
HAL Id: tel-02156037
https://theses.hal.science/tel-02156037

Submitted on 14 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementation of isotopes into coupled
hydrogeochemical modeling

Marianna Marinoni

To cite this version:
Marianna Marinoni. Implementation of isotopes into coupled hydrogeochemical modeling. Geochem-
istry. Université de Strasbourg, 2018. English. �NNT : 2018STRAH001�. �tel-02156037�

https://theses.hal.science/tel-02156037
https://hal.archives-ouvertes.fr


 
UNIVERSITÉ DE STRASBOURG 

 
 

 

ÉCOLE DOCTORALE DES SCIENCES DE LA TERRE ET DE L’ÉNVIRONNEMENT 

LHyGeS - UMR 7517 
 
 

THÈSE  présentée par : 

Marianna MARINONI 
 

soutenue le : 3 mai 2018 
 

 

 

pour obtenir le grade de : Docteur de l’université de Strasbourg 

Discipline/ Spécialité : Hydrologie 

 

Implémentation des isotopes dans un 
modèle hydrogéochimique couplé  

 

Implementation of isotopes into coupled 
hydrogeochemical modeling 

 
 
THÈSE dirigée par : 

Philippe ACKERER Directeur de Recherche, CNRS, Université de Strasbourg 
 

RAPPORTEURS : 
Olivier BILDSTEIN Directeur de Recherche, CEA, Cadarache  
Yves GODDÉRIS Directeur de Recherche, CNRS, GET OMP, Toulouse 
 

 

AUTRES MEMBRES DU JURY : 
Jesús CARRERA Directeur de Recherche, CSIC, UPC, Barcelone 
Monica RIVA Professeur, DICA, Politecnico di Milano, Milan 
 
 

 

 
 

 

 



  



 

 

 

 

 

 

 

 

  



 

 

  



VI

Summary 

 

List of figures ....................................................................................................................................... XII 

List of tables ...................................................................................................................................... XVII 

List of recurrent symbols .................................................................................................................... XIX 

Acknowledgments ........................................................................................................................... XXIV 

Introduction générale en Français ........................................................................................................... 2 

Les principaux modèles mathématiques .......................................................................................... 3 

Les techniques de couplage: séparation d opérateur et approche globale ....................................... 5 

Un univers de codes pour la simulation du transport réactif ........................................................... 5 

1.5 Les modèles numériques au LHyGeS ....................................................................................... 6 

1.6 Structure du manuscrit ............................................................................................................... 8 

Chapter 1 - General introduction ........................................................................................................... 12 

1.1 Reactive transport .................................................................................................................... 12 

1.2 Governing equations ................................................................................................................ 13 

1.3 Coupling techniques: operator splitting and global approach ................................................. 14 

1.4 A universe of reactive transport codes .................................................................................... 15 

1.5 LHyGeS numerical models: a garden worth gardening .......................................................... 16 

1.6 Structure of the work ............................................................................................................... 17 

Chapter 2  Implementing isotopes ....................................................................................................... 10 

2.1 Theoretical background ............................................................................................................... 10 

2.1.1 What is an isotope? ............................................................................................................... 10 

2.1.2 Notation ................................................................................................................................ 11 

2.1.3 Isotopic abundance and its variations ................................................................................... 12 

2.1.5 Why do we care about isotopes? .......................................................................................... 14 

2.2 Modeling isotopes ....................................................................................................................... 15 

2.2.1 Modeling stable isotopes equilibrium fractionation ............................................................. 15 

2.2.2 Modeling stable isotopes kinetic fractionation ..................................................................... 16 

2.2.3 Conclusions about modeling isotopes .................................................................................. 17 

Chapter 3  Thermodynamic equilibrium ............................................................................................. 20 

3.1 Thermodynamic equilibrium solutions through a modified Newton Raphson method ............... 21 

3.1.1 Abstract ................................................................................................................................ 21 

3.1.2 Introduction .......................................................................................................................... 22 



VII

3.1.3 Thermodynamic equilibrium: governing equations ............................................................. 23 

3.1.4 Newton Raphson algorithm .................................................................................................. 26 

3.1.5 Condition of the linear system .............................................................................................. 27 

3.1.6 Working on a logarithmic base ............................................................................................. 29 

3.1.7 Preconditioning .................................................................................................................... 30 

3.1.8 Scaling procedures in this work ........................................................................................... 31 

3.1.9 Positive continuous fraction method .................................................................................... 32 

3.1.10 Numerical experiments ....................................................................................................... 34 

3.1.11 Numerical simulations: discussion ..................................................................................... 39 

3.1.12 Conclusions about the strategies to improve Newton Raphson method ............................. 51 

3.2 Thermodynamic capabilities of the code ..................................................................................... 53 

3.2.1 Modeling surface complexation ........................................................................................... 53 

3.2.2 Modeling ion exchange ........................................................................................................ 56 

Chapter 4  Mixed equilibrium and kinetics ......................................................................................... 58 

4.1 Theoretical background and generic formulation ........................................................................ 58 

4.1.1 Generic formulation I ........................................................................................................... 58 

4.1.2 Generic formulation II .......................................................................................................... 64 

4.1.3 Systems of equations ............................................................................................................ 68 

4.2 Solving the systems of equations ................................................................................................ 70 

4.2.1 Implicit and explicit, one-step or multistep methods of integration ..................................... 71 

4.2.1.1 Implicit and explicit methods ........................................................................................ 71 

4.2.1.2 One-step and multi-step methods .................................................................................. 72 

4.2.1.3 Variable stepsize ............................................................................................................ 75 

4.2.2 An implemented explicit method: Richardson extrapolation of QSSA method ................... 76 

4.2.3 An implemented implicit method: BDF in DASPK ............................................................. 76 

4.2.4 Solving systems with DASPK .............................................................................................. 78 

4.2.4.1 Residual computation for DASPK 1 ............................................................................. 78 

4.2.4.3 Residual computation for DASPK 2 ............................................................................. 84 

4.2.4.3 Residual computation for DASPK 3 ............................................................................. 85 

4.3 Numerical simulations ................................................................................................................. 88 

4.3.1 TST model, verification of results with PHREEQC and KINDIS ....................................... 88 

4.3.1.1 Description of the problem ............................................................................................ 88 

4.3.1.2 Numerical simulations: results ...................................................................................... 90 

4.3.2 Chilakapati test case: verification with publication .............................................................. 97 

4.3.2.1 Description of the problem ............................................................................................ 97 



VIII

4.3.2.2 Numerical simulations: results .................................................................................... 103 

4.3.2.3 Numerical simulations: effect of convergence criteria ................................................ 106 

4.4 Conclusions about mixed equilibrium and kinetics ................................................................... 110 

Chapter 5  Solid solutions ................................................................................................................. 112 

5.1 Introduction and theoretical background ................................................................................... 112 

5.1.1 The interest in solid solutions ............................................................................................. 112 

5.1.2 Theoretical background: Thermodynamics of solid solutions ........................................... 113 

5.1.3 Modeling solid solutions and their interaction with the aqueous phase ............................. 114 

5.1.3.1 Equilibrium models for solid solutions ....................................................................... 115 

5.1.3.2 Kinetic models for solid solutions ............................................................................... 118 

5.1.3.3 Exploiting solid solutions concept for stable kinetic isotope fractionation ................. 118 

5.2 Numerical simulations of solid solutions .................................................................................. 121 

5.2.1 Modeling solid solutions at thermodynamic equilibrium ................................................... 121 

5.2.1.1 Verification with PHREEQC ...................................................................................... 121 

5.2.1.2 Fe-Cr redox reaction, a reactive transport example ..................................................... 123 

5.3 Conclusions about solid solutions ............................................................................................. 131 

Chapter 6  Building SpeCTr, a reactive transport code ..................................................................... 132 

6.1 Coupling flow, transport and reaction ....................................................................................... 132 

6.1.1 Governing equations ........................................................................................................... 132 

6.1.2 Global approach ................................................................................................................. 133 

6.1.3 Operator splitting ................................................................................................................ 135 

6.1.4 War of the approaches ........................................................................................................ 137 

6.1.5 Multicomponent reactive transport ..................................................................................... 137 

6.2 TRACES .................................................................................................................................... 140 

6.2.1 Code capabilities ................................................................................................................ 140 

6.2.2 Numerical schemes ............................................................................................................. 140 

6.2.3 Coupling with reaction module .......................................................................................... 141 

6.2.4 SpeCTr ............................................................................................................................... 142 

6.3 Validation: coupling and implementation of isotopes ............................................................... 142 

6.3.1 Interest of validation ........................................................................................................... 142 

6.3.2 Presentation of the problem ................................................................................................ 143 

6.3.2.1 Spatial discretization, flow characteristics and ground properties .............................. 143 

6.3.2.2 Boundary and initial conditions, transport parameters ................................................ 143 

6.3.2.3 Reaction network ......................................................................................................... 145 

6.3.2.4 Considerations about Courant number ........................................................................ 149 



IX

6.3.3 Results of numerical simulations: SpeCTr ......................................................................... 149 

6.3.3.1 Results: t(CFL), L = 0 m, no Cr fractionation ......................................................... 149 

6.3.3.2 Results: t(CFL=1), L = 0 m, Cr fractionation .......................................................... 152 

6.3.3.3 Results: reduced time step, L = 0 m, Cr fractionation ................................................ 157 

6.3.3.2 Results: t (CFL=1), L = 1.0 m, Cr fractionation ...................................................... 158 

6.3.3.3 Results: reduced time step, L = 0.54 m, Cr fractionation ........................................... 161 

6.4 Conclusions about SpeCTr validation ....................................................................................... 164 

Chapter 7  Application of SpeCTr: modeling Calcite dissolution & precipitation ............................ 165 

7.1 From mixed flow reactor to column experiments and modeling: upscaling of calcite dissolution 
rate ................................................................................................................................................... 166 

7.1.1 Abstract .............................................................................................................................. 166 

7.1.2 Introduction ........................................................................................................................ 167 

7.1.3 Materials and experimental methods .................................................................................. 168 

7.1.3.1 Sample preparations .................................................................................................... 168 

7.1.3.2 Aqueous solution preparations .................................................................................... 169 

7.1.3.3 Mixed flow reactor experiments .................................................................................. 169 

7.1.3.4 Column experiment ..................................................................................................... 170 

7.1.3.5 Aqueous sample analyses and thermodynamic calculations ....................................... 170 

7.1.3.6 Determination of calcite dissolution rate ..................................................................... 170 

7.1.4 Mathematical modeling of flow and reactive transport for the column experiments ......... 173 

7.1.5 Results and discussion ........................................................................................................ 175 

7.1.5.1 Mixed-flow reactor experiments ................................................................................. 175 

7.1.5.1.a Etching and etch pits morphology ........................................................................ 175 

7.1.5.1.b R-  and R- G relationships as determined from VSI measurements ..................... 177 

7.1.5.2 Column experiment ..................................................................................................... 178 

7.1.5.2.a Dissolution rates determined from VSI measurements ............................................ 179 

7.1.5.2.b Etch pit morphology ............................................................................................. 180 

7.1.5.2c Comparison of the mean dissolution rates retrieved with VSI to those inferred from 
pit morphology .................................................................................................................... 181 

7.1.5.3 Modeled dissolution rates using 2D reactive transport simulations of the column 
experiment ............................................................................................................................... 183 

7.1.5.4 Modeled dissolution rates: 1D versus 2D simulations. ............................................... 185 

7.1.5.5 Simulation of the Calcium breakthrough curve. .......................................................... 188 

7.1.5.6 1D and 2D-reactive transport simulations of the column experiment: overview and 
perspectives ............................................................................................................................. 190 

7.1.5.6a Mineralogical considerations ................................................................................. 190 



X

7.1.5.6.b Calcium breakthrough .......................................................................................... 190 

7.1.5 Conclusion .......................................................................................................................... 191 

7.2 Preparing Calcite dissolution rate modeling .............................................................................. 192 

7.2.1 Computation of reactive surface area for TST and SWM models ...................................... 193 

7.2.2 Time and spatial discretization ........................................................................................... 194 

7.3 Mixing induced CaCO3 precipitation ........................................................................................ 201 

7.3.1 Presentation of the test case ................................................................................................ 201 

7.3.1.1 Spatial discretization, flow characteristics and ground properties .............................. 202 

7.3.1.2 Boundary and initial conditions, transport parameters ................................................ 203 

7.3.1.3 Reaction network ......................................................................................................... 203 

7.3.1.4 Algorithms for porosity changes ..................................................................................... 205 

7.3.2 Results of numerical simulations: SPeCTr ......................................................................... 206 

7.3.2.1 Results: constant porosity  equilibrium and kinetic CaCO3 precipitation ................. 206 

7.3.2.2 Results: variable porosity - equilibrium CaCO3 precipitation ..................................... 215 

7.3.2.3 Results: variable porosity - kinetic CaCO3 precipitation ............................................. 222 

7.3.2.4 Conclusion about Calcite precipitation and porosity changes ..................................... 229 

7.4 - 3D Calcite dissolution modeling ............................................................................................. 230 

7.4.1 Presentation of the problem ................................................................................................ 230 

7.4.2 Results of 3D simulation .................................................................................................... 232 

7.4.2 Conclusions about 3D simulation ....................................................................................... 235 

General conclusion .............................................................................................................................. 236 

Perspectives ......................................................................................................................................... 240 

Conclusions et Perspectives en Français ............................................................................................. 242 

References ........................................................................................................................................... 246 

Annexes ............................................................................................................................................... 261 

Annex I ............................................................................................................................................ 261 

Annex II ........................................................................................................................................... 263 

Annex III ......................................................................................................................................... 267 

Annex IV ......................................................................................................................................... 270 



XI

 



XII

List of figures 

 

Figure 2.1  Atomic numbers vs. Number of neutrons in the nuclei of stable isotopes. From Principle 

of stable isotopes distribution (Criss 1999) ........................................................................................... 11 

Figure 3.1 - Effect of the round-off error 10-d on the iterative solution. The picture shows the path 

throughout the solution of four variants of the same simplified problem. Figures (a), (b), (c) and (d) 

show the results for different values of d, the exponent of the round-off error (d=3, 4, 5 and 6 for, 

respectively). Since the problem has only two unknowns (components  1 and  2) the path from the 

common initial guesses (  1 =6.0 and  2 =3.0) to the solution (  1 =0.3 and  2 = -2.9) is easily 

represented on a 2D graph. Within a single variant of the problem, different paths occur with different 

algorithms. When round-off error is higher (a) the implementation of scaling makes the difference 

between reaching the solution or not. .................................................................................................... 35 

Figure 3.2 - Variation in condition numbers throughout the minimization for the Pyrite test case with 

favorable initial guesses (a) and poor initial guesses (b) of the component concentrations. ................. 39 

Figure 3.3 - Initial condition number and relative number of solutions for the Gallic Acid test case. . 42 

Figure 3.4 - Initial condition number and relative number of solutions for the MoMaS Easy test case.

 ............................................................................................................................................................... 43 

Figure 3.5 - Initial condition number and relative number of solutions for the Pyrite test case. .......... 45 

Figure 3.6 - Initial condition number and relative number of solutions for the Fe Cr test case. ........... 46 

Figure 3.7 - Initial condition number and relative number of solutions for the Pyrite Mineral test case.

 ............................................................................................................................................................... 47 

Figure 3.8 - Initial condition number and relative number of solutions for the MoMaS Hard test case.

 ............................................................................................................................................................... 48 

Figure 3.9 - Initial condition number and relative number of solutions for the Fe Cr Mineral test case.

 ............................................................................................................................................................... 49 

Figure 3.10  Different surface complexation models: a) constant capacity model b) Double layer 

model c) Triple layer model d) CD-MUSIC triple layer model (not treated here) (Figure from 

(Goldberg et al. 2007)). ......................................................................................................................... 54 

Figure 4.1 - Graphical representation of the concept of partition Leal et al. (2015) for the example 

provided by Steefel and MacQuarrie (1996) ......................................................................................... 64 

Figure 4.2  Adaptation of the concept of partitioning to the stoichiometric approach for the example 

provided by Steefel and MacQuarrie (1996). The equation included in the Figure is a copy of (4.14). 65 

Figure 4.3  Graphical explanation of Backward Differentiation Formula (BDF) method .................. 73 



XIII

Figure 4.4  Graphical explanation of Fixed Leading Coefficients  Backward Differentiation Formula 

(FLCBDF), with predictor polynomial p and corrector polynomial c, first step. ............................. 75 

Figure 4.5  Graphical explanation of Fixed Leading Coefficients  Backward Differentiation Formula 

(FLCBDF), with predictor polynomial p and corrector polynomial c, second step. ......................... 75 

Figure 4.6  Structure of the iteration (or Jacobian) matrix for DAEs system (4.22) or DASPK 1. ..... 79 

Figure 4.7  The iteration matrix for DASPK 1 is filled block by block: BLOCK 1 is related to 

derivatives of mass conservation, BLOCK 2 to mass action lass and BLOCK 3 to kinetic species. .... 80 

Figure 4.8  The iteration matrix for DASPK 1 is filled block by block. BLOCK 2 accounts for 

derivatives of mass action laws, but only BLOCK 4 has to be actually filled. ..................................... 81 

Figure 4.9 - The iteration matrix for DASPK 1 is filled block by block with derivatives of reaction 

rates in BLOCK 6 and BLOCK 5. ........................................................................................................ 83 

Figure 4.10 - The iteration matrix for DASPK 2 is filled block by block. BLOCK 1 accounts for 

derivatives of mass conservation equations (algebraic equations) with respect to primary species, 

BLOCK 2 accounts for the derivatives of mass conservation equations with respect to kinetic species.

 ............................................................................................................................................................... 85 

Figure 4.10 - The iteration matrix for DASPK 3 is filled block by block. BLOCK 1 accounts for 

derivatives of mass conservation equations (differential equations) with respect to primary species, 

BLOCK 2 accounts for the derivatives of mass conservation equations with respect to kinetic species 

(entries equal to zero). ........................................................................................................................... 86 

Figure 4.12  Evolution of Calcite CaCO3(s) ......................................................................................... 91 

Figure 4.13  Evolution of Magnesite MgCO3(s) ................................................................................... 91 

Figure 4.14  Evolution of Dolomite (CaMg)(CO3
-)2(s) ......................................................................... 92 

Figure 4.15  Evolution of dissolved species CaCO3(aq) and MgCO3(aq) ............................................... 92 

Figure 4.16  Evolution of dissolved species H+ ................................................................................... 93 

Figure 4.17  CPU time to convergence for DASPK solver I, II, III with a) numerical Jacobian and b) 

analytical Jacobian; Number of time steps to reach convergence for DASPK I, II, III with c) numerical 

Jacobian and d) analytical Jacobian ...................................................................................................... 96 

Figure 4.18 Experimental points and interpolation through software Biogeochem (Fang et al. 2003).

 ............................................................................................................................................................. 103 

Figure 4.19  Curves for some of the major elements of the test case obrained with a) explict QSSA, 

b) implicit DASPK solver with system configuration DASPK 1 (system of DAEs) c) implicit DASPK 

solver with system configuration DASPK 3 (system of ODEs). ......................................................... 104 



XIV

Figure 4.20  Curves for some of the secondary species obtained with DASPK 1. This formulation of 

the system allows tracking secondary species, a feature that can be useful while monitoring batch 

experiments. ........................................................................................................................................ 105 

Figure 4.21  Effect of different convergence criteria on the stepsize amplitude in DASPK1 

(Analytical Jacobian) towards the solution of the problem. ................................................................ 106 

Figure 4.22  CPU time required to converge for DASPK 1 and DASPK 3 with numerical a) and 

analytical b) computation of the Jacobian matrix; number of time-steps c) and CPU time d) required to 

converge for explicit QSSA and implicit BDF in DASPK 1; note different scales. ........................... 109 

Figure 5.1  Graphic representation of the evolution of the number of moles of Aragonite (CaCO3) and 

Strontianite (SrCO3) end-members vs. the number of moles of SrCO3 added in the system; results are 

obtained with both SpeCTr (continuous lines) and PHREEQC (squares). ......................................... 122 

Figure 5.2  Photo a) and schema b) of the experimental setup of the Fe-Cr redox reaction. ............ 123 

Figure 5.3  In the first 4.5 cm of the domain, the 5mm mesh (b) misses the asymmetric precipitation 

detected in the experiment (a) whereas the 1mm is able to properly reproduce this behavior. ........... 126 

Figure 5.4  Graphic representation of the solid phase over the domain at the end of the simulation 

with the 5 mm mesh a), and with the 1 mm mesh b). .......................................................................... 127 

Figure 5.5  a) the deviation of the plume in the direction of the outlet and b) the vertical section at the 

inlet showing some asymmetric precipitation of the solid solution .................................................... 128 

Figure 5.6  pH experimental (continuous) and simulated (dashed) results for coarse (a) and fine (b) 

meshes for the Fe-Cr solid solution ..................................................................................................... 129 

Figure 5.7  Eh experimental (continuous) and simulated (dashed) results for coarse (a) and fine (b) 

meshes for the Fe-Cr solid solution ..................................................................................................... 130 

Figure 6.1  Schematization of spatial discretization in TRACES: although the domain is 1D, solution 

through finite elements requires surfaces. 800 square cells of 1m2 each represent the domain. ......... 143 

Figure 6.2  Cr(IV) under the form of CrO42- is absent in the domain, it is injected at the inlet and 

reduced to Cr(III) throughout the domain. .......................................................................................... 145 

Figure 6.3  Breakthrough curve of tracer Cl- obtained with SpeCTr at x=800 m, L = 0.0 m. ......... 150 

Figure 6.4  Comparison between total concentrations of Fe2+,Al3+, SiO2 and Fe3+ obtained with 

SpeCTr (continuous lines) and FLOTRAN (squares). ........................................................................ 150 

Figure 6.5  Cr(VI) concentrations with SpeCTr (continuous line) and FLOTRAN (squares). ......... 151 

Figure 6.6  Cr(III) concentrations with SpeCTr (continuous line) and FLOTRAN (squares). ......... 151 

Figure 6.7  Cr(OH)3 volume fraction with SpeCTr (continuous line) and FLOTRAN (squares). ... 152 



XV

Figure 6.8  Cr(VI): 52CrO4
2- and 53CrO4

2- with SpeCTr (continuous line) and FLOTRAN (squares).

 ............................................................................................................................................................. 153 

Figure 6.9  Cr(III): 52Cr3+ and 53Cr3+ with SpeCTr (continuous line) and FLOTRAN (squares). ..... 153 

Figure 6.10  Cr(III): 53CrO4
2- with SpeCTr (continuous line) and FLOTRAN (squares). ................. 154 

Figure 6.11  Cr(III): 53Cr3+ with SpeCTr (continuous line) and FLOTRAN (squares). .................... 154 

Figure 6.12  53Cr(VI) with SpeCTr (grey continuous line) and FLOTRAN (pink squares). ........... 155 

Figure 6.13  53Cr(III) with SpeCTr (grey continuous line) and FLOTRAN (green squares). ......... 156 

Figure 6.14  Cr(III): 53Cr3+ with SpeCTr (continuous line), transport time-step t / 5, and L = 0. .. 157 

Figure 6.15  53Cr(VI) (pink) and 53Cr(III) (green) with SpeCTr (continuous lines) and FLOTRAN 

(squares), transport time-step t / 5, L = 0 m. .................................................................................... 158 

Figure 6.16  Breakthrough curve of tracer Cl- obtained with SpeCTr at x=800 m, L = 1.0 m 

(continuous) and L = 0.0 (dashed). .................................................................................................... 159 

Figure 6.17  53Cr(VI) with SpeCTr (grey continuous) and FLOTRAN (pink squares), L = 1.0 m. 159 

Figure 6.18  53Cr(III) with SpeCTr (grey continuous) and FLOTRAN (green squares), L = 1.0 m.

 ............................................................................................................................................................. 160 

Figure 6.19 Breakthrough curve of tracer Cl- obtained with SpeCTr at x=800 m, L = 1.0 m 

(continuous line), L = 0.54 m (continuous thick line), and L = 0 (dashed line). .............................. 161 

Figure 6.20  53Cr(VI) and 53Cr(III) with SpeCTr (continuous line) and FLOTRAN (squares), 

transport time-step t / 5, L=0.54 m .................................................................................................. 162 

Figure 6.21  53Cr(III) for transport time-step t / 5 (black), t / 10 (red), t / 25 (blue) all computed 

with SpeCTr, L=0.54 m. .................................................................................................................... 162 

Figure 6.22  53Cr(III) for transport time-step t / 5 (black), t / 10 (red), t / 25 (blue) all computed 

with SpeCTr, zoom between 500 m and 540 m. ................................................................................. 163 

Figure 7.1. A. Sketch of the experimental apparatus for mixed flow reactor experiments. A solution 

with a fixed chemical composition is injected via a peristaltic pump in a continuously stirred reactor. 

A sample of masked calcite is placed over a Teflon tripod in the reactor. The solution at the outlet of 

the reactor is either discarded or sampled. B. Sketch of the experimental apparatus of the column 

experiment. The solution is injected at the bottom of the column via a peristaltic pump with a flow rate 

of 0.25 mL/min. The column is filled with zirconia beads to mimic an ideal porous media with 38% 

porosity. Calcite sample are placed every 1.5 cm in the column and are masked with CrystalBondTM 

on each side of the crystal surface with (104) orientation. The column is 15 cm-long and 3.75 cm in 

diameter. .............................................................................................................................................. 172 



XVI

Figure 7.2 - Typical dissolution patterns observed with VSI on sample surfaces after dissolution. The 

images were acquired on samples reacted at (a)  = 0.02, (b)  = 0.20, and (c)  = 0.67. These 

images show that etch pits vary from (a) rhombohedral to (b) triangular shape and are not visible for  

> 0.3. Field of view: 100 µm× 70 µm. ................................................................................................ 175 

Figure 7.3 - Variation of the critical Gibbs free energy of etch pit nucleation as a function of surface 

free energy. Each curve represents one Burgers vectors. Note that Gcrit varies from -260 to -2880 

J/mol, depending on the values of b and  that are considered. Notice that the Gcrit revealed in this 

study is compatible with one Burgers vector only (the shortest one). ................................................. 176 

Figure 7.4 - a. Relations between R and . A sharp decrease is observed over the range 0 <  < 0.45. 

Below this value, the dissolution rate is mostly controlled by etch pitting while for  > 0.45, the 

dissolution is homogeneous over the entire surface of the samples.. b. Relation between R and G. 

The stepwaves model is represented by the black line and the TST by the red line. Parameters used to 

fit the data with the SWM are listed in Table 7.5. ............................................................................... 177 

Figure 7.5 - Variation of the dissolution rate of the {104} faces in the column, calculated after 10 days 

of experiment. Blue and red symbols were used to depict the dissolution rate of upstream- and 

downstream-faces, respectively. .......................................................................................................... 179 

Figure 7.6 - a. Scheme of a flow path along the crystals in the column experiment. Colors represent the 

evolution of the calcium concentration along this path. The color gradient from blue to red stands for 

low to high concentrations, respectively. b. Scheme of a half-section of the column. Blue planes 

represent the conceptual thickness considered in the 2D model. Then, the crystal is not considered in 

its entirety. The red part represents the mask on the crystal surface. The green plane represents the 

separation between two elements considered in the 1D model. Finally, salmon lines represent the best 

width that should have been considered for the best agreement between model and experiment. ..... 181 

Figure 7.7 - Typical features observed on upstream and downstream faces of calcite crystals in the 

column experiment. a. Rhombohedral pits observed on the two first upstream faces. b. Triangular pits 

observed on upstream faces. c. Triangular pits observed on downstream faces. d. The circular area in 

red is likely due to the contact between mineral surface and zirconia beads, which creates a non-wetted 

surface. ................................................................................................................................................ 182 

Figure 7.8 - Outputs of the 2D simulations using SWM (a) and TST (b) rate laws. The grey and green 

areas depict the experimental data for the upstream and downstream faces, respectively, together 

wither associated uncertainties. The red and blue areas are modeled predictions for upstream and 

downstream faces, respectively, for dispersivity varying between 1 mm and 10 mm. ....................... 185 

Figure 7.9 - Results from the 1D model. a. Results based on a TST- dissolution rate law and 

dispersivity values of 1 mm and 10 mm. b. Results using TST compared to experimental data. c. 

Results a dissolution rate law based on SMW, and dispersivity values of 1 mm and 10 mm. d. Results 



XVII

using SWM compared to experimental data. In all cases, black and cyan points represent modeled 

dissolution rates of upstream faces and green and magenta points, the modeled dissolution rates of 

downstream faces for dispersivity values of 10 mm and 1 mm, respectively. The blue points depict the 

measured upstream faces dissolution rates. The red points depict the measured downstream faces 

dissolution rates. .................................................................................................................................. 187 

Figure 7.10 - Evolution of the calcium concentration as a function of the outlet solution volume.  The 

decrease at the beginning of the experiment corresponds to dissolved calcite fines resulting from the 

preparation step of the column. Dashed lines correspond to 2D simulations and solid lines to 1D 

simulations. Blue and red correspond to simulations using TST as dissolution rate law and dipersivity 

of 1 mm and 10 mm respectively. Green and cyan lines correspond to simulations using SWM as 

dissolution rate law and dispersivity of 1 mm and 10 mm respectively. Black points are ICP 

measurements. Notice that the last ICP point correspond to the calcium concentration at steady state 

but it was measured at 4.3 pore volume. ............................................................................................. 189 

Figure 7.11  Mesh used for simulation in Bouissonnié et al (2018). The 5668 elements are square and 

1mm side. ............................................................................................................................................ 192 

Figure 7.12  Schema of an element of the mesh in Figure 7.11 (or 7.13)  in contact with the Calcite 

crystal (red shadow), coordinates are reported as in Figure 7.11 (or 7.13). ........................................ 193 

Figure 7.13  The 2810 elements mesh used for testing time discretization for the simulations in 

Bouissonnié et al. (2018). The size of elements (1 mm2) was confirmed after a comparison of the 

results obtained with a finer grid. ........................................................................................................ 194 

Figure 7.14  Total dissolved Ca2+ concentrations at upstream faces of first crystal obtained with 

dtCFL and dt/5 (dtCFL divided by a factor 5). ................................................................................... 196 

Figure 7.15  Total dissolved Ca2+ concentrations at upstream faces of first crystal obtained with 

dtCFL and dt/10 (dtCFL divided by a factor 10). ............................................................................... 196 

Figure 7.16  The coarse mesh (2810 elements, 1 mm side) on the left and the fine mesh (11240 

elements, 0.5 mm side) on the right. Red rectangles highlight the portions of the crystals that were 

monitored; in the blue rectangles, the outlets.  .................................................................................... 197 

Figure 7.17  Total dissolved Ca2+ concentrations at crystals obtained with coarse (dashed) and fine 

(continuous) mesh. .............................................................................................................................. 198 

Figure 7.18  Total dissolved Ca2+ concentrations at crystals obtained with coarse (dashed) and fine 

(continuous) mesh. .............................................................................................................................. 199 

Figure 7.19  Total dissolved Ca2+ concentrations at the outlet obtained with coarse (dashed) and fine 

(continuous) mesh. .............................................................................................................................. 200 



XVIII

Figure 7.20  Experimental setup for the reactive transport experiment in heterogeneous porous 

medium (Katz et al. 2009). .................................................................................................................. 201 

Figure 7.21  Spatial discretization of the domain with triangular elements; red dashed lines 

emphasize the zone at lower porosity. ................................................................................................. 202 

Figure 7.22  Time evolution of total Calcium concentration at sampling port A1. Red rounds and 

black dots represent experimental data; green continuous line represented the simulation in Katz et al 

(2009); black dashed line corresponds to the concentration at inlet 1; blue curves represent SpeCTr 

simulations for equilibrium (continuous) and kinetic (dashed) Calcite precipitation. ........................ 206 

Figure 7.23  Time evolution of total Calcium concentration at sampling port A2 (legend in Figure 

7.22). .................................................................................................................................................... 207 

Figure 7.24  Time evolution of Total Calcium concentration at sampling port A3 (legend in Figure 

7.22). .................................................................................................................................................... 207 

Figure 7.25  Time evolution of Total Calcium concentration at sampling port A4 (legend in Figure 

7.22). .................................................................................................................................................... 208 

Figure 7.26  Time evolution of Total Calcium concentration at sampling port C1 (legend in Figure 

7.22). .................................................................................................................................................... 208 

Figure 7.27  Time evolution of Total Calcium concentration at sampling port C2 (legend in Figure 

7.22). .................................................................................................................................................... 209 

Figure 7.28  Time evolution of Total Calcium concentration at sampling port C3 (legend in Figure 

7.22). .................................................................................................................................................... 209 

Figure 7.29  Time evolution of Total Calcium concentration at sampling port D1 (legend in Figure 

7.22). .................................................................................................................................................... 210 

Figure 7.30  Time evolution of Total Calcium concentration at sampling port D2 (legend in Figure 

7.22). .................................................................................................................................................... 210 

Figure 7.31  Time evolution of Total Calcium concentration at sampling port D3 (legend in Figure 

7.22). .................................................................................................................................................... 211 

Figure 7.32  Time evolution of Total Calcium concentration after 10 minutes (a), 60 minutes (b) and 

120 minutes (c) for CaCO3 equilibrium precipitation [mol/L]. ........................................................... 212 

Figure 7.33  Time evolution Calcite concentration after 10 minutes (a), 60 minutes (b) and 120 

minutes (c) for CaCO3 equilibrium precipitation [mol/L]. .................................................................. 213 

Figure 7.34  Spatial distribution of Calcite after 12h for CaCO3 equilibrium precipitation [mol/L] 

with SpeCTr. ....................................................................................................................................... 214 



XIX

Figure 7.35  Spatial distribution of Calcite after 11h for CaCO3 equilibrium precipitation [mol/m3] 

with RETRASO (Katz et al. 2009). ..................................................................................................... 214 

Figure 7.36  Time evolution of total Calcium concentration at sampling port A1. Red rounds and 

black dots represent experimental data; green continuous line represented the simulation in Katz et al 

(2009); black dashed line corresponds to the concentration at inlet 1; blue curves represent SpeCTr 

simulations for equilibrium Calcite precipitation with constant (continuous) and variable (continuous 

+) porosity. .......................................................................................................................................... 215 

Figure 7.37  Time evolution of Total Calcium concentration at sampling port A2 (legend in Figure 

7.36). .................................................................................................................................................... 216 

Figure 7.38  Time evolution of Total Calcium concentration at sampling port A3 (legend in Figure 

7.36). .................................................................................................................................................... 216 

Figure 7.39  Time evolution of Total Calcium concentration at sampling port A4 (legend in Figure 

7.36). .................................................................................................................................................... 217 

Figure 7.40  Time evolution of Total Calcium concentration at sampling port A4 (legend in Figure 

7.36). .................................................................................................................................................... 217 

Figure 7.41  Time evolution of Total Calcium concentration at sampling port C1 (legend in Figure 

7.36). .................................................................................................................................................... 218 

Figure 7.42  Time evolution of Total Calcium concentration at sampling port C2 (legend in Figure 

7.36). .................................................................................................................................................... 218 

Figure 7.43  Time evolution of Total Calcium concentration at sampling port C3 (legend in Figure 

7.36). .................................................................................................................................................... 219 

Figure 7.44  Time evolution of Total Calcium concentration at sampling port D1 (legend in Figure 

7.36). .................................................................................................................................................... 219 

Figure 7.45  Time evolution of Total Calcium concentration at sampling port D2 (legend in Figure 

7.36). .................................................................................................................................................... 220 

Figure 7.46  Time evolution of Total Calcium concentration at sampling port D3 (legend in Figure 

7.36). .................................................................................................................................................... 220 

Figure 7.47  Space distribution of Calcite after 10 h for CaCO3 equilibrium precipitation [mol/L]. 221 

Figure 7.48  Space distribution of porosity after 10 h, for CaCO3 equilibrium precipitation. .......... 221 

Figure 7.49  Space distribution of porosity after 11 h, for CaCO3 equilibrium precipitation with 

Retraso (Katz et al. 2009). ................................................................................................................... 222 

Figure 7.50  Time evolution of Total Calcium concentration at sampling port A1. ......................... 223 



XX

Figure 7.51  Time evolution of Total Calcium concentration at sampling port A2 (legend in Figure 

7.41). .................................................................................................................................................... 223 

Figure 7.52  Time evolution of Total Calcium concentration at sampling port A3 (legend in Figure 

7.41). .................................................................................................................................................... 224 

Figure 7.53  Time evolution of Total Calcium concentration at sampling port A4 (legend in Figure 

7.41). .................................................................................................................................................... 224 

Figure 7.54  Time evolution of Total Calcium concentration at sampling port C1 (legend in Figure 

7.41). .................................................................................................................................................... 225 

Figure 7.55  Time evolution of Total Calcium concentration at sampling port C2 (legend in Figure 

7.41). .................................................................................................................................................... 225 

Figure 7.56  Time evolution of Total Calcium concentration at sampling port C3 (legend in Figure 

7.41). .................................................................................................................................................... 226 

Figure 7.58  Time evolution of Total Calcium concentration at sampling port D2 (legend in Figure 

7.41). .................................................................................................................................................... 227 

Figure 7.59  Time evolution of Total Calcium concentration at sampling port D3 (legend in Figure 

7.41). .................................................................................................................................................... 227 

Figure 7.60  Space distribution of Calcite after 6 h, for CaCO3 kinetic precipitation. ...................... 228 

Figure 7.61  Space distribution of porosity after 10 h, for CaCO3 kinetic precipitation. .................. 228 

Figure 7.62   The 3D mesh of around 41000 tetrahedrons reproduces one quarter of the column (a); 

presence of crystals is simulated by variations in the boundary conditions (b); z axis is parallel to the 

column axis. ........................................................................................................................................ 231 

Figure 7.63  Breakthrough curve for Ca2+ at the column outlet. Results are averaged over all the 

surface at z = 150 mm and weighted with respect to water fluxes. ..................................................... 232 

Figure 7.64  Breakthrough curves for Ca2+ at the end of the column (at every element that registered a 

non-zero concentration). Contributions of crystals are distinguishable. ............................................. 233 

Figure 7.65  Evolution is space of Ca2+ at different stages of the simulation at a) 30 s b) 500 s  c) 

1000 s  d) 5000 s and e) 30000 s. ........................................................................................................ 234 



 



XVII

List of tables 

 

Table 3.1 - Stoichiometric coefficients, thermodynamic constant (K), totals of the components  1 and 

 2 (T), and logarithm of the initial activity (  Initial). ............................................................................. 34 

Table 3.2 - Summary of the test cases for thermodynamic equilibrium study. ..................................... 36 

Table 3.3 - Number of iterations that are required to solve 50, 70 and 90% of the studied problems for 

each test case (10, 30 and 50% for Fe Cr Min). .................................................................................... 40 

Table 3.4 - Failure % of the different algorithms for each test case (NB: no failure for Gallic Acid and 

FeCr test cases). ..................................................................................................................................... 41 

Table 3.5  Morel table for a simple example of homovalent ionic exchange. ..................................... 56 

Table 6 - Morel table for a simple example of heterovalen ionic exchange. ......................................... 57 

Table 4.1  Morel table for the test case. Equilibrium constants taken from Thermoddem database 

(http://thermoddem.brgm.fr/) ................................................................................................................ 89 

Table 4.2 - Constants for kinetic rates. Constants taken from Palandri (2004). .................................... 89 

Table 4.3  Numerical information about the solution of the system Halite-Calcite-Magnesite-

Dolomite system with DASPK 1. .......................................................................................................... 94 

Table 4.4  Numerical information about the solution of the system Halite-Calcite-Magnesite-

Dolomite system with DASPK 2. .......................................................................................................... 94 

Table 4.5  Numerical information about the solution of the system Halite-Calcite-Magnesite-

Dolomite system with DASPK 3 (*the solution is computed but clearly degraded) ............................ 95 

Table 4.7  Parameters for standard and Monod kinetic reactions. .................................................... 101 

Table 4.8  Number of time-steps and CPU time varying with the required tolerances for Richardson 

extrapolation of QSSA method ........................................................................................................... 107 

Table 4.9  Number of time-steps, residual evaluations, number of non-linear iterations and CPU time 

varying with the required tolerances for DASPK1, system of Nc+Ncc equations .............................. 107 

Table 4.10  Number of time-steps, residual evaluations, number of non-linear iterations and CPU 

time varying with the required tolerances for DASPK3, system of Nx+Ncc equations ...................... 108 

Table 5.1  Total aqueous concentrations for batch solid solution experiment. ................................. 121 

Table 5.2  Equilibrium constants for solid solution end-members Aragonite (CaCO3) and Strontianite 

(SrCO3). ............................................................................................................................................... 121 

Table 5.3  Main flow and transport parameters used in the Fe-Cr solid solution simulation. ........... 124 



XVIII

Table 5.4 - Reduced Morel Table for the problem Fe-Cr redox reaction (*Equilibrium constants were 

calibrated on the basis of experimental results) .................................................................................. 125 

Table 6.1  Initial and boundary conditions for the Cr Benchmark. They are identical with the 

exception of Cl- and Cr(VI) total concentrations. Cr(VI) is initially absent and injected at the inlet. 144 

Table 6.2  Aqueous equilibrium reactions in the reaction network for the Cr fractionation benchmark.

 ............................................................................................................................................................. 146 

Table 6.3  Morel s table for kinetic minerals for the Cr fractionation benchmark. ........................... 148 

Table 6.4  For each mineral: formula, molar volume, logarithm of the solubility product, logarithm of 

the kinetic constant, specific surface. .................................................................................................. 148 

Table 7.1. Chemical composition of calcite used in experiments. Concentrations are determined from 

3g of calcite by loss on ignition and alkaline fusion. .......................................................................... 171 

Table 7.2. Concentration of reagent grade NaCl, NaHCO3 and CaCl2 added in solution. The 

corresponding values of saturation index ( ) calculated using Chess code van der Lee and De Windt,  

are also reported .................................................................................................................................. 171 

Table 7.3.  Aqueous complexation reactions and corresponding thermodynamic parameters log(K). 

The numbers refer to the stoichiometric coefficients of the species in the considered reactions (positive 

values for reactants). ............................................................................................................................ 171 

Table 7.4 - Transport parameter values. .............................................................................................. 184 

Table 7.5 - Dissolution reaction and kinetic parameters of the mineral reaction (see reaction rate 

equation 7.5). ....................................................................................................................................... 184 

Table 7.6  Main parameters for preparatory simulations. .................................................................. 195 

Table 7.7  Coordinates of sampling ports [cm]. ................................................................................ 202 

Table 7.8  Initial and boundary conditions obtained with CHESS. ................................................... 203 

Table 7.9  Aqueous equilibrium reactions in the reaction network. .................................................. 204 

Table 7.10  Summary of  flow, transport and chemical parameters for 3D simulations ................... 230 

Table II-I: Morel table for Gallic Acid test case. Gallic Acid is an organic aromatic compound that is 

also known as 3,4,5-trihydroxybenzoic. This acid can be easily found in plants and is largely used in 

the pharmaceutical industry. The system was originally studied in relation to Al(III) speciation in 

natural waters50. ................................................................................................................................... 263 

Table II-II: Morel table for Pyrite and Pyrite Mineral test cases. ........................................................ 264 

Table II-III: Morel table for Fe Cr and Fe Cr Min test cases. ............................................................. 265 



XIX

Table II-IV: Morel table for MoMaS Easy test case. MoMaS Easy and other synthetic benchmarks 

were designed specifically to evaluate the performances of computational codes. ............................ 266 

Table II-V: Morel table for MoMaS Hard test case. MoMaS Hard and other synthetic benchmarks 

were designed specifically to evaluate the performances of computational codes. ............................ 266 

Table III-I: Intervals for the initial guesses when searching for thermodynamic equilibrium. Activities 

expressed in log10 scale for components 
jX  and linear scale for concentration of precipitates lCp .268 

Table III-II: limitations that are imposed on the computation of the Newton Raphson increments and 

on the activities of the components. .................................................................................................... 269 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XX

List of recurrent symbols 

 

Flow and Transport 

Symbol Description Unit 

h Hydraulic head [L] 

q Flow rate [L/T] 

K Conductivity tensor [L/T] 

 density [M3/L3] 

 porosity  

e Effective porosity  

L(-) Transport operator  

S(-) Source term  

L Longitudinal dispersivity [L] 

T Transverse dispersivity [L] 

D Dispersion tensor [L2/T] 

Dm Pore water diffusion coefficient [L2/T] 

Reaction 

Symbol Description Unit 

[-] Concentration [mol/L3] 

{-} Activity  

 Isotopic fractionation factor  

As Reactive surface area 
[L2-min/MH2O]  

or [L2-min/L3
H2O] 

ai,j 
Entry of the Stoichiometric 
matrix for mass action law 

 

bi,j 
Entry of the Stoichiometric 

matrix for mass conservation 
 



XXI

bcpi,j 

Entry of the Stoichiometric 
matrix for mass conservation (for 

solid phase) 
 

Beqi,j 
Entry of matrix linking kinetic 
reactions and primary species 

 

Ci   
(1) 

Generic species (primary or 
secondary) at thermodynamic 

equilibrium 
 

Xj 
Generic primary species at 

thermodynamic equilibrium 
 

 
= ln{X} unknown of the 
thermodynamic problem 

 

Cci 
(1)

 Generic kinetic species  

Cp 
Generic solid phase at 

thermodynamic equilibrium 
 

 Isotopic delta  

 fractionation  

 Activity coefficient  

 
Activity coefficient for solid 

solutions 
 

G DASPK residuals  

I Ionic strength  

IC Isotope concentration  

J Jacobian matrix  

Ji,j Entry of the Jacobian matrix  

k Kinetic constant [mol/T/L-min2] 

Ki Equilibrium constant  

KEM 
Solubility product of an end 

member 
 

Kpi 1/KS  

KS Solubility product  

KSS 
Equilibrium constant for the 

whole solid solution 
 

m,n Exponents in TST reaction rate  

, * 
Matrix linking reactions and 

generic species 
 

Nc  Number of species  

NCc Number of kinetic species  



XXII

Ncp 
Number of equilibrium 

precipitates 
 

NEM 
Number of end members in a 

single solid solution 
 

Nr Number of reactions  

Nrc Number of kinetic reactions  

Nss Number of solid solutions  

Nt  Number of species (Nc + NCc)  

Nx Number of primary species  

NXss 
Number of end members in a 

solid solution 
 

Q Ionic product  

QSS 
Ionic product of the solid 

solutions 
 

R# Reaction number #  

ir# 
Reaction rate of reaction number 

# 
[mol/T/ MH2O]  

or [mol/T/ L3
H2O] 

iR(-) Isotope Ratio  

SI,  Saturation Index  

t time  

Td Dissolved total for speciation [mol/L3] 

Tf Fixed total for speciation [mol/L3] 

Tj Total for speciation [mol/L3] 

x Mole fraction  

Xss 
Number of moles of an end 

member  
[mol] 

XssTOT 
Total number of moles of the 

solid solutions 
[mol] 

Y Residual function  [mol/L3] 

z charge  

 

(1)
 Please note that sometimes this symbol is also used to identify concentration of species Ci. This is 

done to speed up notation when there is no risk of confusing concentrations and activities and it is 

always declared in the text.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XXIV

 

 

 

Acknowledgments 

This work is the result of the time and the efforts provided by many valuable people. Philippe Ackerer, 

my advisor, encouraged me from day one: without his positive guidance none of these three hundred 

and something pages would have existed. I also want to thank my other, non-official advisors:  Jérôme 

Carrayrou, who spent an insane amount of time staring at the screen by my side, always with 

enthusiasm, and Alain Clément who never denied patient, meticulous advice.  

Thank you also to Marwan Fahs, whose contributions on numerical methods have been more than 

precious, and Fred Delay, whose words of encouragement always came at the right time. A huge thank 

you is also due to Arnaud Bouissonnié and Damien Daval, who provided experimental results that 

made an important part of this work possible.  

To all these wonderful people: you are not only full of knowledge, you are also full of kindness. 

 

This work has been founded by the IdEx (Initiative d Excellence) program of the University of 

Strasbourg and by CNRS (Centre National de la Recherche Scientifique).  



 



2

Introduction générale en Français  

 

In order to respect the respect the constraints imposed by the University of Strasbourg, around 

10 % of the manuscript must be written in French language. For this reason, an introduction, 

conclusions and perspective are also presented in French. Besides these initial and final sections, 

the whole manuscript is in English.  

 
 
La modélisation hydrogéochimique repose sur un ensemble de formulations mathématiques et de 

techniques numériques utilisées pour simuler l évolution spatio-temporelle de certaines espèces 

chimiques qui peuvent être présentes dans le sol et déplacées par un flux d eau. Les espèces chimiques 

ne sont pas inertes au cours de leur déplacement mais interagissent entre elles et avec le sol, modifiant 

potentiellement ses propriétés physiques. La modélisation hydrogéochimique est couramment connue 

sous le nom de transport réactif, mais il s agit d un raccourci qui n est pas forcément légitime.  

Le transport réactif est en réalité un terme générique regroupant des phénomènes qui sont bien plus 

nombreux et complexes que la modélisation hydrogéochimique seule : par exemple, le transport réactif 

peut englober des phénomènes mécaniques et thermiques et peut également traiter des fluides autres 

que l eau.  

Les premiers travaux sur le transport réactif datent d une trentaine d années (1990 s) et ont été depuis 

appliqués à de nombreux domaines : en complément à la recherche fondamentale pour aider à la 

compréhension des mécanismes naturels, pour suivre l évolution des polluants dans les sols, pour 

améliorer les connaissances des différents paramètres à prendre en compte dans la gestion durable et le 

stockage de déchets radioactifs ou encore pour étudier les effets de l injection de dioxyde de carbone 

(CO2) dans les sols. Une vision globale sur le transport réactif, allant de son histoire, jusqu à son 

potentiel et ses limites, a déjà été présentée par Steefel et al., (2005).  

L une des caractéristiques qui fait du transport réactif un sujet compliqué est la très forte variabilité de 

l échelle spatio-temporelle des phénomènes impliqués. La très forte variabilité, à l échelle spatio-

temporelle, des phénomènes impliqués, rend la compréhension du transport réactif complexe. En effet, 

l échelle spatiale peut varier du pore (nanométrique jusqu à décimétrique) jusqu à l aquifère (métrique 

à kilométrique) tandis que l échelle temporelle peut s étendre de la durée d une expérience en 

laboratoire jusqu à des processus naturels durant plusieurs millions d années. Selon l échelle spatiale 

étudiée, différents modèles peuvent être utilisés : single continuum (un unique milieu poreux), pore 

scale (valide uniquement à l échelle du pore) et des modèles de type multiple continua (qui prennent 

en considération une certaine hétérogénéité du milieu poreux).  
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Même si de nombreuses études ont été effectuées sur la modélisation à l échelle du pore (modèle 'pore 

scale'; Yoon et al., 2015 et références associées) et sur les modèles du type multiple continua (Pruess 

and Narasimhan, 1982; MacQuarrie and Mayer, 2005), les modèles single continuum  restent les plus 

utilisés pour décrire le transport et les réactions chimiques; la description mathématique de ces 

modèles est assurée par des équations aux dérivées partielles (EDP) qui seront présentées au cours de 

ce manuscrit.  

Dans ce travail, seul un modèle du type single continuum est présenté, non pas parce que cette 

méthode est considérée comme étant la meilleure mais parce qu il s agit d une méthode légitime et 

largement appliquée. En appliquant un modèle single continuum, les propriétés du sol sont moyennées 

sur un volume de contrôle, qui possède les caractéristiques suivantes :  

1) les phases solide, liquide et gaz coexistent dans un point de l espace ;  

2) les réactions hétérogènes sont traitées comme homogènes et l interface est considérée comme une 

caractéristique moyenne du volume de contrôle ;  

3) le flux d eau dans le volume de contrôle est décrit par la loi de Darcy et il est donc proportionnel à 

la charge hydraulique ;  

4) les gradients de concentration sont considérés nuls dans le volume de contrôle.  

Si les hypothèses ci-dessus ne constituent pas une simplification excessive, alors un modèle de type 

single continuum peut être appliqué. Les équations utilisées pour décrire ce modèle ainsi que les 

méthodes et algorithmes utilisés pour les résoudre seront présentés dans cette introduction et détaillés 

au cours de ce travail.  

 

Les principaux modèles mathématiques  

 

Le bilan de masse du fluide (l eau) est effectué à l échelle d un volume de contrôle et les flux sont 

exprimés suivant la loi de Darcy :  

 

 

( )
0

t

h

q

q K

 

 

où q [L/T] représente le flux de Darcy,  [M3/L3] la densité du fluide,  [-] la porosité (le rapport entre 

le volume des pores et le volume du milieu poreux), K la matrice de conductivité hydraulique [L/T] et 

h, la charge hydraulique [L]. La porosité et la conductivité hydraulique sont deux des propriétés qui 

sont considérées comme constantes à l échelle du volume de contrôle. Il est à noter qu à l échelle du 

pore la loi de Darcy n est plus applicable et doit être remplacé par la loi de Navier-Stokes.   
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En résolvant le système précédent, une distribution spatiale de la charge hydraulique h et du flux q est 

disponible et peut être utilisée pour résoudre l équation décrivant le transport de solutés. La solution 

du système est normalement obtenue par voie numérique, soit par différences finies soit par éléments 

finis (Istok, 1989).  

Le transport d une espèce chimique est décrit par une équation différentielle aux dérivées partielles qui 

décrit les changements de concentration dans l espace et le temps. Quand le transport n est pas 

conservatif mais réactif, alors un terme source apparait dans l équation aux dérivées partielles et 

fournit un lien entre le transport et les réactions :  

 

 
1 1

( )
.( . )

( )

Nr Nm
e i

i i ij j im m

j m

m L T T

C
C C S S

t

D

q D

qq
D I q I

q

 

 

où e [-] représente la porosité efficace, Ci [mol/L3] la concentration d une espèce primaire i, D la 

matrice de dispersion [L2/T], L, T les dispersivités longitudinale et transversale [L], Dm le coefficient 

de diffusion dans le milieu poreux [L2/T], I la matrice unité; Sj [mol/L3/T] et Sm [mol/L3/T] sont les 

vitesses des réactions homogènes (dans la phase aqueuse) et hétérogènes (avec une phase solide);  

représente le coefficient st chiométrique [-], Nr le nombre de réactions et q [L/T] le flux de Darcy 

connu grâce à la résolution du problème d écoulement.  

Une solution analytique pour un problème de transport conservatif n existe qu en conditions très 

simplifiées (milieu homogène, vitesse uniforme, ), et l on doit recourir aux méthodes numériques 

comme les différences finies ou les éléments finis (Steefel and MacQuarrie, 1996) pour résoudre cette 

équation.  

Les phénomènes chimiques sont très variés (spéciation, précipitation, adsorption ) et ils sont décrits 

soit par des modèles à l équilibre thermodynamique, soit par des modèles cinétiques. Leurs influences 

sur un problème de transport réactif sont assurées par un terme puits/source dans les équations du 

transport. Plusieurs espèces présentes simultanément peuvent interagir. Les interactions sont 

représentées par le premier terme source avec les coefficient ij . 

Les réactions chimiques, qu il s agisse d un modèle à l équilibre thermodynamique ou d un modèle 

cinétique, et le système du transport peuvent être résolus en un seul système d équations (approche 

globale) ou séparément (approche séquentielle). Les deux approches sont présentées dans les 

paragraphes suivants et détaillées dans le chapitre 6.  
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Les techniques de couplage: séparation d’opérateur et approche globale  

 

En l absence de modification de densité et de viscosité, les équations décrivant l écoulement et le 

transport peuvent être résolues séparément. Ce n est pas le cas pour le transport réactif où les 

processus chimiques et de transport interagissent. La stratégie retenue pour décrire ce couplage est 

essentielle dans la modélisation du transport réactif. D une part, il est possible de substituer les 

équations décrivant la chimie dans le système du transport et résoudre un système d équations non 

linéaires avec de très nombreuses inconnues,. Dans ce cas, on parle de méthode globale. D autre part, 

il est possible de résoudre le transport et la chimie d une façon séquentielle (et éventuellement 

itérative). Dans ce cas, on parle de séparation d opérateur. Une présentation très pédagogique des deux 

techniques a été réalisée par Steefel and MacQuarrie (1996).  

L approche globale est sans doute plus difficile à mettre en place mais permet d éviter les erreurs de 

couplage ; même si la capacité de calcul devient de plus en plus importante, la solution des systèmes 

globaux pour des problèmes en trois dimensions peut encore générer des temps de calcul critiques. Au 

contraire, même si la séparation d opérateur génère une erreur de couplage, elle est beaucoup plus 

adaptable et permet le couplage de différentes méthodes spécifiques pour la solution du transport et de 

la chimie.  

Même si les deux approches numériques sont allées jusqu à créer des écoles de pensée, la supériorité 

d une approche sur l autre n a pas encore été prouvée et elle reste sans doute très dépendante du 

problème étudié (Fahs et al., 2008).  

Le fait d adopter une approche de séparation d opérateur ouvre d autres problématiques spécifiques à 

l opérateur de chimie et notamment dans le cas d une modélisation de l équilibre thermodynamique. 

En effet, deux voies sont possibles : la minimisation de l énergie de Gibbs d un côté et l écriture des 

lois d action de masse de l autre. Comme pour le débat sur l approche globale/séparation d opérateur, 

chacune des méthodes présente des avantages et des inconvénients, très souvent liés au problème 

étudié. Néanmoins, la plupart des codes destinés à la simulation des réactions biogéochimiques 

utilisent une approche basée sur les lois d action de masse.  

 

Un univers de codes pour la simulation du transport réactif  

 

Un état de l art détaillé des codes de transport réactif peut être retrouvé dans le travail de Steefel et al. 

(2015) ; il s agit d une comparaison des caractéristiques numériques et des capacités de douze codes 

de transport réactif parmi les plus connus : PHREEQC, HP1, PHT3D, OpenGeoSys, HYTEC, 

ORCHESTRA, TOUGHREACT, eSTOMP, HYDRO-GEOCHEM, CrunchFlow, MIN3P, 

PFLOTRAN.   
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Certains de ces codes sont des évolutions de code biogéochimique, comme par exemple PHREEQC, 

d autres sont des plateformes très avancées sur le couplage de logiciels pour la simulation de 

processus chimiques et physiques les plus variés (OpenGeoSys).  

Ces codes ne sont qu une fraction de tous ceux disponibles pour la résolution d équation de transport 

réactif et des modules de chimie. De nombreux autres codes sont mis à disposition d un utilisateur 

intéressé, parmi lesquels : CHEPROO (Bea et al., 2009), CORE2D (Samper et al., 2009), GEM-

Selektor (Kulik et al., 2012), GEOCHEM-EZ (Shaff et al., 2010), GWB Geochemist s WorkBench 

(Bethke, 2008), RETRASO (Saaltink et al., 2004), WITCH (Goddéris et al., 2006).  

En ce qui concerne la simulation de l écoulement, dix des douze codes analysés par Steefel et al. 

(2015) sont capables de simuler des problèmes 3D, neuf intègrent l équation de Richards pour 

l écoulement dans un milieu non saturé, huit peuvent travailler à densité variable et six en régime non-

isotherme.  

Concernant le transport, l observation la plus marquante est que seulement un code sur douze utilise 

une matrice de dispersion complète. TOUGHREACT travaille sans dispersion et les dix autres codes 

utilisent un tenseur diagonal. Neuf codes sur douze peuvent travailler dans le contexte multiple 

continua.  

D un point de vue géochimique, les modèles de Debye-Hükel et de Davies pour le calcul d activité, les 

variations de température, la complexation de surface, l échange ionique, les échanges entre une phase 

aqueuse et gazeuse, la précipitation cinétique des minéraux et les cinétiques de Monod pour la 

croissance bactérienne sont considérés comme la base dans tous les codes. Le modèle d activité de 

Pitzer et la nucléation minérale, qui sont implémentés dans, respectivement, quatre et six codes sont 

moins couramment considérés. Neuf codes ont été déclarés capables de traiter les solutions solides.  

L implémentation des isotopes est très récente par rapport aux premières versions des codes de calcul 

(Wanner and Sonnenthal, 2013; Druhan et al., 2013) et est sans doute motivée par la disponibilité 

croissante de données isotopiques. Sept codes peuvent traiter le fractionnement isotopique à l équilibre 

thermodynamique et huit le fractionnement isotopique cinétique.  

D un point de vue numérique, il n y a que trois codes parmi les douze analysés dans l étude de Steefel 

et al. (2015) qui travaillent avec une approche globale (MIN3P, CrunchFlow, PFLOTRAN), et deux 

parmi eux (CrunchFlow, PFLOTRAN) permettent également de travailler en séparation d opérateur.  

Finalement, en ce qui concerne le calcul parallèle (la possibilité de distribuer les calculs sur plusieurs 

processeurs), seul la moitié des codes exploitaient cette technique informatique en 2015.  

 

1.5 Les modèles numériques au LHyGeS  

 

Le patrimoine de modèles numériques au Laboratoire d Hydrologie et de Géochimie de Strasbourg 

(LHyGeS) est bien documenté. Plusieurs codes ont été développés au cours des dernières décennies 

pour la simulation de la réactivité minérale (KINDIS (Madé et al., 1994)), pour la réactivité minérale 
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couplée avec le transport 1D (KIRMAT, (Gérard et al., 1998)), pour les réactions géochimiques plus 

générales (SPECY, (Carrayrou et al., 2002)), pour le transport conservatif (TRACES) et de nombreux 

autres codes pour des problèmes d hydrologie plus spécifiques (Pan et al. 2015; Weill et al. 2017, 

Jeannot et al. 2018).  

Néanmoins, l évolution des modèles géochimiques, des méthodes numériques et des techniques 

informatiques est constante et la mise à jour des codes est nécessaire pour assurer leur survie.  

Même si KINDIS est un outil très puissant, et qui t a été appliqué à des très nombreux cas réels, il a 

deux limitations principales : il n est pas bien adapté au couplage avec un code de transport 

multidimensionnel et il a été spécifiquement construit pour la réactivité minérale. SPECY, à l opposé, 

a été conçu depuis le début comme un outil avec de nombreuses possibilités d application et pour être 

couplé avec des codes de transport. Malgré son potentiel, SPECY n a été exploité que partiellement 

pour la simulation de problèmes géochimiques, et est considéré plutôt comme un laboratoire pour 

expériences numériques.  

Bien que TRACES ait été initialement conçu comme un outil pour la simulation du transport réactif, 

les réaction chimiques prises en compte sont très limitées. La méthode numérique des éléments finis 

mixtes et discontinus utilisée pour résoudre l équation décrivant le transport est une des plus 

performantes et le code a été utilisé surtout pour la simulation du transport conservatif.  

Le but de cette thèse est donc de développer un outil pour la simulation des réactions biogéochimiques 

qui regroupe toutes les capacités des modèles existants en y ajoutant certaines fonctionnalités, comme 

par exemple le traitement des isotopes dans un environnement numérique moderne. L outil est conçu 

comme un module qui doit être adaptable pour être couplé avec d autres codes, initialement avec 

TRACES, pour produire un outil fiable pour la simulation du transport réactif.  

Compte tenu des codes existants, il est nécessaire de se poser la question de l utilité d un autre code 

pour la simulation du transport réactif. Il faut donc souligner que le but de ce travail n est pas de 

cloner un des codes existant ais de créer une alternative qui soit, le plus possible, contrôlable, 

adaptable, fiable et efficace.  

Par ailleurs, Carrayrou et al. (2010) ont montré à l aide des benchmarks MoMaS que des codes 

différents peuvent produire des résultats différents, mettant en évidence la nécessité d avoir plusieurs 

possibilités de comparaison. Il faut aussi se rappeler que, même si la plupart des codes sont 

disponibles pour un public scientifique, très peu des codes source sont accessibles. De plus, même si 

les manuels d utilisation de ces codes sont de très haute qualité, la compréhension et l usage correct 

des dits codes ne sont pas triviaux. De ce fait, les scientifiques souhaitant utiliser de tels codes pour 

leurs études expérimentales où théoriques rencontrent de nombreuses difficultés d utilisation après 

avoir téléchargé un code de transport réactif. En conclusion, l outil développé dans ce travail est pensé 

pour contribuer à l activité expérimentale et comme une base solide pour des futurs développements 

numériques ; ce manuscrit, est principalement adressé à ceux qui vont potentiellement continuer ce  
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travail, en fournissant une description détaillée de la modélisation du transport réactif au LHyGeS, de 

son potentiel et de ses limites. 

 

1.6 Structure du manuscrit 

 

L implémentation des isotopes dans un code pour la simulation du transport réactif est présentée au 

cours du chapitre 2. Une étude bibliographique exhaustive a été menée sur le sujet, et a permis de 

conclure que les isotopes peuvent être introduits dans un code de transport réactif sous la forme 

d espèces indépendantes. Le deuxième chapitre s attache également à l intérêt croissant porté aux 

fractionnements isotopiques, qui sont très souvent utilisés comme traceurs de processus et de 

mécanismes dans de nombreux domaines scientifiques. Traiter les isotopes comme des espèces 

indépendantes implique d une part que, pour traiter les isotopes, il ne faut quasiment aucune 

modification des algorithmes déjà utilisés pour traiter les espèces classiques, et, d autre part, que cette 

façon de travailler met en avant la nécessité d avoir des codes numériquement toujours plus fiables et 

efficaces.  

Les chapitres entre 3 et 5 sont dédiés à la construction de l opérateur de chimie. Les chapitre 3 est 

dédié à l équilibre thermodynamique : l approche des espèces et des composantes (espèces 

secondaires et primaires, respectivement) pour une formulation du type loi d action de masse est 

introduite avec les méthodes de solution des systèmes non-linéaires qui décrivent le problème. Au 

cours de ce chapitre, les inconvénients de la méthode de Newton Raphson pour résoudre des systèmes 

non-linéaires sont mis en évidence et certaines améliorations sont proposées.  

Plus précisément, dans le contexte de séparation d opérateur adopté dans ce travail, le calcul de 

l équilibre thermodynamique est un point crucial pour la résolution des problèmes de géochimie. En 

effet, pour les très grandes échelles temporelles, l hypothèse d équilibre peut être justifiée. De plus, 

dans le contexte d un mélange de réactions cinétiques et à l équilibre thermodynamique, l intégration 

des équations différentielles commence toujours par une solution à l équilibre. Des algorithmes 

adaptés au calcul du mélange équilibre/cinétique peuvent également nécessiter le calcul de l équilibre 

thermodynamique (c est le cas pour le modèle QSSA). Il est donc très rare de résoudre un problème de 

géochimie en négligeant l équilibre thermodynamique.  

Dans un contexte de phénomènes transitoires, le problème du temps de calcul devient important. Un 

gain d efficacité dans une seule opération peut se traduire en une réduction important des temps de 

calcul globaux. De plus, quand une opération ne converge pas, la simulation de transport réactif peut 

être compromise dans son entièreté. Les problèmes de robustesse et d efficacité des méthodes 

numériques ne sont donc pas secondaires et une importante quantité de travail a été dédiée au 

développement de techniques numériques pour l amélioration de la méthode de Newton Raphson, une 

des techniques les plus utilisées pour la solution de l équilibre thermodynamique.  
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Le problème principal de cette méthode est lié à la résolution d un système linéaire par itération, ce 

qui peut rapidement devenir compliqué si le système est mal conditionné (ce qui arrive quand la 

matrice des dérivées du système non-linéaire, ou matrice Jacobienne, est mal conditionnée).  

Les techniques qui ont été testées pour augmenter la vitesse et le taux de convergence de la méthode 

de Newton Raphson sont (i) le scaling de la matrice Jacobienne, (ii) le couplage d une méthode 

d ordre zéro qui évite le calcul de la matrice Jacobienne.  

La formulation du système non-linéaire, le fonctionnement de la méthode de Newton Raphson et ses 

problématiques, le concept de conditionnement et les solutions proposées sont présentées sous forme 

d un article publié dans American Journal of Chemical Engineering (AiChE Journal) en 2016.  

Le chapitre 3 se termine avec une courte section dédiée aux modèles implémentés qui travaillent à 

l équilibre thermodynamique.  

Le chapitre 4 contient une étude sur la formulation des problèmes lors d un mélange de réactions à 

l équilibre thermodynamique et cinétiques. Dans un contexte où l on applique les lois d action de 

masse, un système d équations différentielles et algébriques est construit. Dans ce chapitre, il est 

expliqué comment parvenir à ce système en partant de considérations mathématiques ou à travers une 

schématisation intuitive des processus.  

Sur la base de la littérature consultée, le système a été écrit sous trois formes pour deux cas test et 

résolu avec le solver DASPK (qui adopte une méthode de solution implicite). Une comparaison avec 

la méthode explicite QSSA implémentée dans SPECY (Carrayrou et al., 2002) est également mise en 

place. Un des cas test est difficile à résoudre d un point de vue numérique et l autre pose des 

problématiques de formulation du système, en permettant d identifier les faiblesses de chaque 

formulation. Pour chaque formulation, le solver DASPK a été testé dans son mode de fonctionnement 

automatique (la matrice Jacobienne est calculée numériquement) et avec une solution analytique de la 

matrice Jacobienne.  

Le chapitre 5 est dédié aux solutions solides, qui sont des mélanges (non uniquement mécaniques) de 

plusieurs minéraux. Bien que le concept de solution solide ait déjà été introduit dans le chapitre 2 en 

connexion avec les isotopes, certaines limites conceptuelles sont discutées. Si la thermodynamique des 

solutions solides est bien connue, et que ses fondations théoriques sont consolidées, la même chose 

n est pas vraie pour leur comportement cinétique.  

Deux applications des solutions solides sont présentées : une simulation en système de batch et la 

simulation d un précipité composé de fer et chrome lors d une expérience de transport réactif. La 

première application permet de vérifier l algorithme et la cohérence des résultats avec celle d un autre 

code (PHREEQC) et la deuxième démontre le potentiel du code développé dans ce travail.  

Le couplage entre le module du transport et de chimie et l implémentation des isotopes sont analysés 

dans le chapitre 6. Le code pour la simulation du transport réactif qui résulte de ce couplage sera 

baptisé SpeCTr (Spéciation, Cinétique, Transport). Le chapitre contient aussi une analyse plus 

détaillée des différentes techniques de couplage (approche globale, séparation d opérateur) et des 
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algorithmes qui lient le module du transport et de chimie ainsi que des considérations sur le choix du 

pas te temps de transport.  

Le cas test utilisé pour la vérification du code est un benchmark sur le fractionnement du chrome 

(proposé par Wanner et al., 2015) et les résultats obtenus avec SpeCTr correspondent à ceux qui 

avaient été obtenus avec, par exemple, MIN3P et CrunchFlow.  

Le septième et dernier chapitre montre le potentiel de SpeCTr à travers son application à un cas de 

dissolution et précipitation de calcite. Plusieurs modèles de dissolution ont été testés pour la 

modélisation de résultats expérimentaux obtenus pendant l étude de dissolution de cristaux de calcite.  

Pour ce cas d étude, des simulations en 1D, 2D et 3D sont proposées afin de montrer l influence de 

l écoulement sur les vitesses de réaction et essayer de réduire la différence entre les taux de réaction 

mesurés en laboratoire et celles ayant lieu à l échelle macroscopique.  

Le but de cette modélisation n est pas de calibrer des paramètres pour trouver une correspondance 

avec les résultats expérimentaux mais, au contraire, de trouver d autres moyens pour rapprocher les 

résultats de laboratoire et ceux qui sont mesurés à grand échelle.  

Encore, la précipitation du carbonate de Calcium est présentée dans ce chapitre en comparaison avec 

des résultats publiés par Katz et al. (2009) ; ces simulations ramènent l attention sur les modèles de 

changement de porosité et sur leurs implications numériques. 
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Chapter 1 - General introduction 

 

1.1 Reactive transport  

 

If one were asked to explain what hydrogeochemical modeling is to a ten-year-old, a solution would 

be to say that it is the ensemble of techniques capable to simulate the evolution in space and time of 

some chemicals that may be moving through the ground transported by water. Chemicals do not 

remain passive throughout the journey but interact with each other and with the ground, potentially 

changing its properties. Hence the more familiar term under which hydrogeochemical modeling is 

known: reactive transport.   

As usually happens, the truth is far more complicated. Reactive transport modeling is indeed much 

more than the fore-mentioned process; it is an umbrella covering theoretical, mathematical and 

numerical tools able to describe the complex patterns of phenomena that take place in the Earth. In 

fact, hydrogeochemical modeling can be intended as a subsection of the wider network of reactive 

transport, which may include other phenomena such as mechanical or thermal effects, and might deal 

with fluids other than water.  

First reactive transport related studies date back to the eighties of the previous century. Reactive 

transport has since been applied for various purposes: as a complement to fundamental research in the 

understanding of natural phenomena, as a monitoring tool of pollutant migration, as a predictive tool 

to assess the suitability of nuclear waste repository sites or feasibility of carbon dioxide sequestration. 

An extensive overview of reactive transport modeling, its history, capabilities, and limitations can be 

found in (Steefel et al. 2005). 

One of the characteristics that make reactive transport modeling challenging is the variability of space 

scales (from pore to aquifer scale) and time scales (from the duration of an experiment to some million 

years). According to the scale at which the problem is intended to be studied, different models are 

available: single continuum, pore scale, and multiple continua models. Although pore scale (Yoon et 

al. 2015 and references therein) and multiple continua models (Pruess and Narasimhan 1982; 

MacQuarrie and Mayer 2005) are the subjects of multiple studies, single continuum models are, for 

the moment, those conventionally applied to describe flow, transport and chemical reactions; they are 

mathematically described by Partial Differential Equations (PDEs) which will be introduced in the 

next pages.  

This work is entirely based on a single continuum approach, not because this method is somehow 

considered better than others but because it is one of the legitimate, widely applied approaches. 

According to single continuum model, soil properties are averaged over a representative elementary 

volume (REV) within which the following assumptions are valid: 

1) Solid, liquid and gaseous phases all coexist at a single point in space; 
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2) Heterogeneous reactions are treated as homogeneous and the interface surface is treated as an 

averaged property; 

3) Flow within the porous medium is described through Darcy s law i.e. is proportional to the 

hydraulic head gradient; 

4) No gradients of concentration exist within the elementary volume.   

If assumptions 1 to 4 do not represent an excessive simplification of the reality that is intended to be 

modeled, then the application of single a continuum model is legitimate. Governing equations, their 

solution strategies and the algorithms employed are introduced in the following paragraphs of the 

Introduction and will be described throughout the whole manuscript, constituting the very core of this 

work.   

 

1.2 Governing equations 

 

As anticipated in one of the assumptions, single continuum model description of flux involves both 

mass balance equation and Darcy s Law (which ceases to be valid at the pore scale, where Navier-

Stokes equations take over): 

 

( )
0

t

h

q

q K

 (1.1) 

where q [L/T] is the Darcy flux,  [M3/L3] is the fluid density,  [-] is the porosity, defined as the ratio 

between the volume of the voids and the volume of the porous medium, K is the hydraulic 

conductivity [L/T] tensor and h is the hydraulic head [L]. Porosity and hydraulic conductivity are an 

example of the fore-mentioned properties that are considered constants within the elementary volume. 

Substituting the second equation into the first in system (1.1) provides a differential equation function 

of h to be integrated together with required Neuman or Dirichlet boundary conditions and initial 

conditions. The solution of system (1.1), provides a spatial distribution of h and q which is useful for 

the solution of transport equations. The solution of system (1.1) may be obtained analytically (for very 

simple configurations) or through numerical methods such as finite differences of finite elements 

(Istok 1989). 

Transport of a single species in a single continuum model is described by a diffusion/dispersion type 

partial differential equation (PDE) that determines the variations of concentration in space and time. 

When transport is not conservative, but reactive, a source term appears in the PDE, providing a link 

between transport and reactions:  
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where e [-] is the effective porosity, Ci [mol/L3] is the concentration of the ith (primary) species, D is 

the dispersion tensor [L2/T], L, T  are the longitudinal and transverse dispersivity [L], Dm is the pore 

water diffusion coefficient [L2/T], I the unit tensor; Sj [mol/L3/T] and Sm [mol/L3/T] are the 

homogeneous (aqueous phase) and heterogeneous (mineral) source terms (reaction rates), respectively; 

 stands for the stoichiometric reaction coefficients [-], Nr is the number of reactions and q [L/T] is the 

Darcy flux known from the solution of system (1.1). 

Analytical solutions for conservative transport exist only for extremely simple, homogeneous regular 

domains. More likely, system (1.2) is solved through numerical methods such as finite differences or 

finite elements (Steefel and MacQuarrie 1996).  

Chemical phenomena are various (speciation, precipitation, absorption to cite only a few) and 

described by a number of models (thermodynamic equilibrium, kinetic reactions). Their influence over 

a reactive transport problem is accounted for through the source terms in the right-hand side of 

equation (2). If multiple chemical species Ci are present, and a certain number (Nr) of chemical 

reactions take place, coefficient ij chooses whether or not reaction j has an impact on species Ci.  

Chemical reactions are described by a number of different models, i.e. algebraic and differential 

equations that can be solved simultaneously with system (1.2) or separately. The two different 

approaches are introduced in the following paragraph and detailed in a dedicated Chapter. 

 

1.3 Coupling techniques: operator splitting and global approach  

 

Systems (1.1) and (1.2) are decoupled, therefore they can be solved subsequently. On the contrary, 

transport and reaction equations are coupled. The approach chosen to solve these two groups of 

equations represents another watershed in reactive transport modeling. On one hand, it is possible to 

substitute reaction equations in system (1.2) and to solve a wide, heavy system of differential 

equations through for example Newton Raphson Method (global approach); on the other hand, it s 

possible to choose to sequentially (and sometimes iteratively) solve transport and reaction equations 

(operator splitting approach). A comprehensible introduction to both techniques can be found in 

(Steefel and MacQuarrie 1996).  

Global implicit approach (GA) results harder to implement into a code but avoids coupling errors; 

although the power computing has grown significantly, the solution of the global system of differential 

equations may be heavy to solve for complex 3D problems. On the other hand, operator splitting (OS) 
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approach engenders some coupling errors, but results more flexible and allows the coupling of 

different simulation tools (i.e. one code for the transport and another for the chemical reactions) 

chosen according to their respective strengths. 

The differences between the two approaches and the different coupling techniques (SNIA, SIA, 

Strang...) for the OS approach will be detailed in Chapter 6, but it is important to understand that 

almost philosophical differences exist between the two approaches. During a reactive transport 

modeling workshop it occurred to me to hear the sentence « operator splitting is dead » and although 

people with such strong opinions exist, the superiority of one method with respect to the other is still 

to be proven and is strictly problem dependent (Fahs et al. 2008) and references therein.     

OS approach opens to other debates that are specific to bio-geochemical solvers, especially related to 

the technique applied for modeling thermodynamic equilibrium. Two are the possible approaches: 

minimization of Gibbs Energy or Mass Action Law. The two approaches present strengths and 

liabilities, which are often linked to the phenomenon that is intended to be simulated; nevertheless, 

models and codes for biogeochemical reactions based on Mass Action Law constitute the majority.  

 

1.4 A universe of reactive transport codes  

 

A detailed study of the state of the art of reactive transport codes can be found in (Steefel et al. 2015), 

where twelve world-known codes are compared according to their capabilities and numerical methods. 

The review produced by Steefel and co-authors provides an overview on PHREEQC, HP1, PHT3D, 

OpenGeoSys, HYTEC, ORCHESTRA, TOUGHREACT, eSTOMP, HYDRO-GEOCHEM, 

CrunchFlow, MIN3P, PFLOTRAN. Some of the codes analyzed in the review started as mere tools for 

reaction simulations that were extended to one-dimensional transport (PHREEQC), others are 

ambitious platforms engineered to connect software for different chemical-physical phenomena 

(OpenGeoSys). These codes represent a percentage of all the reactive transport codes and reaction 

modules that are available to an interested user. Other examples are: CHEPROO (Bea et al. 2009), 

CORE2D (Samper et al. 2009), GEM-Selektor (Kulik et al. 2012), GEOCHEM-EZ (Shaff et al. 2010), 

GWB Geochemist s WorkBench (Bethke 2008), RETRASO (Saaltink et al. 2004), WITCH (Goddéris 

et al. 2006). 

Regarding flow, ten over twelve codes revised in Steefel et al. (2015) are capable of tri-dimensional 

simulations, nine embed Richards equation for unsaturated flow, eight are able to deal with variable 

density flow and six with non-isothermal flow. Regarding transport, the most remarkable characteristic 

is that only one code over twelve has a full dispersion tensor, while of the eleven remaining ten have a 

simple diagonal tensor while TOUGHREACT doesn t use one. Nine codes are declared able to treat 

transport in multiple continua. From a geochemical point of view, extended Debye-Hükel and Davies 

activity models, non-isothermal geochemistry, surface complexation, ion exchange, aqueous gas 

exchange, kinetic mineral precipitation, Monod kinetics are considered the basics and implemented in 
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nearly every code. Less common are Pitzer activity model and mineral nucleation, which are 

respectively embedded into four and six codes. Nine codes are declared to be able to treat mineral 

solid solutions. 

Some extra-attention is due to the implementation of isotopes. Equilibrium and kinetic isotope 

fractionation are implemented in seven and eight codes, and theses implementations are somehow 

recent with respect to first versions of the codes (Wanner and Sonnenthal 2013; Druhan et al. 2013); 

one of the reasons for the growing interest in isotopes is the recent improvement of analytic techniques 

that allow the detection of isotope fractionation.  

From a numerical point of view, only three codes analyzed in Steefel et al. (2015) apply a global 

approach (MIN3P, CrunchFlow, PFLOTRAN) and two of them (CrunchFlow, PFLOTRAN) allow to 

choose between global approach and operator splitting. Although code parallelization is becoming 

more and more frequent, allowing sensible reductions of the computational time, only the half of the 

codes exploited parallelization at the time of the publication of the review.   

 

1.5 LHyGeS numerical models: a garden worth gardening 

 

The patrimony of numerical models and codes at the Laboratory of Hydrology and Geochemistry at 

the University of Strasbourg is well documented. Codes have been developed for the simulation of 

mineral reactivity (KINDIS (Madé et al. 1994)), mineral reactivity and 1D transport (KIRMAT, 

(Gérard et al. 1998)), geochemical reactions (SPECY, (Carrayrou et al. 2002)), conservative transport 

(TRACES) and a number of other codes for more specific hydrological problems (Pan et al. 2015; 

Weill et al. 2017, Jeannot et al. 2018). Nevertheless, the evolution of geochemical models, numerical 

methods, and computing techniques is continuous and a constant update of these models is mandatory 

to ensure their survival.  

Despite being a very powerful instrument, with numerous practical applications that continue at 

present time, KINDIS has two substantial limitations: it is not well suited for coupling with a 

multidimensional transport code and it is has been specifically designed for mineral reactivity. 

SPECY, on the other hand, has been conceived from the beginning as a tool with broader fields of 

application and to be coupled with transport codes. Nevertheless, it has never been exploited to its full 

potential, being used more as a laboratory for numerical tests than for the systematic simulation of 

actual geochemical problems.  

In TRACES, who embeds the powerful numerical scheme of mixed and discontinuous finite elements, 

and who is very efficient for simulations of conservative transport, only very basic reactions were 

taken into account at the moment of its development.    

The aim of this thesis is to develop a tool for the simulation of bio-geochemical reactions gathering all 

the capabilities of the existing models (and adding some, in particular, the treatment of isotopes) in a 

modern numerical environment. The tool is conceived as a flexible module to be coupled with other 
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codes, primarily for the simulation of transport (TRACES) to produce a reliable and up to date tool for 

the simulation of reactive transport.  

With paragraph 1.4 well in mind, one might question the usefulness of another reactive transport code. 

It is important to highlight that the point is creating neither clone nor a competitor of the already 

existing, mainstream reactive transport codes, which would be a quite ambitious goal, but to create an 

alternative which is transparent, controllable, adaptable, reliable and efficient to the maximum extent. 

Carrayrou et al. (2010), with the application of the MoMaS benchmarks, showed that different codes 

may still provide different results, thus underlying the necessity of plurality and intercomparisons. It is 

also useful to remind that although many of the codes mentioned before are available to the scientific 

public, only a few of them are Open source. Moreover, as clear as their user-guides can be, the 

comprehension and usage of these tools is not immediate (courses to learn how to model with some 

mainstream codes are often put in place); this implies that scientist performing experimental or 

fundamental studies are far from just downloading  powerful software and running a simulation.  

In conclusion, the tool is intended to serve as a complement to experimental activity and a solid basis 

for further numerical improvements; this manuscript is mainly directed to those potentially continuing 

the work, to provide an honest picture of reactive transport modeling at LHyGeS, its potential and 

limitations.   

 

1.6 Structure of the work 

 

The work is ideally organized into three main sections. The first section is focused on the reaction 

solver and begins with a preliminary study on the implementation of isotopes in reactive transport 

models (Chapter 2). An extensive bibliographic study was conducted on the topic, concluding that 

isotopes are implemented as autonomous species in all models taken into consideration. Chapter 2 also 

gives an overview of the growing interest in isotopes and explains their role (mainly as tracers) in 

reactive transport studies. Following conclusions of Chapter 2, no substantial modifications of the 

algorithm are required to implement isotopes in the model; on the other hand, the increase in the 

number of species and the potentially extremely low concentrations treated stress once more the 

importance of reliability and efficiency of computations.  

Chapters 3 and 4 explore challenges in the solution of systems of equations arising from mathematical 

formulations of geochemical problems. Chapter 3 is dedicated to Thermodynamic equilibrium 

formulation. The method of primary and secondary species for Mass Action Law formulation is 

introduced as well as solution techniques of resulting algebraic non-linear systems. Liabilities of 

Newton Raphson method for the solution of non-linear systems are examined and solutions are 

proposed. In Chapter 3 are also listed and briefly explained the capabilities of the code at 

thermodynamic equilibrium.  
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Chapter 4 is dedicated to the problem of mixed kinetic and equilibrium reactions. In the context of 

Mass Action Law formulation, this configuration results in a system of differential and algebraic 

equations (DAEs). On the basis of the available literature, different mathematical formulations of the 

system were studied, implemented and tested in the solver DASPK and compared to the explicit 

solution method present in SPECY (Carrayrou et al. 2002).  

Chapter 5 is entirely dedicated to solid solutions, which are basically mixtures (not only mechanical) 

of a number of minerals. The concept of solid solutions has been exploited in connection with isotopes 

in Chapter 2, but some clarifications are due. The chapter contains an extensive bibliography on the 

thermodynamics of solid solutions while kinetic models for solid solutions are only introduced since 

their theoretical foundations are limited. Two applications of the algorithm are proposed, one in batch 

and an anticipation of a reactive transport problem involving Iron and Chrome precipitation.  

The second section of the work, constituted by Chapter 6, is dedicated to the coupling between the 

reaction and transport modules, the validation of the resulting reactive transport (called SpeCTr, 

Speciation Cinétique Transport in French) and, at the same time, of the implementation of isotopes.  

A thorough analysis of coupling techniques (Global Approach and Operator Splitting) is proposed and 

the mechanism of coupling adopted is detailed. Both the coupling of the reaction-transport modules 

and the implementation of isotopes are validated through the solution of a Benchmark involving 

Chrome fractionation. SpeCTr provides the same results as world know codes such as MIN3P and 

CrunchFlow. 

The last ideal section is constituted by Chapter 7, where a series of applications of SpeCTr are 

proposed. The problems involve Calcite dissolution and precipitation analyzed through 2D and 3D 

simulations. Different models for Calcite dissolution were tested to model experimental results 

obtained by studying the dissolution of Calcite crystals. Precipitation was tested instead in comparison 

with experimental and numerical results and published by Katz et al (2009).  
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Chapter 2  Implementing isotopes 

 

2.1 Theoretical background  

 

2.1.1 What is an isotope? 

 

Chemical properties of molecules depend in the large majority on the atomic structure of the elements 

they are composed of. Atoms are constituted by a nucleus of protons (positively charged) and neutrons 

(not charged), and by a cloud of electrons (negatively charged) around the nucleus. If the number of 

protons and the number of electrons is equal we say that the atom is neutral. If an atom suffers an 

excess of electrons it becomes a negative ion, if it suffers a deficit of electrons it becomes a positive 

ion.  

Chemical properties of an element are primarily defined by the number of electrons in its atoms. So, 

what are neutrons there for? Neutrons have no electrical charge and their presence is required to 

stabilize the nucleus full of protons, all positives, which experience repulsive Coulomb forces. 

Usually, in light elements such as Helium, Carbon and Oxygen, the number of neutrons equals the 

number of protons: Helium (He) has 4 nucleons, 2 protons and 2 neutrons; Carbon (C) has 12 

nucleons, 6 protons and 6 neutrons; Oxygen (O) has 16 nucleons, 8 protons and 8 neutrons. In heavy 

elements, however, the number of neutrons is often way higher than the number of protons: for 

instance, in an atom of Uranium (U) there are 238 nucleons, but only 92 of them are protons.   

A relatively important excess of neutrons makes the atom unstable, which is the case for a Carbon 

atom with 6 protons and 8 neutrons. However, a slight excess of neutrons may result in an atom that is 

still stable: Carbon atoms with 7 neutrons (1 neutron in excess) or Oxygen atoms with 9 or 10 neutrons 

(1 and 2 neutrons in excess) are stable. Versions of the same element that differ in their number of 

neutrons are called isotopes of that element, the word coming from the ancient Greek   that 

means at the same place (in the periodic table). The more stable is a nucleus, the higher the probability 

of its natural occurrence. On the other hand, unstable isotopes tend to disintegrate over time producing 

alpha or beta particles and sometimes gamma rays in the process and are also referred to as 

radioactive.   
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2.1.2 Notation 

 

The number of protons, or the atomic number, is usually represented with letter Z. The number of 

neutrons is often represented with letter N. The number of nucleons (protons and neutrons) is called 

mass number and is usually represented with letter A: 

 

 A = Z + N  (2.1) 

  

The usual notation for a nucleus of an element X is: 

 

 XA

Z N
 (2.2) 

This notation allows us to easily distinguish between different isotopes of the same element, for 

example an atom of Carbon in its most common configuration (6 protons, 6 neutrons) is represented as 

12
6 6C  while one of its less abundant isotopes as 13

6 7C . 

 

 

 

Figure 2.1  Atomic numbers vs. Number of neutrons in the nuclei of stable isotopes. From Principle 

of stable isotopes distribution (Criss 1999) 
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2.1.3 Isotopic abundance and its variations 

 

While treating isotopes, the concentration of an element or chemical species containing an isotope is 

usually referred to as abundance. The isotope (abundance) ratio is the ratio between the abundance of 

the rare isotope over the abundance of the abundant, for example the isotope ratio of 13 C  (which is 

less abundant of 12 C ) is defined as: 

 

 

13

13

12

C
(C) =

C
R  (2.3) 

Isotope abundance is usually reported through formulation, which is the deviation of the isotope 

ratio from a standard value (Craig 1957): 

 

 
13

13

(C)
1

(C)ST

R

R
 (2.4) 

Since is a very small number, it is often multiplied by 103 and expressed in . Another quantity 

that can be extracted is isotope concentration, the ratio between the abundance of the rare isotope and 

the concentration of the element of interest. For 13C the isotope concentration takes the following 

form: 

 

 

13 13

1312 13

C
=

1C + C

R
IC

R
 (2.5) 

The isotope ratio of a compound, expressed in equation (2.3), is not a constant. This is true not only if 

one of the involved isotopes is radioactive (therefore undergoing a decay process), but it may happen 

during the transition of a compound from one state to another, or between two compounds at chemical 

equilibrium. This variation in the isotopic composition is called isotope fractionation and implies that 

the chemical properties of isotopes of the same element are very close, but not identical.  

Differences in chemical and physical behaviors stem (most of the time) from mass differences in 

atomic nuclei. Lower molecular weights result in higher mobility, therefore in higher diffusion 

velocities and higher collision frequencies. At the same time, heavier molecules have higher binding 

energies that make them less prone to separate from other molecules. These characteristics imply that, 
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in most cases, lighter isotopes react faster or are more prone to react (even though the opposite effect 

is possible and has been named inverse kinetic isotope effect). As anticipated, two are the possible 

types of stable isotope fractionation: equilibrium fractionation and kinetic fractionation. Equilibrium 

fractionation sees isotopic exchanges between species that are at thermodynamic equilibrium. If we 

think about an equilibrium reaction where the asterisk represents the presence of the rare isotope, like 

in equation (2.6), the equilibrium constant equals the fractionation factor (equation (2.7)). 

 

 1 2 1 2* *C C C C  (2.6) 

 1 2 2 2 2
2/1

1 2 1 1 1

* / *

* / *

C C C C R
K

C C C C R
 (2.7) 

Purely kinetic fractionation results from strictly irreversible reactions, such as water evaporation with 

subsequent withdrawal of vapor, biotic precipitation of carbonates or bacterial decay and is primarily 

caused by lower binding energies of lighter molecules Purely kinetic fractionation is very hard to 

monitor, since most of natural processes are not purely kinetic and even in laboratory experiments this 

condition is tough to guarantee or quantify. For these reasons, natural processes are identified as non-

equilibrium-fractionation. Isotope fractionation between two chemical species at thermodynamic 

equilibrium ( 1 2C C ), or after a chemical or physical transformation ( 1 2C C ) is measured 

through the isotope fractionation factor: 

 
1

2
2

1

( )
( )

( )C

R C
C

R C
 (2.8) 

Since the variations are very small, the fractionation factor is very close to one and it is easier to 

represent these variations as its deviation from 1, which is called fractionation: 

 

 
2 1 1

2
/ 2

1

( )
( ) 1 1

( )C C C

R C
C

R C
 (2.9) 

Since fractionation  is a small number, it is often multiplied by 103 and expressed in . If 0  

the isotope ratio has increased (with respect to another species, phase or time) and we talk about 

enrichment; vice-versa, if 0  we talk about depletion.  

Under the assumption of first order, homogeneous fractionation (Criss 1999), an equation tracking the 

evolution of isotopic ratio can be established. Indicating with N the number of abundant isotopes and 
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N  the number of the rare isotopes, the evolution of isotopic ratio takes the form of the well-known 

Rayleigh equation: 

 

 ( 1)

0

' '
K

N N
f

N N
 (2.10) 

where (N/N)0 is the initial isotopic ratio, f is the fraction of remaining reactant, and K the kinetic 

fractionation factor.  

 

2.1.5 Why do we care about isotopes? 

 

The increasing interest in isotopes fractionation is due to the insights that this phenomenon can 

provide insights on a variety of biogeochemical processes. In fact, isotopes are powerful tracers that 

allow detecting and following processes which are transparent to changes in concentrations of major 

elements. Studies of isotope fractionation have been applied to different scenarios ranging from in situ 

bioremediation to the understanding of natural cycles. Examples include: Sulfur fractionation proved 

crucial in detecting subsurface processes during in situ bioremediation of a uranium and vanadium ore 

processing facility (Druhan et al. 2008; Druhan 2012) and Calcium fractionation was used as a tracker 

in an otherwise blind process in the same site (Druhan et al. 2013; Druhan et al. 2014).  Carbon 

fractionation proved as well to be an indicator of biochemical processes during in situ bioremediation 

from organic contaminants in wetlands (Imfeld et al. 2008; Imfeld et al. 2009; Imfeld et al. 2010; 

Alvarez-Zaldívar et al. 2016). Isotopes of  Lithium and  Boron, Magnesium and Calcium gained 

importance as tracers of natural processes such as clay mineral formation in soils, plant-mineral 

interactions, and recycling by vegetation (Schmitt et al. 2012). Uranium nuclides have been studied  to 

investigate weathering processes (Chabaux et al. 2011; Maher et al. 2006). Cr fractionation has been 

proved an indicator of reduction of Cr(VI), a carcinogenic contaminant, to Cr(III), which is less toxic 

(Wanner et al. 2015 and references therein).  
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2.2 Modeling isotopes 

 

The increasing attention paid to isotope fractionation resulted in a natural demand of models capable 

of reproducing experimental data. Analytical models have been proposed to describe water-rock 

interaction (Richter and DePaolo 1987; DePaolo and Getty 1996; Johnson and DePaolo 1997), 

sediment transport rates (DePaolo et al. 2006), groundwater residence time (Johnson and DePaolo 

1996), vadose zone recharge (Maher et al. 2003; DePaolo et al. 2004; Singleton et al. 2006), flow 

paths (Johnson and DePaolo 1994; DePaolo et al. 2006) but their applicability is often subordinated to 

simplifying assumptions. Moreover, the abundance of experimental data itself puts in evidence that 

well-established models such as Rayleigh equations are not always applicable to experimental data 

(Breukelen and Prommer 2008; Druhan et al. 2013). Throughout the last ten years, models started 

being developed to include isotopes in the complex network of reactive transport. To increase the 

understanding of isotopes fractionation in a mechanistic way, isotopes started being implemented in 

reactive transport models (and therefore codes) as independent chemical species (Singleton et al. 2004; 

Maher et al. 2006; Rolle et al. 2010). Some may argue that increasing the number of independent 

species would increase the computational burden, but two things should be kept in mind: i) when 

studying isotopes fractionation, scientists are interested in differencing the behavior of some isotopes 

of a single element, not every possible isotopic combination in the reaction network; ii) computational 

efficiency has increased to the point that adding some species to the reaction network is largely 

sustainable.  

The implication of such an approach is that, from a numerical point of view, there is no actual 

difference between two atoms of different elements and between two isotopes of the same element. 

Moreover, in a variety of occasions, behaviors of different isotopes are described through laws that 

vary slightly (Singleton et al. 2004; Druhan 2012; Wanner et al. 2015), which is coherent with the fact 

that differences in the mass do not imply stoichiometric differences. Although isotopes of different 

elements are all treated as different species, this is the only characteristic that they share. According to 

reactions present in the network, some models will be more suitable than others, exactly as it happens 

for major elements: they might precipitate through a standard Transition State Theory (Eyring, 1935; 

Lasaga, 1995) model or be part of some ion-exchange; therefore there is no universal receipt for 

implementing isotopes.    

 

2.2.1 Modeling stable isotopes equilibrium fractionation 

 

Isotope exchange between species or phases at thermodynamic equilibrium is modeled through 

adapted equilibrium constants. For example, equilibrium constants for Hydrogen and Oxygen isotope 
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fractionation during water evaporation in unsatured zones (Singleton et al. 2004) were obtained 

through temperature-dependent fractionation coefficients (Horita and Wesolowski 1994).    

 

2.2.2 Modeling stable isotopes kinetic fractionation 

 

Kinetic stable isotope fractionation has been modeled in recent years through the adaptation of classic 

reaction rates. For kinetic reactions that do not imply precipitation (i.e. a certain saturation to be 

reached), the reaction rate of the abundant isotope corresponds to the rate of the major element, the 

rate of the rare isotope is an adaptation to some extent of the classic law (Van Breukelen et al. 2005; 

Druhan et al. 2008; Wanner et al. 2015; Van Breukelen et al. 2017). Whenever precipitation or 

dissolution is involved, modeling mineral involving rare isotopes as independent is not possible. The 

most suitable way for treating this kind of processes is exploiting the concept of solid solutions 

(DePaolo 2011; Druhan et al. 2013; Wanner and Sonnenthal 2013). Minerals corresponding to 

different isotopes are conceived as end-members of a solid solution; a specific reaction rate ir [mol/T/ 

MH2O] (or [mol/T/ L3
H2O], depending on the formulation) for each end-member is written in the form: 

 

 1i i i i
S i i

S

n
Q

r k A x
K x

 (2.11) 

where ik is the kinetic constant of the element [mol/T/L-min2], As is the reactive surface [L2-min/MH2O] 

(or [L2-min/L3
H2O], depending on the formulation), ix is the mole fraction of the isotope i (that may be 

in the bulk solid or removed from the solid and corresponds to equation (2.5)) [-], Qi is the ion activity 

product of the end-member [-], iKS is the solubility product, n is the order of the rate. Following this 

approach, the rates and activities of the end-members/isotopes sum up to the rate of the whole element 

and a possible equilibrium fractionation is taken into account with suitable modifications of solubility 

product iKs (Druhan et al. 2013). Although this model is very powerful, care should be taken when 

associating it with solid solutions. In fact, while thermodynamics of solid solutions have a strong 

theoretical basis, their kinetics is not well established (the problems is addressed in more detail in 

Chapter 5).  

Other versions of equation (2.11) for the formulation of reaction rates of end-members are possible, 

such as in models TOUGHREACT and FLOTRAN (Wanner et al. 2015):  
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When implementing kinetic stable fractionation in MIN3P (Jamieson-Hanes et al. 2012), solid 

solutions are not explicitly mentioned. Each isotope precipitates/dissolve according to its own reaction 

rate: 

 1i i

S

S

n
Q

r k A
K

 (2.13) 

where the only difference between end-members is the kinetic coefficient ik  (which is not a constant 

anymore);  ik is obtained through equation (2.14) for the abundant isotope and through equation (2.15) 

for the rare isotope: 
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where iR is the isotopic ratio as defined in equation (2.3) i.e. the ratio between the rare and the 

abundant isotope. It is worth reminding that models in equations (2.11) to (2.15) were developed 

starting from the exigency of reproducing experimental results showing fractionation (mostly of 

Chromium and Calcium) and that they are not derived from a detailed knowledge of mechanisms 

governing fractionation. All the studies used kinetic fractionation as a tracer for other processes and 

were not focused on the mechanism of fractionation itself.  

Although this approach proved successful in modeling Calcium fractionation (Druhan et al. 2013) and 

Cr fractionation (Wanner et al. 2015), there are also examples of integrations of analytical models in 

numerical codes to treat very peculiar conditions (Druhan et al. 2013).  

 

2.2.3 Conclusions about modeling isotopes  

 

Stable isotopes fractionation has gained attention as a powerful complementary tool to understand 

physical and geochemical processes and to track the evolution of environmental engineering actions. 

Isotopes of chemical elements are introduced in reactive transport codes as independent species with 

their own constants and responding to their own reaction rates (linked only by mass conservation).  

It is true that the presence of different isotopes of the same element in a mineral is well described by a 

solid solution (it is indeed the closest approximation of an ideal solid solution). Nevertheless, care 

should be taken not to infer that all solid solutions could be treated kinetically as in equations (2.11) to 

(2.15), which are specific to isotopes.   
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Although the formulation of widely applicable models such as transition state theory (TST) adapted 

according to solid solutions  concepts work in a variety of contexts, ad-hoc models are still being 

developed to treat peculiar problems. For instance, for Chlorine and Hydrogen fractionation during 

microbial sequential reduction dechlorination (SRD) have been recently developed (Van Breukelen et 

al. 2017) proving that, although isotopes are treated as different species and kinetic isotope 

fractionation is obtained to the application of different reaction rates, the formulation of these reaction 

rates can vary substantially according to the examined phenomena and to its the degree of knowledge.  
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Chapter 3  Thermodynamic equilibrium 

 

 

In the context of Operator Splitting approach adopted in this work, computation of thermodynamic 

equilibrium is a fundamental step toward the solution of geochemical problems. This is true because i) 

within extremely large time-scales, equilibrium assumption may be justified for all reactions ii) 

whenever a mix of kinetic and equilibrium reactions take place, integration in time of differential 

equations through a solver must start from an equilibrated solution iii) ad-hoc algorithms for the 

computation of mixed kinetic and equilibrium reactions may require computation of thermodynamic 

equilibrium throughout their functioning. It is though very rare solving a geochemical problem leaving 

out the computation of thermodynamic equilibrium. 

Whenever the interest is not just finding the combination of concentrations that satisfies 

thermodynamic equilibrium for a reaction network, but a succession of these solutions in space and 

time, the issue of computational time becomes important. A small gain in the efficiency of a single 

operation implies a consistent gain of the global computational cost. Moreover, whenever a single 

operation does not converge to the solution in a reactive transport simulation, it compromises the 

whole system and the simulation fails. 

Hence, the issues of robustness and efficiency in solving thermodynamic equilibrium are not 

secondary. For this reason, a consistent amount of work has been dedicated to developing some 

numerical techniques to make Newton Raphson method, one of the (if not the) most used algorithm to 

solve the non-linear system of equations arising from chemical equilibrium, safer and faster. The 

principal liability of Newton Raphson method is the iterative solution of a linear system, which is 

potentially challenging if the system is ill-conditioned. The linear system is ill-conditioned whenever 

the Jacobian matrix (i.e. the matrix of derivatives of the non-linear system) is ill-conditioned. The 

techniques that were tested to improve the convergence rate of Newton Raphson method are i) scaling 

of the Jacobian matrix and ii) coupling Newton Raphson algorithm with a zero-order method that 

avoids the computation of the Jacobian matrix when this is ill-conditioned, by-passing the problem. 

The formulation of the non-linear system arising from equations, the functioning of Newton Raphson 

algorithm and its liabilities, the concept of ill-conditioning and the proposed numerical solutions is 

illustrated in the following pages through an article published on the American Journal of Chemical 

Engineering (AiChE Journal) in 2016. 
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3.1 Thermodynamic equilibrium solutions through a modified Newton 

Raphson method 

 

Marianna Marinoni, Jérôme Carrayrou, Yann Lucas, Philippe Ackerer 
Laboratoire d Hydrologie et de Géochimie de Strasbourg, Université de Strasbourg /EOST-CNRS 

UMR 7517, 1 Rue Blessig, 67084 Strasbourg, France 
 

 

 

3.1.1 Abstract 

 

In numerical codes for reactive transport modeling, systems of nonlinear chemical equations are often 

solved through the Newton Raphson method (NR). NR is an iterative procedure that results in a 

sequential solution of linear systems. The algorithm is known for its effectiveness in the vicinity of the 

solution but also for its lack of robustness otherwise. Therefore, inaccurate initial conditions can lead 

to non-convergence or excessive numbers of iterations, which significantly increase the computational 

cost. In this work, we show that inaccurate initial conditions can lead to very ill-conditioned system 

matrices, which makes NR inefficient. This efficiency is improved by preconditioning techniques 

and/or by coupling the NR method with a zero-order method called the Positive Continuous Fraction 

(PCF) method. Numerical experiments that are based on 7 different test cases show that the ill-

conditioned linear systems within NR represent a problem and that coupling NR with a method that 

bypasses the computation of the Jacobian matrix significantly improves the robustness and efficiency 

of the algorithm.  
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3.1.2 Introduction 

 

Reactive transport modeling is applied in different fields of science and engineering, including 

combustion, catalysis, atmospheric chemistry, water chemistry, and geochemistry. Reactive transport 

modeling copes with the solution of transport equations that are coupled with biogeochemical 

reactions. In this context, two approaches exist: a global implicit (or one step) approach, and a 

sequential iterative or sequential non-iterative approach (the so-called operator splitting approach) 

(Saaltink et al. 2000; Saaltink et al. 2001; Steefel et al. 2015). The global implicit approach consists of 

introducing reaction equations into transport equations and solving the resultant system, while the 

operator splitting approach consists of sequentially solving transport equations and biogeochemical 

reactions.  

Although the numerical results that are provided in this paper can be widely applied to all reactive 

transport simulations, we use reactive transport in soils and groundwater resources for illustration in 

this study. Several numerical codes are available to simulate reactive transport in this type of porous 

material (Steefel et al. 2015). Some of these codes adopt the global implicit approach, such as 

PFLOTRAN (Lichtner et al. 2015) or MIN3P (Mayer et al. 2002; Henderson et al. 2009); others adopt 

the operator splitting approach, such as HPx (Jacques and im nek 2005; im nek et al. 2012; 

Simunek et al. 2013), PHT3D (Prommer and Post 2010), HYTEC (van der Lee et al. 2003), 

TOUGHREACT (Xu and Pruess 2001; Xu et al. 2006, 2011; Tianfu Xu et al. 2014) or eSTOMP 

(White and McGrail 2005; White and Oostrom 2006); and others allow the user to choose between the 

two (e.g., Crunchflow (Steefel 2009), HYDROGEOCHEM (Yeh and Tsai 2013; Tsai et al. 2013)). 

Each methodology has its own advantages and disadvantages, as determined by research that has been 

conducted on these methods (M. W. Saaltink, Carrera, and Ayora 2000; Maarten W. Saaltink, Carrera, 

and Ayora 2001). The operator-splitting approach is often performed by coupling modules that solve 

transport equations with modules that are designed to solve biogeochemical equations. For instance, 

HPx and PHT3D rely on the geochemical code PHREEQC (Parkhurst et al. 1999; Steefel et al. 2015) 

to solve for the chemistry, while the geochemical portion of HYTEC (van der Lee et al. 2003) is 

solved by the code CHESS (van der Lee and Windt 2002; Steefel et al. 2015). The platform 

OpenGeoSys (Kolditz et al. 2012) has been specifically developed to facilitate interactions between 

modules that deal with problems from different fields. Examples of geochemical modules that are 

designed to be coupled with transport codes include CHEPROO (Bea et al. 2009) and MINTEQA2 

(Allison et al. 1991). In the context of the operator splitting approach, the chemical equations must be 

solved potentially several thousands of times per time step, once for each cell/node (Van der Lee 

1998) of the mesh that is designed to solve the transport equation (typically, several tens of thousands 

of cells/nodes for 2D problems and several hundreds of thousands for 3D). Moreover, the entire 

transport computation must be repeated with a smaller time step when the chemical system cannot be 

resolved. Thus, efficient (i.e., robust and fast) solution techniques are mandatory. In the majority of 
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geochemical codes, a nonlinear system of equations is solved through Newton Raphson-based 

algorithms. The Newton Raphson method is an iterative procedure that provides a solution of 

nonlinear systems of chemical equations through the repeated resolution of linear systems. As with all 

iterative procedures, Newton Raphson requires a set of initial guesses to begin its path to the solution. 

This method is appreciated for its quadratic rate of convergence when favorable initial guesses are 

picked; on the other hand, an unlucky combination of initial guesses will likely prevent the algorithm 

from converging (Van der Lee 1998). For this reason, the Newton Raphson method is often 

implemented alongside techniques that utilize a preliminary selection of initial solutions (Parkhurst et 

al. 1999).  Depending on the problem, the coefficients that appear in a system of equations can be very 

different, potentially causing the solutions of linear systems to be ill-conditioned (Buzzi-Ferraris and 

Manenti 2014). The accuracy of the numerical solution of an ill-conditioned system can be very poor 

and may provide results that are very different from the exact solution, i.e., the wrong descent 

direction of an iterative procedure. Techniques such as line search (Press et al. 1997) (or one 

dimensional search (Buzzi-Ferraris and Manenti 2014)) or similar methods (Van der Lee 1998) that 

deal with the amplitude of the step but leave the direction unchanged are exposed to the same risk. The 

motivation of this paper is to explore the effects of ill-conditioned linear systems from NR on the 

outcome of the algorithm and to compare different solutions to improve its efficiency. Several 

techniques exist to ameliorate the condition of a linear system (Chen 2005), which vary widely in their 

computational demand. In the context of reactive transport, computations are likely to be called 

thousands of times, so we studied the impact of the simplest preconditioning technique, which is 

known as scaling (Golub and Van Loan 1996), on the evaluation of thermodynamic equilibrium for a 

selection of numerically challenging problems. A declination of scaling techniques is proposed and 

their consequences on the robustness of the Newton Raphson method are presented. In practice, the 

Newton Raphson method is often coupled with other algorithms, so we compared the effects of scaling 

techniques with the effects of coupling the Newton Raphson algorithm with the Positive Continuous 

Fraction method (Carrayrou et al. 2002), an effective zero-order technique that was initially proposed 

to treat linear concentrations. Here, we adapt this method to work with concentrations on a logarithmic 

scale. Other approaches have been adopted in order to overcome the liabilities of Newton Raphson 

Method: other zero order methods, like simplex method (Wood 1993) were applied to equilibrium 

problems; QR factorization method (Hoffmann 2010) has been used solve linear system; Newton-

Krylov methods were also applied (Kern and Amir 2007). Those proposed in this paper are certainly 

not the only solutions; they merely represent a widely used alternative among others.   

 

3.1.3 Thermodynamic equilibrium: governing equations 

 

Modeling chemical reactions at equilibrium is a basic feature in many reactive transport codes and is 

the principal objective of other computational modules. Although not a unique alternative (Kulik et al. 
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2012), thermodynamic equilibrium is often described through a combination of mass conservation and 

mass action laws that are written in terms of species and components (Saaltink et al. 2001). The 

formulation of species and components has been adopted by many modelers (Reed (1982), Westall et 

al. (1976), Cedeberg et al. (1985), Yeh and Tripathi (1991), Steefel and Lasaga (1994), Parkhurst and 

Appelo (1999)) and is currently implemented in codes such as CHESS (van der Lee and Windt 2002), 

CHEPROO (Bea et al. 2009), TOUGHREACT (Xu et al. 2014), Crunchflow (Steefel 2009), 

PHREEQC (Parkhurst et al.1999) among others.   

One can individuate a subset of components within all chemical species in a chemical system at 

thermodynamic equilibrium to entirely describe the system. Components (often addressed as primary 

species) are linearly independent, and their combinations recreate all chemical species (secondary 

species). The relationship between components and other chemical species is mathematically 

expressed as follows: 

 ,
1

1,...,
Nx

i j j i C

j

b X C i N , (3.1) 

Where Xj represents a generic component; Ci is a generic chemical species; bi,j is a generic 

stoichiometric coefficient; and Nx and Nc are the number of components and dissolved chemical 

species, respectively. Equation (3.1) describes a qualitative relationship between components and 

other chemical species and does not provide quantitative information regarding the concentrations or 

activities of different elements. Quantitative relationships are provided by the conservation law (3.2) 

and mass action law (3.3): 
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T Total X C j Nb  (3.2) 
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where [-] defines a concentration, {-} defines an activity, [Tj] is the total concentration of component 

Xj that is conserved in the system through chemical reactions (expressed in moles per unit volume), Kj 

is the thermodynamic equilibrium constant, and bi,j is a generic stoichiometric coefficient that is 

related to the formation of chemical species Ci based on the components Xj. If present, precipitates that 

constitute the solid phase are identified with the symbol Cpl, with l=1, ,NCp, where NCp is the total 

number of precipitates. Thus, equation (3.2) undergoes a modification: 
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1 1

( ) 1, ,j j Xl

NcpNc

i j i l j
i l

T Total X j Nb C bp Cp , (3.4) 

Where [Cpl] is the concentration of precipitate l. Cpl and bpi,j is the related stoichiometric coefficient. 

The concentrations of precipitates must be computed within the chemical equilibrium solution, but 

their activity { Cpl} remains constant and equal to one because the quantity of precipitates is no longer 

available for reactions. Thus, whenever precipitation occurs, [Cpl] cannot be deduced through the mass 

action law and must be treated as an additional unknown(Carrayrou, Mosé, and Behra 2002). Equation 

(3.5) is included in the system to balance this supplementary unknown. Precipitation occurs only when 

condition (3.6) is satisfied.  

 ,l

S j

j

l jbp
K X  (3.5) 

 ,l

S j

j

l jbp
K X  (3.6) 

The relationship between the concentration and activity of a generic species Ci is expressed through 

equation (3.7), where the activity coefficient i  is computed based on the ionic force.  

 i i iC C  (3.7) 

Substituting the mass action law (3.3) into mass conservation (3.2) while considering the relationship 

between the concentrations and activities (3.7) provides a set of Nx equations, where the total 

conserved concentration can be computed as a sole function of the concentration of components  [Xj] 

and precipitated species [Cpl]: 

 ,
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,
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j i k k
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l j l
lki
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b

j Nbp Cp
b

T K X . (3.8) 

In the previous equations, the stoichiometric coefficients bi,j and bpi,j and the thermodynamic 

equilibrium constant Ki are known. Activity coefficients  can be expressed as functions of species  

concentrations and therefore of components  concentrations [Xj] . As already stated, equation (3.8) 

represents mass conservation, this meaning that even if a given component Xj is involved in different 

species with different proportions and those proportions may vary, its total concentration [Tj] (in a 

closed system) does not change.  The total concentration of a component Xj, [Tj],  can be measured or 
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deduced from system characteristics and become a known quantity. We will refer to these data with 

the symbol  [ ]
j

T  in order to differentiate them from their mathematical/conceptual definition [Tj]. To 

exploit this information, equation (3.8) may be rewritten in the following form: 
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 (3.9) 

Equation (3.9) describes a nonlinear system of Nx equations with Nt = Nx + NCp unknowns. 

Supplementary equations are then introduced to equilibrate the system based on equation (3.5): 
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1 1,...,
X
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N l Cpl
j S
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Y l N
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. (3.10) 

To simplify the notation, the Nt  unknowns are grouped into a vector X , and the nonlinear system at 

thermodynamic equilibrium can be rewritten as follows: 

 ( ) 0Y X . (3.11) 

3.1.4 Newton Raphson algorithm 

One of the most applied algorithms for solving nonlinear systems such as (3.11) is the Newton 

Raphson method (Van der Lee 1998). The Newton Raphson method is iterative and implies the 

repetition of a given procedure until the solution is reached, i.e., until a given stopping or convergence 

criterion is satisfied. At each iteration n, the algorithm converges to the solution by updating the 

unknowns: 

 

 1n n nX X X . (3.12) 

The increment nX  is computed through the solution of a linear system (3.13): 

 n n n= -J X Y , (3.13) 
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where Jn is the Jacobian matrix of the system (3.11) and Yn is the vector of residuals, both of which 

are computed with the values Xn. The solution of the linear system (3.13) is usually performed with a 

dedicated solver. Amongst the numerous solvers that are available to accomplish this task, we choose 

LU decomposition (Van der Lee 1998) with quadruple precision. Quadruple precision reduces the 

effects of round-off errors and has been shown as the most robust and efficient solver of numerical 

experiments, as described in Machat and Carrayrou (2016). 

The Jacobian matrix J is an Nt  Nt  matrix that contains the derivatives of each row of the nonlinear 

system with respect to each unknown. These derivatives are computed analytically and take the 

following forms: 
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Because Newton Raphson is an iterative procedure, the algorithm is initialized with a set of initial 

guesses for the unknowns (concentrations of components). The Newton Raphson algorithm is known 

to be very effective when the initial guesses are picked in the vicinity of the solution but can likely fail 

to converge if the initial guesses are far from the solution in the unknowns  space (Buzzi-Ferraris and 

Manenti 2014). Thus, the Newton Raphson method is often coupled with other techniques to estimate 

these initial guesses (Parkhurst et al. 1999).  

 

3.1.5 Condition of the linear system 

 

The reliability of the solution of the linear system (3.13) is measured through the evaluation of the 

condition number of the Jacobian matrix J (Kiusalaas 2005) . The lower the condition number, the 

more likely the numerical solution of the linear system is to coincide with the exact solution. 

According to Golub and van Loan (1996), if Xn is the solution that is computed by Gaussian 

elimination and XExact is the exact solution, one can link the relative error with the condition number 

of J, (J), and the relative error in the computation of J, (J): 

 

 ( ) ( )Exact

Exact

nX X
J J

X
 (3.16) 

If we assume that the relative error in the computation of J is on the order of the round-off error, 10-d, 

and that condition number is approximately 10q, the solution of the system from a direct solver (i.e., 
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LU decomposition) will have at least d-q correct decimal digits. For double-precision real numbers, d 

is equal to 16, which means that the solution might have no significant digits for (J)>1016. In our 

context, the analytical solution of system (3.13) coincides with a step towards the solution. Thus, a bad 

solution of the linear system may result in a poor choice of the direction in our path to thermodynamic 

equilibrium and, therefore, significantly increase the number of iterations that are required to reach 

convergence.  

The techniques that are used to evaluate the condition number are diverse. In its general definition, this 

number corresponds to the product between the norm of a given matrix and the norm of its inverse 

(3.17), no matter which norm is chosen (Chapra and Canale 2015). In the presence of symmetric and 

nonsingular matrices (Chen 2005), the condition number may also be computed as the ratio between 

the highest and lowest modules of the eigenvalues  of the matrix (3.18). In this particular case, the 

condition number obtained through equation (3.18) corresponds to the one computed through (3.17) 

choosing norm 2 as norm of the Jacobian matrix and its inverse.  

 

 1J J J , (3.17) 

 max 1

2 2
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J J J . (3.18) 

A possible choice for the norm in equation (3.17) is the norm 1, 
1

J  (the maximum absolute column 

sum), or the infinity norm J  (the maximum absolute row sum): 
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. (3.19) 

The evaluation of the condition number is subordinated to the inversion of the matrix in one case or to 

the evaluation of the eigenvalues in the other. Therefore, the standard algorithms for the computation 

of the condition number encounter difficulties in the presence of very ill-conditioned matrices.   

The condition number of a given linear system can be modified in different ways. For instance, one 

can simply multiply its rows or columns by constant values, producing a potentially infinite series of 

condition numbers. Thus, Buzzi-Ferraris (2011) defined system conditioning as a particular condition 

number of a system in what this author called its standard form. This standard form is obtained by 

dividing each row of the system by its infinity norm, which is computed along the right-hand side of 
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the system and by dividing each column by its infinity norm (Buzzi-Ferraris 2011). This approach is 

useful because it provides a univocal index to compare results while searching for different and more 

effective formulations of the problem instead of attempting to ameliorate the condition of a given 

problem. In this context, searching for a different formulation of the problem means looking for 

another set of basic components to describe the chemical system. Nevertheless, this approach will not 

be studied here.  

 

3.1.6 Working on a logarithmic base 

A solution that allows some numerical facilities is a change in the variables from equation (3.9). 

Instead of working with the general unknown concentration [Xj], one should work with the 

logarithmic transformation of the corresponding activity: 

 lnj jX . (3.20) 

The consequences of this transformation on the system are limited. Equation (3.3) becomes equation 

(3.21), while equations (3.9) and (3.10) take the form of equations (3.22) and (3.23): 
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This transformation has the advantage of ensuring the symmetry of the Jacobian matrix and improving 

its conditioning. This transformation has already been used and implemented, for example, in EQ3/6 

(Wolery and Jarek 2003). The Jacobian matrix entries become as follows (see Annex I): 
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In fact, the concentration of the component j that was present in equation (3.14) disappears from the 

denominator in equation (3.24), reducing the possibility of fluctuations over an order of magnitude. 

Equation (3.24) could be rewritten in its matrix form (3.26). This notation for the upper left block 

highlights the influence of the range of concentrations on the condition number. 

 

 ( )T diagJ = B C B  (3.26) 

3.1.7 Preconditioning 

 

Techniques and procedures that are used to reduce the condition number of a given system fall under 

the definition of preconditioning. An accurate summary of these techniques is available in the 

literature (Chen 2005). Some preconditioning techniques, such as preconditioning through an 

approximate inverse, require consistent computational effort. If the required computational time for 

preconditioning is significantly higher than some Newton Raphson iterations, the algorithm will not 

reduce the computer time that is required to reach the solution. Therefore, we focus our work on 

methods that improve matrix conditioning without significant computational costs. Those techniques 

are known as scaling (Golub and Van Loan 1996; Chen 2005). Scaling is a procedure that is operated 

by multiplying one or more rows and/or columns of the linear system by a constant. The only 

limitation is that multiplying all the lines by the same constant would produce no effects. The idea 

behind scaling is to solve system (3.27) instead of the regular linear system that is solved in the 

standard Newton Raphson algorithm: 

 

 1 1 1
1 2 1n n n= -D J D X D Y , (3.27) 

where D1 and D2 are diagonal matrices and 2n nX = D X  is a linear combination of the increments. 

The previous system is analytically equivalent to (3.13) but hopefully better conditioned. The entries 

of D1and D2 may be chosen with respect to the diagonal values of the original matrix J  (Marquardt 

1963) or according to a given norm of lines and/or columns (Knight et al. 2014). Setting D1 = I 

corresponds to performing scaling only over columns, while setting D2 = I corresponds to performing 

scaling only over rows. A further step beyond scaling is matrix equilibration (Bradley 2010; Knight et 

al. 2014), which sets the norms of rows and columns of a given matrix to a fixed value and repeats a 

certain scaling procedure until the norms meet the requirements. However, Golub and Van Loan 

(1996) warned that reactions to scaling are strongly problem dependent and that its implementation is 

by no means a guarantee of success in the computation of increments.  
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3.1.8 Scaling procedures in this work 

 

In our work, we tested five different combinations of D1 and D2 or, more precisely, four different 

combinations of D1 and D2 and one procedure for matrix equilibration. We tested both scaling 

techniques that involve rows and columns and techniques that modify only rows. Simple row-scaling 

of the Jacobian matrix and its right-hand term is obtained by imposing D2 = I and choosing different 

values of the constants of D1.  

 

RI  Row Identity scaling. If each row in the Jacobian matrix is defined as a vector ia  and each 

element of its diagonal is ,i iJ , one possible choices of the entries of the diagonal matrix is: 

 1 ,i i iD a , (3.28) 

where the infinity norm is maxi ia a . We refer to scaling through D2 = I and the elements of 

D1, as in equation (3.28), with the name Row Identity (RI) scaling. 

 

DI  Diagonal Identity scaling.  While matrix D2 = I, the elements of D1 are picked as in equation 

(3.29): 

 ,1 , i ii iD J , (3.29) 

sDsD  Square Diagonal scaling. Two methods of performing scaling that affect both rows and 

columns were also tested. The first method was already proposed by Marquardt (Marquardt 1963) and 

is also known by the name Jacobi preconditioning (Golub and Ortega 1993) . Matrices D1 and D2 

become:

 
1, ,

2, ,

i i i

i i i

D J

D J
. (3.30) 

Equation (3.30) is valid for 1,...,i Nx  because the diagonal entries of the matrix become zero 

(Annex I) in the presence of precipitates. We refer to this scaling technique with the expression Square 

Diagonal scaling (sDsD).  

 

RC  Row and Column scaling. The second procedure that acts on both rows and columns (Row and 

Column scaling  RC) performs only one iteration of a matrix equilibration technique that was 

proposed by Knight et al. (2014). After defining ci column-vectors of the matrix J, these authors 

proposed to choose entries of D1 and D2 as in equation (3.31):  



32

 
1,

2,

i i

i i

D

D

a

c
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where maxi ia a . If the original matrix was symmetric, then i ia c , which ensures the 

symmetry of the scaled matrix.  

 

MEq  Matrix Equilibration. This preconditioning technique consists of repeating RC scaling 

(equation (3.31)) until each row and column of the Jacobian matrix has an infinity norm equal to one.  

Some remarks on the choice of the preconditioners D1 and D2 are necessary. One can also choose
 
D1 = 

I, i.e., scaling only the columns of the Jacobian matrix. In this case, the right-hand side of the linear 

system would have been left untouched. We avoid this possibility because the accuracy of the 

system s solution also depends on the right-hand side. On the other hand, scaling only the rows of the 

system prevents us from re-scaling computed increments, which makes Row Identity (RI) scaling and 

Diagonal Identity (DI) scaling the easiest alternatives. Additionally, the scaling of each line or column 

is not necessary (Delay et al. 2007). However, automatizing  the choice of constant values in some 

fashion is necessary in the context of an iterative procedure where the solution of the linear system 

occurs repeatedly. Row Column scaling (RC) is interesting because it can maintain the symmetry of 

the matrix and reduce gaps on the scale of orders of magnitude between columns, not only between 

rows, while the effectiveness of matrix equilibration (MEq) has already been proven through the 

methodology that was proposed by Knight (Ruiz and Uçar 2011).  

 

3.1.9 Positive continuous fraction method 

 

The positive continuous fraction method was presented by Carrayrou (Carrayrou et al. 2002) as a 

development of the continuous fraction method, a zero-order method whose variant has been 

implemented in PHREEQC (Parkhurst et al. 1999). According to the positive continuous fraction 

method, an approximation of equilibrium can be obtained for a given dissolved component Xj through 

the iteration of the following equation: 

 

 

0,1,
1

,
1

i ja
prod n

n n njn n

j j j j jreact n

j

sum
X X X

sum
, (3.32) 

where reactive sum and product sum are defined in (3.33) and (3.35) and in (3.34) and (3.36), 

respectively; 
j
 is a weighting factor; and 0,i ja is the smallest value of strictly positive stoichiometric 

coefficients that are linked to the component Xj. The definitions of reactive sum and product sum vary 
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according to the sign of the total conserved concentration 
j

T  (negative total concentrations may arise 

with ion exchange, while null totals occur in the presence of H+). 

If 0jT : 
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If 0jT : 
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The positive continuous fraction method is an empirical method. Once the equilibrium solution is 

found, the reactive sum equals the product sum. This method is another formulation for the 

conservation equation (3.2). Thanks to the repartition between the reactive materials and products, one 

can check if the component concentration value [Xj
n] is too high (product sum greater than reactive 

sum) or too low (reactive sum lower than product sum). The component concentrations should then be 

updated according to formula (3.37), which increases or decreases the component concentration 

depending on the respective values of the reactive and product sums: 
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Nevertheless, formula (3.37) does not consider simultaneous changes in all the components  

concentrations. A weight factor j  is introduced into equation (3.32) to avoid unfavorable oscillations. 

In this work, we exploit the same approach and structure by simply turning equation (3.32) into the 

following: 
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Then, we define the weight factor 
j
as follows: 
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where  and  are constants that control the amplitude of the step towards the solution. The step 

should be allowed to be large at the beginning (when reac

jsum  and prod

jsum  are different) but should 

be limited near the solution (when the two quantities are similar) In this work, these constants are set 

at 0.1  and 0.08 . The weighting factor is updated only if 1n n

j j .  

 

3.1.10 Numerical experiments 

 

A first simplified numerical example is proposed in order to highlight the effects of matrix 

conditioning and round-off errors on chemical equilibria solutions. The simplified chemical system is 

composed of three species and two components and is detailed in Table 3.1. The system is solved by 

the Newton Raphson method (NR), NR with Row-Column scaling (NR-RC), the positive continuous 

fraction (PCF) method, and PCF coupled with NR. For the initial conditions that are defined in Table 

3.1, the associated matrix for the NR method has a condition number of 1.4 103 and the scaled matrix 

(NR-RC) has a condition number of 9.3 102. These condition numbers are defined in equation (17) by 

using the infinity norm. As shown by equation (16), the accuracy of the solution depends on the 

condition number and the round-off errors. Figure 3.1 shows the effects of the round-off errors on the 

path from the initial guesses to the solution of the above system.  

 

 

  1  2 K 

 1 1 0 1.0 

 2 1 1 1.0 

 1  2 -1 3 2000.0 
T 1.0 1.0  

  Initial 6.0 3.0  

 

Table 3.1 - Stoichiometric coefficients, thermodynamic constant (K), totals of the components  1 and 

 2 (T), and logarithm of the initial activity (  Initial). 
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Figure 3.1 - Effect of the round-off error 10-d on the iterative solution. The picture shows the path 

throughout the solution of four variants of the same simplified problem. Figures (a), (b), (c) and (d) 

show the results for different values of d, the exponent of the round-off error (d=3, 4, 5 and 6 for, 

respectively). Since the problem has only two unknowns (components  1 and  2) the path from the 

common initial guesses (  1 =6.0 and  2 =3.0) to the solution (  1 =0.3 and  2 = -2.9) is easily 

represented on a 2D graph. Within a single variant of the problem, different paths occur with different 

algorithms. When round-off error is higher (a) the implementation of scaling makes the difference 

between reaching the solution or not. 

 

This example shows that the NR method is sensitive to the computational accuracy. In the worst case, 

the method does not converge (Figure 3.1a) or converges after some amount of iterations, even if the 

system is not accurately solved during the first iterations (Figure 3.1b and c). Once an acceptable 

accuracy is defined, NR and NR+RC lead to very similar solutions (Figure 3.1d). NR+RC is much less 

sensitive to the accuracy because the matrix is better conditioned, even if the contrast in the condition 

numbers is not very high for this example. The path to the solution does not change for the studied 

round-off errors. PCF is a first-order method that does not require a system to be solved. The method 

is provided here to illustrate its advantages and drawbacks; specifically, the method is robust far from 

the solution but inefficient in the neighborhood of the solution (the computation is stopped after 15 
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iterations for this example). Finally, the association of PCF and NR provides an interesting alternative. 

The algorithm starts with a prescribed number of PCFs (3 in this example) and switches to NR to 

reach the solution. This association is not sensitive to the round-off errors in this example. Finally, NR 

may reach the solution in fewer iterations than NR+RC even if the system matrix is not solved 

properly (Figure 3.1c). The wrong direction of descent for the first iteration is more efficient than the 

correct one. This process may occur a very few times and is not reliable. 

Real or realistic experiments involve a larger number of species and components than those involved 

in the previous experiment.  A visual representation is therefore impossible, but the issues remain the 

same as before. The efficiencies of the different algorithms on more complex experiments are studied 

with 7 test cases of increasing complexity.  Each test case is solved through the technique clarified in 

the previous sections:  the concentrations of all the chemical species Ci  in the system are computed 

based on a set of fixed components Xj, assuming their total amount 
j

T  in the system is known. The 

majority of the test cases are available in the literature and considered to be numerically challenging in 

reason of large range of stoichiometric coefficients and equilibrium constants . The number of species 

and components for each test case are summarized in Table 3.2.  

 

 Dissolved 

species 

Adsorbed 

species 

Precipitates Components log10Kmin- 

log10Kmax 

      

Gallic Acid 17 - - 3 -39.56 - -4.15 

MoMaS Easy 9 3 - 5 -12  35 

Pyrite 40 - - 4 -520.6  19.17 

Pyrite M 40 - 3 4 -520.6  19.17 

Fe Cr 40 - - 7 -83.17  80.9 

Fe Cr Min 40 - 3 7 -83.17  80.9 

MoMaS Hard 12 3 2 6 -12  35 

      

 
Table 3.2 - Summary of the test cases for thermodynamic equilibrium study. 

 
 

The first and simplest test case is Gallic Acid, a system proposed by Brassard and Bodurtha (2000) as 

an example of the onset of problems in numerical methods. The system was originally studied in 

relation to Al(III) speciation in natural waters (Öhman 1983). This first test case is characterized by 

the presence of 17 chemical species that can be described through the combination 3 components. 

Since no solid phase is taken into consideration here, the Jacobian matrix has size 3x3, the smallest of 

the whole set of test cases. Also the range of variation of equilibrium constants is the smallest of those 

examined. Increasing complexity is found in MoMaS Easy test case, a synthetic benchmark designed 

to evaluate the performances of computational codes  and published in a special issue of 
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Computational Geosciences (Carrayrou et al. 2009). This test case is characterized by the presence of 

only 12 species and the number of base components required to describe the system is 5 (2 more than 

those needed for Gallic acid).  At the same time the interval of variation of equilibrium constants is 

higher (47 against 35 orders of magnitude) than in the previous case. Complexity increases 

significantly approaching Pyrite31 test cases. This example describes the environment for the potential 

precipitation of Pyrite ( 2FeS ) . In a first variant of the test case precipitation of a solid phase is denied 

and the system is composed of 40 dissolved species described through 4 components. The number of 

components is limited but the differences between equilibrium constants are huge: the lowest is -520 

and the highest 19. A second variant of the test case, Pyrite Mineral, is examined. This example is a 

copy of the previous enriched with the test for the formation of 3 minerals ( 2Fe,FeSO4,FeS ). The 

size of the Jacobian matrix becomes 7x7. Continuing in the presentation of test cases, it becomes 

harder to precisely assess the order of complexity.  MoMaS Hard test case  comes from the same set of 

synthetic examples of MoMaS Easy (Carrayrou et al. 2009). It s characterized by the presence of 12 

chemical species and described through 6 components. Two minerals are tested for precipitation, 

making the Jacobian matrix 8x8 while the range of equilibrium constants remains the same of MoMaS 

Easy. Two test cases involving iron and chrome are also studied. Fe Cr test case is the simplest and 

describes a chemical system of 40 species and 7 components with no test for precipitates. In this case 

the number of components is higher than in the Pyrite test cases but the range of variation of 

equilibrium constants is considerably smaller.  Fe Cr Min is a variant of the previous case in which 3 

minerals are tested for precipitation, making the Jacobian matrix size 10x10. The whole sets of 

equilibrium constants and a complete description of the chemical species and components are 

presented in Annex II.  

Because the motivation of this work is to evaluate the behavior of the Newton Raphson method and 

associated algorithms, we only compute the first solution of the chemical system, i.e., if precipitation 

occurs and no precipitation was assumed, the computation is not repeated. Therefore, we also assumed 

that the activity coefficients were constant and equal to one. Because the efficiency of the Newton 

Raphson method is very sensitive to the initial guesses, we searched the solutions of chemical 

equilibria for 30000 initial component concentrations
jX , except for Gallic Acid (10000), which 

appeared to be the easiest test case. We assumed that 30000 (10000 for Gallic Acid) simulations 

would adequately represent the behaviors of the convergence rates for each example because the 

percentage of failure (actually the mean number of iterations that is required to converge) remains 

unchanged after 25000 runs at most.  

Usually, initial guesses for the Newton Raphson method are chosen with great care (i.e., from the 

concentrations at the previous time step in transient computations). However, initial guesses are not 

always known, especially for the first time step or for sharp fronts, where the concentrations show 

abrupt changes from cell to cell in the reactive transport code. Because the aim of this work is to test 
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the robustness of the method no matter the initial conditions, these conditions are chosen randomly in 

a reasonable interval, as described and explained in Annex III. The robustness of the procedure is also 

enhanced by prescribing boundaries to the NR increments (Annex III). 

We remark that the 30000 solutions are intended for a coupling test case/method of resolution. This 

means that each test case has been solved 30000 times with each method of resolution. To sum up, 

different resolutions methods are: regular Newton Raphson method, Newton Raphson method 

implemented with the four scaling techniques and with the matrix equilibration procedure, regular 

Newton Raphson coupled with Positive Continuous fractions (implemented at different degrees of ill-

conditioning). 

The convergence criterion is written based on the residual j j jY T T  and the quantity

,j j i j i

i

W T a C . The totals that appear in the previous equations were defined in equation 

(3.9). In the presence of precipitates, 
jW  is not computed and the value of the convergence criterion 

corresponds to the residual:  

 

 
1,...,

1,...,

j

j X

j

j j X

Y
err j N

W

err Y j N Nx Ncp

. (3.40) 

The Newton Raphson iterations end when the convergence criterion is satisfied, i.e., when the highest 

residual is lower than a given threshold ( 1210tol ). The Newton iterations are also stopped when 

the maximum number of iterations exceeds 2000. When possible (with symmetric matrices), the 

evaluation of the condition number is performed with two approaches: (i) the absolute value of the 

ratio between the highest and lowest eigenvalues of the Jacobian matrix (3.18) and (ii) the product of 

the norm one of matrix J  and its inverse 1J (3.17). The subroutine DE3LRG in the IMSL library is 

used to evaluate the eigenvalues. The linear systems (3.13) and/or (3.27) within the Newton Raphson 

procedure are solved through LU factorization with quadruple precision. The matrix equilibration 

algorithm performs scaling on the Jacobian matrix until the infinity norm of each row and column 

equals one. We set a maximum number of iterations max 5Rn  to avoid excessive slowdowns in the 

computation. The algorithm starts with positive continuous fractions when implemented and 

depending on the condition number, i.e., the algorithm is activated if the condition number is higher 

than a fixed threshold. Only ten iterations of this method are performed because the aim is to use the 

algorithm as a type of preconditioner and not to reach the solution (also in light of the results in Figure 

3.1). 
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3.1.11 Numerical simulations: discussion 

 

The purpose of scaling is to reduce the condition number of a linear system. We evaluated the 

condition number of the Jacobian matrix of the nonlinear system before and after scaling. We 

presented the results for problems with condition numbers at different orders of magnitude and for a 

round-off error of 10-32. 

When the condition number was on the order of 1060 or lower (as in Figure 2a), both methods of 

computing the condition number (as the product of the norm one of the Jacobian matrix and its inverse 

(equation (3.17)) and as the ratio of the eigenvalues (equation (3.18)) were effective and provided the 

same results. 

 

Figure 3.2 - Variation in condition numbers throughout the minimization for the Pyrite test case with 

favorable initial guesses (a) and poor initial guesses (b) of the component concentrations. 
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Under this circumstance, the condition number was generally reduced by RC scaling, even if the 

amplitude of this reduction varied widely. When the Jacobian matrix had a condition number on the 

order of 10200 or more (Figure 3.2b), the estimation of the condition number was no longer reliable: the 

inversion of the Jacobian matrix was heavily imprecise, and the DE3LRG subroutine from IMSL 

failed to estimate the eigenvalues for condition numbers that were greater than 1050. RC scaling was 

effective except for condition numbers that were approximately 10120-10150, which shows that scaling 

may be useful but not universally so. Figure 3.2 shows that the condition number decreased with the 

distance from the solution. When a large number of iterations were required to converge, the initial 

values of the condition number were extreme. When a modest number of iterations were necessary to 

reach the solution, the condition number had smaller values and showed more regular behavior 

(Machat and Carrayrou 2016). 

 

  No scaling RC scaling RI scaling MEq PCF def 

Gallic Acid 50% 20 20 20 20 <20 
 70% 40 40 40 40 <20 
 90% 120 120 120 120 <20 

MoMaS E. 50% 50 50 50 50 75 
 70% 80 80 80 80 <80 
 90% 340 240 220 140 <80 

Pyrite 50% 90 90 90 90 <40 
 70% 680 300 340 320 40 
 90% >2000 >2000 >2000 1800 <50 

Fe Cr 50% 120 120 120 120 50 
 70% 180 180 180 180 60 
 90% 260 260 260 260 80 

Pyrite M. 50% 45 50 50 50 40 
 70% 60 60 60 65 45 
 90% 90 90 90 95 50 

MoMaS H. 50% 45 45 45 560 35 
 70% 85 70 80 860 40 
 90% >2000 >2000 >2000 1330 45 

Fe Cr Min 10% 35 35 35 40 35 
 30% 75 55 90 55 45 
 50% >2000 >2000 >2000 >2000 75 

 
Table 3.3 - Number of iterations that are required to solve 50, 70 and 90% of the studied problems for 

each test case (10, 30 and 50% for Fe Cr Min). 

 

The results are presented through the relative number of obtained solutions as a function of the number 

of iterations for each test case (Figures 3.3 to 3.9). When the solution is obtained for all the initial 

conditions (Ntot=30000 for all test cases except Gallic Acid), the relative number equals 1. The 

distributions of the initial condition numbers are also provided in Figures 3.3 to 3.9. Table 3.3 
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provides the number of iterations that are required to solve 50%, 70% and 90% of the problems for 

each test case and each algorithm. The number of failures (solution not reached after 2000 iterations) 

is listed in Table 3.4. The results vary widely between test cases, particularly for the implementation 

of scaling techniques.  

 

  MoMaS E Pyrite Pyrite M MoMaS H Fe Cr Min 

No Scaling 4.1 13.8 3.3 16.8 54.2 
RC 2.1 12.3 2.2 13.1 51.5 
RI 4.4 17.9 2.0 15.1 58.3 

sDsD 5.0 22.1 3.8 13.3 50.3 
DI 10.0 18.8 3.2 15.4 62.8 

MEq 1.9 7.5 4.2 5.2 52.0 
PCF cond >10

40
 1.7 0.0 1.4 0.7 45.1 

PCF cond >10
10

 0.1 0.0 1.4 0.0 43.0 
PCF def 0.0 0.0 1.0 0.0 43.0 

 

Table 3.4 - Failure % of the different algorithms for each test case (NB: no failure for Gallic Acid and 

FeCr test cases). 

 
In the case of Gallic Acid speciation (Figure 3.3), no differences existed among the curves that 

represented the standard Newton Raphson method, Newton Raphson with scaling techniques or PCF, 

which were activated when the condition number was greater than 1020, because most of the condition 

numbers were below 1020 (Figure 3.3a). Because the condition numbers were smaller than the 

threshold (1032) that complicates the computation of reliable digits in terms of the round-off error (10-

32), the system was solved accurately with or without scaling. When PCFs were performed by default, 

the number of iterations that were required to solve 100% of the problems dropped from 250 to 

approximately 30. The results that correspond to the activation of PCFs when the condition number 

was greater than 1010 provide an intermediate result because some computations were run without 

PCFs (condition number less than 1010).  

The distribution of the initial condition numbers reached 1090 for the MoMaS Easy test case (Figure 

4a). Newton Raphson when implemented with scaling performed better than standard Newton 

Raphson except for DI (Figure 3.4b). 90% of the problems were solved within 140 iterations with the 

matrix equilibrium technique where other scaling techniques required more than 200 (Table 3.3). The 

solution of NR coupled with PCFs constantly outperformed the integration of scaling (Tables 3.3 and 

3.4). This test case also demonstrated the main shortcoming of the PCF method: as shown in Figure 

3.4, PCFs can slow down the solution process in the neighborhood of the solution. When PCFs were 

applied by default (i.e., regardless if they were needed), almost no solutions were obtained within 20 

iterations and only a few within 40. This result confirms that the NR method needs no strengthening 

when the initial conditions are favorable.  
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Figure 3.3 - Initial condition number and relative number of solutions for the Gallic Acid test case. 
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Figure 3.4 - Initial condition number and relative number of solutions for the MoMaS Easy test case. 
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The difficulty in finding a solution increased for the Pyrite test case, which exhibited numerous 

condition numbers that were greater than 10200 (Figure 3.5a). Approximately 85% of the problems 

were solved by NR or NR with scaling with the same efficiency, except the matrix equilibration 

technique which was able to solve 90% of the problems in about 1800 iterations (Table 3.3) and 

solved 95% of the problems (Table 3.4). The increase in the number of iterations (from approximately 

200 to 600) did not change the probability of success in solving the problem. This probability slightly 

increased after 1000 iterations, but none of the NR methods could solve all the problems. Scaling by 

MEq was the most efficient scaling technique for this example. The PCFs appeared to be very 

efficient, solving all the problems with about 50 iterations. 

Most of the condition numbers of the standard NR ranged from 1040 to 10160 for the Fe Cr test case 

(Figure 3.6a). Scaling did not improve the convergence probability (Figure 3.6b and Table 3.3) for that 

range of condition numbers. The scaling techniques improved the system s matrix properties but not 

enough to compute an accurate solution of the system. Therefore, scaling was inefficient in this case. 

Moreover, no significant differences existed in the activation of PCFs after different thresholds of 

condition numbers, which means that the large majority of the problems had a condition number that 

was greater than 1040. Pyrite Mineral, exhibited high contrasts in the condition numbers, with 1/3 of 

the system matrices having a condition number that was greater than 10300 (Figure 3.7a). At this level 

of complexity, scaling techniques were not efficient enough to reduce the high condition numbers. 

Condition numbers that were greater than 10300 were indeed reduced but still remained enormous 

(10260-10280) (Figure 3.7a). Therefore, NR with scaling was as efficient as NR without scaling at 

solving this system of equations (Figure 3.7b). Again, the PCFs appeared to be very efficient, and 90% 

of the problems were solved in fewer than 50 iterations (Table 3.3). The MoMaS Hard test case 

contemplated the presence of precipitates, and its condition numbers ranged from 1010 to 10200 (Figure 

8a). Therefore, some problems were solved with a small number of iterations (less than 50 for more 

than 50% of the initial conditions  Table 3.3), except for the MEq. For more difficult problems, the 

implementation of scaling techniques (except MEq) improved the situation slightly. MEq reduced the 

condition numbers significantly (Figure 3.8a) and the number of failures more than other scaling 

techniques but made the process of convergence slower (Figure 3.8b). The implementation of PCFs 

coupled with the standard Newton Raphson method improved in a more noticeable way both the 

robustness and speed of the convergence. Again, the standard PCFs required more iterations than the 

adapted PCFs to solve the easiest problems.  
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Figure 3.5 - Initial condition number and relative number of solutions for the Pyrite test case. 
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Figure 3.6 - Initial condition number and relative number of solutions for the Fe Cr test case. 
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Figure 3.7 - Initial condition number and relative number of solutions for the Pyrite Mineral test case. 
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Figure 3.8 - Initial condition number and relative number of solutions for the MoMaS Hard test case. 
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Figure 3.9 - Initial condition number and relative number of solutions for the Fe Cr Mineral test case. 
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For the Fe Cr Min test case, the addition of precipitates considerably changed the matrix properties 

compared to Fe Cr (Figure 3.9a). All scaling techniques dealing with both rows and columns reduced 

the number of failures and improved the robustness of the algorithm (Figure 3.9b). For this example, 

the sDsD scaling method was the most appropriate. At this level of complexity, some scaling 

techniques (RI and DI scaling) were inefficient and, in particular, less efficient than NR without 

scaling at solving this system of equations. Even if the PCFs provided a further improvement in terms 

of speed and robustness, nearly the half of problems remained unsolved (Table 3.4).  

The effects on CPU time were negligible for all the scaling procedures with the exception of matrix 

equilibration (MEq), which increased the duration of a single iteration by approximately 20%. 

However, this significant increase in the CPU time for one iteration is compensated by the total 

number of iterations that are required to solve a given percentage of the problems (Table 3.3). Solving 

70% of the problems for the Pyrite test case with the standard Newton Raphson method required 

approximately 700 iterations. On the other hand, only 350 iterations were necessary for the Newton 

Raphson method with matrix equilibration to solve the same percentage of problems. This same 

situation occurred for the MoMaS Easy test case, where solving 90% of the problems with standard 

Newton Raphson required approximately double the iterations of Newton Raphson with matrix 

equilibration. The computational effort for PCFs for one iteration was significantly smaller than that 

for any NR method because this method did not require the computation of the Jacobian matrix and its 

solution.  The effects of coupling the NR method with scaling techniques or positive continuous 

fractions on the robustness were evaluated by counting the number of failures (i.e., non-convergence 

events within 2000 Newton Raphson iterations) while searching for the solution.  

The percentages of failures (computed with respect to 30000 attempts for the test cases) are reported in 

Table 3.4. While positive continuous fractions improved the robustness of the code without exception, 

the outcomes of implementing scaling techniques strongly depended on the test case. The MoMaS 

Easy test reduced the number of failures when RC scaling and matrix equilibration were applied, while 

other techniques were counterproductive in terms of robustness (if the limit of the Newton Raphson 

number of iterations was set to 2000). In the Pyrite test case, RC scaling and matrix equilibration 

increased the robustness of the method, while other scaling procedures induced the opposite effect. For 

the MoMaS Hard test case, very small increments of robustness were registered for RI scaling, matrix 

equilibration and DI scaling. All the preconditioners (but DI scaling) for the Fe Cr Min test case 

seemed to significantly reduce the number of failures. A global look at the bottom half of Table 4 

suggests that PCFs drastically outperformed scaling techniques in terms of reducing the number of 

failures after 2000 NR iterations. Among the scaling techniques, matrix equilibration and RC scaling 

worked the best, significantly reducing the number of non-convergences in some cases.  
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3.1.12 Conclusions about the strategies to improve Newton Raphson method 

 

The results of scaling strongly depended on the test case. In problems such as the Pyrite, MoMaS Easy 

or MoMaS Hard test cases, scaling techniques (especially Row-Column scaling and matrix 

equilibration) generally exerted a positive impact. Meanwhile, the utility of scaling was questionable 

for other problems, such as the Fe Cr Min and Pyrite Mineral test cases. These results suggest three 

possible classifications:  

 Easy  problems, such as the Gallic Acid test case, which are insensitive to scaling because 

NR without scaling is efficient. The reduction in the condition numbers by scaling does not 

improve the efficiency of NR because the initial condition numbers are already small enough 

(i.e., smaller than the round-off error);  

 Problems where scaling reduces the condition numbers to values on the order of magnitude of 

the round-off error;  

 Problems that are very difficult to solve and where scaling does not reduce the condition 

numbers sufficiently, providing unpredictable reactions to scaling. This was the case when 

precipitation were included (3 last test cases). 

Among the scaling techniques, matrix equilibration and RC appeared to be globally useful in terms of 

increasing the robustness of the algorithm and sometimes reducing the number of iterations that were 

required to reach the solution. However, the drawback of this scaling method was the additional 

computational costs.  

The coupling of NR with positive continuous fractions produced results that were quite similar for 

every test case. This coupling drastically reduced the number of failures, the number of iterations that 

were required to reach convergence, and their variability (the cumulated frequency curves are nearly 

vertical). However, PCFs alone should be avoided because they are very slow when they approach the 

solution. The previous results seem to indicate that the ill-conditioned linear systems that arise in 

Newton Raphson iterations are only an obstacle to fast convergence for problems that are not too easy 

or tough. When the condition numbers are too high, they are no longer the cause of an eventual failure 

and become a symptom of the Newton Raphson method s inadequacy. PCFs bring the values of the 

unknowns close to the solution, where the Newton Raphson algorithm is known to be extremely 

efficient. This coupling seems to bypass the problem of ill-conditioned linear systems, transforming 

tough problems into more easy problems and avoiding the intermediate zone. This behavior enforces 

the idea that the condition numbers of the Jacobian matrix decrease while approaching the solution. 

At this stage of our work, we strongly recommend coupling PCFs with NR. PCFs should only be 

activated when needed, i.e., when the condition number of the Jacobian matrix is greater than a given 

threshold. Because the computation of the condition number might require some computational costs, 

this process can be replaced by the norm of the residuals and a corresponding user s defined threshold. 
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Moreover, the Jacobian matrix can be scaled by the RC method, which is the first iteration of the MEq 

scaling technique, to improve the robustness of NR without increasing the CPU time.  
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3.2 Thermodynamic capabilities of the code 

 

Numerical experiments described in the paper were conducted on aqueous speciation, surface 

adsorption independent of electrostatic potential and equilibrium precipitation based on the 

computation of a saturation index. Nevertheless, the code is equipped with functions to model other 

equilibrium phenomena such as surface complexation and ion exchange. In order to implement these 

models, the residual functions Yj and consequently some entries of the Jacobian matrix has to be 

slightly modified, but the solution of the non-linear system is still carried out with Newton Raphson 

method in its modified version. 

 

3.2.1 Modeling surface complexation 

 

Surface complexation is a mechanistic way of describing adsorption (Sigg et al. 2000; Goldberg et al. 

2007), a phenomenon taking place at the interface between liquid and solid phase, when ions in the 

solution occupy some specific sites of the solid surface (Dzombak and Morel 1990). Adsorption may 

be modeled through empiric models (such as Langmuir and Freundlich isotherms) but these laws fail 

to provide a connection between the phenomenon and thermodynamic conditions. Surface 

complexation is a way of describing adsorption through mass action laws that allows taking into 

account charge effects on the surface. An example of surface complexation reaction may be: 

 

 2S OH M S OM H  (3.41) 

where S-OH is the surface site that may release an atom H+ in order to receive a generic ion M (with 

a possible different charge). The surface may then be charged under the constraint that 

electroneutrality with the solution is respected in its vicinity. The mass action law corresponding to 

previous reaction would be: 

 
2

( , )
S OM H

K z
S OH M

 (3.42)  

Previous equation is different from a classical mass action law in the fact that constant K may be 

function of the electric charge z and the potential  of the surface S-. If the surface is charged, the 

same but opposite charge is going to appear in the solution in the vicinity of the surface. Several 

models may be adopted to describe the phenomena in the proximity of the surface: Constant Capacity 

Model (Stumm et al. 1980) and Diffuse Layer Model (Dzombak and Morel 1990), Basic Stern and 

Triple Layer Model (See Figure 10). 
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Figure 3.10  Different surface complexation models: a) constant capacity model b) Double layer 

model c) Triple layer model d) CD-MUSIC triple layer model (not treated here) (Figure from 

(Goldberg et al. 2007)). 

 

According to the model adopted, and therefore to the number of different potentials  used in the 

model, supplementary components are added to the reaction network (one component for each 

potential); this is done in order to take into account the dependence of the equilibrium constant K from 

the charge and the potential (Carrayrou 2001). The theoretical form of the new component is: 

 

 exp
F

X
RT

 (3.43) 

For each additional component, a residual function is added to the system: 

 EL CdMY T T  (3.44) 

  

where T  is the total concentration of charges fixed on the surface; T EL computed through electric 

consideration and T CdM  through mass balance equations must coincide. T CdM is computed through: 

 

 
1

Nc
CdM

i i

i

T z C  (3.45)  

where zi is the charge of the adsorbed species and Ci their concentration. For each model, one or more 

different formulations of TEL are available. Equations written as functions of  = log(X ) take the 

following form: 
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i) for Constant Capacity Model: 

 

 2
j jEL

CapS M
T RT

F
 (3.46)  

ii) for Diffuse Layer Model: 

 

 0
2 28 exp exp

2
j jEL

el elZ Z
S M

T RT I
F

 (3.47)  

iii) for Basic Stern Model: 

 

 

0 0 12

1 0 0
2 28 exp exp

2

j jEL

j jEL EL
el elZ Z

CapS M
T RT

F

S M
T T RT I

F

 (3.48)  

iv) for Triple Layer Model: 

 

 

0
0 0 12

0
1 1 22

1
2 2 1 02

2 22 28 exp exp
2

j jEL

j jEL

j j j jEL
el elZ Z

Cap S M
T RT

F

Cap S M
T RT

F

Cap S M S M
T RT RT I

F F

  

(3.49) 

 

 

where Sj is the solid specific surface, Mj the concentration of the solid, F is the Faraday constant (F = 

96487 C/mol) , R is the ideal gas constant, T is the temperature, Cap is the capacitance,  is the 

dielectric constant of water, 0 is the vacuum permittivity, I is the ionic strength,  Zel is he charge of the 

surface and p are additional components X p (p=1 ... N ) in their logarithmic form.  
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3.2.2 Modeling ion exchange 

 

Ion exchange takes place whenever an ion is released into the solution and another ion, that was 

solute, takes its place. Ion exchange may be homovalent (when the number of ions fixed is the same of 

the number of ion released) or heterovalent (when a different number of ions is fixed and released). 

Examples of homovalent and heterovalent ion exchange reactions are: 

 

 

2 2

2
22 2

Mg SCa Ca SMg

Na S Ca Ca SNa
 (3.50)  

For both previous cases it is possible to write mass action laws: 

 

22 2

22

Ca SMg Ca SNa
K K

Mg SCa Na SCa
 (3.51)  

It would be possible to pick three of the species as components and treat the fourth as a secondary 

species, but another strategy is to pick as components the two ions and a fictive component called 

surface S, treating the two remaining surface terms as secondary species. The two morel tables would 

become: 

2Ca
2Mg S K

2Ca 1 0 0 1 
2Mg 0 1 0 1 

SCa 1 0 1 
CaK  

SMg 0 1 1 
MgK  

 
CaT   

MgT  CEC   

 

Table 3.5  Morel table for a simple example of homovalent ionic exchange. 
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2Ca Na S K

2Ca 1 0 0 1 

Na 0 1 0 1 

2S Ca 1 0 2 
CaK  

SNa 0 1 1 
NaK  

 
CaT   

MgT  CEC   

 

Table 6 - Morel table for a simple example of heterovalen ionic exchange. 

 

where KCa/KMg = K and KCa/KNa = K. Total concentrations are computed as usual and [CEC] is the 

Cation Exchange Capacity (a given value), therefore there are no explicit modifications to make to the 

residual functions and to the Jacobian matrix and Newton Raphson method is carried out as usual.  
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Chapter 4  Mixed equilibrium and kinetics 

4.1 Theoretical background and generic formulation 

 

4.1.1 Generic formulation I  

 

Whenever time is a variable of interest in a chemical reaction, thermodynamic equilibrium becomes an 

inadequate simplification. All phenomena happen during a certain amount of time, this amount being 

potentially very small (reactions with a fast rate) or very big (reactions with a slow rate). According to 

this general approach, in a generic chemical system where Nr reactions take place, the variations of 

concentration [-] of a generic species Ci can be written as follows (Chilakapati 1995; Fang et al.2003): 

 

 1,i
i Nr t

d C
r i N

dt
 (4.1) 

where i Nr
r  is the production/consumption rate of species Ci due to all Nr reactions and Nt is the total 

number of species that take part in the system. Previous equation can be also written in its matrix form 

(Chilakapati et al. 1998; Steefel and MacQuarrie 1996): 

 
d

dt

C
I r  (4.2) 

 
where I is the identity matrix of dimension Nt x Nt, C is the vector containing all Nt concentrations of 

chemical species,  is a Nt x Nr matrix defining which reactions intervene in the variation of a species i 

and r is the vector containing the rates of all Nr reactions. Equations (4.1) and (4.2) describe a system 

of Ordinary Differential Equations (ODEs). The previous system could be solved through a variety of 

ODE solvers but the solution in this form arises several numerical difficulties (Fang et al. 2003): 

throughout years of research on reactive transport modeling, authors (Chilakapati 1995; Steefel and 

MacQuarrie 1996; Fang et al. 2003; Molins et al. 2004) came up with suitable modifications. A 

synthetic but effective explanation of how the system of ODEs arises and can be rewritten is provided 

by Steefel and MacQuarrie (1996); the authors illustrate through an example the procedure adopted to 

identify components and secondary species. They provide the following chemical system: 

 

 

2 2
3 3 1

2
3 3 2

2
2 3 3 3

2 4

1 ( )

2 ( )

2 3 ( )

4 ( )

CaCO Ca CO R r

HCO CO H R r

H CO CO H R r

H OH H O R r

 (4.3) 
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To this point, no assumption is made upon the nature of the Nr=4 reactions (they may be reversible or 

irreversible) that connect the Nt=7 species in reaction network (4.3). The concentration of each species 

is supposed to vary according to the rates (rj) of the reactions it is involved in. For instance, moles of 

H+ are produced when reactions R2 and R3 take place while they are consumed with reaction R4.  

This straightforward observation brings us to a system in the form of equation (4.1): 

 

 

2 3

3

3

2

3

1

4

2 3 4

2

1

2

3

1

2

d H CO
r

dt

d HCO
r

dt

d CaCO
r

dt

d OH
r

dt

d H
r r r

dt

d Ca
r

dt

d CO
r

dt

 (4.4) 

System (4.4) can be rewritten in its matrix form. Diagonal identity matrix (I in equation (4.2)) and 

vector dC/dt appear in the left-hand side; matrix  and vector r of equation (4.2) appear in the right-

hand side:  

 

2 3

3

3

2

2

3
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First four species are all associated to four different reactions, while the last three species are involved 

in several. The last three species are then well suited to be the primary species, or components, while 

the remaining will be considered, at a first attempt, as secondary species. The matrix form is also well 

suited for working on the transformation of the system. Through Gauss-Jordan elimination on matrix 

, the system can be rewritten through new matrixes: 
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= *
dt
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 (4.7) 

Re-writing explicitly the system object of Gauss Jordan, it becomes clear that such system is a 

juxtaposition of two groups of ODEs. 
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The first four ODEs represent the kinetic evolution of secondary species, while the last three 

differential equations are conservation equations of what proved to be primary species H+, Ca++ and 

CO3--. An inconvenient of ODEs systems is that, whenever significant differences arise among 

reaction rates, the system becomes stiff, a condition that could expose to numerical problems. In fact, 

in stiff problems, the limitation imposed on the stepsize to obtain stability is stricter than the one 

imposed by accuracy (Press et al. 1997). Stiff systems of ODEs are cumbersome to solve, at the point 

that some systems of Differential Algebraic Equations (DAEs), may represent a suitable alternative 

(Chilakapati et al. 1998). In order to transform the system of ODEs in a system of DAEs, it is 

sufficient to rely on something that we know well: the thermodynamic equilibrium formulation. The 

fastest reactions (the question of what makes a reaction fast enough is not trivial but is not  be 

addressed here) are replaced with the corresponding Mass Action Laws (algebraic equations) and the 

system becomes DAE. In the case of the previous chemical system, reactions R2 and R4 could evolve 

so fast with respect to other reactions that they could be considered at equilibrium. The differential 

equation describing their evolution could be substituted by the algebraic equation of mass action law 

(in blue in system (4.9)), where {-} is the symbol of activity: 
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 (4.9) 

 
 
Re-ordering equations in system (4.9) with conservation equations at the top, followed by mass action 

laws and kinetic species evolving according to their kinetic rate and putting it in a more general form 

provides a system applicable to every problem written through a stoichiometric approach: 
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 (4.10) 

where TXj is the total of primary species (components: H+, Ca2+,CO3
2-) Xj available for speciation, Ci is 

a generic species (primary or secondary) and bi,j is the stoichiometric coefficient (for mass 

conservation) linking component Xj  and species Ci ;  rm is the reaction rate of a generic kinetic 

reaction m and Beqj,m is the coefficient reflecting the influence of kinetic reaction m on component Xj ; 

the second line of the system contains classic mass action laws (Ki is the equilibrium constant for the 

formation of species Ci  and ai,j is the stoichiometric coefficient for mass action law); Ccl is a generic 

kinetic species and rl is its evolution rate. Nc is the number of species involved in the equilibrium 

reaction network, Nx is the number of primary species, Nrc is the number of kinetic reactions and NCc 

is the number of kinetic species (Nrc and NCc do not necessarily correspond). Considering that the 

conservation equations imply that the total concentration of primary species H+, Ca2+ and CO3
-- is 

constant throughout the evolution of the (closed) system, the last three equation of system (4.9) could 

be rewritten as their algebraic equivalent: 
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The number of unknowns in the previous system of DAEs can be further reduced exploiting mass 

action laws and activity coefficients that link concentrations [-] and activities {-} and system (4.11) 

can be rewritten as in (4.12). 
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The system counts now five equations for five unknowns. The impact of this simplification is rather 

modest here but may be very effective while considering a great number of species at thermodynamic 

equilibrium. Previous system written in a more general way takes the following form: 
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where TXj is the total of primary species (components: H+, Ca2+,CO3
2-) Xj available for speciation, bi,j  is 

the stoichiometric coefficient (for mass conservation) linking component Xj  and species Ci , which is 

written as a function of primary species (Ki is the equilibrium constant for the formation of species Ci  

and ai,j is the stoichiometric coefficient for mass action law, i is the activity coefficient.).  Ccm is a 

kinetic species and Beqj,m is the coefficient reflecting the influence of kinetic reaction m on component 

Xj ; the second line of the system contains Ccl is a generic kinetic species and rl is its evolution rate. Nc 

is the number of species involved in the reaction network, Nx is the number of primary species, Nrc is 

the number of kinetic reactions and NCc is the number of kinetic species (in this case Nrc and NCc are 

necessarily equal).   
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4.1.2 Generic formulation II  

 

Another way of seeing the problem of introducing kinetic equations  is the approach adopted by Leal 

(Leal at al. 2015) and somehow by Carrayrou (2001). It consists in looking at the problem under the 

assumption of partial equilibrium (Helgeson 1968; Helgeson et al. 1969; Helgeson et al. 1970). This 

means that a certain number of species are at thermodynamic equilibrium while some other species 

evolve kinetically. The system is then described through what Leal defines partitioning: equilibrium 

species are ideally put in the equilibrium partition while kinetic species are placed in the kinetic 

partition (see Figure 4.1).  According to the principle of mass conservation, the total amount of moles 

contained in the system (i.e. the two partitions together) is constant. Nevertheless, mass exchanges 

between the two partitions are allowed. Time step after time step, mass is taken-from/put-into the 

equilibrium partition, where a state of equilibrium under new conditions is restored.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 - Graphical representation of the concept of partition Leal et al. (2015) for the example 

provided by Steefel and MacQuarrie (1996) 

 

Following this effective conceptualization of the problem, one question remains: how to model the 

effect of kinetic reactions on equilibrium species? Leal (2015) choses to represent the exchange of 

mass as an exchange of number of atoms of each element and then to compute equilibrium through the 

minimization of Gibbs Energy, therefore abandoning the stoichiometric approach (Leal et al. 2014). 

Exploiting the conceptual model while preserving the stoichiometric approach for the equilibrium 

speciation means that we have to describe the mass transfer between the two partitions in a way that is 

compatible with the nonlinear system introduced in the previous chapter:  
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where Y is the residual function, Xj is a generic component, Ki is a generic equilibrium constant for a 

secondary species I, bi,j  is a generic coefficient of the stoichiometric matrix linking secondary species i 

and primary species j, and bpl,j is a generic stoichiometric coefficient linking a precipitate l to 

component j,  are activity coefficients and Ks the solubility product.  

 

 

 

Figure 4.2  Adaptation of the concept of partitioning to the stoichiometric approach for the example 

provided by Steefel and MacQuarrie (1996). The equation included in the Figure is a copy of (4.14), 

with totals available for speciation in blue, primary species in red (as they are represented in the 

picture. Secondary species are reported in orange in the equilibrium partition.  

 

Considering that the total concentration [ ]jT  of a generic component 
jX  is in fact the available mass 

to be shared between species, an interaction with a kinetic partition would affect this quantity, taking-
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from/putting-into the equilibrium partition a certain [ ]jT . The continuous interaction between the 

two partitions could be synthetized as follows: 

 j j

Eq Kin

dT dT

dt dt
 (4.15) 

 
The total concentration of a primary species j available for speciation varies accordingly to changes 

generated from kinetic chemical reactions, i.e. according to kinetic rates; previous equation becomes: 
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 (4.16) 

 
where Beqj,i is the entry of the matrix linking Nrc kinetic reactions and Nx primary species. Looking at 

the example presented by Steefel and MacQuarrie (1996) in paragraph § 4.1 and at system (4.14), 

mass conservation for the sole equilibrium partition becomes: 
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At the same time, in the kinetic partition (Figure 4.1), there are two kinetic species evolving according 

to their reaction rates: 
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 (4.18) 

 
The description of how reactions R1 and R3 impact on the equilibrium components H+, Ca++ and CO3

--
 

must follow. Looking at reactions in system (4.3), we can see that the kinetic consumption of species 

CaCO3 produces components Ca++ and CO3
--, while the kinetic consumption of one mole of H2CO3 

produces one mole of CO3
-- and two moles of H+; this means that whenever reactions R1 and R3 take 

place in the sense of their writing, the total available concentration for equilibrium speciation of 

primary species increases. Therefore, equation (4.16) for primary species becomes: 
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That, rewritten in terms of kinetic species according to equation (4.18), becomes: 
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Or, together with mass action laws and ODEs of kinetic species, the system exactly like (4.9): 
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4.1.3 Systems of equations 

 

To summarize, starting from a general formulation of the problem in its matrix form, or starting from a 

description of the physical process, the resulting system of equations is the same, although it can be 

written in at least three ways (please, note that from now on square brackets [-] for concentrations will 

be omitted to speed up the notation, while {-} still defines activities): 

 

I. As a system of DAEs such as systems (4.9) and (4.21), composed of Nt equations: Nx 

(primary species) plus NCc (kinetic species) ODEs and Nc-Nx (Nc being the number of 

equilibrium species) algebraic equations, the mass action laws: 
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 (4.22) 

 
II. As a system of Nt-(Nc-Nx) DAEs such as system (10), composed of Nx algebraic equations 

describing mass conservation, and NCc ODEs for the evolution of kinetic species: 
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III. As a system of Nt-(Nc-Nx) ODEs writing mass action laws into mas conservation equations in 

system (8) 
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Which is the most efficient way of writing the system? Authors agree that solutions of systems such as 

(4.23) and (4.24) should be preferred whenever a large number of equilibrium reactions take place, 

which is the case of natural problems, and whenever a large number of solutions of the chemical 

problem are required from spatial discretization, which is the case of reactive transport modeling. 

Nevertheless, although system (4.22) is indubitably larger than the other two, it contains equations that 

are less complicated. In fact, system (4.24) requires the derivative of the mass action law with respect 

to time and consequently the derivative of the activity coefficient, which can be either derived 

(additional computations) either neglected (inevitable approximations).  

On the other hand, system (4.23) may result impractical whenever kinetic reactions between primary 

species exist, since it requires a kinetic species for every kinetic reaction to account for mass 

conservation. Moreover, in system (4.23), adding concentrations (that may be very low) to kinetic 

species, that can be very important (such as minerals constituting a porous medium), may result in loss 

of accuracy throughout computations.     

Computational cost also depends on the solution technique adopted. A bigger system could be solved 

faster than a small one if the first solution is carried out with a more efficient solver.  

Testing all three ways of writing the system will provide a broader understanding of the problem and 

will be useful to assess to which point the solution technique is important.  
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4.2 Solving the systems of equations 

 

 

Once the mathematical description of the problem is defined, and at least three of them were 

identified, it is necessary to provide a tool for its solution. The presence of differential equations 

implies the choice of a method of integration in time. Methods of numerical integration of ODEs can 

be explicit or implicit, one-step or multistep, they may have a constant or an adaptive time step. 

Explicit methods compute a general state variable ( )t t  as a function of ( )t  only, on the other 

hand, implicit methods require the solution of a system of equations ( ( ), ( )) 0G t t t . One-

step methods compute the solution at the instant t t  using as the previous solution in time only the 

one in t  while multistep methods compute the solution in t t as a function not only of t  but also 

1t t , 1 2t t t , 1 ... nt t t . Regarding the adaptive or constant nature of the time step, in 

the first case the increment t  is fixed, in the second case, it varies according to the error accepted on 

the problem to be solved. It is important to underline that almost every combination of the previous 

features are allowed: a method can be explicit with an adaptive time step or implicit with a constant 

time step and so on.  

 

§ 

 

The previous version of SPECY (Carrayrou 2001)  used an explicit method to solve problems that 

involved both thermodynamic and kinetic reactions, precisely a Richardson extrapolated form of 

QSSA (Quasi Steady State Approximation (Sandu et al. 1997)) method with variable time-step size 

control. The choice of this method was justified as a compromise between a good performance and a 

reasonable computational effort. Nevertheless, as Sandu et al. (1997) remind, explicit methods such as 

extrapolated QSSA are not standard and their implementation requires the development of dedicated 

subroutines or sections of the code. On the opposite side, there are several ODEs solvers and some 

DAEs solvers that were developed professionally and applied to more diverse fields of science and 

engineering and whose reliability has been proven. It is difficult to generalize whether implicit 

methods are better than explicit methods, given the extremely problem dependent nature of the 

performances. It seemed therefore reasonable to implement, as an alternative to the extrapolated QSSA 

explicit method, an implicit solver for ODEs/DAEs systems. 
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4.2.1 Implicit and explicit, one-step or multistep methods of integration 

 

4.2.1.1 Implicit and explicit methods 

 

As anticipated, one of the possible ways of gathering numerical methods for integration in time is 

between explicit and implicit. Consider a variable evolving in time, for example concentration C, 

between two instants tn and tn+1; explicit methods allow writing the concentration at time tn+1 as a 

function of the concentration at time tn: 

 

 1 ( )n nC f C  (4.25) 

 
The simplest explicit method is the standard (also called forward) Euler method which dates back to 

1768. It s based on the first order Taylor approximation: 

 

 1 ''( ) .( ) ( ) ' ) ..
2!

(n n n nC t C t hC t
h

C t  (4.26) 

 

where h  is the time-step between the two subsequent instants nt  and 1nt , '( )nC t  is the first 

derivative of the concentration with respect to time and computed at instant nt . To clear and speed up 

the writing, we define ( )n nC t C  and ( , ) '( )n n nF t C C t ; equation (4.26) becomes: 

 

 1 ( , )n n n nC C hF t C  (4.27) 

 
Previous equation can be rearranged in the following form, providing a more intuitive insight on a 

finite differences explicit method applied to evolving concentrations, where r is again the reaction rate: 
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Another series of explicit methods is the family of Runge Kutta (RK) methods (Press et al. 1997), that 

computes the solution at tn+1 as a weighted average of several approximations over the increment h. 

According to the number n of approximations taken into the average, the method is called nth order 

RK. Second order RK method is based on a second order Taylor approximation and the solution then 

becomes: 

 1 , ( , )
2 2

n n n n n nh h
C C hF t C F t C  (4.29) 
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Although Runge Kutta method provides a solution computed on the basis of several values of the 

variable, they are included between instant tn and tn+1. As it will be detailed in next paragraphs, to be 

classified as multistep, RK method should compute the variable at tn+1 on the basis of the variable at 

previous time steps tn-1, tn-2... therefore RK method is not multistep (Press et al. 1997). 

Implicit methods are less straightforward since the state variable at the time step t n+1 is present both in 

the left and right hand member. This is the case of the backward Euler method, i.e. the implicit variant 

of standard Euler method: 

 1 1 1( , )n n n nC C hF t C  (4.30) 

 

As for the forward Euler method, previous equations can be rewritten in a more intuitive formulation: 
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A compromise between forward and backward Euler methods is presented in equation (4.32), where  

varies between 0 (forward explicit) and 1 (backward implicit). Whenever =0.5 we have centered-time 

or Crank-Nicolson temporal weighting.  
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Although explicit methods are simpler and implicit methods may require a higher computational 

effort, explicit methods have some inconvenient. Whenever several kinetic reactions are present, the 

time-step s amplitude is dictated by the fastest reaction. This happens not only to guarantee accuracy 

but also because the stability of explicit methods is limited. As anticipated, stiff systems of ODEs may 

require additional limitation of the time-steps to avoid oscillations (Kee et al. 1985; Press et al. 1997). 

 

4.2.1.2 One-step and multi-step methods 

 

Equations (4.25) to (4.32) all describe one-step methods, in the sense that the value of the state 

variable C(t n+1) is computed on the basis of the sole C(t n). This is true even for equation (4.29), where 

a sort of intermediate solution is computed within the time-step h. In multi-step methods, on the other 

hand, C(t n+1) is computed on the basis of C(t n)  but also of  C(t n-1 ) , C(t n-2 ), C(t n-3 ), and so on until 

C(t n+1- k). One of the most used multi-step numerical integration methods is the Backward 

Differentiation Formula, or BDF. BDF is an implicit method (Gear 1971) implemented in several 

numerical solvers for ODEs (LSODE (Hindmarsh 1983) VODE (Brown et al. 1989)) and DAEs 

(DASPK (Brenan et al. 1996)). BDF method is theoretically based on the search for a polynomial q(t) 
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interpolating previous computed values of C and whose first derivative in time q (t n+1) is equal to F(t 

n+1,Cn+1), the first derivative of C(t). 

 

 

Figure 4.3  Graphical explanation of Backward Differentiation Formula (BDF) method 

 

Being BDF a multistep method, polynomial q(t) is supposed to interpolate several solutions back in 

time. For a polynomial of k order, the interpolation will be pushed back in time until instant t n+1-k. 

Once q(t) and its first derivative q (t) are written as functions of C and h, if the time-stepping is 

constant,  the following system has to be solved: 
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For k=1 previous equation becomes: 
 

 1 1n n nC C hF  (4.34) 

 
which corresponds to equations (4.30) and (4.31), therefore to backward Euler method. For k ranging 

from 2 to 6, equation (4.33) becomes instead: 
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Previous equations derive from the assumption that the stepsize h is constant. If a variable stepsize is 

to be preferred, three strategies are possible for BDF: fixed coefficients, variable coefficients and fixed 

leading coefficients (Jackson and Sacks-Davis 1980). In the case of Fixed Leading Coefficients 

(FLCBDF) (Jackson and Sacks-Davis 1980), a first predictor polynomial of k order, p, is computed 

as an interpolation of C values between Cn and C n- k and the predicted value of C n +1 is computed as: 

 

 1 1( )n n

p pt C  (4.36) 

 
A second step of correction is performed through the computation of another polynomial of k order, 

c. It interpolates C n+1 and the prediction polynomial p: 

 

 1 1 1 1n n n n

c pt ih t ih  (4.37) 

 
where i= 1,...,k. Considered that p and c are both k order polynomials, they can be written according 

to the following relation: 

 

 1 1( ) ( ) ( ) ( ) ( )n n

c p c pt t t t t  (4.38) 

 

The combination of c and p with polynomial ( )t written as a function of different stepsizes allows 

the computation of Cn+1 as: 
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where 1 1 1 2 1 3 .... 1 k . For k=2, the previous equation takes the following form: 
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where 1n nh h .  

 
The multistep method presented here is implicit, but other explicit multistep methods exist, such as 

Adams method (Press et al. 1997). 
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Figure 4.4  Graphical explanation of Fixed Leading Coefficients  Backward Differentiation Formula 

(FLCBDF), with predictor polynomial p and corrector polynomial c, first step. 

 

 

 

Figure 4.5  Graphical explanation of Fixed Leading Coefficients  Backward Differentiation Formula 

(FLCBDF), with predictor polynomial p and corrector polynomial c, second step. 

 

 

4.2.1.3 Variable stepsize 

 

Most of the numerical methods introduced above (with the exception of FLCBDF) use a fixed step 

size to move forward in the computation of the solution. Press et al. (1997) suggest that whenever 

heavy calculations have to be performed, an adaptive time step should be employed. Usually, 

whenever implementing a variable stepsize, together with the computation of the solution requires an 

evaluation of its accuracy. If the accuracy satisfies imposed criteria, the solution is accepted; otherwise 

it is computed again with a smaller stepsize. 
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4.2.2 An implemented explicit method: Richardson extrapolation of QSSA method

 

QSSA stands for Quasi Steady State Approximation and it is an explicit, one step, first order precision 

method with variable stepsize for ODEs solutions (Carrayrou 2001; Sandu et al. 1997). Its Richardson 

extrapolation (Sandu et al. 1997; Press et al. 1997) consists in applying the standard QSSA over three 

different segments of the time-step h and then computing an average of the three. The standard QSSA 

provides concentrations at time t n+1 = t+h: 

 

 1( )
n nh h ne en+1 L n LC C Id L P  (4.41) 

 
where L and P are vectors symbolizing loss and production of a given C in a form suitable for 

atmospheric chemistry (Sandu et al. 1997). Richardson extrapolation computes equation (4.41) 

between 0  h, 0  h/2 and h/2  h and provides an estimation of kinetic species Cc n+1 as: 

 

 ( ) 2 ( / 2 ) (0 )Cc h Cc h h Cc h  (4.42) 

 
QSSA method was adapted by Carrayrou (Carrayrou 2001) to the problem of mixed kinetic and 

equilibrium reactions, treating conserved totals of components (primary species) as kinetic species 

evolving in time. With this method, thermodynamic equilibrium is computed twice at each time step, 

and computations are carried out with the solver described in previous chapter.  

 

4.2.3 An implemented implicit method: BDF in DASPK 

 

DASPK is a solver for systems of DAEs, differential algebraic equations, that works with an implicit 

Fixed Leading Coefficients BDF. As explained in previous paragraphs, FLCBDF is based on the 

combination of a predictor polynomial p and a corrector polynomial c. The combination of the two 

polynomials provides a nonlinear system to be solved in order to obtain C n+1. A detailed description of 

the functioning of DASPK and its predecessor DASSL can be found in the reference (Brenan et al. 

1996) and we provide a very rough summary only. To speed up notation, we will say that, at each time 

step, the following nonlinear system must be solved: 

 

 ( , , ) 0G t C C  (4.43) 

 
where variables C are computed at t n+1,  changes with the time-steps and order and  remains 

constant throughout the solution. The nonlinear system is solved through Newton method and the 
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solution of the linear systems therein may be carried out by a direct solver or by preconditioned 

Krylov iterative method (Generalized Minimum Residual (GMRES)).  

Solving linear system through direct methods requires a Jacobian matrix (or iteration matrix) J that 

can be computed numerically or may be provided by the user: 

 

 1
1 ( , , )m m mm c tC C J G C C  (4.44) 

 

 
'

G G
J

C C
 (4.45) 

 
Iteration matrix J should be, in theory, reevaluated at each step. However, changes in the entries may 

be so small to be considered negligible over several time steps. Since the process of computing J may 

be expensive in terms of computing costs, whenever possible the last computed iteration matrix is used 

instead. The iteration matrix is computed for the first iteration and used until one of these scenarios 

occurs: i) the time step changes significantly ii) the order change significantly iii) the solver failed to 

converge. For the direct solution of the linear system, matrix J can be computed numerically through 

perturbations by the solver or analytically through a subroutine provided by the user. What is non-

optional is the subroutine computing the residuals G.  

Values for absolute (ATOL) and relative (RTOL) error tolerances are required as input and they define 

the degree of accuracy of the solution. According to the technical notes of the solver, tolerances are 

used in a local error test conceptually ensuring that ( )i ierr C RTOL C ATOL . Actually, 

previous inequality is not directly applied but implemented in the solver through a root-mean-square 

norm used to measure the size of error vectors. 

Although DASPK was conceived as a DAEs solver (Brenan et al.1996), it is also well suited for 

solving systems of ODEs. This characteristic makes DASPK the ideal tool to test different 

configurations of the equations such as equations (4.22) to (4.24).  
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4.2.4 Solving systems with DASPK 

 

4.2.4.1 Residual computation for DASPK 1 

 

Solver DASPK needs a subroutine to provide the computation of residuals of the DAEs system (4.22). 

The first Nx residuals refer to the variations in time of the Nx total concentrations available for 

equilibrium speciation: 

 

 , ,
1 1

1,j

Nc Nrc
X i

i j j m m

i m

dT dC
b Beq r res j Nx

dt dt
 (4.46) 

 
Then Nc-Nx lines follow: they correspond to the mass action laws and/or solubility products that link 

primary to secondary species.  

 

 

,

1

,

i ja
Nx

j

i

j i

X
C res i Nc Nx Nc

K
 (4.47) 

 
The last NCc lines correspond to variation in time of the NCc kinetic species: 

 

 1,l
l

dCc
r res l NCc

dt
 (4.48) 

 
Equations (4.46) to (4.48) result in a system of Nc+NCc equations into Nc+NCc unknowns. Even 

though the system to be solved is bigger than in other configurations of the problem, operations to be 

solved are easier and fewer approximations are required.  

The numerical evaluation of the Jacobian matrix is described in the reference material (Brenan et al. 

1996) whereas the analytical computation requires the implementation of a subroutine to provide the 

so-called iteration matrix, which is the Jacobian matrix: 

  

   CJ
dG dG

J
dC dC'

 (4.49) 

 
where G is the vector of residuals, C and C  are the vectors containing concentrations and their time 

derivatives, and CJ a coefficient that varies throughout computations. Visually, the Jacobian matrix 

related to our DAEs problem appears like: 
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Figure 4.6  Structure of the iteration (or Jacobian) matrix for DAEs system (4.22) or DASPK 1.  

 

The structure follows that of the residuals vector G. The first Nx lines of the Jacobian matrix refer to 

the variations in time of the Nx total concentrations, followed by Nc-Nx lines corresponding to the 

mass action laws and/or solubility products and by NCc lines correspond to variation in time of the 

kinetic species (Figure 4.6). Every generic element of the Jacobian matrix has to be built as a sum of 

two contributions: 

 

 i i
ij

j j

dG dG
J +CJ

dC dC'
 (4.50) 

 
The structure of the vector of residuals G can be exploited to fill the entries of the Jacobian matrix in a 

smart way, block after block (see Figure 4.7 below). In fact, in our system of DAEs, both terms in 

equation (4.50) are not always simultaneously needed. Let s concentrate on the second term of the 

right-hand side of equation (4.50): 

i

j

dG
CJ

dC'
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To have it different from zero, a time derivative of the state variable C j has to be present. We know 

that mass action laws are written under the form of algebraic equations, so they do not involve time 

derivatives of any kind. Therefore the term is not present in the block going from lines 1Nx  to Nc

(BLOCK 2 in Figure 4.7). On the other hand, it is going to be computed in the block of first Nx  

equations (BLOCK 1 in Figure 4.7) and in the block in the right low corner (BLOCK 3).  According to 

the first Nx residuals in vector G (see equation (4.46)) the Jacobian Matrix entries of BLOCK 1 have 

the following form,  where ,i jB  is the matrix of stoichiometric coefficients: 

 

 i
i, j

j

dG
CJ = CJ * b

dC'
 (4.51) 

 

 

 

Figure 4.7  The iteration matrix for DASPK 1 is filled block by block: BLOCK 1 is related to 

derivatives of mass conservation, BLOCK 2 to mass action lass and BLOCK 3 to kinetic species.  
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Let s now look at the other term required by DASPK: 
i jdG dC . It will be computed only in the 

blocks that account for residuals where concentrations actually appear. Concentrations appear in the 

reaction rates (BLOCK 1 and BLOCK 6, Figures 4.7 and 4.9) and in mass action laws (BLOCK 2, 

Figure 4.8). We recall that mass action laws express secondary species as functions of primary species, 

therefore no interaction between secondary species exists: the Nc-Nx rows and columns of BLOCK 2 

form a diagonal square matrix. On the contrary, mass action laws are functions of components and the 

entries of the first Nx columns (BLOCK 4) are filled with: 

 

 
,

1

( ) i mx aN
m m

i
m

i

j j

dG C
K

dU C
 (4.52) 

 

 
 

Figure 4.8  The iteration matrix for DASPK 1 is filled block by block. BLOCK 2 accounts for 

derivatives of mass action laws, but only BLOCK 4 has to be actually filled.  
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All the previous modifications to the entries of the Jacobian matrix are independent of the kind of 

kinetic law governing reactions. On the contrary, all the following modifications are made according 

to the reaction rates. Different types of kinetic laws are implemented in the code: standard kinetic 

reactions (equation (4.53)), Monod reactions (equation (4.55)) and precipitation dissolution reactions 

(equation (4.57)) based on Transition State Theory (Eyring, 1935; Lasaga, 1995). Reaction rates and 

their derivatives with respect to generic concentrations (activity coefficients are assumed constant 

within one iteration and not depending on concentrations) are provided below. For standard kinetic 

reactions reaction rates are: 

 

 , ,1 2

1 1
( ) ( )

Nc NCc Nc NCc

i

i m i ml li i i i
m m m mf b f b

m m

r r r k C k C  (4.53) 

 
, ,

1 1

1 2
( ) ( )Nc NCc Nc NCc

m m
i m i m

i i
f b i ii m m

f b
m mj j j j

l lr rr C C
k k

C C C C
 (4.54) 

 

where l1 and l2 are matrixes whose entries are 0 or 1 (built on the basis of Beq) that establish whether 

a species participates at the kinetic reaction rate. If  ,1 0i ml then the chemical species Cm does not 

appear in the reaction rate ri. For Monod reactions we have: 

 

 
1 ( )

N
m

i bio
m mMm

C
r C

k C
 (4.55) 
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 (4.56) 

 
Reaction rates coming from TST theory for precipitation/dissolution of minerals give instead: 

 

 1
S

n

i
i

Q
r k a

K
 (4.57) 

 

1
( ) ( )

1
S S

n

i i i

j j

r Q Q
n k a

C K K C

C C
  

 
where k is the kinetic constant [mol/T/L-min2], a  groups a series of other constants (i.e. reactive 

surface AS [L
2-min/MH2O] (or [L2-min/L3

H2O], depending on the formulation)), KS [-] is the solubility 

product and Qi(C) [-] is ion activity product. Please note that a minus appears in equation (4.57) with 
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respect to previous versions of the TST reaction rate because a positive reaction rate is associated to 

precipitation. Once the analytical expressions of the derivatives of the kinetic laws are written, what 

remains to be determined is in which entries they should be added.  We remind that reaction rates 

influence the available totals of primary species and/or may describe the augmentation/reduction of a 

kinetic species.  In no case kinetic rates intervene on mass action laws. The influence over totals 

concentrations of primary species is accounted for in BLOCK5. Matrix Beq tells us if a kinetic reaction 

(and therefore its rate) affects the total concentration of a component. Matrix Bcin tells us if a kinetic 

reaction (and therefore its rate) affects other kinetic reactions.  

 

 
 

Figure 4.9 - The iteration matrix for DASPK 1 is filled block by block with derivatives of reaction 

rates in BLOCK 6 and BLOCK 5. 
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4.2.4.3 Residual computation for DASPK 2 

 

The second version of the DAEs system is made of Nx algebraic equations describing mass 

conservation, and NCc ODEs for the evolution of kinetic species. In this configuration the algebraic 

equations are the conservation equations written with the help of mass action laws. The system 

becomes: 

 

,

, ,
1 11

1,

i j

j

a
NxNc Nrc

j

X i j j m m

i mj i i

X
T b Beq Cc res j Nx

K
 (4.58) 

 1,l
l

dCc
r res l NCc

dt
 (4.59) 

It must be pointed out that, while the first Nx lines of the previous system were written as a function of 

kinetic rates Ri, now they are written as a function of kinetic species Cc. This is important because it 

implies that every kinetic reaction must correspond a kinetic species. This will have consequences for 

some case studies. 

The reduced number of equations will result in a Jacobian matrix of reduced size (see Figure XX). The 

nonlinear solver requires again entries structured as in equation (4.50). It is clear that the second term 

equation (4.50), which requires the presence of first derivatives to exist, will be present only in the low 

right corner of the Jacobian matrix. The derivatives of the first Nx residuals then become in BLOCK 1 

of Figure 10:  

 

 
,

,
1 1

( ) l mxNc
i

l, j l j

lj l l

aN
m m

m j

dG C
= b a

dC K C
 (4.60) 

And for BLOCK 2: 

 ,
i

i j

j

dG
= -Beq

dC
 (4.61) 

 The derivatives of the last NCc residuals do not change with respect to the previous version, except 

for the fact that reaction rates have to be written as functions of primary species: 

 

 i i

j j

dG dr
=

dC dC
 (4.62) 
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Figure 4.10 - The iteration matrix for DASPK 2 is filled block by block. BLOCK 1 accounts for 

derivatives of mass conservation equations (algebraic equations) with respect to primary species, 

BLOCK 2 accounts for the derivatives of mass conservation equations with respect to kinetic species. 

 

 

4.2.4.3 Residual computation for DASPK 3 

 

A third possible form for our DAEs system consists in degrading it to an ODEs system of Nx+NCc 

equations in Nx+NCc unknowns. Writing mass action laws into mass conservation in their differential 

form, we obtain the following residuals: 

 

 

,

, ,
1 11

1,

i ja
NxNc Nrc

j

i j j m m

i mj i i

Xd
b Beq r res j Nx

dt K
 (4.63) 

 1,l
l

dCc
r res l NCc

dt
 (4.64) 

The system is smaller but some assumptions upon activity coefficients are required in order to work 

with reasonable derivatives. To reduce the number of simplifications, the system is written as a 

function of the activities of components and not of their concentration. 
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In this case like in version II, the reduced number of equations will result in a Jacobian matrix of 

reduced size.  This time the variables U and their first derivatives are U  are simultaneously present in 

the first Nx rows and columns of the Jacobian matrix. According to equation (4.50) a generic entry in 

BLOCK 1 of Figure 11 takes the following form: 

 

 , ,'i j i ji
ij j

j j j

b bC
J C CJ

C C C
 (4.65) 

where 
,

1

'
Nx

i j

j

j j

a
C

C
. In this formulation of the system, activity coefficients appearing in equation 

(4.63) are considered constants throughout a single iteration and therefore treated as constants in the 

Jacobian matrix. They are the only activity coefficients present in the equations since they are written 

as functions of activities. BLOCK 2 is filled with zeroes since kinetic species do not appear explicitly 

in conservation equations as before. Last NCc rows are filled exactly as in the previous version and the 

same consideration is true for BLOCK 1 where reaction rates must be taken into account.   

 

                        

 

Figure 4.11 - The iteration matrix for DASPK 3 is filled block by block. BLOCK 1 accounts for 

derivatives of mass conservation equations (differential equations) with respect to primary species, 

BLOCK 2 accounts for the derivatives of mass conservation equations with respect to kinetic species 

(entries equal to zero). 



87



88

4.3 Numerical simulations 

 

4.3.1 TST model, verification of results with PHREEQC and KINDIS 

 

4.3.1.1 Description of the problem 

 

A chemical system H2O-Halite-Magnesite-Calcite-Dolomite was tested to ensure the correct 

implementation of linear TST kinetic model together with the computation of activity coefficients and 

their influence on the computation of the analytical Jacobian. The system is a slight simplification of 

one proposed in the literature (Leal et al. 2015) to illustrate the concept of partitioning of mixed 

equilibrium kinetic reactions. Since a published solution wasn t available, a reference solution was 

computed with software KINDIS (Madé et al.1994) and PHREEQC (Parkhurst et al. 1999). The 

reaction network is composed of 10 reactions: R1-R7 are modeled at equilibrium (6 involved only 

dissolved species, 1 involves a solid phase) and R8-R10 are the kinetic dissolutions of minerals: 
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Calcite (CaCO3(s)), Magnesite (MgCO3(s)),  and Dolomite  ((CaMg)(CO3
-)2(s)),  are supposed to dissolve 

kinetically (subsequent precipitation is not allowed) according to the classic TST theory (equation 

(4.57)) that provides the following reaction rate r [mol/T/ MH2O] (or [mol/T/ L3
H2O] according to the 

formulation): 

 1S

n

s

Q
r k A

K
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where AS is the reactive surface of the mineral [L2-min/MH2O] (or [L2-min/L3
H2O] according to the 

formulation), Q is its ion activity product [-], KS is the solubility product [-], n=1 and k is the kinetic 

constant [mol/T/L-min2] (the temperature of the system is supposed 25 °C, T=298.15 [K]). 

Equilibrium and kinetic constants are provided in Tables 4.6 and 4.7. Please note that a minus appears 

in equation (4.57) because a positive reaction rate is associated to precipitation. 

 

 

H+ H2O HCO3- Ca2+ Mg2+ Cl- Na+ Log10Keq 

H+ 1 0 0 0 0 0 0 0 

H2O 0 1 0 0 0 0 0 0 

HCO3- 0 0 1 0 0 0 0 0 

Ca2+ 0 0 0 1 0 0 0 0 

Mg2+ 0 0 0 0 1 0 0 0 

Cl- 0 0 0 0 0 1 0 0 

Na+ 0 0 0 0 0 0 1 0 

OH- -1 1 0 0 0 0 0 -14.0 

H2CO3(l) 1 0 1 0 0 0 0 6.35 

CO3-- -1 0 1 0 0 0 0 -10.33 

CaCO3(l) -1 0 1 1 0 0 0 -7.11 

MgCO3(l) -1 0 1 0 1 0 0 -7.35 

CaCl2 0 0 0 1 0 2 0 -0.64 

NaCl(s) 0 0 0 0 0 1 1 1.59 

 

Table 4.1  Morel table for the test case. Equilibrium constants taken from Thermoddem database 

(http://thermoddem.brgm.fr/)  

 

 

 

 Log10KS
 

AS
 k 

CaCO3(s)
 1.85 0.5 5.38 10-3 

MgCO3(s)
 1.41 0.5 1.95 10-3 

(CaMg)(CO3
-
)2(s)

 3.53 0.5 2.40 10-6 

 
Table 4.2 - Constants for kinetic rates. Constants taken from Palandri (2004). 
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Activity coefficients i  are computed according to Debye-Huckel formulation: 

 

 10 0
log

1.0
i

i

i

A z I
C I

a B I
 (4.66) 

 

where I is the ionic strength of the solution, zi is the charge of the considered ion, ai
0 is the effective 

radius of the considered ion and A, B and C are the Debye-Huckel constants (A=0.5114, B=0.3288, 

C=0.41). We recall that the ionic strength is computed as: 

 

 2

1

CN

i i

i

I C z  (4.67) 

 

The test case is well suited for testing the three configurations of the system DASPK 1, DASPK 2 and 

DASPK 3 since for each kinetic reaction R8 to R10 there is a corresponding kinetic species: CaCO3(s) 

for R8, MgCO3(s) for R9 and (CaMg)(CO3
-)2(s) for R10. The number of reactions is reasonable to test a 

first implementation, but is not trivial from a numerical point of view: because of chosen values of 

reactive surface area, kinetic reactions are fast and equilibrium reactions span over an interval of 

twenty orders of magnitude (that makes the test case not as challenging as those presented in Chapter 

3 but still not trivial).  

 

4.3.1.2 Numerical simulations: results 

 

Resulting curves obtained with KINDIS and DASPK solver (DASPK 1, numerical Jacobian: curves 

obtained through the other versions of DASPK were redundant and then omitted) are perfectly 

superimposed and those obtained with PHREEQC are in very good agreement. Small differences are 

due to the fact that PHREEQC takes other aqueous species into account and/or to small differences in 

the computation of activity coefficients. We report here results for the minerals (Calcite, Magnesite, 

and Dolomite, Figures 4.12, 4.13 and 4.14) and some dissolved species: CaCO3(aq), MgCO3(aq) (Figure 

4.15) and H+ (Figure 4.16). Results show that the implementation of the kinetic law for mineral 

precipitation and dissolution is correct and that DASPK solver converges in presence of activity 

coefficients. Plotted curves were obtained with absolute and relative tolerances ATOL = 10-12 and 

RTOL = 10-14 (these are the lowest admissible values). 
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Figure 4.12  Evolution of Calcite CaCO3(s) 
 

 

Figure 4.13  Evolution of Magnesite MgCO3(s)  
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Figure 4.14  Evolution of Dolomite (CaMg)(CO3
-)2(s)   

 

 

Figure 4.15  Evolution of dissolved species CaCO3(aq) and MgCO3(aq) 
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Figure 4.16  Evolution of dissolved species H+ 

 

 

Once verified that DASPK provides results comparable with those obtained with well-established 

codes, it is possible to begin with the analysis of the performances of the different configurations of 

the system of equations. In the following, an analysis of the number of time steps and the CPU time is 

proposed. Tests started from values of absolute tolerance (ATOL) of 10-12 and relative tolerance 

(RTOL) of 10-14 (these values were used to produce Figures 4.12 to 4.16 and identified as the limit of 

DASPK solver failing). Then tolerances were increased by one order of magnitude at a time (lowering 

progressively the quality of the solution).  

All tests were performed with a version of the code compiled in Release mode in order to avoid slow 

computations typical of the execution in Debug mode. CPU time was computed solving 100 times the 

same problem, monitoring the total time and dividing it by a factor of 100. This average of results was 

made necessary by the extremely fast convergence of DASPK, which made impossible registering the 

execution time of a single solution. Results are reported in Table 4.3 for DASPK 1, Table 4.4 for 

DASPK 2 and 4.5 For DASPK 3; a graphic representation is available in Figure 4.17.  

Surprisingly, looking at Figure 4.17a and 4.17b, the global CPU time required to reach convergence 

was slightly smaller for DASPK 1 (which counts Nc+Ncc unknowns) than for DASPK 2 and 3 (which 

both count Nx+Ncc unknowns) for both analytical and numerical iteration matrixes. On the other 

hand, DASPK 2 required systematically more CPU time to converge.  
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DASPK 1 TOL 

NUM 
TIME STEPS RES EVAL NL ITER CPU

A 10-12    R 10-14 387 2496 859 6.40 10-3 

A 10-11   R 10-13 327 2017 705 5.15 10-3 

A 10-10    R 10-12 265 1495 507 4.05 10-3 

A 10-9      R 10-11 - - - - 

A 10-8    R 10-10 - - - - 

 
 

DASPK 1 TOL 

AN 
TIME STEPS RES EVAL NL ITER CPU 

A 10-12    R 10-14 396 878 874 4.68 10-3 

A 10-11   R 10-13 367 719 716 4.05 10-3 

A 10-10    R 10-12 307 533 531 3.28 10-3 

A 10-9      R 10-11 - - - - 

A 10-8    R 10-10 - - - - 

 
Table 4.3  Numerical information about the solution of the system Halite-Calcite-Magnesite-

Dolomite system with DASPK 1. 

 

 

DASPK 2 TOL 

NUM 
TIME STEPS RES EVAL NL ITER CPU

A 10-12    R 10-14 602 1863 1001 7.38 10-2 

A 10-11   R 10-13 392 1311 669 5.16 10-2 

A 10-10    R 10-12 276 1081 499 4.10 10-2 

A 10-9      R 10-11 197 932 360 3.39 10-2 

A 10-8    R 10-10 - - - - 

 
 

DASPK 2 TOL 

AN 
TIME STEPS RES EVAL NL ITER CPU 

A 10-12    R 10-14 684 1193 1191 6.30 10-2 

A 10-11   R 10-13 478 778 776 4.34 10-2 

A 10-10    R 10-12 344 613 611 3.36 10-2 

A 10-9      R 10-11 229 398 396 2.31 10-2 

A 10-8    R 10-10 - - - - 

 
Table 4.4  Numerical information about the solution of the system Halite-Calcite-Magnesite-

Dolomite system with DASPK 2. 
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DASPK 3 TOL 

NUM 
TIME STEPS RES EVAL NL ITER CPU

A 10-12    R 10-14 408 1908 797 1.57 10-2 

A 10-11   R 10-13 362 1490 668 1.28 10-2 

A 10-10    R 10-12 243 1203 451 1.06 10-2 

A 10-9      R 10-11 190 1276 334 1.06 10-2 

A 10-8    R 10-10 - - - - 

 
 

DASPK 3 TOL 

AN 
TIME STEPS RES EVAL NL ITER CPU 

A 10-12    R 10-14 495 967 965 1.03 10-2 

A 10-11   R 10-13 390 674 672 7.64 10-3 

A 10-10    R 10-12 295 474 472 5.46 10-3 

A 10-9      R 10-11 204 392 390 4.84 10-3 

A 10-8    R 10-10 147* 274* 272* 3.90 10-3 

 
Table 4.5  Numerical information about the solution of the system Halite-Calcite-Magnesite-

Dolomite system with DASPK 3 (*the solution is computed but clearly degraded) 

 

 

Looking at Figure 4.17c and 4.17d, it is clear that although DASPK 2 required more iterations to 

converge, the sole (slight) number of iterations cannot be at the origin of such a difference in the CPU 

time demand. The solver was indubitably penalized by the fact that the code had to be compiled with 

quadruple precision to ensure convergence. 

Differences (between Figure 4.17c and 4.17d) in the number of iterations between the analytical and 

the numerical evaluation of the Jacobian matrix (or Iteration matrix as in the DASPK terminology) 

may be explained through the approximation of considering activity coefficients constant throughout 

the single iteration. Anyway, despite the higher number of iterations (especially when using versions 

DASPK 2 and DASPK 3), the solution obtained with analytical Jacobian matrix globally demanded 

less CPU time.  

The fact that for DASPK 1 the number of iterations between the numerical and analytical Jacobian 

remained the same, shows that fears expressed in paragraph § 4.13 about the drawbacks of working 

with more complicated equations were legitimate. On the other hand, from Figure 4.17 is also visible 

that DASPK 1 failed to converge before the other two when low precision was required.   
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Figure 4.17  CPU time to convergence for DASPK solver I, II, III with a) numerical Jacobian and b) analytical Jacobian; Number of time steps to 

reach convergence for DASPK I, II, III with c) numerical Jacobian and d) analytical Jacobian 
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4.3.2 Chilakapati test case: verification with publication 

 

4.3.2.1 Description of the problem 

 

The second example used to test the performances of the solvers was first published by Chilakapati in 

1998 and then used by Fang in 2003 as a benchmark; it is an exhaustive example of combinations of 

equilibrium and kinetic reactions, involving nonlinear elementary and Monod reactions. The system 

describes the process of transformation of a metal organic chelate contaminant, Co(II)EDTA, in other 

complexes. EDTA, or ethylenediaminetetraacetic acid, is a synthetic chelate that is widely present in 

surface and groundwater and is considered dangerous because it facilitates the mobilization of heavy 

metals and radionuclides like Co. Co(II)EDTA cannot be degraded by bacteria, but EDTA and 

Fe(III)EDTA can. In this example, Co(II)EDTA is adsorbed on iron-oxide sediments and subsequently 

EDTA and Fe(III)EDTA are released in the solution, available for biodegradation. In the process, 

some of the Co(II)EDTA undergoes oxidation and is transformed in Co(III)EDTA, a stable and 

weakly reactive complex. The transformation of Co(II)EDTA may be described through 64 reactions 

but Chilakapati simplified the system describing it through 10 reactions and 15 species reported 

below. Adsorption/desorption reactions are very fast compared to other processes and therefore are 

modeled through equilibrium (R1-R5). Dissolution reactions, oxidation and biogeochemical 

degradation are modeled as kinetics (R6-R10). The two biogeochemical reactions are expressed 

through Monod reactions law while other kinetic reactions are expressed through nonlinear elementary 

rates. 
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Reaction R1-R5 are adsorption/desorption reactions, R6 and R7 are dissolution reactions, R8 is an 

oxidation reaction and R9 and R10 describe biodegradation process. Considering only the five 

equilibrium equations, the chemical species involved in those reactions are 12. This means that 12 - 5 

= 7 components have to be chosen among the species to describe the equilibrium partition of the 

system. We chose as components the following species, colored in the next set of reactions: Co(II)aq, 

Sneg, Co(II)EDTAaq, Spos, Fe(III)EDTAaq, EDTAaq, Co(III)EDTAaq.  
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 (4.68) 

 
 

Remaining species, casually all at the right hand side of the reactions are secondary species that can be 

deduced through mass action law, while mass conservation equations are written for the seven 

components. Mass action laws are listed in the following system (activity coefficients taken all equal 

to 1.0): 
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 (4.69) 

 

where the equilibrium constants (note that they are not in logarithmic form) have the following values: 

K1=12, K2=25, K3=9, K4=25, K5=2.5. Once components are defined and mass action laws are written, 

it is convenient to represent the problem under the form of a Morel table, such as in Table 1. This 

formulation helps writing the mass conservation equations, since they can be easily deduced from the 

column of the Morel table (equation (4.70)).   
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Table 4.6  Morel table for the equilibrium partition, stoichiometric matrix B, which is diagonal in the 

first Nx x Nx block. 
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As already discussed in paragraph 4.1, total concentrations Tj constitute the link between the 

equilibrium partition and the kinetic partition. In order to explicit the link between kinetic reactions 

and primary species, mass action laws substitute secondary species in in kinetic equations:  
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We can therefore write a system in which the influence of each kinetic reaction on the totals is clearly 

represented: 
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The only kinetic reaction that could modify the total concentration of Co(II) is R6. Another component 

in equilibrium speciation is EDTAaq. Its total concentration is increased when reaction R6 takes place 

(EDTAaq is a product in R6) and is at the same time decreased when reactions R7 and R7 take place 

(EDTAaq is a reactant in R7 and R10). Previous system provides 7 differential equations, 5 more 

algebraic equations come from equation (4.69). This results in a system of 12 equations and 15 

unknowns. 3 more equations have to be provided to track the evolution of kinetic species that do not 

take part in the equilibrium speciation: 
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r6-r10 are the reaction rates of kinetic reaction R6-R10: r6-r8 are nonlinear elementary production 

consumption rates while r9, r10 are nonlinear Monod reaction rates. Parameters involved in equations 

(4.74) are reported in Table 4.2. 
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 (4.74) 

 

Parameter Value Unit 

6k f  1.0 1h  

6k b  1.0 10-3 1 1LmM h  

7k f  2.5 1h  

7k b  0.0 1 1LmM h  

8k f  1.0 10-3 1h  

8k b  0.0 1h  

1  2.5 10-4 1h  

11k  1.0 10-5 1mML  

21k  1.0 10-5 1mML  

2  0.025 1h  

12k  1.0 10-5 1mML  

22k  1.0 10-5 1mML  

 

Table 4.7  Parameters for standard and Monod kinetic reactions. 

 

Equations (4.72) together with (4.69) and (4.73) describe the system of differential algebraic equations 

generalized in equation (4.22). As already explained, this is the system with the highest number of 

unknowns but contains the simplest equations. Writing equations (4.69) into equations (4.72) would 

provide a system such as (4.24). This second configuration of the system allows the reduction of the 

number of unknowns from Nc+Ncc to Nx+Ncc and reduces the system to an ODE.  
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This test case, that is numerically less challenging than the previous (equilibrium constants are of the 

same order of magnitude, activity coefficients are set equal to 1, reactions are not as fast as in the 

previous example) presents some characteristics that show how challenging may be writing a system 

like (4.23), or DASPK 2. In fact, it requires concentrations of kinetic species to be included in mass 

conservation and not their rate. The test-case was indeed presented by Fang as highly coupled (kinetic 

reactions occur between primary species) and was used to introduce a more sophisticated system of 

picking components and kinetic variables (Fang et al. 2003). Moreover, regardless of how complicated 

is to write the equations, the main drawback of this approach is that, for some problems where the 

concentrations of kinetic species are very high (i.e. minerals within a porous medium) implying the 

addition of quantities in the order of 101 to quantities of around 10-12. To be able to compute such 

problems with DASPK it proved necessary compiling the whole software in quadruple precision, 

which is an unwanted complication due to computer time. For all these inefficiencies, and on the basis 

of results presented in paragraph 4.3.1.2, this problem was not solved with DASPK 2. In order to test 

the implicit formulation with respect to the method implemented in SPECY (Carrayrou 2001), the 

problem was also solved with explicit QSSA.   
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4.3.2.2 Numerical simulations: results 

 

In the following pages, we provide solutions obtained through QSSA method and through solver 

DASPK for different arrangements of system of equations (we will refer to them as DASPK 1 for 

system (4.46)-(4.48), DASPK 3 for system (4.63)-(4.64)) compared with results published by 

Chilakapati (Figure 4.18).  

 

 

Figure 4.18 Experimental points and interpolation through software Biogeochem (Fang et al. 2003). 

 

The dynamic of the chemical system is illustrated by Figure 4.18. Co(II)EDTA is transformed in 

EDTA and Fe(III)EDTA, that are systematically consumed by the Biomass that keeps growing. EDTA 

is the first species to disappear, followed by Co(II) EDTA and Fe(III)EDTA. When the nutrition for 

Biomass is not available, growing stops.   Figure 4.19 shows that all methods are able to reproduce 

correctly the numerical experiment. The formulation solved through DASPK 1 allows tracking 

secondary species (Figure 4.20) throughout the duration of the experiment whereas they have to be 

computed a posteriori for DASPK 3.  
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Figure 4.19  Curves for some of the major elements of the 

test case obrained with a) explict QSSA, b) implicit DASPK 

solver with system configuration DASPK 1 (system of 

DAEs) c) implicit DASPK solver with system configuration 

DASPK 3 (system of ODEs).  
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Figure 4.20  Curves for some of the secondary species obtained with DASPK 1. This formulation of 

the system allows tracking secondary species, a feature that can be useful while monitoring batch 

experiments.  
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4.3.2.3 Numerical simulations: effect of convergence criteria 

 

As anticipated in paragraph 4.2.1, both explicit and implicit numerical schemes are implemented with 

an adaptive stepsize. This means that whenever a solution is rejected the stepsize is reduced, and is 

increased otherwise. What makes a solution accepted or rejected is the meeting of convergence criteria 

that can be much or less severe. In Figure 4.21, the effect of two different convergence criteria, 

ATOL=10-6 and ATOL=10-12 (see paragraph 4.2.3), in the DASPK solver on the amplitude (and 

therefore the number) of stepsizes. 

 

 

 

 

Figure 4.21  Effect of different convergence criteria on the stepsize amplitude in DASPK1 

(Analytical Jacobian) towards the solution of the problem. 
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With the absolute tolerance of ATOL = 10-6 (blue squares) the increase of the stepsize is constant and 

the stepsize is systematically higher than the one computed to satisfy ATOL = 10-12. When, at around 

20 h from the beginning of the experiment, EDTA and CO(II)EDTA are completely consumed 

(reaction rate R10 goes to zero), the time step is reduced to ensure required accuracy. The same 

happens at around 2000 h when the system runs out of Fe(III)EDTA (reaction rate R9 goes to zero).   

 

RICHARDSON TOL TIME STEPS CPU 

10-12 67010000 3602,65 
10-9 2110000 107,37 
10-8 670000 35,45 
10-7 210000 11,59 
10-6 60000 4,69 
10-5 20000 1,51 
10-4 9953 0,702 

 
Table 4.8  Number of time-steps and CPU time varying with the required tolerances for Richardson 

extrapolation of QSSA method  

 
 

DASPK 1 TOL 

NUM 
TIME STEPS RES EVAL NL ITER CPU

A 10-12    R 10-14 1427 3871 2202 4.83 10-2 

A 10-11   R 10-13 1030 2830 1537 3.57 10-2 

A 10-10    R 10-12 752 2396 1179 2.98 10-2 

A 10-9      R 10-11 509 2020 833 2.52 10-2 

A 10-8      R 10-10 336 1690 533 2.07 10-2 

A 10-7      R 10-9 258 1500 463 1.86 10-2 

A 10-6      R 10-8 177 1274 327 1.56 10-2 

 
 

DASPK 1 TOL 

AN 
TIME STEPS RES EVAL NL ITER CPU 

A 10-12    R 10-14 1418 2217 2213 2.96 10-2 

A 10-11    R 10-13 1081 1645 1642 2.23 10-2 

A 10-10     R 10-12 832 1298 1296 1.75 10-2 

A 10-9       R 10-11 509 836 834 1.15 10-2 

A 10-8       R 10-10 336 535 533 7.49 10-3 

A 10-7     R 10-9 258 465 463 6.55 10-3 

A 10-6     R 10-8 177 329 327 4.84 10-3 

 
Table 4.9  Number of time-steps, residual evaluations, number of non-linear iterations and CPU time 

varying with the required tolerances for DASPK1, system of Nc+Ncc equations 
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DASPK 3 TOL 

NUM 
TIME STEPS RES EVAL NL ITER CPU 

A 10-12    R 10-14 1407 2915 2003 2.87 10-2 

A 10-11   R 10-13 962 2346 1474 2.32 10-2 

A 10-10    R 10-12 643 1842 970 1.78 10-2 

A 10-9      R 10-11 467 1585 743 1.54 10-2 

A 10-8    R 10-10 331 1427 555 1.39 10-2 

A 10-7     R 10-9 258 1177 415 1.15 10-2 

A 10-6    R 10-8 168 1035 293 1.01 10-2 

 
 

DASPK 3 TOL 

AN 
TIME STEPS RES EVAL NL ITER CPU 

A 10-12      R 10-14 1353 1928 1926 1.99 10-2 

A 10-11   R 10-13 961 1470 1468 1.53 10-2 

A 10-10    R 10-12 642 959 957 9.83 10-3 

A 10-9      R 10-11 467 741 739 7.80 10-3 

A 10-8     R 10-10 331 554 552 6.24 10-3 

A 10-7    R 10-9 258 417 415 4.83 10-3 

A 10-6    R 10-8 168 295 293 3.59 10-3 

 
Table 4.10  Number of time-steps, residual evaluations, number of non-linear iterations and CPU 

time varying with the required tolerances for DASPK3, system of Nx+Ncc equations 

 

As for the previous test case, an analysis of the number of the time steps and of the CPU time of 

different solvers and different configurations of a given solver varying absolute and relative tolerances 

is proposed. Again, the analysis started from values of absolute tolerance (ATOL) of 10-12 and relative 

tolerance (RTOL) of 10-14 , then tolerances were increased by one order of magnitude at a time.  

Also for this test case, all tests were performed with a version of the code compiled in Release mode in 

order to avoid slow computations typical of the execution in Debug mode and CPU time was 

computed as a mean value of 100 problems for DASPK. The content of Table 4.8, Table 4.9 and Table 

4.10 in graphic form is reported in Figure 4.22. Although convergence criteria in Richardson 

extrapolation of QSSA method and in DASPK solver work differently and cannot be directly 

compared, they are studied in their respective reasonable ranges. From Figure 4.22c it is clear that the 

explicit solver requires a higher number of time-steps to converge with respect to the implicit. One 

might argue that a higher number of time steps do not necessarily imply higher computational cost, but 

in Figure 4.22d it is shown that even though an explicit time-step might be faster than an implicit, the 

global result is that explicit QSSA converges globally slowly. Figure 4.22d also puts in evidence that 

although the numerical and analytical computations of the Jacobian matrix (for DASPK1) don t affect 

the number of time steps (Figure 4.22c, which confirms the rightfulness of the analytical Jacobian) 



109Figure 4.22  CPU time required to converge for DASPK 1 and DASPK 3 with numerical a) and analytical b) computation of the Jacobian matrix; 

number of time-steps c) and CPU time d) required to converge for explicit QSSA and implicit BDF in DASPK 1; note different scales. 
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convergence is faster with the analytical Jacobian. This is certainly due to the number of residual 

evaluations that is sensibly smaller when computing the Jacobian analytically.  Figures 4.22a and 

4.22b, on the other hand, show the comparison between the CPU time required to solve the problem 

with DASPK 1 and DASPK 3 with numerical and analytical Jacobian matrix respectively. In both 

cases, DASPK 3 solves the problem faster than DASPK 1, especially at higher precisions. The 

difference between these results and those in 4.3.1 (where DASPK1 computed solutions faster than 

DASPK 3) is probably due to the absence of activity coefficients in the Chilakapati test case. The 

absence of activity coefficients avoids problems linked to neglecting them when they are actually 

there, especially when they should be derived.   

 

4.4 Conclusions about mixed equilibrium and kinetics 

 

In this Chapter the problem of mixed equilibrium and kinetic reactions was approached with two 

different strategies: one based on mathematical considerations the other on a representation of the 

processes. Three ways of writing the system were proposed: a system of DAEs where mass action 

laws are left explicit (the algebraic equations are mass action laws), a system of DAEs where mass 

action laws are written into conservation equations (the algebraic equations are the conservation 

equations), and a system of ODEs where mass action laws are included in conservation equations, that 

are written in their differential form. Left aside more advanced strategies to pick primary and 

secondary species such as in Fang et al. (2003) and Molins et al. (2004), and the possibility of writing 

such equations in a logarithmic form, the three systems are the three possible alternatives of resulting 

of equations.  

From the two tests performed (easy enough to allow implementation of DASPK from scratch but not 

trivial from a numerical and mathematical standpoint), it resulted that the first system of DAEs 

(referred to as DASPK 1) and the system of ODEs (DASPK 3) are the more efficient. Although 

DASPK 3 is recommended for the reduction of the size of the system, whenever activity coefficients 

have to be taken into account, approximations of derivatives of complicated equations may slow down 

convergence.  

Certain conclusions are that regardless the version of DASPK applied, the solver is faster than the 

previous QSSA explicit. Within each formulation of DASPK, the analytical computation of the 

Jacobian matrix globally outperformed the numerical computation in all circumstances, even when 

approximations (i.e. neglecting derivatives of activity coefficients) engendered an increase of the 

number of iterations.  
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Chapter 5  Solid solutions 

 

5.1 Introduction and theoretical background  

 

5.1.1 The interest in solid solutions  

 

Solid solutions are homogeneous crystalline structures in which one or more of the original atoms or 

molecules are substituted in the structure with compatible alternatives. The conceptual description of a 

solid solution is not far from that of an aqueous multicomponent solution. A multicomponent solution 

is, in fact, a mix of various species with a fixed stoichiometry that are present in different 

concentrations. In solid solutions, the role of chemical species is played by the so-called end-members: 

they have a fixed stoichiometry but may be present in different concentrations and their mix is not 

merely mechanical (Bruno 2007). An example is the binary solid solution (Sr,Ca)CO3 whose end-

members are CaCO3 and SrCO3, coexisting in a mixture that could be noted as (1-x) CaCO3 + xSrCO3, 

x being the mole fraction of SrCO3. The mole fraction x may vary between 0 (pure Calcite) and 1 (pure 

Strontianite), and it is determined by the thermodynamic configuration of the system. 

Finding pure minerals in actual natural systems is more the exception than the rule, and modeling 

through precipitation of pure minerals constitutes a simplification. This simplification may be 

acceptable in many cases but solid solutions remain an essential tool for the modeling of natural 

processes. For example, following the dissolution of several pure minerals, the subsequent re-

precipitation of a disordered mixture may occur. Moreover, circumstances exist in which solid 

solutions modeling is the only way to reproduce experimental or field data (Ferry et al. 2005).  

Solid solutions also constitute a subject of interest in studies of performance assessment for nuclear 

repository sites. Radionuclides may, in fact, substitute original atoms in host solid phases such as 

Calcite or C-S-H systems in Ordinary Portland Cement; again, most of the compounds involved in the 

fuel cycle are considered as solid solutions. Solid solutions are believed to be a fundamental tool in 

performance assessment at the point that specific guidelines were written on the issue (Bruno 2007). 

Another important advantage of solid solutions is that they have the potential to be exploited for 

modeling geochemical reactions that include isotopes. In fact, the atom of Sr2+ that substitutes the one 

of Ca2+ in the solid solution mentioned above might be as well a nuclide of 44Ca2+ substituting 40Ca2+. 

Moreover, whereas the thermodynamics of the so-called real solid solutions is rather complicated and 

hard to model, substitution of isotopes is the closest approximation to an ideal solid solution, which is 

far easier to treat (Anderson and Crerar 1993). In fact, ideal solid solutions inspired a powerful model 

for stable isotope kinetic fractionation (Wanner and Sonnenthal 2013; Druhan et al. 2013).    
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5.1.2 Theoretical background: Thermodynamics of solid solutions  

 

Solid solutions are the result of complex structural interactions at atomic and molecular levels and a 

thermodynamic formulation must take these complexities into account. Gibbs energy (which is 

supposed to decrease in case of spontaneous reactions (Anderson and Crerar 1993)) for a solid 

solution of two end-members with composition Ax,B(1-x),C (see equation (5.1)) is equal to the sum of 

Gibbs energy of the end-members taken separately plus terms due to their mixing (equation (5.2)). 

 

 (1 ) ( ) (1 )xAC x BC A x B x C  (5.1) 

 0 0( , ) ( , ) (1 ) ( , ) ( ) ( ln( ) (1 ) ln(1 ))G SS T xG AC T x G BC T G mix RT x x x x  

 (5.2) 

where x and (1- x) [-] are the molar fractions of species A and B, G0  [J/mol] is the Gibbs energy of the 

pure end-members, G(mix) [J/mol] is the excess of energy of mixing, R [J/K/mol] is the gas constant 

and T [K] is the temperature. The first two terms of the right-hand side describe a merely mechanical 

mixing and the last term is the ideal entropy of mixing. The mixing term G(mix) may be written as a 

function of the excess enthalpy H and entropy S of mixing: 

 

 ( ) ( ) ( )G mix H mix T S mix  (5.3) 

The excess of entropy, which is the deviation from the ideal entropy of mixing appearing in equation 

(5.2), may be neglected under the assumption of configurational entropy and perfect randomness 

(Noguera et al. 2016). According to the structural configuration of the solid solution (if, for example, 

the substituted and substituting atoms are nearly alike) variations in volume may be neglected and the 

enthalpy of mixing can be also considered zero. If this is the case, the solid solution is defined ideal, 

otherwise, the solid solution is real and H(mix) can be written as a function of Guggenheim 

expansions (Glynn 1990). Details of how ideal (and real) solid solutions are described through 

activities and mole fractions can be found, for example, in Anderson and Crerar (1993). 

Ideality has an impact on the computation of the activities of the end-members. In fact, whereas the 

activity of a pure mineral is considered equal to 1, this is not the case for end-members in solid 

solutions; for ideal solid solutions, activities of the end-members are equal to their molar fractions: 

 

 
EM EMa x  (5.4) 



114

while for real solid solutions an activity coefficient EM is needed and could be written for example, as 

a function of the Guggenheim expansions mentioned before: 

 
EM EM EMa x  (5.5) 

A comprehensive analysis of solid solution thermodynamics is beyond the scope of this work; 

interested readers should refer to the available, extensive literature  (Lippman 1977; Thorstenson and 

Plummer 1977; Tardy and Fritz 1981; Lippman 1980; Plummer and Busenberg 1987; Glynn 1990; 

Glynn and Reardon 1990; Glynn 1991; Glynn et al. 1992; Königsberger and Gamsjäger 1990; 

Königsberger and Gamsjäger 1992; Anderson and Crerar 1993; Glynn 2000; Gamsjäger et al. 2000; 

Bruno 2007).  

     

5.1.3 Modeling solid solutions and their interaction with the aqueous phase  

 

Standard forward chemical modeling may be carried out through two different approaches: Gibbs free 

energy minimization (e.g. Kulik et al. 2012 and Leal et al. 2014) or mass action law models (e.g. 

Parkhurst et al. 1999 and Steefel 2009). According to Bruno (2007) modeling solid solutions 

interaction with aqueous phase through Gibbs energy minimization should be preferred since this 

approach is considered more rigorous and theoretically based. Always according to (Bruno 2007), the 

implementation of solid solutions (at equilibrium) into mass action law codes is considered 

cumbersome and empiric at the point that the Geochemists Workbench GWB (Bethke 2008) amongst 

others recommend to avoid it.  

On the other hand, other world-known mass action law based codes such as PHREEQC (Parkhurst et 

al. 1999) are able to treat ideal and real binary solid solutions. In a local (but not less effective) 

context, numerical models KINDIS (Madé et al. 1994) and KIRMAT (Gérard et al. 1998) treat 

complex mineral precipitation at equilibrium with ideal and real binary solid solutions.   

Attempts to take into account kinetic processes in solid solution formation also exist: an extension of 

numerical model KINDIS (Nourtier-Mazauric et al. 2005) has been performed and (Lichtner and 

Carey 2006) proposed a discretization of the solid solution considering only a finite number of 

compositions (a grid over the composition space). A step further in the understanding solid solution 

nucleation is the module implemented in the code NANOKIN (Noguera et al. 2010), which started 

treating only ideal binary solid solutions; an extension to real binary solid solutions (Noguera et al. 

2016) has been studied but still not implemented in the code. 

As mentioned in the introduction, the concept of solid solutions has also inspired a powerful tool for 

modeling kinetic stable isotope fractionation; the model has been implemented in world-known codes 

for reactive transport modeling such as CRUNCHFLOW, TOUGHREACT, FLOTRAN and MIN3P 
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(Wanner et al. 2015). Although the approach is considered as effective for the simulation of stable 

kinetic isotope fractionation, it shouldn t be mistakenly considered as a theoretically-based way to 

treat solid solutions kinetically to a more general extent.  

 

5.1.3.1 Equilibrium models for solid solutions 

 

Considered that the code object of this work has been built on a mass action law approach, 

implementing solid solutions with a Gibbs energy minimization is not an option. Solid solutions at 

thermodynamic equilibrium were implemented following the example of codes KINDIS and 

PHREEQC. Although the algorithms are implemented slightly differently in PHREEQC and KINDIS, 

equation (5.6) has to be respected in both models. For each end-member, the following mass action 

law is verified at thermodynamic equilibrium (P. D. Glynn 1990): 

 

 1,...,EM EM EM
EM EM

EMEM EM EM
EM

TOT

Q Q Q
K EM N

Xssa x

Xss

 (5.6) 

where QEM is the ion activity product of the species involved in the precipitation of the mineral/end-

member EM, KEM is the solubility product for the mineral/end-member in its pure phase, EM is the 

activity coefficient of the end-member and XssTOT is the total amount of solid solution ([mol]). As 

mentioned in the previous paragraph, when solid solutions are treated as ideal, EM is set to 1.0.  If the 

solid solution is considered non-ideal, the parameter might be computed according to models (for 

example derived from Guggenheim expansion series (Glynn 1990; Glynn and Reardon 1990)). 

Equation (5.6) is true for each end-member EM of the NEM end-members that participate in the solid 

solution.  

At this point, it is worth mentioning that thermodynamic equilibrium as in equation (5.6) is not the 

only thermodynamic state of interest in studying the interaction between an aqueous and a solid 

solution. Thorstenson and Plummer (1977) suggested that under the hypothesis of i) a short 

equilibration period ii) a high ratio solid/liquid phase iii) low temperature and iv) consequent absence 

of recrystallization or precipitation, the dissolution of a solid solution could be treated as the 

dissolution of a pure phase, naming this approximation stoichiometric saturation. Equation (5.7) 

describes stoichiometric saturation for the binary solid solution (Sr,Ca)CO3 introduced before, where x 

is the mole fraction of Sr2+, Qss the ionic product in the solution and Kss is the equilibrium constant for 

the solid solution: 

 

12 2 2
3

1

x x

ss ss

Sr Ca CO
K Q  (5.7) 
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Another thermodynamic state of interest is the so-called primary saturation. It occurs when a solid 

solution dissolves and the aqueous solid solution is at thermodynamic equilibrium with another 

(secondary) solid solution. Glynn and Reardon (1990) focus on the distinction between actual 

thermodynamic equilibrium, primary saturation and stoichiometric saturation; however, these last two 

models are not treated in this work. 

Going back to actual thermodynamic equilibrium, directly from equation (5.6), for an ideal solid 

solution at thermodynamic equilibrium, we have: 

 
1 1 1

1.0
EM EM EMN N N

EM
p EM

EM EM EMEM

Q
x SI

K
 (5.8) 

where SIEM is the solubility index of end-member EM and xEM its mole fraction. Equations (5.6) and 

(5.8) define the condition of solid solutions at equilibrium; how can they be exploited in an algorithm 

to determine aqueous concentrations and mole fractions in the solid phase? Starting from the 

assumption that, given an aqueous solution, the solid solution is not present, equilibrium is computed 

once and a test is performed afterward. Equation (5.8) works as a criterion of existence of the solid 

solution whenever: 

 
1

1.0
EMN

EM

EM EM

Q

K
 (5.9) 

If equation (5.9) is satisfied, the assumption of non-existence is wrong and a solid solution exists.  

Otherwise, the assumption is correct and no solid solution is formed. It s interesting to stress how the 

criterion accounting for the existence/non-existence of the solid solution is based on the combination 

of solubility indexes of all involved minerals and that there is no threshold to be satisfied on the 

amount of a single mineral/end-member. In fact, at thermodynamic equilibrium, none of the end-

members is supersaturated (P. D. Glynn 1990). This characteristic could be exploited while treating 

isotopes, which are present in traces and would never be supersaturated if treated as a single mineral. 

Whenever the solid solution exists, a series of new unknowns XssEM (with p=1, NEM ) for each 

involved solid solution has to be computed. The actual number of unknowns is: 

 

 _
1

Nss

Xss EM i
i

N N  (5.10) 

where Nss is the number of existing solid solutions and NEM_i is the number of end members of solid 

solution i. Consequently, NXss equations have to join the nonlinear system Y=0 presented in Chapter 3. 
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From now on, we will consider the interaction of the aqueous solution with only one solid solution, 

therefore Nss=1 and NEM additional unknowns XssEM. For each end-member, an equation similar to 

equation (5.6) is added to the system. In order to simplify the computational burden and be coherent 

with the logarithmic formulation of Chapter 3, equation (5.6) is implemented in the following 

logarithmic form: 

 

 ln ln 0 1,...,EM EM
EM EM EM

EM TOT

Q Xss
Y EM N

K Xss
 (5.11) 

Where YEM is the residual function associated to end member EM, 
1

EMN

TOT EM

EM

Xss Xss

 
is the number 

of moles in the solid solution (and all other symbols are defined above). The nonlinear system takes 

the following dimensions: (NX + NCp + NXss) equations for (NX + NCp + NXss) unknowns. Although 

equation (5.11) is the only extension in the size of the system and the number of equations is now 

equal to the number of unknowns, further modifications to the system Y=0 are required. In fact, each 

unknown XssEM accounts for some mass that must be included in mass conservation equations. The 

mass conservation equation for a generic primary species becomes: 
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Given that the nonlinear system is going to be solved through Newton Raphson method, and that this 

method implies the computation of the Jacobian matrix, modifications of the size and content of the 

system imply modifications of the Jacobian matrix. Considered that the size of the matrix corresponds 

to the number of unknowns, an increase in the number of unknowns results in an increase of the size 

of the matrix, which now becomes (NX + NCp + NXss) rows for (NX + NCp + NXss) columns. New rows 

and columns of the Jacobian matrix have to be filled. In the first NX rows, mass conservation equations 

such as equation (5.12) must be derived with respect to new unknowns XssEM: 

 

 ,
j

j EM

EM

Y
bss

Xss
 (5.13) 
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At the same time, new residual functions such as equation (5.11) must be derived with respect to old 

( j = ln({Xj }) where { Xj } is the activity of  jth primary species) and new (XssEM) unknowns:  
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 (5.14) 

To conclude this section, it must be mentioned that a number of solid solutions may coexist, while an 

end-member cannot coexist with a pure mineral of the same stoichiometric composition (because of 

equation (5.8), the end-member will precipitate systematically before the pure phase reaches 

saturation).  

5.1.3.2 Kinetic models for solid solutions  

 

Whereas solid solutions at different equilibrium stages have been studied in details, kinetic models for 

solid solutions are a more recent topic of interest. A number of experimental works have provided 

information about solid solution nucleation and growth (Prieto et al. 1997; Sánchez-Pastor et al. 2006) 

but the development of kinetic models is still ongoing. For instance, in the guidelines for nuclear waste 

repositories performance assessment (Bruno 2007), only a small paragraph is dedicated to a possible 

kinetic approach to solid solutions. 

In both the works of Nourtier-Mazauric (2005) and Lichtner and Carey (2006), transition state theory 

(TST) for precipitation/dissolution rates is introduced and applied to solid solutions, although always 

with a fixed composition. In Nourtier-Mazauric (2005), a unique reaction rate is established for the 

solid solution and in Lichtner and Carey (2006), a solid solution of variable composition is substituted 

with a grid of solid solutions of fixed composition treated as pure minerals.  

 

5.1.3.3 Exploiting solid solutions concept for stable kinetic isotope fractionation  

 

The expression solid solutions  related to stable kinetic isotope fractionation first appears in  Druhan 

(2012), Druhan et al. (2013) and Wanner and Sonnenthal (2013). Models in these works are strongly 

inspired by the work of DePaolo (2011), who, nevertheless, never talks about solid solutions . 

Druhan (2013) starts from the classical transition state theory (TST) for Calcite precipitation (see 

equation (5.15), where rf and rb are the forward and backward rates, kf and kb are forward and 
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backward kinetic constants, ai is the activity of the chemical species, rnet is the global rate of the 

reaction, Ks =kb /kf  is the solubility product). While the activity coefficient of a mineral pure phase is 

usually considered equal to 1.0, this is not the case for solid solution treat (Anderson and Crerar 1993). 

For ideal solid solutions (simplification that is justified in that different nuclides are the closest 

approximation to an ideal solid solution) equation (5.4) is valid and the solid activities may be 

substituted with the mole fractions in the solid.  

 

 

2 2
3

3

2 2
3

3
3

1

f f

b b

net f b b

S

r k Ca CO

r k CaCO

Ca CO
r r r k CaCO

K CaCO

 (5.15) 

 

Therefore, two equations may be rewritten for the two Calcium isotopes 40Ca2+ and 44Ca2+, which are 

then considered as two end members of a solid solution, each one with its own kinetic constant: 
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According to the situation, different models for the molar fraction x can be adopted. Equations (5.16) 

(also presented in their second-order variant) proved extremely efficient in describing Calcium 

fractionation when implemented in code CrunchFlow.  

A slightly different implementation of the same concept (i.e. assimilating the different minerals 

containing different isotopes to end-members of a solid solution) was performed in the same year 

(Wanner and Sonnenthal 2013) in the numerical model TOUGHREACT (Xu et al. 2011) to reproduce 

Chrome fractionation.     

Chrome fractionation was used before to prove the effectiveness of another model implemented in 

MIN3P (Jamieson-Hanes et al. 2012); although solid solutions  are never mentioned in the work, the 

model is similar to those of Druhan et al. (2013) and Wanner and Sonnenthal (2013). In fact, MIN3P 

considers precipitation of the two different isotopes as the precipitation of the same mineral with two 

different rates: 
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The difference between the two reaction rates is ensured by two different kinetic coefficients (that are 

not constant, but functions of the isotopic ratio): 
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where kBulk is the kinetic constant for CaCO3 and R is the isotopic ratio. While establishing a 

benchmark through codes CrunchFlow, TOUGHREACT, FLOTRAN, and MIN3P (Wanner et al. 

2015) write that all codes embed kinetic solutions to treat precipitation of different isotopes.  
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5.2 Numerical simulations of solid solutions 

 

5.2.1 Modeling solid solutions at thermodynamic equilibrium 

 

5.2.1.1 Verification with PHREEQC  

 

A partial verification of the correct implementation of the algorithm treating thermodynamic 

equilibrium between an aqueous and a solid solution was performed following the evolution of an 

Aragonite Strontianite ((Sr,Ca)CO3) ideal solid solution with both SpeCTr (the reactive transport code 

resulting from the reaction module developed through Chapter 3,4,5 and a transport module detailed in 

Chapter 6) and PHREEQC.  The case study simulates the evolution of an ideal solid solution 

constituted of two end-members: Aragonite (which has the same stoichiometry of Calcite, CaCO3, but 

a different molecular structure) and Strontianite (SrCO3). The setup of the numerical experiment is the 

following: an aqueous solution with only Calcium and Carbon gradually receives SrCO3 contributions 

and CaCO3 becomes the end-member of the forming solid solution. Input quantities for SpeCTr and 

PHREEQC are reported in Table 5.1  (input files are built differently) while equilibrium constants are 

provided in Table 5.2. 

 

SpeCTr PHREEQC 

TCa 3.932 10-3 mol/KgH2O TCa 3.932 10-3 mol/KgH2O 

TH2O 55.5 mol/KgH2O TC 7.864 10-3 mol/KgH2O 

TCO3 7.864 10-3 mol/KgH2O pH 7.0  

TH+ 7.864 10-3 mol/KgH2O    

TSr2+ 10-5 mol/KgH2O    

 

Table 5.1  Total aqueous concentrations for batch solid solution experiment. 

 

 

Equilibrium constants  

Log10KCaCO3 -8.336 

Log10KSrCO3 -9.271 

 

Table 5.2  Equilibrium constants for solid solution end-members Aragonite (CaCO3) and Strontianite 

(SrCO3). 

 

SrCO3 is gradually added to the system, starting from a negligible concentration and arriving to 1.0 

mol/KgH2O. In the code SPECY, contributions of SrCO3 (actually, contributions of total concentrations 
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of components, TSr2+ and TCO32-) are added through titration module over 100 steps on a logarithmic 

scale ranging from a negligible value to 1 mol/KgH2O. In PHREEQC, on the other hand (the code does 

not allow to add on a logarithmic scale), SrCO3 was administrated at irregular intervals (from 0 to 

0.005 mol/KgH2O in 500 steps, then from 0.005 to 0.1 mol/KgH2O in 20 steps and then from 0.1 to 1 

mol/KgH2O in 20 steps); the input file of PHREEQC is available in Annex IV. 

Figure 5.1 shows the results provided by PHREEQC and SpeCTr, especially the evolution of the 

composition of the solid solution throughout the simulation: continuous black (Aragonite) and red 

(Strontianite) lines represent solutions obtained with SpeCTr, black and red squares represent results 

obtained with PHREEQC. 

Figure 5.1  Graphic representation of the evolution of the number of moles of Aragonite (CaCO3) and 

Strontianite (SrCO3) end-members vs. the number of moles of SrCO3 added in the system; results are 

obtained with both SpeCTr (continuous lines) and PHREEQC (squares). 

This example shows that the algorithm introduced in paragraph § 5.1.3 was successfully implemented 

in the code (major mistakes in the implementation would prevent the solution to converge). Limitation 

to ideal solid solutions could be easily removed re-introducing p activity coefficients in equation (5.6) 

for real (binary) solid solutions. The code is now equipped to potentially treat dissolution and 

precipitations of multiple solid solutions with multiple poles at thermodynamic equilibrium; these 

features could be exploited for both classic and isotopic chemistry.  
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5.2.1.2 Fe-Cr redox reaction, a reactive transport example 

 

The following reactive transport example involves precipitation of a Fe-Cr solid solution. It is 

presented in order to provide another application of the algorithm described in paragraph § 5.1.3.1, in 

conditions that are numerically different from the (Sr,Ca)CO3 solid solution in batch reactor. The aim 

is purely to show that the algorithm converged and that provided solutions compatible with 

experimental results; the choice of parameters used in the model is beyond the scope of this chapter.  

The problem involves Fe-Cr redox reaction with consequent precipitation of a solid phase, modeled as 

a solid solution at thermodynamic equilibrium. Results were obtained and presented by Dr. Jérôme 

Carrayrou at MAMERN VII 2017 International Conference on Approximation Methods and 

Numerical Modeling in Environment and Natural Resources.        

 

 

Figure 5.2  Photo a) and schema b) of the experimental setup of the Fe-Cr redox reaction. 

  



124

The simulation reproduced a laboratory scale experiment in which two solutions are injected into a 

porous medium ( 0=0.35, porosity is considered variable) through separate tubes at the inlet: a Cr(VI) 

solution (3.0 10-3 mol/L) is injected in the x < 0 part of the domain, while in the x > 0 part is injected a 

Fe(II) solution (9.0 10-3 mol/L); precipitation occurs at the interface, generating a solid phase 

composed at around 75% of Fe and 25 % of Cr.  Figure 5.2 shows the experimental setup and the 

locations of pH and Eh in situ measurements (pH1-pH6, electric potential, Eh1-Eh6) during the 

experiment (980 min).  

 

Parameter Value Unit 

Porosity   0.35 [-] 

Conductivity 10-3 [cm/min] 

Vx 0.5  [cm/min]) 

L 0.1 [cm] 

T 0.05 [cm] 

D 10-4 [cm2/min] 

 

Table 5.3  Main flow and transport parameters used in the Fe-Cr solid solution simulation. 

 

For the numerical simulations, the domain has been discretized with two different meshes, one of 

square cells of 5mm side and the other of 1 mm side. From a chemical point of view, the experiment is 

modeled through 44 chemical species represented by 9 primary species; the minerals are allowed to 

precipitate are FeOOH and CrOOH. The two minerals were modeled as end-members of a binary solid 

solution, principle reactions are resumed in the Morel table (Table 5.4).  

 

 

H+ e- Fe++ CrO4-- K+ SO4-- H2CO3 Cl- SiO2(aq) KEQ 

H+ 1 0 0 0 0 0 0 0 0 1.0 

Fe++ 0 0 1 0 0 0 0 0 0 1.0 

CrO4-- 0 0 0 1 0 0 0 0 0 1.0 

K+ 0 0 0 0 1 0 0 0 0 1.0 

SO4-- 0 0 0 0 0 1 0 0 0 1.0 

HCO3- -1 0 0 0 0 0 1 0 0 1.0 

Cl- 0 0 0 0 0 0 0 1 0 1.0 

OH- -1 0 0 0 0 0 0 0 0 1.0 10-14 

O2 -4 -4 0 0 0 0 0 0 0 1.48 10-85 

H2 2 2 0 0 0 0 0 0 0 1.0 

H2O2 -2 -2 0 0 0 0 0 0 0 1.0 10-59 
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H2CO3 0 0 0 0 0 0 1 0 0 1.0 

CO3-- -2 0 0 0 0 0 1 0 0 2.51 10-17 

HSO4- 1 0 0 0 0 1 0 0 0 9.44 10 

H2SO4 2 0 0 0 0 1 0 0 0 9.53 10-2 

SiO2(aq) 0 0 0 0 0 0 0 0 1 1.0 

FeOH+ -1 0 1 0 0 0 0 0 0 4.84 10-10 

FeOOH- -3 0 1 0 0 0 0 0 0 6.2 10-30 

Fe(OH)2 -2 0 1 0 0 0 0 0 0 2.51 10-22 

FeHCO3+ -1 0 1 0 0 0 1 0 0 1.26 10-5 

Fe(CO3)2-- -4 0 1 0 0 0 2 0 0 1.12 10-26 

Fe(OH)CO3- -3 0 1 0 0 0 1 0 0 1.86 10-23

FeSO4 0 0 1 0 0 1 0 0 0 1.58 102 

FeCl+ 0 0 1 0 0 0 0 1 0 6.84 10-1 

FeCl2(aq) 0 0 1 0 0 0 0 0 0 6.59 10-9 

FeO(aq) -2 0 1 0 0 0 0 0 0 3.87 10-21 

Fe+++ 0 -1 1 0 0 0 0 0 0 8.55 10-14 

FeOH++ -1 -1 1 0 0 0 0 0 0 5.33 10-16 

Fe(OH)2+ -2 -1 1 0 0 0 0 0 0 6.50 10-21 

FeSO4+ 0 -1 1 0 0 1 0 0 0 7.06 10-12 

FeOOH(aq) -3 -1 1 0 0 0 0 0 0 8.15 10-26 

FeO+ -2 -1 1 0 0 0 0 0 0 1.91 10-19 

FeO2- -4 -1 1 0 0 0 0 0 0 2.06 10-35 

FeCl++ 0 -1 1 0 0 0 0 1 0 2.55 10-12 

Cr++ 8 4 0 1 0 0 0 0 0 1.23 1068 

Cr+++ 8 3 0 1 0 0 0 0 0 9.55 1074 

CrOH++ 7 3 0 1 0 0 0 0 0 1.48 1071 

Cr(OH)2+ 6 3 0 1 0 0 0 0 0 8.92 1064 

Cr(OH)4- 4 3 0 1 0 0 0 0 0 3.16 1047 

HCrO4- 1 0 0 1 0 0 0 0 0 3.16 106 

KCrO4- 0 0 0 1 1 0 0 0 0 3.72 

HSiO3- -1 0 0 0 0 0 0 0 1 1.46 10-10 

Fe(s) 0 2 1 0 0 0 0 0 0 2.43 10-17 

SiO2(s) 0 0 0 0 0 0 0 0 1 5.65 103 

FeOOH(s) -3 -1 1 0 0 0 0 0 0 *1.37 1018 

CrOOH(s) 5 3 0 1 0 0 0 0 0 
*1.27 10-

69 
 

 

Table 5.4 - Reduced Morel Table for the problem Fe-Cr redox reaction (*Equilibrium constants were 

calibrated on the basis of experimental results) 
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The spatial distribution of the solid phase at the end of the simulation is reported in Figure 5.4 for the 

two meshes. It is evident from Figures 5.4a (coarse mesh) and 5.4b (fine mesh) that the mesh size has 

an impact on results; in both Figures 5.4a and 5.4b, the plume of precipitate appears more 

concentrated in the first half of the domain, a behavior that is consistent with the experimental plume 

in Figure 5.2a. The plume is wider in Figure 5.4a than in 5.4b, being this last more consistent with 

experimental results. With both meshes, some precipitation occurs at the outlet placed in the Fe2+ 

section. With the coarse mesh, the precipitate at the outlet remains isolated, while with the finer mesh 

it is linked to the main plume. Although the bifurcation of the plume that is visible in Figure 5.4b does 

not correspond to the experimental reality, the simulation properly reproduces the deviation of the 

plume towards the outlet, which is clearly visible in photos taken of the experiment (Figure 5.5a).   

The fine mesh also better captions the asymmetric nature of the precipitation, which is evident in 

Figure 5.3a, a picture of the bottom of the transparent flow cell taken at the end of the experiment. 

Figures 5.3b and 5.3c compare the numerical simulation at the same location. The asymmetric 

precipitation is also visible in Figure 5.5b, where the solid phase on the right (Cr) side is less diffused 

than the one on the left (Fe) side of the flow cell.    

 

 

Figure 5.3  In the first 4.5 cm of the domain, the 5mm mesh (b) misses the asymmetric precipitation 

detected in the experiment (a) whereas the 1mm is able to properly reproduce this behavior. 

 

Comparisons between the measured data and the simulated curves are provided in Figure 5.6 for pH 

and in Figure 5.7 for the electric potential Eh. Experimental data are reported with continuous lines 

while simulated curves with dashed lines. While experimental and simulated curves at the different 

observation points are in quite good agreement for the pH, and the mesh only slightly modifies results, 

the electric potential shows a more troubled behavior. Although Figures 5.7a shows more oscillations 
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with respect to Figure 5.7b on curves Eh2, Eh4 and Eh1, Eh3, the curves obtained with the coarse 

mesh seem to be in better agreement with experimental results (particularly Eh5 and Eh6, which 

should reach an asymptote at 0.7 V and they instead grow until 0.8 V for the coarse mesh and 0.9 for 

the finer mesh).  Reasons of some of the discrepancies between simulated and measured values are 

indubitably numerical, for example in the case of oscillations of Eh1 and Eh3 or Eh2 and Eh4 values 

(the extension of the oscillations is reduced with the mesh size). Additional tests should be performed 

on the transport time-stepping since other test-cases in this work showed dependence from the 

stepsize.  

 

 

 

Figure 5.4  Graphic representation of the solid phase over the domain at the end of the simulation 

with the 5 mm mesh a), and with the 1 mm mesh b).   

 

Other mismatches may instead be due to retarded response of the probes, which indeed show unstable 

behavior between 50 and 150 min after the beginning of the simulation. Concerning the values of the 

asymptotes, it is also possible that probes measure a certain volume of water collected from a zone 



128

corresponding to more than one element of the mesh, creating artificial manipulations of 

concentrations.  

 

 

 
 
 

Figure 5.5  a) the deviation of the plume in the direction of the outlet and b) the vertical section at the 

inlet showing some asymmetric precipitation of the solid solution 
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Figure 5.6  pH experimental (continuous) and simulated (dashed) results for coarse (a) and fine (b) 

meshes for the Fe-Cr solid solution 

a) 

b) 
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Figure 5.7  Eh experimental (continuous) and simulated (dashed) results for coarse (a) and fine (b) 

meshes for the Fe-Cr solid solution 

a) 

b) 
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5.3 Conclusions about solid solutions 

 
 
Throughout this chapter, the theoretical background of solid solutions  thermodynamics has been 

introduced, followed by a description of the possible ways to model solid solutions  thermodynamic 

equilibrium (and analogous states such as stoichiometric saturation) in a mass action law context. Two 

numerical examples were provided in order to test the implementation of the algorithm: a very simple 

batch precipitation of a (Sr,Ca)CO3 solid solution formation and a more articulated reactive transport 

example including (Fe,Cr)OOH precipitation. The batch experiment ensured that the algorithm is able 

to reproduce successfully a simulation obtained with PHREEQC. Beside the solid solutions  aspect, 

this experiment also tested the module capability to add reactants into a batch reactor, modifying total 

concentrations available for speciation ( titration module  in SPeCTr). The reactive transport 

simulation showed that i) the algorithm converges in numerical conditions different from the batch 

reactor ii) there is a satisfying degree of coherence between the numerical solutions and the 

experimental data although some inaccuracies remain iii) this type of interface problems can be 

potentially modeled with solid solutions. A discussion about the choice of equilibrium constants, 

transport parameters, porosity update algorithm goes beyond the scope of this Chapter although these 

parameters could provide better agreement between experiment and simulations. 

It has to be kept in mind that the two examples do not ensure the capability to model every possible 

solid solution or prove to any extent the absence of limitations in the algorithm; therefore the 

importance of running as many benchmarks and problems as possible cannot be stressed enough.  

It has abundantly been remarked that the theory behind kinetic models for solid solutions is not a well-

established issue. Models exploiting the concept of solid solution to reproduce kinetic stable isotope 

fractionation are an extremely powerful and successful tool, but a careful use in terminology is 

mandatory to avoid the impression that the model could or should be extended to general solid 

solutions not containing isotopes of the same element. For example, there is no theoretical basis to 

extend to kinetic precipitation the two examples provided in this chapter. In order to stress this point of 

view, the numerical modeling of transition state theory (TST) modified on the basis of solid solutions 

is going was treated in Chapter 2. 
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Chapter 6  Building SpeCTr, a reactive transport code  

 

6.1 Coupling flow, transport and reaction 

 

6.1.1 Governing equations 

 

The simulation of transient and steady flow through a single continuum model responds to governing 

equations obtained through mass conservation and momentum equation (Darcy s law in a single 

continuum porous medium): 

 

 

( )
0

t

h

q

q K

 (6.1) 

where q [L/T] is the Darcy flux,  [M3/L3] is the fluid density,  [-] is the porosity, defined as the ratio 

between the volume of the pores and the volume of the porous medium, K is the hydraulic 

conductivity [L/T] tensor and h is the hydraulic head [L].  

Combining mass action equation and Darcy s law, after a series of developments, a single equation 

function of the hydraulic head h can be reached, with s [L-1] the specific storage coefficient: 

 

 . 0
h

s h
t

K  (6.2) 

Transport of a single species i in a single continuum model is described by a advection-

diffusion/dispersion type partial differential equation (PDE) that determines the variations of 

concentration in space and time. When transport is not conservative, but reactive, a source term 

appears in the PDE, providing a link between transport and reactions: 
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where  [-] is the kinematic porosity, C [mol/L3] is the concentration of the chemical species, D is the 

dispersion tensor [L2/T], L, T  are the longitudinal and transverse dispersivity [L], Dm is the pore 
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water diffusion coefficient [L2/T], I the unit tensor; S [mol/L3/T] is the reaction rate of a reaction 

causing production/consumption of species C ; q [L/T] is the Darcy flux known from the solution of 

system (2.1). Transport operator is often referred to as .( . )L q D  in the literature and 

equation (6.3) can be synthetized by: 

 
( )

( )
C

L C S
t

 (6.5) 

  

Analytical solutions for PDEs (6.2) and (6.3) are available exclusively for extremely simplified 

problems (i.e. van Genuchten and Wierenga 1976) and the use of numerical methods is mandatory. 

Numerical methods such as finite differences (Steefel and MacQuarrie 1996) or finite elements (Istok 

1989) provide approximate solutions.  

While flow equations (6.2) and reactive transport equations (6.3) can be solved independently, this is 

not the case for reaction and transport operators within equation (6.3). In fact, reaction rate S depends 

from concentration C brought from transport that is, in turn, dependent from the reaction rate. 

Equation (6.5) can be rewritten as:  

 

 
( )

( ) ( )
C

L C S C
t

 (6.6) 

Two different approaches exist to take this dependence into account: the first, one-step or global 

approach or global-implicit, is to solve simultaneously transport and reaction equations, that is to say 

equation (6.6) as it is; the other is the so-called Operator Splitting approach that consists into solving 

subsequently transport and reaction terms, splitting equation (6.6) in two. A number of studies have 

been performed in order to assess the superiority of one approach over the other (Yeh and Tripathi 

1989; Saaltink et al. 2000; Saaltink et al. 2001; Fahs et al. 2008) and the debate in workshops is 

ongoing but the convenience of one methodology still has to be proven.  

 

6.1.2 Global approach 

 

Although it was made clear from the beginning that this work is conceived under an Operator Splitting 

approach (for a number of reasons and exigencies explained in Chapter I), a short presentation of one-

step/Global Approach is proposed for the sake of completeness.  

Global Approach consists in solving simultaneously transport and reaction operators. Several models 

were developed throughout years based on Global Approach (Valocchi et al. 1981; Lichtner 1985; 

Steefel and Lasaga 1994; Steefel and Yabusaki 1995; Saaltink et al. 1998; Saaltink et al. 2001; Kräutle 
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and Knabner 2005) and it is implemented in three over twelve analyzed codes by Steefel et al. (2015) 

both as an alternative (CrunchFlow, PFLOTRAN) or unique (MIN3P) coupling technique. 

Within global approach, two variants exist to solve coupled systems (Yeh and Tripathi 1989; Fahs 

2007): Direct Substitution Approach (DSA) and mixed Differential Algebraic Equations (DAE).  

DAE approach consists in solving a system formed by differential equations of transport and 

algebraic, nonlinear equations describing reactions; DSA consists in substituting reaction equations 

directly into transport equations and solving the resulting system. Although further distinctions within 

global DSA exist (Fahs 2007), they go beyond the scope of this work. Despite alternatives exist, 

Global DSA is the approach usually employed in comparisons with Operator Splitting techniques 

(Saaltink et al. 2000; Saaltink et al. 2001; Steefel and MacQuarrie 1996; Fahs et al. 2008). 

A basic explanation of Global implicit DSA is available in (Steefel and MacQuarrie 1996); adapting 

equation (6.6) to one species, one reaction, one dimensional flow, diffusion-reaction problem with 

constant porosity we obtain: 
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According to Steefel and MacQuarrie (1996) the global implicit approach in finite differences for 

previous equations is: 
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where v, v-1,v+1 are the cells of the spatial discretization and n and n+1 are present and future instant. 

If the reaction term S is linear, a linear system can be written in the following form (Steefel and 

MacQuarrie 1996): 
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 (6.9) 

 

where N is the number of the cells of spatial discretization, av, bv  and cv are the coefficients of the 

linear system and dv is the right hand side. Although extending previous system to two or three 

dimensions implies a modest complication of the formulation, extending the approach to a 
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multicomponent and multi-species significantly increases the size of the matrix and the system to be 

solved becomes nonlinear (Steefel and MacQuarrie 1996; Steefel et al. 2015).  

 

6.1.3 Operator splitting 

 

Operator splitting approach consist in solving sequentially transport and chemistry operators, this 

implying that two algorithms have to be solved subsequently in the same code or that two codes have 

to be coupled and run together. Several reactive transport models were developed based on an operator 

splitting approach (Cederberg et al. 1985; Appelo and Willemsen 1987; Yeh and Tripathi 1991; 

Engesgaard and Kipp 1992; Simunek and Suarez 1994; Parkhurst et al. 1999; Xu et al. 1999; Saaltink 

et al. 2001; Carrayrou et al. 2004) and reactive modules designed for coupling keep being developed 

(Bea et al. 2009; Leal et al. 2014, 2015). 

Two principal techniques exist to split transport and reaction operators: Sequential Non Iterative 

Approach (SNIA) and Sequential Iterative Approach (SIA). The difference between the two 

approaches is that SNIA solves separately transport and reaction but does not iterate between the two 

while SIA does (Saaltink et al. 2001). 

Adapting the simplified example of equation (6.7) proposed by Steefel and MacQuarrie (1996), SNIA 

approach would solve at first transport equation: 
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Solution of equation (6.10) through numerical methods over the time interval t=t 
n+1 

 t 
n
 provides a 

new concentration C 
trans that is an intermediate step between Cn and Cn+1. The reaction step follows, 

integrating over the same the time step t=t 
n+1 

 t 
n
 providing the final concentration Cn+1.  

 

( )
dC

S C
dt

 (6.11)

 

This approach in based on the assumption that reactions take place only after that transport is 

completed and this approximation may generate coupling errors (Valocchi and Malmstead 1992).  

An alternative to previous formulation (still within SNIA approach) is the so-called Strang splitting 

(Steefel and MacQuarrie 1996), where two transport steps are performed around a single reaction 

solution. Equations (6.10) is integrated over half the time step t=t 
n+1 

 t 
n, t/2 providing a 

concentration Ctrans(1). This first approximation is used as initial concentration for the integration of the 

reaction term (6.11) which is instead performed over the whole time step t. 
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A conclusive transport step is performed with the integration of (6.10) over t/2 that provides the 

evolution Creac  C 
n+1.  

Two non-iterative previous approaches tend to cause a coupling error. A more sophisticate approach is 

constituted by SIA, an iterative sequence of transport and reaction steps that continues until given a 

convergence criteria is satisfied. According to Steefel and MacQuarrie (1996), several different 

formulations of this approach have been proposed and their formulation is often confusing. The idea is 

that equation (6.7) is split in two copies . In one copy  the equation is solved with the reaction term 

considered as a source term (known). In the other copy  of the equation, is the transport term that is 

considered a source term. Iterations continue until the two copies  provide the same results.     
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where m is the index counting iterations within the computation of a single time step t, grey terms Sm 

and Lm are considered as source terms. At the iteration m+1, source terms are updated with their best 

approximation:  
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Iterations continue until concentrations computed with the two versions of equation (6.13) are close 

enough (some tolerance must be defined). Although SIA was intended as a compromise between the 

global-implicit and the operator splitting approaches in order to limit coupling errors (Carrayrou 2001; 

Saaltink et al. 1998, 2001; Kräutle and Knabner 2005), the approach may result in numerically 

inefficient (Saaltink et al. 2001) or instable (Engesgaard and Kipp 1992; Steefel and MacQuarrie 

1996) behavior.  
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6.1.4 War of the approaches 

 

The first work of comparison between Global Approach and Operator Splitting (Yeh and Tripathi 

1989) was definitely favorable to Operator Splitting, pointing out the disproportionate computational 

effort required by Global Approach. This outcome was partly due to the still poor computational 

resources available at the time. More recent works are focused on establishing strengths and 

weaknesses of the two methods.  

Strengths of Operator Splitting are: OS leads to the formation of smaller systems whose solution needs 

less memory (Yeh and Tripathi 1989; Saaltink et al. 2001; Kräutle and Knabner 2005) and it is easier 

to put in place (Saaltink et al. 2001); it allows the coupling of already existing codes and consequently 

the choice of specific numerical schemes for each operator (Valocchi and Malmstead 1992; Carrayrou 

et al. 2004); the modular aspect allows more flexibility and is more suited for parallelization 

(Yabusaki et al. 1998). On the other hand, although Global Approach results memory-consuming is 

more precise and does not introduce intrinsic errors dues to Operator Splitting (Carrayrou 2001; 

Saaltink et al. 1998, 2001; Kräutle and Knabner 2005); moreover it has quadratic convergence (Xu et 

al. 1999; Carrayrou 2001; Saaltink et al. 2001; Kräutle and Knabner 2005) and assures a lower number 

of iterations to converge.  

 

6.1.5 Multicomponent reactive transport 

 

Equations (6.3) to (6.13) are written for a generic chemical species, C. In case of multicomponent 

reactive transport, several chemical species Ci (i=1, Nc) are transported and expected to react.  

We have already explained in Chapter 3 how a subset of those Nc species may describe the whole 

reaction network under the assumption of thermodynamic equilibrium. They go under the name of 

components or primary species and are usually indicated with symbol Xj.  

At thermodynamic equilibrium, reactions are governed by two set of equations: mass conservation and 

mass action laws. Equations of mass conservation involve total concentrations Tj of a component Xj 

that is shared among species during speciation. In Chapter 4 it is also explained total concentrations Tj 

constitute the connection between thermodynamic equations and kinetic reactions.  

Steefel and MacQuarry (1996) specify that, in order to reduce the number of equations, both SNIA and 

SIA algorithms can be written in terms of total concentrations instead that as functions of chemical 

species.  Until now, no distinction was made between total dissolved concentration, Tj
d  and total fixed 

concentration Tj 
f. Whenever transport is taken into account a distinction is due. It is intuitive that total 

fixed concentrations won t be transported; therefore equation (6.6) takes the following form: 
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where Tj
d is the dissolved total of primary species Xj, and Sj is the associated production/consumption 

rate, which depends from concentrations of primary species X (which, in turn, depend from available 

total concentrations T). Decoupling equation (6.15) through Operator Splitting (SNIA) is the approach 

chosen for this work and it results in the following algorithm:  

 

I) Total dissolved concentrations are moved in the porous medium: 
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 (6.16) 

Equation (6.16) is solved for each primary species ( j=1,Nx ) and for each kinetic 

dissolved species, Cci
d. The equation is solved numerically over an interval t. In this 

work, transport equations are solved by code TRACES, that will be described in the 

following paragraphs. Solution of previous equations provides: ( ) ( )d n d trans

j jT T  and 

( ) ( )d n d trans

j jCc Cc .   

II) Totals available for chemical speciation that were updated by transport undergo 

transformations. 
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Solution of equation (6.17) provides new values of dissolved totals, which may change 

according to kinetic reactions, but also following equilibrium precipitation or adsorption. 

Dissolved totals of a generic primary species Xj at instant tn+1 are then obtained: 

( ) ( 1)d trans d n

j jT T  ; A coherent transformation occurs to fixed totals ( ) ( 1)f n f n

j jT T  

and to kinetic species ( ) ( 1)f n f n

j jCc Cc , ( ) ( 1)d trans d n

j jCc Cc .  

 

III) Dissolved total concentrations and dissolved kinetic species are put into equation (6.16) 

and the cycle is repeated for a new t = t
n+2

  t
n+1 continuing until 

tott t . 

 

Some remarks: there is freedom over numerical methods applied to solve differential equations (6.2)

,(6.3) and their adaptations to particular problems, this is why most equations are written in their 

differential form and not in their discretized form. Discretization in time is usually carried out with 
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finite differences, while discretization in space may be carried through finite differences or finite 

elements. Discretization in time may as well be implicit or explicit (a short description of implicit and 

explicit methods is available in Chapter 4). It is useful to remind that the time step t over which 

transport equations and reaction equations are integrated is the same.   

 

As anticipated, in this work the solution of conservative transport is carried out with the program 

TRACES whereas the reaction module developed through Chapters 3, 4 and 5 is used to solve 

chemical equations. The code for flow and conservative transport, TRACES, is presented in the 

following paragraphs.   
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6.2 TRACES 

 

6.2.1 Code capabilities 

 

TRACES (Transport of ReACtive Elements in Subsurface or, in its French version, Transport RéActif 

de Contaminants dans les Eaux Souterraines) is a computer program developed at the Laboratoire 

d Hydrologie et de Géochimie de Strasbourg  of the University of Strasbourg.  

TRACES allows transient or steady flow computations in 2D or 3D heterogeneous domains, although 

for 2D domains computations are restricted to confined aquifers. Parameters values required for flow 

computations are allowed to vary in space, as are boundary conditions. To each cell of the grid, a 

material property index is assigned, permitting simulations of highly heterogeneous domains.  

Fluid and matrix properties, source terms and boundary conditions are also allowed to vary in time 

according to user-specified functions.  

Concerning transport phenomena, TRACES is able to model advection, dispersion, diffusion 

phenomena. The code was initially intended as a reactive transport module and some basic models to 

take into account adsorption (linear, Freundlich, Langmuir isotherms), precipitation/dissolution and 

nuclides generation/degradation were included. Nevertheless, some implemented laws are empiric and 

such approach does not allow a comprehensive understanding of complex phenomena and interactions 

occurring in the porous medium (Steefel et al. 2005).  

 

6.2.2 Numerical schemes 

 

TRACES is based on mixed and discontinuous finite elements methods. These numerical methods 

ensure exact local mass balance, allow high parameter discontinuities between adjacent elements and 

treat full tensors without approximation. This last feature is of great interest, considering that most of 

the reactive transport codes analyzed by Steefel et al. (2015) work with diagonal tensors.  

Mixed hybrid finite elements are employed to solve flow in the porous medium and 

dispersive/diffusive transport. Advective transport is solved by discontinuous Galerkin finite elements 

that generate no oscillations and limited numerical diffusion. Spatial discretization can be achieved 

through triangles or quadrangles for the 2D problems or through tetrahedrons, prisms, and 

hexahedrons for 3D problems. Time discretization scheme is explicit for advection, implicit for flow 

and diffusion/dispersion.  We recall that an explicit time discretization implies that Courant number 

(or Courant-Friedrichs-Lewy number, CFL) criterion is fulfilled, i.e. (for 1D transport): 

  

 1.0
v t

CFL
x

 (6.18) 



141

Where v is the average pore water velocity v = q / . The constraint expressed in equation (6.18) 

ensures that the mass of the solute cannot be moved further than one grid cell in a single time-step 

(Steefel and MacQuarrie 1996). Only fully implicit methods aren t subjected to this limitation.  

Equation (6.18) may become a serious limitation whenever velocity becomes very high with respect to 

the cell size, for example when porosity is updated as a consequence of mineral precipitation or in the 

vicinity of a well. In the case variable porosity,  may decrease to its threshold value, generating a 

disproportionate increase of v. To respect Courant-Friedrichs-Lewy condition the time-step must be 

reduced and may reach values that are unsustainable from a computational point of view. 

Although an implicit discretization in time would be extremely helpful to handle changes in porosity 

or problems where transport is dominant, the advantage of this technique could be mitigated when 

solving reactive transport problems with Operator Splitting. In fact, when dealing with mass 

exchanges between the solid and dissolved phase, the time step required to reduce coupling errors 

could be inferior to the one imposed by the respect of Courant-Friedrichs-Lewy condition (Steefel 

2009). The benchmark proposed in the following paragraphs is a clear example of the manifestation of 

this potential problem. 

 

6.2.3 Coupling with reaction module 

 

Some supplementary attention must be paid to the way of practically coupling transport and reaction 

modules. In the present work, transport is solved through finite elements, this meaning that the 

numerical solution of the equation provides a concentration for each node of the grid. On the other 

hand, the reaction module works with a single concentration characterizing one element (delimited by 

three/for nodes, according to the shape of the elements). This mechanism implies that concentrations 

at nodes must be averaged to provide a single value for the element.  

The algorithm used to handle this transformation must be carefully verified since it can trigger 

oscillations in the solution. Simpler versions of the algorithm should be preferred to more 

sophisticated but less controllable alternatives. The version currently implemented algorithm is an 

arithmetic mean: 
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where MTC is the value at the node and i is its index for species Cj (j =1,Nx). The algorithm used to 

distribute the concentration updated from the chemistry to the nodes is even more important. The 

current version of the algorithm is: 
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6.2.4 SpeCTr 

 

The reactive transport code resulting from the coupling of the reaction and transport modules 

(connected through an operator splitting approach) will be referred to from now on as SpeCTr 

(Spéciation Cinétique Transport in French). 

 

6.3 Validation: coupling and implementation of isotopes 

 

6.3.1 Interest of validation 

 

Although it is generally impossible to certify the absolute correctness of a computer program, the only

way to detect potential malfunctions is through comparisons with analytical solutions, experimental 

data or numerical benchmarks. Analytical solutions (i.e. van Genuchten and Wierenga 1976) are 

available only for extremely simple problems; experimental data are subject to errors in their 

manipulations and various degrees of uncertainty; on the other hand, numerical benchmarks are well 

suited to test the behavior and characteristics of the code.   

In this context, the interest was in testing: i) the quality of the coupling between the transport operator 

and the reaction operator ii) the effectiveness of the implementation of kinetic stable isotope 

fractionation in the reaction module iii) the reliability of SpeCTr in computing reaction networks that 

result in heavy systems of equations iv) the reliability of SpeCTr in simulating realistic geochemical 

scenarios. 

Regarding point iii) and iv), it is interesting to point out that sometimes test-cases used as a basis for 

validations or comparisons are very simple from the computational point of view. Although this is 

necessary in the first stages of development (Calcite-Magnesite example for implementation of TST 

precipitation/dissolution law in the solver DASPK in Chapter 4 and (Sr,Ca)CO3 solid solutions in 

Chapter 5) at some point it is necessary to introduce more complicated and realistic scenarios to test 

the code for what is meant to do, simulating realistic biogeochemical reaction networks. 

The proper benchmark to address points i) to v) listed above is contained in Wanner et al. (2014) who 

provide benchmarks for Cr isotope fractionation obtained with four different mainstream programs 

(CrunchFlow, MIN3P, FLOTRAN, and TOUGHREACT) and based on experimental data from a 

dismissed industrial site in Switzerland (Wanner et al. 2012).  

One of the conclusions in the work of Wanner et al. (2014) is that model to model comparison shows 

that the four codes are able to correctly describe the faith of Cr isotopes. As a consequence, a 

validation obtained with this benchmark would result in a serious assessment of the capabilities of 

code SpeCTr.  
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6.3.2 Presentation of the problem 

 

The benchmarks presented in Wanner et al. (2014) describe Cr(VI) reduction to Cr(III). Cr(VI) is a 

carcinogenic compound that may result from industrial activity or from geogenic sources as well 

(Kota  and Stasicka 2000). Cr(III), on the other hand, is less toxic and less soluble, a combination that 

makes reduction of Cr(VI) to Cr(III) an interesting solution for remediation of polluted sites; Wanner 

et al. (2014) describe Cr(VI) reduction through abiotic aqueous reaction with Fe2+; they propose two 

versions of the benchmark: one that takes Cr fractionation into account and the other that doesn t. 

Cr(III) and its isotopes (52Cr (more abundant) and 53Cr (less abundant)) form minerals throughout non-

fractioning precipitation.  

 

6.3.2.1 Spatial discretization, flow characteristics and ground properties 

 

The spatial discretization consists in a 1D problem solved along 800 meters. 800 subsequent square 

cells of 1 m2 each (with an intrinsic thickness of 1 m) represent the domain. Porous medium is 

homogeneous with fixed porosity =0.17 and a constant flow throughout the domain has been fixed to 

q = 6.8870 10-6 m3/s which corresponds to the 3.5 m/day of average velocity estimated on the field 

(Wanner et al. 2013).   

 

 

Figure 6.1  Schematization of spatial discretization in TRACES: although the domain is 1D, solution 

through finite elements requires surfaces. 800 square cells of 1m2 each represent the domain.  

 

Attention must be paid to TRACES input file: a negative value must be used as inflow condition in 

TRACES. To sum up, two flow boundary conditions were fixed: a Neumann boundary condition of q 

= 6.8870 10-6 m3/s at the inlet and a Dirichlet boundary condition at the outlet (h=1.0 m, which is non-

influent to the problem).  

 

6.3.2.2 Boundary and initial conditions, transport parameters 

 

Flow boundary conditions were described in previous paragraph but they are not the only ones 

required: transport boundary conditions must be fixed too. As it will be explained in the following 

paragraphs, the reaction network of this scenario can be described through 16 (or 18) primary species. 

For each primary species, a total concentration must be specified at the inlet, being this value 
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explicitly 0 mol/L if the primary species is absent. Total concentrations at the inlet (boundary 

conditions) are available in Table 1 as well as initial conditions. Initial and boundary conditions are 

different for Cl- (this allowing the monitoring of a non-reactive tracer) and Cr(VI) (the corresponding 

primary species is CrO4
2+) is initially absent. Total initial concentrations are available together with 

boundary conditions in Table 1. When fractionation is not taken into account, the injected CrO4
2+ 

corresponds to the sum of 52CrO4
2+ and 53CrO4

2+ in Table 6.1. 

 

 

 Initial conditions Boundary conditions 

 pH mol/L pH mol/L 

H  6.2 2.11124 10-4 6.2 2.11124 10-4 

 mg/L mol/L mg/L mol/L 

Na  4.7 2.044385 10-4 4.7 2.044385 10-4 

K  0.9 2.301890 10-5 0.9 2.301890 10-5 

2
Mg  2.0 8.228760 10-5 2.0 8.228760 10-5 

2
Ca  13.58 3.388393 10-4 13.58 3.388393 10-4 

Cl  18.77 5.294781 10-4 18.66 5.263752 10-4 

2

4
SO  8.85 9.213376 10-5 8.85 9.213376 10-5 

3
NO  12.25 1.975679 10-4 12.25 1.975679 10-4 

3
HCO  22.58 3.700669 10-4 22.58 3.700669 10-4 

52 2

4
CrO  0 0 

0.08 
1.39373917 10-6 

53 2

4
CrO  0 0 1.58038813 10-7 

2
Fe  0.01 1.790671 10-7 0.01 1.790671 10-7 

3
Fe  0 0 0 0 

Na  0 0 0 0 

2
SiO  0 0 0 0 

3
Cr  0 0 0 0 

3
Al  0 0 0 0 

 

Table 6.1  Initial and boundary conditions for the Cr Benchmark. They are identical with the 

exception of Cl- and Cr(VI) total concentrations. Cr(VI) is initially absent and injected at the inlet. 
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Figure 6.2  Cr(IV) under the form of CrO42- is absent in the domain, it is injected at the inlet and 

reduced to Cr(III) throughout the domain. 

 

Transport equation (6.3) requires a diffusion/dispersion tensor D described in equation (6.4) ; a 

diffusion coefficient Dm, and a longitudinal ( L) dispersivity coefficients are required for each species 

(transversal dispersivity ( T)  is not required in 1D problems). In this particular case no differences of 

coefficients between the species were imposed. Although in Wanner et al. (2014) longitudinal 

dispersivity L was set to 0, all employed numerical models engender numerical dispersion, which is 

quantified in L = 0.54 m for CrunchFlow and TOUGHREACT and in L = 1 m for MIN3P and 

FLOTRAN. Therefore, the benchmark will be tested with L = 0 m and with values resulting from 

numerical dispersion in CrunchFlow and TOUGHREACT ( L = 0.54 m). The diffusion coefficient in 

water is set to the value Dm=1. 0 10-9 m2/s. 

 

6.3.2.3 Reaction network 

 

From a chemical point of view, the test case involves aqueous equilibrium reactions, kinetic 

homogeneous reactions and kinetic heterogeneous (precipitation) reactions. Equilibrium reactions are 

resumed in Table 6.2: 52 (or 54) chemical species are described through 16 (or 18) primary species 

that generate, through mass action laws, 36 secondary species (this is the reason behind the necessity 

of defining the 16 (or 18)  initial and boundary conditions for transported species in previous 

paragraph). There are indeed 36 equilibrium reactions taking place between the aqueous species, but 

they are not the only homogeneous reactions. Cr(VI) to Cr(III) reduction is described by an 

homogeneous kinetic reaction: 

 

 2 2 3 2
4 ( ) 23 8 3 4aqCrO Fe H Cr Fe H O  (6.21) 

Two versions of reaction (6.21) exist when the two Cr isotopes are taken into account. One defines the 

kinetic reduction of 52CrO4
2- and the other defines the kinetic reduction of 53CrO4

2-: 

 

 

52 2 2 52 3 2
4 ( ) 2

53 2 2 53 3 2
4 ( ) 2

3 8 3 4

3 8 3 4

aq

aq

CrO Fe H Cr Fe H O

CrO Fe H Cr Fe H O
 (6.22) 



146

 H+ H2O Cl- Na+ K+ Mg2+ Fe2+ Fe3+ SO4
2- NO3

- HCO3
- Ca2+ SiO2 Al3+ LogK 

NaOH -1 1 0 1 0 0 0 0 0 0 0 0 0 0 -14.799 

AlO2
- -4 2 0 0 0 0 0 0 0 0 0 0 0 1 -22.199 

AlO+ -2 1 0 0 0 0 0 0 0 0 0 0 0 1 -10.343 

AloH2+ -1 1 0 0 0 0 0 0 0 0 0 0 0 1 -5 

HAlO2 -3 2 0 0 0 0 0 0 0 0 0 0 0 1 -15.604 

CO2 1 -1 0 0 0 0 0 0 0 0 1 0 0 0 6.341 

CO3
2- -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -10.325 

CaCO3 -1 0 0 0 0 0 0 0 0 0 1 1 0 0 -7.009 

CaHCO3 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1.043 

CaOH+ -1 0 0 0 0 0 0 0 0 0 1 1 0 0 -12.384 

CaSO4 0 0 0 0 0 0 0 0 1 0 0 1 0 0 2.1 

HFeO2
- -3 -2 0 0 0 0 1 0 0 0 0 0 0 0 -29.202 

FeCl- 0 0 1 0 0 0 1 0 0 0 0 0 0 0 -0.165 

FeO+ -2 1 0 0 0 0 0 1 0 0 0 0 0 0 -5.652 

FeCl2 0 0 2 0 0 0 1 0 0 0 0 0 0 0 -8.181 

FeO -2 1 0 0 0 0 1 0 0 0 0 0 0 0 -20.412 

FeOH+ -1 1 0 0 0 0 1 0 0 0 0 0 0 0 -9.315 

FeO2
- -4 2 0 0 0 0 0 1 0 0 0 0 0 0 -21.618 

FeOH2+ -1 1 0 0 0 0 0 1 0 0 0 0 0 0 -2.205 

FeSO4 0 0 0 0 0 0 1 0 1 0 0 0 0 0 2.2 

FeSO4
+ 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1.917 

HFeO2 -3 2 0 0 0 0 0 1 0 0 0 0 0 0 -12.021 

FeCl2+ 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1.475 

HNO3 1 0 0 0 0 0 0 0 0 1 0 0 0 0 -1.308 

H2SO4 2 0 0 0 0 0 0 0 1 0 0 0 0 0 -1.021 

HSO4
- 1 0 0 0 0 0 0 0 1 0 0 0 0 0 -1.975 

HSIO3
- -1 1 0 0 0 0 0 0 0 0 0 0 1 0 -9.836 

KHSO4 1 0 0 0 1 0 0 0 1 0 0 0 0 0 -1.502 

KSO4
- 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0.875 

MgCO3 -1 0 0 0 0 1 0 0 0 0 1 0 0 0 -7.365 

MgHCO3
+ 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1.033 

MgOH+ -1 1 0 0 0 1 0 0 0 0 0 0 0 0 -11.682 

MgSO4 0 0 0 0 0 1 0 0 1 0 0 0 0 0 2.22 

NaHCO3 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0.149 

NaSO4
- 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0.696 

OH- -1 1 0 0 0 0 0 0 0 0 0 0 0 0 -13.991 

 

Table 6.2  Aqueous equilibrium reactions in the reaction network for the Cr fractionation benchmark. 
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Each version of equation (6.21) has its own kinetic formulation, resulting in Cr fractionation: 

 

 
2
4

2
4

52

52

53 53

53
( ) / ( )

CrO

CrO

r k T

r k T Cr III Cr VI
 (6.23) 

 

where 53Cr(III)/Cr(VI) = 0.9966 in this work (Wanner et al. 2014). Five kinetic heterogeneous 

reactions (which are indeed six when the two Cr isotopes are studied separately) are taken into account 

too. They are resumed in Morel-type Table 3 and the associated constants and solubility products are 

listed in Table 4. All minerals follow a TST type kinetic law for precipitation/dissolution: 

 

 1S

S

nm
Q

r k A
K

 (6.24) 

where we remind r is the reaction rate [mol/T/ MH2O], As=Am / w /  [L2-min/MH2O] is the reactive 

surface (Am [L
2-min/ L3] is the specific surface reported in Table 4, w [L3/ MH2O] is water density and 

 [-] porosity),  k is the kinetic constant [mol/T/L2],  Q [-] is the ion activity product, KS [-] is the 

solubility product, n and m are two exponent taken here m=1.0, n=1.0. Please note that a minus 

appears in equation (6.24)  with respect to previous versions of the TST reaction rate because a 

positive reaction rate is associated to precipitation. When the two Cr isotopes are taken into account, 

equation (6.24) is modified according to models presented in Druhan et al. (2013): 

 

 

52 52
52

53 53
53

52
3

53
3

( )

( )

1

1

S

S

S

S

nm

nm

Cr OH

Cr OH

Q
r k A x

K x

Q
r k A x

K x

 (6.25) 

Where 52KS and 53KS are intended equal since no equilibrium fractionation is presumed in this reaction 

network and x52= [ 52Cr3+] / T(Cr3+), x53 = [52Cr3+] / T(Cr3+). 
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 H+ H2O Cl- Na+ K+ Fe2+ Fe3+ SO4
2- HCO3

- Cr3+ 52Cr3+ 53Cr3+ SiO2 Al3+ 

CO2(s) 1 -1 0 0 0 0 0 0 1 0 0 0 0 0 

Cr(OH)3 -3 3 0 0 0 0 0 0 0 1 0 0 0 0 
52Cr(OH)3 -3 3 0 0 0 0 0 0 0 0 1 0 0 0 
53Cr(OH)3 -3 3 0 0 0 0 0 0 0 0 0 1 0 0 

Chamosite -10 7 0 0 0 2 0 0 0 0 0 0 1 2 

Quartz 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

Annite -10 6 0 0 1 3 0 0 0 0 0 0 3 1 

 

Table 6.3  Morel s table for kinetic minerals for the Cr fractionation benchmark. 

 

 

 Formula 

Molar 

Volume 

(m3min/mol) 

LogKS 

(25°C) 

LogKc(mol/

KgH2o/s) 

Am 

(m2min/m3m

edium) 

CO2(s) CO2 1.0 -9.5 -4 1 

Cr(OH)3 Cr(OH)3 29.09 9.350 -4 1 

52Cr(OH)3 
52Cr(OH)3 29.09 9.350 -8 1 

53Cr(OH)3 
53Cr(OH)3 29.09 9.350 -8 1 

Chamosite Fe2Al2SiO5(OH)4 106.20 32.832 -12 1 

Quartz SiO2 22.69 -3.732 -13.4 1 

Annite KFe3AlSI3O10(OH)2 154.32 29.453 -9.5 1 

Table 6.4  For each mineral: formula, molar volume, logarithm of the solubility product, logarithm of 

the kinetic constant, specific surface. 
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6.3.2.4 Considerations about Courant number 

 

As explained before, TRACES adopts an explicit time discretization that requires a maximum CFL 

(Courant-Friedrichs-Lewy) number of 1.0 (equation (6.18)). This constraint guarantees that a molecule 

present in cell 1 will travel at most as far as in cell 2 during the time step and won t have the time to 

reach cell 3. This is a condition imposed to avoid oscillations in explicit schemes and is only related to 

transport (reactive but also conservative). At the same time, time stepping has an impact on operator 

splitting errors and it may happen that a solution, to be acceptable, requires a time step lower than the 

one imposed by the CFL condition. Although both constraints involve the time step, they are not the 

same thing and there is no theoretical connection between CFL number and operator splitting errors.   

In CrunchFlow technical notes (Steefel 2009), it is reported that for OS3D the default initial time step 

corresponds to a CFL=0.5 and that operator splitting errors appear to reach a minimum for time step 

corresponding to a CFL=0.2. Considering the dependence of operator splitting error from time 

stepping, the solution of the benchmark has been repeated with several different time steps (which of 

course correspond to different Courant numbers).    

 

6.3.3 Results of numerical simulations: SpeCTr 

 

6.3.3.1 Results: t(CFL), L = 0 m, no Cr fractionation 

 

The very first simulation doesn t take Cr fractionation into account. Only one primary species 

represents Cr(VI), CrO4
2-, and only one primary species represents Cr(III), Cr3+, for a total of 52 

species (16 primary species of components, see Table 6.2). The simulation was performed with the 

maximum time step allowed by the Courant-Friedrichs-Lewy condition (CFL=1.0) and with no 

dispersion. Results for conservative tracer Cl- are reported in Figure 6.3, results for major elements are 

reported in Figure 6.4. Spatial distribution of Cr(VI), Cr(III) and solid Cr(OH)3 after 1000 days are 

reported in Figure 6.5, Figure 6.6 and Figure 6.7 respectively. Concentrations computed with SpeCTr 

(generally reported with continuous lines) are confronted with those obtained with FLOTRAN 

(reported with squares), available in the supplementary material of Wanner et al. (2014). Curves are in 

very good agreement with published results (Wanner et al. 2014) and no further reduction of the time 

step seems necessary:  the time step corresponding to CFL=1.0 did not introduce major or evident 

errors, especially for Cr3+ (that is involved in precipitation) and in Cr(OH)3 (that is the mineral 

associated to Cr3+ precipitation). 
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Figure 6.3  Breakthrough curve of tracer Cl- obtained with SpeCTr at x=800 m, L = 0.0 m.  

 

Figure 6.4  Comparison between total concentrations of Fe2+,Al3+, SiO2 and Fe3+ obtained with 

SpeCTr (continuous lines) and FLOTRAN (squares).  
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Figure 6.5  Cr(VI) concentrations with SpeCTr (continuous line) and FLOTRAN (squares). 

 

 

Figure 6.6  Cr(III) concentrations with SpeCTr (continuous line) and FLOTRAN (squares). 
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Figure 6.7  Cr(OH)3 volume fraction with SpeCTr (continuous line) and FLOTRAN (squares). 

 

6.3.3.2 Results: t(CFL=1), L = 0 m, Cr fractionation 

 

In this simulation, Cr fractionation is taken into account. The reaction network involves then 54 

chemical species, described through 18 components or primary species. Reaction (6.21) for total Cr is 

substituted by two reactions that account separately for 52Cr and 53Cr. Precipitation of Cr(OH)3 is also 

treated according to the model of Druhan (2013), and equations (6.25) represent the reaction rates of 

the end-members of what is defined a solid solution (the problem of whether the expression solid 

solution is pertinent was addressed in Chapter 5). Reaction network and minerals  composition are 

reported in Table 6.3 and Table 6.4. 

Dispersivity coefficient is still fixed at L = 0 m and simulations were performed with the time step 

corresponding to a Courant number equal to 1.0. Concentration of tracer Cl- and major elements 

remain the same as in Figure 6.3 and Figure 6.4 of previous paragraph and there is no interest in 

reporting them again. On the contrary, in this simulations there are two curves corresponding to the 

two isotopes 52Cr and 53Cr for both Cr(VI) and Cr(III). Concentrations are reported in Figure 6.8 for 

Cr(VI) and in Figure 6.9 for (Cr(III)). Results seem, at least at first, in quite good agreement with 

those of FLOTRAN (Wanner et al. 2014).  
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Figure 6.8  Cr(VI): 52CrO4
2- and 53CrO4

2- with SpeCTr (continuous line) and FLOTRAN (squares).  

 

 

  

Figure 6.9  Cr(III): 52Cr3+ and 53Cr3+ with SpeCTr (continuous line) and FLOTRAN (squares).  
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Figure 6.10  Cr(III): 53CrO4
2- with SpeCTr (continuous line) and FLOTRAN (squares).  

 

 

Figure 6.11  Cr(III): 53Cr3+ with SpeCTr (continuous line) and FLOTRAN (squares).  
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Although Figures 6.8 and 6.9 show good agreement between SpeCTr results and those of the 

benchmark, a closer look to the rare isotope curves shows some small irregularities (Figure 6.11) when 
53Cr3+ goes below the threshold of 5 10-10. These irregularities are partly at the origin of disastrous 

results obtained during computation of the isotopic delta ( ) of 52Cr and 53Cr. We remind that isotopic 

delta is computed as follows: 

 

 
53 53

53 mod
979 53 53

979

( / )
1

( / )
el

SRM

SRM

R Cr Cr
Cr

R Cr Cr
 (6.26) 

 

where R(53Cr/52Cr)model is the computed isotopic ratio and R(53Cr/52Cr)SRM979 is the isotopic ratio from 

a standard reference (in Wanner et al. (2014) R(53Cr/52Cr)SRM979 = 0.11339).  
53Cr expressed in  obtained with SPeCTr is reported in Figure 12 (Cr(VI)) and 13 (Cr(III)). 

Oscillations are present for both Cr(VI) and Cr(III) although the amplitude of oscillations of 53Cr(III) 

is orders of magnitude higher. They increase at around 300 m from the origin for Cr(III), when 53Cr3+ 

concentrations go below 1 10-9 and become huge in correspondence of irregularities detected in the 

last part of the curve depicted in Figure 6.11. 

 

 

 

Figure 6.12  53Cr(VI) with SpeCTr (grey continuous line) and FLOTRAN (pink squares). 
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Figure 6.13  53Cr(III) with SpeCTr (grey continuous line) and FLOTRAN (green squares).  

 

 

 

Possible reasons of the irregularities detected for very low concentrations of 53Cr3+ (Figure 6.11) and 

oscillations of the isotopic 53Cr are: i) error due to operator splitting and excessive time step length ii) 

sharp fronts obtained thanks to finite elements with L = 0 are challenging when transport and reaction 

are coupled iii) at low concentrations the chemical solver approaches its limits and is not able to 

guarantee accurate solutions iv) a combination of the previous.  

The most immediate strategies to exclude liabilities of reaction module are: i) lowering the time step 

length ii) increasing values of longitudinal dispersion to L = 0.54, L = 1.0 (corresponding to 

numerical dispersion detected in CrunchFlow and TOUGHREACT, MIN3P and FLOTRAN 

respectively (Wanner et al. 2014). Other, more time-consuming strategies would be: iii) using an 

alternative numerical method to solve the mix of kinetic and equilibrium reactions (the explicit solver 

already available) iv) using another solver for transport v) a combination of the previous.   

In the following paragraphs, the fastest strategies to put in place (increasing the time step and/or the 

dispersion) are put in place.  
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6.3.3.3 Results: reduced time step, L = 0 m, Cr fractionation 

 

Simulation presented in paragraph 6.3.3.2 was repeated with a reduced time-step: the time step t  

imposed by CFL condition was divided by a factor 5 ( t / 5) keeping the value of longitudinal 

dispersivity to L = 0.  

Figure 6.14 shows that the curve of Cr(III) is almost perfectly smooth (a nearly invisible imperfection 

is present at around 200 m corresponding to a concentration of 1 10-9 mol) and that the oscillations in 

the last part of the curve visible in Figure 6.11 have disappeared. Figure 6.15 shows the 53Cr 

expressed in : the improvement with respect to the 53Cr computed with a time step five times 

bigger is striking. 53Cr(VI) is perfectly superposed to FLOTRAN results, while 53Cr(III) still shows 

some oscillations. The most important oscillation in Figure 6.15 appears at around 200 m, in 

correspondence of the imperfection in Figure 6.14. While the oscillations around x = 0 m are 

explicable with the proximity to boundary conditions (Cr starts to precipitate), the reason of the 

presence of an imperfection at x = 200 m (or between 500 and 600 m to a lesser extent) is not 

explicable. 

These results clearly demonstrate the impact of operator splitting errors on the computation of isotopic 

delta, showing that a meaningless isotopic delta can be obtained even starting from concentrations that 

seem acceptable.    

 

 

Figure 6.14  Cr(III): 53Cr3+ with SpeCTr (continuous line), transport time-step t / 5, and L = 0. 



158

 

Figure 6.15  53Cr(VI) (pink) and 53Cr(III) (green) with SpeCTr (continuous lines) and FLOTRAN 

(squares), transport time-step t / 5, L = 0 m. 

 

6.3.3.2 Results: t (CFL=1), L = 1.0 m, Cr fractionation 

 

In order to gain some more insight on the oscillations reported in isotopic delta 53Cr, a simulation was 

performed with a non-zero value of longitudinal dispersivity ( L = 1.0 m), keeping t to its original 

value (CFL=1.0). Figure 6.16 shows the transformation of the curves of conservative tracer Cl- when 

longitudinal dispersivity moves from 0 to 1 m. We remind that L = 1.0 m is the value that matches 

numerical dispersion generated by finite differences in codes MIN3P and FLOTRAN.  

Imposing L = 1.0 has some impact on the results of 53Cr, although it seems to modify the oscillations 

instead of eliminating them as the reduction of the time step did. Amplitude of 53Cr(VI) oscillations 

(see Figure 6.17) is slightly reduced but some kind of deviation to higher values of the isotopic delta 

seem to appear at 500 m. On the other hand, 53Cr(VI) oscillations are somehow worsened (see Figure 

6.18), especially with respect to the first 300 m of Figure 6.13.  

A partial conclusion is that, although changes in dispersivity modify the oscillations, the absence of 

dispersion is certainly not their cause. This information is really valuable because it allows to fully 

exploiting the characteristic of modeling sharp fronts of discontinuous Galerkin finite elements. 
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Figure 6.16  Breakthrough curve of tracer Cl- obtained with SpeCTr at x=800 m, L = 1.0 m 

(continuous) and L = 0.0 (dashed). 

 

Figure 6.17  53Cr(VI) with SpeCTr (grey continuous) and FLOTRAN (pink squares), L = 1.0 m. 
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Figure 6.18  53Cr(III) with SpeCTr (grey continuous) and FLOTRAN (green squares), L = 1.0 m. 
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6.3.3.3 Results: reduced time step, L = 0.54 m, Cr fractionation 

 

Another series of simulations was performed with time steps t / 5, t / 10, t / 25, corresponding to 

CFL numbers ranging from 0.2 to 0.04 and nonzero dispersion coefficient in order to test the 

combined effect. These simulations were performed with a dispersivity coefficient L = 0.54, the value 

corresponding to numerical dispersion in CrunchFlow and TOUGHREACT. This value is intermediate 

with respect to previous two ( L = 0, L = 1) and its effect on Cl- breakthrough curve is reported in 

Figure 6.19. 

 

 

Figure 6.19 Breakthrough curve of tracer Cl- obtained with SpeCTr at x=800 m, L = 1.0 m 

(continuous line), L = 0.54 m (continuous thick line), and L = 0 (dashed line).  

 

Figure 20 shows the 53Cr expressed in  for a time-step t / 5 (CFL=0.2), which is again an obvious 

improvement with respect to 53Cr computed with t and a slight improvement to 53Cr computed 

with t / 5 and L = 0. To further confirmation that the oscillations of 53Cr are due to excessive 

amplitude of the time-step, simulations with t / 10 and t / 25 were also performed; Figure 6.21 

shows values of 53Cr(III) throughout the domain. Oscillations at the beginning of the domain 

completely disappear at t / 25 while oscillations between 500 m and 600 m persist. Figure 6.22 

shows that oscillations are translated (they occur later in space) and somehow smoothed by the 

reduction of the time-stepping.    
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Figure 6.20  53Cr(VI) and 53Cr(III) with SpeCTr (continuous line) and FLOTRAN (squares), 

transport time-step t / 5, L=0.54 m 

 

Figure 6.21  53Cr(III) for transport time-step t / 5 (black), t / 10 (red), t / 25 (blue) all computed 

with SpeCTr, L=0.54 m. 
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Figure 6.22  53Cr(III) for transport time-step t / 5 (black), t / 10 (red), t / 25 (blue) all computed 

with SpeCTr, zoom between 500 m and 540 m. 

 

 

The position and amplitude of oscillations of 53Cr(III) changes with the value longitudinal 

dispersivity and is impossible to individuate a trend (oscillations do not systematically increase or 

decrease with longitudinal dispersivity). Considered that the porous medium is homogeneous and that 

precipitation of Cr(OH)3 occurs all along the domain, reasons for the oscillations are also hard to 

explain geochemically.   
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6.4 Conclusions about SpeCTr validation 

Results presented in this chapter show that the implementation of isotopes implies working with 

increasingly low concentrations, thus leaving virtually no place for numerical errors. In fact, solutions 

that could be considered successful if computations were limited to major elements (or even for 

elements at low concentrations, around an order of magnitude of 10-10) may still be considered a 

failure when computing isotopic ratios or isotopic delta. 

Reduction of the time step resulted crucial to obtain useful curves of isotopic delta ( ); although some 

inaccuracies remained in one of the computed isotopic delta, results can be considered quite 

satisfactory. Further reductions of the time step reduced oscillations but did not eradicate them; 

therefore the increase in the computational time generated by excessively small time steps is not 

justified.  

Introducing longitudinal dispersion had an ambiguous impact on results. It brought some benefice to 

the regularity of one isotopic delta but at the same time worsened the other when introduced while 

computing with the maximum time step. While working with a reduced time step, the introduction of 

longitudinal dispersivity smoothed some of the oscillations and slightly increased others. The 

hypothesis that extremely sharp fronts may be at the origin of oscillations was definitely excluded. 

The fact that such important oscillations were cleaned up with the sole reduction of the transport time-

step partially cleared the reputation of the chemical solver, proving that it is not the principal cause of 

delta oscillations and that it can properly handle low concentrations. Also, the subroutine handling the 

passage between finite elements node concentrations to a mean value to be used in the reaction module 

was proved not responsible for the oscillations.    

Although it didn t minimize errors, performing the simulation with a time step five times smaller than 

the one imposed by the CFL condition constitutes the best compromise between the quality of the 

results and the computational cost. This time step corresponds to a CFL = 0.2, which is the same 

recommended in CrunchFlow technical note.   
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Chapter 7  Application of SpeCTr: modeling Calcite dissolution 

& precipitation  

 

 
This chapter is dedicated to the application of SPeCTr to reactive transport problems involving Calcite 

dissolution and precipitation.  

Calcite dissolution is modeled in relation to column and batch experiments performed in the context of 

A. Buissonnié s  Ph.D. work that resulted in a paper submitted to Chemical Geology (Bouissonnié et 

al, 2018). In the paper, a series of pseudo-2D simulations are performed with SPeCTr in order to 

model experimental results of Calcite dissolution rate. Simulations were repeated with different 

models for reaction rates (classical Transition State Theory or TST and the stepwave model SWM 

(Lasaga and Luttge (2001), Gruber et al (2014)) and with different values of transport parameters. The 

details about the setup of the experiment, the different models implemented in SpeCTr for reaction 

rates, flow and transport parameters are reported in Bouissonnié et al. (2018) that included in this work 

as section 7.1. In section 7.2 is reported the preparatory work for Bouissonnié et al. (2018) including 

simulations with different mesh sizes and different time-stepping in order to avoid dependencies of the 

results from spatial and time discretization.  

Calcite precipitation was explored through the simulations of experimental results of calcite 

precipitation caused by mixing at the interface of two potentially reactive solutions (Katz et al., 2009). 

In Katz et al. (2009), experimental results were accompanied by 2D numerical simulations in 

heterogeneous porous medium performed with the code Retraso (Saaltink et al. 2004). Simulations 

carried out with Retraso were performed with SPeCTr in order to assess similitudes and differences 

with the results in Katz et al (2009). Results of simulations (equilibrium and kinetic precipitation, 

constant and variable porosity) are reported in section 7.3.    
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7.1 From mixed flow reactor to column experiments and modeling: 

upscaling of calcite dissolution rate 

 

Arnaud Bouissonnié, Damien Daval, Marianna Marinoni, Philippe Ackerer 

Laboratoire d Hydrologie et de Géochimie de Strasbourg, Université de Strasbourg /EOST-CNRS 
UMR 7517, 1 Rue Blessig, 67084 Strasbourg, France 

 
 

7.1.1 Abstract 

 

The objective of this work was to assess the extent to which calcite dissolution rate (Rcalcite) measured 

at controlled saturation state in mixed flow set-ups could be upscaled to column experiments, where 

the solution composition was variable in space and time. The dissolution rate of the {104} calcite face 

was investigated in mixed flow reactor set-ups at room temperature and pH 8. Various saturation 

conditions were studied by changing the composition of the inlet solution, enabling to determine an 

empirical relation between Rcalcite and the Gibbs free energy of calcite dissolution ( G) by measuring 

the surface topography with vertical scanning interferometry (VSI). The prevalent dissolution mode 

(i.e., etch pit nucleation or homogeneous surface retreat) was assessed with the same method. A 

dramatic decrease of the dissolution rate was observed for -8 < G < -3 kJ/mol, correlated with a 

switch in the dissolution regime (inhibition of etch pit nucleation). The resulting Rcalcite- G relation, 

which is at odds with that derived from the transition state theory (TST), was successfully fitted using 

the stepwave model (SWM). These experiments were supplemented with plug-flow column 

experiments, consisting of a chemically inert porous medium and oriented rhombohedral calcite 

single-crystals (0.4 × 0.4 cm²) regularly distributed in the column. The dissolution rates of calcite 

single crystals all along the column were retrieved using VSI on the recovered crystals at the end of 

the experiments. These latter experiments were compared with 1D and 2D reactive transport 

simulations, using either the TST- or the SWM-derived rate equation determined from our mixed-flow 

reactor experiments. The reactive transport simulations revealed that (i) 1D-simulations overestimate 

the dissolution rate of upstream and downstream calcite faces by a ~3- and ~20-fold factor, (ii) 2D-

simulations satisfactorily reproduce the dissolution rates of all faces without any fitting parameter, 

within experimental uncertainties and (iii) both models slightly overestimate the steady-state 

concentration of calcium at the outlet of the column. Overall, this study can be considered as one of 

the multiple intermediate steps between chemostatic experiments and field measurements to assess the 

validity of the classical bottom-up upscaling approach. It also provides insights into our ability to 

model fluid flow and solution composition in the vicinity of dissolving single crystals. 
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7.1.2 Introduction 

 

Considerable advances concerning our understanding of chemical weathering processes and their 

impact on water chemistry or Earth s climate occurred over the last decades. Various processes impact 

weathering, but one of the most significant is the chemical weathering (dissolution or precipitation) of 

minerals. The kinetics of these reactions contribute to (bio)geochemical cycles as important as the C 

cycle, as the chemical weathering of silicate and carbonate minerals represents a net sink for CO2 over 

long (Berner, 1990) and short (Beaulieu et al., 2012) timescales, respectively. As a consequence, a 

significant body of experimental and theoretical studies was dedicated to the development of kinetic 

rate laws of mineral dissolution and precipitation (Brantley and Olsen, 2014). However, bridging the 

gap between laboratory experiments and field data remains an elusive goal, as mineral 

dissolution/precipitation rates measured in laboratory generally remain orders of magnitude greater 

than those measured in the field (Fischer et al., 2014; White and Brantley, 2003). A common way to 

circumvent this upscaling issue consists in tuning several modeling parameters (e.g., Aradóttir et al., 

2012; Montes-H et al., 2005), albeit this strategy is not devoid of risks, since it does not account for 

the mechanistic origins of the so-called field-lab  discrepancy. 

Several non-exclusive explanations have been proposed to account for such discrepancies, which can 

be divided into intrinsic and extrinsic and factors (White and Brantley, 2003). Intrinsic factors are 

related to the physicochemical properties of the reacting mineral itself, such as the density of line 

defects (e.g., screw dislocations) outcropping at the mineral surface (Fischer et al., 2012; Macinnis and 

Brantley, 1992; MacInnis and Brantley, 1993; Pollet-Villard et al., 2016b; Smith et al., 2013; Teng, 

2004), which represent favorable surface energy sites that promote the nucleation of etch pits (Lasaga 

and Blum, 1986; Pollet-Villard et al., 2016b), or the distribution of crystal morphologies, which results 

in a wide range of crystal reactivity due to dissolution anisotropy (Daval et al., 2013; Godinho et al., 

2012; Pollet-Villard et al., 2016a; Smith et al., 2013). Extrinsic factors encompass all processes and 

parameters that are not derived from the nature of the dissolving mineral, such as the microbial activity 

or the chemical composition of the aqueous phase and in particular, the saturation state of the solution 

with respect to the considered mineral (Schott et al., 2009; Smith et al., 2013; Teng, 2004). In that 

respect, it has been suggested that the effect of the driving force of the reaction (i.e., the Gibbs free 

energy of reaction, G) on the dissolution rate (R), often implemented in reactive transport codes by 

using a relation derived from the transition state theory (TST; Eyring, 1935; Lasaga, 1995), fails to 

account for the actual R G relations (e.g., Burch et al., 1993; Lasaga and Luttge, 2001; Pollet-Villard 

et al., 2016a; Smith et al., 2013), and that the use of alternative relations such as the stepwave model 

(Lasaga and Luttge, 2001) helped to improve the agreement between modeled and measured 

weathering rates (Maher et al., 2009). Hence, a possible improvement of the reliability of reactive 

transport simulations (at least partly) relies on the implementation of the actual dependence of mineral 

dissolution rates on the solution saturation state. 
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Closely related to the issue of R G relations, other critical extrinsic factors that may contribute to 

bridging the gap between laboratory- and field-derived chemical weathering rates are the knowledge 

of the local fluid composition surrounding the dissolving minerals that impacts their dissolution rates 

(Molins et al., 2014; Noiriel and Daval, 2017), and the existence of diffusive boundary layers (Ruiz-

Agudo et al., 2016).  

In general, flow and solute transport in a porous material are modelled at the scale of a representative 

elementary volume (REV) where the porous material is described as continuous. Depending on the 

spatial discretization of the domain (1D to 3D, size of the control volume used to compute the 

numerical solution), the computation of the fluid velocity will show different kinds of variability. 

Conversely, at the pore scale, flow paths are complex and might have a significant impact on the 

reactivity of a given geological formation. In that respect, the use of geochemical models in a 

simplified 1D geometry (e.g., WITCH; Godderis et al., 2006) allows for fast computation, but may 

miss important issues related to the complex fluid velocity around minerals and to the mixing due to 

lateral dispersion/diffusion in case of concentration gradients. 

The objective of this work was to quantify the dissolution rate of calcite using mixed flow reactor 

(MFR) experiments performed on cleaved and polished {104} calcite surfaces and to use the 

corresponding model and parameters to evaluate the dissolution of calcite under different flow 

conditions, i.e. in a column filled with porous inert material. The key question that we aimed to tackle 

can be summarized as follows: can we use the dissolution rate law defined by experiments performed 

in MFR without porous material and in turbulent flow conditions to model the dissolution rate of 

calcite measured in a column filled with porous material under laminar flow and in cylindrical 

configuration? Furthermore, because column experiments are usually described in one dimension, we 

also analyzed the effects of this additional simplification on the modelling of the dissolution processes. 

This comparison can be considered as one of the many intermediate steps between chemostatic 

experiments and field tests to assess the validity of the classical bottom-up upscaling approach (see 

e.g. Galeczka et al., 2014; Molins et al., 2014 for similar attempts). It also provides insights into our 

ability to model fluid flow and solution composition in the vicinity of dissolving single crystals.  

 

7.1.3 Materials and experimental methods 

 

7.1.3.1 Sample preparations 

 

A decimeter-sized calcite sample (see Table 1 for chemical composition) optically transparent coming 

from the Massif des Ecrins (Alpes, France) was cleaved following the natural {104} calcite plane to 

obtain several single crystals of calcite with a size ranging from 0.3 to 0.6 cm. The crystallographic 

orientation was verified over the entire surface of each sample using electron backscatter diffraction 

(EBSD) on a Tescan Vega 2 scanning electron microscope (SEM). Each sample was subsequently 
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polished down to the nanometer-scale in aqueous solution saturated with respect to calcite to avoid 

etching of the surface through a multi-step abrasive sequence. The obtained samples had a similar 

initial average arithmetic roughness (Ra), defined as the arithmetic average of the absolute values of 

the roughness profile, ranging between 43 and 100 nm, enabling us to minimize the effect on the 

dissolution rate of various step densities on the mineral surfaces. This initial roughness parameter was 

measured on 350 × 85 µm² images collected using vertical scanning interferometry (VSI, see below). 

Two types of experiments were conducted: mixed-flow reactor experiments and a flow-through 

column experiment. Regarding mixed-flow reactor experiments, only one face was polished whereas 

for the column experiment, both the front (upstream) and back (downstream) faces of each crystal 

were polished (see sections 2.3 and 2.4).  

Finally, for each sample, a portion of the surface was masked with either RTV glue or CrystalBondTM 

(CB) for mixed flow or column experiments, respectively. This protocol allowed for preventing 

interactions between the portion of the mineral underneath the mask and the fluid and thus, to maintain 

a non-reacted surface to measure the height difference between the masked and unmasked portions 

(that is, the dissolution rate) using VSI.  

 

7.1.3.2 Aqueous solution preparations 

 

Reagent-grade NaCl, NaHCO3 and CaCl2 were added to ultra-pure water (18 M .cm) in different 

concentrations similar to Smith et al. (2013): 5.85 g/L of NaCl were added to fix the ionic strength to 

approximately 0.1 molal. The addition of 0.086 g/L of NaHCO3 enabled to fix the alkalinity, and 

various concentrations of CaCl2 were used to vary the saturation index of the solution with respect to 

calcite (see Table 2). Before experiments, the solutions were left at rest during a day to allow the 

equilibration with atmospheric CO2. Measured pH of these solutions were equal to 8.0 ± 0.1. 

 

7.1.3.3 Mixed flow reactor experiments 

 

Classical mixed-flow reactor experiments such as described in e.g. Pokrovsky and Schott (2000) were 

conducted on calcite single crystals as a function of the solution saturation state. In brief, a 50mL 

Teflon reactor containing the single-faced polished calcite samples placed on a Teflon tripod and a 

Teflon-coated stir bar was connected with Tygon tubing to a Gilson Minipuls 3 peristaltic pump 

running at a constant flow rate (0.25 mL/min). The aqueous solution at the outlet of the reactor was 

regularly sampled for pH and calcium measurements. All experiments were run for 7 to 9 days in an 

air-conditioned room at 22±1 °C. The experimental apparatus is illustrated in Figure 7.1a.    
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7.1.3.4 Column experiment 

 

To investigate the effects of the velocity variability at the calcite surface, of the mixing through 

dispersion and more generally, of the role of aqueous concentration gradient, a column experiment 

was performed (Figure 7.1b). A 15 cm-long and 3.75 cm in diameter column was filled with inert 

zirconia beads (yttria stabilized, 1 mm in diameter, American Elements®), which resulted in an 

idealized inert porous medium with 38% porosity. Eight partially masked samples of rhombohedral 

calcite polished on their two opposite {104} surfaces were placed horizontally every 1.5 cm in the 

mean flow direction. The solution (5.83 g/L of NaCl, 0.0812g/L of NaHCO3) was injected at the 

bottom of the column at a flow rate of 0.25 mL/min via a Gilson Minipuls 3 peristaltic pump. The 

outlet solution was regularly sampled for pH and Ca2+ concentration measurements. The experiment 

was run in an air-conditioned room at 22±1 °C during 10 days.      

 

7.1.3.5 Aqueous sample analyses and thermodynamic calculations 

 

The experiments were regularly sampled for pH measurements and chemical analyses. Calcium 

concentration was determined from inductively coupled plasma atomic emission SPeCTroscopy (ICP-

AES) data acquired with a ThermoICAP 6000 Series apparatus. The measured aqueous concentration 

of Ca2+ together with the known concentrations of the chemical reagents introduced in the inlet 

solution were implemented in the CHESS code (van der Lee and De Windt, 2002) to calculate the in 

situ pH and saturation indices with respect to calcite dissolution. Activity coefficients for aqueous 

species were calculated using the Davies equation. 

  

7.1.3.6 Determination of calcite dissolution rate 

 

Average changes in height measured by VSI (Zygo NewView 7300) between the unreacted reference 

surface and the reacted mineral surface allowed for the determination of the nanoscale dissolution rate 

of the specific face following (e.g., Smith et al., 2013): 

 

 
1

m

h
R

t V
 (7.1) 

  

where R is the dissolution rate (mol/m²min/s), h is the average height difference (m) between the 

reacted and the non-reacted surface, t is the experiment time (s) and Vm is the molar volume of calcite 

(m3/mol). The data were analyzed with the Metropro software (stitch7k application).   
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Elements 
Loss 

1000°C 
CaO MgO MnO Sr 

% %   ppm 

Calcite 42.3 57.2 2 0.08 475 

Table 7.1. Chemical composition of calcite used in experiments. Concentrations are determined from 

3g of calcite by loss on ignition and alkaline fusion.  

Experiment 
NaCl NaHCO3 CaCl2  

(g/L) (g/L) (g/L) 

Stirred-reactor 5.8 0.087 0 0 

Stirred-reactor 6.1 0.086 0.014 0.054 

Stirred-reactor 5.8 0.085 0.028 0.11 

Stirred-reactor 5.8 0.086 0.05 0.201 

Stirred-reactor 5.9 0.09 0.07 0.24 

Stirred-reactor 5.8 0.084 0.09 0.31 

Stirred-reactor 5.8 0.087 0.12 0.45 

Stirred-reactor 5.9 0.084 0.15 0.49 

Stirred-reactor 5.8 0.086 0.2 0.67 

Stirred-reactor 5.8 0.086 0.25 0.8 

Column 5.8 0.081 0 0 
Table 7.2. Concentration of reagent grade NaCl, NaHCO3 and CaCl2 added in solution. The 

corresponding values of saturation index ( ) calculated using Chess code van der Lee and De Windt,  

are also reported 

 

 

H+ H2O HCO3- Cl- Na+ Ca++ Log(K) 

CaOH+ -1 1 0 0 0 1 -12.83 

CaCl+ 0 0 0 1 0 1 -0.70 

CaHCO3+ 0 0 1 0 0 1 1.05 

NaCO3- -1 0 1 0 1 0 -9.81 

NaHCO3 0 0 1 0 1 0 0.15 

NaCl(aq) 0 0 0 1 1 0 -0.78 

CaCO3(aq) -1 0 1 0 0 1 -7.01 

CaCl2(aq) 0 0 0 2 0 1 -0.64 

NaOH(aq) -1 1 0 0 1 0 -14.79 

HCl(aq) 1 0 0 1 0 0 -0.67 

CO2(aq) 1 -1 1 0 0 0 6.34 

CO3-- -1 0 1 0 0 0 -10.33 

OH- -1 1 0 0 0 0 -13.99 

Table 7.3.  Aqueous complexation reactions and corresponding thermodynamic parameters log(K). 

The numbers refer to the stoichiometric coefficients of the species in the considered reactions (positive 

values for reactants). Notice that the equilibrium constant K is intended as: 
xN

j

ij

i iC K X  
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Figure 7.1. A. Sketch of the experimental apparatus for mixed flow reactor experiments. A solution with a fixed chemical composition is injected via a 

peristaltic pump in a continuously stirred reactor. A sample of masked calcite is placed over a Teflon tripod in the reactor. The solution at the outlet of the 

reactor is either discarded or sampled. B. Sketch of the experimental apparatus of the column experiment. The solution is injected at the bottom of the column 

via a peristaltic pump with a flow rate of 0.25 mL/min. The column is filled with zirconia beads to mimic an ideal porous media with 38% porosity. Calcite 

sample are placed every 1.5 cm in the column and are masked with CrystalBondTM on each side of the crystal surface with (104) orientation. The column is 

15 cm-long and 3.75 cm in diameter. 
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7.1.4 Mathematical modeling of flow and reactive transport for the column experiments 

 

The flow was assumed to be at steady state and the corresponding mathematical model is given by:  

 

 
0

h

q

q K
 (7.2) 

 

where q (m/s) is the Darcy flux, K is the hydraulic conductivity tensor (m/s) and h the hydraulic head 

(m). A constant flux (Neumann condition) was prescribed at the column inlet whereas a constant 

hydraulic head (Dirichlet condition) was set at the column outlet. It is worth to notice that under these 

boundary conditions and considering the column as homogeneous, it is not necessary to determine the 

exact value of the hydraulic conductivity to compute the fluid velocities. 

The mathematical model used to simulate the reactive solute transport was the classical reaction-

dispersion-advection equation defined by: 
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Where  [-]  is the kinematic porosity, Ci (mol/m3/s) is the concentration of the ith primary species, D 

is the dispersion tensor [m2/s], L, T  the longitudinal and transverse dispersivity [m], Dm the pore 

water diffusion coefficient [m2s-1], I  the unit tensor; rj [mol/m3/s] and rm [mol/m3/s] are the 

homogeneous (aqueous phase) and heterogeneous (mineral) reaction rates, respectively;  stands for 

the stoichiometric reaction coefficients [-]. 

The solute concentrations were prescribed at the column inlet and the dispersive flux is neglected at 

the column outlet. 

Both partial differential equations were solved using our own numerical code, SpeCTr (Carrayrou et 

al., 2010, Marinoni et al., 2017) which was verified by comparisons with different existing codes like 

CrunchFlow (Steefel, 2009), a widely used reactive transport code to model geochemical reactions 

(e.g. Knauss et al., 2005; Dontsova et al., 2009; Molins et al., 2014). The speciation was treated using 

the extended Debye-Hückel equation for activity coefficients calculation, equations of mass 

conservation and combination of laws of mass actions for the various considered species and chemical 

reactions, respectively. The CHESS code (van der Lee and De Windt, 2002) was used to determine all 

possible aqueous species considering the different solutes added to the column inlet solution (Table 

7.2) and solutes provided by the calcium dissolution (Table 7.3).  
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The calcite dissolution rate (rcalcite) [mol/s/m3] rm in equation (7.3) was computed using either a  first 

order transition state theory (TST) formulation (Lasaga, 1981) or using a  stepwave model (SWM) 

formulation suggested by Lasaga and Luttge (2001) and modified after Gruber et al. (2014). The TST 

formulation is defined by: 

 

 1 1
r

g

G

R TCalcite

Sr k e k A  (7.4) 

 

where AS is the reactive surface area of the mineral (m2
min/m

3) which is computed as a function of the 

size of grid cells and porosity, k is the rate constant [mol/m2
min/s], Gr  [J/mol] is the Gibbs free 

energy of the reaction, Rg [J/K/mol] is the gas constant, T is the temperature [K] and  is the 

saturation index (ion activity product Q over solubility product KS) of the solution with respect to 

calcite. The SWM formulation can be written as follows (Gruber et al., 2014): 
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where As is again the reactive surface area of the mineral (m2
min/m

3), k1 and k2 are the rate constants 

[mol/m2
min/s], critG  is the Gibbs free energy that is required to form etch pits and B [-] is a constant 

that depends on surface diffusion distance. Note that for each formulation (TST or SWM), no specific 

dependence of the dissolution rate on pH was implemented, as calcite dissolution rate is essentially 

pH-independent in the pH range investigated here  (Brantley and Olsen, 2014). 

Since the porous medium in the column is chemically inert (except calcite crystals) and the dissolution 

of calcite results in a tiny modification of calcite dimensions (surface retreat of a few micrometers at 

the most), the change of porosity and permeability was not considered. 

Flow and transport equations in SpeCTr are solved using mixed finite elements for flow and a 

combination of discontinuous-mixed finite elements for the transport equation (Siegel et al., 1997; 

Younes et al., 2010). This combination allowed accurate simulations of sharp solute fronts without 

excessive numerical dispersion. The equilibrium reactions were solved using a constraint Newton-

Raphson method (Marinoni et al., 2017) and the solver DASPK for the kinetic reactions (Brown et al., 

1994). The spatial discretization for both 1D and 2D simulations was set to 1 mm after preliminary 

runs performed to define the optimal spatial discretization. For the 1D simulation, the reactive mineral 
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CaCO3(s) was discretized by two grid cells, representing the two faces of each crystal. For the 2D 

simulation, the grid cells were square and the calcite crystals were described by 4 impermeable cells.  

 

7.1.5 Results and discussion 

 

7.1.5.1 Mixed-flow reactor experiments 

7.1.5.1.a Etching and etch pits morphology 

 

In order to understand the role of saturation on the dissolution rate and on the specific topographic 

patterns of the {104} calcite face, experiments have been run under a large range of saturation indices 

( ) ranging from ~0 to 0.8. The aqueous conditions were purposely similar to those chosen by Smith 

et al. (2013), as they were well suited for VSI investigations. Note however that a wider range of  

values were investigated (using vertical scanning interferometry) in the present study, in order to better 

refine the R-  relation at low  values. 

 

 

Figure 7.2 - Typical dissolution patterns observed with VSI on sample surfaces after dissolution. The 

images were acquired on samples reacted at (a)  = 0.02, (b)  = 0.20, and (c)  = 0.67. These 

images show that etch pits vary from (a) rhombohedral to (b) triangular shape and are not visible for  

> 0.3. Field of view: 100 µm× 70 µm. 

 

VSI images of the surface of the dissolved samples are characterized by an evolution of the dissolution 

patterns: while for low saturation indices (0    0.31), the surface was dominated by the formation 

of etch pits (Figure 7.2a and b), at higher  values (0.31<   0.80), the dissolution was homogeneous 

and weaker all over the mineral surface (Figure 7.2c). This transition of dissolution mode occurred at 

  0.3-0.4. This result is in reasonable agreement with previous studies, which reported pitted 

surfaces for  values ranging between ~0 and 0.4 (Smith et al., 2013 and Teng, 2004). Because in the 

present study data have not been collected for 0.31 <  < 0.45, the presence of pits for  values as 

high as ~0.4 cannot be excluded.  

Similar transitions from deeply pitted surfaces to more homogeneous topography have been previously 

documented for carbonates (e.g. Arvidson et al., 2003; Teng, 2004; Vinson and Lüttge, 2005; Xu et 

al., 2012) and other minerals (Beig and Luttge, 2006; Burch et al., 1993; Hellmann and Tisserand, 
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2006; Pollet-Villard et al., 2016a). These transitions were explained by the existence of a critical 

Gibbs free energy value ( Gcrit), above which the opening of etch pits is no longer spontaneous, 

resulting in a homogeneous dissolution all over the mineral surface. Lasaga and Blum (1986) showed 

that a basic expression for calculating the numerical value of Gcrit at screw dislocations can be 

written as follows: 
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 (7.6) 

where  is the surface free energy (J/m²), is the molar volume (m3/mol), µ is the bulk shear modulus 

(Pa), and b is the length of the Burgers vector of the dislocation (m). Considering the range of 

acceptable values reported respectively by Fernandez-Martinez et al. (2012), Dvorkin et al. (2014) and 

Goetze and Kohlstedt (1977) for , µ and b allows one to calculate the corresponding range of Gcrit 

(Figure 7.3), which varies between -0.26 and -2.88 kJ/mol (i.e. 0.31 <  < 0.90). These values are in 

reasonable agreements with the saturation index of the solution for which etch pit are no longer 

observed (0.31   < 0.45). 

 

 
 

Figure 7.3 - Variation of the critical Gibbs free energy of etch pit nucleation as a function of surface 

free energy. Each curve represents one Burgers vectors. Note that Gcrit varies from -260 to -2880 

J/mol, depending on the values of b and  that are considered. Notice that the Gcrit revealed in this 

study is compatible with one Burgers vector only (the shortest one). 

 
The surface of the samples after dissolution at low saturation (   0.2-0.3) were characterized by 

different etch pit geometry. When   0, etch pits were mostly rhombohedral, while the increase in 

saturation (   0.1-0.2) led to etch pits becoming triangular (Figure 7.2). These observations are in 

agreement with several studies (Smith et al., 2013; Teng, 2004; Xu et al., 2012). The change in pit 

morphology from rhombohedral to triangular shape has been discussed by Xu and Higgins (2011). 

Curvilinear shapes on acute-acute corners of pit kinks were proposed to stem from the preferential 
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occurrence of a backward reaction on these sites. The kink detachment rate at the acute-acute site 

would also be significantly reduced compare to that of obtuse-acute kink sites.  

Interestingly, we also observed that etch pit morphology changed from rhombohedral at the top of the 

pits to triangular at the bottom (Figure 7.2a). This observation may imply that a chemical aqueous 

gradient developed along the etch pits depth, which might have limited the deepening of the pits.  

 

7.1.5.1.b R-  and R- G relationships as determined from VSI measurements 

 

Dissolution rates from mixed flow reactor experiments are plotted as a function of the saturation index 

in Figure 7.4a, together with those previously reported by Smith et al. (2013) over a narrower range of 

 values for the same {104} cleavage plane. The figure illustrates the good agreement between both 

datasets despite differences in the experimental protocols (flow-through versus batch experiments). 

For low saturation indices (i.e.,   0.45), the dissolution rate decreases sharply from 5.2 × 10-7 

mol/m2
min/s to 1.8 × 10-8 mol/m2

 min/s. For   0.45, the dependence of the dissolution rate on solution 

saturation is less pronounced, ranging from 1.8 × 10-8 mol/m2
min/s (  = 0.45) to 5.6 × 10-9 mol/m2

min/s 

(  = 0.80). As emphasized by Smith et al. (2013), a simple linear function between R and , such as 

expected from the transition state theory (equation (7.4)) cannot account for the measured R-  

relation.  

 

 

Figure 7.4 - a. Relations between R and . A sharp decrease is observed over the range 0 <  < 0.45. 

Below this value, the dissolution rate is mostly controlled by etch pitting while for  > 0.45, the 

dissolution is homogeneous over the entire surface of the samples.. b. Relation between R and G. 

The stepwaves model is represented by the black line and the TST by the red line. Parameters used to 

fit the data with the SWM are listed in Table 7.5. 
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The existence of a non-TST relationship is even more obvious when the data are compared to the 

TST-curve as a function of G (Figure 7.4b). As previously discussed by Xu et al. (2012), this non-

TST behavior can be fitted using more complex empirical relations such as parallel rate laws. In the 

present study, the relation derived from the stepwave model (SWM; Gruber et al., 2014; Lasaga and 

Luttge, 2001) was preferred. This relation (equation (7.5)) is based on the sum of two independent 

terms: the first term of the equation results from the theoretical formulation of the defect-generated 

dissolution stepwave model, which prevails at far-from-equilibrium conditions (Lasaga and Luttge, 

2001). The second term of the equation is a simple TST term, which accounts for the dependence of 

the dissolution rate on G when the nucleation of dislocation etch pits is no longer spontaneous. The 

mechanistic switch between the two dissolution modes occurs at G = Gcrit. The values of the 

different parameters used in the SWM-relation, determined by fitting the data points, are listed in 

Table 7.5. Interestingly, the fitted value of Gcrit (-2.25 kJ/mol) fell within the range of possible 

theoretical Gcrit values determined above (-0.26  Gcrit  -2.88 kJ), which is in excellent agreement 

with the G range where etch pits were no longer observed experimentally (0.31   < 0.45; i.e. -1.96 

 Gcrit > -2.87 kJ). 

The choice of using the SWM-relation in this study rather than an empirical parallel rate law (Xu et 

al., 2012) was motivated by the mechanistic approach of this model. However, this model misses a 

possibly important point in its construction: the multiplicity of Gcrit values. Indeed, a single Gcrit 

value is required in equation (7.5), which corresponds to the length of a single Burgers vector, whereas 

dislocations with various Burgers vector orientations can outcrop at the {104} calcite face (Figure 

7.3). Therefore, the model fails to take into account the variety of Burgers vector orientations of the 

dislocations, while some of them may remain active sources of etch pits for Gcrit > -2.25 kJ/mol. As a 

consequence, for calcite samples having a wide range of dislocation orientations, the actual dissolution 

rate in the vicinity of the Gcrit determined in the present study may be higher than that calculated 

using our set of parameters.  

 

7.1.5.2 Column experiment 

 

Column experiments represent one of the several intermediate steps in an upscaling exercise, which 

could possibly help to understand the differences of mineral dissolution rates between field and 

laboratory (Salehikhoo et al., 2013). Indeed, while mineral dissolution in mixed flow reactors occurs 

in a chemically homogeneous solution, column experiments reveal the importance of flow and 

dispersion (longitudinal and lateral) due to the porous material. In this section, dissolution rates 

obtained by a column experiment are presented and linked to etch pit morphologies. This link is then 

discussed regarding results obtained in mixed flow reactor experiments. The column experiment lasted 

10 days and we assume that steady state was reached because the calcium concentration at the column 

outlet remained constant since the second day of experiment.  
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7.1.5.2.a Dissolution rates determined from VSI measurements 

 

Dissolution rates determined by VSI measurements are shown in Figure 7.5. Two distinct behaviors 

are visible, with upstream-faces dissolving systematically faster than the downstream-faces (upstream 

and downstream with respect to the flow direction). Furthermore, the evolution of the dissolution rate 

of upstream-faces along the column behaves differently from those of downstream-faces: while for 

upstream-faces, the dissolution rate decreases steadily along the column prior to reaching a plateau, 

the dissolution rate of downstream-faces remains relatively constant (R ~ 8.33 × 10-9 mol/m²min/s). For 

upstream faces, a rate decrease, from 7.31 × 10-8 mol/m²min/s to 3.72 × 10-8 mol/m²min/s, is observed up 

to the forth mineral from which it became nearly constant.   

 

 

 

Figure 7.5 - Variation of the dissolution rate of the {104} faces in the column, calculated after 10 days 

of experiment. Blue and red symbols were used to depict the dissolution rate of upstream- and 

downstream-faces, respectively. 

 

Qualitatively, these differences between upstream-faces and downstream-faces may be explained by 

the evolution of the saturation state in the vicinity of the calcite surface. Figure 7.6a represents a 

schematic view of the transport along a path line. Due to laminar flow conditions, the velocity 

magnitude at both sides of the crystal (upstream and downstream) is the same for the same x location 

and for the eight crystals placed in the column (assuming here that the errors due to the lateral  crystal 

positioning and  to the location of column s inflow and outflow can be neglected). At the column inlet, 
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the concentration of Ca2+ of the injected solution is equal to zero. At steady state, the concentration at 

location C1 represents the average concentration due to dissolution and transport 

(advection and dispersion) fluxes. Along the crystal,  concentration changes (as the saturation index) 

are due to dissolution and  lateral dispersion. Assuming that the dissolution flux is greater that the  

lateral dispersive-diffusive flux, the concentration increases from location C1 to C2;  this explains the 

differences between the upstream and downstream dissolution rates. The concentration decreases from 

C2 to C3 due to lateral dispersion-diffusion, which explains the higher dissolution rate of the upstream 

face compared to the dissolution rate of the previous downstream face. Moreover, because the 

concentration in C2 is higher than in C1, the dissolution rate between two successive upstream faces 

decreases. However, the dispersion process depends on the concentration gradient and this effect 

diminishes with the distance, which explains that the dissolution rates between successive upstream 

faces remain constant after the fourth crystal. Finally, the average concentration at the downstream 

faces is more or less the same for each crystal (same dissolution rate).  

Overall, these results suggest that accounting for the modification of the fluid flow direction and 

velocity in the vicinity of the crystals, as well as accounting for the dispersion between two 

consecutive crystals will be central to accurately model calcite reactivity all along the column. 

 

7.1.5.2.b Etch pit morphology 

 

As emphasized in section 3.1.1, etch pit morphologies strongly depend on the saturation index of the 

solution that contacts the dissolving surface. A triple bijective link between etch pit morphologies, 

solution composition and crystal dissolution rates may be a clue to determine dissolution rates in the 

field or the chemical composition of the reactive solution, directly from mineral surface analyses 

(Berner et al., 1980; Velbel, 2009). However, the strong discrepancies between dissolution rates 

measured in the field and in the laboratory indirectly suggest that differences may exist in the etching 

patterns observed in the laboratory and those observed in the field.  

Overall, all crystals in the column (both upstream and downstream faces) recovered after ten days of 

dissolution exhibited triangular etch pits. In addition, upstream faces of the first two crystals contained 

also some rhombohedral pits. As opposed to the rhombohedral pits observed in mixed flow reactor 

experiments, the rhombohedral pits observed on these faces are almost flat (possibly resulting from 

point defects such as foreign ions, or to the outcrop of edge dislocations (Lee and Parsons, 1997; 

Figure 7.7). Considering the qualitative relation between solution saturation state and pit morphology 

discussed in section 4.1.1, the theoretical fluid saturation state at these specific mineral-water 

interfaces may have ranged between 0 and 0.3-0.45. These values correspond to a dissolution rate 

ranging between 5.2 × 10-7 mol/m²min/s and 1.8 × 10-8 mol/m²min/s.  
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Figure 7.6 - a. Scheme of a flow path along the crystals in the column experiment. Colors represent the 

evolution of the calcium concentration along this path. The color gradient from blue to red stands for 

low to high concentrations, respectively. b. Scheme of a half-section of the column. Blue planes 

represent the conceptual thickness considered in the 2D model. Then, the crystal is not considered in 

its entirety. The red part represents the mask on the crystal surface. The green plane represents the 

separation between two elements considered in the 1D model. Finally, salmon lines represent the best 

width that should have been considered for the best agreement between model and experiment. 

 

7.1.5.2c Comparison of the mean dissolution rates retrieved with VSI to those inferred from pit 

morphology 

 

While the range of calcite dissolution rates inferred from etch pit morphologies (from 5.2 × 10-7 

mol/m²min/s to 1.8 × 10-8 mol/m²min/s) is in reasonable agreement with the mean dissolution rate 

calculated from VSI measurements for upstream faces (from 7.31 × 10-8 mol/m²min/s to 3.72 × 10-8 

mol/m²min/s), this method overestimates the mean calcite dissolution rate of downstream faces by more 

than a two-fold factor (  1.8 × 10-8 mol/m²min/s vs. ~8.33 × 10-9 mol/m²/s). In addition, the occurrence 
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of pits on upstream-faces is consistent with the observations from mixed flow reactor experiments, 

whereas the mean dissolution rate of downstream faces is not compatible with the spontaneous 

nucleation of triangular pits. Below, we briefly discuss some tentative explanations that might 

contribute to resolve this apparent paradox, namely:  

(i) etch pits represented relict structures inherited from the early stage of the experiment, while 

the saturation state was still lower than 0.45;  

(ii) A direct effect of the porous medium (and in particular, the contact between zirconia beads 

and mineral surfaces), which may exert an inhibiting role on the dissolution kinetics;  

(iii) the hydrodynamics of the solution (turbulent in mixed flow reactor experiments vs. 

laminar in the column experiment) may control the relation between etch pit morphology, R and  

beyond the simple development of compositional gradients in the fluid contacting the mineral surface. 

With respect to (i), as the column experiment was initiated in a Ca-free solution, the early nucleation 

of etch pits could have occurred on the (upstream and downstream) faces of all crystals. While this 

process may explain the observation of triangular etch pits on faces that were supposedly in contact 

with a solution close to calcite saturation, it does not explain why such etch pits did not contribute to 

raise the dissolution rate, as expected from the dissolution mechanism discussed in section 3.1.2 (see 

also Beig and Luttge (2006), who evidenced enhanced dissolution rates of pre-treated albite powders, 

even at close-to-equilibrium conditions). 

 

 

Figure 7.7 - Typical features observed on upstream and downstream faces of calcite crystals in the 

column experiment. a. Rhombohedral pits observed on the two first upstream faces. b. Triangular pits 

observed on upstream faces. c. Triangular pits observed on downstream faces. d. The circular area in 

red is likely due to the contact between mineral surface and zirconia beads, which creates a non-wetted 

surface. 
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The subsequent explanation (ii) is suggested by the observation of circular zones on the mineral 

surface with a mean height close to that of the reference surface (Figure 7.7). These zones were 

present on all mineral surfaces and are undoubtedly due to the contact between mineral surface and 

zirconia beads. These contacts may have played a role equivalent to that of the masks we applied on 

the surface, and one could wonder the extent to which an elevated density of such additional masks 

could impede the propagation of step-waves at the calcite surface, eventually playing a role similar to 

that of step bunches or macrosteps, which ultimately result in a significant reduction of local 

dissolution rates (Saldi et al., 2017; Smith et al., 2013). In that sense, the relation between etch pit 

morphology, R and  would not hold because R is lowered by the inhibiting role of zirconia beads. 

The last explanation (iii) is supported by studies that showed that the effect of the fluid hydrodynamics 

goes beyond the simple development of a diffusion boundary layer (DBL), which drives the interfacial 

solution towards higher  values and may lead to a transport-controlled process (Molins et al., 2014; 

Noiriel and Daval, 2017; Ruiz-Agudo et al., 2016). It has been further suggested that the laminar flow 

on mineral surfaces may lead to a reversible change in surface charge and a modification of the surface 

potential (Lis et al., 2014), which ultimately affect the dissolution rate. If this explanation prevails, the 

results obtained from mixed flow reactor experiments may not directly apply to modeling the column 

experiment, and more generally questions the conceptual bases of the upscaling approach of water-

rock interactions developed over the last three decades. The extent to which this mechanism is 

detrimental to the modeling of calcite dissolution in the column experiment is discussed in the next 

section, by means of reactive transport simulations. 

 

7.1.5.3 Modeled dissolution rates using 2D reactive transport simulations of the column experiment 

 

2D-models represent an efficient way to describe the hydrodynamics inside the column, and hence, to 

represent the complexity of the flow, which is not possible with 1D models. They also allow for the 

implementation of all the transversal mixing processes due to transverse dispersion and diffusion. 

A rigorous modelling of the column geometry (cylinder) would be a half of the cylinder s section due 

to symmetry (rectangular parparallelepiped crystals centered in a cylinder with CrystalboundTM on one 

side  see Figure 6b). To avoid excessive computational effort, the simulations are performed on a 2D 

domain representing one vertical centered slice of the column.   

The simulations were run without adjustment of any boundary conditions and/or model parameter. The 

only unknown parameters are dispersivities. The longitudinal dispersivity was assumed to be equal to 

the average grain size and the transverse dispersivity is set to 1/10th of the longitudinal dispersivity, 

which are usual values for the simulation of solute transport in homogeneous porous media (Ballarini 

et al., 2012; Maina et al., 2017). We also analyzed the effect of the uncertainty on the dispersivities by 

using values ten times greater. Although the mixed flow reactor experiments showed that the stepwave 

model better describes the relationship between the dissolution rate and the saturation index, the 
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transition state theory was also used as an alternative dissolution rate model, as TST-based rate laws 

are commonly implemented into most reactive transport codes. This will allow us to discuss some 

potential limitations of using TST-based rate equations for modeling purposes. Chemical reactions and 

chemical parameters are summarized in Table 7.3 and the transport parameters are summarized in 

Table 7.4. 

SpeCTr allows for the computation of the dissolved mass for each grid cell. To assess the reliability of 

our modelling, the cumulated dissolved mass computed for each upstream and downstream crystal 

face was compared to the dissolved mass measured by VSI on the corresponding faces at the end of 

the experiment. This local validation of the model was completed by a more global validation based 

on the comparison between measured and computed Ca2+ concentration at the column outlet (see 

section 4.5). 

 

Parameters (-) 
L (m) T (m) Dm(m2/s) 

 0.380 10-3-10-2 10-4-10-3 0.3 × 10-9 
 

Table 7.4 - Transport parameter values. 

 
 

 H+ H2O HCO3- Cl- Na+ Ca++ Gcrit k1 k2 B 

Calcite 1 0 1 0 0 1 -2248.6 1.08 10-6 2.58 10-8 4.27 
 

Table 7.5 - Dissolution reaction and kinetic parameters of the mineral reaction (see reaction rate 

equation (7.5)). 

 

Simulation results using SWM are depicted in Figure 7.8a. The agreement between modelled and 

measured dissolution rates is within the range of both experimental and numerical uncertainties, 

except for the upstream face of the crystal located close to the outlet (computed R between 1.5 × 10-8 

and 3.3 × 10-8 mol/m²min/s and measured R between 3.6 × 10-8 and 4.1 × 10-8 mol/m²min/s). The model 

further confirms the decrease of the dissolution rates for both faces of each crystal from the column 

inlet to its outlet. It also shows the sensitivity of the dissolution processes to the mixing conditions, 

i.e., dispersion/diffusion, as discussed in section 4.2. The highest dissolution rates were obtained with 

the highest dispersivity values. For each crystal, the change in dispersion values resulted in the same 

dissolution rate variations for the upstream faces. This was not the case for the downstream faces, 

where the dispersion changes led to a decreasing variation of the dissolution rates with the distance to 

the column inlet. This may be explained by the concentration gradients, which are higher close to the 

inlet compared to the outlet.  

Quite unexpectedly, the agreement between measured and computed dissolution rates using the TST 

model was similar to that obtained using the stepwave model for upstream faces, except for the two 
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first crystals (Figure 7.8b). Conversely, the simulations performed using the TST rate law generally 

overestimate the reactivity of downstream faces. Taken together, these results illustrate that in the 

specific case of this set-up, the outputs of the simulation are more impacted by the uncertainty related 

to the transport parameters (i.e., dispersivity/diffusion) than to the choice of the rate law. This may be 

related to a dissolution regime where the increment of solutes released from the crystals is no longer 

enough to result in a drastic change in the saturation state from one crystal to the next, so that the 

whole system is fixed at a dissolution regime set by the absolute dissolution rate of calcite, regardless 

of the rate law that was used to model the experiment.  

 

 

Figure 7.8 - Outputs of the 2D simulations using SWM (a) and TST (b) rate laws. The grey and green 

areas depict the experimental data for the upstream and downstream faces, respectively, together 

wither associated uncertainties. The red and blue areas are modeled predictions for upstream and 

downstream faces, respectively, for dispersivity varying between 1 mm and 10 mm. 

 

7.1.5.4 Modeled dissolution rates: 1D versus 2D simulations. 

 

In this section, as for the 2D model, a 1D model was used to study the geochemical evolution of the 

column experiment. One dimensional simulations are the most commonly used to model geological 

processes such as pedogenesis (e.g. Maher et al., 2009; Schott et al., 2012) and water-rock interactions 

at the catchment scale (e.g. Godderis et al., 2006; Lucas et al., 2017) and in aquifers (Vital et al., 

2018). The same chemical reactions, flow and transport parameters as in the 2D simulations were used 

to run the 1D simulations, with the aim to decipher whether such simulations already provided 

satisfactory agreement with the experimental results.  

Figure 7.9 shows the modeled dissolution rates for the calcite upstream and downstream faces. The 

first striking result is that TST- and SWM-based simulations provide similar results, while 
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significantly overestimating the dissolution rate of upstream and especially downstream faces (by a 

factor of ~3 to 19 for the first crystal and by a factor of  ~5 to 29 for the last one, regarding upstream 

and downstream faces, respectively). This result can be ascribed to the velocity magnitude, which is 

constant for the 1D simulation and is very low at the crystal/porous medium interface for the 2D 

simulations. The higher velocity in the 1D simulation leads to lower saturation indices close to the 

crystal and demonstrates the little interest of 1D simulation for kinetic dissolutions when the fluid 

velocity is an important component of the solute transport. In addition, a fundamental assumption of 

1D-simulations is that the solid matrix is homogeneously distributed in an elementary cell, so that the 

solution composition is also homogeneous in each cell. This condition is not met here. It results from 

these two explanations that the computed solution composition in the column is always far-from-

equilibrium, where the TST and the SWM predict similar dissolution rates (Figure 7.4). 

Secondly, while dissolution rates decrease with the distance to the column inlet, there are no 

significant differences between upstream and downstream faces of a same crystal. This result means 

that the saturation index of the solution contacting the downstream face is not sufficiently different 

from the saturation index of the solution that contacts the upstream face of the same crystal. This 

difference between the 2D and 1D simulations is a direct consequence of the space discretization. 

Indeed, in the 2D-simulations, the circulation of the solution around the crystal results in a gradual 

increase in calcium concentration in the cells in contact with the crystal surface, because of calcite 

dissolution. The corresponding increase of the saturation index results in a dramatic decrease of the 

dissolution rate of the downstream faces compared to the upstream faces. Conversely, in the 1D-

simulations, this gradual loading does not occur since the surface area of one face is considered to be 

homogeneously distributed into the cell. The difference of saturation index between upstream and 

downstream faces is thus weaker than it is for the 2D simulations. 

Finally, the third significant difference between the 2D and 1D simulation is the sensitivity to 

transverse mixing, which cannot be taken into account in the 1D computation.  Overall, these results 

show that the saturation state of the fluid in the vicinity of the calcite crystal is not satisfactorily 

modeled in a 1D geometry. The lack of agreement between the simulations and the observations most 

likely originates from an improper definition of the spatial representation of the mineral inside the 

column and/or the need of effective (upscaled) parameters for the 1D-simulations.  

While the failure of the 1D-simulations to account for the measured calcite dissolution rates may be 

attributed to the specific configuration of the column experiment (heterogeneous distribution of highly 

reactive minerals submitted to dissolution at relatively high fluid flow), it is noteworthy that this case 

is often met in aquifers (Vital et al., 2018) or in soil profiles (Godderis et al., 2006), where the 

dissolution of trace minerals disseminated in the bedrock was suggested to have a first order impact on 

the concentration of major elements in the soil horizons. For instance, Godderis et al. (2006) proposed 

that the dissolution of apatite was the main contributor to the dissolved concentration of calcium in the 

spring collector of the Strengbach catchment (Vosges massif, France)). In that sense, our study 
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suggests that 1D models may significantly overestimate the reactivity of such phases for various 

geological settings. 

 

 

 
Figure 7.9 - Results from the 1D model. a. Results based on a TST- dissolution rate law and 

dispersivity values of 1 mm and 10 mm. b. Results using TST compared to experimental data. c. 

Results a dissolution rate law based on SMW, and dispersivity values of 1 mm and 10 mm. d. Results 

using SWM compared to experimental data. In all cases, black and cyan points represent modeled 

dissolution rates of upstream faces and green and magenta points, the modeled dissolution rates of 

downstream faces for dispersivity values of 10 mm and 1 mm, respectively. The blue points depict the 

measured upstream faces dissolution rates. The red points depict the measured downstream faces 

dissolution rates. 
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7.1.5.5 Simulation of the Calcium breakthrough curve. 

 

A proper estimation of dissolution rates in the column represents a major issue for mineralogical 

concerns or for the lifetime of a mineral in natural environment (the longer a mineral is present in the 

system, the greater its contribution to the geochemical evolution of the solutions), but this does not 

reflect all the possible highlights that a column experiment can provide. Indeed, another concern at a 

large scale is the evolution through time of the elemental concentration at the outlet of a system (soil, 

catchment ).  

During the run of the column experiment, the solution was regularly sampled at the outlet of the 

column. These samples have surprisingly shown a significant initial calcium concentration followed 

by a decrease of the concentration at the very beginning of the experiment (Figure 7.10). This initial 

value and the decrease might be explained by the column s filling procedure. The column was filled 

under dry conditions to avoid dissolution before water injection and the calcite samples were deposited 

using a clamp. This clamp possibly damages the crystal samples and leads to the production of fines 

When the injection of the solution started, these particles started to be dissolved but also pulled away 

towards the outlet of the column.  

This assumption was checked by adding calcium as initial condition in some cells of the numerical 

grids. This represents the only scaling parameter in this study. The number of cells that contain 

calcium was chosen in order to match the calcium concentration measured in the first collected 

sample, after the outflow of a volume of solution (Vs) equivalent to 1.67 × 10-1 pore volume (Vp). A 

good match is obtained by setting an initial calcium concentration of 5.29 × 10-4 mol/L over the last 

2.5 cm of the column (corresponding to 2 mg of calcite powder distributed in this part of the column). 

Importantly, it was verified that adding this initial concentration did not impact the outputs of the 

simulations, neither in terms of the steady-state concentration of Ca at the outlet, nor in terms of mean 

dissolution rates retrieved for each crystal face. 

Figure 7.10 shows the evolution of the experimental and modeled calcium concentrations over time at 

the outlet of the column. Over this time period, only two samples have been collected. At the 

beginning of the experiment, the Ca concentration was 5.29 × 10-4 mol/L. This concentration 

decreased rapidly to 1.80 × 10-4 mol/L after 1.67 × 10-1 Vp and finally reaches a steady-state with a 

concentration of 1.25 × 10-5 mol/L. Note that, for the last datum, the calcium could have been 

considered as a trace element because of its weak concentration, resulting in a high ICP-AES 

measurement error (20%).  

2D and 1D simulations shown in Fig 7.10 were performed with both TST and SWM dissolution rate 

laws. For the simulations conducted with a 1 mm dispersivity, the concentration remains constant  

for Vs  5.16 × 10-2 Vp, and decreases rapidly to reach a minimum before increasing slightly to a 

constant value for Vs  close to 1 Vp.  
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This minimum represents the outflow volume of solution after which the initial calcium concentration 

is balanced with the calcium plume resulting from calcite dissolution. The increase of dispersivity to 

10 mm led to a more smeared concentration variation. The steady state concentration values are 

different for the two values of dispersivity for the 2D configuration compared to the 1D configuration. 

For the 2D configuration, the most likely dispersivity value (1 mm) led to a better estimate of the 

measured steady state concentration. The steady state is obtained for Vs close to 1 Vp for almost all 

simulations, except for the one run using TST and a dispersivity of 10 mm, where the steady state is 

reached for Vs = 1.75 Vp. At steady state, the measured concentration was equal to 1.25 × 10-5 mol/L 

and the simulated concentration for a dispersivity of 1 mm and the SWM rate law was 3.36 × 10-5 

mol/L for the 2D configuration and 2.27 × 10-5 mol/L for the 1D geometry. This better match between 

measured and computed concentrations for the 1D configuration is in contradiction with the 

simulation of the dissolution where the 2D configuration outperformed the 1D configuration. This 

apparent paradox is discussed in section 4.6.2. 

 

 

 
Figure 7.10 - Evolution of the calcium concentration as a function of the outlet solution volume.  The 

decrease at the beginning of the experiment corresponds to dissolved calcite fines resulting from the 

preparation step of the column. Dashed lines correspond to 2D simulations and solid lines to 1D 

simulations. Blue and red correspond to simulations using TST as dissolution rate law and dipersivity 

of 1 mm and 10 mm respectively. Green and cyan lines correspond to simulations using SWM as 

dissolution rate law and dispersivity of 1 mm and 10 mm respectively. Black points are ICP 

measurements. Notice that the last ICP point correspond to the calcium concentration at steady state 

but it was measured at 4.3 pore volume. 
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7.1.5.6 1D and 2D-reactive transport simulations of the column experiment: overview and 

perspectives 

 

7.1.5.6a Mineralogical considerations 

 

Overall, the simulations conducted using the SWM-based rate law have provided a better agreement 

with the measured dissolution rates than the simulations run with a TST-based rate law. However, it is 

striking that the greatest improvement was obtained using 2D-reactive transport models instead of 1D-

simulations. In spite of this improvement, it is clear that we were unable to obtain a perfect match 

between the simulations and the model using an ab initio approach, even with 2D-simulations 

implemented with SWM. Because these latter simulations provided the best agreement between the 

model outputs and the data, the discussion below is mainly based on the results of these simulations: 

A first important point to emphasize is that the dissolution of each crystal is not independent of the 

dissolution of the others. In particular, the entire system is primarily driven by the dissolution rate (and 

therefore the dissolution rate law) of the upstream face of the first crystal.  

Regarding the downstream faces, the strong dependence of their dissolution rates on the transverse 

dispersivity allows for a fine tuning of this parameter. For homogeneous porous media, the usual value 

of longitudinal dispersivity is equal to the mean grain size and the transverse dispersivity is set to 

1/10th of the longitudinal dispersivity (Ballarini et al., 2012; Maina et al., 2017). Using a longitudinal 

dispersivity of 1 mm provided an excellent agreement between the modeled and measured dissolution 

rates of downstream faces. However, it results in a greater underestimation of the dissolution rates of 

all upstream faces. As suggested by Beig and Luttge (2006), the measured dissolution rates might be 

greater than expected from the simulations because of the early formation of etch pits, which might 

have remained active even when the solution composition exceeded Gcrit, resulting in enhanced 

dissolution rates. Knowing that these models do not take into account the mineral surface s history, 

they would ultimately result in underestimations of the dissolution rates. 

 

7.1.5.6.b Calcium breakthrough 

 

Considering the calcium breakthrough curve, the 1D simulation allowed for a better agreement with 

experimental data than the 2D simulation. This paradox could be explained by the domain considered 

in the 2D case. The 2D model considers a projection of the cylinder on a plane of a prescribed 

thickness. Therefore, the 2D geometry does not allow for a detailed representation of the velocity 

variations, and the radial dispersion is hampered in the 2D geometry compared to the 3D. 

Furthermore, the concentration at the column outlet is a flux weighted concentration where the fluxes 

with very low calcium concentration (close to the column limits) are overestimated in the 2D 

configuration.  
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Despite the better agreement between the 1D simulation and experiment (C1D = 1.8 × Cexp), there is no 

significant difference between the 2D simulation and experiment (C2D = 1.5 × C1D = 2.7 × Cexp; i.e. less 

than an order of magnitude). Considering that the difference in terms of mineral reactivity is much 

bigger in the 1D simulations than in the 2D simulations, these latter simulations remain, overall, much 

more satisfactory to model the dissolution rate of fairly reactive solids disseminated in a porous 

medium. 

 

7.1.5 Conclusion 

 

In this study, the dissolution rate model developed and parameterized with mixed flow 

reactors has been quite successfully applied to simulate a column experiment without any calibration 

of the parameters involved in this model.  

Under our experimental conditions and set-ups, calcite dissolution considered in a mixed flow reactor 

and in a column highlighted the follow results: 

1. In agreement with several studies, the experiments conducted in mixed-flow reactors 

demonstrated that a simple TST-based equation cannot capture the R-  relation followed by 

the (104) face, whereas a strong relation between the saturation index, the nucleation of etch 

pits and the dissolution kinetics was observed. The stepwave model proposed by Lasaga and 

Luttge (2001) was found to accurately describe the dissolution of the (104) face. However, 

depending on the saturations, the difference between both models can be negligible.  

2. The face orientation of the crystal with respect to the flow (upstream or downstream) 

significantly impacts the dissolution of the crystal. Upstream faces dissolved more rapidly 

than downstream faces. 

3. The effects of the face orientation are due to a balance between the calcium flux resulting from 

dissolution and the transported flux due to advection and dispersion/diffusion.  

4. Both transport fluxes play an important role in the dissolution: advection with low velocities 

around the crystal compared to the average water velocity and transverse dispersion/diffusion 

that reduces the concentration in the streamline that follows the crystals.  

Overall, this study emphasized that 1D-reactive transport simulations may be improper to 

model the dissolution rate of fast dissolving trace minerals because neither the flow field variability 

nor the transverse mixing can be taken into account. Therefore, 1D simulations would require 

modifications of the parameters (at least) to describe the dissolution processes within a 1D geometry. 

These results show that the upscaling from mixed flow reactor to the column scale is possible if the 

geometry of the system is properly described.  
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7.2 Preparing Calcite dissolution rate modeling 

 

In the following paragraphs is reported the preparatory work for Bouissonnié et al. (2018, submitted to 

Chemical Geology), concerning the adaptation of the code to model the experiment and the choices of 

spatial and time discretization. In order to compute the reactive surface as a function of the mesh size, 

a model is proposed in paragraph 7.2.1. All the results presented in previous paragraphs were obtained 

with a 5668 elements mesh, representing the diametric section of the column, parallel to the main side 

of the crystals (see Figure 11). Elements are square and 1mm size. Considering the symmetry of the 

mesh, preliminary studies over time and spatial discretization were performed over only half of the 

column (see section 7.2.2).  

 

Figure 7.11  Mesh used for simulation in Bouissonnié et al (2018). The 5668 elements are square and 

1mm side.  
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7.2.1 Computation of reactive surface area for TST and SWM models 

 

Two different models were implemented in the code for the simulation of Calcite crystals dissolution: 

the popular TST dissolution rate (equation (7.4)), which is available in most codes, and SWM 

dissolution rate (equation (7.5)). Both models require the presence of a reactive surface area As [L
2-

min/MH2O] to connect the evolution of the mineral with the solution. The value of As can be computed 

on the basis of porosity and values of specific surface extracted from literature, such as in Wanner et 

al. (2015). Nevertheless, in order to guarantee a better representation of the experiment, the reactive 

surface area was computed as a function of the size of the element in this work. Figure 7.12 shows 

elements in contact with one crystal in Figure 7.11 or 7.13 (the system of reference is the same as 

Figures 7.11 and 7.13).  

For a single element, the surface of the mineral exposed to the flux (red shadow in Figure 7.12) can be 

computed as X x Z [L2]. At the same time, given  the porosity of the medium, the volume of water 

contained in the cell is Vw = X x Y x Z x  [L3].  Since the interest is in obtaining a parameter 

measured in [L2
min/MH2O], the following formula for the computation of As is proposed: 

 

 
2 22 2

2 3 2
min min

3S

H O H OH O H O

L L LX Z X
A

X Y Z X YL M M
 (7.7) 

 

It is worth reminding that in SpeCTr the coherence of space and time units is a responsibility of the

user and an effort is required to make sure that constants (for example water density ) are expressed 

in their correct units. The same is true for kinetic constants [mol/T]  in equations (7.4) and (7.5), they 

must be expressed in the time unit adopted in the problem.   

 

 

 

Figure 7.12  Schema of an element of the mesh in Figure 7.11 (or 7.13)  in contact with the Calcite 

crystal (red shadow), coordinates are reported as in Figure 7.11 (or 7.13). 
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7.2.2 Time and spatial discretization 

 

The symmetric nature of the mesh in Figure 7.11 allowed testing the size of elements and time 

stepping only over half of the column section (see Figures 7.12 and 7.15). Figure 7.6a shows that 

Calcite crystals were considered, as impervious from a flow point of view, i.e. as holes in the mesh. 

Figure 7.13 shows the 1mm side elements mesh used to describe the half-column section. From a 

chemical point of view, Calcite was made available to dissolve in the elements surrounding holes (for 

example, for the first crystal: in Figure 7.13, elements 281-285 on the upstream face and their 

homologs on the downstream face). In order to avoid possible dependencies of results from time or 

spatial discretization, two meshes were tested (one with 2810 elements 1 mm side and the other with 

11240 elements 0.5 mm side) and tests were performed with different time step sizes. 

 

 

Figure 7.13  The 2810 elements mesh used for testing time discretization for the simulations in 

Bouissonnié et al. (2018). The size of elements (1 mm2) was confirmed after a comparison of the 

results obtained with a finer grid. 
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The experiment was carried in a column of 150 mm height and 18 mm radius, filled with non-reactive 

glass beads and containing eight Calcite (CaCO3) crystals; a constant flow (v=3.77 10-3 [mm/s]) was 

imposed in the column (direction y=0 to y=150) engendering Calcite dissolution. 

Simulations were run only for the following combination of models and parameters: L=10 mm, T=1 

mm, D0=10-4, TST dissolution model (assuming that TST and SWM models for calcite dissolution 

behave accordingly), reactive surface dependent from the mesh-size as in equation (7.7). Flow, 

transport and TST parameters used in the simulations are resumed in Table 7.6, while the reaction 

network is the same presented in Table 7.3. 

 

 

Parameter Value Unit 

Porosity   0.38 [-] 

Conductivity 100 [mm/s] 

Vy 3.77 10-3  [mm/s]) 

L 10 [mm] 

T 1 [mm] 

D 10-4 [mm2/s] 

Keq 1.8487 [-] 

Kkin 5.2 10-7 [mol/m2/s] 

 

Table 7.6  Main parameters for preparatory simulations. 

 

Tests were performed at first using the 1 mm size elements grid. The time step size computed to 

respect CFL condition was progressively reduced, initially divided by a factor 5 and subsequently by a 

factor 10. Concentrations of total Ca2+ were monitored at the upstream elements of the first Calcite 

crystal, which is considered the most critical position since it s the closest to boundary conditions. 

Elements representing the upstream face (the direction of the flow is from y=0 to y=150) of the first 

Calcite crystal are 281-285 (see Figure 13).  

Important and systematic reductions of concentrations appear in Figure 14 when moving from the step 

size required by CFL condition to a fifth of its value. Differences are more important far from the 

column axes. Moving from dt/5 to dt/10 causes a modest reduction of concentrations (see Figure 15) 

which remains more important far from the column axis.  
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Figure 7.14  Total dissolved Ca2+ concentrations at upstream faces of first crystal obtained with 

dtCFL and dt/5 (dtCFL divided by a factor 5). 

 
Figure 7.15  Total dissolved Ca2+ concentrations at upstream faces of first crystal obtained with 

dtCFL and dt/10 (dtCFL divided by a factor 10). 
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In order to avoid dependencies of the solution from the spatial discretization, a simulation was run 

with a finer mesh (around 11000 elements, 0.5 mm side; see Figure 7.16) and a time step of dt/5. 

Concentrations were monitored at the elements closest to the column axis, since only in those elements 

the retreat of the crystal was compared to experimental data. For the upstream face of first crystal, the 

element of interest is element 285. Figures 7.17 and 7.18 show the total dissolved Ca2+ concentrations 

at crystals while Figure 7.19 shows it at the outlet; the concentration at the outlet is the result of a 

mean over the outlet elements (x=0 to x=18, y=150) computed taking fluxes into account.  

 

 

 

Figure 7.16  The coarse mesh (2810 elements, 1 mm side) on the left and the fine mesh (11240 

elements, 0.5 mm side) on the right. Red rectangles highlight the portions of the crystals that were 

monitored; in the blue rectangles, the outlets.  
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Figure 7.17  Total dissolved Ca2+ concentrations at crystals obtained with coarse (dashed) and fine 

(continuous) mesh.
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Figure 7.18  Total dissolved Ca2+ concentrations at crystals obtained with coarse (dashed) and fine 

(continuous) mesh. 
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Results obtained with the two meshes are in good agreement although small differences exist. Most 

important discrepancies appear at the first crystal, confirming the hypothesis that the crystal closer to 

the boundary conditions is the more exposed to time and spatial discretization dependencies. Results 

in Figures 7.17, 7.18, 7.19 also confirm that equation (7.7) is independent of the mesh size, as 

predictable from some basic mathematical considerations. Although there is an effect of the spatial 

discretization, it is minimal and it doesn t justify the use of the 0.5 mm elements grid. 

Concerning time discretization, although the difference between concentrations computed with dt/5 

and dt/10 is around 2%for element 281, the direct interest is over element 285 (the retreat of the crystal 

was compared to experimental data only at central elements of the crystal), which shows an error of 

about 0.7%. Moreover, differences are expected to lower proceeding in the y direction (as happens for 

spatial discretization in Figures 7.17 and 7.18), therefore the use of dt/5 is justified. For this reason, all 

simulations in Bouissonnié et al. (2018, submitted) are run with a transport time step five times 

smaller than the required CFL condition.  

 
 

Figure 7.19  Total dissolved Ca2+ concentrations at the outlet obtained with coarse (dashed) and fine 

(continuous) mesh. 
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7.3 Mixing induced CaCO3 precipitation 

 

7.3.1 Presentation of the test case 

The test case presented in the next paragraphs was published by Katz et al. (2009) in a comprehensive 

experimental and numerical study regarding mixed induced precipitation of Calcite. The original work 

included both conservative and reactive transport modeling in homogeneous and heterogeneous media. 

Conservative transport experiments reported in Katz et al. (2009) were also used as a basis for global 

sensitivity analysis (Fajraoui et al. 2009); in this work, the interest is focused on the reactive transport 

experiment in a heterogeneous medium, which will be modeled with SpeCTr. The importance of 

solving as many problems as possible cannot be stressed enough if the purpose is to provide a reliable 

code for realistic geochemical simulations. In this particular case, SpeCTr will be confronted with the 

modifications of physical modifications of the porous medium following the precipitation of a solid 

phase.  

 

Figure 7.20  Experimental setup for the reactive transport experiment in heterogeneous porous 

medium (Katz et al. 2009).  

 

The experimental setup for reactive transport in heterogeneous medium (Katz et al. 2009) is shown in 

Figure 7.20. Laboratory experiment consisted in injecting two potentially reactive solutions (calcium 

chloride, CaCl2, and sodium carbonate, Na2CO3) with a parallel flow, triggering Calcite (CaCO3) 

precipitation at the interface. The dimensions of the flow cell are x=25 cm, y=10 cm, and z=0.8 cm. 

Two different porous media constitute the heterogeneous domain. The majority of the domain is filled 

with 1 mm glass beads, while 0.532 mm sand grains fill a trapezoidal section of coordinates: x=14,  

y=-5; x=21.25,y=-5; x=14,y=5; x=15.25, y=5 (see Figure 7.2). Calcium chloride (CaCl2) solution is 

injected through inlet 1, that goes from (x=0,y=0) to (x=0,y=-5); sodium carbonate (Na2CO3) is 
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injected at inlet 2, that goes from (x=0,y=0) to (x=0,y=5). There are three series of sampling ports 

over the domain, named A(1-4), C(1-3) and D(1-3) (see Table 7.7 for the exact location). Total 

Calcium (Ca2+) concentrations were measured throughout time at sampling ports and subsequently 

confronted with simulated values obtained with code RETRASO, (Saaltink et al. 2004).   

 

 A1 A2 A3 A4 C1 C2 C3 D1 D2 D3 

x 11.4 11.4 11.4 11.4 17.4 17.4 17.4 21.4 21.4 21.4 

y -1.5 -0.5 0.5 1.5 -1 0 1 -1 0 1 

 

Table 7.7  Coordinates of sampling ports [cm]. 

 

7.3.1.1 Spatial discretization, flow characteristics and ground properties 

 

The domain was discretized by a mesh composed of around 17000 triangular elements (see Figure 

7.21). Glass beads that fill the majority of the domain have an estimated porosity of 0.375 [-] and 

permeability of 1.12 10-9 [m2]; the sand filling the trapezoidal area has a porosity of 0.32 [-] and 

permeability of 2.31 10-10 [m2] (Fajraoui et al. 2011). Previous values of permeability result in values 

of hydraulic conductivity of 67.2 [cm/min] and 13.8 [cm/min] for respectively glass beads and sand 

grains. Neuman conditions were imposed at the inlet, with a constant flow varying slightly between 

inlet 1 and inlet 2 in order to account for a non-uniform distribution of the flow rate (Fajraoui et al. 

2011): v=0.15870 [cm/min] at inlet 2 and v=0.14130 [cm/min] at inlet 1). A Dirichlet boundary 

condition was imposed at the outlet (h=1 [cm]).  

 

Figure 7.21  Spatial discretization of the domain with triangular elements; red dashed lines 

emphasize the zone at lower porosity.    
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7.3.1.2 Boundary and initial conditions, transport parameters 

 

As explained in Katz et al (2009), the heterogeneous porous medium is initially saturated with a NaCl 

solution at 5 g/kg-water equilibrated with ambient air. Throughout the duration of the experiment, two 

solutions are injected at the inlet (both at 5 g/kg-water, equilibrated with ambient air): CaCl2 at inlet 1 

and Na2CO3 at inlet 2. Equilibration with ambient air was computed with CHESS (Van der Lee 1998) 

model.  

Six total dissolved concentrations (corresponding to the six primary species chosen to represent the 

reaction network) are transported throughout the domain. Initial and boundary conditions for each of 

the six elements are listed in Table 7.8.  

 

 Initial Conditions 
Boundary Conditions 

Inlet 1 

Boundary Conditions 

Inlet 2 

 mol/L mol/L mol/L 

H+ 1.29031 10-5   1.26957 10-5   5.67332 10-3   

H2O 55.5 55.5 55.5 

HCO3
- 1.29137 10-5   1.23807 10-5   4.71865 10-2 

Cl- 9.01901 10-2   9.01000 10-2 9.98000 10-2 

Na+ 9.01901 10-2 0.0 9.43497 10-2 

Ca2+ 0.0 4.50505 10-2 0.0 

 

Table 7.8  Initial and boundary conditions obtained with CHESS. 

 

In the portion of the domain occupied by glass beads, longitudinal dispersivity ( L) is set to 0.1 cm 

(corresponding to glass beads diameter) and transverse dispersivity ( T) is set to 0.01 cm ( T = L /10) 

for each chemical species. In the portion of the domain occupied by sand L is set to 0.05 cm (as sand 

mean grain diameter) and T is set to 0.005 cm ( T = L /10) for each chemical species. Diffusion 

coefficients for chemical species in the porous medium are set to 6 10-5 [cm2/min] (corresponding to a 

diffusion coefficient in water of 1 10-9 [m2/s]) for every chemical species in both the glass beads and 

sand portions of the domain.  

 

7.3.1.3 Reaction network 

 

The equilibration with ambient air of the three solutions (NaCl, CaCl2, Na2CO3) performed with 

CHESS provided a reaction network of 19 species that can be described through 6 primary species 

(tableau de Morel reported in Table 7.9) and 13 mass action laws. Equilibrium constants linking 
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primary to secondary species are also reported in Table 7.9. Pay attention to the fact that in SpeCTr 

equilibrium constant is intended as: 
xN

j

ij

i iC K X .  

 

 H+ H2O HCO3
- Cl- Na+ Ca2+ Log10 K 

CaOH+ -1 1 0 0 0 1 -12.834 

CaCl+ 0 0 0 1 0 1 -0.6956 

CaHCO3
+ 0 0 1 0 0 1 1.0467 

NaCO3
- -1 0 1 0 1 0 -9.8144 

NaHCO3 0 0 1 0 1 0 0.1541 

NaCl 0 0 0 1 1 0 -0.777 

CaCO3
 -1 0 1 0 0 1 -7.009 

CaCl2 0 0 0 2 0 1 -0.643 

NaOH -1 1 0 0 1 0 -14.795 

HCl 1 0 0 1 0 0 -0.67 

CO2 1 -1 1 0 0 0 6.341 

CO3
2- -1 0 1 0 0 0 -10.329 

OH- -1 1 0 0 0 0 -13.991 

 
Table 7.9  Aqueous equilibrium reactions in the reaction network. 

 

Precipitation at the interface of the two solutions was modeled in Katz et al. (2011) according to the 

assumption of thermodynamic equilibrium. We recall that under this assumption, the solution is 

saturated when in equation (7.8) SI  1; when the solution is saturated, a solid phase is allowed to form 

to bring equation (7.8) to SI = 1.  

 
,

j

i ja

i pi
Nx

SI K X  (7.8) 

where constant Kpi is the inverse of the solubility product Ks and was set to Log10 Kpi(CaCO3) = -

1.8487. An alternative to the model of thermodynamic equilibrium is the kinetic precipitation of the 

Calcite, according to the TST model as presented in Chapters 4, 6 and 7.  

 

 3 1

n

CaCO

S

S

Q
r k A

K
 (7.9) 

Where As is the reactive surface, k is the kinetic constant and KS is the solubility product (Log10 

Ks(CaCO3) = 1.8487, k=3.12 10-5 mol/min).  
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7.3.1.4 Algorithms for porosity changes 

 

A consequence of Calcite precipitation is clogging of the pores, which of course causes a variation in 

porosity. In Katz et al. (2009), porosity is updated as a function of the number of mineral moles: 

 

 m
m

m

m
V

t t
 (7.10) 

where mm is the number of moles of mineral m and Vm is its molar volume. In Katz et al (2009) mm is 

computed at nodes, while porosity is required at elements, this implying some sort of conversion 

between nodes and elements. The change in pore volume with RETRASO is computed at nodes: 

 

 
1

( ) ( ) ( )
Nm

p i i m i m

m

V node V cell m cell v  (7.11) 

where V(cell) is the volume related to node i, m is the variation of moles per volume of porous 

medium. The further conversion from cell to element can be found in Katz et al (2009). What is 

interesting here is the system for porosity update. In SpeCTr, until now, a linear variation of porosity 

is implemented: 

 
1

1
m old

new old

m new

V

V
 (7.12) 

where:  

 
old m old m

m

new m new m

m

V Cp v

V Cp v
 (7.13) 

Equation (7.13) is written for equilibrium equations and Cp can be substituted with Cc for kinetic 

minerals. Following porosity update, permeability is changed according to (Cochepin et al. 2008):  

 

 

3

old

old

k k  (7.14) 

Diffusion is updated according to the model (Cochepin et al. 2008): 
 

 cem

mD D  (7.15) 

 

where D is the Diffusion coefficient in the porous medium, Dm is the diffusion coefficient in water ,  

is porosity and cem is the cementation exponent. 
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7.3.2 Results of numerical simulations: SPeCTr 

 

7.3.2.1 Results: constant porosity  equilibrium and kinetic CaCO3 precipitation 

 

In order to evaluate the impact of porosity changes, two preliminary simulations were run with 

constant porosity. In one simulation, precipitation of CaCO3 is modeled at thermodynamic equilibrium 

while in the other, precipitation of Calcite is considered kinetic (laws and constants are defined in 

paragraph 7.3.1.3). Chronological evolutions of total dissolved Ca2+ at sampling ports A, C and D are 

reported in Figures 7.22 to 7.31. Two experiments were performed (Katz et al. 2009) therefore two 

series of experimental concentrations are represented in the following figures (black squares and red 

rounds). Simulations published in Katz et al. (2009) for the heterogeneous reactive transport 

experiment are reported in green continuous line. Calcium evolution curves obtained with SpeCTr are 

reported in blue: a blue continuous line shows results obtained with equilibrium precipitation of 

Calcite, a blue dashed line shows results of kinetic precipitation. A black dashed line shows the total 

Calcium concentration injected at inlet 1. It should be kept in mind that sampling ports are numbered 

from the lowest (with reference to y axis) to the highest. 

 

Figure 7.22  Time evolution of total Calcium concentration at sampling port A1. Red rounds and 

black dots represent experimental data; green continuous line represented the simulation in Katz et al 

(2009); black dashed line corresponds to the concentration at inlet 1; blue curves represent SpeCTr 

simulations for equilibrium (continuous) and kinetic (dashed) Calcite precipitation.  
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Figure 7.23  Time evolution of total Calcium concentration at sampling port A2 (legend in Figure 7.22).  

 

 

Figure 7.24  Time evolution of Total Calcium concentration at sampling port A3 (legend in Figure 7.22). 
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Figure 7.25  Time evolution of Total Calcium concentration at sampling port A4 (legend in Figure 7.22). 

 

Figure 7.26  Time evolution of Total Calcium concentration at sampling port C1 (legend in Figure 7.22). 
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Figure 7.27  Time evolution of Total Calcium concentration at sampling port C2 (legend in Figure 7.22). 

 

Figure 7.28  Time evolution of Total Calcium concentration at sampling port C3 (legend in Figure 7.22). 
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Figure 7.29  Time evolution of Total Calcium concentration at sampling port D1 (legend in Figure 7.22). 

 

Figure 7.30  Time evolution of Total Calcium concentration at sampling port D2 (legend in Figure 7.22). 
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Figure 7.31  Time evolution of Total Calcium concentration at sampling port D3 (legend in Figure 7.22). 

 

At sampling ports outside the precipitation zone or at its lower boundary (A1, C1 and D1, see Figure 

7.32 and 7.33) experimental values reach the initial total Ca2+ concentrations or a slightly inferior 

value (sampling port C2). SpeCTr simulations reproduce this behavior correctly with both equilibrium 

and kinetic Calcite precipitation. Differences between results of equilibrium and kinetic Calcite 

precipitation increase with their distance from the reservoir of Ca2+ (that is the red zone in Figure 

7.32). At sampling ports C3 and D2 (which appear to be in the green stripe in Figure 7.32 b) and c)) 

the difference between the equilibrium and kinetic curves becomes distinguishable. The difference 

between the results of the two types of simulations becomes huge at sampling ports A4 and D3. Total 

dissolved Calcium concentration is systematically higher for kinetic simulation, which is coherent 

with the fact that less Ca2+ is retired in the solid phase.  

Generally, results from equilibrium simulation seem to better reproduce the time evolution of total 

Calcium concentration, which is rarely very different from measured values (with the exception of port 

D3). SpeCTr simulations seem to better fit experimental data with respect to those published in Katz et 

al. (2011), although this is probably due to more appropriate values of dispersivity and diffusion 

applied. From Figures 7.22 to 7.31 it is also evident that when no porosity changes are taken into 

account, once a stable value of total Ca2+ is reached there is no further evolution of its concentration: a 

perfect asymptote is reached. Experimental data show a clear evolution in time with values that tend to 

increase (sampling ports A2, A3, C3, D2) or decrease (sampling port A4) which simulations in Katz et 

al. (2009) are capable to reproduce qualitatively (though not quantitatively).  
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Distance [cm] 

 

      Figure 7.32  Time evolution of Total Calcium concentration after 10 minutes (a), 60 minutes (b) 

and 120 minutes (c) for CaCO3 equilibrium precipitation [mol/L]. 
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Distance [cm] 

      

 Figure 7.33  Time evolution Calcite concentration after 10 minutes (a), 60 minutes (b) and 120 

minutes (c) for CaCO3 equilibrium precipitation [mol/L]. 
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Distance [cm] 

      

 Figure 7.34  Spatial distribution of Calcite after 12h for CaCO3 equilibrium precipitation [mol/L] 

with SpeCTr. 

 

 

 

      Figure 7.35  Spatial distribution of Calcite after 11h for CaCO3 equilibrium precipitation 

[mol/m3] with RETRASO (Katz et al. 2009). 

 

 

Although a quantitative comparison of Figures 7.34 and 7.35 is not possible (the units in which results 

are expressed are different, the duration of the simulations are different), qualitatively the two 

simulations are in agreement.  Calcite precipitation is concentrated at the outlet and at the interface of 

inlet 1 and inlet 2 in the two cases although precipitation is less pronounced at the inlet in SpeCTr 

simulation. Moreover, the reduction in precipitation that characterizes the entering in the region at 

lower porosity is not significant in SpeCTr simulations.   

D
is

ta
nc

e 
[m

] 



215

7.3.2.2 Results: variable porosity - equilibrium CaCO3 precipitation 

 

Results obtained with equilibrium precipitation of CaCO3 and variable porosity are presented in this 

paragraph. The algorithm used to update porosity (and consequently permeability and diffusion in the 

porous medium) is presented in paragraph § 7.3.1.4. Results are presented in Figure 7.36 to 7.45 with 

a blue line and symbol + . It is worth remembering that red circles and black squares represent 

experimental results and green line simulations performed with RETRASO. Blue continuous lines 

represent SpeCTr results with constant porosity. Once again, sampling ports below the precipitation 

zone (A1, C1, and D1) are immune to changes in the chemistry of the system. At ports A2, C2, and D2 

concentrations are slightly superior to the constant porosity simulations. The same is true for A3, A4, 

C3, D3. If in the case of A4 and C3 this behavior represents an improvement of the results, this is 

certainly not the case for D3. What is evident is that the simulation does not (except for sampling port 

A4, see Figure 7.40) reproduce augmentations or reductions of concentrations dues to porosity 

changes. This may due to the fact that porosity was set to a minimum value of 0.1 in order to keep the 

computational cost of simulations reasonable (CFL Criterion has to be fulfilled). 

 

 

Figure 7.36  Time evolution of total Calcium concentration at sampling port A1. Red rounds and 

black dots represent experimental data; green continuous line represented the simulation in Katz et al 

(2009); black dashed line corresponds to the concentration at inlet 1; blue curves represent SpeCTr 

simulations for equilibrium Calcite precipitation with constant (continuous) and variable (continuous 

+) porosity. 
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Figure 7.37  Time evolution of Total Calcium concentration at sampling port A2 (legend in Figure 7.36). 

 

 

 

Figure 7.38  Time evolution of Total Calcium concentration at sampling port A3 (legend in Figure 7.36). 
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Figure 7.39  Time evolution of Total Calcium concentration at sampling port A4 (legend in Figure 7.36). 

 

 

 

Figure 7.40  Time evolution of Total Calcium concentration at sampling port A4 (legend in Figure 7.36). 
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Figure 7.41  Time evolution of Total Calcium concentration at sampling port C1 (legend in Figure 7.36). 

 

 

 

Figure 7.42  Time evolution of Total Calcium concentration at sampling port C2 (legend in Figure 7.36). 



219

 

Figure 7.43  Time evolution of Total Calcium concentration at sampling port C3 (legend in Figure 7.36). 

 

 

 

Figure 7.44  Time evolution of Total Calcium concentration at sampling port D1 (legend in Figure 7.36). 
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Figure 7.45  Time evolution of Total Calcium concentration at sampling port D2 (legend in Figure 7.36). 

 

 

 

Figure 7.46  Time evolution of Total Calcium concentration at sampling port D3 (legend in Figure 7.36). 
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Distance [cm] 

 

Figure 7.47  Space distribution of Calcite after 10 h for CaCO3 equilibrium precipitation [mol/L]. 

 
The introduction of variable porosity slightly modified the results of spatial distribution of precipitated 

CaCO3. In fact, the zone near the inlet in Figure 7.47 shows greater concentrations of Calcite with 

respect to Figure 7.34, obtained with constant porosity, and therefore increasing the accord with 

Figure 7.35. Porosity changes simulated with RETRASO and SpeCTr are reported in Figures 7.49 and 

7.48. While RETRASO predicts no porosity changes in the central zone of the domain and only 

slightly reduced values at the most of the interface zone, SpeCTr predict porosity changes all over the 

precipitation zone.  
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Figure 7.48  Space distribution of porosity after 10 h, for CaCO3 equilibrium precipitation. 
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Figure 7.49  Space distribution of porosity after 11 h, for CaCO3 equilibrium precipitation with 

Retraso (Katz et al. 2009). 

 

 

7.3.2.3 Results: variable porosity - kinetic CaCO3 precipitation 

 

In order to complete the set of simulations, kinetic precipitation of Calcite with varying porosity was 

performed too. In order to establish if the variations of concentrations subsequent to porosity changes 

were visible, simulations were run for 6 hours only. Results are shown in Figures 7.50 to 7.59. 

Although, as usual, sampling ports A1, C1 and D1 are immune to changes in the system (Figures 7.50, 

7.54, 7.57), at sampling port A2 it is already possible to see that the model responds to porosity 

variation: concentration at sampling port A2 constantly increases with time. This behavior is more 

evident when concentrations are low, for example at sampling ports A4 and D3. It must be noted that 

the behavior is not coherent with the one simulated by RETRASO at these two locations. While 

concentrations computed with SpeCTr always increase with time, at sampling ports A4 and A3 they 

are supposed to decrease according to RETRASO.  

Figures 7.60 and 7.61 show the spatial distribution of precipitated Calcite and porosity after 6 hours. It 

is clear that the precipitation zone is wider than in the equilibrium case and that quantity of 

precipitated Calcite are lower. This behavior is coherent with the kinetic precipitation. In fact, whereas 

at equilibrium, the supersaturated solution is instantaneously equilibrated, when precipitation is 

kinetically modeled, the solution remains slightly less supersaturated. Porosity changes are coherent 

with CaCO3 precipitation and porosity is reduced also in the sand zone (note that in this zone porosity 

is lowered from a starting value of 0.32).  
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Figure 7.50  Time evolution of Total Calcium concentration at sampling port A1. 

 

 

Figure 7.51  Time evolution of Total Calcium concentration at sampling port A2 (legend in Figure 7.41). 
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Figure 7.52  Time evolution of Total Calcium concentration at sampling port A3 (legend in Figure 7.41). 

 

 

Figure 7.53  Time evolution of Total Calcium concentration at sampling port A4 (legend in Figure 7.41). 
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Figure 7.54  Time evolution of Total Calcium concentration at sampling port C1 (legend in Figure 7.41). 

 

Figure 7.55  Time evolution of Total Calcium concentration at sampling port C2 (legend in Figure 7.41). 
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Figure 7.56  Time evolution of Total Calcium concentration at sampling port C3 (legend in Figure 7.41). 

 

Figure 7.57  Time evolution of Total Calcium concentration at sampling port D1 (legend in Figure 7.41). 
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Figure 7.58  Time evolution of Total Calcium concentration at sampling port D2 (legend in Figure 7.41). 

 

Figure 7.59  Time evolution of Total Calcium concentration at sampling port D3 (legend in Figure 7.41). 
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Figure 7.60  Space distribution of Calcite after 6 h, for CaCO3 kinetic precipitation. 

 

 

Figure 7.61  Space distribution of porosity after 10 h, for CaCO3 kinetic precipitation. 
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7.3.2.4 Conclusion about Calcite precipitation and porosity changes 

 

Simulations were performed with both equilibrium and kinetic models for Calcite precipitation, at both 

constant and variable porosity. Results at constant porosity and equilibrium precipitation were in good 

agreement with experimental results, slightly overestimating concentration only at sampling port D3. 

Simulations with constant porosity and kinetic precipitation of Calcite lead to a systematic 

overestimation of concentrations (except at ports were injected concentrations were already reached) 

especially at sampling ports A4 and D3. This behavior is coherent with the assumptions of the two 

models (equilibrium brings the solution instantaneously to equilibrium leaving no extra concentration 

to precipitate farther.  

The second series of simulations was performed taking into account porosity changes adopting a linear 

model for porosity update. The introduction of porosity changes improved the matching of numerical 

and experimental results at sampling ports A but caused an overestimation of concentration at 

sampling port D3. Moreover, changes in concentrations with time were visible only at sampling port 

A4 and zooming heavily on Figure 7.40.  

The only way to see changes in concentrations dues to porosity changes is to adopt kinetic 

precipitation of Calcite. In this case, increasing in concentrations is systematic, making evident the 

response of the model to porosity changes. On the other hand, SpeCTr fails to predict concentration 

decreasing where RETRASO does. This might be due to the fact that kinetic precipitation doesn t clog 

completely pores where equilibrium precipitation does.  

The choice of a linear model for porosity update makes easier working with concentrations but was 

not tested against other models or codes. For a further development of SpeCTr, benchmarks for 

models for porosity changes should be tested (i.e. Cochepin et al. 2008).  

 

  



230

7.4 - 3D Calcite dissolution modeling 

 

7.4.1 Presentation of the problem  

 

As anticipated in Bouissonnié et al. (2018), 2D simulations could have led to an overestimation of 

concentrations at the outlet (see paragraph 7.1.5.2  and Figure 7.6). In this section a 3D simulation of 

the same problem is presented. Considering the symmetric configuration of the experiment, only a 

quarter of the column was modeled, with a 3D mesh of around 41000 tetrahedrons. Calcite crystals 

were modeled again as variations in the boundary conditions and CaCO3 is available to dissolve in the 

adjacent elements (see Figure 7.6b2). 

Average flow direction is now parallel to the z direction and has the prescribed value of 3.77 10-3  

mm/s, flow and transport parameters are reported in table 7.10 and are the same than adopted in 

previous 1D and 2D simulations (see Table 7.4). The same is true for the reaction network, reported in 

Table 7.3, and the TST model was adopted for the reaction rate (see the now well-known equation 

7.4).  

 

 

Parameter Value Unit 

Porosity   0.38 [-] 

Conductivity 100 [mm/s] 

Vy 3.77 10-3  [mm/s]) 

L 1 [mm] 

T 0.1 [mm] 

D 10-4 [mm2/s] 

KS 1.8487 [-] 

k 5.2 10-7 [mol/m2/s] 

 

Table 7.10  Summary of  flow, transport and chemical parameters for 3D simulations  

 

 

Reactive surface AS in the TST  model was computed as in equation 7.7 where the surface of the  

exposed Calcite is the area of the external face of the element and the volume is the volume of the 

element. Functions exist in SpeCTr (as they existed in TRACE) to compute volume of elements and 

surface of faces. 

 

 



231

 

 

Figure 7.62   The 3D mesh of around 41000 tetrahedrons reproduces one quarter of the column (a); 

presence of crystals is simulated by variations in the boundary conditions (b); z axis is parallel to the 

column axis. 
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7.4.2 Results of 3D simulation 

 

The breakthrough curve of total Calcium concentration Ct at the outlet is reported in Figure 7.63. 

Values are flux weighted average of concentrations,  meaning that at each element i the concentration 

is multiplied by the flux qi  leaving the column and the sum is divided by the global flux: 
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Steps are clearly visible in Figure 7.63 until the final asymptote is reached. They are not a 

consequence of the weighted average, since the same behavior is present within single elements (see 

Figure 7.64). Steps are generally less sharp as concentrations grow (likely the closer to the axis of the 

column the higher the concentrations the more regular the shape of the column). This behavior is 

likely to be the result of successive contributions of different crystals. 

 

 

 

Figure 7.63  Breakthrough curve for Ca2+ at the column outlet. Results are averaged over all the 

surface at z = 150 mm and weighted with respect to water fluxes.  
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While results of 2D simulations overestimated concentrations of Calcium at the outlet (see Figure 

7.10), the final concentration of 2.5 10-6 mol/L obtained with the 3D underestimates experimental 

values. Nevertheless, values are comparable and somehow coherent with those coming from 2D 

simulations (concentrations around crystals are in the order of magnitude of 2.0 10-4 see Figure 7.65). 

A reduction of concentrations was expected (since another direction is available for dispersion and 

diffusion) but in the end it is too important with respect to experimental data (even for the TST model 

that is supposed to provide higher reaction rates and concentrations).  

Reasons of this underestimation may reside in an underestimation of the dispersion (values adopted in 

the simulation are the lower boundary of the admissible values) or in an overestimation of porosity. In 

fact, lower values of dispersion may keep concentrations elevated in the proximity of the crystal, 

slowing down the dissolution rate. On the other hand, higher values of porosity may reduce the 

reactive surface in equation 7.7).  

 

 

    

 

 

Figure 7.64  Breakthrough curves for Ca2+ at the end of the column (at every element that registered a 

non-zero concentration). Contributions of crystals are distinguishable. 
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Figure 7.65  Evolution is space of Ca2+ at different stages of the simulation at a) 30 s b) 500 s  c) 1000 s  d) 5000 s and e) 30000 s. 
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It also must be kept in mind that the actual experimental setup is slightly different from the simulated 

domain. In fact, while the inflow and the outflow of the real column were connected to tubes of a few 

millimeters, the boundary conditions describe a generalized outflow at z =150 mm (the simplification 

is licit in laminar flow).  

Another aspect that was not widely explored in the 3D simulation is the effect of spatial discretization 

over results. While for the 2D simulation at least two different mesh sizes were tested (and results did 

not change or did but slightly), mesh convergence was not checked. Nevertheless, a (not entirely 

legitimate considering the configuration of the system) simulation test was performed on 1/8 of the 

column and provided coherent results.  

In order to be more confident in the outlet concentrations, simulations with other meshes should be 

tested (considered the consistent computational effort, coarser meshes should be tested at first).  

 

7.4.2 Conclusions about 3D simulation 

 

The aim of this 3D simulation was mainly to show the potential of SpeCTr in simulating realistic 

laboratory experiments whose configuration may vary from the standard rectangular-like shapes. 

Results also show that 3D effects have an important impact on outcomes and that, if 1D simulations 

represent excessive simplification, 2D simulations may not be completely well-suited too.  

Anyhow, one simulation is not enough to draw absolute conclusions. Further simulations should be 

conducted with different mesh sizes in order to gain confidence and assess the importance of spatial 

discretization over results.  

Performing this kind of simulations, where the computational effort dedicated to chemistry is a 

fraction of the one dedicated to performing transport computations also put in evidence the need of 

implicit resolution schemes for transport equations to get rid of the CFL condition constraint. 
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General conclusion 

 

 

The aim of this work was, as in its very title, the implementation of isotopes into coupled 

hydrogeochemical modeling. The idea was not to create another code from scratch but to integrate and 

enhance codes already existing at LHyGeS (KINDIS, KIRMAT, SPECY, TRACE...) to provide a 

reliable and flexible tool.  

After accurate bibliographic studies, it was made clear that isotopes should be treated as independent 

species within the context of a reaction network. Too less is known about the various phenomena of 

fractionation to implement specific models. Classic formulas, such as Rayleigh fractionation, often fail 

to reproduce experimental data, which become every day more abundant.  

Different isotopes of the same element are differentiated with slightly altered equilibrium or kinetic 

constants and they evolve according to reaction rates that are slight modifications of standard rates 

(such as first-order or Transition State Theory model). To model TST-like reaction rates, some authors 

exploited the concept of solid solutions since isotopic substitution is the closest approximation of ideal 

solid solutions. Nevertheless, reaction rates and solid solutions should be pulled together very 

carefully since almost no theoretical basis exists about the kinetics of solid solutions.  

Including isotopes as independent species, therefore, means that i) no substantial modification of the 

original algorithms is required to obtain solutions and ii) classical issues of reaction (and reactive 

transport) modeling are exacerbated: the number of species to be included in the reaction network 

grows and greater degrees of accuracy are required. For these reasons, attention was dedicated to the 

efficiency of solvers for both algebraic non-linear systems that arise from equilibrium equations and 

systems of differential algebraic equations (DAEs) arising from combinations of equilibrium and 

kinetic reactions.  

Thermodynamic equilibrium is an approximation to describe reaction networks that is viable whenever 

time is not a variable of interest. It considers reactions as instantaneous and generates systems of non-

linear algebraic equations, which are generally solved through iterative methods (a first guess for the 

solution is picked and values are updated until a convergence criterion is satisfied). The most widely 

applied iterative method to solve this kind of systems is Newton Raphson method, which is known for 

its fast convergence (quadratic) but also for its fragility when inconvenient initial guesses are picked. 

Different strategies were put in place to limit the liabilities of the method: i) a zero order method 

(which do not require the computation of the Jacobian matrix), positive continuous fractions (PCF) 

method, was coupled with Newton Raphson and ii) Newton Raphson s algorithm was modified in 

order to reduce the condition number of the Jacobian matrix through different scaling techniques. 
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PCF proved extremely effective at reducing the number of failures and the number of iterations to 

convergence regardless of the type of problem faced. The effect of scaling was much more problem 

related and also varied according to the scaling strategy applied. 

Whenever time is a variable of interest, equilibrium approximation is not sufficient and differential 

equations have to be included. The more realistic scenario is a mix of equilibrium and kinetic 

equations, which is also convenient from a computational point of view with respect to a fully kinetic 

approach. In this case, systems of differential algebraic equations arise. Although theoretical works 

have been proposed on this subject since the mid-nineties, while thermodynamic formulation is well 

documented and explicitly detailed in most codes technical notes, the strategy adopted to solve mixed 

kinetic equilibrium systems is often left aside. Three possible ways of writing the resulting system 

were tested: a system of DAEs where mass action laws are left explicit, a system of DAEs where mass 

action laws are lumped into mass conservation (written as a sum of concentrations) and a system of 

ODEs where mass action laws are lumped into mass conservation (written in its differential form). The 

first and third approaches proved systematically more efficient and easier to put in place than the 

second one. Literature suggests that the third approach should be preferred because of its reduced size, 

but in one of the two performed tests, the first DAEs approach converged faster. Additional tests 

should be performed, but suitable benchmarks are not so easy to find.  

The implementation of solver DASPK resulted in a reduction of the CPU time required to compute 

mixed equilibrium kinetic systems with respect to the explicit QSSA method coded in SPECY, 

regardless of the strategy used to solve the system.  

One of the peculiar capabilities of the solver KINDIS is the possibility of treating solid solutions 

(mixtures of minerals that are not merely mechanical) at thermodynamic equilibrium. This capability 

was implemented in SpeCTr on the basis of models included in KINDIS and PHREEQC. The 

algorithm was used to model precipitation of a Fe-Cr solid solution at the interface of two reactive 

solutions (the example constitutes an anticipation of the coupling between the reactive and transport 

modules). The agreement between numerical and experimental solutions was satisfying although some 

additional efforts should be dedicated to the choice of transport parameters (i.e. transversal 

dispersion).  

The coupling between the reaction module (developed through Chapters 2 to 5) and the transport 

module (TRACES) resulted in a tool named SpeCTr (Speciation Cinétique Transport). 

The coupling was tested jointly with the implementation of isotopes through a 1D reactive transport 

benchmark designed for testing Cr fractionation. The coupling proved successful and put in evidence 

the challenges related to isotope modeling through operator splitting. In fact, simulations that could 

have been considered acceptable if limited to the monitoring of concentrations were completely 

inadequate for the computation of isotopic delta (or ratio). The time step required by transport (whose 

formulation is explicit therefore demanding the respect of CFL condition) had to be further reduced to 

obtain acceptable isotopic deltas. Although there is no theoretical link between CFL number and 
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operator splitting errors, as pointed out by Steefel (2009) in CrunchFlow technical notes, a CFL 

number of 0.2 ensured acceptable coupling errors. The solution of the benchmark also drew the 

attention on the algorithm used to convert concentrations at nodes to the concentration at elements to 

make transport and reaction codes compatible. Easy algorithms should be preferred to more 

sophisticated ones in order to prevent uncontrollable effects of low concentrations.  

The last Chapter is dedicated to the application of SpeCTr to various problems involving Calcite 

dissolution and precipitation. Calcite precipitation simulations (confronted to published results) drew 

the attention on issues such as the efficiency of models for porosity changes and their numerical 

implications. In fact, the reduction of porosity due to precipitation is one of the potential causes of 

time steps  reduction while respecting CFL condition.    

Simulation of the dissolution of Calcite crystals showed the potential of the code and its adaptability 

(in terms of kinetic models and spatial discretization) to model laboratory experiments. The 

simulations also represent an example of collaboration between different Ph.D. works as one of the 

purposes of SpeCTr. 
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Perspectives 

 

Although the test cases that were simulated throughout this work (both in batch and reactive transport 

configurations) were as numerous and different as possible (pure thermodynamic equilibrium, mixed 

equilibrium and kinetics, first order, Monod and TST reaction rates, precipitation of solid solutions 

within reactive transport, stable isotope fractionation etc.) it is advisable to continue solving as much 

problems and benchmarks as possible, since this is the only way to keep the code alive, individuate 

and fix potential weaknesses and enhance its capabilities. This is particularly true with respect to 

algorithms for the update of physical properties in consequence of chemical reactions (i.e. porosity 

changes).  

Regarding isotopes, models that were implemented proved to be effective in a number of multiple 

scenarios, but it should be kept in mind that i) those models were developed starting from an exigency 

of reproducing experimental data and ii) in these models, isotopes were interesting as tracers of 

biogeochemical reactions, and the focus was not on the mechanism of fractionation itself. The code 

could evolve implementing ad-hoc models to reproduce particular experimental results or to treat some 

isotopes of some elements with peculiar behaviors. We hope that this work constitutes a good basis for 

further and more specific studies.  

A graphic interface has been developed as well as a module for access to databases. This is crucial to 

reduce user errors and speed up tests preparations. Although this module already exists, it should be 

extensively tested. 

Code performances were enhanced with respect to SPECY but there is indubitably still some work to 

do. Three are the main directions of possible improvement: i) other solvers than DASPK could be 

tested ii) parallelization should be taken into consideration and iii) an implicit formulation of transport 

equations should be considered. This last point emerged clearly while modeling variable porosity, who 

forced the model to adapt unsustainably small time-steps.  

The implementation of alternative solvers should be easier than starting from scratch since vectors and 

matrices to be manipulated are already available and that test cases have already been selected.  About 

parallelization, reactive transport Operator Splitting is well suited for this procedure (independent 

solutions are computed in every element of the mesh), that must be performed after that the code has 

proved to be reliable.  

Despite further potential improvements, SpeCTr was tested with well-established codes (KINDIS, 

PHREEQC, CrunchFlow etc.)  and its solutions should be considered reliable. SpeCTr is well suited to 

be coupled with other more specific models for flow computations, which can be more advanced or 

specific than those implemented in TRACES, the transport module. 
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Conclusions et Perspectives en Français  

 

Le but de ce travail consistait en l implémentation des isotopes dans la modélisation 

hydrogéochimique couplée, à travers l intégration et l extension de codes déjà existant au LHyGeS 

(KINDIS, KIRMAT, SPECY, TRACES...) afin d obtenir un code fiable et adaptable.  

A la suite d une compilation bibliographique, aussi exhaustive que possible, il est apparu que les 

isotopes doivent être traités comme des espèces chimiques indépendantes. Très peu de données sont 

disponibles quant aux phénomènes de fractionnement isotopique. Ainsi, l implémentation de modèles 

spécifiques et des formules classiques (par exemple les équations de distillation de Rayleigh) sont 

parfois inefficaces dans la représentation de données expérimentales, qui sont de plus en plus 

nombreuses.  

Différents isotopes d un même élément sont caractérisés par des différences dans leurs constantes 

d équilibre thermodynamique et cinétiques. Ils évoluent selon des vitesses de réaction qui sont 

légèrement modifiées par rapport aux lois classiques (par exemple les vitesses du premier ordre ou de 

modèles de type TST, Transition State Theory). Afin de modéliser le fractionnement des isotopes 

stables, certains auteurs se sont inspirés du concept de solutions solides étant donné que la substitution 

isotopique est ce qui se rapproche le plus d une solution solide idéale. Malgré certaines affinités 

conceptuelles, les vitesses de réaction et les solutions solides doivent être couplées avec précaution au 

vu du manque de base théorique sur la cinétique des solutions solides.  

L inclusion des isotopes dans le modèle, sous la forme d espèces chimiques indépendantes, a deux 

implications : très peu de modifications des algorithmes originaux sont nécessaires, mais les 

problématiques classiques de la modélisation des réactions chimiques et du transport sont exacerbées. 

En effet, le nombre d espèces chimiques devient plus important et les concentrations traitées peuvent 

être très faibles, nécessitant donc une précision très importante. Pour cette raison, l efficacité des 

algorithmes pour la résolution i) des systèmes algébriques non-linéaires provenant de l équilibre 

thermodynamique et ii) des systèmes d équations différentielles et algébriques venant du mélange 

équilibre/cinétique ont fait l objet d une large partie de ce travail.  

L équilibre thermodynamique est une approximation utile pour décrire des réactions pour lesquelles la 

durée a très peu d importance. Il considère les réactions comme instantanées et génère un système 

non-linéaire d équations algébriques qui sont généralement résolues par voie itérative. La méthode la 

plus utilisée pour résoudre ce genre de problèmes est la méthode de Newton Raphson, qui est connue 

pour sa rapidité de convergence mais également pour les difficultés de convergence qu elle peut 

générer quand les valeurs initiales sont trop lointaines de la solution. Dans ce travail, deux approches 

ont été testées afin de limiter les inconvénients de la méthode : i) une méthode d ordre zéro (qui ne 

nécessite pas le calcul de la matrice Jacobienne), nommée fractions continues positives (PCF, positive 

continuous fractions), a été couplée à la méthode de Newton Raphson et ii) l algorithme de Newton  
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Raphson a été modifié pour réduire le conditionnement de la matrice Jacobienne à travers des 

techniques de scaling (normalisation du système linéaire qui apparaisse dans l algorithme).  

Les résultats présentés dans le troisième chapitre ont montré que l application des fractions continues 

produit une réduction dans le nombre d échec de simulation et une réduction du nombre d itération 

pour atteindre la convergence peu importe le problème considéré. Il est apparu que les effets du 

scaling sont fortement dépendants du problème étudié et de la technique de scaling appliquée.  

Dès que le temps devient une variable d intérêt, l équilibre thermodynamique n est plus suffisant et il 

apparait nécessaire d inclure des équations différentielles. Le scénario le plus réel est représenté par un 

mélange de réactions cinétiques et à l équilibre thermodynamique. Il s agit également de la meilleure 

alternative d un point de vue du numérique, par rapport à une approche purement cinétique. Un 

mélange entre équilibre thermodynamique et cinétique génère des systèmes d équations différentielles 

et algébriques. Plusieurs travaux théoriques ont été proposés à ce sujet et mettent en évidence que 

même si la formulation thermodynamique est bien détaillée dans les manuels des codes, la stratégie de 

solution des mélanges d équations cinétiques et à l équilibre est très souvent laissée de côté. Trois 

façons d écrire le système résultant ont été proposées et testées : i) un système de DAEs où les lois 

d action de masse sont explicites, ii) un système de DAEs où les lois d action de masse sont écrites 

dans les équations de conservation de la matière (écrites comme des sommes des concentrations) et iii) 

un système d équations différentielles ordinaires (ODEs ou ordinary differential equations en anglais) 

où les lois d action de masse sont écrites dans les équations de conservation de la matière (écrites dans 

leur forme différentielle). La première et la troisième approche se sont révélées les plus performantes 

et les plus simples à mettre en place par rapport à la deuxième. Malgré le fait que la littérature suggère 

que la troisième approche soit préférable car elle réduit la taille du système, dans un de deux cas test, 

utilisé au cours de ce travail, la première approche a convergé plus vite que la troisième. La résolution 

de cas test supplémentaires devrait être envisagée mais les benchmarks disponibles pour ce genre de 

comparaison restent rares.  

L implémentation du solver DASPK s est traduite par une réduction des temps de calcul pour la 

solution des systèmes mélangeant équilibre thermodynamique et cinétique, par rapport à la méthode 

QSSA explicite qui était implémentée dans SPECY, et cela quelle que soit la stratégie des équations 

résultantes.  

Une caractéristique très intéressante du modèle KINDIS est la possibilité de modéliser les solutions 

solides à l équilibre thermodynamique. Cette capacité a été implémentée dans SpeCTr sur le modèle 

de KINDIS et PHREEQC. L algorithme a été utilisé pour simuler la précipitation d une solution solide 

contenant du fer et du chrome à l interface entre deux solutions potentiellement réactives. Cet exemple 

constitue une anticipation du couplage du modèle de transport et de chimie mais s avère très utile pour 

comprendre le potentiel des solutions solide. L accord entre les résultats du modèle et les expériences 

en laboratoire s est montré satisfaisant même si des études complémentaires apparaissent nécessaires 

et notamment sur la relation des résultats aux choix des paramètres de transport.  
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Le couplage du module de chimie (développé dans les chapitres 2, 3, 4 et 5) et du module de transport 

(TRACES) a produit un outil nommé SpeCTr (Spéciation Cinétique Transport). Le couplage et 

l implémentation des isotopes ont été testés ensemble à travers la résolution d un benchmark 

monodimensionnel mis au point pour tester le fractionnement du chrome. Les résultats ont validé le 

couplage mais ont aussi mis en avant des problématiques liées à la modélisation des isotopes à travers 

la séparation d opérateur. Des simulations, pouvant être considérées satisfaisantes si limitées à 

l évolution des concentrations, se sont révélées inutilisables pour le calcul des rapports isotopiques et 

des deltas ( ) en résultant. Le pas de temps nécessaire pour obtenir des résultats satisfaisants a dû être 

réduit par rapport à celui demandé par le transport (dont la formulation est explicite et doit donc 

respecter la condition de Courant). Même si aucunes bases théoriques ne lient la condition de Courant 

et les erreurs de séparation d opérateur, il a été remarqué qu un pas de temps correspondant à un 

numéro de Courant de 0.2 a produit des résultats satisfaisants. La même considération apparait dans le 

manuel de CrunchFlow (Steefel, 2009).  

La résolution du benchmark a également permis de mettre en évidence l importance de l algorithme 

liant les outils chimiques et de transport, servant à convertir les concentrations aux noeuds en 

concentrations moyennes utilisées pour chaque élément. Il apparait donc que des algorithmes simples 

doivent être préférés à d autres plus complexes afin de limiter les propagations d erreurs quand les 

concentrations deviennent très faibles.  

Le dernier chapitre a été consacré à l application de SpeCTr dans un contexte de dissolution et de 

précipitation de calcite en laboratoire. Les résultats numériques obtenus pour les phénomènes de 

précipitation de la calcite ont soulignés le rôle des différents modèles de changement de porosité et 

mis en évidence les points faibles des méthodes explicites. En effet, la réduction de la porosité, liée à 

la précipitation de calcite, est une des raisons de la réduction du pas de temps afin de respecter la 

condition de Courant.  

La simulation de la dissolution des cristaux de calcite a montré le potentiel du code et son adaptabilité 

(en ce qui concerne les modèles cinétiques et la discrétisation spatiale) dans la modélisation des 

expériences de laboratoire. Ces simulations représentent également un bon exemple de collaboration 

entre différentes travaux de thèse. Même si les cas test réalisés au cours de ce travail (en système de 

batch et dans un contexte de transport réactif) ont été aussi nombreux et variés que possible dans le 

temps imparti (équilibre thermodynamique, mélanges de réactions cinétiques et à l équilibre, 

cinétiques du premier ordre, Monod et Transition State Theory, précipitation de solutions solides dans 

le transport réactif, fractionnement des isotopes stables, etc.), il est conseillé de continuer à résoudre 

des cas pratiques et des benchmarks afin de continuer à développer les capacités du code et d en cerner 

les faiblesses. Une attention particulière doit être dédiée aux modifications des paramètres du sol 

résultant des réactions chimiques (par exemple les changements de porosité suite aux précipitations).  

Concernant les isotopes, les modèles implémentés se sont montrés efficaces dans différents scénarios. 

Cependant, il est nécessaire de tenir compte du fait que : i) ces modèles ont été développés à partir de  
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la nécessité de reproduire des données expérimentales et ii) dans ces modèles le fractionnement 

isotopique est utilisé comme traceur d autres phénomènes biogéochimiques sans que les mécanismes 

de fractionnement ne soient le centre d intérêt. Le code pourrait pourtant évoluer avec 

l implémentation de modèles ad-hoc afin de reproduire des résultats expérimentaux ou pour traiter 

certains isotopes présentant des comportements particuliers.  

Une interface graphique et un module d accès à des bases de données sont en cours de développement. 

Ces derniers sont cruciaux afin de minimiser les erreurs d utilisation et faciliter la préparation de cas 

test. Même si ces modules existent déjà, ils doivent encore être méticuleusement testés.  

SpeCTr a actuellement montré de meilleurs performances que SPECY et une marge d amélioration 

reste encore envisageable. Pour cela, différentes options pourraient s avérer positive: i) d autres 

solvers que DASPK peuvent être testés ii) la parallélisation devrait être systématiquement appliquée et 

iii) une formulation implicite du transport devrait être prise en considération. Ce dernier point a 

montré toute son importance lors des simulations de variations de porosité, qui ont forcé le code à des 

pas de temps trop petits.  

L implémentation de nouveaux solvers devrait être plus simple qu en partant de zéro étant donné que 

les matrices et les vecteurs à utiliser sont déjà à disposition. Concernant la parallélisation, la séparation 

d opérateur s adapte bien à cette procédure (des solutions indépendantes sont calculées) et doit être 

mise en place une fois que le code est validé.  

Malgré les possibles développements futurs, SpeCTr a été testé avec des codes reconnus (KINDIS, 

PHREEQC, CrunchFlow etc.) et ses solutions peuvent être considérées fiables. SpeCTr convient 

également au couplage avec d autres modèles pour le calcul de l écoulement qui peuvent être plus 

avancées ou plus spécifiques que ceux qui sont implémentés dans TRACES. 
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Annexes 

 

Annex I 

 

The method to compute the Jacobian matrix is not affected by changing variables. We must compute 

the derivative of the system (3.9), which is written as a function of  with respect to : 

 
k k

k k

j j j

T TY T
. (7.16) 

The known total concentrations kT  are constant values. The derivative takes the form: 

 

 , ,
1 1

exp ln
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k
i k i i j j
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T
b K b . (7.17) 

The derivative of a sum is the sum of the derivatives: 
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exp ln
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k
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i jj j

T
b K b . (7.18) 

The derivative of an exponential function is again an exponential function: 
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Then, iK  does not depend on 
j
, and , , *

1*

Nx

i j j i j

jj

b b . Thus, we have: 
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More equations are included in the optimization when precipitates are present. These equations are 

solubility products, but they are treated as totals because they are part of the minimization as well: 

 ,ln
Nx

S l j j

j
l

K bp , (7.21) 

where [1 , ]l Nx Nx Ncp . In this case, the derivative takes the following form: 

 

 , ,
1

Nx

l j j l j

jj

bp bp . (7.22) 

In presence of precipitates we have additional unknowns Cp  that will be treated as regular 

concentrations iC : the derivatives of equation (7.21) with respect to Cp  always equal zero 

because these equations only depend on . On the other hand, the derivatives of equation (3.9) with 

respect to Cp
 
are nonzero and can be easily computed by looking at the equation itself: 

 
,

,
,

1 1 1

1,...,
i kbN Ncp

l j l
l

xNc
i j

j i j xk
i ki

b
b

T K p CpX j N . (7.23) 

Notably, equation (7.16) contains a minus sign. If we consider the form of the linear system in the 

Newton Raphson algorithm, we can write the equation as follows: 

 

 n n n=- J X Y . (7.24) 

Thus, the Jacobian matrix is computed in the code as the sole derivative of the computed totals, 

avoiding the minus sign. 

 

  



263

Annex II 

 

The following tables provide stoichiometric coefficients, thermodynamic constants and total 

conserved concentrations for each test case presented in the work.   

 

 

H  3Al  3H L  10log K  

H  1 0 0 0 
3Al  0 1 0 0 

3H L  0 0 1 0 

OH  -1 0 0 -14 

2H L  -1 0 1 -4.15 
2HL  -2 0 1 -12.59 

3L  -3 0 1 -23.67 

AlHL  -2 1 1 -4.93 

AlL  -3 1 1 -9.43 
3
2AlL  -6 1 2 -21.98 
6
3AlL  -9 1 3 -37.69 

2
2 2 3( ) ( )Al OH HL L  -8 2 3 -22.65 

3
2 2 2( ) ( )Al OH HL L  -9 2 3 -27.81 

4
2 2( ) ( )Al OH HL L  -10 2 3 -32.87 

5
2 2 3( )Al OH L  -11 2 3 -39.56 

3
4 3Al L  -9 4 3 -20.25 

4
3 4 2( ) ( )Al OH H L L  -5 3 1 -12.52 

jT  1.58 10-6 1 10-3 1 10-3 

 

Table II-I: Morel table for Gallic Acid test case. Gallic Acid is an organic aromatic compound that is 

also known as 3,4,5-trihydroxybenzoic. This acid can be easily found in plants and is largely used in 

the pharmaceutical industry. The system was originally studied in relation to Al(III) speciation in 

natural waters50. 
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H+ 
O2

 Fe2+ 
SO4

2- Log10K
 

H+ 
1 0 0 0 0 

OH- -1 0 0 0 -14 
O2

 0 1 0 0 0 
Fe2+ 

0 0 1 0 0 
Fe(OH)2

 -2 0 1 0 -20.6 
Fe(OH)3

- -3 0 1 0 -31 
Fe(OH)+ 

-1 0 1 0 -9.5 
FeSO4

 0 0 1 1 2.2 
Fe3+ 

1 0.25 1 0 8.49 
Fe(OH)2

+ -1 0.25 1 0 2.82 
Fe(OH)3

 -2 0.25 1 0 -3.51 
Fe(OH)4

- -3 0.25 1 0 -13.11 
FeOH2+ 

0 0.25 1 0 6.3 
Fe2(OH)2

4+ 0 0.5 2 0 14.03 
Fe3(OH)4

5+ -1 0.75 3 0 19.17 
Fe(SO)2

- 1 0.25 1 2 11.7 
FeSO4

4- 1 0.25 1 1 10.4 
SO4

2- 0 0 0 1 0 
HSO4

- 1 0 0 1 1.98 
H2SO4

 2 0 0 1 -1.02 
SO3

2- 0 -0.5 0 1 -46.62 
HSO3

- 1 -0.5 0 1 -39.42 
H2SO3

 2 -0.5 0 1 -37.41 
SO2

 2 -0.5 0 1 -37.56 
HS2O3

- 3 -2 0 2 -132.52 
S2O3

2- 2 -2 0 2 -133.54 
H2S

 2 -2 0 1 -131.33 
HS- 1 -2 0 1 -138.32 
S2- 0 -2 0 1 -151.25 
S2

2- 2 -3.5 0 2 -243.37 
S3

2- 4 -5 0 3 -335.56 
S4

2- 6 -6.5 0 4 -427.97 
S5

2- 8 -8 0 5 -520.6 
S2O4

2- 2 -1.5 0 2 -118.46 
S2O5

2- 2 1 0 2 -83.65 
S2O6

2- 2 -0.5 0 2 -51.42 
S2O6

2- 2 0.5 0 2 -22.5 
S3O6

2- 4 -2 0 3 -146.1 
S4O6

2- 6 -0.35 0 4 -22.88 
S5O6

2- 8 -5 0 5 -332.54 
Fe(s)

 -2 -0.5 1 0 -59.03 
FeS2 (s)

 2 -3.5 1 2 -217.40 
FeSO4(s)

 0 0 1 1 -2.66 

jT  2 10-3 -3.5 10-3 1 10-3 2 10-3  

Table II-II: Morel table for Pyrite and Pyrite Mineral test cases.  
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H+ 
e- H2CO3

 Fe2+ 
CrO4

2-
 

K+ 2
4SO  Log10K

 

H+ 
1 0 0 0 0 0 0 0 

OH- -1 0 0 0 0 0 0 -14 
O2

 -4 -4 0 0 0 0 0 -83.17 
H2 2 2 0 0 0 0 0 0 

H2O2
 -2 -2 0 0 0 0 0 -59 

K+ 
0 0 0 0 0 1 0 0 

SO4
2- 0 0 0 0 0 0 1 0 

KSO4
2- 0 0 0 0 0 1 1 0.5 

H2CO3
- 0 0 1 0 0 0 0 0 

HCO3
- -1 0 1 0 0 0 0 -6.3 

CO3
2- -2 0 1 0 0 0 0 -16.6 

Fe2+ 
0 0 0 1 0 0 0 0 

FeOH+ 
-1 0 0 1 0 0 0 -8.98 

FeOOH- -3 0 0 1 0 0 0 -33.21 
Fe(OH)2(aq)

 -2 0 0 1 0 0 0 -20.6 
Fe(OH)3

- -3 0 0 1 0 0 0 -31 
Fe(OH)4

2- -4 0 0 1 0 0 0 -46 
FeHCO3

+ -1 0 1 1 0 0 0 -3.58 
FeSO4

 0 0 0 1 0 0 1 1.2 
Fe3+ 

0 -1 0 1 0 0 0 -13.07 
FeOH2+ 

-1 -1 0 1 0 0 0 -15.2 
Fe(OH)2

+ -2 -1 0 1 0 0 0 -19.97 
Fe(OH)4

- -4 -1 0 1 0 0 0 -34.62 
Fe2(OH)2

4+ -2 -2 0 2 0 0 0 -29 
FeSO4

+ 0 -1 0 1 0 0 1 -9.02 
Fe(SO4)2

- 0 -1 0 1 0 0 2 -7.62 
Cr2+ 

8 4 0 0 1 0 0 68.09 
CrOH+ 

7 4 0 0 0 0 0 62.56 
Cr3+ 

8 3 0 0 1 0 0 74.98 
CrOH2+ 

7 3 0 0 1 0 0 71.17 
Cr(OH)2

+ 6 3 0 0 1 0 0 64.95 
Cr(OH)3

 5 3 0 0 1 0 0 80.9 
Cr(OH)4

- 4 3 0 0 1 0 0 47.5 
CrO4

2- 0 0 0 0 1 0 0 0 
HCrO4

- 1 0 0 0 1 0 0 6.45 
H2CrO4

 2 0 0 0 1 0 0 6.3 
FeCrO4

+ 0 -1 0 1 1 0 0 -19.31 
CrSO4

+ 8 3 0 0 1 0 1 76.3 
KCrO4

- 0 0 0 0 1 1 0 0.57 
Fe(s)

 0 2 0 1 0 0 0 13.12 
Cr(OH)3(s)

 5 3 0 0 1 0 0 66.1 
Cr0.25Fe0.75OOH(s)

 
-1 0 0 0.25 0.75 0 0 2.93 

[Tj]
 

0 0 1 10-6 9 10-3 3 10-3 6 10-3 9 10-3  

Table II-III: Morel table for Fe Cr and Fe Cr Min test cases. 
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X1
 X2

 X3
 X4

 S Log10K
 

X1
 1 0 0 0 0 0 

X2
 0 1 0 0 0 0 

X3
 0 0 1 0 0 0 

X4
 0 0 0 1 0 0 

C1
 0 -1 0 0 0 -12 

C2
 0 1 1 0 0 0 

C3
 0 -1 0 1 0 0 

C4
 0 -4 1 3 0 -1 

C5
 0 4 3 1 0 35 

S  0 0 0 0 1 0 
CS1

 0 3 1 0 1 6 
CS2

 0 -3 0 1 2 -1 
[Tj]

 
0.3 0.3 0.3 2 10  

Table II-IV: Morel table for MoMaS Easy test case. MoMaS Easy and other synthetic benchmarks 

were designed specifically to evaluate the performances of computational codes. 

 

 

 

X1
 X2

 X3
 X4

 X5 S Log10K
 

X1
 1 0 0 0 0 0 0 

X2
 0 1 0 0 0 0 0 

X3
 0 0 1 0 0 0 0 

X4
 0 0 0 1 0 0 0 

X5
 0 0 0 0 1 0 0 

C1 0 -1 0 0 0 0 -12 
C2 0 1 1 0 0 0 0 
C3 0 -1 0 1 0 0 0 
C4 0 -4 1 3 0 0 -1 
C5 0 4 3 1 0 0 35 
C6 0 10 3 0 0 0 32 
C7 0 -8 0 2 0 0 -4 
S 0 0 0 0 0 1 0 

CS1
 0 3 1 0 0 1 6 

CS2
 0 -3 0 1 0 2 -1 

Cp1
 0 3 1 0 0 0 10.9 

Cp2
 0 1 0 0 1 0 1.3 

[Tj]
 

0.3 0.3 0.3 2 0.3 10 

Table II-V: Morel table for MoMaS Hard test case. MoMaS Hard and other synthetic benchmarks 

were designed specifically to evaluate the performances of computational codes. 
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Annex III 

 

In Table III- I are listed the log10 concentrations of the components that constitute the boundaries of 

the permitted intervals. When 1X H , the component concentration ranges between 0 and -14 

coherently with the pH domain. Otherwise, the minimum value is linked to Avogadro s constant. 

The values for the second component 2X  of the Fe Cr and Fe Cr Mineral test cases come from the 

following considerations regarding electric potential. H is allowed to vary within the pH domain, i.e., 

from 0 to 14, while electrons e  are allowed to generate a variation in electric potential from -1.2 V to 

+1.2 V. The electron activity and electric potential are linked through the following relationships at 

25° C: 

 

-

-

- -2 -

RT
Eh = - ln e

F
F

e = exp - Eh
RT

8.314×(273.15 + 25)
Eh = - ln e = -2.569×10 ×ln e

96 485,3399

. 

For an electric potential of Eh = -1.23 V, {e-} = 1.6 10-21. For Eh = 1.23 V, {e-} = 6.2 1020. On the 

other hand, the values for the second component of the Pyrite and Pyrite Mineral tests come from the 

following reaction: 

 

 + -
2 2O + 4H + 4e 2H O . 

The concentrations of H and activity of 2O  are linked through the following relationships: 

 

 

4+
420 0 +

2
2

40 +
2

-4+ 0
2

O HRT RT
Eh = E + ×ln = E + ×ln O H

4F H O 4F

4F
Eh - E × = ln O H

RT
4F

O = H exp Eh - E ×
RT

. 

For a pH of 14 and Eh = 1.23 V, {O2} = 1. 1056. For a pH = 1 and Eh = -1.23 V, {O2} = 4.6 10-167. 
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In table III-II are listed all the limitations that are imposed on the computation of the Newton Raphson 

increments and on the activity of components, where max ln(1.0)H , 14min ln(10 )H  and 

max 2X . No boundaries are imposed if the component is the activity of electrons. The only 

boundaries that are imposed on the concentrations of precipitates are the numbers that are allowed by 

the machine. 

 

 

  1X  2X  3X  4X  5X  6X  7X  1Cp  2Cp  3Cp  

Gallic 

Acid 

min -14 -23 -23        

max 0 0 0        

Pyrite 
min -14 -164 -23 -23       

max 0 54 0 0       

Pyrite M. 
min -14 -164 -23 -23    0 0 0 

max 0 54 0 0    0 0 0 

MoMaS 

E. 

min -23 -23 -23 -23 -23      

max 0 0 0 0 0      

MoMaS 

H. 

min -23 -23 -23 -23 -23 -23  0 0  

max 0 0 0 0 0 0  0 0  

Fe Cr 
min -14 -21 -23 -23 -23 -23 -23    

max 0 21 0 0 0 0 0    

Fe Cr 

Min. 

min -14 -21 -23 -23 -23 -23 -23 0 0 0 

max 0 21 0 0 0 0 0 0 0 0 

 
Table III-I: Intervals for the initial guesses when searching for thermodynamic equilibrium. Activities 

expressed in log10 scale for components 
jX  and linear scale for concentration of precipitates lCp . 
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Maximum NR increment max jX  5 

Max concentration of 

jX H  
max j jX X  9 max H  

Min concentration of 

jX H  
min j jX X  9 min H  

Max concentration of 
jX  max j jX X  8 max X  

 
Table III-II: limitations that are imposed on the computation of the Newton Raphson increments and 

on the activities of the components. 
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Annex IV 

 

The sequence of instructions below can be copied/pasted and run in PHREEQC Version 3.0. 

 

 

TITLE test_validation -- Solid solution Modified Ex. 10 

PHASES 

        Strontianite 

                SrCO3 = CO3-2 + Sr+2 

                log_k           -9.271 

        Aragonite 

                CaCO3 = CO3-2 + Ca+2 

                log_k           -8.336 

SOLUTION 1 

        -units mmol/kgw 

        pH 7.0 charge 

        Ca      3.932 

        C       7.864 

SAVE solution 1 

END 

USER_PRINT 

-start 

     10 sum = (S_S("Strontianite") + S_S("Aragonite")) 

     20 if sum = 0 then goto 110 

     30 xb = S_S("Strontianite")  

     40 xc = S_S("Aragonite")  

     50 PRINT "Log Sigma pi: ", LOG10 (ACT("CO3-2") * (ACT("Ca+2") + ACT("Sr+2"))) 

     60 PRINT "XAragonite   : ", xc 

     70 PRINT "XStrontianite: ", xb 

     80 PRINT "XCa          : ", TOT("Ca")/(TOT("Ca") + TOT("Sr")) 

     90 PRINT "XSr          : ", TOT("Sr")/(tot("Ca") + TOT("Sr")) 

-end 

USER_PUNCH 

-head   l_sigpi x_arag x_stront x_ca_aq x_sr_aq molmisc1 molmisc2 mol_arag 

mol_stront 

-start 

     10 sum = (S_S("Strontianite") + S_S("Aragonite")) 

     20 if sum = 0 then goto 60 

     30 xb = S_S("Strontianite") #/(S_S("Strontianite") + S_S("Aragonite")) 

     40 xc = S_S("Aragonite") #/(S_S("Strontianite") + S_S("Aragonite")) 

     50 REM Sigma Pi 

     60 PUNCH LOG10 (ACT("CO3-2") * (ACT("Ca+2") + ACT("Sr+2"))) 

     70 REM Mole Fraction Aragonite 

     80 PUNCH xc 

     90 REM Mole Fraction Strontianite 

     100 PUNCH xb 

     110 REM Mole Aqueous Calcium 

     120 PUNCH TOT("Ca")/(TOT("Ca") + TOT("Sr")) 

     130 REM Mole Aqueous Strontium 

     140 PUNCH TOT("Sr")/(TOT("Ca") + TOT("Sr")) 

     150 x1 = MISC1("Ca(x)Sr(1-x)CO3") 

     160 x2 = MISC2("Ca(x)Sr(1-x)CO3") 

     170 if (xb < x1 or xb > x2) then goto 270 

     180    nc = S_S("Aragonite") 

     190    nb = S_S("Strontianite") 

     200    mol2 = ((x1 - 1)/x1)*nb + nc 

     210    mol2 = mol2 / ( ((x1 -1)/x1)*x2 + (1 - x2)) 

     220    mol1 = (nb - mol2*x2)/x1 

     230 REM Miscibility End Members If In Gap 

     240    PUNCH mol1 

     250    PUNCH mol2 

     260    goto 300 
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     270 REM If Not In Miscibility Gap 

     280 PUNCH 1e-10 

     290 PUNCH 1e-10 

     300 REM Moles Aragonite 

     310 PUNCH S_S("Aragonite") 

     320 REM Moles Strontianite 

     330 PUNCH S_S("Strontianite") 

-end 

SELECTED_OUTPUT 

        -file test_validation.sel 

        -reset false 

        -reaction true 

USER_GRAPH 

 -headings RXN Xss_CaCO3  Xss_SrCO3 

 -chart_title "Validation Test" 

 -axis_titles "LOG SrCO3 ADDED, in MOLES" "LOG Moles CaCO3, SrCO3" 

 -axis_scale x_axis -5 1 1 1 

 -axis_scale y_axis -5 1 1 1 

 -connect_simulations true 

 -start 

     10 sum = (S_S("Strontianite") + S_S("Aragonite")) 

     20 if sum = 0 then goto 70 

     30 xb = S_S("Strontianite") #/ sum 

     40 xc = S_S("Aragonite") #/ sum 

 50 GRAPH_X LOG10(RXN) 

 60 GRAPH_Y LOG10(xc), LOG10(xb) 

 70 rem 

 -end 

 

USE solution 1 

SOLID_SOLUTIONS 1 

        Ca(x)Sr(1-x)CO3  

                -comp   Aragonite       0  

                -comp   Strontianite    0  

REACTION 1 

        SrCO3   1.0 

        .005 in 500 steps  

END      

USE solution 1 

USE solid_solutions 1 

REACTION 1 

        SrCO3   1.0 

        .1 in 20 steps  

END      

USE solution 1 

USE solid_solutions 1 

REACTION 1 

        SrCO3   1.0 

        1.0 in 20 steps  

END   
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Marianna MARINONI 

Implémentation des isotopes 
dans un modèle 

hydrogéochimique couplé 

 

 

Résumé 

Ce travail décrit le développement d’un outil de simulation du transport réactif, nommé SpeCTr 
(Spéciation Cinétique Transport), intégrant le fractionnement isotopique. Ce modèle est obtenu à 
travers le couplage d’un module décrivant le transport et d’un module décrivant les principales 
réactions chimiques (approche de séparation d’opérateur).  

Une grande partie du travail est dédiée à l’amélioration des algorithmes du module décrivant les 
réactions chimiques pour la résolution des équations de l’équilibre thermodynamique (méthode de 
Newton Raphson modifiée à travers les techniques du scaling et des Fractions Continues Positives) 
et du mélange de  réactions cinétiques et à l’équilibre (étude sur la formulation et résolution des 
systèmes d’équations différentielles et différentielles-algébriques). 

L’outil est validé à travers la résolution de plusieurs tests (batch et transport réactif) et appliqué pour 
la simulation d’expériences de laboratoire en 1D, 2D et 3D  portant sur la dissolution des cristaux de 
calcite dans une colonne de milieu poreux.   

MOTS CLES : Transport Réactif, séparation d’opérateur, isotopes, Newton Raphson, Equilibre 
thermodynamique, cinétique, 3D 

 

 

Résumé en anglais 

The work describes the development of a reactive transport code named SpeCTr (Spéciation 
Cinétique Transport in French). The code, able to describe isotopic fractionation, is obtained through 
the coupling of a transport module and a reaction module that describes the main chemical reactions 
(operator splitting approach).  

A consistent portion of the work is dedicated to the improvement of the numerical methods employed 
in the reaction module for solving thermodynamic equilibrium (Newton Raphson method modified 
with scaling and Positive Continuous Fractions) and mixed equilibrium and kinetic reactions 
(formulation and solution of systems of differential and differential-algebraic equations). 

The code was verified through the solution of different benchmarks (batch and reactive transport 
simulations) and applied to perform 1D, 2D and 3D simulations of laboratory experiments dedicated 
to calcite crystals dissolution in a column of porous medium. 

KEYWORDS: Reactive Transport, operator splitting, isotopes, Newton Raphson, Thermodynamic 
Equilibrium, kinetics, 3D  

 


