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in 2002! Also Stéphanie Jehan-Besson and Marinette Revenu at the GREYC laboratory in Caen
helped me with my first steps in research for image and video processing algorithms. I thank also
Professor Hans Burkhardt at the University of Freiburg, Germany, for supervising my PhD work
and the interesting scientific discussions we had. Also Franck Mamalet, Sébastien Roux, Grégoire
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Emonet, Radu-Andrei Negoescu, Xavier Naturel. At LIRIS, I would like to thank my colleagues,
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Abstract

This manuscript summarises the work that I have been involved in for my post-doctoral
research and in the context of my PhD supervision activities during the past 11 years. I have
conducted this work partly as a post-doctoral researcher at the Idiap Research Institute in
Switzerland, and partly as an associate professor at the LIRIS laboratory and INSA Lyon in
France.

The technical section of the manuscript comprises two main parts: the first part being on
on-line learning approaches for visual object tracking in dynamic environments, and the second
part on similarity metric learning algorithms and Siamese Neural Networks (SNN).

I first present our work on on-line multiple face tracking in a dynamic indoor environment,
where we focused on the aspects of track creation and removal for long-term tracking. The
automatic detection of the faces to track is challenging in this setting because they may not
be detected for long periods of time, and false detections may occur frequently. Our proposed
algorithm consisted in a recursive Bayesian framework with a separate track creation and removal
step based on Hidden Markov Models including observation likelihood functions that are learnt
off-line on a set of static and dynamic features related to the tracking behaviour and the objects’
appearance. This approach is very efficient and showed superior performance to the state of the
art in on-line multiple object tracking. In the same context, we further developed a new on-line
algorithm to estimate the Visual Focus of Attention from videos of persons sitting in a room.
This unsupervised on-line learning approach is based on an incremental k-means algorithm and
is able to automatically extract, from a video stream, the targets that the persons are looking
at in a room.

I further present our research on on-line learnt robust appearance models for single-object
tracking. In particular we focused on the problem of model-free, on-line tracking of arbitrary
objects, where the state and model of the object to track is initialised in the first frame and
updated throughout the rest of the video. Our first approach, called PixelTrack, consists in a
combined detection and segmentation framework that robustly learns the appearance of the ob-
ject to track and avoids drift by an effective on-line co-training algorithm. This method showed
excellent tracking performance on public benchmarks, both in terms of robustness and speed,
and is particularly suitable for tracking deformable objects. The second tracking approach,
called MCT, employs an on-line learnt discriminative classifier that stochastically samples the
training instances from a dynamic probability density function that is computed from moving
and possibly distracting image background regions. The use of this motion context showed to be
very effective and lead to a significant gain in the overall tracking robustness and performance.
We extended this idea by designing a set of features that concisely describe the visual context
of the overall scene shown in a video at a given point in time. Then, we applied several comple-
mentary tracking algorithms on a set of training videos and computed the corresponding context
features for each frame. Finally, we trained a discriminative classifier off-line that estimates the
most suitable tracker for a given context, and applied it on-line in an effective tracker-selection
framework. Evaluated on several different “pools” of individual trackers, the combined model
lead to an increased performance in terms of accuracy and robustness on challenging public
benchmarks.

In the second part of the manuscript, I present several contributions related to SNNs for simi-
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larity metric learning. First, we proposed a new objective function and training algorithm called
Triangular Similarity Metric Learning that enhances the convergence behaviour and achieved
state-of-the-art results on pairwise verification tasks, like face, speaker or kinship verification.
Then, I present our work on SNNs for gesture classification from inertial sensor data, where
we proposed a new class-balanced learning strategy operating on tuples of training samples and
an objective function based on a polar sine formulation. Finally, I present several contribu-
tions on SNN with deeper and more complex Convolutional Neural Network models applied to
the problem of person re-identification in images. In this context, we proposed different neu-
ral architectures and triplet learning methods that include semantic prior knowledge, e.g . on
pedestrian attributes, body orientation and surrounding group context, using a combination of
supervised and weakly supervised algorithms. Also, a new learning-to-rank algorithm for SNN,
called Rank-Triplet, has been introduced and successfully applied to person re-identification.
These recent works achieved state-of-the-art re-identification results on challenging pedestrian
image datasets and opened new perspectives for future similarity metric approaches.
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1 Overview

In this chapter, I will first present the general context of our research on computer vision and
machine learning – two areas that have been tightly linked and that I have been working on
since roughly 15 years. After my Curriculum Vitae, I will give an overview of my post-doctoral
research work during the last 10 years as well as my PhD supervision activities.

In this period, I have been working in two different laboratories and countries: first at the
Idiap Research Institute (Martigny, Switzerland) in the team of Jean-Marc Odobez, and then, at
LIRIS (Lyon, France) in the Imagine team with Christophe Garcia. In both teams, my research
globally concerned the areas of computer vision and machine learning, but the context and
applications have been slightly different. At the Idiap Research Institute, I have been mostly
involved in a large European FP7 project and working on real-time on-line multi-object tracking
methods using probabilistic approaches. At LIRIS, I continued the research on on-line methods
for visual object tracking but then focused more on machine learning and neural network-based
models that I have been already working on during my PhD thesis.

These two different contexts, both from a methodological and application point of view, lead
to the two parts forming the technical portion of this manuscript: the first part focusing on
visual object tracking and on-line learning appearance models, and the second part on similarity
metric learning approaches with Siamese Neural Networks.

In the last chapter, I will draw general conclusions and outline some of the perspectives of
our research.
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2 Context

2.1 Computer Vision: from the laboratory ”into the wild“

The research on Computer Vision has come a long way starting from image and signal processing
techniques in the 1970s-1980s, e.g . filtering, de-noising, contour extraction, basic shape analy-
sis, thresholding, geometrical model fitting etc., that have been applied in relatively controlled
conditions, for example, in camera-based production quality control systems, or for relatively
elementary segmentation, detection, and recognition problems in constrained laboratory envi-
ronments. Relatively simple parametric models, e.g . based on rules or, later, fuzzy logic or
statistics, were employed to perform classification or regression and thus accomplish some basic
perception tasks in a given environment. For example, the first visual object tracking approaches
were based on relatively simple methods like cross-correlation or other template matching tech-
niques [95, 123, 201] applied frame-by-frame on the raw pixel intensities, edges or other low-level
visual features computed on image regions or key points (see Fig. 2.1). Motion and optical flow
estimation [263, 339] as well as background subtraction techniques [141, 350, 403] have been
used to include the temporal aspect in video analysis and in particular object tracking. Also
various shape tracking approaches relying on parametric models (e.g . ellipses, splines) [179] or
non-parametric models (e.g . level sets) [91, 271] have been proposed during that time. However,
these methods showed clear limitations with cluttered background and when the tracked objects
underwent more severe image deformations, like lighting changes or rotations.

In the 1990s and 2000s, the advent of effective machine learning algorithms being able to
learn from examples and operate on high-dimensional vector spaces, and their combination with
classical image processing techniques led to powerful methods for a variety of different automatic
perception tasks, e.g . image segmentation or enhancement, object detection and recognition,
image classification, tracking, motion estimation or 3D reconstruction just to name a few. These
approaches were generally based on a two-stage procedure: first, the extraction of (local) visual
features that have been designed “manually” in order to be robust and invariant to different
types of noise (histograms of colour, texture etc.) and, second, the classifier that has been
(automatically) trained beforehand on these features computed on a training data set. In on-
line visual object tracking, mostly probabilistic Bayesian methods (Kalman Filters, Particle
Filters) have been proposed [139, 198, 214, 304], which were able to perform the inference in
real-time, frame-by-frame, and using robust appearance likelihood models (colour histograms,
or simple shape models). This not only allowed to track one or several objects efficiently in
realistic environments, but also to include the uncertainty in the estimation and cope with several
hypotheses in parallel. Although these predominantly probabilistic algorithms required some
manual parametrisation, they have been extended with observation likelihood models resulting
from statistical machine learning. That means, either a classical discriminative classifier (SVM,
neural network) is trained on an annotated data set for detecting objects of a specific category
(faces, pedestrians, cars etc.) [143, 291], or an on-line learning classifier (on-line SVM, on-line
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(a) (b)

(c) (d)

Figure 2.1: Classical object detection and tracking approaches: (a) background subtraction, (b)
template and geometrical shape matching, (c) level sets, (d) key point and motion tracking.

Adaboost etc.) is trained “on-the-fly” on the particular object to track in the given video [68,
74, 165, 175, 206], (see Fig. 2.2). These powerful on-line classifiers have been extensively applied
in so-called tracking-by-detection methods and mostly for single object tracking, where the
object’s bounding box is detected at each frame (within a search window), and thus a tedious
parametrisation of likelihood or motion models was not necessary, or to a lesser extent. The use
of machine learning techniques for building more discriminative appearance models also led to
considerable progress in on-line multi-object tracking, notably improving the performance of data
association between consecutive frames. However, they are computationally quite expensive, and
when the models are adapted on-line for each tracked object the complexity, in general, increases
linearly with the number of objects, which is an issue in real-time applications. In the first part
of this manuscript, we will present some of our previous research that addressed these robust
visual on-line learning problems in the context of on-line single and multiple object tracking.

From 2012 on, the Computer Vision field has changed very rapidly with the broad adoption
of Convolutional Neural Networks (introduced in the 1990s) that learn the parameters of feature
extraction and classification jointly from annotated example images, and employ a layer-wise
feed-forward architecture which can be effectively trained by the Gradient Backpropagation al-
gorithm. More and more complex models have been proposed, extracting deep and semantic
feature hierarchies and showing excellent performance on realistic data under challenging con-
ditions. However, to be effective, they rely on large annotated image datasets (like ImageNet)
and considerable computational resources (mostly GPUs). Also, several deep learning object
tracking approaches have been proposed during the last years [242, 289, 391]. They generally
follow the tracking-by-detection approach and focus on the construction of robust appearance
models to track any object under challenging conditions. In this context, these learnt feature
hierarchies showed excellent performance, and the availability of large volumes of annotated
video data enabled further enabled to inclusion of learnt motion patterns. Nevertheless, with
respect to the tracking problem, some fundamental issues remain. That is, the effective on-line
learning to quickly adapt to new conditions and to be able to operate in dynamic environments
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(a)

(b)

(c)

Figure 2.2: Tracking-by-detection approach. A discriminative classifier is trained on-line with
foreground and background images patches (a) or pixels (b). Classical motion-based trackers
have been combined with on-line learnt detectors to select the features to learn (c).

without forgetting previously acquired knowledge in the long term; and the design of models
and inference algorithms of low complexity and high generalisation capacity (without the need
of large annotated datasets).

Our work described in this manuscript especially focused on these aspects.

2.2 Learning representations and making decisions

As mentioned above, in Computer Vision, classical machine learning algorithms operated on
“hand-crafted”, generic features such as colour or texture histograms, Local Binary Patterns
(LBP), Scale-Invariant Feature Transform (SIFT) features or dictionaries (bags of visual words),
and the trained classifiers evolved from relatively simple decision trees or probabilistic methods
such as Bayesian Networks to more “advanced” models based on Support Vector Machines and
kernel-based methods that are able to cope with relatively high-dimensional input features vec-
tors and that can be optimised efficiently (see Fig. 2.3). On the one hand, much research has
been performed in improving the performance of descriptors and visual features, i.e. increasing
their robustness and invariance to typical image noise and making them more discriminative
with respect to a given classification task. On the other hand, numerous works concentrated
on improving the classification algorithms. For example, by designed specific kernel functions
for kernel-based classifiers like SVMs, or by structuring the models and inference in a way that
better represents the data, like in probabilistic graphical models or deformable part models
(DPM) [147] (see Fig. 2.3). Also, the combination of these classifiers using, for example, bag-
ging or boosting techniques increased the overall classification performance [235, 340, 379]. In
these approaches, the design of robust features is crucial and much work has been performed in
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(a) (b)

Figure 2.3: Extracting “hand-crafted” low-level features and (a) forming codeword dictionaries
(bags of visual words) or (b) learning Deformable Part Models (DPM).

the 1990s and 2000s to ”manually” create and refine such effective, invariant representations of
the image data.

Convolutional Neural Networks (CNN), based on the fundamental work of K. Fukushima [152]
and Y. LeCun [228], allow to overcome this manual feature design and learn discriminative fea-
tures automatically from annotated data. Using neural architectures with several layers of
subsequent convolution and pooling operations (and non-linear activation functions) together
with the Gradient Backpropagation algorithm thus results in a hierarchy of learnt feature ex-
tractors from the lowest (pixel) to a higher (semantic) level (see Fig. 2.4). With the advent of
cheap GPU hardware and optimised software libraries in the 2010s, more complex models with
many layers have been used, and these deep neural networks achieved excellent performance on
image classification [161, 220] and have then been widely adopted for the majority of Computer
Vision problems. Neural networks have a long history in Computer Vision, and their advan-
tage is their flexibility in the model complexity that comes with different architectures, e.g . the
number of layers, feature maps and neurons, optimised in a uniform way through Gradient Back-
propagation, and especially their robustness to noise in the input data. Also, different training
strategies can be adopted depending on the amount of available annotated data and the nature
of the given task to perform. Classically, neural networks has been trained in a supervised
way for classification problems. But, semi-supervised and weakly supervised algorithms exist as
well, e.g . with Siamese Neural Networks [99, 121]. With few labelled data, a common technique
consists in retraining or fine-tuning the last layer(s) of an existing deep neural network model,
trained for example on an image classification problem with the ImageNet dataset [325] (transfer
learning). When no labelled training data is available, one can use an unsupervised learning
approach with specific neural network architectures such as auto-encoders [187] and Generative
Adversarial Networks (GAN) [163] to automatically extract high-level information for further
analysis. Recently, many variants of such deep neural network architectures, training algorithms
and loss functions have been proposed in the literature.

However, with deeper and more complex models come several difficulties and limitations. One
problem is over-fitting, that has either been addressed by specific regularisation techniques such
as DropOut or DropConnect or by increasing the training dataset and semi-supervised learning
methods. The lack of annotated training data is a frequent issue for many application when
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Figure 2.4: Learning deep semantic feature hierarchies.

using deep neural networks, and, as mentioned above, a common strategy is to perform transfer
learning using an existing trained deep neural network model. However, in a dynamic evolving
environment, for instance, with a mobile autonomous robot, one open question is how such
deep and complex models can be continuously adapted and “fine-tuned” to perform optimally in
new and unknown situations and conditions. How can we effectively integrate non-annotated or
partially annotated data in a principal way to learn an model that generalises well? And how
to learn with very few data?

With our work on semi-supervised similarity metric learning with Siamese Neural Networks
presented in the second part, we tried to tackle some of these problems starting with more
fundamental studies on small datasets and shallow neural network models and then extending
some of the ideas to deeper CNN structures.
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Professional Experience

since 2012 LIRIS/CNRS, Imagine team, INSA de Lyon

Associate Professor

Research topics: image classification, object detection and recognition, video analysis,
visual object tracking, machine learning, neural networks

2008-2012 Idiap Research Institute, Martigny, Switzerland

Post-doctoral researcher in computer vision and object tracking in the context of the
European project TA2 (Together Anywhere, Together Anytime)
Team Dr. Jean-Marc Odobez

2004-2007 Orange Labs, Rennes, France

PhD in the field of object detection in images and videos using machine learning.

PhD thesis: “Face Image Analysis with Convolutional Neural Networks”

Supervision Prof. Dr. Christophe Garcia (Orange Labs),
Prof. Dr. Hans Burkhardt (Freiburg University, Germany)

Teaching

Recent teaching activities at the departments ”Premier Cycle”, ”Informatique” as well as
”Telecommunications” at INSA Lyon :

1A PCC CM/TD/TP ”Algorithms and Programming”

2A PCC/SCAN CM/TD/TP ”Algorithms and Programming”, ”Introduction to Databases”

3IF CM/TD/TP ”Software engineering” (responsible of module)

3IF TD/TP ”Probability Theory”

3IF/4IF TP ”Operating Systems”

5IF CM/TP ”Big Data Analytics” / ”Machine Learning”

4TC CM/TP ”Image and Video Processing”

5TC (SJTU) CM/TP ”Computer Vision and Machine Learning”

5TC CM/TP ”Scientific Computing and Data Analytics”

Publications

See publication list on page 135.
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Teaching:

• Responsible of the Computer Science module of second year SCAN, INSA Lyon (English
teaching)

• Responsible of the Software Engineering module at the third year IF (computer science)
department of INSA Lyon

• Responsible of personalised curricula (parcours aménagé) at IF department, INSA Lyon

• Member of the ATER candidate selection committee of INSA Lyon regarding the 27th
CNU section (”Informatique”)

Research:

• Council member of the Lyon Computer Science Federation (”Fédération Informatique de
Lyon”, FIL)

• Responsible of the topic ”Image and Graphics” of the FIL

• Expertises for ANR (and Swiss FNS) research project proposals and ANRT CIFRE appli-
cations

• Numerous reviews for renowned journals and conferences (IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), IEEE Transactions on Image Processing (IP),
IEEE Transactions on Neural Networks and Learning Systems (NNLS), IEEE Transactions
on Cybernetics (CYB), Pattern Recognition (PR) etc.)

• Co-organisation of a workshop on Deep Learning at the French conference RFIA 2017

• Co-organisation of a workshop on Neural Networks and Deep Learning (RNN) in Lyon
2018

13



Chapter 3. Curriculum vitae

14



4 Overview of research work and

supervision

During the last 16 years, I conducted my research activities in five different academic and
industrial research institutions in France, Germany and Switzerland. They are mainly related to
the fields of computer vision, image and video analysis and machine learning, i.e. the automatic
extraction, analysis and interpretation of semantic information from digital images and videos.

From 2002, I prepared my Master’s degree at the University of Freiburg in Germany, focusing
on topics concerning image processing, artificial intelligence, robotics, machine learning and
applied mathematics. I performed part of my studies at the ENSICAEN in Caen, France,
and my master thesis at the GREYC laboratory, on spatio-temporal object segmentation in
videos. In 2004, I started my PhD research on Convolutional Neural Networks applied to face
image analysis, at France Telecom R&D, Rennes, (now Orange Labs), and I defended it in the
beginning of 2008 at the Freiburg University. Between 2008 and 2012, I worked as a post-doctoral
researcher at the Idiap Research Institute in Martigny, Switzerland, on visual object tracking
and probabilistic models for long-term multi-object face tracking. Since, 2012, I am a associate
professor at INSA Lyon and the LIRIS laboratory, working on machine learning and computer
vision for various applications, such as object detection, tracking and recognition, and face and
gesture analysis.

This rich experience from several scientific, social and cultural contexts gave me a broad
range of technical capacities and knowledge under diverse points of view and approaches, from
a more specific to a more general level, professionally as well as personally.

In the following, I will briefly describe our research and my supervision work and, in the
succeeding chapters, go into more technical detail on the research we have conducted after my
PhD thesis.

4.1 Convolutional Neural Networks for face image analysis

During my PhD [56], supervised by Christophe Garcia at France Telecom R&D, Rennes, (now
professor at LIRIS) and Prof. Dr. Hans Burkhardt at the University of Freiburg, Germany (now
emeritus professor), we worked on new Convolutional Neural Network (CNN) models for the au-
tomatic analysis of faces in images. Our starting point was the well-known Convolutional Face
Finder (CFF) from Garcia and Delakis [156], and we proposed new neural architectures and
learning algorithms for different computer vision and face analysis problems. Our first contri-
bution [45, 47, 50] concerned the automatic detection of facial feature points (facial landmarks)
in face images in order to align the face to a canonical position for further processing (e.g . for
recognition) (see Fig. 4.1). Then, we proposed a novel CNN-based regression approach for au-
tomatic face alignment that did not require an explicit detection of feature points [41]. We also
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Figure 4.1: Left: proposed Convolutional Neural Network-based approach for facial landmark
detection [45, 47]. Right: some example images showing the detection results “in the wild”.

introduced an original approach for face recognition using a learnt CNN model for non-linear
face image reconstruction [42]. Finally, we adapted the CFF model to detect other types of
objects in images, such as football players [49], cars and motorbikes [52] (participating in the
international challenge PASCAL VOCC 2005) and even virtual objects such as transparent logos
in TV broadcasts.

The developed techniques and models show a strong robustness against noise and excel-
lent performance under real-world conditions (“in the wild”, see Fig. 4.1), and they have then
been widely used for industrial applications within France Telecom and optimised for embedded
devices and mobile phones [44], which lead to three patents [53–55].

4.2 Visual object tracking

I conducted several years of post-doctoral research at Idiap Research Institute in Martigny,
Switzerland, where I worked in the team of Jean-Marc Odobez, on visual object tracking in
the context of a large EU FP7 project called TA2, “Together Anywhere, Together Anytime”.
The project aimed at improving the feeling of “togetherness” of distant family members through
technology, and our part consisted in developing a dynamic face and person detection and
tracking algorithm operating in real-time on a video (and audio) stream in order to built a type
of enhanced video-conferencing system that allows for a more engaging user experience. The
main challenges in this setting were frequent occlusions, a varying number of persons to track and
re-identify and arbitrary person and a room configurations as well as different lighting conditions.
To tackle this multi-object tracking and identification problem, we proposed a novel multi-face
tracking algorithm based on a probabilistic model and Bayesian inference [12, 38] specifically
handling the problem of long-term tracking and robust track creation and deletion, and we
integrated this method in a more complex multi-modal speaker detection, and visual focus of
attention recognition system [11, 36, 37] (see Fig. 4.2). As faces are often difficult to detect in such
dynamic environments, we also developed an enhanced upper-body detection algorithm based on
the semantic segmentation of different body parts [10]. Finally, we proposed a new probabilistic
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Figure 4.2: Real-time on-line multi-face tracking in dynamic environments with an RGB camera.
People may move freely in the room and leave and enter the scene. Left: The proposed algorithm
tracks and re-identifies a varying number of persons over long time periods despite frequent false
detections and missing detections. Right: integration in a multi-modal person and speaker
tracking and identification system.

Figure 4.3: Left: procedure of PixelTrack. Pixel-wise detection and segmentation is performed
in parallel, and the two models are jointly learnt on-line. Right: particle filter-based MCT
approach, where a discriminative model is learnt on-line using negative examples from likely
distracting regions in the scene (blue rectangles).

face tracking method [40] that takes into account different visual cues (colour, texture, shape)
and dynamically adapts the inference according to an integrated reliability measure.

Later, with Prof. Garcia at LIRIS, we continued our research on visual object tracking,
but on more generic methods that track arbitrary single objects under challenging conditions,
i.e. moving camera, difficult changing lighting conditions, deforming and turning objects, with
other distracting objects etc. In this context, we developed several original methods. The first
one, called “PixelTrack” [5, 34], is based on a pixel-based Hough voting and a colour segmenta-
tion model and is particularly well suited for fast tracking of arbitrary deformable objects (see
Fig. 4.3). The second one, called “Motion Context Tracker” (MCT) [6, 31], is based on a particle
filter framework and uses a discriminative on-line learnt model to dynamically adapt to the scene
context by taking into account other distracting objects in the background (see Fig. 4.3).

These different works on visual object tracking will be described in more detail in Part I of
the manuscript.
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Figure 4.4: Top: dynamic tracker selection algorithm based on a scene context classifier. Bottom:
example video with tracking result of the proposed method. Different colours represent different
trackers.

4.3 PhD thesis supervision

My supervision activities of PhD students began in 2012 when I joined the IMAGINE team of
the LIRIS laboratory and INSA Lyon as associate professor.

From 2013 to 2016, I co-supervised the thesis of Salma Moujtahid [283] on visual object
tracking with Prof. Atilla Baskurt, and it was defended on 03/11/2016. We started from the
observation and hypothesis that some tracking algorithms perform better in a given environment
and others perform better in other settings. Thus, we developed a method [29] that, given a set
of tracking algorithms running in parallel on a video, evaluates the confidence of each tracker
and chooses the best one at each instant of the video stream according to an additional spatio-
temporal coherence criterion. Further, we conceived a set of visual features that were able
to quantify the characteristics of the global scene context in a video at a given time. Using
these scene context features, we trained a classifier that estimates with high precision the best
tracker for a given visual context over time [28] (see Fig. 4.4). Using this tracker selection
algorithm, we combined several state-of-the-art trackers operating on different (complementary)
visual features, and achieved an improved performance. With this approach, we also participated
in the international Visual Object Tracking challenge, VOT 2015, where we obtained a good
ranking among many powerful state-of-the-art methods [23].

From 2012, I also co-supervised the thesis of Samuel Berlemont [90] with Prof. Christophe
Garcia and Dr. Grégoire Lefebvre from Orange Labs, Grenoble. This industrial thesis was
defended in February 2016 and concerned the development of new algorithms to automatically
recognise symbolic 3D gestures performed with a mobile device in the hand using inertial sensor
data (see Fig. 4.5). We proposed a new model and a weakly supervised machine learning
technique based on a Siamese neural network to learn similarities between gesture signals in
a low-dimensional sub-space, achieving state-of-the-art recognition rates [2, 22, 24] compared
to previously proposed approaches, including our own method based on a CNN [33]. We not

18



4.3. PhD thesis supervision

Figure 4.5: Left: symbolic 3D gesture recognition with inertial sensor data from mobile devices.
Right: proposed Siamese neural network architecture learning similarities and dissimilarities
from tuples of input samples and using a polar sine-based objective function.
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Figure 4.6: Left: Siamese neural network architecture learning a similarity metric in the feature
space. Right: similar and dissimilar (face) pairs used for training (LFW dataset).

only showed an increased rejection performance for unknown gestures, but also and improved
classification rate with a specific neural network structure learning from tuples of data samples
(instead of pairs or triplets as in previous approaches) and a novel polar sine-based objective
function (see Fig.4.5), which leads to a better training stability and a better modelling of the
relation between similar and dissimilar training examples.

I further co-supervised the thesis of Lilei Zheng [441], defended on 10/05/2016, together
with Atilla Baskurt, Khalid Idrissi and Christophe Garcia. In this work, we introduced several
new similarity metric learning methods [4, 8, 26, 27], based on linear and non-linear projections
through Siamese Multi-Layer Perceptrons, and applied them to the problem of face verification,
i.e. given two (unknown) face images, deciding if they belong to the same (unknown) person
or not (see Fig. 4.6). The first method that we proposed for training these Siamese neural
network models is called Triangular Similarity Metric Learning (TSML) [4, 26] and is based
on an objective function using the cosine distance and conditions the norm of the projected
feature vectors, thus improving the convergence and overall performance of this learnt metric.
The second method is called Discriminative Distance Metric Learning (DDML) [4] and uses the
Euclidean distance and a margin to define the objective function for training the model, giving
comparable performance to TSML. We further evaluated the proposed methods on the problem
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Figure 4.7: Proposed orientation-specific re-identification deep neural network. Left: in the
first step, the two neural network branches are pre-trained separately on identity labels and
body orientations (supervised learning). Right: in the second step, the whole neural network is
fine-tuned for person re-identification (triplet learning with hard negative selection).

of speaker verification (i.e. audio signals) and also achieved state-of-the-art results. Finally, we
applied our TSML algorithm on kinship verification [25], i.e. verifying parent-child relationships
in images, and participated in an international competition organised at the FG conference in
2015, and our approach was ranked first in one of the sub-competitions and second in the other
one.

From 2015 to 2018, I co-supervised the thesis of Yiqiang Chen [116] together with Prof.
Atilla Baskurt and Jean-Yves Dufour from Thales ThereSIS Lab, Paris, and it was defended
on the 12/10/2018. The topic of the thesis was ”person re-identification in images with Deep
Learning”, which is a similar problem to the above-mentioned face verification, i.e. given two
images of (unknown) persons (pedestrians), e.g . coming from different cameras, we want to know
if they belong to the same person or not. Because the identities of the persons are generally not
known before building the model and because we want the method to be as generic as possible,
we tackled this problem with a similarity metric learning approach, as is commonly done in the
literature. To this end, we proposed several deep learning-based approaches, where the similarity
learning is generally performed with a variant of the Siamese neural network using triplets of
examples instead of pairs, i.e. one reference example (or anchor), one similar example and one
dissimilar example.

First, we developed a CNN-based discriminative algorithm to automatically recognise pedes-
trian attributes, i.e. semantic mid-level descriptions of persons, such as gender, accessories,
clothing etc. [15]. These attributes are helpful to describe characteristics that are invariant to
pose and viewpoint variations. Then we combined this model with another CNN trained for
person identification, and the two branches are fine-tuned for the final person re-identification
task [20]. Secondly, among the challenges, one of the most difficult is the variation under different
viewpoints. To deal with this issue, we propose an orientation-specific deep neural network [17]
(see Fig. 4.7), where one branch performs body orientation regression and steers another branch
that learns separate orientation-specific layers. The combined orientation-specific CNN feature
representations are then used for the final person re-identification task. Further, developed an-
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other approach to include visual context into the re-identification process [16], i.e. for a given
person query image, we additionally used the image region of the surrounding persons to compute
a pairwise combined distance measure based on an location-invariant group feature representa-
tion. Finally, as a fourth contribution in this thesis, we proposed a novel listwise loss function
taking into account the order in the ranking of gallery images with respect to different probe
images [18]. Further, an evaluation gain-based weighting is introduced in the loss function to
directly optimise the evaluation measures of person re-identification.

Currently, there are four ongoing PhD theses at LIRIS that I actively co-supervise :

• Paul Compagnon, “Prédiction de routines situationnelles dans l’activité des personnes
fragiles”, co-supervision with Christophe Garcia (LIRIS) and Grégoire Lefebvre (Orange
Labs Grenoble),

• Thomas Petit, “Reconnaissance faciale à large échelle dans des collections d’émissions de
télévision”, co-supervision with Christophe Garcia (LIRIS) and Pierre Letessier (Institut
National de l’Audiovisuel),

• Guillaume Anoufa, “Reconnaissance d’objets intrus en phase de vol hélicoptère par Ap-
prentissage Automatique”, co-supervision with Christophe Garcia (LIRIS) and Nicolas
Bélanger (Airbus Helicopters)

• Ruiqi Dai, “Apprentissage autonome pour la vision intelligente”, co-supervision with Véronique
Eglin (LIRIS) and Mathieu Guillermin (Institut Catholique de Lyon)
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On-line learning and applications to

visual object tracking
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5 Multiple object tracking in

unconstrained environments

5.1 Introduction

Visual object tracking consists in following a given object in an image sequence or video over
time. The object to follow is usually given, the first time it is visible in the video, by a human
or an automatic detection algorithm. If a detection algorithm is used, applying it to every frame
of the video is generally not an acceptable or sufficient solution as the object may not always be
detected, false detections may occur, previous detections are not taken into account such that
a certain continuity is lacking and, finally, running the detector may be computationally too
expensive. The output of tracking algorithms is a description of the state of the object at each
point in time in the video. This can be its position and scale in the image (usually described
as a bounding box), or a “real-world” position (2D on the ground plane, or 3D), but also its
orientation, speed or a finer description such as a parametric shape or part-based model.

Tracking can be performed off-line or on-line. In off-line tracking, the entire video is available
at once for analysis and inference, whereas in on-line tracking, a video stream is analysed
sequentially from the beginning, i.e. at each point in time only the past and present information
can be used to estimate the object state but not the future. We will only consider on-line
tracking in this work.

Finally, an important aspect of tracking algorithms concerns the number of objects to track.
If we know that there is only one object to track, and it is visible throughout the whole video,
Single Object Tracking (SOT) approaches are used. In that case, the algorithm is given the
state (e.g . the bounding box) of the object in the beginning, and it is supposed to track it until
the end. We will come back to SOT in chapter 6. In Multiple Object Tracking (MOT), several
objects (usually of the same category) are to be followed in an image sequence, and state-of-the
art tracking algorithms mostly rely on a separate object detector trained (off-line) for the given
category of objects to track (e.g . a person, face or car detector).

This presents a certain number of inherent challenges:

• in most applications, the number of visible objects is not known a priori , and the algorithm
needs to handle newly arriving and disappearing objects,

• objects may occlude each other partially or completely,

• the object detector may miss objects, and false detections may occur,

• the algorithm may confuse two objects, e.g . when they come close to each other (track ID
switch).
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Chapter 5. Multiple object tracking in unconstrained environments

Figure 5.1: Example video frames from the considered application; dataset 1 and 2 (top), and
3 (bottom). Faces may be difficult to detect, and occlusions can occur requiring an effective
mechanism to remove and reinitialise tracks.

The linking of new detections to existing tracked objects is called “data association”. The
above-mentioned difficulties become more or less problematic depending on the given application
context.

In our previous research, we worked on both SOT and MOT and made contributions for
different scientific challenges of each of them. In the following, I will first present our work at
Idiap Research Institute with Jean-Marc Odobez on multiple face tracking, where we introduced
an original algorithm for long-term tracking by defining a framework for robust track creation
and removal in MOT, as well as work performed with Christophe Garcia on an unsupervised
incremental learning algorithm for estimating the visual focus of attention of a person in a
video. Our contributions to SOT with different on-line learning approaches will be presented in
chapter 6.

5.2 On-line long-term multiple face tracking

5.2.1 Introduction

The work described in the following has been performed at Idiap with Jean-Marc Odobez in the
context of a large European FP7 project called TA2, where we tried to improve group-to-group
communication using different technological approaches. The given context corresponds to a
type of video-conferencing application where people interact with each other using a touch-table
(e.g . playing a game) (see Fig. 5.1). In this setting, multiple faces need to be tracked robustly, in
real-time and over long periods of time. This is a rather unconstrained and dynamic environment
as people may enter and leave at any moment, and the room and person configuration is not
fixed, i.e. people might be relatively far from the camera, and frequent occlusions may occur.
An additional challenge for face tracking here is that the participants do not always look into
the camera, and their attention might be on the touch-table or on another person in the room.

The most straightforward approach for solving the face tracking problem is to employ a
face detector (e.g . [379]). However, despite much progress in recent years on multi-view face
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5.2. On-line long-term multiple face tracking

detection, these methods are mostly employed in scenarios where people predominantly look
towards the camera. As we demonstrate in our results, this is not sufficient for more complex
scenarios, where faces are missed around 30 − 40% of the time due to less common head poses.
Unfortunately, the difficult head postures can last for relatively long periods of time (up to
one minute in some of our videos). This means that face detection algorithms have to be
complemented by robust tracking approaches; not only to interpolate detection results or filter
out spurious detection, as is often assumed, but also to allow head localisation over extended
periods of time.

Numerous multiple faces tracking methods have been proposed in the literature (e.g . [93,
142, 269, 304, 405]), mainly focusing on new features, new multi-cue fusion mechanisms, better
dynamics or adaptive models for instance [58, 74, 164, 326], and results are demonstrated mostly
on short sequences [58, 74, 164, 326].

However, very few of them address track initialisation and termination, especially in terms
of performance evaluation. A face detector is often used to initialise new tracks, but how to
cope with its uncertain output? A high confidence threshold may lead to missing an early
track initialisation. Conversely, with a low threshold false tracks are likely to occur. Track
termination can be even more difficult. How do we know at each point in time if a tracker is
operating correctly? This is an important issue in practice, especially since an incorrect failure
detection can lead to losing a person track for a long time until the detector finds the face again.

5.2.2 State of the art

Many existing MOT approaches operate off-line, i.e. the information from the entire video is
available for the inference, or sometimes these methods are applied on sliding time windows
in order to allow for a “pseudo”-on-line operation. In most of these works, data association is
formulated as a global optimisation problem on a graph-based representation [88, 102, 181, 281,
309, 433]. However, these off-line algorithms are not suited for the real-time on-line setting that
we investigated here.

In on-line MOT, existing approaches either employ deterministic methods for data associa-
tion [75, 215] based on the Hungarian algorithm [286] or on a greedy approach [98] or probabilistic
methods, like the traditional Multiple Hypothesis Tracker (MHT) [317], the Joint Probabilistic
Data Association Filter (JPDAF) [149], both based on a Kalman Filter framework, and Particle
Filter-based techniques [185, 202, 214, 295, 297, 412].

Most of these methods do not explicitly incorporate mechanisms for track creation and
deletion, especially with longer periods of missed detections and frequent false detections, as
is the case in the application scenario that is considered here. Principled methods exist to
integrate track creation and termination within the tracking framework, for example Reversible-
Jump Markov Chain Monte Carlo (RJ-MCMC) [214, 417]. But to be effective, they require
appropriate global scene likelihood models involving a fixed number of observations (independent
from the number of objects), and these are difficult to build in multi-face tracking applications.

Kalal et al . [205] present an interesting approach for failure detection in visual object tracking
that is based on the idea that a correctly tracked target can be tracked backwards in time.
Unfortunately, the backward tracking greatly increases the overall computational complexity
(by a factor that is linear in the backward depth). In a particle filter tracking framework,
another solution is to directly model a failure state as a random variable within the probabilistic
model [310]. However, this increases the complexity of the model and thus the inference, and it
is difficult, in practice, to model the distribution of a failure state or failure parameters. Closer
to our work, Dockstader et al . [137] proposed to detect failure states in articulated human body
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tracking using a Hidden Markov Model (HMM). However, their method differs significantly from
ours: they only use one type of observation (the state covariance estimate) which in our case
proves to be insufficient for assessing tracking failure; their observation are quantised to use a
standard discrete multinomial likelihood model, whereas our method learns these likelihoods in
a discriminative fashion; and their HMM structure (number of states, connections) is specifically
designed for their articulated body tracking application.

In applications that are similar to ours, the problem of deciding when to stop tracking a face
is usually solved in a recursive manner. This means, assessing tracking failure is often left to
the (sudden) drop of objective or likelihood measures which are not easy to control in practice
[279, 280].

In many scenarios of interest, the camera is fixed, and due to the application and the room
configuration, people in front of the camera tend to behave similarly over long periods of time.
However, most of the existing tracking methods ignore this long-term information, as they
concentrate on video clips that are often not longer than a minute. Or if they use long-term
information, it is mainly for constructing stable appearance models of tracked objects [200, 428],
e.g . by working at different temporal scales [364]. Similarly, some methods [74, 203] train an
(object-specific) detector online, during tracking, to make it more robust to short-term and
long-term appearance changes. However this increases the computational complexity, because
a separate model has to be built for each person, and each such detector has to be applied on
the input frames. Mikami et al . [279] introduced the Memory-based Particle Filter where a
history of past states (and appearances [280]) is maintained and used to sample new particles.
However, they only addressed single, near-frontal face tracking, in high resolution videos and only
evaluated the method on 30 to 60-second video clips. Other works (e.g . [221, 249, 347]) tackle
the problem of long-term person tracking by analysing the statistics of features from shorter
tracks (tracklets), and by proposing methods to effectively associate them. These algorithms
are different from ours as they process the data off-line, i.e. the observations at each point in
time are known in advance, and they mainly deal with tracking the position of the full human
body as opposed to just faces. Another approach for multiple pedestrian tracking [86] associates
smaller tracklets on-line and in a statistical sampling framework but no principled mechanism for
starting and ending tracks is proposed. Recently, and after our work, an approach similar to ours
from Xiang et al . [407] has been proposed, using Markov Decision Processes and re-inforcement
learning for data association, and to decide on track deletion.

In the following, we will first introduce the principal framework and equations for MOT
with particle filters and Markov Chain Monte Carlo (MCMC) sampling, and then describe our
contributions related to the probabilistic framework of track creation and removal, long-term
static and dynamic observation models as well as experimental results [12, 38].

5.2.3 Proposed Bayesian multiple face tracking approach

We tackle the problem of multi-face tracking in a recursive Bayesian framework. Assuming
we have the observations Y1:t from time 1 to t, we want to estimate the posterior probability
distribution over the state X̃t at time t:

p(X̃t|Y1:t) =
1

C
p(Yt|X̃t)×

∫

X̃t−1

p(X̃t|X̃t−1)p(X̃t−1|Y1:t−1) dX̃t−1 , (5.1)

where C is a normalisation constant. As closed-form solutions are usually not available in
practice, this estimation is implemented using a particle filter with a Markov Chain Monte
Carlo (MCMC) sampling scheme [214]. The main elements of the model are described below.
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5.2. On-line long-term multiple face tracking

5.2.3.1 State space

We use a multi-object state space formulation, with our global state defined as X̃t = (Xt,kt),
where Xt = {Xi,t}i=1..M and kt = {ki,t}i=1..M . The variable Xi,t denotes the state of face i,
which comprises the position, speed, scale and eccentricity (i.e. the ratio between height and
width) of the face bounding box. Each ki,t denotes the status of face i at time t, i.e. ki,t = 1 if
the face is visible at time t, and ki,t = 0 otherwise. Finally, M denotes the maximum number
of faces visible at a current time step.

5.2.3.2 State Dynamics

The overall state dynamics, used to predict to current state from the previous one, is defined as:

p(X̃t|X̃t−1) ∝ p0(Xt|kt)
∏

i∈{1..M}|ki,t=1

p(Xi,t|Xi,t−1) , (5.2)

that is the product of an interaction prior p0 and of the dynamics of each individual face that
is visible at iteration t like in tracking methods for a fixed number of targets [214]. Note that
this is actually feasible since the creation and deletion of targets are defined outside the filtering
step (see next section). The position and speed components of the visible faces are described
by a mixture of a first-order auto-regressive model pa and a uniform distribution pu, i.e., if x
denotes a position and speed component vector, we have: p(xi,t|xi,t−1) = αpa(xi,t|xi,t−1) + (1−
α)pu(xi,t|xi,t−1), with pa(xi,t|xi,t−1) = N (Axt−1; 0,Σ), and pu(xi,t|xi,t−1)) = c with c being a
constant allowing for small “jumps” coming from face detection proposals (see Eq. 5.8). A first
order model with steady-state is used for the scale and eccentricity parameters. If x denotes
one such component: (xt − SS) = N (a(xt−1 − SS); 0, σSS), where SS denotes the steady-state
value. The steady-state values for scale and eccentricity are updated only when a detected face
is associated with the face track and at a much slower pace compared to the frame-to-frame
dynamics.

The interaction prior p0 is defined as

p0(Xt|kt) =
∏

{i,j}∈P

φ(Xi,t,Xj,t) ∝ exp
{
− λg

∑

{i,j}∈P

g(Xi,t,Xj,t)
}
, (5.3)

preventing targets to become too close to each other. The set P consists of all possible pairs

of objects that are visible. The penalty function g(Xi,t,Xj,t) =
2a(Bi∩Bj)
a(Bi)+a(Bj )

is the intersection

area as a fraction of the average area of the two bounding boxes Bi and Bj defined by Xi,t and
Xj,t, where a(.) denotes the area operator. The factor λg controls the strength of the interaction
prior (set to 5 in our experiments).

5.2.3.3 Observation Likelihood

As a trade-off between robustness and computational complexity, we employ a relatively simple
but effective observation likelihood for tracking. Another model could be used as well.

Given our scenario, we assume that the face observations Yi,t are conditionally indepen-
dent given the state, leading to an observation likelihood defined as the product of the visible
individual faces likelihoods:

p(Yt|X̃t) =
∏

i|ki,t=1

p(Yi,t|Xi,t). (5.4)
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Note that we did not include a partial (or full) overlap model in the likelihood component,
nor any other contextual tracking techniques [414]. Strong overlaps are prevented explicitly by
the interaction term (Eq. 5.3) in the dynamics. This approach is appropriate for our scenarios
(teleconference, HCI/HRI), where continuous partial face occlusions happen only rarely. More
often, faces are occluded by other body parts that are not followed by the tracker, like a person’s
hand, or another person’s body crossing in front. Even a joint likelihood model would not handle
these cases. Thus, for longer full occlusions, our strategy is to have the algorithm remove the
track of the occluded face, and restart it afterwards as soon as possible.

The observation model for a face i is based on R = 6 HSV colour histograms Yi,t =
[h(r,Xi,t)] (r = 1..R), that are computed on the face region described by the state Xi,t. They
are compared to histogram models h∗i,t(r), to define the observation likelihood for a tracked face
as follows:

p(Yi,t|Xi,t) ∝ exp(−λD

6∑

r=1

(
D2[h∗i,t(r), h(r,Xi,t)]

)
−D0) , (5.5)

where D denotes the Euclidean distance , λD = 20, and D0 is a constant offset defining the
distance at which the likelihood in Eq. (5.5) gives 1.0. More precisely, we divided the face into
three horizontal bands and in each band computed two normalised histograms with two differ-
ent levels of quantisation. Specifically, we used the scheme proposed in [304] which decouples
coloured pixels (put into Nb×Nb HS bins) from grey-scale pixels (Nb separate bins) and applied
it with two different quantisation levels, Nb = 8 and Nb = 4 bins per channel. This choice
of semi-global multi-level histograms results from a compromise between speed, robustness to
appearance variations across people as well as head pose variations for individuals, and a well
conditioned likelihood, i.e. peaky enough to accept a well identified optimum, but with a smooth
basin of attraction towards this optimum, adapted to low sampling strategies.

The histogram models of one face are initialised when a new target is added to the tracker.
Furthermore, to improve the tracker’s robustness to improper initialisation and changing lighting
conditions, they are updated whenever a detected face is associated with the given face track
(see below):

h∗i,t(r) = (1− ǫ)h∗i,t−1(r) + ǫhdi,t(r) ∀r , (5.6)

where hdi,t denotes the histograms from the detected face region, and ǫ is the update factor (set
to 0.2 in our experiments).

5.2.3.4 Tracking algorithm

At each time instant, the tracking algorithm proceeds in two main stages: first, recursively
estimate the states of the currently visible faces relying on the model described above and
solved using an MCMC sampling scheme. Second, make a decision on adding a new face or on
deleting currently tracked faces. This second stage is described in Section 5.2.4. The MCMC
sampling scheme allows for efficient sampling in this high-dimensional state space of interacting
targets, and follows the method described in [214].

Let N be the total number of particles and Nbi the number of “burn-in” particles. At each
tracking iteration, we do:

1. initialise the MCMC sampler at time t with the sample X̃
(0)
t obtained by randomly selecting

a particle from the set {X̃(s)
t−1, s = (Nbi + 1) . . . N} at time t − 1 and sample the state of

every visible target i using the dynamics p(Xi,t|Xi,t−1) (deleted targets are ignored);
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2. sample iteratively N particles from the posterior distribution of (5.1) using the Metropolis-
Hastings algorithm:

(a) sample a new particle X̃t
′
from a proposal distribution q(X̃t

′|X̃t
(s)

) (described below);

(b) compute the acceptance ratio:

a = min

(
1,

p(X̃t

′|Y1:t) q(X̃t

(s)|X̃t

′

)

p(X̃t

(s)|Y1:t) q(X̃t

′|X̃t

(s)
)

)
(5.7)

(c) accept the particle (i.e. define X̃t
(s+1)

= X̃t
′
) with probability a. Otherwise, add the

old particle (i.e. set X̃t
(s+1)

= X̃t
(s)

)

After time step t, the particle set {X̃(s)
t }Ns=Nbi+1 represents an estimation of the posterior

p(X̃t|Y1:t).
The proposal function q(·) allows for selecting good candidates for the particle set. Efficiency

in MCMC sampling is obtained by modifying object states one at a time. More precisely, a new

sample is selected by letting X̃t
′
= X̃t

(s)
, randomly select a face i amongst the visible ones, and

then sample the proposed state X′
i,t of face i from:

q(X′
i,t|X̃t) =

[
(1− α)

1

N −Nbi

∑

r

p(X′
i,t|X

(s)
i,t−1) + αp(X′

i,t|Xd
t )
]

(5.8)

that is a mixture of the state dynamics (ensuring temporal smoothness) and the output of a face
detector (avoiding tracker drift) controlled by the factor α, where Xd

t denotes the state of the
closest detection coming from a face detector [379] and associated with face i. Again, targets
removed at the previous step are ignored, while recently added targets are simply sampled
around their initial position.

5.2.4 Target creation and removal

The way objects are added and removed from the tracker is a key feature of the algorithm that
we proposed. In our application scenario, the goal is to avoid false alarms as much as possible.
This means, the tracker should be able to detect as quickly as possible if there is a tracking
failure. On the other hand, it should not stop tracking when there is no failure since it may take
a long time until the object is detected again.

We proposed to use two different Hidden Markov Models (HMM) for that purpose, as de-
scribed in the following sections. One is used for object creation and the other for object removal.
Each of them receives different types of observations.

A face detector (for both frontal and profile views) is called every 10 frames (i.e. around
twice per second, as our algorithm is able to process around 20-23 frames/s in real-time). The
HMMs are updated only at these instants, but rely on observations computed on all frames since
the last update. According to our experiments, applying the detector to every video frame did
not significantly improve the tracking performance and considerably slowed down the algorithm.

Before the creation and removal step, each detection is associated to a track provided the
following conditions hold:

1. the detection is not associated with any other target,

2. it has the smallest distance to the tracked target,
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ctct−1

oct,1 oct,2 oct,Nc

Figure 5.2: The HMM used at each image position for tracker target creation. The variable
ct indicates a face centred at a particular image position. The probability of ct is estimated
recursively using the observations oct,1..o

c
t,Nc

.

3. the distance between detection and target is smaller than two times the average width of
their bounding boxes,

4. the two bounding boxes overlap.

Although a more generic way would be to use training data to learn the association rules and
parameters as done in [322], for instance, the above conditions work well for our data in the
large majority of cases.

In the following, we describe the HMMs for target creation and removal. Note that naturally,
only un-associated detections are considered for the initialisation of a new target.

5.2.4.1 Creation

When initialising a new target we have two objectives: first, minimise erroneous initialisations
due to false detections, and second, initialise correct targets as early as possible.

For deciding when to add new targets to the face tracker, we propose a simple HMM that
estimates the probability of a hidden, discrete variable ct(i, j) indicating at each image position
(i, j) if there is a face or not at this position. Figure 5.2 illustrates the model. In the following, we
drop the indices (i,j) for clarity. Let us denote by Oc

t = [oct,1, . . . , o
c
t,Nc

] the set of Nc observations
at each time step t, and by Oc

1:t = [Oc
1, . . . ,O

c
t ] the sequence of observations from time 1 to time

t. Assuming the transition matrix is defined as: p(ct|ct−1) = 1 iff ct = ct−1 and 0 otherwise, the
posterior probability of the state ct can be recursively estimated as:

p(ct = s|Oc
1:t) =

p(Oc
t |ct = s) p(ct−1 = s|Oc

1:t−1)∑
s′ p(O

c
t |ct = s′) p(ct−1 = s′|Oc

1:t−1)
, (5.9)

where
p(Oc

t |ct) =
Nc∏

i=1

p(oct,i|ct) . (5.10)

Track creation: for each detected face that is not associated with any current face target, we
decide whether a track is created or not. To this end, if (i, j) denotes the centre position of the
face detection, the ratio:

rct (i, j) =
p (ct(i, j) = 1|Oc

1:t(i, j))

p (ct(i, j) = 0|Oc
1:t(i, j))

(5.11)

is computed. If rct (i, j) > 1, then a new track is initialised at (i, j). Otherwise, no track is
created from the given detection.
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Figure 5.3: Example image (left) with an illustration of the corresponding tracking memory
(right) during tracking. Qualitatively speaking, track creation will be faster (almost immediate)
when a new face detection is observed in the “white” regions whereas repetitive detection will
be needed to initiate a track in a “black” region. Similarly, when an object track moves to black
regions, its failure probability will become higher. See text for details.

Observations and likelihood models: we propose to use two different types of observations:
oc·,1, the output of the face detector and oc·,2, a long-term “memory” of the states (i.e. positions)
of tracked faces Xt.

The first observation is defined as follows. At time t and image position (i, j) we set:

oct,1 =

{
1 if (i, j) is covered by one of the bounding boxes of the detected faces,

0 otherwise.
(5.12)

The likelihood of the first observation is then defined as

p(oct,1 = 0|ct = 0) = 1− fa, p(oct,1 = 1|ct = 0) = fa,

p(oct,1 = 0|ct = 1) = md, p(oct,1 = 1|ct = 1) = 1−md , (5.13)

where fa is the empirical false alarm rate and md the missed detection rate of the detector.
According to our detection results from several datasets, we set fa = 0.0001 and md = 0.4.

The second observation oct,2 is based on the history of past image positions of tracked faces,
which we will call “tracking memory” in the following. At each iteration of the tracker, the
tracking memory is updated slowly according to the mean of the current state distribution X̄t:

oct,2 = (1− β)oct−1,2 + βIt , (5.14)

where β = 0.001 and

It(i, j) =

{
1 if (i, j) is covered by one of the bounding boxes described by X̄t,
0 otherwise.

(5.15)

Figure 5.3 shows an example of the tracking memory during a run of the face tracker.
Intuitively, we would like to initialise targets more quickly in regions where a person has been
“seen” previously. Thus, we model p(oct,2|ct) with a pair of sigmoid functions:

p(oct,2|ct = 1,Θ) =
1

π
arctan(δl(o

c
t,2 − µl)) +

1

2
(5.16)

p(oct,2|ct = 0,Θ) = 1− p(oct,2|ct = 1) , (5.17)

where the parameters Θl = (µl, δl), denote the offset and the slope of the sigmoid (see Fig. 5.4).
Intuitively, the offset µl denotes the threshold value beyond which an observation oct,2 is more
likely to occur within the bounding box of a detected face than in a non-face area, whereas the
slope controls how fast the likelihood change is around this threshold.
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Figure 5.4: Example of an observation likelihood model (here or3) described by a pair of sigmoid
functions with learnt parameters Θ = {δ, µ}. The parameters of the positive sigmoid function
(solid red curve) have been optimised to model best the positive (blue solid boxes) and nega-
tive (purple dotted boxes) training observations (here illustrated by histograms) according to
Eq. 5.18. The offset µ (here at x = 0.29), where the two sigmoid paired curves cross, defines a
soft decision boundary.

Parameter learning: the parameters Θl = (δl, µl) of the sigmoid functions in equations 5.16
and 5.17 have been trained offline with a set of N± observations oi. These observations are
tracking memory values that have been collected from real tracking sequences and are composed
of N+ positive instances measured at image positions of correct face detections, and N− negative
instances measured at image positions of false detections. To train the model, we maximise the
posterior probability of the labels for the given observations o:

Θ∗ = argmax
Θ

N±∏

i=1

p(c = Ci|oi,Θ), (5.18)

where Ci ∈ {0, 1} denotes the class label of oi, and p(c = ci|oi,Θ) ∝ p(oi|c = ci,Θ) is given by
Eq. 5.16 and 5.17, and we assumed an equal prior on both classes. In practise, we find a good
approximation of Θ∗ by doing a grid search in a reasonable range over the parameter space Θ.
Figure 5.4 shows an example of a pair of learnt sigmoid functions and the respective decision
boundary (in this case for target removal).

If observations are greater than µ, the ratio p(oi|c=1)
p(oi|c=0) > 1, that means a face is more likely to

be present. Otherwise, it is more likely that no face is present.

5.2.4.2 Removal

During tracking, we want to assess at each point in time if the algorithm is still correctly
following a face or if it has lost track. The algorithm can lose track, for example, when it gets
distracted by a similar background region or when a person leaves the scene. More concretely,
the objective is to interrupt the tracking as soon as possible if a failure occurs, and to continue
tracking otherwise, even when a face has not been detected and associated with the track for a
long time.

In a way similar to target initialisation, we propose to use for each tracked face i an HMM
estimating at each time step t the hidden status variable ki,t indicating correct tracking (ki,t = 1)
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ktkt−1

ort,1 ort,2 ort,Nr

Figure 5.5: The HMM for target removal, used for each tracked face. The variable kt indicates
if a given face is still tracked correctly or if a failure occurred. The probability of kt is estimated
recursively using the observations ort,1..o

r
t,Nr

.

or tracking failure (ki,t = 0). We will drop the face index i in the following. Figure 5.5 illustrates
the proposed model.

Let us denote by Or
t = [ort,1, . . . , o

r
t,N2] the set of Nr observations at each time step t, and by

Or
1:t = [Or

1, . . . ,O
r
t ] the sequence of observations from time 0 to time t. The posterior probability

of kt can be recursively estimated as:

p(kt|Or
1:t) =

∑
k′t−1

p(Or
t |kt) p(kt|k′t−1) p(k

′
t−1|Or

1:t−1)∑
k′t,k

′
t−1

p(Or
t |k′t) p(k′t|k′t−1) p(k

′
t−1|Or

1:t−1)
, (5.19)

where
p(Or

t |kt) =
Nr∏

i=1

p(ort,i|kt) . (5.20)

The state transition probability p(kt|kt−1) is set to 0.999 for staying in the same state and 0.001
for changing state, assuming a frame rate of approximately 20 frames per second as in our
experiments.

Track ending: for each tracked face and at each time step, we compute the ratio:

rkt =
p(kt = 1|Or

1:t)

p(kt = 0|Or
1:t)

. (5.21)

If rkt < 1 for a given face, then the tracking is considered to have failed and the target is removed.

Observations and likelihood models: we propose to use Nr = 7 different types of observa-
tions Or

t = [ort,1, . . . , o
r
t,7] extracted from the image as well as the state of the tracker itself. We

can divide them into two categories:

• four static observations (ort,1, . . . , o
r
t,4) that provide indications on the state of the tracker,

and

• three dynamic observations (ort,5, . . . , o
r
t,7) that provide indications on the temporal evolu-

tion and variability of certain observations.

Except for one observation, all likelihoods are modelled by pairs of sigmoid functions:

p(ort,i|kt = 1,Θ) = ai arctan(δi(o
r
t,i − µi)) +

1

2
, (5.22)

p(ort,i|kt = 0,Θ) = 1− p(ort,i|kt = 1), (5.23)

where, as for target creation observations (section 5.2.4.1), the amplitude ai is set to
1
π (or − 1

π
for some observation types), and the parameters Θi = (δi, µi), i.e. the slope and the offset of the
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sigmoid, have been trained offline with a set of positive and negative observations as described
at the end of Section 5.2.4.1. The only difference is that the training observations are collected
at each time instant during tracking runs and not only when faces are detected. Below, we
describe each observation we have used and comment on the learnt parameters.
Static observations: the first static observation for a given target is based on the output of the
face detector:

ort,1 =

{
1 if a detection is associated with the target

0 otherwise.
(5.24)

The likelihood p(ort,1|kt) is defined in the same way as for oct,1 in Eq. 5.13 (that is,
p(ort,1 = u|kt = l) = p(oct,1 = u|ct = l)).

The second observation ort,2 is the tracking memory value at the respective target position
(m,n) in the image, as defined in the previous section (Eq. 5.14 and 5.15):

ort,2 = oct,2(m,n) . (5.25)

This ensures that the tracking of a face is more likely to be maintained if a face stays at its
previous position (with a high tracking memory value). And conversely, the target should be
removed with a higher probability when it moves to image regions that were never occupied by
a face before.

The third observation type is the tracker observation likelihood computed at the mean state
value X̄i,t of target i:

ort,3 = p(Yi,t|X̄i,t) , (5.26)

as defined by Eq. 5.5. The likelihood p(ort,3|kt) is again defined by a pair of sigmoids (Eq. 5.22
and 5.23).

The fourth observation relates to the variance of the target filtering distribution. More
precisely, let σ2

i,t,x and σ2
i,t,y be the variances of the horizontal and vertical position of target

state Xi,t. Then we define
ort,4 = max(σ2

i,t,x, σ
2
i,t,y). (5.27)

A higher variance of the state distribution means a higher uncertainty (and vice versa), and the
track should be stopped more quickly.
Dynamic observations: the three remaining observations are based on the temporal variation of
different features. They rely on the detection of rapid increases or decreases over time of particle
variance and observation likelihood. To this end, we assume that the values of these features are
normally distributed during tracking, and we use the Page-Hinckley test [82] to detect jumps
or drops of these (one-dimensional, Gaussian) “signals” with respect to their means. This test
works as follows: let ωt be the signal for which we want to detect an abrupt decrease. Then, the
following values are computed at each iteration t:

Mω,t = Mω,t−1 +

(
ωt − (ω̄t −

jω
2
)

)
(5.28)

mω,t = max(mω,t−1,Mω,t) (5.29)

m̂ω,t = mω,t −Mω,t , (5.30)

where Mω,0 = 0, jω is a constant that determines the tolerated change of value ω, and ω̄t is
the running average of ω. Mω,t accumulates the values going above the expected lower bound
(ω̄ − jω). The value mω,t memorises the maximum value of this cumulative sum, and the
difference between these last two values m̂ω,t (Eq. 5.30) is an indication of an abrupt decrease of
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Figure 5.6: Illustration of the Page-Hinckley test to detect abrupt decreases of a signal. The
solid red line shows the temporal evolution of some signal, the purple dotted line shows the
computed result of the Page-Hinckley test that we use as observation to detect abrupt signal
drops. At time t = 14 a drop of the signal occurs and is correctly detected (peak of purple
dotted line).

the value ω. On the other hand, if ωt decreases only gradually, then the running average ω̄t will
follow this decrease. The cumulative sum Mω,t will constantly increase, leading to mω,t = Mω,t

and thus m̂ω,t = 0. Figure 5.6 illustrates the Page-Hinckley test with some example data.

Similarly, for detecting an abrupt increase of ω we compute:

Uω,t = Uω,t−1 +

(
ωt − (ω̄t +

jω
2
)

)
(5.31)

uω,t = min(uω,t−1, Uω,t) (5.32)

ûω,t = Uω,t − uω,t , (5.33)

where Uω,0 = 0. In its original form, the Page-Hinckley test produces a binary output. It is one
if m̂ω,t or ûω,t is above a predefined threshold and zero otherwise. Here, we propose to directly
use the values m̂ω,t or ûω,t as observations.

Thus, using equations 5.28-5.33, we define:

ort,5 = m̂ort ,3 ort,6 = m̂ort ,4 ort,7 = ûort ,4 . (5.34)

Observations ort,5 indicate drops of the likelihood p(Yt|X̄t) of a given face (see 5.26). And ort,6,
ort,7 indicate abrupt decreases and increases of the variance of the state distribution defined in
5.27. The likelihood functions p(ort,5|kt), p(ort,6|kt), and p(ort,7|kt) are defined by pairs of sigmoids
(Eq. 5.22, 5.23) with parameters trained offline.

5.2.5 Re-identification

Our algorithm further tries to keep track of the identities of different persons and associates each
track with a person, i.e. for each new target track it decides if it belongs to a previously seen
person or if it is an new person. In this work, we built person models which are longer-term
descriptions of person appearance acquired from observations during the tracking process. Here,
a simple colour-based model, similar to [364] has been used. More specifically, the model Pj,t of

a person j is composed of two colour histograms: one describing the face region, hfj,t, and one
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for the shirt, hsj,t. The structure of the histograms is similar to the one used for the observation
likelihood in the tracking algorithm (5.2.3.3), i.e. two different quantisation levels and decoupled
colour and grey-scale bins.

If a target is added to the tracker and there is no stored person model that is un-associated,
a new model is initialised immediately and associated to the target. Otherwise, the face and
shirt histograms (hfi,t, h

s
i,t) of the new target i are computed recursively over r successive frames

and stored in P ∗
i,t. After this period, we calculate the likelihood of each stored model Pj,t given

an unidentified candidate P ∗
i,t:

p(Pj,t|P ∗
i,t) = exp

(
−λ(wfD

2[hfj,t, h
f
i,t] + wsD

2[hsj,t, h
s
i,t])
)
, (5.35)

where D is the Euclidean distance, and the weights are wf = 1, ws = 2. A given person i is then
identified by simply determining the model Pm,t with the maximum likelihood:

m = argmax
j

p(Pj,t|P ∗
i,t) , (5.36)

provided that p(Pm,t|P ∗
i,t) is above a threshold θ (we chose 0.1 here). If not, a new person

model is created and added to the stored list. All associated person models are updated at each
iteration with a small factor αp = 0.01. The candidate models are updated with factor α∗ = 0.1.

5.2.6 Experiments

Experiments have been conducted on more than 9 hours of video data that have been annotated
extensively. We used three sets of videos recorded in different environments (see Fig. 5.1).
According to our scenario, recorded people have been sitting at a table and filmed by a central
camera (roughly 2-3 metres away). They have been playing online games with people in a remote
location using a laptop or touch-screen. As a result, they are often looking downwards and their
faces are often not detected by a standard detector [379].

The principal performance measures are precision and recall (over time) of the face tracking
result, as we want to track faces as long as possible (to obtain a high recall) and stop tracking
as soon as a failure occurs (to increase the precision). The recall and false positive rate for an
entire video are defined as:

R =

∑G
i=2 δidi∑G
i=2 δi

, FP =

∑G
i=2 δifi∑G
i=2 δi

, (5.37)

where G is the number of annotated frames, di the proportion of correctly tracked/detected
faces in frame i (i.e. those for which F > 0.1), fi is the number of false positive outputs divided
by the number of ground truth objects in frame i, and δi is the time difference between frame i
and i− 1.

We also measure the total number of interruptions for a given dataset. An interruption is
defined as the event when a track is falsely ended, i.e. the face (ground truth) is still present
but the respective target is removed from the tracker.

Finally, to measure the accuracy of identification as described section 5.2.5, we computed
the object purity [345] for each ground truth object:

OP =

∑G
i=2 δiqi∑G
i=2 δi

, (5.38)
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where G is again the number of annotated frames, and qi is the proportion of correctly identified
faces in frame i, as explained in the following. The identity assigned to a ground truth object
at time i is given by the algorithm described in 5.2.5 and more specifically Eq. 5.36. Once the
tracking has been run on a complete video, we can compute the above rate by associating to each
object the face track that has the longest overlap with the object (according to the F-measure).

We compared our results against a standard face detector [379] including models for frontal
and profile views, with two competitive baselines:

• RJ-MCMC : a tracker based on the Reversible-Jump Monte Carlo Markov Chain algorithm
[214, 417]. In addition to the Update move, which follows the MCMC description in section
5.2.3.4, four other moves have been implemented to handle the creation and removal of
targets: Add, Delete, Stay, and Leave. For more details, we refer the reader to [214, 417].

• MCMC baseline: an MCMC-based tracker, i.e. the algorithm described in section 5.2.3.
For target creation and removal, the following strategy has been used: every (un-associated)
face detection is initialised as a new target. We also tried to initialise a target only af-
ter several successive detections but this didn’t have a large impact on the precision. A
tracked target was removed if it had no associated detections for 100 frames (8 seconds)
or if the likelihood dropped below 10% of its running average.

Table 5.1 compares the algorithms for a given face detector threshold. The proposed method
outperforms the others for all three datasets. Since the tracking algorithm for the MCMC
baseline is the same as for the proposed method, the performance improvement is clearly due
to our proposed target creation and removal mechanisms. The precision of RJ-MCMC is rather
low because the creation and removal of targets is only based on the observation likelihood, as in
[214]. Note that, unlike our approach, RJ-MCMC adds and removes targets at the particle level.
Although this is a principled statistical framework that models at each point in time the current
belief on the number of visible targets, it is more difficult to capture longer-term dynamics and
features from the state distribution itself. The MCMC baseline, on the other hand, adds and
removes targets based on more efficient, longer-term observations, namely the likelihood with
respect to its mean and the face detector output. Thus, its performance is better than the one
of RJ-MCMC. Also, the total number of tracker interruptions is decreased. This means that the
proposed method maintains face tracks longer, even when the face detector provides no output
for extended periods of time or when the likelihood is temporarily decreasing.

Figure 5.7 shows some tracking results of a video from dataset 3 containing 3-4 persons. The
people change their seats from time to time, occlusions occur, and head poses can be challenging,
as illustrated in the example.

More explanation and results can be found in [12, 38].

5.2.7 Conclusion

We have proposed a Bayesian framework for long-term, on-line MOT including a learnt track
creation and removal approach to explicitly handle inherent weaknesses of object detection
algorithms. Our experiments showed that the precision and recall with our tracking algorithm
is considerably increased. We want to note that we also successfully applied our algorithm to
long-term SOT, as well as to other scenarios related to Human-Robot Interaction, involving
several people interacting with a robot [12]. Further, other existing algorithms could largely
benefit from our track creation and removal framework, when applied on a longer time scale.
Also, in the future, other types of long-term cues could be included in the proposed framework,
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data face RJ-MCMC MCMC ours
set detection baseline

1
recall 55.0% 89.5% 85.2% 93.9%
FP rate 2.00% 20.75% 4.29% 1.45%
# interrupt. − 861 395 112
average OP − 41.35% 68.69% 68.98%

2
recall 39.9% 75.7% 69.9% 76.0%
FP rate 0.41% 3.27% 1.21% 0.77%
# interrupt. − 2062 1004 567
average OP − 49.09% 66.61% 69.60%

3
recall 48.3% 77.2% 75.1% 93.7%
FP rate 0.33% 18.2% 1.06% 1.19%
# interrupt. − 1299 455 166
average OP − 27.96% 34.23% 57.46%

Table 5.1: Performance comparison with the proposed multiple face tracking framework on the
three datasets.

(a) frame 20000 (b) frame 20038 (c) frame 52408 (d) frame 114870

(e) frame 114948 (f) frame 114962 (g) frame 115148 (h) frame 115302

Figure 5.7: Snapshots of tracking results on dataset 3. Different coloured rectangles represent
different identities (purple: face detector). Top: MCMC baseline, bottom: proposed approach.
With the baseline method, some target are initialised from false detections 5.7(b), 5.7(g), and
tracks are not maintained when detections are missing 5.7(c). Our approach avoids false initial-
isations and maintains good tracks longer. In 5.7(f) failures are detected earlier, and in 5.7(h),
the lost target is re-initialised earlier (second person from the left).
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Figure 5.8: Graphical illustration of VFOA estimation in one of the investigated settings (a
meeting room). Targets 1 to 4 are persons, 5 corresponds to the table.

There are still some limitations of the proposed framework. Even if we are able to accurately
and quickly detect failures, the result is still dependent on the time it takes to obtain a new face
detection to reinitialise the tracking. Thus, having less tracking failures and better multi-view
detectors is obviously a way to increase the performance. In our given face-tracking scenario,
we could also apply different detectors based on the head, upper-body or full body, and combine
the results for a more robust result. In this regard, we have conducted some work on improving
the precision of upper-body detection by including semantic colour segmentation in existing
texture-based models [10].

5.3 Visual focus of attention estimation

5.3.1 Introduction

The approach I presented in the previous section is able to detect, re-identify and track persons
in front of a camera. It is often necessary to further analyse the behaviour of the persons in a
given scene. In particular, one wants to know what they are looking at, at any given point in
time, i.e. what they are paying attention to in terms of their eye gaze. This can be an object or
another person and is called the Visual Focus Of Attention (VFOA) (see Fig. 5.8)

Similar to our previous work on face tracking, we place this problem in a dynamic con-
text, where the actual number of present persons is not fixed, and where their positions and
the configuration of the room and furniture are not constrained. In this type of environment,
many existing approaches fail, as they rely on a certain proximity to the camera or more spe-
cific hardware (depth and/or infra-red sensors). We have proposed an original algorithm that
automatically and incrementally learns models for VFOA recognition from video data, and thus
is independent from a given room or person configuration.

5.3.2 State of the art

In principle, the VFOA of a person can be determined by the person’s eye gaze direction. Many
studies about automatic gaze estimation from video exist [153, 268, 282, 387, 388, 396], but
their use is mostly limited to close-up and near-frontal views of a person’s face, for example in
Human-Computer Interaction applications. Other works [138, 380, 381] rely on the fusion of
information from several cameras. But often the spatial camera configuration is very constrained
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or a preceding calibration step is required, which can be difficult or even impossible depending
on the application and environment. Also depth sensors, like Kinect, have been used for head
pose and eye gaze estimation [153]. Although, their precision depends highly on the distance of
the person from the sensor, this is an interesting direction for future research beyond the scope
of this work. In our work, we have focused on (non-intrusive) scenarios where a single camera is
fixed at a few meters from the filmed persons and where the persons stay roughly at the same
places most of the time, like in formal meetings or video-conferencing applications (as illustrated
in Fig. 5.8).

Previous work on VFOA analysis in such open spaces has mostly been based on the estimation
of head pose as a surrogate for gaze [67, 69, 71, 83, 87, 110, 225, 299, 308, 344, 352, 354, 355,
381, 429]. This is done either globally, e.g . by learning to classify image patches of the head
at different angles based on low-level visual features or locally, i.e. by localising certain facial
features [318, 411] and by geometrically and statistically inferring the global orientation, or
a combination of the two [67] (see [287] for a literature survey). However, these algorithms
mostly require the person(s) to face the camera more or less and be rather close to it in order
to have a relatively high image resolution of the face. Using video, head pose estimation can
be included in a joint head and pose tracking algorithm [69, 226, 262, 321]. Early works of
Stiefelhagen and Zhu [353], for example, used a Gaussian Mixture Model (GMM) on head pose
angles to estimate VFOA. The model is initialised with k-means and further updated with
an Expectation-Maximisation algorithm. They also showed that using the other participant’s
speaking status increases the VFOA performance. Note that, in our work, we have concentrated
on methods that are relying on visual information, although there are previous works that use
audio, actions or or types of cues to infer the VFOA [73, 300, 344, 353]. Otsuka and Yamato
[299] proposed a method based on a Dynamic Bayesian Network (DBN) that also analyses the
group behaviour and detects certain conversational patterns. A GMM and Hidden Markov
Model (HMM) approach for modelling and recognising VFOA was proposed by Smith et al .
[346] for people walking by an outdoor advertisement and by Ba and Odobez [71] for analysing
meeting videos. In the latter work, the authors also presented a MAP adaptation method to
automatically adapt the VFOA model to the individual persons as well as a geometrical model
(based on findings from [151, 177]) combining head orientation and eye gaze direction. Voit and
Stiefelhagen [381, 382] built on this geometrical model and presented VFOA recognition results
on a dynamic dataset with multiple cameras. Later, Ba and Odobez [72] extended their approach
on VFOA estimation for meetings with a DBN that incorporates contextual information, like
speaking status, slide change, and modelling conversation behaviour. Dong et al . [138] proposed
an approach also based on a DBN which is similar to ours in the fact that they recognise VFOA
by comparing tracked face image patches with a set of clusters modelling the face appearance
for each attention target. However, the difference to our approach is that the clusters in their
algorithm are trained before the tracking and in a supervised way. Thus, the number of targets
and the targets itself are known in advance.

The work of Benfold et al . [87] is similar to ours in that they also perform unsupervised
training on head images in order to determine where people look at in a given video. However,
their approach is not incremental (although they claim that it could be extended) and needs an
initial training of prior models using hand-labelled ground plane velocities and gaze directions
of persons in a given video. They do not extract VFOA but head orientation (using a given
number of classes), and they apply their approach to video surveillance data where they take
advantage of people moving, which is different from our indoor scenario. On the one hand,
the advantage of their probabilistic model – a conditional random field (CRF) – is that a more
powerful discriminative head pose classifier can be learnt taking into account several hidden
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variables (walking speed, angle velocities etc.). On the other hand, the complexity of learning
and inference is increased, and the model is also independent from the head tracking as opposed
to our approach that allows for a purely sequential and joint inference.

As experimental results of these previous works show, head pose can be used effectively to
estimate the VFOA of a group of people, e.g . in a meeting room, to a certain extend. However,
there are certain drawbacks of this approach: for example, in uncontrolled environments it is
difficult to estimate head pose reliably because it often requires a large amount of annotated
training data of head appearances or shapes beforehand in order to model all the possible
variations of a head and face among different people as well as for a given individual. These
data are often not available, or too time-consuming to produce. Further, for accurate head
pose estimation results, a relatively precise localisation of the head, the face, or facial features
– commonly called face alignment – is crucial but challenging in unconstrained application
scenarios.

Another difficulty in automatic VFOA estimation is to determine the number of semantic
visual targets for a given person in a video and to map them to given head pose or eye gaze
angles. A preceding supervised training step is commonly performed on separate video data,
and in some approaches the model (e.g . a GMM) is adapted on-line to a given video. However,
it is desirable to avoid this scene-dependant training step or in some applications it might even
be impossible. Further, the subsequent model adaptation can in many cases not cope with a
different number of focusing targets or when the persons’ locations differ too much from those
in the training data.

We proposed a novel approach that alleviates these problems. Our algorithm, given a video
stream from a single camera and the rough 2D position estimation of a person’s head, incremen-
tally learns to automatically extract the VFOA of the person without explicitly estimating head
pose or gaze and without any prior model of the head, face, the room configuration, or other
external conditions. The proposed method learns on-line the different classes of targets in an
unsupervised way directly from the low-level visual features. This means also that, as opposed
to supervised algorithms, it will not assign labels to the different targets (e.g .’table’, ’screen’,
’person 1’). However, we will experimentally show that the proposed unsupervised approach is
able to identify and estimate the (unlabelled) targets with higher accuracy than a classical su-
pervised approach. The fact that no pre-trained model is needed makes this approach especially
interesting for applications where the specific environment, as well as the configuration of the
room and the filmed persons is not known a priori , and where an explicit training phase is not
possible.

5.3.3 Face and VFOA tracking

The principal procedure of our approach is illustrated in Fig. 5.9. First, a basic tracking algo-
rithm is initialised and tracks a rectangular face region throughout the video stream. The image
patch inside the tracked face region is extracted and visual features are computed to initialise
the VFOA model at the first video frame and to update it at each subsequent frame during the
training phase (see section 5.3.4). An incremental clustering algorithm on these low-level fea-
tures is used to learn face appearances corresponding to attention targets of the person. At the
same time a matrix modelling the transition probabilities between the different targets is learnt,
and together with the clusters forms a continuous HMM. Note that the learning is performed
on-line and does not require any prior knowledge on head pose or room configuration.

After a given number of iterations (a couple of minutes from the beginning of a video) the
training phase stops and the Particle Filter continues to jointly track face position and VFOA
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Particle Filter:
face and VFOA

tracking

HMM
training

video stream

face image patches

VFOA model

face position + VFOA

Figure 5.9: Principal procedure of the VFOA learning and tracking approach.

of a person using the learnt HMM model, i.e. the transition probabilities and the face clusters.
In order to facilitate understanding, before describing the main contribution of this work,

i.e. the unsupervised VFOA learning, we will first explain the underlying tracking framework in
the following section.

For tracking the face position and VFOA of a person, we used the Sequential Monte Carlo
algorithm, commonly known as Particle Filter (c.f . [12, 304, 321]). It provides a solution for the
classical recursive Bayesian model, where, assuming we have the observations Y1:t from time 1
to t, we estimate the posterior probability distribution over the state Xt at time t:

p(Xt|Y1:t) =
1

C
p(Yt|Xt)×

∫

Xt−1

p(Xt|Xt−1)p(Xt−1|Y1:t−1) dXt−1 , (5.39)

where C is a normalisation constant. For simplicity and more principled evaluation, we only
consider the tracking of a single face in a video, although our approach can easily be extended
to multiple faces using an MCMC sampling approach (c.f . section 5.2.3) and thus be integrated
in our MOT framework described in the previous section.

In our experiments, the state Xt = (X̂t, v) is composed of the state of the face X̂t = (x, y, s)
with x, y being its position and s being its bounding box scale factor, as well as the current
VFOA target index v ∈ 1..V .

The dynamics of the face state p(X̂t|X̂t−1) are defined by a first-order auto-regressive model
with Gaussian noise:

p(X̂t|X̂t−1) = N (X̂t−1; 0,Σp) . (5.40)

The dynamics of the discrete VFOA target index v are defined by transition probability matrix

A := [aij ], i, j = 1..V with

aij := p(vt = j|vt = i) (5.41)

being the transition probability from VFOA target i to j. The co-variance matrix Σp =
diag(σpx, σpy, σps) of the auto-regressive model is fixed, whereas the matrix A is learnt online
during the tracking of a person in a given video stream (see section 5.3.4.2).

The observations likelihood is defined as the product of a colour likelihood and texture
likelihood:

p(Yt|Xt) = p(YC
t |Xt)p(Y

T
t |Xt) , (5.42)

where the colour likelihood is used to track the position and size (x, y, s) of the face bounding
box, and the texture likelihood is mainly used to track the VFOA target v. We define:

p(YC
t |Xt) ∝ exp

(
−λ1

9∑

r=1

(
D2

C [h
∗
r , hr(Xt)]

)
)

, (5.43)
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(a) (b)

Figure 5.10: Visual feature extraction for the VFOA model. a) HOG features are computed on a
grid of 4×4 cells placed on the tracked face. b) To compute the histograms, gradient orientation
is quantised into 4 bins (respectively 8 bins) and magnitude into 2 bins.

where λ1 is a constant, hr(Xt) are HSV colour histograms extracted from a grid of r = 9 cells
centred at Xt, h

∗
r is the reference histogram initialised from the face region in the first frame,

and DC is the Bhattacharyya distance. As in [304], the histogram bins for the H and S channels
are decoupled from the V channel. Also the quantisation is applied at two different levels, i.e. 4
bins and 8 bins, to improve the robustness under difficult lighting conditions. This leads to an
overall colour observation vector size of 9 · (8 · 8 + 8 + 4 · 4 + 4) = 828.

The texture likelihood is defined similarly:

p(YT
t |Xt) ∝ exp

(
−λ2

16∑

r=1

(
DT [µr,v, tr(Xt)]

)
)

, (5.44)

where λ2 is a constant, tr(Xt) are Histograms of Oriented Gradients (HOG) (see description
below) extracted (similarly to hr) from a grid of 16 cells (indexed by r) centred at Xt, and
µr,v are the reference histograms corresponding to the VFOA target index v in Xt. The overall
texture model is composed of a set of N -dimensional clusters with means µr,i where each cluster
i ∈ 1..V corresponds to a VFOA target. DT is the normalised Euclidean distance:

DT (µr,i, tr(Xt)) =

√√√√
N∑

j=1

(tr,j(Xt)− µr,i,j)2

σ2
j + ǫ

, (5.45)

with ǫ being a small constant avoiding division by zero.
The feature vectors tr(Xt) constitute the visual observations used for recognising the VFOA

targets of a person in a video by means of p(YT |Xt). They are computed on a 4 by 4 grid of non-
overlapping cells on a face image patch as illustrated in Fig. 5.10(a). For each cell, two normalised
two-dimensional histograms of unsigned oriented gradients and magnitudes are computed using
a specific quantisation scheme illustrated in Fig. 5.10(b). The gradient orientation is quantised
in 4 bins and the magnitude in 2 bins. An additional bin (with no orientation) is used for very
weak gradients (in the centre of the half circle in the diagram). Also, to improve the overall
robustness and discriminative power, we compute two histograms at different quantisation levels
for orientation: 4 and 8, and normalise each of them separately. Thus, the dimension N of the
feature vector is: 16 ·(4 ·2+1+8 ·2+1) = 416. One advantage of these histogram features is that
they are relatively robust to small spatial shifts of the overall bounding box, which frequently
occur with common face tracking methods.

5.3.4 Unsupervised, incremental VFOA learning

The VFOA model can be regarded as a dynamic HMM estimating the hidden variable v, the
VFOA target index, from the observed features tr(Xt), illustrated in Fig. 5.11. It consists of
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vt−1 vt

tt−1 tt

A

Figure 5.11: The Hidden Markov Model used to estimate the hidden discrete variable v (the
VFOA target) from the observations tt (feature vectors) using the learnt transition probability
matrix A.

two main parts. First, the data model that is used for the likelihood computation in Eq. 5.44
and that contains the k cluster means µi and a global co-variance matrix Σ, and second, the
matrix A (Eq. 5.41) defining the transition probabilities from one cluster to another. All, these
parameters are learnt on-line during the training phase, and used subsequently in the tracking
(c.f . section 5.3.3). After training, the learnt parameters µi, Σ, and A of the HMM are used in
the Particle Filter framework explained in the previous section to jointly estimate the posterior
probability of the state Xt at each time step. In the following, the training procedures are
described in more detail.

5.3.4.1 Clustering algorithm

The visual feature vectors tr(X̄t) computed on the image region corresponding to the mean state
of the current distribution at time t are used to incrementally learn the VFOA classes. To this
end, we propose a specific sequential k-means clustering algorithm with an adaptive number of
clusters. The algorithm constructs a model of k clusters corresponding to the VFOA classes
and described by their mean feature vectors µr,i (i = 1..k) and a global diagonal co-variance
matrix Σ = diag(σ1, . . . , σN ). For better readability, in the following notation, we drop the
indexes for the cell r and the time step t, denoting the current cluster means as µi and the
current feature vector as t. Algorithm 1 summarises the main learning procedure. At each time
step the observed feature vector t is computed, and the closest cluster c is determined using the
normalised Euclidean distance (Eq. 5.45). Also, the mean distance D̄T between each of the k
clusters is calculated, and a new cluster is created if the distance of the current feature vector to
the closest cluster is greater than θcD̄T , where θc is a parameter of our algorithm (set to 2 in our
experiments). Then, the mean vector µc of the closest cluster as well as the global covariance
matrix Σ are incrementally updated using the current feature vector t. Finally, pairs of clusters
are merged together if the distance of their means are below the threshold θdD̄T (with θd = 0.01
in our experiments). At each time step, the algorithm classifies the observed features t from
the mean state of a face into one of the k clusters: c, and, as we will show with the following
experimental results, the learnt classes correspond to a large degree to specific targets of VFOA.

5.3.4.2 VFOA transition model

The transition probability matrix A of equation 5.41 is learnt on-line during the training phase
at the same time as the cluster centres. The main procedure is the following. The visual feature
vectors t of the image patch corresponding to the current mean state are extracted, and the
closest cluster ct according to the normalised Euclidean distance (Eq. 5.45) is computed. Then,
the transition probabilities act−1,j := p(v = j|v = ct−1) are linearly updated, using the following
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Algorithm 1 Incremental VFOA clustering algorithm

k = kini Σ = Σini µi = t0 ni = 0 (i = 1..k)
for t = 1 to T do

c = argmini(DT (t,µi)) ⊲ get closest cluster

D̄T = 2
N(N+1)

∑k

i=1

∑k

j=i+1(DT (µi,µj))

if DT (t,µc) > θcD̄T then ⊲ add new cluster

k ← k + 1

nk = 1

µk = t

else

nc ← nc + 1 ⊲ update closest cluster

µc ← µc +
1
nc

(t− µc)

end if

incrementally update Σ

for each cluster pair (i,j) do ⊲ merge clusters

if DT (µci
,µcj

) < θdD̄T then

µi = (niµi + njµj)/(ni + nj)

ni = ni + nj

remove cluster j

k ← k − 1

end if

end for

end for

equation:
act−1,j = γ1j=ct + (1− γ)act−1,j ∀j ∈ 1..k, (5.46)

where 1x denotes the indicator function, and the constant γ = 0.001. Thus, the transition
probability from ct−1 to ct is increased, and from ct−1 to any other cluster j is decreased. Also,
a new row and column is added if a new cluster is created and inversely if a cluster is removed.
At the end of each iteration, the row ct−1 that has been updated is normalised to sum up to 1.0.
Algorithm 2 summarises the overall procedure. In many cases, the learnt transition matrix will

Algorithm 2 Incremental learning of the transition matrix

initialise A to uniform distribution: aij =
1
k i, j ∈ 1..k

for t = 1 to T do
adapt the size of A to k × k
ct = argminiD(t,µi)
act−1,j = γ1j=ct + (1− γ)act−1,ct

normalise row ct−1 to sum up to 1.0
end for

have high values on the diagonal (staying in the same state most of the time) and low values
elsewhere. Of course, this depends on the dynamics of the scene. In our formal meeting setting,
people are interacting frequently and changing their attention targets quite often. Thus, this
seems not to be a limitation. But even in more static settings (e.g . a person giving a talk), this
model is still appropriate. And we can observe this with less active persons in some videos in
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Figure 5.12: Example frames from the three datasets that have been used for VFOA evaluation.

our experiments. Clearly, transitions with very low probabilities can still be “triggered” if the
observation likelihood of the target state is high enough. Nevertheless, to prevent extreme cases
where a transition probability becomes zero and thus a state inaccessible, in our experiments,
we set a very small lower boundary (10−3) for the transition probabilities.

5.3.5 Experiments

We evaluated the proposed approach on three public datasets from different scenarios, each
containing a certain number of persons sitting around a table and filmed roughly from the front
(see Fig. 5.12): TA21 [39], IHPD2 [70], PETS 20033.

Note that we did not evaluate the accuracy of face or head pose tracking, as this is not our
main interest here. Our goal is to correctly estimate the VFOA of a person, which requires
a robust face tracking system. The VFOA targets are different for each dataset, due to the
scenario and the layout of the room. Annotation has been done manually and frame-by-frame,
where frames with ambiguous visual focus and transition phases have not been annotated.

First, we will show some qualitative results on the clustering that is obtained on some of the
videos. Fig. 5.13 illustrates the result of the proposed on-line clustering algorithm (Alg. 1) for
six different persons and videos. Each point represents a 2D projection of the 416-dimensional
gradient feature vectors tr(X̄t) extracted from the mean state at time t (after the training phase).
The linear embedding has been performed by applying multi-dimensional scaling with Euclidean
distance measure on the whole data. Different colours (and point shapes) correspond to different
labels produced by a k-Nearest Neighbour classifier using the normalised Euclidean distance,
Eq. 5.45, and the learnt cluster means µi as references. Note that the clusters means have been
trained during the training phase, i.e. the first few minutes of a video. There are two difficulties
that we want to emphasise here: first, the test data might be distributed slightly differently (e.g .
the person’s main focus changes), and second, the training data arrives sequentially and in a
non-random order, i.e. a person’s focus changes slowly and might be static for long periods. Note
also, that the 2D projection of all points suggests that clustering is difficult in many cases, like
in the top middle, bottom left, and bottom right example where cluster centres and frontiers are
not so clear. Nevertheless, the output of the algorithm looks reasonable, apart from the bottom
right example.

Note that, as our algorithm is unsupervised, we do not have the actual estimated VFOA
targets (i.e. meaningful labels) that we can directly compare to the ground truth. For evaluation

1https://www.idiap.ch/dataset/ta2
2https://www.idiap.ch/dataset/headpose
3http://www.cvg.rdg.ac.uk/slides/pets.html
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Figure 5.13: Visualisation of the clustering of low-level features produced by the proposed in-
cremental learning algorithm (Alg. 1) for some examples. (Best viewed in colour.) From left to
right, top to bottom: TA2 room 1, TA2 room 2, 2 x IHPD, PETS, and the last example shows
a poor clustering result for one TA2 example.

purposes, after running our method on a whole video, we therefore assign to each cluster the
target that maximises VFOA accuracy, i.e. we assume that we know which target label each
cluster corresponds to. We believe that this is not a very restrictive assumption, as the labels
could be assigned in a separate processing step, for example by incorporating a more general
discriminative classifier trained beforehand.

In that way, we quantitatively evaluated our algorithm initialising it manually with a bound-
ing box around the face and measuring the Frame-based Recognition Rate (FRR) of the VFOA
for all the videos and averaging it over each dataset and over several runs. The FRR is simply
the proportion of frames with correctly recognised VFOA:

FRR =
Nc

Nt
, (5.47)

where Nc is the number of correct classifications, and Nt is the total number of annotated video
frames. As our algorithm is learning the VFOA model incrementally, we need to account for
a certain training phase, which we do not include in the evaluation. We used 8 000 (∼ 5 min.)
training frames in the beginning of the videos (not annotated), and evaluated the FRR on the
following sequence with annotation.

We compared the proposed approach with three other approaches:

• supervised: a state-of-the-art supervised approach, that uses a specific face detection
and tracking algorithm, a head pose estimator as in [321], and Gaussian Mixtures Models
(GMM) to model different VFOA targets in terms of head pose pan and tilt angles as in
[71, 353]. In this approach, the head pose model is trained beforehand in a supervised way,
and the GMM parameters have been partly trained and partly defined manually.

• no PF: a variant of the proposed approach that does not integrate the VFOA estimation
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TA2 IHPD PETS 2003 average

supervised [72] 0.59 0.49 0.26 0.4489
no PF 0.7663 0.5163 0.4437 0.5754
PF, fixed TM 0.6577 0.5235 0.4379 0.5397
PF, learnt TM 0.7915 0.5282 0.4668 0.5955

Table 5.2: VFOA recognition rate of the proposed algorithm with and without Particle Filter
integration, and with fixed or learnt transition probability matrix A compared to a classical
supervised approach.

into the Particle Filter tracking, i.e. v is not included in the state vector and is estimated
frame-by-frame by a k-NN classifier using the feature vectors t(X̄t) of the mean state and
the cluster means µi, as in our first work [35].

• PF, fixed TM: a variant of the our approach with Particle Filter VFOA tracking and a
fixed, uniform transition probability matrix A.

• PF, learnt TM: the complete proposed approach, i.e. with Particle Filter VFOA tracking
and learnt transition matrix A

Table 5.2 shows the average FRR for these different approaches. One can see that the proposed
approach outperforms the supervised method with an average FRR of ∼60% compared to ∼45%.
Tracking the VFOA with a Particle Filter, as opposed to a frame-by-frame estimation, and
learning the transition probability matrix on-line also improves the recognition performance on
the three tested datasets. These results are comparable or superior to those published in the
literature, although the evaluation protocols are not exactly the same due to the unsupervised
and incremental nature of our method. Note that we do not include any contextual information
like speaking status or other external events in the VFOA estimation process as in other existing
work. This may additionally improve the overall performance.

5.3.6 Conclusion

We presented a VFOA tracking algorithm that incrementally, and in an unsupervised way, learns
a VFOA model from directly low-level features extracted from a stream of face images coming
from a tracking algorithm. The VFOA estimation is based on an HMM whose parameters are
learnt incrementally and which is tightly integrated into a global Particle Filter framework that is
used for face tracking. In a meeting room or video-conferencing setting, the proposed method is
able to automatically learn the different VFOA targets of a person without any prior knowledge
about the number of persons or the room configuration. By assigning a VFOA label to each
cluster a posteriori , we evaluated the VFOA recognition rate for three different datasets and
almost two hours of annotated data. The obtained results are very promising and show that
this type of unsupervised learning can outperform traditional supervised approaches.

5.4 Conclusion

Considerable progress has been made in the last decades on MOT in more and more dynamic and
difficult environments. Recent work has mostly been focusing on improving visual observation
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models and shifted more and more towards learning of powerful discriminative appearance mod-
els and the use of tracking-by-detection approaches, leading to highly robust tracking methods.
However, despite our contributions to robust multiple object and face tracking, many problems
tackled in this chapter are still remaining to some extent. For instance, how to robustly handle
false and missing detections and occlusions in on-line MOT? Or how to incrementally learn ap-
pearance models in a weakly supervised or unsupervised way with few data? Or how to adapt the
appearance and tracking models to a given context and a given environment (indoor vs. outdoor,
changing and possibly unknown meteorological or lighting conditions etc.). Such adaptive MOT
algorithms are of great importance in many practical applications related to computer vision,
such as social robotics, autonomous vehicles, video-surveillance or Human-Computer interaction
and games.

In the next chapter, we will describe several of our research works more related to the on-
line learning of powerful appearance and scene models applied to SOT. Most of them could
be extended or integrated to MOT. But, as is common in the literature, for evaluation and
comparison with the state-of-the-art, we do not treat and include the additional challenges
related to the tracking of multiple objects.
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6 On-line learning of appearance

models for tracking arbitrary objects

6.1 Introduction

A crucial part in visual object tracking is the appearance model. In the works described in
the previous chapter, we mainly used relatively simple models based on colour and texture
histograms. The reason for this choice was their low computational complexity allowing for real-
time applications, their high degree of invariance to different viewing angles, lighting conditions,
occlusion and other deformations, and finally the relatively simple integration into a generative
tracking framework by well-conditioned likelihood functions.

In the last years, much progress has been made on the definition of appearance models that
are more robust to lighting and pose variations, background clutter, object deformations, partial
occlusion and motion blur. Most of them are discriminative models – binary classifiers – that
are trained to distinguish between the object to track and the background. Note that, in the
previous chapter, we used such a model, the face detector, for track creation and termination
and in the proposal function of the Particle Filter but it was not integrated in the appearance
likelihood function.

Although different models can be built for each specific category of objects to track, like faces,
persons, cars, it is of great interest to develop generic models and methods that are capable of
tracking (on-line) any object in a given video stream, e.g . by using a designated image region
in the first frame. This avoids the laborious and difficult step of defining or learning a model
beforehand that is suited for any given environment and context of operation. Besides their
sub-optimality in a given visual scene, such models are relatively complex and demanding in
terms of computational and memory resources.

An object to track commonly undergoes a certain number of visual deformations in the image.
On the one hand, this is due to the environment, like different lighting conditions, changing
background or acquisition conditions. On the other hand, the object itself can change its shape,
orientation or colour in the image. Therefore, to be effective in on-line tracking, appearance
models need to adapt to these changing conditions over time. Usually, with discriminative
models, this is achieved by some type of on-line learning, i.e. the model parameters are updated
according to new observations from the video stream.

However, there are a few major challenges that arise with this approach:

• On-line learning methods need to adapt continuously throughout the video, because, firstly,
many (different) observation samples are needed to built effective discriminative models,
and, secondly, from a statistical signal processing point of view, most environments are
non-stationary, and more recent observations should be prioritised. This bears the risk of
gradually “forgetting” the object’s appearance from the beginning.
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• The on-line learning approach should be able, from continuously arriving data, to incre-
mentally build a model that generalises well over all previous data but does not grow
indefinitely.

• When updating the model, noise it introduced. For example, information from the back-
ground is considered belonging to the object or vice versa. On the one hand, updating
quickly results in a highly adaptive model that is able to cope with abrupt appearance
variations, but may lead the tracker to “drift” or, ultimately, even to lose the object. On
the other hand, updating more slowly leads to a more stable model but less capable of
adapting to dynamic changes. This is known as the “stability-plasticity” dilemma.

In this chapter, I will present three different approaches that we proposed to tackle these
problems – all applied in an on-line SOT context. First, an efficient method to track arbitrary,
deformable objects. Second, an approach to include scene information in the discriminative on-
line learning of appearance models. And third, another approach to integrate scene context by
dynamically selecting appropriate tracking models. The first two are joint work with Christophe
Garcia at LIRIS, and the third one has been performed in the context of the PhD thesis of Salma
Moujtahid [283] co-supervised with Atilla Baskurt at LIRIS.

6.2 Tracking deformable objects

6.2.1 Introduction

Tracking arbitrary objects that are non-rigid, moving or static, rotating and deforming, partially
occluded, under changing illumination and without any prior knowledge is a challenging task.
The problem of model-free on-line tracking is generally studied in the literature with benchmark
videos where the goal is to follow a single object throughout the whole sequence. Given the
object’s initial position or bounding box in the first frame, the task is to estimate its state in
the rest of the frames while sequentially processing the data. When no prior knowledge about
the object’s shape and appearance as well as motion is available, one of the main difficulties is
to incrementally learn a robust model from consecutive video frames.

6.2.2 State of the art

Earlier works [123, 174, 175, 198, 277, 293, 304, 417] on visual object tracking mostly consider
a bounding box representation (or some other simple geometric model) of the object to track
with a global appearance model. These classical methods are very robust to some degree of
appearance change and local deformations (as in face tracking), and also allow for a fast imple-
mentation. However, for tracking non-rigid objects that undergo a large amount of deformation
and appearance variation, e.g . due to occlusions or illumination changes, these approaches are
less suitable. Although some algorithms effectively cope with object deformations by tracking
their contour, e.g . [119, 150, 302, 316, 422], most of them require the object to be moving or
need prior shape knowledge [124]. Other approaches describe an object by a relatively dense set
of key-points that are matched in each frame [176, 192, 235, 306] to track the object. However,
these methods have mostly been applied to relatively rigid objects.

As mentioned above, many existing methods, follow a tracking-by-detection approach, where
a discriminative model of the object to track is built and updated “on-line”, i.e. during track-
ing, in order to adapt to possible appearance changes. For example, Adam et al. [59] use a
patch-based appearance model with integral histograms of colour and intensity. The dynamic
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patch template configuration allows for modelling spatial structure and to be robust to par-
tial occlusions. Grabner et al. [165] proposed an Online Adaboost (OAB) learning algorithm
that dynamically selects weak classifiers that discriminate between the object image region and
the background. Later, they extended this method to a semi-supervised algorithm [166] that
uses a fixed (or adaptive [349]) prior model to avoid drift and an on-line boosting framework
learning with unlabelled data. Babenko et al . [74, 415] presented another on-line method based
on Multiple Instance Learning (MIL), where the positive training examples are bags of image
patches containing at least one positive (object) image patch. Besides boosting algorithms, On-
line Random Forests have been proposed for adaptive visual object tracking [327, 329], where
randomised trees are incrementally grown to classify an image region as object or background.
Kalal et al. [204, 206] also use randomised forests which they combine effectively with a Lucas-
Kanade tracker in a framework called Tracking-Learning-Detection (TLD) where the tracker
updates the detector using spatial and temporal constraints and the detector re-initialises the
tracker in case of drift.

In order to cope with changing appearance, Mei and Ling [277] introduced the ℓ1 tracker
that is based on a sparse set of appearance templates that are collected during tracking and
used in the observation model of a particle filter. Recently, several extensions or other sparse-
representation-based methods have been proposed [80, 190, 366, 435, 446, 452] to improve the
robustness or reduce the computational complexity. However, these approaches are still rela-
tively time-consuming due to the complex ℓ1 minimisation. A sparse set of templates has also
been used by Liu et al. [254], but with smaller image patches of object parts, and by Kwon and
Lee [222] in their Visual Tracking Decomposition (VTD) method. In a similar spirit, Ross et al.
[323] proposed a particle filter algorithm called IVT that uses an observation model relying on
the eigenbasis of image patches computed on-line using an incremental PCA algorithm. Wang
et al. [385] also used a linear subspace appearance representation and employed a specific mecha-
nism to eliminate outliers. As a compromise between discrimination power and ability to model
deformable object, image patches representing object parts have been proposed by several pre-
vious works [120, 140, 409]. However, their spatial structure needs to be modelled and updated
in addition, and patch-based appearance representations are sensitive to object rotations and
sometimes difficult to adapt over time. Other approaches, more similar to ours, consist in us-
ing a pixel-based classifier [68, 105]. Avidan [68], for example, proposed an ensemble tracking
method that labels each pixel as foreground or background with an Adaboost algorithm that
is updated on-line. However, all of these methods still operate on image regions described by
bounding boxes and inherently have difficulties to track objects undergoing large deformations.

To overcome this problem, recent approaches integrate some form of segmentation into the
tracking process. For example, Nejhum et al. [290] proposed to track articulated objects with
a set of independent rectangular blocks that are used in a refinement step to segment the ob-
ject with a graph-cut algorithm. Similarly, although not segmenting the object, Kwon and Lee
[224] handle deforming objects by tracking configurations of a dynamic set of image patches,
and they use Basin Hopping Monte Carlo (BHMC) sampling to reduce the computational com-
plexity. Other approaches [319, 393, 413] apply a segmentation at the super-pixel level, or at
several different levels [191]. Bibby and Reid [94] proposed an adaptive probabilistic framework
separating the tracking of non-rigid objects into registration and level-set segmentation, where
posterior probabilities are computed at the pixel level. Aeschliman et al. [60] also combined
tracking and segmentation in a Bayesian framework, where pixel-wise likelihood distributions
of several objects and the background are modelled by Gaussian functions whose parameters
are learnt on-line. Čehovin et al. [377] used a similar adaptive pixel-wise probabilistic colour
segmentation of object and background with histograms where the output is used in the observa-
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tion likelihood function of a particle filter. More recently, Wen et al. [400] proposed a multi-part
segmentation and tracking approach based on a joint energy-minimisation framework. Several
other recent method [92, 312] effectively employ an adaptive segmentation based on colour his-
tograms to improve the robustness to object deformations. In a different application context,
pixel-based descriptors have also been used for 3D articulated human-body detection and track-
ing by Shotton et al. [340] on segmented depth images. In the approach proposed by Belagiannis
et al. [84], a graph-cut segmentation is applied separately to the image patches provided by a
particle filter. The work of Godec and Roth [162] is similar to ours. The authors proposed a
patch-based voting algorithm with Hough forests [154]. By back-projecting the patches that
voted for the object centre, the authors initialise a graph-cut algorithm to segment foreground
from background. The resulting segmentation is then used to update the patches’ foreground
and background probabilities in the Hough forest. This method achieves good tracking results
on many challenging benchmark videos. However, due to the graph-cut segmentation it is rel-
atively slow. Also, the segmentation is discrete and binary, which can increase the risk of drift
due to wrongly segmented image regions.

Much more efficient are correlation filter-based tracking methods (e.g . [63, 92, 120, 127–129]),
originally proposed by Bolme et al. [96] and its kernelised version by Henriques et al. [182].
In these approaches, tracking can be performed in the frequency domain without exhaustive
sliding window search around the previous object position. However, despite recent advances
they remain sensitive to local object deformations and fast appearance changes.

Recently, several methods based on Convolutional Neural Networks (CNN) have provided
state-of-the-art results, e.g . [242, 265, 289, 390]. These networks are mostly initialised from
pre-trained models (e.g . on the ImageNet dataset) and fine-tuned on-line during tracking [289].
Or the first pre-trained layers are used as feature extractors and combined with other tracking
approaches, like correlation filters [265]. The employed neural network architectures are rela-
tively complex and computationally expensive and rely heavily on GPU computing in order to
be practical.

To cope with object deformation, several works propose approaches that incorporate a shape
model. One can distinguish two families: parametric and non-parametric models. Parametric
shape models employ a geometric shape, like an ellipse [95], splines [198] or other parametric
curves [198, 331], or even 3D meshes [179] that are fit to the object in each image of the sequence.
Usually, these models are designed for specific types of objects, like heads, faces, hands etc. and
thus cannot be applied to general object tracking. The same limitation holds for some non-
parametric models that are based on exemplar shapes, for example for pedestrians [285, 368].
On the contrary, most non-parametric models are generic. Early works proposed active contours
that are based on level sets [119, 150, 302, 316, 422] allowing for arbitrary shapes and topologies.
More recent approaches [60, 92, 94, 312, 377], as cited above, are based on segmentation maps
as a generic discrete shape representation.

6.2.3 An adaptive, pixel-based tracking approach

Our approach, called PixelTrack [5, 34], is inspired by works on combined tracking and seg-
mentation, which proved to be beneficial for tracking non-rigid objects while reducing the risk
of model drift as opposed to template-based approaches. Furthermore, local descriptors have
shown state-of-the-art performance due to their capability of handling appearance changes with
large object deformations as well as partial occlusions.
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Figure 6.1: The overall tracking procedure for one video frame.

6.2.3.1 Overview

We integrated these concepts and developed a novel tracking-by-detection algorithm illustrated
in Fig. 6.1. The algorithm receives as input the current video frame as well as the bounding box
and segmentation from the tracking result of the previous frame. A pixel-based Hough transform
is applied on each pixel inside the search window, where each pixel votes for the centre position
of the object according to the learnt model, which gives the most likely position of the object’s
centre. Then, the pixels that have contributed to the maximum vote are selected. This process
is called backprojection. In parallel, a pixel-based probabilistic segmentation of the image in the
search window is obtained with a colour-based model , and this segmentation is used to compute
a long-term shape model. The position of the tracked object is updated using the maximum
vote position, the centre of mass of the segmentation output, and the shape model. Finally,
the models are adapted in a co-training manner to avoid drift. In the following, each of the
processing steps is explained in more detail.

6.2.3.2 Pixel-based Hough Voting

We developed a new detection algorithm relying on the generalised Hough transform [79]. In
contrast to existing models developed recently for similar tasks (e.g . [154, 162]) which use Hough
forests, i.e. Random Forests trained on small image patches, or the Implicit Shape Model (ISM)
[233], our method operates at the pixel level.

This has the following advantages:

• pixel-based descriptors are more suitable for detecting objects that are extremely small in
the image (e.g . for far-field vision),

• the feature space is relatively small and does not depend on spatial neighbourhood, which
makes training and updating of the model easier and more coherent with the object’s
appearance changes,

• the training and the application of the detector is extremely fast, as the complete feature
space is relatively small and can be implemented with look-up tables.

Let us now consider the model creation and application in detail. Figure 6.2 illustrates the
model creation (training) and the detection process.
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1st image

trained model

D

Hough voting

voting map

TRAINING DETECTION

Figure 6.2: Training and detection with the pixel-based Hough model. In this example, the
red, blue, green, and black pixels belong to the object. Left: in the first frame, the model D
is constructed by storing for each quantised pixel value in the given (red) bounding box all the
displacement vectors to the object’s centre position (here only colour is used for illustration).
Right: in a new frame, the object is detected in a search window by cumulating the displacement
votes of each pixel in a voting map (bright pixels: many votes, dark pixels: few votes).

Training: The detector is trained on the first video frame. Let us denote x = (x1, x2) the
position of a pixel I(x) in an image I. In the training image, the pixels inside a given initial
bounding box B0 = (bx0 , b

y
0, b

w
0 , b

h
0) are quantised according to the vector composed of its HSV

colour values and its gradient orientation (see Fig. 6.2 left). This amounts to computing D = Dz

(z = 1..N), an N-dimensional distribution similar to a histogram, which is referred to as pixel-
based Hough model in the following. The vectors Dz = {d1

z, . . . ,d
Mz
z } contain Mz displacement

vectors dm
z = (xzm, wzm), each associated with a weight wzm = 1.0. Thus, training consists in

constructing D by traversing each pixel I(x1, x2) inside the bounding box B0, quantising the
pixel value as z = zx, computing a displacement vector xz = (bx0 − x1, b

y
0 − x2) pointing to the

centre of the bounding box: (bx0 , b
y
0) (illustrated by arrows in Fig. 6.2), and finally adding the

vector dz = (xz, 1.0) to the set Dz.

Detection: in a new video frame, the object can be detected by letting each pixel I(x) inside
the search window vote according to Dz corresponding to its quantised value zx. The right part
of Fig. 6.2 illustrates this. Each vote is a list of displacements dm

z that are weighted by wzm

and cumulated in a voting map. The detector’s output is then simply the position in the voting
map with the maximum value xmax.

Backprojection: we can determine how much each pixel inside the search window Ωt con-
tributed to the maximum value of the voting map xmax. This process is illustrated in Fig. 6.1
and is called backprojection. More precisely, let z be the quantised value of pixel I(x). Then,
the backprojection b at each position x ∈ Ωt is defined as:

bx =

{
wzm if ∃dm

z ∈ Dz s.t. (bx, by) + xzm = xmax ,
0 otherwise,

(6.1)

where (bx, by) is the top-left corner of the current bounding box.
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6.2.3.3 Segmentation

Complementary to the local pixel-wise Hough model, a probabilistic soft segmentation approach
is adopted, similar to the ones from Aeschliman et al. [60], Čehovin et al. [377] or [312]. Let
cx,t ∈ {0, 1} be the class of the pixel at position x at time t: 0 for background, and 1 for
foreground, and let yx,0:t be the pixel’s colour observations from time 1 to t. For clarity and as
pixels are independent in our approach, we will drop the index x in the following. In order to
incorporate the segmentation of the previous video frame at time t−1 and to make the estimation
more robust, we use a recursive Bayesian formulation, where, at time t, each pixel (in the search
window) is assigned the probability to belonging to class C ∈ {0, 1} (foreground/background) :

p(ct = 1|y0:t) = Z−1p(yt|ct = 1)
∑

c′t−1

p(ct = 1|c′t−1) p(c
′
t−1|y0:t−1) , (6.2)

where Z is a normalisation constant that makes the probabilities sum up to 1. The distributions
p(yt|ct) are represented with HSV colour histograms. At t = 0, the foreground histogram is
initialised from the pixels in the image region defined by the bounding box around the object in
the first frame. The background histogram is initialised from the image region surrounding this
rectangle. The transition probabilities for foreground and background are set to:

p(ct = 0|ct−1) = 0.6 p(ct = 1|ct−1) = 0.4 . (6.3)

As opposed to recent work on image segmentation (e.g . [324]), we treat each pixel indepen-
dently, which, in general, leads to a less regularised solution but at the same time reduces the
computational complexity considerably.

6.2.3.4 Shape Model

The segmentation gives a rough estimate of the current 2D shape of the tracked object in the
image (see step (3) in Fig. 6.1). We use this estimate to gradually construct a non-parametric
longer-term shape model (step (4) in Fig.6.1), which further helps in the overall tracking, es-
pecially for less deforming, i.e. more rigid, objects. The segmentation output is the posterior
probability of x belonging to the foreground: p(cx,t = 1|yx,0:t). By computing this for all x
inside the current search window Ωt, we obtain a 2D segmentation map of the size of Ωt. The
shape sx,t at time t is then recursively estimated as:

sx,t = λφ
(
p(cx′,t = 1|y0:t)

)
+ (1− λ)sx,t−1 ∀x ∈ Ωs , (6.4)

where φ(·) re-samples the segmentation map to a canonical size Ωs = Ω0 (i.e. the initial search
window size), and λ = 0.02 is a small update factor. The shape model is initialised at the first
frame with sx,0 = φ

(
p(cx′,t = 1|y0)

)
. It constitutes a scale-invariant discretised representation

of the 2D shape of the object. Figure 6.3 shows illustrations of the automatically learnt object
shape prior models for some of our evaluation videos.

6.2.3.5 Tracking

In a new video frame, pixel-based detection and segmentation are performed inside a search
window Ωt, which we set to η = 1.5 times the size of the object’s bounding box. Then, the long-
term shape model is updated and the new object’s position Xt = (bxt , b

y
t ) and size (bwt , b

h
t ) can

be re-estimated. To this end, we utilise not only the output of the detector, i.e. the maximum
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Figure 6.3: Some examples of on-line learnt shape prior models of the videos “ball”, “torus”,
“fish2”, “mountainbike”, “trellis”, and “woman”.

position in the voting map, but also the segmentation and shape model, as described in the
following. Clearly, this makes the tracking algorithm more robust to non-rigid deformations.

Segmentation map tracking: to infer an estimate of the object’s position from the current
segmentation, we calculate the centre of mass of the soft segmentation produced by Eq. 6.2:

xs =
1

S

∑

x∈Ωt

p(cx = 1|y) x, (6.5)

where S is the sum of all foreground probabilities
p(cx = 1|y) in the search window Ωt.

Shape correlation: we further exploit the longer-term shape model for tracking the object’s
position by computing the cross-correlation between the shape “map”and the segmentation map
(scaled to the same size by φ):

xp = argmax
x

∑

δ∈I

φ(p(cx,t = 1|yx,0:t))sx+δ,t , (6.6)

with I describing the offset in the image, i.e. a discrete 2D displacement of the shape map within
some reasonable bounds. Thus, we match the current shape model with the segmentation map
in order to obtain a position estimate.

Overall tracking result: At each frame, the new object position is set to a linear combination
of the voting map maximum xmax and the mean of segmentation and shape positions xs and
xp:

Xt = (bxt , b
y
t ) = α

xs + xp

2
+ (1− α)xmax . (6.7)

The factor α determines how much we trust in the segmentation/shape position compared to
the Hough model’s estimation. It is computed dynamically at each frame by a simple reliability
measure that is defined as the proportion of pixels in the search window Ωt that change from
foreground to background or vice versa, i.e. crossing the threshold p(cx = 1|y) = 0.5.

We further re-estimate the overall scale of the object at each frame using a recursive proba-
bilistic inference. See [5] for more details.

6.2.3.6 Model adaptation

Both pixel-based Hough model and segmentation model are updated at each frame in a co-
training manner, i.e. the output of one model is used to update the other one. To update the
Hough model, only foreground pixels are used, that is pixels for which p(cx = 1|y) > 0.5. For
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each of these pixels x the displacement d to the new object’s centre is calculated, and its weight
w is set according to its foreground probability:

w ←
{

γ p(cx = 1|y) + (1− γ)w if d ∈ Dz ,
p(cx = 1|y) otherwise,

where γ = 0.1 is the update factor. In the second case (i.e. if d /∈ Dz), d is added to Dz.
For computational and memory efficiency, we limit the size of each Dz and only keep the K
displacements with the highest weights (K = 20 in our experiments).

The foreground and background distributions of the segmentation model are adapted using
the backprojection bx. That is, the colour distribution p(y|b > 0.5) of the backprojected pixels
is calculated, and used to linearly update the current foreground colour distribution:

p(yt|ct = 1) = δ p(y|b > 0.5) + (1− δ) p(yt−1|ct−1 = 1) , (6.8)

where δ = 0.1 is the update factor. The background colour distribution is updated in the same
way but using the colour distribution from a rectangular frame surrounding the object borders
(as for the initialisation step).

6.2.4 Experiments

We conducted quantitative evaluation on two sets of challenging standard videos that are
commonly used in the literature: the “Babenko sequences” [74]4 and the “Non-rigid object
dataset” [162]5, as well as the public tracking benchmark VOT20146 [218]. The tracking ac-
curacy and speed on these datasets has been measured and compared to several state-of-the-art
tracking methods.

Using the first two datasets, we compared our algorithm, called PixelTrack+, to 11 state-
of-the-art methods: HoughTrack (HT) [162], Tracking-Learning-Detection (TLD) (CVPR ver-
sion) [204], Incremental Visual Tracker (IVT) [323], the Multiple Instance Learning tracker
(MIL) (CVPR version) [74], the ℓ1 tracker using the Accelerated Proximal Gradient method (ℓ1
APG) [80], the structured output tracker: Struck (ICCV version) [175], Multi-Level Quantisa-
tion tracker (MQT) [191], the Deep Learning Tracker (DLT) [391], MEEM [430], DSST [127]
and MUSTer [192].

To measure the performance of the different tracking algorithms, we determine, for each
video, the proportion of frames in which the object is correctly tracked. And, to measure the
tracking precision, we computed the average Normalised Centre Error (NCE) on each video,
i.e. the Euclidean distance between the ground truth rectangle’s centre and the corresponding
tracked bounding box in a frame. Table 6.1 summarises the results. Although our method is not
designed for grey-scale videos and, thus, does not show its full potential, it still performs better
on average than most of the state-of-the-art methods. Only MEEM outperforms PixelTrack+
on both measures. DSST and MUSTer also generally have a higher proportion of successfully
tracked frames as they rely less on colour segmentation which is not useful in grey-scale videos.

For the VOT2014 data, we followed the evaluation protocol of the benchmark [219], using
the accuracy (same as our correctly tracked frame measure above) and the robustness (number
of tracking failures). Figure 6.4 shows the accuracy-robustness plots for the baseline experiment
of the VOT2014 benchmark [218] comparing 33 state-of-the-art tracking methods. Our method

4http://vision.ucsd.edu/ bbabenko/project miltrack.html
5http://lrs.icg.tugraz.at/research/houghtrack/
6http://votchallenge.net/
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HT TLD IVT MIL ℓ1 APG Struck

Babenko 0.65 / 0.55 0.70 / 0.23 0.61 / 0.29 0.63 / 0.31 0.76 / 0.29 0.86 / 0.18
Non-rigid 0.79 / 0.23 0.55 / 0.26 0.55 / 0.32 0.71 / 0.24 0.56 / 0.32 0.74 / 0.26

MQT DLT MEEM DSST MUSTer ours

0.54 / 0.54 0.84 / 0.21 0.91 / 0.18 0.89 / 0.44 0.90 / 0.23 0.86 / 0.19
0.73 / 0.19 0.66 / 0.24 0.83 / 0.28 0.66 / 0.28 0.74 / 0.32 0.90 / 0.18

Table 6.1: Babenko and Non-rigid objects sequences: proportion of correctly tracked frames (1st
number), and Normalised Centre Error (NCE) (2nd number).

algorithm HT TLD IVT MIL ℓ1 APG Struck MQT DLT MEEM DSST MUSTer ours

speed 2.3 5.2 8.4 5.2 7.1 9.9 1.0 15 10 59.4 4.0 44.2

Table 6.2: Comparison of the average processing speed in frames per second.

compares favourably with the top performing methods, especially in terms of robustness. Supe-
rior in terms of accuracy and robustness are only PLT, a structured output SVM-based tracker,
DGT [104], that tracks super-pixels using graph-matching, and MatFlow [272], a key-point-based
approach. Correlation filter-based approaches like DSST [127] show a very high accuracy but
slightly lower robustness.

Figure 6.5 shows tracking results of PixelTrack+ compared to several state-of-the-art meth-
ods for some very challenging videos.

Finally, we measured the average processing speed of each algorithm for the 19 videos of the
first two datasets on a 3.4 GHz Intel Xeon processor (using a single core). The results are shown
in Table 6.2. The execution speed of the proposed method is at least 3 times faster than most
of the other state-of-the-art methods, except for DSST which is slightly faster.

6.2.5 Conclusion

We designed a fast algorithm for tracking generic deformable objects in videos without any
prior knowledge, i.e. without any learnt appearance model of the object or the surrounding
scene and without any specific motion model. It is an effective combination of a pixel-based
detector based on a Hough voting scheme and a global probabilistic segmentation method that
operate jointly and update each other in a co-training manner. Moreover, a novel long-term non-
parametric shape model has been proposed to further improve the robustness of the approach.
Our algorithm has two strengths compared to existing state-of-the-art methods: firstly, using
a pixel-wise soft segmentation it is able to track objects that are highly deformable, such as
articulated objects, as well as objects that undergo large in-plane and out-of-plane rotations.
And secondly, it is very fast, which makes it suitable for real-time applications, or tasks where
many objects need to be tracked at the same time, or where large amounts of data need to be
processed (e.g . video indexation). Our experimental results show that the method outperforms
state-of-the-art tracking algorithms on challenging videos from standard benchmarks.
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Figure 6.4: Comparison with 33 state-of-the-art methods of the VOT2014 benchmark [218]. The
proposed method “PTp” is among the top-performing methods with the fifth-best robustness.

DLT MEEM DSST MUSTer PixelTrack+

Figure 6.5: Tracking results of DLT [391], MEEM [430], DSST [127], MUSTer [192] and the
proposed PixelTrack+ on some of the more challenging videos from the non-rigid object dataset
and the VOT2014 benchmark (best viewed in colour).
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6.3 On-line learning of motion context

6.3.1 Introduction

As experimental results show, the previous work addressed well the problem of tracker drift
and is able to learn on-line a stable appearance model in dynamic environments. However,
when analysing the behaviour and the results of our tracking algorithms and the ones from the
literature, we realised that there are still certain failure modes, e.g . certain situations that have
not been considered in the design of these algorithms. One of these situations is when, in the
background, there are very similar objects to the one(s) that we want to track, and when one
or several of these distracting objects comes close to it. Then many algorithms might lose track
and “jump” to the image region corresponding to the most similar object. This happens, for
instance, when tracking a person in sports videos or an animal in a herd or swarm. Thus, in
a SOT problem, it seems important to not only consider the object to track but also its global
environment.

For this reason, together with Christophe Garcia, we studied methods to incorporate the
context of the visual scene into the tracking process. In many practical applications, the camera
is moving. Thus, the background and the visual context is also changing over time. Therefore,
we adopted again an on-line learning approach in order to be able to dynamically adapt to
new environments and situations. In contrast to the tracking-by-detection method PixelTrack+
described in the previous section, we opted here for a probabilistic Bayesian approach, as it
allows for a straightforward integration and combination of different appearance models and
observation likelihoods as well as motion models, and for an effective inference with particle
filtering.

6.3.2 State of the art

One of the first works to explicitly include context in visual object tracking has been the Context-
Aware Tracker (CAT) by Yang et al . [414]. Their method operates on-line throughout the video
and continuously discovers objects that move in the same direction as the tracked object by
performing a motion correlation analysis. These auxiliary objects help to support and improve
tracking by performing inference in a star-structured graphical model that includes the objects’
states. Similarly, Zhang et al . [431] modelled the spatio-temporal relationships and correlations
between the object and its locally dense contexts in a Bayesian framework.

Spatial context has also been exploited by using supporters, i.e. other objects or feature
points around the target in the image. For example, this may be useful in videos, where a hand
holds the object to track and thus exhibits the same visible motion pattern. Or when groups of
people walk in the same direction. Grabner et al . [167], for example, extended the well-known
Implicit Shape Model by detecting feature points in the image that have a correlated motion with
the target. These supporters are matched from frame to frame, and their relative displacement
vectors are updated on-line. Wen et al . [399] also proposed a method that detects supporters
(here called contributors) which are interest points within a local neighbourhood around the
target, in order to improve the tracking performance. In addition, their method makes use of a
longer-term temporal context using an on-line sub-space learning method that groups together
observations from several frames. Similarly, the approach proposed by Sun et al . [362] tracks
“helper”objects using an on-line Adaboost detector, initialised manually at the first frame. Their
relative position is learnt on-line and used to predict the target object’s position.

Dinh et al . [136] proposed a method using supporters as well as distractors, which are objects
with similar appearance to the target. The distractors help to avoid confusion of the tracker with
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other similar objects in the scene, and they can possibly be used to reason about the objects’
mutual occlusion. In the work of Dinh et al ., supporters are not used directly for the target’s
state estimation but only to disambiguate between the target and its distractors. Hong et
al . [190] recently proposed an approach based on the ℓ1 tracker [277] that deals with distractors
by automatically learning a metric not only between positive and negative examples but also
within the collected negative examples, effectively replacing the originally proposed Euclidean
distance. Finally, Supanc̆ic̆ and Ramanan [363] presented a self-paced learning tracker that also
selects training examples from video frames in the past to perform long-term tracking, an idea
that has also been used in the recent work of Hua et al . [195].

The disadvantage with using supporting and distracting objects is that several objects need
to be detected and tracked, which can be computationally expensive especially with a larger
number of objects. Moreover, the success or failure of data association or, in some methods,
matching local features points in successive video frames, heavily depends on the type of object to
track and the surrounding background. This process can be error-prone and, in some situations,
may rather harm the overall tracking performance. Finally, modelling the spatial, temporal, or
appearance-based pairwise relationships between objects and/or interest points can lead to a
combinatorial explosion and make the inference on the state space difficult.

To alleviate this problem, in this work, we propose a probabilistic method that dynamically
updates the foreground and background model depending on distracting objects or image regions
in the scene background. This contextual appearance information is extracted from moving
image regions and used to train on-line a discriminative binary classifier that, in each video
frame, detects the image region corresponding to the object to track.

Traditionally, these discriminative on-line classifiers used in tracking-by-detection approaches
[74, 154, 162, 165, 175, 277] learn negative examples extracted from the image region surrounding
the current target object region. This choice is motivated by the fact that the object will
move only slightly from one frame to the other w.r.t. the background or other objects, and by
computational speed. In contrast, our method uses a stochastic sampling process to extract
negative examples from image regions that move. We call these: contextual motion cues (see
Fig. 6.6). In that way, regions that correspond to possibly distracting objects are detected
efficiently and early, i.e. without them having to be inside a search window and without scanning
the whole image at each point in time.

6.3.3 Tracking framework with discriminative classifier

In this work, we used a traditional recursive Bayesian model for tracking and a particle filter,
i.e. sampling importance resampling (SIR) or bootstrapping, for the inference [139, 198]. As
we already described the principal model before (c.f . section 5.2.3 for MOT and section 5.3.3
for SOT), we only concentrate on the original parts and on our contributions, i.e. the on-line
learning of a discriminative classifier using motion context cues and its integration in the particle
filter framework using an effective likelihood model and proposal functions.

6.3.3.1 Object state representation and inference

The state X = (x, y, vx, vy, s, e) ∈ R
6 of the object to track is described by an upright bounding

box defined by the object’s centre position (x, y) in the image, its 2D speed (vx, vy) in the image
plane, scale (s), and eccentricity (e), i.e. the ratio of height and width. The state X0 is initialised
manually by providing a bounding box around the object in the first frame. Then, for each video
frame, the particle filter performs its classical steps of predicting particles X(i) sampled from
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the proposal distribution q(Xt|Xt−1) and updating their weights according to the observation
likelihood p(Yt|Xt), state dynamics pm(Xt|Xt−1) and proposal (see Section 6.3.3.2): wi =

p(Yt|Xt)
pm(Xt|Xt−1)
q(Xt|Xt−1)

, for each particle i ∈ 1..N . At the end of each iteration, the observation

likelihood model parameters are updated using the mean of the posterior distribution p(Xx|Y1:t).
And finally, systematic resampling is performed.

6.3.3.2 State dynamics and proposal function

In order to cope with fairly complex motion of arbitrary objects in videos from a possibly moving
camera, we used a proposal function composed of a mixture of three distributions:

q(Xt|Xt−1) = βmpm(Xt|Xt−1)

+ βfpf (Xt|Xt−1)

+ βdpd(Xt|Xt−1) ,

(6.9)

where βm, βf , βd < 1 define the mixture weights (
∑

i βi = 1), and pm(Xt|Xt−1) is the state
dynamics model (similar to the ones in sections 5.2.3.2 and 5.3.3), pf (Xt|Xt−1) is an optical
flow-like motion-based proposal function, and pd(Xt|Xt−1) proposes states coming from a dis-
criminative on-line trained detector described in more detail in section 6.3.4.

6.3.3.3 Observation likelihood

The observation likelihood function p(Y|X) that we proposed is designed to be robust against
object deformations, pose and illumination changes as well as partial occlusions. It is a geometric
mean of three distributions corresponding to different visual cues:

p(Yt|Xt) = (pH(Yt|Xt) pS(Yt|Xt) pT (Yt|Xt))
1/3 , (6.10)

where pH computes a local colour histogram likelihood ratio, pS measures the global colour
distribution similarity, and pT is a texture likelihood based on the on-line learnt discriminative
classifier that we will explain in the following section. Taking the cube root of the product
ensures that the overall likelihood distribution does not become too peaked. For more details,
refer to [6].

6.3.4 Model adaptation with contextual cues

In this section, we will describe the main contribution of the proposed approach: a method to
exploit motion context effectively for visual object tracking using a discriminative classifier that
is trained on-line on specific parts of the input video. Our approach is different from previous
work, where motion context or background motion has been integrated tightly in the tracking
process (e.g . in [160, 293], or where specific appearance models are used to avoid distractions in
the background [136, 190].

In our particle filter framework outlined above, we used a binary discriminative classifier
based on the On-line Adaboost (OAB) algorithm [165] (based on Haar-like features) for proposing
new particles as well as for evaluating the observation likelihood. Any other on-line classifier
could have been used as well. The classifier is trained with the first video frame using the image
patch inside the object’s bounding box as a positive example and surrounding patches within a
search window as negative examples (as we cannot infer motion from a single image). Then, the
classifier is updated at each tracking iteration using the same strategy for extracting positive
and negative examples. We refer to [165] for details on the model and how it is trained.
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Figure 6.6: Illustration of different sampling strategies of negative examples (blue). Left: tradi-
tional sampling at fixed positions within a search window (red). Middle: the motion probability
density function m (Eq. 6.11). Right: the proposed negative sampling from m.

6.3.4.1 Background sampling

We propose to sample negative examples from image regions that contain motion and thus likely
correspond to moving objects (see Fig. 6.6). The idea is that these regions may distract the
tracker at some point in time. Therefore, it is preferable to incorporate these distracting image
regions in the classifier training in the form of negative examples and learn them as early as
possible, i.e. as soon as they appear in the scene. One can see this as a kind of long-term
prediction of possible negative samples, in contrast to the much shorter (frame-by-frame) time
scale of the proposal function. To perform this negative sampling, we first compensate for camera
motion between two consecutive frames using a classical parametric motion estimation approach
[292]. We apply a three-parameter model to estimate the translation and scale factor between
the images, and then compute the intensity differences for each pixel in the current image with
its corresponding pixel in the previous frame. This gives an image M(x, y) approximating the
amount of motion present at each position (x, y) of the current frame of the video. We then
transform this image into a probability density function (PDF) m(x, y) over the 2-dimensional
image space:

m(x, y) = Z−1
∑

(u,v)∈Ω(x,y)

M(u, v) , (6.11)

where Ω(x, y) defines an image region of the size of the bounding box of the object being tracked,
centred at (x, y), and Z is a constant normalising the density function to sum up to 1. Thus,
m(x, y) represents the relative amount of motion inside the region centred at (x, y). Finally, N−

image positions (x, y) are sampled from this PDF corresponding to rectangles centred at (x, y).
That is, statistically, regions with high amount of motion are sampled more often than static
image regions. This process is illustrated in Fig. 6.6.

6.3.4.2 Classifier update

The N− image patches corresponding to the sampled regions as well as the positive example
coming from the mean particle of the tracker are then used to update the classifier. In this case,
the OAB method needs a balanced number of positives and negatives, thus the positive example
is used N− times, alternating positive and negative updates.

The advantage of sampling positions from these motion cues is that we do not need to care
about explicitly detecting, initialising, tracking, and eventually removing a certain number of
distracting objects at each point in time. Note that we could also sample regions of different
scales but as scale does not change rapidly in most videos the benefit of this is relatively small.
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fixed fixed+random motion fixed+motion

Babenko 73.28 74.06 82.30 85.25
Non-rigid 68.71 70.30 74.29 80.87

Table 6.3: Average percentage of correctly tracked frames with the proposed method using
different negative sampling strategies.

Note also that the PDF could as well include appearance similarity with the tracked target.
However, this would considerably increase the computational complexity.

6.3.5 Experiments

We performed a quantitative evaluation of our proposed approach, that we called “Motion Con-
text Tracker” (MCT), on four challenging public tracking datasets: the Babenko and Non-rigid
object sequences also used to evaluate our PixelTrack+ method, described in the previous sec-
tion, and the VOT2013 and the VOT2014 datasets. Again, we measured the accuracy (≡ the
percentage of correctly tracked frames) and the robustness (≡ number of tracking failures).

In the first experiments, we evaluated different strategies for the collection of negative ex-
amples of the discriminative OAB classifier, as explained in Section 6.3.4. We compared four
different strategies:

• fixed: N− negatives are taken from fixed positions around the positive example inside the
search window, which is twice the size of the object’s bounding box.

• fixed+random: N−/2 examples are taken from fixed position (as for “fixed”), and N−/2
examples are sampled from random image positions.

• motion: N− negative examples are sampled from the contextual motion distribution m
(Eq. 6.11).

• fixed+motion: N−/2 examples are taken from fixed positions, and N−/2 examples are
sampled from the contextual motion distribution.

In any case, the negative examples do not overlap more than 70% with the positive ones in
the image. Table 6.3 shows the results for the first two datasets in terms of the percentage
of correctly tracked frames. On average, the best strategy is “fixed+motion”, with a relative
improvement of around 7.5%.

Using the VOT2013 benchmark, we compared MCT with 27 other state-of-the-art tracking
methods. Table 6.4 lists the top 7 ranks for the experiments baseline, region-noise (i.e. with
perturbed initial bounding boxes), and greyscale (i.e. videos converted to grey-scale), combining
accuracy and robustness. The results of MCT are very competitive, being the second-best
method for baseline and region-noise and the third-best for greyscale. We also added the method
PF (MCT without the detector) to the VOT2013 evaluation. Its overall ranks for the baseline,
region-noise, and greyscale experiments are 16.1, 14.5, and 14.4 respectively. This clearly shows
that the benefit of the motion context-based discriminative classifier.

Finally, Table 6.5 lists the 10 best methods for VOT2014 and the respective accuracy ranks,
robustness ranks, and overall ranks. Overall, the results of our MCT approach are very compet-
itive. Taking the average of accuracy and robustness ranks, PLT and its extension PLT 14 are
still slightly better, as well as the correlation filter-based method SAMF [413], and the method
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baseline region-noise greyscale

PLT 4.96 PLT 3.58 PLT 3.96
MCT 6.62 MCT 5.08 FoT [384] 4.75
FoT [384] 8.25 CCMS 8.33 MCT 6.25
EDFT [146] 9.5 FoT [384] 9.04 EDFT [146] 7.5
CCMS 9.54 LGT++ [408] 9.04 GSDT [155] 9.5
LGT++ [408] 10.2 EDFT [146] 9.08 LGT++ [408] 9.58
DFT [336] 11.1 LGT [377] 10.5 Matrioska [272] 10.7

Table 6.4: Overall ranking result with the VOT2013 dataset. Only the first 7 out of 28 ranks
are shown.

accuracy rank robustness rank overall rank

SAMF [413] 8.16 16.49 12.33
PLT 14.28 10.41 12.35
DGT [104] 11.42 13.44 12.43
PLT 14 17.46 10.77 14.12
MCT 13.52 14.76 14.14
PF 13.70 14.74 14.22
DSST [127] 13.51 15.54 14.53
KCF [182] 13.62 16.82 15.22
HMMTxD [218] 13.18 17.57 15.38
MatFlow [272] 16.90 15.29 16.10

Table 6.5: Overall ranking result with the VOT2014 dataset. Only the first 10 out of 39 ranks
are shown.

DGT [104] which relies on graph matching and super-pixel representations. The method PF,
i.e. MCT without the discriminative classifier, is only slightly worse on average with this bench-
mark. This might be due to the more challenging type of videos with deformable objects for
which the texture-based classifier is not powerful enough.

In terms of execution speed, our algorithm runs at around 20fps for a frame size of 320×240
on an Intel Xeon 3.4GHz (single core).

6.3.6 Conclusion

We proposed a new efficient particle filter-based approach for tracking arbitrary objects in videos.
The method combines generative and discriminative models, by effectively integrating an on-
line learning classifier. We introduced a new method to train this classifier that samples the
position of negative examples from contextual motion cues instead of a fixed region around
the tracked object. Our extensive experimental results show that this procedure improves the
overall tracking performance with different discriminative classification algorithms. Further, the
proposed tracking algorithm gives state-of-the-art results on four different challenging tracking
datasets, effectively dealing with large object shape and appearance changes, as well as complex
motion, varying illumination conditions and partial occlusions. Note that we also officially
participated in the VOT2014 challenge [32] and the associated workshop held in conjunction
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with ECCV 2014 [31]. As can be seen from the results (c.f . 6.5), our MCT method achieved an
excellent position in the ranking.

In summary, we have shown experimentally that dynamically integrating context information
from the visual scene using on-line learning can largely improve the overall performance of the
tracking algorithm. In the following section, we will outline our research work that develops this
idea further by constructing finer global scene context models in an on-line manner.

6.4 Dynamic adaptation to scene context

6.4.1 Introduction

In this section, I will present our research work performed in the context of the PhD thesis of
Salma Moujtahid [23, 28, 29, 283]. We worked on another approach of including contextual
scene or background information in the tracking process, and we applied it to the SOT scenario,
as in the previous section. However, here, scene context is not used for the on-line learning of
robust appearance models, as with MCT, but for a dynamic selection of trackers among a set of
methods depending on their suitability for the given environment at each point in time.

Many tracking algorithms have been proposed in the literature, and each of them has
strengths and weaknesses depending on the appearance, motion or state models or the type
of inference.

Our assumption was that their performance varies in different types of settings and environ-
ments and, thus, for a given context, we would be able to select the algorithm and model that is
most appropriate. As these variations might occur not only from one type of video or application
to another but also within a given video stream, we developed a method that dynamically selects
one tracker from a pool of supposedly complementary trackers depending on the scene context
at a given point in time. To this end, we conceived a set of general scene context features,
and we extracted these features from each frame of a set of training videos. Then, a classifier
was trained (off-line) on these features to predict which tracker is the most suitable for a given
moment in the video. Finally, we proposed an original tracking framework that selects the most
appropriate tracker at each frame based on this classifier. In the following, we will describe this
approach in more detail.

6.4.2 State of the art

Many ways of combining, fusing or selecting visual models or features for tracking exist in the
literature. They can be categorised into low-level and high-level fusion approaches.

6.4.2.1 Low-level fusion

Fusion at a low level means the combination of multiple visual features in a single tracking
model. Early works like the one from Birchfield et al . [95] used the sum of colour histograms
and intensity gradient likelihoods. Collins et al . [122] also used likelihood maps to rank features
and select the most discriminant ones. Triesh et al . [369] weight features in other to fuse them
in a democratic integration for face tracking. A Bayesian framework introduced by Yilmaz
et al . [422] fuses probabilistic density functions based on texture and colour features for object
contour tracking. Other existing works (e.g . [305, 349, 423]) fuse different modalities, like motion
or shape, in order to improve the overall foreground-background discrimination. The low-level
fusion of features might lead to problems because of the interdependence of the features in the
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tracking model. If some of the visual cues are altered or occluded because of changing scene
conditions, the whole model is prone to drift.

6.4.2.2 High-level fusion

Other approaches consider the combination of the output of multiple trackers. For example,
a probabilistic combination was proposed by Leichter et al . [234] with multiple synchronous
trackers using different features where each tracker estimates a probability density function of
the tracked state. A sampling framework is introduced by Kwon et al . [222, 223] integrating
estimates from basic complementary trackers using different observation models and motion
models. Moreover, tracker performance within a parallel framework can be measured as the
disagreement of a tracker with respect to the other trackers. Li et al . [244] exploited this idea
to seek a balance between the trackers. The recent work by Khalid et al . [212] fuses the output
of multiple trackers based on their estimated individual performance and the spatio-temporal
relationships of their results. Using the object trajectory as a fusion criteria is another possibility.
For example, Bailer et al . [76] used trajectory optimisation to fuse the tracking results (bounding
boxes) from different tracking algorithms. Wang et al . [392] also modelled the object trajectory
and the reliability of each of five independent trackers combining them with a factorial Hidden
Markov Model (HMM). More recently, Vojir et al . [383] also utilised a HMM to fuse observations
from complementary trackers and a detector. The HMM’s latent states correspond to a binary
vector expressing the failure of the individual trackers.

In a different manner, rather than using multiple trackers with different cues, Zhang et
al . [430] retain snapshots of a base tracker (an on-line SVM) in time, constituting an ensemble
of its past models. Then a model is restored according to an entropy criterion.

In terms of tracker selection rather than fusion, our previous work [29] presented a simple
selection framework using the trackers confidences and a spatio-temporal criteria. Similarly
Stenger et al . [351] also used confidences to select the best tracker applied to face tracking. The
main advantage of selection algorithms is that the resulting tracking output is not altered by
one or more trackers that may have drifted as long as they are not selected.

In contrast to these fusion frameworks, our proposed selection framework does not rely solely
on the performance or tracking results of our trackers. It differs essentially in the use of the scene
context in the decision of selecting the most suitable tracker at each point in time. Moreover,
selecting from a pool of independent trackers allows to adapt to rapid scene changes and quickly
switch between different models.

6.4.2.3 Context in tracking

Scene context has been used previously in visual tracking and detection. Especially in on-
line detection or tracking scenarios, where information for model construction is very limited
to the number of frames, context can provide important information and greatly improve the
performance. Context can be used in many ways. As mentioned in section 6.3.2, some works
(e.g . [167, 399, 414, 431]) use “supporters”, i.e. image regions or interest points moving similarly
to the tracked object and assisting the tracking, or “distractors” [136, 190], i.e. image regions
with similar appearance to the object, in order to avoid confusion in tracking. However, the
modelling of spatial and temporal relationships between the different tracked objects or interest
points is computationally expensive, due to the more complex data association. In a different
manner, Maggio et al . [270] used contextual event cues such as target births (objects entering
the scene) and spatial clutter of objects. The spatial distribution of these events is incrementally
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learned using tracker feedback for MOT.

In our approach, supporters, distractors or contextual events are not used because they make
inference more complex and error-prone due to detection or tracking errors. We rather classify
the general scene context and conditions in order to select the most appropriate visual cue or
tracker for a given situation. To this end, we compute global image descriptors based on colour,
intensity and motion at each video frame. In the past, other global image descriptors (sometimes
called gist features) have been proposed (e.g . [298, 341, 367]) mostly for fixed images to classify
scenes into different semantic categories, such as open, closed environments, indoor, outdoor etc.

6.4.3 Visual scene context description

One of our main goals is to globally characterise the scene at a given point in time through
descriptors extracted from the image. For instance, we want to capture if the overall environment
is rather dark or light, if it is cluttered, if the motion in the background is homogeneous etc. We
also need to correlate these descriptors with the features used in the individual trackers from
our pool of trackers Tn, (n ∈ 1..N). We thus designed descriptors, called “scene features”, based
on first and second order statistics of the main image characteristics (e.g . intensity, hue, motion
vectors). We defined these low-level features such that they can be easily interpreted, and, at
the same time, help the process of learning and correlating a scene condition to a tracker.

Using Equations 6.12-6.15, we define our scene features fΩ
k over an image region Ω as:

Intensity and texture features:

- Average brightness (fΩ
1 ): the mean grey-scale pixel value (see Eq. 6.12).

- Average contrast (fΩ
2 ): the mean squared value of the difference of each grey-scale pixel

and the average brightness (see Eq. 6.15).

Chromatic features:

- Average saturation (fΩ
3 ): the mean pixel value of the saturation channel in HSV colour

space (Eq. 6.12).

- Saturation variance (fΩ
4 ): the variance of saturation (Eq. 6.13).

- Dominant hue (fΩ
5 ): the dominant colour extracted from a histogram of quantised hue

pixel values in HSV colour space (Eq. 6.14).

- Hue variance (fΩ
6 ): the variance of the pixel values in the hue channel (Eq. 6.13).

Motion features:

- Average motion (fΩ
7 ): the mean of the norm of optical flow vectors (Eq. 6.12).

- Motion variance (fΩ
8 ): the variance of the norm of dense optical flow vectors (Eq. 6.13).

Let pi denote the pixel value of a given image channel (e.g . H,S,V) and ‖Ω‖ the number of
pixels in the region Ω. The above mentioned features are then defined as follows:
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Local region  

Global region  

Differential region  

Figure 6.7: The different image regions used to compute scene features.

average: fΩ
k =

∑
i∈Ω pi

‖Ω‖ , for k = 1, 3, 7 (6.12)

variance: fΩ
k =

∑
i∈Ω(pi)

2

‖Ω‖ −
(∑

i∈Ω pi

‖Ω‖

)2

, for k = 4, 6, 8 (6.13)

dominant cue: fΩ
k = argmax

i∈Ω
(pi), for k = 5 (6.14)

contrast: fΩ
k =

1

‖Ω‖
∑

i∈Ω

(
pi −

∑
i∈Ω pi

‖Ω‖

)2

, for k = 2. (6.15)

Each of these features k is computed on three different image regions Ω as shown in Fig.6.7.
We define a global value as the feature computed on the whole image: fG

k . The local value
is the feature computed on the Region Of Interest (ROI): fL

k . And a differential value as
the difference between the feature computed on the foreground region (i.e. the ROI) and the
background region (i.e. the image not including the ROI): fD

k .
Not every combination of feature and region is used as some of them have little semantic meaning.
The concatenation of these features gives us:

fG =
{
fG
1 , . . . , fG

3 , fG
6 , . . . , fG

8

}
, (6.16)

fL =
{
fL
1 , . . . , f

L
8

}
,

fD =
{
fD
1 , . . . , fD

7

}
.

Finally, we obtain M = 21 scene context features ft =
{
fGt , fLt , f

D
t

}
for frame t.

6.4.4 A scene context-based tracking approach

6.4.4.1 Supervised learning of scene context

The scene context classifier’s goal is to learn the different patterns that show high correlation
between the information extracted from the scene context (described by our scene features) and
the performance of a tracker in the particular set of conditions. As multi-class classifier, we chose
a fully connected Multi-Layer Perceptron (MLP) with one hidden layer, N output neurons and
sigmoid activation functions. Any other algorithm could be used as well. In fact, a multi-class
SVM showed equivalent performance in our experiments.

As shown in Fig.6.8, the classifier’s input it at a frame t consists of several components: The
scene features ft extracted from the scene characterise the scene, the confidence values of the

73



Chapter 6. On-line learning of appearance models for tracking arbitrary objects

✆ 

 

Tracker 1 

Tracker 2 

Tracker N 

Scene Feature 

Extraction 

Kalman 

Filter 

Scene Context 

Classifier 

 

 

  

 

Selection 

of 

tracker 

Figure 6.8: The overall framework of the proposed Scene Context-Based Tracker (SCBT)

N trackers ct = (ct,1..ct,N ) providing the classifier with a measure of reliability of each tracker’s
result, and finally, the identifier st−1 of the tracker that has been selected in the previous frame.
We experimentally showed that this recursion highly contributes to learning the correlation
between the scene context features and the selected tracker in a given frame.

Furthermore, in order to give the classifier information on the evolution of the scene context
over time, we additionally provided it with the features from the two previous frames t− 1 and
t− 2. We hence form a sliding window with the following vectors:

Ft = {ft, ft−1, ft−2}
Ct = {ct, ct−1, ct−2}

St−1 = {st−1, st−2, st−3}

And the final feature vector given as input to the classifier is the following:

it = {Ft,Ct,St−1}.

The classifier is trained off-line on a dataset with annotated object bounding boxes. Let us

consider a training sample
{
ij , o

∗
j

}
, (j ∈ 1..Ntrain) where Ntrain is number of training samples,

ij is the input vector and o∗j is the label for the sample j, described below. In order to construct
the classifier input vector ij = {Fj,Cj ,Sj−1}, we run the N trackers on each video, and at each
frame (i.e. training sample j), we extract the scene context features Fj as well as the trackers’
confidences Cj and save the identifier of best tracker to be used as the “previously selected
tracker” Sj−1 in the following frame.
The best tracker for each sample j, i.e. the label o∗j , is determined by computing the F-scores
of each tracker between its output bounding box and the ground truth.

The tracker with the highest F-score is considered the label o∗j of the sample. We optimise the
neural network parameters with standard stochastic gradient descent by minimising the mean
squared error between the network’s response vector yj = (yj,1..yj,N) and the desired output
vector y∗

j . We studied different ways of defining the desired classifier output y∗
t :

• One-of-N : y∗
t ∈ {−1,+1}N It is the usual output strategy in classification where +1 is

assigned to the class label o∗t and −1 otherwise.

• Threshold : y∗
t ∈ {−1, 0,+1}N We threshold the F-score of each class and assign +1

if the F-score is higher than the threshold, 0 if it is lower, and −1 if the F-score is null
(i.e. the tracker is completely lost). Here, the threshold value was set to 0.6, determined
empirically.
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• Ranking : y∗
t ∈ {−1,−0.3,+0.3,+1}N We rank the F-scores of our classes, and assign

respectively +1, +0.3 and −0.3 from highest to lowest F-score. If the F-score value is 0,
than −1 is assigned to the corresponding class.

• Regression : y∗
t = {Fscore1t , .., FscoreNt } We directly use the F-score values, so the

classifier trains to predict these values.

The network’s final class prediction, i.e. the predicted best tracker index, is simply oj =
argmaxn∈N yj,n.

6.4.4.2 On-line tracker selection and learning

The proposed algorithm uses N independent on-line trackers that are initialised with the bound-
ing box of the object in the first video frame. Then, as illustrated in Fig. 6.8, the trackers and
the context feature extraction operate in parallel providing at each frame N confidence values
Ct and M scene context features Ft respectively. At each video frame t, the scene context clas-
sifier estimates a score for each tracker yt to perform best under the current scene context. We
select the tracker with the highest score as the most suitable tracker st = argmaxn∈N yt,n. The
bounding box Bs

t from the selected tracker T s
t is then passed to a Kalman Filter to deal with

imprecise estimations and to provide a smoother object trajectory. Finally, the last step is the
general update of the trackers with the filtered bounding box. The individual trackers train their
models on-line. They use the ground truth bounding box of the first frame to initialise their
models and update them every frame once a prediction is made using the selected bounding box
Bs

t processed by the Kalman filter.

6.4.5 Experiments

To evaluate our proposed approach we used a set of three trackers based on the Kernelized Cor-
relation Filter (KCF) [182] and with three different types of complementary features: Histogram
of Oriented Gradients (HOG), raw grey-scale intensities and quantised colours in the CIE-lab
colour space. Note that our proposed method is completely independent of the underlying
individual tracking algorithms.

We evaluated first the performance of the proposed scene context classifier based on the scene
context features. To train the classifier we used the Princeton Tracking Benchmark Dataset [348],
containing 100 videos, and a section of the ILSVRC2015 Dataset [325]. With a total of 397 videos
(106 203 training samples and 12 700 validation samples), the dataset represents a diverse set of
object types, background and scene conditions. For testing, we used the dataset of the VOT2013
benchmark [217]. The input features have been computed with the tracking output of the three
KCF trackers. Table 6.6 shows the classification results for the different strategies for the output
value y∗

t . One can see the that, the classifier is able to predict the best tracker in around 80% of
the video frames. The One-of-N training strategy gives the best result and Ranking the second
best. The table shows also the overall tracking results of the proposed framework. Here, the
Ranking strategy gives considerably better results.

Table 6.7 shows more detailed tracking results on VOT2013. The proposed tracker selection
framework improves both accuracy and failure rate (robustness) compared to the individual
trackers. Also the Kalman Filter and the general update, i.e. updating the individual models
only using the bounding box of the selected tracker, increase the overall performance. More
results as well as a comparison with the state-of-the-art can be found in [28].
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Classifier output y∗
t Train rate Test rate Accuracy Failures

One-of-N 89.56 % 79.56 % 0.583 1.313

Threshold 63.77 % 51.76 % 0,600 1,440

Ranking 88.95 % 77.82 % 0.607 0.563

Regression 69.80 % 62.24 % 0,590 1,130

Table 6.6: Correct classification rates on training (Princeton + ILSVRC15) and test (VOT2013)
datasets for context classifiers trained using different desired output y∗

t strategies and the cor-
responding VOT2013 benchmark tracking results.

Method Accuracy Failures

KCF RAW 0.522 1.688
KCF HOG 0.590 0.875
KCF LAB 0.568 0.938

Context classifier 0.607 0.563
Context classifier + general Update 0.606 0.438
Context classifier + general Update + Kalman Filter 0.599 0.375

Table 6.7: VOT2013 benchmark[217] accuracy and failure rates for the individual KCF trackers
and the proposed selection framework.
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6.4.6 Conclusion

We proposed a novel selection framework that exploits scene context information in order to
learn and predict the most suitable tracker. Using standard KCF trackers, we optimised the
training of the scene context classifier by exploring multiple output strategies to select the most
adapted one to our framework. We further evaluated the proposed framework on a standard
benchmark proving the efficiency of the scene features and scene context classifier as well as the
overall tracking framework. However, the tracking performance of our method is bounded by the
performance of the individual trackers that are used. The proposed selection framework could
be further improved by using more powerful individual tracker at the expense of computational
efficiency and speed of the framework. Finally, adding new ’semantic’ scene features that would
characterise the type of object or type of scene would be an interesting future research direction.

6.5 Conclusion

This concludes the first part of this manuscript. We proposed several major contributions in the
field of computer vision and machine learning applied to different problems of tracking a single
and multiple objects in dynamic unconstrained environments. Our work was mainly focused on
improving long-term MOT, especially multiple face tracking, by learning models for track initial-
isation and removal coping with the typical limitations of object detection algorithms (i.e. false
and missing detection). Another focus was the design of robust and fast on-line learning and
tracking algorithms coping with the challenging situations in unconstrained environments with-
out any prior knowledge. And finally, we studied several approaches for effectively integrating
visual scene context in the tracking process. Note that, we developed several complete tracking
frameworks that were highly ranked in the very competitive international challenges VOT2014
and VOT2015, a challenge that is organised every year since 2013 as part of a workshop in
conjunction with ECCV and ICCV.
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7 Siamese Neural Networks for face

and gesture recognition

7.1 Introduction

As shown by our research presented in the last part, and by many works in the literature in the
last decades, discriminative approaches in machine learning are a very powerful tool in numerous
Computer Vision problems, including visual object tracking. In this part, we will consider other
applications that do not allow or are not suited for such supervised learning approaches. This
is the case, for example, when:

• instance labels (e.g . positive/negative, foreground/background or a person identifier) are
not available or too difficult to obtain for training or

• the number of classes is not fixed a priori or

• we want to model explicitly the relationship or similarity between instances and categories
of instances.

If no information on instance classes or their relationships is given at all, unsupervised approaches,
such as clustering methods, are most suitable to automatically learn and infer a general model
of the data. However, in many settings, we have class labels for at least some of the training
data, and we would like to learn a generic model that is applicable for all data of the same type.
In this case, weakly supervised or semi-supervised learning algorithms are commonly employed.

One such weakly supervised approach is to automatically learn a similarity metric between
instances of a given category (e.g . faces). That is, the instance labels are not explicitly learnt
but rather used to model the distance7 between similar and dissimilar instances – for example,
by using pairs of instances.

In the work that I will present in this chapter, we followed this approach using Siamese
Neural Networks (SNN). The original term “siamese” relates to the use of pairs of instances as
introduced by Bromley et al . [99]. However, in the literature, this has been extended to triplet
or tuple-based architectures, as in our approaches. As we will outline in the next section, there
are other models, for example, based on statistical projections or Support Vector Machines.
However, feed-forward neural networks have several properties that make them interesting and
particularly suitable for the problems that we studied:

• They can model a wide variety of linear and non-linear functions, c.f . the universal ap-
proximation theorem [193], and well-established optimisation approaches can be used.

7sometimes the term distance learning is used but many existing models do not strictly fulfil the mathematical
requirements of a distance, e.g . triangle inequality
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• By carefully specifying the architectures, we can relatively easily ”control” the complexity
of the models (in terms of the number of parameters and at different abstraction levels,
considering it as a data processing pipeline).

• Through multi-layered architectures and the error back-propagation algorithm, we can
automatically construct models that simultaneously learn optimal features and projections
into vector sub-spaces that best represent semantic similarities.

• Using multi-layer Convolutional Neural Network architectures, we can define models that
are suitable and very powerful for (natural) image data.

• Finally, for a large variety of applications and data, neural networks showed a high gener-
alisation capacity and robustness to different types of noise.

In the following, I will first outline the different algorithms and models that exist for similarity
metric learning in the literature and describe the principal SNN approach. Then, I will present
two major contributions that have been made to this field in the context of the PhD theses
of Lilei Zheng [441] and Samuel Berlemont [90] that I have co-supervised. One is related to
the definition of novel objective functions and learning strategies to improve the convergence
for training and the performance at test time with applications to pairwise face verification.
The other proposes a new SNN training framework with instance tuples to better condition the
resulting similarity space applied to the problem of 3D gesture recognition using inertial data
(from mobile phones).

7.2 Metric learning with Siamese Neural Networks

Most linear metric learning methods employ two types of metrics: the Mahalanobis distance
or a more general similarity metric. In both cases, a linear transformation matrix W is learnt
to project input features into a target space. Typically, distance metric learning relates to a
Mahalanobis-like distance function [397, 410]: dW (x, y) =

√
(x− y)TW (x− y), where x and y

are two sample vectors, andW is not the covariance matrix as for the Mahalanobis distance but is
to be learnt by the algorithm. Note that whenW is the identity matrix, dW (x, y) is the Euclidean
distance. In contrast, similarity metric learning methods learn a function of the following form:
sW (x, y) = xTWy/N(x, y), where N(x, y) is a normalisation term [315]. Specifically, when
N(x, y) = 1, sW (x, y) is the bilinear similarity function [108]; when N(x, y) =

√
xTWx

√
yTWy,

sW (x, y) is the generalised cosine similarity function [186].
Non-linear metric learning methods are constructed by simply substituting the above linear

projection with a non-linear transformation [121, 194, 210, 426]. For example, Hu et al. [194]
and Chopra et al. [121] employed neural networks to accomplish this. These non-linear methods
are subject to local optima and more inclined to overfit the training data but have the potential
to outperform linear methods on some problems [85, 210]. Compared with linear models, non-
linear models are usually preferred on a redundant training set to well capture the underlying
distribution of the data [229]. A detailed survey and review of metric learning approaches
has been published recently by Bellet et al. [85], and an experimental analysis and comparison
by Moutafis et al. [284]. We will concentrate here on Siamese Neural Networks (SNN) that can
represent linear or non-linear projections depending on the used activation function and number
of layers.

A SNN essentially differentiates itself from classical feed-forward neural networks by its spe-
cific training strategy involving sets of samples labelled as similar or dissimilar. The capabilities
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Figure 7.1: Original SNN training architecture.

of different SNN-based methods depend on four main points: the network architecture, the
training set selection strategy, the objective function, and the training algorithm [99]. In the
following, we will explain the three first points in more detail as they are most related to our
contributions.

7.2.1 Architecture

A SNN can be seen as two identical, parallel neural networks NN sharing the same set of
weights W (see Fig. 7.1). These sub-networks each receive an input sample X, and produce
output feature vectors OX that are supposed to be close for samples from the same class and
far apart for samples from different classes, according to some distance measure, such as the
cosine similarity metric (c.f . section 7.2.3). During the training step, an objective function EW ,
defined using the chosen distance measure over the output of all input sample combinations, is
iteratively minimised.

Bromley et al . [99] introduced the Siamese architecture in 1994, using a Siamese CNN with
two sub-networks for a signature verification system handling time-series of hand-crafted low-
level features. In 2005, Chopra, Hadsell and LeCun [121] formalised the Siamese architecture
applying a CNN on raw images for face verification, before adapting it to a dimensionality
reduction technique [173]. More recently, Siamese CNNs have been used successfully for various
tasks, such as person re-identification [419], speaker verification [112], and face identification
[359].

CNN-based architectures are more specific to image inputs, and several research works pro-
pose to use feed-forward Multi-Layer Perceptrons (MLP) to handle more general vector inputs.
For example, Yih et al . [421] apply SNNs to learn similarities on text data, Bordes et al . [97] on
entities in Knowledge Bases, and Masci et al . [273] on multi-modal data. In this chapter, we will
mostly focus on our work on MLP-based architectures and applications to face verification and
gesture recognition. Whereas, in the following chapter, we will present our research on deeper
CNN-based architectures applied to person re-identification in images.

7.2.2 Training Set Selection

The selection strategy for training examples depends mostly on the application and the kind of
knowledge about similarities that one wants to incorporate in the model. For many applications,
such as face or signature verification, the similarity between samples depend on their“real-world”
origin, i.e. faces/signatures from the same person, and the neural network allows to determine
the genuineness of a test sample w.r.t. a reference by means of a binary classification. Most
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approaches use pairs of training samples (X1,X2) and a binary similarity relation which takes
different values for similar and dissimilar pairs. Lefebvre et al . [231] proposed to expand the
information about the expected neighbourhood, and suggested a more symmetric representation:
by considering a reference sample XR for each known relation, it is possible to define triplets
(XR,X+,X−), with X+ forming a genuine pair with the reference XR, while X− is a sample
from another class – sometimes also called the anchor, the positive and the negative examples,
respectively.

7.2.3 Objective Functions

The objective function computes a similarity metric between the higher-level features extracted
from multiple input patterns. Minimising this function iteratively during training ensures that
the distance between similar patterns gets smaller, and the one between dissimilar gets larger.
In this regard, different metrics have been used in the literature:

Cosine pair-wise
Given a network with weights W and two samples X1 and X2 with their labels Y , a target

t(Y ) is defined for the cosine value between the two respective output vectors OX1 and OX2 as
“1” for similar pairs and “−1” (or “0”) for dissimilar pairs [99]:

EW (X1,X2, Y ) = (t(Y )− cos(OX1 ,OX2))
2 . (7.1)

A similar function is used in the Cosine Similarity Metric Learning (CSML) approach [186]:

EW (X1,X2, Y ) = −t(Y ) cos(OX1 ,OX2) . (7.2)

Norm-based
Several works [121, 173, 273, 359] propose to use the norm, e.g . ℓ2-norm, between the output

vectors as a similarity measure:

dW (X1,X2) = ‖OX1 −OX2‖2 . (7.3)

For example, Chopra et al . [121] define an objective composed of an “impostor” I (t(Y)=1) and
a “genuine”G term (t(Y)=0):

EW (X1,X2, Y ) = (1− t(Y ))EG
W (X1,X2) + t(Y ).EI

W (X1,X2) (7.4)

with EG
W (X1,X2) =

2

Q
(dW )2, EI

W (X1,X2) = 2Qe
(− 2.77

Q
dW )

, (7.5)

where Q is the upper bound of dW .
Many recent works use the so-called contrastive loss [173], where

EG
W (X1,X2) = d2W and EI

W (X1,X2) = max(m− d2W , 0) , (7.6)

with m being a fixed margin parameter.

Triplet
Weinberger et al. [397] introduced the triplet loss using simultaneously targets for genuine

and impostor pairs by forming triplets of a reference XR, a positive X+ and a negative X−

sample:
EW (XR,X+,X−) = max(dW (OR,O+)

2 − dW (OR,O−)
2 +m, 0) . (7.7)
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Later, Lefebvre et al . [231] proposed a triplet similarity measure based on the cosine distance.
Here, the output of the positive pair (OR,O+) is trained to be collinear, whereas the output of
the negative pair (OR,O−) is trained to be orthogonal. Thus:

EW (XR,X+,X−) = (1− cos(OR,O+))
2 + (0− cos(OR,O−))

2 (7.8)

Deviance

Yi et al . [419] use the binomial deviance to define their objective function:

EW (X1,X2, Y ) = ln
(
exp−2t(Y ) cos(OX1

,OX2) +1
)

(7.9)

Two Pairs

Yih et al . [421] consider two pairs of vectors, (Xp1,Xq1) and (Xp2,Xq2), the first being
known to have a higher similarity than the second. The main objective is then to maximise

∆ = cos(OXp1 ,OXq1)− cos(OXp2 ,OXq2) (7.10)

in a logistic loss function

EW (∆) = log(1 + exp(−γ∆)) , (7.11)

with γ being a scaling factor.

Probability-driven

Nair et al . [288] add a final unit to their neural network architecture whose activation function
computes the probability P of two samples X1, X2 being from the same class:

P =
1

1 + exp(−(w. cos(OX1 ,OX2) + b))
, (7.12)

with w and b being scalar parameters.

Statistical

Chen et al . [112] compute the first and second-order statistics, µ(i) and Σ(i), over sliding
windows on the SNN outputs of a speech sample i, and define the objective function as:

EW (X1,X2, Y ) = (1− t(Y ))(Dm +DS) + t(Y ).(exp(
−Dm

λm
) + exp(

−DS

λS
)) , (7.13)

where

Dm =
∥∥∥µ(i) − µ(j)

∥∥∥
2

2
, DS =

∥∥∥Σ(i) − Σ(j)
∥∥∥
2

F
(7.14)

are incompatibility measures of these statistics between two samples i and j, λm and λs are
tolerance bounds on these measures, and ‖.‖F is the Frobenius norm.

We have made several contributions proposing novel training strategies and objective func-
tions to more effectively train SNNs for different applications related to pairwise face verification
and gesture classification. For example, the Triangular Similarity Metric and the Polar-Sine
Metric, described in the following sections.
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7.3 Triangular Similarity Metric Learning for pairwise verifica-

tion

7.3.1 Introduction

In this section, I will describe our work [4, 8, 25–27] that has been performed in the context of
the PhD thesis of Lilei Zheng [441], co-supervised with Christophe Garcia, Khalid Idrissi and
Atilla Baskurt. This research focused on novel approaches for similarity metric learning with
SNN applied to the problem of face verification.

Compared with the traditional identification task in which a decision of acceptance or rejec-
tion is made by comparing a sample to models (or templates) of each class [274, 320], pairwise
verification is more challenging because of the difficulty of building robust models with enough
training data for each class [196]. Often, only one training sample per class is available. More-
over, in current benchmark datasets, usually, the class identities in the training and test sets are
mutually exclusive,i.e. there are no examples in the training set from a class figuring in the test
set. The problem of pairwise face verification is to analyse two face images and decide whether
they represent the same person or not. As mentioned above, it is usually assumed that neither
of the face images shows a person from the training set.

In our work, we focused on Similarity Metric Learning approaches based on SNNs, which
are particularly suitable for this type of problem. The models that we have studied are different
linear and non-linear MLP architectures, trained with pairs of examples. Our main contributions
have been: a new objective function for effective similarity metric learning with SNNs and a
new training approach that only uses similar pairs of examples.

7.3.2 State of the art

One of the most used benchmark for face verification in the literature is “Labeled Faces in the
Wild” (LFW) [196]8 that includes faces with varying poses and lighting conditions as well as
facial expressions (see Fig. 7.3). It defines two evaluation protocols, one called “restricted”where
only provided data can be used, and one called “unrestricted” where additional external data
may be used for training.

In particular, for this last setting, recent deep learning techniques have approached the accu-
racy of 100% under the LFW evaluation standard. Almost all the published methods employed
deep Convolutional Neural Networks (CNN) to process face images and to learn a robust face
representation on additional large labelled training datasets, such as DeepFace from Facebook
using the non-public SFC dataset [365]; DeepID [359, 360] using the CelebFaces dataset [258] 9

and the WDRef dataset [111]; FaceNet from Google using a 260-million image dataset [332] and
the Tencent-BestImage commercial system using their BestImage Celebrities Face dataset10.

However, with limited training data, these deep methods are more prone to overfitting and
thus usually result in inferior performance for unseen test data. Under the restriction of no
outside labelled training data, tremendous efforts have been put on developing robust face de-
scriptors [62, 81, 111, 130, 197, 209, 243, 301, 328, 335, 342, 370, 402] and metric learning meth-
ods [81, 106, 131, 172, 186, 194, 398, 424]. Popular face descriptors include eigenfaces [370],
Gabor wavelets [130], SIFT [209, 260], Local Binary Patterns (LBP) [62], etc. Especially, LBP
and its variants, such as center-symmetric LBP (CSLBP) [180], multi-block LBP (MBLBP) [432],

8http://vis-www.cs.umass.edu/lfw/index.html
9http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

10http://bestimage.qq.com/
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(a) (b)

Figure 7.2: Geometrical interpretation of the TSML cost and gradient. (a) Minimising the cost
means to make similar vectors parallel and make dissimilar vectors opposite. (b) The gradient
function suggests unit vectors on the diagonals as targets for ai and bi: the same target vector
for a similar pair (si = 1); or the opposite target vectors for a dissimilar pair (si = −1).

three patch LBP (TPLBP) [402] and over-complete LBP (OCLBP) [81], have proven to be effec-
tive for describing facial texture in images. Since face verification needs an appropriate way to
measure the difference or similarity between two images, many researchers have been studying
metric learning which aims at automatically specifying a metric from data pairs. For instance,
Guillaumin et al . [171] proposed Logistic Discriminative Metric Learning (LDML) to model the
probability of two vectors being similar by using a parametric sigmoid function with learnt pa-
rameters. Cao et al . [106] proposed to simultaneously learn a Mahalanobis distance-like metric
and a bilinear similarity metric. They call their method Similarity Metric Learning over the
Intra-personal Subspace (Sub-SML). The method introduced by Nguyen et al . [186] is called
Cosine Similarity Metric Learning (CSML) and iteratively optimises a cosine-based objective
function using similar and dissimilar pairs (c.f . Eq. 7.2). Finally, Chopra et al . [121] were the
first to apply a SNN model to face verification.

Besides, other efforts have been made on face frontalisation (i.e. pose alignment) [89, 241, 418]
or multiple descriptor fusion [66, 125, 301], in order to further improve the face verification
performance.

7.3.3 Learning a more effective similarity metric

In the context of Lilei Zheng’s PhD [441], we proposed a new approach for pairwise similarity
learning called Triangular Similarity Metric Learning (TSML). We used a SNN with shared
weights W that, at an iteration i, takes two inputs X1 and X2 and produces two outputs ai and
bi (OX1 and OX2 in the previous section). The cost function of TSML is defined as:

EW =
1

2
‖ai‖2 +

1

2
‖bi‖2 − ‖ci‖+ 1, (7.15)

where ci = ai + sibi: ci can be regarded as one of the two diagonals of the parallelogram formed
by ai and bi (see Fig. 7.2(a)). Moreover, this cost function can be rewritten as:

EW =
1

2
(‖ai‖ − 1)2 +

1

2
(‖bi‖ − 1)2 + ‖ai‖+ ‖bi‖ − ‖ci‖ . (7.16)

We can see that minimising the first part aims at making the vectors ai and bi having unit
length; the second part concerns the well-known triangle inequality theorem: the sum of the

87



Chapter 7. Siamese Neural Networks for face and gesture recognition

Figure 7.3: Some challenging image pairs of same persons from the LFW dataset.

lengths of two sides of a triangle must always be greater than the length of the third side, i.e.
‖ai‖+ ‖bi‖− ‖ci‖ > 0. More interestingly, with the length constraints induced by the first part,
minimising the second part is equivalent to minimising the angle θ between the vectors of a
similar pair (si = 1) or maximising the angle θ between a dissimilar pair (si = −1), in other
words, minimising the Cosine Similarity between ai and sibi (c.f . Eq. 7.2).

In practice, this cost function can be minimised iteratively using Stochastic Gradient Descent
(SGD) and the well-known gradient Backpropagation algorithm for multi-layer neural architec-
tures. The gradient of the cost function (Eq. (7.15)) with respect to the parameters W is:

∂EW

∂W
= (ai −

ci
‖ci‖

)T
∂ai
∂W

+ (bi −
sici
‖ci‖

)T
∂bi
∂W

. (7.17)

We can obtain the optimal cost at the zero gradient: ai− ci
‖ci‖

= 0 and bi− sici
‖ci‖

= 0. That is, the

gradient function has ci
‖ci‖

and sici
‖ci‖

as targets for ai and bi, respectively. Figure 7.2(b) illustrates

this: for a similar pair, ai and bi are mapped to the same target vector along the diagonal (the
red solid line); for a dissimilar pair, ai and bi are mapped to opposite unit vectors along the
other diagonal (the blue solid line). This perfectly reveals the objective of attracting similar
pairs and separating dissimilar pairs. See [4] for more details on the optimisation procedure.

7.3.4 Experiments

7.3.4.1 Pairwise face verification results

As mentioned above, we used the LFW benchmark (‘funnelled’ version, i.e. aligned and cropped
face images) to evaluate our proposed TSML approach. Both settings, the restricted and un-
restricted protocol are evaluated. The restricted dataset contains fixed 300 positive and 300
negative pairs, whereas in the unrestricted case we generate more pairs from the same images
using their identity labels. For the SNN, we considered three types of neural network architec-
tures, “Linear” corresponding to a single-layer network without bias term, “Non-linear” with an
additional tanh activation function and bias and “MLP” corresponding to a two-layer network
(i.e. one hidden layer) with bias and tanh activation functions. We further experimented with a
training strategy that uses only similar pairs in the optimisation, and no dissimilar pairs at all.
The intuition behind this is that learning dissimilarity is challenging and not well conditioned as
opposed to similarities. Thus, depending on the data, the negative term in the objective func-
tion related to dissimilarity may be partly contradictory to the positive one and might inhibit
the learning of similarities during the training process. As training input, we used standard
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Approaches Restricted Training Unrestricted Training

Baseline 84.83±0.38
WCCN 91.10±0.45 91.17±0.36

TSML-Linear 87.95±0.40 92.03±0.38
TSML-Nonlinear 86.23±0.39 91.43±0.52

TSML-MLP 84.10±0.45 89.30±0.73
TSML-Linear-Sim 91.90±0.52 92.40±0.48

TSML-Nonlinear-Sim 90.58±0.52 91.47±0.37
TSML-MLP-Sim 88.98±0.64 89.03±0.58

Table 7.1: Mean maxDA scores (±standard error of the mean) of pairwise face verification by the
TSML-based methods on the LFW-funneled image dataset. ’-Sim’ means training with similar
pairs only.

state-of-the-art Fisher Vector (FV) features [307, 342] to describe the face images and reduce
them to 500 dimensions using Whitened Principal Component Analysis (WPCA).

Like the minimal Decision Cost Function (minDCF) in [170], we defined a Decision Accuracy
(DA) function to measure the overall verification performance on a set of data pairs:

DA(γ) =
number of right decisions (γ)

total number of pairs
, (7.18)

where the threshold γ is used to make a decision on the final distance or similarity values: for
the TSML system, cos(a, b) > γ means (a, b) is a similar pair, otherwise it is dissimilar. The
maximal DA (maxDA) over all possible threshold values is the final score recorded. We report
the mean maxDA scores (±standard error of the mean) of the 10 experiments.

Table 7.1 shows the results for a baseline method, i.e. the maxDA scores directly com-
puted on the FV data, the state-of-the-art method “Within Class Covariance Normalization”
(WCCN) [81], and different variants of the proposed TSML approach. It can be noted that
the unrestricted training gives better results, in general, as more training pairs are available.
Surprisingly, linear models perform better than non-linear ones. This has been confirmed by
several other experiments and is probably due to overfitting and the lack of training data. And
finally, the methods that train the models on only similar pairs give superior results, and also
outperform the other baseline approaches. Note that also WCCN does not model “dissimilarity”
as it minimises only the intra-class variance and not the inter-class variance.

We further compared our approach to the state of the art. For a fair comparison, all tested
methods use a single type of feature as input data. Better results could be obtained with a fusion
of several types of features but, here, we wanted to focus on the different algorithms for similarity
metric learning. Table 7.2 summarises the results on the LFW face verification benchmark
(restricted setting). The proposed TSML approach outperforms all existing methods. Note
that DDML (Discriminative Distance Metric Learning) is another method that we developed in
the context of Lilei Zheng’s thesis [4]. It uses a norm-based objective function and also gives
excellent results, only slightly inferior to TSML.
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Method Feature Accuracy

MRF-MLBP [65] multi-scale LBP 79.08±0.14
APEM [241] SIFT 81.88±0.94
APEM [241] LBP 81.97±1.90

Eigen-PEP [243] PEP 88.47±0.91
Hierarchical-PEP [240] PEP 90.40±1.35

SVM [342] Fisher Vector faces 87.47±1.49
DDML-Linear-Sim Fisher Vector faces 91.03±0.61

WCCN [81] Fisher Vector faces 91.10±0.45
TSML-Linear-Sim Fisher Vector faces 91.90±0.52

Table 7.2: Comparison of TSML-Linear-Sim with other methods using a single type of face
descriptor under the restricted configuration with no outside data on LFW-funneled.

Approaches Restricted Training Unrestricted Training

Baseline 87.78±0.39 / 0.1335
WCCN 91.69±0.29 / 0.0900 91.97±0.33 / 0.0853

TSML-Linear 89.78±0.25 / 0.1108 93.97±0.20 / 0.0648
TSML-Nonlinear 87.43±0.31 / 0.1340 93.11±0.20 / 0.0733

TSML-MLP 84.88±0.24 / 0.1592 90.21±0.36 / 0.1023

TSML-Linear-Sim 92.94±0.15 / 0.0785 93.99±0.24 / 0.0662
TSML-Nonlinear-Sim 91.29±0.25 / 0.0918 93.43±0.23 / 0.0690

TSML-MLP-Sim 89.59±0.45 / 0.1093 90.83±0.30 / 0.0967

Table 7.3: Mean maxDA scores (±standard error of the mean) and mean EER of pairwise
speaker verification by the TSML methods on the NIST i-vector speaker dataset. ’-Sim’ means
training with similar pairs only.

7.3.4.2 Results on other applications

Speaker verification

We further evaluated our TSML approach on other pairwise verification problems – for
instance, speaker verification using audio data. To this end, we used the data of the NIST
2014 Speaker i-Vector Challenge [170], which consist of i-vectors [132, 158, 232] derived from
conversational telephone speech data in the NIST speaker recognition evaluations from 2004
to 2012. Each i-vector, the identity vector, is a vector of 600 components, designed to be
characteristic for the voice of a given person. This dataset consists of a development set for
building models and a test set for evaluation. Table 7.3 shows the average maxDA scores of the
different variants of TSML with respect to the baseline and the state-of-the-art method WCCM.
These results confirm the observations made for face verification, i.e. the linear models perform
better, and training with only similar pairs improves the performance.

Kinship verification

Another similar problem is kinship verification from images, where the objective is to de-
termine whether there is a kin relation between a pair of given face images. Lu et al . [261]
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Team F-S F-D M-S M-D Mean

Polito 84.00 82.20 84.80 81.20 83.10
LIRIS 89.40 83.60 86.20 85.00 86.05
ULPGC 85.40 75.80 75.60 81.60 80.00
NUAA 84.40 81.60 82.80 81.60 82.50
BIU 87.51 80.82 79.78 75.63 80.94

SILD (LBP) 78.20 70.00 71.20 67.80 71.80
SILD (HOG) 79.60 71.60 73.20 69.60 73.50

Table 7.4: Kinship verification accuracy (%) on KinFaceW-II under the restricted configuration
in the FG 2015 Kinship Verification Evaluation.

constructed the Kinship Face in the Wild (KinFaceW) dataset for studying the problem of kin-
ship verification from unconstrained face images mostly collected from the Internet, defining
four types of relationships: Father-Son (F-S), Father-Daughter (F-D), Mother-Son (MS) and
Mother-Daughter (M-D). Similar to LFW, the KinFaceW dataset holds the setting of limited
training data for some classes and the setting of mutually exclusive training and test sets. There
are two sub-sets: KinFaceW-I and KinFaceW-II, and besides their size, the major difference is
that any two relative faces were acquired from different photos in KinFaceW-I but most relative
faces in KinFaceW-II were captured from the same photo. In other words, environment condi-
tions such as lighting differ more significantly between face pairs in KinFaceW-I than those in
KinFaceW-II.

Using FV feature vectors as input, we evaluated TSML on this dataset, and, more impor-
tantly, we participated in an international competition on kinship verification that was organ-
ised by Lu et al . [25] in conjunction with FG 2015 and that used the KinFaceW dataset to
benchmark the submitted methods. Table 7.4 shows the verification accuracy of the different
submitted methods for KinFaceW-II in the restricted setting (ours is called LIRIS here). Our
approach achieved the first place in this part of the competition. In the first part, we achieved
the third place with a mean accuracy of 82.74% behind the method from“Politecnico di Torino”
(Italy) (86.30%) and the one from“Nanjing University of Aeronautics and Astronautics” (China)
(82.96), both proposing a feature selection approach using different types of features and an SVM
classifier. The Side-information based linear discriminant analysis (SILD) [208] has been used
as a baseline.

7.3.5 Conclusion

The proposed TSML method represents a generic SNN-based similarity metric learning frame-
work that can operate with different models – linear and non-linear and with varying complexity,
making it a powerful approach for weakly supervised learning for various applications and giving
state-of-the-art results on different pairwise verification problems.

An interesting result of our studies is the fact that training with only similar pairs may im-
prove the overall verification performance. Our further research work, presented in the following
section, tries to better incorporate the negative pairs in the training process to build a more
powerful model that also exploits these dissimilarities. This will especially help in the context
of classification, which is the objective of the following work.
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Figure 7.4: Left: illustrations of some symbolic gestures that are to be recognised from inertial
sensor data from mobile devices. Right: examples from the Multimodal Human Action Dataset
(MHAD).

7.4 Class-balanced Siamese Neural Networks for gesture and

action recognition

7.4.1 Introduction

Our experiments showed that SNNs are able to model complex similarity metrics learnt from
data. In the research work described in this section, that has been conducted as part of the PhD
thesis of Samuel Berlemont [90] and that I have co-supervised with Christophe Garcia (LIRIS)
and Grégoire Lefebvre (Orange Labs), we studied new approaches to incorporate negative, dis-
similar examples in the training algorithm of SNNs, to improve the convergence and the resulting
overall embedding in the similarity space. To this end, we proposed training algorithms that go
beyond pairwise similarities and dissimilarities and operate on tuples. In addition, in this work,
we were not concerned with verification but we concentrated on classification problems, i.e. we
have data samples with labelled classes, and the classes are the same at training and test time.
Thus, in principle, supervised learning approaches could be used in this context. However, there
are advantages in modelling more explicitly the similarities and relationships between the dif-
ferent classes using a weakly supervised metric learning approach with SNNs. That is, not only
the overall classification performance is improved, but also new samples from unknown classes
can be more effectively rejected, as we will show in this section.

The developed algorithms have been evaluated on the problems of action recognition and on
3D symbolic gesture recognition using data from inertial sensors (accelerometers, gyroscopes etc.)
commonly present in current mobile phones. Some of the gestures (e.g . flick east/west/north/
south, pick, throw, heart, circle etc.) and activities (e.g . climbing, running, jumping etc.) are
depicted in Fig. 7.4. The solution to this problem bears a certain number of challenges. On the
one hand, inertial MicroElectroMechanicals Systems (MEMS) present inherent flaws that have
to be taken into account, since they can be deceived by physical phenomena (e.g . electromagnetic
interferences). On the other hand, in a real open-world application, inertial based gesture and
action recognition also has to cope with high variations between users (i.e. right/left-handed
users, dynamic/slow movements, etc.). Finally, to offer more functionality to final users, such
a recognition system should propose a large vocabulary of possible interactions and reject all
uncertain decisions and parasite or irrelevant motion.

In our work, we considered a gesture or action data example as a vector of fixed size, i.e.
we worked with temporally segmented samples, and we performed a pre-processing step with a
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certain number of traditional filtering, resampling and normalisation techniques to reduce the
noise and to normalise the duration. More details on this can be found in [2, 33].

7.4.2 State of the art

Inertial gesture and action recognition

In the recent literature, three main strategies exist to deal with gesture and action recognition
based on inertial data: probabilistic temporal signal modelling, temporal warping or statistical
machine learning.

The probabilistic approach has mainly been studied with discrete [189, 207, 211] and con-
tinuous HMMs [314]. For instance, Kela et al . [211] used discrete HMMs (dHMM) from gesture
velocity profiles. The first step is the input data space clustering in order to build a feature
vector codebook. The second one consists in creating a discrete HMM using the sequences of
vector codebook indexes. A correct recognition rate of 96.1% is obtained with 5 HMM states
and a codebook size of 8 from 8 gestures realised by 37 users. In order to use gesture data
correlation in time, Pylvänäinen [314] proposed a system based on a continuous HMM (cHMM)
achieving a recognition rate of 96.76% on a dataset with 20 samples for 10 gestures realised by
7 persons.

The second approach is based on temporal warping from a set of reference gestures [64,
256, 401]. Liu et al . [256] presented a method using Dynamic Time Warping (DTW) from pre-
processed signal data that gives gesture recognition and user identification rates of respectively
93.5% and 88%, outperforming in this study the HMM-based approach.

The third strategy is based on a specific classifier [188, 230, 404]. Hoffman et al . [188] propose
a linear classifier and Adaboost, resulting in a recognition rate of 98% for 13 gestures performed
by 17 participants. The study of Wu et al . [404] proposes to construct fixed-length feature
vectors from the temporal input signal to be classified with Support Vector Machines (SVM).
Each gesture is then segmented in time and statistical measures (mean, energy, entropy, standard
deviation and correlation) are computed for each segment to form the final feature vectors. The
resulting recognition rate is 95.21% for 12 gestures made by 10 individuals, outperforming in this
study the DTW results. Finally, the recent study by Lefebvre et al . [230] proposes a method
based on Bidirectional Long-Short-Term Memory Recurrent Neural Networks (BLSTM-RNN
see [168]), which classifies sequences of raw MEM data with very good accuracy, outperforming
classical HMM and DTW methods.

We also developed a inertial gesture classification method based on supervised learning and
a specific Convolutional Neural Network (CNN) model. For our dataset of 14 symbolic gestures,
we obtained a classification accuracy of up to 95.8% depending on the used test protocol outper-
forming other state-of-the-art methods. However, for the reasons mentioned above, i.e. better
rejection of unknown classes and improved similarity metric space, we focused our following
work on similarity metric learning approaches with SNN models.

Rejection approaches

The notion of rejection in classification has been studied in other areas and applications.
Two kinds of rejection criteria have been proposed in the literature, with the first criterion
based on the actual input to the classifier, and the second based on decision boundaries for the
output space. Following the first strategy, Vasconcelos et al . [376], tackling handwritten digit
recognition with a neural network-based classifier, suggested to use “guard units” for each class.
These units are defined by their weight vector, which is composed by the means of the features for
every training pattern belonging to the class. After activation of the network by a new sample,
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the guard units check a similarity score between the input sample and each class, issuing a “0”
output for neurons corresponding to the classes that do not meet the rejection criterion. For
an input sample I and a weight vector W corresponding to the class of the sample, the scalar
product I ·W should be closer to the norm of W than the scalar product for a sample belonging
to a different class. The rejection criterion is then defined by a threshold ρ, where the input is
accepted by a class i only if I ·Wi ≧ (Wi ·Wi − ρ).

The second strategy is more common, and can be subdivided into threshold-based and custom
boundary determination methods. Fels et al . [145] applied a neural network model relying on
5 MLPs to a glove-based hand-gesture-to-speech system, Here, a thresholding strategy on the
value of the highest softmax (neuron) output is adopted for the rejection of uncertain gestures.
In [343], Singh et al . proposed an additional step to improve this rejection method. Applied to
object recognition using a sequence of still images from the Minerva benchmark, their rejection
criterion relies on synthetically generated patterns. For each feature, random numbers are
sampled between µ − 2.5σ and µ + 2.5σ and removed if comprised between a minimum and
maximum value. The generated patterns represent thus the outside boundaries of each class,
and are trained to produce outputs close to zero for every class. Test samples are then classically
rejected if all of their outputs are under a 0.5 threshold. A thresholding on the maximum output
corresponds to a spheric reliability zone.

In order to define more flexible boundaries, Gasca et al . [159] proposed to estimate hyper-
planes emulating the decision boundaries in the MLP output space in order to identify “overlap”
regions, where the samples are more likely to be misclassified. The MLP is combined with a
k-NN classification, based on the outputs of the training samples correctly classified after train-
ing. When recognizing a pattern, from the two nearest classes, the label is accepted only if the
class given by the network matches the one selected by the k-NN, provided that the sample is
not in the overlap area between hyperplanes.

7.4.3 Learning with tuples

As with the approaches presented in the previous section for pairwise verification, we proposed
to use a SNN for similarity metric learning. The underlying model, that is non-linear here, was
trained on gesture sample vectors, and the architecture of the neural network is an MLP with
one hidden layer and sigmoid activation functions.

Cosine-based objective function

While Bromley et al . in [99] originally defined an objective function on separate positive
and negative pairs (Eq. 7.1), whose number was arbitrary, Weinberger et al . [397] and Lefeb-
vre et al . [231] proposed an error criterion based on triplets, with one reference example, one
negative and one positive examples (Eq. 7.7 and 7.8). In order to keep symmetric roles for
every class, we proposed a novel objective function defined over sets of training examples
T = {R;P+;N1; ..;NK} involving one reference example R, one positive examples P+ and
K negatives Nj, one for each class (see Fig. 7.5). Thus, for a given set Ts in one training
iteration, we define:

EW (Ts) = (1− cos(OR,OP))
2 +

∑

j,j 6=i

(0− cos(OR,ONj
))2 . (7.19)

And the overall objective is:

EW =
∑

s

EW (Ts) , (7.20)
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Figure 7.5: Proposed SNN training architecture with tuples.

for all possible tuples Ts, which can be minimised iteratively, e.g . on randomly selected sets Ts,
using the Stochastic Gradient Descent and the gradient Backpropagation algorithm.

Norm regularisation
As with our TSML method, we wanted to further improve our objective function and conver-

gence by introducing a normalisation and regularisation term. Cosine similarity-based objective
functions are defined on the angle between the output vectors disregarding their lengths. Thus,
introducing additional constraints on the vector norms helps to improve the convergence and to
form a more stable embedding.

To this end, we first studied the behaviour of a weight update over the samples projected
by the SNN. In the following, we will analyse the cosine metric as a function of two vectors of
dimension n,

cosX1,X2 : R2n → R | (X1,X2)→
1

2
(1− cos(X1,X2))

2. (7.21)

Let (O1,O2) be a pair of outputs used for update. Given the functions

cosO1 : Rn → R |X→ 1

2
(1− cos(O1,X))2

cosO2 : Rn → R |X→ 1

2
(1− cos(X,O2))

2
(7.22)

respectively evaluated at the points O2 and O1, the cosX1,X2 directional derivative at (O1,O2)
can be expressed as the concatenation of the two directional derivatives∇cosO1

(O2) and∇cosO2
(O1).

We showed that every gradient descent step will increase the norms for both samples. Con-
sidering the function cosO1 , the update of O2 is

Ot+1
2 = Ot

2 − λ.∇cosO1
(O2), λ ∈ R. (7.23)

Figure 7.6 gives a graphical illustration in three dimensions. The line directed by the vector
O2

‖O2‖
belongs to the equipotential for the cosO1 function. By definition, we can conclude that

the directional derivative ∇cosO1
(O2) is orthogonal to O2. According to Pythagoras’ theorem,

we can conclude:

∥∥Ot+1
2

∥∥2 =
∥∥Ot

2

∥∥2 + λ2
∥∥∥∇cosO1

(O2)
∥∥∥
2
⇒
∥∥Ot+1

2

∥∥ >
∥∥Ot

2

∥∥ . (7.24)

95



Chapter 7. Siamese Neural Networks for face and gesture recognition

Figure 7.6: An update step on the projection norm for a pair (Ot
1,O

t
2). The sphere centre

corresponds to the origin. The grey cone represents the equipotential surface for the function
cosO1 .

Increasing the norms of the output vectors may incur progressive divergence. Moreover, with
hyperbolic tangent activation functions, the output space is a hyper-cube of dimension n, which
restricts the norms to a maximum of

√
n. Therefore, we proposed to add constraints on the

norms of every output by forcing them to 1 and thus avoid any undesired saturation effects.
We modify our objective function EW1 (see Eq.7.19) for a training subset Ts:

EW2(Ts) = EW1(Ts) +
∑

Xp∈Ts

(1−
∥∥OXp

∥∥)2. (7.25)

Given ∀(O1,O2) ∈ (Rn,Rn), cos(O1,O2) =
O1·O2

‖O1‖.‖O2‖
, we also propose to replace the cosine

distance for each pair by the scalar product of the pair outputs, since the norms of the two
outputs are set to one during training.

Thus, the final objective function for one training subset Ts is defined as:

EW (Ts) = (1−ORk
·OPk

)2 +
∑

l∈Nk

(0−ORk
·ONl

)2 +
∑

Xp∈Ts

(1−
∥∥OXp

∥∥)2. (7.26)

This loss function can be minimised iteratively using Stochastic Gradient Descent and the
gradient Backpropagation algorithm that takes into account the weight sharing and several
activations by the different samples in each set Ts.

Since the SNN is trained to evaluate similarities between multiple samples simultaneously,
our assumption was that unknown samples are projected in a feature space in a coherent manner
with known classes. To validate this hypothesis experimentally, we proposed a new SNN rejection
strategy explained in the following.

Proposed rejection strategies
Once the SNN is trained, the output layer gives us a feature vector representing a similarity

measure of a set of samples. For classification of samples, any standard classifier can be applied
to these feature vectors. We choose a k-NN classification based on the cosine similarity metric in
order to prove the validity and reliability of the learned projection. Finally, our rejection criterion
consists in a single threshold, common to all classes, on the distance to the closest known sample.
This same thresholding criterion is applied to another model based on DTW in order to get the
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closest comparison possible and to a standard MLP, trained in a supervised way, with one
output neuron per class and the well-known softmax activation function. Two types of rejection
strategies are then studied. The first kind encompasses all incorrect classifications, and tests the
ability of a system to identify samples whose classification is too uncertain to be accepted. The
main challenge for the model is to isolate the misclassified samples first. The second kind of
rejection concerns “unknown” classes, and aims at evaluating a model performance in isolating
elements it was not trained for from the rest of the known classes. This type rejection is only
rarely taken into account by existing methods, or is taken care of by another model specifically
trained for this task. The main experimental results are summarised in section 7.4.5.

7.4.4 Polar sine-based objective function

While the regularised tuple-based formulation of the objective function of Eq. 7.26 is more
suited to handle angular updates, it turns out impractical when the number of classes increases.
Moreover, in the derivative of the mean squared error objective, the cosine error is weighted by
the difference between the target and the cosine value which tends to zero and slows down the
convergence. Thus, we proposed a new error function that preserves the targets, while addressing
both of these problems. More specifically, we proposed a reformulation of the objective function
based on a higher-dimensional dissimilarity measure, the polar sine metric.

Inspired by the 2D sine function, Lerman et al . [236] define the polar sine for a set Vm =
{v1, . . . ,vn} of m-dimensional linearly independent vectors (m > n) as a normalized hyper-
volume. Given A =

[
v1 v2 · · · vm

]
and its transpose A⊤:

PolarSine(v1, . . . ,vn) =

√
det (A⊤A)∏n
i=1 ‖vi‖

. (7.27)

In the special case where m = n, the matrix product in the determinant is replaced by the
square matrix A.

Given the matrix S such that ∀(i, j) ∈ [1, .., n]2 ,Si,j = cos(vi,vj), this measure can be
rewritten as PolarSine(v1, . . . ,vn) =

√
det (S). For numerical stability reasons during the

derivation process and to make this value independent from the number of classes, we introduced
the polar sine metric:

psine(v1, . . . ,vn) =
n
√

det (S). (7.28)

The polar sine metric only depends on the angles between every vector of the set. It reaches
its maximum value when all the vectors are orthogonal, and thus can be used as a measure for
dissimilarity.

With two comparable similarity estimators whose values are between 0 and 1, one for similar
and one for dissimilar samples, it is now possible to redefine the objective function for our
training sets Ts:

EW3(Ts) = EsimW (Ts) + EsimW (Ts) ,

EsimW (Ts) = (1− cos(ORk
,OPk

))2,

EsimW (Ts) = (1− psine(ORk
,ON1 , . . . ,ONK

))2 .

(7.29)

Optimizing the polar sine corresponds to assigning a target of 0 to the cosine value of every
pair of outputs from different vectors drawn in Ts\{Rk}, i.e. we assign a target for every pair of
dissimilar samples. This actually holds more information than our original cosine or regularised
objective functions, which would only define a target for pairs including the reference sample.
As a consequence, the psine function allows for a complete representation, in every training
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set, of every available relationship present in the dataset. Given a fixed number of sources,
the initial inputs are transformed into maximally independent, multi-dimensional components.
Thus, our Siamese network, combined with this new objective function presents all the properties
of a supervised, stochastic non-linear Independent Component Analysis, with an additional
advantage: the number of components is adjustable by modifying the network output layer
structure.

7.4.5 Experiments

We evaluated the proposed SNN approaches on several different datasets related to gesture
and action recognition with inertial sensor data, and we compared it to a standard supervised
MLP [126], a DTW-based model [126] and a SVM-based approach [109]. I will present here a
summary of our results for two of the tested datasets.

Internal Orange Labs gesture dataset (DB1): this is one of the private dataset that we
collected using an Android Samsung Nexus S mobile phone. It comprises 40 repetitions of 18
different classes (see Fig. 7.4) performed by a single individual, for a total of 720 records. After
low-pass filtering, resampling and normalisation of the 3D accelerometer and gyroscope signals
in 45 time steps, we obtain data vectors of fixed size 45× 6 = 270 that we used for training and
evaluating the different classification methods.

Multimodal Human Action Dataset (MHAD): this public dataset [294] comprises the
recordings from 12 participants performing 11 different actions (with 5 repetitions) (see Fig. 7.4).
Although there are multiple types of recorded sensors, we focus our study on two main sensors,
namely the right wrist inertial sensor (A1) and motion capture (M20), as they gave the best
classification results for all of the tested methods. We applied a similar pre-processing step as
for the internal dataset DB1 and obtain data vectors of size 45 × 3 = 145.

The same network architecture is selected for every SNN variant: a 2-layer neural network,
with an input size adapted to the data dimensionality (135 neurons for MHAD), a 45-neuron
hidden layer, and a 90-neuron output layer. The hyperbolic tangent is chosen as the activation
function for every neuron, and the learning rate is set to 0.001. During training, the network is
independently and successively activated with every sample of a training set. Each activation
state is stored, and reused to compute the weight updates. For more details refer to [2].

First, we studied the ability of a model to reject unknown gesture classes with the DB1
dataset. For training the model, 14 classes are used, with 5 repetitions per class. The test data
comprises 16 repetitions from these 14 classes, as well as every record available from the 4 last
unused classes, for a total of 224 records from known classes and 160 records from unknown
classes (41.6%). The SNN is trained on tuples using the norm-regularised objective function of
Eq. 7.26. Figure 7.7 depicts the curves showing the classification rates for DTW, MLP and the
proposed SNN varying the rejection threshold. The SNN model presents a superior capacity to
isolate unknown samples. Around the 41.6% landmark, where every unknown sample can be
rejected, the SNN presents a correct classification rate of 94%, while the DTW and the MLP
get lower scores of 92% and 88%, respectively. Furthermore, in its best configurations, depicted
by the means of the deviation, the SNN is the closest to the perfect rate as the rejection rate
increases.

Finally, we evaluated the performances of each SNN objective function variant with a tuple-
based training selection strategy, denominated cos-tuples (c.f . Eq. 7.19), norm-regularised (c.f .
Eq. 7.26) and psine (c.f . Eq. 7.29). The results for MHAD are shown in Table 7.5. For our
analysis, we focus on the classification rates obtained from isolated sensor data with the ac-
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Figure 7.7: DTW, MLP and SNN comparison with the DB1 gesture dataset.

A1 M20

DTW [126] 0.790 ± 0.107 0.888 ± 0.076
MLP [126] 0.818 ± 0.099 0.913 ± 0.067
SVM [109] 0.867 -

SNN cos-tuples (Eq. 7.19) 0.915 ± 0.102 0.906 ± 0.080
SNN norm-regularised (Eq. 7.26) 0.886 ± 0.079 0.910 ± 0.065

SNN psine (Eq. 7.29) 0.918± 0.091 0.924 ± 0.068

Table 7.5: Classification rates of the different SNN models and the state of the art on MHAD.

celerometer A1 and the motion capture sensor M20, and we report the results for the DTW and
MLP methods proposed in [126] and the SVM-based approach [109] on these same sensors. The
SNN-based approaches globally show superior results on the inertial sensor A1, with a lowest
score of 88.6% for the norm-regularised SNN, compared to a best score in the literature of 86.7%
for the SVM approach. This shows that our SNN-based approach is very competitive. This
conclusion is verified for the M20 sensor. Our SNN-psine approach, implementing the polar sine
metric and tuple-based set selection strategies contributions, gives the best result of 92.4%.

7.4.6 Conclusion

In this section, we introduced new SNN similarity metric learning methods with objective func-
tions operating on tuples that are well adapted for classification problems. Our contributions
on the norm regularisation term and the polar sine improved the convergence of the models, the
handling of rejection as well as the overall classification performance. We experimentally showed
on gesture and action recognition applications that this approach can better cope with unknown
classes and that the polar sine-based SNN outperforms state-of-the-art methods in terms of the
classification rate.
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7.5 Conclusion

This concludes the chapter on similarity metric learning with SNN for face and gesture verifica-
tion and classification. The work described here mainly focused on improving the convergence
and learning strategies for SNN based on MLP models in the context of pair-wise verification
and classification. The neural network models that we employed were rather shallow, although
we successfully conducted some experiments on TSML with deep CNNs for face verification [4].
This is mainly due to the relatively small amount of annotated training data that is available
for the studied applications. Deeper, more complex models would have easily overfit to the
training data. Even with a strong regularisation, deep neural networks only show their full
potential with large amounts of training data, and, in that case, mostly CNN-based models are
used for learning deep visual feature hierarchies which is not appropriate for other types of data
like inertial signals. Finally, these relatively simple models allowed us to better understand the
behaviour of convergence and of the learnt linear and non-linear projections with respect to
different hyper-parameters.

In the following chapter, I will present our work on person re-identification from images. For
this application, more training data is available, and we used deeper and more complex models
and neural network architectures in order to perform similarity metric learning and ranking of
pedestrian images.
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8 Deep similarity metric learning

and ranking for person

re-identification

8.1 Introduction

In this chapter, I will present the work conducted in the context of the PhD thesis of Yiqiang
Chen [116] co-supervised with Atilla Baskurt (LIRIS) and Jean-Yves Dufour (Thales Services,
ThereSIS). We proposed several contributions on similarity metric learning with deep neural
network models applied to the problem of person re-identification in images. The application

Figure 8.1: Illustration of person re-identification in video streams with non-overlapping views.

and problem is illustrated in Fig. 8.1. A network of cameras with non-overlapping views provides
continuous video streams where the appearing persons should be recognised within the same or
across different views and at different points in time. That is, given a query image of a person
from one view (i.e. the probe), the goal is to re-identify this person in images from the same or
from other views (i.e. called the gallery images).

Here, we did not work on the person detection and tracking (MOT) problem, and we con-
sidered that efficient algorithms for this are available providing us with pedestrian images that
are cropped but whose identities are not matched (as illustrated in the right of Fig. 8.1).

This task bears a certain number of scientific challenges in the fields of computer vision
and machine learning some of which are illustrated in Fig. 8.2. For example, the intra-class
variations can be very large due to different lighting conditions, different view points and body
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Figure 8.2: Examples of some person re-identification challenges. Each pair of images shows the
same person except (g) and (h).

poses. Also, the images maybe of very low resolution and partial occlusions may occur frequently.
Although, we assume that clothing does not change too much in a limited time frame, this may
still happen when people take off a coat or a hat or carry a bag in a different way. Also, the
inter-class variation may be very small since people tend to wear similar clothes. From a machine
learning point of view, an effective model is required that is robust to the above variations and
that generalises well to persons (i.e. classes) and possibly view points that it has not been
trained for. Further, in realistic settings a query image needs to be matched to images in a very
large gallery set. To build such models using statistical machine learning approaches, often the
training data is very limited, and their annotation is difficult and laborious.

We employed deep neural network models for this task, because of their capacity of automat-
ically and jointly learning robust visual features and classifiers. To prevent them from overfitting
in this difficult setting, we used different techniques to combine supervised and weakly supervised
learning and to include external data related to more semantic information for the given appli-
cation, like semantic pedestrian attributes, body orientation or group context. I will describe
these different contributions in the following.

8.2 State of the art

Approaches for person re-identification are generally composed of an appearance descriptor to
represent the person and a matching function to compare those appearance descriptors. Over
the years, numerous contributions have been made to improve both the representation as well
as the matching algorithm in order to increase robustness to the variations in pose, lighting,
and background inherent to the problem. In the literature, person re-identification is mostly
performed using the person appearance in a single colour image. However, some approaches also
use temporal information, depth images, gait, camera topology etc.

8.2.1 Feature extraction approaches

The appearance of pedestrians from static images can be characterised according to three as-
pects: colour, shape, and texture. Colour histograms are widely used to characterise colour
distributions. Also, some photometric transformation or normalisation methods are proposed:
for example, Porikli et al . [311] learned a brightness transfer function, Bak et al . [77] applied
a histogram equalisation technique and Liao et al . [250] applied the Retinex algorithm to pre-
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Figure 8.3: Illustrations of representative approaches of three feature extraction strategies. (a)
Patch-based descriptors extracted from a dense grid [337]. (b) Descriptors extracted from seg-
mented body parts [118]. (c) Stripe-based descriptors extracted from horizontal bands [416].

process person images. Therefore, colour features are often combined with shape and texture
features, such as Gabor filter banks [148], Scale-invariant feature transform (SIFT) [259], Local
Binary Pattern (LBP) [296], and region covariance [371].

In order to get a feature descriptor which is discriminant, and at same time, robust to the
different variations, various extraction strategies have been proposed in the literature. Here we
divide the approaches into three classes: patch-based descriptors and body part-based descriptors
and stripe-based descriptors, as shown in Fig. 8.3.

Patch-based descriptors

The holistic representation of the above-mentioned global features shows a high robustness
but a relatively low discriminative power, because of losing local detail information. A typical
solution is to apply the colour histograms and texture filters on a dense grid. For example, the
approach of Zhao et al. [439] computes LAB colour histograms and SIFT features on a grid of
10 × 10 overlapping patches at two different scales. Similarly, Liu et al . [257] extract the HSV
histogram, gradient histogram and the LBP histogram for each local patch. Then they applied
a technique called “local coordinate coding” which is a high-dimensional non-linear learning
method projecting the data on lower-dimensional manifolds. The Bag-of-Words (BoW) model
is used in [440] with 11-dimensional colour name descriptors [416] extracted for each local patch
and aggregated into a global vector. After generating the codebook on training data, the feature
responses of each patch are then quantified into visual words and a visual word histogram is used
for the matching. Also, Shen et al . [337] extract Dense SIFT and a Dense Colour Histogram
from each patch and proposed a specific patch matching process with global spatial constraints.

Body part-based approaches

A inherent problem with patch-based methods operating on a fixed grid is that they are
sensitive to misalignment due to pose and viewpoint variations. In order to resolve this issue
and increase the discriminative power, several approaches exploit the prior knowledge of the
person geometry or body structure and try to partition the image appropriately to obtain a pose-
invariant representation: For example, Wang et al . [394] segment different (roughly uniform)
image regions using local HOG descriptors and model the context of appearance and shape by a
co-occurrence matrix over these image regions. Some approaches segment images into meaningful
parts like torso, legs, which are semantic and more robust to the viewpoint variation. One
well-know method is Symmetry-Driven Accumulation of Local Features (SDALF) proposed by
Farenzena et al . [144] which exploits symmetry and asymmetry principles for segmentation and
uses statistical measures on the body part regions to describe them and perform the matching.
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Bak et al . [77] proposed an approach based on spatial covariance regions which are segmented
using 5 HOG-based body part detectors. To better exploit the prior knowledge of plausible
body part configurations, Cheng et al . [118] used Pictorial Structures to localise the body parts
and match their descriptors based on HSV histograms and Maximally Stable Colour Regions
(MSCR).

Stripe-based approaches
In most settings, pedestrians are seen from an arbitrary horizontal viewpoint. Thus, some

methods extract features on horizontal stripes and are thus invariant to large horizontal shifts
in the image. Gray et al . [169] first proposed to divide the pedestrian image into 6 equally-sized
horizontal stripes. The approximately correspond to the image regions of the head, upper and
lower torso, upper and lower legs and fee. In each stripe, 8 colour channels (RGB, HS, YCbCr)
and 19 texture channels (Gabor and Schmid filter banks) are represented. Similarly, Mignon et
al . [278] build the feature vector from RGB, YUV and HSV channels and the LBP texture
histograms in horizontal stripes. Yang et al . [416] also proposed to use 6 stripes and introduced
the salient colour name-based colour descriptor (SCNCD) for pedestrian colour descriptions. The
approach proposed by Ma et al. [264] computes covariance matrices on Gabor filter responses at
different scales and on different image bands, and the difference of these matrices on consecutive
bands is used to build the model. Finally, Liao et al . [250] proposed LOcal Maximal Occurrence
(LOMO) features that we also used in our work. Scale-Invariant Local Ternary Patterns (SILTP)
and HSV histograms are extracted on each line of the image at different scales, and then only
the maximum value is retained for each line.

8.2.2 Matching approaches

Based on the extracted features, we can distinguish two types of matching methods. The first
consists of learning a matching function in a supervised manner, and the other learns a distance
metric in feature space.

Matching function learning

Given feature based representations of a pair of images, an intuitive approach is to compute
the geodesic distance between the descriptors, for instance, using the Bhattacharyya distance
between the histogram-based descriptors or the L2-norm between descriptors in a Euclidean
space. However, some features may be more relevant for appearance matching than others.
Therefore, several approaches have been proposed to learn a matching function in a supervised
manner from a dataset of image pairs.

For instance, the method of Schwartz and Davis [334] transforms the high-dimensional fea-
tures into low-dimensional discriminant vectors using Partial Least Squares (PLS) in a one-
against-all scheme. Lin et al . [251] proposed an approach based on the Kullback-Leibler di-
vergence of feature distributions of two images and pairwise dissimilarity profiles learnt from
training data. Gray et al . [169] use boosting to find the best ensemble of localised features
for matching. And Prosser et al . [313] proposed an ensemble of RankSVMs to solve person
re-identification as a ranking problem.

Metric learning
Compared to standard generic distance measures, e.g . the Euclidean or Bhattacharyya dis-

tance, a metric that is learnt specifically for person images is more discriminative for the given
task of re-identification and more robust to large variations of person images across views.

Most distance metrics learning approaches learn a Mahalanobis-like distance: D2(x, y) =
(x−y)TM(x−y) where M is a positive semi-definite (PSD) matrix of which the elements are to
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be learnt. Several works factorise M as M = wTw, ensuring the PSD constraint and implicitly
defining a (potentially low-dimensional) projection into an Euclidean space which reflects the
distance constraints. We distinguish two types of methods explained in the following.

The first class of methods generally defines an objective function based on distance con-
straints. The global idea of constraints is to keep all the vectors of the same class closer
while pushing vectors of different classes further apart. M is solved by a constrained convex
optimisation method. For example, Mignon et al . [278] presented a method called Pairwise
Constrained Component Analysis (PCCA), and Zheng et al. [443] proposed the Probabilistic
Relative Distance Comparison (PRDC) model, both defining pair-wise constraints. In contrast,
the approach of Dikmen et al. [134] called Large Margin Nearest Neighbour classification with
Rejection (LMNN-R) operates on constraints that are defined on the neighbourhood of exam-
ples. To avoid the tedious iterative optimisation procedure, Koestinger et al . [216], in their
“Keep It Simple and Straightforward Method” (KISSME), propose a formulation that allows for
a closed-form solution of the matrix M .

The methods of the second class are generally variants of the Linear Discriminative Analysis
(LDA). The approaches are based on the difference of the feature vectors of two classes. The
positive class consists in pairs of images of the same person acquired by different cameras, and
the negative class consists in pairs of images of different person acquired by different cameras.
They learn directly the projection w to a discriminative low-dimensional subspace where the
between-class variance is maximised and the within-class variance is minimised. In LDA, the

objective function is formulated as: J(w) = wTSbw
wTSww

, where Sb and Sw are the between-class and
within-class scatter matrices, respectively. Methods belonging to this class are LFDA proposed
by Pedagadi et al . [303] combining LDA and Locality-Preserving Projection for dimensionality
reduction, the Cross Quadratic Discriminitive Analysis (XQDA) metric by Liao et al. [250]
combining Quadratic Discriminative Analysis (QDA) and KISSME and the Null Foley-Sammon
Transform (NFST) by Zhang et al. [434].

8.2.3 Deep learning approaches

Methods based on deep neural networks jointly learn discriminative features and a matching
function or a similarity metric. Several approaches have been presented in the literature.

8.2.3.1 Architectures

Some deep learning architectures are conceived to operate on stripes over the input image. For
example, Yi et al . [420] first applied a CNN on re-identification. Given two person images,
they are first separated into three over-lapped horizontal stripes respectively, and the image
pairs are matched by three Siamese Convolutional Neural Networks (SCNN). Varior et al . [374]
proposed to integrate a gating layer in a SCNN to compare the extracted local patterns for
an image pair at the medium-level and propagate more relevant features to the higher layers
of the network. Spatial dependency between stripes are exploited in [375] by a Long Short
Term Memory (LSTM) network operating on LOMO [250] and SCNCD [416] features extracted
on horizontal stripes. Cheng et al . [117] proposed to combine the global and stripe feature
extraction using a multi-channel CNN model operating on different parts of the image.

Some methods directly integrate some kind of patch matching into a CNN architecture to
handle misalignment and geometric transformations. For instance, Li et al . [247] proposed an
architecture called Filter pairing neural network directly performing the patch matching using
integrated displacement matrices. However, this architecture is computationally complex and
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has thus been simplified by Ahmed et al. [61] introducing a cross-input neighbourhood difference
layer.

Other methods integrate a body part-based feature extraction within a deep neural net-
work architecture. Zhao et al . [437], for example, proposed an architecture composed of three
components: a body region proposal network (locating human body joints), a feature extraction
network and a feature fusion network. However, this requires training data with annotated body
parts. In contrast, Li et al . [239] proposed to localise latent pedestrian parts through Spatial
Transform Networks (STN) [199]. Zhao et al . [438] proposed to jointly model the human body
regions that are discriminative for person matching with neither prior knowledge nor labelled
data and compute a compact representation. An image feature map is first extracted by a
deep Fully Convolutional Neural network (FCN), and discriminative features are automatically
detected and extracted in several network branches to perform the matching, which has been
trained using a siamese structure and triplets of examples.

8.2.3.2 Objective functions

As we have seen in the previous chapter, by appropriately defining objective functions, one can
learn a non-linear projection into a feature space in which the similarity of pedestrian is well
represented. In the following, we will rather use the term “loss function” as it is common in the
recent literature for deep neural networks since there is often no regularisation term. Several
loss functions for person re-identification exist in the literature. Yi et al . [420] used the deviance
loss in a Siamese network, as follows:

Edeviance = ln(e−2sl + 1), (8.1)

where −1 6 s 6 1 is the similarity score and l = 1 or −1 is the label (c.f . Eq. 7.9). And in [61,
247], the re-identification task is considered as an image pair classification problem deciding
whether an image pair is from the same person or not. Ding et al . [135] first applied the triplet
loss (c.f . Eq. 7.7) to train a CNN for person re-identification. Some methods combine different
objective functions to improve the performance. For example, Cheng et al . [117] proposed an
improved variant of the triplet loss function combining it with the contrastive loss. Zheng et
al . [444] combined an image pair classification loss and the contrastive loss (c.f . Eq. 7.4,7.6).
And Chen et al . [113] applied a quadruplet loss which samples four images from three identities
and minimises the difference between a positive pair from one identity and a negative pair from
two different identities and they combine this quadruplet loss with the triplet loss.

8.2.4 Evaluation measures

The Cumulated Matching Characteristics (CMC) curve and the mean Average Precision (mAP)
are the two most widely used evaluation measures for person re-identification.

CMC evaluates the top n nearest images in the gallery set with respect to one probe image.
If a correct match of a query image is at the kth position (k <= n), then this query is considered
as success of rank n. A curve can thus be drawn for varying n, with n in the x-axis and the
proportion of correct matches in the y-axis. Also, we denote the CMC curve value at a given
rank n the “Rank n score”.

mAP is the mean value of the average precision of all queries. The average precision is
defined as the area under the Precision-Recall curve.
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8.3 Leveraging additional semantic information – attributes

8.3.1 Introduction

As in previous work in the literature [117, 135, 419], we proposed to tackle the person re-
identification problem with a similarity metric learning approach based on SNNs since the classes
are not known a priori and since we would like to directly learn from data a generic (non-
linear) metric between image pairs that robustly expresses the similarities (and dissimilarities)
of persons. Re-identification of a given query image is then performed by computing this metric
on all images in the gallery set and returning the one(s) with the smallest distance.

Our first contribution consisted in building a SNN-based model that is trained on triplets
and that incorporates semantic attributes in order to assist the re-identification improving its
performance [3, 15]. The idea is that such mid-level attributes, like gender, accessories and
clothing, represent characteristic features that are highly invariant to view point, body pose and
other image variations. Moreover, they could be used for so-called “zero-shot” identification, i.e.
querying by an attribute-based description instead of an image. Since biometric features like
faces are often not visible or of too low resolution to be helpful in surveillance, pedestrian at-
tributes could be considered as soft-biometrics and provide additional discriminant information.

Our proposed approach first trains a multi-class CNN in a supervised way to recognise a
set of pre-defined person attributes from images and then combines this neural network with a
SNN trained in a weakly supervised way on triplets to model a similarity metric between person
images.

8.3.2 State of the art

8.3.2.1 Attribute recognition

In the pioneering work of Vaquero et al . [373], the person image is segmented into regions, and
each region is associated with a classifier based on Haar-like features and dominant colours.
Layne et al . [227] annotated 15 attributes on the VIPeR dataset and proposed an approach to
extract a 2784-dimensional low-level colour and texture feature vector for each image and to train
an SVM for each attribute. The method of Zhu et al . [448] determines the upper and lower body
regions according to the average image and extracts colour and texture features (HSV, MB-LBP,
HOG) in these two regions. Then, an Adaboost classifier is trained on these features to recognise
attributes. The drawback of these approaches is that all attributes are treated independently.
That is, the relation between different attributes is not taken into account. Zhu et al . [449]
tried to overcome this limitation by introducing an interaction model based on their Adaboost
approach [448] learning an attribute interaction regressor. The approach from Deng et al . [133]
used a Markov Random Field (MRF) for this purpose.

Some CNN models have also been proposed for pedestrian attribute recognition, e.g . the one
by Li et al . [238] based on CaffeNet and Sudowe et al . [358] called Attribute Convolutional Net
(ACN). Zhu et al . [450, 451] proposed to divide the pedestrian images into 15 overlapping parts
where each part connects to several CNN pipelines with several convolution and pooling layers.

8.3.2.2 Re-identification with attributes

Some works have used pedestrian attributes to assist with the re-identification task, e.g . the
SVM-based approach of Layne et al . [227]. In their approach, the final distance between two
pedestrian images is computed as a weighted sum of low-level feature distance and attribute
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Figure 8.4: Overview of our pedestrian attribute recognition approach.

distance. Li et al . [237] embedded middle-level clothing attributes via a latent SVM framework
for more robust person re-identification. The approach introduced by Khamis et al . [213] learns
a discriminative projection into a joint appearance-attribute subspace in order to leverage the
interaction between attributes and appearance for matching.

The approach of Zhu et al . [450] recognises attributes with deep neural networks then cal-
culates a pedestrian distance by weighting the attribute distance and a low-level feature-based
person appearance distance. McLaughlin et al . [276] proposed to perform person re-identification
and attribute recognition in a multi-task learning. Their loss function is a weighted sum of the
attribute and identification classification loss as well as a Siamese loss. They show that this
multi-task joint learning improves the re-identification performance. Matsukawa et al . [275]
proposed to fine-tune the well-known Alexnet with attribute combination labels to increase the
discriminative power. Further they concatenated the CNN embedding directly with LOMO fea-
tures and used the metric learning method XQDA [250] to learn a feature space. Su et al . [356]
presented a three-stage procedure that pre-trains a CNN with attribute labels of an independent
dataset, then fine-tunes the network with identity labels and finally fine-tunes the network with
the learned attribute feature embedding on the combined dataset. The main difference of these
approaches to ours is the way of making use of attributes to assist in the re-identification task.

8.3.3 Attribute recognition approach

8.3.3.1 Overall procedure and architecture

The architecture of the proposed attribute recognition approach is shown in Fig. 8.4. The
framework consists of two branches. One branch is a CNN extracting higher-level discrimi-
native features by several succeeding convolution and pooling operations that become specific
to different body parts at a given stage (P3) in order to account for the possible displace-
ments of pedestrians due to pose variations. Another branch extracts the viewpoint-invariant
Local Maximal Occurrence (LOMO) features, a robust visual feature representation that has
been specifically designed for viewpoint-invariant pedestrian attribute recognition and achieving
state-of-the-art results [250]. The extracted LOMO features are then projected into a linear sub-
space using Principal Component Analysis (PCA) and then fused with the CNN output using
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a fully-connected layer and a final (fully-connected) output layer with one neuron per attribute
to recognise.

The architecture of the CNN is a succession of convolution and max pooling layers that is
relatively standard in the literature, up to the pooling layer P3. At this stage (P3), we propose
to divide the resulting feature maps vertically into 4 equal parts roughly corresponding to the
regions of head, upper body, upper legs and lower legs. For each part, similar to [375], we use
two layers (C4, C5) with 1D horizontal convolutions of size 3×1 without zero-padding reducing
the feature maps to single column vectors. These 1D convolutions allow to extract high-level
discriminative patterns for different horizontal stripes of the input image. In the last convolution
layer, the number of channels is increased to 150, and these feature maps are given to a fully-
connected layer (fc1) to generate an output vector of dimension 500. All the convolution layers
in our model are followed by batch normalisation and ReLU activation functions.

We experimentally showed that this specific CNN architecture as well as the fusion of these
discriminant deep features with the more “invariant” LOMO features provides a powerful model
for pedestrian attribute recognition giving state-of-the-art results on public benchmarks.

8.3.3.2 Training

The proposed CNN is trained in a supervised way using a dataset of pedestrian images with
annotated attributes. The weights are initialised at random and updated using Stochastic Gra-
dient Descent minimising the global loss function (Eq. 8.2) on the given training set. Since most
attributes are not mutually exclusive, i.e. pedestrians can have several properties at the same
time, the attribute recognition is a multi-label classification problem. Thus, the multi-label
version of the sigmoid cross entropy is used as the overall loss function:

E = − 1

N

N∑

i=1

L∑

l=1

[wlyil log(σ(xil)) + (1− yil) log(1− σ(xil)] , (8.2)

with σ(x) =
1

1 + exp(−x) ,

where L is the number of labels (attributes), N is the number of training examples, and yil, xil
are respectively the lth label and classifier output for the ith image. Usually, in the training set,
the two classes for an attribute are highly unbalanced. That is, for most attributes, the positive
label appears generally less frequently than the negative one. To handle this issue, we added a
weight w to the loss function: w = −log2(pl) , where pl is the positive proportion of attribute l
in the dataset.

8.3.4 Attribute-assisted person re-identification

8.3.4.1 Overall approach

We proposed a new CNN-based similarity metric learning approach for pedestrian re-identi-
fication [3, 15] that effectively combines automatically learned visual features with semantic
attributes, extracted by our method described in the previous section. The overall framework
is shown in Fig. 8.5. The framework is composed of two neural networks that are pre-trained.
The first is a deep CNN that is trained in a supervised way to classify identities on a separate
training set using the softmax cross-entropy loss:

Eidentification = −
N∑

k=1

yklog(P (yk = 1|x)) with (8.3)
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Figure 8.5: Overall architecture of our attribute-assisted re-identification approach.

P (yj = 1|x) = eW
T
j x+bj

∑N
k=1 e

WT
k
x+bk

(8.4)

(For more details refer to [20]). Then we remove the output classification layers of the network
and keep the other parts of the network which are related to feature selection. The second part
is our attribute recognition network that is trained as described in the previous section (and
without the LOMO features). After training, we also remove the output layers and keep all
the other layers up to the first fully-connected layer (fc1). The output vectors from the hidden
layers of the two CNNs represent high-level features related to attributes and pedestrian identities
respectively. In order to combine the extracted features effectively, we propose to integrate both
output vectors in a new neural network that automatically learns these fusion parameters on
the re-identification task in a triplet architecture (described in the next section). This leads
to a fully neural architecture that can be trained and fine-tuned as a whole to maximise the
re-identification performance.

8.3.4.2 Fusion by triplet architecture

The pre-trained attribute CNN and identification CNN are combined (using their intermediate
fully-connected layers fc1 and adding a new fully-connected layer) and trained in a triplet ar-
chitecture (see Fig. 8.5). Here, we proposed to use an improved triplet loss with hard example
selection to learn the optimal fusion of the two types of features. Unlike the classical triplet
loss, a (K +2)-tuple of images instead of a triplet is projected into the feature space. The tuple
includes one reference image R, one positive image P+ and K negative images Nj. With their
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Accuracy Rate (%) Recall@FPR=0.1 AUC
MRFr2[133] DeepMar[238] mlcnn[451] ours mlcnn[451] ours mlcnn[451] ours

80.8 85.4 86.6 90.0 65.6 79.9 87.0 93.0

Table 8.1: Attribute recognition results on PETA (in %).

respective CNN output vectors OR, OP and ONj
, this constraint is defined as:

min(‖OR −ONj
‖22)− ‖OR −OP‖22> m , (8.5)

with m being a margin (set to 1 in our experiments). Similarly to the distance learning approach
“Top-push” proposed by [425] , hard example mining in [61, 332] or moderate positive example
mining in [338], the idea is to find the most appropriate example(s) to update the model. The
negative example that is closest to the reference is considered the hardest example and having
the highest potential for improvement. The network is thus updated efficiently by pushing the
hardest example further away from the reference. The intuition is that if the positive example is
ranked in front of the hardest negative example then the positive example is ranked first, which
is our goal. In classic triplet loss, a large part of triplets does not violate the triplet constraint
(c.f . Eq. 8.5). Thus, these triplets are useless for learning. The selection among K negative
examples reduces the number of unused training data and can make the training more efficient.

To further enhance the loss function, as an extension of [117], we added a term including
the distance between the reference example and the positive example. The loss function (called
”min-triplet“ loss) of one iteration is defined as:

Emin−triplet = −max(‖OR −OP ‖22−min
j

(‖OR −ONj
‖22) +m, 0) + α‖OR −OP‖2 . (8.6)

The first part of the loss is a comparison of two distances which defines a relative relationship in
the feature space. The second part corresponds to an absolute distance in feature space weighted
by a factor α (set to 0.02 in our experiments). Combining these two constraints leads to a more
efficient learning of the resulting manifold that better represents the semantic similarities.

Using this loss function, we trained the additional fully-connected layer for the fusion, and,
at the same time, we fine-tune the other parts of the network, i.e. the weights are updated at
a lower rate. Unlike other approaches[213, 227, 237, 276], the advantage of our method is that
the attributes do not need to be annotated on the re-identification dataset. We can make use of
a separate dataset with annotated attributes and transfer this information to a re-identification
dataset by fine-tuning.

8.3.5 Experiments

We first evaluated the accuracy of our attribute recognition approach on three different datasets:
PETA (19 000 images, 65 attributes), APiS (3661 images, 11 attributes) and VIPeR (632 images,
21 attributes) (see Fig. 8.6) using the evaluation protocols proposed in the literature. The
evaluation measures are the accuracy, the average recall at a False Positive Rate (FPR) of 0.1
and the Area Under Curve (AUC) of the average Receiver Operating Characteristic (ROC)
curve. The results in Tables 8.1-8.3 show that our approach outperforms all state-of-the-art
methods: MRFr2 [133], DeepMar [238], mlcnn [451], fusion [448], interact [449] and svm[227].
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Figure 8.6: Some example images from pedestrian attribute datasets.

Accuracy Recall@FPR=0.1 AUC
ours fusion[448] interact[449] ours fusion[448] interact[449] DeepMar[238] ours

89.3 62.1 64.7 72.7 86.7 87.2 90.0 89.5

Table 8.2: Attribute recognition results on APiS (in %).

Then we evaluated our attribute-assisted person re-identification framework on the public
CUHK03 dataset [247] containing 13 164 images of 1 360 pedestrians (automatically cropped by
a person detection algorithm). We pre-trained the attribute CNN branch on the Peta dataset,
and the identity CNN branch on CUHK03 (the identities of the test set are different from the
training set). Our evaluation criterion for re-identification is the proportion of test (query)
images for which rank=n, i.e. in the ranking according to the Euclidean distance in the learnt
projection space, a correct match is within the first n images. Table 8.4 shows the results
for rank=1,5,10 compared to the state of the art on the CUHK03 (“detected”) dataset. Our
approach outperformed all other methods showing the effectiveness of our SNN similarity metric
learning framework with improved triplet loss. One can also see the significant contribution of
the attributes to the overall performance.

8.3.6 Conclusion

In this section, I presented our recent work on person re-identification showing that the use
of additional semantic information (the attributes) can considerably improve the performance
of similarity metric learning. Our first contribution was a powerful framework for attribute
recognition fusing discriminant deep CNN features trained on pedestrian images with highly
invariant LOMO features and achieving state-of-the-art classification accuracy on three public
datasets. Then, by using both identity and attribute information and also an improved triplet
objective function with hard negative examples and finally by employing effective pre-training
and fusion strategies on appropriate CNN architectures, we were able to obtain state-of-the-art
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Accuracy Recall@FPR=0.2 AUC
svm[227] mlcnn[450] ours svm[227] mlcnn[450] ours ours

68.9 74.1 83.9 56.1 65.5 69.6 80.9

Table 8.3: Attribute recognition results on VIPeR (in %).

Method rank=1 rank =5 rank =10

FPNN [247] 19.9 49.3 64.7
Convnet [61] 45.0 75.3 83.4

LOMO+XQDA [250] 46.3 78.9 88.6
SS-SVM [436] 51.2 80.8 89.6
SI-CI [386] 52.2 84.3 92.3
DNS[434] 57.3 80.1 88.3

S-lSTM [375] 57.3 80.1 88.3
S-CNN SQ [374] 61.8 80.9 88.3

CAN[255] 63.1 82.9 88.2

ours Identity only 59.7 86.1 93.3
ours fusion Id&Attr 65.0 90.3 95.1

Table 8.4: Re-identification result on CUHK03 (“detected”).

results on challenging public benchmarks.

8.4 A gated SNN approach

8.4.1 Introduction

In the previous section, we saw one way of introducing prior knowledge into the SNN model,
i.e. by pre-training a neural network on labelled data and fusing and fine-tuning the model into
a larger neural network that learns the final similarity metric. In this section, I will describe
another original approach that we proposed [17], which also uses a supervised pre-trained model
on external semantic information but is based on a different neural architecture. In the preceding
architecture, two neural networks are pre-trained in a supervised manner on two different labelled
datasets (one for identification, one for attributes). In the model that I will present here, there
are two neural networks (i.e. two branches) with some common layers in the beginning, and the
training is done simultaneously with a loss function integrating the two different objectives; a
so-called multi-task learning. Moreover, one branch acts as a gate to “steer” which part of the
other branch should be activated.

In our re-identification application, one branch is a CNN pre-trained for person identification,
and the other branch, the gating branch, is pre-trained for person body orientation estimation.
The whole combined neural network model is then fine-tuned for person re-identification. In
the following, we will first described the related work and then explain our approach, called
Orientation-Specific CNN (OSCNN), in more detail.
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8.4.2 State of the art

Most existing methods for person re-identification focus on developing a robust representation to
handle the variations of view. Some methods take into account the view as extra information. For
example, Ma et al . [266] divide the data according to the additional camera position information
and learn a specific distance metric for each camera pair. Lisanti et al . [252] proposed to apply
Kernel Canonical Correlation Analysis which finds a common subspace between the feature
space from disjoint cameras. Yi et al . [420] proposed to apply a Siamese CNN to person re-
identification. Similar to [252], the weights of two subnetworks are not shared to learn a camera
view projection to a common feature space. In these approaches, camera information is used
but the body orientation which is only partly due to different camera views is not modelled.
That is, in the same camera view, pedestrians can exhibit different orientations and thus largely
different appearances in the resulting images.

In order to solve this issue, Bak et al . [78] perform an orientation-driven feature weighting
and the body orientation is calculated according to the walking trajectory. some other ap-
proaches [330, 378] deal with the orientation variations of pedestrian images by using Mixture
of Experts. The expert neural networks map the input to the output, while a gating network
produces a probability distribution over all experts’ final predictions. Verma et al . [378] applied
an orientation-based mixture of experts to the pedestrian detection problem. Sarfraz et al . [330]
proposed to learn the orientation sensitive units in a deep neural network to perform attribute
recognition. Garcia et al . [157] used orientations estimated by a Kalman filter and then trained
two SVM classifiers for pedestrian images matching with respectively similar orientations and
dissimilar orientations. And the approach of Li et al . [245] learns a mixture of experts, where
samples were softly distributed into different experts via a gating function according to the
viewpoint similarity.

Sharing the idea of mixture of experts, we proposed to build a multi-domain representation
in different orientations with deep CNNs. Intuitively, an orientation-specific model should have
a better generalisation ability than a camera view-specific model, since we cannot incorporate
all possible surveillance camera views. Further, instead of using discrete orientations for the
gating activation function, in our method, we use a regression model to estimate an accurate
and continuous body orientation. This allows to continuously weight different expert models for
re-identification and also avoids combining contradictory orientations at the same time.

8.4.3 Body orientation-assisted person re-identification

8.4.3.1 Model architecture

The overall procedure of our re-identification approach OSCNN is shown in Fig. 8.7. The
network contains an orientation gating branch and a re-identification branch consisting of 4
feature embeddings regarding the 4 main orientations: left, right, frontal and back. The final
output feature representation is a linear combination of the four expert outputs and is steered
by an orientation gate unit which is a function of the estimated orientation.

The proposed neural network architecture consists of two convolution layers shared between
the two branches. In the re-identification branch, there are 3 further convolution layers followed
by 4 separate, parallel fully-connected layers (left,right,front,back) of 512 dimensions, each one
corresponding to a local expert. Thus, our network learns different projections from different
orientation domains to a common feature space.

In the orientation regression branch, 2 convolution layers and 2 fully connected layers are
connected to the common convolutional layers. The estimated orientation output by the ori-
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Figure 8.7: Overview of the OSCNN architecture.

entation gating branch is represented by a two-dimensional Cartesian vector [α, β] constructed
by projecting the orientation angle on the left-right axis (x) and on the front-back (y) axis and
then normalising it to a unit vector. Based on this vector, the orientation gate selects and
weights either the left or the right component and either the front or the back component of
the re-identification branch. Let f{left,right,front,back} be the output feature vectors of the 4 dif-
ferent orientation branches. The final re-identification output vector is the sum of the left-right
component and the front-back component:

fouput = max(α, 0)fleft +max(−α, 0)fright +max(β, 0)ffront +max(−β, 0)fback (8.7)

Different from the classic mixture of experts approach, our orientation gate is set before the local
experts, and we perform a regression instead of a classification. The advantage of our orientation
gate is that it avoids combining contradictory orientations like front and back. Computationally,
only two among four orientations are used and combined according to the sign of α and β. This
further allows saving computation.

8.4.3.2 Training

There are two stages to train the model, explained in the following.

Multi-task network pre-training

In the first stage, the orientation regressor and a general re-identification feature embedding
are both trained in parallel with two separate objective functions.

We start training the network with pedestrian identity labels and orientation labels respec-
tively. The identification branch is trained as in our attribute-assisted model in section 8.3.4, i.e.
using the cross-entropy loss Eidentification (Eq. 8.3) on the softmax output and identity-labelled
person images.

For the body orientation, we use the Euclidean loss to train the orientation regression of α
and β. For a given training example, we have:

Eorientation =
(α− α̂)2 + (β − β̂)2

2
(8.8)
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Methods R1 R5 R10 R20

Baseline (CUHK01) 76.6 93.8 97.0 98.8
OSCNN (CUHK01) 78.2 94.1 97.3 99.1

OSCNN (CUHK01+03) 83.5 96.4 99.0 99.5

LOMO+XQDA [250] 63.2 83.9 90.1 94.2
ImporvedDL [61] 65.0 88.7 93.1 97.2

Deep Embedding [338] 69.4 - - -
Norm X-Corr [357] 81.2 - 97.3 98.6
Multi-task [114] 78.5 96.5 97.5 -

Table 8.5: Experimental evaluation of OSCNN on the CUHK01 dataset.

where α̂, β̂ are predicted orientation labels of the example. Orientation has been annotated with
8 discrete labels.

For datasets that have both identity and orientation labels, we train the network with a
combined loss Emulti−task = Eidentification + λEorientation. Then, orientation and identification
are learned jointly. Otherwise, the two branches are trained separately.

Orientation-specific fine-tuning with triplets

In the second training stage, we fine-tune the network parameters using similarity metric
learning in order to specialise the 4 different local experts. For the re-identification branch, we
remove the last fully-connected layer and duplicate four times the first fully-connected layer.
Different choices and weightings are performed according to the orientation of the person in
the input image estimated by the orientation branch. Thus, the four orientation-specific layers
are updated in different ways, whereas the other layers keep their pre-trained weights. For the
similarity metric learning, we use the improved triplet loss with hard examples (c.f . Eq. 8.6) as
for our attribute-based SNN.

8.4.4 Experiments

For the evaluation of our approach, we used the datasets Market-1501 [440] (32 668 images
of 1 501 different persons), Market-1203 [267] (a subset of Market-1501 with annotated body
orientations) and CUHK01 [246] (3884 images, 971 persons). The evaluation measures are the
rank 1 accuracy (R1), the mean average precision (mAP) and the Cumulative Match Curve
(CMC) (c.f . section 8.2.4).

We compared our OSCNN to the state-of-the-art approaches on Market-1501 and CUHK01.
Following the test protocol in [61, 114], we added also the CUHK03 images to the training for the
test on the CUHK01 and we compared to the methods only using these two datasets for training.
As Table 8.5 shows, our method is superior to most results of the state of the art. Even without
much extra CUHK03 training data, our method shows a competitive performance. The baseline
model is not using body orientation and shows inferior performance, clearly demonstrating the
benefit of the orientation regression and local expert training via the gated SNN architecture.

On the Market-1501 dataset, our OSCNN outperforms most state-of-the-art methods. The
advantage of our approach is that the model does not need a pre-training step with a much
larger pre-training dataset composed of ImageNet as [239, 361, 445, 447]. And our model has
a much lower complexity (1.15 × 108 FLOPs of our model compared to 1.45 × 109 FLOPs
of JLML and to 3.8 × 109 FLOPs of SVDNet). Recently some state-of-the-art approaches
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Methods R1 mAP

Baseline 77.3 53.9
OSCNN 78.9 55.2

OSCNN+re-rank 83.9 73.5

LOMO+XQDA [250] 43.8 22.2
Gated SCNN [117] 65.9 39.6

Divide fues re-rank [427] 82.3 72.4
LSRO [445] 78.1 56.2

DeepContext [239] 80.3 57.5
K-reciprocal re-rank [447] 77.1 63.6

SVDnet [361] 82.3 62.1
JLML [248] 85.1 65.5

Table 8.6: Experimental evaluation of OSCNN on the Market-1501 dataset.

employ re-ranking [427, 447] which uses information from nearest neighbours in the gallery and
significantly improves the performance. As Table 8.6 shows, our approach can largely benefit
from this technique and achieves a state-of-the-art result on Market-1501.

8.4.5 Conclusion

In this section, we presented a novel approach to tightly integrate labelled information (body
orientation and person identity) via supervised learning into a multi-task CNN framework, and a
method to dynamically activate certain parts of the structure via a learnt gating mechanism. By
fine-tuning this pre-trained model in a weakly supervised similarity metric learning approach,
i.e. a triplet SNN, we were able to achieve excellent results on the task of person re-identification
on several challenging public benchmarks.

In the next section, I will present a final approach for including additional semantic infor-
mation in the similarity learning for person re-identification: the appearance of the group of
persons surrounding the one to re-identify.

8.5 Using group context

8.5.1 Introduction

The two previous contributions consisted in integrating more semantic external information
(prior knowledge) into the similarity metric learning: pedestrian attributes and body orientation,
and this significantly improved the re-identification performance. Thus, we can assume that the
learnt metric better reflects real semantic similarities. However, in a realistic setting, there are
still frequent cases, where the images of two different persons are extremely similar and where
even humans have difficulties to tell if they belong to the same person or not. Attributes and
body orientation might not help always, as in public spaces there are often common paths that
people take; thus there are only a few different walking directions and thus body orientations.
Also attributes may not discriminate sufficiently, as people tend to wear similar clothes (e.g . a
suit) and may have similar hair styles (e.g . short brown hair).

To address this problem, our idea was to use context information about the surrounding
group of persons [16] (see Fig. 8.8). In realistic settings, people often walk in groups rather than
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Figure 8.8: (a) Single person images. (b) Corresponding group images of (a). Even for a human,
it may be difficult to tell if the three top images belong to the same person or not. Using the
context of the surrounding group, it is easier to see that the middle and right images belong to
the same person and the left image belongs to another person.

alone. Thus, the appearance of these groups can serve as visual context and help to determine
whether two images of persons with similar clothing belong to the same individual. However,
matching the surrounding people in a group in different views is also challenging. On the one
hand, it undergoes the same variations as for a single person’s appearance. On the other hand,
the number of persons and their relative position within the group can vary over time and across
cameras. Further, partial occlusions among individuals are very likely in groups.

Our approach [16] was to train a deep CNN for single-person re-identification and use it
to additionally extract group features via a specific pooling operation. Finally, we defined a
combined similarity measure using group and individual representations.

8.5.2 State of the art

In the literature, there are several group association (or group re-identification) approaches.
Zheng et al . [442] extracted visual words which are the clusters of SIFT+RGB features in a
group image. Then they built two descriptors that describe the ratio information of visual words
between local regions to represent group information. Cai et al . [103] used covariance descriptors
to encode group context information. And Lisanti et al . [253] proposed to learn a dictionary of
sparse atoms using patches extracted from single person images. Then the learned dictionary
is exploited to obtain a sparsity-driven residual group representation. These approaches can
be severely affected by background clutter, and thus a preprocessing stage is necessary, e.g . a
background subtraction.

Some other approaches use trajectory features to describe group information. Wei et al . [395],
for example, presented a group extraction approach by clustering the persons’ trajectories
observed in a camera view. They introduced person-group features composed of two parts:
SADALF features [144], extracted after background subtraction and representing the visual
appearance of the accompanying persons of a given individual, and a signature encoding the
position of the subject within the group. Similarly, Ukita et al . [372] determined for each pair of
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pedestrians whether they form a group or not, using spatio-temporal features of their trajectories
like relative position, speed and direction. Then, the group features composed of the trajectory
features (position, speed, direction) of individuals in each group, the number of persons as well
as the mean colour histograms of the individual person images. However, when people walk in a
group, the position and speed are not always uniform. Thus, the trajectory-based features may
not be precise and change significantly over time.

Unlike these methods, the advantage of our approach is that there is no need for a pre-
processing stage of person detection or background subtraction. Our model is pre-trained on
single-person re-identification data to learn the discriminative features that distinguish identities
in images. Using a global max-pooling operation, the proposed model is, by design, invariant
to displacements of individuals within a group. Moreover, the deep neural network that we
employed can provide a richer feature representation to describe groups than the colour and
texture features used by existing methods.

8.5.3 Proposed group context approach

In the first step, we trained a CNN for classification of persons on a given training dataset using
a supervised approach by minimising the softmax cross-entropy loss as in sections 8.3.4 and 8.4.3
(c.f . Eq. 8.3). We tested a deep CNN architecture of 9 alternating convolution and max-pooling
layers followed by 2 fully-connected layers, as well as a pre-trained Resnet-50 [178] that is fine-
tuned. After training the model, in order to compute a distance between a query image and a
gallery image, a Siamese architecture is build, where each branch (query and gallery) contains
two parts: one for a single-person image and the other for an image with the surrounding
context (showing a group of persons). Figure 8.9 illustrates this. The region corresponding to
the queried individual in the group image is covered (with the mean colour) in order to remove
the redundancy.

For the single-person branch, we discarded the last fully-connected layer and used the in-
termediate fully-connected layer as an embedding to compute a single-person distance. Note
that here we did not perform an additional similarity metric fine-tuning as in the previous ap-
proaches. This might further improve the results, but would have been considerably longer to
train and was not necessary to demonstrate the contribution of group context. For the group
branch, the last two fully-connected layers are discarded and larger group images are given as
input. A Global Max-Pooling (GMP) operation on all spatial locations of the resulting fea-
ture map from the last convolution layer is applied leading to a k-dimensional vector, with
K being the number of feature maps. As illustrated in Fig. 8.9, for a given set of query and
candidate person and group images, Pi, Gi and Pj, Gj respectively, we obtain 4 feature vectors:
F (C(Pi)), GMP (C(Gi)), F (C(Pj)), and GMP (C(Gj)), where C(I) is the output of the last
convolution layer for image I, F (·) represents the operation of the first fully-connected layer,
and GMP (·) the Global Max-Pooling operation. Then, the single-person and group distances
between two images are defined as:

Did(Pi, Pj) = 1− cos(F (C(Pi)), F (C(Pj))) and (8.9)

Dgr(Gi, Gj) = 1− cos(GMP (C(Gi)), GMP (C(Gj))) . (8.10)

The final distance measure is simply the sum of these two distances:

D(Ii, Ij) = Did(Pi, Pj) +Dgr(Gi, Gj) , (8.11)
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Figure 8.9: Overview of our group-assisted approach. Left: A CNN is first trained with single-
person images. Right: For re-identification, the fully-connected layer(s) are removed and the
same CNN model is used for query and candidate images to compute pairwise distances used
for the final ranking.

which can be used for ranking and for re-identification based on the first ranked result with
respect to a given query image.

8.5.4 Experiments

For evaluation our approach, we used the OGRE dataset [253], which contains 1 279 images of
39 groups acquired by three disjoint cameras pointing at a parking lot. This is a challenging
dataset with many different viewpoints and self-occlusions. We manually annotated a subset of
this dataset with 450 bounding boxes and 75 identities.

To show that our approach can be applied with different CNN architectures, we used Resnet-
50, pre-trained on ImageNet, and also our own CNN architecture (similar to the ones of the
previous sections and denoted as Convnet-5 here) composed of 9 alternating convolution and
max-pooling layers and 2 fully-connected layers.

The CMC scores (c.f . section 8.2.4) for person re-identification are shown in Table 8.7. We
compared the person re-identification results with some variants of our method. “Sum feature”
and “Concatenate feature” represent variants that first sum or concatenate the single-person
feature representation and the group feature representation and then compute the distance
measure on these vectors. We tested also a variant that retains the query or candidate person
image in the group image without covering the corresponding region with the mean colour.

The results in Table 8.7 show that the proposed method (i.e. covering the person in the
group image and summing the person and group distance) achieved the best re-identification
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Variant
Resnet-50 Convnet-5

Rank 1 Rank 5 Rank 10 Rank 1 Rank 5 Rank 10

Single person only 47.2 69.3 78.8 51.6 70.4 77.9
Group context only 26.2 57.2 66.3 12.7 42.3 53.0

Sum features 41.1 69.9 77.7 16.3 50.3 61.7
Concatenate features 51.9 75.1 81.1 16.4 52.6 61.9

Dist sum w/o img cover 54.1 73.7 80.8 52.2 70.6 78.1
Dist sum w/ img cover 56.8 73.7 81.7 53.7 70.4 78.6

Table 8.7: Person re-identification accuracy (CMC scores in %) on the OGRE dataset.

results with both tested CNN models. Overall, our proposed method based on Resnet-50 and
Convnet-5 increased the result by 9.6% points and 2.1% points respectively compared to the
approach only using single-person images. These results clearly demonstrate that group context
has the ability to considerably reduce the appearance ambiguity and improve the person re-
identification performance. An advantage of our method is that it can be easily applied to any
CNN-based single person re-identification model without any further training.

8.5.5 Conclusion

In this section, we presented our last approach for integrating prior semantic information into
the similarity metric. We used the context in the image to gather additional descriptions on
the surrounding objects, i.e. accompanying persons in this case. The proposed method has the
advantage that no additional training is required to create a model for the context. However, it
assumes that the context is composed of the same category of objects (i.e. persons). It would
be interesting to see how a model specifically trained for other types of “accompanying” objects,
e.g . suitcases, trolleys, animals, could improve on the re-identification performance, assuming
that this context does not change significantly over time and across different cameras.

8.6 Listwise similarity metric learning and ranking

8.6.1 Introduction

In this final section, we come back to a more fundamental study on the underlying similarity
metric learning algorithm for SNNs applied to person re-identification [18]. In particular, we
conceived an new objective function and metric learning approach that indirectly optimises the
final re-identification evaluation measures, based on the ranking of examples with respect to a
query.

In contrast to our previous contributions on tuple-based and polar sine-based functions,
where dissimilar pairs a simultaneously“pushed away” in the projection space, here, we explicitly
consider the ranking, i.e. the order, of a set of candidate samples (positive and negative) w.r.t.
to a given query. This is similar to our min-triplet loss (Eq. 8.6) in section 8.3, but incorporates
more information about mis-ranked examples and their relation to correct matches.
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8.6.2 State of the art

We already discussed the state of the art in similarity metric learning and SNN in section 7.2,
and we will concentrate on approaches for ranking. In particular, we are interested here in
one category of methods which is called learning-to-rank. This approach, widely applied in
information retrieval and natural language processing, consists in learning a model that can
compute the optimal ordering of a list of items. Many learning-to-rank methods have been
proposed in the literature, like the pairwise approaches RankSVM [183], RankNet [100] and
listwise approaches ListNet [107], ListMLE [406] and LambdaRank [101], which take an entire
ranked list of objects as the learning instance.

Person re-identification could be considered as a retrieval problem based on ranking, where
the matching images, i.e. the ones showing the same person as in the query image, should be
ranked before all the others. Some methods proposed in the literature follow this approach. For
example, in the work of Prosser et al . [313] a set of weak RankSVMs is learnt, each computed
on a small set of data, and then combined to build a stronger ranker using ensemble learning.
Wang et al . [389] applied the ListMLE method to person re-identification: their approach maps
a list of similarity scores to a probability distribution, then utilizes the negative log likelihood
of ground truth permutations as the loss function.

8.6.3 Learning to rank with SNNs

The principal problem with rank learning with statistical machine learning approaches, partic-
ularly neural networks, is that the rank is discrete, and, thus, rank errors are not differentiable.
In order to apply an iterative gradient descent optimisation, the RankNet approach from Burges
et al . [100] uses a sigmoid function (which is convex and derivable) and pairwise relationships to
model the ranking. Later, they proposed the LambdaRank method [101], where the gradient is
scaled by the improvement of a global ranking measure (the Normalized Discounted Cumulative
Gain (NDCG)) incurred by swapping two examples in the ranking.

Our proposed approach is based on this approach. However, we do not use the pairwise
cross-entropy loss function but the triplet loss (c.f . Eq. 7.7 in section 7.2.3). Also, we combine
two ranking measures, the rank-1 (R1) score and the Average Precision (AP), i.e. the area under
the precision-recall curve, for a given query and ranking. Finally, we propose to minimise our
modified triplet loss function, called Rank-Triplet, on batches of examples (i.e. lists), where, in
each batch, only the most relevant triplets are selected for updating the model parameters, i.e.
we use only mis-ranked examples.

More precisely, a training batch is formed by M images of N identities. We take one example
in the batch as query and perform a ranking among the rest of images in the batch. (For the
sake of a robust metric, we add a margin m to the distance of ranking positions between the true
correspondences and the probe before ranking.) The AP and R1 scores are computed for each
of those query rankings. Then, with respect to one given query, we form all possible mis-ranked
pairs (false correspondences ranked before the true correspondence), and we re-calculate the new
AP and R1 scores by swapping positions of the pair in the ranking and thus obtain the gains
∆AP and ∆R1, respectively. The loss of each triplet is weighted by the sum of these gains. The
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Loss function R1 mAP

Classification loss 74.3 51.0
Siamese loss 62.9 46.6
Triplet loss 74.3 56.5

Quadruplet loss 74.9 58.1
Hardbatch 81.0 63.9
Baseline 82.1 66.5

Ours (Rank-triplet) 83.6 67.3

Table 8.8: Re-identification results (in %) on Market-1501 with different loss functions.

final Rank-triplet loss is calculated as follows:

Erank−triplet =
1

MN

MN∑

i=1

1

Ki

∑

j∈TCi

∑

k∈FCi

ri
k
<rij

[‖f(xi)− f(xj)‖22

− ‖f(xi)− f(xk)‖22+m] · (∆AP i
jk +∆R1ijk), (8.12)

where xi is the ith training example in a training batch, Ki is the number of mis-ranked pairs
w.r.t. the ith example as query, and rij is the rank of the jth example w.r.t. the ith image as

query. TCi/FCi is the true/false correspondence set of the ith example. ∆AP i
jk is the gain of

AP by swapping the jth and kth examples w.r.t. the ith example as query and analogously for
R1.

With our evaluation based weighting, we make a trade-off between the moderate hard ex-
amples and hardest examples, i.e. more weight is given to the hardest examples to make the
learning efficient, and, at the same time, the less hard examples are used to stabilise the training.

8.6.4 Experiments

I will present here a summary of the results of our experiments on the person re-identification
problem with a Resnet-50 neural network architecture pre-trained on Imagenet and with different
loss functions. More detailed experiments with different neural architectures and on an image
retrieval task can be found in [116].

First, we evaluated the re-identification performance of our Rank-Triplet approach on the
Market-1501 dataset and compared it with several other common loss functions. The results
are shown in Table 8.8. For the supervised classification with identity labels, the softmax cross
entropy loss is used. The margin in the Siamese loss and triplet loss is fixed to the default value
m = 1. For the pairwise Siamese learning the contrastive loss is used (c.f . Eq. 7.6), and we
generated all possible pairs of images within a batch. The triplet loss is calculated according
to Eq. 7.7. And the hard batch triplet loss takes only the hardest positive image and negative
image, the hard batch triplet loss is calculated as follows.

Lhard−batch =
1

N

N∑

i=1

max( max
j∈TCi

‖f(xi)− f(xj)‖22 − min
k∈FCi)

‖f(xi)− f(xk)‖22+m, 0) , (8.13)

where N is the number of triplets, TCi/FCi is the true/false correspondence set of the ith

example.

123



Chapter 8. Deep similarity metric learning and ranking for person re-identification

Methods
Market-1501 DukeMTMC-Reid CUHK03-NP
R1 mAP R1 mAP R1 mAP

Hardbatch triplet loss [184] 81.0 63.9 62.8 42.7 46.4 50.6
Our baseline 82.1 66.5 72.4 52.0 45.3 48.9

Our Rank-Triplet loss 83.6 67.3 74.3 55,6 47.8 52.4
Rank-Triplet+re-rank [447] 86.2 79.8 78.6 71.4 60.4 60.8

LOMO+XQDA [250] 43.8 22.2 30.8 17.0 12.8 11.5
LSRO [445] 78.1 56.2 67.7 47.1 - -

Divide and fuse [427] 82.3 72.4 - - 30.0 26.4
K-reciprocal re-rank [447] 77.1 63.6 - - 34.7 37.4

ACRN[333] 83.6 62.6 72.6 52.0 - -
SVDNet [361] 82.3 62.1 76.7 56.8 41.5 37.3
JLML [248] 85.1 65.5 - - - -
DPFL [115] 88.6 72.6 79.2 60.6 40.7 37.0

Table 8.9: Comparison of our Rank-Triplet approach with state-of-the-art methods for person
re-identification.

The quadruplet loss in [113], based on triplets, pushes away also negative pairs from positive
pairs w.r.t. different probe images. The loss is formulated as:

Equadruplet = −
1

N

N∑

i=1

[max(‖f(xi)− f(xj)‖22−‖f(xi)− f(xk)‖22+m1, 0)

+max(‖f(xi)− f(xj)‖22−‖f(xk)− f(xl)‖22+m2, 0)], (8.14)

where xj is the feature embeddings of an image from the same identity as xi and xk,xl are from
different identities. As [113], we set the m1 = 1,m2 = 0.5.

Finally, we implemented a baseline which is based on the Rank-triplet loss function without
the term for evaluation gain weighting. But the triplet selection is still based on the batch
ranking orders.

Our Rank-triplet achieved the best performance among these loss functions. This comparison
shows the effectiveness of the listwise evaluation measure-based weighting. Rank-triplet gives
also better results than hardbatch. This shows that using moderate difficult examples and
weighting them helps the metric learning. Using the quadruplet loss also slightly improves the
performance with respect to triplets. This could eventually be combined with our loss.

We also compared our method with state-of-the-art methods on three benchmark datasets:
Market-1501, DukeMTMC-Reid and CUHK03-NP. The results are shown in Table 8.9. Our
method Rank-triplet achieves better results than most of the other methods. Only on Market-
1501, DPFL obtains a slightly better result, and SVDNet and DPFL on DukeMTMCReid. On
the CUHK03 benchmark, our methods achieves the best results. DPFL and SVDNet are based
on a classification loss, and the CUHK03 dataset contains probably too few images per person
to train a good classifier. However, the triplet loss is not much affected because a large number
of triplets can still be formed. Since the main contribution of these two state-or-the-art methods
focuses on the network architecture, these methods can potentially be combined with our loss
function.
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8.6.5 Conclusion

In this section, we presented a final contribution on improving similarity metric learning with
SNN-based models. This approach not only uses lists (or tuples) to improve the convergence
and final similarity metric, and thus the overall re-identification performance, but also directly
incorporates in the optimisation the order of the ranking of lists of examples (operating itera-
tively on random batches). Our experimental results showed that this is a very powerful method
for similarity metric learning on image-based recognition problems, like person re-identification
and image retrieval with challenging and realistic state-of-the-art datasets.

8.7 Conclusion

In summary, we presented four different approaches to improve similarity metric learning with
SNNs illustrated on the (single-shot) person re-identification problem. We showed how semantic
prior knowledge can be effectively incorporated in these neural network-based architectures,
for example semantic pedestrian attributes and body orientation. Further, we presented an
elegant approach to make use of scene context, i.e. surrounding persons, for re-identifying a
given person, which can be applied to any CNN-based person re-identification model without
any further retraining and fine-tuning. Finally, we introduced an original objective function for
a new learning-to-rank approach with SNNs giving state-of-the-art results.

Most of these contributions could be combined to probably further improve the results on
person re-identification. Also, applying some of these methods to the face and gesture verification
and classification problems of the previous chapter would be very interesting and give insights
into the general performance of the different approaches. Despite the large progress that has been
recently made on the person re-identification problem, there still remain some open issues that
make their application to real-world settings difficult. For example, the overall generalisation
capacity of deep neural network models has been little studied in this context, because evaluation
is usually conducted on a given test dataset that is similar to the training dataset in terms of
acquisition conditions. In real-world applications, methods that are performing well on any type
of realistic data are required, i.e. different viewing angles, resolution, lighting conditions, possibly
by new mechanisms that automatically adapt to new previously unseen environments (domain
adaptation, unsupervised and continuous learning etc.). Further, the automatic optimal fusion
of different cues would allow for more robust systems, e.g . the context of carried objects and
accompanying persons, the person’s gait, walking speed, characteristic motion as well as scene
information from several cameras, for example.

We will elaborate more on future research directions in the following section.
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9 Conclusion and perspectives

In the preceding chapters, I described a large part of our research work that I co-supervised and
that I was involved in during the last 10 years. I had the chance the work in several European
countries with extremely competent persons and on a variety of related topics, which, on the one
hand, gave me a solid technical and scientific background, and on the other hand, broadened
and enriched my culture, vision and thinking in various aspects.

Of course, this is not an exhaustive report of all the work that I have been involved in. Only
the most representative results are presented, and I have not mentioned some of the more recent
studies. For example, our work on weakly supervised and unsupervised learning techniques for
object recognition and tracking, performed in a lab-internal project across several teams and
with two Master students. And also, our work on neural network compression and approximation
conducted within the context of an international collaboration with a colleague from the Federal
Pernambuco University, Recife, Brazil. I will briefly describe these in the perspectives, as both
of the studies are being pursued, or will be, with PhD theses starting in 2018 and 2019.

But before outlining future research directions and projects, I will first summarise the re-
search work that I presented in this manuscript and draw some general conclusions.

9.1 Summary of research work and general conclusion

Although there is some overlap, I categorised the description of our past research into two parts,
mainly due to the context of the two different research institutes and environments I have been
working in: Idiap and LIRIS. The first part described our machine learning and computer vision
approaches for visual object tracking in challenging dynamic environments, and the second
outlined our contributions on weakly-supervised metric learning methods using Siamese Neural
Networks.

From a computer vision point of view, we first focused on on-line multiple object tracking
in videos from a single RGB camera, and in particular, multiple face tracking applications in
dynamic contexts, and we addressed a variety of common problems, such as data association,
the tracking of a variable number of objects, an efficient inference for real-time applications, the
integration and adaptation of robust appearance models.

In particular, in chapter 5, we proposed an effective on-line algorithm for multi-face tracking
that is able to cope with missing face detections over longer periods of time without losing
the object, as well as frequent false detections without falsely initialising new tracks. Then, we
extended this work by an additional algorithm that estimates the Visual Focus of Attention of
a tracked person. The proposed unsupervised on-line learning approach learns a robust model
from very few examples of face images acquired during the tracking.

In chapter 6, we limited ourselves on tracking a single object in a video and focused on
creating more robust appearance models and on-line learning approaches. This included three
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major contributions: one method particularly suited to tracking deformable objects in challeng-
ing videos without any prior knowledge, another method including motion context in the on-line
learning of a robust discriminative appearance model and the last contribution resulting from
the PhD work with Salma Moujtahid [? ] proposing a method that effectively and dynam-
ically incorporates the scene context in the tracking process by selecting tracking algorithms
specialised for a given environment and context.

In the second part, in chapter 7, I presented our work with Lilei Zheng [441] and Samuel
Berlemont [90] on Siamese Neural Networks for similarity metric learning, applied to pairwise
face verification as well as gesture and action classification. Through more balanced and better
conditioned objective functions and learning algorithms, our proposed approaches were able to
address several problems, such as the better rejection of unknown classes and a higher classifi-
cation and verification performance.

In the final chapter, in the context of the PhD thesis of Yiqiang Chen [116], we studied
non-linear similarity metric learning approaches employing more complex SNN models based on
deeper CNN architectures. Our work focused here on the application of person re-identification
in images coming from several cameras with non-overlapping views. We showed that the use
of pedestrian attributes in the learnt similarity metric, and different models that are specific to
different body orientations as well as person group context largely improves the re-identification
performance.

From a machine learning point of view, in the presented work in the first part, one can
notice a trend from off-line learnt models (e.g . for track creation and removal) to more on-line
learning (e.g . for the objects’ appearance). There is a natural need for such algorithms in on-
line visual tracking approaches, and on-line data processing methods in general. However, there
is a considerable risk of model drift because very few training data is usually available, and
the model needs to be adapted continuously to changes of the object or environment without
“forgetting” previously acquired relevant information (the “stability-plasticity” dilemma). To
address this problem, we first proposed an effective on-line learnt model for pixel-wise detection
and segmentation and a co-training framework, where the estimation of one model (detector) is
used to update the model of the other one (segmentation) (and vice versa). And in the work on
scene context, this idea is extended to several models, where only the selected model updates all
the other ones at each point in time. Nevertheless, more principled methods for on-line learning
(with neural networks) and the better integration and understanding of contextual information
are still needed.

Another trend of the presented work is from supervised learning used for MOT, to algorithms
that are only weakly supervised, which we have employed for the similarity metric learning with
SNNs. We have presented several new objective functions (tuple-based, polar sine-based, Rank-
triplet etc.) and example selection strategies that improved the training and the performance
of SNNs for various different applications. We further introduced original neural architectures
and training strategies that allowed us to introduce semantic external knowledge. In this way,
we were able to combine different models that have been trained in a supervised and weakly
supervised way, according to the quantity of data as well as the quantity and type of annotation
that is available.

To summarise, we made several significant contributions in visual object tracking to improve
the long-term performance and to improve the robustness of the visual appearance models and
on-line learning. Nevertheless, many challenges still remain. Several recent tracking methods
are based on deep CNNs and showed excellent performance on public benchmarks. However,
there are two major issues to be considered. First, these models cannot be created from very few
training data as in short video sequences. Thus, they need to be pre-trained on large datasets
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such as ImageNet and “fine-tuned” on-line on a given test video. This pre-training introduces
a large bias on the type of videos and the type of objects to be tracked. Also, the on-line
learning or fine-tuning of neural networks with such non-stationary data is a topic that has not
been studied much in machine learning. We will come back to this issue in the perspectives.
The second issue is the computational complexity of deep CNNs. Apparently, such models
can operate in real-time with recent GPUs. But, the memory requirements and especially the
power consumption make their usage mostly impossible or at least impractical for smaller-scale
hardware, such as embedded systems. We will also come back to this in the perspectives.

Concerning similarity metric learning, we made several important contributions to improve
their convergence and performance of SNNs for verification, classification and ranking, both on
the theoretical and practical side. With the current revival and exaltation for neural networks,
there has been some recent work and advances on metric learning with deep neural networks
and deep CNN (as ours in chapter 8). However, as some of these models are very complex and
require a significant amount of training data, some fundamental questions arise. For example,
how generic is the learnt similarity metric, i.e. how does it cope with unseen data? According
to some of our experiments with large amounts of training data, the difference in classification
performance between a supervised and a weakly supervised model seems to decrease. This may
suggest that the learnt metric just “compares” the given test data to the learnt examples by
computing a type of non-linear distance, which might give very poor results when the test data
distribution is too far from the training data. We will further investigate these phenomena in our
future work. In any case, the inclusion of prior knowledge into the metric learning showed to be
a very effective approach. We showed that external semantic information improves the overall
performance, but as labels may not be available abundantly it would also be interesting, in the
future, to investigate how unsupervised learning may help the metric learning. This may also
be used to better define or learn the somewhat vague notions of “similarity” and “dissimilarity”
imposed by traditional SNN approaches.

9.2 Perspectives

There are numerous perspectives and possible future directions for our research, and, in the
following, I will present the most important ones. My colleagues and I have the chance to have
obtained the funding for several PhD students that will start soon or have started recently and
that will give us the opportunity to do research on these topics. I will co-supervise them with
my colleagues from LIRIS and other laboratories, which will further allow me to strengthen
existing collaborations within and between different teams (“Imagine”, “Data Mining and Ma-
chine Learning” (DM2L) and “Multi-Agent Systems” (SMA)) and start new collaborations with
others (Laboratoire Hubert Curien (LHC), Saint Étienne, ENS Lyon, UCLy). This evolution in
terms of funding and new supervision activities as well as the identified new research directions
outlined in the following give me a strong motivation for my habilitation and to build up my
own research group.

More specifically, the following topics will be the focus of my research for the next 4–6 years.

9.2.1 On-line and sequential similarity metric learning

In 2018, Christophe Garcia and I continued our collaboration with Grégoire Lefebvre at Orange
Labs, Grenoble, related to the work that has been carried out during the PhD thesis of Samuel
Berlemont (c.f . chapter 7). Within the context of a newly funded PhD, being performed by
Paul Compagnon, we will explore and develop new methods and techniques for SNN-based
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similarity metric learning of temporal sequences of mobile sensor data. The goal here is to
discover and recognise patterns and routines, for example of elderly persons, using inertial sensor
data, e.g . from a mobile phone, a smart watch etc. To this end, we will study new approaches
based on recurrent SNNs and on unsupervised and weakly supervised learning that will allow to
automatically recognise similar patterns that are recurring and others that are more exceptional
or abnormal in order to detect when there is a degradation in the autonomy or any other problem
related to the health of the person. Very little work has been done so far on such recurrent SNN-
based similarity metric learning approaches to characterise and classify sequential data.

Another work on metric learning on images has started with the PhD that I am co-supervising
with Christophe Garcia and Pierre Letissier from the “Institut National de l’Audiovisuel” (INA)
in Paris. In this upcoming work that will be conducted by Thomas Petit, we will study new
approaches based on deep convolutional SNN for the indexation of videos and broadcasts by
recognising faces in large-scale face image datasets. A part from the large training data volume,
we will focus on two scientific aspects here. First, we will investigate how such a complex SNN
similarity metric can generalise to unseen faces, and how it can effectively and incrementally
learn from sequential streams of (face) data and user annotation. And second, we will seek
to develop new compressed, robust representations of faces (particular embeddings, hash codes
etc.) to allow for an efficient indexation and retrieval of images and videos containing faces or
possibly other specific content.

9.2.2 Autonomous developmental learning for intelligent vision

During the last two years, in a lab-internal project between the teams Imagine (Christophe
Garcia and myself, INSA Lyon) and SMA (Fréderic Armetta, Mathieu Lefort, University Lyon
1), we conducted exploratory research on new approaches for learning visual representation to
recognise and track objects in videos in a completely unsupervised way and with minimum prior
knowledge. Two Master students supported us on this ambitious project, and we were able
to develop some novel ideas and approaches [19] based on developmental and constructivist
learning and SNNs. Figure 9.1 illustrates the principle procedure. Given a video stream, a first
algorithm detects salient image regions in each frame based on low-level visual features (colour,
edges, motion etc.). Then, using temporal consistent pairs of detected image regions, visual
representations of candidate objects are learnt on-line with a Siamese CNN architecture. The
output of the neural network forms an embedding space where similar objects are close and
different objects further apart. After a bootstrapping learning phase, this learnt model can in
turn be used to better detect and recognise the objects in the scene. To improve the embedding
and the convergence, we extended this approach with multi-task learning of image reconstruction
and object segmentation and with an attention mechanism that focuses on different objects in
the scene over time.

Many challenges and open issues remain in this project: for example, how to learn incremen-
tally and update an optimal representation from a continuous stream of (visual) data without
any prior knowledge, what are the perception, attention and memory mechanisms that allow
for plastic and abstract representations that are efficient for recognising known objects and for
transferring learnt knowledge to unknown environments, and how can higher-level information
be integrated in the model and be used to help this autonomous process, e.g . the scene con-
text, higher-level temporal or causal information, sensori-motor stimuli, affordances etc. These
fundamental issues will be studied in the context of the PhD thesis of Ruiqi Dai, that I will co-
supervise with my colleagues from the SMA team and a researcher in humanities (philosophy),
Matthieu Guillermin from the “Institut Catholique de Lyon”.
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Figure 9.1: Our autonomous perceptive learning approach.

9.2.3 Neural network model compression

With the advent of General-Purpose GPU computing and large-scale High-Performance Com-
puting (HPC) applied to CNNs, more and more complex, deep neural network models have been
developed requiring large amounts of computational and memory resources for training and in-
ference. However, it has been shown that the redundancy in such models is very large, and that
they can be reduced in size by several orders of magnitude using specific quantisation, factori-
sation or pruning techniques without any major negative impact on the overall (classification)
performance.

In our recent collaboration with Renato Cintra and André Leite from the Federal Pernam-
buco University, Recife, Brazil, we proposed an approach that approximates the parameters of a
trained neural network with so-called dyadic rationals, i.e. powers of two, and Canonical Signed
Digit-coded factors. In this way, we were able to obtain multiplication-free approximations of the
models, i.e. requiring only bit shifts and additions, paving the way for very low-complexity hard-
ware implementations of deep neural networks. We showed the effectiveness of our approach [1]
on a variety of tasks and network architectures, MLPs and CNNs, including the well-known
AlexNet trained on ImageNet [220].

This is an exciting research area that we will continue to explore. It raises also some fun-
damental questions and issues that we will tackle in the near future. For example, instead of
reducing the complexity of already trained neural networks, can we develop an algorithm that
directly learns such sparse or simplified models while maintaining the same classification per-
formance? In a PhD thesis starting soon in the context of an ambitious research project called
“Academics” between LIRIS, LHC, LIP and the Physics Laboratory of ENS Lyon and funded by
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the IDEX Lyon Scientific Breakthrough program, we will investigate new approaches to learn
sparse neural networks applied to large-scale problems related to complex dynamical systems
(e.g . climate models, social networks). To this end, with my colleagues from the DM2L team,
Marc Plantevit and Céline Robardet, we will work on the combination of specific data mining
and feature selection methods to reduce the noise and redundancy in the training data as well
as in the model. In particular, we will try to identify frequent and typical activation patterns
of a trained neural network graph, layer-wise and across several layers, in order to remove (i.e.
prune) redundant or useless neurons and to understand the responsibilities of different parts of
the model that we will then try to factorise and combine. A preliminary study (Master thesis)
on this topic gave promising experimental results.

We will also investigate methods for building simpler and more sparse models directly during
training. Recently, approaches that construct neural network architectures that incrementally
and iteratively grow (e.g . Neural Architecture Search, Network Morphism) may provide an
interesting starting point.

In the PhD thesis of Guillaume Anoufa on far-field object detection and recognition in
video streams that will in 2019 and that I will co-supervise with Christophe Garcia and Nico-
las Bélanger from Airbus Helicopters, we will also tackle this problem of model simplification
and compression with CNNs. We will approach this from the training data side and with
semi-supervised learning, i.e. we will create synthetic annotated images for training a classifier.
Among other issues, we will investigate how the choice and type of synthetic data influences the
performance and capability to automatically build a neural model of reduced size and complexity
and increased generalisation capacity.

9.2.4 From deep learning to deep understanding

Exploring and developing new learning strategies and neural network architectures, possibly
in a self-organising and autonomous way, may provide numerous further perspectives. First,
drastically reducing the computational complexity and memory requirements of deep neural
networks will not only allow for a efficient deployment in embedded devices (the Internet of
Things) giving them increased AI capabilities but also enable powerful machine learning-based
modelling of complex large-scale problems such as climate and weather prediction in physics or
brain signal analysis and interpretation in Neuroscience.

Another issue that gains increasing interest in the AI and Machine Learning research com-
munities is the fact that trained deep neural network models and their inference are difficult
to interpret and explain for humans, which leads to an increasing interest in “Explainable AI”
approaches. Much work is still to be done to introduce this “explainability”and“interpretability”
into neural network-based models, and this will be one perspective of our future work on model
simplification and sparsity. That is, we will seek to learn models that favour the identification
and isolation of processing paths or sub-models allowing to more easily incorporate and learn
semantic knowledge, probably of symbolic nature. This may also raise and hopefully answer
some questions on causality. The goal here is formally and statistically analyse input-output
correlations at different levels of the trained model, and, further, to develop new training strate-
gies that specifically create such correlations favouring explainable representations, functions
and processing paths.

The automatic learning of higher-level concepts, and the effective mechanisms of storing,
processing, and transforming them clearly forms the foundation of a strong AI that is able to
memorise, recognise and to reason. I believe that much work has still to be done in this regard,
and that this can only be achieved in a multi-disciplinary approach involving researchers from AI,
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Machine Learning, Robotics, Computer Vision, Cognitive Science and Psychology, Neuroscience,
Physics and Mathematics among others. I am keen to accept this challenge in the future, and,
in the long term, I hope that we will not only be able to make significant progress towards a
general AI but, more importantly, that these results will help us to better understand human
intelligence and the human brain as well as the world that surrounds us.
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[160] N. Gengembre and P. Pérez. Probabilistic color-based multi-object tracking with applica-
tion to team sports. Technical Report 6555, INRIA, 2008.

[161] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. In Proceedings of the Interna-
tional Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

[162] Martin Godec and Peter M. Roth. Hough-based tracking of non-rigid objects. In Proceed-
ings of International Conference on Computer Vision (ICCV), 2011.

[163] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In
Proceedings of the International Conference on, pages 2672–2680, 2014.

[164] H. Grabner and H. Bischof. On-line boosting and vision. In Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR), pages
260–267, June 2006.

[165] Helmut Grabner, Michael Grabner, and Horst Bischof. Real-time tracking via on-line
boosting. In Proceedings of British Machine Vision Conference (BMVC), 2006.

[166] Helmut Grabner, Christian Leistner, and Horst Bischof. Semi-supervised on-line boosting
for robust tracking. In Proceedings of European Conference on Computer Vision (ECCV),
2008.

[167] Helmut Grabner, Jiri Matas, Luc Van Gool, and Philippe Cattin. Tracking the invisible:
Learning where the object might be. In Proceedings of the Computer Vision and Pattern
Recognition (CVPR), volume 3, pages 1285–1292, June 2010.

148



[168] A. Graves and J. Schmidhuber. Framewise phoneme classification with bidirectional LSTM
and other neural network architectures. IEEE Transactions on Neural Networks, (18):5–6,
2005.

[169] Douglas Gray and Hai Tao. Viewpoint invariant pedestrian recognition with an ensemble
of localized features. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 262–275, 2008.

[170] C. S. Greenberg, D. Bansé, G. R. Doddington, D. Garcia-Romero, J. J. Godfrey, T. Kin-
nunen, A. F. Martin, A. McCree, M. Przybocki, and D. A. Reynolds. The NIST 2014
speaker recognition i-vector machine learning challenge. In Odyssey: The Speaker and
Language Recognition Workshop, 2014.

[171] M. Guillaumin, J. Verbeek, and C. Schmid. Is that you? metric learning approaches
for face identification. In Proceedings of International Conference on Pattern Recognition
(ICPR), pages 498–505. IEEE, 2009.

[172] Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, and Cordelia Schmid. Tagprop:
Discriminative metric learning in nearest neighbor models for image auto-annotation. In
Proceedings of the International Conference on Computer Vision and Pattern Recognition
(CVPR), pages 309–316. IEEE, 2009.

[173] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an
invariant mapping. In Proceedings of the International Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1735–1742, 2006.

[174] S. Hare, S. Golodetz, A. Saffari, V. Vineet, M. M. Cheng, S. L. Hicks, and P. H. S. Torr.
Struck: Structured output tracking with kernels. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 38(10):2096–2109, October 2016.

[175] Sam Hare, Amir Saffari, and Philip H. S. Torr. Struck: Structured output tracking with
kernels. In Proceedings of International Conference on Computer Vision (ICCV), 2011.

[176] Sam Hare, Amir Saffari, and Philip H. S. Torr. Efficient online structured output learning
for keypoint-based object tracking. In Proceedings of the International Conference on
Computer Vision and Pattern Recognition (CVPR), 2012.

[177] M. Hayhoe and D. Ballard. Eye movements in natural behavior. TRENDS in Cognitive
Sciences, 9(4):188–194, 2005.

[178] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[179] T. Heap and D. Hogg. Towards 3D hand tracking using a deformable model. In Proceedings
of Automatic Face and Gesture Recognition (FG), 1996.
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