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Abstract

Proteins are biological objects made to resist perturbations and, at the same
time, to adapt to new environments. What are the structural properties
of proteins allowing such plasticity? To tackle this question we first model
protein structure as a network. Given the structural conformation of a mu-
tation, a network approach allows the quantification of its structural change.
Using large sets of mutations, we concluded that structural change is inde-
pendent from the type of amino acid replaced, or replacing after mutation.
Looking at the composition of amino acid neighborhoods, we noticed that
the location of a type of amino acid in the 3D structure is arbitrary. Lead-
ing to the observation that the neighborhood of the amino acid in the 3D
structure is the single property related to structural plasticity. Finally, we
implemented three algorithms to measure the empty space around amino
acids to look at the relation between void and structural plasticity. Results
show a clear gap in small atomic distances, invariant across a large dataset,
suggesting a cutoff to separate intra-atomic and inter-atomic void, based on
the distances of covalent and non-covalent interactions.
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Résumé

Les protéines sont des objets biologiques conçus pour résister des pertur-
bations et, en même temps, pour s’adapter aux nouveaux environnements.
Quelles sont les propriétés structurelles des protéines permettant une telle
plasticité ? Pour aborder cette question, nous modélisons d’abord la structure
des protéines en tant que réseau. Compte tenu de la conformation structu-
relle d’une protéine mutée, une approche en réseau permet la quantification
de son changement structurel. En utilisant de grands ensembles de muta-
tions, nous avons conclu que le changement structurel est indépendant du
type d’acide aminé remplacé ou de celui de l’acide aminé remplacent après
mutation. En regardant la composition des voisinages d’acides aminés, nous
remarquons que l’emplacement d’un type d’acide aminé dans la structure
3D est arbitraire. Ceci menant à l’observation que le voisinage de l’acide
aminé dans la structure 3D est la seule propriété liée à la plasticité structu-
relle. Enfin, nous avons implémenté trois algorithmes pour mesurer l’espace
vide autour des acides aminés afin d’observer la relation entre le vide et la
plasticité structurelle. Les résultats montrent un écart clair dans les petites
distances atomiques, invariant à travers un grand ensemble de données, sug-
gérant une coupure pour séparer le vide intra-atomique et inter-atomique,
basé sur les distances des interactions covalentes et non-covalentes.
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1.1 Protein structure

In this section, we introduce the concept of the amino acid network and its
relation to the structure of a protein. We’ll see that there are different amino
acid networks depending on the targeted structure of the protein. The regu-
lar blocks of the secondary structure can be coarse-grained into the tertiary
and quaternary structures, in that order. The primary structure, however
is not yet folded and cannot be coarse-grained into the secondary structure.
Nonetheless, it is this the basic structure, that contains the necessary infor-
mation for the conformation of the remaining structures [4].

Here, we explain how the building blocks of the protein structure, the
so-called amino acids are at the center of each structural categorization of
the protein. We start then with an overview on the amino acids followed
by the explanation of the primary structure as a linear sequence of amino
acids. Next, we present the secondary and tertiary structures as the atomic
conformation of those amino acids once achieving their final position in the
three-dimensional space. It is here that the concept of amino acid network
is first introduced, and then further developed with the presentation of the
quaternary structure of a protein as a set of tertiary structures.

1.1.1 Amino acids and primary structure

The first amino acid ever discovered was asparagine in 1806 by chemists
Vauquelin and Robiquet [72]. Since then, other 20 standard amino acids
have been discovered: They are the essential element or building block of
the protein structure.

An amino acid is composed of an amine group (-NH2), a carboxyl group
(-COOH), and a side chain called the R group (Figure 1.1). The atoms of an
amino acid consist mainly of carbon, hydrogen, oxygen, and nitrogen. As a
matter of fact two amino acids only differ on their side chain composition and
are thus categorized based on properties of their side chains into four groups:
acidic, basic, un charged polar (hydrophilic) and non polar (hydrophobes).

Amino acids are commonly joined together by a peptide bond, in which
the carboxyl group of one amino acid is linked to the amino group of another
releasing a molecule of water (Figure 1.1).

A linear chain of more than two amino acids joined together in this
fashion is named a polypeptide. Amino acids in a polypeptide are usually
called residues, a reference to the fact that they release either a hydrogen (H)
ion from the N-terminal or a hydroxyl (OH) ion from the C-terminal, or both.
Proteins are polypeptides composed usually of more than 20-30 residues.
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Figure 1.1: Representation of the formation of a peptide bond between two
amino acids. The resulting peptide is read from the N-terminal to the O-
terminal by convention.
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Figure 1.2: A polypeptide is a linear sequence of amino acids connected
through a peptide bond. By convention it is read from the N-terminal to the
C-terminal, assigning each amino acid a position in the sequence.

This linear sequence of residues is the primary structure of a protein. By
convention, the sequence starts at the N-terminal and ends at the C-terminal.
The order of a residue in the sequence is what it’s called the residue’s position
(Figure 1.2).

The positions of amino acids in the sequence will be later used to label
the nodes in the amino acid network. To define the amino-acid network,
however, we first need to talk about the positions of amino acids in space.

1.1.2 Secondary and tertiary structures

The primary structure of a protein lacks any three-dimensional structure on
its own. It is on a shapeless state called random coil where residues are only
connected to their neighbors in the linear chain.

The random coils forms local conformations almost spontaneously. The
ensemble of these local conformations is what is known as the secondary
structure of the protein. They are composed by short segments of the linear
sequence taking a three-dimensional shape. The two most frequent motifs in
the secondary structure are the alpha helix and the beta sheet. The alpha
helix is the most regular as well as the most prevalent in proteins, it was
considered to be the secondary structure on its own when the concept of
secondary structure was coined [37]. It has a helicoidal shape stabilized by
a bond between an oxygen from the N-group of a residue and a hydrogen
from the O-group of a residue four positions further in the linear sequence.
The beta sheet consist of two or more adjacent beta strands stabilized just
like the alpha helix with hydrogen bonds between the N-group hydrogen of



CHAPTER 1. INTRODUCTION 5

Oxygen Nitrogen Side chain

Figure 1.3: Three beta strands representing two beta sheets. The two beta
strands on gray background form an anti-parallel beta sheet in which the
two strands are in opposite directions. The two strands on blue background
form a parallel beta sheet in which the two adjacent strand follow the same
direction. The hydrogen bonds are represented by magenta colored dotted
lines. The N-group hydrogen of a residue connects with the C-group oxygen
of a residue in an adjacent strand.
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Table 1.1: Non-covalent amino acid interactions in proteins, the distance at
which they occur and their abundance [28].

Interaction Distance
(Ångströms) Abundance

Van der Waals 4-8 Numerous
Hydrophobic 4-8 Numerous
Hydrogen 4 Moderate
Charged with uncharged groups 4-8 Moderate
Salt bridge 5 Few
Coordinate bond 2.5 Very Few
Disulfide bond 2.5 Very Few

a residue and the C-group oxygen of a residue in an adjacent strand. The
sheet can be parallel when adjacent strands follow the same direction or
anti-parallel otherwise (Figure 1.3). Together with the alpha helix, it was
discovered in 1951 by Pauling, Corey and Branson [46].

Another form of secondary structure called loops, is a more irregular
motif which can serve to redirect the direction of the polypeptide chain
often to create beta-sheets, in which case it is called a beta turn [27]. Like
beta sheets and alpha helices, loops are also stabilized by internal hydrogen
bonding.

After the amino acid sequence folds locally almost spontaneously to give
rise to the local structures, the sequence continues to fold to reach a stable
three-dimensional shape. This shape is the tertiary structure of a protein
and its defined by the atomic coordinates of the polypeptide chain in (Eu-
clidian) space. The tertiary structure is a single folded-chain of amino acids
containing one or more secondary structure motifs. The polypeptide chain
without its side chain in the tertiary structure is called the backbone of the
protein. Any two adjacent residues in the linear sequence are also adja-
cent in the backbone by a peptide bond. The compactness or closeness of
adjacent amino acids in the tertiary structure is determined by non only
covalent (i.e. peptide bond) interactions, but other types of non-covalent
interactions. These non-covalent interactions in space can occur between
amino acids being otherwise faraway in the linear sequence. Non covalent
interactions take place at different distances, usually ranging from 2.5 to
8 Ångströms (1 Å = 10−10 meter). Non-covalent interaction distances are
shown in Table 1.1.
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pos 1 pos 2
w = 21
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Figure 1.4: Atomic interactions happen at an atomic level. (a) A sketch
of two amino acids in interaction labeled by their position number in the
polypeptide chain. Two atoms are connected by a dotted line if their distance
is less than a given threshold. (b) The representation of the same interaction
in the amino acid network. Two nodes are labeled by the positions of the
amino acids they represent and connected by a weighted link, where the
weight (w) is equal to the number of atom pairs in interaction between the
two amino acids.

As previously mentioned, the position of residues in the polypeptide chain
will be used here to label the nodes of the amino acid network. It would
now be natural to connect two such nodes by a link or an edge if they
are interacting, i.e., if their distance is smaller than a threshold or cutoff
(Figure 1.4).

Under this approach, consider two connected residues in the amino acid
network; the closer they are from one another, it follows that the larger the
probability that they are interacting. The concept of weight of a link can be
used (and indeed it is!) to quantify the proximity between two already close
residues: the weight of a link is equal to the number of shared atom pairs
closer than a given cutoff (Figure 1.4).
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To formally define the amino acid network of a protein, we first need
to define the protein structure as a set of points in the Euclidian space R3

(Definition 1).

Definition 1. The structure of a protein, noted S ⊂ R3, is the set of atomic
coordinates of the protein.

We can now think of an atom as a point in R3 and a residue as a set of
atoms. Think of atoms and residues as such is convenient for the the parts
of this work dealing with the spatial modeling of the protein. The notation
a ∈ S which pretends a to be a point in S should also be thought of as a is
an atom of the protein. Similarly, a ∈ r ⊂ S explains that the atom a is an
atom of residue r, which in turn is a residue of the protein.

The term atom and point (resp. residue and set) will be use interchange-
ably throughout the text. Exceptions for this will be only found (we hope)
under a sufficiently evident pure biological discussion.

A network or a graph, usually noted G, is an ordered pair (V,E) where V
is the set of nodes or vertices and E is the set of links or edges. We use this
terminology to formally define the amino acid network of a protein structure
(Definition 2). The weight of an edge is defined as a function w where the
weight of the edge is the number of atom pairs interacting between the two
connected residues (Definition 3).

Definition 2. Given a protein structure S ⊂ R3 and a distance cutoff c,
the amino acid network (AAN) of S (using c) is G(S, c) = (V,E). Where
V is equal to the set of residues in S, and a link uv connecting residues u
and v exists if and only if there are two atoms a1 ∈ u and a2 ∈ v, such that
d(a1, a2) < c, where d(a1, a2) is the distance from a1 to a2 (Figure 1.5).

Definition 3. Let G(S, c) = (V,E) be the amino acid network of S and e
an edge in E. The function w : E 7→ R, called weight, assigns to any edge
uv ∈ E, the number of pairs (a1, a2) ∈ S × S where a1 ∈ u, a2 ∈ v and
d(a1, a2) < c (Figure 1.5).

The interaction is calibrated by a distance cutoff c, depending on the tar-
get interaction. The concept of a distance cutoff, allows us to model different
interactions varying on the distance at which they are defined. The amino
acid network is mainly used to model interactions to quantify variations in
the structure, as explained first in Chapter 2.

Many proteins are composed of more than one polypeptide chain or sub-
unit. The quaternary structure is used to categorize these compounds, as
seen in the next subsection.
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Figure 1.5: Example of a small amino acid network of a protein structure in
R2. (a) The protein structure S. Four residues with their respective atoms
are depicted in different colors, all atom pairs in interaction share a dotted
line. The interaction between atoms is defined by a distance threshold or
cutoff. (b) Draw of the amino acid network from the small structure shown
above. Nodes are the residues in the structure and are labeled by position
number in the linear sequence. By definition, each edge in the network has
a positive weight.
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1.1.3 Quaternary structure

Several polypeptide chains can fold into a unique protein. Because one gene
codes for one chain, proteins with several chains can contain more than one
subunit. A monomer, is a molecule unit that through polymerization, can
group with other molecules to form a larger compound. While being part of
the compound, the monomer is called a subunit. The quaternary structure
of a protein is composed by the total number of subunits in the compound.
Monomers, dimers, and oligomers are proteins composed of one, two and
several subunits, respectively.

Two amino acids in an oligomer, can therefore be part of an intermolecu-
lar interaction, i.e., an interaction on two different polypeptide chains. Oth-
erwise, the interaction is called intramolecular. Zones where there are in-
termolecular interactions are called interfaces; in other words, interactions
happening only at the level of the quaternary structure. Residues laying on
protein interfaces are referred to as “hot spots”.

The stability of interfaces is of crucial importance to the overall stability
of the protein structure. There is therefore an interest to study the structure
of protein interfaces on their own. In chapter one, we propose a model of
amino acid network, called the hotspot network used to study structural
variations on the protein interfaces belonging to the cholera toxin. The
hotspot network of an oligomer is a subnetwork of its amino acid network
(Definition 4). A network or a graph G = (V,E) contains the network
G′ = (V ′, E′) if and only if V ′ ⊂ V and E′ ⊂ E. In which case G′ is called
a subnetwork or subgraph of G.

Definition 4. The hotspot network (HSN) of a structure S given a cutoff
c, noted H(S, c) = (V H , EH), is a subgraph of the amino acid network
G(S, c) = (V,E), where the set V H ⊂ V , is equal to the set of hotspots in
S, and an two hotspots u and v share an edge uv, only if u and v lie on
different chains and uv ∈ E (Figure 1.6).

The majority of the protein structure networks used in this work are
subnetworks of the amino acid network as well and will be defined in the
following chapters.

Several structural properties of an amino acid are found the amino acid
network. The degree of an amino acid in the network, that is, the number
of links that are connected to it, depends on the distribution of other amino
acids around it in the protein. Similarly, the weight of an amino acid is the
number of the atoms belonging to other amino acids that are close. Will se
this more in detail in Chapters 2, 3 and 4.
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Figure 1.6: An example of a hotspot network of a structure in R2. (a) The
protein structure is composed of two chains each having two residues. The
atoms of each residue are shown in a different color. Atom pairs at interaction
distance are represented by dotted lines. (b) The hotspot network. Only
residues in opposed chains can be interacting. Note that the labeling of
nodes is prefixed by the name of their chain.
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Other parameters can be calculated like the betweenness centrality of a
node, which is the number of paths in the network passing to that node. The
closeness centrality is the length of the paths between the node an all other
nodes in the network. These parameters can be used to study the relevance
of the node in the network in terms of interaction paths.

In the protein structure, same type (and size) amino acids can be different
in volume as we’ll see in Chapter 5. We’ll see that also the empty space
around amino acids or void in the structure varies considerably between
close residues. This is a consequence of the combinatory power of amino
acid neighborhoods in proteins as shown in Chapter 5.

There is one subject that is omnipresent in different forms during the
entire spread of this work: mutations. A mutation is an evolutionary phe-
nomenon happening continuously in proteins.

During the first part of this thesis, we study the effects of mutations
on the protein amino acid mutations. We consider mutations to be (only)
variations of the atomic coordinates of proteins in the three-dimensional
space. However, the variation in the structure is only a consequence of
mutations. In reality, a mutation is a change in the genetic sequence of
the protein happening during DNA replication. Subsequently, the protein is
constructed from a segment of DNA or a gene into an amino acid sequence
by the process called protein synthesis.

1.2 Protein synthesis

The process of protein gene expression starts with a segment of DNA (de-
oxyribonucleic acid) called gene and ends with the synthesis of the protein
amino acid sequence. In this section we briefly explain how this process is
carried first in the (Eukaryotic) cell nucleus and then in the cytoplasm. Pro-
tein gene expression can be divided into two subprocesses: transcription and
translation.

1.2.1 Transcription and translation

Transcription of a gene refers to the process of copying the information in
the gene stored in the nucleus of the cell into another molecule, called RNA
(ribonucleic acid). Transcription can be divided into three steps: initiation,
enlarging, and termination. Initiation starts when the molecule RNA poly-
merase, while bound to the DNA, encounters a promotor site signaling the
start of a gene. The RNA polymerase then unwinds the DNA double helix
and in a complementary fashion starts copying the nucleotides from one of
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the DNA strands. The strand used is the template strand, to which RNA is
going to be complementary. The RNA polymerase copies one nucleotide at
a time by covalently linking the new complementary nucleotide of the RNA
to the one previously added forming the RNA backbone. This is the phase
of elongation. The RNA polymerase eventually finds a terminator or stop
site and halts the synthesis of the RNA and releases from the template DNA
strand. The double helix is closed again and the RNA molecule is ready
to be used by the cell. The resulting RNA can be used for other jobs in
the cell besides the creation of a protein molecule, here we’ll only focus on
the messenger RNA (mRNA), the molecule in charge of passing the genetic
message (Figure 1.7). The mRNA exits the cell’s nucleus by its pores and
enters the cytoplasm, where the subprocess called translation takes palace.

The translation of the mRNA into a new sequence of amino acids is done
by a protein called ribosome. The ribosome translates the information en-
coded in the mRNA into amino acids. The sequence of the mRNA is divided
in sets of three consecutive nucleotides called codons. Each codon translates
to one of twenty amino acids, with the exception of the stop codons, which
terminate the translation. All 64 codons (4 × 4 × 4) with their translation
compose the genetic code. In this code, every amino acid is coded by more
than one codon except for Methionine, and three codons are used to signal
the termination of the translation.

Translation can be divided into four steps: activation, initiation, elon-
gation, and termination. The activation phase consists of the amino acids
binding to the transfer RNA (tRNA) molecules, which will transport the
amino acids to the ribosome. The activation phase is when a small subunit
of the ribosome binds the end of the mRNA (first codon). The elongation
phase consists of the charged tRNA (tRNA with its corresponding amino
acid) matching the codon, and binding to the ribosome. Finally, the ter-
mination phase occurs when the ribosome encounters either a nonsensical
codon or a stop codon, and finally detaching from the amino acid sequence
(Figure 1.7). As we mentioned before, a mutation which is explained in the
next subsection, can alter the structure of a protein. This alteration will be
measured with the use of amino acid networks by comparing the networks
of the mutated structure and the wild type.

1.2.2 Mutations

A point mutation is a variation happening in the nucleotide sequence of
the DNA (or RNA). They occur in nature mainly during DNA replication,
but can happen also during the transcription and translation. Most point
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Figure 1.7: Representation of protein gene expression, starting in the nucleus
of the cell where genes are transcribed into an RNA molecule, and ending
with the translation of the RNA into an amino acid chain in the cytoplasm.



CHAPTER 1. INTRODUCTION 15

UUG

LEU

CCA

PRO

AGU

SER

AAG

LYS

UUG

LEU

CCA

PRO

CGU

ARG

AAG

LYS

Figure 1.8: A point mutation.

mutations do not impact the amino acid sequence of a protein, they mostly
happen in non-coding regions of the DNA. The robustness of the protein
also relies on the redundancy of the genetic code, where a point mutation
happening in a codon do not change the amino acid coded (e.g. CUU and
CUC both code for amino acid Leucine). Even if the point mutation yields
a change in the amino acid sequence (Figure 1.8), the alternative amino acid
is likely to adapt to the previous structure and function.

However, a mutation can produce a change to the structure of a protein
and therefore to its function. In order to understand the role of mutations
in the protein function and structure, we first need to mention the relation
between the amino acid sequence and the structure and function of a protein.

The function of a protein depends on the underlying protein structure.
Allosteric shifts or intrinsically disordered regions in the protein structure
can yield several functions in a same protein [79]. The main purpose of the
protein structure is indeed to accomplish one, or several functions. There-
fore the protein must fold in the conformation allowing the protein to well-
function. This interdependency between function and structure is one of the
motivations to study the structure of proteins. This is supported by the fact
that there are extensive databases of crystalized protein structures available
online.

1.3 Amino acid networks

1.3.1 Protein structure and function

An additional variation in the definition of amino acid networks lies in the
distance used to consider two atoms to be interacting. When, for example,
only alpha carbons are considered, the distance cutoff is considerably larger
than when all atoms are taken into account. Finally, some authors consider
the side chain atoms only, neglecting the backbone.

Networks have been applied to biological hot topics related to the func-
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Table 1.2: Distance cutoffs used in literature.

Nodes Cutoff(s) used in literature
(Å) Network type

Cα 7, 8, 8.5 Unweighted
Cβ (Cα for Gly) 7, 8.5 Unweighted

Centroids of side chain 8.5 Unweighted
Amino Acid 4.5, 5 Weighted

tion and the structure of the protein. Here we give a general presentation of
some of those applications disregarding the methods of construction of the
amino acid networks.

1.3.2 Mutations

The use of amino acid networks in the study of important sites related to
functional change has also been applied. In one study, the authors compared
the centrality values in the amino acid network to relate residues with high
values to destabilizing sites. Where mutations are usually detrimental to the
protein. In this work, we propose several other network parameters, not to
identify functional sites, but to measure the impact of mutations of those
sides in the underlying amino acid network.

1.4 Tools

1.4.1 Computational

The entirety of the computational tools used in this work, relative to the
computations on networks and structure but not including the visualization,
are done in the programming language Python (version 3.6). We used several
python “modules”, or sets of functions previously constructed, to elaborate
our own algorithms. Here we present the main modules used for our own
computational tools and, next, our own computational tools also written
in Python. The previously constructed modules by other authors are not
thoroughly surveyed, as the documentation is easily found online (and it
drifts away from the purpose of this methodology). Instead, we show some
examples on how to use those tools in the work relative to network theory
and bioinformatics (Figures 1.9 and 1.10).

The tools we developed for this work are in the form of Python func-
tions gathered in the package called “biographs”. The package contains five
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Untitled

March 23, 2017

In [1]: %matplotlib inline
import networkx as nx
G = nx.Graph() # A graph in networkx
V = ['a', 'b', 'c', 'd'] # A set of 5 nodes
E = [('a', 'b'), ('a', 'd'), ('b', 'c'), ('b', 'd'), ('c', 'a')] # A set of 5 links
G.add_edges_from(E)
nx.draw_networkx(G, node_color='w') # This gives the following figure

1

Figure 1.9: networkx is a library for python comprising multiple functions
dealing with networks. The module includes functions to display the net-
works (as in this example), compute the degree of nodes, the assortativity
coefficient, the clustering coefficient, etc [23].
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Untitled

March 24, 2017

In [3]: import Bio.PDB
pdb_file ='/Users/rdora/Desktop/1be9.pdb' # The pdb file containing the protein
protein_parser = Bio.PDB.PDBParser(PERMISSIVE=1)
# The variable `structure' contains the structure of the protein
structure = protein_parser.get_structure('PDZ protein', pdb_file)
A = Bio.PDB.Selection.unfold_entities(structure[0], 'A') # Atoms
R = Bio.PDB.Selection.unfold_entities(structure[0], 'R') # Residues
dis = A[0] - A[1]
print 'Number of atoms: ' + str(len(A))
print 'Number of residues: ' + str(len(A))
print 'Residue %s%i is a %s' %(R[0].parent.id,R[0].id[1],R[0].resname)
print 'Atoms %s, %s of %s%i are at dis: %f'

%(A[0].id,A[1].id,R[0].parent.id,R[0].id[1],dis)

Number of atoms: 1045
Number of residues: 1045
Residue A301 is a PHE
Atoms N, CA of A301 are at dis: 1.494597

1

Figure 1.10: The module biopython parses and information in a PDB file
and has algorithms for structural biology. Here we show an example of
the computation of atoms and residues of the protein with PDB identifier
“1BE9”. Moreover, we can easily check the types of residues in the protein
and compute the distance between any pair of atoms.
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Figure 1.11: The architecture of the package biographs. The network repre-
sents the architecture of the package, a directed link indicates source node
(module) is used in the target node (module or package).

modules, including one producing the amino acid networks present above
and another module for the creation of Python objects from PDB files [10].
Two other modules are mainly used for the purpose of the two previously
mentioned. A last module contains functions dealing with the spatial prop-
erties of residues and their atoms, to compute their void, volume, and
spatial centrality (Figure 1.11). The package will be available at http:
//rodogi.github.io together with a user interface (future work).

In this section, we present the process to produce the three-dimensional
structure of a mutation In Silico. The process is divided in two main steps:
The retrieval of the atomic coordinates of the native protein and the compu-
tation of the new atomic coordinates given a mutation (or a set of mutations)
by the software FoldX.

The computed structures of the proteins are deposited in the protein
data bank (PDB). For this work, we retrieved all the structures used from
the Research Collaboratory for Structural Bioinformatics (RCSB) protein
data bank, a member of the worldwide PDB. The atomic coordinates of
the structure, together with additional information relative to the process
of obtainment of them, including the authors, the process and the journal
where the work was published, are saved in a pdb file (Figure 1.12).

The file of the native protein to be mutated is used as part of the input
in the FoldX software to the computation of the three-dimensional confor-
mation of the mutation. In combination with the PDB file, FoldX takes
as an input the name of the mutation(s). A separate file, called “Individ-
ual_list.txt” must be provided with the mutations to make (Figure 1.13).
Each line of this file is a mutation or group of mutations to be made si-
multaneously. The mutation(s) is produced using the function BuildModel,
included in the software. The function first mutates the selected position to
Alanine and annotates the side chains of the neighboring positions. Those
who exhibit energy differences are then mutated by themselves to minimize

http://rodogi.github.io
http://rodogi.github.io
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Figure 1.12: An extract of a PDB file, taken from the PDB file of the seal
myoglobin (PDB identifier: 1MBS). The header includes the name of the
molecule, the authors, the method used (in this case X-ray diffraction) and
remarks. The atomic coordinates of the molecule are then shown for each
atom of the structure together with the amino acid to which it belongs, the
chain and the type of atom.
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Figure 1.13: An example of the file “individual_list.txt” used as input for the
obtaining of the structure of a mutation using the software FoldX. Each line
represents a mutation or a number of mutations (as in this example). The
format used to indicate the mutation is the type of amino acid in the selected
position, the chain, the position, and the mutant amino acid. Mutations
in a same line are produced simultaneously and lines are separated by a
semicolon.

the energy change [71]. Finally, the selected position is mutated to itself and
two pdf files are created, a “individual wild type” file and the file containing
the structure of the mutation.
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Abstract

Protein functional performances depend on the protein capacity to handle
the structural changes responding to functional purposes and perturbations
(e.g. mutations). The present study identifies in-built parameters responsible
for such structural supervision from the survey of 736,149 amino acids and
of their spatial neighborhoods. It appears that regardless of amino acid type
or position in a structure, amino acids interact with their neighbors via a
moderate average number of atomic links, achievable by all, and following
a Goldilocks principle: not too many links, not too few. The structural
responses to mutation depend on the reproducibility of the average number of
atomic links at the mutated position, condition accomplished by customizing
neighbors, via amino acid alternative solutions or compensatory mutations.
On the other hand, the modulation of pairwise atomic interactions governs
structural transitions such as protein folding.
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2.1 Introduction

How proteins sustain and adapt their biological functions, or fail to do so, is
a complex phenomenon. The structure and function of a protein are defined
by amino acid sequences that naturally vary upon genetic mutations. The
robustness of proteins against mutations depends on the impact on the pro-
tein function of the structural changes arising from the mutations, changes
which are not much investigated [28]. Proteins are strongly resistant to sin-
gle amino acid mutations: most amino acids can be mutated without loss of
function [68], i.e., such mutations are functionally neutral. Less frequently,
with a frequency about 10−9 per site, mutations lead to the emergence of
new functions (innovation) [3]. Alternatively, there are pathological muta-
tions which lead to a loss of function. The present view of neutral muta-
tions is that some are adaptive because their combination with other muta-
tions drives functional evolution through non-additive effects (e.g. functional
promiscuity or epistasis) [3]. Non-additive effects are also involved in rescue
mechanisms, wherein the negative effect of a pathological mutation is neu-
tralized by a mutation at a second site [13, 43, 57, 68]. In general, protein
robustness, protein innovation and protein adaptation, refer to the impact
of mutations on the biological function of proteins.

On the other hand, the structural changes which are tolerated by a pro-
tein without jeopardizing the protein’s functionality (functional robustness
or emergence of a new function) or those that, on the contrary, lead to loss of
function, are rarely looked into. Therefore, even little understanding of the
underlying structural changes would be instructive for addressing patholog-
ical mutations or help designing new enzymes. The gap between the studies
on functional and structural robustness is due to several issues. To investi-
gate functional robustness, a protein prototype is chosen, every individual
amino acid is mutated and the function of each mutant is tested experimen-
tally [42]. Likewise, studying structural robustness, namely, maintenance
of the structural integrity necessary for a biological function, implies choos-
ing a protein prototype, mutate every individual amino acid, crystallizing
each mutant, solving each structure and comparing the ones which share the
same function. First, this is technically and financially challenging as well
as time consuming. Second, the goal is to understand if a protein structure
is built to bear mutational changes and if so, to investigate by what mecha-
nisms. Furthermore, an experimental approach is not appropriate, because
some mutations would fail to produce a structure for reasons not necessar-
ily related to structural robustness. A mutation might prevent folding and
acquisition of a stable structure, yet have no impact on the structural ro-
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bustness. For instance, the B subunits of the pentamers of the cholera toxin
and the heat labile enterotoxin, maintain a pentamer at ph 5.0 but do not
reassemble at this ph [11,55,56,80]. Moreover, a mutation leading to a new
structure and a new function might not easily be identified as such, experi-
mentally. On the other hand, in silico mutations produce structural changes
in order to generate a stable structure. in silico methods cannot create a new
structure or destroy a structure from a mutation, and they produce a set of
conformations close to the wild-type structure. This is a relevant framework
to investigate the structural changes that underlie structural robustness as a
general issue rather than having to restrict the study to specific mutations.
The third issue is the lack of tools available to measure and compare the
effects of mutations on a structure, comparison needed to understand the
mechanisms by which the protein structure bears the changes. There ex-
ist programs to compare global structure features (e.g. rmsd) and visualize
structural differences [5, 60, 62, 78]. However, the present study is about fol-
lowing changes from a local perturbation, the site of the mutation, to the
entire protein structure.

To circumvent these difficulties, we have adopted the following strategy.
We have worked on the atomic structure of the pentamer of the cholera toxin
B subunit (CtxB5) because it is a stable protein with an ob-fold, structure
common to many other proteins with different sequences. We can therefore
assume that the structure is naturally robust to mutational changes. We
generated a set of in silico mutations using foldx, which produces structural
changes maintaining a reliable structure [61]. Let us recall that the goal
of the study is not to predict the effects of experimental mutations on a
structure, but to have a set of mutations appropriate to explore structural
robustness. The dataset is the individual mutation of all the amino acids
which compose the toxin interface. To analyze the structural changes due
to mutations, we modeled the toxin interfaces as networks of amino acids
in interaction, such that the structural properties are compared through
network comparison. The analysis of the networks helped us build an ad
hoc algorithm, called amino acid rank (aar) which takes into account all
structural changes observed in the dataset, quantifies them, and ranks the
mutations accordingly.

Finally, we analyzed the results of aar in terms of structural robustness.
The results indicate that mutations generate structural changes at different
scales (local or long range) in a cascade mechanism and independently of
the local changes on the mutation site and of the nature of the mutation.
Structural robustness relies not only on mutations producing zero or a few
little changes, but also on mutations producing significant structural changes
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while generating redundant conformations, in good agreement with the re-
cent definition of protein as an ensemble of conformations fulfilling one func-
tion. Redundancy produces the alternative structures necessary for having
conformations functionally distinct upon secondary mutations, consistently
with “adaptive neutral mutations”. An example of non-additive mutations is
provided not in the context of emerging functions, but as a correction mech-
anism of a cancer-related mutation reported in the tetrameric domain of the
tumor suppressor p53. This error-correction mechanism is not conceivable
if structural robustness is based only on a lack of structural changes upon
mutation. The identification of a second site mutation capable of correcting
the fault is possible because of the new algorithm aar.

2.2 Methods

2.2.1 Aminoacidrank (aar) algorithm

function spectralpro

The goal is to model a protein interface by a hotspot network. A protein
interface is made when the amino acids of one chain with the amino acids
of adjacent chains. These amino acids are referred to as “hotspots”, in this
work. To construct a hotspot network, we first define its atomic network.
Using the atomic coordinates from a pdb file, all distances between atoms
of one chain and atoms of adjacent chains are computed. Two atoms share
a link if they are within a 5å distance from each other. Two hotspots share
a link if they have at least one of their respective atoms within 5å distance
from one another. It is convenient to represent the hotspot network as its
adjacency matrix a. If n is the number of hotspots in the protein, then a is
the n×nmatrix with value ai,j in row i and column j, if i and j are connected
by a link or 0, otherwise. The weighted adjacency matrix w is defined by
wi,j , the weight of the link connecting i and j, that is, the number of atomic
links between amino acid i and amino acid j. In the adjacency matrix a,
ai,j = 1 if wij > 0, and aij = 0, otherwise.

Function Arank

A mutated pdb file is generated with foldx introducing a single hotspot
mutation of a residue at position r. The function spectralpro is then applied
on the mutated pdb file. To compute the quantity of structural changes
produced by the mutation, a n× n difference matrix d is defined as follows:
di,j = wmuti,j − wwti,j , where di,j is the entry value of d at row i and column
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j, and wmuti,j and wwti,j are the weights at row i and column j of the mutated
network and the wild type network, respectively.

The structural changes produced by the mutation on the entire structure
(global changes, arankr) are computed as the sum of the absolute value of all
the entries of d (that is,

∑
i,j |di,j |). The structural changes at the position

of the mutation r (local changes, localr), are computed as the sum of the
absolute values of all entries of d at row r (that is,

∑
j |dr,j |). The arankr

values are used to rank mutations according to the amount of structural
changes they produce.

Function backup

This function computes the redundancy of every link of the wild type (wt)
hotspot network. The backup links are sought within the local secondary
structure around every hotspot link, based on the known hydrogen bonding
of secondary structure. The set of backup links of link (i, j), includes any
link incident to a residue located within four residues along the sequence
of residues i or j. The aar pseudocode is provided in section ?? (subsec-
tion 2.7.2).

2.2.2 Foldx

Mutations were computed using the protein design tool foldx (version 3
beta) [22, 61]. Only the protein design function was used for mutagenesis
using the pdb file with code 1eei as the wild type structure (details and run
parameters to be found in subsection 2.7.1). Essentially, the run parame-
ters are chosen to minimize their impact on the network construction, to be
applicable broadly on x-ray structures, and not to depend too strongly on
a high quality structure. Herein the quality of the structures need to be at
∼ 2.5å resolution or above.

2.3 Results and discussion

The aim is to investigate the structural changes that a protein may go
through from individual mutations of its amino acids, while maintaining a
stable structure. As a model of study, we use CtxB5, focusing on the amino
acids that compose the toxin interface, the so-called hotspots. A protein
structure is built on atomic interactions between its amino acids, likewise
for a protein interface. Thus, to analyze the structural changes that take
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place in the toxin interface upon mutation, first intermolecular atomic inter-
actions need to be established. The exact atomic interactions are intractable
due to the large size of the system. Atomic interactions rely on chemical na-
ture of atoms, distances between atoms and the atom environment (atomic
neighbors). In order to take these parameters into account, the following
procedure is undertaken (section 3.4.2). The distances between all atoms
of one chain and all atoms of an adjacent chain, referred to as interatomic
distances are calculated from the x-ray coordinates of CtxB5 provided by the
rcsb protein data bank (pdb code 1eei). All interatomic distances within 5å
are considered as chemical interactions, without distinguishing the nature of
the atoms (section 3.4.2). This approximation is reasonable because every
type of chemical interactions (van der waals, electrostatic, hydrogen bonds,
etc.) between the atoms of amino acids, i.e., carbon, oxygen, nitrogen, sulfur
and hydrogen fall within a distance of less than 5å [21]. The chemical nature
of atoms is not considered also because it is assumed that two atoms in the x-
ray structure would not be close if they ought to chemically clash. They are
either necessarily chemically compatible or their neighbors’ shielding prevent
them from clashing.

To each hotspot is associated a weight wi equal to
∑

j wi,j , which is
the total number of its links (intermolecular atomic distances within 5å,
section 3.4.2). The pairs of atoms that are within a 5å distance are coarse-
grained to their respective amino acids in order to associate to each hotspot
a number of amino acids in physical contacts (degree), noted ai and equal
to
∑

j ai,j . Because all the distances within 5å of every atom are considered,
the algorithm intrinsically accounts for the neighboring atoms. The weigh
and the degree can be considered as a proxy of the probability of interactions
of the amino acid, the higher the degree the more likely the amino acid is to
have an interaction.

2.4 Survey of the structural changes

Our algorithm amino acid rank (aar) after establishing the amino acids and
the interactions that composed the toxin interface with the above procedure,
models the interface as a network of amino acids in intermolecular interac-
tions (section 3.4.2, function spectralpro). The amino acids that have at least
one intermolecular atomic distance within 5 å are linked and referred to as
hotspots. The CtxB5 interface has 58 hotspots forming the nodes of the net-
work, these are also recognized as hotspots by other programs available [2].
There are no histidine nor cysteine hotspots.
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We systematically mutate every hotspot one by one. In the current study
we restrict ourselves to mutations to asparagine residue for simplicity, as it
has average chemical and geometrical properties. For example it is a residue
that is polar rather than hydrophobic or charged, and has an average number
of atoms compared to other amino acids. Mutations to other amino acids
will be considered in future work.

In silico mutations are performed using foldx (section 3.4.2) [61], to gen-
erate a mutated structure, from which a mutated toxin interface and a mu-
tated network are produced by the aar algorithm. To capture the structural
changes associated with a mutation, aar compares the networks after and
before mutation and extracts all modified amino acid links (section 3.4.2,
function arank). Mutations change the positions of atoms which modify the
intermolecular atomic distances and thus the degrees and weights of nodes of
the network. To quantify the structural changes produced by a mutation at
position r within the entire structure (arankr), aar sums the absolute values
of the differences between the weights after and before mutation of all the
nodes of the networks; the higher the arankr the larger the structural changes
(table 2.1). A change in weight means some atoms have become closer or
further away, implying atomic interaction rearrangements. Depletion of an
amino acid link means that the two hotspots have no more atoms within a 5
å distance. Addition of a new link means that the two hotspots have moved
closer so that they have atoms within 5 å distance. These are amino acid
link rearrangements. To qualitatively describe the mutations, a “sphere of
influence” is defined as the number of modified amino acids by the mutation
and the distance between the site of the mutation and the modified residue
the furthest from it (table 2.1). Two distances are measured, geodesic and
euclidian. The geodesic distance is measured by the number of chemical links
to be crossed to go from the site of mutation to the modified residue the fur-
thest from it, by the shortest path, and the euclidian distance is measured
between the two residues in ångströms (figure 2.1). The spheres of influence
of the fifty-eight mutations are shown on their respective x-ray structures in
figure 2.7 (section ??), highlighting the broad diversity of structural changes
in quantity and quality.

The arankr values vary from 182 to 2, ten mutations have an arankr below
the first quartile while fifteen have an arankr above the third quartile, and
thus most mutations generate significant changes (Table 2.1). The changes
involve side chain atoms only since the RMSD is zero for all mutations. No
more than 10% of the native interfacial contacts are lost upon mutations.
On average the mutations modified eight hotspots; a quarter modified only
up to five hotspots and a quarter modified more than eleven. Thirteen muta-
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Table 2.1: mutational features

Hotspot i has degree ai and weight wi

Global Changes Local Changes

Mutations arankr # modified hotspots Geodesic Euclidian (Å) Intra awt
i wwt

i ∆ai(mut−wt) |∆wi(mut−wt)|

K69N 182 22 3 15 0 2 30 -1 23
R67N 178 16 4 9 0 9 101 -5 24
Y76N 143 8 2 6 0 4 40 -3 37
Q3N 120 4 1 5 0 4 43 -1 26
A64N 112 18 3 10 0 4 20 5 41
Y12N 102 10 4 9 0 4 41 -4 44
T78N 97 5 3 8 0 1 2 0 1
A32N 94 11 2 5 0 5 35 2 44
E29N 90 11 3 10 0 6 77 0 30
R73N 88 18 3 15 0 4 42 -1 32
Y27N 86 16 3 13 0 5 41 -2 8
E66N 82 15 3 13 1 2 33 0 8
A98N 80 8 2 11 0 3 23 1 38
101N 76 11 2 13 0 6 60 0 5
F25N 72 6 2 5 0 3 39 0 28
103K 70 7 2 5 0 4 44 -2 33
A80N 66 9 3 9 0 1 1 1 24
K23N 66 6 3 11 0 1 7 -1 7
G33N 60 7 2 6 0 3 25 1 29
T71N 56 12 10 10 0 3 31 0 4
K81N 54 5 3 9 0 1 1 0 0
D70N 53 16 5 16 1 2 28 -1 10
L77N 51 14 3 10 0 4 8 1 3
S26N 48 5 1 5 0 2 15 2 25
P2N 48 7 2 7 0 4 19 0 14
V50N 46 14 4 17 1 1 1 0 1
R35N 46 9 1 6 1 5 47 -1 9
E36N 42 15 2 14 1 5 36 -2 1
Q61N 38 10 3 8 0 4 39 0 6
A97N 38 8 2 5 1 3 34 0 15
T28N 36 8 1 5 0 4 35 3 16
E11N 36 4 2 5 0 1 15 0 12
100N 34 5 1 5 0 2 22 1 17
T1N 33 7 1 5 0 5 32 0 1
I99N 32 8 2 10 0 3 36 1 15
P93N 32 6 2 5 0 3 31 0 3
S30N 30 7 2 5 0 5 31 2 14
I58N 26 6 2 5 0 3 10 -3 10
I74N 20 10 4 9 0 3 7 -2 5
K34N 20 4 1 5 1 3 11 0 4
L31N 18 8 1 5 0 9 74 -1 1
S60N 16 8 3 7 0 2 18 0 3
L8N 16 11 2 5 1 5 19 -2 3
K63N 16 9 3 12 0 4 19 -2 6
W88N 16 7 2 11 1 3 11 -2 7
I65N 16 8 2 11 0 1 7 0 3
M68N 16 7 2 5 0 3 31 -1 8
Q49N 16 4 1 7 1 1 7 -1 7
N4K 15 5 2 5 0 1 4 3 11
I39N 14 7 1 5 0 4 16 -1 5
P53N 12 5 2 5 0 1 3 2 3
M37N 12 4 1 5 0 3 8 -2 4
I24N 12 4 2 8 1 1 1 0 0
102N 12 3 2 5 0 3 26 0 6
T92N 8 2 1 5 0 2 16 0 4
I96N 2 3 2 5 0 1 6 0 0
I5N 2 3 2 6 1 1 7 0 0
T47N 2 2 1 5 0 1 10 0 1
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tions out of fifty-eight produced only local perturbations, namely, structural
changes of residues in physical contact with the site of the mutation and
so located within the chemical reach of the mutated residue (Euclidian and
geodesic distances within 5 Å and 1, respectively). Forty-five mutations pro-
duced global changes, namely, changes beyond physical contact and chemical
reach of the mutated residue. Eighteen modified residues located at distances
above 10 Å. The maximum long range modification is 17 Å. The mecha-
nism of the long range modifications is chemically sound since the changes
are going from hotspots chemically linked to hotspots chemically linked in a
step-by-step manner as determined from the geodesic distances (Figure 2.1).
This cascade mechanism seems related to the secondary structure of the
mutated residue since out of eighteen residues belonging to α-helices, seven-
teen produce a cascade (long range changes) upon mutation (95%). Out of
twenty-six which belong to a β-structure, thirteen produce a cascade (50%)
while out of fourteen which belong to a loop, twelve produce a cascade (86%).
This relation would need to be verified and further explored on a dataset.
There are twelve mutations for which the changes did not go from hotspots
to hotspots but went from the mutated residue to its intramolecular contacts,
which subsequently modified their hotspots (Table 2.1, column Intra). It was
still a step-by-step mechanism, but through intramolecular and intermolecu-
lar links. Thus the results highlight paths of changes between amino acids of
the interface and amino acids outside it. Likewise, mutations of amino acids
outside the interface are capable of modifying the degrees of hotspots (work
in progress). This is consistent with the mechanisms of protein assembly
combining folding and association steps in a coordinated manner (for re-
view [34]). A step-by-step mechanism is described in other real networks as
Peer-to-Peer mechanisms (P2P) [44].

2.4.1 Specific examples

As selected examples, the mutations K69N, A64N, L31N and I39N are con-
sidered in detail because they allow covering the chemical and geometrical
properties of amino acids (small, medium and large side chain, hydrophobic,
charged and polar chemical nature). Their spheres of influence are shown in
the X-ray structures of the respective mutants (Figure 2.2). Large modifi-
cations are seen for the K69N and A64N mutants while fewer modifications
take place for the mutants I39N and L31N. The mutations K69N and A64N
are among the top disruptive ones with arankr values equal to 182 (first
rank) and 112 (fifth rank), respectively (Table 2.1). This highlights that the
extent of the structural changes cannot be inferred by the difference between
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Figure 2.1: Schematic of the cascade mechanism underlying the structural
changes associated with mutations. As the most disruptive mutation, K69N
is chosen to illustrate the paths of the structural changes going from the
site of mutation to elsewhere in the interface. The K69N mutation modified
the atomic interactions of twenty-two hotspots of the interface, covering a
distance of fifteen Ångströms. The paths of changes are schematically de-
scribed by arrows going from hotspots (nodes, black circles) chemically linked
to hotspots chemically linked. The chemical distances (5 Å) are illustrated
by dotted semi-circles. However, because the structure is a three dimensional
object, the Euclidian distance between the site of mutation and the residue
modified the furthest from it cannot be calculated from the schematic. The
geodesic distances are the number of chemical links crossed to go from one
hotspot to another. The structural changes of K69N cover three chemical
links.

the nature of the original and mutated residue, since lysine is bigger and has
more atoms than asparagine, while alanine is smaller and has fewer atoms.
This is further supported by the fact that the mutations of other lysine or
alanine such as K34N and A102N have different AAR values (Table 2.1). To
consolidate this point, the spheres of influence shown in Figure 2.7 are sorted
by amino acid type, and subsequently sorted by decreasing values of arankr.

Now if the mutation K69N is compared to the mutation L31N, the latter
has an arankr value ten times lower than 182. Yet, the residue L31 has degree
9 and weight 74, significantly higher than the degree and weight of the residue
K69: 2 and 29, respectively. Like the nature of the residue, the degree or the
weight does not condition the extent of the structural changes. This is further
evidenced by plotting the arankr values against the weight of the original



CHAPTER 2. PROTEIN STRUCTURAL ROBUSTNESS 33

residue before mutation for the fifty-eight mutations (Figure 2.2). The linear
correlation is weak (Figure 2.2, R2 = 0.27), indicating that mutation of an
amino acid with a high weight does not systematically lead to large structural
changes, and likewise mutation of an amino acid with a low weight does not
necessarily lead to few structural changes.

The arankr values are then plotted against the local weight changes
(localr, weight differences on the mutated residue after and before muta-
tion, Section 3.4.2), and again a rather weak linear correlation is observed
(Figure 2.2, R2 = 0.44). This indicates that global changes are not propor-
tional to local changes. Moreover, only some mutations have arankr values
which fall on the straight-line of slope two implying local changes (Figure 2.2,
red line). Most mutations have arankr values outside this line and so they
produce global changes and involve cascades. If there are only local changes,
that is, weight changes on the mutated residue and nowhere else, then the
global changes are twice the local changes because the global changes count
the weight changes on the mutated node and on its endpoint nodes. This
confirms that mutations produce changes at different scales as shown by the
spheres of influence (Figure 2.7). The absence of correlation between arankr
values and local weight before mutation, or the local weight changes, remains
true even if the networks are built with cutoffs 4 and 6 Å instead of 5 Å.
Thus, these properties are invariant within the experimental error of X-ray
structures (∼ 1Å). It is interesting to discuss the two AAR outliers, the mu-
tation R67N and the mutation K69N, because they have similar local and
global changes (Table 2.1). What is different, however, is their fraction of
local changes: R67N lost 24% of its interactions (24/101, ratio local weight
difference to weight before mutation), whereas K69N lost 77% (23/30). The
fraction of local changes does not correlate either with the global changes
measured by AAR (not shown).

2.5 Structural Robustness, Fragility and Adapta-
tion

To assess whether the structure of a protein is built to bear mutational
effects, we propose to consider the structural changes produced in the CtxB5

interface by the mutations and see if they are consistent with all known
mutational effects: robustness, innovation, adaptation/rescue and pathology.

The first key point is that the mutations yield structural impact at dif-
ferent scales (Table 2.1, Figure 2.2, Figure 2.7). This means there is no a
priori specific scale (e.g. 5 Å) at which structural changes can be detectable,
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Figure 2.2: Local degrees and global changes. (A) Spheres of influence. Only
two adjacent chains D and E of CtxB5 are represented in pale and dark grey
strands, respectively (PDB code 1EEI). The toxin interface is in ribbon. The
residues modified by mutations are space-filled and the mutated residues are
red. The left panel shows the location of the four mutated hotspots K69,
A64, L31 and I39 on the WT structure. The other panels on the right
are their respective spheres of influence, as shown on their respective X-ray
structures. (B) Weak correlation between the original weighted degree of
the mutated residue and the amount of structural changes after mutation
measured by AAR. Values of arankr are plotted against the weights of each
hotspot i before mutation, wwti . The dotted line is the linear correlation.
(C) Global vs. local changes. Arankr values are plotted against localr values
(Section 3.4.2, local weighted degree differences (|wmuti −wwti |). The dotted
line is the linear correlation and the red line is for y = 2x.
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and it is necessary to measure them locally as well as globally. This is in
good agreement with other studies showing both direct and indirect physical
interactions in co-evolving residues [28]. Local structural changes, namely,
modification within the chemical reach of the site of the mutation are con-
sistent with enzymatic innovation or adaptation that does not lead to a full
reorganization of the global structure. Global structural changes are con-
sistent with pathologies where a single mutation is enough to jeopardize a
structure and consequently a function. Of course, this does not imply that
enzymatic innovation and pathology occurs only via local and global changes,
respectively. This all depends on the scale at which the function is regulated
by the structure.

The scaling does not explain adaptation through epistasis, a rescue mech-
anism, or compensatory mutations (non-additive effects). Let us consider
the pre-requisite for such effects: a mutation at a site 1 with an effect 1
(Mutant 1) and a mutation at a site 2 with an effect 2 (Mutant 2). Non-
additive effects mean the consequences of the combination of mutations 1
and 2 are different from the consequences of mutation 2 (or of mutation 1)
individually. This implies that the structures of the mutant 1 (or of mutant
2) and of the wild-type are different, otherwise they would react similarly
upon the secondary mutation (Figure 2.3). In other words, a robust mu-
tation that leads to a rescue mechanism or a compensatory effect upon a
second site mutation necessarily has a structure distinct from WT. This
suggests that functional robustness is built on mutations with no structural
impact (neutral mutation) as well as on mutations producing distinct struc-
tural solutions functionally equivalent to WT (adaptive mutations). If true,
this means that among networks different from WT (i.e. arankr 6= 0), some
should be WT-alternative and other should be dissimilar. To investigate this
possibility, the four mutations K69N, A64N, L31N and I39N are considered
again. The structural changes due to these mutations are schematized by
networks before and after mutation on Figure 2.4. Let us first consider the
mutations K69N and A64N which both have significant structural changes,
namely, high arankr (Figure 2.4). The K69N mutation modifies the layout
of the WT network substantially, since it reduces the atomic interactions be-
tween the region of interface composed of residues 63 to 67 of one chain, and
residues 73 and 65 of the adjacent chain, and simultaneously increases the
atomic interactions between the residue 67 of one chain and the residues 27
to 37 on the adjacent chain. This is well-illustrated in the X-ray structures
(Figure 2.4). Moreover, the mutation also depletes the only two weak ties of
the WT network, namely the links (31, 50) and (63, 53) which connect two
regions of interface otherwise disconnected.
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Figure 2.3: Schematics of additive and non-additive mutational effects. A
WT network maintaining two segments together through four links of amino
acids is drawn. Two sites of mutations M1 and M2 are considered. Non
compensatory mutations (Upper schematic). If M1 implies no structural
and network reorganization, thenM2 has the same effect on the WT andM1

mutated network. Compensatory mutations (Lower schematic). Mutation
M2 produces structural defaults disconnecting four nodes (Left). Mutation
M1 reinforces the connectivity of WT (right). A compensatory mechanism
(non-additive effect) is set when mutation M2 happens after mutation M1.
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Figure 2.4: Structural robustness. (A) Networks of K69 and A64 residues,
before and after mutation. Networks of the sphere of influence with hotspots
nodes and links of hotspots as links. Zoom on a subset of interfacial residues
in the X-ray structures of K69 and N69 (ball-and-stick representation). The
numbers are the sequence positions of the residues. The residue 69 of chain
E and the residue 67 of chain D are shown in CPK and yellow, respectively.
The residues of the chain E are otherwise colored in green. The backbone
shows that both structures are in the same position. (B) Networks of the
spheres of influence of the residue I39 and L31, before and after mutation.
Legend as in (A).
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In contrast, the networks A64 and N64 have a similar layout (Figure 2.4).
In fact, the N64 network appears like a WT alternative network with more
amino acid links, but the same regions are connected. The K69N and
A64N mutations well-illustrate the distinction between structural changes
and alternative structural solutions. The mutations I39N and L31N have
low arankr (14 and 18, respectively), but a similar result can be observed
(Figure 2.4). Only the link (39, 8) is depleted in the I39N mutation, not
modifying the network significantly since there are other linked residues in
the vicinity of the link (39, 8) (Figure 2.4). In contrast, the L31N, even
though it also yields a single link depletion (31, 50), the mutated network
is not equivalent to WT because it lacks the only link that was connecting
the regions 50, 64–68, 88 and 96–98 through the intermolecular link (31,
50) (Figure 2.4). It is therefore important to acknowledge that structural
changes, large or small, yield alternative networks or not. Therefore, the
quality of structural changes must also somehow be incorporated in order
to anticipate the impact of a mutation. Because of the scaling issue and
the cascade mechanism, establishing the appropriate measure for alternative
networks to sort out robust (neutral and adaptive) and fragile mutations is
complex and beyond the scope of the present work.

The obvious difference between the A64N and I39N alternative networks
and the altered K69N and L31N networks is the redundancy of amino acid
and atomic links in the former. This is reminiscent of peer-to-peer net-
works, which are robust to perturbation because they have more links than
necessary—back up links—such that depletion or addition of links is tol-
erated by generating several alternative networks [8]. To see if alternative
structures and networks exist in proteins, we measured backup amino acid
links in the interface of CtxB5. Two amino acid links (i, j) and (i′, j′) be-
longing to the same secondary structural element, implies that residues i and
i′ are four amino acids apart along the sequence; as well as j and j′ residues,
and are considered to backup each other. This is because the integrity of the
secondary structure relies on at least the amino acid links which participate
to the hydrogen bonding. The maximum distance of four amino acids apart
along the sequence corresponds to a helix turn, so backup links are counted
within this range of distance along the backbone. Based on this definition of
backup, AAR calculates the number of backup links for each link of the WT
network (Section 3.4.2, function Backup). Out of 92 links of amino acids,
only the two weak ties have no backup. Eleven links have 1 to 3 backups,
fifty-two have 4 to 13 backups and twenty-seven have more than 14 back-
ups. A backup network of the WT toxin interface is shown in Figure 2.5,
with the number of backups of each link described by a color code. The net-
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Figure 5

Figure 2.5: Backup network of the WT interface. Structural robustness is
based on the presence of backup links that allow bearing of addition and
depletion of links without structural impact. The nodes of the backup net-
work represent the hotspots, and the size of nodes represents their degree.
The links represent pairs of hotspots and the colors of the links represent the
number of backup for each link within a range indicated by the color scale
on the right. The redder the link, the fewer backup interactions the pair of
amino acid has. The arrows indicate the positions of the two nodes with
weak ties (50, 31) and (53, 63). The letters on the network are the chains
on which the hotspots are located.

work shows a non-uniform distribution of the number of backup per hotspots
within the structure which may indicate fragile areas. This result supports
the possibility of having neutral structural changes through addition and/or
depletion of links producing alternative networks and structural robustness
(Figure 2.5). The backup of the residues K69, A64, L31 and I39 are 16, 41,
80 and 26, respectively. The mutations A64N and I39N which have a redun-
dant network, also have a higher backup than K69N. The mutation L31N
has the highest backup but the amino acid link (31, 50) has none. This
illustrates the complexity in assessing robustness due to the scaling problem
(robustness of a node, of a link or of a region/community). Nevertheless,
the results are encouraging to further explore the concept of backup as a
measure of robustness and fragility.

WT alternative networks lay the ground for non-additive mutational ef-
fects because different atomic interactions cope differently with secondary
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mutations. A mutation not tolerated in a WT network/structure might be
tolerated in a mutated WT alternative network. We tested this possibility
to further support a mechanism of robustness via alternative WT networks.
The cancer-related mutation G334V reported for the tetrameric domain of
the tumor suppressor p53, is used as a default mutation case [25]. The
goal is to find a second site mutation which alone produces neutral struc-
tural changes and a WT alternative network when coupled with the G334V
mutation prevents the structural damages associated with G334V, corrobo-
rating non-additive effects through alternative networks. The impact of the
G334V mutation on the protein conformation is such that X-ray crystal-
lography is inapplicable, and there is no fiber structure available yet. The
mutation G334V is generated in silico from the WT atomic structure (PDB
code 1SAK) using FoldX instead. The interface between chains D and B
was analyzed. The G334V mutation leads to a large amount of structural
changes, with an AAR value of 286. Moreover, there are side chain and
backbone atom rearrangements since the RMSD is 0.03 Å. The sphere of in-
fluence reveals long range changes up to residues at geodesic distances 5 and
Euclidian distance 15 Å from the residue 334 (Figure 2.6). The structural
changes go from the residue 334 up to the residue 324 on the N-terminal
end and up to the residue 352 on the C-terminal end (Figure 2.6). The
mutation does not change the degree of the residue 334, but it changes the
degree of its intramolecular amino acid neighbors, residues 333 and 337, in
a cascade mechanism (Figure 2.6). As a result, the residue 337 loses its
pairing with the residues 345, 349 and 352, and maintains its pairing only
with the residue 348, reducing the connectivity within the interface region
composed of the residues 345 to 352 and 337 to 341 (Figure 2.6). Moreover,
the residue 333 also loses pairing with the residue 345, removing a link be-
tween the interface region composed of residues 330–334 and 325–328, and
the interface region composed of the residues 337–341 and 345–352 (Fig-
ure 2.6). It is possible that the rigidity between these two regions loosen
up after depletion of the link 345–333. The residue N345 is at the cross-
road of the structural changes produced by the mutation G334V. We tested
whether a mutation at this position could reinforce the atomic interactions
of the network such that it becomes robust to the G334V mutation. Again
in silico mutations are performed using FoldX. The network of the single
mutant N345D is similar to the WT network, except for an increase of the
weights (number of atomic interactions) of the links (345, 333), (345, 341),
(337, 348), and (337, 349), and a decrease of the weight of the link (337, 345)
(Figure 2.6). The double mutant N345D+G334V has structural changes on
half as many residues as the mutant G334V, it maintains both links (345,
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333) and (345, 337), and its network looks like the WT network, apart from
an additional link between the residue 333 and 352 found as well in the single
mutant G334V (Figure 2.6). The small changes in the atomic interactions
produced by the N345D prevent the residue 337 from moving away after
the mutation of the residue 334 and prevent the loss of the link (333, 345).
This is a non-additive mutational effect, since the effects of the individual
mutations differ from the effects of combined mutations; the effects of the
G334V are lost when combined with the N345D mutation. This suggests
that a second site mutation producing a compensatory effect is to be found
among the residues modified by the first site mutation, namely, it is on the
sphere of influence of the first site mutation. This hypothesis is supported
by the observation that on average, in the interface of CtxB5, eight amino
acids are modified by mutation and on average, deleterious mutations can
be compensated by nine mutations [28,48].

2.6 Conclusions

The study investigates the mechanisms proteins use to resist structural changes
upon mutations, as a groundwork to understand functional robustness. As-
suming that all proteins bear mutations by similar mechanisms, a case of
study is a good model of investigation. The first challenge is to elaborate
a set of mutations producing structural perturbations still maintaining a vi-
able structure to look at. The solution proposed is to mutate in silico every
amino acid of the interface of the B subunit pentamer of the cholera toxin
and to monitor structural changes via a network model of the interface. A
network representation is interesting because it allows measuring local to
global changes and to investigate the capacity of proteins to cope with per-
turbation [74]. The relevance of network models in the study of structures for
protein dynamics is now well established [7, 9, 14, 18, 19, 32, 33]. The second
achievement is the AAR algorithm which quantifies all structural changes
between wild-type and mutant structures by simply counting the changes
in their number of atomic interactions. AAR is fast (less than one second
for a protein of 103 amino acids), thorough and applicable on the Cartesian
coordinates of any atomic structure.

One novel finding is that structural changes follow a cascade mechanism
where the local reorganization of the atoms at the site of the mutation dis-
turbs the chemical neighbors of the mutated residue which in turn disturb
their chemical neighbors, as in a domino effect. What triggers the cascade is
not yet identified but it is neither the degree nor the weight of the original
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Figure 2.6: Non-additive in silico mutations G334V and N345D in the p53
tetrameric domain. (A) p53 WT. Left panel: The chains B (light grey)
and D (dark grey) of the WT p53 are shown in backbone representation
(PDB code 1SAK) except for the residues of the sphere of influence of the
mutation G334V, space-filled. Right panel: As on left panel, but with a
strand representation except for the residues indicated in ball-and-sticks.
The cascade of changes is illustrated by arrows. (B) Spheres of influence
of networks belonging to WT, G334V, N345D, and G334+N345D. Legend
as in Figure 2.4. The mutated residues are in red. The open circles are
the residues whose degrees are modified by the mutation. Arrows illustrate
the path of structural changes going from the residue 334 to the residue 352.
The red lines are for added (continuous) and depleted (dotted) links of amino
acids. Black thick and thin lines are for increased and decreased weights,
respectively.
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residues, nor the fraction of local changes. This differs from networks where
perturbations propagate through hubs (highly connected nodes) [6]. Instead,
the changes propagate stepwise from hotspot to hotspot, from the site of the
mutation to its neighbors (local change) to the rest of the protein (global
change). This cascade mechanism results in major changes in interactions
stretching out to large distances, or to more subtle changes. As mentioned al-
ready, the former are consistent with pathological mutations, while the latter
accommodate adaptability and emergence of new functions through struc-
tural rearrangements which do not completely modify the protein conforma-
tion [42]. A cascade mechanism is also consistent with allostery, although
multiple perturbations—as found in binding—are not tested here [67]. The
cascade mechanism is more reliable than propagation of changes through
hubs in a network with a power law distribution (few hubs, many low de-
grees) because it tallies with experimental evidences on the functional impact
of mutations. In a hub-regulated network, the mutation of hubs would lead
to massive changes, and pathologies; the mutation of residues with low de-
gree would lead to local changes and explain robustness [29,39]. Yet, it would
be difficult to account for the emergence of new function through few subtle
changes as well as for adaptive mutations (non-additive mutation effects),
since there would be little or large changes. Moreover, proteins do not have
hubs in terms of having nodes with a significantly higher degree than other
nodes; they have nodes with average degree [74].

The second novelty is the mechanism of robustness through alternative
structures, rather than just unchanged structures. This fits the updated
definition of protein function: an ensemble of conformations [45]. This also
lays the ground for adaptability because it allows for non-additive effects,
error corrections or epistasis [12, 13]. The presence of backup links in the
WT network, which allows addition and depletion of links without altering
substantially the layout of the network, might be a clue for identifying what
triggers the cascade. Backup and alternative solutions are a current mech-
anism of robustness, reported for other real networks such as peer-to-peer
networks or other biological networks [47,77].

In summary, the extent of structural changes produced by mutations does
not depend on the degree of the mutated residue, and it does not condition
the impact of a mutation on the structure. The impact of mutation involves
more complex mechanisms which remain to be deciphered [38]. Altogether,
the mechanisms of structural changes observed through an in silico approach
are consistent with all known functional effects of mutations (robustness,
innovation, adaptation and pathology) supporting the approach as well as
the hypothesis that structural robustness is embedded in the structure of the
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protein.

2.7 Supplementary Information

The supplementary information contains: supplementary methods, supple-
mentary Figure 2.7 and the Amino Acid Rank pseudocode.

2.7.1 Supplementary methods

FoldX

The run parameters are as follows: The PDB file of CtxB5 (code 1EEI) and
only two chains (Chains D and E) are considered for generating the mutation.
Backbone and side chain atoms were allowed to move as well as neighboring
atoms upon mutation (parameter “moveNeighbours” is set to “True”). The
option “pdbHydrogens” was set to “False” so that hydrogen atoms were not
included in the PDB output, because the positions of hydrogen atoms are
not always calculated in a X-ray structure. Temperature was set to 298 K,
the pH to 7.0, the ionic strength to 0.05 M. The “crystalwaters” parameter
was set to “True”, so crystallographic water bridges were considered in the
PDB output if available in the crystal. Paramter “OutPBD” was set also
to “True” in order to generate a mutated PDB file. Finally, “Complex with
DNA” was set to “False”.

2.7.2 Amino Acid Rank (Pseudocode)

The function SpectralPro is used to obtained the hotspot network with node
set V and link set E. “SpectralPro” is used also to obtained the weighted
adjacency matrix W of the hotspot network (Listing 2.1). The function
“arankr” computes the structural changes induced by the single mutation at
sequence position r. The terms wt andmut are used to refer to the wild type
and mutated weighted adjacency matrices, respectively. For a given sequence
position r, it returns the values arankr and localr (Listing 2.2). Finally, the
function Backup calculates for each link of the hotspot network its number of
backup links. Finally, the function “Backup” obtains the number of backup
links given a hotspot network and one link (Listing 2.3).



CHAPTER 2. PROTEIN STRUCTURAL ROBUSTNESS 45

Figure 2.7: Spheres of influence as seen on the X-ray structures of the 58
mutants. Two adjacent chains of the CtxB5 are shown in strands, the inter-
face is shown in dark and light grey ribbons to distinguish both chains (PDB
code 1EEI). The hotspots modified by the mutation are shown in space-fill,
the mutated residue in red. The mutations are ordered per type of amino
acids and decreasing arankr values within each type.
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1 WRITE ’Input protein ’
2 C = 5
3 E = list()
4 V = list()
5 W = dict()
6 FOR chain in protein DO
7 FOR i in chain Do
8 For j in (chain\i) DO
9 a = set((a1, a2) for a1 in i and a2 in j)

10 b = set(x for x in a if dis(x[0],x[1])<C)
11 IF len(b) > 0 DO
12 Append (i,j) to E
13 Extend (i,j) to V
14 W[(i,j)] = len(b)
15 ELSE
16 W[(i,j)] = 0
17 END IF-ELSE
18 END FOR
19 END FOR
20 END FOR
21 RETURN V,E,W

Listing 2.1: Function SpectralPro.

1 WRITE ’Input MUT AND WT ’
2 WRITE ’Input position r’
3 N = size(MUT) = size(WT)
4 A = array((N, N))
5 FOR (i,j) in N x N DO
6 FOR i in chain Do
7 A[i][j] = MUT[i][j] - WT[i][j]
8 END FOR
9 arank_r = sum(abs(A))

10 local_r= sum(abs(A[r]))
11 RETURN arank_r , local_r

Listing 2.2: Function arankr.
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1 WRITE ’Input hotspot network H’
2 WRITE ’Input link (i,j)’
3 B = 0
4 E = edges(H)
5 V = nodes(H)
6 V_i = list(v for v in V if (chain(v)== chain(i)))
7 V_j = list(v for v in V if (chain(v)== chain(j)))
8 C_i = list(r for r in V_i if abs(r-i)<=4)
9 C_j = list(r for r in V_j if abs(r-j)<=4)

10 FOR (u, v) in E DO
11 IF u in C_i and v in C_j DO
12 B = B + 1
13 ELIF v in C_i and u in C_j DO
14 B = B + 1
15 END IF-ELSE
16 END FOR
17 RETURN B

Listing 2.3: Function Backup.
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Abstract

Proteins possess qualities of robustness and adaptability to perturbations
such as mutations, but occasionally fail to withstand them, resulting in loss
of function. Herein the structural impact of mutations is investigated inde-
pendently of the functional impact. Primarily, we aim at understanding the
mechanisms of structural robustness, pre-requisite for functional integrity.
The structural changes due to mutations propagate from the site of mutation
to residues much more distant than typical scales of chemical interactions,
following a cascade mechanism. This can trigger dramatic changes or subtle
ones, consistent with a loss of function and disease, or the emergence of new
functions. Robustness is enhanced by changes producing alternative struc-
tures, in good agreement with the view that proteins are dynamic objects
fulfilling their functions from a set of conformations. This result, robust
alternative structures, is also coherent with epistasis or rescue mutations,
or more generally with non-additive mutational effects and compensatory
mutations. To achieve this study, we have developed the first algorithm,
referred to as amino acid rank (aar), which follows the structural changes
associated with mutations from the site of the mutation to the entire pro-
tein structure and quantifies the changes so that mutations can be ranked
accordingly. assessing the paths of changes opens the possibility to assuming
secondary mutations for compensatory mechanisms.
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3.1 Introduction

Proteins appeared 3.8 billion years ago, illustrating the resiliency of amino
acid interactions through time and conditions [49]. This is also revealed by
protein half-lives which cover orders of magnitude, ranging from minutes to
days, even years (e.g. collagen), depending on function [69]. The outstanding
functional resiliency of proteins makes the understanding of their design
particularly worth investigating.

Such a resiliency relies on the output of perturbations such as mutations
or changes in the environment, on protein function. Upon perturbation, a
function can be reproduced (Functional robustness), lost (Functional failure)
or modified (Functional innovation). Thus a protein is robust and adaptable.
How can that be?

The function is encoded in a protein sequence, which is translated into
a functional structure. The functional robustness is based on the fact that
a sequence modification, namely a coding “error”, doesn’t imply a functional
error. Several sequences encode the same structures (e.g. porins) and the
function of a protein is resistant to the mutations of most of the protein amino
acids. So a sequence “error” does not mean a structural “error”. Moreover,
several structures fulfill the same function so a structural “error” (structural
modification) does not mean a functional “error” (e.g. Hemoglobin). Thus,
proteins maintain their function despite sequential and structural “errors”,
i.e. despite sequence and structural changes.

Functional innovation and adaptability rely on this mechanism of robust-
ness, which introduces differences without functional drawback, because the
differences lead the modified proteins to a distinct fate upon subsequent mu-
tations, than the unmodified counterpart, as seen for adaptive mutations.
The differences also protect proteins from functional failure by preventing
functional damages otherwise occurring on the unmodified version, as ob-
served on rescue mutations [13].

Yet, a sequential error such as a single mutation is sometimes enough to
destroy protein structure and function. So how to discriminate functionally
“bad” sequential errors from functionally tolerated ones? As a pre-requisite,
we first address the question of how to discriminate sequential errors that lead
to structural errors from sequential errors that reproduce identical structures.
In particular, we investigate what properties the structural design has to cope
with sequential errors. Several amino acids encode the structural information
so one possibility for structural reproducibility despite sequence errors lies in
the structural information redundancy. Evidence supports this, for instance,
alpha or beta secondary structures are encoded by different sequences, such
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that not every mutation leads to secondary structure changes. Along the
same line, we have measured backup interactions within protein structure [1].
A second possibility is that amino acid substitution is structurally tolerated
because different amino acids reproduce the same local structure. In other
words, there exist alternative amino acid solutions for the same structure.
Mutations modify amino acid interactions without necessarily impacting the
underling structure, supporting that hypothesis [1]. In fact, the impact of
mutations on amino acid interactions is a relevant framework to explain
structural robustness, failure and structural rescue/adaptability [74].

In the present work, we investigate this second possibility further and
determine to what extent amino acids can be swapped without impacting
protein structure. We identify a design rule that conveys high structural in-
tegrity. The atomic and amino acid interactions of 736,149 amino acids with
their spatial neighbors have been surveyed from a database of 750 protein
structures. The result shows that amino acids, regardless of type and posi-
tion in a structure, interact with their spatial neighbors through a similar
moderate average number of atomic interactions. We validate the hypothesis
that structural robustness to mutations relies on the reproducibility of such
moderate average number of atomic interaction at the site of the mutation
by the amino acid substituent. This condition is achieved by adjusting neigh-
bors to the residue and reciprocally, via amino acid alternative solutions or
compensatory mutations.

3.2 Results and Discussion

The idea is to determine the role of amino acids on structural reproducibility.
In order to understand the impact of individual amino acids on amino acid
interactions and protein structure, we propose to compare the capacity of
interactions of the twenty amino acids.

To do so, a database of 736,149 amino acids is built from the X-ray
structures of 750 oligomeric proteins, and the interaction capacity of amino
acids is assessed by measuring the number of amino acid neighbors and the
number of atomic interactions per amino acid pair and per residue. Protein
structures are modeled as a network of amino acids in interaction, and we
zoom in that global network onto the 3D-local structure constituted of every
single amino acid -i- of the protein and its -k- amino acid neighbors, -jk-
(Methods Section 3.4 Subsection 3.4.2) [1]. Thus, a local amino acid network
describes a 3D-local structure. The neighbors -jk- are the amino acids having
at least one atom within a 5 Å distance of at least one atom of -i-. Thus,
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the amino acid neighbors are the residues close in space to the residue -
i- and not only its neighbors along the sequence. The nodes of the local
networks are the amino acids -i- and -jk-, and the links are the atomic
interactions between them. The link between two amino acids is weighted
with the exact number of distances between their respective atoms, which
falls within 5 Å. Thus, the pairwise weight, referred to as wij , is the number
of atomic interactions between two amino acids. The weight of a residue
-i-, referred to as wi, is the total number of its atomic interactions, namely,
the sum of the wij over all -jk- neighbors. In summary, each residue -i- is
described by its number of amino acid neighbors, referred to as the degree
ki, its total number of atomic interactions, referred to as the weight wi, and
the pairwise atomic interactions (number of atomic interactions between two
amino acids), referred to as wij . The local networks that modeled the 3D-
local structures of amino acids in a protein structure at a given position, are
also referred to as the amino acids pairs (i, jk).

3.2.1 Amino acid diversity in terms of amino acid neighbors—
Degree statistics

The Figure 3.1 is a statistical percentile representation of the degree versus
amino acid type (Subsection 3.4.4). Briefly, for each amino acid type, the
degrees are ranked and divided in 100 equal parts and we look at the degree
adopted by 5, 50 or 95% of the amino acids as well as the highest (max)
and lowest (min) degrees. For example, 95% of Gly adopt degrees equal to
13 or lower while only 5% have degrees equal to 5 or lower. In fact, 90%
of the amino acids adopt intermediate degrees between 9 and 19 for the
biggest residues (Trp, Phe and Tyr) and between 5 and 17 for the others.
Thus, most amino acids are never fully covered with neighbors or depleted of
neighbors (Figure 3.1a). This raises the question of the relation between the
degree and the burying of residues and the simple assumption that high and
low degrees are buried and surface-exposed residues, respectively. We have
estimated the percentage of buried residues in the dataset by approximating
proteins as a torus, because they are oligomers and cannot be approximated
as a sphere like globular protein monomers. Various chain and oligomer
diameters are considered in the simulation (Subsection 3.4.5). The result
indicates that protein oligomers have at least 17% buried residues, and at
most 75%, depending on their respective sizes (Supplementary Figure 3.7).
Hence buried (>17%) does not imply maximum number of neighbors (0.3%
of max degree), and most buried residues have intermediate degrees. This
is confirmed by the box plot of the degrees of buried residues, monitored by
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the Accessible Surface Area (ASA) equals to zero, which shows that buried
residues cover a large range of degrees (Figure 3.1b).

Consequently, regardless the amino acid types and the position in the
structure, residues, even buried, tolerate empty space locally, namely on
their surface. There is no simple correlation between the degree of residues
and their ASA since every degree covers a range of ASA as illustrated for a
Val residue on Figure 3.1c. The same is true for the nineteen other amino acid
types (Data not shown). ASA variations for amino acids have been reported
previously [58]. Thus, the degree does not reflect the structural position of a
residue in terms of ASA, a global measure, but rather provides information
on the local void on the surface of the residue. Cavity and voids have been
previously described and given several biological roles in enzymatic activities
or protein flexibility [16, 36,53,54,59].

On the other hand, measuring ASA and degree, allow assessing the sur-
face distribution of amino acid neighbors (Figure 3.1c, box). For example,
two Val residues with a degree 12 and almost identical weights, 109 and 107,
respectively, have nevertheless two different ASA. For the ASA equals to
zero (buried residue), the twelve neighbors are distributed almost uniformly
on the surface of the residue while for the ASA equals to 72 (surface exposed
residue), the twelve neighbors are distributed on only half of the surface.
Thus, the two residues have different amino acid surface packing and local
void, the density of amino acid neighbors is lower for the buried residue than
the surface exposed. We are currently investigating such local void measures
and their role on structural changes upon mutation.

Regardless of geometrical and chemical properties, all amino acids have
degrees ranging from 5 to 17 (Figure 3.1a, solid box). This could mean that
amino acids could replace one another and still maintain the same number
of neighbors. The biggest residues, Phe, Tyr and Trp adopt degrees outside
of the solid box as well, and mutations in such sub-networks might impact
the 3D-local structures, decrease the degree and introduce more void locally.
More generally, amino acids with local networks having degrees below ten
or above fourteen, might be more susceptible to mutations because they can
be replaced by less amino acids (Figure 3.1a, dashed box). For instance,
replacement of Gly, Asp or Pro residues by Met, Phe, Tyr and Trp residues,
is likely to affect the 3D-local structure because generally the former adopt
lowest degrees and the latter the highest.
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Figure 3.1: (a) Statistical percentile representation of the degrees adopted
by the twenty amino acids. Min and max degrees correspond to the lowest
degree and the highest degree observed for a residue type in the dataset,
respectively. The percentage of amino acids adopting these degrees is not
indicated on the plot, it remains below 0.3% for all residues. The continuous
box represents the maximum overlap between the highest min and the lowest
max degrees of the twenty amino acids while the dashed box represents the
maximum overlap between the highest degree adopted by 5% of the residues
and the lowest degree adopted by 95% of the twenty amino acids. (b) Degree
for buried amino acids. (c) ASA versus degree for Val residue.
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3.2.2 Amino acid diversity in terms of number of atomic
interactions—Weight statistics

On Figure 3.2, the weights adopted by Gly, Glu and Trp residues are plotted
against the degrees, as examples of the smallest, an average size and the
biggest residue (Figure 3.2a, 3.2b & 3.2c, respectively). The min, average
and max weights of each degree are plotted. The same plots for the other
seventeen residues are shown in Supplementary Figures 3.8 to 3.13. The
Figures 3.2 and 3.8 to 3.13 show that each degree adopts a range of weights,
indicating that amino acids also have many alternative neighborhoods in
terms of number of atomic interactions. To illustrate the neighborhood vari-
ability, X-ray and local network representations of the 3D-local structures
of amino acids are depicted for a min, a mode (most frequent) and a max
degree (Figures 3.2 and 3.8 to 3.13). As for the degree, the average weights
are significantly lower than the maximum weights, and above the minimum
weight, confirming that amino acids tolerate local voids and adopt moderate
atomic packing.

To measure the sets of weights and degrees cover by the amino acids, the
envelope bordered by the min and max weights of each individual degree is
computed (Subsection 3.4.7). On Figure 3.2a, 3.2b and 3.2c, the envelopes
for Gly, Glu and Trp, are shown; Gly is reproduced on Figure 3.2b and 3.2c
for comparison.

To measure the overlap of weights and degrees between amino acids, the
highest weight among the twenty smallest and the lowest weight among the
twenty largest are taken (Figure 3.3a). The twenty amino acids cover more
degrees and weights than they share (Figure 3.3a, thick line area), yet the
intersecting envelope represents a significant overlap, and 58% of the total
sampling. The intersecting envelope describes the 3D-local structures having
local networks with degrees between 4 and 14, weights between 60 and 140,
which can potentially be reproduced by any amino acid.

The amino acids can be classified into four groups based on their en-
velopes (Figures 3.1 and 3.8 to 3.13). Gly, Ala and Cys have the smallest
envelopes. Pro, Val, Thr and Ser are just after, followed by Ile, Leu, Asp,
Met, Lys, Asn and Gln. His, Glu, Arg, Phe, Tyr and Trp have the largest
envelopes. The envelope classification does not coincide with a chemical or
a geometrical classification of the amino acids. The amino acids can also
be classified into four groups according to their most frequent degrees (Fig-
ures 3.1 and 3.8 to 3.13). Pro, Asp, Gln and Glu have the lowest mode
degree (kmode ∼ 8–9), followed by Gly, Ser, Thr and Asn (kmode ∼ 10–11).
Ala, Val, His, Arg and Cys have intermediates modes (kmode ∼ 12–13) while
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Figure 3.2: Amino acid capacity of interactions: Glycine (a), Valine (b) and
Tryptophan (c). Upper panels: Weight versus degree of the amino acids.
The continuous line shows the area covered by the set of degrees and weights
adopted by the amino acids. The dashed line is the Gly area. Middle panels.
Representations of the X-ray structures of Gly, Val and Trp residues for cases
of min (left), most frequent (middle) and max (right) degrees. The whole
protein is shown for the min degrees but only the 3D-local structures are
shown for the most frequent and max degrees. The residue -i- is indicated in
cyan and the neighbors -jk- in CPK. The amino acids -i- and -jk- are shown
in space-fill. The figure is generated with sPDB viewer. The PDB code,
the chain, the position of the residue along the sequence and its degree are
given. Lower panels. Network representations of the degree cases shown in
the middle panels. The residue -i- is indicated in cyan and the neighbors -jk-
in pink. The nodes (circles) are the residues and the links between amino
acid pairs (lines) are based on the two residues having at least one atom each
within a 5 Å distance.
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Figure 3.3: Neighborhood survey. (a) Overlap of degrees and weights. The
area between plus and minus signs describes the degrees and weights shared
by the twenty amino acids. The area described by the thick line is the
entire set of degrees and weights adopted by the twenty amino acids, for
comparison. The degrees and weights within the box are adopted by 48%
to 92% of the amino acids (Percentages for Trp and Gly, respectively). (b)
Supervision of the neighborhood. Average pairwise atomic interactions for
observed ‹wij›obs and theoretical ‹wij›th data. The average ‹wij›are plotted
against the atomic number of the amino acids, for observed (white circle)
and theoretical (black circle) data.
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Ile, Leu, Met, Phe, Tyr and Trp have the highest mode (kmode ∼ 14–16).
Again it does not correspond to the chemical or geometrical classification
of amino acids. Thus, the interaction capacities of the amino acids do not
mirror their individual chemical and geometrical features.

3.2.3 Average Pairwise Weights (‹wi,j›)

Is the redundant interaction capacities shared by the twenty amino acids an
indication that a mechanism corrects sequence errors, i.e. sequence changes,
such that the local structure may be conserved?

We have reported for the same dataset that the frequency of amino acid
pairs differs from the product of the frequencies of individual amino acids,
suggesting a supervised pairwise amino acid matching [19]. We have also
observed that the mutation of identical amino acid type led to different
structural impacts, suggesting a role of amino acid neighbors in maintain-
ing a local 3D structure [1]. A collective role of amino acids on structural
regulation has been evidenced by other computational studies [13, 50]. It is
possible that amino acid neighbors act as structural error correctors.

To test that possibility, the average number of pairwise atomic inter-
actions ‹wij›obs, ratio of wi and ki, is computed over the database. The
theoretical average number of atomic interactions, ‹wij›th, is also calculated
for comparison based on a model where the interactions between amino acids
are assumed to be independent of neighbors but pairwise dependent (ki=1)
and only limited by the number of atoms of each amino acid of the pairs,
is used to validate or not a neighborhood supervision (Subsection 3.4.3).
Both ‹wij›obs and ‹wij›th values are plotted against the atomic number of
the amino acids for comparison (Figure 3.3b). The ‹wij›th values appear
far above the ‹wij›obs values, ascertaining that the model where a residue
matching depend only on its own properties is wrong. On the contrary, the
results support the role of neighbors in controlling the local interactions of
residues, by matching residues and neighbors. Accordingly, the parameter
‹wij›obs is named the neighborhood watch (Nw) in the rest of the paper.

The Nw values show remarkably little variability across degrees (Fig-
ure 3.2a and Figures 3.8 to 3.13, Nw). Likewise, Nw values show little
variability over the twenty amino acids, Nw goes from 10 to 15, and is on av-
erage 13 with a standard deviation of 2. The moderate Nw values, regardless
the amino acid type or position, suggest that the structures of our dataset
are built on amino acid interactions that follow the Goldilocks principle: not
too many links, not too few. The Goldilocks principle, already described as
a natural selection process, is just the right level of complexity to have a
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robust and adaptable system as well as collective behaviors.
Thus, a protein structure is built such that any position can be fulfilled

by any amino acid, because positions on average do not involve an extremely
low or an extremely high number of atomic interactions, conditions, which
would have restricted the numbers of suitable amino acids. Thus, residues
and neighbors are not matched randomly but are matched to converge to a
moderate common Nw value at every position in a structure.

This led us to draw the following hypothesis: Structural robustness to
mutation would depend on the reproducibility of the Nw value at the site
of mutation by the amino acid substituent. The reproducibility could be
achieved with the same -jk- neighbors, which would be an alternative (i′, jk)
amino acid pair solution to the wild-type (i, jk) amino acid pair solution.
The prime indicates mutation. It could also be achieved with some muta-
tions of the neighbors either as alternative (i′, j′k) amino acid pair solutions
or as compensatory (i′, j′k) amino acid pair solutions if the substituent -i′-
introduced alone some structural default that would be corrected by mutat-
ing neighbors. This is consistent with rescue and adaptive mutations [3,13].
The neighbors would be correcting structural errors.

To test this hypothesis, we use two AB5 toxins, the cholera toxin B
pentamer (CtxB5, PDB ID: 1EEI) and the human heat labile enterotoxin
pentamer (hLTB5, PDB ID: 1LTR) which have superimposable atomic struc-
tures despite 17 positions out of 103 (per chain) with a different amino acid
type [26]. The two pentamers have different stabilities and the two toxins
follow different folding and assembly mechanisms to build the same final
structure [35, 56]. Thus, the seventeen positions with different amino acid
types are structurally and functionally robust to mutations but at least some
regulate the folding and assembly paths of the two toxins. The comparison
of the two toxins allows us to address the question of how amino acids reg-
ulate the structural response of the protein to mutations and the question
of how amino acids regulates the conformational changes associated with a
protein construction.

We have analyzed every position of the two toxins to determine if mutated
and conserved positions reproduce similar degree, weights and Nw (‹wij›obs
average number of pairwise atomic interaction per position), despite the
mutations and if so, whether that is achieved with the same neighbors, or
by mutating the neighbors, or both. In the latter case, we then investigated
compensatory mechanisms.

For the sake of simplicity, we consider CtxB5 as the reference and hLTB5

as a mutated version. Again, the prime is used to indicate a mutation that
is a position with a different amino acid type in hLTB5. A residue with
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“mutated” neighbors in hLTB5, has -j′k- neighbors whether it has one or
more than one “mutated” neighbors.

The degrees and weights of each amino acid of the two toxins are com-
puted from their respective local networks modeled out of the toxin X-ray
structures (CtxB5, PDB code: 1EEI; hLTB5, PDB code: 1LTR) [17, 41]
(Supplementary Table 3.2). We observe that 49% of the conserved positions
have degrees ki and weights wi shared by the twenty amino acids (Figure 3.3a,
intersecting envelope), suggesting that half of the conserved positions and
a fourth of all positions, could be mutated by any other type of residues
without much impact on the degree and weight of the 3D-local structures
(Table 3.2, *). Among the seventeen mutated positions, 41% have degrees
and weights within the intersecting area, such that mutated positions do
not seem to be more—or less—susceptible to mutations than conserved po-
sitions. Trp88 adopts the highest degree in the structure, with a weight 187
and 217, for CtxB5 and hLTB5, respectively. These weights are below the
weight only achievable by the Trp residues and therefore even Trp88 could
be mutated because some other amino acids are capable of reproducing sim-
ilar weight and degree. The highest weights are for positions Arg67 (ki=17,
wi=214) and Tyr76 (ki =18,wi=246) for CtxB5 and hLTB5, respectively,
and again such weights and degrees are potentially reproducible by several
other amino acid types. Thus, the toxins have no position with degrees and
weights that cannot be reproduced by some other amino acids, and as such
the toxins have no apparent positions structurally fragile to mutation.

On average over the mutated positions, the degrees vary with ∆ki equals
to 1.5 ± 1.4; the weights with ∆wi equals to 14 ± 13 (Table 3.2). The ∆ki
maximum is 4, for residues at positions 25, 75 and 80. The ∆wi maxima
are 39 and 40 for residues at positions 75 and 80, respectively. There are
also little differences between the two toxins Nw values over the mutated
(∆Nw = 1.2 ± 1.0) or conserved (∆Nw = 1.0 ± 1.1) residues, respectively.
The maximum ∆Nw is 4.3 (position 89) for conserved positions and 2.9 for
mutated positions (position 18). The Nw values varies by a factor of 1.4
across the twenty amino acids and by a factor of 1.3 between the two toxins
at any position, indicating that the two toxins do reproduce similar Nw
values at all positions despite the mutations.

This supports our hypothesis, that structural robustness to mutations is
related to the maintenance of similarNw values at mutated positions but also
at conserved positions that could have been impacted by mutated neighbors.

To check the hypothesis further, we compare the Nw values of the N-
terminal domains of CtxB5 and of the verotoxin-1 (PTXB5, PDB code
2XSC), another AB5 toxin, which has a different N-terminal 2D-structure
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(Supplementary Figure 3.14) [65]. Over the first ten amino acids, the max-
imum ∆Nw between CtxB5 and PTXB5 is 9 at position 4. PTXB5 has
two smaller amino acids than CtxB5 and hLTB5, at positions 4 and 7 such
that the atoms of the two residues are too far apart to have a pair (4, 7)
in PTXB5, in contrast to CtxB5 and hLTB5. Hydrogen bonding between
residues three to four residues apart is necessary to build α-helices, and the
loss of interactions between residues 4 and 7 might therefore explain why
the N-terminal of PTXB5 is unable to build one. Failure to reproduce a Nw
value reasonably close to the one observed in CtxB5 at position 4 associated
with a change of secondary structure in the N-terminal domain of PTXB5,
supports our hypothesis that the neighborhood watch regulates structural
robustness and consequently structural transitions. Nevertheless, investigat-
ing structural transitions using the Nw parameter is beyond the scope of the
present work.

The next step, is to determine how the Nw values are reproduced despite
the mutation. We investigate whether the Nw values at mutated positions,
are reproduced with the same neighbors in both toxins or with mutated
neighbors, or both.

To compare the two toxin neighbors, we use a Jaccard measure, which
computes for each position, the ratio of the number of identical neighbors
to the total number of common and different neighbors (Subsection 3.4.8).
The toxin amino acid sequence is plotted against the Jaccard measure (Fig-
ure 3.4). A Jaccard measure of 100% or slightly lower (> 90%) is for residues
with identical neighbors or identical neighbors but with different atomic
proximity, respectively. Jaccard measures below 90% are residues with one
or more mutated neighbors and environments significantly different. Over
the 102 residues, 91 have mutated neighbors (Figure 3.4, squares) and only
11 have identical neighbors (Figure 3.4, circles). Among the conserved po-
sitions, 77 have mutated neighbors (Figure 3.4, white squares) and 8 have
identical neighbors (Figure 3.4, white circles). Among the mutated positions,
14 have mutated neighbors (Figure 3.4, black squares) and 3 have identical
neighbors (Figure 3.4, black circles). Thus most positions accommodate al-
ternative -j′k- neighbors as a result of the 17 mutated residues -i′-.

The three mutated positions (31, 38 and 44) which reproduce Nw with
identical -jk- neighbors can be assumed as amino acid alternative (i′, jk) pair
solutions to the (i, jk) pairs observed in CtxB5 and reproduce Nw with al-
ternative -j′k- neighbors (Table 3.1). On the other hand, fourteen mutated
positions reproduce Nw with alternative -j′k- neighbors (Table 3.1). We won-
der whether such multiple pair mutations reflect a compensatory mechanism
necessary to reproduce the Nw values at the positions. In other words, are
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Figure 3.4: Jaccard measure. The composition and proximity of the amino
acid neighbors of every residue of CtxB5 and hLTB5 are compared with a
Jaccard measure (Subsection 3.4.8). The amino acid position in the sequence
is plotted against the Jaccard measure, expressed in percentage. The black
symbols indicate positions with two different residues in both the toxins
and the white symbols indicate positions with identical residues. Circles
are positions with identical neighbors in both the toxins and squares are
positions with at least one different neighbor.
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the mutations -i′- introducing structural local defaults (a significant change
in Nw) that are compensated/corrected by the mutations of some -j′k- neigh-
bors? Or are the (i′, j′k) pairs just amino acid alternative to the pairs (i, jk)?

3.2.4 Pairwise network compensation

First, we investigate whether the mutations introduce geometrical and/or
chemical perturbation that could have significantly modified Nw, without
additional neighbor mutations. The geometrical and chemical properties of
(i, jk) and (i′, j′k) pairs in CtxB5 and hLTB5, respectively, are compared
to test this possibility (Table 3.1). The volumes of the pairs account for
the geometrical properties while the chemistry of the pairs accounts for the
chemical properties. Out of the 14 pairs of mutated residues, only two are
geometrically and chemically equivalent in both toxins, indicating that no
geometrical or chemical pairwise compensatory mechanism is necessary for
structural robustness. Even, structural robustness appear largely tolerant to
chemical changes as illustrated by the introduction of two histidines at posi-
tions 18 and 94 in CtxB5. The chemical perturbation at positions 18 and 94
is consistent with the experimental observation that CtxB5 assembly is in-
hibited at pH 6.0, a pH close to the histidine pKa whereas hLTB5 assembly is
inhibited at pH 7.0, a pH close to a N-terminal pKa [56,80]. It is reasonable
to assume that at low pH, His 18 and His 94 are protonated and that elec-
trostatic repulsion prevents the two residues from interacting. In hLTB5,
there are a Tyr and an Asn at positions 18 and 94, respectively, residues
with no susceptibility at low pH. Thus, the chemical perturbation would be
structurally robust and would rather impact the folding and assembly paths.

Second, we investigate if the modifications of some pairwise atomic inter-
actions (-wij-) introduced by the mutations -i′- and altering the Nw could be
compensated by additional pairwise atomic interactions through the muta-
tions of neighbors. To test that possibility, the pairwise weights -wij-, -wi′j-
and -wi′j′- of the fourteen mutated positions having mutated neighbors are
computed and compared between the two toxins (Supplementary Table 3.3).
For the positions 10, 18, 20 and 82 (Figure 3.5, *), the Nw is reproduced
because there are little differences in the two toxin pairwise atomic interac-
tions (∆wij <6), and the multiple pair mutations are considered amino acid
alternative (i′, j′k) solution.

The Nw is an average value, that is the sum of every pairwise atomic
interactions at the position divided by the degree of the position. Thus,
differences in atomic pairwise interactions introduced by a mutation -i′- can
be compensated by differences in the atomic pairwise interactions of other
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Figure 3.5: Graph representation of mutated networks. The networks are
composed only of mutated positions and their neighbors. The circles are
the nodes with the residue position indicated in it, the lines are the links
between two amino acids measured by the atomic interactions. The thick-
ness of the line correlates with the -wij- values. Circles of different colors
indicate residues from different chains. The blue lines are intramolecular
amino acid pairs, whereas the red lines are intermolecular pairs. Stars in-
dicate positions with alternative pair solutions, thunder are positions with
weight-compensatory mechanism, positions marked with a minus (‘-’) have a
degree-compensatory mechanism. The positions not compensated but with
-wij- variability not sufficient to jeopardize the structure are indicated by a
plus symbol (‘+’).
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pairs through -j′k- mutations. Alternatively the differences in atomic pair-
wise interactions introduced by the mutation -i′- can be compensated by
modifying the degree at the position. Accordingly, the positions 1, 7, 25
and 102 (Figure 3.5, thunder) are found to have pairwise atomic interaction
modifications that compensate each other over all the pairs such that the Nw
value is reproduced (weight-compensatory mechanism). This is illustrated
on the graph representation of the networks of mutated positions -i′- and
their neighbors (Subsection 3.4.9). The positions are indicated by circles
with their residue number in them, and the atomic pairwise links by lines,
whose thickness correlate with the number of atomic interactions. Altogether
these positions in CtxB5 have less atomic interactions in intermolecular pairs
(pairs of residues that belongs to two different chains) (Figure 3.5, red color
lines, positions 1, 25 and 102) or in pairs involving residues at the interface
(Figure 3.5, position 7, pairs 1.7 and 7, 2).

The positions 75, 80 and 95 (Figure 3.5, –) have significantly less atomic
interactions per pair in CtxB5, compensated on average by a lower degree of
the position (Table 3.3 and Figure 3.5).

Consequently, the positions might be less stable in CtxB5. The posi-
tions 4, 83 and 94 are neither weight-compensated or degree-compensated,
and have significantly more atomic interactions per pair in CtxB5 as such
they might be more stable in this toxin (Figure 3.5, +). Nevertheless the
differences in the two toxins -wij- are not sufficient to modify the structure.

The pairwise network analysis highlights that CtxB5 has less intermolec-
ular interactions at the interface involving the N-terminal of the toxin, sug-
gesting a lower stability of that pentameric interface. To check this hypothe-
sis, CtxB5 was treated at pH 8.4 to deprotonate the N-terminus of the toxin,
and perturb it, and the pentamer stability was measured by SDS-PAGE
analysis. Only at pH 8.4, CtxB5 pentamer becomes SDS-sensitive in con-
trast to CtxB5 at pH 7.4, which resists SDS-treatment (Figure 3.6a, lanes 2
and 4, respectively). At pH 8.4 as at pH 7.4, CtxB5 is a pentamer as can be
seen by the toxin cross-linking prior SDS-PAGE analysis (Figure 3.6a, lines
3). hLTB5 is SDS-resistant up to pH 1031.

The pairwise network analysis also suggests a weaker CtxB5 main inter-
face, involving the interface residues 25 and 102 as well as weaker intramolec-
ular positions 75, 80 and 95. The pair 75 and 80 constitutes a hinge that
positions the beta strand 80 to 89 to the helix 75 to 70 and to the beta strand
25 to 18 through the amino acid pairs (25, 76), (24, 75), (22, 80), (23, 80)
and (24, 80) (Figure 3.6b). A weaker interaction between residues 75 and
80, would make these 2D structure elements more mobile and consequently
make their 3D-folding more difficult. In turn, the alignment of the main in-
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Figure 3.6: Mutations impact on stability and assembly mechanisms but not
on structures. (a) Mutations impair CtxB5 stability. SDS-PAGE analysis
(Subsection 3.4.10). Treatment of CtxB5 at pH 8.4, compared to pH 7.4,
weaken the pentamer which becomes SDS-sensitive (lanes 2 and 4, respec-
tively). The pH 8.4 does not however dissociate the pentamer, still observed
on the gel if cross-linked before SDS treatment (lanes 3 and 5, respectively).
CL and NCL stand for cross-linked and non cross-linked, respectively. L
and N are low molecular weight marker and native CtxB5, respectively. (b)
Weak network pairs on CtxB5 structure. A part of the CtxB5 monomer is
shown (PDB 1EEI). The residues 18 to 25, 75 to 94 of chain D are shown
in blue ribbons and the residues 94 to 103 of chain E are shown in yellow
ribbons. The residues 18, 94, 24, 25, 75, 76, 80 and 102 shown in sticks. (c)
Mutations impair CtxB5 assembly measured by fluorescence spectroscopy.
Trp-fluorescence intensity signals are measured against time, after CtxB5

dissociation at pH 1.0, return to pH 5.0 and addition of GM1-DPPC lipo-
somes (white circle) or DPPC alone (black triangle). (d) Mutations impair
CtxB5 assembly measured by SDS-PAGE and cross-linking. As in c. with
samples of CtxB5 cross-linked immediately after returning to pH 5.0 (D), just
after addition of GM1 (0’), ten (10’) and thirty minutes (30’) later. Same
condition ten minutes after addition of DPPC alone (DPPC). Native (N) and
cross-linked pentamers (NCL) are also shown on the gel. On the left is the
molecular weight marker with the apparent molecular weights indicated. D,
T, P and CLP stand for CtxB5 dimers, trimers, pentamers and cross-linked
pentamers. All samples at pH 5.0 are cross-linked prior SDS-Page analysis.



CHAPTER 3. PROTEIN STRUCTURE PLASTICITY 67

Table 3.1: Mutated pair features

Pair position i, j i′, j′ Vi Vi′ Vj Vj′ |∆Vi| χa wij , wi′j′ Structure

1, 7 > 5Å Ala, Glu - - 92 - 155 - - 0, 2 Secondary
4, 7 Asn, Asp Ser, Glu 135 > 99 125 < 155 6 1 11, 25 Secondary
7, 10 Asp, Ala Glu, Ser 125 < 155 92 < 99 37 0 11, 14 Secondary
18, 94 His, His Tyr, Asn 167 < 203 167 > 135 4 0 6, 5 Tertiary
18, 20 His, Leu Tyr, Ile 167 < 203 168 ∼ 169 37 0 15, 20 Secondary
18, 83 His, Glu Tyr, Asp 167 < 203 155 > 125 6 0 3, 3 Tertiary
20, 83 Leu, Glu Ile, Asp 168 ∼ 169 155 > 125 29 1 11, 12 Tertiary
83, 82 Glu, Val Asp, Ile 155 > 125 142 < 169 3 1 26, 26 Primary
83,102 Glu, Ala Asp, Glu 155 > 125 92 < 155 33 0 8, 11 Tertiary
20, 82 Leu, Val Ile, Ile 168 ∼ 169 142 < 169 28 1 11, 15 Tertiary
82, 80 Val, Ala Ile, Thr 142 < 169 92 < 122 57 0 6, 5 Secondary
80,75 Ala, Ala Thr, Thr 92 < 122 92 < 122 60 0 15, 24 Tertiary
95, 94 Ala, His Ser, Asn 92 < 99 167 > 135 25 0 22, 24 Primary
102, 25 Ala, Phe Glu, Leu 92 < 155 203 > 168 28 0 9, 12 Quaternary

aχ stands for chemical properties, 1 identical 0 different.

terface strands (25–31 and 96–102) would also be more difficult, even more so
because of a weaker intermolecular interaction between residues 25 and 102.
This suggests that CtxB5 assembly is slower than hLTB5 assembly because
the 3D-folding of the beta strands 25 to 18 and 80 to 89 is more difficult. To
test this hypothesis experimentally, we use two experimental results. First,
the 3D-folding of the beta strands 80 to 89 and the beta strand 25 to 18
involves the pair (18, 94) which are two histidines in CtxB5 (Figure 3.6b).
As mentioned CtxB5 assembly is inhibited at pH 5.0 certainly by the pro-
tonation of these two histidines. Second, GM1, the toxin cellular receptor
binds to the toxin residues Trp88, Lys91, Tyr 12 and Asn14, cross-linking
upon binding similar areas than the interaction between residues 18 and 94
and residues 22 and 80. If the amino acid pairing (His18, His94) is necessary
for the interface formation but not for the 3D folding of the strand 80 to 94
and the strand 18 to 25, then addition of the GM1 in the reassembly solution
at pH 5.0 would have no impact on the toxin assembly.

But on the contrary, despite pH 5.0, CtxB5 reassembly resumes after
addition of the GM1, but not after addition of liposomes containing no GM1
(Subsection 3.4.10). After addition of GM1, there is an increase of the Trp-
fluorescence signal indicating reassembly (Figure 3.6c), confirmed by the
presence of bands at the apparent molecular weights of CtxB5 trimer and
pentamer on a SDS-PAGE (Figure 3.6d). The result supports the hypothesis
that CtxB5 assembly is inhibited by the folding of the toxin monomer into
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an assembly-competent state, as proposed from the network analysis.
The combination of theoretical and experimental investigations highlight

an incredible collective behavior of the amino acid and their neighbors to
regulate the role of a position in protein folding and in response to mutations.

3.3 Conclusion

Three network parameters monitored from the amino acid spatial position,
the degree, the weight and the neighborhood watch, appear relevant to assess
the structural robustness of a protein to mutation.

The pairwise geometrical, chemical and atomic interaction properties of a
position appears a new reasonable tool to investigate the folding mechanisms
of a protein.

Finally, the structural susceptibility of a protein to mutation (structural
robustness, fragility and rescue) is based not on the individual properties of
the amino acids but on the properties of the amino acids and their neighbors.

3.4 Methods

3.4.1 Database

A database of 736,149 amino acids is built from the atomic structures of
750 protein oligomers. All the amino acids within one type have an iden-
tical number of atoms, and therefore the same interaction capacity. All
atoms are considered except for hydrogens, which are not detected by X-
ray crystallography. Degrees observed in less than three proteins are not
considered. The database is accessible online at the https://github.com/
rodogi/biographs.

3.4.2 Amino Acid Network

For a given protein, we compute the Amino Acid Network (AAN) where
the nodes are amino acids of the protein and links connect pairs of amino
acids at distance less than 5 Å(Section ). More precisely, a link between
two amino acids at position -i- and -j- exists, if at least one atom of the
amino acid -i- is at distance less than 5 Å from an atom of the amino acid
-j-. For an amino acid at position -i-, its set of neighbors is noted -jk- and
is comprised of all the all amino acids with at least one atom at distance
less than 5 Åfrom atoms of the amino acid -i-. The neighbors also refer to
as the environment. Given an amino acid -i-, the environment of -i- is a

https://github.com/rodogi/biographs
https://github.com/rodogi/biographs
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sub-network of AAN containing the node -i- with all its connections to -jk-.
A sub-network describes a 3D-local structure composed of any amino acid
and its neighbors in the AAN.

We have constructed a database of the amino acid environments from
a dataset of 750 proteins for statistical analysis of all environments (list in
https://github.com/rodogi/biographs).

The number of links in the sub-network of an amino acid at position -i-
is the degree of -i-, i.e. the degree ki of -i- is the number of amino acids
-jk- in the environment of -i-. The weight, wij , of a link between two amino
acids -i- and -j-, refers to the pairwise atomic interaction: it is the number
of pairs of atoms, one in the amino acid -i- and the other in the amino acid
-j-, that constitutes the link. The weight wi of a residue -i-, is the sum of
all pairwise links incident to amino acid -i-.

The degrees and weights probably overestimate the number of amino acid
neighbors and the atomic packing of amino acids because the radius of van
der walls of atoms is ignored. Yet, because amino acids are composed of
the same atoms, carbon, hydrogen (not included here), oxygen, nitrogen and
sulfur (Met and Cys), and because in the dataset the residues have identical
number of atoms within each amino acid type, the range of degrees and
weights within one type and their comparison over the twenty amino acids
is reasonable with such approximation.

3.4.3 Pairwise theoretical average number of atomic interac-
tions

The theoretical average weight, referred to as ‹wij›th, is calculated only for
a degree k = 1. For each type of amino acid, ‹wij›th is calculated in two
steps:

1. ‹wij›=
n(n+1)/2

n = n+1
2 with -n- equals to the product of the number of

atoms of each amino acid of the amino acid pair (i, j). The hydrogen
atoms are excluded.

2. The ‹w›th is the average ‹wij› over the twenty possible pairs adopted
by each amino.

3.4.4 Degree statistics

For each of the 20 amino acid types, we compute the sequence of degrees
of their respective environments. The sequence is ordered from the small-
est degree to the largest degree, “min” is the minimal value in the ordered

https://github.com/rodogi/biographs
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sequence and “max”, the maximal. The median is the value in the middle
of the ordered sequence (Figure 3.1, white square). In order to define the
percentile, the ordered sequence is divided into one hundred equal parts.

The k-th percentile (k% value in Figure 3.1) is the value at the separation
between the k-th and the (k + 1)-th parts. The 5th percentile (Figure 3.1,
black circle) is the value at the separation between the 5-th and the 6-th
parts. The median is thus the 50-th percentile. In the preceding definition
according to the splitting in a hundred equal parts, if the separation of the
k-th and the (k + 1)-th parts is not between one but two values, then the
k-th percentile is the average of these two values.

3.4.5 Torus

In order to compare the number of amino acids on the surface of a protein
and the number of amino acids inside the protein (called buried amino acids),
we made a theoretical model. As proteins in the dataset are polymers their
topology is a torus (a donut-shaped object). In order to define a torus, we
need two quantities: the whole diameter 2R of the donut (from the two most
opposite outside points) and the diameter 2r of the “tube” of the donut (from
an outside point to its closest opposite point inside point on the tube). The
area (that is the contact surface of the donut) is calculated with the usual
formula for a torus, namely 4π2Rr×0.9 where 0.9 is the density of spherical
packing on the plane, because as a first approximation an amino acid is a
sphere on the surface. The volume is computed with the usual volume of
a torus namely 2π2Rr2 × 0.74 where 0.74 is the spherical packing in space.
With this computation the ratio of the number of amino acids of the protein
and the number of amino acids on the surface of the protein is between 0.2
and 2 when r varies from 3 to 8 Å. This means that the donut-shaped model
gives a large possibility of ranges: from a number of amino acids twice as
large as at the surface to a number of amino acids 5 times bigger on the
inside of the protein.

3.4.6 Accessibility Surface Area (ASA)

The Accessibility Surface Area was calculated using the server http://cib.
cf.ocha.ac.jp/bitool/ASA/, which calculates the ASA of a protein given
its PDB file. The calculation is done based on the algorithm of Shrake and
Rupley [64].

http://cib.cf.ocha.ac.jp/bitool/ASA/
http://cib.cf.ocha.ac.jp/bitool/ASA/
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3.4.7 Degree and weight Envelopes

Each amino acid is investigated in terms of degree and weight in order to
assess the overlap between the twenty amino acids. First, we compute an
array of all degrees and weights to obtain, for a given amino acid and a given
degree, and we give, the minimal and maximal value of weights. Finally, for
each type of amino acid, we consider the surface in the plot between the
minimal and maximal weights. Second, for each pair of amino acids, we
consider the intersection of their two surfaces obtained with their respective
minimal and maximal weights. This intersection gives the range of possible
weights that are common to both amino acids.

3.4.8 Jaccard measure

We made an algorithm to compare the environment of the two toxins. We
start with a vector of 20 counters associated with the 20 amino acid types,
and we initialize each counter with a value equals to 0. Given an amino acid
-i-, the vector gives the number of occurrences of each amino acid type in
the environment of -i-, e.g. if Val is three times in the environment of -i-,
then the entry corresponding to Val in the vector is equaled to 3.

In order to compare the two environments, we calculate a Jaccard sim-
ilarity measure on the pair of vectors. The Jaccard similarity is computed
using the environment vectors as follows: The intersection of each entry of
the vector, that is the number of occurrences in common in the two proteins
for each amino acid type, e.g. if there are five Val in the environment of
amino acid -i- in protein 1 and three in protein 2, then the intersection of
the entry Val in the vectors is equal to three. There is one intersection value
per amino acid type and the sum of the twenty intersection values is noted
inter(-i-). Likewise, we compute the union of each entry in the two vectors
and the sum of the union is noted union(-i-). The Jaccard measure for amino
acid -i- is the ratio inter(-i-) to union (-i-). Note that the Jaccard measure
is a value in the interval [0, 1] because inter(-i-) < equal union (-i-).

If Jaccard(-i-) equals to 0, this means that inter(-i-) equals to 0 and the
environments of -i- of the two proteins are either composed of 0 or do not
share an amino acid type in common. If on the other hand, Jaccard(-i-)
equals to 1, then the two environments are identical. The X-ray structure
of hLTB5 (1LTR) contains a longer C-terminus than the hLTB5 used for
experimental studies. The extra amino acids modify the residue 103 degree
and weight, and the Jaccard measure compared to the residue 103 in CtxB5,
but the two toxins have identical C-terminal ends in the experimental studies.



CHAPTER 3. PROTEIN STRUCTURE PLASTICITY 72

Because of this difference, the amino acid at position 103 is ignored in the
theoretical analysis.

3.4.9 Mutated networks

The amino acids having a different composition in both toxins constitutes
a sub-network refers to as a mutated network. It is represented as a graph
where the nodes are mutated positions and their neighbors and the links
are the atomic pairwise interactions -wij-. Python is used to represent the
graphs with a color per chain and a link thickness correlating with the -wij-.

3.4.10 Experimental methods

Reagents and buffers—Cholera toxin B pentamer (CtxB5) and all other
chemicals were obtained from Sigma. GM1 and DPPC were bought from
Avanti. McIlvaine buffer (0.2M disodium hydrogen phosphate, 0.1 M citric
acid, pH 5.0–8.0), PBS and 0.1 M KCl/HCl at pH 1.0 were used. All buffers
were filtered through sterile 0.22 µm filter before use.

SDS-PAGE analysis—SDS-PAGE (15%were performed with a Bio-Rad
mini-Protean 3 system using the Laemmli method [31]. The gels were silver
stained. 1 mg of sample was loaded on each lane of the gel.

CtxB5 pH-pentamer stability. Briefly, lyophilized native CtxB5 was dis-
solved in PBS at a concentration of 344 µM and was diluted in micropore
water at pH 8.4 at a final concentration of 8.6 µM. The pentamer stability
was measured by SDS-PAGE combined with cross-linking analysis.

Reassembly of CtxB5—The conditions used for reassembly were adapted
from elsewhere [35]. Briefly, native CtxB5 was acidified in 0.1 M HCl/KCl
at pH 1.0 for 15 min at a final toxin concentration of 86 µM. The toxin
was subsequently diluted to a final concentration of 8.6 µM in McIlVaine
buffer at pH 5.0. The sample was incubated for 30 min at 23◦C before
addition of GM1-DPPC (10% w/v GM1) liposome or of DPPC (Dipalmytoil
phosphatidyle choline) liposome. Liposomes were prepared by reverse phase
separation and used at a final concentration of 10 mM [73]. The samples
were analyzed by SDS-PAGE combined with cross-linking after 30 min at
pH 5.0 and at different times after addition of the GM1-DPPC liposome.
In addition the Trp-fluorescence intensity of the samples was measured just
after addition of the liposomes.

Chemical cross-linking and SDS-PAGE analysis of the oligomeric state of
CtxB5—The cross-linking conditions were adapted from elsewhere [35]. The
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cross-linking of CtxB5 samples allows detecting CtxB5 assembly intermedi-
ates (dimer, trimer, tetramer and non SDS-stable pentamer).

Trp-fluorescence—The Trp-fluorescence method was adapted from else-
where [35]. Fluorescence measurements were performed using a Cary eclipse
Varian spectrofluorimeter. Excitation was at 295 nm, with emission recorded
at 349 nm and slit widths of 2.5 and 10 nm for excitation and emission, re-
spectively.

3.5 Supplementary material

3.5.1 Supplementary Tables

pi 1EEI 1LTR k1EEI
i k1LTR

i ki w1EEI
i w1LTR

i wi ‹wij›1EEI
obs ‹wij›1LTR

obs ‹wij›2XSC
obs

1* T A 7 7 0 81 68 13 12.0 10.0 12.0
2* P P 10 10 0 118 123 5 12.0 12.0 14.0
3* Q Q 9 9 0 108 95 13 12.0 11.0 12.0
4* N S 7 7 0 131 115 16 19.0 16.0 10.0
5 I I 17 14 3 151 151 0 9.0 11.0 10.0
6* T T 8 8 0 120 116 4 15.0 15.0 11.0
7* D E 9 9 0 128 125 3 14.0 14.0 11.0
8 L L 16 15 1 147 144 3 9.0 10.0 8.0
9* C C 12 12 0 135 141 6 11.0 12.0 9.0
10* A S 8 7 1 84 88 4 11.0 13.0 12.0
11* E E 8 8 0 141 126 15 NaN NaN NaN
12 Y Y 12 12 0 168 175 7
13* H H 5 5 0 77 80 3
14* N N 8 8 0 120 119 1
15 T T 11 12 1 153 151 2
16 Q Q 11 10 1 151 138 13
17* I I 10 10 0 124 133 9
18 H Y 10 11 1 154 162 8
19* T T 6 6 0 99 93 6
20 L I 12 10 2 145 152 7
21* N N 7 7 0 123 102 21
22 D D 9 9 0 142 148 6
23* K K 10 10 0 129 139 10
24 I I 14 15 1 140 139 1
25 F L 11 15 4 163 165 2
26 S S 10 10 0 145 140 5
27 Y Y 17 17 0 209 220 11
28 T T 11 12 1 157 161 4
29 E E 15 16 1 170 179 9
30* S S 12 12 0 137 137 0
31 L M 15 16 1 144 145 1
32* A A 11 11 0 134 129 5
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pi 1EEI 1LTR k1EEI
i k1LTR

i ki w1EEI
i w1LTR

i wi ‹wij›1EEI
obs ‹wij›1LTR

obs ‹wij›2XSC
obs

33* G G 8 9 1 90 90 0
34* K K 8 8 0 91 92 1
35 R R 13 13 0 183 182 1
36 E E 17 17 0 186 191 5
37 M M 15 15 0 137 156 19
38 A V 11 13 2 110 144 34
39 I I 16 15 1 149 160 11
40 I I 14 16 2 155 154 1
41 T T 9 10 1 151 156 5
42 F F 14 14 0 212 213 1
43* K K 6 9 3 83 99 16
44* N S 5 4 1 95 79 16
45* G G 5 5 0 64 64 0
46* A A 8 7 1 112 106 6
47* T T 10 10 0 127 129 2
48 F F 15 15 0 205 208 3
49 Q Q 16 16 0 200 204 4
50* V V 12 14 2 123 128 5
51* E E 12 12 0 129 134 5
52* V V 11 10 1 113 123 10
53* P P 11 9 2 89 82 7
54* G G 5 5 0 90 58 32
55* S S 4 5 1 60 56 4
56* Q Q 8 8 0 127 101 26
57 H H 10 11 1 185 174 11
58* I I 9 7 2 126 88 38
59* D D 6 6 0 81 81 0
60* S S 8 8 0 108 86 22
61 Q Q 15 14 1 200 186 14
62* K K 9 8 1 108 104 4
63* K K 9 11 2 91 110 19
64* A A 12 12 0 114 126 12
65 I I 14 13 1 174 175 1
66 E E 12 11 1 172 161 11
67 R R 17 18 1 214 224 10
68 M M 17 17 0 182 177 5
69 K K 16 15 1 190 186 4
70 D D 10 11 1 160 163 3
71 T T 14 14 0 154 167 13
72 L L 15 18 3 145 151 6
73 R R 15 15 0 187 199 12
74* I I 11 12 1 125 137 12
75 A T 11 15 4 123 162 39
76 Y Y 16 18 2 202 246 44
77* L L 10 13 3 122 132 10
78* T T 7 8 1 119 116 3
79* E E 8 10 2 107 138 31
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pi 1EEI 1LTR k1EEI
i k1LTR

i ki w1EEI
i w1LTR

i wi ‹wij›1EEI
obs ‹wij›1LTR

obs ‹wij›2XSC
obs

80* A T 10 14 4 88 128 40
81 K K 12 10 2 172 119 53
82 V I 14 17 3 147 152 5
83 E D 12 11 1 174 152 22
84 K K 13 13 0 166 153 13
85 L L 16 16 0 145 148 3
86 C C 15 16 1 153 149 4
87 V V 14 14 0 182 175 7
88 W W 19 19 0 187 217 30
89 N N 8 8 0 144 138 6
90* N N 5 6 1 104 109 5
91* K K 10 10 0 126 140 14
92* T T 7 7 0 93 94 1
93 P P 11 11 0 165 170 5
94 H N 13 14 1 169 169 0
95 A S 10 11 1 126 155 29
96 I I 16 16 0 138 139 1
97* A A 12 13 1 131 133 2
98* A A 13 13 0 129 130 1
99 I I 16 17 1 142 143 1
100 S S 12 11 1 149 140 9
101 M M 17 16 1 140 161 21
102* A E 8 9 1 106 120 14
103 N N 5 10 5 74 153 79
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Table 3.3: Pairwise atomic interactions of the fourteen mutated positions
with mutated neighbors.

mutation i Neighbor j wij (1EEI) wij (1LTR) ∆wij mutation i Neighbor j 1EEI 1LTR ∆wij

1 35 5 11 -6 80 22 2 1 1
37 2 4 -2 23 8 12 -4
2 37 30 7 24 1 1 0
3 5 6 -1 75 15 24 -9
7 0 2 -2 76 1 1 0
49 7 4 3 78 14 20 -6
92 10 11 -1 79 21 26 -5
93 8 10 -2 81 22 27 -5

4 2 10 10 0 82 6 5 1
3 34 25 9 101 1 4 -3
5 27 26 1 77 1 5 -4
6 19 17 2 103 0 2 -2
7 33 25 8 74 0 1 -1
8 7 9 -2 76 0 2 -2
39 4 4 0 82 20 11 15 -4

7 1 0 2 -2 21 13 8 5
2 5 20 -15 22 19 18 1
3 2 14 -12 23 2 2 0
4 33 25 8 24 3 4 -1
5 9 8 1 42 6 8 -2
6 31 24 7 80 6 5 1
8 21 22 1 81 32 28 4
9 8 8 0 83 26 26 0
10 11 14 -3 84 8 6 2
11 11 10 1 85 3 3 0

10 5 1 0 1 99 6 8 -2
6 5 8 -3 100 6 5 1
7 11 14 -3 101 5 10 -5
8 8 9 -1 40 0 1 -1
9 21 23 -2 72 0 1 -1
11 24 24 0 75 04 -4
12 11 10 1 83 5 1 0 1
15 2 1 1 18 3 3 0

18 16 20 24 -4 19 9 9 0
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mutation i Neighbor j wij (1EEI) wij (1LTR) ∆wij mutation i Neighbor j 1EEI 1LTR ∆wij

17 36 34 2 20 11 12 -1
19 25 25 0 21 27 14 13
20 15 13 2 81 6 2 4
85 23 22 1 82 26 26 0
84 10 10 0 84 47 43 4
83 3 3 0 85 2 2 0
87 5 6 -1 100 24 18 6
89 1 2 -1 101 8 10 -2
94 6 5 1 102 8 11 -3
48 13 9 4 94 16 4 0 4
86 0 1 -1 18 6 5 1

20 18 15 13 2 47 3 6 -3
19 31 31 0 48 15 22 -7
21 28 26 2 49 14 14 0
22 12 17 -5 87 14 12 2
82 11 15 -4 88 15 11 4
83 11 12 -1 89 27 15 12
84 4 5 -1 90 1 1 0
85 7 8 -1 91 15 14 1
42 20 16 4 92 5 4 1
44 1 0 1 93 27 28 -1
46 1 0 1 95 22 24 2
48 6 3 3 96 4 4 0

25 23 4 5 -1 95 49 18 23 -5
24 24 25 -1 51 8 14 -6
26 35 29 6 86 3 2 1
27 2 2 0 87 13 13 0
41 21 15 6 88 30 33 -3
42 19 17 2 91 6 7 -1
43 15 13 2 93 5 5 0
76 6 6 0 94 22 24 -2
101 3 3 0 96 25 29 -4
102 9 12 -3 97 4 4 0
103 3 13 -10 50 0 1 -1

75 24 5 4 1 102 25 9 20 -11
70 1 1 0 26 6 13 -7
71 7 14 -7 76 11 11 0
72 12 18 -6 81 16 2 14
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mutation i Neighbor j wij (1EEI) wij (1LTR) ∆wij mutation i Neighbor j 1EEI 1LTR ∆wij

73 8 9 -1 83 8 11 -3
74 24 29 -5 100 2 2 0
76 21 24 -3 101 20 21 -1
77 8 8 0 103 29 27 2
78 17 15 2
79 8 6 2
80 15 24 -9
10 1 4 -3
82 0 4 -4
77 0 1 -1
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3.5.2 Supplementary Figures

Figure 3.7: Torus Simulation
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Figure 3.8: Amino acid capacity of interaction: Pro, Asp, and Gln.
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Figure 3.9: Amino acid capacity of interaction: Val, Lys, and Ser.
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Figure 3.10: Amino acid capacity of interaction: Thr, Asn, and Ala.
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Figure 3.11: Amino acid capacity of interaction: His, Arg, and Cys.
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Figure 3.12: Amino acid capacity of interaction: Ile, Leu, and Met.
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Figure 3.13: Amino acid capacity of interaction: Phe and Tyr.
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Figure 3.14: N-terminal of verotoxin-1 (PDB code 2XCS)
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4.1 Introduction

According to the thermodynamical hypothesis, the amino acid sequence,
also called the primary structure of a protein, is the one defining the native
structural configuration of proteins [4]. The event of an amino acid replac-
ing another in the sequence—a mutation—produces a structural change in
the protein which can have a subsequent effect on the protein function. In
reality, most mutations don’t produce any change on the function [68]: Two
amino acid sequences differing in one or more amino acids yield proteins hav-
ing the same function, this is known as functional robustness. A small set
of mutations, however, has a deleterious effect on the native function of the
protein, which causes fragility. In some cases, these mutations can yield a
second protein function and which allows for adaptability [75]. The final con-
sequence of a mutation on the protein function depends, in part, on the effect
of the mutation on the structure of the protein. Large throughput analyses
of the effects of mutations on protein structure are rarely investigated [28].

A single mutation is a variation of the amino acid sequence at one po-
sition. McLaughlin et al. studied the effects relative to functional change
of a set of 1577 single mutations in the third PDZ domain of the PSD-95
protein [42]; where 83 positions were mutated by the other 19 amino acids
(83 × 19 = 1577) and for each mutation, the functional change was mea-
sured experimentally. To be able to compare the functional change across
positions, they annotated for each position the average value of the change
caused by a mutation at the position. A subset of 20 positions out of 83 was
shown to have average values of functional change that deviated more than
two standard deviations from the total mean [42]. These 20 positions are here
called functionally sensitive, where single mutations happening at function-
ally sensitive positions (FSP) cause fragility and/or adaptation remarkably
more often than in the rest of the positions [42]. Moreover, sequence subsets
of FSP appear to be modulating functional change within a protein family,
as studies on protein sequence alignment suggest [24,42].

Our question is: Do FSP feature some structural characteristic that
makes them more functional susceptible to mutation? Indeed, their func-
tional sensitivity could imply that FSP have a privileged place in the protein
structure, which do not depend on the geometrical structure of the positions,
but of the spatial distribution of the atoms belonging to their neighborhood.

Studies on the evolution of proteins show that protein structure is robust
to mutations: mutations can affect the structure and function of the protein
without destroying the protein phenotype (structure) to promote evolvabil-
ity [76], where the changes in the structure can modulate the protein function
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(a) (b)

Figure 4.1: (a) The structure of the Cholera Toxin B pentamer is shown
together with a residue at sequence position 61 in chain E in red on its
quaternary structure (white, the whole pentamer), tertiary structure (blue,
chain E), and secondary structure (yellow, alpha helix). (b) Zoom on the
residue E61.

towards a new evolutionary direction [52]. However, the systematic study
of the effects of mutations on protein structure outside of the context of
evolution, are challenging by the complexity of the structure. One can, for
instance, study directly the rearrangement of atoms in space provoked by
a mutation (e.g. by root-mean-square deviation), but doing so fails to con-
sider the distinct inherent structures of a protein: The protein structure
consists of four different types of substructures, namely, secondary, tertiary,
and quaternary structures (Section 1.1). These underlying substructures are
close from each other in the atomic arrangement of the protein, but account
for different structural hierarchies in the protein. A measure of structural
change should therefore take into account the intrinsic relation between sub-
structures connected within the 3D structure of the protein. The protein
primary, secondary, tertiary and quaternary structures refer to an onion like
structural system, where each amino acid is part of a secondary, tertiary and
quaternary structure, but its neighbors could belong to distinct structures
(Figure 4.1).

In this Chapter, we look at the interactions between amino acids and
atoms to model protein structure. We produce the same set of mutations in



CHAPTER 4. PERTURBATION OF AMINO ACID NETWORKS 90

Figure 4.2: Different cutoffs—2 Å, 3.5 Å, and 5 Å—represented by concentric
circles around an atom ‘a’ define the number of interactions of ‘a’.

silico as McLaughlin [42], used to study experimentally the functional change
of proteins due to the complete set of single mutations on 83 positions of the
PSD-95 protein for a total of 1577 mutations. Our goal is to answer the ques-
tion whether functional impact of mutations can be explained by structural
change, more precisely by atomic and amino-acid interaction changes.

To model the global protein structure, we propose a network approach in
which amino acids represent nodes, and links between them, interactions. We
say that two amino acids are interacting if they share a link in the network
and vice versa. For each link, we consider the number of underlying atomic
interactions between two amino acids to define the weight of the link. In
order to define the atomic interactions, we use a distance cutoff measured
in Ångströms (Å), such that two atoms at distance smaller than the cutoff,
are said to be interacting; only considering atoms in different amino acids
to be interacting. The distance cutoff (or simply, cutoff), modulates the
number of links in the network: larger cutoffs allow longer-distance and
therefore create more connections between amino acids within the network
(Figures 4.2 and 4.3).

A mutation, by modifying the number of atoms and their spatial con-
figuration in space impacts on the amino acid interactions and consequently
might impact the structure. The structure of a given position in the se-
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(a) c1 = 4Å
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(b) c2 = 5Å

Figure 4.3: Two amino acid networks of the third PDZ domain of the PSD-
95 protein constructed using a different cutoff distances c1 and c2. A larger
cutoff creates more links between nodes. In (b) the network connects amino
acids otherwise not connected in (a).

quence can then be studied as a function of the structural change caused by
mutations at the position, monitored by the change in the set of interactions
within the protein. The interactions are defined by a range of 71 distance
cutoffs to study interaction changes upon mutation and include the chemical
interactions (3–5 Å) and above (6–10 Å).

The local structure of an amino acid is the region of the protein including
the amino acid and its amino acid neighborhood. There is an intrinsic rela-
tion between the interactions of amino acids and their neighbors, with their
local structures. Globally, amino acid interactions control and maintain the
protein structure, whereas locally, they define the neighborhood of amino
acids.

On one hand, any perturbation of the protein structure implies a move-
ment in at least two local structures: the one of the sequence position struc-
turally modified and the local structure of at least one neighbor. On the other
hand, a change in the amino acid interactions consequence of a mutation,
causes a perturbation in the global structure1. This reciprocal implication
between amino acid interactions and protein structure, supports a model of

1A change in the structure is understood here as a displacement of atoms in space.
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protein structure in terms of amino acid interactions.

4.2 Methods

4.2.1 Amino Acid Network

The structural PDB files of 1577 mutations were obtained using the software
FoldX version 3b6 [61]. The set of mutations, corresponds to all possible
single-mutations over 83 positions of the third domain of the PSD-95 protein,
PDB code 1BE9 [15] (83 positions, each mutated by all other 19 amino acids).
For each mutation, an amino acid network (AAN) was constructed to model
the amino acid interactions of the protein. Throughout this Section, we
will define different measures accounting for the impact or perturbation of
a mutation on said interactions. Any such measure, is called a perturbation
measure, and assigns a real number to each mutation. That is, a perturbation
measure f is defined on the set of mutations and mapped to the set of real
numbers R. Its values are obtained by comparison of the resulting amino acid
network of a mutation, the mutation network, and the wild type amino acid
network, the WT network (See also Section 3.4.2). The set of perturbation
measures used in this Chapter were established and tested for their relevance
in monitoring structural changes upon mutation in Chapter 2.

Given a distance distance cutoff c, the 83×83 adjacency matrix A of the
AAN of a protein structure, has the following construction properties:

1. Each row and each column corresponds to one of the 83 positions in
the sequence of amino acids.

2. For each pair of amino acids (v1, v2) in the protein, we count the
number of atomic pairs (a1, a2), such that a1 ∈ v1 and a2 ∈ v2, and
dist(a1, a2) ≤ c. Where dist is the Euclidean distance.

3. The entry Ai,j is equal to the number of atomic pairs between amino
acids corresponding to nodes i and j. If Ai,j = 0, then amino acids
corresponding to nodes i and j are said not to be interacting.

The amino acid network G = (V,E, c, w) is the network with adjacency
matrix A. Nodes are labeled by their positions in the amino sequence, and
two nodes i, j ∈ V share a link if Ai,j > 0. The function w defined on the
set of links E, assigns to each link in ij ∈ E, a real number, called the
weight of ij and equal to Ai,j . The weight of a link connecting two nodes
represents the number of shared atomic interactions between the two amino
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acids (Figure 4.4). For convenience, we will use interchangeably the terms
node, position, and amino acid; as well as link, and amino acid interaction,
depending on the context.

4.2.2 Perturbation network P

The perturbation network, noted P, captures the change in atomic and amino
acid interactions caused by a mutation. Given a mutation m, the network
P = (VP, EP,m) is obtained by comparing the set of connections within the
network WT (AAN of the PSD-95 protein) and the mutation network (AAN
of mutation m). The sets VP and EP, correspond to set of nodes and links
of the perturbation network, respectively. Let M and A be the adjacency
matrices of the networks mutation and WT, respectively. The adjacency
matrix P of P, is based on the absolute difference of matrices A and M ,
noted P ′:

P ′ = abs(M −A) (4.1)

Where abs(M − A) is the absolute value matrix of the difference of A and
M . The adjacency matrix P is obtained by removing any all-zeroes row and
column from P ′.

The entry Pi,j is equal to the absolute value of the number of atomic
interactions between amino acids i and j in the mutation AAN, minus the
number of atomic interactions in the WT AAN. In this Chapter, the per-
turbation network is the cornerstone of the quantification of the impact of a
mutation on the original set of atomic and amino acid interactions.

4.2.3 Sphere of influence

The sphere of influence (Section 3.4.2), represents the extent of the changes
in the amino acid interactions produced by a mutation, changes that spread
from the mutated position to the rest of the structure. These changes happen
in a cascade mechanism, where the mutation first affects interactions on
the neighboring amino acids of the mutated position, which in turn affect
interactions with their neighbors, and so on. This cascade mechanism can be
thought of as a map of the interaction changes around the mutated position.

Perturbation measure WP

The first perturbation measure we consider, is the sum of weights of links of
the perturbation network P, noted WP. Given a mutation m, the number
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Figure 4.4: The amino acid network of the third PDZ domain of the pro-
tein PSD-95 (PDB code 1BE9). The set of nodes is equivalent to the set of
positions in the amino acid sequence, and the set of links represents the in-
teractions between different amino acids. The interactions are defined by the
distance between amino acids in the protein 3-D structure. In this network,
two amino acids are considered to be interacting if they share an atomic
pair at distance less than 5 Ångströms (Å). Nodes are labeled based on the
format “Chain + position”. The size of the labels in the display are pro-
portional to their number of contacts. Two nodes are connected by a link
if they are “interacting”, where the width of the link is proportional to its
weight, representing the number of interacting atomic pairs shared by the
two nodes.
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WP is defined as follows:

WP(m) =
∑
e∈EP

w(e) (4.2)

Where P = (VP, EP,m) is the perturbation network of mutation m. The
measure WP was introduced as the amino acid rank in Chapter 2, and was
not part of the original concept of sphere of influence of a mutation, which
was conceived as a quality assessment of the interaction changes (Section
2.4).

The weight of a link in P, represents the absolute difference in the num-
ber of atomic interactions between the two incident nodes in the WT and
mutation networks. Therefore, WP(m) is the total change in atomic interac-
tions captured by the perturbation network, i.e., WP counts the number of
atomic interactions perturbed by mutation m.

The importance of the perturbation measure WP lies in the fact that it
accounts for a perturbation in the original set of interactions, at an atomic
level. The rest of the measures obtained using the perturbation network
consider changes produced at an amino acid level.

Perturbation measure DP

Measure DPis similar to WPas it counts the number of links of the perturba-
tion network (but does not consider the weight of each link). If P = (VP, EP),
then DP = |E|, where ‘|E|’ denotes the cardinality of the set E.

Perturbation measure ordP

Another perturbation measure taken from the perturbation network P, is
the number of nodes in P (the order of P), noted ordP. The measure ordP
represents the number of nodes incident to a link whose weight differs in the
amino acid networks corresponding to the mutation and WT. This is measure
was included in Chapter 2, where it was used to define the sphere of influence
of mutations happening at the protein interface. Given a mutation m and
its perturbation network P = (VP, EP,m), ordP is the number of amino acids
perturbed by m:

ordP(m) = |VP| (4.3)

Where |VP| is the cardinality of VP.
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Perturbation measure GP

A third perturbation measure included in the sphere of influence of a mu-
tation, is the length GP of the maximal shortest path in the perturbation
network P starting at the mutated node. Let P = (VP, EP,mp) be the per-
turbation network of mutation mp at position of the amino acid sequence
p ∈ VP. A path in P starting at node p, is a non-empty network Q = (V,E)
of the form

V = {x0, x1, . . . , xk} E = {x0x1, x1x2, . . . , xk−1xk},

where the xi are all distinct and x0 = p. We say that Q is a shortest path
if for every other path C starting at p and ending at xk, we have |Q| ≤ |C|,
where the cardinality of a path is equal to its number of links.

A shortest path Q in P starting at p, is said to be maximal, if for any
shortest path Q′ in P starting at p, we have |Q′| ≤ |Q|. The length of a max-
imal shortest path starting at the mutated position, accounts for a measure
of “depth” of the perturbation by the mutation. It is an approximation of
the extent of the sphere of influence of the mutation.

The maximal shortest path itself is a traceability-measure of the changes
from the site of the mutation to elsewhere in the structure, in which the
perturbations occur in the cascade mechanism of the sphere of influence.
The length of the maximal shortest path starting at the mutated position
p, GP(mp), is called the geodesic distance2 of a mutation in Chapter 2 (Sec-
tion 2.3).

Perturbation measure EP

A third measure—in addition to WP(mp) and ordP(mp)—included in the
sphere of influence of a mutation mp, is the maximal Euclidean distance,
noted EP(mp), measured from the mutated position p, to an amino acid in
the perturbation network. Let dist(p, v) be the Euclidean distance from p to
amino acid v ∈ VP, we say that dist(p, v) is maximal if for any other distance
dist(p, u) from p to amino acid u ∈ VP we have

dist(p, u) ≤ dist(p, v),

in which case EP(mp) = dist(p, v).
2The term geodesic distance on its original sense was defined as the shortest route

between two points on the Earth’s surface.
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4.2.4 The matrix M
We have introduced so far a several measures of the structural perturbation of
a mutation using an amino acid network approach (perturbation measures).
These measures are used to compare the average impact of all mutations
on a same position, in the amino acid sequence. Furthermore, given the
values of a perturbation measure for all possible mutations at one position,
we can calculate the average impact of a mutation at that position, and
subsequently, compare two different positions in the sequence.

Given a distance cutoff c, and a perturbation measure f c, one tool to
visualize the values of a perturbation measure f of all possible mutations at
the 83 positions of the protein sequence, is the 20×83 matrix,M(f c). Each
column corresponds to an amino acid sequence position, and each row to one
of the 20 amino acids (Figure 4.6). For convenience, we order columns in
increasing order of sequence position, and rows in alphabetical order from
top to bottom. In this manner, column j corresponds to the j-th position in
the amino acid sequence, and row i to the i-th amino acid by alphabetical
order. Given a perturbation measure f defined on the complete set of 1577
mutations, the matrix M(f c) contains the values of f(m) for any single
mutation m (Figure 4.6).

In order to compare the values of impact of mutations across sequence
positions using a cutoff c and a perturbation measure f c, we define the value
of f c(p) of sequence position p, as the average value of f c of mutations at p:

f c(p) =
1

20

20∑
i=1

M(f c(m = ip)) (4.4)

Where i is any of the twenty amino acid types and m = ip is the mutation
at position p by amino acid type i.

4.2.5 Cutoffs

Perturbation measures described so far measure the change in the rewiring of
the set of atomic and amino acid interactions produced by mutations. They
are obtained by comparing the protein wild type and mutation amino acid
networks. Therefore, they vary depending on the cutoff used to define the
distance at which interactions are defined to take place. As previously noted,
the larger the cutoff, the larger the possible distance and strength between
two amino acids to interact: For a given amino acid, a greater cutoff means
a larger “interaction scope”.
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However, its number of interactions depend on the structure surrounding
that amino acid, too (Figure 4.2). It is ultimately the local structure of the
amino acid that explains how differently mutations affect interactions. The
cutoff used, defining the local structure taken into account, is consequently
critical for the relevance of the output of a perturbation measure: The amino
acid network considers interactions to happen only at a distance bounded by
the cutoff. The use of different cutoffs (therefore different local structures),
results in different perturbation values. For the analysis of the values of
a perturbation measure, we underline the importance to use a large set of
cutoffs, and to analyze values across cutoffs. For the purpose of this work,
we use 71 cutoffs within the interval 3–10 Å, with a separation of 0.1 Å from
each other. This includes chemical distances in the range 3–5 Å and above
for cutoffs 5–10 Å, all smaller than the diameter of the protein.

4.2.6 The boolean matrix R
The central question of this Chapter deals with the comparison of structural
measures called perturbation measures, across different types of positions.
Specifically, we want to know if the functionally fragility of positions obtained
experimentally [42], is related to their structural fragility. In order to answer
this question, we use different distance cutoffs to define the local structures
of amino acids in the 3D structure (Subsection 4.2.5).

Here, we propose a method to compare values of a given perturbation
measure across different cutoffs, while mainly focusing on the functionally
sensitive positions. Given a perturbation measure f , we compare the distinct
values of sequence positions across cutoffs. To do that, we note f(p, c) as the
value in f of sequence position p, using cutoff c; and consider the ordered
array rc

rc = (rc1, r
c
2, . . . , r

c
83),

such that:
f(rc1, c) ≥ f(rc2, c) ≥ · · · ≥ f(rc83, c).

In other words, rc is a ranking of the 83 sequence positions given the per-
turbation measure f and a cutoff c. The position rc1 has the larger f -value
when using cutoff c and is therefore ranked 1st in rc.

The method consists on computing the ranking rc for each cutoff in the
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R(f) =



1st rank 2nd rank ··· 82th rank 83th rank

c1 R1,1 R1,2 · · · R1,82 R1,83

c2 R2,1 R2,2 · · · R2,82 R2,83
...

...
...

. . .
...

...
c70 R70,1 R70,2 · · · R70,82 R70,83

c71 R71,1 R71,2 · · · R71,82 R71,83


Figure 4.5: The 71× 83 matrix R(f) of the perturbation measure f . Here,
c1, c2, . . . , c71 are the cutoffs equal to 3 Å, 3.1 Å, . . . , 10 Å, respectively. The
value of Ri,j depends on the position p ranked jth by decreasing order of f .
If the position p is a functionally sensitive position then Ri,j = 1, otherwise
Ri,j = 0.

interval 3–10 Ångströms with a step of 0.1 Ångströms (71 cutoffs total).

r3 = (r3
1, r

3
2, . . . , r

3
83)

r3.1 = (r3.1
1 , r3.1

2 , . . . , r3.1
83 )

...

r10 = (r10
1 , r

10
2 , . . . , r

10
83)

Given a perturbation measure f , to each position there corresponds 71
different rankings, one for each cutoff (Figure 4.5). The use of rankings
facilitates locating and highlighting ranks belonging to a particular subset of
positions across multiple cutoffs. In order to highlight a subset of sequence
positions S over all ranks and compare their distribution across cutoffs, we
construct a 71× 83 boolean matrix R(f) such that:

Ri,j =

{
1 rcij ∈S
0 otherwise

(4.5)

Where rcij is the sequence position j ∈ {1, . . . , 83} is the j-th rank using
cutoff ci, for i ∈ {1, . . . , 71}.

4.2.7 Buriedness

A convex polyhedron P is a solid figure with flat faces that has the property
that any line between two points of P is contained within P. The convex
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hull conv(S) of a set of points S ∈ R3 is the smallest convex polyhedron
containing S. The surface of a protein is modeled here as the convex hull of
the atomic coordinates.

The buriedness is a measure of the proximity of an amino acid to the
boundary of the convex hull of the set S of atomic coordinates of the protein.
First, the shortest Euclidean distance of each atom a ∈ S to the boundary of
conv(S) is computed. The distance from a to the protein surface is modeled
as the distance from a to the nearest face of conv(S). The buriedness of a
residue r ⊂ S, is defined as the average atomic distance from an atom in r
to conv(S).

This model has the advantage of assigning to each residue, a positive
buriedness, as each residue has at least one atom in the interior of conv(S).
The similar measure of accessible surface area (ASA), assigns a positive value
only to residues in contact with the surface of the protein, and a zero value,
otherwise [64]. Positions with no contact to the surface but close to it, are not
mutually differentiable from buried positions. The modeling of the surface
as a convex hull turns the protein surface into a collection of polygons, this
makes the distance of the distance from a point in the protein to the surface
easy to calculate.

The model cedes in sensitivity in terms of the shape of the surface, as
concavities and holes are not considered. In our model, a residue in an actual
concavity of the protein, will probably be detected as a position potentially
buried, depending on the angle of the concavity. Nevertheless, our case study
is based on a globular protein with no inner holes, limiting the possibility
of falsely buried positions concave angles. The use of buriedness in this
Chapter is meant for assessing whether buried and surface positions have
differentiable local structures. The local structure of a residue in a pocket,
for instance, would be expected to be somewhere in between the one of a
buried and a surface position, even if the residue is technically in the surface
of the protein. Reason why using buriedness to categorize residue positions
in the 3D structure, is congruent with our objective of the study of different
local structures.

4.3 Results and Discussion

In order to model the atomic and amino acid interactions occurring in a
protein, we use amino acid networks (Subsection 4.2.1). An amino acid
network is composed of a set of nodes, which represent the positions of amino
acids in the 3D structure but are labeled by their position in the amino acid
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sequence; and a set of links, which represent amino acid interactions. A
weight is given to each link based on the number of atomic interactions
between the two nodes. Atomic interactions are modeled using a distance
cutoff: Two atoms are said to be in interaction if their distance is less than a
given cutoff. Two amino acids, in turn, are connected by a link if they share
an interacting atomic pair. The cutoff allows for several distinct rewires of
the amino acid interactions of one structure. The use of a large range of
cutoffs is useful to capture amino acid interactions when the characteristic-
scale of protein structures/perturbations is not known.

We can quantify the difference of two structures in terms of their distinct
sets of connections, or wirings. If two 3D structures yield the exact same
wiring, they are considered to be topologically equal. Thus, given the struc-
ture corresponding to a mutated sequence, we can measure the perturbation
of a mutation on the original set of amino acid interactions. The measure
considers the different atomic and amino acid interactions between the mu-
tation and the wild type proteins, as well as the furthest point perturbed in
the 3D structure by the mutation (Subsection 4.2.3), and are obtained using
the perturbation network of the mutation (Subsection 4.2.2).

In this Chapter, we analyze the consequences of mutations upon the
structure surrounding amino acids in the third PDZ domain of the PSD-95
synaptic protein (PDB code 1BE9) [15]. Furthermore, we study the rela-
tion of the consequences of mutations in the amino acid interactions with
the function and structure of the protein. The consequences on the amino
acid interactions of a protein, are investigated using different perturbation
measures (Subsection 4.2.3). Where a perturbation measure of a mutation
quantifies the change of one structural property, using the amino acid net-
works of the mutation and the wild type as models of both structures.

The third PDZ domain of the PSD-95 synaptic protein was used to exper-
imentally quantify the functional change, ∆E, of all single mutations across
83 sequence positions [42]. The functional change was shown in a 20×83 ma-
trixM(∆E) (Figure 4.6) where each column j represents the j-th position
by increasing order, and a row i represents the i-th amino acid by alphabeti-
cal order. The value of functional change of a position ∆E(p) was defined as
the average functional change at position p: ∆E(p) = 1

20

∑20
i=1Mi,p. Func-

tionally sensitive positions (FSP) are amino acid positions where average
functional change by mutations are deviating more than two standard devi-
ations from the total mean [42]. Do FSP have unique structural properties
that are distinguishable from the rest of positions? To answer this question
we will compare interaction changes in the neighborhood of FSP to the rest
of positions. If FSP happen to have characteristic local structures, do the lo-
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M(f c) =



pos 1 pos 2 ··· pos 82 pos 83

A f c(1A) f c(2A) · · · f c(82A) f c(83A)
C f c(1C) f c(2C) · · · f c(82C) f c(83C)
...

...
...

. . .
...

...
W f c(1W) f c(2W) · · · f c(82W) f c(83W)
Y f c(1Y) f c(2Y) · · · f c(82Y) f c(83Y)


Figure 4.6: The 20× 83 matrixM of perturbation measure f using cutoff c.
EntryMi,j = f c(m = ij) is the value of the perturbation measure f c(m) of
mutation m = ij. Where m is replacing amino acid at position j by amino
acid type i. Note that at least one value per column is equal to zero, namely
when the amino acid type at the sequence position (column) coincides with
the mutant amino acid type (row). This matrix was used by McLaughlin et
al. to show the functional landscape of the effects of mutations for the third
PDZ domain of the PSD-95 protein [42], where the function f was equal to
functional change (Without the need of a distance cutoff).

cation in the 3D structure of positions (buried or surface exposed) influences
the local structure of FSP? and the rest of the positions?

Based on the assumption the distinct structural properties of FSP, if ex-
istent, can be assessed from their PDB files, we reproduce the mutational set
in silico from where the functionally sensitive positions were obtained (Sub-
section 4.2.1). Then, we model each mutated structure as an amino acid
network to be compared to the wild type network. We then modulate the
local structure of positions using different cutoff distances (Subsection 4.2.5).
Moreover, we compare the structural perturbation values to the global struc-
tural value buriedness (Subsection 4.2.7), to study different local structures
relative to their position in the 3D structure.

4.3.1 Sphere of Influence

Total weight of P and buriedness

We first consider the perturbation measure of the absolute change in atomic
interactions WP consequence of a mutation (Equations 4.1 and 4.2). The
perturbation measure WP counts, for each pair of amino acids, the post
mutational difference in atomic interactions between the wild type and the
mutation networks defined by a distance cutoff. It considers the difference
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(a) (b)

(c) (d)

Figure 4.7: Perturbation measure WP vs. Buriedness, using four distinct
cutoffs 4, 5, 6, and 7 Ångströms, in (a), (b), (c), and (d), respectively.

in the weight of each link in both networks (Subsection 4.2.2), as well as
links that only exist in one network. We calculated the values of WP for 83
positions in the amino acid sequence. A comparison between WP and buried-
ness of positions—how buried the position is in the 3D structure (Subsec-
tion 4.2.7)—shows that for greater cutoffs, buried positions are accountable
for a larger change in the set of interactions (Figure 4.7), i.e, mutations
happening at buried positions perturb more atomic interactions for larger
cutoffs. To calculate the correlation between buriedness and WP, we used
Pearson’s correlation coefficient3.

The buriedness of positions, accounts for 62% of the number of perturbed
atomic interaction values for a cutoff of 4 Ångströms (Å). When using a cutoff
of 10 Å, this percentage goes to 69% ( Figure 4.8). On the other hand, the
total difference in atomic interactions (WP) is explained by the buriedness

3Pearson’s correlation −1 ≤ r ≤ 1 is a measure of linear correlation between two
variables X and Y , where r = 1 if there is total correlation and r = −1 if there is total
negative correlation.
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Figure 4.8: Pearson correlation r between the perturbation measure WP and
buriedness. Each circle in the figure represents a correlation value between
WP and buriedness for a given cutoff. The correlations are calculated for the
71 cutoffs in the interval 3–10 Å. Based on the buriedness of an amino acid,
we can predict its approximate WP value for 62% to 69% of cases, depending
on the cutoff used.

for only 34% of the cases when using a cutoff of 3 Å. This is explained by
the fact that the larger the distance defining atomic interactions, the larger
the connectivity for buried amino acids compared to surface-exposed amino
acids, in terms of number of contacts.

The number of atomic interactions of a residue, being strongly correlated
to its buriedness, supports this suggestion. The weighted degree of amino
acids (their number of atomic interactions) in the amino acid network, in-
creases more for buried positions as the cutoff increments than non-buried or
surface positions. At 4 Å, the correlation between buriedness and weighted
degree is equal to 0.47, significantly increasing the relation between weighted
degree and buriedness of each position compared to smaller cutoffs. Any
greater cutoff considered enhances the correlation; for a cutoff of 5 Å it is
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Figure 4.9: Pearson correlation coefficient r between perturbation measure
WP and functional change. Each circle represents a correlation value between
WP and functional change. The correlations are calculated for 71 cutoffs in
the interval 3–10 Å.

0.6, and it peaks at 0.73 for a cutoff of 10 Å.
This suggests that local structures around 4 Å in the protein structure,

are sufficient to discriminate between surface and buried positions (depend-
ing on their distance to the boundary of the convex hull), in terms of post
mutational structural effects, i.e., the neighborhood of a buried amino acid
is distinguishable from one of a surface amino acid at around 4 Å.

However, this correlation is non existent for cutoffs too small within the
range of 3.0–3.9 Ångströms (r = 0.117± 0.19). This fact could be explained
by the empty space surrounding amino acids, making the local structures of
small cutoffs unrecognizable from each other (Chapter 5).

Total weight of P and functional change

The set of atomic interactions in a protein modulate the protein activity.
Atomic interactions occur between the active site and the ligand, and main-
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tain stable the rest of the structure. We suggested in Chapter 2, that a
“rewiring” of the original set of atomic interactions is not necessarily detri-
mental to the protein well functioning (Section 2.5). For example, a rescue
mutation, that is, a mutation counterbalancing the negative effects of a sec-
ond mutation [13], is necessarily changing the atomic composition of the
original structure, and therefore, the atomic interactions. This suggests that
there should be no strong correlation between functional change and WP.

We compared the average number of perturbed atomic interactions of
the 83 positions with their values of functional change, obtained experimen-
tally [42]. The average number of perturbed atomic interactions, explains
no more than 50% of the functional change values for any cutoff used (Fig-
ure 4.9). The change in atomic interactions being the most representative
of the functional change when a cutoff of 4 Å is used (Pearson correlation
coefficient r = 0.47). The average correlation on all cutoffs is 0.42 and the
standard deviation 0.027.

The weak correlation between WP and functional change, implies that
there are some mutations affecting the function of the protein, but not the
atomic interactions. Vice versa, some mutations impact the atomic interac-
tions but not the protein function. Gross change in atomic interactions is
not sufficient to explain functional change, a more qualitative approach to
atomic interactions is therefore needed.

Euclidean distance and buriedness

The perturbation network of a mutation is composed by the set of amino
acids with at least one interaction impacted by the mutation. The set of
links is the set of the affected amino acid interactions (Equation 4.3 in Sub-
section 4.2.3). The sphere of influence of a mutation, takes into account
two parameters of the perturbation network of the mutation: The number
of links, and the largest Euclidean distance from the mutated position to
another amino acid in the perturbation network (Section 2.4.

One parameter determining the sphere of influence of a mutation is the
maximal Euclidean distance EP, in Ångströms, between the position mutated
and any other amino acid in the perturbation network (Subsection 4.2.3).
This measure combines information from the perturbation network and from
the protein 3D structure. The correlation between the Euclidean distance
from the mutation to the farthermost perturbed amino acid, and the func-
tional change, varies very little across cutoffs (standard deviation = 0.05),
and is on average -0.23. There is a weak correlation between the functional
change produced by the mutation and the furthest distance in the 3D struc-
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Figure 4.10: Correlation r between buriedness of a position and the maximal
Euclidean distance EP perturbed by a mutation in the protein structure.
Each circle represents the correlation between EP and buriedness for a given
cutoff. Values are calculated for 71 cutoffs in the interval 3–10 Å.

ture affected by it.
On the other hand, the correlation between EP and buriedness is very

strong (Figure 4.10). The buriedness of an amino acid given the set of atomic
coordinates S of a protein, we remind, is defined as the distance from the
amino acid to the nearest face of the convex hull of S, roughly representing
the surface contact area of the protein (Subsection 4.2.7). The Pearson
correlation coefficient between buriedness and the Euclidean distance of a
mutation is less than or equal to -0.6 for any cutoff, with the exception of
3 Å. Two important observations of this result are worth being underlined.
The first is that buried positions, when mutated, perturb less far in the
structure than less buried positions. The second is that this is the true for
all cutoffs in the range of 3 to 10 Ångströms.

The local structure of an amino acid, as previously mentioned, is the
set of atomic and amino acid interactions of the amino acid. The corre-
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lation between buriedness and EP, implies that the local structure of even
small cutoffs is representative of the place of the amino acid in the protein
structure. In other words, the structure surrounding an amino acid around
more than 3 Ångströms, carries information of its position in the 3D protein
structure.

Furthermore, the fact that the correlation between maximal Euclidean
distance and buriedness is true for all cutoffs, implies that the perturbation of
a mutation in the structure “runs” further in the structure when it happens
at surface positions. This reflects a real mechanism of the protein called
allostery, in which the perturbation made by an effector at one site of the
protein has a functional effect at the peptide binding site trough structural
alteration [70].

For a same number of neighbors, the distribution of neighbors is more
dense in surface positions than in buried positions, therefore, a same size
perturbation is distributed across more amino acids when happening at a
buried positions, in contrast to a less buried position where the propagation
of the perturbation is more constricted structurally.

4.3.2 Number of perturbed amino acids and functional change

The number of nodes of the perturbation network, is the set of nodes incident
to an edge whose weight differs in the mutation network, relative to the wild
type network (Subsection 4.2.3). It is interpreted as the number of amino
acids whose group of interactions has been “perturbed” by the mutation.
The relation of this measure with the change in function, is much stronger
than the WP (Figure 4.9). The number of perturbed nodes, explains up to
70% of the functional change of all 83 positions. All cutoffs considered, the
number of perturbed nodes explains, on average, for 57% of the functional
change (Figure 4.11).

To further test the relation between the number of nodes of the perturba-
tion network (size of the network) and functional change, we computed the
boolean matrix R (Equation 4.5 in Subsection 4.2.6). The 71 × 83 boolean
matrix R has for each row a different cutoff, and the entry at column j and
row i is equal to 1 if the j-th rank of the range of measure op using cut-
off i, in decreasing order belongs to a functionally sensitive position (FSP),
and equal to 0, otherwise: If the j-th rank of ordP using cutoff i does not
belong to a FSP, then the value for that entry in R is 0. This is done to
strongly contrast ranks of the FSP with those corresponding to the rest of
the positions.

Considering the 71 cutoffs, each having 83 ranks, there is a total of 5893



CHAPTER 4. PERTURBATION OF AMINO ACID NETWORKS 109

Figure 4.11: Pearson correlation r between number of nodes incident to a link
in the perturbation network and functional change. Each circle corresponds
to the correlation between ordP and functional change. The correlations are
calculated using 71 cutoffs in the interval 3–10 Å.

ranks (Subsection 4.2.6), from which 20 × 71 = 1420 belong to FSP. The
matrix R shows a concentration of FSP having large ordP values, all cutoffs
combined (Figure 4.12). A total of 94% of the ranks (1334) corresponding
to FSP, all cutoffs combined, are within the first half of the ranking, that is,
within the first 42 ranks.

In other words, a rank belonging to a functionally sensitive position, is
in the top half with a probability of 0.94. The probability of the rank of
a FSP being in the top 25 ranks is 0.7 (1002 ranks). If we constraint the
matrix only to cutoffs between 4–10 Ångströms, this probability is equal
to 0.75 (915 ranks). Finally, the first 20 ranks, all cutoffs considered, are
shared between FSP (60%, 844 ranks) and the rest of the positions (40%,
576 ranks), however only 24% (20 positions out of 83) of the total number
of the positions are FSP (Figure 4.12).

Moreover, under cutoffs 4–10 Ångströms, the mutations perturbing the
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Figure 4.12: The 71, 83 boolean matrix R highlighting the ranks of func-
tionally sensitive positions by decreasing ordP (Subsection 4.2.6). Entry Ri,j
corresponds to 1 if the j-th rank at cutoff i corresponds to a functionally
sensitive position and 0, otherwise.

interactions of a large number of amino acids, also impact a large number
of interactions among FSP. This suggests a compact perturbation network,
in which paths to go from one node to any other have few links. We have
seen, however, that these perturbation networks do not correlate better with
functional change by comparing the values of the total change in atomic
interactions WP to functional change (Figure 4.9). Positions functionally
sensitive to mutations, even though supposing compact perturbation net-
works, are differentiable from the rest of the positions with compact per-
turbation networks by the number of amino acids in their perturbation net-
works. Specifically, when interactions are modeled using cutoffs ranging from
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5–7 Ångströms, compact perturbation networks decrease to be correlated to
functional change, and the size of the perturbation network, however, stands
for more than 60% of the functional change (Figures 4.9 & 4.11).

We have seen that a change in a large number of atomic interactions,
does not necessarily translates to a functional change as shown by the values
obtained for all positions in terms of WP. Moreover, the number of nodes in
the perturbation network (ordP) is correlated with functional change. This
implies that functional change is mostly explained by changes in amino acid
interactions, as opposed to atomic interactions. In other words, the change in
atomic interactions alone, fails to explain the functional change produced by
a mutation: It is of greater relevance to functional change, a larger number
of perturbed amino acids by the mutation, independently of the number of
perturbed atomic interaction between them.

The measure WP calculates the gross difference in atomic interactions,
without discriminating the number of amino acids perturbed. The number
of amino acids perturbed, however, is more relevant to the functional change
of a protein after a mutation. A mutation affecting a large number of atomic
interactions on a small number of amino acids, is likely to be irrelevant to the
functional change. On the other hand, a mutation affecting a large number of
amino acid interactions, independently of the number of atomic interactions
perturbed, is likely to be relevant to the function.

A possible cause is that interactions between amino-acid pairs is done
in more than one path in the protein 3D structure. If the number of amino
acids perturbed by the mutation is small, even supposing that the number of
atomic interactions perturbed is large, a small number of interaction paths
are perturbed by the mutation. In this case, interaction between amino
acids can still be maintained through other interaction paths. Moreover, the
interaction of amino acids through different paths would be a sort of error
correction mechanism, in which two amino acids are able to communicate
using more than one pathway. Under this logic, most mutations would be
tolerated through the interaction of amino acids on alternative interaction
pathways.

4.4 Conclusion

Proteins contain functionally-sensitive positions, where mutations signifi-
cantly undermine the performance of the protein on the native function.
These functional sensitivity is in general independent of the particular amino
acid replacing the original, suggesting a standalone importance of the po-
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sition. Here, we address the question of whether these positions present a
characteristic local structure differing from the rest of the positions in the
sequence. Moreover, if there is such a local structure, we seek to know what
is the distance at which local structures start to diverge depending on the
type of positions.

A local structure can be thought as the distribution of atomic coordinates
around an amino acid at a given distance. Because the placement of the
atoms in space is far from been regular The use of several cutoff distances
to define the atomic interactions is

We used the number of perturbed atomic and amino acid interactions as
a comparison point between functionally sensitive positions and the rest, we
also considered the furthest position in the 3D structure perturbed by the
mutation as a measure of structural change. Results showed a characteristic
local structure for buried and surface positions using the three perturbation
measures. A local structure starting at around 4 Ångströms was shown to
increment the correlation between the measures and the position of the amino
acids in the 3D structure (Figure 4.13). Correlation between the values of
the amino acids of al cutoffs and their buriedness increased steadily after four
Ångströms up to ten Ångströms (Figure 4.7). A local structure defined by a
distance of less than four Ångströms didn’t present any correlation with the
amino acid positions in the 3D structure suggesting that such distances fell
short to capture a characteristic neighborhood of surface or buried positions
(Figures 4.10 & 4.8).

Moreover, the number of perturbed amino acids showed a good correla-
tion with functional change for atomic interactions starting at 4 Ångströms.
This correlation peaked when a distance cutoff of 6 Ångströms was used
to define the atomic interactions (Figure 4.11). The rest of the perturba-
tion measures did not show any relation with functional change, suggesting
that the number of perturbed atomic interactions or the length in the 3D
structure of the perturbation were not good indicators of functional change.

Indeed, we found that the number of perturbed atomic or amino acid
interactions (Figures 4.9 & 4.14), are not characteristic to functionally sensi-
tive positions, as they affect similarly the rest of the functionally robust posi-
tions. Figure shows the correlation between functional change and change in
amino acid interactions (DP). Where measure DP is defined as the number
of links changed between before and after a mutation (Paragraph 4.2.3). On
the other hand, a larger number of perturbed amino acids was found to be
linked to functionally sensitive positions. We observe that this result could
underlie several communication paths between amino acids as a method of
error-correction. Further work needs to be done to test this hypothesis how-
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ever.
Finally, the threshold of 4 Ångströms for characteristic local structures

was made clear by the gap in the correlation between all perturbation mea-
sures and the position of amino acids in the 3D structure.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.13: Degree k vs. Buriedness, using four distinct cutoffs 4, 5, 6, and
7 Ångströms, in (a), (b), (c), and (d), respectively. Weight w vs. Buried-
ness, using the same four distinct cutoffs is shown in (e), (f), (g), and (h),
respectively.
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Figure 4.14: Pearson correlation coefficient r between perturbation measure
DP and functional change. Each circle represents a correlation value between
DP and functional change. The correlations are calculated for 71 cutoffs in
the interval 3–10 Å.
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5.1 Introduction

A protein is a biological object which faces a paradigm: on one hand it needs
to be robust to exterior perturbations like in the case of mutations, and at
the same time, be able to adapt to new biological conditions and functions.

Evidence shows that a minority of sequence positions are responsible for
the fluctuations in protein function happening as a consequence of single
mutations or during evolution. During the latter, a small set of co-evolving
positions was found using multiple sequence alignment, in which subsets of
co-evolving positions formed a functional motif called a functional sector [24].
When compared to the effects of mutations per position on the same pro-
tein, the so-called sectors were shown to be strongly correlated to the most
sensitive positions to mutations [42].

Importantly, functional positions, when mutated, have an effect on the
resulting function, generally when replaced by most amino acids; indepen-
dently of the chemical properties of the amino acid type [42]. This gives a
relevant place in functional changes to the sequence position, that is, posi-
tions are relevant to functional change by themselves when it comes to the
consequences of mutations and evolution (Subsection 4.2.6).

This interesting result led us to study the protein structure with a focus
solely on the positions of the amino acid sequence. In Chapter 2, we first
introduced the idea that two structures could be structurally alternative,
showing that structural change could perturb many interactions between re-
gions in the structure but leave the the original groups connected, while other
perturbations could affect the connectivity of a small number of interactions
necessary for the connection between regions in the protein.

Subsequently, we measured the structural perturbation under a network
approach, comparing across different perturbation measures the change on
the atomic and amino acid surroundings of sequence positions (Chapter 4).
Only one measure was found to be correlated to functional change of muta-
tions: the number of perturbed amino acids by the mutation (Section 4.3).
Functional change was not related to the number of interactions, results
showed; whether it be atomic or amino acid interactions perturbed in the net-
work. Both measures are strongly correlated to the buriedness of a position,
that is, to the distance from the position to the protein surface (Section 4.3).

Based on the results introduced by McLaughlin et al. [42], showing as pre-
viously mentioned that some positions conduct the functional change due to
mutations, and on our own results showing different structural consequences
depending on what position of the sequence is mutated (Chapter 4), in this
Chapter, we moved to a more general question keeping in mind the relevance
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of positions in the sequence towards a functional or structural consequence by
studying the local void of positions in the structure. In the previous Chap-
ter, we were interested in the analysis of the atomic distribution around
positions depending on their functional relevance to mutations, but also on
their buriedness. Here, we study another structural property surrounding
positions in the structure: their surrounding empty space.

The packing density of proteins, i.e. the study of the relative amount of
free and non-free space inside the protein, has been previously studied. A
number of techniques have been used, based on the study of cavities with a
space-filling model, using the Voronoi diagram or Delaunay triangulation of
the atomic coordinates of the structure to capture the free space within in the
protein [36, 51, 54]. However, here we are interested in the systematic study
of local void around amino acids, without considering the overall packing
of the protein, particularly to help shed light on the question of how void
is distributed across positions in the protein structure. More specifically,
we seek to study the void across distinct types of positions; e.g. are buried
positions surrounded by more or less void than surface positions?

Let us recall that void around residues is not mathematically well-defined,
therefore, we use three different approaches to measure void around amino
acids, each one based on a different algorithm. We used well defined geo-
metrical objects like the convex hull or the Delaunay tessellation of a set of
points in R3 to calculate volumes and voids. The two first methods presented
here depend on a distance cutoff for the definition of void, with the idea of
ignoring mere bulk space within or around the protein. The third method
calculates void that is “trapped” inside the protein and uses no cutoff.

In summary, the first method constructs an envelope set of points around
the target residue to compute void as the volume of the envelope set minus
the volume of the convex hull of the target residue. The second method, uses
the Delaunay tessellation of the atomic coordinates of the protein to measure
the void of a residue as the sum of the volumes of adjacent tetrahedra to the
residue. Finally, the third method is based on a concept of “trapped” empty
space, that is, constrained inside the protein, ignoring the empty space that
has direct access to the solvent of the protein. Atom radii are considered
as well in the third method, indeed, the overlap between atoms is used for
the location of void trapped inside the protein, inspired on a previously used
method [36].
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5.2 The protein as a discrete mathematical object

Given a protein structure, we want to measure the void or empty space
surrounding amino acids inside the protein. In this Chapter, we propose
three different methods that calculate the empty space from a PDB file
containing the atomic coordinates of a protein. The calculation of the void
is based on a model of the protein structure as a discrete object which is
characterized by its set of 3D atomic coordinates S ⊂ R3. Henceforth, we
will use the term protein structure referring actually to the set S, and vice
versa. In the same fashion, an atom in the protein is a point a ∈ S, and a
residue r is a subset of S.

The collection of residues R, is a partition of S such that:

1.
⋃
r∈R

r = S, and

2. ∀r1, r2 ∈ R; r1 ∩ r2 = ∅.

The union of the all residues in R amounts to the complete set of atoms,
and not two residues have atoms in common in the protein.

A discrete representation of a protein structure is shown in Figure 5.1,
where the set of atomic coordinates S is shown in grey, and atoms are spheres.
A residue is shown within S in the structure (Figure 5.1b, blue), with neigh-
boring atoms at distance 3 Ångströms or less (Figure 5.1a, orange).

5.3 Convex Hull Method

In geometry, a polyhedron is a solid in the 3-dimensional Euclidean space
bounded by planar polygonal faces. The corners of the polyhedron, and the
edges joining the faces are, respectively, the vertices and the edges of the
polyhedron. A polyhedron is said to be convex if any line segment between
two points within the polyhedron is also in the polyhedron (Figure 5.2 for
an example of a convex polyhedron).

A central concept in computational geometry is the convex hull. The
convex hull of a set of points is the minimal convex polyhedron containing
them (Figure 5.3). The convex hull of a set of two-dimensional points is a
polygon, while the convex hull of a three-dimensional set is a polyhedron
(Figure 5.3 and Figure 5.2, respectively).

The point set S which is a subset of R3, is in general position, meaning
that there are no 4 points of S on a same plane. The point set S in general
position is true for our complete database of atomic coordinates, but this
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(a) (b)

Figure 5.1: Representation of the protein structure of activity-regulated,
cytoskeleton-associated repressor protein (PDB code 1BAZ). (a) The residue
Asparagine in chain A at position 11 (blue) is shown with its neighborhood at
distance 3 Å (orange). The neighboring amino acids include residues leucine,
glycine, valine, and asparagine (LEU, GLN, VAL, and ASN respectively). (b)
Zoom out of the residue showing the rest of the atomic coordinates of the
protein (grey).

Figure 5.2: An Octahedron is a convex polyhedron with eight faces, twelve
edges and six vertices.
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Figure 5.3: A set of points in 2D bounded by its convex hull.

condition is not necessarily respected in all pdb files; indeed, this condition
is a consequence of the form of our data. Therefore each face of conv(S) is
triangular. The Convex hull of the subset of atoms of the protein (a residue)
is therefore a convex polyhedron with triangular faces. In this method, we
model residues as the convex hull using their sets of atomic coordinates, and
the volume of the residue as the volume of its convex hull.

5.3.1 Envelope set

We model the volume of a residue r ∈ R as the volume of its convex hull,
noted conv(r); an idea to measure the void around r is to construct a set Er,
whose convex hull “wraps” or “envelops” r, and take the difference between
the volumes of conv(r) and conv(Er). The void of a residue, is thus defined
by its atomic coordinates together with the set of points Er (Figure 5.4). For
convenience, the set Er ⊂ R3, is called here the envelope set of r1. The set Er
is said to be an envelope set of r, if conv(r) ⊆ conv(Er). In order to measure
the void around a residue r, we select an envelope set Er that respects the
following three conditions. Call V the set of vertices of conv(Er), and let
p ∈ R3:

1. If p ∈ conv(Er), then dist(p, conv(r)) ≤ 5Å; where dist(p, conv(r)) is
the Euclidean distance from p to conv(r)2.

1This term ‘envelope’ is used differently and broadly in mathematics, usually referring
to objects unconnected to the one used here.

2The distance from a point p ∈ R3 to a convex hull is the minimal orthogonal distance
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conv(r)

conv(Er)

Figure 5.4: Representation of the void of a residue r ∈ R2 in a hypothetical
protein structure S ⊂ R2. Each color corresponds to a different residue,
i.e., points of a same color are atoms of the same residue. The convex hull
of each residue is shown together with the one of the envelope set Er of r
with vertices filled in black. The envelope set Er of r is the set of vertices
of conv(Er) together with the vertices of conv(r). The void of r (green)
is defined by the difference between the area of conv(Er) and of conv(r)
(purple). Note that one point of Er is not an atom of the protein (black
point).

2. If p ∈ S and p /∈ r ⊂ S, then p ∈ V .

3. If p ∈ r then p ∈ conv(Er).

Note that, if p ∈ V and p ∈ r then the point p is in Er by the definition of
the convex hull. So the set r is an envelope set of itself.

It is important to note that a point of Er does not necessarily belong
to S, i.e., is not necessarily an atom of the protein (Figure 5.4) and any
point of Er, is at chemical distance (5 Å [21]) from the residue r according
to Condition 1. It ensures that only chemically relevant points are taken
into account to measure the void, to exclude the general “bulk” space in the
molecule from the computation of the empty space around the residue. This
is because not all empty space between two atoms should count as void.
Moreover, Condition 2 says that any point of S \ r in conv(Er), is a vertex
of conv(Er). This ensures that the region between the boundaries of conv(r)
and conv(Er) is indeed empty space around residue r and does not contain

from the point p to one plane spanned by a face of the convex hull.
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parts of another residue of S. Condition 3 makes sure that void is at the
exterior of points of residue r.

5.3.2 Basic idea

Void or free space, can be thought of as a potentially interactive region in the
molecule with an absence of atoms. Here, 5 Ångströms (Å) is the interaction
distance between pairs of atoms, as most atomic interactions happen under
this threshold [21]. The idea of computing the void surrounding each residue
of the protein, the local void of a residue, is to find the neighboring empty
regions at chemical reach from each residue within the protein. To do so, we
consider the atomic coordinates of each residue and, we then select a subset
of atoms to create an envelope set “wrapping” the residue.

Let S to be the atomic coordinates of a protein, and r ⊂ S the atomic
coordinates of a residue, or simply a residue of S. The spatial difference
between the convex hulls of the envelope set Er of r and r, is the local void
of r (Figure 5.4). Let’s recall that the envelope set does not necessarily have
all its points in S; but it is conditioned to exclude the bulk space of the
molecule by selecting only points at chemical distance from r.

A useful tool to model the boundary of a set of points r in R3 is the so-
called convex hull of r, noted conv(r). The convex hull, is an approximation
of the shape of the residue, and is used here to compute its volume. If we
compute the volume of a residue, we do the same for the volume of the
convex hull of the envelope set Er, to obtain the volume of the local void of
r as:

Void(r) = VEr − Vr.
Where VEr and Vr are the volumes of conv(Er) and conv(r), respectively.
Note that the volume of r does not take into account the radii of its atoms,
usually given by the van der Waals radii. However, this is also true for
the points of the envelope set, removing a bias from the method. For our
purpose the method is sufficient for its congruence with other methods used
to calculate the volumes of amino acids [20, 40]. The correlation between
volumes of 151,045 residues using the Pearson correlation coefficient yields
0.74 obtained using the convex hull and method [40], respectively.

The set Er being the envelope set of r, is conditioned to contain the set
r (Condition 3 in the previous Subsection):

r ⊆ Er.
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Cases when r = Er allow non-existent local void, which happens only rarely
depending on the properties of the faces of conv(r) relative to the placement
of the points in S \ r, as explained by the construction of Er in Subsec-
tion 5.3.3. By definition, void is empty space, therefore the only atoms of
the molecule inside conv(Er), should belong to r. In other words, atoms
of the structure in the neighborhood of r belonging to the envelope set Er,
should be on the boundary of conv(Er) (Condition 2). Finally, an atom of
r in the envelope set Er, is at chemical reach, less than 5 Ångströms, from
r (Condition 1). The construction of the envelope set of each residue in the
structure is explained in the following Subsection.

5.3.3 Algorithm

The local void of a residue r ⊂ S, where S is the set of atomic coordinates of
a protein structure, is obtained considering the volume of a larger set acting
as an “envelope set” of r, from which we subtract the volume of r. The
volume of both sets is calculated using their convex hulls. The envelope set
is noted Er and its convex hull, conv(Er) contains conv(r). The empty space
between conv(r) and conv(Er) is defined as the void of r. The construction
of Er is done by iteration on the faces of conv(r), where each face is defined
by three points of r. The algorithm selects all the points in r and for each
face at most one point of R3 \ r gradually as follows:

1. For each face ∆ of conv(r), we select all points of S whose orthogonal
projection points on the plane spanned by ∆ are inside the ∆ (Sub-
section 5.3.4). In Figure 5.5a, the projection of all four points to the
plane lie on ∆ (triangle).

2. If the projection of more than one point lies on ∆, like in Figure 5.5a,
then we select the point with the shortest distance to the face ∆ (a1,
in the case of Figure 5.5a). If, on the other hand, the orthogonal
projection of no point lies on ∆, we select none.

3. If a point p is selected by Step 2 above, then we add p to Er but only
if its normal distance to ∆, is at most 5Å. In Figure 5.5b, the point
a1 is projected within the face of conv(r), however, a1 is not added to
Er because is too far (14.9Å) from the face.

4. If the point p is the closest point to conv(r) selected in Step 2 is too far,
we simply approach discretely p across the normal vector of ∆ until the
resulting point p′ is at distance less or equal to 5 Å from ∆; then we
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Figure 5.5: (a) The points a1, a2, a3, and a4 are projected orthogonally to
the plane spanned by face s (blue triangle) of convex hull conv(r) of r. The
projection vector is represented by dashed blue segments, and the projected
points a′1, a′2, a′3, and a′4 are shown in red. (b) The points a1 and a2 are
projected orthogonally within the face s of conv(r). The projection vectors
are represented by dashed blue segments, and the projection points a′1 and
a′2 are shown in red. The distances between the points a1, a2 and s are noted
d1 and d2, respectively. The point pk lies between a1 and face s, and is at
distance 5 Å from s. (c) Example of the void of a residue r. The atomic
coordinates of r (green) define conv(r), and the set r′ defines conv(r′). The
envelop set r′ of r was computed using the surrounding atoms from r (Steps 1
to 5). The void of r, noted void(r), is defined as the difference between the
volumes of conv(r) and conv(r′). This example is based on the Cholera
Toxin protein with PDB code 1EEI used in Chapter 2; where r is residue at
position 103 in chain H.
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add p′ to Er. In Figure 5.5b, the point pk is obtained by approaching
a1 across the normal vector of the face until its distance is 5 Å from
the r.

5. Finally, we add the three vertices of the face ∆ of conv(r) to the enve-
lope set Er.

It follows from Step 5, that r ⊂ conv(Er) respecting Condition 3. More-
over, if a point p ∈ S \ r is in Er, we know from Steps 3 and 4, that p is
a vertex of conv(Er), respecting Condition 2. Finally, Condition 1 stating
that any point in Er is at chemical reach from conv(r), follows from Steps 3
and 4.

An example of the 3D convex hulls of r and the envelope set of r noted
r′, are depicted in Figure 5.5c. The void of r is the difference in the volumes
of the convex hulls of r and r′, and the envelope set r′ is obtained using
Steps 1 to 5 above.

The convex hulls are computed using the Scipy library for the program-
ming language Python [30], and the void is part of the biographs package
written for the purpose of this work and can found at https://github.com/
rodogi/biographs. Finally, the pseudo-Algorithm 1 formally describes the
previous process, and an explanation of how to decide whether an orthogonal
projection of a point to a plane lies within a triangle in the plane is explained
in Subsection 5.3.4, using the barycentric coordinates of the triangle.

5.3.4 Barycentric coordinates

To know whether the orthogonal projection of a point in the structure S to
the plane defined by a face of conv(r) lies on the face, we can use the system
of barycentric coordinates of the triangular face. The process of finding
the barycentric coordinates system of a triangle is explained in more detail
in [63].

We can think of the barycentric coordinates system as a non-orthogonal
system of coordinates having as a basis the vectors defined by two edges of
the triangle. For example if a, b, and c are the vertices of the triangle, then
we can choose ~u = b − a and ~v = c − a as the basis, and a as the origin of
the coordinates system (Figure 5.6). This way, any point p ∈ R3 lying on
the plane of the triangle abc can be written as

p = a+ β~u+ γ~v.

We can rewrite the previous equation to get:

p = (1− β − γ)a+ βb+ γc,

https://github.com/rodogi/biographs
https://github.com/rodogi/biographs
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Algorithm 1 Return the envelope set set Er of residue r ⊂ S.
procedure VoidConvexHulls(r, S)

Er = ∅
for Each face ∆ of conv(r) do

Let P be the set points of S \ r orthogonally projected to ∆, and
remove from P the points on the half-space containing conv(r)
Let ~n be the unit normal vector of ∆
if P is non empty then

Let p ∈ P be the closest point to ∆, and
let d = dist(p,∆) be that distance.
if d ≤ 5 then

Add p to Er
else

λ = d− 5
Define p′ := p− λ~n
Add p′ to Er

end if
end if
Add the vertices of ∆ to Er

end for
return Er

end procedure
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Figure 5.6: A triangle can be used to obtain a non-orthogonal coordinate
system of the plane. The origin of this coordinate system is point a and
vectors ~u = c − a and ~v = b − a can be used as its basis. Any point in
the plane can be then represented by an ordered pair (γ, β). For example
p = a+ 3~u+ ~v, where γ = 3 and β = 1 in such a coordinate system.
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and define a new variable α = 1− β − γ to have:

p = αa+ βb+ γc.

With the constraint that α + β + γ = 1. Another way to compute the
barycentric coordinates is to compute the areas Aa, Ab, and Ac, of the sub-
triangles obtained by partitioning the triangle into three sub-triangles joining
each vertex a, b, c to a fourth point in the plane. Barycentric coordinates
respect the rule:

α = Aa/A, β = Ab/A, γ = Ac/A,

where A is the area of the triangle.
For a triangle in R3, its normal vector ~n is the vector perpendicular to

any vector lying on the plane defined by the triangle. This includes of course
the edges of the triangle. One way to obtain ~n is by taking the cross product
of two vectors on the plane; in our case, we can take two edges of the triangle:

~n = (b− a)× (c− a).

The area of the triangle can be found by taking the length of the cross
product:

areaA =
1

2
‖~n‖.

This is not a signed (positive or negative) area so it cannot be used directly
to calculate the barycentric coordinates (as we need to calculate the other
areas with a normal vector on the same direction). For this goal, we consider
the dot product of two parallel vectors to know if both vectors have the same
direction:

~u · ~v = ‖u‖‖v‖cos(θ),
where cos(θ) = 1 if both have the same direction and cos(θ) = −1, otherwise.
Using the previous formulas and a point p on the same plane as the triangle
abc, we can calculate the barycentric coordinate α as,

α =
Aa
A

=
‖(c− b)× (p− b)‖

‖~n‖ =
‖(c− b)× (p− b)‖‖~n‖

‖~n‖2 .

Given that ~na = (c − b) × (p − b) and ~n are parallel and have the same
direction, we have

α =
~na · ~n
‖~n‖2 .
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In a similar way we get

β =
~nb · ~n
‖~n‖2 , γ =

~nc · ~n
‖~n‖2 ,

where

~nb = (a− c)× (p− c)and ~nc = (b− a)× (p− a).

Finally, if
0 ≤ γ < 1 0 ≤ β < 1,

the projection of the point p = αa+βb+ γc to the plane defined by triangle
abc lies inside of the triangle.

5.4 Delaunay Method

The following method to compute the local void of residues is based on a
triangulation or tessellation of the set of atomic coordinates S. More specif-
ically, we use the Delaunay triangulation of S, noted D(S). The Delaunay
triangulation D(S) is derived from the Voronoi diagram of S, so in order to
define D(S), we first need to introduce the Voronoi diagram of S.

Let each point p ∈ S be expanded into a region where every point in
the region is closer to the point p than to any other point in S. Such a
region is called a cell of the Voronoi diagram of S. Each cell contains all the
points that are closer to exactly one point of S. The border or edge between
two cells contains the points equidistant from the two adjacent points in
the Voronoi diagram. In Figure 5.7, edges are equidistant to the points of
S (bluepoints) inside the two adjacent cells separated by each edge (cells).
Vertices of the Voronoi diagram are by extension equidistant to the points
whose cells meet at each vertex. When the point set used to create the
diagram is in general position, every vertex is equidistant to exactly three
points (A point set is not in general position if four points lie on the same
circle). In that case, the dual graph of the Voronoi diagram is called the
Delaunay triangulation, and it’s unique.

In graph theory, the dual graph of a partition of the plane is a graph which
has one vertex for each face (cell) of the plane and two vertices are connected
if their corresponding faces are adjacent. In figure 5.8, the points defining
the Voronoi diagram are the vertices of the dual graph and two vertices are
connected by an edge in the dual graph (blue segments), if the corresponding
cells of each incident vertex are adjacent in the Voronoi diagram.
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Figure 5.7: The Voronoi diagram of 100 points in general position in the
plane. Each blue point in a cell is closer to any other point in that cell than
to any other blue point. The vertices of the Voronoi diagram (black points)
are equidistant to the blue points in the adjacent cells.

Figure 5.8: The dual graph of the Voronoi diagram. Each vertex of the
graph corresponds to one cell of the diagram. Two vertices of the dual graph
are connected by an edge if the two corresponding cells are adjacent in the
Voronoi diagram. It may seem that some non-bounded cells are not adjacent
but their respective edges intersect beyond the limits of the figure.
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Figure 5.9: A tetrahedron and its circumscribed sphere (gray): the vertices
of the tetrahedron are on the surface of the sphere.

The concept of the Voronoi diagram in 2D can be extended to a set
S ⊂ R3. It suffices to think of each cell as a polyhedron instead of a polygon
containing the points closer to exactly one point in S. Two adjacent cells
share a face of their polyhedron, and three adjacent cells of the diagram
share one edge. If the set S is in general position, a vertex of the Voronoi
diagram is equidistant to at most 4 points in S.

The dual-graph of the Voronoi diagram of a 3D set, is a tessellation where
adjacent cells form a tetrahedron. Here the circumscribed sphere centered
at the vertex in the Voronoi diagram is equidistant to the four vertices of
the dual graph only (Figure 5.9).

If S ⊂ R3 is in general position (there is no five points on a same sphere),
a Delaunay tessellation D(S) of S, is the dual-graph of the Voronoi diagram
of S, and it’s unique. Each tetrahedron in D(S) satisfies the empty-sphere
property, where its circumsphere contains no point of S in its interior.

5.4.1 Basic idea

We aim at using the tetrahedra produced by the Delaunay triangulation of
the set of atomic coordinates to calculate the void around residues. In par-
ticular, we use the empty sphere property of the tetrahedra: to each simplex
in the Delaunay triangulation there is one circumscribed empty sphere (with
no points in its interior), which implies that the length of the edges in the
triangulation is in principle minimized. The basic idea is to select a set of
tetrahedra adjacent to one residue and think of their volume as the local
void of that residue. To compute this void it then suffices to calculate the
volume of each tetrahedron and take the sum of all to be the local void the
residue.
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Algorithm 2 Return local void of residue r ⊂ S for a protein structure S,
and a cutoff c ∈ R.
1: procedure VoidDelaunayTriangulation(r, S, c)
2: Let D(S) be the Delaunay tessellation of S.
3: Tr = ∅
4: for x ∈ r do
5: Nx = {v : v, x ∈ V (∆) for some ∆ ∈ D(s)},
6: where V (∆) is the set of vertices of ∆.
7: E = {nx ∈ Nx : dist(nx, x) < c and nx 6= x}
8: for y ∈ E do
9: Ny = {v : v, y ∈ ∆ for some ∆ ∈ D(s)}

10: T = {(y, ny) ∈ E ×Ny : dist(ny, y) < c}
11: end for
12: for (y, z) ∈ T and w ∈ E do
13: if Both (w, y) and (w, z) are in T then
14: ∆wxyz is the tetrahedron with vertices w, x, y, z
15: if V (∆wxyz) ∩ r 6= V (∆wxyz) then
16: Add ∆wxyz to Tr
17: end if
18: end if
19: end for
20: end for
21: return Tr
22: end procedure

For that purpose, let D(S) be the Delaunay tessellation of the set of
atomic coordinates S ⊂ R3. We know that the circumscribed sphere of
any tetrahedron ∆ ∈ D(S), contains no atomic coordinates in its interior.
Moreover, because all points of S are included in D(S), the vertices of the set
of tetrahedra surrounding a residue contain the entire atomic neighborhood
of the residue. In order to compute the void, we first select all tetrahedra
having at least one vertex in the residue (each vertex is an atomic coordinate)
and at most three. The volume of each tetrahedron represents the empty
space within its four vertices. Therefore, we can measure the empty space
around a residue by considering the tetrahedra that are adjacent to the
residue. This excludes any tetrahedron having all four vertices in the residue
as its volume would account as empty space inside the residue instead of
space around it.

Let r ⊂ S be a residue, and Tr be the set of tetrahedra in D(S), with at
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least one vertex in r and at most three vertices in r, that is:

Tr := {∆ ∈ D(S) : 1 < |V (∆) ∩ r| < 4},

where ‘||’ denotes the cardinality of the set and V (∆) is the set of vertices of
tetrahedron ∆. In other words, the tetrahedra having at least one vertex in
the residue and at least one in a different residue. Note that tetrahedra with
no vertex in r are not considered in the computation of the local void of r,
as it would account as empty space not adjacent to the residue. Finally, we
compute the void of r as

Void(r) =
∑

∆∈Tr

V∆,

where V∆ is the volume of tetrahedron ∆.
As with the previous method, we restrict the void to be within chemical

distance: We constraint Tr to have tetrahedra with only vertices at chemical
reach from r. For this purpose, wee state the condition that a tetrahedron
∆ ∈ Tr, if and only if, for any edge e of ∆, we have:

1. length of e < c ≤ 5 Å

Where c is a positive real number. Usually we will let c to be equal to 5
Ångströms, as this distance respects most chemical interactions happening
between atoms, and the distribution of the length of the edges of tetrahedra
in D(S) for 750 proteins shows a considerable change around 5 Ångströms.

5.4.2 Algorithm

In order to obtain the set Tr from residue r ⊂ S, we implement an algorithm
iterating on the atoms of r. This algorithm first finds for each atom a, the
set of tetrahedra adjacent to atom in a ∈ r. From this set of tetrahedra, we
select the tetrahedra whose edges are shorter than a given cutoff c ∈ R (c
being usually equal to 5). Finally, we select from that set, the tetrahedra
with at least one vertex in a residue in S \ r. In other words, the tetrahedra
in Tr must have at least one vertex outside of r (Algorithm 2). For each
atom x ∈ r in residue r, we select all 3-tuples of atoms (w, y, z) not all in
r, such that there exist a tetrahedron in D(S) with vertices x,w, y, and z.
The resulting tetrahedra set is one step away from Tr, which results from
removing all tetrahedra with at least one edge whose length is greater than
c.
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5.5 Empty tetrahedra method

The previous method defined the void of a residue in terms of the volume
of the tetrahedra around the residue, taken from the Delaunay triangulation
D(S) of the protein structure S. A restriction on the length of edges of the
tetrahedra is imposed to discriminate between void and the more general
bulk of the molecule. In this method, we redefine the void of a residue r ⊂ S
considering the radii of the atoms composing the residue. These radii are
the atomic van der Waals radii taken from [20].

Moreover, we use the concept of empty tetrahedra; where a tetrahedron
∆ ∈ D(S) is empty if the length of every edge of ∆ is greater than the
sum of the radii of its endpoints (based on the concept of empty tetrahedra
in [36]). Note that a non-empty tetrahedron has at least one pair of two-body
overlapping atoms.

The empty space within ∆ is defined by:

void(∆) = V∆ −
∑
v∈∆

V v
overlap

Where V v
overlap is the volume of the overlap between ∆ and the spheres cen-

tered at vertices V (∆) and radius equal to the van der Waals radius of their
respective atoms. The method to measure the overlap volume between atoms
and the tetrahedron is explained in Subsection 5.5.1.

The use of empty tetrahedra allows for the possibility of defining bounded
and non-bounded empty space. In this method, void is only considered if it
is bounded empty space in the interior of the molecule, as opposed to empty
space outside of the surface. An empty tetrahedron ∆ is bounded, if there
exist no path of adjacent empty tetrahedra ∆,∆1,∆2, . . . ,∆n, from ∆ to
a empty tetrahedron ∆n, such that ∆n is adjacent to a tetrahedron at the
boundary or surface of D(S). The surface is modeled with the convex hull
conv(S) of the atomic coordinates of the protein S, and an adjacent tetra-
hedron to the surface shares one face with conv(S). In the same fashion,
two tetrahedra are adjacent if they share a face (i.e. three vertices). This
approach guarantees that only empty tetrahedra containing void “trapped”
inside the molecule are considered as opposed to empty space found in pock-
ets and depressions near the surface of proteins.

5.5.1 Overlap between a sphere and a tetrahedron

The volume of the overlap between a sphere and a tetrahedron has no di-
rect analytical calculation. However, the volume can be decomposed into
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Figure 5.10: Overlap representation between a sphere centered at point c and
radius r, and a tetrahedron with vertices a, b, c and d. Vertex a coincides
with the center of the sphere and is also the only vertex of the tetrahedron
to be inside the sphere. The overlap region between the sphere and the
tetrahedron is represented by a doted pattern. Here, an atom is represented
by a sphere using its van der Waals radius.

multiple basic parts which are analytically computable [66]. In our case, the
overlapped sphere is centered at one of the vertices of the empty tetrahedron
with the other three vertices located outside of the sphere (Figure 5.10).
This simplifies considerably the overlap compared to cases where the center
of the sphere is not a vertex of the tetrahedron and/or more than one vertex
is inside the sphere [66].

A spherical cap is the part of a sphere that is cut by a plane (Figure 5.11).
When a plane cuts the sphere through its center the cap is called a hemi-
sphere. In our case, three faces of the tetrahedron intersect the sphere.
Moreover, the faces intersect the sphere at its center, therefore each cap
produced by a plane spanned by its faces is a hemisphere (Figure 5.10).

A spherical wedge is defined by the intersection of two planes through
the center of the sphere (Figure 5.11). The angle of the wedge is equal to
the dihedral angle of the planes’ intersection. In our case, the dihedral angle
of each wedge coincides with the dihedral angle of the intersecting faces of
the tetrahedron.

The volume of the overlap between the tetrahedron and the sphere can
be calculated starting with the volume of the sphere and removing each
sub-volume not necessary for the calculation in an inclusion-exclusion pro-
cedure [66].
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Wedge Cap

Figure 5.11: A wedge and a cap of the sphere.

Let Vsphere be the volume of the sphere, to compute the volume of the
overlap, we first subtract from Vsphere, the volume of the caps defined by
each face of the tetrahedron (exclusion). After the subtraction of the three
caps from Vsphere, we remove two times each pairwise intersection of the caps.
The next step is then to add back these volumes, i.e., the volume of each
wedge defined by the intersecting edges of the tetrahedron with the sphere
(inclusion). Finally, we need to subtract the three-wise intersection of these
wedges (exclusion), conveniently, this volume coincides with the volume we
seek to measure. We have:

Voverlap = Vsphere −
∑
faces

Vcap +
∑
edges

Vwedge − Voverlap.

Where Voverlap is the volume of the overlap of the tetrahedron and the sphere.
The only volume that is non trivial to calculate is the volume of the

wedges. The volume of a wedge is defined by the dihedral angle of the
intersecting planes forming it. If φ is such an angle, then

Vwedge =
2φr3

3
,

where r is the radius of the sphere. The dihedral angle of two planes can
be obtained by computing the arc cosine of the dot product of their normal
vectors. Suppose φ1, φ2, and φ3 are the dihedral angles of the wedges defined
by the three intersecting edges of the tetrahedron with the sphere. Then we
can rewrite the previous formula to obtain the volume of the overlap as:

Voverlap =
r3

3

[
− π + φ1 + φ2 + φ3

]
.

5.5.2 Bounded empty tetrahedra

As previously mentioned, an empty tetrahedron is characterized by having
its edges of a length larger than the sum of the corresponding radii of the
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Algorithm 3 Given a starting tetrahedron ∆s ∈ D(S), find its connected
component in the graph where vertices are open tetrahedra which are con-
nected by an edge if they share a face in D(S). Return the connected com-
ponent C, and a list of the “checked” or visited vertices by the depth first
search algorithm.
1: procedure DepthFirstSearch(∆s)
2: checked = ∅
3: stack = ∆s

4: C = ∅
5: while First element ∆ in stack is empty do
6: Append ∆ to checked
7: N∆ = {∆n : ∆n is adjacent to ∆}
8: if A tetrahedron in N∆ is on the boundary of D(S) then
9: C = ∅

10: checked = checked∆ ∪N∆

11: return (C, checked)
12: end if
13: if At least one empty tetrahedron of N∆ not in stack then
14: while empty ∆n ∈ N∆ not in stack do
15: Insert ∆n to stack
16: end while
17: else
18: Pop ∆ from stack
19: C = C ∪ stack
20: end if
21: end while
22: return (C, checked)
23: end procedure

endpoints. This implies not only that the tetrahedron has empty space
inside, but that the empty space is enclosed inside the protein.

An empty tetrahedron is non bounded if it exists on a path of adjacent
empty tetrahedra ending on an open tetrahedron (one of its edges is larger
than the sum of the endpoints’ radii) at the boundary of the Delaunay tri-
angulation D(S). Let the graph G = (V,E) have as set of vertices all empty
tetrahedra in D(S). An edge ∆1∆2 ∈ E exists between two vertices, if the
corresponding tetrahedra ∆1 and ∆2 share a face. The set of bounded tetra-
hedra then can be found by removing from G all the connected components
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having at least one open tetrahedron at the boundary of D(S) (Algorithm 3).

5.5.3 Algorithm

To compute the local void of each residue, we first get the set of connected
components consisting of open bounded tetrahedra. This set is obtained by
iterating over the Delaunay triangulation D(S) of the set S (Algorithm 3).
Once we obtain such a set, we can calculate for each tetrahedron the volume
of the overlap with the spheres centered at its vertices. Subtracting these
volumes from the volume of the tetrahedron gives the empty space or void
of the tetrahedron. This void accounts for a part of the void of each residue
having at least one vertex of the tetrahedron. The sum of the void of each
atom of the residue accounts for the total void of the residue.

The Delaunay triangulation of S was obtained using the Delaunay class
from the spatial module of the Scipy package [30] and the code to obtain
the void using the three methods presented here can be found at https:
//github.com/rodogi/biographs.

5.6 Results

In order to test the three methods, we calculated the local void of each
amino acid in two structurally similar proteins: Cholera Toxin B pentamer
and Heat Labile Enterotoxin B pentamer (PDB files are 1EEI and 1EFI,
respectively). The two proteins have five same-length chains each, and are
structurally superimposable. They differ in 19 positions of the sequence,
where amino acids occupying these positions are not equal. That is, the
toxins differ in 19×5 = 95 positions of a total of 83×5 = 515, which gives a
nice framework for comparing the different values of the void measurements.

We are interested to know how different the void of each residue will be
when measured by each method. Table 5.3 shows the sensitivity of the mea-
sures to the atomic positions in the 3D structures of the two toxins, rarely
two residues have a similar values independently from the measurement used.
The average difference (CtxB5 - hLBT5) between the measures is quite low,
however, with an average difference of -6.26 Å3, 7.57 Å3, and -4.41 Å3 for
the method convex hull, Delaunay, and empty tetrahedra, respectively (Ta-
ble 5.1). The empty tetrahedra method has a distribution of the difference
of void with a mean and median closest to zero than the other two methods,
however, it is the method showing a larger standard deviation. The fact that
central tendency values mean and median are close to zero implies that most
void difference is redistributed across the protein as a consequence of the

https://github.com/rodogi/biographs
https://github.com/rodogi/biographs
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Table 5.1: Central tendency measures of the difference in void between CtxB5

and hLTB5 across the three methods.

Method Mean (Å3) Median (Å3) Standard Deviation (Å3)

Convex Hull -6.26 -1.04 53.96
Delaunay 7.57 -0.09 68.61
Empty tetrahedra -4.41 0.33 95.13

distinct arrangement of atoms in both toxins. The sum of the differences is
-645.65 Å3, 780.41 Å3, and -454.26 Å3 for the method convex hull, Delau-
nay and empty tetrahedra, respectively, showing that convex hull and empty
tetrahedra methods find more void in hLBT5, opposite to Delaunay method
which has a positive difference sum.

The empty tetrahedra (ET) method shows little variation between the
two toxins for residues with small void (Figure 5.13a), that could explain
the small values of the mean and median difference between the two toxins.
The correlation coefficient is r = 0.75 between the voids of both molecules if
we consider chain D, and r = 0.66 when we consider the whole protein. The
probability values p (for the null-hypothesis of voids between amino acids not
being correlated) are 9 × 10−20 and 7 × 10−68, respectively. The dispersion
between the two toxins is incrementing for large void values (Figure 5.13a).
This can be also seen by the difference between the maximum values of
void between the two toxins (Figure ). Void between the toxins is balanced
between 10–90 percentile ranks, but hLTB5 has much greater void values in
the last 10 percentile ranks, showing larger big local-voids for its positions
(Figure 5.13a).

5.6.1 Large voids in hLTB5

Positions 59, 62, and 63 show very large voids in hLTB5 but not so in CtxB5

(Table 5.2). The positions are all on the “hole” of the donut-like shape of
the toxins (Figure 5.14), where a lot of empty space is found. The effect
of a much larger void for the subset of positions belonging to hLTB5 could
be an agglomeration of small voids forming a huge cavity near the hole of
the toxins. We recall that void in the empty tetrahedra (ET) method is
calculated from the sum of the void of atoms in what we call an empty
tetrahedron, which has both of its edges shorter than the sum of the atomic
endpoints’ radii.

We focus on the case of residue lysine on chain D at position 62, having
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Figure 5.12: The percentile values of the void of CtxB5 and hLTB5 for empty
tetrahedra method across all 515 positions.

(a) Convex Hull method (b) Delaunay method

(c) Empty tetrahedra method

Figure 5.13: CtxB5 vs. hLTB5 void for each residue of the 515 residues in
the two toxins.



CHAPTER 5. VOID AROUND AMINO ACIDS 142

Table 5.2: Voids obtained with CT method for some residues at positions
59, 62, and 63 are shown for hLTB5 and CtxB5.

Residue Void (Å3)
CtxB5 hLTB5

D62 1187.47 438.68
F63 915.8 188.12
H59 825.65 374.3
E59 806.14 166.57
E63 774.48 263.82
H63 724.01 275.83
E62 568.34 217.63
G62 534.57 313

9 atoms. In the case of hLTB5 this residue has the largest local void 1187.47
Å3, and 438.68 Å3 for the CtxB5 also being a large void (9th largest void).
Even if D62 has a large void in both toxins, the void difference of 748.78 Å3 is
extremely large. Analyzing the Delaunay tessellation of both toxins targeting
atoms in residue D62; we found that the number of tetrahedra adjacent to
an atom of D67 is 160 and 166 for CtxB5 and hLTB5, respectively. So the
number of the tetrahedra cannot explain the void difference as they are very
similar, but the sum of the volumes can: 895.70 Å3 for CtxB5 vs. 4111.87 Å3

for hLTB5. Now, if we only select empty tetrahedra adjacent to the residue,
that is, tetrahedra such that all edges are larger than the endpoints’ radii,
there are 21 and 26 for CtxB5 and hLTB5, respectively. The sum of those
tetrahedra for each toxin accounts for 1181.47 Å3, so the total void in hLTB5

and 479.3 Å3 in CtxB5.

5.6.2 Delaunay Method cutoff

The cutoff used for the Delaunay method (Section 5.4) selects the tetrahedra
to take into account for the void around residues. The cutoff has been set to
5 Ångströms for the results of this work after analysis of the length of edges
in the Delaunay tessellation D of 252 proteins. A tetrahedron of D, has the
property of containing no other atomic coordinate of the protein structure
inside, but this does not guarantees the avoidance of aberrant cases where
tetrahedra has very large edges mostly between atomic coordinates on the
surface or at two extremes of a central hole in the case of oligomeric proteins.
In order to have a clearer view of the length of edges in the Delaunay tessel-
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Figure 5.14: Positions 59, 62, and 63 in CtxB5 and hLTB5, the two toxins are
aligned and colors yellow and red represent the atoms of CtxB5 and hLTB5,
respectively.

lation, to select a suitable cutoff for the removal of bulk space, we measured
the length of each edge on the Delaunay tessellation of 252 proteins, for a
total of 72,108,048 tetrahedron edges. The mean value of the set of edge
lengths is 3.87 Å, with a median value of 3.43 Åand standard deviation 3.49
Å. We can infer from these values that edge lengths vary little around mean
but some come close to zero (min is 0.23 Å) and the maximum is 367.14 Å,
which amounts for more than the diameter size of some proteins. Very large
edge lengths, can produce an extremely large void in proteins when using
the Delaunay triangulation (Subsection 5.6.1).

In order to make the data more manageable, we select a random sample
of 100,000 edge lengths (Figure 5.15). The data shows a steep change in
the distribution of edge length at around 5 Ångströms, the number of values
smaller than 5 is 83,906, equal to 84% of all edge lengths for the sample.
The remaining lengths are accountable for very large values of void when no
cutoff is used, like in the case of the empty tetrahedra method (Section 5.5);
even if the void is trapped inside the protein it represents bulk empty space.

The distribution of the length of the edges shows first a flat behavior
where edge lengths vary very slowly and suddenly explode as seen in Fig-
ure 5.15. The first part of the distribution has a very stable evolution of the
lengths, varying slowly for the first 80% of the edges, between 0–5 Å. The
other 20% of the edges have values between 5–292 Å. It is around 5 Å that
the distribution changes as seen in Figure 5.16. It is relevant to underline
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Figure 5.15: Sample of 100,000 edge lengths of tetrahedra of the Delaunay
tessellation of 252 proteins.

(a) (b)

Figure 5.16: Distribution of length edges smaller than 5 Å in (a) and 6 Å in
(b).
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Figure 5.17: Histogram of the length of 100,000 Delaunay edges taking values
from 1.2–15 Ångströms. The bins have a size of 0.5 Å and start at 0.1 Å.

the importance of this cutoff as it coincides with the chemical distance under
which most interactions happen in the protein structure [21], and is thus the
cutoff of 5 Å that was used to compute the void using the Delaunay method
in the results presented here.

5.6.3 Gap in atomic distances

By considering the random sample of 100,000 edges, we found a gap in the
lengths between 1.6 Å and 2.1 Å, the number of edges of length smaller than
2.1 Åis 17762 so 17.762% of the total, and smaller than 1.6 Å is 17613 so
17.613% of the total, leaving only around 0.1% of the edges in the interval
1.6–2.1 Å. The gap of values is more evident when considering the distribu-
tion of lengths on intervals of 0.5 Å. The 1.6–2.1 Å interval is considerable
when we take into account that the minimum value of the sample is 1.2 Å,
so the interval 1.2–1.6 Å has 17613 edge lengths, compared to 149 in the in-
terval 1.6–2.1 Å (Figure 5.17). In the next interval of the same size, 2.1–2.6
Å there are 13119 edges, so the gap at 1.6–2.1 Å is surprising but congruent
with a difference in the distance length between covalent and non-covalent
interactions.

Figure 5.18 show the gap forming at 1.6–2.1 Å, relative to the length of
edges in the Delaunay tessellation of proteins. Each figure shows a different
scale of the same plot zooming in at the interval 1.6–2.1 Å. When considering
the total number of edges (72,108,048), we find a very similar pattern from
the random sample: 17.8% of edges have a length in the interval 1.1–1.6 Å,
only 0.1% in the interval 1.6–2.1 Å, and 13% in 2.1–2.6 Å. As previously
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mentioned, this suggest a clear difference between covalent and non-covalent
atomic interactions, where the 17% of the distances are actually covalent
interactions within the 3D structure, and non-covalent interactions start in
the interval 2.1–2.6 Å.

5.6.4 Distribution of void

For each measure, we computed the void of residues belonging to 252 pro-
teins, so the local void of 230,522 residues. The distributions vary to a
great extent depending on the method used (Figure 5.19). The Delaunay
method shows a distribution of void with a Gaussian-like shape, while the
Convex hull method features a half-normal distribution where the void has
a median of 107.9 Å3. The empty tetrahedra method shows an exponential
distribution with a median of 106 Å3.

The Delaunay method shows a normal distribution across a broad range
going from 0 to 1282 Å3, with a mean value of 351.56 Å3 and standard devia-
tion 153.79 Å3. The cutoff chosen to calculate the void values is 5 Å, meaning
that only tetrahedra with edge lengths smaller than 5 Å are considered to be
part of the local void of amino acids (Section 5.4). This value is close to the
change in slope of the distribution of 100,00 edge lengths belonging to tetra-
hedra in the Delaunay tessellation of 252 proteins (Figure 5.15). Restraining
the lengths of edges of tetrahedra with a 5 Å cutoff, ignores values after
the steep change in the distribution of edge lengths, suggesting that exter-
nal empty space is excluded from the computation. Indeed, the tetrahedra
connecting atoms at very long distances within the protein should account
for the external or bulk space of the protein, and the tetrahedra within 5 Å
accounts for the void in the protein.

Void trapped inside the protein is measure by the empty tetrahedra
method. The mean void captured by this method is smaller than the one
of the Delaunay method (229 Å3), but captures extremely large void (maxi-
mum void being 91233 Å3). This suggests that many tetrahedra accountable
for external void are taken into account.

Finally, the convex hull method shows a smaller range of voids compared
to the Delaunay method (Figure 5.19). With a median of 107.9 Å3, it has a
median almost equal to the one of the empty tetrahedra method (106 Å3).
The maximum value of void captured by the convex hull method is 535 Å3,
consequence of the geometrical constraint of building void depending on the
positions of atoms relative to each one of the faces of the residues (Sec-
tion 5.3).
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(a) (b)

(c) (d)

(e)

Figure 5.18: Scatter plot of the length of a random sample of 100,000 edges of
tetrahedra in the Delaunay Tessellation belonging to 252 proteins. Subfigure
(a) to (e) show the same scatter plot at different scales. Subfigure (b) shows
a zoomed in version of Subfigure (a), and Subfigure (e) shows the closest
zoom of the plot, where a gap for the interval 1.6–2.1 Å can be seen more
clearly.
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(a) (b)

(c)

Figure 5.19: Distribution of void across 230,522 residues in 252 proteins. (a)
Delaunay Method. (b) Empty tetrahedra Method. (c) Convex hull Method.
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5.6.5 Void and Accessible Surface Area

The Delaunay method defines the void of an amino acid as the sum of the
volumes of tetrahedra appended to one, two or three atoms of the amino
acid. Tetrahedra that have their four vertices (atoms) on a single amino
acid are not considered for the void, as they measure space within the same
amino acid. Moreover, we filter the set of tetrahedra by removing tetrahedra
with one edge larger than five Ångströms. This is done to avoid aberrant
cases happening mainly between atoms on the surface of the protein.

We calculated the void of residues belonging to toxins CtxB5 and hLTB5

each one having 515 sequence positions from which 95 differ, and are con-
sidered as mutated positions from one another.

The correlation between the void of the 515 residues in both proteins is
r = 0.86. The void is indeed very similar due to the very similar structures
between the two proteins. The voids related to the mutated positions are less
correlated (r = 0.72) between the two proteins. Mutated positions have on
average smaller voids relative to the total number of positions: that means
voids of 324 Å3 and 325 Å3 for mutated positions in the cholera toxin and
head labile, respectively; and 367 Å3 and 362 Å3 in both toxins, for non-
mutated positions.

In the case of accessible surface area (ASA), the void is larger for buried
positions. This is due to the fact that tetrahedra having larger edges are
usually in the surface. We computed the void and accessible surface area
of the residues of a database of 250 proteins. The distribution of the void
follows a normal law (Figure 5.20).

In order to study the relation between the distribution of void and ac-
cessible surface area, we separated the values of void depending on whether
the residue had access to the surface or not (ASA> 0 or ASA= 0, respec-
tively). We noticed that buried positions tend to have larger voids than
surface exposed positions (Figure 5.21).

5.6.6 Conclusion

Proteins are robust objects that need to adapt under certain circumstances
to improve fitness. The equilibrium between robustness and adaptabili-
ty/fragility is reflected by the protein structure. Void is on average the
same across positions in the protein, showing a “Goldilocks” effect of the
empty space distribution, where residues have averaged values of void that
are neither too small nor too big. The void of a residue is dependent on the
position in the 3D structure of the residue, but up to available space inside
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Figure 5.20: The distribution of void over 250 proteins and 230522 residues.
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Figure 5.21: Distribution of void over buried and surface positions
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the protein. That is, buried residues have more space, and therefore empty
space around them than surface positions.

The distribution of degree, weight and empty space across residues being
similar, suggests that the difference between positions is minimal. A different
value of positions is relative to the aggregated changes on the neighbors of the
position. The exceptions to the Goldilocks effect of the empty space and more
generally, of the local structures of residues, are found on positions having
special neighborhoods, where residues have average structures themselves
but together conform a distinctive atomic arrangement.

The methods used to calculate the void that depend on the Delaunay
tessellation of their atomic structures can contain aberrant tetrahedra, usu-
ally on the surface or in “holes” for oligomeric proteins. We found that edge
lengths of tetrahedra varies little around its mean, which is smaller than the
chemical distance of atomic interaction. However, some edge lengths can
have values exceeding the total length of complete proteins in some cases,
suggesting that very large voids that are computed without a cutoff for edge
length measure the bulk space trapped in the protein. Methods not depen-
dent on cutoffs eliminating aberrant cases like those described before can
be used instead, but at the expense of more algorithmic complexity. How-
ever, we show that the vast majority of edge lengths falls near the chemical
distance of 5 Ångströms, which suggest a fair computation of void using
the chemical cutoff. Indeed, the two of our methods using cutoffs showed a
strong correlation of void values for residues belonging to two structurally
similar toxins, suggesting a fair estimation of local void of residues.

Further study on the use of a cutoff will need to be done by comparing
void values from our measures to cutoff-independent methods. This, to shed
some light on the trade off between algorithmic complexity and accuracy
of the void values. Specifically, a study including a large protein data set
could be used to compare voids. On the other hand, our methods allow
for a computation of relative void, or local void, of amino acids, which are
essential for our study of local structures.

5.6.7 Supplementary table
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Table 5.3: Void values of residues belonging to CtxB5 and hLTB5 for chain
D, using the three methods. The difference diff between the values of each
residue in two molecules is shown, and the residue name follows the format
chain + position.

Delaunay Method Convex Hull Method Empty tetrahedra Method

Residue CtxB5 hLTB5 diff CtxB5 hLTB5 diff CtxB5 hLTB5 diff

D1 177.41 177.50 -0.09 37.63 21.18 16.45 344.64 99.71 244.93
D2 382.24 598.54 -216.30 142.77 74.41 68.36 67.09 51.91 15.18
D3 319.07 286.84 32.23 47.98 52.61 -4.63 107.83 158.99 -51.16
D4 352.28 241.59 110.70 171.39 112.06 59.32 185.90 187.15 -1.25
D5 450.99 418.52 32.47 93.68 167.15 -73.46 110.72 141.90 -31.18
D6 299.58 213.76 85.83 61.56 42.49 19.07 19.43 29.09 -9.66
D7 335.97 358.35 -22.38 85.45 62.39 23.06 5.20 20.66 -15.46
D8 491.40 475.60 15.81 106.92 89.93 16.99 173.07 136.77 36.31
D9 327.82 311.72 16.10 41.45 41.24 0.21 17.73 14.79 2.95
D10 133.56 166.34 -32.78 6.26 0.00 6.27 13.04 46.23 -33.19
D11 399.69 383.07 16.62 37.67 65.19 -27.52 107.85 173.40 -65.55
D12 611.42 487.70 123.72 186.27 209.70 -23.42 344.93 412.82 -67.89
D13 205.53 212.69 -7.16 11.61 72.34 -60.73 629.39 523.81 105.58
D14 324.19 356.05 -31.86 50.97 41.95 9.03 34.85 127.63 -92.78
D15 395.81 339.60 56.21 58.09 91.79 -33.70 55.15 80.87 -25.71
D16 459.87 373.94 85.94 84.51 93.30 -8.79 34.64 55.92 -21.28
D17 434.57 408.99 25.58 143.41 97.94 45.46 27.53 46.84 -19.31
D18 423.20 488.55 -65.35 153.79 145.57 8.23 105.73 79.61 26.12
D19 213.50 129.11 84.39 51.95 77.95 -26.00 46.54 88.14 -41.61
D20 480.38 433.45 46.94 81.82 223.12 -141.30 133.39 104.08 29.31
D21 270.55 141.87 128.68 34.50 8.92 25.58 34.31 50.98 -16.67
D22 373.29 337.31 35.97 54.20 49.73 4.47 107.16 75.75 31.41
D23 255.93 259.60 -3.67 185.10 128.03 57.07 157.84 34.39 123.45
D24 392.01 412.36 -20.34 101.43 104.77 -3.34 153.41 98.84 54.56
D25 327.90 370.51 -42.62 198.43 38.62 159.81 200.23 161.49 38.75
D26 387.96 335.72 52.23 110.87 92.37 18.50 91.52 199.45 -107.93
D27 637.13 669.71 -32.58 246.27 317.68 -71.41 118.16 131.23 -13.08
D28 397.50 430.89 -33.39 178.35 145.93 32.42 135.56 151.04 -15.48
D29 472.61 425.59 47.03 128.18 279.45 -151.28 99.70 81.35 18.35
D30 297.10 293.86 3.24 104.51 109.95 -5.44 109.89 120.61 -10.72
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Delaunay Method Convex Hull Method Empty tetrahedra Method

Residue CtxB5 hLTB5 diff CtxB5 hLTB5 diff CtxB5 hLTB5 diff

D31 442.01 338.29 103.72 204.28 252.03 -47.76 65.53 95.76 -30.23
D32 351.92 296.78 55.13 40.10 41.25 -1.15 38.21 44.11 -5.90
D33 199.88 182.22 17.65 11.71 11.96 -0.24 65.44 64.77 0.67
D34 176.84 170.43 6.41 133.40 76.07 57.33 399.59 347.90 51.69
D35 477.72 500.92 -23.20 302.71 204.56 98.15 188.89 245.04 -56.14
D36 596.59 435.10 161.49 159.19 249.37 -90.17 65.64 80.70 -15.06
D37 409.45 397.47 11.99 214.64 201.27 13.38 150.56 157.55 -6.99
D38 308.79 412.35 -103.56 62.61 182.85 -120.24 55.45 93.04 -37.59
D39 361.35 470.01 -108.66 244.78 213.92 30.87 147.49 143.58 3.91
D40 401.40 429.07 -27.68 194.51 166.78 27.72 105.60 108.17 -2.57
D41 382.30 380.42 1.88 69.26 57.52 11.73 107.29 63.32 43.97
D42 777.98 582.98 195.00 148.38 194.65 -46.27 95.61 95.27 0.34
D43 117.33 127.25 -9.92 42.61 74.85 -32.23 191.50 37.84 153.66
D44 185.42 154.21 31.22 24.77 25.12 -0.35 102.28 52.15 50.13
D45 80.28 94.78 -14.50 8.54 4.85 3.69 115.84 18.82 97.02
D46 298.83 332.35 -33.52 18.82 103.59 -84.77 53.04 124.19 -71.14
D47 348.17 392.93 -44.77 112.15 92.53 19.62 96.29 83.79 12.51
D48 775.32 633.93 141.39 238.10 233.08 5.02 104.69 101.14 3.55
D49 573.49 607.83 -34.34 165.39 199.85 -34.46 86.24 56.31 29.92
D50 243.71 302.80 -59.09 151.05 160.49 -9.44 81.66 61.58 20.08
D51 364.16 443.59 -79.44 198.88 221.56 -22.68 171.67 186.55 -14.88
D52 339.99 330.60 9.40 80.84 93.13 -12.29 116.87 139.31 -22.44
D53 144.68 215.24 -70.56 135.30 106.01 29.29 287.70 304.54 -16.84
D54 179.93 158.84 21.09 5.80 5.75 0.06 0.00 74.99 -75.00
D55 72.65 114.77 -42.12 19.05 46.70 -27.65 371.86 286.58 85.27
D56 339.17 343.93 -4.76 109.24 69.59 39.65 446.02 530.00 -83.98
D57 521.27 547.93 -26.67 154.29 103.39 50.90 181.91 153.86 28.05
D58 375.00 274.29 100.71 38.37 75.61 -37.24 230.03 255.71 -25.68
D59 115.59 122.46 -6.87 24.00 73.23 -49.23 215.04 411.05 -196.01
D60 206.93 226.02 -19.08 73.30 59.87 13.43 152.28 131.68 20.61
D61 607.58 573.28 34.30 170.83 145.85 24.98 95.64 73.27 22.37
D62 359.78 204.80 154.98 98.94 145.65 -46.71 438.68 1187.47 -748.79
D63 198.00 231.63 -33.63 189.87 196.51 -6.64 149.76 327.07 -177.31
D64 252.96 281.70 -28.74 42.52 89.34 -46.83 92.38 99.85 -7.47
D65 439.86 535.05 -95.19 150.31 215.24 -64.93 69.40 82.16 -12.76
D66 395.50 456.44 -60.94 336.02 231.46 104.55 92.79 96.10 -3.31
D67 506.75 507.28 -0.53 300.34 306.21 -5.86 135.58 118.43 17.15



CHAPTER 5. VOID AROUND AMINO ACIDS 154

Delaunay Method Convex Hull Method Empty tetrahedra Method

Residue CtxB5 hLTB5 diff CtxB5 hLTB5 diff CtxB5 hLTB5 diff

D68 557.29 601.76 -44.47 241.16 232.33 8.82 66.63 57.33 9.30
D69 446.22 527.59 -81.37 174.41 242.26 -67.85 140.65 137.37 3.28
D70 432.03 348.28 83.75 135.30 147.90 -12.60 44.54 30.01 14.53
D71 398.23 384.37 13.86 77.30 114.28 -36.98 81.69 67.58 14.10
D72 443.06 445.44 -2.38 195.02 229.17 -34.15 144.76 149.90 -5.14
D73 492.66 482.72 9.94 369.87 344.93 24.95 111.93 137.37 -25.43
D74 255.52 271.95 -16.43 136.30 151.94 -15.64 71.62 57.35 14.28
D75 212.76 321.25 -108.49 40.01 110.69 -70.68 121.02 123.23 -2.21
D76 554.02 607.20 -53.18 365.33 385.02 -19.69 196.95 112.27 84.69
D77 269.89 283.16 -13.28 231.09 214.85 16.24 146.51 97.11 49.40
D78 242.99 231.81 11.18 40.34 49.99 -9.65 68.19 0.00 68.20
D79 250.32 298.26 -47.95 154.66 153.84 0.82 202.11 57.90 144.21
D80 181.13 267.82 -86.69 33.02 34.07 -1.05 131.77 84.95 46.83
D81 329.94 246.41 83.53 115.37 165.82 -50.45 148.06 83.10 64.96
D82 435.14 476.84 -41.70 99.30 185.87 -86.57 110.84 131.54 -20.70
D83 398.19 361.48 36.70 164.95 101.62 63.33 152.97 201.91 -48.94
D84 568.25 506.40 61.85 247.63 91.06 156.57 48.59 100.01 -51.42
D85 429.09 435.13 -6.04 178.15 238.82 -60.67 99.78 98.55 1.23
D86 334.45 347.93 -13.47 123.75 79.16 44.59 105.47 71.66 33.81
D87 599.78 460.57 139.21 124.69 142.88 -18.19 65.27 50.95 14.32
D88 579.44 483.17 96.28 195.24 222.91 -27.67 291.87 341.47 -49.60
D89 434.68 282.80 151.87 73.42 70.77 2.65 5.42 10.02 -4.59
D90 217.17 300.53 -83.36 86.12 73.92 12.20 144.76 55.08 89.69
D91 317.22 298.48 18.74 162.47 115.92 46.55 157.34 118.27 39.07
D92 134.49 147.93 -13.43 57.94 67.31 -9.37 39.38 46.90 -7.52
D93 437.19 483.70 -46.50 19.81 30.76 -10.96 46.91 38.14 8.77
D94 529.13 371.95 157.19 134.95 109.52 25.43 66.01 105.81 -39.81
D95 450.49 431.81 18.68 93.36 86.16 7.19 19.80 26.83 -7.03
D96 389.32 332.86 56.47 226.49 183.15 43.34 149.81 104.97 44.84
D97 321.85 311.69 10.16 13.80 57.24 -43.44 107.37 95.00 12.37
D98 279.02 269.86 9.17 50.85 51.71 -0.86 96.86 62.81 34.05
D99 307.76 377.08 -69.32 187.52 182.15 5.36 176.72 108.90 67.82
D100 345.56 318.74 26.82 83.77 91.66 -7.89 32.75 82.49 -49.73
D101 367.01 389.59 -22.58 154.10 104.67 49.43 159.53 156.41 3.12
D102 176.99 173.25 3.74 45.82 266.37 -220.56 34.87 175.18 -140.32
D103 175.69 243.47 -67.78 51.56 82.30 -30.74 119.74 102.22 17.52
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The work produced in this dissertation, is at the frontier between data
science, mathematics and bioinformatics. It was based on the modeling of
the protein structure as a network, where nodes are atoms or amino acids
that are connected through a link if they are close enough in the structure.
Proteins are molecules whose function is mainly characterized by their struc-
ture. Having an optimal structure is thus a necessary condition for the well
functioning of a protein. A variation in the structure can yield negative or
positive consequences consequences to the function. In nature, proteins are
molecules that vary through mutations in their genetic sequence, sometimes
causing deleterious effects to the function of a protein. The analysis of the ef-
fects of mutations on the structure is therefore the first step to understanding
those effects on the protein function.

Proteins are robust biological objects that deal with a paradigm: they
should be robust to tolerate mutations and adaptable to new functions in
order to evolve. In reality, mutations seldom have an impact in the protein
function, as proteins are indeed robust. Some mutations, however, can be
deleterious of the wild type function, and in some cases give conditions for
adaptability of a new function. The structure of proteins is consequential
to the effect mutations have on the function, because the sequence of the
protein, where mutations take place, contains the information of the final
function and structure of the protein. Indeed, the structure can be thought
as the tool for the protein to conduct its function. Here, we are interested
in the study of protein structure per se, and we studied it based on its
atomic coordinates. First, by developing a framework for studying struc-
tural change (when mutations happen). Second, using the same framework,
we compared the effects of mutations on structure and function basing on
a dataset of functional change produced experimentally [42]. We also com-
pared the structural effects to the level of buriedness of the mutated position,
to look at the relation between local and global structural change. At the
same time, we conducted a survey on local structures of amino acids for a
large protein database, studying the connectivity of residues under a network
approach. Third, we implemented three methods to study the void or empty
space around amino acids, this in order to quantify individual void “trapped”
inside the protein and as a measure of adjacent discrete geometrical objects
to the residue in question. Concerning these three parts, in the following we
describe our main conclusions and possible extensions of our work.
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6.1 Framework

The framework for studying structural change is based on a network ap-
proach, where amino acids at the interface of two chains are called hot spots
and compose the nodes of the network. The connectivity between nodes is
based on spatial proximity, where two nodes are connected if they are at dis-
tance less than five Ångströms from each other. Assuming that all proteins
bear mutations by similar mechanisms, a case of study is a good model of
investigation. We constructed the hot spot network of the Cholera toxin B
pentamer (PDB file 1EEI), obtaining the hotspot amino acids. We mutated
in silico each hotspot amino acid by asparagine and constructed the network
of the resulting PDB file. One novel finding is that structural changes fol-
low a cascade mechanism where the local reorganization of the atoms at the
site of the mutation disturbs the chemical neighbors of the mutated hotspot
which in turn disturb their chemical neighbors, as in a domino effect. We
found that motifs in the secondary structure of the protein (α-helix and β-
sheet) were found to have a large perturbation propagation in general. As
a matter of fact, a large part of the mutations propagated in the protein
structure beyond the chemical distance of the mutated position.

We clustered nodes into communities of secondary structural motifs to
qualify the topological variations produced by mutations. We encountered
two different scenarios: mutations perturbing connections between different
communities of structural motifs, and those whose perturbations happened
within the communities. This led to the hypothesis that a mutation could
yield an alternative network, which although topologically different from the
original, would be considered structurally equivalent, which fits the updated
definition of protein function as an ensemble of conformations [45].

At the end of the first part of the work, we tested the alternative struc-
ture hypothesis on a cancer related mutation which disconnected different
communities of nodes in the original network. The idea was to find another
mutation which could neutralize these negative effects on the structure, by
having an ad hoc alternative network. We found a mutation that brought
close enough these communities to act as a correction mechanism when the
protein was simultaneously mutated by the cancerous mutation. Finally,
we understood the need to consider the complete set of amino acids in the
network, given that structural change happening at a distance cutoff could
be consequence of structural change happening exclusively at non-hotspot
positions.
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6.2 Local structure

6.2.1 Local structure of amino acids

Each node in the amino acid network (AAN) represents an amino acid in the
protein. Nodes are labeled by amino acid position in the sequence. Labels
of a same position in two amino acid networks (e.g. corresponding to wild
type and mutated proteins), are identical. An edge connects two nodes in
the network if its incident amino acids are interacting in the structure. An
interaction between two amino acids occurs when two atoms, one in each
amino acid, are in turn interacting. The interaction distance of atoms is
defined by a distance cutoff. This cutoff, is usually equal to five Ångströms
in our work, representing chemical interaction distance between atoms. The
use of multiple cutoffs in Chapter 4 however, permitted us to investigate the
structural surroundings of amino acids within and beyond chemical distance.
In the network, each edge has a weight (a real number) corresponding to the
number of atomic interactions shared between the two incident amino acids
of the edge.

We used the ANN to set the local structure of each amino acid, which is
the subset of atoms of the protein structure around the amino acid, under a
given distance cutoff, belonging to other amino acids. The degree of a node
represents its number of amino acid interactions. Weight and degree are
properties that depend on the local structure of amino acids. The weight of
a node in the amino acid network (the sum of the weights of edges incident
to that node), is the number of atomic interactions of the node.

The local structure of an amino acid depends on its surrounding, but
does it depend on the amino acid itself too? We addressed this question
with the statistical analysis of the local structures of residues in a database
of 252 proteins.

A variety of degrees and weights can be found across most amino acid
types. Some buried positions are not packed to their full potential, showing
evidence of empty space or void around positions. Altogether, packing is
correlated to accessible surface area, but positions at the core of the protein
can have the same level of packing as positions at the surface.

The average weight of an edge of nodes, the ratio weight to degree, is
called the neighborhood watch, and is almost constant across amino acid
types. This implies a restriction for the packing of amino acids that should
be further investigated in future work. We concluded that amino acid types
had large range of interchangeability in the protein structure and the pairwise
geometrical, chemical and atomic interaction properties of a position appear
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a new reasonable tool to investigate the folding mechanisms of a protein.
Local structure not depending on amino acid type, and only partially

correlated to the accessible surface area, points towards the hypothesis that
protein robustness is a consequence of the interchangeability of local struc-
tures across amino acids. The movement of atoms in the 3D protein structure
as a consequence of a protein mutation, is not relevant on its own to study of
functional change (due to mutations) ending in fragility (loss of protein func-
tion), or adaptability (change of protein function). New qualitative measures
must be implemented for the analysis of structural change.

6.2.2 Local structure of functional positions

Experimental and evolutionary studies have pointed out independently to
the evidence that some positions in the sequence drive the functional change
of proteins. For the case study of the PSD-95 protein, it was shown ex-
perimentally that the protein contains a set of twenty positions that when
mutated, the protein loses its native function substantially more often than
when mutations occur elsewhere. Moreover, the effects are independent from
what amino acid is replacing which. Functionally sensitive positions, as we
call them, tend to make the protein lose its native function when mutated
by any other amino acid.

The question we raise is to know whether these positions are structurally
distinguishable from others, in terms of local structure, or, is the structural
surrounding or local structure of functionally sensitive positions distinct from
that of the rest of positions? If so, it starts differing at what distance?

We showed that neither functionally sensitive nor buried positions are
distinguishable structurally from the rest when the local structure is de-
fined on a very short distance (less than four Ångströms). However, some
differences appear between types of position (functionally sensitive/non-
functionally sensitive, buried/surface positions) when using a cutoff larger
than four Ångströms.

We used three measures of structural change based on our previous work
on hotspot networks. The first counts the number of atomic interactions
perturbed by the mutation. The second is the number of perturbed amino
acids, that is, amino acids that have at least one perturbed atom. And the
third is the largest distance in the 3D structure between the position of the
mutation and a perturbed amino acid.

When atomic interaction, is set to be four Ångströms or less, no difference
is made between positions, for any measure. The use of larger cutoffs than
chemical distance, aims at investigating the structural relations between two
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parts of the protein that are not necessarily chemically linked. This is impor-
tant to investigate, as it allows for a more complete inventory of structural
differences around different positions.

Moreover, mutations at functionally sensitive positions, perturbed more
amino acids in general. We found that there is a correlation of up to seventy
percent between functional change and number of perturbed amino acids by
the mutation. On the other hand, there is no significant link between func-
tional change and number of perturbed interactions. Amino acid perturba-
tion plays thus a more important role in functional change than interaction
perturbation does, i.e. it is not the number of interactions the mutation can
perturb that counts in terms of functional change, but the number of amino
acids. Indeed, whether one atomic pair between two amino acids, or all
atomic pairs are perturbed by the mutation is not relevant to the functional
change.

Indeed, we found that the number of perturbed atomic or amino acid
interactions are not characteristic to functionally sensitive positions, as they
affect similarly the rest of the functionally robust positions. On the other
hand, a larger number of perturbed amino acids was found to be correlated
to functionally sensitive positions. We suggested that this result could un-
derlie the existence of several communication paths between amino acids as
a method of error-correction. Further work needs to be done to test this
hypothesis, however.

The correlation between number of perturbed nodes and functional change,
implies a relation between the local structure of functionally sensitive posi-
tions and the structural change of the protein when mutated. The change in
the atomic configuration of the position consequence of replacing one amino
acid by another, can be approached by a high-throughput statistical analysis
where a mutation at the position would be simulated by a random change
in the atomic configuration of the protein. Indeed, this would allow for an
arbitrary number of structural change values relying on only on the local
structural surrounding of the position being mutated.

6.3 Local void

The final part of my dissertation was the implementation of three different
algorithms to quantify the empty space around groups of atoms. This was
done by using the Delaunay tessellation of the set of 3D atomic coordinates
of the structure as well as the convex hull of residues’ atomic coordinates.
In addition, one of the algorithms considers the atoms to be spheres of radii



CHAPTER 6. OVERVIEW 161

equal to their van der Waals radii, in order to take into account the atomic
sizes.

The methods used to calculate the void that depend on the Delaunay tes-
sellation of their atomic structures can contain aberrant tetrahedra, usually
on the surface, or in “holes” for the case of oligomeric proteins. We found that
edge lengths of tetrahedra varies little around their mean, which is smaller
than the chemical distance of atomic interaction. However, edge lengths can
have values exceeding the total length of complete proteins in some cases,
suggesting that very large voids that are computed without a cutoff for edge
length, measure the bulk space trapped in the protein. Methods not depen-
dent on cutoffs, but eliminating cases like these can be used instead, at the
expense of more algorithmic complexity. Furthermore, we showed that the
vast majority of edge lengths fall near the chemical distance of 5 Ångströms,
which suggest a fair computation of the void within the protein is done us-
ing the chemical cutoff. Indeed, two of our methods using cutoffs, showed
a strong correlation of void values for residues belonging to two structurally
similar toxins, suggesting a fair estimation of local void around residues.

Void using the Delaunay tessellation and a cutoff, is distributed normally
across positions in the protein, showing a “Goldilocks” effect of the empty
space around residues, where residues have averaged values of void that are
neither too small nor too big from the mean value. The void of a residue
is dependent on the position in the 3D structure of the residue, but up to
available space inside the protein, that is, buried residues have more space,
and therefore more empty pace around them compared to surface positions.

6.4 Future work

In the future, we propose to approximate the local structure of amino acids
by a sphere centered at the centroid of each amino acid, and radius equal
to five Ångströms, to measure the distribution of the atoms of the local
structure by partitioning the sphere in several subsets of 3D points, and
counting the number of atoms per subset. This would indicate the spatial
distribution of local structures, perhaps differentiating between two local
structures otherwise similar in terms of weight and degree, neighborhood
watch or buried and surface position.

Further study on tessellation methods using a cutoff, will need to be
done by comparing void values from our measures with cutoff-independent
methods, to shed some light on the trade off between algorithmic complexity
and accuracy of the void values. Specifically, a study including a large protein
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data set could be used to compare voids. Finally, our methods allow for a
computation of relative void, or local void of amino acids, favorable for the
study of local structures.
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Le travail produit dans cette thèse se trouve à la frontière entre la science
des données, les mathématiques et la bio-informatique. Il a était basé sur
la modélisation de la structure des protéines comme des réseaux, où les
noeuds sont des atomes ou des acides aminés qui sont reliés par un lien
s’ils sont assez proches dans la structure. Les protéines sont des molécules
dont la fonction est principalement caractérisée par leur structure. Avoir une
structure optimale est donc une condition nécessaire au bon fonctionnement
d’une protéine. Une variation dans la structure peut avoir des conséquences
négatives ou positives sur la fonction. Dans la nature, les protéines sont des
molécules qui varient à travers des mutations dans leur séquence génétique,
causant parfois des effets délétères à la fonction d’une protéine. L’analyse
des effets des mutations sur la structure est donc la première étape pour
comprendre ces effets sur la fonction des protéines.

Les protéines sont des objets biologiques robustes qui répondent à un
paradigme: elles doivent être robustes pour tolérer des mutations et adapt-
ables à de nouvelles fonctions pour évoluer. En réalité, les mutations ont
rarement un impact sur la fonction des protéines car les protéines sont en effet
robustes. Certaines mutations peuvent cependant être délétères à la fonction
de la protéine dite wild type, et dans certains cas, fournir des conditions pour
l’adaptabilité d’une nouvelle fonction. La structure des protéines est la cause
de l’effet des mutations sur la fonction, parce que la séquence de la protéine,
où les mutations ont lieu, contient l’information de la fonction finale et struc-
ture de la protéine. En effet, la structure peut être considérée comme l’outil
de la protéine pour mener à bien sa fonction. Ici, nous sommes intéressés
par l’étude de la structure des protéines en soi, et nous l’avons étudié en
fonction de ses coordonnées atomiques. D’abord, en développant un cadre
pour l’étude du changement structurel (quand des mutations se produisent).
Deuxièmement, en utilisant le même cadre, nous avons comparé les effets des
mutations sur la structure et la fonction en fonction d’un ensemble de change-
ments produits expérimentalement [42]. Nous avons également comparé les
effets structurels au niveau de l’enterrement de la position mutée, examiné la
relation entre le changement structurel local et globale. Parallèlement, nous
avons mené une enquête sur les structures locales d’acides aminés sur une
large base de données de protéines, en étudiant la connectivité des résidus
dans le cadre d’une approche en réseau. Troisièmement, nous avons mis en
oeuvre trois méthodes pour étudier le vide ou l’espace vide autour des acides
aminés, afin de quantifier vide individuel ‘piégé’ à l’intérieur de la protéine
et comme mesure de la géométrie discrète d’objets adjacents au résidu en
question. En ce qui concerne ces trois parties, nous décrivons ci-dessous nos
principales conclusions et les extensions possibles de notre travail.
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7.1 Le cadre

Le cadre d’étude des changements structurels repose sur une approche en
réseau, où les acides aminés l’interface de deux chaînes sont appelées hot
spots et composent les noeuds du réseau. La connectivité entre les noeuds
est basée sur la proximité spatiale, où deux noeuds sont connectés s’ils sont à
distance moins de cinq Ångströms l’un de l’autre. En supposant que toutes
les protéines portent des mutations par mécanismes similaires, un cas d’étude
est un bon modèle d’enquête. Nous avons construit le réseau hotspot du
pentamère B de la toxine du choléra (fichier PDB 1EEI), obtenant les acides
aminés hotspot. Nous avons muté in silico chaque acide aminé hotspot par
l’asparagine et construit le réseau résultant du fichier PDB. Une découverte
nouvelle est que les changements structurels suivent un mécanisme en cascade
où la réorganisation locale des atomes sur le site de la mutation perturbe les
voisins chimiques du hotspot muté qui, à son tour, perturbe leurs voisins
chimiques, comme dans un effet domino. Nous avons trouvé que des motifs
dans la structure secondaire de la protéine (α-helix et β-sheet) ont été trouvés
de faire une grande propagation de la perturbation en général. En fait, une
grande partie des mutations propage dans la structure de la protéine, au-delà
de la distance chimique de la position mutée.

Nous avons regroupé les noeuds en communautés de motifs structuraux
secondaires pour qualifier les variations topologiques produites par des mu-
tations. Nous avons rencontré deux scénarios différents: des mutations per-
turbant les connexions entre différentes communautés de motifs structurels,
et ceux dont les perturbations se sont produites dans le communautés. Cela
a conduit à l’hypothèse qu’une mutation pourrait produire un réseau alter-
natif, qui bien que topologiquement différent de l’original, serait considéré
comme structurellement équivalent, ce qui correspond à la définition actuelle
de la fonction des protéines comme un ensemble de conformations [45].

A la fin de la première partie du travail, nous avons testé l’hypothèse de
structure alternative sur une mutation reliée à un cancer qui déconnectait
différentes communautés de noeuds dans le réseau d’origine. L’idée était de
trouver une autre mutation qui pourrait neutraliser ces effets négatifs sur
la structure, par moyen d’un réseau alternatif ad hoc. Nous avons trouvé
une mutation qui a assez rapproché ces communautés pour agir comme un
mécanisme de correction lorsque la protéine a été simultanément muté par
la mutation cancéreuse. Enfin, nous avons compris la nécessité de considérer
l’ensemble complet des acides aminés dans le réseau, étant donné que le
changement structurel se produisant à une distance cutoff pourrait être la
conséquence de changement se produisant exclusivement à des positions non-
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hotspot.

7.2 Structure locale

7.2.1 La structure locale d’acides aminés

Chaque noeud dans le réseau d’acides aminés (AAN) représente un acide
aminé dans la protéine. Les noeuds sont étiquetés par position d’acide aminé
dans la séquence. Les étiquettes d’une même position dans deux réseaux
d’acides aminés différents (par exemple correspondant à des protéines de type
wild type et mutées), sont identiques. Un lien connecte deux noeuds dans
le réseau si ses acides aminés incidents interagissent dans la structure. Une
interaction entre deux acides aminés se produit lorsque deux atomes, un dans
chaque acide aminé, interagissent à leur tour. La distance d’interaction des
atomes est défini par un cutoff de distance. Ce cutoff est généralement égale
à cinq Ångströms dans notre travail, représentant la distance d’interaction
chimique entre les atomes. Utilisant multiples cutoffs dans le chapitre 4,
cependant, nous a permis d’étudier l’environnement structurel des acides
aminés dans et au-delà de la distance chimique. Dans le réseau, chaque
lien a un poids (un nombre réel) correspondant au nombre d’interactions
atomiques partagées entre les deux acides aminés incidents au lien.

Nous avons utilisé le AAN pour définir la structure locale de chaque
acide aminé, qui est le sous-ensemble des atomes de la structure appar-
tenant à d’autres acides aminés de la protéine, autour de l’acide aminé, et
sous un cutoff de distance donnée. Le degré d’un noeud représente son nom-
bre d’interactions en termes d’acides aminés. Le poids et le degré sont des
propriétés qui dépendent de la structure locale des acides aminés. Le poids
d’un noeud dans le réseau d’acides aminés (la somme des poids de liens
incidents à ce noeud), est le nombre d’interactions atomiques du noeud.

La structure locale d’un acide aminé dépend de son environnement, mais
dépend-elle de l’acide aminé lui-même aussi? Nous avons abordé cette ques-
tion avec l’analyse statistique des structures locales de résidus dans une base
de données de 252 protéines.

Une variété de degrés et de poids peuvent être trouvés dans la plupart des
types d’acides aminés. Quelques positions enfouies ne sont pas entourées à
leur plein potentiel, montrant une preuve d’espace vide autour des positions.
Au total, le packing est corrélé à l’aire de la surface accessible, mais les
positions au coeur de la protéine peuvent avoir le même niveau de packing
que les positions à la surface.
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Le poids moyen d’un lien, le rapport poids à degré, est appelé le neighbor-
hood watch, et est presque constant à travers tous les types d’acides aminés.
Cela implique une restriction du packing des acides aminés qui devraient être
étudiés d’avantage dans les travaux futurs. Nous avons conclu que les types
d’acides aminés avait une large gamme d’interchangeabilité dans la structure
de la protéine et la paire géométrique, propriétés d’interaction chimique et
atomique d’une position apparaissent comme un nouvel outil pour étudier
les mécanismes du repliement d’une protéine.

La structure locale ne dépend pas du type d’acide aminé, et seulement
partiellement corrélée à l’aire de surface accessible, pointe vers l’hypothèse
que la robustesse des protéines est une conséquence de interchangeabilité
des structures locales à travers les acides aminés. Le mouvement des atomes
dans la structure 3D de la protéine en conséquence d’une mutation pro-
téique, n’est pas pertinente en elle-même pour étudier le changement (en
raison de mutations) se terminant par la fragilité (perte de la fonction de la
protéine), ou l’adaptabilité (changement de la fonction de la protéine). De
nouvelles mesures qualitatives doivent être mises en oeuvre pour l’analyse
du changement structurel.

7.2.2 Structure locale des positions fonctionnelles

Des études expérimentales et évolutives ont montré indépendamment de la
preuve que certaines positions dans la séquence sont clés pour le change-
ment fonctionnel des protéines. Pour le cas d’étude de la protéine PSD-95,
il a été démontré expérimentalement que la protéine contient un ensemble
de vingt positions que lorsque mutées, la protéine perd sa fonction native
beaucoup plus souvent que lorsque des mutations se produisent ailleurs dans
la séquence. De plus, les effets sont indépendants du type d’acide aminé mu-
tant. Les positions fonctionnellement sensibles, comme nous les appelons ici,
tendent à faire perdre à la protéine sa fonction native muté par tout autre
acide aminé.

La question que nous soulevons est de savoir si ces positions se distinguent
structurellement d’autres, en termes de structure locale, ou, est la structure
locale de des positions fonctionnellement sensibles distinctes de celles du
reste des positions? Si oui, cette structure locale commence à différer à
quelle distance?

Nous avons montré que ni les positions fonctionnellement sensibles ni
les positions enterrées ne se distinguent structurellement du reste lorsque
la structure locale est définie sur une très courte distance (moins de quatre
Ångströms). Cependant, certaines différences apparaissent entre les types
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de position (fonctionnellement sensibles / non-fonctionnellement sensibles,
enterrées / positions de surface) lors de l’utilisation d’un cutoff supérieure à
quatre Ångströms.

Nous avons utilisé trois mesures de changement structurel basées sur
nos travaux précédents sur les réseaux de hotspots. La première compte le
nombre d’interactions atomiques perturbées par une mutation. La seconde
est le nombre d’acides aminés perturbés, c’est-à-dire d’acides aminés ayant
au moins un atome perturbé. Et la troisième est la plus grande distance
dans la structure 3D entre la position de la mutation et un autre acide
aminé perturbé.

Lorsque l’interaction atomique est définie sur quatre Ångströms ou moins,
aucune différence n’est faite entre les positions, pour toute mesure struc-
turale. L’utilisation de plus grands cutoffs que la distance chimique, vise à
enquêter les relations structurelles entre deux parties de la protéine qui ne
sont pas nécessairement chimiquement liés. Ceci est important à étudier, car
cela permet un inventaire plus complet des différences structurelles autour
de différentes positions.

De plus, des mutations aux positions fonctionnellement sensibles ont per-
turbé plus d’acides aminés en général. Nous avons trouvé que il y a une
corrélation allant jusqu’à soixante-dix pour cent entre le changement fonc-
tionnel et le nombre d’acides aminés perturbés par la mutation. D’autre
part, il n’y a pas de lien significatif entre changement fonctionnel et nom-
bre d’interactions perturbées. La perturbation des acides aminés joue donc
un rôle plus important dans le changement fonctionnel que la perturbation
des interactions atomiques ou d’acide aminés, c’est-à-dire que ce n’est pas le
nombre d’interactions que la mutation peut perturber ce qui compte en ter-
mes de changement fonctionnel, mais le nombre d’acides aminés perturbés.

En effet, nous avons trouvé que le nombre d’interactions atomiques ou
d’acides aminés perturbées ne sont pas caractéristiques à des positions fonc-
tionnellement sensibles, car elles affectent de la même manière le reste des
positions fonctionnellement robustes. D’autre part, un plus grand nombre
d’acides aminés perturbés a été trouvé d’être corrélé à des positions fonc-
tionnellement sensibles. Nous avons suggéré que ce résultat pourrait sous-
tendre l’existence de plusieurs voies de communication entre les acides aminés
comme méthode de code correcteur. D’autres expérimentations doivent être
réalisées pour tester cette hypothèse, cependant.

La corrélation entre le nombre de noeuds perturbés et le changement
fonctionnel implique une relation entre la structure locale des positions fonc-
tionnellement sensibles et le changement structurel de la protéine lorsqu’elle
est mutée. Le changement de la configuration atomique dû au remplace-
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ment de la position d’un acide aminé par un autre, peut être abordé par une
analyse statistique de où une mutation à une position donnée, serait simulée
par un changement aléatoire dans la configuration atomique de la protéine.
En effet, cela permettrait un nombre arbitraire de changement de valeurs
structurales s’appuyant seulement sur l’environnement structurel local de la
position en cours de mutation.

7.3 Vide local

La dernière partie de ma dissertation était la mise en oeuvre de trois algo-
rithmes différents pour quantifier l’espace vide autour des groupes d’atomes.
Cela a été fait en utilisant la tessellation de Delaunay de l’ensemble des co-
ordonnées atomiques 3D de la structure, ainsi que l’enveloppe convexe des
coordonnées atomiques des résidus. En outre, l’un des algorithmes considère
les atomes comme des sphères de rayons égaux à leurs rayons de van der
Waals, afin de prendre en compte les tailles atomiques.

Les méthodes utilisées pour calculer le vide dépendent de la tessella-
tion de Delaunay basée sur les structures atomiques des protéines, peuvent
contenir des tétraèdres aberrants, généralement à la surface, ou dans des
“trous” dans le cas des oligomères. Nous avons trouvé que les longueurs des
arêtes des tétraèdres varient peu autour de leur moyenne, qui est plus petite
que la distance chimique d’interaction atomique. Cependant, les longueurs
d’arêtes peuvent avoir des valeurs dépassant la longueur totale des protéines
complètes dans certains cas, ce qui suggère que de très grands vides sont cal-
culés sans l’utilisation d’un cutoff sur la longueur des arêtes. Les méthodes
non-dépendantes des cutoffs, mais qui éliminent les cas aberrants, peuvent
être utilisés à la place, au détriment d’une plus grande complexité algorith-
mique. En outre, nous avons démontré que la grande majorité des longueurs
d’arêtes tourne près de la distance chimique de 5 Ångströms, ce qui sug-
gère qu’un calcul juste du vide est fait dans la protéine en utilisant ce seuil
chimique. En effet, deux de nos méthodes utilisant des cutoffs ont montré
une forte corrélation des valeurs du vide pour les résidus appartenant à deux
toxines structurellement similaires, ce qui suggère une juste estimation du
vide local autour des résidus.

Le vide utilisant la tessellation de Delaunay et un cutoff est distribué
normalement à travers les positions dans la protéine, montrant un effet
“Goldilocks” de l’espace vide autour des résidus, où ils ont des valeurs moyennes
de vide qui ne sont ni trop petites ni trop grande par rapport à la valeur
moyenne. Le vide d’un résidu dépend de sa position dans la structure 3D
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de la protéine, plus précisément de son espace disponible à l’intérieur de la
protéine. C’est-à-dire que les résidus enfouis ont plus d’espace, et donc plus
d’espace vide autour d’eux par rapport aux positions de surface.

7.4 Travaux futurs

Dans le futur, nous proposons d’estimer la structure locale des acides am-
inés par une sphère centrée sur le centroïde de chaque acide aminé, et le
rayon égal à cinq Ångströms, pour mesurer la distribution des atomes de
la structure locale en partitionnant la sphère en plusieurs sous-ensembles
de points 3D, et en comptant le nombre d’atomes par sous-ensemble. Cela
indiquerait la distribution spatiale des structures locales, distinguant prob-
ablement entre deux structures locales autrement similaires en poids et en
degré, neighborhood watch ou enterrée/position de surface.

D’autres études sur les méthodes de tessellation utilisant un cutoff, de-
vront être effectuées en comparant les valeurs du vide de nos mesures avec
des méthodes indépendantes de cutoffs, pour éclairer le compromis entre la
complexité algorithmique et la précision des valeurs du vide. Plus précisé-
ment, une étude incluant un grand ensemble de données pourrait être utilisée
pour comparer des vides. Enfin, nos méthodes permettent un calcul du vide
relatif, ou vide local des acides aminés, favorable à l’étude des structures
locales.
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