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Introduction

Random fields are random functions defined on a multiparameter space. They are used
to modelize structures or phenomena that arise or take place in a spatial or spatio-
temporal setting. The mathematical theory of random fields is of interest in many
fields such as image analysis, medical imaging, optics, material science, environmental
science, physical oceanography and cosmology.

This thesis is about smooth real-valued random fields defined on Rd, for some
positive integer d, with a focus on dimension two in some parts of our study. Random
fields are the generalization in higher dimensions of random processes on the line (where
the real variable represents either time or space). In higher dimensions, the parameter
space is considered as spatial with sometimes an additional dimension corresponding
to time. The multidimensionality of the parameter space entails more complexity as
well as the increased possibility to exploit geometrical aspects.

The axis of our study is definitely geometric: it is about geometric random objects
linked to smooth real-valued random fields. We focus on the discrete set of critical
points, the level sets and the excursion sets of a random field restricted to a finite
regular domain. As it will be detailed in the first chapter, we study topological char-
acteristics or the measures of these sets, which are real random variables.

More precisely, we are interested in the number of critical points, the length of
the level sets and the Euler characteristic of the excursion sets. We focus on the first
and the second moments of these random variables, which provide information about
their distribution, the latter being out of reach. Hence, they allow us to learn about
distributional properties of the random field itself. Moreover, for two-dimensional and
three-dimensional random fields, these geometric characteristics could be measured on
realizations of a random field and then used to compare a chosen model with reality.

We will make great use of Rice formulas that precisely provide expressions for the
moments of some geometric characteristics, in particular under the assumption that
the considered random field is Gaussian. Therefore, most of this thesis (yet not all of
it) is written in the Gaussian setting. This allows us to use the rich theory mainly
developped in this framework and to derive more explicit formulas under fairly simple
assumptions.

When the modelized structure is homogeneous or invariant under rotation, it may
be justified to add the assumption that a random field is stationary or isotropic. These
invariance assumptions have strong consequences on the covariance structure of the
random field, therefore they simplify the study. However, it is sometimes too much
of a simplification to assume them as they may not reflect reality. Besides, a big
demand for anisotropic models is nowadays observed, in particular by practitioners in
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geostatistics, offshore engineering, heterogeneous material or medical imaging (see for
instance [RB10], [Kla16], [ASP16]), but also for more theoretical studies dedicated to
image synthesis and analysis, cosmology or arithmetic ([ORS14], [BMR15], [PAA+16],
[KW17]). In this work, we have chosen to focus on anisotropic random fields, which
are even not stationary in one part of our study.

Chapter I is an introductive chapter, where we introduce all the notions and tools
that we need in order to formulate properly our contributions to the geometric study
of smooth random fields. The chapters that come next are based on research papers
that are either already published, accepted for publication or submitted to a journal.
Their content is thoroughly described at the end of the first chapter, but we sketch it
here.

First, we focus on the number of critical points of a stationary and Gaussian random
field defined on Rd. In Chapter II, derived from the published article [EF16] coauthored
with Anne Estrade, we present an extension of Geman condition, a condition for the
finiteness of the variance of a stationary and Gaussian process, to the multidimensional
and anisotropic case.

The purpose of Chapter III is a specific model of anisotropic and non-stationary
random fields in the planar framework. It is based on [Fou18], an article accepted
for publication. The so-called deformed random fields are built from a stationary and
isotropic random field and a bijective and deterministic deformation of the plane. For
this model, the cases of isotropy are proved to match a certain invariance property of
the expected Euler characteristic of the excursion sets. The mean Euler characteristic
of excursion sets also allows to determine the deformation of the model, when the
latter is unknown. In the deformed random fields model, anisotropy stems from the
parameter space.

However, anisotropy can also stem from the spectral domain. This is evidenced in
Chapter IV derived from [EF18], where we study random wave models. Some distri-
butional properties of a random wave are related to the ones of its random wavevector.
We focus on the expected measure of the planar and Gaussian random wave’s level
curves, which is proved to decrease as the anisotropy of its random wavevector in-
creases. The mean length of a random wave’s crest line in a fixed direction is also at
stake in this chapter. Our results are applied to several models such as anisotropic
generalizations of Berry’s planar random wave model and a Gaussian spatio-temporal
sea wave model.

Here are the precise references of the research articles which form the basis of this
thesis :

• [EF16] Estrade, A. and Fournier, J., Number of critical points of a gaussian
random field: Condition for a finite variance, Statistic & Probability Letters, Vol.
118, 94–99, 2016;

• [Fou18] Fournier, J., Identification and isotropy characterization of deformed
random fields through excursion sets, accepted for publication in the Applied
Probability Journals, hal-01495157, 2017;

• [EF18] Estrade, A. and Fournier, J., Anisotropic random wave models, hal-
01745706, 2018.



Chapter I
Framework

This introductory chapter has been written with the help of two major references:
[AT07] and [AW09]. Its purpose is to gather all the notions and results which are used
in the following chapters. Each of them, based on a published or a submitted article,
is presented at the end of this chapter.

General notions and results about random fields are introduced in Section I.1.
From Section I.2, we adopt a geometric viewpoint: we present some random geometric
characteristics linked to a random field and we explain how their first moments can be
computed thanks to Rice formulas.

Notations and conventions
Let d be a positive integer.

• #A: cardinality of a finite set A.

• N0: set of the the non-negative integers; N: set of the positive integers.

• · : complex conjugation.

• Å, A, ∂A: respectively interior, closure and border of the set A.

• B(Rd): Borel σ-algebra on Rd.

• Hk: k-dimensional Hausdorff measure if k ∈ N and counting measure if k = 0;
|A|k also denotes the k-dimensional Hausdorff measure of the set A.

• In Rd, the canonical Euclidian scalar product between two vectors x and y is
written x · y, the associated Euclidian norm is written ‖ · ‖. We occasionaly use
the same notation for t ∈ Rd and for the column vector containing its coordinates.

• A subset T of Rd is a rectangle if there exist (si, ti)1≤i≤d ∈ (R2)d satisfying for
any i ∈ {1, · · · , d}, si ≤ ti and an orthonormal basis of Rd where we can write

T =
d∏
i=1

[si, ti].

1



2 Chapter I. Framework

The rectangle T is called a segment if there exists k ∈ {1, · · · , d} such that
sk < tk and ∀i 6= k, si = ti. Note that by definition, all rectangles are bounded.

• Sd−1: (d− 1)-dimensional sphere in Rd.

• Id: identity matrix of size d× d.

• AT : transpose of the matrix A.

• SO(d): group of the rotations in Rd (that is, orthogonal transforms with deter-
minant equal to one).

• index (S), where S is a symmetric real matrix: number of negative eigenvalues
of S.

• Sd: set of the symmetric real matrices of size d × d; Sj
d: set of the matrices in

Sd with exactly j negative eigenvalues.

• Let f : Rd → R. We fix a basis in Rd. For some positive integer k, we say that f
is of class C k on Rd if all the kth-order partial derivatives of f in a fixed basis of
Rd exist and are continuous on Rd. If f is of class C 4, we write f ′i its first-order
partial derivative in the ith direction of the basis and f ′′i,j(t) its second-order
partial derivative in the ith and jth directions. The third-order and fourth-order
partial derivatives are denoted by f (3)

i,j,k and f (4)
i,j,k,l, respectively. We refer to the

gradient (f ′i(t))1≤i≤d of f at t as f ′(t) and to the Hessian matrix (f ′′ij(t))1≤i,j≤d
of f at t as f ′′(t). For the higher-order partial derivatives (but also occasionally
for the first-order and second-order ones), we use the notation with multi-indices
introduced in the following point.

• For j = (j1, · · · , jd) ∈ N0
d, we write |j| =

d∑
`=1

j`. Moreover, if λ ∈ Rd and if f is

a map from Rd to R with adequate regularity, we write

λj =
d∏
`=1

λj`` and ∂jf

∂tj
= ∂|j|f

∂tj11 · · · ∂t
jd
d

.

• The letters “a.s.” are short for “almost surely” or “almost sure”.

• If X and Y are two random variables on some probability space, we write X L∼ Y
if X and Y have the same distribution.

• If a random variable X ∈ Rd admits a probability density function with respect
to the Lebesgue measure on Rd, we write it pX .

• N (m,Σ), with m ∈ Rd and Σ a positive and symmetric matrix of size d × d:
normal distribution with expectation m and covariance matrix Σ. We say that a
Gaussian random vector is degenerate if its covariance matrix is not invertible.

• Ψ: tail probability of a Gaussian standard variable.

• (Hi)i∈N0 : the Hermite polynomials. We also set H−1 : x 7→
√

2πΨ(x) exp(x2/2).
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Random fields

The random fields that we consider are defined on a probability space (Ω,F ,P). Their
parameter space is the Euclidian space Rd, where d is a positive integer, or a restriction
of it. They take real values. In the following, most of the time, we will not note the
dependence on ω of a random field X = {X(t, ω), t ∈ Rd, ω ∈ Ω}, writing simply
{X(t), t ∈ Rd}. In the whole section, we denote by X a real-valued random field
defined on Rd that admits a finite second moment at each point.

Let m be its expectation function Rd → R, t 7→ E[X(t)]. Let C be its covariance
function Rd × Rd → R, (s, t) 7→ E[(X(s) − m(s))(X(t) − m(t))]; C is a symmetric
positive semidefinite function. Note that in the complex case (that we shall discuss
in Section I.1.4), the covariance function is defined by C : Rd × Rd → C, (s, t) 7→
E[(X(s) − m(s))(X(t)−m(t))] and it is a symmetric positive semidefinite function
with Hermitian symmetry.

Stationarity and isotropy

Some invariance properties, such as stationarity and isotropy, can be added on the law
of X.

The random field X is said to be stationary (or homogeneous) if its law is invariant
under any translation of the parameter space:

∀a ∈ Rd, X(·+ a) L∼ X.

That means that X has stochastically the same behaviour around any point of Rd. It
implies that the expectation function m as well as the variance of X are constant and
that

∀(s, t) ∈ (Rd)2, C(s, t) = C(s− t, 0). (1)

In this case, we introduce r : Rd → R, t 7→ C(t, 0), which exactly describes the
covariance structure of X, since for any (s, t) ∈ (Rd)2, Cov(X(s), X(t)) = r(s− t). By
abusing the notation, in the stationary case, we call r the covariance function of X. It
is also positive, semidefinite and even. Reciprocally, if the covariance function C of a
centred random field X satisfies (1) then X is said to be weakly stationary.

Figure I.1 provides simulations of a stationary random field (Figure I.1b) and of a
non-stationary and anisotropic random field (Figure I.1a).

Since we deal with distributional properties (mainly the expectation and the vari-
ance of random variables linked to a random field), we may equivalently study X or
any random field with the same law as X. Thus if X is stationary, we may assume it
centred, since X has the same law as X −m.

The random field X is said to be isotropic if its law is invariant under any rotation
ρ of the parameter space:

∀ρ ∈ SO(d), X ◦ ρ L∼ X.

That means that X has stochastically the same behaviour on any direction of Rd.
Equivalently, isotropy corresponds to the lack of preferred directions for X. If X is
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isotropic, then

∀ρ ∈ SO(d), ∀(s, t) ∈ (Rd)2, C(ρ(s), ρ(t)) = C(s, t). (2)

Reciprocally, if the covariance function C of a centred random fieldX satisfies condition
(2), then X is said weakly isotropic. If X is stationary as well as isotropic, then its
covariance function r : Rd → R is radial: for any t ∈ Rd, r(t) only depends on t through
‖t‖. Figure I.1b shows a simulation of a stationary and isotropic random field while at
the end of Chapter III, Figures III.1 present simulations of isotropic but non-stationary
random fields.

The assumptions of stationarity and/or isotropy are sometimes justified by mod-
elization purpose. For instance, in image analysis and synthesis, the homogeneous
nature of texture entails that stationary random fields are commonly used to model
them. However, these invariance assumptions are also sometimes added with a view
to simplification, due to the constraints they add on the covariance structure of the
random field. We will mention other implications of these assumptions in Sections
I.1.3 and I.1.4.

(a) A non-stationary and anisotropic random field,
actually a deformed random field Xθ (see Chapter
III) with X Gaussian with Gaussian covariance
and θ a tensorial deformation (s, t) 7→ (s, t1,55).

(b) A stationary and isotropic random field.

Figure I.1 – Simulation of the level sets of two random fields.

Gaussian random fields
In this thesis, the assumption that the considered random fields are Gaussian will often
be in force. According to Kolmogorov theorem (see for instance [AW09] Theorem 1.1),
the law of a random field X is determined by its finite-dimensional distributions, that
is to say by the set of the laws of the random vectors

(X(t1), · · · , X(tn)) : n ∈ N, (t1, · · · , tn) ∈ (Rd)n.
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The random field X is said to be Gaussian if all these random vectors are Gaussian
vectors. In this case, the law of one of them (X(t1), · · · , X(tn)) is determined by its co-
variance matrix (C(ti, tj))1≤i≤d, 1≤j≤d and by its expectation vector (E[X(ti)])i∈{1,··· ,d}.
Therefore, a consequence of Kolmogorov’s theorem is that for any function m : Rd → R
and for any positive semidefinite function C : Rd × Rd → R, there exists a Gaussian
random field with expectation function m and with covariance function C, and its
distribution is uniquely determined.

The fact that the distribution of a Gaussian random field is determined by its
expectation and covariance functions simplifies a lot their study. For instance, if a
centred Gaussian random field is weakly stationary then it is stationary. Similarly,
condition (2) is not only a necessary condition for isotropy but also a sufficient condition
in the case of a centred Gaussian random field.

To end with, we present two results that will come into play in Chapter II, when
we study joint Gaussian variables: Wick formula and a regression result.

Wick formula expresses the expectation of the product of an even number, say
2m, of centred Gaussian variables as a homogeneous polynomial function of degree m
evaluated at the covariances of these Gaussian variables. Its proof can be found in
[AT07] (see Lemma 11.6.1).

Proposition I.1 (Wick formula) Let X1, X2 · · · , Xn be real random variables with
a joint Gaussian distribution and zero means. Then, for any positive integer m such
that 2m+ 1 ≤ n,

• E[X1 · · ·X2m+1] = 0,

• E[X1 · · ·X2m] =
∑

E[Xi1Xi2 ] · · ·E[Xi2m−1Xi2m ],

where the sum is taken over the (2m)!
m!2m different ways of grouping X1, · · · , X2m into m

pairs.

The following regression formula may be proved through a simple conditional Gaus-
sian density computation.

Proposition I.2 (Gaussian regression) Let n < d and let X = (X1, X2) be a cen-
tred Gaussian vector in Rd, such that X1 ∈ Rn and X2 ∈ Rd−n. We assume that
X2 is not degenerate. We write C11 and C22 the covariance matrices of X1 and X2,
respectively, and C12 the n× (d−n) matrix of the covariances between the coordinates
of X1 and X2, such that the covariance matrix of X is(

C11 CT12
C12 C22

)
.

Then the law of X1|X2, that is the conditional law of X1 given X2, is

N (C12C
−1
22 X2, C11 − C12C

−1
22 C

T
12).

In other words, there exists a random variable ε L∼ N (0, C11−C12C
−1
22 C

T
12) independent

of X2 such that
X1 = C12C

−1
22 X2 + ε
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Regularity

Our work is about smooth random fields, for which the realizations of the set of critical
points, of the level sets and of the excursion sets are non-degenerate geometric objects.
Therefore, the kind of regularity that we need is almost sure regularity. In fact, nearly
all the random fields considered in this thesis will be at least almost surely of class C 2.
However, it is also useful to discuss the regularity in quadratic mean, also called L2-
regularity or mean square regularity, which is linked to the regularity of the covariance
function. Let us first recall the definitions of these different types of regularity. The
topology on Rd is the one given by the Euclidian metric. For the proofs of the results
stated in this section, we refer to [CL67, AT07] and [AW09].

Definition I.3 (almost sure regularity) 1. We say that X is a.s. continuous
on Rd if, for almost any ω ∈ Ω, X(·, ω) is continuous on Rd.

2. Let k ∈ N. We say that X is a.s. of class C k if, for almost any ω ∈ Ω, X(·, ω)
is of class C k on Rd.

If X is a.s. of class C 1, we introduce the vector-valued random field
X ′ = (X ′j)1≤j≤d : Rd → Rd corresponding to the gradient of X in the canonical basis of
Rd. If X is a.s. of class C 2, the vector-valued random field X ′′ = (X ′′ij)1≤i,j≤d : Rd →
Rd×Rd corresponds to the Hessian matrix of X in the canonical basis of Rd. Note that
if X is a Gaussian random field, its almost sure partial derivatives are also Gaussian
random fields.

Definition I.4 (L2-regularity) 1. The random field X is said to be contin-
uous in quadratic mean at point t ∈ Rd if X(s) L2

−→
s→t

X(t), that is if
E[(X(s)−X(t))2] −→

s→t
0.

2. Let u ∈ Sd−1. The random field X is said to be differentiable in quadratic mean
at point t along vector u if X(t+ hu)−X(t)

h
admits a limit with respect to the

topology of the L2-norm, as h ∈ R tends to zero.

If X is a Gaussian random field, its mean square partial derivatives are also Gaus-
sian.

The upcoming results (Propositions I.5 and I.6) formulate the links between the
almost sure regularity, the L2-regularity and the regularity of the covariance function,
partly in the Gaussian framework. Let us make a first observation: ifX is almost surely
differentiable at t ∈ Rd along direction u ∈ Sd−1 and if it admits a L2-derivative at t
along direction u, then the two derivatives coincide almost surely. Indeed, convergence
in quadratic mean implies the almost sure convergence of a subsequence.

Proposition I.5 Let k ∈ N. Let us assume that X is a centred Gaussian random field
with realizations almost surely of class C k on Rd. Then its covariance function C is
of class C 2k on Rd.
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The above proposition results from the fact that almost sure convergence entails
the convergence in distribution, which itself can be related to a convergence result of
the characteristic function, according to Lévy theorem. This allows us to conclude on
the regularity of the covariance function when the considered random field is Gaussian.

The following property, which is not specific to the Gaussian framework, relates
the existence of L2-derivatives with the existence of derivatives of the covariance func-
tion. Remember that the conventions about multi-indices have been introduced in the
notations at the beginning of the current chapter.

Proposition I.6 Let us assume that the random field X is centred.

1. For any t0 ∈ Rd, X is continuous in quadratic mean at t0 if and only if its
covariance function C is continuous at (t0, t0). Moreover, if C is continuous on
{(t, t), t ∈ Rd} then C is continuous on Rd × Rd.

2. Let t0 ∈ Rd and let j ∈ Nd0. If the covariance function C : (s, t) 7→ C(s, t) admits

a partial derivative ∂2|j|C

∂sj ∂tj
at (t0, t0), then the random field X admits a mean

square derivative ∂
|j|X

∂tj
at t0. Moreover, if ∂

2|j|C

∂sj ∂tj
exists on {(t, t), t ∈ Rd}, then

it exists on Rd × Rd.

The above proposition together with Proposition I.5 entail that in the Gaussian
case, if X is almost surely differentiable on Rd, then it is mean square differentiable
on Rd. We have decided to use the same notations for mean square derivatives as for
almost sure derivatives, having in mind that they coincide in the Gaussian and almost
surely regular framework that will interest us.

In the stationary case, Proposition I.6 may be stated in a simpler way in terms
of the regularity of the covariance function r at zero. Indeed, in the stationary case,

for any t0 ∈ Rd, the continuity of C and the existence of ∂2C

∂sj∂tj
at point (t0, t0) boil

down, respectively, to the continuity of r at zero and to the existence of ∂2r

∂sj∂tj
(0, 0).

Thanks to computations similar to the ones leading to Proposition I.6, it is possible
to relate partial derivatives of the covariance function C to the covariances between
partial derivatives of X. We will especially use them in the case of a stationary random
field in Chapter II and in Chapter IV, therefore we state them here in the stationary
case. Let (j,k) ∈ N2d

0 , let us assume that X is centred, weakly stationary, and that its

covariance function r admits a partial derivative ∂
|j+k|r

∂tj+k on Rd. Then it occurs that

X admits mean square partial derivatives ∂
|j|X

∂tj
and ∂|k|X

∂tk
on Rd and that for any

(s, t) ∈ (Rd)2,

E
[
∂|j|X

∂tj
(s) ∂

|k|X

∂tk
(t)
]

= (−1)|k| ∂
|j+k|r

∂tj+k (s− t). (3)

The fact that r is an even function explains the apparent asymmetry of the right-hand
term of this equality. This formula has simple interesting consequences. First, for
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(i, j) ∈ {1, · · · , d}2, the random field X ′i admits the covariance function −r′′ii, and X ′′i,j
admits the covariance function r(4)

iijj . In the next section, we will also see that for s = t,
the above expectation gives a spectral moment of the random field X, up to a factor
±1.

Moreover, Formula (3) leads to simplifications in the covariance structure of a
weakly stationary random field. Indeed, if X is weakly stationary, its covariance func-
tion r is an even function, whence (assuming that r(3)

i,j,m(0) exists) r′i(0) = r
(3)
i,j,m(0) = 0,

which entails
∀t ∈ Rd, E[X ′i(t)X(t)] = E[X ′′i,j(t)X ′m(t)] = 0. (4)

Thus, if X is centred, stationary and Gaussian, at any t ∈ Rd, X(t) is independent of
any of its first-order partial derivatives at point t, and the same holds for a first-order
partial derivative at point t with any second-order partial derivative at point t. This
will make simpler some of our computations in Chapter II and in Chapter IV.

In the weakly stationary and isotropic case, other simplifications occur because r
is a radial function: for any (i, j) ∈ {1, · · · , d}2,

−E[X ′′ij(t)X(t)] = E[X ′i(t)X ′j(t)] = −r′′i,j(0) = λ2 δ
j
i , (5)

where δ is here the Kronecker delta and λ2 ≥ 0 will be defined in the next section as
the second-order spectral moment. Consequently, if X is Gaussian and centred, the
first-order partial derivatives at a fixed point are independent of one another.

To end with, there is no converse implication to the one of Proposition I.5, that is
mean square regularity does not imply almost sure regularity. However, it is possible to
deduce from the L2-regularity of X the existence of a version of X that is almost surely
regular, under certain conditions. In particular, the following proposition concerns
C∞-regularity and it will be used in Chapter IV Section IV.1.3.

Proposition I.7 Let C : Rd → R be a covariance function of class C∞. Then there
exists a Gaussian centred random field with covariance function C that is almost surely
of class C∞.

Spectral representation of stationary random fields

A theorem due to Bochner and dating back from 1933 (see [Boc33]) provides an integral
expression of the covariance function of a weakly stationary random field. Originally
designed in the setting of Fourier analysis, it applies to any complex-valued positive
semidefinite function on Rd, hence exactly to covariance functions of complex-valued,
weakly stationary random fields. Thus this section concerns complex-valued weakly
stationary random fields on Rd, although we will only be interested in the real-valued
random fields in the following chapters. Let us recall that a function r : Rd → C is said
to be positive semidefinite if

∀n ∈ N, ∀(ti)i∈{1,··· ,n} ∈ Rdn, ∀(zi)i∈{1··· ,n} ∈ Cn,
n∑
i=1

n∑
j=1

zi r(ti − tj) z̄j ≥ 0.
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Theorem I.8 (Bochner theorem.) A continuous function r : Rd → R is positive
semidefinite if and only if there exists a finite measure F on the Borel σ-algebra B(Rd)
such that

∀t ∈ Rd, r(t) =
∫
Rd
eit·λ dF (λ). (6)

Moreover, if F exists, it is unique.

If function r is the covariance function of a weakly stationary random field X then F
is called the spectral measure of X. Note that r(0) = F (Rd). Moreover, if F admits
a density f : Rd → R with respect to the Lebesgue measure in Rd then f is called the
spectral density of X.

In the real case (which we are going to stick to), r is even. Hence, the uniqueness of
the spectral measure yields that it is a symmetric measure (that is, for any B ∈ B(Rd),
F (−B) = F (B)). Therefore, if the spectral density exists, it is an even function. Note
also that (6) may be transformed into

∀t ∈ Rd, r(t) = 1
2(r(t) + r(−t)) =

∫
Rd

cos(t · λ) dF (λ).

If X is weakly stationary and weakly isotropic, r is radial, which entails that F
is invariant under rotations in Rd and that f is radial if it exists. Reciprocally, if
F is invariant under rotations then the weakly stationary random field X is weakly
isotropic.

The spectral moments are parameters of the random field arising with the spectral
representation. Let F be the spectral measure of the weakly stationary random field
X : Rd → R. Let j ∈ Nd0. If λ 7→ λj is integrable with respect to measure F on Rd then∫

Rd
λj dF (λ)

defines a spectral moment ofX denoted by λj. Its order is |j|. Because of the symmetry
of F , if an odd-order spectral moment exists, it is necessarily zero.

The spectral moments may be expressed as some partial derivatives at zero of the
covariance function r and thus their existence is linked to the L2-regularity of X,

according to Proposition I.6. More precisely, let j ∈ Nd0; assuming that ∂
|j|r

∂tj
exists,

Formula (6) yields

∀j ∈ Nd0,
∂|j|r

∂tj
(0) = i|j|λj,

the two terms being equal to zero if |j| is odd.
According to Formula (3), these quantities also correspond, up to a factor ±1, to

the covariances between mean square partial derivatives of the random field at a fixed
point, if it is centred.

Therefore, it occurs that in the weakly stationary and isotropic case, some of the
spectral moments are zero, because of the cancellation of some derivatives of r at zero,
already explained in the previous section (see for instance Formulas (4) and (5)).

If X is a weakly isotropic random field, F is invariant under rotations, thus we may
define the second-order spectral moment of X as

λ2 =
∫
Rd
λ2
j dF (λ), ∀j ∈ {1, · · · , d},
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the moments
∫
Rd
λiλj dF (λ) being equal to zero if i 6= j. The second-order spectral

moment λ2 is also the variance of any first-order partial derivative of X, thus it de-
scribes the variability of the velocity of change of X in the neighborhood of any point
in Rd. In this case, the matrix of the second-order moments of X(∫

Rd
λiλj dF (λ)

)
1≤i,j≤d

is simply λ2 Id.
Now, let us turn to the spectral reprentation of a weakly stationary random field

that can be obtained thanks to Bochner theorem. To state it, we need to define a
complex noise based on a measure on Rd. We restrict ourselves to the Gaussian case,
for we will only need the spectral representation of Gaussian stationary random fields
in Section IV.1.2.

Let F be a σ-finite measure on Rd. A complex Gaussian F -noise on Rd is a C-valued
process WF defined on B(Rd) such that

• a.s. WF is a complex-valued measure on B(Rd),

• ∀A ∈ B(Rd), WF (A) is a complex-valued Gaussian variable with E[WF (A)] = 0
and E[WF (A)WF (A)] = F (A),

• for any sequence (An)n of pairwise disjoint Borel sets, (WF (An))n are indepen-
dent random variables.

Then it is possible to define an integration with respect to the F -noise WF , for all
deterministic complex functions that are square integrable with respect to measure F .
In particular, if f and g are two complex square integrable functions with respect to
measure F , then

E
[∫

Rd
f(λ) dWF (λ)

]
= 0

E
[∫

Rd
f(λ) dWF (λ)

∫
Rd
g(λ) dWF (λ)

]
=
∫
Rd
f(t) g(t) dF (t)

Now we are able to state the representation theorem.

Theorem I.9 (Spectral representation theorem.) Let F be a finite measure on
the Borel σ-field B(Rd) of Rd and let WF be a Gaussian F -noise. Then the complex-
valued random field (∫

Rd
eit·λ dWF (λ)

)
t∈Rd

. (7)

is centred, stationary, Gaussian, and it admits the covariance function defined by (6).
Reciprocally, let X be a complex-valued, mean square continuous, centred, station-

ary and Gaussian random field with covariance function r defined by (6). Then there
exists a complex F -noise WF such that X admits the representation (7).

For the representation of real-valued random fields, the above theorem is still cor-
rect as soon as we adapt the definition of the complex F -noise WF at stake, so that it
satisfies

∀A ∈ B(Rd), WF (A) = WF (−A).
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Spectral method for simulation of Gaussian random fields
This section is about one of the methods used to produce approximate simulate realiza-
tions of Gaussian random fields, called the spectral method and designed by Shinozuka
and Jan (see [Shi71] and [SJ72]). It was used in this thesis to produce the simulations
of realizations of Gaussian random fields which illustrate Chapters I and III.

Let X : Rd → R be a Gaussian stationary centred random field with covariance
function r and with variance equal to one. (If m 6= 0 and r(0) 6= 1, the following
method allows us to simulate r(0)−1/2(X −m).) Let F be the spectral measure of X.
Since r(0) = 1, F is a probability measure on Rd. Let k be a random variable in Rd
with probability measure F . Let η be a uniform random variable on [0, 2π], such that
η and k are independent. The random field Z defined by

∀t ∈ Rd, Z(t) =
√

2 cos(k · t+ η)

is centred, stationary and it admits the same covariance function as X. Note that the
random field Z corresponds to a random wave model with random wavevector k and
that this model is the purpose of Chapter IV.

Now, we consider independent and identically distributed versions of η and of k,
denoted respectively by (ηj)j∈N and by (kj)j∈N. According to the central limit theorem
applied to finite-dimensional distributions, the distribution of√ 2

N

N∑
j=1

cos(kj · t+ ηj)


t∈Rd

converges as N tends to ∞ towards the distribution of a centred and stationary Gaus-
sian random field with covariance function r, that is exactly the law of X.

Through the choice of a large enoughN , this method allows to produce approximate
simulations of realizations of X. The only restriction of this method is that it requires
to be able to simulate a random variable distributed according to law F .

Gaussian deformed random fields, studied in Chapter III, can be simulated thanks
to the spectral method. This kind of random field is of the formX◦θ, whereX : R2 → R
is a centred, stationary and isotropic Gaussian random field and where θ : R2 → R2

is a bijective mapping. Generally speaking, X ◦ θ is non stationary and anisotropic.
Our simulation of a realization of X ◦ θ on a fixed window requires to fix a grid on
it. Sequences of realizations of random variables denoted above by (kj)1≤j≤N and
(ηj)1≤j≤N are simulated. Then, at each vertex t of the grid, the spectral method
allows to compute an approximate realization of the random variable X(θ(t)).
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Some geometric characteristics

This section is dedicated to three characteristics that can be used to study a real
random field with a geometric perspective: the number of critical points, the Hausdorff
measure of level sets and the Euler characteristic of excursion sets. In this thesis, these
characteristics are random variables but originally, they were introduced and studied
in a deterministic framework. Consequently, some of the content of this section is
deterministic. In the random fields framework, the exact distribution of these random
variables is out of reach. However, under certain assumptions on the considered random
field, moments of these geometric characteristics are given by rather tractable formulas.
We will particularly focus on their expectation, sometimes supplemented with their
variance, which may be expressed thanks to the Rice formulas.

(a) Level sets. (b) Excursion set.

Figure I.2 – A realization of a non stationary and anisotropic random field: level sets and
excursion set.

Rice formulas

Let d ≥ d′ be two integers. Let Z : Rd → Rd
′ be an a.s. of class C 1 random field and

let v ∈ Rd
′ . For a fixed v ∈ Rd

′ , Z−1({v}) is the level set of Z at level v. Provided
that a.s. for any t ∈ Z−1({v}), the Jacobian matrix of Z at t is of rank d′, Z−1({v})
is a C 1-submanifold of dimension d− d′ in Rd. Recall that Hd−d′ is a notation for the
(d − d′)-Hausdorff measure. If T is a compact set in Rd, we consider its intersection
with Z−1({v}). Under certain assumptions on Z, Rice formulas provide expressions
for the moments of random variables that are integrals of random fields over the level
set Z−1({v})∩T . More precisely, if G : Rd → R is a random field that may depend on
Z, the expectation of ∫

Z−1({v})∩T
G(t) dHd−d′(t), (8)
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can be expressed as an integral on T , the integrated function being an expectation
conditioned on the event Z(t) = v, multiplied by the density of the random variable
Z(t) at point v. Similar formulas exist for the higher moments of this random variable.
The simplest and yet very useful case consists in G being a.s. constant equal to one,
so that (8) is the (d− d′)-Hausdorff measure of the level set Z−1({v}) ∩ T .

These kind of formulas were developed by Rice and Kac independently in the for-
ties, in dimension one ([Kac43] and [Ric44] were their first contributions). The former
considered the number of crossings of a stationary Gaussian process and applied its
results to telecommunications. The latter was interested in the number of roots of ran-
dom polynomials with coefficients independently distributed according to the standard
Gaussian law. Because of their dual origins, these formulas are often called Kac-Rice
formulas. The formula was then generalized to different kinds of Gaussian processes.
In the fifties, Longuett-Higgins brought the first contributions to the multiparameter
case in the domain of physical oceanography (see [LH57] for instance). A general pre-
sentation of Rice formulas in the random fields setting was done by Adler in [Adl81].
The formulas were also extended to some non-Gaussian models. To prove them, one
can start in a deterministic framework, using the area formula (for the case d = d′)
and the coarea formula (for the case d > d′), which are change of variable formulas for
multiple integrals (see [BLL17] for a thorough presentation).

We give two different versions of Rice formulas. The first one concerns the case
d = d′, and contains both an expectation and a second factorial moment formula. The
second one allows to handle the case d ≥ d′. We state versions of the Rice formulas
that will meet our future needs. Their proofs can be found in [AW05] (Theorems 6.3,
6.4, and 6.8).

Theorem I.10 (Rice formula, case d = d′.) Let (d, k) ∈ N2 and let v ∈ Rd. Let U
an open subset of Rd, T a compact subset of U and B ∈ B(Rk). Let Z : Rd → Rd and
Y : Rd → Rk be random fields such that

• Z is a.s. of class C 1 on Rd and Y is a.s. continuous on Rd,

• the vector-valued random field (Z, Y ) : Rd → Rd × Rk is Gaussian,

• P(∃t ∈ U : Z(t) = v, det(Z ′(t)) = 0) = 0.

1. If for any t ∈ U , the Gaussian vector Z(t) is non degenerate, then

E[
∑

t∈Z−1({v})∩T
1B(Y (t))] =

∫
T
E[1B(Y (t)) |det(Z ′(t))| |Z(t) = v] pZ(t)(v) dt,

(9)
and in the case where for any t ∈ T , 1B(Y (t)) = 1, this integral is finite.

2. If for any (s, t) ∈ U2 such that s 6= t, the Gaussian vector (Z(s), Z(t)) is non
degenerate, then

E

 ∑
t∈Z−1({v})∩T

1B(Y (t))

 ∑
t∈Z−1({v})∩T

1B(Y (t))

− 1

 =

∫
T×T

E[1B(Y (s))1B(Y (t)) | det(Z ′(s)) det(Z ′(t))| |Z(s) = Z(t) = v] p(Z(s),Z(t))(v, v) ds dt,



14 Chapter I. Framework

and in the case where for any t ∈ T , 1B(Y (t)) = 1, both sides may be infinite.

Remark I.11 In the above theorem, if Z is furthermore stationary and if Z ′(0) is a
non-degenerate Gaussian vector, then P(∃t ∈ U : Z(t) = v, det(Z ′(t)) = 0) = 0. This
is a simple consequence of Proposition 6.5 in [AW05].

In Chapter II, we consider the number of points in a compact set T in Rd where
the gradient of a Gaussian and stationary random field X : Rd → R takes a fixed value
v ∈ Rd. Under the condition that a.s. for any t ∈ Rd, the Hessian matrix X ′′(t) is of
rank d, (X ′)−1({v}) is a manifold of dimension 0 in Rd. Then (X ′)−1({v}) ∩ T is a.s.
a discrete set and it is finite if T is bounded. If v = 0, it is the set of critical points of
X in T . Assuming that the hypothesis of Theorem I.10 are satisfied by the gradient
field X ′ and applying it with trivial choices for Y and B (for instance Y a.s. a real
constant and B = R), we obtain expressions of the expectation and the variance of
the cardinal of the random set (X ′)−1({v}) ∩ T . The above theorem also comes into
play in a less trivial setting in the proof of a formula for the expectation of the Euler
characteristic of an excursion set, as we will explain in Section I.2.2.c.

Now we turn to a second Rice formula, which will allow us to deal with the case
where the dimension d′ of the space where the considered random field takes value is
stricty less than the dimension d of the parameter space. We introduce

H : Rd × Rd
′ → [0,+∞) A 7→ (det(AAT ))1/2.

Thus if d = d′, H = | det(·)| and if d′ = 1, H is the Euclidian norm in Rd.

Theorem I.12 (Rice formula, case d ≥ d′) Let d ≥ d′. Let Z : Rd → Rd
′ be a

Gaussian random field. We assume that Z is almost surely of class C 2 and that for
any t ∈ Rd, the Gaussian vector (Z(t), Z ′(t)) is not degenerate. For any v ∈ Rd

′ and
for T ∈ B(Rd), we write l(v, Z, T ) the (d − d′)-Hausdorff measure of Z−1({v}) ∩ T .
Then

E[l(v, Z, T )] =
∫
T
E[H(Z ′(t))|Z(t) = v] pZ(t)(v) dt,

where both sides are finite if T is a compact set.

Note that the above assumptions are more restrictive than in the case d = d′. The
proof of this theorem can be found in [AW05] (see Theorem 6.8 and Proposition 6.12).
For instance, let us consider an a.s. of class C 2, Gaussian random field X : Rd → R, a
compact set T in Rd and a real v. If a.s. for any t ∈ X−1({v}), X ′(t) 6= 0, the level
set X−1({v}) is a.s. a C 2-manifold of dimension d− 1 in Rd. If v = 0, it is called the
nodal set of X. Provided that X satisfies the assumptions of Theorem I.12, we obtain
the following expectation formula:

E [l(v,X, T )] =
∫
T
E[‖X ′(t)‖ |X(t) = v] pX(t)(v) dt.

We apply it in Chapter IV to specific models of anisotropic random waves.
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Euler characteristic of excursion sets

The last geometric characteristic that we present here is the Euler characteristic of
excursion sets. Let X : Rd → R an a.s. continous random field, let T a subset of Rd
and let u a fixed real level. We write

A(u,X, T ) = {t ∈ T / X(t) ≥ u},

the excursion set of X restricted to T above level u, that is X−1([u,+∞))∩ T . If T is
compact, then so is A(u,X, T ). Figure I.2a shows a simulation of the realization of a
random field’s level sets, while a corresponding excursion set appears on Figure I.2b.

Although the distribution of the excursion sets of a fixed random field is mathe-
matically out of reach, it may be possible to study the distribution of some of their
characteristics such as their measure, the measure of their frontier, or their Euler char-
acteristic. Concerning their frontier, if T is an open bounded subset of Rd and if for
instance X admits no local minimum in X−1({u}), then the frontier of A(u,X, T ) is
the level curve X−1({u}) ∩ T , whose expectation of length can be expressed, under
appropriate assumptions, thanks to Theorem I.12. We are going to focus on the Euler
characteristic of excursion sets, which describes their topology.

In many applicative fields, it is important to know the topology of excursion sets.
For instance, at a microscopic scale, in material science, the excursion sets of a metallic
surface impacts its physical properties. At a macroscopic scale, the surface of the
ocean may also be studied by considering its excursion sets. A naïve explanation in
dimension two, taken form the introduction of |Adler1981], is that a surface can be
described through the repartition and the size of its hills and valleys. To some extent,
the Euler characteristic of excursion sets considered at different levels provides these
information.

This section begins in a deterministic setting. We provide a general definition of
the Euler characteristic in Section I.2.2.a. In Section I.2.2.b, we start focusing on
excursion sets and we explain how Morse theory comes into play to express their Euler
characteristic, when the function satisfies some regularity properties. In Section I.2.2.c,
returning to the random setting, we give explicit expressions of the expectation and
the variance of excursion sets of random fields.

Definition and properties

The Euler characteristic, denoted by χ, and also called the Euler-Poincaré characteris-
tic, is an integer-valued topological functional, used to describe the structure of a set.
Here we wish to introduce the Euler characteristic in a general setting, before applying
it exclusively to excursion sets. However, since we will not need its general definition
in the upcoming chapters, we shall not go into details. Several definitions exist; we
have chosen one from combinatorial geometry, based on triangulation.

Let us first recall that a simplex K in Rd is the convex hull of a finite number of
affinely independent points (Ai)0≤i≤n in Rd; its dimension is defined as n, necessarily
less or equal to d. Simplexes of dimensions zero to four in Rd (d ≥ 3) are respectively
called vertices, edges, triangles and tetrahedrons. A face of the n-dimensional simplex
K is a simplex generated by a subfamily of the points (Ai)0≤i≤n.
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Simplicial complexes are formed by joining together simplexes in an appropriate
way. More precisely, a simplicial complex S is a finite collection of simplexes such
that if K belongs to S then a face of K also belongs to S and if K and K ′ are in
S then K ∩K ′ is either empty or a face of both. Abusing the notation, we also call
simplicial complex the geometric realization of S as a subset of Rd.

The Euler characteristic of a simplicial complex S of dimension n is given by:

χ(S ) =
n∑
i=0

(−1)n−iαi(S ), (10)

where αi(S ) gives the number of i-dimensional simplexes in S . Thus the Euler
characteristic is integer-valued. Also note that χ(S ) is independent of the dimension
of the ambiant space Rd in which S sits.

This definition may be extended to any triangulable subset M of Rd. A subset
M of Rd is triangulable if there exists a simplicial complex S and a homeomorphism
between M and S . Let SM be a simplicial complex associated with a triangulable
subset M ∈ Rd through a triangulation. The Euler characteristic of M is defined by
χ(M) = χ(SM ), which is given by (10) and is proved not to depend on the choice of
the triangulation.

Let us write this formula in small dimensions. Let M be a triangulable subset of
Rd of dimension N ∈ {1, 2, 3}. The Euler characteristic is obtained by counting the
number of vertices, edges and faces in any triangulation of M :

if dim(M) = 1, χ(M) = #edges−#vertices;
if dim(M) = 2, χ(M) = #faces−#edges + #vertices. (11)

Descartes (around 1640) and Euler (in 1752) were the first to notice the existence of
such a characteristic, proving that for convex polyhedra, the alternating sum (11) was
equal to 2, but that it was not necessarily the case for non-convex polyhedra.

The Euler characteristic satisfies two crucial properties.

Proposition I.13 1. The Euler characteristic is an additive functional: if A and
B are two triangulable subsets of Rd then

χ(A ∪B) = χ(A) + χ(B)− χ(A ∩B).

2. The Euler characteristic is homotopy invariant.

For more details about the second property, we refer to [AT07] Definitions 6.1.3
and 6.1.4, and to [Lee00] Theorem 13.36. In the following section, we are going to
exploit one of its consequences: if A and B are two triangulable subsets in Rd such
that B is image of A through a bijective and bicontinuous mapping, then χ(A) = χ(B).
A non-rigorous explanation of the homotopy property is that the Euler characteristic
characterizes the general shape of a set.

Through simple triangulations, we obtain that the Euler characteristic of the circle
S1 is zero, the one of a disk is one, the one of the sphere S2 is 2 and the one of a
three-dimensional ball is one. The following heuristic formulas use non-mathematical
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vocabulary with intuitive meaning. It may be understood thanks to the above simple
examples and the additivity property. If M is a triangulable set,

if dim(M) = 1, χ(M) = #connected components in M
if dim(M) = 2, χ(M) = #connected components−#holes in M
if dim(M) = 3, χ(M) = #connected components−#holes + #handles in M

The Euler characteristic is one in a finite sequence of functionals that allow to
describe the geometry of a set. They are called the intrinsic volumes and are first
defined for convex sets. The higher-order intrinsic volumes do not satisfy the homotopy
property. The Minkowski functionals form another sequence of functionals that are
very close to the intrinsic volumes, since they are equal up to a choice of constants
and a renumbering. The intrinsic volumes can be generalized to manifolds and in this
setting they are sometimes renamed Lipschitz-Killing curvatures. For a n-dimensional

rectangle, which can be written, up to a proper choice of basis, T =
n∏
i=1

[0, Ti], its

intrinsic volumes are defined by

∀j ∈ {0, · · · , n}, Lj(T ) =
∑

Ti1 · · ·Tij , (12)

where the sum is take over the
(
n

j

)
choices of the indices {i1, · · · , ij}. With this

definition, L0(T ) = 1 = χ(T ). Moreover, in small dimensions, we obtain
L1(T ) = |T |1 if T is a segment,

L2(T ) = |T |2, L1(T ) = 1
2 |∂T |1 if T is a rectangle,

where the notations used have been introduced at the beginning of the chapter. This
can be extended to sets of the form θ(T ), where T is a segment or a rectangle in R2

and θ : R2 → R2 is a C 2-diffeomorphism, which will be at stake in Theorem I.17.
Now we return to the random setting until the end of the paragraph, in order to

explain one of the reasons why the Euler characteristic started to be applied to the
excursion sets of random fields. This tradition takes its roots in the so-called expected
Euler characteristic heuristic in extremal theory. This heuristic provides a way to
approximate the excursion probability at a large level (see for instance [TTA05]).

Informally, if X is a smooth random field on a planar compact domain T , for
large u, it is likely that the excursion set A(u,X, T ) has only one component (if
supt∈TX(t) ≥ u) or zero component (if supt∈TX(t) < u). These cases correspond
respectively to χ(A(u,X, T )) = 1 and to χ(A(u,X, T )) = 0. Consequently, for large
u, 1(supt∈TX(t) ≥ u) ≈ χ(A(u,X, T )). Taking the expectation of both sides of this
equality yields

P(supt∈TX(t) ≥ u) ≈ E[χ(A(u,X, T )].

For some models of random fields (mainly Gaussian random fields with enough regu-
larity), this heuristic is a proved fact, and the error resulting from such an estimate
can be evaluated (see [AT07] Section 14.3).



18 Chapter I. Framework

Euler characteristics of excursion sets

In the deterministic framework, an expression of the Euler characteristic of an excursion
set is provided by Morse formula. Morse theory, also known as the critical point theory
was developed during the twentieth century. It allows to express some geometrical
characteristics of a manifold by considering the different types of critical points of a
function defined on it (see for instance the original treatise [MC69]).

Let us introduce some notations to state Morse formula for the Euler characteristic
of the excursion of a function above a d-dimensional rectangle T in Rd. There exists
an orthonormal basis of Rd where T can be written

T =
d∏
i=1

[si, ti], where for any 1 ≤ i ≤ d, −∞ < si < ti < +∞.

For ` ∈ {1, · · · , d}, a `-dimensional face J of T is defined by a subset σ(J) of size `
and by a sequence of d− ` zeros and ones, denoted by ε(J) = (εi)i/∈σ(J), such that

J = {v ∈ T : ∀i ∈ σ(J), si < vi < ti, ∀i /∈ σ(J), vi = (1− εi)si + εiti}.

For ` ∈ {1, · · · , d}, the notation ∂`T means the collection of all the `-dimensional faces
of T . For instance, the unique d-dimensional face of T is its interior T̊ , for which
σ(T̊ ) = {1, · · · , d}. Its one-dimensional faces are its open edges. A zero-dimensional
face J is formed of a vertex of T , for which σ(J) = ∅. The frontier of T is given by
the disjoint union

∂T =
d−1⋃
`=0

⋃
J∈∂`T

J.

We need to consider functions with enough regularity, in order that the Euler charac-
teristic of their excursions sets is well-defined. Note that, even though the compact
set above which an excursion is considered is smooth, with smooth boundaries, the
excursion set may not be as regular. Let f : Rd → R, let T a rectangle in Rd and let
u ∈ R. Following [AT07] Definition 6.2.1, we write Condition (Ru,T ) the collection of
the three following conditions.

1. f is of class C 2 on Rd;

2. for each face J of T such that d ∈ σ(J), f|J has no critical point in f−1({u});

3. for each face J of T such that d ∈ σ(J), the matrix (f ′′i,j)(i,j)∈(σ(J)\{d})2 denoted
by ∆J is such that

#{t ∈ J : ∀j ∈ σ(J)\{d}, 0 = f(t)− u = det(∆J) = f ′j(t)} = 0.

If S is a symmetric matrix, recall that we denote by index(S) the number of its
negative eigenvalues.

Theorem I.14 (Morse formula) Let T be a d-dimensional rectangle in Rd, let u ∈
R and let f : Rd → R satisfying condition (Ru,T ). The Euler characteristic of A(u, f, T )
is given by

χ(A(u, f, T )) =
∑

0≤`≤d

∑
J∈∂`T

ψ(J) with ψ(J) =
∑̀
k=0

(−1)kµk(J), (13)
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where for any `-dimensional face J of T , for k ∈ {1, · · · , `},

µk(J) = #{v ∈ J : f(v) ≥ u, ∀i ∈ σ(J), f ′i(v) = 0,
∀i /∈ σ(J), (2εi − 1)f ′i(v) > 0, index((f ′′i,j(v))i,j∈σ(J)) = `− k}.

(14)

The proof of this formula, inspired by Morse’s theorem, may be found in [AT07] Section
9.4. The term ψ(T̊ ) corresponding to ` = d is simply the alternate sum of different
types of critical points of f restricted to T̊ , classified according to the signs of the
eigenvalues of the Hessian matrix of f at these points. If J is a face of T of dimension
` strictly less than d, it occurs that the (µk(J))1≤k≤` also count critical points: those
of the restriction of f to the face J . If T is a rectangle of dimension ` strictly less than
d, we notice that χ(A(u, f, T )) = χ(A(u, f|T , T )), thus we may apply Theorem I.14 to
function f|T in dimension `, in order to get a Morse formula for χ(A(u, f, T )).

In Chapter III, we will need a little more general version of Theorem I.14. A
generalized version of Morse formula exists, for excursion sets above stratified manifolds
satisfying regularity assumptions (see [AT07] Theorem 9.3.2). However, it would have
been too much of an investment to introduce all the framework for the general setting,
given that we would finally only need to apply it to very simple manifolds. Indeed, the
manifolds of the plane that we consider in Chapter III, are of the form θ(T ), where
θ : R2 → R2 is a deterministic C 2-diffeomorphism and T is a rectangle or a segment
in R2. Let us explain how to generalize Theorem I.14 to this setting with simple
arguments.

Since θ is an homeomorphism (that is, a bijective and bicontinous mapping), if T is
a rectangle in R2, then A(u, f, θ(T )) = θ(A(u, f ◦θ, T )), therefore the sets A(u, f, θ(T ))
and A(u, f ◦ θ, T ) are homotopic. Due to the homotopy invariance of χ stated in
Proposition I.13, the above relation leads to

χ(A(u, f ◦ θ, T )) = χ(A(u, f, θ(T ))), (15)

and Theorem I.14 may be applied to function f ◦ θ on T to obtain a formula for
χ(A(u, f, θ(T ))). The same holds if T is a segment in R2.

Expectation formula

Let us come back to the random framework, by considering the excursion of a random
field X : Rd → R restricted to a rectangle T in Rd, above level u. We wish to get a
formula for the expectation of χ(A(u,X, T )). This is possible thanks to Rice formula,
which can be applied to express the expectation of each of the terms involved in Morse
formula (13), under certain assumptions on X including Gaussianity. In this section
and the following, we also add the assumption of stationarity.

Let us explain in a few words how Theorem I.10 applies. We introduce the following
regularity condition on a stationary Gaussian random field X with mean zero, satis-
fying almost sure C 2-regularity. Let r : Rd → R, t 7→ E[X(0)X(t)] be its covariance
function.

(D) :


∃ε > 0, ∃α > 0, ∃K > 0, ∀t ∈ Rd

‖t‖ ≤ ε ⇒ max
1≤i,j≤d

∣∣∣r(4)
i,i,j,j(t)− r

(4)
i,i,j,j(0)

∣∣∣ ≤ K| log(‖t‖)|−(1+α).
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We first need to check that the assumptions of Theorem I.14 are a.s. satisfied by
X and thus that χ(A(u,X, T )) may be expressed through Morse formula. Secondly,
we wish to explain informally how Rice formula given by Theorem I.10 provides an
expression for the expectation of each alternate term in the sum (13). For the sake
of simplicity, we will focus on the terms related to the interior of T in Formula (13).
The following lemma allows us to achieve both points. It is a consequence of a mul-
tidimensional version of Bulinskaya lemma (originally stated in [Bul61]) and its proof
can be found in [AT07] Lemmas 11.2.10 to 11.2.12. We use notations introduced in
the statement of Theorem I.14.

Lemma I.15 Let T be a d-dimensional rectangle in Rd and let u ∈ R. We assume that
X : Rd → R is a Gaussian and stationary random field satisfying a.s. C 2-regularity
and Condition (D). Then

1. P(∃t ∈ ∂T : X ′(t) = 0) = 0;

2. P(∃t ∈ T : X ′(t) = 0, det(X ′′(t)) = 0) = 0;

3. almost surely, X satifies Condition (Ru,T ).

In the following paragraph, we assume that X satisfies the hypothesis of Lemma
I.15. Then the first item entails that for any k ∈ {1, · · · , d}, a.s.

µk(T̊ ) =
∑

t∈(X′)−1({0})∩T
1[u,+∞)∩Sd−k

d
(X(t), X ′′(t)),

where we recall that Sd−k
d is the set of symmetric matrices of size d × d with d −

k negative eigenvalues. Moreover, the second point allows us to apply to X ′ the
expectation formula in Theorem I.10, if we furthermore assume that the Gaussian
vector (X ′i(0))1≤i≤d is not degenerate. More precisely, we set v = 0 in Rd, Z = X ′,
Y = (X,X ′′) and B = [u,+∞) ∩Sd−k

d in Formula (9).

E[µk(T̊ )] =
∫
T
E[|det(X ′′(t))|1[u,+∞)(X(t))1Sd−k

d
(X ′′(t)) |X ′(t) = 0] pX′(t)(0) dt,

(16)
where pX′(t) is the density of X ′ with respect to the Lebesgue measure on Rd.

The above explanations give an idea of how to derive a formula for the expectation
of χ(A(u,X, T )). The complete proof of this result, which was completed by Adler and
Hasofer in [AH76] and [Adl81], can be found in [AT07] (proof of Theorem 11.7.2). Their
proof also involves to rescale the random field and to exploit the Gaussian assumption.

Before stating the expectation formula, we need to introduce some more notations.
Let T be a d-dimensional rectangle in Rd. Before stating the expectation formula in
the stationary case, we may work with the image of T through a translation, hence
we may assume that one vertex of T is the origin. For any k ∈ {1, · · · , d}, we write

Ok = {J ∈ ∂kT : 0 ∈ J}, which is of cardinal
(
d

k

)
. If Λ is a matrix of size d × d, for

any face J of T , we write ΛJ the matrix (Λi,j)(i,j)∈σ(J)2 .
We also write (Hi)i∈N the Hermite polynomials and, for any real x, H−1(x) =√

2πΨ(x) exp(x2/2), where we recall that Ψ is the tail probability of a standard Gaus-
sian variable.



I.2. Some geometric characteristics 21

Theorem I.16 Let X : Rd → R be an a.s. of class C 2, centred, stationary and
Gaussian random field. We write r its covariance function, σ2 = r(0) its variance
and Λ = −r′′(0) the matrix of its second-order spectral moments. We assume that
X is a.s. of class C 2, that it satisfies condition (D) and that the Gaussian vector
(X ′i(0), X ′′i,j(0))i≤j, (i,j)∈{1,2}2 is not degenerate.

Then, for any level u ∈ R, for any d-dimensional rectangle T ,

E[χ(A(u,X, T ))] =
∑

0≤`≤d
L X
` (T ) ρ`(u/σ), (17)

where ∀ 0 ≤ ` ≤ d, ρ` : y 7→ (2π)−(`+1)/2H`−1(y)e−y2/2 (18)

and L X
` (T ) =

∑
J∈O`

|J |` det(Λ`)1/2

σ`
. (19)

This formula could surprise, since it shows that E[χ(A(u,X, T ))] uniquely depends
on the covariance structure of X through its variance and its second-order moment
matrix. Yet, the expectation of each µk(J) (given for instance by (16) for J = T̊ )
involves fourth-order spectral moments of X, due to the presence of the second-order
partial derivatives of X in their definition (14). The reason why fourth-order spectral
moments do not appear in the final result is that simplifications occur when for a fixed
face J , the corresponding (E[µk(J)])1≤k≤dim(J) are summed with alternate signs. Note
that if the random field X is furthermore isotropic, then Λ = λ2 Id, where λ2 is the
second-order spectral moment, whence for ` ∈ {1 · · · , d}, det(Λ`)1/2 = λ

`/2
2 .

Let us justify a choice of notation for (L X
` (T ))1≤`≤d in (17) that is very close to the

one used to denote the intrinsic volumes of T , the (L`(T ))1≤`≤d given by (12). The
(L X

` (T ))1≤`≤d are actually called Lipschitz-Killing curvatures of T ; their definition
extends the one of the intrinsic volumes, in the sense that they are not computed with
respect to the Euclidian metric on Rd, but with respect to the metric induced by the
random field X on T (for precise definitions, see [AT07] Section 12.2). In Theorem
I.16, since the random field X is stationary, the metric it induces on T only depends
on its variance and its second-order spectral moments.

Now, we state a result similar to Theorem I.16, corresponding to our needs in
Chapter III. We focus on a stationary and Gaussian random field defined on the plane,
adding the assumption of isotropy but generalizing a bit the setting of excursions above
rectangles: we now want to deal with excursions above manifolds of the form θ(T ),
where T is a rectangle or a segment in R2, and θ : R2 → R2 is a C 2-diffeomorphism.
If M is a regular manifold, an expectation formula exists for χ(A(u,X,M)) under
certain regularity assumptions on X andM , but it is in general more complicated than
the one of the rectangle case. It is stated in [AT07] Theorem 12.4.2 and it involves
complex expressions for the intrinsic volumes L X

` (M) relative to the Riemannian
metric induced by X on the manifold M . However, if X is stationary and isotropic,
these intrinsic volumes have very simple forms, since the Riemannian metric induced by
X is the Euclidian metric, up to a multiplicative factor λ2/σ

2 (see [AT07] Section 12.5:
“Isotropic Fields over Smooth Domains"). However, this dependency is not visible in
the following theorem since the variance as well as the second-order spectral moment
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are assumed to be equal to one. Thus the Lipschitz-Killing curvatures involved are
exactly the intrinsic volumes.

Theorem I.17 Let X : R2 → R be a centred, stationary and isotropic Gaussian ran-
dom field, such that r(0) = 1, (X ′i(0), X ′′i,j(0))i≤j, (i,j)∈{1,2}2 is not degenerate and
r′′(0) = −I2. We assume that X is a.s. of class C 2 and that it satisfies condition
(D).

Then, for any level u ∈ R, for any C 2-diffeomorphism θ : R2 → R2, for any segment
or rectangle T in R2,

E[χ(A(u,X, θ(T )))] =
∑

0≤i≤dim(T )
Li(θ(T )) ρi(u),

where functions (ρi)1≤i≤dim(T ) are given by (18) and where
L1(θ(T )) = |θ(T )|1, L0(θ(T )) = 1 if dim(T ) = 1,

L2(θ(T )) = |θ(T )|2, L1(θ(T )) = 1
2 |∂θ(T )|1, L0(θ(T )) = 1 if dim(T ) = 2.

(20)

Modified Euler characteristic of excursion sets

While Morse formula stated in Theorem I.14 provides an expression of the Euler char-
acteristic as the sum of different terms, it is sometimes easier to focus on the term
of highest index, which only involves the behaviour of the function on the interior of
the set above which the excursion is considered. That is what motivates the intro-
duction of the modified Euler characteristic of excursion sets, denoted by φ, and only
defined for excursion sets. It was introduced in [EL16] (where [AT07] Lemma 11.7.1 is
acknowledged as a source of inspiration); it was then used in [DBEL17].

Definition I.18 Let T a d-dimensional rectangle in Rd, let u ∈ R and let f : Rd → R
be a function of class C 2. The modified Euler characteristic of A(u, f, T ) is defined as

φ(A(u, f, T )) =
d∑

k=0
(−1)kµ̃k(u, f, T ),

where for any k ∈ {1, · · · , d},

µ̃k(u, f, T ) = #{t ∈ T : f(t) ≥ u, f ′(t) = 0, index (f ′′(t)) = d− k}.

We extend this definition in order to be able to apply it to excursions of f : R2 → R
of class C 2 above sets having the form θ(T ), where θ : R2 → R2 is a deterministic C 2-
diffeomorphism and T is a rectangle or a segment in R2. Thus we define

φ(A(u, f, θ(T ))) = φ(A(u, f ◦ θ, T )). (21)

Let us remark that the only difference between the (µ̃k(u, f, T ))1≤k≤d above and
the (µk(T̊ ))1≤k≤d involved in the term of highest index d in the first sum involved
in Morse formula (13) is that the former count points situated in T while the latter
count points situated in T̊ . However, in our setting, X : Rd → R is a stationary
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and Gaussian random field, a.s. of class C 2 and it satisfies Condition (D). Hence
the first point of Lemma I.15 applies and entails that almost surely, µ̃k(u, f, T ) =
µk(T̊ ). Hence, referring to a notation introduced in Theorem I.14, we obtain a.s.
ψ(T̊ ) = φ(A(u, f, T )). Thus, we can state the following corollary of Theorem I.14 and
Definition I.18.

Corollary I.19 Let T be a d-dimensional rectangle in Rd and let u ∈ R. We assume
that X : Rd → R is a stationary and Gaussian random field satisfying a.s. C 2-regularity
and Condition (D). Then

χ(A(u,X, T )) =
∑

0≤`<d−1

∑
J∈∂`T

ψ(J) + φ(A(u,X, T )).

We end this section with expectation and variance formulas for the expected modi-
fied Euler characteristic of excursions sets. Under the same assumptions as the ones of
Theorem I.16, as it appears in the proof of [AT07] Theorem 12.4.2, the term of highest
index in the sum (17) in Theorem I.16 corresponds to the expectation of φ(Au(X,T )):

Corollary I.20 Let T be a d-dimensional rectangle in Rd and let u ∈ R. We assume
that X : Rd → R is an a.s. of class C 2, Gaussian and stationary random field, such
that (X ′i(0), X ′′i,j(0))i≤j, (i,j)∈{1,2}2 is not degenerate and Condition (D) is satisfied. We
write r its covariance function, σ2 = r(0) its variance and Λ = −r′′(0) the matrix of
its second-order spectral moments. Then

E[φ(A(u,X, T ))] = L X
d (T ) ρd(u/σ),

where L X
d (T ) and ρd are given by (19) and (18) respectively.

Thanks to the extension (21) of Definition I.18 and to Formula (15) (due to the
homotopy invariance of the Euler characteristic), Corollary I.19 extends to the case of
the excursion of a random field X : R2 → R above images of rectangles or segments
under a diffeomorphism of the plane. Thus, following the proof of Theorem 12.4.2
in [AT07], it is clear that the rectangle case of Corollary I.20 admits the following
generalization in dimension two.

Corollary I.21 Let X : R2 → R be a centred, stationary and isotropic Gaussian ran-
dom field, such that r(0) = 1, (X ′i(0), X ′′i,j(0))i≤j, (i,j)∈{1,2}2 is not degenerate and
r′′(0) = −I2. We assume that X is a.s. of class C 2 and that it satisfies condition
(D).

Then, for any level u ∈ R, for any C 2-diffeomorphism θ, for any segment or
rectangle T in R2,

E[φ(A(u,X, θ(T )))] = Ldim(T )(θ(T )) ρdim(T )(u),

where Ldim(T )(θ(T )) is given by (20).
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To end with, coming back to the d-dimensional framework, we present a result
stated in [DBEL17] Proposition 1. Furthermore assuming that the random field X
is isotropic, that it satisfies a.s. C 3-regularity and non-degeneracy conditions, the
modified Euler characteristic of an excursion set of X over a d-dimensional square
admits a finite second moment, which can be expressed through an integral formula.

Theorem I.22 Let X : Rd → R be a centred, stationary and isotropic Gaussian ran-
dom field such that for any t ∈ Rd, the Gaussian vector (X(0), X(t)) is not degenerate.
We also assume that X is unit-variance, that it satisfies a.s. C 3-regularity and that
its second-order spectral moment λ2 is non zero.

Let T be a d-dimensional square in Rd and let u ∈ R. Then φ(A(u,X, T )) admits
a finite second moment, given by

E[φ(A(u,X, T ))2] =
∫
Rd
|T ∩ (T − t)|dE(u, t)D(t)−1/2 dt + |T |d (2πλ2)−d/2g(u),

where

E(u, t) = E[1[u,+∞)(X(0))1[u,+∞)(X(t))|det(X ′′(0)) det(X ′′(t))||X ′(0) = X ′(t) = 0],
D(t) = (2π)2d det(λ2

2Id − r′′(t)2),
g(u) = E[1[u,+∞)(X(0))| det(X ′′(0))|)].

This theorem can be easily generalized by replacing T by a set of the form θ(T ),
where θ : Rd → Rd is a deterministic C 2-diffeomorphism and T is a d-dimensional
rectangle. We will apply this generalized version in Section III.5.2 in dimension two.
In the same chapter, Section III.3.2 contains other results about the modified Euler
characteristic of excursion sets.

Description of our contributions
Coming to the end of this introductive chapter, we are now able to present the contri-
butions of this thesis, which are divided into three parts.

Our first object of study is the number of points where the gradient of a stationary
and Gaussian random field restricted to a compact set takes a fixed value. In particular,
if this value is zero, what is at stake is the number of critical points of the random
field. We investigate the existence of a second moment for this random variable. Let
us write X : Rd → R a stationary Gaussian random field with a.s. C 2-regularity, let T
be a compact domain in Rd and let v ∈ Rd. We write NX′(T, v) = #(X ′)−1({v}) ∩ T .
For d = 1, the so-called “Geman condition” has been proved to be a necessary and
sufficient condition for NX′(T, v) to admit a finite second moment. This condition on
the fourth derivative r(4) of the covariance function of X does not depend on v and
requires t 7→ t−1 (r(4)(0)− r(4)(t)) to be integrable in a neighbourhood of zero. We
prove that for d ≥ 1, a generalization of the Geman condition remains a sufficient
condition for NX′(T, v) to admit a second moment. More precisely, this generalized
condition is the integrability of

t 7→ ‖r
(4)(0)− r(4)(t)‖
‖t‖d
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in a neighbourhood of zero in Rd. No assumption of isotropy is required. This result
and its proof, derived with Anne Estrade, is the purpose of Chapter II, based on the
published paper [EF16]. It will mainly use notions about the regularity of Gaussian
random fields and Rice formulas.

The other parts of this thesis are dedicated to the study of two specific models of
anisotropic random fields, conducted with a geometric perspective.

Chapter III deals with the deformed random field model in the planar setting. It is
built thanks to a deterministic bijective mapping that deforms regularly the parameter
space of a stationary and isotropic random field. We write θ : R2 → R2 a bijective
mapping and X : R2 → R a stationary and isotropic random field. The deformed field
X ◦θ is in general not isotropic (and not even stationary). However we give an explicit
characterization of the deformations θ that preserve the isotropy. Further assuming
that X is Gaussian, we introduce a weak form of isotropy of the field X ◦ θ, defined by
an invariance property of the mean Euler characteristic of some of its excursion sets:

∀T rectangle or segment in R2, ∀u ∈ R, ∀ρ ∈ SO(2),
E[χ(A(u,X ◦ θ, ρ(T )))] = E[χ(A(u,X ◦ θ, T ))].

Deformed fields satisfying this property are actually proved to be strictly isotropic.
Besides, assuming that the mean Euler characteristic of excursions sets of X ◦ θ over
some basic domains is known, we are able to identify θ. In this chapter, based on the
article [Fou18] accepted for publication, we mainly refer to expectation formulas of the
(modified) Euler characteristic of excursion sets presented in the current chapter in
Sections I.2.2.c and I.2.2.d.

The thesis ends with the study of the anisotropic random wave model in Chapter
IV. If k is a d-dimensional random vector, we call random wave model with random
wavevector k any centred and stationary random field defined on Rd with covariance
function t 7→ E[cos(k.t)]. Therefore, in the Gaussian case, the distribution of the
considered random wave is unique. The purpose of the chapter is to link distributional
properties of the random wave, mainly geometric ones, to the ones of the random
wavevector and in particular to its anisotropy. In the Gaussian setting, we focus on
the expected measure of a level set. For instance, when k almost surely belongs to the
unit sphere in R2 and the random wave model is nothing but the anisotropic version of
Berry’s planar waves, we prove that the expected length of the nodal lines is decreasing
as the anisotropy of the random wavevector is increasing. Also, when k almost surely
belongs to the Airy surface in R3 (characterized by the equation x2 + y2 = z4) and
the associated Gaussian random wave serves as a model for sea waves, we compare
the direction that maximises the expected length of the static crests and the mode of
the random wavevector’s direction, which are orthogonal in some models but not in
others. Chapter IV is based on the preprint [EF18] coauthored with Anne Estrade. It
mainly refers to the spectral representation stated in Section I.1.4 and to Rice formulas
of Section I.2.1.

Let us remark that the anisotropies at stake in Chapters III and IV are different in
essence. The anisotropy of the deformed random field model is due to a deformation
of the parameter space. This is not the case for the random wave model, for which the
anisotropy is linked to assymetries in the spectral domain. The two models meet when
k is equal to Au with A a matrix and u a random vector in Rd whose distribution is
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invariant under rotations, since the associated random wave has the same distribution
as an isotropic random wave deformed by the linear transformation AT . In that case,
the study of anisotropy, either in the spectral domain, or in the parameter domain, is
equivalent, but in the general case where no linear deformation is involved, these are
two different approaches.

Let us end on a practical note. For the sake of consistency, some references to this
introductive chapter are made in the following ones. Besides, at the beginning of each
of them, notations are introduced, which are either the same as the ones used in this
chapter, or very close to them. The following chapters can almost entirely be read
independently from each other, thus each of them ends with its own conclusion. Note
that the numbering of formulas is reset to zero at the beginning of each chapter.



Chapter II
Finite variance of the number of sta-
tionary points of a Gaussian random
field

In this chapter, we investigate the issue of the finiteness of the second moment of
the number of critical points of a stationary random field, without the assumption
of isotropy. It corresponds to a paper [EF16] published in Statistics and Probability
Letters.

Let d be a positive integer and let X : Ω × Rd → R be a stationary Gaussian
random field. We assume that almost every realization of X is of class C 2 on Rd. For
any compact subset T in Rd, for any v ∈ Rd, we consider the number NX′(T, v) of
points in T where the gradient of X, denoted by X ′, reaches the value v:

NX′(T, v) = #{t ∈ T : X ′(t) = v}.

For v = 0, it is nothing but the number of stationary points of X in T . In this chapter,
we establish a sufficient condition on the covariance function r of the random field X
in order that NX′(T, v) admits a finite variance.

The existence of the second moment of NX′(T, v) has been studied since the late
60s, first in dimension one and for a level equal to the mean, i.e. v = 0. Cramér and
Leadbetter were the first to propose in [CL67] a sufficient condition on the covariance
function r in order thatNX′(T, 0) belongs to L2(Ω). IfX satisfies some non-degeneracy
assumptions, this simple condition requires that the fourth derivative r(4) satisfies

∃δ > 0,
∫ δ

0

r(4)(0)− r(4)(t)
t

dt < +∞.

It is known as the Geman condition for Geman proved some years after in [Gem72] that
it was not only sufficient but also necessary. The issue of the finiteness of the higher
moments of NX′(T, 0) has also been discussed in many papers (see [Bel66, Cuz75,
Mal85] for instance and references therein). Kratz and León generalized Geman’s
result in [KL06] to the number of crossings of any level v ∈ R and also to the number
of a curve crossings.

27
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Concerning the problem in higher dimension, it has been an open question for a
long time. Elizarov gave in [Eli85] a sufficient condition for NX′(T, 0) to be in L2(Ω).
Even though his condition is weaker than ours, his proof is short and elliptical and it
only concerns the number of stationary points. Under the additional hypothesis that
X is isotropic and of class C 3, Estrade and León proved in [EL16] that for any v ∈ Rd,
NX′(T, v) admits a finite second moment.

The chapter is organized as follows. In Section 1, we introduce our notations and
assumptions. Our proof begins with the use of Rice formulas in Section II.2.1 to give
an expression of NX′(T, v) in an integral form. It allows us to restrict the problem to
the one of the integrability of function

t 7→ E[ (detX ′′(0))2 /X ′(0) = X ′(t) = v ] ‖t‖−d

in a neighbourhood of zero in Rd. We are able to bound this function and, thanks to
a regression method implemented in Section II.2.2, to study the asymptotic properties
of the bound around zero. Section 3 is devoted to the main result of this chapter,
namely Theorem II.3. It gives an extension of Geman condition in dimension d > 1
that is sufficient to establish that NX′(T, v) is square integrable for any v.

Notations and derivatives

We deal with a centred stationary Gaussian random field X = {X(t), t ∈ Rd} and
we denote by r its covariance function t 7→ Cov(X(0), X(t)). We assume that almost
every realization of X is of class C 2 on Rd. That implies that r is of class C 4 on Rd,
according to Proposition I.5.

We fix an othonormal basis of Rd, according to the canonical scalar product that
we denote here by 〈· , ·〉. We consider the partial derivatives of X and r computed on
this basis. As in Chapter I, we write (X ′i)1≤i≤d and (X ′′i,j)1≤i,j≤d the partial derivatives
of X of first and second order, respectively, and r′i, r′′i,j , r

(3)
i,j,m and r(4)

i,j,m,n the partial
derivatives of r, from order one to four, respectively. We refer to the gradient of X at
t as X ′(t) and to the Hessian matrix of X at t as X ′′(t). Similarly, we write r′′(t) the
Hessian of r at t. We will sometimes denote by r(3)

i,j (t) the vector (r(3)
i,j,m(t))1≤m≤d and

by r(4)
i,j (t) the matrix (r(4)

i,j,m,n(t))1≤m,n≤d. We also use the same notation for t ∈ Rd
and the column vector containing its coordinates.

In every space Rm (m is any positive integer), we denote by ‖·‖ the norm associated
to the canonical scalar product. We use the standard notations o(·) andO(·) to describe
the behaviour of some functions in a neighbourhood of zero.

In this chapter, we will extensively exploit the relationships between the partial
derivatives of r and the covariances between the partial derivatives of X, for which a
general formula is given by (3) in Section I.1.3. Here are precisely the formulas that
we are going to use. For (s, t) ∈ (Rd)2 and for 1 ≤ i, j,m, n ≤ d,

Cov(X(s), X(t)) = r(s− t) Cov(X ′i(s), X(t)) = r′i(s− t)
Cov(X ′i(s), X ′j(t)) = −r′′i,j(s− t) Cov(X ′′i,j(s), X(t)) = r′′i,j(s− t)
Cov(X ′′i,j(s), X ′m(t)) = −r(3)

i,j,m(s− t) Cov(X ′′i,j(s), X ′′m,n(t)) = r
(4)
i,j,m,n(s− t).
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We will need the assumption that for any t ∈ Rd\{0}, the Gaussian vectors

(X ′(0), X ′(t)) and (X ′′i,j(0))1≤i≤j≤d

are not degenerate. As a consequence, Var[X(t)] = r(0) 6= 0 and so we may assume
that r(0) = 1. As another consequence, the covariance matrix of X ′(0) is not
degenerate, which allows us to assume that −r′′(0) = Id or, equivalently, that the
first-order derivatives of X are uncorrelated and of unit variance. This assumption is
taken from the proof of Lemma 11.7.1 in [AT07]. We explain it here in a few words.
The covariance matrix of X ′(0) is −r′′(0). A square root Q of (−r′′(0))−1 will satisfy
−Qr′′(0)Q = Id. We now define a new random field XQ on Rd by XQ(t) = X(Qt).
It is not hard to see that XQ is still stationary, with unit variance, and that the
covariance matrix of

(
XQ

)′
(0) is Id. Note that this does not imply that XQ is

isotropic. From now on, we will abandon the notation XQ, although we will still
assume that −r′′(0) = Id.

We gather all the assumptions made on X in one, referred to as (A):

(A)



X is Gaussian,
almost every realization of X is of class C 2,

∀t 6= 0, (X ′(0), X ′(t)) and (X ′′i,j(0))1≤i≤j≤d are not degenerate,
X is centred, r(0) = 1 and − r′′(0) = Id.

Note that the major assumptions in Condition (A) are the first three ones. The last
assumption has been added to make the intermediate proofs and computations easier,
but our main result Theorem II.3 remains true if we remove it.

With these assumptions in mind, we are able to write the next Taylor formulas
around 0 for the covariance function r and its derivatives:

r(t) = 1− 1
2
∑

1≤i≤d
t2i + 1

4!
∑

i,j,m,n

r
(4)
i,j,m,n(0) ti tj tm tn + o(‖t‖4)

r′′(t) = −Id + 1
2Θ(t) + o(‖t‖2)

r
(3)
i,j (t) = r

(4)
i,j (0)t+ o(‖t‖), for all 1 ≤ i, j ≤ d

r
(4)
i,j (t) = r

(4)
i,j (0) + o(1), for all 1 ≤ i, j ≤ d ,

where the d×dmatrix Θ(t) is defined by Θ(t)m,n = 〈r(4)
m,n(0)t , t〉 =

∑
1≤i,j≤d

r
(4)
i,j,m,n(0)titj .

We note that, for any t 6= 0, Θ(t) is inversible. Indeed, since Θ(t) is the covariance ma-
trix of vector X ′′(0) t, if it was not inversible, X ′′(0) t would be a degenerate Gaussian
vector and so there would exist a linear dependence between the coordinates of X ′′(0).
That would be inconsistent with assumption (A). Hence, in what follows, we denote
by ∆(t) the inverse matrix of Θ(t) for t 6= 0. Besides, we also remark that t 7→ Θ(t)
and t 7→ ∆(t) are homogeneous functions of respective degrees 2 and -2.

We fix a compact set T in Rd.
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Preliminary results

Rice formula

For any v ∈ Rd, NX′(T, v) is the number of roots in T of the vectorial random field
X ′ − v. In our setting, we can apply the expectation formula stated in Theorem I.10
supplemented by Remark I.11. Rice formula not only gives a closed formula for the
expectation of NX′(T, v) but also states that it is finite in our context. So the variance
of NX′(T, v) is finite if and only if its second-order factorial moment is finite. Under
Condition (A) on X, another Rice formula, also stated in Theorem I.10, gives the
second factorial moment of NX′(T, v):

E[NX′(T, v)(NX′(T, v)− 1)]

=
∫
T×T

E[|detX ′′(s) detX ′′(t)| /X ′(s) = X ′(t) = v] ps,t(v, v) ds dt ,

where ps,t denotes the probability density function of the Gaussian vector (X ′(s), X ′(t)).
This formula holds whether both sides are finite or not. We introduce

F (v, t) = E[| detX ′′(0) detX ′′(t)| /X ′(0) = X ′(t) = v] ; v, t ∈ Rd ,

and we use the stationarity of X to transform the double integral in the Rice formula
into a simple integral:

E[NX′(T, v)(NX′(T, v)− 1)] =
∫
T0
|T ∩ (T − t)|F (v, t) p0,t(v, v) dt ,

where |T ∩(T−t)| is the Lebesgue measure of T ∩(T−t) and T0 =
{
t− t′, (t, t′) ∈ T 2

}
.

This formula allows us to give a simple criteria for NX′(T, v) to be square integrable.

Notation. Let u : Rd → Rm. We write u ∈ L1(V0, ‖t‖−d dt) if there exists a positive

constant δ such that
∫
B(0,δ)

‖u(t)‖
‖t‖d

dt < +∞.

Lemma II.1 Assume that X fulfills Condition (A). For any v ∈ Rd, we introduce

G(v, ·) : t ∈ Rd 7−→ G(v, t) = E[(detX ′′(0))2 /X ′(0) = X ′(t) = v] .

Then
G(v, ·) ∈ L1(V0, ‖t‖−ddt)⇒ NX′(T, v) ∈ L2(Ω).

Proof. Note that the function t 7→ |T ∩ (T − t)|F (v, t) p0,t(v, v) is continuous on
Rd\{0}, because the random field X is Gaussian. So it is integrable in every bounded
domain that does not include a neighbourhood of zero.
We are now concerned with its behaviour in a neighbourhood of zero. We first remark
that, as t tends to 0, the term |T ∩ (T − t)| is equivalent to |T |. Next, we use Cauchy-
Schwarz inequality and stationarity to write

F (v, t) ≤ (G(v, t)G(v,−t))1/2 .
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Let us now study t 7→ p0,t(v, v) as t tends to 0. We know that

p0,t(v, v) ≤ p0,t(0, 0) = (2π)−d/2 (det Γ(t))−1/2 ,

where Γ(t) is the covariance matrix of the 2d-dimensional Gaussian vector (X ′(0), X ′(t)).

It is given blockwise by Γ(t) =
(

Id −r′′(t)
−r′′(t) Id

)
and so

det Γ(t) = det(Id − r′′(t)2) = det
(
Θ(t) + o(‖t‖2)

)
= det Θ(t) det

(
Id + o(‖t‖2) ∆(t)

)
= ‖t‖2d det Θ( t

‖t‖
) det

(
Id + o(1) ∆( t

‖t‖
)
)
,

where we have used the homogeneity properties of Θ and ∆. Since min
u∈Sd−1

det Θ(u)

is strictly positive and t 7→ ∆( t

‖t‖
) is bounded, there exists c > 0 such that

det Γ(t) ≥ c ‖t‖2d for t in a neighbourhood of zero. Hence, for some positive con-
stant C, p0,t(v, v) ≤ C ‖t‖−d.

Consequently, if G(v, ·) ∈ L1(V0, ‖t‖−d dt) then t 7→ |T ∩ (T − t)|F (v, t) p0,t(v, v)
is bounded by a function that is integrable in a neighbourhood of 0, thanks to
Cauchy-Schwarz inequality. That concludes the proof of the lemma. �

Our aim is now to study the behaviour of G(v, t) as t → 0, for a fixed v ∈ Rd.
Precisely, we will provide a sufficient condition for G(v, ·) to belong to L1(V0, ‖t‖−ddt).

Regression

In order to get an estimate for G(v, t), we compute the conditional law of X ′′(0) with
respect to the event {X ′(0) = X ′(t) = v}. Let K = d(d + 1)/2. We consider the
symmetric matrix X ′′(0) as a K-dimensional Gaussian column vector by putting the
coefficients of its upper triangular part in a vector that we write ∇2X(0). So the
indices 1 ≤ k ≤ K of this vector have to be seen as double indices (k = (i, j) with
1 ≤ i ≤ j ≤ d). For t 6= 0, we write the following K-dimensional regression system:

∇2X(0) = A(t)X ′(0) +B(t)X ′(t) + Z(t) , (1)

where A(t) and B(t) are matrices of size K × d and Z(t) is a K-dimensional cen-
tred Gaussian vector, independent from X ′(0) and X ′(t). Hence, conditioned on
{X ′(0) = X ′(t) = v}, ∇2X(0) is a Gaussian vector with mean (A(t) + B(t))v and co-
variance matrix ΓZ(t). Next proposition is an application of the Gaussian regression
result stated in Proposition I.2.

Proposition II.2 If X fulfills Condition (A), then the regression coefficients of Sys-
tem (1) are given by

A(t) = r(3)(t)N2(t) and B(t) = r(3)(t)N1(t) , (2)



32 Chapter II. Number of stationary points

where r(3)(t) stands for the K × d matrix (r(3)
k,i(t))1≤k≤K, 1≤i≤d and N1(t) and N2(t)

are two d× d matrices defined on Rd\{0} by

N1(t) = (Id − (r′′(t))2)−1 and N2(t) = r′′(t) (Id − (r′′(t))2)−1. (3)

Besides, the covariance matrix ΓZ(t) of the K-dimensional Gaussian vector Z(t) is
such that for any 1 ≤ k, l ≤ K and for t ∈ Rd\{0},

ΓZ(t)k,l = Cov(Z(t)k, Z(t)l) = r
(4)
k,l (0)− 〈r(3)

k (t) , N1(t) r(3)
l (t)〉 . (4)

Proof. We denote by X1 the vector ∇2X(0) of size K and by X2 the vector
(X ′(0), X ′(t)) of size 2d. We write C1 the K × K covariance matrix of X1, C2 the
2d × 2d covariance matrix of X2 and C12 the K × 2d matrix of the covariances be-
tween the coordinates of X1 and those of X2. Then, let us recall that the conditional
distribution of X1 with respect to X2 (that are both centred) is Gaussian, with mean
vector C12C

−1
2 X2 and covariance matrix C1 − C12C

−1
2 CT12.

Thanks to the relations recalled in Section II.1, we have

C1 =
(
r(4)(0)

)
, C2 =

(
Id −r′′(t)
−r′′(t) Id

)
, C12 =

(
OK,d r(3)(t)

)
,

where r(4)(0) stands for the K × K matrix (r(4)
k,l (0))1≤k,l≤K and OK,d for the K × d

zero matrix.
Let us note that C2, which is the covariance matrix of (X ′(0), X ′(t)), is not degen-

erate for t 6= 0 because of hypothesis (A). We note N(t) its inverse. It is not hard to

find that N(t) =
(
N1(t) N2(t)
N2(t) N1(t)

)
where N1(t) and N2(t) are two square matrices of

dimensions d× d. To show (3), we just have to solve the system{
N1(t)− r′′(t)N2(t) =Id
−r′′(t)N1(t) +N2(t) =Odd.

Computing the conditional mean of X1 with respect to X2, we get

C12C
−1
2 X2 = r(3)(t)N2(t)X ′(0) + r(3)(t)N1(t)X ′(t),

and thus we deduce the regression coefficients as announced in (2). Moreover, the
covariance matrix of the conditional distribution of X1 with respect to X2 is given by

C1 − C12C
−1
2 CT12 = r(4)(0)− r(3)(t)N1(t) r(3)(t)T .

Its coefficients are exactly those written in Formula (4). That concludes the proof. �
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Sufficient Geman condition

We now state our main result. Assumption (A) is still in force and we introduce a
new condition:

(G) : there exists δ > 0 such that
∫
B(0,δ)

‖r(4)(0)− r(4)(t)‖
‖t‖d

dt < +∞ .

Condition (G) is weaker than X almost surely of class C 3, since in that case,
r(4)(0)− r(4)(t) = o(‖t‖) as t tends to zero. It is a generalization of Geman condi-
tion known in dimension d = 1. In this particular case, it has been proved to be
a sufficient and necessary condition to have NX′(T, v) ∈ L2(Ω) for any v ∈ R (see
[KL06]).

It turns out that our Condition (G) remains a sufficient condition in dimension
d > 1 for NX′(T, v) to be in L2(Ω).

Theorem II.3 If X fulfills Conditions (A) and (G), then

for any v ∈ Rd, NX′(T, v) ∈ L2(Ω) .

Proof of Theorem II.3. We will proceed in several steps.

First step: study of function G. Recall that G has been introduced in Lemma II.1.

Lemma II.4 Suppose that X fulfills Condition (A) and let V ⊂ Rd be a compact set.
Then

(i) for any v ∈ V , G(v, t) = G(0, t) + o(‖t‖),
(ii) there exists a homogeneous polynomial Q(d) of degree d, which does not de-

pend on X, such that G(0, t) = Q(d)(ΓZ(t)), where Q(d)(ΓZ(t)) is the evaluation of
polynomial Q(d) at the coefficients of matrix ΓZ(t).

Proof.
(i) We use the natural identification between symmetric d× d matrices and vectors in
RK , where K = d(d+ 1)/2, to define d̃et(y) as the determinant of the d×d symmetric
matrix whose upper triangular part contains the coordinates of y ∈ RK . It is a degree
d homogeneous polynomial function of K variables. With this notation, and using the
regression system (1), we get for v ∈ Rd, t ∈ Rd\{0},

G(v, t) = E
[
d̃et(S(t)v + Z(t))2

]
,

where S(t) stands for A(t) +B(t). Thanks to Formula (3),

S(t) = r(3)(t) (N2(t) +N1(t)) = r(3)(t) (Id − r′′(t))−1 ,

and since Id − r′′(t) → 2Id and r(3)(t) = O(‖t‖) as t → 0, we get the following
asymptotics:

S(t) = A(t) +B(t) = O(‖t‖) as t→ 0. (5)
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Let us come back to the computation ofG. By developing the square of the determinant
and bringing together the terms according to the powers of the coordinates (S(t)v)k
of the K-dimensional vector S(t)v, we get

d̃et (S(t)v + Z(t))2 = d̃et(Z(t))2 +
∑

1≤k≤K
(S(t)v)k Q

k
(2d−1)(Z(t))

+
∑

1≤k,l≤K
(S(t)v)k (S(t)v)lQ

kl
(2d−2)(S(t)v + Z(t)) ,

where the Qk
(2d−1)’s and the Qkl

(2d−2)’s are multivariate polynomial functions of respec-
tive degrees 2d− 1 and 2d− 2. Note that E

[
Qk

(2d−1)(Z(t))
]

= 0 since Z(t) is a centred
Gaussian vector and Qk

(2d−1) has an odd degree. Also recall the asymptotics (5) and
note that ΓZ(t) is bounded for t in any compact set; this can be justified properly
thanks to the upcoming Lemma II.7. Therefore, by taking the expectation of the
above equality, we obtain that uniformly with respect to v ∈ V ,

G(v, t) = E[d̃et(Z(t))2] + o(‖t‖) as t→ 0. (6)

Recall that G(0, t) = E[d̃et(Z(t))2], hence point (i) is proved.

(ii) We now compute E[d̃et(Z(t))2] by applying Wick formula. Actually, let us con-
sider for a while a K-dimensional centred Gaussian vector Y and let us compute
E[d̃et(Y )2]. This quantity is equal to an alternate sum of terms with the follow-
ing shape: E[Yi1 · · ·Yi2d ] where i1, . . . , i2d belong to {1, . . . ,K}. According to Wick
formula stated in Proposition I.1, there exists a degree d homogeneous polynomial
function Q(d) such that

E[d̃et(Y )2] = Q(d)(ΓY ) , (7)

where ΓY is the covariance matrix of Y . Taking Y = Z(t), we deduce from (6) that
G(v, t) = Q(d)(ΓZ(t)) + o(‖t‖). Lemma II.4 is then proved. �

Second step: an auxiliary function. This step is dedicated to the properties of a func-
tion that will turn out to be, to some extent, close to ΓZ(t), as t tends to zero. Let us
recall that the expression of ΓZ(t) is given by Formula (4).

We introduce γ(t) = (γ(t)k,l)1≤k,l≤K defined for t 6= 0 by

γ(t)k,l = r
(4)
k,l (0)−

∑
1≤i,j,m,n≤d

r
(4)
k,i,m(0)r(4)

l,j,n(0)∆(t)m,ntitj

= r
(4)
k,l (0)− 〈r(4)

k (0) t ,∆(t)r(4)
l (0) t〉,

(8)

matrix ∆(t) being the inverse matrix of Θ(t) introduced in Section II.1. Function γ only
depends on r through its fourth-order derivatives at zero. Clearly, it is homogeneous
of degree zero: for any t in Rd\{0}, γ(t) = γ

(
t

‖t‖

)
.

Remark II.5 For any t 6= 0, γ(t) is the covariance matrix of ∇2X(0) conditioned on
{X ′(0) = X ′′(0)t = 0}.
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Proof of Remark II.5. The conditional covariance matrix can be computed thanks
to the formula recalled in the proof of Proposition II.2. The covariance matrix of
vector ∇2X(0) is the K × K matrix C1 = (r(4)(0)). The covariance matrix of vec-

tor (X ′(0), X ′′(0)t) is the 2d × 2d matrix C2 =
(
Id 0
0 Θ(t)

)
and the matrix of the

covariances between the coordinates of vector ∇2X(0) and those of (X ′(0), X ′′(0)t)
is the K × 2d matrix C12 =

(
OK,d (r(4)

k,i(0)t) 1≤k≤K
1≤i≤d

)
, where r(4)

k,i(0) stands for the

d-dimensional line vector (r(4)
k,i,j(0))1≤j≤d (ith line of matrix r

(4)
k (0)). Hence, the co-

variance matrix of ∇2X(0) /X ′(0) = X ′′(0)t = 0 is the K×K matrix C1−C12C
−1
2 CT12.

Its (k, l)-coefficient is exactly γ(t)k,l. �

We now state a property of the auxiliary function γ that is interesting for its own.

Proposition II.6 If X satisfies Condition (A), then ∀t ∈ Rd\{0}, Q(d)(γ(t)) = 0.

Proof of Proposition II.6. We first check the result in the particular case of dimen-
sion one. For d = 1, K = 1 and Q(1) is a one variable polynomial such that, if Y is
a Gaussian centred random variable, Q(1)(ΓY ) = E

[
d̃et(Y )2

]
= E[Y 2] = Var[Y ] = ΓY .

Hence, for any x ∈ R, Q(1)(x) = x. Moreover, according to the definition of γ (see

(8)), for t 6= 0, γ(t) = r(4)(0)− (r(4)(0)t)2

r(4)(0)t2
= 0.

By computing explicitely the polynomial Q(2) and the function γ(t), we give in the
Appendix an alternative proof of Proposition II.6 in the case d = 2.

We now give a general proof. According to Remark II.5 and to the definition of
Q(d) prescribed in (7), we have

Q(d)(γ(t)) = E
[
det(X ′′(0)2) /X ′(0) = X ′′(0)t = 0

]
.

Besides, one can check the following result that we read in [AW05]. Let M be a d× d
symmetric positive matrix and let (vi)1≤i≤d be an orthonormal basis of Rd. Then,
denoting by M̃ the (d− 1)× (d− 1) matrix (〈Mvi , vj〉)2≤i,j≤d, the following inequality
holds:

det(M) ≤ 〈Mv1 , v1〉 det(M̃) .

We apply this result with M = X ′′(0)2, v1 = t

‖t‖
, taking for (vi)2≤i≤d any vectors

satisfying the required hypothesis. As a result,

det
(
X ′′(0)2

)
≤
〈
X ′′(0)2 t

‖t‖
,
t

‖t‖

〉
det(M̃) = ‖t‖−2 〈X ′′(0)t ,X ′′(0)t

〉
det(M̃).

So, applying the conditional expectation with respect to the event {X ′(0) = X ′′(0)t = 0},
we get Q(d)(γ(t)) ≤ 0. That concludes the proof since Q(d)(γ(t)) only takes non nega-
tive values. �
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Third step: a comparison between ΓZ(t) and γ(t). We introduce the following func-
tions defined on Rd,

ε : t 7→ r(4)(0)− r(4)(t), ε̄ : t 7→
∫ 1

0
ε(ut) du, ε̂ : t 7→

∫ 1

0
ε(ut)(1− u) du.

They all take values in Rd
4 and are symmetric functions with respect to the indices

(i, j,m, n) ∈ [[1, d]]4. Since r is C 4, ε is continuous and ε(t) = o(1) as t tends to 0. The
same holds for ε̄(t) and ε̂(t).

Lemma II.7 If X satisfies Condition (A), then there exist a neighbourhood W of
zero in Rd and a positive constant c such that, for any t ∈ W \{0},∥∥∥ΓZ(t)− γ(t)

∥∥∥ ≤ c (‖ε̄(t)‖+ ‖ε̂(t)‖+ ‖t‖2
)
.

Proof of Lemma II.7. Formulas (4) and (8) allow us to write:

ΓZ(t)k,l − γ(t)k,l =
〈
r

(4)
k (0) t ,∆(t)r(4)

l (0) t
〉
−
〈
r

(3)
k (t) , N1(t)r(3)

l (t)
〉

=
〈
r

(4)
k (0) t− r(3)

k (t) ,∆(t)r(4)
l (0) t

〉
+
〈
r

(3)
k (t) ,∆(t)

(
r

(4)
l (0) t− r(3)

l (t)
)〉

(9)

+
〈
r

(3)
k (t) , (∆(t)−N1(t)) r(3)

l (t)
〉
.

We now use Taylor expansions to get precise upperbounds. For any t ∈ Rd, for any
1 ≤ k ≤ K and for any 1 ≤ i, j ≤ d, let us consider the functions u ∈ R 7→ r

(3)
k (ut)

and u ∈ R 7→ r′′i,j(ut). We can write the following Taylor expansions with integral
remainders between u = 0 and u = 1, up to order zero and to order one, respectively.
That yields:

r
(3)
k (t) =

∫ 1

0
r

(4)
k (ut) t du

r′′i,j(t) = −δi,j +
∫ 1

0

〈
r

(4)
i,j (ut) t, t

〉
(1− u) du.

Hence, using functions ε̄ and ε̂, and the fact that Θ(t)i,j =
〈
r

(4)
i,j (0) t , t

〉
, we get

r
(4)
k (0) t− r(3)

k (t) = ε̄(t)k t (10)

r′′i,j(t) = −δi,j + 1
2Θ(t)i,j − 〈ε̂i,j(t) t , t〉.

We denote by Ê(t) the d× d matrix such that Ê(t)i,j = 2〈ε̂i,j(t) t , t〉, which allows us
to rewrite the last equality r′′(t) = −Id + 1

2Θ(t)− 1
2Ê(t). That yields

r′′(t)2 = Id −Θ(t) + Ê(t) +O(‖t‖4), (11)
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because Θ(t) = O(‖t‖2) and Ê(t) = o(‖t‖2). Thanks to (10), we rewrite (9) in the
following way:

ΓZ(t)k,l − γ(t)k,l =
〈
ε̄(t)k t ,∆(t)r(4)

l (0) t
〉

+
〈
r

(4)
k (0) t− ε̄(t)k t ,∆(t)ε̄(t)l t

〉
+
〈
r

(4)
k (0) t− ε̄(t)k t , (∆(t)−N1(t)) (r(4)

l (0) t− ε̄(t)l t)
〉
.

We write S1, S2 and S3 the first, the second and the third terms of the sum, respectively.
Let ρ := ‖r(4)(0)‖. For the following computations, we recall that Θ is continuous and
homogeneous of degree 2 on Rd and that for t ∈ Rd\{0}, ∆(t) = Θ(t)−1. We introduce
δ := max

v∈Sd−1
‖∆(v)‖. Thanks to Cauchy-Schwarz inequality, we may bound the first

term S1 and the second one S2 as follows:

|S1| ≤ δρ‖ε̄(t)‖,
|S2| ≤ δ‖r(4)(0)− ε̄(t)‖‖ε̄(t)‖ ≤ δρ‖ε̄(t)‖+ δ‖ε̄(t)‖2.

We now focus on the third term S3. In order to bound it, we write a precise expansion
of N1(t)−∆(t) around zero, based on Formula (11). We have

N1(t) =
(
Id − r′′(t)2

)−1
=
(
Θ(t)− Ê(t) +O(‖t‖4)

)−1

= ∆(t)
(
Id − Ê(t)∆(t) +O(‖t‖4)∆(t)

)−1

where Ê(t)∆(t) +O(‖t‖4)∆(t) =
(
Ê(t)
‖t‖2

+O(‖t‖2)
)

∆( t

‖t‖
) , which tends to 0.

If A is a d× d matrix, (Id −A)−1 = Id +A+ o(A) as ‖A‖ tends to zero, so we get

N1(t) = ∆(t) + ∆(t) Ê(t) ∆(t) + ∆(t) o
(
Ê(t)∆(t)

)
+O(1),

and hence

‖t‖2 (N1(t)−∆(t)) = ∆( t

‖t‖
) Ê(t)
‖t‖2

∆( t

‖t‖
) + ∆( t

‖t‖
) o
(
Ê(t)
‖t‖2

)
∆( t

‖t‖
) +O(‖t‖2).

Since ‖Ê(t)‖ ≤ 2 ‖ε̂(t)‖ ‖t‖2 and t 7→ ∆( t

‖t‖
) is bounded, there exists a neighbourhood

V of zero in Rd and constants c, d > 0 such that, for any t ∈ V \{0},

‖t‖2 ‖N1(t)−∆(t)‖ ≤ c δ2 ‖ε̂(t)‖+ d‖t‖2.

Consequently, since ε̄(t) tends to zero as t tends to zero, there exists a neighbourhood
V ′ of zero in Rd and c′ > 0 such that, for any t ∈ V ′\{0},

|S3| ≤ (ρ+ ‖ε̄(t)‖)2(cδ2‖ε̂(t)‖+ d‖t‖2) ≤ c′(‖ε̂(t)‖+ ‖t‖2).

So, for any 1 ≤ k, l ≤ K,
∣∣∣ΓZ(t)k,l − γ(t)k,l

∣∣∣ is bounded by a term proportional to
‖ε̄(t)‖+ ‖ε̂(t)‖+ ‖t‖2 in a neighbourhood of zero. This concludes the proof of Lemma
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II.7. �

Let us now combine all our intermediate results to complete the proof of the
theorem. Our aim is to prove that G(v, ·) ∈ L1(V0, ‖t‖−ddt) in order to conclude
thanks to Lemma II.1. We recall that Lemma II.4 allows us to write that G(v, t) =
Q(d)(ΓZ(t)) + o(‖t‖) as t tends to zero. Using Proposition II.6, we get for t 6= 0

G(v, t) = Q(d)(ΓZ(t))−Q(d)(γ(t)) + o(‖t‖)

=
〈(
Q(d)

)′
(γ(t)) ,ΓZ(t)− γ(t)

〉
+ o

(
‖ΓZ(t)− γ(t)‖

)
+ o(‖t‖).

Since
∥∥∥∥(Q(d)

)′
(γ(t))

∥∥∥∥ is bounded if t belongs to any compact set of Rd that does not
contain 0, we deduce from Lemma II.7 that there exist a neighbourhood of zero W in
Rd and a positive constant c such that, for any t ∈ W \{0},

G(v, t) ≤ c (‖ε̄(t)‖+ ‖ε̂(t)‖+ ‖t‖) .

A change of variable easily shows that Condition (G) implies that ε̄ ∈ L1(V0, ‖t‖−ddt)
and the same holds for ε̂. Obviously, we also have t 7→ ‖t‖ ∈ L1(V0, ‖t‖−ddt). Conse-
quently, under Condition (G), G(v, ·) ∈ L1(V0, ‖t‖−ddt). The proof of Theorem II.3 is
complete. �

Conclusion and perspectives
In brief, in this chapter, we have addressed the issue of the finiteness of the variance of
NX′(T, v) in dimension d > 1, with no assumption of isotropy on X. We do not restrict
ourselves to the number of stationary points NX′(T, 0). In fact, a sufficient condition
is established in Theorem II.3. It is named (G) and appears as a generalization to
higher dimensions of Geman condition. As in dimension one, it does not depend on
the considered level v ∈ Rd.

To end with, let us mention a notable consequence of our result. Recall that
the stationary points of X are involved in the computation of another random variable
linked to the geometrical properties ofX: the Euler characteristic of any of its excursion
sets. The question of the finiteness of its second moment has been raised forty years ago
in [AH76] and is still subject to investigation, see [TSJJ09] for instance. It turns out
that Condition (G) is also a necessary condition for the modified Euler characteristic
of an excursion set to admit a finite second moment.

Indeed, assume that X is a random field satisfying the assumptions introduced in
Section II.1, that T is a d-dimensional compact rectangle and that u is a fixed real
level. The modified Euler characteristic of the excursion set of X restricted to T above
level u,

A(u,X, T ) := {t ∈ T : X(t) ≥ u},
is given by Definition I.18:

φ(A(u,X, T )) =
d∑
i=0

(−1)iµ̃i(u,X, T ),
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where µ̃i(u,X, T ) = #{t ∈ T : X(t) ≥ u, X ′(t) = 0, index(X ′′(t)) = d − i} and
the “index” stands for the number of negative eigenvalues. Since each µ̃i(u,X, T )
is bounded by NX′(T, 0), it is clear that φ(A(u,X, T )) is square integrable as soon
as it is the case for NX′(T, 0). So Condition (G) appears as a sufficient condition
for the existence of a finite second moment for the modified Euler characteristic of
any excursion set of X above a finite bounded rectangle. The existence of the same
sufficient condition is not obvious when the modified Euler characteristic is replaced
by the Euler characteristic χ itself. Indeed, Morse formula stated in Theorem I.14 not
only involves critical points of X situated on T̊ (through the term ψ(T̊ ) ≤ NX′(T, 0)),
but also critical points of restrictions of X to lower-dimensional faces of T .

An open question is whether, in dimension d > 1, (G) remains a necessary con-
dition for NX′(T, v) to admit a second moment. Another natural question concerns
the finiteness of the moments of NX′(T, v) of order higher than two. In particular,
sufficient conditions on the covariance function of X should be investigated. Note that
in [Mal85], the author deals with the higher moments of NY (T, v), where Y : Rd → Rd
is a multivariate random field, and an answer is given through a condition on the
spectral density. The latter problem is not the same, but close to ours.

As it is done in dimension one in [KL06], our work could be extended to the study of
the finiteness of the variance of NX′(T, g) := {t ∈ T : X ′(t) = g(t)}, where g : Rd → Rd
is a function of class C 1. Does our condition remain sufficient with some assumptions
on g?

Appendix: computations in dimension d = 2

Here is an alternative proof of Proposition II.6 in the case d = 2, based on the explicit
computations of the polynomial Q(2) introduced in Lemma II.4 and of function γ(t)
defined by (8). We conclude with a remark concerning the meaning of Geman condition
on a separable covariance in dimension two.

We introduce the following notations:

µ1 = r
(4)
1111(0) ; ν1 = r

(4)
1112(0) ; ν = r

(4)
1122(0) ; ν2 = r

(4)
1222(0) ; µ2 = r

(4)
2222(0) .

Note that in the case d = 2, we have K = 3 and from now on, we use the lexicographic
order to denote the “double” indices k, i.e. 1 = (1, 1) , 2 = (1, 2) , 3 = (2, 2).

Matrix γ(t). The coefficients of the 3 × 3 symmetric matrix γ(t) are defined by
(8). For any t = (t1, t2) 6= (0, 0), we have

γ11(t) = α

D(t) t
4
2 ; γ12(t) = − α

D(t) t1t
3
2 ; γ13(t) = α

D(t) t
2
1t

2
2 ;

γ22(t) = α

D(t) t
2
1t

2
2 ; γ23(t) = − α

D(t) t
3
1t2 ; γ33(t) = α

D(t) t
4
1 .

where α = µ1µ2ν − µ1ν
2
2 − µ2ν

2
1 − ν3 + 2νν1ν2

and D(t) = det
(
µ1t

2
1 + νt22 + 2ν1t1t2 ν1t

2
1 + ν2t

2
2 + 2νt1t2

ν1t
2
1 + ν2t

2
2 + 2νt1t2 νt21 + µ2t

2
2 + 2ν2t1t2

)
.
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Polynomial function Q(2). Let Y = (Y1, Y2, Y3) be a centred Gaussian vector. Then

E[d̃et(Y )2] = E[(Y1Y3 − (Y2)2)2] = E[(Y1Y3)2]− 2E[Y1Y3(Y2)2] + E[(Y2)4]

= 2E[Y1Y3]2 + E[(Y1)2]E[(Y3)2]− 2E[Y1Y3]E[(Y2)2]− 4E[Y1Y2]E[Y2Y3] + 3E[(Y2)2]2

where we have used Wick formula to get the last line. Formula (7) defining the poly-
nomial function Q(2) entails that

Q(2)(γ) = 2γ13
2 + γ11γ33 − 2γ13γ22 − 4γ12γ23 + 3γ22

2.

Using the expression of γ(t), we recover that Q(2)(γ(t)) = 0 , ∀t 6= 0.

Case of a separable covariance. Let us focus on the special case where r(t1, t2) =
R1(t1)R2(t2), R1 and R2 being two one-dimensional covariance functions, each of them
of class C 4. Then the fourth derivatives of r are such that r(4)

kl (0) − r(4)
kl (t) = o(‖t‖)

for any (k, l) 6= (1, 1), (3, 3). Indeed, for instance r(4)
12 (t) = R

(3)
1 (t1)R′2(t2), and all the

R
(j)
i ’s for i = 1, 2 and j = 0, 1, 2, 3 are at least of class C 1. Hence, r satisfies our

Geman condition (G) if and only if R1 and R2 both satisfy the usual one-dimensional
Geman condition.



Chapter III

Characterization of deformed random
fields through their excursion sets

This chapter, based on the paper [Fou18] accepted for publication in the Applied Prob-
ability Journals, deals with a class of non-stationary and non-isotropic fields called de-
formed random fields. They are obtained by deforming a fixed stationary and isotropic
random field thanks to a deterministic function that transforms bijectively the index
set. Deformed fields respond to the need to model spatial and physical phenomena
that are in numerous cases not stationary nor isotropic. For example, they are cur-
rently widely used in cosmology to model the cosmic microwave background (CMB)
deformed anisotropically by the gravitational lensing effect, with mass reconstruction
as an objective [HO02].

Our framework is two-dimensional: we set X : R2 → R the underlying stationary
and isotropic field, θ : R2 → R2 a bijective deterministic function and Xθ = X ◦ θ the
deformed field. In fact, most studies on the deformed field model deal with dimension
two. The reason for this is that it is the simplest case of multi-dimensionality, the
results can be illustrated easily thanks to simulations and it still covers a lot of possible
applications, particularly in image analysis. For instance, deformed fields are involved
in the “shape from texture” issue, that is, the problem of recovering a 3-dimensional
textured surface thanks to a 2-dimensional projection [CM02].

The model of deformed fields was introduced in 1992 in a spatial statistics frame-
work by Sampson and Guttorp in [SG92], with only a stationarity assumption on X.
It is also studied through the covariance function in [PM99] and in [PS00]. In [ASP16],
the authors investigate the case of a linear deformation with a matrix representation
as the product of a diagonal and a rotation matrix, which produces what they call
“geometric anisotropy”. In [CM03], the deformed field model is studied as a particular
case of a model of deterministic deformation operator applied to a stationary field X.
A lot of papers also propose methods to estimate θ, as we will see a little further on
in this introduction, when we come to our own contribution to the estimation matter.

Unless otherwise specified, the kind of stationarity and isotropy that we consider
consists in an invariance of the field’s law under translations or, respectively, rotations.
Even though the underlying field X is stationary and isotropic, a lot of deformations
transform the index space R2 in such a way that the stationarity and/or the isotropy

41
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are lost when it comes to the deformed field. The deformations preserving stationarity
are the linear deformations. Concerning isotropy, a natural question arises: which are
the deformations θ that preserve isotropy, for any underlying field X? It is solved in
Section III.2. We give an explicit form for this kind of deformations and we call them
spiral deformations. Let us point out here that the question of preserving the isotropy
for one fixed underlying field X is different, and it is solved in Section III.4.

For the rest of the paper, we have in mind the following practical problem: the
covariance function of the underlying field X and the deformation θ are unknown.
We try to study and even to identify θ through observations of some excursion sets
of Xθ above fixed levels. For this, we add some assumptions on X (Gaussianity, a
little more than C 2-regularity, a non-degeneracy assumption) and on θ (C 2-regularity),
which are precisely described and justified in Section III.1, and we focus on the mean
Euler characteristic of the excursion sets. This additive topological functional has
been introduced in Section I.2.2. Heuristically, the Euler characteristic of a set is
determined by its topology: for a two-dimensional compact set, it is the number of
connected components minus the number of holes in this set; for a one-dimensional set,
it is simply the number of closed intervals that compose the set. Note that a modified
version of the Euler characteristic of excursion sets will be more adequate to address
our problem. The formulas of the expectation of the (modified) Euler characteristic of
an excursion set of Xθ can be found in Section III.3.

More precisely, let T be a bounded rectangle domain or segment in R2. We are
interested in the Euler characteristic χ of the excursion set of Xθ restricted to T above
a level u ∈ R, Au(Xθ, T ) = {t ∈ T, X(θ(t)) ≥ u}. However, we may study equivalently
the stationary and isotropic fieldX on the transformed set θ(T ) instead of the deformed
field Xθ on the set T , since

χ(Au(Xθ, T )) = χ(Au(X, θ(T ))).

In Section III.4, we introduce the notion of χ-isotropic deformation: it applies to
a deformation θ such that, for any level u and for any rectangle T , E[χ(Au(Xθ, T ))]
does not vary under any rotation of T . This is in particular true if the deformed field
is isotropic, hence this property can be viewed as a weak notion of isotropy. However,
it turns out that this weak notion implies the strong one (isotropy in law), that is, the
χ-isotropic deformations are exactly the spiral deformations.

In Section III.5, we tackle the problem of identifying θ, assuming that we only have
at our disposal the mean Euler characteristic of some excursion sets of the deformed
field. The problem of the estimation of a deformation θ thanks to the observation of
the deformed random field Xθ is originally a spatial statistics problem and it has been
studied under different angles since it was introduced. At first, [SG92] used several
observations on a sparse grid to estimate θ. Another approach is to use only one obser-
vation of the deformed field on a dense grid; it is adopted in [GP00], [CM03], [AS08],
[AC09], and [FDR15] with an underlying field that is stationary and/or isotropic.
These different papers involve convergence results on quadratic variations and quasi-
conformal theory. The study in [AG16] applies in particular to deformed fields of the
form {X(x +∇η(x)), x ∈ R2} (where η : R2 → R is a deterministic function), which
modelize the CMB [HO02]. The authors propose a method to estimate function η that
corresponds to the gravitational lensing of the CMB.
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Our approach differs from the previous ones, since our observations are limited to
realizations of Xθ over a fixed level, and not to the whole realizations. Our method
is closer to the one in [Cab87], where the inference of the deformation is based on the
size and shape of the deformed field’s level curves; however, the author restricts the
deformations to linear ones given by symmetric, positive and definite matrices. An
analogous approach is adopted in [Ber18] thanks to more general functionals of the
level sets. With our sparse observations, we manage as well as in [AS08] to compute
the complex dilatation of θ up to a conformal map, at every point of the domain. The
complex dilatation provides a characterization of the deformation.

In this paper, we prove four main results. Theorem III.5 states that the deforma-
tions preserving isotropy are exactly the spiral deformations. In Theorem III.13, the
class of deformations satisfying the invariance condition of the mean Euler character-
istic of excursion sets is identified with the spiral deformations. A consequence of this
theorem is Corollary III.17. Roughly speaking, it states that three notions of preserva-
tion of isotropy coincide and correspond to the set of spiral deformations. In Section
III.5, we show how to almost entirely identify θ through the mean Euler characteristic
of its excursion sets over basic domains. The general case is described by Method
III.19. To end with, in Section III.5.2, limiting ourselves to spiral deformations, we
finally propose an estimation method based on one single observation of the deformed
field.

Notations and assumptions

For any compact set A in R2, we write dim(A) its Hausdorff dimension; if dim(A) = 1,
we write |A|1 its one-dimensional Hausdorff measure; if dim(A) = 2, we write |A|2
its two-dimensional Hausdorff measure; we also write ∂A the frontier of A and Å its
interior.

We work in a fixed orthonormal basis in R2 and we use the same notation for a
linear application defined on R2 and taking values in R2 and for its matrix in this
basis of R2. We denote by O(2) the group of orthogonal transformations in R2 and by
SO(2) the group of rotations in R2. For any α ∈ R/2πZ, ρα stands for the rotation of
angle α and uα denotes the unit vector (cosα, sinα). The canonical Euclidian scalar
product in R2 and the associated norm are written 〈· , ·〉 and ‖ · ‖, respectively.

For any real s, we write [0, s] = {x ∈ R, 0 ≤ x ≤ s} if s ≥ 0 and [0, s] =
{x ∈ R, s ≤ x ≤ 0} if s < 0. We say a set T in R2 is a segment if there exists
(a, b) ∈ (R2)2 with a 6= b such that T = {a + t(b − a), t ∈ [0, 1]}. For any (s, t) ∈ R2,
we write T (s, t) = [0, s] × [0, t] and we say a set T in R2 is a rectangle if there exist
(s, t) ∈ (R\{0})2, ρ ∈ SO(2) and a translation τ such that T = ρ ◦ τ(T (s, t)).

If f = (f1, f2) : R2 → R2, with fi : R2 → R for i ∈ {1, 2}, is a differentiable
function, for any x = (s, t) ∈ R2, we use the notations J1

f (x) for the vector ∂sf(x) =
(∂sf1(x), ∂sf2(x)), J2

f (x) for the vector ∂tf(x) and Jf (x) for the Jacobian matrix of f
at point x. More generally, if M is a 2× 2 matrix, for i ∈ {1, 2}, we write M i the ith
column of M .

Let X be a Gaussian, stationary and isotropic random field, defined on R2 and
taking real values; we write C : R2 → R its covariance function. Since X is station-
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ary, we may assume it is centred. We shall also assume that C(0) = 1 since if not,
we consider the field 1√

C(0)
X instead of X. As for the regularity of X, we make

the assumption that almost every realization of X is of class C 2 on R2. As a con-
sequence, according to Proposition I.5 C is of class C 4. We denote by X ′(t) and
by X ′′(t) the gradient vector and the Hessian matrix of X at point t, respectively,
and by C ′′(t) the Hessian matrix of C at point t. In order to be able to apply the
mean Euler characteristic of excursion sets formula, we make some assumptions on
the covariance function of X. In particular, we assume that the joint distribution
of (X ′i(0), X ′′i,j(0))(i,j)∈{1,2}2,i≤j is not degenerate. Due to stationnarity, this exactly
means that for any t ∈ R2, (X ′i(t), X ′′i,j(t))(i,j)∈{1,2}2, i≤j is not degenerate, and it
is equivalent to the non-degeneracy of both (X ′i(0))i∈{1,2} and (X ′′i,j(0))(i,j)∈{1,2}2,i≤j .
Consequently, the covariance matrix of X ′(0) is not degenerate; since X is isotropic,
there exists λ > 0 such that Cov(X ′(0)) = λ I2. If λ 6= 1, Xθ is nevertheless equal
to X̃θ̃, with θ̃ =

√
λθ and with X̃(·) = X(

√
λ
−1
·) satisfying Cov(X̃ ′(0)) = I2. Conse-

quently, without loss of generality, we shall assume that C ′′(0) = −I2.
We gather all the assumptions on X that will be in force in Sections III.3, III.4

and III.5 under the name (H):

(H)



X is Gaussian,
X is stationary and isotropic,
X is almost surely of class C 2,

∃ε > 0, ∃α > 0, ∃K > 0, ∀t ∈ R2,

‖t‖ ≤ ε ⇒
∣∣∣∣∣ ∂4C

∂t2i ∂t
2
j

(t)− ∂4C

∂t2i ∂t
2
j

(0)
∣∣∣∣∣ ≤ K| log(‖t‖)|−(1+α),

the joint distribution of (X ′i(0), X ′′i,j(0))(i,j)∈{1,2}2
i≤j

is not degenerate,

X is centred, C(0) = 1 and C ′′(0) = −I2.

Our ambition in Section III.5 is to identify the deformation θ assuming that we only
have at our disposal the expectation of χ(Au(Xθ, T )) for different sets T and for a fixed
level u. However, it is not possible to distinguish between θ and another deformation θ̃
such that the random fields Xθ and Xθ̃ have the same law. Because of the stationarity
and the isotropy of X, it occurs if θ̃ = ρ◦θ+u, where ρ ∈ O(2) and u ∈ R2. Therefore,
we can only hope to determine a deformation θ up to left-composition with a rotation
and with a translation.

Consequently, without loss of generality, we can make the assumption that θ(0) = 0.
If θ is differentiable, we shall also assume that for any x ∈ R2, det(Jθ(x)) is positive
or, in other words, that θ preserves orientation. Indeed, function x 7→ det(Jθ(x)) is
continuous on R2 and does not take zero value, hence it takes either only positive or
only negative values. If for all x ∈ R2, det(Jθ(x)) < 0, we can replace θ by σ ◦ θ, where
σ ∈ O(2) is the symmetry with respect to the axis of abscissa; then for any x ∈ R2,
Jσ◦θ(x) = σ◦Jθ(x) and so the Jacobian determinant of σ◦θ is positive on R2. Those two
transformations on θ (translation along vector −θ(0) and left composition with σ) do
not change the law of Xθ. Note that the class of linear as well as tensorial deformations
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considered as examples in Section III.5 are stable under those transformations made
in order to simplify our study.

We define D0(R2) the set of continuous and bijective functions from R2 to R2 with
a continuous inverse, taking value 0 at 0. For i ∈ {1, 2}, we define D i(R2) the set
of C i-diffeomorphisms from R2 to R2 taking value 0 at 0. We call such functions (in
D0(R2) or in D2(R2), according to the section of this paper) deformations.

Note that the assumptions on X and on θ that we have just listed are not all in
force in Section III.2, where we soften the regularity assumptions on X and θ and we
replace the Gaussian hypothesis on X by the assumption of the existence of a second
moment.

For which θ is Xθ isotropic?

In this section, Assumption (H) on X is not in force. We only assume that X is
stationary, isotropic and that it admits a second moment. Considering θ in D1(R2),
we denote by Cθ the covariance function of the deformed field Xθ. Because the field
X is stationary, for any (x, y) ∈ (R2)2,

Cθ(x, y) = Cov(Xθ(x), Xθ(y)) = C(θ(x)− θ(y)). (1)

In the following, we exhibit the deformations θ in D1(R2) that leave the field Xθ

isotropic, for any stationary and isotropic field X. Note that the underlying field X
is not fixed. Our approach is analogous to the one in [PS00], where the objective is,
starting with a random field Y with a known covariance function, to find a deformation
θ such that Y = X ◦ θ, with X : R2 → R a stationary, or stationary and isotropic
random field.

We begin with a short introduction of notations relative to polar representation.
We denote by S the transformation of polar coordinates to cartesian coordinates in
the plane deprived of the origin:

S : (0,+∞)× R/2πZ→ R2\{0} (r, ϕ) 7→ (r cosϕ, r sinϕ).

We define D0 ((0,+∞)× R/2πZ) the set of continuous and bijective functions θ̂ : (0,+∞)×
R/2πZ → (0,+∞) × R/2πZ with continuous inverses. For any deformation θ ∈
D0

(
R2
)
, we write θ0 = θ|R2\{0}, we define the deformation θ̂ ∈ D0 ((0,+∞)× R/2πZ)

by θ̂ = S−1 ◦ θ0 ◦ S and we denote by θ̂1 and θ̂2 its coordinate functions.

Proposition III.1 The mapping D0
(
R2
)
→ D0 ((0,+∞)× R/2πZ) , θ 7→ θ̂ is in-

jective and it is a group morphism, that is to say if η and θ belong to D0
(
R2
)
then

η̂ ◦ θ = η̂ ◦ θ̂. Moreover, the coordinate functions of the composition η̂ ◦ θ are

η̂ ◦ θ
1

= η̂1 ◦ θ̂ and η̂ ◦ θ
2

= η̂2 ◦ θ̂.

Proof. The above application is obviously injective and if η and θ belong to D0
(
R2
)
,

then
(η ◦ θ)0 = η0 ◦ θ0 = (S ◦ η̂ ◦ S−1) ◦ (S ◦ θ̂ ◦ S−1) = S ◦ η̂ ◦ θ̂ ◦ S−1,
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hence we get the homomorphism property. Consequently, for i ∈ {1, 2}, the coordinate
function η̂ ◦ θ

i
satisfies

(η̂ ◦ θ
1
, η̂ ◦ θ

2
) = η̂ ◦ θ = η̂ ◦ θ̂ = (η̂1 ◦ θ̂, η̂2 ◦ θ̂).

Definition III.2 A deformation θ ∈ D1(R2) is a spiral deformation if there exist
f : (0,+∞) → (0,+∞) strictly increasing and surjective, g : (0,+∞) → R/2πZ and
ε ∈ {±1} such that θ satisfies

∀(r, ϕ) ∈ (0,+∞)× R/2πZ, θ̂(r, ϕ) = (f(r), g(r) + εϕ). (2)

Remark III.3 Note that the set of spiral deformations forms a group for the operation
of composition. The choice of f strictly increasing is due to the conditions of continuity
and inversibility on θ and to the fact that θ(0) = 0. The 2π-periodicity of θ̂2 entails
that the coefficient ε in the angular part of (2) is an integer and the inversibility of θ
implies that ε belongs to {±1}. If we only consider deformations with positive Jacobian
determinants, in accordance with our explanations in Section III.1, then we can set
ε = 1. Indeed, the positivity of the Jacobian determinant of θ is equivalent to the
positivity of the one of θ̂ (see Formula (17) in the following by way of justification).

Example III.4 Linear spiral deformations. A linear spiral deformation is a deforma-
tion with polar representation either (r, ϕ) 7→ (λr, ϕ+α) or (r, ϕ) 7→ (λr,−ϕ+α), with
λ > 0 and α ∈ R/2πZ, that is to say it is of the form λρ, with λ > 0 and ρ ∈ O(2).

In [Cab87] and in [Ber18], the deformations are restricted to the ones given by
symmetric, positive and definite matrices. In that case, the field Xθ is isotropic if and
only if the two positive eigenvalues of θ are equal. In the following theorem, we also
determine the deformations preserving isotropy but in the general case.

Theorem III.5 The deformations in D1(R2) such that for any stationary and isotropic
field X, Xθ is isotropic are the spiral deformations.

Proof. To prove the direct implication, let us assume that a deformation θ is a spiral
deformation with polar representation (2) and let α ∈ R/2πZ. We recall that ρα stands
for the rotation of angle α in R2.

∀(r, ϕ) ∈ (0,+∞)× R/2πZ, θ̂ ◦ ρ̂α(r, ϕ) = (f(r), g(r) + ε(ϕ+ α))
= ˆρεα ◦ θ̂(r, ϕ).

Therefore, θ satisfies the following property:

∀ρ ∈ SO(2), ∃ρ′ ∈ SO(2) / θ ◦ ρ = ρ′ ◦ θ.

This entails that Xθ ◦ ρ = X ◦ ρ′ ◦ θ. The isotropy of X implies that X ◦ ρ′ has the
same law as X. Consequently, Xθ ◦ ρ has the same law as Xθ. Thus the isotropy of
Xθ is proved.



III.2. For which θ is Xθ isotropic? 47

We now turn to the converse implication. Let us assume that for any stationary
and isotropic field X, the field Xθ is isotropic. Hence its covariance function, given by
(1) is invariant under the action of any rotation:

∀ρ ∈ SO(2), ∀(x, y) ∈ (R2)2, Cθ(ρ(x), ρ(y)) = Cθ(x, y).

In particular, if we use the Gaussian covariance function C(x) = exp(−‖x‖2), we obtain

∀ρ ∈ SO(2), ∀(x, y) ∈ (R2)2, ‖θ(ρ(x))− θ(ρ(y))‖ = ‖θ(x)− θ(y)‖. (3)

Taking y = 0, we deduce from (3) that θ̂1 is radial. We set for any ϕ ∈ R/2πZ and
for any r > 0, θ̂1(r, ϕ) = f(r). Since θ is bijective, continuous and θ(0) = 0, f is
necessarily strictly increasing with lim

r→0
f(r) = 0 and lim

r→+∞
f(r) = +∞.

To infer the form of θ̂2, we fix r > 0 and, for any ϕ ∈ R/2πZ, we use the complex
representation to write Formula (3) for x = reiϕ, y = r and for any angle α of the
rotation ρ. Dividing the equality by f(r), we get

|eiθ̂2(r,ϕ+α) − eiθ̂2(r,α)| = |eiθ̂2(r,ϕ) − eiθ̂2(r,0)|,

hence
|1− ei(θ̂2(r,ϕ+α)−θ̂2(r,α))| = |1− ei(θ̂2(r,ϕ)−θ̂2(r,0))|.

Since 1 as well as each exponential term belongs to {z ∈ C / |z| = 1}, a geometric
interpretation of the above equality entails that for any ϕ ∈ R/2πZ, there exists
ε(r, ϕ, α) ∈ {±1} such that

θ̂2(r, ϕ+ α)− θ̂2(r, α) = ε(r, ϕ, α) (θ̂2(r, ϕ)− θ̂2(r, 0)). (4)

Assuming that there exists ϕ 6= 0 such that θ̂2(r, ϕ)− θ̂2(r, 0) = 0, we deduce from (4)
that θ̂2(r, ·) is constant on R/2πZ, which contradicts the bijectivity of θ. Consequently,
for any ϕ 6= 0,

ε(r, ϕ, α) = θ̂2(r, ϕ+ α)− θ̂2(r, α)
θ̂2(r, ϕ)− θ̂2(r, 0)

.

This implies that ε is continuous from (0,+∞)× R/2πZ\{0} × R/2πZ onto {±1}. A
connexity argument applies and implies that ε is constant. We write ε(r, ϕ, α) = ε ∈
{±1}.

We fix r > 0. For any (ϕ, α) ∈ (R/2πZ)2, we can rewrite (4)

θ̂2(r, ϕ+ α) = θ̂2(r, α) + ε(θ̂2(r, ϕ)− θ̂2(r, 0)).

By differentiating the above equality with respect to α, for a fixed ϕ ∈ R/2πZ, we
deduce that ∂ϕθ̂2(r, ·) is constant on R/2πZ. Therefore, there exists k(r) ∈ {±1} and
g(r) ∈ R/2πZ such that

∀r > 0, ∀ϕ ∈ R/2πZ, θ̂2(r, ϕ) = k(r)ϕ+ g(r).

Note that the reason why k(r) must belong to {±1} has already been explained in
Remarks III.3. Finally, since θ̂2 is continuous, k(r) is necessarily constant, which
concludes the proof of Theorem III.5.
Remark III.6 Considering the proof of Theorem III.5, we could state an equivalent
version of it, requiring only one fixed stationary and isotropic random field X such
that its covariance function is injective: the deformations in D1(R2) such that Xθ is
isotropic are the spiral deformations.
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Expectation formulas

Euler characteristic of an excursion set
From now on, X is a random field assumed to satisfy (H) and θ is a deformation in
D2(R2). Consequently, even though Xθ is in general not stationary nor isotropic, it is
Gaussian and its realizations are almost surely of class C 2. In this section, we recall
the expectation result of Section I.2.2.c and we apply it to our framework.

We start by introducing the general formula for the expectation of the Euler char-
acteristic of an excursion set of Xθ, above a d-dimensional rectangle T and then we
show how it adapts to dimensions d = 1 and d = 2. Let us first explain why we may
study equivalently the stationary and isotropic field X on the transformed set θ(T )
or the non-stationary and anisotropic field Xθ on the set T . The deformation θ is
an homeomorphism and it satisfies Au(Xθ, T ) = θ−1(Au(X, θ(T ))), therefore the sets
Au(Xθ, T ) and Au(X, θ(T )) are homotopic. Since the Euler characteristic is homotopy
invariant (see Proposition I.13), the above relation leads to

χ(Au(Xθ, T )) = χ(Au(X, θ(T ))).

Consequently, we can focus on E[χ(Au(X, θ(T )))]. It can be computed thanks to
Theorem I.17. Assumption (H) on X allows to apply it here. We write (Hi)i∈N the
Hermite polynomials and, for any real x, H−1(x) =

√
2πΨ(x) exp(x2/2), where Ψ is

the tail probability of a standard Gaussian variable. For T rectangle or segment in R2,

E[χ(Au(Xθ, T ))] = E[χ(Au(X, θ(T )))] =
∑

0≤i≤dim(T )
Li(θ(T )) ρi(u), (5)

with ∀ 0 ≤ i ≤ d, ρi(u) = (2π)−(i+1)/2Hi−1(u)e−u2/2,

and with Li(θ(T )) the ith Lipschitz-Killing curvature of θ(T ). Thanks to the isotropy
assumption on X and to the hypothesis C ′′(0) = −I2, the Lipschitz-Killing curvatures
have a very simple expression:

if d = 1, L1(θ(T )) = |θ(T )|1, L0(θ(T )) = χ(θ(T )) = 1,

if d = 2, L2(θ(T )) = |θ(T )|2, L1(θ(T )) = 1
2 |∂θ(T )|1, L0(θ(T )) = χ(θ(T )) = 1.

Thus, if T is a segment in R2 then Formula (5) setting d = 1 yields:

E[χ(Au(X, θ(T )))] = e−u
2/2 |θ(T )|1

2π + Ψ(u). (6)

If T is a two-dimensional rectangle in R2, we get

E[χ(Au(X, θ(T )))] = e−u
2/2
(
u
|θ(T )|2
(2π)3/2 + |∂θ(T )|1

4π

)
+ Ψ(u). (7)

We now state a continuity result on the mean Euler characteristic of excursion
sets. The proposition hereafter shows that if T is a segment in R2, the mean Euler
characteristic of the excursion set of Xθ above T may be seen as the limit of the mean
Euler characteristic of excursion sets of Xθ over a sequence of two-dimensional sets,
decreasing in the sense of set inclusion and approaching T .
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Proposition III.7 Let T be a segment in R2. Let v be a unit vector orthogonal to T
and, for any ρ > 0, let Tρ be the rectangle {t+ δv, t ∈ T, −ρ ≤ δ ≤ ρ}. Then, for any
random field X satisfying Assumption (H), as ρ decreases towards 0,

E[χ(Au(Xθ, Tρ))] −→
ρ→0

E[χ(Au(Xθ, T ))]

Proof. We write T = {a + λ(b − a), λ ∈ [0, 1]}, where a and b belong to R2. The
set θ(T ) is one-dimensional while for any ρ > 0, θ(Tρ) is two-dimensional. Therefore,
according to Formulas (6) and (7),

E[χ(Au(X, θ(T ))] = e−u
2/2 |θ(T )|1

2π + Ψ(u),

∀ρ > 0, E[χ(Au(X, θ(T ρ)))] = e−u
2/2
(
u
|θ(T ρ)|2
(2π)3/2 + |∂θ(T ρ)|14π

)
+ Ψ(u).

For any sequence (ρn)n∈N of positive terms decreasing towards 0, the sequence of
sets (θ(Tρn))n∈N, decreases to ∩n∈Nθ(Tρn) = θ(T ) thus the limit of |θ(Tρn)|2 as n tends
to infinity is zero.

For any ρ > 0, the frontier of θ(Tρ) is

∂θ(Tρ) = θ(∂Tρ) = {θ(t+ ρv), t ∈ T} ∪ {θ(t− ρv), t ∈ T}
∪ {θ(a+ δv), δ ∈ (−ρ, ρ)} ∪ {θ(b+ δv), δ ∈ (−ρ, ρ)}.

As ρ tends to 0, the one-dimensional measure of each of the first two sets of this disjoint
union tends to |θ(T )|1, while the one of the last two tends to zero; therefore, |∂θ(Tρ)|1
tends to 2|θ(T )|1. This concludes the proof.

Remark III.8 Proposition III.7 could be adapted in various ways. First, we could
generalize it to a one-dimensional compact set T satisfying certain regularity assump-
tions. Besides, the sequence of sets {Tρ, ρ > 0} approaching T could be defined differ-
ently, for instance as the sequence of ρ-tubes around T , that is,

∀ρ > 0, Tρ = {z ∈ R2 / dist(T, z) ≤ ρ}, where dist(T, z) = min
x∈T
{‖x− z‖}.

Modified Euler characteristic of an excursion set

For our approach in Section III.5, where we want to identify θ by considering some
well-chosen excursion sets of Xθ, it will be easier to consider the modified Euler char-
acteristic instead of the Euler characteristic of the excursion sets. The modified Euler
characteristic has been introduced in Section I.2.2.d and we still denote it by φ. It will
allow us to limit ourselves to the term of highest index in (5). According to Definition
I.18 and its extension through Formula (21), for any segment or rectangle T in R2,
writing d = dim(T ),

φ(Au(Xθ, T )) = φ(Au(X, θ(T ))) =
∑

0≤k≤d
(−1)kµ̃k(u,X, θ(T )).

where µ̃k(u,X, θ(T )) = #{t ∈ θ(T ) : X(t) ≥ u, X ′(t) = 0, index (X ′′(t)) = d− k}
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(we recall that # stands for the cardinality and index(X ′′(t)) is the number of negative
eigenvalues of the Hessian matrix of X at point t).

If d = 1, the above formula becomes

φ(Au(X, θ(T )) = #{local maxima of X above u in θ(T̊ )}
−#{local minima of X above u in θ(T̊ )}.

If d = 2, it yields

φ(Au(X, θ(T ))) = 2#{local extrema of X above u in θ(T̊ )}
−#{stationary points of X above u in θ(T̊ )}.

(8)

Remark III.9 (Additivity property) The modified Euler characteristic of excur-
sion sets, like the Euler characteristic, satisfies an additivity property. Let T and T ′
be two rectangles in R2 such that T ∩ T ′ = ∅ then

φ(Au(Xθ, T ∪ T ′)) = φ(Au(Xθ, T )) + φ(Au(Xθ, T
′)).

This property is a consequence of (8). Even if the rectangles T and T ′ have a non-empty
but one-dimensional intersection, the additivity property is still satisfied. Indeed, in
this case, according to Bulinskaya lemma (first point of Lemma I.15), almost surely, Xθ

admits no stationary points in T ∩ T ′; consequently, the modified Euler characteristic
of the excursion set of Xθ over T ∩ T ′ is almost surely 0.

Under our assumptions on X, Corollary I.21 applies to T segment or rectangle in
R2. Hence writing d = dim(T ),

E[φ(Au(Xθ, T ))] = E[φ(Au(X, θ(T )))] = Ld(θ(T )) ρd(u),

It follows that

if dim(T ) = 1, E[φ(Au(Xθ, T ))] = E[φ(Au(X, θ(T )))] = e−u
2/2 |θ(T )|1

2π ; (9)

if dim(T ) = 2, E[φ(Au(Xθ, T ))] = E[φ(Au(X, θ(T )))] = e−u
2/2u
|θ(T )|2
(2π)3/2 . (10)

The expectation of the modified Euler characteristic of excursion sets does not sat-
isfy the same continuity result as the one stated in Proposition III.7 about the Euler
characteristic. Indeed, consider for instance (TN )N∈N\{0} = ([a, b]×[−N−1, N−1])N∈N\{0}
converging toward T = [a, b]× {0}, then Formula (10) yields

E[φ(Au(X, θ(TN )))] −→
N→+∞

0,

whereas, according to Formula (9),

E[φ(Au(X, θ(T )))] = exp(−u2/2) |θ([a, b]× {0})|12π 6= 0.

In Section III.5.2, using the modified Euler characteristic of excursion sets, we
construct estimators of the determinant and the norms of the columns of the Jacobian
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matrix of θ. There we need a second moment formula, stated in Theorem I.22, that
we recall here, adapted to our setting. Let T be a rectangle in R2. Even though the
random field X does not satisfy a.s. C 3-regularity, the result of Theorem I.22 is still
valid here. Indeed, reading the proof given after Proposition 1 in [DBEL17], one can
realize that the C 3-regularity assumption only allows to ensure the finiteness of the
second moment, but it does not have any relevance for the derivation of the formula.
Therefore, we only need to justify the finiteness of the second moment of φ(Au(Xθ, T )
under Condition (H). Geman condition denoted by (G) in Section II.3 is a sufficient
condition for the existence of a second moment for φ(Au(Xθ, T )); this is justified in
Section II.4. It is also clear that Condition (D) in Section I.2.2.c, which is the fourth
item in Condition (H), entails the Geman condition. Consequently, if we add the
assumption that for any t ∈ R2, the Gaussian vector (X(0), X(t)) is not degenerate,
to Condition (H), Theorem I.22 applies: φ(Au(Xθ, T )) admits a finite variance given
by

Var[φ(Au(Xθ, T ))] = Var[φ(Au(X, θ(T )))]

=
∫
R2
|θ(T ) ∩ (θ(T )− t)|2(E(u, t)D(t)−1/2 − h(u)2) dt

+ |θ(T )|2(2π)−1g(u),

(11)

where

E(u, t) = E[1[u,+∞)(X(0))1[u,+∞)(X(t))| det(X ′′(0)) det(X ′′(t))| |X ′(0) = X ′(t) = 0],
D(t) = (2π)4 det(I2 − C ′′(t)2),
g(u) = E[1[u,+∞)(X(0))| det(X ′′(0))|)],

h(u) = (2π)−3/2 u e−u
2/2.

Notion of χ-isotropic deformation

In this section, the underlying field X is fixed and it satisfies Assumption (H). We
define χ-isotropic deformations, characterized by an invariance condition of the mean
Euler characteristic of some excursion sets of the associated deformed field. We show
that the only deformations that satisfy this invariance property are the spiral defor-
mations, that is to say the ones that were proved to preserve isotropy in Section III.2.

Definition III.10 (χ-isotropic deformation) A deformation θ ∈ D2(R2) is χ-isotropic
if for any rectangle T in R2, for any u ∈ R and for any ρ ∈ SO(2),

E[χ(Au(Xθ, ρ(T ))] = E[χ(Au(Xθ, T )]. (12)

Remarks III.11 Note that the notion of χ-isotropy seems to be dependent on the
underlying random field X involved in (12). However, after the statement and the proof
of Theorem III.13, it will be clear that it is in fact not the case. It will also be clear
that an equivalent definition of χ-isotropic deformations could be given by replacing
“for any u ∈ R” by “for a fixed u 6= 0”. Besides, an equivalent version of Definition
III.10, using the modified Euler characteristic instead of the Euler characteristic of
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excursion sets, will appear to hold true: a deformation θ ∈ D2(R2) is χ-isotropic if for
any rectangle or segment T in R2, for any u ∈ R and for any ρ ∈ SO(2),

E[φ(Au(Xθ, ρ(T ))] = E[φ(Au(Xθ, T )].

Example III.12 Spiral deformations defined in Section III.2 are χ-isotropic defor-
mations. Indeed, if a deformation θ is such that Xθ is isotropic then it satisfies the
above definition, because for any ρ ∈ SO(2), Xθ◦ρ has the same law as Xθ. But ac-
cording to Theorem III.5, the deformations that preserve isotropy are exactly the spiral
deformations.

Here comes the main result of Section III.4.

Theorem III.13 The χ-isotropic deformations are exactly the spiral deformations in
D2(R2).

Proof. Spiral deformations are χ-isotropic deformations according to Example III.12;
we prove that they are the only χ-isotropic deformations thanks to two lemmas and
one result from [BF17].

The first lemma gives a characterization of χ-isotropic deformations involving in-
variance properties of the Jacobian matrix under rotations. To formulate it, we need to
introduce an equivalence relation, denoted by SO(2)∼ , on the space of invertible matrices
of size 2×2: ifM and N are two square matrices of size 2×2,M SO(2)∼ N if there exists
ρ ∈ SO(2) such that M = ρN . Note that M SO(2)∼ N is equivalent to the conditions
for all (i, j) ∈ {1, 2}2, 〈M i,M j〉 = 〈N i, N j〉 and det(M) = det(N).

Lemma III.14 A deformation θ ∈ D2(R2) is χ-isotropic if and only if

∀ρ ∈ SO(2), ∀x ∈ R2, Jθ◦ρ(x) SO(2)∼ Jθ(x). (13)

Proof. Let θ ∈ D2(R2). As explained above, Condition (13) is equivalent to the
following condition:

∀ρ ∈ SO(2), ∀x ∈ R2,


(i)′ ∀i ∈ {1, 2}, ‖J iθ◦ρ(x)‖ = ‖J iθ(x)‖,
(i)′′ 〈J1

θ◦ρ(x), J2
θ◦ρ(x)〉 = 〈J1

θ (x), J2
θ (x)〉,

(ii) det(Jθ◦ρ(x)) = det(Jθ(x)).
(14)

First, we assume that θ is a χ-isotropic deformation. We fix ρ ∈ SO(2), (s, t) ∈
(R\{0})2 and u ∈ R\{0}. Identity (12) is satisfied for rectangle T = T (s, t), thus
Formula (7) applied at two different levels u and u′ implies that |θ ◦ ρ(T (s, t))|2 =
|θ(T (s, t))|2, whence∫

[0,s]

∫
[0,t]
| det(Jθ◦ρ(x, y))| dx dy =

∫
[0,s]

∫
[0,t]
|det(Jθ(x, y)| dx dy.

Differentiating twice the above equality with respect to s and to t yields, for any (s, t) ∈
(R\{0})2, | det(Jθ◦ρ(s, t))| = | det(Jθ(s, t))|, but |det(Jθ◦ρ(s, t))| = | det(Jθ(ρ(s, t)))|
and the Jacobian determinant of θ has a fixed sign on R2, hence (14) Condition (ii) is
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satisfied. Now let us prove Condition (i)’, for i = 1 for instance. For any n ∈ N\{0},
according to the definition of χ-isotropy,

E[χ(Au(Xθ, [0, s]× [t− n−1, t+ n−1]))] = E[χ(Au(Xθ, ρ([0, s]× [t− n−1, t+ n−1])))].

Then we apply Proposition III.7 to the set [0, s]×{t}, intersection of the sets {[0, s]×
[t−n−1, t+n−1], n ∈ N\{0}} (respectively to the set ρ([0, s]×{t}), intersection of the
sets {ρ([0, s]× [t− n−1, t+ n−1]), n ∈ N\{0}}). This yields

E[χ(Au(Xθ, [0, s]× {t}))] = E[χ(Au(Xθ, ρ([0, s]× {t})))],

and, thanks to Formula (6),

|θ ◦ ρ([0, s]× {t})|1 = |θ([0, s]× {t})|1,

which can be written ∫
[0,s]
‖J1

θ◦ρ(x, t)‖ dx =
∫

[0,s]
‖J1

θ (x, t)‖ dx.

Differentiating this integral equality with respect to s, we obtain ‖J1
θ◦ρ(s, t)‖ = ‖J1

θ (s, t)‖.
Similarly, we get ‖J2

θ◦ρ(s, t)‖ = ‖J2
θ (s, t)‖. We are left to show Condition (i)”. Let

α ∈ R/2πZ, t ∈ R\{0} and let T = {λuα, λ ∈ [0, t]} a segment. Using the same
arguments as above, the χ-isotropy of θ entails that |θ ◦ ρ(T )|1 = |θ(T )|1, that is∫

[0,t]
‖Jθ◦ρ(λuα)uα‖ dλ =

∫
[0,t]
‖Jθ(λuα)uα‖ dλ. (15)

Writing η ∈ {θ ◦ ρ, θ}, for any λ ∈ [0, t], the norm in the integrand of each integral can
be developed into(

‖J1
η (λuα)‖2 cos2 α+ ‖J2

η (λuα)‖2 sin2 α+ 2 〈J1
η (λuα), J2

η (λuα)〉 cosα sinα
)1/2

.

Differentiating Equality (15) with respect to t and using the proved Condition (i)’, for
any α /∈ {0, π/2} modulus π, we get

〈J1
θ◦ρ(tuα), J2

θ◦ρ(tuα)〉 = 〈J1
θ (tuα), J2

θ (tuα)〉.

By continuity of J iη, for i ∈ {1, 2}, we conclude that for any x ∈ R2, Condition (i)” is
satisfied.

Hence we have proved the direct implication of Lemma III.14 and we turn to
the converse implication. We assume that θ satisfies Condition (14). The proof will
actually only exploit Conditions (i)’ and (ii).

Let T be a rectangle in R2. In the first place, there exist (s, t) ∈ (R\{0})2, ρ0 ∈
SO(2) and a translation by vector (a, b) ∈ R2, denoted by τa,b, such that T = ρ0 ◦
τa,b(T (s, t)). Let θ ∈ D2(R2) satisfying (14) for any ρ ∈ SO(2) and for any x ∈ R2.
Therefore

|θ ◦ ρ(T )|2 = |θ ◦ ρ ◦ ρ0(τa,b(T (s, t)))|2

=
∫

[0,s]

∫
[0,t]
| det(Jθ◦ρ◦ρ0(a+ x, b+ y)| dx dy

=
∫

[0,s]

∫
[0,t]
| det(Jθ◦ρ0(a+ x, b+ y)| dx dy

= |θ(T )|2.
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The third equality results from (14) Condition (ii). Now, we express the perimeter
length of θ ◦ ρ(T ).

|∂θ ◦ ρ(T )|1 =|∂θ ◦ ρ ◦ ρ0(τa,b(T (s, t)))|1

=
∫

[0,s]
‖J1

θ◦ρ◦ρ0(a+ x, b)‖ dx+
∫

[0,s]
‖J1

θ◦ρ◦ρ0(a+ x, b+ t)‖ dx

+
∫

[0,t]
‖J2

θ◦ρ◦ρ0(a, b+ y)‖ dy +
∫

[0,t]
‖J2

θ◦ρ◦ρ0(a+ s, b+ y)‖ dy

=
∫

[0,s]
‖J1

θ◦ρ0(a+ x, b)‖ dx+
∫

[0,s]
‖J1

θ◦ρ0(a+ x, b+ t)‖ dx

+
∫

[0,t]
‖J2

θ◦ρ0(a, b+ y)‖ dy +
∫

[0,t]
‖J2

θ◦ρ0(a+ s, b+ y)‖ dy

=|∂θ(T )|1.

The third equality results from (14) Condition (i)’. Thanks to Formula (7), this proves
that E[χ(Au(X, θ ◦ ρ(T )))] = E[χ(Au(X, θ(T )))]. Hence θ is a χ-isotropic deformation
and the proof of Lemma III.14 is completed.

Our second lemma states a property, involving the polar representation, satisfied
by χ-isotropic deformations.

Lemma III.15 If a deformation θ ∈ D2(R2) is a χ-isotropic deformation then func-
tions 

(r, ϕ) 7→ (∂rθ̂1(r, ϕ))2 + (θ̂1(r, ϕ) ∂rθ̂2(r, ϕ))2

(r, ϕ) 7→ (∂ϕθ̂1(r, ϕ))2 + (θ̂1(r, ϕ) ∂ϕθ̂2(r, ϕ))2

(r, ϕ) 7→ θ̂1(r, ϕ) det(Jθ̂(r, ϕ))

(16)

are radial, i.e. if they do not depend on ϕ.

Proof. We use the notations introduced at the beginning of Section III.2. The Jaco-
bian matrix of S at point (r, ϕ) ∈ (0,+∞)× R/2πZ is

JS(r, ϕ) = ρϕ

(
1 0
0 r

)
.

Consequently,

JS−1(S(r, ϕ)) = (JS(r, ϕ))−1 =
(

1 0
0 r−1

)
ρ−ϕ.

Now for any rotation ρ ∈ SO(2) and for any (r, ϕ) ∈ (0,+∞) × R/2πZ, writing
θ0 = S ◦ θ̂ ◦ S−1, we get

Jθ0(S(r, ϕ)) = ρθ̂2(r,ϕ)

(
1 0
0 θ̂1(r, ϕ)

)
Jθ̂(r, ϕ)

(
1 0
0 r−1

)
ρ−ϕ. (17)

We use the characterization of χ-isotropy given by Lemma III.14. A deformation
θ ∈ D2(R2) is a χ-isotropic deformation if and only if for any (r, ϕ, α) ∈ (0,+∞) ×
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(R/2πZ)2, Jθ0◦ρα(S(r, ϕ)) = Jθ0(S(r, ϕ + α)) ρα is equivalent to Jθ0(S(r, ϕ)). Equiva-
lently, for any (r, ϕ, α) ∈ (0,+∞)× (R/2πZ)2, the equivalence relation(

1 0
0 θ̂1(r, ϕ+ α)

)
Jθ̂(r, ϕ+ α) SO(2)∼

(
1 0
0 θ̂1(r, ϕ)

)
Jθ̂(r, ϕ)

holds. This implies that the above matrices have the same determinant and the same
norm of columns, which means that the functions defined by (16) do not depend on
their second variable.

To conclude the proof of Theorem III.13, we refer to [BF17] that solves the dif-
ferential system (16) and proves that the solutions are the spiral deformations. Con-
sequently, this proves that χ-isotropic deformations are spiral deformations and the
converse inclusion has already been pointed out in Example III.12.

Remark III.16 The first step in the resolution derived in [BF17] is to transform the
quadratic differential system (16) into a non quadratic equivalent one, which is done
by considering that the two first functions in (16) are the square moduli of complex
numbers functions.

Let us write S the set of spiral deformations in D2(R2), X the set of χ-isotropic
deformations, I the set of deformations θ in D2(R2) such that for any isotropic and
stationary field X satisfying (H), Xθ is isotropic and, finally, for a fixed stationary and
isotropic field X satisfying (H), I (X) the set of deformations θ in D2(R2) such that
Xθ is isotropic. These sets satisfy the following chain of inclusions or equalities:

S = I ⊂ I (X) ⊂X = S .

The first and the last equalities come respectively from Theorem III.5 and Theorem
III.13; the first inclusion is obvious and the second one is a consequence of Example
III.12. As a result, the following corollary holds.

Corollary III.17 Let X be a stationary and isotropic random field satisfying Assump-
tion (H). Then S = I (X) = I = X .

To conclude, it occurs that the different notions that we have introduced so far to
describe the isotropic behaviour of a deterministic deformation are in fact one and
correspond to the spiral case.

Identification of θ through excursion sets
As explained in the introduction of this paper, we consider the case of an unknown
deformation θ, which we want to identify using sparse data: the observations of excur-
sion sets of Xθ over well-chosen domains. More precisely, we assume that the mean
modified Euler characteristic of some excursion sets of Xθ has been computed and we
explain how we can almost uniquely characterize θ. The modified Euler characteristic
is more adapted to our method than the Euler characteristic itself. This is due to the
dependence of the mean Euler characteristic of an excursion set over a two-dimensional
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domain on both the perimeter length and the area of the domain, whereas its mean
modified version only depends on the area (compare Formulas (7) and (10)). In the
second place, we limit ourselves to spiral deformations and we show that in this case,
we can easily estimate θ thanks to only one realization of the deformed field Xθ.

The underlying field X is unknown but it is still assumed to satisfy assumption
(H). The unknown deformation θ belongs to D2(R2) and at each point in R2, its
Jacobian determinant is positive.

Identification of θ

Case of a linear deformation.

Here comes the simple case of a linear deformation that we use as a first step towards
the general case. Let us assume that θ is a linear function and let us write it matricially

in a fixed orthonormal basis of R2: θ =
(
θ11 θ12
θ21 θ22

)
. In this case, we only have to

consider the excursion sets over one horizontal segment, one vertical segment and one
rectangle (product of two segments): we fix (s, t) ∈ (R\{0})2, u 6= 0 and we assume that
we know E[φ(Au(Xθ, [0, s]×{0}))], E[φ(Au(Xθ, {0}× [0, t]))] and E[φ(Au(Xθ, T (s, t))].
The three real numbers

a =
√
θ2

11 + θ2
21, b =

√
θ2

12 + θ2
22 and c = θ11θ22 − θ21θ12 (18)

satisfy

|θ([0, s]× {0})|1 = |s|a, |θ({0} × [0, t])|1 = |t|b, and |θ(T (s, t))|2 = |st|c.

Therefore, they are solutions of equations given by Formulas (9) and (10) and they can
be used to write another expression of matrix θ: there exists (α, β) ∈ (R/2πZ)2 such

that θ =
(
a cos(α) b cos(β)
a sin(α) b sin(β)

)
. Let δ = β − α be the angle between the two column

vectors. It satisfies c = ab sin(δ), whence

δ ∈ {δ0, δ1}, where


δ0 = arcsin

(
c

ab

)
∈ (0, π/2]

δ1 = π − arcsin
(
c

ab

)
∈ [π/2, π).

Consequently, we are able to determine matrix θ up to an unknown rotation, with two
possibilities concerning the angle between its two column vectors: θ belongs to the set
M (a, b, c) defined by

M (a, b, c) =
{
ρα

(
a
√
b2 − (ca−1)2

0 ca−1

)
, ρα

(
a −

√
b2 − (ca−1)2

0 ca−1

)
, α ∈ R/2πZ

}
(19)

If the determinant of θ was not assumed to be positive, there would be two other
possibilities, up to a rotation, because δ could take four possible values. Note that
according to Example III.4, Xθ is isotropic in the case where a = b =

√
c, which

implies δ = π/2.
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Of course, because of the isotropy of X, we obtain θ up to post-composition with an
unknown rotation. Our method is based on the mean Euler characteristic of excursion
sets of Xθ over some sets, which only depends on θ through the perimeter and area of
the set’s image by θ. Consequently, we can not differentiate between two deformations
that transform any set into sets with the same perimeter and the same area.

We summarize our approach in the following method.

Method III.18 Let θ =
(
θ11 θ12
θ21 θ22

)
be an unknown linear deformation with positive

determinant. For a fixed (s, t) ∈ (R\{0})2, for a fixed u ∈ R\{0}, we assume that
E[φ(Au(Xθ, T ))] is known for T of the form [0, s] × {0}, {0} × [0, t] and [0, s] × [0, t].
Then a, b and c given by (18) are computable thanks to Formulas (9) and (10) and θ
belongs to the set M (a, b, c) defined by (19).

General method.

We refer to the appendix of [AS08] for a precise definition of the complex dilatation
and for the statement of the mapping theorem that formulates a characterization of
a deformation up to a conformal mapping through its complex dilatation. To be able
to apply it, we add an hypothesis on θ: from now on, we assume that θ has uniformly
bounded distortion. Writing θ as a mapping from the complex plane C to itself and
| · | the complex modulus, this means that the ratio of

lim sup
x→x0

|θ(x)− θ(x0)|
|x− x0|

and of lim inf
x→x0

|θ(x)− θ(x0)|
|x− x0|

is uniformly bounded for x0 ∈ C.
We fix u 6= 0, S > 0 and we assume that E[φ(Au(Xθ, [0, s]×{t}))], E[φ(Au(Xθ, {s}×

[0, t]))] and E[φ(Au(Xθ, T (s, t))] are known for any (s, t) ∈ [−S, S]2. Then for any
(s, t) ∈ [−S, S]2, we can deduce |θ([0, s]×{t})|1 and |θ({s}× [0, t])|1 from Formula (9)
by simply solving a linear system. Besides

|θ([0, s]× {t})|1 =
∫

[0,s]
‖J1

θ (x, t)‖dx =
∫

[0,s]

√
∂xθ1(x, t)2 + ∂xθ2(x, t)2 dx,

|θ({s} × [0, t])|1 =
∫

[0,t]
‖J2

θ (s, y)‖dy =
∫

[0,t]

√
∂yθ1(s, y)2 + ∂yθ2(s, y)2 dy.

The first-order partial derivatives of θ are continuous. By differentiating the func-
tions s 7→ |θ([0, s]×{t})|1 and t 7→ |θ({s}× [0, t])|1, we obtain functions s 7→ ‖J1

θ (s, t)‖
and t 7→ ‖J2

θ (s, t)‖ on segment [−S, S].
Now considering the rectangle domains {T (s, t), (s, t) ∈ ([−S, S]\{0})2}, we assume

that E[φ(Au(Xθ, T (s, t)))] is known. Since u 6= 0, we can compute |T (s, t)|2 thanks to
Formula (10). Then, by differentiating twice the function

(s, t) 7→ |θ(T (s, t))|2 =
∫

[0,s]

∫
[0,t]
| det(Jθ(x, y))| dx dy,

with respect to s and to t on the square [−S, S]2, we obtain function (s, t) 7→ |det(Jθ(s, t))|
on the same square.
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Now, we fix x ∈ ([−S, S]\{0})2, we write Jθ(x) =
(
θ11 θ12
θ21 θ22

)
and we use the same

notations a, b and c defined by (18) as in the linear case, although they now depend
on x. The explanations given in Section III.5.1.a apply here and consequently, Jθ(x)
belongs to M (a, b, c). Moreover, let us express the complex dilatation µ, given by

µ = ∂z̄θ

∂zθ
,

where


∂zθ = 1

2(∂sθ1 + ∂tθ2) + i

2(∂sθ2 − ∂tθ1)

∂z̄θ = 1
2(∂sθ1 − ∂tθ2) + i

2(∂sθ2 + ∂tθ1).

At point x, a short computation shows that µ(x) takes two possible values in the set
C (a, b, c) defined by

C (a, b, c) =
{ 1
a2 + b2 + 2c(a2 − b2 ± 2i

√
a2b2 − c2)

}
. (20)

The general method is summarized below.

Method III.19 Let θ ∈ D2(R2) be a deformation with a positive Jacobian on R2.
Let S > 0 and let u ∈ R\{0} be fixed. Assuming that for any x = (s, t) ∈ [−S, S]2,
for any T ∈ {[0, s]× {t}, {s} × [0, t], [0, s]× [0, t]}, we know E[φ(Au(Xθ, T ))], we may
compute a = ‖J1

θ (x)‖, b = ‖J2
θ (x)‖ and c = det(Jθ(x)). Consequently, for each x ∈

[−S, S]2, the Jacobian matrix at point x, Jθ(x) belongs to M (a, b, c) defined by (19)
and the complex dilatation at point x, µ(x) belongs to C (a, b, c) defined by (20).

Remark III.20 (Numerical approach) In practise, we can only have at our dis-
posal a finite amount of data. Let σ be a partition of [−S, S]. If we know{
E[φ(Au(Xθ, T ))], T ∈ {[0, s]× {t}, {s} × [0, t], [0, s]× [0, t]} , (s, t) ∈ σ2

}
, numerical

approaches such as Runge-Kutta methods allow to compute approximate values of
‖J1

θ (s, t)‖, ‖J2
θ (s, t)‖ and det(Jθ(s, t)) for any (s, t) ∈ σ2 and the approximate val-

ues for Jθ(s, t) and µ(s, t).

Case of a tensorial deformation

We now study the particular case of tensorial deformations, where we can completely
identify θ if we make an assumption of monotonicity on its coordinate functions. Let
θ(s, t) = (θ1(s), θ2(t)). Our hypotheses on θ mean that for i ∈ {1, 2}, θi : R → R
satisfies θi(0) = 0, θi is a bijective function of class C 2 and therefore it is monotonous.
Note that θ transforms a rectangle [s, v] × [t, w] into another rectangle θ1([s, v]) ×
θ2([t, w]).

Let s ∈ R\{0}. We deduce from Formula (9) that
E[φ(Au(Xθ, [0, s]× {0}))] = e−u

2/2

2π

∫ s

0
|θ′1(x)| dx

E[φ(Au(Xθ, {0} × [0, s]))] = e−u
2/2

2π

∫ s

0
|θ′2(x)| dx

and consequently, we can state the following method.
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Method III.21 Let (s, t) 7→ θ(s, t) = (θ1(s), θ2(t)) ∈ D2(R2) be a tensorial deforma-
tion. We fix S > 0 and u ∈ R. We assume that for any real number s ∈ [−S, S]\{0}
and for T ∈ {[0, s]× {0}, {0} × [0, s]}, we know E[φ(Au(Xθ, T ))]. Then we determine
functions s 7→ |θ′1(s)| and s 7→ |θ′2(s)| on [−S, S] thanks to Formula (9). If the sign of
each coordinate function is known then θ is completely determined on [−S, S]2.

Example III.22 Let (α, β) ∈ (R\{0})2, let θ be defined on [0, 1]2 by θ(s, t) = (sα, tβ)
and let σ be a partition of (0, 1]. To identify θ1, we follow the above method adapted to a
numerical approach; thus we obtain approximate values for {|θ′1(s)|, s ∈ σ}. Constant
values correspond to the case of α = 1. Otherwise, we have |θ′1(s)| = |α| sα−1, therefore
coefficient α can be computed through a regression method: α−1 is the slope of the line
representing log(|θ′1(s)|) = log (|α|) + (α − 1) log(s) as a function of log(s) on (0, 1].
The same method holds to get coefficient β.

Remark III.23 The three methods III.18, III.19 and III.21 can be easily adapted if
the modified Euler characteristic φ is replaced by the Euler characteristic χ itself.

Estimation in the spiral case
We have assumed all along the first part of this section that E[φ(Au(Xθ, T ))] was
known for some basic domains T , but we have not yet discussed estimation matters.
Without any hypothesis on θ, this expectation seems uneasy to estimate from one
single realization of Xθ, since the deformed field is non-stationary, except in the linear
case. Yet it is possible in the spiral case thanks to the isotropy of the deformed field.

In this section, in order to derive results about the variance of our estimators, we
furthermore assume that for any t ∈ R2, the vector (X(0), X(t)) is not degenerate and
that function C and its derivatives satisfy the following condition at infinity:

ν(t) −→
‖t‖→+∞

0 and ν ∈ L1(R2), where ν(t) = max{|∂
kC

∂tk
(t)|, k ∈ N2

0, |k| ≤ 4}.

(21)
Let θ ∈ D2(R2) be a spiral deformation; we show in the following how to estimate
‖J1

θ (x)‖, ‖J2
θ (x)‖ and det(Jθ(x)) at each point x in a chosen domain. Then Method

III.19 applies to identify θ.
Let x ∈ R2\{0}, let (r0, ϕ0) be its polar coordinates and for N ∈ N\{0}, let

T 0
N = S

(
{(r, ϕ) ∈ (0,+∞)× R/2πZ / r0 ≤ r ≤ r0 +N−1, ϕ0 ≤ ϕ ≤ ϕ0 + 2πN−1}

)
.

For any k ∈ {0, · · · , N − 1}, we write T kN = ρ2kπ/N (T 0
N ). We fix u 6= 0 and we

define

ZN = N−1
N−1∑
k=0

φ(Au(Xθ, T
k
N )) = N−1

N−1∑
k=0

φ(Au(X, θ(T kN ))),

where φ is the modified Euler characteristic. Remember that according to Remark
III.9, φ satisfies an additivity property that applies here because the two-dimensional
sets (T kN ) have a one-dimensional intersection. Thus,

ZN = N−1φ

(
Au

(
X,

N−1
∪
k=0

θ(T kN )
))

= N−1φ(Au(X, θ(UN ))), where UN =
N−1
∪
k=0

T kN .
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We derive the asymptotic behaviour of the expectation and the variance of ZN from
the χ-isotropy property satisfied by θ. If (uN )N∈N and (vN )N∈N are real sequences, we
write uN ∼

N→+∞
vN if there exist N0 ∈ N and a real sequence (εN )N≥N0 converging to

one such that for N ≥ N0, uN = εNvN .

Proposition III.24 There exist constants a 6= 0 and c > 0 (depending only on u)
and n ∈ N\{0} such that

E[ZN ] ∼
N→+∞

a |det(Jθ(x))||T 0
N |2

and for N ≥ n,

Var[ZN ] ≤ c | det(Jθ(x))| |T 0
N |2

N
.

Proof. Let N ∈ N\{0}. According to Theorem III.13, θ is χ-isotropic. Using Def-
inition III.10 and the last point of Remarks III.11, this implies that for any k ∈
{0, · · · , N − 1}, E[φ(Au(X, θ(T kN )))] = E[φ(Au(X, θ(T 0

N )))]. Therefore, the expecta-
tion of ZN is

E[ZN ] = E[φ(Au(X, θ(T 0
N )))] = u e−u

2/2

(2π)3/2 |θ(T
0
N )|2.

We study the asymptotic behaviour of this sequence.∣∣∣|θ(T 0
N )|2 − | det(Jθ(x))||T 0

N |2
∣∣∣

≤
∫ r0+N−1

r0

∫ ϕ0+2πN−1

ϕ0
| |det(Jθ(S(r, ϕ)))| − | det(Jθ(S(r0, ϕ0)))| | r dr dϕ

≤ sup
r0≤r≤r0+N−1

ϕ0≤ϕ≤ϕ0+2πN−1

| |det(Jθ(S(r, ϕ)))| − | det(Jθ(S(r0, ϕ0)))| | |T 0
N |2,

with sup
r0≤r≤r0+N−1

ϕ0≤ϕ≤ϕ0+2πN−1

| |det(Jθ(S(r, ϕ)))| − | det(Jθ(S(r0, ϕ0)))| | −→
N→+∞

0. Consequently,

|θ(T 0
N )|2 ∼

N→+∞
|det(Jθ(x))||T 0

N |2 (22)

and the result about the asymptotic expectation holds.
Now we use Formula (11) (with its notations) to get an integral expression of

the variance of ZN = N−1φ(Au(X, θ(UN ))). An asymptotic upper-bound is obtained
under Condition (21), which entails that the map t 7→ E(u, t)D(t)−1/2 − h(u)2 has a
finite integral on R2, according to Lemma 3 in [DBEL17].

Var[φ(Au(X, θ(UN )))] =
∫
R2
|θ(UN ) ∩ (θ(UN )− t)|2(E(u, t)D(t)−1/2 − h(u)2) dt

+ |θ(UN )|2(2π)−1g(u)

≤ |θ(UN )|2
(∫

R2
(E(u, t)D(t)−1/2 − h(u)2) dt+ (2π)−1g(u)

)
≤ c |θ(UN )|2 = cN |θ(T 0

N )|2,
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where c > 0. Note that the integration domain is in fact the compact subset {t −
t′, (t, t′) ∈ θ(UN )2}. The last equality is a consequence of the third point of Condition
(14) satisfied by θ according to Lemma III.14. Consequently, using (22), we get

Var[ZN ] ≤ cN−1 |θ(T 0
N )|2 ∼

N→+∞
cN−1 |det(Jθ(x))| |T 0

N |2.

This concludes the proof.
Proposition III.24 shows that, asymptotically, the variance of ZN is negligible with

respect to its expectation. Practically, we could obtain | det(Jθ(x))| through a regres-
sion method since, up to a constant, it is the coefficient of the linear relation linking
asymptotically |θ(T 0

N )|2 and |T 0
N |2. Constant a is totally explicit and constant c may

be numerically computed.
We can adopt the same approach to get an estimation of ‖J iθ(x)‖, for i ∈ {1, 2}.

We will only state the asymptotic result (for i = 1) because the proof is very similar to
the one of Proposition III.24. Let x = (x1, x2) ∈ R2 and S0

N = [x1, x1 +N−1]× {x2}.
For any N ∈ N\{0}, for any k ∈ {0, · · · , N − 1}, we write SkN = ρ2kπ/N (S0

N ) and we
define

YN = N−1
N−1∑
k=0

φ(Au(Xθ, S
k
N )).

Proposition III.25 There exist constants d 6= 0 and k > 0 (depending only on u)
and n ∈ N\{0} such that

E[YN ] ∼
N→+∞

d ‖J1
θ (x)‖|S0

N |1

and for N ≥ n,

Var[YN ] ≤ k ‖J
1
θ (x)‖ |S0

N |1
N

.

Estimates of | det(Jθ)|, ‖J1
θ (x)‖ and ‖J2

θ (x)‖ bring a nearly complete characterization
of the Jacobian matrix of θ, as explained in Section III.5.1.

Conclusion and perspectives
In our study of deformed random fields, a generally speaking anisotropic and non-
stationary model, the first question we addressed was the one of the deformations
preserving isotropy. The answer, stated in Theorem III.5, is the set of spiral deforma-
tions defined by Definition III.2. They provide a model of isotropic and non-stationary
random fields.

Then our guideline was to study deformed random fields through the mean Euler
characteristic of their excursion sets and to understand how much it could characterize
the deformation. First, we introduced in Definition III.10 an invariance condition
of the mean Euler characteristic of excursion sets above rectangles, under the action
of rotations. However, it occured that this weak isotropy condition is equivalent to
the isotropy of the distribution of the deformed random field and, thus, that the
deformation of the model is in that case a spiral deformation.
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Identification matters were addressed in Section III.5, where we assumed that the
deformation was unknown and that observations were made above a fixed level. Thus,
our method does not require whole realizations of a random field, but only its excursion
sets above a fixed level. We have shown that the mean Euler characteristic of excursion
sets above rectangles and segment characterizes the deformation of the model. In the
isotropic case, that is, in the case of a spiral deformation, we could provide a method
to determine the deformation through estimation. An interesting question would be
whether the implementation of our method provides interesting results for the practical
estimation of the deformation.

The assets of the Euler characteristic χ of excursion sets is the homotopy invariance
satisfied by χ, which theoretically allows to study excursion sets of a deformed random
field through the ones of the underlying field. However, we could extend this study
to other geometric characteristics. They would possibly allow us to infer properties of
the distribution of a deformed random field as well as to characterize its deformation.

Having identified the isotropic deformed random fields, we could now develop an
isotropy test for the deformed random field model, based on the mean Euler charac-
teristic of excursion sets. It would follow the geometric approach of isotropy testing
in [Ber18], where functionals of level sets provide statistics to test the isotropy of a
deformed random field with linear deformation.

(a) Xθ with θ : x 7→ ‖x‖x and X Gaussian
with Gaussian covariance.

(b) Xθ with a deformation with polar representation
θ̂ : (r, ϕ) 7→ (

√
r, r + ϕ) and X Gaussian with Gaus-

sian covariance.

Figure III.1 – Simulations of the level sets of isotropic deformed random fields. Figure I.1a
provides a simulation of a deformed random field constructed with a tensorial deformation.



Chapter IV
Anisotropic random wave models

In this last chapter, based on the preprint [EF18], we study anisotropic random waves.
For many centuries, physicists have been using wave models defined on a multidi-
mensional space in various domains as different as acoustics, electronics, geophysics,
oceanography or seismology. In order to take into account variability or uncertainty, it
is useful to consider random wave models. It is the exact purpose of a pioneer exhaus-
tive study by Longuet and Higgins [LH57] that was concerned by sea waves modelized
as a random moving surface. Another mathematical pioneer study was raised by Berry
in several papers, [Ber77] or [BD00] for instance. These seminal works opened a wide
area of research in the last decades, either for statistical purposes ([ALO05], [Lin06],
[ARRL08], [ALW11], [BCW17], [NPR17]), or more recently for topological purposes
in link with number theory ([RW08], [KKW13], [MPRW16]). Ten years ago, the in-
terest for nodal sets or level sets met the theory of crossings developed by Rice for
one-dimensional stochastic processes fifty years before, presented in Section I.2.1. The
present chapter is clearly inspired by all the above references but to the best of our
knowledge it is the first time that the different models are gathered in the same work
and are studied under the same focus, the influence of anisotropy. Thus it meets the big
demand for anisotropic models nowadays observed among practitioners, as mentioned
earlier in this thesis.

We explore the anisotropy of random waves that are defined on a d-dimensional
space with d ≥ 1. Our first model is a single random wave given by t ∈ Rd 7→
a cos(k · t + η), where the directional structure is given by a d-dimensional random
wavevector k, the random phase η is uniformly distributed on [0, 2π] and independent
of k, and the amplitude a is kept constant. Since our focus is on anisotropy, the latter
assumption will remain unchanged all along the chapter. We also study the stationary
Gaussian counterpart, i.e. a stationary Gaussian random field on Rd with the same
covariance function t ∈ Rd 7→ aE[cos(k · t)]. Our purpose is to link the geometric
and anisotropic behaviour properties of the random wave with the distribution of
its random wavevector, in particular its moments of finite order and its directional
statistics. In particular, considering Berry’s anisotropic planar waves, we prove that the
expected length of the nodal lines is a decreasing function of the (properly quantified)
anisotropy of the random wavevector. In our study of random sea waves, we prove that
the direction that maximises the expected length of the static crests is not necessarily
orthogonal to the mode of the directional distribution of the wavevector.

63
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As already mentioned, when k is equal to Au with A a matrix and u a random
vector in Rd whose distribution is invariant under rotations, the associated random
wave has the same distribution as an isotropic random wave deformed by the linear
transformation AT . In that case, the random wave coincides with an isotropic and
stationary deformed random field, a specific case of the model studied in Chapter III.
In that case, the study of anisotropy, either in the spectral domain, or in the parameter
domain, is equivalent. However, in the general case, the deformation is not linear, and
studying anisotropy in those two domains are two different approaches. The latter
point of view is adopted in [ASP16] for instance, whereas our approach definitively
belongs to the former type as did [BE03] or [RB10].

The chapter is organised as follows. General facts are presented in Section IV.1,
in particular the key point of spectral representation. We also investigate how partial
differential equations can be solved by some random waves according to the support
of their random wavevector’s distribution. Section IV.2 deals with the study of planar
waves through specific tools that are used in directional statistics studies in dimension
two, that is the most probable, the favorite and the principal directions. In Section
IV.3, we introduce anisotropic versions of Berry’s random waves, which are anisotropic
solutions of Helmholtz equation. We focus on the Hausdorff measure and the direc-
tional statistics of their nodal sets. Section IV.4 is devoted to a a space-time model
for sea waves. We study the mean length of static crests from a directional point of
view. All over the chapter, two specific distributions of the random wavevector in
dimension two are examined. One is called “elementary model". It is described by a
main direction and a bandwidth that quantifies the anisotropy. The other one is called
“toy model". It is given by a positive probability density function only depending on a
single parameter that carries out the whole quantified information on anisotropy. The
technical computations are detailed in the Appendix Section.

Notations.
Let d be a positive integer. We fix an orthonormal basis of R2 and we use the same
notation for a vector z in Rd and the vector of its coordinates in this basis. For any
z and z′ in Rd, we write z · z′ the canonical Euclidian scalar product of z and z′, ‖ · ‖
the associated norm and zzT the d× d matrix (zizj)1≤i,j≤d.

For ϕ ∈ [0, 2π], uϕ denotes the vector (cosϕ, sinϕ) in R2.
We write N0 for the set {0, 1, 2, · · · } of the non-negative integers and N the set of

postive integers.

For j = (j1, · · · , jd) ∈ N0
d, we write |j| =

d∑
l=1

jl. Moreover, if λ ∈ Rd and if F is a

smooth map from Rd to R, we write

λj =
d∏
l=1

λjll and ∂jF = ∂|j|F

∂j1λ1 · · · ∂jdλd
.

We also denote by F ′(t) and by F ′′(t) the gradient vector and the Hessian matrix of
F at point t, respectively.

For any positive integer s, Hs denotes the Hausdorff measure of dimension s.
Denoting by k a random vector in Rd, we respectively write E[k] and V[k] the

expectation (d-dimensional vector) of k and the variance (d× d matrix) of k.
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General setting

Anisotropic single random wave
Let d be a positive integer. We consider a random multidimensional model of single
wave defined by,

∀t ∈ Rd, Xk(t) =
√

2 cos(k · t+ η), (1)

where k is a d-dimensional random vector called the random wavevector and where
the random phase η is uniformly distributed on [0, 2π] and independent of k.

The random field Xk is clearly not isotropic and the kind of anisotropy depends
on the law of k. As it will be stated in Proposition IV.1, isotropy occurs if and only if
k is isotropically distributed. If ||k|| is almost surely constant, we define κ = ||k|| the
wavenumber of Xk.

We will be particularly interested in examples where the random wavevector k is
supported by {λ ∈ Rd : P (λ) = 0}, the zero set of a multivariate polynomial P .

Example 1 (Toy model) A particular model in the planar case (d = 2) is stud-
ied in [Kla16]. The random wavevector is prescribed by k = (cos Θ, sin Θ) with Θ a
random variable with support in R/2πZ such that, for a fixed α ≥ 0, the density of Θ
with respect to Lebesgue measure on [0, 2π] is given by

θ 7→ Cα | cos θ|α, with Cα = Γ(1 + α/2)
2
√
πΓ(1/2 + α/2) , (2)

where Γ is the usual Gamma function. Parameter α is considered as an anisotropy
parameter. Indeed, taking α = 0, one gets the isotropic version of model (1), whereas,
at the opposite, the case α → +∞ corresponds with a totally anisotropic version of
the model where k is a.s. along the x-axis.

Example 2 (Elementary model) Another particular case with d = 2 is studied in
[BMR15] and [PCPC17]. The random wavevector is prescribed by k = (cos Θ, sin Θ)
with Θ a random variable uniformly distributed on [α0 − δ, α0 + δ] with 0 ≤ δ ≤ π.
Parameter α0 indicates the main direction whereas parameter δ quantifies anisotropy.
Actually, the model is totally anisotropic if δ = 0, the case δ ≈ 0 corresponds with
a narrow spectrum model, and δ = π makes the random field isotropic. To get a
symmetric model, one can also consider Θ uniformly distributed on [α0 − δ, α0 + δ] ∪
[α0 + π − δ, α0 + π + δ] with 0 ≤ δ ≤ π/2.

Example 3 (Berry’s random wave) We assume that the wavevector k ∈ Rd satis-
fies ||k|| = κ, a.s. for some constant κ > 0 and that it is not necessarily isotropically
distributed. The associated single wave is an anisotropic generalization of Berry’s ran-
dom wave model, an isotropic model that has originally been presented in [Ber77] and
intensively studied in the last years. This model is the purpose of Section IV.3, and
we study it study it more specifically in the Gaussian and planar case.

Example 4 (Sea waves)We will also examine the case where the random wavevector
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k is supported by the Airy surface in R3 (d = 3), namely {(x, y, z) ∈ R3 ; x2 +y2−z4 =
0}. The associated single wave is related to the space-time model used for the mod-
elization of sea waves, assuming that the depth of the sea is infinite (see [LH57] for the
original idea and [ALO05] or [AW09] for more recent developments). Section IV.4 is
devoted to the study of this model.

Some basic properties of the covariance function of Xk are stated in the following
proposition.

Proposition IV.1 1. The random field Xk is centred and second-order stationary
with covariance function

r(t) := Cov[Xk(0), Xk(t)] = E[cos(k · t)], t ∈ Rd. (3)

In particular, Var(Xk(0)) = 1.

2. Let ks be the symmetrized random variable associated to k and let F be its prob-
ability measure1. Then

r(t) = E[exp(iks · t)] =
∫
Rd

exp(iu · t) dF (u), (4)

which means that r is the characteristic function of the random variable ks and
that F is the spectral measure of Xk.
Moreover, Xk is second-order isotropic if and only if the law of ks is invariant
under rotations.

3. The covariance function r admits derivatives up to order m (m ∈ N) if and
only if k admits moments of order m. In this case, for any j ∈ Nd such that
0 < |j| ≤ m, we have

∂jr(0) = 0 if |j| is odd ; ∂jr(0) = (−1)|j|/2 E[kj] if |j| is even.

In particular, r′′(0) = −E[kkT ].

Anisotropic Gaussian wave model

We are still given a random vector k in Rd and we now consider a Gaussian, station-
ary and centred random field with the same covariance function as the single random
wave Xk introduced in the previous section. Such a field exists, consequently to Kol-
mogorov’s extension theorem (see [AW09] Sections 1.1 and 1.2 for instance), and its
distribution is unique. Consequently, we call it the Gaussian random wave associated
with the wavevector k, and we name it Gk.

Note that such a Gaussian field can be obtained as a limit by considering indepen-
dent and identically distributed versions of η and of k, denoted respectively by (ηj)j∈N

1If Fk and F−k are respectively the probability measures of k and −k, then the symmetrized random
variable associated with k is defined as the random variable with probability measure F = 1

2(Fk+F−k).
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and by (kj)j∈N. According to the central limit theorem applied to finite-dimensional
distributions, the distribution of√ 2

N

N∑
j=1

cos(kj · t+ ηj)


t∈Rd

converges as N tends to∞ towards a Gaussian random field with the adequate covari-
ance function.

The covariance function of Gk is given by (4) in Proposition IV.1: ∀t ∈ Rd, r(t) =∫
Rd

exp(iu ·t) dF (u), where F is the distribution of ks. From this, we deduce a spectral

representation of the field Gk. Let WF be a complex Gaussian F -noise on Rd that
satisfies the condition

∀A ∈ B(Rd), WF (A) = WF (−A).

As it is stated in Theorem I.9, the stationary random field prescribed by(∫
Rd
eit·u dWF (u)

)
t∈Rd

(5)

is real-valued, centred and Gaussian and its covariance function is given by (4).

Reciprocally, if Y : Rd → R is a centred and stationary Gaussian random field with
unit variance, according to Bochner theorem (Theorem I.8), there exists a symmetric
probability measure on Rd, denoted by F , such that the covariance function r of Y is
given by (4). It follows that we can associate with Y a symmetric random variable in
Rd of probability measure F , denoted by kY and referred to in the following as “the
random wavevector of Y ”.

Link with partial differential equation

We will show that both Xk and Gk satisfy a specific partial differential equation if and
only if the random wavevector k is supported by a specific hypersurface of Rd.

Let P be an even d-multivariate polynomial. Then there exists a sequence of real
numbers (αj)j∈N0

d with only finitely many non-zero terms, such that

∀λ ∈ Rd, P (λ) =
∑

j∈N0
d; |j|even

αj λ
j. (6)

We associate with P the following differential operator:

LP (X) =
∑

j∈N0
d; |j|even

(−1)|j|/2αj ∂
jX,

Let us remark that the random field Xk defined by (1) is obviously almost surely of
class C∞.
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Proposition IV.2 Let P be an even multivariate polynomial given by (6). Then Xk
almost surely satisfies the partial differential equation

∀t ∈ Rd, LP (X)(t) = 0 (7)

if and only if P (k) = 0 a.s.

Proof. For any j ∈ N0
d such that |j| is even, we have ∂jXk(t) = (−1)|j|/2kj cos(k·t+η).

Hence, we get LP (Xk)(t) = P (k)Xk(t) and the proof follows immediately.

Applying Proposition IV.2 to the examples given at the beginning of the section pro-
vides random anisotropic solutions of some famous partial differential equations. We

recall that the Laplacian operator ∆ on Rd is defined by ∆ =
∑

1≤j≤d

∂2

∂t2j
. Then, the

single random wave associated with Example 1 (case d = 2 and κ = 1) and Example
3 (any d and any κ) is an almost sure solution of Helmholtz equation ∆X + κ2X = 0.
In the same vein, the single random wave associated with Example 4 is an almost sure

solution of the partial differential equation ∂2X

∂x2 + ∂2X

∂y2 + ∂4X

∂z4 = 0.

Let us now be concerned with Gk. We assume that the random wavevector k
admits moments of any order. Hence, the covariance function r of Gk is of class
C∞ and consequently to Proposition I.7 there exists a version of Gk with almost
every realization is of class C∞; it is given by representation (5) for instance. First,
let us point out that Gk satisfies Proposition IV.2 as well as Xk. Indeed, Gk is
centred and admits the same covariance function as Xk; therefore for any multivariate
polynomial P given by (6), for any t ∈ Rd, Var (LP (Gk)(t)) = Var (LP (Xk)(t)).
However, the following theorem is a more general result: it provides a sufficient and
necessary condition for any stationary Gaussian random field to satisfy Equation (7).

Theorem IV.3 Let P be an even multivariate polynomial defined by (6) and let Y
be Gaussian random field defined on Rd that is centred, stationary, with unit variance
and almost surely of class C∞. The following propositions are equivalent.

1. The random field Y almost surely satisfies the partial differential equation

∀t ∈ Rd, LP (Y )(t) = 0.

2. The random field Y admits a spectral representation given by (5), where F is a
probability measure supported by {λ ∈ Rd : P (λ) = 0} and WF is a complex
Gaussian F -noise on Rd.

3. The random wavevector kY associated with Y almost surely satisfies P (kY ) = 0.

We insist on the fact that the above theorem provides all the Gaussian a.s. solutions,
isotropic or not, of the partial differential equation LP (Y ) = 0 (for instance Helmholtz
equation in the case of Example 1). Moreover, the equation gives information on the
localization of the random variable k.
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Proof. Items 2 and 3 in Theorem IV.3 are clearly equivalent as F is the distribu-
tion of kY . Since Y is centred, so are all its derivatives and the stationary random
field LP (Y ). Therefore, LP (Y ) is almost surely identically zero if and only if its
variance at each point is zero. But Var(LP (Y )(t)) can be expressed as a linear com-
bination of derivatives of the covariance function rY of Y . Hence Y is an a.s. solution
of the partial differential equation LP (Y ) = 0 if and only if its covariance function rY
satisfies ∑

j,k∈N0
d; |j|,|k|even

(−1)(|j|+|k|)/2 αj αk ∂
(j+k)rY (0) = 0. (8)

On the other hand, as it is the covariance function of a stationary centred field, rY
satisfies Bochner Theorem: there exists a Radon finite measure F on Rd such that
rY (t) = F̂ (t), where F̂ denotes the Fourier transform of F , i.e. F̂ (t) =

∫
Rd
eit·λ dF (λ).

Then rY satisfies (8) if and only if

0 =
∫
Rd

( ∑
j,k∈N0

d; |j|,|k|even
(−1)|j|+|k| αj αk λ

j λk) dF (λ) =
∫
Rd
P (λ)2 dF (λ).

The above integral vanishes if and only if the measure F is supported by {λ ∈ Rd :
P (λ) = 0}.

Remarkable directions in the planar case
We introduce some definitions related to planar models. To get more details in the
domain of directional statistics, one can read [MJ09] or [LV17].

Most probable and favorite directions

When Z is a two-dimensional random vector, one can write it out either using Euclidean
coordinates Z = (Z1, Z2) or, if Z 6= 0, a.s., using polar coordinates Z = RuΘ, where R
is a positive real random variable and Θ is a random variable in R/2πZ. (We recall that
uΘ denotes the vector (cos Θ, sin Θ)). Hence, we introduce two remarkable directions.

Definition IV.4 Let Z be a random vector in R2 such that a.s. Z 6= 0.
If the mode of the random variable Θ exists and is unique, we call it the most probable
direction of Z. If there exists a mode that is not unique, we define the set of most
probable directions of Z in R/2πZ as the set of all modes of Θ.

If Θ is a discrete random variable then (at least) one most probable direction exists.
If Θ is a continuous random variable with a probability density function (p.d.f.) h
admitting a maximum on R/2πZ (which is ensured if h is continuous), the set of the
most probable directions can be expressed as the direction(s) in the set

Argmax
θ∈R/2πZ

h(θ).
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Note that if the distribution of the random vector (R,Θ) admits a probability density
function (r, θ) 7→ f̃(r, θ) with respect to Lebesgue measure on (0,+∞)×R/2πZ, then
for any θ ∈ R/2πZ, h(θ) =

∫
(0,+∞)

f̃(r, θ) dr.

Definition IV.5 We assume that the matrix E[ZZT ] does not belong to the set {αI2, α ≥
0}. Then the favorite direction of Z is defined as the only element in

Argmax
ϕ∈R/πZ

(
E[(Z · uϕ)2]

)
= Argmax

ϕ∈R/πZ

(
uϕ · E[ZZT ]uϕ

)
.

Consequently, the favorite direction is nothing but the direction in R/πZ of the eigen-
subspace of R2 associated with the largest eigenvalue of the symmetric positive matrix
E[ZZT ].

If E[ZZT ] = αI2 with α ≥ 0, then Argmax
ϕ∈R/πZ

(
E[(Z · uϕ)2]

)
= R/πZ.

In some cases, such as in the following Examples 1, 3, 5 and 6, the most probable
direction(s) modulo π coincides with the favorite direction(s). Nevertheless, in the
general case, they don’t.

Examples Let Z = RuΘ be a two-dimensional random vector such thatR ∈ (0,+∞), a.s.
and Θ ∈ [0, 2π), a.s.

1. If Θ almost surely takes a fixed value θ0 ∈ [0, 2π), that is Z = Ruθ0 , then the
most probable direction of Z is θ0. On the other hand, for any ϕ ∈ R/2πZ,
Z · uϕ = R cos(θ0 − ϕ) and hence the favorite direction of Z is θ0 modulo π.

2. If (R,Θ) is distributed as FR⊗
1
2(δ0+δπ/2) on (0,+∞)×[0, 2π), where δ stands for

the Dirac distribution, then the most probable directions are 0 and π/2 modulo
2π whereas there is no favorite direction. In the same vein, with the distribution
FR⊗

1
2(δ0 +δπ/4), the most probable directions are 0 and π/4 modulo 2π whereas

the favorite direction is π/8 modulo π.

3. If Θ and R are independent and if Θ is uniformly distributed on [0, 2π], then Z
admits R/2πZ as its set of most probable directions. Moreover, Z is centred and
E[ZZT ] = 1

2E[R2]I2, thus the set of favorite directions of Z is R/πZ.

4. If Θ and R are independent and if Θ is uniformly distributed on [α0 − δ, α0 + δ]
(see Example 2 in Section IV.1) , then the set of most probable directions is the
whole interval [α0 − δ, α0 + δ], whereas the favorite direction is reduced to the
value α0 modulo π.

5. If Θ admits a p.d.f. given by (2) (see Example 1 in Section IV.1), for a given
α > 0, and if Θ and R are independent, then the most probable direction of Z is

clearly 0. On the other hand, Z is centred and V[Z] = E[R2]
α+ 2

(
α+ 1 0

0 1

)
. Hence,

the favorite direction of Z is 0 as well. We refer to Lemma IV.14 in Appendix
section for the detailed computation of the moments.
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6. Let Z be a 2-dimensional centred Gaussian vector with a variance matrix V[Z]
that does not belong to {αI2, α ∈ R}. Then, the most probable direction of Z
is Argminϕ

(
uϕ · V[Z]−1uϕ

)
= Argmaxϕ (uϕ · V[Z]uϕ), thus it is equal modulo π

to the favorite direction of Z.

Principal direction
We now introduce a remarkable direction for real-valued and planar stationary random
fields. Let X : R2 → R be a stationary random field that is a.s. differentiable and sat-
isfies E[||X ′(0)||2] < +∞. For ϕ a direction in R/πZ, we denote by Xϕ = (X(xuϕ))x∈R
the one-dimensional stationary process obtained by restricting the X to the line Ruϕ.

Definition IV.6 The principal direction of X is defined as

Argmax
ϕ∈R/πZ

(m2(ϕ)) , where m2(ϕ) = E[(Xϕ)′(0)2],

understood as a certain value if the maximum is unique and as a set of values if it is
not.

The latter notion has been introduced by Longuet-Higgins in [LH57] in his study of a
planar random wave model for sea waves. Note that m2(ϕ) is nothing but the second
spectral moment of Xϕ and that restricting X to a certain line of the plane or to any
parallel line does not change the law of the obtained process because X is stationary.
We have also,

m2(ϕ) = E[(Xϕ)′(0)2] = E[(X ′(0) · uϕ)2] = E[(X ′(t) · uϕ)2],

for any t ∈ R2 by stationarity. It yields the following remark.

Remark IV.7 For any t ∈ R2, the principal direction of X coincides with the favorite
direction of X ′(t).

Random planar waves

Let k be a random vector in R2 and let us consider the associated planar single random
wave Xk and its Gaussian counterpart Gk as defined in Section IV.1. We now study
these random fields from a directional point of view.

Proposition IV.8 Let k be a random vector in R2 and let Y : R2 → R be a station-
ary and centred random field with covariance function given by (3). We assume that
E[kkT ] /∈ {αI2, α ∈ R+}.
Then, the next three remarkable directions in R/πZ coincide

• the favorite direction of k

• the principal direction of Y

• the favorite direction of Y ′(t) for any t ∈ R2.
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They are given by the direction of the eigensubspace of R2 associated with the largest
eigenvalue of matrix E[kkT ].

Proof. It is enough to prove that the principal direction of Y is the favorite direction
of k and then to apply Remark IV.7.
Let ϕ be fixed, the covariance function of the univariate process Yϕ along a line
of direction ϕ is given for any x ∈ R by rϕ(x) = r(xuϕ) = E[cos(xk.uϕ)]. Hence
m2(ϕ) = −r′′ϕ(0) = E[(k.uϕ)2], which clearly yields the equality between the principal
direction of Y and the favorite direction of k.

We now turn to the directional study of the level sets of the Gaussian planar random
waves Gk. We assume that E[kkT ] /∈ {αI2, α ∈ R+} and we fix a ∈ R. The level set

G−1
k (a) = {t ∈ R2 : Gk(t) = a}

is a finite union of curves whose direction at point t ∈ G−1
k (a) is orthogonal to the vector

G′k(t). Applying Proposition IV.8 yields the next statement, that sounds physically
intuitive.

Proposition IV.9 Let a ∈ R. Let τa be a two-dimensional vector field defined on the
level set G−1

k (a) such that, at any point t, τa(t) is tangent to G−1
k (a) at t. Then, for

any t ∈ G−1
k (a), the favorite direction of τa(t) is orthogonal to the favorite direction of

k.

Let us mention that the above proposition still holds in dimension d > 2 once the
favorite direction of a d-dimensional random vector is defined as the direction of the
eigenspace that is associated with the largest eigenvalue of V[Z].

Berry’s anisotropic random waves
In this section, we focus on Example 3 of Section IV.1, i.e. on the case where the
random wavevector k is such that, for some κ > 0,

κ−1k ∈ Sd−1 a.s.

As previously, we consider the (unique in distribution) associated stationary centred
Gaussian random field Gk on Rd whose covariance function r is given by (3). Since
||k|| is a.s. bounded, it is clear that Gk is a.s. smooth then, rephrasing Theorem IV.3,
we get that Gk is the generic Gaussian solution of Helmholtz equation

∆Y + κ2Y = 0.

Equivalently, Gk is an eigenfunction of the operator −∆, for the eigenvalue κ2. There-
fore, extending the definition introduced by Berry in [Ber77], we refer to Gk as a
Berry’s anisotropic wave with random wavenumber κ.

Applying the appropriate change of variables t 7→ κt yields the scaling property that
(Gk(t))t∈Rd and (Gκ−1k(κt))t∈Rd have the same distribution, where we recall that the
random vector κ−1k takes its values in Sd−1. We also remark that, if the distribution
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of κ−1ks admits a density f̃ with respect to the surface measure σ on Sd−1, we can
deduce from (4) that the covariance function of Gk is given by

r(t) =
∫
Sd−1

eiκu·tf̃(u) dσ(u).

Expected measure of level sets

We are now interested in the random level sets: for any a ∈ R,

G−1
k (a) = {t ∈ Rd /Gk(t) = a},

which has Hausdorff dimension d − 1 a.s.. If a = 0, this is exactly the nodal set of
Gk and more precisely in the case d = 2, it is the nodal line of a Berry’s anisotropic
planar wave.

Let Q be a compact set in Rd with non empty interior and let a ∈ R. We focus
on the (d− 1)-dimensional Hausdorff measure of the a-level set of Gk restricted to Q,
namely

`(a,k, Q) = Hd−1
(
G−1

k (a) ∩Q
)

= Hd−1 ({t ∈ Q/Gk(t) = a}) .

Proposition IV.10 Let κ > 0 and assume that k is a random vector in Rd such that
k̃ := κ−1k ∈ Sd−1 a.s.
Let Φd stand for the standard Gaussian probability density function on Rd . Then,

E[`(a,k, Q)] = Hd(Q) e
−a2/2
√

2π
κ

∫
Rd

(E[k̃k̃T ]x · x)1/2Φd(x) dx. (9)

Proof. This result is an application of Rice formula stated in Theorem I.12 to Gk,
which satisfies the required hypothesis. It yields

E[`(a,k, Q)] =
∫
Q
E[‖ G′k(t) ‖ |Gk(t) = a] pGk(t)(a) dt,

where pGk(t), the probability density function ofGk(t), is actually given by the standard
Gaussian distribution. Using the stationarity of Gk and the fact that for a fixed point
t, Gk(t) and G′k(t) are independent random variables, we have

E[`(a,k, Q)] = Hd(Q) e
−a2/2
√

2π
E[‖ G′k(0) ‖].

In order to conclude, it only remains to state that ‖ G′k(0) ‖ is the Euclidean norm
of a d-dimensional centred Gaussian vector with variance matrix −r′′(0) = E[kkT ] =
κ2E[k̃k̃T ].

We remark that the same proof (except last equality) can be applied to any ran-
dom wavevector k with finite moments, even if ||k|| is not constant. It yields the
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following identity that is valid when dropping the condition k̃ := κ−1k ∈ Sd−1 a.s. in
Proposition IV.10,

E[`(a,k, Q)] = Hd(Q) e
−a2/2
√

2π

∫
Rd

(E[kkT ]x · x)1/2Φd(x) dx.

Let us come back to Berry’s random waves. In the isotropic case, that is to say when
k̃ is uniformly distributed on Sd−1, E[k̃k̃T ] = V[k̃] = (1/d) Id. Hence,

E[`(a,k, Q)] = Hd(Q) e
−a2/2
√

2πd
κ

∫
Rd
‖ x ‖ Φd(x) dx,

where the above integral is the mean of a χ-distributed random variable with d degrees
of freedom and is known to be equal to

√
2 Γ((d+ 1)/2)

Γ(d/2) .

Expected length of level curves

In the planar case, i.e. d = 2, the level sets G−1
k (a) are one-dimensional and Formula

(9) can be made much more precise. In particular, the following proposition states
that the level curves mean length is decreasing as anisotropy is increasing.

Proposition IV.11 Let k be a random vector in R2 such that k = κ k̃ with κ a
positive constant and k̃ ∈ S1 a.s. Let us denote by c(k̃) the difference between the
eigenvalues of E[k̃k̃T ] (0 ≤ c(k̃) ≤ 1). Let E be the elliptic integral given by E (x) =∫ π/2

0
(1− x2 sin2 θ)1/2dθ, for x ∈ [0, 1]. Then,

E[`(a,k, Q)] = H2(Q) e
−a2/2

π
√

2
κF

(
c(k̃)

)
,

where the map F : c ∈ [0, 1] 7→ (1 + c)1/2 E

(( 2c
1 + c

)1/2) is strictly decreasing.

Remark IV.12 In the isotropic case, c(k̃) = 0 and hence we recover the following
result concerning the nodal line of the isotropic Berry’s planar wave (see [Ber77]):
E[`(0,k, Q)] = H2(Q) κ

π
√

2
E (0) = H2(Q) κ

2
√

2
.

Remark IV.13 In directional statistics, it is usual to introduce a parameter termed
coherency index and defined as the ratio between the difference of eigenvalues and the
sum of eigenvalues of a certain positive symmetric matrix M , see [MJ09]. This index
is performed in [PCPC17] (see also [Kla16]) with M given by the so-named structure
tensor in order to quantify the anisotropy of an anisotropic Gaussian planar field. In
our context, we like to remark that the trace of matrix M = E[k̃k̃T ] is equal to one,
since ||k̃|| = 1, a.s.. Parameter c(k̃) actually coincides with the coherency index of our
model and hence quantifies its anisotropy.
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Proof. We use Proposition IV.10 in the case d = 2. For computing the integral in the
right-hand side of (9), we use the following well known fact, that can be proved with
simple algebra.
IfM is a symmetric positive semidefinite matrix with eigenvalues γ− and γ+ such that
0 ≤ γ− ≤ γ+ and γ+ > 0, then∫

R2
(Mx · x)1/2Φ2(x) dx =

(2γ+
π

)1/2
E
(
(1− γ−/γ+)1/2

)
. (10)

In our case, M = E[k̃k̃T ] and γ−+γ+ = 1. Hence, 2γ+ = 1+c and 1−γ−/γ+ = 2c
1 + c

.
The proof of the decreasing of mapping F is postponed to the Appendix section, see
Lemma IV.15.

We end the section applying Proposition IV.11 to our two favorite examples.

Example 1 (Toy model) Take k̃ distributed on S1 with probability density func-
tion given by (2) for some positive α (see Example 1 Section IV.1). The moments
of k̃ are computed in the Appendix section, Lemma IV.14. In particular, it holds

E[k̃k̃T ] = 1
α+ 2

(
α+ 1 0

0 1

)
. Consequently, c(k̃) = α

α+ 2, which is an increasing

function of parameter α. Thus, the more anisotropic the model is, the smaller the
expected length of level sets is.

Example 2 (Elementary model) We choose the random wavevector k = κ k̃
with k̃ uniformly distributed on [α0 − δ, α0 + δ] ∪ [α0 + π − δ, α0 + π + δ] for some
0 < δ ≤ π/2, see Example 2 of Section IV.1. In order to simplify the computation,

let us assume that α0 = 0. In that case, E[k̃k̃T ] = 1
2

1 + sin(2δ)
2δ 0

0 1− sin(2δ)
2δ

 and

hence c(k̃) = sin(2δ)
2δ , which is decreasing on [0, π/2]. Again, the mean length of level

sets is decreasing as the anisotropy of k is increasing, i.e. as δ is decreasing.

Gaussian sea waves
In this section, we now concentrate on Example 4 in Section IV.1 that considers the
case where the random wavevector is 3-dimensional and a.s. belongs to Airy surface,
i.e.

k ∈ Λ = {(λ1, λ2, λ3) ∈ R3 ; (λ1)2 + (λ2)2 = (λ3)4} a.s..

We study the Gaussian random wave Gk associated with k, as defined in Section
IV.1.2. Its covariance function is

r(t) =
∫

Λ
cos(t · λ) dF (λ) , t ∈ R3,

where F is the probability distribution of k.
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The field Gk coincides with the spatio-temporal Gaussian random fields that are
used for the modelization of sea waves [LH57, ALO05, AW09]. Indeed, for (x, y, s) ∈
R2 × R, Gk(x, y, s) can be seen as the algebraic height of a wave at point (x, y) and
time s.

We use the following parametrization of Λ,

(θ, z) ∈ [0, 2π)× R 7→ (z2 cos θ, z2 sin θ, z),

which provides a bijection ϕ from [0, 2π)×R \ {0} onto Λ \ {(0, 0, 0)}. Performing the
appropriate change of variables yields

r(x, y, s) =
∫

(0,2π)×R
cos(xz2 cos θ + yz2 sin θ + sz) dF̃ (θ, z),

where F̃ is the image of measure F by the map ϕ−1. When k admits f as probability
density function with respect to the surface measure on Λ, consequently to coarea
formula (see for instance [AT07] Section 7.4), we get

r(x, y, s) =
∫

(0,2π)×R
cos(xz2 cos θ + yz2 sin θ + sz)f̃(θ, z) dθdz,

where the map f̃ is given by

f̃(θ, z) = f(z2 cos θ, z2 sin θ, z) z2(1 + 4z2)1/2.

Following the literature, f̃ is called directional power spectrum of Gk (see [ALO05]
and [AW09] Chapter 11). Experimental directional power spectra are exhibited in
[ALO05], derived from sea data provided by Ifremer.

In order to avoid heavy notations, from now on we assume that the random
wavevector k is symmetrically distributed. Hence, until the end of the present sec-
tion we deal with the following covariance function

r(x, y, s) =
∫

Λ
ei((x,y,s)·λ) dF (λ),

where F is a probability measure on Λ satisfying F (−A) = F (A) for any Borelian set
A ⊂ Λ. In other words,

r(x, y, s) =
∫

(0,2π)×R
ei(xz

2 cos θ+yz2 sin θ+sz) dF̃ (θ, z)

with F̃ a probability measure on R/2πZ×R \ {0} that is invariant under the mapping
(θ, z) 7→ (θ + π,−z). If k is not symmetrically distributed, the key to get the above
expressions is to use the symmetrized probability measure of k instead of its probability
measure.

Let us fix time s = s0 and look at the random field defined on R2,

Zk(x, y) = Gk(x, y, s0) (x, y) ∈ R2,
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as a picture of the sea height at time s0. It is a two-dimensional stationary centred
Gaussian random field, whose covariance function is given by

Γ(x, y) = r(x, y, 0) =
∫

(0,2π)×R
ei(xz

2 cos θ+yz2 sin θ) dF̃ (θ, z).

Actually, the random wavevector associated with Zk is nothing but the projection of
the Λ-valued random wavevector k onto the first two coordinates. We call it π(k) in
what follows. We will also need the spectral moments of Zk, namely for any integers
j and k in N0

mj,k := (−i)j+k ∂(j,k)Γ(0, 0)

=
∫

(0,2π)×R
(z2 cos θ)j(z2 sin θ)k dF̃ (θ, z). (11)

Mean length of static crests
We are now interested in the (static) crest in direction ϕ ∈ R/πZ. More precisely, we
introduce the random set

{(x, y) ∈ R2 ; Z ′k(x, y) · uϕ = 0},

which contains all points (x, y) in R2 such that the gradient of Zk at point (x, y) is
orthogonal to direction ϕ. One can also say that the derivative of Zk in direction ϕ at
those points is zero. Hence, the crest in direction ϕ is the nodal set of the derivative
of Zk in direction ϕ. Note that it is a special case of a specular points set as defined
in [LH57]. Its Hausdorff dimension is clearly equal to one and one can compute its
length within a compact domain Q ⊂ R2 such that H1(Q) > 0,

l(k, Q, ϕ) := H1
(
{(x, y) ∈ Q ; Z ′k(x, y) · uϕ = 0}

)
.

Using the same arguments as for the proof of Proposition IV.10 and Formula (10),
based on Rice formula, we get the following result that is also stated in [AW09] (Propo-
sition 11.4) or in [ALO05] (Assertion 3).

E[l(k, Q, ϕ)] = H2(Q) 1
π

(
γ+(ϕ)
v(ϕ)

)1/2
E
(
(1− γ−(ϕ)/γ+(ϕ))1/2), (12)

where v(ϕ) = Var(Z ′k(0) ·uϕ) and γ−(ϕ) ≤ γ+(ϕ) are the eigenvalues of the covariance
matrix of the gradient of Z ′k · uϕ, which we can write V[Z ′′k(0)uϕ]. We could also
have considered the gradient of Z ′k ·uϕ computed by derivating in the directions of the
vectors of the orthonormal basis (uϕ, uϕ+π/2). At a fixed t ∈ R2, it is equal to Z ′′k(t)uϕ
up to a change of basis and its covariance matrix is similar to V[Z ′′k(0)uϕ], thus it
has the same eigenvalues. Therefore, the formula given in [AW09] Proposition 11.4 or
[ALO05] Assertion 3 seems different from ours but it is in fact the same as (12). In
Lemma IV.16 in the Appendix section, the coefficients of both covariance matrices are
given, expressed in terms of the spectral moments mj,k of Zk. We also give the simple
expressions for their eigenvalues.
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The end of this section is dedicated at showing that the direction that maximises
the expected crest length may be orthogonal to the most probable direction of the
wavevector π(k), introduced in Definition IV.4, but not necessarily (if such directions
exist). It is a clear consequence of Formula (12), which shows a dependence on both
the second-order and the fourth-order moments of k, while the most probable direction
depends on the mode of k. Nevertheless, a rule of thumb is suggested in [LH57] and
in [ALO05], claiming that the direction [that maximises the expected length of crests]
is orthogonal to the direction for the maximum integral of the spectrum, i.e. is the
most probable direction for the waves. In this statement, the “most probable direction
for the waves” has to be understood as the most probable direction of the random
wavevector π(k).

Example 4.1 (Elementary wave) We consider a random wavevector k with val-
ues in Λ a.s. and with a deterministic orientation. Precisely, the distribution of k is
prescribed on [0, 2π) × R by F̃ = 1

2(δα0 + δα0+π) ⊗ h, where δα0 stands for the Dirac
measure at α0 ∈ [0, π) and h is any symmetric probability measure on R \ {0}.
On the one hand, the most probable direction of π(k) is clearly α0 modulo π.
On the other hand, the spectral moments of Zk are easy to compute from (11).
In the simplest case where α0 = 0, we get that m2,0 = M2 and m4,0 = M4 with
Mk :=

∫
R
z2k dh(z), and that all the other moments up to order 4 are vanishing.

Hence, following Lemma IV.16, v(ϕ) = M2 cos2 ϕ and

V[Z ′′k(0)uϕ] = M4 cos2 ϕ

(
1 0
0 0

)
.

Hence γ−(ϕ) = 0 and γ+(ϕ) = M4 cos2 ϕ, and Formula (12) allows us to state that the
expected length of the crests of Zk in direction ϕ does not depend on ϕ. Therefore,
for this model, no link can be established between the direction that maximises the
expected length of crests and the most probable direction of π(k).

Example 4.2 (Counter-example) We now consider a random vector k whose dis-

tribution is prescribed on [0, 2π)× R by F̃ =
(1
4

3∑
j=0

δjπ/2
)
⊗ h, with h any symmetric

probability measure on R \ {0}. Then, the set of most probable directions of k is
{jπ/2 : j = 0, 1, 2, 3}.
Computing the spectral moments of Zk from (11), we get m1,1 = m2,2 = m3,1 =

m1,3 = 0 whereas m2,0 = m0,2 = M2
2 and m4,0 = m0,4 = M4

2 , where we have in-

troduced Mk :=
∫
R
z2k dh(z). Consequently, using Lemma IV.16, for any ϕ ∈ [0, 2π],

v(ϕ) = Var(Z ′k(0) · uϕ) = M2
2 and

V[Z ′′k(0)uϕ] = M4
2

(
cos2 ϕ 0

0 sin2 ϕ

)
.
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The eigenvalues of the later matrix being M4
2 cos2 ϕ and M4

2 sin2 ϕ, we apply (12) to get
the expected length of the crests of Zk in direction ϕ. Up to a positive multiplicative
constant that does not depend on ϕ, E[l(k, Q, ϕ)] is equal to

(
1 + | cos(2ϕ)|

)1/2
ε
(( 2 | cos(2ϕ)|

1 + | cos(2ϕ)|
)1/2) = F (| cos(2ϕ)|),

where the function F is defined in Proposition IV.11. Since F is strictly decreasing
on [0, 1] (see Lemma IV.15), the mean length of crests is maximal when cos(2ϕ) = 0 ,
i.e. for ϕ = π/4 or 3π/4 modulo π. These directions are not orthogonal to the most
probable directions of π(k).

Mean length of static crests with the toy model

We consider the Gaussian wave with directional power spectrum f̃ given by

f̃(θ, z) = Cα | cos θ|α h(z), (13)

where α is a positive real number (see Equation (2)) and h is an even probability
density function on R. As already mentioned, the most probable direction of π(k) is 0
in that case.

The spectral moments (see (11)) of this particular Gaussian wave are given, for any
j, k in N0, by

mj,k =
( ∫

R
z2j+2k h(z) dz

) (
Cα

∫
(0,2π)

(cos θ)j (sin θ)k | cos θ|α dθ
)

:= Mj+k µj,k.

(14)

The first integral Mj+k equals the moment of order 2j+ 2k of h. Note that it does not
contain any information on the anisotropy of the model. The second integral, named
as µj,k, is computed in Lemma IV.14 in Appendix section.

Hence, the expected length of crests in a given direction ϕ can be evaluated through
Formula (12) applied to this specific model. An asymptotic expansion of ϕ 7→ E[`(k, Q, ϕ)]
near ϕ = π/2 is performed in Lemma IV.17. It shows that the expected length of crests
admits a local maximum at ϕ = π/2, which is precisely orthogonal to the most prob-
able direction of π(k) and to its favorite direction as well (see the fifth example in
Section IV.2.1).

Conclusion and perspectives
A general definition of an anisotropic random wave model is the entry point of this
chapter. This stationary model has an almost sure non Gaussian definition (the so-
called single wave model) but also has a Gaussian counterpart. Two notable existing
models fall within ours: Berry’s isotropic random wave model and the see wave model
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first investigated by Longuet-Higgins. Note that any stationary, normalized and cen-
tred Gaussian field can actually be seen as a random wave, its wavevector being a
random variable distributed according to its spectral measure.

We propose to study the distributional properties of a random wave through the
ones of its random wavevector, with a geometric perspective. In Proposition IV.2 and
Theorem IV.3, we show that the geometric support of the wavevector may provides a
partial differential equation satisfied by the random wave. In the planar case, thanks to
directional tools for random vectors and random fields, we exhibit links between notable
directions of a random wave and its wavevector. Deriving a formula for the mean
length of level sets in Berry’s anisotropic wave model yields the interesting conclusion
that the expected length of level sets decreases as the random wavevector’s anisotropy
increases (see Proposition IV.11). In the Gaussian sea waves model, we investigate
the link between the direction(s) that maximize(s) the expected length of static crests
and the mode of the random wavevector’s directional distribution. We come to the
conclusion that these directions are not necessarily orthogonal.

To investigate further the links between the geometric distributional properties of
a random wave and its wavevector’s distribution, the next step would be to study
the variance of the geometric characteristics at stake. For a random wave model with
a wavevector following a parametric law, this would allow to derive estimators and
possibly to develop a test of isotropy.

Appendix

Moments of a random wavevector given by the toy model
We perform some computations related to our toy model given by Example 1 in Section
IV.1. We fix α ≥ 0 and we consider a two-dimensional random wavevector k =
(cos Θ, sin Θ), with Θ that takes value in [0, 2π] with a probability density function
given by

θ 7→ Cα| cos θ|α with Cα = Γ(1 + α/2)
2
√
πΓ(1/2 + α/2) .

Lemma IV.14 For any non negative integers j and k, let µj,k be the (j, k)-moment
of k, i.e.

µj,k = E[(cos Θ)j (sin Θ)k] = Cα

∫
[0,2π]

(cos θ)j(sin θ)k | cos θ|α dθ.

Then

• µ0,0 = 1

• µj,k = 0 whenever j or k is odd

• µj,0 = Cα
Cα+j

= (α+ 1)(α+ 3) · · · (α+ j − 1)
(α+ 2)(α+ 4) · · · (α+ j) for j even ≥ 2

• for any even integers j and k, µj,k =
k/2∑
i=0

(−1)i
(
k/2
i

)
µj+2i,0.
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In particular, it yields the non-zero second-order and fourth-order moments of k:

µ2,0 = α+ 1
α+ 2; µ0,2 = 1

α+ 2 and hence E[kkT ] = 1
α+ 2

(
α+ 1 0

0 1

)
;

µ4,0 = (α+ 1)(α+ 3)
(α+ 2)(α+ 4); µ0,4 = 3

(α+ 2)(α+ 4); µ2,2 = α+ 1
(α+ 2)(α+ 4) .

Proof. It is clear that µ0,0 = 1, µj,k = 0 whenever j or k is odd and that µj,0 =
Cα/Cα+j for any even integer j. Using the explicit value of Cα yields the value of µj,0.
Finally, for any even integers j and k, writing sin2 θ = 1− cos2 θ yields the formula for
µj,k.

Variations of map F

Lemma IV.15 The map F : c 7→ (1 + c)1/2 E

(( 2c
1 + c

)1/2) is strictly decreasing on
[0, 1].

Proof. Recall that E (k) =
∫ π/2

0
(1 − k2 sin2 θ)1/2 dθ for k ∈ [0, 1]. Then, for any

k ∈ [0, 1), E ′(k) = −k
∫ π/2

0

sin2 θ

(1− k2 sin2 θ)1/2 dθ. Therefore, for any c ∈ [0, 1),

F ′(c) = 1
2(1 + c)−1/2E

(( 2c
1 + c

)1/2)+ (1 + c)1/2 (2c)−1/2

(1 + c)3/2 E ′
(( 2c

1 + c

)1/2)

= 1
2(1 + c)−1/2

∫ π/2

0

[
(1− 2c

1 + c
sin2 θ)1/2 −

2
1+c sin2 θ

(1− 2c
1+c sin2 θ)1/2

]
dθ

= 1
2(1 + c)−1/2

∫ π/2

0

cos(2θ)
(1− 2c

1+c sin2 θ)1/2 dθ.

It remains to show that the above integral, which we call J(k) with k = ( 2c
1 + c

)1/2,

is negative. Splitting the integral J(k) :=
∫ π/2

0

cos(2θ)
(1− k2 sin2 θ)1/2 dθ into two parts, on

[0, π/4] and on [π/4, π/2], and performing the change of variables θ′ = π/2− θ within
the second part, we get

J(k) =
∫ π/4

0
cos(2θ)

[ 1
(1− k2 sin2 θ)1/2 −

1
(1− k2 cos2 θ)1/2

]
dθ, (15)

which is negative since cos θ > sin θ for θ ∈ (0, π/4).

Second moments of the directional derivatives
Let Z be a two-dimensional stationary Gaussian field that is centred and that admits
a spectral density f on R2. We assume that Z admits spectral moments of all orders
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and we denote them by (mj,k)(j,k)∈N2
0
, i.e.

mj,k =
∫
R2

(λ1)j (λ2)k f(λ) dλ.

The following lemma gives the second moment of the derivative of Z in direction uϕ
that we write Z ′ ·uϕ, as well as the covariance matrix of the gradient of this derivative.
Actually, we consider two gradient vectors. One is obtained by derivating Z ′ · uϕ
in the directions of the vectors of the canonical basis of R2 and it can be written
Z ′′(t)uϕ. Another is obtained by derivating Z ′ · uϕ in the directions of the vector of
the orthonormal basis (uϕ, uϕ+π/2). For any t ∈ R2, we write it ∇ϕ(Z ′(t) · uϕ) and
it satisfies ∇ϕ(Z ′(t) · uϕ) = R−ϕ Z

′′(t)uϕ, where R−ϕ is the matrix of the rotation of
angle −ϕ. The covariance matrix of ∇ϕ(Z ′ · uϕ) is borrowed from [ALO05] page 412.
Note that it simply satisfies V[∇ϕ(Z ′(0) · uϕ)] = R−ϕV[Z ′′(0)uϕ]Rϕ.

Lemma IV.16 For any ϕ ∈ [0, 2π],
• v(ϕ) = Var

(
Z ′(0) · uϕ

)
= m2,0 cos2 ϕ+ 2m1,1 cosϕ sinϕ+m0,2 sin2 ϕ.

• V[Z ′′(0)uϕ] =
(
α22(ϕ) α23(ϕ)
α23(ϕ) α33(ϕ)

)
, where

α22(ϕ) = m4,0 cos2 ϕ+ 2m3,1 cosϕ sinϕ+m2,2 sin2 ϕ,

α33(ϕ) = m2,2 cos2 ϕ+ 2m1,3 cosϕ sinϕ+m0,4 sin2 ϕ,

α23(ϕ) = m3,1 cos2 ϕ+ 2m2,2 cosϕ sinϕ+m1,3 sin2 ϕ.

• V[∇ϕ(Z ′(0) · uϕ)] =
(
a22(ϕ) a23(ϕ)
a23(ϕ) a33(ϕ)

)
, where

a22(ϕ) = m4,0 cos4 ϕ+m0,4 sin4 ϕ+ 6m2,2 cos2 ϕ sin2 ϕ

+4m3,1 cos3 ϕ sinϕ+ 4m1,3 cosϕ sin3 ϕ,

a33(ϕ) = (m4,0 +m0,4) cos2 ϕ sin2 ϕ+m2,2
(
(cos2 ϕ− sin2 ϕ)2 − 2 cos2 ϕ sin2 ϕ

)
+2(m1,3 −m3,1) cosϕ sinϕ(cos2 ϕ− sin2 ϕ),

a23(ϕ) = −m4,0 cos3 ϕ sinϕ+m3,1 cos2 ϕ(cos2 ϕ− 3 sin2 ϕ)
+3m2,2 cosϕ sinϕ(cos2 ϕ− sin2 ϕ)
+m1,3 sin2 ϕ(3 cos2 ϕ− sin2 ϕ) +m0,4 cosϕ sin3 ϕ.

• Moreover the eigenvalues γ+(ϕ) and γ−(ϕ) of matrices V[Z ′′(0)uϕ] and
V[∇ϕ(Z ′(0) · uϕ)] are equal to

γ±(ϕ) = 1
2
(
T (ϕ)±

√
∆(ϕ)

)
, (16)

where T (ϕ) is the trace of either of both matrices and ∆(ϕ) = (α22(ϕ) − α33(ϕ))2 +
4α23(ϕ)2 = (a22(ϕ)− a33(ϕ))2 + 4a23(ϕ)2.
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Length of crests with the toy model

Considering Formula (12) prescribing the expected length of crests in a given direction
and a given domain, we focus on the case where the direction of k is given by the toy
model (see Example 1 in Section IV.1). As ϕ tends to 0, we write g(ϕ) = O(h(ϕ)) if
there exists ϕ0 ∈ (0, 2π) and c > 0 such that

∀ϕ ∈ [0, 2π], |ϕ| < |ϕ0| ⇒ |g(ϕ)| ≤ c|h(ϕ)|.

Lemma IV.17 Let Q be a compact set in R2 and let k be a random wavevector in R2

prescribed by its directional spectral density f̃(θ, z) given by (13) for a fixed α > 0.
Let f(ϕ) = E[`(k, Q, π/2 + ϕ)] where E[`(k, Q, ϕ)] is given by (12). Then, as ϕ tends
to 0,

f(ϕ) = f(0)−Kϕ2 + O(ϕ4), with K > 0.

Proof. From (12), we get

f(ϕ) = H2(Q) 1
π

(
γ+(π/2 + ϕ)
v(π/2 + ϕ)

)1/2
E

((
1− γ−(π/2 + ϕ)

γ+(π/2 + ϕ)

)1/2)
,

where γ−(ϕ), γ+(ϕ) and v(ϕ) are given in Lemma IV.16. Moreover, the spectral mo-
ments mj,k are prescribed by (14) with µj,k given by Lemma IV.14.

Since cos(π/2 + ϕ) = −ϕ + ϕ3

6 + O(ϕ4) and sin(π/2 + ϕ) = 1 − ϕ2

2 + O(ϕ4), we
use the first and the third points of Lemma IV.16 to get

v(π/2 + ϕ) = M2(µ20 sin2(ϕ) + µ02 cos2(ϕ)) = M2(µ02 + (µ20 − µ02)ϕ2) + O(ϕ4)

= M2
α+ 2(1 + αϕ2) + O(ϕ4)

a22(π/2 + ϕ) = M4
(
µ40 sin4(ϕ) + µ04 cos4(ϕ) + 6µ22 sin2(ϕ) cos2(ϕ)

)
= M4

(
µ04 + 2(3µ22 − µ04)ϕ2

)
+ O(ϕ4)

= 3M4
(α+ 2)(α+ 4)(1 + 2αϕ2) + O(ϕ4)

a33(π/2 + ϕ) = M4
(
(µ40 + µ04) sin2(ϕ) cos2(ϕ) + µ22((sin2(ϕ)− cos2(ϕ))2 − 2 sin2(ϕ) cos2(ϕ))

)
= M4

(
µ22 + (µ40 + µ04 − 6µ22)ϕ2

)
+ O(ϕ4)

= M4
(α+ 2)(α+ 4)(α+ 1 + α(α− 2)ϕ2) + O(ϕ4)

a23(π/2 + ϕ) = M4
(
µ40 sin3(ϕ) cos(ϕ)− 3µ22 sin(ϕ) cos(ϕ)(sin2(ϕ)− cos2(ϕ))− µ04 sin(ϕ) cos3(ϕ)

)
= M4

(
(3µ22 − µ04)ϕ+ (µ40 + 5

3µ04 − 8µ22)ϕ3
)

+ O(ϕ4)

= M4
(α+ 2)(α+ 4)[3αϕ+ α(α− 4)ϕ3] + O(ϕ4).
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The eigenvalues γ±(π/2 + ϕ) are given by (16):

γ±(π/2 + ϕ) = 1
2

(
a22(π/2 + ϕ) + a33(π/2 + ϕ)±

√
∆(π/2 + ϕ)

)
,

with discriminant
∆(π/2 + ϕ) = (a22(π/2 + ϕ)− a33(π/2 + ϕ))2 + 4 a23(π/2 + ϕ)2

= M2
4

(α+ 2)2(α+ 4)2 [(2− α)2 + 2α(α+ 4)2ϕ2] + O(ϕ4).

For α 6= 2, it yields the following expansions√
∆(π/2 + ϕ) = M4

|2− α|
(α+ 2)(α+ 4)

(
1 + α(α+ 4)2

(2− α)2 ϕ
2
)

+ O(ϕ4),

γ−(π/2 + ϕ) = M4
min(3, α+ 1)
(α+ 2)(α+ 4)

(
1− α(α+ 4)

|α− 2| ϕ
2
)

+ O(ϕ4),

γ+(π/2 + ϕ) = M4
max(3, α+ 1)
(α+ 2)(α+ 4)

(
1 + α(α+ 4)

|α− 2| ϕ
2
)

+ O(ϕ4).

The quantity k(π/2 + ϕ) :=
(

1− γ−(π/2 + ϕ)
γ+(π/2 + ϕ)

)1/2
∈ [0, 1] admits the following ex-

pansion
k(π/2 + ϕ) = k0

[
1 + mα(α+ 4)

(α− 2)2 ϕ2
]

+ O(ϕ4),

where m = min(3, α+ 1), M = max(3, α+ 1) and k0 =
(

1− m

M

)1/2
=
( |α− 2|

M

)1/2
.

We expand the map E : k 7→
∫ π/2

0
(1− k2 sin2 θ)1/2 dθ.

E (k(π/2 + ϕ)) = E (k0) + mα(α+ 4)
(α− 2)2 k0 E ′(k0)ϕ2 + O(ϕ4),

where E ′(k) = −k
∫ π/2

0

sin2 θ

(1− k2 sin2 θ)1/2 dθ and E ′(0) = 0.

It remains to expand
(
γ+(π/2 + ϕ)
v(π/2 + ϕ)

)1/2
:

(
γ+(π/2 + ϕ)
v(π/2 + ϕ)

)1/2
=
(
M4
M2

M

α+ 4

)1/2 [
1 + mα

|α− 2|ϕ
2
]

+ O(ϕ4).

Finally, as claimed, we get the asymptotic expansion of function f as ϕ tends to 0:

f(ϕ) = f(0)−Kϕ2 + O(ϕ4),

with f(0) = H2(Q) 1
π

(
M4
M2

M

α+ 4

)1/2
E ((1−m/M)1/2) and

K = −H2(Q) 1
π

(
M4
M2

M

α+ 4

)1/2 mα

|α− 2| J(k0),
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where J(k) is introduced within the proof of Lemma IV.15. As J(k) is proved to be
negative for any k, see (15), we obtain that K > 0 and the lemma is established in the
case α 6= 2.

For α = 2, we get
√

∆(π/2 + ϕ) = M4
2 |ϕ|(1 + O(ϕ2)), γ±(π/2 + ϕ) = M4

8 (1± 2|ϕ|+

2ϕ2) + O(ϕ3) and hence k(π/2 + ϕ) = 2
√
|ϕ|(1 − |ϕ| + O(ϕ2)). Then, performing

a Taylor expansion at order 4 of function E and using E ′′(0) = −π4 , E (3)(0) = 0,

E (4)(0) = −9π
16 , we obtain

f(ϕ) = f(0)
(

1− 1
4ϕ

2
)

+ O(ϕ3),

with f(0) = H2(Q)
2
√

2

(
M4
M2

)1/2
. Lemma IV.17 is proved.
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Sujet : Caractéristiques géométriques de champs aléatoires
anisotropes réguliers

Résumé : Cette thèse a pour sujet l’étude géométrique de champs aléatoires anisotropes
réguliers, définis sur l’espace euclidien, en partie dans le cadre gaussien. Nous nous intéres-
sons à trois caractéristiques géométriques: le nombre de points critiques, la mesure des en-
sembles de niveaux et la caractéristique d’Euler des ensembles d’excursion. Des formules
de Rice permettent d’exprimer leur espérance ou leur variance. Nous proposons d’abord
une condition suffisante sous laquelle le nombre de points critiques d’un champ stationnaire
gaussien est de variance finie. Cette condition s’avère être une généralisation de la condition
de Geman, connue en dimension un, au cadre multidimensionnel et anisotrope. Nous étu-
dions ensuite deux modèles de champs aléatoires anisotropes. Pour les champs déformés, en
dimension deux, l’anisotropie est liée à une déformation de l’espace des paramètres par une
bijection du plan déterministe. Nous exhibons les déformations qui préservent l’isotropie,
et nous prouvons que les champs déformés correspondants sont caractérisés par une pro-
priété d’invariance de la caractéristique d’Euler moyenne de leurs ensembles d’excursion.
Cette même caractéristique permet d’identifier les déformations en jeu, lorsque celles-ci sont
inconnues. L’anisotropie des ondes aléatoires, quant à elles, est liée au domaine spectral.
Notre modèle d’onde aléatoire anisotrope permet de généraliser plusieurs modèles existant,
tels que les ondes planaires de Berry et un modèle spatio-temporel pour l’étude des vagues.
On met en évidence la dépendance entre des caractéristiques géométriques d’une onde (en
particulier l’espérance de la mesure de ses ensembles de niveau) et la loi de son vecteur
d’onde (notamment ses moments et ses statistiques directionnelles). La longueur moyenne
des lignes nodales du modèle planaire anisotrope de Berry s’avère décroître à mesure que
l’anisotropie du vecteur d’onde augmente.

Mots clés : champ aléatoire ; champ gaussien ; anisotropie ; ensemble d’excursion ; carac-
téristique d’Euler ; points stationnaires ; ensemble de niveau ; théorie des franchissements ;
onde aléatoire ; statistiques nodales.



Subject : Geometric characteristics of regular anisotropic random
fields

Abstract: This thesis deals with anisotropic regular random fields, defined on the Euclid-
ian space and studied from a geometric perspective. Some of our framework is Gaussian.
We focus on three geometric characteristics: the number of critical points, the level sets
measure and the Euler characteristic of excursion sets. Our main tools are Rice formulas
for the expectation and the variance. We first address the question of the finiteness of
the variance of the number of critical points of a stationary and Gaussian random field.
The so-called Geman condition, which is known as a sufficient condition in dimension
one, is extended to higher dimensions and to an anisotropic setting. Then two different
anisotropic models are studied. On the one hand, the anisotropy of the deformed random
field model (studied in dimension two) is due to a deterministic deformation of the pa-
rameter space. We give an explicit characterization of the deformations that preserve the
isotropy of deformed random field. The cases of isotropy are proved to match a certain
invariance property of the expected Euler characteristic of some excursion sets. This geo-
metric characteristic also allows to identify the deformation of the model, when the latter
is unknown. On the other hand, the anisotropy of the random wave model stems from the
spectral domain. Our anisotropic random wave model allows to generalize existing models,
for instance Berry’s planar waves and a spatiotemporal sea wave model. Our purpose is to
link geometric characteristics of a random wave, such as the expected measure of its level
sets, with the distribution of its random wavevector, in particular its moments of finite
order and its directional statistics. Considering Berry’s anisotropic planar waves, we prove
that the expected length of its nodal lines is a decreasing function of the anisotropy of the
random wavevector.

Keywords : random field; Gaussian field; anisotropy; excursion set, Euler characteristic;
stationary points; level set; crossing theory; random wave; nodal statistics.
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