepted,7 then option oj has to be chosen". The actions can be
mutually exclusive or not. When it is the case, it is required that the arguments supporting these options
attack each other to ensure that two conflicting options are not chosen together. We may also have some
tie-break rules if there are some ex aequo solutions (meaning several extensions for the chosen seman-
tics), as we exemplify below.

Let us imagine the following scenario: John et Yoko want to go to the movie. They disagree about
the film they want to watch. John wants to watch an action movie (option o1) because it received some
good reviews from the critics (argument a1). Yoko prefers to watch a family comedy (option o2) because
she thinks that this movie is more interesting (argument a2). Moreover, she recalls to John that they have
to take care of their children, and the action movie is not well-suited to children (argument a3). John
answers that they can hire a baby-sitter for the evening (option o3), and so they do not have to worry
about their children (argument a4). Yoko stays in a disagreement about the action movie, and tells John
that one of her friends has already seen it, and did not like it (argument a5). This scenario is represented
by the argumentation framework and the options given on Figure 1.7.

The next step is to decide which semantics and kind of acceptance is used to organize the evening.
With the grounded semantics, the result is not convincing for John and Yoko: the result is {{a4}}, mean-
ing that they have to hire the baby-sitter, but not to go to the cinema. It is obviously not a satisfying

7Here, the meaning of "accepted" is not explicitely specified, and depends of the agent (skeptically, credulously, with respect
to any semantics,. . .).

20

1.3. Applications of Argumentation

a1

a2

a3

a4

a5

o1

o2o3

Figure 1.7: Graphical Representation of the Debate between John and Yoko

solution. With another semantics (for instance, the stable semantics), we get the following set of ex-
tensions: {{a1, a4}, {a2, a4, a5}}. With skeptical reasoning, we obtain the same result as the grounded
semantics. A credulous reasoning leads John and Yoko to watch both movies. This solution is not either
a satisfying solution for them, except if they have enough free time to attend two screenings.
However, it is possible to refine the result, for instance if the agents agree on a tie-break rule, a single
extension can be selected. A possible one, here, is to consider that option o2 is stronger than option o1,
since the argument which supports o1 is attacked by two arguments in the extension {a2, a4, a5}, while
the argument which supports o2 is only attacked by a single argument when the extension {a1, a4} is
considered. This is a simple rule which can be defined for this particular application, but the agents can
agree on any kind of tie-break rule, even the one which picks randomly one of the possible solutions. Of
course, such a tie-break rule has to be decided by the agent before the study of the extension, to avoid a
manipulation of the result by chosing a tie-break rule which is more in favor of one of the agents.

For more details about this kind of scenario, we refer the reader to the works presented in [ADM08,
AP09, AV12].

Dynamics of Argumentation and Decision Making The dynamics of argumentation frameworks is
useful in many ways in such a scenario. The simplest one is the fact that one of the agents can learn (or
remember) a new argument or attack, and put it in the debate, to make the issue more favorable to its
preferences. For instance, if John learns a new argument against the family comedy, then he will state
this argument to prevent this movie to be chosen.
A more subtle scenario, in which we are interested, is to determine what happen if the agents learn a new
information about the status of an argument. For instance, if John and Yoko learn from a trustworthy
person that they should not watch the family comedy, they have to modify their argumentation framework
to incorporate this information, but without adding a new argument to explain this change of status of an
argument.

1.3.2 Argumentation and Goal-Oriented Persuasion

A second possible application of argumentation is the persuasion of an agent (or a group of agents) by
another one. This case is interesting when the beliefs and the goals of the agents are not compatible
with each other. In this situation, each agent can influence the outcome of the debate to lead the group
to accept or reject some particular arguments. The way to influence the debate has to be optimized by
each agent to guarantee that the result is the expected one. It is not the case in the scenario described in
Section 1.3.1, where John and Yoko set all their arguments in the debate, then analyse the situation and
decide what has to be chosen.

21

Chapter 1. Abstract Argumentation

Let us switch to John and Paul, who disagree about the place where they will play their next concert.
John wants to play in New-York City (a1), while Paul prefers Chicago (a2). Contrary to Paul, John
knows that the sound is not as good in the New-York City concert hall than in Chicago (we can suppose
that John has some other reason to prefer this city), it is the argument a3. Our agents agree that a night in
New-York City is much more expensive than a night in Chicago, which is not a good point for New-York
City either (argument a4), but Paul knows that it is possible to have a cheaper night in the hotel associated
with the concert hall (a5). Figure 1.8 presents the set of arguments in this scenario. Black arguments and
attacks are those known by both agents, while the blue ones are those which are known only by Paul, and
the green ones are those that only John knows.

a1 a2

a3

a4

a5

Figure 1.8: Graphical Representation of the Debate between John and Paul

We suppose that the debate starts with the arguments concerning John and Paul’s preferences (a1 et
a2 are set in the debate, presented on Figure 1.9.

a1 a2

Figure 1.9: First Step of the Debate

It is not interesting for them to stop at this point, because there is no solution (grounded semantics
gives the empty set as its extension, and the other usual semantics give the set {{a1}, {a2}}). As Paul
prefers to go to Chicago it is rational for him to recall John the prices of the hotel rooms in New-York,
so we obtain the graph presented on Figure 1.10. Now there is a possible solution: {a2, a4} is the single

a1 a2a4

Figure 1.10: Second Step of the Debate

extension. Even if this situation is not satisfying for John, he does not want to add another argument,
because the only one that he can put in the debate is a3, which is not in favor of his preferred option.
Similarly, Paul possesses an information that he does not want to share with John about the possible
cheaper price of the hotel room: indeed, putting this information in the debate would take away Paul
from his goal (play in Chicago) because {{a5}} would be the outcome of the debate with respect to the
grounded semantics, and {{a1, a5}, {a2, a5}} for the other ones.

22

1.3. Applications of Argumentation

So, it is important, when an agent wishes a particular outcome for the debate, to choose wisely the
arguments that she puts in the debate, even if it means that she has to hide some information.
This kind of approach has been formalized, for instance by [BMM14].

Dynamics of Argumentation and Goal-Oriented Persuasion The application of dynamics of argu-
mentation that we describe previously, in the section about John and Yoko choosing a movie, still apply
here. We can also remark that since the goal of the agents is important here, one of them can try to
manipulate the result of the debate. The simplest way for an agent to manipulate the debate, again, is the
addition of new arguments to achieve her goal. But it is not always the case that additional arguments are
available. So we also consider possible that the agent will try to convince her opponent that some of the
attacks between the existing arguments are not correctly stated, and then should be added or removed.

1.3.3 Argumentation and Resources Allocation

In this example, Dung’s framework is not used to deal directly with an argumentative scenario. We
wish to model and solve a problem consisting in allocating some resources {r1, . . . , rn} to some users
{u1, . . . , um}. (ri, uj) denotes the allocation of a resource ri to an user uj .
There may be conflicts between some allocations, for instance it is possible that a particular resource
ri cannot be shared between several users (then, (ri, uj) and (ri, uk) are conflicting for each j 6= k).
In some cases, the users can be unable to use several resources that ones (then, ((ri, uj) and (rk, uj)
are conflicting). Moreover, there may be a "preference" for a particular allocation on another one (for
instance, a user can be more skilled to use a particular resource than another one).

We can see an intuitive way to solve our problem through argumentation frameworks: arguments
correspond to the allocations, incompatibility between allocations are mutual attacks, while an incom-
patibility with a preference is a direct attack (the preferred allocation attacks the other one). If there is
some forbidden allocation, then it is a self-attack.

We exemplify this modelling on a simple case: we have to share some toys (the resources) between
several children (the users). There is a set of three toys {console, board_game, figurine} to be shared
between three children {John, Paul,George}. The figurine cannot be shared, while the console and
the board game can. The parents think that Paul is too young to understand the rules of the board game,
so this allocation attacks itself. Last, the parents consider that it is better to give children a figurine than a
console, because it helps them to develop their imagination, and they also prefer the board game because
it develops their sociability and communication skills. So, each allocation of the console is attacked by
the allocations of the board game and the allocations of the figurine.
This scenario is modeled by the argumentation framework described on Figure 1.11, where the names of
the toys and children are replaced by their first letter.

Solving this problem gives the outcome {{(g, J), (g,G), (f, P)}} for the stable semantics, meaning
that Paul will play with the figurine while John and George will play with the board game.
Grounded semantics is much more cautious. On this scenario, it results in an empty extension, meaning
that the children will not play at all!
We also remark that the agent can use the complete semantics, and then obtain the set of extensions
{∅, {(g, J)}, {(g, J), (g,G)}, {(g, J), (f,G)}, {(g,G), (f, J)}, {(g,G)}, {(g, J), (g,G), (f, P)}}, or the
preferred semantics which gives the same result as the stable semantics.

23

Chapter 1. Abstract Argumentation

g, P g, J g,G

c, P c, J c,G

f, P f, J f,G

Figure 1.11: Model of the Toys Allocation

Dynamics of Argumentation and Resources Allocation This scenario can benefit from different ap-
proaches of the dynamics of argumentation frameworks. The integration of new users or new resources
leads to the addition of arguments and attacks in the argumentation framework.
If an information about the outcome of the process is received, then changing the argumentation frame-
work without adding arguments can be considered. For instance, if the parents accept to let Paul play
the board game with the other children, then the self-attack on (g, P) must be removed. Similarly, if
the parents learn that playing the console is a valuable outcome of the problem, then it means that the
arguments about the video games should attack the other ones, leading to an extensions which contains
the three of them.

1.4 Conclusion

In this chapter, we introduce the theory of abtract argumentation. From the notion of abstract argumenta-
tion framework proposed by Dung, it is possible to reason using different semantics to compute so-called
extensions, which are the sets of jointly acceptable arguments. The notion of extension can be refined
through the concept of labellings, which introduce a new status for the arguments, between acceptance
and complete rejection.
We also describe two existing works which are useful to some of our contributions. First, we present
how argumentation semantics can be encoded into propositional formulae; and then we give some re-
sults about the realizability of an extension-set.
Finally, toy examples of applications of arguments are given to sketch the way abstract argumentation
can be useful for real problems, and how the dynamics of argumentation frameworks can take a part in
these real problems. This topic is more formally presented in Chapter 3, and of course in the chapters
dedicated to the contributions of this thesis.

24

Chapter 2

Belief Change

So the universe is not quite as you thought it was. You’d better rearrange your beliefs, then.

Because you certainly can’t rearrange the universe.

Isaac Asimov – Nightfall

Modelling an "intelligent" reasoning requires to study some more or less complex processes which
can be performed on a belief base: checking if the beliefs are consistent (SAT problem), or if a given
piece of belief is a consequence of the belief base (inference problem). These are static processes: the
agent who is using the belief base only needs to interrogate the belief base. Other kinds of processes can
be studied, linked to an evolution of the agent’s beliefs. This chapter gives a brief description of some of
these kinds of reasoning.
First, we present the AGM framework for belief change [AGM85]. In this work, the authors describe
three different kinds of dynamic processes, and they give a set of rationality postulates that are expected
to be satisfied by any belief change operator. This set of postulates can be associated with a family of
operators, which are described in a constructive way.
Then, we present the work by Katsuno and Mendelzon about the adaptation of belief revision to the
setting of finite propositional logic [KM91]. The same authors have also been interested in belief update
[KM92]. We introduce this operation and explain the difference between revision and update.
A brief presentation of the Dynamic Logic of Propositional Assignments [HLMT11, BHT13], which is
a possible way to encode belief change operations, finishes this chapter.

Contents

2.1 AGM Framework . 26

2.1.1 Belief Status, Belief Change . 26

2.1.2 Rationality Postulates and Links between Operations 27

2.1.3 Representation Theorems . 30

2.2 Belief Change in Propositional Logic . 33

2.2.1 From Theories to Propositional Formulae 33

2.2.2 Belief Revision in Propositional Logic 34

2.2.3 Belief Update: Another Way to Incorporate a New Piece of Information . 36

2.2.4 Dynamic Logic of Propositional Assignments and Belief Change 39

2.3 Conclusion . 41

25

Chapter 2. Belief Change

2.1 AGM Framework

We can represent the information known by an agent as a logical knowledge (or belief) base. It is very
likely, in the life of an agent, that her beliefs change, for different reasons. For instance, if the agent
learns that some of her beliefs are not consistent with the real state of the world, she changes it to ensure
consistency with the world.
We present here one of the most influential work on belief change, the AGM framework, from its pro-
moters Carlos Alchourrón, Peter Gärdenfors and David Makinson, which uses theories to represent the
agent’s beliefs.

2.1.1 Belief Status, Belief Change

When an agent’s beliefs are represented through a logical belief base K, a formula α can have three
different statuses for the agent:

• K ⊢ α: the agent can deduce α from her beliefs, so she considers that α is true; we say that α is
accepted.

• K ⊢ ¬α: the agent can deduce the negation of α from her beliefs, so she considers that α is false;
we say that α is rejected.

• K 0 α and K 0 ¬α: the agent cannot deduce anything about α nor its negation; we say that α is
undetermined.

In the AGM framework, the beliefs of the agent are represented through a theory, which is a deductively
closed set of formulae: K = {ϕ | K ⊢ ϕ}. So for this particular case, K ⊢ α is equivalent to α ∈ K.

During the agent’s life, it is possible that her beliefs about the world change. For instance, some new
pieces of information, considered to be more faithful than the agent’s previous beliefs (because they are
more recent, or because their source is reliable) contradict these previous beliefs.

Example 6.

Let us suppose that John believes that Paul owns a dog and a cat. His belief base is K = {dog, cat}. If
Paul tells John "I do not think that it is possible to own a dog and a cat together, they would always fight
with each other", then John has to change his beliefs, because his current belief base is not consistent
with the new piece of information from Paul. Formally, it means that John has to incorporate the formula
¬(dog ∧ cat) to his beliefs.
Moreover, if Paul talks about his goldfish, John can add goldF ish in his belief base, though there were
no piece of information about a goldfish until then.

A belief status change can have a different kind of nature, depending on the statuses which are
concerned by this change. For instance, moving a belief from undetermined to accepted or refused can
be seen as an expansion (the fact to add some new beliefs to the base).
The opposite change can be seen as a contraction (the fact to forget a belief in the base). Last, moving a
belief from accepted to refused (or vice-versa) is called a revision (the fact to add a new belief which is
conflicting with the previous beliefs).

Some intuitive principles are expected to be satisfied by these operations:

• primacy of update: the new piece of information concerned by the belief change must have the
expected status in the outcome;

26

2.1. AGM Framework

Accepted Refused

Undetermined

Ex
pa

ns
io

n
Co

nt
ra

ct
io

n

Revision

Revision

Expansion

Contraction

Figure 2.1: Transitions between Beliefs States

• consistency: the result must be consistent if the new piece of information is consistent; this prop-
erty is not satisfied by expansion;

• minimal change: the agent must avoid to forget or add too much information.

In the rest of this section, we present the formal characterization of these three kinds of belief change
in the AGM framework. First, each of them is associated with a set of rationality postulates, that are
some logical properties which have to be satisfied by any "good" operator. Then, we present some ways
to define change operators which satisfy the postulates.

2.1.2 Rationality Postulates and Links between Operations

Rationality Postulates

For each of the three operations briefly described previously, the AGM framework presents a set of ra-
tionality postulates, that are some properties which have to be satisfied by an operator to be considered
as a "good" one.
For instance, if the operation is supposed to add goldF ish to the belief base, it does not seem rational
to forget everything else and to keep only the new piece of information. It would obviously violate the
minimal change principle.

Formally, an AGM expansion operator is a function which maps a theory K and a logical formula α
to new theory K + α such that:

• (K+1) K + α is a theory

• (K+2) α ∈ K + α

• (K+3) K ⊆ K + α

• (K+4) If α ∈ K, then K + α = K

• (K+5) If K ′ ⊆ K, then K ′ + α ⊆ K + α

• (K+6) K + α is the smaller theory satisfying (K+1) - (K+5)

Each postulate can be explained intuitively. The first one guarantees that the result of the operation
is a theory, so the beliefs are represented in the same way after the expansion as before. (K+2) ensures
that the new piece of information is actually accepted in the outcome theory. (K+3) orders not to

27

Chapter 2. Belief Change

remove pieces of information from the theory, but only to add some new ones, which justifies the name
"expansion". (K+4) expresses that it is not required to change the theory if it already contains the new
piece of information. Postulate (K+5) asks the expansion to be monotonic. (K+6) expresses minimal
change: no belief which is not justified by the addition of α can be added.
From these postulates, Gärdenfors deduces that there can be only one rational expansion operator.

Theorem 1 ([Gär88]).
The expansion operator + satisfies postulates (K+1) - (K+6) if and only if K + α = Cn(K ∪ {α}).

Gärdenfors proved that the expansion is a very simple operation: making a conjunction with the
former theory and the new piece of information proves enough. This operation does not satisfy the
consistency principle.

Example 7.

When John learns that Paul does not want to own a dog and a cat at once, using the expansion operator
with the new piece of information ¬(cat∧ dog) is not a good idea, since this new piece of information is
not consistent with John’s beliefs, and so the expanded theory is the trivial set K⊥, which contains every
possible formula from the language.
However, since John did not have any belief about the presence (or not) of a gold fish at Paul’s house, it
is not a problem to expand the belief base K by goldF ish.

Another way to tackle the problem of John and Paul is to do a contraction: now the aim is to remove
from the theory a piece of information which is supposed to be guaranteed to be correct. Since it was
not correct to believe that Paul owns a dog and a cat together, a contraction by dog ∧ cat leads to a new
theory which does not imply this piece of information any longer.
A contraction operator ÷ is a mapping from a theory and a formula to a new theory. It satisfies the
following properties:

• (K÷1) K ÷ α is a theory

• (K÷2) K ÷ α ⊆ K

• (K÷3) If α 6∈ K, then K ÷ α = K

• (K÷4) If 0 α, then α 6∈ K ÷ α

• (K÷5) If α ∈ K, then K ⊆ (K ÷ α) + α

• (K÷6) If⊢ α↔ β, then K ÷ α = K ÷ β

• (K÷7) (K ÷ α) ∩ (K ÷ β) ⊆ K ÷ (α ∧ β)

• (K÷8) If α 6∈ K ÷ (α ∧ β), then K ÷ (α ∧ β) ⊆ K ÷ α

(K÷1) meaning is the same one as for (K+1). (K÷2) guarantees that contraction does not add any
new piece of information. (K÷3) prevents from performing some change to the theory if the target piece
of information does not belong to the agent’s belief. It is a counter-part of (K+4). (K÷4) ensures the
success of the operation: if the belief α is not a valid formula, then α cannot belong to the new theory.
Postulate (K÷5) implies that contracting a theoryK then expanding the result by the same belief α leads
to the input theory K if α belongs to K. (K÷6) expresses the irrelevance of syntax. These six postulates
are called basic postulates for contraction.

28

2.1. AGM Framework

The last two postulates are the additional postulates. It is possible to define AGM contraction operators
which only satisfy the six basic postulates. (K÷7) states that the beliefs which belong to the theory re-
sulting from a contraction by α and to the theory resulting from a contraction by β also belong to the from
obtained when contracting by the conjunction of α and β. (K÷8) expresses minimal change with respect
to the conjunction; if α∧β has to be removed, it means that either α or β has to be removed. If α is actu-
ally removed, then there has been as much removal as if only α had just been the target of the contraction.

Now, the last operation of the AGM framework is revision. Similarly to expansion, the aim of
revision is to add a new piece of information to the theory. The difference is that revision satisfies the
consistency principle: if the new piece of information is inconsistent with the input theory, then such
(minimal) changes must be performed to include the new piece of information without leading to the
trivial theory.
An AGM revision operator ∗ is a mapping from a theoryK and a formula α to a new theoryK ∗α which
satisfies the following postulates:

• (K∗1) K ∗ α is a theory

• (K∗2) α ∈ K ∗ α

• (K∗3) K ∗ α ⊆ K + α

• (K∗4) If ¬α 6∈ K, then K + α ⊆ K ∗ α

• (K∗5) K ∗ α = K⊥ if and only if ⊢ ¬α

• (K∗6) If ⊢ α↔ β, then K ∗ α = K ∗ β

• (K∗7) K ∗ (α ∧ β) ⊆ (K ∗ α) + β

• (K∗8) If ¬β 6∈ K ∗ α, then (K ∗ α) + β ⊆ K ∗ (α ∧ β)

As it was the case for the previous operations, (K∗1) ensures that the result of the revision is a theory.
(K∗2) indicates that the new piece of information must be a conclusion of the revised belief base. (K∗3)

means that the pieces of information in the outcome of revision are either some beliefs from the input
belief base, or some consequences of the new belief. This same postulate, joined with postulate (K∗4),
says that if the new belief does not contradict the original belief base, then revision is equivalent to
expansion. (K∗5) means that the result is expected to be consistent, unless the new piece of information
is inconsistent. (K∗6) expresses the irrelevance of the syntax during the revision process.
These are the six basic postulates. The two additional postulates guarantee a good behavior of the revision
with respect to conjunctions. (K∗7) indicates that revising the theoryK by the conjunction of two pieces
of information gives a result which is included in the theory revised by the first piece of informaiton, and
expanded by the second one. (K∗8) asks the opposite inclusion to be true when expansion does not lead
to an inconsistent theory.

Example 8.

To incorporate the piece of information that he deduces from his discussion with Paul to his beliefs, John
can revise his belief base by ¬(cat ∧ dog). Since the revision operator has to maintain consistency, the
problem existing with the expansion does not occur here.

29

Chapter 2. Belief Change

Links between Operations

It has been proven that some links exist between revision and contraction. Indeed, given an AGM con-
traction operator, it is possible to define an AGM revision operator, and vice-versa:

Levi’s identity K ∗ α = (K ÷ ¬α) + α

Harper’s identity K ÷ α = K ∩ (K ∗ ¬α)

Intuitively, Levi’s identity means that we can revise the theory K by α with a contraction step to
remove everything which concerns ¬α, and an expansion step to add α.
In the opposite, Harper’s identity explains how to contract K by α through a revision. It is done by
keeping the intersection of K itself with the revision of K by ¬α. In this way, we keep the beliefs from
the initial theory which are not related to α or ¬α.

Gärdenfors [Gär88] proved that a revision operator defined via Levi’s identity and an AGM contrac-
tion operator is an AGM revision operator, and the converse also holds: a contraction operator defined
though Harper’s identity and an AGM revision operator satisfies AGM postulates.

Theorem 2 ([Gär88]).
If the contraction operator ÷ satisfies (K÷1) - (K÷4) and (K÷6), and if the expansion operator +
satisfies (K+1) - (K+6), then the operator ∗ defined though Levi’s identity satisfies (K∗1) - (K∗6).

Moreover, if ÷ satisfies (K÷7) (respectively (K÷8)) then ∗ satisfies (K∗7) (respectively (K∗8)).

Theorem 3 ([Gär88]).
If the revision operator ∗ satisfies (K∗1) - (K∗6), then the operator ÷ defined through Harper’s identity

satisfies (K÷1) -(K÷6).

Moreover, if ∗ satisfies (K∗7) (respectively (K∗8)) then ÷ satisfies (K÷7) (respectively. (K÷8)).

2.1.3 Representation Theorems

A representation theorem associates a set of rationality postulates (which are an axiomatic characteri-
zation of change operators) with a concrete family of operators (which gives a constructive character-
ization). It is possible to propose different representation theorems for the same family of operators.
Moreover, since contraction and revision are linked by Levi’s identity and Harper’s identity, a repre-
sentation theorem for one of these operations also defines a family of operators for the other operation.
In this section, we only present two representation theorems: partial meet contraction and revision by
systems of spheres.

Partial Meet Contraction

Partial meet contraction [AGM85] keeps each maximal subset of the theory which does not imply the
piece of information expected to be removed. A skeptical policy is applied to these subsets, and so the
agent keeps their intersection.

Definition 14 (K⊥α).
Let K be a theory and α a formula. The set of maximal subsets of K not implying α, noted K⊥α, is the
set of every K ′ such that:

• K ′ ⊆ K

• K ′ 0 α

30

2.1. AGM Framework

• ∀K ′′ such that K ′ ⊂ K ′′ ⊆ K,K ′′ ⊢ α

Definition 15 (Full Meet Contraction).
A full meet contraction function is defined by

K ÷f α =

{

∩(K⊥α) if K⊥α 6= ∅
K in the other case

The full meet contraction operator presents a weakness: if we define a revision operator with Levi’s
identity, and the full meet contraction as the underlying contraction operator, then the result is the set of
all the formulae in K which are consequences of ¬α.

Theorem 4 ([AM82]).
A revision operator ∗ defined from a full meet contraction function and Levi’s identity is equal toK ∗α =
Cn(α) for each α such that ¬α ∈ K.

Concretely, this theorem means that a revision operator buildt from full meet contraction forgets all
the former beliefs, and only keeps the new piece of information and its consequences. Even if it satisfies
the postulates, this behavior is not interesting for a real application. The reason of this problem is that
full meet contraction removes too much information. Before processing the intersection of the maximal
subsets, some of them must be removed, keeping only the "best" ones.

Definition 16 (Selection Function).
We call selection function γ a mapping from each formula α and each theory K to the set γ(K⊥α),
which is a non-empty subset of K⊥α if K⊥α 6= ∅, and {K} otherwise.

Definition 17 (Partial Meet Contraction).
A partial meet contraction function is defined by

K ÷ α = ∩γ(K⊥α)

The behavior of partial meet contraction is similar to the behavior of full meet contraction, but now
only the subsets selected by γ are taken into account by the intersection. In fact, full meet contraction is
a particular case of partial meet contraction, with γ selected each K ′ ∈ K⊥α.

Now, let us present the representation theorem from Alchourrón, Gärdenfors and Makinson about
partial meet contraction functions.

Theorem 5 ([AGM85]).
An operator ÷ is a partial meet contraction function if and only if it satisfies (K÷1) - (K÷6).

It is possible to add some contraints on γ to ensure that the contraction operator satisfies the postulates
(K÷7) and (K÷8).

Definition 18 (Relational Selection Function).
A selection function γ is relational if and only for each belief base K, it is possible to define a relation
≤ over K ×K such that

γ(K⊥α) = {K ′ ∈ K⊥α|K ′ ≤ K ′′, ∀K ′′ ∈ K⊥α}

Moreover, if ≤ is transitive, then γ and the associated partial meet contraction function are called transi-
tively relational.

There is also a representation theorem for these functions:

Theorem 6 ([AGM85]).
An operator÷ is a transitively relational partial meet contraction if and only if it satisfies (K÷1) - (K÷8).

31

Chapter 2. Belief Change

Revision by Systems of Spheres

Now, let us present an approach for revising a belief base. The main idea of the systems of spheres
[Gro88] is to keep the possible worlds that are compatible with the input of the revision, which are the
most plausible ones for the agent.

A possible world of a theory is a subset of the language which is maximal among the consistent
subsets, and such that the formulae from the theory are true in this subset. Each possible world is a way
to describe completely the world which is consistent with the agent’s beliefs.

Definition 19 (Possible Worlds of a Theory).
A possible world is a maximal consistent subset of the language L; ML denotes the set of all possible
worlds from L.

• Let K be a theory.

[K] =

{

∅ if K = K⊥
{M ∈ML|K ⊆M} otherwise

• Let S ⊆ML be a set of possible worlds, we define KS = ∩{M |M ∈ S}

Definition 20 (Systems of Spheres).
A system of spheres centered on [K] is a set S of subsets of ML such that

• (S1) If s, s′ ∈ S then s ⊆ s′ or s′ ⊆ s

• (S2) [K] ∈ S

• (S3) ∀s ∈ S, [K] ⊆ s

• (S4) ML ∈ S

• (S5) If α is a formula and [α] intersects a sphere of S, there there is a minimal sphere which inter-
sects [α] (noted C(α) = [α] ∩ Sα)

A sphere is a set of possible worlds, and the system of spheres centered on [K] is built in the following
way.

• The spheres are included each one into the others.

• The set of possible worlds of K is the smallest sphere.

• The set of all possible worlds ML is the largest sphere.

The intuitive meaning of the system of spheres is that a possible world w is more plausible than another
one w′ if w is contained into a smaller sphere than w′.

Theorem 7 ([Gro88]).
Given a theory K, there exists a system of spheres S centered on [K] such that for each formula α,

K ∗ α = KC(α) if and only if ∗ is a revision operator which satisfies (K∗1) - (K∗8).

32

2.2. Belief Change in Propositional Logic

Revising a theory by a system of spheres can be represented graphically. Figure 2.2 presents an
example of system of spheres centered on [K]: the worlds which are consistent with the agent’s beliefs
are the most plausible ones. Then, the possible worlds are ordered thanks to the inclusion of spheres:
worlds from sphere S1 are less plausible than the worlds from [K], but more plausible than worlds from
sphere S2.
To revise K by a piece of information α, the agent keeps the possible worlds consistent with α which
belong to the "lowest” sphere, meaning the most plausible ones.

ML

[K]

S1
S2
S3
•
•

[α]

C(α)

Figure 2.2: Revision of K by α through a System of Spheres centered on [K]

2.2 Belief Change in Propositional Logic

Finite propositional logic is a well-known setting for reasoning. Its expressiveness along with its sim-
plicity make it a very convenient way to represent an agent’s beliefs. Rather than using a deductively
closed belief set, we use now a single propositional formula to represent the agent’s beliefs. In this sec-
tion, we present the adaptation of the AGM framework in the setting of propositional logic. Katsuno
and Mendelzon [KM91] have shown that it is possible to rewrite the AGM rationality postulates in this
simple setting, and to give a representation theorem for these new postulates. At last, we introduce the
update operation. Even if there is some intuitive connection between revision and update, Katsuno and
Mendelzon [KM92] have shown that there is a fundamental difference between these two operations.

2.2.1 From Theories to Propositional Formulae

The first step, before introducing belief change in propositional logic, is to express the link between a
theory K and a propositional formula ϕK which represents the same beliefs.

Definition 21.

Given a theory K, we say that ϕK is a propositional formula corresponding to K if and only if K =
Cn({ϕK}).
Given a propositional formula ϕ, we say that Kϕ is the theory corresponding to ϕ if and only if Kϕ =
Cn({ϕ}).

There may be different formulae ϕ1
K , ϕ

2
K , . . . , ϕ

n
K associated with the same theory K, as soon as

these formulae admit the same set of models.

Example 9.

Let K be the theory
Cn({x ∨ (y ∧ z),¬x ∨ ¬y ∨ ¬z})

33

Chapter 2. Belief Change

which admits the models
{y, z}, {x}, {x, z}, {x, y}.

It can be associated with the formula ϕ1
K = [x ∨ (y ∧ z)] ∧ (¬x ∨ ¬y ∨ ¬z) which has the same set of

models as K. Another equivalent formula is ϕ2
K = ¬x⇔ (y ∧ z).

So, given an AGM revision operator ∗ (respectively contraction operator÷) on theories, we define the
AGM revision operator ◦ (respectively contraction operator−) on propositional formulae as the operator
such that, for any propositional formulae ϕ and α, ϕ ◦ α = ϕKϕ∗α (respectively ϕ − α = ϕKϕ÷α). In
the opposite way, we define ∗ (respectively ÷) from ◦ (respectively −) as the operator such that, for any
theory K and any formula α, K ∗ α = KϕK◦α (respectively K ÷ α = KϕK−α).

Definition 22.

Let • ∈ {∗,+,÷} be an AGM operator. The corresponding propositional operator ⊲ is the operator such
that, for any propositional formulae ϕ, α, Cn(ϕ ⊲ α) = Cn(ϕ) • α.

As explained by Theorem 1, there is a single operator which satisfies the postulates for the expansion:
for each belief base K and each formula α, K + α = Cn(K ∪ {α}). In the setting of propositional
logic, this operator is only a conjunction. So, we do not present in detail the definition of the expansion
operator in the rest of this section.
We present now how to define an AGM revision or contraction operator from the propositional counter-
part.

Definition 23.

Let ⊲ ∈ {◦,−} be a propositional operator. The corresponding AGM operator • is the operator such that,
for any theory K and any formula α, K • α = Cn(ϕ ⊲ α).

2.2.2 Belief Revision in Propositional Logic

The work from Katsuno and Mendelzon [KM91] adapts AGM revision in the setting of finite proposi-
tional logic. First of all, they reformulate the rationality postulates in a simpler way, well-suited to this
setting.

A belief revision operator is a mapping from two propositional formulae ϕ and α to a new formula
ϕ ◦ α such that:

(R1) ϕ ◦ α ⊢ α

(R2) If ϕ ∧ α is consistent, then ϕ ◦ α ≡ ϕ ∧ α

(R3) If α is consistent then ϕ ◦ α is consistent

(R4) If ϕ ≡ ψ and α ≡ β then ϕ ◦ α ≡ ψ ◦ β

(R5) (ϕ ◦ α) ∧ ψ ⊢ ϕ ◦ (α ∧ ψ)

(R6) If (ϕ ◦ α) ∧ ψ is consistent then ϕ ◦ (α ∧ ψ) ⊢ (ϕ ◦ α) ∧ ψ

The first postulate expresses the success principle: the new piece of information must be believed by
the agent after revision. Postulate (R2) says that revision is just conjunction if this does not lead to an
inconsistent formula. (R3) expresses the consistency principle. (R4) says that the revision is independent
to the syntax of formulae. The two last postulates are the counterparts of AGM’s (K∗7) and (K∗8), they
describe the behaviour of revision operators with respect to conjunctions.

34

2.2. Belief Change in Propositional Logic

In the rest of the thesis, we call these postulates the KM postulates, and any revision operator which
satisfies them is called a KM revision operator.

Katsuno and Mendelzon proved the existence of a mapping between these postulates and AGM ones:

Theorem 8 ([KM91]).
Let ⋆ be a revision operator on theories, and ◦ a revision operator on propositional formulae corre-

sponding to ⋆.

⋆ satisfies postulates (K∗1)-(K∗8) if and only if ◦ satisfies (R1)-(R6).

Katsuno and Mendelzon have presented an adaption of Grove’s systems of spheres [Gro88], suited
to propositional logic. The underlying idea is the same: we can order the interpretations with respect to
their plausibility for the agent, and choose the models of the new piece of information which are the best
ones with respect to this ranking. The ranking between interpretations has to satisfy some properties:

Definition 24 (Faithful Assignment).
A faithful assignment is a mapping from each propositional formula ϕ to a total pre-order ≤ϕ such that:

• if ω |= ϕ and ω′ |= ϕ, then ω ≃ ω′;

• if ω |= ϕ and ω′ 6|= ϕ, then ω < ω′;

• if ϕ1 ≡ ϕ2, then ≤ϕ1=≤ϕ2 .

As soon as we have such a pre-order ≤ϕ associated with the formula ϕ which represents the agent’s
beliefs, revising by α consists in choosing the models of α which have the best rank with respect to ≤ϕ.

Theorem 9 (Representation Theorem [KM91]).
A revision operator ◦ satisfies the postulates (R1)-(R6) if and only if there exists a faithful assignment

which maps each formula ϕ to a total pre-order ≤ϕ such that, for each formula α:

Mod(ϕ ◦ α) = min(Mod(α),≤ϕ)

Example 10.

Figure 2.3 gives an example of a pre-order associated with a formula ϕ: dots at level L0 represent the
models of ϕ. The other ones represent the other interpretations, which are less and less plausible while
their level grows. The shaded area represents the models of the formula α. The red points are the minimal
models of α with respect to ≤ϕ, so they are the models of ϕ ◦ α.

L3

L2

L1

L0

≤ϕ

Mod(α)

• • •

• • •

• • •

• •

Figure 2.3: Minimal Models of α with respect to ≤ϕ

35

Chapter 2. Belief Change

Now, let us present a particular family of revision operators which satisfy the KM postulates, and
one of the most well-known operators from this family. These are the distance-based revision opera-
tors, which use a distance between interpretations to define the faithful assignment, and Dalal’s operator
[Dal88], which can be expressed through such a distance. Defined several years before the publication of
Katsuno and Mendelzon’s work, Dalal’s operator satisfies the KM postulate. Even if it was not defined
through the notion of faithful assignment, we reformulate it in this way.

Definition 25 (Distance-based Revision Operator).
Let d be a distance between interpretations over a set of Boolean variables V . Given a formula ψ in the
propositional languange L built up on V , the pre-order ≤ψ is defined by

ω ≤ψ ω
′ if and only if d(ω,Mod(ψ)) ≤ d(ω′,Mod(ψ))

For any formulae ψ, α ∈ L, the distance-based KM revision operator ◦d is defined by

Mod(ψ ◦d α) = min(Mod(α),≤ψ)

Now, we need to recall the notion of Hamming distance [Ham50] which is used to define Dalal’s
operator.

Definition 26.

Let ω, ω′ be two interpretations over a set of Boolean variables V . The Hamming distance between these
interpretations is defined by

dH(ω, ω
′) = |(ω\ω′) ∪ (ω′\ω)|

This distance counts the number of elements which appear in the interpretation ω but not in ω′, and
vice-versa. Said in another way, this distance counts the number of variables which are valued to true

for one of the interpretation and to false for the other one.
This distance can be extended to define a measure of the difference between an interpretation ω and a
set of interpretations Ω. This measure is not formally a distance, since it does not satisfy properties of
distances8.

dH(ω,Ω) = min
ω′∈Ω

(dh(ω, ω
′))

Now, we have all the prerequisite notions to define Dalal’s operator:

Definition 27 (Dalal Revision Operator).
Dalal’s revision operator ◦D is the distance-based revision operator defined from the Hamming distance.

It is easy to prove that the pre-order associated with the Hamming distance satisfies the properties of
faithful assignments, and so, that ◦D is a KM revision operator9.

2.2.3 Belief Update: Another Way to Incorporate a New Piece of Information

Belief update is an operation aiming at changing the status of a belief in a way close to revision. It aims
at changing the agent’s beliefs to lead to acceptance of a previously refused piece of information (or the
converse). The subtle difference is the reason which leads to change the agent’s beliefs. The operations

8It is not even used to measure the difference between similar objects, while a distance on a set E is a mapping from two
elements in E to a real number.

9More generally, every distance-based pre-order satisfies the properties of faithful assignments, this is why distance-based
revision operators satisfy the KM postulates.

36

2.2. Belief Change in Propositional Logic

described in the previous sections (expansion, contraction and revision) consider a change of the agent’s
beliefs about a static world: the agent changes her beliefs because she learnt that it was wrong to belief
something. With updates scenario, it is supposed that the new piece of information concerns a change
of the world. Whether the previous beliefs were true or not does not matter, it is required to change the
agent’s beliefs to be consistent with the new state of the world.

Example 11.

Let us come back to the case John’s beliefs about Paul’s pets. John believes cat ∧ dog.
If John hears Paul saying that he does not want to own a dog and a cat, fearing that they would not
like each other, then John has to revise his beliefs to be consistent with the new piece of information
¬(cat∧dog). In this scenario, the world does not evolve, this is why John should use a revision operator.
Now, if Paul tells John that he moves to a new home where it is forbidden to own more than one pet, then
John knows that Paul cannot own a dog and a cat together. It seems to be the same piece of information
¬(cat ∧ dog) which is learnt by John. However, this piece of information comes from a change of the
world, and so the operation is not the same one: an update operator should be used.

It may seem that there is no difference between both operations, since the new piece of information
explaining the change is the same one. Katsuno and Mendelzon explain the difference between them in
[KM92].

Let us first recall that revising a formula ϕ by a formula α leads to keep the subset of the models of
α which are the most plausible ones with respect to the previous beliefs. This method cannot be used for
update operation, because it could not give the same consideration to each model of the former beliefs
ϕ. Let us explain it on Katsuno and Mendelzon’s example.

Example 12 (Borrowed from [KM92]).
We know that five books are in a room, either on a table or on a bookcase. The Boolean variable xi
(i ∈ {1, 2, 3, 4, 5}) means "The book i is on the table". So ¬xi means that the book i is on the bookcase.
We know that either the book 1 is the single one on the table, or the books 3, 4 and 5 are. It is expressed
by the formula ϕ = (x1∧¬x2∧¬x3∧¬x4∧¬x5)∨ (¬x1∧¬x2∧x3∧x4∧x5), which has two models:
ω1 = {x1} et ω2 = {x3, x4, x5}.
We send a robot to clear the room, with the mission to make as few effort as possible to put all the
books at the same place. Two models are possible after than the robot has finished his mission: the
one corresponding to all books on the table (ω′1 = {x1, x2, x3, x4, x5}) and the one corresponding to all
books on the bookcase (ω′2 = ∅). A revision operator would select among ω′1 and ω′2 the models which
are the closest to ϕ taken as a whole. For instance, if we rank the interpretations with respect to Dalal’s
distance, which is given at Table 2.1, then the single model after the revision is ω′2, since its distance to

ω1 ω2

ω′1 4 2

ω′2 1 3

Table 2.1: Hamming Distance between the Models of ϕ and the Possible Models after the Change

the models of ϕ is 1. This operation suggests that the real world (after the change) is the one where each
book is on the bookcase, and so only the book 1 was on the table in the previous state. But, since there
were no information to decide which model among ω1 and ω2 was the real world before the mission of
the robot, it is not reasonable not to consider any possible world which "succeeds" to ω2.
If the state of the world before the mission of the robot was represented by ω2, then the minimal change
for the robot to perform its task leads to consider ω′1 as a possible world after the update.

37

Chapter 2. Belief Change

Now let us explain how Katsuno et Mendelzon modelled this process. We first introduce the notion
of complete formula, and then we give an axiomatic characterization of update operation.

Definition 28.

Let ϕ be a propositional formula. ϕ is complete if and only if, for each propositional formula α, ϕ ⊢ α
or ϕ ⊢ ¬α.

Now we present the KM postulates for update. An update operator is a mapping from two proposi-
tional formulae ϕ and α to a new formula ϕ ⋄ α such that:

(U1) ϕ ⋄ α ⊢ α

(U2) If ϕ ⊢ α, then ϕ ⋄ α ≡ ϕ

(U3) If ϕ and α are consistent, then ϕ ⋄ α is consistent

(U4) If ϕ1 ≡ ϕ2 and α1 ≡ α2 then ϕ1 ⋄ α1 ≡ ϕ2 ⋄ α2

(U5) (ϕ ⋄ α) ∧ β ⊢ ϕ ⋄ (α ∧ β)

(U6) If (ϕ ⋄ α) ⊢ β and (ϕ ⋄ β) ⊢ α then (ϕ ⋄ α) ≡ (ϕ ⋄ β)

(U7) If ϕ is complete, then (ϕ ⋄ α) ∧ (ϕ ⋄ β) ⊢ ϕ ⋄ (α ∨ β)

(U8) (ϕ1 ∨ ϕ2) ⋄ α ≡ (ϕ1 ⋄ α) ∨ (ϕ2 ⋄ α)

Postulates (U1)-(U5) are the immediate counterparts of the five first revision postulates. We still
remark the difference between (R2) and (U2). When updating an inconsistent formula, the result is in-
consistent even if α is consistent (because the formula ϕ always satisfies ϕ ⊢ α, whatever α), while the
revision is consistent as soon as α is consistent.
Revision postulate (R6) does not have a counterpart, but is replaced by three postulates for update. (U6)

means that when the update of ϕ by α implies β, and vice-versa, then both updates are identical. (U7)

concerns complete formulae. It says that for such a formula ϕ, if a model is common to the update of ϕ
by α and the update of ϕ by β, then it must be a model of the update of ϕ by the disjunction of α and
β. (U8) expresses the principle of distinct update of each model, as we illustrated in Example 12: each
model of the formula ϕ (so each possible world with respect to the agent’s former beliefs) is updated
independently from the other ones.

Similarly to revision operators, the update operators can be characterised thanks to some particular
pre-order between interpretations. Instead of associating each formula with a ranking between interpre-
tation, Katsuno and Mendelzon consider for update some particular pre-order associated with interpreta-
tions.

Definition 29.

A faithful assignment is a mapping from each interpretation ω to a partial pre-order ≤ω such that for
each ω′ 6= ω, ω <ω ω′.

Theorem 10 (Representation Theorem).
The update operator ⋄ satisfies (U1)-(U8) if and only if there exists a faithful assignment that maps each

interpretation ω to a partial pre-order ≤ω such that

Mod(ϕ ⋄ α) =
⋃

ω∈Mod(ϕ)

min(Mod(α),≤ω)

38

2.2. Belief Change in Propositional Logic

For instance Forbus’ operator for updating propositional formulae [For89] is the update operator
defined thanks to the faithful assignment based on the Hamming distance:

Definition 30 (Forbus’ Update Operator).
The update operator ⋄F is defined by

Mod(ϕ ⋄F α) =
⋃

ω∈Mod(ϕ)

min(Mod(α),≤ω)

with ≤ω defined, for each interpretation ω, by

∀ω′, ω′′, ω′ ≤ω ω
′′ if and only if dH(ω, ω

′) ≤ dH(ω, ω
′′)

2.2.4 Dynamic Logic of Propositional Assignments and Belief Change

The Dynamic Logic of Propositional Assignments (DL-PA) is a logic which makes operations on the
valuations over a propositional language. DL-PA allows to write programs which vary the truth values
of Boolean variables. Such programs can be used to model belief revision and belief update operators.

Syntax and Semantics of DL-PA The language DL-PA is defined by the grammar:

π ::= x← ⊤ | x← ⊥ | ϕ? | π;π | π ∪ π | π−

ϕ ::= x | ⊤ | ⊥ | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ

The atomic formulae x,⊤,⊥, and the negation and disjunction connectives are used in the classical way.
They lead to the definition of conjunction (∧), implication (⇒), equivalence (⇔) and exclusive or (⊕).

The atomic programs x← ⊤ and x← ⊥ change the value of the variable x to respectively true and
false. The test ϕ? checks if the formula ϕ is true, the sequential composition π;π applies two programs
one after the other, and the non-deterministic composition π ∪ π applies one of the programs.

The most interesting part is the new formula 〈π〉ϕ, which means "after some execution of π, ϕ is
true". It can be used to define [π]ϕ = ¬〈π〉¬ϕ, which means "after each execution of π, ϕ is true".
Finally, π− is the converse operator. Its meaning is that the formula [π−]ϕ stands for "before each exe-
cution of π, ϕ was true", and 〈π−〉ϕ stands for "before at least one execution of π, ϕ was true".

Several useful programs can be defined from the definition of the language. First, skip abbreviate
the program ⊤? and means "nothing happens". Then, for each n ≥ 0, the programs πn and π≤n are
defined inductively by

πn =

{

skip if n = 0
π;πn−1 if n > 0

and

π≤n =

{

skip if n = 0
(skip ∪ π);πn−1 if n > 0

which means respectively that π must be repeated n times, or at most n times. The following programs
are used to assign to a variable the truth value of another one :

x← y = (y?;x← ⊤) ∪ (¬y?;x← ⊥)
x← ¬y = (y?;x← ⊥) ∪ (¬y?;x← ⊤)

39

Chapter 2. Belief Change

Now, let us present the semantics of DL-PA. The models of formulae from DL-PA are simply models
in the meaning of classical propositional logic, that is a valuation of each variable such that the truth value
of the formula is true. The semantics of the connectives is defined as usually.
The interpretations of programs are pairs of propositional interpretations p = (ω1, ω2), such that p
satisfies π if and only if, when the current value of Boolean variables is determined by ω1, then the
execution of π leads to ω2. The semantics of the different program connectives is described at Table 2.2.

Mod(x← ⊤) = {(ω1, ω2) | ω2 = ω1 ∪ {x}}

Mod(x← ⊥) = {(ω1, ω2) | ω2 = ω1\{x}}

Mod(ϕ?) = {(ω, ω) | ω |= ϕ}

Mod(π1;π2) = {(ω1, ω3) | ∃ω2 such that (ω1, ω2) ∈ Mod(π1) and (ω2, ω3) ∈ Mod(π2)}

Mod(π1 ∪ π2) = Mod(π1) ∪Mod(π2)

Mod(π−) = {(v2, v1) | (v1; v2) ∈ Mod(π)}

Table 2.2: Semantics of Program Connectives in DL-PA

Two programs π1 and π2 are said to be equivalent if and only if Mod(π1) = Mod(π2), which is
noted π1 ≡ π2.

Belief Change Through DL-PA programs In [Her14], Andreas Herzig explains how DL-PA can be
used to model belief change operators. First, let us present some useful DL-PA programs. For each
program described at Table 2.3, it is supposed that V = {x1, . . . , xn} . For n = 0, these programs are
equivalent to skip. For each of these programs, π({x}) is written π(x).

flip(V) = x1 ← ¬x1 ∪ · · · ∪ xn ← ¬xn
flip≥0(V) = (x1 ← ⊤∪ x1 ← ⊥); . . . ; (xn ← ⊤∪ xn ← ⊥)

Table 2.3: Some Useful DL-PA Programs

Similarly, we need to present some useful DL-PA formulae, given at Table 2.4. Vϕ denotes the set of
Boolean variables which appear in ϕ, V ′ is a strict subset of Vϕ, and m is an integer such that m ≤ |Vϕ|.

Sat(ϕ) = 〈flip≥0(Vϕ)〉ϕ

H(ϕ,≥ m) =

{

⊤ if m = 0
¬〈flip(Vϕ)

≥m−1 if m > 0

H(ϕ, V ′,≥ m) =

{

⊤ if m = 0
¬〈flip(V ′)≥m−1 if m > 0

Table 2.4: Some Useful DL-PA Formulae

H(ϕ,≥ m) is true if and only the Hamming distance between the current valuation and any model
of ϕ is greater or equal to m. The predicate H(ϕ, V ′,≥ m) has the same meaning when we only
consider a subset of the variables from the formula, meaning that the values of the variables in Vϕ\V ′

remain unchanged. This predicate is not used in the rest of this section, but it will be useful when we
will present the application of DL-PA to update argumentation frameworks (see Section 3.5).

Now, Dalal’s revision operator and Forbus’ update operator can be defined through DL-PA.

Proposition 10 (Dalal’s Operator Expressed in DL-PA).

40

2.3. Conclusion

Let πDα,β be the following DL-PA program:

flip≥0(Vϕ);ϕ?;

⋃

0≤m≤|Vα|

[flip≥0(Vϕ);ϕ?]H(α,≥ m)?; flip(Vα)
m

 ;A?

Then ϕ ◦D α = Mod((¬Sat(B) ∧ α) ∨ 〈(πDα,β)
−〉⊤).

Proposition 11 (Forbus’ Operator Expressed in DL-PA).
Let πFα be the following DL-PA program:

⋃

0≤m≤|Vα|

H(α,≥ m)?; flip(Vα)
m

 ;A?

Then ϕ ⋄F α = Mod(〈(πFα)
−〉ϕ).

2.3 Conclusion

This chapter introduces the belief change theory. The well-known AGM framework, which represents
the beliefs of an agent as a deductively closed set of formulae, is one of the most influencial works on
this topic. In particular, for revising a theory by a formula, we present the system of spheres approach.
This method is based on a ranking between the possible worlds, and it keeps as the result of revision
the minimal (with respect to this ranking) possible worlds which agree with the revision formula. This
approach has been adapted for the case of finite propositional logic, by Katsuno and Mendelzon. This
KM revision approach is at the origin of two of the contributions described in this thesis. This chapter also
presents the ranking-based approach for belief update, in order to be able to distinguish the differences
between the revision of argumentation frameworks discribed in this thesis and some update approaches
proposed by other authors.

41

Chapter 3

Existing Approaches on Dynamics of

Argumentation Frameworks

He who knows others is wise; he who knows himself is enlightened.

Lao-Tzu

The dynamics of argumentation frameworks has been widely studied in the recent years. Such sce-
narios, which make evolve an argumentation framework to incorporate a new piece of information, is
likely to happen in many different applications, as we have explained in the Introduction, and exempli-
fied in Section 1.3 with some "toy" examples. There are many other cases in which an agent may receive
a new piece of information, and different ways to incorporate it in her argumentation frameworks. This
chapter presents the previous contributions on this topic.
We start this presentation by some of the first studies on the impact on change in argumentation frame-
works, concerning the impact on the extensions of addition or deletion of an argument (with the set of
attacks related to it) or an attack in an argumentation framework.
Then we present the expansion of an argumentation framework, which is the addition of some new ar-
guments and attacks to the argumentation framework respecting some constraints. We show how the
different kinds of expansion can be used to enforce a set of arguments as an extension, and present a
characterization of minimal change for these enforcement operations.
We also present some works which make a link between change in argumentation frameworks and change
in causal Bayesian networks. Another interesting approach is a method to compute the minimal number
of changes to perform in an argumentation framework to ensure that some goal on the acceptance sta-
tuses is reached.
Finally, we present some approaches which are more related to our work. These works take advantage
of belief change theory to update or revise argumentation frameworks.
We conclude this chapter by a brief presentation of the new kinds of change we want to perform in an
argumentation framework, and why they are motivated by reasonable applications.
Contents

3.1 Properties of Atomic Change in Argumentation Frameworks 43

3.1.1 Refinement and Abstraction Principles 43

3.1.2 Adding or Removing an Argument . 45

3.2 Extension Enforcement . 49

3.2.1 Normal, Strong and Weak Expansion . 49

3.2.2 Using Expansion to Enforce a Set of Arguments 50

42

3.1. Properties of Atomic Change in Argumentation Frameworks

3.2.3 Minimal Change Enforcement . 51

3.3 Intervention and Observation in Argumentation 53

3.4 Goal-Oriented Change in Argumentation . 55

3.5 Change in Argumentation through Belief Update 58

3.5.1 Updating an Argumentation Framework through Propositional Encoding . 58

3.5.2 Updating Argumentation Frameworks through DLPA programs 59

3.6 Change in Argumentation through Belief Revision 60

3.6.1 A Labelling-based Integrity Constraint 61

3.6.2 Removed Set-Based Revision . 62

3.6.3 Structure-Based AGM Revision . 65

3.7 On Minimal Change of Arguments Statuses and Change of the Attack Relation 68

3.1 Properties of Atomic Change in Argumentation Frameworks

We call an atomic change in an argumentation framework the addition (or removal) of atomic elements
of the framework, meaning either an attack, or an argument (with the set of attacks concerning it). The
first works on the topic of change in argumentation frameworks studied the effects of such a change,
depending on the semantics. Contrary to approaches based on belief change theory, here the authors
study the consequences on the set of extensions (which is the outcome of the framework) of a particular
change on the structure on the graph.

In particular, [BKvdT09b, BKvdT09a] define some properties which can be satisfied when a refine-
ment (that is, the addition of arguments or attacks) or an abstraction (that is, the removal of arguments
or attacks) is performed. These properties are called refinement principles and abstraction principles,
and the authors list which ones are satisfied when the considered semantics is the grounded semantics.
In a nutshell, these principles establish that if the refinement or abstraction which is performed satisfies
some conditions, then the extension of the argumentation framework stays unchanged (all these princi-
ples consider only single-extension semantics, in particular the grounded semantics).
Since the authors of these works only consider single-extension semantics like the grounded semantics,
we use the notation inσ(F) to denote the arguments which are accepted by the argumentation frame-
work F with respect to the chosen semantics (meaning, the ones which belong to the unique extension),
outσ(F) denotes the arguments which are rejected (meaning, the ones which are attacked by an argu-
ment from the extension) and undecσ(F) the other ones.

Then, we describe the works from [CdSCLS10, BCdSCLS11], in which the authors present some
properties which can be satisfied by atomic changes and study their satisfaction by some of the most
usual semantics. In particular, they present a typology of the effect that such a change can have on the
set of extensions (modification of their number, inclusion relation between the former ones and the new
ones,. . .) or the statuses of arguments.

3.1.1 Refinement and Abstraction Principles

Refinement of an Argumentation Framework

First, let us define formally a refinement [BKvdT09b].

43

Chapter 3. Existing Approaches on Dynamics of Argumentation Frameworks

Definition 31 (Refinement).
Let F = 〈A,R〉 and F ′ = 〈A′, R′〉 be two argumentation frameworks.

• F ′ is an argument refinement from F if and only if A ⊆ A′, and ∀ai, aj ∈ A, (ai, aj) ∈ R′ only if
(ai, aj) ∈ R.

• F ′ is an attack refinement from F if and only if A = A′ and R ⊆ R′.

• F ′ is an argument-attack refinement from F if and only if A ⊆ A′ and R ⊆ R′.

Now, let us present the different refinement principles introduced by Boella, Kaci and Van der Torre.

Definition 32 (Attack Refinement Principles).
A semantics σ satisfies the X − Y attack refinement principle, with X,Y ∈ {in, out , undec}, if for
every argumentation framework F = 〈A,R〉, ∀ai ∈ Xσ(F), ∀aj ∈ Yσ(F), inσ(〈A,R ∪ {(ai, aj)}〉) =
inσ(F).

It holds that the grounded semantics satisfies five among the nine attack refinement principles fol-
lowing this definition.

Proposition 12.

The grounded semantics satisfies the in−out , out−out , undec−out , out−undec and undec−undec

attack refinement principles. It does not satisfy the other ones.

Concretey, given X and Y , a semantics satisfies the X − Y attack refinement principle when it is
possible to add an attack from any argument which is labelled X to any argument which is labelled Y ,
without modifying the content of the extension. It expresses a kind of indifference of the semantics to
this particular addition of attacks. All of the principles states by the authors are similar to this one: given
the fact that the input argumentation framework satisfies some properties, and given the statuses of some
arguments, it is possible to add or remove arguments or attacks without changing the extension.
For instance, the next principle considers the fact that adding an attack may create a cycle in the argu-
mentation framework, which could change the extension. Then, the extension remains the same only if
it is sure that the new attack will not create such a cycle.

Definition 33 (Acyclic Attack Refinement Principles).
A semantics σ satisfies the acyclic X − Y attack refinement principle, with X,Y ∈ {in, out , undec}, if
for every argumentation framework F = 〈A,R〉, ∀ai ∈ Xσ(F), ∀aj ∈ Yσ(F), if there is no odd-length
sequence of attacks from aj to ai, then inσ(〈A,R ∪ {(ai, aj)}〉) = inσ(F).

At least one of the corresponding principles is satisfied by the grounded semantics.

Proposition 13.

The grounded semantics satisfies the acyclic out − in attack refinement principle.

We do not analyse in depth all the principles proposed by Boella, Kaci and Van der Torre. Let us just
illustrate the abstraction principles.

Abstraction Principles

Now, we present the counterpart of refinement principles for abstraction, that is the removal of some
elements from the argumentation framework [BKvdT09a].

Definition 34 (Abstraction).
Let F = 〈A,R〉 and F ′ = 〈A′, R′〉 be two argumentation frameworks.

44

3.1. Properties of Atomic Change in Argumentation Frameworks

• F ′ is an argument abstraction from F if and only if A′ ⊆ A, and ∀ai, aj ∈ A, (ai, aj) ∈ R′ only
if (ai, aj) ∈ R.

• F ′ is an attack abstraction from F if and only if A = A′ and R′ ⊆ R.

• F ′ is an argument-attack abstraction from F if and only if A′ ⊆ A and R′ ⊆ R.

Definition 35 (Attack Abstraction Principles).
A semantics σ satisfies the X − Y attack abstraction principle, with X,Y ∈ {in, out , undec}, if for
every argumentation framework F = 〈A,R〉, ∀ai ∈ Xσ(F), ∀aj ∈ Yσ(F), inσ(〈A,R\{(ai, aj)}〉) =
inσ(F).

The authors identify among the nine corresponding abstraction principles which ones are satisfied by
the grounded semantics.

Proposition 14.

The grounded semantics satisfies the in−in , in−undec, undec−in , undec−out , out−in , out−undec
and out − out attack abstraction principles. It does not satisfy the other ones.

Similarly to the refinement principles, the authors propose some more elaborated abstraction princi-
ples, to establish in which condition the semantics is indifferent to the deletion of an attack, depending
on the structure of the argumentation framework.
Then, the authors also propose several argument abstraction principles, to characterize what happens
when an argument and the attacks which concern it are removed. First, let us introduce a notation for the
set of attacks related to an argument: for each ai ∈ A, Rai = {(aj , ak) ∈ R | aj = ai or ak = ai}.

Definition 36 (Argument Abstraction Principles).
A semantics σ satisfies the X argument abstraction principle, with X ∈ {in, out , undec}, if for every
argumentation framework F = 〈A,R〉, if ai ∈ Xσ(F), then inσ(〈A\{ai}, R\Raj}〉) = inσ(F)\{ai}.

Proposition 15.

The grounded semantics satisfies the out argument abstraction principle. It does not satisfy the in and

undec argument abstraction principles.

Intuitively, this means that rejected arguments do not matter for the evaluation of arguments statuses,
and so they may be removed. Then, different situations where undecided and accepted arguments can be
removed are listed in the paper. For more details about refinement and abstraction principles, we refer
the reader to the original publications [BKvdT09a, BKvdT09b].

3.1.2 Adding or Removing an Argument

[CdSCLS10] describes different kinds of atomic changes that can occur in an argumentation framework,
and presents some properties that can be satisfied by such a change operation. In particular, they are
interested in the consequences of an atomic change on the set of extensions of the argumentation frame-
work. Then, they focus on the properties which are satisfied by the addition of an argument (with some
attacks concerning it), depending on different semantics.

Typology of Atomic Changes Several kinds of change on the structure of an argumentation framework
can be performed. They concern both elements of the argumentation frameworks (arguments and attacks)
and have two different natures (addition and removal).

45

Chapter 3. Existing Approaches on Dynamics of Argumentation Frameworks

Definition 37 (Atomic Change Operations).
Let F = 〈A,R〉 be an argumentation framework. We define the following change operations:

• the addition of an attack (ai, aj) with ai ∈ A and aj ∈ A is defined by

F ⊕i (ai, aj) = 〈A,R ∪ {(ai, aj)}〉

• the removal of an attack (ai, aj) with ai ∈ A, aj ∈ A and (ai, aj) ∈ R is defined by

F ⊖i (ai, aj) = 〈A,R\{(ai, aj)}〉

• the addition of an argument ak 6∈ A with a set of attacks concerning it, noted Rak , is defined by:

F ⊕ai (ak, Rak) = 〈A ∪ {ak}, R ∪Rak〉

We suppose thatRak is a non-empty set of attacks concerning ak, meaning thatRak ⊆ A×A such
that ∀(al, am) ∈ Rak , al = ak or am = ak.

• the removal of an argument ak ∈ A with the attacks concerning it is defined by:

F ⊖ai (ak, Rak) = 〈A\{ak}, R\Rak〉

Rak is defined as the set {(ak, al) ∈ R} ∪ {(al, ak) ∈ R}.

We remark that addition (respectively removal) of an argument or an attack correspond to the refine-
ment (respectively the abstraction) of the argumentation framework, as defined by Boella et al.
The following results concern the addition and removal of an argument which interacts with the other
ones (Rak 6= ∅), the remaining case being straightforward.
Properties presented below can be classified into two categories. They deal either with the structure of the
set of extensions (for instance, their number or some inclusion relation between them) or the acceptance
statuses of some arguments.

Structural Properties In the general case, extension-based semantics may lead to a non-unique result:
several extensions are associated with the argumentation framework, and there is not a single way to
decide if an argument is accepted. It is also possible that an argumentation framework does not lead to
accept some arguments, since it does not admit a non-empty extension. So, a change is called decisive if
and only if it allows to decide precisely which arguments are accepted. This means that the outcome of
the change is an argumentation framework which admits a single non-empty extension.

Definition 38 (Decisive Change).
The change from F to F ′ is called decisive with respect to the semantics σ if and only if |Extσ(F)| > 1
or Extσ(F) ∈ {∅, {∅}} and |Extσ(F ′)| = 1, with Extσ(F ′) 6= {∅}.

A weakened version of this property describes a change which reduces the number of extensions
of the argumentation framework. This does not allow to decide if an argument ai is accepted, but it is
"easier" to accept an argument, since it requires ai to belong to m extensions rather than n extensions
(withm < n). From a computational point of view, it means that checking if ai is skeptically accepted by
the argumentation framework can be done more efficiently, since there are less extension to enumerate.

Definition 39 (Restrictive Change).
The change from F to F ′ is called restrictive with respect to the semantics σ if and only if 1 <
|Extσ(F

′)| < |Extσ(F)|.

46

3.1. Properties of Atomic Change in Argumentation Frameworks

The opposite property concerns a change which brings some ambiguity in the evaluation of argu-
ments statuses, since it increases the number of extensions.

Definition 40 (Questioning Change).
The change from F to F ′ is called questioning with respect to the semantics σ if and only if |Extσ(F)| <
|Extσ(F

′)|.

When the input argumentation framework admits at least one non empty extension and the output
argumentation framework does not, the change is called destrictive since it is not possible anymore to
accept arguments (even credulously), while it was the case before the change.

Definition 41 (Destructive Change).
The change from F to F ′ is called destructive with respect to the semantics σ if and only if |Extσ(F)| >
1, Extσ(F) 6= {∅}, and Extσ(F ′) ∈ {∅, {∅}}.

All these properties on change have an impact on the number of extensions. The following ones do
not change the number of extensions, but change their content.

Definition 42 (Expansive Change).
The change from F to F ′ is called expansive with respect to the semantics σ if and only if |Extσ(F)| =
|Extσ(F

′)| and ∀ε′ ∈ Extσ(F ′), ∃ε ∈ Extσ(F) such that ε ⊂ ε′.

Then, a particular kind of change is the one which guarantees the standard equivalence between the
argumentation frameworks.

Definition 43 (Conservative Change).
The change from F to F ′ is called conservative with respect to the semantics σ if and only ifExtσ(F) =
Extσ(F

′).

The last property about the structure of the set of extensions concerns changes which do not modify
the number of extensions, but modify at least one of them.

Definition 44 (Altering Change).
The change from F to F ′ is called altering with respect to the semantics σ if and only if |Extσ(F)| =
|Extσ(F

′)| and ∃ε ∈ Extσ(F) such that ∀ε′ ∈ Extσ(F ′), ε * ε′.

Properties on the Arguments Statuses The authors of the study point out two properties on the argu-
ments statuses. First, the monotony property expresses that the arguments which were accepted before
the change are still accepted after it. Three different kinds of monotony can be defined.

Definition 45 (Monotony, Credulous Monotony, Skeptical Monotony).

• The change from F to F ′ satisfies monotony with respect to the semantics σ if and only if each
σ-extension of F is included in at least one σ-extension of F ′.

• The change from F to F ′ satisfies credulous monotony with respect to the semantics σ if and only
if the union of the σ-extensions of F is included in the union of the σ-extensions of F ′.

• The change from F to F ′ satisfies skeptical monotony with respect to the semantics σ if and only
if the intersection of the σ-extensions of F is included in the intersection of the σ-extensions of
F ′.

47

Chapter 3. Existing Approaches on Dynamics of Argumentation Frameworks

These properties are defined at the extensions level, but a counterpart at the arguments level is also
defined.

Definition 46 (Partial Monotony for an Argument).
Given ai an argument, the change from F to F ′ satisfies partial monotony for ai with respect to the
semantics σ if and only if when ai belongs to a σ-extension of F , it also belongs to a σ-extension of F ′.

The second property about arguments statuses is borrowed from belief change success postulate

[AGM85]. It is relevant when a new argument is added to the argumentation framework (⊕ai).

Definition 47 (Priority to Recency).
The change ⊕ai from F to F ′ satisfies priority to recency with respect to the semantics σ if and only if
F ′ admits at least one σ-extension, and the new argument ak belongs to each σ-extension of F ′.

Then, the authors prove that the different properties are related. In particular, if some properties on
the structure of the set of extensions are satisfied by a given change operation, then it implies that this
operation also satisfy some properties on the arguments statuses. Finally, this paper gives some results
for the grounded and the preferred semantics, establishing some conditions to ensure that a the change
operation ⊕ai (that is, the addition of an argument with some attacks related to it) satisfies some of the
properties that they have proposed.

Removal of an argument [BCdSCLS11] presents similar properties with the operation ⊖ai , which
removes an argument and the attacks concerning it. Some of the properties studied in the case of the
addition of an argument are still relevant for the case of the removal of an argument. They also present a
new property which relevant to argument removal. This property is the dual of expansive change: rather
than obtaining supersets of the initial extensions, now the extensions of the outcome are expected to be
subsets of the initial extensions.

Definition 48 (Narrowing Change).
The change from F to F ′ is called narrowing with respect to the semantics σ if and only if:

• Extσ(F) 6= ∅, |Extσ(F)| = |Extσ(F ′)|

• ∀ε′ ∈ Extσ(F
′), ∃ε ∈ Extσ(F) such that ε′ ⊂ ε

• ∀ε ∈ Extσ(F), ∃ε′ ∈ Extσ(F ′) such that ε′ ⊂ ε

For instance, if the extensions remain the same, except the argument ak which is present in each
extension of F (but obviously no in the extensions of F ⊖ai ak), then the change is narrowing.

The authors give some sufficient conditions for argument removal to satisfy (or not satisfy) monotony.

Proposition 16 (Monotony of ⊖ai).
When an argument ak is removed from F , under the preferred, stable or grounded semantics,

• if ∃εi ∈ Extσ(F) such that ak ∈ εi, then ∃εj ∈ Extσ(F) such that ∀ε′ ∈ Extσ(F
′), εi 6⊂ ε

′

• if ∄εi ∈ Extσ(F) such that ak ∈ εi, then ∀εj ∈ E, ∃ε′ ∈ Extσ(F
′) such that εj ⊆ ε

′.

A property of weak monotony, similar to argument abstraction principle, is also proposed.

Proposition 17.

When an argument ak is removed from the argumentation framework F , is ak does not attack any argu-

ment in F , then

48

3.2. Extension Enforcement

• for all preferred extension ε of F , ε\{ak} is an admissible set of F ′, and then it exists a preferred

extension ε′ of F ′ such that ε\{ak} ⊆ ε
′.

• for all stable extension ε of F , ε\{ak} is a stable extension of F ′.

In a similar way to the results about the additioni of an argument, [BCdSCLS11] gives some proper-
ties of the removal operation ⊖ai depending on the semantics and the properties of the input argumenta-
tion framework.

3.2 Extension Enforcement

Enforcing a set of arguments E is defined in [BB10] as a change from an argumentation framework F to
another one F ′ such thatE is an extension of F ′ or is included in an extension of F ′. Several enforcement
methods are presented, based on the notion of expansion of an argumentation framework. An expansion
is the addition of new arguments and new attacks to an argumentation framework, respecting some
constraints. The enforcement of E in F is then defined as an expansion of F such that E is (or is
included in) an extension of the expansion.

3.2.1 Normal, Strong and Weak Expansion

[BB10] defines the expansion of an argumentation framework as the natural modification of this argu-
mentation framework when two (or more) agents are debating about a subject. It consists in adding new
arguments, with some attacks between them (and possibly between the new arguments and the former
ones). Baumann and Brewka make the hypothesis that the agents agree about the existing arguments
and the attacks between them, so no attack can be added between the arguments which belong to the
argumentation framework before the expansion, and no attack can be removed. This is the ground for the
definition of the different expansion approaches. Additional constraints on the attacks which can occur
between the new arguments and the older ones lead to the definition of two other forms of expansions.

Definition 49 (Normal, Weak and Strong Expansion).
Given an argumentation framework F = 〈A,R〉, F ′ = 〈A′, R′〉 is a normal expansion of F (denoted
F ≤N F ′) if and only if A ⊂ A′ and R′ = R ∪ RA′ , with RA′ a set of attacks (ai, aj) ∈ A′ × A′ such
that either ai ∈ A′\A or aj ∈ A′\A. Moreover,

• F ′ is a weak expansion of F (denoted F ≤N,W F ′) if and only if F ′ is a normal expansion of
F such that there is no new attack directed from a new argument to a former one. Formally,
∀(ai, aj) ∈ RA′ , (ai, aj) /∈ (A′\A)×A.

• F ′ is a strong expansion of F (denoted F ≤N,W F ′) if and only if F ′ is a normal expansion
of F such that there is no new attack directed from an old argument to a new one. Formally,
∀(ai, aj) ∈ RA′ , (ai, aj) /∈ A× (A′\A).

A weak expansion only adds weak arguments, which are arguments that can be attacked by the for-
mer ones, but do not attack some of them (the weak arguments can possibly attack each other). Similarly,
a strong expansion only adds strong arguments, which are not attacked by the older ones. These expan-
sions are particular cases of argument refinement as described in Section 3.1.1, and argument addition as
described in Section 3.1.2.

More generally, an expansion of an argumentation framework F = 〈A,R〉 is any argumentation
framework F ′ = 〈A′, R′〉 such that A ⊆ A′, R ⊆ R′, and F 6= F ′ (denoted F ≤ F ′).

49

Chapter 3. Existing Approaches on Dynamics of Argumentation Frameworks

Example 13.

Figure 3.1 describes an argumentation framework F1 and several expansions of F1. The argumentation
frameworks F2, F3, F4 and F5 are expansions of F1, but F2 is not a normal one. F4 is a weak expansion,
while F5 is a strong one.

a1

a2

a3

a4

(a) F1

a1

a2

a3

a4

(b) F2

a1

a2

a3

a4

b1

b2

(c) F3

a1

a2

a3

a4

b1

(d) F4

a1

a2

a3

a4

b1

(e) F5

Figure 3.1: The Argumentation Framework F1 and Different Possible Expansions of it

F2 is not a normal expansion, since there is a new attack from a4 to a1. F3 is a normal expansion,
but not a weak one (since b2 attacks a2) nor a strong one (since b1 is attacked by a1). In F4, b1 is a weak
argument, while it is a strong argument in F5, so these expansions are respectively weak and strong.

In [Bau12], Baumann also introduces arbitrary modifications, which are more permissive than the
expansions, since they allow deleting attacks between the former arguments. Formally, F ′ is an arbitrary
modification of F (denoted FUF ′) if and only if A ⊆ A′ and R 6= R′.

3.2.2 Using Expansion to Enforce a Set of Arguments

Beyond the nature of expansion, two additional parameters must be made precise in order to define
enforcement operators. First, enforcement can be strict when the expected set of arguments has to be
exactly an extension of the output argumentation framework or non-strict when the set of arguments
has to be included in an extension of the output argumentation framework. Then, enforcement can be
conservative when the semantics stays the same one or liberal when the semantics may change.

Definition 50.

Let F = 〈A,R〉 be an argumentation framework, σ an acceptability semantics, and E ⊆ A a set of
arguments. The normal (respectively normal strict) enforcement operator +N

σ (resp. +N
σ,s) is defined

as a mapping from F and E to an argumentation framework F ′ = 〈A′, R′〉 such that F ′ is a normal
expansion of F , and such that E is included in (respectively is exactly) an extension of F ′. Moreover,

• if F ′ is a weak expansion of F , then +N,W
σ (respectively +N,W

σ,s) is a weak (respectively strict

weak) enforcement operator.

• if F ′ is a strong expansion of F , then +N,S
σ (respectively +N,S

σ,s) is a strong (respectively strict

strong) enforcement operator.

We use σ′ to denote the semantics that the agent uses before performing an enforcement. The enforce-
ment operator is called conservative if σ = σ′, and liberal otherwise.

50

3.2. Extension Enforcement

We remark that, from a technical point of view, the difference between conservative and liberal en-
forcement does not influence the definition of the operator, as soon as the target semantics σ is fixed. But
it is useful to know if an agent agrees to change her semantics (so, to change her way of reasoning), since
enforcement may be impossible with respect to a given semantics, but possible with respect to another
one. Let us illustrate the strong enforcement approach, and examplify the utility of liberal enforcement.

Example 14.

Let F6 be the argumentation framework given in Figure 3.2(a). Its set of stable extensions isExtst(F) =
{{a1, a4, a6}}. The set of arguments expected to be enforced is E = {{a1, a3}}. A possible strong
enforcement is presented in Figure 3.2(b): the stable extensions of F7 areExtst(F7) = {{a1, a3, a6, b}},
and so E is enforced.

a1 a2 a3 a4 a5

a6

a7

(a) F6

a1 a2 a3 a4 a5

a6

a7
b

(b) F7

Figure 3.2: Strong enforcement process

Another possibility to enforce E is to switch the semantics from stable to preferred: the preferred
extensions of F6 areExtpr(F6) = {{a1, a4, a6}, {a1, a3}}, soE can be enforced just by applying liberal
enforcement whose outcome is F6 itself. In this case, liberal enforcement allows to obtain the expected
result with less change than conservative enforcement.

3.2.3 Minimal Change Enforcement

We have explained previously that different kinds of enforcement may lead to the expected result with
more or less required changes. In [Bau12], Baumann borrows minimal change principle from belief
revision and studies the minimal change required to enforce a set of arguments, depending on the seman-
tics and the kind of change which is permitted. A simple measure of difference between argumentation
frameworks is used: the cardinality of the symmetric difference between the attack relations, which
counts how many attacks must be added (or removed, if attacks removal are allowed) to a graph to make
it identical to another one10.

Definition 51 (Distance Between Argumentation Frameworks).
Let F = 〈A,R〉 and F ′ = 〈A′, R′〉 be two argumentation frameworks. The distance between F and F ′

is a natural number defined by the following function.

d(F, F ′) = |(R\R′) ∪ (R′\R)|

Then, Baumann introduces the notion of (σ,Φ)-characteristic of a set of arguments E, which is the
minimal number of modifications to make in an argumentation framework F to enforce E in F . σ
denotes the considered semantics, while Φ is a binary relation over argumentation frameworks which in-
dicates which kinds of modification are allowed to enforceE (roughly speaking, which kind of expansion
is used).

10This distance is obviously related to the Hamming distance. Indeed, if we consider interpretations as sets of variables
which are assigned the value true , then the Hamming distance is equal to the cardinality of the symmetric difference between
the interpretations.

51

Chapter 3. Existing Approaches on Dynamics of Argumentation Frameworks

Definition 52 ((σ,Φ)-characteristic).
Given a semantics σ, a binary relation over argumentation frameworks Φ and an argumentation frame-
work F , the (σ,Φ)-characteristic of E with respect to F is a natural number or infinity defined by the
following function.

NF
σ,Φ =

0 if ∃E′ ∈ Extσ(F) such that E ⊆ E′

min(K,≤) if K = {d(F, F ′) | (F, F ′) ∈ Φ and NF ′

σ,Φ(E) = 0} 6= ∅

∞ otherwise

Baumann defines so-called value functions, which are computable functions which leads to the
(σ,Φ)-characteristic of a set of arguments.

Definition 53 ((σ,Φ)-value).
Given an argumentation F = 〈A,R〉 and a set of arguments E ⊆ A, the (σ,Φ)-value of E with respect
to F is defined by the following function. If σ ∈ {st, ad} and Φ =≤NW , then

V F
σ,Φ =

{

0 if ∃E′ ∈ Extσ(F) such that E ⊆ E′

∞ otherwise

If σ ∈ {st, ad} and Φ =≤NS , then

V F
σ,Φ = min({|nσ(F,E

′)| | E′ ∈ cf(F) and E ⊆ E′} ∪ {∞})

where nad(F,E′) = {ai ∈ A | ai attacks E′}\{ai ∈ A | ai is attacked by E′} and nst(F,E′) =
A\{ai ∈ A | ai is attacked by E′}.
If σ ∈ {st, ad} and Φ = U , then

V F
σ,Φ = min({|R↓E′ |+ |σ(F,E′)| | E ⊆ E′ ⊆ A})

where R↓E′ = R ∩ (E′ × E′).

Intuitively, the |nσ(F,E′)| which is used in the previous definition counts the number of arguments
which must be attacked in F to make E′ a σ-extension of the result. In the case of admissible semantics,
this corresponds to the number of arguments which attack E′ such that E′ does not defend itself against
them. For the stable semantics, it is the number of arguments which are not attacked by E′, since E′

should attack every other argument to be a stable extension.

Table 3.1 sums up the different (σ,Φ)-characteristics.

NF
σ,Φ ≤NW ≤NS ,≤

N ,≤ U

st V F
st,≤N

W

V F
st,≤N

S

V F
st,U

pr, co, ad V F
ad,≤N

W

V F
ad,≤N

S

V F
ad,U

Table 3.1: (σ,Φ)-characteristics

Baumann also establishes that weak enforcement may be "harder" in term of attacks to add, than
strong enforcement.

52

3.3. Intervention and Observation in Argumentation

Proposition 18.

For any argumentation framework F and any semantics σ ∈ {st, ad}, Vσ,≤N
W
≥ Vσ,≤N

S
.

Among other reasons, a possible explanation is the fact that some enforcements may be impossible
with a weak expansion, while they are simple to realize with a strong expansion.

Example 15.

In the argumentation framework F8, whatever the semantics, a1 is rejected. It is impossible to enforce
the set {a1} by adding only weak arguments, while a single change on the attack relation proves enough
if strong arguments can be added. So, {a1} is enforced in F9.

a1 a2

(a) F8

a1 a2 a3

(b) F9

Figure 3.3: Enforcing {a1} in F8 is impossible with weak expansion, while F9 is a succesful strong
enforcement.

3.3 Intervention and Observation in Argumentation

An interesting idea studied recently about change in argumentation frameworks is the use of the concepts
of observation and intervention, very familiar to the researchers working on Causal Bayesian Networks.
Let us briefly recall what is a Causal Bayesian Network. Such a network is a structure based on two
components: random variables which are linked to each others through a causality relation (the variable
X is a parent of Y means that X being true is a possible cause for Y being true), and some conditional
probabilities associated with the variables. We will not give an in-depth presentation of Causal Bayesian
Networks, and we refer the reader to [Pea09] for more details.
In this setting, it is admitted that an information about a variable can have two reasons: either the agent
has observed that some variable X is in a particular state, which can be explained by the fact that some
of the possible causes Y has been affected to some value which is the origin of the state of X , or the
agent has perform an action on the system which explains the state of X . This kind of situation does not
allow to deduce any information about Y . Let us illustrate this on an example borrowed from [Pea09].

Example 16.

Figure 3.4(a) shows a Causal Bayesian Network representing the relationships between the season (X1 ∈
{wet, dry}), the state of the sprinkler (X2 ∈ {on, off}), the rain (X3 ∈ {yes, no}), the state of the pave-
ment (X4 ∈ {wet, dry}) and the fact the the pavement is slippery or not (X5 ∈ {yes, no}).

If any observation about the value of a variable occurs, we can deduce some information about the
children of the variable in the graph (for instance, if we observe that the sprinkler is switched on, then
the pavement is more probably wet, and so it is more probably slippery), but also about the parents of
the variable (if the sprinkler has been switched on, the season is very likely to be dry).
If the state of the variable is changed by an intervention of the agent, we cannot deduce anything about
the parents of the variable (the agent can choose to switch on the sprinkler even if the season is wet).
To represent the fact that we know that the season is not a cause of the sprinkler being turned on, we
disconnect the variable from its parents. Figure 3.4(b) shows the result of this intervention in the previous
Causal Bayesian Network.

53

Chapter 3. Existing Approaches on Dynamics of Argumentation Frameworks

X1

X2 X3

X4

X5

(a) The Original Causal
Bayesian Network

X1

X2 X3

X4

X5

(b) The Causal Bayesian
Network after the Inter-
vention

Figure 3.4: The Result of an Intervention on the Causal Bayesian Network

In his thesis, Tjitze Rienstra [Rie14] borrows these ideas to adapt them to the case of abtract argu-
mentation. When an agent learns a new piece of information about the acceptance status of an argument,
it can be the case that some new argument has been added to the argumentation framework, changing the
evaluation of the already known arguments. Let us remark that this framework supposes that the attacks
between the previously known arguments are fixed. Similarly to the inference in Causal Bayesian Net-
works, this change can be seen as an intervention (for instance, the agent adds an attacker to the argument
a1 to make it rejected) or an observation (so the agent knows that some argument has been added in the
graph, changing the status of a1 and possibly the status of some parents of a1).

Let us borrow Rienstra’s example to illustrate how intervention and observation differ in argumenta-
tion frameworks.

Example 17.

Let F = 〈A,R〉 be the argumentation framework described in Figure 3.5. It is obvious that the accepted
arguments are a1 and a3. Now, let us suppose that the expected change of status is that a1 has to

a1 a2 a3

Figure 3.5: The Initial Argumentation Framework

be rejected. If this change of status is due to an intervention, Rienstra explains that the only possible
option is to add an attack to a1 (as described on Figure 3.6): it is the agent herself who performed the
intervention which explains the new status of a1. With this kind of process, only the status of a1 and its
possible descendant in the graph are affected. We see that the statuses of a2 and a3 have not changed.

a1 a2 a3

a4

Figure 3.6: The Argumentation Framework after an Intervention

54

3.4. Goal-Oriented Change in Argumentation

If the agent does not perform the intervention to change a1 status, but makes an observation that
a1 status has changed, there are two possible changes in the argumentation framework to explain this
new status: either a1 is attacked by some new argument (which is the same change as the one required
by the intervention, described on Figure 3.7(a)), or some new argument attacks a3, as described on
Figure 3.7(b).

a1 a2 a3

a4

(a) The New Argument Attacks a1

a1 a2 a3

a4

(b) The New Argument Attacks a3

Figure 3.7: Two Possible Explanations for the Observation

With an observation of a change of status for the argument a1, there is still some possibility of status
change of a1 descendant in the graph, but unlike the case of the intervention, it is also possible to have
some change of status on a1 ascendants: in the argumentation framework given on Figure 3.7(b), the
statuses of a2 and a3 have changed.

So, Rienstra defines two types of entailment relations: intervention-based entailment is concerned
with the consequences of an hypothetical action performed in the argumentation framework (in particu-
lar, the addition of an argument which attacks some existing ones), while observation-based entailment

is concerned with the consequences of a new piece of information about the acceptance of some argu-
ment.

Briefly, Rienstra defines these entailment relations which answer the question "Given an argumen-
tation framework F , an intervention I (respectively an observation O) and a piece of information about
the arguments statuses ϕ, does ϕ hold in F with the intervention I (respectively the observation O)?".
He studies the properties of such entailment relations, in particular with respect to the Kraus, Lehmann
and Magidor properties [KLM90, LM92].

3.4 Goal-Oriented Change in Argumentation

In [KBM+13], the authors tackle the problem, in a debate between several agents, of changing an ar-
gumentation framework which represents the current state of the debate, to ensure that a given goal
(concerning the acceptance of an argument) is reached. The changes which are allowed are addition and
removal of attacks between the arguments. First, let us describe the representation of the state of the
debate.

Definition 54 (State of a Debate).
A state of a debate is represented by a tuple 〈F,R+, R−〉, with F = 〈A,R〉 an argumentation framework
R+ ⊆ (A× A)\R the set of attacks which can be added to the argumentation framework, and R− ⊆ R
the set of attacks which can be removed from the argumentation framework.

Example 18 (Borrowed from [KBM+13]).
Let F be the state of the debate given at Figure 3.8. The dotted attacks represent the ones which can be

removed from the debate, while the dashed ones can be added.

55

Chapter 3. Existing Approaches on Dynamics of Argumentation Frameworks

a1a2 a3 a4 a5

Figure 3.8: The State of the Debate S

The authors consider that the attacks are the core component of the argumentation framework, so
they choose to work with attacks semantics, introduced by [VBvdT11]. Rather than associating each
argument with an acceptance status, this kind of semantics associates each attack in the argumenta-
tion framework with a "success" status: an attack is labelled 1 when the first argument of the pair is
in with respect to the considered complete labelling, ? if the first argument is undec, and 0 in the re-
maining case. For instance, with the simple argumentation framework containing two arguments a1
and a2 attacking each other, the complete labellings are {(a1, in), (a2, out)}, {(a1, out), (a2, in)} and
{(a1, undec), (a2, undec)}. Each of them can be associated, respectively, with the following evaluations
of attacks: {((a1, a2), 1), ((a2, a1), 0}, {((a1, a2), 0), ((a2, a1), 1} and {((a1, a2), ?), ((a2, a1), ?}. The
attack is called unsuccessful when it is labelled 0 (since the attacker does not succeed in making the other
argument rejected). It is called successful in the remaining cases.

Then, the authors define a language composed of atoms concerning actions to perform on the state
of the debate.

Definition 55 (Atom).
For x ∈ A×A an attack, and ai an argument,

• the atom (x,+,#) (respectively (x,−,#)) means that the attack x must be added to (respectively
removed from) the argumentation framework);

• the atom (x,X, ∗) (with X ∈ {1, 0, ?}) means that the agent must find a way to change the
argumentation framework to ensure that the attack x is labelled X;

• the atom (x,X,#) (with X ∈ {1, 0, ?}) means that the attack x is actually labelled X in the
argumentation framework;

• the atom PRO(ai) (respectively CON(ai)) means that the agent wants the argument ai to be
accepted (respectively rejected);

• the atom ⊤ means success of the procedure, while the atom ⊥ means failure.

A move is a set of (x,+,#) and (x,−,#) atoms, which indicates the attacks to be respectively
added and removed from the argumentation framework.

Definition 56 (Move).
The set m = {(x, s,#) | x ∈ (A × A) and s ∈ {+,−}} is called a move on the state of the debate if
and only if for each (x,+,#) ∈ m, x ∈ R+, and for each (x,−,#) ∈ m, x ∈ R−.

Example 18 Continued.

The move m = {((a1, a3),+,#), ((a5, a4),−,#)} from S leads to the state of the debate S′ given at
Figure 3.9: (a5, a4) is not anymore in the state of the debate, while (a1, a3) has been added to the debate.

These moves make possible for the debate to satisfy a given goal. A positive goal is a property,
expressed by a set of atoms, which is expected to be satisfied by the debate. On the opposite, a negative

goal is a property which is expected not to be satisfied. Then, the best moves to perform to satisfy the
goal are identified.

56

3.4. Goal-Oriented Change in Argumentation

a1a2 a3 a4 a5

Figure 3.9: The State of the Debate S′

Definition 57 (Successful Move, Target Set).
m is called a successful move for the goal g in the state of the debate S if and only if the application of
m on S leads to a new state of the debate S′ such that g is satisfied.
m is a target set for the goal g in the state of the debate S if and only if m is minimal with respect to the
inclusion among all the successful moves for g in S.

Example 18 Continued.

The move m given previously is a successful move for the goal g "make a4 credulously accepted for the
preferred semantics", since {a1, a4, a5} is a preferred extension of the argumentation framework after
the move.
But it is not successful for the goal g′ ”make a4 skeptically accepted for the preferred semantics", since
{a2, a3, a5} is also a preferred semantics of the argumentation framework after the move.

Then, the authors focus on two types of goals:

• positive goals which consist in requiring that a particular argument ai is credulously (respectively
skeptically) accepted by the argumentation framework with respect to the semantics σ, noted
σ∃(ai) (respectively σ∀(ai));

• negative goals which consist in requiring that a particular argument ai is not credulously (re-
spectively skeptically) accepted by the argumentation framework, noted ¬σ∃(ai) (respectively
¬σ∀(ai)).

For both kinds of goals, the semantics is the complete semantics, the preferred semantics, or the admis-
sible semantics. The computation of the target sets for these goals is then performed through a Maude
program [CDE+99]. Since we do not present Maude in this thesis, the reader may refer to the original
publication for technical details [KBM+13].
Let us still remark that the authors have proven that their procedure, called RP (for Rewritting Procedure)
always terminates. They have studied its correctness and completeness. Formally:

Proposition 19 (Correctness and Completeness of RP).
The procedure RP is correct for successful moves with respect to a given goal g if and only if every move

it returns is actually a successful move for g.

The procedure RP is complete for target sets with respect to a given goal g if and only if it returns each

target set for g.

Table 3.2 gives the goals for which the procedure is correct, complete, or none.

We notice that the procedure cannot guarantee to lead only to correct result, so it could return some
moves which are not successful for the given goal. In a similar way, the procedure do not guarantee
to return each target set. It depends, of course, on the goal. For some goals, like making an argument
credulously accepted with respect to the admissible semantics, the procedure is both correct and com-
plete. But the opposite may also happen, as it is the case for the preferred semantics: the procedure is
neither correct nor complete if the goal is to make an argument credulously accepted with respect to the
preferred semantics.

57

Chapter 3. Existing Approaches on Dynamics of Argumentation Frameworks

Goal Correctness for Successful Moves Completeness for Target Sets
ad∃ Yes Yes
pr∃ No No
co∃ No Yes
¬ad∃ No No
¬pr∃ No ?
¬co∃ Yes Yes

Table 3.2: Correctness and Completeness Results for RP

3.5 Change in Argumentation through Belief Update

Both works presented in this section use some ideas from belief change theory, in particular belief update,
to perform some change in an argumentation framework. They perform the update of an argumentation
framework through a logical encoding, and then use propositional update operators to reach their goal.

3.5.1 Updating an Argumentation Framework through Propositional Encoding

The approach proposed in [BCdSL13] shows how to take advantage of belief update in propositional
logic to define update operators suited to argumentation frameworks. The authors suppose that the agent
has at her disposal a propositional language LA which is able to describe an argumentation framework
and its set of accepted arguments (the notion of acceptance can be tuned by a semantics, and an inference
policy among credulous and skeptical). For any formula ϕ ∈ LA, the models of ϕ are the argumentation
frameworks for which ϕ is true. This notion is not clearly defined, since the propositional language
LA is not fixed by the authors, but depends of the agent. If F is an argumentation framework, F |= ϕ
means that F ∈ Mod(ϕ), and ϕ |= ψ means that Mod(ϕ) ⊆ Mod(ψ). A formula which admits several
models expresses the uncertainty of the agent about the state of the world (each model being a possible
argumentation framework representing the world).

Then, any kind of update cannot be performed. In the framework described by the authors, it is
supposed that the agents have in their common knowledge a fixed set of arguments Arg and a fixed set
of attacks Rel ⊆ Arg × Arg. Each argumentation framework F = 〈A,R〉 is composed of A ⊆ Arg
and R ⊆ Rel ∩ (A×A). So, an authorized change from F1 is an addition or removal of arguments (and
the corresponding attacks) such that the resulting argumentation framework F2 is legal with respect to
Arg and Rel. These changes are called executable operations. An executable program is a sequence
(o1, . . . , on) of operations such that o1 is executable from the current argumentation framework, and for
each i (1 < i ≤ n), oi is executable on the outcome of oi−1. Since it may be the case that each exe-
cutable operation (or program) is not permitted for an agent, the authors introduce the notion of allowed

transitions, which are a subset of all the pairs (F1, F2) such that F2 can be reached from F1 through an
executable program.

Before introducing the rationality postulates, we introduce a last required notation: ∀ϕ, ψ ∈ LA,
a transition in the set T is possible between a set of models of ϕ and a set of models of ψ, denoted
(ϕ, ψ) |= T , if and only if Mod(ϕ) 6= ∅ and ∀F ∈ Mod(ϕ), ∃F ′ ∈ Mod(ψ) such that (F, F ′) ∈ T .

Now, let us give the set of rationality postulates, adapted from the KM postulates for belief update.
Here, the authors change some postulates to take into account the constraints on the allowed transitions
for the agent.

58

3.5. Change in Argumentation through Belief Update

(U1) ϕ ⋄T α |= α

(U2) If ϕ |= α, then ϕ ⋄T α ≡ ϕ

(E3) Mod(ϕ ⋄T α) 6= ∅ if and only if (ϕ, α) |= T

(U4) If ϕ ≡ ψ and α ≡ β, then ϕ ⋄T α ≡ ψ ⋄T β

(E5) If |Mod(ϕ)| = 1, then (ϕ ⋄T α) ∧ β |= ϕ ⋄T (αβ)

(E8) If (Mod(ϕ) 6= ∅ and Mod(ϕ ⋄T α) = ∅) or (Mod(ψ) 6= ∅ and Mod(ψ ⋄T α) = ∅) then Mod((ϕ∨
ψ) ⋄T α) = ∅, else Mod((ϕ ∨ ψ) ⋄T α) = Mod((ϕ ⋄T α) ∨ (ψ ∨ α))

(U9) If |Mod(ϕ)| = 1, then Mod((ϕ ⋄T α) ∧ β) 6= ∅ implies ϕ ⋄T (α ∧ β) |= (ϕ ⋄T α) ∧ β

As usual, the representation theorem uses pre-orders between interpretations.

Definition 58 (Assignment Respecting T).
Given T a set of allowed transitions, an assignment respecting T is a function that associates with each
argumentation framework F a total pre-order ≤F such that for each argumentation frameworks F1, F2,
if (F, F1) ∈ T and (F, F2) /∈ T , then F2 �F F1.
Moreover, the assignment is faithful if and only if ∀F1 6= F , F <F F1.

Proposition 20 (Representation Theorem).
Given T a set of allowed transitions, there is an update operator ⋄T satisfying (U1), (E3), (U4), (E5),

(E8) and (U9) if and only if there is an assignment respecting T such that for each argumentation

framework F , for each formulae ϕ, α,

Mod(f(F)⋄Tα) = {F1 ∈ Mod(α) | (F, F1) ∈ T and ∀F2 ∈ Mod(α) such that (F, F2) ∈ T, F1 ≤F F2}

with f(F) the formula whose single model is F , and

Mod(ϕ ⋄T α) =

{

∅ if ∃F ∈ Mod(ϕ) such that Mod(f(F) ⋄T α) = ∅
⋃

F∈Mod(ϕ)Mod(f(F) ⋄T α) otherwise

Moreover, the operator satisfies (U2) if and only if the assignment is faithful.

3.5.2 Updating Argumentation Frameworks through DLPA programs

We already presented the Dynamic Logic of Propositional Assignments (DL-PA) and its application
for belief change in Section 2.2.4. In [DHP14], the authors use this setting to encode argumentation
frameworks and make them evolve using update operators. These encodings are based on a propositional
language Latt,in which is built on the set of variables

ATTA ∪ INA

where ATTA = {attai,aj | ai, aj ∈ A} and INA = {inai | a∈A}, with the usual connectives. attai,aj
means that there is an attack from the argument ai to the argument aj in the considered argumenta-
tion framework, while inai means that the argument ai belongs to an extension of the argumentation
framework. Latt is the restriction of the language to attai,aj variables, and Lin is the restriction to inai
variables. Then, encodings of the most usual semantics borrowed from [BD04] are defined in this propo-
sitional language. We do not give these encodings in details here, since similar ones are presented in

59

Chapter 3. Existing Approaches on Dynamics of Argumentation Frameworks

Chapter 5.

DL-PA can be used to compute the σ-extensions of an argumentation framework F = 〈A,R〉
through the program makeExtσA = flip≥0({inai | a∈A}); Φ

σ
A? where the formula ΦσA is the propo-

sitional encoding of the semantics. A model of this program leads to a valuation of the inai variables
which satisfies the formula ΦσA, that is a σ-extension of F .
Then, DL-PA programs are defined to reach the main purpose of the paper: modifying an argumentation
framework. Modifications of the structure of the framework are very simple to implement in DL-PA.
If we want to incorporate a piece of information such that (

∧

ai,aj
attai,aj) ∧ (

∧

ak,al
¬attak,al) in the

framework, a simple DL-PA program which assigns the value true to the attai,aj variables and false to
the attak,al proves enough.

Now, let us explain how DL-PA programs are used to update the extensions of the argumentation
framework. Two kinds of update operators are defined. The piece of information to incorporate into the
framework is a formula ϕ about arguments statuses (which means, a formula built on the inai variables).
So the update operator can modify the argumentation framework to ensure that ϕ is satisfied by at least
one extension of the result, which is called credulous enforcement of ϕ, or by each extension of the
result, which is called skeptical enforcement of ϕ.
Both programs are adaptations of Forbus’ update operator described in Section 2.2.4. The difference
is that the credulous (respectively skeptical) enforcement operator only flips attai,aj variables, rather
than flipping any variable of the vocabulary, and then it tests if formula ϕ is satisfied after at least one
(respectively after each) execution of the program makeExtσA.

Proposition 21 (Credulous and Skeptical Enforcement).
Given an argumentation framework F = 〈A,R〉 and a formula ϕ ∈ Lin, the following DL-PA pro-

gram modifies F to ensure that ϕ is satisfied by at least one extension of the resulting argumentation

framework:

⋃

0≤m≤|ATTA|

H(〈makeExtσA〉ϕ,ATTA,≥ m)?; flip(ATTA)
m

 ; 〈makeExtσA〉ϕ?

Given an argumentation framework F = 〈A,R〉 and a formula ϕ ∈ Lin, the following DL-PA

program modifies F to ensure that ϕ is satisfied by each extension of the resulting argumentation frame-

work:

⋃

0≤m≤|ATTA|

H([makeExtσA]ϕ,ATTA,≥ m)?; flip(ATTA)
m

 ; [makeExtσA]ϕ?

3.6 Change in Argumentation through Belief Revision

Now we focus on the works that adapt belief revision theory to abstract argumentation. In particular,
[BKRvdT13] and [BB15] use the AGM framework and adapt it to abstract argumentation11. We also
describe in part 3.6.2 a work which adapts a syntax-based setting for belief revision.

11There exists a third similar approach, which is described in Chapter 4, since it is directly related to the contribution of this
Chapter.

60

3.6. Change in Argumentation through Belief Revision

3.6.1 A Labelling-based Integrity Constraint

Adding an integrity constraint to an argumentation framework is not completely new. Indeed, [CDM06]
uses a propositional formula built on the set of arguments as a constraint to be satisfied by the outcome of
the argumentation framework. The approach proposed by [BKRvdT13] is different. There, the integrity
constraint does not impact the outcome of the argumentation framework, which is computed using the
usual Dung’s semantics. The proposal is to modify the argumentation framework to ensure that it satis-
fies the integrity constraint. The difference with usual revision scenarios is that the integrity constraint is
not supposed to be a new piece of information received by that agent. It exists in the belief state of the
agent as a fixed knowledge about the world.

First, this work defines the agent’s belief state through an extension of Dung’s framework, which uses
a propositional formula on labellings as an integrity constraint, and considers that the agent’s beliefs are
the complete labellings of the argumentation framework which satisfy this integrity constraint.

Definition 59 (Labelling-Based Propositional Language).
Given an argumentation framework F = 〈A,R〉, the languageLFA is generated by the following grammar
in Backus-Naur Form:

ϕ ::= inai | outai | uai | ¬ϕ | ϕ ∨ ϕ | ⊤ | ⊥

where ai ∈ A. The satisfaction of such a formula by a labelling L, noted |∼F , is defined by:

• L|∼F inai if and only if L(ai) = in;

• L|∼F outai if and only if L(ai) = out ;

• L|∼Fuai if and only if L(ai) = undec;

• L|∼Fϕ1 ∨ ϕ2 if and only if L|∼Fϕ1 or L|∼Fϕ2;

• L|∼F¬ϕ if and only if L|6∼ϕ;

• L|∼F⊤ and L|6∼⊥.

A labelling L is called a model of the formula ϕ if L satisfies ϕ. ModF (ϕ) is the set of all the models of
ϕ. For any set of labellings L, ϕL is the formula such that ModF (ϕL) = L.

In particular, the complete labellings CoF of the argumentation framework F are exactly the models
of the formula:

∧

ai∈a

[(inai ⇔ (
∧

(aj ,i)∈R

outaj) ∧ (outaj ⇔ (
∨

(aj ,ai)∈R

inaj))]

while the conflict-free labellings CfF are the models the formula:
∧

ai∈A

(inai ⇒ ((
∧

(aj ,ai)∈R

outaj) ∧ (
∧

(ai,aj)∈R

outaj)))

A formula ϕ is said to be conflict-free if and only if there is a conflict-free labelling L such that
L|6∼¬ϕ.

Definition 60 (Belief State).
A belief state is a pair S = 〈F,K〉 where F = 〈A,R〉 is an argumentation framework, and K ∈ LFA is
the agent’s integrity constraint. The agent’s beliefsBel(S) is the formula whose models are the complete
labellings of F which satisfy the integrity constraint K.

61

Chapter 3. Existing Approaches on Dynamics of Argumentation Frameworks

Booth et al. propose two approaches to restore the agent’s consistency in the case when the agent’s
beliefs are empty, meaning that there is no complete labelling of F which satisfies K. The first one
directly uses the expansion method defined by Baumann and Brewka (see Section 3.2), while the second
one uses first belief revision techniques before performing an expansion.

Proposition 22 (Restoring Consistency through Normal Expansion).
Let S = 〈F,K〉 be an inconsistent belief state with K a conflict-free formula. There exists F ′ a normal

expansion of F such that S′ = 〈F ′,K〉 is consistent.

This first method to restore consistency through a normal expansion ensures to satisfy the integrity
constraint, but there is no relation between the agent’s complete labellings before and after the restoration.
The second approach uses belief revision techniques to compute what is called the fallback beliefs, which
are represented by a formula such that the set of its models is the consistent subset of the current’s agent
beliefs which are the most plausible. Then a framework expansion is performed to match these fallback
beliefs. The underlying idea is that these beliefs are the "best" outcome of the current argumentation
framework, given the integrity constraint.
First, we have to introduce a counterpart to Katsuno and Mendelzon’s faithful assignments.

Definition 61 (Faithful Assignment).
A faithful assignment is a mapping from each argumentation framework F to a pre-order ≤F between
conflict-free labellings of F such that L is a minimal element among the conflict-free labellings of F
with respect to ≤F if and only if L is a complete labelling of F .

Then, a set of rationality postulates adapted from Katsuno and Mendelzon are stated, with a repre-
sentation theorem.

In the following postulates, S = 〈F,K〉 is a belief state, and Bel∗(S) are the fallback beliefs of S.

(P1) Bel∗(S) |= K ∧ ϕCfF

(P2) If S is consistent, then Bel∗(S) ≡ Bel(S)

(P3) If K is conflict-free, then Bel∗(S) is conflict-free

(P4) If F1 = F2 and K1 ≡ K2, then Bel∗(〈F1,K1〉) ≡ Bel
∗(〈F2,K2〉)

(P5) Bel∗(S) ∧ ϕ |= Bel∗(〈F,K ∧ ϕ〉

(P6) If Bel∗(S) ∧ ϕ is conflict-free, then Bel∗(〈F,K ∧ ϕ〉) |= Bel∗(S) ∧ ϕ

Proposition 23.

There exists a faithful assignment mapping each argumentation framework F to a total pre-order ≤F
such that ModF (Bel

∗(〈F,K〉)) = min(ModF (K) ∩ CfF ,≤F) if and only if Bel∗ satisfies the postu-

lates (P1)-(P6).

3.6.2 Removed Set-Based Revision

The work presented in [NW14] uses a belief revision framework different from the classical AGM frame-
work. It is based on the work from Falappa and colleagues [FKS02], who suggest to revise a belief base
by a set of formulae rather than a single formula. This operation is call multiple revision. [NW14] revise
an argumentation framework by another one. This is why they consider using an adaptation of multiple

62

3.6. Change in Argumentation through Belief Revision

revision: an argumentation framework can be interpreted as a set of attacks, which is associated with the
set of formulae from Falappa and colleagues.

In a nutshell, the revision approach considers an input framework F = 〈A,R〉 and a new piece of
information represented by the framework F ′ = 〈A′, R′〉. Each of them are supposed to be consistent,
meaning that they admit at least one stable extension. If their union F ⊔ F ′ = 〈A ∪ A′, R ∪ R′〉 is also
consistent, then it is kept as the result of the revision. It is the counterpart of the equivalence between
belief revision and belief expansion when the input belief base and the new piece of information are
consistent with each other. In the remaining case, some attacks must be dropped from R to obtain a con-
sistent argumentation famework. This is inspired by removed set revision developed in [Pap92, WJP00].

This revision procedure needs to identify some sets of arguments that attack their complement but
are not conflict-free. Each of these sets would be a stable extension of the argumentation framework if it
was conflict-free.

Definition 62 (Pseudo-Stable Set).
Given an argumentation framework F = 〈A,R〉. A set of arguments S ⊆ A is called a pseudo-stable

set of F if and only if ∀ai ∈ A\S, ∃aj ∈ S such that (aj , ai) ∈ R.

To transform such a set of arguments into a stable extension, dropping each attack between argu-
ments from S proves enough. Now, let us identify the sets of attacks which must be dropped to restore
consistency in an argumentation framework.

Definition 63 (Potential Removed Set).
Given an inconsistent argumentation framework F = 〈A,R〉, Rr ⊆ R is a potential removed set of F if
and only if 〈A,R\R− r〉 is a consistent argumentation framework.

Example 19.

Let F = 〈A,R〉 be the argumentation framework given at Figure 3.10. F does not admit a stable exten-
sion. Each singleton of R is a potential removed set, since it would lead to a consistent argumentation

a1 a2

a3a4a5

Figure 3.10: The Argumentation Framework F

framework. For instance, removing the set {(a1, a2)} leads to an argumentation framework which admits
the stable extension {a1, a2, a4}.

Now, each potential removed set of F is not a correct removed set for the revision.

Definition 64 (Removed Set).
Given two consistent argumentation frameworks F = 〈A,R〉 and F ′ = 〈A′, R′〉 such that F ⊔ F ′ is
inconsistent, Rr ⊆ R is a removed set of F ⊔ F ′ if and only if:

1. Rr ∩R′ = ∅;

2. Rr is a potential removed set of F ⊔ F ′;

63

Chapter 3. Existing Approaches on Dynamics of Argumentation Frameworks

3. Rr is minimal with respect to cardinality among the subsets of R which satisfy conditions 1 and 2.

In other words, a removed set of F ⊔F ′ is a set of n attacks from F which can be dropped to restore
consistency in F ⊔F ′, such that it is impossible to restore consistency dropping onlym < n attacks from
F . The set of all removed sets of F ⊔ F ′ is denoted R(F ⊔ F ′). The function f is a selection function,
which maps a collection of removed sets to a single one.
Now we can give the removed set-based revision operator:

Definition 65 (Removed Set-Based Revision).
Let F = 〈A,R〉 and F ′ = 〈A′, R′〉 be two consistent argumentation frameworks. The removed set-based

revision of F by F ′, denoted by F ∗ F ′, is defined by:

• if F ′′ = F ⊔ F ′ is consistent, then F ∗ F ′ = F ′′;

• else F ∗ F ′ = 〈A ∪A′, (R\f(R(F ⊔ F ′))) ∪R′〉.

Example 19 Continued.

Let F1 and F2 be the argumentation frameworks given at Figure 3.15. F = F1 ⊔ F2 does not admit
a stable extension. As explained previously, any attack can be removed from F to obtain a consistent

a1 a2

a3a4a5

(a) F1

a1 a2

a3a4a5

(b) F2

Figure 3.11: The Input Framework F1 and the Revising Framework F2

argumentation framework. But the first condition in the definition of a removed set clearly states that
neither {(a4, a5)} nor {(a5, a1)} can be removed in this particular case, since they belong to F2. So
one the the three other attacks must be removed. Continuing the previous example, we consider that the
selection function choses (because of lexicographic order for instance) to remove the set {(a1, a2)}. This
leads to the argumentation framework given at Figure 3.12.

a1 a2

a3a4a5

Figure 3.12: The Result of the Removed Set-based Revision

The authors also give an adaption of the rationality postulates for multiple revision, and state which
ones are satisfied by the revision operator. Then they propose an algorithm which computes the removed
sets.
Let us mention that this kind of revision approach is not generic, since the definition of consistency by
the existence of an extension is not relevant for most of the usual semantics, which always lead to at least
one extension for each argumentation framework.

64

3.6. Change in Argumentation through Belief Revision

3.6.3 Structure-Based AGM Revision

A last contribution from other authors that we want to present in this chapter is a work from Baumann
and Brewka [BB15]. This work combines the AGM framework with abstract argumentation. In this
work, the new piece of information which explains the revision is an argumentation framework F ′ such
that the result of the revision is an argumentation framework which is a possible consequence of F ′ in a
classical scenario of dialogue; more concretely, this means that the result of the revision is an expansion
of F ′, which has to be as plausible as possible given the original argumentation framework.
To define such revision, the authors define so-called Dung-logic, which is a language composed of the
set of every argumentation frameworks which can be built on a given universe of arguments, associ-
ated with a consequence relation between argumentation frameworks. We call this set of argumentation
frameworks the universe of argumentation frameworks. The consequence relation between frameworks
is based on the notion of kernel of an argumentation framework :

Definition 66 (σ-kernel of an Argumentation Framework).
Given an argumentation framework F = 〈A,R〉, the σ-kernels of F are defined by F k(σ) = 〈A,Rk(σ)〉,
where:

• Rk(st) = R\{(ai, aj) | ai 6= aj , (ai, ai) ∈ R}

• Rk(ad) = R\{(ai, aj) | ai 6= aj , (ai, ai) ∈ R, {(aj , ai), (aj , aj)} ∩R 6= ∅}

• Rk(gr) = R\{(ai, aj) | ai 6= aj , (aj , aj) ∈ R, {(ai, ai), (aj , ai)} ∩R 6= ∅}

• Rk(co) = R\{(ai, aj) | ai 6= aj , (ai, ai), (aj , aj) ∈ R}

F is called k-r-free if and only if F = F k(σ).

Example 20.

Let us illustrate the notion of stable kernel. Consider the argumentation framework F given at Fig-
ure 3.13. To obtain the stable kernel of F , one must remove the attacks such that the attacker is a

a1 a2 a3

Figure 3.13: The Argumentation Framework F

self-attacking argument. Here, it concerns the attack from a2 to a3, since a2 is self-attacking. So, the
stable kernel of F is the argumentation framework given at Figure 3.14.

a1 a2 a3

Figure 3.14: F k(st), the Stable Kernel of F

65

Chapter 3. Existing Approaches on Dynamics of Argumentation Frameworks

As explained at Example 20, such a kernel is obtained from the argumentation framework F by
deleting some redundant attacks. They are used to define k-models of an argumentation framework.
Quoting the authors, "a k-model of F is any dynamic argumentation scenario respecting the information

of F modulo redundancy, as encoded by k". This means that F ′ is k-model of F when, after the removal
of the redundant information in F , the kernel of F ′ can be obtained by adding arguments and/or (non
redundant) attacks.

Definition 67 (k-model).
Given an argumentation framework F and a kernel k, the set of k-models of F is defined as

Modk(F) = {F ′ | F k ⊆ F ′k}

and given a set of argumentation frameworks F , the set of k-models of F is defined as

Modk(F) =
⋂

F∈F

Modk(F).

Example 20 Continued.

Let F ′ be the argumentation framework given at Figure 3.15(a). F ′ is a k(st)-model of F , since the
stable kernel of F is included in the stable kernel of F ′, given at Figure 3.15(b).

a1 a2 a3 a4

(a) F ′

a1 a2 a3 a4

(b) F ′k(st)

Figure 3.15: The k(st)-model F ′ of F and its Stable Kernel

Similarly to the usual notion of satisfiability (respectively tautology), a set of argumentation frame-
works is said to be k-satisfiable (respectively k-tautological) if and only if its set of k-models is empty
(respectively equal to the universe of argumentation frameworks). The consequence relation is also de-
fined in a usual way:

Definition 68 (k-consequence Relation).
The k-consequence relation |=k is defined, for each argumentation frameworks F and F ′, by

F |=k F ′ if and only if Modk(F) ⊆ Modk(F ′)

Then, two argumentation frameworks F and F ′ are k-equivalent, denoted by F ≡k F ′, if and only if
F |=k F ′ and F ′ |=k F .

A Dung-logic LkDung is then a universe of argumentation frameworks associated with the
k-consequence relation.

The last concept that we present before describing the AGM-like framework by Baumann and Brewka
is the realizability of a set of argumentation frameworks:

Definition 69 (k-Realizability).
A setM of argumentation frameworks is k-realizable if and only if there exists a set of argumentation
frameworks F such that Modk(F) =M.

66

3.6. Change in Argumentation through Belief Revision

Now, a belief expansion operation for Dung-logics can be defined.

Definition 70 (Belief Expansion for Dung-logics).
A function +k which maps two argumentation frameworks F and F ′ to a third one denoted by F +k F ′

is a k-expansion if and only if

Modk(F +k F ′) = Modk(F) ∩Modk(F ′)

In the case where F k ⊔ F ′k is k-r-free, then this is the result of the expansion. Otherwise, the result is
the inconsistent constant denoted ⊥.

This expansion operation is then used, like in the usual AGM framework, in the postulates which
charaterize the revision operation.

Definition 71 (Belief Revision for Dung-logics).
A function ⋆k which maps two argumentation frameworks F and F ′ to a third one denoted by F ⋆k F ′

is a k-revision if and only if the following postulates are satisfied:

(R1) F ⋆k F ′ is an argumentation framework

(R2) F ⋆k F ′ |=k F ′

(R3) F +k F ′ |=k F ⋆k F ′

(R4) if F +k F ′ is k-satisfiable, then F ⋆k F ′ |=k F +k F

(R5) F ⋆k F ′ is k-satisfiable if and only if F ′ is k-satisfiable

(R6) if F ≡k G and F ′ ≡k G′, then F ⋆k F ′ ≡k G ⋆k G′

(R7) (F ⋆k F ′) +k F ′′ |=k F ⋆k (F ′ +k F ′′)

(R8) if (F ⋆k F ′) +k F ′′ is k-satisfiable, then F ⋆k (F ′ +k F ′′) |= (F ⋆k F ′) +k F ′′

Baumann and Brewka have proven that classical distance-based approaches, such that Dalal’s revi-
sion, do not satisfy the rationality postulates for Dung-logics. They present another approach, which
is based on the kernel. The result of the revision is constructed syntactically. In particular, it can be
deduced from the postulates that the result of the revision F ⋆k F ′ must be equal to F ′ ⊔X , where X is
an argumentation framework which maintains as much information as possible from F .
The definition of the operator is based on the notion of maximal k-r-free frameworks.

Definition 72.

Given two argumentation frameworks F and F ′, the set of maximal k-r-free sets with respect to F and
F ′ is defined by

Mk
F−F ′ = max({F ′k ⊔ F | G ⊑ F k, F ′k ⊔G is k − r − free},⊆)

When the considered kernel is the stable one, this set is a singleton. It is then simple to define the
k(st)-revision operator, and to prove that it satisfies the postulates.

Proposition 24 (k(st)-Revision).
Given two argumentation frameworks F and F ′, the k(st)-revision operator is defined by F ◦k(st) F ′ =

G, whereM
k(st)
F−F ′ = G.

This operator satisfies the postulates for Dung-logics (R1)-(R8).

67

Chapter 3. Existing Approaches on Dynamics of Argumentation Frameworks

a1 a2 a3

(a) F1

a2 a3 a4

(b) F2

Figure 3.16: The Argumentation Frameworks F1 and F2

a1 a2 a3 a4

Figure 3.17: The k(gr)-expansion F1 +
k(gr) F2

Example 21 (Example of Expansion and Revision, Borrowed from [BB15]).
Let us now consider the argumentation frameworks F1 and F2 given at Figure 3.16. In the case of
k = k(gr), F k1 ⊔ F

k
2 is k-r-free, so the k(gr)-expansion F1 +

k(gr) F2 is the argumentation framework

given at Figure 3.17. For the other semantics σ ∈ {st, co, ad}, F k(σ)1 ⊔ F
k(σ)
2 is not k(σ)-r-free, so

F1 +k(σ) F2 = ⊥. However, it is possible to obtain a meaningful result for k(st)-revision, which is
present at Figure 3.18. Concretely, we observe that F1 ⋆

k(str) F2 is a normal expansion of F2, as close as

a1 a2 a3 a4

Figure 3.18: The k(st)-revision F1 ⋆
k(str) F2

possible to the initial argumentation framework F1.

For other kernels, the set of maximal k-r-free set is not necessarily a singleton. But using a selection
function to choose a single argumentation framework as the result allow to define revision operators
which satisfy the postulates (R1)-(R6).

3.7 On Minimal Change of Arguments Statuses and Change of the Attack

Relation

When we started the study leading to this thesis, most of the existing works on the dynamics of argumen-
tation framework only considered some simple debate-like scenarios, where the existing arguments and
the attacks between them are fixed [BKvdT09b, BKvdT09a, CdSCLS10, BB10, BCdSCLS11, Bau12].
The only kind of change allowed in these work is the addition of a new argument, similarly to what
happens in a discussion, when an agent A adds a counter-argument to words of her opponent. Moreover,
except for the works on extension enforcement, the existing approaches only study the consequences
of the extensions of a given change on the structure of the argumentation framework. Only extension
enforcement tackles the question "how to change an argumentation framework to reach a given goal con-
cerning the extensions?".

68

3.7. On Minimal Change of Arguments Statuses and Change of the Attack Relation

The only existing work considering some kind of minimal change (enforcement described in [Bau12])
consider that the minimization must deal with the number of attacks which can be added during the
change process. Contrastingly, if we consider that the meaning of an argumentation framework is given
by the set of arguments that are accepted or rejected with respect to a given semantics, then minimal
change means to minimize the change on the statuses of arguments. This option makes sense when the
aim of the agent is to decide which arguments are accepted, and to take her decisions with respect to
these acceptance statuses. Then, the acceptance statuses of arguments can be associated to the beliefs
of the agents, and we make the parallel with the classical AGM framework: when revising an agent’s
beliefs, the minimal change applies on the models of the formulae, through the definition of rankins on
the interpretations. This is why we consider as an interesting reserarch question the study of minimal
change on the arguments statuses.
Giving the priority on the minimization of the attack relation or on the minimization of the arguments
status is really a question of considering the status of the arguments as first-class citizen of argumentation
frameworks or only as a by-product of the graph. Whereas this last option received considerable attention
before the begining of this thesis, there has been no work before the ones presented here which concen-
trates on the first view. The distinction between both kinds of approaches is reminiscent to the duality
between coherentist and foundational approaches to belief revision in logical settings [Doy92, dV97].

In addition, previous works also suppose that one can add as many arguments as one wants in order
to modify the status of some arguments. In some cases this is perfectly sensible, but in other cases it
is difficult to assume that such arguments are available. Consider for instance the case of big society
debates, where political parties, economists, journalistes, and other specialists have already put forward
all the arguments in favor of or against some decision (for example whether the state has to increase or
decrease individual taxation). If a political leader wants to change the current decision, then he will need
to be very brilliant in order to find an argument that has not been already pointed out by experts. More
probably she will rather try to change the beliefs (or preferences) of the people on the fact that some
arguments do or do not attack other ones.

We can motivate this kind of change with the toy examples we presented in Section 1.3. In their
debate about the movie screening, John and Yoko use every argument they have to decide which movie
they will watch. We explained that their debate may lead to watch Yoko’s movie. Since he does not
have any new argument to add in the debate, John has to convince Yoko that some of the attacks are
not actually present, or that some other ones are missing, to change the outcome of the argumentation
framework and obtain a result which satisfies him more.
In the case of John and Paul debating about the place of their next concert, the conclusion of the dis-
cussion is that since a night in New-York City is more expensive than a night in Chicago (argument a4),
it is better to play in Chicago (argument a2), which is Paul’s preferred place, than in New-York City
(argument a1). Since John does not know any argument which would allow to change that, he may try to
convince that the price of the hotel rooms is not a relevant information to choose a concert place, and so
that the attack from a4 to a1 must be removed.
Our last example is the resource allocation of toys between the children John, Paul and George. In this
case, the only way for Paul to play the board game with the other children is to convince his parents that
he is not too young to understand the rules, which would lead to remove the self-attack on the argument
(g, P).

Let us now mention some other contexts where allowing only changes of the attack relation is very
natural.

A first example of application for the revision process without adding new arguments is the reception

69

Chapter 3. Existing Approaches on Dynamics of Argumentation Frameworks

of a unjustified but trustworthy information (which is a particular case of argument from authority). This
scenario is frequent in applications of argumentation on social network debates [GT13]. When an agent
A initiates a debate about an argument α, if another agentB does not agree with A about α but considers
that A is trustworthy, B has to revise her beliefs to accept α. In this case, agent B can change her beliefs
even if agent A has not introduced a new argument in the debate. So, B has to reconsider the attacks
between some arguments, but not the set of arguments itself.

A second example concerns applications of argumentation on public opinion, and is related to the
society debates motivation we discussed above: suppose that an argumentation framework represents
the opinion of some groups of agents, where an attack between arguments exists if the majority of the
group supports it. If a group leader wants to modify the statuses of arguments, then she can perform a
revision of the input framework even without the introduction of some new arguments. The resulting
argumentation frameworks may help her to determine the attacks she has to focus on so as to modify the
majoritarian opinion.

A third context concerns preference-based argumentation (see [AC02a]). In such argumentation
frameworks some arguments attack each other (in particular if the arguments are based on logical for-
mulae and rebuttal, attack is symmetric), and the preference relation determines if an attack succeeds
or not. So it is possible to modify the attack relation just by modifying the preferences of the agent. A
similar case of revision can occur with value-based argumentation frameworks [BC02]: each argument is
mapped to a value, and a value can be "stronger" than another. Comparison of values can lead an attack
to fail. In this case, a change of values leads to a change of the (succeeding) attacks.

For these reasons, the following approaches for revising an argumentation framework (see Chapter 4,
Chapter 5) and enforcing a set of arguments in an argumentation framework (see Chapter 6) are defined
as to be able to take account for such situations.
For a matter of generality, we also present some extensions of our change operators which allow to add
arguments and to take into account some integrity constraints. These generalized operators can tackle
the situations which are described by the previously existing change approaches.
Finally, in Chapter 7 we present a typology of the different kinds of constraint and change that can be
considered in the dynamics of argumentation frameworks, and we show how the existing approaches fit
in this typology, and which questions are still open challenges.

70

Part II

Contributions to the Dynamics of

Argumentation Frameworks

71

Chapter 4

Adapting the AGM Framework for

Abstract Argumentation

Since we cannot change reality, let us change the eyes which see reality.

Níkos Kazantzákis – Report to Greco

In this chapter, we investigate the revision of argumentation frameworks à la Dung. We focus on
revision as minimal change of the arguments statuses. Contrarily to most of the previous works on the
topic, the addition of new arguments is not allowed in the revision process, so that the revised framework
has to be obtained by modifying the attack relation, only. We introduce a language of revision formulae
which is expressive enough for enabling the representation of complex conditions on the acceptability
of arguments in the revised framework. We show how AGM belief revision postulates can be translated
to the case of extension-based argumentation semantics. We provide a corresponding representation the-
orem in terms of minimal change of the arguments statuses. Several distance-based revision operators
satisfying the postulates are also pointed out, along with some methods to build revised argumentation
frameworks. We also discuss some computational aspects of those methods. Then, we describe several
enrichements of our basic approach. The first one is a reformulation of our rationality postulates in terms
of labellings, which allow to revise an argumentation framework by some more complex pieces of infor-
mation. We also discuss the possibility to incorporate some integrity constraints to the revision operator,
and to add new arguments during the revision process. Last, we present some approaches to provide a
single argumentation framework as the outcome of the revision step.

Contents

4.1 Revision at the Extension Level . 73

4.1.1 On Revision Formulae . 73

4.1.2 Extension-Based Revision Operators . 75

4.1.3 Distance-Based Revision . 76

4.2 Revision at the System Level . 78

4.2.1 Extension-Based Generation . 79

4.2.2 Some Computational Aspects . 83

4.3 Labelling-Based Revision of Argumentation Frameworks 84

4.3.1 Labelling-based Postulates . 84

4.3.2 Labelling-Based Generation . 87

4.4 Constrained Open World Revision . 89

72

4.1. Revision at the Extension Level

4.5 On the Unicity of the Outcome . 90

4.6 Related Work . 93

4.7 Conclusion . 94

4.1 Revision at the Extension Level

4.1.1 On Revision Formulae

We want to define a revision setting for Dung’s argumentation frameworks in which sophisticated revi-
sion formulae can be taken into account, and not only the fact that a given argument should be accepted
or refused. To this end, we consider a logical language LA, where negation is used to denote the fact
that a given argument should be refused, and atomic formulae can be connected using conjunction and
disjunction.

Definition 73.

Given a set of arguments A = {α1, . . . , αk}, LA is the language generated by the following context-free
grammar in BNF:

arg ::= α1| . . . |αk
Φ ::= arg|¬Φ|(Φ ∧ Φ)|(Φ ∨ Φ)

For instance, ϕ1 = (a1 ∧ a2 ∧ a3) ∨ (a1 ∧ ¬a2 ∧ ¬a3) is a formula of LA when {a1, a2, a3} ⊆ A.
Such a formula expresses that a1 must be accepted and a2 and a3 must be both accepted or both refused.
The epistemic status of such a formula ϕ from LA in an argumentation framework F ∈ AFsA for a given
semantics σ is given by:

Definition 74.

Let ε ⊆ A and ϕ ∈ LA. The concept of satisfaction of ϕ by ε, noted ε|∼ϕ, is defined inductively as
follows:

• If ϕ = ai ∈ A, then ε|∼ϕ if and only if a ∈ ε,

• If ϕ = (ϕ1 ∧ ϕ2), ε|∼ϕ if and only if ε|∼ϕ1 and ε|∼ϕ2,

• If ϕ = (ϕ1 ∨ ϕ2), ε|∼ϕ if and only if ε|∼ϕ1 or ε|∼ϕ2,

• If ϕ = ¬ψ, ε|∼ϕ if and only if ε|6∼ψ.

Then for any F in AFsA, and any semantics σ, we say that:

• ϕ is accepted with respect to F , noted F |∼σϕ, if ε|∼ϕ for every ε ∈ Extσ(F),

• ϕ is refused with respect to F , noted F |∼σ¬ϕ, if ε|∼ϕ for no ε ∈ Extσ(F),

• ϕ is undefined with respect to F in the remaining case.

Inference |∼σ can be extended to the case of a set S of argumentation frameworks by considering
Extσ(S) =

⋃

F∈S Extσ(F).

The language LA, used in next sections to define the revision of an argumentation framework, allows
to change the status of an information ϕ to accepted (revise by ϕ) or rejected (revise by ¬ϕ), but not
to undetermined. This is normal: Gärdenfors defines the change of status of a belief from accepted or

73

Chapter 4. Adapting the AGM Framework for Abstract Argumentation

rejected to undetermined as a contraction, as explained in Chapter 2 (see Fig. 2.1).

As introduced in Chapter 1, from now on, we call candidate any subset ε of A. Continuing the previ-
ous example, if A = {a1, a2, a3}, then ϕ1 is satisfied by the candidates from {{a1}, {a1, a2, a3}}. Thus,
for the grounded semantics, ϕ1 is accepted with respect to F1 = 〈A,R1〉 with R1 = {(a2, a3), (a3, a2)}
but is refused with respect to F2 = 〈A,R2〉 with R2 = {(a1, a2), (a2, a1)}.

We define consistency in a classical way:

Definition 75.

Given a formula ϕ, Aϕ denotes the set of candidates satisfying ϕ. ϕ is said to be consistent if and only
if Aϕ 6= ∅.

In the general case, Aϕ is not the set of all σ-extensions of an F in AFsA. Consider for instance,
A = {a1, a2, a3} and ϕ1 = (a1∧a2∧a3)∨ (a1∧¬a2∧¬a3). Aϕ1 = {{a1}, {a1, a2, a3}}, and there is
no F in AFsA such that Extσ(F) = Aϕ1 for σ = grounded, σ = preferred or σ = stable. It is obvious
for the grounded semantics (since an argumentation frameworks admits only one grounded extension)
and preferred semantics (since Aϕ1 does not satisfy the maximality principle: {a1} ⊆ {a1, a2, a3}). For
the stable semantics, we notice that if {a1} is an extension, then a1 must attack both the other arguments,
which prevents {a1, a2, a3} to be an extension.

In this case, it is enough to consider two argumentation frameworks to cover the extensions {{a1},
{a1, a2, a3}} (for instance, in the first argumentation framework a1 attacks a2 and a3, and in the second
one the attack relation is empty). Note that in the general case, increasing the number of frameworks is
not enough to capture the expected extensions. In order to characterize formulae that can be associated
with a set of frameworks and a semantics, a concept of σ-representability can be defined as follows:

Definition 76.

A set C of candidates is σ-representable if and only if there exists a set S of argumentation frameworks
in AFsA such that C = Extσ(S).

From σ-representability, we define a notion of model which takes the semantics into account:

Definition 77.

Given a formula ϕ ∈ LA and a semantics σ, the set of models of ϕ is defined by

Aσϕ = {ε ∈ Aϕ|{ε} is σ-representable}.

A formula ϕ ∈ LA is σ-representable if and only if Aσϕ is σ-representable.

A form of consistency can be defined to take account for the semantics:

Definition 78.

Given a semantics σ, a formula ϕ ∈ LA is σ-consistent if and only if ϕ is consistent and σ-representable.

We remark that σ-representability is closed under (non-empty) subsumption: each non-empty subset
of a σ-representable set of candidates is σ-representable. When A = {a1, a2, a3},
ϕ1 = (a1 ∧ a2 ∧ a3) ∨ (a1 ∧ ¬a2 ∧ ¬a3) is σ-representable for σ = grounded, σ = preferred or
σ = stable since {{a1}, {a1, a2, a3}} = Extσ(F3) ∪ Extσ(F4) where R3 = {(a1, a2), (a1, a3)} and
R4 = ∅. Contrastingly, ϕ2 = ¬a1∧¬a2∧¬a3 is grounded-representable and preferred-representable but
not stable-representable. ϕ3 = a1 ∧ ¬a1 neither is grounded-representable nor preferred-representable,
but is stable-representable (consider F5 such that R5 = {(a1, a2), (a2, a3), (a3, a1)}).

A last point about formulae is the definition of equivalence. Two formulae ϕ, ψ ∈ LA are said to be
σ-equivalent, noted ϕ ≡σ ψ, if and only if Aσϕ = Aσψ.

74

4.1. Revision at the Extension Level

4.1.2 Extension-Based Revision Operators

In order to define revision operators, we follow a two-step process. Intuitively, the process first selects
from models of ϕ those as close as possible to the σ-extensions of F . This selection has to ensure the
minimal change of arguments statuses, through an adaptation of KM revision operators, suited to classi-
cal logic propositional formulae, suited to the formulae the we defined previously. Then, the second step
generates the argumentation frameworks such that the union of their σ-extensions precisely coincides
with the selected candidates. This method allows to guarantee the minimal change of arguments sta-
tuses, and then to apply any generation function to obtain the resulting argumentation framework, both
steps being independant from each other.

We define a revision operator on argumentation frameworks as a mapping associating a set of argu-
mentation frameworks with the input argumentation framework and the input revision formula:

Definition 79.

Given any set of arguments A, a revision operator on argumentation frameworks ⋆ is a mapping from
AFsA × LA to 2AFsA .

Clearly, the result of the revision of an argumentation framework is not a unique argumentation
framework in the general case, but a set of argumentation frameworks. The reason is quite simple: there
can be several possible results which have exactly the same maximum attractivity. So in this case there
is no reason to select just one of them (we will return to this point later on). If this is problematic for
a particular application, a selection function can be used as a tie-break rule for ensuring the unicity of
the result (just like, for instance, the maxichoice selection function considered in AGM belief revision
[Gär88]). We come back on this topic in Section 4.5.

Of course, each mapping from AFsA × LA to 2AFsA is not a reasonable revision operator. For
instance, the constant, yet trivial operator defined by F ⋆ ϕ = ∅ should be discarded.

In order to identify interesting revision operators, we have to identify the logical properties which
guarantee a rational behaviour. Such an axiomatic approach is standard in logic, and the AGM postulates
[AGM85, KM91] have been pointed out for characterizing valuable revision operators in a logical setting.
As in [QLB06], we can revisit these postulates in a set-theoretic style, here suited to the argumentation
case.

Let S be a set of argumentation frameworks F in AFsA, Extσ(S) = ∪F∈SExtσ(F). The counter-
part of AGM postulates in the argumentation case is given by:

Definition 80.

⋆ is an extension-based AGM revision operator on argumentation frameworks if and only if ⋆ satisfies
the following postulates. For any argumentation framework F , any formulae ϕ and ψ, and any semantics
σ:

(AE1) Extσ(F ⋆ ϕ) ⊆ Aσϕ

(AE2) If Extσ(F) ∩ Aσϕ 6= ∅, then Extσ(F ⋆ ϕ) = Extσ(F) ∩ A
σ
ϕ

(AE3) If ϕ is σ-consistent, then Extσ(F ⋆ ϕ) 6= ∅

(AE4) If ϕ ≡σ ψ, then Extσ(F ⋆ ϕ) = Extσ(F ⋆ ψ)

(AE5) Extσ(F ⋆ ϕ) ∩ Aσψ ⊆ Extσ(F ⋆ (ϕ ∧ ψ))

75

Chapter 4. Adapting the AGM Framework for Abstract Argumentation

(AE6) If Extσ(F ⋆ ϕ) ∩ Aσψ 6= ∅, then Extσ(F ⋆ (ϕ ∧ ψ)) ⊆ Extσ(F ⋆ ϕ) ∩ Aσψ

(AE1) states that the σ-extensions of the resulting set of argumentation frameworks must be among
the models of ϕ. (AE2) demands that if there are σ-extensions of the input framework satisfying ϕ, then
the resulting σ-extensions must coincide with them. (AE3) requires the resulting set of σ-extensions to
be non-empty as soon as ϕ is σ-consistent. (AE4) guarantees the irrelevance of syntax: the revision by
two formulae must be identical if the formulae are equivalent. The last two postulates (AE5) and (AE6)

express a minimal change principle with respect to the arguments statuses: changes of the statuses of
the arguments are expected to be minimal with respect to the input framework. In particular, these
postulates give the expected behaviour of the operator when an argumentation framework is revised by a
conjunction of formulae.

Interestingly, as in the logical case, we can derive a representation theorem which characterizes
exactly the revision operators satisfying the postulates in a constructive way. To this end, we first need
to present a counterpart of the notion of faithful assignment [KM91] in the argumentation setting:

Definition 81.

A faithful assignment is a mapping associating any argumentation framework F = 〈A,R〉 (under a
semantics σ) with a total pre-order ≤σF on the set of candidates such that:

1. if ε1 ∈ Extσ(F) and ε2 ∈ Extσ(F), then ε1 ≃σF ε2,

2. if ε1 ∈ Extσ(F) and ε2 6∈ Extσ(F), then ε1 <σF ε2.

The representation theorem can then be stated as follows:

Proposition 25 (Representation Theorem).
Given a semantics σ, a revision operator ⋆ satisfies the rationality postulates (AE1) - (AE6) if and only

if there exists a faithful assignment which maps every framework F = 〈A,R〉 to a total pre-order ≤σF so

that

Extσ(F ⋆ ϕ) = min(Aσϕ,≤
σ
F).

This theorem is important for defining operators satisfying the rationality postulates, as the ones
presented in the next section.

4.1.3 Distance-Based Revision

Let us now present some (pseudo-)distance-based revision operators satisfying the rationality postulates
(AE1) - (AE6).

Let d be any pseudo-distance on 2A, for instance, the Hamming distance given by dH(ε1, ε2) =
|(ε1 \ ε2) ∪ (ε2 \ ε1)|. Given ε ∈ 2A and E ⊆ 2A, d can be extended to a "distance" between ε and E ,
by stating that d(ε, E) = minε′∈E d(ε, ε

′). For any argumentation framework F ∈ AFsA, this distance
induces a total pre-order between candidates ε1, ε2 ∈ 2A given by

ε1 ≤
σ,d
F ε2 iff d(ε1,Extσ(F)) ≤ d(ε2,Extσ(F)).

On this ground, revision operators can be defined by:

Definition 82.

Let σ be any given semantics. A pseudo-distance-based revision operator ⋆d is any revision operator for
which there exists a pseudo-distance d on 2A such that for every F and every ϕ, we have Extσ(F ⋆dϕ) =
min(Aσϕ,≤

σ,d
F).

76

4.1. Revision at the Extension Level

Proposition 26.

Let σ be any semantics. Any pseudo-distance-based revision operator ⋆d satisfies the rationality postu-

lates (AE1) - (AE6).

Let us now define another family of pseudo-distance-based operators, which take advantage of la-
bellings. We introduce the notation Labsσϕ to denote the set of labellings L such that E(L) ∈ Aσϕ.

Labellings, which bring richer information than extensions, can be used to define interesting pseudo-
distance-based revision operators. Consider the following notion of edition pseudo-distance:

Definition 83.

Let m,n, o be three integers and let L1 and L2 be two labellings.
An edition pseudo-distance d(m,n,o) between labellings is defined as:

d(m,n,o)(L1, L2) =
∑

a∈A

ad(L1(a), L2(a)),

where

• ad(in, in) = ad(out , out) = ad(undec, undec) = 0

• ad(in, out) = ad(out , in) = m

• ad(in, undec) = ad(undec, in) = n

• ad(out , undec) = ad(undec, out) = o

Proposition 27.

Let m,n, o be three integers. d(m,n,o) is a pseudo-distance.

Interestingly, these edition pseudo-distances are not necessarily neutral or in/out balanced. We
call neutral an edition pseudo-distance such that ad(in, undec) + ad(undec, out) = ad(in, out) and
in/out balanced a pseudo-distance such that ad(in, undec) = ad(undec, out). Defining in/out non-
balanced edition pseudo-distances is a way for instance to favor acceptance of arguments over rejection
(see Example 22).

For any pseudo-distance dL between labellings, we can define a pre-order ≤σ,dLF between labellings
as we did it for candidates:

L1 ≤
σ,dL
F L2 iff dL(L1, Labsσ(F)) ≤ dL(L2, Labsσ(F)).

Definition 84.

Let σ be any given semantics. A labelling-pseudo-distance-based revision operator ⋆dL is any revision
operator for which there exists a pseudo-distance dL = d(m,n,o) on 2A such that for every F and every

ϕ, we have Labsσ(F ⋆dL ϕ) = min(Labsσϕ,≤
σ,dL
F).

The following example illustrates the impact of the chosen pseudo-distance on the revised frame-
work:

Example 22.

Let σ be the stable semantics. We revise the framework F6 below by the formula ϕ4 = (¬d ∧ ¬e).
The labellings associated with F6 are Labsσ(F6) = {{(a, in), (b, out), (c, out), (d, in), (e, in)},

{(a, out), (b, in), (c, out), (d, in), (e, in)}}. When we revise F6 by ϕ4 using the pseudo-distance-based
operator induced by the pseudo-distance d(1,9,10) on labellings, the obtained result is a framework with

77

Chapter 4. Adapting the AGM Framework for Abstract Argumentation

a

c

b d

e

Figure 4.1: The Framework F6

the following labellings: {(a, in), (b, out), (c, out), (d, out), (e, out)} and {(a, out), (b, in), (c, out),
(d, out), (e, out)}. When the pseudo-distance d(9,1,10) is used, we get {(a, in), (b, out), (c, out),
(d, undec), (e, undec)} and {(a, out), (b, in), (c, out), (d, undec), (e, undec)} as labellings of the re-
sult frameworks.
If the second step of the process, i.e. the generation of the resulting argumentation frameworks, as ex-
pected, takes account for the labellings, the structure of the resulting graphs will be different: when the
refused arguments are out , it means that there exists an attack from an accepted argument to a refused
argument. When the arguments are undec, those attacks do not exist.
With the first pseudo-distance d(1,9,10), it is cheaper to change an argument from in to out than to undec.
Such a pseudo-distance allows for choosing candidates which refuse arguments. Contrarily, the pseudo-
distance d(9,1,10) allows for choosing candidates which accept more arguments.

Like operators based on extensions, pseudo-distance-based operators using labellings exhibit good
logical properties:

Proposition 28.

Let σ be any semantics. Any labelling-pseudo-distance-based revision operator ⋆dL satisfies the ratio-

nality postulates (AE1) - (AE6).

4.2 Revision at the System Level

The operators defined in the previous sections focus on the candidates that are as close as possible to the
extensions of the input framework. This is the actual AGM-like revision of the argumentation framework.
However, they do not indicate how to generate the corresponding argumentation frameworks, i.e., the
argumentation frameworks such that the union of their extensions coincides with the selected candidates.
This task is the second step in the definition of the revision operator. The whole process is schematically
described at Figure 4.2. This section presents the generation step. First, we focus on the extension-based
generation operators, defining different approaches to generate argumentation frameworks corresponding
to the selected candidates. Then, we present some complexity results about these approaches.

F Extσ(F ⋆ ϕ) F ⋆ ϕ = {F ′1, . . . , F
′
k}

AGM revision generation

Figure 4.2: Schematic Explanation of the Revision Process

78

4.2. Revision at the System Level

4.2.1 Extension-Based Generation

In order to achieve this task, we consider a mapping AFσ from 22
A

to 2AFsA , called generation

operator, that associates with any set C of candidates a set of argumentation framework such that
Extσ(AFσ(C)) = C.

An important point we would like to discuss is the fact that a revision operator ⋆ outputs a set of
argumentation frameworks, and not a single argumentation framework in the general case. Actually, this
is a consequence of the expressiveness of the language of revision formulae we want to consider. In order
to illustrate it, consider A = {a, b, c, d}, and F7 as represented in Figure 4.3.

a

b

c

d

Figure 4.3: The Framework F7

a

b

c

d

(a) F8

a

b

c

d

(b) F9

Figure 4.4: Revision of F7

The extensions of F7 are the same ones for the stable and preferred semantics, Extσ(F7) = {{a, b},
{a, c}}. Let ϕ5 = (¬b ∨ c) ∧ (¬c ∨ b). When computing the result of the revision with the revision
operator based on Hamming distance between candidates, we obtain two candidates {a} and {a, b, c}.
We present in the following generation operators leading to the two corresponding argumentation frame-
works F8 (corresponding to candidate {a}) and F9 (corresponding to candidate {a, b, c}). Clearly,
choosing one of these systems would require to accept some arbitrariness and to lose one of the candi-
dates, although both of them are equaly plausible with respect to notion of minimal change used in this
example. And it is obviously impossible to obtain a single argumentation framework which corresponds
to these candidates, since {a} ⊆ {a, b, c}.

More generally, we want to recall that obtaining a set as result of a revision process is just usual
in most belief revision settings. It is important to note that the canonical representation of AGM con-
traction/revision operators by use of relational partial-meet functions [AGM85] defines the result of the
process as a set of minimal theories. It turns out that the language used makes it possible to produce a
single theory from this set using intersection (conjunction). But for languages where this conjunction

79

Chapter 4. Adapting the AGM Framework for Abstract Argumentation

is not possible it seems natural to keep a set as result. For instance [FKUV86] defines flocks, that are
the set of logical databases which result from the revision of a single logical database. Flocks have also
been used as sets of possible results for combination/merging operators [BKM91, BKMS92, Kon00]. If
a particular application clearly needs a single argumentation framework as the result of the revision, a
simple possibility is to use a tie-break rule to obtain this result. We come back on this possibility and we
present some other ones in Section 4.5

As explained in Section 4.1, the property of σ-representability is closed under non-empty subsump-
tion. Since the candidates C for the revision are chosen among the models Aσϕ of the revision formula
ϕ, it is guaranteed that C is σ-representable, and so, whatever the semantics, the input argumentation
framework and the revision formula, it is possible to generate a set of argumentation frameworks corre-
sponding to the candidates.

So now we can define revision operators:

Definition 85.

Given a semantics σ, a faithful assignment that matches every argumentation system to a total pre-order
≤σF , and a generation operator Fσ, the corresponding revision operator ⋆ is defined by:

F ⋆ ϕ = AFσ(min(Aσϕ,≤
σ
F)).

One of the key results of the chapter is that:

Proposition 29.

Every revision operator ⋆ defined following Definition 85 satisfies the postulates (AE1)-(AE6).

By construction, these revision operators are ensured to deal with minimality of change of arguments
statuses, but not with minimality of change of the attack relation. Indeed, the rationality postulates ask
for preserving as much as possible the statuses of arguments in the input system: doing so while ensuring
that the revision formula is satisfied does not usually imply a minimal change of the attack relation, and
vice-versa. As a matter of illustration, consider the argumentation framework F10 , F11 and F12 .

a b

c de

(a) F10

a b

c de

(b) F11

a b

c de

(c) F12

Figure 4.5: Minimal Change

80

4.2. Revision at the System Level

Suppose that our goal is to reject e, that is to get a framework so that e does not appear in any ex-
tension. So we consider the revision formula ϕ6 = ¬e. A minimal change on the attack relation of
F10 leads to F11 : they differ on a single attack. This contrasts with F12 since the change on the attack
relation required to go from F10 to F12 is strictly greater than the change on the attack relation required
to go from F10 to F11 . Each of these three frameworks has a unique extension for the usual semantics:12

{b, d, e} for F10 , {b, c, d} for F11 , and {b, d} for F12 . Hence, the change on the statuses of arguments
achieved when going from F10 to F12 is strictly smaller than the change on the statuses of arguments
achieved when going from F10 to F11 .

During the generation process, minimization can actually be considered in at least two ways: ei-
ther minimizing change on the attack relation, or minimizing the number of output systems. In fact,
these ways can be combined, either with a more important role to minimal change of the attack relation,
or with a more important consideration for minimization of the cardinality of the set of argumentation
frameworks which are generated.

Thus, a notion of minimal change on the attack relation can be defined through a notion of pseudo-
distance dg on the attack relation. Such a pseudo-distance can be for instance the Hamming distance,
given by dgH(F1 ,F2) = |(R1 \ R2) ∪ (R2 \ R1)|. The dgH distance between two argumentation
systems corresponds to the number of attacks that must be added or removed to make them identical.
But we can also consider more elaborated edition pseudo-distances such as those given in [CMDK+07].
Each pseudo-distance dg induces a pre-order between argumentation systems, defined by F1 ≤

dg
F F2 if

and only if dg(F1 ,F) ≤ dg(F2 ,F).
As usual, we can easily extend this notion to a distance between a system F and a set of systems AFs
by dg(F,AFs) = minFi∈AFs(dg(F, Fi)).

In order to give priority to minimal change on the attack relation, we define a generation operator
that builds sets of argumentation systems which cover the candidates; then one chooses the ones which
minimize a function of the pseudo-distance dg; and finally one retains the sets which are minimal in
terms of cardinality.

Definition 86.

Given C a set of candidates, σ a semantics, dg a pseudo-distance between graphs and F an argumentation
system, AFdg,Fσ is defined as:

AFdg,Fσ (C) =
⋃

{AFs ∈ setsdg,Fσ (C) | card(AFs) is minimal}

with
setsdg,Fσ (C) = {AFs | Extσ(AFs) = C and

∑

Fi∈AFs

dg(F, Fi) is minimal}.

A second approach consists in giving priority to the minimality of the output cardinality. It builds
first sets of systems that cover the set of candidates with a minimal number of systems, and then chooses
the sets which minimize the change on the attack relation.

Definition 87.

Given C a set of candidates, σ a semantics, dg a pseudo-distance between graphs and F an argumentation
system, AFcard,Fσ is defined by:

AFcard,Fσ (C) =
⋃

{AFs ∈ setsdg,Fσ (C) |
∑

Fi∈AFs

dg(F, Fi) is minimal}

12Especially, for the complete, the preferred, the stable and the grounded semantics.

81

Chapter 4. Adapting the AGM Framework for Abstract Argumentation

with
setsdg,Fσ (C) = {AFs | Extσ(AFs) = C and card(AFs) is minimal}.

Let us define formally the revision operators corresponding to these generation operators.

Definition 88.

The revision operator ⋆dg is the mapping from an argumentation framework and a formula to a set of
argumentation frameworks such that

F ⋆dg ϕ = AFdg,Fσ (min(Aσϕ,≤
σ,dH
F))

The revision operator ⋆card is the mapping from an argumentation framework and a formula to a set
of argumentation frameworks such that

F ⋆card ϕ = AFcard,Fσ (min(Aσϕ,≤
σ,dH
F))

As seen on the following example, these two approaches are not equivalent:

Example 23.

Let us now give an example of revision with the previously defined approaches. The input system F13 is
given on Figure 4.6.

a b c

Figure 4.6: The Framework F13

Its unique stable extension is {a, b, c}. The revision formula is ϕ7 = (a∨b)∧ (¬a∨¬b), the revision
operators are ⋆dg and ⋆card, both based on the Hamming distance on candidates and the Hamming dis-
tance on attack relations. Each one uses one of the previously defined generation operators, the first one
gives priority to the minimization of the attack relation, while the second focuses on the minimization on
the cardinality of the set of generated argumentation frameworks.
Let us first compute the revised candidates. It is easy to show that {a, c} and {b, c} are the minimal
models of ϕ7 with respect to the Hamming distance and the stable extension of the input system.
Now we present the result for the two revision operators. When minimizing the change on attack relation
using ⋆dg, the generation step produces two argumentation systems, F14 and F15, each one with a single
difference from the input graph.

a b c

(a) F14

a b c

(b) F15

Figure 4.7: F13 ⋆dg ϕ7

Contrastingly, the revision of F13 with operator ⋆card gives as output a unique argumentation system
F16 with two differences with respect to the Hamming distance on the attack relation.

a b c

Figure 4.8: F13 ⋆card ϕ7

82

4.2. Revision at the System Level

While the two approaches exemplified here use sum to aggregate the pseudo-distances, any aggre-
gation function can be used instead. For instance, min, max, or any OWA (Ordered Weighted Average
[Yag88]). These kinds of aggregation functions allow to combine distance and cardinality without giving
priority to one of them. For instance, a specific ordered weighted average OWAb is given by:

• v(S) = (dg(F1, F), . . . , dg(Fk, F)), such that ∀i ∈ {1, . . . , k − 1}, dg(Fi, F) ≥ dg(Fi+1, F),
with S = {F1, . . . , Fk} and k the cardinality of the largest set (the vectors corresponding to smaller
sets are normalized by adding the appropriate number of zeroes in front of the vector).

• wi = 2i−1

• OWAb(E) =
∑k

i=1wiv(E)[i]

With the OWAb function, a set of frameworks E1 such that the vector of pseudo-distances is v1 =
(1, 1, 4) is less preferred than a set E2 with v2 = (1, 2, 3), because OWAb(E1) = 19 > OWAb(E2) =
17.
A set E2, with three argumentation frameworks, can also be preferred to a set E3 with only two systems,
if those two frameworks are too far from the input framework. For instance, if the vector of pseudo-
distances is (1, 4), once normalized to v3 = (0, 1, 4), OWAb(E3) = 18, and so E2 is still preferred in
spite of its larger cardinality.
Giving the priority to one of the kinds of minimality may lead to a result which is good with respect to
the first criterion (for instance, a small cardinality of the set of argumentation frameworks) but bad with
respect to the second criterion (for instance, with a high distance between the graphs). An aggregation
function such as OWAb allows to have a compromise between the two kinds of minimalities, and to
obtain a result which is a more balanced option.

It is worthwhile to note that aggregation functions can also be used alone to define a generation
operator. Given an aggregation function f , we define a pre-order ≤f such that E1 ≤f E2 iff f(E1) ≤

f(E2). For any aggregation function on sets of argumentation systems, a generation operator is AF fσ
given by

AFfσ(C) ∈ min({E = {Fi}|Extσ(E) = C},≤f}.

All proposed approaches cannot guarantee to produce a single set of argumentation systems. For
instance, two sets may have the same cardinality and the same pseudo-distance from the input system
with respect to the pseudo-distance dg.
The result can then be defined following one of the two options below:

• The result is defined as the union of all the sets. The reason is that these sets represent the uncertain
result of the revision, so we keep all of them to avoid an arbitrary choice. The main default of this
method is that the size of the result may increase.

• A tie-break rule is used to select a single set of AFs. The agent is obliged to do an arbitrary choice.
Note that it does not prevent the revision operator from satisfying rationality postulates (because
the postulates deal with extensions, not with attack relations, and all the extensions are conserved
when selecting one of the sets of argumentation frameworks).

4.2.2 Some Computational Aspects

A first interesting question concerns the size of the output of revision operators. The first step of the
revision can lead to an exponential number of candidates, in terms of the number n of arguments in the
input system. This number is directly related to the revision formula. Given a pseudo-distance-based

83

Chapter 4. Adapting the AGM Framework for Abstract Argumentation

revision operator, the size of the output depends also on the generation operator which is used at the
second step of the process. In the worst case, the number of argumentation systems which are generated
is exponential in n:

Proposition 30.

Let ⋆ be a revision operator based on the generation operator AFdg,Fσ . The size of F ⋆ ϕ can be

exponential in |A|.

The complexity of the inference problem has also to be identified. Given a revision operator ⋆ for
argumentation systems and a semantics σ, the inference problem from a revised argumentation system is
the following decision problem:

• Input: An argumentation system F on A, and two formulae ϕ, ψ ∈ LA.

• Query: Does F ⋆ ϕ|∼σψ hold?

Unsurprisingly, provided that σ ensures the existence of an extension for every F , the inference
problem from a revised argumentation system F ⋆ ϕ is at least as hard as the inference problem from F .
In formal terms:

Proposition 31.

Let C be a complexity class which is closed under polynomial-time reductions. Suppose that ⋆ satisfies

(AE1) to (AE6), and that the semantics σ ensures the existence of an extension for every F . If the

inference problem from an argumentation system is C-hard, then the inference problem from a revised

argumentation system is C-hard as well.

Clearly enough, it can be the case that the inference problem from a revised argumentation system
F ⋆ ϕ is strictly harder than the inference problem from F (unless P = NP). For instance, under the
restriction when the queries ψ are restricted to arguments (or more generally, CNF formulae on A), it is
easy to show that the inference problem from F with respect to the grounded semantics can be solved in
polynomial time. Contrastingly:

Proposition 32.

Suppose that ⋆ satisfies (AE1) and (AE3). The inference problem from a revised argumentation system

with respect to the grounded semantics is coNP-hard, even under the restriction when the queries ψ are

restricted to CNF formulae on A.

Our results show that the revision of argumentation systems is comparable to the revision of propo-
sitional formulae from a computational point of view. Especially, it may lead to harder computational
problems: on the one hand, the revision of an argumentation system may require exponentially many sys-
tems for being represented (this is reminiscent to the non-compilability of some belief revision operators
[CDLS99]); on the other hand, inference may also become harder [Neb98].

4.3 Labelling-Based Revision of Argumentation Frameworks

4.3.1 Labelling-based Postulates

In the Section 4.1.3, we showed that it is possible to use labelling-based distances to define revision
operators which satisfy the rationality postulates. Now we refine our postulates to express constraints
on the expected labellings of the revised argumentation frameworks rather than the expected extensions.
The aim of this new framework is to be able to express more specific revision constraints, such as "the
argument ai must be out" or "the argument ai must be undec", which are stronger conditions than "the
argument ai must not be accepted". Let us formalize this.

84

4.3. Labelling-Based Revision of Argumentation Frameworks

Definition 89.

Given a set of arguments A = {a1, . . . , an}, a revision formula on labellings is an element of the
language LLabsA generated by the context-free grammar in BNF:

arg ::= a1| . . . |an
Φ ::= in(arg)|out(arg)|undec(arg)|¬Φ|Φ ∧ Φ|Φ ∨ Φ

For instance, with A = {a1, a2, a3}, the formula ϕ = (¬in(a1) ∨ out(a2)) ∧ undec(a3) intuitively
means that if a1 is accepted then a2 is rejected, and a3 has to be undecided.
Formally, the satisfaction of such a formula is defined with respect to a labelling, and can be extended to
a notion of satisfaction with respect to an argumentation framework and a semantics13.

Definition 90.

Given A = {a1, . . . , an} a set of arguments, L a labelling on A, and a formula ϕ, then:

• if ϕ = X(a) with a ∈ A and X ∈ {in, out, undec}, then L|∼ϕ if and only if L(a) = X ,

• if ϕ = ψ1 ∧ ψ2, then L|∼ϕ if and only if L|∼ψ1 and L|∼ψ2,

• if ϕ = ψ1 ∨ ψ2, then L|∼ϕ if and only if L|∼ψ1 or L|∼ψ2,

• if ϕ = ¬ψ, then L|∼ϕ if and only if L|6∼ψ.

Lϕ = {L|L|∼ϕ} is the set of labellings which satisfy the formula ϕ.
Given an argumentation framework F = 〈A,R〉 and a semantics σ, F |∼σϕ if and only if
∀L ∈ Labsσ(F), L|∼ϕ.

Similarly to what we have explained for extensions, it is not enough to require a labelling to satisfy a
formula. Given a semantics σ, it is important that this labelling satisfies the conditions to be a σ-labelling.
For instance, if L is a labelling satisfying a formula ϕ, and ∃a ∈ A such that L(a) = undec, then L
cannot be a stable labelling (a stable labelling can be defined as a complete labelling with an empty set
of undec labels), and so L cannot be used as a result of a revision by ϕ under the stable semantics. This
leads to define the counterpart of the σ-representability and σ-consistency in the case of labellings:

Definition 91.

• Given a formula ϕ, Lϕ denotes the set of labellings satisfying ϕ. ϕ is said to be consistent if and
only if Lϕ 6= ∅.

• A set L of labellings is σ-representable if and only if there exists a set S of argumentation frame-
works in AFsA such that L = Labsσ(S).

• Given a formula ϕ ∈ LLabsA and a semantics σ, the set of models of ϕ is defined by

Lσϕ = {L ∈ Lϕ|{L} is σ-representable}.

• A formula ϕ ∈ LLabsA is σ-representable if and only if Lσϕ is σ-representable.

• Given a semantics σ, a formula ϕ ∈ LLabsA is σ-consistent if and only if ϕ is consistent and
σ-representable.

13We notice that the language defined here and its semantics are similar to what have been proposed by [BKRvdT13].

85

Chapter 4. Adapting the AGM Framework for Abstract Argumentation

Now we can state the set of AGM-like rationality postulates for labelling-based revision. These are
the counterparts to the ones introduced in Definition 80, expressing this time some constraints on the
expected labellings of the outcome of the revision, rather than constraints on the expected extensions:

Definition 92.

⋆ is a labelling-based AGM revision operator on argumentation frameworks if and only if ⋆ satisfies the
following postulates. For any argumentation framework F , any formulae ϕ and ψ, any semantics σ:

(AL1) Labsσ(F ⋆ ϕ) ⊆ Lσϕ

(AL2) If Labsσ(F) ∩ Lσϕ 6= ∅, then Labsσ(F ⋆ ϕ) = Labsσ(F) ∩ L
σ
ϕ

(AL3) If ϕ is σ-consistent, then Labsσ(F ⋆ ϕ) 6= ∅

(AL4) If ϕ ≡ ψ, then Labsσ(F ⋆ ϕ) = Labsσ(F ⋆ ψ)

(AL5) Labsσ(F ⋆ ϕ) ∩ Lσψ ⊆ Labsσ(F ⋆ ϕ ∧ ψ)

(AL6) If Labsσ(F ⋆ ϕ) ∩ Lσψ 6= ∅, then Labsσ(F ⋆ ϕ ∧ ψ) ⊆ Labsσ(F ⋆ ϕ) ∩ Lσψ

Let us now introduce a counterpart to Katsuno and Mendelzon’s faithful assignment for labellings.

Definition 93.

Given a semantics σ, a faithful assignment is a function which maps every argumentation framework
F = 〈A,R〉 to a total pre-order ≤σF on the set of σ-representable labellings such that:

• if L1 ∈ Labsσ(F) and L2 ∈ Labsσ(F), then L1 ≈
σ
F L2;

• if L1 ∈ Labsσ(F) and L2 /∈ Labsσ(F), then L1 <
σ
F L2;

This notion is useful to adapt Katsuno and Mendelzon’s representation theorem:

Proposition 33.

The revision operator ⋆ satisfies (AL1)-(AL6) if and only if for every semantics σ there exists a faithful

assignment which maps every argumentation framework F to a total pre-order ≤σF such that for every

formula ϕ ∈ LLabsA :

Labsσ(F ⋆ ϕ) = min(Lσϕ,≤
σ
F)

To define a particular family of operators which satisfy the postulates, let us present how a total
pre-order between labellings can be built from a distance, an argumentation framework and a semantics:

Definition 94.

Let d be a pseudo-distance between labellings. Given a labelling L and a set of labellings Labs, we
define d(L,Labs) = minL′∈Labs(d(L,L

′)).
Given an argumentation framework F and a semantics σ, we define the total pre-order ≤σF between
σ-representable labellings as :

L1 ≤
σ
F L2 if and only if d(L1, Labsσ(F)) ≤ d(L2, Labsσ(F))

Such distance-based pre-orders can be defined through the distances presented in Section 4.1.3 or the
ones defined in [BCPR12].

Now, let us exhibit a family of revision operators satisfying the postulates, based on the previous
definition of pre-orders between labellings:

86

4.3. Labelling-Based Revision of Argumentation Frameworks

Proposition 34.

Let d be a pseudo-distance between labellings. The labelling-distance-based revision operator ⋆d such

that, for every argumentation framework F , every semantics σ and every formula σ

Labsσ(F ⋆d ϕ) = min(Lσϕ,≤
d
F)

satisfies the rationality postulates (AL1)-(AL6).

This family of revision operators obviously includes the one defined in Definition 84, but it is a wider
family since these new revision operators allow to distinguish between out and undec statuses in the re-
vision formulae. However, we prove that the complete family of labelling-based revision operators, when
the revision formulae are limited to the in language, satisfies the rationality postulates (AE1)-(AE6).

We introduce first a useful lemma to prove the following proposition.

Lemma 1.

For each formula ϕ ∈ LLabsA such that ϕ only contains in variables, there is a formula ϕ′ ∈ LA such
that ∀c ∈ Aσϕ′ , ∃L ∈ Lσϕ such that in(L) = c; and ∀L ∈ Lσϕ′ , ∃c ∈ Aσϕ such that in(L) = c.
We call ϕ′ the extension-based formula equivalent to ϕ.

Proposition 35.

Each operator satisfying (AL1)-(AL6), restricted to formulae built on the in variables, satisfies (AE1)-

(AE6).

We conclude the section on labelling-based revision by a remark on the expressiveness of labellings.
We notice that labelling-based revision operators, when they are restricted to the part of the language
corresponding to the extensions (the in variables) are rational in the point of view of extension-based
revision. They still allow to revise an argumentation framework by a more expressive revision formula, as
it is explained in Section 4.1.3, since the underlying (pseudo-)distance takes advantage of the difference
between undec and out to define the notion of minimality.

4.3.2 Labelling-Based Generation

To conclude about the generation of argumentation frameworks, we remark that each generation method
has its counterpart for the labelling-based revision operators: given a semantics σ, a labelling-based
generation operator is a mapping AFσ from a set of labellings L to a set of argumentation frameworks
F such that Labsσ(F) = L. Let us define formally the counterparts of the generation operators that we
have defined for extension-based generation.

Definition 95.

Given L a set of labellings, σ a semantics, dg a pseudo-distance between graphs and F an argumentation
framework, AFdg,Fσ,Labs is defined as:

AFdg,Fσ,Labs(L) =
⋃

{AFs ∈ setsdg,Fσ (L) | card(AFs) is minimal}

with

setsdg,Fσ (L) = {AFs | Labsσ(AFs) = L and
∑

Fi∈AFs

dg(F, Fi) is minimal}.

87

Chapter 4. Adapting the AGM Framework for Abstract Argumentation

Given L a set of labellings, σ a semantics, dg a pseudo-distance between graphs and F an argumen-
tation framework, AFcard,Fσ,Labs is defined by:

AFcard,Fσ (L) =
⋃

{AFs ∈ setsdg,Fσ (L) |
∑

Fi∈AFs

dg(F, Fi) is minimal}

with
setsdg,Fσ (L) = {AFs | Extσ(AFs) = L and card(AFs) is minimal}.

Now, we exhibit two specific labelling pseudo-distance-based revision operators. Both of them are
induced by the pseudo-distance d(1,9,10) which was used in the Example 22, and each of them takes
advantage of one of the generation operators defined above.

Definition 96.

The revision operator ⋆Labsdg is the mapping from an argumentation framework and a formula to a set of
argumentation frameworks such that

F ⋆Labsdg ϕ = AFdg,Fσ,Labs(min(Lσϕ,≤
σ,d(1,9,10)
F))

The revision operator ⋆Labscard is the mapping from an argumentation framework and a formula to a set
of argumentation frameworks such that

F ⋆Labscard ϕ = AFcard,Fσ,Labs(min(Lσϕ,≤
σ,d(1,9,10)
F))

Example 24.

We come back to the argumentation framework F6 that we described previously. Its complete labellings

a1

a3

a2 a4

a5

Figure 4.9: The Framework F6

are Labsco(F6) = {{(a1, in), (a2, out), (a3, out), (a4, in), (a5, in)}, {(a1, out), (a2, in), (a3, out),
(a4, in), (a5, in)}, {(a1, undec), (a2, undec), (a3, undec), (a4, undec), (a5, undec)}}.
We revise it by ϕ8 = ¬in(a4) ∧ ¬in(a5) ∧ (¬undec(a4) ∨ ¬undec(a5)), which expresses that a4 and
a5 must not be accepted in any labelling, and that at least one of them must not be undecided. Using a
distance-based revision with the distance d(1,9,10), the candidates selected at the first step of the revision
are the labellings {(a1, in), (a2, out), (a3, out), (a4, out), (a5, out)} and {(a1, out), (a2, in), (a3, out),
(a4, out), (a5, out)}. Now, we illustrate the behaviour of two labelling-based generation operators.
AFdg,Fσ,Labs minimizes the Hamming distance on graphs first, and then minimizes the number of argumen-
tation frameworks in the outcome as a second criterion. Such a generation operator leads the argumen-
tation frameworks F17 and F18 as the result of the revision. On the contrary, the generation operator
AFcard,Fσ,Labs , which is the labelling-based counter-part of AFcard,Fσ gives a single argumentation frame-
work F19, which is more distant from the input argumentation framework than F17 and F18.

88

4.4. Constrained Open World Revision

a1

a3

a2 a4

a5

(a) F17

a1

a3

a2 a4

a5

(b) F18

Figure 4.10: A Possible Result for AFdg,Fσ,Labs

a1

a3

a2 a4

a5

Figure 4.11: F19, a Possible result for AFcard,Fσ,Labs

4.4 Constrained Open World Revision

In the previous section, we presented how to generate argumentation frameworks from the set of can-
didates selected at the first step of the revision. The generation operators were expected to satisfy the
condition that the set of arguments involved in the output argumentation frameworks is identical to the
set of arguments of the input framework, and so some changes on the attack relation are required. But
in some cases, it makes sense to suppose that some constraints are given about the attack relation: some
particular attacks may be a certain information, and so must be preserved during the revision process.
This kind of constraint has a very natural side-effect: if it is not possible to change arguments statuses by
changing the attacks between them, then new arguments have to be added to perform this status change.
More generally, combining integrity constraints, change of attacks and addition of arguments can make
sense in some contexts, and it gives us a more general framework for revising argumentation frameworks.

We suppose now the existence of a set of arguments Ω called the universe of arguments, and we
define an argumentation framework F as a pair 〈A,R〉 such that A ⊆ Ω. AFsΩ = {F = 〈A,R〉|A ⊆ Ω
and R ⊆ A×A} is the set of all the argumentation frameworks built on arguments from Ω.

Definition 97. Structural Constraint on Ω
For every pair of arguments (a1, a2) ∈ Ω× Ω,

• att(a1, a2) expresses that a1 is known to be an attacker of a2;

• ¬ att(a1, a2) expresses that a1 is known not to be an attacker of a2.

An argumentation framework F = 〈A,R〉 satisfies a constraint att(a1, a2) (respectively ¬ att(a1, a2))
if and only if a1, a2 ∈ A and (a1, a2) ∈ R (respectively (a1, a2) /∈ R). F satisfies a set of constraints C
if and only if F satisfies every constraint in C

14.

14Note that partial argumentation frameworks could be used to represent this kind of information [CMDK+07].

89

Chapter 4. Adapting the AGM Framework for Abstract Argumentation

The notion of generation operator can then be extended to allow constrained open world revision.

Definition 98. Constrained Open World Generation Operator
A constrained open world (COW) generation operator is a mapping from a semantics σ, a set of can-
didates C and a set of structural constraints on Ω C to a set of arguments framework AFσ(C,C) such
that

• Extσ(AFσ(C,C)) = C;

• every argumentation framework in AFσ(C,C) satisfies C.

Now we can define constrained open world revision operators:

Definition 99.

Given a semantics σ, a faithful assignment that matches every argumentation system to a total pre-order
≤σF , a set of structural constraints C and a COW generation operatorAFσ, the corresponding constrained
open world revision operator ⋆C is defined by:

F ⋆C ϕ = AFσ(min(Aσϕ,≤
σ
F),C).

Of course, we can obtain a revision operator as defined in Section 4.2 by defining a constrained open
world generation with Ω = A and C = ∅.
This kind of generation operators may fail to generate a result: the constraint C may be too strong,
and in particular it may be conflicting with the revision formula ϕ. For instance, if the constraint is
C = att(a1, a2) and the revision formula is ϕ9 = a1 ∧ a2, then it is obvious that the revision operator
cannot give a result.

Similarly to the revision operators based on generation operators defined in Section 4.2, the revision
operators based on constrained open world generation operators satisfy the postulates (AE1)-(AE6), as
soon as C is not conflicting with the revision formula ϕ.

Proposition 36.

Every revision operator ⋆ defined following Definition 99 satisfies the postulates (AE1)-(AE6) under the

assumption that C is not conflicting with the revision formula.

We explained in the previous section that minimality can be considered in two different ways during
the generation process: minimal change on the attack relation, and minimal cardinality. With open world
generation, a third kind of minimality can be taken into account: minimal change of the set of arguments.
This third kind of minimality can be combined with the first ones, with a more or less important level of
priority. For instance, some applications may require to add as few arguments as possible, and consider
that minimal change on the attack relation and minimal cardinality are less important, while some other
applications may be more permissive on the addition of new arguments but prefer to minimize in priority
the change on the attack relation.

4.5 On the Unicity of the Outcome

In the previous sections, we have presented several ways to define argumentation framework revision
operators satisfying our adaptations of Katsuno and Mendelzon’s postulates. These approaches have the
specificity to compute a set of revised argumentation frameworks. We explained in Section 4.2 why it is
very natural to keep such a set of argumentation frameworks as the result.

90

4.5. On the Unicity of the Outcome

Nevertheless, we are aware of the fact that some applications may require the outcome of the revision
to be a single argumentation framework. In general, it is not possible to ensure that a single AF can be
computed such that it satisfies the rationality postulates. This implies that some arbirary choice has to be
done to select the result of the revision, at the cost of some loss on the properties of this result.

When an agent is obliged to keep a single argumentation framework to represent her knowledge, the
first possibility is to use a tie-break rule on the outcome of the revision operator. We can illustrate this
simple approach and point out its weakness:

Example 25.

Let F be the argumentation framework given at Figure 4.12, and ϕ10 = (a1 ∨ a2 ∨ ¬a3) ∧ (a1 ∨
¬a2 ∨ a3) ∧ (¬a1 ∨ a2 ∨ a3). The single stable extension of F is the set {a1, a2, a3}. We quantify
the proximity between candidates with the Hamming distance on sets of arguments, and we quantify
the proximity between argumentation frameworks with the Hamming distance between attack relations.
The expected canditates when revising F by ϕ10 are C = {{a1, a2}, {a1, a3}, {a2, a3}}. The generation

a1 a2 a3

Figure 4.12: The Argumentation Framework F20

of argumentation frameworks corresponding to C which minimizes the distance between the resulting
argumentation frameworks and F leads to the frameworks F1, F2, F3 given at Figure 4.13. Now, using a

a1 a2 a3

(a) The Argumentation Framework F21

a1 a2 a3

(b) The Argumentation Framework F22

a1 a2 a3

(c) The Argumentation Framework F23

Figure 4.13: Result of the Revision F20 ⋆ ϕ10

tie-break rule for obtaining a single argumentation framework to represent the agent’s kowledge leads to
conserving one of these three argumentation frameworks. So, the set of stable extensions of the outcome
is a singleton containing one of the candidates from C.

To ensure a unique argumentation framework as the result, it is mandatory to make some compromise
on the set of extensions, since it is well-known that, given a semantics, every set of candidates cannot
be represented by a single argumentation framework [DDLW14]. As illustrated in the previous example,
the risk of applying a tie-break rule on the set of revised argumentation frameworks is to lose almost all
the candidates which are expected to be the extensions of the outcome. We present a more subtle method
to define a reasonable single outcome for the revision. The idea is to keep a subset C′ of the candidates C,
such that C′ is σ-realizable and C′ is as close as possible to C, which ensures to lose as few information as
possible from the original set C. To formalize such an operator, we define the notion of σ-approximation:

Definition 100.

A σ-approximation γσ is a mapping from a set of candidates C to a set of candidates C′ such that C′ ⊆ C
and C′ is σ-realizable.

91

Chapter 4. Adapting the AGM Framework for Abstract Argumentation

Of course, using any σ-approximation does not keep a better result than the naive method of the
tie-break rule. But we define a particular σ-approximation which allows to guarantee that the selection
of the candidates implies as few loss of information as possible.

Definition 101.

γMAX
σ is the σ-approximation such that, for each set of candidates C, C′ = γMAX

σ (C) satisfies

1. C′ ⊆ C;

2. C′ is σ-realizable;

3. ∀C′′ which satisfies both 1. and 2., |C′| ≥ |C′′|.

In the worst case, γMAX
σ selects a singleton, since we know that each singleton is σ-realizable what-

ever the semantics σ15. This method guarantees to select a set of candidates as close as possible to the
set C. Of course, if more than one σ-realizable subset of C′ is maximal with respect to the cardinality, a
choice has to be done amongst them, but it is more preferable to have some arbitrary choice at this step of
the revision operator than to have some arbitrary choice at the final step, as we illustrate on Example 26.

Example 26.

Let us continue Example 25. Now we apply the σ-approximation γMAX
σ to avoid using a tie-break

rule on the set of argumentation frameworks. Three sets of candidates are the possible outcome of the
approximation: C1 = {{a1, a2}, {a1, a3}}, C2 = {{a1, a2}, {a2, a3}}, and C3 = {{a1, a3}, {a2, a3}}.
Let us suppose that the σ-approximation leads to conserving C1. Now it is possible to generate a single
argumentation framework to represent the agent’s knowledge, without losing too much information after
the revision, since its stable extensions are {a1, a2}, {a1, a3}. A possible result is the argumentation
framework F4 given at Figure 4.14.

a1 a2 a3

Figure 4.14: The Argumentation Framework F24

Of course, it is possible to define additional criteria to distinguish between the possible results of
γMAX
σ . For instance, the agent may want to keep the beliefs represented by the set of skeptically accepted

arguments as close as possible to the set of arguments skeptically accepted by the set of candidates C.

Definition 102.

The distance dskH between two sets of candidates C, C′ is defined by

dskH (C, C′) = dH(
⋂

ci∈C

ci,
⋂

c′i∈C

c′i)

with dH the Hamming distance between sets of arguments.

γMAX,sk
σ is the σ-approximation such that, for each set of candidates C, C′ = γMAX

σ (C) satisfies

1. C′ ⊆ C;

15Considering the simple argumentation framework such that each argument in the candidate attacks each other argument
proves enough.

92

4.6. Related Work

2. C′ is σ-realizable;

3. ∀C′′ which satisfies both 1. and 2., |C′| ≥ |C′′|;

4. ∀C′′ which satisfies 1., 2. and 3., dskH (C, C′) ≤ dskH (C, C′′).

Example 27.

To illustrate the behaviour of γMAX,sk
σ , we consider the revision of the argumentation framework F25

given at Figure 4.15(a). Its complete extensions are {a4}, {a4, a6} and {a1, a2, a3, a4}. Revising it with
a classical Hamming distance-based revision operator by the formula ϕ11 = (a1 ∧ (a1 ∨¬a3))∧¬(a1 ∧
a2 ∧ a3 ∧ a4) ∧ (¬a5 ∧ ¬a6), we obtain the set of candidates C = {c1, c2, c3} with c1 = {a1, a2, a4},
c2 = {a1, a2, a3} and c3 = {a1, a4}. While γMAX

σ would lead to two possibles sets of candidates
C′ = {c1, c2} and C′′ = {c2, c3}, γ

MAX,sk
σ gives only one possible set of candidates, which is C′′.

Indeed, dskH (C, C′) = 1 and dskH (C, C′′) = 0. The result of the revision depends of the generation operator
used to associated an argumentation framework with C′′. A possible one is F26 given at Figure 4.15(b).

a4 a5

a6a1

a2

a3

(a) F25

a4

a5

a6a1

a2 a3

(b) F26

Figure 4.15: The Argumentation Framework F and a Possible Revised Framework

Of course, such a σ-approximation can be defined based on any underlying distance.

4.6 Related Work

Now, let us briefly present the work from [DHL+15]. This is a follow-up of our own work [CMKMM14b],
presented in this chapter. We essentially point out the difference with our contribution.

Similarly to ourselves, Diller and colleagues consider extensions of an argumentation as the "mod-
els" of the argumentation framework, and they adapt the KM belief revision, but they expect that the
output of the revision operator is a single argumentation framework. The idea is similar to the work
from [DP11]: in this one, it is expected that the revision of a Horn propositional formula gives another
Horn propositional formula. For Diller et al., the aim is to ensure that the revision of the σ-extensions
of an argumentation framework (which are by definition σ-realizable) gives a new set of σ-realizable
extensions. To achieve this goal, they add a condition to be satisfied by the pre-order which is associated
with each argumentation framework.

Definition 103 (σ-compliant Pre-Order).
A pre-order ≤ is σ-compliant if and only if for each consistent formula ϕ, min(Aϕ,≤) ∈ Σσ.

93

Chapter 4. Adapting the AGM Framework for Abstract Argumentation

A second kind of revision operators is defined in this paper. This time, the new piece of informa-
tion which justifies the revision is an argumentation framework. But contrary to the works presented at
Section 3.6.2 and Section 3.6.3, the piece of information which has to be incorporated in the outcome of
the revision is not the structure of the argumentation framework, but its set of extensions: the revision
of F by F ′ is supposed to be an argumentation framework such that its σ-extensions are included in the
σ-extensions of F ′, and which are the most plausible ones with respect to a given pre-order associated
with F .

For both approaches, the authors have proven the existence of a revision operator which satisfies
an adaptation of the KM rationality postulates. Any faithful assignment-based revision operator proves
enough in the case of revision of an argumentation framework by another one. In the case of revision
by a formula, the condition of σ-compliance of the pre-order is required. A possible pre-order which
satisfies both conditions (being faithful and σ-compliant) is ≤F such that its minimal elements are the
σ-extensions of F , and the other candidates are sorted in a strict order.

4.7 Conclusion

In this chapter, we investigated the revision problem for abstract argumentation systems à la Dung. We
focused on revision as minimal change of the arguments statuses. We introduced a language of revision
formulae which is expressive enough for enabling the representation of complex conditions on the ac-
ceptability of arguments in the revised system. We showed how AGM belief revision postulates can be
translated to the case of argumentation systems. We provided a corresponding representation theorem
in terms of minimal change of the arguments statuses, and pointed out several pseudo-distance-based
revision operators satisfying the postulates. We investigated some computational aspects of revision of
argumentation systems.

We are currently encoding our revision operators by representing argumentation systems with log-
ical constraints (in a similar way to [BD04]), so as to be able to benefit from the power of constraint
solvers to compute revised systems. At the time of writing this chapter, the revision of the stable exten-
sions of an AF by a logical constraint is encoded. Some future work is to define an encoding for other
semantics, and to encode some generation operators. Information about this work are available here:
http://www.cril.fr/DynArgs/revision.html.

Here are a couple of open issues.

First, we have explained that the constrained open world revision operators may fail to give a result
when the constraint is too strong. This may lead to the violation of some of the rationality postulates.
We want to identify the postulates which would be violated, and to give a better characterization of con-
strained open world revision.

We explained in this chapter that our revision approach does not allow to change an argumentation
framework in order to ensure that the status of a given argument is undetermined. This kind of change is
related to belief contraction. So, we want to check if the adaptation of belief contraction in propositional
logic [CKM15] can be done in a similar way to the adaptation of belief revision which is done in this
chapter.
Similarly, it is well-known that there exists a connection between belief merging and belief revision in
propositional logic [KP99]. Since the aggregation of argumentation framework has been a dynamic topic

94

http://www.cril.fr/DynArgs/revision.html

4.7. Conclusion

recently (see [DKV15] for an overview of the existing approaches), we want to investigate an adaptation
of propositional belief merging for abstract argumentation.

Associating a minimal set of argumentation frameworks with a set of candidates is another important
issue, not only for our revision purpose. It is related to the problem of realizability [DDLW14], where
the question is to find a (unique) argumentation framework that corresponds to a set of candidates. This
problem can also be studied in the case of labellings, and used for the generation of argumentation
systems from a set of labellings, exploiting labelling-distance-based revision operators defined in this
chapter.

95

Chapter 5

AGM Revision as a Tool to Revise

Argumentation Frameworks

Without translation, I would be limited to the borders of my own country. The translator is

my most important ally. He introduces me to the world.

Italo Calvino – The New-York Times

The previous chapter describes an approach to revise argumentation frameworks which adapts the
AGM framework to abstract argumentation. In this chapter, we investigate the use of AGM revision
operators as an underlying tool to revise argumentation frameworks.

Basically, given a semantics σ, we associate with an argumentation framework F a propositional
formula fσ(F) which represents it; given the revision formula ϕ, we take advantage of usual belief re-
vision operators ◦ in order to define the revision F ⋆ ϕ of F by ϕ. In a nutshell, the approach consists
in revising using ◦ the representation of fσ(F) by a propositional formula induced by ϕ plus some ad-
ditional constraints on the expected revision. The output is a propositional formula which characterizes
the argumentation frameworks which can be interpreted as the revision of F by ϕ. This chapter only
presents propositional encodings for Dung’s complete and stable semantics, but our revision method can
be used with any other acceptability semantics σ, as soon as there is a propositional encoding for argu-
ments acceptance given σ.
We present some rationality postulates for the ⋆ operator, which are adapted from KM postulates, but are
different from the ones presented in the previous chapter. Then we show that if the revision formulae are
restricted to formulae about acceptance statuses, some ⋆ operators satisfy these postulates provided that
the corresponding ◦ operator satisfies the KM postulates.
We conclude this chapter with a presentation of the connection with some other approaches concerning
change of argumentation frameworks.

Contents

5.1 A Translation-Based Approach . 97

5.1.1 A Propositional Encoding . 97

5.1.2 Encoding Revision Operators with Logical Constraints 100

5.2 Rationality Postulates in the acc Case . 104

5.3 Related Work . 107

5.4 Conclusion . 108

96

5.1. A Translation-Based Approach

5.1 A Translation-Based Approach

In this section, we explain how to encode an argumentation framework into logical constraints, and
which constraints must be added to take into account the main acceptability semantics. Then we show
that classical belief revision operators can be used to revise an argumentation framework. This idea is
reminiscent to the ones considered in [GRR98, CL12] for other purposes (revising modal or non-classical
formulae, and case-based reasoning).

First, let us introduce the propositional language which is used, and how we translate an argumenta-
tion framework F and an acceptability semantics σ into propositional formulae. Then, we explain how
KM revision operators can be used to revise the propositional encoding corresponding to F and σ.

5.1.1 A Propositional Encoding

Let us consider a finite set of arguments A = {a1, . . . , an} and an argumentation framework
F = 〈A,R〉.

Definition 104 (Propositional language based on A).
• for ai ∈ A, accai is a propositional variable meaning "the argument ai is skeptically accepted by

the framework F ".

• for ai, aj ∈ A, attai,aj is a propositional variable meaning "the argument ai attacks the argument
aj in the framework F ".

• for ai ∈ A, xai is a propositional variable meaning "the argument ai belongs to the extension of
the framework F which is taken in consideration".

• PropA = {accai | ai ∈ A} ∪ {attai,aj | ai, aj ∈ A}

• LA is the propositional language built up from the set of variables PropA and the connectives
¬,∨,∧.

• L+A is the propositional languange built up from the the of variables PropA ∪ {xai | ai ∈ A} and
the connectives ¬,∨,∧.

The xai variables are only introduced in a technical matter, they disappear in the final version of
the encoding, and they cannot be used in the revision formulae, this is why they are not included in the
vocabulary of LA. For this reason, and for a matter of readability, we will write ai instead of xai in the
rest of this chapter.
An att-formula (respetively an acc-formula) is a formula from LA which contains only variables from
{attai,aj | ai, aj ∈ A} (respectively {accai | aj ∈ A}). The language composed of these formulae is
denoted by LattA (respectively LaccA).

Clearly enough, the set of models over {attai,aj | ai, aj ∈ A} of an att-formula ϕatt (called att-
models) corresponds in a bijective way to a set of argumentation frameworks over A: (ai, aj) belongs to
the attack relationR precisely when attai,aj is true in the model under consideration. It can be formalized
through the definition of a mapping from a set of att litterals to an argumentation framework:

Definition 105 (Argumentation Framework Associated with a att-Model).
Given a set A of arguments, any m ⊆ {attai,aj | ai, aj ∈ A} can be associated with an argumentation
framework arg(m) = 〈A, {(ai, aj) ∈ A×A | attai,aj ∈ m}〉. This notion can be extended to the set of
argumentation frameworks corresponding to a set of att-models: arg(M) = {arg(m) | m ∈M}.

We also need the following notion of projection:

97

Chapter 5. AGM Revision as a Tool to Revise Argumentation Frameworks

Definition 106 (att-Projection of Models and Formulae).
Given a set A of arguments, any interpretation m over LA can be projected on its att-part:
Projatt(m) = m ∩ {attai,aj | ai, aj ∈ A}. This notion can be extended to the projection of a for-
mula ϕ ∈ LA: Projatt(ϕ) = {Projatt(m) | m ∈ Mod(ϕ)}.

Then, a formula ϕ representing argumentation frameworks can be associated with these frameworks
by combining these two mappings: arg(Projatt(ϕ)).

The other way around, at a shallow level, any F = 〈A,R〉 can be represented by the formula over
{attai,aj | ai, aj ∈ A}

∧

(ai,aj)∈R

attai,aj ∧
∧

(ai,aj) 6∈R

¬attai,aj

but this translation does not take into account the semantics σ under which F must be interpreted. One
clearly needs to consider σ in the encoding. We propose to do it as follows:

Definition 107 (σ-Formula of F).
Given an argumentation framework F = 〈A,R〉 and a semantics σ, the σ-formula of F is

fσ(F) =
∧

(ai,aj)∈R

attai,aj ∧
∧

(ai,aj) 6∈R

¬attai,aj ∧ thσ(A)

where thσ(A) is a logical formula (the σ-theory of A) that encodes the semantics σ.

Now, the question is how to define thσ(A) for usual semantics. To do so, we take advantage
of the logical representation of σ-extensions as proposed in [BD04]. Let us begin with the stable
semantics. It has been proved in [BD04] that the stable extensions of an argumentation framework
F = 〈{a1, . . . , an}, R〉 are exactly the models of the propositional formula:

ε ∈ Extst(F) if and only if ε |=
∧

ak∈A

(ak ⇔
∧

aj :(aj ,ak)∈R

¬aj)

It is interesting to note that an argument ai is skeptically accepted by F = 〈A,R〉 if and only if every
model of the previous formula contains ai:

ai ∈ Scst(F) if and only if ∀a1, . . . , an, |= [
∧

ak∈A

(ak ⇔
∧

aj :(aj ,ak)∈R

¬aj)⇒ ai]

In this encoding, it is assumed that the argumentation framework is known. However, one can relax
this assumption by taking advantage of the attx,y variables:

accai ⇔ ∀a1, . . . , an, [
∧

ak∈A

(ak ⇔
∧

aj∈A

(attaj ,ak ⇒ ¬aj))⇒ ai]

This formula encodes a way to compute the skeptically accepted arguments of any argumentation frame-
work built on A under the stable semantics (it proves enough to condition the formula by the literals
attaj ,ak corresponding to the attack relation of the given argumentation framework to recover the encod-
ing from [BD04]).

Altogether, we get:

thst(A) =
∧

ai∈A

(accai ⇔ ∀a1, . . . , an, (
∧

ak∈A

(ak ⇔
∧

aj∈A

(attaj ,ak ⇒ ¬aj))⇒ ai))

98

5.1. A Translation-Based Approach

It is well-known that a quantified Boolean formula (QBF) can be transformed into a classical propo-
sitional formula through the elimination of quantifications. We keep the notation of our encoding in
QBF to keep a formula with reasonable size, but it does not prevent from using KM revision operators
(Section 6.3). This explains why we said previously that the ai variables disappear: the transformation
from the given QBF into an equivalent propositional formula eliminates each occurence of the quantified
variables.

Example 28.

Let us illustrate these notions on F1, given on Fig.5.1.

a1 a2 a3 a4

Figure 5.1: The Argumentation Framework F1

The stable theory of the set of arguments A = {a1, a2, a3, a4} is

thst(A) = fa1 ∧ fa2 ∧ fa3 ∧ fa4

with
fX = accX ⇔ ∀a1, a2, a3, a4, [[(a⇔ (atta1,a1 ⇒ ¬a1) ∧ (atta2,a1 ⇒ ¬a2))

∧(atta3,a1 ⇒ ¬a3)) ∧ (atta4,a1 ⇒ ¬a4))
∧(a2 ⇔ (atta1,a2 ⇒ ¬a1) ∧ (atta2,a2 ⇒ ¬a2)

∧(atta3,a2 ⇒ ¬a3) ∧ (atta4,a2 ⇒ ¬a4))
∧(a3 ⇔ (atta1,a3 ⇒ ¬a1) ∧ (atta2,a3 ⇒ ¬a2)

∧(atta3,a3 ⇒ ¬a3) ∧ (atta4,a3 ⇒ ¬a4))
∧(a4 ⇔ (atta1,a4 ⇒ ¬a1) ∧ (atta2,a4 ⇒ ¬a2)

∧(atta3,a4 ⇒ ¬a3) ∧ (atta4,a4 ⇒ ¬a4))]⇒ X]

So the stable formula of F1 is given by

thst(A) ∧ (atta1,a2 ∧ atta2,a3 ∧ atta3,a2 ∧ atta3,a4) ∧
∧

(ai,aj) 6∈R

¬attai,aj

Propagating the values of att-variables allows to deduce the values of acc-variables (acca1 = acca3 =
true, and acca2 = acca4 = false), and so leads to the set of skeptically accepted arguments {a1, a3}.

The complete-theory thco(A) of A can be defined in a similar way. First, let us recall the encoding
of the complete extensions given in [BD04]:

∧

ak∈A

[(ak ⇒
∧

aj :(aj ,ak)∈R

¬aj) ∧ (ak ⇔
∧

aj :(aj ,ak)∈R

(
∨

al:(al,aj)∈R

al))]

Using a similar reasoning scheme, we get that:

thco(A) =
∧

ai∈A
[accai ⇔ [∀a1, . . . , an,

∧

ak∈A
[(ak ⇒

∧

aj∈A
(attaj ,ak ⇒ ¬aj))

∧(ak ⇔
∧

aj∈A
(attaj ,ak ⇒

∨

al∈A
(attal,aj ⇒ al)))]]⇒ ai]

Let us notice that the same scheme can be used to encode any semantics σ as soon as computing a
σ-extension is (at most) NP-complete, since it is then possible to associate each argumentation frame-
work with a propositional formula whose models coincide with the σ-extension. More complex se-
mantics, such that the preferred semantics, require either a different encoding (in Quantified Boolean
Formulae, for instance), or a propositional encoding whose size is exponential with respect to the size of
the argumentation framework.

99

Chapter 5. AGM Revision as a Tool to Revise Argumentation Frameworks

5.1.2 Encoding Revision Operators with Logical Constraints

One can take advantage of the encodings introduced in the previous section to define revision operators
for argumentation frameworks, via the use of classical belief revision operators. In particular, the KM
revision operators ◦ defined for propositional logic [KM91] are suited to the language LA.

At a first glance, one can consider to revise fσ(F) by the revision formula ϕ. However, this is
not sufficient. Indeed, if the revision formula ϕ does not correspond to any argumentation framework
interpreted under the semantics σ (for instance, when ϕ = acca∧accb∧atta,b), then the revised formula
will not correspond to any argumentation framework interpreted under σ. Indeed, the success postulate
fσ(F) ◦ ϕ |= ϕ would force ϕ to be the case.

Such pathological scenarios must be avoided. A way to ensure it consists in revising fσ(F) by
ϕ ∧ thσ(A) since the latter formula is logically consistent precisely when there exists at least one argu-
mentation framework interpreted under σ which is compatible with ϕ.

Finally, the models of the revised formula fσ(F) ◦ (ϕ∧ thσ(A)), projected onto the attx,y variables,
characterize the revised argumentation frameworks.

Definition 108 (Translation-Based Revision).
Let ◦ be a KM revision operator. For any semantics σ, any argumentation framework F = 〈A,R〉 and
any formula ϕ ∈ LA, the associated translation-based revision operator ⋆ is given by:

F ⋆ ϕ = arg(Projatt(fσ(F) ◦ (ϕ ∧ thσ(A))))

F, ϕ F ⋆ ϕ

fσ(F) fσ(F) ◦ (ϕ ∧ thσ(A))

Encoding

◦

⋆

Decoding

Figure 5.2: Schematic Explanation of the Revision Process

The decoding process is performed by the functions arg and Projatt defined previously (Defini-
tion 105, Definition 106).

Let us instantiate this general definition of translation-based revision operators, using distances be-
tween interpretations over LA.

Definition 109 (Distance-based revision).
Let d be a distance between interpretations over LA, and ◦d the KM distance-based revision operator
defined from d. Then, the distance-based argumentation framework revision operator ⋆d is defined by

F ⋆d ϕ = arg(Projatt(fσ(F) ◦d (ϕ ∧ thσ(A))))

Depending on the revision operator ◦ used, the concept of minimal change in the argumentation
framework can vary. As we have explained in the previous chapter, minimal change in the revision pro-
cess has at least two meanings in argumentation: minimal change of the arguments statuses or minimal

100

5.1. A Translation-Based Approach

change of the attack relation. Using the Hamming distance between interpretations to define the revision
operators (leading to the Dalal revision operator) does not distinguish between both kinds of minimal-
ities, since changing the truth value of an attai,aj variable has the same "cost" than changing the truth
value of an accai variable. But we can use other distances to be able to give some priority to one of the
minimality criteria.

A first option is to consider minimal change on the arguments statuses more important than minimal
change on the attack relation, as it is the case with the revision operators defined in Chapter 4.
To perform this kind of change, we can consider a weighted Dalal-like operator (see [Dal88, KM91])
which ensures minimal change on the acc variables. This kind of revision operator is a specific distance-
based revision operator:

Definition 110 (Arguments Statuses Minimal Revision).
Let A be a set of arguments, let N = |A|2 + 1. The acceptance-weighted distance dacc between inter-
pretations is defined by

dacc(ω1, ω2) = N ×
∑

ai∈A
(ω1(accaI)⊕ ω2(accai))

+
∑

ai,aj∈A
(ω1(attai,aj)⊕ ω2(attai,aj))

The arguments statuses minimal revision operator ⋆accd is the distance-based revision operator based on
the distance dacc.

The weight on accai variables is chosen in such a way that changing the value of every attai,aj vari-
able is still cheaper than changing the value of a single accai variable.

Contrary to the revision approach introduced at Chapter 4, the translation-based revision allow to
define a Dalal-like revision operator which requires minimal change on the attack relation. Here the
weights are chosen to ensure that changing the value of every accai variable is cheaper than changing the
value of a single attai,aj variable:

Definition 111 (Attacks minimal revision).
LetA be a set of arguments, letN = |A|+1. The attacks-weighted distance datt between interpretations
is defined by

datt(ω1, ω2) =
∑

ai∈A
(ω1(accai)⊕ ω2(accai))

+N ×
∑

ai,aj∈A
(ω1(attai,aj)⊕ ω2(attai,aj))

The attacks minimal revision operator ⋆attd is the distance-based revision operator based on the distance
datt.

Let us now illustrate the previously defined revision operators.

Example 29.

Let us revise the argumentation framework F1, given on Fig.5.1, by the revision formula ϕ = acca ∧
¬atta,b, meaning that we want to change F1 to have a skeptically accepted and without a attacking b.

F1’s single stable extension is {a, c}, so a is already skeptically accepted, but ϕ is not satisfied
because a attacks b. The results of attack minimal revision and argument minimal revision are given
respectively on Fig.5.3(a) and Fig.5.3(b). F2’s stable extensions are {{a, c}{a, b, d}}, so a is the only
skeptically accepted argument. With respect to acceptance statuses, the difference between F1 and F2 is
1, and there is also 1 attack different between them ((a, b) is removed).

The single stable extension of F3 is {a, c}, so there is no difference between F1 and F3 with respect
to acceptance statuses. The difference only concerns the attack relation ((a, b) is removed and (d, b) is
added).

101

Chapter 5. AGM Revision as a Tool to Revise Argumentation Frameworks

a b c d

(a) F2: Attack Minimal Revision of F1, F1 ⋆
att
d ϕ

a b c d

(b) F3: Arguments Statuses Minimal Revision of F1, F1 ⋆
acc
d ϕ

Figure 5.3: Results of F1 Revisions

Such weighted distances also allow to distinguish between the addition and the removal of attacks.
For instance, let us imagine that an agent consider that it is easier to add an attack between two (pre-
viously unrelated) arguments than to question an existing attack. Then the part of the distance which
concerns the attack relation can be adapted to meet the agent’s requirement.

Definition 112 (Attacks Removal Distance).
Let A be a set of arguments, let N ′ = |A| + 1 and N = N ′ × |A|2 + 1. The attacks removal weighted
distance drem between interpretations is defined by

drem(ω1, ω2) =
∑

ai∈A
(ω1(accai)⊕ ω2(accai))

+N2 ×
∑

ai,aj∈A
(ω1(attai,aj) ∧ ¬ω2(attai,aj))

+N ′ ×
∑

ai,aj∈A
(¬ω1(attai,aj) ∧ ω2(attai,aj))

Similarly to the weights chosen in the definitions of datt and dacc, the weights used in the definition
of drem are chosen to ensure that it is more expensive for the agent to remove a single attack than to add
every possible attack, and it is also more expensive to att a single attack than to change the status of an
argument.

We use the word "distance" as a simplification, but drem is not formally a distance, not even a pseudo-
distance, since it is not symmetric. But we can all the same define a pre-order from this "distance" which
satisfies faithful assignment properties.

Proposition 37.

For each propositional formula ϕ ∈ LA, mapping ϕ to the total pre-order defined by

ω1 ≤
rem
ϕ ω2 if and only if min

ω3∈Mod(ϕ)
(drem(ω1, ω3)) ≤ min

ω3∈Mod(ϕ)
(drem(ω2, ω3))

is a faithful assignment.

So we can define a KM revision operator ◦remd from this pre-order, and ◦remd allows to define a
revision operator suited to argumentation frameworks.

Definition 113 (Attacks Removal Minimal Revision).
The attacks-removal minimal revision operator ⋆remd is the revision operator based on the KM revision
operator ◦remd defined from the faithful assignment induced from drem.

Of course, the counterpart of drem for attacks addition can also be defined. We illustrate the differ-
ence between both approaches.

102

5.1. A Translation-Based Approach

Example 30.

Let F4 be the argumentation framework presented at Figure 5.4. The single stable extension of F4

is {a1}. We revise it by ϕ2 = acca2 . Both F5 and F6 presented at Figure 5.5 are possible results,
since Extst(F5) = {{a1, a2}} and Extst(F6) = {{a2}}. When we consider attacks-removal minimal

a1 a2

a3

Figure 5.4: The Input Argumentation Framework F4

revision, the addition of a single attack costs N ′ = |A| + 1 = 4 with respect to the distance drem,
while removing an attack costs N = N ′ × |A|2 + 1 = 4 × 9 + 1 = 37. Then, changing the status
of an argument costs 1. So, the change from F4 to F5 is more expensive for the agent than the change
from F4 to F6: removing an attack and changing the status of a2 costs 38 (for F5), while adding three
attacks and changing the statuses of a1 and a2 costs 14 (for F6). On the opposite, if we consider dadd the
attacks-addition counterpart of drem to define the revision operator, the agent prefers to choose F5 as the
outcome of the revision: it costs then 5 to remove an attack and to change the status of a2 (for F5) while
it costs 113 to add three attacks and to change the statuses of a1 and a2 (for F6)..

a1 a2

a3

(a) F5

a1 a2

a3

(b) F6

Figure 5.5: Possible Outputs of the Revision

We have defined revision operators which allow to tackle some dynamic scenarios of argumentation
where there is no new argument available, and the attack relation is completely subject to change. But
similarly to our first contribution presented in Chapter 4, we can extend the family of revision operators
to take into account some other scenarios. First, we define open world revision.

Definition 114 (Open World Revision).
Given F = 〈A,R〉 an argumentation framework, B a non-empty set of arguments such that A ∩B = ∅,
ϕ ∈ LA∪B a formula and ◦ a KM revision operator. The associated open world revision operator ⋆B is
defined by:

F ⋆B ϕ = arg(Projatt(fσ(F) ◦ (ϕ ∧ thσ(A ∪B))))

Here, new arguments and new attacks between them or between new and old arguments can be added.

103

Chapter 5. AGM Revision as a Tool to Revise Argumentation Frameworks

One can also constrain the revision process: some integrity constraints can be required for a particular
application (because a given attack is known to hold for sure or because a given argument has to be
skeptically accepted, and so cannot change during the revision):

Definition 115 (Constrained revision). Given F = 〈A,R〉 an argumentation framework, ϕ, µ ∈ LA
formulae and ◦ a KM revision operator. The associated µ-constrained revision operator is

F ⋆µ ϕ = arg(Projatt(fσ(F) ◦ (ϕ ∧ thσ(A) ∧ µ)))

Here are some examples of integrity constraints µ which can prove useful:

•
∧

a∈A ¬atta,a is useful when self-attacking arguments are not allowed [CMKMM14b];

•
∧

(a,b)∈R atta,b ∧
∧

(a,b) 6∈R ¬atta,b is useful when attacks between former arguments must be pre-
served but attacks involving new arguments can be added [CdSCLS10]. In this case, the combina-
tion of constrained revision and open-world revision is required to give a result.

Of course, the KM revision operator used to define ⋆B , or ⋆µ can take advantage of a weighted
distance to ensure minimal change of arguments statuses, minimal change of the attack relation or the
preference of attacks removal over attacks addition (or vice-versa). A more generalized family of revi-
sion operators combines both the use of integrity constraint and the addition of arguments.

Depending on the situation, it can also be useful to consider a single argumentation framework as
result of the revision process. This amounts to select one model of the projected formula. Several meth-
ods can be used to do so; the simplest one is a tie-break rule which selects any model. We can also use
other (more elaborate) criteria to chose the "best" result, like the minization of some distance over the
σ-extensions (similarly to the minimal change approach proposed in Chapter 4). Even if we use such
elaborate criteria, none of them can guarantee to give a single argumentation framework as the result,
and using a tie-break rule may still be required.

5.2 Rationality Postulates in the acc Case

In this section, we focus on constraints expressing an information about skeptically accepted arguments.
Let us recall that Scσ(F) correspond to the skeptical consequences of the argumentation framework F
with respect to the semantics σ. Formally, it is defined as {

⋂

ε∈Extσ(F) ε}. We generalize this notion to
Scσ(S) =

⋃

F∈S Scσ(F) where S is a set of argumentation frameworks. We call this set the skeptical
consequences of S.

The satisfaction of acc-formulae can be defined with respect to a set of arguments. Let ε ⊆ A and ϕ
an acc-formula. The concept of satisfaction of ϕ by ε, noted ε|∼ϕ, is defined inductively as follows:

• If ϕ = acca with a ∈ A, then ε|∼ϕ if and only if a ∈ ε,

• If ϕ = (ϕ1 ∧ ϕ2), ε|∼ϕ if and only if ε|∼ϕ1 and ε|∼ϕ2,

• If ϕ = (ϕ1 ∨ ϕ2), ε|∼ϕ if and only if ε|∼ϕ1 or ε|∼ϕ2,

• If ϕ = ¬ψ, ε|∼ϕ if and only if ε|6∼ψ.

Then for any argumentation framework F , any set S of argumentation frameworks on A, and any se-
mantics σ, we say that:

104

5.2. Rationality Postulates in the acc Case

• ϕ is skeptically accepted with respect to F , noted F |∼σϕ, if ∀ε ∈ Scσ(F), ε|∼ϕ.

• ϕ is rejected with respect to F in the remaining case.

• ϕ is skeptically accepted with respect to S , noted S |∼σϕ, if ∀ε ∈ Scσ(S), ε|∼ϕ.

• ϕ is rejected with respect to S in the remaining case.

Each ε in the set S(ϕ) = {ε ⊆ A | ε|∼ϕ} is a possible set of skeptically accepted arguments with
respect to a framework which accepts the formula ϕ. A formula ϕ is said to be acc-consistent if and
only if S(ϕ) 6= ∅. Two formulae ϕ and ψ are said to be acc-equivalent, noted ϕ ≡acc ψ, if and only if
S(ϕ) = S(ψ).

Let us now point out an adaptation of KM’s postulates:

(AS1) Scσ(F ⋆ ϕ) ⊆ S(ϕ)

(AS2) If Scσ(F) ∩ S(ϕ) 6= ∅, then Scσ(F ⋆ ϕ) = Scσ(F) ∩ S(ϕ)

(AS3) If ϕ is acc-consistent, then Scσ(F ⋆ ϕ) 6= ∅

(AS4) If ϕ ≡acc ψ, then Scσ(F ⋆ ϕ) = Scσ(F ⋆ ψ)

(AS5) Scσ(F ⋆ ϕ) ∩ S(ψ) ⊆ Scσ(F ⋆ (ϕ ∧ ψ))

(AS6) If Scσ(F ⋆ ϕ) ∩ S(ψ) 6= ∅, then Scσ(F ⋆ (ϕ ∧ ψ)) ⊆ Scσ(F ⋆ ϕ) ∩ S(ψ)

The first postulate is the success postulate: the result of the revision must satisfy the formula ϕ.
(AS2) requires the skeptical consequences to stay the same ones if the input framework already satisfies
ϕ. (AS3) states that revising a framework by a consistent formula cannot lead to an inconsistent result
(such an inconsistent result is identified by an empty set of skeptical consequences). (AS4) states that
revising by equivalent formulae leads to the same result. The last two postulates constrain the behavior
of the revision operator when revising by a conjunction of formulae.

We have proposed similar postulates in Chapter 4. The main difference concerns the semantics of
revision formulae. In Chapter 4, argumentation frameworks are revised by propositional formulae the
satisfaction of which is defined with respect to the extensions. For instance, ai ∨ aj means "ai or aj
must be in every extension" (and so, this formula is satisfied for instance by a framework the extensions
of which are E = {{ai}, {aj}}). Whereas here, formulae deal with the skeptical consequences of the
framework, i.e., the intersection of the extensions. So the formula accai ∨ accaj means "ai must be in
every extension or aj must be in every extension", and is not satisfied by the set E of extensions.
More generally, the difference between our postulates and those expressed in Chapter 4 is the object of
the constraints they give: in Chapter 4, the postulates give some constraints on the expected extensions
(or labellings) of the output of the revision process, while the current postulates concern the set of skep-
tically accepted arguments.

The following proposition explains how to define a rational revision operator from any pseudo-
distance between sets of arguments.

Proposition 38.

Given a pseudo-distance d between sets of arguments and an argumentation framework F , ≤dF denotes

105

Chapter 5. AGM Revision as a Tool to Revise Argumentation Frameworks

the total pre-order between sets of arguments defined by: ε1 ≤
d
F ε2 iff d(ε1,Scσ(F)) ≤ d(ε2,Scσ(F)).

The pseudo-distance based revision operator ⋆d which satisfies

Scσ(F ⋆d ϕ) = min(S(ϕ),≤dF)

satisfies the postulates (AS1) - (AS6).

The previous proposition gives a sufficient condition to prove that a pseudo-distance based revision
operator satisfies the rationality postulates. From this proposition, we prove that the arguments statuses
minimal revision operator (restricted to the acc-case) satisfies the postulates, through a reduction of this
operator to a pseudo-distance based revision operator as described in Proposition 38.

Proposition 39.

The arguments statuses minimal revision operator satisfies the postulates (AS1)-(AS6).

Let us illustrate the behaviour of this restricted version of the arguments statuses minimal revision
operator.

Example 31.

Let F7 be the argumentation framework given at Figure 5.6. Its stable extensions are Extst(F7) =
{{a1, a2, a3}}, so the skeptically accepted arguments are a1, a2 and a3. Let us revise it by the formula
ϕ3 = ¬acca1 ∨ (¬acca2 ∧ ¬acca3). Without taking minimal change into account, the result of the

a1 a4 a2

a3

Figure 5.6: The Argumentation Framework F7

revision could any argumentation framework such that either a1 is not skeptically accepted, or both a2
and a3 are not skeptically accepted. Here, revising with ⋆accd , the minimal change principle induced by
the distance dacc guarantees that the skeptically accepted arguments of the result must be a2 and a3 (since
it is minimal to remove only a1 from the skeptical consequences). Then, minimizing the change of the
attack relation, a possible result is the argumentation framework F8 given at Figure 5.7.

a1 a4 a2

a3

Figure 5.7: The Revised Argumentation Framework F ⋆accd ϕ

106

5.3. Related Work

5.3 Related Work

Among the different kinds of change of argumentation frameworks that we presented in Chapter 3, some
of them can be implemented through a revision operator from the family defined here. In particular, the
atomic changes studied by Boella and colleagues [BKvdT09b, BKvdT09a] and Cayrol and colleagues
[CdSCLS10, BCdSCLS11] are easy to encode in our propositional language. Adding (respectively re-
moving) an attack (ai, aj) can be done revising the argumentation framework by the formulaϕ = attai,aj
(respectively ϕ = ¬attai,aj), while adding an argument ak can be performed through a constrained open
world revision. The constraint

µ =
∧

(ai,aj)∈R

attai,aj ∧
∧

(ai,aj) 6∈R

¬attai,aj

ensures that the former attacks do not change, and the revision formula must be

ϕ =
∧

(ai,aj)∈Rak

attai,aj ∧
∧

(ai,aj) 6∈Rak
,ai=ak or aj=ak

¬attai,aj

where Rak is the the of attacks which are related to ak. If priority to recency if expected to be satisfied,
then the revision formula is ϕ′ = ϕ ∧ accak . Since there is not criterion of minimal change in these
works, any revision operator can be used.

The same kind of translation of Rienstra’s intervention and observation [Rie14] in a revision opera-
tion can be done. For instance, an intervention to reject an argument ai is the addition of a new argument
aj /∈ A with an attack from aj to ai, which can be easily represented as a constrained open-world revi-
sion, with the constraint µ to ensure that the former attacks do not change16.
Then, the observation that an argument ai is accepted can also be performed by a constrained open world
revision of the framework. The same constraint µ than previously is required, and the revision formula
is ϕ = accai . The revision operator provides then a result such the the addition of the new argument
ensures that ai is accepted.

The goal-oriented change proposed in [KBM+13] is not exactly a particular case of our revision
operators, since the rewriting procedure which has been implemented concerns credulous acceptance.
However, the theoretical framework also proposes a skeptical counterpart, with the goal "accept skepti-
cally argument ai". This is exactly is exactly a revision by formula ϕ = accai with the attacks minimal
revision operator ⋆attd .

It is well-known that when a propositional formula has a single model, revision and update collapse.
For this reason, some revision operator described in this chapter may be equivalent to some update
operators from the frameworks defined in [BCdSL13, DHP14]. But as soon as we consider the revision or
update of a set of argumentation frameworks (which is encoded in a propositional formula which admits
several models), both operations differ one from the other. For instance, [DHP14] uses the Forbus update
operator to perform the change of an argumentation framework. So the update operator called skeptical
enforcement by Doutre et al. corresponds in our framework to the revision with the Dalal operator.

16In fact, the minimal change of the attack relation can be used to ensure that the former attacks do not change, even if the
integrity constraint µ is not used directly.

107

Chapter 5. AGM Revision as a Tool to Revise Argumentation Frameworks

5.4 Conclusion

In this chapter, we studied a way to benefit from the well-known logical revision operators from Katsuno
and Mendelzon’s work to define revision operators for abstract argumentation frameworks.
This approach is particularly interesting due to the ability of our revision operators to enforce both struc-

tural and acceptability constraints. Depending on the underlying operator ◦, the operator ⋆ ensures
minimal change on the acceptance statuses, or on the attack relation. Moreover, these operators can en-
code some change operators defined in some recent related works.
We have also stated some rationality postulates inspired by the classical AGM framework, and proved
that under the assumption that revision formulae only deal with acceptability, any revision operator ⋆
based on an AGM operator ◦ satisfies our postulates.

Among the other existing approaches to change an argumentation framework, the ones that we have
presented in Section 3.5 are related to the contribution we describe in this chapter. One of the main
differences is that these works use update operators rather than revision operators, which means that they
are useful if the change in the argumentation framework comes from a change in the state of the world,
while our revision operators tackle the situation of an agent which has to re-evaluate her beliefs about
the world, without having an evidence of a change of the world.

As a future work, several possibilities are opened. First, this chapter only presents the logical char-
acterization of skeptical acceptance under the stable and complete semantics. It would be interesting to
define a similar characterization of skeptical acceptance under other semantics, this can be done thanks
to the encoding method defined in [BD04, EW06, NOC07, AC13, NAD14, BDH14], in particular we
can take advantage of the QBF formalism to tackle semantics which have a higher complexity. Another
interesting result would be to define the credulous σ-theory for these semantics σ. We are also interested
in enforcing the result of the revision to belong to a particular subclass of argumentation frameworks, as
the acyclic argumentation frameworks or non-controversial argumentation frameworks.
Another point for further studies is the axiomatic characterization of revision operators. We proved that
arguments statuses minimal revision satisfies some rationality postulates in the case of acceptability re-
vision constraints, but it would be interesting to know if some other kinds of operators satisfy these
postulates, and to know if some other kinds of revision constraints can be characterized.
We also plan to encode our revision operators into a SAT-based software. The propositional setting of
our operators is particularly well-suited to SAT solvers, so this approach is very promising from a com-
putational point of view.

Finally, we think that using logical encodings of abstract argumentation is a powerful way to express
other kinds of change operations for argumentation frameworks, and to compute them with some efficient
satisfaction or optimization software. The next chapter presents such an approach suited to extension
enforcement.

108

Chapter 6

Extension Enforcement

Each constraint is a gift.

Leonardo da Vinci

As explained in the introduction of this thesis, dynamics of argumentation is a very active topic. The
previous chapters describe contributions related to belief change theory. But other kinds of change of an
argumentation framework have been studied recently. Especially, the problem of enforcing a set E of
arguments, i.e., ensuring that E is an extension (or a subset of an extension) of a given argumentation
framework F , has received a particular attention in the recent years. We mentioned it in Section 3.2.

In this chapter, we study the existing approaches to enforce a set of arguments, and point out some
of their weaknesses. Then, we define a new family of enforcement operators, for which enforcement can
be achieved by adding new arguments (and attacks) to F (as in previous approaches to enforcement),
but also by questioning some attacks (and non-attacks) of F . This family includes previous enforcement
operators, but also new ones for which the success of the enforcement operation is guaranteed.
We show how the enforcement problem for the operators of the family can be modeled as a pseudo-
Boolean optimization problem. Intensive experiments show that the method is practical and that it scales
up well.

Contents

6.1 Weaknesses of the Existing Enforcement Approaches 110

6.2 Argument-Fixed and General Enforcement 111

6.2.1 Argument-Fixed Enforcement . 111

6.2.2 Minimal Change . 112

6.3 Enforcement as Satisfaction and Optimization Problems 112

6.3.1 Complexity of Enforcement . 112

6.3.2 Enforcement as Boolean Satisfaction . 113

6.3.3 Minimal Change Enforcement as Pseudo-Boolean Optimization 115

6.3.4 Constrained Enforcement . 117

6.4 Experimental Results . 117

6.5 Related Work . 121

6.6 Conclusion . 122

109

Chapter 6. Extension Enforcement

6.1 Weaknesses of the Existing Enforcement Approaches

First, we study the enforcement approaches through normal, strong and weak expansion that we pre-
sented previously (see Section 3.2 for details). Importantly, whatever the normal enforcement operator
under consideration, it must be noted that enforcement may fail. As a simple example, let us consider
E = {a1, a2} in an argumentation framework F = 〈A,R〉 such that (a1, a2) ∈ R. It is obviously
impossible to enforce E with any of the enforcement operators described in Section 3.2. Theorem 2 and
Theorem 3 from [BB10] give some more elaborate impossibility results about strict enforcement. An
interesting result from [BB10] states that for each argumentation framework F , it is possible to enforce
any set of arguments E which is conflict-free in F with a non-strict strong enforcement, and it also guar-
antees that adding a single new argument is enough. It means that non-strict strong enforcement can be
performed with any singleton A′. This will be useful to define logical encodings suited to enforcement
(see Section 6.3).

Note that the presence of conflicts in the set E of arguments to be enforced is a sufficient, yet unnec-
essary condition for normal enforcement to fail. In order to make it more formal, let us first introduce
the notion of non-trivial set of arguments with respect to a given semantics:

Definition 116.

Let F = 〈A,R〉 be an argumentation framework, and σ a semantics. E ⊆ A is a σ non-trivial set of
arguments in F if and only if E is conflict-free in F and E /∈ Extσ(F).

Assuming the set E of arguments to be enforced to be σ non-trivial is a way to avoid the trivial cases
when enforcement is already satisfied becauseE is a σ-extension of F or impossible because of conflicts.
However, it does not prove sufficient for preventing from failure for every semantics. Even if non-strict
enforcement is possible, when the agent wants a set of arguments to be exactly an extension, enforcement
through a normal (or strong, or weak) expansion may be impossible under certain conditions.

Proposition 40.

For every F = 〈A,R〉 and E ⊆ A a stable non-trivial set in F , there is no strict enforcement of E in F
with respect to the stable semantics.

This is a very strong result about the stable semantics, which states that an agent cannot enforce
strictly a set of arguments with Baumann and Brewka’s approaches, unless if it is already a stable exten-
sion of the argumentation framework.

Proposition 41.

For every F = 〈A,R〉, and E ⊆ A a complete non-trivial set in F ,

1. if E is not admissible, then there is no strict enforcement of E in F with respect to the complete

semantics.

2. else, if E defends some argument ai ∈ A\E, then

(a) there is no strict weak enforcement of E in F with respect to the complete semantics.

(b) if odd-length cycles are not allowed, then there is no strict strong enforcement of E in F with

respect to the complete semantics.

There are two different cases which explain that a set of arguments E is not already a complete
extension. Either this set is not admissible, and then there is no possible way to enforce strictly E in
the argumentation framework. Even if E is admissible, there are some restrictions to the possibility to
enforce it.

110

6.2. Argument-Fixed and General Enforcement

Proposition 42.

For every F = 〈A,R〉 and E ⊆ A a grounded non-trivial set in F , if Extgr(F) = {∅}, then there is no

strict enforcement of E in F with respect to the grounded semantics.

This last proposition states that a set of arguments cannot be enforced strictly with respect to the
grounded semantics if there is no unattacked argument in the argumentation framework.

6.2 Argument-Fixed and General Enforcement

Now, we present some new approaches for extension enforcement, which guarantee the success of the
operation.

6.2.1 Argument-Fixed Enforcement

In the previous approaches for enforcing a set of arguments, it is supposed that new arguments can be
added, and that interactions between the existing arguments do not change. This method is particularly
sensible when enforcement is supposed to be the result of a dialog: given an argumentation framework
representing the state of a dialog, an agent adds new arguments if she wants to convince the other agent
to accept a given set of arguments as an extension. Forbidding any change over the initial attacks of
the framework is the reason of the above impossibility results. Interestingly, the converse case, i.e.,
considering situations where the set of arguments cannot change, but the attack relation is subject to
evolutions, also makes sense. It is sensible, for instance, when a set of arguments is observed to be an
extension in the output of an argumentation process, but does not correspond to the output of the own
argumentation framework of an agent. In such a case, without the knowledge of some new arguments,
the agent has to change her beliefs about the attack relation to be consistent with the observed set of
arguments.

Definition 117.

Let F = 〈A,R〉 be an argumentation framework, σ an acceptability semantics, and E ⊆ A a set of
arguments. The argument-fixed (respectively strict argument-fixed) enforcement operator +A

σ (respec-
tively +A

σ,s) is defined as a mapping from F and E to an argumentation framework F ′ = 〈A,R′〉, with
R′ ⊆ A×A, and such that E is included in (respectively is exactly) an extension of F ′.

The argument-fixed operators guarantee the success of enforcement, even in the strict case:

Proposition 43.

Let F = 〈A,R〉 be an argumentation framework, σ an acceptability semantics and E ⊆ A a set of

arguments. There is a strict enforcement F ′ of E.

Of course, both ideas (adding arguments, and changing the attacks) can be combined:

Definition 118.

Let F = 〈A,R〉 be an argumentation framework, σ an acceptability semantics, and E ⊆ A a set of
arguments. The general (strict) enforcement operator +σ (respectively +σ,s) is defined as a mapping
from F and E to an argumentation framework F ′ = 〈A ∪A′, R′〉, with R′ ⊆ (A ∪A′)× (A ∪A′), and
such that E is included in (respectively is exactly) an extension of F ′.

Since general enforcement allows any kind of change, it is obvious that it also ensures the success of
the operation. Let us exemplify the behaviour of the argument-fixed enforcement operator:

111

Chapter 6. Extension Enforcement

Example 32.

Let us consider the argumentation framework F1 described in Figure 6.1(a). We give an example of
non-strict strong enforcement, but as shown by Proposition 40, it is impossible to perform a strict en-
forcement under the stable semantics using Baumann’s approaches (normal, strong and weak). Let
us use the argument-fixed enforcement operator to obtain a strict enforcement of the set of argument
E = {{a2, a3}}. A possible result is the argumentation framework F2 described in Figure 6.1(b),

a1

a2

a3

a4

(a) The Input
Framework F1

a1

a2

a3

a4

(b) The Output
Framework F2

a1

a2

a3

a4

(c) The Output
Framework F3

Figure 6.1: Two Possible Results of the Argument-Fixed Enforcement

whose stable extensions are Extst(F2) = {{a1, a4}, {a2, a3}}, and so E is enforced as a stable exten-
sion of the result. Another one is F3 given in Figure 6.1(c), whose set of extensions is the same one:
Extst(F3) = {{a1, a4}, {a2, a3}}.

6.2.2 Minimal Change

As explained in Proposition 43, the possibility to enforce a set of argument is ensured when changes on
the attack relation are allowed. From a practical point of view, it offers a success guarantee, which is a
valuable property for an enforcement operator. Another expected property is minimal change, borrowed
from belief revision. Enforcement processes can lead to several results, and the enforcement operators
defined previously have to select one of the possible argumentation frameworks as the result. Considering
minimal change during the enforcement process means that the chosen argumentation framework has to
be as close as possible to the initial argumentation framework. [Bau12] already studies such a notion
of closeness for the normal enforcement approaches. He defines minimal change as minimization of
the number of attacks which are added to the argumentation framework during the enforcement process.
We generalize this notion of minimal change, using the Hamming distance to measure how much two
argumentation frameworks are different.

Definition 119.

We recall that the Hamming distance dh between two argumentation frameworks F = 〈A,R〉 and
F ′ = 〈A′, R′〉 is defined by dh(F, F ′) = |(R\R′) ∪ (R′\R)|.
For every enforcement operator +, the minimal change version +

min
is such that the selected output argu-

mentation framework F ′ minimizes the Hamming distance from the input argumentation framework F
amongst the argumentation frameworks which are possible outputs of +.

6.3 Enforcement as Satisfaction and Optimization Problems

6.3.1 Complexity of Enforcement

A first observation is that enforcing a set of arguments while limiting the number of allowed changes in
the attack relation is computationally demanding in the general case:

112

6.3. Enforcement as Satisfaction and Optimization Problems

Proposition 44.

Let F = 〈A,R〉 be an argumentation framework, E ⊆ A, and k be an integer. Determining whether it

is possible to enforce E in F under the stable semantics with at most k changes (addition or removal) of

attacks is NP-hard.

Proposition 44 ensures that (unless P = NP) there is no polynomial-time algorithm to perform min-
imal change enforcement in the general case. For this reason, it makes sense to tackle the enforcement
(respectively minimal change enforcement) issue using algorithms developed for solving (respectively
optimizing) NP-hard problems. This is what we do in the following: we reduce enforcement to a propo-
sitional satisfiability problem, and minimal change enforcement to a pseudo-Boolean optimization prob-
lem.

6.3.2 Enforcement as Boolean Satisfaction

Our translation-based approach is based on the possibility to associate an argumentation framework F
and a semantics σ with a propositional formula such that the models of the formula correspond exactly
to the σ-extensions of F .

Definition 120.

Given F an argumentation framework and σ a semantics, ΦFσ is a propositional formula built upon the set
of Boolean variables {xa | a ∈ A}, such that {xa1 , . . . , xak} is a model of ΦFσ if and only if {a1, . . . , ak}
is a σ-extension of F .

In the following, for a matter of simplification and since no ambiguity is possible, we write the
formulae using ai symbols instead of xai . We focus on the encoding Φst of the stable extension, as given
in [BD04]. Given F = 〈A,R〉, Φst is defined by

Φst =
∧

ai∈A

[ai ⇔ (
∧

aj :(aj ,ai)∈R

¬aj)]

Then, checking if a set of arguments E is a stable extension of F is equivalent to checking the satisfi-
ability of the formula ΦEst,s = Φst∧ (

∧

ak∈E
ak)∧ (

∧

al /∈E
¬al). To perform non-strict enforcement, a

way to determine whether E is included in an extension is required. Dropping the conjunct (
∧

al /∈E
¬al)

from the formula ΦEst,s gives precisely the formula ΦEst we need.
In order to link the semantics with the structure of the graph in the models of the formula, we

introduce Boolean variables attai,aj meaning that there is an attack from ai to aj in F . The previous
formulae are generalized into:

ΦA,Est =
∧

ai∈A

[ai ⇔ (
∧

aj∈A

(attaj ,ai ⇒ ¬aj)] ∧ (
∧

ak∈E

ak)

and

ΦA,Est,s =
∧

ai∈A

[ai ⇔ (
∧

aj∈A

(attaj ,ai ⇒ ¬aj)] ∧ (
∧

ak∈E

ak) ∧ (
∧

al /∈E

¬al)

Clearly, propagating the truth values of the variables attai,aj in those formulae is enough to recover
the previous formula ΦEst,s and the non-strict counterpart. This formula is the basis of our propositional
encoding of extension enforcement operators.

113

Chapter 6. Extension Enforcement

Example 33 (Example 32 Continued).
Considering the argumentation framework F1, and E = {a2, a3}, the formula ΦA,Est is instantiated in

a1 ⇔ [(atta1,a1 ⇒ ¬a1) ∧ · · · ∧ (atta4,a1 ⇒ ¬a4)]
∧ a2 ⇔ [(atta1,a2 ⇒ ¬a1) ∧ · · · ∧ (atta4,a2 ⇒ ¬a4)]
∧ a3 ⇔ [(atta1,a3 ⇒ ¬a1) ∧ · · · ∧ (atta4,a3 ⇒ ¬a4)]
∧ a3 ⇔ [(atta1,a4 ⇒ ¬a1) ∧ · · · ∧ (atta4,a4 ⇒ ¬a4)]

∧a2 ∧ a3

When we consider a model ω of this formula, we can generate an argumentation framework Fω which
corresponds to it, such that

Fω = 〈A,Rω〉 with Rω = {(ai, aj) | ai, aj ∈ A,ω(attai,aj) = true}

and E is included in at least one stable extension of Fω. If we consider the strict counterpart of the
encoding, the process leads to argumentation frameworks Fω such that E is an extension, thanks to the
conjunction a2 ∧ a3 ∧ ¬a1 ∧ ¬a4.

Let us introduce more formally the decoding process described at Example 33. This decoding is
performed by two functions similar to the ones used in Chapter 5 to decode the models of the revised
formulae and generate the revised argumentation frameworks.

• ProjAatt(Φ) = {ω ∩ {attai,aj | ai, aj ∈ A} | ω |= Φ} is the set of models of the formula Φ
projected onto the attai,aj variables.

• argA(ω) = 〈A,R〉 such that (ai, aj) ∈ R if and only if attai,aj ∈ ω, with ω a model projected
onto the attai,aj variables, is the argumentation framework corresponding to the assignment of the
attai,aj variables. Then, with Ω a set of such models, argA(Ω) = {argA(ω) | ω ∈ Ω}.

We also need an encoding for the structure of an argumentation framework F = 〈A,R〉:

structA′(F) = (
∧

(ai,aj)∈R

attai,aj) ∧ (
∧

(ai,aj)/∈R

¬attai,aj)

where ai, aj ∈ A ∪ A′. This encoding allows to consider the additional arguments A′ involved in the
enforcement process (for normal, strong, weak and general approaches). struct(F) is a notation for
struct∅(F).

Finally, δ : {F1, . . . , Fk} → Fj such that Fj ∈ {F1, . . . , Fk} is a tie-break rule which selects a
single argumentation framework from a set of argumentation frameworks.

Now, every enforcement operator defined in the previous section can be encoded as a satisfaction
problem on a propositional formula. Indeed, by construction, every model of the formula ΦA∪A

′,E
σ , when

projected onto the attai,aj variables, gives an argumentation framework which is a normal enforcement
ofE. We only need to state the right constraints for ensuring that strong (respectively weak) enforcement
operators are reached. In order to avoid the introduction of new arguments and get argument-fixed op-
erators, considering the formula ΦA,Eσ as the encoding proves enough. Similarly, the formulae ΦA∪A

′,E
σ,s

and ΦA,Eσ,s can be used to define the strict counterparts of the enforcement operators.

Definition 121.

For any argumentation framework F = 〈A,R〉, any set of arguments E ⊆ A, any semantics σ, and
X = σ or X = σ, s:

114

6.3. Enforcement as Satisfaction and Optimization Problems

• F +N
X E = δ(argA∪A

′

(ProjA∪A
′

att (ΦA∪A
′,E

X ∧ struct(F)))

• F +N,W
X E = δ(argA∪A

′

(ProjA∪A
′

att (ΦA∪A
′,E

X ∧ struct(F) ∧ (
∧

(ai,aj)∈A′×A ¬attai,aj))))

• F +N,S
X E = δ(argA∪A

′

(ProjA∪A
′

att (ΦA∪A
′,E

X ∧ struct(F) ∧ (
∧

(ai,aj)∈A×A′ ¬attai,aj))))

• F +A
X E = δ(argA(ProjAatt(Φ

A,E
X)))

• F +X E = δ(argA∪A
′

(ProjA∪A
′

att (ΦA∪A
′,E

X)))

For any of these enforcement operators +, any argumentation framework F = 〈A,R〉 and any set
of arguments E ⊆ A, Enc(F + E) denotes the corresponding propositional encoding. For instance,

Enc(F +N
σ E) is the propositional formula ΦA∪A

′,E
σ ∧ struct(F). Using any SAT solver to find a model

of Enc(F + E) and then decoding the truth values of the attai,aj variables is a way to determine an
enforcement of E in F .

6.3.3 Minimal Change Enforcement as Pseudo-Boolean Optimization

As explained previously, [Bau12] considers a notion of minimal change enforcement. In his work, min-
imality refers to the minimality of the number of attacks to be added to the argumentation framework
when performing the normal expansion. A possible way to ensure minimal change is to define a partic-
ular tie-break rule δ for selecting one of the resulting argumentation frameworks which is minimal. In
order to take advantage of some available optimization software, an alternative approach is to encode the
minimality criterion via a pseudo-Boolean objective function:

newAtt(A ∪A′) =
∑

(ai,aj)∈((A∪A′)×(A∪A′))\(A×A)

attai,aj

Of course, for strong and weak enforcement operators, this representation of the objective function can
be simplified since the attai,aj variables corresponding to the forbidden attacks are known to be false.

Minimal change for argument-fixed and general enforcement is not easy to be encoded directly using
the available Boolean variables. In order to get the expected encoding, we consider additional variables
representing the state of the argumentation framework before the enforcement; one then minimizes the
number of differences between the truth values of these variables and the corresponding ones in the
new argumentation framework. Formally, for every pair of arguments (ai, aj) ∈ (A ∪ A′) × (A ∪ A′),
the Boolean variable prevai,aj is true if and only if (ai, aj) ∈ R. So, prevai,aj ⊕ attai,aj , where ⊕
is the usual exclusive-or connective, gives the information about the change on the attack (ai, aj): if
there was previously an attack from ai to aj , and this attack is no longer present after the enforcement,
prevai,aj ⊕ attai,aj is true. It is also true if there was no attack before the enforcement, and there is
one after the enforcement. The encoding of the structure of the argumentation framework F must thus
be updated to take account for the prevai,aj variables:

struct
prev
A′ = structA′(F)|attai,aj←prevai,aj

Once this is done, minimizing the differences on the attack relation is equivalent to minimizing the
objective function

attChange(A ∪A′) =
∑

a∈(A∪A′),b∈(A∪A′)

prevai,aj ⊕ attai,aj

115

Chapter 6. Extension Enforcement

Clearly, this sum counts 1 for every attack (ai, aj) in the output argumentation framework concerning an
argument of A′, because prevai,aj is always false if ai ∈ A′ or aj ∈ A′. So the approach can be used in
the case of general enforcement.

We now sum up the definitions of the minimal change versions of the enforcement operators:

Definition 122.

For any argumentation framework F = 〈A,R〉, any set of arguments E ⊆ A,

• if + is any enforcement operator among the normal, strong and weak enforcement operators (and
their strict counterparts), then enforcing the set of arguments E in F is equivalent to satisfying
Enc(F + E) while minimizing newAtt(A ∪A′);

• if + is any enforcement operator among the argument-fixed and general enforcement operators
(and their strict counterparts), then enforcing the set of argumentsE in F is equivalent to satisfying
Enc(F + E) ∧ struct

prev
A′ (F) while minimizing attChange(A ∪A′).

We notice that using the second optimization problem would prove enough for each enforcement
operator. But since this approach requires the addition of Boolean variables prevai,aj , we do not use it
when it is not mandatory (i.e. for normal, weak and strong enforcement), to avoid any loss of computa-
tional efficiency.

The formal setting suited to our optimization problem is pseudo-Boolean (PB) optimization, which
is an extension of Boolean satisfiability.

Definition 123.

Given a set of Boolean variables V = {x1, . . . , xn} and a mappingO : {0, 1}n 7→ R, a PB-Opt problem
P = (C = {c1, . . . , cm},O) on V is the search for an assignment of every variable in V such that the
contraints

c1 : w1
1x1 + · · ·+ w1

nxn ≥ k
1

...
...

cm : wm1 x1 + · · ·+ wmn xn ≥ k
m

are satisfied and the objective function O reaches its optimal value.

In our case, the optimal value of the objective function is its minimal value. It is well-known that any
propositional formula can be turned into an equivalent conjunctive normal form formula (CNF), and any
clause of a CNF formula can be rewritten as a PB constraint: the clause x1 ∨ x2 ∨ · · · ∨ xn is satisfied
if and only if the PB constraint x1 + x2 + · · · + xn ≥ 1 is satisfied. Thus the optimization problem
described previously can be rewritten easily in the PB setting.

Example 34 (Example 33 Continued).
Let us illustrate the encoding of minimal change argument-fixed enforcement, with F1 described previ-

ously and E = {a2, a3}. We describe the formula ΦA,Est,s , which is exactly Enc(F1 +
A
st,s E), in the pre-

vious example. The objective function attChange(A ∪ A′) is instanciated with A′ = ∅ since argument-
fixed enforcement does not allow to add arguments to F . So, the optimization problem to solve in order
to enforce E in F1 is:

Minimize
attChange(A)

Subject to
ΦA,Est,s ∧ preva1,a2 ∧ preva1,a3 ∧ preva2,a4 ∧ preva3,a4
∧(

∧

(ai,aj)/∈R
¬prevai,aj)

116

6.4. Experimental Results

Both frameworks F2 and F3 given at Example 33 are the possible results when we use argA and ProjAatt
on the solutions of this optimization problem, since each of them is a strict argument-fixed enforcement
of E, and each of them differs from F1 by only one attack which is added.

6.3.4 Constrained Enforcement

Similarly to the constrained revision defined in Chapter 5, we can take advantage of our propositional
language to add an integrity constraint, which is represented as a formula over the set of variables
{attai,aj | ai, aj ∈ A}. This kind of constraints indicates if some particular attacks are forced to
belong to the argumentation framework, or on the opposite, must be forbidden.

Definition 124 (Integrity Constraint).
Given a set of arguments A, an integrity constraint on A is a propositional formula c built up from the
set of variables {attai,aj | ai, aj ∈ A}. Given an argumentation framework F = 〈A,R〉, we say that F
satisfies c if and only if c admits a models ω such that, for each ai, aj ∈ A, ω(attai,aj) = true if and
only if (ai, aj) ∈ R.

Definition 125 (Constrained Enforcement).
Let F = 〈A,R〉 be an argumentation framework, c be an integrity constraint onA, andE ⊆ A be a set of
arguments. Given an enforcement operator +, the constrained enforcement operator +c is defined such
that F +c E is a mapping from F and E to an argumentation framework F ′ such that F ′ is a possible
output of +, and F ′ satisfies c.

Of course, even if the underlying operator + is the argument-fixed or general enforcement operator,
constrained enforcement may fail, since the integrity constraint can be unsatisfiable, given a particular
argumentation framework and a particular set of arguments E to enforce. In particular, when the con-
straint c is such that +c is exactly the normal enforcement operator (or equivalently, the strong or weak
enforcement operator), then it is already known that enforcement does not always succeed. Other natural
cases of failure exist. The most simple one is the case of a constraint c which require an attack (ai, aj) to
occur, while ai, aj ∈ E, which violates conflict-freeness principle. Other cases of failure can be related
to the semantics. For instance, given A = {a1, a2, a3}, if the constraint is ¬atta1,a3 ∧ ¬atta2,a3 , the
strict argument-fixed enforcement of {a1, a2} with respect to the stable semantics is not possible, since a
stable extension must attack its complement (here, either a1 or a2 should attack a3). The unsatisfiability
of this constraint depends on the semantics. If the considered semantics is the grounded one, then the
constraint can be satisfied: the argumentation framework F4 given at Figure 6.2 proves enough.

a1 a2 a3

Figure 6.2: The Argumentation Framework F4

6.4 Experimental Results

In our experimental study, we focused on the minimal change enforcement problem. We implemented
the family of enforcement operators described in this paper, using the well-known tool CPlex [IBM14]
as the underlying optimization engine. For a matter of readability, we present only the obtained results

117

Chapter 6. Extension Enforcement

for three approaches: the non-strict strong operator from [BB10], and both the strict and non-strict ver-
sions of our argument-fixed enforcement operator. The behaviour of these operators is representative of
the whole family. In each case, the semantics used is the stable one.

The empirical protocol we considered is as follows. We focused on some random argumentation
frameworks [DJWW11, DJWW14]. Given a set of n arguments, each attack between two arguments is
generated using a fixed probability p. In our experiments n varies up to 500 arguments. For each n,
the graphs are divided into four families, corresponding to four values of p. We used families of argu-
mentation frameworks from [DJWW11], where p ∈ {0.4, 0.65, 0.9}. We also generated argumentation
frameworks with a probability p = 0.1. It appears in the experiments that the choice of p does not change
significantly the performances of the translation-based enforcement algorithm, so the reported results are
for p = 0.1 only.

We have computed the minimal change enforcement of sets E of arguments in argumentation frame-
works F containing n arguments with n ∈ {200, 300, 400, 500}. For each argumentation framework
F with n arguments, we considered sets E of arguments to be enforced of cardinality m, m varying
between 1 and 35

100n. For each pair of values (n,m), we generated 10 enforcement requests.17 On Fig-
ure 6.3, the y-coordinate of each point of the following curves corresponds to the average computation
time over all the pairs (F,E) which have been considered, where the number n of arguments of F is
reported on the x-axis.

The first interesting result stemming from our experimentations is that enforcement looks feasible
in practice on such randomly generated argumentation frameworks, which was not obvious given that
enforcement is NP-hard; as illustrated by Figure 6.3, the computation time increases reasonably with the
number n of arguments, up to a mean value of 13.76 seconds (std = 0.48) obtained for argumentation
frameworks with 500 arguments, when strict argument-fixed enforcement is considered (+-curve), and
up to a mean of 16.61 seconds (std = 5.31) when strong enforcement is considered (×-curve). The non-
strict argument-fixed enforcement is not presented on this figure. We will see later that this approach
needs more time to obtain a result, depending on some parameters, and then the average time to compute
the enforcement is not on the same scale as the average times presented here.

Figure 6.3: Average Time for Strong (×-curve) and Strict Argument-Fixed (+-curve), n Varying from
200 to 500

17We call "enforcement request" the set E of arguments expected to be an extension.

118

6.4. Experimental Results

Then, we compare the three different approaches on families of argumentation frameworks with 200
arguments, letting the cardinality m of E to vary from 1 to 70. The aim of this comparison is to study
the impact of the cardinality of E on the enforcement operators behaviors. We did not discard trivial
sets from the experiments, since our approaches can delete attacks, making a conflicting set conflict-free.
This allows us to illustrate the failure rate of strong enforcement, which is unsurprisingly high, since it is
impossible as soon as the enforcement request is not conflict-free in the input argumentation framework.
With a probability p for an attack to occur between two arguments, the probability for a set of arguments
E of cardinality m to be conflict-free is (1 − p)m. So, the greater the cardinality of the enforcement
request, the lower the probability for enforcement to be possible. In particular, in our experiments strong
enforcement always fails when m > 20; clearly, the failure rate of strong enforcement grows exponen-
tially with m.

(a) Strict Argument-Fixed (+-curve) Enforcement, and
Success (×-curve) and Failure (�-curve) for Strong En-
forcement

(b) Non-Strict Argument-Fixed Enforcement

Figure 6.4: Average Time, n = 200, m Varying from 1 to 70

We compare the enforcement computing times for the three approaches (see Figure 6.4). The ×-
curve represents the average time to realize the strong enforcement, while the �-curve corresponds to
the time needed by the algorithm to report failure when enforcement is impossible. For strong and strict
argument-fixed (+-curve) enforcement, it appears that the time needed for computing the result is almost
always the same whatever the cardinality of the enforcement request and the probability of attacks in the
graph: between 2 and 3 seconds.
The cardinality has more influence on the non-strict argument-fixed enforcement operator, the smallest
enforcement requests being harder to compute. When the cardinality grows, the computing time de-
creases to a few seconds. There is an intuitive explanation for this phenomenon. When we consider an
argumentation framework with n arguments, the number of Boolean variables required by our encoding
is 2 × n2 + n, since there are n variables ai, n2 variables attai,aj and also n2 variables prevai,aj . As
explained previously, the propositional formula which encodes the non-strict enforcement operators in-
cludes the conjunction (

∧

ak∈E
ak), while the strict counterpart of the encoding includes the conjunction

(
∧

ak∈E
ak)∧ (

∧

al /∈E
¬al). This means that when the optimization engine is initialized, the truth values

of n Boolean variables are known in the case of the strict argument-fixed enforcement, while only |E|
variables are known for the non-strict operator. For each variable which has its truth value already fixed,
the size of the research space is divided by 2. Even if this is not the only parameter at play, this explains
in part that the time to compute the non-strict argument-fixed enforcement is higher when the cardinaly
of E is low (since the research space is wide), and it decreases when the cardinality of E grows (now,

119

Chapter 6. Extension Enforcement

the research space is narrower than in the first case).

Figure 6.5: Average Change for Strong (×-curve), Strict Argument-Fixed (+-curve) and Non-Strict
Argument-Fixed (△-curve) Enforcement

Lastly, we want to measure the effort required in term of change (i.e., the number of attacks to be
added or deleted) for enforcing E in the argumentation framework (see Figure 6.5). Clearly, the effort
needed grows up with the cardinality of the enforcement request for strong (×-curve) and non-strict
argument-fixed enforcement (△-curve).
This comes from the fact that the enforcement is non-strict: to enforce a set E = {ai}, adding a new
argument b /∈ A (in the case of strong enforcement) or choosing an accepted argument aj ∈ A (in the
case of argument-fixed enforcement), and making it to defend ai against each of its attackers proves
enough to include ai in a stable extension (which will also contain b or aj , depending on the considered
enforcement method, and possibly some other arguments).
We notice that the curve for strong enforcement stops much before the other ones (at 14 arguments)
because of the high failure rate we mentioned. Until this point, as one can observe, this curve is almost
identical to the△-curve.

Strict argument-fixed enforcement (+-curve) requires much more change on the attack relation. As
the enforced set is expected to be exactly a stable extension, even a small set of arguments needs the
addition of many attacks to be enforced. For instance, with E = {ai}, it is required that ai attacks each
other argument to ensure that E is a stable extension, while the set E′ = {a1, a2, . . . , a30} only needs
to attack 170 arguments to be a stable extension, rather than 199. However, after reaching a minimal
value when m is between 40 and 50, the effort required by the strict argument-fixed enforcement grows
up when the cardinality m of E grows up. Intuitively, we understand that it is "harder" to make conflict
free E when m = 70 than when m = 40, since there are possibly much more attacks inside E.
For the highest cardinalities in the study (from m = 60 to m = 70), the efforts required by the strict and
the non-strict version of the argument-fixed operator come closer (between 100 and 200).

After this analysis of the behaviour of the different enforcement operators on argumentation frame-
works with 200 arguments, let us briefly describe how our approaches behave in front of larger argumen-
tation frameworks.
First of all, we notice that the behaviour of the non-strict argument-fixed enforcement is similar to what
happens with 200 arguments. When the argumentation framework contains 300 arguments, the average
time to compute the enforcement is around 70 seconds for small cardinalities of E, and it decreases to
about 6 seconds when the cardinality of E becomes closer to 200, which is a upper bound that we used

120

6.5. Related Work

on this part of the experiments. When we consider argumentation frameworks with 400 arguments, the
same phenomenon is observed, but with higher average times: 402.46 seconds when E is a singleton,
and it decreases from this maximal value to about 13 seconds when the cardinality of E is 200. The dif-
ficulty to compute non-strict argument-fixed enforcement grows again when we consider argumentation
frameworks with 500 arguments, and we obtain a very high level of timeout for this family of instances:
most of the experiments are stopped after the threshold of 900 seconds.

The behaviours of the other enforcement approaches are also similar to their behaviour when the
considered instances contain 200 arguments. Table 6.1 summarizes the results about non-strict strong
enforcement and strict argument-fixed enforcement operators when 300, 400 and 500 arguments are
considered. The "Minimal" and "Maximal" values are the average times to compute the enforcement
(or to state that enforcement fails, in the case of strong enforcement) for some cardinality of E. The
"Average" values are the global average computing time for the given operator and the given size of
argumentation frameworks, for every cardinality of E.

Operator n = 300 n = 400 n = 500

Minimal Maximal Average Minimal Maximal Average Minimal Maximal Average
Strong 5.24 6.49 5.36 9.31 11.49 9.51 14.58 49.46 16.61

Argument-fixed 4.10 5.04 4.97 8.36 8.96 8.81 13.3 15.64 13.76

Table 6.1: Average Computing Times, Rounded at 10−2s, for Non-Strict Strong and Strict Argument-
Fixed Enforcement, for n ∈ {300, 400, 500}

Now let us describe the results in term of minimal change. Strict argument-fixed enforcement gives
the same kind of results. For instance, when considering 500 arguments, the minimal change to enforce
a singleton is 495.66 seconds. It decreases to about 260 secondes, when the cardinality of E is around
130, and it grows back to 309.55 seconds with the highest cardinality. We observe the same phenomenon
with 300 and 400 arguments.

Again, for n ∈ {300, 400, 500}, we observe the same phenomenon for strong enforcement and non-
strict argument-fixed enforcement then for n = 200. The effort needed is almost null for the lowest
cardinalities of E, and it grows with the cardinality. The results for both operators are almost identical
until the threshold between success and failure of strong enforcement.

To conclude, let us recall that our approach scales up well, in particular for the strong enforcement
and strict argument-fixed enforcement approaches. For the benchmarks used during these experimen-
tations, the cardinality of the enforcement request does not influence the time to compute the result for
both these approaches. However, the non-strict argument-fixed enforcement is more sensible to the car-
dinality of the enforcement request. This is why, for small cardinalities, this operator needs more time to
give a result. However, when the cardinality is higher, even this operator gives a result in a few seconds
on average.

6.5 Related Work

It is worth noticing that some other kinds of change operations can be recovered as specific extension
enforcements. For instance, credulous explanation in [BGK+14] is the search of an argumentation frame-
work which justifies that a given argument ai is credulously accepted. It can be translated as an enforce-
ment problem: it is equivalent to the non-strict enforcement of the singleton {ai}. The argumentation
framework which explains the status of ai must belong to a set of argumentation frameworks, called

121

Chapter 6. Extension Enforcement

abducible argumentation frameworks, which are the possible options for the agent to change her argu-
mentation framework. Then, using a general enforcement operator with an integrity constraint which
encodes the set of abducible argumentation frameworks proves enough to reproduce the behaviour of
credulous explanation.

Similarly, some goal-oriented changes from [KBM+13] are enforcement operators: the credulous
positive goals like "the argument ai must be credulously accepted with respect to the considered seman-
tics" are also equivalent to the non-strict enforcement of the singleton {ai}.

Our translation-based enforcement approach, and the prototype software that we have implemented,
thus prove also useful for achieving such kinds of changes in argumentation frameworks.

The contributions of this thesis about revision of argumentation frameworks are also related to ex-
tension enforcement. This time, we do not propose to encode these previous works as extension en-
forcement, but on the opposite, extension enforcement can be encoded as a revision. Indeed, the revision
approaches described in Chapter 4 and Chapter 5 allow to ensure that a set of arguments will belong to
every extension of the result. In the first case, enforcing E = {a1, . . . , an} consists in a revision by the
formula ϕ1 = a1∧· · ·∧an, meaning that each extension of the result must contain each of the arguments
a1, . . . , an. In the case of the translation-based revision, the formula ϕ2 = acca1 ∧ · · · ∧ accan leads to
the same result: each of the arguments a1, . . . , an must be skeptically accepted, and so must belong to
each of the extensions. If E is included in the intersection of the extensions of the result of the revision,
it means obviously that this revision correspond to a non-strict enforcement of E. Using the constrained
open world revision, which is defined for both revision approaches, we can encode a general enforcement
operator, and each of the subclasses of the general enforcement.

6.6 Conclusion

In this chapter, we have investigated the problem of enforcing a set of arguments as an extension of an
argumentation framework. Our contribution is manyfold. First, we have shown that existing approaches
to enforcement may fail, even when the set of arguments to be enforced is conflict-free. To overcome this
weakness and to allow more general cases of enforcement, some new enforcement methods for which
the success of the process can be guaranteed have been defined. For each of these methods, we de-
signed some Boolean encodings which allow to take advantage of satisfaction and optimization solvers
for the enforcement purpose. We used CPlex, a well-known optimization tool, to implement a library of
enforcement operators, and we experimented some of them on a large class of benchmarks. The experi-
mentations showed the approach to be practical and to scale up well.

This work opens several perspectives for further research. As far as we know, none of the existing
works about change in argumentation frameworks has led to the implementation of some (quite efficient)
piece of software. However, implementing practical argumentation systems is currently a hot topic for
the community (in the same vein, see the organization of a competition of argumentation solvers [TV15]).
Indeed, the design of our enforcement software comes from the same will to make available argumenta-
tion reasoning tools, which is nowadays a necessary step to push forward the domain. A first objective
for this software is the search for a more efficient method to compute non-strict argument-fixed enforce-
ment, since the current method has the same efficiency as the other operators only when the cardinality
of the enforcement request is high. A translation of this enforcement approach into an optimization prob-
lem which is also efficient with low cardinality enforcement requests is necessary to improve the current

122

6.6. Conclusion

features of our software.

Then, we want to encode and implement enforcement operators for other semantics. In particular,
similarly to the case of the translation-based approach for revision that we have presented previously,
the use of QBF encodings and QBF solvers is promising for the semantics with high complexity. Some
further extensions of the setting will be also envisioned. For instance, using other objective functions for
the optimization problem leads to define some other types of minimality. In particular, we have in mind
the encoding of minimal change on arguments statuses, considered in our first contributions.

123

Chapter 7

On Constraints and Change in

Argumentation

It is change, continuing change, inevitable change, that is the dominant factor in society

today.

Isaac Asimov – "My Own View" , The Encyclopedia of Science Fiction

Our first contributions focused on revision and extension enforcement in Dung’s framework. Now,
we consider argumentation in a more abstract way: this chapter addresses the issue of the dynamic
enforcement of a constraint in an argumentation system, which consists of

1. an argumentation framework, made up, notably, of a set of arguments and of an attack relation,

2. an evaluation semantics, and

3. the evaluation result, computed from 1 and 2.

Of course, the argumentation framework may be a Dung’s abstract argumentation framework, but it can
be also any of its enrichments, or even any other representation of argumentation.

An agent may want another one to consider a new attack, or to have a given argument accepted, or
even to relax the definition of the semantics. A constraint on any of the three components is thus defined,
and it has to be enforced in the system. The enforcement may result in changes on components of the
system. This chapter briefly recalls the existing approaches for the dynamic enforcement of a constraint
in an argumentation framework, and classifies them depending on the kind of constraints and change that
they apply. We reveal challenging enforcement cases that remain to be investigated.
We also sketch an approach to define generalized enforcement operators, and we show how to extend our
logic-based approaches for revision and extension enforcement to this purpose.

Contents

7.1 Argumentation System . 125

7.2 Three Kinds of Constraints . 126

7.2.1 Structural Constraints . 126

7.2.2 Acceptability Constraints . 128

7.2.3 Semantic Constraints . 129

7.2.4 Combinations of Constraints . 130

124

7.1. Argumentation System

7.3 Quality of Enforcement . 131

7.3.1 Minimal Change . 131

7.3.2 Combining Minimality Criteria . 133

7.3.3 Rationality Postulates for Constraint Enforcement 133

7.4 Towards Generalized Enforcement . 134

7.4.1 Formal Setting . 134

7.4.2 Propositional Encoding of Constraint Enforcement Operators 135

7.5 Conclusion . 136

7.1 Argumentation System

Since Dung’s framework is the most influential setting to reason about arguments, and also the one which
has received the most attention during the recent years, this was the single representation of argumenta-
tion that was considered in our first contributions. But we can also envision dynamic scenarios when the
agent uses another kind of argumentation framework. This is why we consider, at a more abstract level,
an argumentation system as the global object which contains the arguments and the relations between
them, the method to evaluate the statuses of the arguments, and the result of this evaluation.

Definition 126 (Argumentation System).
An argumentation system is defined as a set of three components:

1. an argumentation framework F , which generally consists of a set of arguments and one or several
relation(s) between them;

2. a semantics σ that gives a formal definition of a method (either declarative or procedural) ruling
the argument evaluation process;

3. an argument evaluation Eσ(F), which is the result of the application of the semantics (compo-
nent 2) on the argumentation framework (component 1).

The argumentation framework and the semantics can be seen as the input of the system, the argument
evaluation as the output. Figure 7.1 illustrates this architecture.

(1)
+

(2)
Argumentation framework Semantics

F σ
=⇒

(3)
Argument evaluation

Eσ(F)

Input Output

Figure 7.1: Argumentation System

As an example of an argumentation framework (component 1), one may, of course, consider Dung’s
framework [Dun95], as it is the case in the previous chapters of this thesis. One may consider as well an
extended version of this framework, such as:

125

Chapter 7. On Constraints and Change in Argumentation

• a preference-based argumentation framework (PAF) by [AC02b, AC02a], that considers a prefer-
ence relation which influences the success of attacks;

• a value-based argumentation framework (VAF) by [BC02, BC03], related to the previous one, that
attaches values to arguments and handles preferences over values;

• a bipolar argumentation framework (BAF) by [CLS05], that additionally takes into account a sup-
port relation between arguments;

• a constrained argumentation framework (CAF) by [CDM06], that adds a constraint over the set of
arguments and the attack relation to be taken into account;

• an argumentation frameworks with necessities (AFN) by [NR11], where the attack relation is com-
pleted by a support relation which represents the fact that an argument’s acceptance is required for
another one to be accepted.

Frameworks different from Dung’s one may be considered as well, such as abstract dialectical frame-
works (ADF) by [BW10], that are based on a set of arguments and attach an acceptability condition to
each argument.

A huge range of semantics (component 2) have been defined so far (see [BG09] for an overview).
They can be classified into three categories: extension-based semantics (e.g. [Dun95]); labelling-based
semantics (e.g. [Cam06]), which are a refinement of extension-based semantics, as already explained in
this thesis; and ranking-based semantics (e.g. [ABN13]). A semantics is usually defined for a certain
kind of argumentation framework. We have already presented in details the most usual extension-based
semantics, and their labelling-based counterpart. Contrary to these ones, which give a precise acceptance
status to each argument, a ranking-based semantics produces a total pre-order over the set of arguments:
Eσ(F) allows to decide if an argument is "better" than another one. Evaluation principles that underly
most of the existing semantics have been identified ([BG07, BCG11]).

Each of the three components of an argumentation system may be subject to some dynamics: some
constraint may have to be enforced on one or several components, and enforcement generally causes
changes on the system. Such constraints and changes are presented in the next section.

7.2 Three Kinds of Constraints

This section presents the different kinds of constraints that can be considered in an argumentation system,
and the changes that their enforcement implies. We illustrate the different types of constraints with the
existing approaches for change of argumentation frameworks that we described in Chapter 3 and with
our own works presented in Chapter 4, 5 and 6.

7.2.1 Structural Constraints

The first kind of constraint that may have to be taken into account, concerns the argumentation frame-
work (component 1). Typically, when an argumentation-based debate takes place between agents, new
arguments, new attacks, may have to be additionally considered. These new elements deal with the struc-
ture of the argumentation framework, and represent constraints that must be taken into account. For this
reason, we call them structural constraints.

If these constraints directly concern the elements of the argumentation framework, namely the argu-
ments and the relations between arguments, they may be called elementary structural constraints. Other

126

7.2. Three Kinds of Constraints

structural constraints may address the whole structure of the argumentation framework; these constraints
are global structural constraints. As an example of such global constraints, one may wish the argumen-
tation framework to be acyclic, or without any odd-length cycle, or to be made of only one connected
component. The need for such global constraints may be motivated by computational concerns: it is
known that argument evaluation, under some semantics, for argumentation frameworks with particular
properties, are easier to compute than for argumentation frameworks without these properties.
For instance, we know that Dung’s argumentation frameworks possess a single extension which is
grounded, stable, preferred and complete when they are acyclic; similarly, the stable semantics and the
preferred semantics coincide when the argumentation framework does not contain any odd-length cycle.
These properties allow to compute the usual inference tasks with polynomial time algorithms (for the
acyclic argumentation frameworks) or with a call to an NP oracle, while reasoning under the preferred
semantics is at the second level of the polynomial hierarchy in the worst case.

As far as we know, only elementary structural constraints have been studied in the existing ap-
proaches on change in argumentation systems, although some of them could be easily adapted to tackle
global constraints. For instance, [BKvdT09b, BKvdT09a, CdSCLS10] list the elementary constraints
existing in Dung’s framework: adding or removing one attack between two arguments which belong to
the framework, and adding or removing an argument (with the attacks which concern it). The existing
approaches on change in argumentation use these kinds of constraints, or combinations of them. For
instance, [BCdSL13, DHP14] and our translation-based revision approach (see Chapter 5) encode the
argumentation framework and the semantics in a logical setting, and use formulae which can represent
constraints like "an attack from ai to ak and an attack from ak to aj must be added". This kind of logical
language allows to combine elementary constraints to express more complex ones. In particular, global
constraints such that acyclicity constraint could be encoded in this language, either as the reason of the
change, or as an integrity constraint to be satisfied when a change is performed.

The enforcement of a structural constraint on an argumentation framework F obviously leads to a
change of the argumentation framework (what we call a structural change), to an argumentation frame-
work F ′, but it may also impact the argument evaluation (acceptability change): Eσ(F) may be different
from Eσ(F ′). For instance, if one considers Dung’s framework, if an argument which was previously
attacked becomes unattacked after the enforcement of the constraint, then it has to appear in each exten-
sion, whatever the semantics. If one would like, however, the argument evaluation to stay unchanged,
then the structural constraint would have to come together with an acceptability constraint (see Sec-
tion 7.2.2), which would require the evaluation to be the same. [CdSCLS10] pesents a typology of the
acceptability changes induced by the enforcement of some elementary structural constraints.

Structural constraints also make sense if extended versions of Dung’s framework are considered. For
instance, any kind of attack-addition or attack-removal operation can have a support-addition or support-
removal (respectively necessity-addition or necessity-removal) counterpart when considering bipolar ar-
gumentation frameworks [CLS05] (respectively argumentation frameworks with necessities [NR11]).
If we work with preference-based argumentation framework or value-based argumentation frameworks
[AC02b, BC02, BC03], then a change of the preference relation between arguments or between the val-
ues can occur. In this last case, there can also be directly a change of the values associated with the
arguments. Structural constraints in such frameworks remain to be formally investigated.

127

Chapter 7. On Constraints and Change in Argumentation

7.2.2 Acceptability Constraints

The dynamics of an argumentation framework may also originate in a need for a change of the argument
evaluation. For example, an agent may want another one to consider an argument as acceptable, or to
consider it "better" than another one, whereas it currently is not the case. This is what we call an ac-

ceptability constraint that has to be enforced on an argumentation system. This acceptability constraint
depends on the kind of evaluation which is used, among the extension-based semantics, the labelling-
based semantics and the ranking-based semantics. For each of these evaluation approaches, several kinds
of constraints make sense.

Extension-based semantics are maybe the most well-known approaches for argument evaluation
[Dun95]. The first work on acceptability constraints is the extension enforcement issue [BB10, Bau12],
which we also studied in this thesis (see Chapter 6). [CDM06] and our first work on the revision of ar-
gumentation frameworks (see Chapter 4) express the acceptability constraint as a propositional formula
over the set of arguments, which has to be satisfied by each extension of the argumentation framework.
The same approach is developed in [DHL+15], which also proposes to represent this acceptability con-
straint by an argumentation framework F ′ such that the extensions of the outcome of the enforcement
are a subset of Eσ(F ′). In [BCdSL13, DHP14], as well as our translation-based revision approach (see
Chapter 5), it is possible to express a constraint on the acceptance status of an argument, such that "ar-
gument ai must be credulously (or skeptically) accepted", credulous (respectively skeptical) acceptance
meaning that ai must belong to at least one (respectively every) extension.
Like structural constraints, acceptability constraints can be categorized into elementary acceptability
constraints, that concern the particular acceptability of some arguments, or of some sets of arguments,
and global acceptability constraints, that concern the structure of the argument evaluation (number of
extensions, size of the extensions, for instance).

The same kind of acceptability constraints can be considered for labelling-based semantics, since
they are a refinement of the extension-based semantics, but with more expressiveness. For instance,
it is possible to require an argument evaluation to satisfy the constraint "argument ai must be out",
which is more precise than requiring an argument not to belong to an extension (since in this case,
the argument may be either rejected or undecided). Such labelling-based constraints are considered in
[BKRvdT13, CMKMM14b], and also in Chapter 4.

Ranking-based semantics are also subject to "acceptability" constraints. In this case, it is more accu-
rate to speak about "evaluation" constraint, since these semantics do not lead to decide if an argument is
accepted or not. Several levels of constraints can be defined. It makes sense to enforce a constraint such
that "argument ai is ranked lower than argument aj holds in the outcome of the enforcement". These
constraints, of course, can be combined together for different values of ai, aj , and these combinations
may lead to require the argument evaluation to be exactly a given order when each possible pair (ai, aj)
is considered. Up to our knowledge, the characterization and the enforcement of such evaluation con-
straints has not yet been addressed. Global constraints on ranking-based semantics also make sense, such
that "the outcome of the evaluation is a total pre-order between the arguments". It is supposed to be the
case with the semantics defined in [ABN13], but this constraint is reasonable if the agent considers some
other ranking-based semantics [CL05, GM15].

Regarding the enforcement of an acceptability constraint, the most common method that can be
found in the literature consists in changing the argumentation system so that the argument evaluation of
the modified system satisfies the constraint. To this end, structural change and semantic change are both

128

7.2. Three Kinds of Constraints

possible.

For instance, [BB10, Bau12] expand an argumentation framework à la Dung by a set of new argu-
ments and a set of new attacks concerning these new arguments (and possibly the former ones). It also
considers the possibility to change the semantics. Our own work presented in Chapter 6 is a follow-up
of the previous ones, in which arbitrary modifications of the structure of the graph are allowed.

The update approaches described in [DHP14] only permit to change the attack relation to satisfy
the constraint, while our revision approaches described in Chapter 4 and Chapter 5, although initially
designed similarly, also allow to add arguments. In other words, the enforcement is done by a structural
change.

As explained in Chapter 3, [BKRvdT13] presents two approaches to satisfy the acceptability con-
straint. This extension of Dung’s framework uses a propositional formula on labellings as an integrity
constraint, and considers that the agent’s beliefs are the complete labellings of the argumentation frame-
work which satisfy this integrity constraint. Both approaches are used to restore consistency if there is
no complete labelling of the framework which satisfies the integrity constraint. The first one is similar to
the extension enforcement described in [BB10]. The other one also uses framework expansion, but is a
bit more subtle. It takes advantage of belief revision techniques to compute what is called the "fallback
beliefs", which are consistent subsets of the current agent beliefs which are the most plausible ones. Then
a framework expansion is performed to match these fallback beliefs.

It can be noticed that the enforcement of an acceptability constraint, by a semantic change only, has
not yet been addressed. Such an enforcement may however be relevant in case when a structural change
is not possible, or not suitable.

The resulting argumentation system after the enforcement of an acceptability constraint may be such
that the initial argumentation framework F is modified into an F ′ (structural change), and/or the initial
semantics σ has turned into a semantics σ′ (semantic change). In any case, there is an acceptability

change, that captures the enforcement of the acceptability constraint, but that may also partly result from
the structural/semantic change which has been set up to enforce the acceptability constraint. For instance,
if an acceptability constraint consists in requiring that "argument ai belongs to every extension", a struc-
tural change that consists in removing all the attacks to this argument, may be carried out; but with this
new status, ai may now be able to make other arguments to belong to some or every extensions: addi-
tional acceptability changes hence occur. Minimizing the impact of the enforcement of an acceptability
constraint, is a quality requirement that has already been considered in several contributions; this issue
is addressed in Section 7.3.

Another method to enforce an acceptability constraint consists in using an integrity constraint. Such
an approach has been proposed in [CDM06]. In this extension of Dung’s framework, the constraint is
a propositional formula on the extensions of the framework similar to the revision formulae that we use
in Chapter 4. Contrary to [BKRvdT13] this constraint does not lead to a change of the argumentation
framework. The semantics which have been defined for, and which have to be used with a constrained
argumentation framework, take into account the integrity constraint, and ensure that it is satisfied in the
argument evaluation.

7.2.3 Semantic Constraints

Now, let us focus on the constraints dealing with the second component of the argumentation system: its
semantics. We have seen in the previous section that a semantic change is a way to enforce an accept-

129

Chapter 7. On Constraints and Change in Argumentation

ability constraint. It may as well be the case that an agent may want a semantics to change, wholly, or
partly; that is, the agent may want a semantic constraint to be enforced.

The motivations for such constraints are diverse. For instance, the case of the empty set of extensions,
which is allowed for some semantics, may be a weakness for some applications which absolutely require
a solution. This may lead to a semantic constraint such that "replace the stable semantics by the complete
semantics". On the other hand, we know that the number of extensions may be exponential in the number
of arguments for some semantics. This may be a problem from a computational point of view to enumer-
ate an exponential number of extensions. Some applications may also need a "simple" answer, and so
it makes sense to replace the semantics σ by another one σ′ which guarantees that |Eσ′(F)| < |Eσ(F)|.
The extreme scenario is to require a single extension in the evaluation of the system, for instance with a
replacement of σ by the grounded semantics.

The semantic constraint may concern the semantics on its whole (as indicated in the previous para-
graph). But a more elaborated kind of semantic constraint can be defined, dealing with the semantics
principles: if some of the principles of the semantics cause a problem (from a computational or a rea-
soning point of view) they can be dropped. On the opposite, the agent can consider that her reasoning
scheme is not demanding enough, and add some principle to its current semantics. For instance, the
maximality principle may be too costly to compute, and then should be relaxed, while the complement
attack principle may be required to ensure that each argument which is not in an extension is rejected for
a good reason.

The enforcement of a semantic constraint results in a semantic change (the original semantics σ
evolves to σ′). This change may lead to an acceptability change, as it may have an impact on the
argument evaluation (Eσ′(F) may be different from Eσ(F)).

Few approaches study semantic constraint and semantic change in argumentation. First, [DW11]
studies the relative expressiveness of a wide range of usual acceptability semantics: they provide some
translations from an argumentation framework à la Dung F and a semantics σ to a framework F ′ and a
semantics σ′ such that Eσ(F) and Eσ′(F ′) satisfy some property. For instance, this translation is called
"exact" if and only if Eσ(F) = Eσ′(F ′), and "faithful" if each element from Eσ′(F ′) is equal to an
element from Eσ(F) plus some new arguments which belong to F ′ but not to F .

The framework described in [BB10, Bau12] for enforcement of a set of arguments takes a semantics
as a parameter, and so the target set of arguments does not necessarily have to be (included in) a σ-
extension of the expanded argumentation framework, but possibly (included in) a σ′-extension. They
distinguish "conservative" enforcement (if σ = σ′) and "liberal" enforcement (if σ 6= σ′).

The last existing work on semantic constraints is the study of the realizability of a set of candidates
[DDLW14]. We recall that the authors identify some necessary and sufficient condition, for some usual
semantics, for a set E of candidates to be realizable with respect to σ, and they prove that this test can be
done in polynomial time for most of the usual semantics.

7.2.4 Combinations of Constraints

Of course, the different kinds of constraint described previously can be combined with each other. It is
already the case with realizibility checking [DDLW14], which is the combination of a semantic constraint
(the expected extension-based semantics σ is a parameter) and an acceptability constraint (demanding a
particular set of candidates to be the σ-extensions).

[DW11] may also be seen as a combination of a semantic constraint, along with an acceptability
constraint (the extensions under the new semantics should be in correspondence with the ones under the

130

7.3. Quality of Enforcement

original one). Similarly, extension enforcement approaches [BB10, Bau12] combine an acceptability
constraint (the set of arguments expected to be included in an extension) and a semantic constraint.

On the other hand, [BCdSL13, DHP14] and our revision approaches presented in Chapter 5 combine
acceptability and structural constraints in their propositional language over the set of arguments.

It seems that in a dynamic context, any kind of constraints combination makes sense. It can be
noticed however that a constraint such as "The structure of the argumentation graph (respectively the
semantics, the argument evaluation) must not change" makes sense only when it is considered in combi-
nation with another constraint.

Semantic constraints are particularly meaningful when considered in combination with an accept-
ability constraint. It is possible that a particular acceptability constraint cannot be enforced, with respect
to some given semantics. In this case, it makes sense to have a possibility to switch the semantics for
another one which permits to enforce the acceptability constraint.
To illustrate this case, let us consider an agent which uses the preferred semantics pr to reason with
arguments. She can receive a full piece of information about the evaluation, leading to demand a set
E = {ε1, . . . , εn} to be the extensions of her argumentation framework. But the direct enforcement of
the constraint "Build F such that Epr(F) = E" may lead to a problem, since each set of candidates is
not realizable for each semantics. A more elaborated constraint like "Build F such that Eσ(F) = E for
some σ" allows to avoid this problem.

7.3 Quality of Enforcement

Whatever the kind of enforcement, some notion of quality can be considered. Among several possible
solutions to the expected enforcement request, all of them are not equally satisfying for the agent. It can
be expressed in several different ways.

7.3.1 Minimal Change

The most obvious one is probably minimality of change, borrowed from belief change [AGM85, KM91].
In this framework, minimal change is a desirable property because an agent expects to avoid any un-
necessary loss of information when performing a belief change. We already explained that the notion
of minimality is not obviously defined in argumentation settings. Since enforcement in argumentation
frameworks deals with three different kinds of constraints and changes, we can consider at least one kind
of minimality for each of these kinds of constraints and change.

Minimal change on the argument graph (minimal structural change) is the first kind of notion of
quality which has been studied [Bau12]. Baumann considers that the predominant information for the
agent is the structure of the graph, and minimal change is expressed as the minimization of the number
of attacks which are changed in the argumentation framework. We borrow the same notion of minimality
in our study of extension enforcement (see Chapter 6). The same kind of minimality is used in [DHP14]
and in Chapter 5. Minimization of the changes on the set of arguments, or on other components of the
argumentation framework if any, may also be considered.

Another kind of minimality concerns the changes on the output of the argumentation system: the
acceptability of arguments. The different possibilities to express minimal acceptability change in this
case depend on the different expressions of acceptability: skeptical acceptance, credulous acceptance,

131

Chapter 7. On Constraints and Change in Argumentation

extension (or labellings) enumerations, rankings. . . For instance, the approach described in Chapter 4,
borrowed from the notion of minimal change in belief revision in propositional logic, considers the set
of extensions of the argumentation framework and uses distances between sets of extensions to decide
which output is the minimal one for the revision of an argumentation framework, that is, which one
enforces the acceptability constraint, and induces a minimal additional acceptability change. This work
has been followed by [DHL+15]. Another possible approach to define minimal change on the accept-
ability is to use distances between sets of arguments, for instance to quantify the difference between the
skeptically accepted arguments of two different argumentation frameworks as we have done in Chapter 5.

It is not so obvious to define minimal semantic change. We can consider two kinds of minimal
change, depending on the level of change expected on the semantics: either the change concerns directly
a replacement of the semantics σ to the semantics σ′, or the change concerns the addition or removal of
some principles of the semantics. As far as we know, none of these solutions has been studied in depth,
but we can initiate some research tracks.

First, let us focus on the replacement of semantics. We know that the usual semantics satisfy some
inclusion relations: for instance, each stable extension of an argumentation framework F is also a pre-
ferred extension of F , and each preferred extension of F is also one of its complete extensions. We use
this information to define the semantics dependence graph:

Definition 127.

Let Σ = {σ1, . . . , σn} a set of acceptability semantics. The semantics dependence graph of Σ is defined
by Dep(Σ) = 〈Σ, D〉 with D ⊆ Σ× Σ such that (σi, σj) ∈ D if and only if:

• for each argumentation framework F , Eσi(F) ⊆ Eσj (F);

• there is no σk ∈ Σ (k 6= i, k 6= j) such that for each argumentation framework F , Eσi(F) ⊆
Eσk(F) and Eσk(F) ⊆ Eσj (F).

The distance between two semantics σi and σj in a semantics dependence graph Dep(Σ) can be
defined as the length of the (non-directed) path between σi and σj . Let us illustrate minimal change on
an example:

Example 35.

Let us use the set of semantics Σ = {complete,preferred,stable}. The semantics dependence graph is
given on Figure 7.2. Let us suppose that we want to enforce an acceptability constraint in the argu-

stable preferred complete

Figure 7.2: The Semantics Dependence Graph of Σ

mentation framework F which is not satisfied by the stable semantics. If we know that it is possible to
enforce the constraint in F just with a change of semantics, from stable to preferred or complete, then
it is minimal to choose the preferred semantics, because the distance between stable and preferred is 1,
and the distance between stable and complete is 2.

Now, if we consider semantic change as a modification of some principles of the semantics, rather
than a whole modification of the semantics, a possible way to quantify change is to specify exactly the set
of principles satisfied by the semantics, and to consider a cost on each addition or removal of principles
in the set.

132

7.3. Quality of Enforcement

Example 36.

The stable semantics is the conjunction of two principles: conflict-freeness and complement attack.
The complete semantics combines conflict-freeness and defense, while the preferred semantics adds
the maximality principle to the complete semantics. Then, switching from the stable to the complete
semantics causes a change on two principles (removal of complement attack, and addition of defense),
while switching from the stable to the preferred semantics causes a change on three principles (due to
the requirement of maximality).

We observe that depending on the way to quantify semantic change, minimal change from the stable
semantics may lead to favour the preferred semantics over the complete one in Example 35, or the
opposite in Example 36. This issue deserves to be more formally investigated.

7.3.2 Combining Minimality Criteria

A very interesting question is the possibility to combine different kinds of minimality when several kinds
of constraints and change are involved in the enforcement process. The underlying problem is to deter-
mine what kind of information are the most important for the agent, and consequently, which kind of
minimal change must be applied first. As far as we know, only our works on revision of argumentation
frameworks have considered the combination of different minimality criteria.

For instance, the revision approach described at Chapter 4 considers that the primitive information
for an agent reasoning with an argumentation framework is its set of extensions. Minimal acceptability
change is thus applied first. Two other kinds of minimality are then considered. The first one is minimal
structural change, in terms of changes on the set of attacks. The second one comes from the nature of
the output of our revision operators. We allow to obtain of set of revised argumentation frameworks. It
seems natural, in this case, to regard minimal cardinality of the output as a desirable property. These two
kinds of minimality are combined to define different families of revision operators. When the possibility
to use auxiliary arguments in the result of the revision is considered, new possibilities are added to com-
bine the minimality criteria.

The revision approach introduced in Chapter 5 combines structural change (additions and removals
of attacks or arguments) and acceptability change (the constraints concern the fact that an argument is
skeptically accepted or not). Minimal change on the structure of the graph and minimal change on the set
of skeptically accepted arguments are considered, and combined through some weighted Hamming-like
distances.

Of course, one can imagine some notion of minimal change for each kind of constraint described in
the previous section. Combining them is always possible, as soon as the agent is able to decide which
kind of information is more important for her, and so to decide which minimality criterion must be
applied first. This question depends on the application.

7.3.3 Rationality Postulates for Constraint Enforcement

As we already explained, minimal change has been borrowed from belief change theory in logical set-
tings. We have seen in Chapter 2 that this principle is not the only desirable property for belief change
operations. It is usual for these applications to define a set of rationality postulates to be satisfied by any
"good" operator. The AGM framework [AGM85] and its adaptation for propositional logic by Katsuno
and Mendelzon [KM91] present rationality postulates for belief revision, and define some revision oper-

133

Chapter 7. On Constraints and Change in Argumentation

ators satisfying the postulates, while [KM92] gives a similar result for belief update.

Such an idea has been adapted by different authors for revision of argumentation frameworks. In
Chapter 4, we adapt the postulates and revision operators from the KM framework to the setting of
extension-based semantics. These postulates express the constraints on the acceptability of arguments
as set-theoretical relations between the set of extensions of the argumentation framework. We have
defined the family of operators which satisfy these postulates. We have also considered in Chapter 5
some revision operators dealing with structural and acceptability constraints, but this time a particu-
lar restriction on the definition of such a revision operator ensures that it satisfies another adaptation
of the KM postulates. Some similar AGM-like family of rationality postulates has been described in
[BKRvdT13, DHP14, BB15, DHL+15].

In [BCdSL13], the authors suppose the possibility to use any propositional language L able to rep-
resent information about an argumentation framework and its semantics, and they adapt the KM update
postulates to enforce in an argumentation system any constraint which can be expressed in L.

Until now, the only postulate-based approach for change in argumentation frameworks are borrowed
from logical belief change frameworks. It is reasonable to suppose that some change operations are spe-
cific to argumentation scenarios, so an interesting research track is to define axiomatic characterization
of such approaches. For instance, even if enforcement of an extension [BB10, Bau12, CMKMM15b] is
very close to revision, it is not at all defined like our revision approaches. We can suppose that postulates
for extension enforcement would be different from postulates for revision.

7.4 Towards Generalized Enforcement

Now, we propose an approach which is a first step towards the definition of a global family which gathers
the existing approaches to enforce a constraint in an argumentation framework, and which also allows to
encode some new kind of constraints.
Similarly to what we have done for belief revision (see Chapter 5) and extension enforcement (see Chap-
ter 6), we use some logical encodings to represent constraint enforcement as a satisfaction problem.

7.4.1 Formal Setting

We suppose the existence of a finite set of arguments Ω = {a1, . . . , an}. We define a propositional
language used to express the constraints to be enforced.

Definition 128 (Ω-formula).
Let F = 〈A,R〉 be any argumentation framework built on the set of arguments A ⊆ Ω. We suppose the
existence of a fixed semantics σ.

• For any arguments ai, aj ∈ Ω, the Boolean variable attFai,aj means that there is an attack from the
argument ai to the argument aj in F .

• For any argument ai ∈ Ω, the Boolean variable onFai means that the argument ai belongs to A.

• For any argument ai ∈ Ω, the Boolean variable skF,σai means that the argument ai is skeptically
accepted by F with respect to the semantics σ.

• For any argument ai ∈ Ω, the Boolean variable credF,σai means that the argument ai is credulously
accepted by F with respect to the semantics σ.

134

7.4. Towards Generalized Enforcement

• For any set of arguments E ⊆ Ω, the Boolean variable extF,σE means that E is a σ-extension of the
considered argumentation framework.

• An Ω-formula is any propositional formula built on the set of variables {attFai,aj | ai, aj ∈ Ω} ∪

{onFai | ai ∈ Ω} ∪ {skF,σai | ai ∈ Ω} ∪ {credF,σai | ai ∈ Ω} ∪ {extF,σE | E ⊆ Ω} with the set of
connectives {∨,∧,¬}.

For any Ω-formula ϕ, the satisfaction of ϕ by F , noted F |∼ϕ, is defined by

• if ϕ = onFai , ai ∈ Ω, then F |∼ϕ if and only if ai ∈ A;

• if ϕ = attFai,aj , ai, aj ∈ Ω, then F |∼ϕ if and only if x, y ∈ A, (ai, aj) ∈ R;

• if ϕ = skF,σai , ai ∈ Ω, then F |∼ϕ if and only if ai ∈ A and ai ∈
⋂

Extσ(F);

• if ϕ = credF,σai , ai ∈ Ω, then F |∼ϕ if and only if ai ∈ A and ai ∈
⋃

Extσ(F);

• if ϕ = extF,σE , E ⊆ Ω, then F |∼ϕ if and only if E ⊆ A and E ∈ Extσ(F);

• if ϕ = ϕ1 ∧ ϕ2, then F |∼ϕ if and only if F |∼ϕ1 and F |∼ϕ2;

• if ϕ = ϕ1 ∨ ϕ2, then F |∼ϕ if and only if F |∼ϕ1 or F |∼ϕ2;

• if ϕ = ¬ϕ1, then F |∼ϕ if and only if F |6∼ϕ1.

Now, we define formally a constraint enforcement operator, which is an operation which changes an
argumentation framework to obtain a result satisfying a given constraint.

Definition 129 (Constraint Enforcement Operator).
A constraint enforcement operator⊕ is a mapping from an argumentation framework F and a Ω-formula
ϕ to a set of argumentation frameworks such that:

F ⊕ ϕ ⊆ {F ′ | F ′|∼ϕ}

This definition is quite abstract, but we show in the next section that this family of operators includes
several existing approaches for the enforcement of a constraint in an argumentation framework.

7.4.2 Propositional Encoding of Constraint Enforcement Operators

Now we sketch a method to encode any constraint enforcement operator as a satisfaction problem. Simi-
larly to the encoding of translation-based revision described in Chapter 5 and to the encoding of extension
enforcement presented in Chapter 6, we consider the formula ΦσF such that every model of it corresponds
to a σ-extension of F . For instance, if σ is the stable semantics, we use the encoding from [BD04]:

ΦstF =
∧

ai∈A

(ai ⇔
∧

aj :(aj ,ai)∈R

¬aj)

which leads to the definition of

ΦstA =
∧

ai∈A

(ai ⇔
∧

aj∈A

att(aj ,ai) ⇒ ¬aj)

135

Chapter 7. On Constraints and Change in Argumentation

Now, we reproduce the scheme we used to define translation-based revision and extension enforce-
ment in the previous chapters, and we define the stable theory of A adapted to constraint enforcement:

∧

ai∈A
[skσai ⇔ (∀a1, . . . , an,Φ

σ
A ⇒ ai)]

∧

ai∈A
[credσai ⇔ (∃a1, . . . , an,Φ

σ
A ∧ ai)]

∧

E⊆Ω[ext
σ
E ⇔ (∃a1, . . . , an,Φ

σ
A ∧ (

∧

ai∈E
ai) ∧ (

∧

ai∈A\E
¬ai))]

We recognize the part of the encoding which concerns skeptical acceptance, which is equivalent to
the stable theory of A for translation-based revision, and the part concerning extensions which is related
to the encoding of extension enforcement operators.
Similarly to what we have done for translation-based revision, we associate a formula with a set of
argumentation frameworks via the functions Projatt and arg introduced in Chapter 5. We can now
define any constraint enforcement operator via the propositional encoding:

F ⊕ ϕ ⊆ arg(Projatt(ϕ ∧ thσ(Ω))

with arg and Projatt as they have been defined for previous approches.

Of course, existing works can be encoded through this kind of constraint enforcement operators,
with the accurate restriction on the formulae, and some particular constraints on the selected argumenta-
tion frameworks (or similarly, on the set of models of ϕ ∧ thσ(Ω) which must be decoded by arg and
Projatt). By the construction of the propositional language, our translation-based revision operators
and our extension enforcement operators can be written as constraint enforcement through this logical
encoding. The update operators by [DHP14] can also be represented easily, since they use variables to
represent acceptance of an argument, and variables to represent the attacks, which are incorporated in
this new language.

7.5 Conclusion

This chapter comes from a collaboration with Sylvie Doutre and Laurent Perussel. It is an extended and
updated version of a previous work [DP13]. In this chapter, we consider some recent contributions on dy-
namics of argumentation systems, and we present other enforcement cases that remain to be investigated.

Table 7.1 and 7.2 sum up the existing approaches in the topic of change in argumentation systems.
We recall, for each of the listed contribution, which kind of constraints are considered, which kind of
change is applied to enforce them, and when it is relevant, which notion of quality of enforcement is used.
The table only mentions the changes which are applied to enforce a given constraint (structural and/or
semantic), and not the changes that this enforcement may imply. In particular, acceptability changes
are a usual side effect of structural and semantic constraints, but they are not considered as a first-class
citizen of the change operation.

The study shows that many challenging enforcement problems of interest remain to be explored in
abstract argumentation. In particular, semantic change has received far less attention than other kinds of
change. More than the question of enforcing a semantic constraint, a challenging problem is to enforce
an acceptability constraint by a semantic change only; studying the quality of semantic change is then
a mean to choose the best option among several possible semantic changes. A last relevant perspective
for future work with Dung’s framework is the combination of constraints and changes. Some combi-
nations of constraints and "quality of change" criteria have already been considered, but the rich level

136

7.5. Conclusion

Constraints [CdSCLS10] [DW11] [BB10] [Bau12] [BCdSL13] [BKRvdT13] [KBM+13]
Structural X X

Semantic X X X

Acceptability X X X X X

Change [CdSCLS10] [DW11] [BB10] [Bau12] [BCdSL13] [BKRvdT13] [KBM+13]
Structural X X X X X X X

Semantic X X X

Quality [CdSCLS10] [DW11] [BB10] [Bau12] [BCdSL13] [BKRvdT13] [KBM+13]
Structural X X

Semantic
Acceptability

Postulates X X

Table 7.1: Summary of Existing Approaches of Change in Argumentation (2010–2013)

Constraints [Rie14] [CMKMM14b] [DDLW14] [DHP14] [CMKMM14c] [NW14] [CMKMM15b] [BB15] [DHL+15]
Structural X X X X X

Semantic X

Acceptability X X X X X X X X

Change [Rie14] [CMKMM14b] [DDLW14] [DHP14] [CMKMM14c] [NW14] [CMKMM15b] [BB15] [DHL+15]
Structural X X X X X X X X X

Semantic X

Quality [Rie14] [CMKMM14b] [DDLW14] [DHP14] [CMKMM14c] [NW14] [CMKMM15b] [BB15] [DHL+15]
Structural X X X X

Semantic
Acceptability X X

Postulates X X X X X X

Table 7.2: Summary of Existing Approaches of Change in Argumentation (2014–2015)

of expressiveness of argumentation systems allows to consider many other ones. Our ultimate aim is a
more general representation of constraints and changes in Dung’s framework, sketched in this chapter,
which would allow to express each possible kind of enforcement. In particular, the use of our Boolean
encoding to process constraint enforcement through satisfaction and optimization problems, similarly to
our translation-based revision and extension enforcement approaches, is a challenging issue.

This study has mainly been conducted with Dung’s abstract argumentation framework. However,
as we have exemplified, the problems typology that has been set in this chapter may apply to other ar-
gumentation frameworks as well. Adapting existing work about change in Dung’s framework to other
argumentation frameworks is not necessarily straightforward, and this is a stimulating question for future
work.

A last interesting research track is the question of structured argumentation frameworks. In such
frameworks, two levels of constraints and changes may occur: either it is observed on the underlying
structure of arguments, and it may have some effects on the argument graph, or on the opposite, the agent
may enforce a constraint at the graph level, which impacts the underlying structure of arguments. As far
as we know, none of these ideas has been considered in the literature, although it may be particularly
useful, for instance when argumentation frameworks are used to reason with inconsistent belief bases
[BH01, BH08].

137

Conclusion

It’s the end. but the moment has been prepared for. . .

The Doctor – Doctor Who - Logopolis

Our work began as a Master thesis [Mai12], in which we studied the possibility to use AGM belief
revision in the setting of argumentation. The contribution of this master thesis was only an introduction
to what have been done in this Ph.D. thesis, but it led to several interesting research questions that we
have deepened. First, we have stated that several ways to adapt AGM postulates were possible; we can
consider that the important information convoyed by an argumentation framework is one of these types:
the extensions of the argumentation frameworks, the corresponding labellings, or the set of skeptically
accepted arguments. One of the main differences between these settings is the meaning of the negation.
When we consider skeptically accepted arguments as the outcome of the argumentation framework, ¬ai
can be interpreted as "ai is not a skeptical consequence of the argumentation framework", or said oth-
erwise, there is at least one extension which does not contain ai. When extensions are considered, ¬ai
means that ai does not belong to any extension. These are exactly the meanings of the revision formulae
that are considered in this thesis. For both of them, we proved that some revision operators satisfy our
postulates. We have also presented a version of the postulates suited to labellings, slightly different from
the one reported in the Master thesis.

This explains why, in this thesis, we have been firstly interested in revision of argumentation frame-
works, which is the subject of our two first contributions. We have studied different ways to use AGM
theory with argumentation frameworks, which are particularly interesting to offer an agent different ways
to incorporate a new piece of information in their argumentation framework. These revision operators
offer some possibilities which were not existing in the litterature when we started our study. In partic-
ular, when a agent receives a new piece of information, concerning arguments acceptance statuses, but
she does not have some new arguments at her disposal that could explain this change of statuses. Then,
we have also presented some extensions of these revision operators to tackle more possible cases, in
particular, the integration of an integrity constraint in the revision process, and an open world version
which allows the incorporation of new arguments.

One of the differences between our revision approaches is that the second one does not directly deal
with the components of the argumentation frameworks, but performs a translation into propositional
logic which allows to use propositional revision operators to obtain the expected result. We have been
interested in the application of such a logical translation to tackle other scenarios of dynamics of argu-
mentation frameworks. In particular, our work about extension enforcement has led to the developement
of some pieces of software which use satisfaction and optimization algorithms to compute the result.
This kind of approach seems very promising for argumentation issues, since constraint programming
provides often some efficient approaches to solve highly complex problems.

138

The last part of our contribution is an opening to numerous challenging future works. Indeed, we
have proposed a classification of constraints to be enforced in an argumentation framework, and of the
different kinds of changes to apply in the argumentation frameworks to satisfy these constraints. We
have seen how the existing works, including our own ones, fit in this classification, and we have identi-
fied some interesting kinds of change which have not been considered so far. We also want to consider
dynamics scenarios in some other argumentation settings, notably the different extensions of Dung’s ar-
gumentation frameworks.

As we have explained, the use of logical encodings to tackle argumentation issues is particularly
interesting. This has led to the implementation of a quite efficient software to perform extension en-
forcement. We have also been part of another project which has the same idea at its origin: CoQuiAAS
[LLM15a, LLM15c, LLM15b]. The developement of this software and its participation to the First In-
ternational Competition on Computational Models of Argumentation [TV15] come from our objective
to provide to the community some efficient software solutions to argumentation reasoning problems. We
think that the study of logical encodings of argumentation semantics is a key step for several interesting
issues. In this thesis, we have described some methods which take advantage of propositional encodings
to perform some reasoning tasks on argumentation frameworks. Our approaches are completely generic,
since they are based on the existence of a propositional formula whose models exactly correspond to the
extensions of the argumentation framework for the chosen semantics. Then, the same scheme can be
used, from the considered propositional encoding, to define our revision and enforcement operators. But
this kind of direct polysize propositional encoding of the semantics is not possible with any semantics,
since some of them (for instance, the preferred semantics) have a complexity higher than NP. To be
able to compute our translation-based revision or enforcement operators, we need to consider either a
propositional encoding which will be exponential in the size of the argumentation framework (while the
current encodings have a polynomial size), or to choose a new logical setting to represent the seman-
tics. For instance, the Quantified Boolean Formulae setting is a good candidate [EW06]. This kind of
encodings is not only useful for revision and enforcement issues, but it can also be a method to check the
realizability of a set of candidates [DDLW14], and moreover to associate an argumentation framework
with this set of candidates.

Many other interesting future works are envisioned. First, as already explained in the related chap-
ters, the kinds of change that we have characterized with rationality postulates are only a small part of
the types of change that can occur in an argumentation framework. In particular, belief revision based on
minimal change of the attack relation have not been characterized through the properties that it should
satisfy. Also, we want to deepen our understanding of the different enforcement scenarios, the extension
enforcement, and more generally the constraint enforcement that we sketched in the last chapter. We also
want to formalize the change scenarios that are described in the last chapter, in particular the change of a
semantics to reach a goal about acceptability, which is an interesting alternative way to tackle problems
similar to the ones that we have studied in this thesis.

The translation-based approach to solve argumentation related issues can be performed through other
settings. For instance, we think that establishing a link between the dynamics of argumentation frame-
works and planning is a promising approach. If we suppose that each state is an argumentation frame-
work, representing the agent’s beliefs, and that the transitions between states are the possible elemen-
tary operation to perform on an argumentation framework (adding or removing arguments and attacks),
changing an argumentation framework to satisfy some constraint (such that a revision formula or an
extension enforcement) is equivalent to find a plan from the current state to a state which satisfies the
goal. Finding an optimal plan would guarantee a form of minimal change on the structure of the graph.

139

Conclusion

Intuitively, this is related to some dialogue protocols such that these defined in [KBM+13]. It is also
interesting to determine whether this kind of approach would allow to define new kinds of operators, or
would be a rewriting of existing ones.

A very interesting related topic developped in the recent years is the merging of argumentation frame-
works [CMDK+07, TBS08, BM11, GR12, DMW12, DKV15], which is very useful if we want to repre-
sent the beliefs of a group of agents, each of them using its own argumentation framework. In particular,
the question (already present for revision of argumentation frameworks) to decide if the main piece of
information is the structure of the framework, or the statuses of arguments, is really important and may
lead to the definition of some very different merging approaches. It is well-known that in the logical
framework, belief merging [KP98, KP99, Kon00] is connected to belief revision. In particular, [KP99]
defines constrained belief merging, which is an extension of AGM belief revision. So the study of the
merging of argumentation frameworks is an interesting and natural extension of our works about revision
of argumentation frameworks, which would lead to the definition of merging operators focusing on the
arguments statuses. Similarly, we know that there is a link between belief revision and contraction in the
AGM framework. We think that adapting contraction to argumentation setting is also interesting. Indeed,
the revision approach allows an agent to incorporate an information such that "this argument should be
accepted by every extension" or "this argument should be rejected by every extension". But it is not
possible here to incorporate a piece of information such that "this argument should be neither skeptically
accepted nor skeptically rejected", which would be the case with a contraction operator. Since proposi-
tional belief contraction has been defined [CKM15], as a follow up of Katsuno and Mendelzon’s work
on belief revision, we think that an adaptation of belief contraction, similar to our first work on belief
revision, will be a promising approach to tackle this scenario.

140

Appendix

141

142

Appendix A

Background Notions

Pure mathematics can not lie!

The Doctor – Doctor Who - The Claws of Axos

This first appendix presents the basic mathematical notions which are used in this thesis. Most of
these ones do not present any real difficulty of understanding, but it is the opportunity to fix some no-
tations which will appear in this document. It can also be useful to a reader which is not familiar with
some of the mathematical concepts which are used in this thesis. So, this chapter introduces basic notions
about sets and binary relations, before presenting propositional logic. Without any in-depth analysis, we
give some definitions about graphs. We are also interested in complexity theory: we introduce the no-
tions required to understand the complexity classes from the polynomial hierarchy, and then we present
some well-known problems which are used in the thesis and we recall their complexity.

Contents

A.1 Sets and Relations . 144

A.2 Propositional Logic . 145

A.3 Graph Notions . 149

A.4 Computational Complexity . 151

A.4.1 Turing Machines and Decidability . 151

A.4.2 Determinism, Hardness, Completeness and Polynomial Hierarchy 153

A.4.3 Complexity of Function Problems . 157

A.4.4 Complexity of Well-Known Problems: Constraint Satisfaction and Opti-
mization . 157

143

Appendix A. Background Notions

A.1 Sets and Relations

We call a set a collection of objects, without any precise order, in which an object cannot appear more
than once. In this document, we will usually use capital letter to denote a set (for instance, A, E or
S), sometimes written in calligraphy (like C). The set E containing the objects x and y is denoted
E = {x, y}. There exist some relations and operations on sets. Among them, the most usual ones are:

• x ∈ E means that the object x belongs to the set E.

• E1 ⊆ E2 is equivalent to ∀x ∈ E1, x ∈ E2, meaning that each object which belongs to E1 also
belongs to E2. E1 may be equal to E2 in this case. The strict counterpart is denoted ⊂.

• E1 ∩ E2 = {x | x ∈ E1 and x ∈ E2} is the intersection of E1 and E2, that is the set of objects
which are in E1 and E2.

• E1 ∪ E2 = {x | x ∈ E1 or x ∈ E2} is the union of E1 and E2, that is the set of objects which are
either in E1 or in E2, or both at once.

• E1\E2 = {x | x ∈ E1 and x /∈ E2} is the difference between E1 and E2, that is the set of objects
which appear in E1 but not in E2.

• E1∆E2 = (E1\E2) ∪ (E2\E1) is the symmetrical difference between E1 and E2, that is the set
of objects which belong to E1 but do not belong to E2, and vice-versa.

• E1 × E2 = {(x, y) | x ∈ E1 and y ∈ E2} is the Cartesian product of E1 and E2, that is the set of
pairs with the first member is an element from E1, and the second member is an element from E2.

A (binary) relation R between two sets E1 and E2 is a subset of the Cartesian product E1 × E2.
x ∈ E1 is in relation with y ∈ E2 by R if and only (x, y) ∈ R. A relation on the set E is a subset of
E × E. Such a relation is:

• reflexive if ∀x ∈ E, (x, x) ∈ R;

• transitive if ∀x, y, z ∈ E, if (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R;

• symmetrical if ∀x, y ∈ E, if (x, y) ∈ R then (y, x) ∈ R;

• anti-symmetrical if ∀x, y ∈ E, if (x, y) ∈ R and (y, x) ∈ R then x = y;

• total if ∀x, y ∈ E, either (x, y) ∈ R, or (y, x) ∈ R, partial otherwise.

Then, a binary relation is called

• an equivalence relation if it is reflexive, transitive and symmetrical;

• an order relation if it is reflexive, transitive and anti-symmetrical;

• a pre-order if it is reflexive and transitive.

Given an order (or a pre-order) ≤ on a set E, we define its strict counterpart < by the binary relation
on E such that, ∀x, y ∈ E, x < y if x ≤ y and y � x. The equivalence relation resulting from ≤ is
denoted by =, defined as the binary relation on E such that, ∀x, y ∈ E, x = y if and only if x ≤ y and
y ≤ x. Moreover, for each subset E′ of E, we define the set of minimal elements of E′ with respect to
≤ by min(E′,≤) = {x ∈ E′ | ∄x′ ∈ E′ such that x′ < x}. Similarly, the maximal elements of E′ with
respect to ≤ are max(E′,≤) = {x ∈ E′ | ∄x′ ∈ E′ such that x < x′}.

144

A.2. Propositional Logic

Example 37.

Let E be the set {John, Paul,George,Ringo}.

• The relation R1 on E defined by (x, y) ∈ R1 if and only if x was born the same year than y is an
equivalence relation.

• The relation R2 on E defined by (x, y) ∈ R2 if and only if x is taller than y is an order relation.

So, as Ringo was born on july 7th 1940 and Paul on june 18th 1942, (Ringo, Paul) /∈ R1. But as John
was born on october 9th 1940, (Ringo, John) ∈ R1.
We know that John and Paul are both 1.80 m tall, so the pairs (John, Paul) and (Paul, John) both
belong to R2, together with (Paul,George), since George is 1.77 m tall.

Given a set of elements E, it is useful for many applications to be able to quantify how two elements
of E are different. This can be done through a notion of (pseudo-)distance.

Definition 130.

A pseudo-distance d over E is a mapping from each pair of elements in E × E to a non-negative real
number in R, such that

• d(e1, e2) = 0 if and only if e1 = e2;

• d(e1, e2) = d(e2, e1).

Moreover, d is a distance if it satisfies

• d(e1, e2) + d(e2, e3) ≥ d(e1, e3).

A.2 Propositional Logic

Now, let us introduce some basic notions on propositional logic. It is one of the simplest fragments
of logic. The basic piece of information on which is built a propositional language is a set of Boolean

variables called the vocabulary: V = {x1, . . . , xn}. The xi variables can take two different values, true
or false. These values are usually noted respectively 1 and 0.

A propositional formula is built on a vocabulary V and a set of connectives used to link the variables,
for instance C = {∧,¬}, with ∧ meaning the conjunction (the "and": x ∧ y means that x is true and y
is true) and ¬ meaning the negation (the "not": ¬x means that x is false). We can use these connectives
to define some other ones:

• disjunction ("or") x ∨ y can be defined as ¬(¬x ∧ ¬y), meaning that either x is true, or y is true
(or both at the same time);

• exclusive or x ⊕ y can be defined as (x ∨ y) ∧ (¬x ∨ ¬y), meaning that either x is true, or y is
true, but not both at the same time;

• material implication x⇒ y can be defined as ¬x∨y, meaning that if x is true, then y is also true;

• equivalence x ⇔ y can be defined as (x ⇒ y) ∧ (y ⇒ x), meaning that x and y have the same
truth value.

145

Appendix A. Background Notions

These connectives apply to formulae, constants also noted true and false and variables (which are atomic
formulae). In this thesis, we usually use Greek letters to denote propositional formulae (ϕ, µ for in-
stance).

Once the syntax of formulae is established, it is required to define the associated semantics to de-
termine the truth value of a formula ϕ, given the truth values of the variables belonging to ϕ. We
call an interpretation any valuation of an element of {true, false} to each variable from the vocabulary
used to build the language;18 such an interpretation is a mapping ω : V −→ {true, false}. We use
ω(x) to represent the truth value associated to the Boolean variable x. We can represent ω as the set
{x | x ∈ V, ω(x) = true} ∪ {¬x | x ∈ V, ω(x) = false}, or even with the more compact representation
{x | x ∈ V, ω(x) = true} meaning that the variables which do not belong to the set receive the value
false.
Truth values of formulae are defined in a recursive way from the values of their subformulae. For in-
stance, truth tables of the usual connectives are given in Table A.1 and Table A.2.

x ¬x

false true

true false

Table A.1: Truth Table of the Negation

x y x ∧ y x ∨ y x⊕ y x⇒ y x⇔ y

false false false false false true true

false true false true true true false

true false false true true false false

true true true true false true true

Table A.2: Truth Table of the Binary Connectives

• We call a model of the formula ϕ any interpretation ω which satisfies ϕ, meaning the the truth
value associated to ϕ is true. We note ω |= ϕ. In the other case, ω is a counter-model of ϕ.

• A formula which has at least one model is satisfiable (or consistent), in the other case it is unsat-

isfiable (or inconsistent).

• A formula ϕ which is satisfied by every interpretation is said to be valid, noted |= ϕ.

• Let ϕ and ψ be two formulae. ϕ implies ψ, noted ϕ ⊢ ψ, if each model of ϕ is a model of ψ. They
are equivalent, noted ϕ ≡ ψ, if and only if they have the same set of models.

• Two formulae ϕ and ψ are equi-satisfiable if and only if ϕ is satisfiable implies that ψ is also
satisfiable, and vice-versa.

We note Mod(ϕ) the set of models of the propositional formula ϕ.

Example 38.

Let V = {r, s, u} (for rain, sun and umbrella) be a set of Boolean variables. The formula ϕ = (r ⊕

18We can restrict this valuation to the variables belonging to the formula.

146

A.2. Propositional Logic

s) ∧ (r ⇒ u) represents the information about weather meaning that it may rain, or the weather may be
sunny, but not both at the same time; and if it is raining, one must take an umbrella.
This formula is consistent, for instance ω = {r, u} is a model. ω′ = {r, s} is a counter-model.

Interpretation r s u r ⊕ s r ⇒ u ϕ

ω true false true true true true

ω′ true true false false false false

Table A.3: Truth Table of formula ϕ for the interpretations ω and ω′

A notion of size of a formula is useful for the definition of some concepts.

Definition 131.

Given a propositional formula ϕ, the size of the formula ϕ is defined as the number of symbols (variables
and connectives) required to write ϕ.

For instance, the size of ϕ1 = a1 ∧ a2 is 3, while the size of ϕ2 = x ∨ (y ∧ z) is 5.

It is possible to normalize the syntax of propositional formulae, applying some transformation rules
to ensure that the syntax of the resulting formula satisfies some constraints, without changing the seman-
tics of the formula (so, without changing the set of models).

Let us introduce two of the most usual normal forms:

Definition 132.

• A formula is a clause if it is written as x1 ∨ x2 ∨ · · · ∨ xn (with xi some Boolean variables).

• A formula is a term if it is written as x1 ∧ x2 ∧ · · · ∧ xn (with xi some Boolean variables).

• A formula is written under conjunctive normal form (CNF) if it is a conjunction of clauses.

• A formula is written under disjunctive normal form (DNF) if it is a disjunction of terms.

Every propositional formula can be rewritten as a CNF or DNF formula. The transformation can be
particularly hard to compute (we explain this with more details in Section A.4).

Proposition 45.

For each propositional formula ϕ, Algorithm 1 returns a propositional formula ϕ′ such that ϕ′ ≡ ϕ and

ϕ′ is a CNF formula.

Let us mention that the first method, described in Algorithm 1, requires exponential space in the size
of the formula. If n is the size of the formula ϕ, the equivalent CNF formula obtained by Algorithm 1
may have its size which is exponential in n. We can use another method, with a polynomial size increase
when the objective is to preserve only equisatisfiability (and not the set of models):

Proposition 46 (Tseitin Transformation [Tse68]).
For each propositional formulae ϕ1 and ϕ2 built on the vocabulary V ,

1. ϕ1 ∧ ϕ2 can be replaced (¬ϕ1 ∨ ¬ϕ2 ∨ α) ∧ (ϕ1 ∨ ¬α) ∧ (ϕ2 ∨ ¬α) with α /∈ V ;

147

Appendix A. Background Notions

Algorithm 1: naiveCNFTransformation
Input: A propositional formula ϕ
Output: A CNF formula ϕ′ such that ϕ′ ≡ ϕ
if (ϕ is a variable) or (ϕ is a constant) then

return ϕ

else if ϕ = ϕ1 ∧ ϕ2 then

/* naiveCNFTransformation(ϕ1) is equal to ϕ1
1 ∧ ϕ

2
1 ∧ . . . ϕ

n
1 */

/* naiveCNFTransformation(ϕ2) is equal to ϕ1
2 ∧ ϕ

2
2 ∧ . . . ϕ

m
2 */

return ϕ1
1 ∧ ϕ

2
1 ∧ . . . ϕ

n
1 ∧ ϕ

1
2 ∧ ϕ

2
2 ∧ . . . ϕ

m
2

else if ϕ = ϕ1 ∨ ϕ2 then

/* naiveCNFTransformation(ϕ1) gives ϕ1
1 ∧ ϕ

2
1 ∧ . . . ϕ

n
1 */

/* naiveCNFTransformation(ϕ2) gives ϕ1
2 ∧ ϕ

2
2 ∧ . . . ϕ

m
2 */

return (ϕ1
1 ∨ϕ

1
2)∧ (ϕ

2
1 ∨ϕ

1
2)∧ . . . (ϕ

n
1 ∨ϕ

1
2)∧ · · · ∧ (ϕ

1
1 ∨ϕ

m
2)∧ (ϕ2

1 ∨ϕ
m
2)∧ . . . (ϕn1 ∨ϕ

m
2)

else if ϕ = ¬ϕ′ then

if ϕ = ¬x then
return ¬x

else if ϕ = ¬(¬ϕ1)) then
return naiveCNFTransformation(ϕ1)

else if ϕ = ¬(ϕ1 ∨ ϕ2) then
return naiveCNFTransformation(¬ϕ1 ∧ ¬ϕ2)

else if ϕ = ¬(ϕ1 ∧ ϕ2) then
return naiveCNFTransformation(¬ϕ1 ∨ ¬ϕ2)

else if ϕ = (ϕ1 ⇒ ϕ2) then
return naiveCNFTransformation(¬ϕ1 ∨ ϕ2)

else if ϕ = (ϕ1 ⇔ ϕ2) then
return naiveCNFTransformation((ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ¬ϕ2))

else if ϕ = (ϕ1 ⊕ ϕ2) then
return naiveCNFTransformation((ϕ1 ∧ ¬ϕ2) ∨ (¬ϕ1 ∧ ϕ2))

148

A.3. Graph Notions

2. ϕ1 ∨ ϕ2 can be replaced by (ϕ1 ∨ ϕ2 ∨ ¬α) ∧ (¬ϕ1 ∨ α) ∧ (¬ϕ1 ∨ α) with α /∈ V ;

3. ¬ϕ1 can be replaced by (ϕ1 ∨ α) ∧ (¬ϕ1 ∨ ¬α) with α /∈ V .

The recursive applications of the rules above lead to a CNF formula which is equi-satisfiable to the input

fomula ϕ. For each model m′ of the resulting formula ϕ′, a projection of it on V gives a model m of ϕ.

At last, to conclude this presentation of propositional logic, let us address the notion of knowledge
base (or belief base). It is usual to represent the pieces of knowledge (or beliefs) of an agent by a set
of logical formulae K = {ϕ1, . . . , ϕn} called a belief base. This kind of set is usually interpreted in a
conjunctive way, meaning that K ≡ (ϕ1 ∧ · · · ∧ ϕn). Depending on the applications, it is possible to
reason with a knowledge base exactly in the same way as a "simple" propositional formula. Moreover,
we are restricted here to the case of propositional knowledge and belief bases, but it is of course possible
to reason with other kinds of logics. A belief base is called a theory when it is closed with respect to the
consequence relation.

Definition 133 (Cn-Theory).
A consequence operator à la Tarski [Tar30] Cn is such that, for every belief bases K,K ′:

• K ⊆ Cn(K) ;

• Cn(K) = Cn(Cn(K)) ;

• If K ⊆ K ′, then Cn(K) ⊆ Cn(K ′).

The belief base K is a Cn-theory if and only if it is deductively closed for Cn, meaning K = Cn(K).

In the usual case, Cn is defined by the consequence relation is Cn(K) = {ϕ | K ⊢ ϕ}, with ⊢ the
classical inference relation that we defined previously. So we use the notation K ⊢ ϕ to mean that the
formula ϕ is a consequence of the belief base K.
K⊥ denotes the trivial belief base, meaning the base containing the set of all formulae in the language
used by the agent: K⊥ = Cn({⊥}).

A.3 Graph Notions

Let us continue this presentation of background notions with a section about graph theory. A graph is a
structure composed of two kinds of data. The first kind is a (finite) set of elements called nodes, linked
by the second kind of data: edges. These edges can be directed from one node to another one, or they
can be bi-directed. We distinguish two kinds of graphs associated to both kind of links:

• A non-directed graph is a pair G = 〈N,E〉 with N the set of nodes, and E ⊆ {{x, y}|x, y ∈ N}
the set of edges.

• A directed graph (also called digraph) is a pair G = 〈N,E〉 with N the set of nodes, and E ⊆
N ×N the set of edges.

In this thesis, we are essentially interested in digraphs.

Example 39.

Let N = {l,m, n, p, t} (for Lens, Marseille, Nancy, Paris, Toulouse) be a set of cities.

• NS associated with the set of non-directed edgesE1 = {{l, p}, {p, n}, {p,m}, {l,m}, {m, t}, {n,m}, {l, n}}
generates the non-oriented graph G1 given on Figure A.1.

149

Appendix A. Background Notions

Paris

Lens

Nancy

Toulouse
Marseille

Figure A.1: The Non Oriented Graph G1

Paris

Lens

Nancy

Toulouse
Marseille

Figure A.2: The Digraph G2

• N associated with the set of oriented edgesE2 = {(l, p), (p, l), (p, n), (p,m), (l,m), (m, t), (n,m), (l, n)}
generates the digraph G2 given on Figure A.2.

The structure of a graph influence the processing which is done with it. Some particular patterns in a
graph structure have been defined; in particular, these ones are suited to digraphs:

• A path (x1, . . . , xn) is a sequence of nodes x1, . . . , xn ∈ S such that for each i ∈ {1, . . . , n− 1},
(xi, xi+1) ∈ E. n is the length of the path.

• We call the node xi an ascendant (respectively a descendant) of the node xj if there exists a path
from xi to xj (respectively from xj to xi).

• A cycle is a path such that the first node is equal to the last one.

• A loop is a cycle of length 1, that is an edge from a node x to itself.

Example 40.

Let G be the digraph described on Figure A.3. (e, a, b) is a path of length 3 in the digraph G. (a, b, c, d)
is a cycle of length 4, and (c, c) is a loop. e is an ascendant of each other node, while c is a descendant
of each node (including itself).

150

A.4. Computational Complexity

a b

cd

e

Figure A.3: The Digraph G

A.4 Computational Complexity

When a program performs a task, two kinds of resources are used: time (required to compute the result
of the problem) and space (for instance, the number of variables required to represent and solve the
problem). Power of modern computers, fitted with processors which frequency usually exceeds several
GHz and memory which exceeds several Go, seems to make useless saving of time and space resources.
It is true that some simple problems can be solved even with naive algorithms, but it is not the case for
every interesting problem. In particular, most of problems in artificial intelligence, including the ones
we study in this thesis, are concerned with the resolution of computationally hard problems. So we need
to use some more sophisticated technics to be sure to solve our problems with reasonable time and space
resource.
Complexity theory allows to classify and compare problems depending on the hardness to solve them.
This section aims at presenting the basic of this theory, and the complexity of some well-known problems,
which are used in this thesis.

A.4.1 Turing Machines and Decidability

One of the seminal works on complexity theory is a mathematical model described in 1936 by Alan Tur-
ing [Tur36], who called it computing machine: it is an abstract model able to compute any "calculable"
decimal number, meaning any number which can be computing using a finite quantity of resources. Al-
though this Turing machine was described years before the apparition of computers, it is a quite faithful
abstraction of our modern machines: it is a tape composed of a sequence of squares, which is browsed
by a reader/writer (resembling to the memory of a computer), altogether with a transition function (rep-
resenting the processor of a computer).
Each algorithm can be associated to a Turing machine, and vice-versa. So studying Turing machines
properties is equivalent to study the properties of algorithms. First, let us briefly present Turing’s model:

Definition 134.

A Turing machine is a 7-tuple 〈Q,Γ, B,Σ, q0, δ, F 〉 with :

• Q = {q0, q1, . . . , qm}, a finite set of states;

• Γ, the finite set of symbols used by the machine (machine vocabulary);

• B ∈ Γ, a particular symbol called blank;

• Σ, the input vocabulary;

• q0 ∈ Q, the initial state of the machine;

• δ : Q× Σ −→ Q× Γ× {L,R}, the transition function ;

151

Appendix A. Background Notions

• F ⊆ Q, the set of final states.

The behaviour of the Turing machine is as follows: starting at the initial state q0 with the symbol in
the first square of the tape, the transition function chooses the next state of the machine, the symbol to
write in the current square, and the direction in which the reader/writer must move. The machine repeats
this behaviour, with the new state and the symbol which is read by the reader/writter, until it reaches a
final state. Then, the outcome of the machine (and so, the result of the algorithm) is the word written on
the tape.

Example 41.

Let us describe a Turing machine which multiplies any integer number (represented in binary notation)
by 2. We recall that this multiplication is done just by adding a 0 at the end of the representation of the
number. This very simple algorithm can be described by the machineM = 〈Q,Γ, ,Σ, q0, δ, F 〉 defined
by:

• Q = {q0, q1}

• Γ = {0, 1, }

• Σ = {0, 1}

• F = {q1}

• δ described on Table A.4.

Current state Current symbol Next state Symbol to write Direction of the move

q0 0 q0 0 R

q0 1 q0 1 R

q0 q1 0 R

q1 STOP

Table A.4: The Transition Function δ for the Turing MachineM

So, if 42 is the input of the machine (represented under its binary notation 101010), the behaviour of
the machine is this one:

• The machine reads the symbol 1 at the first square of the tape, and applies the rule associated with
the configuration (q0, 1) in the transition function, which re-writes the symbol 1 in the square,
moves the reader/writer to the right, and stays in the state q0.

• The machine reads the symbol 0 at the second square of the tape, and applies the rule associated
with (q0, 0): re-write 0 in the square, stay in state q0, and move the reader/writer to the right.

• The previous steps are repeated twice.

• At the 7th square of the tape, the reader/writer reads the symbol . The rule to apply is to write 0
in the square, to move the reader/writer to the right, and to change the state from q0 to q1, which is
the finale state.

The Turing machine output is the sequence of symbols 1010100, which corresponds to 84.

152

A.4. Computational Complexity

Turing’s model, although it is very simple, is expressive enough to represent any existing algorithm.
And so, for instance, a programming language is called Turing-complete if it is expressive enough to
represent any Turing machine.

More that studying the expressiveness of a programming language, we use Turing machine to classify
problems according to their hardness. First, let us introduce different kinds of problems that are useful
in this thesis.

Definition 135 (Decision Problem, Function Problem).
A decision problem P over a set of input data E is a mapping from any element in E to a value in
{true, false} (or equivalently, {YES, NO}) .
A function problem P over a set of input dataE is a mapping from any element inE to a single outcome.

The outcome of a decision problem is an answer YES or NO to a question, while the outcome of
a function problem is supposed to be more complex than YES or NO. For instance, the problem of
determining if an equation has a solution is a decision problem, it is not required to exhibit a solution,
only to prove that there exists at least one. Then, the problem of determining a solution of the same
equation is a function problem. We can also refine the notion of function problem.

Definition 136 (Enumeration Problem, Optimization Problem).
The enumeration problem ENUM-P associated with the function problem P is a mapping from any
element ei ∈ E to the set of all the outcomes of P over ei.
The optimization problem OPT-P associated with the function problemP is a mapping from any element
ei ∈ E to a single outcome of P over ei which minimizes (or maximizes) a given criterion.

Keeping on the example of solving an equation, the enumeration problem is "Give all the solutions
of the equation", while a possible optimization problem is "Give the smallest solution of the equation"
(with respect to the natural order over the numbers).
In the rest of this chapter, we present essentially the complexity of decision problems.

A first distinction between decision problems is their decidability. It has been proved by Turing that
it is not possible to define a machineM which takes as input a second machineM′ and a data e, and
which answers YES if M′ can reach a finale state from the input e, and NO in the other case. This
problem is called HALTING, it is the most well-known undecidable problem.

A decidable problem is defined by:

Definition 137.

Let P be a problem defined on a set of data E = {e1, . . . , en}. P is decidable if there exists a Turing
machineM such that for each ei ∈ E,M reaches a final state when it is executed on the input ei, and
gives a solution to the problem P for the input ei.

A.4.2 Determinism, Hardness, Completeness and Polynomial Hierarchy

The class of decidable problems can be refined, still with the use of Turing machines. Indeed, depending
on the properties of the machine used to solve a problem, the hardness of this problem is not the same.

Definition 138.

LetM be a Turing machine with δ its transition function. M is deterministic if and only if δ is a map-
ping from any configuration of the machine (q′, x′,m) to a single image. Otherwise, M is said to be
non-deterministic.

153

Appendix A. Background Notions

Roughly speaking, the simplest problems are those which can be solved by a deterministic Turing
machine without needing a high number of steps. Then, the complexity of harder problems can be
expressed with their need to use non-deterministic machines. This principle leads to the classification of
some of the decidable problems into the different classes of the polynomial hierarchy [GJ79, Pap94].
Let us first present the model of resources (time and space) used. The resolution time of a problem P
with the input e by a Turing machine M can be interpreted as the number of steps required for M to
reach a final state when it starts from e. We consider each step as a time unit. In a similar way, Turing
machine can be used to determine the use of space required to solve P . It is the number of squares of the
tape used to obtain the result. Let us notice that this space complexity can be used as a lower bound of
time complexity: we know that at least k steps are required to browse k squares of the tape.
For both of these measures, we define the complexity of the problem by a mapping f(n), where n is the
size of the input data e (for instance, when the input is a binary number, n can be the number of bits used
to represent e), and f is the mapping which returns the number of steps (respectively squares) required
to obtain the result of the Turing machine processing, and the notation O(f(n)) means, intuitively, that
the problem can be solved in the worst case in f(n) steps (respectively, with f(n) squares of the tape),
and maybe less. More formally, a mapping g satisfies g(n) ∈ O(f(n)) if and only if there exists a pair
of finite constants (c, n0) such that:

∀n ≥ n0, g(n) ≤ c× f(n)

Then we define formally time complexity and space complexity of a problem:

Definition 139.

A problem P belongs to the complexity class TIME(f(n)) if and only if there exists a deterministic
Turing machine which solves P in a number of steps O(f(n)) for input data of size n.

Definition 140.

A problem P belongs to the complexity class SPACE(f(n)) if and only if there exists a deterministic
Turing machine which solves P with a number of squares of the tape O(f(n)) for input data of size n.

These time and space complexity have been used to define usual complexity classes. The less difficult
problems are those which belong to the class TIME(f(n)) with f a polynomial. This class of problems
is called P [GJ79, Pap94].

Definition 141.

The class P is the set of all the decision problems which can be solved by a deterministic Turing machine
in polynomial time in the size of the input, meaning that P is equivalent to

⋃+∞
k=0TIME(nk).

This class contains "simple" problems. For instance, given a list l of integers, sorting l in increasing
order can be done in polynomial time by a deterministic Turing machine. This is not the case of every
problem, and in particular most of interesting problems studied in Artificial Intelligence cannot be solved
in polynomial time with a deterministic Turing machine. So we need to define complexity classes for
harder problems than P problems.

Definition 142.

The class NP is the set of all the decision problems that can be solved by a non-deterministic Turing
machine in polynomial time in the size of the input.

From the definition, each problem in P also belongs to NP, since a deterministic Turing machine can
be seen as a particular non-deterministic Turing machine, so P ⊆ NP. The usual conjecture says that the
converse inclusion is false, but it is still an open question.

154

A.4. Computational Complexity

A problem in NP is decidable, because it can be solved by a deterministic Turing machine in time
O(af(n)), with f a polynomial and a a constant strictly greater than 1. Moreover, given a possible
solution s of a problem P ∈ NP, and an input e, it is possible to determine in polynomial time whether
s is a solution of P for the input e.
Given a complexity class C, it is possible to define its complement:

Definition 143.

The problem COP is called the complement of problem P if, for each input e, P answers YES if and
only if COP does not.
The class COC is the complement class of C, it contains all the complement problems of problems from
C.

It is known that P = COP but it is conjectured that this is not the case for NP and its complement
class CONP. The ground of the hierarchy of complexity classes, called polynomial hierarchy, is:

• P ⊆ NP

• P ⊆ CONP

It is possible to define classes of decidable problems with a greater complexity than NP and CONP.
For this purpose, let us introduce an extension of the Turing machines model.

Definition 144.

A Turing machine (deterministic or not) with an oracle of class C is a Turing machine able to compute
in a single step the answer of a problem in the class C.

These Turing machines with oracles are used to define complexity classes customized by the com-
plexity of the oracle.

Definition 145.

Let C1 and C2 be two complexity classes. The complexity class CC2
1 contains all the problems which

can be solved by a Turing machine from the class C1 with an oracle from the class C2.

These customized complexity classes are used to define the polynomial hierarchy.

Definition 146.

The polynomial hierarchy [Sto76] is the set of complexity classes defined recursively by:

• ∆P
0 = ΣP0 = ΠP0 =P

• ∆P
k+1 = PΣP

k

• ΣPk+1 = NPΣP
k

• ΠPk+1 =COΣPk+1

The first levels of these hierarchy is illustrated on figure A.4. C1 → C2 means that class C1 is
included in class C2.

Determining that two problems belong to a same complexity class from the hierarchy is not enough
to determine which one is harder to solve, or to determine if their hardness is equivalent. Indeed, if P1
and P2 both belong to NP, it is possible that one of them belongs to P but not the other one, which is
consequently harder to solve than the first one. We can use polynomial-time reduction to determine the
relative complexity of two problems.

155

Appendix A. Background Notions

P

NP

CONP

∆P
2

ΣP2

ΠP2

∆P
3

ΣP3

ΠP3

. . .

Figure A.4: Schematic Representation of the Polynomial Hierarchy

Definition 147.

Let P1 and P2 be two problems, and ϕ an algorithm the input of which is an instance of P1 and the
output of which is an instance of P2. ϕ is a polynomial-time reduction from P1 to P2 if and only if:

• ϕ can be computed in polynomial-time in the size of its input;

• for each instance I of P1, P1(I) = Y ES if and only if P2(ϕ(I)) = Y ES.

If there is a polynomial-time reduction from a problem P1 to a problem P2, then P2 is at least as
hard to solve as P1. We use this definition to determine if the complexity of a problem is at least equal
to the complexity of a class in the polynomial hierarchy.

Definition 148.

The problem P is C-hard if and only if there exists a polynomial-time reduction from each problem P ′ ∈
C to P .

This means that the problem P is at least as hard to solve than any problem in C, and it may be
harder. We can guarantee the precise complexity of a problem if it is C-hard and it belongs to C.

Definition 149.

The problem P is C-complete if and only if it is C-hard and it belongs C.

Even if it is still an open question, it is usually admitted that P 6= NP. Consequently, a problem in the
class P is supposed to be strictly less hard to solve than a NP-complete complete. In the other case, there
would be a collapse of the polynomial hierarchy at its ground: each problem in the polynomial hierarchy
would be solvable in polynomial-time. Even if it would be possible to distinguish between them thanks
to the degree of the associated polynomial, it would let us consider a pratical improvement for solving
the reasoning tasks associated with Artificial Intelligence.
Let us still remark that this result would have a negative effect in some other domains: in cryptography,
for instance, the robustness of some approaches to ensure the security of data and information transfers
(like online payment) comes from the pratical difficulty to solve NP-hard problems.

A particular class of problems can be defined from NP and CONP. To define it, we need to introduce
the notion of intersection of two problems.

Definition 150.

The problem P is the intersection of the problems P1 and P2, denoted by P1∩P2, if and only if P1 and P2

are defined on the same set of inputs, and for each input e, P (E) = Y ES if and only if P1(e) = Y ES
and P2(e) = Y ES.
The complexity class DP is the set of problems which are the intersection of a problem P1 ∈ NP and a
problem P2 ∈ CONP.

156

A.4. Computational Complexity

A DP-complete problem is at least as hard to solve as a NP-complete problem or a CONP-complete
problem.

We will finish this introduction to complexity of decision problems with the presentation of the
last complexity class useful for a good understanding of this thesis. Until now, we focused on time
complexity. However, problems can be classified as well with respect to their space complexity.

Definition 151.

The complexity class PSPACE is the set of decision problems which can be solved by a deterministic
Turing machine with a space O(f(n)) for each input of size n, with f a polynomial.

It is well-known that some problems in PSPACE are not particularly easy to solve. Indeed, NP ⊆
PSPACE. For practical applications, PSPACE-complete problems are usually more difficult than NP-
complete ones.

A.4.3 Complexity of Function Problems

By definition, function, optimization and enumeration problems are not decision problems, and their
complexity cannot be evaluated thanks to the polynomial hierarchy. However, we see easily that the time
and space resources required to solve a decision problem give lower bounds to the resources required to
solve function, optimization and enumeration problems. Indeed, if it is possible to compute a solution
of a problem (or an optimal solution, or every solution) in a time (respectively space) O(f(n)), then it
is possible to decide if a solution exists in O(f(n)): applying the function, optimization or optimization
algorithm proves enough.

Since the practical approaches to solve decision problems usually give a solution of the problem (and
not only YES or NO), we do not present the complexity classes corresponding to function problems. In
this thesis, we< either refer to the complexity of the related decision problems, or give a lower bound of
the complexity, when considering function problems.

A.4.4 Complexity of Well-Known Problems: Constraint Satisfaction and Optimization

Boolean Constraint Satisfaction

To finish this chapter, let us introduce some well-known problems, along with their complexity. These
problems are useful in the rest of this thesis. The first one, which is the most famous, is the problem
of Boolean Satisfiability (SAT). This problem consists in checking, for a propositional formula, if it
possesses at least one model. Most of solving approaches are focused on its variant CNF-SAT, which
is the restriction of the SAT problem to CNF formulae, given that every propositional formula can be
rewritten in conjunctive normal form (see Section A.2).

SAT is the first problem proved to be NP-complete [Coo71]. It is possible to prove that a problem
P is NP-hard pointing out a polynomial-time reduction from SAT to P . The simplicity to formulate
the SAT problem, and the expressiveness of propositional logic, explain the interest of Artificial Intelli-
gence researchers for this topic. During the recent decades, the power of SAT solvers has significantly
increased. Indeed, modern technics for SAT solving allow to consider instances with more and more
variables and constraints. We can overview the current state of SAT practical approaches in the result
of the international SAT competition [BDHJ14], organised as a satellite event of the International Con-

ference on Theory and Applications of Satisfiability Testing. Results of the last edition can be obtained

157

Appendix A. Background Notions

online: http://www.satcompetition.org/2014/results.shtml.

We explained previously that transforming any propositional formula into an equivalent DNF for-
mula is generally hard to compute. It is related to the complexity of the SAT problem: any DNF formula
is satisfiable as soon as one of its term is satisfiable, which can be checked in polynomial time. Trans-
forming any formula into an equivalent DNF formula requires exponential space in the worst case.

Pseudo-Boolean Constraint Satisfaction and Optimization

The problem of Pseudo-Boolean (PB) constraint satisfaction PB-SAT is an extension of SAT. Here,
Boolean variables can be linked by arithmetic constraints. For instance, a possible constraint is to expect
a sum of variables defined on the domain {0, 1} to be lesser or equal to a given value.
Any CNF formula can be re-written as a Pseudo-Boolean formula. Indeed, let x1 ∨ x2 ∨ · · · ∨ xn be a
clause in the considered CNF formula, it can be written simply as the PB constraint x1+x2+· · ·+xn ≥ 1,
meaning that the constraint is satisfied if and only if at least one of the variables xi is not equal to 0, which
is equivalent to expect xi to be true. So the clause is satisfied.

This proves that PB-SAT is NP-hard, since each SAT instance can be translated into a PB-SAT
instance. It is in fact well-known that PB-SAT is NP-complete [Kar72].

A variant of PB-SAT, noted here PB-OPT, is the problem of optimizing a set of Pseudo-Boolean
constraint with respect to some objective function. Formally, it consists in adding to the Pseudo-Boolean
constraint a function f(X), with X a subset of the problem variables, such that the expected solutions
are those which minimize the value of f(X) (or maximize, which is equivalent to minimize −f(x)).

Example 42.

With the vocabulary V = {x1, x2, x3, x4}, the propositional formula ϕ = (x1 ⊕ x2) ∧ (x3 ∨ x4) can be
translated into a Pseudo-Boolean formula in this way:

x1 + x2 = 1
x3 + x4 ≥ 1

So, obtaining a model of ϕ is equivalent to obtaining a solution of this set of Pseudo-Boolean con-
straints. For instance, S1 : x1 = 1, x2 = 0, x3 = 1, x4 = 1 is a solution of the PB-SAT problem
corresponding to the SAT problem on ϕ.
Moreover, if we want to minimize the cardinality of the solution, we have to add the linear objective
function

min f(x1, x2, x3, x4) = x1 + x2 + x3 + x4

In this case, the solution S1 is not optimal, because the value associated with this solution is 3, while
S2 : x1 = 1, x2 = 0, x3 = 1, x4 = 0 satisfies the constraints and minimizes the objective function.

The complexity of PB-OPT is higher than the complexity of PB-SAT: given a real number k, de-
termining if k is the optimal value of the objective function for a given instance of ths problem is DP-
complete, and computing the optimal solution itself is FPNP -complete19. We can explain this intuitively:
each PB-SAT instance is a particular PB-OPT instance with the objective function f(V) = 0; this ex-
plains that solving a set of Pseudo-Boolean constraints with respect to an objective function is at least as
hard as solving it without an objective function.

19FPNP is the class of all function problems which can be solved with a polynomial number of calls to an oracle in NP.

158

http://www.satcompetition.org/2014/results.shtml

A.4. Computational Complexity

Quantified Boolean Constraint Satisfaction

In this last part dedicated to the complexity of some well-known problems, we introduce another exten-
sion of SAT: QBF-SAT. It concerns satisfaction of Quantified Boolean Formulae. Such a formula is a
propositional formula enriched with some universal (∀) and existential (∃) quantifiers on the variables.
For instance, ∀x1, ∃x2, x1 ⇒ x2 is the quantified formula meaning that for each truth value assigned to
x1, it is possible to assign x2 a truth value such that x1 ⇒ x2 is true.
More generally, we define a QBF by Q1x1, Q2x2, . . . , Qnxn, ϕ, with Qi ∈ {∀, ∃} for each value of i,
and ϕ a propositional formula built on the vocabulary {x1, . . . , xn}.

We can show quite simply that QBF-SAT is NP-hard. Indeed, there is an obvious polynomial-
time reduction from SAT to QBF-SAT: for each propositional formula ϕ built on the vocabulary
{x1, . . . , xn}, we can build a QBF ∃x1, . . . , ∃xn, ϕ, which is true if and only if ϕ is satisfiable.

The opposite is not true. It is possible to associated a propositional formula to each QBF, but this
mapping is not always possible in polynomial-time. The corresponding algorithm is simple. It is a
recursive application of the following rewritting rules, stopping when all the quantifiers have disappeared:

1. ∃xi, ϕ subst({xi 7→ false}, ϕ) ∨ subst({xi 7→ true}, ϕ)

2. ∀xi, ϕ subst({xi 7→ false}, ϕ) ∧ subst({xi 7→ true}, ϕ)

with subst({xi 7→ V }, ϕ) the propositional formula obtained when the truth value V ∈ {true, false} is
assigned to the variable xi in ϕ.
For instance, subst({x1 7→ true}, (x1 ∨ x2) ∧ (¬x1 ∨ x3)) is the propositional formula (true ∨ x2) ∧
(false ∨ x3), which is equivalent to x3.
In the worst case (depending on the structure of ϕ and the quantifiers in the formula), this quantifier
elimination technique may result in a propositional formula exponentially greater than ϕ, which explains
that solving the QBF-SAT problem is harder than solving the SAT problem: it is in fact known as the
canonical PSPACE-complete problem [GJ79].

159

Appendix B

Proofs of the Results from Chapter 4

Proposition 25 (Representation Theorem).
Given a semantics σ, a revision operator ⋆ satisfies the rationality postulates (AE1) - (AE6) if and only

if there exists a faithful assignment which maps every framework F = 〈A,R〉 to a total pre-order ≤σF so

that

Extσ(F ⋆ ϕ) = min(Aσϕ,≤
σ
F).

Proof. Given a semantics σ and a faithful assignment which matches AF to the pre-order ≤AF , let ⋆ be
a revision operator such thatt Extσ(AF ⋆ ϕ) = min(Aσϕ,≤AF). We want to show that ⋆ satisfies the
postulates.

(AE1) Extσ(AF ⋆ ϕ) ⊆ Aσϕ.
The definition of the operator is enough to show that this postulate is satisfied, because
min(Aσϕ,≤AF) ⊆ A

σ
ϕ.

(AE2) If Extσ(AF) ∩Aσϕ 6= ∅ then Extσ(AF ⋆ ϕ) = Extσ(AF) ∩A
σ
ϕ.

Suppose that Extσ(AF) ∩Aσϕ 6= ∅.
We want to show the inclusion Extσ(AF) ∩Aσϕ ⊆ Extσ(AF ⋆ ϕ). Let ε ∈ Extσ(AF) ∩Aσϕ.

We know that ε ∈ Aσϕ. Moreover, since ε ∈ Extσ(AF), ∀ε′ ∈ Aσϕ, either

ε <AF ε
′ if ε′ 6∈ Extσ(AF)

or
ε ≈AF ε

′ if ε′ ∈ Extσ(AF)

(from the definition of faithful assignment).
So ∀ε′ ∈ Aσϕ, ε ≤AF ε′, therefore ε ∈ min(Aσϕ,≤AF) = Extσ(AF ⋆ ϕ).

Now we want to show the converse inclusion.
Let ε ∈ Extσ(AF ⋆ ϕ). ε ∈ Aσϕ since ⋆ satisfies (AE1).
Using reductio ad absurdum, let us suppose that ε 6∈ Extσ(AF). Since we proved that
Extσ(AF) ∩A

σ
ϕ ⊆ Extσ(AF ⋆ ϕ), and since this intersection is non-empty, ∃ε′ ∈ Extσ(AF ⋆ ϕ)

such that ε′ ∈ Extσ(AF) ∩ Aσϕ, and in particular ε′ ∈ Extσ(AF). Consequently, ε′ <AF ε (from the
definition of a faithful assignment), which is in contradiction with the fact that ε is a minimal element in
Aσϕ with respect to ≤AF .

160

So, ε ∈ Extσ(AF) ∩Aσϕ, which holds ∀ε ∈ Extσ(AF ⋆ ϕ), so Extσ(AF ⋆ ϕ) ⊆ Extσ(AF) ∩A
σ
ϕ.

The postulate is satisfied.

(AE3) If ϕ is σ-consistent, then Extσ(AF ⋆ ϕ) 6= ∅.
From the definition of the operator, this postulate is satisfied. Indeed, if the formula is σ-consistent, then
Aσϕ is a finite non-empty set. There exists in this finite set some minimal elements with respect to ≤AF ,
i.e. Extσ(AF ⋆ ϕ) 6= ∅.

(AE4) If ϕ ≡σ ψ, then Extσ(AF ⋆ ϕ) = Extσ(AF ⋆ ψ).
This postulate is satisfied from the definition of the operator.

Extσ(AF ⋆ ϕ) = min(Aσϕ,≤AF)
= min(Aσψ,≤AF) from Aσϕ = Aσψ
= Extσ(AF ⋆ ψ)

(AE5) Extσ(AF ⋆ ϕ) ∩ Aσψ ⊆ Extσ(AF ⋆ ϕ ∧ ψ).
If Extσ(AF ⋆ϕ)∩Aσψ = ∅, the postulate is satisfied. So we suppose now that Extσ(AF ⋆ϕ)∩Aσψ 6= ∅.

We first prove the inclusionExtσ(AF ⋆ϕ)∩Aσψ ⊆ Extσ(AF ⋆ϕ∧ψ). Using reductio ad absurdum,
suppose that ∃ε ∈ Extσ(AF ⋆ ϕ) ∩ Aσψ such that ε 6∈ Extσ(AF ⋆ ϕ ∧ ψ). We can rephraze it in this
way:

ε ∈ min(Aσϕ,≤AF) ∩ A
σ
ψ and ε 6∈ min(Aϕ∧ψ,≤AF)

From the first part, we deduce ε ∈ Aϕ∧ψ. However, ε is not a minimal element in this set with respect to
≤AF . Consequently, ∃ε′ ∈ Aϕ∧ψ such that ε′ <AF ε. From the definition of Aϕ∧ψ, ε′ ∈ Aσϕ holds. It is
in contradiction with ε ∈ min(Aσϕ,≤AF).
So Extσ(AF ⋆ ϕ) ∩ Aσψ ⊆ Extσ(AF ⋆ ϕ ∧ ψ).

(AE6) If Extσ(AF ⋆ ϕ) ∩ Aσψ 6= ∅ then Extσ(AF ⋆ ϕ ∧ ψ) ⊆ Extσ(AF ⋆ ϕ) ∩ Aσψ.
If Extσ(AF ⋆ϕ)∩Aσψ 6= ∅, let us suppose ∃ε ∈ Extσ(AF ⋆ϕ∧ψ) such that ε 6∈ Extσ(AF ⋆ϕ)∩Aσψ.
If ε ∈ min(Aϕ∧ψ,≤AF), then ε ∈ Aϕ∧ψ, and so ε ∈ Aσψ holds.
From this and ε 6∈ Extσ(AF ⋆ ϕ) ∩ Aσψ, we deduce ε 6∈ Extσ(AF ⋆ ϕ).
Since we suppose that the intersection is non-empty, ∃ε′ ∈ Extσ(AF ⋆ ϕ) ∩ Aσψ. In particular, ε′ is a
model of ϕ and ψ, i.e. ε′ ∈ Aϕ∧ψ. From ε ∈ Extσ(AF ⋆ ϕ ∧ ψ) = min(Aϕ∧ψ,≤AF) and ≤AF is a
total relation, we get that ε ≤AF ε′.
As ε′ ∈ Extσ(AF ⋆ϕ) = min(Aσϕ,≤AF), we have ε ∈ min(Aσϕ,≤AF), and so we have a contradiction.
So Extσ(AF ⋆ ϕ ∧ ψ) ⊆ Extσ(AF ⋆ ϕ) ∩ Aσψ holds.

Now, let ⋆ be a revision operator satisfying postulates (AE1)-(AE6). Given an argumentation system
AF = 〈A,R〉 and a semantics σ, we define a relation ≤AF such that

∀ε1, ε2 ∈ P (A) , ε1 ≤AF ε2 ⇔

ε1 ∈ Extσ(AF)
or
ε1 ∈ Extσ(AF ⋆ form(ε1, ε2))

where formσ(ε1, . . . , εn) is a formula such that Aσformσ(ε1,...,εn)
= {ε1, . . . , εn}.

161

Appendix B. Proofs of the Results from Chapter 4

Let us study the properties of ≤AF .
Let ε1, ε2 ∈ P (A). ϕ = formσ(ε1, ε2) admits at least one model, i.e. it is consistent. Since ⋆ satisfies
(AE3), Extσ(AF ⋆ϕ) 6= ∅. Moreover, from (AE1), we deduce Extσ(AF ⋆ϕ) ⊆ Aσϕ = {ε1, ε2}. From
there, ε1 ∈ Extσ(AF ⋆ϕ) or ε2 ∈ Extσ(AF ⋆ϕ), i.e. ε1 ≤AF ε2 or ε2 ≤AF ε1, so the relation is total.
Moreover, if ε1 = ε2, ε1 ∈ Extσ(AF ⋆ formσ(ε1, ε1)) holds, i.e. ε1 ≤AF ε1 : the relation is reflexive.
Finally, we want to prove that the relation is transitive. Let ε1, ε2, ε3 ∈ P (A) such that ε1 ≤AF ε2 and
ε2 ≤AF ε3. There are three possible cases:

1. ε1 ∈ Extσ(AF) ;

2. ε1 6∈ Extσ(AF) and ε2 ∈ Extσ(AF) ;

3. ε1 6∈ Extσ(AF) and ε2 6∈ Extσ(AF).

Case 1 If ε1 ∈ Extσ(AF), then ε1 ≤AF ε3 holds from the definition of the relation.

Case 2 If ε1 6∈ Extσ(AF) and ε2 ∈ Extσ(AF), then Extσ(AF) ∩ {ε1, ε2} = {ε2}. From (AE2),
Extσ(AF ⋆ formσ(ε1, ε2)) = {ε2} holds. Therefore, ε1 �AF ε2 since neither ε1 ∈ Extσ(AF) nor
ε1 ∈ Extσ(AF ⋆ formσ(ε1, ε2)) hold. It is a contradiction: the second case is impossible.

Case 3 If ε1 6∈ Extσ(AF) and ε2 6∈ Extσ(AF), then since ⋆ satisfies (AE1) and (AE3), Extσ(AF ⋆
formσ(ε1, ε2, ε3)) is a non-empty subset of {ε1, ε2, ε3}. There are two possible alternatives:

1. Extσ(AF ⋆ formσ(ε1, ε2, ε3)) ∩ {ε1, ε2} = ∅, i.e. Extσ(AF ⋆ formσ(ε1, ε2, ε3)) = {ε3} ;

2. Extσ(AF ⋆ formσ(ε1, ε2, ε3)) ∩ {ε1, ε2} 6= ∅.

(1) If Extσ(AF ⋆ formσ(ε1, ε2, ε3)) ∩ {ε1, ε2} = ∅, then Extσ(AF ⋆ formσ(ε1, ε2, ε3)) = {ε3}
(because from (AE1) and (AE3) it is a non-empty subset of {ε1, ε2, ε3}), and from (AE5) and (AE6),
Extσ(AF ⋆formσ(ε1, ε2, ε3))∩{ε2, ε3} = Extσ(AF ⋆formσ(ε2, ε3)) = {ε3}which is in contradiction
with the fact that ε2 ≤AF ε3 and ε2 6∈ Extσ(AF). So this case is impossible.

(2) Suppose that Extσ(AF ⋆ formσ(ε1, ε2, ε3)) ∩ {ε1, ε2} 6= ∅. Since ε1 ≤AF ε2 and ε1 6∈
Extσ(AF), ε1 ∈ Extσ(AF⋆formσ(ε1, ε2)) holds. From (AE5) and (AE6),Extσ(AF⋆formσ(ε1, ε2, ε3))∩
{ε1, ε2} = Extσ(AF ⋆ formσ(ε1, ε2)) holds. So ε1 ∈ Extσ(AF ⋆ formσ(ε1, ε2, ε3))∩{ε1, ε2}, in par-
ticular ε1 ∈ Extσ(AF ⋆ formσ(ε1, ε2, ε3)).
Similarly, since Extσ(AF ⋆ formσ(ε1, ε2, ε3)) ∩ {ε1, ε2} 6= ∅, from (AE5) and (AE6), Extσ(AF ⋆
formσ(ε1, ε2, ε3)) ∩ {ε1, ε3} = Extσ(AF ⋆ formσ(ε1, ε3)) holds, and we deduce ε1 ∈ Extσ(AF ⋆
formσ(ε1, ε3)), i.e. ε1 ≤AF ε3.

This concludes the proof that the relation is transitive. So ≤AF is a total pre-order. Let us now show
that associating this a pre-order with an argumentation framework is a faithful assignment.

1. Given an argumentation system AF = 〈A,R〉, let ε1, ε2 be two elements in P (A) such that ε1 ∈
Extσ(AF) and ε2 ∈ Extσ(AF). Since ε1 ∈ Extσ(AF), ε1 ≤AF ε2. Likewise, ε2 ∈ Extσ(AF)
implies ε2 ≤AF ε1. Consequently, ε1 ≃AF ε2.

2. Given an argumentation system AF = 〈A,R〉, let ε1, ε2 be two elements of P (A) such that
ε1 ∈ Extσ(AF) and ε2 6∈ Extσ(AF). Like previously, ε1 ≤AF ε2 holds. Moreover, now

162

ε2 6∈ Extσ(AF) holds. From this and (AE2), Extσ(AF ⋆ formσ(ε1, ε2)) = {ε1} holds, so
ε2 �AF ε1. Therefore, ε1 <AF ε2.

The last thing to prove is the equality Extσ(AF ⋆ ϕ) = min(Aσϕ,≤AF). First, if ϕ is not consistent,
from (AE1) we deduce Extσ(AF ⋆ ϕ) = ∅ = min(Aσϕ,≤AF). So we suppose now that ϕ is consistent,
that is Aσϕ 6= ∅.
Let us prove first the inclusion Extσ(AF ⋆ϕ) ⊆ min(Aσϕ,≤AF). Using reductio ad absurdum: suppose
that ∃ε ∈ Extσ(AF ⋆ ϕ) such that ε 6∈ min(Aσϕ,≤AF). From (AE1), ε ∈ Aσϕ holds, and since
ε 6∈ min(Aσϕ,≤AF), ∃ε

′ ∈ Aσϕ such that ε′ <AF ε. Two cases must be considered:
Case 1 ε′ ∈ Extσ(AF), as ε′ ∈ Aσϕ, Extσ(AF) ∩ Aσϕ 6= ∅, which implies from (AE2)

Extσ(AF ⋆ ϕ) = Extσ(AF) ∩ A
σ
ϕ.

ε ∈ Extσ(AF ⋆ ϕ) ⇒ ε ∈ Extσ(AF) ∩ A
σ
ϕ

⇒ ε ∈ Extσ(AF)
⇒ ε ≤AF ε

′

⇒ contradiction with ε′ <AF ε
Case 2 Extσ(AF ⋆ formσ(ε, ε

′)) = {ε′}. Since ε and ε′ are models of ϕ, ϕ ∧ formσ(ε, ε
′) ≡

formσ(ε, ε
′). From (AE5), Extσ(AF ⋆ ϕ) ∩ {ε, ε′} ⊆ Extσ(AF ⋆ formσ(ε, ε

′)) = {ε′}, therefore
ε 6∈ Extσ(AF ⋆ ϕ), which is a contradiction.

So Extσ(AF ⋆ ϕ) ⊆ min(Aσϕ,≤AF) holds, let us now prove the converse inclusion. We still use
reductio ad absurdum, suppose that ∃ε ∈ min(Aσϕ,≤AF) such that ε 6∈ Extσ(AF ⋆ ϕ).
Since ϕ is consistent, from (AE3), ∃ε′ ∈ Extσ(AF ⋆ ϕ), and from (AE1) ε′ ∈ Aσϕ. Since ε and ε′

are models of ϕ, formσ(ε, ε
′) ∧ ϕ = formσ(ε, ε

′). From (AE5)-(AE6), Extσ(AF ⋆ ϕ) ∩ {ε, ε′} =
Extσ(AF ⋆ formσ(ε, ε

′)) = {ε′} since ε 6∈ Extσ(AF ⋆ ϕ), so ε′ ≤AF ε. On the other hand, ε is
minimal in Aσϕ with respect to ≤AF , i.e. ε ≤AF ε′. Since ε 6∈ Extσ(AF ⋆ formσ(ε, ε

′)) = {ε′},
ε ∈ Extσ(AF) holds, and from (AE2) ε ∈ Extσ(AF ⋆ ϕ). It is a contradiction.
We can conclude that Extσ(AF ⋆ ϕ) = min(Aσϕ,≤AF).

Proposition 26.

Let σ be any semantics. Any pseudo-distance-based revision operator ⋆d satisfies the rationality postu-

lates (AE1) - (AE6).

Proof. We just have to prove that the application AF 7→≤σ,dAF is a faithful assignment.

1. Given c1 and c2 two extensions ofAF , d(c1, Extσ(AF)) = d(c2, Extσ(AF)) = 0, so c1 ≃
σ,d
AF c2.

2. Given c1 an extension of AF and c2 another candidate which is not an extension of AF ,
d(c1, Extσ(AF)) = 0 and d(c2, Extσ(AF)) > 0 so c1 <

σ,d
AF c2.

So ≤σ,dAF is a faithful assignment. Then Proposition 25 concludes the proof.

Proposition 27.

Let m,n, o be three integers. d(m,n,o) is a pseudo-distance.

Proof. Let us prove that d(m,n,o) satisfies the two conditions of a pseudo-distance.
Let L1, L2 be two labellings. First,

d(m,n,o)(L1, L2) =
∑

a∈A ad(L1(a), L2(a))

=
∑

a∈A ad(L2(a), L1(a))
= d(m,n,o)(L2, L1)

163

Appendix B. Proofs of the Results from Chapter 4

Then,
d(m,n,o)(L1, L2) = 0 ⇔

∑

a∈A ad(L1(a), L2(a)) = 0

⇔ ∀a ∈ A, ad(L1(a), L2(a)) = 0
⇔ L1 = L2

Proposition 28.

Let σ be any semantics. Any labelling-pseudo-distance-based revision operator ⋆dL satisfies the ratio-

nality postulates (AE1) - (AE6).

Proof. It is obvious that min(Lϕ,≤
σ,dL
AF) is a subset of Lϕ, and so E(min(Lϕ,≤

σ,dL
AF)) ⊆ Aσϕ. Let us

show that this set is composed of minimal elements of Aσϕ with respect to a particular pseudo-distance-
based pre-order on sets of arguments, which means that the operator can be represented with a faithful
assignment on candidates, and then it satisfies the postulates (AE1)-(AE6).

Given c1, c2 two candidates, let dc(c1, c2) = minL1∈Labs(c1),L2∈Labs(c2) dL(L1, L2).
dc(c1, c2) = 0 iff c1 = c2 can be shown easily: minL1∈Labs(c1),L2∈Labs(c2) dL(L1, L2) = 0 means that
there is at least one of the labellings corresponding to c1 which also corresponds to c2, i.e. a specific
pair (L1, L2) such that L1 = L2, so in(L1) = in(L2), which leads to c1 = c2. The converse obviously
holds: if c1 = c2, then the corresponding sets of L1 and L2 are the same sets, so the pseudo-distance is
0.
Symmetry is obvious, because dc is based on dL which satisfies this property.
We extend the definition of dc to the distance between a candidate and a set of candidates by stating
dc(c, C) = minc′∈C dc(c, c

′).

Let us prove that E(min(Lϕ,≤
σ,dL
AF)) =min(Aσϕ,≤

σ,dc
AF), where ≤σ,dcAF is the total pre-order defined

from the pseudo-distance dc. We use reductio ad absurdum: suppose that ∃c 6∈ E(min(Lϕ,≤
σ,dL
AF))

a candidate such that ∀c′ ∈ E(min(Lϕ,≤
σ,dL
AF)), dc(c, Extσ(AF)) < dc(c

′, Extσ(AF)). From the
definition of dc,

min
ε∈Extσ(AF)

dc(c, ε) < min
ε∈Extσ(AF)

dc(c
′, ε)

which leads to

minε∈Extσ(AF) (minL1∈Labs(c),L2∈Labs(ε) dL(L1, L2))

< minε∈Extσ(AF)(minL1∈Labs(c′),L2∈Labs(ε) dL(L1, L2)).

It is in contradiction with c′ ∈ E(min(Lϕ,≤
σ,dL
AF)).

Proposition 33.

The revision operator ⋆ satisfies (AL1)-(AL6) if and only if for every semantics σ there exists a faithful

assignment which maps every argumentation framework F to a total pre-order ≤σF such that for every

formula ϕ ∈ LLabsA :

Labsσ(F ⋆ ϕ) = min(Lσϕ,≤
σ
F)

Proof. First, let us suppose the existence of a faithful assignment such that Labsσ(F ⋆ϕ)=min(Lσϕ,≤
σ
F),

and let us prove that ⋆ satisfies the postulates.
(AL1) Labsσ(F ⋆ ϕ) ⊆ Lσϕ

This result is trivial, from the definition of the operator.
(AL2) If Labsσ(F) ∩ Lσϕ 6= ∅, then Labsσ(F ⋆ ϕ) = Labsσ(F) ∩ L

σ
ϕ.

We defineM = Labsσ(F)∩L
σ
ϕ 6= ∅. ∀L ∈M,L ∈ min(Lσϕ,≤

σ
F) holds from the definition of a faithful

164

assignment, so M ⊆ Labsσ(F ⋆ ϕ).
Now, let us prove the converse inclusion. Reasoning with reductio ad absurdum, suppose that there exists
L ∈ Labsσ(F ⋆ ϕ) such that L /∈ Labsσ(F) ∩ L

σ
ϕ. From (AL1), L ∈ Lσϕ holds, so L /∈ Labsσ(F) also

holds. Since L ∈ min(Lσϕ,≤
σ
F), ∀L

′ ∈ Lσϕ, L ≤
σ
F L′. But from the definition of a faithful assignment,

any labelling L′′ ∈ Labsσ(F) satisfies L′′ <σF L. It is a contradiction, which leads to the second
inclusion, and so ⋆ satisfies (AL2).

(AL3) If ϕ is σ-consistent, then Labsσ(F ⋆ ϕ) 6= ∅.
Follows trivially the definitions of Lσϕ and ⋆. Indeed, if ϕ is σ-consistent, then Lσϕ is a finite non-empty
set, and then it admits some minimal elements with respect to the total pre-order ≤σF . This leads to the
conclusion of the postulate.

(AL4) If ϕ ≡σ ψ, then Labsσ(F ⋆ ϕ) = Labsσ(F ⋆ ψ).
Follows trivially from the definition of the operator. As ϕ ≡σ ψ,Lσϕ = Lσψ, and then

Labsσ(F ⋆ ϕ) = min(Lσϕ,≤
σ
F)

= min(Lσψ,≤
σ
F)

= Labsσ(F ⋆ ψ)
(AL5) Labsσ(F ⋆ ϕ) ∩ Lσψ ⊆ Labsσ(F ⋆ ϕ ∧ ψ).

IfLabsσ(F ⋆ϕ)∩Lσψ = ∅, then the postulate is satisfied. So we suppose now thatLabsσ(F ⋆ϕ)∩Lσψ 6= ∅.

Let us prove the inclusion Labsσ(F ⋆ ϕ) ∩ Lσψ ⊆ Labsσ(F ⋆ ϕ ∧ ψ). Using reductio ad absurdum,
suppose that ∃L ∈ Labsσ(F ⋆ϕ)∩Lσψ such that L 6∈ Labsσ(F ⋆ϕ∧ψ). We can rephraze it in this way:

L ∈ min(Lσϕ,≤
σ
F) ∩ L

σ
ψ and L /∈ min(Lϕ∧ψ,≤

σ
F)

From the first part, we deduce L ∈ Lϕ∧ψ. However, L is not a minimal element in this set with respect
to ≤σF . Consequently, ∃L′ ∈ Lϕ∧ψ such that L′ <σF L. From the definition of Lϕ∧ψ, L′ ∈ Lσϕ holds.
This is in contradiction with L ∈ min(Lσϕ,≤

σ
F).

So Labsσ(F ⋆ ϕ) ∩ Lσψ ⊆ Labsσ(F ⋆ ϕ ∧ ψ).
(AL6) If Labsσ(F ⋆ ϕ) ∩ Lσψ 6= ∅, then Labsσ(F ⋆ ϕ ∧ ψ) ⊆ Labsσ(F ⋆ ϕ) ∩ Lσψ.

If Labsσ(F ⋆ϕ)∩Lσψ 6= ∅, then let us suppose ∃L ∈ Labsσ(F ⋆ϕ∧ψ) such that L 6∈ Labsσ(F ⋆ϕ)∩Lσψ.
L ∈ min(Lϕ∧ψ,≤

σ
F) means that L ∈ Lϕ∧ψ, and so L ∈ Lσψ holds.

From this and L 6∈ Labsσ(F ⋆ ϕ) ∩ Lσψ, we deduce L 6∈ Labsσ(F ⋆ ϕ).
Since we suppose that the intersection is non-empty, ∃L′ ∈ Labsσ(F ⋆ ϕ) ∩ Lσψ. In particular, L′ is a
σ-model of ϕ and ψ, i.e. L′ ∈ Lϕ∧ψ. From L ∈ Labsσ(F ⋆ϕ∧ψ) = min(Lϕ∧ψ,≤

σ
F) and ≤σF is a total

relation, L ≤σF L
′.

As L′ ∈ Labsσ(F ⋆ ϕ) = min(Lσϕ,≤
σ
F), L ∈ min(Lσϕ,≤

σ
F). It is a contradiction.

So Labsσ(F ⋆ ϕ ∧ ψ) ⊆ Labsσ(F ⋆ ϕ) ∩ Lσψ holds.

Now, let us suppose the existence of a revision operator ⋆ which satisfies the postulates. Given an
argumentation system F = 〈A,R〉 and a semantics σ, we define a relation ≤σF such that ∀L1, L2 ∈
LabsAσ ,

L1 ≤AF L2 ⇔

L1 ∈ Labsσ(F)
or
L1 ∈ Labsσ(F ⋆ formσ(L1, L2))

where formσ(L1, . . . , Ln) is the formula such that Lσformσ(L1,...,Ln)
= {L1, . . . , Ln}.

Let us study the properties of ≤σF .
Let L1, L2 ∈ Labs

A
σ . ϕ = formσ(L1, L2) admits at least one model. Since ⋆ satisfies (AL3), Labsσ(F ⋆

ϕ) 6= ∅. Moreover, from (AL1), we deduce that ∅ ⊂ Labsσ(F ⋆ ϕ) ⊆ Lσϕ = {L1, L2}. From there,

165

Appendix B. Proofs of the Results from Chapter 4

L1 ∈ Labsσ(F ⋆ ϕ) or L2 ∈ Labsσ(F ⋆ ϕ), i.e. L1 ≤
σ
F L2 or L2 ≤

σ
F L1, so the relation is total.

Moreover, if L1 = L2, L1 ∈ Labsσ(F ⋆ formσ(L1, L1)) holds, i.e. L1 ≤
σ
F L1: the relation is reflexive.

Finally, we want to prove that the relation is transitive. Let L1, L2, L3 ∈ Labs
A
σ such that L1 ≤

σ
F L2 and

L2 ≤
σ
F L3. There are three possible cases:

1. L1 ∈ Labsσ(F) ;

2. L1 /∈ Labsσ(F) and L2 ∈ Labsσ(F) ;

3. L1 /∈ Labsσ(F) and L2 /∈ Labsσ(F).

Case 1 If L1 ∈ Labsσ(F), L1 ≤
σ
F L3 holds from the definition of the relation.

Case 2 If L1 /∈ Labsσ(F) and L2 ∈ Labsσ(F), then Labsσ(F) ∩ {L1, L2} = {L2}. From (AL2),
Labsσ(F ⋆ formσ(L1, L2)) = {L2} holds. Therefore, L1 �σ

F L2 since neither L1 ∈ Labsσ(F) nor
L1 ∈ Labsσ(F ⋆ formσ(L1, L2)) hold. This is a contradiction: the second case is impossible.

Case 3 If L1 /∈ Labsσ(F) and L2 /∈ Labsσ(F), then since ⋆ satisfies (AL1) and (AL3), Labsσ(F ⋆
formσ(L1, L2, L3)) is a non-empty subset of {L1, L2, L3}. There are two possible alternatives:

1. Labsσ(F ⋆ formσ(L1, L2, L3)) ∩ {L1, L2} = ∅, i.e. Labsσ(F ⋆ formσ(L1, L2, L3)) = {L3} ;

2. Labsσ(F ⋆ formσ(L1, L2, L3)) ∩ {L1, L2} 6= ∅.

(1) If Labsσ(F ⋆ formσ(L1, L2, L3)) ∩ {L1, L2} = ∅, then Labsσ(F ⋆ formσ(L1, L2, L3)) =
{L3} (because it is a non-empty subset of {L1, L2, L3}), and from (AL5) and (AL6), Labsσ(F ⋆
formσ(L1, L2, L3)) ∩ {L2, L3} = Labsσ(F ⋆ formσ(L2, L3)) = {L3} which is in contradiction with
the fact that L2 ≤

σ
F L3 and L2 /∈ Labsσ(F). So this case is impossible.

(2) Suppose that Labsσ(F ⋆ formσ(L1, L2, L3)) ∩ {L1, L2} 6= ∅. Since L1 ≤
σ
F L2 and L1 /∈

Labsσ(F),L1 ∈ Labsσ(F⋆formσ(L1, L2)) holds. From (AL5) and (AL6),Labsσ(F⋆formσ(L1, L2, L3))∩
{L1, L2} = Labsσ(F ⋆ formσ(L1, L2)) holds. So L1 ∈ Labsσ(F ⋆ formσ(L1, L2, L3)) ∩ {L1, L2}, in
particular L1 ∈ Labsσ(F ⋆ formσ(L1, L2, L3)).
Similarly, since Labsσ(F ⋆ formσ(L1, L2, L3)) ∩ {L1, L2} 6= ∅, from (AL5) and (AL6), Labsσ(F ⋆
formσ(L1, L2, L3)) ∩ {L1, L3} = Labsσ(F ⋆ formσ(L1, L3)) holds, and we deduce L1 ∈ Labsσ(F ⋆
formσ(L1, L3)), i.e. L1 ≤

σ
F L3.

This concludes the proof that the relation is transitive. So ≤σF is a total pre-order. Let us now show
that mapping such a pre-order to an argumentation framework is a faithful assignment.

1. Given an argumentation system F = 〈A,R〉, let L1, L2 two elements in LabsAσ such that L1 ∈
Labsσ(F) and L2 ∈ Labsσ(F). Since L1 ∈ Labsσ(F), L1 ≤

σ
F L2. Likewise, L2 ∈ Labsσ(F)

implies L2 ≤
σ
F L1. Consequently, L1 ≈

σ
F L2.

2. Given an argumentation system F = 〈A,R〉, let L1, L2 two elements of LabsAσ such that L1 ∈
Labsσ(F) and L2 /∈ Labsσ(F). Like previously, L1 ≤

σ
F L2 holds. Moreover, now L2 /∈

Labsσ(F) holds. From this and (AL2), Labsσ(F ⋆ formσ(L1, L2)) = {L1} holds, so L2 �σ
F L1.

Therefore, L1 <
σ
F L2.

166

The last thing to prove is the equality Labsσ(F ⋆ ϕ) = min(Lσϕ,≤
σ
F). First, if ϕ is not σ-consistent,

from (AL1) we deduce Labsσ(F ⋆ ϕ) = ∅ = min(Lσϕ,≤F). So we suppose now that ϕ is σ-consistent,
i.e. Lσϕ 6= ∅.
Let us prove first the inclusion Labsσ(F ⋆ ϕ) ⊆ min(Lσϕ,≤

σ
F). Using reductio ad absurdum: sup-

pose that ∃L ∈ Labsσ(F ⋆ ϕ) such that L /∈ min(Lσϕ,≤
σ
F). From (AL1), L ∈ Lσϕ holds, and since

L /∈ min(Lσϕ,≤
σ
F), ∃L

′ ∈ Lσϕ such that L′ <σF L. Two cases must be considered:
Case 1L′ ∈ Labsσ(F), asL′ ∈ Lσϕ, Labsσ(F)∩Lσϕ 6= ∅, which impliesLabsσ(F⋆ϕ) = Labsσ(F)∩L

σ
ϕ

(from (AL2)).
L ∈ Labsσ(F ⋆ ϕ) ⇒ L ∈ Labsσ(F) ∩ L

σ
ϕ

⇒ L ∈ Labsσ(F)
⇒ L ≤σF L

′

⇒ contradiction with L′ <σF L
Case 2 Labsσ(F ⋆ formσ(L,L

′)) = {L′}. Since L and L′ are σ-models of ϕ, ϕ ∧ formσ(L,L
′) ≡

formσ(L,L
′). From (AL5), Labsσ(F ⋆ ϕ) ∩ {L,L′} ⊆ Labsσ(F ⋆ formσ(L,L

′)) = {L′}, therefore
L /∈ Labsσ(F ⋆ ϕ), which is a contradiction.

So Labsσ(F ⋆ ϕ) ⊆ min(Lσϕ,≤
σ
F) holds, let us now prove the converse. We still use reductio ad

absurdum. Suppose that ∃L ∈ min(Lσϕ,≤
σ
F) such that L /∈ Labsσ(F ⋆ ϕ).

Since ϕ is σ-consistent, from (AL3), ∃L′ ∈ Labsσ(F ⋆ ϕ), and from (AL1) L′ ∈ Lσϕ. Since L and L′

are σ-models of ϕ, formσ(L,L
′) ∧ ϕ = formσ(L,L

′). From (AL5)-(AL6), Labsσ(F ⋆ ϕ) ∩ {L,L′} =
Labsσ(F ⋆formσ(L,L

′)) = {L′} since L /∈ Labsσ(F ⋆ϕ), so L′ ≤σF L. On the other hand, L is minimal
in Lσϕ with respect to ≤σF , i.e. L ≤σF L′. Since L /∈ Labsσ(F ⋆ formσ(L,L

′)) = {L′}, L ∈ Labsσ(F)
holds, and from (AL2) L ∈ Labsσ(F ⋆ ϕ). It is a contradiction.
We can conclude that Labsσ(F ⋆ ϕ) = min(Lσϕ,≤

σ
F).

Proposition 34.

Let d be a pseudo-distance between labellings. The labelling-distance-based revision operator ⋆d such

that, for every argumentation framework F , every semantics σ and every formula σ

Labsσ(F ⋆d ϕ) = min(Lσϕ,≤
d
F)

satisfies the rationality postulates (AL1)-(AL6).

Proof. Let d be a distance between labellings. Let us prove that the mapping from an argumentation
system F to a total pre-order ≤dF is a faithful assignment. Let L1, L2 be two σ-representable labellings:

• If L1 ∈ Labsσ(F) and L2 ∈ Labs(F), then d(L1, Labsσ(F)) = d(L2, Labsσ(F)) = 0 and so
L1 ≈

d
F L1;

• If L1 ∈ Labsσ(F) and L2 /∈ Labs(F), then d(L1, Labsσ(F)) = 0 and d(L2, Labsσ(F)) > 0, so
L1 <

d
F L1.

This result with Proposition 33 proves that ⋆d satisfies (AL1)-(AL6).

Lemma 1.

For each formula ϕ ∈ LLabsA such that ϕ only contains in variables, there is a formula ϕ′ ∈ LA such that
∀c ∈ Aσϕ′ , ∃L ∈ Lσϕ such that in(L) = c; and ∀L ∈ Lσϕ′ , ∃c ∈ Aσϕ such that in(L) = c.
We call ϕ′ the extension-based formula equivalent to ϕ.

Proof. Follows from the definitions of LA-formulae and LLabsA -formulae.

167

Appendix B. Proofs of the Results from Chapter 4

Proposition 35.

Each operator satisfying (AL1)-(AL6), restricted to formulae built on the in variables, satisfies (AE1)-

(AE6).

Proof. Let ⋆Labs be a revision operator satisfying (AL1)-(AL6). From the definition, we know that
for each argumentation framework F , there exists a total pre-order between labellings ≤LabsF , satisfying
faithful assignment properties, such that for each ϕ ∈ LLabsA , Labsσ(F ⋆Labs ϕ) = min(Lσϕ,≤

Labs
F).

Let us prove that there exist a total-pre order between candidates ≤F such that Extσ(F ⋆Labs ϕ) =
min(Aσϕ′ ,≤F), with ϕ′ the extension-based formula equivalent to ϕ.

First, we call the level i of a pre-order ≤ the set of elements E′ ⊆ E such that, for each element
e ∈ E′, the length of the longest sequence of elements e1, . . . , ei such that e1 < e2, . . . , ei−1 < ei and
ei = e is i.
Now, let us define a pre-order on candidates from the pre-order on labellings. For each level of ≤LabsF ,
from 0 to the highest level, we consider each labelling L. We call c the candidate associated with L
(meaning, the in part of L). If c does not already belong to a level j ≤ i of ≤F , then c is added to ≤F at
the level i.
From the definition of ⋆Labs, we know that the labellings of the outcome of F ⋆Labs ϕ are the minimal
elements with respect to ≤LabsF among the labellings which satisfy ϕ. Let us prove that the in-part of
these labellings correspond to the minimal elements of Aσϕ′ with respect to ≤F .

Let us suppose that there is a labelling L ∈ min(Lσϕ,≤
Labs
F) such that E(L) /∈ min(Aσϕ′ ,≤F). From the

definition of ϕ′, E(L) ∈ Aσϕ′ . So, there is a candidate c ∈ Aσϕ′ such that c <F E(L). The definitions of

≤F and ϕ′ implies that there exist a labelling L′ ∈ Lσϕ such that E(L′) = c and L′ <LabsF L, which is a
contradiction.
So, Extσ(F ⋆Labs ϕ) = min(Aσϕ′ ,≤F). Since ≤LabsF satisfies the conditions of faithful assignments,
≤F also satisfies these conditions: the level 0 of ≤F only contains candidates which are the in part of
the σ-labellings of F , meaning the σ-extensions of F . So, from Proposition 25, ⋆Labs satisfies (AE1)-
(AE6).

Proposition 29.

Every revision operator ⋆ defined following Definition 85 satisfies the postulates (AE1)-(AE6).

Proof. Given a semantics σ, the definition of AF implies that Extσ(AF(C)) = C, where C is a set of
candidates. So, given ⋆ a revision operator and ϕ ∈ LA, Extσ(AF ⋆ϕ) = min(Aσϕ,≤

σ
AF). ≤

σ
AF being a

faithful assignment, the operator ⋆ satisfies the postulates (AE1)-(AE6) (as a consequence of Proposition
25).

Proposition 36.

Every revision operator ⋆ defined following Definition 99 satisfies the postulates (AE1)-(AE6) under the

assumption that C is not conflicting with the revision formula.

Proof. Given a semantics σ, the definition of AF implies that Extσ(AF(C,C)) = C, where C is a set
of candidates. So, given ⋆ a revision operator and ϕ ∈ LA, Extσ(AF ⋆ ϕ) = min(Aσϕ,≤

σ
AF). ≤

σ
AF

being a faithful assignment, the operator ⋆ satisfies the postulates (AE1)-(AE6) (as a consequence of
Proposition 25).

Proposition 30.

Let ⋆ be a revision operator based on the generation operator AFdg,Fσ . The size of F ⋆ ϕ can be

exponential in |A|.

168

x1

y1

x2

y2

. . .

. . .

xn

yn

Figure B.1: The framework AF18

Proof. Let AF18 = 〈{x1, . . . , xn, y1, . . . , yn}, ∅〉 be an argument framework. Whatever the semantics σ
(for instance the stable semantics), Extσ(AF18) = {{x1, . . . , xn, y1, . . . , yn}}.
Let ϕ7 =

∧n
i=1(xi∨yi)∧ (¬xi∨¬yi), and let the revision operator ⋆ be based on the Hamming distance

between candidates and the generation operator AF dg,AFσ .
The computation of the first step of the revision process can be intuitively explained as follow. A can-
didate extension satisfying ϕ is a choice, for each i, of exactly one argument among xi and yi. 2n

candidates, each one of size n, containing either xi or yi, must be considered.
To build argumentation frameworks corresponding to these candidates such that the distance from AF18

is minimal, we can add n attacks: for each i, either xi attacks yi or the converse. It is not possible to
add less than n attacks, in this case there would be at least one i such that xi and yi both belong to the
extension of the system.
This leads to the generation of 2n graphs, each one corresponding exactly to one candidate. One of these
frameworks is given, as an example, in Fig. B.2.

x1

y1

x2

y2

. . .

. . .

xn

yn

Figure B.2: One of the revised frameworks from AF18 ⋆ ϕ7

Proposition 31.

Let C be a complexity class which is closed under polynomial-time reductions. Suppose that ⋆ satisfies

(AE1) to (AE6), and that the semantics σ ensures the existence of an extension for every F . If the

inference problem from an argumentation system is C-hard, then the inference problem from a revised

argumentation system is C-hard as well.

Proof. We prove that if ⋆ is a revision operator and σ is such that Extσ(AF) 6= ∅, then AF ⋆(a∨¬a)|∼σψ
if and only if AF |∼σψ (where a is any argument in A). Postulate (AE2) states that for every formula
ϕ ∈ LA, if Extσ(AF)∩Aσϕ 6= ∅, then Extσ(AF⋆ϕ) = Extσ(AF)∩A

σ
ϕ. SinceAa∨¬a is the power set of

A, if Extσ(AF) is not empty, then Extσ(AF)∩Aa∨¬a is not empty as well. Hence, AF ⋆ (a∨¬a)|∼σψ
if and only if AF |∼σψ, and the result follows.

Proposition 32.

Suppose that ⋆ satisfies (AE1) and (AE3). The inference problem from a revised argumentation system

with respect to the grounded semantics is coNP-hard, even under the restriction when the queries ψ are

restricted to CNF formulae on A.

169

Appendix B. Proofs of the Results from Chapter 4

Proof. By reduction from UNSAT. Let Σ be a propositional formula over the set of variables {x1, . . . , xn}.
We associate with Σ in polynomial time the triple (AF = ({x1, . . . , xn, y}, ∅), ϕ = Σ ∧ ¬y, ψ = y).
From (AE1), it must be the case that AF ⋆ ϕ|∼grϕ, hence we must have AF ⋆ ϕ|∼gr¬y.

If in addition we have AF ⋆ ϕ|∼gry, then it must be the case that Extgr (AF) = ∅. Then, from
(AE3), it must be the case that ϕ is inconsistent, which implies that Σ is inconsistent. Conversely, if
Σ is consistent, then ϕ is inconsistent as well. In this case Aσϕ is empty, so from (AE1), we must have
Extgr (AF ⋆ ϕ) = ∅. Subsequently, AF ⋆ ϕ|∼gry.

170

Appendix C

Proofs of the Results from Chapter 5

Proposition 37.

For each propositional formula ϕ ∈ LA, mapping ϕ to the total pre-order defined by

ω1 ≤
rem
ϕ ω2 if and only if min

ω3∈Mod(ϕ)
(drem(ω1, ω3)) ≤ min

ω3∈Mod(ϕ)
(drem(ω2, ω3))

is a faithful assignment.

Proof.

• If ω1 |= ϕ and ω2 |= ϕ, then minω3∈Mod(ϕ)(d
att(ω1, ω3)) = minω3∈Mod(ϕ)(d

att(ω2, ω3)) = 0.

• If ω1 |= ϕ and ω2 6|= ϕ, then minω3∈Mod(ϕ)(d
att(ω1, ω3)) = 0 and minω3∈Mod(ϕ)(d

att(ω2, ω3)) >
0.

• For each ϕ′ such that ϕ′ ≡ ϕ, the definition of the pre-order is such that ≤attϕ =≤attϕ′ .

Proposition 38.

Given a pseudo-distance d between sets of arguments and an argumentation framework F , ≤dF denotes

the total pre-order between sets of arguments defined by: ε1 ≤
d
F ε2 iff d(ε1,Scσ(F)) ≤ d(ε2,Scσ(F)).

The pseudo-distance based revision operator ⋆d which satisfies

Scσ(F ⋆d ϕ) = min(S(ϕ),≤dF)

satisfies the postulates (AS1) - (AS6).

Proof. (AS1) is satisfied from the definition of the operator.

If Scσ(F) ∩ S(ϕ) 6= ∅, then obviously ∀ε ∈ Scσ(F) ∩ S(ϕ), ε ∈ Scσ(F), and d(ε,Scσ(F)) = 0.
Any ε′ which is not in Scσ(F)∩S(ϕ) either does not satisfy ϕ (and so does not belong to S(ϕ)), or does
not belong to Scσ(F) (and so d(ε′, Scσ(F)) > 0). So min(S(ϕ),≤dF) = Scσ(F) ∩ S(ϕ), which leads
to (AS2).

If ϕ is acc-consistent, S(ϕ) 6= ∅, so min(S(ϕ),≤dF) 6= ∅. So (AS3) holds.

ϕ ≡acc ϕ can be rewritten S(ϕ) = S(ψ), which leads to min(S(ϕ),≤dF) = min(S(ψ),≤dF). It is
enough to prove (AS4).

171

Appendix C. Proofs of the Results from Chapter 5

If Scσ(F ⋆ϕ)∩S(ψ) = ∅, (AS5)-(AS6) are satisfied. We suppose now that Scσ(F ⋆ϕ)∩S(ψ) 6= ∅.
We first prove the inclusion Scσ(F ⋆ ϕ) ∩ S(ψ) ⊆ Scσ(F ⋆ ϕ ∧ ψ). By reductio ad absur-

dum, suppose that ∃ε ∈ Scσ(F ⋆ ϕ) ∩ S(ϕ ∧ ψ) such that ε 6∈ Scσ(F ⋆ ϕ ∧ ψ), also written as
ε ∈ min(S(ϕ),≤dF)∩S(ψ) and ε 6∈ min(S(ϕ∧ψ),≤dF). From the first part, we deduce ε ∈ S(ϕ∧ψ).
However, ε is not a minimal element in this set with respect to ≤dF . Consequently, ∃ε′ ∈ S(ϕ ∧ ψ) such
that ε′ <dF ε. From the definition of S(ϕ ∧ ψ), ε′ ∈ S(ϕ) holds. This contradicts ε ∈ min(S(ϕ),≤dF).
So Scσ(F ⋆ ϕ) ∩ S(ϕ ∧ ψ) ⊆ Scσ(F ⋆ ϕ ∧ ψ), (AS5) holds.

If Scσ(F ⋆ ϕ) ∩ S(ψ) 6= ∅, let us suppose ∃ε ∈ Scσ(F ⋆ ϕ ∧ ψ) such that ε 6∈ Scσ(F ⋆ ϕ) ∩ S(ψ).
ε ∈ min(S(ϕ ∧ ψ),≤dF)⇒ ε ∈ S(ϕ ∧ ψ)⇒ ε ∈ S(ψ) holds. From this and ε 6∈ Scσ(F ⋆ ϕ) ∩ S(ψ),
we deduce ε 6∈ Scσ(F ⋆ ϕ).
Since we suppose that the intersection is non-empty, ∃ε′ ∈ Scσ(F ⋆ ϕ)∩ S(ψ). In particular, ε′ satisfies
ϕ and ψ, i.e. ε′ ∈ S(ϕ)∩S(ψ) = S(ϕ∧ψ). From ε ∈ Scσ(F ⋆ ϕ∧ψ) = min(S(ϕ∧ψ),≤dF) and ≤dF
is a total relation, ε ≤dF ε

′.
As ε′ ∈ Scσ(F ⋆ ϕ) = min(S(ϕ),≤dF), ε ∈ min(S(ϕ),≤dF). It is a contradiction.
So Scσ(F ⋆ ϕ ∧ ψ) ⊆ Scσ(F ⋆ ϕ) ∩ S(ψ) holds.

Proposition 39.

The arguments statuses minimal revision operator satisfies the postulates (AS1)-(AS6).

Proof. Let us show that the arguments statuses minimal revision operator is a pseudo-distance based
revision operator. We define Projacc as the counterpart of Projatt to project the formulae on their acc-
part.
F ⋆accD ϕ = arg(Projatt(fσ(F) ◦

acc
D (ϕ ∧ thσ(A)))) leads to

Scσ(F ⋆accD ϕ) = Projacc(fσ(F) ◦
acc
D (ϕ ∧ thσ(A)))

= Projacc(min(Mod(ϕ ∧ thσ(A)),≤
daccH

F))
Let us prove that projecting the minimal models of ϕ ∧ thσ(A) leads to the minimal sets of skeptically
accepted arguments. The models of ϕ ∧ thσ(A) are the propositional representations of argumentation
frameworks which satisfy ϕ, so it is obvious that the projection of the models on the acc variables allows
to obtain a subset of S(ϕ). Let us show that these sets of arguments are minimal with respect to ≤dF :

Given m ∈ min(Mod(ϕ ∧ thσ(A)),≤
daccH

F), we have daccH (m,Mod(fσ(F)) is minimal. fσ(F) has a
single model mF , so daccH (m,mF) is minimal. In other words,

(|A|2 + 1)
∑

a∈A

(m(acc(a))⊕mF (acc(a))) +
∑

a,b∈A

(m(att(a, b))⊕mF (att(a, b)))

is minimal. Let us suppose that the acc part of the distance is not minimal, i.e. there exists m′ such that

(|A|2 + 1)
∑

a∈A

(m′(acc(a))⊕mF (acc(a))) < (|A|2 + 1)
∑

a∈A

(m(acc(a))⊕mF (acc(a)))

In the extreme case when
∑

a,b∈A(m(att(a, b)) ⊕ mF (att(a, b))) = 0 and
∑

a,b∈A(m
′(att(a, b))⊕mF (att(a, b))) = |A|

2,

(|A|2 + 1)
∑

a∈A(m
′(acc(a))⊕mF (acc(a)))

+
∑

a,b∈A(m
′(att(a, b))⊕mF (att(a, b)))

< (|A|2 + 1)
∑

a∈A(m(acc(a))⊕mF (acc(a)))
+
∑

a,b∈A(m(att(a, b))⊕mF (att(a, b)))

172

is ensured by the weight |A|2 + 1 on the acc part. By reductio ad absurdum, we proved that the acc part
of daccH (m,mF) is minimal, i.e., dH(Projacc(m),Scσ(F)) is minimal, with dH the Hamming distance
[Ham50]. It implies

Scσ(F ⋆accD ϕ) = Projacc(min(Mod(ϕ ∧ thσ(A)),≤
daccF

F))

= min(S(ϕ),≤dHF)

From Prop. 38, ⋆accD satisfies the postulates (AS1)-(AS6).

173

Appendix D

Proofs of the Results from Chapter 6

Proposition 40.

For every F = 〈A,R〉 and E ⊆ A a stable non-trivial set in F , there is no strict enforcement of E in F
with respect to the stable semantics.

Proof.

E is known not to be a stable extension of F . It means that ∃ai ∈ A\E such that E does not attack ai.
Whatever A′ used to perform the normal (including weak or strong) expansion, ai ∈ (A ∪ A′)\E is not
attacked by E (because the attacks between arguments in A are not changed), so E cannot be a stable
extension of any normal expansion of F .

Proposition 41.

For every F = 〈A,R〉, and E ⊆ A a complete non-trivial set in F ,

1. if E is not admissible, then there is no strict enforcement of E in F with respect to the complete

semantics.

2. else, if E defends some argument ai ∈ A\E, then

(a) there is no strict weak enforcement of E in F with respect to the complete semantics.

(b) if odd-length cycles are not allowed, then there is no strict strong enforcement of E in F with

respect to the complete semantics.

Proof.

1. ∃ai ∈ A\E such that ai attacks some argument in E, and E does not attack ai. Whatever A′ used
to perform the normal (including weak or strong) expansion, ai ∈ (A ∪ A′)\E is not attacked
by E (because the attacks between arguments in A are not changed), so E cannot be a complete
extension of any normal expansion of F .

2. There is some argument ai ∈ A\E such that E defends ai against all its attackers. As it is not
allowed to change the attacks between the arguments in A, the only way for E to be a complete
extension is to add some b attacking ai, such that E does not attack b.

(a) It is impossible with weak enforcement.

(b) To ensure that b is not included in the extension, it has to be attacked. It cannot be by an
argument in E (or else, E still defends ai, and so E is not a complete extension). Two cases
are possible:

174

• If b is attacked by an argument in aj ∈ A\E, then the enforcement is not strong (but it
is possible with normal enforcement).

• Let us reason with the setting of labellings. We expect E to be the in part of a complete
labelling. b must be undec with respect to ths complete labelling (it cannot be in , since
E is expected to be strictly enforced, and it cannot be out since it would mean that E
attacks b, which is forbidden with strong enforcement). The only way to ensure that b is
undec is to add other arguments, which form an odd-length cycle including b.

Proposition 42.

For every F = 〈A,R〉 and E ⊆ A a grounded non-trivial set in F , if Extgr(F) = {∅}, then there is no

strict enforcement of E in F with respect to the grounded semantics.

Proof.

If Extgr(F) = {∅}, it means that there is no unattacked argument in F . Let us call F ′ any normal
expansion of F . If there is no unattacked argument in F ′, then Extgr(F ′) = {∅}. Else, ∃b /∈ A such that
b ∈ E′, with Extgr(F ′) = {E′}. Whatever the case, E cannot be enforced by any normal enforcement
operator.

Proposition 43.

Let F = 〈A,R〉 be an argumentation framework, σ an acceptability semantics and E ⊆ A a set of

arguments. There is a strict enforcement F ′ of E.

Proof.

We just need to define F ′ = 〈A,R′〉 with R′ = E × (A\E) to ensure that E is a σ-extension, whatever
the semantics σ.

Proposition 44.

Let F = 〈A,R〉 be an argumentation framework, E ⊆ A, and k be an integer. Determining whether it

is possible to enforce E in F under the stable semantics with at most k changes (addition or removal) of

attacks is NP-hard.

Proof.

Let us consider the particular case of k = 0, and E = {a}. Let F = 〈A,R〉 an AF such that a /∈ A.
Enforcing E under the stable semantics in F ′ = 〈A ∪ {a}, R〉 without any change of attacks is possible
if and only if Extst(F) 6= ∅. It is well-known that testing the existence of a stable extension of an AF is
NP-hard, so our problem is also NP-hard.

175

List of Figures

1 The Tweety example . 1

1.1 Example of Argumentation Framework as a Digraph 10
1.2 Inclusion between Dung’s Semantics . 12
1.3 An Argumentation Framework with Non-Matching Semantics 12
1.4 A Well-Founded Argumentation Framework . 13
1.5 The Argumentation Framework F . 17
1.6 An Argumentation Framework Corresponding to C . 19
1.7 Graphical Representation of the Debate between John and Yoko 21
1.8 Graphical Representation of the Debate between John and Paul 22
1.9 First Step of the Debate . 22
1.10 Second Step of the Debate . 22
1.11 Model of the Toys Allocation . 24

2.1 Transitions between Beliefs States . 27
2.2 Revision of K by α through a System of Spheres centered on [K] 33
2.3 Minimal Models of α with respect to ≤ϕ . 35

3.1 The Argumentation Framework F1 and Different Possible Expansions of it 50
3.2 Strong enforcement process . 51
3.3 Enforcing {a1} in F8 is impossible with weak expansion, while F9 is a succesful strong

enforcement. 53
3.4 The Result of an Intervention on the Causal Bayesian Network 54
3.5 The Initial Argumentation Framework . 54
3.6 The Argumentation Framework after an Intervention 54
3.7 Two Possible Explanations for the Observation . 55
3.8 The State of the Debate S . 56
3.9 The State of the Debate S′ . 57
3.10 The Argumentation Framework F . 63
3.11 The Input Framework F1 and the Revising Framework F2 64
3.12 The Result of the Removed Set-based Revision . 64
3.13 The Argumentation Framework F . 65
3.14 F k(st), the Stable Kernel of F . 65
3.15 The k(st)-model F ′ of F and its Stable Kernel . 66
3.16 The Argumentation Frameworks F1 and F2 . 68
3.17 The k(gr)-expansion F1 +

k(gr) F2 . 68
3.18 The k(st)-revision F1 ⋆

k(str) F2 . 68

176

4.1 The Framework F6 . 78
4.2 Schematic Explanation of the Revision Process . 78
4.3 The Framework F7 . 79
4.4 Revision of F7 . 79
4.5 Minimal Change . 80
4.6 The Framework F13 . 82
4.7 F13 ⋆dg ϕ7 . 82
4.8 F13 ⋆card ϕ7 . 82
4.9 The Framework F6 . 88
4.10 A Possible Result for AFdg,Fσ,Labs . 89

4.11 F19, a Possible result for AFcard,Fσ,Labs . 89
4.12 The Argumentation Framework F20 . 91
4.13 Result of the Revision F20 ⋆ ϕ10 . 91
4.14 The Argumentation Framework F24 . 92
4.15 The Argumentation Framework F and a Possible Revised Framework 93

5.1 The Argumentation Framework F1 . 99
5.2 Schematic Explanation of the Revision Process . 100
5.3 Results of F1 Revisions . 102
5.4 The Input Argumentation Framework F4 . 103
5.5 Possible Outputs of the Revision . 103
5.6 The Argumentation Framework F7 . 106
5.7 The Revised Argumentation Framework F ⋆accd ϕ . 106

6.1 Two Possible Results of the Argument-Fixed Enforcement 112
6.2 The Argumentation Framework F4 . 117
6.3 Average Time for Strong (×-curve) and Strict Argument-Fixed (+-curve), n Varying

from 200 to 500 . 118
6.4 Average Time, n = 200, m Varying from 1 to 70 . 119
6.5 Average Change for Strong (×-curve), Strict Argument-Fixed (+-curve) and Non-Strict

Argument-Fixed (△-curve) Enforcement . 120

7.1 Argumentation System . 125
7.2 The Semantics Dependence Graph of Σ . 132

A.1 The Non Oriented Graph G1 . 150
A.2 The Digraph G2 . 150
A.3 The Digraph G . 151
A.4 Schematic Representation of the Polynomial Hierarchy 156

B.1 The framework AF18 . 169
B.2 One of the revised frameworks from AF18 ⋆ ϕ7 . 169

177

List of Tables

1.1 Complexity of Inference Problems for the Usual Semantics 16

2.1 Hamming Distance between the Models of ϕ and the Possible Models after the Change . 37
2.2 Semantics of Program Connectives in DL-PA . 40
2.3 Some Useful DL-PA Programs . 40
2.4 Some Useful DL-PA Formulae . 40

3.1 (σ,Φ)-characteristics . 52
3.2 Correctness and Completeness Results for RP . 58

6.1 Average Computing Times, Rounded at 10−2s, for Non-Strict Strong and Strict Argument-
Fixed Enforcement, for n ∈ {300, 400, 500} . 121

7.1 Summary of Existing Approaches of Change in Argumentation (2010–2013) 137
7.2 Summary of Existing Approaches of Change in Argumentation (2014–2015) 137

A.1 Truth Table of the Negation . 146
A.2 Truth Table of the Binary Connectives . 146
A.3 Truth Table of formula ϕ for the interpretations ω and ω′ 147
A.4 The Transition Function δ for the Turing MachineM 152

178

Bibliography

[ABN13] Leila AMGOUD and Jonathan BEN-NAIM. « Ranking-Based Semantics for Ar-
gumentation Frameworks ». In Proceedings of the Seventh International Con-

ference on Scalable Uncertainty Management (SUM 2013), pages 134–147, 2013.
2 citations pages 126 and 128

[AC02a] Leila AMGOUD and Claudette CAYROL. « Inferring from Inconsistency in Preference-
Based Argumentation Frameworks ». International Journal of Automated Reasoning,
29(2):125–169, 2002. 2 citations pages 70 and 126

[AC02b] Leila AMGOUD and Claudette CAYROL. « A Reasoning Model Based on the Production
of Acceptable Arguments ». Annals of Mathematics and Artificial Intelligence, 34(1-
3):197–215, 2002. 2 citations pages 126 and 127

[AC13] Ofer ARIELI and Martin W. A. CAMINADA. « A QBF-Based Formalization of Ab-
stract Argumentation Semantics ». Journal of Applied Logic, 11(2):229–252, 2013.

Cited page 108

[ADM08] Leila AMGOUD, Yannis DIMOPOULOS, and Pavlos MORAITIS. « Making Decisions
through Preference-Based Argumentation ». In Proceedings of the Eleventh Inter-

national Conference on Principles of Knowledge Representation and Reasoning (KR

2008), pages 113–123, 2008. 2 citations pages 8 and 21

[AGM85] Carlos E. ALCHOURRÓN, Peter GÄRDENFORS, and David MAKIN-
SON. « On The Logic Of Theory Change : Partial Meet Contraction
And Revision Functions ». Journal of Symbolic Logic, 50:510–530, 1985.

10 citations pages 2, 4, 25, 30, 31, 48, 75, 79, 131, and 133

[AH06] Leila AMGOUD and Nabil HAMEURLAIN. « An Argumentation-Based Approach for
Dialog Move Selection ». In Proceedings of the Third International Workshop on Argu-

mentation in Multi-Agent Systems (ArgMAS 2006), pages 128–141, 2006. Cited page 2

[AM82] Carlos E. ALCHOURRÓN and David MAKINSON. « On the Logic of Theory Change:
Contraction Functions and their associated revision functions ». Theoria, 48:14–37,
1982. Cited page 31

[AP09] Leila AMGOUD and Henri PRADE. « Using Arguments for Making and Explaining
Decisions ». Artificial Intelligence, 173:413–436, 2009. Cited page 21

[AV12] Leila AMGOUD and Srdjan VESIC. « Revising Option Status in Argument-Based
Decision Systems ». Journal of Logic and Computation, 5(22):1019–1058, 2012.

Cited page 21

179

Bibliography

[Bau12] Ringo BAUMANN. « What Does it Take to Enforce an Argument? Mini-
mal Change in abstract Argumentation ». In Proceedings of the Twentieth Eu-

ropean Conference on Artificial Intelligence (ECAI 2012), pages 127–132, 2012.
13 citations pages 2, 50, 51, 68, 69, 112, 115, 128, 129, 130, 131, 134, and 137

[BB10] Ringo BAUMANN and Gerhard BREWKA. « Expanding Argumentation Frameworks:
Enforcing and Monotonicity Results ». In Proceedings of the Third International Con-

ference on Computational Models of Argument (COMMA 2010), pages 75–86, 2010.
11 citations pages 2, 49, 68, 110, 118, 128, 129, 130, 131, 134, and 137

[BB15] Ringo BAUMANN and Gerhard BREWKA. « AGM Meets Abstract Argumenta-
tion: Expansion and Revision for Dung Frameworks ». In Proceedings of the

24th Internation Joint Conference on Artificial Intelligence (IJCAI 2015), 2015.
5 citations pages 60, 65, 68, 134, and 137

[BC02] Trevor J. M. BENCH-CAPON. « Value-Based Argumentation Frameworks ». In Pro-

ceedings of the 9th International Workshop on Non-Monotonic Reasoning (NMR’02),
pages 443–454, 2002. 3 citations pages 70, 126, and 127

[BC03] Trevor JM BENCH-CAPON. « Persuasion in Practical Argument Using Value-Based Ar-
gumentation Frameworks ». Journal of Logic and Computation, 13(3):429–448, 2003.

2 citations pages 126 and 127

[BCdSCLS11] Pierre BISQUERT, Claudette CAYROL, Florence Dupin de SAINT-CYR, and Marie-
Christine LAGASQUIE-SCHIEX. « Change in Argumentation Systems: Exploring
the Interest of Removing an Argument ». In Proceedings of the Sixth International

Conference on Scalable Uncertainty Management (SUM 2011), pages 275–288, 2011.
6 citations pages 2, 43, 48, 49, 68, and 107

[BCdSL13] Pierre BISQUERT, Claudette CAYROL, Florence Dupin de SAINT-CYR, and
Marie-Christine LAGASQUIE-SCHIEX. « Enforcement in Argumentation Is a
Kind of Update ». In Proceedings of the Seventh International Confer-

ence on Scalable Uncertainty Management (SUM 2013), pages 30–43, 2013.
7 citations pages 58, 107, 127, 128, 131, 134, and 137

[BCG11] Pietro BARONI, Martin CAMINADA, and Massimiliano GIACOMIN. « An Introduction
to Argumentation Semantics ». Knowledge Engineering Review, 26(4):365–410, 2011.

Cited page 126

[BCPR12] Richard BOOTH, Martin CAMINADA, Mikolaj PODLASZEWSKI, and Iyad RAHWAN.
« Quantifying Disagreement in Argument-Based Reasoning ». In Proceedings of the

Eleventh International Conference on Autonomous Agents and Multiagent Systems (AA-

MAS 2012), pages 493–500, 2012. Cited page 86

[BD04] Philippe BESNARD and Sylvie DOUTRE. « Checking the Acceptabil-
ity of a Set of Arguments ». In Proceedings of the Tenth International

Workshop on Non-Monotonic Reasoning (NMR 2004), pages 59–64, 2004.
12 citations pages 4, 8, 16, 17, 18, 59, 94, 98, 99, 108, 113, and 135

[BDH14] Philippe BESNARD, Sylvie DOUTRE, and Andreas HERZIG. « Encoding Argument
Graphs in Logic ». In Proceedings of the Fifteenth International Conference on In-

180

formation Processing and Management of Uncertainty in Knowledge-Based Systems

(IPMU’14), pages 345–354, 2014. 2 citations pages 17 and 108

[BDHJ14] Anton BELOV, Daniel DIEPOLD, Marijn HEULE, and Matti JÄRVISALO, editors.
Proceedings of SAT Competition 2014: Solver and Benchmark Descriptions. 2014.

Cited page 157

[BG07] Pietro BARONI and Massimiliano GIACOMIN. « On Principle-Based Evaluation of
Extension-Based Argumentation Semantics ». Artificial Intelligence, 171(10):675–700,
2007. Cited page 126

[BG09] Pietro BARONI and Massimiliano GIACOMIN. Semantics of Abstract Argument Sys-
tems. In Guillermo SIMARI and Iyad RAHWAN, editors, Argumentation in Artificial

Intelligence, pages 25–44. 2009. Cited page 126

[BGK+14] Richard BOOTH, Dov M. GABBAY, Souhila KACI, Tjitze RIENSTRA, and Leendert
W. N. van der TORRE. « Abduction and Dialogical Proof in Argumentation and Logic
Programming ». In Proceedings of the Twenty-First European Conference on Artificial

Intelligence (ECAI 2014), pages 117–122, 2014. Cited page 121

[BH01] Philippe BESNARD and Anthony HUNTER. « A Logic-Based Theory of Deductive
Arguments ». Artificial Intelligence, 128(1-2):203–235, 2001. Cited page 137

[BH08] Philippe BESNARD and Anthony HUNTER. Elements of Argumentation. MIT press
Cambridge, 2008. Cited page 137

[BHT13] Philippe BALBIANI, Andreas HERZIG, and Nicolas TROQUARD. « Dynamic Logic
of Propositional Assignments: A Well-Behaved Variant of PDL ». In Twenty-Eighth

Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2013), pages 143–
152, 2013. Cited page 25

[BKM91] Chitta BARAL, Sarit KRAUS, and Jack MINKER. « Combining Multiple Knowledge
Bases ». IEEE Transactions on Knowledge and Data Engineering, 3(2):208–220, 1991.

Cited page 80

[BKMS92] Chitta BARAL, Sarit KRAUS, Jack MINKER, and V. S. SUBRAHMANIAN. « Combining
Knowledge Bases Consisting of First-Order Theories ». Computational Intelligence,
8(1):45–71, 1992. Cited page 80

[BKRvdT13] Richard BOOTH, Souhila KACI, Tjitze RIENSTRA, and Leon van der TORRE. A Logi-
cal Theory about Dynamics in Abstract Argumentation. In Seventh International Con-

ference on Scalable Uncertainty Management (SUM 2013), pages 148–161. Springer,
2013. 7 citations pages 60, 61, 85, 128, 129, 134, and 137

[BKvdT09a] Guido BOELLA, Souhila KACI, and Leendert van der TORRE. « Dynamics in Argu-
mentation with Single Extensions: Abstraction Principles and the Grounded Extension
». In Proceedings of the Tenth European Conferences on Symbolic and Quantitative

Approaches to Reasoning with Uncertainty (ECSQARU 2009), pages 107–118, 2009.
7 citations pages 2, 43, 44, 45, 68, 107, and 127

[BKvdT09b] Guido BOELLA, Souhila KACI, and Leendert van der TORRE. « Dy-
namics in Argumentation with Single Extensions: Attack Refinement and the

181

Bibliography

Grounded Extension ». In Proceedings of the International Conference on Au-

tonomous Agents and Multiagents Systems (AAMAS 2009), pages 1213–1214, 2009.
6 citations pages 2, 43, 45, 68, 107, and 127

[BM11] Elise BONZON and Nicolas MAUDET. « On the Outcomes of Multiparty Persuasion
». In Proceedings of the Tenth International Conference on Autonomous Agents and

Multiagent Systems (AAMAS 2011), pages 47–54, 2011. Cited page 140

[BMM14] Elise BONZON, Nicolas MAUDET, and Stefano MORETTI. « Coalitional Games
for Abstract Argumentation ». In Proceedings of the Fifth International Confer-

ence on Computational Models of Argument (COMMA’14), pages 161–172, 2014.
2 citations pages 8 and 23

[BW10] Gerhard BREWKA and Stefan WOLTRAN. « Abstract Dialectical Frameworks ». In
Proceedings of the Twelfth International Conference on Principles of Knowledge Rep-

resentation and Reasoning (KR 2010), 2010. Cited page 126

[Cam06] Martin CAMINADA. « On the Issue of Reinstatement in Argumentation ». In Pro-

ceedings of the Tenth European Conference on Logics in Artificial Intelligence (JELIA

2006), pages 111–123. Springer, 2006. 4 citations pages 8, 13, 14, and 126

[Cam07] Martin CAMINADA. « Comparing Two Unique Extension Semantics for Formal Argu-
mentation: Ideal and Eager ». In Proceedings of the Nineteenth Belgian-Dutch Confer-

ence on Artificial Intelligence (BNAIC 2007), pages 81–87, 2007. Cited page 11

[CDE+99] Manuel CLAVEL, Francisco DURÁN, Steven EKER, Patrick LINCOLN, Narciso MARTÍ-
OLIET, José MESEGUER, and Jose F. QUESADA. « The Maude System ». In Proceed-

ings of the Tenth International Conference on Rewriting Techniques and Applications

(RTA 1999), pages 240–243, 1999. Cited page 57

[CDLS99] Marco CADOLI, Francesco M. DONINI, Paolo LIBERATORE, and Marco SCHAERF. «
The Size of a Revised Knowledge Base ». Artificial Intelligence, 115(1):25–64, 1999.

Cited page 84

[CDM05] Sylvie COSTE-MARQUIS, Caroline DEVRED, and Pierre MARQUIS. « Symmetric Ar-
gumentation Frameworks ». In Proceedings of the Eighth European Conference on Sym-

bolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU 2005,
pages 317–328, 2005. Cited page 16

[CDM06] Sylvie COSTE-MARQUIS, Caroline DEVRED, and Pierre MARQUIS. « Constrained
Argumentation Frameworks ». In Proceedings of the Tenth International Conference

on Principles of Knowledge Representation and Reasoning (KR 2006), pages 112–122,
2006. 4 citations pages 61, 126, 128, and 129

[CdSCLS10] Claudette CAYROL, Florence Dupin de SAINT-CYR, and Marie-Christine
LAGASQUIE-SCHIEX. « Change in Abstract Argumentation Frameworks: Adding
an Argument ». Journal of Artificial Intelligence Research, 38:49–84, 2010.

8 citations pages 2, 43, 45, 68, 104, 107, 127, and 137

[CKM15] Thomas CARIDROIT, Sébastien KONIECZNY, and Pierre MARQUIS. « Contraction in
Propositional Logic ». In Proceedings of the Thirteenth European Conference on Sym-

bolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2015),
2015. 2 citations pages 94 and 140

182

[CL05] Claudette CAYROL and Marie-Christine LAGASQUIE-SCHIEX. « Graduality in Ar-
gumentation ». Journal of Artificial Intelligence Research (JAIR), 23:245–297, 2005.

Cited page 128

[CL12] Julien COJAN and Jean LIEBER. « Belief Revision-Based Case-Based Reasoning ». In
Workshop on Similarity and Analogy-based Methods in Artificial Intelligence (SAMAI

2012), pages 33–39, 2012. Workshop at ECAI 2012. Cited page 97

[CLS05] Claudette CAYROL and Marie-Christine LAGASQUIE-SCHIEX. « On the Ac-
ceptability of Arguments in Bipolar Argumentation Frameworks ». In Proceed-

ings of the Eighth European Conference on Symbolic and Quantitative Approaches

to Reasoning with Uncertainty, ECSQARU 2005, pages 378–389. Springer, 2005.
2 citations pages 126 and 127

[CMDK+07] Sylvie COSTE-MARQUIS, Caroline DEVRED, Sébastien KONIECZNY, Marie-
Christine LAGASQUIE-SCHIEX, and Pierre MARQUIS. « On the Merging of
Dung’s Argumentation Systems ». Artificial Intelligence, 171:730–753, 2007.

3 citations pages 81, 89, and 140

[CMKMM13a] Sylvie COSTE-MARQUIS, Sébastien KONIECZNY, Jean-Guy MAILLY, and Pierre
MARQUIS. « On the Revision of Argumentation Systems: Minimal Change of Ar-
guments Status ». In Second International Workshop on Theory and Applications of

Formal Argumentation (TAFA 2013), 2013. workshop at IJCAI 2013. no citation

[CMKMM13b] Sylvie COSTE-MARQUIS, Sébastien KONIECZNY, Jean-Guy MAILLY, and Pierre
MARQUIS. « Révision de systèmes d’argumentation : changement minimal du statut
des arguments ». In Septièmes Journées d’Intelligence Artificielle Fondamentale (IAF

2013), pages 107–116, 2013. in french. no citation

[CMKMM14a] Sylvie COSTE-MARQUIS, Sébastien KONIECZNY, Jean-Guy MAILLY, and Pierre
MARQUIS. « Approche par traduction pour la révision de systèmes d’argumentation
». In Huitièmes Journées d’Intelligence Artificielle Fondamentale (IAF 2014), pages
77–85, 2014. in french. no citation

[CMKMM14b] Sylvie COSTE-MARQUIS, Sébastien KONIECZNY, Jean-Guy MAILLY, and Pierre
MARQUIS. « On the Revision of Argumentation Systems: Minimal Change of Ar-
guments Statuses ». In Proceedings of the Fourteenth International Conference on

Principles of Knowledge Representation and Reasoning (KR 2014), pages 72–81, 2014.
4 citations pages 93, 104, 128, and 137

[CMKMM14c] Sylvie COSTE-MARQUIS, Sébastien KONIECZNY, Jean-Guy MAILLY, and Pierre
MARQUIS. « A Translation-based Approach for Revision of Argumentation Frame-
works ». In Proceedings of the Fourteenth European Conference on Logics in Artificial

Intelligence (JELIA 2014), pages 77–85, 2014. Cited page 137

[CMKMM15a] Sylvie COSTE-MARQUIS, Sébastien KONIECZNY, Jean-Guy MAILLY, and Pierre
MARQUIS. « Forçage d’extension en argumentation abstraite par optimisation
booléenne ». In Neuvièmes Journées d’Intelligence Artificielle Fondamentale (IAF

2015), 2015. in french. no citation

183

Bibliography

[CMKMM15b] Sylvie COSTE-MARQUIS, Sébastien KONIECZNY, Jean-Guy MAILLY, and Pierre
MARQUIS. « Extension Enforcement in Abstract Argumentation as an Optimization
Problem ». In Proceedings of the Twenty-Fourth International Joint Conference on Ar-

tificial Intelligence (IJCAI 2015), pages 2876–2882, 2015. 2 citations pages 134 and 137

[Coo71] Stephen A. COOK. « The Complexity of Theorem-Proving Procedures ». In Proceed-

ings of the Third Annual ACM Symposium on Theory of Computing, pages 151–158,
1971. Cited page 157

[Dal88] Mukesh DALAL. « Investigations into a Theory of Knowledge Base Revision: Pre-
liminary Report ». In Proceedings of the Seventh National Conference on Artificial

Intelligence (AAAI’88), pages 475–479, 1988. 2 citations pages 36 and 101

[DDLW14] Paul E. DUNNE, Wolfgang DVORÁK, Thomas LINSBICHLER, and Stefan
WOLTRAN. « Characteristics of Multiple Viewpoints in Abstract Argumenta-
tion ». In Proceedings of the Fourteenth International Conference on Princi-

ples of Knowledge Representation and Reasoning (KR 2014), pages 52–61, 2014.
7 citations pages 18, 19, 91, 95, 130, 137, and 139

[DHL+15] Martin DILLER, Adrian HARET, Thomas LINSBICHLER, Stefan RÜMMELE, and
Stefan WOLTRAN. « An Extension-Based Approach to Belief Revision in Ab-
stract Argumentation ». In Proceedings of the Twenty-Fourth International

Joint Conference on Artificial Intelligence (IJCAI 2015), pages 2926–2932, 2015.
5 citations pages 93, 128, 132, 134, and 137

[DHP14] Sylvie DOUTRE, Andreas HERZIG, and Laurent PERRUSSEL. « A Dynamic Logic
Framework for Abstract Argumentation ». In Proceedings of the Fourteenth Inter-

national Conference on Principles of Knowledge Representation and Reasoning (KR

2014), pages 62–71, 2014. 9 citations pages 59, 107, 127, 128, 129, 131, 134, 136, and 137

[DJWW11] Wolfgang DVORÁK, Matti JÄRVISALO, Johannes Peter WALLNER, and Stefan
WOLTRAN, 2011. see http://www.dbai.tuwien.ac.at/research/
project/argumentation/dynpartix/examples/. Cited page 118

[DJWW14] Wolfgang DVORÁK, Matti JÄRVISALO, Johannes Peter WALLNER, and Stefan
WOLTRAN. « Complexity-Sensitive Decision Procedures for Abstract Argumentation
». Artificial Intelligence, 206:53–78, 2014. Cited page 118

[DKV15] Jérôme DELOBELLE, Sébastien KONIECZNY, and Srdjan VESIC. « On the Aggre-
gation of Argumentation Frameworks ». In Proceedings of the Twenty-Fourth Interna-

tional Joint Conference on Artificial Intelligence (IJCAI 2015), pages 2911–2917, 2015.
2 citations pages 95 and 140

[DMT07] Phan Minh DUNG, Paolo MANCARELLA, and Francesca TONI. « Computing
ideal sceptical argumentation ». Artificial Intelligence, 171(10-15):642–674, 2007.

Cited page 11

[DMW12] Paul E. DUNNE, Pierre MARQUIS, and Michael WOOLDRIDGE. « Argument Aggre-
gation: Basic Axioms and Complexity Results ». In Proceedings of the Fourth Inter-

national Conference on Computational Models of Argument (COMMA 2012), pages
129–140, 2012. Cited page 140

184

[Doy92] Jon DOYLE. Reason Maintenance and Belief Revision - Foundations vs. Coher-
ence Theories. In Peter GÄRDENFORS, editor, Belief Revision, pages 29–51. 1992.

Cited page 69

[DP11] James P. DELGRANDE and Pavlos PEPPAS. « Revising Horn Theories ». In Proceedings

of the Twenty-Second International Joint Conference on Artificial Intelligence (IJCAI

2011), pages 839–844, 2011. Cited page 93

[DP13] Sylvie DOUTRE and Laurent PERRUSSEL. « On Enforcing a Constraint in Argumen-
tation ». In Proceedings of the Eleventh European Workshop on Multi-Agent Systems

(EUMAS’13), 2013. Cited page 136

[Dun95] Phan Minh DUNG. « On the Acceptability of Arguments and Its Fundamental Role
in Nonmonotonic Reasoning, Logic Programming, and n-Person Games ». Artificial

Intelligence, 77(2):321–357, 1995. 8 citations pages 1, 4, 8, 9, 11, 125, 126, and 128

[dV97] Alvaro del VAL. « Nonmonotonic Reasoning and Belief Revision: Syntactic, Semantic,
Foundational, and Coherence Approaches ». Journal of Applied Non-Classical Logics,
7(2), 1997. Cited page 69

[DW09] Paul E. DUNNE and Michael WOOLDRIDGE. Complexity of Abstract Argumentation.
In Guillermo SIMARI and Iyad RAHWAN, editors, Argumentation in Artificial Intelli-

gence, Chapter 5, pages 85–104. 2009. Cited page 16

[DW11] Wolfgang DVOŘÁK and Stefan WOLTRAN. « On the Intertranslatability of Argumen-
tation Semantics ». Journal of Artificial Intelligence Research, 41(2):445–475, 2011.

2 citations pages 130 and 137

[EW06] Uwe EGLY and Stefan WOLTRAN. « Reasoning in Argumentation Frameworks Us-
ing Quantified Boolean Formulas ». In Proceedings of the First International Confer-

ence on Computational Models of Argument (COMMA 2006), pages 133–144, 2006.
2 citations pages 108 and 139

[Fer99] Eduardo FERMÉ. « Revising the AGM Postulates ». PhD thesis, Universidad de Buenos
Aires, 1999. Cited page 3

[FKS02] Marcelo A. FALAPPA, Gabriele KERN-ISBERNER, and Guillermo Ricardo SIMARI.
« Explanations, Belief Revision and Defeasible Reasoning ». Artificial Intelligence,
141(1/2):1–28, 2002. Cited page 62

[FKUV86] Ronald FAGIN, Gabriel M. KUPER, Jeffrey D. ULLMAN, and Moshe Y. VARDI.
« Updating Logical Databases ». Advances in Computing Research, 3:1–18, 1986.

Cited page 80

[For89] Kenneth D. FORBUS. « Introducing Actions into Qualitative Simulation ». In Proceed-

ings of the Eleventh International Joint Conference on Artificial Intelligence (IJCAI

1989), pages 1273–1278, 1989. Cited page 39

[Gär88] Peter GÄRDENFORS. Knowledge In Flux. Cambridge University Press, Cambridge,
UK, 1988. 3 citations pages 28, 30, and 75

[GJ79] M. R. GAREY and David S. JOHNSON. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman, 1979. 2 citations pages 154 and 159

185

Bibliography

[GM15] Davide GROSSI and Sanjay MODGIL. « On the Graded Acceptability of Arguments
». In Proceedings of the 24th Internation Joint Conference on Artificial Intelligence

(IJCAI 2015), 2015. Cited page 128

[GR12] Dov GABBAY and Odinaldo RODRIGUES. « A Numerical Approach to the Merging of
Argumentation Networks ». In Proceedings of the Thirteenth International Workshop

on Computational Logic in Multi-Agent Systems (CLIMA 2012), pages 195–212, 2012.
Cited page 140

[Gro88] Adam GROVE. « Two Modellings for Theory Change ». Journal of Philosophical Logic,
17:157–170, 1988. 2 citations pages 32 and 35

[GRR98] Dov GABBAY, Odinaldo RODRIGUES, and Alessandra RUSSO. « Revision by Transla-
tion ». In Proceedings of the Seventh International Conference on Information Process-

ing and Management of Uncertainty in Knowledge-Based Systems (IPMU 98), volume
Information, Uncertainty and Fusion, pages 3–32, 1998. Cited page 97

[GT13] Simone GABBRIELLINI and Paolo TORRONI. « MS Dialogues: Persuading and Getting
Persuaded, A Model of Social Network Debates that Reconciles Arguments and Trust
». In Tenth International Workshop on Argumentation in Multi-Agent Systems (ArgMAS

2013), 2013. Cited page 70

[Ham50] Richard W. HAMMING. « Error Detecting and Error Correcting Codes ». Bell System

Technical Journal, 29(2):147–160, 1950. 2 citations pages 36 and 173

[Her14] Andreas HERZIG. « Belief Change Operations: A Short History of Nearly Everything,
Told in Dynamic Logic of Propositional Assignments ». In Proceedings of the Four-

teenth International Conference on Principles of Knowledge Representation and Rea-

soning (KR 2014), 2014. Cited page 40

[HLMT11] Andreas HERZIG, Emiliano LORINI, Frédéric MOISAN, and Nicolas TROQUARD.
« A Dynamic Logic of Normative Systems ». In Proceedings of the 22nd Interna-

tional Joint Conference on Artificial Intelligence (IJCAI 2011), pages 228–233, 2011.
Cited page 25

[IBM14] IBM. « IBM ILOG CPLEX Optimization Studio: Optimization model de-
velopment toolkit for mathematical and constraint programming », 2014. See
http://www.ibm.com/software/products/en/

ibmilogcpleoptistud/. Cited page 117

[Kar72] Richard M. KARP. « Reducibility Among Combinatorial Problems ». In Proceedings

of a symposium on the Complexity of Computer Computations, pages 85–103, 1972.
Cited page 158

[KBM+13] Dionysios KONTARINIS, Elise BONZON, Nicolas MAUDET, Alan PEROTTI, Leon
van der TORRE, and Serena VILLATA. « Rewriting Rules for the Computation of Goal-
Oriented Changes in an Argumentation System ». In Proceedings of the Fourteenth In-

ternational Workshop on Computational Logic in Multi-Agent Systems (CLIMA 2013),
pages 51–68, 2013. 7 citations pages 2, 55, 57, 107, 122, 137, and 140

186

[KBMM14] Dionysios KONTARINIS, Elise BONZON, Nicolas MAUDET, and Pavlos MORAITIS.
« Empirical Evaluation of Strategies for Multiparty Argumentative Debates ». In Fif-

teenth International Workshop on Computational Logic in Multi-Agent Systems (CLIMA

2014), pages 105–122, 2014. Cited page 2

[KLM90] Sarit KRAUS, Daniel J. LEHMANN, and Menachem MAGIDOR. « Nonmonotonic Rea-
soning, Preferential Models and Cumulative Logics ». Artificial Intelligence, 44(1-
2):167–207, 1990. 2 citations pages 1 and 55

[KM91] Hirofumi KATSUNO and Alberto O. MENDELZON. « Propositional Knowledge
Base Revision and Minimal Change ». Artificial Intelligence, 52:263–294, 1991.

12 citations pages 2, 4, 25, 33, 34, 35, 75, 76, 100, 101, 131, and 133

[KM92] Hirofumi KATSUNO and Alberto O. MENDELZON. On the Difference between Updat-
ing a Knowledge Base and Revising it. In Peter GÄRDENFORS, editor, Belief Revision,
pages 183–203. 1992. 6 citations pages 2, 4, 25, 33, 37, and 134

[KMM04] Antonis KAKAS, Nicolas MAUDET, and Pavlos MORAITIS. « Layered Strategies and
Protocols for Argumentation-Based Agent Interaction ». In Proceedings of the First In-

ternational Workshop on Argumentation in MultiAgent Systems (ArgMAS 2004), pages
66–79, 2004. Cited page 2

[Kon00] Sébastien KONIECZNY. « On the Difference between Merging Knowledge Bases and
Combining Them ». In Proceedings of the Seventh International Conference on Prin-

ciples of Knowledge Representation and Reasoning (KR 2000), pages 135–144, 2000.
2 citations pages 80 and 140

[KP98] Sébastien KONIECZNY and Ramón PINO PÉREZ. « On the Logic of Merging ». In
Proceedings of the Sixth International Conference on Principles of Knowledge Repre-

sentation and Reasoning (KR 1998), pages 488–498, 1998. Cited page 140

[KP99] Sébastien KONIECZNY and Ramón PINO PÉREZ. « Merging with Integrity Constraints
». In Proceedings of the Fifth European Conference on Symbolic and Quantitative

Approaches to Reasoning with Uncertainty (ECSQARU 1999), pages 233–244, 1999.
2 citations pages 94 and 140

[LLM15a] Jean-Marie LAGNIEZ, Emmanuel LONCA, and Jean-Guy MAILLY. « CoQuiAAS :
Applications de la programmation par contraintes à l’argumentation abstraite ». In
Onzièmes Journées Francophones de la Programmation par Contraintes (JPFC 2015),
2015. in french. Cited page 139

[LLM15b] Jean-Marie LAGNIEZ, Emmanuel LONCA, and Jean-Guy MAILLY. « CoQuiAAS:
A Constraint-based Quick Abstract Argumentation Solver ». In Twenty-seventh IEEE

International Conference on Tools with Artificial Intelligence (ICTAI 2015), 2015.
Cited page 139

[LLM15c] Jean-Marie LAGNIEZ, Emmanuel LONCA, and Jean-Guy MAILLY. « CoQuiAAS:
Applications of Constraint Programming to Abstract Argumentation ». In First Interna-

tional Competition on Computational Models of Argumentation (ICCMA 2015), 2015.
Cited page 139

187

Bibliography

[LM92] Daniel J. LEHMANN and Menachem MAGIDOR. « What does a Conditional Knowledge
Base Entail? ». Artificial Intelligence, 55(1):1–60, 1992. Cited page 55

[Mai12] Jean-Guy MAILLY. « Révision de Systèmes d’Argumentation », 2012. Master thesis,
in french. English title: Revision of Argumentation Frameworks. Cited page 138

[Mai13] Jean-Guy MAILLY. « Revising Argumentation Systems: Argument Status Versus Graph
Minimization », 2013. ACAI Summer School 2013, Student Session (ACAI 2013).

no citation

[NAD14] Samer NOFAL, Katie ATKINSON, and Paul E. DUNNE. « Algorithms for Decision
Problems in Argument Systems under Preferred Semantics ». Artificial Intelligence,
207:23–51, 2014. Cited page 108

[Neb98] Bernhard NEBEL. How Hard is it to Revise a Belief Base? In Handbook of Defeasible

Reasoning and Uncertainty Management Systems, volume 3: Belief Change, pages 77–
145. Kluwer, 1998. Cited page 84

[NOC07] Juan Carlos NIEVES, Mauricio OSORIO, and Ulises CORTÉS. « Inferring Preferred Ex-
tensions by Minimal Models ». pages 114–124, 2007. Workshop at Logic Programming
and Non-Monotonic Reasonning 2007 (LPNMR07). Cited page 108

[NR11] Farid NOUIOUA and Vincent RISCH. « Argumentation Frameworks with Necessities
». In Proceedings of the Fifth International Conference on Scalable Uncertainty Man-

agement (SUM 2011), pages 163–176, 2011. 2 citations pages 126 and 127

[NW14] Farid NOUIOUA and Eric WÜRBEL. « Removed Set-Based Revision of Abstract Ar-
gumentation Frameworks ». In Proceedings of the Twenty-Sixth IEEE International

Conference on Tools with Artificial Intelligence (ICTAI 2014), pages 784–791, 2014.
2 citations pages 62 and 137

[OW11] Emilia OIKARINEN and Stefan WOLTRAN. « Characterizing Strong Equivalence for
Argumentation Frameworks ». Artificial Intelligence, 175(14-15):1985–2009, 2011.

no citation

[Pap92] Odile PAPINI. « A Complete Revision Function in Propositional Calculus ». In Proceed-

ings of the Tenth European Conference on Artificial Intelligence, (ECAI 1992), pages
339–343, 1992. Cited page 63

[Pap94] Christos H. PAPADIMITRIOU. Computational Complexity. Addison-Wesley, 1994.
Cited page 154

[Pea09] Judea PEARL. Causality: Models, Reasoning and Inference. Cambridge University
Press, New York, NY, USA, 2nd edition, 2009. Cited page 53

[QLB06] Guilin QI, Weiru LIU, and David A. BELL. « Knowledge Base Revision in Description
Logics ». In Proceedings of the Tenth European Conference on Logics in Artificial

Intelligence (JELIA 2006), pages 386–398, 2006. Cited page 75

[Rei80] Raymond REITER. « A Logic for Default Reasoning ». Artificial Intelligence, 13(1-
2):81–132, 1980. Cited page 1

188

[Rie14] Tjitze RIENSTRA. « Argumentation in Flux: Modelling Change in the Theory of Argu-

mentation ». PhD thesis, Université du Luxembourg and Université de Montpellier II,
2014. 3 citations pages 54, 107, and 137

[Sto76] Larry J. STOCKMEYER. « The Polynomial-Time Hierarchy ». Theoretical Computer

Science, 3(1):1–22, 1976. Cited page 155

[Tar30] Alfred TARSKI. « Fundamentale Begriffe der Methodologie der Deduktiven Wis-
senschaften ». Monatshefte Fur Mathematik, 37:361–404, 1930. Cited page 149

[TBS08] Fernando A. TOHMÉ, Gustavo Adrian BODANZA, and Guillermo Ricardo SIMARI. «
Aggregation of Attack Relations: A Social-Choice Theoretical Analysis of Defeasibility
Criteria ». In Foundations of Information and Knowledge Systems, 5th International

Symposium, FoIKS 2008, Pisa, Italy, February 11-15, 2008, Proceedings, pages 8–23,
2008. Cited page 140

[Tou58] Stephen TOULMIN. The Use of Argument. Cambridge University Press, 1958.
Cited page 9

[Tse68] Grigorii Samuilovich TSEITIN. On the Complexity of Derivation in Propositional Cal-
culus. In A.O SLISENKO, editor, Structures in Constructive Mathematics and Mathe-

matical Logic, Part II, Seminars in Mathematics (translated from Russian), pages 115–
125. Steklov Mathematical Institute, 1968. Cited page 147

[Tur36] Alan Mathison TURING. « On Computable Numbers, with an Application to the
Entscheidungsproblem ». Proceedings of the London Mathematical Society. Second

Series, 42:230–265, 1936. Cited page 151

[TV15] Matthias THIMM and Serena VILLATA. « First International Com-
petition on Computational Models of Argumentation (ICCMA’15) »,
2015. see http://argumentationcompetition.org/2015/.

2 citations pages 122 and 139

[VBvdT11] Serena VILLATA, Guido BOELLA, and Leendert van der TORRE. « Attack Seman-
tics for Abstract Argumentation ». In Proceedings of the Twenty-Second Interna-

tional Joint Conference on Artificial Intelligence (IJCAI 2011), pages 406–413, 2011.
Cited page 56

[Win88] Marianne WINSLETT. « Reasoning about Action Using a Possible Models Approach
». In Proceedings of the Seventh National Conference on Artificial Intelligence (AAAI

1988), pages 89–93, 1988. no citation

[WJP00] Eric WÜRBEL, Robert JEANSOULIN, and Odile PAPINI. « Revision: an Application
in the Framework of GIS ». In Proceedings of the Seventh International Conference

on Principles of Knowledge Representation and Reasoning (KR 2000), pages 505–515,
2000. Cited page 63

[Yag88] Ronald R YAGER. « On Ordered Weighted Averaging Aggregation Operators in Multi-
Criteria Decision Making ». IEEE Transactions on Systems, Man and Cybernetics,
18:183–190, 1988. Cited page 83

189

http://argumentationcompetition.org/2015/

Bibliography

190

Abstract

This thesis tackles the problem of integrating a new piece of information in an abstract argumenta-
tion framework. Such a framework is a directed graph such that its nodes represent the arguments, and
the directed edges represent the attacks between arguments. There are different ways to decide which
arguments are accepted by the agent who uses such a framework to represent her beliefs.
An agent may be confronted with a piece of information such that "this argument should be accepted",
which is in contradiction with her current beliefs, represented by her argumentation framework.
In this thesis, we have studied several approaches to incorporate a piece of information in an argumenta-
tion framework.
Our first contribution is an adaptation of the AGM framework for belief revision, which has been de-
veloped for characterizing the incorporation of a new piece of information when the agent’s beliefs are
represented in a logical setting. We have adapted the rationality postulates from the AGM framework to
characterize the revision operators suited to argumentation frameworks, and we have identified several
ways to generate the argumentation frameworks resulting from the revision.
We have also shown how to use AGM revision as a tool for revising argumentation frameworks. Our
approach uses a logical encoding of the argumentation framework to take advantage of the classical re-
vision operators, for deriving the expected result.
At last, we have studied the problem of enforcing a set of arguments (how to change an argumentation
framework so that a given set of arguments becomes an extension). We have developed a new family of
operators which guarantee the success of the enforcement process, contrary to the existing approaches,
and we have shown that a translation of our approaches into satisfaction and optimization problems
makes possible to develop efficient tools for computing the result of the enforcement.

Keywords: abstract argumentation, belief revision, minimal change, logical encoding.

Résumé

Cette thèse traite du problème de l’intégration d’une nouvelle information dans un système d’argumen-
tation abstrait. Un tel système est un graphe orienté dont les nœuds représentent les arguments, et les
arcs représentent les attaques entre arguments. Il existe divers moyen de décider quels arguments sont
acceptés par l’agent qui utilise un tel système pour représenter ses croyances.
Il peut arriver dans la vie d’un agent qu’il soit confronté à une information du type "tel argument devrait
être accepté", alors que c’est en contradiction avec ses croyances actuelles, représentées par son système
d’argumentation.
Nous avons étudié dans cette thèse diverses approches pour intégrer une information à un système d’ar-
gumentation.
Notre première contribution est une adaptation du cadre AGM pour la révision de croyances, habituelle-
ment utilisé lorsque les croyances de l’agent sont représentées dans un formalisme logique. Nous avons
notamment adapté les postulats de rationalité proposés dans le cadre AGM pour pouvoir caractériser des
opérateurs de révision de systèmes d’argumentation, et nous avons proposé différents moyens de générer
les systèmes d’argumentation résultant de la révision.

Nous avons ensuite proposé d’utiliser la révision AGM comme un outil pour réviser les systèmes d’ar-
gumentation. Il s’agit cette fois-ci d’une approche par encodage en logique du système d’argumentation,
qui permet d’utiliser les opérateurs de révision usuels pour obtenir le résultat souhaité.
Enfin, nous avons étudié le problème du forçage d’un ensemble d’arguments (comment modifier le sys-
tème pour qu’un ensemble donné soit une extension). Nous avons proposé une nouvelle famille d’opé-
rateurs qui garantissent le succès de l’opération, contrairement aux opérateurs de forçage existants, et
nous avons montré qu’une traduction de nos approches en problèmes de satisfaction ou d’optimisation
booléenne permet de développer des outils efficaces pour calculer le résultat du forçage.

Mots-clés: argumentation abstraite, révision de croyances, changement minimal, encodage logique.

	Couverture
	Remerciements
	Dédicace
	Contents
	Introduction
	Non-Monotonic Reasoning in Artificial Intelligence: the Role of Argumentation and Belief Change
	Research Question
	Organization of the Thesis

	Part I State of the Art
	Abstract Argumentation
	Dung's Framework
	Argumentation Framework and Acceptability of Arguments
	Inference Tasks and their Complexity
	Propositional Encoding of Argumentation Frameworks

	Realizability of a Set of Candidates
	Applications of Argumentation
	Argumentation and Decision Making
	Argumentation and Goal-Oriented Persuasion
	Argumentation and Resources Allocation

	Conclusion

	Belief Change
	AGM Framework
	Belief Status, Belief Change
	Rationality Postulates and Links between Operations
	Representation Theorems

	Belief Change in Propositional Logic
	From Theories to Propositional Formulae
	Belief Revision in Propositional Logic
	Belief Update: Another Way to Incorporate a New Piece of Information
	Dynamic Logic of Propositional Assignments and Belief Change

	Conclusion

	Existing Approaches on Dynamics of Argumentation Frameworks
	Properties of Atomic Change in Argumentation Frameworks
	Refinement and Abstraction Principles
	Adding or Removing an Argument

	Extension Enforcement
	Normal, Strong and Weak Expansion
	Using Expansion to Enforce a Set of Arguments
	Minimal Change Enforcement

	Intervention and Observation in Argumentation
	Goal-Oriented Change in Argumentation
	Change in Argumentation through Belief Update
	Updating an Argumentation Framework through Propositional Encoding
	Updating Argumentation Frameworks through DLPA programs

	Change in Argumentation through Belief Revision
	A Labelling-based Integrity Constraint
	Removed Set-Based Revision
	Structure-Based AGM Revision

	On Minimal Change of Arguments Statuses and Change of the Attack Relation

	Part II Contributions to the Dynamics of Argumentation Frameworks
	Adapting the AGM Framework for Abstract Argumentation
	Revision at the Extension Level
	On Revision Formulae
	Extension-Based Revision Operators
	Distance-Based Revision

	Revision at the System Level
	Extension-Based Generation
	Some Computational Aspects

	Labelling-Based Revision of Argumentation Frameworks
	Labelling-based Postulates
	Labelling-Based Generation

	Constrained Open World Revision
	On the Unicity of the Outcome
	Related Work
	Conclusion

	AGM Revision as a Tool to Revise Argumentation Frameworks
	A Translation-Based Approach
	A Propositional Encoding
	Encoding Revision Operators with Logical Constraints

	Rationality Postulates in the acc Case
	Related Work
	Conclusion

	Extension Enforcement
	Weaknesses of the Existing Enforcement Approaches
	Argument-Fixed and General Enforcement
	Argument-Fixed Enforcement
	Minimal Change

	Enforcement as Satisfaction and Optimization Problems
	Complexity of Enforcement
	Enforcement as Boolean Satisfaction
	Minimal Change Enforcement as Pseudo-Boolean Optimization
	Constrained Enforcement

	Experimental Results
	Related Work
	Conclusion

	On Constraints and Change in Argumentation
	Argumentation System
	Three Kinds of Constraints
	Structural Constraints
	Acceptability Constraints
	Semantic Constraints
	Combinations of Constraints

	Quality of Enforcement
	Minimal Change
	Combining Minimality Criteria
	Rationality Postulates for Constraint Enforcement

	Towards Generalized Enforcement
	Formal Setting
	Propositional Encoding of Constraint Enforcement Operators

	Conclusion

	Conclusion
	Appendix
	Background Notions
	Sets and Relations
	Propositional Logic
	Graph Notions
	Computational Complexity
	Turing Machines and Decidability
	Determinism, Hardness, Completeness and Polynomial Hierarchy
	Complexity of Function Problems
	Complexity of Well-Known Problems: Constraint Satisfaction and Optimization

	Proofs of the Results from Chapter 4
	Proofs of the Results from Chapter 5
	Proofs of the Results from Chapter 6

	List of Figures
	List of Tables
	Bibliography
	Abstract
	Résumé

