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This thesis presents the search for CP violation in four-body fully-charged charmless weak decays of Λ 0 b and Ξ 0 b baryons. The events are gathered and reconstructed using the LHCb spectrometer installed at the Large Hadron Collider (LHC) of CERN at Geneva, Switzerland. Although the assumed aim of this study is to unravel new sources of CP violation, the rst necessary step consists in observing CP violation in baryon decays, which has not yet been observed by previous experiments. A total of seven charmless decay modes were looked at for the search, particularly the Λ 0 b (Ξ 0 b )→ ph -h + h -decay modes, where h, h and h can either be a π or a K. Since these decay modes are also not yet observed prior to this thesis, we conducted a search on the same seven nal decay modes of Λ 0 b and Ξ 0 b . This thesis presents also the calibration and ageing study on the Pre-shower (PS) sub-detector of LHCb. Minimum ionizing particles were used to accomplish the task. Presented as well in this thesis is the branching fraction limit calculation of B 0 s → K 0 S K + K -using a modied Feldman-Cousins inference.

iv Résumé Introduction Once postulated to be an exact symmetry of nature is now an experimentally-established fact that CP -symmetry is slightly violated in decays involving weak interaction. First observed in the decays of neutral kaons [START_REF] Christenson | Evidence for the 2π Decay of the K 0 2 Meson[END_REF], CP -violation is also observed in the B system as seen by BaBar [START_REF] Guralnik | Global Conservation Laws and Massless Particles[END_REF] and Belle [START_REF] Cms | The CMS experiment at the CERN LHC[END_REF] experiments, and recently by the LHCb collaboration [START_REF] Aaij | Observation of CP violation in B ± → DK ± decays[END_REF][START_REF] Aaij | First observation of CP violation in the decays of B 0 s mesons[END_REF].

The Standard Model (SM) of particle physics can explain this phenomenon as a consequence of quark-mixing of at least three generations as explained in the Kobayashi-Maskawa (KM) mechanism [START_REF] Kobayashi | CP -Violation in the Renormalizable Theory of Weak Interaction[END_REF]. With 3 generations of quarks, the KM mechanism predicts one phase that governs all CP -violation phenomena. With several decay modes to look at, tremendous progress was done in the last 15 years to redundantly-constrain the KM predictions and so far found no evidence of signicant deviation from it [START_REF] Charles | Predictions of selected avour observables within the Standard Model[END_REF][START_REF] Bevan | Standard Model updates and new physics analysis with the Unitarity Triangle t[END_REF]. This achievement is a pillar of the SM. Search for CP -asymmetries with beauty baryons (or b-baryons) however have received lesser attention up to now. In the SM, the weak phase governing the CP violation in the K and B systems drives also the CP violation in b-baryons. Although the assumed aim of the work defended in this thesis is to unravel new sources of CP violation, the very rst necessary step consists in observing a CP -violating phenomenon in baryon decays. Some few attempts have been done to search for direct CP asymmetries involving bbaryons [1315] and so far found to be consistent with no asymmetry. The LHCb experiment operated at center-of-mass energies above the threshold for b-baryon production, and hence has an excellent potential to further improve the understanding of b-baryons.

In this thesis, CP -asymmetries are searched for in the charmless fully-charged four-body weak decays of two neutral b-avoured baryons, namely Λ 0 b and Ξ 0 b , using the Run I data of LHCb experiment corresponding to an integrated luminousity of 3. 

Introduction

The Standard Model (SM) of particle physics has been very successful in explaining the interactions of fundamental particles. This provides a very elegant theoretical framework in describing experimental results with high precision. In this Chapter, the theoretical underpinning of the SM is introduced and how the SM describes the interactions of fundamental particles is given.

Section 1.2 introduces the list of fundamental particles of the SM and how this gauge theory describes the interactions. Since one of the main focuses of the LHCb experiment and the main topic of this thesis is on the CP -violation in the quark sector, a discussion on the quark mixing and CKM matrix is written in Section 1.5. This is followed by a section (Section 1.6) about the CP -violation and the classication of its three possible manifestations. Finally, dedicated section is assigned for the discussion on the review of b-baryons and on the decay channels studied in this thesis.

The Standard Model

The Standard Model (SM) of particle physics is a renormalizable quantum eld theory constructed under the principle of local gauge invariance. It describes the interactions based on the symmetry group SU (3) C ⊗ SU (2) L ⊗ U (1) Y , where the strong interaction is governed by symmetry group of color rotations SU (3) C and the electroweak interaction by the SU (2) L ⊗ U (1) Y symmetry group. In this model, the dynamics of the particles and their interactions is described using a Lagrangian L SM . Being a gauge theory, the SM Lagrangian is 2 Theoretical context invariant under continuous local transformations. The discussion in this Section starts with the fundamental particles and fundamental forces of the SM, and ends with a discussion on the Lagrangian of the SM and how the spinor elds are represented.

The fundamental particles

The fundamental particles of the SM are believed to have no further internal structure and serves as the building blocks of other composite particles. There are two distinct types of particles in the SM, namely fermions and bosons. Fermionic-type particles, which have halfinteger spins, obey Fermi-Dirac statistics, while bosonic-type particles, having integer spins, obey Bose-Einstein statistics.

There are 12 fermions, composed of six quarks and six leptons, considered as fundamental particles in the SM. The quarks are further classied according their third weak isospin projection T 3 into up-type quarks (u, c, t), down-type quarks (d, s, b), while the leptons are classied as charged-leptons (e, µ, τ ) and the neutrinos (ν e , ν µ , ν τ ). The fermions can be arranged as three generations, as shown in Table 1.1, where each generation has the same quantum number as the other generations except that they have dierent masses. The generations are arranged with increasing masses of the fermions, that is the third and second generations have fermion masses higher that the second and rst generations, respectively.

Although not shown in Table 1.1, each quark can actually have three possible distinct color quantum number, conventionally dubbed red, green and blue. Also not shown in the Table is that each quark has an anti-particle, having the same fundamental properties as the quark except that the quantum charges are opposite and can take for instance three possible color charges anti-red, anti-green or anti-blue. 

Leptons

Mediating the interaction of the fermions are the gauge bosons of the SM. The four types of gauge bosons of the SM are the photon (γ), the gluons (g), the W ± and the Z 0 . Table 1.2 lists the fundamental bosons of the SM. The photon mediates the electromagnetic interaction, while the gluon is the mediating boson of the strong force. Weak force is mediated via massive charged bosons W ± and massive neutral boson Z 0 . The photon couples only to charged particles and hence does not couple to neutrinos, neither on the other neutral gauge bosons including itself. The quarks, carrying a colour charge, can also interact via their couplings to the gluons, while the leptons, which has no colour charge, do not interact via strong force. Lastly, the weak force interacts to all fermions and hence the only interaction that the neutrinos participate. The gravitational force, negligible at the energies we are interested in this thesis, does not belong so far to this quantum eld theory framework and will not be discussed further. H 0 0 125.09 ± 0.21(stat) ± 0.11(syst) [START_REF] Aad | Combined Measurement of the Higgs Boson Mass in pp Collisions at √ s = 7 and 8 TeV with the ATLAS and CMS Experiments[END_REF] 0 [START_REF] Khachatryan | Constraints on the spin-parity and anomalous HV V couplings of the Higgs boson in proton collisions at 7 and 8 TeV[END_REF][START_REF] Aad | Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector[END_REF] Mass generation Also shown in Table 1.2 is the Higgs boson particle [2126]. A narrow bosonic state has been recently discovered by ATLAS [START_REF] Aad | Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC[END_REF] and CMS [START_REF] Chatrchyan | Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC[END_REF] experiments and is so far consistent with the fundamental scalar of the SM. Unlike the other fundamental bosons of the SM, the Higgs boson is a scalar boson (spin 0) and is not a mediator of any of the fundamental forces.

It undergoes however elementary interactions with both fermions and bosons as discussed later in this chapter.

The fundamental forces in the SM

As mentioned in the previous subsection, the fermions interact with each other via dierent types of forces, namely electromagnetic interaction, weak interaction and strong interaction. The electromagnetic interaction, described by the theory of Quantum Electrodynamics (QED), occurs only among charged particles via the exchange of photon, implying that neutrinos (as well as Z 0 bosons) does not interact with other particles via electromagnetic force. Since a photon does not carry an electric charge, it does not couple to other photons, in contrast to gluons which can couple to other gluons as well.

The weak force is mediated by either the massive charged boson W ± or the massive neutral boson Z 0 . The theory describing the weak interaction is combined together with the electromagnetic interaction, to become the electroweak theory (EWT). The EWT was rst proposed by S. Glashow [START_REF] Glashow | Partial Symmetries of Weak Interactions[END_REF], S. Weinberg [START_REF] Weinberg | A Model of Leptons[END_REF] and A. Salam [START_REF] Salam | Weak and Electromagnetic Interactions[END_REF] based on the SU (2) L ⊗U (1) Y symmetry group. Fermions can change their avour by emitting a charged W ± boson. In the SM, this is the only tree level transition that changes the avour, and in particular the generation of quarks. Hence, there is no Flavour Changing Neutral Current (FCNC) in tree-level transitions in the SM. Neither the neutral current Z 0 can change the avour of fermions in tree-level transitions as explained by the Glashow-Iliopoulos-Maiani (GIM) mechanism [START_REF] Glashow | Weak Interactions with Lepton-Hadron Symmetry[END_REF]. Since neutrinos has no electric charge and colour charge, they do not interact via electromagnetic force nor via strong force, leaving only the weak interaction. Moreover, since only left-handed leptons, represented as doublets in the SU (2) L , are involved in the weak interaction, the right-handed neutrinos then become sterile, should they actually exist.

The strong interaction, which is responsible, in a residual way, of the binding (and connement) of quarks to form hadrons, is mediated by gluons. The theory involved in the strong interaction is called Quantum ChromoDynamics (QCD), based on the SU (3) C symmetry group. There are actually eight dierent gluons, corresponding to the eight generators of the SU (3) C symmetry group. The quarks come as a colour triplet, while the leptons are singlets of SU (3) C . In analogy to QED, quarks carry colour charges. However, unlike Theoretical context in QED, the gluons can interact also with other gluons. Quark connement, i.e. the fact that quarks can not be isolated singularly, can be explained by the colour interaction. As a quark-antiquark pair separate, the gluon eld strength between them does not diminish, regardless of their distance. At some point of the separation, it becomes more energetically favourable to spontaneously pop-in a new quark-antiquark pair from the vacuum than to extend the separation.

Standard Model Lagrangian

The SM of particle physics describes the laws of Nature based on Quantum Field Theory (QFT). In QFT, this leads to formulating the Lagrangian of Nature. The most compact full Lagrangian L SM of the SM consists of four parts, as written in Equation 1.1,

L SM = L Gauge + L Kinetic + L Higgs + L Yukawa , (1.1)
where L Gauge is the kinetic term of the gauge elds, L Kinetic is the kinetic term describing the dynamics of the spinor Dirac ψ, L Higgs describes the Higgs scalar eld and its potential, and L Yukawa describes the interaction between the Higgs eld and the fermions (so called Yukawa couplings). The kinetic term of the fermion elds is given by,

L Kinetic = i ψ(D µ γ µ )ψ (1.2)
where the spinor elds ψ (ψ = ψ † γ 0 , γ 0 as one of the Dirac gamma matrices in chiral basis) contains the three fermion generations, consisting of the following ve representations :

Q I Li (3, 2, +1/3), u I Ri (3, 1, +4/3), d I Ri (3, 1, -2/3), L I Li (1, 2, -1), l I Ri (1, 1, -2) . 
(

This notation tells that quarks are triplets in the SU (3) C color rotation, while the leptons are singlets in SU (3) C . The left-hand component of the spinor ψ is a doublet in the SU (2) L rotation, while the right-hand component is a singlet. The last quantum number inside the parentheses species its weak hypercharge Y of the U (1) Y , which is equal to 2(Q-T 3 ), where Q is the electric charge and T 3 is third component of the weak isospin. In example, the notation Q I Li (3, 2, +1/3) means that this is a triplet in SU (3) C , a left-handed doublet in SU (2) L and with a hypercharge Y = 1/3. The subscript i stands for the three generations, while the superscript I signies that this is written in the interaction basis. Hence, the explicit forms of the representations in Equation 1. [START_REF] Del Amo | Measurement of CP observables in B ± → D CP K ± decays and constraints on the CKM angle γ[END_REF] 

l I Ri (1, 1, -2) = e I R , µ I R , τ I R , (1.8) 
where the subscripts r, g, and b are the three color quantum numbers; u, c and t are the up-type quarks; and d, s and b are the down-type quarks.

The covariant derivative D µ in Equation 1.2 is a replacement of the ordinary derivative in order to maintain the gauge invariance. This is written in four terms as,

D µ = ∂ µ + i g s G µ a L a + i gW µ b T b + i g B µ Y ,
(1.9)
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where the rst term is the ordinary derivative, L a are the generators of the SU (3) C group (the 3×3 Gell-Mann matrices: 1 2 λ a for triplets and 0 for singlets) and T b are SU (2) L generators (the 2×2 Pauli matrices: 1 2 σ b for doublets and 0 for singlets). G µ a are the eight gluons elds, W µ b are the three weak interaction bosons and B µ is the hypercharge boson. The Higgs scalar eld φ and its potential V (φ † φ) is added to the Lagrangian of the SM in order for the bosons of the weak interaction to acquire mass via the spontaneous symmetry breaking mechanism, also known as the Brout-Englert-Higgs (BEH) mechanism [2123].

The L Higgs term has the form,

L Higgs = (D µ φ) † (D µ φ) + µ 2 φ † φ -λ(φ † φ) 2 , (1.10) 
where the Higgs complex scalar eld is an isodoublet, φ(x) = φ + φ 0 .

(1.11)

The development of the covariant derivative product in the kinetic term of Equation 1.10 can describe the coupling of the Higgs to the gauge elds. The couplings of the Higgs eld to the fermion elds on the contrary are not manifested in the Higgs Lagrangian and hence they are added by hand. These couplings, known as Yukawa couplings, are written as follows,

-L Yukawa = Y ij ψ Li φψ Rj + (hermitian conjugate) (1.12) = Y u ij Q I Li φu I Rj + Y d ij Q I Li φd I Rj + Y l ij L I Li φl I Rj + (hermitian conjugate) (1.13) 
where, φ(x) = iσ 2 φ * = φ 0 -φ -.

(1.14)

The arbitrary complex matrices Y d ij , Y u ij and Y l ij operate in the avour space, with dierent couplings between dierent generations, and hence quark mixing. Once the Higgs eld acquires a non-zero vacuum expectation value, the mass of the fermions are then generated.

More discussion on the quark mixing and mass generation will be presented in Section 1.5.

Weak interactions in the avour sector

This thesis is closely connected to the weak interactions in the avour sector. As such, this particular section is dedicated to the EWT of the SM. As already mentioned in the previous Section, SU [START_REF] Aubert | Observation of CP Violation in the B 0 Meson System[END_REF] L ⊗ U (1) Y is the symmetry group describing the electroweak interaction. The discusion will start with the discrete symmetries of the SM that are closely-related to avour physics.

Discrete symmetries of the SM

There are two discrete symmetries of the SM that are closely related to avour physics, which are the charge conjugation C and space inversion (or parity operation) P . The discrete C symmetry postulates that Nature should be the same if particles are replaced with antiparticles, i.e. by changing the internal quantum numbers like the electromagnetic charge.

On the other hand, the P symmetry postulates that it should be the same if the space coordinates are inverted, which cause the spacetime coordinate x µ → x µ .

Theoretical context

A third discrete symmetry of interest in understanding the laws of Nature is the time reversal T , where it states that physics laws should be the same whether going forward or backward in time (i.e. which causes x µ → -x µ ). There is a strong reason for the combined CP T operation to be a symmetry of Nature, as any Lorentz invariant local eld theory must have the combined CP T symmetry. The eect that fundamental particles and their antiparticles have the same masses and widths can be explained as a consequence of the CP T invariance.

It has been experimentally observed that although C, P and the combined CP are exact symmetries of the electromagnetic and strong interactions, the weak interaction maximally violates the C and P operation individually and slightly violates the combined CP symmetry. 1.3.2 The SU (2) L ⊗ U (1) Y theory As discussed earlier, the EWT based on SU (2) L ⊗ U (1) Y symmetry group, pioneered by the combined eorts of S. Glashow [START_REF] Glashow | Partial Symmetries of Weak Interactions[END_REF], S. Weinberg [START_REF] Weinberg | A Model of Leptons[END_REF] and A. Salam [START_REF] Salam | Weak and Electromagnetic Interactions[END_REF], is successful in making a unied theory of weak and electromagnetic interactions. Since it was already observed in experiments that only the left-handed fermions and right-handed antifermions participate in charged current mediated weak decays, the chirality is directly embedded into the theory, implying that left-handed and right-handed components of the spinor eld interact dierently with the weak interaction.

The Dirac spinor eld ψ in Equation 1.2 can actually be decomposed into left-handed and right-handed chiral components, that is, [START_REF] Aaij | Study of B 0 (s) → K 0 S h + h -decays with rst observation of B 0 s → K 0 S K ± π ∓ and B 0 s → K 0 S π + π[END_REF] where,

ψ = ψ L + ψ R (1.15) ψ = ψ L + ψ R (1.
ψ L = 1 2
(1γ 5 )ψ and ψ R = 1 2 (1 + γ 5 )ψ

(1.17)

ψ L = ψ 1 2 (1 + γ 5 ) and ψ R = ψ 1 2
(1γ 5 ) .

(1.18)

The projection operators P L = 1 2 (1γ 5 ) and P R = 1 2 (1 + γ 5 ) are constructed using the fth Dirac gamma matrix, γ 5 = iγ 0 γ 1 γ 2 γ 3 . If these chirality-decomposed Dirac spinors are inserted to the kinetic term of the SM Lagrangian in Equation 1.9, it becomes obvious that the left-handed and right-handed spinor eld components interact separately, hence it is possible to treat left-and right-handed components as separate elds in the EWT. Since the two components can be treated separately, they can have dierent couplings to the gauge elds. The chirality-separated representations of the fermion elds in the SM is listed in Equation 1. [START_REF] Del Amo | Measurement of CP observables in B ± → D CP K ± decays and constraints on the CKM angle γ[END_REF], where left-handed components of the fermions are doublets of SU (2) L and the right-handed components are singlets.

Deducing from Equation 1.9, the Lagrangian of the weak current interaction (dropping the term involving the strong interaction for simplicity) between the fermions are written as, 1.4 Spontaneous symmetry breaking 7

L Kinetic,Weak (Q I Li ) = iQ I Li (∂ µ + i 2 gW µ b σ b + i 6 g B µ )γ µ Q I Li (1.19) L Kinetic,Weak (L I Li ) = iL I Li (∂ µ + i 2 gW µ b σ b - i 2 g B µ )γ µ L I Li (1.20) L Kinetic,Weak (u I Ri ) = iu I Ri (∂ µ + 2 3 ig B µ )γ µ u I Ri (1.21) L Kinetic,Weak (d I Ri ) = id I Ri (∂ µ - i 3 g B µ )γ µ d I Ri (1.22) L Kinetic,Weak (l I Ri ) = il I Ri (∂ µ -ig B µ )γ µ l I Ri , (1.23) 
where the right-handed components of the fermion elds, being singlets of SU (2) L , do not couple to the weak interaction bosons W µ b , but can couple to the hypercharge boson B µ . The interaction gauge bosons W µ and B µ are not however the physical massive charged W ± and massive neutral Z 0 bosons. To identify the physical bosons of the weak interaction, the product W µ b σ b is expanded as,

Z µ = cos θ w W µ 3 -sin θ w B µ (1.26) 
A µ = sin θ w W µ 3 + cos θ w B µ , (1.27) where θ w is the electroweak mixing angle known as the Weinberg angle. The Z µ boson will acquire mass once the symmetry is spontaneously broken, while the A µ remains massless.

Expressing the bosons W µ 3 and B µ in terms of Z µ and A µ and identifying the factors in front of A µ as electromagnetic coupling constant α em , the three coupling constants g, g and α em can be linked as follows, g sin θ w = g cos θ w = α em , (1.28) thus determining just two parameters will x the three couplings.

Spontaneous symmetry breaking

In the SM Lagrangian, explicitly adding a mass term breaks the local gauge invariance. As soon as mass terms for the gauge bosons are explicitly added, e.g.

-1 2 M 2 W W µ W µ , the local SU (2) L ⊗ U (1) Y gauge invariance is violated, which is, - 1 2 M 2 W W µ W µ → - 1 2 M 2 W (W µ - 1 g ∂ µ α -αW µ ) (W µ - 1 g ∂ µ α -αW µ ) = - 1 2 M 2 W W µ W µ
Theoretical context where α = α(x µ ) are the transformation parameters. The same can be said for the explicit addition of a mass term for a fermion, i.e. -mψψ = -m(ψ

L + ψ R )(ψ L + ψ R ) = -m(ψ L ψ R + ψ R ψ L ).
Since weak isospin symmetry transformation acts dierently for left-handed and righthanded components, the mass term will break the gauge invariance of the theory. Clearly, in order to keep the local gauge invariance, the gauge bosons and the fermions have to remain massless. However, it is known experimentally that the weak gauge bosons and most if not all fermions are massive. There is a need for a mechanism that allows the generation of masses without breaking the local gauge invariance of SU (2) L ⊗ U (1) Y . This is realized via the spontaneous symmetry breaking mechanism, a.k.a. BEH mechanism in particle physics.

The BEH mechanism keeps the Lagrangian invariant under symmetry transformations, but not the expectation value of the vacuum. Needing to generate three masses of the weak gauge bosons, while keeping the photon massless, the Higgs eld is constructed as a complex SU (2) doublet with four degrees of freedom,

φ = φ + φ 0 = φ 1 + iφ 2 φ 3 + iφ 4 (1.29)
where φ i are 4 real scalar elds. The Higgs potential described in Equation 1.10 has degenerate minima at -µ 2 /2λ when µ 2 < 0 (and λ > 0 to bound the potential from below).

The symmetry is spontaneously broken once one of the degenerate minima is chosen. Since the electric charge has to be conserved, i.e. preserve U (1) em symmetry, the nonzero expectation value has to be in the neutral direction, hence the convenient choice of setting φ 1 = φ 2 = φ 4 = 0. With this choice, the neutral component φ 3 develops a nonzero vacuum expectation value given by,

0|φ|0 = 1 √ 2 0 v , with v = - µ 2 λ 1/2
.

(1.30)

A new scalar eld H(x), with 0|H(x)|0 = 0, is introduced in order to investigate the situation in the vicinity of the minimum of the potential. Expanding the kinetic term of the Higgs Lagrangian term in Equation 1.10,

(D µ φ) † (D µ φ) = g 2 v 2 8 (W + )(W -) + v 2 8 (gW µ 3 -g B µ ) 2 + . . . . (1.31) 
The rst term is identied as the mass term of the charged weak bosons, and the second term is a mixture of the two neutral interaction bosons W µ 3 and B µ . The truncated terms include couplings of the Higgs eld to the weak interaction bosons. After moving to the physical boson eigenstates Z µ and A µ , one identies the mass of the Z 0 boson from the term 1 2 M 2 Z Z µ Z µ and correctly found no mass term involving the photon (A µ ). Along with the other predictions of the BEH mechanism of breaking the symmetry, it predicts that the masses of the physical bosons W ± and Z 0 are related via the electroweak mixing angle, as well as the SU (2) L and U (1) Y gauge couplings, given by, M Z = M W cos θ w .

M W = gv 2 and M Z = 1 2 v g 2 + g 2
(1.34)

1.5 The CKM matrix 9

1. [START_REF] Abe | Observation of Large CP Violation in the Neutral B Meson System[END_REF] The CKM matrix

Although the couplings of the gauge elds to the Higgs eld and the mass generation of the physical weak bosons follow from the covariant derivative in the kinetic term of the Higgs Lagrangian, the interaction of the Higgs eld and the fermions and eventually fermion mass generation has to be added by hand. The arrangement of the complex scalar Higgs eld in Equation 1.29 as an SU (2) doublet allows the construction of an SU (2) L ⊗ U (1) Y invariant interaction of the Higgs eld with the fermions via the so-called Yukawa couplings. The mathematical formulation of the said coupling was written in Equation 1.13 of Section 1.2.

Since this thesis is closely connected to the CP violation involving the mixing of quarks, the Yukawa couplings of the quark elds with the Higgs are explicitly spelled out for clarity purposes as,

Y d ij Q I Li φd I Rj = Y d ij (u d) I Li φ + φ 0 d I Rj (1.35) =         Y 11 (u d) I L φ + φ 0 Y 12 (u d) I L φ + φ 0 Y 13 (u d) I L φ + φ 0 Y 21 (c s) I L φ + φ 0 Y 22 (c s) I L φ + φ 0 Y 23 (c s) I L φ + φ 0 Y 31 (t b) I L φ + φ 0 Y 32 (t b) I L φ + φ 0 Y 33 (t b) I L φ + φ 0         •   d I R s I R b I R   . (1.36)
Once the symmetry is spontaneously broken as described in Section 1.4, the quarks (fermions in general, except neutrinos in the "standard" SM) acquire a term that is identiable as the mass term, e.g.,

-L Yukawa (Quarks) = Y d ij d I Li v √ 2 d I Rj + Y u ij u I Li v √ 2 u I Rj + (h.c.) + (interaction terms) (1.37) = M d ij d I Li d I Rj + M u ij u I Li u I Rj + (h.c.) + (interaction terms) , (1.38) 
where the truncated interaction terms of the form ∼ q qH(x) describe the interaction of the Higgs eld with the fermion elds. In order to identify the physical particle content, which are the mass eigenstates, it is necessary to diagonalize the two matrices M d ij and M u ij by applying unitary transformations as

M u ij,diag. = V u L M u ij V u † R =   m u 0 0 0 m c 0 0 0 m t   (1.39) M d ij,diag. = V d L M d ij V d † R =   m d 0 0 0 m s 0 0 0 m b   .
(1.40)

Knowing that the matrices V are unitary, e.g. V u † L V u L = I 3×3 , the Yukawa Lagrangian in Equation 1.38 can be rewritten as follows, (1.43)

-L Yukawa (Quarks) = d I Li V d † L V d L M d ij V d † R V d R d I Rj + u I Li V u † L V u L M u ij V u † R V u R u I Rj + (h.c.) + . . . = d Li M d ij,diag. d Rj + u Li M u ij,
The second term in the kinetic Lagrangian of the weak interaction of left-handed quarks in Equation 1. [START_REF] Khachatryan | Constraints on the spin-parity and anomalous HV V couplings of the Higgs boson in proton collisions at 7 and 8 TeV[END_REF] and the expansion of the matrix product W µ b σ b shown in Equation 1. [START_REF] Higgs | Spontaneous Symmetry Breakdown without Massless Bosons[END_REF], expressed now in terms of the mass eigenstates become,

L Kinetic,Weak,CC (Q I Li ) = ig √ 2 u I Li γ µ W -µ d I Li + ig √ 2 d I Li γ µ W +µ u I Li + . . . (1.44) = ig √ 2 u Li V u L V d † L ij γ µ W -µ d Li + ig √ 2 d Li V d L V u † L ij γ µ W +µ u Li + . . .
where it appears that in the charged current interaction there is a mixing of quarks between generations. The quark mixing matrix given in Equation 1.45 is known as the Cabbibo-Kobayashi-Maskawa (CKM) matrix [START_REF] Kobayashi | CP -Violation in the Renormalizable Theory of Weak Interaction[END_REF][START_REF] Cabibbo | Unitary Symmetry and Leptonic Decays[END_REF],

V CKM = (V u L V d † L ) ij =   V ud V us V ub V cd V cs V cb V td V ts V tb   , (1.45) 
where it is conventionally-adopted that the weak and interaction quark eigenstates are chosen to be the same for up-type quarks, while the down-type quarks are rotated from interaction basis to mass basis as,

Q I Li = u I d I Li = V u † L   u V u L V d † L d   Li .
(1.46)

1.6 CP symmetry violation in the SM After the experiment by C.S. Wu and colleagues in 1956 [START_REF] Wu | Experimental Test of Parity Conservation in Beta Decay[END_REF] and the subsequent experiment by L.M. Lederman and colleagues [START_REF] Garwin | Observations of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: The Magnetic Moment of the Free Muon[END_REF], it became an experimental fact that charge conjugation C and parity operation (space inversion) P are maximally-violated in decays involving weak interaction. The results of the experiments can be explained if neutrinos has only one chirality (or at least only one chirality participates in the weak interaction), i.e. there are only left-handed neutrinos and only right-handed antineutrinos. Thereafter, experimental observations made clear that only left-handed fermions (or right-handed antifermions) chiralities participate in the weak interaction and that the interaction strength appears to be universal.

Few years after the observation of the individually violated C and P symmetries, J.W. Cronin, V.L. Fitch and colleagues observed that the combined CP is as well violated, but only slightly, in the weak decay of neutral kaons [START_REF] Christenson | Evidence for the 2π Decay of the K 0 2 Meson[END_REF]. This result triggered theoretical works out of which a remarkable achievement is the Kobayashi-Maskawa paradigm. Few explanations and descriptions of the phenomenology of the matrix will be given in the following as well as a state of the art on the subject. We will conclude this section by specifying the three phenomenological types of CP violation, putting emphasis on the one type searched for in this thesis. 1.6 CP symmetry violation in the SM 11 1.6

.1 Parameterisations of the CKM matrix

As a product of unitary matrices, the CKM matrix described in the Section 1.5 is itself unitary. Being dimensioned to the number of quark generations n, it comprises n 2 complex elements, and hence can be described with 2n 2 real parameters. The unitarity of the matrix provides n 2n(n -1)/2 independent unitarity relations, n of them being real (involving the line or column unitarity). Thus, n 2 parameters can be determined from the unitarity properties of the matrix. On top of that, there are 2n arbitrary phases related to each quark eld. They can be redened up to a single global phase, hence (2n -1) phases are xed.

The number of independent parameters of the CKM matrix describing n generations of quarks amounts to n(n-2)+1 parameters, out of which (n(n-3)+2)/2 are phases, changing sign under the CP transformation. Henceforth, the KM paradigm for 3 generations of quarks brings three real independent parameters and one CP -violating phase. We take note that two generations would not bring any, while four generations are bringing 3 CP -violating phases.

Among the possible parameterisations of V CKM , we focus here on the two most frequent in the literature. The standard parameterisation adopted by the Particle Data Group [START_REF] Olive | Review of particle physics[END_REF] uses three rotation angles θ 12 , θ 23 and θ 13 and one phase denoted δ. It reads:

V CKM = R 23 (θ 23 , 0) ⊗ R 13 (θ 13 , δ 13 ) ⊗ R 12 (θ 12 , 0) , (1.47) and can be expanded as: where c ij = cosθ ij , s ij = sinθ ij with i, j = 1, 2, 3.

V CKM =   c 12 c 13
An alternative parameterisation, named after Altomari-Wolfenstein [START_REF] Wolfenstein | Parametrization of the Kobayashi-Maskawa Matrix[END_REF], uses the observed experimental hierarchy between the mixing angles. The four independent parameters are denoted λ, A, ρ and η, where the parameter λ controls the hierarchy of the transition probability in between generations quarks. It reads: s 13 e -iδ = Aλ 3 (ρiη) . (1.51) This denition [START_REF] Ckmtter Group | CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories[END_REF] ensures unitarity of the matrix at any order in λ expansion. For illustration, the development at order O(λ 4 ) is: 5 ) .

s 12 = λ ,
V CKM =   1 -λ 2 /2 -1/8λ 4 λ Aλ 3 (ρ -iη) -λ 1 -λ 2 /2 -1/8λ 4 (1 + 4A 2 ) Aλ 2 Aλ 3 (1 -ρ -iη) -Aλ 2 + Aλ 4 (1 -2(ρ + iη))/2 1 -A 2 λ 4 /2   + O(λ
(1.52)

Jarlskog invariant

The relevant physics quantities to describe the matrix must be independent of the phase choice conventions. The quadrilinear products are one such examples of them. The Jarlskog invariant [START_REF] Jarlskog | Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP Violation[END_REF] for instance can be dened as:

J 3 σγ=1 µνσ αβγ = Im(V µα V νβ V * µβ V * να ) , (1.53) 
where the 's are the anti-symmetric Levi-Civita tensors. There is CP violation if J = 0. Following Wolfenstein parameterisation and anticipating the next section, J = A 2 λ 6 η(1λ 2 /2) 10 -5 . This small magnitude is a consequence of the strong hierarchy between the matrix elements and tells how elusive CP violation phenomena can be. One should not wrongly conclude that all CP asymmetries are small.

Unitarity triangles

O-diagonal unitarity equations V CKM ( i V ij V * ik = δ jk ) with j = k are triangles in the complex plane. The area A of any triangle one can form is proportional to the Jarlskog invariant a A = 1 2 |J|. Let us focus on the two following unitarity relations involving the b quark:

V ud V * ub V cd V * cb + V cd V * cb V cd V * cb + V td V * tb V cd V * cb = 0 , (1.54) 
V td V * ud V cd V * cb + V ts V * us V cd V * cb + V tb V * ub V cd V * cb = 0 .
(1.55)

Using the Wolfenstein parameterisation, we note that the sides of the triangles are of same length O(1). Large CP -violating asymmetries can hence be expected. In contrast, the triangles involving s or c quarks are squashed. This unique feature related to the b-quark makes the CP -violation studies in b-hadrons decays or mixing attractive.

Figure 1.1 displays the unitarity triangle dened in Equation 1. [START_REF] Airapetian | ATLAS: Detector and physics performance technical design report[END_REF], where both sides and angles are shown. Eventually, the apex of the triangle is dened, phase-convention independent, by its coordinates in the complex plane:

ρ + iη = - V ud V * ub V cd V * cb .
(1.56)

where A, λ, ρ and η are the four free SM parameters, which can be constrained redundantly by avour observables.

Phenomenology of CP violation asymmetries

There are so far three ways for CP symmetry violation to manifest in Nature, namely [START_REF] Christenson | Evidence for the 2π Decay of the K 0 2 Meson[END_REF] direct CP violation; [START_REF] Aubert | Observation of CP Violation in the B 0 Meson System[END_REF] CP violation in the mixing (referred to as indirect CP violation); and

(3) CP violation in the decays with and without mixing. In order to understand the dierent manisfestations of CP violation, We start by dening the decay amplitude of a process as,

A f = f |H|B , A f = f |H|B , (1.57) 
A f = f |H|B , A f = f |H|B , (1.58) 
where H is the weak Hamiltonian, f is the nal state, B is the initial meson state, and B and f are the CP conjugate states of B and f , respectively. Both If B 0 q and B 0 q are neutral meson states, they can mix via box diagrams. It evolves with time-dependent coecients a(t) and b(t) governing the relative weights of the B 0 q and B 0 q in the state. As such, at any time t, the B q meson is a superposition of states given by,

|B q (t) = a(t)|B 0 q + b(t)|B 0 q + Σ i c i (t)f i , (1.61) 
where c i (t) is time-dependent coecient of the allowed nal state f i . If the time-range is much larger than the typical strong interaction scale, the Weisskopf-Wigner approximation simplies the evolution of the mixing terms to, |B q (t) = a(t)|B 0 q + b(t)|B 0 q ,

(1. [START_REF] Alves | The LHCb detector at the LHC[END_REF] with |a(t)| 2 + |b(t)| 2 = 1. The time-evolution of the mixing can be described by a 2×2 eective Hamiltonian matrix, where the diagonal terms represent avour-conserving transitions and the o-diagonal terms represent avour-changing currents (or the mixing term). This

Hamiltonian matrix is not Hermitian, as otherwise it would not describe the oscillation and the B 0 q would not decay, but can be written as a sum of two Hermitian matrices, given by,

H = M - i 2 Γ.
(1.63)

The mass matrix M represents the dispersive transitions (o-shell transitions), while the decay matrix Γ represents the absorptive parts (on-shell transitions). As a consequence of CP T invariance, which we assume to hold true here and throughout this thesis, M 11 = M . (1.64) There are two solutions for Equation 1.64, with eigenstates of denite masses M H,L and widths Γ H,L . One mass eigenstate b is heavy and the other is light, hence the subscripts H b In the case of neutral K meson, the eigenstates are more distinct in their lifetimes, than in their masses, hence named K 0 S and K 0 L .

Theoretical context and L. These mass eigenstates B H,L and the eigenvalues λ H,L are, |B H,L = p|B 0 q ± q|B 0 q |p| 2 + |q| 2 ,

(1.65)

λ H,L = M + i Γ 2 ± (M * 12 + i Γ * 12 2 )(M 12 + i Γ 12 2 ) , (1.66) 
where,

q p = M * 12 -(i/2)Γ * 12 M 12 -(i/2)Γ 12 .
(1.67)

Direct CP violation

The CP violation in the decay implies a dierence between the partial width of two conjugate decays, namely Γ(B → f ) = Γ(B → f ). It is often referred to as direct CP violation in the literature as it originates directly at the amplitude level of the considered decay. Such an asymmetry requires at least two amplitudes with dierent weak phases to interfere. The rst observation of CP violation in the decays of particles was brought in 2001 for kaon decays [START_REF] Lai | A Precise measurement of the direct CP violation parameter Re(epsilon-prime / epsilon)[END_REF] and 2004 for B meson decays [START_REF] Aubert | Direct CP Violating Asymmetry in B 0 → K + π -Decays[END_REF]. It is worth noticing that non-vanishing CP asymmetries have been measured for B 0 , B + and B 0 s mesons [9].

The direct CP asymmetry mathematically reads,

A CP = Γ(B 0 q → f ) -Γ(B 0 q → f ) Γ(B 0 q → f ) + Γ(B 0 q → f ) = |A(B 0 q → f )| 2 -|A(B 0 q → f )| 2 |A(B 0 q → f )| 2 + |A(B 0 q → f )| 2 .
(1.68)

Considering at least two contributing amplitudes to the decay, e.g. 

A CP = 2|A 1 ||A 2 | sin(δ 1 -δ 2 ) sin(φ 1 -φ 2 ) |A 1 | 2 + |A 2 | 2 + 2|A 1 ||A 2 | cos(δ 1 -δ 2 ) cos(φ 1 -φ 2 )
.

(1.71)

Henceforth, the nonvanishing direct CP asymmetry arises due to the interference between two weak amplitudes, that requires weak phase dierence φ 1 -φ 2 and strong phase dierence δ 1δ 2 . The neutral baryons studied in this thesis, as quantum distinguishable states, can not mix. The only way to observe a CP -violating phenomenon left is through direct CP violation.

Indirect CP violation

The CP violation in the mixing (referred to as indirect CP violation) of neutral mesons was rst observed in [START_REF] Christenson | Evidence for the 2π Decay of the K 0 2 Meson[END_REF] as mentioned earlier. It means that the probability of the mixing K 0 K 0 is not equivalent to the conjugate K 0 K 0 . The counterpart in the neutral beautiful mesons B 0 and B 0 s has not yet been observed. This occurs when |q/p| = 1 (See Equation 1.67).

CP violation in the decays with and without mixing

A third class of CP violation phenomena comes from the interference between the mixing and the decay amplitudes, each bringing dierent weak phases. Choosing the B 0 meson for the sake of illustration, the mixing-induced CP asymmetry implies Γ(B 0 → f ) = Γ(B 0 → B 0 → f ), where the nal state f is a CP eigenstate. The rst observation of a mixinginduced CP asymmetry was brought in 2001 [START_REF] Aubert | Observation of CP Violation in the B 0 Meson System[END_REF][START_REF] Abe | Observation of Large CP Violation in the Neutral B Meson System[END_REF] through the time-dependent asymmetry of the decay mode B 0 → J/ψK 0 S . Many other nal states measurements followed and are gathered here [START_REF] Flavor | Averages of b-hadron, c-hadron, and τ -lepton properties as of summer 2014[END_REF]. A rst evidence for mixing-induced CP asymmetry in B 0 s decays was brought recently by the LHCb experiment [START_REF] Aaij | First measurement of time-dependent CP violation in B 0 s → K + K -decays[END_REF].

We dene a parameter λ f , which is,

λ f = q p A f A f , (1.72) 
where q/p is dened in Equation 1.67, and A f and A f are the amplitudes of a B 0 and B 0 decaying to the same nal CP eigenstate f . Even in the case where direct and indirect CP violation are vanishing, an interference phase between the mixing and the decay can lead to I(λ f ) = 0. This form of CP violation can be observed using the time-dependent CP asymmetry of neutral B 0 meson decays into a CP eigenstate f ,

A CP (t) = Γ B 0 →f (t) -Γ B 0 →f (t) Γ B 0 →f (t) + Γ B 0 →f (t) (1.73) = (|λ f | 2 -1) cos(∆M t) + 2I(λ f ) sin(∆M t) (|λ f | 2 + 1) cosh( ∆Γ 2 t) -2R(λ f ) sinh( ∆Γ 2 t) (1.74) 

=

A dir cos(∆M t) + A mix sin(∆M t) cosh( ∆Γ 2 t) -A ∆Γ sinh( ∆Γ 2 t) , (1.75) where,

A dir = |λ f | 2 -1 |λ f | 2 + 1 , A mix = 2I(λ f ) |λ f | 2 + 1 , A ∆Γ = - 2R(λ f ) |λ f | 2 + 1 .
(1.76)

These three asymmetries satises the condition

|A dir | 2 + |A mix | 2 + |A ∆Γ | 2 = 1.
1.6.5 CKM matrix and New Physics: state of the art Many observables can be used to (over-)constrain the unitarity triangle. The interested reader can go to the reference [START_REF] Charles | Current status of the Standard Model CKM t and constraints on ∆F = 2 New Physics[END_REF] to check for the detailed description of them. Let us just state here that only the observables for which a good control of the attached theoretical uncertainties is achieved are eventually considered. They mainly comprise the measurements of the sides of the triangle on one hand, i.e. the magnitudes of the matrix elements |V ub |,

|V cb | and |V td | achieved by measurements of the semileptonic branching fractions of b-baryons for the two former and the oscillation frequency of B 0 s B 0 s mixing for the latter and the angle measurements on the other hand through phase dierence observables in b quark transitions, in mixing and/or decay.

Figure 1.2 displays a superimposition of the experimental constraints, provided with exclusion region at 95% C.L., under the SM hypothesis. A unique region in the complex plane is selected which means that this comprehensive set of data so far can be described with the KM paradigm of the SM.

The single CP -violation phase of the SM being enough to accommodate all the CPviolating observables (and consistently the CP -conserving observables) and it is likely that, Theoretical context given the current precision, the KM phase is the dominant source of CP violation in beautiful and strange meson systems studied at both the B-factories and LHC experiments. Still, the precision achieved so far leaves room for sub-dominant CP -violating phases beyond the SM. In particular, CP violation has not been observed to date in baryon decays and this constitutes a new territory to be explored. and found these to be compatible with no asymmetry [START_REF] Aaltonen | Measurements of Direct CP -Violating Asymmetries in Charmless Decays of Bottom Baryons[END_REF]. The LHCb collaboration as well has measured the direct A CP of charmless c decay of Λ 0 b into pK 0 S π -and found this as well to be consistent with zero [START_REF] Aaij | Searches for Λ 0 b and Ξ 0 b decays to K 0 S pπ -and K 0 S pK -nal states with rst observation of the Λ 0 b → K 0 S pπ -decay[END_REF]. Even more recently, LHCb found the ∆A CP of Λ 0 b → J/ψ pπ - and Λ 0 b → J/ψ pK -to be compatible with CP symmetry at 2.2σ level [START_REF] Aaij | Observation of the Λ 0 b → J/ψpπ -decay[END_REF]. Hence, CP violation has not yet been observed in the baryon decays.

The main analysis of this thesis focuses on the charmless four-body fully charged decays of Λ 0 b and Ξ 0 b , where aside from non-resonant components the decays can proceed through baryonic resonances, i.e. Λ * 0 , N * 0 and ∆ series. In addition, mesonic resonances can also occur (i.e. ππ, Kπ and K K). Consequently, the interference pattern is expected to be rich Theoretical context

u d u u d d ū W - V ub ∼ λ 3 V ud ∼ 1 Λ 0 b b u d d Λ 0 b u b W - g d ū u V tb ∼ 1 V td ∼ λ 3 u, c, t N * 0 N * 0
(a) Tree and penguin loop contributions of the Λ 0 b → pπ -π + π -decays proceeding through an N * 0 resonance. b studied in this analysis proceeding through N * 0 or Λ * 0 . The N * 0 resonance eventually decays to pπ, while Λ * 0 decays to pK. The Λ 0 b → pK -π + π -and Λ 0 b → pK -K + π -decays proceeding through N * 0 resonance are not shown. Note that the Λ 0 b → pK -K + π -and Λ 0 b → pK -K + K -decays can also proceed through b → u tree transition but then require an ss pair to pop-in from the vacuum.

u d u u d s ū W - V ub ∼ λ 3 V us ∼ λ Λ 0 b b u d d Λ 0 b u b W - g s ū u V tb ∼ 1 V ts ∼ λ 2 u, c, t Λ * 0 Λ * 0 (b) Tree and penguin loop contributions of the Λ 0 b → pK -π + π -decays proceeding through a Λ * 0 resonance. u d d Λ 0 b u b W - g d s s V tb ∼ 1 V td ∼ λ 3 u, c, t Λ * 0 (c) Penguin loop contribution of the Λ 0 b → pK -K + π -decays proceeding through a Λ * 0 resonance. u d d Λ 0 b u b W - g s s s V tb ∼ 1 V ts ∼ λ 2 u, c, t Λ * 0 (d) Penguin loop contribution of the Λ 0 b → pK -K + K -decays proceeding through a Λ * 0 resonance.
1.7 Quick overview of Λ 0 b and Ξ 0 b charmless decays to four-body 19 b studied in this analysis proceeding through N * 0 or Λ * 0 . The N * 0 resonance eventually decays to pπ, while Λ * 0 decays to pK. The Ξ 0 b → pK -π + π -decay proceeding through N * 0 resonance is not shown. Note that the Ξ 0 b → pK -π + K -and Ξ 0 b → pK -K + K -decays can also proceed through b → u tree transition but then require an ss pair to pop-in from the vacuum.

u s u u s d ū W - V ub ∼ λ 3 V ud ∼ 1 Ξ 0 b b u s s Ξ 0 b u b W - g d ū u V tb ∼ 1 V td ∼ λ 3 u, c, t Λ * 0 Λ * 0 (a) Tree and penguin loop contributions of the Ξ 0 b → pK -π + π -decays proceeding through a Λ * 0 resonance. u Ξ 0 b u Λ * 0 s s b W - g s d d V tb ∼ 1 V ts ∼ λ 2 u, c, t (b) Penguin loop contributions of the Ξ 0 b → pK -π + K -decays proceeding through a Λ * 0 resonance. s u u Ξ 0 b s b W - g d s s V tb ∼ 1 V td ∼ λ 3 u, c, t Λ * 0 (c) Penguin loop contribution of the Ξ 0 b → pK -K + K -decays proceeding through a Λ * 0 resonance.

Introduction

The analyses presented in this thesis used the data collected during the Run I data taking of the Large Hadron Collider beauty (LHCb) experiment at the Large Hadron Collider (LHC) of CERN. As such, this Chapter presents the overview of the LHC machine and the LHCb detector.

The LHC machine

The Large Hadron Collider (LHC) machine, owned and managed by the European Organization for Nuclear Research (CERN), is an underground two-ring superconducting hadron accelerator and collider [START_REF] Lhc Study Group | The Large Hadron Collider: conceptual design[END_REF][START_REF] Evans | LHC Machine[END_REF]. It is located under the French-Swiss border, just outside Geneva. Using the same 26.7 km long underground tunnel previously housing the Large Electron Positron (LEP) collider, the LHC accelerates and then smashes two proton beams circulating in opposite directions. Up to date, the LHC machine is the highest energy accelerator ever built. TeV, while it was 8 TeV for the 2012 campagn. The LHC is also capable of accelerating and colliding lead ions (Pb). In early 2013, the LHC delivered proton-Pb and Pb-Pb collisions.

After a two-year scheduled long shutdown, the LHC again delivered stable proton beams starting on the 3rd of June 2015, at a center-of-mass energy of [START_REF] Aaltonen | Measurements of Direct CP -Violating Asymmetries in Charmless Decays of Bottom Baryons[END_REF] TeV.

The LHC and the LHCb experiment

Accelerator overview

The LHC is a cold machine circulating proton beams in opposite directions up to high energies before colliding them in four dierent interaction points. Shown in Figure 2 The LHC is designed to operate at 14 TeV center-of-mass energy, but due to the technical accident in 2008, the decision to operate at center-of-mass energies at around half of its original design was opted for the Run I data taking. The beams in the LHC main ring are deected using superconducting magnets in cryostats cooled with superuid helium in order to keep the magnets below 2 K. A total of 1232 dipole magnets maintain the beams in the accelerator pipe, together with 392 quadrupole magnets to focus the beams. The acceleration is provided by 16 radiofrequency cavities.

2.2

The LHC machine 23

LHC experiments

There are several experiments placed at dierent points of the LHC. The four main experiments are A ToroidaL LHC Apparatus (ATLAS), Compact Muon Solenoid (CMS), Large Hadron Collider beauty (LHCb) and A Large Ion Collider Experiment (ALICE).

The ATLAS [5355], CMS [56,[START_REF] Cms | The CMS experiment at the CERN LHC[END_REF] and ALICE [5860] experiments use 4π detectors, while LHCb [61,[START_REF] Alves | The LHCb detector at the LHC[END_REF] uses a forward spectrometer, with a coverage of 2 to 5 in pseudorapidity angle. Further details of the LHCb detector will be discussed in Section 2.3. These four main detectors are placed at dierent collision points of the LHC as shown in Figure 2.1.

The ATLAS and CMS collaborations both observed the long-sought Higgs boson in 2012 [START_REF] Aad | Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC[END_REF][START_REF] Chatrchyan | Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC[END_REF]. Moreover, their objective is to search for new physics by directly observing new particles predicted by theories extending the SM, including supersymmetric particles. The ALICE experiment seeks to explore and understand the quark-gluon plasma. The LHCb experiment specializes in investigating the slight dierences between matter and anti-matter by studying b-avoured hadrons and charmed hadrons, and indirect searches for new physics through measurements on rare decays. 

Luminosity

In HEP experiments, aside from the requirement of having a high energy collision, there is also a need to produce large enough samples of dierent decays for analysis, which can be achieved by increasing the luminosity of the collider machine. The luminosity of a collider machine denes the number of interactions in a certain time over the interaction cross section.

In the LHC, this is given by [START_REF] Lhc Study Group | The Large Hadron Collider: conceptual design[END_REF],

L = N 1 N 2 k b f γF 4πβ * , (2.1)
where N i is the number of protons in each proton bunch, k b is the number of colliding bunches, f is the revolution frequency, γ is the relativistic factor, β * is the value of the betatron function at the interaction point, is the emittance and F accounts for the reduction due to the crossing angle of the beams.

Each experiment has its own luminosity requirement in accordance to their physics interest. The ATLAS and CMS collaborations opted for higher luminosities in order to search for heavy particles with expectedly low cross-section production. In contrast, the LHCb experiment chose a lower luminosity in order to limit the number of proton-proton vertices as a requirement for precise measurements. Shown in Figure 2.2 is how the probability of the number of interactions scale with luminosity. Practically, the lower luminosity at 32 cm -2 s -1 . For the design luminosity of the experiment, the expected number of proton-proton interaction per bunch would have been a typical 0.5.

However, as can be seen in Figure 2.3, LHCb received an average luminosity above the design specication reaching up to an average visible interaction per bunch (µ vis ) of ∼2.5 [72].

bb pair production

The dominant mechanism of bb pair production in the LHC proton-proton collisions is gluongluon fusion. Shown in Figure 2.4 are typical gluon-gluon interactions producing bb pair. The bb pairs are mostly going either in the forward or backward directions. Figure 2.5 shows the polar angle distribution of the bb pairs as simulated using PYTHIA for pp collisions at a center-of-mass energy of 8 TeV. It also shows the angular distribution in terms of pseudorapidities. This angular distribution leads to the design of the LHCb spectrometer to be a single-arm forward spectrometer a .

The direct production of bb pairs at the LHC occurs mostly entirely via QCD processes that do not discriminate between b and b quarks. However, some weak interaction processes are also present which are not avour-conserving and distinct for b and b quarks [START_REF] Norrbin | Bottom production asymmetries at the LHC[END_REF][START_REF] Norrbin | Production and hadronization of heavy quarks[END_REF],

resulting to an asymmetry referred to in the following as production asymmetry.

The LHCb experiment and LHCb detector

One of the four main experiments at the LHC is the LHCb experiment. This experiment specializes in studying the dierences of matter and anti-matter by looking mainly at the decay processes of b-avoured hadrons or charmed hadrons. In addition, it also measures a Denition of forward and backward direction is a matter of adopted convention. The data used in the analyses presented in this thesis are gathered using the LHCb detector. Hence, I discuss in this Section the LHCb detector and its sub-components. I will rst briey present the dierent subdetectors in Section 2.3.1 in a sequence naturally traversed by a particle produced at the interaction point.

Overview

Eventually, the main goal of LHCb is to search indirectly for a new physics evidence by looking for eects of new particles in processes that are precisely predicted in the SM. The CKM matrix, which contains one CP -violating phase, describes the mixing of the quarks in

The LHC and the LHCb experiment The detector is divided into two identical halves: left and right sides, but more commonly called C side (the cryogenics side) and A side (the cavern access side). The two sides can be moved horizontally, which allows access for maintenance. The LHCb detector is located at the Interaction Point number 8 of the LHC, which was previously occupied by the DELPHI detector during the LEP times.
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Following the natural ow of a physics event, I will briey discuss the subcomponents of the LHCb detector. The LHC proton beams come from two opposite sides and then made to collide at the interaction (or collision) point, which is located inside the Vertex Locator (VELO). Production of bb pairs occurs at the interaction point, where they create production vertex (or vertices) when they hadronize to long-lived mesons or baryons before ying along the positive z-axis direction. Typically, the b-avoured hadron decays inside b The bending plane refers to the horizontal plane, which is perpendicular to the magnetic eld. As the name suggests, the main purpose of the VELO is to locate these vertices, starting by the production vertices. The daughter particles then traverse the detector either fully or partially. First, the particle passes the rst Ring Imaging Cherenkov detector (RICH1), where it produces Cherenkov radiation useful for particle identication, and then passes the TT (Tracker Turicensis) stations. The magnet, located just after the TT stations, bends the track trajectory allowing one to measure the momentum of the tracks as well as their electric charges. After the magnet, the tracks traverse three more tracking stations named T1, T2, and T3, before passing the second RICH detector (RICH2). One muon station (labelled M1) is placed just before the calorimeter (CALO) system. The CALO system, which is composed of several subdetectors each with its own purpose, provides energy and position of the particles, in addition to triggering electrons, photons and hadrons and aiding the particle identication process. From nearest to farthest from the interaction, the CALO subdetectors are the Silicon Pad Detector (SPD), the Preshower detector (PS), the Electromagnetic Calorimeter (ECAL) and the Hadronic Calorimeter (HCAL). Finally, if the tracks are muons, they likely leave traces in four more muon stations located after the CALO system.

In the next Subsections, a more detailed description of each subdetector will be presented.

In presenting these subdetectors, they are gathered together in systems, i.e. vertexing and tracking system, particle identication system, calorimeter system and muon system. c The decay vertex is sometimes referred to as secondary vertex, while the production vertex is sometimes called primary vertex.

The LHC and the LHCb experiment

Vertexing and tracking system

The vertexing and the tracking system provides mostly the topological variables of the decay.

In a typical event with a long-lived b-avoured hadron, two vertices are present in the vertex locator, corresponding to its production and decay vertices. The tracks of the daughter particles are then traced using the dierent tracking stations and some hits in the VELO if available.

Vertex locator

The VELO [77], which is a silicon tracker, is the closest detector to the interaction point, since it is primarily aimed for reconstructing the position of the production and decay vertices.

The VELO is designed to be retractable, and thus is open when beams are still unstable, and closed when physics data taking is to be conducted. In a closed position, the rst active strip of the VELO is only 8.2 mm from the beams, which is within LHC's beam aperture during beam injection phase, and thus has to be retracted out to 30 mm before having stable beams. Shown in Figure 2.7 is a sketch of the VELO, showing that it is made of several detector modules arranged along the z-axis. Notice also that the modules are closer near the interaction point. Each sensor has a total of 2048 silicon strips. In order to shield the electronics of the VELO from the radiations produced by the circulating proton beams, a ∼300 µm thick aluminum foil, called RF foil, is placed between the sensors and the beam vacuum. Its shape can be seen in Figure 2.8(right), where it shows that the shape ows around the sensor planes.

A charged particle track produced in the VELO region has to traverse at least 3 sensor modules to be reconstructed as a track. This is one of the requirements of a VELO- The overall performance of the VELO detector is presented in Refs. [START_REF] Aaij | Performance of the LHCb Vertex Locator[END_REF][START_REF] Lhcb Velo Group | The LHCb VELO: Performance and radiation damage[END_REF]. It has been found that at the end of the LHC Run I, 0.6% of the strips are inecient and 0.02% are noisy. These numbers are eectively identical to those at the start of operations in 2010. The primary vertices are reconstructed by collecting several reconstructed tracks in the VELO that points to the same location. The average spatial resolution of reconstructed primary vertex (PV) improves as a function of the number of associated tracks (N ). Figure 2.9(left)

shows how the resolution along the z-axis (σ z ) improves with N during the 2012 campaign. A typical PV has 25 associated tracks and hence a typical σ z of ∼90 µm, and a typical resolution perpendicular to the z-axis of ∼13 µm [START_REF] Lhcb Velo Group | The LHCb VELO: Performance and radiation damage[END_REF]. The impact parameter, which is dened as the closest approach of a track to the PV, is widely used in online (trigger) and oine signal selections. Shown in Figure 2.9(right) is how the impact parameter resolution varies with the 1/p T of the track. This demonstrates the good performance of the VELO.

With such good performance, we investigated the feasibility of reconstructing a decay with one missing particle in the nal state. The excellent vertexing could provide constraints, together other kinematical constraints, that would allow a reconstruction of the b-avoured The LHC and the LHCb experiment 

Magnet

LHCb has a warm dipole magnet designed to deliver an integrated eld of 4 Tm [80]. Shown in Figure 2.10(left) is a sketch of the magnet. 

Silicon trackers

Aside from the VELO detector, there are two more sections that contributes in the tracking system. These are the Silicon Tracker (ST) and the Outer Tracker (OT). The OT is discussed in Section 2.3.2. The ST is further divided into two seprate detectors, namely the Tracker Turicensis (TT) and the Inner Tracker (IT) [81]. A schematic diagram of the layout of the ST and OT stations is shown in Figure 2.11(left). The TT station, which covers the whole LHCb angular acceptance is located just before the magnet, while the IT stations are located after the magnets. The three IT stations, together with the OT stations, are named as T1, 

Outer tracker

The Outer Tracker (OT) is a gaseous straw tube detector [82,[START_REF] Arink | Performance of the LHCb Outer Tracker[END_REF] covering an area of about 5×6 m 2 with a total of 12 double layers of straw tubes. It is located in the outer part of the The LHC and the LHCb experiment station consists of four layers, where the rst and last layers are oriented vertically, while the second and third layers are tilted by -5

• and +5

• with respect to the vertical, respectively.

Track types

There are ve reconstructed track types dened in LHCb depending on which tracking stations were used to reconstruct the track. These are shown in The LHC and the LHCb experiment will be discussed in Section 5.6.

Calorimeter system

The calorimeter system of the LHCb spectrometer [START_REF]LHCb calorimeters: Technical Design Report[END_REF] is, in rst place, used to select high transverse energy hadron, electron, photon and π 0 candidates for the rst level of trigger of the experiment (L0). It provides as well the identication of electrons and photons and the measurement of their energies and positions. These are used in turn for avour tagging information, studies of radiative decays or CP violation studies in measurements of nal states with π 0 to cite some of them.

The fast identication of an electromagnetic object in a high hadronic multiplicity environment requires a longitudinal segmentation of its shower. This is realized by a preshower detector e (a lead converter sheet upstream a plane of scintillating detectors, denoted PS) followed by the main section of the electromagnetic calorimeter (ECAL). The choice of the lead thickness (2.5 radiation lengths, X 0 ) of the PS results from a compromise between trigger performance and ultimate energy resolution [START_REF] Guschin | Monte-carlo study of LHCb preshower[END_REF]. In addition, a Scintillator Pad Detector (SPD) plane is set upstream the PS in order to tag at the L0 trigger the charged or neutral nature of the particle initiating the electromagnetic shower.

The ECAL thickness was chosen to be 25X 0 [86] such that the showers from high energy photons are in average contained in the detector, ensuring a satisfactory energy resolution.

The HCAL instead is mostly used at the L0 trigger and its thickness is set to 5.6 interaction lengths [START_REF] Djeliadine | LHCb hadron trigger and Hcal cell size and length optimization[END_REF] due to space limitations.

The four sub-detectors mentioned above have a variable lateral segmentation (displayed in Figure 2.15) in order to cope with the hit density variation over the calorimeter surface.

Three dierent sections of elementary cells have been chosen for the ECAL. The SPD and PS detectors are accordingly segmented, with elementary cell sizes dened such that the SPD/PS/ ECAL system is projective. In reason of the dimensions of the hadronic showers, the HCAL is only segmented into two zones with larger cell sizes.

The active calorimeter detector elements are scintillating materials. ECAL is designed with a sampling scintillator/lead structure readout by plastic wavelength shifting (WLS) bres (Shashlik calorimeter). This choice is adapted to LHCb requirements in terms of modest energy resolution, fast time response and radiation resistance. The HCAL follows the same conservative design [START_REF]LHCb calorimeters: Technical Design Report[END_REF], being a sampling device made from iron as absorber and scintillating tiles as active material, read out by WLS bres. For these two sub-detectors, the light of an elementary cell is read out by a photomultiplier tube. The next chapter of this thesis will provide a detailed description of the SPD and PS sub-detectors.

Muon system

The muon system, aimed at both triggering on and identifying muons, is a key element of the LHCb spectrometer. Muons are however not used in the analyses presented in this thesis. The description of the detector will hence be rapid. The muon system provides in rst place high-p T candidates for the L0 trigger decision. It comprises ve rectangular stations (M1-M5) installed along the beam axis. The rst station (M1) is placed in front of the calorimeters. The high charged tracks multiplicity at this position in the innermost part of the detector made necessary the use of triple-GEM (Gas Electron Multiplier) chambers. and interleaved with 80 cm thick iron absorbers aimed at stopping hadrons. Figure 2.16 displays the muon system layout [START_REF]LHCb muon system technical design report[END_REF]. The geometry of the ve stations is projective. Each detector is split into rectangular logical pads (grouping of anode wires depending on the chamber) whose dimensions dene the x, y resolution of the hit reconstruction.

Triggering scheme

Not all collision events are eventually saved for further analysis. Only about 1% of the visible proton-proton interactions results in the production of a bb pair, and only about 20% of these are within the LHCb angular acceptance. There is also a technical limit on the amount of data that can be written into storage in a given time. The available bandwidth of writing in LHCb is about 3 kHz (reached higher values in recent operation), while LHCb designed luminosity corresponds to a rate of collision events with at least one visible interaction at a level of 10 MHz. As such, an ecient online selection of interesting events has to cope up with the disproportion between the available writing rate and the LHCb operational frequency. This is achieved by a multi-stage trigger system.

There are two main stages in the LHCb triggering process [START_REF]LHCb trigger system: Technical Design Report[END_REF][START_REF] Head | The LHCb trigger system[END_REF]. The rst stage, called level 0 (L0) trigger, is implemented in the hardware, while the second stage is the softwarebased High Level Trigger (HLT). The ow of the triggering scheme is summarized in Figure
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Figure 2.17: Flowchart of the LHCb triggering scheme.

The bunch crossing frequency of the LHC is 40 MHz. The L0 trigger works in sync with this and is designed to reduce the rate to 1 MHz, which is the maximum frequency at which the detector can be read. The L0 trigger is consists of the pile-up, calorimeter and muon subsytems. Although eventually it has not been used, the pile-up subsystem distinguishes the multiplicity of visible interactions in each bunch crossing. The presence of large tranverse momentum track is one of the signatures of B meson decay. As such, the data from the muon detectors are analyzed in order to trigger on large momentum muon candidates. Data delivered by the calorimeter system are also analyzed to trigger on large transverse energy hadron, electron or photon candidates. If any of the alley passes the threshold cut, the event is passed to the HLT for further screening.

For timing reasons, the HLT is split into two stages, which are the HLT1 and HLT2 stages [START_REF] Gligorov | The HLT inclusive B triggers[END_REF]. In the HLT1 stage, the process performs a fast tracking searching for a very good quality track with a high transverse momentum and high impact parameter with respect to any reconstructed primary vertex. Eventually, the aim of HLT1 is to reduce the rate by a factor of around 20. Events passing the HLT1 selection are processed by the HLT2, which performs a full reconstruction close to the oine reconstruction. For the analyses presented in this document, we are making use of the HLT2 inclusive trigger based on topological selection of a 2 to 4 tracks displaced vertex. Events that passed the full trigger chain are eventually saved to storage. Further oine selection cuts are to be applied depending on the strategy and needs of the analysts.

Stripping lines

The number of events saved in the LHCb data storage is enormous and requires further oine selection cuts in order to remove events which are not of interest. The stripping line is the rst oine selection that is applied by the analysts in accordance to its physics interest.

During stripping campaigns, the common particle reconstruction is done centrally and each analyst, subject to availability of bandwidth, submits its own selection requirements known as Stripping line. Stripping lines for somewhat similar physics programme are grouped together into Streams. One example of a stripping line selection is presented in Section 5.4.

Chapter 3

Pre-shower detector studies In this chapter, the ageing and calibration of the Pre-Shower (PS) subdetector, which the LHCb-Clermont group is responsible for, is studied. There are two main sources of ageing for the PS detector: the decrease of transparency of the scintillating material and the permanent decrease of the gain of the photomultiplier channel. Both are correctible to some extent through a recalibration of the detector which will be as well addressed in this chapter.

The discussion will start with an overview of the PS sub-detector, specically on its structure, in addition to what was presented in Section 2.3.4. The front-end electronics and its implications for the calibration and ageing studies, are also reviewed. Finally, due to dierence in center-of-mass energy for 2011 and 2012, the results are presented in dierent sections for the two data taking periods.

Pre-shower detector characteristics and denitions

The Pre-Shower (PS) detector is one of the four sub-detectors of the calorimeter system of the LHCb spectrometer. The three other subdetectors are the Scintillating Pad Detector

Pre-shower detector studies (SPD), the Electromagnetic Calorimeter (ECAL), and the Hadronic Calorimeter (HCAL).

Although each of these subdetectors has its own purpose, they work in unity to trigger on electrons, photons and hadrons. On an oine event analysis, they also provide the energy and position of neutral particles and help in the identication of particles. Tracks coming from the interaction point will traverse rst the SPD, followed by the PS detector, and then the ECAL and HCAL.

Inserted in between the SPD and PS detector is a 15 mm thick lead, corresponding to 2.5X 0 . This lead will increase the probability of photons and electrons to interact with the material, thereby start the electromagnetic shower. The PS detector is used to dierentiate charged pions from electromagnetic showers, providing the information for the L0 trigger decision, where no other part of the LHCb detector can be used to distinguish those two types of particles.

The PS detector is divided into two sides, namely A and C sides. A detailed summary can be found in Table 3.2.

The Pre-shower detector overview

The basic unit of the PS detector is a square scintillating polysterene cell. A sketch and an actual photo of one cell is shown in Figure 3.2. There are three dierent cell sizes depending on the region. The cell size is smaller for cells near the beam pipe, to account for the high track multiplicity in that region, and larger in the outermost region, leading to a size ratio of 1:1.5:3. A total of 6016 cells composes the whole PS detector. Reported in Table 3.1 are the cell dimensions for the dierent PS regions. The thickness of all the scintillators is 15.0 mm. We take note that the cell size is larger than the cuboid scintillator size. For each cell, a WLS ber is inserted into a 3.5 circle-shaped loop. This choice is the result of the optimization reported in [START_REF] Monteil | Mesures de précision électrofaibles[END_REF]. As shown in Figure 3.2, both ends of the WLS ber exit the scintillator. These two ends are attached to two clear bers, which are then nally connected to the same pixel of a photomultiplier. 

Pre-shower electronics overview

The design of the electronics of the PS detector is more complicated, if not equally complex, than its structural design. Hence, we refer to [START_REF] Monteil | Mesures de précision électrofaibles[END_REF] for the complete details of it. Presented in this section, however, are the elements we believe sucient to understand its implications for the calibration.

As mentioned in Section 3. of a MIP, with a precision of 5%. While the upper energy threshold is driven by the decision of wanting to correct the ECAL electromagnetic energy measurement yielding up to 100

MIPs energy deposit. This lead to the decision of using a 10-bit coding of the PS energy information to be delivered to the front-end (FE) board. The typical signal response of a scintillating cell being read out by the Ma-PMT lasts more than 25 ns, where 85% (on average and observed to be un-erratic) of the signal is received within the 25 ns window b MHz dierential analog-to-digital converter (ADC), digitizes the data. A total of 8 identical asics, each processing 8 PS and 8 SPD channels, composes the processing block. Every 25 ns, the FE board applies corrections to the digitized data corresponding to three factors. These are the pedestal correction, the gain adjustment and then the spill-over correction. These are further discussed in the next Section. After these corrections are applied, a transcoding of the 10-bit data to an 8-bit oating format is done in order to save resources. For each channel, a trigger bit is produced by comparing the post-correction data to an a priori given threshold.

The online corrections to the raw data

As briey mentioned in the previous Section, two corrections and one adjustment are applied, just after the digitization of the PS signal from the VFE boards. These corrections/adjustment are done prior to transcoding the data to an 8-bit format.

Pedestal corrrection

The rst correction applied is the pedestal correction, which aims at subtracting the VFE constant integrated noise over 25 ns for each channel. In a given channel, this oset is constant with a typical stochastic variation of 1 ADC count. The VFE asics have been selected in order that the maximal correction can be coded on 8 bits. The osets are measured regularly on an online calibration stream which allows to make oine ne adjustment corrections to the PS calibration procedure. With a total of 6016 PS channels, each having two oset corrections due to dierent VFE paths (corresponding to two bunch crossing parity), 12032 pedestal corrections have to be coded.

Gain correction

After the pedestal correction, an adjustment is applied to the digital data, whose purpose is to uniformize the response of the channels in the FE board (64 channels or 32 channels of b The bunch spacing of LHC is 25 ns.

Pre-shower detector studies the same Ma-PMT). Global multiple eects, such as dierences in Ma-PMT channels and electronic amplication, are expected to be corrected via this method. Two gain factors c G, one for each bunch crossing parity, are supplied for each channel. The method involves adding a fraction (and no subtraction) to the yet ungained value. The gain factor is given by,

G = 1 + , 0 ≤ ≤ 1, (3.1) 
where is an unsigned 8-bit number. Denoting the yet ungained data and the gained data as D r and D g , respectively, the relation between the two is given by,

D g = D r + D r , (3.2) 
where it is now apparent that D r ≤ D g ≤ 2D r . Since the is small, there was no need to preserve all the 10 bits precision of the raw data in the D r term, hence an 8×9 multiplier has been chosen leading to a maximum error of 1 LSB on the gained data D g . This translates to a precision of better than 1% at full scale.

During the rst few LHC runs in 2011, these factors were determined and has been used since then all throughout the Run I campaign. A detailed determination of these gains is presented in this document [START_REF] Sobczak | Study of charmless three-body decays of neutral B mesons with the LHCb spectrometer[END_REF]. It was found that after the gain correction the response of the PS channels is calibrated to a precision of 10%. This calibration technique has been revisited in this study to determine whether or not the calibration has signicantly changed during the 2011 and 2012 campaign periods.

Spill-over correction

As stated in Section 3.2.2, the typical signal response of the scintillating cell lasts more than the 25 ns bunch spacing. About 85% of the energy is delivered within this 25 ns window, and the remaining 15% leaks to the next time window d . As such, a correction has to be applied on the current data with respect to the immediate previous data. Denoting the current data as D n and the immediate previous as D n-1 , it is possible to correct for this spill-over eect statistically, using this relation,

D n = D n -αD n-1 , (3.3) 
where the α's for each cell/channel has been measured during test beam periods. Electronically, α is coded using an unsigned 8-bit value yielding an accuracy of 1/512 LSB. If D n D n-1 , the correction is considered as an underow and the value is set to 0.

Transcoding the data

The 10-bit corrected gained data is almost ready for transmission and processing. A transcoding procedure is however needed since the readout from the board is expected to be in an 8-bit format. A transcoding algorithm, summarized in Table 3.3, has been adopted to minimize the loss of precision. We take note that for values less than 128 ADC counts, there is no loss in precision. The PS was designed to work at 10 ADC counts for the most probable value of the MIP energy loss distribution.

c One gain factor G may be used per channel, but since there might be small eects coming from the dierence between the VFE paths, two gain factors are (and will be) assigned in the end.

d The leak is smaller for the smaller scintillating cells since the WLS bers are shorter and hence the signal time dispersion is smaller.

3.3 Pre-shower calibration method 45 If the main purpose of the PS is to help in triggering on electromagnetic objects, it can also detect the energy deposit coming from charged particles, hadrons or muons. The dynamics of the electronic read-out has been dened such that it can measure the small energy loss coming from these ionizing particles. For the sake of further discussion, let us recall the general expression of the kinetic energy loss due to Bethe and Bloch:

-

dE dx = Kz 2 Z A 1 β 2 1 2 ln 2m e c 2 β 2 γ 2 T max I 2 -β 2 - δ(βγ) 2 , (3.4) 
which describes the mean rate of energy loss by moderately relativistic (0.1 βγ 1000) charged particles. In the Equation 3.4, K is a constant equal to 4πN A r 2 e m e c 2 , where N A is the Avogadro's number, r e is the classical electron radius, m e is the electron mass. The other terms in Equation 3.4 are: Z the atomic number of the absorber, A the atomic mass, T max the maximum kinetic energy which can be imparted to a free electron in a single collision, I the mean excitation energy, δ(βγ) the density correction, β and γ the kinetic parameters of the particle, and z the charge of the particle. In the given range of βγ (1-100) the accuracy of the law is better than few percent. Outside this range it starts to fail, for low βγ additional corrections from the electron structure of the material have to be applied, while above the upper limit radiative eects start to play important role.

The ionizing particles (dominantly pions) used in the calibration process and ageing studies lie in a moderate range of βγ. This allows to consider an average minimum ionizing particle, which is momentum-independent and exhibits the same properties for all pre-shower cells [START_REF] Sobczak | Study of charmless three-body decays of neutral B mesons with the LHCb spectrometer[END_REF]. The most probable value (MPV) of the energy loss distribution of these average MIPs will be used as the estimator of the energy deposits response of a detector cell.

A MIP crosses a cell of the detector and losses a fraction of its energy in the scintillating material. Light is emitted proportionally to the deposit in the scintillator and captured by the WLS bers. The light is then collected and amplied by the photomultiplier, and the outcome is an electric signal, processed by electronics. An output from the electronics, represented by a number, interpreted as an energy measured in a given calorimeter cell is an outcome of all parts of the described process, and each part of it has an impact on the nal result. First, the energy deposited by a particle of a given energy which crosses a thin scintillator with a certain angle can be described by a Landau distribution. The most probable value of the Landau distribution depends not only on the βγ of the particle, but also on a length of a path of the particle inside the scintillator. The scintillation and the light collection eciency are the next processes which modify the outcome of the measurement.

The photomultiplier photostatistics adds up a uctuation. The last part is the noise produced in the electronics. The digital output signal of the energy deposited by MIPs is not a simple distribution, but a convolution of multiple distributions described above. A complete description of this physics is beyond the scope of this document. For the purpose of the detector calibration, the convolution of the Landau distribution with a gaussian function accounting for the material and electronics eects (dE/dx dependency on βγ, scintillation and light collection eciency, tubes photostatistics, stochastic variation of electronic osets), is enough. After proper correction of a dierent track lengths of particles passing a cell from various angles is taken into account, the target is a 10% absolute calibration.

Charged tracks reconstruction

In order to build a sample of MIPs, oine reconstructed data are used corresponding to the inclusive muon stripped data of LHCb. It is expected that this sample provides enough charged tracks statistics to perform the calibration. Very mild cuts to select charged tracks are employed. In order to have a good purity of the MIP sample inside PS cells (i.e no electromagnetic contamination), a cut on the closest electromagnetic cluster from the extrapolation of the track in the calorimeter is applied. Three more cuts are also applied in order to avoid too busy environment, which are the maximum number of channels with tracks passing through it should be at most 300, the maximum number of reconstructed vertices in the event is 2, and only the channels with only one track passing through it are considered.

Corrections to the raw energy deposit in the PS

As mentioned earlier, a couple of corrections are required in order to have most realistic energy deposit in the cell: the track length in the cell varying with the charged particle 3.3 Pre-shower calibration method 47 trajectory (the entrance angle in the detector) and the pedestal variation. They are described in details in Ref. [START_REF] Sobczak | Study of charmless three-body decays of neutral B mesons with the LHCb spectrometer[END_REF] and we are only highlighting here their important features.

Track length correction

The MIPs are crossing the detector with dierent angles. As such, their paths inside cells are dierent and must be corrected for. Figure 3.5 illustrates the passage of a charged particle in a scintillating cell in order to dene the geometric coordinates of the problem. The cross section σ of a cell for a track with given cylindrical coordinates angles θ and φ can be written as, σ = a(a cos(θ) + e sin(θ)(sin(φ) + cos(φ))), (3.5) where a and e are the cell front plane length and the cell depth respectively. The volume V of the cell being dened as, V = a 2 e, V = σ l , where the average track length l for the angles θ and φ is determined to be, l = ae a cos(θ) + e sin(θ)(sin(φ) + cos(φ)) .

(3.6)

The track length correction to the measured ADC value ADC measured is eventually set to be,

ADC = ADC measured e l (3.7)
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Residual pedestal corrections

As mentioned earlier, the electronics osets are corrected in the FE electronics, up to the stochastic uctuations of the VFE integrators. However, the experimental conditions change between the time the pedestal measurements are made and set into the electronics and the actual measurement can induce a drift from the measured values f . Though the absolute variation is observed to be modest (a typical ADC count), it is a non negligible fraction of the MIP MPV value. The residual pedestals are measured continuously in the online monitoring system. For a given period of data taking, the typical observed drifts, when applicable, are taken into account as a further correction of the measured charge for each cell.

Numeric gains derivation

The gathering of new numeric gains rst proceeds through degaining the saved raw data in LHCb. A track-length correction is then applied, and then a modelling of the resulting ADC distribution is done. The MPV values are obtained for each channel and are eventually used for the assignment of new numetic gains.

Charge distribution degaining

For a given dataset, two charge collection distributions are built per channel with one distribution for Even bunch crossings and another one for Odd bunch crossings (hereafter referred simply as Even Bx and Odd Bx). The information saved in the LHCb stripped data are already with applied gains, using the numeric gains set at the start of 2011 data taking period. A typical distribution of ADC counts for MIPs in a single channel is shown in Figure 3.6(left). Notice the empty bins in the distribution. These empty bins, which sometimes can be two consecutive bins, are due to the gaining procedure, which electronically operates on integers. Knowing however that there is a one-to-one correspondence between the gained ADC values and the pre-gained ADC values, we can recover the distribution of the pre-gained ADC counts by a degaining method. The degaining is simply a reverse process of the gaining proceduce, but a special care is taken in order to reproduce the electronic implementation of the method. A typical distribution of the degained ADC counts can be seen in Figure 3.6(right). Track length correction, as described in Section 3.3.3, is applied to the degained ADC values.

ADC distribution modelling

Once track-length corrected, the ADC counts distribution per channel is now ready for modelling. The model used to describe the distribution is a convolution of a Landau function and a Gaussian function. The Landau distribution [START_REF] Landau | On the energy loss of fast particles by ionization[END_REF] simply represents the energy loss of MIPs in a thin scintillator. Its corresponding most probable value (MPV), denoted µ L , characterizes the scintillating channel and its related electronics. In a perfectly calibrated detector, the MPVs are the same for all cells. The Landau width σ L is a characteristic of the material being used. However, there are various eects which can cause the energy deposits to uctuate. Main contributors to this uctuation are the variable photomultiplier photostatistics and the uncertainties in the track length correction.

This uctuation is modelled by a Gaussian function G(x; µ G = 0, σ G ), where the value of σ G describes the eect. Since the Gaussian function can cause the distribution to allow f Power cycling of crates is the usual culprit for these changes. negative values of ADC counts, it is not a good PDF when it comes to low values of ADC counts. However, since the MIP MPV position is typically in the range 7-10 ADC counts, with a resolution of ∼2 ADC, the eect is negligible for the purpose of the calibration. In the PMT reading, the statistical uctuation of the collected charge Q is hypothesized to be directly proportional to the number of photoelectrons arriving at the rst dynode.

On average, the number of photoelectrons in the smallest cell is ∼25 for MIPs, implying a statistical uctuation of 20%. Since we are measuring a charge collection of about 10 ADC for MIPs, we expect that the charge Q has a statistical uctuation of 2 ADC counts. We therefore further constrained the value of σ G by a Gaussian function of mean µ C = 2 and width of σ C = 0.6, where σ C takes into account in the case where one of the two clear bers is broken. The total t model PDF is given by,

P (x; µ L , σ L , σ G , σ C ) = N • [(L(x; µ L , σ L ) ⊗ G G (x; 0, σ G ))] • G C (σ G ; µ C = 2, σ C ) , (3.8)
where N is the normalization of the whole PDF, G G is the Gaussian function convoluting the Landau function L and the G C is the gaussian constraint applied on σ G . Typical t results can be seen in Figure 3.7. The Landau MPV values are then gathered to be used for the re-calibration of the PS detector. New numeric gains are therefore collected for each channel, with one numeric gain for even bunch crossings and one for the odd bunch crossings. 

Residual pedestal subtraction

Prior to calculation of new numeric gains, residual pedestal subtraction is applied to the degained and track-length corrected MPV values for each channel. As mentioned in Section 50 Pre-shower detector studies 3.2.3, pedestals are already corrected in the FE electronics. A drift on these values, resulting to residual pedestals, however can happen during the actual measurement. Although this is typically at the order of 1 ADC, this is not negligible for an MPV of MIPs set at around 10 ADC. Two residual pedestal measurements for each channel, one for each bunch crossing parity, are continuously measured in the online monitoring system of the LHCb detector.

Calculation of new numeric gains

The re-calibration of the PS detector involves multiplying each of the gathered MPV value by a new numeric gain factor. The objective is to uniformize the response of one board, i.e. intercalibrating the channels in each board. The nal board-to-board calibration is done by adjusting the high voltage settings, which will be discussed in Section 3.3.5. The gain factor, as described in Section 3.2.3, is a positive number ranging from 1 to 2. With this limited range, there are channels that might be outside the adjustable range g . As such, a target gained ADC value is chosen, which maximizes the number of channels to be within the adjustable range. MPV values below the adjustable range are assigned with a gain factor of 2, while those above the range are assigned with a gain factor of 1.

The procedure of nding the best targeted ADC value requires to sort the MPVs of all the channels such that they are indexed in a decreasing value of MPV, i.e.,

∀(i, j; i > j) : µ i ≤ µ j , (3.9) 
where i, j are indices of two subsequent sorted channels and µ i , µ j are their corresponding MPV values. One channel is chosen such that its MPV is the targeted reference MPV value, i.e. the assigned gain factor in this channel is 1. Among all the channels in the board, the reference channel k is chosen in a way that maximizes the number of channels which have µ l within the range [µ k /2, µ k ]. The assignment of gain factors follow, the gain factor g l of channel l being equal to,

g l =      1 if µ l ≥ µ k µ k µ l if µ k 2 < µ l < µ k 2 if µ l ≤ µ k 2 .
(3.10)

Electronically, these factors are implemented as an 8-bit information. Hence, numeric gains are coded as 0 for a gain factor of 1; 255 for a gain factor of 2; and within 0 -255 for gain factors in between 1 -2.

HV settings

The second step of the calibration involves adjusting the high voltage settings of the multianode photomultipliers (Ma-PMT) in order to calibrate all the boards, consequently calibrating the whole PS detector. Each board, containing 64 or 32 channels, is connected to a single Ma-PMT. Once the (new) numeric gains are applied onto each channel, the average gained MPV per board is calculated. These average values represent the MPV of the board.

In general, the response of each channel in terms of ADC counts can be written as,

R ch = G ch • α ch • V β , (3.11) 
where G ch is the gain factor applied in the electronics, α ch is the parameter characterizing the channel response prior to gain corrections, V is the applied voltage to the Ma-PMT g Adjustable range refers to the MPV values that can be multiplied by a factor within 1 -2 that results

to the targeted value.

3.4 Calibration results for 2011 51 and β is the high voltage scaling factor. The scaling factor β has been measured using a LED calibration system and its derivation is discussed in Ref. [START_REF] Sobczak | Study of charmless three-body decays of neutral B mesons with the LHCb spectrometer[END_REF]. Denoting the variables of the new HV settings with primed variables and the previous HV settings with unprimed variables, the ratio of the required new response R ch to the old response R ch is given by,

R ch R ch = G ch G ch V V β .
(3.12)

The new applied voltage to re-intercalibrate the boards, is therefore, the derivation of absolute precision of 10% shown in Figures 3.12 and 3.13, it is veried a posteriori that there was no need for new set of calibration numbers for the start of 2012 data taking period.

V = V R ch R ch • G ch G ch 1 β . ( 3 

Ageing results for 2011

The LHCb spectrometer has collected an integrated luminosity of 1 fb -1 during the 2011 data taking. Such amount of data could result to ageing of the detector that might require Pre-shower detector studies corrective actions. In particular, the ageing could come from the decrease of transparency of the scintillating material and the permanent decrease of the gain of the photomultipliers.

We studied the ageing eect by checking how the average MPVs of MIPs in each PS region has changed throughout the data taking period. As such, the LHCb 2011 data is divided into several samples. The absolute precision at the end of 2012 is therefore slightly degraded. It meets however the physics requirement of the energy correction.

Following the procedure described in Section 3. 

Ageing results for 2012

A total of about 2 fb -1 integrated luminosity has been collected by the LHCb spectrometer for the 2012 data taking campaign. Aside from a factor of 2 increase in received integrated The 2012 data of LHCb is divided into 8 samples, with about 200 pb -1 in each sample.

It has been checked that with this splitting, enough number of tracks passed trough the outermost channels in order to make a t of the MIPs ADC distribution. Technical stops are also avoided such that the same continuous detector operation characteristics occurred in each period. Table 3.6 lists the splitting of 2012 data, as well as its corresponding LHC ll number, LHCb run numbers and dates. Note that there are two periods explicitly not included here, which are the rst ∼200 fb -1 of 2012 and another ∼200 fb -1 during the period of 7 October 2012 to 28 October 2012. In between each of these two periods, an accidental exchange of applied gains occurred in the electronics (perhaps due to mis-aligned time synchronization) and hence spoils a fraction of the data.

Ageing plots for 2012

In the same way as used in Section 3.5, the ADC response distributions of MIPs are gathered and degained, corrected for track-length and then modelled by a Landau⊗Guass PDF. This is done for each period dened in 

Conclusion

This section gathered the results of an instrumental work conducted on the calibration and ageing study of the Pre-shower detector. The calibration of the PS proceeds with the study of the response of the detector cells to the passage of selected MIPs produced in protonproton collisions. The calibration method initially developed in [START_REF] Sobczak | Study of charmless three-body decays of neutral B mesons with the LHCb spectrometer[END_REF] has been strengthened

as far as the electronics corrections and the t model are concerned. It has been applied

to check the stability of the detector during the Run I data taking period, in particular to measure the probable ageing of both the scintillating materials and the photomultipliers.

A typical maximal ageing of 10 % was eventually observed. This level of ageing does not require any corrective action so far. Chapter 4
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s → K 0 S K + K -

Introduction

In the introduction of the theoretical context of this thesis, we took note that the CPviolating phase emerging from the Cabibbo-Kobayashi-Maskawa paradigm is enough to describe all CP -violating observables measured so far in particle systems [START_REF] Charles | Current status of the Standard Model CKM t and constraints on ∆F = 2 New Physics[END_REF]. The existence of new sources of CP violation in addition to that predicted by the CKM matrix is made necessary to account for the baryonic asymmetry in the Universe [START_REF] Huet | Electroweak baryogenesis and standard model CP violation[END_REF] and an appealing approach to it consists in searching for new sources of CP violation in the decay-time distribution of neutral B meson decays to CP -eigenstates hadronic nal states mediated by a b → s loop amplitude (so-called penguin amplitude). Many measurements have been performed by the Babar and Belle experiments in that respect, such as B 0 decays to φK 0 S or η K 0 S to cite only the most sensitive. Gathering all of these studies, the latest results [START_REF] Flavor | Averages of b-hadron, c-hadron, and τ -lepton properties as of summer 2014[END_REF] provide a consistent picture with the SM predictions, demanding an improved precision to increase the sensitivity to new CP -violating phases.

The nal states B 0 → K 0 S π + π -and B 0 → K 0 S K + K -allow for the measurement of the weak phase of B 0 -B 0 mixing in b → qqs transitions, which can be obtained, for example, 

→ K 0 S K ± π ∓ .
The rst Dalitz analysis of it is ongoing. On a similar note, the Dalitz plane analysis of the decays B 0

s → K 0 S K + K -and B 0 s → K 0 S π + π -are 68
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necessary inputs in various methods to determine the CKM phase γ in charmless transitions

[96100].

The rst step towards these physics goals is to establish the signals with the LHCb spectrometer and measure their branching fractions. The aim of the updated study is to improve the sensitivity on the unobserved K 0 S h + h -modes of the previous analysis [START_REF]Branching fraction measurements of B 0 d,s decays to K 0 S hh nal states, including rst observation of B 0 s → K S Kπ[END_REF] and to improve the signicance of the measured ones. Furthermore, we aim also to quantify the branching fractions of the observed modes relative to the mode B 0 → K 0 S π + π -which has been precisely measured at the B-factories [START_REF] Belle | Time-dependent Dalitz Plot Measurement of CP Parameters in B0 > K0(s) pi+ pi-Decays[END_REF][START_REF] Babar | Time-dependent amplitude analysis of B0 > K0(S) pi+ pi[END_REF]. Table 4.1 summarizes the current experimental knowledge of the branching fractions of these modes at the moment of this work. 

B 0 → K 0 π + π - 50.2 ± 2.3 47.5 ± 4.4 49.6 ± 2.0 B 0 → K 0 K ± π ∓ 6.4 ± 1.2 < 18 5.8 ± 2.0 6.4 ± 1.2 B 0 → K 0 K + K -23.8 ± 2.6 28.3 ± 5.2 26.3 ± 5.1 24.7 ± 2.3 B 0 s → K 0 π + π - - - 11.9 ± 5.5 - B 0 s → K 0 K ± π ∓ - - 97 ± 21 - B 0 s → K 0 K + K - - - 4.2 ± 2.

-

It is beyond the scope of this manuscript to present the full analysis and I refer the interested reader to the publication [START_REF] Aaij | Study of B 0 (s) → K 0 S h + h -decays with rst observation of B 0 s → K 0 S K ± π ∓ and B 0 s → K 0 S π + π[END_REF]. Instead, I will focus on my specic contribution to this paper. The decay modes B 0 s → K 0 S π + π -and B 0 s → K 0 S K + K -were not observed prior to this study. The decay mode B 0 s → K 0 S π + π -has been observed for the rst time in this search while the measured number of B 0 s → K 0 S K + K -decays was not signicant. Namely, the t results for B 0 s → K 0 S K + K -was only 6±4 for Down-Down (DD) K 0 S reconstruction category a and 3±3 for Long-Long (LL), as reported in Ref. [START_REF] Aaij | Study of B 0 (s) → K 0 S h + h -decays with rst observation of B 0 s → K 0 S K ± π ∓ and B 0 s → K 0 S π + π[END_REF]. A naive estimate of the signicance results in about 2 standard deviations and hence a limit has to be set instead of a branching fraction measurement. A frequentist approach has been designed to determine this limit. The method and the results we obtained are discussed in this Chapter.

Using Feldman-Cousins cut-and-count strategy

The usual procedure of quoting a one-sided or two-sided limit is to employ the cut-andcount strategy of Feldman-Cousins inference as presented in Ref. [START_REF] Feldman | A Unied approach to the classical statistical analysis of small signals[END_REF]. In this procedure, the probability density function of observing a quantity n given µ is a Poisson distribution:

P (n|µ) = (µ + b) n exp(-(µ + b))/n! (4.1)
where n is the sum of signal and background events, µ is the unknown mean of the signal distribution (a Poisson distribution) which we want to infer, and b is the known mean of the background distribution (also a Poisson distribution). We construct an interval,

µ 2 µ 1 P (µ t |n 0 )dµ t = α (4.2)
a See Section 2.3.2 for discussion on Downstream and Long tracks.
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where µ 1 is the lower limit, µ 2 is the upper limit, P (µ t |n 0 ) is the probability density of nding the true value µ t given that the observed events is n 0 , and α is the desired condence level (C.L.).

Using the t function (total PDF) used in the search for B 0 (s) → K 0 S K + K -and counting naively the yield in the range -2σ to +2σ of the nominal B 0 s mass, we got n 0 = 21 and b = 15 for DD, while n 0 = 10 and b = 7 for LL. Targetting a 90% C.L., this gives us a two-sided limit on true value µ t ([0.383, 14.996]) in the case of DD, and an upper limit (≤ 9.501) on µ t in the case of LL. Converting these limits on µ t to branching ratio of B 0 s → K 0 S K + K -to the normalization decay mode B 0 → K 0 S π + π -using,

B KK/ππ = ππ KK N KK N ππ 1 f s /f d (4.3)
we got the following limits on the BF KK/ππ ,

B(B 0 s → K 0 S K + K -) B(B 0 → K 0 S π + π -) Down-Down [0.004, 0.159] @ 90% C.L. (4.4) B(B 0 s → K 0 S K + K -) B(B 0 → K 0 S π + π -) Long-Long ≤ 0.132 @ 90% C.L. (4.5)

This limit calculation

Instead of using the Poisson law as probability density function in a usual cut-and-count experiment as described in the previous subsection, we instead use a Gaussian probability density function. This will allow us to consider the total uncertainty as the quadratic sum of the systematic and statistical uncertainties and take benet of the t result. The procedure for constructing the condence belt is summarized below:

Using pure toy studies, 100 toys are generated for each N gen {0, 5, 10, 15} both for Down-Down and Long-Long. For each toy, we plot the number of tted events N fit and found out that N fit is normally distributed. The same is also true for the σ of the tted events, where σ is the error of the t of each toy and not the standard deviation of the Gaussian distribution of N fit .

The N fit for each value of N gen is then tted with a Gaussian function (See sample plot shown in Small biases can be observed for both DD and LL at N gen = 0.

The error σ for each N fit is also normally distributed. We t it with a Gaussian function and plot the square of the mean of the Gaussian distribution, σ 2 , versus N gen . These can be parametrized by a linear function as shown in Figure 4.2(bottom). The line functions are given by,

σ 2 = (9.555 +0.403 -0.403 ) + (1.073 +0.051 -0.051 ) × N gen for DD (4.8)
Branching fraction limit determination of B 0

s → K 0 S K + K - σ 2 = (3.946 +0.355 -0.355 ) + (1.089 +0.039 -0.039 ) × N gen for LL (4.9)
The error σ described here is considered as the statistical error, hereafter referred as σ stat .

We also consider the systematic uncertainties in our construction of the condence belt. These systematics uncertainties come from the selection eciency of B 0

s → K 0 S K + K - ( KK ), selection eciency of B 0 → K 0 S π + π -( ππ )
, the number of observed B 0 → K 0 S π + π -events (N ππ ), and the uncertainty from hadronization fraction f s /f d . These are the quantities used to derive the expected signal yield N gen for a given relative branching fraction B KK/ππ ,

N gen = (B KK/ππ ) KK ππ (N ππ )(f s /f d ) (4.10)
As such, the systematic uncertainty is given by,

σ 2 sys = σ 2 Ngen = σ 2 KK 2 KK + σ 2 ππ 2 ππ + σ 2 Nππ N 2 ππ + σ 2 f sd f 2 sd N 2 gen (4.11)
A Gaussian PDF is then constructed for each hypothesized B KK/ππ with mean N fit calculated from Equations 4.6 for DD (4.7 for LL) and 4.10. The standard deviation, σ tot , of the Gaussian PDF is the quadratic sum of the statistical and systematic uncertainties. Take note that σ tot increases with B KK/ππ since σ sys and σ stat are linear functions of N gen , and N gen is proportional to B KK/ππ . At B KK/ππ = 0 however, the remaining uncertainty is due to the constant part of the statistical uncertainty as given in Equation 4.8 for DD (or Equation 4.9 for LL).

For each value of hypothesized relative branching fraction, we construct a 90% condence interval. This condence interval is constructed by choosing which interval of the Gaussian PDF shall be included b . Using the ranking procedure of Feldman & Cousins [START_REF] Feldman | A Unied approach to the classical statistical analysis of small signals[END_REF], the Gaussian PDF is divided into several small intervals and each interval has a corresponding rank, given by, R(x) = P (x|µ, σ) P (x|µ best , σ) .

(4.12)

The µ best is chosen to be the best physically allowed mean. This means that µ best is equal to x when x is non-negative, and 0 otherwise, resulting to the following equations,

R(x) = e -(x-µ) 2 /2σ 2 if x ≥ 0 e (2xµ-µ 2 )/2σ 2 if x < 0
Starting from the highest ranked interval, the probability for each small interval given by P (x + dx|µ, σ) is added until the 90% requirement is reached.

Down-Down

The 90% condence belt for the Down-Down category is shown in Figure 4.3. The observed number of B 0 s → K 0 S K + K -events for the Down-Down category is 6±4, resulting to a two-sided limit 0.003 ≤ B KK/ππ ≤ 0.066 @ 90% condence level.

b In Neyman's ordering procedure, the 90% condence interval of a Gaussian PDF is the range [µ -1.64σ, µ + 1.64σ]. In this study, we use the Feldman-Cousins ordering principle as this procedure avoids the concept of ip-oping. 

Long-Long

The 90% condence belt for the Long-Long category is shown in Figure 4.4. The observed number of B 0 s → K 0 S K + K -events for the Long-Long category is 3±3, resulting to a onesided limit B KK/ππ ≤ 0.130 @ 90% condence level.

Down-Down and Long-Long Combined

The two Gaussian probability density functions from Down-Down and Long-Long are then combined to make a nal 90% condence belt and condence interval. The combined probability density function is the product of the two Gaussian PDF, which is also a Gaussian PDF whose mean µ and standard deviation σ are given by Equations 4.13 and 4.14.

µ = σ 2 LL µ DD + σ 2 DD µ LL σ 2 DD + σ 2 LL (4.13) σ = σ 2 DD σ 2 LL σ 2 DD + σ 2 LL (4.14)
Since the number of observed B 0 s → K 0 S K + K -events is 6±4 for the case of Down-Down and 3±3 for the Long-Long category, the weighted observed events is equal to 4.08 as calculated from Equation 4.13. This results to a two-sided limit 0.008 ≤ B KK/ππ ≤ 0.068 @ 90% condence level as shown in 

Summary of results

Using a modied Feldman-Cousins inference on quoting one-sided or two-sided limits, we have calculated the limits on the relative branching ratio of B 0 s → K 0 S K + K -with respect to the normalization mode B 0 → K 0 S π + π -. We have chosen to quote a 90% C.L. The branching ratio limits are calculated separately for events involving K 0 S decaying into Downstream tracks and events decaying into Long tracks. Eventually, the two results are combined into one measurement, taking only once the uncertainty of f s/f d in the calculation. The combined results is,

B(B 0 s → K 0 S K + K -) B(B 0 → K 0 S π + π -) Combined [0.008, 0.068] @ 90% C.L. (4.15)
Finally, using the best knowledge on the branching fraction of B 0 → K 0 S π + π -((4.96 ± 0.20)×10 -5 [105, 106]) at the time this analysis was done, the limit on the branching fraction of B 0 The dotted line corresponds to the mean of the Gaussian distribution, the dashed line corresponds to the upper and lower limit for statistical uncertainty only, while the solid line corresponds to the upper and lower limit for combined statistical and systematic uncertainties. The red lines correspond to the observed N LL KK and the upper limit.

s → K 0 S K + K -is therefore, B(B 0 s → K 0 S K + K -) [0.2, 3.4] × 10 -6 @ 90% C.L. .
Branching fraction limit determination of B 0 The dotted line corresponds to the mean of the Gaussian distribution, the dashed line corresponds to the upper and lower limit for statistical uncertainty only, while the solid line corresponds to the upper and lower limit for combined statistical and systematic uncertainties. The red lines correspond to the observed N KK and the lower and upper limits. 

s → K 0 S K + K -

Introduction

The measurements of CP violation phenomena receive so far a consistent interpretation within the SM paradigm. CP asymmetries A CP have been observed in the K and B mesons decays and in the latter case, large asymmetries are measured in several laboratories (2-body and 3-body decays). The control of the hadronic parameters for most of these observables is however not satisfactory and prevents an electroweak interpretation.

The b-avoured baryons however remain largely unexplored. Recently, the CDF experiment published their measurement of the direct A CP in the decay of Λ 0 b → pπ -and Λ 0 b → pK -and found these to be compatible with no asymmetry [START_REF] Aaltonen | Measurements of Direct CP -Violating Asymmetries in Charmless Decays of Bottom Baryons[END_REF] a . The latest published result of the LHCb collaboration on the phase-space integrated direct A CP of charmless decay of Λ 0 b → pK 0 S π -using L = 1 fb -1 of data also showed to be consistent with zero [START_REF] Aaij | Searches for Λ 0 b and Ξ 0 b decays to K 0 S pπ -and K 0 S pK -nal states with rst observation of the Λ 0 b → K 0 S pπ -decay[END_REF]. More recently, LHCb published the ∆A CP of Λ 0 b → J/ψ pπ -and Λ 0 b → J/ψ pK -and found it to be compatible with CP symmetry at 2.2σ level [START_REF] Aaij | Observation of the Λ 0 b → J/ψpπ -decay[END_REF]. Therefore, the CP violation in a LHCb is also measuring the direct A CP of these decay modes in an as-yet unpublished results. In multibody decays of b-baryons, the interference pattern is expected to be rich of resonance structures, in particular in the low mass two-body baryon resonances (Λ * 0 , N * 0 and ∆ series). This is in addition to the structures in the two-body non-baryonic resonances (i.e. ππ, Kπ and K + K -invariant mass spectra). Consequently, the weak interaction induced asymmetries might receive signicant enhancement from the phase dierences coming from these strong resonances.

In fully-charged decays, the Λ 0 b or Ξ 0 b is self-tagged by the presence of either the proton or anti-proton, providing a direct information on the avour of the Λ 0 b or Ξ 0 b . We will assume in this analysis that the baryon number is conserved in the decays of interest. A simple counting experiment can measure the direct A CP up to corrections of instrumental and productions asymmetries. In LHCb, this amounts to correction on the K + /K -, π + /π - and p/p detection asymmetries and b-baryon/b-baryon production asymmetry. Although the K + /K -and π + /π -detection asymmetries were both measured in LHCb to percent level [START_REF] Aaij | Measurement of the D ± production asymmetry in 7 TeV pp collisions[END_REF], the production asymmetry of b(b)-baryons and p/p detection asymmetry, two inputs needed for the extraction of A CP from A raw , remain unmeasured. There are at least two ways to overcome these experimental hurdles. One method is by measuring T-odd observables which is expected to cancel the production and detection asymmetries b . The other method is by taking the dierence of A raw of the charmless decay mode to the A raw of a control mode, where the control mode has the same unpaired nal tracks c as the charmless decay mode but the decay proceeds through a dierent quark transition. If the ∆A raw is small enough, the production and detection asymmetries cancel, while for large values of ∆A raw , the production and detection asymmetries are again needed to extract the A CP if one wishes to do so d . Let us note that in the case of a vanishing CP asymmetry, the cancellation of production and detection asymmetries is exact.

In this analysis, we aim to measure the ∆A raw of both Λ 0 b and Ξ 0 b (hereafter referred collectively as X 0 b ) charmlessly decaying to fully-charged four-body nal states with respect to charmed decays having the same unpaired nal tracks, as summarized in Table 5

.1. Specically, the decays e are Λ 0 b → pπ -π + π -, Λ 0 b → pK -π + π -, Λ 0 b → pK -K + π -, Λ 0 b → pK -K + K -, Ξ 0 b → pK -π + π -, Ξ 0 b → pK -π + K -, Ξ 0 b → pK -K + K -.
All of these charmless decay modes of X 0

b are yet unobserved. The control mode for each charmless decay, as listed in Table 5.1, is chosen in a way that they have the same set of unpaired tracks, except for the Ξ 0 b → pK -π + K -and Ξ 0 b → pK -K + K -decay modes. Corrections for K + /K - and π + /π -detection asymmetries are then necessary. The A CP s of the control modes are expected to be consistent with no asymmetry as they proceed solely through a tree level diagram. Two of the decay modes studied in this analysis are of particular interest for direct A CP measurement due to the same order of the tree (T) and penguin (P) contributions to the decay, which are the Λ 0 b → pπ -π + π -and Ξ 0 b → pK -π + π -. Both the tree and gluonic b LHCb has an on-going analysis on the T-odd observables on the same decay modes studied in this analysis.

c Unpaired tracks are the particle tracks which has no charge conjugate present on the nal decay. In example, in the decay Λ 0 b → pK -π + π -, the p and K are unpaired tracks while π + and π -are pairs. d This is discussed further in Appendix A.1.

e Charge conjugation is implied throughout in this analysis, unless categorically stated otherwise. where the udd or uds quarks combinations can hadronize in the excited states N * 0 or Λ * 0 before decaying to pπ or pK nal states. Nonetheless, large asymmetries can still be seen as well in places where O(λ 2 ) penguin and O(λ 4 ) tree diagrams as observed in the fully-charged three-body B decays. Finally, the ∆A raw is calculated for three phase space regions, i.e., (1) integrated throughout the phase space, (2) with m ph (h being a π or K) less than 2 GeV/c 2 , and (3) with m ph less than 2 GeV/c 2 and m h h (h & h the two other tracks) less than ∼1.65 GeV/c 2 .

Table 5.1: The four-body fully-charged charmless decays of X 0 b studied in this analysis and its corresponding charmed decays as control modes.

Charmless decay

Quark transition Charmed decay Quark transition 

Λ 0 b → pπ -π + π - b → uud (T + P) Λ 0 b → (Λ + c → pπ -π + )π - b → cud (T) Λ 0 b → pK -π + π - b → uus (T + P) Λ 0 b → (Λ + c → pK -π + )π -b → cud (T) Λ 0 b → pK -K + π - b → dss (T + P) Λ 0 b → (Λ + c → pπ -π + )π - b → cud (T) Λ 0 b → pK -K + K -b → sss (T + P) Λ 0 b → (Λ + c → pK -π + )π -b → cud (T) Ξ 0 b → pK -π + π - b → uud (T + P) Ξ 0 b → (Ξ + c → pK -π + )π -b → cud (T) Ξ 0 b → pK -π + K - b → sdd / b → uus ( P / T) Ξ 0 b → (Ξ + c → pK -π + )π -b → cud (T) Ξ 0 b → pK -K + K -b → dss (P) Ξ 0 b → (Ξ + c → pK -π + )π -b → cud (T) u d u u d d ū W - V ub ∼ λ 3 V ud ∼ 1 Λ 0 b b u d d Λ 0 b u b W - g d ū u V tb ∼ 1 V td ∼ λ 3 u, c, t N * 0 N * 0 u s u u s d ū W - V ub ∼ λ 3 V ud ∼ 1 Ξ 0 b b u s s Ξ 0 b u b W - g d ū u V tb ∼ 1 V td ∼ λ 3 u, c, t Λ * 0 Λ * 0
→ pπ -π + π -(top) and Ξ 0 b → pK -π + π - (bottom).

Data and Monte Carlo samples

The results described in this analysis are obtained using the full Run I data collected by The trigger conditions are also dierent for 2011 and 2012, and hence the MC samples are simulated using TCKs (Trigger Conguration Key) that are representative of the two data taking periods, which are 0x40760037 and 0x409f0045, respectively. The number of MC events produced for each decay mode (signal and background) and year is summarized in Table 5.2. About 50% of these events are produced with MagDown detector conguration, and the other 50% are produced with MagUp detector conguration.

As far as signal events are concerned, we have chosen to simulate a mixture of non resonant (phase space) and quasi-2-body decays involving either an N * 0 or Λ * 0 baryon associated with a low-mass meson. The typical ratio Phase Space to Resonances is 1:2. For the case of B 0 d,s to 4-body decays, MC simulated events are generated with specic quasi 2-body in- termediate states. These are large fractions, but since measurements of inclusive branching fractions in the PDG are only limits, no rm statement can be made about their dominance. 

Λ 0 b → pπ -π + π - 15204010 2011 (2012) 1033876 (2025489) PHSP [0.35] + N * 0 {ρ 0 , f 2 } [0.65] Λ 0 b → pK -π + π - 15204011 2011 (2012) 1046073 (2017682) PHSP [0.30] + Λ * 0 {ρ 0 , f 2 ,K * 0 ,Kπ } [0.70] Λ 0 b → pK -K + π - 15204012 2011 (2012) 1025976 (2011991) PHSP [0.35] + Λ * 0 {K * 0 ,Kπ } [0.65] Λ 0 b → pK -K + K - 15204013 2011 (2012) 1032138 (2019736) PHSP [0.35] + Λ * 0 {φ 0 ,f 2 } [0.65] Ξ 0 b → pK -π + π - 16204040 2011 (2012) 1021760 (2037415) PHSP [0.30] + Λ * 0 {ρ 0 , f 2 ,K * 0 ,Kπ } [0.70] Ξ 0 b → pK -π + K - 16204041 2011 (2012) 1001562 (2024475) PHSP [0.35] + Λ * 0 {K * 0 ,Kπ } [0.65] Ξ 0 b → pK -K + K - 16204042 2011 (2012) 1051785 (2067281) PHSP [0.35] + Λ * 0 {φ 0 ,f 2 } [0.65] Λ 0 b → (Λ + c → pKπ)π 15264011 2012 1011237 Λ 0 b → (Λ + c → pK -π + )π -[1.00] Λ 0 b → (Λ + c → pKπ)K 15364011 2012 538205 Λ 0 b → (Λ + c → pK -π + )K -[1.00] B 0 → π + π -π + π - 11104061 2011 (2012) 1557242 (3005995) B 0 → ρ 0 (π + π -)ρ 0 (π + π -) [1.00] B 0 → K + π -π + π - 11104041 2011 (2012) 2048997 (4021486) B 0 → K * 0 (K + π -)ρ 0 (π + π -) [1.00] B 0 → K + K -K + π - 11104020 2011 (2012) 2043494 (4017984) B 0 → φ 0 (K + K -)K * 0 (K + π -) [1.00] B 0 s → K + π -π + K - 13104001 2011 (2012) 1014357 (2037039) B 0 s → K * 0 (K + π -)K * 0 (π + K -) [1.00] B 0 s → K + K -K + K - 13104013 2011 (2012) 1035749 (1025247) B 0 s → φ 0 (K + K -)φ 0 (K + K -) [1.00] A cut on the p T > 400 MeV of each daughter track is included in the generation of the B 0 s → φ 0 (K + K -)φ 0 (K + K -) MC sample.

Trigger

Events that are triggered by either the L0Hadron TOS (Triggered-On-Signal) or L0Global TIS (Triggered-Independent-of-Signal) are collected in the rst stage of the trigger sequence. These events are then required to pass the Hlt1TrackAllL0 TOS requirements. Finally, events passing either of the six Hlt2Topo [START_REF] Aubert | Observation of CP Violation in the B 0 Meson System[END_REF][START_REF] Del Amo | Measurement of CP observables in B ± → D CP K ± decays and constraints on the CKM angle γ[END_REF][START_REF] Aubert | Direct CP Violating Asymmetry in B 0 → K + π -Decays[END_REF]Body{BBDT,Simple} TOS decisions are recorded for further stripping and selection for the 2011 data. The rationale behind the use of the Simple topological Hlt2 algorithm is the addition of events in the corners of the Phase Space of the decays. However, sometime in 2012, the Hlt2Topo [START_REF] Aubert | Observation of CP Violation in the B 0 Meson System[END_REF][START_REF] Del Amo | Measurement of CP observables in B ± → D CP K ± decays and constraints on the CKM angle γ[END_REF][START_REF] Aubert | Direct CP Violating Asymmetry in B 0 → K + π -Decays[END_REF]BodySimple has been turned o and hence for 2012 data we only require the events to pass either of the three Hlt2Topo [START_REF] Aubert | Observation of CP Violation in the B 0 Meson System[END_REF][START_REF] Del Amo | Measurement of CP observables in B ± → D CP K ± decays and constraints on the CKM angle γ[END_REF][START_REF] Aubert | Direct CP Violating Asymmetry in B 0 → K + π -Decays[END_REF]BodyBBDT TOS. Trigger requirements were not included in the stripping in order to study their impact on the selection of the signals. They are hence included as oine selection cuts on the raw stripping output. During the Stripping21 campaign, the stripping line called StrippingXb2phhhLine was added to the BHADRON.MDST stream. The stripping line was designed in a way to preserve the low two-body invariant mass region, specically the ph invariant mass where the Λ * 0 (1520) and N * 0 (1520) are expected to be present. As such, only a loose kinematical cut is applied on the daughter tracks and no kinematical cut on the two-body pairs is applied.

We are aiming at an inclusive stripping selection of all relevant charmless and charmed decay modes. The proton tracks come from the StdLooseANNProtons standard particle container, while the three other tracks come from the StdNoPIDsPions container. Since those three tracks can either be pions or kaons, no particle identication (PID) is applied on them, while a loose ProbNNp cut is applied on the proton in order to reduce the retention rate to an acceptable level. The actual PID selection for the nal states of interest is then left to the analysts with the minimal aordable bias.

Moreover, in order to avoid border eects in the invariant mass of X 0 b candidate, the minimum 4-body invariant mass is calculated using the pKKK mass hypotheses, while the maximum is calculated using the pπππ mass hypotheses.

Using the available RelatedInfoTools, two isolation variables (smallest ∆χ 2 vtx and p T asymmetry in a given cone angle f ) are saved as well for each X 0 b candidate. These variables are used in the training of a multivariate discriminant, discussed later in this analysis. Let us mention here that this specic line among others was used for the commissioning of the

RelatedInfoTools for this Stripping version.

The summary of the stripping line selection cuts is presented in Table 5.3. A comment is in order as far the vertexing and pointing variables are concerned. All topological variables used in this analysis are of signicance type to retain the best reconstructed candidates irrespective of the absolute vertex observable value. The requirement on the minimal p T of the daughters has been tuned in order to cope with the allowed retention rate. The obtained value is low enough to preserve the signal eciency of the quasi 2-body decays at threshold for the intermediate resonances.

Background studies

The structure of the background of the charmless 4-body fully-charged decays of Λ 0 b and Ξ 0 b is rich. There are at least ve main categories of backgrounds identied that appears in the mass distribution of the real data candidates. These are (1) the peaking backgrounds coming from charmed decays and charmless but charming decays (we are referring here to the tree level b → u quark transition followed by W → cs), (2) the partially reconstructed backgrounds, (3) the cross-feeds from other signal modes, (4) the physics backgrounds coming from 4-body decays of B 0 or B 0 s , and (5) the random combinatorial of one or several tracks unrelated to the decay of the interest. f These variables are discussed further in Section 5.6.4.

Search for CP aymmetries in the charmless 4-body decays of Λ 0 b /Ξ Combination cuts (after vertex t)

X 0 b candidate's vertex χ 2 χ 2 vtx < 20. X 0 b candidate's ight distance χ 2 w.r.t. best PV χ 2 FD > 50. X 0 b candidate's impact parameter χ 2 w.r.t. best PV χ 2 IP < 16. Cosine of the X 0 b candidate pointing angle cos(θ DIRA ) > 0.9999

Peaking backgrounds

Fully-reconstructed charmed and charming decays if not properly removed can appear as peaking background. Since the nal state of these decays is the same as the charmless modes, they can not be removed via PID optimization and neither on using MVA-based cuts without relying on the small topological and kinematical dierence. The unique way to reduce them without losing a signicant amount of signal events is to properly veto them by cutting on the mass of a given intermediate state. The intermediate states explicitly vetoed in this analysis are

Λ + c , Ξ + c , D + , D + s , D 0 , χ c0 and J/ψ . The reconstructed mass of Λ + c is required to be ±30 MeV/c 2 outside from m Λ + c = 2283. MeV/c 2 ,
where it is adjusted about 3 MeV/c 2 to the left w.r.t. the PDG value in order to take into account the asymmetry of the distribution as seen in the data, while Ξ + c , D + , D + s and D 0 are required to be ±30 MeV/c 2 outside from the PDG values. A wider mass window of ±50 MeV/c 2 from the PDG value is required for vetoing χ c0 and J/ψ . The list of nal state decays considered for these charmed resonances can be found in Section 5.6.5, where all relevant daughter combination is considered in the mass reconstruction. Furthermore, these mass veto cuts are applied as a global cut, e.g. 3 tracks are reconstructed as pKπ in order to veto Λ + c , regardless of the spectrum. In this way, the candidate is vetoed in all spectra. Let us notice that the vetoed charmed decay modes involving a Λ + c and Ξ + c are used in turn as control channels for the detection eciencies and production asymmetries.

Partially reconstructed backgrounds

The 5-body decays of Λ 0 b and/or Ξ 0 b with one particle missing can still be a signicant amount of background events populating the left side of reconstructed invariant mass distribution.
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The dominant contributor of the partially-reconstructed backgrounds are the events with a missing π 0 . Actually, the partially reconstructed backgrounds with a missing charged pion in the nal state are reduced by the isolation variable denoted smallest ∆χ 2 vtx , which is searching for a better vertex with an additional charged track to the 4-tracks vertex. The mass threshold considered when modelling this background is therefore the π 0 mass.

Although not included in the nominal t, Partially-reconstructed backgrounds with a missing γ is also possible through the decay Λ 0 b → pK -(η → π + π -γ). This will give partially-reconstructed backgrounds closer to the signal peak than the decays with missing π 0 . A systematic uncertainty will be assign to this and this is presented in the list of systematics in Section 5.11.

Cross-feeds or reections

Seven charmless decay modes are explicitly searched in this analysis as listed in Table 5.1 in Section 5.1. The PID selection is chosen in a way that a candidate can appear only in one spectrum and not on the other spectra (mutually exclusive selection) in order that a simultaneous t of all the relevant spectra can be possible. More detailed discussion on the strategy can be found in Section 5.6.2. After optimizing the PID selection to reduce the cross-feeds in each spectrum, a signicant number of true signal events may still appear as a cross-feed in other spectrum. The dominant cross-feeds are signal events from other spectra with only one particle misidentied, and hence peaks not very far from the signal peak.

Henceforth, an accurate handling on the yields and shapes of these background contributions must be achieved. This is realized by constraining in the simultaneous t their relative yields to the data-driven misidentication probabilities. The procedure is described in details in Section 5.8.

B → 4-body physics backgrounds

Four-body decays coming from B 0 or B 0 s with a misidentied K or π as a proton can appear in the invariant mass distribution. Given that the hadronization fraction of b quark to B 0 is signicantly higher the the hadronization fraction of b quark to neutral baryons Λ 0 b and Ξ 0 b , they are expected to dominate the mass distribution if not properly reduced. The hadronization fraction of b quark to B 0 s , although smaller than the hadronization fraction of b quark to Λ 0 b , can also populate signicantly if not handled. Since this background can exhibit signicant CP asymmetries, their accurate handling is mandatory and certainly constitutes a challenge of this analysis. Five possible dominant B physics backgrounds are envisioned, which includes

B 0 → π + π -π + π -, B 0 → K + π -π + π -, B 0 → K + K -K + π -, B 0 s → K + π -π + K -and B 0 s → K + K -K + K -.
Since they have the same nal state particles, except for the proton, as the signal modes, they can not be signicantly reduced by the PID Kπ selection without reducing as well the signal events. Neither MVA-based cuts can reduce them since they are relatively topologically and kinematically the same as the signal events. However, a tight PID cut (ProbNNp) on the proton particle can signicantly reduce these B physics events, while retaining signal events with an acceptable eciency. A dedicated study of the right-hand side-band (RHSB) of the invariant mass distributions for each spectra has been undergone and is reported in Section 5.7.

Combinatorial background

Aside from the physical backgrounds described above, there are also combinatorial backgrounds coming solely from the random combination of one or several tracks unrelated to Search for CP aymmetries in the charmless 4-body decays of Λ 0 b /Ξ 0 b the signal decay. The topology and kinematics g of these background events are dierent enough from the signal events that they can be reduced by a univariate or multivariate-based cuts. It is important to emphasize that the understanding of the dierent above-mentioned sources of background (not straightforwardly reducible) benets from the largest as possible suppression of the combinatorial background. This is in particular true for the dominant B physics. Therefore, a special care has been brought to the design of the tool to ght against the combinatorial background. As will be discussed further in Section 5.6.4, a BDT-based MVA is trained using variables with weak linear correlations (but in principle nonlinearly correlated) or with dierent correlations for background and signal events in order to reduce these backgrounds.

Selection

The X 0 b candidates saved after stripping still contain signicant amount of background events. In order to reduce these backgrounds while keeping the signal events, further oine selection cuts are applied. In this section, the several components of the oine selection are described together with its corresponding strategy. The design and presentation of the selection steps we are proposing have the following logic: the PID cuts have been optimized rst with the objective of mastering the signal cross-feeds and B physics. This allowed to select a rather pure combinatorial background sample on the data which was used to train a multivariate discriminative tool. In turn, this combinatorics killer selection was applied to the data sample in order to master the B physics yields to feed the simultaneous t with data-driven constraints. The optimization on the cut values are also presented. At the end of this section, a subsection is dedicated to the signal eciency given by each stage of the selection. The very rst step presented in this section consists in a preselection in line with the tupling strategy.

Oine selection

Some further oine selection cuts, trigger requirements and ducial cuts are applied to the stripped data prior to particle identication (PID) optimization and multivariate (MVA) selection.

In the stripping selection, the candidate events are reconstructed as Λ 0 b → pπ -π + π -, although no PID requirement is applied on the three pions. However, in the nal tupling of the data, each candidate is reconstructed using the appropriate mass hypotheses of the daughter particles corresponding to the dierent possible nal states. These nal states are namely pπππ, pKππ, pKKπ, pKπK and pKKK. For each set of mass hypotheses, a ret on the decay tree using the DecayTreeFitter tool is done in order to properly recalculate the kinematics of the decay. More importantly, the mass of X 0 b candidate is now properly dened for each nal state. A mass range cut on the X 0 b mass is then required to be in the range 5340 MeV/c 2 to 6400 MeV/c 2 .

A selection rule was also applied as early as in the tupling level to decide which track is the kaon in the case of X 0 b → pK -π + π -and X 0 b → pK -K + π -spectra. In these spectra (labelled X 0 b → h 1 h 2 h 3 h 4 for discussion purposes), the true K -particle out of the stripping selection may end up either in the h 2 location or in the h 4 location since there was no PID g Discussed later in this analysis is the BDT strategy to reduce these combinatorics. No kinematical variables are used in the BDT to avoid the BDT cutting events in the low two-body invariant mass, where the Λ * 0 (1520) and N * 0 (1520) are expected to appear.
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applied on h {2,3,4} , with a certain probability h . The product of h 2 ProbNNπ and h 2 (1 -ProbNNK ) is compared to the product of h 4 ProbNNπ and (h 4 1 -ProbNNK ). Whichever has the larger value is chosen as the π and the other as the K. This selection rule is irrelevant for the other spectra since both h 2 and h 4 are either both pions (in the case if of X 0 b → pπ -π + π -) or both kaons.

Since the PID information given by the RICH detectors might no longer be reliable outside some momentum range and pseudo-rapidity, ducial cuts are also applied on each of the nal tracks. The momentum range of the track is required to be within the range 3

GeV/c < p < 100 GeV/c and the pseudo-rapidity angle of the track is required to be within 1.5 < η < 5.

K/π PID selection optimization

The optimization of the PID selection in this study is driven by two objectives. The rst objective is to optimally reject the signal cross-feeds within the ±3σ of the nominal mass of the signal mode. The second objective is to ensure that we have mutually exclusive events present in each spectrum, and hence avoiding the complicated statistical treatment of errors given by the simultaneous t when dealing with non-mutually exclusive spectra. This can be done by ensuring that there is no overlapping regions in the particle identication (PID) selection of kaons and pions.

There are two possible neural network based variables that can be used to select pions and kaons. These are the ProbNNπ and ProbNNK , where pions can be selected as those particles having ProbNNπ larger than some cut value and the kaons are the particles with ProbNNK larger than some cut value. However, this does not guarantee that the same particle will not be selected as both a pion and a kaon, and hence may appear as a signal in one spectrum and as a cross-feed in the other spectra. In a simultaneous t of all the spectra, the resulting uncertainties of measured quantities would have to be corrected for the statistical correlations. In order to avoid this complication, the pions and kaons are chosen in a way that they are mutually exclusive, and henceforth implying mutually exclusive spectra.

In the ProbNNK -vs-ProbNNπ plane, most of the kaons populate at the (0,1) location, while the pions populate at the (1,0) location. This is illustrated in Figure 5.2 using MCmatched pions and kaons from MC-generated Λ 0 b → pK -π + π -events. In this analysis, a circular cut centered at (1,0) is chosen in order to dierentiate pions from kaons. Particles inside the circular envelope (those inside the radius of a cut π ) are considered pions, while the rest are considered kaons. In principle, the kaon cut a cut K can be larger than a cut π , but the a cut K is restricted not to be less than a cut π in order to ensure non-overlapping regions of kaons and pions. Anticipating the results of the optimization, it was eventually found that the best cuts are identical for both a cut π and a cut K . We however chose to present them separately since their best values are not aligned by denition.

The particle identication (PID) variables dened in Equation 5.1 and Equation 5.2 are used to select kaons and pions. As a short-hand notation, from hereon we refer PID K and PID π as the variables dened in Equation 5.1 and Equation 5.2, respectively. Anticipating the results of the optimization, we found the same optimal cut values for kaons and pions, and hence we collectively refer them in the later part of this analysis as PID Kπ . Mathematically, h Probability of landing in h 2 or h 4 is not 50%-50% because of p T sequencing in StdNoPIDsPions track container.

Search for CP aymmetries in the charmless 4-body decays of Λ 0 b /Ξ 0 b the PID cuts are given by,

PID K : ((h_ProbNNπ -1.0) 2 + h_ProbNNK 2 ) > a cut K (5.1) PID π : ((h_ProbNNπ -1.0) 2 + h_ProbNNK 2 ) < a cut π , (5.2) 
where h can be a kaon or a pion depending on which spectrum it is applied. 

→ pK -π + π -events.
The ProbNN variables of kaons and pions from real data are not well described by the MCcalculated ProbNN variables. To correct this discrepancy, a set of PID (mis)identication eciency maps for each a cut π and a cut K cut values is prepared in bins of momentum p and pseudo-rapidity angle η, knowing that the PID (mis)identication eciency depends on the kinematics of the particles. The binning scheme used in producing the eciency maps i for each year and each particle type is summarized in Table 5.4.

A MC-generated event is then used to calculate the kinematics of the tracks, which are in turn used to calculate the eciency of an event to pass a certain a cut π and/or a cut K cut values taking into account correlations. These event-by-event eciencies are then averaged to calculate the probability of a certain decay mode to pass the PID Kπ cut values. The PIDCalibTool implements this strategy, which uses real data kaons and pions coming from D 0 's where the D 0 's come from the decay of D * + → (D 0 →π + K -)π + .

Since the branching fractions of the signal modes are not yet measured and that the hadronization fraction of b quark to heavy baryons in LHCb is dependent on the momentum and pseudo-rapidity angle of the baryon, there is no direct approximation of the possible yield of events of both signal and cross-feeds. A modied Figure of Merit (FoM) is then dened that does not depend on the approximated yields but rather on the relative eciencies of the signal mode and the cross-feeds. This FoM is given by, 

b ). This f s,d = f Ξ 0 b /f Λ 0 b is approximated to be equal to f B 0 s /f B 0 [108].
When the signal and cross-feed do not come from the same heavy baryon type, an additional factor f s→u is multiplied to the scaling factor α CF , in order to take into account the fraction of events of Ξ 0 b decaying to Λ 0 b π 0 (hence contributing to Λ 0 b ). The fraction of Ξ 0 b decaying to Λ 0 b π 0 is guesstimated to be 0.025. Hence the f s→u factor is equal to 1 if both signal and cross-feed come from Λ 0 b or both from Ξ 0 b , and equal to 0.975 (1.025) if cross-feed comes from

Ξ 0 b (Λ 0 b ) and signal comes from Λ 0 b (Ξ 0 b
). The FoM dened in Equation 5.3 requires ratios of branching fractions and ratio of hadronization fractions as inputs, rather than absolute values in the case of Punzi FoM or the standard signicance S/ √ S + B. As mentioned above, there is no measurement yet on the branching fraction of the signal decay modes. An educated guess however can be made by considering that the ratios of branching fractions of the B + → 3 body fully-charged decays as good approximates of the ratios of branching fractions of the signal modes studied in this analysis. These B + → 3 body decays exhibit the same quark transition, and hence the same CKM elements as for the signal modes are assumed. Summarized in Table 5.5

are the B + → 3 body fully-charged decays which are used to approximate the branching fractions of our signal modes.

There are ve FoMs to optimize corresponding to the ve spectra studied in this analysis j , each having its own optimal cut values of a cut π and a cut K . For the reason of ensuring mutually- j The same PID Kπ cut is to be optimized for Λ 0 b → pK -π + π -and Ξ 0 b → pK -π + π -, since they belong to the same spectrum. The same can be said for

Λ 0 b → pK -K + K -and Ξ 0 b → pK -K + K -. For these two
Search for CP aymmetries in the charmless 4-body decays of Λ 0 b /Ξ 0 b Table 5.5: The four-body fully-charged charmless decays of X 0 b studied in this analysis and its corresponding B + → 3 body fully-charged decays that are used to approximate the branching fractions of signal modes.

Charmless decay

B + → 3 body decay Branching fraction [17] Λ 0 b → pπ -π + π - B + → π + π -π + (1.52 ± 0.14) × 10 -5 Λ 0 b → pK -π + π - B + → K + π -π + (5.10 ± 0.29) × 10 -5 Λ 0 b → pK -K + π - B + → K + K -π + (5.0 ± 0.7 ) × 10 -6 Λ 0 b → pK -K + K - B + → K + K -K + (3.40 ± 0.14) × 10 -5 Ξ 0 b → pK -π + π - B + → π + π -π + (1.52 ± 0.14) × 10 -5 Ξ 0 b → pK -π + K - B + → K + π -π + (5.10 ± 0.29) × 10 -5 Ξ 0 b → pK -K + K - B + → K + K -π + (5.0 ± 0.7 ) × 10 -6
exclusive spectra, one PID Kπ optimization is chosen as the baseline. The mode which is considered for this is the Ξ 0 b → pKππ decay following the rationale that this is one of the interesting modes where both tree and penguin loop contributions are of order O(λ 3 ) and can both proceed through the resonant particles N * 0 and Λ * 0 . In order to build mutuallyexclusive spectra, it must be required that the a cut π cut (a cut K cut) is less (more) than the optimal a cut π (a cut K ) cuts for the baseline mode. It happens that this condition is never realized for our choice of baseline mode (it can however happen for other choices of baseline mode and other choices of FoM). The very same cuts are then eventually applied to all spectra.

The optimal PID Kπ cuts for each mode are summarized in Table 5.6. The optimal PID Kπ a cut π and a cut K cuts for the baseline mode are 0.55 and 0.55, as shown in Figure 5.3. The FoMs of other modes can be found in Appendix A.4. The other modes did not statisfy the condition stated above and hence their PID Kπ cut is chosen to be the same as the PID Kπ of the baseline mode, i.e., (a cut π = 0.55, a cut K = 0.55).

Table 5.6: The list of optimal PID Kπ a cut π and a cut K cuts.

Signal mode 2011 optimal PID Kπ cuts 2012 optimal PID Kπ cuts 

(a cut π , a cut K ) (a cut π , a cut K ) MagDown MagUp MagDown MagUp Ξ 0 b → pK -π + π - (0.
Λ 0 b → pπ -π + π - (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) Λ 0 b → pK -K + π - (0.
Ξ 0 b → pK -π + K - (0.
Ξ 0 b → pK -K + K - (0.

Proton PID cut

Common to all the signal modes, both in the charmless and control channels, is the presence of the proton track. Hence, the eciencies of signal and cross-feeds are basically the same, up to the dierence in kinematics, for each ProbNNp cut value. As underlined in Section 5.5, a cut on PID (ProbNNp) is however necessary to reduce and/or reject the physics backgrounds coming from the 4-body decays of B 0 d,s . When a pion or a kaon from these decays is mis- identied as a proton, the event can appear in the invariant mass distribution of phhh as a background and potentially yield a CP asymmetry. The inclusive branching fractions of most of the B 0 d,s decays to fully-charged 4-body are yet unmeasured but their experimental upper limits, when they exist, are typically of order O(10 -4 ). Moreover, the hadronization fraction of b quark to B 0 is larger than the hadronization fraction to Λ 0 b and Ξ 0 b . Alhtough the hadronization fraction of b quark to B 0 s is smaller than its hadronization fraction to Λ 0 b , it can still populate the spectra signicantly if not properly reduced. Hence, to reduce these B physics backgrounds, an arbitrary ProbNNp > 0.50 PID cut is applied on the proton track. This is guesstimated to remove signicant amount of these backgrounds while keeping most of our signal events. The distributions of these background events and its modelling are discussed in Section 5.8.3.

For the same reason stated in Section 5.6.2 that the ProbNN variables are not welldescribed in MC, a PID re-weighting is needed to properly calculate the (mis)identication eciency k . To do this, PID (mis)identication eciency maps for the PID p cut are prepared in bins of momentum p and pseudo-rapidity angle η since the (mis)identication eciency depends on the kinematics of the particles. The binning scheme in producing the eciency maps for each year for the proton tracks is summarized in Table 5.7, while the K's and π's k These numbers are inputs of the Gaussianly-constrained cross-feed yields in the t as will be detailed in Section 5.8.2.

Search for CP aymmetries in the charmless 4-body decays of Λ 0 b /Ξ 0 b are the same as in Table 5.4. Proton tracks coming from real data inclusive Λ + c decays are used to produce the identication eciency map of proton using the PIDCalibTool. The 2D eciency maps can be found at Appendix A.3. The signal eciencies of the combined PID Kπ and PID p cuts are gathered in Tables 5. [START_REF] Aaltonen | Measurements of Direct CP -Violating Asymmetries in Charmless Decays of Bottom Baryons[END_REF] and 5.14 of Section 5.6.7. They are found to be ∼45% for the two modes with three K's in the nal state and ∼60% for the Λ 0 b → pπππ mode. 

MVA selection optimization

Taking advantage of nonlinearly correlated discriminating variables, an MVA-based discriminant is used in order to combine the discriminating variables into one nal discriminant.

Using the TMVA toolkit [START_REF] Hoecker | TMVA -Toolkit for Multivariate Data Analysis[END_REF], a boosted decistion tree (BDT) discriminant, using AdaBoost boosting algorithm, has been chosen to maximize the signal separation from the combinatorial background. In order to train the BDT, signal events are taken from Λ 0 b → pπππ MC-generated events, while combinatorial background events are taken from the right-hand sideband (RHSB) of real data events in the X 0 b → pπππ spectrum. RHSB events are dened as the events with 4-body invariant mass in the range 5840. < m pπππ < 6400. MeV/c 2 . The choice of this spectrum is dictated at rst by the absence of signal cross-feeds in the RHSB, which is a unique feature among the ve experimental spectra of interest. Specically, the misidentication of a kaon as a pion results in a shift to the left of the nominal mass of Λ 0 b and/or Ξ 0 b in the X 0 b → pπππ spectrum.

Aiming at selecting the most relevant sample of combinatorial background to ght against, the trigger requirements, the ducial cuts, the optimal PID Kπ cuts and a ProbNNp > 0.50 on the proton are applied prior to training the BDTs. However, B 0 physics backgrounds still populate the RHSB even at a ProbNNp > 0.50 cut on the proton particle. In order to further cleanup the RHSB from the dominant B 0 → Kπππ physics backgrounds a mass veto cut l is applied on the background events. The mass of the proton particle is swapped with the mass of a kaon and events within the ±50 MeV/c 2 from the nominal B 0 mass are removed (m B 0 = 5279. MeV/c 2 ). As will be discussed in the Section 5.7, a signicant physics background of this spectrum is coming from the decays B 0 → ππππ. However, this contamination was found small enough in the RHSB such that no further specic mass veto cut was needed to select the background training sample.

In order to use maximally the RHSB statistics for the training of the multivariate discriminant, two BDTs (hereafter referred as BDT 1 and BDT 2 ) for each year m are trained l This mass veto cut is not applied in the nal analysis. The purpose here is only to purify the background events to be composed only of combinatorial in the training of the BDT.

m The center-of-mass energy of the collisions during the 2011 data taking campaign was 7 TeV, while it was 8 TeV during the 2012 data taking campaign. Hence, separate BDTs are trained for the 2011 and 2012 data.

5.6 Selection 89 by randomly dividing the RHSB events and the MC-generated events into two subsamples.

For completeness, the random numbers are calculated using the algorithm ((134*evtNum + runNum) % 531241)/531241.0, where the evtNum and runNum are the event number and run number of the candidate, respectively. The resulting random number r assigned to each candidate ranges from 0 to 1, where RHSB events having r ≥ 0.50 are used to train BDT 1 , and the rest are used to train BDT 2 . The events are then crossed-over in the testing of the BDT response for overtraining and calculating the eciencies for a given BDT cut. When cutting the BDT in the real data events, RHSB events that were used in training BDT 1 are selected using BDT 2 , and vice versa. In this way, the full Run I data can be used in the analysis without introducing bias. The real data events not used in the training of the two BDTs are also cut either using BDT 1 or BDT 2 in the same random selection algorithm as was used for the RHSB events.

We have considered ten discriminating variables for the training of the two BDTs. These are the topological and pointing variables of the candidate baryon X 0

b : η, χ 2 FD , χ 2 IP , χ 2 vtx ,
cos(θ DIRA ); the two isolation variables : smallest ∆χ 2 vtx and p T asymmetry in a cone around the direction of the candidate X 0 b ; the sum of the χ 2 IP of the nal daughter particles χ 2 IP (h i ); the maximum of the qualities of the tracks of the nal particles Max.(χ

2 /ndf (trk. h i ));
and the p T of the candidate baryon X 0 b . These variables are gathered and dened in Table 5.8.

As for the stripping line construction, the design of this selection is governed by the physics we want to measure. No kinematical variable of the daughter particles is used in the BDT design in order to avoid possible biased cutting of signal events proceeding through the low two-body invariant mass resonances N * 0 , Λ * 0 and/or ∆ series. Conversely, it is required to make a comprehensive use of the signal decay topology. X 0 b candidate vertex properties as well as pointing quantities, all expressed in terms of signicance observables, are hence simultaneously used. The selection is completed by two isolation variables: the smallest ∆χ 2 vtx is meant to select exactly four tracks vertices while the p T asymmetry measures the cleanliness of the event in the region of interest (along the momentum of the X 0 b candidate). Eventually, it was observed that the combinatorial background can be made from a welldened vertex of three tracks complemented with an additional track of poor reconstruction quality. The variable dened maximum of the (χ 2 /ndf (trk. h i )) aims at rejecting this specic source of background. Some of the variables (expressed as the square of the signicance) have very large ranges.

Their logarithm is taken instead in the BDT design. The importance of a variable is dened as how many times the variable (expressed in %) is used to separate background and signal in the forest of trees. Hence, the importance does not necessarily select the intrinsic discriminating power but accounts for the correlations the variable has with the ensemble of discriminative variables. The importances of the set of variables in the BDT design are listed in Table 5.9 and the distributions of the variables are shown in The consistency that the X 0 b candidate is detached from the primary vertex.

χ 2 IP (X 0 b )
The quality of the impact parameter of the reconstructed X 0 b candidate.

χ 2 vtx (X 0 b )
The quality of the secondary vertex of the reconstructed X 0 b candidate.

cos(θ DIRA ) (X 0 b )
The cosine of the subtended angle between the reconstructed momentum of the X 0 b candidate and the line connecting the primary vertex to the secondary vertex. This variables is dened as the asymmetry of the p T of the reconstructed X 0 b candidate when considering the p T of the other tracks in the event that are within a given angle from the direction of the X 0 b candidate. In this analysis, the cone angle used is 1.7

• .

Mathematically, this is dened as

(p T X 0 b -p T inAngle ) / (p T X 0 b + p T inAngle )
, where p T inAngle is the vector sum of the p T 's of all tracks inside the 1.7

• cone angle.

χ 2 IP (h i 's)
The consistency that the tracks are detached from the primary vertex.

Largest χ 2 trk. /ndf (of h i 's)

The largest track quality divided by number of degrees of freedom among the four daughter tracks.

variables to the other variables are not the same for signal and background events.

Figure 5.6 indicates that there is no obvious sign of overtraining, as also indicated by the Kolmogorov-Smirnov tests. In order to check whether the X 0 b invariant mass is not learned by the BDT, we gathered in Table 5.10 the correlation of X 0 b invariant mass and the BDT using MC signal events. Summarized in Table 5.11 are the signal eciencies for a given BDT cut that gives a background selection eciency (or rejection eciency) of 1% (99%), 10% (90%) and 30% (70%). The same BDT machinery is applied to all spectra. Optimal BDT cut for each spectrum is then calculated. Since all the signal regions are blind, it has been chosen to use the Punzi 

FoM(BDT cut ) = BDT Sig. a 2 + B SigReg. Comb. , (5.5) 
where BDT Sig. is the signal eciency for a given BDT cut, a is the number of sigmas corresponding to the desired signicance of the limit, and B SigReg.

Comb. is the expected number of combinatorial backgrounds under the signal peak for a given BDT cut. In this analysis, a = 2 is chosen.

The signal eciency

BDT Sig. at each BDT cut is calculated from the MC-generated events, while the number of combinatorial backgrounds under the signal peak is approximated using the RHSB region. Before any BDT cut, real data events in the RHSB (5840 MeV/c 2 < m phhh < 6400 MeV/c 2 ) region are tted with an exponential function. This exponential function is then projected to the signal mass region, which is within ±3σ from the nominal mass of Λ 0 ). The extrapolated number of combinatorial backgrounds under the signal peak before any BDT cut is estimated using the projected exponential function. A word of caution is in order here. Since there must be a contamination of B physics backgrounds in the RHSB region, the approximation of the combinatorial shape and level using RHSB events must be slightly overestimated. For the subsequent BDT cuts, the number of combinatorics under the signal peak linearly scales with the number of combinatorics in the RHSB, i.e., knowing that the shape of the combinatorial is not signicantly changing o . Hence, this is calculated by,

B SigReg. Comb. (BDT cut ) = r • B RHSB Comb. , (5.6) 
where r is the scaling factor equal to (B SigReg. for all spectra. Dictated by a sake of simplicity of bookkeeping, a unique BDT cut value of 0.30 is chosen for all the charmless spectra. is calculated by simply adding vectorially the four-vector momenta of the tracks without a ret on the decay tree. The mass window cut applied is ±30 MeV/c 2 from the nominal mass of the resonance, except for the χ c0 and J/ψ where the mass window cut is ±50 MeV/c 2 . Note that the nominal mass of Λ + c is adjusted to the left of the PDG value by about 3

MeV/c 2 in order to take into account the asymmetry of the Λ + c mass distributions as can be seen in Figure 5.9. Aside from the mass veto cuts, two tracks of opposite charge are required not to be muons by cutting on the isMuon variable. Furthermore, in order to remove possible backgrounds coming from semi-leptonic decays of X 0 b , where the muon most likely carries large momentum, an isMuon cut is applied to the track having the highest p T .

The list of charm veto cuts is gathered in Table 5.12. For labelling purposes, we arranged the four charged tracks in each spectrum in this sequence: (ph

-h + h -) or (ph + h -h + ).
Hence, the proton is labelled as h 1 , and the remaining h's are labelled h 2 , h 3 and h 4 in a charge arrangement dened in the previous sentence. For example, the notation h i h j h k _pππ means the reconstructed invariant mass of the combination, where h i is assigned with the mass of the proton, while h j and h k are assigned with the mass of the pion.

Selection strategy for control modes

The single requirement of a weakly interacting charmed resonance is enough to reconstruct with a high purity the control channels out of the stripping events. No PID selection optimization nor BDT selection optimization is done for the control modes. The same set of PID Kπ and PID p cuts are however applied on the control modes in order to avoid possible dierence of production asymmetry and detection asymmetries when the PID cuts are not the same for charmless modes and control modes. A lower BDT cut of > -0.10 is chosen. Events whose invariant mass is within 

X 0 b → pπππ, X 0 b → pKππ, X 0 b → pKKπ, X 0 b → pKKK and X 0 b → pKπK.
D + D + → π + K -π + |1869.61 -h 2 h 3 h 4 _πK π| > 30. D + s D + s → K + K -π + |1968.
X → µ + µ -!(h 1 _isMuon == 1 && h 2 _isMuon == 1) and !(h 3 _isMuon == 1 && h 4 _isMuon == 1) !(h 2 _isMuon == 1 && h 3 _isMuon == 1) and !(h 1 _isMuon == 1 && h 4 _isMuon == 1)
conguration averaged are the average eciencies for MagDown and MagUp congurations. 5.13: Summary of signal eciencies on each applied cut for 2011.

→ (Λ + c → pπ -π + )π -, [middle] Λ 0 b → (Λ + c → pK -π + )π -and [bottom] Λ 0 b (Ξ 0 b ) → (Ξ + c → pK -π + )π -

Cut applied

Step by step eciencies calculated w.r.t. previous cut (in %)

Λ b → pπππ Λ b → pKππ Λ b → pKKπ Λ b → pKKK Ξ b → pKππ Ξ b → pKπK Ξ b → pKKK

MagDown conguration

LHCb acceptance cut 

Cut applied

Step by step eciencies calculated w.r.t. previous cut (in %)

Λ 0 b → pπππ Λ 0 b → pKππ Λ 0 b → pKKπ Λ 0 b → pKKK Ξ 0 b → pKππ Ξ 0 b → pKπK Ξ 0 b → pKKK

MagDown conguration

LHCb acceptance cut 

X 0 b → pKKπ 1466 0 0 3409 4 2 X 0 b → pKKK 1067 0 0 2366 0 0 X 0 b → pKπK 866 0 0 1939 0 0 X 0 b → (Λ + c → pππ)π 1686 0 0 4174 14 7 X 0 b → (Λ + c → pKπ)π 20652

Study on the RHSB events

In the previously dened right-hand side band (RHSB) of the invariant mass spectra, only combinatorics and B physics events are expected to populate in that region. As will be shown in Section 5.8, the singly mis-identied signal cross-feeds do not have tails long enough to populate signicantly in the RHSB region. The B physics shapes however, cover almost the entire invariant mass spectra with tails reaching up to the end of the RHSB. These events are primarily worrisome because their potential contribution to the CP asymmetry observable we want to measure. A further technical diculty for the invariant mass t is that the B physics tail shape is almost the same as the combinatorics and cannot be straightforwardly distinguished from the data themselves. An estimate of their number of expected events is

also not yet doable since the inclusive branching fractions of these B physics backgrounds are yet unmeasured.

A possible method to estimate the yield of B physics backgrounds can be to reconstruct explicitly the invariant mass of the 4 daughter particles according to the proper set of expected nal daughter particles of the B physics background. For example in the X 0 b → pπππ spectrum, the p particle is swapped with a K particle hypothesis to estimate the number of B 0 → Kπππ events. In order to avoid any implicit unblinding of the signal events, only the events in the RHSB are used. Figures 5.10 and 5.11 show the RHSB events reconstructed according to a set of mass hypotheses that is presumed to be the dominant B physics background in each spectrum. In the second rows of Figures 5.10 and 5.11, we identify the events just on the left part of the signal peak as B 0 → KKKπ events. A doubly-misidentied B 0 → KKKπ as X 0 b → pKππ background shape is included in the t to data in order to take into account this contribution.

The t model that we are using has been educated from RHSB samples reconstructed with a milder ProbNNp cut (ProbNNp > 0.30) such that all signicant sources of B physics events can be identied. Simplied shapes (single Crystal Ball functions) have been considered for all B decays. The dominant contribution of each spectrum is represented with a xed radiative tail and oating mean and width. The misidentied B decays are also described with a single crystal ball, the CB tail being on the right or the left of the invariant mass distribution according to the nature of the misidentication. It is quite remarkable that the (rather crude) t models of each spectra resists to the change of ProbNNp cut and gives condence that the main contributing B decays are actually identied. Few examples of ts with ProbNNp > 0.30 are given in Appendix A.9.

The obtained B decay yields from the RHSB are summarized in the fth and sixth column of Table 5. [START_REF] Aaij | Study of B 0 (s) → K 0 S h + h -decays with rst observation of B 0 s → K 0 S K ± π ∓ and B 0 s → K 0 S π + π[END_REF], where the yields are obtained separately for candidates with p and p from the original spectrum. These yields are then translated as expected full yields for the whole invariant mass spectra by multiplying it by a factor obtained from the MC shapes.

Mathematically, the expected full yield Y full and its corresponding uncertainty σ Y full are proportional to the yield Y RHSB obtained in the RHSB and its uncertainty σ Y RHSB , respectively. This is given by,

Y full ± σ Y full = f • (Y RHSB ± σ Y RHSB ) (5.7)
where f is the ratio of the integrated PDF of the B physics shape for the full invariant mass region and the RHSB region. Columns seven and eight in Table 5.16 summarizes these translated expected full yields for each dominant B physics background in each spectrum. These expectation values are used to Gaussianly-constrained the expected yields of the B physics in the CP asymmetries nominal t to data. The B 0 → π + π -π + π -is present only in the X 0 b → pπππ and not on the other spectra. In general, the yields of the B physics backgrounds are constrained in the spectrum where they are dominant as discussed in this Section. In spectra, where they are not dominant, they are controlled by cross-spectra factors estimated from selection and misidentication eciencies, as will be discussed in Section 5.8.3. The B 0 → π + π -π + π -is not the dominant B physics background in the X 0 b → pπππ spectrum, neither this is present in other spectra. As such, aside from the Gaussian-constraint on the yields of the dominant B physics background in each spectrum, the ratio r RHSB of B 0 → ππππ yield to B 0 → Kπππ yield in the RHSB of X 0 b → pπππ spectrum is also obtained. This ratio of yields is then translated as the ratio of the two backgrounds for the full spectrum. The full-spectrum ratio r full is given by:

r full ± σ r full = (r RHSB ± σ r RHSB ) • f B 0 →Kπππ f B 0 →ππππ , (5.8) 
where f B 0 →Kπππ and f B 0 →ππππ are the ratios of the integrated PDFs of B 0 → Kπππ and B 0 → ππππ shapes, respectively, for the full X 0 b → pπππ invariant mass region and the RHSB region. The value of ratio r RHSB is calculated using the ratio found in the 2012 data. Figure 5.12 shows the invariant mass distribution of the RHSB events of 2012 X 0 b → pπππ real data, combining Λ 0 b /Λ 0 b , reconstructed as B 0 → Kπππ. The dominant peak is the B 0 → Kπππ peaking at the correct nominal mass of B 0 with a yield of 380.2±22.0, while the shape just on the right of the B 0 → Kπππ peak is identied as the B 0 → ππππ events with a yield of 122.3±16.0. Using Equation 5.8, the full-spectrum ratio is calculated to be 27.7% ±3.9%. This ratio parameter is used to Gaussianly-constraint the ratio of the two B physics backgrounds in X 0 b → pπππ, which is shared by the Λ 0 b and Λ 0 b spectra in the t model. The same constraint is shared with the 2011 X 0 b → pπππ spectra. 

Fit model and strategy

A simultaneous unbinned extended maximum likelihood t is performed to all the invariant mass spectra, both in the charmless and charmed decays in order to extract the A raw 's and ∆A CP 's directly from the t. A modied version of V0hhFitter is used as the simultaneous tter for this analysis. The nominal t is composed of the 5 charmless spectra and 2 control spectra, split in b-baryon and b-baryon, and also split by year. This amounts to a total of 28 separate spectra with several shared and related parameters to be tted simultaneously. A further splitting of the data in terms of magnet polarity and trigger requirements is performed for the sake of cross-checking the measured ∆A CP . The models used in this t is described in the following subsections. The mathematical description of a Crystal Ball PDF of variable m is given by:

P (m; α, n, µ, σ) = N • exp(-(m -µ) 2 /2σ 2 ), if (m -µ)/σ > -α ( n |α| ) n exp(-α 2 /2)( n-α 2 |α| -m-µ σ ) -n , if (m -µ)/σ ≤ -α , (5.9) 
where N is the normalization and m is the invariant mass. The turnover point is denoted (α) and the tail parameter (n) models the radiative tail (for the left tail of signal mass distribution), or the imperfections of the tracking (for the right tail of the mass distribution).

Although the two functions in Equation 5.9 are independent of the sign of the parameter α, the sign of α governs on which side of the Crystall Ball (CB) function the tail should appear, where negative α means the tail is on the left side of the CB while positive α means the tail is on the right side. Let us notice that no truth-matching is applied onto the candidates in order to take into account for mismatched and misreconstructed signals in the signal shape. The full selection is applied to the MC events, except for the PID cuts since the ProbNN variables are not well-described by the MC. Since the shape changes with the PID cuts applied, each candidate is weighted by a certain eciency to pass the PID cuts. The procedure of applying the weights is the same as what was described in Section 5.6.2. All the signal shapes are tted simultaneously in order to obtain the ratios of the widths, which are used as Gaussianly-constrained parameters in the nal PDF to be used to t the real data.

The 2012 Λ 0 b → pKππ is chosen as the reference for these ratios of widths. Summarized in Table 5.17 are the parameters obtained from the ts, which are shown in Figures 5. [START_REF] Aaltonen | Measurements of Direct CP -Violating Asymmetries in Charmless Decays of Bottom Baryons[END_REF] 

Crossfeed shapes

There are seven charmless decay modes which are explicitly searched for in this analysis.

Signicant number of true signal events may still appear as cross-feeds in other spectra. The dominant cross-feeds are those with only one particle misidentied. When a K particle is misidentied as a π particle, the mass distribution of X 0 b shifts to the left, while it shifts to right if π is misidentied as a K. In both cases, the shift of the most probable value w.r.t. the correct mass is small and hence the singly-misidentied cross-feeds peak near the signal region. To model the shape of these cross-feeds, truth-matched MC signal events are reconstructed with a set of track mass hypotheses for other spectra.

A ret on the decay tree using the DecayTreeFitter tool is done with the appropriate cross-feed mass hypotheses, along the same way it is done on data. The full selection is applied to the events, except for the PID cut, since the ProbNNp variables in the real data are not well-described by MC. For each event, an eciency weight is applied representing the probability to pass the PID cut. This event-by-event PID weighting is described in Section In the t to data, the yields of the cross-feeds are Gaussianly-constrained to the corresponding signal yield in its respective spectrum by a relevant misidentication eciency f . These factors are calculated by taking the ratios of selection eciencies and PID eciencies as a cross-feed and as a signal. This is given by:

f = Sel. CF • PID CF Sel.
Sig. • PID Sig.

(5.10) where PID CF and PID Sig. are the average eciencies of misidentifying the candidates as cross-feed and identifying as signal, respectively, while the Sel.

CF and

Sel.

Sig. are the average eciencies in selecting the candidates as cross-feed or signal, respectively. The Sel.

CF and

Sel. Sig. includes the BDT selection eciency and the mass window cut to be within 5340. MeV/c 2 to 6400.

MeV/c 2 . As expected, these two eciencies are about the same except for the very small dierence in their BDT values because of the slight change in some of the variables due to the ret of the decay tree depending on each spectrum. The uncertainty of these factors is calculated as the quadratic sum of the four eciencies. These factors are summarized in Table 5. [START_REF] Khachatryan | Constraints on the spin-parity and anomalous HV V couplings of the Higgs boson in proton collisions at 7 and 8 TeV[END_REF]. Note that some cross-feeds has actually twice the probability since two of its daughter particles can be mis-identied, e.g. there are two pions from Λ 0 b → pπππ that can be mis-identied as a kaon in the X 0 b → pKππ spectrum. This is also the case for .18: Fit parameters obtained in the t to crossfeeds shapes. The number of digits is automatically dened to be three in order to ensure in all cases the presence of at least two signicant digits.

Cross-feed

Fit parameters

Year 

α 1 α 2 /α 1 n 1 n 2 /n 1 σ 1 σ 1 /σ 2 µ f 2 Λ 0 b →

B physics shapes

As mentioned in Section 5.5.4, B 0 d,s → 4-body decays populate the invariant mass spectra of m phhh . Clearly, the dominant B 0 d,s physics backgrounds are those with only one π or one K misidentied as a p. The strategy followed in this analysis to reduce these backgrounds, as discussed in Section 5.6.3, is by applying a ProbNNp > 0.50 cut on the hypothesized proton track. But even with this chosen PID p cut, a signicant amount of B physics backgrounds survive. Hence, PDFs to model these contributions must be included in the total PDF.

The ve dominant B physics backgrounds included in the t are listed in Table 5.23 of Section 5.8.7. These B physics backgrounds are modelled in each spectrum when only one of its tracks is misidentied as a proton, except for the B 0 → KKKπ as cross-feed to X 0 b → pKππ spectrum. Doubly-misidentied B 0 → KKKπ events are identied from the RHSB events of the X 0 b → pKππ spectrum as presented in Section 5.7. The shapes of the B physics backgrounds are empirically modelled by a Cruij function, mathematically given by Equation 5.11. The Cruij PDF is composed of two Gaussian functions with shared mean µ but two dierent width σ's and two dierent tail-correction parameters. The B 0 → Kπππ, B 0 → KKKπ and B 0 s → KππK appear in more than one spectrum, as summarized in last column of Table 5.23. The ratios of yields of these B physics backgrounds from one spectrum to a reference spectrum is Gaussianly-constrained according to the selection eciency computed from MC and PID mis-identication rate calculated using PIDCalibTool. The reference spectrum for each of these B physics is chosen to be the spectrum where they are expected to be dominant, i.e., X 0 b → pπππ for B 0 → Kπππ, X 0 b → pKππ for B 0 s → KππK and X 0 b → pKKπ for B 0 → KKKπ. The cross-spectra factors are calculated using:

P (m; µ, σ L , σ R , α L , α R ) = N • exp(-(m -µ) 2 /2(σ 2 L + α L (m -µ) 2 )), if m ≤ µ exp(-(m -µ) 2 /2(σ 2 R + α R (m -µ) 2 )), if m > µ
f = Sel. X • PID X Sel. Ref. • PID Ref.
, (5.12) where PID X and PID

Ref. are the average eciencies of misidentifying the B physics event as an event in X spectrum and misidentifying as an event in the reference spectrum, respectively, while the Sel.

X and

Sel.

Ref. are the average eciencies of selecting the B physics event as an event in the X spectrum and in the reference spectrum, respectively. The Sel.

X and

Sel.

Ref. includes

BDT selection and the mass window cut to be within 5340. MeV/c 2 to 6400. MeV/c 2 . Table 5.21 summarizes these factors.

Partially-reconstructed background shapes

The partially-reconstructed backgrounds are modelled by an ARGUS function convoluted by a Gaussian resolution. The generalized ARGUS function has three parameters (m t , c, p)

and is given by: An ARGUS⊗Gauss PDF is added in each spectrum to model the partially-reconstructed backgrounds with missed π 0 coming from the Λ 0 b decays. In the pKππ and pKπK spectra, additional ARGUS⊗Gauss shapes are added to model the partially-reconstructed backgrounds coming from the Ξ 0 b decays. No convoluted ARGUS shape for Ξ 0 b is added in the pKKK spectrum since this is expected to be small. The parameters of the convoluted ARGUSes are directly determined from t to data, with some of the parameters shared or expressed in terms of other parameters of the spectra. The convolution of the ARGUSes with a Gaussian function is numerically and computationally demanding. The following items list the physical constraints used in order to help the t in determining the parameters of the convoluted ARGUSes:

P (m; m t , c, p) = 2 -p c 2(p+1) Γ(p + 1) -Γ(p + 1, c 2 /2) • m m t (1 - m 2 m 2 t ) p exp - 1 2 c 2 (1 - m 2 m 2 t ) , ( 5 
The slope c and the power p of the ARGUSes are shared among all the charmless spectra, but not shared among years, assuming similar kinematics of the sources.

The slope c and the power p of the ARGUSes are also shared among charmed spectra.

These parameters are also not shared among years.

Since the main partially-reconstructed backgrounds are X 0 b → 4 body plus a missing π 0 , all the threshold parameters m t are set to be the dierence of the nominal mass of 

Combinatoric shapes

First order Chebychev polynomial of the second kind is used to model the combinatorial background. It has only one parameter c which describes the slope of the line describing the decrease of combinatorial background as a function of the reconstructed invariant mass. In the nominal t, one slope c per year is shared among all charmless spectra, and one slope c per year is also shared among charmed spectra. An exponential shape is considered to evaluate a systematic uncertainty related to this model choice.

A comment is in order regarding the choice of a polynomial model as the baseline against an exponential shape for the combinatorics. The only valuable information about the combinatorics for most of the modes studied in this analysis lies in the right-hand side-band of the data p . The left-handed region of the invariant mass distribution of most of the spectra of interest is populated by the partially reconstructed background and the signal cross-feeds.

p It has been mentioned before that there is however a competition in this region with B physics events which forbids the simultaneous determination of these two contributions from the invariant mass data distribution only.
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Search for CP aymmetries in the charmless 4-body decays of Λ 0 b /Ξ 0 b Since the mechanics of the adjustment of an exponential shape requires a leverage on the lefthanded part of the invariant mass distribution, it is likely that its t can absorb overlooked background contributions. These considerations drove us to the choice of the polynomial model for the t model design with blind signal region.

Charmed decay shapes

Using MC-generated 2012 Λ 0 b → (Λ + c → pK -π + )π -events, the reconstructed invariant mass spectra is modelled by a double CB function with shared mean µ and shared width σ. The same selection as applied in charmless spectra, except with a lower BDT cut of -0.10 and reversed Λ + c mass window cuts, is required to the charmed spectra. A PID weight is assigned on an event-by-event basis calculated in the same way as explained in Section 5.6.2. Figure 5.21 displays the t result to the pKππ invariant mass and the parameters measured by the t are summarized in Table 5.22. These parameters, except the mean µ and width σ, are subsequently xed in the PDF used to t the real data. Due to lack of MC-generated events for the other charmed decay modes, the same shape is used for With the large amount of events in the X 0 b → (Λ + c → pKπ)π spectrum, the number of Λ 0 b → (Λ + c → pKπ)K starts to become a signicant cross-feed background. Hence, we added this in the nominal t model. MC-generated 2012 Λ 0 b → (Λ + c → pK -π + )K -events are used to determine the shape of this cross-feed PDF. A double CB, with shared mean but two dierent widths, is used to model the invariant mass distribution. Passing the same selection cuts and the same PID reweighting scheme, the t parameters are gathered in Table 5.22 and the t result is shown in Figure 5.22. The same shape is also used for the 2011 spectrum. All the parameters of this PDF is xed in the nominal t. 

Λ 0 b → (Λ + c → pπ -π + )π -, Λ 0 b → (Ξ + c → pK -π + )π -and Ξ 0 b → (Ξ + c → pK -π + )π -(both
→ (Λ + c → pK -π + )K -as (Λ + c → pK -π + )π -invariant mass distribution tted with DCB PDF. Table 5.22: Fit parameters obtained in the t to Λ 0 b → (Λ + c → pKπ)π signal shape and Λ 0 b → (Λ + c → pKπ)K as (Λ + c → pKπ)π cross-feed shape.
Fit parameters 
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The tter and the simultaneous t strategy

A modied version of V0hhFitter is used as a tool to simultaneously t the 28 separate spectra. This tter was originally developed in Warwick for modes involving a V 0 particle in the nal state and hence the name, but can actually be used in any 1-dimensional simultaneous t.

It is used in particular for the analysis of the decays B 0 d,s →K 0 S hh'. Some modications to the original code have been implemented to adapt to the blinding strategy of this analysis.

The implementation of this simultaneous t was a daunting task. Nonetheless, once implemented, its virtues are invaluable. The philosophy of the simultaneous t of charmless and charmed signal yields to the corresponding spectra followed a two-fold objective. The information of the charmless spectra (and charmed spectra) are intricated by the presence of signal and background cross-feeds, the common reweighting of the PID, the physical parameters such as the reconstructed baryon masses or the mass threshold of the partially reconstructed backgrounds (to only cite few of them). The simultaneous adjustment of the shared parameters between the signal and control channel modes, as well as the consistent introduction of data-driven constraints to the t model for all spectra to account for signal cross-feeds or B physics backgrounds, allows to integrate most of the sources of uncertainties

Search for CP aymmetries in the charmless 4-body decays of Λ 0 b /Ξ 0 b as statistical uncertainty of the t, and hence minimize the systematic uncertainty budget on the A raw 's and ∆A CP 's observables. Conversely, the latter are reduced to the t model error sources. Eventually, this strategy presents the advantage of a modest bookkeeping of the t results given the number of spectra under scrutiny in this analysis. The cross-checks of the measurement (magnet polarity and trigger requirements) proceed accordingly in one go.

Some elements of the t strategies and constraints were already mentioned in the previous Sections and Subsections of this document. They are spelled again here to wrap-up the whole strategy. Table 5.23 gathers the PDFs present in each spectrum. As discussed in Section 5.8.2, only dominant cross-feeds are included in the t as others involve double mis-identication. Futhermore, Λ 0 b → pKKπ as cross-feed to X 0 b → pKKK spectrum, and Ξ 0 b → pKKK as cross-feed to X 0 b → pKKπ or X 0 b → pKπK spectra, are not included in the t since eventually the t to data found only few events of these cross-feeds. Given the level of estimated mis-identication rates, which are ∼2% for Λ 0 b → pKKπ as X 0 b → pKKK and ∼8% for Ξ 0 b → pKKK as X 0 b → pKKπ or X 0 b → pKπK, we think that these contributions are negligible. Note that in the SM, the Λ 0 b → pKKπ and Ξ 0 b → pKKK are expected to proceed only through b → d penguin loop transition.

For the case of the B physics to 4-body backgrounds, singly misidentied decays (π to p and K to p) are modelled in each spectrum. A doubly-misidentied B 0 → K + K -K + π - as X 0 b → pKππ is also included in the t model since B 0 → K + K -K + π -events have been identied using the RHSB events of X 0 b → pKππ spectrum as discussed in Section 5.7. This background is expected to be the dominant B physics background before any PID cuts are applied and some events still survive in the X 0 b → pKππ spectrum after the PID cuts are applied. Note as well that although B 0 s → KππK is a background in the X 0 b → pKKπ spectrum, it is triply-misidentied in the X 0 b → pKπK spectrum since the two kaons should have the same charge. 

X 0 b → pπππ Λ 0 b → pπππ Λ 0 b → pKππ as pπππ Ξ 0 b → pKππ as pπππ B 0 → Kπππ as pπππ B 0 → ππππ as pπππ X 0 b → pKππ Λ 0 b → pKππ Ξ 0 b → pKππ Λ 0 b → pπππ as pKππ Λ 0 b → pKKπ as pKππ Ξ 0 b → pKπK as pKππ B 0 s → KKππ as pKππ B 0 → πKππ as pKππ B 0 → KKKπ as pKππ X 0 b → pKKπ Λ 0 b → pKKπ Λ 0 b → pKππ as pKKπ Λ 0 b → pKKK as pKKπ B 0 → KKKπ as pKKπ B 0 s → πKKπ as pKKπ X 0 b → pKKK Λ 0 b → pKKK Ξ 0 b → pKKK B 0 s → KKKK as pKKK B 0 → πKKK as pKKK X 0 b → pKπK Ξ 0 b → pKπK Λ 0 b → pKKK as pKπK Λ 0 b → pKππ as pKπK B 0 → KKπK as pKπK X 0 b → (Λ + c → pππ)π Λ 0 b → (Λ + c → pππ)π X 0 b → (Λ + c → pKπ)π Λ 0 b → (Λ + c → pKπ)π Λ 0 b → (Λ + c → pKπ)K as (Λ + c → pKπ)π X 0 b → (Ξ + c → pKπ)π Λ 0 b → (Ξ + c → pKπ)π Ξ 0 b → (Ξ + c → pKπ)π
• Each spectrum has a PDF for the combinatorics modelled by a rst order Chebychev function.

• Each spectrum has a PDF for partially-reconstructed backgrounds from Λ 0 b → 4-body + missing π 0 modelled by an ARGUS convoluted by a Gaussian resolution. The ratio of widths of the charmless signal shapes are Gaussianly-constrained with the values obtained from the t to MC events. The reference width is the width of Λ 0 b → pKππ 2012. These numbers are summarized in the last column of Table 5.17.

Control modes Λ 0 b → (Λ + c → pππ)π and Λ 0 b → (Λ + c → pKπ)π has its own signal width parameters oated in the t. However, the width of Λ 0

b → (Ξ + c → pKπ)π and Ξ 0 b → (Ξ + c → pKπ)π are shared.
The cross-feeds yields are related to their corresponding signal yields by a factor calculated from the ratio of selection eciencies and PID (mis)-identication eciencies as discussed in Section 5.8.2.

The ratio of yields of B physics backgrounds appearing in more than one spectra is also Gaussianly-constrained in the same way as how the signal cross-feeds yields are constrained. The ratio is calculated from ratios of selection eciencies and PID eciencies.

In addition to the constraints on the ratio of B physics yields, the yield of dominant B physics in each spectrum is Gaussianly-constrained according to their corresponding observed events in the RHSB. This was further discussed in Section 5.7. The ratio of B 0 → ππππ and B 0 → Kπππ in the X 0 b → pπππ spetrum is also Gaussianlyconstrained.

One slope c per year is shared among all charmless spectra, and slope c is shared per year also among all charmed spectra.

The parameters power p and slope s of the convoluted ARGUSes describing the partially-reconstructed backgrounds are shared among all the charmless spectra per year. Another set of shared ARGUS parameters p and s per year is dedicated for the charmed modes. The threshold parameter m t of the ARGUS shapes is set to be the dierence of the nominal mass of Λ 0 b (or Ξ 0 b if it comes from Ξ 0 b → 5-body) and the nominal mass of π 0 . The resolution of the Gaussian function convoluting the ARGUS is set to be the same as the width of the Λ 0 b signal PDF in the same spectrum (or Ξ 0 b signal PDF in the pKπK spectrum).

In order to avoid possible bias when the statistics are low, specically for the signal decays, the signal yields are allowed to go as low as -5% of the total number of events in the spectrum. The total number of oating parameters in the nominal t is 203, where 140 are yield parameters and the remaining 63 are shape parameters or ratio parameters. Out of 140 yield parameters, 28 are yield parameters of the charmless signal decays and 16 for charmed/control decays. Although not oating parameters of the t, the A CP 's and ∆A CP 's are calculated directly from the t results using RooFit::RooFormulaVar, which takes into account the correlation of the uncertainties of the t parameters. The A CP and ∆A CP are given by:

A CP = N (X 0 b ) -N (X 0 b ) N (X 0 b ) + N (X 0 b )
and

(5.14) ∆A CP = N (X 0 b ) -N (X 0 b ) N (X 0 b ) + N (X 0 b ) - N C (X 0 b ) -N C (X 0 b ) N C (X 0 b ) + N C (X 0 b ) , (5.15) 
respectively, where N C and N C in Equation 5.15 are the yields of the control decays.

Pre-unblinding toy studies

Toy MC studies are conducted to check for possible t biases on the signal yields. Since all the yields of the charmless modes are blinded, guesstimated values are used instead in the toy study. The signal yields of the charmed modes and backgrounds are set to be the values obtained in the simultaneous t, as well as the other shape parameters. The t results are presented in Section 5.10.1. Let us notice that a rst attempt has been performed by considering vanishing yields for all signal modes, and no biases were observed.

The generated values for the Λ 0 b → pK -π + π -and Λ 0 b → pπ -π + π -are 622 and 386 signal events, respectively, for the 2011 spectra, while 1394 and 892 signal events for the 2012 spectra. These were the yields observed q when the Λ 0 b → pπππ and Λ 0 b → pKππ (combined Λ 0 b /Λ 0 b ) were searched for using the StrippingBetaSQ2B{3,4}piSelectionLine of Stripping20.

The rest of charmless Λ 0 b signals are generated with 100 signal events, and 25 signal events for the Ξ 0 b 's. The same generated events are assigned to the Λ 0 b and Ξ 0 b signals. This toy study is however very demanding CPU-wise and hence some simplication to the nominal t, namely by xing the ARGUS power and slope in the charmless spectra, have been brought.

The correlation of these ARGUS parameters to the signal yields is in the percent level, as summarized in Table A.6 in Appendix A.17. The full CPU-consuming procedure will be be run once the t model is blessed.

The pull for each MC toy is calculated and gathered, where the pull is dened as,

pull g = g fit -g gen σ g,fit , (5.16) 
where g fit and g gen are the tted and generated values of the parameter, respectively, while σ g,fit is the uncertainty of the parameter obtained by the t. In an unbiased measurement of the quantity and correctly-estimated uncertainty, the pull distribution results in a unit

Gaussian. The pull study of the signal yields can be found in Figures 5.23 and 5.24, where the gaussian means and widths are gathered in Table 5.24. The behaviour of the pulls is Gaussian and no signicant biases were observed on the yields, hence on the CP asymmetry observables.

The yield of the dominant B physics background in each spectrum is Gaussianly-constrained according to what is observed in the RHSB events (See Section 5.7 for the details on the q See talk [https://indico.cern.ch/event/368076/].

5.9 Pre-unblinding toy studies 125 study of RHSB events). Due to the constraint, the pull distribution is not a unit Gaussian as shown in the Figures in Appendix A.10. The papers [START_REF] Demortier | Everything you always wanted to know about pulls[END_REF] and [START_REF] Karbach | Constraints on Yield Parameters in Extended Maximum Likelihood Fits[END_REF] suggest the correct way of calculating the widths of the pulls for constrained parameters of the t. This will be implemented in a further stage of the analysis if required. No bias is as well observed for these nuisance parameters.

The ensemble of these results provides a satisfactory behaviour of the t and does not require any corrective action. After unblinding, the uncertainties of the biases as given by the pseudo-experiments using the actual results of the t will be used however as a systematic uncertainty related to the simultaneous tter. Search for CP aymmetries in the charmless 4-body decays of Λ 0 b /Ξ 0 b

N (Signal Λ 0 b → pKKK) -0.025±0.

Pre-unblinding t results

In this Section, we present the t results and the measurement of CP asymmetry observables in three phase space regions. The rst measurement considers the full phase space data, where no invariant mass cut is applied to any of the pair of the daughter particles. The second measurement looks for the CP asymmetries in the low invariant mass of the pπ or pK, with the objective of scrutinizing the phase space of the decay involving the baryon series Λ * and N * . Lastly, CP asymmetries are measured in the low invariant mass of pπ (or pK) pair and also low invariant mass of the pair of the two other tracks. No such cuts are applied to the control modes in all the measurements. Particularly, the mass cuts on charmless spectra for each measurement are summarized in Table 5.25. For labelling purposes, we arranged the four charged tracks in each spectrum in this sequence: (ph

-h + h -) or (ph + h -h + ). Hence,
the proton is labelled simply as p, and the remaining tracks are labelled h, h and h in a charge arrangement dened in the previous sentence. For example, the notation m(ph_pπ)

means the reconstructed invariant mass of the combination.

The invariant mass cut on the pπ or pK pair is set to be less than 2 GeV/c 2 , while the invariant mass cut on the two remaining tracks depends on whether it is ππ pair, Kπ pair or KK pair. The choice of these values tries to include several known resonances, in particular, f 0 (1500) resonance for ππ, the broad scalar K * 0 (1430) resonance for Kπ and the f 2 (1525) resonance for KK. The charmless and charmed decay signal yields are then used to calculate the A raw 's and ∆A CP 's, with proper propagation of the statistical uncertainties taking into account correlations. Note that the ∆A CP of Ξ 0 b → pKπK and Ξ 0 b → pKKK are calculated using the control Ξ 0 b → (Ξ + c → pKπ)π, and hence the knowledge of the K + /K -and π + /π - detection asymmetries correction is necessary for the interpretation of the results in terms of CP violating asymmetries.

Table 5.25: Mass cuts applied in the data in order to search for CP asymmetries in the low invariant mass region of ph and h h .

Charmless spectrum

Mass cut (in GeV/c 2 )

Low invariant mass region of ph:

X 0 b → pπππ m(ph_pπ) < 2 or m(ph _pπ) < 2 X 0 b → pKππ m(ph_pK) < 2 or m(ph _pπ) < 2 X 0 b → pKKπ m(ph_pK) < 2 or m(ph _pπ) < 2 X 0 b → pKπK m(ph_pK) < 2 or m(ph _pK ) < 2 X 0 b → pKKK m(ph_pK) < 2 or m(ph _pK ) < 2
Low invariant mass region of ph and h h : Search for CP aymmetries in the charmless 4-body decays of 

X 0 b → pπππ (m(
Λ 0 b /Ξ 0 b ] 2 c ) [MeV/ - π + π - π m(p
N (B 0 → ππππ in pπππ) / N (B 0 → Kπππ in pπππ) 0.323 ± 0.034 ← shared
Parameters for 2011 spectra : The t model describes in a satisfactory way all the reconstructed spectra of interest.

N (2011 Signal Λ 0 b → pπππ) X.XXX ± X.XXX N X.XXX ± X.XXX N (2011 Signal Λ 0 b → pKππ) X.XXX ± X.XXX N X.XXX ± X.XXX N (2011 Signal Λ 0 b → pKKπ) X.XXX ± X.XXX N X.XXX ± X.XXX N (2011 Signal Λ 0 b → pKKK) X.XXX ± X.XXX N X.XXX ± X.XXX N (2011 Signal Ξ 0 b → pKπK) X.XXX ± X.XXX N X.XXX ± X.XXX N (2011 Signal Ξ 0 b → pKππ) X.XXX ± X.XXX N X.XXX ± X.XXX N (2011 Signal Ξ 0 b → pKKK) X.XXX ± X.XXX N X.XXX ± X.XXX N (2011 Signal
N (2012 Signal Λ 0 b → pπππ) X.XXX ± X.XXX N X.XXX ± X.XXX N (2012 Signal Λ 0 b → pKππ) X.XXX ± X.XXX N X.XXX ± X.XXX N (2012 Signal Λ 0 b → pKKπ) X.XXX ± X.XXX N X.XXX ± X.XXX N (2012 Signal Λ 0 b → pKKK) X.XXX ± X.XXX N X.XXX ± X.XXX N (2012 Signal Ξ 0 b → pKπK) X.XXX ± X.XXX N X.XXX ± X.XXX N (2012 Signal Ξ 0 b → pKππ) X.XXX ± X.XXX N X.XXX ± X.XXX N (2012 Signal Ξ 0 b → pKKK) X.XXX ± X.XXX N X.XXX ± X.XXX N (2012 Signal Λ 0 b → (Λ + c → pππ)π)
← shared f = ( 2012 
N (B 0 → Kπππ in pKππ)/( N (in Ref.)) 0.286 ± 0.006 ← shared f = ( 2012 
N (B 0 → KKKπ in pKKK)/( N (in Ref.)) 0.055 ± 0.002 ← shared f = ( 2012 
N (B 0 → KKKπ in pKππ)/( N (in Ref.)) 0.140 ± 0.002 ← shared f = ( 2012 
N (B 0 → KKKπ in pKπK)/( N (in Ref.)) 0.466 ± 0.008 ← shared f = ( 2012 
N (B 0 s → KππK in pKKπ)/( N (
The likelihood behaviour, studied in Section 5.9 dedicated to the understanding of t biases thanks to pseudo-experiments, is as well satisfactory.

All sources of background seem to be identied and adequately modelled. In particular, signal cross-feeds and B physics backgrounds, data-driven constrained, are in place.

No sign of an overlooked contribution is observed r .

The empirical adjustment of the partially reconstructed background shapes brings a consistent understanding of this component among the spectra.

The combinatorial backgrounds are found to be present in all the charmless spectra and described with similar shapes.

Consistent results are obtained between the two years of data taking for the parameters which can be compared.

The raw asymmetries of the control channels are unblinded and can hence be interpreted.

The t results are there as well consistent in between the years and the precision basically scales expectedly with the luminosity. They show asymmetries compatible with zero. These asymmetries embody both the detection asymmetries between charges (π, K and proton) and the b-baryon production asymmetries in addition to a CP asymmetry expectedly extremely small in the Standard Model. In line with similar observation in the charmless 2-body decays of the Λ 0 b baryon, the consistency of the raw asymmetry with a vanishing asymmetry can be seen as an indication of the smallness of the detection and production asymmetry corrections. Eventually, the sensitivities on the ∆A CP observables measurements are also provided. The very large uncertainty on the ∆A CP observable which is found for the decay mode Ξ 0 b → pKKK, particularly in the 2012 data, is likely related to a negative yield measurement. This is not a problem per se but indicates that an asymmetry measurement is irrelevant for this channel. We chose however to present this result as it came.

Low invariant mass region of ph

Cutting on the invariant mass of the ph pair requires re-estimation of the gaussian constraints of the B physics yields from the RHSB region of the invariant mass spectra. Using the same t model and the same strategy as discussed in Section 5.7, we obtained the estimates of the B physics full-spectrum yield constraints, as summarized in Table 5.28. The ts can be found in Appendix A.11. However, in the X 0 b → pKKK 2011 spectra, estimation of the B physics yields from the RHSB is no longer doable due to lack of events. Hence, in order to estimate these, we scaled the 2012 B physics RHSB yield to the case of 2011 spectra. In example, we denote the scale factor as s and the 2012 estimated RHSB yield as N 2012 RHSB , and the scaled 2011 B physics RHSB yield as N 2011 RHSB , then the scaling is simply

Y 2011 RHSB ± σY 2011 RHSB = s • (Y 2012 RHSB ± σY 2012 RHSB )
, where the σ's are the corresponding uncertainties. The scaling factor s is obtained from the ratios of 2011 and 2012 RHSB yields of B physics using the full phase space data, which can be found in Table 5.16 in Section 5.7. r An indication of an overlooked background contribution would result in particular in a gaussian con- straint far from its central value.

Search for CP aymmetries in the charmless 4-body decays of Λ 0 b /Ξ 0 b A re-calculation of the cross-feed constraints for the charmless signal modes, as well as the cross-spectra constraints of the B physics backgrounds, was done. However, due to the fact the X 0 b → phh h MC events are generated with a signicant fraction with low invariant mass resonances and that the MC B physics events are generated with low two-body mass resonances, the eect on the factors is small. This might not be the case in the real data.

Since we practically apply the same cut for all the spectra (m pπ /m pK < 2 GeV/c 2 ), the re-calculated ratios are still meaningful.

Shown in Figures 5. [START_REF] Salam | Weak and Electromagnetic Interactions[END_REF] Similar remarks as made for the full phase space ts can be repeated here. In particular, the identication and modelling of the combinatorial background, signal cross-feeds and B physics backgrounds seem satisfactory.

Low invariant mass region of ph and h h

With the additional cut on the invariant mass of the h h pair, a re-calculation of the gaussian constraints of the B physics yields from the RHSB region is necessary. Using the RHSB events of the 2012 spectra, the full-spectrum yield constraints on the B physics backgrounds are estimated via the same strategy as discussed in Section 5.7. The ts can be seen in Appendix A.12 and the estimated full-spectrum yields are summarized in Table 5.30. However, in the 2011 spectra, estimation of the B physics yields from the RHSB is no longer doable due to lack of events, except for the X 0 b → pπππ spectrum. Again, in order to estimate these, we scaled the 2012 B physics RHSB yield to the case of 2011 spectra.

The cross-feed constraints of the charmless signals modes and cross-spectra constraints of the B physics backgrounds are also re-calculated. Since the X 0 b → phh h MC events are generated with a signicant fraction with low invariant mass resonances and that the MC B physics events are generated with low two-body mass resonances, the eect on the factors is negligible, which might not be the case in the real data. However, since we apply relatively the same phase space cut for all the spectra, the re-calculated ratios are still usable. 

Systematic uncertainties and cross-checks

Systematic uncertainties will come when the unblinding of the t results and proton-antiproton spectra will occur. We are rapidly reviewing in this Section the main sources of systematic uncertainties and the methods we have installed for their determinations. We will as well spend few words on the envisaged cross-checks after unblinding.

Systematic uncertainties sources

The xed parameters of the signal shapes, signal cross-feed shapes and B physics background shapes modelling as determined from the MC simulated events. The parameters are for instance the tail parameters of the signal DCB model. In most cases, they have been determined by a simultaneous t of several MC simulated events datasets with a nite number of events and their determination comes with a statistical uncertainty.

Pseudo-experiments can be generated by uctuating the parameters of the MC t according to the results of the t and taking into account its covariance matrix. The distribution of the nal observables will be used as an estimate of the related systematic uncertainty. The procedure has been successfully commissioned with educated values of the t results. It is however very demanding CPU-wise and some simplication to the nominal t, namely by xing the parameters of the partially reconstructed background shape, have been brought. The full CPU-consuming procedure will be be run once the t model is blessed.

The PID systematic corrections: pseudo-experiments will be generated by uctuating the uncertainties of the parameters of the MC PID re-weighted shapes. The spread of the toy results will be assigned as the related systematics.

The combinatorics shape: the results of the baseline t model with a rst order Chebychev polynomial will be compared to the ones obtained with an exponential shape. The observed dierence of the measured yields will be taken as the systematic uncertainty estimate related to the choice of a polynomial shape for the combinatorics.

The L0hadron trigger eciencies for the dierent charges of L0Hadron TOS pions and kaons: the calorimeter group is providing tables of L0HadronTOS eciencies with associated upper and lower systematic uncertainties from a selected sample of oine reconstructed D 0 → K -π + . The eciencies are determined for both pions and kaons and split by charge. The observed variation in the t results by changing these eciencies within their errors (driven by the size of the calibration sample) will be taken as the corresponding systematic uncertainty.

The tracking eciency systematic uncertainties: the detection eciency of X 0 b and X 0 b in the charmless spectra is cancelled, up to corrections of kinematics dierence, by the control channels. A second-order correction on the tracking eciency comes due to the dierence of their kinematics. The tracking group is providing tables of eciencies for kaons and pions with associated upper and lower systematic uncertainties (and split by charge) as a function of momentum. The observed spread of results by varying the track eciency within errors will be assigned as the corresponding systematic uncertainty.

However, no such table yet exists for protons and hence we plan to take the same systematic correction from what we will get from the kaon and pion corrections.

Concluding remarks 157

Partially-reconstucted backgrounds from Λ 0 b → pK -(η → π + π -γ): This possible contribution is not modelled in the t to data. As such, a systematic uncertainty, educated from the B + decays, is assigned. The SM quark level diagrammatic picture for Λ 0 b → pK -(η → π + π -γ) decay is the presence of uu pair. Hence, we are expecting a hierarchy of π + π -> ρ 0 > η > η . The analogous decays in the meson systems are:

B + → π + π -π + , B + → ρ 0 π + , B + → ηπ + , B + → η π + ,
and shows that very hierarchy.

We will assign a systematic uncertainty by considering the change in the result of the introduction of this shape with a ratio of 1:20 as indicated by the B + hierarchy.

A systematic uncertainty will also be assigned for the dierence of the kinematics of the charmless decays and the control modes.

Cross-checks

There are two main studies which must be performed for a sanity check of the results after the unblinding of the results:

The comparison of the results obtained for the independent samples obtained with each of the magnet polarities.

The comparison of the results obtained for the two categories of L0 trigger requirements: Trigger Independent of Signal (TIS) candidates and Trigger On Signal (TOS) candidates. The CP violation in baryons remains unobserved up to date. In these multibody decays of b-baryons, the interference pattern is expected to be rich of resonance structures, in particular in the low mass two-body baryon resonances (Λ * 0 , N * 0 and ∆ series). They come likely in association with two-body non-baryonic resonances (i.e. ππ, Kπ and K + K -invariant mass spectra). The weak interaction induced CP asymmetries might hence receive signicant enhancement from the phase dierences coming from these strongly interacting resonances and makes these decays a favorable terrain for the rst observation of CP violation in baryon decays.

Concluding remarks

There are seven decays of interest, namely

Λ 0 b → pπ -π + π -, Λ 0 b → pK -π + π -, Λ 0 b → pK -K + π -, Λ 0 b → pK -K + K -, Ξ 0 b → pK -π + π -, Ξ 0 b → pK -π + K -and Ξ 0 b → pK -K + K -,
which are reconstructed and selected consistently with common selection tools. A simultaneous mass tter has been designed to measure their yields and charge conjugate counterparts.

A simple counting experiment can measure the direct A CP up to corrections of instrumental and productions asymmetries. In LHCb, this amounts to correction on the K + /K -, π + /π - and p/p detection asymmetries and b-baryon/b-baryon production asymmetry. In order to cope with these unknowns, we have chosen to measure the ∆A raw of both Λ 0 b and Ξ 0 b charm- lessly decaying to fully-charged four-body nal states with respect to charmed decays having the same unpaired nal tracks, such as 

Λ 0 b → (Λ + c → pπ -π + )π -, Λ 0 b → (Λ + c → pK -π + )π - and Ξ 0 b → (Ξ + c → pKπ)π.
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Data Signal + Background b → pKKK charmless signal modes with yields xed to zero for both 2011 and 2012 spectra. For these modes, the logarithm of the likelihood ratio ln (L(Y Null )/L(Y Max. )) is obtained, where L(Y Null ) is the likelihood where the signal yields are xed to zero, while L(Y Max. ) is the likelihood of the nominal t where the yields are freely oated.

+ K - π + K p → b 0 Ξ 5-body → b 0 Λ Combinatorial background + π - π + K p → b 0 Λ + K - K + K p → b 0 Λ π KKK → 0 B 5-body → b 0 Ξ 5500 6000 -5 0 5 ] 2 c ) [MeV/ - K + K - m(pK
As the size of the sample approaches to innity, the distribution of the -2∆lnL approaches a χ 2 distribution with number of degrees-of-freedom equal to the dierence in dimensionality of L(Y Null ) and L(Y Max. ). In principle, this is approximately equal to four in this analysis corresponding to the yield parameters of the four spectra. Hence, the probability is calculated assuming a χ 2 distribution with four degrees-of-freedom, and then the 
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Data Signal + Background 
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Data Signal + Background 
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Ξ - π + π - π p → b 0 Λ - π + K - pK → b 0 Λ K π π K → s 0 B π π π K → 0 B π KKK → 0 B - π + π - pK → b 0 Ξ 5-

LHCb preliminary

Data Signal + Background 

+ π - π + K p → b 0 Λ 5-body → b 0 Λ Combinatorial background + K - π + K p → b 0 Ξ + π - π + π p → b 0 Λ + π - K + K p → b 0 Λ K π π K → s 0 B π π π K → 0 B π KKK → 0 B + π - π + K p → b 0 Ξ 5-body → b 0 Ξ 5500 6000 -5 0 5 ] 2 c ) [MeV/ - π + K - m(pK

LHCb preliminary

Data Signal + Background - π + K - pK → b 0 Λ 5-body → b 0 Λ Combinatorial background - π + π - pK → b 0 Λ - K + K - pK → b 0 Λ π KKK → 0 B K π π K → s 0 B 5500 6000 -5 0 5 ] 2 c ) [MeV/ + π - K + K p m( ) 2
Candidates / ( 15.1429 MeV/c 1 10
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Data Signal + Background 6.8, the pull distributions of the ∆A CP quantities are well-described by a unit Gaussian and no biases were observed. Also gathered in Table 6.8 are the results of the Gaussian t to the pull distributions of the A raw quantities. We observed no biases as well on these observables. 

+ K - π + K p → b 0 Ξ 5-body → b 0 Λ Combinatorial background + π - π + K p → b 0 Λ + K - K + K p → b 0 Λ π KKK → 0 B 5-body → b 0 Ξ 5500 6000 -5 0 5 ] 2 c ) [MeV/ - K + K - m(pK
A raw (Λ 0 b → (Λ + c → pππ)π) 0.026±0.039 0.981±0.027 0.026±0.041 1.029±0.029 A raw (Λ 0 b → (Λ + c → pKπ)π) -0.064±0.041 1.036±0.029 -0.013±0.040 1.006±0.028 A raw (Ξ 0 b → (Ξ + c → pKπ)π) -0.045±0

Cross-checks

Cross-checks are sanity checks in order to examine whether there is a dependence of the results to dierent subcategories of data. No systematic uncertainty will be assigned in the discrepancy, if there are any, but rather have to be investigated and corrected. Since the 2011 and 2012 data are separated in the nominal t, the cross-check on the dierent data taking 6.4 Cross-checks 179

) π π π p → b 0 Λ (2011 CP A ∆ 4 - 2 - 0 2 4
Events / ( 0.5 ) periods comes directly from the t results. As listed in Section 5.11, we also performed cross-check based on the polarity of the LHCb magnet when the data were taken, and also based on whether one of the daughter tracks of the X 0 b candidate has triggered the L0 or not. We performed the cross-checks using the full phase data, where we have enough events to allow for further splitting into dierent categories.

In the cross-check in terms of magnetic polarity, a new simultaneous t was performed by splitting further the 2011 and 2012 data into two subcategories called MagUp and MagDown (referring to the direction of the magnetic eld). We note that in 2011, slightly more data were taken using the MagDown conguration than MagUp, while in 2012 the two data splittings are relatively equal. Although a simultaneous t has been performed, the signal crossfeed factors, the B physics cross-spectra constraints, the Gaussianly-constrained ratios of signal widths, the combinatorial slopes and the ARGUS parameters are set to be independent for the two subcategories. Since the yield of the dominant B physics background in each spectrum is constrained using estimates in the RHSB, then there is a need for recalculation of these numbers. The new numbers for the constraints are estimated by scaling the old constraints according to the fraction of events categorized as MagDown (or MagUp) w.r.t. to the combined data.

) π π π p → b 0 Λ (2012 CP A ∆ 4 - 2 - 0 2 4
Events / ( 0.5 ) The cross-checks based on the L0 trigger categories are also obtained by simultaneously tting all the split subcategories. The two subcategories are called L0 Triggered-On-Signal (TOS) events and L0 Triggered-Independent-of-Signal (TIS). As the name suggests, events that are triggered by one of the daughter particles of the X 0 b candidate are called L0 TOS events, while events triggered by neither of the daughter particles are called L0 TIS events. Like in the case of magnet polarity splitting, the signal cross-feed factors, the B physics crossspectra constraints, the Gaussianly-constrained ratios of signal widths, the combinatorial slopes and the ARGUS parameters are set to be independent for the two subcategories. Also, the new numbers for the B physics yield constraints are estimated by scaling the old constraints according to the fraction of events categorized as L0 TOS (or L0 TIS) w.r.t. to the combined data.

Shown in Figures 6.15 and 6.16 are the cross-checks on the ∆A CP measurements on the dierent subcategories. Note the dierent scales of the y-axis. The rst two points in the plots, which are found to be compatible within 1.50σ, are the measurements obtained from the nominal t to the full phase space data. The said two points are then averaged, weighted by their corresponding uncertainties. The calculated average values and the uncertainties are written in each plot and are drawn as blue lines and light blue bands. The ∆A CP values of 6.5 Interpretation of results 181 the subcategories are found be compatible within 2σ from this band. Shown at the bottom on each plot are the compatibilities of the two consecutive points, which are (aside from the rst two points) the magnet polarity splitting and L0 trigger category splitting in each year. They are found to be compatible within about 2σ except for the Ξ 0 b → pKππ magnet polarity splitting of 2011 data. However, this discrepancy could be a statistical uctuation due to limited statistics for this mode.

Interpretation of results

This section should start with a word of caution. The unblinding of the spectra and results of this analysis happened very recently and the necessary systematics studies onto the ∆A CP measurements are not yet completed. The results provided here are hence given with their statistical uncertainty only. However, the analysis strategy was devised such that most of the systematic uncertainties related to the knowledge of backgrounds and signal cross-feeds are suppressed to a rst approximation (actually embodied into the statistical uncertainty).

On a similar note, it has been shown that the observed t biases will induce a negligible systematic uncertainty. The remaining systematic uncertainty estimates have still to be worked out and the full understanding of the results should proceed from there. We will hence limit our interpretation to the following series of careful remarks:

Six out of the seven decay modes searched for in this work have been observed, simultaneously for particle and antiparticle. Only the decay Ξ 0 b → pKKK escaped the observation. On a general basis, the invariant mass ts are excellent and the establishment of the signal decays is unambiguous.

The cross-checks performed on the consistency of the ∆A CP measurements by switching the magnet polarity or splitting the trigger streams do not indicate any signs of an experimental problem whatsoever. The obtained consistency satises the requirements which were set a priori before the unblinding.

The proton/antiproton asymmetries in the combinatorial backgrounds are measured at the percent level and found to be consistent with zero. That result indicates that no experimental bias is unattended. The asymmetries for the B decays are also found vanishing, inline with former experimental results.

On the contrary, ∆A CP asymmetries in the dominant charmless decays Λ 0 b → pKππ and Λ 0 b → pKKK are interestingly found to simultaneously depart from zero by more than 2.5σ in the low invariant mass region of the phase space as displayed in Table 6.9. A naive estimate of the simultaneous departure from the hypothesis of CP symmetry places the signicance of the eect at more than three standard deviations, although a thorough estimate of both the total signicance of the result is in order.

This observation cries for a dedicated scrutiny of the Phase Space. Chapter 7

Summary and conclusions

The results presented in this thesis can be divided into three parts: (1) Ageing and calibration studies of the Pre-shower subdetector of LHCb have been performed; (2) Two-sided limits on the branching fraction of B 0 s → K 0 S K + K -were provided using modied Feldman-Cousins inference using the 2011 data of LHCb; and (3) ∆A CP measurements on the four-body fully charged charmless decays of Λ 0 b and Ξ 0 b are performed using the full Run I data of LHCb.

The a posteriori check in the calibration status of the PS showed that at the end of 2011 data taking campaign, the calibration met the 10% absolute precision requirement. Hence, this result justied the decision of using the same set of numeric gains for the 2012 campaign.

At the end of 2012, the absolute precision has slightly degraded to about 12%. The main purpose of the study was to quantify the ageing during the Run I data taking. It has been shown that the PS detector has a typical maximum ageing of 10%. This level of ageing does not require corrective action so far.

As presented in Chapter 4, the number of B 0 s → K 0 S K + K -candidate events obtained was not enough to claim a discovery and subsequently measure the central value of the branching fraction. Instead, two-sided limits were provided using a modied Feldman-Cousins inference. Two separate measurements, based on the reconstructed K 0 S category, were conducted and eventually combined into the following result:

B(B 0 s → K 0 S K + K -) [0.2, 3.4] × 10 -6 at 90% C.L. . (7.1) 
The data used in this analysis correspond to about L = 1 fb -1 collected data during the 2011 data taking. As a prospect, an ongoing analysis of the B 0 d,s → K 0 S h + h -(h being a π or a K) decay modes is currently conducted in LHCb using the full Run I data.

The main analysis discussed in this thesis is the search for CP violation in the charmless decays of Λ 0 
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Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - K + π - pK → 
Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - K + K - pK → 
Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - pK → 0 b Ξ Xb_M
π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - K + π - pK → 0 b Ξ Xb_M
- π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - π + π - π p → 0 b Λ - π + π - pK → 0 b Λ - π + K - pK → 0 b Λ - K + K - pK → 0 b Λ - π + π - pK → 0 b Ξ - K + π - pK → 0 b Ξ - K + K - pK → 0 b Ξ - K + K - pK → 
) 2011 π π π p → b 0 in X π π π K → 0 (B N 4 - 2 - 0 2 4
Events / ( 0.5 ) 

) 2011 π π pK → b 0 K in X π π K → s 0 (B N 4 - 2 - 0 2 4
Events / ( 0.5 ) 

) 2011 π π pK → b 0 X K in π π K → s 0 (B N 4 - 2 - 0 2 4
Events / ( 0.5 ) 

) 2012 π π pK → b 0 K in X π π K → s 0 (B N 4 - 2 - 0 2 4
Events / ( 0.5 ) 

) 2012 π π pK → b 0 X K in π π K → s 0 (B N 4 - 2 - 0 2 4
Events / ( 0.5 ) 

) 2011 π pKK → b 0 in X π KKK → 0 (B N 4 - 2 - 0 2 4
Events / ( 0.5 ) 

) 2011 π pKK → b 0 X in π KKK → 0 (B N 4 - 2 - 0 2 4
Events / ( 0.5 ) 

) 2012 π pKK → b 0 in X π KKK → 0 (B N 4 - 2 - 0 2 4
Events / ( 0.5 ) 

) 2012 π pKK → b 0 X in π KKK → 0 (B N 4 - 2 - 0 2 4
Events / ( 0.5 ) 

N (2012 Signal Λ 0 b → pπππ) X.XXX ± X.XXX N X.XXX ± X.XXX N (2012 Signal Λ 0 b → pKππ) X.XXX ± X.XXX N X.XXX ± X.XXX N (2012 Signal Λ 0 b → pKKπ) X.XXX ± X.XXX N X.XXX ± X.XXX N (2012 Signal Λ 0 b → pKKK) X.XXX ± X.XXX N X.XXX ± X.XXX N (2012 Signal Ξ 0 b → pKπK) X.XXX ± X.XXX N X.XXX ± X.XXX N (2012 Signal Ξ 0 b → pKππ) X.XXX ± X.XXX N X.XXX ± X.XXX N (2012 Signal Ξ 0 b → pKKK) X.XXX ± X.XXX N X.XXX ± X.XXX N (2012 Signal Λ 0 b → (Λ + c → pππ)π)
N (Signal Λ 0 b → (Λ + c → pππ)π) 0.003 0.003 0.001 0.001 N (Signal Λ 0 b → (Λ + c → pππ)π)
-0.002 0.006 0.001 0.000 

N (Signal Λ 0 b → (Λ + c → pKπ)π) -0.204 0.157 -0.318 0.244 N (Signal Λ 0 b → (Λ + c → pKπ)π) -0.
N (Signal Λ 0 b → (Λ + c → pππ)π) 0.006 -0.003 -0.022 0.030 N (Signal Λ 0 b → (Λ + c → pππ)π) 0.002 -0.001 -0.012 0.019 N (Signal Λ 0 b → (Λ + c → pKπ)π) -0.307 0.232 -0.475 0.359 N (Signal Λ 0 b → (Λ + c → pKπ)π) p ⊥2 2π + m 2 2π      E 2 2π , (B.8)
a Both J/ψ and η mesons decay quickly resulting in decay vertices overlapping with the decay vertex of the B 0 meson that can not be resolved by the LHCb VELO.

B.2 Commissioning the partial reconstruction in

B 0 → K 0 S (π + π -)K ± π ∓ 225
where pB is a unit vector pointing in the direction of p B , m 

B.1.2 Application of partial reconstruction

The partial reconstruction method outlined in the previous Subsection can also be applied to other decay channels where one of the nal decay particles is dicult to reconstruct. The accuracy of this method is dependent on the accuracy of the measurement of the secondary vertex and hence it is expected that the eciency of this method will improve with increasing number of charged tracks that are used to determine the secondary vertex. The same argument is also true for the primary vertex. Some decay channels that partial reconstruction may be utilized are, where η is searched for as π + π -{γ, η}, η is searched for as π + π -π 0 , and ω and φ are searched for as π + π -π 0 . This reconstruction technique might be of value when we want to measure the branching fractions of these decays. But another possible application of partial reconstruction is in the determination of the asymmetry in detection eciency. For example, the decay of B 0 to J/ψ(pp)X, where X are charged tracks can be used to measure the detection eciency on p and p. The idea is to reconstruct only either p or p and the charged tracks and then count the number of events. One thing to note here is that since the missing particle is charged, then it will leave hits in VELO detector, giving a hint on which of the two solutions is likely the correct one. This additional information is expected to shrink the mass resolution. Of course this can be extended to detection eciency asymmetry on K + and K -. Some decay channels that partial partial reconstruction can be used to measure detection eciency asymmetry are, B 0 -→ J/ψ(pp)K + π - and π ∓ tracks determine the decay vertex position, while the K 0 S ies to a signicant distance from the b-hadron decay vertex before decaying to π + π -c . In this exercise, we use Monte Carlo events d in which the K 0 S decays outside the Vertex Locator (VELO) hence dubbed as K 0 S Down-Down (DD), in contrast to K 0 S Long-Long (LL) in which the K 0 S decays inside the VELO and hence provide additional constraint. A total of 62991 MC matched events are used. We are starting the study from a MC-truth based simulation and add up elements of reconstruction step by step to understand the origins and dependencies of the precision of the method.

B ± -→ K ± η (B.

B.2.1 Reconstruction of p X

As shown in Equation B.6, there are two possible solutions for p X momentum, resulting to a two-fold ambiguity of the direction and magnitude of the missing π -. We rst try the partial reconstruction by choosing the solution of p X which is closer to the true direction of p X hereafter referred as cheated partial reconstruction. This is in anticipation that we could nd a procedure that can distinguish which of the two solutions is more probable e . It is also possible to have two entries per event candidate by including the two possible solutions in the mass spectrum instead of randomly choosing which one of the two. The mass spectrum of this procedure and the random choice procedure will be relatively the same but the signal signicance of this procedure will be √ 2 higher. For the time being, to compare with the weighted approach, we use a random choice. We take note also that an optimal solution might be to enter the two solutions when they dier by more than the resolution and use a random choice when not.

B.2.2 Reconstruction of B 0 Mass

Knowing the four-vector energy-momentum of the missing particle, the mass of the B 0 meson can then be reconstructed using Equation B.5. We investigate this partial reconstruction method by starting with the true direction of p B , true momenta of K ± π ∓ mesons and cheated partial reconstruction h . This will then be slowly degraded: f Unfortunately, the MC sample does not contain tuples for the true direction of the pions from the K 0 S decay. It is expected that this resolution will improve if true momenta of the pions are known.

g Conversely, background candidates will often have a B parameter negative. It is hence an intrinsic selection discriminant.

h Cheated in the sense that we choose the solution of Equation B.6 that is closer to the true value. primary vertex and secondary vertex reconstructed. These cases are summarized in Table B.1. For each case, we t the mass distribution with three Gaussian functions, taking note of the resolution of the best Gaussian as this will be compared for the dierent cases to be studied in the next Subsections.

Case 1

In this case, we use the true direction of p B , true i momenta of the visible daughter particles and also employ the cheated partial reconstruction algorithm. This can be considered as the asymptotical case, in which the partial reconstruction algorithm can not do better than this asymptotical case. To model the reconstructed mass distribution, we choose to follow a qualitative approach by tting it with the most adequate sum of Gaussian functions. As can be seen in Figure B.4, the reconstructed m B distribution can be well-modelled by three Gaussian functions. We take note of the resolution of the rst Gaussian which is equal to ∼23 MeV/c 2 , with a corresponding eciency of ∼53% (28756/54381), as the asymptotical resolution that can be obtained by this partial reconstruction algorithm for the B 0 -→ i Except for the momentum of the accompanying π + from the K 0 S due to technical reasons. Here we suppose that the resolution is due in an uncorrelated way to the addition of kinematical reconstruction and the SV resolutions. σ 2 Rec. is ∼22 MeV/c 2 as already obtained in case 3, and henceforth using Equation B.18, σ SV is equal to ∼73 MeV/c 2 . Despite the crude approximations, we already identied one of the major sources of experimental uncertainties in the mass reconstruction. We found out also that the introduction of the reconstructed vertices degrades the B 0 mass resolution. This is not a surprise knowing that the partial reconstruction technique depends on how one can precisely measure the direction of the b-avoured hadron. Since there are only few tracks used to reconstruct the secondary vertex, hence this has more impact compared to the reconstruction of the primary vertex.

Knowing that the technique depends on the precise measurement of the ight direction of B 0 , we have shown that one can improve the reconstructed B 0 mass resolution by cutting hard on the transverse end vertex χ 2 and the ight distance χ 2 as well. There are of course other non-linearly correlated variables that can be used to further remove badly reconstructed events, and this will be studied in the next Section.

B.3 MC studies on B 0 → J/ψ(µ + µ -)η (ηπ + π -)

We also test the partial reconstruction procedure by using the decay channel B 0 -→ J/ψ(µ + µ -)η (ηπ + π -) considering the η from the η decay as the missing particle. It is actually thought that in reason of the relatively high mass of the missing particle, physical backgrounds from J/ψπ + π -X are suppressed. This decay mode is very suppressed and is only used here for convenience in view of commissioning the method for B 0 s -→ J/ψη . In this decay channel, the J/ψ and the two pion tracks from η decay determine the decay We use the MC generated events based on event type number 11144413, simulated using simulation condition sim-20121025-vc-m{d,u}100 and detector condition dddb-20120831. These generated events have tight generator cuts, as summarized in Table B.3

l . The J/ψ is forced to decay to µ + µ -with indenite number of radiative photons modelled using PHOTOS package, while η is forced to decay to ηπ + π -and the η is forced to decay to γγ. The selection of B 0 → J/ψ(µ + µ -)η (ηπ + π -) events is summarized in Table B.4. The J/ψ candidates are taken from the Phys/StdMassConstrainedJpsi2MuMu/Particles container with additional mass cut of ADMASS('J/psi(1S)') < 80.0*MeV. The η are selected from the Phys/StdLooseResolvedEta/Particles container, while the pions are taken from the container located at Phys/StdLoosePions/Particles. An event lter is also applied to retain only events with fewer than 250 Long tracks.

Table B.4: Selection of B 0 -→ J/ψ(µ + µ -)η (ηπ + π -) events. the corresponding eciency is 14%, which is lower compared to the random choice. However, this has an advantage. If we assume that the signal and background events will increase by a factor of 2, then the signal signifance S/ √ S + B will be a factor √ 2 larger than the random choice.

Proper time weighting

The idea of weighting the two possible solutions of p X according to its corresponding proper time is that the probability of a particle decaying as a function of time is given by an exponential function. The smaller the proper time, the higher the probability of decaying.

Hence, the two possible solutions of p X is weighted according to this. The rst possible solution of p X will result to a proper decay time of B 0 , say t 1 , while the other solution will result to a proper time decay of say t 2 . The weight given to the rst solution is w 1 = e -t 1 /τ /(e -t 1 /τ + e -t 2 /τ ), while the weight given to the second solution is w 2 = e -t 2 /τ /(e -t 1 /τ + e -t 2 /τ ), where τ = 1.530 ps is the proper mean lifetime of the B 0 meson. Summing up the two weights should of course amount to 1. Therefore, although there are two entries in the B 0 mass spectrum for every B 0 -→ J/ψ(µ + µ -)η (ηπ + π -) decay candidate, the total weight is still equal to 1. 

As shown in

Momentum weighting

In the momentum weighting procedure, a prior probability density function (or histogram) is needed. This can be obtained from the distribution of p B 0 on MC matched events, as shown in Figure B. [START_REF] Aad | Combined Measurement of the Higgs Boson Mass in pp Collisions at √ s = 7 and 8 TeV with the ATLAS and CMS Experiments[END_REF]. Using the same procedure as in the proper time weighting, the rst possible solution of p X will result to a momentum of B 0 , say p 1 with corresponding probability P 1 , and while the other solution will result to a momentum of say p 2 with corresponding probability P 2 . The weight given to the rst solution is w 1 = P 1 /(P 1 + P 2 ), while the weight given to the second solution is w 2 = P 2 /(P 1 + P 2 ). Again, although there are two entries in B 0 mass spectrum for every B 0 -→ J/ψ(µ + µ -)η (ηπ + π -) decay candidate, the total weight is still equal to 1.

As shown in Figure B.19, the best Gaussian has a resolution of ∼78 MeV/c 2 , with an eciency of ∼24%. Although it improves the resolution with respect to the random choice, the eect is again marginal.

Proper time and momentum weighting

In this case, the two weighting procedures are combined. The rst possible solution of p X will result to a proper time and momentum of B 0 , say t 1 (with a corresponding probability T 1 = e -t 1 /τ ) and p 1 (with corresponding probability P 1 ), respectively. The other possible solution will result to proper time and momentum of B 0 , say t 2 (with a corresponding probability T 2 = e -t 2 /τ ) and p 2 (with corresponding probability P 2 ), respectively. The weight given to the rst possible solution is w 1 = (T 1 P 1 )/(T 1 P 1 + T 2 P 2 ), while the weight given to the second possible solution is w 2 = (T 2 P 2 )/(T 1 P 1 + T 2 P 2 ). The resulting B 0 mass spectrum for this weighting procedure is as well disappointing as shown in 

Summary on the weighting techniques

Using the three dierent weighting techniques, we did not nd signicant improvements w.r.t.

the random choice procedure. The weighting technique based on momentum requires a prior momentum distribution, which in this case was obtained from Monte Carlo. Henceforth, this technique relies on the good agreement of data and Monte Carlo. The weighting procedure based on proper time is however well-motivated by physics and must therefore be used in data. Although the improvement is insignicant in the decay mode of B 0 → J/ψη (π + π -η) that we tested, the introduction of this technique can not be worse than the random choice.

One thing to note however is how this procedure will aect the background shape. This can be checked on the data by applying a reverse weighting (put more weight on the wrong solution) and look how the background shape is aected (See Section B.4.5).

B.3.4 Discriminating variables

As already shown in the case of B 0 → K 0 S (π + π -)K ± π ∓ , there are two variables that can categorize the events resulting to Gaussian with worst resolution and events resulting to Gaussian with best resolution. We found out that the signicance of the impact parameter of J/ψ and of the π ± can also discriminate the said categories, as well as the number of tracks used to create the primary vertex. Using sPlotting technique, the reconstructed B 0 mass is considered as the discriminating variable. This allows us to plot sWeighted B 0 ight distance χ 2 , B 0 transverse end vertex χ 2 and J/ψ(1S) impact parameter χ 2 , π ± impact parameter χ 2 and number of tracks in the PV of B 0 (although small), as shown in 24 (bottom). The double structure of the signal events shown in the BDT response is a reection of the additional intermediate Gaussian (the Gaussian with moderate resolution). We however believe that these events will contribute a signicant part of the signal statistics in the end and must be considered as legitimate signal events.

To nd the optimal BDT cut, we use the signal signicance S/ √ S + B. The number of signal events S and the number of background events B are obtained by retting the B 0 mass distribution for every applied BDT cut. Here, the number of events at the bestresolution Gaussian is considered as S, while the number of events at the worst-resolution Gaussian is considered as B. o Although the events in the worst-resolution Gaussian are signal events, we assume that the characteristic of these events represents real background events. 

B.3.5 Summary

We have developed a BDT that can select events that will have a good reconstructed B 0 mass resolution. This BDT is based mainly on variables that can select the most relevant vertexing performance. With regards to the weighting methods, we did not nd a satisfactory way to choose statistically the good solution. The two solutions for this specic nal state are too close for obvious criteria on lifetime and momentum. But as already mentioned in 3.3.6, the weighting method based on proper time is well-motivated by physics and hence can not be worse than the random choice. Should this technique may of some interest for LHCb users, we will provide the choice between the dierent weighting methods.

B.4 MC Studies on B 0 s → J/ψ(µ + µ -)η (ηπ + π -) and search on real data Physics-wise, the decay of B 0 s into a CP eigenstate J/ψη is one of the easiest way to access the mixing-induced phase of the B 0 s -B0

s system through a time-dependent analysis. As far as the partial reconstruction technique is concerned, it was thought that this nal state with η as the missed particle was relevant. Mostly because of the presence of two neutral particles in the nal state, both resulting to a low explicit full reconstruction eciency.

Searching for the decay mode B 0 s → J/ψ(µ + µ -)η (ηπ + π -), we apply the partial reconstruction technique in this decay using MC-generated events based on event type number 13344402, simulated using condition Sim08-20130503-1-vc-m{d,u}100 and detector condition Sim08-20130503-1. The J/ψ is forced to decay to µ + µ -with indenite number of radiative photons as modelled using the PHOTOS package, while η is forced to decay to either ηπ + π - or ρ(π + π -)γ p . In order to evaluate the real eciency, the η can decay to any mode and only the µ + and µ -are required to be in the LHCb acceptance angle.

p This decay will be used to evaluate background events where the event is mis-assigned as B 0 s → J/ψ(µ + µ -)η (ηπ + π -). ; sWeighted B 0 ight distance χ 2 ; sWeighted B 0 transverse end vertex χ 2 ; sWeighted J/ψ(1S) impact parameter χ 2 ; sWeighted π + impact parameter χ 2 ; and sWeighted π -impact parameter χ 2 . Blue events are signal-like, while green are background-like events.

B.4.1 Selection of B 0 s -→ J/ψ(µ + µ -)η (ηπ + π -) events

The selection of B 0 s -→ J/ψ(µ + µ -)η (ηπ + π -) events is summarized in Table B.6. The J/ψ candidates are taken from Phys/StdMassConstrainedJpsi2MuMu/Particles container, while the π + πcandidates are taken from the Phys/StdLoosePions/Particles. method will aect the background events, whether it will bias the distribution or maintain its structure. It has yet to be checked on real background events and for that this weighting technique has not yet been considered so far.

B.4.3 Physical background events

Several decays, which might mimic the decay that we are searching, are listed in Table B.7.

Some of these decays are still under investigation, while the others are studied and discussed in the subsections that follow.

B 0 s → J/ψ(µ + µ -)η (ρ(π + π -)γ)

Since only the charged tracks are reconstructed, it is possible that η (ρ(π + π -)γ) events are mis-assigned as η (ηπ + π -). Out of 13019 MC-matched events of B 0 s -→ J/ψ(µ + µ -)η (ρ(π + π -)γ),

B.4 MC Studies on B 0 s → J/ψ(µ + µ -)η (ηπ + π -) and search on real data 245 B 0 s → J/ψ(µ + µ -)φ(K + K -)

If the two kaons are misidentied as pions, then the decay φ(K + K -) will be mis-assigned as η (ηπ + π -). Only 326 events are reconstructible out of 40035 (∼0.08%) irrelevant of any PID cut and they peak around 6600 MeV/c 2 .

B 0 s → J/ψ(µ + µ -)φ(π + π -π 0 )

Since the selection only requires the presence of two pions and J/ψ, this decay mode will be mis-assigned as η (ηπ + π -). Out of 7328 MC-matched events, only 85 events (∼1.15%) are reconstructible, although this peaks at the nominal B 0 s mass. The main reason for this low reconstruction eciency is the dierence in the kinematics compared to the searched decay channel. The searched missing particle η is signicantly heavier compared to π 0 . B 0 → J/ψ(µ + µ -)η(π + π -π 0 )

The branching fraction of B 0 → J/ψη(π + π -π 0 ) is about the same as that of B 0 → J/ψη (π + π -η).

Using MC data, we applied partial reconstruction on these events with the hypothesis that r Reconstructible in the sense that the B factor in p X = A + √ B is positive. The two-fold ambiguity for the momentum solutions mentioned above has been studied along dierent weighting of the solutions. The weighting techniques proposed in this document show a marginal improvement in terms of resolution with respect to considering the two solutions. It is worth to note however that this result is most likely dependent upon the decay mode to be reconstructed.

Let us conclude this note by sketching few perspectives of application of this partial reconstruction method to physics studies. This is certainly not exhausting the whole possible applications of the method. In the scope of the charmless b-hadron decays, the obvious candidates are B 0 s → φη , φη, η η, η η , ηη. These modes are penguin-dominated transitions B.6 Appendix 253 and analogously to B 0 s → φφ allows to access the weak mixing phase of the B 0 s meson, without the need of an angular analysis since the nal states are pure CP eigenstates. On the same note, but addressing the weak mixing phase of the B 0 meson, another candidate of interest is B 0 → η K 0 S . Another eld of application is the search for exotic charmonia states, for which one of the most promising nal state involves B ± → Y (→ ψω)K ± , where ω → ππ(π 0 ). Eventually, we will apply this partial reconstruction technique in order to select unbiased samples of protons and antiprotons from J/ψ → pp issued in the class of decays B → J/ψhh (h) where h can be either a pion or kaon and either the p or the p is not reconstructed. Whether the statistics of the sample will allow it, the absolute p/p reconstruction eciency dierence can be computed and serves as the necessary input for studies of CP violation in b-baryon decays.

Should there be an interest in using or developing this method within the LHCb collaboration, we would be happy to share and release this tool of partial reconstruction. B.6 Appendix B.6.1 Partial reconstruction in B 0 s → J/ψ(µ + µ -)φ(π + π -π 0 )

For the sake of completeness, we are reporting in this appendix the challenging reconstruction of B 0 s → J/ψ(µ + µ -)φ(π + π -π 0 ), where a much larger physical background is expected in contrast to B 0 s → J/ψη , J /ψη. Searching for the decay mode B 0 s → J/ψ(µ + µ -)φ(π + π -π 0 ), we apply partial reconstruction technique on the same real data sample used in the search for B 0 s → J/ψ(µ + µ -)η (ηπ + π -) (See discussion in Section B.4.5). Henceforth, we replace the mass of the missing particle as the nominal mass of π 0 and the intermediate mass as the nominal mass of φ(1020). The visible branching fraction of B 0 s → J/ψ(µ + µ -)φ(π + π -π 0 ) is about the same as B 0 s → J/ψ(µ + µ -)η (ηπ + π -). Hence it might be possible to reconstruct One should take note that no BDT cut is applied yet here.

However, it is possible that kaons are misidentied as pions and still produces a peak at the B 0 s nominal mass. Considering that there are decays involving J/ψ(µ + µ -)K ± π ∓ , which branching fractions are larger than that of B 0 s → J/ψ(µ + µ -)φ(π + π -π 0 ), we put additional PID cuts to make sure that we are considering only pions. This is summarized in Table B.10.

After applying the PID cuts, the peak disappears as shown in Figure B. 40(left). Although the visible branching fraction of B 0 s → J/ψφ(π + π -π 0 ) is about the same as B 0 s → J/ψη (ηπ + π -), it is possible that the former is contaminated by more background events. What we have shown here is that J/ψ(µ + µ -)K ± π ∓ X is present in the B 0 s peak. One can also notice a peak at around 5100 MeV/c 2 , which becomes more visible when we applied the same BDT cut as what we applied in the search for J/ψη in Section B.4. See Figure B. 40(right). This peak might be from J/ψKππ events, an hypothesis that is still under investigation.

Table B.10: PID cuts applied to retain only pions. DLL Kπ is the logarithm of the likelihood ratio of the kaon and pion hypotheses, and the DLL pπ is the logarithm of the likelihood ratio of the proton and pion hypotheses. 
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 11 Figure 1.1: Unitarity triangle involving b quark transitions. The real axis is dened such that Im(V cd V * cb ) = 0 and lengths are normalized to |V cd V * cb |.

  22 and Γ 11 = Γ 22 . Since the matrices are Hermitian, then M 21 = M * 12 and Γ 21 = Γ * 12 . The time evolution of the B q meson mixing is described by the Schrödinger equation,
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 12 Figure 1.2: Individual constraints on the (ρ; η) coordinates displayed with 95% C.L. exclusion. The region of the apex not excluded at 95 % C.L. by the global t is shown as a yellow area.

  of resonance structures. Most of the four-body decays of Λ 0 b and Ξ 0 b proceed simultaneously through b → u transition or b → d and b → s FCNC, as shown in Figures 1.3 and 1.4. The direct A CP observable can be enhanced by the presence of signicant phase dierences from strong resonances of at least two competing amplitudes. The rich resonance structure in the low two-body invariant mass of these decays could provide these. The ensemble of diagrams given in Figures 1.3 and 1.4 are some straightforward illustrations at the quark level of the possible anticipated richness of the interference patterns that can be reached in these modes. c Charmless decays of b-hadrons refer to decays involving b → u tree transition or avour-changing neutral current b → d or b → s penguin loop transitions.
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 13 Figure 1.3: Feynman diagrams of the fully charged four-body decay modes of Λ 0b studied in this analysis proceeding through N * 0 or Λ * 0 . The N * 0 resonance eventually decays to pπ, while Λ * 0 decays to pK. The Λ 0 b → pK -π + π -and Λ 0 b → pK -K + π -decays proceeding through N * 0 resonance are not shown. Note that the Λ 0 b → pK -K + π -and Λ 0 b → pK -K + K -decays can also proceed through b → u tree transition but then require an ss pair to pop-in from the vacuum.
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 14 Figure 1.4: Feynman diagrams of the fully-charged four-body decay modes of Ξ 0b studied in this analysis proceeding through N * 0 or Λ * 0 . The N * 0 resonance eventually decays to pπ, while Λ * 0 decays to pK. The Ξ 0 b → pK -π + π -decay proceeding through N * 0 resonance is not shown. Note that the Ξ 0 b → pK -π + K -and Ξ 0 b → pK -K + K -decays can also proceed through b → u tree transition but then require an ss pair to pop-in from the vacuum.

  The rst beam circulation took place on the 10th of September 2008, but an unfortunate technical accident occured in one of the superconducting magnetic poles resulting to damages in the infrastructure. Stable beams were back in the LHC on the 20th of November 2009, and thus the new era of high energy physics collider researches and measurements commenced.The LHC delivered stable proton beams, which are intended for physics measurements, on years 2011 and 2012 with a short scheduled technical stop at the end of 2011 up to the rst quarter of 2012. The center-of-mass energy during the 2011 data taking campaign was 7

  .1 is a schematic diagram of the accelerator chain. The protons are rst accelerated in the linear accelerator (LINAC 2) system to an energy of 50 MeV. The proton beams are then circulated in the Proton Synchroton (PS), accelerated to 26 GeV and transferred to the Super Proton Synchrotron (SPS). The SPS further accelerates the beams up to 450 GeV before they are injected into the main ring. The 26.7 km main ring will then accelerate the beams up to the planned nominal energy. Finally, the beams are collided in four dierent interaction points where dierent particle detectors are present. A more detailed presentation of the beam delivery scheme can be found in Refs. [4951].
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 21 Figure 2.1: Schematic representation of the accelerator systems at CERN [52]. Shown also are the four main experiments at LHC.

Finally

  , there are also smaller experiments conducted at the LHC. These are the TO-Tal Elastic and diractive cross-section Measurement (TOTEM), the Large Hadron Collider forward (LHCf ) and the Monopole & Exotic Detector At the LHC (MoEDAL) experiments. The TOTEM experiment [6365], which measures precisely the total cross-section of protonproton collisions at the LHC, has spread several detectors across almost half a kilometer around the CMS interaction point. It is designed to measure the protons as they emerge from collisions at small angles, in a region not accessible by other experiments. Two detectors, which sits along the LHC beam and placed 140 m from either side of the ATLAS collision point, compose the LHCf experiment [6668]. The LHCf is intended to study the neutral-particle production cross-sections in the very forward region, with the objective of understanding the development of cosmic rays. Lastly, the MoEDAL experiment [6971], in complementary with the main LHC detectors, aims to search for exotic particles, particularly magnetic monopoles (or dyons) and other highly ionizing stable massive particles.
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 22 Figure 2.2: Probability of number of interaction per bunch crossing as a function of the luminosity.
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 23 Figure 2.3: (Top) Average number of visible interactions per bunch crossing and (bottom) instantaneous luminosity at the LHCb interaction point during the 2010-2012 running period. The dotted lines show the design values.
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 24 Figure 2.4: Examples of Feynman diagrams of typical gluon-gluon interactions that produces bb pair at the LHC.
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 25 Figure 2.5: (Left) Polar angle distribution of the bb pairs produced at the LHC collisions as simulated using PYTHIA for pp collisions at 8 TeV center-of-mass energy. (Right) The same MC-simulated bb production fractions expressed in terms pseudorapidities. The LHCb acceptance is bounded by the red lines, while the typical General Purpose Detector (GPD) acceptance is bounded by the yellow lines.
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 26 Figure 2.6: Schematic diagram of the vertical cross-section of the LHCb detector showing its subcomponents.
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 27 Figure 2.7: (Top) Sketch of the (x,z) cross-section of the VELO showing the arrangement of the sensors along the z-axis. Shown also is a single sensor in (bottom-left) fully-closed and (bottomright) fully-open positions.

,

  Upstream-or Long-type track d . Even tracks with high transverse momentum (p T ) typically traverse 3 or more sensor modules due to the close z spacing of the modules near the interaction point. In case of low p T tracks, the sensor modules at the furthest right-end of the VELO are also placed close together in order to maximize the number of traversed sensors.
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 28 Figure 2.8: (Left) A sketch showing the arrangement of the silicon strips for each sensor type. (Right) The VELO detector in closed position, showing as well the RF foil that protects the two sides of the VELO.
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 29 Figure 2.9: (Left) Spatial resolution of reconstructed PV along the z-axis as a function of the number of associated tracks during the 2012 data taking campaign. The data points have been tted with a function: σ z = A/N B + C. (Right) Impact parameter resolution along the x-axis versus the 1/p T of the tracks during the 2012 campaign. Eectively the same impact parameter resolution is observed along the y-axis.
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 2 10(right) maps the eld strength along the z-axis. from the interaction point. The eld strength goes up to 1 T. The momentum of charged particles is measured by analyzing the bending of trajectories by this eld. The polarity of the magnetic eld is regularly reversed, collecting about the same data for each polarity and allowing the study of detector asymmetries. The magnet is water cooled, its two coils are made of pure aluminum (weighting a total of 50 tons) and the yoke, weighting 1500 tons, is made from plates of laminated carbon steel.

Figure 2 .

 2 Figure 2.10: (Left) A sketch of the LHCb magnet depicting its dimensions in units of mm. The two coils are conical saddle shaped and are placed mirror symmetric to one another (see also Figure 2.6). (Right) The magnetic eld strength along the z-axis.

  T2 and T3 stations, with T1 neareast to the collision point and T3 being farthest. ST stations use silicon microstrip sensors having a pitch size of about 200 µm. Each ST station has four detection layers. The strips in the rst and last layers are arranged vertically, while the second and third layers are rotated by an angle of +5 • and -5 • , respectively. See for example Figure 2.11(right) for the schematic diagram of the third TT detection layer. The number of readout strips used in the TT is 143360, while 129024 strips are used in the IT. This corresponds to an overall active area of 8.4 m 2 and 4.0 m 2 for TT and IT stations, respectively.The TT stations, covering the overall LHCb acceptance angle, has a height of about 130 cm and width of about 150 cm. On the other hand, the IT stations are 120 cm wide and 40 cm tall, but shaped like a cross located near the beam pipe (see Figure2.11(left)).

Figure 2 .

 2 Figure 2.11: (Left) Schematic diagram of the layout of the Silicon Trackers (ST) and the Outer Trackers (OT) of LHCb, where other detector components are removed for clarity. Stations colored in purple are the ST stations, while those colored in cyan are the OT stations. (Right) A sketch of the third TT detection layer.

Figure 2 .

 2 12. The VELO tracks refer to reconstructed tracks which only VELO hits are associated with it. The Upstream tracks have hits in the VELO, as well as in the TT stations. The two most common used track types in LHCb analyses are the Long tracks and the Downstream tracks. As depicted in Figure 2.12, Downstream tracks have hits in the TT stations and in the T stations. The Long tracks refer to tracks reconstructed with hits information from the VELO, the TT and the T stations. Lastly, the T tracks has associated hits only in the T stations.
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 212 Figure 2.12: Dierent types of reconstructed track dened in LHCb.

Figure 2 .

 2 Figure 2.13 shows the Cherenkov angle as a function of the momentum for the dierent radiators. Conversely, the acceptances of each detector are dierent: RICH1 is covering the full LHCb acceptance from ±25 mrad to ±300 mrad horizontally and ±250 mrad vertically, while RICH2 has a limited angular acceptance of ∼ ±15 mrad to ±120 mrad horizontally and ±100 mrad vertically. The latter corresponds to the region where the high momentum particles are mostly distributed.
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 213 Figure 2.13: Cherenkov angle versus particle momentum given for the dierent RICHes radiators.
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 214 Photon Detectors

Figure 2 . 16 :

 216 Figure 2.16: Layout of the muon system (vertical cross-section).

  Furthermore, each side is divided into three regions, namely Inner (I), Middle (M) and Outer (O) region. A schematic diagram of the PS detector showing the sides and regions is shown in Figure 3.1.
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 31 Figure 3.1: Schematic diagram of the PS detector showing the sides, regions, crate numbering and front-end-board numbering per crate. A detailed summary can be found in Table 3.2.

Figure 3 . 2 :

 32 Figure 3.2: (Left) Sketch of one scintillator cell and (right) an actual photo of a cell. The diameter D of the WLS bre groove is equal to 37 mm, 56 mm and 100 mm for cells in the Inner, Middle and Outer regions, respectively.

  the cells in the full-modules are arranged in 8 rows × 8 columns and 4 rows × 4 columns, respectively. Schematic diagrams of typical modules in the Inner and Outer regions are shown in Figure 3.3, showing as well the ber routing. The electronic boards reading the modules (see next Subsection) are grouped together to per crate basis. There are 8 crates in total. The crate (numbered 0 to 7) and front-end-board numbering per crate are shown in Figure 3.1. The number of full front-end-boards (64 channels) and half front-end-boards (32 channels) are summarized in Table 3.2.
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 33 Figure 3.3: Schematic diagrams of the cell arrangement inside a module in the (left) Inner region and (right) Outer region. Note that the two diagrams do not scale.
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 21 the two ends of the ber exiting from the scintillator cells are attached to the same pixel of a multi-anode photomultiplier (Ma-PMT). Each Ma-PMT has a single photo-cathode. Behind this photo-cathode are focusing electrodes that guide the photo-electrons to one of the 64 anodes (pixels). Schematic diagrams of a Ma-PMT a used in the PS detector is shown in Figure 3.4.
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 34 Figure 3.4: Schematic diagram of the Ma-PMT used in the PS detector. One pixel of this Ma-PMT has an area of 2×2 mm 2 . Each pixel is separated by a distance of 0.3 mm.
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 35 Figure 3.5: PS cell geometry isometric view (left) and top view (right) together with the denition of the main variables used in the track length correction.
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 36 Figure 3.6: Typical ADC counts distribution of MIPs in a single channel (left) before the degaining method and (right) after degaining it.

Figure 3 . 7 :

 37 Figure 3.7: Typical t results of the degained and track-length corrected ADC distribution. A total of 12032 of such ADC distributions is tted with the Landau⊗Gauss model.

  and

3. 9 Figure 3 . 9 .

 939 Figure 3.9. For illustration purposes, one dimensional histogram projections of the MIP MPVs, corrected for residual pedestals, are shown in Figures 3.10 and 3.11 (separated by regions of the PS detector). The distributions are tted with a Gaussian function to determine the mean of the distribution and its corresponding spread. As shown in the inset of the plots, the typical mean is 7, with a typical width of 1 ADC. The spread of the MPV values in each region is well-described by the normal distribution, as one would expect for correctly degained and pedestal-corrected MPV values. Up to corrections of systematic uncertainties of the degaining method, these distributions correspond to the actual ungained MPV distributions during the actual data taking. Expectedly, the precision after the gaining method meets the objective of typical 10% precision. The absolute calibration of the PS detector during the end of the 2011 data taking campaign is checked by multiplying the degained and pedestal corrected MPV values shown in Figures 3.10and 3.11 by the old numeric gains set in the electronics during the said

and 3 .

 3 11 by the old numeric gains set in the electronics during the said period. This can be seen in Figures 3.12 and 3.13. As shown in the Figures, the widths

  of the distributions is typically less than 1 ADC with mean of the distributions at around 10 ADC, implying the 10% absolute calibration. Note that these MPVs are not readily extractable from the raw data due to the empty bins as discussed in Section 3.3.4 and hence the need to degain the values rst, extract the Landau MPVs from the t model and then applying the old gain factors.
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 38 Figure 3.8: Two-dimensional maps of the (from left to right) track occupancy, Landau µ, relative uncertainty of the Landau µ and the χ 2 of the t for each channel with 2011 data. Plots in the upper row are for the data corresponding to Even Bx, while plots in the lower row are for the Odd Bx data.
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 39 Figure 3.9: Two-dimensional maps of the (from left to right) Landau σ L , relative uncertainty of σ L , the Gaussian σ G and the relative uncertainty of σ G for each channel with 2011 data. Plots in the upper row are for the data corresponding to Even Bx, while plots in the lower row are for the Odd Bx data.
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 310 Figure 3.10: Distributions of the degained and pedestal corrected MIP MPVs tted with a Gaussian function for (from left to right) the channels in the Inner, Middle and Outer regions of the A side of the PS detector with 2011 data. Plots in the upper column correspond to Even Bx parity, while plots in the lower column correspond to Odd Bx parity.

Figure 3 . 11 :

 311 Figure 3.11: Distributions of the degained and pedestal corrected MIP MPVs tted with a Gaussian function for (from left to right) the channels in the Inner, Middle and Outer regions of the C side of the PS detector with 2011 data. Plots in the upper column correspond to Even Bx parity, while plots in the lower column correspond to Odd Bx parity.
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 312 Figure 3.12: Distributions of the degained MIP MPVs multiplied by the old gain factors tted with a Gaussian function for (from left to right) the channels in the Inner, Middle and Outer regions of the A side of the PS detector with 2011 data. Plots in the upper column correspond to Even Bx parity, while plots in the lower column correspond to Odd Bx parity.
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 313 Figure 3.13: Distributions of the degained MIP MPVs multiplied by the old gain factors tted with a Gaussian function for (from left to right) the channels in the Inner, Middle and Outer regions of the C side of the PS detector with 2011 data. Plots in the upper column correspond to Even Bx parity, while plots in the lower column correspond to Odd Bx parity.
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 314 Figure 3.14: Correlation plots of new numeric gains versus old numeric gains for (from left-to-right) the channels in the Inner, Middle and Outer regions of the A side of the PS detector with 2011 data. Plots in the upper column correspond to Even Bx parity, while plots in the lower column correspond to Odd Bx parity.
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 315 Figure 3.15: Correlation plots of new numeric gains versus old numeric gains for (from left-to-right) the channels in the Inner, Middle and Outer regions of the C side of the PS detector with 2011 data. Plots in the upper column correspond to Even Bx parity, while plots in the lower column correspond to Odd Bx parity.
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 317 Figure 3.17: The degained MPVs with 2011 data, averaged per PS region, as a function of increasing period for (from top to bottom) the channels in the Inner, Middle and Outer regions of the C side of the PS detector, where the three uppermost plots correspond to the Even Bx and the lowermost plots correspond to Odd Bx.

3. 6 Calibration results for 2012 59 3. 6

 6596 Calibration results for 2012 Using the same procedure as discussed in Section 3.4, about 200 pb -1 of LHCb inclusive muon stripped data j at the end of 2012 data taking are used to investigate the PS calibration status. We increased the integrated luminosity to ∼200 pb -1 in order to have enough statistics at the outermost corners of the PS detector. The ADC distributions of MIPs for each channel are gathered, separately for Even Bx and Odd Bx parities. A series of corrections, which includes the degaining the ADC values, correcting for track-length, modelling the resulting distribution with Landau⊗Gauss PDF and correcting for residual pedestals, leads to the distributions shown in Figures 3.18 and 3.19. Expectedly, the MPV values behave as a normal distribution, with typical mean value of 7-8 ADC and width of 1.2 ADC (shown as insets in the plots).
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 318 Figure 3.18: Distributions of the degained and pedestal corrected MIP MPVs tted with a Gaussian function for (from left to right) the channels in the Inner, Middle and Outer regions of the A side of the PS detector, with 2012 data. Plots in the upper column correspond to Even Bx parity, while plots in the lower column correspond to Odd Bx parity.
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 3 [START_REF] Englert | Broken Symmetry and the Mass of Gauge Vector Mesons[END_REF], showing a typical mean value of 10 ADC counts but a spread of 1.2 ADC counts.
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 34 a new set of numeric gains are derived using the collection of degained and pedestal-corrected MPV values. Correlation plots between the newly-derived numeric gains and the old numeric gains are shown inFigures 3.22 

  and
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 319 Figure 3.19: Distributions of the degained and pedestal corrected MIP MPVs tted with a Gaussian function for (from left to right) the channels in the Inner, Middle and Outer regions of the C side of the PS detector, with 2012 data. Plots in the upper column correspond to Even Bx parity, while plots in the lower column correspond to Odd Bx parity.
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 320 Figure 3.20: Distributions of the degained MIP MPVs multiplied by the old gain factors tted with a Gaussian function for (from left to right) the channels in the Inner, Middle and Outer regions of the A side of the PS detector, with 2012 data. Plots in the upper column correspond to Even Bx parity, while plots in the lower column correspond to Odd Bx parity.
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 321 Figure 3.21: Distributions of the degained MIP MPVs multiplied by the old gain factors tted with a Gaussian function for (from left to right) the channels in the Inner, Middle and Outer regions of the C side of the PS detector, with 2012 data. Plots in the upper column correspond to Even Bx parity, while plots in the lower column correspond to Odd Bx parity.
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 322 Figure 3.22: Correlation plots of new numeric gains versus old numeric gains for (from left-to-right) the channels in the Inner, Middle and Outer regions of the A side of the PS detector, with 2012 data. Plots in the upper column correspond to Even Bx parity, while plots in the lower column correspond to Odd Bx parity.
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 323 Figure 3.23: Correlation plots of new numeric gains versus old numeric gains for (from left-to-right) the channels in the Inner, Middle and Outer regions of the C side of the PS detector, with 2012 data. Plots in the upper column correspond to Even Bx parity, while plots in the lower column correspond to Odd Bx parity.

  and 3.25, except for the dramatic changes in the Middle region of the A side during the last two periods. Again, this eect is likely related to an unidentied variation of the residual pedestals. A typical
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 324 Figure 3.24: The degained MPVs with 2012 data, averaged per PS region, as a function of increasing period for (from top to bottom) the channels in the Inner, Middle and Outer regions of the A side of the PS detector, where the three uppermost plots correspond to the Even Bx and the lowermost plots correspond to Odd Bx.
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  by a time-dependent analysis of the three-body Dalitz plane. The comparison of the weak phase extractions in b → qqs and b → ccs transitions can be a measure of New Physics (NP) contributions in the ∆F = 1 b → s decay, under the assumption that the b → ccs transition is dominated by Standard Model processes. Similarly, the nal states B 0 s → K 0 S π + π -and B 0 s → K 0 S K + K -would oer a window to measure NP contributions in the ∆F = 1 b → s decay in comparing the weak phase of B 0 s -B 0 s mixing determinations in b → qqs and b → ccs transitions. A more promising mode in that respect given the current reconstructed statistics could be the decay B 0 s
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 4146 . The mean of Gaussian distribution, N fit , versus N gen can be well-described by a linear function both for DD and LL, as shown in Figure4.2(top), and hence we use it here. The line functions are given by, N fit = (0.347 +0.314 -0.314 ) + (0.935 +0.044 -0.044 ) × N gen for DD N fit = (-0.403 +0.262 -0.262 ) + (1.036 +0.033 -0.033 ) × N gen for LL (4.7)

Figure 4 . 1 :

 41 Figure 4.1: Distribution of N fit tted with a Gaussian function. This sample histogram is for LL with N gen set to 5.
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Figure 4 . 2 :

 42 Figure 4.2: Top: N fit as a function of N gen tted with a linear function for DD (left) and LL (right). Bottom: σ 2 as a function of N gen tted with a linear function for DD (left) and LL (right).

Figure 4 . 3 :

 43 Figure 4.3: 90% condence belt for the Down-Down category. The dotted line corresponds to the mean of the Gaussian distribution, the dashed line corresponds to the upper and lower limit for statistical uncertainty only, while the solid line corresponds to the upper and lower limit for combined statistical and systematic uncertainties. The red lines correspond to the observed N DD KK

Figure 4 . 4 :

 44 Figure 4.4: 90% condence belt for the Long-Long category.The dotted line corresponds to the mean of the Gaussian distribution, the dashed line corresponds to the upper and lower limit for statistical uncertainty only, while the solid line corresponds to the upper and lower limit for combined statistical and systematic uncertainties. The red lines correspond to the observed N LL KK and the upper limit.

Figure 4 . 5 :

 45 Figure 4.5: The 90% condence belt for the combination of Down-Down and Long-Long categories.The dotted line corresponds to the mean of the Gaussian distribution, the dashed line corresponds to the upper and lower limit for statistical uncertainty only, while the solid line corresponds to the upper and lower limit for combined statistical and systematic uncertainties. The red lines correspond to the observed N KK and the lower and upper limits.
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  Search for CP aymmetries in the charmless 4-body decays of Λ 0 b /Ξ 0 b baryons remains unobserved up to date. Few promising modes to observe direct CP violation in b-baryons are in the charmless decays to multibody, where the decays can proceed simultaneously through b → u tree transition or Flavour Changing Neutral Current penguin loop transitions b → s and b → d. The BaBar and Belle experiments operated at center-of-mass energies below the threshold for b-baryon production. Since LHCb operated at center-ofmass energies above the threshold for b baryon production, it has excellent potential to further improve the understanding of b-baryons.

5. 2

 2 Data and Monte Carlo samples 77 penguin loop contributions are of O(λ 3 ) as shown in the Feynman diagrams in Figure 5.1,

Figure 5 . 1 :

 51 Figure 5.1: Tree and gluonic penguin loop diagrams of Λ 0 b → pπ -π + π -(top) and Ξ 0

  LHCb at the LHC at a center-of-mass energy of √ s = 7 TeV for the 2011 campaign and √ s = 8 TeV for the 2012 campaign. The 2011 data corresponds to an integrated luminosity of L = 1 fb -1 , while the 2012 data corresponds to L = 2 fb -1 . The reconstruction of the events are obtained using Reco14 for both year campaign. The data are stripped during the Stripping21 campaign using Stripping21r1 for the 2011 data and Stripping21 for the 2012 data, both using the StrippingXb2phhhLine. Monte Carlo (MC) generated samples are produced using Gauss with Sim08 conguration. They are used to study the behaviour of the signal and background events (both signal cross-feeds and B meson decays, in order to model the invariant mass lineshapes of Search for CP aymmetries in the charmless 4-body decays of Λ 0 b /Ξ 0 b signals, signal cross-feeds and backgrounds. The simulation conditions have a pile-up factor of ν = 2.0 for 2011 and ν = 2.5 for 2012 in order to resemble the data taking conditions.

  None of the stripping lines pre-existing for the selection of the signals of interest were satisfactory to study their CP -violating asymmetries. As underlined in the motivations of this work, the richness of these charmless 4-body baryon decays nal states lies in the interference patterns of quasi 2-body amplitudes contributing to the decay. Those amplitudes involve resonances often at threshold, e.g Λ * 0 (1520), which in turn produce in the nal state hadrons with low momentum. A dedicated stripping line has then been designed for this analysis to maximize the selection of the signal events.

Figure 5 . 2 :

 52 Figure 5.2: Illustration of the distribution of kaons and pions in the ProbNNK-vs-ProbNNπ plane using MC-matched kaons and pions from MC-generated Λ 0 b → pK -π + π -events.

  FoM(PID cut ) = PID Sig. PID Sig. + Σα CF PID CF , (5.3) where PID Sig. and PID CF are the eciencies as a function of PID cut of signal and cross-feeds, respectively. A scaling factor α CF relative to the signal is multplied to each of the cross-feed i The PID Kπ eciency maps for he optimal a cut π and a cut K are shown in Appendix A.2.

  fractions, selection eciencies and the mass window cut eciencies of signal and crossfeeds. The selection eciencies include acceptance, trigger, track reconstruction, stripping and oine ducial cuts eciencies. The mass window cut eciencies are the eciencies of signal and cross-feeds requiring that the reconstructed mass be within the ±3σ from the nominal mass of the baryon. All of these eciencies are calculated from the MC generated events. The f s,d is the ratio of the hadronization fraction of b quark to Ξ 0 b and of b quark to Λ 0 b , which is equal to 1 if both signal and cross-feed come from Λ 0 b or both from Ξ 0 b and equal to 0.256 (3.906) if cross-feed comes from Ξ 0 b (Λ 0 b ) and signal comes from Λ 0 b (Ξ 0

  spectra, the optimization is performed on the yields of the Ξ 0 b decays since they are suering from a worse signal-to-noise ratio, the latter being mostly cross-feeds from Λ 0 b signal decays.
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 53 Figure 5.3: Figure of merits of PID Kπ optimization of Ξ 0 b → pK -π + π -for [top-left] 2011 MagDown, [top-right] 2011 MagUp, [bottom-left] 2012 MagDown and [bottom-right] 2012 MagUp.
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 58 Figure 5.4, superimposing RHSB background events and MC-generated signal events n . The least important variables has been used in the BDT more than 5% of the time, with the highest ranking variable being used roughly 20% of the time. The importances are given here for illustration of the individual power of the discriminative variables within the BDT. It was not used to provide a selection rule of them. Shown in Figure 5.5 is the correlation map of the variables used to train the BDT 1 for 2011. Most of the variables have weak linear correlations. Although the linear correlations are high for some pairs of variables, the correlations are not the same for signal and background events. Aside from that, for the same pair of variables, the correlations of these n The counterpart distributions for the other BDT are shown in Appendix A.6. Search for CP aymmetries in the charmless 4-body decays of Λ 0 b /Ξ 0Table List of variables used in the BDT design. Variable Description η (X 0 b )The pseudo-rapidity angle of the reconstructed X 0 b candidate.p T (X 0b )The transverse momentum of the reconstructed X 0 b candidate.

  Smallest ∆χ 2 vtx (X 0 b ) The dierence of the vertex quality of the reconstructed X 0 b candidate when added an extra most compatible track. Asym. p T (X 0 b )

  Fisher and gradient-boosted BDT have been compared with the AdaBoost-boosted BDT. Shown in Figure 5.7 are the background-rejection eciency versus signal selection eciency curves (ROC-curve) for 2011 BDT 1 and 2012 BDT 2 . The ROC-curve integral of Fisher (both 0.983 for 2011 and 0.973 & 0.977 for 2012) is expectedly smaller than the AdaBoost-boosted BDT, indicating that the non-linear correlations between variables are at work in the discriminative power of the BDT. The ROC-curve integral of gradient-boosted BDT (0.989 & 0.988 for 2011 and 0.986 & 0.985 for 2012) is very similar to the AdaBoost-boosted BDT (0.988 & 0.988 for 2011 and 0.985 & 0.984 for 2012). For the sake of consistency with former analyses that we developed, the AdaBoost-boosted BDT is decided to be used in this analysis.
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 6 Selection 91

b

  or Ξ 0 b (i.e., [5575 MeV/c 2 , 5665 MeV/c 2 ] for Λ 0 b and [5743 MeV/c 2 , 5833 MeV/c 2 ] for Ξ 0 b

Figure 5 . 4 :

 54 Figure 5.4: Distribution of variables used in the training of BDT 1 for 2011, superimposing RHSB background events (in Red) and MC-generated signal events (in Blue).

  Comb. )/(B RHSB Comb. ) calculated with no BDT cut. The Figures of Merit for all the modes are displayed in Figure 5.8. In the case of X 0 b → pKππ and X 0 b → pKKK spectra where both Λ 0 b and Ξ 0 b signals are present, the Ξ 0 b signals are chosen to be optimized. The optimal BDT cuts are lying in a range [0.2 -0.4]o We have veried that the combinatorics slope measured (up to the moment it cannot be measured anymore because of too few events) is consistent with the reference one within uncorrelated statistical uncertainty.

5. 6 93 Figure 5 . 5 :

 69355 Figure 5.5: Linear correlation of variables used in the training of BDT 1 for 2011 for (left) signal events and (right) background events. See Appendix A.7 for the other BDTs.

Figure 5 . 6 :

 56 Figure 5.6: BDT response for (left) combined 2011 BDTs and (right) combined 2012 BDTs.

Figure 5 . 7 :

 57 Figure 5.7: ROC-curve for [left] 2011 BDT 1 and [right] 2012 BDT 1 .

  ± 30 MeV/c 2 from the nominal mass of the charmed resonances Ξ + c and Λ + c (m Λ + c = 2283.0 MeV/c 2 , m Λ + c adjusted to take into account the asymmetry of the distribution) are considered to belong to the control modes. This mass window cut is the reverse veto cut applied in the charmless modes, again ensuring that we have statistically independent events for the simultaneous t. The invariant mass distributions of the Λ + c and Ξ + c are shown in Figures 5.9

  .

5

 5 

  Figures on the left column are for the 2011 data and gures on the right column are for the 2012 data. 5.6.7 Eciencies Summarized in Tables 5.13 (for 2011) and 5.14 (for 2012) are the signal eciencies calculated for each selection step. Each eciency is calculated with respect to the immediate previous selection step, except for the row labelled From reco. to isMuon where this is the eciency from the reconstruction up to isMuon cuts. The last rows with header MagDown and MagUp Search for CP aymmetries in the charmless 4-body decays of Λ 0 b /Ξ 0 b
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 59 Figure 5.9: Invariant mass distribution of the Λ + c and Ξ c resonances of the control modes used in this analysis, namely, [top] Λ 0 b → (Λ +

  for [left-column] 2011 data and [right-column] 2012 data. 98 Search for CP aymmetries in the charmless 4-body decays of Λ 0 b /Ξ 0 b Table
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 510511 Figure 5.10: Invariant mass spectra of 2011 RHSB events from [from top to bottom] X 0 b → pπππ

Figure 5 . 12 :

 512 Figure 5.12: Invariant mass spectra of 2012 RHSB events from X 0 b → pπππ reconstructed as B 0 → Kπππ, where Λ 0 b and Λ 0 b events are combined.
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 81 Signal shapes MC-generated events are used to obtain the signal shapes by tting the invariant mass distribution with a double Crystal Ball function (DCB) with shared mean µ and shared 5.8 Fit model and strategy 105 width σ.

and 5 . 14 .

 514 The extracted parameters α 1 , α 2 /α 2 , n 1 , n 2 /n 1 , f 2 are xed parameters in the nominal t to the real data. Systematic uncertainties attached to this assumption are estimated by generating pseudo-experiments according to the distributions of the uncertainties on the xed parameters as found in the t to simulated MC events.

  pKπK spectra, since the t to data found only few events of them. The estimate on the misidentication of Λ 0 b → pKKπ as X 0 b → pKKK is at the level of ∼2%, while the estimated misidentication rate of Ξ 0 b → pKKK as X 0 b → pKKπ or X 0 b → pKπK is at the level of ∼8%. Given the level of background in the X 0 b → pKKK, X 0 b → pKKπ and X 0 b → pKπK spectra, we think that these are negligible contributions. Note that we expect in the SM the Λ 0 b → pKKπ and Ξ 0 b → pKKK to be small since they proceed only through b → d penguin loop diagram.

Λ 0 b

 0 → pKKK as pKKπ and Ξ 0 b → pKπK as pKππ. These are taken into account in the Gaussian constraints.

5 Figure 5 . 13 :Figure 5 . 14 :Figure 5 . 15 :Figure 5 . 16 :Figure 5 . 17 :b

 5513514515516517 Figure 5.13: Signal invariant mass distribution tted with DCB PDF for the modes (in order from top to bottom) Λ 0 b → pπππ, Λ 0 b → pKππ, Λ 0 b → pKKπ and Λ 0 b → pK -K + K -for years (left column) 2011 and (right column) 2012.

(5. 11 )

 11 where µ, σ L (σ R ) and α L (α R ) are the turnover point, the width of the left Gaussian (right Gaussian) and the left tail-correction parameter (right tail-correction parameter), respectively. Shown in Figures 5.[START_REF] Aad | Combined Measurement of the Higgs Boson Mass in pp Collisions at √ s = 7 and 8 TeV with the ATLAS and CMS Experiments[END_REF], 5.19 and 5.20 are the ts to the MC-generated B physics events passing the full selection and PID-calibrated in the same way as discussed in Section 5.6.2. These MC-generated B physics events proceed through quasi-2-body decays with two 114 Search for CP aymmetries in the charmless 4-body decays of Λ 0 b /Ξ 0 b low-mass charmless resonances as listed in
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 518519 Figure 5.18: B physics backgrounds invariant mass distribution tted with Cruij PDF for the modes (in order from top to bottom) B 0 → ππππ as pπππ, B 0 → Kπππ as pπππ, B 0 s → KKππ as pKππ and B 0 → πKππ as pKππ for years (left column) 2011 and (right column) 2012.

5. 8 FitFigure 5 . 20 :

 8520 Figure 5.20: B physics backgrounds invariant mass distribution tted with Cruij PDF for the modes (in order from top to bottom) B 0 → KKπK as pKπK, B 0 s → KKKK as pKKK and B 0 → πKKK as pKKK for years (left column) 2011 and (right column) 2012.

  Λ 0 b (or Ξ 0 b ), and the nominal mass of π 0 (m PDG π 0 = 134.9766 ± 0.0006 MeV/c 2 [17]). The resolution of the Gaussian function convoluting the ARGUS function is mainly driven by the detector resolution, and up to rst approximation is the same as the resolution of the signal models. The resolutions of the Gaussian functions convoluting the ARGUSes are then set to be the same as the sigma of Λ 0 b signal shapes (or to Ξ 0 b in the spectrum pKπK where there is no Λ 0 b signal). All the ARGUS⊗Gauss shape parameters are shared by both Λ 0 b and Λ 0 b spectra (or Ξ 0 b and Ξ 0 b ).

  for 2011 and 2012). All the widths are oated independently, except the widths of Λ 0 b → (Ξ + c → pKπ)π and Ξ 0 b → (Ξ + c → pKπ)π where they are shared for each year.

Figure 5 .

 5 Figure 5.21: MC-generated 2012 Λ 0 b → (Λ + c → pK -π + )π -invariant mass distribution tted with DCB PDF.

5. 8 FitFigure 5 .

 85 Figure 5.22: MC-generated 2012 Λ 0 b→ (Λ + c → pK -π + )K -as (Λ +

•

  Additional convoluted ARGUS⊗Gauss shapes are added in the X 0 b → pKππ, X 0 b → pKπK and X 0 b → (Ξ + c → pKπ)π spectra for partially-reconstructed backgrounds from Ξ 0 b → 4-body + missing π 0 . 5.8 Fit model and strategy 123 The simultaneous t strategy is consist of the following: The nominal mass of Λ 0 b and Ξ 0 b are shared by all spectra, both in charmless and charmed decays. The dierence of the nominal mass of Λ 0 b and Ξ 0 b is Gaussianly-constrained from the PDG value (m Ξ 0 b -m Λ 0 b = 174.8±2.5).

  All the shape parameters are shared by the two split spectra Λ 0 b & Λ 0 b (or Ξ 0 b & Ξ 0 b ). The Gaussianly-constrained ratios and factors are also shared by the two split spectra except for the constraint on the yields of dominant B physics backgrounds, which were obtained separately for Λ 0 b and Λ 0 b in the RHSB. Search for CP aymmetries in the charmless 4-body decays of Λ 0 b /Ξ 0 b

NFigure 5 . 23 :Figure 5 . 24 :

 523524 Figure 5.23: Pulls of the 2011 charmless and charmed decay signal yields obtained using about 1000 toys.
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 525526527528529530526 Figure 5.25: Fit results for the [from top to bottom] X 0 b → pπππ, X 0 b → pKππ and X 0 b → pKKπ spectra using the full phase space data of 2011. Plots in the left-column are for the spectra with X 0 b and on the right-column for the spectra with X 0 b .

  CP aymmetries in the charmless 4-body decays of Λ 0 b

  CP aymmetries in the charmless 4-body decays of Λ 0 b

  and 5.32 are the t results of the simultaneous t to the invariant mass spectra using the 2011 data with m ph < 2 GeV/c 2 phase space cut. Figures 5.[START_REF] Cabibbo | Unitary Symmetry and Leptonic Decays[END_REF] and5.34 show the t results for the 2012 data. Since, no further phase space cut is applied to the control spectra, the resulting ts and t parameters are relatively the same as in Section 5.10.1. Figures A.20 and A.21 shown in Appendix A.13 display the ts of the invariant mass spectra of the control modes. The measured CP observables are summarized in Table 5.29, while the results on the t parameters are shown in Appendix A.14.

Figures 5 .

 5 Figures 5.35 and 5.36 display the t results of the simultaneous t to the invariant mass spectra using the 2011 data with m ph < 2 GeV/c 2 and m h h < ∼1.65 GeV/c 2 phase space cuts. Figures 5.37 and 5.38 show the t results for the 2012 data. Since, no further phase space cut is applied to the control spectra, the resulting ts and t parameters are relatively the same as in Section 5.10.1. Figures A.22 and A.23 shown in Appendix A.15 show the ts of the invariant mass spectra of the control modes. The measured CP observables are summarized in Table 5.31, while the results on the t parameters are shown in Appendix A.16.
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 531532533534535536537538 Figure 5.31: Fit results for the [from top to bottom] X 0 b → pπππ, X 0 b → pKππ and X 0 b → pKKπ spectra using the 2011 data with m ph < 2 GeV/c 2 phase space cut. Plots in the left-column are for the spectra with X 0 b and on the right-column for the spectra with X 0 b .

  This document describes the search for CP -violating asymmetries in 4-body fully charged decays of the neutral b-baryons, Λ 0 b or Ξ 0 b , proceeding through charmless quark transitions b → u and FCNC quark transitions b → s, d.
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 61 Figure 6.1: Unblinded t results for the [from top to bottom] X 0 b → pπππ, X 0 b → pKππ and

Figure 6 . 2 :

 62 Figure 6.2: Unblinded t results for the [top] X 0 b → pKπK and [bottom] X 0 b → pKKK spectra using the full phase space data of 2011. Plots in the left-column are for the spectra with X 0 b and on the right-column for the spectra with X 0 b .
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 63 Figure 6.3: Unblinded t results for the [from top to bottom] X 0 b → pπππ, X 0 b → pKππ and
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 64 Figure 6.4: Unblinded t results for the [top] X 0 b → pKπK and [bottom] X 0 b → pKKK spectra using the full phase space data of 2012. Plots in the left-column are for the spectra with X 0 b and on the right-column for the spectra with X 0 b .
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 65 Figure 6.5: Unblinded t results for the [from top to bottom] X 0 b → pπππ, X 0 b → pKππ and

Figure 6 . 6 :

 66 Figure 6.6: Unblinded t results for the [top] X 0 b → pKπK and [bottom] X 0 b → pKKK spectra using the 2011 data with m ph < 2 GeV/c 2 phase space cut. Plots in the left-column are for the spectra with X 0 b and on the right-column for the spectra with X 0 b .
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 67 Figure 6.7: Unblinded t results for the [from top to bottom] X 0 b → pπππ, X 0 b → pKππ and

Figure 6 . 8 :

 68 Figure 6.8: Unblinded t results for the [top] X 0 b → pKπK and [bottom] X 0 b → pKKK spectra using the 2012 data with m ph < 2 GeV/c 2 phase space cut. Plots in the left-column are for the spectra with X 0 b and on the right-column for the spectra with X 0 b .
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 69 Figure 6.9: Unblinded t results for the [from top to bottom] X 0 b → pπππ, X 0 b → pKππ and

Figure 6 . 10 :

 610 Figure 6.10: Unblinded t results for the [top] X 0 b → pKπK and [bottom] X 0 b → pKKK spectra using the 2011 data with m ph < 2 GeV/c 2 and m h h < ∼1.65 GeV/c 2 phase space cuts. Plots in the left-column are for the spectra with X 0 b and on the right-column for the spectra with X 0 b .
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 611 Figure 6.11: Unblinded t results for the [from top to bottom] X 0 b → pπππ, X 0 b → pKππ and

Figure 6 . 12 :Table 6 . 7 :

 61267 Figure 6.12: Unblinded t results for the [top] X 0 b → pKπK and [bottom] X 0 b → pKKK spectra using the 2012 data with m ph < 2 GeV/c 2 and m h h <∼1.65 GeV/c 2 phase space cuts. Plots in the left-column are for the spectra with X 0 b and on the right-column for the spectra with X 0 b .
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 613 Figure 6.13: Pull distributions of the 2011 ∆A CP measurements obtained using about 600 MCgenerated pseudo-experiments.

Figure 6 . 14 :

 614 Figure 6.14: Pull distributions of the 2012 ∆A CP measurements obtained using about 600 MCgenerated pseudo-experiments.

  b and Ξ 0 b baryons. CP violation in baryon decays has not been observed to date and its rst observation constitutes a physics objective of the LHCb experiment. The choice of the charmless modes conducted in this analysis is driven by the possibility of having a rich interference pattern in the baryonic intermediate resonances in addition to the mesonic resonances, possibly enhancing the particle/antiparticle decay rate asymmetry due to the CP -violating weak phase. Three measurements were conducted by looking in the dierent phase space regions, which are: (1) In the full phase space; (2) In the low invariant mass of baryonic resonance; and (3) In the low invariant mass of baryonic resonance and simultaneously low invariant mass of mesonic resonance (constructed from the other two particles). In order to cancel the production and detection asymmetries, the raw asymmetries of the charmless signal decays are compared to those measured in control channels where the CP violation are expected to be small to form the observables ∆A CP . The rst stage of the analysis strategy employs a blind analysis of both the signal region in the mass spectra A.2 PID K/π (Mis)identication Maps Track Momentum [MeV/c]

Figure A. 1 :

 1 Figure A.1: Eciency maps of [rst-row] pions identied as pions, [second-row] pions misidentied as kaons, [third-row] kaons identied as kaons, and [fourth-row] kaons misidentied as pions for the optimal PID Kπ cut (0.55,0.55) obtained using the 2011 [rst-column] MagDown and [secondcolumn] Mag-Up calibration data.

Figure A. 2 :

 2 Figure A.2: Eciency maps of [rst-row] pions identied as pions, [second-row] pions misidentied as kaons, [third-row] kaons identied as kaons, and [fourth-row] kaons misidentied as pions for the optimal PID Kπ cut (0.55,0.55) obtained using the 2012 [rst-column] MagDown and [secondcolumn] Mag-Up calibration data.

Figure A. 3 : 18 K

 318 Figure A.3: Eciency maps of [rst-row] protons identied as protons, [second-row] pions misidentied as protons, and [third-row] kaons misidentied as protons for the proton ProbNNp > 0.50 cut obtained using the 2011 [rst-column] MagDown and [second-column] Mag-Up calibration data.
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 4567 Figure A.4: Eciency maps of [rst-row] protons identied as protons, [second-row] pions misidentied as protons, and [third-row] kaons misidentied as protons for the proton ProbNNp > 0.50 cut obtained using the 2012 [rst-column] MagDown and [second-column] Mag-Up calibration data.

Figure A. 8 :

 8 Figure A.8: Figure of merits of PID Kπ optimization of Ξ 0 b → pK -K + K -for [top-left] 2011 Mag-Down, [top-right] 2011 MagUp, [bottom-left] 2012 MagDown and [bottom-right] 2012 MagUp.
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Figure A. 9 :A. 8

 98 Figure A.9: Illustration of the expected relative yields [1st & 3rd rows] before and [2nd & 4th rows] after the PID Kπ cut using the 2012 MagDown MC samples and the PID weights obtained from the PIDCalibTool.In each spectrum, signal events are colored in red, while the rest are cross-feeds.
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 1415 Figure A.14: Comparison of the MC-calculated variables of the seven signal modes using (1st & 2nd columns) 2011 and (3rd & 4th) 2012 MC-generated events.

  .006 +/-0.024 sig = 0.731 +/-0.017

  0.0473 +/-0.026 sig = 0.796 +/-0.018

  0.0172 +/-0.029 sig = 0.902 +/-0.021

Figure A. 16 :

 16 Figure A.16: Pulls of the (left-column) 2011 and (right-column) 2012 B physics yields obtained using about 1000 toys. See Table A.3 for the summary of the Gaussian means and widths.
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 1718192021 Figure A.17: Invariant mass spectra of 2011 RHSB events from [from top to bottom] X 0 b → pπππ as B 0 → Kπππ, X 0 b → pKππ as B 0 s → KππK and X 0 b → pKKπ as B 0 → KKKπ (left-column) with p and (right-column) p separated. A phase space cut of m ph < 2 GeV/c 2 is also applied.

Figure A. 22 :

 22 Figure A.22: Fit results for the [from top to bottom] X 0 b→ (Λ + c → pππ)π, X 0 b → (Λ + c → pKπ)π

Figure A. 23 :

 23 Figure A.23: Fit results for the [from top to bottom] X 0 b→ (Λ + c → pππ)π, X 0 b → (Λ + c → pKπ)π
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 142 B 0 -→ η c (pp)K * (892) 0 (B.15) B 0 -→ ψ(2S)(pp)K + π - Commissioning the partial reconstruction in B 0 → K 0 S (π + π -)K ± π ∓We test the partial reconstruction procedure by using the decay channel B 0 → K 0S (π + π -)K ± π ∓considering the π -from the K 0 S decay as the missing particle. In this decay channel, the K ± b A more detailed derivation of Equation B.6 can be found at the Appendix.

  Moreover, we choose the true direction of p B 0 in this rst trial. As shown in Figure B.2, with its corresponding pull distribution, the momentum of the missing particle seems to be well determined with a resolution of ∼10% f . The ratio of terms A and √ B of Equation B.6 is shown in Figure B.3(left). The term √ B is always less than the A. The term B, as shown in Figure B.3(right), however can sometimes be negative. This is due to the resolution of the reconstruction of the visible charged tracks g .

  (a) by choosing the wrong solution of Equation B.6; (b) by random choice of the two solutions of Equation B.6; (c) by cheated partial reconstruction with MC true primary vertex but reconstructed secondary vertex; (d) by cheated partial reconstruction with both primary vertex and secondary vertex reconstructed; and (e) by random choice of the two solutions of Equation B.6 with both c This mode was basically considered for convenience since this was used for another study [10.1007/JHEP10(2013)143].d These events are fully reconstructed events. e Such procedures are described in Section B.3.3. 

B. 2

 2 Figure B.2: (top) Superimposed histograms of the magnitude of the momentum of the missing particle as determined from Monte Carlo and reconstruction using decay kinematics. (bottom) The corresponding pull on per a event basis.

B. 2 Case 3 :Case 4 :

 234 Figure B.4: B 0 invariant mass distribution as obtained using cheated partial reconstruction method using the true p B direction and true momenta of visible daughter particles.

Figure B. 5 : 2 )

 52 Figure B.5: The tranverse momentum of π + from K 0 S decay for the three categories of Gaussian functions.

Figure B. 7 :

 7 Figure B.7: B 0 invariant mass distribution as obtained using partial reconstruction method using the true p B direction and true momenta of visible daughter particles, but with random choice of p X .

Figure B. 8 :

 8 Figure B.8: B 0 invariant mass distribution as obtained using cheated partial reconstruction method using the MC truth primary vertex but reconstructed secondary vertex.

Figure B. 9 :

 9 Figure B.9: B 0 invariant mass distribution as obtained using cheated partial reconstruction method but reconstructed primary vertex and secondary vertex.

Figure B. 10 :

 10 Figure B.10: B 0 invariant mass distribution as obtained using partial reconstruction method with reconstructed primary vertex and secondary vertex.

Figure B. 11 :

 11 Figure B.11: Two discriminating variables for case 6 for the three Gaussian functions: (top-left) Illustration of how the end vertex and the ight distance plays a signicant role in the estimation of the true B 0 ight direction; (top-right) The ight-distance χ 2 of B 0 for the three categories; (bottom-left) The end vertex transverse χ 2 of B 0 for the three categories; (bottom-right) The correlation of the ight-distance χ 2 and end vertex transverse χ 2 of B 0 .

Figure B. 12 : 2 EV

 122 Figure B.12: B 0 mass distribution with increasing cut on (top) the transverse end vertex χ 2 and (bottom) the ight distance χ 2 . (Top-left) Without any cut; (top-center) with a cut of χ 2 EV > 10 and χ 2 F D > 10K; (top-right) with a cut of χ 2 EV > 20 and χ 2 F D > 10K. (Bottom-left) With a cut of χ 2 EV > 50 and χ 2 F D > 10K; (bottom-center) with a cut of χ 2 EV > 50 and χ 2 F D > 20K; (bottom-right) with a cut of χ 2 EV > 50 and χ 2 F D > 30K.

( GPT > 100 *

 100 MeV ) & inAcc J/ψ(1S) ( GPT > 500 * MeV ) & in_range ( 1.8 , GY , 4.5 ) g ( 0 < GPZ ) & ( 150 * MeV < GPT ) & inEcalX & inEcalY inAcc in_range ( 0.005 , GTHETA , 0.400 ) inEcalX abs ( GPX / GPZ ) < 4.5 / 12.5 inEcalY abs ( GPY / GPZ ) < 3.5 / 12.5

  (|m recm J/ψ | < 80.0 MeV) η (|m recm η | < 50.0 MeV) [π + ]cc (χ 2 trk /ndof < 4.0) & (P ghost trk < 0.5) η (|m recm η | < 105.0 MeV) & (χ 2 vtx < 10.0) B 0 (4000.0 MeV < m rec < 6200.0 MeV) & (χ 2 vtx < 10.0) & (χ 2 F D > 50.0) B.3.2 Reconstruction of B 0 mass using full truth A smaller sample of 18859 events, which the η from η decay are also MC matched, is used to check the validity of the partial reconstruction code. Using the true momentum direction k These events are fully reconstructed events.l See the original dkle at $DECFILESROOT/dkles/Bd_Jpsietap,mm,etapipi=TightCut.dec.the B 0 mass spectrum with three Gaussian functions and we take note of the resolution and eciency of the Gaussian with best resolution. In this case, the best Gaussian has a resolution of ∼87 MeV/c 2 with a corresponding eciency of ∼29%.

Figure B. 16 :

 16 Figure B.16: B 0 invariant mass distribution as obtained using reconstructed vertices and reconstructed tracks. (Left) Random choice of p X . (Right) Two entries per event.

Figure B. 17 ,

 17 the best Gaussian has a resolution of ∼81 MeV/c 2 , which is better than what was obtained in the random choice procedure, but with smaller eciency of ∼25% n . The superimposition of the total PDF obtained in random choice (in gray curve) and the total PDF obtained in this weighting procedure (in blue curve) is shown in FigureB.17(left).n Cautiously interpreting the results of our qualitative approach, it seems that this weighting procedure improves the resolution as expected but only marginally as shown in FigureB.17.

Figure B. 17 :

 17 Figure B.17: B 0 invariant mass distribution as obtained using reconstructed vertices, reconstructed tracks and weighted choice of p X based on its corresponding proper time.

  Figure B.20. It happens that the two solutions are very close in lifetime and momentum.

Figure B. 18 :

 18 Figure B.18: B 0 Momentum distribution of MC matched events.

Figure B. 21 .

 21 Figure B.19: B 0 invariant mass distribution as obtained using reconstructed vertices, reconstructed tracks and weighted choice of p X based on its corresponding momentum.

  Figure B.25, where ∼0.08 is shown to be the optimal cut maximizing the signal signicance. Looking at the BDT response plot, at ∼0.08 BDT cut, all the background events are all killed. This is also shown in the B 0 mass distribution in Figure B.26, where we apply a BDT cut equal to 0.08 and xed the resolution of Gaussian 1 equal to 75.0 MeV/c 2 .

Figure B. 20 :

 20 Figure B.20: B 0 invariant mass distribution as obtained using reconstructed vertices, reconstructed tracks and weighted choice of p X based on its corresponding proper time and momentum combined.

B. 4

 4 Figure B.21: (From left-to-right, top-to-bottom) Reconstructed B 0 mass using partial reconstruction technique tted with three Gaussian functions; sWeighted number of tracks used to create PV of B 0; sWeighted B 0 ight distance χ 2 ; sWeighted B 0 transverse end vertex χ 2 ; sWeighted J/ψ(1S) impact parameter χ 2 ; sWeighted π + impact parameter χ 2 ; and sWeighted π -impact parameter χ 2 . Blue events are signal-like, while green are background-like events.

0 s

 0 Figure B.27, the resolution of the narrow Gaussian is ∼47 MeV/c 2 , with ∼12% eciency. We apply another weighting technique by considering the reconstructed mass dierence of the two possible solutions of p X . Shown in Figure B.28 is the probability of p X = A + √ B as the correct solution as a function of mass dierence: (left) if the average of the two possible reconstructed mass is less than 5366.77 MeV/c 2 ; (right) if the average of the two possible reconstructed mass is greater than 5366.77 MeV/c 2 . The two probability distribution functions shown in Figure B.28 are then used to assign weights to the two possible solutions, and hence for every B 0 s → J/ψ(µ + µ -)η (ηπ + π -) candidate event, there are two entries in the mass distribution, but the total weight is 1. Shown in Figure B.29 is an improvement onthe mass resolution as well as reducing the asymmetry of the distribution after the abovediscussed weighting method is applied. However, we do not yet know how this weighting q Since η is missing, only the charged tracks are MC-matched.

Figure B. 22 :

 22 Figure B.22: Distribution of variables used for the training of BDT1. (The same plot can be observed for BDT2).

Figure B. 23 :

 23 Figure B.23: (Linear correlation matrix of the variables of signal events (left) and background events (right) for BDT1. (The same plot can be observed for BDT2).

Figure B. 24 :

 24 Figure B.24: (Top) Training and test response for BDT1 (left) and for BDT2 (right). (Bottom) Final BDT output as a combination of BDT1 and BDT2.

π -log 10 (

 10 this document a novel technique to reconstruct a certain class of b-hadron decay in the absence of the explicit reconstruction of one of its decay products. The missing momentum is constrained by the knowledge of the b-hadron direction from the reconstructions of the primary and secondary vertices of the candidate and the presence of a narrow intermediate resonance in the decay chain, up to a two-fold ambiguity. The technique has been commissioned for the sake of simplicity with a well established nal state B 0 s → J/ψη (η → π + π -η), where the η is the missing particle. It is mandatory to envisage simultaneously the similar nal states but one particle which can feed in the spectrum of the reconstruction hypothesis. It happens that the only relevant cross-feed for the mode of interest is coming from the decay B 0 s → J/ψη(η → π + π -π 0 ) where the π 0 is not reconstructed. Conversely, it has been shown possible to reconstruct this decay. Two multivariate discriminators have been built in order to rst select the candidates with vertexing properties adequate for partial reconstruction and second to reject combinatorial backgrounds. The typical performance in term of reconstructed mass resolution for the modes scrutinized in this study is of the order of 60 MeV/c 2 . Although a mass model for partially reconstructed background and signal candidates has to be be provided to draw quantitative conclusions, we estimated that the gain in statistics w.r.t. a full reconstruction of B 0 s → J/ψη (→ π + π -η) can reach a factor of O(10). More modes were considered with intermediate resonances such as φ → π + π -(π 0 ) or η → π + π -(γ) but happened to be drowned by cross-feeds of similar nal states or physical backgrounds.

  the said decay using partial reconstruction technique. The result is shown in Figure B.39.

  ParticlePID cutπ ± DLL Kπ < -5 π ± DLL pπ < 10

Figure B. 33 :

 33 Figure B.33: Distribution of variables used for the training of BDT_1. The same plot can be observed for BDT_2.

Figure B. 35 :

 35 Figure B.35: X 0 mass distribution as reconstructed using partial reconstruction technique on real data searching for the decay B 0 s -→ J/ψ(µ + µ -)η (ηπ + π -). Random choice method was used to obtain these plots, the weighted spectrum is shown in Figure B.38.

Figure B. 36 :

 36 Figure B.36: X 0 mass distribution as reconstructed using partial reconstruction technique on real data searching for the decay B 0 s -→ J/ψ(µ + µ -)η (ηπ + π -) with PID K ≤ -5 and PID p ≤ 10 on the two pions.

Figure B. 37 :

 37 Figure B.37: Reconstructed J/ψππ mass distribution after applying all the cuts including PID K ≤ -5 and PID p ≤ 10 cuts on the two pions.

Figure B. 38 :

 38 Figure B.38: X 0 mass distribution (top-left) using two entries per candidate event; (top-right) using proper time as basis for weighting; (bottom-left) using momentum as basis; and (bottom-right) using proper time & momentum as basis.

Figure B. 39 :

 39 Figure B.39: J/ψφ mass distribution as reconstructed using partial reconstruction technique on real data searching for the decay B 0 s → J/ψ(µ + µ -)φ(π + π -π 0 ) with no PID cuts.

Figure B. 40 :

 40 Figure B.40: (Left) J/ψφ mass distribution as reconstructed using partial reconstruction technique on real data searching for the decay B 0 s → J/ψ(µ + µ -)φ(π + π -π 0 ) with PID cuts; and (Right) with additional BDT cuts.

Figure B. 41 :

 41 Figure B.41: Illustration of B 0 -→ J/ψ(π + π -)η (π + π -X) decay, where X can be a photon or η meson. The X particle is not detected and can be reconstructed using decay kinematics.

Figure B. 42 :

 42 Figure B.42: Expected signal event distribution after applying all the cuts.

Figure B. 43 :

 43 Figure B.43: X 0 mass distribution as reconstructed using partial reconstruction technique using B 0 /B + u → J/ψX inclusive MC events searching for [left] B 0 s → J/ψη (π + π -η) and [right] B 0 s →

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Table 1 .

 1 1: The fundamental fermions of the Standard Model written as doublets and arranged by generation.

	Charge	I	II	III

Table 1 .

 1 2: The fundamental bosons of the Standard Model. Shown as well are their respective electric charges, masses, spins, and interactions being mediated. Note that the properties are as the SM predicted, except for the masses where the experimental value is quoted when the SM prediction is nonzero.

	1.2 The Standard Model

  |A 1 |e iδ 1 e iφ 1 + |A 2 |e iδ 2 e iφ 2 , |A 1 |e iδ 1 e -iφ 1 + |A 2 |e iδ 2 e -iφ 2 ,

	(1.70)

Tree and Penguin diagrams shown in Figure 1.3 of Section 1.7, then, A = (1.69) A = where |A 1 | and |A 2 | are the magnitudes of the two contributing amplitudes, while δ's and φ's are its associated unphysical strong and weak phases, respectively. The physical measurable reaction rates are proportional to |A| 2 , as such, the direct A CP dened in Equation 1.68 reads,
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Table 3 .

 3 1: PS cell dimensions.

	Region Inner Middle Outer	Cell size (mm × mm) Scintillator size (mm × mm) No. of cells 39.84 × 39.84 1536 39.5 × 39.5 59.76 × 59.76 1792 59.4 × 59.4 119.5 × 119.5 119.1 × 119.1 2688
	The cells are then organized by modules. Depending on the PS region, the full-modules
	have 144, 64 and 16 cells for the Inner, Middle and Outer regions, respectively. In the Inner
	region, the cells are arranged in 12 rows by 12 columns for full-modules, and in 12 rows by
	6 columns for half-modules. The same can be said for the Middle and Outer regions, where

Table 3 .

 3 2: Summary of number of full and half front-end boards per region and per crate.

	Side	Region	Crate no.	No. of full-boards	No. of half-boards
	C	Outer Middle	PRS 0 PRS 1 PRS 2	12 8 14	2 0 0
		Inner	PRS 3	10	4
		Inner	PRS 4	10	4
	A	Middle Outer	PRS 5 PRS 6 PRS 7	14 8 12	0 0 2

Table 3 .

 3 3: Transcoding of the digitized data from 10-bit format (d 10 ) to 8-bit format (d 8 ).

		d 10 ≤ 128	128 < d 10 ≤ 256	256 < d 10 ≤ 512	512 < d 10
	d 8	d 10	128 + d 10 -128 2	192 + d 10 -256 8	224 + d 10 -512 16
	In the Tell1 board, the transcoded 8-bit data has to be transcoded back to the original
	10-bit format, this is where the absolute precision is lost. The reversed transcoding algorithm
	is summarized in Table 3.4.			

Table 3

 3 

	.4: Reverse transcoding of the 8-bit data format (d 8 ) in the Tell1 board back to 10-bit data
	format (d 10 ).				
		d 8 ≤ 128	128 < d 8 ≤ 192	192 < d 8 ≤ 224	224 < d 8
	d 10	d 8	2 • d 8 -128	8 • d 8 -1280	16 • d 8 -3072
	3.3 Pre-shower calibration method	
	The method used to calibrate the PS detector proceeds in two steps. The rst step involves
	per board channel by channel intercalibration. The channels e in each board are calibrated
	using the gaining technique discussed in Section 3.2.3. The second step is to calibrate the
	full PS detector by adjusting the applied voltage on the Ma-PMT of each board. These steps
	are presented in the next Sections, but a discussion on the MIPs and track reconstruction
	comes rst.				
	3.3.1 Some words about Minimum Ionizing Particles (MIP) and
	other reminders			
	Particles with minimum energy loss rate in a thin scintillator are called Minimum Ionizing
	Particles (MIPs). For practical purposes, these are particles moving with relativistic velocity
	that ionizes the traversed medium resulting in an energy deposition. The calibration method
	used in this analysis involve MIPs.		

Table 3 .

 3 5: The splitting of 2011 data.

	Period	Fill Numbers [start end]	Run Numbers [start end]	Dates [start end]	L ( pb -1 )
	P1	1617 1756	87219 90763	Mar, 14th May, 3rd	81.5
	P2	1782 1844	91556 92929	May, 15th Jun, 3rd	105.6
	P3	1845 1867	92939 93522	Jun, 4th Jun, 13th	98.3
	P4	1868 1901	93550 94386	Jun, 14th Jun, 28th	103.8
	P5	1944 1996	95929 97587	Jul, 14th Jul, 31st	100.8
	P6	1997 2009	97761 98232	Aug, 2nd Aug, 8th	110.6
	P7	2010 2040	98269 100256	Aug, 9th Aug, 22nd	89.0
	P8	2083 2129	101373 102092	Sep, 7th Sep, 20th	100.0
	P9	2135 2177	102139 102772	Sep, 21st Oct, 2nd	108.1
	P10	2178 2208	102788 103379	Oct, 3rd Oct, 13th	104.2
	P11	2210 2267	103391 104414	Oct, 14th Oct, 30th	106.5
	3.5.2 Ageing plots for 2011		
	In each period listed in Table 3.5, ADC distribution of MIPs are gathered and then degained,
	corrected for track-length and nally modelled with Landau⊗Gauss function. The MPVs
	of the Landau function are averaged either by Front-End Board (FEB) or by PS region.
	The decreasing trend of the averaged MPVs per PS region are shown in Figures 3.16 and
	3.17. We take note however the increase of the average MPVs on the A side of the PS at
	the end of 2011. This eect is likely coming from a decrease of the residual pedestals in the
	corresponding period. Dening an ageing parameter which is the relative decrease of the
	averaged MPV at the start of 2011 and the lowest averaged MPV among the samples, we
	observed a typical maximal 10% ageing.		

i This is the same as sample P11 in Table

3

.5.

Table 3

 3 

.6. The MPVs of the tted Landau function are averaged by PS region (or by Front-End Board). In general, the averaged MPVs per PS region decreases with data taking period as can be seen in

Figures 3.24 

Table 3 .

 3 6: The splitting of 2012 data. 10% ageing, dened as the relative decrease of the averaged MPV at the start of 2012 and the lowest averaged MPV among the samples, is observed.

	Period	Fill Numbers [start end]	Run Numbers [start end]	Dates [start end]	L ( pb -1 )
	P1	2644 2692	115834 117277	May, 19th Jun, 4th	201.6
	P2	2698 2736	117473 118792	Jun, 5th Jun, 17th	218.5
	P3	2795 2884	119956 124019	Jul, 2nd Jul, 27th	215.0
	P4	2886 2978	124054 125818	Jul, 28th Aug, 16th	209.8
	P5	2980 3019	125864 126940	Aug, 17th Sep, 1st	197.7
	P6	3020 3134	126972 129905	Sep, 2nd Oct, 6th	209.2
	P7	3236 3286	131093 132284	Oct, 29th Nov, 14th	206.7
	P8	3287 3453	132309 134455	Nov, 15th Dec, 16th	190.3

Table 4 .

 4 1: State of the art of the experimental results for branching fractions ofB 0 d,s → K 0 S h ± h ∓modes[START_REF] Flavor | Averages of b-hadron, c-hadron, and τ -lepton properties as of summer 2014[END_REF] prior to this work.

	Decay Mode	Branching Fraction (10	-6 )
	BaBar	Belle	LHCb	World Average

Table 5 .

 5 2: Number of generated signal and background MC events used in this analysis.

	Decay mode	Event type Year	Yield	Resonances included (in %)

0 b Table 5 .

 b5 3: Cuts applied in the stripping line StrippingXb2phhhLine selecting the candidate events. Daughter tracks' χ 2 over degrees of freedom Trk. χ 2 /ndf < 3.0 Daughter tracks' minimum impact parameter χ 2 to any PV Min. χ 2 IP > 16.0 Mass of the X 0 b candidate with pKKK tracks hypothesis m pKKK > 5195. MeV/c 2 Mass of the X 0 b candidate with pπππ tracks hypothesis m pπππ < 6405. MeV/c 2 X 0 b candidate's tranverse momentum p T > 1500. MeV/c Sum of the daughter tracks' tranverse momentum Σ daug. p T > 3500. MeV/c Distance of closest approach χ 2 of any two daughters χ 2 DOCA < 20.

	Variable denition	Selection requirements
	Cuts on daughter tracks (p,π)	
	Daughter tracks' momentum	p > 1500. MeV/c
	Daughter tracks' tranverse momentum	p T > 250. MeV/c
	Daughter tracks' probability of being a ghost track	Probghost < 0.40
	Proton track's probability of being a proton	ProbNNp > 0.05
	Combination cuts (before vertex t)	

Table 5 .

 5 4: The binning scheme used to produce the PID Kπ (mis)identication eciency maps. reects the approximate ratio of signal-to-crossfeed before any PID cut. This α CF factor is calculated using the equation,

	Particle type (year)	p binning boundaries	η binning boundaries
		(in GeV/c 2 )	
	K's (2011)	{3000; 9300; 15600; 18515;	{1.5; 2.4975; 2.7075; 3.0575;
		28325; 40097; 59717; 100000}	3.3725; 3.7225; 4.0025; 5.0}
	K's (2012)	{3000; 9300; 15600; 16553;	{1.5; 2.4625; 2.6725; 2.9875;
		26363; 38135; 57755; 100000}	3.3025; 3.6525; 3.8975; 5.0}
	π's (2011)	{3000; 9300; 15600; 16553;	{1.5; 2.4625; 2.7075; 3.0225;
		24401; 36173; 55793; 100000}	3.3375; 3.6875; 3.9675; 5.0}
	π's (2012)	{3000; 9300; 14591; 15600;	{1.5; 2.4275; 2.6375; 2.9525;
		24401; 34211; 53831; 100000}	3.2675; 3.6175; 3.8975; 5.0}
	eciencies, which α CF =	Sel. Sig. CF B CF Sel. B Sig.	Mwindow Sig. CF Mwindow	f s,d f s→u

Table 5 .

 5 7: The binning scheme used to produce the ProbNNp > 0.50 identication eciency maps.

	Particle type (year)	p binning boundaries	η binning boundaries
		(in GeV/c 2 )	
	p's (2011)	{3000; 9300; 15600; 18515;	{1.5; 2.4975; 2.7075; 3.0575;
		28325; 40097; 59717; 100000}	3.3725; 3.7225; 4.0025; 5.0}
	p's (2012)	{3000; 9300; 15600; 16553;	{1.5; 2.4625; 2.6725; 2.9875;
		26363; 38135; 57755; 100000}	3.3025; 3.6525; 3.8975; 5.0}

Table 5 .

 5 9: The importance of the variables in the BDT design.

							Variable importance (in %)
	Variable					2011	2012
							BDT 1 BDT 2 BDT 1 BDT 2
	log(Smallest ∆χ 2 vtx ) (X	0 b )	17.67	17.90	17.02	14.60
	η (X 0 b )					11.52	11.54	11.91	12.49
	1.0 -log(cos(θ DIRA )) (X 0 b )	10.90	11.97	10.29	10.52
	p T (X 0 b )					10.88	11.34	9.457	10.78
	log(χ 2 FD ) (X	0 b )	9.093	10.94	9.332	7.962
	log(χ 2 IP ) (X	0 b )	8.612	7.854	8.380	10.12
	Asym. p T (X 0 b )	8.338	7.368	7.973	8.910
	log(χ 2 vtx ) (X	0 b )	8.157	6.737	9.025	9.385
	Largest log(χ	2 trk. /ndf) (of h i 's)	7.567	7.922	7.916	7.816
	log(	χ 2 IP ) (h i 's)	7.268	6.419	8.699	7.410

Table 5 .

 5 10: Correlation of the BDT values and the X 0 b invariant mass calculated using MC-generated signal events.

	Signal decay mode	Correlations (in %)
		2011	2012
	Λ 0 b → pπππ Λ 0 b → pKππ Λ 0 b → pKKπ Λ 0 b → pKKK Ξ 0 b → pKππ Ξ 0 b → pKπK Ξ 0 b → pKKK	-0.93 ± 0.93 0.26 ± 0.69 0.04 ± 0.95 -0.17 ± 0.71 -0.79 ± 1.01 -0.32 ± 0.74 -1.34 ± 0.99 -0.27 ± 0.72 -0.62 ± 0.93 -1.93 ± 0.68 -0.89 ± 0.96 -0.69 ± 0.71

0.15 ± 0.93 -0.90 ± 0.68

Figure of Merit

[START_REF] Punzi | Sensitivity of searches for new signals and its optimization[END_REF] 

as the estimator for the optimization. Mathematically, it reads:

94

  Search for CP aymmetries in the charmless 4-body decays of Λ 0 b /Ξ 0 b

Table 5 .

 5 11: Signal selection eciencies for BDT cuts with corresponding background selection eciencies of 1%, 10% and 30%.Charmed and charmonia resonances mass veto cuts are applied to remove the Λ 0 b and Ξ 0 b decaying to the same nal state as the interest modes but proceeding via a charm resonance.The veto cuts are applied globally to all the spectra, that is, candidates vetoed in one spectrum does not appear in the other spectra. Vetoed charmed and charmonia resonances

	BDT Classier	Year	ROC-integral		Signal eciencies	
				(for a given background eciency)
				Comb. = 1% Comb. = 10% Comb. = 30%
	BDT 1	2011	0.988	76.0%	98.8%	100%
	BDT 2	2011	0.988	77.7%	98.6%	100%
	BDT 1	2012	0.985	63.4%	98.4%	100%
	BDT 2	2012	0.984	64.0%	98.2%	100%
	5.6.5 Charm veto cuts			

include Λ + c , Ξ + c , D + , D + s , D 0 , χ c0 and J/ψ , where the invariant mass of these resonances

Table 5 .

 5 12: List of charm veto cuts applied on the data. → pπ -π + |2283.00h 1 h 2 h 3 _pππ| > 30. and |2283.00h 1 h 4 h 3 _pππ| > 30. Λ + c → pK -π + |2283.00h 1 h 2 h 3 _pK π| > 30. and |2283.00h 1 h 4 h 3 _pK π| > 30. Λ + c → pK -K + |2283.00h 1 h 2 h 3 _pK K| > 30. and |2283.00h 1 h 4 h 3 _pK K| > 30. |2467.80h 1 h 2 h 3 _pK π| > 30. and |2467.80h 1 h 4 h 3 _pK π| > 30. D 0 → π -π + |1864.84h 2 h 3 _ππ| > 30. and |1864.84h 4 h 3 _ππ| > 30. K -K + |1864.84h 2 h 3 _K K| > 30. and |1864.84h 4 h 3 _K K| > 30. D 0 → π + K - |1864.84h 2 h 3 _K π| > 30. and |1864.84h 4 h 3 _K π| > 30. D 0 → π -K + |1864.84h 2 h 3 _πK | > 30. and |1864.84h 4 h 3 _πK | > 30.

	Charmed	Decay	Cut applied (mass in units of MeV/c 2 )
	resonance		
	Λ + c c Ξ + Λ + c Ξ + c → pK -π + ( )	
	( D 0 )	( D 0 → )	

  30h 2 h 3 h 4 _K Kπ| > 30. and |1968.30h 2 h 3 h 4 _πK K| > 30. D + s → π + π -π + |1968.30h 2 h 3 h 4 _πππ| > 30. → π + π - |3096.92h 2 h 3 _ππ| > 50. and |3096.92h 4 h 3 _ππ| > 50. J/ψ → K + K - |3096.92h 2 h 3 _K K| > 50. and |3096.92h 4 h 3 _K K_M| > 50. χ c0 χ c0 → π + π - |3414.75h 2 h 3 _ππ| > 50. and |3414.75h 4 h 3 _ππ| > 50. χ c0 → K + K - |3414.75h 2 h 3 _K K| > 50. and |3414.75h 4 h 3 _K K_M| > 50.

	J/ψ	J/ψ

Table 5 .

 5 14: Summary of signal eciencies on each applied cut for 2012.

	18.615±0.038	7.234±0.036	49.266±0.258	85.388±0.259	90.143±0.237	84.253±0.305	75.923±0.390	74.945±0.453	99.006±0.120	1.302±0.016	44.615±0.244		18.663±0.038	7.137±0.035	48.881±0.257	85.942±0.255	90.121±0.236	84.587±0.301	75.842±0.388	74.422±0.455	98.862±0.128	1.275±0.015	44.385±0.239		18.639±0.027	7.186±0.025	49.073±0.182	85.665±0.182	90.132±0.167	84.420±0.214	75.882±0.275	74.684±0.321	98.934±0.088	1.289±0.011	44.500±0.171
	17.646±0.038	6.959±0.036	51.462±0.268	86.345±0.256	90.488±0.236	81.275±0.330	77.786±0.390	69.410±0.490	99.203±0.113	1.218±0.016	47.627±0.268		17.733±0.039	6.946±0.036	51.268±0.265	86.476±0.254	90.679±0.232	81.427±0.326	77.165±0.390	68.565±0.491	99.055±0.123	1.192±0.015	48.165±0.264		17.689±0.027	6.953±0.025	51.365±0.189	86.411±0.180	90.584±0.165	81.351±0.232	77.475±0.275	68.987±0.347	99.129±0.084	1.205±0.011	47.896±0.188
	17.707±0.048 18.637±0.051 17.007±0.038	6.213±0.034 6.508±0.034 7.024±0.036	53.380±0.279 52.017±0.273 51.889±0.266	85.910±0.267 84.762±0.272 86.558±0.252	88.271±0.266 87.264±0.275 90.844±0.229	82.990±0.331 85.196±0.313 80.189±0.332	74.357±0.422 72.964±0.424 79.964±0.373	68.949±0.518 75.309±0.482 68.898±0.482	99.291±0.113 99.004±0.128 99.119±0.117	1.063±0.014 1.160±0.015 1.255±0.016	48.857±0.275 44.867±0.253 53.534±0.281	MagUp conguration	17.702±0.048 18.709±0.050 17.001±0.038	6.215±0.034 6.536±0.034 6.999±0.035	52.978±0.280 52.071±0.271 51.729±0.262	85.964±0.267 84.809±0.270 85.602±0.256	88.446±0.266 87.403±0.271 90.820±0.228	83.279±0.330 85.236±0.310 80.153±0.330	74.836±0.420 73.506±0.418 79.352±0.374	68.352±0.520 74.969±0.479 68.645±0.481	99.231±0.118 99.007±0.127 99.107±0.118	1.058±0.014 1.173±0.015 1.218±0.015	48.256±0.275 44.653±0.249 53.580±0.275	MagDown and MagUp conguration averaged	17.704±0.034 18.673±0.036 17.004±0.027	6.214±0.024 6.522±0.024 7.012±0.025	53.179±0.198 52.044±0.193 51.809±0.187	85.937±0.189 84.785±0.192 86.080±0.180	88.358±0.188 87.334±0.193 90.832±0.161	83.134±0.233 85.216±0.220 80.171±0.234	74.596±0.298 73.235±0.298 79.658±0.264	68.650±0.367 75.139±0.340 68.772±0.340	99.261±0.082 99.005±0.090 99.113±0.083	1.060±0.010 1.167±0.011 1.237±0.011	48.557±0.194 44.760±0.178 53.557±0.197
	16.944±0.046	6.430±0.034	54.100±0.274	85.891±0.260	88.705±0.255	81.570±0.332	76.139±0.404	70.149±0.497	99.377±0.102	1.147±0.015	53.912±0.282		17.000±0.044	6.383±0.034	54.591±0.270	85.314±0.260	89.174±0.247	81.818±0.325	77.100±0.391	68.486±0.493	99.145±0.118	1.135±0.015	53.812±0.274		16.972±0.032	6.406±0.024	54.346±0.192	85.603±0.184	88.939±0.178	81.694±0.232	76.620±0.281	69.317±0.350	99.261±0.077	1.141±0.010	53.862±0.197
	16.240±0.042	6.681±0.034	55.400±0.264	85.332±0.253	88.670±0.245	78.786±0.336	76.883±0.390	68.106±0.492	99.379±0.100	1.148±0.015	59.577±0.292		16.129±0.044	6.653±0.035	55.354±0.271	84.472±0.266	88.559±0.254	78.703±0.347	76.488±0.406	69.237±0.505	99.413±0.100	1.141±0.015	59.066±0.297		16.184±0.030	6.667±0.025	55.377±0.189	84.902±0.183	88.614±0.176	78.745±0.241	76.686±0.281	68.672±0.352	99.396±0.071	1.145±0.010	59.322±0.208
		Reco+Stripping cuts	L0 trigger requirement	Hlt1 trigger requirement	Hlt2 trigger requirement	Fiducial cuts	BDT cut	Charmed veto cuts	isMuon cuts	From reco. to isMuon	PID cuts		LHCb acceptance cut	Reco+Stripping cuts	L0 trigger requirement	Hlt1 trigger requirement	Hlt2 trigger requirement	Fiducial cuts	BDT cut	Charmed veto cuts	isMuon cuts	From reco. to isMuon	PID cuts		LHCb acceptance cut	Reco+Stripping cuts	L0 trigger requirement	Hlt1 trigger requirement	Hlt2 trigger requirement	Fiducial cuts	BDT cut	Charmed veto cuts	isMuon cuts	From reco. to isMuon	PID cuts

  The frequency of nding more than one candidate per event is typically less than 3 × 10 -3 as reported in Table5.15. If the candidates belong to either of the X 0 b → pπππ, X 0 b → pKKK or X 0 b → pKπK spectra, whichever candidate has a larger ProbNNp value on the proton track is retained, while the others are discarded. If however the candidates have the same proton track (hence the same ProbNNp value), one candidate is chosen randomly to be retained.For the X 0 b → pKππ and X 0 b → pKKπ spectra, a slightly dierent selection rule is applied. If two or more candidates has the same proton track, then the ProbNNK values of the h 2 s (the rst kaon track) are compared. Whichever has the larger value is likely the signal and hence the candidate which is retained. Otherwise, if both proton track and (rst) kaon track are the same for two or more candidates, then one candidate is chosen randomly.

	100	Search for CP aymmetries in the charmless 4-body decays of Λ 0 b /Ξ 0 b
	5.6.8 Multiple candidates																								
		18.955±0.072	6.569±0.024	45.660±0.189	86.845±0.190	93.223±0.151	82.314±0.238	66.358±0.325	75.891±0.361	99.126±0.090	0.998±0.010	46.501±0.168		18.925±0.072	6.573±0.025	45.945±0.193	87.060±0.192	93.288±0.154	82.480±0.242	67.288±0.328	74.667±0.371	98.889±0.103	1.005±0.010	45.872±0.172		18.940±0.051	6.571±0.017	45.803±0.135	86.952±0.135	93.255±0.108	82.397±0.170	66.823±0.231	75.279±0.259	99.008±0.068	1.001±0.007	46.186±0.120
		18.035±0.072	6.277±0.024	48.501±0.197	87.046±0.190	94.094±0.143	79.293±0.254	68.072±0.328	67.992±0.397	99.082±0.098	0.907±0.009	49.955±0.185		18.000±0.071	6.306±0.024	48.506±0.199	87.583±0.189	93.988±0.145	78.575±0.259	68.290±0.331	68.085±0.401	99.228±0.091	0.913±0.010	49.031±0.186		18.018±0.051	6.291±0.017	48.503±0.140	87.314±0.134	94.041±0.102	78.934±0.181	68.181±0.233	68.038±0.282	99.155±0.067	0.910±0.007	49.493±0.131
		17.965±0.075 18.990±0.077 17.330±0.070	5.616±0.023 5.853±0.023 6.381±0.024	50.639±0.210 48.868±0.205 48.764±0.195	86.864±0.199 86.488±0.201 86.910±0.188	92.887±0.163 91.932±0.172 94.072±0.141	80.464±0.260 82.794±0.248 77.555±0.258	65.004±0.349 63.315±0.349 72.028±0.315	68.461±0.422 74.304±0.397 68.623±0.383	99.241±0.095 98.855±0.112 99.423±0.076	0.815±0.009 0.876±0.009 0.970±0.010	50.063±0.191 46.232±0.179 55.439±0.189	MagUp conguration	18.015±0.076 19.149±0.080 17.271±0.066	5.636±0.023 5.846±0.023 6.406±0.024	50.768±0.210 49.083±0.206 48.463±0.197	86.756±0.200 86.909±0.199 87.121±0.190	92.734±0.165 91.954±0.172 93.922±0.145	80.992±0.258 83.776±0.243 77.531±0.261	64.124±0.351 63.024±0.348 71.928±0.319	67.736±0.427 75.670±0.389 68.851±0.388	99.211±0.098 99.087±0.099 99.277±0.086	0.803±0.009 0.908±0.009 0.968±0.010	49.472±0.191 45.607±0.175 55.150±0.190	MagDown and MagUp conguration averaged	17.990±0.053 19.070±0.055 17.301±0.048	5.626±0.016 5.850±0.017 6.393±0.017	50.704±0.149 48.975±0.145 48.613±0.138	86.810±0.141 86.699±0.141 87.016±0.134	92.810±0.116 91.943±0.122 93.997±0.101	80.728±0.183 83.285±0.174 77.543±0.183	64.564±0.248 63.169±0.246 71.978±0.224	68.098±0.300 74.987±0.278 68.737±0.273	99.226±0.068 98.971±0.074 99.350±0.057	0.809±0.006 0.892±0.007 0.969±0.007	49.768±0.135 45.920±0.125 55.295±0.134
		17.381±0.072	5.766±0.023	51.453±0.207	86.691±0.196	92.968±0.158	78.438±0.264	69.550±0.334	68.973±0.402	99.342±0.085	0.894±0.009	55.741±0.194		17.386±0.076	5.850±0.023	51.113±0.206	86.465±0.197	92.786±0.161	78.831±0.263	69.122±0.335	69.146±0.403	99.328±0.086	0.898±0.009	54.805±0.195		17.383±0.052	5.808±0.016	51.283±0.146	86.578±0.139	92.877±0.113	78.634±0.186	69.336±0.237	69.059±0.285	99.335±0.060	0.896±0.007	55.273±0.138
		16.559±0.068	6.032±0.024	52.360±0.201	85.890±0.194	93.273±0.151	76.385±0.265	68.084±0.332	68.571±0.401	99.434±0.078	0.897±0.009	61.062±0.198		16.683±0.071	6.043±0.024	52.479±0.202	85.789±0.195	93.242±0.152	76.419±0.266	68.964±0.331	68.111±0.402	99.531±0.071	0.906±0.009	60.280±0.198		16.621±0.049	6.037±0.017	52.419±0.143	85.839±0.138	93.257±0.107	76.402±0.187	68.524±0.235	68.341±0.284	99.483±0.053	0.902±0.007	60.671±0.140
			Reco+Stripping cuts	L0 trigger requirement	Hlt1 trigger requirement	Hlt2 trigger requirement	Fiducial cuts	BDT cut	Charmed veto cuts	isMuon cuts	From reco. to isMuon	PID cuts		LHCb acceptance cut	Reco+Stripping cuts	L0 trigger requirement	Hlt1 trigger requirement	Hlt2 trigger requirement	Fiducial cuts	BDT cut	Charmed veto cuts	isMuon cuts	From reco. to isMuon	PID cuts		LHCb acceptance cut	Reco+Stripping cuts	L0 trigger requirement	Hlt1 trigger requirement	Hlt2 trigger requirement	Fiducial cuts	BDT cut	Charmed veto cuts	isMuon cuts	From reco. to isMuon	PID cuts

Table 5 .

 5 15: Number of multiple candidates in each spectra.

	Spectra		2011 data			2012 data	
		Candidates	Multiple	nCands = 2 Candidates Multiple nCands = 2
	X 0 b → pπππ X 0 b → pKππ	3604 6207	2 8	1 4	8712 13950	2 8	1 4

Table 5 .

 5 16: The yields of B physics backgrounds from the RHSB of each spectrum. ± 15.2 193.3 ± 15.9 605.2 ± 49.2 625.6 ± 51.6

	Spectrum	RHSB cut	Dominant B	Year	Yields from RHSB	Translated yields
		(in MeV/c 2 )			w/ p track	w/ p track	w/ p track	w/ p track
	X 0 b → pπππ 2012 187.0 X 0 B 0 → Kπππ 2011 46.7 ± 7.6 mpπππ > 5685. b → pKππ m pKππ > 5840. B 0 2011 14.3 ± 4.2 s → KππK 2012 74.9 ± 10.3	45.5 ± 7.5 10.6 ± 3.8 69.9 ± 9.6	151.2 ± 24.7 147.2 ± 24.4 53.3 ± 15.5 39.7 ± 14.3 279.8 ± 38.5 260.9 ± 35.6
	X 0 b → pKKπ	m pKKπ > 5840. B 0 → KKKπ	2011 2012	8.9 ± 3.6 36.0 ± 6.7	9.8 ± 3.8 35.2 ± 6.8	61.5 ± 24.5 246.6 ± 46.0 240.9 ± 46.7 67.3 ± 25.8
	X 0 b → pKKK	m pKKK > 5840. B 0 s → KKKK	2011 2012	5.3 ± 2.5 26.3 ± 5.5	6.3 ± 2.7 32.5 ± 6.2	25.7 ± 11.9 127.5 ± 26.7 157.9 ± 30.2 30.6 ± 12.9
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 5 5.6.2. The invariant mass distributions shown in Figures 5.15, 5.16 and 5.17 are tted with a Double Crystal Ball PDF, with shared mean µ but two dierent widths σ's. CP aymmetries in the charmless 4-body decays of Λ 0 b /Ξ 0 b 17: Fit parameters obtained in the t to signal shape.

	Year	µ	α 1	α 2 /α 1	Fit parameters n 1	n 2 /n 1	f 2	σ/σ ref
	Λ 0 b → pπππ:							
	2011 5620.657±0.221 1.339±0.230 -1.554±0.358 1.799±0.169 1.277±0.220 0.471±0.148	1.052±0.018
	2012 5620.734±0.177 0.971±0.300 -2.191±0.721 2.133±0.330 1.230±0.239 0.284±0.103	1.058±0.016
	Λ 0 b → pKππ:							
	2011 5620.788±0.204 1.715±0.139 -0.932±0.191 1.528±0.115 2.225±0.424 0.638±0.141	0.997±0.018
	2012 5620.947±0.170 1.315±0.242 -1.569±0.347 1.729±0.160 1.453±0.214 0.351±0.114 σ ref =13.995±0.151
	Λ 0 b → pKKπ:							
	2011 5621.143±0.222 1.159±0.322 -1.822±0.593 2.142±0.313 1.150±0.270 0.295±0.132	0.962±0.018
	2012 5620.975±0.172 1.308±0.237 -1.613±0.333 1.886±0.192 1.260±0.187 0.297±0.099	0.963±0.015
	Λ 0 b → pKKK:							
	2011 5620.723±0.201 1.297±0.455 -1.555±0.603 1.929±0.343 1.638±0.408 0.198±0.129	0.907±0.016
	2012 5621.149±0.154 1.210±0.279 -1.821±0.449 2.168±0.291 1.239±0.234 0.171±0.070	0.902±0.014
	Ξ 0 b → pKππ:							
	2011 5789.404±0.210 0.738±0.450 -2.547±2.201 2.190±0.601 1.480±0.499 0.186±0.101	1.031±0.019
	2012 5789.443±0.174 1.529±0.231 -1.301±0.316 1.792±0.131 1.376±0.235 0.528±0.186	1.039±0.016
	Ξ 0 b → pKπK:							
	2011 5789.480±0.234 1.203±0.413 -1.537±0.647 2.152±0.340 1.340±0.347 0.310±0.178	0.990±0.019
	2012 5789.617±0.169 1.054±0.301 -2.148±0.658 2.173±0.286 1.082±0.227 0.226±0.090	0.990±0.015
	Ξ 0 b → pKKK:							
	2011 5789.468±0.194 1.855±0.210 -0.984±0.263 1.859±0.169 1.428±0.315 0.581±0.222	0.933±0.016
	2012 5789.440±0.153 2.054±0.092 -0.630±0.179 1.888±0.138 2.268±0.651 0.798±0.108	0.929±0.014

The extracted parameters from these ts, which are listed in Table

5

.18, are xed in the nal nominal t to the real data.

It is worth noticing that only the dominant cross-feeds are modelled as the others imply double mis-identication or are coming from Ξ 0 b decays which are expected to be Cabbibo- suppressed. Specically, the Λ 0 b → pKKπ as cross-feed to X 0 b → pKKK spectrum is not included in the t, as well the Ξ 0 b → pKKK cross-feed to X 0 b → pKKπ and X 0 b →

106 Search for
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 5 19: Cross-feed factors. The number of digits is automatically dened to be three in order to ensure in all cases the presence of at least two signicant digits.

	0.270±0.223	0.291±0.271	0.994±0.007	0.724±0.052	0.284±0.098	0.270±0.157	0.092±0.136	0.048±0.028	0.595±0.064	0.664±0.094	0.835±0.033	0.782±0.033	0.695±0.050	0.705±0.042	0.777±0.049	0.737±0.059	0.754±0.032	0.705±0.028
	5669.871±3.261	5670.788±2.715	5566.926±2.492	5566.096±1.866	5669.541±5.089	5669.894±4.681	5666.713±7.842	5670.850±4.780	5570.407±1.987	5572.017±1.806	5564.157±1.717	5567.665±2.672	5566.349±3.194	5566.142±2.075	5736.637±2.855	5737.917±2.005	5740.656±1.617	5740.353±1.247
	1.016±0.537	0.937±0.373	0.987±2.935	0.945±0.287	0.668±0.402	0.811±0.413	0.512±0.488	0.834±1.224	1.146±0.416	1.341±0.306	0.800±0.124	0.944±0.387	1.348±0.685	1.154±0.379	0.998±0.370	1.083±0.302	0.824±0.189	0.856±0.181
	19.181±6.560	20.659±5.042	20.524±1.644	21.336±3.899	22.195±4.664	21.837±4.645	27.646±19.970	20.684±35.303	17.563±5.433	14.915±2.919	21.479±1.406	18.173±4.897	15.113±6.814	16.559±4.218	20.968±4.696	19.409±3.571	21.107±3.150	20.779±2.940
	1.911±1.967	1.199±1.199	35.000±26.494	0.031±0.189	28.127±38.586	3.514±6.316	3.604±14.099	0.128±0.615	0.098±0.336	0.938±0.709	0.021±0.026	0.020±0.020	0.037±0.079	0.054±0.085	0.046±0.087	0.275±0.318	0.027±0.025	0.020±0.017
	1.615±0.867	2.108±1.123	1.969±0.440	83.792±57.729	1.627±1.464	1.567±0.822	1.746±2.249	22.034±22.673	14.364±25.616	2.847±1.439	105.000±57.260	105.000±65.092	65.000±63.936	59.997±49.133	105.000±89.259	10.860±9.691	105.000±104.997	105.000±104.979
	-0.335±0.370	-0.369±0.496	-0.502±1.063	-11.715±2.989	-0.082±0.056	-0.133±0.122	-0.149±0.255	-1.422±3.842	-19.065±9.224	-9.233±4.874	-14.789±5.514	-18.290±5.816	-20.650±16.958	-16.818±6.201	-8.841±3.237	-10.871±4.234	-11.823±3.143	-15.047±2.655
	1.292±0.748	1.304±0.828	0.452±0.089	0.191±0.044	1.661±0.515	1.640±0.559	1.118±1.411	0.217±0.362	0.148±0.073	0.251±0.116	0.150±0.001	0.130±0.135	0.117±0.054	0.136±0.037	0.189±0.044	0.199±0.057	0.161±0.025	0.154±0.023
	2011	2012	2011	2012	2011	2012	2011	2012	2011	2012	2011	2012	2011	2012	2011	2012	2011	2012
	pπππ as pKππ		Λ 0 b → pKππ as pπππ	Λ 0 b → pKππ as pKKπ	Λ 0 b → pKππ as pKπK	Λ 0 b → pKKπ as pKππ	Λ 0 b → pKKK as pKKπ	Λ 0 b → pKKK as pKπK	Ξ 0 b → pKππ as pπππ	Ξ 0 b → pKπK as pKππ

Table 5

 5 .2. The t parameters are summarized in

Table 5 .

 5 20. 

Table 5 .

 5 20: Fit parameters obtained in the t to B physics shapes.

	B physics bkg.

Table 5 .

 5 21: B physics cross-spectra factors. The number of digits is automatically dened to be three in order to ensure in all cases the presence of at least two signicant digits. and Γ(n, x) are the usual Gamma function and incomplete Gamma function, respectively. The parameter m t describes the threshold, where if m > m t , the function evaluates to zero. The parameter p controls the curvature of the function and the parameter c controls the falling of the slope.

	B physics	Year	Eciencies & X-to-Reference factors (in %) PID X Sel. X f
	B 0 → Kπππ as pπππ	2011 2012	3.521±0.039 4.431±0.023	(29.800±0.381)×10 -2 (25.605±0.252)×10 -2	Ref. Ref.
	B 0 → πKππ as pKππ	2011 2012	3.464±0.065 2.963±0.032	(8.394±0.202)×10 -2 (10.787±0.164)×10 -2	27.710±0.968 28.173±0.611
	B 0 → KKKπ as pKKπ	2011 2012	2.962±0.029 3.763±0.018	(46.093±0.474)×10 -2 (38.917±0.311)×10 -2	Ref. Ref.
	B 0 → KKπK as pKπK	2011 2012	3.091±0.044 3.841±0.027	(22.109±0.329)×10 -2 (18.375±0.214)×10 -2	50.056±1.257 48.197±0.798
	B 0 → πKKK as pKKK	2011 2012	2.939±0.101 2.538±0.055	(2.946±0.120)×10 -2 (3.193±0.089)×10 -2	6.342±0.350 5.534±0.203
	B 0 → KKKπ as pKππ	2011 2012	0.402±0.007 0.513±0.005	(44.752±0.467)×10 -2 (38.718±0.310)×10 -2	13.171±0.322 13.576±0.209
	B 0 s → KKππ as pKππ	2011 2012	2.947±0.043 3.892±0.026	(42.276±0.647)×10 -2 (36.047±0.420)×10 -2	Ref. Ref.
	B 0 s → πKKπ as pKKπ	2011 2012	3.002±0.109 2.644±0.056	(4.630±0.215)×10 -2 (5.930±0.171)×10 -2	11.153±0.697 11.174±0.426

Table 5 .

 5 23: List of PDFs in each spectrum.

	Spectrum	Signal PDF	Cross-feed PDF	B physics

Table 5 .

 5 24: Summary of the Gaussian means and widths of the pull distribution for the charmless and charmed signal yields.

	Yield parameter	2011	2012
		µ	σ	µ	σ
	N (Signal Λ 0 b → pπππ) N (Signal Λ 0 b → pπππ) N (Signal Λ 0 b → pKππ) N (Signal Λ 0 b → pKππ) N (Signal Λ 0 b → pKKπ) N (Signal Λ 0 b → pKKπ) N (Signal Λ 0 b → pKKK)	-0.017±0.032 -0.080±0.034 -0.053±0.033 0.021±0.033 -0.039±0.032 -0.061±0.033 -0.129±0.032	0.983±0.023 1.035±0.024 1.024±0.024 0.996±0.023 0.991±0.023 1.015±0.023 0.987±0.023	-0.021±0.033 -0.040±0.032 -0.011±0.032 0.008±0.033 -0.005±0.033 -0.022±0.032 0.001±0.032	0.995±0.023 0.969±0.022 0.980±0.023 1.023±0.024 0.997±0.023 0.975±0.023 0.966±0.022

  Figures 5.25, 5.26 and 5.27 display the t results of the simultaneous t to the invariant mass spectra using the full phase space 2011 data. Figures 5.28, 5.29 and 5.30 show the t results for the 2012 data. The t parameters are summarized in Table5.26, where it shows which parameters are shared and not shared. The full set of asymmetries observables are summarized in Table5.27.

	5.10 Pre-unblinding t results	129
	5.10.1 Full phase space	
		ph_pπ) < 2 and m(h h _ππ) < 1.640) or
		(m(ph _pπ) < 2 and m(h h_ππ) < 1.640)
	X 0 b → pKππ	(m(ph_pK ) < 2 and m(h h _ππ) < 1.640) or (m(ph _pπ) < 2 and m(h h_πK) < 1.600)
	X 0 b → pKKπ	

(m(ph_pK ) < 2 and m(h h _K π) < 1.600) or (m(ph _pπ) < 2 and m(h h_KK) < 1.675)

X 0 b → pKπK (m(

ph_pK ) < 2 and m(h h _πK ) < 1.600) or (m(ph _pK ) < 2 and m(h h_πK) < 1.600) X 0 b → pKKK (m(ph_pK ) < 2 and m(h h _K K) < 1.675) or (m(ph _pK ) < 2 and m(h h_KK) < 1.675)

  in Ref.))All signal yields, and hence raw and CP asymmetries observables, are blind. Although limited, some comments are however in order concerning the t results and t behaviour in general.

	5.10 Pre-unblinding t results	141
	← shared	
	± 0.004	
	0.110	

Table 6 .

 6 8: Summary of the Gaussian means and widths of the pull distributions of the A raw and ∆A CP measurements.

	Observable	2011	2012
		µ	σ	µ	σ
	A raw (Λ 0 b → pπππ) A raw (Λ 0 b → pKππ) A raw (Λ 0 b → pKKπ) A raw (Λ 0 b → pKKK) A raw (Ξ 0 b → pKππ) A raw (Ξ 0 b → pKπK)	0.067±0.040 -0.004±0.039 0.060±0.038 0.033±0.039 0.001±0.037 0.025±0.040	1.010±0.028 0.984±0.027 0.956±0.027 0.994±0.028 0.940±0.026 1.011±0.028	-0.008±0.038 -0.038±0.038 -0.007±0.040 -0.012±0.038 -0.038±0.040 0.037±0.040	0.960±0.027 0.969±0.027 1.014±0.028 0.964±0.027 1.007±0.028 1.014±0.028

Table 6 . 9 :

 69 Figure 6.15: Cross-checks on the ∆A CP observables of the Λ 0 b charmless decay modes on dierent subcategories.Figure 6.16: Cross-checks on the ∆A CP observables of the Ξ 0 b charmless decay modes on dierent subcategories. Summary of the ∆A CP measurements combining the 2011 and 2012 results.

	]				
	π π				0.1
	π p				
	→ b [ Λ 0		0.05
	CP A				0
	∆				
		-	0.05
			-	0.1	(0.53	±	2.39) %
						20 11 +M ag A ll+ L0 A ll 20 12 +M ag A ll+ L0 A ll 20 11 +M ag D ow n+ L0 A ll 20 11 +M ag U p+ L0 A ll 20 12 +M ag D ow n+ L0 A ll 20 12 +M ag U p+ L0 A ll 20 11 +M ag A ll+ L0 TO S 20 11 +M ag A ll+ L0 TI S 20 12 +M ag A ll+ L0 TO S 20 12 +M ag A ll+ L0 TI S
						σ 0.69	σ 1.09	σ 0.96	σ 1.09	σ 1.65
	]				
	π b 0 [ Λ → pK π		0.02 0.04 0.06
	CP				0
	A ∆	-	0.02
		--	0.06 0.04	(2.13	±	1.28) %
		-	0.08	20 11 +M ag A ll+ L0 A ll 20 12 +M ag A ll+ L0 A ll 20 11 +M ag D ow n+ L0 A ll 20 11 +M ag U p+ L0 A ll 20 12 +M ag D ow n+ L0 A ll 20 12 +M ag U p+ L0 A ll 20 11 +M ag A ll+ L0 TO S 20 11 +M ag A ll+ L0 TI S 20 12 +M ag A ll+ L0 TO S 20 12 +M ag A ll+ L0 TI S
						σ 1.30	σ 1.04	σ 0.52	σ 1.50	σ 0.13
	]				
	π pKK b [ Λ 0 →			0 0.1 0.2	(-11.72	±	5.66) %
	CP A		-	0.1
	∆				
		-	0.2
			-	0.3
		-	0.4
						20 11 +M ag A ll+ L0 A ll 20 12 +M ag A ll+ L0 A ll 20 11 +M ag D ow n+ L0 A ll 20 11 +M ag U p+ L0 A ll 20 12 +M ag D ow n+ L0 A ll 20 12 +M ag U p+ L0 A ll 20 11 +M ag A ll+ L0 TO S 20 11 +M ag A ll+ L0 TI S 20 12 +M ag A ll+ L0 TO S 20 12 +M ag A ll+ L0 TI S
						σ 0.08	σ 0.17	σ 2.05	σ 1.42	σ 0.13
	pKKK]		0.15	(3.13	±	2.34) %
	b [ Λ 0 →				0.1
	CP A		0.05
	∆				
					0
		-	0.05
						20 11 +M ag A ll+ L0 A ll 20 12 +M ag A ll+ L0 A ll 20 11 +M ag D ow n+ L0 A ll 20 11 +M ag U p+ L0 A ll 20 12 +M ag D ow n+ L0 A ll 20 12 +M ag U p+ L0 A ll 20 11 +M ag A ll+ L0 TO S 20 11 +M ag A ll+ L0 TI S 20 12 +M ag A ll+ L0 TO S 20 12 +M ag A ll+ L0 TI S
						σ 0.76	σ 0.66	σ 0.91	σ 0.10	σ 0.78

Table A .

 A 2: The list signal and cross-feed eciencies for the (a cut π , a cut K ) = (0.55, 0.55) on each spectrum. The calibration samples used to obtain these eciencies come from 2012 data. Only the central values are shown.

	Signal decay	Eciency (in %)	Cross-Feed decay	Eciency (in %)
		MagDown	MagUp		MagDown	MagUp
	Λ 0 b → pπ -π + π -	0.901	0.896	

Table A . 3 :

 A3 Summary of the Gaussian means and widths of the pull distribution of the yields of the B physics backgrounds.

	A.11 B physics from RHSB with low mass cut on ph
	Events / ( 10 )	12							Events / ( 10 )	12		
		10								10		
		8								8		
		6								6		
		4								4		
		2								2		
		5000 0	5200	5400	5600	Invariant Mass of K 5800	π 6000 π π	5000 0	5200	5400	5600	Invariant Mass of K 5800	π 6000 π π
						Invariant Mass of KK	π	π			
	Yield parameter								2011		2012
									µ		σ		µ	σ
	N (CF B 0 → Kπππ in pπππ) N (CF B 0 → Kπππ in pπππ) N (CF B 0 s → KππK in pKππ) N (CF B 0 s → KππK in pKππ) N (CF B 0 → KKKπ in pKKπ) N (CF B 0 → KKKπ in pKKπ) N (CF B 0 s → KKKK in pKKK) N (CF B 0 s → KKKK in pKKK)	-0.057±0.027 0.023±0.027 0.022±0.030 -0.003±0.030 0.006±0.024 -0.047±0.026 -0.037±0.027 -0.054±0.027	0.817±0.019 0.825±0.019 0.929±0.021 0.924±0.021 0.731±0.017 0.796±0.018 0.822±0.019 0.821±0.019	0.011±0.027 0.031±0.025 0.015±0.029 0.023±0.029 -0.017±0.029 -0.028±0.024 0.000±0.028 -0.025±0.025	0.815±0.019 0.763±0.018 0.892±0.021 0.901±0.021 0.902±0.021 0.744±0.017 0.848±0.020 0.772±0.018

Table A .

 A 6: Correlation of the signal yields and the ARGUS slope and power.

	A.17 Correlation of signal yields and ARGUS parameters		221
	A.17 Correlation of signal yields and ARGUS parame-
	ters					
	Yield parameter	power	2011	← shared ← shared ← shared ← shared ← shared Correlation (in %) 2012 ← shared slope power slope
	2011 Signal yields:					
	N (Signal Λ 0 b → pπππ) N (Signal Λ 0 b → pπππ) N (Signal Λ 0 b → pKππ) N (Signal Λ 0 b → pKππ) N (Signal Λ 0 b → pKKπ) N (Signal Λ 0 b → pKKπ) N (Signal Λ 0 b → pKKK) N (Signal Λ 0 b → pKKK) N (Signal Ξ 0 b → pKππ) N (Signal Ξ 0 b → pKππ) N (Signal Ξ 0 b → pKπK) N (Signal Ξ 0 b → pKπK) N (Signal Ξ 0 b → pKKK) N (Signal Ξ 0 b → pKKK)	-1.256 -1.306 -1.709 -1.218 -2.527 -2.018 0.055 -0.460 0.689 0.727 -0.643 -0.337 1.159 0.792		0.452 0.507 3.649 3.039 1.894 1.390 -0.141 0.225 -0.317 -0.451 0.519 0.231 -0.709 -0.612	± 0.002 ± 0.006 ± 0.002 ± 0.002 ± 0.008 ± 0.004 -0.287 0.157 -0.312 0.164 -0.202 0.119 -0.189 0.105 -0.129 0.084 -0.149 0.098 -0.083 0.052 -0.122 0.082 0.087 -0.024 0.114 -0.048 -0.101 0.076 -0.052 0.026 -0.002 0.052 0.097 -0.069
					0.152	0.255	0.049	0.140	0.470	0.096
					→ Kπππ → KKKπ → KKKπ → KKKπ → KππK in pKππ)/( N (in Ref.)) in pKππ)/( in pKπK)/( in pKKπ)/( in pKKK)/( N (in Ref.)) N (in Ref.)) N (in Ref.)) N (in Ref.))
					N (B 0 N (B 0 N (B 0 N (B 0 N (B 0 s
					= (2012	= (2012	= (2012	= (2012	= (2012
					f	f	f	f	f

  Equation B.6 b is expressed in terms of quantities that can be measured by the LHCb detector with masses m η , m π ± and m X constrained to their nominal values. This can then be substituted to Equation B.2 to obtain p B and then nally solve for m B from Equation B.1.

	and E 2 2π is equal to p 2 2π + m 2 2π = p	2 2π + p ⊥2 2π + m 2 2π .	2 ∆ is equal to m 2 η -m 2 2π -m 2 X ,

Table B .

 B 3: Generator level cuts used in event type 11144413. ( GPT > 2.25 * GeV ) [µ + ]cc ( GPT > 500 * MeV ) & ( GP > 6 * GeV ) & inAcc [π + ]cc

	Particle	Cut
	η	

Table B .

 B 6: Selection of B 0 s -→ J/ψ(µ + µ -)η (ηπ + π -) candidate events.

	Particle	Cut
	J/ψ(1S)	

(|m 

recm J/ψ | < 80.0 MeV) [µ + ]cc

Table B .

 B 9: BDT variable importance ranking [0,1] for BDT_1 and BDT_2.

	Variable	Importance BDT_1 BDT_2
	X 0 log 10 (χ 2 transEV )	0.138	0.1646
	X 0 log 10 (χ 2 FD )	0.1207	0.1006
	J/ψ log 10 (χ 2 IP )	0.1093	0.1325
	X 0 log 10 (N tracks ) @ PV	0.1006	0.06877
	π -log 10 (χ 2 IP )	0.08325	0.09256
	π + log 10 (χ 2 IP )	0.07885	0.1014
	J/ψ log 10 (P T )	0.06274	0.04316
	X 0 log 10 (P T )	0.05998	0.05152
	X 0 log 10 (η)	0.05378	0.04719
	X 0 log 10 (χ 2 EV )	0.05270	0.05280
	π + log 10 (P T )	0.04835	0.03449
	X 0 log 10 (χ 2 IP )	0.04768	0.06923

M a(t) b(t) -i2

e The channels refer to the individual scintillator cells, together with its corresponding bers and VFE paths.

Figure 3.16: The degained MPVs with 2011 data, averaged per PS region, as a function of increasing period for (from top to bottom) the channels in the Inner, Middle and Outer regions of the A side of the PS detector, where the three uppermost plots correspond to the Even Bx and the lowermost plots correspond to Odd Bx.

Figure 3.25: The degained MPVs with 2012 data, averaged per PS region, as a function of increasing period for (from top to bottom) the channels in the Inner, Middle and Outer regions of the C side of the PS detector, where the three uppermost plots correspond to the Even Bx and the lowermost plots correspond to Odd Bx.

Pre-shower detector studies

Figure A.12: Distribution of variables used in the training of BDT 2 for 2012, superimposing RHSB background events (in Red) and MC-generated signal events (in Blue).

Figure B.34: Linear correlation matrix of the variables of signal events (left) and background events (right) for BDT_1. The same plot can be observed for BDT_2.
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Table 5.27: The CP asymmetry observables obtained from the results of the t to the full phase space data.

CP asymmetry observable

Value

Observables for 2011 spectra:

Observables for 2012 spectra: The CP asymmetry observables obtained from the results of the t to the data with m ph < 2 GeV/c 2 phase space cut in the charmless spectra.

CP asymmetry observable

Value

Observables for 2011 spectra:

Observables for 2012 spectra: 

CP asymmetry observable

Value

Observables for 2011 spectra:

Observables for 2012 spectra:

Search for CP aymmetries in the charmless 4-body decays of Λ 0 b /Ξ 0 b A particular care has been taken to understand the background sources which can induce CP asymmetries distinct from the ones we are aiming at measuring. They are coming from charmless B mesons decays and are controlled from a data-driven technique in the simultaneous t of the signal and control channels spectra.

The global behaviour of the t is found satisfactory and we did not nd any sign of an overlooked background. The control channels are unblinded and raw asymmetries are found consistent among the years of data taking and compatible with zero.

The evaluation of the systematic uncertainties must proceed after the unblinding. However, a discussion of their sources is given in this document and the methods for their determination (mostly based on pseudo-experiments) have been commissioned.

This analysis document gathers the selection of the decay modes of interest, the simultaneous t and the blinding strategies, the mass t model and the study of the t biases with pseudo-experiments, and eventually the blind t results and sensitivities. Cross-checks are also performed for sanity checks of the results after unblinding and these are presented in Section 6.4. Finally, Section 6.5 summarizes and interprets the results.

Fit results

As a reminder, we performed three measurements of ∆A CP in dierent regions of the phase space. The rst measurement, whose results are presented in Section 6.1.1, considers the events in the full phase space, hence no invariant mass cut to any combination of the daughter particles is applied. The second measurement involves ∆A CP determination in the phase space region where the invariant mass of pπ or pK is less than 2 GeV/c The yields are also reported in Table 6.1, while the CP observables are summarized in Table 6.2. The measured yields of Ξ 0 b → pKKK using the 2012 data are negative and hence the ∆A CP measurement for this mode is not relevant. 

Unblinded t results and interpretation

Yields for 2011 spectra: All signals for particles and antiparticles decays are established but the decay Ξ 0 b → pKKK. The signicance of the most suppressed modes will be discussed in the section 6.2.

6.1 Fit results 165 Table 6.2: The CP asymmetry observables obtained from the unblinded results of the t to the full phase space data.

CP asymmetry observable

Value

Observables for 2011 spectra:

Observables for 2012 spectra: 

Yields for 2011 spectra: Table 6.4: The CP asymmetry observables obtained from the unblinded results of the t to the data with m ph < 2 GeV/c 2 phase space cut in the charmless spectra.

CP asymmetry observable

Value

Observables for 2011 spectra:

Observables for 2012 spectra:

Low invariant mass region of ph and h h

The third measurement intends to measure the ∆A CP in the phase space region of low invariant mass of pπ or pK pair and simultaneously having a low invariant mass on the pairing of the other two tracks, i.e. the mesonic resonance. The unblinded t results of the simultaneous t are shown in Figures 6.9 and 6.10 for the 2011 data, while Figures 6.11 and 6.12 are for the 2012 data. The extracted yields are summarized in Table 6.5 and the measured CP observables are listed in Table 6.6. 

Yields for 2011 spectra: 

Statistical signal signicance

We calculate the approximate statistical signicance of some of the signal modes using Wilks' theorem [START_REF] Wilks | The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses[END_REF] in order to determine how many standard deviations away the alternative hypothesis (the nominal t) is from the null hypothesis of zero yields. The charmless modes Λ 0 b → pπππ, Λ 0 b → pKππ and Λ 0 b → pKKK are unambiguously observed as can be seen in Table 6.6: The CP asymmetry observables obtained from the unblinded results of the t to the data with m ph < 2 GeV/c 2 and m h h < ∼1.65 GeV/c 2 phase space cuts in the charmless spectra.

CP asymmetry observable

Value

Observables for 2011 spectra:

Observables for 2012 spectra:

probability is expressed in terms of number of standard deviations of a unit Gaussian. We are using the TMath::NormQuantile() routine of ROOT toolkit to calculate the number of standard deviations given the probability. However, due to numerical precision limit, only the result of Ξ 0 b → pKKK has been calculated this way. For large values of -2∆lnL, the probability in terms of number of standard deviations of unit Gaussian is approximately equal to √ -2∆lnL. For the other three modes, we used this approach. Table 6.7 summarizes the measured statistical signicance of the four modes. The Λ 0 b → pKKπ, Ξ 0 b → pKππ and Ξ 0 b → pKπK are observed with more than 5 standard deviations of statistical signicance from the null hypothesis, while we found that Ξ 0 b → pKKK is compatible with no signal at 0.2 standard deviations.

Determination of t biases

In order to check for possible t biases linked to the global t strategy, pseudo-experiments are generated using the nominal t results. The central values and uncertainties of the t

Summary and conclusions

and the ∆A CP central values. This is in order to understand the dierent background contributions and avoid subconscious bias in the design of the analysis. The unblinded t results and ∆A CP measurements are eventually presented in Chapter 6. A word of caution has to be taken as the results are given with statistical uncertainty only since the unblinding happened very recently. Some systematics, e.g. knowledge on backgrounds and signal crossfeeds, are however included in the t model as external Gaussian constraints, and hence injected into the statistical uncertainty given by the t results. Alongside, it has been shown that the observed t biases will induce a negligible systematic uncertainty.

The results show that the ∆A CP measurements are compatible with zero for most of the modes under study, except for the dominant decays

where it departs from zero by more than 2.5σ when looked at the low invariant mass region of the phase space. Naively, these simultaneous departures estimate to about 3σ standard deviations from zero, and consequently cries for a dedicated scrutiny of ∆A CP in the phase space. In addition to the CP measurements, the seven charmless decay modes were all previously not seen by prior experiments. As discussed in Section 6.2, except for the Ξ 0 b → pKKK mode, the said modes are observed unambiguously. In the near future, now that the six decay modes are established, measurements of the branching fractions will follow.

Albeit not presented in the main text, but rather in Appendix B, it is worth mentioning that a reconstruction technique dubbed partial reconstruction technique a has also been explored and developed. The idea involves reconstructing decays that proceeds through a narrow intermediate resonance and then one of the daughter particles coming from this resonance is missing. This missing particle could be any particle, but mostly neutral particles as they are dicult to reconstruct in LHCb. It has been shown that there is enough constraints to reconstruct the decay thanks to the excellent vertexing of LHCb. Particularly, the technique is commissioned on real data events to search for the well-established decay

, where η is the missing particle. A perspective of application of this technique concerns the not yet achieved measurement of the proton/antiproton detection eciency dierence, which can be an invaluable input for further measurements of CP violation in b-baryon decays.

a Not to be confused with partially reconstructed backgrounds, although in both cases, one or more of the daughter tracks are not reconstructed.

Appendix for Chapter 5 A.1 Delta A raw

The asymmetry directly measurable from a simple counting experiment is called the raw assymetry A raw . The general form of raw asymmetry is dened as,

where it is driven by at least three main sources of asymmetries, namely the asymmetry on the decay rates Γ, the asymmetry of the detection eciencies of the nal tracks, and the asymmetry on the production P . These are given by the following equations: 

In this analysis, we dene pairs of raw asymmetries, e.g. raw asymmetry of the charmless modes and raw asymmetry of the charmed control modes. The two asymmetries are then subtracted to dene the ∆A raw , where we assumed that there is no CP violation in the charmed control modes. Hence, the ∆A raw is dened as,

where A CP noC is the asymmetry of the charmless decay and where we assume (up to corrections of kinematic dierence) that the production asymmetry and detection asymmetry are the same for the charmless and charmed modes. We take note that in the case of vanishing A CP noC , the ∆A raw equates to zero.

A.5 Signal and Cross-Feed PID K/π Eciencies 

Parameters for 2011 spectra : 

Parameters for 2011 spectra : 

Partial reconstruction of decays involving a resonance in the decay chain

B.1 Introduction

Statistics required by the LHCb physics case might be limited in certain cases by either the detector geometry/acceptance or the low reconstruction eciency of some particle species (e.g. neutrals including V 0 's). In particular, the reconstruction of several neutrals plagues those analysis willing to study these nal states. In this analysis, we discuss a rather dierent approach by not reconstructing one of the decay products from hereon referred to as partial reconstruction. The partial reconstruction is possible in some decays due to the additional constraint which is the direction of the b-hadron decay.

The basic idea of the partial reconstruction is to reconstruct the momentum and mass of the b-hadron by reconstructing all the charged tracks of the decay products and not reconstructing a nal neutral decay product. The non-detected or missing particle can then be determined by decay kinematics, with the aid of topological information. Consider the hadronic decay of B 0 to J/ψ(µ + µ -)η (π + π + X) shown in Figure B.1. Since the J/ψ and η decay via electric and strong interactions, the tracks (2 muons and 2 pions) will form a unique decay vertex, which determines the ight direction of b-avoured hadron. Somewhat similar studies in LHCb were conducted in Ref. [START_REF] Chuinard | Branching fractions and charge asymmetry in B + → η K + decays at LHCb[END_REF] and Ref. [START_REF] Stone | Partial reconstruction of b → charm + π + ππ -and B 0 s → D + s Ds decays[END_REF].

Figure B.1: Illustration of B 0 -→ J/ψ(µ + µ -)η (π + π -X) decay, where X can be a photon or η meson. The X particle is not detected and can be reconstructed using decay kinematics.

B.1.1 Partial reconstruction: Equations and procedure

Referring to Figure B.1, the four-vector energy-momentum of B 0 can be obtained even without detecting the X particle if the decay is suciently constrained. Counting the number of degrees of freedom, we have a total of 7 which are the three vector components of the momentum of B 0 , the invariant mass of B 0 , and the three vector components of the missing particle. The rst four constraints come from the four vector momentum conservation in the

where p B , p J/ψ , p 2π and p X are the three-vector momenta of B 0 meson, J/ψ meson, π + π - mesons from the η meson decay and X as the missing particle of the η meson decay, respectively; while m B , m J/ψ , m 2π and m X are the corresponding invariant masses, respectively.

The charged tracks due to the pions will form a common secondary vertex (SV) a and such provide additional two constraints,

where p J/ψ , p 2π and p X are the vector components of p J/ψ , p 2π and p X , respectively, that are parrallel (or antiparallel) to the direction of p B ; while the p ⊥ J/ψ , p ⊥ 2π and p ⊥ X are the corresponding vector components that are perpendicular to the direction of p B . The last additional constraint can be obtained by considering that the decay of B 0 should be constrainted by η mass m η , hence by using the conservation of four vector momentum in the B 0 -→ J/ψη decay,

where

X are the energies of J/ψ and η , respectively; while p J/ψ and p η = p 2π + p X are the corresponding three vector momenta.

We have a total of 7 constraints given by Equations B.1 -B.5 for the 7 degrees and hence the problem is well-contrained to be solvable. Solving for the p X results to,

where, 

We look for variables that can discriminate the events for the three Gaussian functions in B.2. Events in regions 1 and 5 are associated to Gaussian 3 (worst resolution), events in regions 2 and 4 are associated to Gaussian 2 (moderate resolution), while events in region 3 are associated to Gaussian 1 (best resolution).

The transverse momentum of the π + meson j from the K 0 S decay, shows a small discrim- inating power as shown in Figure B.5. It appears that events with low p T of π + (from the K 0 S decay) is statistically responsible for the Gaussian function with worst resolution, while events with high p T of π + are on average more prominent for the Gaussian function with best resolution.

j The MC true momentum of π + (from the K 0 S decay) was not used in Case 1, the reconstructed momenta of π + was used instead. 

Table B.2: Division of the mass range in

B.3.3 Reconstruction of B 0 mass

We apply the partial reconstruction technique to reconstruct the mass of B 0 for dierent situations. The rst case is the full implementation of partial reconstruction that is all the charged tracks are reconstructed, the primary and secondary vertices are also reconstructed, and the choice of p X solution is completely random. On the second case, instead of choosing randomly, the two possible solutions are included in the B 0 mass distribution. On the third case, the two possible solutions are included in the B 0 mass reconstruction but weighted according to each reconstructed proper decay time. The fourth case is of the same concept as the former case, the two possible solutions are weighted according to its corresponding reconstructed momentum. On the fth case, we combine the two weighting procedure that is the two possible solutions are weighted based on its corresponding reconstructed proper time and momentum. The three weighting procedures have two entries in the B 0 mass spectrum but the total weight is set to 1. The weighting procedures discussed above are summarized in Table B.5.

The mass dierence of the two solutions can be as large as ∼500 MeV/c 2 as shown in Weighting the two solutions of p X according to its corresponding proper time Case 4

Weighting the two solutions of p X according to its corresponding momentum Case 5

Weighting the two solutions of p X according to its corresponding proper time and momentum combined Just like in the case of the B 0 → K 0 

Random Choice

The B 0 mass spectrum is shown in Figure B. 16(left) for the case where we choose randomly from the two possible solutions of p X . Just in the case of B 0 -→ K 0 these are J/ψη (π + π -η) events. We tted the distribution with a Gaussian function and a second-order polynomial to have an idea on the peak location and resolution of this background shape. Although the absolute eciency of this decay mode w.r.t. partial reconstruction technique is not yet known since these MC events are generated with dierent cuts, these background events would peak at ∼5500 MeV/c 2 with a resolution of ∼175 MeV/c 2 , as shown in Figure B. 30(left). This is about 150 MeV/c 2 away from the B 0 s peak. These has to be modelled when tting the mass distribution of candidate events. Given the mutual cross-feed of J/ψη and J/ψη channels, the extraction of the branching ratios in these two channels will proceed through a common t of the two mass distributions with a signal and cross-feed pdf given by the MC.

We applied partial reconstruction technique on B 0 → J/ψω(π + π -π 0 ) MC generated events. Again, we t the distribution with a Gaussian and second-order polynomial. As can be seen in Figure B.30(right), these events peak at ∼5400 MeV/c 2 with a resolution of ∼110 MeV/c 2 . They hence will populate the signal region and should be modelled. The relative branching fraction and the small eciency make these background events negligible with respect to the J/ψη.

One has to pay attention of B 0 (s) decays into charged-only mode where a wrong PID assign- ment of charged particle can mimic the decay mode that we are searching. For example, a decay of B 0 to J/ψKπ where the kaon is mis-assigned as a pion can be reconstructed as J/ψπ + π -+ missing neutral. Luckily, there are two complementary ways to get rid of these harmful decays. First, by applying a good PID cut on the pions. Second, by requesting that the χ 2 IP of B 0 w.r.t. to its own primary vertex (where this χ 2 IP is obtained using the charged tracks only) is > 10 for example, since this variable is sharply peaked at 0 for such decays.

B.4 MC Studies on B 0 s → J/ψ(µ + µ -)η (ηπ + π -) and search on real data 247 The second requirement will also remove most of the J/ψπ + π -events. See for example In the decay of B 0 s -→ J/ψη (π + π -η), the η can decay to π + π -{π 0 , γ}. The branching fraction of η -→ π + π -{π 0 , γ} is 27.34% and hence the charged pions may be mis-assigned as the two pions that come from the η . Out of 2623 MC-matched events, 1060 events (∼40.41%) are reconstructible peaking the nominal B 0 s mass as shown in Figure B.32(a). It is also possible that only one pion that comes from η is mis-assigned as the pion that comes from η . 2857 events (∼51.47%) are reconstructible out of 5551 MC-matched events, as shown in Figure B.32(b). These events are denitely signal events. Although the candidates from the mis-assignment of pions from η peak at the correct B 0 s mass, the corresponding mass resolution is very degraded and hence distort the signal shape.

B.4.5 Partial reconstruction on the dimuon stream

We applied the selection of X 0 -→ J/ψ(µ + µ -)π + π -described in Section B.3, to the dimuon stream of 2012 LHCb real data. The data corresponds to Ldt = 2.08/fb integrated luminousity. A total of 33 655 274 initial candidate events are selected for both MagUp and MagDown conguration. To reduce the data, additional cuts are applied as summarized in Table B.8. For reconstructible signal events, the two following conditions must be satised: A > 0 and √ B ≤ A. We impose these two requirements to reduce the background contamination. The last cut is applied to remove dimuons not coming from the J/ψ. The |m rec J/ψ -3096.916| MeV/c 2 ≤ 48 MeV/c 2 cut corresponds to the 3σ resolution of the J/ψ mass distribution in the LHCb dimuon stream. The said cuts retain only 168 897 of the selected X 0 -→ J/ψ(µ + µ -)π + π -candidate events.

248 Partial reconstruction of decays involving a resonance in the decay chain Figure B.30: X 0 mass distribution for (left) B 0 → J/ψη(π + π -π 0 ) events reconstructed as J/ψη (π + π -η) and (right) B 0 → J/ψω(π + π -π 0 ) events reconstructed as J/ψη (π + π -η). Two types Boosted Decision Trees are added into the data. The rst BDT is designed to reject combinatorial backgrounds (hereafter referred as BDTx). This is the BDT presented in this section. The second BDT is designed to reject badly s reconstructed events. This is the BDT discussed in section B.3.4 hereafter referred as BDTy. Applying a BDTx ≥ 0.10 and BDTy ≥ 0.10 cuts on the real dimuon data stream results in Figure B.35 t . With all these cuts applied, including the two BDTs, we expected ∼1200 events with a signal resolution of ∼88 MeV/c 2 . (See Appendix B.6.4 for the eciencies and expected number of events).

By eye inspection, we see that the possible signal peak corresponds to what we expect. To s These are events with reconstructed mass far from the nominal mass of X 0 . t This gure was obtained using the weighting method based on proper time. The other weighting methods will be discussed in the next subsection. We apply an additional cut of χ 2 IP (X 0 4tracks ) > 10 to further remove J/ψ(µ + µ -)h + h - events, since this variable is highly-peaked at 0 for these type of events. Only 6 out of 1195 were removed after applying the cut, which means that the BDT and the PID cuts has eectively removed these events already. We take note that the χ 2 IP (X 0 4tracks ) variable is included in the BDTx. We also checked whether ψ(2S)→ J/ψπ + π -is a potential background. As shown in Figure B.37, we did not nd a peak at the nominal mass of ψ(2S) and hence we conclude that these events were already removed.

We also applied partial reconstruction technique to a MC sample of B 0 /B + u → J/ψX inclusive events whether these will contribute to the signal region in the search for B 0 s → J/ψη (ππη). As summarized in Appendix B.6.5, the said events do not contribute to the signal peak region u ; while looking at the MC sample of B 0 s → J/ψX inclusive events, (by eye inspection) the number of events in the peaking region is consistent with what we expect as the signal events.

u The cuts used are not exactly the same as the ones used in the data, i.e. no BDT cuts, due to techni- calities, but the cuts are chosen to be as close as possible.

B.4 MC Studies on B 0 s → J/ψ(µ + µ -)η (ηπ + π -) and search on real data 251 Although we have studied in the previous section the eects of the weighting techniques on the signal events, we did not know how will these aect the background shape. To check how the weighting aects the distribution, the reconstructed mass distributions are weighted in reverse. We do this reverse weighting by putting more weight on the events which are less likely to be the correct solution. From the distributions shown in the Figure B.38, we did not nd signicant change on the background events and hence we conclude that the weighting procedures do not bias the background shape.

B.6.2 Decay kinematics of B 0 → J/ψ(µ + µ -)η (π + π -η)

Referring to Figure B.41, the four vector momentum of B 0 can be obtained even without detecting the missing particle X since the decay is well constrained. As presented in Section B.1.1, there are seven constraints for the 7 degrees of freedom and hence the problem is solvable. The rst four constraints come from the four vector momentum conservation in the B 0 -→ J/ψ(π + π -)η (π + π -X) decay. Using obvious notations, these are given by,

If we resolve the vector components of the momenta of the daughter particles in the direction parallel to B 0 (denoted by ) and in the direction perpendicular to B 0 (denoted by ⊥), then the momentum conservation gives us,

Squaring both sides of Equation B.20,

From Equation B.22, we perform a scalar product with itself on both sides of the equation resulting to,

2π and cancelling out some terms, we got,
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The last additional constraint can be obtained by considering that the decay of B 0 should be constrainted by η mass m η , hence by using the conservation of four vector momentum in the B 0 -→ J/ψη decay,

where

X and p η = p 2π + p X are the energy and three vector momenta of η , respectively. Substituting Equation B.28 to Equation B.27 and cancelling out some terms to simplify the equation, we got, 

where, We want to compare the event yield that can be obtained using partial reconstruction technique versus the 79 events that were obtained by the explicit full reconstruction [START_REF] Aaij | Evidence for the decay B 0 → J/ψω and measurement of the relative branching fractions of B 0 s meson decays to J/ψη and J/ψη[END_REF]. Hence, the eciency splitting is necessary. We do this by looking at MC events where only the J/ψ is required to be in acceptance. The corresponding eciency of each cut is shown in Table B s →J/ψη × B J/ψ→µ + µ -× B η,→ηπ + π -= 9.522394 × 10 -6 is the visible fraction of B 0 s → J/ψ(µ + µ -)η (ηπ + π -). The result of the partial reconstruction technique gives more expected event yield but with lower signal to background ratio compared to the explicit full reconstruction. B.6.5 MC B 0 /B + u → J/ψX inclusive events

We have applied partial reconstruction technique, under the reconstruction hypothesis B 0 s → J/ψη (π + π -η), to the inclusive B 0 /B + u → J/ψX Monte-Carlo data sample. This sample contains 10 millions of such events, with the muons from the J/ψ decay in the acceptance.

The size of this sample is approximately a factor ve smaller than the actual data sample considered in our analysis. The B 0 s mass candidates reconstructed using a set of cuts similar to the actual ones applied in the data are displayed 2 . Among the physics processes which could account for this excess, the most appealing explanation is coming from B (0,±) → J/ψK, K 0 S ππ decays, as discussed in Appendix B.6.1. Further investigation is however required to sort out the origin of the peak.

B.6.6 MC B 0 s → J/ψX inclusive events

We have in addition applied partial reconstruction technique, along the same hypothesis, to the analogous inclusive B 0 s → J/ψX Monte-Carlo data sample of 10 million events. Because of the hadronisation fraction of the b quark into B 0 s meson, this sample corresponds approx- imately to the total number of data events analysed to reconstruct B 0 s → J/ψη (π + π -η). s → J/ψη (π + π -η)) on this sample. We convincingly observe a peaking structure at the nominal B 0 s mass (about 5300 -5400 MeV/c

2 ). By eye inspection, the number of reconstructed events in the data is consistent with the number of MC reconstructed candidates which are seen in the peak.