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Summary

The aim of this PhD work is to design control and navigation algorithms for tracking
dynamic ground targets using aerial vehicles. An object was considered to navigate
in the ground over a planar surface such that one or multiple aerial vehicles can au-
tonomously describe trajectories to follow it. Control algorithms were also developed
to robustly track the proposed trajectories.

A quadrotor configuration was taken into consideration for the development of aerial
navigation algorithms, since this kind of platform is mechanically simple, versatile
for performing aggressive maneuvers, and easily available for experimentation.

Most works currently found in the literature for quadrotors are based on classical
approaches such as Euler angles, which can be understood intuitively, but arise
problems such as discontinuities, singularities, gimbal-locks, and highly non-linear
equations. Quaternions provide an alternative to classical representations, giving
advantages such as their lack of singularities and gimbal lock effect, but the main
one is their mathematical simplicity when handling rotations, which helps in the
design of robust controllers and aggressive navigation algorithms.

Quadrotor quaternion controllers: The first part of this thesis consisted on
developing quadrotor controllers with the aim of robustly tracking trajectories and
performing precise navigation tasks. Initially, a simple linear feedback control algo-
rithm based on unit quaternions was introduced, this controller revealed mathematical
properties, which made it possible to map the quadrotor model such that its dynam-
ics can be analyzed as a fully actuated system. Later on, more quaternion-based
approaches were profoundly explored, resulting in more advanced algorithms such as:

- State-feedback quaternion controller.

- Passivity-based quaternion control.

- Energy-based controllers.

- Cilindrical bounded control.

- Spherical chattering-free sliding mode controller.

Autonomous navigation algorithms: In order to validate the previous quaternion-
based controllers, several autonomous and semi-autonomous navigation schemes for
aerial vehicles were introduced, the control algorithm for each scenario was selected
from the ones previously developed.

Firstly, a quaternion feedback attitude controller was used along a safe navigation
algorithm for piloting a quadrotor in semi-autonomous mode, using intuitive gestures
from a user wearing an armband equipped with accelerometers, gyroscopes, and
electromyographic sensors which trigger different actions in the quadrotor.
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Then, autonomous trajectory generation and control approaches were explored for
systems consisting on multiple aerial vehicles. In the context of a collaboration with
the CRAN at the Université de Loraine, a path planning algorithm for quadrotors
was proposed which generates vehicle trajectories in real time as a result of an online
optimization of a distributed cost function, the trajectory was then robustly tracked
using a quaternion-based controller.

Then, in order to improve the capabilities of aerial vehicles, and to facilitate their
operability in unfavorable scenarios and spaces, an aggressive deployment strategy was
proposed where a quadrotor is hand-tossed trough the air with its motors turned off,
then it autonomously recovers from its free falling conditions using quaternion-based
strategies to perform an autonomous or semiautonomous mission.

Autonomous target tracking algorithms: The last part of this thesis was
dedicated to the conception of autonomous navigation techniques for tracking static
and dynamic ground targets, combined with quaternion-based controllers to ensure
system robustness.

First, a trajectory generation algorithm based on Hopf bifurcating differential equa-
tions was introduced for a single quadrotor for tracking a ground vehicle while
describing circles, this technique inherently includes takeoff, tracking, centering and
landing stages as part of the solution of a dynamic differential equations set.

Finally an extension of a distributed path planning algorithm was developed for two
drones to autonomously follow a target ground vehicle while describing coordinated
circles, the trajectory is obtained as the solution of an online optimization problem.



Chapter 1

Introduction

The topic of autonomous navigation on aerial and ground vehicles has been an
important one for many researchers in the last years. Technological developments
such as the miniaturization of electronic and mechanical components, constantly
improving wireless communication systems, and the increasing capabilities of storage
and computation devices have allowed an accelerating improvement of the capabilities
of mobile robots.

Nowadays, it is relatively easy and cheap to build small Unmanned Aerial (UAVs)
and Ground Vehicles (UGVs) which can be equipped with a wide range of cameras,
sensors, and actuators that can assist in many activities. This versatility makes
them very attractive, not only for military purposes, but also for numerous civil
implementations including humanitarian assistance tasks such as search-and-rescue
missions and fast response in disaster scenarios.

Both UAVs and UGVs present advantages and drawbacks inherent to their mechanical
properties and configurations. On one hand, UGVs provide larger autonomy times
than their aerial counterparts, but they find difficulties for example when navigating
through large obstacles, or when surveying large areas. On the other hand, UAVs
offer a 3-dimensional movement which gives them flexibility and privileged points of
view for aerial imagery, and are able of reaching difficult access sites, they are also
capable of performing more aggressive maneuvers, resulting in faster displacements,
in contrast, they have a limited autonomy time and restricted payload capacities.

By combining aerial and ground vehicles for complex missions, their respective
weaknesses can be counteracted by their combined capabilities such that the overall
system has more advantages than a single robot. The dynamics of UGVs are
commonly considered to evolve over a plane with near-zero inclination and with
slow movements compared to UAVs, this makes them relatively easy to control and
navigate. The main challenge when simultaneously employing both systems revolves
around generating navigation algorithms and robust control techniques for aerial
vehicles to ensure accurate tracking of the ground targets.

1



Introduction 2

1.1 Problem Statement

Autonomously tracking moving targets using UAVs is not an easy task, many
challenges have to be overcome in different stages, first, a mathematical model of the
aerial vehicle needs to be constructed such that it accurately describes the real-world
vehicle behavior while at the same time provides mathematical simplicity which
helps in the development of controllers and navigation algorithms, then the vehicle
rotational and translational dynamics must be stabilized using control algorithms
capable of robustly following any given reference, finally, navigation techniques must
be designed to follow the moving targets, and if multiple aerial vehicles are used, to
coordinate them. Therefore, the problem is divided in three main axes.

The first part concerns the development of mathematical models that describe aerial
vehicles dynamics. In previous years, multiple methodologies have been proposed
and studied by many researchers, by combining solid theories in mechanics and
physics such as Newton’s equations of motion, and the laws of energy conservation,
with mathematical descriptions of rotation and translation sequences such as Euler
angles, rotation matrices, quaternions, among others, such that the vehicle behavior
is described in one form or another.

Nevertheless, since the dynamics of aerial vehicles are generally unstable, complex,
nonlinear, and underactuated, the design of control and navigation algorithms be-
comes difficult. To deal with this problem many works have proposed approaches that
simplify mathematical expressions to avoid dealing with the undesired characteristics
of the vehicle dynamics, for instance, it is a common practice to consider only slow
movements and small angles, such that many nonlinear terms can be neglected,
another common practice is to analyze the system only in 2 dimensions, ignoring
some effects that arise in 3-dimensional movements. All of these considerations,
although they help with the algorithm development tasks, put limitations on the real
capacities of UAVs such as their fast motion and reaction capabilities.

Non-conventional approaches such as using quaternions to describe the vehicle
dynamics can provide mathematical simplicity without sacrificing accurateness and
generality, this becomes helpful for the second part of the problem which consists
on developing better controllers, capable of performing bolder maneuvers than
conventional algorithms, giving the capability of performing aggressive and fast
flights, while giving robustness to the system against unknown disturbances, and
ensuring a safer operation.

Finally, navigation algorithms have to be designed in order to enable autonomous
flight skills for aerial vehicles. Trajectory generation and tracking techniques are a
common approach that has been explored, sometimes to find the best path for the
UAV to arrive to its destination, other times to coordinate with multiple vehicles
in cooperative missions, in other scenarios these techniques can be used to track or
survey fixed or moving targets.
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1.1.1 Objectives

This thesis is dedicated to the development of control and navigation algorithms
for aerial vehicles, more specifically quadrotors, with the goal of robustly tracking
dynamic targets.

To achieve this goal, and to deal with the challenges that arise from this problem, the
first objective is to develop control algorithms to ensure stability for the vehicle while
enabling path following and trajectory tracking capabilities and providing robust
performance against disturbances and model uncertainties. By studying the different
methodologies for UAV modeling, quaternion-based approaches have emerged as
the best suited for this work, since they provide intrinsic robustness to the system
by avoiding singularities and providing mathematical simplicity without needing
conservative considerations such as small angles and velocities.

The second objective is to propose quadrotor navigation strategies to enhance
the vehicle functionalities. Algorithms for safely interacting with operators are
desired to facilitate the implementation of these systems in real-world applications,
intuitive semi-autonomous piloting and easy deployment and recovery strategies
under unfavorable conditions are some of the techniques that have been explored in
this thesis. Also, since the ultimate goal is to track moving targets using one or more
UAVs, autonomous navigation algorithms for a fleet of quadrotors are aso concerned
to reach this goal.

Finally, the third objective is to introduce navigation strategies for tracking moving
ground targets, trajectory generation algorithms that include the translational be-
havior of a ground vehicle will be designed such that it can be surveyed using one or
multiple quadrotors. Techniques such as the solution of a mathematical formulation
will be considered such that its resolution yields the desired tracking behavior of the
aerial vehicles.

1.1.2 Methodology

As it was previously stated, quaternions provide an alternative to classical represen-
tations, that gives many advantages to the development of navigation strategies for
UAVs. The most important for the design of quadrotor controllers, is that they can
be used to map the nonlinear behavior of the system into an equivalent representation
that is easier to handle without needing to restrict the vehicle capabilities by limiting
its inclination angles or velocity.

For this reason, the preferred methodology to design the controllers of this thesis is
by using quaternion representations of rotations, which are employed to describe the
vehicle dynamics, to introduce control algorithms, and to describe rotation references
that regulate the desired movements of the vehicle.
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As for the design of trajectory generation and fleet formation algorithms, two
methodologies will mainly be studied, one based on a differential equations set that
yield the path of a quadrotor that tracks a moving UGV. The other one will be based
on the real-time solution of a distributed optimization problem, such that it results
on the best trajectory for a group of quadrotors that survey said ground target.

All of the proposed approaches will be validated using simulations and experiments.
Since it is desired to give quadrotor as much autonomy as possible, the algorithms
will also be designed with the aim of implementing them on the onboard computers
which are embedded on the quadrotors, such that they can be run in real-time.

1.2 State of the art

1.2.1 Unmanned Aerial Vehicles

Unmanned Aerial Vehicles (UAVs, also known as aerial drones) are flying machines
that lack of an onboard human pilot, and also have a certain degree of autonomy.
The design and configuration of a drone can vary according to its specifications and
applications.

Even if a drone can be built at any size, ranging from a few centimeters to several
meters, most designers choose to keep small sizes (from a couple of centimeters to a
little more than one meter) offering great flight abilities and better energy efficiency
while maintaining a low cost. These vehicles are known as minidrones or mini-UAVs.

Modern drones began existing in the second half of the XXth century when the
concept of “Remotely Piloted Aircraft Systems” started to be popularized among
some researchers and aviators. Nevertheless, miniaturized mechanical and electronic
technology was, at this time, very expensive and not as advanced, requiring a very
skilled ground pilot [1], therefore, real implementations of these vehicles were almost
impossible.

In the years 2010’s, technological milestones drastically reduced the cost of miniature
electronics which in contrast became increasingly powerful, some examples are
microprocessors, cameras, Global Positioning Systems (GPS), Inertial Measurement
Units (IMUs), batteries, and motion capture systems. This progress revolutionized
the conception of many different mini-UAVs because many researchers, companies,
and even hobbyists could now afford the cost of developing their own UAVs [2].

UAVs can be categorized in three general groups in terms of their mechanical
architecture, which will be detailed in the following subsections.
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1.2.1.1 Fixed-wing Aerial Vehicles

For these vehicles, the lift force (the one that sustains the aircraft in the air) is
generated by the airflow that hits a fixed surface of the vehicle (wings), which is
dependent on the forward translational velocity. A simple example is a classical
airplane, see Figure 1.1.

Figure 1.1: Example of a fixed-wing unmanned aerial vehicle with the forces
acting on its wings.

It is possible to describe the mechanical behavior of a fixed-wing Aerial Vehicle (AV)
by using nonlinear equations, for more details see [3] - [5], a simplified model is
usually considered where aerodynamic and mechanical effects such as turbulence,
vibrations, and other disturbances can be neglected, it is also hypothesized that the
earth is locally flat and the AV’s mass is constant.

The state equations of these drones are defined by x, y, z, ψ and v, which represent
the Cartesian coordinates, the yaw angle, and longitudinal speed respectively, see
Figure 1.2. The kinematic and dynamic navigation equations of an airplane are then
given by

d

dt


x
y
z
ψ
v

 =


v cos(γ) cos(ψ)
v cos(γ) sin(ψ)
v sin(γ)
gn
v

sin(ϕ)
cos(γ)

1
m

(Tr −D)− g sin(γ)

 , (1.1)

where the command inputs are the thrust force Tr, the banking angle ϕ and the
angle of attack γ. The gravitational acceleration is represented by g. The drag force
D is written as

D =
1

2
ρv2SCD, (1.2)

where S symbolizes the wing projected surface area and ρ represents air density. The
lift force is defined as

L =
1

2
ρv2SCL, (1.3)

CL and CD respectively represent the drag and lift forces aerodynamic parameters,
which are dependent on the wing’s geometry. The relationship between the lift force
and the vehicle mass m is denoted as

n =
L

mg
. (1.4)
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Figure 1.2: Diagram with some of the most common angles in an airplane model,
where ex, ey and ez denote the world-fixed frame axes, while ebx, e

b
y and bbz symbolize

the moving body reference coordinate system.

It is easy to observe from the previous equations that the dynamic model of an
airplane is complex, even if many aerodynamic effects are neglected. The model is
nonlinear with multiple inputs and outputs, which represents a real challenge for
designing control strategies.

1.2.1.2 Rotating-wing AVs

These vehicles generate a lift force from rotating propellers which are attached to
their motors, see Figure 1.3. The term “rotating wing” comes from the fact that
propellers can be considered as wings that rotate around an axis.

A direct example of these aircraft are helicopters. Nevertheless, many different
configurations consisting on several rotors have been proposed in the last decades
such as quadrotors, hexarotors and octarotors, which consist on four, six, or eight
aligned opposing propellers.

Figure 1.3: Rotating-wing vehicle principle, where the forces are generated by
rotating propellers.
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Quadrotors are one of the most popular platforms for UAV research due to their
mechanical simplicity, flight capabilities, and relatively low-cost implementation. In
its classical configuration, two diagonal opposing propellers rotate clockwise (M2 and
M4) while the other two rotate counter-clockwise (M1 and M3) such that gyroscopic
effects and aerodynamic couples tend to compensate each-other in stationary flight.
This vehicle is an underactuated system since it possesses four control inputs and six
degrees of freedom.

Due to its versatility, availability, and mechanical characteristics, a quadrotor was
chosen in this thesis for developing control and navigation algorithms although all
of the proposed approaches can be extrapolated to other multirotor configurations.
Detailed modeling and control techniques for quadrotors will be described in the
next chapters.

1.2.1.3 Hybrid UAVs

Some developers have conceived new UAV configurations by combining mechanical
properties of both fixed and rotating-wing systems. These vehicles then usually
comprise rotating propellers and fixed wings at the same time.

The idea of these platforms is to be capable of performing plane-like maneuvers (like
surveying large surfaces in a short time span) and tasks like stationary flight, vertical
takeoff and landing using the same vehicle.

Tandem-wing Tail-sitter UAV example: In [6] and [7], the authors conceived
an aerial vehicle that reproduces the characteristics of a helicopter (vertical takeoff
and landing) and an airplane (horizontal flight), see Figure 1.4. It uses rotating
propellers that generate a vertical force during the takeoff and landing stages, and a
horizontal force after transitioning into airplane mode.

Figure 1.4: Tandem-wing vehicle combining helicopter and airplane features,
built by the University of Sidney, presented in [6] and [7].
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This vehicle combines principles from both the airplane and quadrotor models, in [6],
a simplified expression of the vehicle dynamics (named T-wing) is described where
the main equations are

u̇ = rv − qw − g cos(ψ) cos(θ) + Fx
m
, c1 =

Iyy − Izz
Ixx

, c3 =
1

Ixx
,

v̇ = −ru+ pw + g sin(ψ) cos(θ) + Fy
m
, c5 =

Izz − Ixx
Iyy

, c7 =
1

Iyy

ẇ = qu− pv − g sin(θ) + Fz
m
, c8 =

Ixx − Iyy
Izz

, c9 =
1

Izz
,

φ̇ =
cos(ψ)

cos(θ)
p− sin(ψ)

cos(θ)
q, ṗ = c1rq + c3L,

θ̇ = sin(ψ)p+ cos(ψ)q, q̇ = c5pr + c7M,

ψ̇ = cos(ψ) tan(θ)p+ sin(ψ) tan(θ)q + r, ṙ = c8pq + c9N,

where u, v, w are the angular speeds with respect to the body reference frame of
the vehicle around the x, y and z directions respectively, while p, q, r represent the
translational speeds with respect to the same axes. Inertial terms are symbolized by
Ixx, Iyy and Izz, considering a quasi-symmetrical vehicle geometry. L,M,N define
the torques over each axis, and g denotes the gravitational acceleration.

This model is nonlinear, which makes the conception of control algorithms a difficult
task. To overcome this obstacle, symplified hypothesis can be made. For instance,
considering quasi-stationary movements (small angles) yields

u → u1 + δu,
v → 0 + δv,
w → 0 + δw,
p → 0 + δp,
q → 0 + δq,
r → 0 + δr,
φ → 0 + δφ,
θ → 0 + δθ,
ψ → 0 + δψ,

⇒

u̇ = −g +
Fx
m
, ṗ =

L

Ixx
,

v̇ = −∆ru1 + g∆ψ +
Fy
m
, q̇ =

M

Iyy
,

ẇ = ∆qu1 − g∆θ +
Fz
m
, ṙ =

N

Izz
,

φ̇ = p,

θ̇ = q,

ψ̇ = r,

This simplified model was used in [7] to develop control strategies and implement
them in a real vehicle.

1.2.2 Quadrotor control techniques

In recent years, there has been an increasing interest in the robotics and control
research communities towards developing different strategies for controlling and
navigating quadrotors, in the path towards obtaining better performances in terms of
robustness, precision, efficiency, preferably while maintaining simplicity in mechanical,
mathematical, and computational terms.

In the last years of the XX th century, autonomous control for rotorcraft started to be
introduced in the literature as a case of study for controlling some classes nonlinear
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systems, for instance [8] proposed a nonlinear controller for slightly non-minumum
phase nonlinear systems, the authors used the dynamic equations of a V/STOL
aircraft to exemplify the behavior that a real system could have with this kind of
controllers. Other examples are [9], which included the control of a quadrotor as an
academic example for classical control system design along with other systems such
as automotive engines, satelites, and biological systems, and [10], which proposed
the use of neural networks for flight control.

However, at that time, the high cost of miniaturized power electronics, and the
short capabilities of microprocessors and microcontrollers made it very difficult to
experimentally validate and implement this kind of systems, therefore, the motivation
of developing control strategies for miniaturized UAVs was limited, since it was
considered to be just an interesting concept.

It was until the first decade of the XXI th century, when researchers started focusing
on specifically controlling miniaturized quadrotor vehicles, one of the first works was
[11], where the authors proposed to separate the rigid body dynamic equations, which
were explained using Euler angles, from the motor dynamics, which were expressed
using blade theory, this idea has been applied in many works that came afterwards.
Then, in [12] and [13], visual sensors were included in the control loop of a quadrotor
which was restricted such that only yaw and vertical movements could be performed.
Restricting movements of experimental platforms was a common practice in the early
development of UAVs, in [14], implemented classical Proportional-Integral-Derivative
(PID) and Linear-Quadratic (LQ) controllers to control the orientation of a quadrotor
which was fixed on a 3D universal joint, see Figure 1.5. As powerful embedded
technology was still expensive and not widely available, most works at the time
computed all of the numerical operations in a stationary personal computer, and
then transmitted the control inputs to the motors using wired communications.

Figure 1.5: Restricted test-bench used in [14], 1)RS232 to I2C translator, 2)Motor
modules, 3)3D universal joint, 4)Inertial Measurement Unit, 5)Propellers.
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Some works from these years focused on developing controllers for a simplified
rotorcraft model consisting on a 2-dimensional configuration named Planar Vertical
Takeof and Landing (PVTOL), some examples can be found in [15]-[20]. The
interest of studying this kind of vehicles is to better understand their 3-dimensional
counterparts since the dynamics of a quadrotor can be seen as two combined PVTOL
systems crossed at their centers.

Among some of the works that presented advances for quadrotors during this time,
[21] and [22] proposed nonlinear control strategies to deal with the rotational and
translational dynamics of quadrotors, their technique was based on separating the
dynamic equations in three subsystems (altitude-yaw, y-axis-roll, and x-axis-pitch),
the control algorithm was based on considering small values for the pitch and roll
angles (quasi-stationary flight), such that the dynamic model can be expressed as
a set of cascade integrators. In these works, experiments were performed in an
unattached quadrotor, which was able to move in its three attitude angles and freely
hover in a 3-dimensional space, however, a personal computer was required to acquire
signals from sensors and compute control inputs, see Figure 1.6.

Figure 1.6: Quadrotor for experimental validation in [22], the vehicle is able to
hover freely, however it is connected to a desktop computer for its stabilization.

At the second half of the 2000’s decade, the availability and power of microprocessors
increased at an accelerating pace while their price decreased, this greatly facilitated
the access of embedded electronics for researchers, companies, and consumers, which
sped up the development of controllers that could be tested on real miniaturized
UAVs (the introduction of smartphones and other portable devices benefited from
this same technology, therefore their success in the market happened at around the
same time).

Although the availability of embedded electronics represented an impulse on UAV
research, many of the proposed algorithms still considered small angles to simplify
the quadrotor dynamic equations and facilitate the development of controllers. For
instance, in [23], the position of a quadrotor was measured by a Motion-Capture
system, and stabilized using an Integral-Backstepping controller programmed onboard,
obtained by a linear small angles simplified dynamic model, other works that proposed
similar approaches can be found in [24]-[29].
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More recent contributions have further exploited the capabilities of modern elec-
tronics, and developed more advanced nonlinear control algorithms, for instance,
[30] introduced an adaptive robust controler, however, the assumptions made by
the authors require to consider small angle rotations and slow movements to ensure
system stability due to the model complexity. Other works like [31]- [34] employed
sliding mode algorithms to compensate external disturbances, but also consider
conservative slow movements to design the control equations.

Among other nonlinear control techniques, authors have also used saturating function
to stabilize quadrotors, for example [35] employed bounded functions combined with
a backstepping technique to design an attitude controller for a quadrotor which
proved to have robustness capabilities, then [36] combined a similar algorithm with
a state predictor to improve the performance of UAVs in the presence of delayed
measures.

Nowadays the capabilities of UAVs are increasing towards performing more impres-
sive tasks that involve more complex maneuvers. For instance, [37] introduced an
algorithm that tracks aggressive trajectories for obstacle avoidance, the authors
employed differential flatness to execute complex navigation trajectories, however,
the proposed algorithm’s complexity such that, although embedded computers are
nowadays accessible and available, it needs an external desk computer to calculate
control trajectories. In [38] and [39], authors proposed algorithms for estimating the
vehicle states and generating trajectories for flying through narrow gaps at different
inclinations by computing the required quadrotor acceleration to pass through the
gap at a plausible inclination, see Figure 1.7, however, the proposed approaches
compute translational that are tracked by third-party libraries, thus do not directly
deal with attitude signals and computing rotations.

Figure 1.7: A quadrotor flying through narrow gaps in [39].

Other works like [40] and [41] addressed the problem of flying quadrotors in urban
areas under wind gust conditions where turbulence may interfere with the vehicle
operation, the authors compared several control algorithms based on integrating
terms, backstepping techniques, and adaptive properties to deal with the effects of
windy environments.
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Until very recently, most of the controllers developed for UAVs use the classical
Euler Angles representation to describe the quadrotor dynamics, resulting in complex
nonlinear multi-variable equations that are hard to deal with. Many researchers have
often made considerations like small-angle movements, single-axis displacements, or
hovering conditions, other times, complex algorithms have been proposed which are
hard to implement.

An alternative to Euler angles is designing controllers based on quaternions, which
provide a simpler singularity-free description of the vehicle dynamics, making the
task of designing robust and precise controllers easier.

1.2.3 Quaternion-based approaches for quadrotors

Quaternions are a kind of numbers proposed by Sir William Rowan Hamilton in the
nineteenth century [42], as tool for describing 3-dimensional rotations with a set of
hypercomplex numbers (symbolized by one real plus three imaginary parts). These
numbers have been widely used in theoretical and experimental physics, but more
recently have been applied to other fields such as computer graphics animation and
robotics. Some works that explain an introduction to quaternion notions, operations
and some applications are [43] - [45].

The application of quaternions for controlling aircraft systems was introduced in
[46], where the authors used quaternion products to rotate control vectors between
different reference frames, see Figure 1.8. It was remarked that quaternions are not
affected by some undesired effects that are inherent to Euler angles such as Gimball
locks, singularities, and discontinuities, the authors also emphasized that quaternion
operations require less computational resources than computing rotation matrices
from other approaches.

Figure 1.8: Rotation around an axis, following Euler’s theorem to formulate a
quaternion according to Hamilton, as illustrated in [46].
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Later on, [47] proposed a state-feedback algorithm based on quaternions to perform
large maneuvers in spacecraft involving satellite deployment with space shuttles,
the authors highlighted that a relatively simple quaternion-based control algorithm
could stabilize spacecraft without requiring to maintain small angles, and avoiding
discontinuities, such properties were further studied by the same authors in [48]. Some
other works were also presented, where sliding mode theory was applied quaternion-
based dynamic models, such as [49] -[51], however, most of these contributions were
limited to generic rigid spacecraft. Applications of quaternion theory to UAVs, were
explored some years later.

One of the first works that used quaternions for controlling quadrotors was introduced
in [52], where the authors applied quaternion-based dynamic equations to derive the
quadrotor attitude model, then used a feedback controller (previously developed for
spacecraft) to stabilize the quadrotor orientation, the same authors validated this
idea on an experimental platform on [53] (using a similar configuration as Figure 1.5).
Later on, [54] applied this control strategy on a detached quadrotor (which was able
to unrestrictedly fly), and analyzed the effects on communication and network faults
and proposed observers and fault-tolerant controllers for the attitude dynamics, while
[55] proposed a strategy to stabilize the quadrotor position partly using quaternion
operations, but only employed simulations to validate their proposal.

On the second half of the 2000’s decade, progress was made by some authors on
developing more quaternion-based control strategies. For instance [56]-[58] developed
a bounded attitude controller using saturation functions on a sliding manifold defined
by the vehicle angular velocity and the imaginary parts of the quaternion attitude,
the authors validated this control strategy on a prototype illustrated in Figure 1.9.

Figure 1.9: Quadrotor experimental setup for testing quaternion-based control
algorithms proposed in [57].

Some other quaternion-based techniques were also applied to quadrotor vehicles such
as [59], where the authors proposed a quaternion high-order sliding mode algorithm
to control attitude trajectory on spacecraft, while [60] also introduced a quaternion
sliding mode control for spacecraft, but with adaptive properties that consider
actuator saturation scenarios. A comparison of several quaternion-based control
algorithms for quadrotors was introduced by [61], where proportional-derivative (PD),
linear quadratic regulartor LQR, and backstepping position and attitude controllers
were compared with simulations.
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In another work, a quaternion-based nonlinear P 2 controller, for solving the attitude
problem of a quad-rotor was proposed in [62]. In [63], a quaternion-based feedback
controller is developed for the attitude stabilization of a quad-rotor. The control
design takes into account a priori input bounds and is based on nested saturations.
The authors forced the closed-loop trajectories to enter a fixed neighborhood around
the origin in a finite time and remain thereafter. A quaternion-based nonlinear robust
output feedback tracking controller was developed in [64] to address the attitude and
altitude tracking problem of a quadrotor, here, approximation components based on
neural networks are introduced to estimate model uncertainties and robust feedback
components are designed to compensate for external disturbances.

More recent contributions have explored other properties of quaternion-based dynamic
systems. For example, [65] and [66] proposed fractional sliding-mode controllers using
quaternions to stabilize the quadrotor attitude dynamics, while also considering finite-
time convergence of the system dynamics based on a fractional-order system. In [67],
researchers estimated quadrotor position and attitude information during aggressive
trajectories (with high accelerations and angular velocities) by only employing cameras
and inertial sensors, quaternion operations were used in the proposed algorithm.

In this thesis, quaternion-based controllers for quadrotors were proposed with the
objective of robustly tracking translational and rotational dynamic trajectories, part
of the contributions presented during this PhD lie on using quaternions to deal with
the underactuated nonlinear nature of quadrotors in the development of controllers
and navigation algorithms, as it will be explained in the following chapters.

1.2.4 Target tracking using UAVs

As scientific and technological advancements have made UAVs more powerful, minia-
turized, and affordable, many applications have been emerging at an increasing pace.
One of such topics is the application of aerial vehicles to track moving targets, which
have been attracting the attention of researchers in recent years.

Figure 1.10: Flight control scheme used in [68] to track a moving target using
fixed wing UAVs.
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The first works that addressed this topic began in the second half of the 2010’s decade,
for instance, [68] proposed an algorithm to fly an autonomous airplane with a spiral
trajectory that tracks a moving target in its center, the proposed approach required
two connected ground stations, one to compute the autonomous path, and another
to serve as an operator interface. In [69], the authors proposed a cooperative scheme,
based on attracting vector fields, to track a moving target using two fixed-wing UAVs
that describe circles while respecting a safety distance.

Other works have proposed heterogeneous robotic systems where multiple UAVs
and Unmanned Ground Vehicles (UGVs) cooperate to achieve a common goal.
However, this kind of approaches are often very demanding on computational and
communication resources, therefore, many authors only validate their proposals in
simulations. For instance [70] proposed a control scheme to coordinate groups of
UAVs and UGVs using a decentralized flocking algorithm, which was validated on a
simulation that does not consider the nonlinear UAV dynamics. Other examples are
[71] where the challenge of tracking a ground target using UAVs in dense obstacle
areas was formulated as an optimization problem, which is solved on a simulation
environment, and [72] where the optimization problem is solved using dynamic
programming, also in simulations.

Some researchers have directed their focus on the task of detecting the moving target,
for instance [73] employed a vision algorithm to detect a moving ground vehicle
using pixel characteristics, a particle filter was used to predict the target position
when obstacles hinder its visibility, correcting the data once its sight is recovered.
An alternative approach was presented in [74], where an occupancy grid is used
to take into account fixed obstacle positions to model the target states, updating
vision measurements with a Bayesian filter. [75] introduced a collaborative control
technique in which a UAV takes off from the initial location of a UGV, then flies
to provide an aerial point of view of the mission while simultaneously tracking the
UGV’s trajectory, then it lands at the new position of the ground vehicle.

More recent works have been implementing nonlinear flight controllers to track
targets, for instance [76] proposed a moving path strategy to track single or multiple
targets using fixed wing UAVs, then, nonlinear controllers developed with Lyapunov
theory were used to track the computed trajectories. In [77], target tracking and
3-dimensional obstacle avoidance for autonomous airplanes is proposed by using
Lyapunov guidance vector fields and fluid dynamic properties.

Due to the increasing advantages and availability of quadrotors, some works have used
them to track moving targets, for instance [78] employed a tag detection algorithm
to detect a landing platform located on a moving ground vehicle. The proposed
approach fuses visual information with GPS signals using a Kalman filter to better
estimate the landing surface trajectory. The problem of landing on a moving platform
was also addressed in [79], where the proposed solution added an Uncertainty and
Disturbance Estimator to compensate wind disturbances generated when the vehicle
approaches to the landing site, and also un-modeled dynamics.





Chapter 2

Modeling Approaches

The first step towards designing control and navigation algorithms is to state a
mathematical model to work with. In this chapter, several modeling methodologies
are explored such that robust algorithms can be developed in the following chapters.
Most of the work is focused on aerial vehicles since they are in general, more
challenging control and navigate compared to UGVs due to their faster dynamics
and unstable nature, the selected configuration for the UAV in this thesis was a
quadrotor multicopter.

Most researchers have relied on the classical Euler angles [80] to represent the
dynamics of UAVs. This approach is intuitive and easy to implement, specially
when simplifications are considered, e.g. maintaining small angles, slow movements,
etc. However, when more arduous designs, tasks, or applications are involved, Euler
angles representations encounter some problems, such as complicated non-linear
mathematical expressions, singularities, and gimbal locks.

Quaternions provide an alternative for representing the rotation of rigid bodies and
have great advantages compared to Euler angles, i.e, lack of discontinuities and
gimbal lock, and provision of mathematical simplicity. When multiple rotations and
translations are considered in more complex systems, dual quaternions also become
very useful to describe the transformation of rigid bodies.

This chapter is organized as follows: Section 2.1 introduces the elemental forces of
a quadrotor aircraft. In Section 2.2 some of the classical modeling methodologies
based on Euler angles are presented for comparison purposes. An explanation of the
quaternion-based modeling methodology is detailed in Section 2.3, while Section 2.4
introduces a modeling approach based on dual quaternions. Finally some conclusions
are discussed in Section 2.5.

17
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2.1 Force and moment in a rotor

According to blade element theory, which is used to model airfoil and rotor perfor-
mances, the forces and moment developed on a uniform wing are determined by
the lift and drag forces and a pitching torque [81]. For a given rotor i with angular
velocity ωi, the linear velocity at each point along the propeller is proportional to the
radial distance from the rotor shaft. Thus the following equations [82] can be stated:

fi = CTρAp r
2ω2

i , (2.1)

τi = CQρApr
3ω2

i , (2.2)

where fi represents the total thrust produced by rotor i = 1, ..., 4 acting perpendicu-
larly to the rotor plane neglecting blade flapping effect, τi describes the rotor torque,
r denotes the rotor radius, ρ symbolizes the air density and Ap = πr2. CT and CQ
are non-dimensionalised thrust and rotor torque coefficients, which can be computed
using blade element theory [83], see Figure 2.1.

Figure 2.1: Propeller forces and torques acting on a quadrotor.

It is a common practice to consider the aerodynamic parameters from (2.1) and
(2.2) as constants kT u CTρAp r

2, kQ u CQρApr
3. Taking into account a quadrotor

symmetrical configuration, the total torque and thrust force produced on the vehicle
by the propellers is computed as

~Fth =


0
0

4∑
i=1

kT ω
2
i

 , ~τ =

τxτy
τz

 =


l (kT ω

2
1 − kT ω2

2 − kT ω2
3 + kT ω

2
4)

l (kT ω
2
1 + kT ω

2
2 − kT ω2

3 − kT ω2
4)

4∑
i=1

kQω
2
i (−1)i

 , (2.3)

where τx, τy, and τz denote the total torque components produced in each axis of the

body reference frame, and ~Fth represents the total thrust force, acting in the vertical
axis of the quadrotor.
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2.2 Classical Modeling Methods

The two most popular techniques for modeling aerial vehicles will be presented in
this section, the Euler-Lagrange and Newton-Euler approaches, both introduced for
an ideal case, i.e. without perturbations and/or uncertainties in the model.

2.2.1 Euler-Lagrange Approach

Considering the representation of an aerial vehicle as a solid body evolving in a three
dimensional space and subject to the main thrust and three torques. In this work,

letters with arrows over them represent vectors in 3D space ~(�) ∈ R3. The generalized
coordinates of the vehicle are defined by xquad = (~p, ~η) ∈ R6, where ~p = (x, y, z) ∈ R3

denotes the position vector of the center of mass relative to a fixed inertial frame
I, and ~η = (ψ, θ, φ) ∈ R3 defines the quadrototor attitude in its Euler angles (yaw,
pitch and roll angles, respectively) notation. The Lagrangian equation is defined as

L(xquad, ẋquad) = Ttrans + Trot − U,

where Ttrans = m
2
~̇p T ~̇p describes the quadrotor translational kinetic energy, Trot =

1
2
~ΩTJ~Ω denotes the rotational kinetic energy, U = −m~g · ~p represents its potential

energy, m denotes its mass, ~Ω = [ωx ωy ωz]
T introduces the angular velocity vector,

J defines the inertia matrix, and ~g = [0 0 − g]T means the acceleration vector due

to gravity. The angular velocity vector ~Ω resolved in the body frame B is related to
the generalized velocities ~̇η (in the region where the Euler angles are valid) by means

of the standard kinematic relationship ~Ω = Wη~̇η, [80]. Therefore, Trot = 1
2
~̇ηTJ~̇η with

J = J(~η) = W T
η J Wη and

Wη =

 − sin θ 0 1
cos θ sinφ cosφ 0
cos θ cosφ − sinφ 0

 , J =

 Jxx 0 0
0 Jyy 0
0 0 Jzz

 ,
where Jii denotes the moment of inertia with respect to the i = x, y, z axes.

Note J(~η) can be used as the inertia matrix for the vehicle rotational dynamics in
terms of the Euler angles ~η. Then, the mathematical equations that represent the
dynamics of the aerial vehicle are obtained using the following equation

d

dt

∂L

∂ẋquad
− ∂L

∂xquad
=

[
~Fp
~τ

]
, (2.4)

where ~Fp ∈ R3 symbolizes the total force acting on the vehicle, and τ ∈ R3 represents
the torques.
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2.2.2 Quadrotor dynamic model

From Figure 2.2 and considering that the thrust force acts only in the z-axis, it yields
~Fth = ~nz ~Fth, where ~nz = [0 0 1]T and Fth = ||~Fth|| represents the thrust directed
out of the top of the vehicle. This vector force is represented in the inertial frame
using a rotation matrix R derived from the Euler angles as ~F Ith = R~Fth, where

R = Rxyz(ψ, θ, φ) ∈ SO(3) =

 CψCθ −SψCθ Sθ
SψCφ + CψSθSφ CψCφ − SψSθSφ −CθSφ
SψSφ − CψSθCφ CψSφ + SψSθCφ CθCφ

 , (2.5)

where Sθ and Cθ stand for sin(θ) and cos(θ) respectively.

Figure 2.2: Quadcopter scheme in an inertial frame.

Developing (2.4), the Euler-Lagrange equation for the translation motion can be
written as

m~̈p−m~g = ~F Ith ,

and for the ~η coordinates

J~̈η +

(
J̇− 1

2

∂

∂~η

(
~̇ηTJ
))

~̇η = τ ,

Therefore, rewriting the two previous equations results in

m~̈p = ~F Ith −mg~nz, (2.6)

J~̈η = ~τ − C(~η, ~̇η)~̇η. (2.7)

where C(~η, ~̇η) = J̇− 1
2
∂
∂~η

(
~̇ηTJ
)

refers to the Coriolis term and contains the gyroscopic

and centrifugal terms. Expanding equation (2.7) is not an easy task and in several
works the full inertia matrix J is considered as diagonal and the Coriolis matrix is,
in general, neglected.
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The Coriolis and the inertial matrix can be obtained from (2.4) for the ~η dynamics.
Therefore, rewriting the attitude dynamics yields

d

dt

[
~ΩTJ

∂~Ω

∂~̇η

]
− ~ΩTJ

∂~Ω

∂~η
= τ,

then ∂~Ω

∂~̇η
= Wη, thus, ~ΩTJ ∂

~Ω

∂~̇η
=
[
b1 b2 b3

]
with

b1 = −Jxx(φ̇Sθ − ψ̇S2
θ ) + Jyy(θ̇CθSφCφ + ψ̇C2

θS
2
φ) + Jzz(ψ̇C

2
θC

2
φ − θ̇CθSφCφ),

b2 = Jyy(θ̇C
2
φ + ψ̇CθSφCφ)− Jzz(ψ̇CθSφCφ − θ̇S2

φ),

b3 = Jxx(φ̇− ψ̇Sθ).

Applying d
dt

(
~ΩTJ ∂

~Ω

∂~̇η

)
,

ḃ1 = −Jxx(φ̈Sθ + φ̇θ̇Cθ − ψ̈S2
θ − 2ψ̇θ̇SθCθ) + Jyy(θ̈CθSφCφ − θ̇2SθSφCφ

−θ̇φ̇CθS2
φ + θ̇φ̇CθC

2
φ + ψ̈C2

θS
2
φ − 2ψ̇θ̇SθCθS

2
φ + 2ψ̇φ̇C2

θSφCφ) + Jzz(ψ̈C
2
θC

2
φ

−2ψ̇θ̇SθCθC
2
φ − 2ψ̇φ̇C2

θSφCφ − θ̈CθsφCφ + θ̇2SθSφCφ + θ̇φ̇CθC
2
φ − θ̇φ̇CθC2

φ),

ḃ2 = Jyy(θ̈C
2
φ − 2θ̇φ̇SφCφ + ψ̈CθSφCφ − ψ̇θ̇SθSφCφ + ψ̇φ̇CθC

2
φ − ψ̇φ̇CθS2

φ)

−Jzz(ψ̈CθSφCφ − ψ̇θ̇SθSφCφ − ψ̇φ̇CθS2
φ + ψ̇φ̇CθC

2
φ − θ̈S2

φ − 2θ̇φ̇SφCφ),

ḃ3 = Jxx(φ̈− ψ̈Sθ − ψ̇θ̇Cθ).

Similarly,

∂~Ω

∂~η
=

 0 −ψ̇Cθ 0

0 −ψ̇SθSφ −θ̇Sφ + ψ̇CθCφ
0 −ψ̇SθCφ −ψ̇CθSφ − θ̇Cφ

 ,
then ~ΩTJ ∂

~Ω
∂~η

=
[
h1 h2 h3

]
, where

h1 = 0 ,

h2 = −Jxx(ψ̇φ̇Cθ − ψ̇2SθCθ)− Jyy(ψ̇θ̇SθSφCφ + ψ̇2SθCθS
2
φ) ,

−Jzz(ψ̇2SθCθC
2
φ − ψ̇θ̇SθSφCφ)

h3 = Jyy(−θ̇2SφCφ − ψ̇θ̇CθS2
φ + ψ̇θ̇CθC

2
φ + ψ̇2C2

θSφCφ)

Jzz(−ψ̇2C2
θSφCφ + ψ̇θ̇CθS

2
φ − ψ̇θ̇CθC2

φ + θ̇2SφCφ) ,

such that  τψ
τθ
τφ

 =

 ḃ1 − h1

ḃ2 − h2

ḃ3 − h3

 .
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Thus, grouping terms and using (2.7), it follows that for J

J(~η) =

 Jxxs
2θ + Jyyc

2θs2φ+ Jzzc
2θc2φ cθcφsφ(Jyy − Jzz) −Jxxsθ

cθcφsφ(Jyy − Jzz) Jyyc
2φ+ Jzzs

2φ 0
−Jxxsθ 0 Jxx

 , (2.8)

and

C(~η,~̇η) =

 c11 c12 c13

c21 c22 c23

c31 c32 c33

 ,
where

c11 = Jxxθ̇SθCθ + Jyy(−θ̇SθCθS2
φ + φ̇C2

θSφCφ)− Jzz(θ̇SθCθC2
φ + φ̇C2

θSφCφ),

c12 = Jxxψ̇SθCθ − Jyy(θ̇SθSφCφ + φ̇CθS
2
φ − φ̇CθC2

φ + ψ̇SθCθS
2
φ)

+Jzz(φ̇CθS
2
φ − φ̇CθC2

φ − ψ̇SθCθC2
φ + θ̇SθSφCφ),

c13 = −Jxxθ̇Cθ + Jyyψ̇C
2
θSφCφ − Jzzψ̇C2

θSφCφ,

c21 = −Jxxψ̇SθCθ + Jyyψ̇SθCθS
2
φ + Jzzψ̇SθCθC

2
φ,

c22 = −Jyyφ̇SφCφ + Jzzφ̇SφCφ,

c23 = Jxxψ̇Cθ + Jyy(−θ̇SφCφ + ψ̇CθC
2
φ − ψ̇CθS2

φ) + Jzz(ψ̇CθS
2
φ − ψ̇CθC2

φ + θ̇SφCφ),

c31 = −Jyyψ̇C2
θSφCφ + Jzzψ̇C

2
θSφCφ,

c32 = −Jxxψ̇Cθ + Jyy(θ̇SφCφ + ψ̇CθS
2
φ − ψ̇CθC2

φ)− Jzz(ψ̇CθS2
φ − ψ̇CθC2

φ + θ̇SφCφ),

c33 = 0.

Although (2.6) and (2.7) were developed taking in mind a multicopter with four
rotors, these equations are also valid for other aerial configurations as long as the
forces and torques are rewritten.

2.2.3 Newton-Euler Methodology

The general mathematical model describing the dynamics of an aircraft evolving in
a three-dimensional space is obtained by representing the aircraft as a solid body,
which is subject to non-conservative forces ~FI ∈ R3 expressed in an inertial frame I,
and torques ~τ ∈ R3 applied to its center of mass and specified with respect to the
body frame B, and by using the Newton-Euler approach [22, 84, 85, 86]

m~̈p = ~FI , (2.9)

Ṙ = RΩ̂, (2.10)

J ~̇Ω = −~Ω× J~Ω + ~τ , (2.11)

where Ω̂ describes the anti-symmetric matrix of ~Ω and J represents the constant
inertia matrix around the center of mass.
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2.2.4 Quadrotor dynamic model

Consider the aerial vehicle from Figure 2.2, it can be concluded that

~FI =

 CψCθ −SψCθ Sθ
SψCφ + CψSθSφ CψCφ − SψSθSφ −CθSφ
SψSφ − CψSθCφ CψSφ + SψSθCφ CθCφ

 ~Fth + ~g, (2.12)

where ~g = [0 0 − g]T denotes the gravity acceleration vector. The main vector force

produced by the rotors is considered as ~Fth = [0 0 Fth]
T .

Considering the total forces and torques from (2.3), and introducing them into (2.9)
and into (2.11), it follows that

mẍ = − sin θFth,
mÿ = cos θ sinφFth,
mz̈ = cos θ cosφFth −mg,

(2.13)

ψ̈θ̈
φ̈

 = J−1

τzτy
τx

−
 c11 c12 c13

c21 c22 c23

c31 c32 c33

ψ̇θ̇
φ̇

 . (2.14)

Equation (2.13) represents the translational dynamics of the aerial vehicle while
(2.14) introduces its rotational dynamics.

2.3 Quadrotor Quaternion Modeling

Quaternions were proposed by Hamilton in the nineteenth century as a three-
dimensional version of complex numbers (represented as one real and one imaginary
part) [42]. They are also known as “hypercomplex” numbers (the hypercomplex space
is noted as H) since they can be represented as one real plus three imaginary numbers
as q , q0 + q1ı̂+ q2̂+ q3k̂, where ı̂, ̂, k̂ ∈ I, such that ı̂2 = ̂2 = k̂2 = ı̂̂k̂ = −1, and
q0, · · · , q3 ∈ R. Another common representation of a quaternion is using one scalar
number and a vector as q , q0 + ~q, with ~q = [q1 q2 q3]T .

Due to its mathematical and geometrical advantages, this notation will be used
throughout this chapter. Since the space of three dimensional vectors is included in
the quaternion space, then vectors can be treated as quaternions with a scalar part
equal to zero in all of the quaternion operations.

Consider the rotation illustrated in Figure 2.3 as vector ~ϑ = [ϑx ϑy ϑz]
T with

magnitude ϑ = ||~ϑ|| in radians, acting on an axis represented as a unitary vector

~u = ~ϑ/||~ϑ||, the axis-angle representation of this rotation is denoted as ~ϑ = ϑ~u.
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Figure 2.3: Axis-angle representation of a rigid body rotation

It is widely known that a simple rotation, with magnitude ϕ in radians, over a plane
can be represented using the Euler Formula as eîϕ = cosϕ+ î sinϕ [43]. In the 19th
century, a French banker named Olinde Rodrigues expanded the Euler Formula to
include 3-dimensional rotations using quaternions. This expression, known as the
Euler-Rodrigues formula is the exponential mapping of the axis-angle representation
of a rotation, defined as

q = e
1
2
ϑ~u = cos(ϑ/2) + ~u sin(ϑ/2), (2.15)

notice that ||q|| = 1, thus q can be called a unit quaternion.

Inversely, the axis-angle representation of a rotation can be derived from a quaternion
using the logarithmic mapping

~ϑ = 2 ln q, (2.16)

with

ln q :=

 [0 0 0]T , if ||~q|| = 0,
~q

||~q|| arccos q0 , if ||~q|| 6= 0.
(2.17)

2.3.1 Quaternion algebra

Product: Because of its significance, historically as well as in the definition of the
quaternion space, the main operation of quaternions is the multiplication. Other
operations and properties arise from this definition, like the conjugate and the norm.
Considering q, r ∈ H, the quaternion operations are defined as:

q ⊗ r := (q0r0 − ~q · ~r) + (q0 ~r + r0 ~q + ~q × ~r) . (2.18)

It is noteworthy that quaternion product is not commutative, which means that
q ⊗ r 6= r ⊗ q. This is because of the same non-commutativity property of the cross
product used in the definition.
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Quaternion double cover: Due to the geometrical properties of the Euler-Rodrigues
formula, every possible quaternion has a negative counterpart, which corresponds to
an equivalent rotation, but adding a full 2π turn through the same axis. Let q1 and
q2 be two quaternions such that

q1 := cos(ϑ/2) + ~u sin(ϑ/2),
q2 := cos((ϑ+ 2π)/2) + ~u sin((ϑ+ 2π)/2),

(2.19)

then, q1 and q2 represent the same orientation, with the difference that q2 takes an
additional 2π rotation around ~u, furthermore, q1 = −q2.

Sum: The sum of quaternions is simply defined as the sum of each of its elements,

q + r := q0 + r0 + ~q + ~r. (2.20)

The set of all quaternions with operations addition and multiplication defines a
non-commutative division ring. See [45] for more information on this matter.

Conjugate: The conjugate of a unit quaternion expresses an inverse rotation over
the same axis, and is defined as

q∗ := q0 − ~q , (2.21)

while the conjugate of a product of quaternions is

(q ⊗ r)∗ = r∗ ⊗ q∗, (2.22)

which can be proved by expanding the corresponding products.

Norm: The norm of a quaternion is defined by

||q||2 := q ⊗ q∗ = q2
0 + q2

1 + q2
2 + q2

3 . (2.23)

Inverse: The quaternion product forms a closed-loop group. That is, the product
of two non-null quaternions is another quaternion. This means that for any non-null
quaternion there exists an inverse quaternion such that

q−1 :=
q∗

||q|| ,
q ⊗ q−1 = q−1 ⊗ q = 1 + [ 0 0 0 ]T .

(2.24)

Vector Rotation: Considering ~p ∈ R3 as a 3D vector in a first reference frame
(the earth coordinates example), and ~p ′ as the same vector but now with respect to
a new reference frame (for example, a vehicle’s moving coordinates), then ~p can be
transformed into ~p ′ using a double quaternion product as

~p ′ = q−1 ⊗ ~p⊗ q = q∗ ⊗ ~p⊗ q, (2.25)

where the quaternion q represents the rotation of the second reference frame with
respect to the first one. Note this rotation does not affect the vector’s magnitude.
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Derivative: The derivative of any unit quaternion can be obtained by differentiating
(2.25) as

~̇p ′ = q̇−1 ⊗ ~p⊗ q + q−1 ⊗ ~p⊗ q̇ = q̇−1 ⊗ q ⊗ ~p ′ + ~p ′ ⊗ q−1 ⊗ q̇. (2.26)

Since q is an unit quaternion, then q−1 ⊗ q = 1 and q̇−1 ⊗ q + q−1 ⊗ q̇, which yields

~̇p ′ = ~p ′ ⊗ q−1 ⊗ q̇ − q−1 ⊗ q̇ ⊗ ~p ′ = 2(q−1 ⊗ q̇)× ~p ′. (2.27)

Note ~̇p ′ is the translational velocity of the vector, ~̇p ′ = ~Ω × ~p ′, where ~Ω is the
rotational velocity of ~p ′, thus

~Ω× ~p ′ = 2(q−1 ⊗ q̇)× ~p ′, (2.28)

which can be reduced to

~Ω = 2(q−1 ⊗ q̇)⇒ q̇ =
1

2
q ⊗ ~Ω. (2.29)

2.3.2 Rigid Body Dynamic Modeling

The translational and rotational state of any given rigid body can also be expressed as

a tuple x :=
[
~p ~̇p q ~Ω

]T
where ~p ∈ R3 symbolizes the body position in the inertial

frame I, ~̇p its velocity, q = q0 +
[
q1 q2 q3

]T
defines the vehicle orientation with

respect to I, represented as a unit quaternion and ~Ω =
[
ωx ωy ωz

]T
represents

the rotational velocity in the moving reference frame B located the body’s center of
mass. Therefore, following Newton’s equations of motion, the dynamic model of any
rigid body expressed with unit quaternions is

ẋ = d
dt


~p

~̇p
q
~Ω

 =


~̇p

m−1 ~FI
1
2
q ⊗ ~Ω

J−1
(
~τ − ~Ω× J ~Ω

)
 , (2.30)

where J is the inertia matrix, ~τ represents the total torque, both with respect to
B, and ~FI defines the total force applied to the body in the I. Equation (2.30) can
be used to describe any mechanical system including aerial vehicles. In the next
subsection the dynamics of a quadrotor will be represented using this approach.

2.3.3 Quadrotor quaternion dynamical model

If the mechanical configuration is considered to be symmetric, and some effects as
blade flapping and the misalignment on the motors’ axes could be considered small
enough, it can then be assumed that the forces and torques which act on the vehicle
are only the ones illustrated on Figure 2.4.
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Figure 2.4: Quadrotor free body diagram

Here, two reference frames are considered. I = [ ex ey ez ]T defines the fixed inertial

coordinates, and B =
[
ebx eby ebz

]T
represents the moving body frame located on

the vehicle’s center of mass, and q = e
1
2
~ϑ denotes a quaternion rotation from I to B.

Let ~Fth and ~τ symbolize the total thrust force, and torque from (2.3), since ~Fth
and ~τ act on B, a quaternion rotation using (2.25) is applied to express the vehicle
dynamics as

ẋquad = d
dt


~p

~̇p
q
~Ω

 =


~̇p

q ⊗ ~Fth
m
⊗ q∗ + ~g

1
2
q ⊗ ~Ω

J−1
(
~τ − ~Ω× J ~Ω

)
 . (2.31)

Note from (2.31) that the quadrotor’s rotational and translational dynamics are

coupled, due to the orientation of ~F Ith depending on the vehicle’s attitude q. Never-
theless, using an appropriate approach and some properties of unit quaternions, the
quadrotor can be easily stabilized despite its underactuated nature.

2.3.4 Decoupling the vehicle dynamics

Since the attitude sub-system of the quadrotor is completely actuated, we address it
in this subsection.

2.3.4.1 Quaternion Rotational Model

From (2.31), the rotational dynamics of a quadrotor can be written as

ẋr = d
dt

[
q
~Ω

]
=

[
1
2
q ⊗ ~Ω

J−1
(
~τ − ~Ω× J ~Ω

) ] , (2.32)
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If (2.32) is stabilized using a control action applied by ~τ , then the quaternion attitude

will converge to q0 = 1 + [0 0 0]T while the axis-angle orientation ~ϑ and its angular

velocity ~Ω will converge to zero.

Given a desired attitude trajectory defined by a quaternion qd and its angular velocity
~Ωd, (2.32) can be defined in terms of the error quaternion qe , q∗d ⊗ q as

d
dt

[
qe
~Ωe

]
=

[
1
2
qe ⊗ ~Ωe

J−1
(
~τ − ~Ωe × J ~Ωe

) ] , (2.33)

if τu is correctly designed in terms of the attitude error. Then qe → q0, implying
q → qd.

2.3.4.2 Quadrotor Translational Model

From (2.31) and defining ~F Ith = q⊗ ~Fth⊗ q∗, the translational dynamics are given by

ẋt = d
dt

[
~p

~̇p

]
=

[
~̇p

m−1 ~F Ith + ~g

]
. (2.34)

From (2.34), a desired force ~F Ith can easily be designed such that xt and ẋt converge
to zero. If a position error is defined as ~pe = ~p− ~pd, where ~pd represents a desired
position for the UAV, then the translational error dynamics can be written as

d
dt

[
~pe
~̇pe

]
=

[
~̇pe

m−1 ~F Ith + ~g

]
. (2.35)

Consequently, if an adequate controller is designed for ~F Ith the position error will
converge to zero, meaning the quadrotor can be stabilized in any desired position.

2.3.5 Coupled Dynamics

Analyzing (2.35), it yields that the translational model can be seen as a fully actuated

system, in which ~F Ith can be designed to point at any direction. But considering the
complete model of the quadrotor, the force that the propellers really exert depends
on the attitude subsystem as seen in (2.31).

Define a desired force ~Fu ∈ R3 w.r.t. I which stabilizes system (2.35), given the
direction and magnitude of such force, the attitude can be controlled using τ such
that the direction of ~F Ith is aligned with ~Fu, thus orientating the quadrotor thrust in
the direction required to control the translational dynamics.

This quaternion is derived from the shortest rotation between both vectors, and
represented by qd. Two equivalent methods can be used to compute it.
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Quaternion trajectory (option 1): Recalling the Euler-Rodrigues formula from
(2.15), qd is defined as

qd = e
1
2
ϑd~ud = cos

(
ϑd
2

)
+ ~ud sin

(
ϑd
2

)
, (2.36)

where ~ud and ϑd denote respectively the axis and the angle of the shortest rotation
between ~Fth and ~Fu. Defining ~nz and ~nu as the normalized vectors of ~Fth and ~Fu
respectively (note ~nz = [0 0 1]T is constant), the cross product between these vectors
is defined as

~nu × ~nz = ~ud sin(ϑd), (2.37)

while the scalar product is given by

~nu · ~nz = cos(ϑd). (2.38)

Some known trigonometric functions can be used for cutting the rotation in half as

cos

(
ϑd
2

)
= ±

√
1 + cos(ϑd)

2
, sin

(
ϑd
2

)
= ±

√
1− cos(ϑd)

2
. (2.39)

Then the attitude that aligns the thrust to the controller direction can be designed
using trigonometric identities and the Euler-Rodrigues formula as

qt := ±
(√

1 + ~nu · ~nz
2

+
~nu × ~nz
||~nu × ~nz||

√
1− ~nu · ~nz

2

)
(2.40)

Fth :=
∣∣∣∣∣∣~Fu∣∣∣∣∣∣ .

Since ~nz is always aligned with the vertical axis of the body frame B, and the direction
of (2.40) is defined by a cross product, then qt will only rotate the vehicle in the xy
plane.

An additional rotation around the z axis can be added by introducing

qd := qt ⊗ qz, (2.41)

where qz denotes the desired rotation over the z axis. Figure 2.5 illustrates the
behavior of the aforementioned rotations.
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Figure 2.5: Rotation that aligns the thrust vector with the desired position
control force, with an additional rotation in the z axis.

Quaternion trajectory (option 2): From the definition of the quaternion product,
and treating ~nu and ~nz as quaternions with zero-value scalar parts, (2.37) and (2.38)
can be combined as

~nu ⊗ ~n∗z = −~nu · ~n∗z + ~nu × ~n∗z = ~nz · ~nu + ~nz × ~nu = cos(ϑd) + ~ud sin(ϑd) . (2.42)

Since (2.42) expresses twice the desired rotation needed in (2.36), exponential and
logarithmic properties are then applied, thus resulting in

qt = e

ln(~nu ⊗ ~n∗z)
2 . (2.43)

Note since ~nz only acts in the vertical axis of the quadrotor, then qd will only compute
rotations around the xy plane of the inertial frame. Considering ψd as a desired
rotation around the z axis of the vehicle’s body frame, the desired quaternion can be
enhanced as

qd = e

ln(~nu ⊗ ~n∗z)
2 ⊗ qz = e

ln(~nu ⊗ ~n∗z)
2 ⊗ e

[0 0 ψd]
T

2 . (2.44)

Introducing (2.44) into the rotational error dynamic model from (2.33), and if τ is

designed such that q → qd, then it implies that ~F Ith → ~Fu such that system (2.35)

can be stabilized if ~Fu is correctly designed.

2.4 Dual Quaternion Modeling

The study of translational and rotational dynamics using simple unit quaternions
usually do so by separating the position and rotation states as in the previous
sections. This is very common when dealing with relatively simple systems such as
quadrotors and other similar types of aircraft, however, mathematical models can
get very complicated when multiple rotations and translations are involved. Such
case could occur, for example, in digital animations, multi-agent robotic systems,
and autonomous aerial manipulators.
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Over many years, researchers came with the idea of expanding the concept of the
quaternion to include more complex geometrical transformations. Such ideas started
developing in the realm of non-euclidean geometry, analysis, and topology. In 1873, an
English geometer named William Kingdon Clifford made a first sketch of an expansion
of Hamilton’s quaternions, by adding a second quaternion which is multiplied by a
new imaginary term, he gave this concept the name of biquaternion [87], [88]. Later
on, Alexander McAulay introduced in 1898 a nullipotent term ε to the biquaternion.
This term can be defined in any way, as long as it respects the property

ε 6= 0 | ε2 = 0, (2.45)

with this component, McAulay developed dual quaternion algebra, using the term
of octonions. Finally, in 1985, Aleksandr Kotelnikov studied the applications of
octonions and biquaternions on kinematics [89], concluding that the properties of
unit quaternions are also valid for those numbers, hence, they were eventually known
as Dual Quaternions, which are defined as

q̂ = qR + qDε, ε 6= 0, ε2 = 0, (2.46)

where qR , qD ∈ H are known as the real and dual parts of q̂ respectively.

2.4.1 Dual quaternion operations

Some of the most important operations for dual quaternions are:

Sum: Let q̂1 and q̂2 be dual quaternions, then:

q̂1 + q̂2 = q1R + q2R + [q1D + q2D] ε. (2.47)

Product: The multiplication between dual quaternions is defined as:

q̂1 ⊗ q̂2 = q1R ⊗ q2R + [q1R ⊗ q2D + q1D ⊗ q2R] ε. (2.48)

Norm: The norm of a dual quaternion is defined as:

||q̂||2 = q̂ ⊗ q̂∗. (2.49)

Note that if ||q̂||2 = 1 + 0ε, then q̂ is called a unit dual quaternion.

Conjugation: The conjugation of a dual quaternion is defined as:

q̂∗ = q∗R − q∗Dε. (2.50)

Since in this work we are dealing only with unit dual quaternions, then we can say
that q̂∗ = q̂−1
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Dual quaternion logarithm: A dual quaternion can be transformed by ln q̂ =
1
2
(~ϑ+~pBε), where ~ϑ = 2 ln q represents the body’s rotation given by a unit quaternion

logarithmic mapping and ~pB denotes the position vector in the body frame.

This yields a relationship between a dual quaternion and the screw representation of
simultaneous rotation and translation, illustrated in Figure 2.6, and defined as

2 ln q̂ = ~ϑ+ ~pB ε . (2.51)

Figure 2.6: Simultaneous rotation and translation of a rigid body.

Multiple Dual Quaternion Transformation Some robots involve successions
of rotations and translations, such as aerial manipulators (a quadrotor provided
with an attached robotic arm). Dual quaternions become useful in this case. For
example, in Figure 2.7, q̂1 represents the transformation from reference frame R1 to
R2, q̂2 denotes the relative transformation from R2 to R3, and q̂3 defines the total
transformation from R1 to R3.

Figure 2.7: Simultaneous dual quaternion transformations can be expressed as a
one, using the dual quaternion product.

The total transformation from R1 to R3 can be computed using a dual quaternion
product as

q̂3 = q̂1 ⊗ q̂2. (2.52)

If more transformations are required, this expression can be extended by adding as
much dual quaternions as needed.
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2.4.1.1 Dual Quaternion Inverse Transformations

From (2.52), inverse kinematics can be easily obtained just by multiplying by the
conjugate of any required transformation. For example, if q̂2 and q̂3 are given, q̂1

can be computed as

q̂3 ⊗ q̂∗2 = q̂1 ⊗ q̂2 ⊗ q̂∗2 ⇒ q̂1 = q̂3 ⊗ q̂∗2. (2.53)

Similarly, if q̂1 and q̂3 are known, q̂2 can be computed as

q̂∗1 ⊗ q̂3 = q̂∗1 ⊗ q̂1 ⊗ q̂2 ⇒ q̂2 = q̂∗1 ⊗ q̂3. (2.54)

2.4.2 Dual Quaternion Kinematics

Supposing a rigid body is subject to a translation ~p expressed in the inertial reference
frame (or ~pB ∈ R3 if its represented with respect to the body’s reference frame),
followed by a rotation represented by a quaternion q, then its dual quaternion
transformation can be expressed as

q̂ = q +
1

2
~p⊗ qε = q +

1

2
q ⊗ ~pBε, (2.55)

where ⊗ is a quaternion product. Since ||q|| = 1, then q̂ is considered to be a unit
dual quaternion.

The derivate of the previous equation is obtained by differentiating (2.55) as

˙̂q = q̇ +
1

2

[
q̇ ⊗ ~pB + q ⊗ ~̇pB

]
ε

=
1

2
q ⊗ ~Ω +

[
1

4
q ⊗ ~Ω⊗ ~pB +

1

2
q ⊗ ~̇pB

]
ε

=
1

2
q ⊗ ~Ω +

[
1

2
q ⊗ (~Ω× ~pB) +

1

4
q ⊗ ~pB ⊗ ~Ω +

1

2
q ⊗ ~̇pB

]
ε

=
1

2

(
q +

q ⊗ ~pB
2

ε

)
⊗
(
~Ω + [~Ω× ~pB + ~̇pB]ε

)
. (2.56)

Define
ξ̂ , ~Ω + [~Ω× ~pB + ~̇pB]ε, (2.57)

where ξ̂ is the twist dual vector (combination of angular and translational velocities).
Finally, the expression for the derivate of a dual quaternion is written as

˙̂q =
1

2
q̂ ⊗ ξ̂. (2.58)

This can be interpreted as a screw; containing a translation vector along its length,
and a rotation that around itself, see Figure 2.6.
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2.4.3 Quadrotor Dual Quaternion Model

Consider the quadrotor as a rigid body, and describing its rotation and translation
with respect to the body’s reference frame as a dual quaternion q̂v. Its dynamic
model is given by [

˙̂qv
˙̂
ξv

]
=

[
1
2
q̂v ⊗ ξ̂v
F̂v + ûv

]
, (2.59)

with
ξ̂v = ~Ωv + [~Ωv × ~pv + ~̇pv]ε,

where ~Ωv expresses the vehicle angular velocity and ~pv defines its position with
respect to its local frame.

The control and external forces are included in the terms ~Fv and ûv as

F̂v = ~av + (~av × ~pv + ~Ωv × ~̇pv)ε,
ûv = J−1

v ~τv + [J−1
v ~τv × ~pv +m−1

v
~Fv]ε,

~av = −J−1
v (~Ωv × Jv~Ωv).

(2.60)

where Jv denotes the quadrotor’s inertia matrix, mv represents its mass, ~τv ∈ R3

corresponds to the total torque, and ~Fv = ~Fth + q∗ ⊗ m~g ⊗ q is the total force
containing the thrust and gravity vectors in the body reference frame.

In the case of a symmetric vehicle, it is considered that the center of mass is located
in the structure’s geometric center. The effects of the combination of ~Ωv and ~̇pv can
be considered to be nonexistent, thus simplifying the quadrotor model, which can be
rewritten as [

˙̂qv
˙̂
ξv

]
=

[
1
2
q̂v ⊗ ξ̂v
ûv

]
, (2.61)

with ξ̂v = ~Ωv + ~̇pvε, and

ûv = −J−1
v (~Ωv × Jv~Ωv − ~τv) + [m−1

v
~Fv]ε. (2.62)

Defining ~τv as a function of a quaternion reference computed by (2.40) or (2.44),
then the control action, given by ûv can be designed to stabilize system (2.61) using
many methodologies.
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2.5 Modeling approaches conclusions

The mathematical concepts and properties of quaternions have been known for many
years. However, until very recently, most research works in robotics, more specifically
in UAVs has been based on more conservative approaches such as Euler angles.
Nevertheless, the presence of important non-linearities, undesired effects such as the
Gimball-Lock, and an inherent complexity when multiple rotations and translations
are present, hinder the development of bolder algorithms and applications.

The aim of this chapter is to give an introduction to dynamic modeling of quadrotors
using unit and dual quaternions. Even if this kind of UAVs are inherently underactu-
ated, an approach was introduced such that its dynamic equations can be analyzed
and treated as a fully actuated system. Although his approach can appear to be
less intuitive and difficult to conceptualize, the application of quaternions can really
simplify dynamic models, and help in the design of better controllers.





Chapter 3

Control approaches for aerial
vehicles

3.1 Euler angles based controllers

In this section, two of the classical control methodologies will be presented to exemplify
the complexity and drawbacks of the Euler angles formulation of the quadrotor model,
exposing phenomena such as singularities and simplifications commonly made when
using this approach.

A common practice with these techniques is to consider separately on one hand
the vehicle vertical dynamics and on the other hand the longitudinal and lateral
equations, following this methodology, an altitude controller using a sliding mode
approach will be introduced, then a backstepping algorithm will be developed for
the x and y translational equations.

3.1.1 Sliding mode altitude control

Firstly, the quadrotor altitude subsystem is considered from (2.13) as

mz̈ = cos θ cosφFth −mg, (3.1)

then a sliding manifold is proposed as

sz = ż + kzz , ṡz = z̈ + kz ż , kz > 0 , (3.2)

define a positive definite function

Vz =
1

2
s2
z , (3.3)

37
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such that its derivative is given by

V̇z = sz ṡz = sz(z̈ + kz ż) = sz

(
Fth
m

cos θ cosφ− g + kz ż

)
. (3.4)

Proposing a control thrust force as

Fth =
m(−kz ż + g − sign(sz))

cos θ cosφ
, (3.5)

then (3.4) becomes
V̇z = sz (−sign(sz)) . (3.6)

Since Vz > 0 and V̇z < 0 for all ż + kzz 6= 0, the vehicle altitude is asymptotically
stabilized by controller (3.5).

Note that this control approach has two drawbacks. Firstly, it is easy to remark that
this controller is only valid if cos θ, cosφ 6= 0, meaning it reaches a singularity when
the vehicle inclines at 90◦ in either pitch or roll angles. Secondly, since (3.5) does not
take the lateral states into account, the magnitude of the force can not be regulated
to take into account the vehicle x and y position.

3.1.2 Backstepping control

Since the quadrotor model from (2.13) and (2.14) includes highly nonlinear compo-
nents, it is a common practice to simplify the equations in order to design controllers.

Considering the altitude is regulated by (3.5), and only small angle movements are
performed by the vehicle (cos θ, cosφ ≈ 1, sin θ ≈ θ, sinφ ≈ φ), and neglecting the
Coriolis gyroscopic effects, then the quadrotor longitudinal and lateral dynamics can
be written as

d

dt


x
ẋ
θ

θ̇

 =


ẋ
−Fth

m
θ

θ̇
τθ

 ,
d

dt


y
ẏ
φ

φ̇

 =


ẏ

Fth
m
φ

φ̇
τφ

 . (3.7)

For design purposes, consider the following dynamic system, which has a similar
structure as (3.7):

d

dt


x1

x2

x3

x4

 =


x2

bx3

x4

u

 . (3.8)

Define a positive definite function as

V1 =
1

2
e2

1, (3.9)
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where e1 = x1 − xd1 represents the error between x1 and its desired value xd1, ẋ
d
1 = xd2

such that differentiating (3.9) yields

V̇1 = e1ė1 = e1(ẋ1 − ẋd1) = e1(x2 − xd2). (3.10)

In order to achieve a decreasing V1, a virtual variable is proposed as

xv2 = xd2 − e1, (3.11)

such that

V̇1 = e1(x2 − xv2 − e1) = −e2
1 + e1(x2 − xv2) = −e2

1 + e1e2, (3.12)

where e2 = x2 − xv2 defines a speed error.

Introducing a second positive definite function as

V2 =
1

2
e2

2 , V̇2 = e2ė2 = e2(ẋ2 − ẋv2) = e2(bx3 − ẋv2), (3.13)

defining a new virtual variable δv1 = −ẋv2 + e2 + e1, and an error as e3 = δv1 + bx3,
such that (3.13) yields

V̇2 = −e2
2 − e1e2 + e2e3, (3.14)

Proposing a third positive definite function as

V3 =
1

2
e2

3 , V̇3 = e3ė3 = e3(δ̇v1 + bx4). (3.15)

Defining the last virtual variable and error as δv2 = δ̇v1 + e2 + e3 and e4 = δv2 + x4,
then (3.15) yields

V̇3 = −e2
3 − e2e3 + e3e4. (3.16)

Finally, the last positive definite function and its derivative are introduced as

V4 =
1

2
e2

4 , V̇4 = e4ė4 = e4(δ̇v2 + u). (3.17)

In order to ensure asymptotic convergence, it is desired that V̇4 = −e2
4 − e3e4, such

that a Lyapunov function and its derivative can be defined as

V = V1 + V2 + V3 + V4 =
1

2
e2

1 +
1

2
e2

2 +
1

2
e2

3 +
1

2
e2

4 (3.18)

V̇ = −e2
1 + e1e2 − e2

2 − e1e2 + e2e3 − e2
3 − e2e3 + e3e4 − e2

4 − e3e4 (3.19)

= −e2
1 − e2

2 − e2
3 − e2

4 (3.20)

Therefore the controller that stabilizes system (3.8), according to the Lyapunov
function (3.18) is given by

u = −e4 − e3 − δ̇v2 , (3.21)
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such that V > 0, V̇ < 0 for all ei 6= 0, i = 1, · · · , 4. Therefore the errors converge
asymptotically to zero.

Substituting errors and virtual variables as:

δv1 = 2(x1 − xd1) + 2(x2 − xd2)− bxd3, (3.22)

δ̇v1 = 2(x2 − xd2) + 2b(x3 − xd3)− bxd4, (3.23)

δv2 = 3(x1 − xd1) + 5(x2 − xd2) + 3b(x3 − xd3)− bxd4, (3.24)

δ̇v2 = 3(x2 − xd2) + 5b(x3 − xd3) + 3b(x4 − xd4)− bẋd4, (3.25)

such that the controller yields

u = −(δv2 + x4)− (δv1 + bx3)− δ̇v2 , (3.26)

= −5(x1 − xd1)− 10(x2 − xd2)− 9b(x3 − xd3)−
(
(3b+ 1)x4 − 4bxd4

)
+ bẋd4 (3.27)

Since the equilibrium point of the quadrotor model lies in hovering state, it is desired
that φd, θd, φ̇d, θ̇d = 0, thus, the final position controllers for the vehicle are derived
from (3.7) and (3.27)

τθ = −5(x− xd)− 10(ẋ− ẋd) + 9
Fth
m
θ −

(
3
Fth
m

+ 1

)
θ̇, (3.28)

τφ = −5(y − yd)− 10(ẏ − ẏd)− 9
Fth
m
φ−

(
3
Fth
m

+ 1

)
φ̇, (3.29)

where xd, yd represent the vehicle desired position.

It is easy to note the drawbacks of these controllers, first, in this example only small
angle movements were considered, thus limiting the quadrotor real capabilities, then
a consideration of the complete vehicle dynamics would be a difficult task, that could
reveal nonlinearities and uncertainties that might be difficult to deal with. Another
alternative for controlling the quadrotor will be discussed in the following.

3.2 Quaternion state feedback controller

In this section, a simple quaternion-based feedback controller is designed as an
example using Lyapunov theory based on the proposed model from Section 2.3.2.
This controller, consists on a force in the 3-dimensional space defined as

~Fu = −Kpt (~p− ~pd)−Kdt

(
~̇p− ~̇pd

)
−m~g, (3.30)

where Kpt, Kdt ∈ R3×3 denote positive control gains, and ~pd symbolizes the desired
position for the quadrotor.
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Then, the force computed by (3.30) is used to determine the attitude control action
by introducing

~τ =− 2Kpr ln


q∗z ⊗


±



√√√√√√√1 +
~Fu

||~Fu||
·

0
0
1


2

−

~Fu

||~Fu||
×

0
0
1


∣∣∣∣∣∣
∣∣∣∣∣∣ ~Fu

||~Fu||
×

0
0
1

∣∣∣∣∣∣
∣∣∣∣∣∣

√√√√√√√1− ~Fu

||~Fu||
·

0
0
1


2




⊗ q


−Kdr

~Ω + ~Ω× J ~Ω, (3.31)

where qz = cos(ψd/2)+[0 0 1]T sin(ψd/2) represents the quaternion transformation of
the desired yaw angle, and control gains are denoted by positive matrices Kpr, Kdr ∈
R3×3.

The development and stability proof of this algorithm will be explained in the
following subsections.

3.2.1 Translational Controller

First, from (2.35), the linear translational subsystem can be written as

d

dt

[
~pe
~̇pe

]
=

[
03×3 I3×3

03×3 03×3

] [
~pe
~̇pe

]
+

[
03×3

m−1I3×3

](
~Fu +m~g

)
. (3.32)

Propose the following positive definite function and its derivative as

Vt =
1

2

[
~pe
~̇pe

]
·
[
~pe
~̇pe

]
, (3.33)

V̇t =

[
~pe
~̇pe

]
·
[[

03×3 I3×3

03×3 03×3

] [
~pe
~̇pe

]
+

[
03×3

m−1I3×3

](
~Fu +m~g

)]
. (3.34)

Proposing

~Fu = −
[
Kpt Kpt

] [~pe
~̇pe

]
−m~g, (3.35)

where Kpt, Kdt ∈ R3×3 contain control gains and are defined as

Kpt =

kptx 0 0
0 kpty 0
0 0 kptz

 , Kdt =

kdtx 0 0
0 kdty 0
0 0 kdtz

 , (3.36)

then (3.33) can be rewritten as

V̇t =

[
~pe
~̇pe

]
·
[[

03×3 I3×3

03×3 03×3

]
−
[

03×3

m−1I3×3

] [
Kpt Kpt

]] [~pe
~̇pe

]
. (3.37)



Control approaches for aerial vehicles 42

In order to asymptotically stabilize the sub-system, Kpt and Kdt must be chosen
such that the real parts of

eig

([
03×3 I3×3

03×3 03×3

]
+

[
03×3

m−1I3×3

] [
Kpt Kdt

])
(3.38)

are negative definite.

If the condition satisfied, then asymptotic stability is ensured for system (3.32) since

Vt > 0, V̇t < 0 ∀
[
~pe
~̇pe

]
6= 0. (3.39)

3.2.2 Rotational Controller

Considering qe , q∗d⊗q and ~ϑe = 2 ln(qe), ~̇ϑe = ~Ω−2 d
dt

ln(qd), the same methodology
from Section 3.2.1 is now applied to the rotational error model in its axis-angle
representation by introducing

d

dt

[
~ϑe
~̇ϑe

]
=

[
03×3 I3×3

03×3 03×3

][~ϑe
~̇ϑe

]
+

[
03×3

J−1

](
~τ − ~̇ϑe × J ~̇ϑe

)
. (3.40)

Proposing a positive-definite function with its derivative as

Vr =
1

2

[
~ϑe
~̇ϑe

]
·
[
~ϑe
~̇ϑe

]
, (3.41)

V̇r =

[
~ϑe
~̇ϑe

]
·
[[

03×3 I3×3

03×3 03×3

][~ϑe
~̇ϑe

]
+

[
03×3

J−1

](
~τ − ~̇ϑe × J ~̇ϑe

)]
. (3.42)

The controller can be defined as

~τ = −
[
Kpr Kdr

] [~ϑe
~̇ϑe

]
+ ~̇ϑe × J ~̇ϑe, (3.43)

with control gains given by

Kpr =

kprx 0 0
0 kpry 0
0 0 kprz

 , Kdr =

kdrx 0 0
0 kdry 0
0 0 kdrz

 . (3.44)

Therefore, asymptotic stability for the rotational sub-system is ensured as long the
real parts of

eig

([
03×3 I3×3

03×3 03×3

]
+

[
03×3

J−1

] [
Kpr Kdr

])
(3.45)
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are negative such that

Vr > 0, V̇r < 0 ∀
[
~ϑe
~̇ϑe

]
6= 0. (3.46)

Introducing (3.35) into (2.40), a desired attitude is defined to compute qe and ~ϑe
such that the final controller expression yields (3.30) and (3.31).

3.2.3 Simulation example

In this subsection, numerical simulations of the model presented in (2.31) and the
controllers from (3.35) and (3.43) are illustrated. The model parameters were taken
from a custom-made quadrotor, and estimated using computer assisted design and
finite-element techniques such that

m = 1.3 kg , J =

0.177 0 0
0 0.177 0
0 0 0.354

 kg m2 . (3.47)

For the controllers, their gains were empirically selected as

Kpt =

8 0 0
0 8 0
0 0 8

 , Kdt =

4 0 0
0 4 0
0 0 4

 , Kr =

50 0 0
0 50 0
0 0 50

 , Kr =

10 0 0
0 10 0
0 0 10

 ,
(3.48)

such that the eigenvalues of the closed-loop system ensure its stability.

A flight scenario is considered in which the quadrotor takes off from the origin to an
altitude of 1m, then a r = 2m circular path is followed while a rotation around the
vehicle’s z axis is tracked such that the quadrotor’s front is always pointed towards
the center of the circle. This is achieved by designing a circular path pd as

~pd =



[
0 0 1

]T ∀ t < 5s −r cos(t− 5) + r
−r sin(t− 5)
0

 ∀ t > 5s

, (3.49)

and a complement to qz from (2.41) by adapting (2.43) such that

δxy =
[
1 0 0

]T − p , qz = e

ln
(
δxy ⊗ (−[1 0 0]T )

)
2 . (3.50)

The controllers from (3.35) and (3.43) compute the forces and torques required to
stabilize the vehicle in the desired references, shown in Figures 3.1 and 3.2 respectively.
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Figure 3.1: Translational controller
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Figure 3.2: Rotational controller

The desired position is tracked by the effects of the control force as depicted on
Figure 3.3. The quadrotor’s front is symbolized by an arrow. Note its direction is
pointed towards the center of the circle, following (3.50).
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Figure 3.3: Quadrotor 3D flight
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Figure 3.4 illustrates the translational response on each axis, the sinusoidal oscillations
correspond to the vehicle circular movement.
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(C) Quadrotor altitude regulation

Figure 3.4: Quadrotor position tracking

The attitude reference computed by (2.40) and (3.50) is represented in Figure 3.5. It
is important to remark that, although the rotation of the vehicle completes more
than one complete tour around the z axis, the attitude is continuous. This lack of
discontinuity points is one of the main advantages of using quaternion approaches.
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Figure 3.5: Quadrotor attitude quaternion trajectory tracking

Finally, to better illustrate the vehicle’s rotational behavior, the equivalent Euler
angles are illustrated on Figure 3.6, which were computed by following

φ = tan−1

(
2(q0q1 + q2q3)

1− 2(q1q1 + q2q2)

)
,

θ = sin−1 (2(q0q2 − q1q3)) , (3.51)

ψ = tan−1

(
2(q0q3 + q1q2)

1− 2(q2q2 + q3q3)

)
.

Note this conversion uncovers the discontinuities that are present when completing
full rotations (±180◦), also note that the yaw angle error displays sudden jumps
when such rotations are reached, this may cause undesired behaviors in experiments
if left unfixed.
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Figure 3.6: Quadrotor attitude axis-angle representation

3.3 Passivity-based quaternion control

Passivity is a fundamental property of many physical systems which involves energy
dissipation and transformation. Passivity-based control (PBC) methodology relies
on synthesizing control laws which render the closed loop system passive [90].

In most of the works found in literature which use passivity to stabilize quadrotors,
it is impossible to directly control the vehicle full dynamics because certain passivity
properties are not satisfied, see [91], [92]. Nevertheless, controllers based on PBC can
be used if the dynamics are modified, this requires the use of more complex algorithms
and high computational cost implementations for just a partial stabilization.

By analyzing the quadrotor dynamic model from (2.32) and (2.34), the system can
be analyzed as a fully actuated systems, linked by a quaternion rotation defined by
(2.40), therefore, meeting the passivity conditions and enabling the use of the PBC
methodology for all the vehicle states.
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3.3.1 Classical PBC methodology

Typical passivity-based control methodology starts with a dynamic system defined as{
ẋ(t) = f(x) + g(x)u(t)
ỹ(t) = h(x)

(3.52)

where x ∈ Rn, u ∈ Rm and ỹ ∈ Rm, f(x), g(x) and h(x) are smooth functions. There
is a function w [u, ỹ] called supply rate, that is locally integrable, i.e.,

t1∫
t0

w [u (t) , ỹ (t)] dt <∞,∀t0 ≤ t1

If there exists a function H(x) ≥ 0, H(0) = 0, such that

H(x(t1))−H (x(t0)) =

t1∫
t0

w [u (t) , ỹ (t)] dt− d(t) (3.53)

then, (3.52) is said to be a dissipative system. When w [u (t) , ỹ (t)] = ỹT (t)u (t),
(3.52) represents a passive system. Here, H(x) represents the storage function and
d(t) is the dissipated energy function. For the system (3.52), passivity is equivalent
to the existence of a scalar H(x) such that,

(∇xH)Tf(x) ≤ 0, h(x) = gT (x)∇xH,

where ∇xH symbolizes the gradient of H with respect to x.

3.3.2 PBC Methodology for a Quad-rotor using Quaternions

The quadrotor dynamic model can be expressed in matrix form as[
mI3×3 03×3

03×3 J

][
~̈p

~̈ϑ

]
+

[
m~g
~0

]
=

[
~Fu
~τu

]
= U , (3.54)

where ~0 represents a zero vector, ~Fu and ~τ denote the desired control force acting in
the 3-dimensional space, and ~τu = ~τ − ~Ω× J~Ω denotes the quadrotor control torque.

Considering d
dt

2 ln q = ~̇ϑ = ~Ω, the total energy of system (3.54) is

H =
1

2

[
~̇p
~Ω

]T [
mI3×3 03×3

03×3 J

] [
~̇p
~Ω

]
+

[
m~g
~0

]T [
~p
~ϑ

]
. (3.55)
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In PBC methodology, the control input is decomposed in two terms

U = Ust(~p, ~ϑ) + Udy(~̇p, ~Ω), (3.56)

where the first term is designed to achieve energy-shaping and the second one injects
damping.

From (3.53), if there exists a Ust such that

−
∫ t

0

UTst
[
~p
~ϑ

]
ỹ(t)dt = Ha

[
~p
~ϑ

]
+ k, (3.57)

for some Ha and a constant k, then the energy-shaping term Ust will ensure that the
map Ust → ỹ is passive with the following form for the desired energy function

Hd = H +Ha, (3.58)

where Ha represents the supplied energy by the controller. We will require that the
function Hd has an isolated minimum at ξ∗, that is

ξ∗ = arg minHd. (3.59)

The passive outputs for this system are the generalized velocities, that is ỹ = [~̇p, ~Ω].
The easiest way to shape the energy is by following [93]

Ust = ∇H −Kp

([
~p
~ϑ

]
− ξ∗

)
, (3.60)

where Ust stabilizes ξ∗ with a Lyapunov function as the difference between the stored
and supplied energies.

Then, introducing (3.60) and ỹ = ξ̇ into (3.57) we can obtain

Ha(ξ) = −
[
m~g
~0

]T [
~p
~ϑ

]
+

1

2

([
~p
~ϑ

]
− ξ∗

)
Kp

([
~p
~ϑ

]
− ξ∗

)
+ k, (3.61)

where Kp = KT
p > 0 contains design parameters. Substituting (3.55) and (3.61) into

(3.58), it follows that

Hd =
1

2

[
~̇p
~Ω

]T[
mI3×3 03×3

03×3 J

] [
~̇p
~Ω

]
+

1

2

([
~p
~ϑ

]
− ξ∗

)
Kp

([
~p
~ϑ

]
− ξ∗

)
. (3.62)

Controller (3.60) can be rewritten as

Ust(~p, ~ϑ) = ∇H −∇Hd. (3.63)

From (3.63), it is ensured that the map Ust → ỹ is passive with (3.62) as the desired
energy function.
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The damping injection term is then given by

Udy(~̇p, ~Ω) = −Kd

[
~̇p
~Ω

]
, (3.64)

where Kd = KT
d > 0 contains design parameters.

To compute the final controller, consider Kp =

[
Kpt 03×3

03×3 Kpr

]
and Kd =

[
Kdt 03×3

03×3 Kdr

]
,

the energy-shaping term Ust from (3.63) then takes the form

Ust(~p, ~ϑ) =

[
−m~g −Kpt (~p− ~pd)
−2Kpr ln (qe)

]
.

Here ~pd denotes the desired position, note that the term qe = q∗d⊗q is the quaternion
error between the actual orientation q and the desired reference qd, which is computed
following (2.40) and (2.41). If the control law is such that ln (qe)→ [0 0 0]T , then
qe → 1 + [0 0 0]T , which implies that the orientation of the quadrotor converges
to the desired reference q → q∗d.

Hence, the damping injection term Udy from (3.64) is determined as

Udy(~̇p, ~Ω) =

 −Kdt

(
~̇p− ~̇pd

)
−Kdr

(
~Ω− ~Ωd

)  ,
where ~̇ϑd = 2 ln qd, and matrices Ki > 0, i : pt, pr, dt, dr are composed by tuning
parameters. From (3.56) the control law is applied to the model (3.54) according to
the following equivalence:

[
~Fu
~τ

]
=

 −Kpt (~p− ~pd)−Kdt

(
~̇p− ~̇pd

)
−m~g

−2Kpr ln (q∗z ⊗ q∗t ⊗ q)−Kdr

(
~Ω− ~Ωd

)
+ ~Ω× J~Ω

 . (3.65)

The obtained control law in quaternion space guarantees the stabilization of all the
system states without any change in the model or in the PBC strategy.

3.4 Energy-based quaternion controllers

As a continuation of the passivity-based quaternion control explained in the previous
section, other energy-based approaches were explored in a similar avenue, also taking
the advantages of quaternion algorithms to develop equations, and to avoid undesired
effects such as singularities and gumball locks.
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From (3.54), the quadrotor total energy in terms of errors can be expressed as

H̄ =
1

2

[
~̇p− ~̇pd
~Ω− ~Ωd

]T [
mI3×3 03×3

03×3 J

] [
~̇p− ~̇pd
~Ω− ~Ωd

]
+

[
m~g
~0

]T [
~p− ~pd

2 ln(q ⊗ q∗d)

]
, (3.66)

where ~pd, ~̇pd and ~Ωd denote the desired vehicle position, speed and angular velocity
respectively. Differentiating the above along the trajectories of the system

˙̄H =

[
~̇p− ~̇pd
~Ω− ~Ωd

]T [
mI3×3 03×3

03×3 J

][
~̈p

~̇Ω

]
+

[
m~g
~0

]T [
~̇p− ~̇pd
~Ω− ~Ωd

]
. (3.67)

Substituting model (3.54) into the above, it follows

˙̄H =

[
~̇p− ~̇pd
~Ω− ~Ωd

]T
U . (3.68)

Two energy-based control schemes are synthesized in the following subsections.

3.4.1 Energy feedback controller

Now, consider the following positive candidate Lyapunov function

V =
1

2
KEH̄

2 +
1

2

[
~̇p− ~̇pd
~Ω− ~Ωd

]T
Km

[
~̇p− ~̇pd
~Ω− ~Ωd

]
+

1

2

[
~p− ~pd

2 ln(q ⊗ q∗d)

]T
Kp

[
~p− ~pd

2 ln(q ⊗ q∗d)

]
,

(3.69)
where Kp, Km ∈ R6×6 and KE ∈ R denote positive control gains, and qd symbolizes
the desired quadrotor attitude quaternion. Differentiating (3.69) with respect to time

V̇ = KEH̄
˙̄H +

[
~̇p− ~̇pd
~Ω− ~Ωd

]T
Km

[
~̈p

~̇Ω

]
+

[
~̇p− ~̇pd
~Ω− ~Ωd

]T
Kp

[
~p− ~pd

2 ln (q∗d ⊗ q)

]
.

Introducing (3.68), it yields

V̇ = KEH̄

[
~̇p− ~̇pd
~Ω− ~Ωd

]T
U +

[
~̇p− ~̇pd
~Ω− ~Ωd

]T
Km

[
~̈p

~̇Ω

]
+

[
~̇p− ~̇pd
~Ω− ~Ωd

]T
Kp

[
~p− ~pd

2 ln (q∗d ⊗ q)

]

Notice from (3.54) that

[
~̈p

~̇Ω

]
=

[
mI3×3 03×3

03×3 J

]−1
(
U −

[
m~g
~0

]T [
~̇p− ~̇pd
~Ω− ~Ωd

])
, then

V̇ =

[
~̇p− ~̇pd
~Ω− ~Ωd

]T
Km

([
mI3×3 03×3

03×3 J

]−1
(
U −

[
m~g
~0

]T [
~̇p− ~̇pd
~Ω− ~Ωd

]))
(3.70)

+

[
~̇p− ~̇pd
~Ω− ~Ωd

]T
Kp

[
~p− ~pd

2 ln (q∗d ⊗ q)

]
+KEH̄

[
~̇p− ~̇pd
~Ω− ~Ωd

]T
U . (3.71)
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Factoring terms, it follows that

V̇ =

[
~̇p− ~̇pd
~Ω− ~Ωd

]T ([
KEH̄ +Km

[
mI3×3 03×3

03×3 J

]−1
]
U −Km

[
mI3×3 03×3

03×3 J

]−1 [
m~g
~0

]
+Kp

[
~p− ~pd

2 ln (q∗d ⊗ q)

])
. (3.72)

Therefore, the first control law is defined such that:

−Kd

[
~̇p− ~̇pd
~Ω− ~Ωd

]
=

[
KEH̄ +Km

[
mI3×3 03×3

03×3 J

]−1
]
U (3.73)

−Km

[
mI3×3 03×3

03×3 J

]−1 [
m~g
~0

]
+Kp

[
~p− ~pd

2 ln (q∗d ⊗ q)

]
,

where Kd = KT
d > 0. This leads to

V̇ = −
[
~̇p− ~̇pd
~Ω− ~Ωd

]T
Kd

[
~̇p− ~̇pd
~Ω− ~Ωd

]
.

From (3.73) we can obtain

U = [E]−1

[
−Kp

[
~p− ~pd

2 ln (q∗d ⊗ q)

]
−Kd

[
~̇p− ~̇pd
~Ω− ~Ωd

]
+Km

[
mI3×3 03×3

03×3 J

]−1 [
m~g
~0

]]
,

where E = KEH̄ +Km

[
mI3×3 03×3

03×3 J

]−1

, this ensures that E always has inverse and

that U does not have singularities. The final control law can be rewritten, as follows

U =

[
~Fu
~τu

]
=

[
KEH̄ +Km

[
mI3×3 03×3

03×3 J

]−1
]−1 [

−Kpt(~p− ~pd)−Kdt(̇~p−~̇ad)−Kmt~g

−2Kpr ln(q∗d ⊗ q)−Kdr(~Ω− ~Ωd)

]
,

(3.74)

where Kpt > 0, Kpr > 0, Kdt > 0, Kdr > 0 and Kmt > 0 contain design parameters,
pd denotes the equilibrium configuration, and qd is computed by (2.40).

The controller ensures ln (q∗d ⊗ q)→ [0 0 0]T , then q∗d⊗ q → 1 + [0 0 0]T , which
implies that the orientation of the vehicle converges to the desired reference q → qd.

From (2.40) qd is used to close the loop such that the quadrotor trust force is rotated

to coincide with ~Fu, thus the position is stabilized in the desired reference.
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3.4.2 Energy-based optimal control

The second algorithm is derived from a performance cost function which is to be
minimized, it is defined as follows:

C =
1

2

∫ ∞
0




~p− ~pd
2 ln (q∗d ⊗ q)

~̇p− ~̇pd
~Ω− ~Ωd


T

Q


~p− ~pd

2 ln (q∗d ⊗ q)

~̇p− ~̇pd
~Ω− ~Ωd

+

[
~Fu
~τu

]T
R

[
~Fu
~τu

]dt (3.75)

where the state and input weighting matrices are assumed such that Q = QT , Q > 0
and R = RT , R > 0.

System (3.54) can be optimally stabilized solving:

dVo
dt

+


~p− ~pd

2 ln (q∗d ⊗ q)

~̇p− ~̇pd
~Ω− ~Ωd


T

Q


~p− ~pd

2 ln (q∗d ⊗ q)

~̇p− ~̇pd
~Ω− ~Ωd

+

[
~Fu
~τu

]T
R

[
~Fu
~τu

]
= 0 (3.76)

Then, consider the following Lyapunov candidate function based on the total energy

Vo =
1

2
KEH̄

2 +
1

2

[
~̇p− ~̇pd
~Ω− ~Ωd

]T
Km

[
~̇p− ~̇pd
~Ω− ~Ωd

]
(3.77)

+
1

2

[
~p− ~pd

2 ln(q∗d ⊗ q)

]T
Kp

[
~p− ~pd

2 ln(q∗d ⊗ q)

]
+

[
~p− ~pd

2 ln(q∗d ⊗ q)

]T
KT

[
~̇p− ~̇pd
~Ω− ~Ωd

]
where KT = KT

T > 0. Differentiating (3.77) along the trajectories of the system,
and introducing (3.67) and (3.54) in the above, it yields

V̇o =

[
~̇p− ~̇pd
~Ω− ~Ωd

]T
KT

[
~̇p− ~̇pd
~Ω− ~Ωd

]
+KEH̄

[
~̇p− ~̇pd
~Ω− ~Ωd

]T [
m~g
~0

]
(3.78)

+

[
~̇p− ~̇pd
~Ω− ~Ωd

]T
Kp

[
~p− ~pd

2 ln(q∗d ⊗ q)

]
+

(
KEH̄

[
~̇p− ~̇pd
~Ω− ~Ωd

]T [
mI3×3 03×3

03×3 J

]

+

[
~̇p− ~̇pd
~Ω− ~Ωd

]T
Km +

[
~p− ~pd

2 ln(q∗d ⊗ q)

]T
KT

)[
mI3×3 03×3

03×3 J

]−1(
U −

[
m~g
~0

])
.
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Finally, introducing (3.78) into (3.76) and applying dynamic programming, it follows
that

0 =
∂

∂

(
U −

[
m~g
~0

]) [[ ~̇p− ~̇pd~Ω− ~Ωd

]T
KT

[
~̇p− ~̇pd
~Ω− ~Ωd

]
+KEH̄

[
~̇p− ~̇pd
~Ω− ~Ωd

]T [
m~g
~0

]
(3.79)

+

[
~̇p− ~̇pd
~Ω− ~Ωd

]T
Kp

[
~p− ~pd

2 ln(q∗d ⊗ q)

]
+

(
KEH̄

[
~̇p− ~̇pd
~Ω− ~Ωd

]T [
mI3×3 03×3

03×3 J

]

+

[
~̇p− ~̇pd
~Ω− ~Ωd

]T
Km +

[
~p− ~pd

2 ln(q∗d ⊗ q)

]T
KT

)[
mI3×3 03×3

03×3 J

]−1(
U −

[
m~g
~0

])

+

(
U −

[
m~g
~0

])T
R

(
U −

[
m~g
~0

])]
.

Then,

0 =KEH̄

[
~̇p− ~̇pd
~Ω− ~Ωd

]T
+

([
~̇p− ~̇pd
~Ω− ~Ωd

]T
Km +

[
~p− ~pd

2 ln(q∗d ⊗ q)

]T
KT

)[
mI3×3 03×3

03×3 J

]−1

+R

([
~Fu
~τu

]
−
[
m~g
~0

])
. (3.80)

Therefore, the control law can be represented as[
~Fu
~τu

]
=−R−1

[([
~̇p− ~̇pd
~Ω− ~Ωd

]T
Km +

[
~p− ~pd

2 ln(q∗d ⊗ q)

]T
KT

)[
mI3×3 03×3

03×3 J

]−1

+KEH̄

[
~̇p− ~̇pd
~Ω− ~Ωd

]]
+

[
m~g
~0

]
. (3.81)

Remembering that ~Ωd = 2 d
dt

ln qd and qd is designed to track the direction of ~Fu as
defined by (2.40).

3.5 Geometrical bounding control

The previous controllers were capable of performing robust and precise flights in
most cases, however, if sudden changes in the reference occur, or if extremely large
disturbances interfere with the quadrotor navigation, some controllers might not be
able to recover the vehicle and continue the mission.

A controller for robustly tracking trajectories was developed by introducing a function
which bounds the magnitude of any given vector inside of a cylinder. The idea is
that the final controllers limit the action of the control forces and torques.
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Define a cylindrical bounded function σb(~a) : R3 → R3, with arguments ~a =
[ax, ay, az]

T and bounding limits b = [bxy, bz]
T , as

σb(~a) :=

[
σxy
σz

]
, σxy ∈ R2, σz ∈ R ;

σxy :=

{
[ax, ay]

T for ||[ax, ay]|| < bxy ,

bxy
[ax,ay ]T

||[ax,ay ]T || for ||[ax, ay]|| ≥ bxy ,

σz :=

{
az for |az| < bz ,
bz sign(az) for |az| ≥ bz .

(3.82)

Note that vector σb(~a) is contained inside a cylinder centered in the origin with
radius bxy and height 2bz, this ensures a symmetrical behavior in the xy plane, and
independent bounds in the z axis, as Figure 3.7 illustrates.

The control strategy will be based on a function which bounds a vector inside of a
cylinder such that a symmetrical behavior is ensured in any direction of the x− y
plane while setting a different bound for the vertical axis.

Figure 3.7: Bounding a vector inside a cylinder.

The following controllers asymptotically stabilize a quadrotor by bounding the control
action inside a cylinder:

~Fu = −mKtσc

(
Kc

(
~̇p− ~̇pd

)
+ σd

(
KdKc (~p− ~pd) +Kd

(
~̇p− ~̇pd

)))
−m~g, (3.83)

~τ = −JKrσa

(
Ka

~Ω + σb

(
2KbKa ln (q∗z ⊗ q∗t ⊗ q) +Kb

~Ω
))

+ ~Ω× J ~Ω, (3.84)

where qt is computed by introducing (3.83) into (2.40), qz = cos(ψd/2)+[0 0 1]T sin(ψd/2)
represents the desired yaw rotation, Kt, Kr, Ka, Kb, Kc, Kd represent constant diag-
onal matrices, and σa, σb, σc, σd are bounding functions with bounds a, b, c, and d.
The detailed development of this control approach will be stated in the rest of this
section.
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3.5.1 Rotational Bounded Algorithm

The goal is to propose a rotational controller to stabilize the drone at a desired
attitude that will be computed from the direction of a control force. This controller
will be developed in the following.

Lemma 3.1. Attitude subsystem (2.33) converges asymptotically to the origin by
the effects of a bounded controller defined as

~τ = −JKrσa

(
Ka

~Ω + σb

(
2KbKa ln (q∗z ⊗ q∗t ⊗ q) +Kb

~Ω
))

+ ~Ω× J ~Ω . (3.85)

where Kr, Ka¸Kb ∈ R3×3 denote positive diagonal constant matrices.

Proof. A positive-definite function and its derivative are defined for the attitude
system as V1 : R3 → R+

V1 :=
1

2
~Ω · ~Ω ; V̇1 = ~Ω · J−1(~τ − ~Ω× J ~Ω) . (3.86)

Define
~τ = −J−1Krσa(Ka

~Ω + ~ϕb) + ~Ω× J ~Ω , (3.87)

where ~ϕb = [ϕbx, ϕby, ϕbz]
T denotes a vectorial bounded function with limits bxy and bz

such that ||[ϕbx, ϕby]|| < bxy, |ϕbz| < bz. Kr, Ka ∈ R3×3 are constant positive-definite
diagonal matrices, therefore (3.86) becomes

V̇1 = −~Ω · J−1Krσa(Ka
~Ω + ~ϕb) . (3.88)

(3.88) can be analyzed in two cases as follows. Since σa(Ka
~Ω + ~ϕb) is bounded, then

V̇1 < 0 if
sign(kaiΩi + ϕbi) = sign(Ωi)⇒ |kaiΩi| > bi , (3.89)

where kai , i : x, y, z represent the diagonal entries of Ka, implying that there exists
T0, such that for any time t > T0, |kaiΩi + ϕbi| ≤ 2bi. Therefore, bounds have to be
chosen as axy > 2bxy, and az > 2bz to ensure that V1 < 0.

Notice that for all t > T0, a second case arises where σa(Ka
~Ω + ~ϕb) = Ka

~Ω + ~ϕb, and
(3.87) can be considered as

~τ = −J−1Kr(Ka
~Ω + ~ϕb) + ~Ω× J ~Ω . (3.90)

Considering d
dt

2 ln qe = ~̇ϑ = ~Ω to be the angular speed, ~ν1 ∈ R3 is defined as

~ν1 := 2J−1KrKa ln qe + ~Ω ; ~̇ν1 = J−1KrKa
~Ω + ~̇Ω , (3.91)

introducing (3.90) into (3.91) yields,

~̇ν1 = J−1KrKa
~Ω− J−1Kr(Ka

~Ω + ~ϕb) = −J−1Kr~ϕb . (3.92)
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A second positive definite function V2 : R3 → R+ is then introduced as

V2 =
1

2
~ν1 · ~ν1 ; V̇2 = ~ν1 · ~̇ν1 = −~ν1 · J−1Kr~ϕb . (3.93)

Propose ~ϕb as
~ϕb = σb(Kb~ν1) , (3.94)

where Kb is a diagonal matrix containing positive gains, therefore V̇2 = −~ν1 ·
J−1Krσb(Kb~ν1) < 0.

From (3.93) and (3.94) it is implied that ~ν1 → [0, 0, 0]T and ~̇ν1 → [0, 0, 0]T , then,

from (3.92), it follows that ~ϕb → [0, 0, 0]T , from (3.88), it yields ~Ω→ [0, 0, 0]T and
ln qe → [0, 0, 0]T , hence ensuring stability for the attitude subsystem.

Finally, ~τ is rewritten as

~τ = −J−1Krσa(Ka
~Ω + σb(2KbKa ln (q∗z ⊗ q∗t ⊗ q) +Kb

~Ω)) + ~Ω× J~Ω . (3.95)

Following (2.40), the attitude reference for controller (3.95) is computed as

qt = ±



√√√√√√√1 +
~Fu

||~Fu||
·

0
0
1


2

+

~Fu

||~Fu||
×

0
0
1


∣∣∣∣∣∣
∣∣∣∣∣∣
~Fu

||~Fu||
×

0
0
1

∣∣∣∣∣∣
∣∣∣∣∣∣

√√√√√√√1−
~Fu

||~Fu||
·

0
0
1


2


, (3.96)

where ~Fu will be defined in the next section by a cylindrical bounded control force
which will stabilize the vehicle translational dynamics.

3.5.2 Translational Bounded Control Law

The next step is to define a bounded control force which stabilizes the quadrotor
translational dynamics. This controller is developed by following a methodology,
similar to the rotational case.

Lemma 3.2. The position subsystem (2.35) converges asymptotically to zero by the
effects of a desired control force defined as

~Fu = −mKtσc

(
Kc

(
~̇p− ~̇pd

)
+ σd

(
KdKc (~p− ~pd) +Kd

(
~̇p− ~̇pd

)))
−m~g , (3.97)

where Kt, Kc, Kd ∈ R3×3 are positive diagonal matrices.
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Proof. Proposing two positive-definite functions V3, V4 : R3 → R+ and their deriva-
tives as

V3 := 1
2
~̇p · ~̇p ; V̇3 = ~̇p ·

(
1
m
~Fu + ~g

)
,

V4 := 1
2
~ν2 · ~ν2 ; V̇4 = ~ν2 · ~̇ν2 ,

(3.98)

with ~ν2 := mKtKc~p + ~̇p. Following the same procedure as in the attitude case, it
straightforwardly yields the controller given by (3.97).

The proposed cylindrical bounded controller is capable of robustly tracking trajectories
which can be introduced into ~pd and ~̇pd. One example is an autonomous coordinated
circular target tracking algorithm, which will be further explained in the next chapter.

3.6 Spherical chattering-free sliding mode control

With the motivation of achieving faster convergence of the quadrotor states, with the
aim of performing aggressive navigation scenarios which requiring fast movements
and robustness on the system, a controller was designed using a modified sliding-mode
technique, enhanced for 3-dimensional functions.

Define a function Γ : R3 → R3, which bounds any vector into a sphere (see Figure
3.8), respecting its original direction and modifying its magnitude in terms of a
continuous arctangent function as

Γ(~k) := k̂
2

π
tan−1

(
||~k||

)
, (3.99)

Figure 3.8: Spherical bounding of a 3-D vector, its bounded magnitude is defined
by an arctangent function.

where ~k ∈ R3 represents any vector, and k̂ symbolizes its direction, computed as

k̂ :=


~k

||~k||
for ||~k|| 6= 0 ,[

0 0 0
]T

for ||~k|| = 0 .

(3.100)
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Lemma 3.3. Given any vector ~k, Γ(~k) is bounded by a unitary sphere and it holds

sign(Γ(~k)i) = sign(~ki), (3.101)

for every component i = x, y, z of both vectors.

Proof. Computing the normalized vector of Γ(~k), it yields

Γ(~k)

||Γ(~k)||
=

k̂ 2
π

tan−1
(
||~k||

)
2
π

tan−1
(
||~k||

) = k̂, (3.102)

therefore, ~k, and Γ(~k) share the same direction, and since the magnitude of the
former is defined by an arctangent function with a positive definite argument, it
holds

0 <
2

π
tan−1

(
||~k||

)
< 1. (3.103)

Using the previous formulation, a sliding mode translational controller is proposed
such that the control action is defined by a spherical arctangent function as

~Fu = − Ktp~pe +Ktd2~̇pe∣∣∣∣∣∣Ktp~pe +Ktd2~̇pe

∣∣∣∣∣∣ 2

π
tan−1

∣∣∣∣∣∣Ktp~pe +Ktd2~̇pe

∣∣∣∣∣∣−Ktd1~̇pe −m~g, (3.104)

then, a similar approach yields a rotational algorithm based on the same principle,
which yields a torque defined as

τu = − Krp ln (qe) +Krd2
~Ω∣∣∣∣∣∣Krp ln (qe) +Krd2
~Ω
∣∣∣∣∣∣ 2

π
tan−1

∣∣∣∣∣∣Krp ln (qe) +Krd2
~Ω
∣∣∣∣∣∣−Krd1

~Ω + ~Ω× J ~Ω.

(3.105)
The development of both controllers will be detailed in the following subsections.

3.6.1 Attitude Control Formulation

Theorem 3.4. The attitude subsystem (2.32) of a quadrotor converges asymptotically
to the quaternion origin qO= 1 + [0 0 0]T by means of

~τ = −Krd1
~Ω− Γ

(
2Krp ln qe +Krd2

~Ω
)

+ ~Ω× J~Ω. (3.106)

Proof. Propose a positive-definite function and its derivative as

V1 =
1

2
(2 ln qe) · (2 ln qe) → V̇1 = 2 ln qe · ~Ω. (3.107)
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Asymptotic convergence for ~ϑe = 2 ln qe is achieved if V̇1 < 0 for all ~ϑe 6= ~0, which
is ensured if sign(Ωi) = sign(ϑi), for i = x, y, z, this can be achieved by proposing

K1
~Ω = −2K2 ln qe, where Kj ∈ R3×3, j = 1, 2, ..., are positive diagonal matrices.

Define a second positive-definite function as

V2 =
1

2
ςr · ςr → V̇2 = ςr · ς̇r, (3.108)

where ςr is a sliding manifold such that

ςr = K1
~Ω + 2K2 ln qe ,

ς̇r = K1(J−1~τ − J−1~Ω× J~Ω) +K2
~Ω ,

(3.109)

note that asymptotic stability for (3.108) is reached if

ς̇r = −K3Γ (K4ςr) . (3.110)

Introducing (3.110) into (3.109), yields

~τ = −JK−1
1 K3Γ

(
K4K1

~Ω + 2K4K2 ln qe

)
−JK−1

1 K2
~Ω + ~Ω× J~Ω ,

(3.111)

propose K3 = K1J
−1, Kp = K4K2, Kd1 = K−1

3 K2, and Kd2 = K4K1, (3.111) is
finally expressed as

~τ = −Kd1
~Ω− Γ

(
2Kp ln qe +Kd2

~Ω
)

+ ~Ω× J~Ω. (3.112)

Finally, a Lyapunov candidate function is proposed as

Vr :=
1

2
(K1

~Ω + 2K2 ln qe) · (K1
~Ω + 2K2 ln qe), (3.113)

being

V̇r = (K1
~Ω + 2K2 ln qe) · (K1(J−1~τ − J−1~Ω× J~Ω) +K2

~Ω). (3.114)

Introducing (3.112), it yields

V̇r = −
(
K1
~Ω + 2K2 ln qe

)
· Γ
(
K4

(
K1
~Ω + 2K2 ln qe

))
. (3.115)

From Lemma 3.3, it is clear that V̇ < 0 for all ςr 6= 0 therefore forcing (3.113) to

converge to the manifold ςr = K1
~Ω + 2K2 ln qe, if matrices K1 and K2 are chosen

such that the sliding manifold is asymptotically stable, then K1
~Ω + 2K2 ln qe → 0

and K1
~Ω→ −2K2 ln qe.

Since ~̇ϑ = ~Ω, 2 ln qe asymptotically converges to zero and following (2.15), then
q → qO.
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3.6.2 Position Controller

Following the same procedure as in the attitude subsystem, the quadrotor translational
dynamics can be controlled as follows:

Theorem 3.5. The position subsystem (2.34) of a quadrotor converges asymptotically
to a zero vector by means of

~Fu = −Ktd1~̇pe − Γ
(
Ktp~pe +Ktd2~̇pe

)
−m~g. (3.116)

Proof. Proposing a Lyapunov function as

Vt :=
1

2
(Kt1~̇pe +Kt2~pe) · (Kp1~̇pe +Kp2p), (3.117)

and applying (3.116) its derivative yields

V̇t = −
(
Kt1~̇pe +Kt2~pe

)
· Γ
(
Kt4

(
Kt1~̇pe +Kt2~pe

))
, (3.118)

where Ktj ∈ R3×3, j = 1, 2, ..., represent positive diagonal matrices with Kt3 =
Kt1m

−1, Ktp = Kt4Kt2, Ktd1 = K−1
t3 Kt2, and Ktd2 = Kt4Kt1.

As in the attitude case, Lemma 3.3 implies that (3.118) is negative definite for
all Kt1~̇pe 6= −Kt2~pe, therefore forcing the convergence of (3.117) to the manifold
σt = Kt1~̇pe +Kt2~pe, implying Kt1~̇pe +Kt2~pe → 0 and Kt1~̇pe → −Kt2~pe.

Defining ~pe = ~p − ~pd, and applying (2.40) then the quadrotor can be stabilized to
follow any position reference and any desired angle in the z axis.

3.7 Control approaches conclusions

Quadrotors are known to be inherently unstable, nonlinear, and underactuated
systems. In recent years, researchers have been developing algorithms and techniques
to control these vehicles in order to accomplish different kinds of tasks. Nevertheless,
as aerial vehicles became more advanced and popular, the interest on them shifted
from simple stabilization to bolder and more complicated applications, which would
require very complex approaches, that could even be impossible to accomplish using
the classical modeling techniques.

In this chapter, some control techniques based on quaternion formulations were
presented, starting from a simple state-feedback algorithm, followed by passivity,
energy, and 3-dimensional saturation approaches, up to a nonlinear sliding-mode
controller.

In the following section, some applications of the previous controllers will be presented,
simulations and experiments will be detailed to validate each technique.





Chapter 4

Navigation techniques for
quadrotors

In most works currently found in literature, quadrotor navigation relies on controllers
based on Euler-angles models, however such approaches commonly ensure system
stability only in a linear region defined by straight trajectories, slow movements,
and small angle inclinations. Therefore paths and trajectories are commonly tracked
slowly and carefully for avoiding to take the system out of its stability zone.

Taking advantage of the quaternion-based controllers detailed in the previous section,
autonomous and semi-autonomous navigation algorithms were conceived for different
quadrotor flight scenarios. The characteristics of quaternions simplify the task of
merging navigation schemes with quadrotor controllers, enhancing system perfor-
mance and robustness against disturbances and uncertainties. Numerical simulations
and real-world experiments are performed to validate every proposal.

The contents of this chapter are organized as it follows. First, Section 4.1 introduces
a semi-autonomous navigation scenario where a quadrotor tracks gesture-based
user attitude commands, then, an autonomous navigation algorithm for a fleet of
quadrotors using a distributed path planning approach is detailed in Section 4.2,
finally, a novel aggressive deployment strategy for quadrotors is presented in Section
4.3, here, a combination of autonomous and semi-autonomous algorithms is proposed
to autonomously recover and stabilize a quadrotor which is launched through the air
under any initial conditions and with its motors turned off.

63
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4.1 Safe quadrotor navigation using arm commands

Consider that a quadrotor is piloted using arm gestures from its pilot, measured using
inertial sensors contained in a wearable armband, with the objective of providing
an intuitive and safe flight experience. If the vehicle follows blindly all the input
device signals, aggressive unintended rotations could arrive from an inexperienced
user, which might be dangerous for the vehicle and people around.

4.1.1 Attitude gestures

Let four coordinate systems be represented as I, M0, M, and B, which locate
respectively at the global fixed frame, the initial bracelet pose, the rotating coordinates
of the pilot’s forearm, and the quadrotor body frame, see Figure 4.1, such that the
rotation between I and M0 is given by a constant quaternion

qM0
=

cos
ψ0

2
+

 0
0

sin ψ0

2

⊗
cos

θ0

2
+

 0
sin θ0

2

0

⊗
cos

φ0

2
+

sin φ0
2

0
0

 ,

(4.1)
where θ0, φ0, and ψ0 represent the forearm’s initial pitch, roll, and yaw angles. Then,
the rotation from I to M0 is defined by

qM(t)=

cos
ψM
2

+

 0
0

sin ψM
2

⊗
cos

θM
2

+

 0
sin θM

2

0

⊗
cos

φM
2

+

sin φM
2

0
0

,
(4.2)

where φM, θM, and ψM symbolize the time variant Euler angles from M0 to M.

The quadrotor attitude commands are defined as a function of the angular variations
experienced on the user’s forearm qM(t), i.e., if the user tilts his arm, the quadcopter
should undergo a correspondent motion along the same axis. This allows the user to
get a more natural feel on how the drone will behave since it will essentially mimic
the user’s arm orientation.

It is, however, undesired to attain a direct correspondence between qM(t) and that
one of the drone. For example; an inexperienced user might tilt his arm excessively,
resulting in a vertical pose, by doing this, the drone would turn perpendicularly to
the ground and crash.

Therefore, it is necessary to implement some safe movements restrictions to prevent
the drone from performing risky rotations. Introducing a quaternion reference as

qR(t) =

cos
ψR
2

+

 0
0

sin ψR
2

⊗
cos

θR
2

+

 0
sin θR

2

0

⊗
cos

φR
2

+

sin φR
2

0
0

,
(4.3)
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Figure 4.1: Reference frames for quadrotor attitude reference.

where

θR(θM) =

 θ3
MSθ ; θM ≤ 3

√
θmax

Sθ

θmax ; θM > 3

√
θmax

Sθ

, (4.4)

φR(φM) =

 φ3
MSφ ; φM ≤ 3

√
φmax

Sφ

φmax ; φM > 3

√
φmax

Sφ

, (4.5)

ψR(ψM) = ψM, (4.6)

being θmax and φmax the maximum tilt allowed on the reference angles (θR and φR)
respectively, while Sθ, Sφ < 1 are tunning parameters that improve the sensitivity of
the command along them, and must be selected such that

3

√
φmax

Sφ
, 3

√
θmax

Sθ
< 1. (4.7)

Note from (4.4) and (4.5) that cubic relationships are followed by the attitude
reference with respect to the forearm rotation, nevertheless (4.7) implies that the
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attitude gesture signals are cubically attenuated, see Figure 4.2.
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Figure 4.2: From left to right, greater values θM and φM are required to reach
tilt limit a as sensitivity values Sθ and Sφ decrease.

These cubic expressions also mean that higher values for these parameters translate
into the quadcopter performing more aggressive movements in response to the user’s
arm motion; while lower values will cause the quadcopter to perform slower in
response to the same arm motion, the tilting will also be diminished as the sensitivity
values approach zero until the drone remains totally unresponsive.

The range of rotation, as well as the velocity at which tilt limits θmax or φmax will
be reached depend on the sensitivity parameters Sθ and Sφ, see Figure 4.2. These
parameters are tuned so as to meet user’s comfort and experience: advanced users
might prefer higher sensitivity values for sharper, faster maneuvers while beginners
may prefer lower values for slower, easier to follow movements.

4.1.2 Electrical references from skeletal muscles

For this work, a pose will be defined as any combination in the fingers and wrist
disposition, see Figure 4.3.

Figure 4.3: Examples of poses, respectively: a fist, fingers spread, folded wrist.
Image via https://support.getmyo.com
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Consider the armband contains eight electromyographic sensors, such that each one
detects electrical activity in the superficial layers of the arm muscles and translates
its intensity into an 8-bit value ranging from −127 to 128, see Figure 4.4.
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(A) A single EMG sensor for a resting arm.
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(B) EMG signal when the muscle is tighten.

Figure 4.4: Resting and tense muscular EMG measurements for one sensor

The combination and interpretation of these measurements can be used to detect five
manufacturer predefined poses (wave in, wave out, double tap, fist, rest and spread
fingers), or be used as raw data as well.

Some of the predefined poses can be, at times, triggered incorrectly, mainly when
the armband is passed from one user to another. The double-tap predefined pose,
which is performed by tapping the middle finger and thumb in quick succession, was
deemed as the most reliable of these; since it was always triggered when the user
intended to. A second pose was required for this proposal, having ran out of reliable
predefined poses a custom pose was proposed.

Custom Gesture The custom pose in Figure 4.5 works by measuring and adding
up the electrical raw muscle activity in the user’s arm or fingers collected from all
eight sensors of the array. Once it surpasses a certain threshold it is checked to
ascertain the intentionality of the command and then the signal is sent. This is the
command used to set the custom rotation reference, which is mostly used when the
user drifts too much apart from his starting position.

thumb

index

middle

finger

ring finger

little finger

Figure 4.5: Example of the custom pose, fingers are to be held tightly in place
as if firmly holding a spherical object.

The raw measurement of the total muscular activity in the subject’s arm can be
computed by

σEMG(t) =
8∑
i=1

|EMGi(t)|, (4.8)

where EMGi(t) is the measure for each electrode.



Navigation techniques for quadrotors 68

Let b symbolize the muscular activity threshold and

f1(t) =
1 + sign(σEMG(t)− b)

2
(4.9)

be the function that verifies whether or not the raw muscular activity in the user’s
arm has surpassed threshold b.

Define c and d as parameters that will verify the intentionality of the gesture. c is
defined as a whole number greater than zero, and d as a rational number such that
0 < d < 1. by checking c number of samples from (4.9) at different instants of time,
i.e.

f2(t) =
c∑
i=0

f1(t− i). (4.10)

Besides, parameter d effectively refers to the least amount of times that threshold b
has to be surpassed within c samples in order to be considered as a valid pose. This
can be explained in the following:

f3(t) = sign(f2(t)− dc), (4.11)

signifying f3(t) = 1 that the pose has been successfully triggered and f3(t) = −1 or
f3(t) = 0 means that the pose has not been triggered.

4.1.3 Input based on a gesture sequence

Once the bracelet signals are processed, the next goal is to apply them for controlling
the UAV. The transition between the user’s arm orientation and drone attitude
reference is relatively natural; however, if the user wants to perform more specific
tasks, it is necessary to device a different set of gestures.

At Heudiasyc lab, in collaboration with CINVESTAV Saltillo, a nonlinear controller
was developed to perform quadrotor pirouettes in closed loop, see [94]. The aim
in the arm command algorithm is to indicate the drone when to perform acrobatic
maneuvers using the user gestures.

A sequence triggered by a double-tap pose was chosen, consisting in two stages: After
the double-tap gesture, the user has Lt1 milliseconds to either perform the follow up
for a single, double or triple quadrotor pirouette, see Figure 4.6.

If the user begins a gesture sequence during Lt1 an additional Lt2 milliseconds are
provided during which the rest of the sequence is to be performed, this amounts
Lt1 + Lt2 milliseconds during which the user has to perform the whole sequence.

The quadrotor will perform the intended mission immediately thereafter, or, it will
remain hovering if the sequence fails to be performed correctly.
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1 2 3

Figure 4.6: Example of the gesture sequence to be performed in order to trigger
a triple loop command.

The method used to define each sequence is the following; first, since the gesture is
performed by tilting the forearm upwards and downwards a vertical boundary bθM
was set around the initial frame M0. Gestures can then be identified by the way the
user’s arm orientation transitions between these regions by following

fG1(t) =
1 + sign(θM(t)− bθM)

2
− 1− sign(θM(t) + bθM)

2
. (4.12)

Define a scalar function, which depends on discrete evaluations of (4.12) as

ρ =
2∑
i=0

fG1(ti) + fG1(ti−1), (4.13)

where ti is the time instant where the value of fG2(t) changes, marking the transition
between any two adjacent poses. The value of (4.13), is finally assigned to specific
tasks for the drone according to the following table:

ρ value Gesture Number of loops
ρ = 0 No gesture detected One Loop
ρ = 2 Up, down, up Two loops
ρ = −2 Down, up, down Three loops
otherwise Unassigned gesture One Loop

Table 4.1: Gesture assignment to detection function

4.1.4 Safe Human-UAV Interaction

Human error is always a possibility in semi-autonomous navigation. In order to
decrease its impact, safety measures were developed to allow for more intuitive
commands and a more enjoyable user experience. These also ensure safety by
avoiding unintended maneuvers that might result in crashes.



Navigation techniques for quadrotors 70

IMU based safety measures

An additional orientation-based safety measure is implemented by defining two
boundaries φlim and θlim in the event when the user would drop his arm. Should
this happen, the orientation reference for θR and φR will be set to 0 to ensure safe
hovering, this is achieved by enhancing (4.4), (4.5) and (4.6) as

θR(θM) =


θ3
MSθ ; θM ≤ 3

√
θmax

Sθ

θmax ; 3

√
θmax

Sθ
< θM ≤ θlim

0 ; θlim < θM

, (4.14)

φR(φM) =


φ3
MSθ ; φM ≤ 3

√
φmax

Sφ

φmax ; 3

√
φmax

Sφ
< φM ≤ φlim

0 ; φlim < φM

, (4.15)

ψR(ψM) = ψM, (4.16)

where φlim and θlim are the thresholds where the user’s arm is considered to be beyond
the acceptable, see Figures 4.7 and 4.8.

Figure 4.7: φR with safety limit put in 1.047 rad (60◦).

  
 

60°>θM>-60° θM>-60° θM>60°

Figure 4.8: θM orientation references considered within the accepted range.
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EMG based safety measures

The electromyographic capabilities of the device were also used to make it safer. As
previously mentioned, there are 7 pre programmed muscular poses p each assigned a
default numeric value see Figure 4.9 and Table 4.2.

1 2 3 4 5
Figure 4.9: Default preprogrammed poses. From left to right poses 1 through 5

respectively. Image via https://support.getmyo.com

P numeric value pose name pose action
0 resting position neutral reference
1 fist unused
2 wave in unused
3 wave out unused
4 spread fingers unused
5 double tap unlock device, trigger loop
6 unknown lock device if not worn

Table 4.2: Predefined poses and correspondent action.

Furthermore, the bracelet can detect whether or not is it being worn by a user, and
it will remain locked l(t) until the unlocking pose is performed (double tap pose
while its locked). For this proposal: 6 (unknown) will determine whether or not the
bracelet is being worn, 5 (double tap) will be used as the unlocking pose (as well
as begin loop command), and 0 (resting position) will be used a neutral reference.
Therefore the chosen poses for our application are: P = {0, 5, 6}.

Once communication between the program and the bracelet is enabled, the bracelet
must be unlocked by performing the double tap pose according to (4.17).

l(t0) =

{
0 for P = 5
1 for P 6= 5

,

l(t) =

{
0 for P 6= 6
l(t0) for P = 6

.

(4.17)
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If the user suddenly removes the bracelet data transmission is stopped, then θR and
φR angles are set to zero while ψR remains in the last reference recorded such that

θR(t) =


l(t)θ3

MSθ ; θM ≤ 3

√
θmax

Sθ

l(t)θmax ; 3

√
θmax

Sθ
< θM ≤ θlim

0 ; θlim < θM

, (4.18)

φR(t) =


l(t)φ3

MSθ ; φM ≤ 3

√
φmax

Sφ

l(t)φmax ; 3

√
φmax

Sφ
< φM ≤ φlim

0 ; φlim < φM

, (4.19)

ψR(t) = l(t)ψM + (1− l(t))ψM(t− 1). (4.20)

Additional safety measures As a required safety measure to ensure the labora-
tory material integrity, a joystick command device is always kept at hand by a more
experienced operator who can, at given moment, override the armband navigation
commands in order to deliver the quadrotor from hazard.

This safety layer is included by defining the actual reference quaternion qd, which is
introduced the attitude controller from (3.43), where the orientation error is redefined

as ~ϑe = 2 ln(q∗d ⊗ q) with:

qd(t) =

{
qjoy , override on ,
qR , override off ,

(4.21)

where qjoy represents a quaternion computed from a dual-joystick device, following
remote piloting conventions.

4.1.5 Experimental results

The safe control scheme for quadcopter navigation was programmed using the Fl-
AIR (Framework libre AIR) libraries [95]. The attitude commands were inputted
by a sensor-equipped bracelet 1. This device is provided by three main sensors; a
gyroscope, an accelerometer, and an array of eight electromyographic (EMG) sensors.
Custom compatibility for Linux was based on the PyoConnect library2.

The armband communicates its sensor data via bluetooth into a PC. This data is
handled by a program which processes the attitude references and the EMG measures
interpretation routines.

Data output from this algorithm is handed over to the internal UAV controller
via UDP (User Datagram Protocol) using wireless communications. This program
handles the commands for the drone attitude and contains the control laws needed
for its operation, see Figure 4.10.

1https://www.myo.com/techspecs
2http://www.fernandocosentino.net/pyoconnect/
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Figure 4.10: Communication process involved in the armband-UAV interface.

Attitude safety restrictions: The first flight test consisted on controlling the
vehicle attitude using arm gestures, at some moments, the user performed high
inclinations, which could result in dangerous movements if managed incorrectly.
However, the proposed algorithm restricts such rotations by following (4.18) and
(4.19), where the maximum angles were set at θlim = φlim = 15◦.

At the beginning and end of the test, rotations around the user’s body axis were
performed, resulting in multiple 360◦ yaw rotations, since the user movements are
not restricted over the z axis, the given reference is tracked integrally.

Figure (4.11) represents the quadrotor attitude behavior. The effects of the safety
pitch and roll bounding, translated into quaternion references can be appreciated in
Figures 4.11B and 4.11C, while Figure 4.11D indicates a complete rotation over the
yaw angle by a continuous change of the q3 value from 1 to -1.
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(A) First test q0 quaternion component,
switching its value from -1 to 1 each time a

full 360◦ rotation is performed.

Time [s]
0 10 20 30 40 50

q
1
re
sp
o
n
se

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2 q1
qd1

(B) First test q1, this represents the x com-
ponent of the quaternion.

Time [s]
0 10 20 30 40 50

q
2
re
sp
o
n
se

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2 q2
qd2

(C) First test q2, this represents the quater-
nion y component.

Time [s]
0 10 20 30 40 50

q
3
re
sp
o
n
se

-1

-0.5

0

0.5

1

q3
qd3

(D) First test q3, representing the vehicle
rotation over its z axis.

Figure 4.11: Quadrotor attitude quaternion tracking
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To give a better illustration of the attitude behavior, the Euler representation for
the same test can be observed in Figures 4.12 to 4.14. Notice how the saturation
occurs in θd and φd whenever the 15 degrees (0.261 radians) is reached. A close-up
view of the pitch and roll signals is included to better illustrate such behavior.
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Figure 4.12: Roll response using φd from the bracelet, reference signal is bounded
to safe values between ±15◦.
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Figure 4.13: Pitch response using θd from the bracelet, imposing restrictions at
±15◦ values.

Discontinuities in the roll and pitch angles are never present due to the imposed
constraints in the algorithms, as well as those from natural human anatomy. However,
discontinuities in yaw movements using Euler representation appear whenever a full
turn is performed, since the value of this angle suddenly changes from 180 to -180
deg, as can be seen in Figure 4.14. However, when using quaternion representation
these discontinuities are not present, as seen in Figure 4.11D.
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Figure 4.14: Yaw response using ψd from the bracelet. Notice how discontinuities
appear in yaw Euler representation when a full 360◦ turn is performed.

EMG commands: In the second test, the user performed muscular gestures
corresponding to a triple-loop, a double-loop, and a single loop consequently, Figure
4.15 illustrates attitude quaternion performance of this experiment.
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Figure 4.15: Quadrotor attitude quaternion tracking in looping experiment
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In contrast, close-ups of the Euler angles equivalent responses of this experiment are
depicted in Figure 4.16, here, two undesired effects are revealed, since the pirouettes
are performed over the y axis, Figures 4.16A and 4.16C reveal a Gimball-lock effect,
where multiple roll and yaw angles are possible when the pitch angle reaches a singular
value. Figure 4.16B illustrates a triple pitch loop, passing through discontinuities
three consecutive times.
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Figure 4.16: Euler angles representation of the quadrotor attitude during looping
tests

A video showing the complete test can be watched at:
https://www.youtube.com/watch?v=F4fjOOFGfKQ

4.2 Path planning for a fleet of quadrotors

In this section, a control approach for coordinated flight of a fleet composed of
three drones will be presented. In the context of this section, the term agent is
interchangeable with UAV. Each agent is equipped with individual position and
attitude controllers as described by (2.40), (3.35), and (3.43), this algorithm was
developed in the context of a collaboration with researchers from CRAN at the
Université de Lorraine.
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A fleet consists of a set of agents N = 1, ..., n where n is the number of vehicles.
Information exchanged among agents are modeled by means of Graph Theory. Let a
set of elements dij(t) represent the distance between two agents i and j, such that a
matrix ∂(t) ∈ RN×N is formed. Similarly, the desired distances between agents are
defined by ddij , and are used to construct a matrix symbolized by ∂d., while the safety
distance is denoted as c (where c < l ) and l symbolizes the scope of the formation.

Define for each i agent a set of neighbors Ξi(t) such that:

Ξi(t) = {j ∈ N : ‖~pj(t)− ~pi(t)‖ ≤ l}, (4.22)

where Ξi(t) is called the metrical neighborhood of the robot i, and ~pi(t) symbolizes
its position. Then, a topological neighborhood is considered where only λ elements
of the set Ξi(t) from the closest node i are taken into account. The λ nodes represent
a new Ξi(t)

′ set with Ξi(t)
′ ⊂ Ξi(t).

The control objectives are then:

1. To bring the fleet from an initial geometrical configuration ∂(t0) to a desired
geometrical configuration ∂d

lim
t→+∞

∂(t) = ∂d. (4.23)

2. Ensuring target points tracking, which position is defined as ~pT

∀i ∈ N, lim
t→+∞

dip(t) = ddip. (4.24)

where dip(t) and ddip are respectively the real and desired distance between
agent i and the target point.

3. To avoid collisions between interacting agents

∀i, j ∈ N, i 6= j : ‖~pi(t)− ~pj(t)‖ > c. (4.25)

The issue is formulated as an online optimization problem where a positive scalar
cost functions Λ(t) is constructed and divided amongst all the agents in such a way
that its minimum is obtained when the fleet reaches the defined objectives. The
main idea is to find at each step time the best displacement ~h∗i (t) which yields the
minimum cost function:

~h∗i (t)→ min(Λ(t)), (4.26)

and
~pdi(t+ tδ) = ~pi(t) + ~h∗i (t). (4.27)

where ~pdi(t + tδ) is the desired reference input of agent i, representing a position
reference in the global inertial frame.



Navigation techniques for quadrotors 78

Figure 4.17 illustrates the general control scheme where a distributed planning path
strategy based on Particle Swarm Optimization (PSO) algorithm is proposed to
achieve the goal.

Figure 4.17: Distributed path planning structure

4.2.1 Distributed path planning design

The proposed approach is based on a distributed path planning, where each vehicle
is equipped with a part of an optimization algorithm. The trajectories computing
is therefore not carried out in a central unit but is distributed on a vehicle team,
contrary to controllers that are completely decentralized.

Control algorithm: Each quadrotor is equipped with an internal controller, which
is designed by introducing (4.27) into (3.31) and (3.30) such that a local control force
is computed

~Fui = −Kpt
~h∗i (t)−Kdt ~̇pi −mi~g, (4.28)

which yields an attitude controller given by

~τi =− 2Kpr ln


±
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~Fui
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||
·

0
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1


2


⊗ qi


−Kdr

~Ωi + ~Ωi × Ji ~Ωi , (4.29)

where Kpt, Kdt ∈ R3×3 denote positive control gains, ~̇pi, mi, Ji, qi and ~Ωi respectively
represent the translational speed, mass, inertia matrix, attitude quaternion and
angular velocity of quadrotor i.



Navigation techniques for quadrotors 79

4.2.2 Construction of the Cost function

A positive cost function Λ(t) is designed for the fleet of drones, and then distributed
amongst all of them such that each agent i optimizes a part of the function using
its own information and that of its k neighbors. In the context of motion planning,
such function is built by taking into account the distance between agents and the
location of an element considered as a target for the fleet point ~pT . Its construction
also takes into account information to ensure collision avoidance as

Λ(t) =
n∑
i=1

Λi(t), (4.30)

Λi(t) = ρ
(
‖~pT − [~pi(t) + ~hi(t)]‖ − ddip

)
+

k∑
j=1

aij(t)
(
‖~pj(t)− [~pi(t) + ~hi(t)]‖ − ddij

)
,

where

aij(t) = 1 + exp

(
c− dij(t)

σ

)
, (4.31)

with i 6= j, k = card(Ξ′i(t)), ρ >> 1 and σ 6= 0 denote constant gains, while ddip
represents the desired distance between agent i and target point.

The choice of ρ depends essentially on the number and type of neighbors of each
agent and plays a role on the rate of convergence towards the target,while σ depends
on how strongly the agents must react to avoid collisions. A compromise should be
found between target monitoring, collision avoidance, and training control. Since
an homogeneous fleet is considered in this work, ρ has the same value for all the
vehicles.

The main goal is to find the best vector ~h∗i (t) for each vehicle i minimizing the cost
function Λi(t) such that

∀i ∈ N : lim
t→∞

Λi(t) = 0⇒


limt→∞ ∂(t) = ∂d
∀i ∈ N, limt→+∞ dip(t) = ddip
∀i, j ∈ N, i 6= j : ‖~pi(t)− ~pj(t)‖ > c ,

(4.32)

where ~h∗i (t) represents the desired displacement relative to the local frame of agent i
between two instants t and t+ tδ. The reference trajectory at time t+ tδ for agent i
becomes

~h∗i (t) = ~pdi(t+ tδ)− ~pi(t). (4.33)

During the evolution of the vehicles in the space, non-collision of the agents should
be ensured. This constraint is introduced in Λi(t) through function aij(t) which is all
the greater when dij(t) < c and aij(t)→ 1 when aij(t) >> c. Therefore, each agent

i is more likely to favor the values of ~hi(t) which avoids the need for the distances
dij(t) < c and minimizes the cost function Λi(t), thanks to the PSO algorithm.

In order to have a more stable behavior of the fleet in the proximity of the minimum,
a minimum value of the cost function ΛiMIN is considered satisfactory. In this case,
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when Λi(t) < ΛiMIN, then the value of ~h∗i (t) is defined as the zero vector, since the
function will be optimized in real time, the quadrotors will not move only when the
fleet is very close to the desired formation.

The choice of the step time tδ as well as the search intervals for the displacements
~hi(t) of each agent are obtained empirically, and are considered as optimization
constraints, such that:

~hiMIN(t) < ~hi(t) < ~hiMAX(t) (4.34)

The choice of ~hi(t), thus, depends on the choice of tδ.

Faulty agent case Assuming every quadrotor is capable of communicating if it
becomes defective (actual fault detection algorithms are out of the scope of this work),
it is considered that each agent can take into account the presence of a defective
neighbor in Ξ′i(t), then let K(t) be a diagonal matrix n× n of elements δi(t), where:

1. δi(t) = 1 Agent i is free of faults.

2. δi(t) = 0 Agent i loses its effectiveness totally and its output is stuck at zero.

The new adjacency matrix A′(t) is defined as

A′(t) = A(t)diag(δ1(t), δ2(t), ..., δn(t)). (4.35)

A defective agent can be then modeled in the cost function as

Λi(t) =ρ
(∣∣∣∣~pT − [~pi(t) + ~hi(t)

]∣∣∣∣− ddip) (4.36)

+

q∑
j=1

δj(t)aij(t)
(∣∣∣∣~pj(t)− [~pi(t) + ~hi(t)

]∣∣∣∣− ddij). (4.37)

Note the zero value of δj(t) makes it possible to cancel aij(t) and thus eliminates the
influence of the defective agent j on agent i.

4.2.3 Emulated tests

To demonstrate the effectiveness of the proposed method, a comparison with other
common techniques was performed. The selected approaches were Artificial Potential
Fields (APF), based on a reduced version of the work presented in [96], and Model
Predictive Control (MPC) [97], using a reduced adaptation of [98].

20 tests were performed in a real-time emulation environment [95] for each one of
the three techniques, considering initial conditions generated at random for every
simulation. The objective was to take three quadrotors from their random initial
positions to a symmetrical formation around a fixed target.
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Figures 4.18 and 4.19 depict the position of the vehicles during the simulations, note
their initial positions are scattered throughout the plots. The desired distance the
fleet must maintain towards the target is represented by a circle.
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Figure 4.18: PSO: Horizontal position of the quadrotors in numeric simulations,
presenting a smooth and robust convergence.
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(B) MPC: Indicating strong oscillations.

Figure 4.19: APF and MPC real-time simulations, the convergence of the fleet
is not as smooth as in the PSO algorithm, presenting large oscillations before

converging.

Note although the three approaches stabilize the vehicles at the desired distance, the
convergence of the proposed PSO algorithm is smoother, presents less oscillations,
and the computed trajectories respect a safer distance between the quadrotors and
the target.



Navigation techniques for quadrotors 82

Figure 4.20 illustrates the behavior of the simulated fleet by displaying the average
horizontal distance between the quadrotors and the averaged distance towards the
target. In general, the PSO algorithm displays a smoother convergence towards the
fleet formation with better robustness to unfavorable initial conditions than the other
two approaches.
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(A) PSO: Average distance between quadro-
tors for 20 simulations.
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(B) PSO: Distance from UAVs to target,
averaged for each simulation, dd = 2m.
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(C) APF: Average distance between UAVs,
the vehicles come too close to each other.
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(D) APF: UAV to target average distance,
the fleet position oscillates while converging.
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(E) MPC: Average distance between drones.
Also sometimes coming close to a collision.
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Figure 4.20: Comparison between 60 simulations, using three different approaches
(PSO, APF, and MPC).
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4.2.4 Experimental validation

The proposed algorithm was coded and tested in real-time experiments on a fleet
of three quadrotors. All the drones were programmed with the same code. The
position of the agents is estimated using an OptiTrack Motion Capture system, and
broad-casted to all the UAVs.

Each quadrotor computes its own trajectory, such that an uniform fleet is formed
around a given target while avoiding collisions amongst each other. A triangular
formation is expected under this configuration.

Next, to illustrate the robustness of the presented approach, unknown disturbances
were added, the PSO algorithm re-computes the required trajectory to recover from
the perturbations. Lastly, the case in which a defective agent is introduced, and the
overall fleet behavior is analyzed.

The parameters considered in for the PSO algorithm are depicted in Table 4.3.

ρ = 5 ||~hi|| < 0.4m
σ = 0.4 δt = 0.1s
c = 0.5m ddij = 1.732

ΛiMIN = 0.1 dd = 3.464

||~hiMAX|| = .02 ||~hiMAX|| = 0.7

Table 4.3: PSO considered parameters

The selected UAVs were 3 Parrot ARDrone2, this drone includes a 32bit ARM Cortex
A8 processor, working at 1GHz with a 1Go DDR2 RAM at 200 MHz, these resources
are quite limited, which is expected since its cost is low compared to other platforms.

Due to these limitations, the number of particles of Ξi(t) was set to be 80. If this
number is higher, the optimization algorithm becomes more precise, but the internal
computer does not arrive to compute in time all the other processes required such as
acquiring signals, communication, and motor controllers, the inverse would happen if
less particles were considered.

The optimization constraints also consider a bounded region for generating random
particles, defined by the values ~hiMIN

~hiMAX, ensuring the particles are generated
close to the current position of the UAV.

Fleet of three quadrotors with fixed target and no disturbances

In this first experiment, the desired configuration for the UAVs from the matrix ∂d is
fixed. The elements dij(t) are defined such that the desired distance between UAVs
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is homogeneous, thus arriving to a triangle configuration around the target point, as
illustrated in Figure 4.21.

Figure 4.21: Three quadrotors in triangular formation.

Four punctual coordinates were considered as targets which location was communi-
cated from a ground station, the targets were switched one to another with a fixed
lapse. The optimization algorithm computes the desired position taking into account
the constraints of the UAVs, since the position is calculated in each iteration, it
forms a trajectory which makes the fleet arrive at the desired objectives.

Figure 4.22 represents the fleet translational behavior, the desired target points, the
computed trajectory, and the real position of the UAVs in a 2D space. Note the
triangular formation is broken when the target changes from one place to another
due to the distance from the current location of the fleet, but it is recovered during
the evolution of the PSO algorithm.
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An important issue that is addressed in the fleet formation problem is the stabilization
of the distance between agents. In this case, a uniform triangular formation is expected
with a desired distance of 1.9m towards the target, using simple geometry, this implies
that the desired distance between agents is dagents = 2(1.9m) cos(π/6) = 3.3m.

The computed references for the agents, ensure that the distance between every pair
of agents converge to the desired value, this behavior is illustrated in Figure 4.23.
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Figure 4.24 represents the desired distance between each agent and the target, note
its smooth convergence to the desired value even when abrupt changes occur.
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To better illustrate the individual behavior of each UAV, Figure 4.25 represents the
trajectory generation and tracking of the quadrotor 1, note the smooth convergence
of the PSO trajectory even when the target position is changed abruptly.

Position in X axis [m], X1

-4 -3 -2 -1 0 1 2 3

P
o
si
ti
o
n

in
Y

a
x
is

[m
],

Y
1

-5

-4

-3

-2

-1

0

1

2

3

Real position (x1; y1)
Target points
PSO path planning

Start

Target 4 Target 2

Target 2

Target 1

Fleet
Landing

(A) First quadrotor position, trajectory, and
target in 2D.

0 5 10 15 20 25 30 35

Time [s]

-4

-2

0

2

4

6

P
os
it
io
n
in

X
ax

is
[m

],
X

1

Real position (x1)

Target position

PSO path planning

0 5 10 15 20 25 30 35

Time [s]

-8

-6

-4

-2

0

2

P
os
it
io
n
in

Y
ax

is
[m

],
Y

1

Real position (y1)
Target position
PSO path planning

(B) Target reference, and UAV trajectory
and position over time

Figure 4.25: First quadrotor position response and target location in the first
experiment.

Fleet of three quadrotors with fixed target and disturbances In the second
experiment, the same flight configuration was considered, but unknown disturbances
were added. Here, one of our team members pulled one of the agents as it flew
towards the target (see Figure 4.26), the PSO algorithm compensated the disturbance
and corrected the agent path.

Figure 4.26: Disturbances induced to the fleet during experiments.

Figure 4.27A represents the target location, as well as the generated trajectory and
position for each drone. Note the fleet formation is maintained while reaching each
target, even in the presence of perturbations.
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The distances between agents are illustrated in Figure 4.27B, note that strong
disturbances are presented at some instants, but the PSO algorithm recovers the
position of the affected UAV in a smooth manner, returning to the desired values.
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Figure 4.27: Fleet formation in the presence of large disturbances, vehicle
positions and distance between agents.

Fleet of three quadrotors with mobile target and disturbances

In this experiment, a different scenario was introduced. A mobile target was consid-
ered to test the response of the fleet. The movement of the target was inputted using
a joystick connected to a ground station and moved manually. In this case the PSO
algorithm computes the trajectory for each UAV such that the overall fleet tracks
the moving reference.

Additionally, a member of our team induced strong disturbances to the fleet in order
to test its robustness under this configuration, as depicted in Figure 4.28.

Figure 4.28: A member of our team inducing disturbances on the fleet.
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Figure 4.29 illustrates the position of the target, and the trajectory generation and
tracking for all the drones, note that the behavior of the fleet is consistent with the
position changes of the target.
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Figure 4.29: Target reference, trajectory, and position for all UAVs

Figure 4.30A illustrates the distance between agents, while Figure 4.30B represents
the distance between each agent and the target, letters (a,b,c,d) correspond to each
disturbance. Note the convergence towards the desired values, even when disturbances
are present.
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Fleet of three quadrotors with fixed target and defective agent

In this last experiment, the same scenario as in section 4.2.2 was considered, but in
this case, one agent was set to act as defective (Figure 4.31), and aborted its mission
and landed while the fleet was moving to the desired reference.

Figure 4.31: Defective agent during real-time experiments

The optimization algorithm computes the optimized trajectory for the remaining
agents, continuing the mission and arriving to the desired target. Figure 4.32 repre-
sents the fleet position tracking towards the desired references, note the remaining
agents arrive to the target while the defective one remains in the ground.
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Figure 4.32: Target reference, trajectory, and UAV position for all UAVs

The desired distances between each agent and the target point are represented in
figure 4.33, note the convergence to the desired value for the quadrotors that are
still flying. All the performed experiments can be watched at the following link:
https://youtu.be/VD3vbGZNhqM
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4.3 Quadrotor aggressive deployment

Quickly deploying a rotorcraft can sometimes be difficult and time-consuming, often
requiring clear and flat spaces to initialize the vehicle. For instance, in firefighting,
security, or rescue scenarios, objects around the deployment area (like tall grass or
debris) could hinder the initial steps of any mission, other activities like outdoor
sports such as hiking, climbing, or biking could lack of an appropriate surface to
place the vehicle.

An intuitive and fast deployment could be to just hand-launch the vehicle (see
Figure 4.34). Some expert hobbyists do it manually with advanced piloting skills,
nevertheless they usually do so with a close to zero attitude and/or with the motors
turned on, however spinning propellers could be hazardous for the launcher, and
the vehicle itself, for safety reasons, quadrotor hand-launching should be performed
with its motors switched off. Launching a drone in this manner and autonomously
recovering while in the air is a real problem that has not been totally solved.

Figure 4.34: Quadrotor aggressive deployment
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A solution for this problem is here proposed by introducing recovery and control
algorithms formulated on quaternion-based and sliding mode methodologies. This
technique provides on one hand, an analysis of the launching conditions, proposing
an aggressive attitude trajectory to autonomously recover the quadrotor rotational
stability, and on the other hand, a nonlinear controller capable of quickly tracking
this trajectory. The recovery and launching detection algorithms are computed by
only employing inertial sensors allowing the system to be used either in indoors,
outdoors, or GPS-denied environments. Continuous functions are defined instead
of state machines to activate the motors and switch between recovery and mission-
specific attitude references, giving a more precise description of the system and
simplifying its implementation. As of the controller, a spherical sliding mode technique
previously introduced in Section 3.6 was used to aggressively track the recovery
rotation references.

4.3.1 Attitude Trajectory Formulation

An aggressive deployment implies the vehicle could be launched at any possible initial
attitude, thus it must be recovered from such conditions to a hovering state before
handing over the baton to the user. To address this problem, a combination of two
attitude references is proposed.

Recovery Trajectory

Firstly, in order to stop the vehicle from its free-fall condition, the quadrotor thrust
vector must compensate the gravitational acceleration as fast as possible.

The representation of the vertical axis of the inertial frame I with respect to the
body’s coordinate system B can be defined by a unit vector ~nBz ∈ R3 as

~nBz = q∗ ⊗ ~nz ⊗ q, (4.38)

where ~nz := [0, 0, 1]T .

Introducing the definitions of dot and cross products between two vectors, and widely
known trigonometric expressions into (2.15) the shortest rotation between ~nBz and
the vertical axis of the quadrotor can be computed as

qb :=

(√
1 + ~nBz · ~nz

2
+

~nBz × ~nz
||~nBz × ~nz||

√
1− ~nBz · ~nz

2

)
, (4.39)

since qb is computed using vectors expressed in B, the recovery trajectory quaternion
is completed by adding the vehicle’s rotation with respect to I as

qr = q ⊗ q∗b , (4.40)

see Figure 4.35.
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Figure 4.35: Shortest quaternion recovery rotation

Mission Specific Reference

Once the vehicle is recovered, the desired orientation might follow any reference
according to the mission requirements, some tasks like position holding or translational
trajectory tracking, would define it in terms of a high-layer position control, other
applications like emergency response or outdoors video capture could require a
human operator, whatever the case, the mission attitude reference is independent
from the aggressive hand-launching deployment challenge. For repeatability and
ease of performing experiments, in this work a human is considered to pilot the
quadrotor in semi-autonomous mode by defining a desired orientation qusr provided
by a joystick.

Due to quaternion dual covering of rotations, as seen from (2.19), the attitude at the
moment the vehicle is recovered might have either positive or negative representation,
one of them with an additional 2π rotation. This phenomenon might cause undesired
behavior on the vehicle. To tackle this problem, the user input is complemented
by changing the sign of the joystick reference such that the additional rotation is
avoided by defining

qj := sign(π − 2 ln(qje))qusr, (4.41)

where qje = q∗usr ⊗ q symbolizes the rotation difference between the vehicle attitude
and the user input.
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Attitude Reference Combination

Once the recovery and user attitude references are defined, they are combined by the
following function

qd := qr ⊗ qχr ⊗ qj ⊗ qχj, (4.42)

where qχr and qχj are quaternions that enable and disable qr and qj as needed, and
are derived from (2.15) and (2.16) as

qχr := e−γR ln(qr), (4.43)

and
qχj := e−(1−γR) ln(qj) (4.44)

where 0 < γR < 1 is a scalar number which changes its value as needed to activate
or deactivate each reference.

Remark 4.1. If γR → 0, then qχr → 1 + [0 0 0]T , while qχj → q∗j , and in consequence

qd → qr, (4.45)

inversely, if γR → 1, then qχj → 1 + [0 0 0]T , while qχr → q∗r, thus

qd → qj. (4.46)

γR will be defined as a function of the vehicle’s acceleration in the following section.

Continuous Switching Strategy

When the quadrotor is launched aggressively with its motors turned off, gravity
forces it to fall in a parabolic path, behaving as a body under free-fall conditions.

Under this scenario, the accelerometers display near-zero values, which do not provide
sufficient information to estimate the vehicle attitude, nevertheless, their signals can
be used to detect the moment in which the quadrotor is deployed as Figure 4.36
illustrates.
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Control Terms Switching

A continuous switching technique is proposed to activate and deactivate the attitude
terms from (3.112) when the accelerometer measurements drop by defining

γa :=
1

2
(tanh (βa(||~a|| − αa)) + 1) , (4.47)

where ~a represents the acceleration vector, βa > 0 is a tunning gain, and αa denotes
the acceleration threshold from which free-fall condition is considered. Note that

γa → 1 if ||~a|| > αa , and
γa → 0 if ||~a|| < αa ,

(4.48)

such that the attitude controller is finally rewritten as

~τ = −Kd1
~Ω− Γ

(
γaKp2 ln

(
q∗χj ⊗ q∗j ⊗ q∗χr ⊗ q∗r ⊗ q

)
+Kd2

~Ω
)

+ ~Ω× J~Ω, (4.49)

notice when the vehicle is in free-fall, the attitude values are ignored and only the
angular speed is regulated, otherwise, the controller will track the desired rotation
defined by the recovery strategy.

Attitude Reference switching

Following a similar reasoning, two scalar variables dependent on the vehicle attitude
and angular velocity are proposed as

γϑ :=
1

2
(tanh (βϑ(||2 ln(qre)|| − αϑ)) + 1) , (4.50)

and

γΩ :=
1

2

(
tanh

(
βΩ(||~Ω|| − αΩ)

)
+ 1
)
, (4.51)

where qre := q∗r ⊗ q represents the rotation difference between the quadrotor attitude
and the recovery quaternion from (4.40), βϑ, βΩ > 0 are tunning parameters, and
αϑ, αΩ symbolize the angle error and angular velocity thresholds to consider the
vehicle as stabilized in hover mode.

Then (4.50) and (4.51) are combined as

γR(t) := tanh

(
βR

∫ t

t0

γϑγΩdt

)
, γR(t0) = 0, (4.52)

where t0 defines the time when the quadrotor starts waiting to be launched and
βR > 0 is a tunning parameter.

Since (4.49) will stabilize the vehicle’s attitude to the recovery values, then ∃ t such

that ∀ t > th when the quadrotor attitude follows ||2 ln(qre)|| < αϑ and ||~Ω|| < αΩ,
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therefore, (4.52) behaves as

γR ≈ 0 for t0 < t < th , and
γR → 1 for t > th .

(4.53)

Remark 4.2. (4.42), (4.52), and (4.53) imply that the attitude reference will be
defined by the recovery trajectory before th, and by the user-defined input after th.

Motor Activation

Recalling (2.3), the relation between the force and speed of each propeller i = 1, . . . , 4
can be computed as

ωi u
√
fi/ki. (4.54)

An expression to automatically activate the motors when the quadrotor is being
tossed is proposed as

γµ(t) := tanh

(
ζµ

∫ t

t0

(tanh (βµ(||~a|| − αµ)) + 1) dt

)
, (4.55)

where ζµ, βµ > 0 are tunning parameters, and αµ denotes the acceleration threshold
from which aggressive tossing is considered. Therefore (4.54) can be rewritten as.

ωi u γµ(t)
√
fi/ki. (4.56)

Defining time tl as when the quadrotor is accelerated for launching and ||~a|| > aµ.
Considering γµ(t0) = 0, then (4.55) follows

γµ ≈ 0 for t0 < t < tl , and
γµ → 1 for t > tl .

(4.57)

Altitude recovery

Let zusr represent the altitude reference given by the pilot. Since the launching
conditions are initially unknown, the vehicle might be far from the desired altitude
when the attitude is being recovered. To smoothen the vehicle behavior, an altitude
trajectory is introduced as

zd(t) :=

{
z0 −

∫ t
tz0
vzrdτ ∀ tz0 ≤ t ≤ tzf ,

zusr otherwise ,
(4.58)

where vzr > 0 is the desired speed of descent for the quadrotor, tz0 represents the
time when free fall conditions are met and is determined according to

γa(t) < 0.5 for t ∈ [ t0 , tz0 ] and γa(t) ≥ 0.5 for t > tz0 , (4.59)



Navigation techniques for quadrotors 96

tzf defines the time when the altitude reference reaches zusr such that zd(t) > zusr
for all tz0 < t < tzf , and z0 denotes the initial altitude reference, determined as

z0 = max{z(tz0), zmin, zusr}, (4.60)

where zmin and z(tz0) symbolize the minimum safety altitude, and the measured
height at tz0 respectively.

4.3.2 Experimental validation

Multiple tests have been performed using the proposed strategy, in indoor and
outdoor environments. Two experiments illustrate such tests in this thesis, however,
more tests can be viewed on-line at: https://youtu.be/ F XNmzxPDg

For these experiments a Parrot ARDrone2 quadrotor was used, the algorithm was
coded using the FL-AIR framework [95], developed at Heudiasyc Laboratory.

For this application, the attitude was considered to be controlled with an sliding
mode controller, while the position was regulated by a state feedback only in the
vertical axis. Let z ∈ R symbolize the quadrotor altitude with respect to I, then its
vertical dynamics are given by

d

dt

[
z
ż

]
=

[
ż

Fth cos (ϑxy) /m+ ~g

]
, (4.61)

where Fth =
∑4

i=1 fi, Fth ∈ R denotes the total thrust force produced by the
propellers, the gravitational acceleration is symbolized as ~g := [0 0 − g]T with
g ≈ 9.81[m/s2], m defines the vehicle mass, ϑxy represents the angle between the
vertical axes of I and B, and its cosine is computed as

cos (ϑxy) =
(
q ⊗ [0 0 1]T ⊗ q∗

)
· [0 0 1]T . (4.62)

Defining the net thrust force as

Fth :=


−kpz(z − zd)− kdz ż +mg

cos(ϑxy)
if cos(ϑxy) > 0,

Fmin otherwise
(4.63)

where kpz, kdz ∈ R+ are positive gains, and Fmin > 0 defines the minimum thrust.
Note from (4.62) and (4.63) that if the vehicle inclination ϑxy is equal or greater than
90◦, the thrust force will be kept at a minimal value to reduce the risk of accelerating
downwards.

The attitude controller parameters manually adjusted and the final values are intro-
duced in the following table:



Navigation techniques for quadrotors 97

αa = g/2 βa = 10 αϑ = π/4
βϑ = 10 αΩ = π/4 βΩ = 10
αµ = 2g βµ = 10 ζµ = 10
βR = 10 kpz = 0.6 kdz = 0.25
Kp = diag

(
[3.5 3.5 2]

)
Kd1 = 0.065 I3×3 Kd2 = 0.5Kd1

Table 4.4: Controller parameters for real world tests.

Multiple tests have been performed using the proposed strategy on a Parrot ARDrone2
quadrotor, the algorithm was coded using the FL-AIR framework [95]. In some
experiments, the vehicle was launched with the propellers pointing downwards, others
while rotating over its three x (roll), y (pitch), and z (yaw) axes.

In order to maintain a reasonable document length, only the most aggressive scenario
is illustrated in this manuscript, however it is recommended to watch more tests
on-line at the following video link: https://youtu.be/b52e7K9BHYs

In Figure 4.37 the launching detection timing by the switching parameters from
(4.47) and (4.55) is illustrated.
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Figure 4.37: Detection terms performance, a) Tossing detected, starting motors.
b) Free fall detected. c) Recovery achieved.

The quadrotor rotational response is represented in Figures 4.38 to 4.41, the vehicle
attitude q was computed by the onboard Inertial Measurement Unit (IMU).
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Figure 4.38: Quaternion q0 component response, each change of sign indicates a
3600 rotation during deployment.
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Figure 4.39: Quaternion q1 component (over the x axis), the vehicle is first
inclined, then rotates aggressively during the recovery stage.
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Figure 4.40: Quaternion q2 component (response over the y axis), note how the
combined rotation qd pulls the vehicle attitude towards zero.
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Figure 4.41: Quaternion q3 component (z axis), signaling the vehicle also spins
three times before stabilizing successfully.
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For illustration purposes, Figures 4.42 to 4.44 depict the equivalent Euler angles
computed from the previous quaternions during this experiment, due to the nature
of this type of attitude representation, some undesired effects are revealed such as
discontinuities and sudden changes in the signals.

Notice how the magnitude of the simultaneous pitch and roll rotations, along with
their oscillations indicate the vehicle is aggressively rotated such that it passes
through vertical, horizontal, and upside-down poses, but at the end, the proposed
algorithm successfully recovers the quadrotor.
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Figure 4.42: Equivalent roll angle response (rotation over the x axis), reaching
almost 150◦ in multiple occasions.
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Figure 4.43: Equivalent pitch angle response (rotation over the y axis), approach-
ing vertical poses of 90◦ several times.
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Figure 4.44: Equivalent yaw angle (rotation over the z axis), revealing multiple
360◦ turns before stabilizing.

4.4 Quadrotor navigation conclusions

Quaternion-based controllers provide advantageous properties for navigating aerial
vehicles. The aim of this chapter is to introduce navigation techniques that employ
quaternion-based algorithms for performing robust autonomous and semiautonomous
navigation.

Firstly, a semi-autonomous scheme for safely piloting a quadrotor using arm gestures
was proposed. The scheme is composed by a gesture-based orientation reference
and a EMG triggered gesture sequences for performing desired movements in the
drone. The proposed algorithms were validated in flight tests where the safety
measures and customizable sensitivity effectively made the interface easier to handle
for inexperienced users by reducing the learning curve and overall achieving a more
intuitive command scheme.

Then, a distributed path planning approach for controlling a fleet of autonomous
vehicles was proposed. The objective has been formulated as an optimization problem
based on a Particle Swarm Optimization algorithm. The proposed control decouples
the translational movement from the rotational dynamics for computing optimal
trajectories, where the stability of each vehicle is ensured locally. Experimental
results on a fleet of real quadrotors have shown that the proposed method is effective
for target tracking and collisions avoidance, even considering scenarios where an
agent of the fleet is lost.

An aggressive deployment strategy for a quadrotor was finally presented in which the
vehicle is launched with its motors turned off. In order to enable the vehicle in-flight,
a continuous recovery trajectory was proposed using unit quaternions, which is the
tracked by an attitude controller, based on a chattering-free spherical sliding mode
algorithm.

Multiple real-world experiments were executed for all of the proposed schemes,
validating their performances, and setting a foundation for autonomous navigation
strategies between aerial and ground vehicles.



Chapter 5

Autonomous tracking of dynamic
targets

Aerial and ground autonomous vehicles provide both advantages and disadvantages
that could help or difficult certain tasks. For instance, UAVs are capable of quickly
reaching or surveying large areas, as well as providing higher points of view, however,
they offer limited payload carrying capacities as well as relatively short times of
autonomy.

In contrast, Unmanned Ground Vehicles (UGVs) can carry larger batteries and
payloads, which might extend the length of some missions, and can provide advantages
thanks to additional equipment that can be loaded, nevertheless, they have limited
motion capabilities and points of view compared to UAVs.

Heterogeneous systems can use the advantages of each kind of vehicles to counteract
their weaknesses. In this chapter, two navigation techniques for UAV-UGV heteroge-
neous systems are presented, firstly, a trajectory generation algorithm which includes
takeoff, circular tracking, and landing stages for a quadrotor following a ground vehi-
cle is proposed based on a set of dynamic equations. Then, a trajectory generation
algorithm is introduced where two quadrotors cooperate to autonomously track a
moving UGV by describing circles around it while respecting a desired configuration
and avoiding collisions.

101
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5.1 Circular trajectory for autonomous tracking

As a first cooperative navigation scheme, consider a scenario where a large area
needs to be inspected by a UGV. In order to enhance the visible area for the UGV,
a quadrotor is deployed such that it describes circles of a certain radius around the
UGV’s center, such that its privileged point of view could be used other members of
the team (human operators and/or the UGV) in their operations.

To achieve this objective, a trajectory generation algorithm has been introduced,
which is computed by solving a set of differential equations. This trajectory includes
autonomous navigation stages such as take-off, circle describing, and landing.

5.1.1 Trajectory description

Consider the UGV as a static agent in a given reference point. A trajectory is
proposed such that the quad-rotor follows autonomously a maximum of three stages
of movement, where two possible scenarios can be achieved by considering this
trajectory.

For the first scenario the drone would follow two stages of movement (refer to Figure
5.1), this mean only lifting and landing stages are accomplished.

• The quad-rotor will start lifting to a desired altitude h and converging to a
circle with a defined turning radius r. This will be considered to happen in a
time interval given by 0 ≤ t < TF1 .

• The landing of the quad-rotor back to the UGV will start in a time defined as
TF1 , starting at this point an asymptotic descent and landing.
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Figure 5.1: Two stage case: circular trajectory and landing.
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The second scenario is when lifting, positioning and vertical landing stages are
considered, see Figure 5.2.

• The quad-rotor will start lifting and converging to a desired altitude and turning
radius in 0 ≤ t < TF1 .

• The UAV will be positioned in the center of the circle while maintaining its
altitude in a time TF1 ≤ t < TF2 .

• The asymptotic landing to the center of the circle and altitude h = 0 in an
interval represented as TF2 ≤ t ≤ TF .

Figure 5.2: Three stages are accomplished: circular trajectory, central positioning
and landing.

Instead of using heuristic approaches to define the trajectory and its stages, a
mathematical formulation is proposed to design the conceived flight trajectory.

5.1.1.1 Mathematical justification

Consider a nonlinear system with a single equilibrium point at the origin as

ẋ = µx+ y − x(x2 + y2)
ẏ = −x+ µy − y(x2 + y2)

, (5.1)

where µ represents a bifurcation parameter.
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The evolution of this system is such that for the same initial conditions at the
equilibrium point, it will behave differently for distinct µ values. More specifically,
for µ ≤ 0 the origin will behave as an attractor, and any solution will consist on a
stable spiral, however if µ > 0 then the origin will be a repeller, and any solution
results in an unstable spiral that grows out of the origin, see Figure 5.3

Figure 5.3: Development of a limit cycle in a Hopf bifurcation

Proposing the circular relation r2 = x2 + y2, where r denotes the desired radius of
a circular trajectory, if the bifurcation parameter is selected as µ = r2 > 0 then
r =
√
µ. For more mathematical background, refer to [99].

To complete a flight trajectory, an altitude variable z is included to (5.1). Define the
error ez = z − h, where h is the desired altitude, considered to be a constant. Then
an asymptotic convergence for ez, can easily be achieved by proposing ėz = ż = −kez
with k > 0, then z → h when t→∞.

This extends (5.1) with
ż = −k (z − h) (5.2)

The nonlinear equations can then represented as a dynamic system in terms of the
trajectory’s velocity and acceleration

d

dt

[
~pd
~̇pd

]
=

d

dt


xd
yd
zd
ẋd
ẏd
żd

 =


ẋd
ẏd
żd
(µ− 3x2

d − y2
d) ẋd + (1− 2xdyd) ẏd

− (1 + 2ydxd) ẋd + (µ− x2
d − 3y2

d) ẏd
−kżd

 (5.3)

with any initial conditions defined as xd (0) , yd (0) , zd (0) for the position, and for
the velocity as

~̇p(0) =

ẋd(0)
ẏd(0)
żd(0)

 =

 µxd (0) + yd (0)− xd (0)
(
xd (0)2 + yd (0)2)

−xd (0) + µyd (0)− yd (0)
(
xd (0)2 + yd (0)2)

kh
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Note that (5.3) only expresses the first stage of the trajectory, when the UAV is
lifting and converging to the desired circle. In order to include more flight steps, a
switching technique between multiple differential equations is introduced.

When the trajectory starts, since µ > 0, then (0, 0) behaves as a repeller in the x− y
plane, but since the desired height h is an attractor, the trajectory converges to a
stable circle at the desired height.

Define a time TF1 when the equilibrium point (0, 0, h) can be switched into an
attractor, thus any solution will consist on a stable spiral that converges to the circle
center at the same height as the circle.

Likewise, at another time TF2 , a switching can be the applied to get a third differential
equation, where the equilibrium point (0, 0, h) will be converted from an attractor to
a repeller, but now the equilibrium point (0, 0, 0) becomes an attractor, thus taking
the trajectory to a landing stage, see Figures 5.1 and 5.2.

Therefore, applying the switching technique, the nonlinear differential equations that
govern the lifting, hovering, and landing stages of the trajectory are given by

d

dt


xd
yd
zd
ẋd
ẏd
żd

=


ẋd
ẏd
żd
(1− f̃(t)) {(µ− 3x2

d − y2
d) ẋd + (1− 2xdyd) ẏd} − f̃ (t) (kp1xd + kd1ẋd)

(1− f̃ (t)) {(µ− x2
d − 3y2

d) ẏd − (1 + 2ydxd) ẋd} − f̃ (t) (kp2yd + kd2ẏd)(
f̄ (t)− 1

)
kżd − f̄ (t) (kp3zd + kd3żd)

,
(5.4)

where

f̃ (t) =

{
exp (n (t− TF1)) ∀ 0 ≤ t < TF1

1 ∀ t ≥ TF1

,

f̄ (t) =

{
exp (n (t− TF2)) ∀ 0 ≤ t < TF2

1 ∀ t ≥ TF2

,

(5.5)

and TF1 ≤ TF2 < TF represent the time of each one of the flight stages, n > 0 and
kpi , kdi are given by

kpi = 2αi

kdi = (α2
i + β2

i )

∣∣∣∣∣ αi > 0, βi = are positive gains
with i : 1, 2, 3.
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5.1.2 Autonomous circular UGV tracking

For this next part, consider the equilibrium of system (5.1) is set at the coordinates
~pG = [xG , yG , zG]T of a UGV moving in the ground at a constant speed such that

ẋ− ẋG = µ(x− xG) + (y − yG)− (x− xG)((x− xG)2 + (y − yG)2),
ẏ − ẏG = −(x− xG) + µ(y − yG)− (y − yG)((x− xG)2 + (y − yG)2),

(5.6)

note system (5.6) evolves similar to (5.1), with the difference that its origin is located
at the coordinates of the UGV, which will also behave as an attractor or repeller
according to µ. Differentiating the previous equations yields to the following system
in terms of the trajectory’s velocity and acceleration, considering ~̈pG ≈ 0

ẍd = (µ− 3(xd − xG)2 − (yd − yG)2) (ẋd − ẋG)
+ (1− 2(xd − xG)(yd − yG)) (ẏd − ẏG),

ÿd = (µ− (xd − xG)2 − 3(yd − yG)2) (ẏd − ẏG)
− (1 + 2(yd − yG)(xd − xG)) (ẋd − ẋG),

z̈d = −k(żd − żG).

(5.7)

Finally, applying the switching technique from (5.5) the nonlinear differential equa-
tions that govern lifting, hovering, and landing stages in coordination with the UGV
kinematic behavior are given by

ẍd = (1− f̃(t)) {(µ− 3(xd − xG)2 − (yd − yG)2) (ẋd − ẋG)
+ (1− 2(xd − xG)(yd − yG)) (ẏd − ẏG)}
−f̃ (t) (kp1(xd − xG) + kd1(ẋd − ẋG)) ,

ÿd = (1− f̃ (t)) {(µ− (xd − xG)2 − 3(yd − yG)2) (ẏd − ẏG)
− (1 + 2(yd − yG)(xd − xG)) (ẋd − ẋG)}
−f̃ (t) (kp2(yd − yG) + kd2(ẏd − ẏG)) ,

z̈d =
(
f̄ (t)− 1

)
k(żd − żG)− f̄ (t) (kp3(zd − zG) + kd3(żd − żG)) .

(5.8)

To compute the final trajectory for its implementation in simulations and real-world
experiments, two cascaded numeric integrators are applied to ~̈pd to compute ~pd and
~̇pd which are finally introduced to a quaternion-based control algorithm

5.1.3 Quaternion-based Control

Following the state feedback controller proposed in Section 3.2, the trajectory de-
scribed by the solution of (5.8) can be tracked by defining a control force as

~Fu = −Kpt

~p−
∫

t

0

∫
t

0

ẍdÿd
z̈d

 dt dt
−Kvt

~̇p−
∫

t

0

ẍdÿd
z̈d

 dt
−m~g, (5.9)

where Kpt, and Kdt denote proportional and derivative control gains.
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Then, an attitude control law is applied such that the vehicle’s orientation q converges
to the desired reference qd, computed according to (2.41)

~τ = −2Kpr ln (q ⊗ q∗d)−Kvr
~Ω + ~Ω× J ~Ω, (5.10)

where Kpr, and Kdr denote control gains. Controllers (5.9) and (5.10) guarantee
system stability, thus tracking the trajectory from Section 5.1.1.1.

5.1.4 Simulations

For the numerical validation, the trajectory parameters were selected such that the
simulated circle is 1m radius:

kp1 = kp2 = kp3 = kd1 = kd2 = kd3 = 1, n = 12, r = 1→ µ = 1, (5.11)

concerning the quaternion control law, the gains were empirically chosen as

Kpt = diag([5, 5, 5]), Kpr = diag([50, 50, 50])
Kdt = diag([4, 4, 4]), Kdr = diag([10, 10, 10])

. (5.12)

Random noise (with values of ±0.5m) has been added to the position feed-backed
signals to validate the robustness of this configuration.

TF1, TF2, and TF were considered to be increasing until a command for changing the
flight step is given. This was accomplished in the following way:

1. When the quad-rotor is lifting and converging to the desired altitude and radius,
TF1 is considered to be 10 seconds greater than the current simulated time,
and TF2 is considered to be 10 seconds greater than TF1.

2. When the quad-rotor is commanded to position in the center of the circle, TF1

is frozen in its last value, while TF2 is considered to be 10 seconds greater than
the current time.

3. When the asymptotic landing is actioned, TF2 is frozen in its last value, thus
making the UAV’s position converge to the origin.

Figures 5.4 and 5.5 illustrate the quad-rotor’s simulated performance while tracking
the desired trajectory. It can be seen that the vehicle’s position (solid line) actively
pursues the trajectory reference (dotted line).
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Figure 5.4: Simulated trajectory tracking of the quad-rotor, only two stages are
accomplished
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Figure 5.5: Quad-rotor’s simulated trajectory tracking, The UAV is positioned
over the UGV before landing.

5.1.5 Experimental Validation

Our team has made efforts to validate our proposed schemes by performing tests in
our prototypes. In this case, the selected drone was a Parrot™AR drone 2 running
the proposed algorithms programmed using the Fl-Air framework over a Linux-based
operating system, [95].
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The selected UGV was a Wifibot, by Nexter Robotics™, which is a miniature vehicle
provided with 4 wheels and several sensors, useful at different navigation scenarios.

Both vehicles were connected to an OptiTrack Motion Capture System, which
precisely detects their position in an indoor environment.

The trajectory was generated by numerically integrating (5.8), thus updating the
translational reference with each iteration of the program.

The parameters of the trajectory were selected identically as in the simulations, while
the control gains were considered as

Kpt=

1 0 0
0 1 0
0 0 1

, Kdt=

0.5 0 0
0 0.5 0
0 0 0.5

, Kpr=

5 0 0
0 5 0
0 0 6

, Kpr=

0.8 0 0
0 0.8 0
0 0 1

 . (5.13)

5.1.5.1 Scenario 1

In the first experiment, the UGV was set to stay still in an arbitrary position, the
UAV then takes off from a near-by location, and moves to hover position at 50cm
over the ground robot. Then, the trajectory sequence starts, the UAV rises 1 meter
more above the UGV while describing 1m radius circles.

As mentioned in section 5.1.1, two scenarios arrive from this trajectory, depending
on the timing configuration and on how many stages are considered.
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Figure 5.6: Quad-rotor’s circular trajectory, first scenario: 3D view
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Figure 5.6 illustrates the trajectory tracking for the first scenario (only two flight
stages accomplished), while the second scenario (three steps of movement) is depicted
in Figure 5.7.
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Figure 5.7: Quad-rotor’s circular trajectory, second scenario: 3D view

In both scenarios the altitude of the UAV starts 0.5 meters above the marker that
represents the location of the UGV, and then describes circles at 1 meter more above
its initial location above the ground while the circular trajectory is correctly tracked.

Note in the first scenario, that the UAV descends directly from its circular trajectory to
the UGV’s reference start position, while in the second scenario it aligns horizontally
before descending to the ground vehicle’s location.

The attitude tracking of the quaternion reference described in section 5.1.3 is illus-
trated in Figure 5.8 for the first scenario and in Figure 5.9 for the second one. Note
that the quad-rotor’s quaternion is stabilized in the desired attitude references.
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Figure 5.8: First scenario’s quaternion trajectory tracking

Note from Figure 5.8, that a peak is present in the quaternion attitude, this means
that the quadrotor performs a strong inclination to directly converge from its circular
path to its landing position, Figure 5.9 lacks such peak because it is already located
at the circle center, so no inclination is needed in its descending path.
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Figure 5.9: Second scenario’s quaternion trajectory tracking



Autonomous tracking of dynamic targets 112

5.1.5.2 Scenario 2

For this experiment, a dynamic ground vehicle was considered. The UGV was
manually moved to randomly selected references in the horizontal plane. Before the
UGV starts to navigate, the UAV was stabilized 50cm above its target, then the
circular trajectory was started slightly before the UGV starts to move.

The first scenario considers that the UAV must return to the UGV’s location while it
is still flying in circles (Figure 5.10), while the second scenario considers an horizontal
alignment with the ground robot before descending to its reference.

A 3-Dimensional view of both flights is given in Figures 5.10 and 5.11, the line that
describes the UGV’s movement stays in the ground while the UAV tries to describe
circles while hovering in the air.

Note that complete circular and semi-circular movements are accomplished when the
UGV stops at certain points in its trajectory.
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Figure 5.10: Quad-rotor trajectory tracking, landing happens directly from the
circular path
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Figure 5.11: Quad-rotor tracking a dynamic vehicle, a positioning stage is
performed before landing
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5.2 Coordinated circular UAV target tracking

The objective of this section is to propose a technique to track a moving Unmanned
Ground Vehicle (UGV) which is considered as a target for a pair of quadrotors
equipped with front-facing cameras. The UAVs would start from arbitrary positions,
and compute a trajectory which takes them towards a formation defined by a
desired distance ddiT with respect the UGV, and a separation ddij = 2ddiT between the
quadrotors (see Figure 5.12).

Figure 5.12: Two quadrotors take off and move to a symmetrical formation.

As the vehicles approach to the desired configuration, the trajectory would au-
tonomously adapt such that the quadrotors start describing circles around their
target while remaining perfectly coordinated by respecting the desired radius and
distances, see Figure 5.13. Considering that the quadrotors are equipped with front-
facing cameras, their trajectories should ensure that their front axis is always pointing
towards the target UGV.

Figure 5.13: Autonomously tracking a UGV by describing coordinated circles
around it.
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5.2.1 Distributed Path Planning Algorithm

A distributed path planning strategy is introduced to generate a trajectory that will
take the set of quadrotors from their initial positions to their formation around the
target position pT (t) ∈ R2 and, once such configuration is reached, autonomously
describe perfectly coordinated circles. The trajectory generation algorithm is coded
among the quadrotors as a distributed optimization problem which is solved in real
time [100], [101].

Let Λ(t) define a positive cost function which value decreases when the horizontal
position pi(t) ∈ R2 of both quadrotors is such that the distance diT (t) to the target,
and the separation between them dij(t) approaches to the desired values. Λ(t) is
divided between the agents such that each agent i optimizes a part of the function
using its own information and that of its neighbor j as:

Λ(t) :=
n∑
i=1

Λi(t), (5.14)

Λi(t) := ρ
∣∣∣∣∣∣‖pT − [pi(t) + hi(t)]‖ − ddiT

∣∣∣∣∣∣+ aij(t)
∣∣∣∣∣∣‖pj(t)− [pi(t) + hi(t)]‖ − ddij

∣∣∣∣∣∣,
with

aij(t) = 1 + exp

(
c− dij(t)

γ

)
, (5.15)

being i 6= j the index of each drone, hi(t) ∈ R2 represents the solution of the cost
function for each quadrotor, ρ, γ ∈ R+ denote tunning parameters, and c symbolizes
their safety separation.

This path planning strategy (presented in [100] and [102]), consists on finding the
optimal displacement h∗i (t) for each drone i = 1, 2, at each time instant while
minimizing Λ(t). Note that Λ(t)→ 0 when dij(t)→ ddij, diT (t)→ ddiT and h∗i (t)→ 0
meaning that the quadrotors will hold their static position once the formation is
reached, unless the target changes its position, or an agent is disturbed.

In this work, it is desired that the agents follow a circular path while attaining their
configuration, this can be achieved by redefining the cost function as

Λi(t) :=ρ
∣∣∣∣∣∣‖pT (t)− [pi(t)− ηi(t) + hi(t)]‖ − ddiT

∣∣∣∣∣∣
+ aij(t)

∣∣∣∣∣∣‖pj(t)− [pi(t)− ηi(t) + hi(t)]‖ − ddij
∣∣∣∣∣∣, (5.16)

where ηi(t) ⊥ (pT − pi(t)) denotes a vector in R2 which is perpendicular to the radius
between quadrotor i and the target, and is computed as

ηi(t) :=

[
1 0 0
0 1 0

] [
[0 0 1]T ×

[
1 0
0 1
0 0

][
(pT (t)− pi(t))
||(pT (t)− pi(t))||

]
ωi(t)

]
, (5.17)
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with turning rate defined as

ωi(t) := ωd exp

(
−
∣∣∣∣∣∣‖pj(t)− pi(t)‖ − ddij∣∣∣∣∣∣− ∣∣∣∣∣∣‖pT − pi(t)‖ − ddiT ∣∣∣∣∣∣), (5.18)

being ωd ∈ R a parameter defined by the user which dictates how fast and on which
direction the circular trajectory will be described.

The construction of ωi(t) is such that when the quadrotors are located far from
the desired configuration, the turning rate diminishes exponentially, such that the
vehicles can move to the required distances in contrast, the closer the UAVs get to a
symmetrical formation, then ωi(t)→ ωd.

The minimum Λi(hi(t)) is reached when both drones converge to positions such that

‖pT (t)− [pi(t)− ηi(t) + hi(t)]‖ → ddiT

‖pj(t)− [pi(t)− ηi(t) + hi(t)]‖ → ddij (5.19)

h∗i (t)→ ηi(t)

meaning that the optimal displacement h∗i (t) will converge to a perpendicular dis-
placement with respect to the target direction, see Figure 5.14.

Figure 5.14: Circular path generation using perpendicular vectors on the opti-
mization cost function.

The optimal solution of (5.16) is computed by generating N random values hi,n(t), n =
1, · · · , N contained in a vicinity 0 < hi,n((t) < himax, where himax is manually tuned.
Each value is then evaluated on the cost function, generating N solutions Λi,n(hi(t)),
the best evaluation is used to compute a the velocity and position of all the particles
on a recursive loop. The optimal path followed by the drone is defined as h∗i (t), and
is selected as the corresponding minimal solution of Λ∗i (t) using a Particle Swarm
Optimization (PSO) algorithm.

h∗i (t) = arg min
(
Λi

(
hi,n(t)

))
. (5.20)
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Finally, the 3-dimensional trajectory is composed by adding h∗i (t) to the current
quadrotor position, resulting in

~pdi(t) =

[
1 0
0 1
0 0

]
[pi(t) + h∗i (t)] +

[
0
0
zd

]
, (5.21)

where zd denotes the desired quadrotor altitude over the target UGV.

5.2.2 Target Locking

In the proposed scenario, the two quadrotors are equipped with front-facing cameras,
in order to maintain the target in-sight, the front axis of the quadrotors should be
pointed towards the position of the UGV.

Define a normalized vector ~χi ∈ R3 that points horizontally from the position of
quadrotor i to the target location as

~χi =

[
1 0
0 1
0 0

]
pT − pi
||pT − pi||

. (5.22)

Considering that the front of the quadrotor points towards the x axis of the body
frame, and following the idea of (2.40), a quaternion qz which aligns the vehicle z
axis with m̂ is proposed as

qzi := ±



√√√√√√1 + ~χi ·
[

1
0
0

]
2

+

~χi ×
[

1
0
0

]
∣∣∣∣∣
∣∣∣∣∣~χi ×

[
1
0
0

]∣∣∣∣∣
∣∣∣∣∣

√√√√√√1− ~χi ·
[

1
0
0

]
2

 , (5.23)

see Figure 2.5.

Figure 5.15: Aligning the vehicle front-facing axis towards the target direction
using a quaternion.
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5.2.3 Control Algorithm

In order to have a smooth and robust response on the quadrotor, a position controller
is developed on each quadrotor by introducing the PSO-generated trajectory from
(5.21) into the cylindrical bounded controller from (3.83) which yields a control force
computed as

~Fui = −mKtσc

(
Kc ~̇pi + σd

(
KdKc

[ −h∗ix(t)−h∗iy(t)
piz(t)− zd

]
+Kd ~̇pi

))
−m~g, (5.24)

which then yields an attitude reference for every vehicle, derived from (2.40) as

qti = ±



√√√√√√1 +
~Fui

||~Fui||
·
[

0
0
1

]
2

+

~Fui

||~Fui||
×
[

0
0
1

]
∣∣∣∣∣
∣∣∣∣∣ ~Fui

||~Fui||
×
[

0
0
1

]∣∣∣∣∣
∣∣∣∣∣

√√√√√√1−
~Fui

||~Fui||
·
[

0
0
1

]
2

 , (5.25)

finally, a bounded control torque, which include the target-locking rotation from
(5.23) as

~τi = ~Ωi × J ~Ωi − JKrσa

(
Ka

~Ωi (5.26)

+σb

2KbKa ln

±


√√√√√√1 + ~χi ·
[

1
0
0

]
2

−
~χi ×

[
1
0
0

]
∣∣∣∣∣
∣∣∣∣∣~χi ×

[
1
0
0

]∣∣∣∣∣
∣∣∣∣∣

√√√√√√1− ~χi ·
[

1
0
0

]
2

⊗q
∗
ti ⊗ qi

+Kb
~Ωi



 .

In this work, both quadrotors are considered to have identical mechanical configu-
rations, for this reason all control gain matrices, bounding limits, mass and inertia
matrices are considered to be the same from one vehicle to the other.

5.2.4 Emulated Results

The proposed algorithm was implemented on a simulation environment included in
the ”FL-air” framework for UAVs, developed at the Heudiasyc laboratory [95].

Figure 5.16: FL-air framework simulation environment with a human target and
two tracking quadrotors.
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In this case, the simulator was set to include two quadrotors and a human considered
as a ground target. Figure 5.17 illustrates the movement of the target, and the two
drones following the desired formation around it. The colored arrows indicate the
direction of each vehicle front axis which are computed by rotating a unit vector
with the attitude quaternion as ebxi = qi ⊗ [1 0 0]T ⊗ q∗i
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Figure 5.17: Two quadrotors following a target on an emulated environment,
the UAVs describe circles while pointing their fronts towards the objective.

Figures 5.18 and 5.19 illustrate the translational behavior of both drones on the x and
y axes respectively, fine-dotted lines illustrate the reference trajectories computed by
the PSO algorithm, while continuous and large-dotted lines represent the response of
each vehicle.
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Figure 5.18: Translation over the x axis, the circular tracking of the target is
indicated by sinusoidal oscillations on both quadrotors.
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Both quadrotors use the PSO algorithm to solve the optimization problem from
(5.16), resulting in trajectories defined by following (5.21). Using controllers (5.24)
and (5.26), the vehicles are stabilized to their corresponding trajectories
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Figure 5.19: y axis position response, note how both quadrotors oscilate at
oposite locations from the target, indicating their coordinated behavior.

Figure 5.20 depicts the distances between both vehicles and with respect to their
target, note the PSO algorithm along with the control laws ensure the desired
distances will be respected even when the quadrotors are following circular paths.
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Figure 5.20: Distance between quadrotors and from each agent to the target,
the desired radius was set as ddiT = 1.5m, therefore ddij = 2ddiT = 3m.



Autonomous tracking of dynamic targets 120

5.2.5 Experimental validation

Two real world experiments were performed using AR-Drone2 quadrotors to track a
Parrot Jumping Race target UGV as depicted on Figure 5.21.

The trajectory generation and control strategies were programmed on the same
framework as on the real-time emulation, each drone computes its corresponding
part of the algorithms.

Figure 5.21: Experimental set for circular UAV-UGV tracking, a UGV is set as
a target for two quadrotors

An OptiTrack motion capture system was used to estimate the vehicles positions and
translational velocities and broadcasted using a WiFi network.

5.2.5.1 Stationary Target Scenario

On the first scenario, the target was left in a fixed position while the two quadrotors
kept track of it, their coordinated path resulted in circular trajectories, as illustrated
on Figure 5.22.
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Figure 5.22: Two quadrotors tracking a static UGV, the vehicles describe
coordinated circles around the target.
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The desired trajectory is computed following the proposed equations on each UAV
using the PSO algorithm, the control algorithm then tracks the computed references,
as illustrated in Figures 5.23 and 5.24. Notice the position of the quadrotors is
opposite one from another, indicating a coordinated circular path.
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Figure 5.23: x axis position of both vehicles during a static target test, fine-dotted
lines represent the trajectory generated by the PSO algorithm.
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Figure 5.24: Translational y axis response for a static target experiment, opposing
oscilations indicate how coordinated circles are followed.

The PSO algorithm optimizes the position of each drone according to (5.16) such that
the required distances are respected as illustrated in Figure 5.25, in this experiment,
the desired radius was set as ddiT = 1.5m, therefore ddij = 2ddiT = 3m.
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Figure 5.25: Static target experiment, the trajectory generation algorithm
optimizes the distance between quadrotors and from each agent to the target.

In order to lock the quadrotor’s view of the target, a rotation around the vehicle z
axis is computed by (5.23) to point the x axis of the body reference frame towards
the UGV location. Figure 5.26 illustrates this behavior using colored arrows, since
the target is static, they always point towards the circular path’s center.

x[m]
-2 -1 0 1 2 3

y
[m

]

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

p1
p2
pT

Figure 5.26: Circular tracking of a fixed UGV, arrows illustrate the front axis of
each quadrotor which is pointed towards the center.
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Equations (2.40) and (5.23) yield a quaternion reference which is then tracked by
the attitude controller. Figures (5.27) and (5.28) depict the quaternion q0 and q3

elements which respectively relate to the total attitude angle, the z axis rotation.
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Figure 5.27: Quaternion reference and response of both quadrotors over the z
axis, sinusoidal signals are described to face towards the target.

Since the vehicle front axis tracks the circle center, the z axis rotation of both
quadrotors describe supplementary angles, since the definition of q1 and q2 depends
on sinus and cosinus functions from the Euler-Rodrigues formula (2.15), this results
in a behavior such that q10 ≈ −q23 and q13 ≈ q20 .
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Figure 5.28: Attitude over the z axis of both quadrotors, opposing positions
over the circular path yield similar values in the rotational signals.
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5.2.5.2 Moving Target Scenario

On the second experiment, the UGV was moved using a remote controller, the PSO
algorithm generates trajectories for each quadrotor to reach the target, once the
desired distances are achieved, circular movements are performed around the ground
vehicle. If the target moves, the effects of (5.18) interrupt the quadrotors’ circular
paths until the formation is recovered, see Figure 5.29.
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Figure 5.29: Two quadrotors following a moving UGV. The vehicles’ paths are
indicated by black arrows while colored ones represent the vehicles front axes.

Figures 5.30 and 5.31 illustrate the translation of the UGV and both quadrotors on
the x and y axes, Notice when the target moves, the drones adjust their trajectories
to reach opposing positions around it.
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Figure 5.30: x axis response when following a moving, the PSO algorithm
computes the optimal paths (fine-dotted lines) to reach the target.
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The trajectory is computed in the internal microprocessor of each quadrotor using
the distributed path planning algorithm from (5.14), which is then used as a reference
for the position control law from (5.24) and (5.26).
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Figure 5.31: Translational behavior over the y axis, the proposed controllers
ensure that each quadrotor follows the required trajectory to reach the desired

distance around the target.

5.2.5.3 Disturbed Agent Scenario

In the last test, the quadrotors were once again set to track a static target. But in
this case, one of the drones was highly disturbed by pulling it by hand and placing it
on different locations as depicted in Figure 5.32.

Figure 5.32: A drone is disturbed by manually displacing it, the quadrotor drone
reconfigures to recover the desired distances while pointing towards the target.

The trajectory generation algorithm using PSO provided robustness to the system by
adapting the drones behavior to such changes, and recovering the formation once the
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perturbation ends, while the proposed controllers ensured that the force and torque
reactions to counteract the disturbances remain bounded. Figure 5.33 illustrates the
upper view of the experiment, note when one of the drones is disturbed, the other
one reconfigures its position according to the cost function.
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Figure 5.33: Disturbed experimet: a) The first drone is moved contrary from
its path, b) The second drone is approached to the first one in opposing direction

from the circular path, c) The first drone pushed towards the second drone.

The responses of both quadrotors towards strong disturbances are illustrated in
Figures 5.34 and 5.35, each disturbance is represented by a letter, which correspond
to the ones displayed in Figure 5.33 as follows:

a) Quadrotor 1 was pulled 1 meter contrary to its circular path, the PSO trajectory
is still computed in the optimal direction but it fails to be reached because of
the disturbance. The reaction of quadrotor 2 is to change its direction in order
to maintain the desired distances and avoid coliding.

b) Quadrotor 2 was also pushed 2 meters in the opposite direction of the trajectory,
approaching quadrotor 1 which adapts its direction thanks to the PSO agorithm
to avoid crashing and to recover the formation.

c) Quadrotor 1 was grabbed and pulled in the same course the circular path for 3
meters, and then stopped, the PSO algorithm then computes a farther reference
for quadrotor 2 such that it moves faster to maintain the desired distances.



Autonomous tracking of dynamic targets 127

Time [s]
0 10 20 30 40 50 60 70

x
[m

]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

p1x pd1x p2x pd2x pTx

a)

b)

c)

Figure 5.34: Response over the x axis for two quadrotors tracking a static UGV
in the presence of disturbances, the PSO trajectory is represented with fine-dotted

lines.
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Figure 5.35: y axis response in the presence of strong perturbations, the opti-
mization algorithm adapts the trajectory behavior while the proposed controllers

ensure a bounded and robust tracking of the computed references.

Finally, Figure 5.36 illustrates the distances between quadrotors and towards the
target, the separation from one drone to the other was set at 3 meters, notice that
even if disturbances a) and b) reduce this distance the trajectory computed by the
PSO algorithm adapts the trajectories to avoid colissions, and recovers to the desired
value once the perturbation stops.
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Figure 5.36: Distances between quadrotors and with respect to the UGV target,
the PSO algorithm along with the bounded controller ensure the formation is

recovered after a disturbance occurs.

All the previous experiments can be watched at the following link:
https://youtu.be/ThisIsADummyLink

5.3 Autonomous target tracking conclusions

Cooperative navigation between UAVs and UGVs can benefit from the advantages of
each kind of robot to counteract their disadvantages in benefit of a common mission.
The privileged sight of aerial vehicles, along with their freedom of movement can be
used to expand the covered area of the overall system, while the ground robot can
be tasked with carrying heavier sensors, and providing a larger time of autonomy for
other assignments.

Benefiting from properties of the quaternion-based controllers proposed in previous
chapters, which are capable of robustly tracking position and orientation reference
in 3-dimensional spaces, two autonomous navigation algorithms were proposed for
heterogeneous systems composed by UAVs and UGVs.

Firstly, a set of differential equations are used to design a dynamic trajectory which
includes stages for taking-off from a ground vehicle, followed by a tracking phase
in which circles are described over the UGV at a desired distance, finalizing with
two options for autonomous landing. A quaternion-based feedback controller was
employed to track this trajectory with a quadrotor UAV.

Then, a distributed path planning algorithm was introduced in which a set of
quadrotors cooperatively track a ground robot target while maintain a symmetrical
formation, the construction of the navigation equations are such that once the desired
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distances between the UAVs and with respect to the UGV are reached, the drones
start describing circles, all while continuously pointing their front-facing axes towards
their target. The trajectory generation algorithm was based on an optimization
problem which is solved with a PSO approach. In this case, a cylindrical bounded
controller was used to ensure that the UAVs follow their trajectories while being
robust against unknown disturbances.

Several simulations and real-world tests were performed for both approaches, validat-
ing their capabilities for autonomous tracking of ground vehicles using quadtorots





Chapter 6

Conclusions and Future
Perspectives

Autonomous robotic systems have been developing in an accelerating pace in recent
years, what started as an interesting concept, exclusive to only a few institutions, has
become a global trend which is being constantly enhanced by researchers, companies
and individuals allover the world.

A common task for aerial vehicles in cooperative or surveillance missions is to follow
ground-located targets, in many cases, such targets can be dynamic and perform
unpredictable movements, which have to be taken into account by the aerial vehicles’
navigation algorithms in order to accurately track them.

In this thesis, autonomous navigation and control strategies for quadrotors tracking
ground targets have been developed. The chosen methodologies, which were based on
unit quaternions, resulted in algorithms which are capable of following and tracking
individual and collective targets, perform robustly towards disturbances, aggressive
maneuevers, and even interact with operators in safe and intuitive ways.

On one hand, several quaternion-based control strategies for quadrotors were intro-
duced, ranging from simple feedback linear regulators all the way to geometrical-based
bounded algorithms with sliding-mode properties. Since these controllers were devel-
oped from quaternion-based representations of the vehicle dynamics, smooth, precise
and robust performances were achieved for tracking static and dynamic references.

On the other hand, autonomous navigation algorithms were proposed for single and
multiple quadrotors, first, to provide users with a safe and intuitive interface with
the system, then, to introduce new ways to deploy and launch aerial vehicles, finally
to be able of cooperating and forming fleets that autonomously track moving targets
while flying in a coordinated manner.

The proposed controllers and navigation algorithms were validated, first in simulations,
then in real-world experiments, displaying precise and robust performances which
were partly a consequence from their quaternion-inherited properties.
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6.1 Future perspectives

During the development of this thesis, several points that can be improved have been
detected, hence the perspectives and future works are numerous

Firstly, this work was mainly focused on developing navigation and control algorithms,
but the problem of detecting a target was not addressed, an interesting improvement
would be to study vision-based algorithms for detecting objects using down-facing
cameras on the quadrotors, such that the proposed algorithms can be tested in more
realistic scenarios.

Another point of improvement is the use of different sensors for estimating position
signals. For the experiments performed during this thesis, an indoor motion-capture
system was used that accurately detects the quadrotors and target positions using
infrared cameras, the main disadvantage systems is that their use in outdoors
environments can be difficult, expensive, or even impossible in many cases. A solution
could be to use GPS signals, which can be improved using filters and observers,
or by combining them with visual-inertial techniques for position estimation. The
algorithms proposed in this thesis could be tested in outdoors experiments if the
signals of these sensors are correctly treated.

Outdoors experiments also represent a challenge for aerial vehicles due to the presence
of external disturbances originated by wind gusts. Although the proposed controllers
proved to be robust towards unmodeled disturbances, their performance on outdoors
environments can be improved by adding observers that estimate wind perturbations,
which can then be considered by the controllers by including additional compensating
terms.

Regarding the user interaction algorithms, some muscular gestures that can be
detected by the employed armband proved to be precise for only a few gestures,
while many others were confusing for the system specially when the device was
changed from one user to another. An improvement of this work could be to develop
algorithms for robustly detecting new muscular gestures, that then can be applied to
perform more tasks with the quadrotors. Some primary ideas have been proposed
using machine learning algorithms, but further development has to be performed.

Finally, some of the techniques developed during this PhD can be extended to follow
flying targets, new cost function can be designed to perform pursuit trajectories,
such that their optimal solution yield a distributed cooperative navigation scheme,
similar to the one employed in this thesis.
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A.2 International Journals

J1 H. Abaunza, P. Castillo, Quatrotor aggressive deployment, using a quaternion-based
spherical chattering-free sliding-mode controller, IEEE Transactions on Aerospace
and Electronic Systems (IEEE TAES). *submitted in 2019

J2 E. Ibarra, P. Castillo, and H. Abaunza, Nonlinear control with integral sliding
properties for circular aerial robot trajectory tracking: real-time validation, Inter-
national Journal of Robust and Nonlinear Control (IJRNC), Wiley Online Library,
*submitted in 2019.

J3 L.F. Sanchez, H. Abaunza, and P. Castillo, User-Robot Interaction For Safe Navi-
gation of a Quadrotor, Robotica, Cambridge University Press, *submitted in 2019.

J4 A. Belkadi, H. Abaunza, L. Ciarletta, P. Castillo, and D. Theilliol, Design And
Implementation of Distributed Path Planning Algorithm for a Fleet Of UAVs, IEEE
Transactions on Aerospace and Electronic Systems (IEEE TAES), 2019.

J5 H. Abaunza, P. Castillo, A. Victorino, and R. Lozano, Dual Quaternion Modeling
and Control of a Quad-rotor Aerial Manipulator, Journal of Intelligent & Robotic
Systems, 2017.

J6 M.E. Guerrero, H. Abaunza, P. Castillo, R. Lozano, and C.D. Garćıa, Quadrotor
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[56] José-Fermi Guerrero-Castellanos, Ahmad Hably, Nicolas Marchand, and Suzanne
Lesecq. Bounded attitude stabilization: Application on four-rotor helicopter. In
Proceedings 2007 IEEE International Conference on Robotics and Automation, pages
730–735. IEEE, 2007.

[57] JF Guerrero-Castellanos, Nicolas Marchand, Suzanne Lesecq, and Jérôme Delamare.
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