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Abstract

Nonintrusive and long-term monitoring of human physiological functions are essential
requirements for early diagnosis and prophylaxis due to many reasons, one of the
most important being improving the quality of life. In this research, we focus on
sleep monitoring as a substantial vector of quality of life. Sleep is a fundamental and
vital physiological function. Getting enough quality sleep is necessary to a person’s
mental health, physiological well-being, quality of life, and safety. Sleep-disordered
breathing, specifically obstructive sleep apnea can result in serious health issues,
including hypertension and stroke.

The current approaches for diagnosing sleep disorders are burdensome, intrusive,
and can affect the patient’s sleep quality. As a result, there is a crucial need for less
cumbersome systems to diagnose sleep-related problems. We propose to use a novel
nonintrusive sleep monitoring system based on a microbend fiber-optic mat placed
under the bed mattress. The sleep quality is assessed based on different parameters,
including heart rate, breathing rate, body movements, wake up time, sleep time,
night movement, and bedtime. The proposed system has been validated in a health
and wellness environment in addition to a clinical environment as follows.

In the former case, the heart rate is measured from noisy ballistocardiogram
signals acquired from 50 human volunteers in a sitting position using a massage chair.
The signals are unobtrusively collected from a microbend fiber optic sensor embedded
within the headrest of the chair and then transmitted to a computer through a
Bluetooth connection. The heart rate is computed using the multiresolution analysis
of the maximal overlap discrete wavelet transform. The error between the proposed
method and the reference ECG is estimated in beats per minute using the mean
absolute error where the system achieved relatively good results (10.12 ± 4.69)
despite the remarkable amount of motion artifact produced owing to the frequent
body movements and/or vibrations of the massage chair during stress relief massage.
Unlike the complete ensemble empirical mode decomposition algorithm, previously
employed for heart rate estimation, the suggested system is much faster. Hence, it
can be used in real-time applications.

In the latter case, we evaluated the capacity of the microbend fiber optic sensor
to monitor heart rate and respiration unobtrusively. In addition, we tested the
capacity of the sensor in discriminating between shallow breathing and no breathing.
The proposed sensor was compared to a three-channel portable monitoring device
(ApneaLink) in a clinical setting during a drug-induced sleep endoscopy. Across
all ten patients recruited for our study, the system achieved satisfactory results in
the mean heart rate and the mean respiratory rate with an error of 0.55 ± 0.59

beats/minute and 0.38 ± 0.32 breaths/minute, respectively. Besides, the Pearson
correlation coefficient between the proposed sensor and the reference device was
0.96 and 0.78 for heart rate and respiration, respectively. On the contrary, the
proposed sensor provided a very low sensitivity (24.24 ± 12.81%) and a relatively
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high specificity (85.88 ± 6.01%) for sleep apnea detection. It is expected that this
preliminary research will pave the way toward unobtrusive detection of obstructive
sleep apnea in real-time.

Following successful validation of the proposed system, we have successfully
deployed our sleep monitoring system in thirteen apartments with mainly senior
residents over six months. Nevertheless, in this research, we concentrate on a
one-month deployment with three senior female residents. The proposed system
shows an agreement with a user’s survey collected before the study. Furthermore,
the system is integrated within an existing ambient assisted living platform with a
user-friendly interface to make it more convenient for the caregivers to follow-up the
sleep parameters of the residents.

Keywords: Ballistocardiography; E-Health; Sleep apnea; Technology and services
for assisted-living and elderly; Technology and services for home care; Vital signs



Résumé

En vue du diagnostic précoce et la prophylaxie, la surveillance des fonctions physi-
ologiques humaines est exigée d’être essentiellement à la fois non intrusive et à long
terme. Parmi nombreuses motivations, l’une des plus importantes est l’amélioration
de la qualité de vie. Dans cette recherche, nous nous concentrons sur la surveillance
du sommeil comme un vecteur substantiel de qualité de vie. Le sommeil est une
fonction physiologique fondamentale et vitale. Avoir suffisamment de sommeil de
qualité est nécessaire pour la santé mentale, pour le bien-être physiologique, pour la
qualité de vie et pour la sécurité d’une personne. La respiration irrégulière pendant
le sommeil, particulièrement l’apnée obstructive du sommeil, peut entraîner de
graves problèmes de santé, y compris l’hypertension artérielle et accident vasculaire
cérébral.

Les approches actuelles pour diagnostiquer les troubles du sommeil sont lourdes,
intrusives et peuvent influer sur la qualité du sommeil du patient. Il y a donc un
besoin crucial de systèmes moins encombrants pour diagnostiquer les problèmes liés
au sommeil. Nous proposons d’utiliser un nouveau système de suivi du sommeil non
intrusif basé sur un tapis à fibre optique à microflexion placée sous le matelas de lit.
La qualité du sommeil est évaluée en fonction de différents paramètres, y compris
la fréquence cardiaque, le rythme respiratoire, les mouvements du corps, l’heure
du réveil, la durée du sommeil, le mouvement nocturne et l’heure du coucher. Le
système proposé a été validé dans un environnement de santé et de bien-être, en
plus d’un environnement clinique comme suit.

Dans le premier cas, la fréquence cardiaque est mesurée à partir de signaux
ballistocardiogramme bruités acquis de 50 volontaires en position assise à l’aide d’une
chaise de massage. Les signaux sont recueillis discrètement à partir d’un capteur de
fibre optique microflexible intégrée dans l’appui-tête de la chaise, puis transmis à un
ordinateur par une connexion Bluetooth. La fréquence cardiaque est calculée à l’aide
de l’analyse multi-résolution de la transformée discrète en ondelettes à chevauchement
maximal. L’erreur entre la méthode proposée et électrocardiogramme de référence est
estimée en battements par minute en utilisant l’erreur absolue moyenne où le système
a obtenu des résultats relativement bons (10.12±4.69) malgré la quantité remarquable
d’artefact de mouvement produit en raison des fréquents mouvements corporels
et/ou vibrations de la chaise de massage pendant le massage de soulagement du
stress. Contrairement à l’algorithme complet de décomposition du mode empirique
de l’ensemble, précédemment utilisé pour l’estimation de la fréquence cardiaque, le
système proposé est beaucoup plus rapide. Par conséquent, il peut être utilisé dans
les applications temps réel.

Dans ce dernier cas, nous avons évalué la capacité du capteur de fibre optique
microflexible pour suivre la fréquence cardiaque et la respiration d’une manière
discrète. En outre, nous avons testé la capacité du capteur dans la discrimination
entre la respiration superficielle et pas de respiration. Le capteur proposé a été
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comparé à un dispositif de surveillance portatif à trois canaux (ApneaLink) dans un
milieu clinique au cours d’une endoscopie sous anesthésie. Parmi les dix patients
recrutés pour notre étude, le système a obtenu des résultats satisfaisants quant à
la fréquence cardiaque moyenne et quant à la fréquence respiratoire moyenne avec
une erreur de 0.55 ± 0.59 battements/minute et de 0.38 ± 0.32 respirations/minute,
respectivement. De plus, le coefficient de corrélation Pearson entre le capteur proposé
et le dispositif de référence était de 0.96 et 0.78 pour la fréquence cardiaque et la
respiration, respectivement. Au contraire, le capteur proposé a fourni une très faible
sensibilité (24.24±12.81%) et une spécificité relativement élevée (85.88±6.01%) pour
la détection de l’apnée du sommeil. On s’attend à ce que cette recherche préliminaire
ouvre la voie vers la détection discrète de l’apnée obstructive du sommeil en temps
réel.

Suite à la validation réussie du système proposé, nous avons déployé avec succès
notre système de surveillance du sommeil pendant plus de 6 mois dans treize
appartements habités principalement par les personnes âgées. Néanmoins, dans
cette recherche, nous nous concentrons sur un déploiement d’un mois avec trois
résidents seniors de sexe féminin. Le système proposé montre l’accord avec l’enquête
utilisateur recueillie avant l’étude. En outre, le système est intégré dans une plate-
forme d’autonomie assistée existante avec une interface conviviale pour rendre plus
commode pour les aidants le suivi des paamètres de sommeil des résidents.

Mots-clés: Balistocardiographie ; E-Santé ; Apnée du sommeil ; Technologie et
services pour les personnes âgées et assistées ; Technologie et services pour les soins
à domicile ; Signes vitaux
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1.1 Research Description

Technological progress allows us to take better care of ourselves and our relatives
with less effort. Furthermore, we observe an emergence of Zero-Effort Technologies

(ZET) [Mihailidis 2011]. They represent technological solutions that provide a
service without requiring any form of active participation of the user. Their main
paradigm is to leverage on unobtrusive observations of daily activities and on smart
use of available information. Ambient Assisted Living (AAL) platforms, which is a
specific type of ZET, target improving the quality of life – of both the monitored
person and their caregivers. Such a platform aims at empowering people who may be
at risk without assistance, especially the elderly. It contributes to users’ autonomy
in their own living space rather than leaving them completely dependent on others
(e.g., a nursing home) [Sadek 2017b].

In this research, we focus on sleep monitoring as a substantial vector of quality of
life. Sleep is one of the most important elements all human needs similar to oxygen,
water, and food. Getting enough quality sleep is necessary to a person’s mental health,
physiological well-being, quality of life, and safety. Humans spend a third of their life’s
sleeping. As advised, among other things, by the U.S. National Institutes of Health,
sleep deficiency can lead to fatal health problems. Currently, sleep assessments
and evaluation tools are burdensome, expensive, and time-consuming. For these
reasons, inexpensive, non-disruptive, and unobtrusive methods to monitor sleep
and sleep quality are greatly needed. Healthcare systems worldwide are struggling
with significant challenges, i.e., rapid growth in aging population, increased number
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of people with chronic and infectious diseases, rising costs, and inefficiencies in
health-care systems. As a response to these challenges, the healthcare community is
seeking out novel noninvasive solutions that can improve the quality of healthcare
for the patient while maintaining the cost of the service provided. This is where a
massive use of Internet of Things devices (wearables, low-energy sensors, beacons,
apps) is playing a major shift in the quality of life of the population. To achieve
these goals, early diagnosis, prevention, and a more efficient disease management
system are highly needed [Koenig 2008]. In the following section, we discuss in more
detail the current challenges facing the healthcare systems.

1.2 Current Healthcare Challenges

Across the world, healthcare challenges can exist in different shapes and forms.
Thereafter, it introduces tremendous pressure on the current system. Even though
every country faces different challenges and encounters diverse effects, it is still
feasible to identify overall global risk to current healthcare systems. These challenges
are an essential starting point for the work ahead.

Population aging, the prevalence of chronic diseases, shortage of healthcare
professionals, and the unexpected rise of healthcare costs, among other reasons, are
the major challenges facing today’s healthcare systems. For solving these issues,
public and private sector players should collaborate together to find more innovative
and cost-effective systems that can be deployed in out-of-hospital environments
[Niewolny 2013]. Nowadays, clouds and the Internet of Things can help improve
access to care, increase the quality of care and above all reduce the cost of care.
The major challenges facing the healthcare communities are discussed in ensuing
subsections.

1.2.1 Growing Numbers of Elderly People

Unlike earlier generations, people are living longer and healthier due to recent
advances in medical science. The elderly populations are growing more rapidly than
any other age group in just about every country around the world. The reasons for
this are declining fertility rates and/or rising life expectancy. In general, the world’s
population is projected to increase by slightly more than one billion people over
the next 13 years, reaching 8.6 billion in 2030, and to increase further to 9.8 billion
in 2050 and 11.2 billion by 2100 (Figure 1.1 and Figure 1.2), more specifically the
number of older persons in the world is projected to be 1.4 billion in 2030 and 2.1
billion in 2050, and could rise to 3.1 billion in 2100.

Over the next few decades, a further increase in the population of older per-
sons is almost inevitable, given the size of the cohorts born in recent decades
[United Nations 2017]. Typically, aging causes several limitations to older adults
as a result of their cognitive decline, chronic age-related diseases in addition to
weaknesses in physical activities, vision, and hearing. Since the number of older
people who do require a special care has grown, too few specialists and resources are
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Figure 1.1: Distribution of the world’s population by age and sex, 2017.
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vision. New York: United Nations.

going to be available to address their needs. Many seniors prefer to stay alone in
their homes. This phenomenon is referred to as aging in place, independent living at
home, is denoted as the increased in the number of elders who remain in their own
homes for the following years in their lives [Ricart 2017]. Providing a healthcare
to elders living alone in their homes is a very challenging task given that fact that
most of the elders might have a physical and/or cognitive decline.

Aging in place (defined as “remaining living in the community, with some level of
independence, rather than in residential care” [Wiles 2012]) becomes possible thanks
to advancements in sensor technology, wireless communications, and information
technology. Long-term monitoring of physiological data in real-life environments such
as users’ homes is essential to help manage health problems such as cardiovascular
complications, diabetes, etc. Usually, recent modalities available to monitor physio-
logical data can be divided into two main categories: non-wearable and wearable
sensors. The non-wearable sensors can be integrated with home furnishings and
structures, whereas the wearable sensors can be embedded in a form factor of, for
instance, a wristwatch, bracelet, or ring, etc.

The benefit of these sensors is that they can monitor several variables from
individuals in their own homes during their normal daily activities. In addition,
they can observe trends in physiological data over an extended period of time
as well as automatically alert healthcare professionals or caregivers in emergency
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situations such as falls in case of older people [Korhonen 2003]. Although some older
adults might have concerns about the intrusion of privacy and loss of autonomy
when using remote healthcare monitoring devices, this method is preferred by
older adults since it promotes independence with the added sense of protection in
case something went wrong they could get an immediate assistance [Rashidi 2013,
Liu 2016, van Hoof 2011].

1.2.2 Prevalence of Chronic Diseases

There will be an increase in age-related diseases, namely Alzheimer disease and
Parkinson’s disease in which cure is not yet available. Consequently, the percentage
of individuals unable to live independently is going to increase. As the population
ages, there is an increasing concern about how we will pay for the quality of care
for the elderly and how we will address the quality of care to our aging population
[Rashidi 2013]. Hereafter, there is an immediate need to use low-priced measures to
improve health in this group with the intention of preventing illness and disability
later [Ricart 2017]. Moreover, there is a crucial need for self and remote monitoring
of vital physiological parameters.
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1.2.3 Shortage of Caregivers

The number of healthcare practitioners and caregivers trained to deal with aging
populations will be limited. As a result, family members or relatives should informally
replace the caregivers. Observing dependent individuals at home might cause some
difficulties to family members such as higher levels of painfulness and physical health
problems [Ricart 2017]. Well-designed and -implemented technology can extend the
reach of caregivers, ultimately offsetting the rising cost of healthcare and the need
for skilled caregivers. To give some examples, remote health monitoring technologies
such as wearable devices and video teleconferences are now making it possible for
monitoring to come to patients with disabilities rather than vice-versa.

The Internet of Things (IoT) technology enables and facilitates remote monitoring
of patients who don’t have ready access to effective health monitoring. Likewise, it
also helps thoroughly reduce costs and promote health by increasing the availability
and quality of care [Niewolny 2013, Islam 2015]. The IoT is a network of smart
devices and other objects, integrated with electronics, software, sensors, and network
connectivity that allows these objects to obtain and exchange data. The concept of
IoT allows the healthcare professionals and caregivers to access a patient’s medical
history, vitals, lab results, medical and prescription histories either on-site or remotely
via tablets or smart-phones. Additionally, patients can be monitored and advised
from anywhere [Dimitrov 2016]. The IoT based solution can be utilized to record
patient health data in a securely manner from several sensors, apply complicated
algorithms to analyze the data and then distribute it through wireless connectivity
with medical specialists who can make suitable health recommendations. Figure 1.3
shows an illustration of a sensor mat as an example of an IoT device in a medical
setting.

1.2.4 Rising Costs of Healthcare

Healthcare costs are projected to continue to increase. Thus, the current paradigm
of health care will become unsettled as the aging population is going to grow
in the coming decades [Zheng 2014]. As an example, an elderly person might
have the condition of sleep-disordered breathing (SDB). The SDB, better known
as the obstructive sleep apnea (OSA) syndrome and associated cardiovascular
complications are among the most common clinical disorders. The prevalence of
OSA was determined to influence approximately 14% of men and 5% of women, in
a population-based study employing an apnea-hypopnea index (AHI) cutoff of ≥ 5

events/h associated with clinical symptoms to define OSA [Kimoff 2016, Kapur 2017].
The gold-standard approach to diagnose OSA is known as polysomnography (PSG),
the PSG test should be performed in a specialist sleep clinic for a complete overnight.

In principle, the sleep test includes many sensors placed on the patient body to
record specific body functions such as the heart’s electrical activity, brain’s electrical
activity, breathing, thoracoabdominal movement, blood oxygen saturation, body
movement, etc. The PSG system provides accurate and real-time data. Nevertheless,
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Figure 1.3: An illustration of a sensor mat as an example of an IoT

device in a medical setting.

it introduces many limitations, i.e., complexity, invasiveness, excessive cost, and
absence of privacy. Technological advancements in hardware and software enable
noninvasive and unobtrusive sensing of vital signs. An alternative approach which
may help diagnose OSA and other cardiovascular diseases is the ballistocardiography.
The ballistocardiogram (BCG) signal records the mechanical activity originating
from the rebound of the body, generated when the blood is pumped out of ventricles
into the large blood vessel synchronous with each heartbeat [Park 2018]. During
the 1900s, BCG signals were massively studied and numerous publications appeared
in major scientific and clinical journals. Nevertheless, BCG signals were largely
abandoned by the medical community as the measurement devices (e.g., moving
table types) were very bulky and complex [Inan 2015].

Recently, BCG sensors such as the microbend fiber may be embedded in ambient
locations such as mattresses, pillows, chairs, beds, or even weighing scales, to measure
BCG. Some common BCG sensing technologies in literature are microbend fiber-optic
sensors, fiber Bragg grating sensors, piezo-resistive fabric sensors, electromechanical
film and polyvinylidene fluoride film-based sensors. One of the main advantages
of the microbend fiber-optic sensor is that due to its immunity to electrical and
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electromagnetic interference it is a very suitable tool to be implemented in the
magnetic resonance imaging environment. Other advantages include small size,
lightweight, and lower price. Additionally, the sensor is an appropriate choice for
unconstrained and long-term monitoring of vital signs as it is highly sensitive to
pressure changes induced due to the ballistic forces of the heart, while not required
to be in close contact with the body [Sadek 2017a].

1.3 Research Objectives of this Thesis

1. Design and developing a robust system for remotely collecting vital physiologi-
cal signs namely heart rate, respiration, and body movement unobtrusively
from subjects in their beds.

2. Design and developing a robust system for remotely monitoring the quality of
sleep unobtrusively from subjects in their beds.

3. Deploying and validating the proposed system in a clinical setting.

4. Deploying the proposed system in real-life environments such as users’ homes.

5. Integrating the proposed system within an existing ambient assisted living
platform known as UbiSMART.

1.4 Structure of the Thesis

This thesis is structured as discussed below:

1. Chapter 1 describes the problem statement as well as general information
about current healthcare challenges, namely growing number of older adults,
the prevalence of chronic diseases, shortage of caregivers, and rising costs of
healthcare. This chapter ends with the research aims and the thesis outline.

2. Chapter 2 briefly describes the human physiology, including cardiovascular
and respiratory systems. The sleep cycles are also discussed, which consist
of rapid eye movement sleep and non-rapid eye movement sleep. At last,
the chapter discusses the gold-standard for assessing sleep and some of the
available sleep monitoring technologies. These devices could be wearables
such as bracelets; smart-watches or non-wearables like bed-sensors that can
be installed underneath the user’s bed mattress.

3. Chapter 3 gives a summary about ballistocardiography and how it has been
evolved over time to reach an acceptable level for healthcare providers. This
chapter also gives a comprehensive review of available sensors used in literature
to analyze and interpret ballistocardiogram signals. These sensors include
microbend fiber-optic sensors, piezo-resistive fabric sensors, electromechanical
film and polyvinylidene fluoride film-based sensors, load cells, strain gauges,
pneumatic, and hydraulic sensors.
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4. Chapter 4 covers the operating principle of the proposed sensor, i.e., mi-
crobend fiber-optic sensor. Likewise, it discusses our system development cycle.
Furthermore, it presents how the proposed system is validated in health and
clinical environments. Finally, it shows how the system is integrated within
an existing Ambient Assisted Living platform.

5. Chapter 5 discusses in detail the proposed methodology to analyze the
data acquired by the optical fiber sensor. Various algorithms have been
implemented such as empirical mode decomposition, wavelet analysis, frequency
analysis, and autocorrelation function to analyze ballistocardiogram signals,
and therefore interbeat intervals can be computed unobtrusively. Moreover, the
data collection protocol for the two validation phases is also discussed. Wavelet
analysis shows superior results compared with other algorithms. At last, the
real-life deployment of the proposed system in user’s homes is provided.

6. Chapter 6 describes results and discussions about the proposed methodology
to analyze the optical fiber data, in which a comparative study between various
algorithms is provided. It also shows the suitability of the proposed sleep
monitoring system for unobtrusive vital signs monitoring in a clinical setting.
Moreover, it discusses in detail the results of our real-life deployment in three
users’ apartments in one month’s time.

7. Chapter 7 summarizes the main results, conclusions, limitation of the pro-
posed system. In addition, it recommends some key factors to enhance the
proposed methodology, and therefore it can provide continuous motoring of
physiological functions.
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2.1 Introduction

Sleep is a very significant biological function for the human being and is important
to have a physical balance and a proper regime for decent quality of life. Inadequate
quality and quantity of sleep can lead to a severe influence on an individual health.
As a result, sleep analysis is a very important step towards the detection and
diagnosis of sleep problems. Understanding cardiovascular and respiratory systems
is essential for analyzing sleep and sleep cycles, this is because the active processes
in the human body are different in sleep and wakefulness. Typically, analyzing
a person’s sleep requires an overnight sleep test or polysomnography that allows
monitoring of several physiological functions a long with sleep cycles. Although the
polysomnography or as known as the gold standard for sleep monitoring provides
real-time and accurate information about sleep it is cumbersome, expensive, and
time-consuming. Thus, the healthcare community is seeking out inexpensive and
mobile devices that can support a long-term data collection and be accessible to
most of the people. Actigraph is a very famous example that can be used for
sleep analysis. The device is not as accurate as the polysomnography. However,
the provided information which is based on the users’ activity is very important
for healthcare professionals to understand and analyze the sleep behavior of the
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users. As the hardware and software technology is advancing very fast, several
devices and mobile Apps have been developed for general healthcare monitoring,
including sleep. These devices could be wearable such as bracelets or smart-watches
or non-wearable like bed-sensors that can be installed underneath the user’s bed
mattress. We briefly explain the human physiology, including cardiovascular and
respiratory systems in Section 2.2 and Section 2.3, respectively. The physiological
aspects of sleep are discussed in Section 2.4. Sleep monitoring and available sleep
monitoring technologies are provided in Section 2.5, Section 2.6, Section 2.7, and
Section 2.8, respectively. Finally, the chapter is concluded in Section 2.9.

2.2 Cardiovascular System

The cardiovascular system is an extensive network which achieves two main tasks
as follows. First, it transports oxygen and nutrients to body organs. Second, it
eliminates waste products formed by the metabolism of nutrients from the tissue
cells. It consists of the heart and the blood vessels that circulate blood throughout
the entire body [Tortora 2008].

The heart, the primary organ of the cardiovascular system, is positioned somewhat
to the left of the center of the chest, i.e., between the two lungs and is shielded by
the rib cage. The adult heart is roughly the size of a large fist.

The human heart (Figure 2.1) consists of four chambers, i.e., two atria and two
ventricles. The atria are the upper chambers that receive blood while the ventricles
are the lower chambers that pump blood. The right atrium receives the blood

Figure 2.1: Anatomy of the human heart.
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returning to the heart and then pumps it to the right ventricle. Next, the right
ventricle pumps the deoxygenated blood to the lungs to be enriched with oxygen.
Afterward, the blood is returned to the left atrium throughout the pulmonary veins.
The left atrium contracts and sends the blood to the left ventricle. At last, the
left ventricle sends the blood through the aorta into the circulatory network. The
left ventricle requires a thick muscular wall so that it can pump the blood all the
way around the body. The blood in the heart is kept moving in a forward direction
thanks to a system of four one-way valves. During the time of contraction, the
valves open to allow blood through, and close to prevent the blood flowing in the
opposite direction when the chambers relax. Moreover, the valve system acts to
sustain different pressure on the right and left sides of the heart.

The cardiac cycle, the electrical activity regulating the rhythmic contraction and
relaxation of the heart’s chambers, consists of two main phases, namely diastole,
and systole. Diastole is the relaxation of the heart’s muscles, and it takes up
approximately two-thirds of the cycle. Systole is the contraction of the heart’s
muscles, in particular, the ventricles, which takes the remaining one-third of the
cycle. During the time of diastole, the two atria contract following the impulse
originated in the sinus node. As a result, the blood is propelled from the atria to
the ventricles. During systole, the blood is ejected into the pulmonary artery and
the aorta, respectively. The cardiac output (CO) is the amount of blood ejected
from the left ventricle of the heart per minute. The cardiac output is the product of
the heart rate (HR) multiplied by the stroke volume (SV) and is measured in liters
per minute (L/m) as follows [Tortora 2008]:

CO = HR × SV (2.1)

The heart rate is the number of times the heart contracts or beats per minute (bpm).
The stroke volume is the amount of blood ejected from the left ventricle with each
heartbeat (one contraction and relaxation of the heart muscle) of the heart rate. It
is measured in milliliters per beat (ml/beat); a decrease in the stroke volume is one
of the early signs of the failing heart.

2.3 Respiratory System

The respiratory system or a.k.a., the ventilator system plays a key role in control-
ling homeostasis, i.e., balance between the multiple parts of the body’s internal
environment. The respiratory system is responsible for gas exchange in the body,
delivering vital oxygen to the body and removing toxic carbon-dioxide. It can
achieve such important tasks during different activity levels from unconscious sleep
to consciousness levels of maximal endeavor [Story 2017]. A schematic view of the
human respiratory system is shown in Figure 2.2. The respiratory system can be
divided into two main parts: upper airways and lower airways. The upper airway
consists of the nose, the paranasal cavities, i.e., sinuses, the pharynx, and part of
the oral cavity. The function of the nose, paranasal cavities, and pharynx is to
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Figure 2.2: A schematic view of the human respiratory system. Re-

trieved from Wikimedia Commons website: https://en.wikipedia.org/

wiki/Respiratory_system

warm, filter, and humidify the inspired air when it enters the respiratory tract. The
filtering process is very important due to several reasons, among them clearing the
inhaled air of dust and other debris and protecting the passage through the lungs
against any potentially infectious foreign agents. The oral cavity is responsible for
respiration as well as enabling sensation and smell. The main components of the
lower airways encompass the larynx, trachea, and lungs. The larynx and trachea
provide a channel for the pathway of air to the lungs whereas the lungs themselves
receive the air and promote the gas exchange process [Rogers 2010]. The respiratory
cycle consists of one respiration followed by one expiration. Ventilation (V) is the
amount of air breathed in (inspiration) and out (expiration) during one minute. It
can be computed by multiplying tidal volume (TV) and respiratory rate (RR) as
follows:

V = TV × RR (2.2)

The tidal volume is the volume of air that enters or leaves during a single respiratory
cycle. The respiratory rate is the amount of breaths per minute.
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2.4 Physiology of Sleep

Knowing the basic principles of the sleep-wake cycle is very helpful to understand
the importance of sleep. In human, the sleep-wake cycle involves approximately eight
hours of nocturnal sleep and sixteen hours of daytime wakefulness. Two internal
influences control the sleep-wake cycle, i.e., homeostasis and circadian rhythms. The
homeostasis is the process of which the body maintains a steady state of internal
conditions such as blood pressure, body temperature, and acid-base balance. In
addition, the amount of sleep each night is also under the homeostatic control. The
circadian rhythms are driven by the brain’s biological clock, and it is referred to
as cyclical changes. These cyclical changes are, for example, fluctuations in body
temperature, hormone levels, and sleep that happen over a 24-hour period. In human,
the biological clock contains a set of neurons in the hypothalamus of the brain known
as the suprachiasmatic nucleus. In physiology and behavior, these 24-hour rhythms

Figure 2.3: A sample hypnogram (defined by electroencephalogram)

showing sleep cycles designated by increasing REM sleep.

are synchronized to the external physical environment and work/social schedules.
Light and darkness, examples of the external signals, regulate the biological clock
and help decide when we feel the need to wake up or go to sleep. Furthermore,
the circadian clock helps promote wakefulness. On the one hand, whether it’s
night or day, the homeostatic system inclines to make us sleepier as time passes
throughout the waking period. However, the circadian system inclines to keep us
awake, provided that there is daylight, which encourages us to sleep once it becomes
dark [Battle 2009]. Sleep can be divided into two general stages: non-rapid eye
movement sleep (NREM) and REM (REM) sleep.
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In the first stage, i.e., the NREM sleep, the physiological activities are reduced.
When we get deeper into sleep, the brain activities become slower and have a greater
amplitude as measured by the electroencephalogram. Moreover, the breathing
and heart rate slow down, and blood pressure drops. The NREM sleep is further
subdivided into four stages as follows [Battle 2009]:

1. First Stage is the period of time from being awake to falling asleep. The
1st stage is characterized by a reduction in brain waves and muscle activity.
During this stage, people might encounter sudden muscle jerks headed by a
falling sensation.

2. Second Stage is considered as a light sleep period, where the eye movements
stop. During the 2nd stage, the brain activities become slower with sleep
spindles, i.e., infrequent bursts of rapid waves. The sleep spindles are combined
with uncontrollable episodes of muscle tone coupled with periods of muscle
relaxation. Additionally, the heart rate decreases and body temperature drops.

3. Third Stage and Fourth Stage or a.k.a., slow-wave sleep / deep sleep is
identified by slow brain waves (i.e., delta waves) scattered with smaller faster
waves. During slow-wave sleep, the physiological activities decrease, and the
body temperature falls even lower. In addition, the body becomes stationary.
As eyes are not moving and the muscle’s activity decreases, the sleep becomes
deeper even though the muscles maintain their ability to work. Waking during
the slow-wave sleep is very difficult. People will feel dizzy or disoriented for
some minutes if they wake during these stages. Some children might undergo
bed-wetting, sleepwalk, or night terrors during this stage.

The second stage, i.e., the REM sleep is a unique phase of sleep, where the brain
waves become very intense. Similar to those in the waking state, brain activities
become faster and desynchronized. In addition, breathing waves becomes more
rapid, irregular, and shallow; the eyes move rapidly in different directions, and limb
muscles become temporarily paralyzed. Furthermore, heart rate increases, and blood
pressure rises. The most memorable and vivid dreams occur during this stage as
well. It is also believed that the REM sleep plays a vital role to consolidate the
memory, synthesize and organize the cognition, and regulate the mood [Battle 2009].
Figure 2.3 shows the electroencephalogram of a sleep cycle described by increasing
REM sleep.

2.5 Sleep Monitoring

Sleep monitoring is described as the process of obtaining a qualitative sleep metrics
by monitoring a person’s sleep throughout the night. These metrics serves two
functions. One is to formulate an objective view of the quality of a person’s sleep.
The other function is to determine the trends in sleep over time. Respiratory rate and
body movements are considered the most related measurements for sleep monitoring
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during the sleeping session. The respiratory rate and respiratory rate variability
are used for REM sleep identification, while the movement metrics are utilized to
discriminate between deep sleep, light sleep, and the waking stages of sleep. Several
sleep parameters can also be extracted, for example, duration of a sleep period, the
number of awakenings, duration of disturbed sleep periods, and the amount of time
required to fall asleep. Monitoring quality of sleep can be performed using various
devices that use a combination of sensors and sensor technology to examine the
user’s sleep patterns [Seebo 2017]. In the following sections, we discuss some of the
common techniques used to monitor and assess the quality of sleep.

2.6 Polysomnography

The term polysomnography (PSG) or a.k.a., the gold standard for sleep quality
monitoring, is a complete recording of the biophysiological variations that occur
during sleep. In general, the PSG is an all-night test in a specialized sleep clinic.
However, it might be performed during the day if this occurs to be the patient major
sleep period, such as the patients with specific circadian rhythm disorders, where
their regular bedtime is during the day.

Three main information can be inferred from the PSG study as follows. First,
monitoring, staging and characterizing sleep. Second, identifying sleep-disordered
breathing and its outcomes. Third, quantifying periodic limb movements during
sleep. Furthermore, the PSG can also provide information about irregular behaviors
during sleep, i.e., parasomnias [Koenig 2008]. During a PSG study, several sensors
are mounted on various parts of the body in order to detect multiple physiological
parameters in real-time (Figure 2.4). These physiological parameters can be detailed
as follows:

• Electroencephalography (EEG) records the electrical activities of a person’s
brain using metal electrodes attached to the skin of the scalp to monitor three
main regions of the brain such as frontal, central, and occipital, i.e., back. The
EEG plays a vital role in determining the sleep stages of the patient.

• Electrooculography (EOG) monitors the eye movements, in which two leads
are used and one is placed on the outside of each eye. The EOG also plays a
role in determining the stages of sleep based on eye movements.

• Electromyography (EMG) measures muscle activities. Four electrodes
might be used for the monitoring process such as two electrodes mounted on
the chin and the other two placed on each leg close to the shin. The EMG can
be employed to help diagnose sleep-related movement disorders such as restless
leg syndrome, periodic limb movement disorder, and REM sleep behavior
disorder.

• Electrocardiography (ECG / EKG) records the electrical activities of the
heart using two to three electrodes on the person’s chest.
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Figure 2.4: An illustration of the location of the various electrodes and

sensors used for monitoring sleep. Image courtesy: British Lung Foun-

dation.

• Respiratory effort measures the movements of the chest and abdominal
wall. Two belts are used such as one belt around the chest and one around
the diaphragm.

• A nasal cannula/pressure transducer is inserted into the nostrils to
monitor changes in inhalation and exhalation as well as breathing rate.

• A pulse oximeter is placed on the patient’s finger in order to measure
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the blood oxygen saturation. The sleep-disordered breathing in particular
sleep apnea can be detected based on the pulse oximeter, nasal cannula, and
respiratory belts information. The sleep apnea happens when the person stops
breathing for 10 seconds or longer during sleep. It can be further classified
into three categories such as mild, moderate, and severe, based on the number
of times in an hour that the person’s breathing stops (apnea), or it becomes
very shallow (hypopnea).

• A sound probe which can be utilized to detect the volume of snoring. It is
also very helpful in discriminating between apnea events and hypopnea events.

• In addition to the above-mentioned modalities, the patient might be monitored
on a closed-circuit video system and an audio device. This helps the
technicians to record the different patient’s behaviors and movements during
sleep. Furthermore, it allows a smooth communication between the patient
and technicians from different rooms.

Figure 2.5 shows a representative 30-second epoch from a sleep study [Basner 2012].

Figure 2.5: A 30-second epoch from the PSG. Image adapted from

[Basner 2012].

2.7 Actigraphy

Actigraphy is the recording of human rest/activity cycles in a noninvasive manner.
Typically, an actigraph unit is in a wristwatch-like package. The patient needs to
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wear the unit for a week or more to measure entire motor activity. The movements
that the actigraph unit receives are regularly recorded and some units also include
light exposure. The data can be later read by a computer and interpreted offline;
in some new sensors, the data are transmitted and analyzed in real-time. The
current actigraphs use accelerometers that produce different values according to
variations in orientation and the speed wherein the variation exists [Liu 2017b]. The
objective is to sample these values multiple times a second and accumulate them
over a period of time. At last, they are locally stored on the device and fetched at
a later time. The actigraphs are able to record movements for many days, thanks
to the accumulation of the data. As a result, they can provide a long-term data
about circadian rhythms and the person’s activity patterns. Previously, the data
obtained from the analog actigraphs had to be manually scored through a very
time-consuming process. However, the scoring process becomes fully automated by
computer algorithms installed in digital actigraphs.

Patients can put the actigraphs either on the wrist or on the ankle so that
the different limb movements can be tracked. The movement received from the
ankle is very important in monitoring limb movements and/or restless syndrome.
Actigraphs can provide very useful information about the sleep quality due to its
longitudinal nature of data collection and its suitability to be used in the subjects’
homes. Additionally, actigraphs allow researchers to conduct studies at nursing
homes and assisted-living communities for both memory care and non-memory care
residents. These studies can provide more information about the causes and signs
of dementia along with a better understanding of the sleep modes of the residents
and how their sleep requirements might deviate from people in other stages of life
[Koenig 2008]. Although wearable sensors such as actigraphs can provide a long-term
data collection about the user’s sleep status, they might cause inconvenience to the
daily lives of older adults. This is not always true, and it might depend on the level
of education and the ability to learn and accept recent technologies.

2.8 Consumer Sleep Tracking Devices

In recent years, a lot of sensor technologies have been employed, particularly to
monitor sleep-wake patterns together with the gold standard polysomnography and
actigraphy; these sensor technologies are usually denoted as consumer sleep tracking
devices.

In general, consumer sleep tracking devices are just like actigraphs because
they allow the users to be mobile and sleep as normal while being monitored
closely. Most of the commercially available sleep monitors pretend to help provide
information about sleep duration, quality of sleep, enabling subjects to awaken only
from light sleep. Typically, the data obtained from consumer sleep tracking devices
are not intended for routine diagnosis of sleep disorders. However, technological
advancements in hardware and software, accessibility, ready availability allows the
public to adopt them for clinical purposes.
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We summarize some of the consumer sleep tracking devices in following subsec-
tions [Kelly 2012, Russo 2015, Jeon 2015, Kolla 2016, Ong 2016]:

2.8.1 Wearable Sleep Tracking Devices

2.8.1.1 ZeoTM

The device (Figure 2.6(a)) utilizes a headband to collect a combination of EEG and
EMG signals from the forehead region. It classifies a 30-second epoch into light
NREM, deep NREM, and REM sleep.

2.8.1.2 SleepImageTM

The device (Figure 2.6(b)) records ECG signal, actigraphy, and body movements
using a wire electrode attached to the chest with sticky pads. It helps provide
knowledge about total time of sleep, quality of sleep, and the number of awakening
that happen during sleep.

2.8.1.3 FitbitTM and Fitbit UltraTM

The device (Figure 2.6(c)) is an activity tracker that can provide information about
sleep based on movement. The device can discriminate between sleep and wake as
well as provide information about total time of sleep, sleep latency, i.e., the length
of time an individual can take to achieve the transition from full wakefulness to
sleep and an arousal index.

2.8.1.4 LarkTM

The device (Figure 2.6(d)) is a wrist-watch actigraphy that features a silent vibrating
alarm. It also can give information about total sleep duration, sleep latency, a sleep
quality index. The device needs to be connected to an iPhone.

2.8.1.5 WakeMateTM

Another example of wrist-watch actigraphy is the WakeMate (Figure 2.6(e)). It
can provide sleep information such as total sleep time, sleep latency, number of
awakenings, and a quality of sleep. The sleep information can be transmitted to a
smart-phone. Similar to other devices it has the smart-alarm feature to awaken the
wearer at an optimal time within a time-window that ends in the final alarm setting.

2.8.1.6 JawboneTM and Jawbone UPTM

The device (Figure 2.6(f)) is a wrist-watch actigraphy (bracelet-like) that can connect
to an iPhone. The sleep tracking is performed using bio-impedance sensors. It
is claimed that the device can distinguish between light and deep sleep, although
standard actigraphy does not allow such distinction. Furthermore, it is claimed that
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the device can allow the wearer to awaken at an optimal time via a smart-alarm
feature.

2.8.1.7 BodyMedia SenseWear armbandTM

This device (Figure 2.6(g)) employs several sensors such as the accelerometer,
heat flux, temperature, a galvanic skin response to produce information about an
individual sleep. Variation in heart rate, body temperature, and other recorded
measures are utilized to report wake and sleep onset, and total time of sleep.

2.8.1.8 HexoskinTM

This device (Figure 2.6(h)) is a smart shirt with integrated sensors to measure heart
rate and heart rate variability, the total time of sleep, and body movement.

2.8.1.9 ŌURATM

This device (Figure 2.6(i)) is a smart ring integrated with three types of sensors,
i.e., infrared LEDs, 3D accelerometer and gyroscope, and body temperature sensor.
The ring can provide various information such as sleep stages, heart rate variability,
and body temperature [de Zambotti 2017].

2.8.2 Sleep Tracking Apps on Smart-phones

Nowadays, smart-phones become a fundamental part of our daily life, including
the healthcare domain. A lot of people are using mobile Apps to help improve
their health and fitness. As a result, the healthcare mobile Apps have grown
exponentially. For instance, hundreds of Apps have been developed for sleep and
sleep hygiene monitoring, and this number is projected to continue to increase year
after year. Most of these Apps aimed to serve several functions, including but not
limited to: a smart-alarm feature, sleep assistants, sound recording at the time
of sleep, light sensor data, the usage of the phone, and the microphone to decide
sleep/wake [Kolla 2016, Ong 2016]. Additionally, other Apps have been developed
to help healthcare providers in screening some specific health problems such as
repeated snoring and obstructive sleep apnea syndrome. It should be mentioned
that insufficient publications are available to support the suitability of these Apps
[Kelly 2012, Kolla 2016] for patients with sleep complaints. Unlike wearable sensors,
smart-phone Apps are inexpensive to most of the users. However, they are very
susceptible to motion artifacts because they need to be located on the subject’s bed.
These motion artifacts might arise from a bed partner and/or interference from
blankets. As a result, the quality of the signal obtained by the phone’s accelerometer
can potentially be degraded. To recapitulate, either wearable sensors or Apps
installed on smart-phones they tend to use 3-axis accelerometers to measure the user
activity. The activity counts produced by the accelerometer are then used to decide
whether the user is waking or asleep. Most of the validation studies between these
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(d)  (e)  (f)  

(g)  (h)  

(a)  (b)  (c)  

(i)  

Figure 2.6: Examples of wearable sleep tracker devices; (a) Zeo, (b)

SleepImage, (c) Fitbit, (d) Lark, (e) WakeMate, (f) Jawbone, (g) Body-

Media SenseWear armband, (h) Hexoskin, and (i) ŌURA.

devices and the gold standard polysomnography or actigraphy have been performed
against healthy people with no sleep problems. As a result, it is difficult to generalize
their applicability to the patient suffered from sleep disorders. Overall, sleep trackers
tend to overestimate total sleep time, sleep efficiency and underestimate wake up
time after the onset of sleep. Another principal issue which has to be considered in
selecting a sleep activity tracker is the Battery life and the frequency of recharging.
To give an example, smart-watches are useful fitness and heart rate trackers. However,
they don’t have a long battery life that can last for the entire night. More specifically,
smart-phones are not accurate enough to provide absolute sleep parameters and
sleep staging, in addition, there is no proof that they can precisely awaken users
from light sleep [Kelly 2012, Russo 2015, Jeon 2015, Kolla 2016, Ong 2016]. Some
of the available Apps are discussed in the ensuing subsections:

2.8.2.1 Sleep Cycle AlarmTM App

This App utilizes the embedded accelerometer of the iPhone to recognize movements
during sleep. Usually, the iPhone is to be placed nearby a person’s headrest. The
App can provide graphs representing total sleep time, a differentiation between light
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sleep, deep sleep, and wake. Besides, it also has the smart-alarm feature.

2.8.2.2 Sleep TimeTMApp

This App can give a detailed information about wakefulness, light and deep sleep.
Furthermore, it has the smart-alarm feature to help users wake up only during light
sleep.

2.8.2.3 Toss N TurnTMApp

This App can report information about sleep and wake time using the embedded
accelerometer in the smart-phone in addition to light intensity, sound, details of
phone usage, and charging status as well.

2.8.2.4 ApneaAppTM: Sleep Apnea Detection on Smart-phones

This App uses the built-in microphone in a smart-phone to emit some kind of
inaudible wave, that serves as a sonar system to detect amplitude changes during
breathing. The phone is usually placed on a regular sideboard same as if the person
is charging his/her phone and getting ready for sleep. The App is designed to detect
normal breathing and abnormal breathing, which include hypopneas, obstructive
and central sleep apnea. Although this App showed a good correlation with the gold
standard polysomnography regarding the apnea-hypopnea index it has not been
validated in a home-based environment [Kolla 2016].

2.8.2.5 SleepRateTM

This App can support iPhones and Android phones. It can report information about
the wake, sleep, REM, light non-REM, and deep non-REM. The App needs to be
connected with a wearable polar heart sensor that can transmit up to 30 feet using
a Bluetooth low energy device.

2.8.3 Bed-Based Sleep Tracking Devices

As we mentioned in Section 2.7, the wearable devices might not be the optimal
solutions for older adults, since these devices need to be placed on some parts
of the body, such as wrists, arms, etc. The elderly people might forget to wear
the devices. Other than that, these devices might annoy people that use them.
Besides, it might be a sign of their condition defaming them in social communications
[Kouroupetroglou 2014]. If we consider the educational background of the elderly
people, it might also be difficult for them to use smart-phones. Alternatively,
new sensors have been developed and become available for consumers that use
nonintrusive technologies to detect subjects’ vital signs and sleep patterns. These
sensors are designed and packaged in a way to make them invisible to the subjects.
For example, they can be easily integrated into ambient assisted living environments
such as beds, pillows, chairs, or even in weighing scales [Zaunseder 2017].
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In the following subsection, we discuss some examples of the commercially
available devices, and more details will be provided in the next chapter (Chapter 3).

(a)  (b)  

(c)  (d)  

(e)  

Figure 2.7: Examples of bed-sensor devices; (a) Emfit QS, (b) Beddit,

(c) EarlySense, (d) Sleepace Reston, (e) Withings Aura.

2.8.3.1 Emfit QSTM

Emfit QS1 depends on what is called ballistocardiography, i.e., the sudden ejection of
blood into the great vessels with each heartbeat, breathing and movement analysis.
The Emfit QS (Figure 2.7(a)) has an integrated data acquisition and cellular mobile
data connectivity. The Emfit QS electronics consist of its own processor and memory
for completely autonomous operation. The device has a web application that enables
the users to track their sleep patterns. The user can place the device underneath
the bed mattress. Consequently, the user will not notice it is there. Furthermore,
the Emfit QS claims to report all three sleep stages, i.e., light, deep, and REM sleep,

1Product website: https://www.emfitqs.com/
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sleep time, in addition to a sleep score, which is a number consists of total sleep
time, amount of REM and deep sleep, and the number of times awakened.

2.8.3.2 BedditTM Smart Sleep Monitor

The Beddit2 device uses several sensors, including piezo force sensor, capacitive touch
sensor, humidity sensor, temperature sensor, and microphone (in the smart-phone)
to provide similar information as Emfit Qs. However, since the device uses the sound
information, it can record the snoring and total duration of snoring. The device
is also installed under the bed mattress. The Beddit device (Figure 2.7(b)) needs
to be connected to an iPhone only device via a Bluetooth connection. It also has
the smart-alarm feature. The sleep information can be viewed through the Beddit
mobile App.

2.8.3.3 EarlySenseTM Mattress

The EarlySense3 device utilizes a piezoelectric sensor that can be placed under
the bed mattress. The system (Figure 2.7(c)) can report information about heart
rate, respiration, snoring, coughing, and movement. A recent study showed a good
agreement between EarlySense and the gold standard polysomnography for sleep
staging [Tal 2017]. Furthermore, the device provided promising results for sleep
apnea detection [Davidovich 2016].

2.8.3.4 Withings AuraTM

Withings Aura4 uses ballistocardiography to measure changes caused by respiratory
rate, heartbeats and the body’s movements during the night. It has been claimed
that the device achieves this with clinical accuracy to evaluate the structure of the
subject’s sleep, as well as the existence in the bed and the number of wake-ups per
night. It can discriminate an awake state from a sleep state, the periods in the
bed sleeping - and awake, and measures the different sleep phases of your night.
It uses the measurements from the sleep sensor to wake the subject at the best
moment of his/her sleep cycle so that the subject wakes up refreshed. It provides
the subject with an overview of his/her cardiovascular fitness and how well he/she
recovered from stress and exercise by measuring your full-night resting heart rate.
It also records his/her surrounding’s temperature, luminosity, and sound level to
provide he/she with full insights to enhance his/her sleep quality. The apparatus
(Figure 2.7(e)) has two distinct parts. The first is a dock that transmits light and
sound gradually along with sensors that measure temperature, luminosity and sound
levels. The second is a pneumatic sensor under the mattress which measures heart
rate, respiratory rate, and body movements.

2Product website: https://www.beddit.com/
3Product website: https://www.earlysense.com/digital-health/
4Product website: https://support.health.nokia.com/
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2.8.3.5 Touch-Free Life CareTM System

The Touch-Free Life Care system 5 is a bed-sensor that can broadcast information
for remote monitoring. Like other devices, it can be located below any standard
bed mattress and wirelessly transmits information such as respiration, heart rate,
body movement, and quality score to PCs or mobile devices (iPhone only).

2.8.3.6 Sleepace RestonTM

The Sleepace Reston6 device is another example of bed-sensors. The device (Fig-
ure 2.7(d)) can provide vital signs such as respiration and heart rate as well as
sleep cycle. The device is battery powered by a battery life up to 30 days. It needs
to be connected to a smart-phone either Android or iPhone through a Bluetooth
connection. It also claims a smart-alarm function to awaken the user from light
sleep vs deep sleep. Users can follow up their sleep patterns using a mobile App.

2.9 Conclusion

In brief, this chapter discussed the cardiovascular and respiratory systems because
they are fundamental parts of understanding sleep and quality of sleep. Next, we
described the two main stages of sleep namely rapid eye movement sleep and non-
rapid eye movement sleep. Afterward, we defined sleep monitoring and reviewed the
most common sleep monitoring modalities namely polysomnography and actigraphy.
Additionally, we mentioned some of the commercially available sleep tracking devices.
In general, sleep tracking devices such as smart-watches, wearable bracelets, or Apps
installed on smart-phones are mainly designed to help enhance the quality of
life, extend independent living and reduce health professionals’ necessary time and
healthcare costs. Although they do not yet meet the standard criteria as independent
devices for healthcare application, they can provide longitudinal information, which is
impossible in typical approaches. Among these sleep tracking devices, the bed-based
sensors are very promising and convenient types of sleep monitoring. The reason is
that these devices are completely nonintrusive with no electrodes or wires mounted
on the subject’s body. Such devices are mainly depending on the movements of the
body during sleep and respiration as well. In the next chapter, we will explain in
detail the different methods and modalities being used to monitor human vital signs
and sleep using the bed-sensor technologies. In our analysis, we aimed to use the
nonintrusive technology like bed-sensors because the subjects do not have to wear
them. Besides, they are affordable and ready-to-use devices.

5Product website: http://bamlabs.com/
6Product website: http://www.sleepace.com/
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3.1 Introduction

Up until now in Chapter 2, we have discussed in some detail the various products
on the market today that can be employed to track different perspectives of sleep
such as duration and quality of sleep. These products can be either wearable sleep
trackers, such as smart watches and smart-phones or non-wearable sleep trackers
such as in-bed sleep monitors. In this research, we prefer using the in-bed sleep
monitors to the wearable sleep trackers as they are more convenient for elderly people.
The in-bed sleep monitors are more likely to be suitable for older adults due to
multiple reasons. For instance, as some of the older adults might have cognitive and
memory impairments, they might forget to wear the device, or they might remove
the device. Hence, the monitoring system may not work as intended [Sanchez 2017].
Additionally, the in-bed monitors are entirely nonintrusive, and they do not require
any invasive electrodes or wires to be connected to the subject’s body.

It is very important to monitor sleep and quality of sleep, especially for older
adults because they spend more time in bed compared to younger adults. Insufficient
sleep for older adults might cause depression, attention and memory problems, exces-
sive daytime sleepiness, and experience more nighttime falls [Cooke 2011]. Typically,
in-bed sensor technology is based on recording body movements, respiratory move-
ments, and ballistocardiographic movements representing the mechanical activity of
the heart [Alihanka 1981]. As it was previously mentioned in Chapter 1, the record-
ing of these physiological signals can be performed using multiple sensors, namely
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microbend fiber-optic sensors, piezo-resistive fabric sensors, electromechanical film
and polyvinylidene fluoride film based sensors, load cells, strain gauges, pneumatic,
and hydraulic sensors [Inan 2015]. The first of these sensors was a static charge
sensitive bed introduced by Alihanka et al. [Alihanka 1981]. The next sections will
discuss, in more detail, ballistocardiography and the different techniques used in
literature to analyze and interpret ballistocardiogram signals.

3.2 Ballistocardiography

Ballistocardiography (BCG) is a noninvasive technique for creating a graphical
representation of the heartbeat-induced repeated motions of the human body. These
repeated motions happen due to the rapid acceleration of blood when it is ejected and
moved in the great vessels of the body during periods of relaxation and contraction,
known as diastole and systole, respectively. In other words, BCG can provide
information about the overall performance of the circulatory system; this is because
BCG measures the mass movements, i.e., the mass of the circulating blood and
the heart during the cardiac cycle [Pinheiro 2010b]. During atrial systole, when the

  

(a)                                                           (b)

Figure 3.1: (a) Example of a typical BCG signal with letters used to

designate the waves. The arrow indicates the position of the beginning

of the electrical ventricular systole (QRS. complex of the electrocardio-

gram). Image adapted from [Starr 1939, Starr 1940, Pinheiro 2010b],

(b) Aortic arch and force vectors coming from blood ejection by the left

ventricle. Image adapted from [Eblen-Zajjur 2003].

blood is ejected into the large vessels, the center of mass of the body moves towards
the head of the body. In other ways, when the blood moves towards the peripheral
vessels and concentrates further away from the heart in the peripheral vessels, the
center-of-mass moves towards the feet (Figure 3.1(b)). This shift comprises several
components as a result of cardiac activity, respiration, and body movements. This
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shifting of the center of mass of the body generates the BCG waveform since the
blood distribution changes during the cardiac cycle [Vogt 2012].

More than 100 years ago, BCG failed to prove its functionality, and it did
not start to be used in routine tasks for a few general reasons as follows. First,
there had been insufficient standard measurement methods, i.e., different methods
had resulted in slightly different signals. Second, the exact physiologic origin of
the BCG waveform had not been well-understood. Furthermore, there had been
insufficient clear guidelines for interpretation of the results, and therefore the medical
community was unwilling to take risks. Third, there had been a dominant focus on
some clinical diagnostic, for example, myocardial infarction, angina pectoris, coronary

heart disease; these applications need a high level of specificity and reliability that the
BCG had not reached. Fourth, the emergence of ultrasound and echocardiography
methods that swiftly overhauled BCG and related methods for noninvasive cardiac
and hemodynamic diagnostic [Giovangrandi 2011]. At the present time, BCG has
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ST
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Segment

PR Interval

QT Interval

QRS

 Complex

Figure 3.2: Example of a typical electrocardiogram signal.

been given a lot of interest thanks to the information technology revolution, including
hardware technology as well as software and services. As described in Chapter 1 and
Chapter 2, BCG sensors can be embedded in ambient environments without the need
for medical staff presence. Consequently, it has an outstanding impact in current
e-health systems. Ultimately, BCG helps reduce checkups’ stress and the patient
emotion and attention responses. Figure 3.1(a) shows an example of a typical BCG
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signal, while Figure 3.2(b) shows an example of a typical electrocardiogram signal.
The BCG waveforms may be grouped into three main groups, i.e., the pre-systolic
(frequently disregarded), the systolic and the diastolic as given in Table 3.1. The
I and J waves are also quoted as ejection waves [Pinheiro 2010b]. To this extent,

Table 3.1: Nomenclature of ballistocardiogram (normal displacement)

signal [Scarborough 1956, Pinheiro 2010b].

Pre-Systolic Group (See Figure 3.1(a))

• F wave: (rarely seen) headward wave preceding G,
related to pre-systolic events, not an after-vibration.
• G wave: small footward wave which at times precedes the H wave.

Systolic Waves (See Figure 3.1(a))

• H wave: headward deflection that begins close to the peak of the R wave,
maximum peak synchronously or near the start of ejection.
• I wave: footward deflection that follows the H wave, occurs early in systole.
• J wave: largest headward wave that immediately follows the I wave,
occurs late in systole.
• K wave: footward wave following J, occurs before the end of systole.

Diastolic Waves (See Figure 3.1(a))

• L and N waves: two smaller headward deflections which usually follow K.
• M wave: footward deflection between L and N.
• Smaller subsequent waves may be visible and are named in sequence.

the definition, formal limitations, and nomenclature of ballistocardiography were
discussed. The formal limitations were mainly due to the complexity of the used
system and misinterpretation of the obtained signals and its deformations. The field
of ballistocardiography has been revived as a result of the numerous technological
advancements, as, for example, the advent of microprocessors and laptop computers.
All in all, ballistocardiography can be very useful in several applications such as
monitoring of cardiac function and performance in addition to monitoring of sleep and
sleep-disordered breathing [Di Rienzo 2017, Inan 2018]. One of the most prominent
features of ballistocardiography is the accessibility and ready-availability, which
allows the system to be deployed in users’ homes without affecting the users’ privacy
and daily activities. In what follows, we explain more in detail the various tools
and algorithms exist in the literature to analyze and interpret ballistocardiography,
wherein we look at what types of sensors that can be used for signal acquisition and
what types of software algorithms that can be used to extract vital information such
as heartbeat, respiration, and body movements.
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3.2.1 Piezoelectric Polyvinylidene Fluoride-Based Sensors

The piezoelectric effect is the ability of some materials to produce an electric charge
in response to applied mechanical stress. The polyvinylidene fluoride (PVDF) is
an exciting piezoelectric material and is usually developed as a very thin and easily
bent film. If a pressure force is applied to the film, it creates a mechanical bending
and a shifting of positive and negative charge centers in the film, which then results
in an external electrical field. The charge generated from PVDF is equivalent to the
applied pressure. Therefore, PVDF is one of the suitable candidates for detecting
the small fluctuations generated by different body parts [Xin 2016].

Wang et al. [Wang 2003] proposed to use a PVDF piezopolymer film sensor for
unconstrained detection of respiration rhythm and pulse rate. The film sensor was
placed under the bed-sheet at the location of the thorax to obtain the variations of
the pressure on the bed attributable to respiratory movement and heartbeats. The
authors used the wavelet multiresolution decomposition to compute the respiration
and heartbeat. The output of the respiratory inductance plethysmography (RIP) and
electrocardiography (ECG) were used as a reference for respiration and heartbeat,
respectively. The objective of the wavelet analysis was to decompose the raw
signal into low-frequency components and high-frequency components. Next, the
component presenting a good agreement with either the respiratory movement or
the heartbeat was selected. Afterward, the respiratory rate was computed directly
based on a time-varying adaptive threshold. On the other hand, the heartbeat
component was first squared to rectify it into unipolar, and then the envelope of
the rectified signal was calculated using a moving average smoothing algorithm. At
last, a time-varying adaptive threshold was also applied to the smoothed envelope
to compute the heart rate. It should be noted that heart rate detection was very
challenging because the pressure variations attributable to heartbeat on the bed was
very weak, and the shape of the signal was not always uniform. Another study was
proposed by Wang et al. [Wang 2007] to detect respiration rhythm and pulse rate
of premature infants using PVDF sensor array. The system was tested in clinical
environments on five premature infants (1 male and 4 females). The main challenge
of the proposed system was frequent body movement of the infants and the weakness
of the heartbeat vibration.

Niizeki et al. [Niizeki 2005] suggested using a PVDF sensor array for uncon-
strained monitoring of respiration and heart rate. The sensor array consisted of
eight PVDF cable sensors and they were horizontally integrated with a textile sheet
on a bed surface covering the upper half of the body. The cardiorespiratory signals,
i.e., BCG and respiration were obtained using infinite impulse response digital
filters. After extracting the cardiorespiratory signals, an optimal sensor selection
search routine was applied to select the most appropriate sensor. The selection
criterion was based on the magnitude of the power spectrum density (PSD). The
autocorrelation functions of the cardiac and respiratory signals were computed using
a 5-second and 15-second time segments for heartbeat and respiration, respectively.
The outputs of the autocorrelation functions were smoothed and differentiated
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using a Savitzky-Golay (5 adjacent points) algorithm and finally, the heart rate
and respiration were computed by measuring the intervals between the peaks for
the respective autocorrelation functions. A fixed threshold was used to determine
if the subject changes posture during the measurement, in which the output from
the PVDF cables was disturbed to a large extent. A charge-coupled device (CCD)
camera was used to record the image of the body position during posture change
as a time stamp. The proposed system was tested against thirteen healthy male
subjects whose ages ranged from 21 to 49 years. ECG and pneumotachometer for
measuring respiratory flow were used as a reference during the study. The study
consisted of two phases, i.e., short-term recording for 10 minutes and an overnight
study for 2 hours. For the overnight recording, only 7 subjects were involved. The
proposed system had some limitations in particular susceptibility to motion artifacts
caused by subject movements that might have led to the misidentification of the
peak for autocorrelation functions.

Paalasmaa and Ranta [Paalasmaa 2008] applied an unsupervised learning ap-
proach on ballistocardiogram signals to compute heartbeat. The ballistocardiogram
signals were collected from three subjects using a piezoelectric pressure sensor over 5
hours recording. To start with, feature vectors were extracted from the signal at pos-
sible heartbeat positions, i.e., the local maxima of the signal. Then, a complete-link
clustering was applied to the feature vectors to look for a cluster with the highest
density. The positions of the feature vectors of the densest cluster were found to
match real heartbeat positions in the signal. An angular dissimilarity measure was
adopted since it omits the differences in feature vector amplitudes. The sensor was
located close to the patient’s upper body so that it can register cardiac activity in a
proper way.

Paalasmaa et al. [Paalasmaa 2012] introduced a sleep tracking web application,
which was based on measurements from a piezoelectric film sensor placed under
the mattress topper. The raw data coming from the sensor was sent to a web
server for analysis and extracting information. This information includes heart rate,
respiration, sleep staging, and stress reactions. The heart rate was computed by
creating a heartbeat template using complete-link clustering [Paalasmaa 2008], then
the heart rate intervals were detected by selecting those intervals that minimize
a predetermined residual error. The sleep staging was carried out by utilizing
heart rate variation, respiration variation, and activity information. The proposed
approach was validated against a 40-patient group at a sleep clinic. The added
value of this work is the suitability of the system for long-term monitoring of sleep
and the web application for sleep analysis at home. A more comprehensive study
was introduced by Paalasmaa et al. [Paalasmaa 2015] to compute heart rate from
ballistocardiogram signals acquired with piezoelectric film sensor. At first, a model
for the heartbeat shape was adaptively deduced from the signal using a hierarchical
clustering approach. Afterward, interbeat intervals were identified by detecting
positions where the heartbeat shape best matches the signal. The proposed method
was verified with overnight recordings from 46 subjects in different settings, i.e.,
sleep clinic, home, single bed, and double bed.
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Chen et al. [Chen 2009b] advised to use four piezoelectric sensors to detect
heart rate and respiration. One sensor was placed under the pillow, whereas the
other three were placed under the mattress close to the back, hip, and calf level
positions. The data was collected from five healthy subjects at age of twenties during
a 2-hour’s nap in a sleep lab. ECG and nasal thermistor signal were employed as
heart rate and respiration references. Heart rate and respiration were computed
based on the multiresolution analysis of the wavelet decomposition in which the
Cohen–Daubechies–Feauveau biorthogonal wavelet was selected as the basis function
to design the decomposition and reconstruction filters. The 6th level approximation
waveform was similar to the respiratory rhythm, while a combination of the 4th and
5th scale coefficients were found to be suitable for heart rate detection. The authors
were able to measure both vital signs from the four positions. However, the overall
optimal position was found in the back. That makes sense because the more the
sensor is closer to the thorax, the more accurate the recovered signals are.

A wheelchair-based system for monitoring the cardiac activity of its user was
proposed by Pinheiro et al. [Pinheiro 2012]. The signals were collected from piezo-
electric film sensors and micro-electromechanical systems accelerometers installed in
the seat and backrest of the chair. The system also included photoplethysmography
(PPG) sensors in the armrests. The data from the sensors were sent via Wi-Fi to
a laptop with a data acquisition board for deeper analysis. ECG recordings were
used to validate the proposed system. The system was tested in different situations,
namely unmoving wheelchair, tiled floor motion, and treadmill tests. In the last two
situations, the ballistocardiogram signals collected from the piezoelectric sensors
were completely corrupted by motion artifacts. On the other hand, the accelerometer
was much more insensitive to wheelchair motion. The analysis was done on seven
subjects using the fast Fourier transform. Subsequently, the prominent peak was
selected within a specific frequency range for heart rate estimation. In a summary,
getting informative ballistocardiogram signals from the piezoelectric sensors in a
motion situation was almost impossible. However, it was more convenient to get
informative signals from the accelerometers and the PPG sensors.

A multichannel approach was proposed by Kortelainen et al. [Kortelainen 2012]
to extract heart rate and respiration information using eight PVDF sensor channels
located in the upper position of the bed. The heart rate was estimated by averaging
the signal channels in the frequency domain, in which a sliding time window was
utilized to compute the cepstrum of each signal channel. However, the respiratory
rate was computed from the first principal component of a principal component
analysis (PCA) model applied to the low-pass filtered bed sensor signal. The
assumption was that the first principal component will give the signal with the
maximum variance, and as a result shall improve the sensitivity for the extraction
of the respiration. Twenty-eight patients were recruited for the study and they were
suspected to have diverse kinds of sleep problems. Frequency domain averaging was
better than simple averaging over all the sensor channels. The extracted information,
i.e., heart rate, respiration, and movement might have been used for further sleep
analysis.
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The same pressure bed sensor assembly with eight PVDF sensors was applied
for sleep apnea detection in [Guerrero 2013]. The respiratory signal was computed
by two methods. The first method was to apply a Hilbert transform to the bed
sensor signal and then smooth the signal with a low pass filter. The second method
was similar to Kortelainen et al. [Kortelainen 2012] by adopting the PCA approach.
At last, the amplitude baseline of the respiratory signal was estimated as the mean
value of the preceding 100 seconds. An apnea event was detected if the ratio with
the baseline was less than a selected percentage threshold value for a period of at
least 10 seconds. The authors applied their methodology to twenty-five patients
out of twenty-eight patients recruited in [Kortelainen 2012]. The system showed a
good agreement with the reference polysomnography. However, the authors used
the simplified reduced respiratory amplitude index (RRAI) instead of the standard
apnea-hypopnea index (AHI). In another study, Brüser et al. [Brüser 2015] have
implemented three different methods using the same sensor set to measure the heart
rate in a nonintrusive way. Initially, the heart rate was computed using a sliding
window cepstrum analysis [Kortelainen 2012]. Secondly, the heart rate was computed
using a Bayesian fusion approach, in which three estimators were calculated from each
sensor channel such as adaptive-window autocorrelation, adaptive-window average
magnitude difference function, and maximum amplitude pairs. For each channel,
these three estimator outputs were then combined using a Bayesian fusion method
to obtain an overall estimate. In other words, Bayesian fusion approach was applied
to 24 estimates. At last, the heart was estimated based on the aforementioned
approach. However, for each channel separately. In general, the multichannel
based approaches improved the robustness of heartbeat interval estimation over a
single sensor. More specifically, Bayesian-based method slightly outperformed the
cepstrum-based method.

Martin-Yebra et al. [Martín-Yebra 2015] extracted heart rate variability in-
dices from ballistocardiogram signals and then evaluated their correlation with
electrocardiogram-derived ones. The ballistocardiogram signals were acquired by
a piezoelectric 3D-force plate in supine and standing positions, in a group of 18
healthy subjects (11 females). For each position, the data collection was performed
during 5 minutes. Furthermore, subjects were asked to stay quiet to avoid any
motion artifacts. The ballistocardiogram waves, i.e., (H, I, J, K) were detected by
synchronizing ballistocardiogram signals with ECG signals. Although the proposed
approach provided a good match with the reference ECG, it is very difficult to
generalize this approach for real-life deployment as the data collection was conducted
for a very short time and the detection part was achieved by adapting information
from the ECG signals.

Katz et al. [Katz 2016] measured cardiac interbeat intervals using a contact-free
piezoelectric sensor placed beneath the mattress under the tested subjects. The data
was collected from 25 home sleep recordings of 14 healthy subjects in a two-in-bed
setting. The authors applied three algorithms to the collected ballistocardiogram
signals as follows. First, interbeat intervals were found by decomposing the signal
into multiple components using an empirical mode decomposition filter and then
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locating the candidate peaks within a localized search area. Second, after locating
potential interbeat intervals, a binomial logistic regression model was applied to
classify each interbeat interval into one out of three groups based on morphological
properties of the ballistocardiogram signal. Finally, an additional algorithm was
implemented to get discrete interbeat interval distribution maps during the night
recording, considering interbeat interval data from overlapping 15 minutes windows.
The preceding three algorithms demonstrated the effectiveness of the proposed
system for heart rate variability analysis. Sela et al. [Sela 2016] used the same
piezoelectric sensor to detect left ventricular ejection for 10 subjects (6 males and 4
females), where the lower body of each subject was enclosed in a negative pressure
chamber. The negative pressure chamber regulates and controls the blood pressure
of the participants. This study demonstrated the ability of the system to identify
internal bleeding condition among patients at risk, namely individuals after an
accident or surgical operation.

Alvarado-Serrano et al. [Alvarado-Serrano 2016] measured beat-to-beat heart
rate from subjects sitting in a common office chair. The authors used a piezoelectric
sensor fixed to the bottom side of the seat to collect ballistocardiogram signals from
seven subjects (5 males and 2 females). Continuous wavelet transform with splines
was implemented to detect beat-to-beat intervals in which an optimal scale was
selected to reduce noise and mechanical interferences. Thenceforth, learning and
decision phases where applied to the selected scale to detect potential J-peaks. In
the learning phase, the first four heartbeats in the ballistocardiogram signal were
found to define initial thresholds, search windows, and interval limits. The learned
parameters were then utilized to determine the next heartbeat and were readopted
after each heartbeat detected to adhere to the heart rate and signal-amplitude
changes. A similar study was proposed by Liu et al. [Liu 2017a]. However, two
PVDF film sensors were installed in the seat cushion and foot insole.

Choe and Cho [Choe 2017] used a piezoelectric sensor installed between a bed-
frame and a mattress for unconstrained monitoring of heart rate. The data was
collected from 7 male subjects sleeping in a supine sleeping position where the sensor
was placed under the subject’s back. In total, they collected ballistocardiogram
signals for about 5 hours from all subjects, in which subjects were not moving
during data acquisition. The data was first smoothed using a moving mean absolute
deviation, then the J-peaks were detected within a specific search region using an
adaptive thresholding technique. The authors achieved satisfactory results with the
reference ECG. However, this method may not be applicable in real-life applications
because the data was not collected in a typical sleep sitting and the motion artifacts
were not considered as well. Table 3.2 summarizes the unconstrained monitoring of
vital signs using the PVDF-based sensors.

3.2.2 Electromechanical Film-Based Sensors

The electromechanical film (EMFi) material is a plastic film that can transform
mechanical energy into an electrical signal and the other way around. Basically, it
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Table 3.2: Summary of unconstrained monitoring of vital signs using PVDF-based sensors. WT : wavelet trans-

form, N/A: not available, P. Infants: premature infants, M : male, F: female, HR: heart rate, HRV : heart rate

variability, RR: respiratory rate, ACF: autocorrelation function, Min: minutes, Hrs: hours, Sec: seconds, CLC :

complete-linkage clustering, TM : template matching, FREQ: frequency, CEP: cepstrum, PCA: principal compo-

nent analysis, MAP: maximum amplitude pairs, AMDF: adaptive-window average magnitude difference function,

ECG Sync: electrocardiogram synchronization, EMD: empirical mode decomposition, TH : threshold, CWT : con-

tinuous wavelet transform, Lab: laboratory.

Method Subjects (M, F) Deployment Duration Outcome
[Wang 2003] WT N/A Lab N/A HR, RR

[Wang 2007] WT
5 P. Infants
(2 M and 3 F)

Hospital 10 Min HR, RR

[Niizeki 2005] ACF 13 M Home 10 Min, 2 Hrs HR, RR
[Paalasmaa 2008] CLC 3 N/A Lab 330 Min HR
[Paalasmaa 2012] CLC, TM 40 N/A Sleep clinic Overnight HR, RR
[Paalasmaa 2015] CLC, TM 60 N/A Sleep clinic, home Overnight HR
[Chen 2009b] WT 5 N/A Lab 2 Hrs HR, RR
[Pinheiro 2012] FREQ 21 N/A Wheelchair 5 Min HR
[Kortelainen 2012] CEP, PCA 6 N/A, 15 M, 13 F Hospital Overnight HR, RR
[Guerrero 2013] PCA 15 M, 13 F Hospital Overnight Apneas
[Brüser 2015] ACF, MAP, AMDF 15 M, 13 F Hospital Overnight HR
[Martín-Yebra 2015] ECG Sync 17 M, 11 F Lab 5 Min HRV
[Katz 2016] EMD 14 N/A Home Overnight HR
[Sela 2016] N/A 6 M, 4 F Lab 84 Min LVET
[Alvarado-Serrano 2016] CWT 5M, 2 F Chair 100 Sec HR
[Liu 2017a] Adaptive TH 7 M Lab 45 Min HR
[Choe 2017] CWT 6 N/A Lab 67 Min HR
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is a flexible and thin bi-axially oriented polypropylene film covered with electrically
conductive layers, which are enduringly polarized. EMFi has a static charge reaching
hundreds of Volts. When a pressure is applied to the film, a charge is created on
its electrically conductive surfaces and this charge can be measured as a current or
voltage signal, usually with a charge amplifier. As a result, the EMFi serves as a
sensitive motion sensor [Alametsä 2004]. Alametsä et al. [Alametsä 2004] suggested
to use EMFi sensors for obtaining ballistocardiogram signals from certain places of
the body. The authors installed EMFi sensors in a chair and in smaller pieces in a
few positions on the body (arm, leg, and chest). The ballistocardiogram signals were
collected from a few people and the duration of the recordings was relatively short.
This study demonstrated the potential of the EMFi material in monitoring the
changes in cardiac function. In another study, Koivistoinen et al. [Koivistoinen 2004]
evaluated the ability of the EMFi sensors for measuring ballistocardiogram signals.
The authors installed two EMFi sensors in the seat and backrest of a normal chair,
and the data was collected from two young subjects (1 male and 1 female) for 5
minutes. After visual inspection versus the reference ECG, it was found that the
acquired waveforms closely simulate those reported in the literature. Equivalent
results were also reported by Junnila et al. [Junnila 2005, Junnila 2006], which
presented the suitability of the EMFi sensors for extracting ballistocardiogram
signals.

A smart mattress was developed by Koivistoinen et al [Kortelainen 2007] to
detect interbeat intervals in a nonintrusive way from six male subjects. The mattress
consisted of 160 EMFi electrodes distributed throughout the mattress that enabled
signal acquisitions from multiple locations. Two methods were implemented to
detect interbeat intervals, i.e., a pulse method and an adaptive window cepstrum
method. In the former, signals from all channel were high pass filtered and then
squared. After that, these squared values were averaged between all channels and
low-pass filtered the result. At last, the beginning of each heart rate was tracked in
the generate pulse train signal. In the latter, the window length of the cepstrum
was selected using the pulse method as the first estimator of the heart beats. Then,
signals from all channels were averaged in the frequency domain. An interpolation
was used to detect more accurate location for the selected cepstrum maximum value.
Moreover, the motion artifacts were eliminated based on the signal variance using a
sliding time window. Although the cepstrum-based method provided better results
than the pulse method, its computational efficiency was not as good as the adaptive
window method.

Aubert et al. [Aubert 2008] adopted a single EMFi sensor to provide heart rate,
breathing, and an activity index representing body movements. The recommended
system was validated utilizing data collected from 160 subjects (58 males and 102
females) for a total of 740 hours. Part of the data was collected in a sleep laboratory
from patients (i.e., sleep apnea, insomnia, and other sleep disorders) who underwent
a full polysomnography and the other part was collected at home from healthy
subjects. Body movements were first isolated from the sensor data based on the
signal amplitudes and energy, and their time derivatives. Thereafter, heart rate
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was measured using a sliding window autocorrelation method, in which the optimal
window length had to span 3 to 5 consecutive beats. The respiratory rate was
estimated based on the local peaks, troughs, and zero-crossings, constrained to
rules ensuring physiological validity in terms of duration and amplitude. Across
the 60 subjects, the vital signs were computed over epochs of 30 seconds and the
average values were computed and compared to the reference ECG and thorax belt,
respectively. The recommended system achieved satisfying results compared to the
reference devices.

Kärki and Lekkala [Karki 2008] used EMFi and PVDF sensors in the measure-
ments of heart rate and respiration. The objective of the study was to determine
if there were differences between the results of both sensors. ECG was used as
a reference for heart rate and a thermistor for respiration rate. Heart rate and
respiration were measured using power spectral density (PSD). The two sensors
were embedded inside a textile pocket and the pocket itself was integrated into
clothing. They were positioned underneath a commercial heart rate belt on the left
side of the sternum. Preliminary results showed that both sensors provided reliable
results in the measurements of heart and respiration rates. However, the PSD was
not robust enough because the peak in the spectrum might get wider and multiple
peaks might have appeared. Another study was proposed by Kärki and Lekkala
[Kärki 2009] to determine heart rate with EMFi and PVDF materials. The EMFi
and PVDF sensors were grouped together to a form a single structure. The data
was collected from 10 subjects (5 males and 5 females) over 60 seconds recording
(sitting and supine positions), where the sensor structure was placed under the legs
of a chair and bed. These preliminary results demonstrated that the heart rate can
be measured at home just by sitting on a chair or lying in a bed.

Pinheiro et al. [Pinheiro 2009] introduced a low-cost system to measure blood
pressure variability and heart rate variability. A single EMFi sensor was installed in
the seat of a normal office chair to measure ballistocardiogram signals while a finger
PPG was used to estimate arterial oxygen saturation (SpO2). For validation, ECG
was acquired using three chest leads. Using LabVIEW, heart rate and heart rate
variability were determined by an adaptive peak detection algorithm. The pulse
arrival time was estimated as the time difference between ECG and PPG maximum
peaks, and when considering BCG-PPG relation, the I-valley (Figure 3.1(a)) was the
reference. The designed system was appraised using data collected from five healthy
volunteers over 10 minutes recording. The preliminary study demonstrated that
heart rate variability can be measured using the correlation between BCG and PPG.
The PSD was exploited to measure the heart rate. In another study, Pinheiro et al.
[Pinheiro 2010a] collected ballistocardiogram signals by placing an EMFi sensor in
the backrest of a wheelchair’s, beneath the lining. Two modulation-based schemes
were carried out for heart estimation, i.e., a sliding power window and an all-peak
detector. The objective was to find all local maxima and local minima, then a spline
interpolation and a moving power window were employed to compute a modulating
signal. At last, a fast Fourier transform was applied to the output of each method
in order to measure the average heart rate from the signal’s fundamental frequency.
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This system was evaluated using data gathered from six normal subjects (4 males
and 2 females) during 125 seconds.

Brüser et al. [Brüser 2013] proposed an unsupervised approach to determine
inter-beat intervals using an EMFi sensor. The sensor was fixed underside of
a thin foam overlay which was thus located on top of the mattress of a typical
bed. The system was evaluated on over-night recordings from 33 individuals (14
males and 19 females). Three estimators were implemented, namely autocorrelation
function, average magnitude difference function, Maximum amplitude pairs in order
to compute the local interval length using a sliding time window. Ideally, this
window contained two events of interest. The values of the local interval length
were constrained by two thresholds, i.e., Tmin and Tmax. The body movements
were detected based on the maximum amplitude range of each time-window. The
information from the three estimators was then applied to a probabilistic Bayesian
method to estimate the inter-beat intervals in a continuous manner. Although the
proposed method achieved very satisfactory results, the main limitation existed in
the implicit hypothesis that two successive heart beats in the BCG have an unknown
but similar morphology. This assumption may not always hold true.

In the same way, Zink et al. [Zink 2015] used an EMFi sensor to detect heartbeat
cycle length in patients suffered from atrial fibrillation and sinus rhythm. The
sensor was placed under the bed-sheet and data was collected from 22 patients (15
M, 7 F) during and after cardioversion. Cardioversion is a medical procedure that
returns a normal heart rhythm in people with certain types of abnormal heartbeats,
namely arrhythmias. In another study, Zink et al. [Zink 2017] employed the EMFi
sensor to measure heartbeat in patients suffered from sleep-disordered breathing.
Twenty-one patients (19 males, 2 females) were recruited for the study and underwent
a standard full-night polysomnography. A quality-index was proposed based on
the three estimators previously discussed in [Brüser 2013] that allowed to identify
segments with artifacts and to automatically exclude them from the analysis. The
proposed system provided good correlation of beat-to-beat cycle length detection
with simultaneously recorded ECG.

Pino et al. [Pino 2015] used two EMFi sensors installed in the seat and backrest
of a normal chair in order to measure heart rate. Ballistocardiogram data were
collected from 54 individuals, whereas 19 of them were measured in a laboratory (1
minute) and the rest in a hospital waiting room (2 minutes). Firstly, empirical mode
decomposition and wavelet analysis were (Deabuchie 6) implemented to reconstruct
ballistocardiogram signal. Secondly, the J-peaks of the ballistocardiogram signal was
detected using a length transform analysis. The body movements were eliminated
using a moving time window. Then, for each time-window two thresholds were
computed, i.e., T1 = (max + min)/2 and T2 = mean + 1.1 ∗ std, if T1 was greater
than T2, the current window was marked as a body movement. The wavelet analysis
was preferred to reconstruct the signal as it produced a higher effective measurement
time. A similar approach was also proposed by Pino et al. [Pino 2016]. However,
they increased the size of the dataset to 114 people. Of those, 21 were gathered in a
school (2 minutes), 42 in homes (2 minutes), and 51 in a hospital waiting area. It is
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difficult to assess the robustness of this system because the data was collected in a
very short time and in a controlled environment as well.

In a recent study, Alametsä and Viik [Alametsä 2018] presented the stability of
ballistocardiogram signal during 12 years’ time, on which the data was gathered
from a single person in a sitting position using EMFi sensors. Several other signals
were recorded as well such as ECG, ankle pulse signal, and the carotid pulse signal
from the neck near the carotid artery. All measurements lasted about 2 to 3 minutes
with a sampling frequency of 500 Hz. In a conclusion, ballistocardiogram research
may be recommended for examining long-term changes in heart operation and to
reveal variations in it. Table 3.3 summarizes the unconstrained monitoring of vital
signs using the EMFi-based sensors.

3.2.3 Pneumatic-Based Sensors

The idea of the pneumatic system is to deploy a thin air-sealed cushion between the
bed and mattress. Thereafter, when a person rests in the bed, the forces originated
because of the heartbeat, respiration, snoring and body movements affects the air in
the cushion through the mattress. This slight human movement causes a pressure
and therefore variations in pressure are measured by a supersensitive pressure sensor
[Chow 2000, Watanabe 2004].

Watanabe et al. [Watanabe 2005] used the aforementioned pneumatic system
to measure heartbeat, respiration, snoring, and body movements in a noninvasive
manner. The three bio-signals, namely heartbeat, respiration, and snoring were de-
tected using a band-pass filter with different cutoff frequencies. Following, windowed
Fast Fourier transform algorithm was applied to measure heart rate and respiration.
However, the relative magnitude of snoring was calculated by the standard deviation
of the filtered snoring signal and the relative magnitude of body movements was
calculated as the standard deviation of the envelope of the sensor output signal.
The authors validated the proposed system using data collected from 15 subjects
(12 males and 3 females) over 15 nights. Preliminary results showed good agreement
against reference devices, namely ECG, belt-type respirometer, and a snoring de-
tection microphone. The body movements were identified and recorded by a CCD
camera. In another study, Kurihara and Watanabe [Kurihara 2012] acquired data
from 10 subjects (20 seconds each) to measure heart rate and respiration. In this
study, a condenser microphone was used as a reference for heart rate, respiration and
signal-to-noise ratio. Validation results demonstrated that the pneumatic system
was more susceptible to environmental noise, for example, opening and closing the
door than the reference condenser microphone.

Chee et al. [Chee 2005, Shin 2006] recommended to use a balancing tube between
two air cells to improve the effectiveness of posture changes during data collection.
Balancing tube with a high air resistance aimed at equalizing the pressure of each
air cell within a certain time constant. More precisely, it performed the role of a
high-pass filter to eliminate body motion. The air-mattress system consisted of
19 air cells, in which measurements can be performed between any pair of cells.
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Table 3.3: Summary of unconstrained monitoring of vital signs using EMFi-based sensors. WT : wavelet transform,

N/A: not available, M : male, F: female, HR: heart rate, RR: respiratory rate, ACF: autocorrelation function, Min:

minutes, Hrs: hours, Sec: seconds, CEP: cepstrum, MAP: maximum amplitude pairs, AMDF: adaptive-window

average magnitude difference function, EMD: empirical mode decomposition, TH : threshold, LT : linear transform,

Lab: laboratory.

Method Subjects (M, F) Deployment Duration Outcome
[Kortelainen 2007] Visually 1 M, 1 F Lab 5 Min BCG
[Kortelainen 2007] CEP 6 M Lab Overnight HR
[Aubert 2008] Adaptive TH, ACF 58 M, 102 F sleep Lab, Home Overnight HR, RR
[Karki 2008] PSD N/A Lab 60 Sec HR, RR
[Kärki 2009] PSD 5 M, 5 F Lab 30 Sec HR, RR
[Pinheiro 2009] PSD 5 N/A Lab 10 Min HR, BP
[Pinheiro 2010a] PSD 4 M, 2 F Lab 125 Sec HR
[Brüser 2013] ACF, MAP, AMDF 14 M, 19 F Clinic Overnight HR
[Zink 2015] ACF, MAP, AMDF 15 M, 7 F Hospital N/A HRV
[Zink 2017] ACF, MAP, AMDF 19 M, 2 F Hospital Overnight HR
[Pino 2015] EMD, WA, LT 54 N/A Lab, Hospital 1 Min, 2 Min HR
[Pino 2016] EMD, WA, LT 114 N/A Home, Hospital 2 Min, 2 Min HR
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However, the authors collected data from the two cells situated on the backside of
the chest and abdominal region. Signal was collected from a single subject laying on
the air mattress where ECG and nasal airflow signal were collected simultaneously.
Although the balancing tube helped eliminate body motion, it affected the sensitivity
of the measurement. Heart rate was measured by finding the maximum peak of the
BCG signal between the two R-R peaks of the ECG signal. On the other hand, the
respiratory rate was measured by windowed fast Fourier transform, i.e., short-time
Fourier transform (STFT). Preliminary results showed good match against reference
devices. Nevertheless, the proposed system might not be a preferred choice for large-
scale deployment due to its complexity. In another study, Shin et al. [Shin 2010]
applied the same air mattress for uncontaminated measurement of heart rate and
respiration. In which, a total of 13 healthy male subjects were involved in the
validation study, i.e., four hours study. The authors measured the heart rate from
the R-peaks of the ECG, while the respiratory rate was measured manually. In
addition, the authors asked three subjects to simulate sleep apnea (breath-holding)
five times each for 10 to 15 seconds. Thereafter, the apneas were detected based on
the variance of the respiratory signal with a moving window technique. Table 3.4
summarizes the unconstrained monitoring of vital signs using the pneumatic-based
sensors.

3.2.4 Strain Gauges-Based Sensors

Brink et al. [Brink 2006] implemented four force sensors under bed-frames to
unobtrusively record heartbeat, respiration activity, and body movements. Each
force sensor consisted of a reflex light barrier sandwiched between two aluminum
plates. When a force is applied to the sensor, the two aluminum plates are squeezed
together slightly and the distance between them decreases. The reflex light barrier
senses the distance between the two plates and converts it into a voltage signal,
which is analogous to the ballistic forces of the heart. This voltage signal is then
pre-amplified and passed through a low-pass filter to eliminate ripple and noise. In
this preliminary study, heartbeat and respiration were detected by finding local
minima or maxima in the signal within a sliding window. To evaluate the robustness
of the force sensors, the signals were acquired from four subjects (2 males and 2
females) and in different conditions, i.e., three types of single beds, three types of
frames, two types of mattresses. In total, seventy-two conditions were evaluated. In
each condition, subjects were asked to sleep in a relaxed supine position on the bed.
The signals were collected during 5-minute recording from the four force sensors.
Additionally, ECG signals were also collected as a reference. Preliminary results
showed that the proposed system can be an acceptable tool for computerized and
unattended sleep-data collection over a lengthy period.

Inan et al. [Inan 2009] collected ballistocardiogram signals using strain gauges
within a modified commercial scale. The signals were collected from twenty-one
subjects (11 males and 10 females), on which participants were asked to stand as
quiet as possible on the scale for 45 seconds while BCG and ECG were concurrently
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Table 3.4: Summary of unconstrained monitoring of vital signs using Pneumatic-based sensors. N/A: not available,

M : male, F: female, HR: heart rate, RR: respiratory rate, Min: minutes, Hrs: hours, Sec: seconds, STFT : short-

time Fourier transform, Lab: laboratory.

Method Subjects (M, F) Deployment Duration Outcome
[Watanabe 2005] STFT 12 M, 3 F Lab Overnight HR, RR, SI
[Kurihara 2012] STFT 10 N/A Lab 20 Sec HR, RR
[Chee 2005, Shin 2006] ECG Sync, STFT 1 N/A Lab N/A HR, RR
[Shin 2010] ECG Sync, STFT 13 M Lab 4 Hrs HR, RR
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recorded. In this study, the measured ballistocardiogram signals from all subjects
closely resemble those reported in the literature. Besides, the system was able to
provide beat-to-beat cardiac output monitoring. Additionally, ballistocardiogram
measurements were found to be repeatable over 50 recordings collected from the
same subject over a three-week period. The proposed solution was more susceptible
to motion artifacts because the signals were acquired in a standing position. Hence,
it might not be suitable for older adults who cannot stand as tranquil on the scale.
In order to eliminate floor vibrations, Inan et al. [Inan 2010a] proposed a seismic
sensor, i.e., geophone, located in proximity to the modified scale that served as the
noise reference. An adaptive algorithm was then implemented to filter the output of
this sensor and cancel the vibrations from the measured ballistocardiogram signal.
Signals were collected from a healthy volunteer while another person stomped around
the scale, hence producing increased floor vibrations. Furthermore, signals were also
collected from another volunteer standing inside a parked bus while the engine was
functioning. This research established that ballistocardiogram recording is feasible in
almost all environments, including ambulances and other transport vehicles, as long
as the vibrations are not so significant to rail the electronics or lead to a distorted
version of the ballistocardiogram force to be coupled to the scale.

In the same way, Inan et al. [Inan 2010b] evaluated the electromyogram signal
collected from the feet of the subject during ballistocardiogram recording as a
noise reference for standing ballistocardiogram measurements. As the lower-body
electromyogram signal can be collected directly from the footpad of the modified
scale, the proposed system is self-contained and can automatically eliminate motion
artifacts. In another study, Wiard et al. [Wiard 2011] used a motion sensor instead
of electromyogram sensors to record body motions and to serve as a noise reference.
The added value of the motion sensor was to provide a minimum delay between the
motion-related noise in the measured signal and the noise detected by the motion
sensor. This minimum delay provided the time resolution needed to flag single
heartbeat events, hence maximizing the refinement of the approach.

Brüser et al. [Bruser 2011] introduced an unsupervised learning approach to
measuring heartbeat in a noninvasive manner. Ballistocardiogram signals were
recorded by strain gauges in a Wheatstone bridge configuration attached to the
slat under the mattress of a hospital bed. A high-pass filter was applied to the
raw data in order to remove low-frequency respiratory components. Next, a set of
features, representing the fundamental morphology of the heartbeat, were extracted
from a 30-second time segment. Afterward, the principal component analysis was
applied in order to reduce the dimensionality of the feature vectors. Additionally,
a k-means clustering algorithm was adopted to identify clusters of feature vectors.
This training step resulted in a list of estimated heartbeat locations. The parameters
obtained during the training step were thus manipulated to locate heartbeats in
the remaining ballistocardiogram signal by merging the results of three independent
indicator functions, i.e., cross-correlation, Euclidean distance, and heart valve signal.
Finally, the estimated heartbeat locations were exploited to provide an improved
list of beat-to-beat periods. Signals were captured from sixteen healthy subjects
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(9 males and 7 females) during thirty minutes switching their positions every 7.5
minutes (left lateral, supine, right lateral, prone). This method produced good
agreement with the reference ECG. However, the primary limitation was the training
step as it had to be repeated whenever subjects enter the bed or adjust their posture
with regard to the ballistocardiogram sensor.

Nukaya et al. [Nukaya 2012] provided a contact-free method for unobtrusive
measuring of heartbeat, respiration, body movement, and position change. The
authors collected the pressure data using four piezoceramics transducers set beneath
bed supports. The proposed system was able to detect previous bio-signals without
the need for a preamplifier, accordingly without any voltage source. This is because
the sensing devices were distortion sensors that operate without an electrical power
supply, i.e., they produce voltage according to the time derivative of the distortion.

Vehkaoja et al. [Vehkaoja 2013] introduced dynamic pressure sensors for detect-
ing heartbeat intervals of an individual sleeping on a bed. The pressure sensors
were composed of EMFi material and located under the bed supports. In this
study, individual heartbeats were not observed. However, the intervals in which
the correlation between two successive signals segment maximized. Ballistocardio-
gram signals were collected from nine subjects (5 males, 4 females) during 1-hour
recording. The beat-to-beat intervals provided by this approach can be adopted in
determining frequency domain heart rate variability that is most frequently used in
the assessment of sleep quality.

Lee [Lee 2016] et al. proposed to use load cells, installed under bed supports, to
measure heart rate and respiration for infants. Four infants (5 to 42 months) were
involved in the study and a total of 13 experiments were carried out between 10
to 178.8 minutes. Initially, heart rate and respiratory components were extracted
using band-pass filters of various cutoff frequencies. For the heart rate component,
a first-order differentiation filter was applied, thus a nonlinear transformation, i.e.,
a Shannon entropy was applied to the differentiated signal to obtain only positive
peaks. Additionally, a moving average filter was employed to flatten out the spikes
and noise bursts. At last, heart rate was measured by finding local peaks in an
optimum signal. For the respiration component, as the band-pass filtered signal
contained residual baseline drift, a detrending algorithm based on empirical mode
decomposition was adopted to get rid of such unwanted trend. Similar to heart rate,
local peaks were detected in the detrended signal and therefore the respiratory rate
was measured. A signal quality index was developed to choose the optimum signal
out of the four load cells’ signals. The quality processing procedure was developed
based on calculating a threshold value computed from an autocorrelation function
and a power spectral density function. The proposed system achieved acceptable
results compared to the reference ECG and respiratory belt. Table 3.5 summarizes
the unconstrained monitoring of vital signs using the strain gauges-based sensors.
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Table 3.5: Summary of unconstrained monitoring of vital signs using Pneumatic-based sensors. N/A: not available,

M : male, F: female, HR: heart rate, RR: respiratory rate, Min: minutes, Hrs: hours, Sec: seconds, SWM/M :

sliding window minimum/maximum, ECG Sync: electrocardiogram synchronization, PCA: principal component

analysis, CCF: cross-correlation function, ED: Euclidean distance, HVS: heart valve signal, ACF: autocorrelation

function, SE: Shannon entropy, EMD: empirical mode decomposition, Lab: laboratory.

Method Subjects (M, F) Deployment Duration Outcome
[Brink 2006] SWM/M 2 M, 2 F Lab 5 Min HR, RR
[Inan 2009] ECG Sync 11 M, 10 F Lab 45 Sec HR

[Bruser 2011]
PCA, K-means
CCF, ED, HVS

9 M, 7 F Lab 30 Min HR

[Vehkaoja 2013] ACF 5 M, 4 F Lab 1 Hrs HR
[Lee 2016] SE, EMD, SWM/M Infants (3 M, 1 F) Home 10 - 178.8 Min HR, RR
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3.2.5 Hydraulic-Based Sensors

The concept of the hydraulic sensor is to measure the change in pressure applied
to a liquid-filled tube. For example, Heise et al. [Heise 2010] designed a hydraulic
based-sensor for unrestrained monitoring of heart rate and respiration. Preliminary
data were collected from two individuals (1 male and 1 female). Participants were
instructed to lie on a bed for approximately 10 minutes. During the 10 minutes, they
were asked to lie on the back, on the right side, on the back again, on the left side,
and on the back once more (2 minutes each position). In this preliminary research,
heartbeat signal was extracted by detecting the difference between the most negative
and the most positive points within a moving window. After that, a low-pass filtered
was applied to reduce the effect of noise and smooth the signal. A fixed threshold
was employed to detect a body motion. Finally, the heart rate was measured by
adopting the autocorrelation function. However, the respiratory rate was measured
by low-pass filtering the signal and then subtracting the DC bias. Afterward, the
zero-crossings were counted to provide the breaths per minute. Preliminary results
approved that the hydroponic sensor was effective at extracting heart rate and
respiration against the reference devices, namely a piezoresistive device worn on
the subject’s finger and respiration band wrapped around the subject’s torso. In
a different study, Heise et al. [Heise 2011] have validated the sensor using data
collected from five subjects (3 males and 2 females) and have confirmed stability of
the signal processing algorithms using real and synthesized signals.

Rosales et al. [Rosales 2012] deployed four hydraulic transducers under the bed
mattress, covering the upper part of the body in order to measure heart rate in a
nonrestrictive way. Each transducer was connected to a pressure sensor to record the
pressure forces applied to it. In this preliminary study, heartbeats were computed
using a clustering-based approach as follows. Every five seconds, body motions
were eliminated based on the variance of the transducers’ signal. Following body
motions removal, the transducer’s signal was band-pass filtered to remove respiratory
components and filtered once more using an average filter to smooth the signal prior
to feature extraction. Afterward, three features were extracted from every 5-second
time window based on the IJK points of the ballistocardiogram signal. In addition,
the extracted features were classified into two groups using k-means clustering
algorithm. The first group, i.e., the smallest cluster was assigned to the heartbeat
class. Then, the second group, i.e., the largest cluster was assigned to the non-
heartbeat group. In conclusion, the heartbeats’ (J-peaks) locations were compared
to a reference signal obtained from a piezoresistive device worn on the subject’s
finger. Data were acquired from four subjects (2 males and 2 females) during 6
minutes (supine position). Although such clustering-based approach might have
provided good results it might only be applicable to specific situations. Furthermore,
to think the presented method to be applied in practical applications, manually
labeling (training) data is, however, a restricting property.

A similar study was proposed by Su et al. [Su 2012]. Nonetheless, the heart
rate was measured using the Hilbert transform and the fast Fourier transform
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(30-second window). In this study, ballistocardiogram signals were acquired from
five subjects (3 males and 2 females) during 2.5 minutes in a supine position. This
approach provided a lower error rate compared with the windowed peak to peak
deviation (WPPD) method introduced by Heise et al. [Heise 2010]. Although results
were consistent with the reference device, ballistocardiogram signals were assumed
relatively stationary. This assumption is not always true because typically heartbeats
are not uniform in time [Heise 2013].

In another study, Lydon et al. [Lydon 2015] proposed a new algorithm to detect
heart rate using the four hydraulic transducers. As a first step, a band-pass filter
was implemented to remove the respiration component as well as high-frequency
noise. Next, the data from the four transducers were separated into 0.3-second
(30 samples) segments and the short-time energy profiles were computed for each
segment. As a result, four hear rate values were generated for each transducer by
locating the local peaks. Moreover, a single heart rate value was selected based on
the DC level of each transducer’s signal. Typically, a higher DC level in the obtained
transducer’s signal means that the transducer makes better contact with the body
and therefore gives a more stable ballistocardiogram signal. Hence, the transducer
with the highest DC level was chosen for heart rate measurement. Finally, outliers
were eliminated by following whether the estimated heart rate value was more than
15 beats per minute from the moving average heart rate value. Validation data
were collected from two groups, i.e, three subjects (2 males and 1 female) during 10
minutes recording and four older adults (4 males) in a typical home environment.
This approach provided slightly better results compared to the clustering-based
approach provided by Rosales et al. [Rosales 2012].

In order to address the uncertainty inherent in a ballistocardiogram signal, for
instance, misalignment between training data and ground truth, improper collection
of the heartbeat by some transducers, Jiao et al. [Jiao 2016] applied the Extended
Function of Multiple Instances (eFUMI) algorithm to ballistocardiogram signals
generated by the four hydraulic transducers. The objective of the eFUMI was to
learn a personalized concept of heartbeat for a subject in addition to several non-
heartbeat background concepts. Following the learning step, heartbeat detection and
heart rate estimation can be applied to test data. The limitation of this algorithm
is the need for sufficient training data, which might not be always available.

Rosales et al. [Rosales 2017] applied the clustering-based approach [Rosales 2012]
and the Hilbert transform approach [Su 2012] to ballistocardiogram signal collected
from four male senior residents. The signals were collected from residents over a two
to four months period under in-home living conditions. However, the analysis was
done only over five minutes of initial recordings. The Hilbert transform approach was
able to produce more stable heart rate estimates compared to the clustering-based
approach. The latter approach was more susceptible to motion artifacts. Table 3.6
summarizes the unconstrained monitoring of vital signs using the hydraulic-based
sensors.
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Table 3.6: Summary of unconstrained monitoring of vital signs using Hydraulic-based sensors. N/A: not available,

M : male, F: female, HR: heart rate, RR: respiratory rate, Min: minutes, Hrs: hours, Sec: seconds, WPPD:

windowed peak to peak deviation, CA: clustering approach: HT : Hilbert transform, STE: short-time energy,

eFUMI : extended function of multiple instances, Lab: laboratory.

Method Subjects (M, F) Deployment Duration Outcome
[Heise 2010] WPPD 1 M, 1 F Lab 10 Min HR, RR
[Heise 2011] WPPD 3 M, 2 F Lab 10 Min HR, RR
[Rosales 2012] CA 2 M, 2 F Lab 6 Min HR
[Su 2012] HT 3 M, 2 F Lab 2.5 Min HR

[Lydon 2015] STE
2 M, 1F
4M

Lab
Home

10 Min
Overnight

HR
HR

[Jiao 2016] eFUMI 4 N/A Lab 10 Min HR
[Rosales 2017] CA, HT 4 M Home Overnight HR
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3.2.6 Fiber Optic-Based Sensors

In existing literature, unobtrusive vital signs monitoring is achieved either by
microbend fiber-optic sensors (MFOS) or fiber Bragg grating sensors (FBGS). The
principle of the MFOS is that if an optical fiber is bent, insignificant amounts of light
are lost through the fiber walls. This reduces the amount of received light and is a
function of bend pressure [Lagakos 1987, Berthold 1995, Luo 1999, feng Hu 2016].
The FBG is an optical fiber that serves as a filter for a specific wavelength of light.
The principle of the FBGS is to detect the reflected Bragg wavelength shift owing to
changes in temperature, strain, or pressure [Moghadas 2010, Poeggel 2015]. Fiber
Bragg gratings are commonly used optical fiber sensors for measuring temperature
and/or mechanical strain. Though, the excessive cost of the interrogation systems is
the most significant obstacle for their large commercial application [Díaz 2017].

Chen et al. [Chen 2009c, Chen 2012] described the effectiveness of the MFOS
for nonintrusive monitoring of heart rate and breathing rate. For heart rate,
ballistocardiogram signals were gathered from several subjects in sitting position
and breathing normally. Preliminary results have proved that the ballistocardiogram
waveforms closely simulated those reported in the existing literature. For breathing
rate, nine volunteers were involved in the study in which respiratory signals were
collected during sleep. The system has shown a good match with the reference
respiratory device. Deepu et al. [Deepu 2012] introduced a smart cushion integrated
with MFOS for real-time heart rate monitoring. The cushion can be placed on
the seat or back of a chair for data collection. In this study, five subjects were
involved, and signals were collected during 5-minutes. Several steps were applied
to the cushion’s signals in order to unobtrusively measure the heart rate. Initially,
low and high-frequency noises were suppressed using a band-pass finite impulse
response (FIR) filter. Next, a cubing operation was applied to the filtered signal
to enhance the amplitude swing while keeping the signal sign intact. Afterward,
momentary upswing or downswing was removed by applying a moving average filter.
Furthermore, the resultant signal was smoothed by utilizing the absolute value and
averaging over a predefined time window. At last, the J-peaks were recognized
by using a cone detection and comparing to an adaptive threshold. The proposed
system achieved satisfactory results compared to the reference pulse oximetry device.

Chen et al. [Chen 2013] studied the possibility of measuring blood pressure
using ballistocardiography and photoplethysmography (PPG). The concept was
to calculate the time delay between the peaks of the ballistocardiography and the
corresponding PPG peaks. Ballistocardiogram signals were collected from five
healthy subjects in a sitting position using a cushion integrated with MFOS, whereas
PPG signals were collected from a finger pulse oximeter. Preliminary results have
shown that blood pressure might be measured using optical devices. However, the
proposed approach was very challenging because it required a calibration procedure
for each subject prior to measurement.

Lau et al. [Lau 2013] evaluated the effectiveness of the MFOS for respiratory
monitoring and respiratory gating in the magnetic resonance imaging (MRI) envi-
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ronment. Respiratory gating is the process of reducing cardiorespiratory artifacts
by synchronizing magnetic resonance data acquisition to the cardiac or respiratory
cycles. Unlike electrical sensors, fiber-optic sensors are immune to electromagnetic
and radio-frequency interference. Twenty healthy subjects (10 males and 10 females)
were involved in the study and they underwent T2-weighted half-Fourier single-shot
turbo spin-echo MRI of the liver with synchronous breathing rate monitoring on a
1.5 Tesla magnetic resonance scanner. The breathing rate was detected by applying
a band-pass filter and hence detecting local peaks in the time domain. This study
presented that the MFOS were able to detect comparable breathing rate to the
reference respiratory bellows and produce liver MRI images of good diagnostic qual-
ity compared to the navigator-acquired scans. Chen et al. [Chen 2014b] reported
related results using data collected from eleven healthy subjects (6 males and 5
females) during MRI.

A similar study was provided by Dziuda et al. [Dziuda 2013a]. However, authors
used FBG sensors rather than MFOS. Three healthy volunteers (2 males and 1
female) were included in the study and physiological data were collected during
95 minutes. Both heart rate and breathing rate were measured by finding local
maxima after applying band-pass filters of different cutoff frequencies to the sensor
data. Similar to the MFOS, the FBG sensor did not introduce any artifacts into
MRI images. Furthermore, the system achieved comparable results to the reference
devices, i.e., carbon electrodes and pneumatic bellows, respectively. Dziuda et al.
[Dziuda 2013b, Dziuda 2014, Krej 2015, Dziuda 2015] reported similar results using
data collected during MRI examination.

Zhu et al. [Zhu 2013] demonstrated the effectiveness of the MFOS for unobtrusive
measurement of heart rate in a headrest position. Three healthy individuals were
enrolled in the study in which an optical sensor mat was placed on the headrest
of a massage chair. The participants were instructed to complete predefined series
of tasks, i.e., rest, cognitive test battery, and relaxing massage session. In this
preliminary study, the analysis was done only during rest periods for a total of six
minutes. A band-pass filter was applied to the sensor data to remove low-frequency
respiratory signals. Afterward, heart rate was computed using short-time Fourier
transform. The proposed system achieved a relatively good agreement against the
reference ECG.

Chen et al. [Chen 2014a] reported the results of using the MFOS in a clinical
trial for unobtrusive monitoring of heart rate and respiration during sleep. During
the study, data were collected from twenty-two subjects using the optical fiber sensor
and also from the standard polysomnography as a reference. At the beginning,
large body movements were eliminated using a moving time window. In which, a
segment was identified as a body movement if the difference between the maximum
and the minimum in the moving window was larger than a fixed threshold. Next,
respiratory and heartbeat components were separated from the sensor’s signals
using band-pass filters of different cutoff frequencies. In the former, the signals
were smoothed using a moving-average filter and hence the baseline was obtained
by another moving-average filter of a larger window size. After subtracting the
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signals and the baseline, they were further smoothed using Savitzky–Golay method.
Finally, local peaks were detected, and breathing rate was computed. In the latter,
all local peaks of the heartbeat signals were detected, and heart rate was computed
accordingly. Consequently, incorrect heart rate values were eliminated by applying
a histogram-based method, in which the group with the highest occurrence was
selected and reported as final heart rate results. Results were promising. However,
the proposed approach was prone to motion artifacts.

Zhu et al. [Zhu 2014] proposed to measure heart rate using ballistocardiogram
signals collected from FBG sensor mat. The sensor mat consisted of three FBG
sensor arrays or channels and each array contained six sensors. The arrays were
located under the pillow, upper chest, and lower chest. In this study, ten subjects
were enrolled, and signals were collected during 20 minutes such as 10 minutes of
supine posture and 10 minutes of sideways posture. ECG signals were collected along
with the fiber-optic signals as a reference. The signal from each sensor array was
transformed from time domain into cepstrum domain. After that, the signal from
the six sensors of the same arrays was fused by employing cepstrum. Finally, the
heart rate was measured from the fused signal by recognizing peaks in the cepstrum.
This study demonstrated that the heart rate can be measured from distinct locations.
However, the best results were achieved from sensor arrays at chest position. In
another study, Zhu et al. [Zhu 2015] used the same system to compute breathing
rate and the system was tested against twelve subjects.

Fajkus et al. [Fajkus 2017a] introduced to measure heart rate and respiration
using FBG sensors encapsulated inside a polydimethylsiloxane polymer (PDMS).
The FBG sensors were embedded within a thoracic elastic strap to record cardiores-
piratory signals. In this preliminary analysis, the authors collected data from 10
individuals (6 males and 4 females) during few minutes. Heart rate and breathing
rate were detected by adopting two methods, i.e., identifying the periodic cycles
in the time domain and applying the FFT to obtain the dominant frequency. The
proposed system achieved comparable results to the reference ECG. However, it was
susceptible to large body movements. In another study, Fajkus et al. [Fajkus 2017b]
assessed the effectiveness of using FBG sensor encapsulated inside a PDMS and
FBG sensor glued on a plexiglass pad for heart and respiratory rate monitoring. In
this preliminary study, the authors collected data from 10 subjects (7 males and 3
females) and result shown that the FBG sensor encapsulated into PDMS was more
accurate than FBG sensor encapsulated in plexiglass pad.

Chethana et al. [Chethana 2017] reported the use of FBG sensor for monitoring
cardiac and breathing activities. Cardiorespiratory signals were collected from
four subjects (2 males and 2 females) for 60 seconds, on which the FBG sensor
was placed on the pulmonic area on the chest of the subjects. Results have been
evaluated against an electronic stethoscope which recognizes, and records sound
pulses generated from the cardiac activity. Nedoma et al. [Nedoma 2017] evaluated
the effectiveness of the FBG sensor against fiber interferometric sensor for heart rate
measurement. The former measured the heart rate through ballistocardiography,
while the latter measured the heart rate through Phonocardiography. Cardiac signals
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were obtained from six individuals (3 males and 3 females) using the two sensors
for 60 minutes. Primary results have shown that the fiber interferometric sensor
was more accurate than the FBG sensor. Table 3.7 summarizes the unconstrained
monitoring of vital signs using the fiber optic-based sensors.

3.3 Conclusion

This chapter provided the definition and the nomenclature of ballistocardiogra-
phy. In addition, it discussed in detail the different modalities reported in existing
literature for unobtrusive monitoring of vital signs, namely heart rate, breathing
rate, and body movements. These modalities include piezoelectric polyvinylidene
fluoride sensors, electromechanical film sensors, pneumatic sensors, load cells, hy-
draulic sensors, and fiber-optic sensors. In general, the output of these sensors is a
composite signal that is composed of cardiac activities, respiratory activities, and
body movements. Hence, these three signals should be separated from each other
so that vital signs can be measured. The separation process is usually performed
by applying a band-pass filter of specific cutoff frequencies according to the signal
of interest. In other cases, the separation process can be performed by adopting
a decomposition algorithm such as empirical mode decomposition algorithm and
wavelet multiresolution analysis. It should be noted that, vital activities cannot
be detected during body movements and hence they should be eliminated prior to
the measurement process. Following the separation process, i.e., obtaining cardiac
signals and respiratory signals, several algorithms can then by implemented for vitals
measurements. As discussed in previous sections, these algorithms include but not
limited to simple peak detector, autocorrelation function, fast Fourier transform,
cepstrum analysis, wavelet multiresolution analysis, empirical mode decomposition,
power spectrum analysis, and clustering-based approaches. The clustering-based
approaches are not very effective because the training step should be repeated when-
ever the data collection protocol has been changed. Moreover, the ballistocardiogram
morphology varies between and within subjects, and the shape of the signal is highly
dependent on subject’s postures, i.e., sleeping or sitting. Furthermore, the raw signal
is noisy and nonstationary due to body movement, induced respiratory efforts, and
the characteristics of the sensing system itself. As previously mentioned in Chapter 1,
the microbend fiber-optic sensor will be used to record cardiorespiratory signals
due to its high sensitivity to ballistic forces of the heart as well as its immunity to
electrical and electromagnetic interference. The ensuing chapter will show in more
detail the theory of the microbend fiber-optic sensor in addition to the proposed
system to analyze and interpret the cardiorespiratory signals obtained from the
optical fiber sensor.
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Table 3.7: Summary of unconstrained monitoring of vital signs using Hydraulic-based sensors. N/A: not avail-

able, M : male, F: female, HR: heart rate, RR: respiratory rate, Min: minutes, Hrs: hours, Sec: seconds, BP:

blood pressure, PPG Sync: Photoplethysmography synchronization: STFT : short-time Fourier transform, CEPS:

cepstrum, Lab: laboratory.

Method Subjects (M, F) Deployment Duration Outcome
[Chen 2009c]
[Chen 2012]

Visually
Visually

N/A
9 N/A

Lab
Lab

N/A
N/A

HR
RR

[Deepu 2012] Peak Detector 5 N/A Lab 5 Min HR
[Chen 2013] PPG Sync 5 N/A Lab N/A BR
[Lau 2013]
[Chen 2014b]

Peak Detector
Peak Detector

10 M, 10 F
6 M, 5 F

MRI
MRI

N/A
N/A

RR
HR, RR

[Dziuda 2013a]
[Dziuda 2013b]
[Dziuda 2014]
[Krej 2015]

Peak Detector
Peak Detector
Peak Detector
Peak Detector

2 M, 1 F
8 M, 4 F
1 M
6 M, 2 F

MRI
MRI
MRI
MRI

95 Min
60 Min
19 Min
82 Min

HR, RR
HR, RR
HR
HR

[Zhu 2013] STFT 3 N/A Lab 6 Min HR
[Chen 2014a] Peak Detector 22 N/A Hospital Overnight HR, RR
[Zhu 2014, Zhu 2015] CEPS 10 N/A Lab 20 Min HR, RR
[Fajkus 2017a] Peak Detector, FFT 6 M, 4 F Lab N/A HR, RR
[Chethana 2017] Visually 2 M, 2 F Hospital 1 Min HR, RR
[Nedoma 2017] Peak Detector 3 M, 3 F Lab 60 Min HR, RR
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4.1 Introduction

In the preceding chapter, we mentioned several algorithms for analyzing and inter-
preting cardiorespiratory signals obtained from in-bed monitors. To wrap up, these
algorithms can be broadly grouped into three categories: time-domain algorithms,
frequency-domain algorithms, and wavelet-domain algorithms. A summary of these
algorithms is given below to highlight which category of algorithms will be used in
our analysis.

In the first place, time-domain algorithms are mainly focused on detecting local
maxima or local minima using a moving window, and therefore finding the interval
between the dominant J-peaks of ballistocardiogram signal. However, this approach
has many limitations because of the nonlinear and nonstationary behavior of the
ballistocardiogram signal. The implication is that the ballistocardiogram signal
does not display consistent J-peaks, which can usually be the case for overnight,
in-home monitoring, particularly with frail elderly. Additionally, its accuracy will
be undoubtedly affected by motion artifacts.

In the second place, frequency-domain algorithms do not provide information
about interbeat intervals. Nevertheless, they can provide information about heart
rate variability. This is usually done by taking the fast Fourier transform or the
inverse Fourier transform of the logarithm of the estimated spectrum, i.e., cepstrum
of the signal using a sliding window. Thereafter, the dominant frequency is obtained
in a particular frequency range. The limit of these algorithms is that the peak in
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the spectrum may get wider and multiple peaks may appear, which might cause a
problem in measuring the vital signs.

Finally, the objective of wavelet-domain algorithms is to decompose the signal
into different components, hence the component which shows an agreement with
the vital signs can be selected. In other words, the selected component contains
only information about the heart cycles or respiratory cycles, respectively. Interbeat
intervals can be found easily by applying a simple peak detector. An empirical mode
decomposition is an alternative approach to wavelet decomposition, and it is also
a very suitable approach to cope with nonlinear and nonstationary signals such as
cardiorespiratory signals. Apart from the above-mentioned algorithms, machine
learning approaches have been implemented for measuring heartbeats. However,
manual labeling of training data is a restricting property. Furthermore, the training
step should be repeated whenever the data collection protocol has been changed.

In the following sections, the operating principle of the microbend fiber-optic
sensor is discussed in more detail (Section 4.2.1). Likewise, we discuss our system
development cycle (Section 4.2.2). Furthermore, we present how the proposed system
is validated for health and clinical applications (Section 4.2.3). At last, we show
how the system is integrated within an existing Ambient Assisted Living platform
(Section 4.2.4 and Section 4.2.5).

4.2 System Design

This section aims to explain how the optical fiber data is analyzed and interpreted so
that relevant information can be obtained. The optical fiber mat can provide different
information such as heart rate, breathing rate, body movements, as well as sleep
parameters. The sleep parameters involve waking up time, sleep time, the total time
of sleep, sleep interruptions, i.e., frequent body movements and bed exits. To achieve
these goals, first and foremost, we need to understand the nature of cardiorespiratory
signals. In fact, cardiorespiratory signals are nonlinear and nonstationary signals that
represent the functions of the cardiovascular and respiratory system, respectively.
Typically, the acquisition of such signals requires sensors or electrodes that are
attached to the body. For example, electrocardiography requires a minimum of two
electrodes mounted on the body to record the electrical activities that occur in the
heart during polarization, depolarization, and repolarization. Another example is the
photoplethysmography that requires a sensor worn on the finger to estimate arterial
blood oxygen saturation (SpO2). Since before-mentioned sensors are fixed to the
skin, the motion artifacts of skin movements are greatly minimized. However, when
it comes to non-contact cardiac and respiratory activity monitoring, the situation
is completely different. To explain, in our case the optical fiber mat can be placed
under the bed mattress or on the seat or the backrest of a chair; hence, the acquired
signals are more prone to motion artifacts compared to standard medical sensors.

We explain the principles of operation of the optical fiber sensor in Section 4.2.1.
Moreover, we provide an explanation of how the raw data is compiled and analyzed, as
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well as how the proposed methodology is validated in Section 4.2.2 and Section 4.2.3,
respectively.

4.2.1 Suitable Sensor Selection

As we discussed in Chapter 1 and Chapter 3, the microbend fiber-optic sensor1

(MFOS) is selected for unobtrusive acquisition of cardiorespiratory signals. It is
because the sensor is particularly sensitive to pressure fluctuations induced by the
ballistic forces of the heart, and it does not require close contact with the body. It is
also relatively small, lightweight, and affordable, and then it is a suitable candidate
for long-term monitoring of vital signs without disturbing patient’s comfort. In
contradistinction to electrical sensors, optical sensors are immune to electromagnetic
and radio frequency interference. Hence, they are useful for real-time monitoring of
physiological signals during magnetic resonance imaging. The proposed optical fiber

50 cm

20 cm

Processing 

Unit

Figure 4.1: The deployable sensor mat and processing unit (Mat dimen-

sions: 20 cm × 50 cm × 0.5 cm).

system consists of a sensor mat integrated with microbending multimode fiber and
a processing unit as shown in Figure 4.1. The processing unit contains a Micro-SD
card, digital electronics for signal manipulation, and a Wi-Fi signal transmission
module. By way of introduction, the fundamental principle of the MFOS is based
on the light intensity modulation induced by microbending in multimode fibers,

1The system hardware is commercialized by Juvo Labs company in Singapore (patented by

A*STAR). Our contribution focused on the software part development by denoising and analyzing

raw data from the mat
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which is used as a transduction mechanism for detecting pressure. A 10-meter
loop of graded-index multimode fiber is sandwiched between two layers of tuned
grating structures that subject the fiber to mechanical perturbation when there is
a pressure applied as shown in Figure 4.2. The pressure causes the transmission
modes in the multimode fiber to be coupled into the loss mode, reducing the amount
of light received by the photodetector. Thereupon, the detected light is converted
to current by the photodetector, which is, in turn, converted into a voltage using a
transimpedance amplifier. The signal is filtered via a 20 Hz low-pass filter and then
digitized by a 16-bit analog-to-digital converter with a sampling frequency of 50 Hz.

Pressure

Modulated

Light

Pressure Microbender

Light

Optical Fiber

Figure 4.2: Longitudinal section of the microbend fiber-optic sensor.

Secondly, the presented sensor is constructed by using a typical graded-index
multimode fiber with a core diameter of 100 µm and numerical aperture (N.A.)
of 0.272 as the sensing fiber [Chen 2012, Lau 2013, Chen 2014b]. The sensor mat
is manufactured to a dimension of (20 cm × 50 cm × 0.5 cm), which facilitates
its portability and inclusion into cushions, pillows, chairs, beds, etc. The sensor
mat applies a force ∆F or a pressure ∆P to the bent multimode fiber and causes
the amplitude of the fiber deformation X to change by an amount of ∆X. This
takes place in response to breathing-generated body movement and heart rhythm-
generated body movement. The transmission coefficient T for the light moving
through the bent multimode fiber is altered by an amount ∆T as follows.

∆T =

(
∆T

∆X

)
∆F

(
k +

AY

l

)
(4.1)

where k is the force constant of the bent fiber, A is the cross-sectional area, Y is
Young’s modulus, and l is the microbender gap. Typically, detection of cardiores-
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piratory signals is dependent on modulation in optical transmission. Regarding
high-sensitivity pressure sensor application, Equation (4.1) is formulated as follows.

∆T ∼= ∆T

∆X
Ap k−1 ∆P (4.2)

where Ap is the area of the deformer and ∆P is the variation in pressure. In order
to achieve a maximum microbend sensitivity, the optical fiber should be constructed
such that the spatial frequency Λ of the microbenders for graded-index multimode
fiber complies with the following approximate relationship:

Λ =
2π · a · n0

NA
(4.3)

where a is the radius of the fiber core, n0 is the refractive index of the core, and NA
is the numerical aperture of the fiber. The loss in microbending develops because the
guided modes are coupled to radiation modes. Equation (4.3) applies to graded-index
multimode fiber. Alternatively, step-index multimode fiber can also be employed for
construction of the sensor mat. In this condition, the spatial frequency ∆ of the
microbenders is obtained as follows.

Λ =

√
2π · a · n0

NA
(4.4)

Efficient coupling between the guided modes and radiation modes can be accom-
plished with the spatial frequency Λ provided by Equation (4.3) and Equation (4.4)
for graded-index and step-index multimode fibers, respectively. Nonetheless, the
first group, i.e., graded-index multimode fibers is better than the second group,
i.e., step-index multimode fibers because the first group has resonance condition, in
which the microbending loss is precisely peaked whereas the second group does not
have the resonance condition. As a result, the first group is decided for development
of the sensor mat [Chen 2012, Lau 2013, Chen 2014b].

4.2.2 System Development

In light of the foregoing consideration, motion artifacts occurred due body move-
ments or other environmental factors should be isolated and filtered out before
the input signal is further processed. After that, cardiac and respiratory signals
can be extracted from the filtered signal using a band-pass filter of different cutoff
frequencies. Once the two main signals are separated, appropriate algorithms should
be implemented so that heart and breathing rate can be measured.

In this research, various techniques have been adopted to analyze the data
collected from the optical fiber mat. Initially, we applied machine learning algorithms
to classify fiber-optic data into informative and non-informative signals based on
their heart rate information. After that, we computed the heart rate from the
informative signals using Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN) algorithm. This algorithm is a modified, improved
algorithm for the Empirical Mode Decomposition algorithm. Preliminary results
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were promising. However, the CEEMDAN algorithm required high processing
time. Therefore, this approach did not meet our needs, and it was not suitable
for real-life deployment. Secondly, instead of using machine learning algorithms to
get informative signals, we designed a signal quality algorithm based on the signal
variance that can automatically isolate motion artifacts and bed-exit events. The
motion artifact is a large variation in the amplitude of the fiber-optic signal, which
is sufficient enough to destroy valuable information in the signal. However, the
bed-exit event is the standard fiber-optic signal that originates when there is no any
pressure applied to the sensor. Thirdly, we implemented the multiresolution analysis
of the Maximal Overlap Discrete Wavelet Transform (MODWT) instead of the
CEEMDAN algorithm to measure the heart rate. The MODWT provided slightly
inferior results to CEEMDAN algorithm. However, it required shorter processing
time, so that it was more suitable for our real-time applications. Fourthly and
finally, we tested the effectiveness of other algorithms such as fast Fourier transform,
cepstrum, and autocorrelation function.

4.2.3 System Validation

We validated the proposed system for two different applications, i.e., health and
wellness application as well as clinical application. In the former application, we
collected data from fifty subjects, where the optical fiber mat was placed on the
headrest of a massage chair. This application was very challenging because of the
motion artifacts caused by movement of the chair and body movement as well. The
objective of this study was to evaluate the effectiveness of the optical fiber mat to
detect heart rate in a noisy environment. In the latter application, we collected
data from ten subjects during a drug-induced sleep endoscopy. Data acquisition was
carried out in the operating theatre of Khoo Teck Puat Hospital (KTPH), Singapore.
The objective of this study was to check the performance of the optical fiber mat
for unobtrusive monitoring of heart and breathing rate for sleep apnea patients.
Furthermore, we also assessed the capability of the mat for unobtrusive apnea
detection. After the validation procedures were completed successfully, we deployed
our system in a real-life environment, i.e., user’s home. The proposed system has
been successfully deployed in three apartments of senior female residents over thirty
days. Furthermore, the sleep monitoring system has been integrated within an
existing Ambient Assisted Living (AAL) platform, better known as UbiSMART
(Ubiquitous Service MAnagement and Reasoning archiTecture) [Tiberghien 2011].

We briefly explain our AAL platform in Section 4.2.4, and we present the
integration of the fiber-optic sensor into the platform in Section 4.2.5.

4.2.4 UbiSMART Design

UbiSMART is a web-enabled AAL platform intended for large-scale deployments
following the approach presented by Bellmunt et al. [Bellmunt 2015]. Key fea-
tures [Aloulou 2016] are plug & play ability, privacy protection as there is no sound
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and no image recording, easy interaction for end-users, and generic architecture.
This AAL platform is able to transform any environment into a smart space in five
minutes, enabling an unobtrusive assessment of indoor as well as outdoor activities
of dependent people in their home environment. The purpose of UbiSMART is
to detect the Activities of Daily Living (ADL), and to provide rich services in the
right context through appropriate channels. The framework is composed of three

Gateway Server Service ProvisionSensors

Figure 4.3: Simplified view of UbiSMART AAL platform with sleep mat

and its processing unit as a sensor.

main parts (Figure 4.3), in data flow order: 1) Gateway, “smart home in a box” –
sensors (motion sensors, contact sensors and the newly integrated bed sensor for
sleep monitoring) and a gateway (Raspberry Pi); 2) Server – receives formatted
inputs from the gateway, and processes them using semantic reasoning following the
approach presented by Aloulou and Bellmunt et al. [Aloulou 2012, Bellmunt 2016];
3) Service Provisioning – responsive user interfaces on the web or on hand-held
devices that allow users to receive notifications or interact with the platform.

4.2.5 System Integration

The sleep mat equipment is considered as another sensor that contributes to the
knowledge base of the AAL platform. We explain its integration into the existing
system following the data flow from the source to the presentation.

4.2.5.1 Collection

The bed sensor-processing unit is wired to our Gateway (Raspberry Pi). Voluminous
raw data is read and stored on a micro SD-card for a deeper off-line analysis.
Simultaneously, the data is preprocessed to generate high level events, such as bed

empty, bed motion, sleep. Currently, it operates on a time window of 10 seconds. For
each time window, an event is produced. The events are then sent to the Server

as a structured sensor data using Message Queuing Telemetry Transport (MQTT)
protocol over an Internet connection [Bellmunt 2016].

4.2.5.2 Reasoning

Server handles the received structured information (event). The bed sensor will
appear in the home description interface as available for association to a house. If
confirmed, this association is stored in the knowledge base (KB). Any subsequent
events are then inserted into the KB of the associated house, allowing to the reasoning
engine to be aware of bed occupancy with respect to our ontology. Coupled with
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the information from other sensors and sources, it provides an accurate contextual
information. In parallel, the raw data is processed every 5 minutes to extract
information about the occupant’s respiratory effort and heart rate. This information
is also inserted into the KB.

4.2.5.3 Presentation

Service provisioning through our simple responsive web interface Life Tiles Figure 4.4
allows us to give the user an instant feedback about bed occupancy and continuously
updated information about the occupant’s respiratory effort and heartbeat. Other
indicators show aggregated information about activities out of the scope of this
thesis.

Figure 4.4: UbiSMART user interface is organized in tiles and it pro-

vides following information: daily quantity of sleep (selected day) with

updated bed occupancy status that changes the color of the icon and

status line; aggregated week overview of sleep quantity; and heartbeat

information.

4.3 Conclusion

In this chapter, we discussed the working operation of the microbend fiber-optic
sensor. We also provided an overall summary of the proposed system and how the
system is validated in two different applications. Besides, we explained our current
Ambient Assisted Living platform, i.e., UbiSMART and we presented how the
microbend fiber-optic sensor is integrated within the platform. In the next chapter,
we provide a step-by-step explanation of how our proposed system is validated for
health and wellness application as well as clinical application. In which, we describe
the data collection protocol for each application and we illustrate the algorithms
used to process the sensor data.
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5.1 Introduction

Our aim in this chapter is to provide a detailed description of the methods used
to process the data collected from the microbend fiber-optic sensor. To start
with, we show how we validated the system using data acquired from a massage
chair, in which several classifiers were adopted to label the data into informative
and non-informative classes based on their heart rate information, and then we
measured the heart rate using Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise algorithm (Section 5.2). Second, we illustrate the signal
quality algorithm (Section 5.2.3.4), which substitutes the manual labeling process.
Furthermore, we explain the multiresolution analysis of the Maximal Overlap Discrete
Wavelet Transform as an alternative to the empirical mode decomposition algorithm
(Section 5.2.3.5). Even more, we introduce the fast Fourier transform, cepstrum,
and autocorrelation function for the sake of comparison with the wavelet approach
(Sections 5.2.3.6 and 5.2.3.7). Third, we discuss how we validated the system in a
clinical environment for unobtrusive monitoring of vital signs and sleep apnea events
as well (Section 5.3). After all, we describe our real-life deployment, where three
senior female residents were involved in our study and the sleep data was collected
over a one-month period in a home-living situation (Section 5.4).
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5.2 Health and Wellness Application

In several application domains, sensor networks provide enormous potential for
information collection and processing [Kapadia 2009]. In this study, we focused
on a new kind of sensing technology known as Opportunistic Ambient Sensing1

(OAS). OAS can be used to provide applications and services that fit into the
active and healthy lifestyle of end users and to unobtrusively extract reliable and
meaningful data about their physiological parameters [Acampora 2013]. Although
mobile phone-based applications are perhaps the most convenient, they lack the
sensitivity and the proximity needed for the measurement of important vital signs
such as heart rate (HR) and breathing rate (BR). Ambient sensors that are placed in
the environment away from physical contact with the user, such as cameras, infrared
motion sensors and other types of electromagnetic sensing devices, lack the proximity
or physical contact needed for reliable detection of vital signs [Sadek 2016].

The microbend fiber-optic sensor (FOS), thanks to its high sensitivity to ballistic
effects of human vital signs, is a sensor that is suitable for opportunistic ambient
sensing. This sensor is a suitable option for nonintrusive long-term monitoring of
vital signs for its high sensitivity to pressure changes caused by body movement,
and simultaneously not required to be in close contact with the body. A cushion
with embedded sensors, for example, is able to unobtrusively, yet with ample
accuracy, capture vital signs of the user for those durations where the user is
directly in contact with the sensor and motion artifacts are limited. A major
challenge is dealing with the quality of the FOS signals. There are two basic
approaches to monitoring quality in physiological data obtained from sensors, i.e.,
signal oriented and aggregate oriented. The first [Schumm 2010] is an exact approach,
attempting to detect and track statistical properties of signal morphologies or event
occurrences (or non-occurrences), and reporting these in a real-time fashion. The
second [Wang 2002, Lee 2012] is a statistical approach aimed at obtaining aggregate
statistical features in the time or frequency domain, through appropriate feature
extraction. Since the former approach can lead to processing delay, especially in
real-time situations, in our work we adopted the statistical approach for quality
processing.

The goal of this study was to design a quality processing system to identify signals
of interest from noisy and nonstationary BCG signals. The quality process reduced
the computational and/or communications load significantly because only useful
data was transmitted and processed for vital sign extraction. Thereafter, interbeat
intervals were estimated using Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise (CEEMDAN) algorithm. The following sections are summarized
as follows. Section 5.2.1 presents the generic algorithm for quality processing.
Section 5.2.2 presents a definition of data quality relevant to the needs of the
application at hand. Section 5.2.3 presents the data collection protocol, a labeling
tool used to label datasets manually, and the proposed approach.

1“Opportunistic sensing is seen as a way to gather information about the physical world in the

absence of a stable and permanent networking infrastructure” [Scholten 2011].
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5.2.1 Quality Processing of Fiber Optic Sensor Data

As we pointed out in several parts of the thesis, ballistocardiography is a technique
that measures the mechanical vibrations arising from the recoil of the body, caused
by the ventricular ejection of blood from the heart into the arterial tree along
with each heartbeat [Park 2018]. In this particular application, the sensing system
consisted of a pressure mat and a transceiver which included a light source, a light
detector, amplifiers, filters, an analog-to-digital converter, a microprocessor, and
circuits for connecting the transceiver to a computer via Bluetooth. A low-pass
filter at 250Hz was built into the transceiver to eliminate high-frequency noise.
When a pressure is applied to the mat, the displacement between two microbenders
changes, the light intensity of the clamped multimode fiber changes with the subject’s
body vibrations caused by respiration/heart beating. The light intensity in the
microbending fiber is modulated by the body vibrations. This modulated signal
is extracted as ballistocardiogram and respiratory signals. The microbending FOS
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Figure 5.1: Opportunistic remote monitoring of vital signs.

pressure mat can be used to collect physiological data of people from ambient
locations, i.e., mattresses, pillows, chairs, etc. In these situations, a major obstacle
is to handle noise and motion artifacts since the quality of the sensed data is easily
corrupted. If, however, some expected characteristics (or features) of the signals
can be exploited, the sensor signals may be processed in such a way that the vital
signs are recovered with higher accuracy. The basic idea is to detect the quality
of the data and classify the data into good, noisy or no-data segments for further
processing. The algorithm involves carrying out labeling of sensor data, in order
to establish a reliable ground truth, which can then be used to segment decent
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quality signals from real-time sensor data streams. This is a step towards improving
the reliability of sensors used to monitor vital signs in diverse ambient settings.
Figure 5.1 illustrates the manner in which the FOS pressure mat was deployed in
wellness applications for the opportunistic monitoring of vital signs. The local server
was optional and might be replaced with a direct connection to the remote server or
cloud, with the appropriate 3G transceiver.

5.2.2 Application Specific Signal Data Quality

Sensor signal quality and data quality are important measures for medical devices
and health monitoring. In morphological analysis, a missed detection is characterized
by the absence of a particular waveform. The missing or erroneous waveform is
corrected and the feature (e.g., heartbeat) is then detected from the augmented
waveform. In statistical analysis, the individual waveforms are not analyzed, but
the signal is processed, and feature detected (e.g., through peak detection) and
thereafter the output statistic (e.g., HR) computed.

The statistical approach at data quality requires manual labeling of the rendering
of the signal on a viewer with the help of a suitable tool. The waveforms are classified,
sometimes with the help of logged information that supply details that may be useful
for more accurate labeling. Since the fiber-optic sensor can be used in various settings
for various applications, the statistical approach towards the study of quality is more
meaningful, as it may be used with parametric or algorithmic changes and applied
to various applications and indeed to various sensors as well. In this application, we
considered the following definitions of quality:

Selected Window

Good
Noisy

Good

Correspnding Signal

Figure 5.2: Screen capture of the labeling tool.

• Informative signal: It included a good quality signal and a noisy signal.
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The former signal was a data stream from which features might be extracted
by standard algorithms, without any further filtering or processing to remove
noise or any conflicting artifacts. The latter signal was a data stream that
contained the observed signal mixed with other artifacts and noise, such that
more processing was needed before algorithms might be used to extract the
vital signs.

• Non-informative signal: It was a data stream where retrieval of physiologi-
cal properties was impossible.

Because noise was introduced through activities of various kinds, in the experimental
stage we incorporated mechanisms to embed information into the data that indicate
the occurrence of events. These labels gave major cues, which served as a foothold in
the data, in order to analyze it further for quality processing. Note that even though
our data was collected in the lab, it was unreasonable and impossible to label each
event. This was the reason why we were required to undertake post-processing of
the data through a manual labeling effort. From Figure 5.2, it can be seen that there
are certain periods when good data was expected (such as the rest periods), and
certain other periods where the data was expected to be noisy (such as the massage
period when the massage chair is in motion). There are also periods when due
to non-contact there is no signal presented. This happens, for example, when the
subject is answering the questionnaire or undergoing some mental tasks involving
the use of the computer. Once the subject leans forward the contact between the
pillow sensor and the subject’s head is lost, and thus there is no signal.

5.2.3 Data Processing

5.2.3.1 Data Collection

The data was collected in a realistic setting from 50 human subjects sitting in a
massage chair to assess their levels of stress at different moments. The data was
collected in a sitting position to explore the capability of the optical-fiber mat
for heart rate measurement from different positions of the body (e.g., below the
head). This particular position was interesting as the optical-fiber mat could have
been located in a pillow rather than below the bed mattress. Consent forms were
sought from every human subject following the approval of the institutional review
board. Participants completed stress-inducing exercises, proceeded by rest and relief
therapy. During the process, subjects were instructed to complete well-suited survey
questionnaires for gathering self-reported ground truth. Meanwhile, physiological
parameters of subjects were recorded in real-time using a range of sensors. This
included ballistocardiography, electroencephalography, galvanic skin response, and
some other sensors to measure electrocardiography and respiratory efforts.
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Figure 5.3: Flowchart of the quality processing system.

5.2.3.2 Classification

The flowchart of the quality processing system is shown in Figure 5.3 and it can be
illustrated as follows:

Preprocessing: The sensor data was manually labeled by a human observer into
two classes such as 1) informative (58% of dataset) and 2) non-informative (42%
of dataset), where a labeling tool was developed that enabled the user to quickly
label data from MATLAB R© based software. Figure 5.2 shows a screen capture
of the labeling tool. The labeled sensor data were randomly divided into two
groups, i.e., Group1 and Group2. The former consisted of 2085 segments (1296
informative and 789 non-informative), whereas the latter included 1546 segments
(813 informative and 733 non-informative). The length of each segment was 10
seconds/500 samples, where the data was sampled at a sampling frequency of 50Hz.
The idea was to use Group1 as a training set while Group2 as a test set, and
vice versa. Subsequently, each segment was band-pass filtered to extract the BCG
component using a Butterworth band-pass filter with frequency limits of 1Hz and
12Hz. Figure 5.4 shows two examples for informative and non-informative segments.

Feature Extraction: A set of 13 statistical features was extracted i.e., mean (x̄),
standard deviation (σ), minimum (min), maximum (max), skewness (S), kurtosis
(K), range (R), interquartile range (IQR), mean absolute deviation (MAD), number
of zero crossings, the variance of local maxima, the variance of local minima, mean
of the signal envelope using the analytic signal. The analytic signal was obtained by
taking the Hilbert transform of the signal and then the envelope was extracted by
taking the magnitude of the analytic signal. Table 5.1 gives mathematical equations
for some features; given a set of samples {x1, x2, . . . , xN }.

Training and Testing: Five classifiers were employed, i.e., random forest (RF),
support vector machine (SVM), multilayer, feedforward neural network (NN), linear
discriminant analysis (LDA), and decision tree (DT). Then, a training model was
created for each classifier using the features of training set, where each set was 10-fold
cross-validated to evaluate the predictive ability of the models. Finally, each segment
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Figure 5.4: Two examples for informative and non-informative segments

(sampling frequency: 50Hz).

in the test set was classified into one of the classes based on the features of the test set.
Furthermore, an accuracy criterion was computed for appraising the performance of
the classifiers and the results of the proposed approach in discriminating between
informative and non-informative segments.

Heart Rate Estimation The conventional empirical mode decomposition (EMD)
along with two modulation-based approaches were used in [Pinheiro 2010a] to
suppress generated noise when a single channel EMFi sensor was placed in the
backrest of a moving wheelchair. Although the EMD approach helps to remove
generated noise in the BCG signal, it has two limitations i.e., end effects and mode
mixing. Ensemble EMD (EEMD) was used in [Cao 2013, Ni 2017] to eliminate
generated noise as well as to solve the mode mixing problem. Nevertheless, the
EEMD still does not completely solve the mode mixing problem and requires high
computational time. We proposed to use the CEEMDAN algorithm (Section 5.2.3.3)
as a noise removal tool since it provides a complete reconstruction of the signal and
it is proved to be robust towards motion artifacts originated due to body movements.

The 6th decomposition component (DC6) was chosen for HR measurement
because each local maximum shows a match with a cardiac cycle [Sadek 2015].
Figure 5.5 shows an example of a BCG signal with its DC6. The local maxima of
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Table 5.1: Features’ mathematical equations.

Feature Equation Notes

Mean x̄ =
1

n − 1

∑
n

i=1
xi

Variance σ2 =
1

n − 1

∑
n

i=1
(xi − x̄)2 It is a measure used to quantify the amount

of variation of a set of data values.

Standard Deviation σ =

√
1

n − 1

∑
n

i=1
(xi − x̄)2 It measures how far a set of numbers are

spread out from their average value.

Skewness S =

1

n

∑
n

i=1
(xi − x̄)3

(√
1

n

∑
n

i=1
(xi − x̄)2

)3

It is a measure of the asymmetry of the data

around the sample mean.

• Zero → symmetric distribution

• Negative → spread out more to

the left of the mean.

• Positive → spread out more to

the right of the mean.

Kurtosis K =

1

n

∑
n

i=1
(xi − x̄)4

(
1

n

∑
n

i=1
(xi − x̄)2

)2

It is a measure of how outlier-prone

a distribution is.

• Three → symmetric distribution

• > Three → more outlier-prone than

the normal distribution.

• < Three → less outlier-prone than

the normal distribution.

Range R = max − min
It is the difference between

the highest and lowest values.

Interquartile Range IQR = Q3 − Q1

It indicates how the central 50% of values

within the dataset are diffused.

• Q1 → median of the n smallest entries.

• Q3 → median of the n largest entries.

Mean Absolute

Deviation
MAD = 1

n

∑
n

i=1
|(xi − x̄)|

It is the average distance between each

data value and the mean.

the DC6 were used for HR measurement, where the HR value at the time tn, at
which the nth maximum occurred, was defined as follows:

HRn =
60

tn − tn−1
(5.1)

where tn is the time at nth local maxima and tn−1 is the time at (n − 1)th local
maxima in the DC6. In which, the HR was expressed as beats per minute (BPM).

5.2.3.3 Complete Ensemble EMD with Adaptive Noise

The Empirical Mode Decomposition (EMD) [Huang 1998] is an adaptive method,
which can be used to break down a nonlinear and a nonstationary signal as a
combination of amplitude and frequency modulated functions named intrinsic mode
functions (IMFs) without leaving the time domain. IMF should fulfill two conditions:

• In the entire dataset, the number of extrema and the number of zero crossings
must be equal or vary at most by one.

• At any time instant, the mean value of the upper and lower envelope is zero,
i.e., the signal has zero mean.
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Figure 5.5: BCG signal with a reference ECG signal. ECG is shown in

1st row. However, BCG signal and its 6th decomposition component are

shown in 2nd row (sampling frequency: 50Hz).

Even though EMD proved to be applicable in several areas of research, such as
biomedical signal processing, it encounters some limitations as follows. First, end
effects that destroy the IMFs at its endpoints. Second, mode mixing, which causes
very similar oscillations to exist in different modes or oscillation of very dissimilar
amplitudes to exist in a mode [Huang 2016]. In order to solve these problems, a
new approach is introduced: Ensemble Empirical Mode Decomposition (EEMD)
[Wu 2009a], the basic idea of the EEMD is to carry out the EMD over an ensemble
of the signal besides white Gaussian noise (WGN). Adding WGN overcomes the
mode mixing problem by processing the entire time-frequency space to make use
of the dyadic filter bank behavior of the EMD. Nonetheless, a different number of
modes may be generated. Apart from that, the CEEMDAN can provide a precise
reconstruction of the original signal in addition to reducing the computational
complexity [Torres 2011]. It further solves the boundary problems by mirrorizing
extrema close to the edges [Rilling 2003]. Given a target signal x, assume w(l) is
a WGN of zero mean and unit variance i.e., with N(0, 1), ε is the noise standard
deviation, and Ek(.) is an operator responsible for getting the kth mode of a given
signal by EMD. The algorithm for obtaining a kth mode by EMD can be explained
as follows [Huang 1998, Colominas 2014]:
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1. Initialize k = 0 and detect all local extrema (i.e., all local maxima and local
minima) of r0(t) = x(t).

2. Obtain the maximum & minimum envelopes of local extrema (emax(t), emin(t))
using a cubic spline interpolation.

3. Compute the mean of the envelopes m(t) = (emax(t) + emin(t))/2.

4. Extract the IMF candidate dk+1(t) = rk(t) − m(t). This procedure is called
sifting process.

5. Is dk+1 an IMF?

• Yes. Save dk+1(t), compute the residue rk+1(t) = x(t) − ∑k
i=1 di(t), do

k = k + 1, and treat rk as input data in step 2.

• No. Treat dk+1(t) as input data in step 2.

6. Iterate on the final residual rk(t) until a predefined stopping criterion is
fulfilled.

According to Rilling et al. [Rilling 2003], the stopping criterion is based on two
thresholds, i.e., θ1 and θ2. These two thresholds aim at guaranteeing globally small
fluctuations as well as considering locally large excursions. To achieve this goal, the
ratio of the mean value of the envelope of iterated mode and the amplitude of this
envelope is checked in each iteration:

σ(t) =

∣∣∣∣
m(t)

a(t)

∣∣∣∣ (5.2)

where m(t) = (emax(t) + emin(t))/2 and a(t) = (emax(t) − emin(t))/2. The sifting
process is iterated until σ(t) < θ1 for some prescribed fraction (1 − α) and σ(t) < θ2

for the remaining fraction. Typically, α ≈ 0.05, θ1 ≈ 0.05 and θ2 ≈ 10 · θ1. Following
the EMD algorithm, the CEEMDAN can be illustrated in following steps:

1. Each x(l) = x + ε0w(l) is decomposed similar to EMD for l = 1, ..., L to obtain
its first mode (d̃1):

d̃1 =
1

L

L∑

l=1

d
(l)
1 = d1. (5.3)

2. For k = 1, compute the first residue (r1):

r1 = x − d̃1. (5.4)

3. Decompose r1 + ε1E1(wl), l = 1, ..., L until its first EMD mode, and then
define the second mode:

d̃2 =
1

L

L∑

l=1

E1(r1 + ε1E1(wl)). (5.5)
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4. For k = 2, ..., K, compute the kth residue:

rk = r(k−1) − d̃k. (5.6)

5. Decompose realizations rk + εkEk(wl), l = 1, ..., L until their first mode by
EMD, and then determine the (k + 1)th mode:

d̃k+1 =
1

L

N∑

n=1

E1(rk + εkEk(wl)). (5.7)

6. Go to step 4 for next k

Steps 4 − 6 are repeated until the obtained residue cannot be decomposed anymore
by EMD (it contains less than three local extrema). Thus, the final residue fulfills:

rk = x −
K∑

k=1

d̃k. (5.8)

where K is the total number of decomposition modes. As a result, the target signal
can be represented as:

x =
K∑

k=1

d̃k + rk. (5.9)

As it can be seen in Figure 5.6, the BCG signal (Figure 5.5) was decomposed into
nine components. However, only the 6th component, i.e., DC6 showed agreement with
cardiac cycles. As a result, the local maxima of this component were employed for
heart rate measurement. Moreover, it should be noted that the first two components,
i.e., DC1 and DC2 represented the noise embedded in the signal. Up to now, we
have explained our initial approach to process the fiber-optic data using a machine
learning approach and therefore implementing the CEEMDAN algorithm to compute
the heart rate.

The next two sections will discuss the automated signal quality algorithm (Sec-
tion 5.2.3.4) and the multiresolution analysis of the Maximal overlap discrete wavelet
transform (Section 5.2.3.5). The formal algorithm replaced the manual labeling
required for training data, while the latter algorithm replaced the CEEMDAN
algorithm due to its high computational cost.

5.2.3.4 Automated Signal Data Quality

In health and wellness application, the monitoring system was designed to send fiber-
optic sensor data to a nearby computer via Bluetooth. However, the processing unit
of the current system has a built-in Micro-SD card and a Wi-Fi signal transmission
module for sending the data to a remote cloud server (Section 4.2.1).

Typically, every 5 minutes, a file was created and stored in the micro-SD card.
After that, this file was sent to the cloud server for processing and extracting relevant
information. In order to achieve automated signal data quality, three different states
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Figure 5.6: Intrinsic mode functions (DC1-DC9) of a typical BCG sig-

nal (Figure 5.5); the 6th component shows a match with cardiac cycles

(sampling frequency: 50Hz).

were recognized for each 5-minutes recording using a sliding time-window (wi) with
a size of 500 samples (10 seconds) as follows. First, if the standard deviation (SD)
of the time-window was greater than twice the mean absolute deviation (MAD) of
all time-windows SD, the state was considered as a body movement (Figure 5.9).
Second, if the SD of the time-window was lower than a fixed threshold of 15 mV, the
state was regarded as no activity (unoccupied mat sensor) (Figure 5.10). Finally, in
other cases, the state was identified as asleep (Figure 5.8), where apneas and vitals
could be measured. This process was repeated for all the data-files on the Micro
SD-Card, and the sleep data were then concatenated together to form a continuous
time series, i.e., excluding body movements and unoccupied bed events. Algorithm 1
illustrates the sleep data processing of a resident’s bed state.

Figure 5.7 gives an example of a signal data quality processing for a 20-minute
fiber-optic data recording. The data was collected from a healthy young male subject
and the optical fiber mat was placed underneath the mattress covering the upper
half of the subject. In this example, folly color defines segments of body movements,
aqua color defines segments of sleep and blond color defines segments of bed-exits.
The two folly colored regions indicate the time when the subject entered and exited
the bed. On the other hand, Figures 5.8 to 5.10 show one example for each bed
state, i.e., sleep, body movement, and bed-exit.
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Algorithm 1 Sleep Data Processing

Input:

1: W ← {w1, w2, . . . , wN }
2: Tr ← 15

Output:

3: state
4: for i = 1, . . . , N do

5: S(i) ← SD(wi)

6: end for

7: M ← MAD(S)

8: for j = 1, . . . , N do

9: if SD(wj) > 2 ∗ M then

10: state ← bed movement
11: else if SD(wj) < Tr then

12: state ← bed empty
13: else

14: state ← sleep
15: end if

16: end for

5.2.3.5 Maximal Overlap Discrete Wavelet Transform

In healthy subjects, ECG signal, which is considered as a reference to measure
interbeat intervals has a uniform and repeated template known as PQRST complex,
i.e., the pattern of electrical activity of the heart during one cardiac cycle (Figure 3.2).
Thus, this property facilitates the measurement of the subject’s heart rate. Unlike
ECG signals, the BCG morphology varies between and within subjects, and the
shape of the signal is highly dependent on the subject’s positions, i.e., sleeping
or sitting. In addition, the raw signal is noisy and nonstationary owing to body
movement, induced respiratory efforts, and the characteristics of the sensing system
itself, therefore, estimating interbeat intervals from BCG signals is a troublesome
procedure.

In [Jin 2009] a translation-invariant adaptive discrete wavelet transform (DWT)
was proposed to denoise BCG signals. Then, the heart rate was computed using a
pseudo-period detection approach. In [Noh 2010] DWT was implemented to cancel
related BCG artifacts and a template matching for interbeat intervals detection.
The BCG data were collected from five healthy subjects in a sitting position using
an electromechanical film sensor. In [Gilaberte 2010] continuous wavelet transform
(CWT) was introduced for HR and respiratory rate measurements. Where, in each
case, the scale which presented an agreement with the periodicity of the signal
was selected. The proposed approach was applied to six healthy subjects standing
on a bathroom scale equipped with multiple strain gauges. A similar approach
was proposed in [Alvarado-Serrano 2016], where authors used CWT with splines
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Figure 5.7: An example of a signal data quality processing (sampling

frequency: 50Hz).

for optimal scale selection. However, this approach required a training phase for
parameter initialization. The BCG data was acquired from seven seated healthy
subjects via a piezoelectric sensor.

We implemented multiresolution analysis decomposition using MODWT. This is
because the MODWT overcomes the time variant drawback of the classical DWT
by up-sampling the filter coefficients [Percival 2006].

Generally speaking, the wavelet transform is a mechanism for converting a
function or a signal into another form, which either makes particular features of
the original signal more manageable to study or allows the original dataset to be
interpreted more concisely. In order to implement a wavelet transform, we require
a wavelet, i.e., a localized waveform [Addison 2002]. More specifically, Discrete
Wavelet Transform (DWT), is a multiresolution analysis that can cut up an original
signal into approximation (smooth) and detail components. The following equation
can denote the DWT:

ψj,k(t) =
1√
aj

0

ψ

(
t − k b0 aj

0

aj
0

)
, (5.10)

where j and k are integer values used to control wavelet dilation and translation
respectively; a0 is a predetermined fixed dilation step parameter set at a value greater
than 1 (commonly a0 = 2); ψ is the mother wavelet; and b0 is the location parameter
which must be greater than zero (commonly b0 = 1). Hence, Equation (5.10) can be
written in a more compact form as following; provided that a0 = 2 and b0 = 1:

ψj,k(t) = 2−j/2 ∗ ψ(2−j t − k). (5.11)
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Figure 5.8: An example of a 60-second sleep signal (sampling frequency:

50Hz).

For a discrete signal X = {Xt, t = 0, 1, . . . , N − 1}, the DWT computes the wavelet
coefficient for the discrete wavelet of dilation 2j and translation 2jk using the
following equation:

WX(j, k) =
N−1∑

t=0

Xt ψj,k(t), (5.12)

where WX(j, k) is the wavelet coefficient and N is an integer power of two (a
restrictive property). In practice, Mallat’s algorithm [Mallat 1989] is used for
implementation of DWT. The idea of the algorithm is to apply low-pass and high-pass
filters instead of wavelets, and hence decompose the signal into details components
and an approximation component. It should be noted that the decomposition level
L should be determined in advance and it has to be less than or equal log2(N)

[Seo 2017]. Although DWT is a powerful tool for signal analysis, it has some
limits. These limits include shift sensitivity, poor directionality, and lack of phase
information [Fernandes 2003]. On the other hand, the Maximal Overlap Discrete
Wavelet Transform (MODWT) introduced by Percival and Walden [Percival 2006]
offers more advantages over the typical DWT, even though it does not provide an
orthogonal decomposition. The properties that distinguish the MODWT from the
DWT can be explained as follows:

• The MODWT is a translation-invariant process.

• The MODWT can manipulate any sample size n, which is not required to be
divisible by 2.

• The smooth and detail coefficients of the MODWT are affiliated with zero-phase
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Figure 5.9: An example of a 60-second body movement signal (sampling

frequency: 50Hz).

filters, and therefore making it easy to line up features in a multiresolution
analysis with the original time series in a meaningful way. In other words,
extracted features will be time-aligned with the original time-series.

Given a discrete time signal X = {Xt, t = 0, 1, . . . , N − 1}, the jth level MODWT
wavelet and scaling coefficients, i.e., Wk,t and Vk,t can be computed as indicated by
Equation (5.13) and Equation (5.14), respectively.

Wj,t =
N−1∑

l=0

h̃◦
j,l

Xt−l mod N , (5.13)

Vj,t =
N−1∑

l=0

g̃◦
j,l

Xt−l mod N , (5.14)

where j = 1, 2, . . . , L; Wj,t is the tth element of the jth level MODWT wavelet
coefficient; Vj,t is the tth element of the jth level MODWT scaling coefficient; h̃◦

j,l

and g̃◦
j,l

are the jth level MODWT high- and lows-pass filters, i.e., wavelet and

scaling filters produced by periodizing (i.e., adding zeros) h̃j,l and g̃j,l to length N ,
respectively; h̃j,l and g̃j,l are the jth level MODWT high-pass filter (h̃j,l = hj,l/2j/2)

and low-pass filter (g̃j,l = gj,l/2j/2); hj,l and gj,l are the jth level DWT high- and
low-pass filters; and L is the highest decomposition level.

On the other hand, the multiresolution analysis decomposes an original signal X

into a low-pass filtered approximation (smooth) component and high-pass filtered
detail components [Percival 2006]. Typically, the multiresolution analysis of the
MODWT can be formulated as provided by Equations (5.15) to (5.17):



5.2. Health and Wellness Application 79

1170 1172 1174 1176 1178 1180 1182

Time/Seconds

0.00570

0.00571

0.00572

0.00573

0.00574

0.00575

A
m
p
li
tu
d
e

Figure 5.10: An example of a 60-second bed-exit signal (sampling fre-

quency: 50Hz).

X =
J0∑

j=1

Dj + SJ0
, J0 ≥ 1 (5.15)

Dj,t =
N−1∑

l=0

h̃◦
j,l

Wj, t+l mod n, (5.16)

Sj,t =
N−1∑

l=0

g̃◦
j,l

Vj, t+l mod n, (5.17)

where Dj is the detail components and Sj,t is the smooth component. Figure 5.11
gives an example of a three-level MODWT. After explaining automated signal data
quality algorithm and MODWT approach, the following steps can be used to measure
the heart rate (Figure 5.12).

1. BCG Signal Extraction: First, motion artifacts were excluded using Algo-
rithm 1. Second, the BCG signal was retrieved by performing a Butterworth
band-pass filter with frequency limits between 1Hz and 10Hz.

2. Decomposition: A sliding time-window of a length (10 seconds/500 samples)
was used to measure the heart rate for BCG and ECG signals. Therefore,
for each 10-second of the BCG signal, a multiresolution analysis based on
MODWT was employed to decompose the signal into approximation and detail
coefficients.

3. Suitable Level Selection: The 4th level smooth coefficient was preferred for
HR computation because the periodicity of the maxima showed an agreement
with the heartbeats as presented in Figure 5.13.
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Figure 5.11: Example for three-level MODWT; h{.} is a high-pass filter,

g{.} is a low-pass filter, W{.} is a wavelet coefficient, and V{.} is a scaling

coefficients.

BCG Extraction:
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Decomposition: 

MRA - MODWT
Level Selection  Heart Rate

Microbend FOS

Figure 5.12: The flowchart of the proposed heart rate estimation method;

BM: Body Movement, RR: Respiratory Rate, and MRA: Multiresolution

Analysis.

To this end, we have addressed how ballistocardiogram signals were acquired during
health and wellness application. Other than that, we have explained the proposed
methodology to analyze and interpret ballistocardiogram signals in order to measure
interbeat intervals. In the subsequent section (Section 5.3), we discuss our clinical
validation approach.

5.2.3.6 Cepstral Transform

The cepstrum is defined as the inverse discrete Fourier transform (DFT) of the log-
magnitude of the DFT of a signal, i.e., spectrum [Oppenheim 2004]. The cepstrum
c of a signal x can be denoted as follows:

c[n] = F−1{log |F{x[n]}|}, (5.18)

where F is the DFT and F−1 is the inverse DFT. Since ballistocardiogram signal
is nonlinear and nonstationary, the DFT was implemented by applying a window
or a.k.a, “windowing”. The windowing process consists of multiplying a portion
of a signal by a finite-length window with an amplitude that varies smoothly and
gradually toward zero at the edges. By doing this, the effect of the leakage that occurs
during an FFT of the signal is reduced. Leakage consists of spectral information
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Figure 5.13: Symlet-8 MODWT multiresolution decomposition of a BCG

signal (sampling frequency: 50Hz).

from an FFT showing up at the wrong frequencies. For a windowed portion of
ballistocardiogram signal y[n], the cepstrum is computed as follows:

c[n] =
N−1∑

n=0

log

( ∣∣∣∣∣

N−1∑

n=0

x[n]e−j 2π

N
kn

∣∣∣∣∣

)
ej 2π

N
kn, (5.19)

where n is the time index; k is the frequency index; and N is the number of
samples (N must be of power two, e.g., 256, 512, 1024, . . .). For ballistocardiogram
heartbeat signal, the spectrum consists of the peaks at the harmonic frequencies of
the fundamental heartbeat frequency. This periodicity in the spectrum is presented
as a peak value in the spectrum located at the corresponding ballistocardiogram
interbeat interval lag-time value [Kortelainen 2007, Kortelainen 2012, Brüser 2015].
In our case, the lag-time range is from 0.4 second (= 2.5Hz) to 1.5 seconds (=
0.67Hz), i.e., the normal human heartbeat duration [Zhu 2014]. Figure 5.14 shows
the cepstrum of a 30-second ballistocardiogram signal, in which the Fourier transform
is computed by applying a Hanning window.

5.2.3.7 Autocorrelation

The autocorrelation function (ACF) measures the correlation between yt and yt+k,
where k = 0, . . . , K. The formula for the autocorrelation for lag k is given by
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Figure 5.14: The cepstrum of a 30-second ballistocardiogram signal; the

heart beat interval (HBI) is 1.02 seconds.

Equations (5.20) and (5.21):
rk =

ck

c0
, (5.20)

ck =
1

T

T −k∑

t=1

(yt − ȳ)(yt+k − ȳ), (5.21)

where c0 is the sample variance of the time series, and T is the total number of
samples in the window for the ACF calculation. As mentioned above, the lag-time
range is from 0.4 second (= 2.5Hz) to 1.5 seconds (= 0.67Hz). Figure 5.14 shows
the autocorrelation of a 30-second ballistocardiogram signal. The ACF is symmetric
around lag zero, thus the function is normally plotted one-sidedly for positive lag.

5.3 Clinical Application

In this application, we aimed at validating our system for nonintrusive monitoring of
vital signs (heart rate, respiratory rate, and body movements) during sleep as well
as monitoring of sleep apnea. As a beginning, sleep is one of the most important
elements every human needs similar to oxygen, water, and food. Nevertheless, most
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people do not realize the importance of getting enough quality sleep. As stated by
the U.S. National Sleep Foundation (NSF), millions of people do not have sufficient
sleep, and many may experience a lack of sleep.

To give an example, an individual might have the condition of sleep-disordered
breathing (SDB). The SDB or a.k.a., obstructive sleep apnea syndrome (OSAS)
is the most common sleep-related breathing disorders. The estimated prevalence
of moderate-to-severe OSAS is reported to be 6 to 17% in the general population,
being as high as 49% in the elderly [Senaratna 2017]. The OSAS is described by
recurrent events, usually longer than 10 seconds of a complete (apnea) or partial
(hypopnea) closure of the airflow throughout sleep (Figure 5.16). These episodes are
typically joined with blood oxygen desaturation and arousals from sleep. OSAS can
negatively affect the patient’s cognitive function, mode, and quality of life. Besides,
patients affected with OSAS are at a considerable risk of developing cardiovascular
morbidity, and mortality [Peppard 2013, Kimoff 2016, Senaratna 2017].

In-lab polysomnography (PSG) is currently the most reliable approach to assess
OSAS severity. The PSG test involves multiple physiological sensors attached to
the body to record several body functions during sleep, i.e., brain wave activi-
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Figure 5.16: Drawing representing event and inter-event duration, as

well as pre-and post-event amplitude (with upward deflection of flow

during inspiration). Image adapted from [Jaimchariyatam 2013].

ties, breathing patterns, heartbeats, blood oxygen levels, body movements, etc
[Wang 2017, Erdenebayar 2017, Lin 2017b]. Despite the apparent feasibility of the
PSG to provide real-time and accurate information about OSAS; it introduces
some limitations, i.e., complexity, invasiveness, time-consuming, excessive cost, high
maintenance, and lack of privacy. As a result, there is an increasing demand from
healthcare communities to look for novel unobtrusive methods that are inexpensive,
non-disruptive, and more widely applied than the standard full polysomnography to
assess and diagnose sleep disorders [Koenig 2008].

Recent alternatives such as ballistocardiography (BCG) can provide unobtrusive
monitoring of physiological signals without the necessity of any wearable sensors
connected to the patient’s body. By way of illustration, a noninvasive analysis of
physiological signals (NAPSTM) system was developed by the Medical Automation
Research Center at the University of Virginia, which can measure physiological and
environmental characteristics in a noninvasive manner [Koenig 2008]. The system
used two resilient force coupling pads placed under the bed sheet of a standard
hospital bed to detect the minute forces produced during cardiac contraction and
relaxation. Moreover, the system could detect body movements from the respiratory
effort and postural changes. Additionally, it could detect environmental changes
such as room temperature or light levels. The system was tested and validated
on 40 healthy subjects in an overnight study. The system provided satisfactory
results compared to the reference electrocardiogram, pulse oximetry, and respiratory
inductance plethysmography [Mack 2002, Mack 2003, Mack 2009].

Few approaches in existing literature are dedicated to unobtrusive OSAS detec-
tion. For example, Mack et al. [Mack 2006] advised to use the NAPSTM system
for unconstrained apnea and arousal detection, the proposed system was validated
using data from forty subjects. Hwang et al. [Hwang 2014] proposed to use a
polyvinylidene-fluoride film sensor placed on top of the mattress for apneic events’
detection in a dataset with thirty-two subjects. Beattie et al. [Beattie 2013] reported
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the use of load cells located below the supports of bed to detect apneic events for
forty-five subjects, where the apneic detection is done manually by an expert. Finally,
Waltisberg et al. [Waltisberg 2017] introduced a sensor with integrated strain gauges
installed below the bed mattress to detect apneic and limb movement events for nine
subjects. An ongoing study between Personal Health Analytics Company Zansors2

and researchers at the University of Michigan, could bring to market the first-ever
low-priced, US Food and Drug Administration (FDA)–approved over-the-counter
sleep apnea sensor for in-home use next year. The small, wireless wearable patch
detects sleep breathing patterns using microphone and accelerometer data. The
rechargeable battery-powered device transmits the data to the patient’s smart-phone
via Bluetooth. It will be distributed for about $70 to $150. The company aims at
targeting 2018 for market availability [Jennifer 2017].

Figure 5.17: Sleep apnea sensor proposed by Zansors, LLC. Image

adapted from [Jennifer 2017]

PSG was used to assess the performance of aforementioned methods to identify
apneic events, and it is worth mentioning that a fair comparison between different
methods is difficult to make because the BCG’s morphology is highly dependent on
the type of the sensor and its location.

The objective of this study was to present preliminary results of a nonintrusive
vital sign (i.e., heart and respiratory rate) monitoring system for sleep apnea
patients using a microbend fiber-optic sensor (MFOS). In addition, we assessed the
capacity of the proposed system for nonintrusive OSAS detection as compared to
the most commonly used portable monitoring device (ApneaLink, ResMed, San
Diego, California, USA). In the subsequent sections, we discuss the data collection
protocol and the principles of the deployed sensors in Section 5.3.1. Afterward, we
explain the algorithms used to analyze the sleep data in Section 5.3.2.

2https://www.zansors.com/
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Figure 5.18: The positioning of the optical fiber mat on the operating

room table.

5.3.1 Experimental Setup and Data Collection

The primary objective of the current study was to examine the accuracy of a single
mat integrated with MFOS for unobtrusive vital signs monitoring such as heart
and respiratory rates, while the secondary purpose was to examine its performance
for unobtrusive detection of apneic events against a home sleep apnea device, i.e.,
ApneaLink. The National Healthcare Group (NHG) Domain Specific Review Board
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(NHG DSRB Ref: 2016/00553) has approved the study and informed consent
forms were obtained from the patients before data collection. All the procedures
were implemented in agreement with the guidelines and regulations of the NHG
DSRB. After informed consent, we recruited twelve patients suspected to have OSAS
scheduled to undergo drug-induced sleep endoscopy in the operating theatre of Khoo
Teck Puat Hospital. Only ten patients completed the study with complete data.
Table 5.2 shows patients’ demographic information and sleep apnea severity.

Table 5.2: Patients’ demographic information.

Patient
No.

Gender Severity AHI† BMI‡

(kg m-2)
Age

(years)

1 Male mild 11 26.72 40
2 Female mild 5 28.75 37
3 Male mild 8 25.39 35
4 Male mild 10 30 42
5 Male severe 51 32.86 46
6 Male severe 77 29.38 56
7 Male severe 25 28.65 49
8 Male severe 72 26.81 35
9 Male severe 51 26.03 42
10 Male severe 67 34.74 32

Overall∗ 28.65 ± 3.17 41.40 ± 7.34

† AHI: Apnea-hypopnea index
‡ BMI: Body mass index
∗ Overall values are described as mean ± standard deviation.

Data was continuously collected during and after a drug-induced sleep endoscopy
procedure. Patients were placed in a supine position on the operating table under
propofol-induced moderate to deep sedation under processed electroencephalogram
bispectral index monitoring guidance for about 30 minutes. Then they were trans-
ferred to a recovery room for about 90 minutes. For each patient, we collected sleep
data using our proposed sensor and the ApneaLink device.

The fundamental principle of the proposed sensor was discussed in Section 4.2.1.
In this clinical deployment, the mat processing unit operated on battery power, with
a sampling frequency of 50Hz. It had a 16-bit ADC (internal memory storage is 4
GB) which enabled continuous recording when the patients were transferred from
the operating room to the recovery room.

Figure 5.18 and Figure 5.19 show how the optical fiber mat was positioned on
the operating room table approximately below the patient’s chest and stomach. The
second measurement device was a portable device, which measured airflow via a
nasal pressure cannula, respiratory effort through a belt placed around the chest,
heart rate and pulse oximetry using finger pulse sensor and pulse oximeter with
sampling frequencies of 100, 10, 1 and 1Hz respectively. It was battery powered
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Figure 5.19: Real deployment of the MFOS mat in the operating theatre

of Khoo Teck Puat Hospital.

by 16-bit ADC and 15MB internal storage. The apnea-hypopnea index (AHI), i.e.,
the mean number of all apnea classes (unclassified, central, mixed, obstructive) and
hypopneas per hour in the evaluation period was used in the analysis for our study,
while the default parameters of the ApneaLink device for apneas and hypopneas were
used. The device is highly sensitive and specific in estimating AHI against the in-lab
PSG. “An apnea was identified as a decrease in airflow by 80% of baseline for at least

10 seconds. The ApneaLink default maximum apnea duration was set at 80 seconds.

A hypopnea was identified as a decrease in airflow by 50% of baseline for at least 10

seconds. The ApneaLink default maximum hypopnea duration was set at 100 seconds”
[Erman 2007, Chen 2009a, Ng 2009, Crowley 2013, Chan 2014, Araújo 2018]. The
ApneaLink results were also manually scored by a medical expert to avoid any short
evaluation period. In addition, they were stored in EDF format, while keeping the
patient’s data anonymized for further analysis with the proposed method. Figure 5.20
shows the system components and operation of the ApneaLink device.

5.3.2 Data Processing

The raw data was stored in 5-minute chunks on a Micro SD-Card embedded in
the processing unit. Then all data-files were sent to a personal computer for data
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1- ApneaLink/ApneaLink Plus device recorder

2- E✁ort sensor (ApneaLink Plus only)

3- Belt (Single or multi-use)

4- ApneaLink nasal cannula

5- Pulse oximeter with ✂nger pulse sensor

6- USB cable

7- Computer with ApneaLink/ApneaLink Plus software installed

Figure 5.20: System components and operation of ApneaLink device

(ApneaLink, ResMed, San Diego, California, USA).

processing. In general, three signals can be extracted from the raw data including
body movement, heartbeat, and respiration. One of the biggest challenges of
unobtrusive sensing is the body movement. Although it plays a vital role in sleep
stage estimation [Watanabe 2004, Kortelainen 2010, Shin 2010, Lin 2017a], it has
an unfavorable impact on the quality of physiological signals. As a result, the first
step in our analysis was to identify and remove the body movement as explained
in Algorithm 1. After that, BCG and respiratory signals were extracted from the
bandpass filtered data. At last, apneic and non-apneic events were detected based
on the respiratory signal. Figure 5.21 presents the overall flowchart of the suggested
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system. To reach our goal, three different states were recognized for each 5-minutes
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Figure 5.21: Overall system flowchart; BM: Body Movement, HR: Heart

Rate, and RR: Respiratory Rate.

recording, i.e., body movements, no activity, and sleep as provided by Algorithm 1.
The BCG (2nd row of Figure 5.24) and respiratory (3rd row of Figure 5.24) signals
were extracted from the sleep data (1st row of Figure 5.24) using a Chebyshev
type I bandpass filter. The lower and upper cutoff frequencies of the filters were
(a lower pass-band frequency of 2.5Hz, an upper pass-band frequency of 5Hz, and
a pass-band ripple frequency 0.5dB) and (a lower pass-band frequency of 0.01Hz,
an upper pass-band frequency of 0.4Hz, and a pass-band ripple frequency 0.5dB)
respectively.

The maximal overlap discrete wavelet transform with the multiresolution analysis
Section 5.2.3.5 was implemented for the heart rate (HR) estimation [Sadek 2017a].
The BCG signal was cut up into approximation and detail information by passing
through low-pass and high-pass filters, respectively without subsampling the filter
coefficients. The wavelet bi-orthogonal 3.9 (bior3.9) basis function with level 4 was
adopted for the decomposition process. The 4th level smooth coefficient (second
row of Figure 5.24) was selected to measure the HR because the periodicity of the
maxima showed an agreement with heart cycles. On the other hand, three steps
were applied to the respiratory signal to measure the respiratory rate (RR). First,
second, and third, the nonlinear trend was eliminated by subtracting a 3rd order
polynomial fit, the detrended signal was filtered using a Savitzky-Golay smoothing
filter (window length of 11 and polynomial order of 3), and a simple peak detector
was utilized to detect the respiratory peaks. The local maxima of the respiratory
signal were used for RR measurement, where the RR value at the time tn, at which
the nth maximum occurred, was defined as follows:

RRn =
60

tn − tn−1
(5.22)

where tn is the time at nth local maxima and tn−1 is the time at (n − 1)th local
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Figure 5.22: An example of a 10-second body movement signal for patient

No. 4.

maxima in the respiratory signal. In which, the RR is expressed as breaths per
minute (BPM).

The sleep apnea was identified using an adaptive threshold method based on
the SD of the respiratory signal. For each patient, the respiratory signal was
divided into 30 seconds’ consecutive epochs, i.e., W 30

i = {W 30
1 , W 30

2 , . . . , W 30
N }.

Then, every 30-second period was further divided into three 10 seconds’ periods,
i.e., W 30

j = {w10
1 , w10

2 , w10
3 }. For every 30-second epoch, if the SD of a 10-second

epoch (W 10
k ) was less than 30% of the maximum SD of the three 10-second epochs,

the current epoch was considered as an apneic event. Otherwise, it was considered
as a non-apneic event [Sadek 2018a]. The threshold was selected based on the
mean performance evaluation of all patients for apneic event detection. We selected
Cohen’s Kappa coefficient as a mean performance [Hwang 2014] because it is thought
to be a robust tool to evaluate the agreement between two raters.

In the previous two sections (Sections 5.2 and 5.3), we have demonstrated how
our system was validated in health and wellness environment as well as the clinical
environment. In the next section (Section 5.4), we explain how we implemented our
sleep monitoring system in real-life environments.
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Figure 5.23: An example of a 10-second sleep signal for patient No. 4.

5.4 Real-life Deployment

We have successfully deployed our sleep monitoring system in thirteen homes with
mainly senior residents for more than six months. Nevertheless, in this research,
we concentrated on a one-month deployment with three senior residents as follows.
The proposed system was deployed for 30 days in a home-based living situation and
sleep data was collected from 3 senior female residents (68, 69 and 65 years old) in
real-time using our MFOS sleep mat. To make the residents feel more comfortable,
the optical fiber mat was hidden beneath the bed mattress so that they can sleep as
normal while being monitored closely. One of the residents did not like to sleep in
the bed, whereas she preferred sleeping on the floor. Thus, we placed the mat under
the sleeping rug. The sleep data was stored in 5-minute chunks on a Micro-SD card
installed in the processing unit, then it was sent to a cloud-based server for a deeper
processing to extract the quantity of sleep in addition to heart and respiratory rates.

In our study, we determined the residents’ sleep quality based on the duration
of sleep (total sleep time), sleep interruptions (bed movements, bed exit), vital
signs (heart rate, respiratory rate, and body movements). Figure 5.25 summarizes
a deployment of the presented system in user’s home. In the ensuing sections,
we explain the data collection protocol Section 5.4.1. Thereafter, we discuss the
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Figure 5.24: The first, second, and third rows represent a typical 10-

second time-window of the raw signal, the BCG signal along with the

4th wavelet smooth coefficient, and the respiratory signal respectively;

amplitude values were normalized between -1 and 1.

algorithms used to analyze the sleep data in Section 5.4.2.

5.4.1 Data Collection

The proposed solution was deployed in real conditions for 30 days in order to validate
our approach. During the deployment in participants’ homes, our system recorded
data, and they were post-processed and evaluated. The objective of this validation
was to study the reliability of the sleep monitoring and the performance of the entire
system in a distant real deployment. At the same time, this deployment allowed us
to validate the inter-connectivity of different sensors, the communication between
the gateway and the server, and presentation of results in real time.

The sleep signals were continuously acquired from three HDB3 flats with elderly
female residents, where the MFOS sleep mat shown in Figure 4.1 was placed under

3 http://www.hdb.gov.sg Housing & Development Board is a Singaporean governmental orga-

nization responsible for public housing, on their website, HDB claims: "HDB flats are home to over

80% of Singapore’s resident population"
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Figure 5.25: Overview of our unobtrusive monitoring in a living space.

the bed mattress. However, one of the residents prefers to sleep on the floor thus
the sleep mat was placed under the sleeping rug (bamboo sleeping mat). Prior to
data collection, written informed consent was thought from all residents involved in
the study. In addition, a survey was obtained from the residents to summarize their
living situation, sleeping and waking-up time, and napping time. We used the survey
(Table 5.3) as a reference to validate the capability of the proposed system to detect
different sleep patterns. Figure 5.26 (a), (b), (c) show the sleep mat deployment in
the three HDB apartments.

5.4.2 Data Processing

In our real-life deployment, vital signs and sleep parameters, i.e., waking-up time,
sleeping time, sleep interruptions, and total sleep time were computed based on
Section 5.3.2. However, we implemented a moving time window (wi) of 30-second
length to get information about sleep, movement, and bed-empty events. Moreover,
it should be mentioned that during the deployment, the residents were living as
normal without any constraints, i.e., they could sleep on the bed at any time they
prefer. Figure 5.27 shows a representation of a participant’s night from our real-life
deployment. As mentioned previously in Chapter 4, the sleep monitoring system
was being deployed along with other sensors such as motion and contact sensors, and
therefore we can predict the activities of daily living of the residents and to provide
rich services in the right context through appropriate channels. Typically, motion
sensors are installed in the lounge, living room, kitchen, and bathroom. Whereas,
contact sensors can be attached to main door, fridges, and kitchen drawers.
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Table 5.3: Home situation and sleep habits of each resident.

Home Situation Sleeping Time Waking-up Time Napping Time

Res1 Alone 23 : 00 − 00 : 00

07:00
Sometimes
at 05 : 30

1 − 2 times
13 : 00 − 15 : 00

30 − 60 min

Res2 Family 21 : 00 − 23 : 00

07 : 00

Wednesday
at 04 : 00

N/A

Res3 Family
18 : 30 − 19 : 30

Sometimes
at 22 : 00

02 : 30

2 − 3 times
13 : 00 − 15 : 00

30 min

• According to the residents, the reported time is approximate.
• Residents do not report chronic diseases or disabilities.
• Resident No. 1 sleeps on the floor, resident No. 2 sleeps in a double bed.
However, she always sleeps on one side of the bed, and resident No. 3 sleeps in
a single bed.

(a) (b) (c)

Figure 5.26: Sleep mat integration at the three HDB apartments; (a) 1st

home with mat under sleeping rug, (b) 2nd home with mat under bed

mattress, (c) 3rd home with mat under bed mattress.

5.5 Conclusion

This chapter discusses the two different applications we have implemented to evaluate
our non-obstructive vital signs monitoring system. The first application aimed at
measuring heart rate in a sitting position using data collected from 50 individuals
during a massage session. This application simulated real-life deployment because of
the movement of the chair, as well as the movement of the body. These movements
had a strong impact on the quality of the signal, and therefore the proposed quality
data processing can be evaluated properly. Other than that, the second application
aimed at validating the proposed system for unobtrusive vital signs monitoring as
well as unobtrusive sleep apnea detection. In this application, the data was collected
from 10 patients in a clinical setting during a drug-induced sleep endoscopy. In
conclusion, the data quality processing algorithm, which is based on the signal’s
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variance removes non-informative signals, i.e., motion artifacts and no-activity
segments. Subsequently, the multiresolution analysis of the MODWT can be applied
to detect heart cycles. Furthermore, the respiratory cycles can also be detected
after removing the nonlinear trend in the band-pass filtered signal. Then, the
local peaks of the respiratory signal can be utilized to measure the respiratory
rate. Additionally, the system has been evaluated for unobtrusive monitoring of
sleep-disordered breathing, in particular, obstructive sleep apnea. At last, we have
described our real-life deployment and how the sleep data was collected for several
nights from three senior residents in a home-based situation. The next section will
discuss in detail the results achieved in each of aforementioned applications.

Mon 29 Aug 18:00 Mon 29 Aug 21:00 Tue 30 Aug 00:00 Tue 30 Aug 03:00 Tue 30 Aug 06:00 T

no motion
in bedroom

sleep

bed motion

bed empty

bedroom
activity

survey

B

M

S

sleepbed motionbed empty

Figure 5.27: Representation of a participant’s night from our real-life

deployment. Three typical signal shapes are labeled according to rec-

ognized conditions: bed empty, bed motion, sleep. Gantt diagram: Row

“B” is the result of the signal processing from the bed sensor. Row “M”

shows a very inaccurate detection using motion sensors (blank space indi-

cates activity detection in other rooms out of scope). Row “S” indicates

the participant’s answer in the survey Table 5.3 about their waking and

sleeping habits.
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6.1 Introduction

This chapter discusses thoroughly the results of our two validation procedures, i.e.,
health and wellness application (Section 5.2) besides clinical application (Section 5.3).
In the former, we explain how the heart rate estimation is enhanced by implementing
the classification process. In addition, we provide a comparative study of various
methods to measure the heart rate. These methods include Complete Ensemble
EMD with Adaptive Noise (CEEMDAN) algorithm, the multiresolution analysis of
the MODWT, fast Fourier transform (FFT), cepstrum, and autocorrelation approach.
In the latter, we present the suitability of the proposed sleep monitoring system for
unobtrusive vital signs monitoring in a clinical setting. The chapter also provides in
detail the results of our real-life deployment (Section 5.4) in three users’ homes in
one month’s time.

6.2 Results of Health and Wellness Application

As we deliberated before in Section 5.2.3.2, the goal was to use a cross-dataset
testing in which Group1 was to be used as a training set while Group2 as a test
set and vice versa. Therefore, the selected classifier should be able to correctly
classify the data of Group2 based on Group1 and the other way around. Following
the 10-fold cross-validation of each group, the optimal parameters of the classifiers
were identified, and the mean accuracy of each classifier was determined. In general,
the cross-validation is an approach to assess predictive models by subdividing the
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initial sample into a training set to train the model, and a test set to assess it. More
precisely, in 10-fold cross-validation, the initial sample is randomly subdivided into
10 equal size sub-samples. Of the 10 sub-samples, a single sub-sample is maintained
as the validation data for testing the model, and the remaining 9 sub-samples are
implemented as training data. The cross-validation process is thus repeated 10
times, i.e., the folds, with each of the 10 sub-samples applied exactly once as the
validation data. The 10 results from the folds can thus be averaged to provide an
individual estimation. The added-value of this approach is that all measurements
are employed for both training and validation, and each measurement is adopted for
validation exactly once.

Table 6.1 presents the mean accuracy of the 10-fold cross validation for each
classifier. For random forest classifier (RF), the optimal number of trees or a.k.a.,
ntree was 50 trees. For support vector machine (SVM), the radial basis function
kernel (RBF) provided better results than other kernel functions. For feedforward
neural network (NN), the number of hidden layers was 50 layers.

Table 6.1: 10-fold cross validation mean accuracy for Group1 and

Group2, (RF: ntrees = 50, SVM: RBF kernel, NN: 50 hidden neuron).

RF SVM NN LDA DT
Group1 98.13% 93.38% 91.61% 89.26% 97.51%
Group2 92.30% 90.49% 85.89% 79.37% 89.39%

In both groups mentioned above, random forest classifier showed superior per-
formance over the other classifiers with a mean accuracy of 98.13% and 92.30% for
Group1 and Group2 respectively. Using the same classifier, comparable results were
achieved when Group2 was tested versus Group1 and the other way around with an
accuracy of 90.75% and 97.99% for Experiment1 and Experiment2 accordingly as
presented in Table 6.2.

Table 6.3 shows the confusion matrix of random forest for Experiment2. Moreover,
it can be included that the percentage of recovered informative data was 57.37%,
which can be calculated as follows. Percentage = (1270 + 813)/(2085 + 1546).
Decision tree and support vector machine classifiers attained relatively similar
results to the random forest with accuracy results of (88.10% & 97.41%) and (84.54%
& 97.46%) for Experiment1 and Experiment2, respectively.

Table 6.2: Accuracy results for testing Group2 Vs. Group1 (Experi-

ment1) and testing Group1 Vs. Group2 (Experiment2).

RF SVM NN LDA DT
Experiment1 90.75% 84.54% 82.34% 73.29% 88.1%
Experiment2 97.99% 97.46% 87.10% 90.26% 97.41%
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Table 6.3: Confusion Matrix of random forest classifier for testing

Group1 Vs. Group2 (Experiment2).

Actual

Informative Non-Informative

Predicted
Informative 1270 26

Non-Informative 18 771

On the other hand, the CEEMDAN algorithm (Section 5.2.3.3) was applied to
BCG signals following a noise standard deviation of 0.35, an ensemble size of 100,
and a maximum number of iterations of 30 to obtain interbeat intervals. Referring to
the amplitude of the added noise, Wu and Huang [Wu 2009b] recommended to apply
small amplitude values for data influenced by high-frequency signals, and likewise. In
addition, a smaller ensemble size can be employed. This is because the CEEMDAN
adds a specific noise at each stage and produces a complete decomposition with
no reconstruction error [Colominas 2012]. Furthermore, a balance between the
amplitude of the added noise and the ensemble size should be considered. This is
due to the fact that, if the added noise amplitude is too small, therefore it may
not produce the change of extrema that the EMD depends on. Nevertheless, by
increasing the ensemble size, the effect of the added white noise will always be
able to be reduced to a minimally small level [Wu 2009b]. For ECG and BCG
segments, the heart rate was estimated in beats per minute (BPM). Additionally,
the mean absolute error (MAE) was implemented to evaluate the performance of
the CEEMDAN algorithm for heart rate estimation with respect to the reference
ECG. The MAE (Equation (6.1)), as the name suggests is the mean of the absolute
errors, in which the absolute error is the absolute value of the difference between
the forecasted value and the actual value.

MAE =

∑n
i=1 |Ri − Mi|

n
, (6.1)

where M , R, and n refer to measured data, reference data, and number of samples.

Table 6.4: The MAE for Group1 and Group2 before and after classifica-

tion regarding the average beats per minute.

MAE (before) MAE (after)

Group1 11.16 7.26
Group2 15.24 9.68
Average 13.2 8.47

In order to estimate the effectiveness of the quality processing system, the HR
was estimated before and after applying the classification process. From Table 6.4,
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it can be noted that, the MAE was largely reduced from (G1: 11.16 and G2:
15.24) to (G1: 7.26 and G2: 9.68) after the classification process. As a result, the
quality processing system can effectively increase robustness of the system for vital
signs monitoring. Figure 6.1 shows the Bland-Altman plot between the reference
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Figure 6.1: Bland-Altman plot between the reference ECG-derived

heartbeat intervals to associated BCG-derived heartbeat intervals for

Group1.

ECG-derived heartbeat intervals to associated BCG-derived heartbeat intervals
for Group1. The limit of agreement was [−18.82, 16.89] beats/minute (standard
deviation σ = 9.11 beats/minute). Figure 6.2 shows the Bland-Altman plot between
the reference ECG-derived heartbeat intervals to associated BCG-derived heartbeat
intervals for Group2. The limit of agreement was [−25.2, 18.99] beats/minute
(standard deviation σ = 11.27 beats/minute). There were a few reasons, which
might have increased measurement deviation between the reference ECG and the
proposed device as follows. During the massage session, ECG electrodes might
not have been attached correctly to the subject’s body. As a result, incorrect
synchronization between both signals has occurred [Hoog Antink 2018]. Although
the microbend fiber-optic sensor can detect the heart rate from various locations
such as under the head; under the chest; under chest and abdomen; and under
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Figure 6.2: Bland-Altman plot between the reference ECG-derived

heartbeat intervals to associated BCG-derived heartbeat intervals for

Group2.

hips, the most accurate location for unobtrusive heart rate measurement is under
the chest and abdomen [Sadek 2015]. Another reason is that the BCG signal does
not display consistent J-peaks, and therefore cardiac peaks might not have been
detected correctly. In other words, the BCG signal is not uniform within and across
subjects [Sadek 2017a].

Since our ultimate goal is to implement the proposed device under real-life
conditions, sensor data should be processed in a small-time period (or near real-
time). As a result, the CEEMDAN algorithm was not a suitable choice for our
data processing. The aforementioned algorithm is faster than the ensemble EMD.
Nevertheless, it is still a time-consuming process. Besides, the manual labeling
of training data should be replaced by an automated data quality processing. In
what follows, we explain the results of implementing the automated data quality
processing as well as the wavelet analysis (Section 5.2.3.5) to the same datasets.
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6.2.1 Wavelet Analysis Versus CEEMDAN Algorithm

As we mentioned in Section 5.2.3.4, the variance of the data was utilized to classify
every 10-second time window into body movement, unoccupied, or sleep signal. For
body movement signals, the magnitude of the pressure force was large enough to
destroy any vital information. In other words, retrieval of any vital information was
impossible. For unoccupied signals, the amplitude of the signal was always lower
than a predetermined value, i.e., there was no any pressure force applied to the
optical sensor mat. At last, for sleep signals, there was a uniform pressure applied
to the optical sensor mat, i.e., the force applied to the mat is originated from the
cardiac circulation as well as the movement of other body organs. Subsequently,
for each subject, we first applied the automated data quality processing to exclude
body movements and unoccupied events. Afterward, we implemented the wavelet
analysis to detect the heart rate.

Table 6.5: The mean and standard deviation (SD) of the MAE for

MODWT and CEEMDAN regarding the average beats per minute across

all 50 subjects.

CEEMDAN db1 sym2 coif1 bior3.9 rbio3.1
Mean 9.4 12.64 14.11 14.17 10.12 10.13
SD 6.16 6.36 7.4 7.42 4.69 4.79

In order to achieve satisfactory results, several different families of wavelets have
been evaluated such as Daubechies, Symlet, Coiflets, Biorthogonal, and Reverse
Biorthogonal. Since every wavelet family has different numbers of vanishing mo-
ments, for our analysis we selected the vanishing moment yielding the lowest mean
absolute error. We used Daubechies-1 (db1), Symlet-2 (sym2), Coiflets-1 (coif1),
Biorthogonal-3.1 (bior3.9), and Reverse Biorthogonal-3.1 (rbio3.1) bases with 4-level
decomposition. For each wavelet, the 4th level smooth coefficient was selected for
heart rate measurement. This was because the periodicity of the local maxima
presented an agreement with cardiac cycles.

As we can see in Table 6.5, the Biorthogonal-3.9 basis function produced the
lowest MAE (10.12 ± 4.69) among other wavelet basis functions. The Reverse
Biorthogonal-3.1 achieved proportional results to Biorthogonal-3.9 basis function
(10.13 ± 4.79). The Daubechies-1, Symlet-2, and Coiflets-1 achieved higher error
rates such as 12.64 ± 6.36, 14.11 ± 7.4, and 14.17 ± 7.42, respectively. Figure 6.3
shows the box plots of the average MAE for CEEMDAN algorithm and wavelet
methods regarding the average beats per minute across all 50 subjects. We can also
see that, the CEEMDAN algorithm achieved slightly better results (9.4 ± 6.16) than
the best wavelet, i.e., Biorthogonal-3.9. However, this algorithm is time consuming
compared with wavelet transform (Section 4.2.2). To explain, the run-time of a
10-second signal was approximately 20 seconds and 0.04 seconds for CEEMDAN
and wavelet transform, receptively. This happened when the algorithm was tested
on a Windows-based laptop computer with Intel Core i5-4200U, 2.4GHz CPU clock
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Figure 6.3: Box plots of the average MAE for CEEMDAN algorithm

and wavelet methods regarding the average beats per minute across all

50 subjects.

and 6GB of RAM. As a result, the wavelet analysis was more suitable for our
real-time applications. In many situations, the MODWT was able to handle the
motion artifacts originated during the massage session. As shown in Figure 6.4, the
algorithm managed to detect all the corresponding J-Peaks in the noisy BCG signal.

So far, we have shown the superiority of the wavelet analysis over the CEEMDAN
algorithm considering real-time data processing. Next, we compared the best wavelet,
i.e., Biorthogonal-3.9 with FFT, cepstrum, and autocorrelation methods. In these
three methods, the heart rate was computed using a sliding time-window of a
length 10-seconds (i.e., 500 samples) with 50% overlap between consecutive windows.
After detecting the heartbeat interval (HBI) in each window, the heart rate was
computed such as HR = 60 ∗ HBI. As we can see from Table 6.6 and Figure 6.5,

Table 6.6: The mean and standard deviation (SD) of the MAE for best

wavelet, FFT, cepstrum, and autocorrelation methods considering the

average beats per minute across all 50 subjects.

FFT Cepstrum Autocorrelation bior3.9
Average 29.99 58.36 76.54 10.12

SD 12.21 8.08 22.58 4.69
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Figure 6.4: BCG signal with the 4th level smooth coefficient during a

massage session (sampling frequency: 50Hz).

there is a major difference between the reference ECG and the proposed device
when we implemented the frequency analysis and autocorrelation function for heart
rate estimation. The error of the average beats per minutes obtained by FFT,
cepstrum, and autocorrelation was 29.99 ± 12.21, 58.36 ± 8.08, and 76.54 ± 22.58,
respectively. We can also see that the best wavelet (Biorthogonal-3.9) performed
much better results (10.12 ± 4.69) than others. Hence, we can conclude that the
wavelet analysis is better suited than the Fourier analysis for analyzing the optical
fiber data. This happened because wavelets are localized in both the time and
frequency. Furthermore, the adaptive time-frequency resolution of wavelet signal
processing allowed us to perform multiresolution analysis on ballistocardiogram
signals. On the other hand, the frequency analysis did not provide better results due
to the nonstationary characteristics of ballistocardiogram signals, whose spectral
content varies over time. For the rest of this chapter, we will employ the wavelet
analysis using Biorthogonal-3.9 as a basis function to compute the heart rate. The
next section will provide and discuss the results of our clinical validation study.
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Figure 6.5: Box plots of the average MAE for best wavelet, FFT, cep-

strum, and autocorrelation methods regarding the average beats per

minute across all 50 subjects.

6.3 Results of Clinical Application

In this section, we explain the effectiveness of the optical fiber mat for unobtrusive
vital signs monitoring, i.e., heart rate and breathing rate as well as for unobtrusive
monitoring of sleep apnea during a drug-induced sleep endoscopy study.

6.3.1 Heart and Respiratory Rate Estimation

The reference HR and RR were obtained from the ApneaLink finger pulse sensor
and chest belt, respectively. The mean HR was estimated in beat per minute
(beats/minute) using a 10-second time window, whereas the mean RR was computed
in breath per minute (breaths/minute) using a 10-second time window. To measure
the performance of the introduced algorithms for HR and RR estimation, we used
the mean absolute error (MAE). The Bland-Altman plot [Bland 1990], as well as
the Pearson correlation coefficient, were also used to check the agreement between
the reference and estimated values. The MAE for the mean beats per minute and
the mean breaths per minute of all ten patients is listed in Table 6.7 and Table 6.8
respectively. Averaged across the ten patients, the MAE error was 0.55 ± 0.59

beats/minute and 0.38 ± 0.32 breaths/minute for the mean HR and mean RR
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Table 6.7: The mean absolute error of all 10 pa-

tients for the average beats per minute computed

during the entire study.

Patient # Mean HR (beats/minute)

ApneaLink MFOS Mat Absolute Error
1 70.67 70.87 0.2
2 81.43 81.5 0.07
3 79.35 79.6 0.25
4 77.32 77.83 0.51
5 70.22 72.34 2.12
6 72.52 72.41 0.11
7 66.72 67.4 0.68
8 72.84 72.49 0.35
9 71.09 71.6 0.51
10 90.57 89.95 0.62

Overall∗ 0.55 ± 0.59

∗ Overall values are described as mean ± standard deviation.

Table 6.8: The mean absolute error of all 10 pa-

tients for the average breaths per minute com-

puted during the entire study.

Patient # Mean RR (breaths/minute)

ApneaLink MFOS Mat Absolute Error
1 15.05 14.85 0.2
2 19.47 19.63 0.16
3 16.66 17.59 0.93
4 17.38 17.96 0.58
5 18.98 19.06 0.08
6 19 18.57 0.43
7 20.42 20.21 0.21
8 19.52 20.38 0.86
9 17.44 17.72 0.28
10 20.02 20.07 0.05

Overall∗ 0.38 ± 0.32

∗ Overall values are described as mean ± standard deviation.
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respectively. Figure 6.6(a) and Figure 6.6(b) show the Bland-Altman plot and the
Pearson correlation plot of the HR between the two methods. The limit of agreement
was [−5.12, 4.92] beats/minute (standard deviation σ = 3.07 beats/minute). The
Pearson correlation coefficient was 0.96.

In the same manner, Figure 6.7(a) and Figure 6.7(b) give the Bland-Altman
plot and the Pearson correlation plot of the RR between the two methods. The
limit of agreement was [−5.13, 4.98] breaths/minute (standard deviation σ = 2.56

breaths/minute). The Pearson correlation coefficient was 0.78. In conclusion, the
system achieved very close results to the ApneaLink device (finger pulse sensor and
respiratory belt). The average error was very small for both vital signs as shown in
the overall results of Table 6.7 and Table 6.8. Furthermore, the agreement between
the reference ApneaLink and the sleeping mat was assessed using the Bland-Altman
plot and the Pearson correlation coefficient, which revealed a very good agreement
for both vital signs.

Broadly speaking, the estimation of the respiratory rate for normal subjects
was easier than the heart rate. This is because the amplitude of the dominant
J-peak (equivalent to the R-peak of the electrocardiogram signal) of the BCG signal
was not uniform throughout the entire signal. However, for sleep apnea patients,
the estimation of respiratory rate was very challenging. This is because, for sleep
apnea patients, the morphology of the respiratory signal varies quite a lot during
time due to the absence or decrease of breathing that makes the respiratory rate
difficult to compute. As shown in Figure 6.8, all the J-peaks of the BCG signal
(1st row) can be easily detected. However, the respiratory cycles (inhalations and
exhalations) are difficult to detect from the signal (2nd row). Thereafter, sometimes
the respiratory peaks may not be detected correctly. It also can be noted that the
Pearson correlation coefficient was 0.96 (Figure 6.6(b)) for heart rate estimation,
while the value was 0.79 (Figure 6.7(b)) for respiratory rate estimation.

6.3.2 Sleep Apnea Event Detection

We correlated the AHI provided by the ApneaLink device (flow signal) with the
AHI obtained from the optical fiber mat. The AHI derived from both systems was
depending on the total time of the study. The severity of the apnea was graded
based on the AHI value, i.e., mild (5 ≤ AHI < 15), moderate (15 ≤ AHI < 30),
severe (AHI ≥ 30). The sensitivity and specificity were employed to appraise the
performance of the sleeping mat against the ApneaLink device. In this research, the
sensitivity represented the proportion of correctly identified apnea events, whereas
the specificity represented the proportion of correctly identified non-apnea events.
The results of the sleep apnea detection algorithm are presented in Table 6.9. The
statistical values were computed based on the severity of the apnea at 30% threshold
value. The sensitivity and specificity were 24.24 ± 12.81%, 85.88 ± 6.01% for
sleep apnea detection. The source code of the proposed methodology, in Python, is
available at [Sadek 2018b]. In summation, the reference ApneaLink device measures
the sleep apnea using the flow signal through a nasal cannula, which may not be
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Figure 6.6: (a) Bland-Altman plot and (b) Pearson correlation plot of

all patients regarding the HR measurement.
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Figure 6.7: (a) Bland-Altman plot and (b) Pearson correlation plot of

all patients regarding the RR measurement.
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Table 6.9: Sensitivity and specificity of sleep apnea detec-

tion

Patient
No.

AHI Statistics (%)

ApneaLink MFOS Mat Sensitivity Specificity
1 11 42 34.76 93.79
2 5 32 12.79 92.72
3 8 8 11.63 95.25
4 10 90 24.37 77.13
5 51 15 24.37 85.14
6 77 10 14.29 89.29
7 25 30 24.24 81.83
8 72 46 21.36 82.08
9 51 98 57.20 80.32
10 67 64 17.45 81.19

Overall∗ 24.24 ± 12.81 85.88 ± 6.01

∗ Overall values are described as mean ± standard deviation.

an appropriate choice for some groups of people. On the contrary, the proposed
optical fiber mat can be integrated into different ambient assisted living locations
such as beds, cushions, chairs, etc. In order to appraise the capacity of the mat for
sleep apnea detection, we grouped the patient based on the AHI severity, as listed
in Table 5.2. In general, the system provided very low sensitivity and relatively high
specificity as shown in overall results of Table 6.9.

The measured sensitivity was very low compared to the measured specificity
because of a number of reasons that can be explained as follows. First, motion
artifacts originated due to the body movements were extremely high, which is
a normal behavior for sleep apnea patients. Second, for hypopnea events, the
amplitude of the respiratory signal was very similar to the normal events. Third, for
central apnea events, there were no any respiratory efforts, which was very difficult
for the mat to detect. In addition to above-mentioned reasons, there were other
limitations, which have to be considered for the nonintrusive apnea detection. To
start with, the small sample size, i.e., 10 patients and the short sleep time might
have a negative effect on the measured statistics. Moreover, even though ApneaLink
is a reasonable test in clinical settings, it still has lower sensitivity than a PSG. For
more accurate results, the analysis should be performed in a natural sleep state with
the PSG as a gold standard comparison. In which, we can infer that the microbend
fiber-optic sensor in the current study was not sensitive enough to discriminate
between shallow breathing and no breathing.

In order to overcome the shortcomings of the current study, we are now in the
process of recruiting new patients for overnight PSG study. Up to now, we have
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Figure 6.8: The first and second rows represent a 10-second time window

of the BCG signal and the respiratory signal for patient No. 4.

shown the efficacy of the proposed system for unobtrusive nocturnal monitoring of
vital signs, in which we validated our system in two different scenarios. Next, we
introduce and discuss the results of our real-life deployment.

6.4 Results of Real-life Deployment

As we discussed in Section 5.4.1, prior to data collection, written informed consent
was obtained from all residents involved in the study. In addition, a survey was
collected from the residents to summarize their living situation, sleeping and waking-
up time, and nap time. We used the survey (Table 5.3) as a reference to validate the
capability of the proposed system to detect the different sleep patterns of the three
residents. We constructed a modified Bland-Altman plot for the sleep parameters in
order to measure how the proposed approach matches with the users’ survey. The
idea was to define three limits, i.e., a mean, an upper limit of agreement (LOA),
and a lower limit of agreement (LOA) as follows.

1. The first limit was the mean of the measurement of interest, for example,
waking-up time, sleeping time, and total time of sleep.
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2. The second limit was computed as follows:

mean[measurement] + 2 × SD[measurement]. (6.2)

3. The third limit was computed as follows:

mean[measurement] − 2 × SD[measurement]. (6.3)

By doing that, we can search for systematic bias or mean and also identify any
possible outliers outside the two limits of agreements. To go into detail, as we can
see in Figure 6.9, on most occasions, resident No. 2 wakes up around 07 : 15 with
an upper LOA of 09 : 45 and a lower LOA of 04 : 52. However, on Wednesday the
resident wakes up around 04 : 30. These results agree with the user’s survey because
she usually wakes up around 07 : 00. Nevertheless, on Wednesday she wakes up
around 04 : 00.

20
16
-08

-22

20
16
-08

-29

20
16
-09

-05

20
16
-09

-12

20
16
-09

-19

20
16
-09

-26

Dates

04:10:00

04:51:40

05:33:20

06:15:00

06:56:40

07:38:20

08:20:00

09:01:40

09:43:20

W
a
ke

u
p
T
im

e

04:33:29 04:28:29
04:39:29 04:40:29

04:47:59

04:23:59

Upper LOA = 09:45:49

Lower LOA = 04:52:01

Bias = 07:18:55

Figure 6.9: Bland-Altman plot of waking-up time for resident No. 2;

green bigotimes symbols represent Wednesday.

Another example representing the time of sleep for resident No. 3 is shown in
Figure 6.10 . It may be noted that most of the time the resident sleeps around
18 : 30. On two occasions, the resident went to bed before 14 : 30. This situation
might occur when the resident stays on the bed for the entire day instead of sitting
in a chair to watch television. We can also notice that on two other occasions the
resident went to bed after 22 : 00 which agrees with user’s survey.
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On the other hand, the resident reported having a nap two to three times between
13 : 00 and 15 : 00. This also agrees with our results presented in Table 6.10, in
which the average time of starting the nap is 13 : 34 : 14 and the average time of
ending the nap is 15 : 09 : 59. In addition, the average napping duration is about
one and half hour. The waking-up time for this particular user was very surprising
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Figure 6.10: Bland-Altman plot of sleep time for resident No. 3 over

deployment time.

to us. This was because according to our sleep monitoring system, the resident
used to wake up around 03 : 30, which is very early in the morning (Figure 6.11).
However, when we double checked with the resident, she confirmed the outcome as
she used to practice some religious traditions at this specific time.

Table 6.10: Starting and ending of napping time for resident No. 3.

Days Start Napping Last Napping Difference

8/19/2016 13 : 16 : 29 15 : 42 : 29 2 : 26 : 00

8/22/2016 13 : 52 : 29 15 : 47 : 59 1 : 55 : 30

8/27/2016 12 : 37 : 59 14 : 49 : 29 2 : 11 : 30

8/29/2016 13 : 09 : 29 14 : 40 : 29 1 : 31 : 00

9/5/2016 13 : 40 : 59 14 : 30 : 59 0 : 50 : 00

9/7/2016 14 : 47 : 59 15 : 28 : 29 0 : 40 : 30

Mean 13 : 34 : 14 15 : 09 : 59 1 : 35 : 45
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Figure 6.11: Bland-Altman plot of waking-up time for resident No. 3

over deployment time.

For resident No. 2, we have noticed that her average sleep time is about 12
hours (Figure 6.12), which is longer compared to other residents (9 hours for resident
No. 2 and resident No. 3). The resident preferred to sleep on a sleeping rug
(Figure 5.26(b)) located on the floor, this was because sleeping on the floor was
cooler to her than sleeping on the bed. We advised the resident to change her sleep
hygiene because she spent a lot of the time laying down on the sleeping rug while
watching television.

With respect to vital signals, the BCG signal was utilized to monitor the heart
rate while the respiratory signal was being used to monitor the breathing rate. The
respiratory signal represents the movements of the chest wall and stomach.

To get more accurate results we tried to place the mat approximately near to
the chest and stomach area of the residents. During sleep time, we might adjust
our sleeping positions from one time to another. However, increasing the onsets
of body movements could be an indicator of a sleep disorder such as the periodic
leg movement disorder. Even though body movements reduce the quality of the
measured signal, they are very important to predict the quality of sleep. Besides,
they play a key role in sleep stage estimation. Generally speaking, If the magnitude
of the body movement is small, we still can compute the vitals. However, a large
body movement completely destroys the signal.

As given by Figure 6.15, the average duration of disturbed sleep per night ranges
between 50 to 80 minutes for all deployment days. Further, all points are within the
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Figure 6.12: Bland-Altman plot of total sleep time for the 2nd resident

over deployment time.

two limits of agreements that might indicate a normal behavior for this particular
resident. Since trends in vital signs are key factors to determine critical conditions
for an individual [Churpek 2016], if we notice any large deviation in either heart or
respiratory rate we immediately inform the residents and their caregivers to consult
with a doctor.

As the three residents were not adapted to use the Internet, relatives and
caregivers were given access to a user-friendly web framework Figure 4.4 within the
UbiSMART to follow the sleep patterns of the residents. The framework allows the
caregivers to track the sleep parameters of the residents for days, weeks, etc. To
give some examples, Figure 6.13 shows the distribution of the mean heart rate for
resident No. 3 during the deployment time.

The data in Figure 6.13 indicates that the mean heart rate for that resident
was almost uniformly distributed throughout the entire time. Likewise, Figure 6.14
presents the distribution of the breathing rate for resident No. 2. The data in
Figure 6.14 also indicates almost a uniform distribution. In both examples, the
moving average is calculated using a time-window of three days.

During the deployment, we have encountered some technical issues due to a slow
or unstable Internet connection. However, thanks to the Micro-SD card embedded in
the processing unit, the sleep files can be retrieved again. In the worst-case scenario,
the sleep files can be recovered off-line from the Micro-SD card. Fortunately, this
situation did not happen during the deployment time. In addition, one of the
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Figure 6.14: Bland-Altman plot of breathing rate representation of resi-

dent No. 2 over deployment time.

residents complained that the bed become warmer because of the presence of the
mat underneath the bed mattress.

Technically speaking, this situation cannot happen as we are using fiber-optic
technology. When we approached the resident, and discussed with the caregiver, we
found out that this feeling occurred as the resident was a little bit afraid of the new
system. After explaining again, the safety of the system to the resident, she became
more comfortable and she did not complain again about the mat.
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Figure 6.15: Sleep disturbance distribution for resident No. 2 over de-

ployment time; the moving average is computed using a time-window of

three days.

To summarize, the proposed sleep monitoring system does not require any close
contact with the human body. This feature was very suitable for the residents
because they did not agree to put on any wearable devices. Although wearable
devices like smart-watches can provide more accurate and continuous monitoring of
different body functions, they might be more suitable for young people. This is not
always true, it depends on the level of education and the ability to learn and accept
modern technologies. Based on the total time of sleep, frequent body movements,
bed exit activities, vital signs, i.e., heart rate and respiratory rate, we can infer the
sleep quality of the residents.

6.5 Conclusion

In this chapter, we have reported the results of our health and wellness validation
as well as clinical validation. Various approaches have been implemented to detect
interbeat intervals for noisy and nonstationary ballistocardiogram signals. The
wavelet analysis among other methods was able to provide satisfactory results in
reasonable running time. In consideration of the foregoing, the frequency-domain
approaches do not yield satisfactory results due to the characteristics of ballistocar-
diogram signals. In other words, the interbeat intervals are not uniform within the
time. Further, interbeat interval measures are very susceptible to surrounding noise.
Therefore, locating the fundamental heartbeat frequency is very challenging, which
results in imprecise heartbeats. Considering the clinical validation, the proposed
nonintrusive sleep monitoring system provided very reasonable results compared
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with a home sleep testing device, i.e., ResMed’s ApneaLink despite the large body
movements originated during apnea events. Nonetheless, nonintrusive sleep apnea
detection is a very challenging task because the same signs and symptoms of sleep
apnea might also occur in healthy people. With respect to real-life deployment, the
proposed system presented very good results for identifying various sleep parameters
such as waking-up time, sleeping time, the total time of sleep, and physiological
signs, i.e., heartbeat and respiration. Moreover, the residents were very interested
in the system because they feel more safe and comfortable. In the future, we are
aiming at extending the indoor monitoring to an outdoor monitoring using beacons
placed near to areas of interest such as food courts, sports facilities, bus stops, senior
activity centers where the elderly used to go. The next section will conclude the
thesis and outlines directions for future research.
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In this last chapter, we present conclusions about our proposed work. Further-
more, we describe possible research directions to continue the work described in this
thesis.

7.1 Conclusion

In this thesis, we have presented a unique nonintrusive vital sign monitoring system
using a mat embedded with microbend fiber-optic sensors. The fundamental principle
of the proposed system is to record the mechanical vibrations of the body caused by
cardiac activity as well as the chest and abdominal movements.

The heartbeat intervals, i.e., the millisecond interval between two consecutive
heartbeats can be computed from the vibrational activity of the heart whereas the
breathing rate can compute from the movements of the chest and abdomen.

The microbend fiber-optic sensor is a very suitable choice for nonintrusive
monitoring of vital signs, i.e., heart rate and breathing as it is highly sensitive to
pressure variations produced by the ballistic forces of the heart and it does not require
close contact with the body. Furthermore, it is relatively small, lightweight, and
affordable. In other words, we only need to locate the optical fiber mat underneath
the subject’s mattress, therefore, we can measure his/her vital signs.

The proposed system can also be used to monitor the sleep quality of the subjects
as the system can provide information about physiological signals such as heart
rate, breathing rate, and body movements. Based on this information, various sleep
parameters can be measured, namely waking-up time, sleeping time, the total time
of sleep, and sleep interruptions.

Since the optical fiber mat can be located underneath the subject mattress, the
acquired signal is very susceptible to motion artifacts. Hence, extracting heartbeat
intervals is a very challenging task. In existing literature, different methods have
been employed to detect heart and breathing rate non-intrusively. Nevertheless,
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most of these methods have been deployed in a controlled laboratory environment.
As a result, they might not be applicable for real-life environments such as users’
homes.

In this research, we have proposed to use the multiresolution analysis of the
maximal overlap discrete wavelet transform to measure heart rate. To begin with,
an automated signal data quality algorithm based on the signal variance has been
implemented to eliminate unwanted body movements that might destroy the vital
information in the signal. Afterward, a band-pass filter with specific frequency limits
equivalent to human heart rate was applied to the clean signal to extract cardiac
signal or as known as ballistocardiogram. Next, the wavelet analysis was employed
to analyze the cardiac signal into detail and smooth components. Additionally, the
smooth component was selected for heart rate estimation since their local maxima
show an agreement with cardiac cycles. At last, interbeat intervals were computed
by finding the distance between successive local peaks of the smooth component.

On the other hand, the respiratory rate, representing the chest and abdominal
movements, was computed by applying a band-pass filter with specific frequency
limits equivalent to human breathing rate. Thereafter, the nonlinear trend was
eliminated by subtracting a 3rd order polynomial fit, the detrended signal was filtered
using a Savitzky-Golay smoothing filter (window length of 11 and polynomial order
of 3), and a peak detector was applied to detect the respiratory peaks.

The proposed system has been validated in a health and wellness environment as
well as a clinical environment. In the first, the data was acquired from 50 subjects
sitting in a massages chair where the sensor was embedded in the headrest of the
chair. The electrocardiogram sensor was used as a reference to assess the quality
of the system for heart rate estimation. In the second, the data was collected in a
clinical setting from a small cohort of subjects during a drug-induced sleep endoscopy
study. The system was evaluated against a commercially available home-based sleep
apnea monitoring device known as ApneaLink. In both applications, the proposed
system achieved promising results compared with the reference devices. We also
evaluated the capability of the proposed sensor for unobtrusive monitoring of sleep
apnea during the clinical study. However, the system achieved lower sensitivity
compared with airflow sensor of the ApneaLink device.

Considering heart rate estimation, the wavelet analysis has shown superior results
compared with fast Fourier transform, cepstrum, and autocorrelation function. The
empirical mode decomposition has been also implemented. Although it provided
slightly better results than the wavelet analysis, it is a time-consuming process,
therefore, it is not applicable for real-time analysis.

Following satisfactory results obtained during the two phases of validation, the
system has been deployed in thirteen homes with mainly senior residents for more
than six months. In this research, we analyzed the sleep data collected from three
senior female residents during a one-month period. The proposed system has shown
very good agreement with a user’s survey collected before the study. Moreover, the
sleep monitoring system has been integrated within an existing Ambient Assisted
Living (AAL) platform, better known as UbiSMART. As a result, relatives and
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caregivers could track the residents’ sleep quality using a user-friendly interface
within the UbiSMART. Likewise, the residents were very interested in the system
because they feel more safe and comfortable. Along with the sleep monitoring
system, the UbiSMART system collected other activities of daily living using motion
and contact sensors. Combining of all sensory data can have a positive impact to
enhance the quality of life and social well-being of the seniors.

7.2 Future Directions

In the future work, new directions might be included to improve the proposed system
as follows.

In order to provide continuous vital sign monitoring, a multimodal sensing
approach should be implemented. In other words, wearable devices such as smart-
watches and smart-phones should be employed to enable continuous monitoring
of vital activities. Thanks to the accelerometer, the wearable devices can monitor
and record real-time information about one’s physiological condition and motion
activities. The outcome of our proposed sensor and other wearable devices can
be fused together to yield more robust and accurate information about the health
status of individuals. In addition, wearable devices can also be used as a reference
to segment unwanted body movements during sleep which might have a negative
effect on the signal quality.

Considering nonintrusive monitoring of sleep apnea, we can also use another
sensor such as finger pulse oximeter to get more accurate information about obstruc-
tive apnea events. Our ultimate goal is to reduce as much as possible the number
of sensors/electrodes need to be attached to the human body. However, in case of
apnea detection, the polysomnography is still the gold-standard approach to deter-
mine the apnea severity for individuals. This is because several electrodes are used
to detect several physiological signals. Our proposed device might have provided
lower sensitivity for sleep apnea detection. However, it can provide long-term data
monitoring which is not possible in a hospital environment.

We are also preparing a second phase for sleep apnea detection and the sleep
monitoring system will be deployed during an overnight polysomnography study.
This means that we can have more informative data that will help improve our
current results.
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