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Résumé

En vue du diagnostic précoce et la prophylaxie, la surveillance des fonctions physiologiques humaines est exigée d'être essentiellement à la fois non intrusive et à long terme. Parmi nombreuses motivations, l'une des plus importantes est l'amélioration de la qualité de vie. Dans cette recherche, nous nous concentrons sur la surveillance du sommeil comme un vecteur substantiel de qualité de vie. Le sommeil est une fonction physiologique fondamentale et vitale. Avoir suffisamment de sommeil de qualité est nécessaire pour la santé mentale, pour le bien-être physiologique, pour la qualité de vie et pour la sécurité d'une personne. La respiration irrégulière pendant le sommeil, particulièrement l'apnée obstructive du sommeil, peut entraîner de graves problèmes de santé, y compris l'hypertension artérielle et accident vasculaire cérébral.

Les approches actuelles pour diagnostiquer les troubles du sommeil sont lourdes, intrusives et peuvent influer sur la qualité du sommeil du patient. Il y a donc un besoin crucial de systèmes moins encombrants pour diagnostiquer les problèmes liés au sommeil. Nous proposons d'utiliser un nouveau système de suivi du sommeil non intrusif basé sur un tapis à fibre optique à microflexion placée sous le matelas de lit. La qualité du sommeil est évaluée en fonction de différents paramètres, y compris la fréquence cardiaque, le rythme respiratoire, les mouvements du corps, l'heure du réveil, la durée du sommeil, le mouvement nocturne et l'heure du coucher. Le système proposé a été validé dans un environnement de santé et de bien-être, en plus d'un environnement clinique comme suit.

Dans le premier cas, la fréquence cardiaque est mesurée à partir de signaux ballistocardiogramme bruités acquis de 50 volontaires en position assise à l'aide d'une chaise de massage. Les signaux sont recueillis discrètement à partir d'un capteur de fibre optique microflexible intégrée dans l'appui-tête de la chaise, puis transmis à un ordinateur par une connexion Bluetooth. La fréquence cardiaque est calculée à l'aide de l'analyse multi-résolution de la transformée discrète en ondelettes à chevauchement maximal. L'erreur entre la méthode proposée et électrocardiogramme de référence est estimée en battements par minute en utilisant l'erreur absolue moyenne où le système a obtenu des résultats relativement bons (10.12±4.69) malgré la quantité remarquable d'artefact de mouvement produit en raison des fréquents mouvements corporels et/ou vibrations de la chaise de massage pendant le massage de soulagement du stress. Contrairement à l'algorithme complet de décomposition du mode empirique de l'ensemble, précédemment utilisé pour l'estimation de la fréquence cardiaque, le système proposé est beaucoup plus rapide. Par conséquent, il peut être utilisé dans les applications temps réel.

Dans ce dernier cas, nous avons évalué la capacité du capteur de fibre optique microflexible pour suivre la fréquence cardiaque et la respiration d'une manière discrète. En outre, nous avons testé la capacité du capteur dans la discrimination entre la respiration superficielle et pas de respiration. Le capteur proposé a été x comparé à un dispositif de surveillance portatif à trois canaux (ApneaLink) dans un milieu clinique au cours d'une endoscopie sous anesthésie. Parmi les dix patients recrutés pour notre étude, le système a obtenu des résultats satisfaisants quant à la fréquence cardiaque moyenne et quant à la fréquence respiratoire moyenne avec une erreur de 0.55 ± 0.59 battements/minute et de 0.38 ± 0.32 respirations/minute, respectivement. De plus, le coefficient de corrélation Pearson entre le capteur proposé et le dispositif de référence était de 0.96 et 0.78 pour la fréquence cardiaque et la respiration, respectivement. Au contraire, le capteur proposé a fourni une très faible sensibilité (24.24±12.81%) et une spécificité relativement élevée (85.88±6.01%) pour la détection de l'apnée du sommeil. On s'attend à ce que cette recherche préliminaire ouvre la voie vers la détection discrète de l'apnée obstructive du sommeil en temps réel.

Suite à la validation réussie du système proposé, nous avons déployé avec succès notre système de surveillance du sommeil pendant plus de 6 mois dans treize appartements habités principalement par les personnes âgées. Néanmoins, dans cette recherche, nous nous concentrons sur un déploiement d'un mois avec trois résidents seniors de sexe féminin. Le système proposé montre l'accord avec l'enquête utilisateur recueillie avant l'étude. En outre, le système est intégré dans une plateforme d'autonomie assistée existante avec une interface conviviale pour rendre plus commode pour les aidants le suivi des paamètres de sommeil des résidents.
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Research Description

Technological progress allows us to take better care of ourselves and our relatives with less effort. Furthermore, we observe an emergence of Zero-Effort Technologies (ZET) [START_REF] Mihailidis | [END_REF]]. They represent technological solutions that provide a service without requiring any form of active participation of the user. Their main paradigm is to leverage on unobtrusive observations of daily activities and on smart use of available information. Ambient Assisted Living (AAL) platforms, which is a specific type of ZET, target improving the quality of life -of both the monitored person and their caregivers. Such a platform aims at empowering people who may be at risk without assistance, especially the elderly. It contributes to users' autonomy in their own living space rather than leaving them completely dependent on others (e.g., a nursing home) [Sadek 2017b].

In this research, we focus on sleep monitoring as a substantial vector of quality of life. Sleep is one of the most important elements all human needs similar to oxygen, water, and food. Getting enough quality sleep is necessary to a person's mental health, physiological well-being, quality of life, and safety. Humans spend a third of their life's sleeping. As advised, among other things, by the U.S. National Institutes of Health, sleep deficiency can lead to fatal health problems. Currently, sleep assessments and evaluation tools are burdensome, expensive, and time-consuming. For these reasons, inexpensive, non-disruptive, and unobtrusive methods to monitor sleep and sleep quality are greatly needed. Healthcare systems worldwide are struggling with significant challenges, i.e., rapid growth in aging population, increased number of people with chronic and infectious diseases, rising costs, and inefficiencies in health-care systems. As a response to these challenges, the healthcare community is seeking out novel noninvasive solutions that can improve the quality of healthcare for the patient while maintaining the cost of the service provided. This is where a massive use of Internet of Things devices (wearables, low-energy sensors, beacons, apps) is playing a major shift in the quality of life of the population. To achieve these goals, early diagnosis, prevention, and a more efficient disease management system are highly needed [START_REF] Koenig | [END_REF]]. In the following section, we discuss in more detail the current challenges facing the healthcare systems.

Current Healthcare Challenges

Across the world, healthcare challenges can exist in different shapes and forms. Thereafter, it introduces tremendous pressure on the current system. Even though every country faces different challenges and encounters diverse effects, it is still feasible to identify overall global risk to current healthcare systems. These challenges are an essential starting point for the work ahead.

Population aging, the prevalence of chronic diseases, shortage of healthcare professionals, and the unexpected rise of healthcare costs, among other reasons, are the major challenges facing today's healthcare systems. For solving these issues, public and private sector players should collaborate together to find more innovative and cost-effective systems that can be deployed in out-of-hospital environments [START_REF] Niewolny | How the Internet of Things Is Revolutionizing Healthcare. Healthcare Segment Manager, Freescale Semiconductor[END_REF]]. Nowadays, clouds and the Internet of Things can help improve access to care, increase the quality of care and above all reduce the cost of care. The major challenges facing the healthcare communities are discussed in ensuing subsections.

Growing Numbers of Elderly People

Unlike earlier generations, people are living longer and healthier due to recent advances in medical science. The elderly populations are growing more rapidly than any other age group in just about every country around the world. The reasons for this are declining fertility rates and/or rising life expectancy. In general, the world's population is projected to increase by slightly more than one billion people over the next 13 years, reaching 8.6 billion in 2030, and to increase further to 9.8 billion in 2050 and 11.2 billion by 2100 (Figure 1.1 and Figure 1.2), more specifically the number of older persons in the world is projected to be 1.4 billion in 2030 and 2.1 billion in 2050, and could rise to 3.1 billion in 2100.

Over the next few decades, a further increase in the population of older persons is almost inevitable, given the size of the cohorts born in recent decades [United Nations 2017]. Typically, aging causes several limitations to older adults as a result of their cognitive decline, chronic age-related diseases in addition to weaknesses in physical activities, vision, and hearing. Since the number of older people who do require a special care has grown, too few specialists and resources are going to be available to address their needs. Many seniors prefer to stay alone in their homes. This phenomenon is referred to as aging in place, independent living at home, is denoted as the increased in the number of elders who remain in their own homes for the following years in their lives [Ricart 2017]. Providing a healthcare to elders living alone in their homes is a very challenging task given that fact that most of the elders might have a physical and/or cognitive decline.

Aging in place (defined as "remaining living in the community, with some level of independence, rather than in residential care" [Wiles 2012]) becomes possible thanks to advancements in sensor technology, wireless communications, and information technology. Long-term monitoring of physiological data in real-life environments such as users' homes is essential to help manage health problems such as cardiovascular complications, diabetes, etc. Usually, recent modalities available to monitor physiological data can be divided into two main categories: non-wearable and wearable sensors. The non-wearable sensors can be integrated with home furnishings and structures, whereas the wearable sensors can be embedded in a form factor of, for instance, a wristwatch, bracelet, or ring, etc.

The benefit of these sensors is that they can monitor several variables from individuals in their own homes during their normal daily activities. In addition, they can observe trends in physiological data over an extended period of time as well as automatically alert healthcare professionals or caregivers in emergency situations such as falls in case of older people [Korhonen 2003]. Although some older adults might have concerns about the intrusion of privacy and loss of autonomy when using remote healthcare monitoring devices, this method is preferred by older adults since it promotes independence with the added sense of protection in case something went wrong they could get an immediate assistance [Rashidi 2013, Liu 2016[START_REF] Van Hoof | [END_REF].

Prevalence of Chronic Diseases

There will be an increase in age-related diseases, namely Alzheimer disease and Parkinson's disease in which cure is not yet available. Consequently, the percentage of individuals unable to live independently is going to increase. As the population ages, there is an increasing concern about how we will pay for the quality of care for the elderly and how we will address the quality of care to our aging population [Rashidi 2013]. Hereafter, there is an immediate need to use low-priced measures to improve health in this group with the intention of preventing illness and disability later [Ricart 2017]. Moreover, there is a crucial need for self and remote monitoring of vital physiological parameters.

Shortage of Caregivers

The number of healthcare practitioners and caregivers trained to deal with aging populations will be limited. As a result, family members or relatives should informally replace the caregivers. Observing dependent individuals at home might cause some difficulties to family members such as higher levels of painfulness and physical health problems [Ricart 2017]. Well-designed and -implemented technology can extend the reach of caregivers, ultimately offsetting the rising cost of healthcare and the need for skilled caregivers. To give some examples, remote health monitoring technologies such as wearable devices and video teleconferences are now making it possible for monitoring to come to patients with disabilities rather than vice-versa.

The Internet of Things (IoT) technology enables and facilitates remote monitoring of patients who don't have ready access to effective health monitoring. Likewise, it also helps thoroughly reduce costs and promote health by increasing the availability and quality of care [START_REF] Niewolny | How the Internet of Things Is Revolutionizing Healthcare. Healthcare Segment Manager, Freescale Semiconductor[END_REF][START_REF] Islam | The Internet of Things for Health Care: A Comprehensive Survey[END_REF]]. The IoT is a network of smart devices and other objects, integrated with electronics, software, sensors, and network connectivity that allows these objects to obtain and exchange data. The concept of IoT allows the healthcare professionals and caregivers to access a patient's medical history, vitals, lab results, medical and prescription histories either on-site or remotely via tablets or smart-phones. Additionally, patients can be monitored and advised from anywhere [Dimitrov 2016]. The IoT based solution can be utilized to record patient health data in a securely manner from several sensors, apply complicated algorithms to analyze the data and then distribute it through wireless connectivity with medical specialists who can make suitable health recommendations. Figure 1.3 shows an illustration of a sensor mat as an example of an IoT device in a medical setting.

Rising Costs of Healthcare

Healthcare costs are projected to continue to increase. Thus, the current paradigm of health care will become unsettled as the aging population is going to grow in the coming decades [Zheng 2014]. As an example, an elderly person might have the condition of sleep-disordered breathing (SDB). The SDB, better known as the obstructive sleep apnea (OSA) syndrome and associated cardiovascular complications are among the most common clinical disorders. The prevalence of OSA was determined to influence approximately 14% of men and 5% of women, in a population-based study employing an apnea-hypopnea index (AHI) cutoff of ≥ 5 events/h associated with clinical symptoms to define OSA [Kimoff 2016[START_REF] Kapur | [END_REF]]. The gold-standard approach to diagnose OSA is known as polysomnography (PSG), the PSG test should be performed in a specialist sleep clinic for a complete overnight.

In principle, the sleep test includes many sensors placed on the patient body to record specific body functions such as the heart's electrical activity, brain's electrical activity, breathing, thoracoabdominal movement, blood oxygen saturation, body movement, etc. The PSG system provides accurate and real-time data. Nevertheless,
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Personnel computer, Smartphones, ... it introduces many limitations, i.e., complexity, invasiveness, excessive cost, and absence of privacy. Technological advancements in hardware and software enable noninvasive and unobtrusive sensing of vital signs. An alternative approach which may help diagnose OSA and other cardiovascular diseases is the ballistocardiography. The ballistocardiogram (BCG) signal records the mechanical activity originating from the rebound of the body, generated when the blood is pumped out of ventricles into the large blood vessel synchronous with each heartbeat [Park 2018]. During the 1900s, BCG signals were massively studied and numerous publications appeared in major scientific and clinical journals. Nevertheless, BCG signals were largely abandoned by the medical community as the measurement devices (e.g., moving table types) were very bulky and complex [Inan 2015].

Recently, BCG sensors such as the microbend fiber may be embedded in ambient locations such as mattresses, pillows, chairs, beds, or even weighing scales, to measure BCG. Some common BCG sensing technologies in literature are microbend fiber-optic sensors, fiber Bragg grating sensors, piezo-resistive fabric sensors, electromechanical film and polyvinylidene fluoride film-based sensors. One of the main advantages of the microbend fiber-optic sensor is that due to its immunity to electrical and electromagnetic interference it is a very suitable tool to be implemented in the magnetic resonance imaging environment. Other advantages include small size, lightweight, and lower price. Additionally, the sensor is an appropriate choice for unconstrained and long-term monitoring of vital signs as it is highly sensitive to pressure changes induced due to the ballistic forces of the heart, while not required to be in close contact with the body [Sadek 2017a].

Research Objectives of this Thesis

1. Design and developing a robust system for remotely collecting vital physiological signs namely heart rate, respiration, and body movement unobtrusively from subjects in their beds.

2. Design and developing a robust system for remotely monitoring the quality of sleep unobtrusively from subjects in their beds.

3. Deploying and validating the proposed system in a clinical setting.

4. Deploying the proposed system in real-life environments such as users' homes.

5. Integrating the proposed system within an existing ambient assisted living platform known as UbiSMART.

Structure of the Thesis

This thesis is structured as discussed below:

1. Chapter 1 describes the problem statement as well as general information about current healthcare challenges, namely growing number of older adults, the prevalence of chronic diseases, shortage of caregivers, and rising costs of healthcare. This chapter ends with the research aims and the thesis outline.

2. Chapter 2 briefly describes the human physiology, including cardiovascular and respiratory systems. The sleep cycles are also discussed, which consist of rapid eye movement sleep and non-rapid eye movement sleep. At last, the chapter discusses the gold-standard for assessing sleep and some of the available sleep monitoring technologies. These devices could be wearables such as bracelets; smart-watches or non-wearables like bed-sensors that can be installed underneath the user's bed mattress.

3. Chapter 3 gives a summary about ballistocardiography and how it has been evolved over time to reach an acceptable level for healthcare providers. This chapter also gives a comprehensive review of available sensors used in literature to analyze and interpret ballistocardiogram signals. These sensors include microbend fiber-optic sensors, piezo-resistive fabric sensors, electromechanical film and polyvinylidene fluoride film-based sensors, load cells, strain gauges, pneumatic, and hydraulic sensors.

4. Chapter 4 covers the operating principle of the proposed sensor, i.e., microbend fiber-optic sensor. Likewise, it discusses our system development cycle. Furthermore, it presents how the proposed system is validated in health and clinical environments. Finally, it shows how the system is integrated within an existing Ambient Assisted Living platform.

5. Chapter 5 discusses in detail the proposed methodology to analyze the data acquired by the optical fiber sensor. Various algorithms have been implemented such as empirical mode decomposition, wavelet analysis, frequency analysis, and autocorrelation function to analyze ballistocardiogram signals, and therefore interbeat intervals can be computed unobtrusively. Moreover, the data collection protocol for the two validation phases is also discussed. Wavelet analysis shows superior results compared with other algorithms. At last, the real-life deployment of the proposed system in user's homes is provided.

6. Chapter 6 describes results and discussions about the proposed methodology to analyze the optical fiber data, in which a comparative study between various algorithms is provided. It also shows the suitability of the proposed sleep monitoring system for unobtrusive vital signs monitoring in a clinical setting. Moreover, it discusses in detail the results of our real-life deployment in three users' apartments in one month's time.

7. Chapter 7 summarizes the main results, conclusions, limitation of the proposed system. In addition, it recommends some key factors to enhance the proposed methodology, and therefore it can provide continuous motoring of physiological functions.

Chapter 2 

Background Contents

Cardiovascular System

The cardiovascular system is an extensive network which achieves two main tasks as follows. First, it transports oxygen and nutrients to body organs. Second, it eliminates waste products formed by the metabolism of nutrients from the tissue cells. It consists of the heart and the blood vessels that circulate blood throughout the entire body [START_REF] Tortora | [END_REF]].

The heart, the primary organ of the cardiovascular system, is positioned somewhat to the left of the center of the chest, i.e., between the two lungs and is shielded by the rib cage. The adult heart is roughly the size of a large fist.

The human heart (Figure 2.1) consists of four chambers, i.e., two atria and two ventricles. The atria are the upper chambers that receive blood while the ventricles are the lower chambers that pump blood. The right atrium receives the blood 

Respiratory System

returning to the heart and then pumps it to the right ventricle. Next, the right ventricle pumps the deoxygenated blood to the lungs to be enriched with oxygen. Afterward, the blood is returned to the left atrium throughout the pulmonary veins. The left atrium contracts and sends the blood to the left ventricle. At last, the left ventricle sends the blood through the aorta into the circulatory network. The left ventricle requires a thick muscular wall so that it can pump the blood all the way around the body. The blood in the heart is kept moving in a forward direction thanks to a system of four one-way valves. During the time of contraction, the valves open to allow blood through, and close to prevent the blood flowing in the opposite direction when the chambers relax. Moreover, the valve system acts to sustain different pressure on the right and left sides of the heart.

The cardiac cycle, the electrical activity regulating the rhythmic contraction and relaxation of the heart's chambers, consists of two main phases, namely diastole, and systole. Diastole is the relaxation of the heart's muscles, and it takes up approximately two-thirds of the cycle. Systole is the contraction of the heart's muscles, in particular, the ventricles, which takes the remaining one-third of the cycle. During the time of diastole, the two atria contract following the impulse originated in the sinus node. As a result, the blood is propelled from the atria to the ventricles. During systole, the blood is ejected into the pulmonary artery and the aorta, respectively. The cardiac output (CO) is the amount of blood ejected from the left ventricle of the heart per minute. The cardiac output is the product of the heart rate (HR) multiplied by the stroke volume (SV) and is measured in liters per minute (L/m) as follows [START_REF] Tortora | [END_REF]]:

CO = HR × SV (2.1)
The heart rate is the number of times the heart contracts or beats per minute (bpm). The stroke volume is the amount of blood ejected from the left ventricle with each heartbeat (one contraction and relaxation of the heart muscle) of the heart rate. It is measured in milliliters per beat (ml/beat); a decrease in the stroke volume is one of the early signs of the failing heart.

Respiratory System

The respiratory system or a.k.a., the ventilator system plays a key role in controlling homeostasis, i.e., balance between the multiple parts of the body's internal environment. The respiratory system is responsible for gas exchange in the body, delivering vital oxygen to the body and removing toxic carbon-dioxide. It can achieve such important tasks during different activity levels from unconscious sleep to consciousness levels of maximal endeavor [START_REF] Story | Pathophysiology: A practical approach[END_REF]]. A schematic view of the human respiratory system is shown in Figure 2.2. The respiratory system can be divided into two main parts: upper airways and lower airways. The upper airway consists of the nose, the paranasal cavities, i.e., sinuses, the pharynx, and part of the oral cavity. The function of the nose, paranasal cavities, and pharynx is to warm, filter, and humidify the inspired air when it enters the respiratory tract. The filtering process is very important due to several reasons, among them clearing the inhaled air of dust and other debris and protecting the passage through the lungs against any potentially infectious foreign agents. The oral cavity is responsible for respiration as well as enabling sensation and smell. The main components of the lower airways encompass the larynx, trachea, and lungs. The larynx and trachea provide a channel for the pathway of air to the lungs whereas the lungs themselves receive the air and promote the gas exchange process [Rogers 2010]. The respiratory cycle consists of one respiration followed by one expiration. Ventilation (V) is the amount of air breathed in (inspiration) and out (expiration) during one minute. It can be computed by multiplying tidal volume (TV) and respiratory rate (RR) as follows:

V = TV × RR (2.2)
The tidal volume is the volume of air that enters or leaves during a single respiratory cycle. The respiratory rate is the amount of breaths per minute.

Physiology of Sleep

Knowing the basic principles of the sleep-wake cycle is very helpful to understand the importance of sleep. In human, the sleep-wake cycle involves approximately eight hours of nocturnal sleep and sixteen hours of daytime wakefulness. Two internal influences control the sleep-wake cycle, i.e., homeostasis and circadian rhythms. The homeostasis is the process of which the body maintains a steady state of internal conditions such as blood pressure, body temperature, and acid-base balance. In addition, the amount of sleep each night is also under the homeostatic control. The circadian rhythms are driven by the brain's biological clock, and it is referred to as cyclical changes. These cyclical changes are, for example, fluctuations in body temperature, hormone levels, and sleep that happen over a 24-hour period. In human, the biological clock contains a set of neurons in the hypothalamus of the brain known as the suprachiasmatic nucleus. In physiology and behavior, these 24-hour rhythms and help decide when we feel the need to wake up or go to sleep. Furthermore, the circadian clock helps promote wakefulness. On the one hand, whether it's night or day, the homeostatic system inclines to make us sleepier as time passes throughout the waking period. However, the circadian system inclines to keep us awake, provided that there is daylight, which encourages us to sleep once it becomes dark [START_REF] Battle | Essentials of public health biology: A guide for the study of pathophysiology. Essential public health[END_REF]]. Sleep can be divided into two general stages: non-rapid eye movement sleep (NREM) and REM (REM) sleep.

Chapter 2. Background

In the first stage, i.e., the NREM sleep, the physiological activities are reduced. When we get deeper into sleep, the brain activities become slower and have a greater amplitude as measured by the electroencephalogram. Moreover, the breathing and heart rate slow down, and blood pressure drops. The NREM sleep is further subdivided into four stages as follows [START_REF] Battle | Essentials of public health biology: A guide for the study of pathophysiology. Essential public health[END_REF] As eyes are not moving and the muscle's activity decreases, the sleep becomes deeper even though the muscles maintain their ability to work. Waking during the slow-wave sleep is very difficult. People will feel dizzy or disoriented for some minutes if they wake during these stages. Some children might undergo bed-wetting, sleepwalk, or night terrors during this stage.

The second stage, i.e., the REM sleep is a unique phase of sleep, where the brain waves become very intense. Similar to those in the waking state, brain activities become faster and desynchronized. In addition, breathing waves becomes more rapid, irregular, and shallow; the eyes move rapidly in different directions, and limb muscles become temporarily paralyzed. Furthermore, heart rate increases, and blood pressure rises. The most memorable and vivid dreams occur during this stage as well. It is also believed that the REM sleep plays a vital role to consolidate the memory, synthesize and organize the cognition, and regulate the mood [START_REF] Battle | Essentials of public health biology: A guide for the study of pathophysiology. Essential public health[END_REF]]. Figure 2.3 shows the electroencephalogram of a sleep cycle described by increasing REM sleep.

Sleep Monitoring

Sleep monitoring is described as the process of obtaining a qualitative sleep metrics by monitoring a person's sleep throughout the night. These metrics serves two functions. One is to formulate an objective view of the quality of a person's sleep. The other function is to determine the trends in sleep over time. Respiratory rate and body movements are considered the most related measurements for sleep monitoring

Polysomnography

during the sleeping session. The respiratory rate and respiratory rate variability are used for REM sleep identification, while the movement metrics are utilized to discriminate between deep sleep, light sleep, and the waking stages of sleep. Several sleep parameters can also be extracted, for example, duration of a sleep period, the number of awakenings, duration of disturbed sleep periods, and the amount of time required to fall asleep. Monitoring quality of sleep can be performed using various devices that use a combination of sensors and sensor technology to examine the user's sleep patterns [START_REF] Seebo | Smart Sleep: Using Smart Technology to Monitor and Improve Sleep[END_REF]]. In the following sections, we discuss some of the common techniques used to monitor and assess the quality of sleep.

Polysomnography

The term polysomnography (PSG) or a.k.a., the gold standard for sleep quality monitoring, is a complete recording of the biophysiological variations that occur during sleep. In general, the PSG is an all-night test in a specialized sleep clinic. However, it might be performed during the day if this occurs to be the patient major sleep period, such as the patients with specific circadian rhythm disorders, where their regular bedtime is during the day.

Three main information can be inferred from the PSG study as follows. First, monitoring, staging and characterizing sleep. Second, identifying sleep-disordered breathing and its outcomes. Third, quantifying periodic limb movements during sleep. Furthermore, the PSG can also provide information about irregular behaviors during sleep, i.e., parasomnias [START_REF] Koenig | [END_REF]]. During a PSG study, several sensors are mounted on various parts of the body in order to detect multiple physiological parameters in real-time (Figure 2.4). These physiological parameters can be detailed as follows:

• Electroencephalography (EEG) records the electrical activities of a person's brain using metal electrodes attached to the skin of the scalp to monitor three main regions of the brain such as frontal, central, and occipital, i.e., back. The EEG plays a vital role in determining the sleep stages of the patient.

• Electrooculography (EOG) monitors the eye movements, in which two leads are used and one is placed on the outside of each eye. The EOG also plays a role in determining the stages of sleep based on eye movements.

• Electromyography (EMG) measures muscle activities. Four electrodes might be used for the monitoring process such as two electrodes mounted on the chin and the other two placed on each leg close to the shin. The EMG can be employed to help diagnose sleep-related movement disorders such as restless leg syndrome, periodic limb movement disorder, and REM sleep behavior disorder.

• Electrocardiography (ECG / EKG) records the electrical activities of the heart using two to three electrodes on the person's chest. • Respiratory effort measures the movements of the chest and abdominal wall. Two belts are used such as one belt around the chest and one around the diaphragm.

• A nasal cannula/pressure transducer is inserted into the nostrils to monitor changes in inhalation and exhalation as well as breathing rate.

• A pulse oximeter is placed on the patient's finger in order to measure
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the blood oxygen saturation. The sleep-disordered breathing in particular sleep apnea can be detected based on the pulse oximeter, nasal cannula, and respiratory belts information. The sleep apnea happens when the person stops breathing for 10 seconds or longer during sleep. It can be further classified into three categories such as mild, moderate, and severe, based on the number of times in an hour that the person's breathing stops (apnea), or it becomes very shallow (hypopnea).

• A sound probe which can be utilized to detect the volume of snoring. It is also very helpful in discriminating between apnea events and hypopnea events.

• In addition to the above-mentioned modalities, the patient might be monitored on a closed-circuit video system and an audio device. This helps the technicians to record the different patient's behaviors and movements during sleep. Furthermore, it allows a smooth communication between the patient and technicians from different rooms. 

Actigraphy

Actigraphy is the recording of human rest/activity cycles in a noninvasive manner. Typically, an actigraph unit is in a wristwatch-like package. The patient needs to wear the unit for a week or more to measure entire motor activity. The movements that the actigraph unit receives are regularly recorded and some units also include light exposure. The data can be later read by a computer and interpreted offline; in some new sensors, the data are transmitted and analyzed in real-time. The current actigraphs use accelerometers that produce different values according to variations in orientation and the speed wherein the variation exists [Liu 2017b]. The objective is to sample these values multiple times a second and accumulate them over a period of time. At last, they are locally stored on the device and fetched at a later time. The actigraphs are able to record movements for many days, thanks to the accumulation of the data. As a result, they can provide a long-term data about circadian rhythms and the person's activity patterns. Previously, the data obtained from the analog actigraphs had to be manually scored through a very time-consuming process. However, the scoring process becomes fully automated by computer algorithms installed in digital actigraphs.

Patients can put the actigraphs either on the wrist or on the ankle so that the different limb movements can be tracked. The movement received from the ankle is very important in monitoring limb movements and/or restless syndrome. Actigraphs can provide very useful information about the sleep quality due to its longitudinal nature of data collection and its suitability to be used in the subjects' homes. Additionally, actigraphs allow researchers to conduct studies at nursing homes and assisted-living communities for both memory care and non-memory care residents. These studies can provide more information about the causes and signs of dementia along with a better understanding of the sleep modes of the residents and how their sleep requirements might deviate from people in other stages of life [START_REF] Koenig | [END_REF]]. Although wearable sensors such as actigraphs can provide a long-term data collection about the user's sleep status, they might cause inconvenience to the daily lives of older adults. This is not always true, and it might depend on the level of education and the ability to learn and accept recent technologies.

Consumer Sleep Tracking Devices

In recent years, a lot of sensor technologies have been employed, particularly to monitor sleep-wake patterns together with the gold standard polysomnography and actigraphy; these sensor technologies are usually denoted as consumer sleep tracking devices.

In general, consumer sleep tracking devices are just like actigraphs because they allow the users to be mobile and sleep as normal while being monitored closely. Most of the commercially available sleep monitors pretend to help provide information about sleep duration, quality of sleep, enabling subjects to awaken only from light sleep. Typically, the data obtained from consumer sleep tracking devices are not intended for routine diagnosis of sleep disorders. However, technological advancements in hardware and software, accessibility, ready availability allows the public to adopt them for clinical purposes.

We summarize some of the consumer sleep tracking devices in following subsections [START_REF] Kelly | [END_REF], Russo 2015, Jeon 2015[START_REF] Kolla | [END_REF], Ong 2016 

SleepImage TM

The device (Figure 2.6(b)) records ECG signal, actigraphy, and body movements using a wire electrode attached to the chest with sticky pads. It helps provide knowledge about total time of sleep, quality of sleep, and the number of awakening that happen during sleep.

Fitbit TM and Fitbit Ultra TM

The device (Figure 2.6(c)) is an activity tracker that can provide information about sleep based on movement. The device can discriminate between sleep and wake as well as provide information about total time of sleep, sleep latency, i.e., the length of time an individual can take to achieve the transition from full wakefulness to sleep and an arousal index.

Lark TM

The device (Figure 2.6(d)) is a wrist-watch actigraphy that features a silent vibrating alarm. It also can give information about total sleep duration, sleep latency, a sleep quality index. The device needs to be connected to an iPhone.

WakeMate TM

Another example of wrist-watch actigraphy is the WakeMate (Figure 2.6(e)). It can provide sleep information such as total sleep time, sleep latency, number of awakenings, and a quality of sleep. The sleep information can be transmitted to a smart-phone. Similar to other devices it has the smart-alarm feature to awaken the wearer at an optimal time within a time-window that ends in the final alarm setting.

Jawbone TM and Jawbone UP TM

The device (Figure 2.6(f)) is a wrist-watch actigraphy (bracelet-like) that can connect to an iPhone. The sleep tracking is performed using bio-impedance sensors. It is claimed that the device can distinguish between light and deep sleep, although standard actigraphy does not allow such distinction. Furthermore, it is claimed that Chapter 2. Background the device can allow the wearer to awaken at an optimal time via a smart-alarm feature.

BodyMedia SenseWear armband TM

This device (Figure 2.6(g)) employs several sensors such as the accelerometer, heat flux, temperature, a galvanic skin response to produce information about an individual sleep. Variation in heart rate, body temperature, and other recorded measures are utilized to report wake and sleep onset, and total time of sleep. 

Hexoskin

Sleep Tracking Apps on Smart-phones

Nowadays, smart-phones become a fundamental part of our daily life, including the healthcare domain. A lot of people are using mobile Apps to help improve their health and fitness. As a result, the healthcare mobile Apps have grown exponentially. For instance, hundreds of Apps have been developed for sleep and sleep hygiene monitoring, and this number is projected to continue to increase year after year. Most of these Apps aimed to serve several functions, including but not limited to: a smart-alarm feature, sleep assistants, sound recording at the time of sleep, light sensor data, the usage of the phone, and the microphone to decide sleep/wake [START_REF] Kolla | [END_REF], Ong 2016]. Additionally, other Apps have been developed to help healthcare providers in screening some specific health problems such as repeated snoring and obstructive sleep apnea syndrome. It should be mentioned that insufficient publications are available to support the suitability of these Apps [START_REF] Kelly | [END_REF][START_REF] Kolla | [END_REF] for patients with sleep complaints. Unlike wearable sensors, smart-phone Apps are inexpensive to most of the users. However, they are very susceptible to motion artifacts because they need to be located on the subject's bed. These motion artifacts might arise from a bed partner and/or interference from blankets. As a result, the quality of the signal obtained by the phone's accelerometer can potentially be degraded. To recapitulate, either wearable sensors or Apps installed on smart-phones they tend to use 3-axis accelerometers to measure the user activity. The activity counts produced by the accelerometer are then used to decide whether the user is waking or asleep. Most of the validation studies between these devices and the gold standard polysomnography or actigraphy have been performed against healthy people with no sleep problems. As a result, it is difficult to generalize their applicability to the patient suffered from sleep disorders. Overall, sleep trackers tend to overestimate total sleep time, sleep efficiency and underestimate wake up time after the onset of sleep. Another principal issue which has to be considered in selecting a sleep activity tracker is the Battery life and the frequency of recharging. 

(d) (e) (f) (g) (h) (a) (b) (c) (i)

Bed-Based Sleep Tracking Devices

As we mentioned in Section 2.7, the wearable devices might not be the optimal solutions for older adults, since these devices need to be placed on some parts of the body, such as wrists, arms, etc. The elderly people might forget to wear the devices. Other than that, these devices might annoy people that use them.

Besides, it might be a sign of their condition defaming them in social communications [START_REF] Kouroupetroglou | Enhancing the human experience through assistive technologies and e-accessibility[END_REF]]. If we consider the educational background of the elderly people, it might also be difficult for them to use smart-phones. Alternatively, new sensors have been developed and become available for consumers that use nonintrusive technologies to detect subjects' vital signs and sleep patterns. These sensors are designed and packaged in a way to make them invisible to the subjects. For example, they can be easily integrated into ambient assisted living environments such as beds, pillows, chairs, or even in weighing scales [Zaunseder 2017].

In the following subsection, we discuss some examples of the commercially available devices, and more details will be provided in the next chapter (Chapter 3). 

Emfit QS TM

Emfit QS 1 depends on what is called ballistocardiography, i.e., the sudden ejection of blood into the great vessels with each heartbeat, breathing and movement analysis. The Emfit QS (Figure 2.7(a)) has an integrated data acquisition and cellular mobile data connectivity. The Emfit QS electronics consist of its own processor and memory for completely autonomous operation. The device has a web application that enables the users to track their sleep patterns. The user can place the device underneath the bed mattress. Consequently, the user will not notice it is there. Furthermore, the Emfit QS claims to report all three sleep stages, i.e., light, deep, and REM sleep, sleep time, in addition to a sleep score, which is a number consists of total sleep time, amount of REM and deep sleep, and the number of times awakened.

Beddit TM Smart Sleep Monitor

The Beddit2 device uses several sensors, including piezo force sensor, capacitive touch sensor, humidity sensor, temperature sensor, and microphone (in the smart-phone) to provide similar information as Emfit Qs. However, since the device uses the sound information, it can record the snoring and total duration of snoring. The device is also installed under the bed mattress. The Beddit device (Figure 2.7(b)) needs to be connected to an iPhone only device via a Bluetooth connection. It also has the smart-alarm feature. The sleep information can be viewed through the Beddit mobile App.

EarlySense TM Mattress

The EarlySense3 device utilizes a piezoelectric sensor that can be placed under the bed mattress. The system (Figure 2.7(c)) can report information about heart rate, respiration, snoring, coughing, and movement. A recent study showed a good agreement between EarlySense and the gold standard polysomnography for sleep staging [START_REF] Tal | [END_REF]]. Furthermore, the device provided promising results for sleep apnea detection [Davidovich 2016].

Withings Aura TM

Withings Aura4 uses ballistocardiography to measure changes caused by respiratory rate, heartbeats and the body's movements during the night. It has been claimed that the device achieves this with clinical accuracy to evaluate the structure of the subject's sleep, as well as the existence in the bed and the number of wake-ups per night. It can discriminate an awake state from a sleep state, the periods in the bed sleeping -and awake, and measures the different sleep phases of your night. It uses the measurements from the sleep sensor to wake the subject at the best moment of his/her sleep cycle so that the subject wakes up refreshed. It provides the subject with an overview of his/her cardiovascular fitness and how well he/she recovered from stress and exercise by measuring your full-night resting heart rate.

It also records his/her surrounding's temperature, luminosity, and sound level to provide he/she with full insights to enhance his/her sleep quality. The apparatus (Figure 2.7(e)) has two distinct parts. The first is a dock that transmits light and sound gradually along with sensors that measure temperature, luminosity and sound levels. The second is a pneumatic sensor under the mattress which measures heart rate, respiratory rate, and body movements.

Touch-Free Life Care TM System

The Touch-Free Life Care system5 is a bed-sensor that can broadcast information for remote monitoring. Like other devices, it can be located below any standard bed mattress and wirelessly transmits information such as respiration, heart rate, body movement, and quality score to PCs or mobile devices (iPhone only).

Sleepace Reston TM

The Sleepace Reston6 device is another example of bed-sensors. 

Conclusion

In brief, this chapter discussed the cardiovascular and respiratory systems because they are fundamental parts of understanding sleep and quality of sleep. Next, we described the two main stages of sleep namely rapid eye movement sleep and nonrapid eye movement sleep. Afterward, we defined sleep monitoring and reviewed the most common sleep monitoring modalities namely polysomnography and actigraphy. Additionally, we mentioned some of the commercially available sleep tracking devices.

In general, sleep tracking devices such as smart-watches, wearable bracelets, or Apps installed on smart-phones are mainly designed to help enhance the quality of life, extend independent living and reduce health professionals' necessary time and healthcare costs. Although they do not yet meet the standard criteria as independent devices for healthcare application, they can provide longitudinal information, which is impossible in typical approaches. Among these sleep tracking devices, the bed-based sensors are very promising and convenient types of sleep monitoring. The reason is that these devices are completely nonintrusive with no electrodes or wires mounted on the subject's body. Such devices are mainly depending on the movements of the body during sleep and respiration as well. In the next chapter, we will explain in detail the different methods and modalities being used to monitor human vital signs and sleep using the bed-sensor technologies. In our analysis, we aimed to use the nonintrusive technology like bed-sensors because the subjects do not have to wear them. Besides, they are affordable and ready-to-use devices. 

Introduction

Up until now in Chapter 2, we have discussed in some detail the various products on the market today that can be employed to track different perspectives of sleep such as duration and quality of sleep. These products can be either wearable sleep trackers, such as smart watches and smart-phones or non-wearable sleep trackers such as in-bed sleep monitors. In this research, we prefer using the in-bed sleep monitors to the wearable sleep trackers as they are more convenient for elderly people.

The in-bed sleep monitors are more likely to be suitable for older adults due to multiple reasons. For instance, as some of the older adults might have cognitive and memory impairments, they might forget to wear the device, or they might remove the device. Hence, the monitoring system may not work as intended [START_REF] Sanchez | [END_REF]].

Additionally, the in-bed monitors are entirely nonintrusive, and they do not require any invasive electrodes or wires to be connected to the subject's body.

It is very important to monitor sleep and quality of sleep, especially for older adults because they spend more time in bed compared to younger adults. Insufficient sleep for older adults might cause depression, attention and memory problems, excessive daytime sleepiness, and experience more nighttime falls [Cooke 2011]. Typically, in-bed sensor technology is based on recording body movements, respiratory movements, and ballistocardiographic movements representing the mechanical activity of the heart [START_REF] Alihanka | [END_REF]]. As it was previously mentioned in Chapter 1, the recording of these physiological signals can be performed using multiple sensors, namely Chapter 3. Literature Review microbend fiber-optic sensors, piezo-resistive fabric sensors, electromechanical film and polyvinylidene fluoride film based sensors, load cells, strain gauges, pneumatic, and hydraulic sensors [Inan 2015]. The first of these sensors was a static charge sensitive bed introduced by Alihanka et al. [START_REF] Alihanka | [END_REF]]. The next sections will discuss, in more detail, ballistocardiography and the different techniques used in literature to analyze and interpret ballistocardiogram signals.

Ballistocardiography

Ballistocardiography (BCG) is a noninvasive technique for creating a graphical representation of the heartbeat-induced repeated motions of the human body. These repeated motions happen due to the rapid acceleration of blood when it is ejected and moved in the great vessels of the body during periods of relaxation and contraction, known as diastole and systole, respectively. In other words, BCG can provide information about the overall performance of the circulatory system; this is because BCG measures the mass movements, i.e., the mass of the circulating blood and the heart during the cardiac cycle [Pinheiro 2010b]. During atrial systole, when the blood is ejected into the large vessels, the center of mass of the body moves towards the head of the body. In other ways, when the blood moves towards the peripheral vessels and concentrates further away from the heart in the peripheral vessels, the center-of-mass moves towards the feet (Figure 3.1(b)). This shift comprises several components as a result of cardiac activity, respiration, and body movements. This
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shifting of the center of mass of the body generates the BCG waveform since the blood distribution changes during the cardiac cycle [Vogt 2012]. More than 100 years ago, BCG failed to prove its functionality, and it did not start to be used in routine tasks for a few general reasons as follows. First, there had been insufficient standard measurement methods, i.e., different methods had resulted in slightly different signals. Second, the exact physiologic origin of the BCG waveform had not been well-understood. Furthermore, there had been insufficient clear guidelines for interpretation of the results, and therefore the medical community was unwilling to take risks. Third, there had been a dominant focus on some clinical diagnostic, for example, myocardial infarction, angina pectoris, coronary heart disease; these applications need a high level of specificity and reliability that the BCG had not reached. Fourth, the emergence of ultrasound and echocardiography methods that swiftly overhauled BCG and related methods for noninvasive cardiac and hemodynamic diagnostic [START_REF] Giovangrandi | [END_REF] been given a lot of interest thanks to the information technology revolution, including hardware technology as well as software and services. As described in Chapter 1 and Chapter 2, BCG sensors can be embedded in ambient environments without the need for medical staff presence. Consequently, it has an outstanding impact in current e-health systems. Ultimately, BCG helps reduce checkups' stress and the patient emotion and attention responses. The BCG waveforms may be grouped into three main groups, i.e., the pre-systolic (frequently disregarded), the systolic and the diastolic as given in Table 3.1. The I and J waves are also quoted as ejection waves [Pinheiro 2010b]. To this extent, Table 3.1: Nomenclature of ballistocardiogram (normal displacement) signal [Scarborough 1956, Pinheiro 2010b].

Pre-Systolic Group (See Figure 3.1(a))

• F wave: (rarely seen) headward wave preceding G, related to pre-systolic events, not an after-vibration.

• G wave: small footward wave which at times precedes the H wave.

Systolic Waves (See Figure 3.1(a))

• H wave: headward deflection that begins close to the peak of the R wave, maximum peak synchronously or near the start of ejection.

• I wave: footward deflection that follows the H wave, occurs early in systole.

• J wave: largest headward wave that immediately follows the I wave, occurs late in systole.

• K wave: footward wave following J, occurs before the end of systole.

Diastolic Waves (See Figure 3.1(a))

• L and N waves: two smaller headward deflections which usually follow K.

• M wave: footward deflection between L and N.

• Smaller subsequent waves may be visible and are named in sequence.

the definition, formal limitations, and nomenclature of ballistocardiography were discussed. The formal limitations were mainly due to the complexity of the used system and misinterpretation of the obtained signals and its deformations. The field of ballistocardiography has been revived as a result of the numerous technological advancements, as, for example, the advent of microprocessors and laptop computers. All in all, ballistocardiography can be very useful in several applications such as monitoring of cardiac function and performance in addition to monitoring of sleep and sleep-disordered breathing [START_REF] Rienzo | [END_REF], Inan 2018]. One of the most prominent features of ballistocardiography is the accessibility and ready-availability, which allows the system to be deployed in users' homes without affecting the users' privacy and daily activities. In what follows, we explain more in detail the various tools and algorithms exist in the literature to analyze and interpret ballistocardiography, wherein we look at what types of sensors that can be used for signal acquisition and what types of software algorithms that can be used to extract vital information such as heartbeat, respiration, and body movements.

Piezoelectric Polyvinylidene Fluoride-Based Sensors

The piezoelectric effect is the ability of some materials to produce an electric charge in response to applied mechanical stress. The polyvinylidene fluoride (PVDF) is an exciting piezoelectric material and is usually developed as a very thin and easily bent film. If a pressure force is applied to the film, it creates a mechanical bending and a shifting of positive and negative charge centers in the film, which then results in an external electrical field. The charge generated from PVDF is equivalent to the applied pressure. Therefore, PVDF is one of the suitable candidates for detecting the small fluctuations generated by different body parts [Xin 2016].

Wang et al. [Wang 2003] proposed to use a PVDF piezopolymer film sensor for unconstrained detection of respiration rhythm and pulse rate. The film sensor was placed under the bed-sheet at the location of the thorax to obtain the variations of the pressure on the bed attributable to respiratory movement and heartbeats. The authors used the wavelet multiresolution decomposition to compute the respiration and heartbeat. The output of the respiratory inductance plethysmography (RIP) and electrocardiography (ECG) were used as a reference for respiration and heartbeat, respectively. The objective of the wavelet analysis was to decompose the raw signal into low-frequency components and high-frequency components. Next, the component presenting a good agreement with either the respiratory movement or the heartbeat was selected. Afterward, the respiratory rate was computed directly based on a time-varying adaptive threshold. On the other hand, the heartbeat component was first squared to rectify it into unipolar, and then the envelope of the rectified signal was calculated using a moving average smoothing algorithm. At last, a time-varying adaptive threshold was also applied to the smoothed envelope to compute the heart rate. It should be noted that heart rate detection was very challenging because the pressure variations attributable to heartbeat on the bed was very weak, and the shape of the signal was not always uniform. Another study was proposed by Wang et al. [Wang 2007] to detect respiration rhythm and pulse rate of premature infants using PVDF sensor array. The system was tested in clinical environments on five premature infants (1 male and 4 females). The main challenge of the proposed system was frequent body movement of the infants and the weakness of the heartbeat vibration.

Niizeki et al. [START_REF] Niizeki | [END_REF]] suggested using a PVDF sensor array for unconstrained monitoring of respiration and heart rate. The sensor array consisted of eight PVDF cable sensors and they were horizontally integrated with a textile sheet on a bed surface covering the upper half of the body. The cardiorespiratory signals, i.e., BCG and respiration were obtained using infinite impulse response digital filters. After extracting the cardiorespiratory signals, an optimal sensor selection search routine was applied to select the most appropriate sensor. The selection criterion was based on the magnitude of the power spectrum density (PSD). The autocorrelation functions of the cardiac and respiratory signals were computed using a 5-second and 15-second time segments for heartbeat and respiration, respectively. The outputs of the autocorrelation functions were smoothed and differentiated using a Savitzky-Golay (5 adjacent points) algorithm and finally, the heart rate and respiration were computed by measuring the intervals between the peaks for the respective autocorrelation functions. A fixed threshold was used to determine if the subject changes posture during the measurement, in which the output from the PVDF cables was disturbed to a large extent. A charge-coupled device (CCD) camera was used to record the image of the body position during posture change as a time stamp. The proposed system was tested against thirteen healthy male subjects whose ages ranged from 21 to 49 years. ECG and pneumotachometer for measuring respiratory flow were used as a reference during the study. The study consisted of two phases, i.e., short-term recording for 10 minutes and an overnight study for 2 hours. For the overnight recording, only 7 subjects were involved. The proposed system had some limitations in particular susceptibility to motion artifacts caused by subject movements that might have led to the misidentification of the peak for autocorrelation functions.

Paalasmaa and Ranta [Paalasmaa 2008] applied an unsupervised learning approach on ballistocardiogram signals to compute heartbeat. The ballistocardiogram signals were collected from three subjects using a piezoelectric pressure sensor over 5 hours recording. To start with, feature vectors were extracted from the signal at possible heartbeat positions, i.e., the local maxima of the signal. Then, a complete-link clustering was applied to the feature vectors to look for a cluster with the highest density. The positions of the feature vectors of the densest cluster were found to match real heartbeat positions in the signal. An angular dissimilarity measure was adopted since it omits the differences in feature vector amplitudes. The sensor was located close to the patient's upper body so that it can register cardiac activity in a proper way.

Paalasmaa et al. [START_REF] Paalasmaa | [END_REF]] introduced a sleep tracking web application, which was based on measurements from a piezoelectric film sensor placed under the mattress topper. The raw data coming from the sensor was sent to a web server for analysis and extracting information. This information includes heart rate, respiration, sleep staging, and stress reactions. The heart rate was computed by creating a heartbeat template using complete-link clustering [Paalasmaa 2008], then the heart rate intervals were detected by selecting those intervals that minimize a predetermined residual error. The sleep staging was carried out by utilizing heart rate variation, respiration variation, and activity information. The proposed approach was validated against a 40-patient group at a sleep clinic. The added value of this work is the suitability of the system for long-term monitoring of sleep and the web application for sleep analysis at home. A more comprehensive study was introduced by Paalasmaa et al. [START_REF] Paalasmaa | [END_REF]] to compute heart rate from ballistocardiogram signals acquired with piezoelectric film sensor. At first, a model for the heartbeat shape was adaptively deduced from the signal using a hierarchical clustering approach. Afterward, interbeat intervals were identified by detecting positions where the heartbeat shape best matches the signal. The proposed method was verified with overnight recordings from 46 subjects in different settings, i.e., sleep clinic, home, single bed, and double bed.

Chen et al. [Chen 2009b] advised to use four piezoelectric sensors to detect heart rate and respiration. One sensor was placed under the pillow, whereas the other three were placed under the mattress close to the back, hip, and calf level positions. The data was collected from five healthy subjects at age of twenties during a 2-hour's nap in a sleep lab. ECG and nasal thermistor signal were employed as heart rate and respiration references. Heart rate and respiration were computed based on the multiresolution analysis of the wavelet decomposition in which the Cohen-Daubechies-Feauveau biorthogonal wavelet was selected as the basis function to design the decomposition and reconstruction filters. The 6 th level approximation waveform was similar to the respiratory rhythm, while a combination of the 4 th and 5 th scale coefficients were found to be suitable for heart rate detection. The authors were able to measure both vital signs from the four positions. However, the overall optimal position was found in the back. That makes sense because the more the sensor is closer to the thorax, the more accurate the recovered signals are.

A wheelchair-based system for monitoring the cardiac activity of its user was proposed by Pinheiro et al. [Pinheiro 2012]. The signals were collected from piezoelectric film sensors and micro-electromechanical systems accelerometers installed in the seat and backrest of the chair. The system also included photoplethysmography (PPG) sensors in the armrests. The data from the sensors were sent via Wi-Fi to a laptop with a data acquisition board for deeper analysis. ECG recordings were used to validate the proposed system. The system was tested in different situations, namely unmoving wheelchair, tiled floor motion, and treadmill tests. In the last two situations, the ballistocardiogram signals collected from the piezoelectric sensors were completely corrupted by motion artifacts. On the other hand, the accelerometer was much more insensitive to wheelchair motion. The analysis was done on seven subjects using the fast Fourier transform. Subsequently, the prominent peak was selected within a specific frequency range for heart rate estimation. In a summary, getting informative ballistocardiogram signals from the piezoelectric sensors in a motion situation was almost impossible. However, it was more convenient to get informative signals from the accelerometers and the PPG sensors.

A multichannel approach was proposed by Kortelainen et al. [Kortelainen 2012] to extract heart rate and respiration information using eight PVDF sensor channels located in the upper position of the bed. The heart rate was estimated by averaging the signal channels in the frequency domain, in which a sliding time window was utilized to compute the cepstrum of each signal channel. However, the respiratory rate was computed from the first principal component of a principal component analysis (PCA) model applied to the low-pass filtered bed sensor signal. The assumption was that the first principal component will give the signal with the maximum variance, and as a result shall improve the sensitivity for the extraction of the respiration. Twenty-eight patients were recruited for the study and they were suspected to have diverse kinds of sleep problems. Frequency domain averaging was better than simple averaging over all the sensor channels. The extracted information, i.e., heart rate, respiration, and movement might have been used for further sleep analysis.

The same pressure bed sensor assembly with eight PVDF sensors was applied for sleep apnea detection in [START_REF] Guerrero | [END_REF]]. The respiratory signal was computed by two methods. The first method was to apply a Hilbert transform to the bed sensor signal and then smooth the signal with a low pass filter. The second method was similar to Kortelainen et al. [Kortelainen 2012] by adopting the PCA approach. At last, the amplitude baseline of the respiratory signal was estimated as the mean value of the preceding 100 seconds. An apnea event was detected if the ratio with the baseline was less than a selected percentage threshold value for a period of at least 10 seconds. The authors applied their methodology to twenty-five patients out of twenty-eight patients recruited in [Kortelainen 2012]. The system showed a good agreement with the reference polysomnography. However, the authors used the simplified reduced respiratory amplitude index (RRAI) instead of the standard apnea-hypopnea index (AHI). In another study, Brüser et al. [Brüser 2015] have implemented three different methods using the same sensor set to measure the heart rate in a nonintrusive way. Initially, the heart rate was computed using a sliding window cepstrum analysis [Kortelainen 2012]. Secondly, the heart rate was computed using a Bayesian fusion approach, in which three estimators were calculated from each sensor channel such as adaptive-window autocorrelation, adaptive-window average magnitude difference function, and maximum amplitude pairs. For each channel, these three estimator outputs were then combined using a Bayesian fusion method to obtain an overall estimate. In other words, Bayesian fusion approach was applied to 24 estimates. At last, the heart was estimated based on the aforementioned approach. However, for each channel separately. In general, the multichannel based approaches improved the robustness of heartbeat interval estimation over a single sensor. More specifically, Bayesian-based method slightly outperformed the cepstrum-based method.

Martin-Yebra et al. [Martín-Yebra 2015] extracted heart rate variability indices from ballistocardiogram signals and then evaluated their correlation with electrocardiogram-derived ones. The ballistocardiogram signals were acquired by a piezoelectric 3D-force plate in supine and standing positions, in a group of 18 healthy subjects (11 females). For each position, the data collection was performed during 5 minutes. Furthermore, subjects were asked to stay quiet to avoid any motion artifacts. The ballistocardiogram waves, i.e., (H, I, J, K) were detected by synchronizing ballistocardiogram signals with ECG signals. Although the proposed approach provided a good match with the reference ECG, it is very difficult to generalize this approach for real-life deployment as the data collection was conducted for a very short time and the detection part was achieved by adapting information from the ECG signals.

Katz et al. [Katz 2016] measured cardiac interbeat intervals using a contact-free piezoelectric sensor placed beneath the mattress under the tested subjects. The data was collected from 25 home sleep recordings of 14 healthy subjects in a two-in-bed setting. The authors applied three algorithms to the collected ballistocardiogram signals as follows. First, interbeat intervals were found by decomposing the signal into multiple components using an empirical mode decomposition filter and then locating the candidate peaks within a localized search area. Second, after locating potential interbeat intervals, a binomial logistic regression model was applied to classify each interbeat interval into one out of three groups based on morphological properties of the ballistocardiogram signal. Finally, an additional algorithm was implemented to get discrete interbeat interval distribution maps during the night recording, considering interbeat interval data from overlapping 15 minutes windows. The preceding three algorithms demonstrated the effectiveness of the proposed system for heart rate variability analysis. Sela et al. [START_REF][END_REF]] used the same piezoelectric sensor to detect left ventricular ejection for 10 subjects (6 males and 4 females), where the lower body of each subject was enclosed in a negative pressure chamber. The negative pressure chamber regulates and controls the blood pressure of the participants. This study demonstrated the ability of the system to identify internal bleeding condition among patients at risk, namely individuals after an accident or surgical operation.

Alvarado-Serrano et al. [START_REF] Alvarado-Serrano | [END_REF] measured beat-to-beat heart rate from subjects sitting in a common office chair. The authors used a piezoelectric sensor fixed to the bottom side of the seat to collect ballistocardiogram signals from seven subjects (5 males and 2 females). Continuous wavelet transform with splines was implemented to detect beat-to-beat intervals in which an optimal scale was selected to reduce noise and mechanical interferences. Thenceforth, learning and decision phases where applied to the selected scale to detect potential J-peaks. In the learning phase, the first four heartbeats in the ballistocardiogram signal were found to define initial thresholds, search windows, and interval limits. The learned parameters were then utilized to determine the next heartbeat and were readopted after each heartbeat detected to adhere to the heart rate and signal-amplitude changes. A similar study was proposed by Liu et al. [Liu 2017a]. However, two PVDF film sensors were installed in the seat cushion and foot insole.

Choe and Cho [Choe 2017] used a piezoelectric sensor installed between a bedframe and a mattress for unconstrained monitoring of heart rate. The data was collected from 7 male subjects sleeping in a supine sleeping position where the sensor was placed under the subject's back. In total, they collected ballistocardiogram signals for about 5 hours from all subjects, in which subjects were not moving during data acquisition. The data was first smoothed using a moving mean absolute deviation, then the J-peaks were detected within a specific search region using an adaptive thresholding technique. The authors achieved satisfactory results with the reference ECG. However, this method may not be applicable in real-life applications because the data was not collected in a typical sleep sitting and the motion artifacts were not considered as well. Table 3.2 summarizes the unconstrained monitoring of vital signs using the PVDF-based sensors.

Electromechanical Film-Based Sensors

The electromechanical film (EMFi) material is a plastic film that can transform mechanical energy into an electrical signal and the other way around. Basically, it This study demonstrated the potential of the EMFi material in monitoring the changes in cardiac function. In another study, Koivistoinen et al. [START_REF] Koivistoinen | [END_REF]] evaluated the ability of the EMFi sensors for measuring ballistocardiogram signals.

The authors installed two EMFi sensors in the seat and backrest of a normal chair, and the data was collected from two young subjects (1 male and 1 female) for 5 minutes. After visual inspection versus the reference ECG, it was found that the acquired waveforms closely simulate those reported in the literature. Equivalent results were also reported by Junnila et al. [START_REF] Junnila | [END_REF][START_REF] Junnila | [END_REF]], which presented the suitability of the EMFi sensors for extracting ballistocardiogram signals.

A smart mattress was developed by Koivistoinen et al [Kortelainen 2007] to detect interbeat intervals in a nonintrusive way from six male subjects. The mattress consisted of 160 EMFi electrodes distributed throughout the mattress that enabled signal acquisitions from multiple locations. Two methods were implemented to detect interbeat intervals, i.e., a pulse method and an adaptive window cepstrum method. In the former, signals from all channel were high pass filtered and then squared. After that, these squared values were averaged between all channels and low-pass filtered the result. At last, the beginning of each heart rate was tracked in the generate pulse train signal. In the latter, the window length of the cepstrum was selected using the pulse method as the first estimator of the heart beats. Then, signals from all channels were averaged in the frequency domain. An interpolation was used to detect more accurate location for the selected cepstrum maximum value. Moreover, the motion artifacts were eliminated based on the signal variance using a sliding time window. Although the cepstrum-based method provided better results than the pulse method, its computational efficiency was not as good as the adaptive window method.

Aubert et al. [Aubert 2008] adopted a single EMFi sensor to provide heart rate, breathing, and an activity index representing body movements. The recommended system was validated utilizing data collected from 160 subjects (58 males and 102 females) for a total of 740 hours. Part of the data was collected in a sleep laboratory from patients (i.e., sleep apnea, insomnia, and other sleep disorders) who underwent a full polysomnography and the other part was collected at home from healthy subjects. Body movements were first isolated from the sensor data based on the signal amplitudes and energy, and their time derivatives. Thereafter, heart rate was measured using a sliding window autocorrelation method, in which the optimal window length had to span 3 to 5 consecutive beats. The respiratory rate was estimated based on the local peaks, troughs, and zero-crossings, constrained to rules ensuring physiological validity in terms of duration and amplitude. Across the 60 subjects, the vital signs were computed over epochs of 30 seconds and the average values were computed and compared to the reference ECG and thorax belt, respectively. The recommended system achieved satisfying results compared to the reference devices.

Kärki and Lekkala [Karki 2008] used EMFi and PVDF sensors in the measurements of heart rate and respiration. The objective of the study was to determine if there were differences between the results of both sensors. ECG was used as a reference for heart rate and a thermistor for respiration rate. Heart rate and respiration were measured using power spectral density (PSD). The two sensors were embedded inside a textile pocket and the pocket itself was integrated into clothing. They were positioned underneath a commercial heart rate belt on the left side of the sternum. Preliminary results showed that both sensors provided reliable results in the measurements of heart and respiration rates. However, the PSD was not robust enough because the peak in the spectrum might get wider and multiple peaks might have appeared. Another study was proposed by [START_REF] Kärki | A new method to measure heart rate with EMFi and PVDF materials[END_REF]] to determine heart rate with EMFi and PVDF materials. The EMFi and PVDF sensors were grouped together to a form a single structure. The data was collected from 10 subjects (5 males and 5 females) over 60 seconds recording (sitting and supine positions), where the sensor structure was placed under the legs of a chair and bed. These preliminary results demonstrated that the heart rate can be measured at home just by sitting on a chair or lying in a bed.

Pinheiro et al. [START_REF] Pinheiro | [END_REF]] introduced a low-cost system to measure blood pressure variability and heart rate variability. A single EMFi sensor was installed in the seat of a normal office chair to measure ballistocardiogram signals while a finger PPG was used to estimate arterial oxygen saturation (SpO2). For validation, ECG was acquired using three chest leads. Using LabVIEW, heart rate and heart rate variability were determined by an adaptive peak detection algorithm. The pulse arrival time was estimated as the time difference between ECG and PPG maximum peaks, and when considering BCG-PPG relation, the I-valley (Figure 3.1(a)) was the reference. The designed system was appraised using data collected from five healthy volunteers over 10 minutes recording. The preliminary study demonstrated that heart rate variability can be measured using the correlation between BCG and PPG. The PSD was exploited to measure the heart rate. In another study, Pinheiro et al. [Pinheiro 2010a] collected ballistocardiogram signals by placing an EMFi sensor in the backrest of a wheelchair's, beneath the lining. Two modulation-based schemes were carried out for heart estimation, i.e., a sliding power window and an all-peak detector. The objective was to find all local maxima and local minima, then a spline interpolation and a moving power window were employed to compute a modulating signal. At last, a fast Fourier transform was applied to the output of each method in order to measure the average heart rate from the signal's fundamental frequency.

This system was evaluated using data gathered from six normal subjects (4 males and 2 females) during 125 seconds.

Brüser et al. [Brüser 2013] proposed an unsupervised approach to determine inter-beat intervals using an EMFi sensor. The sensor was fixed underside of a thin foam overlay which was thus located on top of the mattress of a typical bed. The system was evaluated on over-night recordings from 33 individuals (14 males and 19 females). Three estimators were implemented, namely autocorrelation function, average magnitude difference function, Maximum amplitude pairs in order to compute the local interval length using a sliding time window. Ideally, this window contained two events of interest. The values of the local interval length were constrained by two thresholds, i.e., T min and T max . The body movements were detected based on the maximum amplitude range of each time-window. The information from the three estimators was then applied to a probabilistic Bayesian method to estimate the inter-beat intervals in a continuous manner. Although the proposed method achieved very satisfactory results, the main limitation existed in the implicit hypothesis that two successive heart beats in the BCG have an unknown but similar morphology. This assumption may not always hold true.

In the same way, Zink et al. [START_REF] Zink | [END_REF]] used an EMFi sensor to detect heartbeat cycle length in patients suffered from atrial fibrillation and sinus rhythm. The sensor was placed under the bed-sheet and data was collected from 22 patients (15 M, 7 F) during and after cardioversion. Cardioversion is a medical procedure that returns a normal heart rhythm in people with certain types of abnormal heartbeats, namely arrhythmias. In another study, Zink et al. [Zink 2017] employed the EMFi sensor to measure heartbeat in patients suffered from sleep-disordered breathing. Twenty-one patients (19 males, 2 females) were recruited for the study and underwent a standard full-night polysomnography. A quality-index was proposed based on the three estimators previously discussed in [Brüser 2013] that allowed to identify segments with artifacts and to automatically exclude them from the analysis. The proposed system provided good correlation of beat-to-beat cycle length detection with simultaneously recorded ECG.

Pino et al. [Pino 2015] used two EMFi sensors installed in the seat and backrest of a normal chair in order to measure heart rate. Ballistocardiogram data were collected from 54 individuals, whereas 19 of them were measured in a laboratory (1 minute) and the rest in a hospital waiting room (2 minutes). Firstly, empirical mode decomposition and wavelet analysis were (Deabuchie 6) implemented to reconstruct ballistocardiogram signal. Secondly, the J-peaks of the ballistocardiogram signal was detected using a length transform analysis. The body movements were eliminated using a moving time window. Then, for each time-window two thresholds were computed, i.e., T1 = (max + min)/2 and T2 = mean + 1.1 * std, if T1 was greater than T2, the current window was marked as a body movement. The wavelet analysis was preferred to reconstruct the signal as it produced a higher effective measurement time. A similar approach was also proposed by [START_REF] Pino | [END_REF]]. However, they increased the size of the dataset to 114 people. Of those, 21 were gathered in a school (2 minutes), 42 in homes (2 minutes), and 51 in a hospital waiting area. It is difficult to assess the robustness of this system because the data was collected in a very short time and in a controlled environment as well.

In a recent study, Alametsä and Viik [START_REF] Alametsä | Twelve years follow-up of ballistocardiography[END_REF]] presented the stability of ballistocardiogram signal during 12 years' time, on which the data was gathered from a single person in a sitting position using EMFi sensors. Several other signals were recorded as well such as ECG, ankle pulse signal, and the carotid pulse signal from the neck near the carotid artery. All measurements lasted about 2 to 3 minutes with a sampling frequency of 500 Hz. In a conclusion, ballistocardiogram research may be recommended for examining long-term changes in heart operation and to reveal variations in it. Table 3.3 summarizes the unconstrained monitoring of vital signs using the EMFi-based sensors.

Pneumatic-Based Sensors

The idea of the pneumatic system is to deploy a thin air-sealed cushion between the bed and mattress. Thereafter, when a person rests in the bed, the forces originated because of the heartbeat, respiration, snoring and body movements affects the air in the cushion through the mattress. This slight human movement causes a pressure and therefore variations in pressure are measured by a supersensitive pressure sensor [Chow 2000, Watanabe 2004].

Watanabe et al. [Watanabe 2005] used the aforementioned pneumatic system to measure heartbeat, respiration, snoring, and body movements in a noninvasive manner. The three bio-signals, namely heartbeat, respiration, and snoring were detected using a band-pass filter with different cutoff frequencies. Following, windowed Fast Fourier transform algorithm was applied to measure heart rate and respiration. However, the relative magnitude of snoring was calculated by the standard deviation of the filtered snoring signal and the relative magnitude of body movements was calculated as the standard deviation of the envelope of the sensor output signal. The authors validated the proposed system using data collected from 15 subjects (12 males and 3 females) over 15 nights. Preliminary results showed good agreement against reference devices, namely ECG, belt-type respirometer, and a snoring detection microphone. The body movements were identified and recorded by a CCD camera. In another study, Kurihara and Watanabe [Kurihara 2012] acquired data from 10 subjects (20 seconds each) to measure heart rate and respiration. In this study, a condenser microphone was used as a reference for heart rate, respiration and signal-to-noise ratio. Validation results demonstrated that the pneumatic system was more susceptible to environmental noise, for example, opening and closing the door than the reference condenser microphone.

Chee et al. [Chee 2005, Shin 2006] recommended to use a balancing tube between two air cells to improve the effectiveness of posture changes during data collection. Balancing tube with a high air resistance aimed at equalizing the pressure of each air cell within a certain time constant. More precisely, it performed the role of a high-pass filter to eliminate body motion. The air-mattress system consisted of 19 air cells, in which measurements can be performed between any pair of cells. However, the authors collected data from the two cells situated on the backside of the chest and abdominal region. Signal was collected from a single subject laying on the air mattress where ECG and nasal airflow signal were collected simultaneously.

Although the balancing tube helped eliminate body motion, it affected the sensitivity of the measurement. Heart rate was measured by finding the maximum peak of the BCG signal between the two R-R peaks of the ECG signal. On the other hand, the respiratory rate was measured by windowed fast Fourier transform, i.e., short-time Fourier transform (STFT). Preliminary results showed good match against reference devices. Nevertheless, the proposed system might not be a preferred choice for largescale deployment due to its complexity. In another study, Shin et al. [START_REF] Shin | [END_REF]] applied the same air mattress for uncontaminated measurement of heart rate and respiration. In which, a total of 13 healthy male subjects were involved in the validation study, i.e., four hours study. The authors measured the heart rate from the R-peaks of the ECG, while the respiratory rate was measured manually. In addition, the authors asked three subjects to simulate sleep apnea (breath-holding) five times each for 10 to 15 seconds. Thereafter, the apneas were detected based on the variance of the respiratory signal with a moving window technique. Table 3.4 summarizes the unconstrained monitoring of vital signs using the pneumatic-based sensors.

Strain Gauges-Based Sensors

Brink et al. [Brink 2006] implemented four force sensors under bed-frames to unobtrusively record heartbeat, respiration activity, and body movements. Each force sensor consisted of a reflex light barrier sandwiched between two aluminum plates. When a force is applied to the sensor, the two aluminum plates are squeezed together slightly and the distance between them decreases. The reflex light barrier senses the distance between the two plates and converts it into a voltage signal, which is analogous to the ballistic forces of the heart. This voltage signal is then pre-amplified and passed through a low-pass filter to eliminate ripple and noise. In this preliminary study, heartbeat and respiration were detected by finding local minima or maxima in the signal within a sliding window. To evaluate the robustness of the force sensors, the signals were acquired from four subjects (2 males and 2 females) and in different conditions, i.e., three types of single beds, three types of frames, two types of mattresses. In total, seventy-two conditions were evaluated. In each condition, subjects were asked to sleep in a relaxed supine position on the bed. The signals were collected during 5-minute recording from the four force sensors. Additionally, ECG signals were also collected as a reference. Preliminary results showed that the proposed system can be an acceptable tool for computerized and unattended sleep-data collection over a lengthy period. Inan et al. [START_REF] O T Inan | Robust ballistocardiogram acquisition for home monitoring[END_REF]] collected ballistocardiogram signals using strain gauges within a modified commercial scale. The signals were collected from twenty-one subjects (11 males and 10 females), on which participants were asked to stand as quiet as possible on the scale for 45 seconds while BCG and ECG were concurrently closely resemble those reported in the literature. Besides, the system was able to provide beat-to-beat cardiac output monitoring. Additionally, ballistocardiogram measurements were found to be repeatable over 50 recordings collected from the same subject over a three-week period. The proposed solution was more susceptible to motion artifacts because the signals were acquired in a standing position. Hence, it might not be suitable for older adults who cannot stand as tranquil on the scale.

In order to eliminate floor vibrations, Inan et al. [Inan 2010a] proposed a seismic sensor, i.e., geophone, located in proximity to the modified scale that served as the noise reference. An adaptive algorithm was then implemented to filter the output of this sensor and cancel the vibrations from the measured ballistocardiogram signal. Signals were collected from a healthy volunteer while another person stomped around the scale, hence producing increased floor vibrations. Furthermore, signals were also collected from another volunteer standing inside a parked bus while the engine was functioning. This research established that ballistocardiogram recording is feasible in almost all environments, including ambulances and other transport vehicles, as long as the vibrations are not so significant to rail the electronics or lead to a distorted version of the ballistocardiogram force to be coupled to the scale.

In the same way, Inan et al. [Inan 2010b] evaluated the electromyogram signal collected from the feet of the subject during ballistocardiogram recording as a noise reference for standing ballistocardiogram measurements. As the lower-body electromyogram signal can be collected directly from the footpad of the modified scale, the proposed system is self-contained and can automatically eliminate motion artifacts. In another study, Wiard et al. [Wiard 2011] used a motion sensor instead of electromyogram sensors to record body motions and to serve as a noise reference. The added value of the motion sensor was to provide a minimum delay between the motion-related noise in the measured signal and the noise detected by the motion sensor. This minimum delay provided the time resolution needed to flag single heartbeat events, hence maximizing the refinement of the approach.

Brüser et al. [Bruser 2011] introduced an unsupervised learning approach to measuring heartbeat in a noninvasive manner. Ballistocardiogram signals were recorded by strain gauges in a Wheatstone bridge configuration attached to the slat under the mattress of a hospital bed. A high-pass filter was applied to the raw data in order to remove low-frequency respiratory components. Next, a set of features, representing the fundamental morphology of the heartbeat, were extracted from a 30-second time segment. Afterward, the principal component analysis was applied in order to reduce the dimensionality of the feature vectors. Additionally, a k-means clustering algorithm was adopted to identify clusters of feature vectors. This training step resulted in a list of estimated heartbeat locations. The parameters obtained during the training step were thus manipulated to locate heartbeats in the remaining ballistocardiogram signal by merging the results of three independent indicator functions, i.e., cross-correlation, Euclidean distance, and heart valve signal. Finally, the estimated heartbeat locations were exploited to provide an improved list of beat-to-beat periods. Signals were captured from sixteen healthy subjects (9 males and 7 females) during thirty minutes switching their positions every 7.5 minutes (left lateral, supine, right lateral, prone). This method produced good agreement with the reference ECG. However, the primary limitation was the training step as it had to be repeated whenever subjects enter the bed or adjust their posture with regard to the ballistocardiogram sensor.

Nukaya et al. [START_REF] Nukaya | [END_REF]] provided a contact-free method for unobtrusive measuring of heartbeat, respiration, body movement, and position change. The authors collected the pressure data using four piezoceramics transducers set beneath bed supports. The proposed system was able to detect previous bio-signals without the need for a preamplifier, accordingly without any voltage source. This is because the sensing devices were distortion sensors that operate without an electrical power supply, i.e., they produce voltage according to the time derivative of the distortion.

Vehkaoja et al. [Vehkaoja 2013] introduced dynamic pressure sensors for detecting heartbeat intervals of an individual sleeping on a bed. The pressure sensors were composed of EMFi material and located under the bed supports. In this study, individual heartbeats were not observed. However, the intervals in which the correlation between two successive signals segment maximized. Ballistocardiogram signals were collected from nine subjects (5 males, 4 females) during 1-hour recording. The beat-to-beat intervals provided by this approach can be adopted in determining frequency domain heart rate variability that is most frequently used in the assessment of sleep quality.

Lee [START_REF] Lee | [END_REF]] et al. proposed to use load cells, installed under bed supports, to measure heart rate and respiration for infants. Four infants (5 to 42 months) were involved in the study and a total of 13 experiments were carried out between 10 to 178.8 minutes. Initially, heart rate and respiratory components were extracted using band-pass filters of various cutoff frequencies. For the heart rate component, a first-order differentiation filter was applied, thus a nonlinear transformation, i.e., a Shannon entropy was applied to the differentiated signal to obtain only positive peaks. Additionally, a moving average filter was employed to flatten out the spikes and noise bursts. At last, heart rate was measured by finding local peaks in an optimum signal. For the respiration component, as the band-pass filtered signal contained residual baseline drift, a detrending algorithm based on empirical mode decomposition was adopted to get rid of such unwanted trend. Similar to heart rate, local peaks were detected in the detrended signal and therefore the respiratory rate was measured. A signal quality index was developed to choose the optimum signal out of the four load cells' signals. The quality processing procedure was developed based on calculating a threshold value computed from an autocorrelation function and a power spectral density function. The proposed system achieved acceptable results compared to the reference ECG and respiratory belt. Table 3.5 summarizes the unconstrained monitoring of vital signs using the strain gauges-based sensors. 

Hydraulic-Based Sensors

The concept of the hydraulic sensor is to measure the change in pressure applied to a liquid-filled tube. For example, Heise et al. [START_REF] Heise | [END_REF]] designed a hydraulic based-sensor for unrestrained monitoring of heart rate and respiration. Preliminary data were collected from two individuals (1 male and 1 female). Participants were instructed to lie on a bed for approximately 10 minutes. During the 10 minutes, they were asked to lie on the back, on the right side, on the back again, on the left side, and on the back once more (2 minutes each position). In this preliminary research, heartbeat signal was extracted by detecting the difference between the most negative and the most positive points within a moving window. After that, a low-pass filtered was applied to reduce the effect of noise and smooth the signal. A fixed threshold was employed to detect a body motion. Finally, the heart rate was measured by adopting the autocorrelation function. However, the respiratory rate was measured by low-pass filtering the signal and then subtracting the DC bias. Afterward, the zero-crossings were counted to provide the breaths per minute. Preliminary results approved that the hydroponic sensor was effective at extracting heart rate and respiration against the reference devices, namely a piezoresistive device worn on the subject's finger and respiration band wrapped around the subject's torso. In a different study, Heise et al. [START_REF] Heise | [END_REF]] have validated the sensor using data collected from five subjects (3 males and 2 females) and have confirmed stability of the signal processing algorithms using real and synthesized signals.

Rosales et al. [START_REF] Rosales | [END_REF]] deployed four hydraulic transducers under the bed mattress, covering the upper part of the body in order to measure heart rate in a nonrestrictive way. Each transducer was connected to a pressure sensor to record the pressure forces applied to it. In this preliminary study, heartbeats were computed using a clustering-based approach as follows. Every five seconds, body motions were eliminated based on the variance of the transducers' signal. Following body motions removal, the transducer's signal was band-pass filtered to remove respiratory components and filtered once more using an average filter to smooth the signal prior to feature extraction. Afterward, three features were extracted from every 5-second time window based on the IJK points of the ballistocardiogram signal. In addition, the extracted features were classified into two groups using k-means clustering algorithm. The first group, i.e., the smallest cluster was assigned to the heartbeat class. Then, the second group, i.e., the largest cluster was assigned to the nonheartbeat group. In conclusion, the heartbeats' (J-peaks) locations were compared to a reference signal obtained from a piezoresistive device worn on the subject's finger. Data were acquired from four subjects (2 males and 2 females) during 6 minutes (supine position). Although such clustering-based approach might have provided good results it might only be applicable to specific situations. Furthermore, to think the presented method to be applied in practical applications, manually labeling (training) data is, however, a restricting property.

A similar study was proposed by Su et al. [START_REF] Su | [END_REF]]. Nonetheless, the heart rate was measured using the Hilbert transform and the fast Fourier transform (30-second window). In this study, ballistocardiogram signals were acquired from five subjects (3 males and 2 females) during 2.5 minutes in a supine position. This approach provided a lower error rate compared with the windowed peak to peak deviation (WPPD) method introduced by Heise et al. [START_REF] Heise | [END_REF]]. Although results were consistent with the reference device, ballistocardiogram signals were assumed relatively stationary. This assumption is not always true because typically heartbeats are not uniform in time [START_REF] Heise | [END_REF]].

In another study, Lydon et al. [Lydon 2015] proposed a new algorithm to detect heart rate using the four hydraulic transducers. As a first step, a band-pass filter was implemented to remove the respiration component as well as high-frequency noise. Next, the data from the four transducers were separated into 0.3-second (30 samples) segments and the short-time energy profiles were computed for each segment. As a result, four hear rate values were generated for each transducer by locating the local peaks. Moreover, a single heart rate value was selected based on the DC level of each transducer's signal. Typically, a higher DC level in the obtained transducer's signal means that the transducer makes better contact with the body and therefore gives a more stable ballistocardiogram signal. Hence, the transducer with the highest DC level was chosen for heart rate measurement. Finally, outliers were eliminated by following whether the estimated heart rate value was more than 15 beats per minute from the moving average heart rate value. Validation data were collected from two groups, i.e, three subjects (2 males and 1 female) during 10 minutes recording and four older adults (4 males) in a typical home environment. This approach provided slightly better results compared to the clustering-based approach provided by Rosales et al. [START_REF] Rosales | [END_REF]].

In order to address the uncertainty inherent in a ballistocardiogram signal, for instance, misalignment between training data and ground truth, improper collection of the heartbeat by some transducers, Jiao et al. [Jiao 2016] applied the Extended Function of Multiple Instances (eFUMI) algorithm to ballistocardiogram signals generated by the four hydraulic transducers. The objective of the eFUMI was to learn a personalized concept of heartbeat for a subject in addition to several nonheartbeat background concepts. Following the learning step, heartbeat detection and heart rate estimation can be applied to test data. The limitation of this algorithm is the need for sufficient training data, which might not be always available.

Rosales et al. [START_REF] Rosales | [END_REF]] applied the clustering-based approach [START_REF] Rosales | [END_REF]] and the Hilbert transform approach [START_REF] Su | [END_REF]] to ballistocardiogram signal collected from four male senior residents. The signals were collected from residents over a two to four months period under in-home living conditions. However, the analysis was done only over five minutes of initial recordings. The Hilbert transform approach was able to produce more stable heart rate estimates compared to the clustering-based approach. The latter approach was more susceptible to motion artifacts. Table 3.6 summarizes the unconstrained monitoring of vital signs using the hydraulic-based sensors. 

Fiber Optic-Based Sensors

In existing literature, unobtrusive vital signs monitoring is achieved either by microbend fiber-optic sensors (MFOS) or fiber Bragg grating sensors (FBGS). The principle of the MFOS is that if an optical fiber is bent, insignificant amounts of light are lost through the fiber walls. This reduces the amount of received light and is a function of bend pressure [Lagakos 1987, Berthold 1995, Luo 1999[START_REF] Hu | [END_REF].

The FBG is an optical fiber that serves as a filter for a specific wavelength of light.

The principle of the FBGS is to detect the reflected Bragg wavelength shift owing to changes in temperature, strain, or pressure [Moghadas 2010[START_REF] Poeggel | [END_REF]. Fiber Bragg gratings are commonly used optical fiber sensors for measuring temperature and/or mechanical strain. Though, the excessive cost of the interrogation systems is the most significant obstacle for their large commercial application [Díaz 2017].

Chen et al. [Chen 2009c[START_REF][END_REF]] described the effectiveness of the MFOS for nonintrusive monitoring of heart rate and breathing rate. For heart rate, ballistocardiogram signals were gathered from several subjects in sitting position and breathing normally. Preliminary results have proved that the ballistocardiogram waveforms closely simulated those reported in the existing literature. For breathing rate, nine volunteers were involved in the study in which respiratory signals were collected during sleep. The system has shown a good match with the reference respiratory device. Deepu et al. [Deepu 2012] introduced a smart cushion integrated with MFOS for real-time heart rate monitoring. The cushion can be placed on the seat or back of a chair for data collection. In this study, five subjects were involved, and signals were collected during 5-minutes. Several steps were applied to the cushion's signals in order to unobtrusively measure the heart rate. Initially, low and high-frequency noises were suppressed using a band-pass finite impulse response (FIR) filter. Next, a cubing operation was applied to the filtered signal to enhance the amplitude swing while keeping the signal sign intact. Afterward, momentary upswing or downswing was removed by applying a moving average filter. Furthermore, the resultant signal was smoothed by utilizing the absolute value and averaging over a predefined time window. At last, the J-peaks were recognized by using a cone detection and comparing to an adaptive threshold. The proposed system achieved satisfactory results compared to the reference pulse oximetry device.

Chen et al. [START_REF][END_REF]] studied the possibility of measuring blood pressure using ballistocardiography and photoplethysmography (PPG). The concept was to calculate the time delay between the peaks of the ballistocardiography and the corresponding PPG peaks. Ballistocardiogram signals were collected from five healthy subjects in a sitting position using a cushion integrated with MFOS, whereas PPG signals were collected from a finger pulse oximeter. Preliminary results have shown that blood pressure might be measured using optical devices. However, the proposed approach was very challenging because it required a calibration procedure for each subject prior to measurement.

Lau et al. [Lau 2013] evaluated the effectiveness of the MFOS for respiratory monitoring and respiratory gating in the magnetic resonance imaging (MRI) envi-ronment. Respiratory gating is the process of reducing cardiorespiratory artifacts by synchronizing magnetic resonance data acquisition to the cardiac or respiratory cycles. Unlike electrical sensors, fiber-optic sensors are immune to electromagnetic and radio-frequency interference. Twenty healthy subjects (10 males and 10 females) were involved in the study and they underwent T2-weighted half-Fourier single-shot turbo spin-echo MRI of the liver with synchronous breathing rate monitoring on a 1.5 Tesla magnetic resonance scanner. The breathing rate was detected by applying a band-pass filter and hence detecting local peaks in the time domain. This study presented that the MFOS were able to detect comparable breathing rate to the reference respiratory bellows and produce liver MRI images of good diagnostic quality compared to the navigator-acquired scans. Chen et al. [Chen 2014b] reported related results using data collected from eleven healthy subjects (6 males and 5 females) during MRI.

A similar study was provided by Dziuda et al. [Dziuda 2013a]. However, authors used FBG sensors rather than MFOS. Three healthy volunteers (2 males and 1 female) were included in the study and physiological data were collected during 95 minutes. Both heart rate and breathing rate were measured by finding local maxima after applying band-pass filters of different cutoff frequencies to the sensor data. Similar to the MFOS, the FBG sensor did not introduce any artifacts into MRI images. Furthermore, the system achieved comparable results to the reference devices, i.e., carbon electrodes and pneumatic bellows, respectively. Dziuda et al. [Dziuda 2013b, Dziuda 2014[START_REF] Krej | [END_REF], Dziuda 2015] reported similar results using data collected during MRI examination.

Zhu et al. [Zhu 2013] demonstrated the effectiveness of the MFOS for unobtrusive measurement of heart rate in a headrest position. Three healthy individuals were enrolled in the study in which an optical sensor mat was placed on the headrest of a massage chair. The participants were instructed to complete predefined series of tasks, i.e., rest, cognitive test battery, and relaxing massage session. In this preliminary study, the analysis was done only during rest periods for a total of six minutes. A band-pass filter was applied to the sensor data to remove low-frequency respiratory signals. Afterward, heart rate was computed using short-time Fourier transform. The proposed system achieved a relatively good agreement against the reference ECG.

Chen et al. [Chen 2014a] reported the results of using the MFOS in a clinical trial for unobtrusive monitoring of heart rate and respiration during sleep. During the study, data were collected from twenty-two subjects using the optical fiber sensor and also from the standard polysomnography as a reference. At the beginning, large body movements were eliminated using a moving time window. In which, a segment was identified as a body movement if the difference between the maximum and the minimum in the moving window was larger than a fixed threshold. Next, respiratory and heartbeat components were separated from the sensor's signals using band-pass filters of different cutoff frequencies. In the former, the signals were smoothed using a moving-average filter and hence the baseline was obtained by another moving-average filter of a larger window size. After subtracting the signals and the baseline, they were further smoothed using Savitzky-Golay method. Finally, local peaks were detected, and breathing rate was computed. In the latter, all local peaks of the heartbeat signals were detected, and heart rate was computed accordingly. Consequently, incorrect heart rate values were eliminated by applying a histogram-based method, in which the group with the highest occurrence was selected and reported as final heart rate results. Results were promising. However, the proposed approach was prone to motion artifacts.

Zhu et al. [START_REF] Zhu | [END_REF]] proposed to measure heart rate using ballistocardiogram signals collected from FBG sensor mat. The sensor mat consisted of three FBG sensor arrays or channels and each array contained six sensors. The arrays were located under the pillow, upper chest, and lower chest. In this study, ten subjects were enrolled, and signals were collected during 20 minutes such as 10 minutes of supine posture and 10 minutes of sideways posture. ECG signals were collected along with the fiber-optic signals as a reference. The signal from each sensor array was transformed from time domain into cepstrum domain. After that, the signal from the six sensors of the same arrays was fused by employing cepstrum. Finally, the heart rate was measured from the fused signal by recognizing peaks in the cepstrum. This study demonstrated that the heart rate can be measured from distinct locations. However, the best results were achieved from sensor arrays at chest position. In another study, Zhu et al. [START_REF] Zhu | [END_REF]] used the same system to compute breathing rate and the system was tested against twelve subjects.

Fajkus et al. [Fajkus 2017a] introduced to measure heart rate and respiration using FBG sensors encapsulated inside a polydimethylsiloxane polymer (PDMS). The FBG sensors were embedded within a thoracic elastic strap to record cardiorespiratory signals. In this preliminary analysis, the authors collected data from 10 individuals (6 males and 4 females) during few minutes. Heart rate and breathing rate were detected by adopting two methods, i.e., identifying the periodic cycles in the time domain and applying the FFT to obtain the dominant frequency. The proposed system achieved comparable results to the reference ECG. However, it was susceptible to large body movements. In another study, Fajkus et al. [Fajkus 2017b] assessed the effectiveness of using FBG sensor encapsulated inside a PDMS and FBG sensor glued on a plexiglass pad for heart and respiratory rate monitoring. In this preliminary study, the authors collected data from 10 subjects (7 males and 3 females) and result shown that the FBG sensor encapsulated into PDMS was more accurate than FBG sensor encapsulated in plexiglass pad.

Chethana et al. [Chethana 2017] reported the use of FBG sensor for monitoring cardiac and breathing activities. Cardiorespiratory signals were collected from four subjects (2 males and 2 females) for 60 seconds, on which the FBG sensor was placed on the pulmonic area on the chest of the subjects. Results have been evaluated against an electronic stethoscope which recognizes, and records sound pulses generated from the cardiac activity. Nedoma et al. [Nedoma 2017] evaluated the effectiveness of the FBG sensor against fiber interferometric sensor for heart rate measurement. The former measured the heart rate through ballistocardiography, while the latter measured the heart rate through Phonocardiography. Cardiac signals were obtained from six individuals (3 males and 3 females) using the two sensors for 60 minutes. Primary results have shown that the fiber interferometric sensor was more accurate than the FBG sensor. Table 3.7 summarizes the unconstrained monitoring of vital signs using the fiber optic-based sensors.

Conclusion

This chapter provided the definition and the nomenclature of ballistocardiography. In addition, it discussed in detail the different modalities reported in existing literature for unobtrusive monitoring of vital signs, namely heart rate, breathing rate, and body movements. These modalities include piezoelectric polyvinylidene fluoride sensors, electromechanical film sensors, pneumatic sensors, load cells, hydraulic sensors, and fiber-optic sensors. In general, the output of these sensors is a composite signal that is composed of cardiac activities, respiratory activities, and body movements. Hence, these three signals should be separated from each other so that vital signs can be measured. The separation process is usually performed by applying a band-pass filter of specific cutoff frequencies according to the signal of interest. In other cases, the separation process can be performed by adopting a decomposition algorithm such as empirical mode decomposition algorithm and wavelet multiresolution analysis. It should be noted that, vital activities cannot be detected during body movements and hence they should be eliminated prior to the measurement process. Following the separation process, i.e., obtaining cardiac signals and respiratory signals, several algorithms can then by implemented for vitals measurements. As discussed in previous sections, these algorithms include but not limited to simple peak detector, autocorrelation function, fast Fourier transform, cepstrum analysis, wavelet multiresolution analysis, empirical mode decomposition, power spectrum analysis, and clustering-based approaches. The clustering-based approaches are not very effective because the training step should be repeated whenever the data collection protocol has been changed. Moreover, the ballistocardiogram morphology varies between and within subjects, and the shape of the signal is highly dependent on subject's postures, i.e., sleeping or sitting. Furthermore, the raw signal is noisy and nonstationary due to body movement, induced respiratory efforts, and the characteristics of the sensing system itself. As previously mentioned in Chapter 1, the microbend fiber-optic sensor will be used to record cardiorespiratory signals due to its high sensitivity to ballistic forces of the heart as well as its immunity to electrical and electromagnetic interference. The ensuing chapter will show in more detail the theory of the microbend fiber-optic sensor in addition to the proposed system to analyze and interpret the cardiorespiratory signals obtained from the optical fiber sensor. 

Introduction

In the preceding chapter, we mentioned several algorithms for analyzing and interpreting cardiorespiratory signals obtained from in-bed monitors. To wrap up, these algorithms can be broadly grouped into three categories: time-domain algorithms, frequency-domain algorithms, and wavelet-domain algorithms. A summary of these algorithms is given below to highlight which category of algorithms will be used in our analysis. In the first place, time-domain algorithms are mainly focused on detecting local maxima or local minima using a moving window, and therefore finding the interval between the dominant J-peaks of ballistocardiogram signal. However, this approach has many limitations because of the nonlinear and nonstationary behavior of the ballistocardiogram signal. The implication is that the ballistocardiogram signal does not display consistent J-peaks, which can usually be the case for overnight, in-home monitoring, particularly with frail elderly. Additionally, its accuracy will be undoubtedly affected by motion artifacts.

In the second place, frequency-domain algorithms do not provide information about interbeat intervals. Nevertheless, they can provide information about heart rate variability. This is usually done by taking the fast Fourier transform or the inverse Fourier transform of the logarithm of the estimated spectrum, i.e., cepstrum of the signal using a sliding window. Thereafter, the dominant frequency is obtained in a particular frequency range. The limit of these algorithms is that the peak in the spectrum may get wider and multiple peaks may appear, which might cause a problem in measuring the vital signs.

Finally, the objective of wavelet-domain algorithms is to decompose the signal into different components, hence the component which shows an agreement with the vital signs can be selected. In other words, the selected component contains only information about the heart cycles or respiratory cycles, respectively. Interbeat intervals can be found easily by applying a simple peak detector. An empirical mode decomposition is an alternative approach to wavelet decomposition, and it is also a very suitable approach to cope with nonlinear and nonstationary signals such as cardiorespiratory signals. Apart from the above-mentioned algorithms, machine learning approaches have been implemented for measuring heartbeats. However, manual labeling of training data is a restricting property. Furthermore, the training step should be repeated whenever the data collection protocol has been changed.

In the following sections, the operating principle of the microbend fiber-optic sensor is discussed in more detail (Section 4.2.1). Likewise, we discuss our system development cycle (Section 4.2.2). Furthermore, we present how the proposed system is validated for health and clinical applications (Section 4.2.3). At last, we show how the system is integrated within an existing Ambient Assisted Living platform (Section 4.2.4 and Section 4.2.5).

System Design

This section aims to explain how the optical fiber data is analyzed and interpreted so that relevant information can be obtained. The optical fiber mat can provide different information such as heart rate, breathing rate, body movements, as well as sleep parameters. The sleep parameters involve waking up time, sleep time, the total time of sleep, sleep interruptions, i.e., frequent body movements and bed exits. To achieve these goals, first and foremost, we need to understand the nature of cardiorespiratory signals. In fact, cardiorespiratory signals are nonlinear and nonstationary signals that represent the functions of the cardiovascular and respiratory system, respectively. Typically, the acquisition of such signals requires sensors or electrodes that are attached to the body. For example, electrocardiography requires a minimum of two electrodes mounted on the body to record the electrical activities that occur in the heart during polarization, depolarization, and repolarization. Another example is the photoplethysmography that requires a sensor worn on the finger to estimate arterial blood oxygen saturation (SpO2). Since before-mentioned sensors are fixed to the skin, the motion artifacts of skin movements are greatly minimized. However, when it comes to non-contact cardiac and respiratory activity monitoring, the situation is completely different. To explain, in our case the optical fiber mat can be placed under the bed mattress or on the seat or the backrest of a chair; hence, the acquired signals are more prone to motion artifacts compared to standard medical sensors.

We explain the principles of operation of the optical fiber sensor in Section 4.2.1. Moreover, we provide an explanation of how the raw data is compiled and analyzed, as well as how the proposed methodology is validated in Section 4.2.2 and Section 4.2.3, respectively.

Suitable Sensor Selection

As we discussed in Chapter 1 and Chapter 3, the microbend fiber-optic sensor1 (MFOS) is selected for unobtrusive acquisition of cardiorespiratory signals. It is because the sensor is particularly sensitive to pressure fluctuations induced by the ballistic forces of the heart, and it does not require close contact with the body. It is also relatively small, lightweight, and affordable, and then it is a suitable candidate for long-term monitoring of vital signs without disturbing patient's comfort. In contradistinction to electrical sensors, optical sensors are immune to electromagnetic and radio frequency interference. Hence, they are useful for real-time monitoring of physiological signals during magnetic resonance imaging. The proposed optical fiber system consists of a sensor mat integrated with microbending multimode fiber and a processing unit as shown in Figure 4.1. The processing unit contains a Micro-SD card, digital electronics for signal manipulation, and a Wi-Fi signal transmission module. By way of introduction, the fundamental principle of the MFOS is based on the light intensity modulation induced by microbending in multimode fibers, which is used as a transduction mechanism for detecting pressure. A 10-meter loop of graded-index multimode fiber is sandwiched between two layers of tuned grating structures that subject the fiber to mechanical perturbation when there is a pressure applied as shown in Figure 4.2. The pressure causes the transmission modes in the multimode fiber to be coupled into the loss mode, reducing the amount of light received by the photodetector. Thereupon, the detected light is converted to current by the photodetector, which is, in turn, converted into a voltage using a transimpedance amplifier. The signal is filtered via a 20 Hz low-pass filter and then digitized by a 16-bit analog-to-digital converter with a sampling frequency of 50 Hz.

Pressure Modulated Light

Pressure Microbender Light Optical Fiber Secondly, the presented sensor is constructed by using a typical graded-index multimode fiber with a core diameter of 100 µm and numerical aperture (N.A.) of 0.272 as the sensing fiber [START_REF][END_REF], Lau 2013, Chen 2014b]. The sensor mat is manufactured to a dimension of (20 cm × 50 cm × 0.5 cm), which facilitates its portability and inclusion into cushions, pillows, chairs, beds, etc. The sensor mat applies a force ∆F or a pressure ∆P to the bent multimode fiber and causes the amplitude of the fiber deformation X to change by an amount of ∆X. This takes place in response to breathing-generated body movement and heart rhythmgenerated body movement. The transmission coefficient T for the light moving through the bent multimode fiber is altered by an amount ∆T as follows.

∆T = ∆T ∆X ∆F k + AY l (4.1)
where k is the force constant of the bent fiber, A is the cross-sectional area, Y is Young's modulus, and l is the microbender gap. Typically, detection of cardiores-
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piratory signals is dependent on modulation in optical transmission. Regarding high-sensitivity pressure sensor application, Equation (4.1) is formulated as follows.

∆T ∼ = ∆T ∆X A p k -1 ∆P (4.2)
where A p is the area of the deformer and ∆P is the variation in pressure. In order to achieve a maximum microbend sensitivity, the optical fiber should be constructed such that the spatial frequency Λ of the microbenders for graded-index multimode fiber complies with the following approximate relationship:

Λ = 2π • a • n 0 NA (4.3)
where a is the radius of the fiber core, n 0 is the refractive index of the core, and NA is the numerical aperture of the fiber. The loss in microbending develops because the guided modes are coupled to radiation modes. Equation (4.3) applies to graded-index multimode fiber. Alternatively, step-index multimode fiber can also be employed for construction of the sensor mat. In this condition, the spatial frequency ∆ of the microbenders is obtained as follows.

Λ = √ 2π • a • n 0 NA (4.4)
Efficient coupling between the guided modes and radiation modes can be accomplished with the spatial frequency Λ provided by Equation ( 4.3) and Equation (4.4) for graded-index and step-index multimode fibers, respectively. Nonetheless, the first group, i.e., graded-index multimode fibers is better than the second group, i.e., step-index multimode fibers because the first group has resonance condition, in which the microbending loss is precisely peaked whereas the second group does not have the resonance condition. As a result, the first group is decided for development of the sensor mat [START_REF][END_REF], Lau 2013, Chen 2014b].

System Development

In light of the foregoing consideration, motion artifacts occurred due body movements or other environmental factors should be isolated and filtered out before the input signal is further processed. After that, cardiac and respiratory signals can be extracted from the filtered signal using a band-pass filter of different cutoff frequencies. Once the two main signals are separated, appropriate algorithms should be implemented so that heart and breathing rate can be measured. In this research, various techniques have been adopted to analyze the data collected from the optical fiber mat. Initially, we applied machine learning algorithms to classify fiber-optic data into informative and non-informative signals based on their heart rate information. After that, we computed the heart rate from the informative signals using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) algorithm. This algorithm is a modified, improved algorithm for the Empirical Mode Decomposition algorithm. Preliminary results were promising. However, the CEEMDAN algorithm required high processing time. Therefore, this approach did not meet our needs, and it was not suitable for real-life deployment. Secondly, instead of using machine learning algorithms to get informative signals, we designed a signal quality algorithm based on the signal variance that can automatically isolate motion artifacts and bed-exit events. The motion artifact is a large variation in the amplitude of the fiber-optic signal, which is sufficient enough to destroy valuable information in the signal. However, the bed-exit event is the standard fiber-optic signal that originates when there is no any pressure applied to the sensor. Thirdly, we implemented the multiresolution analysis of the Maximal Overlap Discrete Wavelet Transform (MODWT) instead of the CEEMDAN algorithm to measure the heart rate. The MODWT provided slightly inferior results to CEEMDAN algorithm. However, it required shorter processing time, so that it was more suitable for our real-time applications. Fourthly and finally, we tested the effectiveness of other algorithms such as fast Fourier transform, cepstrum, and autocorrelation function.

System Validation

We validated the proposed system for two different applications, i.e., health and wellness application as well as clinical application. In the former application, we collected data from fifty subjects, where the optical fiber mat was placed on the headrest of a massage chair. This application was very challenging because of the motion artifacts caused by movement of the chair and body movement as well. The objective of this study was to evaluate the effectiveness of the optical fiber mat to detect heart rate in a noisy environment. In the latter application, we collected data from ten subjects during a drug-induced sleep endoscopy. Data acquisition was carried out in the operating theatre of Khoo Teck Puat Hospital (KTPH), Singapore. The objective of this study was to check the performance of the optical fiber mat for unobtrusive monitoring of heart and breathing rate for sleep apnea patients. Furthermore, we also assessed the capability of the mat for unobtrusive apnea detection. After the validation procedures were completed successfully, we deployed our system in a real-life environment, i.e., user's home. The proposed system has been successfully deployed in three apartments of senior female residents over thirty days. Furthermore, the sleep monitoring system has been integrated within an existing Ambient Assisted Living (AAL) platform, better known as UbiSMART (Ubiquitous Service MAnagement and Reasoning archiTecture) [Tiberghien 2011].

We briefly explain our AAL platform in Section 4.2.4, and we present the integration of the fiber-optic sensor into the platform in Section 4.2.5.

UbiSMART Design

UbiSMART is a web-enabled AAL platform intended for large-scale deployments following the approach presented by Bellmunt et al. [Bellmunt 2015]. Key features [START_REF] Aloulou | [END_REF]] are plug & play ability, privacy protection as there is no sound and no image recording, easy interaction for end-users, and generic architecture. This AAL platform is able to transform any environment into a smart space in five minutes, enabling an unobtrusive assessment of indoor as well as outdoor activities of dependent people in their home environment. The purpose of UbiSMART is to detect the Activities of Daily Living (ADL), and to provide rich services in the right context through appropriate channels. The framework is composed of three

Gateway

Server Service Provision Sensors main parts (Figure 4.3), in data flow order: 1) Gateway, "smart home in a box"sensors (motion sensors, contact sensors and the newly integrated bed sensor for sleep monitoring) and a gateway (Raspberry Pi); 2) Server -receives formatted inputs from the gateway, and processes them using semantic reasoning following the approach presented by Aloulou andBellmunt et al. [Aloulou 2012, Bellmunt 2016]; 3) Service Provisioning -responsive user interfaces on the web or on hand-held devices that allow users to receive notifications or interact with the platform.

System Integration

The sleep mat equipment is considered as another sensor that contributes to the knowledge base of the AAL platform. We explain its integration into the existing system following the data flow from the source to the presentation.

Collection

The bed sensor-processing unit is wired to our Gateway (Raspberry Pi). Voluminous raw data is read and stored on a micro SD-card for a deeper off-line analysis. Simultaneously, the data is preprocessed to generate high level events, such as bed empty, bed motion, sleep. Currently, it operates on a time window of 10 seconds. For each time window, an event is produced. The events are then sent to the Server as a structured sensor data using Message Queuing Telemetry Transport (MQTT) protocol over an Internet connection [START_REF] Bellmunt | [END_REF]].

Reasoning

Server handles the received structured information (event). The bed sensor will appear in the home description interface as available for association to a house. If confirmed, this association is stored in the knowledge base (KB). Any subsequent events are then inserted into the KB of the associated house, allowing to the reasoning engine to be aware of bed occupancy with respect to our ontology. Coupled with the information from other sensors and sources, it provides an accurate contextual information. In parallel, the raw data is processed every 5 minutes to extract information about the occupant's respiratory effort and heart rate. This information is also inserted into the KB.

Presentation

Service provisioning through our simple responsive web interface Life Tiles 

Conclusion

In this chapter, we discussed the working operation of the microbend fiber-optic sensor. We also provided an overall summary of the proposed system and how the system is validated in two different applications. Besides, we explained our current Ambient Assisted Living platform, i.e., UbiSMART and we presented how the microbend fiber-optic sensor is integrated within the platform. In the next chapter, we provide a step-by-step explanation of how our proposed system is validated for health and wellness application as well as clinical application. In which, we describe the data collection protocol for each application and we illustrate the algorithms used to process the sensor data.

Introduction

Our aim in this chapter is to provide a detailed description of the methods used to process the data collected from the microbend fiber-optic sensor. To start with, we show how we validated the system using data acquired from a massage chair, in which several classifiers were adopted to label the data into informative and non-informative classes based on their heart rate information, and then we measured the heart rate using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise algorithm (Section 5.2). Second, we illustrate the signal quality algorithm (Section 5.2.3.4), which substitutes the manual labeling process. Furthermore, we explain the multiresolution analysis of the Maximal Overlap Discrete Wavelet Transform as an alternative to the empirical mode decomposition algorithm (Section 5.2.3.5). Even more, we introduce the fast Fourier transform, cepstrum, and autocorrelation function for the sake of comparison with the wavelet approach (Sections 5.2.3.6 and 5.2.3.7). Third, we discuss how we validated the system in a clinical environment for unobtrusive monitoring of vital signs and sleep apnea events as well (Section 5.3). After all, we describe our real-life deployment, where three senior female residents were involved in our study and the sleep data was collected over a one-month period in a home-living situation (Section 5.4).

Health and Wellness Application

In several application domains, sensor networks provide enormous potential for information collection and processing [START_REF] Kapadia | [END_REF]]. In this study, we focused on a new kind of sensing technology known as Opportunistic Ambient Sensing1 (OAS). OAS can be used to provide applications and services that fit into the active and healthy lifestyle of end users and to unobtrusively extract reliable and meaningful data about their physiological parameters [START_REF] Acampora | [END_REF]]. Although mobile phone-based applications are perhaps the most convenient, they lack the sensitivity and the proximity needed for the measurement of important vital signs such as heart rate (HR) and breathing rate (BR). Ambient sensors that are placed in the environment away from physical contact with the user, such as cameras, infrared motion sensors and other types of electromagnetic sensing devices, lack the proximity or physical contact needed for reliable detection of vital signs [START_REF] Sadek | [END_REF]].

The microbend fiber-optic sensor (FOS), thanks to its high sensitivity to ballistic effects of human vital signs, is a sensor that is suitable for opportunistic ambient sensing. This sensor is a suitable option for nonintrusive long-term monitoring of vital signs for its high sensitivity to pressure changes caused by body movement, and simultaneously not required to be in close contact with the body. A cushion with embedded sensors, for example, is able to unobtrusively, yet with ample accuracy, capture vital signs of the user for those durations where the user is directly in contact with the sensor and motion artifacts are limited. A major challenge is dealing with the quality of the FOS signals. There are two basic approaches to monitoring quality in physiological data obtained from sensors, i.e., signal oriented and aggregate oriented. The first [Schumm 2010] is an exact approach, attempting to detect and track statistical properties of signal morphologies or event occurrences (or non-occurrences), and reporting these in a real-time fashion. The second [Wang 2002, Lee 2012] is a statistical approach aimed at obtaining aggregate statistical features in the time or frequency domain, through appropriate feature extraction. Since the former approach can lead to processing delay, especially in real-time situations, in our work we adopted the statistical approach for quality processing.

The goal of this study was to design a quality processing system to identify signals of interest from noisy and nonstationary BCG signals. The quality process reduced the computational and/or communications load significantly because only useful data was transmitted and processed for vital sign extraction. Thereafter, interbeat intervals were estimated using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) algorithm. The following sections are summarized as follows. Section 5.2.1 presents the generic algorithm for quality processing. Section 5.2.2 presents a definition of data quality relevant to the needs of the application at hand. Section 5.2.3 presents the data collection protocol, a labeling tool used to label datasets manually, and the proposed approach.

Quality Processing of Fiber Optic Sensor Data

As we pointed out in several parts of the thesis, ballistocardiography is a technique that measures the mechanical vibrations arising from the recoil of the body, caused by the ventricular ejection of blood from the heart into the arterial tree along with each heartbeat [Park 2018]. In this particular application, the sensing system consisted of a pressure mat and a transceiver which included a light source, a light detector, amplifiers, filters, an analog-to-digital converter, a microprocessor, and circuits for connecting the transceiver to a computer via Bluetooth. A low-pass filter at 250Hz was built into the transceiver to eliminate high-frequency noise. When a pressure is applied to the mat, the displacement between two microbenders changes, the light intensity of the clamped multimode fiber changes with the subject's body vibrations caused by respiration/heart beating. The light intensity in the microbending fiber is modulated by the body vibrations. This modulated signal is extracted as ballistocardiogram and respiratory signals. The microbending FOS pressure mat can be used to collect physiological data of people from ambient locations, i.e., mattresses, pillows, chairs, etc. In these situations, a major obstacle is to handle noise and motion artifacts since the quality of the sensed data is easily corrupted. If, however, some expected characteristics (or features) of the signals can be exploited, the sensor signals may be processed in such a way that the vital signs are recovered with higher accuracy. The basic idea is to detect the quality of the data and classify the data into good, noisy or no-data segments for further processing. The algorithm involves carrying out labeling of sensor data, in order to establish a reliable ground truth, which can then be used to segment decent quality signals from real-time sensor data streams. This is a step towards improving the reliability of sensors used to monitor vital signs in diverse ambient settings. Figure 5.1 illustrates the manner in which the FOS pressure mat was deployed in wellness applications for the opportunistic monitoring of vital signs. The local server was optional and might be replaced with a direct connection to the remote server or cloud, with the appropriate 3G transceiver.

Application Specific Signal Data Quality

Sensor signal quality and data quality are important measures for medical devices and health monitoring. In morphological analysis, a missed detection is characterized by the absence of a particular waveform. The missing or erroneous waveform is corrected and the feature (e.g., heartbeat) is then detected from the augmented waveform. In statistical analysis, the individual waveforms are not analyzed, but the signal is processed, and feature detected (e.g., through peak detection) and thereafter the output statistic (e.g., HR) computed.

The statistical approach at data quality requires manual labeling of the rendering of the signal on a viewer with the help of a suitable tool. The waveforms are classified, sometimes with the help of logged information that supply details that may be useful for more accurate labeling. Since the fiber-optic sensor can be used in various settings for various applications, the statistical approach towards the study of quality is more meaningful, as it may be used with parametric or algorithmic changes and applied to various applications and indeed to various sensors as well. In this application, we considered the following definitions of quality:

Selected Window

Good

Noisy Good

Correspnding Signal • Informative signal: It included a good quality signal and a noisy signal.
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The former signal was a data stream from which features might be extracted by standard algorithms, without any further filtering or processing to remove noise or any conflicting artifacts. The latter signal was a data stream that contained the observed signal mixed with other artifacts and noise, such that more processing was needed before algorithms might be used to extract the vital signs.

• Non-informative signal: It was a data stream where retrieval of physiological properties was impossible.

Because noise was introduced through activities of various kinds, in the experimental stage we incorporated mechanisms to embed information into the data that indicate the occurrence of events. These labels gave major cues, which served as a foothold in the data, in order to analyze it further for quality processing. Note that even though our data was collected in the lab, it was unreasonable and impossible to label each event. This was the reason why we were required to undertake post-processing of the data through a manual labeling effort. From Figure 5.2, it can be seen that there are certain periods when good data was expected (such as the rest periods), and certain other periods where the data was expected to be noisy (such as the massage period when the massage chair is in motion). There are also periods when due to non-contact there is no signal presented. This happens, for example, when the subject is answering the questionnaire or undergoing some mental tasks involving the use of the computer. Once the subject leans forward the contact between the pillow sensor and the subject's head is lost, and thus there is no signal.

Data Processing

Data Collection

The data was collected in a realistic setting from 50 human subjects sitting in a massage chair to assess their levels of stress at different moments. The data was collected in a sitting position to explore the capability of the optical-fiber mat for heart rate measurement from different positions of the body (e.g., below the head). This particular position was interesting as the optical-fiber mat could have been located in a pillow rather than below the bed mattress. Consent forms were sought from every human subject following the approval of the institutional review board. Participants completed stress-inducing exercises, proceeded by rest and relief therapy. During the process, subjects were instructed to complete well-suited survey questionnaires for gathering self-reported ground truth. Meanwhile, physiological parameters of subjects were recorded in real-time using a range of sensors. This included ballistocardiography, electroencephalography, galvanic skin response, and some other sensors to measure electrocardiography and respiratory efforts.

Generic Labeling

Statistical Features

Quality Based Classification

Informative Segments

Raw BCG Figure 5.3: Flowchart of the quality processing system.

Classification

The flowchart of the quality processing system is shown in Figure 5.3 and it can be illustrated as follows:

Preprocessing: The sensor data was manually labeled by a human observer into two classes such as 1) informative (58% of dataset) and 2) non-informative (42% of dataset), where a labeling tool was developed that enabled the user to quickly label data from MATLAB R based software. Figure 5.2 shows a screen capture of the labeling tool. The labeled sensor data were randomly divided into two groups, i.e., Group1 and Group2. The former consisted of 2085 segments (1296 informative and 789 non-informative), whereas the latter included 1546 segments (813 informative and 733 non-informative). The length of each segment was 10 seconds/500 samples, where the data was sampled at a sampling frequency of 50Hz.

The idea was to use Group1 as a training set while Group2 as a test set, and vice versa. Subsequently, each segment was band-pass filtered to extract the BCG component using a Butterworth band-pass filter with frequency limits of 1Hz and 12Hz. Figure 5.4 shows two examples for informative and non-informative segments.

Feature Extraction: A set of 13 statistical features was extracted i.e., mean (x), standard deviation (σ), minimum (min), maximum (max), skewness (S), kurtosis (K), range (R), interquartile range (IQR), mean absolute deviation (MAD), number of zero crossings, the variance of local maxima, the variance of local minima, mean of the signal envelope using the analytic signal. The analytic signal was obtained by taking the Hilbert transform of the signal and then the envelope was extracted by taking the magnitude of the analytic signal. Table 5.1 gives mathematical equations for some features; given a set of samples {x 1 , x 2 , . . . , x N }.

Training and Testing: Five classifiers were employed, i.e., random forest (RF), support vector machine (SVM), multilayer, feedforward neural network (NN), linear discriminant analysis (LDA), and decision tree (DT). Then, a training model was created for each classifier using the features of training set, where each set was 10-fold cross-validated to evaluate the predictive ability of the models. Finally, each segment in the test set was classified into one of the classes based on the features of the test set. Furthermore, an accuracy criterion was computed for appraising the performance of the classifiers and the results of the proposed approach in discriminating between informative and non-informative segments.

Heart Rate Estimation

The conventional empirical mode decomposition (EMD) along with two modulation-based approaches were used in [Pinheiro 2010a] to suppress generated noise when a single channel EMFi sensor was placed in the backrest of a moving wheelchair. Although the EMD approach helps to remove generated noise in the BCG signal, it has two limitations i.e., end effects and mode mixing. Ensemble EMD (EEMD) was used in [Cao 2013, Ni 2017] to eliminate generated noise as well as to solve the mode mixing problem. Nevertheless, the EEMD still does not completely solve the mode mixing problem and requires high computational time. We proposed to use the CEEMDAN algorithm (Section 5.2.3.3) as a noise removal tool since it provides a complete reconstruction of the signal and it is proved to be robust towards motion artifacts originated due to body movements.

The 6 th decomposition component (DC6) was chosen for HR measurement because each local maximum shows a match with a cardiac cycle [Sadek 2015]. Figure 5.5 shows an example of a BCG signal with its DC6. The local maxima of 

Feature Equation Notes

Mean

x = 1 n -1 n i=1 x i Variance σ 2 = 1 n -1 n i=1 (x i -x) 2
It is a measure used to quantify the amount of variation of a set of data values.

Standard Deviation

σ = 1 n -1 n i=1 (x i -x) 2
It measures how far a set of numbers are spread out from their average value.

Skewness

S = 1 n n i=1 (x i -x) 3 1 n n i=1 (x i -x) 2 3
It is a measure of the asymmetry of the data around the sample mean.

• Zero → symmetric distribution • Negative → spread out more to the left of the mean.

• Positive → spread out more to the right of the mean.

Kurtosis K = 1 n n i=1 (x i -x) 4 1 n n i=1 (x i -x) 2 2
It is a measure of how outlier-prone a distribution is.

• Three → symmetric distribution • > Three → more outlier-prone than the normal distribution.

• < Three → less outlier-prone than the normal distribution.

Range R = max -min It is the difference between the highest and lowest values.

Interquartile Range IQR = Q 3 -Q 1
It indicates how the central 50% of values within the dataset are diffused.

• Q 1 → median of the n smallest entries.

• Q 3 → median of the n largest entries. Mean Absolute Deviation MAD = 1 n n i=1 |(x i -x)|
It is the average distance between each data value and the mean.

the DC6 were used for HR measurement, where the HR value at the time t n , at which the n th maximum occurred, was defined as follows:

HR n = 60 t n -t n-1 (5.1)
where t n is the time at n th local maxima and t n-1 is the time at (n -1) th local maxima in the DC6. In which, the HR was expressed as beats per minute (BPM).

Complete Ensemble EMD with Adaptive Noise

The Empirical Mode Decomposition (EMD) [Huang 1998] is an adaptive method, which can be used to break down a nonlinear and a nonstationary signal as a combination of amplitude and frequency modulated functions named intrinsic mode functions (IMFs) without leaving the time domain. IMF should fulfill two conditions:

• In the entire dataset, the number of extrema and the number of zero crossings must be equal or vary at most by one.

• At any time instant, the mean value of the upper and lower envelope is zero, i.e., the signal has zero mean. Even though EMD proved to be applicable in several areas of research, such as biomedical signal processing, it encounters some limitations as follows. First, end effects that destroy the IMFs at its endpoints. Second, mode mixing, which causes very similar oscillations to exist in different modes or oscillation of very dissimilar amplitudes to exist in a mode [Huang 2016]. In order to solve these problems, a new approach is introduced: Ensemble Empirical Mode Decomposition (EEMD) [Wu 2009a], the basic idea of the EEMD is to carry out the EMD over an ensemble of the signal besides white Gaussian noise (WGN). Adding WGN overcomes the mode mixing problem by processing the entire time-frequency space to make use of the dyadic filter bank behavior of the EMD. Nonetheless, a different number of modes may be generated. Apart from that, the CEEMDAN can provide a precise reconstruction of the original signal in addition to reducing the computational complexity [START_REF] Torres | [END_REF]]. It further solves the boundary problems by mirrorizing extrema close to the edges [START_REF] Rilling | On empirical mode decomposition and its algorithms[END_REF]]. Given a target signal x, assume w (l) is a WGN of zero mean and unit variance i.e., with N(0, 1), ε is the noise standard deviation, and E k (.) is an operator responsible for getting the k th mode of a given signal by EMD. The algorithm for obtaining a k th mode by EMD can be explained as follows [Huang 1998[START_REF] Colominas | Improved complete ensemble EMD: A suitable tool for biomedical signal processing[END_REF]]: 2. Obtain the maximum & minimum envelopes of local extrema (e max (t), e min (t)) using a cubic spline interpolation.

3. Compute the mean of the envelopes m(t) = (e max (t) + e min (t))/2.

Extract the IMF candidate

d k+1 (t) = r k (t) -m(t).
This procedure is called sifting process.

5. Is d k+1 an IMF?

• Yes. Save d k+1 (t), compute the residue r k+1 (t) = x(t) -k i=1 d i (t), do k = k + 1,
and treat r k as input data in step 2.

• No. Treat d k+1 (t) as input data in step 2.

6. Iterate on the final residual r k (t) until a predefined stopping criterion is fulfilled.

According to Rilling et al. [START_REF] Rilling | On empirical mode decomposition and its algorithms[END_REF]], the stopping criterion is based on two thresholds, i.e., θ 1 and θ 2 . These two thresholds aim at guaranteeing globally small fluctuations as well as considering locally large excursions. To achieve this goal, the ratio of the mean value of the envelope of iterated mode and the amplitude of this envelope is checked in each iteration:

σ(t) = m(t) a(t) (5.2)
where m(t) = (e max (t) + e min (t))/2 and a(t) = (e max (t) -e min (t))/2. The sifting process is iterated until σ(t) < θ 1 for some prescribed fraction (1 -α) and σ(t) < θ 2 for the remaining fraction. Typically, α ≈ 0.05, θ 1 ≈ 0.05 and θ 2 ≈ 10 • θ 1 . Following the EMD algorithm, the CEEMDAN can be illustrated in following steps:

1. Each x (l) = x + ε 0 w (l) is decomposed similar to EMD for l = 1, ..., L to obtain its first mode ( d 1 ):

d 1 = 1 L L l=1 d (l) 1 = d 1 .
(5.3) 2. For k = 1, compute the first residue (r 1 ):

r 1 = x -d 1 .
(5.4) 3. Decompose r 1 + ε 1 E 1 (w l ), l = 1, ..., L until its first EMD mode, and then define the second mode:

d 2 = 1 L L l=1 E 1 (r 1 + ε 1 E 1 (w l )).
(5.5)
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4. For k = 2, ..., K, compute the kth residue:

r k = r (k-1) -d k .
(5.6) 5. Decompose realizations r k + ε k E k (w l ), l = 1, ..., L until their first mode by EMD, and then determine the (k + 1)th mode:

d k+1 = 1 L N n=1 E 1 (r k + ε k E k (w l )).
(5.7) 6. Go to step 4 for next k

Steps 4 -6 are repeated until the obtained residue cannot be decomposed anymore by EMD (it contains less than three local extrema). Thus, the final residue fulfills:

r k = x - K k=1 d k . (5.8)
where K is the total number of decomposition modes. As a result, the target signal can be represented as:

x = K k=1 d k + r k .
(5.9)

As it can be seen in Figure 5.6, the BCG signal (Figure 5.5) was decomposed into nine components. However, only the 6 th component, i.e., DC6 showed agreement with cardiac cycles. As a result, the local maxima of this component were employed for heart rate measurement. Moreover, it should be noted that the first two components, i.e., DC1 and DC2 represented the noise embedded in the signal. Up to now, we have explained our initial approach to process the fiber-optic data using a machine learning approach and therefore implementing the CEEMDAN algorithm to compute the heart rate. The next two sections will discuss the automated signal quality algorithm (Section 5.2.3.4) and the multiresolution analysis of the Maximal overlap discrete wavelet transform (Section 5.2.3.5). The formal algorithm replaced the manual labeling required for training data, while the latter algorithm replaced the CEEMDAN algorithm due to its high computational cost.

Automated Signal Data Quality

In health and wellness application, the monitoring system was designed to send fiberoptic sensor data to a nearby computer via Bluetooth. However, the processing unit of the current system has a built-in Micro-SD card and a Wi-Fi signal transmission module for sending the data to a remote cloud server (Section 4.2.1).

Typically, every 5 minutes, a file was created and stored in the micro-SD card. After that, this file was sent to the cloud server for processing and extracting relevant information. In order to achieve automated signal data quality, three different states were recognized for each 5-minutes recording using a sliding time-window (w i ) with a size of 500 samples (10 seconds) as follows. First, if the standard deviation (SD) of the time-window was greater than twice the mean absolute deviation (MAD) of all time-windows SD, the state was considered as a body movement (Figure 5.9). Second, if the SD of the time-window was lower than a fixed threshold of 15 mV, the state was regarded as no activity (unoccupied mat sensor) (Figure 5.10). Finally, in other cases, the state was identified as asleep (Figure 5.8), where apneas and vitals could be measured. This process was repeated for all the data-files on the Micro SD-Card, and the sleep data were then concatenated together to form a continuous time series, i.e., excluding body movements and unoccupied bed events. Algorithm 1 illustrates the sleep data processing of a resident's bed state.

Figure 5.7 gives an example of a signal data quality processing for a 20-minute fiber-optic data recording. The data was collected from a healthy young male subject and the optical fiber mat was placed underneath the mattress covering the upper half of the subject. In this example, folly color defines segments of body movements, aqua color defines segments of sleep and blond color defines segments of bed-exits. The two folly colored regions indicate the time when the subject entered and exited the bed. On the other hand, Figures 5.8 to 5.10 show one example for each bed state, i.e., sleep, body movement, and bed-exit.

Algorithm 1 Sleep Data Processing

Input:

1: W ← {w end if 16: end for

Maximal Overlap Discrete Wavelet Transform

In healthy subjects, ECG signal, which is considered as a reference to measure interbeat intervals has a uniform and repeated template known as PQRST complex, i.e., the pattern of electrical activity of the heart during one cardiac cycle (Figure 3.2). Thus, this property facilitates the measurement of the subject's heart rate. Unlike ECG signals, the BCG morphology varies between and within subjects, and the shape of the signal is highly dependent on the subject's positions, i.e., sleeping or sitting. In addition, the raw signal is noisy and nonstationary owing to body movement, induced respiratory efforts, and the characteristics of the sensing system itself, therefore, estimating interbeat intervals from BCG signals is a troublesome procedure.

In [START_REF][END_REF]] a translation-invariant adaptive discrete wavelet transform (DWT) was proposed to denoise BCG signals. Then, the heart rate was computed using a pseudo-period detection approach. In [Noh 2010] DWT was implemented to cancel related BCG artifacts and a template matching for interbeat intervals detection. The BCG data were collected from five healthy subjects in a sitting position using an electromechanical film sensor. In [Gilaberte 2010] continuous wavelet transform (CWT) was introduced for HR and respiratory rate measurements. Where, in each case, the scale which presented an agreement with the periodicity of the signal was selected. The proposed approach was applied to six healthy subjects standing on a bathroom scale equipped with multiple strain gauges. A similar approach was proposed in [START_REF] Alvarado-Serrano | [END_REF], where authors used CWT with splines for optimal scale selection. However, this approach required a training phase for parameter initialization. The BCG data was acquired from seven seated healthy subjects via a piezoelectric sensor.

We implemented multiresolution analysis decomposition using MODWT. This is because the MODWT overcomes the time variant drawback of the classical DWT by up-sampling the filter coefficients [Percival 2006].

Generally speaking, the wavelet transform is a mechanism for converting a function or a signal into another form, which either makes particular features of the original signal more manageable to study or allows the original dataset to be interpreted more concisely. In order to implement a wavelet transform, we require a wavelet, i.e., a localized waveform [Addison 2002]. More specifically, Discrete Wavelet Transform (DWT), is a multiresolution analysis that can cut up an original signal into approximation (smooth) and detail components. The following equation can denote the DWT:

ψ j,k (t) = 1 a j 0 ψ t -k b 0 a j 0 a j 0 , ( 5.10) 
where j and k are integer values used to control wavelet dilation and translation respectively; a 0 is a predetermined fixed dilation step parameter set at a value greater than 1 (commonly a 0 = 2); ψ is the mother wavelet; and b 0 is the location parameter which must be greater than zero (commonly b 0 = 1). Hence, Equation (5.10) can be written in a more compact form as following; provided that a 0 = 2 and b 0 = 1:

ψ j,k (t) = 2 -j/2 * ψ(2 -j t -k).
(5.11) For a discrete signal X = {X t , t = 0, 1, . . . , N -1}, the DWT computes the wavelet coefficient for the discrete wavelet of dilation 2 j and translation 2 j k using the following equation:

W X (j, k) = N -1 t=0 X t ψ j,k (t),
(5.12)

where W X (j, k) is the wavelet coefficient and N is an integer power of two (a restrictive property). In practice, Mallat's algorithm [Mallat 1989] is used for implementation of DWT. The idea of the algorithm is to apply low-pass and high-pass filters instead of wavelets, and hence decompose the signal into details components and an approximation component. It should be noted that the decomposition level L should be determined in advance and it has to be less than or equal log 2 (N ) [Seo 2017]. Although DWT is a powerful tool for signal analysis, it has some limits. These limits include shift sensitivity, poor directionality, and lack of phase information [Fernandes 2003]. On the other hand, the Maximal Overlap Discrete Wavelet Transform (MODWT) introduced by Percival and Walden [Percival 2006] offers more advantages over the typical DWT, even though it does not provide an orthogonal decomposition. The properties that distinguish the MODWT from the DWT can be explained as follows:

• The MODWT is a translation-invariant process.

• The MODWT can manipulate any sample size n, which is not required to be divisible by 2.

• The smooth and detail coefficients of the MODWT are affiliated with zero-phase filters, and therefore making it easy to line up features in a multiresolution analysis with the original time series in a meaningful way. In other words, extracted features will be time-aligned with the original time-series.

Given a discrete time signal X = {X t , t = 0, 1, . . . , N -1}, the j th level MODWT wavelet and scaling coefficients, i.e., W k,t and V k,t can be computed as indicated by Equation (5.13) and Equation (5.14), respectively.

W j,t = N -1 l=0 h• j,l X t-l mod N ,
(5.13) (5.14) where j = 1, 2, . . . , L; W j,t is the t th element of the j th level MODWT wavelet coefficient; V j,t is the t th element of the j th level MODWT scaling coefficient; h• j,l and g• j,l are the j th level MODWT high-and lows-pass filters, i.e., wavelet and scaling filters produced by periodizing (i.e., adding zeros) hj,l and gj,l to length N , respectively; hj,l and gj,l are the j th level MODWT high-pass filter ( hj,l = h j,l /2 j/2 ) and low-pass filter (g j,l = g j,l /2 j/2 ); h j,l and g j,l are the j th level DWT high-and low-pass filters; and L is the highest decomposition level.

V j,t = N -1 l=0 g• j,l X t-l mod N ,
On the other hand, the multiresolution analysis decomposes an original signal X into a low-pass filtered approximation (smooth) component and high-pass filtered detail components [Percival 2006]. Typically, the multiresolution analysis of the MODWT can be formulated as provided by Equations (5.15) to (5.17): 

X = J 0 j=1 D j + S J 0 , J 0 ≥ 1 (5.15) D j,t = N -1 l=0 h• j,l
W j, t+l mod n , (5.16)

S j,t = N -1 l=0 g• j,l
V j, t+l mod n , (5.17)

where D j is the detail components and S j,t is the smooth component. Figure 5.11 gives an example of a three-level MODWT. After explaining automated signal data quality algorithm and MODWT approach, the following steps can be used to measure the heart rate (Figure 5.12).

1. BCG Signal Extraction: First, motion artifacts were excluded using Algorithm 1. Second, the BCG signal was retrieved by performing a Butterworth band-pass filter with frequency limits between 1Hz and 10Hz.

2. Decomposition: A sliding time-window of a length (10 seconds/500 samples) was used to measure the heart rate for BCG and ECG signals. Therefore, for each 10-second of the BCG signal, a multiresolution analysis based on MODWT was employed to decompose the signal into approximation and detail coefficients.

3. Suitable Level Selection: The 4 th level smooth coefficient was preferred for HR computation because the periodicity of the maxima showed an agreement with the heartbeats as presented in Figure 5.13. To this end, we have addressed how ballistocardiogram signals were acquired during health and wellness application. Other than that, we have explained the proposed methodology to analyze and interpret ballistocardiogram signals in order to measure interbeat intervals. In the subsequent section (Section 5.3), we discuss our clinical validation approach.
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Cepstral Transform

The cepstrum is defined as the inverse discrete Fourier transform (DFT) of the logmagnitude of the DFT of a signal, i.e., spectrum [Oppenheim 2004]. The cepstrum c of a signal x can be denoted as follows:

c[n] = F -1 {log |F{x[n]}|}, (5.18) 
where F is the DFT and F -1 is the inverse DFT. Since ballistocardiogram signal is nonlinear and nonstationary, the DFT was implemented by applying a window or a.k.a, "windowing". The windowing process consists of multiplying a portion of a signal by a finite-length window with an amplitude that varies smoothly and gradually toward zero at the edges. By doing this, the effect of the leakage that occurs during an FFT of the signal is reduced. Leakage consists of spectral information from an FFT showing up at the wrong frequencies. For a windowed portion of ballistocardiogram signal y[n], the cepstrum is computed as follows:

c[n] = N -1 n=0 log N -1 n=0 x[n]e -j 2π
N kn e j 2π N kn , (

where n is the time index; k is the frequency index; and N is the number of samples (N must be of power two, e.g., 256, 512, 1024, . . .). For ballistocardiogram heartbeat signal, the spectrum consists of the peaks at the harmonic frequencies of the fundamental heartbeat frequency. This periodicity in the spectrum is presented as a peak value in the spectrum located at the corresponding ballistocardiogram interbeat interval lag-time value [Kortelainen 2007, Kortelainen 2012, Brüser 2015].

In our case, the lag-time range is from 0.4 second (= 2.5Hz) to 1.5 seconds (= 0.67Hz), i.e., the normal human heartbeat duration [START_REF] Zhu | [END_REF]]. Figure 5.14 shows the cepstrum of a 30-second ballistocardiogram signal, in which the Fourier transform is computed by applying a Hanning window.

Autocorrelation

The autocorrelation function (ACF) measures the correlation between y t and y t+k , where k = 0, . . . , K. The formula for the autocorrelation for lag k is given by 

r k = c k c 0 , (5.20) c k = 1 T T -k t=1 (y t -ȳ)(y t+k -ȳ), (5.21) 
where c 0 is the sample variance of the time series, and T is the total number of samples in the window for the ACF calculation. As mentioned above, the lag-time range is from 0.4 second (= 2.5Hz) to 1.5 seconds (= 0.67Hz). Figure 5.14 shows the autocorrelation of a 30-second ballistocardiogram signal. The ACF is symmetric around lag zero, thus the function is normally plotted one-sidedly for positive lag.

Clinical Application

In this application, we aimed at validating our system for nonintrusive monitoring of vital signs (heart rate, respiratory rate, and body movements) during sleep as well as monitoring of sleep apnea. As a beginning, sleep is one of the most important elements every human needs similar to oxygen, water, and food. Nevertheless, most people do not realize the importance of getting enough quality sleep. As stated by the U.S. National Sleep Foundation (NSF), millions of people do not have sufficient sleep, and many may experience a lack of sleep.

To give an example, an individual might have the condition of sleep-disordered breathing (SDB). The SDB or a.k.a., obstructive sleep apnea syndrome (OSAS) is the most common sleep-related breathing disorders. The estimated prevalence of moderate-to-severe OSAS is reported to be 6 to 17% in the general population, being as high as 49% in the elderly [START_REF] Senaratna | [END_REF]]. The OSAS is described by recurrent events, usually longer than 10 seconds of a complete (apnea) or partial (hypopnea) closure of the airflow throughout sleep (Figure 5.16). These episodes are typically joined with blood oxygen desaturation and arousals from sleep. OSAS can negatively affect the patient's cognitive function, mode, and quality of life. Besides, patients affected with OSAS are at a considerable risk of developing cardiovascular morbidity, and mortality [START_REF] Peppard | [END_REF], Kimoff 2016[START_REF] Senaratna | [END_REF].

In-lab polysomnography (PSG) is currently the most reliable approach to assess OSAS severity. The PSG test involves multiple physiological sensors attached to the body to record several body functions during sleep, i.e., brain wave activi- ties, breathing patterns, heartbeats, blood oxygen levels, body movements, etc [Wang 2017, Erdenebayar 2017, Lin 2017b]. Despite the apparent feasibility of the PSG to provide real-time and accurate information about OSAS; it introduces some limitations, i.e., complexity, invasiveness, time-consuming, excessive cost, high maintenance, and lack of privacy. As a result, there is an increasing demand from healthcare communities to look for novel unobtrusive methods that are inexpensive, non-disruptive, and more widely applied than the standard full polysomnography to assess and diagnose sleep disorders [START_REF] Koenig | [END_REF].

Recent alternatives such as ballistocardiography (BCG) can provide unobtrusive monitoring of physiological signals without the necessity of any wearable sensors connected to the patient's body. By way of illustration, a noninvasive analysis of physiological signals (NAPS TM ) system was developed by the Medical Automation Research Center at the University of Virginia, which can measure physiological and environmental characteristics in a noninvasive manner [START_REF] Koenig | [END_REF]]. The system used two resilient force coupling pads placed under the bed sheet of a standard hospital bed to detect the minute forces produced during cardiac contraction and relaxation. Moreover, the system could detect body movements from the respiratory effort and postural changes. Additionally, it could detect environmental changes such as room temperature or light levels. The system was tested and validated on 40 healthy subjects in an overnight study. The system provided satisfactory results compared to the reference electrocardiogram, pulse oximetry, and respiratory inductance plethysmography [START_REF] Mack | [END_REF][START_REF] Mack | [END_REF][START_REF] Mack | [END_REF].

Few approaches in existing literature are dedicated to unobtrusive OSAS detection. For example, [START_REF] Mack | [END_REF]] advised to use the NAPS TM system for unconstrained apnea and arousal detection, the proposed system was validated using data from forty subjects. Hwang et al. [Hwang 2014] proposed to use a polyvinylidene-fluoride film sensor placed on top of the mattress for apneic events' detection in a dataset with thirty-two subjects. Beattie et al. [START_REF] Beattie | [END_REF]] reported the use of load cells located below the supports of bed to detect apneic events for forty-five subjects, where the apneic detection is done manually by an expert. Finally, Waltisberg et al. [Waltisberg 2017] introduced a sensor with integrated strain gauges installed below the bed mattress to detect apneic and limb movement events for nine subjects. An ongoing study between Personal Health Analytics Company Zansors2 and researchers at the University of Michigan, could bring to market the first-ever low-priced, US Food and Drug Administration (FDA)-approved over-the-counter sleep apnea sensor for in-home use next year. The small, wireless wearable patch detects sleep breathing patterns using microphone and accelerometer data. The rechargeable battery-powered device transmits the data to the patient's smart-phone via Bluetooth. It will be distributed for about $70 to $150. The company aims at targeting 2018 for market availability [Jennifer 2017]. PSG was used to assess the performance of aforementioned methods to identify apneic events, and it is worth mentioning that a fair comparison between different methods is difficult to make because the BCG's morphology is highly dependent on the type of the sensor and its location.

The objective of this study was to present preliminary results of a nonintrusive vital sign (i.e., heart and respiratory rate) monitoring system for sleep apnea patients using a microbend fiber-optic sensor (MFOS). In addition, we assessed the capacity of the proposed system for nonintrusive OSAS detection as compared to the most commonly used portable monitoring device (ApneaLink, ResMed, San Diego, California, USA). In the subsequent sections, we discuss the data collection protocol and the principles of the deployed sensors in Section 5. 

Experimental Setup and Data Collection

The primary objective of the current study was to examine the accuracy of a single mat integrated with MFOS for unobtrusive vital signs monitoring such as heart and respiratory rates, while the secondary purpose was to examine its performance for unobtrusive detection of apneic events against a home sleep apnea device, i.e., ApneaLink. The National Healthcare Group (NHG) Domain Specific Review Board (NHG DSRB Ref: 2016/00553) has approved the study and informed consent forms were obtained from the patients before data collection. All the procedures were implemented in agreement with the guidelines and regulations of the NHG DSRB. After informed consent, we recruited twelve patients suspected to have OSAS scheduled to undergo drug-induced sleep endoscopy in the operating theatre of Khoo Teck Puat Hospital. Only ten patients completed the study with complete data. Table 5.2 shows patients' demographic information and sleep apnea severity. Data was continuously collected during and after a drug-induced sleep endoscopy procedure. Patients were placed in a supine position on the operating table under propofol-induced moderate to deep sedation under processed electroencephalogram bispectral index monitoring guidance for about 30 minutes. Then they were transferred to a recovery room for about 90 minutes. For each patient, we collected sleep data using our proposed sensor and the ApneaLink device.

The fundamental principle of the proposed sensor was discussed in Section 4.2.1. In this clinical deployment, the mat processing unit operated on battery power, with a sampling frequency of 50Hz. It had a 16-bit ADC (internal memory storage is 4 GB) which enabled continuous recording when the patients were transferred from the operating room to the recovery room.

Figure 5.18 and Figure 5.19 show how the optical fiber mat was positioned on the operating room table approximately below the patient's chest and stomach. The second measurement device was a portable device, which measured airflow via a nasal pressure cannula, respiratory effort through a belt placed around the chest, heart rate and pulse oximetry using finger pulse sensor and pulse oximeter with sampling frequencies of 100, 10, 1 and 1Hz respectively. It was battery powered by 16-bit ADC and 15MB internal storage. The apnea-hypopnea index (AHI), i.e., the mean number of all apnea classes (unclassified, central, mixed, obstructive) and hypopneas per hour in the evaluation period was used in the analysis for our study, while the default parameters of the ApneaLink device for apneas and hypopneas were used. The device is highly sensitive and specific in estimating AHI against the in-lab PSG. "An apnea was identified as a decrease in airflow by 80% of baseline for at least 10 seconds. The ApneaLink default maximum apnea duration was set at 80 seconds. A hypopnea was identified as a decrease in airflow by 50% of baseline for at least 10 seconds. The ApneaLink default maximum hypopnea duration was set at 100 seconds" [Erman 2007, Chen 2009a[START_REF] Ng | [END_REF][START_REF] Crowley | [END_REF], Chan 2014, Araújo 2018]. The ApneaLink results were also manually scored by a medical expert to avoid any short evaluation period. In addition, they were stored in EDF format, while keeping the patient's data anonymized for further analysis with the proposed method. Figure 5.20 shows the system components and operation of the ApneaLink device.

Data Processing

The raw data was stored in 5-minute chunks on a Micro SD-Card embedded in the processing unit. Then all data-files were sent to a personal computer for data processing. In general, three signals can be extracted from the raw data including body movement, heartbeat, and respiration. One of the biggest challenges of unobtrusive sensing is the body movement. Although it plays a vital role in sleep stage estimation [Watanabe 2004[START_REF] Kortelainen | [END_REF][START_REF] Shin | [END_REF], Lin 2017a], it has an unfavorable impact on the quality of physiological signals. As a result, the first step in our analysis was to identify and remove the body movement as explained in Algorithm 1. After that, BCG and respiratory signals were extracted from the bandpass filtered data. At last, apneic and non-apneic events were detected based on the respiratory signal. recording, i.e., body movements, no activity, and sleep as provided by Algorithm 1. The BCG (2 nd row of Figure 5.24) and respiratory (3 rd row of Figure 5.24) signals were extracted from the sleep data (1 st row of Figure 5.24) using a Chebyshev type I bandpass filter. The lower and upper cutoff frequencies of the filters were (a lower pass-band frequency of 2.5Hz, an upper pass-band frequency of 5Hz, and a pass-band ripple frequency 0.5dB) and (a lower pass-band frequency of 0.01Hz, an upper pass-band frequency of 0.4Hz, and a pass-band ripple frequency 0.5dB) respectively.

The maximal overlap discrete wavelet transform with the multiresolution analysis Section 5.2.3.5 was implemented for the heart rate (HR) estimation [Sadek 2017a]. The BCG signal was cut up into approximation and detail information by passing through low-pass and high-pass filters, respectively without subsampling the filter coefficients. The wavelet bi-orthogonal 3.9 (bior3.9) basis function with level 4 was adopted for the decomposition process. The 4 th level smooth coefficient (second row of Figure 5.24) was selected to measure the HR because the periodicity of the maxima showed an agreement with heart cycles. On the other hand, three steps were applied to the respiratory signal to measure the respiratory rate (RR). First, second, and third, the nonlinear trend was eliminated by subtracting a 3 rd order polynomial fit, the detrended signal was filtered using a Savitzky-Golay smoothing filter (window length of 11 and polynomial order of 3), and a simple peak detector was utilized to detect the respiratory peaks. The local maxima of the respiratory signal were used for RR measurement, where the RR value at the time t n , at which the n th maximum occurred, was defined as follows: maxima in the respiratory signal. In which, the RR is expressed as breaths per minute (BPM).

RR n = 60 t n -t n
The sleep apnea was identified using an adaptive threshold method based on the SD of the respiratory signal. For each patient, the respiratory signal was divided into 30 seconds' consecutive epochs, i.e., W 30 i = {W 30 1 , W 30 2 , . . . , W 30 N }. Then, every 30-second period was further divided into three 10 seconds' periods, i.e., W 30 j = {w 10 1 , w 10 2 , w 10 3 }. For every 30-second epoch, if the SD of a 10-second epoch (W 10 k ) was less than 30% of the maximum SD of the three 10-second epochs, the current epoch was considered as an apneic event. Otherwise, it was considered as a non-apneic event [Sadek 2018a]. The threshold was selected based on the mean performance evaluation of all patients for apneic event detection. We selected Cohen's Kappa coefficient as a mean performance [Hwang 2014] because it is thought to be a robust tool to evaluate the agreement between two raters.

In the previous two sections (Sections 5.2 and 5.3), we have demonstrated how our system was validated in health and wellness environment as well as the clinical environment. In the next section (Section 5.4), we explain how we implemented our sleep monitoring system in real-life environments. 

Real-life Deployment

We have successfully deployed our sleep monitoring system in thirteen homes with mainly senior residents for more than six months. Nevertheless, in this research, we concentrated on a one-month deployment with three senior residents as follows. The proposed system was deployed for 30 days in a home-based living situation and sleep data was collected from 3 senior female residents (68, 69 and 65 years old) in real-time using our MFOS sleep mat. To make the residents feel more comfortable, the optical fiber mat was hidden beneath the bed mattress so that they can sleep as normal while being monitored closely. One of the residents did not like to sleep in the bed, whereas she preferred sleeping on the floor. Thus, we placed the mat under the sleeping rug. The sleep data was stored in 5-minute chunks on a Micro-SD card installed in the processing unit, then it was sent to a cloud-based server for a deeper processing to extract the quantity of sleep in addition to heart and respiratory rates.

In our study, we determined the residents' sleep quality based on the duration of sleep (total sleep time), sleep interruptions (bed movements, bed exit), vital signs (heart rate, respiratory rate, and body movements). Figure 5.25 summarizes a deployment of the presented system in user's home. In the ensuing sections, we explain the data collection protocol Section 5.4.1. Thereafter, we discuss the 

Data Collection

The proposed solution was deployed in real conditions for 30 days in order to validate our approach. During the deployment in participants' homes, our system recorded data, and they were post-processed and evaluated. The objective of this validation was to study the reliability of the sleep monitoring and the performance of the entire system in a distant real deployment. At the same time, this deployment allowed us to validate the inter-connectivity of different sensors, the communication between the gateway and the server, and presentation of results in real time.

The sleep signals were continuously acquired from three HDB3 flats with elderly female residents, where the MFOS sleep mat shown in the bed mattress. However, one of the residents prefers to sleep on the floor thus the sleep mat was placed under the sleeping rug (bamboo sleeping mat). Prior to data collection, written informed consent was thought from all residents involved in the study. In addition, a survey was obtained from the residents to summarize their living situation, sleeping and waking-up time, and napping time. We used the survey (Table 5.3) as a reference to validate the capability of the proposed system to detect different sleep patterns. 

Data Processing

In our real-life deployment, vital signs and sleep parameters, i.e., waking-up time, sleeping time, sleep interruptions, and total sleep time were computed based on Section 5.3.2. However, we implemented a moving time window (w i ) of 30-second length to get information about sleep, movement, and bed-empty events. Moreover, it should be mentioned that during the deployment, the residents were living as normal without any constraints, i.e., they could sleep on the bed at any time they prefer. Figure 5.27 shows a representation of a participant's night from our real-life deployment. As mentioned previously in Chapter 4, the sleep monitoring system was being deployed along with other sensors such as motion and contact sensors, and therefore we can predict the activities of daily living of the residents and to provide rich services in the right context through appropriate channels. Typically, motion sensors are installed in the lounge, living room, kitchen, and bathroom. Whereas, contact sensors can be attached to main door, fridges, and kitchen drawers. 

Conclusion

This chapter discusses the two different applications we have implemented to evaluate our non-obstructive vital signs monitoring system. The first application aimed at measuring heart rate in a sitting position using data collected from 50 individuals during a massage session. This application simulated real-life deployment because of the movement of the chair, as well as the movement of the body. These movements had a strong impact on the quality of the signal, and therefore the proposed quality data processing can be evaluated properly. Other than that, the second application aimed at validating the proposed system for unobtrusive vital signs monitoring as well as unobtrusive sleep apnea detection. In this application, the data was collected from 10 patients in a clinical setting during a drug-induced sleep endoscopy. In conclusion, the data quality processing algorithm, which is based on the signal's variance removes non-informative signals, i.e., motion artifacts and no-activity segments. Subsequently, the multiresolution analysis of the MODWT can be applied to detect heart cycles. Furthermore, the respiratory cycles can also be detected after removing the nonlinear trend in the band-pass filtered signal. Then, the local peaks of the respiratory signal can be utilized to measure the respiratory rate. Additionally, the system has been evaluated for unobtrusive monitoring of sleep-disordered breathing, in particular, obstructive sleep apnea. At last, we have described our real-life deployment and how the sleep data was collected for several nights from three senior residents in a home-based situation. The next section will discuss in detail the results achieved in each of aforementioned applications. 

Introduction

This chapter discusses thoroughly the results of our two validation procedures, i.e., health and wellness application (Section 5.2) besides clinical application (Section 5.3).

In the former, we explain how the heart rate estimation is enhanced by implementing the classification process. In addition, we provide a comparative study of various methods to measure the heart rate. These methods include Complete Ensemble EMD with Adaptive Noise (CEEMDAN) algorithm, the multiresolution analysis of the MODWT, fast Fourier transform (FFT), cepstrum, and autocorrelation approach.

In the latter, we present the suitability of the proposed sleep monitoring system for unobtrusive vital signs monitoring in a clinical setting. The chapter also provides in detail the results of our real-life deployment (Section 5.4) in three users' homes in one month's time.

Results of Health and Wellness Application

As we deliberated before in Section 5.2.3.2, the goal was to use a cross-dataset testing in which Group1 was to be used as a training set while Group2 as a test set and vice versa. Therefore, the selected classifier should be able to correctly classify the data of Group2 based on Group1 and the other way around. Following the 10-fold cross-validation of each group, the optimal parameters of the classifiers were identified, and the mean accuracy of each classifier was determined. In general, the cross-validation is an approach to assess predictive models by subdividing the initial sample into a training set to train the model, and a test set to assess it. More precisely, in 10-fold cross-validation, the initial sample is randomly subdivided into 10 equal size sub-samples. Of the 10 sub-samples, a single sub-sample is maintained as the validation data for testing the model, and the remaining 9 sub-samples are implemented as training data. The cross-validation process is thus repeated 10 times, i.e., the folds, with each of the 10 sub-samples applied exactly once as the validation data. The 10 results from the folds can thus be averaged to provide an individual estimation. The added-value of this approach is that all measurements are employed for both training and validation, and each measurement is adopted for validation exactly once. Table 6.1 presents the mean accuracy of the 10-fold cross validation for each classifier. For random forest classifier (RF), the optimal number of trees or a.k.a., ntree was 50 trees. For support vector machine (SVM), the radial basis function kernel (RBF) provided better results than other kernel functions. For feedforward neural network (NN), the number of hidden layers was 50 layers. In both groups mentioned above, random forest classifier showed superior performance over the other classifiers with a mean accuracy of 98.13% and 92.30% for Group1 and Group2 respectively. Using the same classifier, comparable results were achieved when Group2 was tested versus Group1 and the other way around with an accuracy of 90.75% and 97.99% for Experiment1 and Experiment2 accordingly as presented in Table 6.2. Table 6.3 shows the confusion matrix of random forest for Experiment2. Moreover, it can be included that the percentage of recovered informative data was 57.37%, which can be calculated as follows. Percentage = (1270 + 813)/(2085 + 1546). Decision tree and support vector machine classifiers attained relatively similar results to the random forest with accuracy results of (88.10% & 97.41%) and (84.54% & 97.46%) for Experiment1 and Experiment2, respectively. On the other hand, the CEEMDAN algorithm (Section 5.2.3.3) was applied to BCG signals following a noise standard deviation of 0.35, an ensemble size of 100, and a maximum number of iterations of 30 to obtain interbeat intervals. Referring to the amplitude of the added noise, Wu and Huang [Wu 2009b] recommended to apply small amplitude values for data influenced by high-frequency signals, and likewise. In addition, a smaller ensemble size can be employed. This is because the CEEMDAN adds a specific noise at each stage and produces a complete decomposition with no reconstruction error [START_REF] Colominas | Noise-assisted EMD methods in action[END_REF]]. Furthermore, a balance between the amplitude of the added noise and the ensemble size should be considered. This is due to the fact that, if the added noise amplitude is too small, therefore it may not produce the change of extrema that the EMD depends on. Nevertheless, by increasing the ensemble size, the effect of the added white noise will always be able to be reduced to a minimally small level [Wu 2009b]. For ECG and BCG segments, the heart rate was estimated in beats per minute (BPM). Additionally, the mean absolute error (MAE) was implemented to evaluate the performance of the CEEMDAN algorithm for heart rate estimation with respect to the reference ECG. The MAE (Equation (6.1)), as the name suggests is the mean of the absolute errors, in which the absolute error is the absolute value of the difference between the forecasted value and the actual value.

MAE

= n i=1 |R i -M i | n , ( 6.1) 
where M , R, and n refer to measured data, reference data, and number of samples. In order to estimate the effectiveness of the quality processing system, the HR was estimated before and after applying the classification process. From Table 6.4, it can be noted that, the MAE was largely reduced from (G1: 11.16 and G2: 15.24) to (G1: 7.26 and G2: 9.68) after the classification process. As a result, the quality processing system can effectively increase robustness of the system for vital signs monitoring. ECG-derived heartbeat intervals to associated BCG-derived heartbeat intervals for Group1. The limit of agreement was [-18.82, 16.89] beats/minute (standard deviation σ = 9.11 beats/minute). Figure 6.2 shows the Bland-Altman plot between the reference ECG-derived heartbeat intervals to associated BCG-derived heartbeat intervals for Group2. The limit of agreement was [-25.2, 18.99] beats/minute (standard deviation σ = 11.27 beats/minute). There were a few reasons, which might have increased measurement deviation between the reference ECG and the proposed device as follows. During the massage session, ECG electrodes might not have been attached correctly to the subject's body. As a result, incorrect synchronization between both signals has occurred [Hoog [START_REF] Antink | [END_REF]. Although the microbend fiber-optic sensor can detect the heart rate from various locations such as under the head; under the chest; under chest and abdomen; and under hips, the most accurate location for unobtrusive heart rate measurement is under the chest and abdomen [Sadek 2015]. Another reason is that the BCG signal does not display consistent J-peaks, and therefore cardiac peaks might not have been detected correctly. In other words, the BCG signal is not uniform within and across subjects [Sadek 2017a].

Results of Health and Wellness

Since our ultimate goal is to implement the proposed device under real-life conditions, sensor data should be processed in a small-time period (or near realtime). As a result, the CEEMDAN algorithm was not a suitable choice for our data processing. The aforementioned algorithm is faster than the ensemble EMD. Nevertheless, it is still a time-consuming process. Besides, the manual labeling of training data should be replaced by an automated data quality processing. In what follows, we explain the results of implementing the automated data quality processing as well as the wavelet analysis (Section 5.2.3.5) to the same datasets.

Wavelet Analysis Versus CEEMDAN Algorithm

As we mentioned in Section 5.2.3.4, the variance of the data was utilized to classify every 10-second time window into body movement, unoccupied, or sleep signal. For body movement signals, the magnitude of the pressure force was large enough to destroy any vital information. In other words, retrieval of any vital information was impossible. For unoccupied signals, the amplitude of the signal was always lower than a predetermined value, i.e., there was no any pressure force applied to the optical sensor mat. At last, for sleep signals, there was a uniform pressure applied to the optical sensor mat, i.e., the force applied to the mat is originated from the cardiac circulation as well as the movement of other body organs. Subsequently, for each subject, we first applied the automated data quality processing to exclude body movements and unoccupied events. Afterward, we implemented the wavelet analysis to detect the heart rate. In order to achieve satisfactory results, several different families of wavelets have been evaluated such as Daubechies, Symlet, Coiflets, Biorthogonal, and Reverse Biorthogonal. Since every wavelet family has different numbers of vanishing moments, for our analysis we selected the vanishing moment yielding the lowest mean absolute error. We used Daubechies-1 (db1), Symlet-2 (sym2), Coiflets-1 (coif1), Biorthogonal-3.1 (bior3.9), and Reverse Biorthogonal-3.1 (rbio3.1) bases with 4-level decomposition. For each wavelet, the 4 th level smooth coefficient was selected for heart rate measurement. This was because the periodicity of the local maxima presented an agreement with cardiac cycles.

As we can see in Table 6.5, the Biorthogonal-3.9 basis function produced the lowest MAE (10.12 ± 4.69) among other wavelet basis functions. The Reverse Biorthogonal-3.1 achieved proportional results to Biorthogonal-3.9 basis function (10.13 ± 4.79). The Daubechies-1, Symlet-2, and Coiflets-1 achieved higher error rates such as 12.64 ± 6.36, 14.11 ± 7.4, and 14.17 ± 7.42, respectively. Figure 6.3 shows the box plots of the average MAE for CEEMDAN algorithm and wavelet methods regarding the average beats per minute across all 50 subjects. We can also see that, the CEEMDAN algorithm achieved slightly better results (9.4 ± 6.16) than the best wavelet, i.e., Biorthogonal-3.9. However, this algorithm is time consuming compared with wavelet transform (Section 4.2.2). To explain, the run-time of a 10-second signal was approximately 20 seconds and 0.04 seconds for CEEMDAN and wavelet transform, receptively. This happened when the algorithm was tested on a Windows-based laptop computer with Intel Core i5-4200U, 2.4GHz CPU clock and 6GB of RAM. As a result, the wavelet analysis was more suitable for our real-time applications. In many situations, the MODWT was able to handle the motion artifacts originated during the massage session. As shown in Figure 6.4, the algorithm managed to detect all the corresponding J-Peaks in the noisy BCG signal. So far, we have shown the superiority of the wavelet analysis over the CEEMDAN algorithm considering real-time data processing. Next, we compared the best wavelet, i.e., Biorthogonal-3.9 with FFT, cepstrum, and autocorrelation methods. In these three methods, the heart rate was computed using a sliding time-window of a length 10-seconds (i.e., 500 samples) with 50% overlap between consecutive windows. After detecting the heartbeat interval (HBI) in each window, the heart rate was computed such as HR = 60 * HBI. As we can see from Table 6.6 and Figure 6.5, respectively. Figure 6.6(a) and Figure 6.6(b) show the Bland-Altman plot and the Pearson correlation plot of the HR between the two methods. The limit of agreement was [-5.12, 4.92] beats/minute (standard deviation σ = 3.07 beats/minute). The Pearson correlation coefficient was 0.96. In the same manner, Figure 6.7(a) and Figure 6.7(b) give the Bland-Altman plot and the Pearson correlation plot of the RR between the two methods. The limit of agreement was [-5.13, 4.98] breaths/minute (standard deviation σ = 2.56 breaths/minute). The Pearson correlation coefficient was 0.78. In conclusion, the system achieved very close results to the ApneaLink device (finger pulse sensor and respiratory belt). The average error was very small for both vital signs as shown in the overall results of Table 6.7 and Table 6.8. Furthermore, the agreement between the reference ApneaLink and the sleeping mat was assessed using the Bland-Altman plot and the Pearson correlation coefficient, which revealed a very good agreement for both vital signs.

Broadly speaking, the estimation of the respiratory rate for normal subjects was easier than the heart rate. This is because the amplitude of the dominant J-peak (equivalent to the R-peak of the electrocardiogram signal) of the BCG signal was not uniform throughout the entire signal. However, for sleep apnea patients, the estimation of respiratory rate was very challenging. This is because, for sleep apnea patients, the morphology of the respiratory signal varies quite a lot during time due to the absence or decrease of breathing that makes the respiratory rate difficult to compute. As shown in Figure 6.8, all the J-peaks of the BCG signal (1 st row) can be easily detected. However, the respiratory cycles (inhalations and exhalations) are difficult to detect from the signal (2 nd row). Thereafter, sometimes the respiratory peaks may not be detected correctly. It also can be noted that the Pearson correlation coefficient was 0.96 (Figure 6.6(b)) for heart rate estimation, while the value was 0.79 (Figure 6.7(b)) for respiratory rate estimation.

Sleep Apnea Event Detection

We correlated the AHI provided by the ApneaLink device (flow signal) with the AHI obtained from the optical fiber mat. The AHI derived from both systems was depending on the total time of the study. The severity of the apnea was graded based on the AHI value, i.e., mild (5 ≤ AHI < 15), moderate (15 ≤ AHI < 30), severe (AHI ≥ 30). The sensitivity and specificity were employed to appraise the performance of the sleeping mat against the ApneaLink device. In this research, the sensitivity represented the proportion of correctly identified apnea events, whereas the specificity represented the proportion of correctly identified non-apnea events. The results of the sleep apnea detection algorithm are presented in Table 6.9. The statistical values were computed based on the severity of the apnea at 30% threshold value. The sensitivity and specificity were 24.24 ± 12.81%, 85.88 ± 6.01% for sleep apnea detection. The source code of the proposed methodology, in Python, is available at [Sadek 2018b]. In summation, the reference ApneaLink device measures the sleep apnea using the flow signal through a nasal cannula, which may not be an appropriate choice for some groups of people. On the contrary, the proposed optical fiber mat can be integrated into different ambient assisted living locations such as beds, cushions, chairs, etc. In order to appraise the capacity of the mat for sleep apnea detection, we grouped the patient based on the AHI severity, as listed in Table 5.2. In general, the system provided very low sensitivity and relatively high specificity as shown in overall results of Table 6.9.

The measured sensitivity was very low compared to the measured specificity because of a number of reasons that can be explained as follows. First, motion artifacts originated due to the body movements were extremely high, which is a normal behavior for sleep apnea patients. Second, for hypopnea events, the amplitude of the respiratory signal was very similar to the normal events. Third, for central apnea events, there were no any respiratory efforts, which was very difficult for the mat to detect. In addition to above-mentioned reasons, there were other limitations, which have to be considered for the nonintrusive apnea detection. To start with, the small sample size, i.e., 10 patients and the short sleep time might have a negative effect on the measured statistics. Moreover, even though ApneaLink is a reasonable test in clinical settings, it still has lower sensitivity than a PSG. For more accurate results, the analysis should be performed in a natural sleep state with the PSG as a gold standard comparison. In which, we can infer that the microbend fiber-optic sensor in the current study was not sensitive enough to discriminate between shallow breathing and no breathing.

In order to overcome the shortcomings of the current study, we are now in the process of recruiting new patients for overnight PSG study. Up to now, we have shown the efficacy of the proposed system for unobtrusive nocturnal monitoring of vital signs, in which we validated our system in two different scenarios. Next, we introduce and discuss the results of our real-life deployment.

Results of Real-life Deployment

As we discussed in Section 5.4.1, prior to data collection, written informed consent was obtained from all residents involved in the study. In addition, a survey was collected from the residents to summarize their living situation, sleeping and wakingup time, and nap time. We used the survey (Table 5.3) as a reference to validate the capability of the proposed system to detect the different sleep patterns of the three residents. We constructed a modified Bland-Altman plot for the sleep parameters in order to measure how the proposed approach matches with the users' survey. The idea was to define three limits, i.e., a mean, an upper limit of agreement (LOA), and a lower limit of agreement (LOA) as follows.

1. The first limit was the mean of the measurement of interest, for example, waking-up time, sleeping time, and total time of sleep. By doing that, we can search for systematic bias or mean and also identify any possible outliers outside the two limits of agreements. To go into detail, as we can see in Figure 6.9, on most occasions, resident No. 2 wakes up around 07 : 15 with an upper LOA of 09 : 45 and a lower LOA of 04 : 52. However, on Wednesday the resident wakes up around 04 : 30. These results agree with the user's survey because she usually wakes up around 07 : 00. Nevertheless, on Wednesday she wakes up around 04 : 00.

2 0 1 6 -0 8 -2 2 2 0 1 6 -0 8 -2 9 2 0 1 6 -0 9 -0 5 2 0 1 6 -0 9 -1 2 2 0 1 6 -0 9 -1 9 2 0 1 6 -0 9 -2 6 Dates Another example representing the time of sleep for resident No. 3 is shown in Figure 6.10 . It may be noted that most of the time the resident sleeps around 18 : 30. On two occasions, the resident went to bed before 14 : 30. This situation might occur when the resident stays on the bed for the entire day instead of sitting in a chair to watch television. We can also notice that on two other occasions the resident went to bed after 22 : 00 which agrees with user's survey.

On the other hand, the resident reported having a nap two to three times between 13 : 00 and 15 : 00. This also agrees with our results presented in Table 6.10, in which the average time of starting the nap is 13 : 34 : 14 and the average time of ending the nap is 15 : 09 : 59. In addition, the average napping duration is about one and half hour. The waking-up time for this particular user was very surprising 2 0 1 6 -0 8 -2 4 2 0 1 6 -0 8 -3 1 2 0 1 6 -0 9 -0 7 2 0 1 6 -0 9 -1 4 2 0 1 6 -0 9 -2 1 Dates to us. This was because according to our sleep monitoring system, the resident used to wake up around 03 : 30, which is very early in the morning (Figure 6.11). However, when we double checked with the resident, she confirmed the outcome as she used to practice some religious traditions at this specific time. For resident No. 2, we have noticed that her average sleep time is about 12 hours (Figure 6.12), which is longer compared to other residents (9 hours for resident No. 2 and resident No. 3). The resident preferred to sleep on a sleeping rug (Figure 5.26(b)) located on the floor, this was because sleeping on the floor was cooler to her than sleeping on the bed. We advised the resident to change her sleep hygiene because she spent a lot of the time laying down on the sleeping rug while watching television.

With respect to vital signals, the BCG signal was utilized to monitor the heart rate while the respiratory signal was being used to monitor the breathing rate. The respiratory signal represents the movements of the chest wall and stomach.

To get more accurate results we tried to place the mat approximately near to the chest and stomach area of the residents. During sleep time, we might adjust our sleeping positions from one time to another. However, increasing the onsets of body movements could be an indicator of a sleep disorder such as the periodic leg movement disorder. Even though body movements reduce the quality of the measured signal, they are very important to predict the quality of sleep. Besides, they play a key role in sleep stage estimation. Generally speaking, If the magnitude of the body movement is small, we still can compute the vitals. However, a large body movement completely destroys the signal.

As given by Figure 6.15, the average duration of disturbed sleep per night ranges between 50 to 80 minutes for all deployment days. Further, all points are within the 6.4. Results of Real-life Deployment 115 2 0 1 6 -0 8 -2 2 2 0 1 6 -0 8 -2 9 2 0 1 6 -0 9 -0 5 2 0 1 6 -0 9 -1 2 2 0 1 6 -0 9 -1 9 2 0 1 6 -0 9 -2 6 Dates two limits of agreements that might indicate a normal behavior for this particular resident. Since trends in vital signs are key factors to determine critical conditions for an individual [Churpek 2016], if we notice any large deviation in either heart or respiratory rate we immediately inform the residents and their caregivers to consult with a doctor.

As the three residents were not adapted to use the Internet, relatives and caregivers were given access to a user-friendly web framework Figure 4.4 within the UbiSMART to follow the sleep patterns of the residents. The framework allows the caregivers to track the sleep parameters of the residents for days, weeks, etc. To give some examples, Figure 6.13 shows the distribution of the mean heart rate for resident No. 3 during the deployment time.

The data in Figure 6.13 indicates that the mean heart rate for that resident was almost uniformly distributed throughout the entire time. Likewise, Figure 6.14 presents the distribution of the breathing rate for resident No. 2. The data in Figure 6.14 also indicates almost a uniform distribution. In both examples, the moving average is calculated using a time-window of three days.

During the deployment, we have encountered some technical issues due to a slow or unstable Internet connection. However, thanks to the Micro-SD card embedded in the processing unit, the sleep files can be retrieved again. In the worst-case scenario, the sleep files can be recovered off-line from the Micro-SD card. Fortunately, this situation did not happen during the deployment time. In addition, one of the residents complained that the bed become warmer because of the presence of the mat underneath the bed mattress. Technically speaking, this situation cannot happen as we are using fiber-optic technology. When we approached the resident, and discussed with the caregiver, we found out that this feeling occurred as the resident was a little bit afraid of the new system. After explaining again, the safety of the system to the resident, she became more comfortable and she did not complain again about the mat. To summarize, the proposed sleep monitoring system does not require any close contact with the human body. This feature was very suitable for the residents because they did not agree to put on any wearable devices. Although wearable devices like smart-watches can provide more accurate and continuous monitoring of different body functions, they might be more suitable for young people. This is not always true, it depends on the level of education and the ability to learn and accept modern technologies. Based on the total time of sleep, frequent body movements, bed exit activities, vital signs, i.e., heart rate and respiratory rate, we can infer the sleep quality of the residents.

Conclusion

In this chapter, we have reported the results of our health and wellness validation as well as clinical validation. Various approaches have been implemented to detect interbeat intervals for noisy and nonstationary ballistocardiogram signals. The wavelet analysis among other methods was able to provide satisfactory results in reasonable running time. In consideration of the foregoing, the frequency-domain approaches do not yield satisfactory results due to the characteristics of ballistocardiogram signals. In other words, the interbeat intervals are not uniform within the time. Further, interbeat interval measures are very susceptible to surrounding noise. Therefore, locating the fundamental heartbeat frequency is very challenging, which results in imprecise heartbeats. Considering the clinical validation, the proposed nonintrusive sleep monitoring system provided very reasonable results compared with a home sleep testing device, i.e., ResMed's ApneaLink despite the large body movements originated during apnea events. Nonetheless, nonintrusive sleep apnea detection is a very challenging task because the same signs and symptoms of sleep apnea might also occur in healthy people. With respect to real-life deployment, the proposed system presented very good results for identifying various sleep parameters such as waking-up time, sleeping time, the total time of sleep, and physiological signs, i.e., heartbeat and respiration. Moreover, the residents were very interested in the system because they feel more safe and comfortable. In the future, we are aiming at extending the indoor monitoring to an outdoor monitoring using beacons placed near to areas of interest such as food courts, sports facilities, bus stops, senior activity centers where the elderly used to go. The next section will conclude the thesis and outlines directions for future research. In this last chapter, we present conclusions about our proposed work. Furthermore, we describe possible research directions to continue the work described in this thesis.

Conclusion

In this thesis, we have presented a unique nonintrusive vital sign monitoring system using a mat embedded with microbend fiber-optic sensors. The fundamental principle of the proposed system is to record the mechanical vibrations of the body caused by cardiac activity as well as the chest and abdominal movements.

The heartbeat intervals, i.e., the millisecond interval between two consecutive heartbeats can be computed from the vibrational activity of the heart whereas the breathing rate can compute from the movements of the chest and abdomen.

The microbend fiber-optic sensor is a very suitable choice for nonintrusive monitoring of vital signs, i.e., heart rate and breathing as it is highly sensitive to pressure variations produced by the ballistic forces of the heart and it does not require close contact with the body. Furthermore, it is relatively small, lightweight, and affordable. In other words, we only need to locate the optical fiber mat underneath the subject's mattress, therefore, we can measure his/her vital signs.

The proposed system can also be used to monitor the sleep quality of the subjects as the system can provide information about physiological signals such as heart rate, breathing rate, and body movements. Based on this information, various sleep parameters can be measured, namely waking-up time, sleeping time, the total time of sleep, and sleep interruptions.

Since the optical fiber mat can be located underneath the subject mattress, the acquired signal is very susceptible to motion artifacts. Hence, extracting heartbeat intervals is a very challenging task. In existing literature, different methods have been employed to detect heart and breathing rate non-intrusively. Nevertheless, Chapter 7. Conclusion and Future Directions most of these methods have been deployed in a controlled laboratory environment. As a result, they might not be applicable for real-life environments such as users' homes.

In this research, we have proposed to use the multiresolution analysis of the maximal overlap discrete wavelet transform to measure heart rate. To begin with, an automated signal data quality algorithm based on the signal variance has been implemented to eliminate unwanted body movements that might destroy the vital information in the signal. Afterward, a band-pass filter with specific frequency limits equivalent to human heart rate was applied to the clean signal to extract cardiac signal or as known as ballistocardiogram. Next, the wavelet analysis was employed to analyze the cardiac signal into detail and smooth components. Additionally, the smooth component was selected for heart rate estimation since their local maxima show an agreement with cardiac cycles. At last, interbeat intervals were computed by finding the distance between successive local peaks of the smooth component.

On the other hand, the respiratory rate, representing the chest and abdominal movements, was computed by applying a band-pass filter with specific frequency limits equivalent to human breathing rate. Thereafter, the nonlinear trend was eliminated by subtracting a 3 rd order polynomial fit, the detrended signal was filtered using a Savitzky-Golay smoothing filter (window length of 11 and polynomial order of 3), and a peak detector was applied to detect the respiratory peaks.

The proposed system has been validated in a health and wellness environment as well as a clinical environment. In the first, the data was acquired from 50 subjects sitting in a massages chair where the sensor was embedded in the headrest of the chair. The electrocardiogram sensor was used as a reference to assess the quality of the system for heart rate estimation. In the second, the data was collected in a clinical setting from a small cohort of subjects during a drug-induced sleep endoscopy study. The system was evaluated against a commercially available home-based sleep apnea monitoring device known as ApneaLink. In both applications, the proposed system achieved promising results compared with the reference devices. We also evaluated the capability of the proposed sensor for unobtrusive monitoring of sleep apnea during the clinical study. However, the system achieved lower sensitivity compared with airflow sensor of the ApneaLink device.

Considering heart rate estimation, the wavelet analysis has shown superior results compared with fast Fourier transform, cepstrum, and autocorrelation function. The empirical mode decomposition has been also implemented. Although it provided slightly better results than the wavelet analysis, it is a time-consuming process, therefore, it is not applicable for real-time analysis.

Following satisfactory results obtained during the two phases of validation, the system has been deployed in thirteen homes with mainly senior residents for more than six months. In this research, we analyzed the sleep data collected from three senior female residents during a one-month period. The proposed system has shown very good agreement with a user's survey collected before the study. Moreover, the sleep monitoring system has been integrated within an existing Ambient Assisted Living (AAL) platform, better known as UbiSMART. As a result, relatives and 7.2. Future Directions 121 caregivers could track the residents' sleep quality using a user-friendly interface within the UbiSMART. Likewise, the residents were very interested in the system because they feel more safe and comfortable. Along with the sleep monitoring system, the UbiSMART system collected other activities of daily living using motion and contact sensors. Combining of all sensory data can have a positive impact to enhance the quality of life and social well-being of the seniors.

Future Directions

In the future work, new directions might be included to improve the proposed system as follows.

In order to provide continuous vital sign monitoring, a multimodal sensing approach should be implemented. In other words, wearable devices such as smartwatches and smart-phones should be employed to enable continuous monitoring of vital activities. Thanks to the accelerometer, the wearable devices can monitor and record real-time information about one's physiological condition and motion activities. The outcome of our proposed sensor and other wearable devices can be fused together to yield more robust and accurate information about the health status of individuals. In addition, wearable devices can also be used as a reference to segment unwanted body movements during sleep which might have a negative effect on the signal quality.

Considering nonintrusive monitoring of sleep apnea, we can also use another sensor such as finger pulse oximeter to get more accurate information about obstructive apnea events. Our ultimate goal is to reduce as much as possible the number of sensors/electrodes need to be attached to the human body. However, in case of apnea detection, the polysomnography is still the gold-standard approach to determine the apnea severity for individuals. This is because several electrodes are used to detect several physiological signals. Our proposed device might have provided lower sensitivity for sleep apnea detection. However, it can provide long-term data monitoring which is not possible in a hospital environment.

We are also preparing a second phase for sleep apnea detection and the sleep monitoring system will be deployed during an overnight polysomnography study. This means that we can have more informative data that will help improve our current results.
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  Figure 1.1: Distribution of the world's population by age and sex, 2017. Source: United Nations, Department of Economic and Social Affairs, Population Division (2017). World Population Prospects: The 2017 Revision. New York: United Nations.
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 12 Figure 1.2: Average annual rate of population changes for the world and by region, estimates, 1950 -2015, and medium-variant projection, 2015 -2100. Source: United Nations, Department of Economic and Social Affairs, Population Division (2017). World Population Prospects: The 2017 Revision. New York: United Nations.
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 13 Figure 1.3: An illustration of a sensor mat as an example of an IoT device in a medical setting.
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 21 Figure 2.1: Anatomy of the human heart.

Figure

  Figure 2.2: A schematic view of the human respiratory system. Retrieved from Wikimedia Commons website: https://en.wikipedia.org/ wiki/Respiratory_system
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 2 Figure 2.3: A sample hypnogram (defined by electroencephalogram) showing sleep cycles designated by increasing REM sleep.
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 24 Figure 2.4: An illustration of the location of the various electrodes and sensors used for monitoring sleep. Image courtesy: British Lung Foundation.
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 2 Figure 2.5 shows a representative 30-second epoch from a sleep study [Basner 2012].
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  Figure 2.5: A 30-second epoch from the PSG. Image adapted from [Basner 2012].
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  Figure 2.6: Examples of wearable sleep tracker devices; (a) Zeo, (b) SleepImage, (c) Fitbit, (d) Lark, (e) WakeMate, (f) Jawbone, (g) Body-Media SenseWear armband, (h) Hexoskin, and (i) ŌURA.

  Figure 2.7: Examples of bed-sensor devices; (a) Emfit QS, (b) Beddit, (c) EarlySense, (d) Sleepace Reston, (e) Withings Aura.
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 31 Figure 3.1: (a) Example of a typical BCG signal with letters used to designate the waves. The arrow indicates the position of the beginning of the electrical ventricular systole (QRS. complex of the electrocardiogram). Image adapted from [Starr 1939, Starr 1940, Pinheiro 2010b], (b) Aortic arch and force vectors coming from blood ejection by the left ventricle. Image adapted from [Eblen-Zajjur 2003].

  Figure 3.2: Example of a typical electrocardiogram signal.

  Figure 3.1(a) shows an example of a typical BCG Chapter 3. Literature Review signal, while Figure 3.2(b) shows an example of a typical electrocardiogram signal.
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 41 Figure 4.1: The deployable sensor mat and processing unit (Mat dimensions: 20 cm × 50 cm × 0.5 cm).
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 42 Figure 4.2: Longitudinal section of the microbend fiber-optic sensor.
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 43 Figure 4.3: Simplified view of UbiSMART AAL platform with sleep mat and its processing unit as a sensor.

  Figure 4.4 allows us to give the user an instant feedback about bed occupancy and continuously updated information about the occupant's respiratory effort and heartbeat. Other indicators show aggregated information about activities out of the scope of this thesis.
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 44 Figure 4.4: UbiSMART user interface is organized in tiles and it provides following information: daily quantity of sleep (selected day) with updated bed occupancy status that changes the color of the icon and status line; aggregated week overview of sleep quantity; and heartbeat information.
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 51 Figure 5.1: Opportunistic remote monitoring of vital signs.
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 52 Figure 5.2: Screen capture of the labeling tool.

  Figure 5.4: Two examples for informative and non-informative segments (sampling frequency: 50Hz).
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 5 Figure 5.5: BCG signal with a reference ECG signal. ECG is shown in 1 st row. However, BCG signal and its 6 th decomposition component are shown in 2 nd row (sampling frequency: 50Hz).

  Figure 5.6: Intrinsic mode functions (DC1-DC9) of a typical BCG signal (Figure 5.5); the 6 th component shows a match with cardiac cycles (sampling frequency: 50Hz).

  Figure 5.7: An example of a signal data quality processing (sampling frequency: 50Hz).

  Figure 5.8: An example of a 60-second sleep signal (sampling frequency: 50Hz).

  Figure 5.9: An example of a 60-second body movement signal (sampling frequency: 50Hz).

  Figure 5.10: An example of a 60-second bed-exit signal (sampling frequency: 50Hz).
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 511 Figure 5.11: Example for three-level MODWT; h {.} is a high-pass filter, g {.} is a low-pass filter, W {.} is a wavelet coefficient, and V {.} is a scaling coefficients.

  Figure 5.13: Symlet-8 MODWT multiresolution decomposition of a BCG signal (sampling frequency: 50Hz).

  Figure 5.14: The cepstrum of a 30-second ballistocardiogram signal; the heart beat interval (HBI) is 1.02 seconds.

  Figure 5.15: The autocorrelation of a 30-second ballistocardiogram signal; the heart beat interval (HBI) is 1.64 seconds.

  Figure 5.16: Drawing representing event and inter-event duration, as well as pre-and post-event amplitude (with upward deflection of flow during inspiration). Image adapted from [Jaimchariyatam 2013].
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 5 Figure 5.17: Sleep apnea sensor proposed by Zansors, LLC. Image adapted from [Jennifer 2017]

  Figure 5.18: The positioning of the optical fiber mat on the operating room table.
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 5 Figure 5.19: Real deployment of the MFOS mat in the operating theatre of Khoo Teck Puat Hospital.
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  Figure 5.20: System components and operation of ApneaLink device (ApneaLink, ResMed, San Diego, California, USA).
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 5 Figure 5.21: Overall system flowchart; BM: Body Movement, HR: Heart Rate, and RR: Respiratory Rate.

  Figure 5.22: An example of a 10-second body movement signal for patient No. 4.

  Figure 5.23: An example of a 10-second sleep signal for patient No. 4.
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 5 Figure 5.24: The first, second, and third rows represent a typical 10second time-window of the raw signal, the BCG signal along with the 4 th wavelet smooth coefficient, and the respiratory signal respectively; amplitude values were normalized between -1 and 1.
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 5 Figure 5.25: Overview of our unobtrusive monitoring in a living space.

  Figure 5.26 (a), (b), (c) show the sleep mat deployment in the three HDB apartments.

Figure 5 . 26 :

 526 Figure 5.26: Sleep mat integration at the three HDB apartments; (a) 1 st home with mat under sleeping rug, (b) 2 nd home with mat under bed mattress, (c) 3 rd home with mat under bed mattress.
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 5 Figure 5.27: Representation of a participant's night from our real-life deployment. Three typical signal shapes are labeled according to recognized conditions: bed empty, bed motion, sleep. Gantt diagram: Row "B" is the result of the signal processing from the bed sensor. Row "M" shows a very inaccurate detection using motion sensors (blank space indicates activity detection in other rooms out of scope). Row "S" indicates the participant's answer in the survey Table 5.3 about their waking and sleeping habits.
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 61 Figure 6.1: Bland-Altman plot between the reference ECG-derived heartbeat intervals to associated BCG-derived heartbeat intervals for Group1.

  Figure 6.2: Bland-Altman plot between the reference ECG-derived heartbeat intervals to associated BCG-derived heartbeat intervals for Group2.

  Figure 6.3: Box plots of the average MAE for CEEMDAN algorithm and wavelet methods regarding the average beats per minute across all 50 subjects.
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 66 Figure 6.6: (a) Bland-Altman plot and (b) Pearson correlation plot of all patients regarding the HR measurement.
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 68 Figure 6.8: The first and second rows represent a 10-second time window of the BCG signal and the respiratory signal for patient No. 4.

2.

  The second limit was computed as follows:mean[measurement] + 2 × SD[measurement].(6.2)3. The third limit was computed as follows:mean[measurement] -2 × SD[measurement].(6.3) 

  Figure 6.9: Bland-Altman plot of waking-up time for resident No. 2; green bigotimes symbols represent Wednesday.

  Figure 6.10: Bland-Altman plot of sleep time for resident No. 3 over deployment time.

  Figure 6.11: Bland-Altman plot of waking-up time for resident No. 3 over deployment time.
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 6 Figure 6.12: Bland-Altman plot of total sleep time for the 2 nd resident over deployment time.
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  Figure 6.14: Bland-Altman plot of breathing rate representation of resident No. 2 over deployment time.
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 6 Figure 6.15: Sleep disturbance distribution for resident No. 2 over deployment time; the moving average is computed using a time-window of three days.
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  Understanding cardiovascular and respiratory systems is essential for analyzing sleep and sleep cycles, this is because the active processes in the human body are different in sleep and wakefulness. Typically, analyzing a person's sleep requires an overnight sleep test or polysomnography that allows monitoring of several physiological functions a long with sleep cycles. Although the polysomnography or as known as the gold standard for sleep monitoring provides real-time and accurate information about sleep it is cumbersome, expensive, and time-consuming. Thus, the healthcare community is seeking out inexpensive and mobile devices that can support a long-term data collection and be accessible to most of the people. Actigraph is a very famous example that can be used for sleep analysis. The device is not as accurate as the polysomnography. However, the provided information which is based on the users' activity is very important for healthcare professionals to understand and analyze the sleep behavior of the users. As the hardware and software technology is advancing very fast, several devices and mobile Apps have been developed for general healthcare monitoring, including sleep. These devices could be wearable such as bracelets or smart-watches or non-wearable like bed-sensors that can be installed underneath the user's bed mattress. We briefly explain the human physiology, including cardiovascular and respiratory systems in Section 2.2 and Section 2.3, respectively. The physiological aspects of sleep are discussed in Section 2.4. Sleep monitoring and available sleep monitoring technologies are provided in Section 2.5, Section 2.6, Section 2.7, and Section 2.8, respectively. Finally, the chapter is concluded in Section 2.9.
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2.1 Introduction

Sleep is a very significant biological function for the human being and is important to have a physical balance and a proper regime for decent quality of life. Inadequate quality and quantity of sleep can lead to a severe influence on an individual health. As a result, sleep analysis is a very important step towards the detection and diagnosis of sleep problems.

Third Stage and Fourth Stage or

  a.k.a.,

	]:
	1. First Stage is the period of time from being awake to falling asleep. The
	1 st stage is characterized by a reduction in brain waves and muscle activity.
	During this stage, people might encounter sudden muscle jerks headed by a
	falling sensation.
	2. Second Stage is considered as a light sleep period, where the eye movements
	stop. During the 2 nd stage, the brain activities become slower with sleep
	spindles, i.e., infrequent bursts of rapid waves. The sleep spindles are combined
	with uncontrollable episodes of muscle tone coupled with periods of muscle
	relaxation. Additionally, the heart rate decreases and body temperature drops.
	3.

slow-wave sleep / deep sleep is

  identified by slow brain waves (i.e., delta waves) scattered with smaller faster waves. During slow-wave sleep, the physiological activities decrease, and the body temperature falls even lower. In addition, the body becomes stationary.

]: 2.8.1 Wearable Sleep Tracking Devices 2.8.1.1 Zeo TM

  

	The device (Figure 2.6(a)) utilizes a headband to collect a combination of EEG and
	EMG signals from the forehead region. It classifies a 30-second epoch into light
	NREM, deep NREM, and REM sleep.

2.8.1.9 ŌURA TM

  

	This device (Figure 2.6(h)) is a smart shirt with integrated sensors to measure heart
	rate and heart rate variability, the total time of sleep, and body movement.
	This device (Figure 2.6(i)) is a smart ring integrated with three types of sensors,
	i.e., infrared LEDs, 3D accelerometer and gyroscope, and body temperature sensor.
	The ring can provide various information such as sleep stages, heart rate variability,
	and body temperature [de Zambotti 2017].

TM 

2.8.2.1 Sleep Cycle Alarm TM App

  To give an example, smart-watches are useful fitness and heart rate trackers. However, they don't have a long battery life that can last for the entire night. More specifically, smart-phones are not accurate enough to provide absolute sleep parameters and sleep staging, in addition, there is no proof that they can precisely awaken users from light sleep[START_REF] Kelly | [END_REF], Russo 2015, Jeon 2015[START_REF] Kolla | [END_REF], Ong 2016]. Some of the available Apps are discussed in the ensuing subsections:
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	sleep, deep sleep, and wake. Besides, it also has the smart-alarm feature.
	2.8
	This App utilizes the embedded accelerometer of the iPhone to recognize movements
	during sleep. Usually, the iPhone is to be placed nearby a person's headrest. The
	App can provide graphs representing total sleep time, a differentiation between light

.2.2 Sleep Time TM App

  

	This App can give a detailed information about wakefulness, light and deep sleep.
	Furthermore, it has the smart-alarm feature to help users wake up only during light
	sleep.
	2.8

.2.3 Toss N Turn TM App

  

	This App can report information about sleep and wake time using the embedded
	accelerometer in the smart-phone in addition to light intensity, sound, details of
	phone usage, and charging status as well.
	2.8

.2.4 ApneaApp TM : Sleep Apnea Detection on Smart-phones

  

	This App uses the built-in microphone in a smart-phone to emit some kind of
	inaudible wave, that serves as a sonar system to detect amplitude changes during
	breathing. The phone is usually placed on a regular sideboard same as if the person
	is charging his/her phone and getting ready for sleep. The App is designed to detect
	normal breathing and abnormal breathing, which include hypopneas, obstructive
	and central sleep apnea. Although this App showed a good correlation with the gold
	standard polysomnography regarding the apnea-hypopnea index it has not been
	validated in a home-based environment [Kolla 2016].
	2.8

.2.5 SleepRate TM

  

	This App can support iPhones and Android phones. It can report information about
	the wake, sleep, REM, light non-REM, and deep non-REM. The App needs to be
	connected with a wearable polar heart sensor that can transmit up to 30 feet using
	a Bluetooth low energy device.

  The device (Figure 2.7(d)) can provide vital signs such as respiration and heart rate as well as sleep cycle. The device is battery powered by a battery life up to 30 days. It needs to be connected to a smart-phone either Android or iPhone through a Bluetooth connection. It also claims a smart-alarm function to awaken the user from light sleep vs deep sleep. Users can follow up their sleep patterns using a mobile App.

Table 3 .2: Summary of unconstrained monitoring of vital signs using PVDF-based sensors. WT : wavelet trans- form, N/A: not available, P. Infants: premature infants, M : male, F: female, HR: heart rate, HRV : heart rate variability, RR: respiratory rate, ACF: autocorrelation function, Min: minutes, Hrs: hours, Sec: seconds, CLC : complete-linkage clustering, TM : template matching, FREQ: frequency, CEP: cepstrum, PCA: principal compo- nent analysis, MAP: maximum amplitude pairs, AMDF: adaptive-window average magnitude difference function, ECG Sync: electrocardiogram synchronization, EMD: empirical mode decomposition, TH : threshold, CWT : con- tinuous wavelet transform, Lab: laboratory.

 3 and thin bi-axially oriented polypropylene film covered with electrically conductive layers, which are enduringly polarized. EMFi has a static charge reaching hundreds of Volts. When a pressure is applied to the film, a charge is created on its electrically conductive surfaces and this charge can be measured as a current or voltage signal, usually with a charge amplifier. As a result, the EMFi serves as a sensitive motion sensor[START_REF] Alametsä | The potential of EMFi sensors in heart activity monitoring. In 2nd OpenECG Workshop Integration of the ECG into the EHR and Interoperability of ECG Device Systems[END_REF]]. Alametsä et al.[START_REF] Alametsä | The potential of EMFi sensors in heart activity monitoring. In 2nd OpenECG Workshop Integration of the ECG into the EHR and Interoperability of ECG Device Systems[END_REF]] suggested to use EMFi sensors for obtaining ballistocardiogram signals from certain places of the body. The authors installed EMFi sensors in a chair and in smaller pieces in a few positions on the body (arm, leg, and chest). The ballistocardiogram signals were collected from a few people and the duration of the recordings was relatively short.

		Method	Subjects (M, F)	Deployment	Duration	Outcome
	[Wang 2003]	WT	N/A	Lab	N/A	HR, RR
	[Wang 2007]	WT	5 P. Infants (2 M and 3 F)	Hospital	10 Min	HR, RR
	[Niizeki 2005]	ACF	13 M	Home	10 Min, 2 Hrs HR, RR
	[Paalasmaa 2008]	CLC	3 N/A	Lab	330 Min	HR
	[Paalasmaa 2012]	CLC, TM	40 N/A	Sleep clinic	Overnight	HR, RR
	[Paalasmaa 2015]	CLC, TM	60 N/A	Sleep clinic, home Overnight	HR
	[Chen 2009b]	WT	5 N/A	Lab	2 Hrs	HR, RR
	[Pinheiro 2012]	FREQ	21 N/A	Wheelchair	5 Min	HR
	[Kortelainen 2012]	CEP, PCA	6 N/A, 15 M, 13 F Hospital	Overnight	HR, RR
	[Guerrero 2013]	PCA	15 M, 13 F	Hospital	Overnight	Apneas
	[Brüser 2015]	ACF, MAP, AMDF 15 M, 13 F	Hospital	Overnight	HR
	[Martín-Yebra 2015]	ECG Sync	17 M, 11 F	Lab	5 Min	HRV
	[Katz 2016]	EMD	14 N/A	Home	Overnight	HR
	[Sela 2016]	N/A	6 M, 4 F	Lab	84 Min	LVET
	[Alvarado-Serrano 2016] CWT	5M, 2 F	Chair	100 Sec	HR
	[Liu 2017a]	Adaptive TH	7 M	Lab	45 Min	HR
	[Choe 2017]	CWT	6 N/A	Lab	67 Min	HR

Table 3 .3: Summary of unconstrained monitoring of vital signs using EMFi-based sensors. WT : wavelet transform, N/A: not available, M : male, F: female, HR: heart rate, RR: respiratory rate, ACF: autocorrelation function, Min: minutes, Hrs: hours, Sec: seconds, CEP: cepstrum, MAP: maximum amplitude pairs, AMDF: adaptive-window average magnitude difference function, EMD: empirical mode decomposition, TH : threshold, LT : linear transform, Lab: laboratory.
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		Method	Subjects (M, F) Deployment	Duration	Outcome
	[Kortelainen 2007] Visually	1 M, 1 F	Lab	5 Min	BCG
	[Kortelainen 2007] CEP	6 M	Lab	Overnight	HR
	[Aubert 2008]	Adaptive TH, ACF 58 M, 102 F	sleep Lab, Home Overnight	HR, RR
	[Karki 2008]	PSD	N/A	Lab	60 Sec	HR, RR
	[Kärki 2009]	PSD	5 M, 5 F	Lab	30 Sec	HR, RR
	[Pinheiro 2009]	PSD	5 N/A	Lab	10 Min	HR, BP
	[Pinheiro 2010a]	PSD	4 M, 2 F	Lab	125 Sec	HR
	[Brüser 2013]	ACF, MAP, AMDF 14 M, 19 F	Clinic	Overnight	HR
	[Zink 2015]	ACF, MAP, AMDF 15 M, 7 F	Hospital	N/A	HRV
	[Zink 2017]	ACF, MAP, AMDF 19 M, 2 F	Hospital	Overnight	HR
	[Pino 2015]	EMD, WA, LT	54 N/A	Lab, Hospital	1 Min, 2 Min HR
	[Pino 2016]	EMD, WA, LT	114 N/A	Home, Hospital	2 Min, 2 Min HR

Table 3 .4: Summary of unconstrained monitoring of vital signs using Pneumatic-based sensors. N/A: not available, M : male, F: female, HR: heart rate, RR: respiratory rate, Min: minutes, Hrs: hours, Sec: seconds, STFT : short- time Fourier transform, Lab: laboratory.
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		Method	Subjects (M, F) Deployment Duration	Outcome
	[Watanabe 2005]	STFT	12 M, 3 F	Lab	Overnight HR, RR, SI
	[Kurihara 2012]	STFT	10 N/A	Lab	20 Sec	HR, RR
	[Chee 2005, Shin 2006] ECG Sync, STFT 1 N/A	Lab	N/A	HR, RR
	[Shin 2010]	ECG Sync, STFT 13 M	Lab	4 Hrs	HR, RR

Table 3 .5: Summary of unconstrained monitoring of vital signs using Pneumatic-based sensors. N/A: not available, M : male, F: female, HR: heart rate, RR: respiratory rate, Min: minutes, Hrs: hours, Sec: seconds, SWM/M : sliding window minimum/maximum, ECG Sync: electrocardiogram synchronization, PCA: principal component analysis, CCF: cross-correlation function, ED: Euclidean distance, HVS: heart valve signal, ACF: autocorrelation function, SE: Shannon entropy, EMD: empirical mode decomposition, Lab: laboratory.

 3 

		Method	Subjects (M, F)	Deployment Duration	Outcome
	[Brink 2006]	SWM/M	2 M, 2 F	Lab	5 Min	HR, RR
	[Inan 2009]	ECG Sync	11 M, 10 F	Lab	45 Sec	HR
	[Bruser 2011]	PCA, K-means CCF, ED, HVS	9 M, 7 F	Lab	30 Min	HR
	[Vehkaoja 2013] ACF	5 M, 4 F	Lab	1 Hrs	HR
	[Lee 2016]	SE, EMD, SWM/M Infants (3 M, 1 F) Home	10 -178.8 Min HR, RR

Table 3 .6: Summary of unconstrained monitoring of vital signs using Hydraulic-based sensors. N/A: not available, M : male, F: female, HR: heart rate, RR: respiratory rate, Min: minutes, Hrs: hours, Sec: seconds, WPPD: windowed peak to peak deviation, CA: clustering approach: HT : Hilbert transform, STE: short-time energy, eFUMI : extended function of multiple instances, Lab: laboratory.

 3 

		Method Subjects (M, F) Deployment Duration	Outcome
	[Heise 2010]	WPPD	1 M, 1 F	Lab	10 Min	HR, RR
	[Heise 2011]	WPPD	3 M, 2 F	Lab	10 Min	HR, RR
	[Rosales 2012] CA	2 M, 2 F	Lab	6 Min	HR
	[Su 2012]	HT	3 M, 2 F	Lab	2.5 Min	HR
	[Lydon 2015]	STE	2 M, 1F 4M	Lab Home	10 Min Overnight	HR HR
	[Jiao 2016]	eFUMI	4 N/A	Lab	10 Min	HR
	[Rosales 2017] CA, HT 4 M	Home	Overnight HR

Table 3 .7: Summary of unconstrained monitoring of vital signs using Hydraulic-based sensors. N/A: not avail- able, M : male, F: female, HR: heart rate, RR: respiratory rate, Min: minutes, Hrs: hours, Sec: seconds, BP: blood pressure, PPG Sync: Photoplethysmography synchronization: STFT : short-time Fourier transform, CEPS: cepstrum, Lab: laboratory.

 3 

		Method	Subjects (M, F) Deployment Duration	Outcome
	[Chen 2009c]	Visually	N/A	Lab	N/A	HR
	[Chen 2012]	Visually	9 N/A	Lab	N/A	RR
	[Deepu 2012]	Peak Detector	5 N/A	Lab	5 Min	HR
	[Chen 2013]	PPG Sync	5 N/A	Lab	N/A	BR
	[Lau 2013]	Peak Detector	10 M, 10 F	MRI	N/A	RR
	[Chen 2014b]	Peak Detector	6 M, 5 F	MRI	N/A	HR, RR
	[Dziuda 2013a]	Peak Detector	2 M, 1 F	MRI	95 Min	HR, RR
	[Dziuda 2013b]	Peak Detector	8 M, 4 F	MRI	60 Min	HR, RR
	[Dziuda 2014]	Peak Detector	1 M	MRI	19 Min	HR
	[Krej 2015]	Peak Detector	6 M, 2 F	MRI	82 Min	HR
	[Zhu 2013]	STFT	3 N/A	Lab	6 Min	HR
	[Chen 2014a]	Peak Detector	22 N/A	Hospital	Overnight HR, RR
	[Zhu 2014, Zhu 2015] CEPS	10 N/A	Lab	20 Min	HR, RR
	[Fajkus 2017a]	Peak Detector, FFT 6 M, 4 F	Lab	N/A	HR, RR
	[Chethana 2017]	Visually	2 M, 2 F	Hospital	1 Min	HR, RR
	[Nedoma 2017]	Peak Detector	3 M, 3 F	Lab	60 Min	HR, RR
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Table 5 .1: Features' mathematical equations.

 5 

  1 , w 2 , . . . , w N }

	2: Tr ← 15 Output:
	3: state
	4: for i = 1, . . . , N do
	5: 6: end for S(i) ← SD(w i )
	7: M ← MAD(S) 8: for j = 1, . . . , N do
	9: 10: 11:	if SD(w j ) > 2 * M then state ← bed movement else if SD(w j ) < Tr then
	12: 13:	state ← bed empty else
	14: 15:	state ← sleep

Table 5 .2: Patients' demographic information.

 5 Overall values are described as mean ± standard deviation.

	Patient No.	Gender Severity AHI †	BMI ‡ (kg m -2 )	Age (years)
	1	Male	mild	11	26.72	40
	2	Female	mild	5	28.75	37
	3	Male	mild	8	25.39	35
	4	Male	mild	10	30	42
	5	Male	severe	51	32.86	46
	6	Male	severe	77	29.38	56
	7	Male	severe	25	28.65	49
	8	Male	severe	72	26.81	35
	9	Male	severe	51	26.03	42
	10	Male	severe	67	34.74	32
	Overall *				28.65 ± 3.17 41.40 ± 7.34
	† AHI: Apnea-hypopnea index			
	‡ BMI: Body mass index			
						

* 

  -1(5.22) where t n is the time at n th local maxima and t n-1 is the time at (n -1) th local
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Table 5 .3: Home situation and sleep habits of each resident.

 5 

		Home Situation Sleeping Time Waking-up Time Napping Time
	Res1	Alone	23 : 00 -00 : 00	07:00 Sometimes at 05 : 30 07 : 00	1 -2 times 13 : 00 -15 : 00 30 -60 min
	Res2	Family	21 : 00 -23 : 00	at 04 : 00 Wednesday	N/A
	Res3	Family	18 : 30 -19 : 30 Sometimes at 22 : 00	02 : 30	2 -3 times 13 : 00 -15 : 00 30 min

• According to the residents, the reported time is approximate.

• Residents do not report chronic diseases or disabilities.

• Resident No. 1 sleeps on the floor, resident No. 2 sleeps in a double bed. However, she always sleeps on one side of the bed, and resident No. 3 sleeps in a single bed.

Table 5 .3 about their waking and sleeping habits.
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Table 6 .1: 10-fold cross validation mean accuracy for Group1 and Group2, (RF: ntrees = 50, SVM: RBF kernel, NN: 50 hidden neuron).
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	RF	SVM	NN	LDA	DT
	Group1 98.13% 93.38% 91.61% 89.26% 97.51%
	Group2 92.30% 90.49% 85.89% 79.37% 89.39%

Table 6 .2: Accuracy results for testing Group2 Vs. Group1 (Experi- ment1) and testing Group1 Vs. Group2 (Experiment2).

 6 

	RF	SVM	NN	LDA	DT
	Experiment1 90.75% 84.54% 82.34% 73.29% 88.1%
	Experiment2 97.99% 97.46% 87.10% 90.26% 97.41%

Table 6 .3: Confusion Matrix of random forest classifier for testing Group1 Vs. Group2 (Experiment2).

 6 

			Actual	
			Informative Non-Informative
	Predicted	Informative Non-Informative	1270 18	26 771

Table 6 .4: The MAE for Group1 and Group2 before and after classifica- tion regarding the average beats per minute.
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		MAE (before) MAE (after)
	Group1	11.16	7.26
	Group2	15.24	9.68
	Average	13.2	8.47

Table 6 .5: The mean and standard deviation (SD) of the MAE for MODWT and CEEMDAN regarding the average beats per minute across all 50 subjects.
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		CEEMDAN db1 sym2 coif1 bior3.9 rbio3.1
	Mean	9.4	12.64 14.11 14.17 10.12	10.13
	SD	6.16	6.36	7.4	7.42	4.69	4.79

Table 6 .6: The mean and standard deviation (SD) of the MAE for best wavelet, FFT, cepstrum, and autocorrelation methods considering the average beats per minute across all 50 subjects.
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		FFT Cepstrum Autocorrelation bior3.9
	Average 29.99	58.36	76.54	10.12
	SD	12.21	8.08	22.58	4.69

Table 6 .7: The mean absolute error of all 10 pa- tients for the average beats per minute computed during the entire study.
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	Patient #		Mean HR (beats/minute)
		ApneaLink MFOS Mat Absolute Error
	1	70.67	70.87	0.2
	2	81.43	81.5	0.07
	3	79.35	79.6	0.25
	4	77.32	77.83	0.51
	5	70.22	72.34	2.12
	6	72.52	72.41	0.11
	7	66.72	67.4	0.68
	8	72.84	72.49	0.35
	9	71.09	71.6	0.51
	10	90.57	89.95	0.62
	Overall *			0.55 ± 0.59
				

* Overall values are described as mean ± standard deviation.

Table 6 .8: The mean absolute error of all 10 pa- tients for the average breaths per minute com- puted during the entire study.
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	Patient #	Mean RR (breaths/minute)
		ApneaLink MFOS Mat Absolute Error
	1	15.05	14.85	0.2
	2	19.47	19.63	0.16
	3	16.66	17.59	0.93
	4	17.38	17.96	0.58
	5	18.98	19.06	0.08
	6	19	18.57	0.43
	7	20.42	20.21	0.21
	8	19.52	20.38	0.86
	9	17.44	17.72	0.28
	10	20.02	20.07	0.05
	Overall *			0.38 ± 0.32
				

* Overall values are described as mean ± standard deviation.

Table 6 .9: Sensitivity and specificity of sleep apnea detec- tion

 6 

	Patient No.	AHI		Statistics (%)
		ApneaLink MFOS Mat	Sensitivity	Specificity
	1	11	42	34.76	93.79
	2	5	32	12.79	92.72
	3	8	8	11.63	95.25
	4	10	90	24.37	77.13
	5	51	15	24.37	85.14
	6	77	10	14.29	89.29
	7	25	30	24.24	81.83
	8	72	46	21.36	82.08
	9	51	98	57.20	80.32
	10	67	64	17.45	81.19
	Overall				

* 24.24 ± 12.81 85.88 ± 6.01 * Overall values are described as mean ± standard deviation.

Table 6 .10: Starting and ending of napping time for resident No. 3.
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	Days	Start Napping Last Napping Difference
	8/19/2016 13 : 16 : 29	15 : 42 : 29	2 : 26 : 00
	8/22/2016 13 : 52 : 29	15 : 47 : 59	1 : 55 : 30
	8/27/2016 12 : 37 : 59	14 : 49 : 29	2 : 11 : 30
	8/29/2016 13 : 09 : 29	14 : 40 : 29	1 : 31 : 00
	9/5/2016	13 : 40 : 59	14 : 30 : 59	0 : 50 : 00
	9/7/2016	14 : 47 : 59	15 : 28 : 29	0 : 40 : 30
	Mean	13 : 34 : 14	15 : 09 : 59	1 : 35 : 45

13: Bland-Altman plot of heart rate representation of resident No. 3 over deployment time.
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Product website: https://www.emfitqs.com/

Product website: https://www.beddit.com/

Product website: https://www.earlysense.com/digital-health/

Product website: https://support.health.nokia.com/

Product website: http://bamlabs.com/

Product website: http://www.sleepace.com/

The system hardware is commercialized by Juvo Labs company in Singapore (patented by A*STAR). Our contribution focused on the software part development by denoising and analyzing raw data from the mat

"Opportunistic sensing is seen as a way to gather information about the physical world in the absence of a stable and permanent networking infrastructure"[Scholten 

2011].

https://www.zansors.com/

http://www.hdb.gov.sg Housing & Development Board is a Singaporean governmental organization responsible for public housing, on their website, HDB claims: "HDB flats are home to over 80% of Singapore's resident population"

Scientific Reports, vol. 7, no. 1, page 13175, 2017. (Cited on pages 39 and 41.) 

Acknowledgments

thank him for initiating the collaboration between IPAL and Khoo Teck Puat (KTPH) hospital, Singapore.

there is a major difference between the reference ECG and the proposed device when we implemented the frequency analysis and autocorrelation function for heart rate estimation. The error of the average beats per minutes obtained by FFT,cepstrum,and autocorrelation was 29.99 ± 12.21,58.36 ± 8.08,and 76.54 ± 22.58,respectively. We can also see that the best wavelet (Biorthogonal-3.9) performed much better results (10.12 ± 4.69) than others. Hence, we can conclude that the wavelet analysis is better suited than the Fourier analysis for analyzing the optical fiber data. This happened because wavelets are localized in both the time and frequency. Furthermore, the adaptive time-frequency resolution of wavelet signal processing allowed us to perform multiresolution analysis on ballistocardiogram signals. On the other hand, the frequency analysis did not provide better results due to the nonstationary characteristics of ballistocardiogram signals, whose spectral content varies over time. For the rest of this chapter, we will employ the wavelet analysis using Biorthogonal-3.9 as a basis function to compute the heart rate. The next section will provide and discuss the results of our clinical validation study. 

Results of Clinical

Results of Clinical Application

In this section, we explain the effectiveness of the optical fiber mat for unobtrusive vital signs monitoring, i.e., heart rate and breathing rate as well as for unobtrusive monitoring of sleep apnea during a drug-induced sleep endoscopy study.

Heart and Respiratory Rate Estimation

The reference HR and RR were obtained from the ApneaLink finger pulse sensor and chest belt, respectively. The mean HR was estimated in beat per minute (beats/minute) using a 10-second time window, whereas the mean RR was computed in breath per minute (breaths/minute) using a 10-second time window. To measure the performance of the introduced algorithms for HR and RR estimation, we used the mean absolute error (MAE). The Bland-Altman plot [Bland 1990], as well as the Pearson correlation coefficient, were also used to check the agreement between the reference and estimated values. The MAE for the mean beats per minute and the mean breaths per minute of all ten patients is listed in Table 6.7 and Table 6.8 respectively. Averaged across the ten patients, the MAE error was 0.55 ± 0.59 beats/minute and 0.38 ± 0.32 breaths/minute for the mean HR and mean RR