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Abstract

Blood flow in microcirculation is vital for oxygen, carbon dioxide and
nutrients transport. Most of blood cells are red blood cells (RBCs), so
that by blood flow we mean flow of a suspension of RBCs. For long
time blood flow has been mainly considered as a passive phenomenon, in
which RBCs are viewed as passive carriers of oxygen. The modern view
is completely different: blood flow is more active than we thought. The
RBCs as well as vascular endothelial cells covering the internal walls of
blood vessels are involved in a number of biochemical signaling processes
that are triggered by shear stress eliciting a number of biochemical events,
and ultimately resulting into vasomotor regulation without participation
of the nerve system. For example, RBCs do not only carry oxygen but
also ATP (adenosine triphosphate) , the release of which occurs thanks to
changes of RBC membrane protein conformations caused by shear stress.
Released ATP reacts with some endothelial membrane receptors leading
to vasodilation. This thesis is devoted to blood flow and its coupling to
biochemical signaling. More precisely, we investigate i) the dynamics of
RBCs, ii) the advection diffusion of chemicals in blood flow and the role
of iii) the geometry of vessel networks, in the mentioned signaling pro-
cesses in microcirculations. Firstly, we study the RBC dynamics in a pipe
flow with realistic viscosity contrast values, where a link between shape
dynamics and rheology is established. Secondly, we develop an advection-
diffusion solver that can handle general moving curved boundaries based
on lattice-Boltzmann method (LBM); we then implement it for the study
of the problem of ATP release from RBCs under shear flow. Membrane
tension and deformation induced by shear stress together with vessel net-
work geometry contribute to ATP release. Finally we demonstrate the
capability of applying our model and our numerical tool to the complete
problem of blood under flow involving ATP release from RBCs and en-
dothelial calcium signaling as a preliminary step to the ambitious task of
mechano-involved local regulation events in microcirculation.
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Résumé

La circulation sanguine joue un rôle vital en microcirculation, et ce pour
le transport de l’oxygène, le dioxide de carbone et d’autres nutriments.
Les globules rouges (GR) constituent la majorité des cellules du sang,
c’est pourquoi par "écoulement sanguin", nous entendrons "écoulement
d’une suspension de GR". Pendant longtemps l’écoulement sanguin était
vu comme un phénomène passif où les GR sont considérés comme des
cargos d’oxygène. La vision moderne est tout autre : l’écoulement san-
guin est bel et bien un phénomène actif. Les GR ainsi que les cellules
endothéliales (qui tapissent les faces internes des vaisseaux sanguins) sont
impliquées dans un grand nombre de signalisations biochimiques induites
par les contraintes hydrodynamiques, la route vers des régulations va-
somotrices sans l’intervention du système nerveux. Par exemple, les GR
ne transportent pas que l’oxygène, mais également de l’ATP (adenosine
triphosphate), qui est libérée suite à des changements de conformation
de protéines membranaires induite par les contraintes hydrodynamiques.
Cette thèse est dédiée à la circulation sanguine et son couplage avec la si-
gnalisation biochimique ayant lieu en microcirculation. Plus précisément,
les questions traités dans cette thèse sont i) la dynamique des GR, ii) le
problème de la diffiusion-advection d’espèces chimiques au sein des écoule-
ments sanguins, et iii) le rôle de la géométrie des réseaux vasculaires dans
le processus de la signalisation biochimique mentionnés plus haut. Dans un
premier temps nous analysons la dynamique de GR dans un écoulement de
Poiseuille en présence de valeurs réalistes de contraste de viscosité. Dans
un deuxième temps nous développons un modèle de diffusion-advection et
le couplons aux écoulements sanguins en adoptant la méthode de Boltz-
mann sur réseaux ; nous exploitons ensuite formulation en l’appliquant au
problème de la libération de l’ATP par les GR sous écoulement. Enfin nous
présentons des résultats préliminaires pour la problématique générale de
l’écoulement sanguin mettant en jeu l’ATP libéré par les GR et la signa-
lisation de calcium par les cellules endothéliales. Cette étude constitue un
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premier pas vers le problème général et ambitieux de la régulation locale
mechano-biochimique impliquée dans la microcirculation.

Mots Clefs : écoulement sanguin, globules rouges, vésicules, rhéologie,
microcirculation, signalisation biochimique, advection-diffusion, méthode
Boltzmann sur réseau
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Chapter 1

Introduction

1.1 Major Functions and Mechanisms of Circulatory
Systems

Transport of oxygen, carbon dioxide, nutrients and metabolic wastes are vital for
almost all animals. A straightforward way of transport is, a priori, by diffusion. It is
known that for some animals such as flatworms, oxygen and nutrients, indeed, pass
through their bodies by simple diffusion thanks to their flattened shapes. When we
look at more complex life forms, several sophisticated strategies can be found. For
example, in the arthropods, the circulatory system is open, namely one side of the
vasculature is in direct contact with air and the other side in contact with organs
(Fig. 1.1, middle). In this circulatory system, a solution of oxygen and nutrients
(hemolymph) is constantly pumped by heart, the hemolymph is in direct contact with
organs. The presence of advection due to hemolymph flow permits the anthropods
to enjoy 3D shapes, because it is likely that if only diffusion were operating, then
flat shapes would have prevailed. In other words, convection can be viewed as a
necessary factor for metabolism of three-dimensional body shapes. Mammals and
other vertebrates who have higher demand in consumption of oxygen and nutrients,
have more complex circulatory systems. The human circulatory system essentially
consists of three parts: a heart that pumps the blood; a hierarchical branching vessel
network which is composed of arteries, capillaries and veins that collectively distribute
blood into lungs and other organs; the blood, which is a complex fluid mainly consists
of red blood cells (RBCs), platelets and immune cells. In fact, RBCs take up around
45% percent of the total volume of the human blood, and this ratio is termed as
hematocrit. The adoption of specialized oxygen-carrying cells (RBCs) allows for a
higher oxygen concentration and larger diffusivity to tissues. Brief schematics of these

1
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Figure 1.1: Schematics for three different strategies of gas and nutrients transport.
Left: flatworms has no circulatory system, a branched cavity formed by digestive
system allows direct diffusion of nutrients to cells; Middle: arthropods, exemplified
by a grasshopper, posseses an open circulatory system. The hemolymph, as a solution
of nutrients and gaseous solutes, is advected all through the body and perfuses the
organs via local diffusion; Right: Human circulatory system mainly consists of heart,
vessel network and blood. Blood essentially differs from hemolymph by adopting
red blood cells as the main oxygen carrier. The colormap represents the relative
oxygen level (higher in red and lower in blue). Courtesies of Pearson Education, Inc.,
www.urgo.co.uk, laoblogger.com and www.netxplica.com

different transport strategies and corresponding mechanisms can be found in Fig. 1.1.
Diffusion as the primary mechanism for transport exists in all three examples. The

advection mechanism is introduced with the adoption of an open circulatory system.
In human circulatory system, besides advection and diffusion, mechanisms such as
RBC dynamics, vessel network, signaling process (e.g. the nitric oxide paracrine
signaling pathway that leads to vessel dilation) all come into the picture. The adoption
of this complex solution in the human circulatory system endows us with higher
efficiency of oxygen delivery and other chemical substances (nutrients, hormones,
salts etc.). It also ensures faster metabolism and stronger immune response. At
the same time, its complexity raises challenges for understanding its physiology and
pathology.

The human circulatory system is closed, which means a RBC always stays in the

https://www.anderson5.net/cms/lib/SC01001931/Centricity/Domain/1901/42_Lecture_Presentation.ppt
http://www.urgo.co.uk/260-the-venous-system-within-the-cardiovascular-system
http://laoblogger.com/images/blood-vessel-clipart-3.jpg
http://www.netxplica.com/loja/slides/biologia.10/PPT_BIO10_16/index.html
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blood stream and never leaves the vessel network (during its life time, about 120
days). Fig. 1.1(right) shows a schematic diagram, where we can see that there are
two distinct circulations in series. The first one is termed as systemic circulation,
which distributes oxygen to tissues throughout the body. In this system, an RBC
with high oxygen concentration is propelled out from the left atrium (upper part
of the heart labeled in red, see Fig. 1.1(right)), then, it travels through a large
spectrum of vessel sizes, branching from aorta (with the diameter around 2cm) to
capillaries (with diameters ranging approximately from 3 to 20µm). In capillaries
the RBC delivers most of its oxygen to the surrounding tissues by diffusion, after
that it enters the veins and returns to the right ventricle with a low oxygen and high
carbon dioxide level, before reaching subsequently the pulmonary circulation. In the
pulmonary circulation, a RBC starts from right ventricle, passes through the highly
branched alveolars in lung getting oxygenated and returns back to heart again. This
circulation has a lower pressure state comparing to the first one as it is dedicated to the
process of oxygen inhaling and carbon dioxide exhaling, with the help of respiratory
system. In both circulations, the exchange of gases and delivery of nutrients with
surrounding tissues are mainly conducted via capillary networks.

1.2 Red Blood Cells in Microcirculation

1.2.1 A Brief Introduction to The Red Blood Cell

Appearance of RBCs in vertebrates is considered as an epoch-making event from the
evolutionary point of view [Snyder and Sheafor, 1999]. Although RBCs have diverse
properties in different vertebrates, we will limit the introduction to human RBCs. A
typical adult human being has around 5 litres of blood, corresponding to 25 trillion
RBCs in number. In fact, RBCs account for more than 99% of cells in blood flow, thus
these RBCs and the blood plasma dominate the flow properties. A mature human
RBC has no nucleus and mitochondria, which implies it doesn’t express protein.
and thus has more space to accommodate hemoglobin. The hemoglobin is the most
prevalent cytoplasmic protein functioning as the oxygen carrier. Thus, cytoplasmic
viscosity of RBC is dominated by haemoglobin, its typical value ranges from 2 to 10
mPa · s [Tomaiuolo, 2014]. Blood plasma has a viscosity around 1.3 to 1.7 mPa · s
at 37 °C. The RBC has a biconcave disk-like shape when it is relaxed in quiescent
blood plasma. Although inflatable under some circumstances, it typically maintains
a volume around 90µm3 and a surface area around 130µm2 [Tomaiuolo, 2014]. The
membrane of a RBC is composed of a lipid-bilayer and a spectrum of network beneath
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Figure 1.2: Photos of vessel networks scaling from decimeter to micrometer; Schemat-
ics showing the dimensions of a typical RBC and the main components of vessel net-
works. a) The intricate blood vessel networks on human foot, at this scale, arteries
with large diameter branch into smaller ones, forming a complex network that adapts
the shape of surrounding organs. b) Capillary network in a fat tissue, at this scale,
capillaries no longer branch into smaller vessels, instead, they tend to form a dense
network with diameters at the same magnitude of RBCs. c) A colored photo from
scanning electron microscope, showing RBCs deforming and travelling in an arteriole.
d) a schematic plot of a relaxed RBC of typical size with a spontaneous biconcave
disk-like shape. e) schematics of vessel network from artery and vein to capillary.
The inner most layer of blood vessel is typically covered by a single layer of endothe-
lial cells. Smooth muscles (sphincter) are present on large and intermediate vessels
(artery, vein, arterioles, velues, etc.) but not on capillary, devoting to pressure /
diameter control. Courtesies of imgur.com, A Manual Of Physiology, ANATOMY
and PHYSIOLOGY in Health and Illness and wikipedia.org

it, namely the cytoskeleton [Liu et al., 1987], plus a plethora of transmembrane
proteins, and a forest of other elements such as glycocalyx. The lipid-bilayer and
cytoskeleton endows RBCs with a bending modulus around 3×10−19J [Scheffer et al.,
2001, Kaoui et al., 2011] and a shear modulus around 4 × 10−6N/m [Farutin and
Misbah, 2012], respectively. A schematic plot and photo from scanning electron
microscope of RBCs is shown in Figs. 1.2 c and d.

1.2.2 A Brief Introduction to The Microcirculation

Blood viscosity plays an important role in blood circulation. In principle, low vis-
cosity is preferred in order to have high perfusion rate in the blood vessel when the
pressure drop is fixed. However, due to the presence of RBCs (in particular, their

https://imgur.com/gallery/QbpyU
https://chestofbooks.com/health/physiology/Manual/Capillaries.html
https://doctorlib.info/anatomy/ross-wilson-anatomy-physiology-health-illness/4.html
https://doctorlib.info/anatomy/ross-wilson-anatomy-physiology-health-illness/4.html
https://en.wikipedia.org/wiki/Blood_vessel
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Table 1.1: Typical Total Cross-Section Area and Velocity of Blood flow in Different
Vessel Types, Cortesy of wikipedia.org.

Type of blood vessels Total cross-section area Blood velocity
Aorta 3 - 5cm2 40cm/s
Capillaries 4500 - 6000cm2 0.03cm/s
Vena cavae inferior and superior 14cm2 15cm/s

deformability), blood can hardly be treated as a simple fluid with a constant viscos-
ity. In aorta or other large vessels, blood is often regarded as a non-Newtonian fluid
which enjoys a shear thinning effect [Gijsen et al., 1999]. In capillaries and arterioles,
where the vessel diameter is only one order larger or even comparable to the size
of RBCs, viscosity of blood flow becomes sensitive to details of the RBC dynamics
and to their spatio-temporal organization. The circulation sites which correspond to
microcirculation are made of arterioles, capillaries and venules. The microcirculation
takes up around 80% of the total pressure drop in the systemic circulation (known
as haemodynamics dissipation). Due to the dissipative nature and the increase of
total cross-section area in capillaries with the branching levels towards smaller scales,
the blood flow is heavily damped such that the pulsatile pressure originated from
heart beat is negligibly small. The typical velocity in capillaries is of 0.03cm/s

(see table 1.1). Because the size of the vessels is of the order of the RBCs it is a
priori essential to take RBCs explicitly into account in order to analyze blood flow in
microcirculation. This will be the strategy of this work.

Here we shall present some fundamental general comments and facts about mi-
crocirculation. Firstly, the Reynolds number, which is a dimensionless number that
quantifies the ratio of inertial effect over the viscous effect in arteriole (where the
shear stress is the highest) is estimated to be around 0.03 to 0.2 [Pries et al., 1992]
(if one takes as a typical size the vessel diameter; that number would be even smaller
if one takes the RBC diameter as a length scale), while in capillaries, it drops to
around 3 × 10−4 [Pries et al., 1992]. These values all suggest that the blood flow in
the microcirculation is dominated by viscous forces.

The second fact is the Fahraeus effect [Barbee and Cokelet, 1971, Pries et al.,
1992] (see Fig. 1.3b), which states that blood circulating in successive bifurcations
with smaller and smaller vessel diameters will have a hematocrit which decreases (i.e.
hematocrit decreases when the vessel diameter decreases). This effect is important
as long as the vessel diameter is less than 500µm and lasts until the channel width
becomes comparable to the RBC size. This effect results from the tendency of RBCs
to accumulate in the center, acquiring thus a higher mean velocity than that of the

https://en.wikipedia.org/wiki/Hemodynamics
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Cell Free Layer

a) b)

Figure 1.3: a) The Fahraeus-Lindqvist effect; b) a schematic showing the Fahraeus
effect and the existence of a marginal cell-free layer.

plasma and leading to a diluted flow in smaller and smaller channels. The accu-
mulation of RBCs at the center leaves a cell-free layer close to the vessel wall. A
schematic is shown in Fig. 1.3b, highlighting the decrease of hematocrit level, which
is attributed to the existence of the cell-free layer. Finally, note that in capillaries the
hematocrit may significantly drop that the RBCs hydrodynamic interaction becomes
small, meaning that studying a single cell dynamics may provide information on flow
in capillaries. This question will be tackled in this work.

Another important phenomenon is known under the name of the Fahraeus-Lindqvist
effect. It states that with decreasing vessel diameter, the apparent viscosity of blood
decreases. This is a somehow counterintuitive result: the more blood is confined the
better it flows. This effect is quite significant in vessel diameters ranging from ap-
proximately 10µm to 300µm, see Fig. 1.3a. The existence of cell-free layer evoked
above is one of the identified indirect cause for the Fahraeus-Lindqvist effect.

Finally, the complexity of capillary networks needs to be mentioned. Blood vessels
branch from aorta to arterioles in a cascading manner, which means the diameter of a
parent branch is typically larger than that of daughter branches (see Fig. 1.2a). How-
ever, this cascading terminates at the capillaries. In microcirculations, capillaries are
the smallest vessels with diameters around few micrometers (5 to 10µm, mentioned in
wikipedia/Capillary). Capillary segments typically are several hundreds micrometer
in length. They collectively interweave a network of complex topology and geometry
(see Fig. 1.2b).

https://en.wikipedia.org/wiki/Capillary
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1.3 Advection Diffusion Events in Microcirculation

1.3.1 Examples of Gas & Nutrient Transport

As we mentioned above, comparing the chemical transport strategies such as the
lack of circulatory system in flatworms (Fig. 1.1(left)) or open circulatory system
in grasshoppers (Fig. 1.1(middle)), the human circulatory system (Fig. 1.1(right))
is far more sophisticated owing to the existence of RBCs and complex branching
vessel networks. However, in capillary networks, diffusion is still the most important
mechanism especially for molecules of small sizes. The diffusion mechanism relies on
the different concentrations of solutes in blood and surrounding tissue. Normally,
solutes diffuse from spaces with higher concentration to lower ones spontaneously
(passive diffusion), but the contrary may happen (active diffusion, which requires
energy). Passive diffusion can be exemplified by oxygen, amino acids and glucose
which diffuse from blood to tissue, or carbon dioxide or metabolic waste, which diffuse
in the reverse direction. Example of active diffusion are re-absorption of glucose,
amino acids and salts by the proximal convoluted tubule of the nephron in the kidney.
Additionally, the capillary wall is covered by a mono-layer formed by endothelial
cells (see the schematic in Fig. 1.2e), which is the only barrier between capillary
and tissues. The endothelial cells are differentiated into mainly three categories viz.
continuous, fenestrated or sinusoid in order to adapt to the functions of surrounding
tissue. In general, the barrier effect from continuous endothelial cells can often be
simplified and described by Fick’s law of diffusion, where the flux across the barrier is
positively correlated to the concentration difference on either side of the membrane.
For fenestrated or sinusoid endothelial cells in particular, the advection of bulk flow
will also contribute to the transport due to their porous structures.

The dimensionless Peclet number characterizes the relative level of advection effect
over diffusion effect at a particular spatial scale. A Peclet number far greater than one
implies a slow diffusion comparing to flow advection. In the case of oxygen transport
in capillaries, advection follows the downstream direction, whereas the diffusion is
omnidirectional. Thus, a low Peclet number is preferred since in this case the oxygen
can diffuse from hemoglobin to plasma and then to surrounding tissue, before it gets
flushed away by the blood flow. The typical value of oxygen diffusivity in blood
is around 2 × 10−5cm2/s, which yields a Peclet number around 1 in capillary flow
(estimated using the capillary diameter and blood flow speed). Additionally, the
RBCs often squeeze into narrow capillary, undergoing high deformation making a
large proportion of their surfaces in the close vicinity of the endothelial cells. This
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a) b)

Figure 1.4: (a) Capillaries are so narrow that RBCs squeeze and move through them
in a single file. (b) A schematic for oxygen diffusion. Oxygen dissociating from
hemoglobin in RBCs diffuse into plasma and then into tissue. Low oxygen partial
pressure (PO2) is maintained in tissue due to the presence of mitocondria, which gen-
erates ATP and consumes oxygen. Courtesies of thoughtco.com and cvphysiology.com

fact should enhance the diffusion process over the advection one (see Fig. 1.4a). It
is worth to mention that the lipid bilayer barrier against small molecules, such as
oxygen, is expected to be quite small [Subczynski et al., 1992], meaning that oxygen
dissociates from hemoglobin inside RBC and reach tissue cells by diffusion, and then
rapidly consumed by mitochondria (see Fig. 1.4b). We will see below several examples
where advection plays a decisive role.

1.3.2 Examples from Regulations based on Endocrine and Lo-
cal Signaling

The circulatory system is regulated (say the control of perfusion rate) by many factors
either originating from the circulatory system itself (like eNOS=endothelial Nitric
Oxyde Sensing that may originate from vessel shear stress) or from nerve and en-
docrine systems (some glands may secrete hormones and feed the circulatory system
in order to raise blood pressure).

Arteries, veins and arterioles have muscular walls (annular smooth muscles which
encircles blood vessels) which are in close contact through gap junctions with en-
dothelial cells and nerve ends from autonomic nervous system (see Fig. 1.2e where
the endothelial cells are mentioned, nerve ends are omitted in the plot). This endows
the vessel system with the capability of responding to hormones or nerve signals.
The circulatory system interacts with the other systems (endocrine and nerve sys-
tem) in a concerted fashion. The endocrine system is the chemical counterpart of
nervous system: the nervous system transmits information using electrical potential,
while endocrine system reacts via chemical compounds (hormones) towards blood

https://www.thoughtco.com/capillary-anatomy-373239
https://www.cvphysiology.com/Microcirculation/M002.htm
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circulation. Like the nervous system has its neurons well branched in the body, the
endocrine system uses the circulatory system as its highway. In certain circumstances,
only special sites of the circulatory system are involved in the regulation process. For
examples, there are some gland (called posterior pituitary gland) which act globally
on the circulatory system. They secrete a hormone called vasopressin that can raise
blood pressure everywhere by inducing vasoconstriction. In contrast, there are other
hormones, secreted by the adrenal gland (adrenalin) which acts on specific sites of
the circulatory systems, namely the smooth muscles of the arterioles, in two different
pathways (suppressing blood perfusion rate in internal organs while increasing it in
skeletal muscle) in order to improve athletic performance. The transport of all these
hormones mainly relies on blood flow.

The above mentioned regulations by the endocrine system are achieved following
a top to bottom approach (i.e. the hormone delivery is made everywhere in the circu-
latory system despite the fact that the hormone function may be selective). However,
an inverse regulation mechanism may take place. Signaling can have a starting point
at capillaries, and is then transmitted to higher branches, such as arterioles or even
larger vessels. Indeed, and as mentioned at the beginning of this section, pre-capillary
arterioles are wrapped by smooth muscles (which are absent in capillaries), so that
tissue perfusion rate can be controlled by arterioles via constriction or relaxation in
smooth muscles. When tissues are experiencing higher metabolism, the increase of
catabolic products’ concentration will be sensed by capillary endothelial cells. The
signal will then be transmitted from endothelial cells to smooth muscle in parent
arteriole via secretion of vasodilator chemicals.

In recent decades, a growing number of experimental evidences have shown the
importance of mechanical properties in blood flow regulation. The blood vessel wall
shear stress seems to play key roles in many regular or pathological processes including
angiogenesis, atherosclerosis, tumor growth, wound healing and embryonic develop-
ment, etc. [Risau, 1997,Yamamoto et al., 2003,Galie et al., 2014]. The first candidate
of mechanical sensors is the endothelium [Yamamoto and Ando, 2011,Resnick et al.,
2003], where endothelial cells form the innermost layer of blood vessel and have their
lumen sides directly exposed to the blood flow. Both rapid and long term endothelial
responses are observed (see Fig. 1.5).

Endothelial response in an attempt to regulate flow rate operate on a time scale
of seconds or minutes. Endothelial cells release adenosine triphosphate (ATP) to
blood vessel lumen in response to shear stress. Endothelial cells have the ability to
conduct a complex process consisting in translating shear stress changes and surface
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Figure 1.5: Endothelial cells acute and chronic responses to flow: (a) A hypothesized
acute response (few seconds to minutes) triggerred by flow shear stress and RBC
deformation. ATP release from RBC and endothelial cells trigger a calcium response
that propagates bidirectionally, eventually initiate eNOS pathway in smooth muscle
and conduct vasodilation in pre-capillary arteriole. [Ca2+] and [IP3] represents the
free calcium ion concentration and inositol trisphosphate (abbreviated as IP3, a sec-
ondary messenger molecule used in signal transduction) concentration. (b) Chronic
response from bovine aorta endothelial cells, observed in in vitro experiment. The
photo on the left side represents cells cultured under no flow condition, while photo
on the right side is obtained after 24 hours exposure to steady flow, with an elongated
cell pattern.

ATP concentration variations into oscillation in plasma calcium level (see Fig. 1.5a).
These changes in calcium concentration is crucial for endothelial nitric oxide syn-
thase (eNOS) pathway involved in vasomotor control [Topper et al., 1996]. Chronic
responses (hours to days) may also occur implying changes in gene expression and
de novo protein synthesis. With these metabolic alterations, endothelial cells tend
to have an elongated shape aligned with blood flow (in laminar regimes), while they
assume a more round shape under low flow rate or turbulent flow condition [Topper
and Gimbrone Jr, 1999,Barakat, 2013]. These sites of low flow amplitude are believed
to play important roles in dysfunctions such as initiation of atherosclerosis and the
formation of thrombosis [Park et al., 2010,Barakat, 2013,Malek et al., 1999,Schwartz,
1962].

On the other hand, experimental studies on RBCs reveal that they can release
ATP when subjected to shear stress originated from flow [Wan et al., 2008,Forsyth
et al., 2011]. This implies that RBCs may actively participate in the signaling events
and local regulations. How and by which mechanism the ATP release takes place
will be discussed in chapter 4. A schematic showing how RBCs may interact with
endothelial cells is presented in Fig. 1.5a.
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1.4 Contributions of the thesis

To date, experimental and numerical studies have revealed the importance of RBC
shape dynamics in microcirculation. Due to the hematocrit drop in microcirculation
as a consequence of Fahraeus effect, numerical and theoretical studies on a single
RBC yielded surprisingly persuasive results in explaining rheological observations.
Although complex three dimensional RBC models are suitable for a quantitative
analysis, simple models in two dimensional systems (such as vesicles in 2D Stokes
flow) also capture several essential behaviors of RBCs, which implies, that those
complex RBC shapes and dynamics may be only a disguized form of few prototypes.
We will encounter several examples in this work.

This thesis is devoted to tackling the first main step towards linking RBCs dy-
namics to chemical solute dispersion in microcirculation, by focusing on both a single
entity and collective effects. Since the introduced chemical dispersion itself is an am-
ple increment of complexity to already-rich RBC dynamics, we restrict our work here
to a 2D geometry, where the main features can still be captured. It must be kept in
mind, as will be recognized throughout this work, that the extensions of the model
and algorithms to 3D are straightforward. Here below we summarize the original
contributions of each chapter.

1.4.1 The analysis of Vesicle dynamics in a channel flow

The first contribution is dedidacted to the numerical study of vesicle dynamics (a
model of RBC) in channel flow involving the effect of viscosity contrast. As we
mentioned in section 1.2.2, the blood flow in microcirculation has a small Reynolds
number and can be regarded as Stokes flow. The present chapter is based on the
boundary integral method (abbreviated as BIM, and is appropriate for Stokes flow),
whereas in all other chapters a Lattice-Boltzmann method is adopted and/or devel-
oped. In chapter 2, we perform systematic studies on single and multiple vesicles in
channel flow with intermediate channel widths that are comparable to arteriole and
large capillaries. We found the emergence of a robust and stable slipper shape by
taking physiological viscosity contrast value (say, around 5). Several other branches
of solutions, such as complex trilobe dynamics and snaking parachute, are discovered.
We provide a phase diagram of different solutions in terms of relevant control param-
eters (such as the flow strength, viscosity contrast and degree of confinement). We
then analyse the rheological properties. An outstanding finding is the decrease of the
normalized viscosity [η] = (ηeff − ηout)/(ηoutφ) (ηeff is the absolute effective viscosity,
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ηout is the suspending fluid viscosity and φ is the hematorcit) with hematocrit. This
results from a subtle spatial organization of the suspension, which strongly moderates
the increase of the absolute viscosity with hematocrit. This confirms the fact that
this feature is not exclusively restricted to a pure shear flow [Thiébaud et al., 2014]
but is also present in a pipe flow. Interestingly, the viscosity decrease occurs in the
hematocrit range of 0% – 15%, which lies in the typical range of microcirculation
hematocrit. This effect seems to bring a remarkable contribution to the efficiency of
oxygen transport in microcirculation. This work has given rise to a publication under
preparation, to be submitted to Phys. Rev. Fluids.

1.4.2 Development of numerical solver for fluid-membrane-
solute coupled system

Although BIM enjoys a high precision which is extremely helpful in studies of accurate
shape dynamics and subtle regime borders in a shape phase diagram, it suffers from
a quadratic dependence of simulation time with the number of discretization points
that makes it difficult for practical purposes such as complex geometry and when a
very large number of cells are considered. In addition, blood flow involves coupling
with various chemical transport. In order to efficiently study this problem a lattice
Boltzmann method (LBM) is adopted, which is a mesoscale method which enjoys
a high parallel efficiency and easy implementation of complex geometry. LBM is
employed in our work to explore regimes which are computationally expensive or
hard to implement via BIM. We reconstructed the well validated immersed-boundary
lattice-Boltzmann (IB-LBM) code from [Shen et al., 2017a] under Compute Unified
Device Architecture (CUDA), in order to fully exploit the parallel benefits from LBM.
In chapter 3, we developed our advection diffusion solver in the LBM framework.

Dispersion of chemical solutes with the presence of moving boundaries is rarely
mentioned in literature. This task is challenging in both numerical scheme and en-
gineering implementation. We managed to derive a boundary scheme that works for
arbitrary moving membranes and boundary conditions. The implementation is also
accelerated in parallel via CUDA. Several validations are performed for translating
and distorting boundaries. Our solver has shown its capabilities of tackling typical
scenarios of chemical signaling processes that are related with shear stress or an ex-
ternal stimulus. In addition, we have demonstrated the possibility of applying this
solver to more generic topics, for example, the drug delivery problematic. Figs. 1.6a
and b give simple demonstrations on the type of applications for complex geometry.
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Figure 1.6: (a) An example of LBM method used to study a vessel network with
realistic geometry (a network extracted from a mesentery of a cat); (b) An example
of a deformed RBC under shear stress dependent ATP release in confined channel
flow. The color bar represents the relative level of ATP concentration. Vectors
correspond to relative induced flow; (c) A schematic for the coupling of Navier-Stokes
(NS), membrane and advection-diffusion (AD). The dashed line represents a possible
local regulation mechanism in microcirculation.

Fig. 1.6c is a simplified picture of the simulations. This work has given rise to a
publication submitted to Physical Review E [Zhang and Misbah, 2018].

1.4.3 ATP release from RBCs under flow

Recent experimental studies in vitro [Forsyth et al., 2011,Wan et al., 2008], reveal
that RBCs release ATP in response to flow stimulus. This feature connects the
RBC dynamics to signaling processes of local regulation events in microcirculation.
With the help of a solver dedicated to fluild-membrane-solute coupling, developed in
chapter 3, we tackle in chapter 4 the problem of ATP release by RBCS; we have built
a model inspired from hypothesized molecular mechanisms, and solved it with using
the LBM. The model can reproduce results qualitatively comparable to in vitro shear
flow experiments. Furthermore, we explored how this model behaves in channel flow
and at bifurcations. The study is inspired by the geometry of arterioles and capillary
networks. We found that the membrane shear stress is one of the key input to the
release model. We found that the complexity of network geometry (i.e. bifurcations
traversed by RBCs in microcirculation) may substantially contribute to ATP release
in capillary network. This study has given rise to a publication accepted in Biophysical
Journal [Zhang et al., 2018].
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1.4.4 The calcium signaling in capillary Endothelial Cells

In chapter 5 we carried out preliminary studies on the signaling process associated
with mechanical properties of blood flow in microcirculation. A simulation of en-
dothelial calcium dynamics is conducted in consideration of RBCs releasing ATP,
vessel wall shear stress and endothelial gap junctions. This demonstrates the possi-
bility of studying mechano-involved regulation events in microcirculation, using our
simulation tools and models.



Chapter 2

Vesicle Dynamics: The Effect of
Viscosity Contrast in Channel Flow

This chapter deals with the problem of blood flow by adopting a simple model (i.e.
suspension of 2D vesicles). We consider an imposed Poiseuille flow. It is shown that
even a single vesicle shows plethora of solutions. For example, the vesicle exhibits a
parachute centered shape, or a slipper shape (which are by now two classical modes
already reported in 2D and 3D simulations). It is found here that other solutions
exist, such as a fully off-centered shape, a solution which coexists with the parachute
solution, and a multilobe shape which exhibits complex dynamics. Unlike recent
reports in 3D which stress the necessity of shear elasticity for this kind of shape,
the present 2D study rules out the relevance of elasticity ingredient. We will present
a complex phase diagram in an appropriate control parameter space. We will then
investigate the implication on rheology. We define the normalized viscosity as [η] =

(ηeff − ηout)/(ηoutφ) (ηeff is the absolute effective viscosity, ηout is the suspending
fluid viscosity and φ is the hematorcit). An outstanding feature reported here is that
[η] decreases with hematocrit in microcirculation. This results from a subtle spatial
organization of the suspension, which strongly moderates the increase of the absolute
viscosity with hematocrit. This behavior, if it is confirmed with 3D simulation, should
imply that the specific spatial organization favors a more efficient oxygen supply in
microcirculation.

2.1 Introduction

Blood flow imply motion of many interacting particles (Red Blood Cells –RBCs).
Interactions are of different origins: (i) hydrodynamics, (ii) direct interaction (like

15
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RBC-RBC bridging via macromolecules), or (iii) or purely entropic nature (deple-
tion forces) (see [Brust et al., 2014, Flormann, 2017] for more details). The advent
of microfluidics and the power increase of computers have caused a tremendous up-
surge of interest in the study of blood flow. The computational power has rendered
tackling the blood flow problem by following a bottom-up approach, i.e. by taking
explicitly blood elements into account. RBCs are often modeled as a capsule, that is
a membrane which is incompressible and which is endowed with in-plane shear elas-
ticity (due to cytoskeleton) and bending. Another popular model in this spirit is the
vesicle one, which is a closed membrane of a bilayer, devoid of a cytoskeleton. This
is a simplified model of RBC. Simplification is essential since it allows us to decide
whether or not such or a such phenomenon is a robust feature, or does it depend on
some specific ingredient. Another simplification is often adopted, namely reducing
the dimensionality, by considering the membrane as a contour rather than a surface.
This 2D simplification allows often a very important gain at the computational level.
Fortunately, many phenomena seen in 2D have also been seen in 3D as well (with 3D
vesicles and capsules). Typical examples, are parachute and slipper shaped which are
exhibited both in 2D and 3D (see Fig. 2.4b Centered Parachute and Near-Centered
Slipper). The fact that shapes and dynamics are often shared by 2D and 3D systems
is also another indication of their robustness. In this chapter we will adopt a 2D
model in order to study dynamics and rheology of a single and multiple vesicles. In
this study we will take only hydrodynamic interaction into account. Because of the
2D character only bending modes are present.

In a Poiseuille flow we can define three main parameters: the viscosity contrast,
which is the ratio between the internal and external viscosity, denoted as λ, the
strength of the flow compared with the bending mode, which will be called the cap-
illary number and denoted as Ca , and the degree of confinement defined as the
effective diameter of the vesicle over the channel width, and is denoted as Cn. A
last parameter, which will be fixed here, is the deflation parameter (or reduced area),
which quantifies the deflation of the shape from a circle (see precise definition of all
these parameters in Section. 2.2). Vesicles as well as RBCs (represented by cap-
sules in modeling) have shown complex dynamics even in simple confined Poiseuille
flow [Noguchi and Gompper, 2005,Coupier et al., 2008,Kaoui et al., 2009,Kaoui et al.,
2011,Farutin and Misbah, 2011,Coupier et al., 2012,Farutin and Misbah, 2013,Tahiri
et al., 2013,Aouane et al., 2014a,Hariprasad and Secomb, 2015,Farutin and Misbah,
2014]. A typical diagram of steady shape in confined 2D channel flow (Fig. 2.1a) is
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recalled (extracted from [Kaoui et al., 2011]). Typical shapes in 2D are (i) parachute,
(ii) slipper, and (iii) snaking (in which the vesicles shapes oscillates as a snake).

The above studies have not yet exhausted all possible scenario. Our systematic
analysis presented in this chapter shows the existence of other solutions, such as an
off-centerd slipper, corresponding to a novel branch of solution as compared to the
classical slipper, and multilobe complex dynamics. This type of multilobe shapes was
reported recently in 3D (for capsules) [Mauer et al., 2018]. It was suggested there
that the the multimode shape is due to cytoskeleton shear elasticity. However, since
our study does not include shear elasticity, this means that the multilode shape is not
necessarily triggered by elasticity. We will study here systematically different types of
solutions by considering the three above control parameters λ, Ca , and Cn. A complex
picture will emerge. After having analyzed the dynamics, we will study the rheology
for various concentrations (or hematocrit). We will see that the existence of the
new solutions will dictate novel and interesting rheological properties. An interesting
feature is revealed. Let us define the normalized viscosity as [η] = (ηeff−ηout)/(ηoutφ)

(ηeff is the absolute effective viscosity, ηout is the suspending fluid viscosity and φ

is the hematocrit). It is found that [η] decreases with hematocrit φ in the range
φ ' 1 − 15%. This range of hematocrit is encountered in microcirculation. We
shall see that this result is a consequence of a subtle spatial organization. This
finding means that the absolute viscosity ηeff increases very slowly in this range of
φ. Since the viscosity is a direct measure of flow efficiency, this results shows that
the suspension organizes itself in a way to enhance RBCs transport, and thus oxygen
carriage capacity.

2.2 Methodology: Simulation of Stokes Flow and
The Modeling of Red Blood Cell as Vesicle

This study is carried out using a vesicle model under a 2D configuration, despite the
complex 3D nature and spectrin network (the cytoskeleton, [Liu et al., 1987]) that
may introduce quantitative (and possibly qualitative) deviation on the main results
of this study. We will see that some shapes and dynamics that were suspected to be
due to cytoskeleton are in fact reproduced here in 2D, ruling thus out the hypothesis
of the cytoskeleton role. This is why we believe that a simplified model (e.g. pure
2D) should be analyzed in details before dealing with many other ingredients.
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Figure 2.1: (a) A phase diagram of vesicle steady shapes in confined channel flow
showing 5 distinct regions against degree of confinement Cn and capillary number Ca
(for definition of parameters, see text). Other parameters are fixed as τ = 0.6; λ = 1.
Figure with courtesy of [Kaoui et al., 2011]; (b) The corresponding phase diagram
from [Tahiri et al., 2013] with the same parameters except that here λ = 5. Figure
with courtesy of [Tahiri et al., 2013]

2.2.1 The Vesicle model

Let us consider that a vesicle (as a representative of RBC) has its membrane shape
depicted by a closed curve X(s, t) on x-y plan, where s is a curvilinear coordinate,
t represents time. The Helfrich energy [Zhong-Can and Helfrich, 1989] is defined on
X, and takes into account bending modes under the constraint of local membrane
inextensibility:

H(X(s)) =
κb
2

∮
c2ds+

∮
ζds (2.1)

Here κb is the bending modulus of the membrane (for RBC its value is taken as
κb = 3× 10−19J), c is the local curvature

c =
∂Xx

∂s

∂2Xy

∂s2
− ∂Xy

∂s

∂2Xx

∂s2
(2.2)

ζ is a Lagrange multiplier that enforces local membrane area [Ghigliotti et al., 2010].
Thanks to the functional derivative of H, the force term acts from vesicle membrane
on the fluid can be obtained as [Kaoui et al., 2008]

f(s) = κ

(
d2c

ds2
+

1

2
c3 − ζc

)
n̂+

dζ

ds
t̂ (2.3)

Here n̂ and t̂ are the normal and tangential unit vector respectively. The total area
A =

∣∣∮ X× dX
∣∣ /2 is conserved due to the incompressibility of the flow.

We define the characteristic radius of a vesicle R0 by the relation A = πR2
0, which

has for a RBC a typical value R0 = 3µm. The reduced area τ is defined by the ratio
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between vesicle area A and the area of a circle which has the same perimeter (denoted
as P ) as the vesicle

τ =
A

π[P/(2π)]2
=

4πA

P 2
. (2.4)

This quantity specifies the roundness of the vesicle shape, the more round is the
shape, the closer is its value to 1. We fix τ = 0.6 in this study, in reference to the
known value of a healthy RBC (which is about 0.65).

2.2.2 Simulation of Stokes Flow Using The Boundary Integral
Method

We consider a single or multiple vesicles immersed in a periodic long straight channel,
defined by a box Ω = [−L/2, L/2]× [−W/2,W/2] (where W is the width and L the
length). The dynamic viscosity of RBC cytoplasm is denoted as ηin, while the plasma
one is denoted as ηout. The viscosity contrast is then defined as λ = ηin/ηout. A
quadratic velocity profile is imposed as

u0
x = u0

max

[
1−

(
y

W/2

)2
]

(2.5)

and u0
y = 0, here u0

max is the maximum velocity at the center-line y ≡ 0.
Typical magnitude of blood plasma kinematic viscosity is ηout ∼ 10−3mPa · s;

the shear rate at the channel wall γ̇w = (∂ux/∂y)|y=−W/2 = 4u0
max/W has its typ-

ical physiological value ranged from 100/s to 104/s [Vennemann et al., 2007], de-
pending on the blood vessel size. Considering the fact that Reynolds number Re =

γ̇wR
2
0/ηout ∼ O(10−4) is extremely small, the flow can be regarded as a Stokes flow.

Using the boundary integral method (BIM) [Veerapaneni et al., 2009,Rahimian et al.,
2010,Quaife and Biros, 2014,Trozzo et al., 2015,Pozrikidis, 1992] we can convert the
Stokes equations into an integral equation for the evolving boundaries (vesicle(s)
shape dynamics). For brevity, we recall essentially the key procedures of velocity
computation: Firstly, we represent the membrane position X by a Fourier series
defined on the complex plane.

Xx(s) + iXy(s) =
kmax∑

k=−kmax

Xk exp (2πiks) (2.6)

where the complex amplitudes Xk are the shape parameters of the membrane. The
membrane force term f(s) in Eqn. (2.3), regarded as a function of derivatives (e.g.
local curvature c) and integrals (e.g. perimeter P ) of X, can then be analytically
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represented as a function of xk series. The velocity at any point r in the simulation
domain can then be calculated by the boundary integral formulation with the viscosity
contrast effect taken account:

Λu(r) =u0(r) +
1

ηout

∮
f(s′) ·G(2W )(X(s′), r)ds′

+ (1− λ)

∮
u(X(s′)) ·T(2W )(X(s′), r) · n̂(X(s′))ds′

(2.7)

The line integrals are carried out along all vesicles in the calculation domain. G(2W )

is the single layer Green’s function, while the T(2W ) denotes the double-layer Green’s
function [Pozrikidis, 1992]. The notation Λ is defined as

Λ(r) =


λ, if r is inside a vesicle
(1 + λ)/2, if r is on a membrane
1, if r is out side of any vesicles

(2.8)

This Green’s function is rather complicated due to the restriction of satisfying
periodic and no-slip condition at the same time. Instead, the numerical procedure
employs another Green’s function which satisfies only periodic condition denoted as
GP and TP . This Green’s function can be represented in terms of the elementary
functions [Pozrikidis, 1992]. The numerical procedure consists in representing the
force and the residual velocity on the walls as a Fourier series. The residual wall
velocity, here is the velocity on the walls calculated using Eqn. (2.7) with its Green’s
function being replaced by GP and TP . The Fourier components of the residual
wall velocities as well as the wall forces are calculated through explicit expressions
and linear equations with explicit coefficients, respectively [Pozrikidis, 1992]. After
this, the velocity contribution from wall forces to vesicles is added to the vesicle
velocities using GP and TP . This procedure is also done in Fourier space with explicit
expressions [Pozrikidis, 1992].

Once having the velocity on the membrane, the evolution of vesicle shape is ob-
tained from a simple fixed time step Euler scheme

X(t+ ∆t) = X(t) + u(t)∆t (2.9)

When implementing Eq.(2.9), velocity term u(X(s′)) on the right hand side in Eq.
(2.7) takes its value at time t.

Two additional procedures were performed in order to ensure long-term stability
of the simulations. First, we keep the inner volume of the particles fixed. Normally,
fluid incompressibility and membrane impermeability should keep the inner volume
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of the particles constant. However, a small drift due to numerical error can not be
fully excluded. We compensate this drift by reinflating or deflating the elastic particle
through homogeneous normal deformation. Second, we perform a small correction of
membrane positions when two particles approach each other too closely (considered
as a collision). The correction starts to act only when the distance between the
particles’ membranes is below a certain limit δh. The correction pushes the particles
apart, thus preventing numerical instabilities from particle interpenetration.

In order to eliminate numerical artifacts, we performed several confirmatory sim-
ulations with more refined meshes in time steps, sampling points, Fourier harmonics
and critical inter-particle distance δh. Based on this verification and a compromise
between efficiency and accuracy, each particle was characterized by 63 Fourier har-
monics. 2048 sampling points were used to resolve the short-range hydrodynamics
interactions. The velocity of the particle membrane was calculated at 128 sampling
points. The minimal distance δh for which the particles were unaffected by the
collision-preventing procedure was 0.005 of the particle radius.

The choise of the number of harmonics for walls depends on channel length L, By
using harmonics from 256 to 1024, the residual wall velocity was found to be of very
small fraction of velocity in the center of the channel (with relative value less than
10−5, reducing to machine precision in many cases).

We define the dimensionless capillary number

Ca = ηoutγ̇wR
3
0/kb = γ̇wτc (2.10)

which describes the fluid strength over vesicle bending strength, or it can be inter-
preted as a ratio of a characteristic time scale for vesicle deformation (τc) and the
time scale of the imposed flow 1/γ̇w.

The problem has three dimensionless numbers: i) the viscosity contrast λ, ii) the
capillary number Ca, iii) the degree of confinement Cn = 2R0/W ; note that we have
fixed the reduced area to τ = 0.6 to represent RBC. The simulation box always has
its length L = 10W , which is validated as being long enough to eliminate artifacts
due to periodic boundary conditions [Thiébaud and Misbah, 2013]. We checked also
that all simulations results have numerical perimeter deviations less than 0.3%, which
is taken here to be as an acceptable value.

2.3 Results and Discussion

One main novelty of this study is to show the existence of several solutions, more or
less complex, for the same set of parameters. The traditional solution in a Poiseuille
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flow is the parachute solution. Other solutions have been classified as a slipper solution
[Kaoui et al., 2009] where the center of mass of the cell is not at the center-line, and
thus the overall shape in not symmetric with respect to the flow center-line. In
order to identify solutions which are different from the parachute one, it is natural to
define the lateral position of the vesicle as a simple measure for that deviation. This
deviation, denoted as h(t), is defined as

h(t) =
[
∮
mem

X(t) · ŷds]
WP

(2.11)

where ŷ is the unit vector of y (lateral) direction. h has its values ranging from −0.5

to 0.5, with 0 denoting center-line. The final lateral position can then formally be
defined as

hf = lim
T→∞

∫ T
0
h(t)dt

T
(2.12)

In practice, the simulation time should be large enough in comparison to the intrinsic
relaxation time τc. We start the simulation with a well relaxed vesicle with a biconcave
shape aligned along the flow direction. This choice is of course arbitrary, and any
other choice could be selected as well. We shall discuss later the impact of initial
conditions. h0 = h(0) denotes the initial lateral position. The simulation ran for long
enough time until a steady or periodic (or permanently chaotic in rare cases) pattern
is observed. Thus, hf can be approached by ht =

∫ T1
T0
h(t)dt. Here T0 and T1 are

chosen to guarantee that the transient effects have decayed before T0 and that the
time interval T0 − T1 is long enough to ensure the convergence of hf .

2.3.1 The Emergence of The Off-centered Final Position by
Increasing Viscosity Contrast

The viscosity contrast appears to be a factor having a strong influence on the solution
behavior. We exemplify the main finding of this investigation by fixing the two other
remaining parameters (Cn, Ca) = (2/7, 80). Recall Figs. 2.1a and b, this set
predicts a parachute final shape and hf = 0 for both cases with λ = 1 and
λ = 5. By acting on the initial position h0 from 0 to 0.4 with interval 0.05, we
observed an off-centered final position for λ = 5 with a slipper-like shape (Fig. 2.2b).

This off-centered final shape emerging at higher λ is found to be a robust feature.
The behavior of hf against λ is shown in Fig. 2.3a. When λ is larger than a critical
value λ(OC)

c ≈ 4, an off-centered stable branch emerged (h(OC)
f ). If a vesicle has its

initial position and viscosity contrast pair (h0, λ) residing in the red region in Fig.
2.3a, then the final position is off-centred h(OC)

f and the vesicle shape may be referred
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Figure 2.2: (a) Normalized lateral position versus time. Different curves h(t) corre-
spond to different initial positions, with λ = 1. All curves converge to hf = 0, which
corresponds to a parachute final shape; (b) h(t) curves obtained with λ = 5, where
vesicles start from an off-centered initial position (h0 ≥ 0.05), and they reach an off-
centered final position hf = 0.097. If instead we start from h0 = 0 we obtain hf = 0
(parachute shape), which has been reported in [Tahiri et al., 2013] (Fig. 2.1). The
stability of hf = 0 is validated by imposing small perturbations about the presumed
steady state solution.

to as a slipper shape. One may notice that when λ > λ
(OC)
c , the attraction domain of

h
(OC)
c is much wider than that of h(C)

c . This result would imply that a slipper shape
may be a more common scenario than parachute (Fig. 2.3c) in vivo, given the fact
that λ lies in the range around 5 ∼ 10 for healthy RBCs.

The coexistence of two stable branches in Fig. 2.3a (red and blue lines with filled
circles) is a prototypical behavior of a saddle-node bifurcation. The saddle-node
point is estimated from our simulations to be close to (hf , λ) = (0.072, 4). We have
indeed seen that simulations with initial position h0 = 0.05 or 0.1 (which are close to
hf = 0.072) both end up with their final position at the center-line. Recall that all the
simulations obtained in Fig.2.3a the initial shape is a flow-aligned biconcave shape.
However, when using an off-centered slipper as an initial shape (in Fig. 2.3b), while
keeping the same initial positions, the final position is off-centred h

(OC)
f . We have

checked and excluded the possible numerical artifacts such as deviation in perimeter
or reduced area. Thus, we believe this sensitivity to initial shape is an indication of
the saddle-node point.

Besides the off-centered slipper as a final shape, we also observed a parachute-
snaking shape pattern at λ = 10 and h0 ≤ 0.1 (see Fig. 2.3d). We will see below that
this snaking motion appears as an intermediate state between parachute and another



CHAPTER 2. THE EFFECT OF VISCOSITY CONTRAST 24

a)

0 5 10

0

0.1

0.2

0.3

0.4
Off-centered Slipperb)

Centered Slipperc) Parachute Snakingd)

Figure 2.3: The emergence of h(OC)
f and the corresponding final shapes, with confine-

ment Cn = 2/7: (a) The blue and red lines represent centered ( h(C)
f ) and off-centered

(h(OC)
f ) final position as a function of the bifurcation parameter λ. Simulations are

performed with different initial positions (h0) but with a flow-aligned biconcave shape,
represented by (red or blue) dots. All initial conditions within a given domain (blue or
red) yield a given final position, which is either h(C)

f (when initial data are in the blue
region) or h(OC)

f (when initial data are in the red region) depending on λ and h0. The
corresponding basins of attraction are colored in red or blue. The dashed line repre-
sents borders and are here plotted just as a guide for the eye. A parachute snaking
dynamics is observed when λ = 10 and h0 ≤ 0.1. (b), (c) and (d) are schematics for
final shapes and h(C)

f ) (the blue trajectory in (c))

steady shape.

2.3.2 The General Dynamical Diagram

Here we will summarize the main results. We have found that besides the viscosity
contrast, the confinement plays also a crucial role. We shows the diagram of solutions
against λ for different confinements, from W = 5R0 to 10R0 (corresponding to Cn =

0.2 ∼ 0.4) in Fig. 2.4. In this range of confinement, the phase diagram at λ = 1 (Fig.
2.1a) indicates either unconfined slipper or parachute shape. Let us analyze the effect
from λ for different Cn & 0.45 (Fig. 2.1). Comparing to results in Fig. 2.3a, two new
final positions associated to two final shapes emerged. The cyan color indicates a
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zone, where simulations started with parameter (h0, λ) ends up with a near-centered
final position (this final position is denoted as h(NC)

f ). Starting inside yellow zone
leads to a complex tumbling motion with an apparently chaotic behavior. Running
simulations for more than 500τc, we have found that the final position hf , as defined
in Eq. (2.12), oscillates between h(NC)

f and h(OC)
f in an apparently erratic fashion.

We observed that the off-centered slipper region (red zones in Fig. 2.4a) appears
when W & 5R0. Increasing W , the critical value λ(OC)

c for the appearance of the
off-centred position decreases. In the meantime, the whole red zone is also sweeping
leftward. This leftward shifting is also valid for the cyan colored region corresponding
to near-centered slipper region. The parachute snaking (represented by green vesicle
in Fig.2.4b) is viewed as an intermediate state between parachute and near-centered
slipper. The smallest region -where a complex tumbling motion prevails- (denoted in
yellow in Figs.2.4a and b), which can be viewed as the intermediate state between
the near-centered slipper and off-centered slipper, shifts towards the left side as well.
This general global while varying λ for differentW (or Cn) may be indicative that one
could find another representation of the results where both λ and W can be varied
following a certain functional dependence p(λ,Cn). In other words, instead of varying
both parameters independently, a single combination would be more relevant. The
diagram illustrating this is shown below.

The results of Fig. 2.5 are to be viewed as the projection of the results from the
parameter plane (λ,Cn) onto the single line p(λ,Cn). This function is considered to
be monotonic with respect to both λ and Cn, obeying ∂p/∂λ > 0 and ∂p/∂Cn < 0.
The degree of confinement Cn does not qualitatively change the behavior of vesicle
dynamics within the considered parameter range (1 ≤ λ ≤ 10, 1/10 ≤ Cn ≤ 1/2).
The simulation results in Fig. 2.4 and their robustness highlighted in Fig. 2.5 shows
that branch h(OC)

f is a saddle-node bifurcation, where h(OC)
f (red line in Fig. 2.5) and

the dashed line border of the red zone are its stable and unstable branches, respec-
tively. The branch h

(NC)
f results from a Pitchfork bifurcation out-of the parachute

solution. h
(NC)
f (cyan line in Fig. 2.5) and its negative image −h(NC)

f are the two
stable branches; h ≡ 0 is the unstable branch.

2.3.3 The Effects of the Capillary Number

The capillary number Ca is a measure of degree of membrane deformability. The
increase of flow velocity or the decrease of membrane bending modulus are typical
ways of increasing Ca. We investigated the same parameter set (h0, λ) as mentioned
in section 2.3.2 but with different values of Ca. We found no topological changes
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Figure 2.4: (a)Evolution of final positions and final shape diagram against channel
width (Confinement). The red, blue and green zones are as defined in Fig. 2.3a.
Two distinct final patterns emerged when W & 8. The yellow region represents
long term tumbling (longer than 500τc in simulation time) with apparently chaotic
dynamics. The cyan region represents a final slipper shape that is slightly different
from parachute (its final position is slightly away from center line). The dashed
lines are guide lines separating domains with different solutions. The notation λ(OC)

c

indicates the position of the border between red and blue regions. λ(NC)
c is the critical

value where transition from parachute to near-centered slipper happens. (b) Final
shapes observed in diagrams above, the colors indicate corresponding regions in those
diagrams. The dark green lines represent their final h(t) schematically. One may
notice the ascending order from centered parachute to off-centered slipper. This
order is always preserved when having λ fixed. The parachute snaking and complex
tumbling are considered as intermediate states of the other three steady states.
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Figure 2.5: A schematic plot showing an attempt to combine both Cn and λ into
a single parameter p. The black frames plotted with black solid lines (indicated by
arrows) are mappings of the diagram from h vs p back to h vs λ plot. One may notice
that each frame contains a similar diagram corresponding to simulation results (in
Fig. 2.4a). Final positions of the three steady shapes are plotted in blue (h(C)

f for
parachute), cyan (h(NC)

f , near-centered slipper), and red (h(OC)
f , off-centered slipper).

for off-centered slipper region (which has final position h
(OC)
f ), when comparing to

the diagram in Fig. 2.5. However, when Ca is decreased from 80 to 8 and then
to 4, we observed a significant shrinkage and even collapse (when W & 7R0) of the
parachute region, see Fig. 2.6. This observation was also reported in [Kaoui et al.,
2009]. The fact that this occurs for a capillary number of order unity is indicative
of the competition of the hydrodynamic stress and the bending resistance. Note that
for Ca . 8, the time needed to reach final shapes becomes long. For example, when
Ca = 4, λ = 4 and h0 = 0.4, it took about 103τc to reach the final position and final
shape. The dashed line with cyan color in Fig. 2.6 represents the terminal position
(near-centered slipper) for Ca = 4.

It is interesting to compare dynamics of two situations obtained for two extreme
capillary numbers. Consider the points A1 and A2 having as coordinates (Ca, λ, h0) =

(4, 6, 0.1) and (4, 6, 0.05) respectively. The second set of points are B1 and B2 having
as coordinates (80, 6, 0.1) and (80, 6, 0.05) respectively (see Fig. 2.6). When Ca = 80

the dynamics of both B1 and B2 exhibit complex tumbling motion, whereas when
Ca = 4 (points A1 and A2) show a stable near-centered slipper shape. The lateral
position curves (h(t)) and their corresponding shapes are plotted for the first 1000τc

in Fig. 2.7. When Ca = 4, both simulations with h0 = 0.05 and 0.1 lead to tumbling
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Figure 2.6: The evolution of final position hf with viscosity contrast for Ca = 4, 8
and 80. The colors and final positions share the same definition as in Figs. 2.4 and
2.5. In all these simulations, Cn is fixed at 0.2. It is confirmed that the off-centered
slipper is robust and exists for all explored capillary numbers. The parachute shape
is not preferred when Ca is small. When λ = 1, our simulation results are consistent
with the results from [Aouane et al., 2014b] (see Fig. 2.1a).

with small deformation, while their lateral position are gradually descends to reach
the final state. Supplementary simulations with initial position from h0 = 0.04 to
0.01 suggest that h(t) will keep descending until it reaches h(NC)

f – the final position
for near-centered slipper, although the whole tumbling process lasts for long time,
t ∼ O(104τc). For Ca = 80, the complex tumbling motion (for cases B1 and B2)
prevails. It is worth of mention that the shape exhibited in Fig. 2.7 for Ca = 80,
which may be called "trilobe shape" [Lanotte et al., 2016,Mauer et al., 2018] take
place here for a purely fluid system (i.e. in the absence of cytoskeleton elasticity);
This points to the fact that this shape is robust since it does not depend on the details
of the underlying structure. The domain of existence of this type of motion is shown
by yellow zones in Fig. 2.4.

2.3.4 Impacts on Rheology

Our goal in this section is to analyze the rheological properties of the suspension,
from very dilute to relatively dense suspensions. One objective in the dilute regime
is to make a link between the branches of solutions discussed above and the rheology.

Let us recall the basic results of the last sections. For values of confinement Cn
between 0.2 to 0.4 and viscosity contrasts 1 . λ . 10, we have seen from sections
2.3.1, 2.3.2 and 2.3.3, that the main effect of high viscosity contrast is the introduction
of an off-centered slipper shape ( with corresponding final lateral position denoted as
h

(OC)
f ). Moreover, we have seen that by exploring a wide large range of the capillary

number Ca (from 4 to 80), that for viscosity contrast in the range 4 . λ . 7, the



CHAPTER 2. THE EFFECT OF VISCOSITY CONTRAST 29

0.1

0.05

0.1

0.05

0.1

0.05

0.1

0.05

Ca = 4

Ca = 80

Case A1

Case A2

Case B1

Case B2

0 1000

Figure 2.7: Emergence of a complex attractor upon an increase of Ca: In all 4 cases,
λ is fixed at 6. When Ca = 4, both A1 and A2 yield h(t) curves with a downward
drift, which could imply a priori that this tumbling motion could be unstable. How-
ever, long time simulation confirms convergence of this solution. For Ca = 80, h(t)
corresponding to B1 and B2 always oscillate in a complex fashion between 0.05 and
0.1, illustrating the existence of a complex attractor, with a chaotic-like signature.
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off-centered slipper region has the largest attraction zone. Interestingly, this range
lies in the viscosity contrast value range for healthy RBCs.

We discuss below the viscosity of vesicle suspension. The (areal) concentration of
a vesicle suspension is defined as φ = n · πR2

0/(LW ), here n is the number of vesicles
in the suspension. The effective viscosity of vesicle suspension is defined by

ηeff ·Q(ssp) = ηout ·Q (2.13)

where ηeff denotes the effective viscosity, Qssp is the average flux of vesicle suspension,
Q is the flux of the pure fluid (with viscosity ηout) which is subjected to the same
pressure gradient as Qssp is. We recall that ηout is the viscosity of external fluid. The
intrinsic (or normalized) viscosity, [η] –which evaluate the contribution of a solute
(vesicles in this study) to the viscosity of a solution– can be defined as

[η] = lim
φ→0

ηeff − ηout
ηoutφ

(2.14)

The total velocity is composed of the imposed flow u0 (the first term of the right-
hand-side of Eq. (2.7) and the induced flow u(ind)(the terms represented by integrals
in Eq. (2.7)). One can express the normalized viscosity as a function of the induced
flow and the areal concentration. We straightforwardly find

[η] ≈ ηeff − ηout
ηoutφ

= − [u
(ind)
x ]

1 + [u
(ind)
x ]φ

≈ −[u(ind)
x ], (2.15)

where the last equality is valid in the dilute regime. [u
(ind)
x ] is the flow-aligned com-

ponent of a normalized mean induced velocity defined as

[u(ind)
x ] =

<
∫
u

(ind)
x dxdy >

ū0
x · nπR2

0

(2.16)

Here ū0
x is the mean velocity of the imposed flow, < · > is the time averaging operation

(for steady shape, it can be omitted), nπR2
0 is the total area of all vesicles immersed

in the flow. Through boundary integral formula (Eq. (2.7)) it can be seen that [u
(ind)
x ]

contains directly information on the vesicle shape, which depends on the dimensionless
parameters such as λ, Cn, Ca etc.. Analytical computation of [u

(ind)
x ] based on Eq.

(2.7) is not an easy task. Here, we evaluate it numerically with a equidistant spatial
mesh size ∆x = 0.1R0. Based on the concept of normalized mean induced velocity
[u

(ind)
x ] defined in Eq. (2.16), the local normalized induced velocity can be written as

U (ind)
x (r) =

u
(ind)
x (r)

ū0
x · φ

(2.17)
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Figure 2.8: Vesicles possessing different final shapes with the same parameter set
((Ca, λ, Cn) = (80, 6, 2/7)). The color map shows the flow-aligned component of the
normalized local induced velocity field U

(ind)
x (see Eq. (2.17), which has its mean

value approximately equal to −[η]. The off-centered slipper has its normalized vis-
cosity [η](OC) ≈ 0.24, and is about 15% smaller than its counterpart for the centered
parachute ( [η](C) ≈ 0.28)

Its mean value [u
(ind)
x ] (Eq. (2.15)), is approximately equal to −[η] when the suspen-

sion is dilute.
We plot the U (ind)

x fields for two distinct steady states: a centered parachute (as
show in Fig. 2.3c) and a slipper at an off-centered position (as shown in Fig. 2.3b)
respectively, fixing parameters at Ca = 80, λ = 6 and W = 7R0. A quick glance
to that plot shows that the figure which exhibits more darker blue color (Fig. 2.8a)
would provide the higher viscosity, since this is related to the negative average value
of the induced field.

Figure 2.9 shows hf and [η] as functions of λ including both center and off-centered
branches at Ca = 80. For Ca = 8 and 4, apart from an increase in the absolute
magnitude of[η], we observed no qualitative change in their corresponding diagrams.
We can summarize the observed trends into three classes:

i) for center parachute, the normalized viscosity is not sensitive to λ, but its
absolute value is approximately proportional to its corresponding Cn. ii) for off-
centered slipper (red curves in Fig. 2.9), its final position [η](OC) positively correlates
with [η]; iii) for near-centered slipper (blue curves in Fig. 2.9 where it has non-zeros
hf value), the increase of λ results in a slight decrease in [η].

The trend i) is obvious since both the shape and lateral position are almost pre-
served among different λs. This indicates only the presence of walls (and their width)
dictate the viscosity [η](C) For trend ii), we consider the off-centered final position as a
result of the balance between the lifting force from the wall (see [Seifert, 1999,Coupier
et al., 2008,Olla, 1997, Cantat and Misbah, 1999,Vlahovska and Gracia, 2007,Vla-
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Figure 2.9: Final position and normalized viscosity as a function of viscosity contrast.
The capillary number is fixed at Ca = 80.

hovska et al., 2009, Farutin and Misbah, 2013]) and the lateral migration towards
off-center direction when viscosity contrast is high (see [Farutin and Misbah, 2013]).
In the same time, the increase of h(OC)

f is accompanied by an increase of effective vis-
cosity (well-known as the Fahraeus-Landqvist effect [Fahraeus and Lindqvist, 1931]).
This effect is the main reason of the interdependency between h(OC)

f and [η](OC). For
trend iii), where the vesicle is almost at the center line, the Fahraeus-Landqvist effect
becomes negligible. Instead, the near-centered slipper (see its schematic shape in Fig.
2.4b), when compared to the parachute shape, has a smaller lateral extent in the
vertical direction and and in addition exhibits a tank–treading motion (meaning it
acts as a smoother obstacle to the flow in comparison to the parachute shape). Both
these two features trigger a slight decrease of the effective viscosity; this tendency is
is enhanced with λ. However, when W increase the slipper become more and more
off-centered and therefore its lag with respect to the imposed flow increases, resulting
into further dissipation. We observe then a cross-over where the off-centered solution
has higher viscosity than the parachute one.

2.3.5 Investigation of Rheology for Higher Concentrations

Here we would like to analyze the rheological properties for higher concentrations.
It was reported that under linear shear flow [Thiébaud et al., 2014] the suspension
organizes in files that lead to non monotonous behavior of the normalized viscosity
[η]. This behavior was a direct consequence of the confinement and of the fact that
the vesicles are subject to wall migration effect. In vivo the flow is of Poiseuille type,
and it is therefore important to see how the rheological properties are affected by
confinement.
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Figure 2.10: [η] and ηeff as a function of φ.

The normalized ([η]) and the effective (ηeff ) viscosities are plotted as a function
of concentration (φ) for different viscosity contrasts, λ = 1, 5 and 10 (see Fig. 2.10).
The other parameters are fixed as to Ca = 80, W = 7 and L = 8W . The number
of vesicle are nves = 2,5,8,16 and 32, corresponding to φ = 0.016, 0.04, 0.064, 0.128
and 0.256. Simulations are initiated with well relaxed vesicle shapes with random
positions within the channel. Figure 2.10 (top panel) shows the normalized viscosity
(which is a direct information on the effect of vesicle presence, related to the induced
flow) as a function of φ. An interesting feature emerges: [η] always decrease with φ
up to a concentration of about φ . 0.13. Below we shall provide some intuitive expla-
nation. It is interesting to note that the decrease occurs in a range of concentrations
corresponding to microcirculations values (which fall in the range 5 − 20% [Sutera
et al., 1970, Popel and Johnson, 2005]). In other words the system tries to reduce
dissipation in order to enhance the benefit of oxygen transport.

In order to explain the present behavior, we first refer to our previous results
for the case a single vesicle, which should remain valid in the small φ regime. For
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a)

b)

Figure 2.11: (a) Vesicles tend to form a single layer at φ . 0.13, exemplified by
simulation with λ = 10 (b) Vesicles are attracted by center parachute or near-centered
slipper solutions at φ = 0.016 an 0.064, but when φ = 0.04, the off-centered slipper
becomes becomes more stable.

λ = 5, we have observed in the single vesicle study, that the off-centered slipper
shape with lateral position h(OC)

f has a larger attraction zone. For φ = 0.04, after all
transient effects have decayed, all vesicles form steady a single profile at h(OC)

f position
(Fig.2.11b). In other words, the vesicles behave as if they were alone (hydrodynamic
interaction among vesicles is weak). We have seen that the slipper (for W = 7R0 and
λ = 5, see Fig2.9), [η] is smaller than that of the parachute solution. When adding
more vesicles, say two vesicles, their combined induced field is less dissipative than
the addition of two isolated vesicles.

2.4 Conclusion

In this work, the dynamical behavior of vesicles in a channel flow (under a Poiseuille
flow) is numerically studied. We have found several branches of solutions, such as the
centered parachute and slipper, snaking parachute, off-centered slipper, and complex
trilobe dynamics. This study highlights the complexity of dynamics, even for the most
simple 2D model with an incompressible membrane having only resistance against
bending modes. In particular, we have shown that the trilobe shape is not a property
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to be linked to membrane cytoskeleton, unlike the claim in [Mauer et al., 2018].
Of course, enriching the model by treating a full 3D model by incorporating the
shear elasticity may add an extra layer of complexity, but the existence of the above
modes are robust features which do not require further ingredients. We have analyzed
the rheology for different concentrations. We have linked the rheology to spatial
organization. We have shown that the decrease of the normalized viscosity [η] (Fig.
2.10) in the relatively small concentration regime does not occur only in linear shear
flow [Thiébaud et al., 2014] but also in the pipe flow, which is more relevant to blood
circulation. The origin of the decrease is not attributed to the organization into
parallel files of vesicles, but into a more subtle organization. For a dilute suspension
the cells tend to select their single-cell solution (slipper) in they gather together in a
way that reduce dissipation. The induced flow field in the gap between the two cells
benefits for a kind of screening. It is interesting to note that the viscosity decrease
occurs in a range of about 0− 15% which is more or less the range of hematocrit in
microcirculation. In some sense, the cells organize themselves in a way to reduce as
much as possible the increase of viscosity due to an increase of hematocrit. By this
way the cells try to enhance efficiency of oxygen transport. The effective viscosity in
this range of concentration increases very slowly (or even shows a tendency of plateau;
see Fig.2.10), which is translated into a decrease of the normalized viscosity.



Chapter 3

Development and Validation of The
Numerical Solver for
Fluid-Membrane-Solute Coupled
System

In this chapter we develop the advection-diffusion solver that deals with moving curve
boundaries. Diffusion of solutes is commonly present in many biological processes. In
the blood micro circulation system, solutes, such as oxygen and calcium molecules, as
well as Adenosine Triphosphate (ATP) and biochemical messengers, are released by
cells (like red blood and endothelial cells) and then diffuse and are advected by blood
flow. In addition, several targeted drug delivery strategies rely on an encapsulation
of chemicals and on their release in the blood stream at specific location. These
chemicals couple to blood flow, in which red blood cells (RBCs) constitute the major
component. Thus, the development of numerical codes which take into account both
dynamics of RBCs and their coupling with chemicals is of great importance for many
biomedical applications. We develop here a lattice-Boltzmann based solver that deals
with generic moving boundary conditions in an advection-diffusion field representing
the chemicals. The boundary condition of the solutes at the cell membrane is based
on a modified bounce-back scheme. We prove analytically that it enjoys second or-
der precision. In section 3.3 We validated the solver with several examples and then
coupled it with a solver for a suspension of RBCs, we developed previously. As a first
application we exemplify our method on the problem of liposome drug delivery in
arterioles. The results show that for a rigid drug carrier at a scale of about 1 µm,
the presence of RBCs facilitates the drug absorption along the vessel wall. We also
demonstrate the possibility of applying this solver to the release of chemicals induced

36
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by membrane shear stress, a feature which is omnipresent in mechano-involved sig-
naling processes. As a way of example, we briefly study the problem of ATP release
by RBCs. We point out several possible generalizations.

3.1 Introduction

In many biological processes the presence of the cytoplasmic membrane plays an
important role regarding molecular and ion (active and passive) transport from the
cytoplasm towards the extra cellular environment and vice versa. Examples are abun-
dant in blood circulation. For instance, red blood cells (RBCs) can release oxygen as
well as ATP in the microcirculation zone depending, in particular, on the partial oxy-
gen pressure as well as on the cell membrane shear stress [Forsyth et al., 2011,Zhang
et al., 2018]. Other examples are encountered in cell signaling processes in blood
circulation, such as blood vessel endothelium signaling pathway that modulates va-
sodilation [Davies, 1995,Yamamoto et al., 2000,Ando and Yamamoto, 2013], or the
lymphatic calcium dynamics [Zawieja, 2005,Jafarnejad et al., 2015]. The problem of
chemical transport in a flow constitutes also an active field of research in biotech-
nologies, such as targeted drug delivery which relies on an encapsulation of chemicals
within liposomes which are then released at specific sites; the release is triggered either
by intrinsic properties (e.g. local shear stress) or by means of an external stimulus
(e.g. ultrasound) [Needham et al., 2000, Allen and Cullis, 2013, Akbarzadeh et al.,
2013, Sercombe et al., 2015, Kaoui, 2018]. All these examples involve an intimate
coupling between blood flow and chemical transport. In other words, the chemi-
cal species, besides reactions and diffusion, are advected by the flow. In addition,
the chemical species are bound within moving and deformable domains (e.g. RBCs,
drug carriers, such as liposomes, etc.) and when released they encounter RBCs as
major obstacles in the blood. This problem requires handling the coupling between
the moving boundaries, the flow field and chemical transport with specific boundary
conditions on the membranes of the suspended entities (e.g. liposomes, RBCs) which
describe the criterion dictating the chemical release. For example, some protein chan-
nels may open or not regarding ATP release from RBC, depending on the local shear
stress, and so on [Forsyth et al., 2011, Zhang et al., 2018]. This task is, in its full
generality, quite complex and presents several numerical and conceptual challenges
to be described below.

The main purpose of this chapter is to propose an advection-diffusion method
in a domain which contains a suspensions of deformable particles (like RBCs or li-
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posomes). The method (and its numerical implementation) should handle both the
evolution equations of the fluid flow (Navier-Stokes equations) and of the chemicals
(advection/diffusion equations) inside and outside the suspended particles, which con-
stantly move and deform in response to hydrodynamics forces (and possibly due to
an external stimulus). This problem will be formulated and solved by a lattice Boltz-
mann method (LBM). The solution of the pure fluid flow by LBM has now become
quite classical [Zou and He, 1997,He and Luo, 1997,Chen and Doolen, 1998, Succi,
2001,Mohamad, 2011,Krüger et al., 2017]. The diffusion/advection problem is now
becoming an emerging field of research from both physical and numerical aspects [Mo-
hamad, 2011,Krüger et al., 2017,Huang et al., 2009,Lee et al., 2010,Markl and Körner,
2015,Chen et al., 2013a]. To the best of our knowledge, a LBM with general mov-
ing boundary with Dirichlet (the boundary concentration is specified) / Neumann
(the normal derivative is specified) / Robin (a linear combination of boundary con-
centration and its normal derivative is specified) condition has not been addressed yet.

We will develop here a LBM for the diffusion-advection problem and couple it with
the fluid solver. The formulation of the coupling of the fluid flow to the chemicals
adds an extra layer of complexity. A formidable task is to properly handle the chem-
ical boundary conditions on a curved and moving interface (the cell membrane). We
will see that both the curvature as well as the moving boundary character pose a
challenge. The difficulty arises from the fact that the chemical concentration can
be discontinuous at the boundary, unlike the velocity field which is continuous and
where the so-called immersed boundary method (IBM) has been successfully applied.
Except for some specific situations (the diffusion profile is smooth; the profile has a
finite thickness across the membrane) [Peskin, 2002,Feng and Michaelides, 2004,Yang
et al., 2009,Huang et al., 2009,Lee et al., 2010,Lee et al., 2010,Chen and Lai, 2014],
the use of IBM for general problems remains to be shown.

A generic type of boundary conditions at the membrane that we will deal with is
the so-called Robin boundary condition. Attempts to resolve general Robin boundary
condition by LBM on static curved boundary have been made [Gebäck and Heintz,
2014, Zhang et al., 2012, Chen et al., 2013b, Li et al., 2013, Huang et al., 2016]. In
these cases the handling of boundary conditions requires both a complex interpolation
strategy and local curvature information, which obstructs its parallel implementation
for arbitrary moving curved boundaries. In [Huang and Yong, 2015], Huang et al
proposed a scheme for general Robin condition on piecewisely linear segments (which
are parallel to the mesh segment) with second order precision. The formulation of
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the boundary condition is derived via asymptotic analysis [Junk et al., 2005,Yoshida
and Nagaoka, 2010], and requires only local information. Later on in [Huang et al.,
2016] an extension of this scheme for curved boundaries with second order precision
has been proposed. However, this scheme turned out to present a complicated in-
terpolation strategy which is shape-dependent and requires information on the local
curvature. This strategy is difficult to adopt for a moving boundary problem due
to the tremendous number of information needed at each time step. This makes the
scheme practically quite inefficient, or even unfeasible for some particular shapes (e.g.
triangles where the curvature is undefined at the vertex).

In order to circumvent the problem of inefficiency for parallel implementation and
challenges raised by some specific shapes for moving boundaries, we have developed,
by still adopting the general Robin boundary condition scheme from [Huang and
Yong, 2015], an interpolation scheme which is simpler than in [Huang et al., 2016].
Indeed, our scheme takes into account only a single neighboring lattice point to the
membrane, instead of several lattice points [Huang et al., 2016]. It will be shown here
that the simplified version enjoys the same precision as the method of [Huang et al.,
2016], but at the same time it offers the possibility of efficient (parallel efficiency) and
robust handling of arbitrary and moving boundaries.

In addition to the above complexity due to boundary shape, the motion of the
boundary in itself raises another problem. Indeed, in the course of time lattice points
belonging to a domain lying on one side of the membrane may shift to the other side,
and vice versa. Thus, we must identify at each time step the points which have been
swept by the moving boundary. This requires an interpolation and / or extrapolation
scheme in order to properly reset the values of the concentration field (in the classical
fluid-structure interaction problem , this is the so-called refilling procedure [Lallemand
and Luo, 2003]). Our method is similar in spirit to this, but with some improvement.

Due to the general complexity of the problem we will focus here on a 2D geometry.
The implementation of the chemical problem in LBM is based on the so-called D2Q5-
BGK model (2 dimensional, 5 velocity and Bhatnagar-Gross-Krook single relaxation
time). To efficiently exploit the parallelization benefit of LBM, the implementation
is fully based on a graphic processing unit (GPU) parallel architecture, namely Com-
pute Unified Device Architecture (CUDA). Several tests are performed in order to
demonstrate the precision and validity under static and moving boundary conditions.

After having performed several validation tests, we integrate this solver into a
well-validated immersed-boundary coupled Navier-Stokes LBM solver [Shen et al.,
2017a]. We then present two main applications: (i) we study the liposome drug
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delivery (caused by an external stimulus) problem and analyze the main outcome.
Recent studies on this problem have focused on the mixing effect [Kabacaoğlu et al.,
2017, Kaoui, 2018] for a given velocity field (i.e. without coupling the membrane
dynamics to the solute). Another study has analyzed advection-diffusion under steady
flow for a given shape (a cylinder) [Gekle, 2017]. Here we extend these studies to the
case where the suspended entities (e.g. model of RBCs) are both deformable (free
moving boundaries) and coupled to the advection-diffusion of the solute. We find
that the coupling to the RBCs significantly affects the results regarding the drug
adsorption at the vascular wall. (ii) We shall adapt the method to the case where
the membrane boundary condition depends on the local shear stress, with the aim
to analyze mechano-involved signaling process in micro-circulation. Of particular
interest is the problem of ATP release from RBCs that will be briefly analyzed.

3.2 Methods

Since the problem of solving the Navier-Stokes equations by LBM has by now become
quite classical [Zou and He, 1997,He and Luo, 1997,Chen and Doolen, 1998, Succi,
2001,Mohamad, 2011,Krüger et al., 2017], we will focus on the convection-diffusion
problem, and only briefly recall the LBM for the fluid when needed. The proposed
method can handle several solutes which are coupled to each other. However, for
ease of presentation we will consider a single solute only. In addition, we will restrict
ourselves to a two dimensional domain (denoted as 2D), and thus our model of RBC
will be a 2D contour made of an inextensible membrane. It will be recognized that a
generalization to many solutes, as well as to 3D, is straightforward. Let c denote the
concentration of a given solute that depends on space and time. In its full generality
c obeys the following equation

∂c

∂t
+ u · ∇c = ∇ · [D(t,x)∇c] +R(c, t,x) (3.1)

u is the velocity field (supposed to be known for the moment), t ∈ R+ and x ∈ R2

are time and spatial coordinates, respectively. For simplicity, we assume here that
the diffusion coefficient D is constant. The reaction term R can be handled (see
below) within the LBM method, albeit we will not investigate here any application
involving reaction. A non-overlapping moving boundary (say a RBC model in 2D)
curve is explicitly defined as B(t, s) = [X(t, s), Y (t, s)], here X and Y are Cartesian
components of a given membrane point, s is a scalar parameter, which can typically



CHAPTER 3. LBM SOLVER FOR CHEMICAL DISPERSION 41

be chosen as the local arc length. By adopting the non-slip condition assumption at
the membrane, the boundary is advanced by the adjacent fluid velocity

∂B

∂t
= u(t,B) (3.2)

If s is chosen as the local arc-length, the normal vector of the boundary is de-
fined as n(t, s) = [−∂Y/∂s, ∂X/∂s], while tangential vector is defined as t(t, s) =

[−∂X/∂s,−∂Y/∂s]
The solute concentration c and the corresponding flux J = uc − D∇c are, in

general, discontinuous at the boundary. By defining c±(B) = limε→0± c(B + εn), (c±

in short), the general Robin boundary condition (an equation which combines both
Neumann and Dirichlet conditions) along the two sides of the moving boundary B

can be written as {
α+

1 c
+ + α+

2 n · ∇c+ = α+
3

α−1 c
− + α−2 n · ∇c− = α−3

(3.3)

A schematic of the moving boundary and some definitions are shown in Fig. 3.1a.

3.2.1 Advection-Diffusion Lattice Boltzmann Method

We adopt the so-called D2Q5 BGK model (2 dimensional 5 velocities and a single
relaxation time) to formulate a convection-diffusion lattice Boltzmann scheme. Com-
pared to the classical D2Q9 models (used for the fluid solver [Zou and He, 1997,He
and Luo, 1997,Chen and Doolen, 1998,Succi, 2001]), D2Q5 requires a smaller memory
usage and lends itself to an easier treatment for the geometry of the moving boundary,
both of which are important for acceleration in a GPU parallel context. In addition,
there are numerical evidences that D2Q5 may enjoy a better stability against D2Q9
for the diffusion problem in some particular situations such as at low or intermediate
Peclet numbers [Li et al., 2017,Suga, 2006].

Let ∆x and ∆t denote the spatial and temporal mesh sizes, the discrete micro
velocities are defined as

[
c0 c1 c2 c3 c4

]
=

[
0 1 −1 0 0
0 0 0 1 −1

]
∆x

∆t
(3.4)

This notation means that the velocity ci has its components in the x−y plane given by
the ith column of the matrix. We will define a particular speed as cs = (∆x/∆t)/

√
3

(which would be called the sound speed in the traditional fluid problem, but here
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a

b

Figure 3.1: A schematic of the convection-diffusion problem in the presence of a mov-
ing boundary: a) physical boundary B(t, s) is piecewisely continuous with countable
discontinuities in its derivative. Boundary conditions expressed by Eq. (3.3) are im-
posed along each side of the curve. Arrows along the curve show the monotonously
increasing direction of s. b) Geometrical information of the physical boundary which
is discretized into a series of boundary pairs (a square and a circle which are located on
the nearest lattice points from the boundary). Boundary conditions are reinterpreted
on the zigzag (dash-dot) line
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it only has a formal analogy). The direction of ci is defined by the unit vector
ĉi = ci/|ci|.

Denoting the micro distribution function as gi(t,x), its temporal evolution follows
the two main steps:

(i) the collision step

g∗i (t,x) = gi(t,x) +
1

τ
(geqi − gi(t,x)) + wi∆tR (3.5)

(ii) and the streaming step

gi(t+ ∆t,x) = g∗i (t,x− ci∆t) (3.6)

Here g∗i is known as the post-collision distribution function, wi is the weight factor
valued as w0 = 1/3 and w1,2,3,4 = 1/6, and τ = 3D·(∆t/∆x2)+1/2 is the dimensionless
relaxation time. The equilibrium distribution function is

geqi = wic

[
1 +

u · ci
c2
s

]
(3.7)

which depends on the macro concentration c and velocity u. The relation between
the micro distribution function and the macro concentration is simply given by

c =
4∑
i=0

gi (3.8)

It is proven via an asymptotic analysis (see [Yoshida and Nagaoka, 2010,Huang
and Yong, 2015] and Appendix A.1) that Eqs. (3.5)-(3.7) converge to the convection-
diffusion Eq. (3.1) with a second-order precision when ∆t/∆x2 ∼ O(1). A brief
derivation is provided in Appendix A.1. We define the dimensionless diffusivity and
velocity (in the lattice Boltzmann units) as

D
′
= D ·∆t/∆x2

u
′
= u ·∆t/∆x

(3.9)

The relaxation time τ and D′ are related by (see Appendix A.1)

τ = 3D
′
+ 1/2 (3.10)
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B

M P

Figure 3.2: A typical boundary lattice is highlighted as the hollow circle. gi(t,x) is to
be calculated from boundary condition (see text). The curved boundary needs to be
interpolated onto the zigzag boundary (dashed-doted line). This process is done via
finding a value α(mid)

3 imposed on zigzag boundary which is consistent with c = α
(mid)
3

(Dirichlet) or ∂c/∂ĉī = α
(mid)
3 (Neumann) on the curved boundary value problem. ĉi

is the unit vector parallel to ci, ĉī = −ĉi.

3.2.2 General Moving Boundary Condition Treatment

Since the boundary treatments on both sides of the membrane (Fig. 3.1) are identical
from the technical point of view, we only discuss the handling of c−. Thus below, we
omit “±” sign in (3.3). We will split the general Robin boundary conditions given by
Eq. (3.3) into two pieces (and then combine them in the general case). The first one
is the Dirichlet condition written as

c = α3 (α1 = 1, α2 = 0) (3.11)

and the second one is the Neumann condition written as

∂c

∂n
= α3 (α1 = 0, α2 = 1) (3.12)

3.2.2.1 Treatment for Static Curved Boundary

The moving boundary treatment is composed of two steps. The first one is to deal
with the shape itself at a given moment (a static boundary), while the second one
consists in reconstructing the boundary lattice points when they flip from one side of
the membrane to the other due to the motion of the free boundary.

The static boundary treatment follows closely (with some important modifica-
tions; see below) that given in Refs. [Huang and Yong, 2015, Huang et al., 2016].
The authors there first extended the halfway bounce-back scheme (known for fluid
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solvers) to the convection-diffusion LBM. This modified scheme is suitable for the
type of the boundary shown by the dashed-dotted lines in Figs. 3.1 b and 3.2). For
that boundary (which will be called hereafter zig-zag boundary) all its intersecting
points with the lattice mesh segments are defined at the middle of the mesh segments
(dashed-dotted lines in Figs. 3.1 b and 3.2; M is one representative point). Since this
scheme requires only local information, it lends naturally itself to an efficient parallel
implementation.

Recall that in Fig. 3.1 a physical boundary is discretized into a series of boundary
pairs. Assuming there is a boundary lattice point that resides at position x (see Fig.
3.2, the hollow circle and hollow square provide an example of a typical boundary
pair), due to the existence of boundary B, the distribution function gi(t + ∆t,x)

cannot be determined from streaming Eq. (3.6). Indeed, if x is the hollow blue circle,
then the streaming operation given by Eq. (3.6) (where the argument of the right
hand side is x − ci∆t) would propagate the information from the hollow red square
to the hollow blue circle (see Fig. 3.2). The streaming procedure will fail due to
the presence of the boundary, and thus the determination of the evolution of gi at a
boundary point, designated by x, requires a special treatment.

The concentration field (or its normal derivative) is specified at the real boundary
(a representative point is P in Fig. 3.2) to be equal to α3 (for Dirichlet boundary
condition). The discretized boundary has a representative point denoted as M, at
which the concentration (still unknown) is denoted as α(mid)

3 . Below we show how
is this value determined from α3 and the concentration field at point x. Once this
task is performed, we have at our disposal the concentration field inside the domain
of interest, satisfying the boundary condition. The idea is then to use the Boltzmann
equation in order to determine the sought-after micro-distribution appearing on the
left hand side of Eq.(3.6) as a function of the post-collision distribution at point (t,x)

and the macro concentration field at the discretized boundary (Eq. (3.13)). The proof
is given in the Appendix A.2 and the result is given by (for Dirchlet and Neumann
conditions)


gi(t+ ∆t,x) = −g∗ī (t,x)+

1

3
α

(mid)
3 for c = α

(mid)
3

gi(t+ ∆t,x) =
1 + 3u · ĉi
1− 3u · ĉi

g∗ī (t,x)+
D
′
∆x

(1− 3u · ĉi)
α

(mid)
3 for ĉi · ∇c = α

(mid)
3

(3.13)
The streaming equation given by Eq.(3.6) is substituted by the above equation for
any lattice point x lying next to the boundary. Our analysis presented in Appendix
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A.2 shows that the scheme has a second-order precision. This is consistent with the
direct numerical estimates [Huang and Yong, 2015].

Let us now show how to determine α(mid)
3 . An interpolation procedure was de-

veloped in [Huang et al., 2016] for such a purpose, but it requires information from
several lattice points. In addition, the selection of interpolating points is geometry-
dependent. A simpler procedure is required for a practical implementation of moving
boundaries and parallel computation. Here, we only use a single neighboring lattice
point (x + ci∆t in Fig. 3.2).

Interpolate α(mid)
3 for Dirichlet condition

We perform a simple linear interpolation. Let us define the normalized distance p
(Fig. 3.2) between points x and P. The idea is to use the concentration gradient
at x at previous time step to linearly interpolate α(mid)

3 out of the concentration field
(or its derivative) at the real boundary (where c = α3 for a Dirichlet condition) and
at x. The concentration at point M and at time t+ ∆t is given by

α
(mid)
3 =


α3 + (p− 1

2
)∆xĉi · ∇c(t,x) if p ≤ 1

2
α3

2p
+ (1− 1

2p
)c(t,x) if p >

1

2

(3.14)

This interpolation has a second-order precision. The separation into two cases
(p > 0.5 and p < 0.5) is dictated by numerical stability.

Asymptotic analysis shows that the concentration gradient can be reconstructed
locally in terms of the micro-distribution with one-order precision procedure [Yoshida
and Nagaoka, 2010,Huang et al., 2016]

∇c =
1

∆tc2
s

[
uc−

4∑
i=0

cigi

]
+O(∆x) (3.15)

Interpolate α(mid)
3 for Neumann condition

Since the zigzag boundary has its normal vector ĉī which is different from n, the
reconstruction of α(mid)

3 involves tangential derivative as well. It is easily seen that

α
(mid)
3 =

∂c

∂ĉī

= ĉī · n
∂c

∂n

∣∣∣∣
M

+ ĉī · t
∂c

∂t

∣∣∣∣
M

(3.16)
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The normal derivative at M can be obtained from P and first order extrapolation
from x,

∂c

∂n

∣∣∣∣
M

=


α3 + (p− 1

2
)

(
∂c

∂n

∣∣∣∣
x

− ∂c

∂n

∣∣∣∣
x+ĉi

)
if p ≤ 1

2

α3

2p
+ (1− 1

2p
) · ∂c

∂n

∣∣∣∣
x

if p >
1

2

(3.17)

The tangential derivative of c at point M is unknown, so we will express it in
terms of the value at x and at the neighboring point x + ĉi. A linear extrapolation
yields

∂c

∂t

∣∣∣∣
M

=
∂c

∂t

∣∣∣∣
x

+
1

2

(
∂c

∂t

∣∣∣∣
x

− ∂c

∂t

∣∣∣∣
x+ĉi

)
(3.18)

Finally, we consider the general Robin boundary condition, which is a linear com-
bination of Dirichlet (Eq. (3.11)) and Neumann (Eq. (3.12)) boundary conditions.
It reads

α1c+ α2
∂c

∂n
= α3 (3.19)

Similar to [Huang et al., 2016], we reduce the Robin condition back to a Neumann
problem by approximating the boundary concentration c in the term α1c in Eq. (3.19)
with its value at previous time step. Since the boundary position is off-lattice (see
point P in Fig. 3.2), the value of c on the boundary is evaluated with concentration
value on the nearest boundary lattice and corresponding gradient information (see Eq.
(3.15)). Recalling the diffusive scaling assumption mentioned at the end of section
3.2.1, namely D

′
= ∆t

∆x2
D ∼ O(1), it is obvious that the introduced error by this

approximation merely introduces a second order error term.

3.2.3 Treatment of the Moving Boundary

When dealing with an interface two questions arise: (i) how is the interface being
advanced in the course of time, and (ii) how is the interface being discretized and the
boundary conditions implemented. The first point is quite classical: once the veloc-
ity field is known then the interface is simply advected by the local velocity (using
Euler scheme). In this case the velocity is defined on the fluid lattice, whereas the
interface is off-lattice. In order to transfer the fluid velocity information from the
lattice to the interface the immersed boundary method is used [Peskin, 2002, Feng
and Michaelides, 2004,Yang et al., 2009, Shen et al., 2017a]. This is what we adopt
here. For the diffusion problem, we have to specify how is the boundary condition
imposed on the interface. The first step is to determine the discretized interface as
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described in Fig. 3.1. This procedure is different from the IBM, since our interface is
defined as a geometrical one (a sharp interface description) and not as a thin strip as
is the case with the IBM . The reason for this treatment is that, unlike the velocity
field, the concentration field (and its derivatives) is generically discontinuous at the
interface, so that the IBM is inappropriate for handling this situation with enough
precision. Some exceptions are observed for a special type of boundary conditions
as described in [Huang et al., 2009, Lee et al., 2010, Lee et al., 2010,Chen and Lai,
2014]. Once the interface is discretized the boundary terms are evaluated and then
transfered to the concentration lattice points in order to deal with the LBM at the
interfacial region (see Eq. 3.13).

After each interface motion (obtained thanks to the fluid velocity) we have to re-
solve the problem of points flipping from one side of the interface to the other side.
A possible type of treatment is the so-called refilling procedure [Lallemand and Luo,
2003]. In this method, a point which passes from one side to the other has to be con-
nected to new neighbors located on the same new side. The new distribution function
value of the point having passed the interface is evaluated as an extrapolation from
its new neighbors. Here we will use a similar strategy but in a more refined manner,
as described below. Our procedure is dealt with in three steps: (a) at a given time we
have configuration shown in Fig. 3.3a with 4 boundary lattices (shown with empty
red squares). At this moment the boundary treatment is done as if the boundary were
fixed at that configuration. (b) At later time the boundary moves to configuration
shown in Fig. 3.3b where, for example, a new boundary point (in addition to the
previous four), shown with empty magenta square, enters the domain. In [Lallemand
and Luo, 2003] the distribution function of the new boundary point is obtained by
extrapolation from its neighbors shown in red in Fig. 3.3b. Our treatment is slightly
different. The idea is to ignore first that new point (since we do not yet dispose of the
value of its distribution function), and take into account the boundary motion thanks
to the new 4 distances that the 4 red square points make with the new boundary
position. We then calculate the distances p for each of the boundary neighboring
points (p was described previously in Fig. 3.2, and was represented in Fig. 3.3 with
a red dashed line) and evaluate the boundary conditions according to Eqs. (3.13 to
3.17). (c) In the third step, we evaluate the distribution function at the new point
(shown with a hollow magenta square in Fig. 3.3c) by using information from its
neighbors, as explained below.
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a cb

Figure 3.3: The procedures dealing with the moving boundary problem: (a) at that
time step, we treat the boundary condition as a static boundary. (b) at intermediate
time step, keep the boundary grids fixed, calculate the intersection length p due to
boundary movement (defined in Fig. 3.2), and deal with the new boundary condition
with the p value (even if it is larger than 1). (c) Search for neighboring lattice points
in the set S(ref), and then calculate the new distribution function value via Eq. (3.20)

The natural neighbor interpolation based on Voronoi tessellation [Novak and
Slepchenko, 2014] or linear/quadratic interpolation [Lallemand and Luo, 2003] could
be implemented. In order not to introduce too many branching operations into mov-
ing boundary treatment, we used a simple linear interpolation instead (which lends
itself to efficient parallel implementation and is robust even when the membrane un-
dergo high distortions). Our analysis has led us to postulate the following relation
for the distribution function at the new points swept by the boundary

gk =

∑
k′∈S(ref) wk′(2gk(t,x + ck′)− gk(t,x + 2ck′))∑

k′∈S(ref) wk′
(3.20)

Here S(ref) is a collection of subscripts defined on a lattice point , which flipped from
Ω+ to Ω− in the new time step (see Fig. 3.3). An index k belongs to S(ref) only if
both x+ ĉk and x+2ĉk belongs to Ω−(t) and Ω−(t+∆t) in both previous and present
time step. We have postulated equation (3.20) from linear extrapolations and a set
of intuitive weight factors as defined in section 3.2.1. We have successfully tested
these weight factors by a number of numerical experiments (examples of validation
will follow). Similar extrapolations (for rigid moving boundaries) were adopted for
fluid and solute problems in [Yin et al., 2012,Chen et al., 2013a].
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3.3 Validations

3.3.1 Validations with time-dependent problems and static
boundaries

3.3.1.1 A pure diffusion problem in an irregular domain

We first validate this boundary condition scheme by treating a time-dependent dif-
fusion problem in the presence of a static boundary. This problem has an analytical
solution [Hu et al., 2018]. A periodic square domain is defined as Ω = [−1, 1]×[−1, 1],
with the presence of an internal boundary

B = [r(θ) cos(θ), r(θ) sin(θ)], θ ∈ [0, 2π)

here r(θ) = 0.4 + 0.1 cos(3θ). As the internal boundary is closed, it divides Ω into Ω−

and Ω+, which are the external and internal domains respectively. We focus on the
solution in Ω−. The analytical solution is given by [Hu et al., 2018]

c(ana)(t, x, y) = 1 + 0.5 exp
(
−2π2tDa

)
cos(πx) cos(πy) for (x, y) ∈ Ω−

Here Da is a dimensionless diffusion coefficient in some arbitrary units. Its value
is set here to 0.1. The above solution is valid for both Dirichlet and Neumann condi-
tions The above concentration field satisfies the pure diffusion equation with initial
condition

c|t=0 = c(ana)(0, x, y)

and a corresponding Dirichlet type boundary condition

c|B = c(ana)

or a Neumann type boundary condition

∂c

∂n

∣∣∣∣
B

= ∂nc
(ana)

here n is the normal vector pointing from Ω− to Ω+. We tested numerically both
boundary conditions.

The choice of relaxation time τ in simulation is quite flexible. As we have seen
in Eq. (3.9) and Eq. (3.10), once the lattice mesh size ∆x and relaxation time τ are
fixed, the total number of the simulation steps can be given by

N (step) =
T

∆t
=

TDa

∆x2D′
=

3Da

∆x(τ − 0.5)
· T
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Figure 3.4: The relative error against the mesh size in the static three-leaves problem
from [Hu et al., 2018].

For definiteness, we fixed T = 1 (in an arbitrary unit). Simulations with different
values of relaxation time were tested, namely τ = 0.625, 0.75 and 1. The numerical
results are then compared to the analytical solution c(ana) at this particular time
T = 1. We define the numerical relative error of concentration c(num) as

E(∆x) =
||c(num) − c(ana)||
||c(ana)||

(3.21)

where || · || is the euclidean norm. A second-order convergence is observed (see Fig.
3.4).

3.3.1.2 An advection diffusion problem in an irregular domain

Secondly, we test this boundary condition scheme against a dimensionless advection
diffusion problem in an irregular domain, which has an analytical solution [Huang
et al., 2016]. The computational domain is defined as Ω = {(x, y) ∈ R2|φ(x, y) < 0},
here φ(x, y) is a scalar field which reads

φ(x, y) = x4 − 5x2 − 3x+ 2y4 − 6y3 − y − 1

The time dependent advection diffusion problem is governed by
∂

∂t
c(t, x, y) +∇ · (uc) = ∇ · (D∇c) + S, (x, y) ∈ Ω, , t ∈ [0, T ]

The velocity field is set to be a constant, u = (1, 0) and D is a constant scalar. The
time dependent source term S is

S = (x3 + y3)ω cos(ωt) + [3x2 −D(6x+ 2)] sin(ωt)
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The initial condition is given as

c|t=0 = 0, (x, y) ∈ Ω

The boundary condition, which is defined on the zeros of φ(x, y), can be defined as
either Neumann type or Robin type. For Neumann condition, it reads as

∂c

∂n

∣∣∣∣
φ=0

= (3nxx
2 + 2nyy) sin(ωt)

For Robin condition, it is given by(
c+

∂c

∂n

)∣∣∣∣
φ=0

= (x3 + y2 + 3nxx
2 + 2nyy) sin(ωt)

Here nx and ny are components of the normal vector pointing outward. This problem
has an analytical solution

c = (x3 + y2) sin(ωt)

By following [Huang et al., 2016], we set D = 1 and ω = 1. A computational domain
[−3, 3] × [−2, 4] is uniformly meshed into N × N lattices. For the Robin condition,
the value of c on the boundary is obtained by the values at the boundary lattices
and the gradient information (see Eq. (3.15)) at previous time step. By choosing
different τ and mesh size ∆x = 6/N , the numerical results at T = 1 are compared
with the analytical solution. A second order convergence is observed (see Fig. 3.5).
Despite the fact that there is only a single neighboring point to a given boundary
lattice point and no curvature information (recall Fig. 3.2) used in this boundary
treatment, the relative error is of the same magnitude compared to the results from
[Huang et al., 2016] (recall that in that work several neighboring points and boundary
curvature information are employed). The relative error against the different choices
of relaxation time τ is gathered in Fig. 3.6. This results suggests a choice for the
relaxation time in the range τ ≤ 1 (see Fig. 3.6) for all time-dependent problems.
Our numerical experiments revealed that this choice favors stability. Indeed, we found
that for both Neumann and Robin type boundary condition, simulations with a large
relaxation time could be unstable (e.g. τ = 3 and N = 16 lead to divergence). We
identified that the instability i-results from extrapolation of tangential gradient in
Eq. (3.18). Note that omitting the extrapolated term can make the simulation more
stable with large relaxation time but the precision of the boundary treatment will
degrade down to first-order.
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Figure 3.5: The relative error against the mesh size in the advection diffusion problem
in an irregular domain from [Huang et al., 2016].
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Figure 3.6: The relative error against relaxation time τ in the advection diffusion
problem in an irregular domain from [Huang et al., 2016]. The lattice mesh size is
fixed as N = 128.
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3.3.2 Moving Boundary Validation

Now we perform some validation tests on a problem with moving boundaries. The
first example is a cylinder (which is a circle in 2D, and contains some solute) advected
by a constant velocity. The second case consists of a deformable opaque surface that
enclose a solute and which is distorted by a rotational velocity field.

3.3.2.1 An Advected Leaking Reservoir

Consider the dimensionless model in which a cylindrical reservoir is advected by a
constant velocity u0 in a periodic box Ω = [−a/2, a/2] × [−b/2, b/2]. The boundary
of the advected reservoir is described as

B(t, θ) = [r0 cos(θ) + u0xt,−r0 sin(θ) + u0yt] , θ ∈ [0, 2π)

where r0 is the radius of the cylinder. A solute concentration field c is defined on Ω

and obeys

∂

∂t
c(t, x, y) +∇ · (u0c) = ∇ · (D∇c), (x, y) ∈ Ω, t ∈ [0, T ]

The initial condition is set as

cini =

{
1 inside reservoir
0 outside reservoir

The concentration along the internal and external sides of B are denoted as c−(t, θ)

and c+(t, θ) respectively. The normal vector points into the outward direction. The
solute is leaking from the reservoir into the external zone, and this leakage is described
by the following boundary condition at the cylinder surface

D
∂c−

∂n
= −D∂c

+

∂n
= k(c− − c+)

Parameters are fixed as r0 = 0.8, a = 4, b = 2, D = 1, and k = 1. The concen-
tration fields acquired with two different constant velocities u0 = [a/T, 0] or [0, 0] are
compared at T = 1. The contour plots of the numerical solution with ∆x = b/512 is
shown in Fig.3.7

The boundary concentration values, c− and c+, are evaluated thanks to the con-
centration values and their gradients at the lattice points (see Eq. (3.15)). Since u0

is constant, one can infer from Galilean invariance that the actual concentration field
in case of u = [a/T, 0] should be identical to the case with zero advection velocity.
However, the numerical errors may affect the Galilean invariance. Therefore, it is
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Figure 3.7: Snapshots for the concentration field for u = [a/T, 0] (left side) and
u = [0, 0] (right side) respectively. In both simulations, we have set ∆x = b/512
and τ = 1. Since the only difference between the left side simulation and the right
side one is that the concentration field is advected by a constant velocity, it should
be identical to the concentration field on the right side up to a translation (Galilean
invariance). This property is accurately reproduced in this simulation, although the
LBM is based on an Euclidian mesh. The preservation of Galilean invariance is crucial
to scenarios with long term advection such as cell membrane flowing in channels of
realistic length.
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Figure 3.8: Relative error against ∆x in the case of a cylindrical reservoir being
advected by a constant velocity

important to check if this property is preserved after long simulation time (see the
comparison at T = 1 in Fig. 3.7). τ is fixed 1 in these simulations. The numerical
solution for ∆x = b/1024 and u0 ≡ 0 is used as a reference solution from which the er-
ror is calculated when non zero velocities are considered. A second-order convergence
is obtained (Fig. 3.8).

3.3.2.2 A Reservoir that undergoes rotation and distortion

In this case we consider a divergence-free rotational velocity field u = [ux, uy] (see the
vector fields in Fig. 3.9 colored in gray) in a simulation box Ω = [−1, 1]× [−1, 1].{

ux = −0.5[1 + cos(πx)] sin(πy)

uy = 0.5[1 + cos(πy)] sin(πx)

A localized circular reservoir is initially defined with its centroid at x0 = [0.5, 0]

with radius r0 = 0.3. Its boundary is denoted as B. The reservoir is then subjected
to a rotating velocity field, thus, the motion of the reservoir boundary is ∂B/∂t = u.
A concentration field c is defined on this simulation box, governed by the advection-
diffusion equation A zero-flux Neumann condition is imposed on both sides of the
reservoir boundary B. A representative Dirac delta function is used as an initial
condition c0 = δ(x− x0). We set the Peclet number to Pe = max (|u|)/D = 50. The
imposed velocity field is expected to extremely elongate and distort the reservoir.
This extreme distortion will constitute an interesting test of the code robustness.
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Figure 3.9: From left to right, up to bottom we show the numerical solution of the
concentration field at T = 0.125, 0.5, 2 and 8, in which ∆x = 1/512 . The vector
fields in gray represent the rotational velocity field.

The advancing of the distorted reservoir boundary is conducted by means of a 4th

order Runge Kutta method, under which, the numerical error of reservoir area is
adequately suppressed. A numerical solution (obtained with via ∆x = 1/512 and
τ = 0.75) is presented in Fig. 3.9. We measure the error at T = 1, when the shape is
still easily resolvable for lower mesh ∆x = 1/16. The finest mesh ∆x = 1/2048 is used
to estimate the relative error calculation (3.21). A convergence rate between first and
second order (around 1.45, see Fig. 3.10) is observed. We attribute this to the loss of
resolving geometry information when the mesh size is not small enough. For example,
in the case where ∆x = 1/32, in Fig. 3.10, the maximum width of the shape is
represented by only 7 lattice points, which may cause a significant inaccuracy during
the reconstruction process of the zigzag numerical boundary. Despite the relative
degradation of the quality of precision (from the expected order 2 down to order 1.5)
the code robustly handles extreme distortions, such as the situation shown at T = 8

in Fig. 3.9.
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Figure 3.10: Relative error against ∆x in the case of a cylindrical reservoir being
advected and distorted by a rotational velocity field u

3.4 The Arteriole Thrombosis Drug Delivery Simu-
lation

The validations (section 3.3) have proven that the numerical method’s capability of
dealing with advection, rotation and distortion of a moving boundary, with even
quite ample deformation patterns (or even extreme) under flow. We now implement
this solver for the study of a first practical example, the arteriole thrombosis drug
delivery. This example is inspired by previous numerical studies on simplified models
for liposome drug release in channel flow [Gekle, 2017,Kaoui, 2018]. We consider a
liposome that encapsulate some drug to be released in a blood vessel. We take here
into account both the plasma fluid and the RBCs.

Liposomes are closed membranes, and are considered as promising targeted drug
carriers. They have typical diameters ranging from 100 nm to 1µm [Sercombe et al.,
2015]. They are suitable means for carrying hydrophilic drugs to a particular location
in the organism where they may release their content thanks to an external stimulus
(for example ultrasound excitation) or when the surrounding fluid shear stress reaches
a critical value (shear stress is the highest in arterioles). Although there exist various
types of liposomes depending on the precise purpose, we consider it here to be com-
posed of a single lipid bilayer. Actually in 2D and for an incompressible membrane
there is only a single mode of deformation (bending), and there is no real distinction
between different models (vesicle, capsule, red blood cell, etc...).
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We consider a straight long channel for the arteriole model, with a Gaussian hill
shaped obstacle on one side of the vessel wall to represent the thrombosis (Fig. 3.11).
We adopt a 2D vesicle as a crude model for RBCs (we will nevertheless use the ab-
breviation RBC in what follows). An immersed boundary coupled lattice Boltzmann
method is employed to resolve the fluid-membrane coupled system, which means, the
motion of the RBCs as deformable boundaries is performed by the immersed bound-
ary method [Peskin, 2002,Feng and Michaelides, 2004,Yang et al., 2009]; for details of
the solver we adopted, see [Shen et al., 2017a]. A liposome is initially located at the
upstream of a thrombosis site, surrounded by RBCs suspended in the solution. The
liposome encapsulates a water-soluble drug with concentration c0 = 1. Its membrane
is initially impermeable to the drug. Then the liposome is advected by blood flow
until it reaches a particular distance from the thrombosis, where an external stimulus
is assumed to make the liposome membrane becoming permeable to solute. After
this external excitation, we assume the liposome to become fully transparent to the
drug solute. A schematic representation is given in Fig. 3.11 to show the simulation
layout.

We would like to evaluate how the flow pattern and the RBCs presence affect
the drug delivery process. For that purpose we consider 3 different situations, one
without RBCs at all, the second one with passive RBCc (i.e. RBCs are completely
transparent to the drug), and finally a realistic case in which the RBCs are opaque to
the drug. In all the three cases we consider a complete absorption condition along the
vessel walls (zero-value Dirichlet condition). When RBCs are considered as opaque
to solute, the boundary conditions at the RBC membrane and at the wall reads

∂c

∂n
= 0 on RBCs membrane

c = 0 on vessel walls
(3.22)

When we consider a transparent RBC model, we relax the first above boundary
condition.

3.4.1 Preliminaries on the fluid–membrane–solute system

Hereby we simply recall the modeling of 2D membrane problem. A 2D unstretchable
closed membrane is used for the RBC model, and has a bending elastic modulus
κb = 3 × 10−19J [Betz et al., 2009, Kaoui et al., 2011]. The membrane force is
obtained from the Helfrich energy

H(X(t, s)) =
κb
2

∮
κ2ds+

∮
ζds
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Liposome RBCs

Figure 3.11: A schematic representation of liposome drug delivery process near an
arteriole thrombosis. The top panel represents some time before drug release, and
the bottom one represents the situation after drug release. The colormap represents
the concentration of drug solute. The liposome becomes transparent after it reaches
a particular distance from the thrombosis

Here X(t, s) is the position of RBC membrane, κ is the local curvature, ζ is a Lagrange
multiplier that enforces local membrane inextensibility, and s is the curvilinear coor-
dinate. The membrane force (which is obtained as a functional derivative of H with
respect to X(t, s)) is applied as a bulk force (albeit localized close to the membrane,
in an immersed boundary spirit) to the fluid

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · (η∇u) +

∮
δH

δX
· δ(x−X)ds

Then, the velocity field u is used to advance the membrane shape

∂X

∂t
=

∫
δ(x−X)u(x)dxdy

We define the Capillary number as Ca = µexγ̇wR
3
0/κ = 10, where η is the fluid

viscosity (which is position dependent, so that it can be taken to be different inside
and outside of the RBC, if need be; see later). γ̇w is the flow shear rate at channel
wall in the absence of thrombosis, liposome and RBC, R0 is a characteristic radius
of the RBC, R0 =

√
A/π. A reduced RBC area is defined as RA = 4πA/P 2, A

and P are constant area and perimeter, respectively. RA is an index that quantifies
the roundness of the RBC, and taken here as RA = 0.7. For the RBC model we
take R0 = 3µm, whereas for the drug carrier (liposome, for which we adopt the same
membrane model as the RBC) we take RA(lip) ≈ 0.997 (a quasi-circular shape) and
a radius R(lip)

0 = 1.8µm. In the whole simulation we keep the Reynolds number Re =

max(|u|)R(ves)
0 /η ≈ 0.2. The channel width and length are W = 7.5R

(ves)
0 and L =

75R0, thus the simulation box is Ω(vessel) = [−37.5R0, 37.5R0] × [−3.75R0, 3.75R0].
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The Hematocrit value 31.3% is taken for RBCs, which cor responds to 56 representing
cells in the channel. The thrombosis is shaped as

y = ht · exp

[
−1

2

(
x− L/2
wt

)2
]

Here ht = 0.5 ·W and wt = W are the height and the width of the shape.
Studies [Zhao et al., 2012,Kumar and Graham, 2012,Gekle, 2016,Müller et al.,

2016,Krüger, 2016,Guckenberger and Gekle, 2018] have shown that due to the lipo-
somes size, their rigidity and flow conditions, margination effect will drive them to
the so called cell-free layer (CFL) near the vessel wall. Our long term simulation also
confirmed this tendency. However, in the absence of RBCs, the liposome remains
at its initial lateral position while being advected by the flow along the channel. In
order to be able to compare the results with those obtained in the case where RBCs
are present (and thus margination prevails) we selected the initial liposome position
in the CFL, 1.25R0 distant from the upper vessel wall. We use the following criterion
for drug release: the liposome is impermeable to solute until its centroid reaches a
given distance from the thrombosis, below which it becomes transparent. In these
simulations we have set that distance to x(permeation) = −17.5R0. We have in mind the
situation where the liposome develops small pores that allows solute release, whereas
the liposome maintain its overall membrane integrity.

We set ∆x = 0.15 µm and Pe = max(|u|)R(ves)
0 /D = 10 and 100, which corre-

sponds to typical drug solute diffusivities D ( 10−10 and 10−11 m2/s). Prior to the
study of interest (0 value Dirichlet condition in Eq.(3.22), we have tested our code
with zero-flux boundary condition on vessel walls in order to check numerically the
mass conservation. We have found that loss of mass is always smaller than 1.5%.

3.4.2 Results

We show the solute absorption curve by vessel walls for 6 different cases in Fig. 3.12
(a). The normalized absorption level is defined as

R(t) = 1−
∫∫

c(t)dxdy∫∫
c(0)dxdy

(3.23)

The integration is simply treated as summation among all pixels, which will in-
troduce an error term of order 1% magnitude only.

It is found that for both Pe = 10 and 100, whether we have transparent RBCs
or no RBcs at all (solid lines and dashed lines in Fig.3.12 (a)) the absorption rate
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Figure 3.12: (a) The solute absorption rate as a function of time for Pe = 10 and 100.
(b) The normalized lateral position of the liposome as a function of time with or
without RBCs’ presence. In both cases the liposome is close to the wall. The vessel
wall is at position 0.5 and the center-line at position 0.
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Figure 3.13: (a) The normalized absorption rate along the upper wall, calculated from
Eq. (3.24). (b) Corresponding solute concentration distribution at γ̇t = 66.7, both
in the presence and absence of RBC; Pe = 100.

is practically the same. We believe this is due to the liposome’s lateral position
near the vessel wall (Fig. 3.12 (b)), where the normalized distance between liposome
centroid and the wall y(lpsm)(t) is always small enough, so that the absorption curve
is diffusion-dominated, rather than advection-dominated. However, when RBCs are
opaque, we find an increased absorption, shown by dotted lines in Fig. 3.12 (a)). A
close inspection suggests that RBCs, as solute barrier, obstruct the diffusion of solute
from liposome to the channel center. Consequently the gradient is increased towards
vessel wall; is proportional to normalized absorption rate along the upper wall:

fabsp(t, x) = − D

γ̇R0

∂c

∂y

∣∣∣∣
y=3.75R0

(3.24)

Figure 3.13 shows the absorption rate together with RBCs configuration and the
solute pattern at the thrombus location. Here again, we notice the higher absorption
rate due to the presence of RBCs playing the role of solute barriers.

In conclusion, when having high enough Hematocrit (31.3% in this study) and
high enough rigidity of liposome which lead to margination, the presence of RBCs
facilitates the vessel wall absorption process. This is mainly due to the impermeability
of RBC membrane to the solute. One can speculate that increasing of Hematocrit will
strengthen the absorption, although further investigations are needed before reaching
a definite answer.
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3.5 ATP release from Red Blood Cells under Flow
Stimulus

The study of mechanosensing of solute release (or the lack thereof) ca be handled
by coupling the boundary conditions with other information such as the membrane
shear stress. We demonstrate here a possible application of our solver in a fluid-
membrane-solute coupled scenario, which is the problem of release of ATP (Adenosine
Triphosphate) from RBCs under shear flow. Experimental studies have shown that
when RBCs undergo flow originated shear stress, they can release ATP, a universal
energy carrier and messenger molecule that plays important role in vessel dilatation
[Wan et al., 2008,Forsyth et al., 2011]. It has been shown in [Forsyth et al., 2011] that
the amount of ATP release depends on whether RBC undergo tank-treading (TT)
or tumbling (TB). In our 2D model a transition from TT to TB can be achieved by
varying the viscosity contrast between the internal and the external fluids. A shear
flow is generated in a simulation box [W,L] = [12.5R0, 25R0] by moving the upper and
lower walls with the same speed but opposite direction. The solute (ATP) boundary
condition on the upper and the lower correspond to zero-flux condition, with periodic
boundary conditions along the flow direction. The RBC is initially located at the
center of the shear flow. We define the viscosity contrast as λ = ηin/ηout, here ηin
and ηout are the viscosity of internal and external domain of the RBC. Experiments
have shown that viscosity (as well as the shear rate) contrast is a key parameter
to the motion of RBCs under shear flow [Fischer et al., 1978a, Tsubota and Wada,
2010, Fischer and Korzeniewski, 2013]. For low enough λ (to be specified below), a
vesicle (or 2D RBC) tends to exhibit TT motion, whereas for higher λ TB prevails.
We adopt a simplified model of the ATP release, which is a Heaviside step function
for shear stress condition (namely, the release takes place only if the local membrane
shear stress exceeds a certain value). Thus, the Neumann boundary condition along
the membrane for the solute release from RBC towards the external fluid reads

D
∂c

∂n
=

{
γ̇w/P if σ > σ0

0 if σ ≤ σ0

Recall that P is the perimeter of the RBC, γ̇w the wall shear rate, defined in
section 3.4. σ is the shear stress along the membrane, defined as

σ = ηout
∂ut

∂n

where ut is the fluid velocity along the membrane tangent.
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Figure 3.14: ATP fields under different viscosity contrast values. For λ = 1, the
vesicles undergo tank-treading motion, while for λ = 8, the tumbling motion prevails.
In the tumbling regime the release pattern along the membrane is more inhomoge-
neous, but the overall released concentration is lesser than in the tank-treading regime
(λ = 1).

The critical value of the shear stress is set to σ0 = 0.07Pa, and is inspired by
in vitro experiments [Forsyth et al., 2011]. We use the ATP diffusivity DATP =

2.36× 10−10m2/s, which leads to the Peclet number Pe = γ̇wR
2
0/D = 1.91. The ATP

concentration field snapshots is shown in Fig. 3.14 with λ = 1 (TT) and λ = 8 (TB).
Our results show that qualitatively an increase of viscosity contrast reduces the ATP
release. In other words, the TB regime triggers less release than the TT one. This
finding is consistent with experimental observations [Forsyth et al., 2011]. Actually
the problem is more subtle, since not only the local shear stress matters, but also
the cell deformation amplitude. By taking into account both effects, we have been
able to reproduce both qualitatively and quantitatively the experimental results. An
extensive study is devoted to this question in a different publication [Zhang et al.,
2018].

3.6 Conclusion

In this chapter, we developed a 2D lattice-Boltzmann based advection-diffusion solver
for curved moving boundaries for both Dirichlet, Neumann and linear Robbin bound-
ary conditions. In most cases, a second order convergence is achieved. For highly
distorted boundaries, a convergence between first and second order is observed. The
boundary scheme requires only one neighboring lattice point with simple strategy,
allowing for efficient GPU parallelization.

Since the advection-diffusion solver is designed for generic usage, its implementa-
tion for other problems, such as two-sided coupling cases is straightforward. More-
over, the scheme is based on a simple pixelization of curved boundary, with the help
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of parallel voxelizer, implying that the extension to 3D is also feasible.
We coupled this solver to a well-validated immersed boundary lattice-Boltzmann

fluid-vesicle solver and implemented the resulting code for the study of liposome
based hydrophilic drug delivery problem. We confirmed that with an assumption of
instant absorption on vessel wall, when the liposome margination effect is strong, the
presence of red blood cells facilitates the absorption. We have also demonstrated the
potential of using this solver for shear stress induced cell-signaling process, and have
exemplified it for the problem of ATP release by RBCs under flow.



Chapter 4

ATP Release by Red Blood Cells
Under Flow: Model and Simulations

In this chapter, we discuss the Adenosine Triphosphate (ATP) release from red blood
cells (RBCs) under flow. ATP is a major player as a signaling molecule in blood
microcirculation. It is released by RBCs when they are subjected to shear stresses
large enough to induce a sufficient shape deformation. This prominent feature of
chemical response to shear stress and RBC deformation constitutes an important link
between vessel geometry, flow conditions, and the mechanical properties of RBCs,
all contributing factors affecting the chemical signals in the process of vasomotor
modulation of the pre-capillary vessel networks. Several in vitro experiments have
reported on ATP release by RBCs due to mechanical stress. These studies have
considered both intact RBCs as well as cells within which suspected pathways of ATP
release have been inhibited. This has provided profound insights to help elucidate
the basic governing key elements. Yet how the ATP release process takes place in the
(intermediate) microcirculation zone is not well understood. We propose in section
4.3.2 an analytical model of ATP release. The ATP concentration is coupled in a
consistent way to RBC dynamics. The release of ATP, or the lack thereof, is assumed
to depend on both the local shear stress and the shape change of the membrane. The
full chemo-mechanical coupling problem is written in a lattice Boltzmann formulation
and solved numerically in different geometries (straight channels and bifurcations
mimicking vessel networks) and under two kinds of imposed flows (shear and Poiseuille
flows). We show in section 4.3.3 that our model remarkably reproduces existing
experimental results. In section 4.4 we pinpoints the major contribution of ATP
release when cells traverse network bifurcations. General conclusion is made in section
4.6. This study may aid in further identifying the interplay between mechanical
properties and chemical signaling processes involved in blood microcirculation.

67
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4.1 Introduction

ATP is known not only as an energy carrier but also as a prominent signaling molecule
in many physiological processes [Khakh and Burnstock, 2009]. A notable example is
the case of blood flow where RBCs have the ability to release ATP under several
types of stimulus. Experimental evidence [Khakh and Burnstock, 2009] supports the
idea that ATP is capable of modulating vasomotor tone in the microcirculation via
diffusion towards endothelial cells (ECs) which then in turn elicit a vasodilation re-
action cascade of the smooth muscle of the arteriolar trees, without nerve ending
intervention. In vivo studies [Sprague et al., 1996] confirmed that ATP release by
RBCs due to shape deformation played a vital role in pulmonary vascular resistance
modulation. In recent years, systematic in vitro experimental studies revealed that
ATP release by RBCs is quite sensitive to low oxygen level, to shear stress and to
sufficiently high shape deformation [Sprague et al., 1998a,Dietrich et al., 2000,Wan
et al., 2008, Forsyth et al., 2011]. This mechanical-dependent release is believed to
play an important role in the microcirculation, since in these zones (e.g. in arterioles
and capillaries) the shear stress is the highest and shape deformations may become
quite large. The actual ATP concentration level as well as its heterogeneities (e.g.
its gradient) has most likely a potential role in a global and precise understanding of
"RBC to EC to smooth muscle" signaling pathway and related pathologies. This is at
present a quite ambitious task that is beyond the objective of this study. Rather, here
we shall concentrate on the first basic question, on how the geometry of networks, the
flow properties and RBC dynamics affect the ATP concentration in microcirculation.

Although direct access to high resolution spatio-temporal ATP concentration pat-
terns in micro-vessel networks is a formidable task, statistical analysis in in vitro
studies provided some essential key elements. Along this line Forsyth et al. [Forsyth
et al., 2011] performed an in vitro study in which RBCs were subjected, for a long
enough time period, to various levels of shear stress. ATP release was measured sub-
sequently and compared with the amount of ATP obtained under static conditions.
By varying the amplitude of the shear stress, two distinct ATP release pathways were
hypothesized from previous experimental studies [Sprague et al., 1998b,Chasan et al.,
2002, Locovei et al., 2006,Ellsworth et al., 2009,Forsyth et al., 2011]. One pathway
is triggered by the amplitude of the shear stress, whereas the second one requires
sufficiently large RBCs shape deformation. Both pathways were shown to be shear
stress dependent. More precisely, when the shear stress was non-zero but below a
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critical value (3Pa in their experiment), most of RBCs perform tumbling (flipping in
a shape-preserving manner) with a very limited deformation. In this case, the release
level of ATP was quite independent of the amplitude of the shear stress once the
threshold value was crossed. Beyond a second critical value of shear stress, a large
proportion of RBCs underwent tank-treading motion with large shape deformation.
In this case, the total ATP amount showed a monotonic increase with shear stress.
Other experimental studies of RBCs passing through a narrow channels [Wan et al.,
2008] have also pointed to the fact that when the characteristic shear stress on the
RBC increased from around 0.02Pa to 0.1Pa, a release of ATP was observed with a
time delay in the range of 20− 70ms.

The experimental evidence reporting on the link between membrane shear stress,
shape deformation and the level of ATP release, has motivated theoretical studies in
an attempt to explain the ATP release mechanism on a molecular level. In [Gov and
Safran, 2005], the authors proposed a possible pathway, in which, the deformation
creates cytoskeletal defects, from which actin molecules are freed. Subsequently, actin
molecules aggregate on cystic fibrosis transmembrane conductance regulator (CFTR)
which causes its activation in favor of ATP release. Yet the CFTR is believed to
modulate ATP release in an indirect manner, that is to up-regulate the so-called
Pannexin 1 hemichannel (Px1). Actually, Px1 is believed to be the main avenue for
ATP release from the RBC membrane. It is directly sensitive to mechanical stress, as
well as to cytoplasmic oxygen and calcium levels. Experiments have also reported on
a presumable mechanism from Piezo1, a cation channel which responds to membrane
shear stress by allowing calcium influx [Saotome et al., 2017]. An elevation of calcium
level is known to facilitate Px1 activation for intracellular ATP release.

In vivo, RBCs are constantly exposed to flow where they experience various levels
of shear stress and deformation. Several numerical studies on RBC dynamics in the
circulation reveal nontrivial steady or time-dependent shapes. In [Kaoui et al., 2009],
a vesicle model (where the membrane is made of a pure lipid bilayer) was employed
to represent the RBC. A complex diagram of single vesicle dynamics was reported
later in [Kaoui et al., 2011] and [Aouane et al., 2014b].

Despite the oversimplification of the vesicle 2D model, several similar shapes were
also found subsequently in more elaborate 3D models, which included the membrane
cytoskeleton [Fedosov et al., 2014,Quint et al., 2017]. This points to the fact that the
simplified 2D vesicle problem captures several important RBC shapes and dynamics.
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The two main ingredients of this ATP release model are (i) the local shear stress,
(ii) the deformation amplitude. Both effects are present in 2D and 3D. We do not
expect a qualitative difference between 2D and 3D, since the two modes of motion
(Tumbling and Tank-treading) are exhibited in both 2D and 3D. However, we have to
keep in mind that the 3D properties of RBC may become essential. For example, RBC
is endowed with network of spectrins (cytoskeleton) and that it may undergo large
deformation as comaperd to a 2D model. These factors are expected to quantitatively
shift the results. To cope with the complex problem of ATP release, we shall adopt
here a 2D vesicle model and focus on the most important RBC dynamics related to
ATP release, namely the local shear stress and local membrane deformation, leaving
more advanced 3D simulations to the future.

Here, our major goal is to propose a model of ATP release and its coupling with
membrane shear stress and shape deformation. The basic elements of the model of
ATP release are guided by in vitro experimental data [Forsyth et al., 2011,Wan et al.,
2008] and inspired by the molecular mechanism involving RBC shape deformation
[Gov and Safran, 2005]. To the best of our knowledge this is the first model of ATP
release from RBC under flow. As we will see, the model is inspired by existing in vitro
shear experiments and will be validated by reproducing the experimentally observed
features.

Once the model is established, we shall use a lattice Boltzmann method to in-
vestigate it numerically under microcirculation conditions. A complex issue is the
handling of the advection-diffusion problem on a moving and deformable boundary.
The implementation of coupling the ATP release to the fluid flow were discussed in
chapter 3. We propose an empirical ATP release model which remarkably reproduces
the essential ATP patterns reported experimentally under shear flow. This model
will be analyzed in a systematic way for different scenarios in the microcirculation.
More precisely, we consider a pipe flow with various steady or unsteady shapes of
RBC, then the scenario of a RBC hitting a bifurcation, and finally the post-hitting
lateral migration and its relation to ATP release. The ATP release is found to show
a strong dependence on RBC dynamics. Finally, we present some general conclusions
and future directions.
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4.2 Methodology

4.2.1 The Model of RBC Dynamics and The Coupling to The
Chemical Problem

Under shear flow, both vesicles (in 2D and 3D) and RBCs exhibit two main modes:
tank-treading (the cell or vesicle acquires a given orientation while the membrane
rotates around the center of mass) and tumbling (a quasi solid-like flipping). The
two modes will be denoted as TT and TB, respectively. For vesicles, TB occurs
at high enough internal fluid viscosity with respect to the external one, while TT
prevails at low enough internal viscosity [Vlahovska et al., 2009]. For RBCs [Fischer
et al., 1978b, Tsubota and Wada, 2010, Fischer and Korzeniewski, 2013, Abkarian
and Viallat, 2008], the transition from TB to TT can be achieved by increasing shear
stress. For low shear stress, RBCs exhibit TB, while for large shear stress, we have TT.
Experiments reported [Forsyth et al., 2011] that the ATP release critically depends
on the dynamical mode (TT or TB). Thus, it is sufficient to consider a 2D vesicle
which is known to exhibit both TT and TB.

X(s) refers to the coordinate of the vesicle shape defined on a 2 dimensional space
x = (x, y), with s ∈ [0, P ) the curvilinear coordinate (local arc length), where P is
the perimeter of the vesicle. Ωin refers to the vesicle internal domain with a constant
area A, whereas Ωex designates the ’plasmic’ domain. The reduced area is defined as
τ = 4πA/P 2 to quantify the deflation of the vesicle. τ = 1 corresponds to a circle,
while any other shape corresponds to τ < 1. R0 = 3µm is a characteristic radius of
the vesicle, which is defined by πR2

0 = A. In the vesicle model, the Helfrich bending
energy [Helfrich, 1973] is adopted in order to extract the membrane force:

H(X(s)) =
κ

2

∮
c2ds+

∮
ζds (4.1)

κ is the bending rigidity modulus, c is the local curvature, s is the curvilinear coor-
dinate, and ζ is a Lagrange multiplier which enforces local membrane inextensibility.
The force per unit length along the membrane can be obtained thanks to a functional
differentiation f(s) = δH

/
δX(s).

The vesicle is immersed into an incompressible flow field u, thus its shape evolution
obeys

∂X

∂t
=

∫
δ(x−X)u(x)dxdy (4.2)

The fluid velocity u is defined on domain x ∈ [0, L] × [−W/2,W/2], (L is the
domain length, W is the width). It satisfies the incompressible continuity condition
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∇ · u = 0, as well as the momentum conservation condition

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · (µ∇u) + F(x) (4.3)

Here ρ is the fluid density, F =
∮

f(s) · δ(x−X(s))ds is the force that the vesicle
applies on the fluid. µ is the dynamic viscosity, and takes two generally distinct values
inside and outside the vesicle:

µ(x) =

{
µin if x ∈ Ωin

µex if x ∈ Ωex
(4.4)

The viscosity contrast is defined as the ratio between internal and external vis-
cosity λ = µin/µex.

The capillary number is defined as Ca = µexγ̇wR
3
0/κ, and represents the ratio

between the applied shear force and the bending force. γ̇w = ∂ux/∂y|y=−W/2 is the
shear rate at y = −W/2. For a linear shear flow the shear rate is constant. However,
this is not the case for a pipe flow and this is why we have to specify the definition
of what is meant by the typical shear rate.

The chemical problem can be described without reference to any specific molecule,
albeit later we will focus specifically on ATP. The concentration, defined on domain
Ωex is denoted as a(t,x), and it obeys, in general, the diffusion-advection-reaction
equation. In its full generality, the concentration evolution equation takes the form

∂a

∂t
+ u · ∇a = ∇ · (D∇a) +R (4.5)

where D ' 2.36 × 10−10m2/s is the ATP diffusion coefficient in plasma, with its
value taken from [John and Barakat, 2001]. R is a reaction term. In what follows,
we will set it to zero, since we will be exclusively interested in ATP release not
involving reactions. The Peclet number is defined as Pe = γ̇wR

2
0/D , which ranges

approximately from 1.0 to 200 in our simulations.
On the vesicle membrane, if n denotes the normal vector towards Ωex, the bound-

ary condition of ATP release is set as

D
∂a

∂n
= ψ(S(s)) (4.6)

This equation yields the total ATP flux across the membrane, which is a priori an
unknown function of the precise membrane state at a given point of the membrane.
ψ(S(s)) is the ATP flux across the membrane, and it constitutes the main focus of the
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a

b

Figure 4.1: A schematic view of the studied configuration: (a) shows the case of a
linear shear flow obtained by imposing the velocity of the upper and lower walls; (b)
shows a similar configuration but for a Poiseuille flow, the imposed flow is generated
by a bulk force term fbulk which ensures a parabolic profile with maximum velocity
umax. In both configurations the ATP concentration a is defined on Ωex, and a
Neumann boundary condition is imposed on the moving boundary X(s).

modeling. The vector S can be viewed as a collection of local states of the membrane.
We will see later how ψ(S(s)) can be inferred after a close inspection of experimental
facts. Finally, and for simplicity, we impose that the concentration obeys periodic
boundary conditions along x and has zero-flux across the bounding walls. Schematics
of model configuration can be found in Fig. 4.1.
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4.2.2 Lattice-Boltzmann Model for Fluid - Membrane - Solute
Coupling

An Immersed-Boundary Lattice Boltzmann Method (IB-LBM) is implemented based
on an identical numerical algorithm from [Shen et al., 2017b]. By choosing a pseudo
Reynolds number of around 0.1, the method is well validated against the well estab-
lished boundary integral method (BIM) in the Stokes limit (for BIM see [Thiébaud
et al., 2014]). A similar lattice Boltzmann scheme is developed in chapter 3 to solve
the advection-diffusion equation (equation (4.5) and (4.6)). This advection-diffusion
solver has been validated against known analytical benchmarks as well as against
the Galilean invariance tests for static and moving boundaries. The code was devel-
oped under Compute Unified Device Architecture (CUDA) in order to benefit from
GPU acceleration, allowing for the fluid - membrane - solute coupling simulation
within an acceptable computational time. The numerical methodology is introduced
in chapter 3. The general numerical procedure for the boundary condition and the
immersed boundary method can be found in [Krüger et al., 2017,Ladd and Verberg,
2001,Tsubota and Wada, 2010,Huang and Yong, 2015]. In this work, the calculation
of membrane curvature and membrane shear stress is conducted via simple finite dif-
ference method, with first order precision. A more accurate shear stress calculation
method based on LBM distribution functions proposed in [Krüger et al., 2009] could
be employed in the future.

A similar study but with a static boundary has been proposed regarding the drug
delivery problem [Gekle, 2017, Kaoui et al., 2018]. Problems related to diffusion-
advection of a concentration field in a velocity field created by vesicles or capsules
under flow have been treated recently [Kabacaoğlu et al., 2017,Kaoui et al., 2018]. In
those studies, the vesicle/capsule membrane is fully transparent to the solute. That
is, solute is advected passively by the flow. In the present study we will consider the
problem of kinetics of ATP across the vesicle membrane. This requires implementa-
tion of an appropriate boundary condition on a curved and moving interface (i.e. a
Neumann boundary condition for the ATP release).

4.3 ATP Release Modeling

The model of ATP release proposed has been inspired by in vitro experimental ob-
servations [Forsyth et al., 2011]. Since this is essential information to our problem,
we have felt it worthwhile to briefly recall the main experimental results.



CHAPTER 4. MODELING OF ATP RELEASE FROM RBC UNDER FLOW 75

4.3.1 Shear Experiment

In the experimental study performed in [Forsyth et al., 2011], a RBC suspension was
prepared at 1% hematocrit, implying negligible interaction among RBCs. Solutions
were then mixed with dextran to create different viscosity contrasts λ by changing
µex, while µin = 0.012Pa · s. The explored viscosity contrasts were λ = 1.6, 3.8 and
11.1. The RBC solutions were sheared in a cone-and-plate viscometer (shear rate
ranges from 50s−1 to 5000s−1) corresponding to different shear stresses mimicking
physiological values in different blood vessels in vivo. After 30s exposure to the shear
flow, the blood sample was mixed gently with bioluminescent luciferase/luciferin,
so that a photomultiplier can count the photon emission, which is proportional to
the averaged value of the extracellular ATP concentration. Each data point of the
experiment is averaged over 5 independent measurements. The apparent shear stress
(defined as the product of the imposed shear rate and the effective viscosity of the
suspension provided by the rheometer) and cell motion (TT or TB) were also recorded
statistically thanks to several performed experiments.

It was found that ATP release initiated at a critical shear stress σc ≤ 0.1Pa (the
lower limit of apparent shear stress in Fig. 4.2), and then the release level remained
constant (a plateau regime). When the shear stress exceeded a value of about 3Pa,
the ATP release started to increase monotonically. In the first interval of shear stress
(σc ≤ 0.1− 3Pa) most of RBCs performed TB motion. In this configuration, the cell
underwent a solid-like motion with minimal shape deformation. This means that in
this shear stress interval, once a critical shear stress is attained the cell starts ATP
release. Increasing the shear stress further does not increase the amount of ATP
release. Beyond a shear stress of about 3Pa, most of the cells performed TT motion
in which cell shape deformation becomes significant. A further increase of shear stress
implies higher shape deformation and higher ATP release. In this regime (TT) the
ATP release is attributed to shape deformation, whereas in the former regime (TB)
a critical shear stress is needed for ATP release. This means that two main pathways
can be identified, one related to a critical shear stress, and the other is related to
shape deformation.

Other investigations focused on the molecular origin of ATP release and support
the idea that Px1 is the main avenue for shear-induced ATP release. This channel
may also become activated due to a drop in oxygen content or in the presence of a
high enough intracellular calcium concentration [Locovei et al., 2006]. It is assumed
that this channel requires a critical shear stress for its activation. The increase of
ATP release found in the TT regime is attributed to the CFTR. It is recognized that
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Figure 4.2: An adapted figure of ATP release level (upper) and tumbling / tank-
treading motion data (lower) extracted from experimental study in [Forsyth et al.,
2011]. The data are categorized into 3 different zones, below 0.4Pa is the range of
shear thickening, in the middle range below 3Pa is the range of shear thinning, the
last zone beyond 3Pa the shear thinning stops and a large portion of RBCs undergo
tank-treading motion. A detailed definition of ψn is given in Equation 4.10.
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CFTR itself may not directly release ATP, but rather it up-regulates Px1 so that
a further increase of shear stress causes further deformation and thus amplifies the
release. As described in the introduction, CFTR activation requires the presence of
actin, the latter is more likely to be freed when cell deformation is high enough (that
is in the TT regime).
Further support for the roles played by Px1 and CFTR are provided by data us-
ing specific inhibitors [Forsyth et al., 2011]. Carbenoxolone and glibenclamide are
used to inhibit the Px1 channels and CFTR respectively. The study revealed that
glibenclamide-treated RBCs no longer show increased ATP release with shear stress
(TT regime). However, carbenoxolone-treated RBCs show a collapse of ATP release
both in TT and TB regimes. In the TT regime, cell deformation is higher than in
the TB one, but the collapse is similar in both regimes. This points to the fact that
Px1 is a channel that is quite insensitive to cell deformation.

To summarize, the ATP release level is mainly affected by membrane shear stress
σmem(t, s) and by deformation: once the membrane shear stress reaches a critical
value, the Px1 becomes activated, and no further release takes place upon further
increasing the shear stress. Once in the TT regime, CFTR enters into play in order
to up-regulate Px1, and since higher shear stress enhances cell deformation, an in-
creasing up-regulation of Px1 is expected with shear stress.

4.3.2 ATP Release Model

We have seen above that two mechanisms are possible, one associated with the level
of shear stress and the other with the level of membrane deformation. A schematic
representation of this model can be found in Fig. 4.3. Let us focus on the latter first.
For this scenario, once the shear stress exceeds a value (inducing RBC TT regime)
the ATP release level is amplified monotonically to induce CFTR activation. Since
RBCs have no organelle or nucleus, we consider that cell reaction takes place at the
RBC membrane. We quantify the deformation level by the local curvature. Once in
the TT regime, the cytoskeletal material point will explore with time different cell
membrane local curvatures. Let ċ(s) = |Dc(s)/Dt| denote the time derivative of local
curvature quantifying the level of an instantaneous variation of deformation at a given
point, where D/Dt is the time derivative on a fixed point on Lagrangian curvilinear
coordinate s.
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Figure 4.3: Schematics of the ATP release pathway in RBC: Px1 is the main avenue for
ATP release that can be activated by the local shear stress and Ca2+ ions; the Piezo1
cation channel can be activated by the local shear stress and trigger Ca2+ influx;
actin is freed from deformation induced cytoskeletial defects; CFTR is activated by
freed actin and consequently up-regulates Px1.

The membrane local shear stress is given by σmem(s) = µex |∂ut(X(s))/∂n|, where
t is the tangential vector. We can also define the apparent shear stress (for the sake
of comparison with experiments) as σapp = µex |< ∂ux/∂y >|, where the average is
performed along the bounding wall in a shear experiment. The effective viscosity µeff
of the suspension is given by σapp/γ̇w, so that µeff γ̇w (used in experiments) coincides
with the apparent stress.

ATP release rate due to Px1 channels is modeled as (Fig. 4.4 upper)

pσ = kσ ·H(σmem − σc) (4.7)

where H(x) is the Heaviside step function and kσ is a phenomenological coefficient
which will be extracted from confrontation with experimental data on ATP release.
The above equation expresses the fact that the channel is activated above a critical
shear stress σc on the membrane. This effect does not depend on deformation. The
deformation affects CFTR, which in turns up-regulates Px1. The function expressing
the fact that a curvature change will affect CFTR is written as (Fig. 4.4 lower panel)

pċ = min(1 + kċ · (ċ− ċc) ·H(ċ− ċc), pċmax) (4.8)

Since CFTR affects the ATP release indirectly by up-regulating Px1, pċ is understood
as an amplification factor. The value of pċ is limited between 1 (no release due to
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Figure 4.4: schematics of contribution from shear stress (upper) and curvature change
(lower) to ATP release

deformation) and pċmax > 1. The existence of an upper limit, expressed by pċmax,
is based on the notion that there should exist a maximum amount of free actin and
a limited level of activatable CFTR. The phenomenological parameter pċmax will be
determined by comparison with experiments.

All together, we write the ATP release flux equation (4.9) as a product between
the two functions, namely

ψ = pσ · pċ (4.9)

The product means (i) if the shear stress is below a critical value there is no activation
of Px1, and thus the flux vanishes, (ii) once the shear stress has exceeded a critical
value, the Px1 pathway is activated, and even if no CFTR is present, ATP release
takes place. If the curvature change is sufficiently large (beyond a critical value)
CFTR is produced and amplifies the ATP release. We will see that these ingredients
capture the essential experimental features.

We find it convenient to define a reference level of release, which we take to be
the unity level, and is defined as the total release when all points on the membrane
have reached a shear stress σ1 ≥ σc and a curvature change ċ1 ≤ ċc. We set ψ1 =
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∫ P
0
ψ(σ1, ċ1)ds = kσP . Thus, a normalized ATP release level can be quantified by the

ratio

ψn =

∫ P

0

ψ(σ, ċ)ds
/
ψ1, (4.10)

which is an important indicator for the origin of release. Indeed a value ψn > 1,
means that the deformation of the cell contributes to ATP release.

For completeness, we would like to comment on some simplifying assumptions
adopted here. In the upstream of the pathway (Fig. 4.3) the Piezo1 channel is acti-
vated by shear stress allowing calcium influx, which in turn indirectly activates Px1.
This can be thought of as being absorbed into the value of kσ as long as we are
not interested in the details of calcium kinetics. In addition, the cytoskeletal defects
leading to actin generation and CFTR activation are taken as simple and bounded
linear functions of ċ. The existence of a time delay for release mentioned in [Wan
et al., 2008] is ignored. That is, we consider that all the reactions on the membrane
take place on a much faster time scale than RBC deformation or shear stress change,
despite the fact that they might have a comparable time scale when the blood flow is
fast enough. Although the details of ATP renewal mechanism in RBCs are not well
understood, bulk ATP generation occurs via a glycolysis process in the RBC cyto-
plasm, and under healthy conditions, blood sugar concentration has a quite stable
value in plasma, around 5.0 mM. Thus, it is reasonable to assume that in the time
interval of interest for ATP release, RBCs are saturated enough in ATP so that the
release rate is not affected by the actual content of ATP.

4.3.3 Results: ATP Release Under Linear Shear Flow

4.3.3.1 Membrane Shear Stress and Deformation Behavior Under Flow

In order to test the model and to specify the range of parameters involved, we investi-
gated the membrane shear stress and curvature change via numerical simulations. We
refer to the experimental data in Fig. 4.2 (lower panel). It is found experimentally
that the proportion of TB RBCs decreases as the apparent shear stress σapp increases
and the viscosity contrast λ decreases. The transition from TB to TT on increasing
shear stress is attributed to the shear elasticity of the cytoskeleton, while the viscos-
ity contrast dependent transition is due to hydrodynamic dissipation [Fischer et al.,
1978b,Tsubota and Wada, 2010,Fischer and Korzeniewski, 2013]. Although the 2D
vesicle model does not consider cytoskeleton, it can capture the viscosity contrast
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induced transition, which is the main reason for TT motion at high σapp regime. It
will be seen below that if the ATP release is presented as a function of apparent shear
stress itself, the behavior found in experiments and in simulations are very similar.

In the experiments, a dilute RBC suspension was considered (volume fraction of
about 1%), so that the interaction among RBCs is negligible. It is thus sufficient to
consider a single cell subject to a linear shear flow. We consider a channel width of
W = 12.5R0, and length L = 25R0, resulting in a hematocrit 1.05% and a sufficiently
weak confinement effect. We have explored the viscosity contrasts λ = [1, 2, 4, 6, 8, 10].
The reduced area is set to τ = 0.6 or 0.7, but no significant difference between these
two values was detected in the results. We explored a wide range of capillary numbers
Ca = [0.125, 1.0, 8.0]. Since the typical time scale for RBC deformation is in the range
of 0.01s [Prado et al., 2015] we have chosen our simulation time to be large enough
as compared to that time. More precisely, the explored range goes from 0.5s to 10s
under different shear rates (recall that in the experiments of Forsyth et al. [Forsyth
et al., 2011] the shear stress was applied during 30s). During the full time interval
of the simulation we observed enough loops of repeatable periodic release pattern.
The ATP release rate is then averaged over the simulation time, after transients have
decayed. The normalized mean curvature change (defined as < ċR0/γ̇w >) is shown
in Fig. 4.5. A decrease in normalized curvature change is observed upon increasing λ
, which implies a higher activation level of CFTR in TT situations than in TB cases.
The inflection of the curve between λ = 4 and λ = 6 for Ca = 8 is attributed to the
fact that when the capillary number is high, even if the cell shows TB, the distortion
of the shape starts to play a role at that capillary number. Note that the capillary
number in vivo and in the experiments of Forsyth et al. [Forsyth et al., 2011] remains
smaller or comparable to unity. We have deliberately explored even higher values here
in order to highlight the robustness of the results. Note that the values of the mean
membrane shear stress < σmem > are very close to the apparent shear stress σapp
regardless of the values of the viscosity contrast λ and the capillary number Ca (see
Fig. B.1 in the appendix). Therefore, no real distinction will be made between these
two quantities when representing the results (actually the experiments in [Forsyth
et al., 2011] referred to σapp).

4.3.3.2 Analysis of The ATP Release from The Model and Confrontation
with Experiments

A systematic investigation has been conducted on different parameter values in equa-
tion (4.7) and (4.8). By presenting the normalized ATP release ψn as a function of
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〈ċ
R

0
/γ̇

w
〉

 

 

Ca = 0.125
Ca = 1
Ca = 8

Figure 4.5: curvature change vs viscosity contrast

Table 4.1: Parameters for ATP release model
Notation value Origin
ċc 2× 102µm−1s−1 estimated
kċ 6× 10−3µms estimated
pċmax 2.5 estimated
σc 0.05Pa estimated
kσ ∼ 7× 103(nmol/L) · µm/s estimated

σapp, we could compare the model behavior with the experimental data in Fig.4.2
(upper panel). This investigation revealed that the proposed ATP release model pro-
vides qualitatively similar results to the experiments: (i) the value of σc is critical to
the shape of plateau; (ii) ċc is sensitive to the position of inflection point (at 3Pa in
the experiments); kċ and pċmax corresponds to the slope and maximum value of ψn.

Although the ATP release criterion is linear, hidden nonlinearities are present due
to the nonlinear shape dynamics of RBC. Thus, the fitting procedure is not an easy
task. We have adopted a trial and error procedure in order to determine the parameter
set in Table 4.1, which provides the most quantitatively comparable results to those
reported by experiments (compare Fig. 4.6 and Fig. 4.2 (upper panel)). Note that
since in Fig. 4.6 we only consider the normalized ATP release level, the value of kσ
is not needed at this level.
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Figure 4.6: Mean curvature change (upper panel) and ATP release level (lower panel)
vs apparent shear stress, with reduced area τ = 0.7 and capillary number Ca = 1.
The dash-line in upper panel corresponds to the critical curvature change ċc beyond
which ATP release due to deformation takes place.
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Smaller capillary numbers such as Ca = 0.125 and reduced area 0.6 or 0.7 provide
almost identical results, as in Fig. 4.6. At larger values of Ca (Ca = 8) a deviation
is observed (as testified by the behavior of the deformation amplitude in Fig. 4.5),
especially at large enough λ. This is due to the fact that the membrane starts to
develop buckling, even though the vesicle is tumbling. This enhances the effect of
shape deformation and thus CFTR activation. For RBCs buckling is quite rare, this
is why we do not pay a particular attention to this problem here.

Our results (Fig. 4.6) capture the plateau below 3Pa seen in the experiments (Fig.
4.2 upper), which is associated mainly with the TB regime, as well as the increase
of ATP release with shear stress associated mainly with the TT regime. This has
allowed us to fix the model parameters. In addition, our results reproduce well the
amplitude of variation of ATP release, from the small shear stress to the highest one.

Actually, at small enough apparent shear stress in Fig. 4.6 (below ∼ 0.3Pa) the
ATP release shows a small drop, while our model (Equation 4.7) would have suggested
that the ATP release, once it takes place, would follow the plateau level. In fact, our
criterion is local (it senses the local stress) while Fig. 4.6 refers to an average stress.
The local threshold can thus be significantly lower than the average one. In other
words, for small apparent shear stress, it is possible that only few localized points on
the membrane can release ATP (see Fig. 4.7).

Hitherto we have only described the normalized value of ATP release and not
the absolute level of this release. In order to estimate the absolute value, we need
to evaluate kσ. Confrontation of our model with experiments [Forsyth et al., 2011]
suggest the value given in Table 4.1. This is estimated by considering the RBC
volume, surface area and average ATP concentration in plasma (a0 ≈ 1000nmol/L,
see [Gorman et al., 2007]). The precise way for determining kσ is explained in the
appendix B.

Note that the actual value of the critical shear stress σc still suffers from some un-
certainties. Combining the outcomes from experiments in a linear shear flow [Forsyth
et al., 2011] and in a Poiseuille flow experiment from [Wan et al., 2008] suggests
that this value lies in the range 0.02 − 0.1Pa. Further systematic experiments will
be needed in order to acquire more statistics with the hope of better refining our
estimates.

Finally, our model shows that in some shear rate range (γ̇w > 2000Hz in this
study), an increase in internal viscosity, µin, triggers a decline in ATP release level.
This is attributed to the fact that a hardened cell (due to an increase of internal
viscosity) implies a smaller level of membrane deformation and thus a decline in ATP



CHAPTER 4. MODELING OF ATP RELEASE FROM RBC UNDER FLOW 85

T = 0.048s T = 0.136s T = 0.184s T = 0.272s
0

40

80

Figure 4.7: A snapshot showing the inhomogeneous ATP release along the membrane,
with τ = 0.6, λ = 8, Ca = 1, γ̇w = 50s−1 and Peclet number 1.91. In this situation,
the magnitude of σmem ≈ γ̇w · ηex = 0.075Pa is close enough to σc = 0.05Pa, which
leads to strong inhomogeneity of ATP flux along the membrane (not each membrane
point reaches its threshold value at a given time). The contour map from white to red
represents a relative local concentration, while the blue arrows represent the velocity
field, the black dot on the membrane is a virtual tracer particle. The unit for color
bar is nmol/L, but note that the concentration gradient in the normal direction along
the membrane is more relevant, as it is proportional to the ATP release rate.

release. This suggests that pathologies leading to an increase in RBC rigidity may be
associated with an impairment in ATP release (see Fig. B.2).

4.4 ATP Release in Confined Poiseuille Flow

In order to study how the ATP release happens in microcirculation, we start from long
straight channels that mimic the pre-capillary ateriole. Vesicles as well as RBCs under
Poiseuille flow have shown various shapes and dynamics [Kaoui et al., 2011,Aouane
et al., 2014b,Fedosov et al., 2014,Quint et al., 2017]. Typical examples are parachute
and slipper shapes. The observed shapes and dynamics depend, in particular, on
flow conditions (capillary number, confinement, etc...). Since our study focuses here
on a 2D vesicle, we shall refer to the phase diagram of shapes obtained in [Kaoui
et al., 2011], where besides the parachute and slipper shapes, a snaking motion is also
revealed. We consider here also a single vesicle. In capillaries the hematocrit is quite
low (it can drop down to 5% [Sutera et al., 1970,Popel and Johnson, 2005]), so that
focusing on a single cell constitutes a reasonable assumption. The imposed flow is of
Poiseuille type. We define the degree of confinement as Cn = 2R0/W . We recall the
general definition of the capillary number Ca = µexγ̇wR

3
0/κ. The wall shear stress

in a Poiseuille flow is given by γ̇w = 4umax/W , where umax is the maximum velocity
at the channel center-line. Assuming that a RBC has a characteristic radius around
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Figure 4.8: ATP release levels for Poiseuille flow in long straight channels.

R0 = 3µm and bending modulus κ = 3×10−19J , we can map the non-dimensional pair
(Ca,Cn) onto physical units (umax,W ), if need be. We have the following relations:

umax =
κ

2µR2
0

Ca

Cn

W =
2R0

Cn

(4.11)

We explored Ca = [5, 10, 15, 50, 90] and Cn = [0.15, 0.3, 0.45, 0.6, 0.75] , the length
of the periodic simulation box is fixed at L = 53.3R0, which is validated to be long
enough to eliminate artifacts due to periodic boundary conditions. The resulting ATP
release levels are shown in Fig. 4.8.

It is quite intuitive that the shear stress generally increases with both the con-
finement and the capillary number. For Ca > 15 the ATP release level increases
monotonically by reducing the channel width for a fixed pressure drop. The subtle
peak at Ca < 10 and Cn ≈ 0.45 in Fig. 4.8 is due to the slipper - parachute -
slipper/snaking transition [Kaoui et al., 2011]. Indeed, the parachute shape, which
occurs for Cn = 0.45, has a larger cross section in the channel than the snake-like
shape (Fig. 4.9 upper). This larger cross section implies a higher membrane shear
stress σmem at two endpoints of the parachute (Fig. 4.9 lower)
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Figure 4.9: Plasmic ATP concentration (upper) and membrane shear stress distri-
bution (lower) for Ca = 5 and Cn = [0.3, 0.45, 0.6], Corresponding Peclet numbers
are Pe = [23.5, 10.5, 5.9] respectively. The colorbar has a unit nmol/L. Note that
ATP release rate is proportional to the concentration gradient in the normal direc-
tion to the membrane. When Cn = 0.45, RBC assumes a parachute shape and has a
non-zero ATP release at two lateral endpoints. The horizontal dashed line in (lower)
indicates the critical membrane shear stress σc = 0.05Pa
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An important remark is in order. The curvature change (shape deformation)
level of this single vesicle in the long straight channel never reaches the activation
threshold of CFTR (the largest ċ is still one order of magnitude smaller than ċc, see
Fig. B.3). This means that the ATP release effect due to deformation is weak in
such a geometry, at least for a single cell. It must be kept in mind, however, that
in vivo RBCs often meet bifurcations in the microcirculation where they experience
large shape deformation. This naturally leads us to discuss the effect of bifurcations.

4.5 ATP Release at and after A Bifurcation

The microcirculation involves a complex vessel network. RBCs flowing in arteries
enter arterioles and then capillaries. During their travel in the microcirculation, they
experience a cascade of branching vessels. Many numerical studies have been per-
formed in single or multiple bifurcations regarding more or less complex models of
blood flow [Audet and Olbricht, 1987,Barber et al., 2008,Doyeux et al., 2011,Hyaku-
take and Nagai, 2015, Pries et al., 1990, Balogh and Bagchi, 2017]. The arterioles
are wrapped by smooth muscle cells and are well innervated, so in principle they
are capable of controlling their pressure via vasomotion. The capillary vessels are
not endowed with smooth muscle cells, so that their pressure gradient can only be
passively affected thanks to arterioles located upstream. The presence of ATP as a
signaling molecule may offer another alternative. If a sufficient amount of ATP is
released from RBCs at downstream capillaries (due to their ample deformations), a
reaction with purinergic receptors (a class of membrane receptors that mediates vas-
cular reactivity etc.) [Dubyak and el Moatassim, 1993,BURNSTOCK, 1999] on the
surface of endothelial cells will lead to an intercellular calcium / eNOS signal. This
signal can be transmitted to neighboring endothelial cells (in the form of waves) until
reaching arterioles, ultimately giving rise to vasodilation in arterioles.

In pre-capillary and capillary networks the topological complexity can significantly
contribute to the ATP release. Indeed a RBC frequently encounters bifurcations. At
this point the cell is strongly deformed (see Fig. 4.10) when entering a new vessel and
scrapes initially along the vessel wall, while progressively moving away from the vessel
wall due to a well documented wall-induced lift force [Olla, 1997,Cantat and Misbah,
1999, Seifert, 1999, Vlahovska and Gracia, 2007, Vlahovska et al., 2009, Farutin and
Misbah, 2013]. Before the RBC hits a new bifurcation, it travels a length of about
100µm in capillaries. This scenario is reproduced in our simulation (Fig. 4.10). Close
to the wall, the cell has a larger membrane shear stress and higher deformation rate
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Figure 4.10: Snapshots of bifurcation scenario with inlet (Ca,Cn) = (5, 0.3) and
Pe = 1.06. The ATP release starts when the cell approaches bifurcation vertex,
and ends when it migrates close enough to the center-line. The color bar has a unit
nmol/L. Note that the ATP release rate is proportional to the concentration gradient
in the normal direction to the membrane. Streamlines are shown with black arrows.
One may notice that the RBC motion is highly correlated with its local streamline.
At T = 0.4680s one may see that the RBC is largely deformed before hitting the
vertex since the direction of the streamline already towards the daughter branch.

as compared to the centered cell in a channel. This means that after each branching,
a higher ATP release will occur in RBCs. We measured the distance needed for a
RBC to return to the daughter branch channel center and thus to the (low) level
of release we obtained above for a straight channel. We find that this distance is
typically comparable to or longer than the characteristic vessel branching length in
the microcirculation. This implies that RBCs are likely to strongly enhance their
ATP release in the microvasculature thanks to the cascade of bifurcations.

We have selected a demonstrative case to show the ATP release of a cell hitting
a bifurcation. The geometry is composed of one straight vessel with (Ca,Cn) =

(5, 0.3) as the inlet and two outlet vessels with (Ca,Cn) = (3.0, 0.3) and (Ca,Cn) =

(2.0, 0.3). Their capillary numbers are preset to different values, rather than identical,
in order to avoid perfect unrealistic symmetries that artificially lead to a high resi-
dence time at the bifurcation vertex, before the cell selects one of the two daughter
vessels. The cell is initially positioned at the center-line of the inlet with a relaxed
biconcave shape. Fig. 4.10 shows snapshots of the cell position before, at, and after
the bifurcation. Fig. 4.11 shows the lateral position and normalized ATP release
situation during this process.

Once the cell hits the bifurcation, it deforms significantly close to the wall and
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Figure 4.11: A bifurcation configuration composed of inlet and outlet with parameters
that do not release ATP shows a slight non-zero release level when the RBC "hits" the
bifurcation point. The lateral off-center position correlates strongly with the release
level. This implies that the edge-to-center migration affects the ATP release process.
The lateral position is defined as the ratio between vessel diameter and the minimal
distance of the centroid of RBC to the closest point on center-lines of all vessels,
valued from -0.5 to 0.5

begins to lift-off until it reaches the center-line. We have analyzed the ATP release
during lift-off. The lateral migration after a bifurcation is a robust feature. We have
also investigated the effects of different bifurcation angles, initial positions and capil-
lary number; see Fig. B.5 in appendix B. It is found that the overall features reported
above are not significantly affected.. We have found that it is sufficient to consider
the case of a straight channel with the cell located initially in the vicinity of the wall.
Because the time scale for shape response to stress is fast (as compared to the migra-
tion time), this is practically equivalent to following the cell from a bifurcation. We
explored again the ranges Ca = [5, 10, 15, 50, 90] and Cn = [0.15, 0.3, 0.45, 0.6, 0.7]. It
can be seen in Fig. 4.12 that during a typical lift-off (where the ATP release reaches
about its basal level in a long straight channel) the cell would have travelled about
100− 1000 µm, which is comparable to the typical microvessel length of pre-capillary
and capillary networks. The observed nonlinearity at Ca = 5 and Cn = 0.6 is mainly
due to the transition between parachute-to-slipper or snaking, evoked before. We
clearly see that the ATP release level is dramatically different from that obtained for
long straight channels when the confinement Cn is smaller than about 0.5, which cor-
responds to 12µm. This is a typical value for arterioles connecting capillaries. When
Cn > 0.5, the normalized ATP release is, however, not affected much by this lateral
migration.
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Figure 4.12: RBC axial displacement (upper) and normalized ATP release level
(lower). The measurement is during the process of a RBC migration from the wall
to the center, ending up with a steady shape and ATP release level. Comparing (the
present lower panel) to Fig. 4.8 shows that for low confinement the lifting process
causes more ATP release than when the cell is in a steady centered shape.
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Figure 4.13: The upper figure shows the history of mean and maximum curvature
change during the lateral migration process at (Ca,Cn) = (50, 0.3). The hori-
zontal gray dashed line corresponds to the value of the critical curvature change
ċc = 200µm−1s−1; The lower figure shows ATP release level and normalized lateral
position history at (Ca,Cn) = (50, 0.3)

We also confirmed that the release is amplified by large curvature change when
Ca ≥ 50 (Fig. 4.13). When a RBC is close to the wall, the membrane shear stress
can be estimated as σmem ∼ σwall = γ̇wallµex = κ/R3

0Ca. This value is around 0.5Pa,
significantly below the value beyond which the deformation component of the ATP
release takes place for the linear shear experiments (which is about 3 Pa; see Fig. 4.6).
A possible explanation is that the capillary number is high and that the presence of
the wall induces strong distortion of the vesicle making the local deformation high as
compared to the linear shear flow, despite the fact that the apparent shear stresses
are similar in both cases.

To exemplify the effect of shape deformation close to the wall, Fig. 4.13 gives
an example at (Ca,Cn) = (50, 0.3) where one finds that the deformation does affect
ATP release level when the RBC is close enough to the wall. It also means that if a
vessel network has a shorter characteristic length than usual, it may result in more
ATP release per RBC.
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4.6 Discussion and Conclusions

In this chapter, we have proposed a model for ATP release from RBCs and have
explored it numerically. We have addressed the question of how geometry and stress
amplitude in pre-capillary networks affect the ATP release from RBCs. With the help
of experimental data, numerical simulations and assumptions on molecular mecha-
nisms, we were able to fix the model and its parameter values that generate results
that semi-quantitatively match existing in vitro shear experiments. In this model,
the mechanical properties are mainly represented by membrane shear stress and cur-
vature change (as an indicator of deformation level). At the molecular level, the Px1
hemichannel is considered as a main player of ATP release thanks to its sensitivity to
shear stress level. When the cell deforms significantly, another mechanism becomes
possible, in which free actin is detached (due to high deformation) from cytoskeletal
defects which in turn activate the CFTR protein. The latter then up-regulates Px1
to promote ATP release. Interestingly enough, despite the oversimplification of the
model, using only a Heaviside step function (for shear stress sensing) and a bounded
linear function (for deformation sensing), the model remarkably captures the essential
pattern of ATP release reported in in vitro shear experiments.

A lattice-Boltzmann based numerical solver coupling vesicle dynamics, and solute
advection-diffusion with arbitrary moving boundary conditions has been developed.
This solver is straightforwardly applicable to more detailed models in the future,
including multicellular systems in complex geometry.

An estimate of the distance needed for a RBC after hitting a bifurcation before
it returns back to its ATP release level of a steady shape in a long straight chan-
nel has been investigated. We found that this distance is hundreds of microns for
confinements smaller than 0.3 (20µm in diameter) and thousands of microns for a
confinement of 0.15 (40µm in diameter). This value is comparable or larger than the
typical length of a blood vessel branch in pre-capillary arterioles or large capillaries,
which implies that bifurcations boost the mechanically dependent ATP release in the
microvasculature.



Chapter 5

The Spatial-Temporal Modeling and
Simulation of Flow-induced Signaling
Process in Microcirculation

In this chapter, we preliminarily discuss the implications of RBCs dynamics in mechano-
based local regulation events in microcirculation. In particular, we focus on the inter-
play between ATP released from deformed RBCs and shear-sensing of the blood vessel
occurring at the endothelial monolayer. A numerical approach is employed, in which,
the advection-diffusion-reaction of ATP as a vasodilator is fully resolved based on the
fluid-membrane-solute model we built in chapter 3 and the RBC releasing ATP model
in chapter 4, the endothelial calcium signaling based on a model adopted from [Plank
et al., 2006]. The current state of this chapter is mainly demonstrative, and serves as
a basis for further investigations.

5.1 Introduction

The metabolic level of a particular tissue can vary dramatically in different circum-
stances. Changes of metabolism are often accompanied by changes in blood flow
rate. For example, skeletal muscles are perfused with more blood during physical exer-
cises [Segal, 2005], similar events are also observed in human cortex [Hoge et al., 1999].
This correlation between metabolic level and blood flow is intrinsically attributed to
variations of tissues’ oxygen consumption level, implying that the blood flow is not
merely passive fluid. Instead, blood flow is routinely regulated by mechanisms with
active natures, evidences can be found in a large number of experimental studies [Judy
et al., 1976, Roy and Sherrington, 1890, Rees et al., 1989, Segal, 2005, Duncker and
Bache, 2008]. Active regulations of blood flow can be either global or local. The en-

94
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docrine hormones typically cause global impact. For example, adrenaline (a hormone
released from adrenal gland) may raise up the heart rate as well as the blood pres-
sure, causing an increase of perfusion rate in all vessels. However, different tissues are
not always sharing the same metabolic level. This fact motivated studies on under-
standing local regulation mechanisms of blood flow. The prevalence of several local
regulation mechanisms [Segal, 2005] have been confirmed and, interestingly, these are
not always associated with oxygen consumption level. In addition to mechanisms
based on metabolic level (as well as oxygen consumption level), there are other mech-
anisms such as spreading of hypoxia due to local diffusion, diffusion of vasodilater
and coupled activation of distant sympathetic nerve ends [Segal, 2005].

A prominent example of local regulation follows. This is the so-called myogenic
mechanism, which is able to maintain the blood pressure in capillaries despite pressure
changes in the parent arteriole, thanks to the pressure sensitive ion channels and
intercellular calcium signaling on smooth muscles and endothelial cells [Hill et al.,
2001].

Besides hemodynamical pressure, the smooth muscle are sensitive to changes in
the luminal shear stress [Koller and Kaley, 1990]. In contrast to vasoconstriction trig-
gered by pressure increase in the myogenic mechanism, the increase of shear stress
in arterioles and capillaries results in a vasodilation. This pathway is believed to be
closely involved with endothelial cells’ ability to sense flow shear stress, in which,
endothelial cells encode flow shear stress and vasodilator concentration on the lu-
men surface into a change in intracellular free calcium ion concentration, which may
eventually trigger endothelial nitric oxide synthase (eNOS) pathway in the smooth
muscle, causing vasodilation.

Endothelial cells are one of the key players of these hemodynamical forces-dependent
local regulation. They form a thin monolayer that covers all inner side of blood vessel.
Their capability of responding to blood shear stress and vasodilators (e.g. acetyl-
choline, phosphate compounds such as ATP and ADP [John and Barakat, 2001])
is believed to be the first step for force-dependent local regulation in microcircula-
tion. Though the origins of this shear sensing ability is not fully understood, ex-
perimental and theoretical studies have proposed several molecular candidates, such
as mechano-sensitive ion channels (such as TRPV4 [Hartmannsgruber et al., 2007],
P2X4 [Yamamoto et al., 2000]), G-protein coupled receptors, glycocalyx, integrins
and actin filaments, etc. [Yamamoto and Ando, 2011].

Recently, in vitro experiments revealed that RBCs under flow may release ATP
due to deformation and shear stress [Forsyth et al., 2011,Wan et al., 2008] (also see
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chapter 4). In [Sprague et al., 1996], the author present indirect evidences which
support the fact that the deformation induced ATP release from RBCs in isolated
rabbit lungs increased the production of nitric oxide (an important vasodilator in
smooth muscle), thus, involved in local regulation. Inspired by these experimental
facts, we hypothesize that the presence of RBCs in microcirculation (in arterioles
and capillary networks) may contribute to shear stress-dependent regulations in two
ways: i) they perturbe wall shear stress on endothelial surface ii) they release ATP
as a vasodilator.

In this chapter, we present a preliminary simulation study on the hypothesized
shear stress-dependent local regulation mechanism, focusing on the spatial pattern of
ATP concentration and shear stress distribution. A demonstrative branching network
is employed to mimic the vessel network geometry. We consider effects from RBC
deformation, vasodilator (ATP [Crecelius et al., 2011]) dispersion, wall shear stress
and their roles in the endothelial calcium dynamics. This preliminary work may
provide some intuitions on this hypothesis and inspirations to forthcoming systematic
studies.

5.2 The Modeling of Endothelial Calcium Signaling
and Its Coupling to RBC Dynamics in A Demon-
strative Vessel Network

5.2.1 Modeling of ATP dynamics

A scheme on the modeling of endothelial calcium signaling and the ATP dispersion
in lumen is presented in Fig. 5.1. Consider the lumen region is denoted by Ω, with
its normal vector n̂ pointing outward (Fig. 5.2). The lumenal ATP concentration a
is governed by an advection-duffusion equation

∂a

∂t
+ u · ∇a = Da∇2a (5.1)

Here u is the velocity field, obeying Eqn. (4.3).
We took the vessel network geometry from [Balogh and Bagchi, 2017] and which

was extracted from a cat mesentery, where there are three levels of vessel bifurcations
in series from arteriole to capillaries, followed by capillaries’ convergences to a venule.
For blood flow, a periodic boundary condition is imposed in the stream direction in
the arteriole and the venule, a fixed pressure drop creates a flow with an average
speed around 0.03cm/s in the finest level of capillary (see Fig. 5.2). Under these
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Figure 5.1: A schematic for calcium signaling and ATP dispersion in a micro-vessel
network. Free calcium ion concentration and ATP concentration are represented by
[Ca2+] and [ATP ] respectively. Left panel: Dispersion of ATP and its corresponding
flow / RBC dynamics in lumen is fully resolved by a fluid-membrane-solute model,
ATP is released from RBC and endothelial wall (lumenal) due to shear stress. Right
panel: A lumped element model of calcium signaling in a endothelial cell, adopted
from [Plank et al., 2006], considering shear stress and ATP concentration from lu-
men side, IP3 dynamics, internal calcium store (Endoplasmic Reticulum) and fuffer
proteins (e.g. calmodulin). The schematic plot in right panel is taken from [Plank
et al., 2006] and then modified by adding the mechano-receptor coupled cation chan-
nel TRPV4 and P2XY [Yamamoto and Ando, 2011,Li et al., 2015]
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Representative Probes
for Endothelial cell model

Figure 5.2: The vessel network geometry used in this simulation, taken from [Balogh
and Bagchi, 2017]. Dots in purple are representative probes for endothelial cell models
to collect ATP concentration and shear stress values.

condition, a RBC takes around 2s to traverse this network. For ATP concentration,
a constant concentration a∞ is fixed at the of the arteriole entrance and at the the
venule exit, in order to adapt the mean ATP concentration known for blood plasma.

The Boundary condition for ATP concentration on vessel wall is modeled as (
[Plank et al., 2006])

Da
∂a

∂~n

∣∣∣∣
∂Ω

= −Ka · a+ S(τ) (5.2)

Da is the diffusivity of ATP in blood plasma. −Ka · a on the right hand side of
Eqn. (5.2) denotes a ATP up-taking effect from the endothelial wall. The term
S(τ) describes the production rate of ATP on endothelial wall due to shear stress (τ)
stimuli. It has a form of

S(τ) = s0 ∗
[
1− exp(− τ

τm
)

]3

(5.3)

Here s0 is the maximum ATP production rate per unit length, τm is the characteristic
wall shear stress.

The release of ATP from RBCs into blood lumen is described as a boundary
condition on moving RBCs membranes, which is a function of membrane shear stress
and level of deformation (quantified by curvature change rate). The ATP problem
was discussed in chapter 4. Following that chapter, we adopt a vesicle model for RBcs.
The ATP release from RBC is modeled is also described in chapter 4 (see Eqn. (4.7),
Eqn. (4.8 and table 4.1). From here on, we will not distinguish between the terms
vesicle and RBC. We chose the characteristic radius for a vesicle R0 = 3µm, then the
area of a vesicle is A = πR2

0 ≈ 28.3µm2. The reduced area of a vesicle (or RBC) in
2D, denoted as τRA, is defined as the ratio between the actual area and the area of
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notation and value description
Da = 2.36× 10−10m2s−1 diffusion coefficient of ATP in blood lumen
a∞ = 100nMol steady physiological plasma ATP concentration
Ka = 1.68× 10−5ms−1 ATP uptake rate
s0 = 10−3nMolms−1 maximum ATP production rate on EC surface
τm = 1Pa characteristic wall shear stress

Table 5.1: parameters relevant to lumen ATP concentration, all values are taken
from [Plank et al., 2006,John and Barakat, 2001]

a circle having the same perimeter. For definitness we set τRA = 0.7. We define the
hematocrit as the ratio between the total area of vesicles and the area of the vessel
network, This value is fixed at 0.15, as it is a typical value in microcirculaiton. Table
5.1 presents parameters of ATP dynamics (in addition to the parameters defined in
chapter 4). With ATP diffusivity Da, the mean velocity in the finest capillary (around
0.03cm/s, see Fig. 5.2) and the capillary diameter (around 7µm, see Fig. 5.2), we
estimate that the Peclet number in this case is roughly around 10, which means that
the advection by flow field may play a relatively important role.

5.2.2 Modeling of Calcium Dynamics in Endothelial Cells

The acute calcium response of endothelial cells to flow change typically last around
few hundreds to a thousand seconds [Wiesner et al., 1996,Wiesner et al., 1997,Plank
et al., 2006]. We now estimate the characteristic time scale for diffusion inside a
single endothelial cell. The size of typical endothelial cells is of about dEC = 10µm in
diameter and 2µm in thickness. The effective diffusivity of free calcium ion inside an
endothelial cell is around Dca = 10−12m2/s (data estimated from [Keener and Sneyd,
1998] by taking into account the effect from buffering proteins). The characteristic
time for calcium diffusion inside a single cell is estimated as tc = d2

EC/Dca ≈ 10s. This
characteristic time is quite small compared to the typical time scale of an acute re-
sponse, thus, we model the calcium dynamics inside a single cell with spatial gradients
omitted.

As a preliminary step, we fully adopt the calcium signaling model from [Plank
et al., 2006]. Fig. 5.1 (right panel) provides a sketch of the main players for calcium
dynamics in a single cell, the details can be found in [Plank et al., 2006]. We recall
only the essential descriptions here, in correspondence with schematic plot in the right
panel of Fig. 5.1 . The cytoplasmic free caicum ion concentration is termed as Cac.
The binding of ATP to endothelial surface receptors forms a receptor-ligand complex,
which triggers the activation of G-progein and phospholipase C and the cleavage of
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PIP2 (phosphatidylinositol 4,5-bisphosphate, which functions as an intermediate in
the IP3 pathway), and eventually form the second messenger IP3 (Inositol trisphos-
phate, a main player in intracellular calcium dynamics). This process is formulated
as

d[I](t)

dt
= ki

a(t)

Kc + a(t)

Cac
K1 + Cac

− k2[I]

Here [I] denotes the IP3 concentration, a(t) is the ATP concentration at a particular
location in the vessel network.

Successively, the IP3 diffuses onto an internal calcium store (endoplasmic reticu-
lum), triggers an influx of free calcium ions from internal store into cytoplasm. This
influx is strengthened via a positive feedback , termed as CICR (calcium-induced
calcium release [Plank et al., 2006,Tran et al., 2000]). This influx from internal store
into cytosol is modeled as

qrel = k3
Cac

KCICR + Cac

(
[I]

K2 + [I]

)3

Cas

Here qrel denotes the influx due to the CICR effect, Cas is the calcium concentration
in the internal store. Another influx of calcium is due to the CCE effect (capacitative
calcium entry [Putney et al., 2001]), which suggested that the depletion of internal
calcium store triggers calcium influx from blood vessel lumen into cytoplasm. To-
gether with the contribution from mechano-sensitive cation channels, this influx is
described as

qin = kCCE(Cas0 − Cas)(Caex − Cac) +
qmax

1 + α exp(−W (τ))

Here the notations are: qin– the influx of calcium concentration from vessel lumen,
kCCE–the CCE coefficient, Cas0–the characteristic calcium concentration of internal
storage, Caex and Cac are calcium concentration of vessel lumen (as a constant)
and cytoplasmic calcium concentration, respectively. qmax is the maximum influx
of mechano-sensitive cation channels. α and W (τ) are parameters which allow us
to calculate probability of mechano-sensitive cation channels opening, which can be
found in [Wiesner et al., 1996]. W (τ) is positively correlated with wall shear stress τ .

The dynamics of cytoplasmic calcium store is then described by setting the tem-
poral variation of Cac as a sum of mainly the fluxes discussed above (other terms are
compensated [Plank et al., 2006], such as qbuff which describes the binding of free
cytoplasmic calcium to buffering protein, and qres which describes the outflux from
cytosol to blood lumen due to ATPase).

dCas
dt

= qrel + qin − qbuff − qout
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Figure 5.3: Averaged wall shear stress distribution in stream direction with different
Ht. The effect from RBCs in this particular network and flow condition (fixed pressure
drop) is minor.

A systematic investigation of the calcium dynamics and its coupling to flow and
ATP release from RBCs is currently under investigation. Here, we only only discuss
how input from ATP concentration and wall shear stress will qualitatively affect on
calcium dynamics.

5.3 Results

Wall shear stress and wall concentration of ATP are the key inputs to endothelial
calcium dynamics. We investigate on how changes in hematocrit shift the ATP con-
centration and wall shear stress distribution in this particular vessel network. Three
hematocrit values, Ht = 0%, 5% and 15% are investigated. Statistical results are
evaluated after all transients due to initial conditions have decayed.

Figure 5.3 shows that the vessel network geometry (precisely the positions of
bifurcation or convergences) is highly correlated with shear stress decreases. On the
other hand, the presence of RBCs has only minor effects on averaged wall shear stress
as pressure drop is fixed. In general, the wall shear stress with this magnitude around
0.3 to 0.5 Pa generates a relatively small amount of ATP, compaed to the amount
in uptaking effect (see the first and the second terms on the right hand side of Eqn.
(5.2)). It can be seen from Eqn. (5.3) that the production rate is sensitive to the
choice of τm. We fix this value to a constant in this demonstrative case, despite that
other values such as 0.1Pa and 10Pa were also suggested in [John and Barakat, 2001]
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Figure 5.4: Averaged ATP concentration distribution in stream direction with dif-
ferent Ht. With the increase of hematocrit, capillaries at the arteriole side gains
relatively higher ATP concentration, comparing to capilarries connecting to venule.
This mean ATP concentration is calculated by averaging along the total cross section
and time.

due to the adaptation to different flow conditions in different tissues.
Since the generation of ATP due to wall shear stress is relatively small,

the dominance of uptaking effect on the endothelial–luman surface implies
a descending distribution of ATP concentration from arteriole to capillary and to
venule, which is observed in the simulation with Ht = 0% (see the blue curve in
Fig. 5.4 ). In these results, the mean ATP concentration at a particular position is
averaged both over time and over the total cross section (shown by the dashed lines in
Fig. 5.4). As RBCs release ATP when deforming and subjected to membrane shear
stress, we observed a dramatic increase of ATP concentration in branching arterioles.
We think this is due to the RBCs’ hitting at bifurcation, after which a RBC tends to
have its lateral position closer to the wall, gaining a larger membrane shear stress (as
we discussed in chapter 4). In addition, it can be seen from Snapshots in Fig. 5.5,
that RBCs stay close to the center line in the feeding arteriole, but move close to wall
after hitting a bifurcation, releasing thus more ATP. In the finest capillary, a drop
in averaged ATP concentration is observed in Fig. 5.4). This could be attributed to
the close contact between RBC membrane and endothelial wall which facilitates the
ATP uptaking, as the uptaking rate is proportional to ATP concentration (see Eqn.
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Figure 5.5: Snapshots for ATP concentration and RBC shapes in vessel network. The
color bar represents the local ATP concentration (nMol/L)

5.2).
To sum up the results of ATP and wall shear stress distribution, in this particular

vessel network and corresponding flow conditions, the RBCs boost in general the ATP
concentration. The increase is larger in capillaries, on the arteriole side, than on the
venule side. This effect is at present thought to be associated to the RBCs hitting
bifurcation and undergoing high stress and deformation (which are the source of
ATP release). After those events, RBCs migrate towards center and the deformation
amplitude is reduced, resulting thus in a decline of ATP release.

5.4 Conclusion

In this chapter, we carried out the preliminary studies on the ATP signaling process
and its coupling to mechanical properties of flood flow in micro circulation. By tak-
ing into account the ATP release model from chapter 4, we found that the presence
of RBCs boost the ATP concentration. The concentration is found to the highest
in capillaries close to the arteriole side. This may attributeed to RBCs’ hitting bi-
furcations and their lateral migration towards center after bifurcations. The ATP
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increase in capillaries on the venule side is relatively smaller. This could be a result
of ATP uptaking by endothelial wall in the narrowest capillary, where the close gap
between RBC membrane and vessel wall increases the ATP concentration along the
wall, facilitating thus the uptaking rate. These effects are amplified with an increase
in hematocrit. The wall shear stress, which is not affected much by the presence of
RBCs, is maintained at around 0.3 to 0.5Pa in this particular flow condition. We are
now in a position to study systematically the coupling to calcium signaling, that we
are currently investigating.



Chapter 6

Conclusion

This thesis has been devoted to coupling between RBC dynamics and chemical solute
dispersion in microcirculation. Below we sum up the main results and discuss the
perspectives.

6.1 Summary and perspectives for Chapter 2

In chapter 2, the shape dynamics and rheological properties of vesicles (a widely used
model of RBCs) in pressure-driven flow are systematically studied. By considering
the effect of viscosity contrast λ, several branches of solutions were found, including
centered parachute and slipper, snaking parachute, off-centered slipper and complex
trilobe dynamics. We have shown that the trilobe shape is not a property to be linked
to membrane cytoskeleton, unlike the claim in [Mauer et al., 2018]. In the analysis of
multiple vesicle situations, we linked the rheology to spatial organization. A decrease
of the normalized viscosity [η] in relatively small concentration regime is confirmed in
pressure-driven flow, and is not only a property associated to a shear flow [Thiébaud
et al., 2014]. Interestingly, the result from pressure-driven flow (more relevant to blood
circulation) shows that the normalized viscosity decrease in the range 0-15%, which
is more or less the range of hematocrit in microcirculation. The spatial organizations
of the cells tend to strongly moderate the increase with hematocrit; cells organize
themselves into particular pattern (single and dense files in the center-line).

It would be interesting to investigate in the future whether the decrease of [η] is
a robust feature that also exists in 3D with more realistic models and for higher con-
centrations. A relevant work by [Thiébaud et al., 2014] pertaining to shear flow, had
shown the same rheological tendency as in 2D. However their studies were confined
to dilute suspension (around 5 %). It would also be an interesting task to investigate
the spatial organizations in 3D.
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6.2 Summary and perspectives for Chapter 3

In chapter 3, in order to tackle the chemical dispersions originated from or affected by
moving RBCs in microcirculation, we developed a 2D advection diffusion solver based
on Lattice Boltzmann Method. The key feature of this solver is that it can handle
arbitrary moving boundaries and general boundary conditions. Based on asymptotic
analysis, we proved that this boundary scheme enjoys a second order precision. This
has also been confirmed by numerical simulations. By coupling this solver with an
existing fluid–membrane solver [Shen et al., 2017a] in our laboratory, we managed to
exemplify the capability of this solver for drug delivery in arterioles. We confirmed
that with the assumption of instant absorption on vessel walls, when the margination
effect of liposome (a rigid drug carrier with a round shape and a diameter around few
micrometers) is strong, the presence of RBCs facilitates the absorption process. The
results should be generalized to carry out systematic studies with multiple liposomes
focusing on statistical effects, which could provide more insights into this problem.

Two interesting expansions on the numerical aspect could be carried out in the
future. The first one: an extension to 3D. In that case a more elaborate ATP release
model (e.g. taking into account shear elasticity due to cytoskeleton network). The
second one: to make the boundary scheme inherently mass-conservative. The current
scheme conserves mass well for cases with moderate Peclet numbers (such cases are
frequent in biological cases, as we have encountered in this work). The introduction of
mass conservation scheme can largely expand the solver’s feasibility into applications
involved with high Peclet numbers (e.g. dissipation and absorption of pollutant).

6.3 Summary and perspectives for Chapter 4

In chapter 4, we modeled the ATP release from a RBC by using both in vitro exper-
imental data [Forsyth et al., 2011] and assumptions on the molecular level. Interest-
ingly, a simple model was successful in capturing the essential behavior in compar-
ison to experimental data. A plateau of release level against apparent shear stress
σapp ≤ 3Pa, and an increase of release when σapp > 3Pa, see Fig. 4.2 upper panel
for experimental results and Fig. 4.6 lower panel for simulation results. Later on,
this model was implemented in pipe flow and bifurcations, which are representative
cases of blood microcirculation. We found that a lifting process appears to hap-
pen after a RBC hits a bifurcation. This can contribute to a substantial portion
to ATP release. This implies that the complexity of the geometry of capillary and
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pre-capillary arteriole network may boost the mechanically dependent ATP release in
the microvasculature.

This ATP release model is a concise one that represents several of the essential
behaviors of in vitro experiments [Forsyth et al., 2011]. For quantitative comparison
with respect to the experiments, one requires a more elaborate model. For example,
in some other experiments, such as [Wan et al., 2008] a lag between mechanical
stimulus and ATP release (around 0.05 to 0.08 seconds) has been observed. Taking
into account these effects in the model will strengthen its reliability in more generic
scenarios such as in larger arterioles (where the blood flow is much faster than in
capillaries that will amplify the effect of this lag effect).

6.4 Summary and perspectives for Chapter 5

In chapter 5, we carried out preliminary studies on the ATP signaling process. By
adopting the model of ATP release from RBCs in chapter 4, we were able to calculate
the ATP distribution in a capillary network. The calcium signaling of endothelial cells
is triggered by change in wall shear stress and ATP concentration in the blood lumen.
We have demonstrated the capability of our fluid–membrane–solute solver to couple
ATP distribution to the intracellular calcium signals. Further explorations need to
be done by considering the effect from gap junctions (which may induce intercellular
calcium waves).

Finally, it will be an interesting task to implement a realistic capillary network,
so that the geometrical effects can be estimated directly from simulations.



Appendix A

Asymptotic Analysis for
Advection-diffusion
Lattice-Boltzmann Method and the
Boundary Treatment

A.1 Asymptotic Analysis of the Bulk Equations and
Boundary Conditions

In this appendix, we show on one hand that the lattice-Boltzmann equations are
equivalent in the asymptotic limit to the advection-diffusion equation and on the
other hand they allow to derive the boundary conditions (Eq. (3.13)); see [Huang
and Yong, 2015]. Similar procedures were used in [Junk et al., 2005, Yoshida and
Nagaoka, 2010] for other strategy of handling boundary conditions, different from
that given by Eq. (3.13) (which we may view as a modified bounce-back scheme). By
using our strategy, we will prove analytically here that this boundary condition enjoys
a second order precision. We deal here with the zigzag boundary which is defined to
pass through the middle of the mesh segment (dashed line in Fig. 3.1 (b)). It is this
choice that allowed us to reach the second-order precision.

Let us first introduce the diffusive scaling which is based on the idea of finding
a suitable pair of scaling size (which is also the numerical mesh size) (∆t,∆x) that
makes the diffusivity in numerical simulation D′ (as it was defined in Eq. (3.9)) close
to O(1) in magnitude. This conditions reads

D
′
=

∆t

∆x2
D ∼ O(1) (A.1)
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The following choice of scales satisfies our constraint

∆t = aε2

∆x = ε
(A.2)

Here a = ∆t/∆x2 = D
′
/D is a constant value representing the ratio between

numerical diffusivity D′ and physical diffusivity D. The factor ε is a small parameter
and is often introduced in this way in the context of asymptotic analysis. Accordingly
the scaling of velocity is given by

u
′
=

∆t

∆x
u = aεu (A.3)

Our asymptotic analysis below obtained in the limit ε→ 0 will show that (i) the
Boltzmann equation recovers the advection-diffusion equation, and (ii) the conver-
gence to the advection-diffusion equation if of order O(ε2) for both the bulk equations
and the boundary conditions.

The Boltzmann equation (combining collision and streaming process (Eqs, (3.5 -
3.7)) reads, by omitting the reaction term, as

gi(t+ aε2,x + ĉiε)− gi =
1

τ
[wic(1 + 3au · ĉiε)− gi] (A.4)

The unspecified argument in gi is (t,x) and is omitted here, ĉi = ci/(∆x/∆t) is
the normalized unit vector of micro velocities defined in Eq. (3.4).

We will expand gi and c in powers of ε up to third order. It turns out that
the second order provides the leading order contribution for the advection-diffusion
problem, whereas the third order is necessary for obtaining the desired precision. The
expansion reads {

gi = g
(0)
i + εg

(1)
i + ε2g

(2)
i + ε3g

(3)
i +O(ε4)

c = c(0) + εc(1) + ε2c(2) + ε3c(3) +O(ε4)
(A.5)

Expanding Eq. (A.4) in power series of ε and ignoring terms of higher order than
ε3 we obtain

gi(t+ aε2,x + ĉiε)− gi =
3∑

n=1

1

n!

(
aε2

∂

∂t
+ ε(ĉi · ∇)

)n
gi

+O(ε4)

(A.6)

For Eq. (3.1) we get

3∑
n=0

(
c(n) −

4∑
i=0

g(n)

)
εn +O(ε4) = 0 (A.7)
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Equating terms of similar order in ε in (A.7) provides

c(n) =
4∑
i=0

g
(n)
i (A.8)

Reporting (A.5) and (A.6) into (A.4) we obtain, by equating terms of the same
order, the following hierarchical equations

g
(0)
i =wic

(0)

g
(1)
i =wic

(1) +
1

2
aĉi · uc(0) − τ(ĉi · ∇)g

(0)
i

g
(2)
i =wic

(2) +
1

2
aĉi · uc(1) − τ(ĉi · ∇)g

(1)
i − τ

[
a
∂

∂t
+

1

2
(ĉi · ∇)2

]
g

(0)
i

g
(3)
i =wic

(3) +
1

2
aĉi · uc(2) − τ(ĉi · ∇)g

(2)
i − τ

[
a
∂

∂t
+

1

2
(ĉi · ∇)2

]
g

(1)
i −

τ

[
a(ĉi · ∇)

∂

∂t
+

1

6
(ĉi · ∇)3

]
g

(0)
i

(A.9)

By summing over i (from 0 to 4) the first equation in (A.9), and using Eq.(A.8) and
the fact that the weight factors obey

∑4
i=0wi = 1, we find that the resulting equation

is automatically satisfied. Performing the same operation with the second equation
yields the same conclusion, by using Eq.(A.8) and the first equation in (A.9), and by
virtue of the fact that

∑4
i=0 ĉi = 0, and that wi enjoys a symmetry property (w1 = w2

and w3 = w4). Performing again the same operation with the third equation, and
using the previous orders results leads (after simple algebraic manipulations) to an
advection diffusion equation

∂c(0)

∂t
+ u · ∇c(0) = ∇ ·

[
2τ − 1

6a
∇c(0)

]
(A.10)

Finally, performing the same operation with the last equation yields

∂c(1)

∂t
+ u · ∇c(1) = ∇ ·

[
2τ − 1

6a
∇c(1)

]
(A.11)

This proves that the lattice Boltzmann scheme (A.4) converges to the advection
diffusion equation with an error term O(∆x2). The relation between diffusivity D and
relaxation time τ is given by (2τ−1)/(6a) = D, which also gives τ = 3∆t/∆x2D+1/2.

A.2 Boundary Condition: AModified Half-Way Bounce-
Back Scheme

In this section, we attempt to explain the boundary scheme for the static zigzag
boundary, which is given by Eq. (3.13). This relation has been originally proposed
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in Ref. [Huang and Yong, 2015], in which, a second-order convergence is observed in
numerical experiments [Huang et al., 2016]. We present here a simplified derivation
for the particular zigzag boundary which intersects with mesh segments only at middle
points (dashed-dotted line in Fig.3.1 b). Our derivation will prove analytically the
second order precision.

A representative point of the discretized boundary is designated as M in Fig.
3.2, and x is a lattice point next to the boundary, and we have the relation M =

x − 1/2ĉi∆x. A Dirichlet boundary condition is defined as c(M) = α
(mid)
3,D , whereas

a Neumann boundary condition, since the normal direction of the zigzag boundary
coincides with ĉī, can be written as (ĉī · ∇)c(M) = α

(mid)
3,N . The subscript D and N

represents Dirichlet and Neumann respectively. ī is an index which corresponds to
inverse direction of ĉi, that is ĉī = −ĉi. However, in the LMB spirit c(M) is not
known, since the concentration field is defined at the lattice points only. Therefore
we have to express c(M) as a function of its nearest lattice point located at x. By
expanding these boundary around the lattice point at position x we obtain

α
(mid)
3,D = c(M)

= c− 1

2
ε(ĉī · ∇)c+O(ε2)

=

[
c(0) − (

1

2
(ĉi · ∇)c(0) − c(1))

]
ε+O(ε2)

α
(mid)
3,N = (ĉī · ∇)c(M)

= −(ĉi · ∇)c+ ε
1

2
(ĉi · ∇)2c+O(ε2)

= (ĉi · ∇)

[
c(0) − ε(1

2
(ĉi · ∇)c(0) − c(1))

]
+O(ε2)

(A.12)

For brevity, all unspecified arguments on the right hand side are understood to be
(x, t).

The main question now is how to substitute the streaming step (3.6) at the bound-
ary, in a such a way to respect the above boundary conditions. gi(t + ∆t,x) is the
unknown incoming distribution function that needs to be determined. Inspired by
the traditional bounce back condition (for Navier-stokes equation) we introduce the
distribution g∗ī (t,x), which is the known post-collision distribution function (defined
by Eq. (3.5)), but defined for opposite micro velocities; the subscript ī means that
the corresponding micro velocity direction is pointing outward (see ĉī in Fig. 3.2).
The classical bounce-back boundary condition is given by gi(t+ ∆t,x) = g∗ī (t,x) for
zero-flux boundary condition in the pure diffusion problem (the relation is analogous
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to the non-slip boundary condition in Navier-Stokes LBM). This is quite intuitive,
since from time t to t + 1 the number of particle crossing the boundary from each
side is equal and opposite. The question is how to extend this relation to the present
problem.

To deal with this question, we use the same asymptotic expansion in powers if
ε, as performed in the preceding appendix, for g∗ī (t,x) and gi(t + ∆t,x). With the
help of the post-collision and equilibrium distribution function definition ( Eq. (3.5)
and (3.7)) and the asymptotic expansion (equation (A.9) ),we find for g∗ī (t,x) and
gi(t+ ∆t,x) the following expressions up second order in ε

g∗ī (t,x) =gī(t,x) +
1

τ
(geq
ī
− gī)

=wic
(0) + εwi

(
−(3aĉi · u− (τ − 1)(ĉi · ∇))c(0) + c(1)

)
+

ε2wi

{
(τ − 1)[(τ − 1

2
)(ĉi · ∇)2 − 3aĉi · u(ĉi · ∇)− a ∂

∂t
]c(0)−

(3aĉi · u− (τ − 1)(ĉi · ∇))c(1) + c(2)
}

+

O(ε3)

gi(t+ ∆t,x) =gi(t,x) + aε2
∂

∂t
gi +O(ε3)

=wic
(0) + εwi

(
(3aĉi · u− (τ − 1)(ĉi · ∇))c(0) + c(1)

)
+

ε2wi

{
[τ(τ − 1

2
)(ĉi · ∇)2 − τ3aĉi · u(ĉi · ∇)− (τ − 1)a

∂

∂t
]c(0)+

(3aĉi · u− τ(ĉi · ∇))c(1) + c(2)
}

+

O(ε3)
(A.13)

Here the symmetrical structure of the micro velocities ĉi + ĉī ≡ 0 has been ex-
ploited. A close inspection of the above equations and the boundary conditions (A.12)
allow one to infer the proper writing of the streaming process. Indeed, summation
and subtraction of gi(t+ ∆t,x) and g∗ī (t,x) provide interesting results if one focuses
on zeroth and first order terms only. The results are given by
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g∗ī (t,x) + gi(t+ ∆t,x)

2wi
=

[
c(0) − ε(1

2
(ĉi · ∇)c(0) − c(1))

]
+O(ε2)

g∗ī (t,x)− gi(t+ ∆t,x)

2wiε
=3aĉi · u

[
c(0) − ε(1

2
(ĉi · ∇)c(0) − c(1))

]
−

(τ − 1

2
)(ĉi · ∇)

[
c(0) − ε(1

2
(ĉi · ∇)c(0) − c(1))

]
+O(ε2)

(A.14)
Interestingly, the right hand sides of Eqs. (A.14) are linear combination of the

boundary condition (Eq.(A.12) ), and in addition they both have the same magnitude
regarding the error term O(ε2). By substituting α(mid)

3,D and α(mid)
3,N into Eq.(A.14), the

boundary scheme (Eq. (3.13)) can be straightforwardly extracted. Note that in the
special case when u ≡ 0 and α

(mid)
3,N ≡ 0, the boundary scheme will coincide with

the classical bounce-back one. An important point is worth of mention. The choice
of the zigzag boundary passing precisely at the middle of the lattice segments is not
innocuous. Had we chosen another definition, then the precision would have degraded
to lower order, namely O(ε) instead of O(ε2).



Appendix B

The Miscellaneous for ATP Release
by Red Blood Cells Under Flow
Study

B.1 Mean membrane / apparent shear stress in shear
simulation

114



APPENDIX B. ATP RELEASE BY RBC, MISCELLANEOUS 115

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

tank−treading tumbling

λ

<
σ
m
em

>
/σ

a
p
p

 

 

Ca = 0.125
Ca = 1
Ca = 8

Figure B.1: shear stress vs viscosity contrast

B.2 ATP release level under shear with different µin
and fixed µex = 0.001Pa
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Figure B.2: Under linear shear flow with an adequately large shear rate, increasing
µin (as well as λ = µin/µex) results in a drop of ATP release level due to the reduction
of curvature change in TT to TB transition.

B.3 Mean shear stress and deformation level in a
long straight channel

Since the gray dashed line in Fig. B.4 represents the critical curvature change ċc =

200µm−1s−1, it is clearly seen that the ATP release levels in long straight channel are
not affected by shape deformation, but only by shear stress.
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Figure B.3: mean shear stress in long straight channel
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Figure B.4: mean curvature change in long straight channel
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B.4 Estimation of the phenomenological ATP flux
coefficient kσ

From the experimental configuration in [Forsyth et al., 2011] we know that the RBC
solution has a Hematocrit ht = 1%. The suspension is subjected to a linear shear
flow for a period of time T = 30s. Comparing to typical plasma ATP concentration
a0 = 1000nmol/L (value from [Gorman et al., 2007]), the experiments [Forsyth et al.,
2011] reported that the relative amount (compared to static conditions) of ATP release
is three-fold, f = 3, in the plateau regime of Fig. 4.2 (upper) in the main text. The
total amount of ATP release from a RBC during this 30s can then be estimated as

Φtot = fa0 · (
4

3
πR3

0τ/ht) (B.1)

Since our ATP release criterion is based on the surface stress of the cell, kσ has a
dimension of a flux per unit area and unit time, and taking 4πR2

0 for the area of a
RBC, we obtain the following estimate for kσ

kσ ≈
Φtot

4πR2
0 · T

≈ 7× 103(nmol/L) · µm/s
(B.2)

Recall that the characteristic radius R0 = 3µm and the reduced volume (or re-
duced area in 2D) τ = 0.7.
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B.5 Lateral migration of a RBC after bifurcation

We have investigate different angles (defined in Fig. B.5) between feeding channel and
down-stream branch channels. The angles are varied in the range of 0◦ < θ1, θ2 < 90◦

with an indentation of 30◦. Moreover, we have initially set the vesicle at different
positions, such are: center-line (lateral position 0), faster zone (lateral position 0.25)
and slower zone (lateral position -0.25); see Fig. B.5. The capillary numbers are
taken as Ca = 5 and 50 (Ca as defined in the article, is proportional to velocity).
The confinement Cn = 0.3 is chosen to be the same value as in the main text.

We find for most cases that when a vesicle is initially located at the center-line it
will be "scattered" to an off-centered lateral position (the middle panel in Fig. B.5
(b)). Consider a vesicle in a vessel network, which has been off-centered. After some
time it has some probability to go back to the center-line if it enters the faster zone
of a daughter branch (the upper panel in Fig. B.5 (b)). However, even if it goes
back to the centerline by this scenario, this vesicle will be again scattered towards
off-centered position after the next bifurcation. When a vesicle enter the slower zone,
its probability to get off-centered becomes high.

This gives a hint to the idea that within a complex vessel network (with many
bifurcations), an RBC will often go to off-center position due to the presence of
bifurcations.
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Figure B.5: (a) Schematic for definition of θ1, θ2, normalized lateral position and
faster (upper) / slower (lower) zone. The dashed line represents the border (or sepa-
ration line) for streamlines entering faster or slower branch. The dashed-dotted lines
represent the centerlines of feeding and branching channels. A normalized lateral dis-
tance of two parallel walls in a given channel is defined as −0.5 and 0.5, counted from
the centerline (the latter is defined to be the zero line). (b) Simulation results with
different bifurcation angles, initial position and speeds. Curves on the right panel
with a color close to red indicate that the RBCs enter the faster branch, while colors
close to blue refer to RBCs entering the slower branch.
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