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Notations et Glossaire

Les notations suivantes seront utilisées dans toute la thèse. De plus, nous rappelons certaines dénitions de base en analyse convexe.

Notations générales

• H : Espace de Hilbert réel. Notations et dénitions relatives à un opérateur multivoque A : H → 2 H

• domA = {x ∈ H; Ax = ∅} : Domaine de A.

• grA = {(x, u) ∈ H × H; u ∈ Ax} : Graphe de A.

• A -1 : H ⇒ H : u → {x ∈ H, u ∈ Ax} : Inverse de A.

• FixA = {x ∈ H; x ∈ Ax} : Points xes de A.

• zerA = {x ∈ H; 0 ∈ Ax} : Zéros de A.

• ranA = {u ∈ H; (∃x ∈ H) u ∈ Ax} : Image de A.

• J A λ = (I + λA) -1 : Résolvante de A d'indice λ > 0.

• A λ = 1 λ (I -J A λ ) : Approximation de Yosida de A d'indice λ > 0. • A est monotone :
(∀ (x, u) ∈ grA) (∀ (y, υ) ∈ grA)

x -y, u -υ ≥ 0

• A est maximal monotone : A est monotone, et il n'existe pas d'opérateur monotone prolongeant strictement A, au sens de l'inclusion des graphes.

• A est γfortement monotone :

(∀ (x, u) ∈ grA) (∀ (y, υ) ∈ grA)

x -y, u -υ ≥ γ x -y 2 .

x Quelque dénitions relatives à un opérateur univoque T : H -→ H

• L'ensemble des points xes de T : FixT = {x ∈ H; T x = x} .

• T est Lipschitzien de constante L ∈ ]0, +∞[ (ou T est L-Lipschitzien ) (∀ (x, y) ∈ H × H) T x -T y ≤ L x -y .

• T est une contraction :

(∀ (x, y) ∈ H × H) T x -T y ≤ x -y .

• T est β-cocoercif : ∃β > 0 tel que (∀ (x, y) ∈ H × H) T x -T y, x -y ≥ β T x -T y 2 .

• T est demi fermé :

∀ (x n ) n≥0 ⊂ H (x n x et T x n → y) =⇒ y = T x
Notions relatives à une fonction convexe, semi-continue inférieurement, propre

ϕ : H → R ∪ {+∞} • Domaine de ϕ domϕ = {x ∈ H; ϕ (x) < +∞} .
• Ensemble des minimiseurs de ϕ arg min H ϕ.

• Conjuguée de ϕ ϕ * : u → sup x∈H ( x, u -ϕ (x)) .

• Enveloppe de Moreau d'indice λ ∈ ]0, +∞[ de ϕ ϕ λ : x → inf y∈H ϕ (y) + 1 2λ

x -y 2 .

• Le sous diérentiel de ϕ ∂ϕ (x) = {u ∈ H : ϕ (y) ≥ ϕ (x) + u, y -x ∀y ∈ H} x ∈ H tel que A (x) + B (x) 0.

(1.1.1)

Dans tout le mémoire, on supposera acquis que l'ensemble des solutions de (1.1.1) est non vide, la question de l'existence de solutions relevant d'autres théories, bien établies, qui ne sont pas l'objet de notre étude. La formulation ci-dessus contient comme cas particuliers les problèmes de minimisation convexe, de point selle convexe-concave et de point xe de contractions. En outre, elle permet de combiner entre eux ces diérents types de problèmes. La résolution du problème (1.1.1) par des méthodes d'éclatement (par exemple "forward-backward") trouve des applications directes dans de nombreux domaines, en traitement du signal, théorie des jeux, transport optimal, équations aux dérivées partielles, et contrôle optimal.

L'objet principal de cette thèse est l'introduction et l'analyse de la convergence de (nouveaux) systèmes dynamiques continus, dont les versions discrètes sont liées à la résolution de l'inclusion monotone structurée (1.1.1) par la méthode de Newton.

En général, la méthode de Newton exige beaucoup de régularité, à la fois dans sa version discrète et continue. Dans le cas continu, pour contourner le caractère mal posé de la méthode de Newton, Attouch et Svaiter introduisent dans [7] une méthode de Levenberg-Marquardt régularisée, qui a les propriétés intéressantes suivantes : pour un opérateur maximal monotone général M , qui agit sur un espace de Hilbert réel H, cette dynamique est bien posée, stable, et a un bon comportement asymptotique. De plus, ils ont montré la convergence faible des trajectoires, lorsque le terme de régularisation λ(•) ne tend pas trop vite vers zéro. Le problème de Cauchy pour ce système de Newton régularisé s'écrit sous la forme du système en (x, v) suivant υ (t) ∈ M (x (t)) ,

(1.1.2) λ (t) ẋ (t) + υ (t) + υ (t) = 0

(1. 1.3) x (0) = x 0 , υ (0) = υ 0 , υ 0 ∈ M (x 0 ) .

(1.1.4) En s'appuyant sur la représentation de Minty de l'opérateur maximal monotone M comme une variété Lipschitzienne, et en prenant comme nouvelle fonction inconnue z : [0, +∞[ -→ H dénie par z (t) = x (t) + µ(t)υ (t) où (µ (t) = 1 λ(t) ), ils ont reformulé de façon équivalente le système précédent sous la forme

x (t) = J M µ(t) (z (t))

(1.1.5) ż (t) + (µ(t) -μ(t)) M µ(t) z (t) = 0

(1. 1.6) z (0) = x 0 + µ (0) υ 0 . Ce travail est prolongé dans [6] par l'étude de la régularisation en boucle fermée,

υ (t) ∈ M (x (t)) , (1.1.8) 
G (x (t) , υ (t)) ẋ (t) + υ (t) + υ (t) = 0,

où le coecient de régularisation G : H × H -→ [0, +∞[ est, pour υ = 0, strictement positif.

Le passage de la régularisation en boucle ouverte à la régularisation en boucle fermée se fait à l'aide d'un argument de point xe. A cet eet, dans la dynamique en boucle ouverte, on établit la dépendance lipschitzienne de la solution par rapport à λ.

Il y a un lien étroit entre le comportement asymptotique des systèmes dynamiques continus et de leurs versions discrètes (algorithmes). C'est un domaine actif de recherche [18].

Cependant, l'approche précédente, malgré son grand intérêt théorique, soulève une diculté notable pour ses applications pratiques et numériques. En eet, les dynamiques décrites cidessus, et étudiées dans [7,6], utilisent les résolvantes de l'opérateur maximal monotone M , qui sont, en général, diciles à calculer.

Dans notre travail, nous étendons les résultats précédents, et dénissons un cadre pratique d'utilisation, en considérant le cas où M est un opérateur maximal monotone structuré M = A + B, où A est un opérateur maximal monotone général, et B est monotone Lipschitzien.

Comme nous le verrons, ce cadre est bien adapté aux applications.

Nous introduisons des dynamiques continues et discrètes de type Newton régularisé faisant intervenir d'une façon séparée les résolvantes de l'opérateur A (implicites), et des évaluations de B (explicites) :

υ (t) ∈ A (x (t)) ,

(1.1.10) λ (t) ẋ (t) + υ (t) + υ (t) + B (x (t)) = 0, (1.1.11) La discrétisation en temps de ces dynamiques débouche sur de nouveaux algorithmes combinant les méthodes forward-backward et la méthode de Newton.

En particulier, nous examinons le cas où A = ∂Φ est le sous diérentiel d'une fonction convexe, semi-continue inférieurement, et propre Φ : H → R ∪ {+∞}, et B = ∇Ψ est le gradient d'une fonction Ψ : H → R convexe et diérentiable.

Le problème de minimisation convexe structuré correspondant s'écrit min {Φ (x) + Ψ (x) : x ∈ H} .

(1.1.12)

Lorsque le terme de régularisation λ (•) ne tend pas trop vite vers zéro (la taille critique est e -t ), et en s'appuyant sur une analyse asymptotique de type Lyapunov, nous étudions le comportement asymptotique des trajectoires.

Par ailleurs, nous montrons la dépendance Lipschitzienne des trajectoires par rapport au terme de régularisation. Ceci permet de prendre le coecient λ à variation bornée. A cet eet, pour étudier l'existence et l'unicité, nous utilisons une méthode de régularisation par convolution, qui permet de se ramener à un cas simple, puis on passe à la limite dans les équations.

Puis nous portons une attention particulière au cas où A est le sous diérentiel d'une fonction convexe, semi-continue inférieurement, et propre Φ, et B est opérateur monotone β-cocoercif.

Le problème s'écrit

Trouver x ∈ H tel que ∂Φ (x) + B (x) 0.

(1. 1.13) Nous nous intéressons à résoudre le problème (1.1.13) par la méthode de Newton régularisée décrite dans les lignes précédentes et développée dans [4] et dans [7] υ (t) ∈ ∂Φ (x (t)) , (1.1.14) λ ẋ (t) + υ (t) + υ (t) + B (x (t)) = 0, (1.1.15) en supposant que le terme de régularisation λ est une constante positive.

La discrétisation en temps débouche sur un nouvel algorithme backward-forward (impliciteexplicite) (BF ) x k = prox µΦ (y k ) y k+1 = (1 -h) y k + h (x k -µB (x k ))

(1. 1.16) qui est étroitement lié à l'algorithme forward-backward relaxé, cf. [11]. Les propriétés asymptotiques du système dynamique continu (et ses fonctions de Lyapunov) nous donnent un guide pour l'étude des propriétés asymptotiques de l'algorithme.

Nous considérons un autre système dynamique attaché à la résolution de (1.1.13), qui est le semi-groupe de contractions généré par -(∂ϕ + B) ẋ (t) + ∂Φ (x (t)) + B (x (t)) 0.

(1.1.17)

Cette dynamique relève de la théorie générale des semi-groupes de contractions dans les Hilbert, dont les générateurs sont précisément les opérateurs maximaux monotones. La théorie générale correspondante, cf. [13], nous donne l'existence et l'unicité d'une solution globale forte pour le problème de Cauchy. Le comportement asymptotique des trajectoires, étudié par Baillon-Brézis dans [10], montre que chaque trajectoire de (1.1.17) converge faiblement de façon ergodique, vers un zéro de l'opérateur ∂Φ + B.

Bruck dans [15] a étudié les propriétés de convergence faible (au lieu de convergence ergodique faible). La théorie de la convergence de Bruck est applicable séparément à ∂Φ et B, qui sont des opérateurs demi-positifs. Mais on ne sait pas si la somme de ces deux opérateurs reste un opérateur demi-positif, et donc la théorie de Bruck n'est pas directement applicable à notre cadre.

Une nouveauté de notre travail est que nous montrons que toute trajectoire du système (1.1.17) converge faiblement vers un zéro de ∂Φ + B.

Nous considérons aussi un autre système dynamique qui est associé à la reformulation de (1.1.13) comme un problème de point xe ẋ (t) + x (t)prox µΦ (x (t) -µB (x (t))) = 0.

(1. 1.18) Les propriétés de la convergence du système (1.1.18) ont été étudiées par Antipin [5] et Bolte [12], dans le cas particulier où Φ est la fonction indicatrice d'un ensemble convexe fermé C, et B désigne le gradient d'une fonction convexe diérentiable Ψ. Dans ce cas le système (1.1.18) se ramène à la méthode de gradient-projeté suivante : ẋ (t) + x (t)proj C (x (t) -µ∇Ψ (x (t))) = 0. λ ẋ (t) + υ (t) + υ (t) + (t) x (t) = 0. x (t) = prox µΦ (y (t))

(1. 1.22) ẏ (t) + ∇Θ (y (t)) + (t) ∇Ψ (y (t)) = 0, (1.1.23) où Θ(•) := µΦ µ (•). C'est un cas particulier du système dynamique multi-échelle, qui a été étudié en détail dans [9] (MAG) ε ẏ(t) + ∂Θ(y(t)) + (t)∂Ψ(y(t)) 0. 

Si C = argminΦ = ∅, +∞ 0 (t) dt = +∞,
(•) = 1 2µ • 2 + Φ(•) devient : υ (t) ∈ ∂Φ (x (t)) (1.1.27) λ ẋ (t) + υ (t) + (1 + µε (t))υ (t) + ε (t) x (t) = 0. (1.1.28)
Nous montrons que toutes les trajectoires convergent fortement vers l'élément de norme minimale dans C. Les solutions de ce problème seront obtenues comme limites des trajectoires de systèmes dynamiques dissipatifs continus et discrets (algorithmes) de type Newton régularisé.

La dynamique continue, associée à la méthode de Newton, étant mal posée, nous nous intéressons à sa régularisation par une méthode de type Levenberg-Marquardt, le terme de régularisation étant vu comme un contrôle.

En utilisant la représentation de Minty de l'opérateur maximal monotone A (variété lipschitzienne), nous montrons que la dynamique peut se formuler comme une ODE relevant du théorème de Cauchy-Lipschitz. En s'appuyant sur une analyse asymptotique de type Lyapunov, nous montrons que les trajectoires convergent faiblement vers des zéros de l'opérateur

M = A + B.
La discrétisation temporelle de ces dynamiques fournit de nouveaux algorithmes combinant la méthode de Newton et les méthodes forward-backward.

Comme guide de notre travail, nous utilisons la méthode de Newton régularisée introduite par Attouch-Svaiter (2011).

Pour résoudre le problème (2.1.1), nous considérons le problème de Cauchy suivant :

υ (t) ∈ A (x (t)) , (2.1.1) λ (t) ẋ (t) + υ (t) + υ (t) + B (x (t)) = 0, (2.1.2)
x (0) = x 0 , υ (0) = υ 0 , υ 0 ∈ A (x 0 ) .

( 

x (t) = J A µ(t) (z (t)) (2.1.4) ż (t) + (µ(t) -μ(t)) A µ(t) z (t) + µ(t)B J A µ(t) z (t) = 0 (2.1.5) z (0) = x 0 + µ (0) υ 0 . (2.1.6)
Cette formulation joue un rôle important dans notre approche. Insistons sur le fait que les 

opérateurs J A µ (z) := (I + µA) -1 : H -→ H, et A µ = 1 µ I -J A µ : H -→ H sont
Soit (x 0 , υ 0 ) ∈ H × H et υ 0 ∈ A (x 0 ). Alors, (i) il existe une solution unique globale forte (x (•) , υ (•)) : [0, +∞[ -→ H × H du problème de Cauchy (2.1.1)-(2.1.3). (ii) la solution (x (•) , υ (•)) du (2.1.1)-(2.1.3) peut être représentée par, pour tout t ∈ [0, +∞[ x (t) = J A µ(t) (z (t)) , υ (t) = A µ(t) z (t) , où z (•) : [0, +∞[ -→ H est
υ (t) ∈ ∂ϕ (x (t)) , (2.1.7) λ (t) ẋ (t) + υ (t) + υ (t) + ∇ψ (x (t)) = 0, (2.1.8) x (0) = x 0 , υ (0) = υ 0 , υ 0 ∈ ∂ϕ (x 0 ) .
.7)-(2.1.9) sur [0, b], b > 0. Alors (a) t -→ ϕ (x (t)) + ψ (x (t)) est une fonction décroissante. (b) b 0 λ (t) ẋ (t) 2 dt < +∞, et par conséquent ẋ ∈ L 2 (0, b; H) .
x (t) = J ∂ϕ µ(t) (z (t)) , υ (t) = ∇ϕ µ(t) z (t) , où z (•) : [0, +∞[ -→ H est
la solution unique globale forte du problème de Cauchy suivant : 

ż (t) + (µ(t) -μ(t)) ∇ϕ µ(t) z (t) + µ(t)∇ψ J ∂ϕ µ(t) z (t) = 0 (2.1.10) z (0) = x 0 + µ (0) υ 0 . ( 2 
(ϕ + ψ) (x (t)) = inf H (ϕ + ψ) .
Supposons que arg min (ϕ + ψ) = ∅, et

∃ > 0 : 1 + λ (t) λ (t)
≥ , presque pour tout t > 0 Alors, (i) chaque trajectoire x (•) converge faiblement vers un minimiseur de ϕ + ψ.

(ii) υ (•) + ∇ψ (x (•)) converge fortement vers zéro.

Finalement, nous nous intéressons à la discrétisation en temps du système précédent, où A = ∂ϕ est le sous diérentiel d'une fonction convexe, semi-continue inférieurement, et propre ϕ : H -→ R ∪ {+∞} . Dans ce cas, les résolvantes se reformulent de façon équivalente sous la forme proximale due à Moreau. Précisément, pour tout x ∈ H et µ > 0, la résolvante et l'approximation de Yosida de l'opérateur A d'indice µ sont donnés par :

J A µ x = prox µϕ x = argmin ϕ (y) + 1 2µ x -y 2 : y ∈ H A µ = ∇ϕ µ , ϕ µ (x) = inf ϕ (y) + 1 2µ
x -y 2 : y ∈ H 

x (t) = prox µ(t)ϕ (z (t)) , ż (t) + 1 -μ(t) µ(t) z (t) -prox µ(t)ϕ (z (t)) + µ(t)∇ψ prox µ(t)ϕ (z (t)) = 0.
(2.1.12)

Dans le cas où µ est une constante positive, on a μ = 0, et le système (2.1.12) devient

x (t) = prox µ(t)ϕ (z (t)) , ż (t) + z (t) -prox µ(t)ϕ (z (t)) + µ(t)∇ψ prox µ(t)ϕ (z (t)) = 0.
(2.1.13) La discrétisation en temps du système (2.1.13) débouche sur un nouvel algorithme forwardbackward Newton's method, however, requires a lot of regularity both in its discrete and continuous version. In the continuous case, to circumvent the ill-posedness of Newton's method, Attouch and Svaiter in [2] introduced a Levenberg-Marquardt regularized dynamic enjoying interesting properties : for a general maximal monotone operator M , acting on a Hilbert space H, this dynamic is proved well-posed, stable, and having a good asymptotic behavior. A central question studied in [2] is the asymptotic behavior of trajectories, when the Levenberg-Marquardt regularization parameter tends rapidly to zero. In that case, one may expect to obtain rates of convergence close to Newton's method. This analysis is completed in [3] by the study of a closed-loop regularization method, i.e., at time t the regularization parameter is taken as a function of the current state of the system.

x k = prox µφ (z k ), z k+1 = (1 -h k )z k + h k (x k -µ∇ψ (x k )) (2.
Yet, the dynamics in [2], [3], makes use of the resolvent of M , which may be dicult to compute in practical situations. In this paper, we will adapt (and partially extend) the dynamical 1. Abbas B, Attouch H, Svaiter BF.. Newton-like dynamics and forward-backward methods for structured monotone inclusions in Hilbert spaces. J. Optim. Theory Appl. 2014 ;161 :331-360.

approach in [2], so as to deal with structured maximal monotone operators. Precisely, we suppose that M = A + B can be written as the sum of a maximal monotone operator A (whose resolvents can be computed, at least approximatively), and a Lipschitz continuous monotone operator B. Our objective is to design continuous and discrete Newton-like dynamics attached to nding zeroes of M (the equilibria), and which exploit the particular structure of the operator M . Precisely, we want to use only the resolvents of A (implicit, backward step), and evaluation of B (explicit, forward step). So doing, we will obtain new insight on forwardbackward, and gradient-projection methods for solving structured monotone inclusions.

Preliminaries. Theoretical background

Throughout this paper, H is a real Hilbert space with scalar product ., . and norm • . As a guideline to our study, we use the Newton-like dynamic introduced by Attouch and Svaiter in [2]. Let us rst recall the main lines of this approach. Then, we shall explain how to adapt it, in order to t our splitting program. When M is a dierentiable mapping, the classical Newton-Raphson method generates sequences (x k ) k∈N in H verifying

M (x k ) + M (x k ) (x k+1 -x k ) = 0.
When the current iterate is far from the solution, it is convenient to introduce a positive step-size t k , and consider

M (x k ) + M (x k ) x k+1 -x k t k = 0.
Unless restrictive assumptions on M are made, this is not a well-posed equation. To overcome this diculty, we consider the following regularized version of the Newton-Raphson method

M (x k ) + (λ k I + M (x k )) x k+1 -x k t k = 0,
where I is the identity operator on H, and (λ k ) k∈N is a sequence of positive real numbers (in the particular case of the Gauss-Newton method, this is the Levenberg-Marquardt regularization method 

z (t) = x (t) + µ (t) υ (t) . (2.2.2)
Minty's representation gives the equivalent form of the inclusion υ (t) ∈ M (x (t))

x (t) = J M µ(t) (z (t)) , υ (t) = M µ(t) (z (t)) .
It is a straightforward computation to verify that (2.2.1) is equivalent to

x (t) = J M µ(t) (z (t)) , ż (t) + (µ (t) -μ (t)) M µ(t) (z (t)) = 0. (2.2.3)
As an important point note that, because of the Lipschitz continuous property of M µ , the above dierential system in z can be treated by the Cauchy-Lipschitz theorem. This approach, which has been developed in [2], makes use of the resolvent of M . In typical situations (like convex constrained minimization), M = N C + ∇Φ, where N C is the normal cone mapping to the constraint set C ⊂ H, and ∇Φ is the gradient of the dierentiable criterion Φ : H → R. In such situations, computing the resolvent of M turns out to be a dicult problem. By contrast, computing the resolvent of A = N C is equivalent to nding the projection onto C, a simpler problem. Other particular important situations come from inverse problems in signal/imaging, see [4], [5]. In order to recover sparse solutions of underdetermined linear systems, one usually considers the l 1 regularization of the least squares minimization problem

min{γ x 1 + 1 2 Ax -b 2 : x ∈ R n }. (2.2.4)
This is a structured minimization problem with Φ(x) = γ x 1 a convex nondierentiable function, and Ψ(x) = 1 2 Ax-b 2 a convex C 1 function. The crucial point is that the proximity mapping of the l 1 norm (equivalently, the resolvent of the subdierential of the l 1 norm) can be computed explicitly, via elementary operations. It is just the soft thresholding operator.

The classical forward-backward method provides the so-called iterative shrinkage/thresholding algorithm (ISTA). Thus, in the spirit of the splitting forward-backward methods, we are going to exploit the structure of the operator M = A + B, and rst develop continuous dynamics, then algorithms which only use the resolvents of the nonsmooth operator A. Namely, instead of (2.2.1), we are going to study the dynamic υ (t) ∈ A (x (t)) , λ (t) ẋ (t) + υ (t) + υ (t) + B (x (t)) = 0.

(2.2.5) Note that in (2.2.5), by contrast with (2.2.1), the operators A and B play asymmetric roles : if A = 0, the operator B governs a gradient type dynamic, while if B = 0 the operator A governs a Newton-like dynamic. By applying the Minty transformation to A, we will obtain the new dynamic The choice of the regularization parameter λ(t) > 0 is a crucial point of our analysis. Following [2], to obtain a dynamic that is close to the Newton method, one should take λ(t) → 0 as t → +∞, with λ(t) taken as small as possible. In doing so, we can expect a rapid convergence of the trajectories towards equilibria, which are zeros of the operator A + B. 

x (t) = J A µ(t) z (t) ż (t) + (µ(t) -μ(t)) A µ(t) z (t) + µ(t)B J A µ(t) z (t) = 0. ( 2 

Existence and uniqueness of global solutions.

We consider the Cauchy problem for the dierential inclusion system

v(t) ∈ A(x(t)) (2.2.7a) λ(t) ẋ(t) + v(t) + v(t) + B(x(t)) = 0 (2.2.7b) x(0) = x 0 , v(0) = v 0 , v 0 ∈ A(x 0 ). (2.2.7c)
First, we are going to dene a notion of strong solution to the above system. Then, we shall reformulate this system with the help of the Minty representation of A. 

f (t) = f (0) + t 0 g (s) ds, ∀t ∈ [0, b] ;
(ii) f is continuous, and its distributional derivative is Lebesgue integrable on [0, b].

(iii) for every > 0, there exists η > 0 such that, for any nite family of intervals

I k = (a k , b k ), (I k ∩ I j = ∅ for i = j, and k |b k -a k | ≤ η) =⇒ ( k f (b k ) -f (a k ) ≤ .)
Moreover, an absolutely continuous function is dierentiable almost everywhere, its derivative coincide with its distributional derivative almost everywhere, and one can recover the function from its derivative f = g by integration formula (i).

Denition 2.2.2 We say that the pair (x (•) , υ (•)) is a strong global solution of (2.2.7a)-(2.2.7c) i the following properties are satised :

(i) x (•) , υ (•) : [0, +∞[→ H are absolutely continuous on each interval [0, b], 0 < b < +∞; (ii) υ (t) ∈ A (x (t)) for all t ∈ [0, +∞[ ; (iii) λ (t) ẋ (t) + υ (t) + υ (t) + B (x (t)) = 0 for almost all t ∈ [0, +∞[ ; (iv) x (0) = x 0 , υ (0) = υ 0 .
The last condition makes sense because of the continuity property of x (•) and υ (•). Let us now make our standing assumption on function λ (•) :

λ : [0, +∞[→]0, +∞[ is absolutely continuous on each interval [0, b] , 0 < b < +∞. (2.2.8)
Hence λ (t) exists for almost all t > 0, and λ (•) is Lebesgue integrable on each bounded interval [0, b]. We stress the fact that we assume λ (t) > 0 for any t ≥ 0. By continuity of λ (•), this implies that, for any b > 0, there exists some positive nite lower and upper bounds for λ (

•) on [0, b], i.e., for any t ∈ [0, b] 0 < λ b,min < λ (t) < λ b,max < +∞.
(2.2.9)

This fact will be of importance for proving existence of strong solutions.

Equivalent Formulation as a Classical Dierential Equation

In order to solve system (2.2.7a)-(2.2.7c) we use Minty's device. Set µ(t) = 1 λ(t) . Let us rewrite inclusion (2.2.7a) by using the following equivalences : for any t ∈ [0, +∞)

v(t) ∈ A(x(t)) ⇔ (2.2.10) x(t) + µ(t)v(t) ∈ x(t) + µ(t)A(x(t)) ⇔ (2.2.11) x(t) = (I + µ(t)A) -1 (x(t) + µ(t)v(t)) .
( 

x(t) = (I + µ(t)A) -1 (z(t)) v(t) = 1 µ(t) z(t) -(I + µ(t)A) -1 (z(t)) .
Equivalently,

x(t) = J A µ(t) (z(t)) (2.2.14) v(t) = A µ(t) (z(t)), (2.2 

.15)

where J A µ = (I + µA) -1 and A µ = 1 µ I -J A µ are respectively the resolvent and the Yosida approximation of index µ > 0 of the maximal monotone operator A (one can consult [6], [7], [8] for basic facts concerning maximal monotone operators and Yosida approximation).

Indeed, this is Minty's representation of maximal monotone operators, see [9]. In a nite dimensional setting, this technique has been developed by Rockafellar in [10] : he shows that a maximal monotone operator can be represented as a Lipschitz manifold, which allows him to dene second-order derivatives of convex lower semicontinuous functions (a program close to ours, since, formally, Newton's method for a subdierential operator ∂f involves a second-order generalized derivative of f ).

Let us show how (2.2.7b) can be reformulated as a classical dierential equation with respect to z(•). First, let us rewrite (2.2.7b) as 

ẋ(t) + µ(t) v(t) + µ(t)v(t) + µ(t)B(x(t)) = 0. ( 2 
ż(t) = ẋ(t) + µ(t) v(t) + μ(t)v(t) (2.2.17) = -µ(t)v(t) + μ(t)v(t) -µ(t)B(x(t)).
( 

ż(t) + (µ(t) -μ(t))A µ(t) (z(t)) + µ(t)B J A µ(t) z (t) = 0.
Finally, the (x, z) system can be written as

x(t) = J A µ(t) (z(t)) (2.2.19a) ż(t) + (µ(t) -μ(t))A µ(t) (z(t)) + µ(t)B J A µ(t) z (t) = 0. (2.2.19b) Conversely, if z is solution of (2.2.19b), then (x, v) with x(t) = J A µ(t) (z(t)), v(t) = A µ(t) (z(t))
is solution of (2.2.7a)-(2.2.7c). This is detailed in the proof of Theorem 2.4.

As a nice feature of system (2.2.19a)-(2.2.19b), let us stress the fact that the operators J A µ : H → H and A µ : H → H are everywhere dened and Lipschitz continuous, which makes this system relevant to the Cauchy-Lipschitz theorem.

Global Existence and Uniqueness Results.

The formulation (2.2.19a)-(2.2.19b) of our dynamic as a (x, z) system involves the timedependent operators J A µ(t) and A µ(t) . In order to establish existence results for the evolution equation (2.2.19b), we will need the following regularity properties of the mappings µ → J A µ x and µ → A µ x.

Proposition 2.2.3 For any λ > 0, µ > 0, x ∈ H, the following properties hold :

(i) J A λ x = J A µ µ λ x + 1 -µ λ J A λ x ; (ii) J A λ x -J A µ x ≤ |λ -µ| A λ x .
As a consequence, for any x ∈ H and any 0 < δ < +∞, the mapping τ → J A τ x is Lipschitz continuous on [δ, +∞[. More precisely, for any λ, µ belonging to [δ, +∞[ 

J A λ x -J A µ x ≤ |λ -µ| A δ x . ( 2 
[0, b] , b > 0. Set µ (t) = 1 λ(t)
. Let A : H ⇒ H be a maximal monotone operator, and let B : H → H be a maximal monotone operator which is Lipschitz continuous on H. Let (x 0 , υ 0 ) ∈ H × H be such that υ 0 ∈ A (x 0 ). Then the following properties hold : i) there exists a unique strong global solution

(x (•) , υ (•)) : [0, +∞[→ H × H of the Cauchy problem (2.2.7a)-(2.2.7c); ii) the solution pair (x (•) , υ (•)) of (2.2.7a)-(2.2.

7c) can be represented as follows : for any

t ∈ [0, +∞[, x (t) = J A µ(t) (z (t)) , (2.2.21) υ (t) = A µ(t) (z (t)) , (2.2.22) 
where z (•) : [0, +∞[→ H is the unique strong global solution of the Cauchy problem

ż(t) + (µ(t) -μ(t))A µ(t) (z(t)) + µ(t)B J A µ(t) z(t) = 0 (2.2.23a) z (0) = x 0 + µ (0) υ 0 . (2.2.23b)
Proof. The proof is an adaptation to our situation (with two operators A and B) of the proof of [2, Theorem 2.4] (with a single operator A). 

ż(t) + 1 + λ(t) λ(t) 1 λ(t) A 1 λ(t) (z(t)) + 1 λ(t) B J A 1 λ(t) z(t) = 0. (2.2.24) The Cauchy problem (2.2.23a)-(2.2.23b) is equivalent to ż(t) = F (t, z(t)) (2.2.25a) z (0) = x 0 + µ (0) υ 0 , (2.2.25b) with F (t, z) = θ(t)G(t, z) + K(t, z), (2.2.26a) θ(t) = -1 + λ(t) λ(t) , (2.2.26b) G(t, z) = 1 λ(t) A 1 λ(t) (z), (2.2.26c) K(t, z) = - 1 λ(t) B J A 1 λ(t) (z) . (2.2.26d)
In order to apply the Cauchy-Lipschitz theorem to (2.2.25a)-(2.2.25b), let us rst examine the Lipschitz continuity properties of F (t, •). a) Take arbitrary z i ∈ H, i = 1, 2. For any t ≥ 0, G(t, .) :

H → H is nonexpansive, i.e., G(t, z 2 ) -G(t, z 1 ) ≤ z 2 -z 1 .
(2.2.27)

Let L be the Lipschitz constant of B. By the nonexpansive property of the resolvent operators

J A 1 λ(t)
we have

B J A 1 λ(t) (z 2 ) -B J A 1 λ(t) (z 1 ) ≤ L z 2 -z 1 .
( 

F (t, z 2 ) -F (t, z 1 ) ≤ L F (t) z 2 -z 1 , (2.2.29) with L F (t) = 1 + L + | λ(t)| λ(t) . ( 2 
L F (t) of F (t, •) satises L F (•) ∈ L 1 ([0, b]) for any 0 < b < +∞. (2.2.31) b) Let us show that ∀z ∈ H, ∀b > 0, F (., z) ∈ L 1 ([0, b] ; H). ( 2 
F (t, z) ≤ 1 + | λ(t)| λ b,min 1 λ b,min A 1 λ b,max z + K(t, z) .
(2.2.33)

On the other hand,

K(t, z) ≤ 1 λ b,min B(t, z 0 ) + L J A 1 λ(t) (z) -z 0 , (2.2.34)
where z 0 is arbitrarily chosen in H. 

x(.), v(.) : [0, +∞) → H by x(t) = J A µ(t) (z(t)), v(t) = A µ(t) (z(t)).
( 

J A µ 2 (z 2 ) -J A µ 1 (z 1 ) ≤ J A µ 2 (z 2 ) -J A µ 2 (z 1 ) + J A µ 2 (z 1 ) -J A µ 1 (z 1 ) (2.2.36) ≤ z 2 -z 1 + |µ 2 -µ 1 | A µ 1 z 1 .
(2.2.37)

Assuming that s, t ∈ [0, b], by taking z 1 = z(s), z 2 = z(t) and µ 1 = µ(s), µ 2 = µ(t) in (2.2.37),
and with the same notations as before (for any t ∈ [0, b], 0 < λ b,min ≤ λ(t) ≤ λ b,max < +∞), setting more briey Λ = λ b,max , we obtain

J A µ(t) (z(t)) -J A µ(s) (z(s)) ≤ z(t) -z(s) + |µ(t) -µ(s)| A µ(t) (z(t)) (2.2.38) ≤ z(t) -z(s) + |µ(t) -µ(s)| A 1 Λ (z(t)) .
(2.2.39)

Noting that A 1 Λ (z(t)) ≤ A 1 Λ (0) + Λ z(t) remains bounded on [0, b],
and owing to the absolute continuity property of z(.) and µ(.), we deduce that x(t) = J A µ(t) (z(t)) is absolutely continuous on [0, b] for any b > 0. The same property holds true for v(t) = λ(t) (z(t) -x(t)), because λ(.) is absolutely continuous on [0, b] for any b > 0, and the product of two absolutely continuous functions is still absolutely continuous ; see [13,Corollaire VIII.9]. Indeed this last property is a straight consequence of Denition 2.2.1(iii) of absolute continuity.

Moreover, for any

t ∈ [0, +∞[ v(t) ∈ A(x(t)), z(t) = x(t) + µ(t) v(t).
Dierentiation of the above equation shows that for almost every t > 0

ẋ(t) + µ(t) v(t) + μ(t)v(t) = ż(t).
On other hand, owing to υ

(t) = A µ(t) (z (t)), x (t) = J A µ(t) (z (t)), (2.2.23a
) can be equivalently written as

ż (t) + (µ (t) -μ (t)) υ (t) + µ (t) B (x (t)) = 0.
Combining the two above equations, we obtain

ẋ (t) + µ (t) υ (t) + µ (t) υ (t) + µ (t) B (x (t)) = 0. From µ (t) = λ (t) -1 we conclude that (x (•) , υ (•)) is a solution of system (2.2.7a)-(2.2.7c).
Regarding the initial condition, we observe that

z (0) = x 0 + µ (0) υ 0 , (2.2.40) = x (0) + µ (0) υ (0) , (2.2.41) with υ 0 ∈ A (x 0 ) and υ (0) ∈ A (x (0)). Hence x (0) = x 0 = (I + µ (0) A) -1 (x 0 + µ (0) υ 0 ) .
Returning to (2.2.40)-(2.2.41), after simplication, we obtain υ (0) = υ 0 .

b) Let us now prove uniqueness. Suppose that

x (•) , υ (•) : [0, +∞[-→ H × H is a solution pair of (2.2.7a)-(2.2.7c). Dening µ (t) = λ (t) -1 and z (t) = x (t) + µ (t) υ (t) , (2.2.42) 
we conclude that z (•) is absolutely continuous (we use again that the product of two absolutely continuous functions is still absolutely continuous ), z 0 = x 0 + µυ 0 , and for any t ∈ [0, +∞[,

x (t) = (I + µ (t) A) -1 (z (t)) , υ (t) = A µ(t) (z (t)) .
(2.2.43)

The functions involved in the denition (2.2.42) of z, (namely x(•), υ(•), µ(•)) are dierentiable for almost all t > 0.. Hence, by using the the usual derivation rule for the sum and product of functions, and using (2.2.7b), we conclude that for almost all t ∈ [0, +∞[

ż (t) = ẋ (t) + µ (t) υ (t) + μ (t) υ (t) . = -µ (t) ( υ (t) + υ (t) + B (x (t))) + µ (t) υ (t) + μ (t) υ (t) = (-µ (t) + μ (t)) υ (t) -µ (t) B (x (t)) . Since υ (t) = A µ(t) (z (t)), we nally obtain ż(t) + (µ(t) -μ(t)) A µ(t) (z(t)) + µ(t)B J A µ(t) z(t) = 0. Moreover z 0 = x 0 + µ (0) υ 0 .
Arguing as before, by the Cauchy-Lipschitz theorem, z (•) is uniquely determined, and locally absolutely continuous. Thus, by (2.2.43), x(•) and v(•) are uniquely determined.

Remark 2.2.5 There are some other possibilities for the choice for the auxiliary variable z.

For example, by taking z(t) = µ(t)y(t), i.e., y(t) = λ(t)x(t) + v(t), one obtains the equivalent (x, v, y) system 

x (t) = J A µ(t) (µ(t)y (t)) , (2.2.44a) υ (t) = A µ(t) (µ(t)y (t)) , (2.2.44b) ẏ(t) + y(t) - 1 µ 2 (t) (µ(t) -μ(t))J A µ(t) (y(t)) + B J A µ(t) (µ(t)y(t)) = 0. (2.
ẋ (t) , v (t) = lim h→0 h =0 1 h 2 x (t + h) -x (t) , υ (t + h) -υ (t)
.

By (2.2.45a), we have v(t) ∈ ∂ϕ(x(t)). Since ∂ϕ : H ⇒ H is monotone, x (t + h) -x (t) , υ (t + h) -υ (t) ≥ 0.
Dividing by h 2 and passing to the limit as h → 0 preserves the inequality, which yields, for almost all t ∈ [0, b] ẋ (t) , υ (t) ≥ 0.

( 

λ(t) ẋ(t) + v(t) + v(t) + ∇ψ(x(t)) = 0, (2.2.53b) x(0) = x 0 , v(0) = v 0 , v 0 ∈ ∂ϕ(x 0 ). (2.2.53c)
We suppose that the operator B = ∇ψ is Lipschitz continuous on bounded sets, i.e., for any R > 0, there exists L R > 0 such that for any z i ∈ H, i = 1, 2

z 2 ≤ R, z 1 ≤ R =⇒ ∇ψ (z 2 ) -∇ψ (z 1 ) ≤ L R z 1 -z 2 .
For short, we say that B = ∇ψ is locally Lipschitz continuous. 

ż (t) + (µ (t) -μ (t)) ∇ϕ µ(t) (z (t)) + µ (t) ∇ψ J ∂ϕ µ(t) (z (t)) = 0 (2.2.56) z (0) = x 0 + µ (0) υ 0 . ( 2 

Convergence analysis

We work in the framework which has been delineated in the previous section, namely i) A = ∂ϕ is the subdierential of a convex lower semicontinuous proper function ϕ : H → R ∪ {+∞}.

ii) B = ∇ψ is the gradient of a convex, continuously dierentiable function ψ : H → R, and ∇ψ is assumed to be locally Lipschitz continuous.

iii) ϕ + ψ is bounded from below on H.

We are going to study the minimizing and the convergence properties of the trajectories of system (2. We make use of the following Lyapunov functions : given z ∈ H,

g z (t) := ϕ (z) -[ϕ (x(t)) + z -x(t), υ(t) ] ,
(2.2.64)

h z (t) := ψ (z) -[ψ (x(t)) + z -x(t), ∇ψ (x(t)) ] .
(2.2.65) Proposition 2.2.8 For any t ≥ 0 and z in the eective domain of ϕ + ψ

g z (t) ≥ 0, h z (t) ≥ 0,
and for almost all t ≥ 0

d dt g z (t) = x(t) -z, v(t) .
Proof. The rst inequality, g z (t) ≥ 0, follows from the subdierential inequality for ϕ at x(t), and v(t) ∈ ∂ϕ(x(t)), see (2.2.45a), while the second follows from the convexity of ψ.

We now use the derivation chain rule in the nonsmooth convex subdierential case, see (2.2.51), and again v ∈ ∂ϕ(x) to obtain

d dt g z (t) = - d dt ϕ (x(t)) + ẋ (t) , υ (t) + x(t) -z, υ(t) = -ẋ(t), v(t) + ẋ(t), v(t) + x(t) -z, υ(t) = x(t) -z, υ(t) .
Minimizing Property Proposition 2.2.9 Suppose that λ is nonincreasing. Then

lim t→+∞ (ϕ + ψ)(x(t)) = inf H (ϕ + ψ).
Moreover, if arg min(ϕ + ψ) = ∅, then, for any t > 0,

(ϕ + ψ) (x(t)) -min (ϕ + ψ) ≤ 1 t λ 0 2 x 0 -z 2 + g z (0)
where λ 0 = λ (0) and z is the orthogonal projection of x 0 onto arg min(ϕ + ψ).

Proof. Take z in the eective domain of ϕ. Multiplying equation (2.2.45b)

λ(t) ẋ(t) + v(t) + v(t) + ∇ψ(x(t)) = 0 by x(t) -z we obtain λ(t) ẋ(t), x(t) -z + υ(t), x(t) -z = υ(t) + ∇ψ(x(t)), z -x(t) ≤ (ϕ + ψ) (z) -(ϕ + ψ) (x(t)) ,
where the inequality follows from the convexity of ϕ, ψ and the inclusion υ(t) ∈ ∂ϕ (x(t)).

Combining the above inequality with Proposition 2.2.8 we conclude that

d dt λ(t) 2 x(t) -z 2 + g z (t) ≤ λ(t) 2 x(t) -z 2 + (ϕ + ψ) (z) -(ϕ + ψ) (x(t)) .
Since λ(t) ≤ 0 for almost all t ≥ 0, we have

d dt λ(t) 2 x(t) -z 2 + g z (t) ≤ (ϕ + ψ) (z) -(ϕ + ψ) (x(t)) .
After integration on [0, T ], we obtain that, for any T > 0

- λ (0) 2 x 0 -z 2 + g z (0) ≤ λ (T ) 2 x (T ) -z 2 + g z (T ) - λ (0) 2 x 0 -z 2 + g z (0) ≤ T 0 (ϕ + ψ) (z) -(ϕ + ψ) (x(t)) dt ≤ T [(ϕ + ψ) (z) -(ϕ + ψ) (x (T ))] ,
where the rst inequality comes from g z ≥ 0 (Proposition 2.2.8), and the last inequality follows from (ϕ + ψ) (x) being non-increasing (Proposition 2.2.6). Altogether we have

(ϕ + ψ) (x (T )) -(ϕ + ψ) (z) ≤ (λ 0 /2) x 0 -z 2 + g z (0) T
which trivially implies the desired results.

Note that if the trajectory x is minimizing, then a necessary condition for it being bounded is the existence of solutions of min ϕ + ψ.

(2.2.66) So this assumption is quite natural for proving boundedness of x, which will be accomplished with the use of the Lyapunov function 

Γ z (t) = 1 2 x(t) -z 2 + λ -1 g z (t), t ≥ 0, ( 2 
d dt Γ z (t) = ẋ (t) , x (t) -z + λ (t) -1 υ (t) , x (t) -z -λ(t)λ(t) -2 g z (t) = 1 λ(t) λ(t) ẋ(t) + v(t), x(t) -z - λ(t) λ(t) g z (t) = - 1 λ(t) v(t) + ∇ψ, (x(t)), x(t) -z + λ(t) λ(t) g z (t) .
Direct algebraic manipulations on the expressions for g z , h z in (2.2.64)-(2.2.65) yield

g z (t) + h z (t) + (ϕ + ψ)(x(t)) -(ϕ + ψ)(z) = x(t) -z, v(t) + ∇ψ(x(t)) .
Combining the two above equations we conclude that 

d dt Γ z (t) = - 1 λ(t) (ϕ + ψ)(x(t)) -(ϕ + ψ)(z) + 1 + λ(t)/λ(t) g z (t) + h z (t)
h z /λ 1 + ((ϕ + ψ)(x) -(ϕ + ψ)(z))/λ 1 ≤ Γ z (0) λ -1 h z , λ -1 [(ϕ + ψ)(x) -(ϕ + ψ)(z)] ∈ L 1 [0, ∞); 2. x is bounded; 3. ẋ 2 ∈ L 1 ([0, ∞[) ẋ 2 1 ≤ (ϕ + ψ)(x) -(ϕ + ψ)(z) λ 1 + (ϕ + ψ)(x 0 ) -(ϕ + ψ)(z) λ(0) .
Proof. Take z ∈ arg min(ϕ+ψ). 

d dt Γ z (t) ≤ - 1 λ(t) [(ϕ + ψ)(x(t)) -(ϕ + ψ)(z)] + 1 λ h z (t) .
Since Γ z and both functions inside the braces are non-negative, these two functions must be integrable and Γ z is bounded, which proves item 1. Boundedness of Γ z trivially implies boundedness of x.

Still with z ∈ arg min(ϕ + ψ) dene

f (t) = (ϕ + ψ)(x(t)) -(ϕ + ψ)(z), t ≥ 0.
(2.2.70)

Performing the inner product of λ -1 ẋ with both sides of equality (2.2.45b) yields

ẋ 2 + 1 λ ẋ, υ + 1 λ ẋ, υ + ∇ψ = 0.
We have df /dt = ẋ, v + ∇ψ(x) . Adding to both sides of the above equality -( λ/λ 2 )f (t), and taking into account that ẋ, v is non-negative, we conclude that

ẋ 2 + d dt 1 λ f (t) ≤ - λ λ 2 f (t).
By assumption (2.2.69) we have -λ

λ 2 ≤ 1 λ . Since f is nonnegative we deduce that ẋ 2 + d dt 1 λ f (t) ≤ 1 λ f (t).
After integration on [0, T ], we obtain that, for any T > 0

T 0 ẋ 2 dt + 1 λ(T ) f (T ) ≤ 1 λ(0) f (0) + T 0 1 λ(t) f (t) dt.
By nonnegativity of f and item 1 (

1 λ f ∈ L 1 ([0, +∞[))
we obtain item 3.

In short, from now on, we use the following terminology : we say that x is a weak sequential cluster point of the trajectory x i x = w -lim x(t n ) for some sequence t n → +∞. 

(ϕ + ψ)(x(t)) = inf (ϕ + ψ).
(2.2.73)

If, additionally, arg min (ϕ + ψ) = ∅ then the trajectory x is bounded, all weak sequential cluster points of x are minimizers of ϕ + ψ, and for any z ∈ arg min (ϕ + ψ)

(ϕ + ψ)(x(t)) -(ϕ + ψ)(z) ≤ Γ z (0) t 0 1/λ(s) ds .
Proof. 

Γ z (0) ≥ Γ z (0) -Γ z (t) ≥ t 0 1 λ(s) [(ϕ + ψ)(x(s)) -(ϕ + ψ)(z)] ds ≥ [(ϕ + ψ)(x(t)) -(ϕ + ψ)(z)] t 0 1 λ(s) ds
valid for any t ≥ 0. Dividing the above inequalities by t 0 1/λ(s) ds, using (2.2.71), and taking the limit as t → ∞ we conclude that

lim t→∞ (ϕ + ψ)(x(t)) -(ϕ + ψ)(z) ≤ 0,
which means that the trajectory x is minimizing.

The second part of the theorem follows from the rst one, Proposition 2.2.10 and the weak lower semicontinuity of ϕ + ψ.

Convergence of Trajectories

The following well-known results will be used in the proof of the weak convergence of x. For the reader's convenience, we give a proof of them. Lemma 2.2.12 Suppose that F : [0, ∞[→ R is locally absolutely continuous, bounded below, and there exists G ∈ L 1 ([0, ∞[) such that for almost all t d dt F (t) ≤ G(t).

(2.2.74)

Then there exists lim t→∞ F (t) ∈ R.

Proof. By integration of (2.2.74) it follows that, for any 0 < s < t < ∞

F (t) -F (s) ≤ t s G(τ )dτ. (2.2.75) Equivalently F (t) - t 0 G(τ )dτ ≤ F (s) - s 0 G(τ )dτ.
(2.2.76)

Hence, the function t → F (t)-t 0 G(τ )dτ is nonincreasing. It is bounded from below, because F has been assumed to be bounded below, and G ∈ L 1 ([0, ∞[). As a consequence F (t)-t 0 G(τ )dτ has a limit as t → ∞. Using again that G ∈ L 1 ([0, ∞[), we nally obtain that there exists

lim t→∞ F (t) ∈ R. Lemma 2.2.13 If 1 ≤ p < ∞, 1 ≤ r ≤ ∞, F ∈ L p ([0, ∞[) is a locally absolutely continuous nonnegative function, G ∈ L r ([0, ∞[) and for almost all t d dt F (t) ≤ G(t) (2.2.77) then lim t→∞ F (t) = 0.
Proof. When r = 1 we are in the setting of Lemma 2.2.12. Hence, lim t→∞ F (t) exists and since F ∈ L p ([0, ∞[) with 1 ≤ p < ∞, we deduce that lim t→∞ F (t) = 0.

Let us now examine the case 1 < r ≤ +∞. Let us introduce a positive real parameter 1 < q < +∞ (its value will be chosen appropriately later) and consider the function t → F (t) q (recall that F (t) is nonnegative). By (2.2.77) we have

d dt F (t) q = qF (t) q-1 d dt F (t) (2.2.78)
≤ qF (t) q-1 G(t).

(2.2.79)

Let us choose the parameter 1 < q < +∞ so that the function t → F (t

) q-1 G(t) belongs to L 1 ([0, ∞[). Since G ∈ L r ([0, ∞[), this will be achieved if F q-1 ∈ L r ([0, ∞[) where r is the Holder conjugate exponent of r, i.e., 1 r + 1 r = 1. This is equivalent to F (q-1)r ∈ L 1 ([0, ∞[). We know that F ∈ L p [0, ∞[. Thus one can take (q -1)r = p, that is q = 1 + p(1 - 1 r ), (2.2.80) 
which veries 1 < q < +∞. With this choice of q we have F q-1 G belongs to L 1 ([0, ∞[). By (2.2.78) and Lemma 2.2.12 we deduce that lim t→∞ F (t) q exists, and hence lim t→∞ F (t) exists. Since F ∈ L p ([0, ∞[), this forces this limit to be zero, which ends the proof.

In order to prove the weak convergence of the trajectories of system (2.2.45a)-(2.2.45b), we need the classical Opial's lemma [14] that we recall in its continuous form ; see also [15],

who initiated the use of this argument to analyze the asymptotic convergence of nonlinear contraction semigroups in Hilbert spaces.

Lemma 2.2.14 Let S be a non empty subset of H and x : [0, +∞) → H a map. Assume that

(i)
for every z ∈ S, lim t→+∞ x(t) -z exists;

(ii) every weak sequential cluster point of the map x belongs to S. Then

w -lim t→+∞ x(t) = x ∞ exists, for some element x ∞ ∈ S.
We can now state our main convergence result. (2.2.81)

Then x(•) converges weakly to a minimizer of ϕ + ψ.

Moreover, for any z ∈ arg min (ϕ + ψ), 

1 λ g z ∈ L 1 (0, ∞), (2.2 
d dt Γ z (t) ≤ - 1 λ(t) [(ϕ + ψ)(x(t)) -(ϕ + ψ)(z)] + ε λ(t) g z (t) + 1 λ(t) h z (t) ≤ - ε λ(t) g z (t)
which, in view of the nonnegativity of Γ z and g z proves (2.2.82).

To prove (2.2.83), rst use denition (2.2.67) to conclude that

d dt Γ z (t) = ẋ(t), x(t) -z + d dt 1 λ(t) g z (t) ≤ 0,
where the inequality follows from item 1 of Proposition 2.2.10. Using item 2 of Proposition 2.2.10 we have

M = sup t≥0 x(t) -z < ∞.
Combining the two above inequalities we conclude that d dt

1 λ g z (t) ≤ M ẋ(t) .
According to item 3 of Proposition 2.2.10, ẋ ∈ L 2 . To end the proof of (2.2.83), combine this inclusion with the above inequality, the non-negativity of g z /λ and Lemma 2.2.13. Using item 1 of Proposition 2.2.10, Γ z is a non-increasing function. Hence the following limits exist

lim t→∞ Γ z (t) = lim t→∞ 1 2 x (t) -z 2 + λ(t) -1 g z (t) ∈ [0, ∞).
Combining the above result with (2.2.83) (which has just been proved), we conclude that there exists lim t→∞ x(t) -z . As z is an arbitrary point in the solution set, x is bounded, and all its weak sequential cluster points belongs to the solution set. Using Opial's Lemma 2.2.14 we conclude that x is weakly convergent toward a particular point of the solution set. Note that our proof can be viewed as an adaptation (with Newton metric aspects) of the Bruck's proof of convergence for the generalized continuous steepest decscent, see [15]. Proof. We already know :

1.

x is bounded and converges weakly to a solution, 2. (ϕ + ψ)(x) converges to the minimal value of ϕ + ψ,

3.
ẋ, υ ≥ 0,

4. ẋ ∈ L 2 (0, ∞).
We want to show that v(t) + ∇ψ(x(t)) → 0 as t → ∞.

( where the second inequality follows from the convexity of ψ. Therefore, for almost all t ≥ 0 d dt

1 2 v + ∇ψ(x) 2 = v + d dt ∇ψ(x), v + ∇ψ(x) = v + d dt ∇ψ(x), -λ ẋ -v = -λ v, ẋ -v 2 -λ d dt ∇ψ(x), ẋ - d dt ∇ψ(x), v
where the second equality follows from (2.2.45b). Combining the above equation with item 3 and (2.2.85) we conclude that d dt

1 2 v + ∇ψ(x) 2 ≤ -v 2 + L ẋ v (2.2.86) ≤ -v 2 + 1 2 L 2 ẋ 2 + v 2 (2.2.87) = - 1 2 v 2 + L 2 2 ẋ 2 .
(2.2.88) Therefore, using the above inequality, item 4 and the non-negativity of v + ∇ψ(x) we conclude that a there exists lim t→∞ v(t)

+ ∇ψ(x(t)) ; b v 2 ∈ L 1 [0, ∞);
where item a follows from the above inequality and Lemma 2.2.12. If λ is bounded, by using equation (2.2.45b), v + ∇ψ(x) is in L 2 , hence converges to 0.

Remark 2.2.17 One can reasonably conjecture that convergence should be strong provided one of the functions is strongly convex, if the sum is even, or if the solution set has nonempty interior. These are the classical assumptions insuring strong convergence of the trajectories of the continuous steepest descent, see [6,15].

Indeed, under the assumptions of Theorem 2.2.11, we know that for each trajectory x of our system lim t→+∞

(ϕ + ψ)(x(t)) = inf (ϕ + ψ).
This allows to conclude that the property of strong convergence is true in the following cases :

a) If one of the functions is strongly convex, then ϕ + ψ is strongly convex. By a classical result, we know that, in that case, every minimizing sequence converges strongly to the unique minimizer, see [16,Theorem 1.31] for example, whence the result.

b) If one of the functions is boundedly inf-compact, we easily deduce that the trajectory remains in a xed level set of this function, whence the result.

The general study of the strong convergence property is an interesting subject, but out of the scope of the paper.

Gradient-projection and forward-backward methods

Gradient-Projection Methods

Let us apply the results of the preceding sections to the case A = ∂δ C , where δ C is the indicator function of a closed convex nonempty set C ⊂ H ; we recall that δ C : H → R ∪ {+∞} is equal to 0 on C and +∞ elsewhere. The subdierential of δ C is the normal cone mapping x → A(x) = N C (x). For any x ∈ H, and λ > 0 the resolvent and Yosida approximation of A are equal to

J A λ (x) = P C (x) A λ (x) = 1 λ (x -P C (x)),
where P C is the projection operator onto C (best approximation operator).

The operator B = ∇ψ is the gradient of a convex, continuously dierentiable function ψ : H → R, and we assume that ∇ψ is Lipschitz continuous on bounded sets. In this setting, the (x, z) dynamical system (2.2.23a)-(2.2.23b), which has been analyzed in Theorem 2.2.4 (recall that µ(t) = 1 λ(t) ), can be written as

x(t) = P C (z(t)), ż(t) + 1 -μ(t) µ(t) (z(t) -P C (z(t))) + µ(t)∇ψ (P C (z(t))) = 0.
(2.2.89)

The results obtained in the preceding section give in this particular situation the following 

[0, b] , 0 < b < +∞. Set µ(t) = 1 λ(t)
. Then, for any z 0 ∈ H there exists a unique global solution (x, z) of (2.2.89) such that z(0) = z 0 (and x(0) = P C (z 0 )). for each t ≥ 0, x(t) ∈ C, and t → ψ(x(t)) is a non-increasing function. if λ is nonincreasing then lim t→+∞ ψ(x(t)) = inf C (ψ). Suppose that +∞ 0 1 λ(t) dt = +∞, and for almost all t > 0, 1 + λ(t) λ(t) ≥ 0, then

lim t→+∞ ψ(x(t)) = inf C (ψ).
Suppose that arg min C ψ = ∅, +∞ 0 1 λ(t) dt = +∞, and there exists ε > 0 such that, for almost all t > 0 1 + λ(t) λ(t) ≥ ε.

Then x(•) converges weakly to a minimizer of ψ on C.

In the case µ constant, we have μ = 0, and system (2.2.89) takes the simpler form 

x(t) = P C (z(t)), ż(t) + z(t) -P C (z(t)) + µ∇ψ (P C (z(t))) = 0. ( 2 
ẋ(t) + x(t) -P C [x(t) -µ∇ψ (x(t))] = 0, (2.2.91)
which has been studied by Antipin [17], and Bolte [18]. It is reasonable to conjecture that the time discretization of systems (2.2.89) and (2.2.90) provides new gradient-projection algorithms, which share the good convergence properties of the continuous dynamics. See [1] for a general discussion concerning the link bewtween continuous and discrete dynamics, from the point of view of their convergence. For example, time discretization of (2.2.90) with step size

h k > 0 gives x k = P C (z k ), z k+1 -z k h k + z k -P C (z k ) + µ∇ψ (P C (z k )) = 0.
(2.2.92)

Equivalently

x k = P C (z k ), z k+1 = (1 -h k )z k + h k (x k -µ∇ψ (x k )) . ( 2 

.2.93)

By taking h k = 1, we recover the classical gradient-projection method

x k+1 = P C x k -µ∇ψ (x k ) .
(2.2.94)

Forward-Backward Methods

Consider now the more general situation where the operator A = ∂ϕ is the subdierential of a convex lower semicontinuous proper function ϕ : H → R ∪ {+∞}. For any x ∈ H and µ > 0, the resolvent and Yosida approximation of A are given by

J A µ (x) = prox µφ (x) A µ (x) = 1 µ (x -prox µφ (x)),
where prox µφ is the proximal mapping of µφ, namely prox µφ (x) = arg min µφ(ξ) + 1 2

x -ξ 2 : ξ ∈ H .

The operator B = ∇ψ is the gradient of a convex, continuously dierentiable function ψ : H → R, and we assume that ∇ψ is Lipschitz continuous on bounded sets.

In this context, we make an analysis very similar to the gradient-projection method. For convenience of the reader, we give a self-contained formulation.

The (x, z) 

[0, b] , 0 < b < +∞. Set µ(t) = 1 λ(t)
. Then, for any z 0 ∈ H there exists a unique global solution (x, z) of (2.2.95) such that z(0) = z 0 (and x(0) = prox µ(0)φ (z 0 )). t → φ(x(t)) + ψ(x(t)) is a non-increasing function. if λ is nonincreasing then lim t→+∞ (φ(x(t)) + ψ(x(t))) = inf H (φ + ψ). Suppose that +∞ 0 1 λ(t) dt = +∞ and for almost all t > 0 1 + λ(t) λ(t) ≥ 0, then

lim t→+∞ (φ(x(t)) + ψ(x(t))) = inf H (φ + ψ).
Suppose that arg min H (φ + ψ) = ∅, +∞ 0 1 λ(t) dt = +∞ and there exists ε > 0 such that, for almost all t > 0 1 + λ(t) λ(t) ≥ ε.

Then x(•) converges weakly to a minimizer of φ + ψ on H.

In the case µ constant, we have μ = 0, and system (2.2.95) takes the simpler form 

x(t) = prox µφ (z(t)), ż(t) + z(t) -prox µφ (z(t)) + µ∇ψ prox µφ (z(t)) = 0. ( 2 
x k = prox µφ (z k ), z k+1 -z k h k + z k -prox µφ (z k ) + µ∇ψ prox µφ (z k ) = 0.
(2.2.97)

Equivalently

x k = prox µφ (z k ), z k+1 = (1 -h k )z k + h k (x k -µ∇ψ (x k )) .
(2.2.98)

By taking h k = 1, we recover the classical forward-backward algorithm 

x k+1 = prox µφ x k -µ∇ψ (x k ) . ( 2 
y k = x k -µ∇Ψ (x k ) , x k+1 = (1 -h k )x k + h k prox µφ (y k ).
(2.2.100)

It involves the same basic blocks, but it diers in the order of the operations : in (2.2.98) the relaxation is done inside the proximal loop, while, in the classical one, the relaxation is done outside. Of course, when prox µφ is linear, the two algorithms coincide.

It is reasonable to expect that algorithm (2.2.98) (and its companions, with varying regularization parameter µ) share the good convergence properties of the continuous dynamics. Their detailed analysis is beyond the scope of this article. It is an interesting research topic for the future.

Conclusions

We introduced a Newton-like continuous dynamic which aims at solving structured monotone inclusions in Hilbert spaces. Given a maximal monotone operator M = A+B, with A maximal monotone, B monotone and Lipschitz continuous, the dynamic can be rewritten as a classical dierential equation involving separately the resolvents of A (implicit), and evaluations of B (explicit). In the convex subdierential case, with a Levenberg-Marquardt regularization parameter that is allowed to tend to zero (roughly speaking no faster than e -t ), we prove a descent minimizing property, and weak convergence to equilibria of the trajectories. The nice convergence properties of the continuous dynamics may serve as a guideline and an incentive to study some related questions for discrete dynamics. Indeed, time discretization of these continuous dynamics naturally suggests new explicit-implicit (forward-backward) algorithms, and gradient-projection methods for solving structured monotone inclusions.

Further research may also concern :

(a) Convergence analysis with A = ∂φ, and B a cocoercive operator (see [19], [20]), for example B = I -T with T a nonexpansive map.

(b) Study of the closed-loop regularized dynamic with two operators A and B, in the line of Attouch-Redont-Svaiter [3].

(c) Compare and possibly make connection with some related second-order dierential systems involving inertia and Hessian driven damping, see [21], [22], with in view accelerated methods, like Beck-Teboulle [4].

(d) Application to signal/imaging, sparse optimization, and PDE's.

Chapitre 3

Stabilité de la méthode de Newton régularisée avec deux potentiels 

υ (t) ∈ ∂ϕ (x (t)) (3.1.1) λ (t) ẋ (t) + υ (t) + υ (t) + ∇ψ (x (t)) = 0, (3.1.2)
x (0) = x 0 , υ (0) = υ 0 , υ 0 ∈ ∂ϕ (x 0 ) , 

λ ẋ + υ + υ + ∇ψ (x) = 0, υ ∈ ∂ϕ (x) , x (0) = x 0 , υ (0) = υ 0 η ẏ + ẇ + w + ∇ψ (y) = 0, w ∈ ∂ϕ (y) , y (0) = y 0 , w (0) = w 0 . Soit θ : [0, T ] -→ R, dénie pour tout t ∈ [0, T ] par θ(t) = c 2 0 x(t) -y(t) 2 + υ(t) -w(t) 2 .
Alors

θ L ∞ ([0,T ]) ≤ λ(0) + η(0) 2 x 0 -y 0 + υ 0 -w 0 + C 2 λ -η L 1 ([0,T ]) ×exp λ + η L 1 2c 0 + T (1 + L ψ c 0 ) , (3.1.7) 
avec,

C = v 0 + w 0 c 0 + 1 + √ 2T c 0 ( ∇ψ(x 0 ) + ∇ψ(y 0 ) ) + ( √ 2T + √ T )L ψ c 3 2 0 (ϕ + ψ)(x 0 ) -inf H (ϕ + ψ) 1 2 + (ϕ + ψ)(y 0 ) -inf H (ϕ + ψ) 1 2 
.

En particulier, si x 0 = y 0 , υ 0 = w 0 , alors 

θ L ∞ ([0,T ]) ≤ C 2 λ -η L 1 ([0,T ]) × exp λ + η L 1 ([0,T ]) 2c 0 + T (1 + L ψ c 0 ) , (3.1.8) avec C = 2 v 0 c 0 + 2 1 + √ 2T c 0 ∇ψ(x 0 ) + 2 ( √ 2T + √ T )L ψ c 3 2 0 (ϕ + ψ)(x 0 ) -inf H (ϕ + ψ)
υ (t) ∈ ∂ϕ (x (t)) , 0 ≤ t ≤ T (3.1.9) λ (t) ẋ (t) + υ (t) + υ (t) + ∇ψ (x (t)) = 0, ppt. 0 ≤ t ≤ T, (3.1.10) 
x (0) = x 0 , υ (0) = υ 0 . As a byproduct of our study, we can take the regularization coecient of bounded variation.

These stability results are directly related to the study of numerical algorithms that combine forward-backward and Newton's methods.

Introduction

Throughout this paper H is a real Hilbert space with scalar product •, • and norm x = x, x for x ∈ H. We make the following standing assumptions : ϕ and ψ are two functions which act on H and satisfy • ϕ : H -→ R ∪ {+∞} is convex lower semicontinuous, and proper ;

• ψ : H -→ R is convex dierentiable, and ∇ψ is Lipschitz continuous on the bounded subsets of H.

• ϕ + ψ is bounded from below on H.

We are concerned with the study of Newton-like continuous and discrete dynamics attached to solving the the structured minimization problem (P) min {ϕ(x) + ψ(x) : x ∈ H} .

B. Abbas, Stability of a Regularized Newton Method with two Potentials, arXiv :1505.05418v1 [math.OC] 20 May 2015

Note the asymmetry between ϕ, which may be nonsmooth, with extended real values, and ψ which is continuously dierentiable, whence the structured property of the above problem. Indeed, we wish to design continuous and discrete dynamics which exploit this particular structure and involve ϕ via implicit operations (like resolvent or proximal operators) and ψ via explicit operations (typically gradient-like methods). So doing we expect obtening new forward-backward splitting methods involving Riemannian metric aspects, and which are close to the Newton method. This approach has been delineated in a series of recent papers, [1], [2], [6], [7]. In this paper we are concerned with the stability properties with respect to the data (λ, x 0 , υ 0 , ...) of the strong solutions of the dierential inclusion v(t) ∈ ∂ϕ(x(t))

(3.2.1a) λ(t) ẋ(t) + v(t) + v(t) + ∇ψ(x(t)) = 0 (3.2.1b)
x (0) = x 0 , υ (0) = υ 0 . Hence λ(t) exists for almost every t > 0, and λ(•) is Lebesgue integrable on each bounded interval [0, b]. We stress the fact that we assume λ(t) > 0, for any t ≥ 0. By continuity of λ(•), this implies that, for any b > 0, there exists some positive nite lower and upper bounds for λ(•) on [0, b], i.e., for any t ∈ [0, b]

0 < λ b,min ≤ λ(t) ≤ λ b,max < +∞. (3.2.4)
Our main interest is to allow λ(t) to go to zero as t → +∞. This makes the corresponding Levenberg-Marquardt regularization method asymptotically close to the Newton's method.

Let us summarize the results obtained in [2]. Under the above assumptions, for any Cauchy data x 0 ∈ dom∂ϕ and υ 0 ∈ ∂ϕ(x 0 ), there exists a unique strong global solution (x (•) , υ (•)) : [0, +∞[→ H × H of the Cauchy problem (3.2.1a)-(3.2.1c). Assuming that the solution set is nonempty, if λ (t) tends to zero not too fast, as t -→ +∞, then υ (t) -→ 0 strongly, and x (t) converges weakly to some equilibrium which is a solution of the minimization problem (P). By Minty representation of ∂ϕ, the solution pair (x (•) , υ (•)) of (3.2.1a)-(3.2.1c) can be represented as follows : set µ(t) = 1 λ(t) , then for any t ∈ [0, +∞), 

x (t) = prox µ(t)ϕ (z (t)) ; (3.2.5) υ (t) = ∇ϕ µ(t) (z (t)) ,
ż(t) + (µ(t) -μ(t))∇ϕ µ(t) (z(t)) + µ(t)∇ψ prox µ(t)Φ (z (t)) = 0 (3.2.7) z (0) = x 0 + µ (0) υ 0 . (3.2.8)
Let us recall that prox µϕ is the proximal mapping associated to µϕ. Equivalently, prox µϕ = (I + µ∂φ) -1 is the resolvent of index µ > 0 of the maximal monotone operator ∂ϕ, and ∇ϕ µ is its Yosida approximation of index µ > 0.

Let us stress the fact that, for each t > 0, the operators prox µ(t)ϕ : H -→ H, ∇ϕ µ(t) : H -→ H are everywhere dened and Lipschitz continuous, which makes this system relevant to the CauchyLipschitz theorem in the nonautonomous case, which naturally suggests good stability results of the solution of (3.2.1a)-(3.2.1c) with respect to the data. This paper is organized as follows : We rst establish a priori energy estimates on the trajectories. Then we consider the case where λ is locally absolutely continuous. Note that it is important, for numerical reasons, to study the stability of the solution with respect to perturbations of the data, and in particular of λ which plays a crucial role in the regularization process. In Theorem 3.2.5 we prove the Lipschitz continuous dependence of the solution with respect to λ. Moreover, the Lipschitz constant only depends on the L 1 norm of the time derivative of λ. Finally, we extend our analysis to the case where λ is a function with bounded variation (possibly involving jumps). We use a regularization by convolution method in order to reduce to the smooth case, and then pass to the limit in the equations. So doing, in Theorem 3.2.11 and Corollary 3.2.12, we prove the existence and uniqueness of a strong solution for (1a)-(1c), in the case where λ is a function with bounded variation.

A priori estimates

The linear space H × H is equipped with its usual Hilbertian norm (ξ,

ζ) = ξ 2 + ζ 2 .
In this section we work on a xed bounded interval [0, T ], and following assumption (3.2.2), we suppose that there exists some positive constant c 0 such that

0 < c 0 ≤ λ(t) for all t ∈ [0, T ]. (3.2.9) 
We will also assume that ∇ψ is L ψ -Lipschitz continuous. Indeed, this is not a restrictive assumption since one can reduce the study to trajectories belonging to a xed ball in H. We will often omit the time variable t and write x,υ.... for x (t), υ (t).... when no ambiguity arises.

In the following two Propositions we denote by (x ( 

T > 0. Then T 0 ẋ(t) 2 ≤ 1 c 0 (ϕ + ψ)(x 0 ) -inf H (ϕ + ψ) . (3.2.10) x L ∞ (0,T ;H) ≤ x 0 + T c 0 (ϕ + ψ)(x 0 ) -inf H (ϕ + ψ) 1 2 . (3.2.11)
Proof. a) For almost every t > 0, ẋ(t) and v(t) are well dened, thus

ẋ(t), v(t) = lim h→0 1 h 2 x(t + h) -x(t), v(t + h) -v(t) .
By equation (3.2.1a), we have v(t) ∈ ∂ϕ(x(t)). Since ∂ϕ : H ⇒ H is monotone

x(t + h) -x(t), v(t + h) -v(t) ≥ 0.
Dividing by h 2 and passing to the limit preserves the inequality, which yields ẋ(t), v(t) ≥ 0.

(3.2.12)

By taking the inner product of both sides of (3. (3.2.17) By integrating the above inequality from 0 to T we obtain

T 0 λ(t) ẋ(t) 2 dt + (ϕ + ψ)(x(T )) ≤ (ϕ + ψ)(x(0)). ( 3 

.2.18)

Since ϕ + ψ is bounded from below on H, and λ is minorized by the positive constant c 0 on [0, T ] (see (3.2.9)), we infer 

T 0 ẋ(t) 2 dt ≤ 1 c 0 (ϕ + ψ)(x 0 ) -inf H (ϕ + ψ) . ( 3 
x(t) ≤ x 0 + T c 0 (ϕ + ψ)(x 0 ) -inf H (ϕ + ψ) 1 2 . (3.2.23)
This being true for any t ∈ [0, T ]

x L ∞ (0,T ;H) ≤ x 0 + T c 0 (ϕ + ψ)(x 0 ) -inf H (ϕ + ψ) 1 2 . 
(3.2.24)

Let us now exploit another a priori energy estimate.

Proposition 3.2.2 Let (x, υ) be the strong solution of system (3.2.1a)

-(3.2.1c) on [0, T ], T > 0. Then T 0 v(t) 2 dt ≤ v 0 2 + 2T ∇ψ(x 0 ) 2 + 2T 2 L 2 ψ c 0 (ϕ + ψ)(x 0 ) -inf H (ϕ + ψ) (3.2.25) v L ∞ (0,T ;H) ≤ v 0 + √ 2T ∇ψ(x 0 ) + 2 c 0 T L ψ (ϕ + ψ)(x 0 ) -inf H (ϕ + ψ) 1 2 . (3.2.26)
Proof. By taking the scalar product of (3.2.1b) by v(t) we obtain

λ(t) ẋ(t), v(t) + v(t) 2 + v(t), v(t) + ∇ψ(x(t)), v(t) = 0.
By (3.2.12) we infer

v(t) 2 + v(t), v(t) + ∇ψ(x(t)), v(t) ≤ 0. (3.2.27) Hence v(t) 2 + 1 2 d dt v(t) 2 ≤ ∇ψ(x(t)) v(t) (3.2.28) ≤ 1 2 ∇ψ(x(t)) 2 + 1 2 v(t) 2 (3.2.29) which implies v(t) 2 + d dt v(t) 2 ≤ ∇ψ(x(t)) 2 .
(3.2.30) By integrating the above inequality we deduce that, for any t ∈ [0, T ]

t 0 v(τ ) 2 dτ + v(t) 2 ≤ v 0 2 + T 0 ∇ψ(x(τ )) 2 dτ. (3.2.31) Since ∇ψ is L ψ -Lipschitz continuous ∇ψ(x(τ )) ≤ ∇ψ(x 0 ) + L ψ x(τ ) -x 0 .
(3.2.32)

A careful look at the proof of (3.2.24) gives the more precise estimate

x -x 0 L ∞ (0,T ;H) ≤ T c 0 (ϕ + ψ)(x 0 ) -inf H (ϕ + ψ) 1 2 (3.2.33)
Hence for any τ ∈ [0, T ] 

∇ψ(x(τ )) ≤ ∇ψ(x 0 ) + L ψ T c 0 (ϕ + ψ)(x 0 ) -inf H (ϕ + ψ) 1 2 . ( 3 
t 0 v(τ ) 2 dτ + v(t) 2 ≤ v 0 2 + 2T ∇ψ(x 0 ) 2 + 2T 2 L 2 ψ c 0 (ϕ + ψ)(x 0 ) -inf H (ϕ + ψ) . (3.2.35) As a consequence T 0 v(t) 2 dt ≤ v 0 2 + 2T ∇ψ(x 0 ) 2 + 2T 2 L 2 ψ c 0 (ϕ + ψ)(x 0 ) -inf H (ϕ + ψ) , (3.2.36) and v L ∞ (0,T ;H) ≤ v 0 + √ 2T ∇ψ(x 0 ) + 2 c 0 T L ψ (ϕ + ψ)(x 0 ) -inf H (ϕ + ψ) 1 2 . (3.2.37)
which ends the proof.

We can now deduce from the two preceding propositions an a priori bound on the L ∞ norm of ẋ and v.

Proposition 3.2.3 

ẋ L ∞ (0,T ;H) ≤ v 0 c 0 + 1 + √ 2T c 0 ∇ψ(x 0 ) + ( √ 2T + √ T )L ψ c 3 2 0 (ϕ + ψ)(x 0 ) -inf H (ϕ + ψ) 1 2 (3.2.38) v L ∞ (0,T ;H) ≤ v 0 + (1 + √ 2T ) ∇ψ(x 0 ) + ( √ 2T + √ T )L ψ c 1 2 0 (ϕ + ψ)(x 0 ) -inf H (ϕ + ψ)
ẋ L ∞ (0,T ;H) ≤ 1 c 0 v 0 + √ 2T ∇ψ(x 0 ) + 2 c 0 T L ψ (ϕ + ψ)(x 0 ) -inf H (ϕ + ψ) 1 2 + 1 c 0 ∇ψ(x 0 ) + L ψ c 0 T c 0 (ϕ + ψ)(x 0 ) -inf H (ϕ + ψ) 1 2 ≤ v 0 c 0 + 1 + √ 2T c 0 ∇ψ(x 0 ) + ( √ 2T + √ T )L ψ c 3 2 0 (ϕ + ψ)(x 0 ) -inf H (ϕ + ψ) 1 2 .
b) Let us return to the equation obtained by taking the inner product of both sides of (3.2.1b) by v(t)

λ(t) ẋ(t), v(t) + v(t) 2 + v(t), v(t) + ∇ψ(x(t)), v(t) = 0.
A similar argument as above yields v(t) ≤ v(t) + ∇ψ(x(t))

from which we deduce the result.

Let us enunciate some straight consequences of Proposition 3.2.3 .

Corollary 3.2. 4 The following properties hold : for any

0 < T < +∞ 1. t → x(t) is Lipschitz continuous on [0, T ] with constant v 0 c 0 + 1 + √ 2T c 0 ∇ψ(x 0 ) + ( √ 2T + √ T )L ψ c 3 2 0 (ϕ + ψ)(x 0 ) -inf H (ϕ + ψ) 1 2 2. t → v(t) is Lipschitz continuous on [0, T ], with constant v 0 + (1 + √ 2T ) ∇ψ(x 0 ) + ( √ 2T + √ T )L ψ c 1 2 0 (ϕ + ψ)(x 0 ) -inf H (ϕ + ψ) 1 2

Stability results

In the next theorem we analyze the Lipschitz continuous dependence of the solution (x, υ) of the Cauchy problem (3.2.1a)-(3.2.1c) with respect to the function λ and the initial point (x 0 , υ 0 ). Our demonstration is based on that followed in [6, Theorem 3.1].

Theorem 3.2.5 Suppose that λ, η : [0, T ] -→ [c 0 , +∞[ are absolutely continuous functions, with T > 0 and c 0 > 0. Let (x, υ) , (y, w) : [0, T ] -→ H × H be the respective strong solutions of the inclusions

λ ẋ + υ + υ + ∇ψ (x) = 0, υ ∈ ∂ϕ (x) , x (0) = x 0 , υ (0) = υ 0 , (3.2.40) η ẏ + ẇ + w + ∇ψ (y) = 0, w ∈ ∂ϕ (y) , y (0) = y 0 , w (0) = w 0 . (3.2.41) Dene θ : [0, T ] -→ R, for each t ∈ [0, T ], by θ(t) = c 2 0 x(t) -y(t) 2 + υ(t) -w(t) 2 .
Then

θ L ∞ ([0,T ]) ≤ λ(0) + η(0) 2 x 0 -y 0 + υ 0 -w 0 + C 2 λ -η L 1 ([0,T ]) ×exp λ + η L 1 2c 0 + T (1 + L ψ c 0 ) , (3.2.42) 
with

C = v 0 + w 0 c 0 + 1 + √ 2T c 0 ( ∇ψ(x 0 ) + ∇ψ(y 0 ) )+ ( √ 2T + √ T )L ψ c 3 2 0 (ϕ + ψ)(x 0 ) -inf H (ϕ + ψ) 1 2 + (ϕ + ψ)(y 0 ) -inf H (ϕ + ψ) 1 2 
.

In particular, if x 0 = y 0 , υ 0 = w 0 , then

θ L ∞ ([0,T ]) ≤ C 2 λ -η L 1 ([0,T ]) × exp λ + η L 1 ([0,T ]) 2c 0 + T (1 + L ψ c 0 ) , (3.2.43) with C = 2 v 0 c 0 + 2 1 + √ 2T c 0 ∇ψ(x 0 ) + 2 ( √ 2T + √ T )L ψ c 3 2 0 (ϕ + ψ)(x 0 ) -inf H (ϕ + ψ) 1 2 .
Proof. To simplify the exposition, dene γ :

[0, T ] -→ R γ = λ + η 2 .
Using the assumptions λ, η ≥ c 0 and the monotonicity of ∂ϕ we conclude that for any t ∈ [0, T ] In view of (3.2.40) and (3.2.41),

c 0 ≤ γ, x -y, υ -w ≥ 0. Therefore θ ≤ γ 2 x -y 2 + υ -w 2 ≤ γ (x -y) + (υ -w) .
( υ -ẇ) = -λ ẋ + η ẏ -(υ -w) -(∇ψ (x) -∇ψ (y)) .
Combining the two above relations gives

d dt [γ (x -y) + (υ -w)] = γ (x -y) + γ ( ẋ -ẏ) -λ ẋ + η ẏ -(υ -w) -(∇ψ (x) -∇ψ (y)) , = γ (x -y) + η -λ 2 ( ẋ + ẏ) -(υ -w) -(∇ψ (x) -∇ψ (y)) .
Since γ, x, y, w, υ are absolutely continuous, the function γ (x -y) + (υ -w) is also absolutely continuous. As a consequence, integration of the above inequality on [0, s], for s ∈ [0, T ], yields By Lipschitz continuity property of ∇ψ, and denition of θ, we have

[γ (x -y) + (υ -w)] (s) -[γ (x -y) + (υ -w)] (0) = 1 2 s 0 (η -λ) ( ẋ + ẏ) dt + s 0 ( γ (x -y) -(υ -w)) dt -
∇ψ (x(t)) -∇ψ (y(t)) ≤ L ψ x(t) -y(t) ≤ L ψ c 0 θ(t). ( 3 

.2.46)

On the other hand 

γ (x -y) -(υ -w) 2 = | γ| 2 x -y 2 + υ -w 2 + 2 c 0 (x -y) , γ c 0 (w -υ) ≤ | γ| 2 x -y 2 + υ -w 2 + c 2 0 x -y 2 + | γ| 2 c 2 0 υ -w 2 = | γ| 2 c 2 0 + 1 θ 2 , ( 3 
θ(s) ≤ γ (0) x 0 -y 0 + υ 0 -w 0 + 1 2 s 0 |λ -η| ẋ + ẏ dt + s 0 θ(t)   | γ| 2 c 2 0 + 1 + L ψ c 0   dt ≤ γ (0) x 0 -y 0 + υ 0 -w 0 + 1 2 λ -η L 1 ([0,T ]) ẋ + ẏ L ∞ ([0,T ]) + s 0 θ(t) | γ| c 0 + 1 + L ψ c 0 dt. Applying Gronwall's inequality yields θ(s) ≤ γ (0) x 0 -y 0 + υ 0 -w 0 + 1 2 λ -η L 1 ([0,T ]) ẋ + ẏ L ∞ ([0,T ]) ×exp s 0 | γ| c 0 + 1 + L ψ c 0 dt.
Combining this estimation with the bound on the L ∞ norm of ẋ and ẏ (see

Proposition (3.2.3)) gives θ L ∞ ([0,T ]) ≤ γ (0) x 0 -y 0 + υ 0 -w 0 + C 2 λ -η L 1 ([0,T ]) × exp T 0 | γ| c 0 + 1 + L ψ c 0 dt with C = v 0 + w 0 c 0 + 1 + √ 2T c 0 ( ∇ψ(x 0 ) + ∇ψ(y 0 ) )+ ( √ 2T + √ T )L ψ c 3 2 0 (ϕ + ψ)(x 0 ) -inf H (ϕ + ψ) 1 2 + (ϕ + ψ)(y 0 ) -inf H (ϕ + ψ) 1 2 . Equivalently θ L ∞ ([0,T ]) ≤ λ(0) + η(0) 2 x 0 -y 0 + υ 0 -w 0 + C 2 λ -η L 1 ([0,T ]) × exp λ + η L 1 ([0,T ]) 2c 0 + T (1 + L ψ c 0 )
Remark 3.2.6 In the cas ψ = 0 we recover exactly the same stability results as [6, Theorem 

) -→ (x 0 , υ 0 )) =⇒ (x n , υ n ) -→ (x, υ) uniformly on [0, T ] .
Note also that, by contrast with semigroup generated by a subdierential convex [11], there is no regularizing eect on the initial condition : there is no way to dene a solution of (3.2.1a)(3.2.1c) for x 0 ∈ dom∂ϕ \ dom∂ϕ since in that case, for any approximation sequence x 0n ∈ dom∂ϕ and υ 0n ∈ ∂ϕ (x 0n ), one has lim n υ 0n = +∞, which would imply the blow-up of the sequence (x n , υ n ) as n -→ +∞, on any nite interval.

Proof. Existence : According to Lemma 3.2.9, there exists a sequence of functions (λ n ) n∈N in C ∞ ([0, T ]), with λ n (t) ≥ c 0 , which converges to λ in L p (0, T ) for p ≥ 1, and satises the condition T 0 λn (t) dt ≤ TV (λ) .

(3.2.49)

For each n ∈ N there exists a unique (x n , υ n ) solution of the dierential inclusion

υ n (t) ∈ ∂ϕ (x n (t)) , 0 ≤ t ≤ T, (3.2.50a)
λ n (t) ẋn (t) + υn (t) + υ n (t) + ∇ψ (x n (t)) = 0, a.e. 0 ≤ t ≤ T, (3.2.50b)

x n (0) = x 0 , υ n (0) = υ 0 .

(3.2.50c)

We will show that (x n , υ n ) converges uniformly to a solution of (3. 

(x n , υ n ) -(x m , υ m ) c 0 ≤ C exp    λn + λm L 1 ([0,T ]) 2c 0 + T (1 + L ψ c 0 )    λ n -λ m L 1 ([0,T ]) ≤ C exp T V (λ) c 0 + T (1 + L ψ c 0 ) λ n -λ m L 1 ([0,T ]) .
Since the sequence (λ n ) n∈N converges to λ in L 1 (0, T ), we deduce that (x n , υ n ) is a Cauchy sequence with respect to the sup norm. Therefore, (x n , υ n ) converges uniformly to some continuous (x, υ) : [0, T ] -→ H × H. Since ∇ψ is continuous we also obtain ∇ψ(x n ) → ∇ψ(x) uniformly on [0, T ].

Moreover, Lemma 3.2.10 ensures that λ n ẋn and vn converge weakly to λ ẋ and v in L 2 (0, T ; H). Uniqueness : We adapt the proof of [6], using dierential and integral calculus for BV functions which involves dierential measures. Explicitly λ ẋ + υ + υ + ∇ψ (x) = 0 a.e.; υ (t) ∈ ∂ϕ (x (t)) ∀t; x (0) = x 0 , υ (0) = υ 0 , λ ẏ + ẇ + w + ∇ψ (y) = 0 a.e.; w (t) ∈ ∂ϕ (y (t)) ∀t; y (0) = x 0 , w (0) = υ 0 .

Dene λ -: [0, T ] -→ [c 0 , +∞[ by λ -(0) = λ (0) , 0 < t ≤ T : λ -(t) = lim λ (t -ε) .
Since λ = λ -a.e., we also have λ -ẋ + υ + υ + ∇ψ (x) = 0 and λ -ẏ + ẇ + w + ∇ψ (y) = 0 a.e. 

d λ -(x -y) + (υ -w) = λ -d (x -y) + (x -y) dλ -+ d (υ -w) . ( 3 
d λ -(x -y) + (υ -w) = λ -(s) (x (s) -y (s)) + (υ (s) -w (s)) .
λ -d (x -y) + (x -y) dλ -+ d (υ -w) = [0,s[ λ -d (x -y) + d (υ -w) + [0,s[ (x -y) dλ - = [0,s[ λ -( ẋ -ẏ) + υ -ẇ dt + [0,s[ (x -y) dλ - = - [0,s[ [υ -w + ∇ψ (x) -∇ψ (y)] dt + [0,s[ (x -y) dλ -. ( 3 
λ -(s) (x (s) -y (s)) + (υ (s) -w (s)) = [0,s[ (x -y) dλ -- [0,s[ [υ -w + ∇ψ (x) -∇ψ (y)] dt. Whence λ -(s) (x (s) -y (s)) + (υ (s) -w (s)) ≤ [0,s[ x -y dλ -+ [0,s[ υ -w dt+ [0,s[ ∇ψ (x) -∇ψ (y) dt (3.2.55) Dene θ (s) = c 2 0 x (s) -y (s) 2 + υ (s) -w (s) 2 1/2
. The same reasoning as in Theorem 3.2.5 yields

θ (s) ≤ λ -(s) (x (s) -y (s)) + (υ (s) -w (s)) , ∀s ∈ [0, T ] .
Besides we also have c 0 x (s) -y (s) ≤ θ (s), υ (s) -w (s) ≤ θ (s), and we have that ∇ψ is the gradient of a convex, continuously dierentiable function ψ : H -→ R, and by Lipschitz continuity property of ∇ψ, and denition of θ, we have ∇ψ (x(t)) -∇ψ (y(t)) ≤ L ψ x(t) -y(t)

≤

L ψ c 0 θ(t). 

θ (s) ≤ 1 c 0 [0,s[ θ dλ -+ [0,s[ θdt + 1 c 0 L ψ [0,s[ θdt = [0,s[ θdµ, (3.2.57) 
where dµ denotes the nonnegative measure 1

c 0 |dλ -| + 1 + 1 c 0 L ψ dt. If θ ≡ 0 on [0, T ] , dene t 0 = inf {t ∈ [0, T ] , θ (t) > 0}. Note t 0 < T and θ (t 0 ) = 0, since θ is continuous. With (3.2.57) we then have θ (s) ≤ ]t 0 ,s[ θdµ, t 0 < s ≤ T. (3.2.58)
In view of ]t 0 ,t 0 ] dµ = 0 and of the right continuity at t 0 of t -→ ]t 0 ,t] dµ, [22,Proposition 9.1 ] there exists some t

1 ∈ ]t 0 , T ] such that ]t 0 ,t 1 ] dµ < 1/2. Let M be an upper bound of θ on [0, t 1 ] ; from (3.2.58) we deduce, for s ∈ ]t 0 , t 1 ] θ (s) ≤ M ]t 0 ,s[ dµ ≤ M ]t 0 ,t 1 [ dµ ≤ M 2 .
Hence M/2 is also an upper bound of θ on [0, t 1 ] , which necessarily entails M = 0 and θ ≡ 0 on [0, t 1 ]. But this is contradiction with the denition of t 0 . Hence θ ≡ 0 and (x, υ) ≡ (y, w) on [0, T ]. 

λ : [0, ∞[ → ]0, ∞[ is of bounded variation on [0, T ] and inf λ ([0, T ]) > 0 for any T < ∞. Let υ 0 ∈ ∂ϕ (x 0
) and υ 0 = 0. Then there is existence and uniqueness of a strong solution

(x, υ) : [0, ∞[ -→ H × H of the Cauchy problem λ ẋ + υ + υ + ∇ψ (x) = 0, υ (t) ∈ ∂ϕ (x (t)) x (0) = x 0 , υ (0) = υ 0 (3.2.59)
where the rst equality holds for almost all t ∈ [0, ∞[ , and the inclusion holds for all t ∈ [0, ∞[ .

Remark 3.2.13

The results obtained in this paper still hold if B = ∇ψ the gradient of a convex, continuously dierentiable function ψ : H -→ R is replaced by a maximal monotone cocoercive operator B : H -→ H (see [1] ). Le problème de Cauchy pour ce système de Newton régularisé s'écrit sous la forme du système en (x, υ) suivant υ (t) ∈ ∂Φ (x (t)) , 

λ ẋ (t) + υ (t) + υ (t) + B (x (t)) = 0, (4.1.2) 
x (0) = x 0 , υ (0) = υ 0 , υ 0 ∈ ∂Φ (x 0 ) . 

x (t) = prox µ(t)Φ (y (t)) , ẏ (t) + y (t) -prox µ(t)Φ (y (t)) + µB prox µΦ (y (t)) = 0, (4.1.4) 
avec µ = 1/λ, y : [0, +∞[ -→ H , y (•) = x (•) + µυ (•), et
z ∈ S = {z ∈ H; ∂Φ (z) + B (z) 0}, pour tout t ≥ 0 g z (t) := Φ (z) -[Φ (x (t)) + z -x (t) , υ (t) ] Γ z (t) := 1 2 x (t) -z 2 + µg z (t) ,
Le théorème suivant est notre résultat principal concernant la convergence des trajectoires. (2) B (x (•)) converge fortement vers B (z) , où B (z) est déni de manière unique pour z ∈ S.

(3) υ (•) converge fortement vers -B (z) , où B (z) est déni de manière unique pour z ∈ S.

(4) x (•) converge faiblement vers un élément de S.

Puis, nous étudions les méthodes Backward-Forward associées à la méthode de Newton régularisée : la discrétisation explicite en temps du système (4.1.4) débouche sur le nouvel algorithme backward-forward :

(BF )

x k = prox µΦ (y k ) y k+1 = (1 -h) y k + h (x k -µB (x k )) (4.1.5)
Les propriétés asymptotiques du système dynamique continu (4.1.4) (et ses fonctions de Lyapunov) nous donnent un guide pour l'étude des propriétés asymptotiques de l'algorithme (4.1.5).

Hypothèses H 

H Φ : Φ : H -→ R ∪ {+∞}
(ȳ) ∈ S; (b) (x k ) converge faiblement vers x = prox µΦ (ȳ), x ∈ S ; (c) B (x k ) converge fortement vers B (x) ; (d) la vitesse est de carré sommable, i.e. k x k -x k-1 2 < ∞, k y k -y k-1 2 < ∞ ; (e) y k -x k converge fortement dans H.
Les algorithmes forward-backward sont des outils d'optimisation très utiles relevant des méthodes d'éclatement (splitting). Ils permettent de réduire la taille des problèmes étudiés et ont été appliquées avec succès à de nombreux problèmes allant du traitement du signal, image, information, aux méthodes de décomposition de domaine dans les EDP.

Les méthodes forward-backward classiques s'appuient sur la discrétisation naturelle expliciteimplicite du semi-groupe de contractions généré par (-(∂Φ + B) (cf. paragraphe suivant). Une nouveauté de ce travail est que nous montrons que la discrétisation de la méthode de Newton régularisé, débouche sur de nouveaux algorithmes, dits backward-forward, comprenant les mêmes blocs de bases, mais organisés diéremment.

Notons qu'on obtient la convergence forte des trajectoires si on suppose que Φ est inf-compact, ou fortement convexe. Puis, dans la section suivante nous considérons un autre système dynamique attaché à la résolution de (4.1.1), qui est le semi-groupe de contractions générée par (-(∂Φ + B))

ẋ (t) + ∂Φ (x (t)) + B (x (t)) 0. (4.1.6)
Cette dynamique relève de la théorie générale des semi-groupes de contractions dans les Hilbert, dont les générateurs sont précisément les opérateurs maximaux monotones. La théorie générale correspondante, nous donne l'existence et l'unicité d'une solution globale forte pour le problème de Cauchy. Pour chaque x 0 ∈ dom∂Φ, il existe une unique solution globale forte de (4.1.6) qui vérie x(0) = x 0 . Supposons que S = ∅, où S désigne toujours l'ensemble des zéros de l'opérateur (∂Φ + B).

Baillon-Brézis ont étudié le comportement asymptotique des trajectoires, et ont montré que chaque trajectoire du système (4.1.6) converge faiblement de façon ergodique vers un point d'équilibre qui est un élément de S.

Bruck a étudié les propriétés de convergence faible (au lieu de convergence ergodique faible).

La théorie de la convergence de Bruck est applicable séparément à ∂Φ et B qui sont des opérateurs demi-positifs. Mais on ne sait pas si la somme de ces deux opérateurs reste un opérateur demi-positif, et donc la théorie de Bruck n'est pas directement applicable à notre cadre. Une nouveauté de notre travail est que nous montrons que toute trajectoire du système (3) B (x (•)) converge fortement vers B(z), où B (z) est déni de manière unique pour z ∈ S.

La discrétisation en temps du système (4.1.6) débouche sur l'algorithme forward-backward classique, où h est un pas du temps constant,

x k+1 = (I + h∂Φ) -1 (x k -hB (x k )) (4.1.7)
et qui génère des suites (x k ) qui convergent faiblement vers un élément de S, avec 0 < h < 2β.

Finalement, nous considérons le système dynamique proximal-gradient associé à la reformulation de (4.1.1) comme un problème de point xe ẋ (t) + x (t)prox µΦ (x (t) -µB (x (t))) = 0. 

ẋ (t) + x (t) -proj C (x (t) -µ∇Ψ (x (t))) = 0.
Nos résultats de convergence pour la dynamique gradient-proximal sont contenus dans le théorème suivant : Théorème 4.1.6 Soit Φ : H -→ R ∪ {+∞} une fonction convexe, semi-continue inférieurement, et propre, et B : H -→ H est un opérateur monotone cocoercif. Supposons que S = {z ∈ H; ∂Φ (z) + B (z) 0} = ∅. Pour chaque x 0 ∈ H, soit x : [0, +∞[ -→ H la solution unique globale forte du problème de Cauchy pour le système proximal gradient :

ẋ (t) + x (t) -prox µΦ (x (t) -µB (x (t))) = 0 x (0) = x 0 .
Alors les propriétés suivantes sont satisfaites :

(1) Supposons que 0 < µ < 4β, alors (i) x (t) converge faiblement vers x ∞ ∈ S, lorsque t → +∞.

(ii) B (x (•)) converge fortement vers B(z), où B (z) est dénie de manière unique pour z ∈ S.

(iii) lim t→+∞ ẋ (t) = 0, +∞ 0 ẋ (t) 2 dt < +∞.

(2) Supposons que B = ∇Ψ, Ψ est diérentiable convexe. Alors pour tout µ > 0, (i), (ii), et (iii) sont satisfaites.

La discrétisation en temps du système (4.1.8) fournit l'algorithme forward-backward relaxé suivant :

x k+1 = (1 -h) x k + h prox µΦ (x k -µB (x k )) . (4.1.9) 
La convergence faible des suites (x k ) générées par (4.1.9), vers un élément de S, est obtenue sous l'hypothèse 0 < µ < 2β, 0 < h < δ := 

C = {x ∈ R n ; x, a = b}, avec a = 1 √ n • I n = 1 √ n • ones(n, 1), b = 3.
Nous comparons les propriétés de convergence des algorithmes forward-backward associés aux dynamiques considérées précédemment, pour diérents choix des paramètres µ, β, h, et pour 5000 itérations.

Nous remarquons que les trois algorithmes ont des performances voisines. Les algorithmes associés à la dynamique de Newton régularisé (backward-forward) et le gradient-proximal sont très proches. Lorsque h > 1, ces derniers sont plus ecaces que la méthode forward-backward classique associée au semi-groupe de contractions. De plus, la convergence des trajectoires vers la solution est plus rapide que dans le cas h < 1, où l'algorithme associé au semi-groupe de contractions généré par -M est le plus ecace. En outre, lorsque les paramètres satisfont β ≤ µ < 2β, la convergence vers la solution est plus rapide que le cas 0 < µ < β. In (4.2.3), λ is a positive constant which acts as a Levenberg-Marquard regularization parameter. When λ is small, and B = 0, the system is close to the continuous Newton method for solving ∂Φ(x) 0. The x components of the stationary points of the (x, v) system ( 4 The above system is regular with respect to the new variable y. Its explicit discretization gives (with a constant step size h > 0) the following backward-forward algorithm : (x k , y k ) → (x k , y k+1 ) → (x k+1 , y k+1 ), (BF)

x k = prox µΦ (y k ), y k+1 = (1 -h)y k + h (x k -µB (x k )) .
We will show in Theorem 4.2.20 that, under the assumption, 0 < h ≤ 1, and 0 < µ < 2β, (BF)

generates sequences that converge weakly to equilibria. Indeed, this is a limitation of the step size very similar that of the classical forward-backward algorithm. Note that, when h = 1, the algorithm (BF) can be viewed as a dual form of the classical forward-backward algorithm, with reversal of the order in the composition of two basic blocks prox µΦ and I -µB.

2. Then, we consider a naturally related dynamical system, which is the semigroup of contractions generated by -A, A = ∂Φ+B, whose orbits are the solution trajectories of the dierential inclusion ẋ (t) + ∂Φ(x(t)) + B (x (t)) 0. In Theorem 4.2.24, we show the weak convergence of the orbits of (4.2.4) to solutions of (4.2.1), a property which surprisingly has not been systematically studied before, and which completes Bruck's convergence theory for semigroups of contractions [24]. Explicit-implicit time discretization of (4.2.4) gives the classical forward-backward algorithm.

3. Finally, we consider the dynamic which is associated to the reformulation of (4.2.1) as a xed point problem :

ẋ (t) + x(t) -prox µΦ (x(t) -µB (x (t))) = 0. (4.2.5)
It is a regular dynamic which is relevant of Cauchy-Lipschitz theorem. Its convergence properties have been rst investigated by Antipin [2] and Bolte [22] in the particular case where Φ is the indicator function of a closed convex set C, and B is the gradient of a convex dierentiable function. In that case, the above system specializes to the continuous gradient projection method. In Theorem 4.2.28 we extend these convergence results to our more general setting. The explicit time discretization of (4.2.5) gives the relaxed forward-backward algorithm

x k+1 = (1 -h)x k + hprox µΦ (x k -µB(x k )) .
A thorough comparative study of the forward-backward algorithms provided by discretization of these various related systems is an important issue from a numerical point of view. It is a subject of ongoing study (see [11]), which is beyond the scope of this document. x (0) = x 0 , υ (0) = υ 0 .

(4.2.10)

In the above statement, we use the following notion of strong solution, as dened in [1], and [13]. and asymptotically vanishing provides a dynamic which is asymptotically close the Newton dynamic associated to Φ, see [1], [12], [13]. This is an important issue for fast converging methods, a subject for further studies.

Cocoercive operators

We collect some facts that will be useful. Note that the same conclusion can be obtained, by using the relation Corollary 4.2.17 Let us suppose that Φ is strongly convex 2 . Then the solution set S is reduced to a single element z, and any orbit x(•) of system (4.2.8)-(4.2.9) converges strongly to z, as

Φ (x (t)) -Φ (z) + Bz, x (t) -z = -[Φ(z) -Φ(x(t)) -v(t), z -x(t) ] + v(t) + Bz, x(t) -z ,
t → +∞.
Proof. Since Φ is strongly convex, its subdierential ∂Φ is strongly monotone, and so is the sum A = ∂Φ + B. Thus the solution set is reduced to a single element, let z. Moreover, since Φ is strongly convex, and -B(z) ∈ ∂Φ(z), we have the subdierential inequality Φ (x (t)) -Φ (z) + Bz, x (t) -z ≥ γ x(t) -z 2 2. Indeed, the result is true under the more general assumption, Φ uniformly convex. We thank the referee for pointing this result

The backward-forward algorithm (BF) is closely related to the relaxed forward-backward algorithm ( [19,Theorem 25.8]). It involves the same basic blocks but in a dierent order. When the prox is linear, then the operations commute, and we recover the classical relaxed forwardbackward algorithm. But, in general, for nonlinear problems, and in the case λ non constant (which is of interest with respect to Newton method) this is not the case. As a guide for our study of the convergence of this algorithm, we use the Lyapunov functions that have been put to the fore in the study of the continuous dynamics.

As a standing assumption we make the following set of hypotheses :

Hypothesis H : 

H Φ : The function Φ : H → R ∪ {+∞} is
-x k-1 2 < ∞, and k y k -y k-1 2 < ∞ ; in particular x k -x k-1 and y k -y k-1 converge strongly to zero. e) y k -x k converges strongly in H.
Before proving Theorem 4.2.20, we review some classical results on α-averaged operators, which will be useful.

α-averaged operators

We will use the notion of α-averaged operator, see [19,Denition 4.23]. An operator T : H → H is α-averaged with constant 0 < α < 1, if there exists a nonexpansive operator R : H → H such that T = (1 -α)I + αR. The notions of cocoerciveness and α-averaged are intimately related. We collect below some classical facts that will be useful.

T : The operator A = ∂Φ+B is maximal monotone, and hence is demi-closed. From y k+1 -y k → 0 strongly (4.2.43), x k x weakly, we deduce that A(x) = ∂Φ(x) + B(x) 0, that is x ∈ S. Let us make precise the relation between the respective limits of the sequences (y k ) and (x k ). Let y k ȳ weakly. Since x ∈ S we have B(x k ) → B x strongly in H. From (4.2.57), we deduce that ȳ -x + µB x = 0. Since B x + ∂Φ(x) 0, we obtain x + µ∂Φ(x) ȳ. Hence x = prox µΦ ȳ.

H → H is β-cocoercive i βT is 1 2 -averaged,
This complete the proof of Theorem 4.2.20. Remark 4.2.22 a) Clearly, since δ > 1, we can take an arbitrary 0 < h ≤ 1. Indeed, the above analysis provides an over-relaxation result.

b) The above result can be readily extended to the case h k varying with k. The convergence of (y k ) is satised under the assumption : there exists some > 0, such that for all k ∈ N, 0 < ≤ h k ≤ δ -. c) When the dimension of H is nite, by continuity of prox µΦ , and x k = prox µΦ (y k ) we immediately obtain the convergence of the sequence (x k ) to an element of the solution set S. In the innite dimensional case, this argument does not work anymore, because of the lack of continuity of the prox mapping for the weak topology. d) By analogy with the continuous case, one can reasonably conjecture that the weak convergence of the sequence (x k ) holds under the weaker condition : 0 < h < 1 and hµ < 2β.

Remark 4.2.23 Comparing the numerical performance of the forward-backward algorithms provided by discretization of various dynamical systems is an important issue. This is a delicate question, directly related to obtaining rapid numerical methods, a subject of ongoing study, see [10], [11].

Semigroup generated by -(∂Φ + B), and FB algorithms Continuous case

Consider a closely related dynamical system, which is the semigroup generated by -A ; A = ∂Φ + B, whose orbits are the solution trajectories of the dierential inclusion ẋ (t) + ∂Φ(x(t)) + B (x (t)) 0. Since the operator A = ∂Φ+B is maximal monotone, (4.2.59) is relevant to the general theory of semigroups generated by maximal monotone operators. For any Cauchy data x 0 ∈ dom∂Φ, there exists a unique strong solution of (4.2.59) which satises x(0) = x 0 , see [23]. Moreover, by is a nonincreasing function, where (∂Φ(x(t)) + B(x(t))) 0 is the element of minimal norm of the closed convex set ∂Φ(x(t)) + B(x(t)). Since ẋ(t) = -(∂Φ(x(t)) + B(x(t))) 0 for almost all t ≥ 0, we deduce from (4.2.76) that +∞ 0 (∂Φ(x(t)) + B(x(t))) 0 2 dt < +∞.

(4.2.78) Since t → (∂Φ(x(t)) + B(x(t))) 0 is nonincreasing, it converges and, by (4.2.78) its limit is equal to zero. Thus, by taking w(t) = (∂Φ(x(t)) + B(x(t))) 0 , we have obtained the existence of a mapping w which veries : w(t) ∈ (∂Φ + B)(x(t) for all t > 0, and w(t) → 0 strongly in H, as t → +∞. From w(t n ) ∈ (∂Φ + B)(x(t n ), by the demiclosedness property of the maximal monotone operator A = ∂Φ + B, we obtain A

(x) = ∂Φ(x) + B(x) 0, that is x ∈ S. Let us now prove item 3. Set F 3 (t) = B(x(t)) -Bz . By (4.2.69) F 3 ∈ L 2 ([0, +∞[) . Since B is Lipschitz continuous and ẋ ∈ L 2 ([0, +∞[) we obtain d dt F 3 ∈ L 2 ([0, +∞[).
By Lemma 4.2.11, we deduce that lim t→+∞ F 3 (t) = 0, which is our claim. Remark 4.2.25 The strong convergence of orbits falls within the general theory of semigroup of contractions generated by a maximal monotone operator A. It is satised if A is strongly monotone, or Φ boundedly inf-compact (note that in the proof of Theorem 4.2.24 we have shown that Φ(x(t)) converges, and thus is bounded). Also note that, following [23,Theorem 3.13], if intS = intA -1 (0) = ∅, then (4.2.59) has orbits whose total variation is bounded, and hence which converge strongly. Remark 4.2.26 Let us compare the asymptotic behavior of the orbits of the semigroup generated by -(∂Φ+B) with the orbits of the Newton-like regularized system. Since both converge weakly to equilibria, the point is compare their rate of convergence. For simplicity take B = 0, and Φ convex dierentiable. Thus the point is : at which rate does ∇Φ(x(t) converges to zero ? a) For the semigroup, the standard estimation is the linear convergence :

∇Φ(x(t) ≤ C t .
Indeed, without any further assumption on Φ or H, this is the best known general estimate.

Indeed, in innite dimensional spaces one can exhibit orbits of the gradient ow which have innite length, this is a consequence of Baillon counterexample [15]. Note that, in nite dimensional spaces, the corresponding result is not known [29].

b) For the Newton-like regularized system, v(t) = ∇Φ(x(t) satises the dierential equation

λ(t) ẋ (t) + υ (t) + υ (t) = 0.
By taking λ(t) = ce -t , we have the following estimation (see [13, Proposition 5.1])

∇Φ(x(t) ≤ Ce -t .

These results naturally suggest to extend our results to the case of a vanishing regularization parameter (see [12], [13] for some rst results in this direction).

Implicit/explicit time discretization : FB algorithm

The discretization of (4.2.59) with respect to the time variable t, in an implicit way with respect to the nonsmooth term ∂Φ, and explicit with respect to the smooth term B, and with constant step size h > 0, gives x k+1 -x k h + ∂Φ(x k+1 ) + B(x k ) 0. The weak convergence of (x k ) to an element of S is obtained under the stepsize limitation : 0 < h < 2β. One can consult [31], [19,Theorem 25.8], for the proof, and some further extensions of this result.

Proximal-gradient dynamics and relaxed FB algorithms

First recall some standard facts about the continuous gradient-projection system. This will lead us to consider a more general proximal-gradient dynamic. Then we will examine the corresponding relaxed FB algorithms, obtained by time discretization. where T C (x) is the tangent cone to C at x ∈ C. This is a direct consequence of the lazy property satised by the orbits of the semigroup of contractions, generated by -A, see [23],

Gradient-projection dynamics

and of the Moreau decomposition theorem in a Hilbert space (with respect to the tangent cone T C (x) and its polar cone N C (x)). From the perspective of optimization, this system has several drawbacks. The orbits ignore the constraint until they meet the boundary of C. Moreover, the vector eld which governs the dynamic is discontinuous (at the boundary of the constraint).

The following system rst considered by Antipin [2], and Bolte [22] overcomes some of these diculties : By Opial lemma 4.2.10, in order to obtain the weak convergence of the orbit x, we just need to prove that any weak sequential cluster point of x belongs to S. Let x be a weak sequential cluster point of x, i.e., x = w -lim x(t n ) for some sequence t n → +∞. In order to pass to the limit on (4.2.87), we rewrite it as 

ẋ(t) + x(t) -proj C (x(t) -µ∇Ψ(x(t))) = 0. ( 4 
x(t) -µB(x(t)) -prox µΦ (x(t) -µB(x(t))) = -ẋ(t) -µB(x(t)),
I -prox µΦ . Since x(t n ) -µB(x(t n ))
x -µBz, and ẋ(t) + µB(x(t)) → µBz strongly, we obtain

x -µBzprox µΦ (x -µBz) = -µBz. 

ẋ(t), ∇Ψ(x(t)) -∇Ψ(z) = d dt [Ψ(x(t)) -∇Ψ(z), x(t) ],
we can rewrite (4.2.93) as This is the classical forwardbackward algorithm, whose convergence properties have been well established. The weak convergence of (x k ) to equilibria is obtained under the stepsize limitation : 0 < µ < 2β.

0 ≥ d dt [ 1 2µ x(t) -z 2 + Ψ(x(t)) -Ψ(z) -∇Ψ(z), x(t) -z ] + 1 µ ẋ(t) 2 + β B(x(t)) -Bz 2 . ( 4 
3. Finally, we consider the proximal-gradient dynamic which is associated to the reformulation of (P ) as a xed point problem : ẋ (t) + x (t)prox µΦ (x (t) -µB (x (t))) = 0. This is the relaxed forwardbackward algorithm, whose convergence properties are well known.

The weak convergence of (x k ) to an equilibria is obtained under the stepsize limitation : 0 < µ < 2β and 0 < h < δ := 1 2 + inf 1, β µ .

One of the main advantages of the forward-backward algorithms is that the backward (implicit) step can handle nondierentiable functions for which the proximal mapping can be easily computed. This is the case for many problems coming from sparse approximation and compressed sensing. As well, the method is ecient for solving hard-constrained problem for which the projection on the constraint can be easily computed.

Constrained least squares problems :

We consider ill-posed linear problems that are accompanied by a priori knowledge that the solutions belong to a closed and convex set. This particular formulation captures a wide class of problems. Examples : image reconstruction and signal restoration.

The data collection experiment is assumed to be linear and represented by the operator L Lx = d + w where d ∈ R m is the collection of measurements, x is the unknown signal to be recovered, and w is the noise vector. Here x is assumed to be an element of a Hilbert space H. The priori constraints on x belongs to a set C of admissible signals ; C is assumed to be a closed and convex subset of H.

In order to recover the signal x from the noisy measurement d, a common approach for this estimation problem is to solve the least squares minimization problem We note that, the three algorithms have similar performances, the regularized Newton dynamic and proximal gradient are very close, when h > 1 they are more eective than the semi-group of contractions algorithm. And more, the convergence of the trajectories toward the solution is faster than the case h < 1 where the algorithm of semi group of contraction generated by -A is the most eective.

In addition when the parameters satisfy β ≤ µ < 2β the convergence toward the solution is faster than the case 0 < µ < β. Attouch-Svaiter ont introduit dans SIAM (2011) un système dynamique de type Newton régularisé qui vise à trouver les zéros de l'opérateur maximal monotone ∂Φ.

Le problème de Cauchy pour ce système de Newton régularisé s'écrit sous la forme suivante : υ (t) ∈ ∂Φ (x (t)) , λ ẋ (t) + υ (t) + υ (t) = 0.

(5.1.2)

x (0) = x 0 , υ (0) = υ 0 , υ 0 ∈ ∂Φ (x 0 ) . We rst study the asymptotic behavior, as t → +∞, of the trajectories of the associated system (5.2.20a) ẏ (t) + µ∇Φ µ (y (t)) + µ (t) prox µΦ (y (t)) = 0 whose existence is guaranteed by Theorem 5.2.1. The central point of our analysis is to reformulate this system as a multi-scale gradient system, which will allow us to use the known results concerning the asymptotic behavior, and the hierarchical selection property for such systems.

Preliminary results

Let us state some denitions and classical properties that will be useful (see [5], [11], [12], [20] for an extended presentation of these notions) :

Denition 5.2.2 Let f and g be functions from H to R ∪ {+∞}. The inmal convolution (or epi-sum) of f and g is the function f g : H → [-∞, +∞] which is dened by

f g(x) = inf ξ∈H (f (ξ) + g (x -ξ)) .
Denition 5.2.3 Let f : H → R ∪ {+∞}, γ ∈ R ++ . The Moreau envelope of f of parameter γ is dened by

f γ = f 1 2γ • 2 .
Denition 5.2.4 Let f : H → R ∪ {+∞} be a convex lower semicontinuous proper function, and let x ∈ H. Then prox f x is the unique point in H that satises

f 1 (x) = min ξ∈H f (ξ) + 1 2
x -ξ 2 = f prox f x + 1 2

x -prox f x 2 . The operator prox f : H → H is called the proximity operator, or proximal mapping of f . Denition 5.2.5 Let f : H → R ∪ {+∞}. The conjugate (or Legendre-Fenchel transform, or Fenchel conjugate) of f is that has been considered by Attouch-Czarnecki in [6]. Let us recall this general abstract result, that we formulate with notations adapted to our setting. Since Θ enters (MAG) ε only by its subdierential, it is not a restrictive assumption to assume this potential to be nonnegative, with its inmal value equal to zero (substracting the inmal value does not aect the subdierential). and for some k ≥ 0, -kε 2 ≤ ε. Let y(•) be a strong solution of (MAG) ε . Then : By specializing this result to our setting, we will obtain the weak convergence of y(•) to a particular minimizer of Φ, which is the solution of a hierarchical minimization property. The convergence of x(•) is less immediate, and will follow from an energetical argument.

f * : H → R ∪ {+∞} : u → sup x∈H ( x, u -f (x)) .
Analysis of the condition (H 1 ) :

The condition

(H 1 ) ε ∀p ∈ R(N C ), +∞ 0 Θ * (ε(t)p) -σ C (ε(t)p)dt < +∞,
plays a crucial role in our asymptotic analysis. Before proceeding in the discussion of this hypothesis, we recall some classical notions from convex analysis, that will be useful. Observe that in (H 1 ) ε , all the terms in the integral are nonnegative. Indeed, since Θ is bounded from above by the indicator function of the set C, i.e. Θ ≤ δ C (recall that Θ = 0 on C), the reverse inequality holds for their Fenchel conjugates, whence Θ * ( (t) p) -σ C ( (t) p) ≥ 0 ∀p ∈ H. Hence, in this situation (H 1 ) is satised if the following condition on (•) is satised : +∞ 0 2 (t) < +∞.

In this situation, the moderate growth condition on (•), can be formulated as (•) ∈ L 2 (0, +∞) L 1 (0, +∞).

Let us return to the general situation, and summarize our results in the following theorem, which is our main statement. Développer la méthode de Newton régularisée dans un cadre plus général non convexe non lisse (prox-régulier...). Comparer avec l'approche semi-smooth développée dans [2].

Le chapitre 4 a présenté diérentes classes de systèmes dynamiques, et les algorithmes forwardbackward associés, visant à résoudre les inclusions monotones gouvernées par un opérateur

•

  d C : x → inf y∈C x -y : Fonction distance à C associée à la norme • = •, • . • σ C : x → sup y∈C x, y : Fonction d'appui de C.• P C : Projecteur sur le sous ensemble convexe fermé non vide C de H.• N C : x → {u ∈ H; (∀y ∈ C) u, y -x ≤ 0} si x ∈ C ∅ sinon : Opérateur cône normal à C.

( 1 . 1 . 7 )

 117 Cette formulation joue un rôle important dans notre approche. Insistons sur le fait que lesopérateurs J M µ (z) := (I + µM ) -1 : H -→ H, et M µ = 1 µ I -J M µ : H -→ H sontpartout dénis et lipschitziens. Le système (1.1.5)-(1.1.7) peut alors être traité par le théorème de Cauchy Lipschitz, d'où l'existence et l'unicité d'une solution globale forte du problème de Cauchy (1.1.5)-(1.1.7).

( 1 . 1 . 19 )

 1119 Dans tous les systèmes dynamiques précédents, pour certaines considérations physiques, économiques et autres, une solution stationnaire particulière est plus intéressante que d'autres. Lorsqu'on a la convergence globale des trajectoires, une méthode classique pour atteindre un point d'équilibre particulier, consiste à introduire un terme évanescent dans le système, ne changeant pas l'ensemble des équilibres mais favorisant la convergence vers le type d'équilibre désiré. Cette méthode rentre dans le cadre général des solutions de viscosité, et donne lieu à un principe de minimisation hiérarchique asymptotique. Un exemple classique est l'introduction d'un terme de régularisation de type Tikhonov (•)x(•) dans la dynamique pour atteindre asymptotiquement un équilibre de norme minimale. Dans l'étude de notre système, par simplicité, nous nous limitons au cas d'un seul potentiel et considérons la méthode de Newton régularisée (à la Tikhonov) suivante :υ (t) ∈ ∂Φ (x (t)) ,(1.1.20) 

( 1 . 1 . 21 ) 1 µ

 11211 Sous l'hypothèse que (•) tend vers zéro de façon modérée lorsque t tend vers +∞, nous montrons que le terme (•) x (•) agit comme une régularisation de Tikhonov. Nous utilisons la répresentation de Minty de l'opérateur maximal monotone ∂Φ, et le fait que prox µΦ = ∇Ψ avec Ψ(y) = µ (Φ * ) 1 µ y , où Φ * est la conjuguée de Fenchel. Le système (1.1.20)-(1.1.21) se reformule alors comme suit :

( 2 . 1 . 9 )

 219 Nous montrons d'abord que le système (2.1.7)-(2.1.9) génère des trajectoires qui satisfont la propriété de la descente suivante. Cette propriété, ainsi que l'estimation de type énergie des trajectoires vont jouer un rôle clé dans l'établissement du résultat d'existence global. Proposition 2.1.4 Soit (x, υ) une solution forte du système (2.1

Theorem 2 . 2 . 1 λ

 221 15 Suppose that arg min (ϕ + ψ) = ∅, +∞ 0 (t) dt = +∞, and there exists ε > 0 such that, for almost all t >

( 3 . 1 . 3 )

 313 avec les hypothèses suivantes sur la fonction λ (•) λ : [0, +∞[-→ ]0, +∞[ est continue, (3.1.4) et absolument continue sur tout intervalle [0, b] , 0 < b < +∞.

( 3 . 1 . 5 )

 315 On désignera les bornes inférieure et supérieures de λ(•) sur [0, b] par ∀t ∈ [0, b] , 0 < λ b,min ≤ λ(t) ≤ λ b,max < +∞.

(

  

1 2 .Théorème 3 . 1 . 3

 12313 Par un argument de prolongement par continuité, le résultat précédent nous permet d'étendre notre étude au cas où le coecient λ(•) est à variation bornée. A cet eet, pour étudier l'existence et l'unicité, nous utilisons une méthode de régularisation par convolution, qui permet de se ramener au cas λ(•) absolument continu, puis on passe à la limite dans les équations. Dans le théorème suivant nous établissons par cette méthode l'existence et l'unicité d'une solution globale forte du problème (3.1.1)-(3.1.3), dans le cas où λ est une fonction à variation bornée. Soit λ : [0, T ] -→ ]0, +∞[ à variation bornée sur [0, T ]. Supposons que c 0 = inf t∈[0,T ] λ(t) > 0. Soit x 0 ∈ dom ∂ϕ et υ 0 ∈ ∂ϕ (x 0 ), υ 0 = 0. Alors il existe une solution unique globale forte sur [0, T ] du problème de Cauchy

  Stability of a Regularized Newton Method with two Potentials 1AbstractIn a Hilbert space setting, we study the stability properties of the regularized continuous Newton method with two potentials, which aims at solving inclusions governed by structured monotone operators. The Levenberg-Marquardt regularization term acts in an open loop way.

( 3 .

 3 2.1c)Let us now make our standing assumption on function λ(•) :λ : [0, +∞[-→ ]0, +∞[ is continuous, (3.2.2)and absolutely continuous on each interval [0, b], 0 < b < +∞.

( 3 . 2 . 6 )

 326 where z (•) : [0, +∞[→ H is the unique strong global solution of the Cauchy problem

( 3 .

 3 2.44) Let us show that θ satises a Gronwall inequality. Let us start from d dt [γ (x -y) + (υ -w)] = γ (x -y) + γ ( ẋ -ẏ) + ( υ -ẇ) .

s 0 (

 0 ∇ψ (x) -∇ψ (y)) dt. Passing to the norm [γ (x -y) + (υ -w)] (s) ≤ γ (0) x 0 -y 0 + υ 0 -w 0 -y) -(υ -w) dt + s 0 ∇ψ (x) -∇ψ (y) dt.

  ε>0,ε→0Let (x, υ) , (y, w) : [0, T ] → H × H be two strong solutions of (3.2.48a)-(3.2.48b)-(3.2.48c).

  and consequentlyλ -( ẋ -ẏ) + ( υ -ẇ) + υ -w + ∇ψ (x) -∇ψ (y) = 0 a.e.

( 3 .

 3 2.51)In terms of dierential measures on [0, T ] we have[22, Proposition 11.1] 

( 3 .

 3 2.53) Now integrating the right hand term of (3.2.52) on [0, s) and taking (3.2.51) into account, we get [0,s[

Chapitre 4 Systèmes

 4 dynamiques et algorithmes forward-backward associés à la somme d'un sous-diérentiel convexe et d'un opérateur monotone cocoercif 4.1 Description et résultats principaux : Dans ce chapitre, nous étudions diérentes classes de systèmes dynamiques visant à résoudre les inclusions monotones gouvernées par un opérateur maximal monotone structuré M = ∂Φ + B. On se place dans un espace de Hilbert H, ∂Φ désigne le sous diérentiel d'une fonction convexe, semi-continue inférieurement, et propre Φ : H -→ R∪{+∞} , et B : H -→ H est un opérateur monotone cocoercif, i.e. il existe β > 0 tel que ∀x, y ∈ H Bx -By, x -y ≥ β Bx -By 2 . Le problème s'écrit Problème 4.1.1 Soit H un espace de Hilbert réel Trouver x ∈ H tel que ∂Φ (x) + B (x) 0. Le formalisme utilisé dans le problème (4.1.1) permet de couvrir une grande classe de problèmes, allant des sciences de la décision à l'ingénierie. Sur un plan mathématique, il est directement lié à deux domaines importants, à savoir l'optimisation convexe (lorsque B = 0), et les problèmes de point xe pour les contractions (lorsque Φ = 0, et B = I -T , avec T contraction). Nous étudions diverses dynamiques visant à la résolution du problème d'équilibre correspondant (4.1.1). Nous commençons par l'étude des dynamiques continues et discrètes de type Newton régularisé, qui ont été introduites dans Attouch et Svaiter SIAM 2011, et développées dans Abbas, Attouch, et Svaiter JOTA, 2014.

( 4 . 1 . 3 )

 413 Dans (4.1.2) λ, le terme de régularisation de type Levenberg -Marquardt, est une constante positive.En s'appuyant sur la représentation de Minty de l'opérateur maximal monotone ∂Φ, nous reformulons le système (4.1.1)-(4.1.3) sous la forme équivalente suivante :

Théorème 4 . 1 . 3

 413 Supposons que S = {z ∈ H; ∂Φ (z) + B (z) 0} = ∅. Alors, pour toute trajectoire x (•) du système (4.1.1)-(4.1.3), les propriétés de convergence suivantes sont satisfaites, lorsque t tend vers +∞ : (1) lim t-→+∞ υ (t) + B (x (t)) = 0;

( 4 .

 4 1.6) converge faiblement vers un élément de S. Dans le théorème suivant, nous montrons que (4.1.6) a des propriétés de convergence similaires à celles préséntées dans la méthode de Newton régularisée. Théorème 4.1.5 Supposons que S = {z ∈ H; ∂Φ (z) + B (z) 0} = ∅. Alors, pour toute trajectoire x (•) du (4.1.6), les propriétés de convergence suivantes sont satisfaites : (1) +∞ 0 ẋ (t) 2 dt < +∞, x (•) est à énergie nie. (2) x (•) converge faiblement vers un élément de S.

( 4 . 1 . 8 )

 418 Insistons sur le fait que prox µΦ est lipschitzien, ce système relève donc du théorème de Cauchy- Lipschitz. Les propriétés de la convergence ont été étudiées d'abord par Antipin et Bolte dans le cas particulier où Φ est la fonction indicatrice d'un ensemble convexe fermé C, et B désigne le gradient d'une fonction convexe diérentiable. Dans ce cas, le système (4.1.8) se ramène à la méthode de gradient-projeté suivante :

  forward-backward algorithms associated with the sum of a convex subdierential and a monotone cocoercive operator 1 abstract In a Hilbert framework, we introduce continuous and discrete dynamical systems which aim at solving inclusions governed by structured monotone operators A = ∂Φ + B, where ∂Φ is the 1. B. Abbas, H. Attouch, Dynamical systems and forward-backward algorithms associated with the sum of a convex subdierential and a monotone cocoercive operator, Optimization, (2014) http ://dx.doi.org/10.1080/02331934.2014.971412.

( 4 . 2 . 6 )

 426 Let us introduce the new unknown function y(•) = x(•) + µv(•). Since v(•) ∈ ∂Φ(x(•)), we have x(•) = prox µΦ y(•), where prox µΦ is the proximal mapping associated to µΦ. Recall that prox µΦ = (I + µ∂Φ) -1 , where (I + µ∂Φ) -1 is the resolvent of index µ > 0 of the maximal monotone operator ∂Φ.

Proposition 4 .

 4 2.15, and Theorem 4.2.8, item 3.

( 4 .

 4 2.79)Equivalentlyx k+1 = (I + h∂Φ) -1 (x k -hB(x k )) .

( 4 .

 4 2.80)This is the classical forward-backward algorithm, whose convergence has been well established.

First

  take Φ = δ C equal to the indicator function of a closed convex set C ⊂ H, and B = ∇Ψ, the gradient of a convex dierentiable function Ψ : H → R. The semigroup of contractions, generated by -A, which has been studied in the previous section, specializes in gradientprojection system ẋ(t) = proj T C (x(t)) (-∇Ψ(x(t))) ,(4.2.81) 

( 4 .

 4 2.101)and use the demiclosedness property of the maximal monotone operator

(

  

( 4 . 3 . 8 )

 438 The explicit discretization of the regular dynamic (4.3.8) with respect to the time variable t, with constant step size h > 0, givesx k+1 = (1 -h) x k + h prox µΦ (x k -µB (x k )) .

1 2 Lx -d 2 ( 4 1 √n • I n = 1 √

 122411 to regularize this problem is to force the solutions to lie in a given closed set modeling a priori constraints. This leads to the following formulation min x∈C .3.12) A simple illustration. The following example is intended to illustrate the behavior of the above algorithms. Consider the hyperplane C = {x ∈ R n ; x, a = b}, with a = n • ones(n, 1), b = 3, and the system Lx = d. We implement our algorithms in SCILAB with L is randomly generated in R m × R n n = m = 20, d = I m , and starting from randomly generated initial points in [-2, 2] 20 .We compare the algorithms regularized Newton dynamic, the semigroup of contractions generated by -A, and Proximal gradient with the dierent cases of the parameters µ, β, and h for 5000 iterations.

  (a) h > 1 (b) h < 1

Figure 4 . 1

 41 Figure 4.1 Error values x k -x : case 0 < µ < β.

(a) h > 1

 1 (b) h < 1

Figure 4 . 2

 42 Figure 4.2 Error values x k -x : case µ = β.

Figure 4 . 3

 43 Figure 4.3 Error values x k -x : case β < µ < 2β.

4. 3 . 3 Perspective 1 . 2 . 5

 33125 Application to the signal restoration and tomography by taking the minimization problem (4.3.12) with C is a hyperplane. Application to image reconstruction and sparse approximation. Chapitre Méthode de viscosité et sélection asymptotique d'équilibre pour la dynamique de Newton régularisée 5.1 Description et résultats principaux : Dans ce chapitre, nous nous intéressons à l'étude du comportement asymptotique des trajectoires de systèmes dynamiques de type Newton régularisé, dans lesquels on introduit un terme supplémentaire de viscosité évanescente de type Tikhonov. Etant donné une fonction convexe, semi-continue inférieurement, et propre Φ : H -→ R ∪ {+∞}, que l'on cherche à minimiser, nous montrons que toute trajectoire de ce système "viscosié" converge faiblement vers l'équilibre de norme minimale de C = argminΦ = ∅. Problème 5.1.1 Soit H un espace de Hilbert réel Trouver x ∈ H tel que ∂Φ (x) 0.

( 5 . 1 . 3 )

 513 Dans ce qui suit, on supposera que λ, le terme de régularisation de type Levenberg -Marquardt, est une constante strictement positive.Pour certaines considérations physiques, économiques et autres, une solution stationnaire particulière est plus intéressante que d'autres. Lorsqu'on a la convergence globale des trajectoires, une méthode classique pour atteindre un point d'équilibre particulier, consiste à introduire un terme évanescent dans le système, ne changeant pas l'ensemble des équilibres mais favorisant la convergence vers le type d'équilibre désiré. Cette méthode rentre dans le cadre général des solutions de viscosité, et donne lieu à un principe de minimisation hiérarchique asymptotique. By Theorem 5.2.1, for any given Cauchy data υ 0 ∈ ∂Φ (x 0 ), the above properties guarantee the existence and uniqueness of a global solution of system (5.2.7a)-(5.2.7b)-(5.2.7c). From now on in this section, (x (•) , υ (•)) : [0, +∞[ -→ H × H is the solution of (5.2.7a)-(5.2.7b)-(5.2.7c).

Remark 5 . 2 . 6

 526 Let f : H → R ∪ {+∞} be proper then f * (0) = -inf H f.f is lower semi continuous and convex if and only if f = f * * .

Theorem 5 . 2 . 10 (Θ

 5210 Attouch-Czarnecki,[6]) Let Θ :H → R + ∪ {+∞} be a closed convex proper function, such that C = argminΘ = Θ -1 (0) = ∅. Ψ : H → R ∪{+∞} be a closed convex proper function, such that S = argmin{Ψ|argminΘ} = ∅.Let us assume that,(H 1 ) ε ∀p ∈ R(N C ), +∞ 0 * (ε(t)p) -σ C (ε(t)p)dt < +∞. (H 2 ) ε ε(•) is a non increasing function of class C 1 , such that lim t→+∞ ε(t) = 0, +∞ 0 ε(t)dt = +∞,

  weak convergence ∃y ∞ ∈ S = argmin{Ψ|argminΘ}, w -lim t→+∞ y(t) = y ∞ ;(ii) minimizing properties lim t→+∞ Θ(y(t)) = 0; lim t→+∞ Ψ(y(t)) = min Ψ| argminΘ ; (iii) ∀z ∈ S lim t→+∞ y(t) -z exists ; ) Ψ(y(t)) -min Ψ| argminΘ dt < +∞.

σ

  C is the support function of C, σ C (x * ) = sup c∈C x * , c . N C (x) is the normal cone to C at x, N C (x) = {x * ∈ H : x * , c -x ≤ 0 for all c ∈ C} if x ∈ C, and ∅ otherwise. R (N C ) is the range of N C , i.e. p ∈ R (N C ) if and only if p ∈ N C (x) for some x ∈ C. Note that δ * C = σ C where δ C is the indicator function of C, δ C := 0 if x ∈ C +∞ otherwise.

Thus, Hypothesis (H 1 )Θ (x) ≥ r 2 dis 2

 122 means that, for all p ∈ R(N C ) the nonnegative functiont → [Θ * ( (t) p) -σ C ( (t) p)]is integrable on (0, +∞). For more clarity, let us discuss the following special case : Suppose that (x, C) , for some r > 0. Then Θ * (x)≤ 1 2r x 2 + σ C (x) and Θ * (z) -σ C (z) ≤ 1 2r z 2 .

Theorem 5 . 2 .

 52 11 Let Φ : H → R + ∪ {+∞} be a closed convex function, such that C = argminΦ = Φ -1 (0) = ∅. Let us assume that, Chapitre 6 Conclusion et perspectives Cette thèse a été consacrée à la recherche des zéros d'un opérateur maximal monotone structuré, à l'aide de systèmes dynamiques dissipatifs continus et discrets. Les solutions sont obtenues comme limites des trajectoires lorsque le temps t tend vers l'inni. Notre travail a porté principalement sur l'étude de nouvelles dynamiques obtenues par régularisation de la méthode de Newton. Dans un cadre hilbertien, on s'est intéressé à la recherche des zéros d'un opérateur maximal monotone structuré M = A+B, où A est un opérateur maximal monotone général et B est un opérateur monotone lipschitzien. Nous avons introduit des dynamiques continues et discrètes de type Newton régularisé faisant intervenir d'une façon séparée les résolvantes de l'opérateur A (implicites), et des évaluations de B (explicites). A l'aide de la représentation de Minty de l'opérateur A comme une variété Lipschitzienne, nous avons reformulé ces dynamiques sous une forme relevant du théorème de Cauchy-Lipschitz, et nous avons montré l'existence et l'unicité d'une solution globale forte de notre problème d'évolution. On s'est intéressé au cas particulier où A est le sous diérentiel d'une fonction convexe, semi-continue inférieurement, et propre, et B est le gradient d'une fonction convexe, diérentiable, B étant supposé seulement localement lipschitzien (hypothèse un peu plus faible que dans le cas général, où B est supposé monotone globalement lipschitzien). Lorsque le terme de régularisation ne tend pas trop vite vers zéro et en s'appuyant sur une analyse asymptotique de type Lyapunov, nous avons étudié le comportement asymptotique des trajectoires, et montré leur convergence. Par ailleurs, nous avons montré la dépendance lipschitzienne des trajectoires par rapport au terme de régularisation, lorsque ce dernier agit en boucle ouverte. Comme travail pour le futur : On voudrait prolonger cette étude par l'étude de la régularisation en boucle fermée de la méthode de Newton cf. [4], et étudier les propriétés de stabilité dans ce cas. Etablir le lien entre la dynamique de Newton régularisée étudiée avec la dynamique du deuxième ordre en temps, avec un terme accélération supplémentaire cf. [3]-[5]. Application en traitement du signal et d'image, optimisation parcimonieuse (sparse optimization), et équations aux dérivées partielles. Etudier la stabilité des trajectoires sur l'intervalle [0, ∞].

  Présentation générale et objectifs . . . . . . . . . . . . . . . . . . . . . . . . .
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	2.1	Description et résultats principaux :
	1.2	Organisation de la thèse

Dans le chapitre 2, qui s'appuie sur l'article

[4]

, nous introduisons des dynamiques continues et discrètes de type Newton régularisé qui visent à résoudre le problème (1.1.1). A l'aide de la représentation

de 

Minty, nous montrons l'existence et l'unicité d'une solution globale forte de notre problème. Puis nous nous intéressons au cas particulier où A est le sous diérentiel d'une fonction convexe, semi-continue inférieurement, et propre, et B est le gradient d'une fonction convexe, diérentiable, B étant supposé seulement localement Lipschitzien (hypothèse un peu plus faible que dans le cas général, où B est supposé monotone globalement Lipschitzien). Dans ce cadre, bien adapté aux problèmes de minimisation structurés, nous montrons l'existence et l'unicité d'une solution globale forte de notre problème d'évolution. Puis, en s'appuyant sur une analyse asymptotique de type Lyapunov, et en utilisant le lemme d'Opial, nous étudions le comportement asymptotique des trajectoires, lorsque le terme de régularisation ne tend pas trop vite vers zéro. Finalement, nous introduisons de nouveaux algorithmes forward-backward (explicite-implicite) et gradient-projeté, qui sont obtenus par la discrétisation en temps des systèmes dynamiques continus étudiés. Le chapitre 3, qui s'appuie sur l'article [2], porte sur l'étude de questions de stabilité pour le problème précédent, dans le cas où A est le sous diérentiel d'une fonction convexe, semicontinue inférieurement, et propre, et B est le gradient d'une fonction convexe, diérentiable, B étant supposé seulement localement Lipschitzien. Dans ce cas, l'équation d'équilibre est le problème de minimisation structuré (1.1.12). nous considérons un autre système dynamique attaché à la résolution de (1.1.13), qui est le semi-groupe de contractions généré par -(∂ϕ + B), où la discrétisation en temps donne l'algorithme forward-backward classique. Finalement, nous considérons le système dynamique proximal-gradient associé à la reformulation de (1.1.13) comme un problème de point xe, et nous étudions ses propriétés de convergence. Dans la section 4.3, on présente une illustration numérique dans un cas modèle simple, permettant de comparer le comportement asymptotique des algorithmes forward-backward respectivement associés à la dynamique Newton régularisé, au semi-groupe de contractions généré par -(∂ϕ + B), et au système dynamique proximalgradient. Le chapitre 5 s'appuie sur l'article [1], où nous nous intéressons à l'étude du comportement asymptotique des trajectoires du système avec viscosité évanescente de type Tikhonov (1.1.20)-(1.1.21). Nous montrons que toute trajectoire de ce système converge faiblement vers l'équilibre de norme minimale. Puis nous montrons que dans le cas où Φ est une fonction convexe diérentiable, dont le gradient est Lipschitzien, toutes les trajectoire du système (1.1.20)-(1.1.21) convergent fortement vers cet équilibre. Finalement, nous considérons les propriétés de sélection asymptotiques liées à d'autres types de méthode de viscosité. Dans ce chapitre, nous étudions des systèmes dynamiques visant à résoudre les inclusions monotones gouvernées par un opérateur maximal monotone structuré M = A + B. On se place dans un espace de Hilbert H, A est un opérateur maximal monotone général, et B est un opérateur monotone univoque, qui est supposé Lipschitzien sur les bornés. Problème 2.1.1 Soit H un espace de Hilbert réel. Trouver x ∈ H tel que A (x) + B (x) 0.

  Notons que, dans (2.1.2), les opérateurs A et B jouent des rôles dissymétriques. Lorsque B = 0, on obtient une méthode de Newton régularisée par rapport à A, alors que, lorsque A = 0, on obtient le semi-groupe de contractions généré par B. En s'appuyant sur la représentation de Minty de l'opérateur maximal monotone A comme une variété lipschitzienne, et en prenant comme nouvelle fonction inconnue z : [0, +∞[ -→ H dénie par z (t) = x (t) + µ(t)υ (t) où (µ (t) = 1

		2.1.3)
	Dans ce système, le choix du terme de régularisation (λ(•)>0) joue un rôle essentiel dans
	l'analyse de la convergence des trajectoires vers des équilibres, qui sont les zéros de l'opérateur
	A+B. λ(t)	), nous pouvons reformuler de façon

équivalente le système (2.1.1-2.1.3) relativement aux nouvelles inconnues (x, z) sous la forme :

  la solution unique globale forte du problème de Cauchy (2.1.4)-(2.1.6). A = ∂ϕ est le sous diérentiel d'une fonction convexe, semi-continue inférieurement, et propre ϕ : H -→ R ∪ {+∞}. B = ∇ψ est le gradient d'une fonction ψ : H -→ R convexe, continue et diérentiable, B étant supposé seulement localement Lipschitzien (hypothèse un peu plus faible que dans le cas général, où B est supposé monotone globalement Lipschitzien). Par un résultat classique ∂ϕ et ∇ψ sont deux opérateurs maximaux monotones, et le système (2.1.1)-(2.1.3) se reformule alors comme suit :

	Dans ce problème :
	Puis, nous examinons le cas où A est le sous-diérentiel d'une fonction convexe, semi-continue
	inférieurement, et étudions le problème de minimisation convexe structuré suivant :
	Problème 2.1.3

Trouver x ∈ H tel que ∂ϕ (x) + B (x) 0.

  Le théorème suivant est notre résultat principal concernant la convergence des trajectoires.Rappelons que notre stratégie est de prendre le coecient de régularisation λ(•) aussi petit que possible pour que, asymptotiquement on soit le plus proche possible de la méthode de Newton. Notre résultat est que λ(t) = e -t est la taille critique. Théorème 2.1.6 Supposons que λ est décroissante. Alors

	lim t→+∞

.1.11) Puis, nous étudions la convergence asymptotique des trajectoires lorsque t -→ +∞. En s'appuyant sur une analyse asymptotique de type Lyapunov et le lemme d'Opial, nous montrons que, si le terme de régularisation λ (•) ne tend pas trop vite vers zéro, les trajectoires convergent faiblement vers un équilibre qui est une solution du problème de minimisation (2.1.3).

  Returning to the denition (2.2.26a)-(2.2.26d) of F , we deduce that

.2.32) By (2.2.9), for any t ∈ [0, b], we have 0 < λ b,min ≤ λ(t) ≤ λ b,max < +∞.

  Using again the local integrability of λ(•) and Proposition 2.2.3 (ii) we obtain (2.2.32). From properties (2.2.29), (2.2.31), and (2.2.32), we can deduce the existence and uniqueness of a strong global solution of dierential equation (2.2.25a)-(2.2.25b), with given Cauchy data. To that end, we use the version of the Cauchy-Lipschitz theorem relying on the integrability of t → F (t, x), and involving absolutely continuous trajectories ; see for example [11, Proposition 6.2.1], [12, Theorem 54]. 2) Let us now return to the initial problem(2.2.7a)-(2.2.7c). Given z(.) : [0, +∞) → H, which is the unique strong solution of Cauchy problem (2.2.23), let us dene

  2.44c) 2.2.4 The convex subdierential case Let us now suppose that A = ∂ϕ is the subdierential of a convex lower semicontinuous proper function ϕ : H → R ∪ {+∞}, and that B = ∇ψ is the gradient of a convex, continuously dierentiable function ψ : H → R. By a classical result, ∂ϕ and ∇ψ are maximal monotone operators. System (2.2.7a)-(2.2.7c) reads as follows

v(t) ∈ ∂ϕ(x(t))

(2.2.45a) λ(t) ẋ(t) + v(t) + v(t) + ∇ψ(x(t)) = 0. (2.2.45b) Descent Property Let us show that the trajectories generated by system (2.2.45a)-(2.2.45b) satisfy a descent property. This property, and the accompanying energy estimate, will play a key role in establishing global existence results, just assuming that B = ∇ψ is locally Lipschitz continuous. That's why the following result is rst stated on a bounded interval [0, b]. Proposition 2.2.6 Let (x, v) be a strong solution of system (2.2.45a)-(2.2.45b) on [0, b], b > 0. Then a) t → ϕ(x(t)) + ψ(x(t)) is a non-increasing function. b) b 0 λ(t) ẋ(t) 2 dt < +∞, and hence ẋ ∈ L 2 (0, b; H).

Proof. After scalar multiplication of (2.2.45b) by ẋ (t), we obtain λ (t) ẋ (t) 2 + ẋ (t) , υ (t) + υ (t) , ẋ (t) + ∇ψ (x (t)) , ẋ (t) = 0. (2.2.46) For almost all t ∈ [0, b], ẋ(t) and v(t) are well dened ; thus

  Noticing that x and v are continuous on [0, b], hence bounded, and that λ is bounded from below on [0, b] by a positive number, one easily gets from (2.2.48) that ẋ ∈ L 2 (0, b; H).

	Combining (2.2.46) and (2.2.47) we obtain	
			(2.2.48)
			(2.2.49)
	On the other hand, by the classical derivation chain rule	
	d dt	ψ(x(t)) = ∇ψ(x(t)), ẋ(t) .	(2.2.50)
	We appeal to a similar formula which is still valid for a convex lower semicontinuous proper
			2.2.47)

λ (t) ẋ (t)

2 

+ υ (t) , ẋ (t) + ∇ψ (x (t)) , ẋ (t) ≤ 0.

function ϕ : H → R ∪ {+∞}. Notice that i) v(t) ∈ ∂ϕ(x(t)) for almost every t ∈ [0, b] ; ii) v is continuous on [0, b] and hence belongs to L 2 (0, b; H) ; iii) ẋ ∈ L 2 (0, b; H) by (2.2.49). By i), ii), iii), conditions of [

6, Lemma 3.3] are satised, which allows to deduce that t → ϕ (x (t)) is absolutely continuous on [0, b], and, for almost every t ∈ [0, b] d dt ϕ (x (t)) = υ (t) , ẋ (t) . (2.2.51) Combining (2.2.48) with (2.2.50) and (2.2.51), we obtain λ(t) ẋ(t) 2 + d dt (ϕ(x(t)) + ψ(x(t))) ≤ 0. (2.2.52) Hence d dt (ϕ(x(t)) + ψ(x(t))) ≤ 0, which implies that the absolutely continuous function t → ϕ(x(t)) + ψ(x(t)) is non-increasing. Integration of (2.2.52) immediately yields b 0 λ(t) ẋ(t) 2 dt < +∞. Global Existence with B = ∇ψ Locally Lipschitz Continuous We consider the Cauchy problem v(t) ∈ ∂ϕ(x(t)), (2.2.53a)

  Theorem 2.2.7 Let λ : [0, +∞[→]0, +∞[ be a continuous function which is absolutely continuous on each bounded interval [0, b] , b > 0. Let A = ∂ϕ be the subdierential of a convex lower semicontinuous proper function ϕ : H → R ∪ {+∞}. Let B = ∇ψ be the gradient of a convex, continuously dierentiable function ψ : H → R, and suppose that B is locally Lipschitz continuous. Suppose that ϕ + ψ is bounded from below on H. Let (x 0 , υ 0 ) ∈H×H be such that υ 0 ∈ ∂ϕ (x 0 ).

	Then the following properties hold i) There exists a unique strong global solution (x (•) , υ (•)) : [0, +∞[→ H × H of the Cauchy problem (2.2.53a)-(2.2.53c). ii) Set µ (t) = 1 λ(t) . The solution pair (x (•) , υ (•)) of the problem (2.2.53a)-(2.2.53c) can be represented as follows : for any t ∈ [0, +∞[,
	x (t) = J ∂ϕ µ(t) (z (t)) ,	(2.2.54)
	υ (t) = ∇ϕ µ(t) (z (t)) ,	(2.2.55)

where z (•) : [0, +∞[→ H is the unique strong solution of the Cauchy problem

  Tm,min . +∞ and t n → T m , we deduce from the above inequality that (x (t n )) is a Cauchy sequence in the Hilbert space H, and hence (x (t n )) converges. The same argument shows that the limit does not depend on the sequence t n → T m . Thus

			tm	
			ẋ (s) ds
			tn	
				Tm	1 2
		≤	|t n -t m |	ẋ(s) 2 ds	.
				0
		lim t→Tm	x (t) exists.	(2.2.61)
					(2.2.59)
	For short, set			
	T m = T max λ min = λ From (2.2.58), (2.2.59), and the minorization assumption concerning ϕ + ψ, we infer and
	Tm		Tm	
	λ min	ẋ(t) 2 dt ≤	λ (t) ẋ(t) 2 dt < +∞.
	0		0	

.2.57) Proof. Relying on the local Lipschitz continuity of B = ∇ψ, and the Cauchy-Lipschitz theorem in the locally Lipschitz case, a demonstration similar to that used in Theorem 2.2.4 gives the local existence and uniqueness of a strong solution of the Cauchy problem (2.2.53a)-(2.2.53c).

In order to pass from a local solution to a global solution we follow a standard argument. Let [0, T max [ be the maximal interval of existence of a solution. We want to show that T max = +∞. We follow a proof by contradiction, and assume that T max < +∞. By Proposition 2.2.6, t → ϕ (x (t))+ψ (x (t)) is a decreasing function. By (2.2.52) and the assumption inf H (ϕ + ψ) > -∞, we obtain the energy estimate

Tmax 0 λ(t) ẋ(t) 2 dt ≤ (ϕ + ψ)(x 0 ) -inf H (ϕ + ψ).

(2.2.58) According to (2.2.9) and the fact that T max < +∞, we have that, for any t ∈ [0,

T max ] 0 < λ Tmax,min < λ (t) . Hence ẋ(•) ∈ L 2 (0, T m ; H).

(2.2.60) By a standard argument, this implies that lim t→Tm x (t) exists. Indeed, for any sequence t n → T m , by using successively that x(•) is absolutely continuous on bounded sets, and Cauchy-Schwarz inequality we have

x (t n ) -x (t m ) ≤ Since T m <

Let us show that v(t) and z(t) also have a limit as t → T m . By integration of equation (2.2.53b) with respect to t we successively obtain

λ (t) ẋ(t) + υ(t) + υ(t) + ∇ψ (x (t)) = 0, d dt e t υ (t) = e t (-λ (t) ẋ (t) -∇ψ (x (t))) , υ (t) = υ (0) e -t + e -t t 0 e -s (-λ (s) ẋ (s) -∇ψ (x (s))) ds.

From (2.2.60), (2.2.61), and the above relation it follows that lim t→Tm v(t) exists. (2.2.62) On the other hand, the relation z (t) := x (t) + µ (t) υ (t) and (2.2.61-2.2.62) shows that lim t→Tm z(t) = z Tm exists. (2.2.63) We can reapply the Cauchy-Lipschitz theorem at the point T m , z Tm . So doing we obtain a strong solution which is dened on an interval of length strictly greater than T m , a clear contradiction with the maximality of T m . Thus T m = +∞, and problem (2.2.53a)-(2.2.53c) has a unique strong global solution.

  2.45a)-(2.2.45b). The existence of strong global solutions of this system is given by Theorem (2.2.53a)-(2.2.53c). Here and subsequently (x (•) , υ (•)) : [0, +∞) → H × H is the solution of the Cauchy problem (2.2.53). We will often omit the time variable t and write x, v. . . for x(t), v(t). . . when no ambiguity arises.

  .2.67) where z is an arbitrary point in the eective domain of ϕ + ψ. Using the second part of Proposition 2.2.8 and (2.2.45b) we have

  Take an arbitrary z ∈ H. Using (2.2.68), (2.2.72) and the rst part of Proposition 2.2.8

	we conclude that, for almost all t > 0		
	d dt	Γ z (t) ≤ -	1 λ	[(ϕ + ψ)(x(t)) -(ϕ + ψ)(z)] ,
	which combined with the non-negativity of Γ z (see denition (2.2.67), Proposition 2.2.8), and
	Proposition 2.2.6 yields the inequalities	

  Proof.First note that all the assumptions of Proposition 2.2.10 and Theorem 2.2.11 are supposed to hold. Take z ∈ arg min (ϕ + ψ). Using (2.2.68), Proposition 2.2.8 and (2.2.81) we conclude that

				.82)
	lim t→∞	1 λ(t)	g z (t) = 0,	(2.2.83)

  Theorem 2.2.16 If arg min (ϕ + ψ) = ∅, λ is bounded, and there exists ε > 0 such that, for almost all t ≥ 0 then x(•) converges weakly to a minimizer of ϕ + ψ, and

			λ(t)
		1 +	λ(t)	≥ ε,
	lim t→∞	v(t) + ∇ψ(x(t)) = 0.

  Theorem 2.2.18 Let C be a closed convex nonempty set in H, and ψ : H → R a convex, differentiable function whose gradient is Lipschitz continuous on bounded sets. Let λ : [0, +∞[→ ]0, +∞[ be absolutely continuous on each interval

  .2.96) All the conditions of Theorem 2.2.19 are satised. Hence each trajectory of (2.2.96) is minimizing, and weakly converges to an optimal solution when arg min H (φ + ψ) = ∅.

	As an interesting feature, time discretization of systems (2.2.95) and (2.2.96) suggest new
	forward-backward algorithms. For example, time discretization of (2.2.96) with step size h k
	gives

  3.1.6) Nous avons vu dans le chapitre précédent qu'il existe une solution unique globale forte du problème de Cauchy (3.1.1)-(3.1.3), et que lorsque λ(•) ne tend pas trop vite vers zéro, toute trajectoire x(•) converge faiblement vers une solution du problème de minimisation (3.1.1).

	A noter qu'il est important, pour des motifs numériques, d'étudier la stabilité des trajectoires
	du problème de Cauchy (3.1.1)-(3.1.3) sous l'eet de perturbations portant sur les données.
	Nous porterons une attention particulière aux perturbations portant sur les données initiales, et
	aux perturbations portant sur le terme de régularisation λ(•). Ce dernier joue un rôle essentiel
	dans l'analyse de la convergence des trajectoires vers des équilibres. A noter que d'autres types
	de perturbations seraient aussi intéressants à considérer, comme les perturbations portant sur
	les potentiels ϕ et ψ, un sujet d'étude pour le futur.
	Nous établissons tout d'abord des estimations du type énergie pour les trajectoires.
	Dans le théorème suivant 3.1.2, nous établissons la dépendance lipschitzienne des trajectoires
	par rapport au terme de régularisation λ(•).

Théorème 3.1.2 Supposons que λ, η : [0, T ] -→ [c 0 , +∞[ sont deux fonctions absolument continues, avec T > 0, et il existe une constante positive c 0 tel que 0 < c 0 ≤ λ(t), pour tout t ∈ [0, T ]. Soit (x, υ) , (y, w) : [0, T ] -→ H × H les solutions respectives des inclusions diérentielles :

  Noticing that x and v are continuous on [0, T ], hence bounded, and that λ is bounded from below on [0, T ] by a positive number, one easily gets from (3.2.13) that ẋ ∈ L 2 (0, T ; H).For our stability analysis, we now establish a precise estimate of the L 2 norm of ẋ.

				2.1b) by ẋ(t) we obtain
	λ(t) ẋ(t) 2 + ẋ(t), v(t) + v(t), ẋ(t) + ∇ψ(x(t)), ẋ(t) = 0.
	By (3.2.12) we infer		
	λ(t) ẋ(t) 2 + v(t), ẋ(t) + ∇ψ(x(t)), ẋ(t) ≤ 0.	(3.2.13)
				(3.2.14)
				By the
	classical derivation chain rule		
	d dt	ψ(x(t)) = ∇ψ(x(t)), ẋ(t) .
				(3.2.16)
	Combining (3.2.13) with (3.2.15) and (3.2.16) we obtain
	λ(t) ẋ(t) 2 +	d dt	(ϕ(x(t)) + ψ(x(t))) ≤ 0.

(3.2.15) 

We appeal to a similar formula which is still valid for a convex lower semicontinuous proper

function ϕ : H → R ∪ {+∞}. Notice that i) v(t) ∈ ∂ϕ(x(t)) for almost every t ∈ [0, T ] ; ii) v is continuous on [0, T ],

and hence belongs to L 2 (0, T ; H) ; iii) ẋ ∈ L 2 (0, T ; H) by

(3.2.14)

. By i), ii), iii), conditions of

[11, Lemma 3.3] 

are satised, which allows to deduce that t → ϕ (x (t)) is absolutely continuous on [0, T ], and for almost t ∈ [0, T ], d dt ϕ(x(t)) = v(t), ẋ(t) .

  (3.2.12), and λ is minorized by the positive constant c 0 on [0, T ],we infer c 0 ẋ(t) 2 + v(t) + ∇ψ(x(t)), ẋ(t) ≤ 0. + ∇ψ(x 0 ) + L ψ x(t) -x 0 ).

	Hence		
	ẋ(t) ≤	1 c 0	v(t) + ∇ψ(x(t))
	≤ ( v(t) By (3.2.33) and (3.2.37) we deduce that 1 c 0
			1
			2
			(3.2.39)
	Proof. a) Let us return to the equation obtained by taking the inner product of both sides
	of (3.2.1b) by ẋ(t)		

λ(t) ẋ(t) 2 + ẋ(t), v(t) + v(t), ẋ(t) + ∇ψ(x(t)), ẋ(t) = 0.

By

  .2.47) Combining (3.2.45), (3.2.46), (3.2.47) and θ ≤ γ (x -y) + (υ -w) , we obtain

  It is worth noticing that, besides the Lipschitz continuous dependence with respect to λ of the solution (x, υ) of (3.2.1a)(3.2.1c), Theorem (3.2.5) also provides its continuous dependence with respect to the initial data (x 0 , υ 0 ). More precisely, if (x n , υ n ) (resp. (x, υ) ) is the solution of (3.2.1a)(3.2.1c) corresponding to the Cauchy data (x 0n , υ 0n )(resp. (x 0 , υ 0 )), as a direct consequence of (3.2.42) we obtain for all T > 0 (∂ϕ (x 0n , υ 0n

	3.1].
	Remark 3.2.7

  Using Theorem 3.2.5, (3.2.43) and (3.2.49) we deduce the existence of a constant C (which is independant of n) such that for any n, m we have

		2.48a-3.2.48c).
	Consider, in C ([0, T ] , H × H), the norm	
	(z, w) c 0 = max t∈[0,T ]	c 2 0 z (t) 2 + w (t) 2 .

It is equivalent to the sup norm in C ([0, T ] , H × H) .

  .2.52) Integrating the left hand term on [0, s[ and taking the initial condition into account, we obtain for s ∈ [0, T ] [22, Corollary 8.2]

	[0,s[

  prox µΦ : H -→ H est l'opérateur proximal associé à µΦ, qui est la résolvante de l'opérateur ∂Φ Dans le théorème suivant, nous montrons un résultat d'existence et d'unicité : Théorème 4.1.2 Soit λ une constante positive. Supposons que ∂Φ est le sous diérentiel d'une fonction convexe, semi-continue inférieurement, et propre Φ : H -→ R ∪ {+∞}, et B est un opérateur monotone cocoercif sur H. Soit (x 0 , υ 0 ) ∈ H × H et υ 0 ∈ ∂Φ (x 0 ). Alors, il existe une solution unique globale forte

	J ∂Φ µ x = prox µΦ x = argmin Φ (z) +	1 2µ	x -z 2 : z ∈ H

(x (•) , υ (•)) : [0, +∞[ -→ H × H du problème de Cauchy (4.1.1)-(4.1.3).

Puis, nous étudions les propriétés de convergence des trajectoires lorsque t tend vers +∞.

A cet eet, nous nous appuyons sur une analyse asymptotique de type Lyapunov, et sur le lemme d'Opial. Nous utilisons les fonctions de Lyapunov suivantes : pour tout

  est une fonction convexe, semi-continue inférieurement, et propre. H B : B : H -→ H est un opérateur monotone cocoercif. H µ,β : les paramètres h, µ vérient 0 < h < δ := 1 2 + inf 1, β µ , et 0 < µ < 2β. H S : l'ensemble des solutions S = {z ∈ H; ∂Φ (z) + B (z) 0} n'est pas vide. Sous l'Hypothèse H, nous démontrons le résultat de convergence suivant : Théorème 4.1.4 Supposons les hypothèses H vériées. Soit (x k , y k ) une suite générée par (BF). Alors les propriétés suivantes sont satisfaites : (a) (y k ) converge faiblement vers un élément ȳ, avec prox µΦ

  • H = R n .• Φ est la fonction indicatrice d'un ensemble convexe fermé C. Dans ce cas, l'opérateur proximal associé à Φ n'est rien d'autre que la projection sur l'ensemble C. Dans notre exemple, on a pris C égal à un hyperplan, i.e.,C = {x ∈ R n ; x, a = b}, où a ∈ R n \ {0} et b ∈ R. • B désigne le gradient d'une fonction convexe diérentiable Ψ, où Ψ (x) = 1 2 Lx -d 2 , avec L ∈ R m×n \ {0}, d ∈ R m .Nous mettons en ÷uvre nos algorithmes à l'aide du logiciel Scilab, avec L généré de manière aléatoire dans R m × R n n = m = 20, d = I m , et à partir de points de départ générés aléatoirement dans [-2, 2] 20 . On considère l'hyperplane

	1 2 + inf 1, β µ	.
	La section 4.3 est consacrée à une illustration numérique visant à comparer, dans un cas
	modèle, les comportements asymptotiques des algorithmes forward-backward associés aux dy-
	namiques considérées précédemment, à savoir la dynamique Newton régularisé, le semi-groupe
	de contractions généré par -(∂ϕ+B), et le système dynamique proximal-gradient. On travaille
	dans le cadre simple suivant :	

  .2.2)-(4.2.3) are precisely the zeroes of the operator A = ∂Φ + B. The Cauchy problem for (4.2.2)-(4.2.3) is well-posed. Indeed, by introducing the new unknown function y(•) = x(•) + µv(•), and setting µ = 1where prox µΦ is the proximal mapping of µΦ. Since prox µΦ and B are Lipschitz continuous operators, the above dierential equation (with respect to y) is relevant to Cauchy-Lipschitz theorem. Under the sole assumption that the solution set S of (4.2.1) is not empty, in Theorem 4.2.8 we will show that, for any orbit of system (4.2.2)-(4.2.3), x(•) converges weakly to an element of S. Strong convergence is obtained under the assumption Φ inf-compact, or strongly convex.

	λ	, (4.2.2)-(4.2.3) can be equivalent written as
		x(t) = prox µΦ (y(t)),
		ẏ(t) + y(t) -prox µΦ (y(t)) + µB prox µΦ (y(t)) = 0,

  By applying the Minty transformation to ∂Φ, system (4.2.2)-(4.2.3) can be reformulated in a form which is relevant to the Cauchy-Lipschitz theorem, see[1],[12],[13]. First set µ = 1

	The paper is organized as follows : In Section 4.2.2, we study the convergence properties of
	the orbits of the continuous dynamical system (4.2.2)-(4.2.3). In Section 4.2.3, we show the
	convergence properties of the backward-forward (BF) algorithm which is obtained by time
	discretization of (4.2.2)-(4.2.3). In Section 4.2.4, we examine the convergence properties of the
	orbits of the semigroup generated by -(∂Φ + B), and make the link with the classical (FB)
	algorithm. In Section 4.2.5, we introduce the proximal-gradient dynamical system, study its
	convergence properties, and make the link with the relaxed (FB) algorithm. We complete this
	study by some perspectives in the realm of numerical optimization, and multi-criteria decision
	processes.	
	4.2.2 The continuous regularized Newton-like dynamic	
	Denition, global existence	
	λ	and
	rewrite (4.2.3) as	
	ẋ (t) + µ υ (t) + µυ (t) + µB (x (t)) = 0.	

  only of the proximal mapping associated to µΦ, and B, which are both Lipschitz continuous operators. Indeed, for any µ > 0, the operator prox µΦ is rmly nonexpansive, see[19, Proposition 12.27]. When Φ is equal to the indicator function of a closed convex set C ⊂ H, prox µΦ is independent of µ, and is equal to proj C , the projection operator on C (whence the proximal terminology, introduced by Moreau). Let λ > 0 be a positive constant. Suppose that ∂Φ is the subdierential of a convex lower semicontinuous proper function Φ : H → R ∪ {+∞}, and that B : H → H is a cocoercive operator on H. Let (x 0 , υ 0 ) ∈ H × H be such that υ 0 ∈ ∂Φ (x 0 ).

	problem	
	υ (t) ∈ ∂Φ (x (t)) ;	(4.2.8)
	λ ẋ (t) + υ (t) + υ (t) + B (x (t)) = 0;	(4.2.9)
	We obtain the equivalent dynamic	
	x (t) = prox µΦ (y (t)) ẏ (t) + y (t) -prox µΦ (y (t)) + µB prox µΦ (y (t)) = 0,	(4.2.7)
	which makes use By Lemma 4.2.4 below, B is a maximal monotone Lipschitz continuous operator. Thus, by
	specializing Theorem 3.1. of [1] to our situation, we obtain that the Cauchy problem for
	(4.2.2)-(4.2.3) is well-posed. More precisely,	
	Theorem 4.2.1 Then, there exists a unique strong global solution (x (•) , υ (•)) : [0, +∞[ → H×H of the Cauchy

  For sake of simplicity, we have taken the regularization parameters λ and µ constant. Indeed, the conclusion of Theorem 4.2.1 still holds true, just assuming that λ : [0, +∞[→]0, +∞[ is absolutely continuous on each bounded interval [0, b], 0 < b < +∞ (indeed, it is enough assuming that λ is locally of bounded variation). Taking λ varying

	Denition 4.2.2 We say that the pair (x (•) , υ (•)) is a strong global solution of (4.2.8)-(4.2.9)-(4.2.10) i the following properties are satised : (i) x (•) , υ (•) : [0, +∞[→ H are absolutely continuous on each interval [0, b], 0 < b < +∞; (ii) υ(t) ∈ ∂Φ (x (t)) for all t ∈ [0, +∞[ ; (iii) λ ẋ (t) + υ (t) + υ (t) + B (x (t)) = 0 for almost all t ∈ [0, +∞[ ; (iv) x (0) = x 0 , υ (0) = υ 0 .
	Equivalent systems (4.2.2)-(4.2.3) and (4.2.7) provide a dynamic whose time discretization
	yields a new class of forward-backward algorithms.
	Remark 4.2.3

  Lemma 4.2.4 Let B : H → H be a β-cocoercive operator. Then, B is 1 β -Lipschitz continuous.Proof. Let x, y ∈ H. Since B is β-cocoercive, by Cauchy-Schwarz inequality we haveβ Bx -By 2 ≤ Bx -By, x -y ≤ Bx -By x -y . Bz 2 dt < +∞. Bz 2 + 2 υ (t) , υ (t) + Bz dt ≤ M. dt + υ (T ) 2 + 2 υ (T ) , Bz ≤ υ 0 2 + 2 υ 0 , Bz + M. Since B is β-cocoercive, we have B (x (t)) -Bz, x (t) -z ≥ β B (x (t)) -Bz 2 . Hence, d dt Γ z (t) + µ [Φ (x (t)) -Φ (z)] + µβ B (x (t)) -Bz 2 + µ Bz, x (t) -z ≤ 0. Bz, x(t) -z . By (4.2.34), and F 2 nonnegative, we have F 2 ∈ L 1 ([0, +∞[). Moreover by using the derivation chain rule in the nonsmooth convex case, see Lemma 4.2.9, and υ(t) ∈ ∂Φ (x(t)), ∈ L 2 ([0, +∞[) . Moreover, by Proposition 4.2.12, item 5, v ∈ L ∞ ([0, +∞[). Hence, by (4.2.36), we obtain d dt F 2 ∈ L 2 ([0, +∞[). By Lemma 4.2.11, we deduce that lim t→+∞ F 2 (t) = 0, which is our claim.

	By integration of (4.2.22), and using that G z is bounded from below, we obtain	
	+∞					
		ẋ (t) 2 dt < +∞		(4.2.23)
	0					
	+∞					
	As a consequence	υ (t) + υ (t) + (4.2.24)
	0 Let us now establish estimations on υ. Let us start from (4.2.24), and develop it. Equivalently, d dt Γ z (t) + µ [Φ (x (t)) -Φ (z) + Bz, x (t) -z ] ≤ 0. (4.2.33)
	there exists some positive constant M such that for any 0 < T < ∞ Since -Bz ∈ ∂Φ(z) we have Φ (x (t)) -Φ (z) + Bz, x (t) -z ≥ 0. By integration of (4.2.33),
	T and Γ z minorized, we obtain 0 +∞ 0 υ (t) 2 + υ (t) + From Φ (x (t)) -Φ (z) + Bz, x (t) -z dt < +∞.	(4.2.34)
	2 υ (t) , υ (t) + Bz = 2 υ (t) , υ (t) + 2 υ (t) , Bz = Let us apply Lemma 4.2.11 with F 2 (t) = Φ (x (t)) -Φ (z) + we have d d dt υ (t) 2 + 2 υ (t) , Bz dt Φ (x (t)) = we deduce that υ (t) , ẋ (t) . Hence
	T which by Cauchy-Schwarz inequality yields 0 d dt F 2 (t) = ẋ(t), υ (t) + Bz , υ (t) 2 This being valid for any 0 < T < ∞, we immediately obtain +∞ υ (t) 2 dt < +∞ | d dt F 2 (t)| ≤ ẋ(t) ( υ (t) + Bz ) .	(4.2.35) (4.2.36)
	By Proposition 4.2.12, item 3,	0				
	and					
			v ∈ L ∞ ([0, +∞[) ,	
	which completes the proof of Proposition 4.2.12.			
	C. Proof of convergence 1. By Proposition 4.2.12 item 3 and 5, we have ẋ ∈ L 2 ([0, +∞[)
	and υ ∈ L 2 ([0, +∞[). Hence					
	λ ẋ (•) + υ (•) ∈ L 2 ([0, +∞[) .	(4.2.25)
	By combining (4.2.9), λ ẋ (t) + υ (t) + υ (t) + B (x (t)) = 0, with (4.2.25) we obtain	
		υ + B(x) ∈ L 2 ([0, +∞[) .	(4.2.26)
	Hence Let us apply Lemma 4.2.11 with F (t) = 1 Bx -By ≤ 2 υ(t) + B(x(t)) 2 . By (4.2.26) we have F ∈ 1 β x -y , L 1 ([0, +∞[).
	which expresses that B is 1 β Let us show that d dt F ∈ L 1 ([0, +∞[). Indeed, it follows easily from the Lipschitz property of -Lipschitz continuous.
	Let us list some important classes of cocoercive operators. B that B(x) is absolutely continuous on any bounded set, and that for almost all t > 0
	cocoercive.	d dt	B(x(t)) ≤	1 β	ẋ(t) .	2 (4.2.27) -

B = I -T where T : H → H is a contraction. One can easily verify that B is 1

ẋ

  proper, lower-semicontinuous and convex. H B : The operator B : H → H is β-cocoercive. S : The solution set S = {z ∈ H; ∂Φ(z) + Bz 0} is nonempty. Let us state our main convergence result. Theorem 4.2.20 Let Hypothesis H hold. Let (x k , y k ) be a sequence generated by (BF). Then the following properties hold : a) (y k ) converges weakly to an element ȳ, with prox µΦ ȳ ∈ S ; b) (x

	H h,µ : Parameters h and µ satisfy 0 < h < δ := 1 2 + inf 1, β µ	, and 0 < µ < 2β.

H k ) converges weakly to x = prox µΦ ȳ, with x ∈ S ; c) B(x k ) converges strongly to B x ; d) the velocity is square summable, i.e., k x k

  see[19, Remark 4.24].Suppose that B : H → H is β-cocoercive, and 0 < µ < 2β. Then, the operator (I -µB) Mann iteration for the mapping T = (I -µB) • (prox µΦ ). More precisely Lemma 4.2.21 [19, Proposition 4.32] Let T i : H → H be a α i -averaged operator, i = 1, 2. By (4.2.43), y k+1 -y k → 0 strongly in H. By (4.2.56), B(x k ) → B z strongly in H. From (4.2.57) we deduce that y k -x k → -µB z strongly in H. Note again that B z is uniquely dened when z ∈ S. Since we have already obtained that the sequence (y k ) converges weakly, we deduce that the sequence (x k ) converges weakly, let x k

	For any µ > 0, the operator prox µΦ is 1 2 is µ 2β -averaged ([19, Proposition 4.33]). This result makes precise Lemma 4.2.6. -averaged ([19, Corollary 23.8]). A major interest of the notion of α-averaged operator is that the composition of two such operators is still an averaged operator. This will be particularly useful when considering Krasnosel'skii-x weakly. From (4.2.57) and (4.2.58) we have -1 hµ (y k+1 -y

Then T := T 1 • T 2 is α-averaged with constant α = 1 δ , and δ = 1 k ) ∈ (∂Φ + B)(x k ).

  Bz 2 dt < +∞.Since B is Lipschitz continuous, and ẋ(•) belongs to L 2 (0, +∞), we have d dt B(x) ∈ L 2 (0, +∞). Hence, by (4.2.98), B(x) -Bz and its derivative belong to L 2 (0, +∞). By Lemma 4.2.11 we Bz is uniquely dened for z ∈ S. On the other hand, by (4.2.87) and (4.2.97), ẋ and its derivative belong to L 2 (0, +∞). By Lemma 4.2.11 we infer

	∞		
	B(x(t)) -(4.2.98)
	0		
	infer		
	lim t→+∞	B(x(t)) = Bz	(4.2.99)
	where lim t→+∞	ẋ(t) = 0.
				.2.82)
	It can be introduced in a natural way, by rewriting the optimality condition
	∇Ψ(x) + N C (x) 0	(4.2.83)
	as a xed point problem		
	x -proj C (x -µ∇Ψ(x)) = 0,	(4.2.84)
	where µ is a positive parameter (arbitrarily chosen). Note that the stationary points of (4.2.82)
	are precisely the solutions of (4.2.84). This dynamic is governed by a Lipschitz continuous

vector eld, and the orbits are classical solutions, i.e., continuously dierentiable. Its properties are summarized in the following proposition, see

[22]

.

  ButThe discretization of (4.3.6) with respect to the time variable t, in an implicit way with respect to the nonsmooth ∂Φ, and explicit with respect to the smooth term B, and with constant step size h > 0 , gives x k+1 = (I + µ∂Φ) -1 (x k -µB (x k )) .

	.2.104)
	Since Ψ(x(t))-Ψ(z)-∇Ψ(z), x(t) -z is nonnegative, by a similar argument as before we see

that B(x(•)) converges strongly to Bz, where Bz is uniquely dened for z ∈ S, lim t→∞ ẋ(t) = 0, and ẋ ∈ L 2 (0, +∞). Moreover, any weak sequential cluster point of x belongs to S.

+ 1 2 inf 1 α 1 , 1 α 2 .

Remerciements

 Remark 3.2.8Another approach is to study the equivalent problem (3.2.7)-(3.2.8), based on the known stability results for the Cauchy-Lipschitz problem. Although conceptually simple, this approach seems more technical.

Bounded Variation Regularization Coecient λ (•)

Let us suppose that λ (•) : [0, T ] -→ ]0, ∞[ is of bounded variation on [0, T ], where T > 0.

That is TV (λ, [0, T ]) < +∞, where TV (λ, [0, T ]) is the total variation of λ on [0, T ] :

the supremum being taken over all p ∈ N and all strictly increasing sequences τ 0 < τ 1 < ••• < τ p of points of [0, T ]. Function λ may involve jumps. We also suppose that λ is bounded away from 0 : inf λ ([0, T ]) > 0.

The following lemmas which are proved in [6, Lemma 3.1, Lemma 3.2] gather some classical facts concerning the approximation of functions of bounded variation by smooth functions together with some technical results useful for sequel.

Lemma 3.2.9 Let λ : [0, T ] -→ ]0, ∞[ be of bounded variation on [0, T ]. Then there exists a sequence

In particular, λ n ≥ 0 if λ ≥ 0 ; ii) λ n -→ λ in L p (0, T ) for any 1 ≤ p < ∞ ; iii) TV(λ n , [0, T ]) = T 0 | λn (t) |dt ≤ TV(λ,[0,T]).

Lemma 3.2.10 Let z n , z ∈ C ([0, T ] , H) be such that z n -→ z uniformly and (z n ) n is L-Lipschitz continuous for some positive constant L independent of n ∈ N. Let λ n -→ λ in L 2 (0, T ) . Then λ n żn converges weakly to λ ż in L 2 (0, T ; H) .

We can now state the main result of this section.

Theorem 3.2.11 Let λ : [0, T ] -→ ]0, ∞[ be of bounded variation on [0, T ], and suppose c 0 = inf λ ([0, T ]) > 0. Let x 0 ∈ dom∂ϕ and υ 0 ∈ ∂ϕ(x 0 ), υ 0 = 0. Then there is existence and uniqueness of a strong solution (x, υ) : [0, T ] -→ H × H of the Cauchy problem

λ (t) ẋ (t) + υ (t) + υ (t) + ∇ψ (x (t)) = 0, a.e. 0 ≤ t ≤ T, (3.2.48b) x (0) = x 0 , υ (0) = υ 0 .

(3.2.48c) subdierential of a convex lower semicontinuous function Φ, and B is a monotone cocoercive operator. We rst consider the extension to this setting of the regularized Newton dynamic with two potentials which was considered in Abbas, Attouch, Svaiter JOTA, 2014. Then, we revisit some related dynamical systems, namely the semigroup of contractions generated by A, and the continuous gradient projection dynamic. By a Lyapunov analysis, we show the convergence properties of the orbits of these systems, thereby extending the known results.

The time discretization of these dynamics gives various forward-backward splitting methods (some new) for solving structured monotone inclusions involving non-potential terms. The convergence of these algorithms is obtained under classical step size limitation. Perspectives are given in the eld of numerical splitting methods for optimization, and multi-criteria decision processes.

Introduction

Throughout this paper, H is a real Hilbert space with scalar product ., . and norm • . We are going to study some continuous and discrete dynamics which aim at solving structured monotone inclusions of the following type

where ∂Φ is the subdierential of a convex lower semicontinuous function Φ : H → R ∪ {+∞}, and B is a monotone cocoercive operator. Recall that a monotone operator B : H → H is cocoercive if there exists a constant β > 0 such that for all x, y ∈ H Bx -By, x -y ≥ β Bx -By 2 .

The abstract formulation (4.2.1) covers a wide variety of problems in decision sciences and engineering, see for example [4], [9], [19], [34], and the discussion at the end of the paper. It is directly connected to two important areas, namely convex optimization (take B = 0), and the theory of xed point for nonexpansive mappings (take Φ = 0, and B = I -T with T a nonexpansive mapping). It comes naturally into play when we consider both aspects within a decision process.

By a classical result, the two operators ∂Φ and B are maximal monotone, as well as their sum A = ∂Φ + B. We will exploit the structure of the maximal monotone operator A, rst to develop continuous dynamics, and then, by time discretization, splitting forward-backward algorithms that aim to solve (4.2.1). As a common characteristic of these dynamics, they are rst-order evolution equations, whose stationary points are precisely the zeroes of the operator A = ∂Φ + B. Among these dynamics and algorithms some are new, and for others it is an opportunity to revisit, and extend some convergence results with a unifying perspective.

1. Our rst concern is the Newton-like dynamic approach to solving monotone inclusions which was introduced in [13]. To adapt it to structured monotone inclusions and splitting methods, this study was developed in [1], where the operator is the sum of the subdierential of a convex lower semicontinuous function, and the gradient of a convex dierentiable function. We wish to extend this study to a non potential case, and so enlarge its range of applications. Specically, our analysis focuses on the convergence properties (as t → +∞) of the orbits of the system (4.2.2)-(4.2.3)

λ ẋ (t) + υ (t) + υ (t) + B (x (t)) = 0. B = M λ where M λ (with parameter λ > 0) is the Yosida approximation of a general maximal monotone operator M : H → 2 H , (see [23]). One can easily verify that M λ is λ-cocoercive. B -1 ξ -∂Φ * (-ξ) 0

has a unique solution (with ξ = Bz, and z solution of the primal problem). Returning to the primal problem (4.2.1), this gives the following result (we give below another direct proof which does not use a duality argument).

Lemma 4.2.7 Let B be a maximal monotone operator which is cocoercive, and let ∂Φ be the subdierential of a convex lower semicontinuous proper function Φ : H → R ∪ {+∞}. Set S = {z ∈ H; ∂Φ(z) + Bz 0} be the solution set of (4.2.1). Then Bz is a constant vector, as z varies over S.

Proof. Let z 1 and z 2 be two elements of S. Hence -Bz 1 ∈ ∂Φ(z 1 ) and -Bz 2 ∈ ∂Φ(z 2 ). By the monotonicity property of ∂Φ

Combining this inequality with the cocoercive property of B,

Convergence of the regularized Newton-like dynamic

We will study the convergence properties of the orbits of system (4. x (0) = x 0 , υ (0) = υ 0 .

(4.2.13)

We will use the following functions : for any z ∈ S, for any t ≥ 0

Note that Γ z (t) is a Bregman distance between x(t) and z. It is associated with the convex function x → 1 2 x 2 + µΦ(x). In our nonsmooth setting, it combines the metric of H with the metric associated to the Hessian of Φ. Our proof of the convergence is based on Lyapunov analysis, and the fact that t → Γ z (t) is a decreasing function. Let us state our main convergence result. Theorem 4.2.8 Suppose S = ∅. Then for all x(•) orbit of the system (4.2.8)-(4.2.9), the following convergence properties are satised, when t tends to innity : 1. lim t-→+∞ υ (t) + B (x (t)) = 0 ; 2. B(x(•)) converges strongly to Bz, where Bz is uniquely dened for z ∈ S. 3. υ (•) converges strongly to -Bz, where Bz is uniquely dened for z ∈ S.

x(•) converges weakly to an element of S.

The proof of Theorem 4.2.8 has been extended to the end of this section. We collect rst some preliminary technical lemma, then we conduct a Lyapunov-type analysis, and nally prove Theorem 4.2.8 and some convergence results which are connected.

A. Preliminary results

We will frequently use the following derivation chain rule for a convex lower semicontinuous function Φ :

Lemma 4.2.9 Suppose that the assumptions i), ii), iii) are satised :

In order to prove the weak convergence of the trajectories of system (4.2.8)-(4.2.9), we will use the Opial's lemma [START_REF]Weak convergence of the sequence of successive approximations for nonexpansive mappings[END_REF] that we recall in its continuous form ; see also [24], who initiated the use for every z ∈ S, lim t→+∞ x(t) -z exists;

(ii) every weak sequential cluster point of the map x belongs to S. Then

We will also need the following lemma from [1]. Lemma 4.2.11 Suppose Then lim t→∞ F (t) = 0.

B. Lyapunov analysis

As a main ingredient of our convergence proof, we are going to show that Γ z is a strict Lyapunov function. More precisely, Proposition 4.2.12 Suppose that S = ∅. Then, for any z ∈ S, Γ z is a decreasing nonnegative function, and hence lim t→+∞ Γ z (t) exists. Moreover

7. lim t→+∞ (Φ (x (t)) + x (t) , Bz ) exists.

In order to prove Proposition 4.2.12, let us rst establish some technical results.

Lemma 4.2.13 For any t ≥ 0 and z ∈ S g z (t) ≥ 0

and for almost all t ≥ 0

Proof. The rst inequality g z (t) ≥ 0, follows from the subdierential inequality for Φ at x (t), and υ (t) ∈ ∂Φ (x (t)). By the derivation chain rule in the nonsmooth convex case, see Lemma 4.2.9, and υ(t) ∈ ∂Φ (x(t)), we have

The following result from [13] will also be useful.

Lemma 4.2.14 For almost every t > 0 the following property holds :

Proof. For almost every t > 0, ẋ(t) and v(t) are well dened, thus

By equation (4.2.9), we have v(t) ∈ ∂Φ(x(t). Since ∂Φ : H → 2 H is monotone

Dividing by h 2 , and passing to the limit preserves the inequality, which yields (4.2.16).

We can now proceed with the proof of Proposition 4.2.12.

Proof. By denition of Γ z , and Lemma 4.2.13 

From ξ + Bz = 0, we deduce that

By the cocoercive property of B we infer

From (4.2.20), we readily obtain that Γ z is a decreasing function. Being nonnegative, it converges to a nite value. By integration of the above inequality, and using that Γ z is non-

that's item 1. Since g z is nonnegative, and Γ z is bounded from above, we deduce from the denition of Γ z that x (t) -z 2 is bounded, which implies that the orbit x is bounded, that's item 2.

To prove item 3., we return to (4.2.20), and combine it with (4.2.9), λ ẋ 

(ii) Let us recall the denition of 

and Φ(x(t)) -Φ(z) + Bz, x(t) -z -→ 0 as t → +∞, where Bz is the element which is uniquely dened for z ∈ S. In particular (take z = x ∞ ), Φ(x(t)) → Φ(x ∞ ) as t → +∞, where x ∞ ∈ S is the weak limit of the trajectory t → x(t).

Proof. Let us return to (4.2.18)

By υ(t) ∈ ∂Φ (x (t)), we have the subdierential inequality

Combining the two above relations yields

for some positive constant γ. By Proposition 4.2.16

Φ(x(t)) -Φ(z) + B z, x(t) -z -→ 0 as t → +∞.

Hence lim x(t) -z = 0, which gives the claim.

Corollary 4.2.18 Suppose that S = ∅. Let us suppose that Φ is boundedly inf-compact, i.e., the intersections of the sublevel sets of Φ with the closed balls of H are relatively compact sets. Then, any orbit x(•) of system (4.2.8)-(4.2.9) converges strongly as t → +∞, and its limit belongs to S.

Proof. We know that the orbit x(•) of system (4.2.8)-(4.2.9) converges weakly to some z ∈ S. 

The algorithm can be equivalently written as (x k , y k ) → (x k , y k+1 ) → (x k+1 , y k+1 ), (BF)

.2.39)

When h = 1 we recover the classical forward-backward algorithm

Convergence of the algorithm (BF)

Proof. We will rst study the convergence of the sequence (y k ), and then of the sequence

Convergence of the sequence (y k ). It will be obtained as a direct consequence of the convergence of the Krasnosel'skii-Mann iteration for nonexpansive mappings. Let T : H → H be the operator which is dened by : for any ξ ∈ H, The algorithm (BF) can be equivalently written as 

The extremality condition characterizing prox µΦ (ȳ) gives

Comparing the two above equations, we nally obtain ∂Φ(z) + B(z) 0.

ii) Take now h possibly greater or equal than 1, but h < δ. Let's analyze in more detail the algorithm

We rely on the notion of α-averaged operator that has been discussed in the previous subsection. Let us examine the operator T = (I -µB) • (prox µΦ ). A Lyapunov-type sequence Take z an arbitrary element in S. Since x k = prox µΦ (y k ), we have

As a Lyapunov sequence take

The following equality is a direct consequence of the Hilbert structure of H. 

Let us write (BF) algorithm as

Replacing y k+1 -y k by this expression in the above inequality gives

(4.2.52) By (4.2.44), we have 1

. By denition of S, and z ∈ S, we have -B z ∈ ∂Φ(z). Hence, by monotonicity of ∂Φ 

This proves item c) and d) of Theorem 4.2.20.

Convergence of the sequence (x k ). Let us write (BF) in the following form

a direct adaptation of the results of [23,Theorem 3.6], one can verify that there is a regularizing eect on the initial condition : for x 0 ∈ domΦ, there exists a unique strong solution of (4.2.59) with Cauchy data x(0) = x 0 , and which satises x(t) ∈ dom∂Φ for all t > 0.

Let us suppose that S = ∅, where S still denotes the set of zeroes of A = ∂Φ + B. Following Baillon-Brézis [16], each orbit of (4.2.59) converges weakly, in an ergodic way, to an equilibrium, which is an element of S. Note that the convergence theory of Bruck does apply separately to ∂Φ and B, which are demipositive, see [24]. But it is not known if the sum of the two operators ∂Φ + B is still demipositive. Indeed, it is not clear whether this notion is stable by sum. Thus, we are naturally led to perform a direct study of the convergence properties of the orbits of (4.2.59). Surprisingly, we have not found references to a previous systematic study of this question. Indeed, we are going to show that (4.2.59) has convergence properties which are similar to the regularized Newton-like dynamic. Then, we shall compare and show the dierences between the two systems.

Theorem 4.2.24 Suppose that S = ∅. Then, for any orbit x(•) of (4.2.59), the following properties hold : 1. +∞ 0 ẋ (t) 2 dt < +∞, i.e., x(•) has a nite energy. 2. x(•) converges weakly to an element of S.

B(x(•)

) converges strongly to Bz, where Bz is uniquely dened for z ∈ S.

Proof. Let x (•) : [0, +∞[→ H be an orbit of (4.2.59). Equivalently, we set

Let us show that h z is a Lyapunov function. By the classical derivation chain rule, and (4.2.61), for almost all t ≥ 0

Let us rewrite this last equality as 

Then, the following asymptotic properties are satised : 1. Suppose that 0 < µ < 4β, then i) x(t) converges weakly to some x ∞ ∈ S, as t → +∞.

ii) B(x(t)) converges strongly to Bz as t → +∞, where Bz is uniquely dened for z ∈ S.

iii) lim t→+∞ ẋ(t) = 0, and ∞ 0 ẋ(t) 2 dt < +∞.

2.. Suppose that B = ∇Ψ, where Ψ is a convex dierentiable function. Then, for arbitrary µ > 0, the above properties i), ii), iii) are satised.

Proof. We rely on a Lyapunov analysis. Take z ∈ S. Equivalently -Bz ∈ ∂Φ(z). 

, which is possible i µ < 4β, that's precisely our condition on parameters µ and β. When this condition is satised, taking (for example 

Following the arguments in [22], we will show that this implies that x has a unique weak sequential cluster point, which clearly implies the weak convergence of the whole sequence. Let z 1 and z 2 two weak sequential cluster points of x, i.e., z 1 = w-lim x(t n ), and z 2 = w-lim x(t n ), for some sequences t n → +∞ and t n → +∞. We already obtained that z 1 and z 2 belong to S. Hence E(t, z 1 ) and E(t, z 2 ) converge as t → +∞, as well as E(t, z 1 ) -E(t, z 2 ). We deduce that the following limit exists

Thus the limits obtained by successively replacing t by t n and t n are equal, which gives

which, by monotonicity of ∇Ψ, gives z 1 = z 2 .

Remark 4.2.29 Under the more restrictive assumption, 0 < µ < 2β, using the results of section 4.2.2, the operator that governs the dynamical system is of the form I -T , where T is a contraction. Accordingly, the operator I -T is demipositive, and the weak convergence of x is a direct consequence of Bruck Theorem [24]. It is an open question whether the convergence property is true for a general cocoercive operator B, without restriction on µ > 0.

Relaxed forward-backward algorithms

The explicit discretization of the regular dynamic (4.2.87) with respect to the time variable t, with constant step size h > 0, gives

This is the relaxed forward-backward algorithm, whose convergence properties are well known.

The weak convergence of (x k ) to an element of S is obtained under the stepsize limitation : 0 < µ < 2β, and 0 < h ≤ 1. One can consult [19,Theorem 25.8], for the proof, and some further extensions of this result.

Perspective

Our work can be considered from two perspectives : numerical splitting methods in optimization, and modeling in decision sciences and engineering.

1. In recent years, there has been a great interest in the forward-backward methods, especially in the signal/image processing, and sparse optimization. A better understanding of these methods is a key to obtain further developments, and improvement of the methods : fast converging algorithms, nonconvex setting, multiobjective optimization, ... are crucial points to consider in the future. To cite some of these topics, in [3] Similarly, the Nesterov method for obtaining convergence rate O( 1 k 2 ), is known for the classical forward-backward algorithm in the case of convex minimization (for the exact scheme, and convergence of the values), see [START_REF] Nesterov | A method for solving the convex programming problem with convergence rate O(1/k 2 )[END_REF], [20] (FISTA method). It would be very interesting to know if the method can be adapted to other forms of these algorithms.

It turns out that there is a rich family of forward-backward algorithms. In this article, we have considered three classes of these algorithms. The link with the dynamical systems is a valuable tool for studying these algorithms, and to discover new one. The comparison between the algorithms that are obtained by time discretization of the continuous dynamics is a delicate subject, which is the subject of current research.

2. Many equilibrium problems in decision or physical sciences may be written either as convex minimization problem or as a search for a xed point of a contraction. Often these two aspects are present simultaneously. For example, in game theory, agents may adopt strategies involving cooperative aspects (potential games) and noncooperative aspects. Nash equilibrium formulation can lead to a convex-concave saddle value problem, and non-potential monotone

operators. An abundant literature has been devoted to nding common solutions of these problems. In contrast, our approach aims at nding a compromise solution of these two dierent types of problems. A basic ingredient is the resolution of ∂Φ(x) + Bx 0. An interesting direction for future research would be to consider a multicriteria dynamical process associated to the two operators ∂Φ and B, in line of the recent article [8].

The selection of equilibria with desirable properties is an important issue in decision sciences.

With the introduction of regularization terms tending asymptotically to zero, not too quickly (eg Tikhonov type), the dynamic equilibrium approach provides an asymptotic hierarchical selection. There is an extensive literature on this topic, see [5], [6], [17], [21], [22], [25], [27], [28], [30], and references therein. It is an issue that is largely unexplored for the systems considered in this article.

[34] D. L. Zhu and P. Marcotte, Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities, J. Optim., 6 (1996) 

λ ẋ (t) + υ (t) + υ (t) + B (x (t)) = 0. The above system makes use only of B, and of the proximal mapping associated to µΦ, which are both Lipschitz continuous operators. Hence it is relevant of the Cauchy-Lipschitz theorem.

Its explicit discretization gives (with a constant step size h > 0) the following backward-

Under the assumption 0 < h < δ := 1 2 +inf 1, β µ , and 0 < µ < 2β , (BF) generates sequences that converge weakly to equilibria.

2. Then, we have considered a naturally related dynamical system, which is the semigroup of contractions generated by -A, A = ∂Φ + B, whose orbits are the solution trajectories of the dierential inclusion ẋ (t) + ∂Φ (x (t)) + B (x (t)) 0.

In that case, the above system specializes to the structured minimization problem (P ) with :

is the indicator function of a closed convex set C ⊂ R n , and prox µΦ is independent of µ, and is equal to P C , the projection operator on C.

, the spectral radius of the matrix L T L, which is also its largest eigenvalue. Let us now suppose that C is a hyperplane.

In general, hyperplanes play an important role in applications, particularly in signal restoration and tomography, whereas the projection onto hyperplanes can be calculated easily. In fact, if a hyperplane C is given by C = {x ∈ R n ; x, a = b} , Let us now particularize the algorithms which have been described above to this situation :

1. Let us consider the backward-forward algorithm (4.3.5) and apply it to the structured minimization problem (4.3.12)

The algorithm (4.3.15) -(4.3.16) generates sequences (x k ) converging to solutions of (P) if the parameters h and µ satisfy 0 < h < δ := 1 2 + inf 1, β µ , and 0 < µ < 2β.

2. Then, we consider the classical forward-backward algorithm (4.3.7 ), and apply it to the structured minimization problem (4.3.12)

.17)

This is the classical forwardbackward algorithm, whose convergence has been well established.

The weak convergence of x k to an equilibria is obtained under the stepsize limitation : 0 < µ < 2β.

3. Finally, we consider the forward-backward algorithm (4.3.9), and apply it to the structured minimization problem (4.3.12)

)

This is the relaxed forwardbackward algorithm, whose convergence properties are well known.

The weak convergence of x k to an element of the solution set S is obtained under the stepsize limitation : 0 < µ < 2β , and 0 < h < δ := 1 2 + inf 1, β µ .

In the following simple illustration, we aim at comparing the performances of the three algorithms (4. ( Dans le théorème suivant (5.1.3), sous la condition (5.1.12) et une hypothèse de croissance modérée de (•), nous montrons que chaque trajectoire (x, υ) de (5.1.4)-(5.1.5) converge faiblement vers un minimiseur de Φ, qui minimise ψ sur l'ensemble des minimiseurs de Φ. Puis, nous montrons que cet élément n'est rien d'autre que l'élément de norme minimal de l'ensemble des solutions arg min Φ x(t) proj argminΦ 0 lorsque t → +∞.

On retrouve ainsi le principe classique de sélection de Tikhonov : sous l'hypothèse de décroissance modérée de (•) vers zéro, nous obtenons que toutes les trajectoires convergent vers le même point, qui est l'équilibre de norme minimale. Ceci fait contraste avec les situations sans terme de contôle, ou qui sont avec un contrôle rapide, auquel cas les limites dépendent des données initiales et sont dicile à identier.

Théorème 5.1.3 Soit Φ : H -→ R + ∪ {+∞} une fonction convexe, semi-continue inférieurement, et propre, telle que C = arg min Φ = Φ -1 (0) = ∅. Supposons que, 

Article en anglais

An asymptotic viscosity selection result for the regularized Newton dynamic 1 abstract Let Φ : H -→ R∪ {+∞} be a closed convex proper function on a real Hilbert space H, and ∂Φ : H ⇒ H its subdierential. For any control function : R + -→ R + which tends to zero as t goes to +∞, and λ a positive parameter, we study the asymptotic behavior of the trajectories of the regularized Newton dynamical system

Assuming that ε (t) tends to zero moderately as t goes to +∞, we show that the term ε (•) x (•) asymptotically acts as a Tikhonov regularization, which forces the trajectories to converge to a particular equilibrium. Precisely, when C = argminΦ = ∅, and ε(•) is a slow control, i.e., +∞ 0 ε (t) dt = +∞, then each trajectory of the system converges weakly, as t goes to +∞, to the element of minimal norm of the closed convex set C. When Φ is a convex dierentiable function whose gradient is Lipschitz continuous, we show that the strong convergence property is satised. Then we examine the eect of other types of regularizing methods.

Introduction

Throughout this paper, H is a real Hilbert space with scalar product •, • , and x 2 = x, x for any x ∈ H. Given Φ : H -→ R∪ {+∞} a closed convex proper function, we will analyze some asymptotic viscosity selection properties for the regularized Newton dynamic governed by Φ. Let us rst recall some basic facts about this dynamical system. Given λ a positive constant, the Regularized Newton dynamic ((RN) for short) attached to solving the minimization problem

where the subdierential of Φ at x ∈ domΦ is classically dened by where λ acts as a Levenberg-Marquard regularization parameter of the continuous Newton equation, whence the terminology. This dynamical system has been rst introduced in [9], [8]. Its extension to the case of two potentials gives rise to a new class of forward-backward algorithms, see [1], [2], [7]. In [9], for a general closed convex and proper function Φ, it is shown that the Cauchy problem for the (x, υ) system (5.2.1)-(5.2.2) admits a unique strong global solution. In addition, under the sole assumption that C = argminΦ = ∅, for any orbit of (5.2.1)-(5.2.2), x (t) converges weakly to an element of C, as t goes to +∞.

In many applications, a particular stationary solution is more interesting than others due to physical, economic or design considerations. When we have the global convergence of trajectories, one could let the trajectory reach a particular target equilibrium by appropriately adjusting the initial conditions. Nevertheless, in many practical situations it is not possible to have an accurate control of the initial state. An alternative approach consists in introducing a term into the system which forces convergence to the desired stationary solution, independently of the initial state. Such a term should vanish at innity in order to recover, at least asymptotically, an equilibrium point of (5.2.1)-( 5

.2.2).

The above discussion motivates the introduction of the following abstract evolution system :

3b)

where : R + -→ R + is an open-loop control function, that tends to zero as t goes to +∞. Let us briey describe our approach. Following a similar device as in [9], setting µ = 1 x (t) = prox µΦ (y (t)) , ẏ (t) + µ∇Φ µ (y (t)) + µ (t) prox µΦ (y (t)) = 0

where prox µΦ is the proximal mapping associated to µΦ. Recall that prox µΦ = (I + µ∂Φ) -1 is the resolvent of index µ > 0 of the maximal monotone operator ∂Φ, and ∇Φ µ = 1 µ (I -(I + µ∂Φ) -1 ) is its Yosida approximation of index µ > 0. As a key point of our analysis, we notice that prox µΦ is a gradient vector eld, namely prox µΦ = ∇ψ, with

where Φ * is the Fenchel conjugate of Φ. Doing so, we can reformulate our dynamic in the form

ẏ (t) + µ∇Φ µ (y (t)) + (t) ∇µψ (y (t)) = 0.

(5.2.5b) Equation (5.2.5b) is a particular case of the multiscale dynamic ẏ (t) + ∂Θ(y(t)) + (t) ∂Ψ (y (t)) 0

(5.2.6)

where Θ and Ψ are two convex potential functions. Following [4], Ψ will be referred to as the "viscosity function". A detailed study of the asymptotic behavior of the orbits of (5.2.6) can be found in [6], [14], [15], [16], [18]. Following [6] and [14], we focus our attention on the case where the parametrization t → (t) satises the following "slow" decay property

This condition expresses that ε (•) does not tend to zero too rapidly, which allows the term ε (•) x (•) to be eective asymptotically. In that case, we will show an asymptotic selection property. Precisely, in Theorem 5.2.11, under some additional moderate growth property on (•), we will show that, for any trajectory (x, υ) of (5.2.3a)-(5.2.3b), x(•) converges weakly to the minimizer of Φ which also minimizes ψ over all minima of Φ. Then we show that this element is nothing but the element of minimal norm of the solution set argminΦ, i.e.,

x(t) proj argminΦ 0 as t → +∞.

Thus we recover the classical Tikhonov viscosity selection principle, which consists in selecting the solution of minimal norm.

This result can be viewed as an asymptotic selection property : by using such a slow control ε, one can force all the trajectories to converge to the same equilibrium, which here is the equilibrium of minimal norm. This makes a sharp contrast with the non controlled situation, or fast control, where the limits of the trajectories depend on the initial data, and are in general dicult to identify.

The paper is organized as follows : we rst show the existence and uniqueness of a strong global solution to the Cauchy problem (5.2.3a)-(5.2.3b). Then, we study the asymptotic convergence as t goes to +∞ of the trajectories of (5.2.3a)-(5.2.3b). In our main result, Theorem 5.2.11, under the key assumption that (•) is a "slow control", i.e., +∞ 0 ε (t) dt = +∞, and has moderate growth, we show the weak convergence of the trajectories toward the optimal solution of problem (P) of minimum norm. When Φ is a convex dierentiable function whose gradient is Lipschitz continuous, we show that the convergence holds for the strong topology. Finally, we examine some variants of this principle of hierarchical minimization.

Existence and Uniqueness of Global Solutions

We consider the Cauchy problem for the dierential inclusion system (5.2.3a)-(5.2.3b)

First, we are going to dene a notion of strong solution to the above system. Then, we shall reformulate this system with the help of the Minty representation of ∂Φ. Finally, we shall prove the existence and uniqueness of a strong solution to system (5.2.7a)(5.2.7c), by applying the CauchyLipschitz theorem to this equivalent formulation.

Denition of strong solutions

We say that the pair (x (•) , υ (•)) is a strong global solution of (5.2.7a)(5.2.7c) i the following properties are satised :

Equivalent formulation as a classical dierential equation

In order to solve system (5.2.7a)(5.2.7c) we use Minty's device. Set µ = 1 λ .

Let us rewrite inclusion (5.2.7a) by using the following equivalences : for any t ∈ [0, +∞[

x (t) + µυ (t) ∈ x (t) + µ∂Φ (x (t))

(5.2.9)

x (t) = (I + µ∂Φ) -1 (x (t) + µυ (t)) .

( 

and rewrite the system (5.2.7a)(5.2.7c) with the help of (x, y). From (5.2.10) and (5.2.11)

Equivalently,

x (t) = prox µΦ (y (t)) ;

(5.2.12)

where prox µΦ is the proximal mapping associated to µΦ. Recall that prox µΦ = (I + µ∂Φ) -1 is the resolvent of index µ > 0 of the maximal monotone operator ∂Φ, and ∇Φ µ is its Yosida approximation of index µ > 0.

Let us show how (5.2.7b) can be reformulated as a classical dierential equation with respect to y (•). First, let us rewrite (5.2.7b) as

(5.2.14) Dierentiating (5.2.11), and using (5.2.14) we obtain

= -µυ (t) -µε (t) x (t) .

(5.2.16)

From (5.2.12), (5.2.13), and (5.2.16) we deduce that ẏ (t) + µ∇Φ µ (y (t)) + µ (t) prox µΦ (y (t)) = 0.

Finally, the (x, y) system can be written as

x (t) = prox µΦ (y (t))

(5.2.17a) ẏ (t) + µ∇Φ µ (y (t)) + µ (t) prox µΦ (y (t)) = 0.

(5.2.17b)

) is a solution of (5.2.7a)-(5.2.7c). Let us stress the fact that the operators prox µΦ : H -→ H, ∇Φ µ : H -→ H are everywhere dened and Lipschitz continuous, which makes this system relevant to the CauchyLipschitz theorem.

Global existence and uniqueness results

Let us state our main result of existence and uniqueness for the system (5.2.7a)(5.2.7c).

Theorem 5.2.1 Suppose that Φ : H -→ R ∪ {+∞} is a convex lower semicontinuous proper function, and λ > 0 is a positive constant. Let : R + -→ R + be a nonnegative locally integrable function, and (x 0 , υ 0 ) ∈ H × H be such that υ 0 ∈ ∂Φ (x 0 ). Then the following properties hold : i) there exists a unique strong global solution (x (•) , υ (•)) : [0, +∞[ -→ H × H of the Cauchy problem (5.2.7a)-(5.2.7c); ii) the solution pair (x (•) , υ (•)) of (5.2.7a)-(5.2.7c) can be represented as follows : for any

= prox µΦ (y (t)) ;

(

where y (•) : [0, +∞[ -→ H is the unique strong global solution of the Cauchy problem ẏ (t) + µ∇Φ µ (y (t)) + µ (t) prox µΦ (y (t)) = 0,

(5.2.20a) y (0) = x 0 + µυ 0 .

( 

Dierentiation of the above equation shows that, for almost every t > 0, ẋ (t) + µ υ (t) = ẏ (t) .

On the other hand, owing to υ (t) = ∇Φ µ (y (t)), x (t) = prox µΦ (y (t)), (5.2.20a) can be equivalently written as ẏ (t) + µυ (t) + µ (t) x (t) = 0.

Combining the two above equations, we obtain ẋ (t) + µ υ (t) + µυ (t) + µ (t) x (t) = 0.

From µ = 1 λ , we conclude that (x (•) , υ (•)) is a solution of system (5.2.7a)-(5.2.7b).

Regarding the initial condition, we observe that y (0) = x 0 + µυ 0 (5.2.32)

= x (0) + µυ (0) , (5.2.33) with υ 0 ∈ ∂Φ (x 0 ) and υ (0) ∈ ∂Φ (x (0)). Hence

x (0) = x 0 = (I + µ∂Φ) -1 (x 0 + µυ 0 ) .

After simplication, we obtain υ (0) = υ 0 .

( Moreover y 0 = x 0 + µυ 0 .

Arguing as before, by the CauchyLipschitz theorem, the solution y (•) of the above system is uniquely determined, and locally absolutely continuous. Thus, by (5.2.35), x (•) and υ (•) are uniquely determined.

Asymptotic analysis and convergence properties

In this section, we study the asymptotic behavior, as t → +∞, of the trajectories of system (5.2.7a)-(5.2.7b). Let us recall our standing assumption, namely the parametrization (•) is supposed to be nonnegative, and locally integrable. In view of the asymptotic analysis, we also suppose that (t) → 0 as t → ∞, and satises the "slow" decay property +∞ 0 ε (t) dt = +∞.

Remark 5.2.7 Let f and g be functions from H to R ∪ {+∞}. Then

Conversely, if one of the functions (f or g) is continuous at a point of the domain of the other, then

Remark 5.2.8 a) Let ϕ : H → R ∪ {+∞} be proper, and

b) Let C be a nonempty subset of H, and let

, where δ C is the indicator function of the set C (δ C (x) = 0 for x ∈ H, +∞ outwards). Then

where d c is the distance function to the set C. For the proof, set ϕ = δ C and γ = 1 in Remark 5.2.8.

In the next lemma, we show that the proximal mapping can be written as the gradient of a convex dierentiable function. This result will play a crucial role in our analysis.

Lemma 5.2.9 Let Φ : H → R ∪ {+∞} be a proper convex lower semicontinuous function, and let µ > 0. Then, the proximal mapping prox µΦ : H → H can be written as the gradient prox µΦ = ∇ψ of the convex continuously dierentiable function ψ : H → R which is dened, for any y ∈ H, by

where Φ * is the Fenchel conjugate of Φ.

Proof. For any y ∈ H, set x = prox µΦ (y) .

By denition of the proximal mapping, we have the following equivalent formulations

From (∂Φ) -1 = ∂Φ * and the above equality, we successively obtain

By the denition of the Yosida approximation of index 1

By the classical derivation chain rule, we deduce that the the proximal mapping prox µΦ y : 

By denition, we have prox µΦ (y) = J ∂Φ µ y = (I + µ∂Φ) -1 (y). Hence µ∇Φ µ (y) = yprox µΦ (y) .

Let us make the link with the previous formulation of the prox as a gradient, and show that,

By (5.2.36), we have

By using Remark 5.2.7 concerning the conjugate of a sum, we obtain

So we obtain the same function ψ as given in Lemma 5.2.9. Note that by Remark 5.2.8, the equivalent (dual) formulation of ψ given by ψ(y) = 1 2 y 2 -µΦ µ (y), which is written as a d.c. function, is actually a convex function.

Asymptotic hierarchical minimization

Let us study the asymptotic behavior of the trajectories of system (5.2.7a)-(5.2.7b). We consider the equivalent system (5.2.20a), which, by Lemma 5.2.9, can be formulated as follows :

x (t) = prox µΦ (y (t))

(5.2.37)

.38)

where, for any y ∈ H Θ(y) := µΦ µ (y);

(5.2.39)

( Let us further assume that Φ(0) < +∞. Then 

Hence conditions (H 1 ) ε and (H 2 ) ε of Theorem 5.2.10 are satised. As a consequence, we obtain the convergence of y(•) to a solution y ∞ of the constrained minimization problem min {Ψ(x) : x ∈ C} .

(5.2.41)

Let us write the rst-order optimality condition satised by y ∞ . We have ∇Ψ(y ∞ ) + N C (y ∞ ) 0.

(5.2.42)

Since ∇Ψ = µprox µΦ , equivalently µprox µΦ (y ∞ ) + N C (y ∞ ) 0.

(5.2.43)

Noticing that y ∞ ∈ C, and that z = prox µΦ z for z ∈ C = argminΦ, we obtain µy ∞ + N C (y ∞ ) 0.

(5.2.44)

By denition of N C , equivalently, the following property is satised

Since y ∞ ∈ C, this is the condition of the obtuse angle that characterizes the projection of the origin on C. Thus y ∞ = proj C (0).

(5.2.45)

We have obtained that y(•) converges weakly to the element of minimal norm of the solution set C, that's item (i). In order to pass from the convergence of y(•) to the convergence of x(•)

we use the relation (5.2.12)

x (t) = prox µΦ (y (t))

that links the two variables.

In a nite dimensional setting, we can conclude the strong convergence of x(•) thanks to the continuity of the proximal mapping, and using again the fact that the set C of minimizers of Φ is invariant by the proximal mapping prox µΦ , i.e., prox µΦ (y) = y for all y ∈ C = argminΦ.

In an innite dimensional setting, we are going to use the particular structure of our dynamical system, and an energetical argument to show that x(t) -y(t) → 0 strongly as t → +∞.

( (5.2.50)

Since the above majorization is valid for any T > 0, and is bounded (it decreases to zero), we obtain (5.2.47).

We now observe that y( After elementary computation, one can verify that, in this situation, (H 1 ) is satised if the following condition on (•) is satised : +∞ 0 2 (t) < +∞.

Thus, in this situation, the moderate growth condition on (•), can be formulated as (•) ∈ L 2 (0, +∞) L 1 (0, +∞).

Strong convergence

Let us now examine the strong convergence properties of the trajectories. Let us rst consider the variable y(•). Following [6, Theorem 2.2], and equation (5.2.38), the strong convergence of y(•) will result from the strong monotonicity property of ∇Ψ = µprox µΦ . We recall that ∇Ψ is said to be strongly monotone if there exists some α > 0 such that for any x ∈ dom∇Ψ, and y ∈ dom∇Ψ ∇Ψ (x) -∇Ψ (y) , x -y ≥ α x -y 2 .

This property turns out to be equivalent to a regularity property for Φ, as stated in the following Lemma.

Lemma 5.2.12 Let Φ be a convex dierentiable function whose gradient is L-Lipschitz continuous for some L > 0. Then, for any µ > 0 such that µL < 1, the proximal mapping prox µΦ is strongly monotone.

Proof. Take y i , i = 1, 2. By denition of prox µΦ (y i ), prox µΦ (y i ) + µ∇Φ(prox µΦ (y i )) = y i .

Taking the dierence of the two equations, and multiplying scalarly by y 2 -y 1 , we obtain prox µΦ (y 2 )prox µΦ (y 1 ), y 2 -y 1 +µ ∇Φ(prox µΦ (y 2 ) -∇Φ(prox µΦ (y 1 ), y 2 -y 1 = y 2 -y 1 2 .

Then use the Cauchy-Schwarz inequality, the L-Lipschitz continuity of ∇Φ, and the fact that the proximal mapping is nonexpansive to obtain prox µΦ (y 2 )prox µΦ (y 1 ), y 2 -y 1 ≥ (1 -µL) y 2 -y 1 2 .

Conversely, one can easily establish that the strong monotonicity of the proximal mapping implies that Φ is a convex dierentiable function whose gradient is Lipschitz continuous.

We can now complete Theorem 5.2.11 as follows.

Theorem 5.2.13 Let us make the assumptions of Theorem 5.2.11, and assume moreover that Φ is a convex dierentiable function whose gradient is L-Lipschitz continuous for some L > 0.

Then for µL < 1, we have the strong convergence property of x(•) and y(•) to the element of minimal norm of C = argminΦ = ∅.

Proof. By Theorem 5.2.11 item (iii), x(t) -y(t) converges strongly to zero as t -→ +∞.

Hence we just need to prove that y(•) converges strongly . Since µL < 1, by Lemma 5.2.12, the operator ∇Ψ = µprox µΦ is strongly monotone. Thus we are in the situation examined in [6, Theorem 2.2], which gives the strong convergence property. Another equivalent approach consists in noticing that by Theorem 5.2.10, we have w -lim t→+∞ y(t) = proj argminΦ 0 and Ψ(y(t)) → Ψ(proj argminΦ 0). From this we easily deduce that the strong convexity of Ψ implies the strong convergence of y(•). We recover our result by noticing that the strong convexity of Ψ is equivalent to the strong monotonicity of its gradient, i.e., of the proximal mapping.

Other viscosity selection principles

Let us now examine the more general situation υ (t) ∈ ∂Φ (x (t))

(5.2.51a) λ ẋ (t) + υ (t) + υ (t) + ε (t) ∂g(x (t)) 0,

(5.2.51b)

where g is a convex viscosity function.

Using the Minty transform, this system can be equivalently written as

x (t) = prox µΦ (y (t))

(5.2.52a) ẏ (t) + µ∇Φ µ (y (t)) + µ (t) ∂g(prox µΦ (y (t))) 0.

(5.2.52b)

In order to recover exactly the Tikhonov approximation, we look for some g such that, for all y ∈ H ∂(µg)(prox µΦ (y)) = y.

Equivalently (I + µ∂Φ) -1 = (∂(µg)) -1 .

We obtain

that is, for all y ∈ H µg(y) = 1 2 y 2 + µΦ(y).

Thus, by taking g(y) = 1 2µ y 2 + Φ(y), and Θ (y) = µΦ µ (y), equation (5.2.52b) can be equivalently written as ẏ (t) + ∇Θ (y (t)) + (t) y (t) = 0.

(5.2.53) Equation (5.2.53) is a particular case of the (SDC) system (steepest descent with control)

(SDC) ẏ (t) + ∂Θ (y (t)) + (t) y (t) = 0.

Concerning the case +∞ 0

(t) dt = +∞, the rst general convergence result was in [19] (based on previous work by [13]), and also requires (•) to be nonincreasing, and converges to zero for t -→ +∞. Under these conditions, each trajectory of (5.2.53) converges strongly to the point of minimal norm in C = arg min Θ = arg min Φ. In [15], it is proved that the convergence result still holds without assuming (•) to be nonincreasing. When g(ξ) = 1 2µ ξ 2 + Φ(ξ), the dynamical system (5.2.51a)-(5.2.51b) becomes υ (t) ∈ ∂Φ (x (t))

(5.2.54a) λ ẋ (t) + υ (t) + υ (t) + ε (t) 1 µ x (t) + υ (t) = 0.

(5.2.54b) Equivalently υ (t) ∈ ∂Φ (x (t))

(5.2.55a) ẋ (t) + µ υ (t) + µ(1 + ε (t))υ (t) + ε (t) x (t) = 0.

(5.2.55b)

As in the preceding section, by application of the Cauchy-Lipschitz theorem (recall that Θ is dierentiable, and its gradient is Lipschitz continuous), we can show that (5. is a strong solution of (5.2.55a)-(5.2.55b).

Let us summarize our result in the following theorem. Proof. We are in the situation examined in [15, Theorem 2], which gives the strong convergence of each trajectory y (•) of (5.2.53) towards the point of minimal norm in C = arg min Φ. In order to pass from the convergence of y(•) to the convergence of x(•) we use the relation (5.2.52a)

x (t) = prox µΦ (y (t))

that links the two variables. From the continuity property of the proximal mapping for the strong topology (indeed, it is a nonexpansive mapping), we deduce that each trajectory x(•) of (5.2.55a)-(5.2.55b) converges strongly to prox µΦ Proj arg min Φ 0 = Proj arg min Φ 0. To obtain this last equality, we use the fact that the set C of minimizers of Φ is invariant by the proximal mapping prox µΦ , i.e., prox µΦ (y) = y for all y ∈ C = argminΦ.

Perspective

Let us list some interesting questions to be examined in the future :

1. Examine the discrete, algorithmical version, and the corresponding asymptotic selection property for the forward-backward algorithm.

2. Study the case where λ(t) depends on t in an open-loop form, as in [9].

3. Study the case where the Levenberg-Marquart regularization term is given in a closedloop form, λ(t) = α( ẋ(t) ) as in [8]. 4. Examine these questions for the related dynamical systems which have been considered in [1].