
HAL Id: tel-02152373
https://theses.hal.science/tel-02152373

Submitted on 11 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Apprentissage non supervisé de flux de données
massives : application aux Big Data d’assurance

Mohammed Ghesmoune

To cite this version:
Mohammed Ghesmoune. Apprentissage non supervisé de flux de données massives : application aux
Big Data d’assurance. Environnements Informatiques pour l’Apprentissage Humain. Université Sor-
bonne Paris Cité, 2016. Français. �NNT : 2016USPCD061�. �tel-02152373�

https://theses.hal.science/tel-02152373
https://hal.archives-ouvertes.fr

Université de Paris 13
Laboratoire d’Informatique de Paris-Nord (LIPN)

Apprentissage Artificiel et Applications (A3)

Thèse

présentée par

Mohammed Ghesmoune

pour obtenir le grade de

Docteur d’université
Spécialité : Informatique

Apprentissage non supervisé de
flux de données massives :
Application aux Big Data

d’assurance.

soutenue publiquement le 25 novembre 2016

devant le jury composé de

Directeur
Mr Mustapha Lebbah (HDR) - LIPN, Université Paris 13

Co-encadrement
Mme Hanane Azzag (HDR) - LIPN, Université Paris 13

Rapporteurs
Mr Marc Gelgon (Pr) - LINA, Polytech Nantes
Mr Allou Samé (HDR) - IFSTTAR, Université Paris-Est

Examinateurs
Mme Salima Benbernou (Pr) - LIPADE, Université Paris Descartes
Mr Christophe Cérin (Pr) - LIPN, Université Paris 13
Mr Marcin Detyniecki (HDR) - AXA Data Innovation Lab et UPMC
Mme Céline Rouveirol (Pr) - LIPN, Université Paris 13

http://www.university.com
http://lipn.univ-paris13.fr/en/
Research Group Web Site URL Here (include http://)

ii

Abstract

The research outlined in this thesis concerns the development of approaches based

on growing neural gas (GNG) for clustering of data streams. We propose three

algorithmic extensions of the GNG approaches: sequential, distributed and paral-

lel, and hierarchical ; as well as a model for scalability using MapReduce and its

application to learn clusters from the real insurance Big Data in the form of a data

stream.

We firstly propose the G-Stream method. G-Stream, as a ”sequential” clus-

tering method, is a one-pass data stream clustering algorithm that allows us to

discover clusters of arbitrary shapes without any assumptions on the number of

clusters. G-Stream uses an exponential fading function to reduce the impact of

old data whose relevance diminishes over time. The links between the nodes are

also weighted. A reservoir is used to hold temporarily the distant observations in

order to reduce the movements of the nearest nodes to the observations.

The batchStream algorithm is a micro-batch based method for clustering

data streams which defines a new cost function taking into account that subsets of

observations arrive in discrete batches. The minimization of this function, which

leads to a topological clustering, is carried out using dynamic clusters in two steps:

an assignment step which assigns each observation to a cluster, followed by an op-

timization step which computes the prototype for each node.

A scalable model using MapReduce is then proposed. It consists of decom-

posing the data stream clustering problem into the elementary functions, Map and

Reduce. The observations received in each sub-dataset (within a time interval) are

processed through deterministic parallel operations (Map and Reduce) to produce

the intermediate states or the final clusters.

The batchStream algorithm is validated on the insurance Big Data. A pre-

dictive and analysis system is proposed by combining the clustering results of

batchStream with decision trees. The architecture and these different modules

from the computational core of our Big Data project, called Square Predict .

GH-Stream for both visualization and clustering tasks is our third extension.

The presented approach uses a hierarchical and topological structure for both of

these tasks.

iii

Résumé

Le travail de recherche exposé dans cette thèse concerne le développement d’approches

à base de growing neural gas (GNG) pour le clustering de flux de données massives.

Nous proposons trois extensions de l’approche GNG : séquentielle, distribuée et

parallèle, et une méthode hiérarchique; ainsi qu’une nouvelle modélisation pour

le passage à l’échelle en utilisant le paradigme MapReduce et l’application de ce

modèle pour le clustering au fil de l’eau du jeu de données d’assurance.

Nous avons d’abord proposé la méthode G-Stream. G-Stream, en tant que

méthode ”séquentielle” de clustering, permet de découvrir de manière incrémentale

des clusters de formes arbitraires et en ne faisant qu’une seule passe sur les

données. G-Stream utilise une fonction d’oubli afin de réduire l’impact des anci-

ennes données dont la pertinence diminue au fil du temps. Les liens entre les nœuds

(clusters) sont également pondérés par une fonction exponentielle. Un réservoir de

données est aussi utilisé afin de maintenir, de façon temporaire, les observations

très éloignées des prototypes courants.

L’algorithme batchStream traite les données en micro-batch (fenêtre de données)

pour le clustering de flux. Nous avons défini une nouvelle fonction de coût qui tient

compte des sous ensembles de données qui arrivent par paquets. La minimisation

de la fonction de coût utilise l’algorithme des nuées dynamiques tout en intro-

duisant une pondération qui permet une pénalisation des données anciennes.

Une nouvelle modélisation utilisant le paradigme MapReduce est proposée.

Cette modélisation a pour objectif de passer à l’échelle. Elle consiste à décomposer

le problème de clustering de flux en fonctions élémentaires (Map et Reduce). Ainsi

de traiter chaque sous ensemble de données pour produire soit les clusters in-

termédiaires ou finaux. Pour l’implémentation de la modélisation proposée, nous

avons utilisé la plateforme Spark.

Dans le cadre du projet Square Predict , nous avons validé l’algorithme batch-

Stream sur les données d’assurance. Un modèle prédictif combinant le résultat du

clustering avec les arbres de décision est aussi présenté.

L’algorithme GH-Stream est notre troisième extension de GNG pour la vi-

sualisation et le clustering de flux de données massives. L’approche présentée a la

particularité d’utiliser une structure hiérarchique et topologique, qui consiste en

plusieurs arbres hiérarchiques représentant des clusters, pour les tâches de cluster-

ing et de visualisation.

Acknowledgements

First and foremost I want to thank my supervisors, Mustapha Lebbah and

Hanane Azzag. I appreciate all their contributions of time, ideas, and funding

to make my Ph.D. experience productive and stimulating. Their encouragement,

supervision and support enabled me to grow up as a Ph.D. for independently car-

rying out research. During my Ph.D. pursuit, they taught me how to do research,

gave me suggestions when I met problems, and supported me to attend summer

schools as well as international conferences. I benefited a lot from their profound

knowledge and rigorous attitude toward scientific research. I wish to thank Dr.

Tarn Duong, for his help preparing the final thesis manuscript and for reviewing

my papers.

I would like to thank the reviewers of my dissertation, Prof. Marc Gelgon

and Dr. Allou Samé, for accepting to review and evaluate this thesis. I am also

very thankful for Prof. Salima Benbernou, Prof. Christophe Cérin, Dr. Marcin

Detyniecki and Prof. Céline Rouveirol for accepting to be the examiners of my

thesis defense.

I would like to thank all members of our A3 team and my colleagues within

the LIPN laboratory for sharing the good ambiance during my stay at LIPN. I

also wish to thank Nathalie, our team secretary.

Finally, I am deeply thankful to my parents for their endless love and support,

to my brothers, sisters, and their families. I wish to thank Asma for her patience,

love, and encouragement. I wish to thank all my friends, among others, Adnan,

Aı̈cha, Amine, Antony, Ehab, Gaël, Imad, Inès, Issam, Jérémie, Hanane, Ha-

nen, Hyppolite, Käıs, Leila, Luc, Marcos, Mohammed, Mohamed-Mehdi, Mouadh,

Moufida, Nhat, Nouha, Pegah, Rakia, Tarn, Tugdual, Zayd, Zouheyr.

iv

Contents

Acknowledgements iv

List of Figures ix

List of Tables xiii

Notations xv

1 Introduction 7

1.1 Mining data streams . 7

1.2 Big Data and Square Predict project 8

1.3 Our contributions . 9

2 Fundamentals of Big Data 13

2.1 Big Data . 13

2.2 Distributed data storage systems 15

2.2.1 Google File System (GFS) 15

2.2.2 Hadoop Distributed File System (HDFS) 15

2.3 MapReduce: Basic Concept . 16

2.4 Distributed platforms . 17

2.4.1 Hadoop . 17

2.4.2 Spark . 18

2.5 Streaming platforms . 19

2.5.1 Spark Streaming . 20

2.5.2 Flink . 21

2.5.3 Massive On-line Analysis (MOA) 22

2.5.4 Scalable Advanced Massive Online Analysis (SAMOA) . . . 22

2.6 Conclusion . 23

3 Clustering and Scalable Algorithms 25

3.1 Introduction . 25

3.2 Data clustering algorithms . 26

3.2.1 k -means . 26

3.2.2 k -means++ . 28

v

Contents vi

3.2.3 Self-Organizing Map (SOM) 28

3.2.4 Neural Gas . 32

3.2.5 Growing Neural Gas . 33

3.2.6 Affinity Propagation . 35

3.2.7 DBSCAN . 36

3.2.8 EM Algorithm . 37

3.2.9 Computational complexity 39

3.3 Scalable clustering . 39

3.3.1 General Framework . 40

3.3.2 Scalable k -means using MapReduce 41

3.3.3 Scalable Self-Organizing Map using MapReduce 43

3.3.4 Density-based Distributed Clustering (DBDC) 44

3.3.5 Scalable DBSCAN using MapReduce 44

3.3.6 Scalable EM using MapReduce 45

3.3.7 MapReduce-based Models and Libraries 46

3.4 Conclusion . 46

4 State of the art on Clustering Data Streams 49

4.1 Introduction . 49

4.2 Fundamental concepts for streaming data 50

4.2.1 Window models . 50

4.2.2 Change detection . 52

4.3 Data stream clustering methods . 53

4.3.1 Hierarchical stream methods 53

4.3.1.1 Balanced Iterative Reducing and Clustering using
Hierarchies (BIRCH) 54

4.3.1.2 Evolution-based technique for stream clustering (E-
Stream) . 57

4.3.1.3 Evolution-based clustering for heterogeneous data
streams with uncertainty 58

4.3.1.4 ClusTree . 59

4.3.2 Partitioning stream methods 60

4.3.2.1 CluStream . 61

4.3.2.2 StreamKM++ . 62

4.3.2.3 Data stream clustering with Affinity Propagation
(StrAP) . 63

4.3.3 Gaussian mixture models of data streams under block evo-
lution . 65

4.3.4 Density-based stream methods 66

4.3.4.1 Density-based clustering over an evolving data stream
with noise (DenStream) 66

4.3.4.2 Self organizing density-based clustering over data
stream (SOStream) 68

4.3.4.3 SVStream . 69

4.3.5 Grid-based stream methods 71

Contents vii

4.3.5.1 D-Stream . 71

4.3.6 GNG based algorithms . 72

4.3.7 Online version of GNG . 72

4.3.7.1 Grow When Required (GWR) 74

4.3.7.2 Incremental variants of GNG 75

4.3.8 Computational complexity 76

4.3.9 Summary . 76

4.4 Conclusion . 78

5 G-Stream : Growing neural gas over data stream 79

5.1 Introduction . 79

5.2 Growing Neural Gas over data stream 80

5.2.1 Growing Neural Gas . 81

5.2.2 G-Stream . 81

5.2.2.1 Fading function . 82

5.2.2.2 Edge management 83

5.2.2.3 Node insertion . 85

5.2.2.4 Reservoir management 85

5.2.2.5 Model update . 86

5.2.2.6 Computational complexity 86

5.3 Experimental evaluations . 88

5.3.1 Datasets . 88

5.3.2 Tuning parameter settings 89

5.3.3 Evaluation and performance comparison 89

5.3.4 Visualization . 94

5.3.5 Evolving data streams . 95

5.3.6 Clustering over sliding windows 97

5.3.7 Execution time . 100

5.4 Conclusion . 102

6 Micro-Batching Growing Neural Gas for Clustering Data Streams105

6.1 Introduction . 105

6.2 Micro-batching clustering . 107

6.3 Modeling using MapReduce . 113

6.4 Experimental evaluations . 115

6.4.1 Datasets . 116

6.4.2 Evaluation and performance comparison 117

6.4.3 Visualization of graph creation evolution 118

6.4.3.1 Non-overlapping data streams 118

6.4.3.2 Overlapping data streams 118

6.4.4 Evolving data streams . 120

6.4.5 Temporal performance vs batch interval 123

6.5 Conclusion . 124

7 Application for Insurance Big Data 125

Contents viii

7.1 Introduction . 125

7.2 Architecture of the Big data framework 126

7.3 Application of batchStream for insurance big data 128

7.4 Analysis of the insurance big data using batchStream 132

7.5 Conclusion . 133

8 Growing Hierarchical Trees for Data Stream Clustering and Vi-
sualization 137

8.1 Introduction . 137

8.2 AntTree . 138

8.3 Growing Hierarchical Trees for Data Stream 139

8.3.1 Dynamic multi-level structure for clustering 140

8.3.2 GH-Stream . 141

8.3.2.1 Initialization step 142

8.3.2.2 Assignment step 142

8.3.2.3 Tree construction step 143

8.3.2.4 Adaptation step 145

8.3.3 Complexity . 147

8.4 Experimental evaluations . 147

8.4.1 Datasets . 147

8.4.2 Evaluation and performance comparison 148

8.4.3 Visualization of tree evolution 150

8.5 Conclusion . 153

9 Conclusion and perspectives 157

A Quality criteria 165

Bibliography 167

List of Figures

2.1 5 Vs of Big Data [Demchenko et al., 2013] 14

2.2 HDFS Data Distribution . 16

2.3 MapReduce processes for counting the number of occurrences for
each word in a document . 17

2.4 HDFS reads and writes in iterative machine learning algorithms . . 18

2.5 Iterative machine learning algorithms in Spark 19

2.6 Running time of k-means and logistic regression in Hadoop and
Spark [Zaharia et al., 2012a] . 19

2.7 The internal workflow in Spark Streaming 20

3.1 Clustering with k-means . 27

3.2 SOM principles: mapping and quantization 29

3.3 DBSCAN: core, border, and noise points [Ester et al., 1996]. 37

3.4 The general framework of most parallel and distributed clustering
algorithms [Aggarwal and Reddy, 2014]. 40

4.1 Sliding window model . 51

4.2 Damped window model . 51

4.3 Landmark window model . 52

4.4 Data stream clustering methods: the presented algorithms catego-
rized according to the nature of their underlying clustering approach. 54

4.5 The Clustering Feature Tree in BIRCH. B is the maximum number
of CFs in a level of the tree . 56

4.6 Histogram management in a split dimensionop and other dimen-
sion [Udommanetanakit et al., 2007] 57

4.7 Diagram of StrAP algorithm [Zhang et al., 2008] 64

5.1 Diagram of G-Stream algorithm. 82

5.2 Insertion of one, two or three nodes in G-Stream. 83

5.3 Plot of a fading function. 84

5.4 Plot of an exponential function. 84

5.5 Edge insertion between the two nearest nodes. 85

5.6 Accuracy for G-Stream and GNG-online. 92

5.7 RMS error for G-Stream and GNG-online. 93

5.8 Number of nodes for G-Stream and GNG-online. 94

ix

List of Figures x

5.9 Evolution of graph creation of G-Stream on DS1 (dataset and topo-
logical result). The intermediate graph after seeing the first win-
dow’s data points; the 1/3 of all windows; the 2/3 of all windows;
and the final graph. 95

5.10 Evolution of graph creation of G-Stream on DS2 (dataset and topo-
logical result). The intermediate graph after seeing the first win-
dow’s data points; the 1/3 of all windows; the 2/3 of all windows;
and the final graph. 96

5.11 Evolution of graph creation of G-Stream on letter4 (dataset and
topological result). The intermediate graph after seeing the first
window’s data points; the 1/3 of all windows; the 2/3 of all windows;
and the final graph. 97

5.12 Visual result comparison of G-Stream with GNG-online (dataset
and topological result). The final graph created by the G-Stream/GNG-
online algorithm. 98

5.13 Accuracy of G-Stream with and without ordering of classes. 99

5.14 NMI of G-Stream with and without ordering of classes. 99

5.15 Rand index of G-Stream with and without ordering of classes. . . . 100

5.16 Analysis on the sliding windows model 100

5.17 Execution time (in seconds) . 102

6.1 In left: the direct neighborhood of a node. In right: the neighbor-
hood function. The nodes of the direct neighborhood have the same
influence, outside, they have none. 109

6.2 Plot of a fading function. 112

6.3 Overview of the Map and Reduce tasks in batchStream. 113

6.4 Evolution of graph creation of batchStream on DS1 (data set and
topological result). The intermediate graph after seeing the 1/9 of
all windows; the 3/9 of all windows; the 5/9 of all windows; and the
final graph (9/9 of all windows). 119

6.5 Evolution of graph creation of batchStream on DS2 (data set and
topological result). The intermediate graph after seeing the 1/9 of
all windows; the 3/9 of all windows; the 5/9 of all windows; and the
final graph (9/9 of all windows). 120

6.6 Evolution of graph creation of batchStream on lettersMR (data set
and topological result). The intermediate graph after seeing the 1/9
of all windows; the 3/9 of all windows; the 5/9 of all windows; and
the final graph (9/9 of all windows). 121

6.7 Accuracy, NMI and Rand index for batchStream with and without
ordering of classes. 122

6.8 The overall execution time of batchStream as a function of window
length (batch size). 123

7.1 Big data platform . 126

List of Figures xi

7.2 Decision trees for batchStream clusters of insurance data, for the
total data and the 5 largest clusters by total cluster payouts. Leaf
nodes with average claims of over 50 000 e are coloured in blue. . . 132

7.3 Visualtisation of contracts assigned to cluster #21 134

7.4 Visualtization of contracts assigned to cluster #55 135

8.1 AntTree principles . 139

8.2 Hierarchical and topological structure. 141

8.3 Rules to build a hierarchical structure. Neuron is colored according
to a majority vote of data gathered within this neuron. 145

8.4 Performance of difference methods vs number of epoch over time
during the learning process for COIL100 150

8.5 Performance of different clustering methods vs number of epochs
during the learning process for Hyperplane 151

8.6 Visualization of the DS1 dataset. Each class is represented by a
single color. 153

8.7 Visualization of the COIL100 dataset. Each class is represented by
a unique color. 154

8.8 Zoom sample extracted from Figure 8.7(a). A 3-tree network shows
both hierarchical and topological relations. 155

9.1 The Map and Reduce functions for clustering binary data streams. . 160

9.2 Lambda Architecture diagram [Marz and Warren, 2015] 162

List of Tables

3.1 Computational complexity of clustering algorithms 39

4.1 Computational complexity of data stream clustering algorithms . . 76

4.2 Comparison between algorithms (WL: weighted links, 2 phases :
online+offline). 77

5.1 Parameters used in the G-Stream algorithm 87

5.2 Overview of all datasets. 88

5.3 Tuning parameter settings. 89

5.4 Comparing G-Stream with different algorithms in terms of accuracy. 91

5.5 Comparing G-Stream with different algorithms in terms of NMI. . . 91

5.6 Comparing G-Stream with different algorithms in terms of Rand
index. 92

5.7 Accuracy of G-Stream while changing the overlap percentage of
sliding windows. 101

5.8 NMI of G-Stream while changing the overlap percentage of sliding
windows. 101

5.9 Rand index of G-Stream while changing the overlap percentage of
sliding windows. 101

6.1 Parameters used in the batchStream algorithm 112

6.2 Overview of all data sets. 116

6.3 Comparing batchStream with other data stream clustering algorithms.118

7.1 Summary statistics for batchStream clusters for insurance data . . . 129

7.2 Rate of claims, Payout per claim, and Loss per contract for batch-
Stream clusters for insurance data 133

8.1 Data features . 147

8.2 Competitive performance of different approaches in terms of Accuracy148

8.3 Competitive performance of different approaches in terms of NMI . 149

8.4 Competitive performance of different approaches in terms of Rand
index . 149

xiii

Notations

Notation Description

X = {x1,x2, ...,xn} set of n (potentially infinite) data points

xi = (x1
i , x

2
i , ..., x

d
i) d -dimensional data point

ti time-stamp of data point xi

wc prototype wc = (w1
c , w

2
c , ..., w

d
c) of node c

δc threshold distance of node c

error(c) local accumulated error variable

weight(c) local weight variable

bmu or bmu1 best matching unit (the nearest node)

bmu2 the second nearest node

α1 winning node (the nearest node) adaptation factor

α2 winning node, neighbor adaptation factor

β cycle interval between node insertions

agemax oldest age allowed for an edge

λ1 decay factor in the fading function

λ2 strength factor in weighting edges

xv

List of publications

International reviews with reading committee (3

papers)

• Mohammed Ghesmoune, Mustapha Lebbah, and Hanane Az-

zag. A new growing neural gas for clustering data streams.

Neural Networks, 78:36–50, 2016. ISSN 0893-6080. doi:

http://dx.doi.org/10.1016/j.neunet.2016.02.003. URL http://www.

sciencedirect.com/science/article/pii/S0893608016000289. Special

Issue on ”Neural Network Learning in Big Data”.

• Mohammed Ghesmoune, Mustapha Lebbah, and Hanane Azzag. State-

of-the-art on Clustering Data Streams. Big Data Analytics, 2016.

http://biomedcentral.spi-global.com/authorproofs/bmcproofs/

index.php?id=LUANnOjxAd09172016100002qEBCbirPIE. Upon invitation.

• Hanane Azzag, Salima Benbernou, Tarn Duong, Mohammed Ghesmoune,

Mustapha Lebbah, and Mourad Ouziri. Big Data: A Story from Collection

to Visualization. Submitted to Machine Learning Journal: Special issue on

Discovery Science, 2016.

International conferences with reading committee

(4 papers)

• Mohammed Ghesmoune, Mustapha Lebbah, and Hanane Azzag. Micro-

batching growing neural gas for clustering data streams using spark stream-

ing. In INNS Conference on Big Data 2015, San Francisco, CA, USA, 8-10

xvii

http://www.sciencedirect.com/science/article/pii/S0893608016000289
http://www.sciencedirect.com/science/article/pii/S0893608016000289
http://biomedcentral.spi-global.com/authorproofs/bmcproofs/index.php?id=LUANnOjxAd09172016100002qEBCbirPIE
http://biomedcentral.spi-global.com/authorproofs/bmcproofs/index.php?id=LUANnOjxAd09172016100002qEBCbirPIE

List of publications xviii

August 2015, pages 158–166, 2015b. doi: 10.1016/j.procs.2015.07.290. URL

http://dx.doi.org/10.1016/j.procs.2015.07.290.

• Nhat-Quang Doan, Mohammed Ghesmoune, Hanane Azzag, and Mustapha

Lebbah. Growing hierarchical trees for data stream clustering and visual-

ization. In 2015 International Joint Conference on Neural Networks, IJCNN

2015, Killarney, Ireland, July 12-17, 2015, pages 1–8, 2015. doi: 10.1109/I-

JCNN.2015. 7280397. URL http://dx.doi.org/10.1109/IJCNN.2015.

7280397.

• Mohammed Ghesmoune, Mustapha Lebbah, and Hanane Azzag. Clustering

over data streams based on growing neural gas. In Advances in Knowledge

Discovery and Data Mining - 19th Pacific-Asia Conference, PAKDD 2015,

Ho Chi Minh City, Vietnam, May 19-22, 2015, Proceedings, Part II, pages

134–145, 2015c. doi: 10.1007/978-3-319-18032-8 11. URL http://dx.doi.

org/10.1007/978-3-319-18032-8_11.

• Mohammed Ghesmoune, Hanane Azzag, and Mustapha Lebbah. G-Stream:

Growing neural gas over data stream. In Neural Information Processing -

21st International Conference, ICONIP 2014, Kuching, Malaysia, November

3-6, 2014. Proceedings, Part I, pages 207–214, 2014. doi: 10.1007/978-3-319-

12637-1 26. URL http://dx.doi.org/10.1007/978-3-319-12637-1_26.

French speaking conferences with reading com-

mittee (3 papers)

• Mohammed Ghesmoune, Mustapha Lebbah and Hanane Azzag. G-Stream:

une approche incrémentale pour le clustering de flux de données. In SFC

2015, 09-11 Septembre 2015, Nantes.

• Mohammed Ghesmoune, Hanane Azzag and Mustapha Lebbah. Une nou-

velle méthode topologique pour le clustering de flux de données. In COSI

2015, Coloque sur l’optimisation et les systèmes d’information, Oran, 01-03

Juin 2015.

http://dx.doi. org/10.1016/j.procs.2015.07.290
http://dx.doi.org/10.1109/IJCNN.2015.7280397
http://dx.doi.org/10.1109/IJCNN.2015.7280397
http://dx.doi.org/10.1007/978-3-319-18032-8_11
http://dx.doi.org/10.1007/978-3-319-18032-8_11
http://dx.doi.org/10.1007/978-3-319-12637-1_26

List of publications xix

• Mohammed Ghesmoune, Mustapha Lebbah, and Hanane Azzag. Clustering

topologique pour le flux de données. In 15èmes Journées Francophones Ex-

traction et Gestion des Connaissances, EGC 2015, 27-30 Janvier 2015, Lux-

embourg, pages 137–142, 2015a. URL http://editions-rnti.fr/?inprocid=

1002072.

http://editions-rnti.fr/?inprocid=1002072
http://editions-rnti.fr/?inprocid=1002072

To my parents. . .

xx

Introduction

Fouille de flux de données

Ce travail de thèse concerne le domaine de l’apprentissage automatique et du

Big Data. L’apprentissage automatique est définit comme étant la capacité d’un

ordinateur à apprendre sans avoir été explicitement programmé. Plus précisément,

l’apprentissage automatique vise à acquérir de la connaissance à partir des données.

Ce domaine est apparenté à la fouille de données qui vise également à extraire des

modèles à partir des données; bien que les deux domaines possèdent plusieurs

technologies et critères commun, la fouille de données reste profondément liée aux

technologies de base de données [Han et al., 2011, Zhang, 2010].

Les méthodes d’apprentissage automatique s’organisent en trois types : méthodes

supervisées, semi-supervisées, et non supervisées [Han et al., 2011].

• L’apprentissage supervisé est traditionnellement synonyme de la classifica-

tion. La supervision dans l’apprentissage vient du fait que les observations

de la base d’apprentissage sont étiquetées.

• L’apprentissage non supervisé est essentiellement synonyme de clustering. Le

processus d’apprentissage est non supervisé puisque les observations d’entrée

ne sont pas étiquetées.

• L’apprentissage semi-supervisé est une classe de techniques qui font us-

age des deux types d’observations, étiquetées et non étiquetées, lors de

l’apprentissage d’un modèle.

Les contributions présentées par la suite concernent l’apprentissage automa-

tique et la fouille de données pour la fouille de flux de données dans le contexte

1

Chapter 1. Introduction 2

du Big Data. Un flux de données est une séquence, potentiellement infinie, non-

stationnaire de données arrivant en continu où l’accès aléatoire aux données n’est

pas possible et le stockage de toutes les données arrivant est infaisable. La fouille

de flux de données a récemment fait l’objet de nombreuses études, d’une part en

raison du nombre important d’applications émergentes qui manipulent des flux et

d’autre part, de l’impossibilité d’utiliser directement les méthodes traditionnelles.

Le clustering consiste à partitionner un ensemble d’observations en sous-ensembles

appelés clusters, tels que les observations affectées dans le même cluster soient

”similaires” et les observations inter-clusters soient ”dissimilaires”. Les mesures

de similarité ou de dissimilarité sont évaluées en fonction des valeurs des attributs

décrivant les observations et impliquent souvent des mesures de distance [Han

et al., 2011].

Cependant, le clustering de flux de données nécessite un processus capable de

partitionner des observations de façon continue avec des restrictions au niveau

de la mémoire et du temps. C’est pourquoi la fouille de flux de données est

plus difficile que dans le cas traditionnel. Le travail de recherche exposé dans

cette thèse concerne le développement de méthodes d’apprentissage basées sur

l’approche ’Growing Neural Gas’ pour la classification non-supervisée et la visual-

isation hiérarchique des structures topologiques dans les flux de données massives.

L’objectif principal est de développer des méthodes de clustering de flux de données

qui passent à l’échelle en utilisant les concepts et les technologies du Big Data.

Big Data et le projet Square Predict

Le ”Big Data” est devenu un nouveau terme omniprésent. Le Big Data concerne la

science, l’ingénierie, la médecine, la santé, la finance, le commerce et, finalement,

notre société elle-même. En effet, les entreprises comptent de plus en plus sur le

Big Data pour découvrir des corrélations et des tendances dans les données qui

auraient auparavant restées cachées, et d’utiliser ensuite cette nouvelle information

afin d’augmenter la qualité de leurs activités commerciales.

Actuellement, le domaine du Big Data peut être caractérisé par les 5 V : le

Volume, la Vélocité, la Variété, la Valeur et la Véracité (voir le chapitre 2 pour

plus de détails).

Construire des modèles d’apprentissage automatique à partir de grande masse

de données (Big Data) est devenu un défi important et nécessite le développement

Chapter 1. Introduction 3

de nouveaux types d’algorithmes. La plupart des algorithmes d’apprentissage

automatique ne passent pas à l’échelle.

Le projet Square Predict est un projet mené avec plusieurs partenaires dont

un géant de l’assurance (AXA), trois laboratoires de recherche (LIPN, LIPADE et

EISTI), deux éditeurs et un expert en protection de la vie privée, a pour objectif

de bàtir une plateforme permettant aux assureurs de réaliser des prédictions en

”temps réel” à partir des données de leurs assurés croisées avec celles disponibles

sur Internet (réseaux sociaux, open data, etc.).

L’enjeu prévu dans le projet Square Predict est de développer une plateforme

Big Data clé en main dédiée aux producteurs d’assurance afin de leur permettre de

croiser, fusionner et d’exploiter l’avalanche de données locales et externes. Cette

plateforme a pour objectif de fournir des modèles d’apprentissage statistique et

outils pour une meilleure personnalisation des produits permettant aux assureurs

de réaliser des visualisation et prédictions à partir des données de leurs assurés

croisées avec celles disponibles sur le web.

Contributions

Comme nous l’avons déjà mentionné, le présent travail porte sur le développement

et la modélisation d’algorithmes pour des données à grande échelle dans un flux

de données, en utilisant des méthodes d’apprentissage automatique, en particulier

l’approche Growing Neural Gas, et les concepts et technologies du Big Data.

Le chapitre 2 est consacré à l’introduction de l’écosystème Big Data et les

principes fondamentaux de la science des données. Le chapitre 3 présente une

vue d’ensemble des méthodes de clustering et celles qui peuvent passer à l’échelle

et qui sont implémentées avec le paradigme MapReduce. Le chapitre 4 présente

une étude approfondie de l’état de l’art des algorithmes de clustering de flux de

données. Nous présentons nos principales contributions dans les chapitres suivants:

1. Dans le chapitre 5 nous présentons une première extension de l’approche

GNG, appelée G-Stream, pour le clustering de flux de données évolutives,

ne faisant qu’une seule passe sur les données. G-Stream, en tant

que méthode ”séquentielle” de clustering, permet de découvrir de manière

incrémentale des clusters de formes arbitraires. Dans G-Stream, une fonction

exponentielle (fonction d’oubli, appelée aussi fonction de fading) est utilisée

Chapter 1. Introduction 4

afin de réduire l’impact des anciennes données dont la pertinence diminue

au fil du temps. Les liens entre les nœuds sont également pondérés par

une fonction exponentielle. Un réservoir est aussi utilisé afin de maintenir,

de façon temporaire, les données très éloignées des prototypes courants. La

qualité de la méthode proposée est évaluée à la fois visuellement et en termes

d’indices de performance sur des données synthétiques et réelles.

2. Dans le chapitre 6, une deuxième extension est présentée. Cette dernière

consiste en une reformalisation de la méthode des nuées dynamiques en se

basant sur le modèle de traitement en micro-batch. Nous développons une

méthode traitant les données en micro-batch pour le clustering de flux de

données et qui passe à l’échelle, appelée batchStream. Plus précisément,

nous définissons une nouvelle fonction de coût tenant compte des sous en-

sembles de données qui arrivent par paquets. Ensuite, nous proposons la

minimisation de la fonction de coût en utilisant l’algorithme des nuées dy-

namiques tout en introduisant une pondération qui permet une pénalisation

des données anciennes. Cette minimisation est réalisée en deux étapes : une

étape d’affectation de chaque observation xi au cluster c en utilisant une

fonction d’affectation, suivie d’une phase d’optimisation qui consiste à met-

tre à jour le prototype de chaque cluster c. L’algorithme batchStream, tout

comme G-Stream, intègre plusieurs fonctions telle que la fonction d’oubli, la

pondération des liens et la création de plusieurs noeuds à chaque interval de

temps.

3. Notre troisième contribution propose une modélisation pour le passage à

l’échelle en utilisant le paradigme MapReduce. Dans cette modélisation,

on décompose le problème de clustering de flux de données en fonctions

élémentaires, à savoir les deux fonctions Map et Reduce du paradigme Map-

Reduce. Les données reçues dans chaque sous ensemble de données (spécifié

par un intervalle de temps) sont traitées via des opérations parallèles déterministes

(Map et Reduce) pour produire soit les résultats du programme (les clusters

finaux) ou des états intermédiaires. Pour l’implémentation de la modélisation

proposée, nous avons utilisé l’écosystème Spark, comme environnement Big

Data de traitement distribué de grandes masses de données.

4. Le chapitre 7, qui a un caractère applicatif, aborde le problème d’estimation

en temps réel de l’impact des dégàts causés par un événement climatique de

grande ampleur, en combinant notre méthode non-supervisée à un modèle

Chapter 1. Introduction 5

supervisé. Le passage à l’échelle de la méthode citée ainsi que l’utilité de

l’algorithme batchStream en tant que méthode d’apprentissage non-supervisé

sont démontrés sur un grand jeu de données d’assurance fourni par AXA.

L’architecture ainsi que les différents modules de la plateforme Big Data

proposée dans le cadre du projet ”Square Predict” sont aussi présentés.

5. Enfin, une troisième extension pour la visualisation et le clustering de flux

de données massives est décrite dans le chapitre 8. L’approche que nous

développons, qui se nomme GH-Stream (Growing Hierarchical Trees over

Data Stream) est une variante de G-Stream en incluant à ce dernier une com-

posante hiérarchique. Cette dernière consiste en plusieurs arbres hiérarchiques

représentant des clusters qui permettent de décrire l’évolution des flux de

données, et ensuite d’analyser explicitement leur similitude. Cette struc-

ture adaptative peut être exploitée en descendant d’un niveau topologique à

n’importe quel niveau de la hiérarchie.

Chapter 1

Introduction

1.1 Mining data streams

The present work pertains to the fields of Machine Learning (ML) and Big Data.

ML is defined as the science of getting computers to act without being explicitly

programmed. Specifically ML aims at acquiring knowledge from data. The sister

domain of Data Mining (DM) likewise aims at extracting patterns from data; while

both domains have many core technologies and criteria in common, they mostly

differ as DM is deeply related to the database technologies [Han et al., 2011, Zhang,

2010].

Machine Learning methods traditionally fall into three categories: supervised,

semi-supervised, and unsupervised methods [Han et al., 2011].

• Supervised learning is basically a synonym for classification. The supervision

in the learning comes from the labeled observations in the training data set.

• Unsupervised learning is essentially a synonym for clustering. The learning

process is unsupervised since the input observations are not class labeled.

• Semi-supervised learning is a class of machine learning techniques that make

use of both labeled and unlabeled observations when learning a model.

The presented contributions are concerned with ML and DM for streaming

data in the Big Data context. A data stream is a sequence of potentially infinite,

7

Chapter 1. Introduction 8

non-stationary data arriving continuously (which requires a single pass through the

data) where random access to the data is not feasible and storing all the arriving

data is impractical. Mining data streams is motivated by key large-scale appli-

cations such as network intrusion detection, transaction streams, phone records,

web click-streams, social streams, weather monitoring, etc.

Clustering is the process of partitioning a set of observations into multiple

groups or clusters so that observations within a cluster have high similarity, but

are very dissimilar to observations in other clusters. Dissimilarities and similarities

are assessed based on the attribute values describing the observations and often

involve distance measures [Han et al., 2011].

However, when applying data mining techniques, and specifically clustering

algorithms, to data streams, restrictions in execution time and memory have to

be considered carefully. This is why mining data streams is more challenging

than the traditional case. The research work discussed in this thesis concerns

the development of learning methods based on the Growing Neural Gas approach

for unsupervised learning (clustering) and hierarchical visualization of topological

structures in data streams. The main objective is to develop scalable data stream

clustering methods using Big Data concepts and technologies.

1.2 Big Data and Square Predict project

In recent years, ”Big Data” has become a new ubiquitous term. Big Data is

transforming science, engineering, medicine, healthcare, finance, business, and ul-

timately our society itself. Currently, the Big Data domain can be characterized

by the 5 V’s: Volume, Velocity, Variety, Value and Veracity (see chapter 2 for

more details).

Learning from Big Data has become a significant challenge and requires de-

velopment of new types of algorithms. Most machine learning algorithms can not

easily scale up to Big Data. MapReduce is a simplified programming model for

processing large datasets in a distributed and parallel manner.

Organisations are increasingly relying on Big Data to provide the opportunities

to discover correlations and patterns in data that would have previously remained

hidden, and to subsequently use this new information to increase the quality of

their business activities.

Chapter 1. Introduction 9

The Square Predict project gathers 3 public research labs and 4 private com-

panies including AXA Data Innovation Lab. This project aims to provide the

insurance industry a platform for real-time predictive analytics that can analyze

the information published on social networks coupled with the information avail-

able in Open Data, e.g. to assess the rapidly the severity of a natural disaster and

its impact on housing insurance payouts.

The Square Predict platform is designed in a modular way from the initial data

collection to the final visualization, passing by the data fusion, and the analysis

and clustering tasks.

1.3 Our contributions

As already mentioned, the present work is concerned with the modelling of large-

scale data within a data streaming framework, using Machine Learning methods,

specifically the Growing Neural Gas approach, and Big Data concepts and tech-

nologies.

Chapter 2 is devoted to introducing the Big Data ecosystem and the funda-

mentals for data science. Chapter 3 surveys clustering and scalable clustering

methods implemented with MapReduce. Chapter 4 presents a thorough survey of

the state-of-the-art for a wide range of data stream clustering algorithms. In the

subsequent chapters are our main contributions, summarized as follows:

1. In chapter 5 we present a first extension of the GNG approach to deal with

streaming data, called G-Stream, which is a one-pass streaming clus-

tering algorithm. G-Stream, as a ”sequential” clustering method, allows

us to discover clusters of arbitrary shapes without any assumptions on the

number of clusters. In G-Stream, an exponential fading function is used to

reduce the impact of old data whose relevance diminishes over time. For

the same reason, links between nodes are also weighted by an exponential

function. A reservoir is used to hold temporarily the distant observations in

order to avoid needless movements of the nearest nodes to observations. The

quality of the proposed method is evaluated visually and in terms of various

performance criteria on synthetic and real-world datasets.

2. In chapter 6, a second extension is presented, which consists of a novel

re-formalization of the dynamic clusters ”nuées dynamiques”. We develop

Chapter 1. Introduction 10

a micro-batch method for scalable clustering data streams, named batch-

Stream. Specifically, we define a new cost function taking into account

the subsets of observations arriving in batches. The minimization of this

function, which leads to the topological clustering, is made using dynamic

clusters in two steps: an assignment step which assigns each observation xi

to one cluster c using the assignment function, followed by an optimisation

step which computes the prototype for each cell c. We introduce a fading

function which ”penalizes” the old data since that they are less relevant

compared to the recent data. The batchStream algorithm incorporates, like

G-Stream, several characteristics e.g the exponential fading function, the

time weighting of the edges, and the creation of more than one node in each

interval.

3. After that, we present our third contribution consisting of proposing a model

for scalability using MapReduce. This model consists of decomposing the

data stream clustering problem into the elementary functions, Map and Re-

duce. The received data-points in each sub data set (specified by a time

interval) are processed through deterministic parallel operations (Map and

Reduce) to produce either the algorithm output (the final clusters) or the

intermediate states. Its implementation is assured in the Spark Streaming

platform.

4. In chapter 7, we present an application of our batchStream algorithm on

the insurance Big Data provided by AXA. The latter scalable approach in

3 is demonstrated and validated on the insurance Big Data while the utility

of the batchStream algorithm in 2 as an example of unsupervised learning.

Afterwards, a predictive and analysis system is proposed by combining the

clustering result with decision trees. The architecture and the different mod-

ules of the proposed Big Data framework are presented as part of the Big

Data project, named Square Predict.

5. Last but not least, a third extension for both visualization and cluster-

ing tasks is described in chapter 8. The presented approach, named GH-

Stream, uses a hierarchical and topological structure for both clustering and

visualization. The topological network is represented by a graph in which

each node represents a set of similar data points and neighbor nodes are

connected by edges. The hierarchical component consists of a multiple tree-

like hierarchy of clusters which allow us to describe the evolution of a data

Chapter 1. Introduction 11

stream, and then to analyze explicitly their similarity. The main idea for this

algorithm compared to the others is in addition to using the fading function

and present the data window by window, this algorithm allows to enhance

the assignment time since we can move the data by packet (sub-tree).

The different assessments carried out in this thesis (performance measurements

and visualizations) obtained promising results.

The thesis manuscript is organized as follows. Chapter 2 gives an introduction

to the Big Data ecosystem and discusses the fundamentals that a data scientist

needs in order to extract knowledge or insights from large data in various forms,

with a focus on the data stream use case. Chapter 3 reviews and discusses the

state-of-the-art related to both clustering and scalable clustering methods imple-

mented with MapReduce. Chapter 4 presents a thorough survey of the state-of-

the-art for a wide range of data stream clustering algorithms. Chapter 5 presents

our G-Stream algorithm concerned with extending the GNG approach to deal with

streaming data; experimental validation on benchmark datasets from the cluster-

ing literature is reported and discussed. Chapter 6 introduces the batchStream

algorithm designed for large-scale data stream clustering. Chapter 7 presents the

Square Predict project and describes the validation results of batchStream on the

insurance Big Data. Chapter 8 finally describes our hierarchical and topologi-

cal structure for both clustering and visualization tasks. Some conclusions and

perspectives for further research are presented in chapter 9.

Chapter 2

Fundamentals of Big Data

This chapter gives an introduction to the Big Data ecosystem. Indeed, we will

review and discuss the fundamentals that a data scientist needs in order to extract

knowledge or insights from large data in various forms, with a focus on the data

stream use case.

2.1 Big Data

To our knowledge, the term ”Big Data” appeared for first time in 1998 in a Silicon

Graphics (SGI) slide deck by John Mashey with the title of ”Big Data and the Next

Wave of InfraStress” [Mashey, 1998]. It is a term used to identify the datasets that

due to their large size and complexity, we can not manage them with our current

methodologies or data mining software tools [Fan and Bifet, 2013]. Despite that

the ”Big Data” has become a new buzz-word, there is no consistent definition for

Big Data, or any detailed analysis of this new emerging technology. Most dis-

cussions until now have been going in the blogosphere where active contributors

have generally converged on the most important features and incentives of the Big

Data [Demchenko et al., 2013].

The work presented in [Laney, 2001] was the first one to talk about 3 Vs in

Big Data management, i.e., Volume (great volume), Velocity (rapid generation),

Variety (various modalities), to which were added Value (huge value but very

low density) [Gantz and Reinsel, 2011] and Veracity (consistency and trustworthi-

ness) [Demchenko et al., 2013] more recently proposed. Figure 2.1 resumes the 5

Vs of Big Data [Demchenko et al., 2013]:

13

Chapter 2. Fundamentals of Big Data 14

• Volume: there is more data than ever before, their size continues to increase,

but not the percent age of data that our tools can process

• Velocity: data are arriving continuously as streams of data, and we are

interested in obtaining useful information from it in real time

• Variety: data type diversity in a given stream (text, video, audio, static im-

age, etc.); also differences in data processability (structured, semi-structured,

unstructured data)

• Value: business value that gives an organization a competitive advantage,

due to the ability to make decisions based in answering questions that were

previously considered beyond reach

• Veracity: it includes two aspects: data consistency (or certainty) as defined

by their statistical reliability; and data trustworthiness that includes data

origin, collection and processing methods (trusted infrastructure and facili-

ties).

Figure 2.1: 5 Vs of Big Data [Demchenko et al., 2013]

We offer an alternative definition: Big Data is also a multidisciplinary area

for exchange and collaboration. This definition emphasis the processes involved

with Big Data rather than attempting to define intrinsic characteristics like the 5

Vs.

Chapter 2. Fundamentals of Big Data 15

2.2 Distributed data storage systems

2.2.1 Google File System (GFS)

GFS [Ghemawat et al., 2003] uses a simple design with a single master server

for hosting the entire metadata (the namespace, access control information, the

mapping from files to chunks, and the current locations of chunks) and where the

data is split into chunks and stored in chunk-servers. Files are divided into fixed-

size chunks. Chunkservers store chunks on local disks and read or write chunk

data specified by a chunk handle and byte range. For reliability, each chunk is

replicated on multiple chunkservers. However the GFS master is now made fault

tolerant using the Chubby [Burrows, 2006] abstraction.

2.2.2 Hadoop Distributed File System (HDFS)

HDFS [Borthakur, 2007] is a distributed file system designed to run on top of the

local file systems of the cluster nodes and store extremely large files. HDFS consists

of two types of nodes, namely, a namenode called ”master” and several datanodes

called ”slaves”. HDFS can also include secondary namenodes. The namenode

manages the hierarchy of file systems and director namespace (i.e., metadata).

File systems are presented in a form of a namenode that registers attributes, such

as access time, modification, permission, and disk space quotas. The file content is

split into large blocks, and each block of the file is independently replicated across

datanodes for redundancy and to periodically send a report of all existing blocks

to the namenode.

HDFS is highly fault tolerant and can scale up from a single server to thousands

of machines, each offering local computation and storage. For example, according

to Figure 2.2, the record #2 is replicated on nodes A, B, and D. When a process

needs this record, it can retrieve it from the node which optimises the response

time.

Chapter 2. Fundamentals of Big Data 16

Figure 2.2: HDFS Data Distribution

2.3 MapReduce: Basic Concept

MapReduce [Dean and Ghemawat, 2008] is a simplified programming model for

processing large numbers of datasets pioneered by Google for data-intensive appli-

cations. The MapReduce model was developed based on GFS [Ghemawat et al.,

2003] and is adopted through an open-source Hadoop implementation, which was

popularized by Yahoo. MapReduce enables programmers who have no experience

with distributed systems to write applications that process huge datasets in a large

cluster of commodity machines; it manages data partitioning, task scheduling, and

nodes failure.

Indeed, MapReduce allows an unexperienced programmer to develop parallel pro-

grams and create a program capable of using computers in a cloud. The MapRe-

duce programming model can be explained as follows. The computation takes a

set of input key/value pairs, and produces a set of output key/value pairs. The

user of the MapReduce library expresses the computation as two functions: Map

and Reduce.

• Map: written by the user, takes an input pair and produces a set of inter-

mediate key/value pairs. For example, given the word count example that

it is displayed in Figure 2.3, each mapper takes a line as input and breaks

it into words. It then emits a key/value pair of <”word”, 1> (<”D”, 1>,

<”B”, 1>, etc.).

• Shuffle: is an intermediate step which is done automatically by the system.

It starts after finishing the Map step and before the Reduce step. It takes

the intermediate data generated by each Map task, sorts this data with

intermediate data from other nodes, divides this data into regions to be

processed by the reduce tasks.

Chapter 2. Fundamentals of Big Data 17

• Reduce: also written by the user, accepts an intermediate key and a set

of values for that key. It merges together these values to form a possibly

smaller set of values. According to example of Figure 2.3, each reducer sums

the counts for each word and emits a single key/value with the word and

sum. The final result can be collected into one file that contains each word

associated with its frequency (<”A”, 2>, <”B”, 2>, <”C”, 3>, <”D”, 2>).

Figure 2.3: MapReduce processes for counting the number of occurrences for
each word in a document

2.4 Distributed platforms

2.4.1 Hadoop

Apache Hadoop1 is one of the most well-established software platforms that allow

for the distributed processing of large data sets across clusters of computers us-

ing simple programming models. It implements the MapReduce paradigm. It is

designed to scale up from single servers to thousands of machines, with each of-

fering local computation and storage. Typiquely, the Hadoop framework uses the

Hadoop Distributed File System (HDFS) to save large datasets in a distributed

manner. Users code their queries and programs using Java. Therefore, the I/O

performance of a Hadoop MapReduce job strongly depends on HDFS. Indeed, the

HDFS has an non-negligible access time; reads and writes are sufficiently long

(because of the use of hard disc to save intermediate data as shown in Figure 2.4)

1See http://hadoop.apache.org/

http://hadoop.apache.org/

Chapter 2. Fundamentals of Big Data 18

that maching learning processes which generally make many iterations on data are

inefficient.

Figure 2.4: HDFS reads and writes in iterative machine learning algorithms

In terms of a Hadoop cluster, there are two kinds of nodes in the Hadoop

infrastructure: master nodes and worker nodes. The master node takes the input,

divides it into smaller sub-problems, and distributes them to worker nodes in the

Map step. Afterwards, the master node collects the answers to all the sub-problems

and combines them in some way to form the output in the Reduce step.

2.4.2 Spark

Spark is a cluster computing system originally developed by UC Berkeley AMPLab

[Zaharia et al., 2012a]. Now it is an umbrellaed project of the Apache Founda-

tion2. The main abstraction in Spark is that of a resilient distributed dataset

(RDD), which represents a read-only collection of objects partitioned across a set

of machines that can be rebuilt if a partition is lost. Users can explicitly cache

an RDD in memory across machines and reuse it in multiple MapReduce-like par-

allel operations. RDDs achieve fault tolerance through a notion of lineage: if a

partition of an RDD is lost, the RDD has enough information about how it was

derived from other RDDs to be able to rebuild just that partition. Indeed, the ele-

ments of an RDD need not exist in physical storage; instead, a handle to an RDD

contains enough information to compute the RDD from data in reliable storage.

This means that RDDs can always be reconstructed if nodes fail. Although RDDs

are not a general shared memory abstraction, they represent a sweet-spot between

expressivity on the one hand and scalability and reliability on the other hand, and

they are well-suited to a variety of applications [Zaharia et al., 2010].

Spark is intended to be easy to use where users can write their applications

quickly in Java, Scala, Python, or R. Figure 2.5 shows that starting from the

second iteration, the intermediate data are saved in-memory (RAM) where Spark

2See http://spark.apache.org/

http://spark.apache.org/

Chapter 2. Fundamentals of Big Data 19

can retrieve them by accessing the RAM rather than the hard disc, which makes

the execution much faster.

Figure 2.5: Iterative machine learning algorithms in Spark

In terms of comparison between Spark and Hadoop, Spark runs programs up

to 100× faster than Hadoop MapReduce in memory, or 10× faster on disk, in

iterative machine learnig algorithms. As example, Figure 2.6 compares Hadoop

and Spark in terms of running time for the k-means and logistic regression algo-

rithms. Another point of comparison between the two frameworks is that Spark

offers more choice and flexibility to the programmers because it allows them to

write their code in Scala, Java, Python, or R while Hadoop offers only Java.

Given these arguments, it appears that the choice of Spark over Hadoop is obvious.

Figure 2.6: Running time of k-means and logistic regression in Hadoop and
Spark [Zaharia et al., 2012a]

2.5 Streaming platforms

In today’s applications, evolving data streams are ubiquitous. As the need by

industry for real time analysis has emerged, the number of systems which support

real-time data integration and analytics have increased in recent years. Generally,

there exists two types of streaming processing systems: (a) traditional streaming

platforms, on which we can implement a streaming algorithm using a traditional

programming language in a sequential manner; (b) Distributed streaming plat-

forms, where the data is distributed across a cluster of machines and the process-

ing model is implemented using the MapReduce framework. This section gives a

survey on the most well-known streaming platforms with a focus on the streaming

Chapter 2. Fundamentals of Big Data 20

clustering task. [Liu et al., 2014] gives a general survey on real-time processing

systems for Big Data.

2.5.1 Spark Streaming

Spark Streaming [Zaharia et al., 2012b, 2013] is an extension of the Apache Spark

[Zaharia et al., 2010] project which adds the ability to perform online processing

through a similar functional interface to Spark, such as map, filter, reduce, etc.

Spark Streaming runs streaming computations as a series of short batch jobs on

RDDs within a programming model called discretized streams (D-Streams), as il-

lustrated in Figure 2.7.

Figure 2.7: The internal workflow in Spark Streaming

The key idea behind D-Streams is to treat a streaming computation as a se-

ries of deterministic batch computations on small time intervals. For example, we

might place the data received each second into a new interval, and run a MapRe-

duce operation on each interval to compute a count. Similarly, we can perform a

running count over several intervals by adding the new counts from each interval

to the previous result. Spark Streaming can automatically parallelize the jobs

across the nodes in a cluster.

Spark Streaming comes with a new approach for fault recovery, while classical

Chapter 2. Fundamentals of Big Data 21

streaming systems update the mutable state on a per-record basis and use either

replication or upstream backup for fault recovery. The replication approach cre-

ates two or more copies of each process in the data flow graph [Balazinska et al.,

2008]. This can double the hardware cost, and if two nodes in the same replica fail,

the system is not recoverable. In upstream backup [Hwang et al., 2005], upstream

nodes act as backups for their downstream neighbors by preserving tuples in their

output queues while their downstream neighbors process them. If a server fails,

its upstream nodes replay the logged tuples on a recovery node. The disadvantage

of this approach is long recovery times, as the system must wait for the standby

node to catch up.

To address these issues, D-Streams employ another approach: parallel recovery.

The system periodically checkpoints some of the state RDDs, by asynchronously

replicating them to other nodes. For example, in a view count program computing

hourly windows, the system could checkpoint results every minute. When a node

fails, the system detects the missing RDD partitions and launches the tasks to

recover them from the latest checkpoint [Zaharia et al., 2013].

In the streaming clustering point of view, Spartakus3 is an open-source project

on top of Spark-notebook4 which provides front-end packages for some cluster-

ing algorithms implemented using the MapReduce framework. This includes our

MBG-Stream5 algorithm [Ghesmoune et al., 2015a] (detailed in chapter 6) with

an integrated interface for execution and visualization checks. MLlib [Meng et al.,

2015] gives implementations of some clustering algorithms, especially a Streaming

k-means6 open-source code. Another open source software for mining Big Data

streams using Spark Streaming is streamDM7 which is developed at Huawei Noah’s

Ark Lab. For streaming clustering, it includes Clustream [Aggarwal et al., 2003]

and StreamKM++ [Ackermann et al., 2012].

2.5.2 Flink

Flink8 is an open source platform for distributed stream and batch data processing.

The core of Flink is a streaming iterative data flow engine. On top of the engine,

3See https://hub.docker.com/r/spartakus/coliseum/
4See http://spark-notebook.io/
5See https://github.com/mghesmoune/spark-streaming-clustering
6See http://spark.apache.org/docs/latest/mllib-clustering.html#

streaming-k-means
7See http://huawei-noah.github.io/streamDM/
8See https://flink.apache.org/

https://hub.docker.com/r/spartakus/coliseum/
http://spark-notebook.io/
https://github.com/mghesmoune/spark-streaming-clustering
http://spark.apache.org/docs/latest/mllib-clustering.html#streaming-k-means
http://spark.apache.org/docs/latest/mllib-clustering.html#streaming-k-means
http://huawei-noah.github.io/streamDM/
https://flink.apache.org/

Chapter 2. Fundamentals of Big Data 22

Flink exposes two language-embedded fluent APIs: the DataSet API for process-

ing batch data sources and the DataStream API for processing event streams. The

key idea behind Flink is the optimistic recovery mechanism that does not check-

point every state [Schelter et al., 2013]. Therefore, it provides optimal failure-free

performance and simultaneously uses less resources in the cluster than traditional

approaches. Instead of restoring such a state from a previously written checkpoint

and restarting the execution, a user-defined, algorithm-specific compensation func-

tion is applied. In case of a failure, this function restores a consistent algorithm

state and allows the system to continue the execution.

2.5.3 Massive On-line Analysis (MOA)

MOA9 (Massive On-line Analysis) is a framework for data stream mining [Bifet

et al., 2010]. It includes tools for evaluation and a collection of machine learning

algorithms. Related to the WEKA project10 (Waikato Environment for Knowledge

Analysis), it is also written in Java, while scaling to more demanding problems.

The goal of MOA is a benchmark framework for running experiments in the data

stream mining context by proving storable settings for data streams (real and

synthetic) for repeatable experiments, a set of existing algorithms and measures

from the literature for comparison, and an easily extendable framework for new

streams, algorithms and evaluation methods. MOA currently supports stream

classification, stream clustering, outlier detection, change detection and concept

drift and recommender systems. In the streaming case, MOA contains several

stream clustering methods including: StreamKM++ [Ackermann et al., 2012],

CluStream [Aggarwal et al., 2003], ClusTree [Kranen et al., 2011], DenStream

[Cao et al., 2006], D-Stream [Chen and Tu, 2007].

2.5.4 Scalable Advanced Massive Online Analysis (SAMOA)

SAMOA11 (Scalable Advanced Massive Online Analysis) is distributed stream-

ing machine learning (ML) framework that contains a programing abstraction

for distributed streaming ML algorithms. It is a project started at Yahoo Labs

Barcelona. SAMOA is both a framework and a library [Morales and Bifet, 2015].

9See http://moa.cms.waikato.ac.nz/
10See http://weka.wikispaces.com/
11See http://samoa-project.net/

http://moa.cms.waikato.ac.nz/
http://weka.wikispaces.com/
http://samoa-project.net/

Chapter 2. Fundamentals of Big Data 23

As a framework, it allows algorithm developers to abstract from the underlying

execution engine, and therefore reuse their code on different engines. It features a

pluggable architecture that allows it to run on several distributed stream process-

ing engines such as Storm12, S413, and Samza14. As a library, SAMOA contains

implementations of state-of-the-art algorithms for distributed machine learning on

streams. For streaming clustering, it includes an algorithm based on CluStream

[Aggarwal et al., 2003].

2.6 Conclusion

Big Data are becoming a new technology focus both in data science and in indus-

try. The domain of Big Data gathers all the techniques and algorithms recently

proposed where conventional methods fail when applied to data, as well as ac-

companying platforms and technologies. Indeed, it has been necessary to recon-

sider platforms, programming languages, and paradigms usually used for statisti-

cal learning. Handling large volumes of data and developing scalable models using

computing power (clusters and clouds) was not possible with the usually existing

platforms. These new platforms are usually deployed after extensive development

on traditional platforms e.g. Matlab, R, etc., as they remain attractive for rapid

scientific prototyping.

In the next chapter, we will review and discusse the state of the art related

to clustering methods as well as the detail of some scalable clustering methods

implemented with MapReduce.

12See http://storm.apache.org
13See http://incubator.apache.org/s4
14See http://samza.incubator.apache.org

http://storm.apache.org
http://incubator.apache.org/s4
http://samza.incubator.apache.org

Chapter 3

Clustering and Scalable

Algorithms

The first part of this chapter reviews and discusses the state of the art related to

clustering methods. In the second part, we detail some scalable clustering methods

implemented with MapReduce, allowing the reader to have a clear idea on how to

scale any data clustering algorithm using the MapReduce paradigm.

There are too many clustering algorithms to cover comprehensively here so

we will focus on the algorithms which we have utilised ourselves or those which

appear to be most relevant to our work.

3.1 Introduction

Clustering is a key data mining task. This is the problem of partitioning a set

of observations into clusters such that observations assigned in the same cluster

are similar (or close) and the inter-cluster observations are dissimilar (or distant).

The other objective of clustering is to quantify the data by replacing a group of

observations (cluster) with one representative observation (prototype).

This chapter reviews and discusses the state of the art related to clustering

methods. Even if we do not propose an exhaustive survey, we argue that we

present in detail the most well-known data clustering algorithms as we cited in

chapter 4. Furthermore, we present an understandable section on how to scale

traditional clustering algorithms using the MapReduce paradigm.

We assume that a set of n data-points X = {x1,x2, ...,xn} are given, where

25

Chapter 3. Clustering and Scalable Algorithms 26

xi = (x1
i , x

2
i , ..., x

d
i) is a vector in the Rd space. We denote by C the set of clusters

produced by the clustering task. Each cluster has a prototype variable, denoted

by wc = (w1
c , w

2
c , ..., w

d
c), which represents the position of the cluster in Rd.

3.2 Data clustering algorithms

3.2.1 k-means

The most common example of clustering algorithms is k-means [Jain and Dubes,

1988]. Clusters are represented by a mean vector called the weighted vector or

prototype wj, where j = 1, ..., k, which may not necessarily be a physical point in

the data space. Thus we can re-define the clustering problem as an optimization

problem: find the cluster centers such that the intra-class variance is minimized,

i.e., the sum of squared distances from each object within a cluster to its cor-

responding prototype. k-means finds k classes from a set of n observations, by

minimizing the following cost function:

Rk−means(φ,W) =
n∑
i=1

k∑
j=1

‖xi −wj‖2 (3.1)

The method used for the minimization of the function Rk−means(φ,W) is an

iterative method whose basic iteration has two phases:

• Assignment step: it is, in this phase, to minimize the functionRk−means(φ,W)

with respect to the assignment function φ assuming that the prototype vec-

tors W are constant; The minimization is achieved by assigning each obser-

vation xi to the referent wc using the assignment function φ:

φ(xi) = arg min
j=1,...,k

‖xi −wj‖2 (3.2)

assign data points to the nearest prototype (best match unit). This assures

that the cost function R(φ,W) is minimized with respect to the assignment

function φ assuming that the prototype vectors are constant. Additionally,

this step maps data to the network nodes.

Chapter 3. Clustering and Scalable Algorithms 27

• Minimization step: the second phase of iteration decreases againRk−means(φ,W)

according to the set of referentsW . It is assumed in this case that φ is fixed

at the current value. The referents wc are calculated using the following

equation:

wc =
1

nc

nc∑
i=1

xi (3.3)

The k-means algorithm is summarised in Figure 3.1 and written in Algorithm 1.

(a) Initial step: Data distrubition is given and k =
3 initial prototypes are randomly generated within
the data space.

(b) Assignment step: The clusters are formed by
assigning every single object to the cluster whose
prototype is the nearest to this object.

(c) Update step: The prototypes are updated and
move to the local minimum and to cover data dis-
trubition.

(d) The algorithm repeats until convergence or a
stopping criterion has been fulfilled.

Figure 3.1: Clustering with k-means

k-means is a heuristic algorithm which has few shortcomings: it can converge

to a local optimum, and the result depends on k and the initial prototypes. There-

fore, some variants have been developped including topological models for exam-

ple: SOM and Neural Gas that suffer less from these problems, because of the

topological preservation.

Chapter 3. Clustering and Scalable Algorithms 28

Algorithm 1: k-means

1 Initialize randomly k prototypes;
2 repeat
3 for i = 1 to n do
4 Find the nearest cluster cj to xi according to Equation (3.2);
5 Assign xi to cluster cj;

6 for j = 1 to k do
7 Update the prototype wj according to Equation (3.3).

8 until stopping criterion has been fulfilled ;

3.2.2 k-means++

The k-means algorithm is a simple, fast, and well-known algorithm. However, its

performance is sensitive to the initialisation step of the k clusters. [Arthur and

Vassilvitskii, 2007] proposed a specific way of choosing the initial prototypes for

the k-means algorithm. Let dist(x) denote the shortest distance from a data point

x to the closest prototype that we have already chosen. The k -means++ method

is described in Algorithm 2.

The main idea in the k -means++ algorithm is to choose the prototypes one

by one in a controlled fashion, where the current set of chosen prototypes will

stochastically bias the choice of the next prototype. The central drawback of the

k -means++ initialization from a scalability point of view is its inherent sequential

nature: the choice of the next prototype depends on the current set of prototypes

[Bahmani et al., 2012].

Algorithm 2: k-means++

1 Take one prototype wc1 , chosen uniformly at random from the set of data,
X ;

2 Take a new prototype wci , choosing x ∈ X with probability dist(x)2∑
x∈X dist(x)2

;

3 Repeat Step 2 until we have taken k clusters altogether;
4 Proceed as with the standard k-means method (Algorithm 1);

3.2.3 Self-Organizing Map (SOM)

The SOM algorithm, proposed by Kohonen [Kaski et al., 1998], is a type of arti-

ficial neural network for unsupervised learning. SOM has the ability of creating

spatially organized internal representations of input objects and their abstractions.

Chapter 3. Clustering and Scalable Algorithms 29

As in Figure 3.2, SOM produces a low-dimensional (1D or 2D) discretized repre-

sentation (called a map or network) from the high-dimensional space of the input

data. SOM uses a neighborhood function to preserve the topological properties

of the input space, and forms a discretely topological map where similar objects

are grouped close together and dissimilar ones apart. Like most artificial neural

networks [Haykin, 1998], SOM has a two-fold objective:

1. Training map: build the topological map using the input data. A map

consists of a number of network nodes arranged according to a structure

defined a priori. The usual arrangement of the network nodes is a 1D or

2D, hexagonal or rectangular grid. Associated with each network node is a

prototype, wc, of the same dimension as the input data points.

2. Mapping (quantization): put the input data into a non-linear, discrete

map. Vector quantization techniques assign a data point to a prototype

such that the distance from this point to the best match prototype is the

smallest. This process will respect the neighborhood function to preserve

data topology. Data points which are similar into the input space will be

put onto neighbor network nodes.

(a)

Figure 3.2: SOM principles: mapping and quantization

Chapter 3. Clustering and Scalable Algorithms 30

At the start of the learning, a discrete topological map of size p × q = k is

initialized. We denote C = {c1, ..., ck} where ci (i = 1, ..., k) is a network node.

C is associated with W = {w1, ..,wk} where wi = (w1
i , ..., w

k
i) is the prototype

associated with the network node ci. For each pair of network nodes cr and cs in C,
their mutual influence is defined by the function KT (δ(cr, cs)) as in Equation (3.4).

A Gaussian function is a common choice for K that will shrink with time.

KT (δ(cr, cs)) = e
−δ(cr,cs)

T (3.4)

where T represents the temperature which decreases the value of T between two

values Tmax and Tmin, to control the size of the neighborhood influencing a given

cell on the map :

T = Tmax

(Tmin
Tmax

) ith
Niter−1

(3.5)

Niter is the number of iterations, and δ(cr, cs) is defined as the shortest distance

between the two network nodes cr and cs.

Due to the use of this function K, in the training the whole neighborhood

network nodes move along in the same direction towards the learning data, similar

data tend to be put in the adjacent network nodes [Kohonen et al., 2001].

There are mainly two versions of SOM algorithm: stochastic and batch, both

aim to minimize the cost function presented in equation 3.6.

RSOM(φ,W) =
n∑
i=1

k∑
j=1

KT
(
δ(φ(xi), cj)

)
‖xi −wj‖2 (3.6)

where φ(xi) is the assignment function which returns the network node to which

xi is assigned:

φ(xi) = arg min
j=1,...,k

‖xi −wj‖2 (3.7)

The learning steps are similar to the steps of k-means:

1. Initialization step: initialize the map structure, i.e., the number of network

nodes (or k clusters), the arrangement shape: hexagonal or rectangular and

the initial prototypes.

Chapter 3. Clustering and Scalable Algorithms 31

2. Assignment step: assign data points to the nearest prototype (best match

unit). This assures that the cost function R(φ,W) is minimized with re-

spect to the assignment function φ assuming that the prototype vectors are

constant. Additionally, this step maps data to the network nodes.

3. Update step: re-compute the prototype vectors. The prototypes and their

neighbors move along together towards the assigned data such that the map

tends to approximate the data distribution. It includes minimizing the cost

function R(φ,W) with respect to the prototypes vectors assuming that data

are all assigned to the best match unit.

Batch SOM

In batch version, the prototypes are updated according to the following equation:

wc =

∑
r=1KT (δ(c, r))

∑nr
i=1 xi∑

r=1KT (δ(c, r))nr
(3.8)

where nr is the number of data assigned to cluster r. This formula is obtained by

fixing φ and minimizing R with respect to W . The assignment function in the

batch version is calculated according to the following equation:

φ(xi) = arg min
j=1,...,k

KT (δ(xi,wj))‖xi −wj‖2 (3.9)

Algorithm 3: Batch SOM version

1 Initialize k prototypes and W ;
2 while stopping criteria have not been fulfilled do
3 for i = 1→ n do
4 Find the best match unit to the current selected input data

according to Equation (3.9);
5 cφ(xi) = cφ(xi) ∪ {xi} ; // Put xi into cluster φ(xi)

6 for j = 1→ k do
7 Update prototype vectors according to Equation (3.8);

Stochastic SOM

In the stochastic version, each iteration consists of presenting the SOM map a

data point randomly selected. The best match unit (the neatest node) as well as

Chapter 3. Clustering and Scalable Algorithms 32

its neighbors move to the input point (see Figure 3.2).

Unlike the batch version, the stochastic version uses the gradient descent

method in order to update prototypes:

wt
c = wt−1

c − µtKT (δ(c, cφ(xi)))(w
t−1
c − xi) (3.10)

where µt is an adaptation parameter, called ”the learning rate” which decreases

with time t.

Algorithm 4: Stochastic SOM version

1 Initialize k prototypes and W ;
2 while stopping criteria have not been fulfilled do
3 for i = 1→ n do
4 Find the best match unit to the current selected input data

according to Equation (3.7);
5 forall cr is a neighbor of φ(xi) (including φ(xi) itself) do
6 Update the nodes in the neighborhood of φ(xi) according to

Equation (3.10) (including the node φ(xi) itself) by pulling
them closer to the input data;

3.2.4 Neural Gas

Neural Gas (NG) [Martinetz and Schulten, 1991] is inspired by the SOM. While

the SOM map dimensionality must be chosen a priori; depending on the data dis-

tribution, the topological network of neural gas may have a different arrangement.

Neural Gas is a more flexible network capable of quantizing topological data and

learning the similarity among the input data without defining a network topology.

Unlike SOM, the adaptation strength in Neural Gas is constant over time and only

the best match prototype and its direct topological neighbors are adapted.

Given a network of k clusters C = {c1, ..., ck} associated with k prototypes

W = {w1, ...,wk}, they are adapted independently of any topological arrangement

of the network nodes within the network. Instead, the adaptation step is affected

by the topological arrangement within the input space. For each data point xi is se-

lected, prototypes will be ajusted by distortionsD(xi, cj) = ‖xi−wj‖,∀j = 1, ..., k.

The resulting adaptation rule can be described as a ”winner takes most” instead

of a ”winner takes all” rule [Fritzke, 1991]. The winner network node denoted by

Chapter 3. Clustering and Scalable Algorithms 33

j0 is determined by the assignment function

j0 = φ(xi) = arg min
j=1,...,k

‖xi −wj‖2. (3.11)

An edge that connects the network node adjacent, denoted by j1, to the win-

ner node j0 which is then stored in a matrix S representing the neighborhood

relationships among the input data:

Sij =

{
1 if a connection exists between ci and cj (∀i, j = 1, ..., k, i 6= j)

0 otherwise

When an observation is selected, the prototypes move toward it by adjusting

the distortion D(xi, cj0), controlled by a neighborhood function KT . In [Fritzke,

1991], this function is fixed, e.g. KT = expknnj/T where knnj is the number of

neighborhood network nodes of cj. This affects directly to the adaptation step for

wj which is determined by:

wt
j = wt−1

j − εKT (δ(cj, cφ(xi)))(xi −wj) (3.12)

To capture the topological relations between the prototypes, each time an obser-

vation is presented, the connection between j0 and j1 is incremented by one. Each

connection is associated with an ”age” variable. Only the connection between j0

and j1 is reset, the other connections of j0 age, i.e. their age increment. When the

age of a connection exceeds a specific lifetime Maxage, it is removed. The way to

update the age of the connections is to increase with each incoming input object

is learnt. Finally, Neural Gas can be summarized by the Algorithm 5.

In this algorithm, stopping criteria can be either:

• a number of iterations

• a threshold for the quantization error.

3.2.5 Growing Neural Gas

Growing Neural Gas (GNG) [Fritzke, 1994] is an incremental self-organizing ap-

proach which belongs to the family of topological maps such as Self-Organizing

Maps (SOM) [Kohonen et al., 2001] or Neural Gas (NG) [Martinetz and Schulten,

Chapter 3. Clustering and Scalable Algorithms 34

Algorithm 5: Neural Gas

1 Initialize k prototypes and set all Sij to zero;
2 forall xi ∈ X do
3 Determine the sequence (cj0 , cj1 , ..., cjn−1) such that

‖xi −wj0‖ < ‖xi −wj1‖ < ... < ‖xi −wjk−1
‖

// wj0 is the best match prototype, i.e., the nearest

prototype; wj1 is the second nearest prototype to xi
4 forall cj with Sj0,j == 1 do
5 Perform an adaptation step for the prototypes according to

Equation (3.12);

6 if Sj0,j1 == 0 then
7 Create a topological connection between cj0 and cj1 , i.e., Sj0,j1 = 1;
8 Set age for this connection, i.e., agej0,j1 = 0;

9 forall cj with Sj0,j == 1 do
10 Increase the age of all connections of j0 by one, i.e.,

agej0,j = agej0,j + 1;
11 if agej0,j > Maxage then
12 Remove all connections of j0 which exceeded their age, i.e.,

Sj0,j = 0;

1991]. It is an unsupervised clustering algorithm capable of representing a high

dimensional input space in a low dimensional feature map. Typically, it is used for

finding topological structures that closely reflect the structure of the input distri-

bution. Therefore, it is used for visualization tasks in a number of domains [Mar-

tinetz and Schulten, 1991, Beyer and Cimiano, 2012] as neurons (nodes), which

represent prototypes, are easy to understand and interpret.

The GNG method has no input parameters which change over time and is able

to continue learning, adding network units and connections. As an incremental

variant of Neural Gas, GNG inherits its principle; however it does not impose the

strict network-topology preservation rule. The network incrementally learns the

topological relationships inherent in the dataset, and continues until a stopping

criterion is fulfilled. Before learning, only k = 2 prototypes are initialized. Step

by step, after a certain number of iterations (called epoch), a new network node

is successively added into the topological network. But how to add a new network

node? Now, this relates to quantization error.

In the clustering problem, the goal is always to minimize the quantization error

of datasets or data within the clusters. Therefore, the cluster that provides a high

Chapter 3. Clustering and Scalable Algorithms 35

value of quantization error is not a good one. We should divide this cluster into

smaller clusters. GNG finds the two clusters c1 and c2 which have the highest

quantization error. Then a new node is inserted halfway between these two nodes

by the following expression:

wnew =
1

2
(w1 + w2) (3.13)

The node insertion will be repeated until a stoping criterion is fulfilled.

3.2.6 Affinity Propagation

The Affinity Propagation (AP) approach proposes an equivalent formalization of

the k -medoids problem, defined in terms of energy minimization. It solves the

optimization problem

c∗ = arg min(E[c]) (3.14)

with

E[c] = −
n∑
i=1

S(xi,wci)−
k∑
i=1

lnχ
(p)
i [c] (3.15)

where c = (c1, c2, ..., ck) is the mapping between the data and prototypes, S(xi,wci)

is the similarity between xi and its prototype xci ∈ X , set to the negative squared

distance −‖xi − xci‖2 if i 6= ci. A tuning parameter called the preference penalty

is the cost incurred for being a self prototype:

σ = S(xi,wci), ∀i, (3.16)

χ
(p)
i [c] is a set of constraints controlling the clustering structure. The quantity

lnχ
(p)
i [c] → −∞ if wci 6= xi, which implies that if xi is selected as an prototype

by some items, it has to be its own prototype. Otherwise, lnχ
(p)
i [c] = 0. The

energy function thus enforces a tradeoff between the distortion, i.e., the sum over

all items of the squared error, ‖xi −wci‖2, and the cost of the model, that is σ|c|
if |c| denotes the number of prototypes retained. Equation 3.15 thus does not

directly specify the number of prototypes to be found, as opposed to k -medoids.

Instead, the number of prototypes in the solution depends on penalty σ; note that

σ = 0 yields a trivial solution, selecting every item as an prototype.

A message passing algorithm is employed to solve the optimization problem

defined by equation 3.15, considering two types of messages: availability messages

Chapter 3. Clustering and Scalable Algorithms 36

a(i, k) express the accumulated evidence for xk to be selected as the best prototype

for xi; responsibility messages r(i, k) express the fact that xk is suitable to be the

prototype of xi [Zhang et al., 2008, Frey and Dueck, 2007].

3.2.7 DBSCAN

Density-based clustering has the ability to discover arbitrary-shape clusters and

to handle noise [Amini et al., 2014]. In density-based clustering methods, clusters

are formed based on the dense areas that are separated by sparse areas. DBSCAN

(Density-Based Spatial Clustering of Applications with Noise) [Ester et al., 1996]

is one of the most well-known density-based clustering algorithms.

DBSCAN is developed for clustering large spatial databases with noise, based

on connected regions with high density. The density of each point is defined

based on the number of points close to that particular point called the point’s

neighborhood. The dense neighborhood is defined based on two user-specified

parameters: the radius (ε) of the neighborhood (ε-neighborhood), and the number

of the objects in the neighborhood (MinPts).

The basic definitions in DBSCAN are introduced in the following, where X is

a current set of data points:

• ε-neighborhood of a point: the neighborhood within a radius of ε of a point

xp is denoted by Nε(xp):

Nε(xp) = {xq ∈ X |dist(xp,xq) 6 ε},

where dist(xp,xq) denotes the Euclidean distance between points xp and xq;

• MinPts: the minimum number of points around a data point in the ε-

neighborhood;

• core point: a point where the cardinality of its ε-neighborhood is at least

MinPts (see Figure 3.3);

• border point: a point is a border point if the cardinality of its ε-neighborhood

is less than MinPts and at least one of its ε-neighbors is a core point (see

Figure 3.3);

• noise point: a point is a noise point if the cardinality of its ε-neighborhood is

less than MinPts and none of its neighbors is a core point (see Figure 3.3);

Chapter 3. Clustering and Scalable Algorithms 37

• directly density reachable: a point xp is directly density reachable from point

xq, if xp is in the ε-neighborhood of xq and xq is a core point;

• density reachable: a point xp is density reachable from point xq, if xp is in

the ε-neighborhood of xq and xq is not a core point but they are reachable

through chains of directly density reachable points;

• density-connected: if two points xp and xq are density reachable from a core

point xo, xp and xq are density-connected;

• cluster: a maximal set of density-connected points.

Figure 3.3: DBSCAN: core, border, and noise points [Ester et al., 1996].

DBSCAN starts by randomly selecting a point and checking whether the ε-

neighborhood of the point contains at least MinPts points. If not, it is considered

as a noise point, otherwise it is considered as a core point and a new cluster is

created. DBSCAN iteratively adds the data points, which do not belong to any

cluster and are directly density reachable from the core points of a new cluster. If

the new cluster can no longer be expanded, the new cluster is completed. In order

to find the next cluster, DBSCAN randomly selects the unvisited data points and

the clustering process continues until all the points are visited and no new point

is added to any cluster [Ester et al., 1996, Amini et al., 2014].

3.2.8 EM Algorithm

In the probabilistic approach, data is considered to be a sample independently

drawn from a mixture model of several probability distribution [Berkhin, 2006].

Each component of the mixture corresponds to a cluster; additional criteria are

Chapter 3. Clustering and Scalable Algorithms 38

used to automatically determine the number of clusters [Fraley and Raftery, 1998].

The Expectation Maximization (EM) algorithm [Dempster et al., 1977, McLachlan

and Krishnan, 2007] is a general approach to maximum likelihood in the presence

of incomplete data.

The overall likelihood of the training data is its probability to be drawn from

a given mixture model.

V(x1, ...,xn; θ) =
n∏
i=1

k∑
j=1

πjϕj(xi;αj) (3.17)

with

∀j = 1, ..., k, πj ∈ [0, 1] and
∑k

j=1 πj = 1

where:

• ϕj(xi;αj) represents the probability density.

• πj denotes the probability that an element of the sample follows the law ϕ.

• θ = (π1, ..., πk;α1, ..., αk) represents the unknown parameter of the mixture

model.

By introducing the log-likelihood, the Equation (3.17) can be rewritten as

follows:

L(x1, ...,xn; θ) =
n∑
i=1

log
(k∑
j=1

πjϕj(xi;αj)
)

(3.18)

Log-likelihood serves as an objective function, which gives rise to the EM

method. EM is a two-step iterative optimization:

• The Step E estimates probabilities ϕj(xi;αj), which is equivalent to a soft

reassignment.

• The Step M finds an approximation to a mixture model, given current soft

assignments.

This boils down to finding mixture model parameters that maximize log-likelihood.

The process continues until log-likelihood convergence is achieved.

Chapter 3. Clustering and Scalable Algorithms 39

Algorithm Complexity
k -means O(kn)
k -means++ O(kn)
SOM O(kn log n)
NG O(kn log n)
GNG O(kn2)
AP O(n2 log n)
DBSCAN O(n2); by using spatial indices, it decreases to O(n log n)
AntTree O(n log n)
EM O(kn)

Table 3.1: Computational complexity of clustering algorithms

In [Attar et al., 2013, El Attar, 2012], the authors have proposed an estimation

of probability distribution over a data set which is distributed into subsets located

on the nodes of a distributed system. More precisely, the global distribution is

estimated by aggregating local distributions which are modelled as a Gaussian

mixture.

3.2.9 Computational complexity

In Table 3.1, we report the computational complexity of the data clustering algo-

rithms presented above, where n is the number of data points and k is the number

of network nodes (or clusters).

3.3 Scalable clustering

In this section, we will describe in details the implementation of some of the

most well-known and commonly used clustering methods, using the MapReduce

paradigm. This will give the reader a clear idea on how to scale any data clustering

algorithm in MapReduce.

As described in chapter 2, MapReduce [Dean and Ghemawat, 2008, Lämmel,

2008] is a programming model and an associated implementation for processing

and generating large datasets that is amenable to a broad variety of real-world

tasks. Users specify the computation in terms of a map and a reduce function,

and the underlying runtime system automatically parallelizes the computation

across large-scale clusters of machines, handles machine failures, and schedules

inter-machine communication to make efficient use of the network and disks.

Chapter 3. Clustering and Scalable Algorithms 40

3.3.1 General Framework

In contrast to the typical single machine clustering, parallel and distributed (scal-

able) algorithms use multiple machine to speed up the computation and increase

the scalability.

Most parallel and distributed clustering algorithms follow the general frame-

work depicted in Figure 3.4 [Januzaj et al., 2004, Sarazin et al., 2014, Zhao et al.,

2009]

Figure 3.4: The general framework of most parallel and distributed clustering
algorithms [Aggarwal and Reddy, 2014].

1. Partition. Data are partitioned and distributed over machines.

2. Local Clustering. Each machine performs local clustering on its partion

of the data.

3. Global Clustering. The cluster information from the previous step is

aggregated globally to produce global clusters.

4. Refinement of Local Clusters. Optionally, the global clusters are sent

back to each machine to refine the local clusters.

Chapter 3. Clustering and Scalable Algorithms 41

3.3.2 Scalable k-means using MapReduce

Zhao et al. [2009] proposed a parallel and distributed implementation of k -means

in MapReduce. The proposed algorithm, called PKMeans, is implemented using

Hadoop1 to make the clustering method applicable to large scale data.

Since the most intensive calculation to occur in k -means is the calculation of

distances, the idea of PKMeans is to execute in a parallel manner these distance

computations between different observations with prototypes. In a nutshell, the

map function performs the procedure of assigning each data-point to the closest

cluster while the reduce function performs the procedure of updating the new

clusters. In order to decrease the cost of network communication, a combiner

function is developed to deal with partial combination of the intermediate values

with the same key within the same map task.

The input dataset is stored in an HDFS [Shvachko et al., 2010] as a sequence

file of < key, value > pairs, each of which represents a record in the dataset. The

key is the offset in bytes of this record to the start point of the data file, and the

value is a string of the content of this record. The dataset is split and globally

broadcast to all mappers. Consequently, the distance computations are executed

in parallel. For each map task, PKMeans construct a global variable clusters

which is an array containing the information about centers of the clusters. Given

the information, a mapper can compute the closest cluster for each data-point.

The intermediate values are then composed of two parts: the index of the closest

cluster and the data-point information [Zhao et al., 2009]. The pseudocode of the

map function is shown in Algorithm 6.

In the combine function, we partially sum the values of the points assigned

to the same cluster. In order to calculate the mean value of the objects for each

cluster, we should record the number of data-points in the same cluster in the same

map task. This procedure does not consume the communication cost because the

intermediate data is stored in local disk of the host. The pseudocode for the

combine function is shown in Algorithm 7.

In the reduce function, we sum all the data-points and compute the total

number of data-points assigned to the same cluster. Therefore, we can obtain the

new cluster centers which are used for next iteration. The pseudocode for the

reduce function is shown in Algorithm 8.

1http://lucene.apache.org/hadoop/

http://lucene.apache.org/hadoop/

Chapter 3. Clustering and Scalable Algorithms 42

Algorithm 6: map(key, value)

Data: Global variable clusters, the offset key, the data-point value
Result: < key′, value′ > pair, where the key′ is the index of the closest

cluster and value′ is a string comprise of data-point information
1 Construct the data-point instance from value;
2 minDist = Double.MAX VALUE;
3 index = −1;
4 for each cluster ci ∈ C do
5 dist = ComputeDistance(instance, ci);
6 if dist < minDist then
7 minDist = dist;
8 index = i;

9 Take index as key′;
10 Construct value′ as a string comprise of the values of different dimensions;
11 output < key′, value′ > pair;

Algorithm 7: combine(key, V)

Data: key is the index of the cluster, V is the list of the data-points
assigned to the same cluster

Result: < key′, value′ > pair, where the key′ is the index of the cluster
and value′ is a string comprised of sum of the data-points in the
same cluster and the data-point number

1 Initialize one array to record the sum of value of each dimensions of the
data-points contained in the same cluster, i.e. the data-points in the list V ;

2 Initialize a counter num as 0 to record the number of data-points in the
same cluster;

3 for each value v ∈ V do
4 Construct the data-point instance from v;
5 Add the values of different dimensions of instance to the array;
6 num = num+ 1;

7 Take key as key′;
8 Construct value′ as a string comprised of the sum values of different

dimensions and num;
9 output < key′, value′ > pair;

Chapter 3. Clustering and Scalable Algorithms 43

Algorithm 8: reduce(key, V)

Data: key is the index of the cluster, V is the list of the partial sums from
different host

Result: < key′, value′ > pair, where the key′ is the index of the cluster
and value′ is a string representing a new cluster center

1 Initialize one array record the sum of value of each dimensions of the
data-points contained in the same cluster, e.g. the data-points in the list
V ;

2 Initialize a counter NUM as 0 to record the number of data-points in the
same cluster;

3 for each value v ∈ V do
4 Construct the data-point instance from v;
5 Add the values of different dimensions of instance to the array;
6 NUM = NUM + num;

7 Divide the entries of the array by NUM to get the new cluster’s coordinates;
8 Take key as key′;
9 Construct value′ as a string comprise the cluster’s coordinates;

10 output < key′, value′ > pair;

3.3.3 Scalable Self-Organizing Map using MapReduce

Sarazin et al. [2014] present two scalable implementations of the SOM-MapReduce

algorithm coded in Spark. The pseudocode of the first version is as follows.

1. Randomly initialize the prototypes

2. Map: For each data-point xi ∈ X

(a) Assign xi to its nearest cluster using the Euclidean distance

(b) Compute the numerator and the denominator for each cluster c

MapNumeratorc = KT (δ(c, φ(xi)))xi

MapDenominatorc = KT (δ(c, φ(xi)))

3. Reduce: Update the prototypes of all clusters by summing up the output

of the Map tasks

wc =

∑
cMapNumeratorc∑
cMapDenominatorc

(3.19)

In the second version, map outputs are merged in one value, so the key of the

output is not used. The Map value of the output is a matrix and a neighborhood

Chapter 3. Clustering and Scalable Algorithms 44

vector. The matrix consists of the rows of data vectors xi who are themselves

multiplied by the neighborhood factors KT (δ(c, φ(xi))) [Sarazin et al., 2014].

3.3.4 Density-based Distributed Clustering (DBDC)

DBDC is a density distributed clustering algorithm. Density-based clustering aims

to discover clusters of arbitrary shape. Each cluster has a density of points which

is considerably higher than outside of the cluster. Also, the density whithin the

areas of noise is lower than the density in many of the clusters [Januzaj et al.,

2004].

DBDC is an exemplary algorithm that follows the general framework given

in Section 3.3.1. Initially the data is partitioned over machines. At the local

clustering step, each machine performs a carefully designed clustering algorithm

to output a set of a small number of representatives which has an accurate de-

sciption of local clusters. The local models consist of a set of representatives for

each locally found cluster. Each representative is a concrete observation from the

observations stored on the local site.

The global model is created by analyzing the local representatives. This analy-

sis is similar to a new clustering of the representatives with suitable global cluster-

ing parameters. To each local representative a global cluster-identifier is assigned.

In fact, the representatives are merged in the global clustering step using DB-

SCAN [Ester et al., 1996], a single-machine density-based clustering algorithm.

Then the global clusters are sent back to all clients sites which relabel all obser-

vations located on their site independently of each other.

The experimental results clearly show the advantage of the distributed clus-

tering. the running time of DBDC is more than 30 times faster than the serial

clustering counterpart. Moreover, DBDC yields almost the same clustering quality

as the serial algorithm.

3.3.5 Scalable DBSCAN using MapReduce

A recent proposed algorithm is MR-DBSCAN [He et al., 2014] which is a scalable

MapReduce-based DBSCAN algorithm. Three major drawbacks are existed in

parallel DBSCAN algorithms which MR-DBSCAN is fulfilling [Shirkhorshidi et al.,

2014]:

Chapter 3. Clustering and Scalable Algorithms 45

1. They are not successful to balance the load between the parallel nodes

2. These algorithms are limited in scalability because all critical sub procedures

are not parallelized

3. Their architecture and design limit them to less portability to emerging

parallel processing paradigms.

MR-DBSCAN proposes a novel data partitioning method based on computa-

tion cost emission as well as a scalable DBSCAN algorithm in which all critical

sub-procedures are fully parallelized. The MR-DBSCAN algorithm consists of

three stages: data partitioning, local clustering, and global merging.

The first stage divides the whole dataset into smaller partitions according to

spatial proximity. In the second stage, each partition is clustered independently.

Then the partial clustering results are aggregated in the last stage to generate

the global clusters. Experiments on large datasets confirm the scalability and

efficiency of MR-DBSCAN.

3.3.6 Scalable EM using MapReduce

Expectation Maximization (EM) is used to learn the maximum likelihood param-

eters in the presence of incomplete data.

Many works have been proposed to scale-up the EM algorithm [Das et al.,

2007, Cui et al., Basak et al., 2012]. The parallel implementation of EM proposed

in [Cui et al.] is coded in Spark.

• Each E-step is a Spark map transformation which runs in parallel mapping

each xi to a vector of conditional probability densities.

• Each M-step is a reduce action which goes through all the observations in

the RDD, aggregating results from E-step.

In their implementation, each iteration consists of two map operations and two

reduce operations. In the first map operation, we calculate the responsibility (the

log-likelihood, L) of each cluster for each data point, along with the product of

the data point and L and the sum of the products for all clusters. Then we do a

reduce operation to calculate the new centers for each cluster. In the las step, we

do another map and reduce to calculate the covariance of each cluster.

Chapter 3. Clustering and Scalable Algorithms 46

3.3.7 MapReduce-based Models and Libraries

Due to the interest of the MapReduce framework, some studies have used it for

scaling clustering algorithms. As examples, we can cite the implementation of

the EM algorithm in MapReduce [Das et al., 2007], the parallel version of the

k -means++ initialization algorithm [Bahmani et al., 2012], and the work consid-

ered in [Ene et al., 2011] which is a MapReduce implementation of the k -medean

problem.

Currently, more and more libraries have emerged offering MapReduce-based

implementations of machine learning algorithms:

• MLlib.2 This is Spark’s machine learning library. It consists of common

learning algorithms and utilities, including classification, regression, cluster-

ing, collaborative filtering, dimensionality reduction, as well as lower-level

optimization primitives and higher-level pipeline APIs.

• Apache Mahout.3 Is a project of the Apache Software Foundation to

produce free implementations of distributed or otherwise scalable machine

learning algorithms focused primarily in the areas of collaborative filtering,

clustering and classification. Currently, the supported algebraic platforms

are Apache Spark4 and H205, and Apache Flink6. Since April 2014, support

for Hadoop MapReduce7 algorithms is being gradually phased out.

3.4 Conclusion

As data clustering has attracted a significant amount of research attention, many

clustering algorithms have been proposed in the past decades. However, the en-

growing volumes of information made possible by technological advances, makes

clustering of very large data a challenging task.

Currently, the MapReduce paradigm has met with a resounding success in this

era of Data Science due to, amongst others, its simplicity. The challenge in scaling

2http://spark.apache.org/docs/latest/mllib-guide.html
3http://mahout.apache.org/
4http://spark.apache.org/docs/latest/index.html
5http://www.h2o.ai/
6http://hadoop.apache.org/
7http://hadoop.apache.org/

http://spark.apache.org/docs/latest/mllib-guide.html
http://mahout.apache.org/
http://spark.apache.org/docs/latest/index.html
http://www.h2o.ai/
http://hadoop.apache.org/
http://hadoop.apache.org/

Chapter 3. Clustering and Scalable Algorithms 47

a data clustering method is not only to use the MapReduce paradigm but also to

decompose the problem in small functions, the map and reduce functions. Usually,

scaling an algorithm using MapReduce needs a redefintion of the initial problem.

In the next chapter, we will review and discusse the state of the art related to

data stream clustering methods.

Chapter 4

State of the art on Clustering

Data Streams

This chapter is devoted to the problem of clustering data in the form of a stream,

i.e., a sequence of potentially infinite, non-stationary data (the probability distri-

bution of the unknown data generation process may change over time) arriving

continuously (which requires a single pass through the data) where random access

to the data is not feasible and storing all the arriving data is impractical.

4.1 Introduction

In today’s applications, evolving data streams are ubiquitous. Indeed, exam-

ples of applications relevant to streaming data are becoming more numerous and

more important, including network intrusion detection, transaction streams, phone

records, web click-streams, social streams, weather monitoring, etc.

When applying data mining techniques, and specifically clustering algorithms,

to data streams, restrictions in execution time and memory have to be considered

carefully. To deal with time and memory restrictions, many of the existing data

stream clustering algorithms modify traditional non-streaming methods to use the

two-phase framework proposed in [Aggarwal et al., 2003] to deal with streaming

data, e.g., DenStream [Cao et al., 2006] is an extension of DBSCAN algorithm,

StreamKM++ [Ackermann et al., 2012] of k-means++, StrAP [Zhang et al., 2008]

of AP, etc.

49

Chapter 4. State of the art on Clustering Data Streams 50

General surveys have been recently published in the literature for mining data

streams [Aggarwal, 2013, Nguyen et al., 2015, Khalilian and Mustapha, 2010, Yo-

gita and Toshniwal, 2013, Mousavi et al., 2015]. The authors of [de Andrade Silva

et al., 2013] introduced a taxonomy to classify data stream clustering algorithms.

The work presented in [Amini et al., 2014] is a thorough survey of state-of-the-art

density-based clustering algorithms over data streams.

This chapter presents a thorough survey of the state-of-the-art for a wide range

of data stream clustering algorithms.

4.2 Fundamental concepts for streaming data

A definition of a data stream has been given in [Golab and Özsu, 2003] as follows:

A data stream is a real-time, continuous, ordered (implicitly by arrival time or

explicitly by timestamp) sequence of items. It is impossible to control the order

in which items arrive, nor is it feasible to locally store a stream in its entirety.

Likewise, queries over streams run continuously over a period of time and incre-

mentally return new results as new data arrive. These are known as long-running,

continuous, standing, and persistent queries.

As already mentioned, Data Streaming became a hot research topic since the

early 2000s not only does it raise challenging scientific issues, it also appears as

the only way to handle data sources such as sensor networks, web logs, telecom-

munications or Web traffic [Gaber et al., 2005].

4.2.1 Window models

In most data stream scenarios, more recent information from the stream can reflect

the emerging of new trends or changes in the data distribution. This information

can be used to explain the evolution of the process under observation. Systems

that give equal importance to outdated and recent data do not capture the evolv-

ing characteristics of stream data [de Andrade Silva et al., 2013]. There are three

commonly-studied models in data streams [Zhu and Shasha, 2002]: i) sliding win-

dows; ii) damped windows; and iii) landmark windows.

Chapter 4. State of the art on Clustering Data Streams 51

Sliding window model

In the sliding window model, only the most recent information from the data

stream are stored in a data structure whose size can be variable or fixed. The

observations are manipulated based on the principles of queue processing, where

the first observation added to the queue will be the first one to be removed. Figure

4.1 presents an example of the sliding window model.

Figure 4.1: Sliding window model

Damped window model

Differently from sliding windows, the damped window model, also referred to as the

time-fading model, considers the most recent information by associating weights

to observations from the data stream. An illustrative example of the damped

window model is presented in Figure 4.2, where the weight of the observations

exponentially decays from black (most recent) to white (expired).

Figure 4.2: Damped window model

Chapter 4. State of the art on Clustering Data Streams 52

Landmark window model

Processing a stream based on landmark windows requires handling disjoint por-

tions of the streams (chunks), which are separated by landmarks (relevant obser-

vations). Landmarks can be defined either in terms of time, (e.g., on daily or

weekly basis) or in terms of the number of elements observed since the previous

landmark [Metwally et al., 2005]. All observations that have arrived after the

landmark onwards are kept or summarized into a window of recent data.

When a new landmark is reached, all observations kept in the window are re-

moved and the new observations from the current landmark are kept in the window

until a new landmark is reached. Figure 4.3 illustrates an example of landmark

window.

Figure 4.3: Landmark window model

4.2.2 Change detection

A key difference between data streaming and online learning, as already mentioned,

is the fact that the underlying distribution of the data is not necessarily stationary.

This phenomenon, also known as concept drift, means that the concept about

which data is obtained may shift from time to time after certain delay.

The problem of data evolution is interesting from two perspectives [Aggarwal,

2007]:

• For a given data stream, we would like to find the significant changes which

have occurred in the data stream. The aim of this approach is to provide a

Chapter 4. State of the art on Clustering Data Streams 53

direct understanding of the underlying changes in the stream. Methods such

as [Aggarwal, 2003, Kifer et al., 2004] fall in this cathegory.

• The second class of problems relevant to data evolution is that of updating

data mining models when a change has occurred. There is a considerable

amount of work in the literature with a focus on incremental maintenance of

models in the context of evolving data [Donjerkovic et al., 2000, Ganti et al.,

2002].

4.3 Data stream clustering methods

This section discusses previous works on data stream clustering problems, and

highlights the most relevant algorithms proposed in the literature to deal with

this problem. Most of the existing algorithms (e.g. CluStream [Aggarwal et al.,

2003], DenStream [Cao et al., 2006], StreamKM++ [Ackermann et al., 2012], or

ClusTree [Kranen et al., 2011]) divide the clustering process in two phases:

1. Online, the data will be summarized;

2. Offline, the final clusters will be generated.

Figure 4.4 is a flowchart of the data stream clustering algorithms presented in

this paper. These algorithms are categorized according to the nature of their

underlying clustering approach.

4.3.1 Hierarchical stream methods

A hierarchical clustering method groups the given data into a tree of clusters

which is useful for data summarization and visualization. This is a binary-tree

based data structure called the dendrogram. Once the dendrogram is constructed,

one can automatically choose the right number of clusters by splitting the tree at

different levels to obtain different clustering solutions for the same dataset without

rerunning the clustering algorithm again. Hierarchical clustering can be achieved

in two different ways, namely, bottom-up and top-down clustering. Though both

of these approaches utilize the concept of dendrogram while clustering the data,

Chapter 4. State of the art on Clustering Data Streams 54

Figure 4.4: Data stream clustering methods: the presented algorithms cate-
gorized according to the nature of their underlying clustering approach.

they might yield entirely different sets of results depending on the criterion used

during the clustering process [Aggarwal and Reddy, 2014].

4.3.1.1 Balanced Iterative Reducing and Clustering using Hierarchies

(BIRCH)

BIRCH incrementally and dynamically clusters multi-dimensional data points to

try to produce the best quality clustering with the available resources (i.e., memory

and time constraints) by making a single scan of the data, and to improve the

quality further with a few additional scans. It should be noted that the BIRCH

method is not designed for clustering data streams and cannot address the concept

drift problem.

The key characteristic of the BIRCH is to introduce a new data structure called

a clustering feature (CF) as well as a CF-tree. The CF can be regarded as a concise

summary of each cluster. This is motivated by the fact that not every data point

is equally important for clustering and we cannot afford to keep every data point

in the limited main memory. On the other hand, for the purposes of clustering, it

is often enough to keep up to the second order of data moment. In other words,

CF is not only efficient, but also sufficient to cluster the entire data set [Aggarwal

and Reddy, 2014, Zhang et al., 1996].

More precisely, a CF structure is a triple (N,LS, SS), where

Chapter 4. State of the art on Clustering Data Streams 55

• N is the number of data points in the cluster;

• LS =
∑

x∈X x is the linear sum of the N data points;

• SS =
∑

x∈X x2 is the squared sum of the N data points.

The CF vector has two main properties giving the incremental aspect, in an intu-

itive way, to any algorithm that uses this structure:

• Incrementality

If a point x is added to the cluster, the sufficient statistics are updated as

follows:

Ni ← Ni + 1; (4.1)

LSi ← LSi + x; (4.2)

SSi ← SSi + x2; (4.3)

• Additivity

If CF1 = (N1, LS1, SS1) and CF2 = (N2, LS2, SS2) are the CF vectors of two

disjoint clusters, merging them is equal to the sum of their parts. The addi-

tive property allows us to merge sub-clusters incrementally without accessing

the original data set.

CF1 + CF2 = (N1 +N2, LS1 + LS2, SS1 + SS2). (4.4)

Figure 4.5 presents the CF-tree structure in BIRCH. The CF-tree is a height-

balanced tree which keeps track of the hierarchical clustering structure for the

entire data set. BIRCH requires two user defined parameters: B the branch factor

or the maximum number of entries in each non-leaf node; and T the maximum

diameter (or radius) of any CF in a leaf node. The maximum diameter T defines

the examples that can be absorbed by a CF. By increasing T , then more examples

can be absorbed by a CF node and smaller CF-Trees are generated. Each node in

the CF-tree represents a cluster which is in turn made up of at most B sub-clusters.

All the leaf nodes are chained together for the purposes of efficient scanning.

When a data point is available, it traverses down the current tree from the

root, until it finds the appropriate leaf following the closest-CF path, with respect

to the L1 or L2 norms. Its insertion in the CF-tree can be performed in a similar

Chapter 4. State of the art on Clustering Data Streams 56

Figure 4.5: The Clustering Feature Tree in BIRCH. B is the maximum number
of CFs in a level of the tree

way to the insertion in the classic B-tree. If the closest-CF in the leaf cannot

absorb the data point, a new CF entry is created. If there is no room for new leaf,

the parent node is split.

A leaf node might be expanded due to the constraints imposed by B and T .

The process consists of taking the two farthest CFs and creates two new leaf

nodes. BIRCH operates in two main steps: the first step builds an initial CF-tree

in memory using the given amount of memory and recycling space on disk; the

second step tries to cluster all the sub-clusters in the leaf nodes, called also the

“global clustering”. There are two optional steps: the“tree condensing” step which

aims to refine the initial CF-tree by re-inserting its leaf entries; and the “clustering

refinement” step which re-assigns all the data points based on the cluster centroid

produced by the global clustering step.

Chapter 4. State of the art on Clustering Data Streams 57

4.3.1.2 Evolution-based technique for stream clustering (E-Stream)

E-Stream [Udommanetanakit et al., 2007] classifies the evolution of data into five

categories: appearance, disappearance, self evolution, merge, and split. This al-

gorithm is an evolution-based stream clustering method, i.e., a stream clustering

method that supports the monitoring and the change detection of clustering struc-

tures. It uses another data structure for saving summary statistics, named the

α-bin histogram [Udommanetanakit et al., 2007].

Indeed, each cluster is represented as a Fading Cluster Structure (FCS), which

is a weighted CF, utilizing an α-bin histogram for each feature of the dataset. A

histogram of the cluster data values is utilized to identify cluster splits.

When the maximum or minimum value changes, a new range is calculated and

the values in each range are updated from the intersection between the new and

old ranges. Each cluster has a histogram of feature values, but the histogram is

utilized only for the split of active clusters. Only an active cluster can assemble

an incoming data point. If a statistically significant valley is found between two

peaks in any of the marginal histograms, the cluster is split. Figure 4.6 illustrates

the histogram management in a split. E-Stream starts empty, and every new point

Figure 4.6: Histogram management in a split dimensionop and other dimen-
sion [Udommanetanakit et al., 2007]

either is mapped onto one of the existing clusters (based on a radius threshold) or

a new cluster is created around it. Any cluster not meeting a predefined density

level is considered inactive and remains isolated until achieving a desired weight.

The weight of a cluster is the number of data elements assigned to this cluster.

The algorithm employs an exponential decay function to weigh down the influence

of older data, thus focuses on keeping an up-to-date view of the data distribution.

Clusters which are not active for a certain time period may be deleted from the

data space.

Chapter 4. State of the art on Clustering Data Streams 58

Algorithm 9: E-Stream

1 retrieve new data xi;
2 FadingAll ;
3 CheckSplit ;
4 MergeOverlapCluster ;
5 LimitMaximumCluster ;
6 FlagActiveCluster ;
7 (minDistance, index) ← FindClosestCluster;
8 if minDistance < radius factor then
9 add xi to the cluster cindex;

10 else
11 create a new cluster from xi;

12 waiting for new data;

4.3.1.3 Evolution-based clustering for heterogeneous data streams with

uncertainty

HUE-Stream [Meesuksabai et al., 2011] extends E-Stream in order to support un-

certainty in heterogeneous data, i.e., including numerical and categorical attributes

simultaneously. Uncertain data streams pose a special challenge because of the

dual complexity of high volume and data uncertainty. This uncertainty is due to

errors in the reading of sensors or other hardware collection technology.

In many of these cases, the data errors can be approximated either in terms of

statistical parameters, such as the standard deviation, or the probability density

functions [Aggarwal, 2013]. The Uncertain MICROclustering (UMicro) algorithm

is proposed as a method for clustering uncertain data streams, which enhances

the micro-clusters with additional information about the uncertainty of the data

points in the clusters [Aggarwal and Yu, 2008]. This information is used to improve

the quality of the distance functions for the cluster assignments.

HCluStream [Yang and Zhou, 2006] extends the definition of the cluster feature

vector to include categorical features, by replacing the modified k-means clustering

with the corresponding k-prototypes clustering which is able to handle heteroge-

neous attributes. The centroid of continuous attributes and the histogram of the

discrete attributes are used to represent the micro-clusters, and the k-prototype

clustering algorithm is used to create the micro-clusters and macro-clusters.

The distance function, cluster representation, and histogram management are

introduced for the different types of clustering structure evolution. A distance

function between the probability distributions of two observations is introduced

Chapter 4. State of the art on Clustering Data Streams 59

to support uncertainty in categorical attributes.

To detect changes in the clustering structure, the proposed distance function

is used to merge clusters and find the closest cluster of a given incoming data

and the proposed histogram management to split clusters for categorical data. To

decrease the weight of old data over time, a fading function is used. Experimental

results show that HUE-Stream gives better cluster quality, in terms of purity and

the F-measure, compared to UMicro for the KDD-CUP’99 dataset [Meesuksabai

et al., 2011].

4.3.1.4 ClusTree

ClusTree [Kranen et al., 2011] is a non-parametric stream clustering algorithm

that is capable of processing the stream in a single pass, with limited memory

usage. It always maintains an up-to-date cluster model and reports concept drift,

novelty, and outliers. This is ensured by weighing data points with an exponen-

tial time-dependent decay function. Moreover, this approach makes no a priori

assumptions on the size of the clustering model, but dynamically self-adapts.

ClusTree is an anytime algorithm that organizes micro-clusters in a tree struc-

ture for faster access and automatically adapts micro-cluster sizes based on the

variance of the assigned data points. Anytime algorithms denote approaches that

are capable of delivering a result at any given point in time, and of using more

time if it is available to refine the result. The tree used in ClusTree is a balanced

multi-dimensional indexing structure with the following properties:

• an inner node contains between m and M entries. Leaf nodes contain be-

tween l and L entries. The root has at least one entry (m, M , l and L are

input parameters).

• an entry in an inner node stores: (i) a cluster feature of the observations

that it represents. (ii) a cluster feature of the observations in the buffer. (iii)

a pointer to its child node.

• an entry in a leaf stores a cluster feature of the data point(s) it represents.

• a path from the root to any leaf node has always the same length (balanced).

So, it uses also the micro-cluster structure as a compact representation of the data

distribution. The basic idea is to maintain measures for incremental computation

Chapter 4. State of the art on Clustering Data Streams 60

of the mean and variance of micro-clusters so that the infeasible access to all past

stream observations is no longer necessary. We recall that a micro-cluster is a

cluster feature tuple (or a variant of it) CF = (N,LS, SS) (as defined in sec-

tion 4.3.1.1) of the number N of represented data points, their linear sum LS, and

their squared sum SS.

In the proposed method, CFs are created and updated by extending index

structures from the R-tree family [Guttman, 1984]. Such hierarchical indexing

structures provide the means for efficiently locating the correct place to insert any

observation from the stream into a micro-cluster. The idea is to build a hierarchy

of micro-clusters at different levels of granularity.

Given enough time, the algorithm descends the hierarchy in the index to reach

the leaf entry that contains the micro-cluster that is the most similar to the current

observation. If this micro-cluster is similar enough, it is updated incrementally by

this observation’s values. Otherwise, a new micro-cluster may be formed [Kranen

et al., 2011].

However, in anytime clustering of streaming data, there might not always be

enough time to reach leaf level to insert the observation. To deal with this, the

authors provide some strategies for anytime inserts. By incorporating local ag-

gregates, i.e., temporary buffers for ”hitchhikers”, a solution is provided for the

easy interruption of the insertion process so that it can be simply summarized at

any later point in time. For very fast streams, aggregates of similar observations

allow insertion of groups instead of single observations for even faster processing.

For slower stream settings, alternative insertion strategies that exploit possible

idle times of the algorithm to improve the quality of the resulting clustering are

proposed [Kranen et al., 2011].

Taking the means of the CFs as representatives, we can apply a k-center clus-

tering or density based clustering (e.g. k-means or DBSCAN) to detect clusters

of arbitrary shape.

4.3.2 Partitioning stream methods

A partitioning-based clustering algorithm organizes the observations into k disjoint

clusters. The clusters are formed based on a distance function. As example of

partitioning methods, the k-means algorithm which leads to finding only spherical

clusters and the clustering results are usually influenced by noise.

Chapter 4. State of the art on Clustering Data Streams 61

4.3.2.1 CluStream

The idea behind the CluStream [Aggarwal et al., 2003] method is to divide the

clustering process into an online component which periodically stores detailed sum-

mary statistics and an offline component which uses only this summary statistics.

The offline component is utilized by the analyst who can use a wide variety of

inputs (such as the time horizon or number of clusters) in order to provide a quick

understanding of the broad clusters in the data stream. The summary information

is defined by the following structures:

• Micro-clusters: Statistical information about the data locality in terms

micro-clusters are maintained. The micro-cluster structure is a temporal

extension of the cluster feature vector 4.3.1.1 [Zhang et al., 1996]. The addi-

tivity property of the micro-clusters makes them a natural choice for the data

stream problem. More precisely, a micro-cluster is tuple (N,LS, SS, LST, SST)

where

– (N,LS, SS) are the three components of the CF vector, as introduced

in section 4.3.1.1 (namely, the number of data points in the cluster, N ;

the linear sum of the N data points, LS; and the squared sum of the

N data points, SS).

– The two other components are LST =
∑

i Ti and SST =
∑

i T
2
i (the

sum and the sum of the squares of the time stamps of the N data

points).

• Pyramidal time frame: The micro-clusters are stored at time snapshots

which follow a pyramidal pattern. This pattern provides an effective trade-off

between the storage requirements and the ability to recall summary statistics

from different time horizons.

The data stream clustering algorithm proposed in [Aggarwal et al., 2003] can

generate approximate clusters in any user-specified length of history from the cur-

rent moment. The online phase stores q micro-clusters in (secondary) memory,

where q is an input parameter.

Each new point is assigned to its closest micro-cluster (according to the Eu-

clidean distance) if the distance between the new point and the closest centroid

falls within the maximum boundary. If so, the point is absorbed by the cluster and

Chapter 4. State of the art on Clustering Data Streams 62

its summary statistics are updated. If none of the micro-clusters can absorb the

point, a new micro-cluster is created. This is accomplished by either deleting the

oldest micro-cluster or by merging two micro-clusters. The oldest micro-cluster is

deleted if its time-stamp is below a given threshold δ (input parameter).

The q micro-clusters are stored in a secondary storage device in particular time

intervals that decrease exponentially, which are referred to as snapshots. These

snapshots allow the user to search for clusters in different time horizons through a

pyramidal time window concept. This summary information in the micro-clusters

is used by an offline component which is dependent upon a wide variety of user

inputs such as the time horizon or the granularity of clustering.

When the user specifies a particular time horizon of length h over which to find

the clusters, then we need to find micro-clusters which are specific to that time-

horizon. For this purpose, we find the additive property of the cluster feature

vector very useful. The final clusters are determined by using a modification of

a k -means algorithm. In this technique, the micro-clusters are treated as pseudo-

points which are re-clustered in order to determine higher level clusters.

4.3.2.2 StreamKM++

StreamKM++ [Ackermann et al., 2012] is a two-phase (online-offline) algorithm

which maintains a small outline of the input data using the merge-and-reduce tech-

nique. The merge step is performed by via a data structure, named the bucket set,

which is a set of L buckets (also named buffers), where L is an input parameter.

The reduce step is performed by a significantly different summary data structure

that is suitable for high-dimensional data, the coreset tree, when we consider that

it reduces 2m data points to m data points (m is an input parameter).

The advantage of such a coreset is that we can apply any fast approximation

algorithm (for the weighted problem) on the usually much smaller coreset to com-

pute an approximate solution for the original dataset more efficiently.

The coreset tree is constructed as follow:

• First, the tree has only the root node v, which contains all the 2m data

points in the set of data points Xv, where Xv is the of observations assigned

to the node v. The prototype of the root node wv is chosen randomly from

Xv.

Chapter 4. State of the art on Clustering Data Streams 63

• Afterwards, two child nodes for v are created: v1 and v2. To create these

nodes, the data point that is farthest away from wv has the highest proba-

bility of being selected We call the selected data point xv′ .

• The next step is to allocate the data points in Xv to Xv1 and Xv2, such that:

Xv1 = {x ∈ Xv | dist(x,xv) < dist(x,xv′)} , (4.5)

Xv2 = Xv \Xv1 . (4.6)

Consequently, the summary statistics of the child nodes v1 and v2 are updated.

This is the expansion step of the tree, which creates two child nodes for a given

inner node. When the tree has many leaf nodes, we have to decide which one should

be expanded first. In this case, we start from the root node of the coreset tree

and descend it by iteratively selecting a child node with probability proportional

to SSEchild
SSEparent

, until a leaf node is reached for the expansion step to be re-started,

where

SSEv =
∑
x∈Xv

‖x−wv‖2 . (4.7)

The coreset tree expansion stops when the number of leaf nodes is m.

When a new data point arrives, it is stored in the first bucket. If the first bucket

is full, all of its data are moved to the second bucket. If the second bucket is full,

the two buckets are merged resulting in 2m data points, which are then reduced

to m data points, by the construction of a coreset tree, as previously detailed.

The resulting m data points are stored in the third bucket, unless it is also full,

and then again a new merge-and-reduce step is needed [Ackermann et al., 2012,

de Andrade Silva et al., 2013].

In its offline phase, the k -means++ [Arthur and Vassilvitskii, 2007], which is

executed on an input set of size m, is used for finding the final clusters. The

k-means++ method (presented in chapter 3) is a seeding procedure for the k-

means algorithm that guarantees a solution with a certain quality and gives good

practical results.

4.3.2.3 Data stream clustering with Affinity Propagation (StrAP)

StrAP [Zhang et al., 2008] is an extension of the Affinity Propagation (AP) [Frey

and Dueck, 2007] algorithm for data streams, which uses a reservoir for saving

Chapter 4. State of the art on Clustering Data Streams 64

potential outliers. The Affinity Propagation approach (presented in chapter 3)

proposes an equivalent formulation of the k-medoids problem in the sense that a

prototype is an effective data point, with the difference that the number of clusters

to be found is not fixed.

The StrAP algorithm, as an online version of AP, proceeds by incrementally

updating the current model if the current data point fits the model, and putting

it in a reservoir otherwise. A change point detection test enables StrAP to catch

drifting exemplars that significantly deviate away.

StrAP involves four main steps as illustrated in Algorithm 10 with a diagram

in Figure 4.7 [Zhang et al., 2008]:

Figure 4.7: Diagram of StrAP algorithm [Zhang et al., 2008]

• The first batch of data is used by AP to identify the first clusters and initialize

the stream model.

• As the stream flows in, each data point xt is compared to the prototypes; if

it is too far from the nearest exemplar, xt is put in the reservoir, otherwise

the stream model is updated accordingly.

• The data distribution is checked for change point detection, using the Page-

Hinkley significance test.

• Upon triggering the change detection test, or if the number of outliers exceeds

the reservoir size, the stream model is rebuilt based on the current model

and reservoir, using a weighted version of AP (WAP).

The model of the data stream used in StrAP is inspired by DenStream [Cao et al.,

2006] (presented in section 4.3.4). It consists of a set of 4-tuples (ci, Ni,Σi, Ti),

where

Chapter 4. State of the art on Clustering Data Streams 65

• ci ranges over the clusters;

• Ni is the number of items associated to cluster ci;

• Σi is the distortion of ci (sum of d(x, ci)
2, where x ranges over all data points

associated to ci);

• Ti is the last time stamp when a data point was associated to ci.

At time t, the data point xt is considered and its nearest cluster ci (w.r.t. distance

d) in the current model is selected; if d(xt, ci) is less than some threshold δ, heuris-

tically set to the average distance between points and clusters in the initial model,

xt is assigned to the i-th cluster and the model is updated accordingly; otherwise,

xt is considered to be an outlier, and put into the reservoir [Zhang et al., 2008].

Algorithm 10: StrAP

Data: DS = {x1,x2, ...,xn}, fit threshold ε
1 Init: StrAP Model ← AP(x1, ...,xT) ;
2 Reservoir = {};
3 for t > T do
4 Compute ci = nearest cluster to xt;
5 if dist(ci,xt) < ε then
6 Update StrAP model;
7 else
8 Reservoir ← xt;

9 if Restart criterion then
10 Rebuild StrAP model;
11 Reservoir = {};

4.3.3 Gaussian mixture models of data streams under block

evolution

[Patist et al., 2006] introduced a local approach for maintaining a Gaussian mix-

ture model of a data stream under block evolution with restricted window. In

the proposed algorithm, block evolution is considered with a restricted window

consisting of a fixed number, b, of the most recently collected blocks of data. The

window is updated one block at a time by inserting a new block and deleting the

oldest one. The method constructs b local mixtures, one for each block. Mixtures

Chapter 4. State of the art on Clustering Data Streams 66

are stored as lists of k components, i.e., k Gaussian density functions.

When a new block of data arrives, all components from the oldest block are

removed and the EM procedure (which is presented in chapter 3) is applied to

the latest block to find a local mixture model for this block. Finally, all bk local

components are combined with help of a greedy merge procedure to form a global

model with k components. The greedy merge procedure systematically searches

for two closest components and merges them with help of the above formulas until

there are exactly k components left.

The method is efficient both computationally and in terms of memory require-

ments; it is 1-2 orders of magnitude more efficient than the standard EM algorithm.

In [Samé and Assaad, 2014, EL ASSAAD, 2014], the authors proposed a dy-

namic probabilistic approach within a temporal data clustering framework. An

online variational EM for dynamic mixture model has been also proposed for the

estimation of model parameters associated with this approach.

4.3.4 Density-based stream methods

Density-based algorithms are based on the connection between regions and density

functions. In these types of algorithms, dense areas of observations in the data

space are considered as clusters, which are segregated by low density area (noise).

These algorithms find clusters of arbitrary shapes and generally they require two

parameters: the radius and the minimum number of data points within a cluster.

The main challenge in the streaming scenario is to construct density-based

algorithms which can be efficiently executed in a single pass of the data, since the

process of density estimation may be computationally intensive [Aggarwal, 2013].

[Amini et al., 2014] gives a survey on recent density-based data streams clustering

algorithms.

4.3.4.1 Density-based clustering over an evolving data stream with

noise (DenStream)

DenStream [Cao et al., 2006] is a density-based data stream clustering algorithm

that also uses a feature vector, called micro-clusters, based on the CF vector

which is introduced in section 4.3.1. By creating two kinds of micro-clusters (po-

tential and outlier micro-clusters), in its online phase, DenStream overcomes one

Chapter 4. State of the art on Clustering Data Streams 67

of the drawbacks of CluStream, its sensitivity to noise. Potential and outlier micro-

clusters are kept in separate memories since they require different processing.

Each potential-micro-cluster structure has an associated weight w that indi-

cates its importance based on temporality. The weight of each data point decreases

exponentially with time t via a fading function

f(t) = 2−λt (4.8)

where λ > 0. If the weight w =
∑n

j=1 f(t−Tij) is above a threshold input param-

eter µ then the corresponding cluster is considered as a core-micro-cluster, where

Ti1, ..., Tin are timestamps of data points xi1, ...,xin.

At time t, if w ≥ βµ then the micro-cluster is considered as potential-micro-

cluster, else it is an outlier-micro-cluster, where β is the threshold of the outlier

relative to core-micro-clusters (0 < β < 1). Micro-clusters with no recent points

tend to lose importance, i.e. their respective weights continuously decrease over

time in outdated-micro-clusters. However, the latter could grow into a potential

micro-cluster when, by adding new points, its weight exceeds the threshold. The

weights of micro-clusters are periodically calculated and the decision about remov-

ing or keeping them is made based on the weight threshold.

When a new data point arrives, the algorithm tries to insert it into its nearest

potential-micro-cluster based on its updated radius. If the insertion is not success-

ful, the algorithm tries to insert the data point into its closest outlier micro-cluster.

If the insertion is successful, the cluster summary statistics will be updated ac-

cordingly. Otherwise, a new outlier micro-cluster is created to absorb this point.

The Euclidean distance between the new data point and the center of the nearest

potential or outlier micro-cluster is measured. A micro-cluster is chosen with the

distance less than or equal to the radius threshold.

DenStream has a pruning method in which it frequently checks the weights

of the outlier-micro-clusters in the outlier buffer to guarantee the recognition of

the real outliers. However, the non-release of the allocated memory when either

deleting a micro-cluster or merging two old micro-clusters is considered as a lim-

itation of the DenStream algorithm as well as the time-consuming pruning phase

for removing outliers [Amini et al., 2014].

In the offline phase, the potential-micro-clusters found during the online phase

are considered as pseudo-points and will be passed to a variant of the DBSCAN

algorithm in order to determine the final clusters.

Chapter 4. State of the art on Clustering Data Streams 68

Algorithm 11: DenStream

Data: DS, ε, β, µ, λ

1 Tx =
⌈

1
λ

log(βµ
βµ−1

)
⌉
;

2 Get the next point x at current time t from data stream DS;
3 Merging(xt);
4 if (t mod Tx) = 0 then
5 for each p-micro-cluster cp do
6 if wp (the weight of cp) < βµ then
7 Delete cp;

8 for each o-micro-cluster co do

9 ξ = 2−λ(t−t0+Tp)−1
2−λTp−1

if wo (the weight of co) < ξ then

10 Delete co;

11 if a clustering request arrives then
12 Generating clusters ;

4.3.4.2 Self organizing density-based clustering over data stream (SOStream)

SOStream [Isaksson et al., 2012] is a density-based clustering algorithm inspired by

both the principle of the DBSCAN algorithm and self-organizing maps (SOM) [Ko-

honen et al., 2001], in the sense that a winner influences its immediate neighbor-

hood. Generally speaking, density-based clustering algorithms require a manually

set threshold (similarity threshold, grid size, etc.) for which is difficult to choose

the most suitable value and if it is set to an unsuitable value, then the algorithm

will suffer from over-fitting, or from unstable clustering. SOStream addresses this

problem by using a dynamically learned threshold value for each cluster based on

the idea of building neighborhoods with a minimum number of points.

SOStream is also represented by a set of micro-clusters where for each clus-

ter a cluster feature (CF) vector is stored, which is a tuple with three elements

CFi = (Ni, ri, ci), Ni is the number of data points assigned to ci, ri is the cluster’s

radius and ci is the prototype.

When a new data-point arrives, the nearest cluster is selected, and then it ab-

sorbs this data-point if the calculated distance is less than a dynamically defined

threshold. It also assigns the micro-clusters’ neighbors to the nearest cluster, i.e.,

the prototypes of clusters sufficiently close to the winning cluster have their pro-

totypes modified to be closer to the winning cluster’s prototype.

This approach is used to assist in merging similar clusters and increasing sepa-

ration between different clusters. The neighborhood of the winner is defined based

Chapter 4. State of the art on Clustering Data Streams 69

on the idea of a MinPts distance given by a minimum number of neighboring ob-

servations [Cao et al., 2006]. This distance is found by computing the Euclidean

distance from any existing clusters to the winning cluster. If the new point is not

absorbed by any micro-cluster, a new micro-cluster is created for it.

In the SOStream algorithm, merging, updating and adapting dynamically the

threshold value for each cluster are performed in an online manner. Clusters are

merged if they overlap with a distance that is less than the merge-threshold, i.e.,

the spheres in d-dimensional space defined by the radius of each cluster overlap.

Hence, the threshold value is a determining factor for the number of clusters.

When two clusters are merged, the largest radius of these two clusters is chosen

to be the radius of the cluster to avoid losing any data points within the clus-

ters. However, no split feature is proposed in the algorithm. SOStream also uses

an exponential fading function to reduce the impact of old data whose relevance

diminishes over time.

4.3.4.3 SVStream

SVStream (Support Vector based Stream clustering) [Wang et al., 2013] is a data

stream clustering algorithm based on support vector clustering (SVC) and support

vector domain description (SVDD).

In the Support Vector Clustering (SVC) [Ben-Hur et al., 2001] algorithm data

points are mapped from the data space to a high dimensional feature space using a

Gaussian kernel. In the feature space we look for the smallest sphere that encloses

the image of the data. This sphere is mapped back to data space, where it forms

a set of contours which enclose the data points. These contours are interpreted

as cluster boundaries. Points enclosed by each separate contour are associated

with the same cluster. Support vectors are used to construct cluster boundaries

of arbitrary shape in SVC.

Support vector domain description (SVDD) [Tax and Duin, 1999] is a one-class

classifier inspired by the support vector classifier. The idea is to use kernels to

project data into a feature space and then to find the sphere enclosing almost

all data, namely not including outliers. SVDD has the possibility to reject a

fraction of the training data points, when this sufficiently decreases the volume of

the hypersphere. One inherent drawback of SVDD, which significantly affects not

only its outlier detection performance but also its general properties, is that the

resulting description is highly sensitive to the selection of the trade-off parameter,

Chapter 4. State of the art on Clustering Data Streams 70

which is difficult to estimate in practice.

Given a set of M data elements, the Gaussian kernel parameter q and the

trade-off parameter C, the sphere structure S is defined as

S = {SV,BSV, ‖µ‖2, RSV , RBSV }.

where,

• SV is a support vector set.

• BSV is a bounded support vector set.

• ‖µ‖2 is the squared length of the sphere center µ.

• RSV is the radius of the sphere.

• RBSV is the maximum Euclidean distance of the bounded support vectors

from the sphere center µ.

The multi-sphere set SS is defined as a set consisting of multiple spheres, that

is, SS = {S1, ..., S|SS|}, where the superscript denotes the index of a sphere. In

SVStream, the elements of a data stream are mapped to a kernel space, and the

support vectors are used as the summary information of the historical elements to

construct the cluster boundaries of arbitrary shape. To adapt both sudden and

gradual changes, multiple spheres are dynamically maintained, each describing the

corresponding data domain presented in the data stream.

When a new data batch arrives, if a sudden change occurs, a new sphere is

created; otherwise, only the existing spheres are updated to take into account the

new batch. The data elements of this new batch are assigned with cluster labels

according to the cluster boundaries constructed by the sphere set. Bounded sup-

port vector (BSVs) and a newly designed BSV decaying mechanism are introduced

so as to respectively identify overlapping clusters and automatically detect outliers

(noise) [Wang et al., 2013]. In the clustering process, if two spheres are too close

to each other, they should be merged. In addition, eliminating old BSVs by the

BSV decaying mechanism would help detect the tendency of a cluster to shrink or

split.

Chapter 4. State of the art on Clustering Data Streams 71

4.3.5 Grid-based stream methods

Grid-based clustering is another group of the clustering methods for data streams

where the data space is quantized into finite number of cells which form the grid

structure and perform clustering on the grids. Grid-based clustering maps the

infinite number of data records in data streams to a finite number of grids. Then,

the grids are clustered based on their density.

4.3.5.1 D-Stream

D-Stream [Chen and Tu, 2007] is also a two-phase scheme which consists of an on-

line component that processes input data stream and produces summary statistics

and an offline component that uses the summary data to generate clusters. In the

online component, the algorithm maps each input data point onto a grid whereas

in the offline component, it computes the grid density and clusters the grids based

on the density. The algorithm adopts a density decaying technique to capture the

dynamic changes of a data stream and it can find clusters of arbitrary shapes.

Unlike other algorithms such as CluStream [Aggarwal et al., 2003], D-Stream

automatically and dynamically adjusts the clusters without requiring user speci-

fication of target time horizon and number of clusters. Algorithm 12 outlines the

overall architecture of D-Stream.

For a data stream, at each time step, the online component of D-Stream con-

tinuously reads a new data point, places the multi-dimensional data into a corre-

sponding discretized density grid in the multi-dimensional space, and updates the

characteristic vector of the density grid (Lines 4-7 of Algorithm 12). The density

for a grid g, at a given time t, D(g, t) is defined as the sum of the density coef-

ficients of all data records that are mapped to g. That is the density of g at t

is:

D(g, t) =
∑

x∈E(g,t)

D(x, t) (4.9)

where E(g, t) is the set of data points that are mapped to g at or before time t.

The density of any grid is constantly changing. However, the updating operation

is executed only when a new data record is mapped to that grid.

D-Stream uses the CF vector concept associated to each grid. This is a tuple

(tg, tm, D, label, status), where tg is the last time when g is updated, tm is the

last time when g is removed from grid list as a sporadic grid (if ever), D is the

Chapter 4. State of the art on Clustering Data Streams 72

grid density at the last update, label is the class label of the grid, and status = {
SPORADIC, NORMAL} is a label used for removing sporadic grids.

The procedures initial clustering (used in Line 9 of Algorithm 12) and ad-

just clustering (used in Line 12 of 12) first update the density of all active grids

to the current time. Once the density of grids are determined at the given time,

the clustering procedure is similar to the standard method used by density-based

clustering.

The offline phase dynamically adjusts the clusters every gap time steps, where

gap is an integer parameter. After the first gap, the algorithm generates the initial

cluster (Lines 8-9). Then, the algorithm periodically removes sporadic grids and

adjusts the clusters (Lines 10-12) [Chen and Tu, 2007].

Algorithm 12: D-Stream

1 timec = 0;
2 initialize an empty hash table grid list ;
3 while there is a data point to proceed do
4 Get the next data point in the data stream, x = (x1, x2, ..., xd);
5 Determine the density grid g that contains x;
6 if g not in grid list then Insert g to grid list ;
7 Update the characteristic vector of g ;
8 if timec = gap then
9 Call initial clustering(grid list);

10 if timec mod gap == 0 then
11 Detect and remove sporadic grids from grid list ;
12 Call adjust clustering(grid list);

13 timec = timec + 1;

One weakness of the approach is that a significant number of non-empty grid

cells need to be discarded in order to keep the memory requirements in check. In

many cases, such grid-cells occur at the borders of the clusters. The discarding of

such cells may lead to a degradation in cluster quality [Aggarwal, 2013].

4.3.6 GNG based algorithms

4.3.7 Online version of GNG

As presented in chapter 3, the GNG algorithm constructs a graph of nodes in which

each node has its associated prototype. Prototypes can be regarded as positions

Chapter 4. State of the art on Clustering Data Streams 73

in the input space of their corresponding nodes. Pairs of nodes are connected by

edges (links), which are not weighted. The purpose of these links is to define the

topological structure. These links are temporal in the sense that they are subject

to aging during the iteration steps of the algorithm and are removed when they

become ”too old” [Beyer and Cimiano, 2012].

Starting with two nodes, and as a new data point is available, the nearest and

the second-nearest nodes are identified, linked by an edge, and the nearest node

and its topological neighbors are moved toward the data point. Each node has an

accumulated error variable. Periodically, a node is inserted into the graph between

the nodes with the largest error values. Nodes can also be removed if they are

identified as being superfluous. This is an advantage compared to SOM and NG,

as there is no need to fix the graph size in advance. Algorithm 13 outlines an online

version of the GNG approach. In this version, unlike the standard approach of

GNG (which is presented in chapter 3), the data is seen only once.

Algorithm 13: GNG online

Data: DS = {x1,x2, ...,xn}
Result: set of nodes C = {c1, c2, ...} and their prototypes

W = {wc1 ,wc2 , ...}
1 Initialize node set C to contain two nodes, c1 and c2: C = {c1, c2};
2 while there is a data point to proceed do
3 Get the next data point in the data stream, xi;
4 Find the nearest node bmu1 and the second nearest node bmu2;
5 Update edges as described in Algorithm 14;
6 if the number of data points passed is an integer multiple of a parameter

β then
7 Insert a new node as described in Algorithm 15;

8 Delete each isolated node;
9 Finally, decrease the error of all units;

Algorithm 14: Edge Management

1 Increment the age of all edges emanating from bmu1 and weight them;
2 if bmu1 and bmu2 are connected by an edge then
3 set the age of this edge to zero
4 else
5 create an edge between bmu1 and bmu2, and mark its time stamp;

6 Remove edges whose age is greater than agemax;

Chapter 4. State of the art on Clustering Data Streams 74

Algorithm 15: Node Insertion

1 Find node q with the maximum accumulated error;
2 Find the neighbor f of q with the largest accumulated error;
3 Add the new node, r, half-way between nodes q and f : wr = 0.5(wq + wf);
4 Insert edges connecting the new node r with nodes q and f , and remove the

original edge between q and f ;

A number of authors have proposed variations on the Growing Neural Gas

(GNG) approach [Sledge and Keller, 2008, Mendes et al., 2014, Mitsyn and Os-

oskov, 2011]. The GNG algorithm creates a new node every λ iterations (λ is fixed

by the user as an input parameter). Hence, it is not adapted for data streams, or

non-stationary datasets, or to novelty detection.

In order to deal with non-stationary datasets, the author of [Fritzke, 1997] has

investigated modifying the network by proposing an on-line criterion for identi-

fying ”useless” nodes. The algorithm proposed is known as the Growing Neural

Gas with Utility (GNGU). Slow changes of the distribution are handled by the

adaptation of existing nodes, whereas rapid changes are handled by removal of

“useless” neurons and subsequent insertions of new nodes in other places.

4.3.7.1 Grow When Required (GWR)

The GWR network [Marsland et al., 2002] may add a new node at any time,

whose position is dependent on the input and the current winning node. The

GWR deals with the problem of novelty detection by adding new nodes into the

network structure whenever the activity of the current best-matching node is below

some threshold, which implies that the best-matching node is not trained to deal

with that particular input. This means that the network grows very quickly when

new data is presented, but stops growing once the network has matched the data

to a given accuracy.

This has benefits in that there is no need to decide in advance how large

the network should be, as nodes will be added until the network is saturated.

This means that for small datasets the complexity of the network is significantly

reduced. In addition, if the dataset changes at some time in the future, further

nodes can be added to represent the new data without disturbing the network that

has already been created [Marsland et al., 2002, 2005].

Considering one iteration of the GWR algorithm, GWR has approximatively

the same time complexity as one iteration of GNG. Hence, the complexity of GWR

Chapter 4. State of the art on Clustering Data Streams 75

is O(knm) where k is the number of iterations, n is the number of data points of

the data stream m is the number of nodes in the graph.

4.3.7.2 Incremental variants of GNG

Still in the same idea of relaxing the constraint of periodical evolution of the net-

work, the IGNG [Prudent and Ennaji, 2005] algorithm has been proposed. In this

algorithm a new neuron is created each time the distance of the current input

data to the existing neuron is greater than a predefined fixed threshold σ, which is

dependent on the global datasets. However, one disadvantage of this algorithm is

the global character of the parameter σ and also that it must be computed prior

to the learning.

In order to resolve this weakness, I2GNG [Hamza et al., 2008] associates a

threshold variable σ to each neuron. However, its major drawback is the initial-

ization of the σ values at the creation of each node. The authors of [Lamirel

et al., 2010] address the problem of choosing the final winner neuron among the

many input equidistant neurons. They proposed some adaptations of the IGNG

and I2GNG algorithms. Notably, the use of a labeling maximization approach as

a clustering similarity measure (IGNG-F) to replace the distance in the winner

selection process.

The ability of self-organizing neural network models to manage real-time ap-

plications, using a modified learning algorithm for a growing neural gas network

is addressed in [GarćıA-RodŕıGuez et al., 2012]. The proposed modification aims

to satisfy real-time temporal constraints in the adaptation of the network. The

proposed learning algorithm can add a dynamic number of neurons per iteration.

Indeed, a detailed study has been conducted to estimate the optimal parameters

that keep a good quality of representation in the available time. The authors

concluded that the use of a large number of neurons made it difficult to obtain

a representation of the distribution of training data with good accuracy in real-

time [GarćıA-RodŕıGuez et al., 2012, Pimentel et al., 2014].

AING [Bouguelia et al., 2013] is an incremental GNG that learns automat-

ically the distance thresholds of nodes based on its neighbors and data points

assigned to the node of interest. It merges nodes when their number reaches a

given upper-bound.

Chapter 4. State of the art on Clustering Data Streams 76

4.3.8 Computational complexity

In Table 4.1, we report the computational complexity of some of the data stream

clustering algorithms presented above. Note: n: number of data points, k: number

of network nodes (or clusters), m: number of micro-clusters in main memory, g:

number of grids in the grid list, k′: number of outliers in the reservoir.

Algorithm Complexity
GNG O(kn2) [Mendes et al., 2014]
G-Stream O(nk) (this algorithm is presented in the next chapter 5)
SOStream O(n2 log n) [Amini et al., 2014]
StrAP O((k + k′))2 [Zhang et al., 2008]
DenStream O(m) [Amini et al., 2014]
D-Stream O(1) +O(g) [Amini et al., 2014]

Table 4.1: Computational complexity of data stream clustering algorithms

4.3.9 Summary

Table 4.2 summarizes the main features offered by each algorithm considered in

terms of: the basic clustering algorithm, whether the algorithm identifies a topo-

logical structure, whether the links (if they exist) between clusters (nodes) are

weighted, how many phases it adopts (online and offline), the types of operations

for updating clusters (remove, merge, and split cluster), and whether a fading

function is used.

Chapter 4. State of the art on Clustering Data Streams 77

A
lg

or
it

h
m

s
b
as

ed
on

to
p

ol
og

y
W

L
p
h
as

es
re

m
ov

e
m

er
ge

sp
li
t

fa
d
e

S
V

S
tr

ea
m

S
V

C
,

S
V

D
D

%
%

on
li
n
e

!
!

!
!

S
tr

ea
m

K
M

+
+

k
-m

ea
n
s+

+
%

%
2

p
h
as

es
!

!
!

!

S
tr

A
P

A
P

%
%

2
p
h
as

es
!

%
%

!

S
O

S
tr

ea
m

D
B

S
C

A
N

,
S
O

M
%

%
on

li
n
e

!
!

%
!

IG
N

G
N

G
!

%
on

li
n
e

%
%

%
%

H
C

lu
S
tr

ea
m

k
-p

ro
to

ty
p

es
%

%
2

p
h
as

es
!

!
!

!

G
W

R
N

G
!

%
on

li
n
e

%
%

%
%

G
-S

tr
ea

m
N

G
!

!
on

li
n
e

!
%

%
!

E
-S

tr
ea

m
k

-m
ea

n
s

%
%

2
p
h
as

es
!

!
!

!

D
-S

tr
ea

m
-

%
%

2
p
h
as

es
!

!
!

!

D
en

S
tr

ea
m

D
B

S
C

A
N

%
%

2
p
h
as

es
!

offl
in

e
%

!

C
lu

sT
re

e
k

-m
ea

n
s

or
D

B
S
C

A
N

%
%

2
p
h
as

es
!

offl
in

e
!

!

C
lu

S
tr

ea
m

k
-m

ea
n
s

%
%

2
p
h
as

es
!

offl
in

e
%

%

A
IN

G
N

G
!

%
on

li
n
e

%
!

%
%

T
a
b
l
e

4
.2

:
C

om
p

ar
is

on
b

et
w

ee
n

al
go

ri
th

m
s

(W
L

:
w

ei
gh

te
d

li
n

k
s,

2
p

h
as

es
:

on
li

n
e+

o
ffl

in
e)

.

Chapter 4. State of the art on Clustering Data Streams 78

4.4 Conclusion

Recently, examples of applications relevant to streaming data have become more

numerous and more important, including network intrusion detection, transaction

streams, phone records, web click-streams, social streams, weather monitoring,

etc. Indeed, the data stream clustering problem has become an active research in

recent years. This problem requires a process capable of partitioning observations

continuously while taking into account restrictions of memory and time.

In this chapter, we surveyed, in a comprehensive manner, a number of the

representative state-of-the-art algorithms for the clustering over data streams, and

detailed some models. These algorithms are categorized according to the nature

of their underlying clustering approach, including GNG, hierarchical, partitioning,

density, and grid-based stream methods. Motivated by the need by industry for

real time analysis, an increasing number of systems to support real-time data

integration and analytics has emerged in recent years.

The work presented in this chapter has resulted in the following publication:

Mohammed Ghesmoune, Mustapha Lebbah, and Hanane Azzag. State-of-the-art

on Clustering Data Streams. Big Data Analytics, 2016. Upon invitation.

In the next chapter, we will detail our first contribution, concerning the G-

Stream algorithm which is a clustering data stream method based on the GNG

approach.

Chapter 5

G-Stream : Growing neural gas

over data stream

This chapter presents our first novel contribution, concerned with extending the

GNG approach to deal with streaming data. For self-containedness, this chapter

begins with a description of the GNG algorithm. Afterwards, the one-pass stream-

ing clustering algorithm titled G-Stream (Growing Neural Gas over Data Streams)

is presented. After that, the quality of the proposed method is evaluated visually

and in terms of various performance criteria on synthetic and real-world datasets.

5.1 Introduction

A data stream is a sequence of potentially infinite, non-stationary data (i.e., the

probability distribution of the unknown data generation process may change over

time) arriving continuously (which requires a single pass through the data) where

random access to data is not feasible and storing all arriving data is imprac-

tical. The stream model is motivated by emerging applications involving mas-

sive datasets; for example, customer click streams, financial transactions, search

queries, Twitter updates, telephone records, and observational science data are

better modeled as data streams [Guha et al., 2003]. Mining data streams can be

defined as the process of finding a complex structure in these large data.

While clustering is the problem of partitioning a set of observations into clus-

ters such that observations assigned in the same cluster are similar (or close) and

the inter-cluster observations are dissimilar (or distant), clustering data streams

79

Chapter 5. G-Stream : Growing neural gas over data stream 80

requires, additionally, a process capable of partitioning observations continuously

with restrictions of memory and time.

In the literature, many data stream clustering algorithms have been adapted

from clustering algorithms, e.g., the partitioning method k-means [Ackermann

et al., 2012], the density-based method DBSCAN [Cao et al., 2006, Isaksson et al.,

2012], or the message passing-based method Affinity Propagation (AP) [Zhang

et al., 2008].

In this work, we provide a one-pass streaming clustering algorithm titled G-

Stream (Growing Neural Gas over Data Streams). We modify Growing Neural

Gas (GNG) to obtain a new algorithm, whose main features and advantages are

described as below:

• The topological structure is represented by a graph wherein each node rep-

resents a cluster, which is a set of ”close” data points and neighboring nodes

(clusters) are connected by edges. The graph size is not fixed but may evolve.

• We use an exponential fading function to reduce the impact of old data

whose relevance diminishes over time. For the same reason, links between

nodes are also weighted by an exponential function.

• Unlike many other data stream algorithms that start by taking a significant

number of data points for initializing the model (these data points can be

seen several times), G-Stream starts with only two nodes. Several nodes

(clusters) are created in each iteration, unlike the traditional Growing Neural

Gas algorithm [Fritzke, 1994].

5.2 Growing Neural Gas over data stream

In this section we introduce Growing Neural Gas over Data Streams (G-Stream)

and highlight some of its novel features. We start by giving the model and data

structure used in G-Stream. We assume that the data stream consists of a se-

quence X = {x1,x2, ...,xn} of n (potentially infinite) data streams arriving in

times t1, t2, ..., tn, where xi = (x1
i , x

2
i , ..., x

d
i) is a vector in the Rd space. At each

time, the model is represented by a graph C wherein each node represents a cluster.

Each node c ∈ C has three variables: a prototype, a distance threshold, and an er-

ror variable. The prototype variable wc = (w1
c , w

2
c , ..., w

d
c) represents the position

of the node in Rd.

Chapter 5. G-Stream : Growing neural gas over data stream 81

5.2.1 Growing Neural Gas

The GNG algorithm, as presented in chapter 3, constructs a graph of nodes in

which each node has its associated prototype. Prototypes can be regarded as

positions in the input space of their corresponding nodes. Pairs of nodes are

connected by edges (links), which are not weighted. The purpose of these links is

to define the topological structure. These links are temporal in the sense that they

are subject to aging during the iteration steps of the algorithm and are removed

when they become ”too old” [Beyer and Cimiano, 2012].

Starting with two nodes, and as a new data point is available, the nearest and

the second-nearest nodes are identified, linked by an edge, and the nearest node

and its topological neighbors are moved toward the data point. Each node has an

accumulated error variable. Periodically, a node is inserted into the graph between

the nodes with the largest error values. Nodes can also be removed if they are

identified as being superfluous. This is an advantage compared to SOM and NG,

as there is no need to fix the graph size in advance. Algorithm 16 outlines an online

version of the GNG approach. In this version, unlike the standard approach of

GNG, the data is seen only once.

Algorithm 16: GNG online

Data: X = {x1,x2, ...,xn}
Result: set of nodes C = {c1, c2, ...} and their prototypes

W = {wc1 ,wc2 , ...}
1 Initialize node set C to contain two nodes, c1 and c2: C = {c1, c2};
2 while there is a data point to proceed do
3 Get the next data point in the data stream, xi;
4 Find the nearest node bmu1 and the second nearest node bmu2;
5 Update edges as described in Algorithm 17;
6 if the number of data points passed is an integer multiple of a parameter

β then
7 Insert a new node as described in Algorithm 18;

8 Delete each isolated node;
9 Finally, decrease the error of all units;

5.2.2 G-Stream

This section aims to extend GNG to data streaming, especially to achieve a one-

pass clustering. The proposed algorithm, called G-Stream, uses a reservoir to keep

Chapter 5. G-Stream : Growing neural gas over data stream 82

temporarily the farthest data points in order to avoid needless movements of the

nearest nodes to data points. It also takes into account the history of the data

points by applying a fading function. The age of edges is not a simple increment,

but we consider the temporal aspect in updating edges via an exponential function.

In G-Stream, the distance threshold δc, which is the distance from the node to

the farthest data point assigned to it, is used when to decide if the data point will

be added to the reservoir or the model will be updated accordingly. The first batch

of data is passed without making a distance comparison. After that, the distance

threshold for each node will take the distance to the farthest data point assigned

to it. Figure 5.1 represents a schematic diagram of the G-Stream algorithm.

Figure 5.1: Diagram of G-Stream algorithm.

Starting with two nodes, and as a new data point is available, the nearest and

the second-nearest nodes are identified, linked by an edge, and the nearest node

with its topological neighbors are moved toward the data point. Each node q has

an accumulated error variable and a weight rather than its prototype.

The error variable is used in the refinement step (where new nodes should be

inserted). The weight variable varies over time using the fading function. Using

the edge management procedure, one, two or three nodes are inserted into the

graph between the nodes with the largest error values (Figure 5.2). Nodes can

also be removed if they are identified as being superfluous.

5.2.2.1 Fading function

In most data stream scenarios, more recent data can reflect the emergence of new

trends or changes in the data distribution [de Andrade Silva et al., 2013]. There

are three window models commonly studied in data streams: landmark, sliding

Chapter 5. G-Stream : Growing neural gas over data stream 83

(a) Insertion of one node (b) Insertion of two nodes (c) Insertion of three nodes

Figure 5.2: Insertion of one, two or three nodes in G-Stream.

and damped (as presented in chapter 4).

We consider, like many others, the damped window model, in which the weight

of each data point decreases exponentially with time t via a fading function (Fig-

ure 5.3)

f(t) = 2−λ1(t−t0) (5.1)

where λ1 > 0, defines the rate of decay of the weight over time, t denotes the

current time and t0 is the timestamp of the data point. Note that data points

are passed according to the sliding windows principle. We use the number of the

window to mark the timestamps of data points belonging to this window. The

weight of a node is based on data points associated therewith:

πc =
nc∑
i=1

2−λ1(t−ti0) (5.2)

where nc is the number of points assigned to the node c at the current time t. If

the weight of a node is smaller than a threshold value then this node is considered

as outdated and then deleted (with its links).

5.2.2.2 Edge management

The edge management procedure performs operations related to updating graph

edges, as illustrated in Algorithm 17. The way to increase the age of edges is

inspired by the fading function in the sense that the creation time of a link is

taken into account. Contrary to the fading function, the age of links will be

Chapter 5. G-Stream : Growing neural gas over data stream 84

Figure 5.3: Plot of a fading function.

strengthened by the exponential function (Figure 5.4)

g(t) = 2λ2(t−t0) (5.3)

where λ2 > 0, defines the rate of growth of the age over time, t denotes the current

time and t0 is the creation time of the edge.

Figure 5.4: Plot of an exponential function.

The next step is to add a new edge that connects the two closest nodes (Fig-

ure 5.5).

The last step is to remove each link exceeding a maximum age, since these links

are no longer useful because they were replaced by younger and shorter edges that

were created during the graph refinement in steps 14-16, in Algorithm 19.

Chapter 5. G-Stream : Growing neural gas over data stream 85

Figure 5.5: Edge insertion between the two nearest nodes.

Algorithm 17: Edge Management

1 Increment the age of all edges emanating from bmu1 and weight them using
Equation (5.3);

2 if bmu1 and bmu2 are connected by an edge then
3 set the age of this edge to zero
4 else
5 create an edge between bmu1 and bmu2, and mark its time stamp;

6 Remove edges whose age is greater than agemax (a user parameter);

5.2.2.3 Node insertion

Periodically, a node is inserted into the graph between the nodes with the largest

error values according to Equation (5.4). It is also called the refinement step.

wr = 0.5(wq + wf) (5.4)

Algorithm 18 with Figure 5.2 illustrate the node insertion procedure.

Algorithm 18: Node Insertion

1 Find node q with the maximum accumulated error;
2 Find the neighbor f of q with the largest accumulated error;
3 Add the new node, r, half-way between nodes q and f according to

Equation (5.4);
4 Insert edges connecting the new node r with nodes q and f , and remove the

original edge between q and f ;

5.2.2.4 Reservoir management

The aim of using the reservoir is to hold, temporarily, the distant data points. As

mentioned before, each node c has a threshold distance, δc. The first batch of data

is assigned to their nearest nodes without comparing distances thresholds. The

Chapter 5. G-Stream : Growing neural gas over data stream 86

distance threshold of each node is learned by taking the maximum distance of the

node to the farthest point that it has been assigned. When the reservoir is full,

its data is re-passed for learning (note that for those data points, we do not apply

the distance threshold test, and this is to ensure that these data points will not

revisit the reservoir). They are placed in the heap of the data stream, X , to be

dealt with first and the distance thresholds of nodes are updated accordingly.

5.2.2.5 Model update

In the model’s update step, the nearest node, bmu1, and its topological neigh-

bors are moved towards the current observation xi. The nearest node is updated

according to Equation (5.5)

wbmu1 = wbmu1 + α1.(xi −wbmu1) (5.5)

The topological neighbors of the nearest node are updated according to Equa-

tion (5.6)

wc = wc + α2.(xi −wc) (5.6)

for all direct neighbors of the nearest node, bmu1.

The error variable of the nearest node is updated according to Equation (5.7)

error(bmu1) = error(bmu1) + ‖xi − bmu1‖2. (5.7)

Table 5.1 overviews the list of parameters used in the G-Stream algorithm.

5.2.2.6 Computational complexity

The most consuming operations in Algorithm 19 are steps 4, 16, 17, and 18 with

O(k) time complexity each, where k is the number of nodes in the graph. Node

insertion phase (step 16) is repeated 3.n
β

times, where n is the number of data points

of the data stream. Seeking the nearest node (step 4), fading function (step 16),

and adjusting the error variable (step 18) phases are repeated whenever a new data

point is available, i.e. n times. The other steps have a constant time complexity.

Chapter 5. G-Stream : Growing neural gas over data stream 87

Algorithm 19: G-Stream

Data: X = {x1,x2, ...,xn}, πmin, λage, η, agemax, d
Result: set of nodes C = {c1, c2, ...} and their prototypes

W = {wc1 ,wc2 , ...}
1 Initialize node set C to contain two nodes, c1 and c2: C = {c1, c2};
2 while there is a data point to proceed do
3 Get the next data point in the data stream, xi;
4 Find the nearest node bmu1 and the second nearest node bmu2;
5 if ‖xi − bmu1‖ > δbmu1 then
6 put xi in the reservoir;
7 if the reservoir is full then
8 Treat reservoir: return its data to the head of the data stream,

X , to be dealt with first;

9 else
10 Increment the number of points assigned to bmu1 and mark the time

stamp of xi, ti;
11 Add the squared distance to a local error counter variable according

to Equation (5.7);
12 Move bmu1 and its topological neighbors towards xi according to

Equations 5.5 and 5.6 respectively;
13 Update edges as described in Algorithm 17;
14 if the number of data points passed is an integer multiple of a

parameter β then
15 for i=1 to η do

// creation of η nodes

16 Insert a new node as described in Algorithm 18;

17 Apply fading according to Equation (5.1), delete outdated and
isolated nodes;

18 Finally, decrease the error of all nodes by multiplying them with a
constant d;

Symbole Description
πmin the minimum weight of a node. If bellow, this node is deleted
λage the rate of growth of the edges’ age
β the cycle interval between node insertions
η the number of nodes to add at each iteration

agemax the maximum edges’s age
d a constant for adjusting the error variable of nodes, such as 0 < d < 1

Table 5.1: Parameters used in the G-Stream algorithm

Therefore, G-Stream has a complexity given by n.(3.O(m)) + 3.n
β
.O(k) = n.(3 +

3
β
).O(k) ≈ O(kn).

Chapter 5. G-Stream : Growing neural gas over data stream 88

5.3 Experimental evaluations

In this section, we present an experimental evaluation of the G-Stream algorithm.

We compared our algorithm with the GNG algorithm and several well-known and

relevant data stream clustering algorithms, including StreamKM++, DenStream,

ClusTree, and GWR. Our experiments were performed on the MATLAB platform

using real-world and synthetic datasets. All the experiments are conducted on a

PC with Core(TM)i7-4800MQ with two 2.70 GHz processors, and 8GB of RAM,

which runs Windows 7 Professional operating system.

5.3.1 Datasets

To evaluate the clustering quality and scalability of the G-Stream algorithm both

real and synthetic datasets are used. The two synthetic datasets used are DS1

and letter4. All the others are real-world publicly available datasets. Table 5.2

overviews all the datasets used.

Datasets #observations #features #classes
DS1 9,153 2 14
DS2 5,458 2 13
letter4 9,344 2 7
Sea 60,000 3 2
HyperPlan 100,000 10 5
KddCup99 494,021 41 23
CoverType 581,012 54 7
Sensor 2,219,803 5 54

Table 5.2: Overview of all datasets.

• DS1 and DS2 are generated by http://impca.curtin.edu.au/local/

software/synthetic-data-sets.tar.bz2.

• The letter4 dataset is generated by a Java code https://github.com/

feldob/Token-Cluster-Generator.

• The Sea dataset was taken from http://www.liaad.up.pt/kdus/

products/datasets-for-concept-drift.

• The HyperPlan dataset was taken from [Zhu, 2010].

http://impca.curtin.edu.au/local/software/synthetic-data-sets.tar.bz2
http://impca.curtin.edu.au/local/software/synthetic-data-sets.tar.bz2
https://github.com/feldob/Token-Cluster-Generator
https://github.com/feldob/Token-Cluster-Generator
http://www.liaad.up.pt/kdus/products/datasets-for-concept-drift
http://www.liaad.up.pt/kdus/products/datasets-for-concept-drift

Chapter 5. G-Stream : Growing neural gas over data stream 89

• The real-world databases were taken from the UCI repository [Bache and

Lichman, 2013], which are the KDD-CUP’99 Network Intrusion Detection

stream dataset (KddCup99) and the Forest CoverType dataset (CoverType)

respectively.

The algorithms are evaluated using three performance measures: accuracy (pu-

rity), Normalized Mutual Information (NMI) and Rand index [Strehl and Ghosh,

2002] (please refer to Appendix A for more details). The value of each measure

lies between 0 and 1. A higher value indicates better clustering results.

5.3.2 Tuning parameter settings

As shown in Table 5.1 and Algorithms 16 and 19, the GNG-online and G-Stream

algorithms require some tuning parameters. We slightly varied these parame-

ters and have empirically chosen those giving the best values. The parameters

agemax = 250 (the maximum age of edges), πmin = 2 (the minimum weight of

nodes), η = 3 (the number of nodes inserted at a time) are fixed for all datasets.

Table 5.3 gathers the values for the other parameters α1: the winning node

adaptation factor; α2: the winning node, neighbor adaptation factor; β: the cycle

interval between node insertions; λ1: the decay factor in the fading function; λ2:

the strength factor in weighting edges; |window|: the size of the sliding window;

|reservoir|: the reservoir size.

Datasets α1 α2 β λ1 λ2 |window| |reservoir|
DS1 0.01 0.0005 250 0.4 0.4 600 300
DS2 0.01 0.0005 250 0.4 0.4 600 300
letter4 0.01 0.0005 250 0.4 0.4 600 300
Sea 0.01 0.001 400 0.2 0.2 1000 300
HyperPlan 0.01 0.001 300 0.2 0.2 600 550
KddCup99 0.1 0.01 300 0.2 0.2 1000 400
CoverType 0.1 0.01 250 0.2 0.2 1000 400
Sensor 0.1 0.01 300 0.2 0.2 800 400

Table 5.3: Tuning parameter settings.

5.3.3 Evaluation and performance comparison

This section aims to evaluate the clustering quality of the G-Stream and compare

it to well-known data stream clustering algorithms, as well as the GNG-online

Chapter 5. G-Stream : Growing neural gas over data stream 90

algorithm. As explained in section 5.2, the GNG and G-Stream algorithms start

with two nodes. We used an online version of GNG but without the parameters

that we added expressly to show the interest and contribution of these parame-

ters in G-Stream. Therefore, we carried out experiments by initializing two nodes

randomly among the first 20 points and we repeated this 10 times.

For comparison purposes, we used DenStream [Cao et al., 2006] and Clus-

Tree [Kranen et al., 2011] from the stream R package [Bolanos et al., 2014].

Comparison is also performed with StreamKM++ [Ackermann et al., 2012] (this

latter algorithm was coded in the C language) and GWR [Marsland et al., 2002]

(the MATLAB code of the algorithm is provided in http://seat.massey.ac.nz/

personal/s.r.marsland/gwr.html). StreamKM++ was evaluated by choosing

randomly the seed node among the first 20 points. DenStream was evaluated by

performing a variant of the DBSCAN algorithm in the offline step. ClusTree was

evaluated by performing the k-means algorithm in the offline step by setting the

k parameter to 10 (all these algorithms are presented in chapter 4).

All experiments were repeated 10 times and the results (the average value with

its standard deviation) are reported in Tables 5.4, 5.5, and 5.6, which report re-

sults in terms of accuracy, NMI, and Rand index respectively.

In Table 5.4, it is noticeable that G-Stream’s accuracies are higher for all

datasets as compared to StreamKM++, DenStream, CluStree and GWR, except

for GWR for the letter4, Sea, and HyperPlan datasets. We recall that GWR

makes several iterations on data while all other algorithms (including G-Stream)

make just one pass over the data.

In Table 5.5, we can see that the NMI values of G-Stream are higher than

the other algorithms except for DenStream for the Sea dataset, GWR for the

HyperPlan dataset, and ClusTree for the sensor dataset.

Table 5.6 shows that the Rand index values of G-Stream are higher than the

other algorithms except for StreamKM++ for the Sea dataset and GWR for the

HyperPlan dataset. We recall that G-Stream proceeds in a single phase whereas

StreamKM++, DenStream and ClusTree proceed in two phases (online and offline

phase), and GWR proceeds in several iterations.

Figure 5.6 compares the G-Stream algorithm (red line with circle) with the

GNG-online algorithm (blue line with cross) with respect to accuracy for the DS1,

DS2, letter4, HyperPlan, and Sea datasets. The data points are passed based on

the sliding windows principle (Figure 5.16). We recall that the number of the

http://seat.massey.ac.nz/personal/s.r.marsland/gwr.html
http://seat.massey.ac.nz/personal/s.r.marsland/gwr.html

Chapter 5. G-Stream : Growing neural gas over data stream 91

Datasets G-Stream StreamKM++ DenStream ClusTree GWR
DS1 0.9809 0.6754 0.7740 0.6864 0.5720

±0.0061 ±0.0183 ±0.0000 ±0.0275 ±0.0350
DS2 0.8632 0.6261 0.7190 0.6220 0.6664

±0.0075 ±0.0360 ±0.0000 ±0.0000 ±0.0216
letter4 0.9832 0.6871 0.8110 0.8110 0.9856

±0.0050 ±0.0263 ±0.0000 ±0.0000 ±0.0050
Sea 0.8386 0.7886 0.8240 0.8224 0.8467

± 0.0021 ±0.0091 ±0.0001 ±0.0065 ±0.0009
HyperPlan 0.4238 0.3966 0.4250 0.4380 0.4402

±0.0021 ±0.0055 ±0.0000 ±0.0089 ±0.0006
KddCup99 0.9805 0.6922 0.9544 0.8182 0.9161

±0.0050 ±0.1140 ±0.0031 ±0.1304 ±0.0017
CoverType 0.6085 0.5266 0.5850 0.5850 0.6030

±0.0087 ±0.0074 ±0.0011 ±0.0000 ±0.0000
Sensor 0.0834 0.0561 0.0660 0.0790 0.0726

±0.0002 ±0.0014 ±0.0000 ±0.0000 ±0.0000

Table 5.4: Comparing G-Stream with different algorithms in terms of accu-
racy.

Datasets G-Stream StreamKM++ DenStream ClusTree GWR
DS1 0.7289 0.7021 0.6973 0.7064 0.5697

±0.0113 ±0.0209 ±0.0000 ±0.0168 ±0.0285
DS2 0.6700 0.6242 0.6228 0.6231 0.5481

±0.0054 ±0.0182 ±0.0000 ±0.0000 ±0.0211
letter4 0.6265 0.5532 0.1637 0.2425 0.5767

±0.0064 ±0.0219 ±0.0000 ±0.0000 ±0.0029
Sea 0.1380 0.1463 0.1646 0.1583 0.1331

±0.0009 ±0.0042 ±0.0000 ±0.0095 ±0.0006
HyperPlan 0.0186 0.0103 0.0208 0.0170 0.0256

±0.0009 ±0.0023 ±0.0000 ±0.0042 ±0.0002
KddCup99 0.6670 0.3926 0.6290 0.5724 0.6315

±0.0089 ±0.2815 ±0.0300 ±0.2974 ±0.0003
CoverType 0.1403 0.0874 0.0475 0.0362 0.1411

±0.0029 ±0.0086 ±0.0201 ±0.0042 ±0.0000
Sensor 0.1154 0.0795 0.3087 0.3238 0.0942

±0.0012 ±0.0038 ±0.0000 ±0.0000 ±0.0000

Table 5.5: Comparing G-Stream with different algorithms in terms of NMI.

window to which a data point belongs is used as the time-stamp of the concerned

data point. After passing each window, we calculate the accuracy of the concerned

algorithm (G-Stream or GNG-online).

For almost all cases, the accuracy value of G-Stream is higher than for GNG-

online. Indeed, for DS2 and letter4 datasets, the accuracy values of G-Stream are

Chapter 5. G-Stream : Growing neural gas over data stream 92

Datasets G-Stream StreamKM++ DenStream ClusTree GWR
DS1 0.8530 0.8443 0.8491 0.8442 0.8050

±0.0024 ±0.0048 ±0.0000 ±0.0066 ±0.0137
DS2 0.8698 0.8533 0.8607 0.8505 0.8431

±0.0007 ±0.0074 ±0.0000 ±0.0000 ±0.0093
letter4 0.8156 0.7941 0.5019 0.5514 0.8086

±0.0015 ±0.0145 ±0.0000 ±0.0000 ±0.0007
Sea 0.4707 0.5072 0.4700 0.4917 0.4689

±0.0001 ±0.0016 ±0.006 ±0.0034 ±0.0001
HyperPlan 0.7042 0.6674 0.6038 0.6529 0.7061

±0.0008 ±0.0004 ±0.0000 ±0.0016 ±0.0001
KddCup99 0.8380 0.6339 0.8164 0.8289 0.8305

±0.0036 ±0.2316 ±0.0106 ±0.1798 ±0.0006
CoverType 0.6231 0.6106 0.4604 0.5080 0.6216

±0.0008 ±0.0018 ±0.0070 ±0.0005 ±0.0000
Sensor 0.9592 0.9143 0.3481 0.3082 0.8373

±0.0010 ±0.0076 ±0.0000 ±0.0000 ±0.0000

Table 5.6: Comparing G-Stream with different algorithms in terms of Rand
index.

(a) DS1 (b) DS2

(c) letter4 (d) HyperPlan

Figure 5.6: Accuracy for G-Stream and GNG-online.

Chapter 5. G-Stream : Growing neural gas over data stream 93

higher than the ones of GNG-online for all windows. Also, the G-Stream accuracy

values are higher than for GNG-online on DS1 and Sea datasets except for some

windows. For the HyperPlan dataset, we can see that the GNG-online algorithm

exceeds the G-Stream algorithm in terms of accuracy. This can be explained by

the number of nodes created by the GNG-online algorithm which is higher than

the one of the G-Stream algorithm for the last times. Note that the number of

nodes created by the G-Stream algorithm could be adjusted by the decay factor

(λ1) and the interval nodes insertion (β) parameters.

An important and widely used measure of resolution, the quantization error

[Kohonen et al., 2001], is computed. Figure 5.7 compares the two algorithms in

terms of RMS error (red line with circle for the G-Stream algorithm, blue line with

cross for the GNG-online algorithm). For all windows, the G-Stream algorithm

has lower values of the RMS error than those of the GNG-online algorithm on all

datasets.

(a) DS1 (b) DS2

(c) letter4 (d) HyperPlan

Figure 5.7: RMS error for G-Stream and GNG-online.

Chapter 5. G-Stream : Growing neural gas over data stream 94

Figure 5.8 compares the two algorithms (G-stream and GNG-online) in terms

of the number of nodes creating the graph (red line with circle for the G-Stream

algorithm, blue line with cross for the GNG-online algorithm). Despite that we

create several nodes at each iteration (against a single node for GNG-online),

the number of nodes created by G-Stream becomes steady (against a continuous

increase for GNG-online) due to the application of the fading function.

(a) DS1 (b) DS2

(c) letter4 (d) HyperPlan

Figure 5.8: Number of nodes for G-Stream and GNG-online.

5.3.4 Visualization

Figures 5.9, 5.10, 5.11 show the evolution of the node creation by applying G-

Stream on the DS1, DS2, and letter4 datasets respectively (green points represent

data points of the data stream and blue points are nodes of the graph with edges

in blue lines).

The first sub-figure (of Figures 5.9, 5.10, 5.11) represents the intermediate

graph after seeing the first window’s data points. The second (resp. third) sub-

figure represents the intermediate graph after seeing 1/3 (resp. 2/3) of all windows.

Chapter 5. G-Stream : Growing neural gas over data stream 95

The last sub-figure represents the final graph. These figures illustrate that the G-

Stream algorithm manages to recognize the structures of the data stream and can

separate these structures with an optimal visualization.

(a) 1st window (b) After 1/3 of all windows

(c) After 2/3 of all windows (d) Final graph

Figure 5.9: Evolution of graph creation of G-Stream on DS1 (dataset and
topological result). The intermediate graph after seeing the first window’s data

points; the 1/3 of all windows; the 2/3 of all windows; and the final graph.

Figure 5.12 compares the G-Stream algorithm with the GNG-online algorithm

on the 2-dimensional (DS1, DS2, and letter4) datasets, in terms of visual results

(i.e., the final graph created by the G-Stream/GNG-online algorithm for each

dataset). As illustrated in these figures, we can see that the GNG-online algorithm

maintains many spurious edges connecting nodes belonging to different clusters,

while the G-Stream algorithm mainains fewer of these inter-cluster edges.

5.3.5 Evolving data streams

In this subsection, we perform the G-Stream algorithm on different data streams

ordered by class labels to demonstrate its effectiveness in clustering evolving data

Chapter 5. G-Stream : Growing neural gas over data stream 96

(a) 1st window (b) After 1/3 of all windows

(c) After 2/3 of all windows (d) Final graph

Figure 5.10: Evolution of graph creation of G-Stream on DS2 (dataset and
topological result). The intermediate graph after seeing the first window’s data

points; the 1/3 of all windows; the 2/3 of all windows; and the final graph.

streams (i.e., data points of the first class arrive in first, then the ones of the

second, third, etc. class). In this case, old concepts (class labels) disappear due to

the use of fading function. In the same time, new concepts (class labels) appear as

new data points arrive. Note that the class labels are not known to the clustering

algorithm. We use the same experimental protocol as described in section 5.3.3,

i.e., we did experiments by initializing two nodes randomly among the first 20

points, we repeated this 10 times, and we report the average value with its standard

deviation in Figures 5.13, 5.14, 5.15.

Figure 5.13 compares the G-Stream algorithm, in terms of the accuracy, with

and without ordering of class labels. It shows that the G-Stream algorithm with

ordering of classes can find clusters with accuracy values as comparable to those

without ordering of classes.

Figure 5.14 compares the G-Stream algorithm, in terms of the NMI, with and

without ordering of class labels. It shows that the G-Stream algorithm with or-

dering of classes can find clusters with NMI values as comparable to those without

Chapter 5. G-Stream : Growing neural gas over data stream 97

(a) 1st window (b) After 1/3 of all windows

(c) After 2/3 of all windows (d) Final graph

Figure 5.11: Evolution of graph creation of G-Stream on letter4 (dataset and
topological result). The intermediate graph after seeing the first window’s data

points; the 1/3 of all windows; the 2/3 of all windows; and the final graph.

ordering of classes for most datasets. Although, we can see that the values of NMI

bend down in the case where we sort the data points based on their class labels,

for the DS1, the DS2 and the KddCup99 datasets.

Figure 5.15 compares the G-Stream algorithm, in terms of the Rand index, with

(i.e., we sort the data points based on their class labels) and without ordering

of class labels. Except for the KddCup99 dataset where the Rand index value

decreases in the case where the data points are sorted, this Figure shows that the

G-Stream algorithm with ordering of classes can find clusters with Rand index

values as comparable to those without ordering of classes for most datasets.

5.3.6 Clustering over sliding windows

In many applications, the most recent N observations are considered to be more

critical and preferable [Zhou et al., 2008]. Therefore, clustering data streams over

Chapter 5. G-Stream : Growing neural gas over data stream 98

(a) G-Stream on DS1 (b) GNG-online on DS1

(c) G-Stream on DS2 (d) GNG-online on DS2

(e) G-Stream on letter4 (f) GNG-online on letter4

Figure 5.12: Visual result comparison of G-Stream with GNG-online (dataset
and topological result). The final graph created by the G-Stream/GNG-online

algorithm.

sliding windows is a natural choice and becomes one of the most popular models.

The idea behind the sliding window model is to perform detailed analysis (the

clustering process) over both the most recent data points and the model obtained

from the old ones [Amini et al., 2014]. In the sliding window model, data points

arrive continually, and at the period (or window) t, we consider N recent data

points that contain some data points of window t− 1. Figure 5.16 illustrates the

principle of the sliding windows model.

Chapter 5. G-Stream : Growing neural gas over data stream 99

Figure 5.13: Accuracy of G-Stream with and without ordering of classes.

Figure 5.14: NMI of G-Stream with and without ordering of classes.

The data in a window can formally be written as (x1,x2, ...,xN), where a single

observation xi is d-dimensional. In our sliding windows model, the evolution of

data items can be presented as follows:

Datawindowt = x1,x2, ...,xM ,xM+1,xM+2, ...,xN−1,xN

Datawindowt+1 = xM ,xM+1,xM+2, ...,xN−1,xN ,xN+1, ...,xN+M−1,xN+M

This means that the M oldest data points are removed and M new data points

are appended. Hence, the percentage of overlap between two windows is de-

fined as (M/N)%. To assess the G-Stream algorithm while adopting sliding win-

dows, we vary the percentage of overlap between two windows, i.e., (M/N)% =

Chapter 5. G-Stream : Growing neural gas over data stream 100

Figure 5.15: Rand index of G-Stream with and without ordering of classes.

Figure 5.16: Analysis on the sliding windows model

0%, 25%, 50%, and 75% and we report the results in Tables 5.7, 5.8, and 5.9.

For this experiment, we set the values of the parameters as follows: α1 = 0.001,

α2 = 0.00001, λ1 = λ2 = 0.4, β = 300, N = 600, |reservoir| = 400.

In Table 5.7, we can see that the accuracy grows as the percentage of overlap

between windows increases. This is especially evident for the relatively small and

medium sized datasets. For very large datasets, we can see a stability in the val-

ues of the accuracy (this is due to the use of the fading function allows to remove

outdated nodes). The same result can be shown in the case of the NMI values.

However, the Rand index values do not significantly grow while increasing the

percentage of overlap between two consecutive windows.

5.3.7 Execution time

The efficiency of algorithms is measured by their execution time. Referring to

the computational complexity we calculated in section 5.2.2, the execution time

Chapter 5. G-Stream : Growing neural gas over data stream 101

Datasets 0% 25% 50% 75%
DS1 0.7013 0.7498 0.8390 0.9069
DS2 0.6136 0.6486 0.6926 0.7466
letter4 0.9007 0.9379 0.9634 0.9781
Sea 0.8286 0.8224 0.8215 0.8291
HyperPlan 0.4274 0.4096 0.4196 0.4207
KddCup99 0.9605 0.9810 0.9803 0.9819
CoverType 0.5343 0.5411 0.5386 0.5301
Sensor 0.0787 0.0796 0.0796 0.0799

Table 5.7: Accuracy of G-Stream while changing the overlap percentage of
sliding windows.

Datasets 0% 25% 50% 75%
DS1 0.6440 0.6633 0.6898 0.7124
DS2 0.5354 0.5300 0.5630 0.5906
letter4 0.6224 0.6720 0.6681 0.6380
Sea 0.1409 0.1377 0.1394 0.1422
HyperPlan 0.0208 0.0131 0.0153 0.0186
KddCup99 0.6258 0.7237 0.7079 0.6824
CoverType 0.0896 0.1028 0.0865 0.0835
Sensor 0.1070 0.1114 0.1067 0.1145

Table 5.8: NMI of G-Stream while changing the overlap percentage of sliding
windows.

Datasets 0% 25% 50% 75%
DS1 0.8352 0.8416 0.8511 0.8594
DS2 0.8366 0.8467 0.8496 0.8592
letter4 0.8194 0.8436 0.8422 0.8223
Sea 0.4764 0.4746 0.4765 0.4749
HyperPlan 0.7017 0.7012 0.7015 0.7011
KddCup99 0.8187 0.8614 0.8597 0.8399
CoverType 0.6197 0.6195 0.6199 0.6185
Sensor 0.9596 0.9607 0.9612 0.9616

Table 5.9: Rand index of G-Stream while changing the overlap percentage of
sliding windows.

strongly depends on the number of nodes comprising the graph and the size of the

data stream. We recall that G-Stream is implemented in MATLAB, and SVStream

is the only MATLAB program that we have (the other algorithms are implemented

in Java, R, or C languages).

Figure 5.17 shows the execution time of G-Stream and that of SVStream. We

can see that both the execution time of G-Stream and SVStream grow as the size

of the data stream grows, and G-Stream is more efficient than SVStream. Note

Chapter 5. G-Stream : Growing neural gas over data stream 102

that we could not obtain the execution time of the SVStream algorithm for the

Sensor dataset since it did not stop. Whereas the execution time of the G-Stream

algorithm for the Sensor dataset was 21926 seconds, taking the parameters as

follows: α1 = 0.01, α2 = 0.001, λ1 = λ2 = 0.4, β = 300, |window| = 600,

|reservoir| = 400.

Figure 5.17: Execution time (in seconds)

5.4 Conclusion

In this chapter, we have proposed G-Stream, an efficient method for topological

clustering an evolving data stream in an online manner, which allows on-the-fly

cluster creation. It can be used as an online component in the on/offline frame-

work takes into account the topology of the data to find the final clusters.

In G-Stream, the nodes are weighted using a fading function, and the edges

using an exponential function. Starting with two nodes, G-Stream compares the

arriving data points to the current prototypes, storing the very distant ones in a

reservoir, learns the threshold distances automatically, and many nodes are cre-

ated at the same time.

Chapter 5. G-Stream : Growing neural gas over data stream 103

Experimental evaluation for a number of real and synthetic datasets demon-

strates the effectiveness and efficiency of G-Stream in discovering clusters of arbi-

trary shape. Our experiments show that G-Stream outperforms the GNG-online

algorithm in terms of visual results and clustering quality criteria such as accu-

racy, the Rand index and NMI. Its performance as compared to three relevant

data stream algorithms are promising.

The work presented in this chapter has resulted in the following publications:

• Mohammed Ghesmoune, Mustapha Lebbah, and Hanane Az-

zag. A new growing neural gas for clustering data streams.

Neural Networks, 78:36–50, 2016. ISSN 0893-6080. doi:

http://dx.doi.org/10.1016/j.neunet.2016.02.003. URL http://www.

sciencedirect.com/science/article/pii/S0893608016000289. Special

Issue on ”Neural Network Learning in Big Data”.

• Mohammed Ghesmoune, Mustapha Lebbah, and Hanane Azzag. Clustering

over data streams based on growing neural gas. In Advances in Knowledge

Discovery and Data Mining - 19th Pacific-Asia Conference, PAKDD 2015,

Ho Chi Minh City, Vietnam, May 19-22, 2015, Proceedings, Part II, pages

134–145, 2015c. doi: 10.1007/978-3-319-18032-8 11. URL http://dx.doi.

org/10.1007/978-3-319-18032-8_11.

• Mohammed Ghesmoune, Hanane Azzag, and Mustapha Lebbah. G-Stream:

Growing neural gas over data stream. In Neural Information Processing -

21st International Conference, ICONIP 2014, Kuching, Malaysia, November

3-6, 2014. Proceedings, Part I, pages 207–214, 2014. doi: 10.1007/978-3-319-

12637-1 26. URL http://dx.doi.org/10.1007/978-3-319-12637-1_26.

• Mohammed Ghesmoune, Mustapha Lebbah and Hanane Azzag. G-Stream:

une approche incrémentale pour le clustering de flux de données. In SFC

2015, 09-11 Septembre 2015, Nantes.

• Mohammed Ghesmoune, Hanane Azzag and Mustapha Lebbah. Une nou-

velle méthode topologique pour le clustering de flux de données. In COSI

2015, Coloque sur l’optimisation et les systèmes d’information, Oran, 01-03

Juin 2015.

http://www.sciencedirect.com/science/article/pii/S0893608016000289
http://www.sciencedirect.com/science/article/pii/S0893608016000289
http://dx.doi.org/10.1007/978-3-319-18032-8_11
http://dx.doi.org/10.1007/978-3-319-18032-8_11
http://dx.doi.org/10.1007/978-3-319-12637-1_26

Chapter 5. G-Stream : Growing neural gas over data stream 104

• Mohammed Ghesmoune, Mustapha Lebbah, and Hanane Azzag. Clus-

tering topologique pour le flux de données. In 15èmes Journées Franco-

phones Extraction et Gestion des Connaissances, EGC 2015, 27-30 Janvier

2015, Luxembourg, pages 137–142, 2015a. URL http://editions-rnti.

fr/?inprocid=1002072.

In the next chapter, we will present in details the second contribution which is

a micro-batching GNG-based data stream clustering algorithm. This algorithm is

implemented using Spark Streaming.

http://editions-rnti.fr/?inprocid=1002072
http://editions-rnti.fr/?inprocid=1002072

Chapter 6

Micro-Batching Growing Neural

Gas for Clustering Data Streams

In this chapter, we will introduce our second contribution about the ”batchStream”

algorithm for streaming data clustering. In contrast to the G-Stream introduced

in chapter 5 which is a sequential GNG algorithm, batchStream is a scalable,

distributed algorithm. We start by defining a new cost function taking into account

the subsets of observations arriving in batches. After that, we propose a model

for scalability. This model consists of decomposing the data stream clustering

problem into the elementary functions, Map and Reduce. Its implementation is

assured in the Spark Streaming platform.

6.1 Introduction

As in the previous chapter, we consider in the following, clustering multi-dimensional

data in the form of a stream, i.e., a sequence of potentially infinite, non-stationary

data arriving continuously where random access to data is not feasible and storing

all arriving data is impractical. When applying data mining techniques, or more

specifically clustering algorithms, to data streams, restrictions in execution time

and memory have to be considered carefully. To deal with time and memory re-

strictions, many of existing data stream clustering algorithms use the two-phase

framework proposed in Aggarwal et al. [2003].

105

Chapter 6. Micro-Batching Growing Neural Gas for Clustering Data Streams 106

Velocity, which refers to the rate that Big Data are generated at high speed

(speed of data in and out), is an important dimension (or concept) of the Big Data

domain Demchenko et al. [2013]. Currently, Spark Streaming Zaharia et al. [2013]

and Apache Flink Schelter et al. [2013] may be considered as the most widely used

streaming platforms. These distributed streaming systems, as presented in chap-

ter 2, are based on two processing models, record-at-a-time and micro-batching.

In a record-at-a-time processing model, long-running stateful operators process

records as they arrive, update the internal state, and send out new records. On

the other hand, the micro-batching processing model runs each streaming com-

putation as a series of deterministic batch computations on small time intervals.

Among the available frameworks that implements the micro-batching processing

model, we can find Spark Streaming. It is an extension of the core Spark API1

that enables high-throughput, reliable processing of live data streams.

In the previous chapter 5, G-Stream was presented as a data stream clustering

approach based on the Growing Neural Gas algorithm. G-Stream uses a stochas-

tic approach to update the prototypes, and it was implemented on a ”centralized”

platform. In this chapter, we propose batchStream, a novel distributed algo-

rithm for discovering clusters of arbitrary shape in an evolving data stream. The

batchStream algorithm is implemented on a distributed streaming platform based

on the micro-batching processing model, i.e., the Spark Streaming API2. In the

proposed algorithm, the topological structure is represented by a graph wherein

each node represents a cluster, which is a set of ”close” data points and neighbor-

ing nodes (clusters) are connected by edges. Starting with only two nodes, the

graph size is not fixed but may also evolve as several nodes (clusters) are created

in each iteration. We use an exponential fading function to reduce the impact of

old data whose relevance diminishes over time. For the same reason, links between

nodes are also weighted by an exponential function.

The data received in each interval is stored reliably across the cluster to form an

input dataset for that interval. Once the time interval is completed, this dataset

is processed via deterministic parallel and distributed operations, such as Map

and Reduce to produce new datasets representing either program outputs or in-

termediate states Zaharia et al. [2013]. The input data is split and the master

assigns the splits to the Map workers. Each worker processes the corresponding

input split, generates key/value pairs and writes them to intermediate files (on disk

1http://spark.apache.org/
2http://spark.apache.org/streaming/

Chapter 6. Micro-Batching Growing Neural Gas for Clustering Data Streams 107

or in memory). The Reduce function is responsible for aggregating information

received from the Map functions.

6.2 Micro-batching clustering

In this section we introduce Micro-Batching Growing Neural Gas for Clustering

Data Streams (batchStream) and highlight some of its novel features. The batch-

Stream algorithm is based on Growing Neural Gas (GNG), which is, as presented

in chapter 3, an incremental self-organizing approach that belongs to the family

of topological maps such as Self-Organizing Maps (SOM) Kohonen et al. [2001]

or Neural Gas (NG) Martinetz and Schulten [1991]. It is an unsupervised algo-

rithm capable of representing a high dimensional input space in a low dimensional

feature map. Typically, it is used for finding topological structures that closely

reflect the structure of the input distribution.

We assume that the data stream consists of a sequence X = {x1,x2, ...,xn}
of n (potentially infinite) elements of a data stream arriving at times t1, t2, ..., tn,

where xi = (x1
i , x

2
i , ..., x

d
i) is a vector in Rd. We denote by X1 = {x1, ...,xp} where

p is the size of the window, thus X = {X1,X2, ...,XL}. At each time, batchStream

is represented by a graph C where each node represents a cluster. Each node c ∈ C
has

• a prototype wc = (w1
c , w

2
c , ..., w

d
c) representing its position;

• πc representing the weight of this node;

• error(c) an error variable representing the sum of distances between this

node and the data-points assigned to it.

When data arrive in a stream, we may want to estimate clusters dynamically,

updating them as new data arrive. An implementation of a Growing Neural Gas

algorithm over Data Stream on a ”centralized” platform would be as follows Gh-

esmoune et al. [2014, 2015b]: Starting with two nodes, and as a new data point

is reached, the nearest and the second-nearest nodes are identified, linked by an

edge, and the nearest node with its topological neighbors are moved toward the

data point. Each node has an accumulated error variable and a weight which

varies over time using a fading function.

Chapter 6. Micro-Batching Growing Neural Gas for Clustering Data Streams 108

Using an edge management procedure, one, two or three nodes are inserted

into the graph between the nodes with the largest error values. A new node r is

inserted into the graph between the nodes with the largest error values, q and f ,

according to Equation (6.1). It is also called the refinement step.

wr = 0.5(wq + wf) (6.1)

Nodes can also be removed if they are identified as being superfluous.

However, the ”naive” design of a distributed version of G-Stream (presented

in the previous chapter 5) would raise difficulties, which are resolved by batch-

Stream. It operates with parameters to control the decay (or ”forgetfulness”) of

the estimates. The algorithm uses a generalization of the mini-batch GNG update

rule. In the adaptation step of the GNG algorithm, the nearest node and all of its

neighbors are moved in the direction of the data point.

To incorporate the scheme of mini-batch learning, we first define the objective

(or cost) function for online clustering for a fixed topology as follows:

J (t+1)
batchStream(φ,W) =

∑
xi∈X (t+1)

∑
cj∈C

KT
(
δ(cj, φ(xi))

)
‖xi −w(t+1)

cj
‖2

(6.2)

where X (t+1) = {X1,X2, ...,Xt+1} and φ(xi) is the assignment function which

returns the network node to which xi is assigned:

φ(xi) = arg min
cj
‖xi −wcj‖2, (6.3)

and KT (δ(cr, cs)) is the mutual influence between nodes cr and cs (usually, a Gaus-

sian function is a common choice for KT (.) that will shrink with time). The notion

of neighborhood is introduced by the function KT (.), which is called the neighbor-

hood function, defined in Equation (6.4)

KT (δ(cr, cs)) = e
−δ(cr,cs)

T (6.4)

where T represents the temperature function that controls the size of the neigh-

borhood and the algorithm convergence, and δ(cr, cs) is the length of the shortest

path between the nodes cr and cs. For our experiments, we took only the direct

neighborhood (see Figure 6.1). Thus, KT (.) is set to 1.

The next step is to decrease RbatchStream(φ,W) according to the set of referents

Chapter 6. Micro-Batching Growing Neural Gas for Clustering Data Streams 109

Figure 6.1: In left: the direct neighborhood of a node. In right: the neighbor-
hood function. The nodes of the direct neighborhood have the same influence,

outside, they have none.

W . It is assumed in this case that φ is fixed at the current value. Thus, the

prototypes wc are calculated using the following equation:

w(t)
c =

∑
xi∈X (t)

KT
(
δ(c, φ(xi))

)
xi∑

xi∈X (t)

KT
(
δ(c, φ(xi))

) (6.5)

=

∑
xi∈X (t−1)

KT
(
δ(c, φ(xi))

)
xi +

∑
xi∈Xt

KT
(
δ(c, φ(xi))

)
xi∑

xi∈X (t−1)

KT
(
δ(c, φ(xi))

)
+
∑
xi∈Xt

KT
(
δ(c, φ(xi))

) . (6.6)

Rather than scannimg all the data, we will scan them block by block (where

Pr = {xi : φ(xi) = r}, i.e., the set of observations xi assigned to the cluster r):

w(t)
c =

∑
r∈C

∑
xi∈Pr(t−1)

KT (δ(c, r))xi +
∑
r∈C

∑
xi∈Pr(t)

KT (δ(c, r))xi∑
r∈C

∑
xi∈Pr(t−1)

KT (δ(c, r)) +
∑
r∈C

∑
xi∈Pr(t)

KT (δ(c, r))
(6.7)

=

∑
r∈C

KT (δ(c, r))
∑

xi∈Pr(t−1)

xi +
∑
r∈C

KT (δ(c, r))
∑

xi∈Pr(t)
xi∑

r∈C

∑
xi∈Pr(t−1)

KT (δ(c, r)) +
∑
r∈C

∑
xi∈Pr(t)

KT (δ(c, r))
(6.8)

Multiplying by the factors n
(t−1)
r

n
(t−1)
r

and m
(t)
r

m
(t)
r

, where n
(t−1)
c is the number of points

assigned to the cluster c thus far, and m
(t)
r is the number of points assigned to the

Chapter 6. Micro-Batching Growing Neural Gas for Clustering Data Streams 110

cluster in the current batch, we get:

=

∑
r∈C

KT (δ(c, r))n(t−1)
r

∑
xi∈Pr(t−1) xi

n
(t−1)
r∑

r∈C

∑
xi∈Pr(t−1)

KT (δ(c, r)) +
∑
r∈C

∑
xi∈Pr(t)

KT (δ(c, r))
(6.9)

+

∑
r∈C

KT (δ(c, r))m(t)
r

∑
xi∈Pr(t) xi

m
(t)
r∑

r∈C

∑
xi∈Pr(t−1)

KT (δ(c, r)) +
∑
r∈C

∑
xi∈Pr(t)

KT (δ(c, r))
. (6.10)

Let w
(t−1)
c be the previous center for the cluster c, and z

(t)
r is the new cluster

center from the current batch as defined in Equation (6.11).

z(t)
r =

∑
xi∈Pr(t)|φ(xi)=r

xi

m
(t)
r

(6.11)

w(t)
c =

∑
r∈C

KT (δ(c, r))w(t−1)
c n(t−1)

r +
∑
r∈C

KT (δ(c, r))z(t)
r m

(t)
r∑

r∈C

∑
xi∈Pr(t−1)

KT (δ(c, r)) +
∑
r∈C

∑
xi∈Pr(t)

KT (δ(c, r))
(6.12)

=

∑
r∈C

KT (δ(c, r))w(t−1)
c n(t−1)

r +
∑
r∈C

KT (δ(c, r))z(t)
r m

(t)
r∑

r∈C

KT (δ(c, r))n(t−1)
r +

∑
r∈C

K(c, r)m(t)
r

. (6.13)

However, in batchStream (see Algorithm 20 for details), for each batch of data

Xp, we assign all points xi ∈ Xp to their best match unit, compute new cluster

centers, then update each cluster. The update rule, i.e., the adaptation step, in a

mini-batch version without taking into account the neighbors of the referent would

be as described in Equation (6.14):

w(t+1)
c =

w
(t)
c n

(t)
c α + z

(t)
c m

(t)
c

n
(t)
c α +m

(t)
c

, (6.14)

where α is a decay factor parameter 0 < α < 1, w
(t)
c is the previous center for the

cluster, n
(t)
c is the number of points assigned to the cluster thus far, z

(t)
c is the new

cluster center from the current batch, and m
(t)
c is the number of points assigned

to the cluster c in the current batch.

Chapter 6. Micro-Batching Growing Neural Gas for Clustering Data Streams 111

Equation (6.15) updates the number of points assigned to the cluster.

n(t+1)
c = n(t)

c +m(t)
c (6.15)

The error variable of the nearest node is calculated according to Equation (6.16)

error(bmu1) = ‖xi − bmu1‖2 (6.16)

In most data stream scenarios, more recent data can reflect the emergence of

new trends or changes in the data distribution de Andrade Silva et al. [2013].

There are three window models commonly studied in data streams: landmark,

sliding and damped (as presented in chapter 4).

We consider the damped window model, in which the weight of each data point

decreases exponentially with time via a fading function. The weight of each node

decreases exponentially with time t via a decay factor parameter 0 < α < 1, i.e.,

π(t+1)
c = π(t)

c α (6.17)

If the weight of a node is less than a threshold value then this node is considered

as outdated and then deleted (with its links). The decay factor can be used to

ignore the past: with α = 1 all data will be used from the beginning; with α = 0

only the most recent data will be used. This is analogous to the fading function

de Andrade Silva et al. [2013] which is defined as follows :

f(t) = 2−λt (6.18)

where λ > 0. In a general case, when the referent moves toward a data point, it

also moves its neighborhood toward this point Kohonen et al. [2001].

By including the neighborhood function (Equation 6.4) with the fading function

(Equation 6.17) in Equation (6.14), in our model, we use Equation (6.19) to carry

out the adaptation step for micro-batch streams:

w(t+1)
c =

w
(t)
c n

(t)
c α +

∑
r∈C KT (δ(r, c))z

(t)
r m

(t)
r

n
(t)
c α +

∑
r∈C KT (δ(r, c))m

(t)
r

(6.19)

where z
(t)
r is the previous center for the cluster r (which is a neighbor of the consid-

ered referent node), KT (.) is the neighborhood function defined in Equation (6.4).

Chapter 6. Micro-Batching Growing Neural Gas for Clustering Data Streams 112

Figure 6.2: Plot of a fading function.

We are now ready to outline batchStream in Algorithm 20.

Algorithm 20: batchStream

Input: X = {x1,x2, ...,xn}, α, πmin, λage, η, agemax, d
Output: set of nodes C = {c1, c2, ...} and their prototypes

W = {wc1 ,wc2 , ...}
1 Initialize of the model by creating a graph of two nodes (the first 2

data-points);
2 while there is a micro-batch to proceed do
3 Xt ← get the micro-batch of data points arrived at time interval t;
4 Apply the mapping step in Function map ;
5 Apply the reduce step in Function reduce;
6 Apply the adaptation step: updateRule(pointStats, α, λage, agemax);
7 Update the variable error of each node;
8 Apply fading, delete isolated nodes;
9 Add η new nodes in Function addNewNodes ;

10 Decrease the error of all units by multiplying them with a constant d ;

Table 6.1 overviews the list of parameters used in the batchStream algorithm.

Symbole Description
α the decay factor parameter
πmin the minimum weight of a node. If bellow, this node is deleted
λage the rate of growth of the edges’ age
η the number of nodes to add at each iteration

agemax the maximum edges’s age
d a constant for adjusting the error variable of nodes, such as 0 < d < 1

Table 6.1: Parameters used in the batchStream algorithm

Chapter 6. Micro-Batching Growing Neural Gas for Clustering Data Streams 113

6.3 Modeling using MapReduce

The input data is split and the master assigns splits to the Map workers. In the

Map step, each worker processes the corresponding input split, generates key/value

pairs and writes them to intermediate files (on disk or in memory). The key

corresponds to the best match unit (bmu1), called also the nearest node, whereas

its value represents a tuple of (bmu2, error, xi, 1), where bmu2 represents the

second nearest node.

Then the master will launch the Reduce tasks that take as input both the

results of the Maps and the results of the previous interval’s Reduces. The Reduce

function is responsible for aggregating information received from Map functions.

For each key, the Reduce function works on the list of values, closest. Figure 6.3

illustrates the sequences of Map and Reduce tasks triggered automatically by the

framework (the Spark engine in our case).

Figure 6.3: Overview of the Map and Reduce tasks in batchStream.

To compute the prototype of each node, the Reduce function groups by bmu1

and sums the values received in the closest list. The final output is the list

pointStats. Each element of pointStats contains a bmu1 (a prototype), as key

and the second nearest node bmu2, the sum of errors errort, the sum sumt and

the count of points assigned to each node countt, as the value.

Chapter 6. Micro-Batching Growing Neural Gas for Clustering Data Streams 114

The function updateRule performs the operations related to updating graph

edges. The way to increase the age of edges is inspired by the fading function

in the sense that the creation time of a link is taken into account. Contrary to

the fading function, the age of the links will be strengthened by the exponential

function:

g(t) = 2λage(t−t0) (6.20)

where λage > 0, defines the rate of growth of the age over time, t denotes the

current time and t0 is the creation time of the edge.

The next step is to add a new edge that connects the two closest nodes. The

last step is to remove each link exceeding a maximum age, since these links are no

longer useful because they were replaced by younger and shorter edges that were

created during the graph refinement in step 9.

Function map(Xt: the t-th micro-batch of data points)

1 foreach xti ∈ Xt do
2 Key ← bmu1, the nearest node;
3 Value ← (bmu2, error,xti, 1) such as: bmu2 is the second nearest node,

and calclute the error according to Equation (6.16);
4 Emit (Key, Value);

Function reduce(keyt, List closest)

Output: prototypet: the prototype of the t-th micro-batch, bmu2: the
second nearest node, sumt: the sum of errors, and countt: the
number of data points in the t-th micro-batch

1 bmu2 ← 0; errort ← 0; sumt ← 0; countt ← 0; pointStats← List();
2 foreach valuet ∈ closest do

// where valuet is the corresponding value of the pair (keyt,
Value)

3 bmu2 ← bmu2 + the 1-st value of tuple valuet;
4 errort ← errort + the 2-nd value of tuple valuet;
5 sumt ← sumt + the 3-rd value of tuple valuet;
6 countt ← countt + the 4-th value of tuple valuet;

7 prototypet ← sumt/countt;
8 Add (prototypet, bmu2, sumt, countt) to the list pointStats;

Chapter 6. Micro-Batching Growing Neural Gas for Clustering Data Streams 115

Function updateRule(List pointStats, α, λage, agemax)

// Decrease the weight of nodes

1 foreach c ∈ C do Update π
(t)
c according to Equation (6.17) ;

2 foreach ps ∈ pointStats do
// ps is a tuple: (bmu, (bmu2, error, sum, count))

3 Calculate the new prototype according to Equation (6.19)
4 Increment the age of all edges emanating from bmu and weight them ;
5 if bmu and bmu2 are connected by an edge then set the age of this edge

to zero;
6 else create an edge between bmu and bmu2, and mark its time stamp;

7 Remove the edges whose age is greater than agemax. If this results in nodes
having no emanating edges, remove them as well;

Function addNewNodes(η : number of nodes to add)

1 for j ← 1 to η do
2 Find the node with the largest error;
3 Find the neighbor f with the largest accumulated error;
4 Add the new node r half-way between nodes q and f according to

Equation (6.1);
5 Insert edges connecting the new unit r with units q and f , and remove

the original edge between q and f . Remove the original edge between q
and f ;

6 Initialize the weight of r and the age of edges emanating from r to zero;
7 Decrease the error variables of q and f by multiplying them with a

constant ε where: 0 < ε < 1;
8 Initialize the error variable of r with the new value of the error variable

of q;

6.4 Experimental evaluations

In this section, we present an experimental evaluation of the batchStream algo-

rithm. We compared our algorithm with several well-known and relevant data

stream clustering algorithms, including ClusTree, DenStream, and the MLlib3 im-

plementation of Streaming-KMeans.

Our experiments were performed on the Spark Streaming platform using public

real-world and synthetic data sets. Experiments on the large datasets (the Sen-

sor, the CoverType, and the KddCup99 datasets) are conducted on the Teralab4

cluster which runs the Debian operating system with the following properties:

3http://spark.apache.org/docs/latest/mllib-guide.html
4https://www.teralab-datascience.fr/en/home

http://spark.apache.org/docs/latest/mllib-guide.html

Chapter 6. Micro-Batching Growing Neural Gas for Clustering Data Streams 116

• 5 data-nodes: 50 Gb system disc, 20 VCPUs, 120Gb RAM, 4× 200Gb data

discs

• 1 edge-node: 4 VCPUs, 32Gb RAM, 100Gb hard disc

• 1 service-node: 4 VCPUs, 16Gb RAM, 60Gb hard disc

• 2 name-nodes: 30Gb system disc, 2 VCPUs, 4Gb RAM.

The experiments for the other datasets were conducted on a PC with Core(TM)i7-

4800MQ with 2 × 2.70 GHz processors, and 8Gb RAM, which runs the Ubuntu

13.10 operating system.

6.4.1 Datasets

To evaluate the clustering quality and scalability of the batchStream algorithm

both real and synthetic data sets are used. The synthetic data sets used are DS1

and letter4. All the others are real-world publicly available data sets. Table 6.2

overviews all the data sets used.

Datasets #observations #features #classes
Sensor 2,219,803 5 54
CoverType 581,012 54 7
KddCup99 494,021 41 23
Sea 60,000 3 2
letter4 9,344 2 7
DS1 9,153 2 14

Table 6.2: Overview of all data sets.

• DS1 is generated by http://impca.curtin.edu.au/local/software/

synthetic-data-sets.tar.bz2.

• The letter4 dataset is generated by a Java code https://github.com/

feldob/Token-Cluster-Generator.

• The Sea dataset was taken from http://www.liaad.up.pt/kdus/

products/datasets-for-concept-drift.

http://impca.curtin.edu.au/local/software/synthetic-data-sets.tar.bz2
http://impca.curtin.edu.au/local/software/synthetic-data-sets.tar.bz2
https://github.com/feldob/Token-Cluster-Generator
https://github.com/feldob/Token-Cluster-Generator
http://www.liaad.up.pt/kdus/products/datasets-for-concept-drift
http://www.liaad.up.pt/kdus/products/datasets-for-concept-drift

Chapter 6. Micro-Batching Growing Neural Gas for Clustering Data Streams 117

• The real-world databases were taken from the UCI repository [Bache and

Lichman, 2013], which are the KDD-CUP’99 Network Intrusion Detection

stream dataset (KddCup99) and the Forest CoverType dataset (CoverType)

respectively.

The algorithms are evaluated using three performance measures: Accuracy

(Purity), Normalized Mutual Information (NMI) and Rand index (please refer to

Appendix A for more details). The value of each measure lies between 0 and 1. A

higher value indicates better clustering results.

6.4.2 Evaluation and performance comparison

This section aims to evaluate the clustering quality of the batchStream and com-

pare it to well-known data stream clustering algorithms. As explained in section

6.2, batchStream algorithms start with two nodes.

For comparison purposes, we used the MLlib implementation of Streaming-

KMeans (this latter algorithm was also coded in the Spark Streaming platform)5.

A comparison is also performed with DenStream Cao et al. [2006] and Clus-

Tree Kranen et al. [2011] from the stream R package Bolanos et al. [2014].

Streaming-KMeans was evaluated by setting the k parameter to the known num-

ber of classes of each dataset. DenStream was evaluated by performing a variant of

the DBSCAN algorithm in the offline step. ClusTree was evaluated by performing

the k-means algorithm in the offline step by setting the k parameter to 10.

Table 6.3 reports the results in terms of accuracy, NMI, and Rand index. In

this Table, it is noteworthy that batchStream’s Accuracies (Acc) are higher for

all data sets as compared to Streaming-KMeans, DenStream and CluStree, except

for ClusTree for Streaming-KMeans for the KddCup99 data set. Its NMI values

are higher than the other algorithms except for Streaming-KMeans for DS1 and

KddCup99 data sets. Its Rand index values are higher than the other algorithms

except for Streaming-KMeans for Sea and DS1 data sets. We recall that batch-

Stream proceeds in one single phase whereas Streaming-KMeans, DenStream and

ClusTree proceed in two phases (online and offline phase).

5https://spark.apache.org/docs/latest/mllib-clustering.html#streaming-k-means

Chapter 6. Micro-Batching Growing Neural Gas for Clustering Data Streams 118

Datasets batchStream Streaming KMeans DenStream ClusTree

DS1
Acc 0.9773 0.8067 0.7740 0.6864
NMI 0.7019 0.7274 0.6973 0.7064
Rand 0.8473 0.8657 0.8491 0.8442

letter4
Acc 0.8566 0.4848 0.8110 0.8110
NMI 0.6844 0.4672 0.1637 0.2425
Rand 0.8542 0.6915 0.5019 0.5514

Sea
Acc 0.8374 0.6269 0.8240 0.8224
NMI 0.1381 0.0018 0.1646 0.1583
Rand 0.4708 0.5030 0.4700 0.4917

KddCup99
Acc 0.9262 0.9832 0.9544 0.8182
NMI 0.6622 0.7035 0.6290 0.5724
Rand 0.8367 0.8382 0.8164 0.8289

CoverType
Acc 0.6527 0.4957 0.5850 0.5850
NMI 0.1653 0.0727 0.0475 0.0362
Rand 0.6233 0.5931 0.4604 0.5080

Sensor
Acc 0.1086 0.0690 0.5850 0.5850
NMI 0.1471 0.0970 0.0475 0.0362
Rand 0.9738 0.9555 0.4604 0.5080

Table 6.3: Comparing batchStream with other data stream clustering algo-
rithms.

6.4.3 Visualization of graph creation evolution

6.4.3.1 Non-overlapping data streams

Figures 6.4 and 6.5 show the evolution of the node creation by applying batch-

Stream on the DS1 and DS2 data sets (colored points represent data points of the

data stream and red points are nodes of the graph with edges in blue lines; each

color of the data points correspond to class of labels and the size of the nodes of the

graph are proportional to their weight). It illustrates that batchStream manages

to recognize the structures of the data stream and can separate these structures

with the best visualization.

6.4.3.2 Overlapping data streams

In some situations, input data streams may overlap (i.e, some data points are

located on the same space). Figure 6.6 shows the evolution of graph creation of

batchStream on the lettersMR dataset where data points of the letter M arrive

at first then those of R. The graph generated by batchStream can adapt with the

Chapter 6. Micro-Batching Growing Neural Gas for Clustering Data Streams 119

(a) 1/9 of all windows (b) 3/9 of all windows

(c) 5/9 of all windows (d) 9/9 of all windows

Figure 6.4: Evolution of graph creation of batchStream on DS1 (data set and
topological result). The intermediate graph after seeing the 1/9 of all windows;
the 3/9 of all windows; the 5/9 of all windows; and the final graph (9/9 of all

windows).

evolving overlapped data stream since it can ”forget” the old letter M and learn

the topological structure of the novel letter R (this is mainly due to the fading

function).

Chapter 6. Micro-Batching Growing Neural Gas for Clustering Data Streams 120

(a) 1/9 of all windows (b) 3/9 of all windows

(c) 5/9 of all windows (d) 9/9 of all windows

Figure 6.5: Evolution of graph creation of batchStream on DS2 (data set and
topological result). The intermediate graph after seeing the 1/9 of all windows;
the 3/9 of all windows; the 5/9 of all windows; and the final graph (9/9 of all

windows).

6.4.4 Evolving data streams

In this subsection, we perform the batchStream algorithm on different data streams

ordered by class labels to demonstrate its effectiveness in clustering evolving data

streams (i.e., data points of the first class arrive in first, then the ones of the

second, third, etc. class). In this case, old concepts (class labels) disappear due to

the use of fading function. In the same time, new concepts (class labels) appear as

new data points arrive. Note that the class labels are not known to the clustering

algorithm. We report the results in Figure. 6.7.

The top panel in Figure 6.7 compares the batchStream algorithm, in terms of

the accuracy, with (i.e., we sort the data points based on their class labels) and

without ordering of class labels. It shows that the batchStream algorithm with

ordering of classes can find clusters with accuracy values as comparable to those

Chapter 6. Micro-Batching Growing Neural Gas for Clustering Data Streams 121

(a) 1/9 of all windows (b) 3/9 of all windows

(c) 5/9 of all windows (d) 9/9 of all windows

Figure 6.6: Evolution of graph creation of batchStream on lettersMR (data
set and topological result). The intermediate graph after seeing the 1/9 of all
windows; the 3/9 of all windows; the 5/9 of all windows; and the final graph

(9/9 of all windows).

without ordering of classes.

The middle panel in Figure 6.7 compares the batchStream algorithm, in terms

of the NMI. It shows that the batchStream algorithm with ordering of classes can

find clusters with NMI values as comparable to those without ordering of classes

for most datasets. Although, we observe that the values of NMI are lower in the

case where we sort the data points based on their class labels, for the DS1 and the

KddCup99 datasets.

The bottom panel in Figure 6.7 compares the batchStream algorithm, in terms

of the Rand index. Except for the KddCup99 dataset where the Rand index value

decreases in the case where the data points are sorted, this Figure shows that the

batchStream algorithm with ordering of classes can find clusters with Rand index

values as comparable to those without ordering of classes for most datasets.

Chapter 6. Micro-Batching Growing Neural Gas for Clustering Data Streams 122

(a) Accuracy

(b) NMI

(c) Rand index

Figure 6.7: Accuracy, NMI and Rand index for batchStream with and without
ordering of classes.

Chapter 6. Micro-Batching Growing Neural Gas for Clustering Data Streams 123

6.4.5 Temporal performance vs batch interval

Spark Streaming uses the concept of micro-batch streaming, i.e., it aggregates

data arriving within a batch interval and, at the end of the time interval, it applies

the MapReduce operation on the batch data. MapReduce operations are parallel

functions that run on distributed data. Thus, the wider the batch interval (the

window length) is, the more distributed data to treat, the more parallelization

is effective. However, in real-world applications, wider batch intervals may cause

high latency.

Figure 6.8 shows the execution time of batchStream for the insurance dataset

(this dataset is described in chapter 7) while varying the size of the batch interval.

To do this, we simulated the insurance dataset as a data stream. The source

generating the data stream takes the batch-size, as parameter and then ingests

batch-size input data each time. The batch sizes used in this experiments are:

1, 5, and 10 million of input data. Figure 6.8 shows the overall time execution

(including the delay time) of the last batches. It shows that the larger the batch

size is, the lower the time execution is taken by the batchStream algorithm.

Figure 6.8: The overall execution time of batchStream as a function of window
length (batch size).

Chapter 6. Micro-Batching Growing Neural Gas for Clustering Data Streams 124

6.5 Conclusion

In this chapter, we have presented batchStream, an efficient method for topologi-

cal clustering an evolving data stream in an online manner. In batchStream, the

nodes are weighted by a fading function and the edges by an exponential function.

The batchStream algorithm is implemented on a distributed streaming platform

based on the micro-batching processing model.

Experimental evaluation over a number of real and synthetic data sets demon-

strates the effectiveness and efficiency of batchStream in discovering clusters of

arbitrary shape. The performance of batchStream, in terms of clustering quality

as compared to three relevant data stream algorithms are promising. We plan in

the future to extend batchStream to deal with binary, categorical, and mixed data

streams, and also to make our algorithm as autonomous as possible.

The work presented in this chapter has resulted in the following publication:

Mohammed Ghesmoune, Mustapha Lebbah, and Hanane Azzag. Micro-batching

growing neural gas for clustering data streams using spark streaming. In INNS

Conference on Big Data 2015, San Francisco, CA, USA, 8-10 August 2015, pages

158–166, 2015b. doi: 10.1016/j.procs.2015.07.290. URL http://dx.doi.org/10.

1016/j.procs.2015.07.290.

The next chapter presents our contribution in the Big Data project, called

”Square Predict”. In particular, we will illustrate the utility of the batchStream

algorithm, presented in the previous chapter 6, as an unsupervised learning for an

insurance Big Data.

http://dx.doi. org/10.1016/j.procs.2015.07.290
http://dx.doi. org/10.1016/j.procs.2015.07.290

Chapter 7

Application for Insurance Big

Data

This chapter is devoted to explain our work carried in the context of the Big Data

project, named Square Predict. At first, we present the architecture of the pro-

posed Big Data framework. Then, we will illustrate the utility of the batchStream

algorithm, presented in the chapter 6, as an unsupervised learning for an insurance

Big Data.

7.1 Introduction

Organisations are increasingly relying on Big Data to provide the opportunities

to discover correlations and patterns in data that would have previously remained

hidden, and to subsequently use this new information to increase the quality of

their business activities.

The ”Square Predict” project is gathering 3 public research labs and 4 private

companies including AXA Data Innovation Lab. This project aims to provide the

insurance industry a platform for real-time predictive analytics that can analyze

the information published on social networks coupled with the information avail-

able in Open Data, e.g. to assess the rapidly the severity of a natural disaster and

its impact on housing insurance payouts.

In this chapter we present, briefly, a ’story’ of Big Data from the initial data

collection to the final visualization, passing by the data fusion, and the analysis

and clustering tasks. For this, we present a complete work-flow on:

125

Chapter 7. Application for Insurance Big Data 126

(a) how to represent the heterogeneous collected data using the high perfor-

mance RDF language, how to perform the fusion of the Big Data in RDF by

resolving the issue of entity disambiguity, and how to query those data to

provide more relevant and complete knowledge. For consistency, we omit the

details concerning the collection, the fusion, and the query of heterogenous

data; the interested reader can be refer to [Benbernou et al., 2015] for more

details.

(b) as the data are received in data streams, we apply the batchStream method,

presented in the chapter 6, in order to estimate, in real time, the impact

of damage caused by a major climatic event, combining our unsupervised

method with a supervised model.

7.2 Architecture of the Big data framework

In this section, we describe the Big data platform developed from the end-to-end.

The application domain we target is insurance. The framework is built upon the

Teralab1 distributed clusters platform.

Figure 7.1: Big data platform

1https://www.teralab-datascience.fr/en/home

Chapter 7. Application for Insurance Big Data 127

1. Data sets. The data in our platform are collected from different heteroge-

neous sources, including proprietary data sets (housing insurance contracts),

and open data sets from organizations such as the French national institution

of statistics INSEE2 that contains information related to census household

and housing surveys (i.e., type of heating, proportions of housing type in the

local area etc), the ONDRP3 which is a department of the National Institute

of High Study of Security and Justice, which contains information related

to crime and delinquency (i.e., home invasions, average of armed burglaries

against individuals in their homes, etc.), as well as the well known open data

base Dbpedia etc.

2. SaaS Configuration. This component is a software which provides a dash-

board to assist the user to process a data configuration and transfer for

serialization into the RDF format.

3. RDF serialisation and reasoning mechanisms. In order to provide a

semantic reasoning by inferring new hidden data, all data are transformed

into the RDF format (if they are not already so). The serialization format

is a triplet subject-predicate-object. Moreover, the semantic links are built

to connect RDF data of different sources with the concepts of an OWL

ontology to process the data fusion. Those connections are used to identify

and connect RDF data provided by multiple data sources that refers to the

same real world entity. Those links are found through the query evaluation

approach based on SPARQL language. Finally, once the proprietary data

are cleaned and enriched with the newly inferred data, these data are ready

to be the input of the analysis and clustering module. This process was done

by LIPADE laboratory [Benbernou et al., 2015].

4. Clustering and Analysis. The aim of clustering, also known as unsuper-

vised learning, is to separate the data set into a small number of groups

where the members within a cluster are similar to each other, and mem-

bers from different clusters are different to each other. The presence of

clusters in a data set implies that there is the possibility of data reduc-

tion as all the members of a single cluster can be represented by a typical

member known as the prototype. Furthermore, cluster membership is an

2http://www.insee.fr/fr/bases-de-donnees/default.asp?page=open-data/open-data-
utilisation.htm

3http://www.inhesj.fr/fr/ondrp

Chapter 7. Application for Insurance Big Data 128

important tool in analyzing and understanding the deep structure of the

data set whenever the clusters correspond to groups of interest. Since we

are merging heterogeneous data sets from different sources, clustering pro-

vides an analytical tool to quantify the new information created by this

newly merged data set, with respect to the individual data sets. For this

part of the project, we applied the batchStream (presented in chapter 6)

as well as the SOM-MR algorithm (presented in chapter 3) for the in-

surance Big Data. The implementations of these algorithms are available

at: https://github.com/Spark-clustering-notebook/coliseum.

5. Visualization. Graphical visualizations present the overall trends in the

data, in contrast to their exact values in numerical representations. These

over-arching patterns assist in providing a wider context for interpreting ex-

isting and new data. The fusion of many existing data sets, whilst providing

a potentially unlimited source of new information, can also be potentially

disorientating due to an information overload. Visualizations are effective

in indicating the directions in which the analysis should proceed as they

can present key aspects of the data set in a single graphical summary which

would be not evident in a numerical form.

7.3 Application of batchStream for insurance big

data

In this section, we demonstrate the utility of batchStream as a method for un-

supervised learning for an insurance Big Data, consisting of 2 133 488 insurance

contracts for damages claims made in continental France for the calendar year

2012. Five variables were supplied initially by the insurer, and an analysis based on

solely on these in-house variables were inconclusive. These variables are: NBPIECS:

the number of rooms in the dwelling, CDQUALP: the owner status (owner or ten-

ant) CDHABIT: the dwelling code (apartment or house) CDRESID: the residence code

(principal residence or second home), and NB SIN: the number of claims. We thank

the AXA company for providing us the large dataset that we used in the Square

Predict project to validate our proposed algorithms.

We then proceeded to enrich these data with publicly available open data: 20

variables concerning the age of dwelling construction, the type of heating used,

https://github.com/Spark-clustering-notebook/coliseum

Chapter 7. Application for Insurance Big Data 129

and the age composition of the household members from population census and

surveys conducted by the INSEE (the French official national statistical agency),

and 13 variables concerning the rates of different types of crimes collected by the

ONDRP (the French crime statistics agency). The procedures to process these

open data so that they can be merged meaningfully with the insurance claims

unit record data are lengthy, and their details are presented in [Benbernou et al.,

2015].

To simplify the analysis, we focus on the fire damages. Most contracts are not

subject to a claim (2 126 952 or 99.69%) whereas the remaining 6 536 contracts

or 0.31% account for 89 410 763 e of damages paid out by the insurer. Further

analysis of this highly inhomogeneous structure, in particular the added value of

open Big Data, would be of interest to the insurer’s business model.

The batchStream algorithm (see Algorithm 20 in chapter 6 for details) was ap-

plied to this merged data set, and 84 clusters of varying sizes, forms and locations

were the result. Table 7.1 shows the five clusters which exceeded 4 million e in

total claims per cluster: these 5 clusters account for 43.00% of the 89 million e of

payouts and 35.76% of the 6 536 claims.

Cluster Total claims #contracts #claims
1 10 327 077 16 0281 460
66 10 161 913 13 8769 709
55 8 480 123 10 9588 423
21 5 142 238 81 741 378
47 4 334 039 88 085 367
...

...
...

...
All 89 410 763 2 133 488 6 536

Table 7.1: Summary statistics for batchStream clusters for insurance data

The summary statistics in Table 7.1 indicate that the batchStream clusters

contain important information of the insurance claims, though they are not suf-

ficiently detailed. We carried out a post-hoc decision tree (Classification and

Regression Tree or CART [Hastie et al., 2009]) analysis, computed by the rpart

R package [Therneau et al., 2015]. Decision trees produce a set of interpretable

decision rules used to construct to these clusters, as shown in Figure 7.2.

All trees are split at the root node using the in-house variable nbsin inc (num-

ber of people assigned in the claim). For the entire data, there are no further splits,

leading to a simple decision tree on the top left, indicating that the structure of

Chapter 7. Application for Insurance Big Data 130

these data are not revealed at this aggregated level.

On the other hand, the decision trees for the batchStream clusters are highly

structured, with the leaf nodes with an average claim of greater than 50 000 euros

coloured in blue. The other in-house variables which appear in these decision trees

are dept (2 digit postcode) and nbpiecs (number of rooms in the dwelling).

The INSEE housing variables, concerning the year of dwelling construction

const*, the age composition of household members nbPers* and the type of heat-

ing cmb*, are frequently used in these decision rules, whereas the ONDRP variables

appear less frequently.

For Cluster #1, the important leaf nodes are created by decisions involving

constAvtProb (proportion of dwellings constructed before 1949) and cmbAutreProp

(proportion of dwellings using ‘other’ heating).

The tree for cluster #66 has the most number of levels of those displayed, and

involves additionally const7589Prob, const8903Prob (proportion of dwellings

constructed between 1975 and 1989, and 1989 and 2003), ANEM MOY (average num-

ber of years since the last home improvement) and nbPers4a6 MOY, nbPers19a24 MOY,

nbPers19a24 MOY (average number of persons between 4 and 6 years, 19 and 24

yers, and more than 75 years of age).

For Cluster #55, the other age composition variables nbPers0a3 MOY, nbPers12a18 MOY,

nbPers60a64 MOY (average number of persons between 0 and 3 years, 12 and 18

yers, and 60 and 64 years of age) appear.

The final two clusters #21 and #47 are perhaps the most interesting from

the point of view of added value of open data for describing fire damage insur-

ance claims. The tree for cluster #21 involves cmbGazBoutProp (proportion of

dwellings using bottled gas heating) and for cluster #47 cmbElectProp (propor-

tion of dwellings using electric heating) and DrgPub (number of attacks against

public property) and MalEnfProp (proportion of households with crimes commit-

ted against children). For these batchStream clusters, more detailed information

relevant to insurance claims is provided by freely available open data.

Chapter 7. Application for Insurance Big Data 131

All Cluster #1

nbsin_inc < 0.5

n=2 126 952 n= 6 536

 0 89 410 763

yes no

nbsin_inc < 0.5

dept = 1,2,4,5,7,8...,89,90

constAvt49Prob >= 0.15

dept = 1,2,5,7,8,9...,88,89

cmbAutreProp < 0.51

n=160 281

n= 312

n= 121 n= 9

n= 11

n= 7

 0

 2 833 797

 3 183 746 1 445 144

 1 347 666

 1 516 724

yes no

Cluster #66 Cluster #55
nbsin_inc < 0.5

dept = 4,7,8,9,16,...,79,90

constAvt49Prob < 0.78

const8903Prob < 0.18

const7589Prob >= 0.11

nbpiecs < 10

dept = 19,70,87,88

ANEM_MOY < 23

ANEM_MOY >= 23

nbPers19a24_MOY >= 0.036

nbPers4a6_MOY < 0.026

cmbAutreProp >= 0.37

nbPersPlus75_MOY < 0.22

n=138 769

n= 386

n= 76

n= 92

n= 43

n= 15

n= 9

n= 8

n= 7

n= 13

n= 7

n= 29

n= 12

n= 12

 0

 2 229 314

 160 213

 993 511

 318 325

 49 241

 977 281

 698 849

 448 211

 77 016

 884 581

 421 374

 1 480 817

 1 423 181

yes no

nbsin_inc < 0.5

dept = 26,30,54,57,83,84

nbPers19a24_MOY >= 0.054

nbPers0a3_MOY >= 0.045

constAvt49Prob >= 0.29

nbPers12a18_MOY < 0.25

nbPers60a64_MOY < 0.17

n=109 588

n= 258

n= 100

n= 13

n= 7

n= 25

n= 8

n= 12

 0

2 296 057

1 645 327

 60 891

1 258 320

 478 409

 862 310

1 878 809

yes no

Chapter 7. Application for Insurance Big Data 132

Cluster #21 Cluster #47
nbsin_inc < 0.5

const4974Prob >= 0.088

const4974Prob < 0.083

cmbGazBoutProp < 0.027

nbPers12a18_MOY < 0.29

nbPers12a18_MOY >= 0.049

n=81 741

n= 303

n= 31

n= 19

n= 11

n= 7

n= 7

 0

2 055 818

 95 943

 124 295

 748 810

1 123 703

 993 670

yes no nbsin_inc < 0.5

cmbElectProp < 0.68

nbpiecs >= 2.5

DgrPub >= 30

nbPers7a11_MOY < 0.3

nbPers25a59_MOY >= 0.68 nbPers7a11_MOY >= 0.32

MalEnfProp >= 0.0051

n=88 085

n= 192

n= 97 n= 10

n= 28 n= 8

n= 7

n= 8

n= 17

 0

 837 181

 568 295 437 018

 198 575 455 227

 564 944

 481 131

 791 669

yes no

Figure 7.2: Decision trees for batchStream clusters of insurance data, for the
total data and the 5 largest clusters by total cluster payouts. Leaf nodes with

average claims of over 50 000 e are coloured in blue.

7.4 Analysis of the insurance big data using batch-

Stream

To further analyze clusters, we use the following 3 indicators: rate of claims,

payouts per contract, and loss per contract.

Rate of claims =
Number of claims

Number of contracts
(7.1)

Payout per claim =
Sum of claim amounts

Number of claims
(7.2)

Loss per contract = Rate of claims ∗ Payout per claim (7.3)

Regarding these indicators, especially the maximum and minimum values, the

insurance company can focuse its analysis on the corresponding clusters. Thus, a

Chapter 7. Application for Insurance Big Data 133

model based on the features of assigned data can be defined. Using this model, the

insurance company can predict the payouts for a new customer within a cluster

and so propose more personalised insurance contracts for its customers.

Table 7.2 summarizes the values of these indicators for clusters: 1, 66, 55, 21,

and 47. We distinguish two types of claims: claim water damage (WAT) and claim

fire damage (FIR).

Cluster Rate WAT Rate FIR Payout WAT Payout FIR Loss WAT Loss FIR

1 0.0126 0.0029 1706.4 22305 21.45 64.25

66 0.0235 0.0022 874.91 6249.2 20.58 13.71

55 0.0407 0.0016 886.3 4676.9 36.11 7.33

21 0.0277 0.0027 1276 12552 35.34 33.51

47 0.040 0.0029 1066.3 2658.9 42.64 7.80

Table 7.2: Rate of claims, Payout per claim, and Loss per contract for batch-
Stream clusters for insurance data

Figues 7.3 and 7.4 show a visualization of contracts, assigned to clusers 21 and

55, on the map of France by department.

7.5 Conclusion

In this chapter, we presented our work carried in the context of the Square Predict

project. In the first section, we have presented the architecture of the proposed

Big Data framework. A demonstration of the utility of the batchStream algorithm

(which is presented in the chapter 6) as an unsupervised learning for the insurance

Big Data was also presented.

We plan in the future to extend batchStream to deal with binary, categorical,

and mixed data streams, and also to make our algorithm as autonomous as possi-

ble.

The work presented in this chapter has resulted in the following publication:

Hanane Azzag, Salima Benbernou, Tarn Duong, Mohammed Ghesmoune, Mustapha

Lebbah, and Mourad Ouziri. Big Data: A Story from Collection to Visualization.

Submitted to Machine Learning Journal: Special issue on Discovery Science, 2016.

The next chapter is a perspective work which presents a hierarchical version

of the GNG algorithm, called GH-Stream. The GH-Stream method is based on a

topological and hierarchical structrure in order to deal with streaming data.

Chapter 7. Application for Insurance Big Data 134

(a) All contrats (b) Claimed contracts

(c) Claimed contracts WAT (d) Claimed contracts FIR

Figure 7.3: Visualtisation of contracts assigned to cluster #21

Chapter 7. Application for Insurance Big Data 135

(a) All contrats (b) Claimed contracts

(c) Claimed contracts WAT (d) Claimed contracts FIR

Figure 7.4: Visualtization of contracts assigned to cluster #55

Chapter 8

Growing Hierarchical Trees for

Data Stream Clustering and

Visualization

In this chapter, we present our third contribution which is a new approach us-

ing a hierarchical and topological structure (or network) for both clustering and

visualization. The topological network is represented by a graph in which each

neuron represents a set of similar data points and neighbor neurons are connected

by edges. The hierarchical component consists of multiple tree-like hierarchy of

clusters which allows us to describe the evolution of a data stream, and then an-

alyze it explicitly their similarity. This adaptive structure can be exploited by

descending top-down from the topological level to any hierarchical level.

8.1 Introduction

Streaming algorithms have been introduced as a method to find patterns in contin-

uous online data in real-time. Moreover, streaming algorithms must be capable of

fast and incremental learning in order to overcome memory and time limitations.

In the literature, many streaming algorithms have been adapted from clustering

algorithms, e.g., the density-based method DBSCAN [Cao et al., 2006, Isaksson

et al., 2012], the partitioning method k-means [Ackermann et al., 2012], the mes-

sage passing-based method AP [Zhang et al., 2008], or the evolving algorithm

137

Chapter 8. Growing Hierarchical Trees for Data Stream Clustering and
Visualization 138

G-Stream [Ghesmoune et al., 2015b]. Please refer to chapter 4 for a comprehen-

sive survey of data stream clustering methods.

Data stream clustering can be processed for the further analysis of dynamic

patterns evolving over time, event tracking or future change trend detection. An

attractive solution is to visualize data streams to reveal insight that may suggest

further experiments to conduct. An interactive visualization should be able to

express incremental information projected directly onto a low dimensional sub-

space. There are two main issues for visualizing streaming data concerning the

total amount of data and newly arriving data.

To address both data stream clustering and visualization at the same time, we

propose the growing heuristic topological and hierarchical structure GH-Stream

(Growing Hierarchical Trees over Data Stream), a variant of G-Stream which does

not require the number of clusters to be specified beforehand. This type of struc-

ture consists of a topological network and multiple trees which can be exploited

by descending from a general part to any particular part, i.e. from the topological

level to any level of a hierarchical tree.

When new data arrive, nodes are removed or added (neurons in the topological

level or tree nodes in the hierarchical level). This facilitates the visual task and

adapts to the data change trends. Thus, the main contribution of this work is to

present an incrementally hierarchical and topological structure that can be used

to analyze data streams at any particular step.

8.2 AntTree

AntTree [Azzag et al., 2007] provides the hierarchical structure where each tree

node represents one observation. The main principles are the following (Fig-

ure 8.1(a)): Initially, all observations are placed on the which corresponds to the

tree roof. An observation will connect to the support or a connected observation

in order to connect itself to a convenient location in the tree structure. The way

to connect an observation to another depends on a similarity test (Figure 8.1(b)).

Once all the observations are connected in the tree, the tree structure can be

interpreted in many ways.

Considering the clustering problem, during the assembly of the structure, each

observation xi will be either:

Chapter 8. Growing Hierarchical Trees for Data Stream Clustering and
Visualization 139

(a) General principle of AntTree for tree building
with self-assembly rules (an observation is repre-
sented by an ant). [Azzag et al., 2007]

(b) Connecting rules to find the nearest ant

Figure 8.1: AntTree principles

• moving on the tree: xi moving over the support or over an other observation

denoted by xpos, but xi is not connected to the structure. It is thus com-

pletely free to move on the support or toward another observation within its

neighborhood. If xpos denotes the observation where xi is located on, then

xi will move randomly to any immediate neighbors of xpos in the tree.

• connected to the tree: xi can no longer move anymore from the structure.

Each observation has only one connection with other ants.

8.3 Growing Hierarchical Trees for Data Stream

The implementations of GH-Stream are strongly influenced by clustering tasks and

visualization objectives. GH-Stream is developed using several rules from AntTree

[Azzag et al., 2007] to add a new hierarchical dimension in G-Stream (this latter

algorithm is presented in chapter 5).

In terms of human perception, a hierarchical tree is an efficient and optimal

representation of a data structure. We are interested in particularly in AntTree

to model artificial ants to build automatically complex structures. Due to the

self-assembly rules defined by AntTree, this approach can be adapted to the self-

organizing models.

As an online clustering algorithm, GH-Stream is able to find data patterns

in large datasets evolving over time. Furthermore, as a visualization framework,

GH-Stream provides a solution to data stream abstraction and changes necessarily

Chapter 8. Growing Hierarchical Trees for Data Stream Clustering and
Visualization 140

over time to reflect the stream evolution. With a dynamic two-level structure, we

present an evolving visualization of a continuous data stream. Such hierarchical

and topological structures have been studied for visualization in [Doan et al., 2012,

2013]. In the sequel, we will show how to benefit from this structure for visualizing

evolving data streams as we are able to create various views for different time

intervals. Here, the new view is modified from the old one ensuring that the user

is able to perceive the differences between the two.

8.3.1 Dynamic multi-level structure for clustering

The proposed structure is illustrated in Figure 8.2. Several elements can be found

in this structure:

• Network describes the topological space where data will be mapped dis-

cretely. Note that this network will extend if new data points arrive.

• Neuron or network node (square node) represents a cluster in the topological

space. Each neuron is associated with a prototype (or a weight vector) to

which input data are assigned, and with a hierarchical tree. This neuron

is also the tree root to which the first tree nodes connect. Here the tree

structure will evolve if new data points arrive.

• Topological link is created between a pair of neurons if they are considered as

neighbors due to a given neighborhood function. A variable exists to control

this type of link.

• Tree node (circle or triangle node) corresponds to a data point in the pro-

jected space. Data in old streams are represented by circle nodes and newly

arriving data by triangle nodes.

• Hierarchical link is created between a pair of tree nodes if it satisfies a

similarity test.

The proposed structure allows for effective visualization of tree nodes which

represent input data. A test is applied in order to verify the similarity between

a pair of data. A hierarchical link is formed if and only if these two are similar;

otherwise a new subtree is created and is considered as a new sub-cluster. Thus

Chapter 8. Growing Hierarchical Trees for Data Stream Clustering and
Visualization 141

Figure 8.2: Hierarchical and topological structure.

data from new streams which are continuously and recursively grouped in a sub-

tree are close to those from old streams. GH-Stream is able to detect clusters and

represent these clusters in a topological and hierarchical structure. The confidence

in each cluster may be easily observed because of hierarchical relations between

the data.

8.3.2 GH-Stream

In this section, we give the algorithmic details of GH-Stream. Suppose that a

data stream is denoted by X = {x1,x2, ...,xn} of n (potentially infinite) data

streams arriving in times t1, t2, ..., tn, where xi = (x1
i , x

2
i , ...x

d
i) is a vector in Rd.

The proposed network C consists of neurons, each neuron c ∈ C is associated with

a tree treec and with a prototype wc ∈ Rd.

In Algorithm 21, GH-Stream is divided into four main steps: 1) initialization,

2) assignment, 3) tree construction, and 4) adaptation.

Chapter 8. Growing Hierarchical Trees for Data Stream Clustering and
Visualization 142

Algorithm 21: GH-Stream

Data: X = {x1,x2, ...,xn}
Result: tree, C

1 Initialize the network C associated with two trees and create an empty
reservoir R (a list contains disconnected tree nodes) ;

2 while there is a data point to proceed do
3 xi ← the next point in the current data stream ;
4 find c0 using Equation 8.1; then find tree0, the tree associated to c0;
5 constructTree(tree0,xi,R) ;
6 adaptation(tree,xi) ;
7 remove outdated and isolated neurons (trees), and put all disconnected

tree nodes into R ;
8 if R is full then
9 constructTree(tree0,xi,R) ;

8.3.2.1 Initialization step

At the beginning, GH-Stream is randomly initialized with only a 2-tree network

in which these neurons are connected by a topological link. During the learning

process, the network evolves and adapts to cover the data patterns. Thus, the

GH-Stream network is more flexible and able to overcome the sensitivity to the

topology.

8.3.2.2 Assignment step

As a new data point is reached, the nearest and the second-nearest neurons are

identified, linked by an edge, and the nearest neuron and its topological neighbors

are moved toward the data point. This assures that the quantization error of the

current stream is minimized with respects to the data assuming that the prototype

vectors are constant. Equation (8.1) is used to find the nearest node.

c0 = arg min
j=1,...,k

‖xi −wcj‖
2 (8.1)

where k is the current number of trees in the network.

Chapter 8. Growing Hierarchical Trees for Data Stream Clustering and
Visualization 143

Algorithm 22: constructTree

Data: tree0,xi
Result: tree0

1 if less than 2 tree nodes are connected to the root of tree0 then
2 connect xi to the root of tree0 ;
3 else
4 Troot = max(d(xi,xj)) ; // where xi and xj are any pair of data

connected to the root of treek; d(xi,xj) = ||xi − xj||2, xi,xj
are normalized

5 x+ = arg minr d(xi − xr) ; // ∀xr is connected to the root of

tree0

6 if d(xi,x
+) > Troot then

7 disconnect x+ from the root ; // disconnect recursively

subtreex+

8 put subtreex+ into R ;
9 if xi is disconnected then

10 subtreexi ← all nodes recursively connected to xi before its
disconnection ;

11 connect xi and subtreexi to xpos ; // The subtree structure is

kept as it was before the disconnection

12 connectRecursive(tree0,xi,x
+) ;

Algorithm 23: connectRecursive

Data: tree0,xi,x
pos

Result: tree0

1 if no tree nodes connected to xpos then
2 tree0 = connectSubTree(tree0,xi,x

pos) ;

3 x+ = arg minxr d(xi,xr) ; // ∀xr is connected to xpos

4 if d(xi,x
pos) > d(xi,x

+) then
5 connectRecursive(tree0,xi,x

+) ;

6 if xi is disconnected then
7 subtreexi ← all nodes recursively connected to xi before its

disconnection ;

8 connect xi and subtreexi to xpos ; // The subtree structure is kept

as it was before the disconnection

8.3.2.3 Tree construction step

Here we show how to adapt the self-assembly rules inspired by AntTree. During

the learning process, the status of a tree node can be varied due to the connecting

or disconnecting rules. Therefore, we define three possibilities for the tree node

status:

Chapter 8. Growing Hierarchical Trees for Data Stream Clustering and
Visualization 144

1. Initial : when a new data point arrives, its initial status is the default;

2. Connected : A tree node is currently connected to another node;

3. Disconnected : A tree node which was connected at least once but now is

disconnected. We denote a resevoir +R to contain all disconnected nodes.

Once the data has been assigned to the nearest tree, they will take part in

building trees. Data have to pass through the similarity test in Algorithms 22 and

23. At first, the tree is empty and since the similarity test can only be computed

with at least two tree nodes, then the first two tree nodes are automatically con-

nected to a tree as in the first test (Line 1 in Algorithm 22).

The second test (Line 6 in Algorithm 22) is used to find the best position in

the hierarchical structure for each data point. It can be either to create a new

subtree at the current tree node or pass top-down to become a leaf node.

During the learning process, there is a chance that objects could be discon-

nected. Concerning the disconnection, there are two distinct cases:

1. remove a tree node (Line 7 in Algorithm 21),

2. disconnect tree node(s) (Line 7 in Algorithm 22).

Whenever a tree node is disconnected from a tree, we have to check whether

other child nodes exist in subtreexi . If this is the case, we disconnect all of them

from the specific subtreexi . A simple example of disconnection for a group of nodes

(or sub-tree) is depicted in Figure 8.3(a).

Given treeold as in this example, the tree node x consisting of three violet nodes

is disconnected from this tree. All the nodes connected to x must be recursively

disconnected too (Line 8 in Algorithm 21 or Line 7 in Algorithm 22); it applies to

two child nodes of x. Therefore subtreex has disconnected status and is immedi-

ately put onto the list R.

Suppose that a disconnected xi becomes connected at a moment, we will keep

this subtree structure by re-connecting these child nodes together (Line 12 in Al-

gorithm 22 or Line 11 in Algorithm 23); hence this method can accelerate the

learning process.

For example, let us take again the example in Figure 8.3(a). After obtaining

the new assignment, x connects to tree0. This implies that the child nodes of x

Chapter 8. Growing Hierarchical Trees for Data Stream Clustering and
Visualization 145

(a) Disconnect subtreex from treeold and put it into R

(b) Re-connect subtreex to tree0

Figure 8.3: Rules to build a hierarchical structure. Neuron is colored accord-
ing to a majority vote of data gathered within this neuron.

have tree0 as their best match tree too. We systematically connect this subtree to

tree0 and the result is shown in Figure 8.3(b). Recall that this subtree is not kept

till the end of learning as the nodes in the subtree may be disconnected in next

iterations.

8.3.2.4 Adaptation step

Once a data point has been assigned to a prototype, this prototype and its neigh-

bors are adjusted and moved toward the assigned object according to the ”winner

take most” rule [Fritzke, 1991].

In most data stream scenarios, more recent data can reflect the emergence of

new trends or changes in the data distribution [de Andrade Silva et al., 2013].

Chapter 8. Growing Hierarchical Trees for Data Stream Clustering and
Visualization 146

Algorithm 24: adaptation: network adaptation

Data: tree, subtreexi , C
Result: tree, C

1 add the squared distance to a local error counter variable, error(tree0),
according to Equation (8.4);

2 move w0 and its topological neighbors towards xi:

∆0 =
∑

j∈subtreexi

εb(xj −w0)

∆r =
∑

j∈subtreexi

εr(xj −wr)

∀r is neighbor to c0

3 find the second nearest tree tree1 of xi ;
4 if tree0 and tree1 are connected by an edge then
5 set the age of that edge to 0 ;

6 create a new edge between them ;
7 remove the edges with an age larger than Maxage ;
8 decrease the error of all neurons ;
9 find two neurons with the largest accumulated error ;

10 insert new neurons in the half-way between these two ;
11 update the edges connecting to these two and decrease their error ;

There are three window models commonly studied in data streams: landmark,

sliding and damped (as presented in chapter 4).

We consider, like many others, the damped window model, in which the weight

of each data point decreases exponentially with time t via a fading function

f(t) = 2−λ1(t−t0) (8.2)

where λ1 > 0, defines the rate of decay of the weight over time, t denotes the

current time and t0 is the timestamp of the data point. Note that data points

are passed according to the sliding windows principle. We use the number of the

window to mark the timestamps of data points belonging to this window. The

weight of a neuron is based on data points associated with it:

πc =
nc∑
i=1

2−λ1(t−ti0) (8.3)

where nc is the number of points assigned to the node c at the current time t. If

the weight of a neuron is less than a threshold value then this node is considered

Chapter 8. Growing Hierarchical Trees for Data Stream Clustering and
Visualization 147

as outdated and then deleted (with its links). This task is assured by Line 7 in

Algorithm 21.

The error variable of the nearest node is updated according to Equation (8.4)

error(tree0) = error(tree0) + ‖xi −w0‖2. (8.4)

8.3.3 Complexity

Algorithm 21 is repeated n times (n data points) to complete the learning process.

For each time, there are three operations: assignment, tree construction, adap-

tation. The assignment and adaptation processes require one operation for each

data point, but the tree construction requires log n operations. To summarize,

GH-Stream has the complexity of O(n log n).

8.4 Experimental evaluations

This section is devoted to the experiments to illustrate the proposed model for

data stream clustering and visualization. Our experiments were performed on the

MATLAB platform using real-world and synthetic datasets.

8.4.1 Datasets

Datasets #observations #features #classes
COIL100 7,200 1,024 100
DS1 9,153 2 14
Hyperplane 100,000 10 5
Letter4 9,344 2 7
Sea 60,000 3 2

Table 8.1: Data features

The experiments are performed using real-world and synthetic datasets. Ta-

ble 8.1 overviews all the dataset features.

• COIL100 is available in http://www.cs.columbia.edu/CAVE/software/softlib/

coil-100.php. This dataset contains images of 100 different objects with

72 images per object.

http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php

Chapter 8. Growing Hierarchical Trees for Data Stream Clustering and
Visualization 148

• DS1 is a synthetic dataset found in http://impca.curtin.edu.au/local/

software/synthetic-data-sets.tar.bz2.

• Hyperplane and Sea are datasets with concept drift. These two are available

in http://www.win.tue.nl/~mpechen/data/DriftSets/.

• Letter4 is generated by a Java code https://github.com/feldob/

Token-Cluster-Generator.

8.4.2 Evaluation and performance comparison

In this subsection, we performed extensive experiments to evaluate the GH-Stream

performance for data stream clustering. The experimental parameters for all the

datasets are 600 data per stream, epoch = 300 (after 300 iterations, new neurons

are added into the network), and MaxAge = 250. Due to the nature of different

algorithms, they output different number of clusters at the end of learning process.

Datasets GNG G-Stream StreamKM++ CluStream GH-Stream
COIL100 0.323 0.233 0.427 0.373 0.374
COIL100 ± 0.009 ±0.009 ± 0.015 ± 0.034 ± 0.005
DS1 0.511 0.993 0.675 0.701 0.970
DS1 ± 0.251 ± 0.006 ± 0.018 ± 0.028 ± 0.010
HyperPlan 0.423 0.396 0.425 0.438 0.427
HyperPlan ± 0.002 ± 0.005 ± 0.000 ± 0.008 ± 0.003
Letter4 0.577 0.991 0.687 0.934 0.997
Letter4 ± 0.201 ± 0.001 ± 0.026 ± 0.026 ± 0.003
Sea 0.838 0.788 0.824 0.822 0.839
Sea ± 0.002 ± 0.009 ± 0.001 ± 0.006 ± 0.002

Table 8.2: Competitive performance of different approaches in terms of Ac-
curacy

The GH-Stream efficiency is evaluated with different algorithms using three

quality criteria: Accuracy, Normalized Mutual Information (NMI), and Rand In-

dex. Each criterion should be maximized. Each method is run 10 times with

random initializations and the Tables 8.2, 8.3, and 8.4 show the average and stan-

dard deviation of quality criteria over these 10 runs.

For the selected datasets, we notice that our GH-Stream provides good clus-

tering results comparing to other methods. GH-Stream generally outperformed

the others in term of quality criteria NMI and Rand index in most of cases such

http://impca.curtin.edu.au/local/software/synthetic-data-sets.tar.bz2
http://impca.curtin.edu.au/local/software/synthetic-data-sets.tar.bz2
http://www.win.tue.nl/~mpechen/data/DriftSets/
https://github.com/feldob/Token-Cluster-Generator
https://github.com/feldob/Token-Cluster-Generator

Chapter 8. Growing Hierarchical Trees for Data Stream Clustering and
Visualization 149

Datasets GNG G-Stream StreamKM++ CluStream GH-Stream
COIL100 0.655 0.577 0.606 0.671 0.687
COIL100 ± 0.004 ±0.007 ±0.0231 ± 0.011 ± 0.007
DS1 0.491 0.712 0.702 0.723 0.730
DS1 ± 0.132 ± 0.004 ± 0.021 ± 0.022 ± 0.007
HyperPlan 0.018 0.010 0.020 0.017 0.019
HyperPlan ± 0.001 ± 0.002 ± 0.000 ± 0.004 ± 0.001
Letter4 0.529 0.607 0.553 0.264 0.657
Letter4 ± 0.074 ± 0.002 ± 0.022 ± 0.034 ± 0.006
Sea 0.138 0.146 0.164 0.158 0.148
Sea ± 0.001 ± 0.004 ± 0.000 ± 0.009 ± 0.001

Table 8.3: Competitive performance of different approaches in terms of NMI

Datasets GNG G-Stream StreamKM++ CluStream GH-Stream
COIL100 0.973 0.921 0.883 0.977 0.979
COIL100 ± 0.008 ±0.012 ±0.003 ± 0.001 ± 0.001
DS1 0.621 0.846 0.844 0.845 0.854
DS1 ± 0.122 ± 0.001 ± 0.004 ± 0.007 ± 0.001
HyperPlan 0.704 0.667 0.603 0.652 0.705
HyperPlan ± 0.000 ± 0.000 ± 0.000 ± 0.001 ± 0.000
Letter4 0.686 0.812 0.794 0.341 0.818
Letter4 ± 0.084 ± 0.001 ± 0.014 ± 0.004 ± 0.002
Sea 0.470 0.507 0.470 0.491 0.471
Sea ± 0.001 ± 0.001 ± 0.006 ± 0.003 ± 0.000

Table 8.4: Competitive performance of different approaches in terms of Rand
index

as COIL100, DS1, Letter4 datasets. On the other hand, GH-Stream gives compa-

rable accuracy results.

In the direct comparison with G-Stream, GH-Stream uses less input param-

eters. For more specific, GH-Stream does not require the distance threshold for

the similarity test. According to Tables 8.2, 8.3, and 8.4, GH-Stream is better in

many cases.

Some other experiments are carried out to analyze the clustering evolution dur-

ing the learning process. In Figure 8.4 and 8.5, we show the changes in the quality

criteria over time for two datasets COIL100 and Hyperplane. The GH-Stream

performance dominates over G-Stream and GNG with respects to Accuracy and

NMI in the beginning of learning. Moreover, GH-Stream also provides further

information on data visualization which will be studied thoroughly in the next

subsection.

Chapter 8. Growing Hierarchical Trees for Data Stream Clustering and
Visualization 150

(a) Accuracy (b) NMI

(c) Rand index

Figure 8.4: Performance of difference methods vs number of epoch over time
during the learning process for COIL100

8.4.3 Visualization of tree evolution

GH-Stream does not only provide an informative clustering but also is a useful

tool for data stream visualization based on the Tulip graph visualization [Auber,

2003]. Using the GEM layout, we provide multiple views to describe the changes

in data stream clustering.

At ti, there are data from old streams and newly arriving data from the current

stream. By using different symbols (square for data from old streams and triangle

for data from the current stream), it is quite easy to anticipate the differences

among the visualizations provided by GH-Stream.

Take DS1 in Figure 8.6 as a visual example. The data in the reservoir R can

be clearly seen as the isolated nodes (bottom left in this figure). Due to the self-

assembly rules, new data arrive and connect to those in the same class. A good

classification is indicated by the hierarchical trees or subtrees with the same color

Chapter 8. Growing Hierarchical Trees for Data Stream Clustering and
Visualization 151

(a) Accuracy (b) NMI

(c) Rand index

Figure 8.5: Performance of different clustering methods vs number of epochs
during the learning process for Hyperplane

found in the proposed structure.

However, some regions are colored with different colors due to the fact that

in the streaming algorithm, data are assigned only once so it is not possible to

correct misclassifications, which requires further investigation. In practise, with

an interactive visual tool, users are able to interpret and/or correct misclassified

data points by moving their respective subtree and creating new clusters.

Figure 8.7 shows the visual result after learning all 7200 images from the dataset

COIL100. Many regions with a single color can be observed again as in the previous

example. In this case, each data point corresponds to an image. When we zoom as

in Figure 8.7(b) to visualize in depth the similarity in the hierarchical structure,

we see that images containing a cup belong to one class; in addition, all 72 images

of this class are found in the same tree (the same group).

Thus, a couple of questions are raised: what are the neighbors of this tree? Are

images found in these neighbor trees similar? To answer this question, another

Chapter 8. Growing Hierarchical Trees for Data Stream Clustering and
Visualization 152

(a) Visualization at t2 (300 tree nodes in a 5-tree network)

(b) Visualization at t3 (600 tree nodes in a 8-tree network)

Chapter 8. Growing Hierarchical Trees for Data Stream Clustering and
Visualization 153

(c) Visualization at t4 (900 tree nodes in a 11-tree network)

Figure 8.6: Visualization of the DS1 dataset. Each class is represented by a
single color.

zoom taken from Figure 8.7(a) is shown in Figure 8.8. In this figure, images from

different objects are put in the same groups but it is noteworthy that they have

a similar shape/form such as a cup or a box. To summarize, GH-Stream is a

convenient tool for visual tasks for data stream mining.

8.5 Conclusion

In this chapter, we have proposed a new clustering approach with the objective

of a data stream visualization which adapts a neural network to a hierarchical

and topological space. GH-Stream offers a good clustering performance as well as

an efficient visualization to deal with the data that arrive over time in streams.

GH-Stream is able to detect new classes and output satisfactory results. We also

studied thoroughly the visual results and showed how to exploit the proposed

structure.

In the future, GH-Stream will be improved to be more automatic which is an

Chapter 8. Growing Hierarchical Trees for Data Stream Clustering and
Visualization 154

(a) Complete visualization after the learning process (7200 tree nodes in a 127-tree network)

(b) Zoom sample extracted from Figure 8.7(a). These images are in the same class ”cup”

Figure 8.7: Visualization of the COIL100 dataset. Each class is represented
by a unique color.

important goal of data stream mining. Another perspective is to enhance the vi-

sualization component for Big Data so that GH-Stream can provide more degrees

of freedom. One promising direction is to employ TreeMap in order to overcome

Chapter 8. Growing Hierarchical Trees for Data Stream Clustering and
Visualization 155

Figure 8.8: Zoom sample extracted from Figure 8.7(a). A 3-tree network
shows both hierarchical and topological relations.

the complexity and redundancy problems in visualization.

The work presented in this chapter has resulted in the following publications:

Nhat-Quang Doan, Mohammed Ghesmoune, Hanane Azzag, and Mustapha Leb-

bah. Growing hierarchical trees for data stream clustering and visualization. In

2015 International Joint Conference on Neural Networks, IJCNN 2015, Killarney,

Ireland, July 12-17, 2015, pages 1–8, 2015. doi: 10.1109/IJCNN.2015. 7280397.

URL http://dx.doi.org/10.1109/IJCNN.2015.7280397.

http://dx.doi.org/10.1109/IJCNN.2015.7280397

Chapter 9

Conclusion and perspectives

After summarizing the key issues touched upon this work, the next section dis-

cusses the main research avenues open for further work.

Summary

The first chapters were devoted to giving an introduction to the Big Data ecosys-

tem and the state-of-the-art on both clustering and scalable methods using the

MapReduce paradigm and clustering data streams.

Our first contribution is concerned with extending the GNG approach to deal

with streaming data. The one-pass streaming clustering algorithm titled G-Stream

(Growing Neural Gas over Data Streams) is presented. G-Stream, as a ”sequen-

tial” clustering method, allows us to discover clusters of arbitrary shapes without

any assumptions on the number of clusters. In G-Stream, an exponential fading

function is used to reduce the impact of old data whose relevance diminishes over

time. For the same reason, links between nodes are also weighted by an exponen-

tial function.

Afterwards, in the second contribution, we presented the ”batchStream” dis-

tributed algorithm for scalable clustering data streams. We defined a new cost

function taking into account the subsets of observations arriving in batches. After

that, we proposed a model for scalability. This model consists of decomposing the

data stream clustering problem into the elementary functions, Map and Reduce.

Its implementation is assured in the Spark Streaming platform.

Then, we presented our work carried in the context of the Big Data project,

157

Chapter 9. Conclusion and perspectives 158

named Square Predict. First, we presented the architecture of the proposed Big

Data framework. After that, we illustrated the utility of the batchStream algo-

rithm as an unsupervised learning for an insurance Big Data.

In the previous chapter, we presented our third contribution which is a new

approach using a hierarchical and topological structure for both clustering and

visualization. The topological network is represented by a graph in which each

node represents a set of similar data points and neighbor nodes are connected

by edges. The hierarchical component consists of a multiple tree-like hierarchy

of clusters which allow to describe the evolution of a data stream, and then to

analyze explicitly their similarity.

Perspectives

Clustering binary data streams

We start by surveying some relevant algorithms proposed in the literature to deal

with the problem of clustering binary data streams; then we present our scalable

model for clustering binary data streams.

[Ordonez, 2003] proposed several improvements for k -means to cluster binary

data streams. They showed that sufficient statistics are simpler for binary data.

Distance computation is optimized for sparse binary vectors. A summary table

with best cluster dimensions and outliers is maintained on-line.

[Babcock et al., 2003] presented an extension of the k -medians algorithm, based

on the exponential histogram data structure, for data stream clustering under the

sliding window model. This maintains statistics or information for the most recent

N observations that is growing in real time, while operating with memory that is

asymptotically smaller than the window size.

[Charikar et al., 2003] proposed a randomized algorithm for the k -medians

problem which produces a constant factor approximation in one pass using poly-

logarithmic space. HUE-Stream Meesuksabai et al. [2011] is designed to address

uncertainty in heterogeneous data streams, i.e., including numerical and categori-

cal attributes simultaneously.

We aim to extend the batchStream algorithm, presented in chapter 6, to deal

with binary data streams. Thus, we wish to extend this scalable algorithm imple-

mented in MapReduce to address binary data streams. As explained in chapter 2,

Chapter 9. Conclusion and perspectives 159

designing a MapReduce algorithm requires defining the Map and Reduce elemen-

tary functions.

Our proposition is based on the works presented in [Lebbah, 2003, Govaert,

2009] for clustering binary data, as follows. Given a data stream consisting of a

sequence X = {x1,x2, ...,xn} of n (potentially infinite) observations arriving at

times t1, t2, ..., tn, where xi = (x1
i , x

2
i , ..., x

d
i) is a vector in {0, 1}d. We denote by

X1 = {x1, ...,xp} where p is the size of the window, thus X = {X1,X2, ...,XL}.
At each time, batchStream is represented by a graph C where each node represents

a cluster. Each node c ∈ C has:

• a prototype wc = (w1
c , w

2
c , ..., w

d
c) which is a vector in {0, 1}d, representing

its position;

• πc representing the weight of this node;

• error(c) an error variable representing the sum of distances between this

node and the data-points assigned to it.

Our proposed main idea is that:

• At each time t, the Map function receives a micro-batch, Xt, of observations

then for each observation, xti, it generates a key/value pair. The near-

est node, bmu1, is saved as a key. The corresponding value is the tuple

(bmu2,xti, vectPair, 1) where bmu2 and xti are vectors in {0, 1}d. The vari-

able vectPair is used to generate statistics about the xti’s: for each xjti if

(xjti == 1) return (1, 0) else return (0, 1), where j = 1, ..., d. In other words,

the couple (1, 0) says that there is one zero, while the couple (0, 1) says that

there is one one. The 1 value is used in counting.

• The Reduce function groups by bmu1 and sums the corresponding values.

The Map and Reduce functions for clustering binary data stream are illustrated

in Figure 9.1. When updating the model, for each couple (v1, v2)j resulting from

the Reduce step, if v1 > v2 the we return 1 else we return 0; so that the result is

also a binary vector in {0, 1}d, where j = 1, ..., d.

Chapter 9. Conclusion and perspectives 160

(a) The Map function (b) The Reduce function

Figure 9.1: The Map and Reduce functions for clustering binary data streams.

Open challenges in data stream clustering

In today’s applications, evolving data streams are ubiquitous. Mining, knowledge

discovery, or more specifically clustering streaming data is a recent domain com-

pared to the offline (or batch) model. Thus, many of the challenges, issues and

problems remain to be addressed in the streaming model. This section is devoted

to discuss some challenging, outstanding issues and further directions from the

viewpoints of both academic research and industrial applications [Khalilian and

Mustapha, 2010, de Andrade Silva et al., 2013, Krempl et al., 2014, Gama, 2012,

2010].

Protecting privacy and confidentiality. Data streams present new chal-

lenges and opportunities with respect to protecting privacy and confidentiality in

data mining. The main objective is to develop data mining techniques that would

not uncover information or patterns which compromise confidentiality and privacy

obligations. Privacy-by-design seems to be a promising paradigm to use.

Handling incomplete information. The problem of missing values, which

corresponds to the incompleteness of features, has been discussed extensively for

the offline, static settings. However, only few works address data streams, and

especially evolving data streams.

Uncertain data. In most applications we do not have sufficient data for

statistical operations so new methods are needed to manage uncertain data stream

in an accurate and fast manner.

Chapter 9. Conclusion and perspectives 161

Variety of data. Data type diversity in a given stream (text, video, audio,

static image, etc.) as well as differences in data processability (structured, semi-

structured, unstructured data). Clustering these diverse types of data together,

coming in a streaming form, is very challenging. Another interesting future appli-

cation of data stream clustering is social network analysis. The activities of social

network members can be regarded as a data stream, and a clustering algorithm

can be used to show similarities among members, and how these similar profiles

(clusters) evolve over time.

Synopsis, sketches and summaries. A synopsis is compact data structures

that summarize data for further queries. Samples, Histograms, Wavelets, Sketches

describe basic principles and recent developments in building approximate syn-

opses (that is, lossy, compressed representations) of massive data [Cormode et al.,

2012]. Data sketching via random projections is a tool for dimensionality reduc-

tion. Although this technique is extremely efficient, its main drawback is that it

may ignore relevant features.

Distributed streams. Data streams are distributed by nature. For learning

from distributed data, we need efficient methods in minimizing the communica-

tion overheads between nodes. Most importantly, in applications like monitoring,

centralized solutions introduce delays in event detection and reaction, that can

make mining systems inefficient. Many data clustering techniques are not trivial

to parallelize. To develop distributed versions of some methods, much research is

needed with practical and theoretical analysis to provide new methods.

Evaluation of data stream algorithms. Although in the field of static clas-

sification such tools exist, they are insufficient in data stream environments due

to such problems as: concept drift, limited processing time, verification latency,

multiple stream structures, evolving class skew, censored data, and changing mis-

classification costs. Indeed, in the streaming context, we are interested in how the

evaluation metric evolves over time [Krempl et al., 2014].

Autonomous and self-diagnosis. Knowledge discovery from data streams

requires the ability for predictive self-diagnosis. A significant and useful intel-

ligence characteristic is diagnostics, not only after failure has occurred, but also

predictive (before failure) and advisory (providing maintenance instructions). The

development of such self-configuring, self-optimizing, and self-repairing systems is

a major scientific and engineering challenge. All these aspects require monitoring

Chapter 9. Conclusion and perspectives 162

the evolution of the learning process, taking into account the available resources,

and the ability to reason and learn about it [Gama, 2012, 2010].

Combining offline and online models. Online (or real-time) and offline (or

batch) learning are mostly considered as mutually exclusive, but it is their combi-

nation that might enhance the value of data the most. Lambda Architecture [Marz

and Warren, 2015] is a useful framework for designing big data applications where

we can combine these two models in a same plateform. Figure 9.2 is a diagram of

the Lambda Architecture.

Figure 9.2: Lambda Architecture diagram [Marz and Warren, 2015]

Essentially, the Lambda Architecture comprises the following components, pro-

cesses, and responsibilities:

Chapter 9. Conclusion and perspectives 163

• New Data: All data entering the system is dispatched to both the batch

layer and the speed layer for processing.

• Batch layer: This layer has two functions: (i) managing the master dataset,

an immutable, append-only set of raw data, and (ii) to pre-compute arbitrary

query functions from scratch, called batch views.

• Serving layer: This layer indexes the batch views so that they can be queried

ad hoc with low latency.

• Speed layer: This layer compensates for the high latency of updates to the

serving layer, due to the batch layer. Using fast and incremental algorithms,

the speed layer deals with recent data only.

• Queries: Any incoming query can be answered by merging results from both

batch views and real-time views.

Designing data stream clustering methods in a Lambda Architecture where

we can benefit from the high accuracy of the batch model will be interesting and

challenging.

Appendix A

Quality criteria

The algorithms are evaluated using three performance measures: accuracy (pu-

rity), Normalized Mutual Information (NMI) and Rand index [Strehl and Ghosh,

2002]. The value of each measure lies between 0 and 1. A higher value indicates

better clustering results. The accuracy (purity) averages the fraction of items

belonging to the majority class of in each cluster.

Acc =

∑K
i=1

|Nd
i |
|Ni|

K
× 100%, (A.1)

where K denotes the number of clusters, Nd
i denotes the number of points with the

dominant class label in cluster i, and Ni denotes the number of points in cluster i.

Intuitively, the accuracy (purity) measures the purity of the clusters with respect

to the true cluster (class) labels that are known for our datasets [Cao et al., 2006].

Normalized mutual information provides a measure that is independent of the

number of clusters as compared to purity. It reaches its maximum value of 1

only when the two sets of labels have a perfect one-to-one correspondence [Strehl

and Ghosh, 2002]. Given the true clustering A = {A1, ..., Ak} and the grouping

B = {B1, ..., Bh} obtained by a clustering method, let C be the confusion matrix

whose element Cij is the number of records of cluster i of A that are also in the

cluster j of B. The normalized mutual information NMI(A,B) is defined as

[Forestiero et al., 2013]:

NMI(A,B) =
−2
∑CA

i=1

∑CB
j=1Cijlog(CijN/Ci.C.j)∑CA

i=1 Ci.log(Ci./N) +
∑CB

j=1C.jlog(C.j/N)
, (A.2)

165

Appendix A. Quality criteria 166

where CA (resp. CB) is the number of groups in the partition A (resp. B), Ci.

(resp. C.j) is the sum of elements of C in row i (resp. column j), and N is the

number of points. If A = B, NMI(A,B) = 1. If A and B are completely different,

NMI(A,B) = 0.

The Rand index measures how accurately a classifier can classify data elements

by comparing cluster labels with the underlying class labels. Given N data points,

there are a total of
(
N
2

)
distinct pairs of data points which can be categorized

into four categories: (a) pairs having the same cluster label and the same class

label (their number denoted as N11); (b) pairs having different cluster labels and

different class labels (their number denoted as N00); (c) pairs having the same

cluster label but different class labels (their number denoted as N10); (d) pairs

having different cluster labels but the same class label (their number denoted as

N01). The Rand index is defined as [Rand, 1971]:

Rand = (N11 +N00)/

(
N

2

)
. (A.3)

Bibliography

Yuri Demchenko, Paola Grosso, Cees De Laat, and Peter Membrey. Addressing big

data issues in scientific data infrastructure. In Collaboration Technologies and

Systems (CTS), 2013 International Conference on, pages 48–55. IEEE, 2013.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Re-

silient distributed datasets: A fault-tolerant abstraction for in-memory cluster

computing. In Proceedings of the 9th USENIX Symposium on Networked Sys-

tems Design and Implementation, NSDI 2012, San Jose, CA, USA, April 25-27,

2012, pages 15–28, 2012a.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based

algorithm for discovering clusters in large spatial databases with noise. In Pro-

ceedings of the Second International Conference on Knowledge Discovery and

Data Mining (KDD-96), Portland, Oregon, USA, pages 226–231, 1996.

Charu C. Aggarwal and Chandan K. Reddy. Data Clustering: Algorithms and

Applications. CRC Press, 2014.

Komkrit Udommanetanakit, Thanawin Rakthanmanon, and Kitsana Waiyamai.

E-stream: Evolution-based technique for stream clustering. In ADMA, pages

605–615, 2007.

Xiangliang Zhang, Cyril Furtlehner, and Michèle Sebag. Data streaming with

affinity propagation. In ECML/PKDD (2), pages 628–643, 2008.

Nathan Marz and James Warren. Big Data: Principles and best practices of

scalable realtime data systems. Manning Publications Co., 2015.

Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and tech-

niques. Elsevier, 2011.

167

Bibliography 168

Xiangliang Zhang. Contributions to Large Scale Data Clustering and Streaming

with Affinity Propagation. Application to Autonomic Grids. PhD thesis, Uni-

versité Paris-Sud, France, 2010.

John R. Mashey. Big data and the next wave of infrastress problems, solutions,

opportunities. 1998.

Wei Fan and Albert Bifet. Mining big data: current status, and forecast to the

future. ACM sIGKDD Explorations Newsletter, 14(2):1–5, 2013.

Douglas Laney. 3D data management: Controlling data volume, velocity, and

variety. Technical report, META Group, February 2001.

John Gantz and David Reinsel. Extracting value from chaos. IDC iview, 1142:

1–12, 2011.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system.

In ACM SIGOPS operating systems review, volume 37, pages 29–43. ACM, 2003.

Mike Burrows. The chubby lock service for loosely-coupled distributed systems.

In Proceedings of the 7th symposium on Operating systems design and imple-

mentation, pages 335–350. USENIX Association, 2006.

Dhruba Borthakur. The hadoop distributed file system: Architecture and design.

Hadoop Project Website, 11(2007):21, 2007.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on

large clusters. Communications of the ACM, 51(1):107–113, 2008.

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion

Stoica. Spark: Cluster computing with working sets. In Proceedings of the 2Nd

USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10, pages

10–10, Berkeley, CA, USA, 2010. USENIX Association.

Xiufeng Liu, Nadeem Iftikhar, and Xike Xie. Survey of real-time processing sys-

tems for big data. In 18th International Database Engineering & Applications

Symposium, IDEAS 2014, Porto, Portugal, July 7-9, 2014, pages 356–361, 2014.

Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion Stoica. Dis-

cretized streams: An efficient and fault-tolerant model for stream processing

on large clusters. In Proceedings of the 4th USENIX Conference on Hot Topics

Bibliography 169

in Cloud Ccomputing, HotCloud’12, pages 10–10, Berkeley, CA, USA, 2012b.

USENIX Association.

Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and

Ion Stoica. Discretized streams: fault-tolerant streaming computation at scale.

In ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13,

Farmington, PA, USA, November 3-6, 2013, pages 423–438, 2013.

Magdalena Balazinska, Hari Balakrishnan, Samuel Madden, and Michael Stone-

braker. Fault-tolerance in the borealis distributed stream processing system.

ACM Trans. Database Syst., 33(1), 2008.

Jeong-Hyon Hwang, Magdalena Balazinska, Alex Rasin, Ugur Çetintemel, Michael

Stonebraker, and Stanley B. Zdonik. High-availability algorithms for distributed

stream processing. In Proceedings of the 21st International Conference on Data

Engineering, ICDE 2005, 5-8 April 2005, Tokyo, Japan, pages 779–790, 2005.

Mohammed Ghesmoune, Mustapha Lebbah, and Hanene Azzag. Micro-batching

growing neural gas for clustering data streams using spark streaming. In INNS

Conference on Big Data 2015, San Francisco, CA, USA, 8-10 August 2015,

pages 158–166, 2015a.

Xiangrui Meng, Joseph K. Bradley, Burak Yavuz, Evan R. Sparks, Shivaram

Venkataraman, Davies Liu, Jeremy Freeman, D. B. Tsai, Manish Amde, Sean

Owen, Doris Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Za-

haria, and Ameet Talwalkar. Mllib: Machine learning in apache spark. CoRR,

abs/1505.06807, 2015.

Charu C. Aggarwal, T. J. Watson, Resch Ctr, Jiawei Han, Jianyong Wang, and

Philip S. Yu. A framework for clustering evolving data streams. In In VLDB,

pages 81–92, 2003.

Marcel R. Ackermann, Marcus Märtens, Christoph Raupach, Kamil Swierkot,

Christiane Lammersen, and Christian Sohler. StreamKM++: A clustering al-

gorithm for data streams. ACM Journal of Experimental Algorithmics, 17(1),

2012.

Sebastian Schelter, Stephan Ewen, Kostas Tzoumas, and Volker Markl. ”all roads

lead to rome”: optimistic recovery for distributed iterative data processing. In

Bibliography 170

22nd ACM International Conference on Information and Knowledge Manage-

ment, CIKM’13, San Francisco, CA, USA, October 27 - November 1, 2013,

pages 1919–1928, 2013.

Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Philipp Kranen, Hardy Kremer,

Timm Jansen, and Thomas Seidl. MOA: massive online analysis, a framework

for stream classification and clustering. In Proceedings of the First Workshop

on Applications of Pattern Analysis, WAPA 2010, Cumberland Lodge, Windsor,

UK, September 1-3, 2010, pages 44–50, 2010.

Philipp Kranen, Ira Assent, Corinna Baldauf, and Thomas Seidl. The ClusTree:

indexing micro-clusters for anytime stream mining. Knowledge and information

systems, 29(2):249–272, 2011.

Feng Cao, Martin Ester, Weining Qian, and Aoying Zhou. Density-based clustering

over an evolving data stream with noise. In SDM, pages 328–339, 2006.

Yixin Chen and Li Tu. Density-based clustering for real-time stream data. In

Proceedings of the 13th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, San Jose, California, USA, August 12-15, 2007,

pages 133–142, 2007.

Gianmarco De Francisci Morales and Albert Bifet. SAMOA: scalable advanced

massive online analysis. Journal of Machine Learning Research, 16:149–153,

2015.

Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, 1988. ISBN 0-13-022278-X.

David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful

seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA, January 7-9,

2007, pages 1027–1035, 2007.

Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei

Vassilvitskii. Scalable k-means++. Proceedings of the VLDB Endowment, 5(7):

622–633, 2012.

Samuel Kaski, Jari Kangas, and Teuv Kohonen. Bibliography of self-organizing

map (som) papers: 1981-1997. Neural computing surveys, 1:102–350, 1998.

Bibliography 171

Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall

PTR, Upper Saddle River, NJ, USA, 2nd edition, 1998. ISBN 0132733501.

T. Kohonen, M. R. Schroeder, and T. S. Huang, editors. Self-Organizing Maps.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 3rd edition, 2001. ISBN

3540679219.

T. Martinetz and K. Schulten. A ”Neural-Gas” Network Learns Topologies. Ar-

tificial Neural Networks, I:397–402, 1991.

Bernd Fritzke. Unsupervised clustering with growing cell structures. In In Proceed-

ings of the International Joint Conference on Neural Networks, pages 531–536.

IEEE, 1991.

Bernd Fritzke. A growing neural gas network learns topologies. In NIPS, pages

625–632, 1994.

Oliver Beyer and Philipp Cimiano. Online semi-supervised growing neural gas.

Int. J. Neural Syst., 22(5), 2012.

Brendan J Frey and Delbert Dueck. Clustering by passing messages between data

points. science, 315(5814):972–976, 2007.

Amineh Amini, Ying Wah Teh, and Hadi Saboohi. On density-based data streams

clustering algorithms: A survey. J. Comput. Sci. Technol., 29(1):116–141, 2014.

Pavel Berkhin. A survey of clustering data mining techniques. In Grouping mul-

tidimensional data, pages 25–71. Springer, 2006.

Chris Fraley and Adrian E Raftery. How many clusters? which clustering method?

answers via model-based cluster analysis. The computer journal, 41(8):578–588,

1998.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood

from incomplete data via the em algorithm. Journal of the royal statistical

society. Series B (methodological), pages 1–38, 1977.

Geoffrey McLachlan and Thriyambakam Krishnan. The EM algorithm and exten-

sions, volume 382. John Wiley & Sons, 2007.

Ali El Attar, Antoine Pigeau, and Marc Gelgon. Robust estimation of a global

gaussian mixture by decentralized aggregations of local models. Web Intelligence

Bibliography 172

and Agent Systems, 11(3):245–262, 2013. doi: 10.3233/WIA-130273. URL http:

//dx.doi.org/10.3233/WIA-130273.

Ali El Attar. Estimation robuste des modèles de mélange sur des données

distribuées. Theses, Université de Nantes, July 2012. URL https://tel.

archives-ouvertes.fr/tel-00746118.

Ralf Lämmel. Google’s mapreduce programming model—revisited. Science of

computer programming, 70(1):1–30, 2008.

Eshref Januzaj, Hans-Peter Kriegel, and Martin Pfeifle. Dbdc: Density based

distributed clustering. In Advances in Database Technology-EDBT 2004, pages

88–105. Springer, 2004.

Tugdual Sarazin, Hanane Azzag, and Mustapha Lebbah. SOM clustering using

spark-mapreduce. In 2014 IEEE International Parallel & Distributed Processing

Symposium Workshops, Phoenix, AZ, USA, May 19-23, 2014, pages 1727–1734,

2014.

Weizhong Zhao, Huifang Ma, and Qing He. Parallel k-means clustering based on

mapreduce. In Cloud computing, pages 674–679. Springer, 2009.

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The

hadoop distributed file system. In Mass Storage Systems and Technologies

(MSST), 2010 IEEE 26th Symposium on, pages 1–10. IEEE, 2010.

Yaobin He, Haoyu Tan, Wuman Luo, Shengzhong Feng, and Jianping Fan. Mr-

dbscan: a scalable mapreduce-based dbscan algorithm for heavily skewed data.

Frontiers of Computer Science, 8(1):83–99, 2014.

Ali Seyed Shirkhorshidi, Saeed Aghabozorgi, Teh Ying Wah, and Tutut Herawan.

Big data clustering: a review. In Computational Science and Its Applications–

ICCSA 2014, pages 707–720. Springer, 2014.

Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. Google

news personalization: scalable online collaborative filtering. In Proceedings of

the 16th international conference on World Wide Web, pages 271–280. ACM,

2007.

Henggang Cui, Jinliang Wei, and Wei Dai. Parallel implementation of expectation-

maximization for fast convergence.

http://dx.doi.org/10.3233/WIA-130273
http://dx.doi.org/10.3233/WIA-130273
https://tel.archives-ouvertes.fr/tel-00746118
https://tel.archives-ouvertes.fr/tel-00746118

Bibliography 173

Aniruddha Basak, Irina Brinster, and Ole J Mengshoel. Mapreduce for bayesian

network parameter learning using the em algorithm. Proc. of Big Learning:

Algorithms, Systems and Tools, 2012.

Alina Ene, Sungjin Im, and Benjamin Moseley. Fast clustering using mapreduce. In

Proceedings of the 17th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 681–689. ACM, 2011.

Charu C. Aggarwal. A survey of stream clustering algorithms. In Data Clustering:

Algorithms and Applications, pages 231–258. 2013.

Hai-Long Nguyen, Yew-Kwong Woon, and Wee Keong Ng. A survey on data

stream clustering and classification. Knowl. Inf. Syst., 45(3):535–569, 2015.

Madjid Khalilian and Norwati Mustapha. Data stream clustering: Challenges and

issues. CoRR, abs/1006.5261, 2010.

Yogita and D. Toshniwal. Clustering techniques for streaming data-a survey. In

Advance Computing Conference (IACC), 2013 IEEE 3rd International, pages

951–956, 2013.

Maryam Mousavi, Azuraliza Abu Bakar, and Mohammadmahdi Vakilian. Data

stream clustering algorithms: A review. International Journal of Advances in

Soft Computing & Its Applications, 7(3), 2015.

Jonathan de Andrade Silva, Elaine R. Faria, Rodrigo C. Barros, Eduardo R. Hr-

uschka, André Carlos Ponce Leon Ferreira de Carvalho, and João Gama. Data

stream clustering: A survey. ACM Comput. Surv., 46(1):13, 2013.

Lukasz Golab and M Tamer Özsu. Issues in data stream management. ACM

Sigmod Record, 32(2):5–14, 2003.

Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. Mining

data streams: a review. ACM Sigmod Record, 34(2):18–26, 2005.

Yunyue Zhu and Dennis Shasha. Statstream: Statistical monitoring of thousands

of data streams in real time. In Proceedings of the 28th international conference

on Very Large Data Bases, pages 358–369. VLDB Endowment, 2002.

Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Duplicate detection

in click streams. In Proceedings of the 14th international conference on World

Wide Web, pages 12–21. ACM, 2005.

Bibliography 174

Charu C Aggarwal. Data streams: models and algorithms, volume 31. Springer

Science & Business Media, 2007.

Charu C Aggarwal. A framework for diagnosing changes in evolving data streams.

In Proceedings of the 2003 ACM SIGMOD international conference on Manage-

ment of data, pages 575–586. ACM, 2003.

Daniel Kifer, Shai Ben-David, and Johannes Gehrke. Detecting change in data

streams. In Proceedings of the Thirtieth international conference on Very large

data bases-Volume 30, pages 180–191. VLDB Endowment, 2004.

Donko Donjerkovic, Yannis E Ioannidis, and Raghu Ramakrishnan. Dynamic

histograms: Capturing evolving data sets. In Proceedings of the international

conference on data engineering, pages 86–86. IEEE Computer Society Press;

1998, 2000.

Venkatesh Ganti, Johannes Gehrke, and Raghu Ramakrishnan. Mining data

streams under block evolution. ACM SIGKDD Explorations Newsletter, 3(2):

1–10, 2002.

Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: An efficient data

clustering method for very large databases. In SIGMOD Conference, pages

103–114, 1996.

Wicha Meesuksabai, Thanapat Kangkachit, and Kitsana Waiyamai. Hue-stream:

Evolution-based clustering technique for heterogeneous data streams with un-

certainty. In Advanced Data Mining and Applications - 7th International Con-

ference, ADMA 2011, Beijing, China, December 17-19, 2011, Proceedings, Part

II, pages 27–40, 2011.

Charu C. Aggarwal and Philip S. Yu. A framework for clustering uncertain data

streams. In Proceedings of the 24th International Conference on Data Engineer-

ing, ICDE 2008, April 7-12, 2008, Cancún, México, pages 150–159, 2008.

Chunyu Yang and Jie Zhou. Hclustream: A novel approach for clustering evolving

heterogeneous data stream. In Workshops Proceedings of the 6th IEEE Interna-

tional Conference on Data Mining (ICDM 2006), 18-22 December 2006, Hong

Kong, China, pages 682–688, 2006.

Bibliography 175

Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In

SIGMOD’84, Proceedings of Annual Meeting, Boston, Massachusetts, June 18-

21, 1984, pages 47–57, 1984.

Jan Peter Patist, Wojtek Kowalczyk, and Elena Marchiori. Maintaining gaus-

sian mixture models of data streams under block evolution. In International

Conference on Computational Science, pages 1071–1074. Springer, 2006.

Allou Samé and Hani El Assaad. A state-space approach to modeling functional

time series application to rail supervision. In 22nd European Signal Process-

ing Conference, EUSIPCO 2014, Lisbon, Portugal, September 1-5, 2014, pages

1402–1406, 2014.

Hani EL ASSAAD. Dynamic classification and modeling of non-stationary tem-

poral data. Theses, Université Paris-Est, December 2014. URL https://tel.

archives-ouvertes.fr/tel-01143904.

Charlie Isaksson, Margaret H. Dunham, and Michael Hahsler. SOStream: Self

organizing density-based clustering over data stream. In MLDM, pages 264–

278, 2012.

Chang-Dong Wang, Jian-Huang Lai, Dong Huang, and Wei-Shi Zheng. SVStream:

A support vector-based algorithm for clustering data streams. IEEE Trans.

Knowl. Data Eng., 25(6):1410–1424, 2013.

Asa Ben-Hur, David Horn, Hava T. Siegelmann, and Vladimir Vapnik. Support

vector clustering. Journal of Machine Learning Research, 2:125–137, 2001.

David M. J. Tax and Robert P. W. Duin. Support vector domain description.

Pattern Recognition Letters, 20(11-13):1191–1199, 1999.

Isaac J. Sledge and James M. Keller. Growing neural gas for temporal clustering. In

19th International Conference on Pattern Recognition (ICPR 2008), December

8-11, 2008, Tampa, Florida, USA, pages 1–4, 2008.

Carlos Augusto Teixeira Mendes, Marcelo Gattass, and Hélio Lopes. Fgng: A fast

multi-dimensional growing neural gas implementation. Neurocomputing, 128:

328–340, 2014.

SV Mitsyn and GA Ososkov. The growing neural gas and clustering of large

amounts of data. Optical Memory and Neural Networks, 20(4):260–270, 2011.

https://tel.archives-ouvertes.fr/tel-01143904
https://tel.archives-ouvertes.fr/tel-01143904

Bibliography 176

Bernd Fritzke. A self-organizing network that can follow non-stationary distribu-

tions. In Artificial Neural Networks - ICANN ’97, 7th International Conference,

Lausanne, Switzerland, October 8-10, 1997, Proceedings, pages 613–618, 1997.

Stephen Marsland, Jonathan Shapiro, and Ulrich Nehmzow. A self-organising

network that grows when required. Neural Networks, 15(8-9):1041–1058, 2002.

Stephen Marsland, Ulrich Nehmzow, and Jonathan Shapiro. On-line novelty de-

tection for autonomous mobile robots. Robotics and Autonomous Systems, 51

(2):191–206, 2005.

Yann Prudent and Abdellatif Ennaji. An incremental growing neural gas learns

topologies. In Neural Networks, 2005. IJCNN’05. Proceedings. 2005 IEEE In-

ternational Joint Conference on, volume 2, pages 1211–1216. IEEE, 2005.

Hatem Hamza, Yolande Beläıd, Abdel Beläıd, and Bidyut B Chaudhuri. Incre-

mental classification of invoice documents. In Pattern Recognition, 2008. ICPR

2008. 19th International Conference on, pages 1–4. IEEE, 2008.

Jean-Charles Lamirel, Zied Boulila, Maha Ghribi, and Pascal Cuxac. A new incre-

mental growing neural gas algorithm based on clusters labeling maximization:

application to clustering of heterogeneous textual data. In Trends in Applied

Intelligent Systems, pages 139–148. Springer, 2010.

José GarćıA-RodŕıGuez, Anastassia Angelopoulou, Juan Manuel Garćıa-Chamizo,

Alexandra Psarrou, Sergio Orts Escolano, and Vicente Morell GiméNez. Au-

tonomous growing neural gas for applications with time constraint: optimal

parameter estimation. Neural Networks, 32:196–208, 2012.

Marco AF Pimentel, David A Clifton, Lei Clifton, and Lionel Tarassenko. A review

of novelty detection. Signal Processing, 99:215–249, 2014.

Mohamed-Rafik Bouguelia, Yolande Beläıd, and Abdel Beläıd. An adaptive in-

cremental clustering method based on the growing neural gas algorithm. In

ICPRAM, pages 42–49, 2013.

Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan

O’Callaghan. Clustering data streams: Theory and practice. Knowledge and

Data Engineering, IEEE Transactions on, 15(3):515–528, 2003.

Xingquan (Hill) Zhu. Stream data mining repository (web site), 2010. URL

http://www.cse.fau.edu/~xqzhu/stream.html.

http://www.cse.fau.edu/~xqzhu/stream.html

Bibliography 177

K. Bache and M. Lichman. UCI machine learning repository, 2013.

Alexander Strehl and Joydeep Ghosh. Cluster ensembles — a knowledge reuse

framework for combining multiple partitions. Journal of Machine Learning Re-

search, 3:583–617, 2002.

Matthew Bolanos, John Forrest, and Michael Hahsler. stream: Infrastructure

for Data Stream Mining, 2014. URL http://CRAN.R-project.org/package=

stream. R package version 0.2-0.

Aoying Zhou, Feng Cao, Weining Qian, and Cheqing Jin. Tracking clusters in

evolving data streams over sliding windows. Knowl. Inf. Syst., 15(2):181–214,

2008.

Mohammed Ghesmoune, Hanene Azzag, and Mustapha Lebbah. G-stream: Grow-

ing neural gas over data stream. In Neural Information Processing - 21st Inter-

national Conference, ICONIP 2014, Kuching, Malaysia, November 3-6, 2014.

Proceedings, Part I, pages 207–214, 2014.

Mohammed Ghesmoune, Mustapha Lebbah, and Hanene Azzag. Clustering over

data streams based on growing neural gas. In Advances in Knowledge Discovery

and Data Mining - 19th Pacific-Asia Conference, PAKDD 2015, Ho Chi Minh

City, Vietnam, May 19-22, 2015, Proceedings, Part II, pages 134–145, 2015b.

Salima Benbernou, Xin Huang, and Mourad Ouziri. Fusion of big RDF data: A

semantic entity resolution and query rewriting-based inference approach. In Web

Information Systems Engineering - WISE 2015 - 16th International Conference,

Miami, FL, USA, November 1-3, 2015, Proceedings, Part II, pages 300–307,

2015.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer, New York, second edition,

2009.

Terry Therneau, Beth Atkinson, and Brian Ripley. rpart: Recursive Partitioning

and Regression Trees, 2015. URL https://CRAN.R-project.org/package=

rpart. R package version 4.1-10.

Hanene Azzag, Gilles Venturini, Antoine Oliver, and Christiane Guinot. A hierar-

chical ant based clustering algorithm and its use in three real-world applications.

European Journal of Operational Research, 179(3):906–922, 2007.

http://CRAN.R-project.org/package=stream
http://CRAN.R-project.org/package=stream
https://CRAN.R-project.org/package=rpart
https://CRAN.R-project.org/package=rpart

Bibliography 178

Nhat-Quang Doan, Hanane Azzag, and Mustapha Lebbah. Growing self-

organizing trees for knowledge discovery from data. In The 2012 International

Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, June 10-

15, 2012, pages 1–8, 2012.

Nhat-Quang Doan, Hanane Azzag, Mustapha Lebbah, and Guillaume Santini.

Self-organizing trees for visualizing protein dataset. In The 2013 International

Joint Conference on Neural Networks, IJCNN 2013, Dallas, TX, USA, August

4-9, 2013, pages 1–8, 2013.

D. Auber. Tulip : A huge graph visualisation framework. In P. Mutzel and

M. Jünger, editors, Graph Drawing Softwares, Mathematics and Visualization,

pages 105–126. Springer-Verlag, 2003.

Carlos Ordonez. Clustering binary data streams with k-means. In Proceedings

of the 8th ACM SIGMOD workshop on Research issues in data mining and

knowledge discovery, pages 12–19. ACM, 2003.

Brian Babcock, Mayur Datar, Rajeev Motwani, and Liadan O’Callaghan. Main-

taining variance and k-medians over data stream windows. In Proceedings of the

Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, June 9-12, 2003, San Diego, CA, USA, pages 234–243, 2003.

Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better streaming algo-

rithms for clustering problems. In Proceedings of the Thirty-fifth Annual ACM

Symposium on Theory of Computing, pages 30–39, 2003.

Mustapha Lebbah. Carte topologique pour données qualitatives: application à

la reconnaissance automatique de la densité du trafic routier. Master’s thesis,

Université de Versailles-Saint Quentin en Yvelines, 2003 2003. URL http://

tel.archives-ouvertes.fr/tel-00161698.

Gérard Govaert. Data Analysis. ISTE-Wiley, 2009. URL https://hal.

archives-ouvertes.fr/hal-00447855.

Georg Krempl, Indre Žliobaite, Dariusz Brzeziński, Eyke Hüllermeier, Mark Last,

Vincent Lemaire, Tino Noack, Ammar Shaker, Sonja Sievi, Myra Spiliopoulou,

et al. Open challenges for data stream mining research. ACM SIGKDD explo-

rations newsletter, 16(1):1–10, 2014.

http://tel.archives-ouvertes.fr/tel-00161698
http://tel.archives-ouvertes.fr/tel-00161698
https://hal.archives-ouvertes.fr/hal-00447855
https://hal.archives-ouvertes.fr/hal-00447855

Bibliography 179

João Gama. A survey on learning from data streams: current and future trends.

Progress in AI, 1(1):45–55, 2012.

João Gama. Knowledge Discovery from Data Streams. Chapman and Hall / CRC

Data Mining and Knowledge Discovery Series. CRC Press, 2010.

Graham Cormode, Minos N. Garofalakis, Peter J. Haas, and Chris Jermaine. Syn-

opses for massive data: Samples, histograms, wavelets, sketches. Foundations

and Trends in Databases, 4(1-3):1–294, 2012.

Agostino Forestiero, Clara Pizzuti, and Giandomenico Spezzano. A single pass

algorithm for clustering evolving data streams based on swarm intelligence. Data

Min. Knowl. Discov., 26(1):1–26, 2013.

W.M. Rand. Objective criteria for the evaluation of clustering methods. Journal

of the American Statistical Association, 66(336):846–850, 1971.

	Acknowledgements
	List of Figures
	List of Tables
	Notations
	1 Introduction
	1.1 Mining data streams
	1.2 Big Data and Square Predict project
	1.3 Our contributions

	2 Fundamentals of Big Data
	2.1 Big Data
	2.2 Distributed data storage systems
	2.2.1 Google File System (GFS)
	2.2.2 Hadoop Distributed File System (HDFS)

	2.3 MapReduce: Basic Concept
	2.4 Distributed platforms
	2.4.1 Hadoop
	2.4.2 Spark

	2.5 Streaming platforms
	2.5.1 Spark Streaming
	2.5.2 Flink
	2.5.3 Massive On-line Analysis (MOA)
	2.5.4 Scalable Advanced Massive Online Analysis (SAMOA)

	2.6 Conclusion

	3 Clustering and Scalable Algorithms
	3.1 Introduction
	3.2 Data clustering algorithms
	3.2.1 k-means
	3.2.2 k-means++
	3.2.3 Self-Organizing Map (SOM)
	3.2.4 Neural Gas
	3.2.5 Growing Neural Gas
	3.2.6 Affinity Propagation
	3.2.7 DBSCAN
	3.2.8 EM Algorithm
	3.2.9 Computational complexity

	3.3 Scalable clustering
	3.3.1 General Framework
	3.3.2 Scalable k-means using MapReduce
	3.3.3 Scalable Self-Organizing Map using MapReduce
	3.3.4 Density-based Distributed Clustering (DBDC)
	3.3.5 Scalable DBSCAN using MapReduce
	3.3.6 Scalable EM using MapReduce
	3.3.7 MapReduce-based Models and Libraries

	3.4 Conclusion

	4 State of the art on Clustering Data Streams
	4.1 Introduction
	4.2 Fundamental concepts for streaming data
	4.2.1 Window models
	4.2.2 Change detection

	4.3 Data stream clustering methods
	4.3.1 Hierarchical stream methods
	4.3.1.1 Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)
	4.3.1.2 Evolution-based technique for stream clustering (E-Stream)
	4.3.1.3 Evolution-based clustering for heterogeneous data streams with uncertainty
	4.3.1.4 ClusTree

	4.3.2 Partitioning stream methods
	4.3.2.1 CluStream
	4.3.2.2 StreamKM++
	4.3.2.3 Data stream clustering with Affinity Propagation (StrAP)

	4.3.3 Gaussian mixture models of data streams under block evolution
	4.3.4 Density-based stream methods
	4.3.4.1 Density-based clustering over an evolving data stream with noise (DenStream)
	4.3.4.2 Self organizing density-based clustering over data stream (SOStream)
	4.3.4.3 SVStream

	4.3.5 Grid-based stream methods
	4.3.5.1 D-Stream

	4.3.6 GNG based algorithms
	4.3.7 Online version of GNG
	4.3.7.1 Grow When Required (GWR)
	4.3.7.2 Incremental variants of GNG

	4.3.8 Computational complexity
	4.3.9 Summary

	4.4 Conclusion

	5 G-Stream : Growing neural gas over data stream
	5.1 Introduction
	5.2 Growing Neural Gas over data stream
	5.2.1 Growing Neural Gas
	5.2.2 G-Stream
	5.2.2.1 Fading function
	5.2.2.2 Edge management
	5.2.2.3 Node insertion
	5.2.2.4 Reservoir management
	5.2.2.5 Model update
	5.2.2.6 Computational complexity

	5.3 Experimental evaluations
	5.3.1 Datasets
	5.3.2 Tuning parameter settings
	5.3.3 Evaluation and performance comparison
	5.3.4 Visualization
	5.3.5 Evolving data streams
	5.3.6 Clustering over sliding windows
	5.3.7 Execution time

	5.4 Conclusion

	6 Micro-Batching Growing Neural Gas for Clustering Data Streams
	6.1 Introduction
	6.2 Micro-batching clustering
	6.3 Modeling using MapReduce
	6.4 Experimental evaluations
	6.4.1 Datasets
	6.4.2 Evaluation and performance comparison
	6.4.3 Visualization of graph creation evolution
	6.4.3.1 Non-overlapping data streams
	6.4.3.2 Overlapping data streams

	6.4.4 Evolving data streams
	6.4.5 Temporal performance vs batch interval

	6.5 Conclusion

	7 Application for Insurance Big Data
	7.1 Introduction
	7.2 Architecture of the Big data framework
	7.3 Application of batchStream for insurance big data
	7.4 Analysis of the insurance big data using batchStream
	7.5 Conclusion

	8 Growing Hierarchical Trees for Data Stream Clustering and Visualization
	8.1 Introduction
	8.2 AntTree
	8.3 Growing Hierarchical Trees for Data Stream
	8.3.1 Dynamic multi-level structure for clustering
	8.3.2 GH-Stream
	8.3.2.1 Initialization step
	8.3.2.2 Assignment step
	8.3.2.3 Tree construction step
	8.3.2.4 Adaptation step

	8.3.3 Complexity

	8.4 Experimental evaluations
	8.4.1 Datasets
	8.4.2 Evaluation and performance comparison
	8.4.3 Visualization of tree evolution

	8.5 Conclusion

	9 Conclusion and perspectives
	A Quality criteria
	Bibliography

