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Introduction

Semiconductor, sit at the connection between insulators and metals. Their physics is

probably one of the most important topics for both academic and industrial research in

the area of the science of materials. For over more than 70 years, their science and the

questions of applications have been nonstop developing. Since many decades silicon

transistors and silicon chips have replaced vacuum tubes in computers and semiconduc-

tors technology is driving most of the societal innovations. Reduction of the size of these

basic elements of computers has required the invention and developments of modern

growth techniques, susceptible to allow deposition of very thin layers of different ma-

terials, namely the epitaxial growth approaches. They permit to control atom by atom

the amount of a given deposited material at the surface of a target substrate and they led

to the development of semiconductors applications, beyond the simple case of transis-

tors, and assembling III-V compounds led to realization of efficient light emitting devices

among which were first light emitting diodes and later semiconductor laser diodes. This

gave birth to optoelectronics and the modern information technology.

It is worthwhile reminding that light emitting diodes (LEDs) based on SiC were invented

and described by Oleg Vladimirovich Losev as early as in 1921 [1], but they were pro-

duced a few decades later. In 1961, James Robert Biard and Gary E. Pittman working at

Texas, USA demonstrated the earliest LEDs emitting a low-intensity infrared light, based

on utilization of GaAs as active material [2]. In 1962, the first visible-spectrum (red) LED

was developed by Nick Holonyak Jr. [1]. Long term efforts followed and sophisticated

stackings of different nanometer-thin arsenides were realized, thus leading to creation

of new materials and new devices with enhanced light emission efficiency of the new

generations of LEDs. Heterostructures based on enlarged series of alternate III-V com-

pounds (antimonides, phosphides) were grown to engineer the wavelength of the emit-

ted light and stimulated emission was realized giving birth to compact solid state lasers
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and digital information storage and exchanges. Compact solid state lasers diodes (LDs)

operating at 1.3 µm or 1.5 µm are used for long-haul communications through optical

fiber and they were the mandatory components allowing for the development of inter-

net. However, the wavelength that could be produced by using the materials saturated

to short wavelengths of orange colour for reasons linked to the intrinsinc properties of

these III-V compounds. Further reducing the wavelength tantalized researchers during

many years until 1986, when at the Meijo University, Japan, Prof. Isamu Akasaki and his

master student Hiroshi Amano, managed to grow high quality wurtzitic GaN. Then, they

could make both n-type and p-type doping, opening the door toward short wavelength

LEDs and paving the way to the realization of the efficient white light emitter based on

such LEDs. Such devices are everywhere among us nowadays. Shuji Nakamura and

they were together awarded the Nobel Prize in physics 2014 for the invention of efficient

blue light-emitting diodes which has enabled bright and energy-saving white light sources.

The development of semiconductor light sources operating at even shorter wavelengths,

in the deep ultra-violet (UV) region is now motivating the researchers in relation with a

wide variety of applications. For instance, deep UV LEDs with emission wavelength in

the range 230-350 nm, are expected to be used in sterilization applications, water purifi-

cation, medicine, biochemistry, sensing field, fluorescence analytical system, and so on

[3]. Thus, the next step is now to realize DUV compact solid-state emitters. One of the

basic building block for the development of this technology is wurtzitic AlN, which has

a wide band-gap around 6 eV [4]. An alternate to it is hexagonal boron nitride (h-BN)

which has also a band-gap value sitting at 6 eV.

Boron Nitride (BN) was discovered very early in 1842 [5] and synthesized as white pow-

ders. This material is simultaneously an old one and a fairly new one. BN preferentially

grows in the hexagonal system similarly to graphite. B and N atoms are alternatively

connected via strong covalent bonds forming planar hexagonal rings, a honeycomb layer

if seen from the top. Adjacent layers stacked by weak van der Waals forces, form a three-

dimensional (3D) crystal. The similarity between the graphite and h-BN lattices are so

strong that chemists named h-BN as ”white graphite”. In relation with its stability in the

context of high temperatures densified powders are used at large industrial scales to real-

ize crucibles for the growth of advanced materials. This material is intensively produced

but as a powder or as a ceramics.
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Little attention was paid to the optical properties of h-BN and to using it as a semiconduc-

tor until Japanese researchers at NIMS,Tsukuba, Japan kicked the ball by growing high

quality single crystals in 2004 [6, 7]. The band-gap of these single crystals was established

to sit near 6 eV and the material was found to be p-type when non-intentionally doped

(in contrast to AlN which is always n-type).

The physical properties of this material, even the nature of the band-gap, were in turn

not well-enough understood as required by semiconductor technology. In particular, the

indirect band-gap of h-BN occur between the top of the valence band at the K point of

the Brillouin zone and the bottom of the conduction band at M [8–11]. This stimulated a

large number of the measurements that are presented in this thesis, which aim to offer a

better understanding of the opto-electronic properties of h-BN and in particular electron-

phonon interaction, beyond the scope of the Born-Oppenheimer approximation. This

is even more interesting as the fabrication of isotopically purified h-BN crystals is also

possible. Boron is available as forms of isotopically purified 10B and 11B. Such isotopic

purification is motivated by the different interactions of 10B and 11B with neutrons and

the possibility to realize neutron detectors having many applications in nuclear energy

industries [12] and cancer treatment by boron neutron capture therapy [13]. In our case,

advantage will be of this 10 percent change in the atomic mass of boron to study subtle ef-

fects related to the physics of isotopic purification in solids among which are the changes

in phonon energies, the changes of interatomic force constants and remormalization of

the bandgap. Besides this, the development of interest for two-dimensional (2D) materi-

als like graphene or transition metal dichalcogenides (TMD), such as MoS2, WSe2 makes

it the ad hoc candidate for bridging the mature technology of III-V nitrides to the fas-

cinating world of 2D materials. Such van der Waals heterostructure have recently been

fabricated and investigated, revealing unusual properties and new phenomena [14].

This thesis is structured as follow:

In the first chapter we will introduce the fundamental properties of hexagonal BN. We

will describe the construction of the electronic band structures of the 2D and 3D h-BN and

we will compare the predictions of the old and of the modern calculations. Besides this,

we will calculate the selection rules for the optical processes. Then, in the last section, we

will describe the symmetries and wavefunctions of the normal phonon modes and we

will give their dispersion relations. Chapter two will be dedicated to the presentation of
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the samples which come from the four different sources from Japan, HQ Graphene com-

pany, Kansas State University or Nottingham University, and which have been grown

using different methods. we will review the basic principles of photoluminescence and

describe the experimental set up we used.

Along the next three chapters we will presente my results and we will discuss them. In

chapter three, we will investigate the impact of the phonon symmetry on the optical re-

sponse of h-BN by performing polarization-resolved PL measurements. From them, we

will measure the contribution of the missing phonon-assisted recombination which was

not detected before this thesis. In a following section, we will address the origin of the

fine structure of the phonon-assisted recombinations in h-BN which arises from over-

tones involving up to six low-energy interlayer shear modes, with a characteristic energy

of about 6.8 meV. In the last section, we will show the signature of the strong-coupling

regime of exciton-phonon interaction in h-BN. In chapter four we will record Raman and

photoluminescence measurements to quantify the influence of isotope effects on optical

properties of h-BN as well as the modifications of Van de Waals interactions linked to

utilization of 10B and 11B or natural Boron for the growth of bulk h-BN crystals. The

fifth chapter will focus on the h-BN thin epilayers grown by Molecular Beam Epitaxy at

Nottingham University. Atomic force microscopy (AFM) images and photoluminescence

features will be combined to confirm the first observation of phonon-assisted recombina-

tion in high quality thin h-BN epilayers grown on c-plane sapphire and Highly Ordered

Pyrolitic Graphite.

At the end of this thesis are offered conclusions and appendixes.
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Chapter 1

Fundamentals of hexagonal boron

nitride

1.1 Materials

By using the reaction of melted boric acid and cyanide potassium, Balmain discovered

boron nitride in 1842 [5]. However, at that time, and roughly speaking, until 2004, only

boron nitride powders or very tiny single crystals were synthesized. The ball for mo-

tivating in depth physical investigations, including this thesis, was kicked in Japan in

2004 when large size single crystals were grown and published [6, 7]. Nowadays, many

methods have been used for synthesizing boron nitride under various forms (powder,

nanotube, bulk crystal). Finally although BN has been used in the industry for a long

time in correlation with its interesting macroscopic physical properties, the interest for

understanding the reason for them more intimately, that is to say from a more quan-

tum mechanical point of view, is only very recent. We will examine in this thesis, the

optical properties of bulk crystals and we will use our understanding of them to cali-

brate the performances of hetero-epitaxial layers: thin BN films that people now try to

grow coherently at large scale on various substrates, with the perspective of developing

a BN-related technology in the area of deep ultra-violet (UV) emission or for realizing

advanced electronic devices.
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1.1.1 The allotrope forms of boron nitride

Boron Nitride is a binary III-V compound (it consists of equal numbers of two light atoms:

Boron (Z = 5) and Nitrogen (Z = 7)). Natural boron is a mixture of 20 at% 10B and 80

at% 11B, which makes thus very interesting to compare the optical properties of natu-

ral BN and isotopically purified BN, that will be discussed in chapter 4. BN exits under

four main crystalline phases: cubic (c-BN), wurtzite (w-BN), rhombohedral (r-BN), and

hexagonal (h-BN). In figures 1.1 and 1.2 are reproduced the atomic stackings of boron

and nitrogen atoms that lead to these structural arrangements [15]. Their general proper-

ties between them are excellent thermal, chemical stabilities, and wide bandgaps (> 5eV).

However, because of the differences in the arrangement of the atoms, each of these four

phases of BN has individual properties and characteristics. Among that, c-BN and h-BN

are the most interesting of the four.

c-BN and w-BN are four-fold coordinated crystals with perfect AB3 tetrahedron for the

cubic crystal and a distortion of one bond to form trigonal pyramid in case of the wurtzite

crystal. The cubic phase of BN is similar to the one of diamond but the crystals are harder,

the wurtzite phase of BN is metastable and thus of very poor interest. The 2s and 2p

orbitals of boron and nitrogen atoms hybridize under the sp3 scheme in case of these

crystals.

Figure 1.1: Schematic diagram of fundamental crystal structures of boron nitride (cubic
and wurtzite phase [15]).
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Figure 1.2: Schematic diagram of fundamental crystal structures of boron nitride: (a)
h-BN in AA’ stacking [16], (b) r-BN with ABC stacking, and (c) BN in AB stacking as

proposed in [17].

The cases of both h-BN and r-BN are different, the 2s and 2p orbitals of boron and ni-

trogen atoms hybridize under the sp2 scheme in case of these crystals which are stacked

along a high symmetry direction, to form piles of hexagons made by alternating pla-

nar bonding of boron and nitrogen atoms located at the nodes of a two-dimensional

(2D) honeycomb lattice. The main difference to emphasize here is the perfect super-

position of boron and nitrogen atoms from a given BN sheet to another one in case of

three-dimensional (3D) h-BN. This is called AA’ stacking (see figure 1.2 (a)). Besides this,

there are two intermediately twisted stackings for the rhombohedral layer (ABC stacking

- figure 1.2 (b)), and the lattice parameter along the stacking direction is about 3/2 the

value for h-BN. Distinguishing these different crystallographic stackings has been very

challenging.

1.1.2 Crystal structure of hexagonal Boron Nitride

The geometric structure of h-BN (that we will just write BN in the rest of this thesis)

has been investigated with X-rays in the beginning of twentieth century with the initial

studies by Hassel [17] until a more consolidated one was proposed by Pease [16]. Their

initial works led to proposing two distinct structures with the important difference com-

ing from the existence (or not) of a center of symmetry in BN. Hassel alleged the stacking

AB (figure 1.2 (c)) of the 2D layers of the honeycomb structure, while Pease alternatively

evidenced an AA’ stacking. This AA’ stacking was since confirmed by a lot of comple-

mentary studies, either theoretical calculations or experimental investigations [18–20].
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Figure 1.3: (a) Collapsed view of reciprocal space of h-BN; the maximum entropy
method derived electron density for the structure of BN projection: (b) along the c-axis

and (c) side view [21].

We have performed our own X-rays measurements in the Institut Européen des Mem-

branes (UMR-5635 CNRS) at Montpellier where Dr. Arie Van der Lee uses a high resolu-

tion X-ray diffraction platform [21]. In figure 1.3 (a) is represented a plot of the diffrac-

tion spots (a projection of the 3D reciprocal lattice of BN) recorded on a single BN crys-

tal. According to the theory of X-ray diffraction by crystals, the intensity of each of the

diffraction spots in the reciprocal space is depending on the nature of the diffraction cen-

ters (atoms) and on their position in the lattice via a structure factor. After some kind of

Fourier transformation of the data (called the maximum entropy method - MEM) one can

reproduce the density of the electron cloud that diffracts the X-ray [21]. This is illustrated

in figures 1.3 (b&c) that present the electronic densities plotted in three-dimension with

both views from top (a) or side (b).

From these figures, it is clear that there exists a six-fold rotation axis (c-axis) that is or-

thogonal to the plot in figure 1.3 (b). Moreover, it strongly confirms the AA’ stacking

of BN with a perfect superposition of the reticular nodes of the adjacent planes stacked

along the c direction with an exact superposition of B and N atoms from one plane to an-

other one. The layers are stacked together by the weak Van der Waals (vdW) interactions

and thus BN can be easily exfoliated into 2D layers. The distance between two nearest

boron and nitrogen atoms in the c direction is c0 = 0.33 nm (it is called interlayer dis-

tance). Within each layer, boron and nitrogen atoms are bound by strong covalent bonds,

with the distance between boron and nitrogen atoms being a0 = 0.144 nm (intra-layer

distance). The crystal space group of BN is named P63mc, the point group of the crystal

is D6h. This indicates that the hexagonal Bravais lattice of the three dimensional stacking

is a primitive one, with the main symmetry operation being the joint product of a 2π/6
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rotation with a 3c/6 = c/2 translation along the c-axis of the crystal.

We will go further in the details of this crystal structure by starting from the simpler case

of 2D BN and after that, by coupling such 2D BN layers to form 3D BN.

2D BN structure

In figure 1.4 (a) is plotted a top view of one boron nitride monolayer. Boron and ni-

trogen atoms are distinguished from each other using spheres of different colors. Red

vectors represent the primitive translation vectors of the hexagonal lattice. With our no-

tation here, the positions of boron and nitrogen atoms are (0,0) and (0, a0). Relatively

to the cartesian axes (x,y), the primitive lattice vectors are τ1 = a(1/2,
√

3/2) and τ2 = a(-

1/2,
√

3/2), where a = a0

√
3 is the lattice parameter. We have constructed the reciprocal

lattice, that is represented, the coordinates of the fundamental vectors of which are: R1

= 2π
a (1,1/

√
3) and R2 = 2π

a (-1,1/
√

3) relatively to the cartesian basis. We remind that, by

definition τ iRi = 2πδij is the Kronecker symbol.

Figure 1.4: Two-dimensional structure (a) and Brillouin zone (b) of BN.
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The Brillouin zone (BZ) of 2D BN is reported in figure 1.4 (b) involving three critical

points Γ, M and K. We have to remark periodic chains of identical atoms oriented along

the ΓK direction with the distance of a. Chains of blue atoms alternate with chains of or-

ange atoms in the direction orthogonal to ΓK. Now considering the ΓM , there are chains

of boron and nitrogen atoms with different interatomic spacings a0 and 2a0, The chains

of atoms in the KM direction are similar to those in the ΓK direction because (M’K’) is

parallel to (ΓK) and it is equivalent to 1/2 ΓK. This result also holds for 3D BN and

it will be of paramount importance for the interpretation of the photoluminescence

properties of BN.

3D BN structure

The 3D BN structure is obtained by a periodic AA’ stacking of 2D BN layers with the

third vector of the primitive cell τ3 = c(0,0,1) obtained by adding τ3 = τ3 ⊥ (τ1,τ2) where

c = 2c0 is the lattice constant in the z direction. Similarly, the third fundamental vector

of the reciprocal lattice is R3 = 2π
c (0,0,1). The schematic diagram of the structure for 3D

BN is represented in figure 1.5. The BZ of 3D BN is also reported in the inset of figure 1.5

Figure 1.5: Three-dimensional structure and Brillouin zone of BN.
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involving six critical points Γ, M, K, A, L and H. The group of k at the Γ point and also

the one of the crystal BN is D6h and it will be determined at different points of the BZ

according to the symmetry at these specific points.

1.2 Selection rules

1.2.1 General considerations

Time-dependent perturbation theory teaches us that the important quantity ruling the

transition rate Γif between an initial state |i〉 and a final state |f〉 is giving by the Fermi’s

Golden rule:

Γif =
2π

~
∑
ki,kf

|Mif |2δ(Ef − Ei − ~ω) (1.1)

whereMif is a matrix element, Ei and Ef are the energies of an initial state |i〉 and a final

state |f〉, ki and kf the wave vectors of these states and ~ω represents the photon energy.

In direct bandgap semiconductors, this matrix element is written:

Mif = 〈nV B,ki|Vphoton|nCB,kf 〉 (1.2)

where |nV B,ki〉 and |nCB,kf 〉 are the initial and final states with nV B and nCB the va-

lence and conduction band indices, Vphoton is the light-matter interaction term.

At first order, k-conservation rules requires that ki=kf when one makes the usual ap-

proximation that both the exciton-polariton effects and the wave number of the photon

are neglected [22].

Then, for every k-vector, |nV B,ki〉 and |nCB,kf 〉 can be attributed a given symmetry, ac-

cording to the symmetry of the small group of the wave vector at this specific k, and in

agreement with the theory of the representation of the wave functions of solids in terms

of irreducible representations (IRs). Group theory permits to establish if such transitions

between states of given wave vectors are allowed or forbidden, depending on the non-

vanishing or vanishing value of such matrix element.

Let S(|nV B,ki〉) and S(|nCB,kf 〉) represent the symmetries of the valence and conduc-

tion bands at the k point. We suppose that we also know the symmetry S(Vphoton) of the

photon interaction. Then, the matrix element 〈nV B,ki|Vphoton|nCB,kf 〉 will not vanish

under the strict condition that the direct product of symmetries S(|nV B,ki〉), S(|nCB,kf 〉)
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and S(Vphoton) contains the symmetry of the identity S(E). This we can write as:

S(|nV B,ki〉)⊗ S(Vphoton)⊗ S(|nCB,kf 〉) ⊂ S(E) (1.3)

In case of indirect transitions, the light-matter interaction process will involve a phonon.

Therefore, calculation of the selection rules is much more complicated. The matrix ele-

ment in this case is written:

Mif = 〈nV B,ki|Vphoton|nint,kp〉〈nint,kp|Ve−phonon|nCB,kf 〉 (1.4)

where |nint,kp〉 represents an intermediate state and Ve−phonon is the electron-phonon

interaction term. We note that ki = kp, as mentioned above for a first order, so that kf −

kp = p which is phonon wave vector. In BN, the maximum of the valence band sits at

K point of BZ and the minimum of the conduction band is at M point in BZ (that will be

discussed in details later) so the phonon wave vector of BN is kp = MK.

Identically to the condition described above for direct bandgap semiconductors that hold

for the first term of the matrix element, we have:

S(|nV B,ki〉)⊗ S(Vphoton)⊗ S(|nint,kp〉) ⊂ S(E) (1.5)

Similarly, one has to calculate the condition for having a non-vanishing second term:

S(|nint,kp〉)⊗ S(Ve−phonon)⊗ S(|nCB,kf 〉) ⊂ S(E) (1.6)

which requires knowing: (i) the symmetry of the different phonon modes having wave

number q, (ii) the symmetry of state |nCB,kf 〉 which is sitting at kf . According to Bas-

sani and Hassan [23], and perturbations’theory, equation 1.6 is calculated at the k point

of the lowest symmetry. It is therefore mandatory to establish the compatibility relations

between all IRs of small groups of k at different locations inside the BZ.

Within the framework of the dipolar interaction, the symmetry of the photon S(Vphoton)

is given by the symmetry of the electric field of the photon [24]. Depending on its polar-

ization we know from the compatibility tables that it transforms like x, y or z. Vphoton is

thus odd in real space. Which means that |nV B,ki〉 and |nint,kp〉 or |nCB,kf 〉 have differ-
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ent parities in real space. Ve−phonon represents the interaction operator with the phonon

field that transfers some momentum via the electron - phonon interaction. It is even in

real space [23].

To get a full understanding of the electronic band structure of BN, it is mandatory to

know the symmetry properties of the complicated band structure of BN and also the

symmetries of the different phonon modes at the different points of the BZ.

1.2.2 Symmetry of electronic states

The electronic configurations of the B and N atoms are respectively: B (1s2, 2s2, 2p1) and

N (1s2, 2s2, 2p3). We will limit the discussion here to a tight-binding analysis restricted

to the atomic states that contribute to the chemical bond, namely states of the n = 2 shell

of boron and nitrogen atoms, and we will neglect couplings with the empty states of the

n ≥ 3 shells. Each state of BN is thus described by Bloch functions formed from the

atomic orbitals: 2s, 2px, 2py and 2pz . As mentioned above, 2D BN has 2 atoms in the

unit cell and 3D BN has 4 atoms, we should expect 2x4 = 8 bands in 2D case and 4x4 = 16

bands in 3D case. Therefore, we have to solve an 8x8 matrix eigenvalue equation in the

2D case, and 16x16 one in the 3D case to find the energies at each wave vector k. Now,

we will consider the symmetry of electronic states in two didactical cases, beginning by

considering the 2D BN case and by further coupling these layers along the c direction to

build the electronic states of 3D BN.

a. Symmetry of electronic states of 2D Boron nitride

In order to obtain simple description of energy bands of BN and to understand experi-

mental optical data, we first consider just one single layer (2D BN).

At center of BZ (Γ point), the point group of 2D BN is D3h which has only twelve sym-

metry operators: E, 2C3, 3C
′
2, σh, 2S3 and 3σν , inversion symmetry does not exist at the

center of the hexagon in contrast to graphene. Among that, E is the identity operator,

Cn is noted for rotation operators following 2π
n (n = 1, 2, 3, 4, 6). C2 and C3 are thus ro-

tations by 180°and 120°which are called two-fold and three-fold rotations, respectively.

Operators σ are reflection about a plane with the under-script ν or ~ defined for a plane

parallel or perpendicular to the rotation axis. Finally, S3 is an improper operator which

composes a C3 operator followed by an σh operator. These twelve symmetry operations
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Figure 1.6: Symmetries of σ and π states under σh operator.

are gathered into 6 different classes, four of them being unidimensional, two of them be-

ing two-dimensional. At zone center, because of the presence of the symmetry operation

σh, the determinant can be factorized into a determinant of order six formed with the

Bloch functions s, px and py (σ-states) that are invariants under σh, and a determinant of

order two formed with the Bloch functions pz (π-states) that are changed of sign under

σh (figure 1.6).

Therefore, we can distinguish the energy states as even or odd ones with respect to the

symmetry operator σh. Their symmetries will be noted as S+ in case of invariance under

σh and S− for the other case.

At the relevant points of high symmetry of the BZ, as calculated by Doñi and Parravicini

[19], these determinants may be further reduced by using as basic functions, linear com-

binations of Bloch functions that are symmetrized according to the compatibility relations

between the group of k at the center of the BZ, and the small group of k at the point under

consideration. To do so, the symmetry of the point group at this specific point should be

established and the procedure described above should be reproduced mutatis mutandis.

As mentioned above, the point group isD3h at the center of BZ, it becomes C3h at K point

and C2v at M point of BZ. The irreducible tables of D3h, C3h and C2v point groups are

given in Appendix A. There, symmetry operators are noted using different notations de-

pending on people studying lattice vibrations or electronic states. For example, people

studying phonons note them C
′
i if their generic wave functions are invariant under σh,
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C
′′
i in the other case. As usual, two-dimensional representations are labelled using E,

and letter A is used for mono-dimensional representations, with under-script 1 and 2.

Under-script 1 is used for the purely symmetric representation in the absence of σh, 2 in

the other case. At the Γ point the relationships between the notations that are used are:

Γ+
1 , Γ−1 , Γ+

2 , Γ−2 , Γ+
3 , Γ−3 = A

′
1, A

′′
1 , A

′
2, A

′
2, E

′
, E
′′

where the superscripts + and - represent parity against action of symmetry operation σh

following Doñi and Parravicini notation [19]. Basis functions of each of these irreducible

representations of interest for us are shown in the right column of tables shown in Ap-

pendix A. The relationship between the notations are shown in tables 1.1 and 1.3 which

are followed by Doñi and Parravicini et al. [19], George F. Koster et al. [25] and Cotton et

al. [26]. They are not explicitely offered in the other, more compact notations.

At K point, the point group is C3h which has six symmetry operators: E, C3, C−1
3 , σh, 2S3

and S−1
3 . The symmetry elements in addition to the identity are C3 and C−1

3 rotations

with axis along z, the symmetry plane σh and two S3 and S−1
3 operations (rotations C3

and C−1
3 respectively) further followed by a reflection in a plane perpendicular to the

rotation axis). At M point, the point group C2v has four symmetry operators: E, C2, 2σν .

There is a vertical symmetry plane, for example (y,z) that is orthogonal to the plane of

σh, the intersection of both being a two-fold symmetry axis (parallel to y) in addition to

identity. We note that the tables generally label ′′z′′ the orientation of the two-fold axis

but here the C2 axis lies along the y direction of the crystal. Using the classical labelling

D3h D3h D3h C2v(y) C2v(y) C2v(y) C3h(z) C3h(z) C3h(z)

Doñi Koster Cotton Doñi Koster Cotton Doñi Koster Cotton

Γ+
1 Γ1 A

′
1 M+

1 M1 B1(x) K+
1 K1 A

′

Γ−1 (z) Γ4 A
′′
2 (z) M−1 M4 B2(x) K−1 K4(z) A

′′
(z)

Γ+
2 Γ2 A

′
2 M+

2 M2 A1(y) K+
2 K2 A

′

Γ−2 Γ3 A
′′
1 M−2 M3 A2 K−2 K3 A

′′

Γ+
3 Γ6 E

′
M+

1 +M+
2 M1 +M2 A1(y)+ K+

1 +K−2 K1 +K2 E
′

+ E
′∗

(x,y) (x,y) B1(x) (x,y) (x,y)

Γ−3 Γ5 E
′′

M−1 +M−2 M3 +M4 A2 +B2 K−1 +K−2 K3 +K4 E
′′

+ E
′′∗

Table 1.1: The relationship between the notations of the symmetries.
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Point Γ (D3h) Point M (C2v) Point K (C3h)

Γ+
1

sN

M+
1

sN
K+

1

sN

sB sB pxB + ipyB

Γ+
3

pxN pyN
K+

2

pxN + ipyN

pyN pyB sB

pxB
M+

2

pxN
K+

3

pxN − ipyN

pyB pxB pxB − ipyB

Γ−2
pzN

M−2
pzN K−1 pzN

pzB pzB K−2 pzB

Table 1.2: Symmetrized combination of Bloch function for 2D BN at Γ, K and M points
in BZ.

of tables, the two planes are vertical ones and the specificity of σh that we emphasize

since the beginning of this section could be lost if care were not taken. The compatibility

relations between γ, K and M points are shown in table 1.1.

The energy levels in BN are obtained by expanding the Bloch states in terms of a lin-

ear combination of atomic orbitals. The symmetrized linear combinations of the atomic

states for Γ, M, K points are shown in table 1.2, where one can see that all IRs are mono-

dimensional away from zone center due to the lack of inversion symmetry. Specifically, at

Γ point we have: 2Γ+
1 Bloch states that are formed from the linear combination of s states

of B and N atoms, 2Γ−2 Bloch states are given by the linear combinations of states pz , and

the 2Γ+
3 doubly-degenerate Bloch states are the linear combination of px, py states. These

are summarized in the left column of table 1.2. The 8x8 matrix that we have to solve is

reduced into four 1x1 ones (for the two 2Γ+
1 and the two 2Γ−2 Bloch states) and two 2x2

ones (2Γ+
3 Bloch states). At K point (middle column of table 2), now we have to solve (i)

two non-degenerated 2x2 matrices with an initial state s state of one kind of atom and an

equally weighted linear combination of px and py states of the other kind of atom; (ii) a

2x2 matrix with coupling of both kind of atoms via linear combination of complex conju-

gates of the previously cited ones of their px and py states; (iii) two 1x1 matrices as the pz

states of the N and B atoms have different symmetries. At M point (right hand column
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of table 2), one has to solve a 4x4 matrix starting for s and py states of the two atoms (y is

chosen arbitrarily), a 2x2 matrix for the px ones (x label derives from the preceding choice

of y), and again a 2x2 matrix for the pz states.

In the left part of figure 1.7 is the typical band structure for the BN monolayer that was

calculated by a simple tight-binding method [19] compared with a modern approach

published in 2014 (right part) [27]. The dispersion relations arising from pz states of boron

and nitrogen atoms are highlighted in red and green colors, respectively. The different

interaction parameters in the models lead to different results: for instance, the energy of

pz state of N atom is lower than px and py states at Γ point in the modern calculations, in

opposition to the old calculation. However, in the old calculations, the physics resulting

from the symmetry is kept: the pz states of both atoms are decoupled from the others,

the first energy band exhibits a minimum in Γ and is gapped at the edges of the BZ at

K and M before the second band is out of any extra coupling away from high symmetry

points where, is maximized again at Γ. It is obvious that even if shapes are changed, the

physics has been framed by the simple tight-binding approach and symmetry considera-

tions. This simplified 2D model is very convenient for approaching the 3D description of

the band structure of BN and for calculating the selection rules for the optical transitions.

Figure 1.7: Electronic band-structure of 2D BN using simple tight binding method (left)
[19] and modern approach (right) [27].
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b. Symmetry of electronic states of 3-D Boron nitride

In case of 3D BN, we have to consider the full 16x16 matrix as mentioned above in line

with having two nitrogen atoms and two boron ones in the unit cell of the crystal, one

pair for each layer of the AA’ stacking. These atoms are noted N1, N4, B2, B3 (figure 1.5).

As pointed out by Doñi and Parravicini [19], a good approximation for calculating the

band structure of 3D BN consists in coupling layers of 2D BN. Thanks to the high value

of the interlayer distance along the z direction, and as only pz atomic orbitals peak along

the z direction, they proposed to calculate the band structure of 3D BN by simple cou-

pling of the pz states of the N and B atoms belonging to adjacent layers of the AA’ stack-

ing. Thus, by doing so, interlayer couplings between intra-layer σ states are neglected.

In the context of this approximation, the modification of the band structure only occurs

from 2D BN to 3D BN thanks to new interactions between the π states (formed with pz

orbitals of both kinds of atoms). We restrict our discussion here to the AA’ coupling of

D6h D6h D6h D2h(y) D2h(y) D3h(y) D3h(y) C2v(y) C2v(y)

Doñi Koster Cotton Koster Cotton Koster Cotton Koster Cotton

Γ+
1 A1g M+

1 Ag K1 A
′
1 T1 A1

Γ−2g Γ+
2 A2g M+

3 B2g K2 A
′
2 T2 B1

Γ+
3 B1g M+

2 B3g K4 A
′′
2 T3 B2

Γ+
4 B2g M+

4 B1g K3 A
′′
1 T4 A2

Γ+
5 E1g M+

3 +M+
4 B1g +B3g K5 E

′
T3 + T4 A2 +B2

Γ+
6 E2g M+

1 +M+
2 Ag +B2g K6 E

′′
T1 + T2 A1 +B1

Γ−1 A1u M−1 Au K3 A
′′
1 T3 A2

Γ−2u(z) Γ−2 (z) A2u(z) M−3 B2u(z) K4(z) A
′′
2 (z) T4(z) B2(z)

Γ−3 B1u M−2 B3u K2 A
′
2 T1 B1

Γ−4 B2u M−4 B1u K1 A
′
1 T2 A1

Γ−5 E1u M−3 +M−4 B3u(x)+ K6 E
′

T1 + T2 A1 +B1

(x,y) (x,y) B1u(y) (x,y) (x,y)

Γ−6 E2u M−1 +M−2 Au +B2u K5 E
′′

T3 + T4 A2 +B2

Table 1.3: The relationship between the notations of the symmetries for 3D BN at Γ, K
and M points in BZ.
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Point Γ (D3h) Point M (C2v) Point K (C3h)

Γ−2g
pzN1 − pzN4

M−2g
pzN1 − pzN4

K−2

pzN1

pzB2 − pzB3 pzB2 − pzB3 pzN4

Γ−2u
pzN1 + pzN4

M−2u
pzN1 + pzN4 pzB2

pzB2 + pzB3 pzB2 + pzB3 pzB3

Point A Point H Point L

A1

pzN1
H3

pzN1

L1

pzN1

pzN4 pzN4 pzN4

pzB2
H2

pzB2 pzB2

pzB3 pzB3 pzB3

Table 1.4: Symmetrized combinations of Bloch function for 3D BN at Γ, K , M, H, A and
L points in BZ.

the π states of 2D BN. Linear combinations that are even (gerade) and odd (ungerade)

regarding the inversion center located at the middle of the interlayer spacing can be

constructed. The group of k is D6h at center of BZ, the small groups of k are D3h at K

point, D2h at M point and C2v at T point. The irreducible tables of the point groups are

given in appendix A. The compatibility relations between Γ, K, M and T points are shown

in table 1.3 with different notations followed by Doñi and Parravicini, George F. Koster

and Cotton as mentioned above. We note that, the (+,-) superscript in Koster corresponds

to (g, u) underscripts in the notations of Doñi and Cotton.

In table 1.4 are given the symmetrized combinations of Bloch functions derived from

atomic states pz for 3D BN at the Γ, M and K, as well as in the direction of the stacking A,

H and L are indicated.

In figure 1.8 are reported the dispersion relations that result from the coupling between pz

atomic states of the different layers [19]. Similar to the 2D case, the dispersion relations of

the pz states of boron and nitrogen atoms are plotted in red and green, respectively. Con-

sidering M and Γ points, each state M−2 (respectively Γ−2 ) of the 2D case is split into M−2g

and M−2u (respectively Γ−2g and Γ−2u) due to the interaction between different layers. Now

considering the K and L points, there is no splitting, as a straightforward consequence of
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Figure 1.8: Electronic band-structure of 3D BN for pz states using simple tight binding
method [19].

the expressions of the symmetrized combinations of atomic orbitals and the possibility

offered by group theory to have two-fold degeneracy in case of D3h symmetry. Slightly

moving away from K along the ΓK direction, the symmetry is lowered to C2v and this

degeneracy is lifted. We stress the lack of splitting and the twofold degeneracy in the KL,

LA, KH and LH directions.

In fact the complicated dispersion relations in the high energy conduction band levels

could be accounted for by the inclusion of more atomic orbital states corresponding to

the n ≥ 3 shells. The price to pay should be to increase the number of empirical tight-

binding parameters. The limit of old tight-binding calculations to atomic states of the n

= 2 shell leads to a wrong result when comparing with the modern calculations that will

be referenced later, who went beyond this limit. Specifically, the band structure for pz

states of Doñi and Parravicini indicated a direct fundamental bandgap of BN at K point

as shown in figure 1.8 whereas, in the modern calculations, the fundamental bandgap of

BN is indirect because the minimum of conduction band is at M point.

However, we know the symmetry of the top most valence band state and of the bottom

conduction state which knowledge will be of value for computing the selection rules for

the phonon-assisted radiative recombination processes.
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1.3 Modern calculations of electronic band structure of boron ni-

tride

The band structure of BN has been already calculated from the beginning of the 1950s un-

til nowadays. Many approaches have been used for calculations such as: tight binding;

density functional theory (DFT), local density approximation (LDA) [10, 19, 28–34]. A

quite accurate and detailed calculation was published in 2006 by Arnaud et al. [30] using

the GW approximation which was studied before by Blase et al. [31]. Their calculations

(figure 1.9 (top, left)), indicate that BN is unambiguously an indirect bandgap semicon-

ductor with the extrema of the fundamental conduction and valence bands respectively

sitting at the M and near K point (T1 point) in the ΓK direction of Brillouin zone. The

minimum of the direct bandgap is located at H point. The value of the indirect bandgap

Figure 1.9: Calculated (top) and experimental (bottom) electronic band structure for
bulk hexagonal boron nitride [10, 31, 34].
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transition between T1 and M is around 5.95 eV and is 6.5 eV for the direct bandgap be-

tween M valence and conduction band states. This calculation has been reproduced in

several publications with excellent agreements [10, 33, 34]. The sitting of the maximum

of the valence band in the neighborhood of K point has been confirmed through the in-

teresting calculation published in 2015 [33]. The most recent calculation by Vinson et al.

[10] also asserted the indirect bandgap of BN, with the fundamental gap of 6.34 eV and

direct gap of 6.8 eV located at H (1/3,1/3,1/2) (Figure 1.9 (top, right)). They find that the

extrema of the conduction and valence bands are at M (1/2,0,0) with an energy of 4.3 eV

and near K at an energy of -2.038 eV or -2.042 eV, -2.054 eV depending on the position:

M, Γ or H points, respectively.

From the experimental point of view, Henck et al. [34] published the measurements of

the valence band by Nano ARPES (angle-resolved photoemission spectroscopy) in 2017.

This work indicates that the maximum of the valence band locates away from K point

in the ΓK direction (Figure 1.9 (bottom)) in agreement with the calculations mentioned

above.

In summary, recent theoretical calculations all predict that BN is an indirect bandgap

semiconductor with a minimum of the conduction band at the M point of the first Bril-

louin zone and a maximum of the valence band peaking a little bit away from the K point

of the first Brillouin zone in the ΓK direction.

1.4 Phonon symmetries and dispersion relations

With four atoms per unit cell in BN, there are twelve phonon modes that are gathered

at the center of the Brillouin zone. To determine the symmetries associated with atomic

displacements, each atom is attributed a set of cartesian vectors, which leads the compu-

tation of phonon modes in a 12-dimensional representation basis. The 12x12 matrices that

represent the action of the symmetry operators of D6h on this basis are expressed. This

permits to determine the characters of this reducible representation for all the classes of

the group. Then one can expand this reducible representation along the irreducible repre-

sentations of our group. This having been done, the matrices representing the symmetry

elements are assembled in order to form the projector operators of the symmetries that

appear during the decomposition of the irreducible representation. This permits to obtain
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the symmetrized combination of the atomic displacements: the phonon eigen-vectors.

Computing the phonon modes is much more complicated as interactions between the

nuclei of the different atoms need to be included in the expression of the dynamical ma-

trix, the eigen-values of which will give the phonon energies. This is fairly difficult, the

textbook models of linear chain of atoms are over simplified regarding the resolution of

our 3D problem.

1.4.1 Normal modes

Although the nature of the fundamental bandgap of BN led to controversial literature

it was not the case of phonon modes thanks to Raman and far InfraRed measurements

that were published as early as in 1966 [18]. In their pioneering work, Geick and Perry

also proposed the symmetrized atomic displacements that could explain twelve phonon

modes from 4 atoms in a unit cell. Depending on the movement direction of atoms (in-

terlayer or intra-layer), we also divide these modes into two types: in plane and out-of

plane modes.

There are three acoustic phonon modes (E1u and A2u symmetries at BZ center). Two of

the three are in-plane translation modes that will be further noted LA and TA, and the

third is an out-of plane mode which we will note ZA. There are shown in figure 1.10.

Figure 1.10: Acoustic phonon modes of BN.

Nine remaining modes are optical phonon modes, including two twice degenerated Ra-

man active modes, three InfraRed active modes and two inactive modes (silent modes).

The value of the high frequency Raman-active (Ehigh2g ) phonon mode of E2g symmetry

was measured at 169.8 meV at room temperature (RT) by Geick and Perry [18]. Though

they could not find the second Raman-active phonon mode (Elow2g ) because of difficult

experimental conditions, they predicted this mode to have an eigen-frequency smaller

than 18.6 meV. In figure 1.11 is the schematic representation of atomic motion for the two

Raman active phonon modes at high and low frequencies. We emphasize here that both
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Figure 1.11: Raman active optical modes at low and high energies at center of Brillouin
zone.

of them are in-plane modes. For the Ehigh2g mode, boron and nitrogen atoms move in the

opposite directions in the layer, whereas the movement of them for the second one is in

a same direction in the plane but different directions with adjacent planes. Because of a

weak interaction along c-axis and a strong dependence on interlayer force constant, the

second Raman active mode (interlayer shear mode) is difficult to obtain as said above.

However, in 1978, this low frequency mode was independently observed for the first time

by two groups: namely by Nemanich et al. [20] and by Kuzuba et al. [35] with an energy

of about 6.5 meV at room temperature. Then studies were published regarding the de-

pendence of this mode with hydrostatic pressure [36], crystal size and temperature [20].

Regarding InfraRed active modes, there are two modes of E1u symmetry and a single

mode of A2u symmetry as shown in figure 1.12. The A2u mode is an out-of plane mode

with the energy of 96.4 meV at RT, whilst the E1u in-plane modes split into ETO1u and ELO1u

at center of BZ with energies of 169.4 and 199.6 meV respectively, due to the long-range

Coulomb interactions as pointed out by Michel and Verberck [37]. In their paper, they

compared two phonon dispersion relations were calculated without and with the long-

range Coulomb force, respectively. The difference between two calculation is the LO-TO

splitting with the splitting energy of ∆ωE1u = ωELO
1u
− ωETO

1u
= 30.2 meV. Because of the

Figure 1.12: InfraRed active optical modes at center of Brillouin zone.
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Coulomb interaction which breaks the symmetry field in BN leading to the split of the

longitunal and transverse optical phonons.

Finally, there are two silent modes of symmetries B1g, which eigen-vectors are given

in figure 1.13 and that correspond to the interlayer breathing mode. This B1g mode is an

out-of plane mode with the boron and nitrogen atoms movement along the c-axis. Specif-

ically, the boron and nitrogen atoms move in the same direction (c-axis) within a plane,

but different directions in adjacent planes. Their eigen-energies are 14.8 meV and 100.8

meV at zone center.

Figure 1.13: Silent modes at low and high energies at center of Brillouin zone

1.4.2 Phonon dispersion relation

These very much documented series of experimental results stimulated the production of

theoretical calculations using various theoretical approaches (DFT, LDA) [8, 9, 18, 37–39].

The first calculation of phonon dispersion relations of bulk BN was done by Kern et al.

[8] using a first principle force constant method in 1999. This calculation was confirmed

by many works by Wirtz et al. [9], Serrano et al. [38], Michel and Verberck [37], Vinson

et al. [10]. Almost all the calculations have a good agreement with each other and with

experiment data.

In the figure 1.14 is shown the most detailed phonon band structure, which was calcu-

lated recently by Cuscó et al. [39] with more accuracy than in previous calculations. In

this phonon band structure 12 phonon branches are clearly identified. Cuscó et al. have

labeled the three acoustic phonons LA (ELA1u ), TA (ETA1u ), ZA (AZA2u ) and the nine optical

branches are labeled TO1 (E1low
2g ), LO1 (E2low

2g ), TO2 (E1high
2g ), LO2 (E2high

2g ), LO3 (ELO1u ),

TO3 (ETO1u ), ZO1 (Blow
1g ), ZO2 (A2u), ZO3 (Bhigh

1g ). In the blue notations, eigenvectors of the

different modes may appear several times and for that reason they are distinguished us-

ing a superscript to indicate their energy (low or high). Along ΓK direction, Raman-active
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Figure 1.14: Phonon dispersion relations calculation of BN along a high symmetry [39]

modes with E2g symmetry (for both high and low energies) split into TO1 - LO1 and TO2

- LO2 branches. Similarly, InfraRed-active mode E1u splits into TO3 – LO3 branches. The

frequencies for the three pairs of branches TO1-TA; LO1-LA; TO2-TO3 are very close but

they are not degenerated. This is summarized in table 1.6.

We have to remark that the notations of the different symmetries depend on the language

used in the community of people that are using a given experimental technique. It may

sometimes become a nightmare if it is required to bridge these different languages of the

literature.

To understand what the symmetries of these phonon modes are, and how they transform

at any point of the BZ, it is important to determine the compatibility relations between

the phonon modes at zone center, and at any point of the BZ, in order to calculate the

selection rules for the optical processes. In our case, we know that the phonon-assisted

recombination of electron and holes will have a KM wave number, which is equivalent

to 1/2 ΓK. Therefore we will have to determine the compatibility relations between the

vibration modes in a crystal of D6h symmetry (Γ point in BZ) and a crystal of C2v sym-

metry (ΓK direction at T point) as explained earlier in that chapter.

At Γ point (D6h), a cartesian basis is following (x,y,z) with z axis colinear to the 6-fold

26



symmetry axis, while at T point (C2v), the two-fold rotation axis is collinear to ΓK direc-

tion (x) which is chosen to transform like A1 symmetry. ΓM (y) and ΓA (z) directions are

chosen to transform like B1 and B2 symmetries, respectively (Figure 1.5). A summary of

the correlation between IRs of D6h and C2v is obtained by comparing two character tables

of D6h and C2v point groups (Appendix A), as shown in the correlation table 1.5 below.

D6h C2v

B1g B2

A1g A1

E2g A1 +B1

E1u A1 +B1

A2u B2

Table 1.5: Correlation table for D6h and C2v point groups.

From this table, we have the transformation of the phonon modes with different symme-

tries.

For acoustic phonons:

• E1u + A2u⇒ A1 + B1 + B2 (LA, TA, ZA branches respectively).

For optical phonons:

• E2g ⇒ A1 + B1 (TO1, LO1, TO2, LO2 branches)

• E1u⇒ A1 + B1 (TO3, LO3 branches).

• A2u⇒ B2 (ZO2 branch).

• B1g ⇒ B2 (ZO1 and ZO3 branches).

1.5 Selection rules for the optical transitions

We have to distinguish two cases here.

In case 1: the photon emitted or absorbed propagates in the direction of the six-fold

symmetry axis of 3D boron nitride. The electric field of this photon is orthogonal to it

and it will be taken either parallel to x or to y. Its symmetry is similar to the symmetry of

x or y.

We now consider matrix element of Fermi’s Golden rule:

Mif = 〈nV B,
−−→
ΓT1|Vphoton|nint,

−−→
ΓT1〉〈nint,

−−→
ΓT1|Ve−phonon|nCB,

−−→
ΓM〉 (1.7)
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We consider the phonon-assisted transition from the top valence band at T1 (the compat-

ibility tables indicate the symmetry of the valence band state is A1(T) + B1(T) towards

the bottom of the conduction band at M (the compatibility tables indicate the symme-

try of the conduction band is B1u(M) + B3u(M)). The symmetry of the photon is in the

most general case written A1(T) + B1(T). The symmetry of the electric field being odd

in real space (it is the symmetry of a polar vector), initial and final states have different

spatial parities. |nint,
−−→
ΓT1〉 represents all intermediate virtual or real states that satisfy

k-conservative selection rule, and it must be even in real space. From the multiplication

tables, the symmetry of |nint,
−−→
ΓT1〉 has to be written A1(T) + B1(T) to make sure that ma-

trix element 〈nV B,
−−→
ΓT1|Vphoton|nint,

−−→
ΓT1〉 does not vanish. We note that parity does not

explicitly appear in this very compact notation and that A1(T) + B1(T) notations do not

give any information about parity.

In case 2 the photon emitted or absorbed propagates orthogonally to the direction of the

six-fold symmetry axis of 3D boron nitride. The symmetry of the electric field is B2(T),

and is aligned parallel to c which is the case of interest here if one wishes to make a

discriminative experiment (chapter 3). We again consider the phonon-assisted transition

from the top valence band A1(T) (resp. B1(T) ), then intermediate state |nint,
−−→
ΓT1〉 must

have symmetry B2(T) (resp. A2(T)).

The virtual states involved in the k-conservative selection rules being different in the two

cases, this should impact the non-vanishing conditions of the second matrix element

〈nint,
−−→
ΓT1|Ve−phonon|nCB,

−−→
ΓM〉 and we expect to probe different phonon modes by doing

experiments in case 1 and case 2 of the experimental configurations that we will use in

the chapter 3.

We now consider the different possible symmetries for the Ve−phonon exciton-phonon in-

teraction and again apply group theory following the method initiated by Bassani and

Hassan [23]. The symmetry of the exciton-phonon interaction Ve−phonon is the product of

the symmetry of the phonon under consideration with the symmetry of the excitonic en-

velope function obtained by using Wannier function for exciton wave function which has

to be even in real space so that 〈nint,
−−→
ΓT1|Ve−phonon|nCB,

−−→
ΓM〉 does not vanish for parity

reasons. This restricts exciton envelope functions to those with A1(T) symmetry.

Let us consider an experiment done in the experimental configuration we called case 1 be-

fore. Then one finds that matrix element involving Ve−phonon vanishes when the phonon
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symmetry is B2(T). This selection rule states that emission (or absorption) of a ZO1 or

a ZO3 phonon (which both derive from the phonon modes with B1g symmetry at zone

center) is forbidden in the context of the dipole interaction as well as emission of a ZA

or a ZO2 phonon mode (which both derive from the phonon modes with A2u symme-

try at zone center). However phonon-assisted processes with A1(T) and B1(T) phonons

are allowed. These selection rules can be changed if performing the experiments in the

context of another experimental configuration, namely case 2. Let us choose the Poynt-

ing vector of the photon perpendicular to the z axis of the crystal and let us choose it to

transform like A1(T) for carrying on the demonstration of selection rules for the phonon

assisted process within the context of the group theory analysis. There are two possible

symmetries for the electric field of the photon: (either the electric field of the photon is

colinear with the z axis of the crystal, then the relevant symmetry is B2(T)) or it is of B1(T)

symmetry (then the electric field of the photon is orthogonal to the (B2(T), A1(T) plane).

We have indicated these orientations relatively to the hexagon in figure 1.15.

In context of the B2(T) polarization of the photon, non-vanishing matrix elements

〈nV B,
−−→
ΓT1|Vphoton|nint,

−−→
ΓT1〉 occur for a transition from a valence band state of symmetry

A1(T) (resp. B1(T) ) to an intermediate state of symmetry B2(T) (resp. A2 (T)) .

Regarding selection rules for, 〈nint,
−−→
ΓT1|Ve−phonon|nCB,

−−→
ΓM〉 non-vanishing elements are

〈B2(T )|B2(T )|A1(T )〉 and 〈A2(T )|B2(T )|B1(T )〉, which indicates that emission or absorp-

tion of one ZO1 or one ZO3 phonon (which both derive from the phonon modes with B1g

symmetry at zone center ) is a priori allowed in the context of the dipole interaction,

with this polarization of the photon, as well as emission of a ZA or a ZO2 phonon mode

Figure 1.15: Orientations relatively to the hexagon.
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(which both derive from the phonon modes with A2u symmetry at zone center. We just

have to keep in mind that B1g mode are silent at the center of the BZ, whilst A2u ones are

InfraRed active. Therefore, the optical feature recorded in case 2 of the experimental con-

figuration among that B1g is an even mode whilst A2u is an odd one. Therefore, phonon

B2 should be even so that 〈nV B,
−−→
ΓT1|Vphoton|nint,

−−→
ΓT1〉 does not vanish for odd nature of

the integration. So, ZO1 and ZO3 is phonon modes to consider.

Before moving to second chapter, I would like to present the summary of all phonon

modes of BN as shown in table 1.6.

Phonon mode Phonon mode Symmetry Selection rules
name type at Γ point considering

E ⊥ c-axis E ‖ c-axis
LA Acoustic/In-plane E1u allowed forbidden
TA Acoustic/In-plane E1u allowed forbidden
ZA Acoustic/Out-of plane A2u forbidden forbidden
LO1 Optical/In-plane E2g allowed forbidden
LO2 Optical/In-plane E1u allowed forbidden
LO3 Optical/In-plane E1u allowed forbidden
TO1 Optical/In-plane E2g allowed forbidden
TO2 Optical/In-plane E1u allowed forbidden
TO3 Optical/In-plane E1u allowed forbidden
ZO1 Optical/Out-of plane B1g forbidden allowed
ZO2 Optical/Out-of plane A2u forbidden forbidden
ZO3 Optical/Out-of plane B1g forbidden allowed

Table 1.6: Summary the phonon modes of BN
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Chapter 2

Experiments

This chapter introduces our BN samples (bulk and epilayers) grown by different growth

methods in additional to the concept of the photoluminescence (PL) measurements.

High-purity BN samples play an important role for studying the physical properties

of this material, however, the synthesis of large crystals with high quality was a dif-

ficult task. After the success in growing large, high-purity BN crystals by the group

pf Prof. Taniguchi in Japan in 2004 [6, 7], researchers started paying more attention to

this semiconductor. Nowadays, many methods have been popularly used for synthe-

sizing boron nitride such as a temperature gradient method under high-pressure and

high-temperature method (HP-HT) [7], Ni-Cr flux method for 3D BN [40] or molecular

beam Epitaxy (MBE) [41, 42], CVD [43–49] for 2D BN.

Besides, PL spectroscopy is one of the main fundamental and technologically important

tools for characterising materials. It does not only help to confirm the quality of crystals

but also to understand the underlying physics of the materials. In this thesis, we focus on

understanding the fundamental opto-electronic properties of BN by performing the PL

measurements. This chapter will explain the principle of PL and display the experimental

setup of our measurements.

2.1 Samples

In this thesis, we use four samples from four sources: NIMS - Japan, HQ Graphene com-

pany, KSU - USA, and Nottingham - UK using HP-HT, Ni-Cr flux, and MBE methods

to check the intrinsic optical properties of BN. Three of them are bulk crystals, while the
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remaining one is an epitaxy BN samples. The details of each sample will be presented

below.

2.1.1 NIMS samples

The first successful synthesis of large sized BN bulk crystal was reported in 2004 by

Taniguchi and co-worker at the National Institute for Materials Science, NIMS - Japan

[6, 7]. This process basically consists in high pressure (4-5 GPa) and high temperature

(1500°C- 1650°C) growth for 20-80 hours using the barium boron nitride (Ba3B2N4) sol-

vent. The crystal size was obtained until few millimeters in three dimensions (Figure

2.1). The quality of crystals was analyzed by secondary ion mass spectrometry (SIMS)

and cathodoluminescence (CL). High-purity level of such crystals reflects in the absence

of any impurities absorption in the optical spectrum [6, 7].

Figure 2.1: Typical image of the BN crystal from National Institute for Materials Science
- NIMS, Japan.

2.1.2 HQ Graphene samples

The second series of samples was bought from HQ Graphene Company [50]. HQ Graphene

is a manufacturer of high quality 2D single crystal such as: WSe2, MoSe2, MoWSe2 and

etc. Their products are being sold directly to a large of number of universities, labora-

tories and companies. The BN crystals from this commercial company have a typical

lateral size is around 1 mm (Figure 2.2). The synthesis details remain still protected,

the high qualities of crystals, however, were verified by many studies and publications

[11, 51].
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Figure 2.2: Typical image of the BN crystal from HQ Graphene company [50].

2.1.3 KSU samples

Isotopic 10B and 11B enriched BN crystals were synthesized by our colleagues working

at Department of Chemical Engineering, Kansas State University, USA using the Ni-Cr

flux method [40]. High purity elemental 10B (99.22 at %) or 11B (99.41 at %) powders

were mixed with Ni and Cr powders to give overall concentrations of 4 at % B, 48 at%

Ni and 48 at% Cr. The mixed Ni-Cr-B powder was loaded into an alumina crucible and

placed in the furnace. The reaction tube was evacuated, and then filled with N2 and

forming gas (5% hydrogen in balance argon) to a constant pressure of 850 Torr. During

the reaction process, the N2 and forming gases continuously flowed through the system

at rates of 125 sccm and 25 sccm, respectively. In this experiment, all nitrogen in the hBN

originated from the flowing N2 gas. The forming gas was used to minimize oxygen and

carbon impurities that are recognized as the main contaminants in BN crystals. The liquid

solution was formed by heating the furnace up to and holding at 1550°C for a dwell time

of 24 hours. The BN crystals were precipitated by cooling at a rate of 1°C /h to 1500°C.

After growth, the system was quickly quenched to room temperature.

Figure 2.3: Typical image of the BN crystal from Kansas State University, USA [40].
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2.1.4 MBE samples

The last series of samples comes from our colleagues - the group of Prof. Sergei Novikov

working at the School of Physics and Astronomy, University of Nottingham, Notting-

ham, United Kingdom. These samples are grown by high temperature Molecular beam

epitaxy (MBE) at substrate temperatures between 1200°C and 1700°C (thermocouple tem-

peratures). The MBE system is a dual-chamber Veeco GENXplor specially modified to

achieve growth temperatures of up to 1850°C and is capable of growth on rotated sub-

strates of up to 3 inches in diameter [41]. The BN layers were all grown using a boron cell

temperature of 1875°C and the nitrogen source operated at 550 W with a nitrogen flow

rate of 2 standard cubic centimeters per minute (sccm). Epitaxial BN was grown on two

substrate with a size of 10x10 mm2: sapphire (0001) and highly ordered pyrolytic graphite

(HOPG). Before introduction into the MBE growth chamber the HOPG substrates were

cleaned by exfoliation using adhesive tape to obtain a fresh surface for growth. Following

exfoliation, substrates were further cleaned by immersion in toluene (CHROMASOLV

for HPLC, Sigma-Aldrich) for 24h and after that, thermally cleaned in a tube furnace at

200°C in a flow of Ar:H2 gas (0.15 standard litres per minute for 4h) to remove any re-

maining polymer residue.

Figure 2.4: Typical image of the epitaxial BN from University of Nottingham, United
Kingdom
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2.2 Photoluminescence

2.2.1 Principle of photoluminescence.

Photoluminescence occurs after electrons have been excited by a high energy photon

(similar to cathodoluminescence with high energy electrons). In this excitation process,

the electron passes from a state Ei to another one Ef . The initial state may be called the

ground state while the final state may be called the excited state. These electrons remain

in the excited state for a short time (around 10−12 s) because they relax to lower states by

phonon emission. Finally, rediative recombination may occur (figure 2.5).

Figure 2.5: Principle of photoluminescence spectroscopy (PL).

Practically, in case of a semiconductor, the most common radiative transition is between

states located at the conduction and valence band extrema. The difference in energy

between the conduction and valence bands is called the bandgap.

Depending on the position in k-space of the conduction and valence band extrema, the

band gap of a semiconductor is of two types: a direct band gap or an indirect band

gap. The radiative recombination processes for direct-bandgap and indirect bandgap

semiconductors are sketched in figure 2.6.

• In case of direct bandgap semiconductors, electrons and holes sit at the same po-

35



Figure 2.6: Illustration of a photon emission process in (left side) the direct and (right
side) the indirect band gap semiconductors [52].

sition in both the conduction band and the valence band: the Bloch states have

identical wave numbers kh and ke in the first Brillouin zone. Therefore, an electron

can directly emit a photon. Examples of direct bandgap material include some III-V

materials such as InAs, GaAs, GaN.

• In case of indirect bandgap semiconductors, the extrema of the conduction and va-

lence band do not occur at the same point of the Brillouin zone. In that specific

situation, emission or absorption of a phonon of ad-hoc vector is required to ful-

fill k conservation rule. Therefore, a phonon wave vector kp is needed as a third

particle to emit a photon and the photons can only be recorded at energies given

by ECB(k) − EV B(k′) − ~ω(kp). Such recombination processes are less favorable

than direct transition as the probability of phonon emission. Examples of indirect

bandgap materials include Si, Ge, AlAs, AlP, AlSb, GaP.

Radiative transitions in semiconductors may also involve localized defects or impurity

levels. Therefore, the analysis of the PL spectrum helps in the identification of specific

defects or impurities in semiconductors.

The PL spectroscopy have been performed for all four samples (NIMS, HQ Graphene,

KSU and MBE) in order to: (i) check the quality of BN samples; (ii) understad the intrinsic

the optical and electronic properties of this BN material.

36



2.2.2 Experimental setup

In our experimental setup, all BN samples are held on the cold finger of a closed-circle

cryostat for temperature-dependent measurements from 10K to room temperature. De-

pending on each sample and the purpose of each PL measurement, two-photon excita-

tion spectroscopy and one-photon excitation spectroscopy were performed. In case of

two-photon excitation, the excitation beam is provided by the second harmonic of a Ti:Sa

oscillator, tuned at 408 nm in resonance with the sharp peak in the two-photon excitation

spectrum. The spot diameter is of the order of 100 µm, with a power of 50 mW. In case

of one-photon excitation, the excitation beam is provided by the fourth harmonic of a cw

mode-locked Ti:Sa oscillator with a repetition rate of 82 MHz. The spot diameter is 300

µm with a power of 40 µW.

As demonstrated in Ref.[11], at high energy of around 6 eV, using two-photon excita-

tion spectroscopy can avoid a stray light coming from laser light scattering, in contrast to

one-photon excitation spectroscopy. However, in some cases, for instance the thickness

of sample is too thin, an absorption can occur when using two-photon excitation spec-

troscopy, leading to an observation of no signal. That reason why we have to switch to

one-photon excitation spectroscopy.

The setup of our PL experiments is described in figure 2.7. The excitation beam goes

through a lense and is focused on the samples. The PL signal is collected by two parabolic

Figure 2.7: Scheme of our experimental setup devoted to measurements in boron nitride
at 8K, under (a) two-photon excitation and (b) one-photon excitation.(M) = mirror, (P) =

prism, (L) = lense, (C) = cryostat, (PM) = parabolic mirror, (F) = band-pass filter, (S) =
spectrometer.
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mirrors with the focused PL signals. The PL signals are directed to a f = 500 mm Czerny-

Turner monochromator, equipped with a back-illuminated charge-coupled device (CCD)

camera (Andor Newton 920), with a quantum efficiency of 50% at 210 nm. The monochro-

mator is equipped with three diffraction gratings: a 1800 grooves/mm grating blazed at

250 nm, a 1200 grooves/mm grating blazed at 250 nm, and a 300 grooves/mm grating

blazed at 250 nm. In case of two-photon excitation spectrosopy, we use a band-pass fil-

ter around 200 nm with a low transmission at 400 nm in front of the spectrometer for

complete laser stray light rejection. The integration time is varied (from a minute to 10

minutes) depending on each sample and each measurement.

Polarization-resolved photoluminescence measurements

The large and thick sample using the growth method developed at NIMS was used

for polarization-resolved PL measurement. The two-photon excitation spectroscopy was

performed for these measurements. The setup of our PL experiments is described in

figure 2.8. In this polarization-resolved PL measurements, the sample holder comprises

two positions, which are either parallel or perpendicular to the cold finger for collect-

Figure 2.8: Scheme of our experimental setup devoted to measurements in boron nitride
at 8K, under two-photon excitation. Depending on the sample position, two
configurations of detection are probed, with an emission wave-vector either

perpendicular (inset, left) or parallel (inset, right) to the c-axis.

38



ing along or perpendicular to the c-axis (Figure 2.8, inset), respectively. Between two

parabolic mirrors, there are polarization optics consisting of MgF2 components fabricated

by Kogakugiken: a fixed Rochon polarizer, and a rotating half-wave plate.

• Rochon polarizer is made of two birefringent prisms cemented together. When an

incident beam passes this polarizer, the beam will separate into ordinary rand extra-

ordinary rays. Both of ordinary and extra-ordinary rays propagate linearly the optic

axis in the first prism under the ordinary refractive index. However, upon entering

the second prism, the ordinary ray is continued to transmit straight through, while

extra-ordinary is transmitted with a deviation angle of 2 Å as shown in figure 2.9.

Figure 2.9: Rochon polarizer [53].

• Half-wave plate which is achromatic in the spectral range 180-240 nm, rotates lin-

early polarized light to any desired orientation. The rotation angle is twice the angle

between the incident polarized light and optical axis.

All of results observed from our PL measurements will be discussed in the next chapters.
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Chapter 3

Phonon-assisted transitions

3.1 Identification of phonon-assisted recombination.

Almost all calculations of the band structure of BN, and at least all the recent and accurate

ones, lead to an indirect configuration for the fundamental bandgap of BN, as reviewed

in the first chapter of this thesis. In 2004, the experimental measurement of an unexpected

intense photoluminescence (PL) spectrum that displayed a documented series of features

was reported by Watanabe et al. [6] in high-quality crystals.

Figure 3.1: Cathodoluminescence spectrum of BN (high purity and impure samples) at
room temperature [6, 15].
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Figure 3.2: Photoluminescence (PL) spectrum of BN at 8K with the identification of the
PL lines as phonon-assisted recombination lines in BN [11].

Based on the efficiency of the observed emission, and having in mind the efficiency of

light-matter interaction in traditional indirect semiconductors (with cubic zinc blende or

diamond structures), they allegated from this intense emission the direct nature of the

bandgap of BN. Their study also showed in particular, that cathodoluminescence (CL)

spectra at room temperature, which were obtained from high quality crystals, presented

a series of sharp lines with light emission extending up to wavelength sitting around 215

nm (5.765 eV) (Figure 3.1 - blue line), while CL of defective crystals were giving a broad

band centered around 320 nm (3.87 eV) instead (Figure.3.1 - green line).

This controversy between such a direct bandgap claim, which is now identified as being

an allegation, and the theoretical calculations lasted during more than ten years in a con-

text of numerous and nontrivial inconsistencies and a lack of global understanding. In

2016, our group brought the experimental evidence to support the indirect nature of the

bandgap of BN. This result was published in Nature Photonics [11]. It was demonstrated

that the PL spectrum consits of several emission lines corresponding to phonon-assisted

recombination (phonon replicas) involving phonons at T point of the BZ (Figure 3.2)

which confirming what was discussed in chapter 1. The phonon-assisted transitions have

the following energies: 5.76 eV, 5.79 eV, 5.86 eV, 5.89 eV, and 5.93 eV, and the phonons that

contribute to activate the radiative recombination were called LO, TO, LA, TA, and ZA

respectively. Based on more accurate recent calculations, they will be now more precisely

labeled LO3, TO3/TO2, LA/LO1, TA/TO1, and ZO1 in this thesis following the classifi-

cation performed in Ref. [39].
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Figure 3.3: Photoluminescence spectrum of BN (right side) [11] plotted at the same scale
as the phonon dispersion relations (left side) [39]. The energy of photoluminescence line

iX is taken as the zero for the two plots.

Moreover, it was also reported the new observation of an additional, very tiny peak at

a higher energy of 5.955 eV. This weak PL signal corresponds to the forbidden indirect

exciton transition (now called iX). This iX line has a very weak intensity because, as no

phonon is emitted, its observation violates the selection rule of momentum conservation

for the radiative recombination process. We believe that the imperfect surface of the crys-

tal with defects produces localized potentials having non-vanishing Fourier transform

components V(T)= V(K-M) that permit to overcome the lack of k-conservative selection

rule, thus giving rise to the weak iX radiative recombination.

Our previous detailed examinations of the symmetry of the lattice of BN, of the symme-

try of the phonon modes, and of the symmetry of the Bloch states at different points of

the Brillouin zone and for different energy bands, have led us to conclude in the exis-

tence of selection rules for the light-matter interaction process and for light emission out

of the crystal. To consolidate the determination of the indirect nature of the bandgap of

BN, we have analyzed the polarization of the light emitted under different conditions of

propagation out of the crystal in order to probe the contributions of more phonon modes

than in Ref.[11].

We reproduce in figure 3.3 the method used in Ref.[11] to demonstrate that the series of

sharp lines mentioned above are phonon-assisted transitions. To obtain such conclusion,

the 8K PL spectrum of BN was plotted at the same scale as the phonon band structure that
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was calculated by Cuscó et al. [39], taking the zero of the phonon energies as the energy

of the iX recombination line. The energy detuning of the emission lines respect to the iX

line is found to be 20, 60, 90, 160 and 190 meV, respectively. This displays an excellent

matching with phonon energies at the T point of the phonon dispersion curves, giving

an experimental proof for the indirect nature of the bandgap of BN. We remark that he

larger the phonon energy, the larger the energy detuning with the indirect bandgap at

around 5.95 eV, and thus the lower the energy of the phonon replicas.

In the PL spectrum, besides the observation of the phonon replicas, we also measure a

series of lower energy companion replicas that involve several phonons, corresponding

to complementary multiple energy relaxation processes as we shall demonstrate later in

this chapter.

3.2 The polarization of the photoluminescence of BN

3.2.1 The impact of the phonon symmetries on the optical response in a real

BN crystal

The method for measuring a polarization-resolved PL was described in detail in chapter

2 in two specific cases, for two experimental configurations that will lead to different

PL shapes, raveling the contributions of phonons of different symmetries. The Poynting

vector −→$ of the photon is the product
−→
E ⊗

−→
H where

−→
E and

−→
H represent the electric and

magnetic fields, respectively. We remind that, together with−→$ , the orientation of
−→
E rules

the selection determines, as indicated in chapter 1.

In figures 3.4 and 3.5 are displayed these results recorded at low temperature (8K) for

different orientations of −→$ and
−→
E .

• Case 1: the Poynting vector of the emitted photons −→$ is oriented along the c-axis,

when collecting light from the sample top surface. In that case, the emitted light

is polarized in the (x,y) plane, and four main emission lines that correspond to the

phonon replicas LO3, TO2/TO3, LA/LO1, and TA/TO1 were distinctly recorded.

A residual PL could be detected that is interpreted in terms of the ZO1 phonon

replica. It is hardly observable, but it is possible to detect it. When rotating the

linear polarizer in the (x, y) plane, the PL spectrum does not change as shown for

two typical spectra recorded with different polarization angles (figure 3.4). This
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Figure 3.4: (a) The experimental geometry for a Poynting vector −→$ parallel to c-axis. (b)
Polarization-resolved photoluminescence spectroscopy in bulk BN at 8 K for a Poynting
vector −→$ parallel to c-axis for two orthogonal orientations of the linear polarization of

analysis.

result is not surprising and it is predicted in text books of classical optics in case

of uniaxial crystals when an experiment is realized in such conditions, that is to

say for light propagation along the main axis of the crystal. Using a more sophisti-

cated language and in the frame work of a semi-classical description, that involves

symmetry of conduction and valence band states as detailed in chapter 1, this re-

sult is recovered, but it requires to calculate the selection rules, and prescripts to

add for the calculation of the allowed transitions. The contributions of phonons

with symmetrized displacements lying in the (x,y) plane, leading to the vibrational

modes LO3, TO2/TO3, LA/LO1, TA/TO1 with symmetries A1(T) or B1(T). We re-

mind that, as it was calculated in chapter 1, transitions involving out-of plane vi-

brational modes ZA or ZOi are forbidden for different reasons: banal spatial parity

for ZA and B2(T) symmetry for ZOi. The observation of the weak line at 5.93 eV

which corresponds to the emission of a ZO1 phonon is attributed to the conditions

of the experiments and to the un-perfect shape of the crystal which makes selection

rules to slightly depart from ideality.

• Case 2: the Poynting vector of the emitted photons−→$ is perpendicular to c-axis (let

us call its orientation x here), photons can be detected having their electric field par-

allel (red) to the c-axis or orthogonal to it (black) as illustrated in the figure 3.5(a).
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Figure 3.5: (a) The experimental geometry for a Poynting vector −→$ perpendicular to
c-axis. (b) Polarization-resolved photoluminescence spectroscopy in bulk BN at 8K for a
Poynting vector −→$ perpendicular to the c-axis for a linearly-polarized detection, either

parallel (red line) or perpendicular (black line) to the c-axis.

Recording PL emitted from the sample edge with such a Poynting vector −→$ , and

choosing the polarization of the photon in the appropriate directions, one expects

to see the impact of selection rules according to our group theory analysis of chap-

ter 1. As reported in figure 3.5(b), the result is different from what was recorded in

the configuration named case 1. We still obtain a PL composed of the five emission

lines corresponding to the phonon replicas LO3, TO2/TO3, LA/LO1, TA/TO1 and

ZO1. However, the intensities of all phonon replicas depend strongly on the orien-

tation of the polarizer in the (y, z) plane as found when comparing the red and black

spectra in the figure 3.5(b). For the emission polarized perpendicular to c-axis (Fig-

ure 3.5(b)-black line), the ZO1 line, again is hardly observed with a weak intensity,

while intensities of PL lines involving other phonons replicas have strong inten-

sities. The ratio between the intensities of the LA/LO1 and ZO1 phonon replicas

is approximately two hundreds. Rotating the polarizer around the x-axis (Figure

3.5(b)-red line), the intensity of the ZO1 phonon-assisted PL increases whereas, the

intensities of the four remain transitions all reduce in concert. The ratio between

the intensities of the LA/LO1-assisted and ZO1-assisted phonon replicas now is

five. According to chapter 1, the ZO1 phonon replica is allowed and the others are

forbddiden in the conditions of the Poynting vector of the emitted photons −→$ is

perpendicular to c-axis and the polarized detection parallel to c-axis because of se-
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lection rules. This discussion is in agreement with what we observe as shown in

3.5(b)-red line, but the reduction of the intensities by factor two is only for the LO3,

TO2/TO3, LA/LO1, TA/TO1 phonon replicas.

We will go further to understand more the polarization-dependence of these phonon

replicas in the two case of the Poynting vector −→$ .

Interpretation of the incomplete extinction of the phonon replicas in case of the Poynt-

ing vector −→$ perpendicular to the c-axis.

The PL signal intensities of LA/LO1 (blue spheres) and ZO1 (red spheres) phonon repli-

cas as a function of polarization angles are plotted in figure 3.6. We observe a clear an

anti-correlation relatively to the polarization of the emitted photons. We note an incom-

plete extinction of LA/LO1 phonon replicas when analyzing along the c-axis, while the

ZO1 phonon replica is maximally contrasted as a function of polarization angle. We

interpret this phenomenon as due to orientation disorder at sample edges leading to the

imperfect selection rules in our experiment.

A quantitative interpretation of the reduced contrast is presented below. The intensity of

the emission lines when rotating a polarizer is written:

I(E, θ) = IV (E) cos2(θ) + IH(E) sin2(θ) (3.1)

where IV and IH are the intensities of the emission signal for two linear orthogonal po-

larizations of analysis, θ is the polarization angle, it is the angle between the orientation

of the electric field of the photon and the c-axis of the crystal.

Before going to discuss our experiment, we first describe the case of a perfect BN single

crystal with an ideal shape and −→$ ||x as sketched in figure 3.7(a). When we consider a

ZO1 phonon replica, selection rules indicate that IV (EZO1) 6= 0 and IH(EZO1) = 0, so

that the emission diagram is given by IV (EZO1) cos2(θ), while for an in-plane vibrational

mode, like LA/LO1 for instance, it is IH(ELA/LO1
) sin2(θ) and the contrast of polarization

is 100% for both cases.

In our real crystal, we assume that the sample edge is made of a collection of facets each

one having its normal direction rotated by an angle α around a direction parallel to the

sample edge, as schematically shown in figure 3.7(b). The analysis in this case is the same
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Figure 3.6: Photoluminescence signal intensity and the fits of LA/LO1 (blue) and ZO1

(red) phonon replicas as a function of polarization angles.

as in the former one but for each facet represented by its orientation α we write:

Iα(E, θ) = IαV (E) + IαH(E) (3.2)

The emission diagram is obtained after integration over the distribution of α probed by

the laser spot in the crystal under consideration. Without any assumption on the distri-

bution , we can draw several important conclusions about the polarization dependence

of the emission lines :

• For a dipole oriented along the c-axis of the crystal, i.e. ZO1 line, the contrast is still

100 % as for the perfect BN monocrystal, in agreement with our data.

• For a dipole oriented orthogonal to the c-axis of the crystal, i.e. LA/LO1 line, that

is to say in the two-dimensional (x,y) plane, the integration process is different,

and distribution of orientations slightly impacts the polarization of the emission

diagram in such a way that how the ratio IH/IV equals:

– IH/IV = 1/2 is obtained for all possible orientations are probed by the laser

spot. This value is close to our experimental value, thus indicating a highly
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Figure 3.7: (a) Ideal case of a perfect BN monocrystal, (b) real case of a polycrystalline
bulk BN sample with a distribution of thick multilayer segments, each one having a
c-axis orientation rotated by an angle around a direction parallel to the sample edge.

disordered sample edge in terms of the c-axis orientation respect to the sample

edge direction.

– IH/IV = 4/7 is obtained when only few multi-layer segments are probed by

the laser spot. This value shows that the consideration of a continuous dis-

tribution of orientation α is not essential for retrieving a-value close to our

experimental one of about 1/2.

Interpretation of the impact of the position of the laser spot on the polarization of the

photoluminescence in case of the Poynting vector −→$ parallel to the c-axis.

In this section we examine the universality of the anti-correlation between the maxima of

the emission diagram for ZOi phonon replcias, for which the associate atomic displace-

ments produce an on-axis dipole, while for other phonons the corresponding dipole is

oriented in the plane of the hexagonal stacking. We perform these other experiments

with the Poynting vector −→$ parallel to the c-axis and we scanned the position of the

laser spot from the middle towards the two edges of the sample. The positions of the

laser spot are indicated for each measurement in the inset of figures 3.8 (a-f). In figure

3.8 below, we display the photoluminescence signal intensity of the LA/LO1 (a,c,e) and

ZO1 (b,d,f) phonon replicas as a function of the polarization angle. The measurements

in the middle of the sample display a weak dependence of the polarization of analysis

for both phonon replicas (see figure 3.8 (a,b)). For the measurements by collecting from

the sample edges (figure 3.8 (c-f)), we obtain a pronounced polarization-dependence of

the emission spectrum with the anti-correlation of ZO1 and LA/LO1 phonon replicas as
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Figure 3.8: Photoluminescence signal intensity of the LA/LO1 and ZO1 phonon replicas
as a function of polarization angle for a Poynting vector −→$ parallel to c axis, for laser

excitation spot located in three positions (red spots) located at sample middle and
sample edges.

expected. If orientation disorder was averaged by excitation at the center of the crystal

it is no longer the case when we probe the edge of the sample. We thus conclude that

the additional measurements displayed in figure 3.8 provide a definite cross-check of our

model based on orientation disorder at the sample edges, thus fully validating our quan-

titative interpretation of the incomplete extinction of the phonon replicas when collecting

from the sample edge.

3.2.2 Missing phonon mode

As discussed in the previous sections, five phonon-assisted emissions (LO3, TO2/TO3,

LA/LO1, TA/TO1, and ZO1) were identified in Ref.[11] from the energy spacing of the

PL lines matching the one of phonon modes at T point of the BZ. However, we have

demonstrated the impact of the phonon symmetries on the optical response of BN by

polarization-resolved measurements with the different polarization dependence for the

two types of phonon modes: in-plane or out-of plane vibrational modes because of selec-

tion rules. In particular, for Poynting vector −→$ perpendicular to the c axis and polarizer

along c axis, out-of plane phonons replicas are allowed as shown by the maximum inten-
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Figure 3.9: Polarization intensity differential emission spectrum corresponding to the
difference of the polarization-resolved photoluminescence spectra displayed in figure

3.5(b) (blue solid line). The dashed red line is the photoluminescence spectrum of BN at
8K for a Poynting vector −→$ perpendicular to c-axis and the polarization detected

parallel to c-axis.

sity of the PL line at 5.93 eV that corresponds to the ZO1 phonon replica. In this condition,

we should also obtain the ZO3 phonon replica which has the same B1g symmetry as the

ZO1 phonon replica, and of course they thus have the same selection rules. The raising

question here is where this phonon replica is.

Regarding the phonon dispersion relations of BN (figure 1.14 and figure 3.3), we remark

that at the T point of the BZ, the energy of the ZO3 phonon mode is close to the one of

LA/LO1 phonon mode with a down shift in energy of 10 meV. We realize in figure 3.5(b)

in case of the emission polarized parallel to c-axis (red line) that there is a very tiny peak

close to the LA/LO1 phonon replica, 10 meV at lower energy. This value coincides ex-

actly with the LA/LO1- ZO3 energy splitting as pointed out before from the dispersion

relations.

To confirm our interpretation, we have subtracted the two PL spectra in figure 3.5(b) af-

ter normalizing both spectra to the maximum intensity of the PL line corresponding to

the LA/LO1 phonon replica. We get a new spectrum with two striking emission lines

as shown in figure 3.9 in blue solid line together with the PL spectrum obtained for the

emission polarized parallel to the c-axis (dashed red line). One of them, as we know,

corresponds to the ZO1 phonon replica lying at 5.93 eV. The other one at 5.87 eV has the
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Figure 3.10: Photoluminescence spectra of BN from figure 3.9 (right side) plotted at the
same scale as the phonon dispersion relations (left side) [39]. The energy of

photoluminescence line iX at 5.955 eV coincides with the zero phonon-energy.

same profile as the identified phonon replicas. It lies at the expected position of the ZO3

phonon-assisted transition.

To demonstrate that the PL line at 5.87 eV corresponds to ZO3 phonon-assisted transi-

tion, we reproduce again in figure 3.10, the comparison between theoretical calculations

and our data. The PL spectrum in figure 3.10 is plotted at the same scale as the phonon

dispersion relations that were calculated by Cuscó et al. [39], taking again for the zero

of the phonon energies the energy of the iX recombination line. We have an excellent

matching between the emission line at 5.87 eV (blue solid line) with the energy of the

ZO3 phonon mode at the T point of the phonon dispersion curves (highlighted in pink

color) in addition to the excellent agreement for all phonon replicas of PL spectrum (red

dash line) as pointed out before. This agreement confirms our identification of the miss-

ing ZO3 phonon replica due to the optical out-of plane phonon mode.

In summary, by means of polarization-resolved PL spectroscopy, the identification of the

missing ZO3 out-of plane phonon replica together with the other phonon replicas gives a

comprehensive understanding of the phonon-assisted transitions as well as the original-

ity of the optical properties in this material, besides a strong confirmation for the initial

work reported in Ref.[11] about the indirect nature of the bandgap in BN.
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3.2.3 The emission diagram of the indirect exciton iX line

Measuring the signature of the forbidden indirect exciton which gives a tiny PL signal at

an energy of 5.955 eV, was first achieved in Ref. [11]. No phonon assists this recombi-

nation which is strictly forbidden in line with k-selection rule, which is a severe rule. To

the best of our knowledge, signature of shallow impurity-bound excitons were reported

in PL spectra of Ge, Si, GaP, AlP, AlAs, AlSb, or Diamond, but the observation of indirect

free exciton was not reported. To observe this emission line, it is required that k-selection

rule is broken, which we believe it occurs at the BN-air interface when a defect creates

a localized variation of potential with ad-hoc component of its Fourier transform that

relax the forbidden nature of the radiative electron-hole recombination. The binding en-

ergy of the indirect exciton is high in BN. It was measured to be about 130 meV [11],

which means that electron and hole are strongly interacting and that a weak and local-

ized surface perturbation may break the selection rule without significantly altering the

value of this binding energy. This having been accepted, the question of the orientation

of the electron-hole dipole arises, which we have targeted to solve. We have thus per-

formed polarization-resolved PL measurements, for a Poynting vector −→$ orthogonal to

the c-axis with a much longer acquisition time (the integration time of each PL spectrum

is 50 minutes) than for the polarization-resolved PL measurements with Poynting vector

−→$ parallel to the c-axis (5 minutes for the integration time of the PL spectrum). Figure

3.11 (a) shows the polarization-resolved PL experiments presenting the iX line and ZO1

phonon replica. We observe a strong dependence of the intensity of the iX line with the

orientation of the polarizer, in addition to the one of the ZO1 line as found when com-

paring the red and black spectra in this figure. For the emission polarization parallel to

c-axis (figure.3.11(a) - red line) the ZO1 phonon replica has a strong intensity, while the

iX line is hardly observed with a weak intensity. Rotating the polarizer, the ZO1 intensity

decreases whereas the iX intensity increases as shown in a black line of figure 3.11(a).

Figure 3.9(b) plots the intensities of iX and ZO1 as a function of polarization angle (green

and red spheres, respectively) together with their fits as presented in solid lines. We

reach the maximum value of the intensity of ZO1 for the emission polarizer along c-axis,

whilst the iX line has a minimum intensity. The vice versa phenomenon is obtained for

the emission polarization perpendicular to c-axis. We find again, the anti-correlation of

the polarization dependence of the iX line and ZO1 phonon replica proves that the dipole

52



Figure 3.11: (a) Polarization-resolved photoluminescence spectroscopy in bulk BN at 8K
for a Poynting vector −→$ perpendicular to c-axis in the energy range of the fundamental

indirect exciton iX around 5.95 eV. (b) Photoluminescence signal intensity of the ZO1

phonon replica and iX line as a function of polarization angle, for a Poynting vector −→$
perpendicular to c-axis.

of the fundamental indirect exciton is predominantly aligned in the layer plane.

Since BN is an anisotropic material, there is a strong contrast between the in-plane cova-

lent binding and the inter-layer vdW coupling. The anti-correlation shown in 3.11 proves

that the exciton dipole lies in layer plan, as expected from the strong binding in the layer

plane.

In conclusion, we have succeeded in the challenging measurements of the polarization-

dependence of the iX emission intensity giving the result for the dipole of the exciton in

a predominant in-plane orientation.

3.3 Fine structure of phonon-assisted transitions in BN

3.3.1 The origin of the fine structure of phonon-assisted transitions

We reproduce our PL spectrum in a linear scale as shown in figure 3.12. There are

five emission lines at 5.76, 5.79, 5.86, 5.89 and 5.93 respectively, corresponding to LO3,

TO2/TO3, LA/LO1, TA/TO1, and ZO1 phonon replicas. We remark that the intensities

of the LO3 and TO2/TO3 optical phonon replicas are higher than the remains phonon

ones because of the larger electron-phonon coupling for these modes [24]. As discussed

in the previous section, the intensity of the ZO1 phonon replica is very weak because it is
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Figure 3.12: Photoluminescence spectrum of BN at 8K in linear scale.

forbidden due to selection rules. Therefore, it is multiplied by factor 400 in this figure for

a better visibility. Besides five identified phonon replicas, we also obtain additional PL

emission lines sitting at the low-energy side of each phonon replica. Specially, these PL

lines are found to be shifted toward lower energy by a value of around 7 meV (pink ar-

rows in figure 3.12). In general, the phonon replicas together with the additional PL lines

have the same multiplet structure giving a fine structure of the PL spectrum in BN. In par-

ticular, there are three identical doublet structures for LO3, TO2/TO3 and ZO1 phonon

replicas while it is hardly observable for the other ones. This phenomenon relates di-

rectly to the phonon group velocities that will be discussed in details later. We note that

the energy splitting between these emission lines (∼ 7 meV) exactly matches the energy

of the Raman active mode at low energy (Elow2g ) at the zone center which corresponds to

the shear movement of boron and nitrogen atoms between adjacent planes as discussed

in chapter 1, page 27. We will prove later that these additional PL lines arise from this

interlayer shear mode.

The origin of the fine structure of BN can be interpreted simply from figure 3.13 which

presents the schematic of the phonon-assisted recombination process. BN is an indi-

rect bandgap semiconductor, so in the recombination process, we need phonon emission

54



Figure 3.13: Schematic representations, in the single-particle picture of the electronic
band structure, of the phonon-assisted recombination processes of the LO3 line (left

part), and of the LO3+2E2g one (right part).

(green arrow) due to the momentum conservation, in addition to a photon emission (blue

arrow). This process is presented in the left side of figure 3.13.

In the right side of this figure, we show a different process with the contribution of an-

other phonon (red arrows) in addition to the phonon and photon emitted previously

(figure 3.13, left side). These phonons sit at the center of BZ without modifying the mo-

mentum balance, thus many of these phonons can be emitted in addition to the one at

the T point, which is mandatory for the conservation of k.

Therefore, the origin of the fine structure of the phonon-assisted transitions in BN would

derive from the phonon replicas (at T point) combined with overtones of the interlayer

shear mode (at zone center). The splitting between these overtones is small (about 6.8

meV) and independent of the phonon replica under consideration. What changes is the

strong (or weak) contrast between the fundamental phonon replica and its overtones.

The origin of the varying contrast will be quantitatively correlated to the values of the

group velocity at the T point. This will be detailed further in this section. We will first

demonstrate the origin by presenting our theoretical model for the PL spectrum of BN.

We will show you later the overtones of the interlayer shear mode up to six phonons
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and the relation between the phonon group velocity with the full width half maximum

(FWHM).

3.3.2 Theoretical model for PL spectrum

a. Emission spectrum profile

On the basis of Ref.[11], the emission spectrum used in our theoretical model can be

written:

Hm,n(E) = ρ(E − Em,n)(E − Em,n)e
−E−Em,n

kBT F (3.3)

where the energy Em,n is given by Em,n = EiX − Em − nElow2g with EiX the indirect

exciton energy, Em the energy of phonon-assisted recombination at T point of BZ (m =

LO3, TO2/TO3, LA/LO1, TA/TO1, and ZO1, respectively) and n is the number of the

overtones of the interlayer shear mode Elow2g .

The first term, ρ is the joint density of state which is proportional to the square root of

energy for indirect transitions following Elliot [54] with the equation:

ρ(E − Em,n) =

(
2Mn

~2

) 3
2 √

E − Em,n (3.4)

where Mn is the reduced mass.

The second term e
−E−Em,n

kBT comes from our assumption of a full thermal equilibrium and

nondegenerate conditions, since we have the relation between the transition probability

of emission (Wemi) and absorption (Wabs ) [55, 56]i:

Wemi = Wabse
−E−Em,n

kBT (3.5)

The last term F is a form factor that depends on the exciton-phonon matrix element.

According to Ref.[11] the matrix element of exciton-phonon interaction depends on two

terms. The first one is the nature of phonon and its coupling for instance: piezo-electric

coupling and deformation potential for acoustic phonon or Fröhlich interaction for op-

tical phonon. The second one describes the dependence with phonon wave vector of

the exciton-phonon matrix element (called form factor). This dependence is usually ne-

glected in other semiconductors but it plays an important role for the interpretation of the

optical response of BN because BN is a peculiar indirect bandgap semiconductor with the
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extrema of both valence and conduction bands sitting away from the center of BZ. This

form factor is written:

F (E − Em,n) =
1(

4 + a2
(
kT +

E−Em,n

~vmg

)2
)4 (3.6)

where a is the Bohr radius, kT is the phonon wave vector at T point, ~ is the reduced

Planck’s constant, vmg is phonon group velocity of the m phonon branch around T points.

From equation 3.6, there are two quantities we would like to stress here:

• First, there is a cut-off phonon wave-vector (qc) which is given by the inverse of

the Bohr radius (qc ∼ 1
a ). It impacts the emission profile through the modified rate

of phonon-assisted emission. It means that, for phonon-assisted recombination in

semiconductors with a phonon wave-vector larger than qc, the emission intensity

varies rapidly with k leading to the appearance of a peak in the spectrum. As far

as BN is concerned, we have the phonon wave vector kT = ΓK/2 = 0.87.10−10m−1

while the Bohr radius was estimated at a = 3Å according to Ref. [11]. Therefore,

BN has a low qc due to kT > 1
a and it is possible to observe sharp peaks in the

emission profile of this semiconductor as pointed out in Ref.[11], and in contrast to

all other indirect semiconductors studied.

• Second, one has to pay attention to the phonon group velocity defined as the speed

of propagation of energy along a specific direction, which can be calculated follow-

ing the equation:

vg =
∂w

∂k
(3.7)

Because the extrema of the valence and conduction bands of BN sit at K and M of

BZ, the involved phonons are at T point of BZ in the recombination processs (chap-

ter 1). Therefore, we have to take into account phonon group velocity in the form

factor of BN as presented in equation 3.6. In case of other indirect semiconductors

such as diamond, silicon, germanium that have a maximum of valence band sit-

ting at zone center and the minimum of conduction band around high symmetry

point of BZ, the phonon-assisted recombination involve phonons located around

the same high symmetry points, thus their group velocity is zero.

The values of phonon group velocities were calculated together with the phonon
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energy of modes at T point of BZ by Cusco et al. [39]. Their result is shown in table

3.1 below:

Phonon type Phonon energy at T point of BZ Group velocities υg

(meV) (104ms−1)

ZA 20 0.57

ZO1 21.7 0.43

TA 64.6 1.08

TO1 65.1 1.1

LO1 94.3 1.29

LA 94.4 1.27

TO2 162.6 0.18

TO3 162.7 0.17

LO3 185.4 0.57

LO2 179 0.365

ZO3 85 0.362

ZO2 76 0.3

Table 3.1: Phonon energy and group velocities of phonon modes at T point of BZ.

The fit of our spectra was performed step by step by increasing the complexity of the

model. We present here our model in four cases by focusing on LO3 and TO2/TO3

phonon replicas because of the larger visibility of the multiple structure in these phonon

replicas. For all the calculated profiles, we take a = 3Å, kT = 0.87.10−10m−1. For the

Boltzmann distribution in equation 3.3, we take for T an effective electronic temperature

of 50K, following our analysis of the incomplete thermalization of the excitonic gas with

the lattice at a sample temperature of 10K [11].

b. The comparison of the models in four cases

• Case (a): no additional broadening

The equation used for reproducing our data reads:

I(E) =
∑
m

∑
n=0

Amn Hm,n(E) (3.8)
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where Amn is a fitting parameter corresponding to the amplitude of the Hm,n(E)

line. The number of interlayer shear modes n is n = 0 7→ 6 for LO3 phonon replica

and n =0 7→ 3 for TO2/TO3 one. Because the energy splitting of LO3 - TO2/TO3 is

27 meV while the energy of the interlayer shear mode is 6 -7 meV, there is an over-

lap between the low-energy tail of TO2/TO3 phonon replica with high energy of

LO3 phonon replica (figure 3.12), thus explaining the lower value of n for TO2/TO3

phonon replica.

The result of the first model is presented in figure 3.14(a) in pink solid line. We

obtain an enssemble of the peaks for Hm,n(E) components. The two high-intensity

peaks (Xm components) correspond to the LO3 and TO2/TO3 phonon replicas while

the other ones with lower intensities (Xm+nElow
2g

components) arise from the over-

tones of the interlayer shear modes. As seen in this figure, these peaks are too sharp

compared to the experimental data even in the case n=0. Consequently, this model

gives a poor agreement with the experimental data, meaning we have to switch to

a second one. We remark however that the line-width of LO3 phonon replica is

larger than the one of TO2/TO3 phonon replica that relates to their group velocities

(vLO3
g > v

TO2/TO3
g ). When we enhance the group velocity, the form factor varies, the

line-width of the phonon replica increases. We can say that the larger the phonon

group velocity, the larger the line-width of the phonon replica.

• Case (b): constant Gaussian broadening

We try to improve the result of case (a) by doing the convolution of this emission

spectrum with a Gaussian function. The theoretical emission spectrum is:

I(E) =

(∑
m

∑
n=0

Amn Hm,n(E)

)
⊗G0(E) (3.9)

where the Gaussian function is given by:

G0(E) = exp

(
−E

2

σ2
0

)
(3.10)

In this approximation, we kept the same amplitudes Amn as in case (a), and the

width of the Gaussian function σ0 = 2 meV. Such a value leads to a full width at half

maximum (FWHM) of the Gaussian function G0(E) of ∆ = 2
√
ln2σ0 = 3.3 meV. We
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Figure 3.14: Experimental data (symbols) and fit (solid line) of the phonon-assisted
emission spectrum in BN: (a) without any linebroadening, (b) with a Gaussian

broadening identical for each overtone, (c) with a Gaussian cumulative broadening, and
(d) with a Lorentzian cumulative broadening.

note that this width of the Gaussian function is fixed and is totally independent on

the number of the interlayer shear modes.

The result is shown in figure 3.14 (b) in orange solid line. Similarly to case (a), we

observe the peaks for the Hm,n(E) components but these peaks are not as sharp

as the ones in the previous case presented in figure 3.14 (a). Specifically, our the-

oretical model leads to a doublet structure for XLO3 and XLO3+Elow
2g

components

in good agreement with the prominent doublet structure measured for the LO3

phonon replica. However, the first overtones appear too sharp for the TO2/TO3

phonon replica. Morever, increasing the number of the interlayer shear modes, the
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Xm+nElow
2g

components provide too sharp peaks again. On the whole, this model

gives a better agreement with the experiments compared to the previous case espe-

cially for case n = 0, but it is still not good enough for the interpretation of the fine

structure observed in PL spectrum of BN.

• Case (c): cumulative Gaussian broadening

The theoretical emission spectrum in this case differs from case (b) because the

width of the Gaussian function increases with the index n. The theoretical model in

case (c) reads:

I(E) =
∑
m

∑
n=0

Amn Hm,n(E)⊗Gn(E) (3.11)

where the amplitudes Amn were kept the same as in case (a) and the Gaussian func-

tion is:

Gn(E) = exp

(
−E

2

σ2
n

)
(3.12)

with σ2
n=(n + 1)σ2

0 and σ0=2 meV was kept the same as for the previous case. σn

was taken with the assumption of a cumulative Gaussian broadening that means

the linewidth of Hm,n(E) component increases with the number of interlayer shear

mode n. This is the only different point between this cumulative Gaussian broaden-

ing case and the case of the constant Gaussian broadening. As far as the Gaussian

function is concerned, the convolution of two Gaussian functions of widths σ1 and

σ2 is a Gaussian with a width
√
σ2

1 + σ2
2 . In case (b) of indentical broadening pro-

cesses, the linewidth of the Xm+nElow
2g

components (overtones) is the same as the

one of the phonon-replicas (which varies with each phonon-replica accordinng to

the group velocities). In the present case relying on adding each linewidth squared

and then taking the square of the sum, we expect the enhancement of the linewidth

of the overtones to lead to a better result.

The corresponding theoretical spectrum provides an excellent agreement with our

experimental data as seen in figure 3.14 (c) in red solid line. The model exactly

matches not only for the prominent doublet structure but also for the low-energy

side of the phonon replicas. Because the linewidth of the Hm,n(E) component in-

creases with n, instead of the sharp peaks in previous cases, we obtain broader

ones, especially for high index n providing an excellent agreement with the data.

The larger the index n, the broader the line of the Xm+nElow
2g

components, as seen
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for the peaks at 5.766, 5.759 eV and the shoulder at 5.751 and 5.747 eV. We note that

these linewidths increase approximately linearly with the number of the interlayer

shear modes. This effect was predicted by Krummheuer et al. [57] and the obser-

vation of such effect was also reported, on ZnO by Sahoo et al. [58] and CdS by

Schreder et al. [59].

In summary, by taking the assumption of a cumulative Gaussian broadening, this

model gives the best fit for the PL spectrum of BN compared to the case (a) and case

(b). Before showing the fit of the full spectrum using this model, we will present

another case in order to get more insight.

• Case (d): cumulative Lorentzian broadening

The last case is given by the equation below where the convolution is taken with

the Lorentzian function.

I(E) =
∑
m

∑
n=0

Amn Hm,n(E)⊗ Ln(E) (3.13)

where the amplitude Am
n were kept the same as the previous cases and the Lorentzian

function reads:

Ln(E) =
(Γn/2)2

E2 + (Γn/2)2
(3.14)

with Γn=(n + 1)Γ0, and the value of Γ0=3.3 meV leads to the same FWHM as the

Gaussian function for the Xm components. Unlike the Gaussian function, the con-

volution of two Lorentzian functions of widths Γ1 and Γ2 has a width Γ1 + Γ2.

Figure 3.14(d) shows in green solid line the result of this case with a global degra-

dation of the data fitting. In particular, for case of n = 0 and n = 1, we completely

lost the two prominent doublet structure arising from the Xm and Xm+Elow
2g

com-

ponents. Still, the contribution of higher-order components provide a good fit as in

case (c), as can be seen in this figure on the low-energy side of LO3 and TO2/TO3

phonon replicas. This theoretical model as the whole gives a poorer agreement

with the experimental data compared to case (c). It raises the question of the phys-

ical mechamisms underlying the Gaussian and Lorentzian profiles for the fit of the

phonon-assisted broadening that will be discussed in the next section.
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c. Fit of the full spectrum

The best model (case c) is presented again, but for the full PL spectrum of BN (excluding

the ZO3 phonon replica) as shown in solid line in figure 3.15 together with the experimen-

tal data (black sphere). We stress again that our model uses only one parameter which

is phonon group velocity asring from the nature of each phonon replica. We obtain an

excellent fit not only for the two LO3, LA/LO1 phonon replicas (as displayed above), but

also for the two remaining TO2/TO3, TA/TO1 ones. Moreover, we present two fits of

the weak PL emission line at 5.93 eV, taking the group velocity of the ZA phonon (green

solid line) and the ZO1 phonon (red solid line) (figure 3.15 (b)) for the purpose of further

confirming the origin of this PL line. As seen in figure 3.15 (b), the linewidth of the green

solid line is larger than the one of the red solid line due to vZAg > vZO1
g [39], thus reducing

the agreement with the data by taking vZAg compared to vZO1
g . We conclude that the fit

taking the ZO1 group velocity provides a better result compared to the other one, fur-

ther confirming our discussion above, where the PL line at 5.93 eV was assigned to the

phonon replica involving ZO1 phonon mode at T point in BZ.

Now, we comment the LA/LO1 and TA/TO1 phonon replicas where the prominent dou-

blet structure are not observed clearly. As seen in figure 3.15, there is the an excel-

Figure 3.15: Photoluminescence spectrum in HQ Graphene BN in the deep ultraviolet
under two-photon excitation at 3.03 eV, at 8 K. Experimental data are displayed in
symbols, theoretical fit in solid line: (a) LO3, LA/LO1, TO2/TO3, TA/TO1 phonon

replicas; (b) ZO1 phonon replica.
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Figure 3.16: Normalized weight A of the overtones of the interlayer shear modes used in
figure 3.15, as a function of overtone index n.

lent agreement between the Xm components and the data. The boader linewidth comes

from the larger group velocity of LA/LO1 and TA/TO1 phonon replicas (Table 3.1). This

makes the doublet structure of these two phonon replicas hardly observable. This ober-

vation supports the impact of the phonon group velocity on the linewidth of the phonon

replicas as mentioned before. Therefore, the visibily of the fine struture of the phonon

replicas varies as a function of the phonon group velocity.

Figure 3.16 displays the amplitude of each component of the phonon replicas as a func-

tion of the number of the interlayer shear mode n in semilog scale. We take n = (0:6), (0:5),

(0:4), (0:3), (0:2) for LO3, LA/LO1, TO2/TO3, TA/TO1, ZO1, respectively. We observe an

exponential decrease of the amplitude Amn with the index n whatever the phonon nature

m as seen in the figure 3.16. As expected, the higher the order of the electron-phonon

interaction process, the smaller its probability. A quantitative interpretation of the de-

crease of the amplitude with index n would give a direct insight into the physics of the

electron-phonon coupling in BN.

In conclusion, our theoretical model reveals the peculiar origin of the fine structure of

the PL spectrum in BN. Among that, the group velocity plays a vital role directly con-

trolling the line-width of the phonon replicas. The larger the phonon group velocity, the
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broader the line of the phonon replica. The comparison between our model and the data

provides a detailed insight into the origin of the fine struture of phonon replicas in BN as

well as it raises a new question about the different profile between the two Gaussian and

Lorentzian functions. We will discuss this in the next section.

3.4 Exciton-phonon interaction in a strong coupling regime

3.4.1 Comparison between Gaussian and Lorentzian functions

The optical response of solid state systems is affected by two kinds of broadening, which

are described in terms of homogeneous and inhomogeneous broadenings. The first one

is dynamically broadened by rapid variations in the amplitude, phase, or orientation of

dipoles that can come from carrier-carrier interactions, electron-phonon coupling, and

spectral diffusion. In contrast, the second one reflects a static distribution of resonance

frequencies, and the width of the line represents the distribution of frequencies, which

arise, for instance, from disorder, extended or point defects, and more generally any in-

homogeneity in the sample structure.

The different line-shape of each kind of broadening leads to different function for line-

shape fitting. Homogeneous broadening is usually considered to be characterized by a

Lorentzian line profile, whereas inhomogeneous broadening by more complex distribu-

tion functions, the most generic one being the Gaussian statistics.

However, even in the case of a purely homogeneously-broadened or purely in inhomo-

geneously broadened system, the line profile is not necessarily a Lorentzian or Gaussian

functions, some system can be described by two of them, for instance, spectral diffusion

[60]. This process can be described by Gaussian or Lorentzian profile as limiting form for

the correlation function through the product of the spectral fluctuation amplitude ∆ and

fluctuation correlation time τ . If ∆τ � 1 that corresponds to the fast modulation, limit

the optical response takes a Lorentzian profile. This is called the motional narrowing and

it is commonly observed in nuclear magnetic resonance, for example. On the contrary, if

∆τ � 1, the modulation is slow, and the optical response takes a Gaussian profile.

We thus conclude that the Gaussian broadening leading to the best description of the

emission spectrum in BN can be of homogeneous nature as the result of an intrinsic

interaction process, namely the electron-phonon coupling in BN. In this part, we will
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demonstrate the strong coupling regime in BN case with two evidences that are the exci-

tonic line-shape and the temperature dependence of linewidth.

In fact, the same phenomenology applies to the phonon-assisted broadening, as dis-

cussed by Toyozawa in Ref.[61]. Theoretical predictions of Toyozawa demonstrated that

there are two regimes for exciton-phonon interaction with different temperature-dependence

of the exciton line and width. The first one is called weak coupling regime: it occurs when

the exciton-phonon interaction is weak, the effective mass of exciton is small or the tem-

perature is not too high. In this regime, the line-shape of exciton is Lorentzian and its

line-width increases linearly with temperature due to the motional narrowing. On the

contrary, the second regime is called strong coupling regime, describing a strong interac-

tion between exciton and phonon, a large exciton effective mass, and a high temperature.

The excitonic lineshape of this regime is Gaussian and its line-width is proportional to

the square root of temperature.

3.4.2 Excitonic absorption line-shape of BN

The first evidence for the strong coupling regime of the exciton-phonon interaction is the

Gaussian profile that we already presented at low temperature in the previous section.

The comparison between Gaussian and Lorentzian functions in our fits of the PL spec-

trum at low temperature (8K) was displayed in figure 3.14. As discussed above, with the

same FWHM for the n = 0 component, the fit using a Lorentzian function does not lead to

good agreement with experimented data because of the slow decay of Lorentzian wings,

smearing the doublet structure at low temperature (figure 3.14 (c and d)).

More generally, we show in figure 3.17 (black spheres) the PL spectrum of BN at high tem-

perature where the LO3-TO2/TO3 splitting due to longitudinal and transverse phonons

is now hardly observable. The comparison of Gaussian and Lorentzian functions is also

presented in red and green solid lines in this figure. We obtain a better fit when using

Gaussian function (figure 3.17(a)) while, the broad emission bands centered at 5.77 decay

too rapidly to be accounted for by a Lorentzian function (figure 3.17(b)).

By comparing Gaussian and Lorentzian functions in our model at low and high tem-

peratures, we demonstrate that the PL spectrum of BN has a Gaussian nature that is the

first signature for the strong-coupling regime of the exciton-phonon interaction following

Toyozawa’s theory.
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Figure 3.17: PL spectrum at 100K and the fits using two functions in a model: (a)
Gaussian function, (b): Lorentzian function

3.4.3 Temperature dependence of vibrational line-width

The second evidence for the strong-coupling regime of the exciton-phonon interaction

relies on the temperature-dependent line-width. We have thus performed temperature-

dependent photoluminescence from 8K to 300K as shown in figure 3.18 (black spheres)

where a few temperatures are selected. On raising the temperature, the line-width of the

phonon replicas as well as their overtones increases leading to a reduced visibility of the

doublet fine-structure of LO3 and TO2/TO3 phonon replicas. Specifically, above 20K this

doublet is hardly observed and it disappears above 60K, indicating that the line-width is

larger than the doublet splitting energy of 6-7 meV. Above 100K, the line-width becomes

larger than the splitting energy of 27 meV between LO3 and TO2/TO3 phonon replicas

(figure 3.12), we cannot thus easily distinguish the two pairs of phonon replicas LO3-

TO2/TO3 and LA/LO1-TA/TO1. From 100K up to 300K, the shape of the BN spectrum

does not change so much and the enhanced line-width of phonon-assisted emission lines

increases more slowly with temperature.

The different increase of the line-width at low temperature (T < 60K) and high tempera-

ture (T > 100K) suggests a non-linear dependence of the line-width with temperature, as

expected for a strong coupling regime of the exciton-phonon interaction with the square

root dependence of linewidth on temperature in Toyozawa’s theory.
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Figure 3.18: Temperature dependence of the PL spectrum in BN as a function of
temperature, from 8 to 300 K under an excitation of 6.3 eV: experimental data (symbols);

theoretical fit (solid line)

We now go further by a quantitative analysis of the phonon replicas broadening.

To do that, first, we fit all the spectra using the theoretical model presented in the previ-

ous section. The results are shown in solid line in figure 3.18 with an excellent agreement

with the experimental data. For each fit of the PL spectrum, the only varying parameter

is the FWHM (∆) that is obtained by varying σ0 in the Gaussian function (equation 3.14).

Increasing the temperature, σ0 is larger, thus the FWHM is larger following the equation

∆ = 2
√
ln2σ0.

Second, from these fits, we extract the variations of the parameter ∆ and plot them as a

function of temperature. The result is presented in figure 3.19 as a black sphere. As seen

in this plot, the temperature dependence is not as straightforward as a pure square root

of T broadening revealing several contributions in the phonon-assisted broadening.

As far as the scattering processes are concerned, there are scatterings by impurities and
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scattering by phonons (both acoustic and optical phonons). The scattering by acoustic

phonon is nearly elastic (quasi-elastic) scattering because of the small energy transfer in-

volved, whilst the scattering by optical phonon is inelastic [24]. The scattering by impu-

rities, which is elastic scattering is not mentioned here because of the high quality of the

samples and also because this scattering does not depend on temperature. In the phonon-

assisted broadening processes of BN, both acoustic and optical phonon scatterings exist

depending on which terms of these scatterings dominate. According to Cardona [24],

at low temperature (T < 50K), the optical phonon scattering processes are negligible be-

cause the thermal occupation factor of optical phonon is low, thus the phonon-assisted

broadening is dominated by acoustic phonon scattering. On the contrary, when the tem-

perature is higher, the thermal energy is high enough to allow efficient optical phonon

absorption, leading to break dominated by inelastic scattering.

The theoretical fits corresponding to the strong and weak coupling regimes for the tem-

perature dependence of the phonon replicas broadening is shown in figure 3.19. First,

we discuss the fit in the weak coupling regime using the standard equation taken from

Ref.[62]:

Γ = Γ0 + aT +
b

e
E0

kBT
−1

(3.15)

with kB is Boltzmann constant, a, b are the strength of the coupling to phonons, EO is the

optical phonon energy.

The first term Γ0 in equation 3.15 corresponds to the scattering by impurities and/or ra-

diative broadening. The second term is broadening due to the acoustic phonon scattering.

The last term is broadening arising from optical phonon scattering that is proportional to

the Bose-Einstein function for the optical phonon. When the temperature is low, this term

is small and can be neglected. The broadening increases linearly with temperature with

the contribution of acoustic phonon scattering. The best fit for this regime is shown in the

green dashed line in figure 3.19 giving a poor agreement with the data for temperature

above 100K. We find a = 0.1 ± 0.02meV/K, b = 150 ± 80meV and EO = 25 ± 10meV .

The large discrepancy between this fit and our data supports our assertion before, and it

demonstrates that the exciton-phonon interaction is not in the weak coupling regime in

BN.
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Figure 3.19: Temperature dependence of the full width at half maximum of the phonon
replicas, estimated from the quantitative interpretation performed in figure 3.18:

experimental data (symbols); theoretical fit in the strong-coupling regime (red solid
line), or in the weak-coupling regime (dashed green line).

Now, we discuss the fit in the strong coupling regime where the equation is given by

[24, 63]:

∆ =
√
∆2
A +∆2

O =

√
(SAEA coth(

EA
2kBT

))2 + (SOEO
b

e
EO
kBT

)2 (3.16)

Similarly to the fit in the weak coupling regime, we have here the first term ∆A and the

second term ∆O due to the broadening by acoustic and phonon optical phonon scatter-

ings. Among that, SA and SO are the strength of the coupling to phonons, EA and EO are

the acoustic and optical phonon energies, respectively.

In the red solid line of figure 3.19, we reach an excellent agreement with our data by tak-

ing EA = 4 ± 2 meV, SA = 4.5 ± 1.5 meV, EO = 15 ± 5 meV, and SO = 65 ± 8 meV. This is

an additional proof for the strong coupling regime of the exciton-phonon interaction in

BN.

At low temperature (T < 50K) the quasi-elastic scattering is dominating with the acoustic

phonon energy of EA = 4 ± 2 meV that corresponds to the mean energy of the acoustic

phonon mode ZA which has A2u symmetry at the center of the BZ. It means that the ori-

gin of this broadening at low temperature derives from the ZA mode at center of BZ. We
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stress that there is no offset term in equation 3.16, equivalent to the Γ0 term for Lorentzian

lines. Here, the finite value of the linewidth at low temperature arises from ∆A itself be-

cause of the quasielastic nature of the scattering processes involving ZA phonons.

As far as the high temperature regime (T > 50K) is concerned, the inelastic scattering

is dominating by the optical phonon energy of EO = 15 ± 5 meV. This estimation ex-

actly matches the energy of the silent mode at low energy ZO1 with B1g symmetry at the

zone center, thus proving the contribution of this optical phonon mode to the broadening

of phonon replicas at high temperature. We remark that both ZA and ZO1 are out-of-

plane phonon modes (chapter 1) with the atomic displacement in the c-axis direction. It

would mean that the van der Waals structure of BN has a strong influence on the phonon-

assisted broadening below 300K.

Studying the temperature-dependent PL measurements of HQ Graphene sample from 8K

to 300K, gives the second evidence for the strong-coupling regime of the exciton-phonon

interaction. The square root dependence of line-width with temperature was obtained as

in Toyozawa’s theory of this regime. By fitting our data, we interpreted the temperature

dependence of the line-width on the basis of quasi-elastic scattering by acoustic phonons,

and inelastic scattering by absorption of optical phonons corresponding to the ZA and

ZO1 phonon modes in BN.

3.5 Conclusions.

Based on the previous results of BN published by our group [11, 64], in this chapter, we

go further to elucidate the fundamental optical properties of BN by performing the PL

spectroscopy in the two samples (NIMS and HQ Graphene).

First, we have performed the polarization-resolved PL measurements for the two exper-

imental configurations of the large NIMS sample.

• The different PL signals, including phonon replicas involving the phonon modes

at T point of BZ because of the indirect band-gap semiconductor [11, 30, 33], were

observed in the two cases of Poynting vector −→$ parallel or perpendicular to the

c-axis due to the selection rules. In particular, in case of Poynting vector −→$ parallel

to the c-axis, four main emission lines that correspond to the phonon replicas LO3,

TO2/TO3, LA/LO1, TA/TO1 were recorded. Furthermore, their intensity do not
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change when rotating the linear polarizer. On the contrast, in the case of Poynt-

ing vector −→$ perpendicular to the c-axis, in additional to four phonon replicas,

ZO1 phonon replica at 5.93 eV were also observed. Moreover, there is a strong

dependence of the intensity of phonon replicas with the polarizer angle. The in-

tensities ratio of LA/LO1 and ZO1 changes from 200 to 5 when rotating a linear

polarizer. These results demonstrate the impact of the phonon symmetries on the

optical emission spectrum in bulk BN.

• Besides the phonon replicas mentioned above, the ZO3 phonon replica at 5.87 eV,

which has the same B1g symmetry as the ZO1 phonon replica, was obtained by sub-

tracting the two different PL spectra in case of a Poynting vector −→$ perpendicular

to the c-axis. This ZO3 phonon replica was confirmed by the comparison between

the phonon dispersion relations [39] with our PL spectrum, giving a comprehen-

sive understanding of the phonon replicas in h-BN, and further pointing out the

originality of the optical properties in this layered compound where the extrema of

the conduction and valence bands lie in different high symmetry points which are

both away from the zone center.

• Outstandingly, we have succeeded in the challenging measurements of the polarization-

dependence of the forbidden indirect exciton emission intensity giving the orenta-

tion of the dipole of the exciton in a predominantly in-plane orientation. As a mat-

ter of fact, the results obtained by mean of polarization-resolved PL spectroscopy

provides a strong confirmation, and a definite proof for the indirect nature of the

bandgap in h-BN that was investigated in Ref.[11].

Second, we have demonstrated that the origin of the fine structure of the PL spectrum

in BN arises from overtones of interlayer shear modes in the phonon-assisted emission

spectrum of h-BN. These lattice vibrations are specific to layered compounds since they

correspond to the shear rigid motion between adjacent layers, with a characteristic en-

ergy of about 6.8 ± 0.5 meV in h-BN at 8 K. Our theoretical model, based on calculations

of the phonon energy and group velocity at T points of the Brillouin zone, reveals that

the differences observed for the various phonon replicas in h-BN only come from the

variations of the phonon group velocity at T points of the Brillouin zone. The larger the

phonon group velocity, the broader the line of the phonon replica. An excellent fit of the
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multiplet observed in each phonon replica is obtained by taking the assumption of a cu-

mulative Gaussian broadening. The comparison between our model and the data raises a

new question about the different profile between the two Gaussian and Lorentzian func-

tions.

Third, following the theoretical predictions of Toyozawa of the line-shape of the exciton

absorption band [61], we have brought the two evidences for the strong-coupling regime

of the exciton-phonon interaction in h-BN, that had never been previously observed since

the paper of Toyozawa. The first evidence comes from the comparison between Gaussian

and Lorentzian functions in the fits of the PL spectrum at low temperature (8 K) as well as

at high temperature. The excellent fit obtained with the Gaussian profile suggests that the

exciton-phonon interaction is in the strong coupling regime in BN [61]. The second evi-

dence was observed by performing the temperature-dependent PL measurements from

8K to 300K. We obtain the square root dependence of the line-width with temperature as

in Toyozawa’s theory for the strong-coupling regime. By fitting our data, we interpreted

the temperature dependence of the line-width on the basis of quasi-elastic scattering by

acoustic phonons, and inelastic scattering by absorption of optical phonons correspond-

ing to the ZA and ZO1 phonon modes in h-BN. The strong-coupling regime and the

bright emission in this indirect band-gap semiconductor are unusual properties, calling

for a microscopic understanding of the exciton-phonon coupling in this van der Waals

crystal with fascinating properties.
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Chapter 4

Isotope engineering in boron nitride

Isotopes were discovered in the previous century by Soddy [65], and in the same year

Thomson [66] confirmed it. According to them, isotopes of a given element have the

same number of electrons, but their different numbers of neutrons lead to difference

atomic mass and nuclear spin. Following this discovery, the number of researches on

isotopes in different materials rapidly increased in additional to the developing of meth-

ods for separating isotopes. Many applications of isotopes of different materials have

been used, such as for diagnostic purpose in the pharmaceutical and biomedical indus-

tries, for military during the World War II, and etc. Among them, it is worth to mention

the studies of the modification in the reaction rate of a chemical reaction when one of the

atoms in the reactants is replaced by one of its isotopes. This phenomenon is well-known

as the kinetic isotope effect [67, 68].

As a matter of fact, due to isotopes, the electronic and optical properties of the semicon-

ductors change dramatically, for instance, the lattice parameter, thermal conductivity, the

phonon frequency or the linewidth, and the electronic bandgap. These variations were

investigated in the series of special papers through the works of many materials such as

Ge [69], Diamond [70, 71], Si [72, 73], ZnSe [74]. Manuel Cardona is a major contributor

to the field of studies with isotopically controlled semiconductors in recent years. Two

famous papers of his group [75, 76] bring a comprehensive understanding about the iso-

tope effect on the optical spectra of the semiconductor and they are a guideline for our

study which will be presented in this chapter.

As far as BN is concerned, we know that boron nitride in nature (NaBN) makes up about

20 at% 10B, 80 at% 11B and 99.6 at% 14N and it is also one of many materials with high
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Figure 4.1: Honeycomb lattice in natural boron nitride (NaBN) showing the isotopic
mixture of boron-10 (red) and boron-11 (green) atoms bound to nitrogen-14 (blue)

potential for application. For example, the 10B and 11B isotopes are strong and weak ther-

mal neutron absorbers respectively, hence 10B has many applications in nuclear energy

industries [12] and cancer treatment by boron neutron capture therapy [13].

Based on these publications, in this chapter, we are going to discuss the isotope effect in

BN by performing the Raman and PL measurements of three controlled boron isotopic

samples 10BN, NaBN and 11BN (KSU samples) that are synthesized in KSU using high-

purity elemental boron nitride of 99.2 at% 10B and 99.4 at% 11B by the Ni-Cr flux method

as presented in detail in chapter 2. The schematic of natural BN is shown in figure 4.1.

The variation in the isotope of boron leads to the variation in the boron mass and also of

the reduced mass of BN that is calculated by the equation 4.1 below:

1

µ
=

1

10(1− x) + 11x
+

1

14
(4.1)

where µ is the reduced mass, x the 11B-concentration, and (1− x) the 10B-concentration.

The calculations of the reduced masses of three controlled boron isotopic samples (10BN,

NaBN and 11BN) are shown in table 4.1. The difference in the reduced mass of three KSU

samples due to isotope of boron contributes to the modification of the optical properties

Samples 10BN NaBN 11BN

Boron Isotopes 99.2% at 10B 20% at 10B and 80% at 11B 99.4% at 11B

Nitrogen Isotopes 99.6% at 14N 99.6% at 14N 99.6% at 14N

Reduced mass (amu) 5.834 6.0975 6.1728

Table 4.1: Isotopes concentration of boron and nitrogen 10BN, NaBN, and 10BN together
with their reduced mass.
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of BN that will be discussed in details later.

In our work, we focus on the conspicuous effects of the isotope that are: (i) the depen-

dence of the phonon frequencies and the linewidths with the isotopic composition; (ii)

renormalization of the energy of the electronic states through the electron-phonon inter-

action. Furthermore, we will discuss the influence of the isotope on the weak van der

Waals (vdW) interactions in this material. That will be obtained by analyzing the tem-

perature dependence results of the shear and breathing modes of the adjacent layers.

4.1 Isotope effect on the optical properties of BN

4.1.1 Phonon energy

We have performed the Raman scattering measurements in the back-scattering configu-

ration from the c-face of 10BN, NaBN and 11BN samples at room temperature. The results

are shown in figure 4.2. We observe three Raman lines at 168.2 meV (1357 cm−1) for 11BN

(red line), 169.3 meV (1365.6 cm−1) for NaBN (green line) and 172.5 meV (1392 cm−1) for

10BN (blue line). The Raman peak at 169 meV of NaBN corresponds to the Raman-active

mode at high energy (Ehigh2g ). This mode presented in chapter 1, page 27 correspond to

an in-plane direction of the movement of the boron and nitrogen atoms; its observation

was reported in many publications [18, 20, 36, 39, 77] with the energy value of 169.8 meV

at low temperature. The Raman peaks in 10BN and 11BN display a shift of 3.8 meV at

higher energy for 10BN and 1.1 meV at lower energy for 11BN.

According to Cardona [76], the frequency of a given phonon corresponding to the wavevec-

tor k and branch i is given by:

ω =

√
f(k, i)
µ

∼ µ−1/2 (4.2)

where ω is the frequency of phonon, f(k, i) a restoring force constant, and µ the reduced

mass.

Therefore, the frequency of the phonon is proportional to the reduced mass, like µ−1/2.

It means that the smaller the reduced mass, the higher the frequency of the phonon. As

shown in table 4.1, the reduced mass of 11BN is larger than the one of NaBN, there is thus

a shift of the Raman line to the lower energy. An opposite phenomenon is observed in

76



Figure 4.2: (a) Raman scattering spectra in 10BN, NaBN and 11BN, at room temperature.
(b) Raman mode energy vs reduced mass µ in BN: µ−1/2 mass dependence in the virtual
crystal approximation (dashed line), energy shift due to isotopic mass disorder + µ−1/2

mass dependence (solid line).

10BN whose reduced mass is smaller than the one of NaBN, so the Raman peak shifts to

the higher energy. The equation 4.1 can be used to estimate the shift of the phonon energy

when varying isotope.

The energy of the Raman-active optical phonon (Ehigh2g ) of 10BN, NaBN and 11BN is plot-

ted as a function of the reduced mass in BN as shown in figure 4.2 (b) (pink spheres), in

addition to the two fits presented in black and cyan solid lines.

The first fit (cyan solid line in figure 4.2 (b)) reproduces the mass dependence as µ−1/2

in the Virtual Crystal Approximation (VCA), including a small ad hoc correction of 1.5x

cm−1 to account for the in-plane lattice contraction, as in Ref.[26]. Specifically, the equa-

tion used for this fit is written:

ω = ωα

√
µα
µ

+ 1.5x (4.3)

where ω is the frequency of phonon, µ the reduced mass, x the 11B-concentration, and α

indicates the isotopic composition.

As seen in figure 4.2 (b), the fit does not give a good agreement with our data. In par-

ticular, the phonon energy of NaBN shifts toward a higher energy of around 2.5 cm−1

compared to the dashed line making a ’parabolic bowing’. Consequently, the depen-

dence of the phonon energy of the isotopic samples with the reduced mass is not well
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reproduced by VCA plus the ad hoc correction.

The ’bowing’ is attributed to a mass disorder-induced self-energy arising from the elastic

scattering of phonons. This phenomenon was interpreted in several studies such as Hass

et al. [78], Gobel et al. [74], and Cardona et al. [75]. As their explanation, the isotopic

mixture leads to mass disorder that breaks the translational invariance. Therefore, the

crystal momentum does not need to be strictly conserved leading to the elastic scatter-

ing of phonons. This isotope disorder induced self energy has real and imaginary parts.

While the real part is the energy shift, the imaginary part is the linewidth broadening.

Both of them display the same variations as a function of mass disorder.

To illumine this phenomenon in our isotopic samples, we thus switch to the second fit

presented in black solid line in figure 4.2(b). Compared to the first one, we take into

account the energy shift due to static isotopic mass disorder, which expression is taken

proportional to the simple form of the scattering rate given in [75]. The fitting equation

now reads:

ω = ωα

√
µα
µ

+ 1.5x+ Λx(1− x)

(
11x+ 10(1− x)− 10

10

)2

(4.4)

where Λ is a characteristic energy giving the amplitude of the shift due to mass disorder.

We obtain a fair agreement with our experimental data for Λ = 2500 meV. This value leads

to a maximum energy shift of 2.5 cm−1 (0.3 meV). By adding the contribution of the mass

disorder effect in our fit, the dependence of the phonon energy of the isotopically pure

samples with the reduced mass is well reproduce, proving the impact of the mass disor-

der on the frequency of phonons in BN.

The mass disorder effects become even more pronounced when we consider the full

width at half maximun (FWHM) of these Raman lines. We now come back to figure

4.2 (a). We remark that the FWHM of the isotopically pure samples 11BN and 10BN is

around 3.2 cm−1 while it is 7.2 cm−1 in NaBN. This broadening of the Raman line in NaBN

comes from a mass disorder-induced self-energy. We stress that our samples have the

same growth conditions, thus the difference in the linewidths of these Raman lines due

to the defects is negligible. In particular of BN, there is 3 cm−1 broadening of the Raman

linewidth in NaBN that can be comparable to the energy shift of NaBN obtained from the

fit as presented before.
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Figure 4.3: Schematic diagrams of the optical dispersion relation in Si, Ge, diamond [76],
compared to phonon dispersion relation of BN [39].

As far as other semiconductors are concerned, there is the same phenomenon in diamond

but not in Ge, Si or α-Sn. It means that the isotopic disorder does not significantly affect

the linewidth of Raman line in Ge, Si or α-Sn, while it plays an important role in the

variation of the linewidth of Raman line in Diamond or BN. The reason for this is the dif-

ference of the phonon dispersion relations in materials where the highest phonon energy

is at zone center for Ge, Si, and α-Sn, but it is away from the center of BZ for Diamond

and BN. To illustrate for that, we show the schematic diagrams of the optical dispersion

relation in Si, Ge, diamond [75, 76], compared to phonon dispersion relation of BN [39]

in figure 4.3. We can see the contrast between the curvature of the dispersion relations

of diamond and Si, Ge: one is concave while the other one is convex at zone center of

BZ (figure 4.3(a)). In case of the Eh2g mode of BN, its curvature of the phonon dispersion

relations is similar to the case of diamond (figure 4.3(b)). Therefore, the elastic scattering

process (is represented in dashed lines in figure 4.3) induced by the isotopic mass disor-

der is allowed in case of diamond and BN, but not in case of Si or Ge (no final state for

such process) [75, 76].

In conclusion, by performing Raman measurements, we observe the dependence of the

phonon energy with the reduced mass of BN. The lower the reduced mass, the higher

the phonon energy. Besides this effect, there is the impact of the isotopic mass disorder
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displaying an energy shift and a line-width broadening of NaBN compared to isotopically

pure BN (11BN and 10BN).

4.1.2 Electronic bandgap

Besides the vibrational excitations, the isotope mass also impacts the electronic properties

because of the electron-phonon interaction. A well-known effect concerns the zero-point

renormalization of the bandgap. The electronic states are renormalized to second or-

der in the phonon amplitude u because of the so-called Fan and Debye-Waller terms in

second-order perturbation theory, but also because of anharmonic terms responsible for

thermal expansion in first-order perturbation. At zero temperature, the bandgap energy

eventually depends on the zero-point vibrations 〈u2〉, the average value being calculated

over all phonon modes. The renormalization of the bandgap at low temperature is thus

a true quantum effect related to the zero-point vibrations. Since the renormalization en-

ergy δEg scales as µ−1/2, isotopic substitution changes the bandgap of a semiconductor

at low temperature, as demonstrated for instance in silicon, germanium and diamond

[75]. This phenomenon was investigated in our isotopically purify BN crystals by PL

spectroscopy. This phenomenon was investigated in our isotopically purify BN crystals

by PL spectroscopy.

The photoluminescence spectra of 10BN, NaBN and 11BN at 8K are shown in figure 4.4 in

a linear scale. For each sample, we observe PL lines correspond to the phonon-assisted

recombination LO3, TO2/TO3, LA/LO1, TA/TO1 and ZO1. The ZO1 phonon replica at

5.93 eV is only observable in log scale because of its weak intensity. As seen in this figure,

there are energy shifts in the PL spectra of the isotopically pure samples (10BN and 11BN)

compared to NaBN. In particular, the PL spectrum is red-shifted for 10BN (red line), while

it is blue-shifted for 11BN (blue line) compared to NaBN.

Because the PL spectrum consits of phonon-assisted recombination lines, the energy of

the emitted photon is given by:

hν = EiX − Ep (4.5)

where hν is the energy of the emitted photons, EiX the indirect exciton bandgap energy

and Ep the phonon energy.

The first term EiX in the equation 4.5 is the indirect exciton bandgap energy. Accord-
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Figure 4.4: Photoluminescence spectra for 10BN, NaBN and 11BN at 8K under excitation
at 6.3 eV.

ing to Cardona and Thewalt [75], the bandgap varies with reduced mass, like −µ−1/2. It

means the larger the reduced mass, the lower the renormalization of the bandgap.

The second term Ep in equation 4.5 is the phonon energy that roughly depends on the re-

duced mass, like µ−1/2, as discussed in the previous section. The larger the reduced mass,

the lower the phonon energy, the lower the phonon detuning energy and thus the higher

the energy of the phonon replicas (chapter 3). When decreasing the mass, the energy of

phonon increases, the energy of phonon replica shifts thus toward a higher energy and

vice versa.

We remark that the two terms in the equation 4.5 have a same sign, the two contributions

to the energy shift of PL spectra thus go in the same direction.

Moreover, the lower the energy of the phonon replicas, the higher the splitting among

11BN, NaBN, and 10BN. For example, the red-shift energies of four phonon replicas LO3,

TO2/TO3, LA/LO1 and TA/TO1 in 10BN are 90, 80, 50 and 30 meV, respectively, com-

pared to the ones in NaBN. A similar observation is in 11BN, but it is in blue-shift. This

effect is the result of the isotope mass dependence of the phonon energy as discussed

above. Since the absolute isotopic shift of a phonon mode increases with its energy, the
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splitting of the phonon replicas is more pronounced for the emission lines lying at lower

energy.

Consequently, a global red-shift from 11BN to 10BN is observed in the PL spectra of the

our BN samples because the electronic bandgap renormalization and the phonon energy,

both depend on the boron isotope mass.

We will now go further for analyzing these two contributions.

We plot in figure 4.5 (a) the energy of the phonon replica at 8K of 10BN, NaBN, and 11BN

versus the phonon energy at T point of the BZ that are calculated by Cuscó et al. [39]

(10BN, NaBN and 11BN are presented in red, green and blue, respectively). The shift in

the x direction in this figure (called horizontal shift) relates to the isotope dependence of

the phonon energy (second term in equation 4.5). This horizontal shift is observed more

clearly for LO3 and TO2/TO3 phonon modes because of their higher phonon energy. On

the other hand, there is also a shift in the y direction (called vertical shift) that relates to

the electric bandgap renormalization.

We present the linear fit of our data in solid lines in figure 4.5 (a) using the equation 4.5

taking an isotope-dependent bandgap energy EαiX , where α indicates the isotopic compo-

sition. Equation 4.5 now is rewritten:

hν = EαiX − Ep (4.6)

withEαiX = Eg+δEαg −Eb, where Eg is the single-particle bandgap, Eb the exciton binding

energy and δEαg the band-gap renormalization due to zero-point fluctuations [75].

In our fit, we take the isotope-dependent EαiX equal to 5.960, 5.9585, and 5.954 meV in

11BN, NaBN, and 10BN, respectively. For better visibility, we present in figure 4.5(b) the

energy shift of the phonon replicas in 10BN (blue chart) and 11BN (red chart) compared

to NaBN, after subtracting the isotopic shift of the corresponding phonon mode. As seen

in this figure, all charts of 11BN sit at higher energy while all charts of 10BN sit at lower

energy. The average values of the energy shift of the five types of phonon replicas are

estimated to 1.6±0.2 in 11BN and -4.4±0.2 in 10BN compared to NaBN, as shown by the

dashed lines in figure 4.5(b). These values are precisely the variations of the bandgap

renormalization δEg with the isotope mass, namely δE11
g −δENa

g =1.6±0.2 meV and δE10
g −

δENa
g =-4.4±0.2 meV.
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Figure 4.5: (a) Energy of phonon replicas versus calculated isotope-dependent phonon
energy at 8K. (b) Energy shift of the phonon replica in 10BN (blue bars) and 11BN (red
bars) compared to NaBN, after subtraction of the isotopic shift of the phonon modes. (c)

Isotopic dependence of bandgap renormalization.

In the purpose of an estimation of the band-gap renormalization, in figure 4.5(c), we plot

the average values of the energy shifts discussed above as a function of the reduced mass

(symbols). Since, the band-gap renormalization is proportional to µ−1/2 [75], it reads:

δEαg = δENa
g

√
µα

µNa (4.7)

From equation 4.7, we can find that the variations of the band-gap renormalization com-

pared to NaBN given by:

δEαg − δENa
g = δENa

g

(√
µα

µNa − 1

)
(4.8)
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Equation 4.8 is used for the fit displayed in solid line in figure 4.5(c), with the only pa-

rameter being the bandgap renormalization in NaBN. We obtain a value δENa
g =225±10

meV. Now, we are going to analyze the temperature dependence of the bandgap Eg.

As mentioned in the beginning of this section, at zero temperature, the renormalization

of the electronic bandgap is proportional to the zero-point vibrations. While the zero-

point renormalization energy δEg involves all phonon modes, there is a phenomenolog-

ical ansatz approximating the full phonon dispersion with a single Einstein oscillator

of energy Ω. At high temperature (kBT � ~Ω), ∆Eg is linear in temperature reflect-

ing the lattice expansion, according to Refs. [75, 76]. In constrast, at low temperature

(kBT � ~Ω), ∆Eg deviates from the linear decrease of the bandgap by a quantity - δEg,

which is proportional to µ−1/2 that relates to the renormalization of the bandgap. Then,

the temperature dependent of an interband gap energy can be written [75, 79]:

∆Eg(T ) = −δEg
(

1 +
2

e~Ω/kBT − 1

)
(4.9)

In figure 4.6, we display using red spheres the experimental data of the temperature

dependent PL measurements from 10 to 800K, taken from Du et al. [80]. Fit in solid line,

displayed in figure 4.6, using equation 4.9 presents the renormalization of the bandgap,

while fit in dashed line is the extrapolation low temperature of the linear in T dependence

found at high temperatures. Applying the value of the bandgap renormalization in NaBN

(δENa
g =225 meV), we obtain ~Ω = 68±2 meV. Compared to the absolute maximum of the

phonon dispersion of 200 meV in BN [39], we obtain a ratio of 0.34, significantly lower

than the usual one-half found in cubic semiconductors [75]. Since the Einstein parameter

Ω in layer BN is rather low, this indicates that the interlayer vibrations (which have lower

energies than the intralayer ones) make a significant contribution to the electron-phonon

bandgap renormalization. Still, one can not exclude that the acoustic phonons might

play a more important role in layered compounds than in the cubic crystals discussed

by Cardona and Thewalt [75]. The elucidation of this novel phenomenology will require

microscopic calculations of the Einstein parameter Ω in the framework of the theoretical

approaches developed in Refs. [81, 82].
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Figure 4.6: Temperature dependence of the indirect bandgap: data from Ref.[80]
(symbols, where error bars indicate the standard deviations for least-squares fitting of

the emission spectrum), single oscillator fit (solid line), and high-temperature
asymptotic linear limit of the single oscillator fit (dashed line).

4.2 Influence of boron isotope on Van der Waals interactions

In the first section of this chapter, we discussed the impacts of isotope purification on the

phonon energy as well as on the value of the band gap in BN. Besides these variations, we

will see that the isotopes also impact the peculiar lattice vibrations of Van der Waals crys-

tals that will be studied in this section by analyzing the temperature-dependent results

of the shear and breathing modes between adjacent layers.

4.2.1 Interlayer shear mode

We first address the interlayer shear mode (Elow2g ). This mode was detailed in chapter 1,

page 27 with the movements of boron and nitrogen atoms are in a different directions for

adjacent planes and the energy of 6.8 meV (54cm−1) at low temperature. Therefore, this

Elow2g mode directly relates to vdW interaction because of the rigid movement of adjacent mode.

Raman measurements with high-resolution have been performed for the Elow
2g at Institut

Jaume Almera, Consejo Superior de Investigaciones Científicas (ICTJA-CSIC), Barcelona,
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Figure 4.7: High-resolution Raman spectra for the Elow
2g interlayer shear mode in 11BN,

NaBN and 10BN at 300K (taken in Institut Jaume Almera, Consejo Superior de
Investigaciones Científicas, Barcelona by our colleagues).

Spain by our colleagues Prof. Cuscó and Prof. Artús. Figure 4.7 shows the Raman spec-

tra at room temperature (RT) for 11BN (red), NaBN (green), and 10BN (blue) at energies

of 6.49 meV (52.2 cm−1), 6.51 meV (52.6 cm−1), and 6.6 meV (53.3 cm−1), respectively.

These Raman lines correspond to the interlayer shear modes of the BN. Similar to the

Ehigh2g mode, we observe the Elow2g phonon energy dependence with the reduced mass of

the boron nitride, as µ−1/2. In particular, the energy of the interlayer shear mode in 10BN

shifts to the higher energy, wherease the one in 11BN shifts to lower energy compared

to the one in NaBN. Generally, we have a global decrease of the interlayer shear mode

energy from 10BN to 11BN due to increasing of the reduced mass.

The temperature-dependent Raman measurements have also been performed for the

Elow
2g mode from 10K to 600K. The Raman line energy as the function of temperature

is presented in figure 4.8 for 10BN (red spheres), NaBN (green sphere), and 11BN (red

sphere). We first observe the red-shift of the energy of the interlayer shear mode in the

three samples as the function of the temperature. This is due to the fact that the phonon

86



Figure 4.8: Temperature dependence of the frequency shift for the Elow
2g interlayer shear

mode in 10BN, NaBN and 11BN: experimental data (symbols), fits with a 1/cp power-law
dependence of the Elow

2g interlayer shear mode energy with the c-lattice parameter (solid
lines). The dotted lines correspond to a trivial mass scaling as µ−1/2 of the energy of the

interlayer shear mode in NaBN.

energy is proportional to a inverse of the lattice parameter which increases with temper-

ature.

However, this red-shift does depend on the isotopic composition, with the highest (low-

est) variations for 10BN (11BN). In particular, the energy splitting between 10BN and NaBN

at low temperature (T < 150 K) is larger than the one at high temperature (T > 150 K) as

seen in figure 4.8. A similar phenomenon was observed in 11BN.

To go further for the interpretation of this effect, it is meaningful to analyze the power-

law dependence of the interlayer shear mode energy with the c-lattice parameter in

our temperature-dependent measurements. The power law dependence was studied by

Valentin N. Popov and Christian Van Alsenoy [83], using a tight-binding model with ma-

trix elements derived within the density functional theory, in order to study the interplay

between the repulsive interlayer band energy and the weak attractive vdW interactions.

In their calculations, they found that two exponents of n=3 and 4 are the dominant con-

tributions in graphite. To the best of our knowledge, a power-law dependence of the

thermal shift of the interlayer shear mode in BN has never been addressed in the litera-
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ture.

For that purpose, we fit our data using equation 4.10 below:

ω(T ) = ω0

(
c0

c(T )

)p
∼ 1

c(T )p
(4.10)

where T is the temperature, ω the interlayer shear mode energy, ω0 the interlayer shear

mode for a lattice parameter c0, and p an exponent.

In case of NaBN, the thermal expansion along the c-axis of NaBN was studied between 10

and 600K by Yates et al. [84] and Paszkowicz et al. [85]. Following their results of the

dependence of the c-lattice parameter on temperature, we obtain the best fit (gray solid

line in figure 4.8) for the temperature dependence of the interlayer shear mode in NaBN

with the p-exponent value of p = 3.7± 0.1.

In case of 10BN and 11BN, the thermal expansion along the c-axis was studied between

125 and 275 K, by our colleague Dr. Arie Van der Lee, in the Institut Européen des Mem-

branes (UMR-5635 CNRS) at Montpellier. The results have not a significant difference

between the isotopically pure samples and the natural one [86]. Between 125 and 275K,

we fit the thermal expansion along the c-axis with a linear regression c(T ) = c+aT , where

a=1.7 and 2.3x10−4Å/K in 10BN and 11BN, respectively. Then, we apply these results for

the fit of the temperature dependence of the interlayer shear mode in 10BN and 11BN as

shown in gray solid lines in figure 4.8. Unfortunately, we have to restrict our analysis

to the temperature range from 125 to 275K, so that the fits are not performed for the full

temperature range (10 to 600K) as it is the case of NaBN. The best fits are obtained with

p = 3.6 ± 0.3 and p = 5.7 ± 0.3 in 11BN and 10BN, respectively. The larger error value of

±0.3 in 11BN and 10BN is due to the limited temperature range.

In 11BN, the thermal shift of the interlayer shear mode is slightly smaller than in NaBN. It

is in a good agreement with the p-exponent value of 3.6 estimated from our fits compared

to the value of 3.7 in NaBN. In contrast, in 10BN , the thermal shift of the interlayer shear

mode is larger than in NaBN. The p-exponent in 10BN (p = 5.7) that we obtain is indeed

larger than the one in NaBN.

Comparing to Ref.[83], we find that the p-exponent in BN is approximately n + 1 in

graphite. The explanation for this investigation is presented in Appendix B.

In summary, the p-exponent does present a striking dependence on the isotopic com-
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position. The quantitative analysis of our measurements in isotopically-purified BN

crystals concludes to a variation of the 1/cp power-law dependence of the interlayer

shear mode, with modifications of the p-exponent from one sample to another. While

p=3.6±0.3 in 11BN, it increases to 5.7±0.3 in 10BN, as a result of the larger thermal red-

shift observed in figure 4.8. This is the first indication that the weak, non-local vdW

coupling varies with the isotopic composition.

4.2.2 Interlayer breathing mode

We now address the B1g mode, which corresponds to the interlayer breathing mode. As

mentioned in chapter 1, pages 28-29, this B1g mode is an out-of plane mode with the

boron and nitrogen atoms movement along the c-axis. Specifically, the boron and nitro-

gen atoms move in the same direction (c-axis) within a plane, but different directions in

adjacent planes. Importantly, this interlayer breathing mode is also called a silent mode

because it is not observably by symmetry neither in Raman nor in InfraRed spectroscopy,

so that the direct investigation of this silent mode is not possible by optical spectroscopy

[87]. The energy of the B1g interlayer breathing mode (∼ 15 meV) is higher than the one

of the Elow2g interlayer shear mode (∼ 6.8 meV), since the latter is related to the C44 shear

elastic constant while the former to the C33 compression one, with the natural hierarchy

C44 < C33 in graphitic systems [88].

The contribution of the B1g interlayer breathing phonon mode to the thermal broadening

of the phonon replicas in HQ Grapheren BN sample has already studied by temperature-

denpendent line-width in PL spectroscopy as discussed in chapter 3. Here, we have per-

formed again temperature-dependent PL measurements in our three controlled boron

isotopic samples 10BN, NaBN and 11BN from 8K to 300K. All spectra are fitted using

the theoretical model presented in chapter 3 (pages 64-67). We stress again that there is

only one varying parameter for reproducing the full PL spectrum of BN, the FWHM (∆),

which is identical for all phonon replicas. After extracting the variations of∆ versus tem-

perature, we plot these values as a function of temperature in 10BN, NaBN, and 11BN as

shown in figure 4.9 (symbols). At low temperature, the line-width of the phonon replicas

is not significantly different in our three samples. However, by increasing the tempera-

ture, the phonon replicas broadening ∆ is the highest for 10BN and it is the lowest for

11BN. The solid lines in this figure are the theoretical fits of the temperature dependence
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Figure 4.9: Phonon-assisted broadening ∆ of the PL spectra in 10BN, NaBN and 11BN:
experimental data (symbols), fits of the thermally-induced broadening (solid lines).

of the phonon replicas broadening according to equation 3.16:

∆ =
√
∆2
A +∆2

O =
√

(SAEA coth( EA
2kBT

))2 + (SOEO
b

e
EO
kBT

)2

As discussed in chapter 3, the firt term ∆A is the broadening due to the quasi-elastic

scattering involving ZA phonons while the second term ∆O is the broadening due to

the inelastic scattering arising from ZO1 optical branch that corresponds to the B1g at the

zone center (chapter 1). SA and SO are the strength of the coupling to phonons, EA and

EO are the mean acoustic and optical phonon energies, respectively. In figure 4.9, we

obtain a good agreement with the experimental data. We find the optical phonon energy

is constant within our fitting error EO = 15 ±5 meV, in contrast the coupling strength in-

creases from 50 ±10, 65 ±10 to 115 ±10 meV in 11BN, NaBN, and 10BN, respectively. The

values of SA = 1.5 ±0.3 and EA = 4 ±1 meV are the same in the three KSU samples.

We remark that all fitting parameters in NaBN are exactly the same (within the fitting

error) as the ones in the HQ Graphere sample (chapter 3, pages 78-80). This further con-

firms the intrinsic origin of the linewidth broadening of the emission lines in BN and also

supports that the zero temperature linewidth is exclusively limited by phonon-assisted

broadening in BN. Moreover, above 70 K, where ∆O prevails, the same value of the opti-

cal phonon energy of EO = 15 ±5 meV was found in three fits of the three KSU samples
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(also equals to HQ Graphere sample) confirms the contribution of the B1g phonon mode

to the line-width broadening. The fitting error for ±5 meV of the phonon energy is at least

one order of magnitude larger than the isotopic shift of the interlayer breathing mode, in

the range of 0.15 meV, by assuming 1%-variations of the phonon energy as for the Raman

modes. This means that the larger broadening observed in PL spectroscopy in 10BN is not

due to the isotopic shift of the interlayer breathing mode. According to the equation 3.16

and the discussion in chapter 3, the larger the phonon energy, the larger the line-width

broadening. It means that the line-width broadening should be smallest in 10BN and

biggest in 11BN. That is totally in opposition to our experimental findings. The variations

of the coupling strength is the only way to reproduce our data, with the highest (lowest)

value in 10BN (11BN). Moreover, like in case of interlayer shear mode, the value of the

coupling strength in NaBN is close to the one in 11BN while it is much smaller compared

to the one in 10BN.

As a matter of fact, the coupling strength thus captures the impact of isotopic engineer-

ing on the thermally-assisted broadening of the PL lines. Following Sumi et al. [63], the

expression of the coupling strength indicates that it is proportional to the square modu-

lus of the matrix element describing the exciton-phonon interaction. This expression is

written:

SO =
1

2

∑
k

|Vk|2

ω2
k

(4.11)

where SO the coupling strength, ωk the phonon energy, and Vk the matrix element de-

scribing the exciton-phonon interaction. This matrix element can be described by the

optical deformation potential (D0) [24]: Vk = D0.

On the other hand, the energy shift due to exciton-phonon interaction have been calcu-

lated using tight binding model. The equation giving the energy shift reads:

δE = 8

(
γ

Eg

)
δγ (4.12)

where δE is the energy shift, γ is the matrix element describing the interlayer hopping, Eg

the bandgap energy. Besides, according to Pötz and Vogl [89], the power-law dependence

of the matrix element γ with the interlayer distance reads:

γ = η
1

c2n
(4.13)
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where 2n is the exponent.

Combining Equations 4.12 and 4.13, we obtain the optical deformation potential in the

case of the interlayer breathing mode in BN:

D0 = 8(2n)
γ2

Eg
(4.14)

As discussed in Appendix 4, the Van der Waals potential can be expanded in power series

of the interatomic distance (−C6/r
6 + −C8/r

8...). It means that the exponent n can be 3

or 4. Consequently, we obtain the relation between the quantities:

SO ∼ |D0|2 ∼ |γ|4 ∼ c−8n

According to our analysis of the thermal red-shift of the interlayer shear mode, we take

an approximate value n = 4 in BN, so that SO ∼ c−32. This huge value indicates a

dramatic sensitivity of the exciton-phonon interaction with the c-lattice parameter in the

case of the interlayer breathing mode. We thus conclude that the increase of the coupling

strength between 11BN and 10BN goes beyond standard models of the exciton-phonon in-

teraction. Similar to the case of the shear motion of adjacent layers, we infer that isotope

engineering in BN impacts the lattice vibrations controlled by the weak vdW coupling

between adjacent layers.

By studying the temperature-denpendent PL measurements of interlayer shear mode and

interlayer breathing mode in BN gives two signatures for the modification of vdW due

to boron isotopes. The two signatures bring a very new phenomenon of isotopes effect

in BN relating to the vdW heterostructure. These results also open a question about the

direct observation of the modification of vdW due to boron isotopes. An answer were

solved by performing X-rays measurements that will be presented in next section.

4.3 X-ray measurements

The X-rays measurements were performed, with a high resolution X-ray diffraction plat-

form, in the Institut Européen des Membranes (UMR-5635 CNRS) at Montpellier by by

our colleagues Prof. Van der Lee (see more details in supplementary in Vuong el al. [86].

Figure 4.10 displays electronic density distribution in 10BN (top, (a-c)) and 11BN (bottom,
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Figure 4.10: Electron density distribution in 10BN (top, (a-c)) and 11BN (bottom, (d-f))
using the maximum entropy method against X-ray data collected at 125K to 0.4 Å

resolution. (a&d) 2D contour plots in a plane parallel to the c-axis, (b&e) side view of 3D
contour plots with an iso-contour level at 1e.Å−3, (c&f) 2D contour plots in a plane

perpendicular to the c-axis. The iso-contour levels range from 1 to 30 e.Å−3 in steps of
0.5 e.Å−3.

(d-f)) using the maximum entropy method (MEM) against X-ray data collected at 125K.

We have 3D maps of electronic distribution for 10BN and 11BN showing in figures 4.10 (b

and e).

Whereas, figures 4.10 (a,c, d, and f) show the 2D maps of electronic density distribution

of the two samples 10BN and 11BN in a plane parallel or perpendicular to the c-axis.

From these figures, we can see the modification of electronic distribution between 10BN

and 11BN. This modification can be seen more clear in figure 4.11 that is presenting the

expansion of figures 4.10 (a&d) for 10BN and 11BN. Along the c-axis, the out-of-plane

electron density is more spread out around both nuclei in 10BN, while in 11BN, it is more

dilocalized. It means the electron is less strong bound in 10BN than in 11BN.

The different neutron numbers of isotopes are expected to induce slight modifications

in the electronic wavefunction. In accordance with Ref.[90], for a point-like nucleus, the

93



Figure 4.11: Expanded view of figure 4.10(a&d) for (a) 10BN and (b) 11BN. The
orientation is identical to figure 4.10(a&d), but the vertical section is between z=0.585

and z=0.915 in cristallographic units of the c-lattice parameter (c ∼ 6.6 Å). Contour
levels are from 1 to 3 e.Å−3 in steps of 0.5 e.Å−3. Squares in the white grids have a size

of 0.242 Å.

Coulomb potential experienced by electrons approaches−∞ at the center. When increas-

ing size of the nucleus, this potential deviates because of the finite nucleus size. This

effect is called Field shift which increases with nuclear size. The hyperfine effect due

to the deformation of the nuclear charge distribution is however in the GHz range [90],

i.e. three orders of magnitude lower than the characteristic spectral shifts discussed here.

The most plausible interpretation for the deformation of the electron wavefunctions in-

between the layers of isotopically-purified BN crystals goes back to the mass variations

in 10B and 11B nuclei.

By performing X-ray diffraction experiments, we demonstrate that the interlayer elec-

tronic distribution itself is affected by the isotopic substitution, giving a direct observa-

tion for the modification of vdW interaction in BN due to isotopes.

94



4.4 Conclusions

In this chapter, we study on the isotope engineering of lamellar BN crystals with nearly

pure boron isotopes (10B and 11B) compared to those with the natural distribution of

boron (20 at% 10B and 80 at% 11B) by performing the Raman and PL measurements.

In the first section, based on the publication of Cardona and his co-worker, we we have

focused on the two conspicuous effects of the isotope that are:

The dependence of the phonon frequencies and the linewidths with the isotopic composi-

tion:

Raman measurements of three controlled boron isotopic samples of the phonon mode at

high energy of BN, which were performed by our colleagues, evidenced the dependence

of the phonon energy with the reduced mass of BN. We observed the shift of Raman

lines of 11BN and 10BN compared to NaBN with amount of 1.5 and 3.5 meV. Besides this

effect, there is the impact of the isotopic mass disorder leading to an energy shift and a

linewidth broadening of NaBN compared to isotopically pure BN (11BN and 10BN).

Renormalization of the energy of the electronic states through the electron-phonon in-

teraction:

The PL measurements have been performed for the three KSU samples. We observed the

global red-shift from 11BN to 10BN due to both the phonon energy effect and the elec-

tronic bandgap renormalization. The band-gap renormalization is estimated at 225 meV

by analyzing our data. This value is in fair agreement with the temperature dependent

PL measurements done in Ref. [80]. From which, we extract a single Einstein oscillator of

energy ~Ω = 68±2 meV. This value is is rather low compared to the abolute maximum of

the phonon dispersion of 200 meV in h-BN [39], indicating the interlayer vibrations make

a significant contribution to the electron-phonon bandgap renormalization.

In the second section, we have focused on the impact of isotopes on the weak van der

Waals interactions in BN that is obtained by analyzing the temperature-dependent re-

sults of the shear and breathing modes of adjacent layers.

Temperature-dependent Raman measurements of the phonon mode at low energy (inter-

layer shear mode) were performed from 10 to 600K. Increasing temperature, the Raman

energy decreases due to the dependence of phonon energy with the c-lattice parameters

that increases with temperature. A power-law dependence was used to analyze our data.
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We obtain a modification of the exponent of the power-law from one sample to another:

it is 3.6±0.3 in 11BN, and it increases to 5.7±0.3 in 10BN. This is the first evidence for the

weak, non-local van de Waals coupling varying with the isotopic composition. The sec-

ond evidence was obtained by studying the line-width broadening of PL lines due to the

contribution of the interlayer breathing mode. Similar to the case of the interlayer shear

mode, we obtain an increase of the coupling strength to the interlayer breathing mode

fom 50 ± 10, to 70 ± 10, and then 115 ± 10 meV in 11BN, NaBN, and 10BN. We infer that

isotope engineering in BN impacts the lattice vibrations controlled by the weak van der

Waals coupling between adjacent layers.

Besides, X-ray diffraction was performed for 11BN to 10BN by our colleague to observe

directly the difference between them. The result is the electron density distribution is

more diffuse between adjacent layers in 11BN than in 10BN crystals. Therefore, we can

conclude that the interlayer electronic distribution itself is affected by the isotopic substi-

tution, giving a direct observation for the modification of the van de Waal interaction in

BN due to isotopic purification.
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Chapter 5

BN epilayers grown by molecular

beam epitaxy (MBE)

In the previous chapters, we have studied the electronic and optical properties of differ-

ent bulk crystals, so called NIMS, HQ Graphene or KSU. They were grown by different

methods discussed in details in chapter 2. All of them present the same PL spectrum

with three emission bands centered at 4, 5.5, and 5.8 eV respectively, corresponding to

the signature of point defects, stacking faults, and phonon replicas [64, 91–94]. In figure

5.1, we show the PL spectrum in a larger scale from 3.5 eV to 6 eV of a sample bought

from HQ Graphene company. Three areas are distinguished by different colors. The first

one shown in green corresponds to electronic states localized in point defects. This PL

signal was studied in detail and the interpretation was published in Physics Review Let-

ters (PRL) in 2016. We will not further discuss the result of this area in this chapter, more

details can be found in Appendix C. The second area (red) comes from extended defects

or stacking faults, which were in particular characterized with a nanometric resolution

in a transmission electron microscope [64, 95]. This emission spectrum exhibits various

peaks at 5.62, 5.56, 5.47, and 5.3 eV, the so-called D lines (figure 5.1) [64, 93]. The D2

and D6 lines at energy of 5.27eV and 5.56 eV were tentatively assigned to the boron ni-

tride divacancy [64], while the D1, D3,4, and D5 lines are phonon replicas involving real

excitonic states due to the presence of defects in BN [64]. The last one using textured

blue includes five emission lines at 5.76, 5.79, 5.86, 5.89, and 5.93 eV corresponding to

the phonon-assisted emissions, namely LO3, TO3/TO2, LA/LO1, TA/TO1, and ZO1 that

were previously disccussed.
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Figure 5.1: Photoluminescence spectrum in HQ Graphere BN at 8K, under excitation at
6.3 eV.

Such crystals are very appropriate for the establishment of basic quantities that indi-

cate what the performances of BN are. Developing a large scale production of BN-based

devices using such tiny crystals cannot be seriously envisioned as the worldwide need

requires production of much higher amounts of materials than the growth methods used

to get these tiny crystal will ever allow. As an example to reinforce the statement above,

let us consider the GaN parent material. Although the first GaN mono-crystals grown by

taking into advantages of the thermodynamics were published in 1938 [96], it was nec-

essary to wait more than 30 complementary years to have the first demonstration of an

operating device obtained by an alternative growth method, using chemical precursors

that were made to react to form GaN, based on chemical processes out of equilibrium.

These methods offer the possibility to deal with higher growth rate than the solidifica-

tion processes, and they permit to realize junctions of different doping with controlled

interfaces. One further had to wait till 1986 to be able to obtain high quality GaN ma-

terial by such epitaxial methods and 1989 was the year when was published the first

GaN-AlGaN light emitting diode (LED) with ’appropriate’ electrical injection conditions

[97–99].
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The epitaxial crystal growth methods consist of depositing a monocrystalline film on a

mono-crystalline substrate forming an epitaxial film or an epitaxial layer. The substrates,

such as sapphire, SiC, GaAl2O4 act as a seed crystal. The first difficulty lies in the lack

of lattice matching of the different materials used to grow the device, and the second

one is the lack of the substrate lattice matched with materials such as GaN, BN, AlN,

the main components of these devices. In line with bondings in such crystals, a lot of

dislocations are created to relax the elastic energy stored in the strained layers. Shamed

layer epitaxy is thus very challenging through the managing of defect for nature. Defects

have such deleterious influence on the performances lifetime of devices. For compound

semiconductor processes, impurities will affect the electrical characteristics through com-

pensation of dopant or unintentional doping, shift the intended emission wavelength in

lasers or LEDs, and reduce device lifetime by degrading the interface and introducing

imperfections in the crystal lattice. Epitaxy makes use of a variety of gases for growth

and doping.

There are two main epitaxial growth approaches for materials in general, and for BN

in particular: the Chemical Vapour Deposition (CVD) and the molecular beam Epitaxy

(MBE). In all cases, the epitaxial layer is formed by the coherent deposition of the atoms

on the substrate surface. The only differences are the conditions in which growth occurs.

Molecular beam epitaxy (MBE)

MBE is realized in high vacuum conditions, in metallic chambers to which can be adapted

a lot of different in-situ growth control instruments (Auger probes, Rheed oscillation

probes) [100]. Atomic beams target the substrate surface where growth can thus be con-

trolled in real time. Among all the critical quantities is the management of the very high

temperature needed at the surface of the substrate for the growth of BN. The intrinsic

properties of metals (a high thermal conductivity making the thermal exchanges with

the substrate holder and the rest of the metallic growth chamber softening substantially

in the very high temperature range) are hurdling the development of this growth tech-

nology in the high temperature range. A specific and expensive design has been realized

in Nottingham to overcome these difficulties and to grow BN at high temperature, with,

as will be demonstrated further, optical performances that teach us what is the state of

the art at the time of writing.
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The high-purity BN expilayers grown by MBE, however, have not been recorded so far.

Chemical Vapour Deposition (CVD)

CVD is practiced in a variety of formats, for instance Atomic-layer CVD (ALCVD), Hy-

brid Physical-Chemical Vapor Deposition (HPCVD), Metal Organic chemical vapor de-

position (MOCVD), Combustion Chemical Vapor Deposition (CCVD), and etc . Among

that, MOCVD, also known as organometallic vapour phase epitaxy (OMVPE) or metalor-

ganic Vapor-phase epitaxy (MOVPE) is more popular [101]. The atoms are brought on

the surface by using gas flow after cracking of precursors that contain organic radicals.

The gas flow can be N2 or H2 or a mixture of them, it is chosen based on criteria like

its viscosity, chemical aggressiveness at the growth temperature. The growth pressure

conditions can be tuned through a large range of values together with different partial

pressures of the actors that contribute to the growth. Except an optical, laser-assisted

control of the growth rate there are almost no in-situ growth control instruments. In con-

trast to MBE, high growth temperatures can be fairly easily achieved at a reasonable cost,

but it is less precise. In these ranges of high growth temperatures, thermal exchanges

mediated by the gas flow occur between the substrate and the quartz reactor which re-

quires ad-hoc design to work under these severe conditions. We can anticipate from what

is known concerning the high temperature growth of (Al,Ga)N-related compounds that

the main drawback will from bonafide come from the thermal cracking of the boron pre-

cursors that may lead to efficient carbon incorporation or contamination of all residual

impurities in the growth layer under these high temperature conditions. The doping of

MOCVD-grown samples will be strongly correlated to the purity of the precursor for

boron.

Unlike MBE, high-purity BN expilayers grown by CVD has been reported in many litera-

tures such as [43–49, 102]. The high-purity of BN samples were demonstrated by various

measurements, such as X-ray, Raman, CL, or PL. The PL and CL spectra of BN epilayers

grown by MOCVD and MOVPE by Majety et al. [48, 103] and Li et al. [49] are shown in

figure 5.2, respectively.

Figure 5.2(a) shows the PL spectra of 1µm BN epilayers grown on sapphire compared to

the PL spectrum of AlN epilayers in Ref. [103]. They observed a strong band-edge PL

emission centered at about 5.48 eV at 10K corresponding to the emission band related to
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Figure 5.2: (a) PL spectra of BN and AlN epilayers at 10K [48, 103], (b) CL spectrum of
BN grown on sapphire at wavelengths near bandgap at 77 K under excitation of 6 kV.

Inset shows defect band emission [49] .

extended defects in bulk samples. Besides, figure 5.2(b) displays the CL spectrum includ-

ing three band edge PL peaks of 30 nm BN layer on sapphire grown by MOPVE by Li et

al. [49]. They indicated that the tiny peak at 5.73 eV (peak 1, figure 5.2(b)) corresponds

to the phonon replicas of BN (S series in their paper), while the two remaining peaks at

5.29 eV and 4.92 eV (peaks 2 and 3, figure 5.2(b)) correspond to the emission band related

to extended defects in bulk samples. The inset of this figure displays a strong CL peak at

around 3.9 eV corresponding the signature of point defects in bulk sample.

Based on all the discussion above, we would like to contribute to develop a technology

based on BN that would be grown at large scale. To do that it is mandatory to be able

to establish the epitaxial growth protocol on large scale and low-cost foreign substrates

such as c-plane Al2O3, c-plane SiC. In this chapter, we are going to evaluate the optical

properties of two series BN epilayers grown by MBE (chapter 2). The first series of BN

epilayers were grown on sapphire substrates (S series), while the second one were grown

on highly ordered pyrolytic graphite (HOPG) substrates (G series). Besides PL measure-

ments, atomic force microscopy (AFM) was performed in ambient conditions using an

Asylum Research Cypher-S AFM, by our colleagues working at School of Physics and

Astronomy, University of Nottingham, United Kingdom. Such experiments provide im-

portant information on the morphology as well as an estimate of the thickness of BN

deposited during the growth of the two series of samples.
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5.1 BN grown on sapphire substrate

We first address the first series of samples, grown on sapphire. These four samples are

named S1390, S1480, S1560, and S1690 and they were grown at different temperatures of

1390 °C, 1480 °C, 1560 °C, and 1690 °C, respectively.

5.1.1 Atomic force microscopy (AFM)

The typical AFM images recorded on the first series of BN samples are presented in fig-

ure 5.3. We make here a comparison between samples S1390 and S1690. The morphology

of the three BN samples with growth temperatures of 1390 °C, 1480 °C, and 1560 °C are

very close to each other, so that, only data corresponding to S1390 and S1690 have been

displayed in figure 5.2. In sample S1390 (and also S1480 and S1560), we observe a uni-

form nano-crystallite morphology with BN nanocrystallites covering the entire sapphire

surface. Otherwise, in sample S1690, we observe the underlying terraces of the sapphire

substrate that are visible through the BN deposits. It may be due to re-evaporation of BN

from the sapphire substrate at these high temperatures, resulting in a thinner BN layer.

The estimations of the average BN film thickness indicate a monotonic decrease, from ∼

17 nm to ∼ 5 nm (from 53 to 15 in units of monolayer (ML) with 1ML = 0.33 nm) with the

growth temperature conditions shown in table 5.1. Specifically, the average thickness of

S1390, S1480, S1560, and S1690 were estimated at 53 ±3 ML, 40 ±3 ML, 33 ±3 ML, and 15

±3 ML, respectively. It means that when increasing the growth temperature, the average

thickness of the samples decreases in the S series.

a bT = 1390°C T = 1690°C

Figure 5.3: Atomic force microscopy images of two BN samples grown on sapphire for 3
h, (a) at 1390 °C, and (b) at 1690 °C. The scale bars in both images are 2 µm
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Growth temperature 1390 °C 1480 °C 1560 °C 1690 °C

BN/Sapphire 53±3 40±3 33±3 15±3

Table 5.1: Average film thickness of BN samples grown on sapphire, in units of
monolayer (ML), after 3h of growth as a function of the growth temperature. 1ML =

0.33nm.

5.1.2 Photoluminescence measurements

Photoluminescence spectra recorded in the energy range from 5 to 6 eV for the S series

at low temperature (8K) under an excitation at 6.3 eV are plotted in figure 5.4. At first

sight, we observe an emission band centered at 5.4 eV (with a maximum PL peak around

5.4 eV and a secondary shoulder at a higher energy of 5.55 eV) and a full width at half

maximum of the order of 300 - 400 meV in the four samples. The PL signal of the S1390

grown at the lowest temperature is tricky to observe in a linear scale because of its weak

intensity. The emission line of BN epilayers centered at 5.4 eV match the emission band

corresponding to stacking faults in bulk samples. Nevertheless, this band is unlike the

case of high-quality BN crystals where it is composed of many lines (D series) as shown

above in figure 5.1; it is more less similar to the PL spectrum of BN epilayers grown by

MOVPE which consist in two broad lines (Figure 5.2(a)). In fact, for the BN grown on sap-

Figure 5.4: PL spectra in the four BN samples grown on sapphire were recorded at 8K
under excitation at 6.3 eV, followed by the growth temperature in °C.
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phire, the emission spectrum can only comprise the PL lines arising from point defects

(D2 and D6 lines) which were identified as being related to shallow transitions involving

presumable boron nitride divacancies. This is because the first series of BN consist of

nanocrystalline domains (AFM image - figure 5.3) , so that extended defects cannot de-

velop in this type of sample.

Furthermore, there is a strong dependence of the PL intensity of the MBE samples with

their growth temperature. In particular, we observe the highest intensity for the sample

grown at the highest temperature of 1690 °C (S1690). The PL intensities of S1560, S1480,

and S1390 are reduced by a factor 4, 44, and 225, respectively, compared to the one of

S1690. We can say that the higher the growth temperature of the MBE samples grown on

sapphire, the higher the PL intensity. Still, the lower the growth temperature, the thicker

the BN epilayer as indicated in table 5.1 and discussed in the previous section. This means

that the increase of the PL signal intensity is due to a higher quality of the epilayers. However,

we do not observe any signal at higher energy corresponding to the intinsic phonon repli-

cas, as shown by the blue area in figure 5.1. We believe that the quality of this first series

is not good enough to observe the phonon-assisted recombination around the band gap.

Finally, we plot the PL spectrum through a larger energy range (from 3.5 to 5.8 eV) for

S1690 in figure 5.5. We note that we do not observe the two sharp peaks around 4 eV

corresponding to point defects, like in other samples (HQ graphene, NIMS or KSU sam-

ples).

Nevertheless, a broad emission, comparable to the one highlighted in green in figure 5.1

is still observed. There is a good match between our result with the CL spectrum of BN

epilayers grown on sapphire by MOVPE as shown in figure 5.2(a), inset. But, in this fig-

ure, the intensity of the defects band is much higher than the one of the S1690 BN sample.

This proves that samples grown by MBE has a good control over defect density.

In conclusion, we have succeeded, for the first time, to record PL signal in the DUV

on thin BN epilayers grown on sapphire substrates by MBE. The emisson band around

5.4 eV of the first series of BN has been observed proving that high temperature MBE

growth can produce BN layers of high optical quality. Furthermore, the quality of the

sample increases when increasing the temperature. However, the quality of the series S

is still not good enough to obtain a PL signal at high energy, near the bandgap. This rises

the motivation to increase the quality of our samples. To do that, our colleagues working
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Figure 5.5: PL spectrum of S1690 over a larger spectral range, recorded at 8K under
excitation at 6.3 eV.

at Nottingham University have deposited BN not only on sapphire, but also on highly

ordered pyrolytic graphite (HOPG) substrates. HOPG is not a standard MBE substrate,

but it is a good alternative to sapphire, because BN is closely lattice-matched to HOPG

with a low lattice mismatch of ∼ 1.8% [41]. The AFM and PL measurements recorded on

this second series are plotted and interpreted in the next section.

5.2 BN grown on highlyordered pyrolytic graphite (HOPG) sub-

strate

We now focus on the second series of samples grown on HOPG substrates. This series

includes four samples, namely G1390, G1480, G1560, and G1690 which were grown at

different temperatures of 1390 °C, 1480 °C, 1560 °C, and 1690 °C, respectively.

5.2.1 Atomic force microscopy (AFM)

The AFM images of the four BN samples of the G series are presented in figure 5.6. We

find that the morphology of the BN epilayers grown on HOPG is markedly different from

those grown on sapphire. In particular, we observe faceted BN islands nucleating from

HOPG step edges, and bulk BN deposits. The BN islands form a near-complete mono-
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a b c dT = 1390°C T = 1480°C T = 1560°C T = 1690°C

HOPG

HOPG

HOPG
hBN

hBN

hBN

HOPG

Figure 5.6: Atomic force microscopy images of BN grown on HOPG for 3h, at 1390 °C
(a), 1480 °C (b), 1560 °C (c) and 1690 °C (d). The images show a gradual reduction in

surface coverage from complete BN coverage in (a) to island growth ((b) and (c)), and
finally only growth from HOPG step-edges (d). The arrows in images ((b)-(d)) indicate

the regions corresponding either to the underlying HOPG substrate (b), or to the BN
islands ((c) and (d)), following the comparative analysis detailed in [41]. The AFM

images ((b)-(d)) were acquired using AC mode AFM, and image (a) was acquired in
contact mode. The scale bars in images ((a)-(d)) are all 500 nm.

layer for the lowest growth temperature as shown in figure 5.6(a) (1390 °C), together with

multi-layered regions. Defects and grain boundaries are also observed which indicate a

laterally polycrystalline BN surface. We note that in the two samples grown at the highest

temperatures (1580 °C and 1690 °C), the BN coverage of the HOPG surface is drastically

decreased, compared to the two remaining ones because of BN sublimation, which will

impact on the optical response (next section).

The estimations of the average BN thickness are shown in table 5.2. Similarly to the case

of the S series, we obtain a monotonic decrease of the average thickness with the growth

temperature. The thickness of the G series, however, is deeply smaller than the one of the

S series. Specifically, the thickness of G1390, G1480, G1560, and G1690 were estimated at

1.15 ±0.01 ML, 0.85 ±0.01 ML, 0.38 ±0.01 ML, and 0.09 ±0.01 ML, respectively.

Growth temperature 1390 °C 1480 °C 1560 °C 1690 °C

BN/HOPG 1.15±0.01 0.85±0.01 0.38±0.01 0.09±0.01

Table 5.2: Average film thickness of BN samples grown on HOPG, in units of monolayer
(ML), after 3h of growth as a function of the growth temperature. 1ML = 0.33nm.

5.2.2 Photoluminescence measurements

The PL spectra of the second series of BN samples have been recorded in the same ex-

perimental conditions as before. Figure 5.7 displays the results of the PL measurements

for BN epilayers grown on HOPG focusing on a short energy range scaling from 5 eV
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Figure 5.7: PL spectra in the four BN samples grown HOPG (solid lines), compared to
the PL spectrum of HQ Graphene sample (dashed line), were recorded at 8K under

excitation at 6.3 eV.

to 6 eV. Similarly to the PL spectra of the S series, we also observe the broad emission

band around 5.4 - 5.5 eV with a full width at half maximum of 400-500 meV in the four

samples that match the emission band corresponding to stacking faults in bulk samples

(figure 5.1). In particular, these PL bands include a strong main peak at 5.45 eV and a

secondary shoulder at 5.65 eV. We note that the intensity of G1560 is only observable

in log scale because of its weak intensity. However, these PL bands are larger by ap-

proximately of 100 meV, and they shift toward higher energy by an amount of about 0.5

eV, compared to the ones of BN epitaxies grown on sapphire. This shift may be due to

the smaller lattice mitmatch between BN and graphite compared to the one of BN and

sapphire. Futhermore, the shoulder of the emisson band at 5.65 eV is more pronounced

(compared to BN/sapphire), and it is close to the D1 line in the PL spectrum of bulk sam-

ples, which corresponds to the first overtone arising from intervalley scattering assisted

by the emission of one transverse optical phonon at the K point [64].

On the other hand, we also observe a pronounced dependence of the PL spectrum with
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growth temperature for the BN layers grown on HOPG. Unlike the case of sapphire sub-

strate, the evolution is reversed: the lowest substrate temperature (1390 °C) is displaying

the most intense and rich signal. Moreover, the dependence of the PL signals with the

growth temperature is not exactly monotonic, like in the case of the first set of BN sam-

ples. Specifically, the lowest PL signal is not recorded for the highest substrate temper-

ature sample (G1690) but for the second highest one (G1580). The explanation for this

comes from the coverage of the BN surface. Let us come back to AFM images (figure

5.6), we note that AFM data for the two BN samples G1580 and G1690 do not indicate

complete surface coverage. Their PL signals are therefore not very strong and depend on

the position of the laser spot on the surface of the samples.

In contrast to the first series of BN samples, at higher energy, we observe PL signals

around 5.9 eV with a doublet structure at 5.88 and 5.91 eV in the two BN epilayers: G1390

and G1480 (figure 5.7 - green and purple lines). These PL lines are attributed to the con-

tributions of two phonon replicas LA/LO1 and TA/TO1 with a small shift toward higher

energy of 100 meV, respectively, compared to the PL spectrum of HQ Graphene sample

(figure 5.1 - blue area). This blue-shift of phonon replicas may come from the modification

of the intrinsic optical properties of BN when changing from bulk crystal to monolayer.

A similar phenomenon has been observed in several literatures, such as Schué et al., Du

et al. [51, 80].

Looking more carefully at sample G1390, we also observe another peak at 5.8 eV, as a

high-energy shoulder of the dominant emission band around 5.4-5.5 eV. This emission

line may correspond to the other phonon replicas, labeled LO3 and TO2/TO3. I would

like to highlight that the phonon replicas have never been observed in thin BN epilayers

grown either by MBE or MOCVD. Our PL signals give an evidence to confirm the high-

purity of BN epilayers grown on HOPG by MBE.

According to Ref.[51] when reducing the thickness of BN samples from bulk down to few

monolayer-samples, the intensity ratio of the LO3 - TO2/TO3 and LA/LO1 - TA/TO1

phonon replicas decreases. It means that the LO3 - TO2/TO3 optical phonon replicas

dominate the intrinsic emission spectrum in bulk BN, whereas the PL spectrum is domi-

nated by the LA/LO1 - TA/TO1 phonon replicas in BN few monolayers samples. This ef-

fect is also observed in our samples. In particular, the intensity ratio of the LO3 - TO2/TO3

and LA/LO1 - TA/TO1 phonon replicas is equal to 8 in the bulk BN samples, while this
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Figure 5.8: PL spectrum of G1390 over a larger spectral range were recorded at 8K under
excitation at 6.3 eV.

ratio is 1/3 in the G1390 BN sample (after background correction). Comparing to the

study of Ref.[51], the thickness of our sample G1390 was estimated of around 6 - 8 ML

at the position of the laser spot on the surface of the sample. We remark that the AFM

image for G1390 (Figure 5.6) indicates the complete surface coverage, however it is not

homogeneous with the simultaneous existence of the BN monolayer and multi-layers.

That explain the different between the average thickness of 1 ML estimated by AFM and

the thickness of 6-8ML estimated by PL spectrum in G1390. In fact, it is very tricky to

observe exactly the PL signal from the BN island monolayer with our experimental con-

ditions, i.e the diameter of a laser spot. This fact raises a requirement for improving or

changing our system such as a microscopy cryostat or laser.

Similarly to the S series, the PL spectrum on a larger energy range (from 3.5 to 5.8 eV)

for G1390 displayed in figure 5.8 consists of a broad emission band centered around 5.4

- 5.5 eV discussed above, and another broad band around 4 eV corresponding to point

defects. This band has been already discussed in the previous section.

In summary, the presence of the phonon replicas in the PL spectrum of G1390 is a di-

rect signature of the excellent crystalline quality of our BN epilayers grown by high-

temperature MBE. The quality of the BN samples enhances obviously by changing the

substrate from sapphire to HOPG. The comparison between the PL spectra of two series

(S series and G series) proves that the quality of the samples grown on HOPG substrates
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is better than the one grown on sapphire substrates due to the lower lattice mismatch.

5.3 Conclusions

In this chapter, we have studied the two series of h-BN epilayers grown by MBE in differ-

ent substrates: sapphire and Highly Ordered Pyrolitic Graphite (HOPG), with different

growth temperature of 1390 °C, 1480 °C, 1560 °C, and 1690 °C.

The Atomic force microscopy (AFM) images show different results for the two series. In

the series grown on sapphire of BN, AFM images show that the BN epilayers consist of

nanocrystalline domains, while in the series grown on HOPG we observe faceted BN is-

lands nucleating from HOPG step edges, and bulk BN deposits. The estimation of the

average thickness by AFM of the two series decrease with the growth temperature. In

particular, when increasing the growth temperature, the thickness of samples decreases.

However, the average thickness of the series grown on HOPG (from 0.09 to 1.15 in units

of monolayer (ML)) is deeply smaller than the one of the series grown on sapphire (from

15 to 53 ML).

As far as the PL measurements are concerned, for the first time, we have succeeded to

recorded the PL signal in the deep ultra-violet (UV) in thin BN epilayers grown on sap-

phire and HOPG substrates by MBE. The emission bands around 5.4-5.5 eV match the

emission band corresponding to stacking fault that were recorded in bulk BN crystal

[6, 51, 64] and in BN epilayers [49, 103].

Moreover, PL spectra show that there is a strong dependence of the PL intensity of the

series grown on sapphire with their growth temperature. The higher the growth temper-

ature, the smaller the average thickness of the samples, the higher the PL intensity. From

this, we conclude that the high temperature MBE growth can produce BN layers of high

optical quality.

Furthermore, in the two samples grown on HOPG with the lowest growth temperatures

of 1390 °C and 1480 °C, we observed the PL peaks at energy of 5.88 and 5.91 eV which

correspond to the two phonon replicas LA/LO1 and TA/TO1, compared to the PL spec-

trum of bulk samples. These PL lines corresponding to the phonon replicas have never

been observed in thin BN epilayers grown either by CVD or MBE. For the first time, we

show the evidence of the phonon replicas in BN thin epilayers. This is a direct signa-
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ture for the excellent crystalline quality of our samples grown by the high temperature

MBE. The comparison between the PL spectra of the two series of BN epilayers proves

that the quality of the samples grown on HOPG substrates is better than the ones grown

on sapphire substrates due to the lower lattice mismatch. In conclusion, high purity BN

epilayers grown by MBE pave the way to the launching of complementary growth which

may trigger the entrance of epi-BN into the arena of both wide bandgap semiconductors

with the possibility to bridge the technologies.
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Conclusion

IN THIS THESIS, the optical properties of bulk and epilayers of hexagonal boron ni-

tride (h-BN) were studied using the photoluminescence and Raman spectroscopies, X-ray

diffraction, and Atomic force microscopy (AFM). We investigated samples from different

sources: National Institute for Materials Science - Japan, HQ Graphene company, Kansas

State University, and Nottingham University using different growth methods, such as

high-pressure and high-temperature (HP-HT), Ni-Cr flux, and molecular beam Epitaxy

(MBE). The purpose for that is to confirm the intrinsic optical properties of h-BN.

First, we have focused on the phonon-assisted recombinations of h-BN by performing

polarization-resolved PL measurements.

• We have analyzed the two cases of a Poynting vector −→$ parallel or perpendicular

to the c-axis. In the case of a Poynting vector −→$ parallel to the c-axis, we recorded

four main emission lines that correspond to the phonon replicas LO3, TO2/TO3,

LA/LO1, TA/TO1. Their intensity did not change when rotating the linear polar-

izer of analysis. On the contrary, in the case of a Poynting vector −→$ perpendicular

to the c-axis, in addition to these four phonon replicas, the ZO1 phonon replica at

5.93 eV was also observed. Moreover, there was a strong dependence of the inten-

sity of all phonon replicas with the polarizer angle. The intensity ratio of LA/LO1

and ZO1 changes from 200 to 5 when rotating the linear polarizer. These results

demonstrate the impact of the phonon symmetries on the optical emission spec-

trum in bulk h-BN. Besides the phonon replicas mentioned above, the ZO3 phonon

replica at 5.87 eV, which has the same B1g symmetry as the ZO1 phonon replica, was

obtained by subtracting the two different PL spectra in case of a Poynting vector −→$

perpendicular to the c-axis. This ZO3 phonon replica was confirmed by the com-

parison between the phonon dispersion relations [39] with our PL spectrum, giving
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a comprehensive understanding of the phonon replicas in h-BN, and further point-

ing out the originality of the optical properties in this layered compound where the

extrema of the conduction and valence bands lie in different high symmetry points

which are both away from the zone center. Outstandingly, we have succeeded in

the challenging measurements of the polarization-dependence of the forbidden in-

direct exciton emission intensity giving the orientation of the dipole of the exciton

in a predominantly in-plane orientation. As a matter of fact, the results obtained by

mean of polarization-resolved PL spectroscopy provide a strong confirmation, and

a definite proof for the indirect nature of the bandgap in h-BN that was investigated

in Ref.[11].

• We have demonstrated that the origin of the fine structure of the PL spectrum in

BN arises from overtones of interlayer shear modes in the phonon-assisted emis-

sion spectrum of h-BN. These lattice vibrations are specific to layered compounds

since they correspond to the shear rigid motion between adjacent layers, with a

characteristic energy of about 6.8 ± 0.5 meV in h-BN at 8 K. Our theoretical model,

based on calculations of the phonon energy and group velocity at T points of the

Brillouin zone, reveals that the differences observed for the various phonon repli-

cas in h-BN only come from the variations of the phonon group velocity at T points

of the Brillouin zone. The larger the phonon group velocity, the broader the line

of the phonon replica. An excellent fit of the multiplet observed in each phonon

replica is obtained by taking the assumption of a cumulative Gaussian broadening.

The comparison between our model and the data raises a new question about the

different profile between the two Gaussian and Lorentzian functions.

• Following the theoretical predictions of Toyozawa of the line-shape of the exciton

absorption band [61], we have brought the two evidences for the strong-coupling

regime of the exciton-phonon interaction in h-BN, that had never been previously

observed since the paper of Toyozawa. The first evidence comes from the compari-

son between Gaussian and Lorentzian functions in the fits of the PL spectrum at low

temperature (8 K) as well as at high temperature. The excellent fit obtained with the

Gaussian profile suggests that the exciton-phonon interaction is in the strong cou-

pling regime in BN [61]. The second evidence was observed by performing the
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temperature-dependent PL measurements from 8K to 300K. We obtain the square

root dependence of the line-width with temperature as in Toyozawa’s theory for the

strong-coupling regime. By fitting our data, we interpreted the temperature depen-

dence of the line-width on the basis of quasi-elastic scattering by acoustic phonons,

and inelastic scattering by absorption of optical phonons corresponding to the ZA

and ZO1 phonon modes in h-BN. The strong-coupling regime and the bright emis-

sion in this indirect band-gap semiconductor are unusual properties, calling for a

microscopic understanding of the exciton-phonon coupling in this van der Waals

crystal with fascinating properties.

Second, we have studied the isotope engineering of lamellar BN crystals with nearly pure

boron isotopes (10B and 11B) compared to those with the natural distribution of boron (20

at% 10B and 80 at% 11B) by performing the Raman and PL measurements.

• Based on the publication of Cardona and his co-worker, we have focused on the

two conspicuous effects of the isotope that are:

(i) The dependence of the phonon frequencies and the linewidths with the isotopic

composition:

Raman measurements of three controlled boron isotopic samples of the phonon

mode at high energy of BN, which were performed by our colleagues, evidenced

the dependence of the phonon energy with the reduced mass of BN. We observed

the shift of Raman lines of 11BN and 10BN compared to NaBN with amount of 1.5

and 3.5 meV. Besides this effect, there is the impact of the isotopic mass disorder

leading to an energy shift and a linewidth broadening of NaBN compared to iso-

topically pure BN (11BN and 10BN).

(ii) Renormalization of the energy of the electronic states through the electron-

phonon interaction

The PL measurements have been performed for the three KSU samples. We ob-

served the global red-shift from 11BN to 10BN due to both the phonon energy effect

and the electronic bandgap renormalization. The band-gap renormalization is es-

timated at 225 meV by analyzing our data. This value is in fair agreement with

the temperature dependent PL measurements done in Ref. [80]. From which, we

extract a single Einstein oscillator of energy ~Ω = 68±2 meV. This value is is rather

low compared to the abolute maximum of the phonon dispersion of 200 meV in h-
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BN [39], indicating the interlayer vibrations make a significant contribution to the

electron-phonon bandgap renormalization.

• In the following of that, we have focused on the impact of isotopes on the weak

van der Waals interactions in BN that is obtained by analyzing the temperature-

dependent results of the shear and breathing modes of adjacent layers.

Temperature-dependent Raman measurements of the phonon mode at low energy

(interlayer shear mode) were performed from 10 to 600K. Increasing temperature,

the Raman energy decreases due to the dependence of phonon energy with the c-

lattice parameters that increases with temperature. A power-law dependence was

used to analyze our data. We obtain a modification of the exponent of the power-

law from one sample to another: it is 3.6±0.3 in 11BN, and it increases to 5.7±0.3 in

10BN. This is the first evidence for the weak, non-local van de Waals coupling vary-

ing with the isotopic composition. The second evidence was obtained by study-

ing the line-width broadening of PL lines due to the contribution of the interlayer

breathing mode. Similar to the case of the interlayer shear mode, we obtain an in-

crease of the coupling strength to the interlayer breathing mode from 50 ± 10, to 70

± 10, and then 115 ± 10 meV in 11BN, NaBN, and 10BN. We infer that isotope engi-

neering in BN impacts the lattice vibrations controlled by the weak van der Waals

coupling between adjacent layers.

• Besides, X-ray diffraction was performed for 11BN to 10BN by our colleague to ob-

serve directly the difference between them. The result is the electron density dis-

tribution is more diffuse between adjacent layers in 11BN than in 10BN crystals.

Therefore, we can conclude that the interlayer electronic distribution itself is af-

fected by the isotopic substitution, giving a direct observation for the modification

of the van de Waal interaction in BN due to isotopic purification.

Third, we have studied the two series of h-BN epilayers grown by MBE in different sub-

strates: sapphire and Highly Ordered Pyrolitic Graphite (HOPG), with different growth

temperature of 1390 °C, 1480 °C, 1560 °C, and 1690 °C.

The Atomic force microscopy (AFM) images show different results for the two series. In

the series grown on sapphire of BN, AFM images show that the BN epilayers consist of

nanocrystalline domains, while in the series grown on HOPG we observe faceted BN is-
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lands nucleating from HOPG step edges, and bulk BN deposits. The estimation of the

average thickness by AFM of the two series decrease with the growth temperature. In

particular, when increasing the growth temperature, the thickness of samples decreases.

However, the average thickness of the series grown on HOPG (from 0.09 to 1.15 in units

of monolayer (ML)) is deeply smaller than the one of the series grown on sapphire (from

15 to 53 ML).

As far as the PL measurements are concerned, for the first time, we have succeeded to

record the PL signal in the deep ultra-violet (UV) in thin BN epilayers grown on sapphire

and HOPG substrates by MBE. The emission bands around 5.4-5.5 eV match the emission

band corresponding to stacking fault that were recorded in bulk BN crystal [6, 51, 64] and

in BN epilayers [49, 103].

Moreover, PL spectra show that there is a strong dependence of the PL intensity of the

series grown on sapphire with their growth temperature. The higher the growth temper-

ature, the smaller the average thickness of the sample, and the higher the PL intensity.

From this, we conclude that the high temperature MBE growth can produce BN layers of

high optical quality.

Furthermore, in the two samples grown on HOPG with the lowest growth temperatures

of 1390 °C and 1480 °C, we observed the PL peaks at energy of 5.88 and 5.91 eV which

correspond to the two phonon replicas LA/LO1 and TA/TO1, compared to the PL spec-

trum of bulk samples. These PL lines corresponding to the phonon replicas have never

been observed in thin BN epilayers grown either by CVD or MBE. For the first time, we

show the evidence of the phonon replicas in BN thin epilayers. This is a direct signature

for the excellent crystalline quality of our samples grown by the high temperature MBE.

The comparison between the PL spectra of the two series of h-BN epilayers proves that

the quality of the samples grown on HOPG substrates is better than the ones grown on

sapphire substrates due to the lower lattice mismatch. In conclusion, high purity BN epi-

layers grown by MBE pave the way to the launching of complementary growth which

may trigger the entrance of epi-BN into the arena of both wide bandgap semiconductors

with the possibility to bridge the technologies.
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Appendix A

Character table for point group

A.1 Character table for point group D2h

A.2 Character table for point group D3h

136



A.3 Character table for point group D6h

A.4 Character table for point group C3h
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A.5 Character table for point group C2v

A.6 Character table for point group D2

A.7 Character table for point group D6
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Appendix B

Power-law dependence of the shear

mode energy

Regarding the publication of Valentin N. Popov and Christian Van Alsenoy [83], the vdW

interaction is described by power law in first- and second-order quantum-mechanical

perturbation theory by an equation:

V (r) = −
∑
n=3

C2n

r2n
(B.1)

where r is the interaction separation and the C2n coefficient were found with n = 3 and

n = 4 in graphite.

Otherwise, the interlayer interacting potential V(r) is presented as the sum of a repulsive

Vr(r) and attractive Va(r) parts and it can be written:

V (r) = Vr(r) + Va(r) (B.2)

The first term is acounted for the interlayer band energy which is an exponentially de-

creasing function of the c-lattice parameter. And the second one is the contribution of the

weak vdW interaction between the boron nitride layers. Around the equilibrium position

r = c , the interlayer potential reads to second-order approximation:

V (r) ∼ V (c) + (V ′r (r) + V ′a(r))(r − c) +
1

2
(V ′′r (r) + V ′′a (r))(r − c)2 (B.3)
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We have V ′r (r) = −V ′a(r) due to r = c (equilibrium position). Let assume |V ′′r (r)| ∼

|V ′′a (r)|. So that the interlayer interacting potential V(r) as well as the force constant k is

now proportional to V ′′a (r). On the other hand, the phonon energy is proportional to the

square root of the force constant f(k, i) [75], we have:

ω ∼
√
|V ′′a (r)| (B.4)

If we retains only one term −C2n/r
2n in the series expansion of the vdW potential (equa-

tion 4.7), we obtain:

ω ∼
√
C2n

cn+1
(B.5)

From all of that, we have a link between the power law dependence of the interlayer

shear mode with the expansion of the vdW potential, that gives p = n + 1. This can

explain our fit with the p-exponent ranges is found from 3.6 to 5.7. These values is in

agreement with the expected range of p = n + 1 for n=3 or 4, i.e.−C6/r
6 and −C8/r

8 as

the two leading terms according to Popov et al. [83].
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Appendix C

Phonon-photon mapping in a color

center in boron nitride

Hybrid quantum systems aim at combining the electronic, vibronic and photonic degrees

of freedom into tripartite excitations [104]. This novel field emerges at the intersection of

cavity quantum electrodynamics [105] and opto-mechanics, with impressive recent de-

velopments such as the integration of superconducting qubits with micromechanical res-

onators [106], or the coupling of propagating phonons with an artificial atom [107].

In this context, the rising interest in two-dimensional (2D) atomic crystals and their Van

der Waals heterostructures [14] has resulted in various experiments paving the way for

the implementation of hybrid quantum systems in 2D materials. The strong coupling

regime of the electronic-photonic interaction has been achieved by embedding transi-

tion metal dichalcogenide monolayers in an optical microcavity, enabling the observa-

tion of exciton-polaritons [108, 109]. The vibronic-photonic coupling has been explored in

graphene, and the use of graphene membranes as a mechanical resonator has allowed the

demonstration of its optomechanical coupling with a microwave cavity [110]. Although

the propagation of surface acoustic waves was evidenced in graphene for acousto-electronics

applications [111], there is however no work on the electronic-vibronic interaction in arti-

ficial atoms in 2D crystals, and more generally in layered materials, but only the report

of quantum light emission in localized states in WSe2 [112, 113] and hexagonal boron

nitride (hBN) [114].

In this Letter, we report on the ultra-violet (UV) optical response of a color center in hBN.

In the emission spectrum, we resolve a narrow zero-phonon line and phonon sidebands,
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that remarkably map the bulk phonon dispersion in hBN. We show that the vibronic spec-

trum reflects the density of states of bulk phonons in hBN, with a striking suppression

of the phonon-assisted emission signal at the energy of the hBN phonon gap. Moreover,

we do not observe any signature related to local vibration modes, contrarily to other

color centers in semiconductors, such as the prototype NV center in diamond [115]. By

means of non-perturbative calculations of the electron-phonon interaction in a point de-

fect, we reach a quantitative interpretation of the sidebands due to the long-wavelength

bulk acoustic phonons, which are at the basis of side-band cooling protocols or coherent

phonon manipulation [107, 116]. From this analysis, we also obtain the first estimation

of the deformation potential in hBN, together with the characteristic spatial extension of

the defect of 2±0.3Å. hBN is a wide-bandgap nitride semiconductor with a lamellar crys-

talline structure analog to graphite [6]. Its fundamental bandgap is indirect with a dim

excitonic emission at 5.955 eV [11], and intense phonon replicas between 5.7 and 5.9 eV,

as seen in Fig.C.1. In our measurements, a commercial hBN crystal from HQ Graphene

is hold on the cold finger of a closed-cycle cryostat, and after non-resonant excitation

at 6.3 eV by the fourth harmonic of a Ti:Sa oscillator, the PL signal is detected by an

achromatic optical system [64]. The presence of defects in hBN leads to two additional

emission bands centered at 5.5 eV and 4 eV [15, 91, 92, 117–119]. The former comes from

extended defects or stacking faults (red shaded area in Fig.C.1), which were in particular

characterized with a nanometric resolution in a transmission electron microscope [120].

It was also recently demonstrated that most of the lines observed in the broad emission

spectrum between 4.8 and 5.7 eV consist in resonances of the phonon-assisted carrier re-

laxation rate, with an energy spacing reflecting intervalley scattering [64].

Below 4.8 eV, the emission spectrum in bulk hBN displays a band related to deep levels

(green shaded area in Fig.C.1), corresponding to electronic states localized in point de-

fects [117, 119, 121]. Moreover, we observe substructures, and in particular a sharp peak

at 4.1 eV, a weaker one at 3.9 eV, and a third one at 3.7 eV barely observable atop the

broad emission background, as shown in the inset of Fig. C.1 displaying a zoom around

3.9 eV. In contrast to previous studies focusing on this multiplet of peaks in hBN and con-

cluding to the existence of phonon replicas in a point defect [118, 119, 121], we resolve

here the complete vibronic spectrum by means of high-spectral resolution in PL exper-

iments in hBN single crystals at 10K. We first demonstrate the presence of a previously
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Figure C.1: Photoluminescence (PL) spectrum in bulk hBN at 10K (solid red line) on a
2.5-eV energy range, for an excitation at 6.3 eV. The vertical dotted blue line indicates

the hBN bandgap at 5.95 eV. The green (red) shaded area corresponds to the emission of
point defects (stacking faults, respectively). Inset: zoom around 3.9 eV.

unresolved zero-phonon-line (ZPL) in the emission spectrum, lying at 4.1 eV with a full

width at half-maxiumum (FWHM) as narrow as 2 meV (Fig.C.1). Such a value is of the

order of the linewidth measured in single quantum dots in state-of-the-art AlGaN-based

samples for single photon sources in the UV range [122]. The fact that we observe similar

values by means of ensemble measurements is a strong indication for the well-defined,

excellent structural properties of this UV color center. However, in Fig.C.1 the PL signal

of the color center appears to be superimposed on the broad emission background, ap-

proximately at its maximum intensity, making difficult a further investigation of the color

center optical properties, at least in this configuration where we perform above bandgap

excitation at 6.3 eV.

We thus switch to below bandgap excitation in order to suppress the 4-eV broad emission

background, following the excitation spectroscopy measurements performed below 4.75

eV and reported in Ref. [119]. In Fig.C.2, we display, on a semi-log scale, the PL signal

intensity (solid red line) as a function of the energy detuning with the 4.1-eV energy of

the ZPL. In this background-free configuration, we observe that the vibronic spectrum

does not only consist in a low-energy sideband with a maximum intensity for a 10 meV
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Figure C.2: Photoluminescence signal intensity at 10K (solid red line), on a semi-log
scale, for an excitation at 4.6 eV, as a function of the energy detuning with the

zero-phonon line of the color center emitting at 4.1 eV (figure.C.1), compared to the
phonon density of states in hBN (blue dotted line) from Ref. [8]. Inset: zoom of the PL

spectrum around 200 meV.

red-shift, and that secondary maxima are observable at -40 and -70 meV energy detun-

ings. Moreover, the PL signal intensity decreases to the noise level for a detuning of -145

meV, that coincides with the phonon gap in hBN [8, 87]. For larger detunings, the PL

signal intensity increases with a steep rise to a relative maximum at -155 meV, followed

by a broader line until -180 meV, and finally a sharp asymmetric line at -200 meV, i.e. the

absolute maximum of the optical phonon energy in hBN, corresponding to zone-center

longitudinal optical phonons LO(Γ).

In the light of the vibronic spectrum inspection correlating with specific energies of the

phonon bandstructure in hBN, we further compare the PL spectrum of our UV color cen-

ter with the phonon density of states in hBN [8] (blue dotted line in Fig.C.2). We first

observe that the peaks at -40, -70, -155, and -180 meV all correspond to extrema of the

phonon density of states in different high-symmetry points of the Brillouin zone, and
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related to ZA(K), ZO(K), TO(M)/LO(K), and LO(T) phonons, respectively. In the case

of zone-edge phonons, the electron-phonon interaction via the deformation potential is

known to be weakly dependent on the phonon wave-vector k [24], whereas at the zone-

center, the deformation potential and the piezo-electric coupling scale like
√
k and 1/

√
k,

respectively, while the Fröhlich interaction varies like 1/k. Such a weak k-dependence of

the deformation potential at the zone-edge is well documented in the context of interval-

ley scattering in indirect and direct bandgap semiconductors [123–125]. As a matter of

fact, the efficiency of the corresponding phonon-assisted recombination will mainly re-

flect the phonon density of states, provided that first-order processes involving only one

phonon are dominant in the optical reponse. The one-by-one identification of the phonon

sideband peaks with the extrema of the phonon density of states (Fig.C.2) indicates that

we are, at low temperature, in the regime where one-phonon scattering processes domi-

nate. This interpretation is further supported by the striking observation of a pronounced

dip in the vibronic spectrum (down to our noise level) exactly in the 5 meV-spectral range

of the phonon gap in hBN (green dashed area in Fig.C.2). To the best of our knowledge, it

is the first evidence of such a suppression of the phonon sideband in the spectral region

of a phonon gap, in point defects and more generally in semiconductor nanostructures.

In contrast to phonons at the boundaries of the Brillouin zone, zone-center phonons cou-

ple to electrons through strongly k-dependent interactions [24]. In the case of optical

phonons, the Fröhlich interaction scales like the inverse of the phonon wave-vector, re-

sulting in a divergence of the electron-phonon matrix element for zone-center longitu-

dinal optical phonons. This singularity accounts for the intense phonon sideband at

-200 meV (Fig.C.2), despite the vanishing density of states at the energy of the LO(Γ)

phonons in hBN. Interestingly, the usual negative curvature of the LO phonon branch

around Γ is expected to result in a tail of the LO(Γ) sideband towards smaller energy

detunings, which was never observed so far. The asymmetric line-profile around -200

meV in Fig.C.2(inset) provides a text-book example for this effect. As far as zone-center

acoustic phonons are concerned, we present below a quantitative interpretation of the

low-energy vibronic spectrum, which will allow us to extract estimations of the defect

size and deformation potential, and to reproduce the temperature-dependent measure-

ments up to room temperature, displayed in Fig.C.3. Phonon-assisted optical processes

in point defects were described in the early years of solid-state physics, in particular in
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Figure C.3: (a) Photoluminescence spectrum of the 4.1-eV color center in hBN, for an
excitation at 4.6 eV, from 10K to 300K. Inset: fraction of the emission in the ZPL as a

function of temperature. (b) Calculations of the longitudinal acoustic phonon sidebands,
from 10K to 300K, with a deformation potential D=11 eV and a point defect extension

σ = 2Å.

the pioneering study of Huang and Rhys [126]. In this paper, the authors analyzed the

optical absorption of F-centres on the basis of the Franck-Condon principle. A description

to all orders in the electron-phonon interaction was later developed by Duke and Mahan

within a Green function formalism [127], with a renewed interest in the context of semi-

conductor quantum dots and nanocrystals. In order to interpret time-resolved experi-

ments of the coherent nonlinear response in semiconductor quantum dots, Krummheuer

et al. calculated the time-dependent polarization after pulsed excitation, and they de-

rived an analytical expression of the non-perturbative optical response for the coupling

to phonons [57]. Such a non-perturbative approach takes into account the coupling terms

to all orders in the exciton-phonon interaction, thus accounting for the radiative recom-

bination assisted by the emission of any phonon number. This aspect is particularly im-

portant on increasing the temperature where the phonon sidebands are no longer limited

to the one-phonon processes, which usually dominate at low temperature [57], so that a

non-perturbative approach becomes mandatory at high temperature.
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In the framework of this theoretical approach, we have calculated the emission spectrum

of the 4.1-eV color center in hBN in order to quantitatively account for our PL measure-

ments (Fig.C.3). More specifically, we have computed the sidebands arising from the

coupling to acoustic phonons. Close to the zone-center, the deformation potential inter-

action is allowed only for LA phonons, while piezoelectric coupling is allowed for both

LA and TA phonons [57]. hBN being centro-symmetric and thus non-piezoelectric, the

only remaining coupling is the deformation potential for LA phonons. The emission

spectrum is thus obtained by taking the Fourier transform of the time-dependent linear

susceptibility χ(t) given by [57]:

χ(t) = exp

[∑
k

|γk|2
(
e−iω(k)t − n(k)

∣∣∣e−iω(k)t − 1
∣∣∣2 − 1

)]
(C.1)

where ω(k) is the energy of a LA phonon of wavevector k, n(k) the corresponding Bose-

Einstein phonon occupation factor, and γk a dimensionless coupling strength. Impor-

tantly, we have taken into account the anisotropic sound dispersion in hBN resulting

from the peculiar crystalline properties of this lamellar compound, so that ω(k) reads√(
cs,‖k‖

)2
+ (cs,zkz)

2 where k‖ (cs,‖) and kz (cs,z) are the in-plane and out-of-plane wavevec-

tors (sound velocities, respectively), with the Oz direction along the c-axis of hBN, and

cs,‖/cs,z ∼ 7.5 [87].

In our calculations, we have three free parameters: the magnitude D of the deforma-

tion potential, the extension σ of the electronic wave-function in the color center, and the

FWHM of the ZPL labelled ΓZPL. ΓZPL is a phenomenological broadening introduced

in the model, since the latter does not account for the thermally-assisted broadening of

the ZPL [57]. Its value is adjusted for each temperature in order to reproduce the ZPL. In

Fig.C.3, we display the comparison between our temperature-dependent measurements

from 10K to 300K (Fig.C.3(a)), and our calculations of the longitudinal acoustic phonon

sidebands (Fig.C.3(b)) for fixed values of the deformation potential (D=11 eV) and point

defect extension (σ=2 Å). We observe an excellent agreement for the complete set of

data. In particular, we fully account for the smooth transition to a symmetric emission

spectrum on raising the temperature. While phonon emission gives rise to a red-shifted

emission after phonon-assisted recombination, phonon absorption leads on the contrary

to a blue-shifted emission with respect to the ZPL. At low temperature, the probability
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of phonon absorption is negligible compared to phonon emission, leading to an asym-

metric vibronic spectrum (Fig.C.3, 10K). When raising temperature, phonon absorption

becomes more and more probable, resulting in a high-energy sideband of growing inten-

sity (Fig.C.3, 30-90K), up to a quasi-symmetric emission spectrum at room temperature

(Fig.C.3, 300K). Furthermore, we note that the visibility of the ZPL decreases as a function

of temperature. Nevertheless, as long as it is observable, i.e. below 100K, the fraction of

the emission in the ZPL, often called Debye-Waller factor, remains constant (Fig.C.3(a),

inset). The decreasing visibility of the ZPL arises in fact from its broadening, that re-

duces the maximum intensity of the ZPL on top of the ΓZPL-independent vibronic spec-

trum. Eventually, we highlight that the longitudinal acoustic phonon sidebands involve

both in-plane and out-of-plane phonons, in contradiction to early studies on the electron-

phonon interaction in a layered compound tentatively predicting the implication of only

rigid-layer modes with a kz wavevector [128]. In Eq.(C.1), the truncated sum to only {kz}

wavevectors does lead to a drastic reduction of the sideband intensity, infirming the hy-

pothesis of Ref.[128] and thus showing the combined action of in-plane and out-of-plane

phonons in the sideband build-up.

In our model, the free intrinsic parameters are the defect extension σ and the deformation

potential D. Although the latter can a priori be estimated from independent experiments

[24] and is usually tabulated for a number of semiconductor compounds, the only recent

synthesis of high-quality hBN crystals makes the literature completely inexistent on this

topic. Nevertheless, the observation of the sideband maximum at an energy detuning of

-10 meV in our low temperature measurements turns out to be decisive for reaching an

accurate estimation of both fitting parameters. When varying the values of D and σ, the

sideband maximum changes in energy and in intensity, the latter being directly related

to the Debye-Waller factor. In order to reproduce both the energy and the intensity of

the sideband maximum at 10K, we have to take D=11±0.5 eV and σ=2±0.3 Å. The 11-

eV value of the deformation potential has to be compared with the absolute value of the

difference De-Dh between the deformation potentials De and Dh for electrons and holes,

respectively. From the theoretical estimations in the literature [129], we deduce that |De-

Dh| ranges from 1.7 to 8 eV. However, these calculations performed within the density

functional theory without GW corrections underestimate the bandgap of hBN by 30%,

and therefore possibly also the deformation potentials, so that corrected theoretical esti-
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mations will have higher values with an upper bound close to our estimate. As far as the

extension of the electronic wave-function is concerned, the 2-Å value is of the order of the

in-plane B-N bound length (1.4 Å), but smaller than the interlayer distance in hBN (3.3 Å),

suggesting a ponctual alteration of the in-plane crystalline structure. The 2-Å extension of

the color center also corroborates the observation of zone-edge phonon replicas in the PL

spectrum (Fig.C.2), requiring a defect extension comparable to the inverse of the phonon

wave-vector in the form factor describing the electron-phonon coupling efficiency [57].

These results should stimulate further investigation by local probe techniques in order to

achieve the chemical identification of this defect center. It might be a nitrogen vacancy

VN bound to a carbon or an oxygen atom [121], although Stone-Wales defects transform-

ing two hexagons into a pentagon and a heptagon could also form preferential sites for

adsorbates.

In summary, we have studied the vibronic spectrum in a color center in hexagonal boron

nitride. We have shown that the vibronic spectrum reflects the density of states of bulk

phonons in hexagonal boron nitride, with a striking suppression of the phonon-assisted

emission signal at the energy of the phonon gap. By means of non-perturbative calcu-

lations of the electron-phonon interaction in a strongly anisotropic phonon dispersion,

we reach a quantitative interpretation of the acoustic phonon sidebands from cryogenic

up to room temperature, allowing us to estimate the deformation potential value and the

spatial extension of the defect. These unique features of the electronic-vibronic interac-

tion in this color center are supplemented by the recent success in isolating such a single

color center, which displays bright single photon emission in anti-bunching experiments

[130]. These results pave the way for the implementation of hybrid quantum systems in

layered materials, using this color center as a fundamental building block.
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Résumé en français

En utilisant la réaction de l’acide borique fondu et du cyanure de potassium, le chimiste

Balmain a isolé le nitrure de bore (BN) dès 1842 [5]. A cette époque et durant de nom-

breuses décades, BN était obtenu sous forme d’une poudre blanche ou sous forme de

céramique constituée de très petits monocristaux. La taille de ces cristaux rendra longtemps

difficile la détermination de la structure cristalline de BN aux rayons X. Il faudra en ef-

fet attendre 1963, c’est à dire plus de quarante ans après les premières détermination de

structure cristallines cubiques réalisées par les Bragg père et fils pour que des expériences

de diffraction de rayons X indiquent sans ambiguïté l’empilement lamellaire hexagonal

bien spécifique qui sera reconnu par les physiciens des solides sous le nom générique de

« structure cristalline du nitrure de bore ». Cette structure lamellaire présente de nom-

breux intérêts technologiques, en particulier pour utilisation comme lubrifiant solide. Si

la faible cohérence spatiale de l’arrangement cristallin rend la diffusion de la lumière vis-

ible complexe dans ce matériau qui devient absorbant dans l’ultra-violet (UV) profond

et a fait des poudres de BN un matériau de choix pour l’industrie cosmétique, au vu

de sa blancheur non nacrée, le manque de contrôle de la pureté chimique du « graphite

blanc » lui a longtemps barré la route de toute application industrielle dans le domaine

optoélectronique. En 2004, le Professseur Taniguchi, du laboratoire NIMS à Tsukuba au

Japon a réussi à croître des monocristaux BN de grande taille (l’adjectif grand est util-

isé ici pour caractériser des confettis « circuloïdes » d’ environ 1mm2 de surface et de

200µm de hauteur) avec de hautes performances optiques dans l’ultraviolet profond, à

200 nm typiquement [6, 7]. Depuis ce jour, de nombreuses méthodes ont été utilisées

pour synthétiser le nitrure de bore sous diverses formes, qu’il soit recherché de fabri-

quer de la poudre, des nanotubes, des monocristaux, des hétéro-épitaxies. Étonnement,

bien que le BN soit depuis fort longtemps largement utilisé dans l’industrie en raison

de ses propriétés physiques macroscopiques qui sont fort intéressantes pour des appli-
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cations assez banales, la compréhension des mécanismes régissant l’interaction lumière

matière et leur gestion dans BN n’a pas sollicité les vocations de nombreux expérimenta-

teurs alors que la compétition a très tôt fait rage parmi les théoriciens de la structure de

bande. Deux raisons peuvent être invoquées qui sont: i) la nécessité de s’approvisionner

en cristaux de haute pureté chimique et de haute qualité structurale d’une part et ii) de

développer des technologies expérimentales adaptées à des mesures optiques fines dans

la zone de longueurs d’onde autour 200 nanomètres qui rassemble toutes les difficultés

techniques envisageables pour empêcher de travailler facilement et à bon marché ( pas

de sources laser simple et bon marché, lampes à UV produisant de l’ozone, problèmes

de composants optiques adaptés et qu’il faut parfois faire fabriquer à l’unité, nécessité de

travailler en atmosphère contrôlée pour éviter les absorption par l’oxygène de l’air, . . . ).

Dans l’équipe qui m’a accueillie, l’envie de relever ces défis expérimentaux ne fut pas

une motivation plus subalterne pour entamer les investigations parmi lesquelles s’inscrit

mon travail de thèse que celle de dire les performances optiques de BN.

Durant cette thèse, nous avons étudié les propriétés optiques de cristaux massifs et de

couches hétéro-épitaxiales de nitrure de bore hexagonal (h-BN). Nous avons combiné

les spectroscopies de photoluminescence et de diffusion inélastique Raman avec des

mesures de diffraction de rayons X et de l’imagerie obtenue par microscopie à force atom-

ique (AFM). Nous avons étudié des échantillons de différentes sources:

• Les cristaux massifs du Professeur Takashi Taniguchi du National Institute for Ma-

terials Science à Tsukuba au Japon,

• Les cristaux massifs achetés auprès du fournisseur Batave HQ Graphene,

• Les cristaux massifs du Professeur James Edgar de l’Université d’Etat du Kansas

• Les hétéro-épitaxies réalisées par le Professeur Sergueï Novikov à l’Université de

Nottingham.

Ces cristaux ont été fabriqués en utilisant différentes méthodes de croissance, par exem-

ple en conditions extrèmes combinant des hautes pressions et des hautes températures

(HP-HT), des flux catalyseurs de Ni-Cr flux, ou par Epitaxie sous jets moléculaires (MBE

pour Molecular Beam Epitaxy).

Nous pensons que cette variété de sources de cristaux fut déterminante pour nous per-

mettre de mesurer sans ambiquitéd les propriétés optiques intrinsèques de h-BN.
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La présentation des résultats est organisée en cinq parties. Nous commençons par rap-

peler un certain nombre de propriétés fondamentales de BN toutes corrélées à son ar-

rangement cristallin. Le second chapitre deux présente les échantillons que nous avons

étudiés et les techniques expérimentales que nous avons utilisées lors de nos campagnes

de mesures. Les trois chapitres suivants sont consacrés à la présentation de nos résul-

tats expérimentaux obtenus dans des conditions particulières qu’il s’agisse de configu-

rations expérimentales permettant de nous concentrer sur les spécificités de l’interaction

électron-phonon dans BN ou d’échantillons hors du commun : cristaux massifs purifiés

isotopiquement en bore ou couches épitaxiales.

Les spécificités de l’interaction electron-phonon dans BN

Du point de vue de nos mesures, nous nous sommes d’abord concentrés sur les recom-

binaisons assistées par phonon (phonon replicas) du h-BN en effectuant des mesures de

photoluminescence (PL) résolues par polarisation afin de compléter les études réalisées

dans l’équipe d’accueil avant mon arrivée. Nous avons dans un premier temps calculé

ce que la théorie des groupes dit de la structure fine du spectre de fluorescence de BN

dans les deux cas où le vecteur de Poynting du photon émis −→$ est parallèle ou perpen-

diculaire à l’axe c du cristal. Dans le cas d’un vecteur de Poynting parallèle −→$ à l’axe c,

nous avons prédit et enregistré quatre raies d’émission principales qui correspondent aux

Figure R.1: Spectres en polarisation de la photoluminescence assistée par phonon de
h-BN. Les spectres sont mesurés dans le cas d’un vecteur de Poynting −→$ parallèle (a) ou

perpendiculaire (b) à l’axe c.

recombinaisons radiatives assistées par émissions de phonons de types LO3, TO3/TO2,
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LA/LO1, et TA/TO1 pour lesquels le calcul des modes normaux indique que les atomes

vibrent dans un seul feuillet de BN. Leur intensité n’est pas altérée lorsqu’on analyse leur

symétrie en intercalant entre le cristal et notre système de détection un polariseur linéaire

dont on change continûment l’orientation la polarisation passante. Ceci n’est pas le cas

dans la configuration expérimentale d’un vecteur de Poynting perpendiculaire à l’axe c:

outre ces quatre répliques phonons une transition supplémentaire faisant intervenir le

phonon de symétrie ZO1 (mode normal de vibration des atomes orthogonal aux feuillets

de BN) contribue à une raie supplémentaire détectée à 5,93 eV (figure R.1). Nous avons

en outre mesuré dépendance spectaculaire de l’intensité de toutes les répliques phonons

avec l’angle de polarisation dans le plan contenant la direction c du cristal.

Le rapport d’intensité entre les répliques phonons LA/LO1 et ZO1 passe de 200 à 5 quand

la rotation du polariseur linéaire balaie le plan contenant c. L’analyse des données en

polarisation nous permet d’envisager la contribution du phonon ZO3 qui a la même

symétrie que le phonon ZO1, sur le spectre rouge de la figure R.1(b), à 5,87 eV sur le

flanc à haute énergie de la recombinaison assistée par LA/LO1. La présence d’une telle

structure à cette énergie est compatible avec la théorie des groupes, notre spectre PL et la

comparaison avec les relations de dispersion des phonons au centre de la zone de Bril-

louin. On obtiendra indirectement la forme de cette raie en soustrayant les deux spectres

de PL obtenus pour des polarisations orthogonales dans le cas d’un vecteur de Poynt-

ing −→$ perpendiculaire à l’axe c. Ce résultat expérimental difficile à obtenir en raison de

la faible épaisseur des échantillons permet d’atteindre une compréhension complète des

transitions assistées par émission d’un phonon dont le vecteur d’onde est situé au centre

de la zone de Brillouin dans h-BN. Il apporte une preuve complémentaire à l’originalité

des propriétés optiques de h-BN pour lequel la structure de bande électronique est orig-

inale avec les extrema fondamentaux des bandes de conduction et de valence qui sont

tous les deux situés hors du centre de la zone de Brillouin.

Lors de cette campagne de mesures en polarisation nous avons réussi la mesure de

la dépendance de l’intensité d’émission des excitons indirects interdits en polarisation.

Clairement donnant l’orientation du dipôle de l’exciton indirect est dans le plan du feuil-

let BN (figure R.2).

Dans une seconde étude nous avons démontré que l’origine de la structure fine du spec-

tre de PL provient pour chaque réplique phonon d’une diffusion complémentaire de
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Figure R.2: Spectres de photoluminescence de l’exciton indirect interdit résolus en
polarisation (a) et diagramme d’émission (intensité du signal de photoluminescence en
fonction de l’angle de polarisation) (b) pour la fluorescence assistée par un phonon ZO1

et pour celle de l’excitons indirect interdit h-BN dans le cas d’un vecteur de Poynting −→$
perpendiculaire à l’axe c.

type Raman faisant intervenir le mode E2g à basse énergie (mode de cisaillement inter-

feuillets) (figure R.3(a)). Plutôt que se recombiner après émission du phonon principal

qui règle les problèmes de la règle de sélection en k, la paire électron-trou en interac-

tion coulombienne transmets une partie de son énergie au réseau par émission d’un

ou plusieurs phonons en centre zone. Ici c’est le mode mode E2g à basse énergie et

ses harmoniques qui contribuent. Ces vibrations de réseau correspondent au mouve-

ment de cisaillement rigide entre couches adjacentes, avec une énergie caractéristique

d’environ 6,8 ± 0,5 meV à 8 K. Nous avons développé un modèle théorique sophis-

tiqué d’interprétation de la forme du spectre de PL dans lequel la largeur des raies de

PL dépend pour chaque phonon considéré de sa vitesse de groupe calculée au points T

de la zone de Brillouin. Le vecteur de longueur
−→
ΓT equivalent en longueur au vecteur

−−→
KM . C’est un phonon en T qui permet d’ussurer la règle de conservation du moment

pour rendre la recombinaison radiative. Ce modèle révèle que les différences observées

pour les différents phonons replicas dans h-BN proviennent uniquement des variations

de la vitesse du groupe des phonons aux points T de la zone de Brillouin. En termes sim-

ples, nous dirons qu’une grande vitesse du groupe du phonon, a pour conséquence un

grande largeur de la raie de PL à laquelle il contribue. L’accord entre ce modèle théorique

de la forme des raie de fluorescence requière la considération d’une forme de raie Gaussi-
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Figure R.3: Représentation schématique de l’origine de la structure fine du spectre PL
dans h-BN (a), et spectres de photoluminescence en sphère noire avec l’ajustage de la

forme obtenu en utilisant le modèle théorique en ligne rouge (b).

enne plutôt que Lorentzienne pour la raie de fluorescence assistée par phonon, ce qui fait

penser à une interaction électron-phonon s’opérant en régime dit de couplage fort (figure

R.3(b)) et il impose aussi de calculer l’élargissement des répliques Raman d’une manière

cumulative avec l’ordre des harmoniques de fréquence E2g.

Le fait que l’analyse des forme de raies privilégie une distribution spectrale gaussienne

interpelle car il s’intègre particulièrement bien au sein de la prédiction théorique de Toy-

ozawa de la forme des raies d’absorption excitoniques en régime de couplage fort de

l’interaction exciton-phonon [61, 63]. Pour aller plus loin dans la validation de cette pré-

diction théorique dont aucune preuve expérimentale n’était disponible avant notre tra-

vail, nous avons cherché une seconde preuve. Nous avons donc complété la première

preuve obtenue à savoir la comparaison entre les fonctions gaussiennes et lorentziennes

dans les fits du spectre PL à basses température (8 K) par des mesures à plus hautes

températures (de 8K à 300K) et par leurs analyses (figure R.4 (a&b)). Nous obtenons

une variation de la largeur de raie en racine carrée de la température, conformément à

la théorie de Toyozawa pour le régime de couplage fort (figure R.4(c)). En ajustant nos

données, Nous avons interprété, l’élargissement thermique des raies sur la base de la

diffusion quasi-élastique par phonons acoustiques à basse température suivie de la dif-

fusion inélastique par absorption de phonons optiques correspondant aux modes ZA et

ZO1 dans h-BN.
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Figure R.4: Spectres de photoluminescence du h-BN à basses température (a) et à haute
température (b). L’élargissement thermique en fonction de la température (c). Les
données expérimentale sont tracées en sphères noires, l’ajustage théorique pour le

régime de couplage fort est en vert, celui pour le régime de couplage faible est en rouge.

Ingénierie isotopique en nitrure de bore hexagonal

L’originalité du bore est qu’à l’état naturel NaB est qu’il est composé de l’isotope 11B à 80

pourcents et de l’isotope 10B à 20 pourcents. Les noyaux de ces deux isotopes ne réagis-

sent pas de la même manière lors de l’éclairage par un flux de neutrons auxquels le 11B

est indifférent mais pas le 10B, ce qui est intéressant, mais constitue un phénomène auquel

nous avons préféré le changement de la masse nucléaire de l’ordre de 10 pourcents qui va

avoir des conséquences sur les énergies des phonons, au premier ordre. La dépendence

des fréquences phononiques et des largeurs de raies avec la composition isotopique de

bore : Les mesures Raman réalisées sur trois échantillons aux compositions isotopiques

contrôlées en bore qui ont été effectuées par nos collègues de Barcelone et Thierry Michel

ont démontré la dépendence de l’énergie des phonons avec la masse « moyenne » de BN

(figure R.5(a)). S’agissant du mode raman actif à haute fréquence nous avons observé le

décalage de la énergie Raman de 11BN et 10BN, par rapport à NaBN et l’effet du désordre

de masse isotopique conduisant à un déplacement d’énergie non linéaire avec les pro-

portions relatives des deux isotopes et produisant à un élargissement spectaculaire de la

raie de NaBN par rapport à celles de 10BN et 11BN.

Un second effet plus subtil est celui de la renormalisation de l’énergie des états électron-

iques : Les mesures PL ont été effectuées pour les trois échantillons isotopiques contrôlés

de bore. Nous avons observé le décalage vers le rouge global des spectres de PL de 11BN à

10BN comme anticipé à partir de l’augmentation des énergies des phonons. Les mesures

Raman dépendant de la température du second mode actif Raman qui se situe dans la
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Figure R.5: Spectres des Raman (a) et photoluminescence (b) du 10BN, NaBN and 11BN.

région des basses fréquences à 52.5 cm−1 à basse énergie et correspond aux mouvements

de cisaillement entre les plans ont été effectuées de 10 à 600K (figure R.6(a)). En augmen-

tant la température, le paramètres du réseau c augmente avec la température et l’énergie

de ces modes Raman diminue. Connaissant c(T) une loi de variation en puissance a été

utilisée pour analyser nos données. On obtient une modification de l’exposant de cette

loi de puissance d’un échantillon à l’autre, ce qui montre une première fois que le cou-

plage de van de Waals, varie avec la composition isotopique. Une deuxième preuve a été

obtenue en étudiant l’élargissement des raies de PL en raison de la contribution du mode

ZO1 (figure R.6(b)). De même que pour le mode de cisaillement inter feuillets, on obtient

une augmentation de la force de couplage de cette mode de 11BN à 10BN en passant par

une valeur intermédiaire pour NaBN. Nous en déduisons que l’ingénierie isotopique en

BN affecte les vibrations du réseau contrôlées par le faible couplage de van der Waals

entre les couches adjacentes.

Finalement nous avons demandé à notre collègue Arie van der LEE de l’Institut Européen

des membranes des mesures de diffraction des rayons X pour 11BN à 10BN par notre col-

lègue afin de réveler des differences. Le résultat est que la distribution de la densité

électronique est plus diffuse entre les couches adjacentes dans 11BN que dans les cristaux

10BN. Par conséquent, nous pouvons conclure par une observation directe que la dis-

tribution électronique de couche intermédiaire elle-même est affectée par la substitution

isotopique qui contribue à la modification de l’interaction de van de Waals.
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Figure R.6: (a) Adoucissement thermique du mode Raman basse fréquence pour 10BN,
NaBN and 11BN; (b) Elargissement thermique des raies de PL en fonction de la

température pour 10BN, NaBN and 11BN.

Le nitrure de bore hexagonal crû par Epitaxie sous Jets Molécu-

laires (MBE).

Nous avons étudié deux séries d’épitaxies de h-BN crûes par MBE sur différents sub-

strats: le saphir et le graphite pyrolytique hautement ordonné (HOPG), pour des tem-

pératures de croissance différentes allant de 1390°C, 1480 ° C, 1560 ° C, et 1690 ° C.

Les premières mesures PL, que nous avons publiées concerne un signal de PL dans la

région de 5.4 à 5.5 eV dans l’ultraviolet (UV) aussi bien pour des épitaxies h-BN minces

crûes par MBE sur des substrats de saphir que de graphite (figures R.7. Cette signaux de

PL sont centrés autour de la bande d’émission correspondant aux fautes d’empilement

déjà identifiées dans le cristal massif h-BN. Nous constatons pour la série crûe sur le

saphir, une forte augmentation de l’intensité PL avec la température de croissance. Des

mesures d’imagerie par AFM montrent que ces épitaxies de h-BN sont constituées de do-

maines nanocristallins, et que l’épaisseur moyenne par fournie par la mesure AFM (de 5

à 17.5 nm) diminue avec la température de croissance. Les images de microscopie à force

atomique (AFM) indiquent que l’épaisseur moyenne de la série crûe sur graphite est net-

tement inférieure à celle de la série cultivée sur saphir (de 0,03 à 0.38 nm) à comparer

avec les valeurs allant de 5 à 17.5 nm citées plus haut). La dépendence de l’intensité de

PL avec la température de croissance est totalement différente. Pour les deux échantil-

lons crûs sur graphite avec les températures de croissance les plus basses de 1390°C et

1480°C, nous avons observé les pics PL aux énergies de 5.88 eV et 5.91 eV qui correspon-

dent aux deux répliques phonons LA/LO1 et TA/TO1. Ces raies de PL n’ont jamais été
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Figure R.7: (a): Spectres de PL des épitaxies de h-BN crûes sur saphir; (b) Spectres de PL
des épitaxies de h-BN crûes sur graphite. En bleu un spectre de PL mesuré sur du

matériau massif.

observées dans des épitaxies de BN minces crûes soit par CVD, soit par MBE. Nous mon-

trons pour la première fois, l’évidence de photoluminescence assistée par phonons dans

des couches épitaxiales minces de h-BN. C’est une signature directe pour l’excellente

qualité cristalline de nos échantillons crûe par MBE à haute température. La comparai-

son entre les spectres PL des deux séries du h-BN indique que la qualité des échantillons

cru sur des substrats graphite est meilleure que celle des substrats de saphir. Nous con-

cluons que la croissance MBE à haute température peut produire des couches épitaxiées

de h-BN de haute qualité.
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Abstract

Hexagonal boron nitride (h-BN) is a wide bandgap (∼ 6 eV) semiconductor with a very high thermal and

chemical stability often used in devices operating under extreme conditions. The indirect nature of the

bandgap in h-BN is investigated by both theoretical calculations and experiments. An indirect excion and

phonon-assisted reombinations in h-BN are observed in photoluminescene spectroscopy. This thesis focus

on the optical properties of bulk and epilayers of h-BN. We investigated samples from different sources

grown different methods in order to confirm the intrinsic optical properties of h-BN. We report the impact

of the phonon symmetry on the optical response of h-BN by performing polarization-resolved PL measure-

ments. From them, we will measure the contribution of all the phonon-assisted recombination which was not

detected before this thesis. We follow by addressing the origin of the fine structure of the phonon-assisted

recombinations in h-BN. It arises from overtones involving up to six low-energy interlayer shear phonon

modes, with a characteristic energy of about 6.8 meV. Raman and photoluminescence measurements are

recorded to quantify the influence of isotope effects on optical properties of h-BN as well as the modifica-

tions of van de Waals interactions linked to utilization of 10B and 11B or natural Boron for the growth of

bulk h-BN crystals. Finally, we study h-BN thin epilayers grown by Molecular Beam Epitaxy at Nottingham

University, atomic force microscopy (AFM) images and photoluminescence features are combined to con-

firm the first observation of phonon-assisted recombination in high quality thin h-BN epilayers grown on

c-plane sapphire and Highly Ordered Pyrolitic Graphite. This demontrates that large scale growth of h-BN

by epitaxy is getting a technologically required maturity.
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Résumé

Le nitrure de bore hexagonal (h-BN) est un semiconducteur à large bande interdite (∼ 6 eV) avec une stabil-

ité thermique et chimique très élevées lui offrant la possibilité d’être utilisé dans des dispositifs fonctionnant

dans des conditions de fonctionnements extrêmes. La nature indirecte de la bande interdite dans h-BN a

été étudiée à la fois par des calculs théoriques et par des expériences. Un exciton indirect et des recom-

binaisons assistées par phonons dans h-BN ont été observées par photoluminescence. Durant cette thèse,

nous avons étudié les propriétés optiques de cristaux massifs et de couches hétéro-épitaxiales de nitrure de

bore hexagonal. Nous avons étudié des échantillons provenant de différentes sources et des cristaux qui ont

été fabriqués en utilisant différentes méthodes de croissance pour nous permettre de mesurer les propriétés

optiques intrinsèques de h-BN. Nous rapportons l’impact des symétries des phonons sur la réponse optique

du h-BN en effectuant des mesures photoluminescence résolues par polarisation. L’analyse des données en

polarisation, nous permet de mesurer la contribution du phonon manquant, celui qui n’a pas été détectée

avant cette thèse. En suite, nous démontrons que l’origine de la structure fine du spectre de PL provient

pour chaque réplique phonon d’une diffusion complémentaire de type Raman faisant intervenir le mode de

phonon E2g à basse énergie (mode de cisaillement inter-feuillets). Les spectroscopies de photoluminescence

et de diffusion inélastique Raman ont été combinées pour quantifier l’influence des effets isotopiques sur

les propriétés optiques de h-BN ainsi pour révéler que les modifications des interactions de van de Waals

liées à l’utilisation de 10B et 11 ou du bore naturel pour la croissance de cristaux h-BN massifs. Enfin, nous

etudions des epitaxis de h-BN crûes par Epitaxie sous Jets Moléculaires. L’utitisation conjointé de l’imagerie

par microscopie à force atomique (AFM) et de la spectroscopie de photoluminescence permet de compren-

dre la première observation de recombinaison assistée par phonons dans des épitaxies de h-BN sur le saphir

et le graphite. Ce resultat indique que la croissance de h-BN à large échelle par méthode épitaxiales est en

voie d’acquérir la maturité nécessaire au developpement techonologique de h-BN.
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