
HAL Id: tel-02159446
https://theses.hal.science/tel-02159446

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Study of rigid solids movement in a viscous fluid
Lamis Marlyn Kenedy Sabbagh

To cite this version:
Lamis Marlyn Kenedy Sabbagh. Study of rigid solids movement in a viscous fluid. General Mathemat-
ics [math.GM]. Université Montpellier; Université Libanaise, 2018. English. �NNT : 2018MONTS103�.
�tel-02159446�

https://theses.hal.science/tel-02159446
https://hal.archives-ouvertes.fr


 

 

THÈSE POUR OBTENIR LE GRADE DE 
DOCTEUR DE L’UNIVERSITÉ DE 

MONTPELLIER 
 

                  En  Mathématique Appliquée et applications des Mathématiques 

École doctorale I2S 

Unité de recherche  IMAG 
 

En partenariat international avec EDST, Université Libanaise, LIBAN 
 
 
 

   Étude du mouvement de solides rigides dans un fluide visqueux 
 
 

   Présentée par 

        Lamis Marlyn Kenedy SABBAGH 

   Le 22 Novembre 2018 

                   Sous la direction de 

Matthieu HILLAIRET et Raafat TALHOUK 
 

Devant le jury composé de 
 
 

 
Oliver GLASS, Professeur, Université Paris-Dauphine 

   Céline GRANDMONT, Directrice de Recherche, INRIA de Paris 
Matthieu HILLAIRET, Professeur, Université de Montpellier 
Simon MENDEZ, chargé de recherche, CNRS, Université de  Montpellier 
Ayman MOURAD, Professeur, Université Libanaise 
Boris MUHA, Associate professor, University of Zagreb 
Raafat TALHOUK, Professeur, Université Libanaise 
Takéo TAKAHASHI, Chargé de recherche, INRIA-Nancy 

 Président du jury 
 Examinateur 
 Directeur de thèse 
 Examinateur 
 Examinateur 
 Rapporteur  
 Directeur de thèse 
 Rapporteur 

 
 



 

 

 
 

THESE de doctorat en Cotutelle 
Pour obtenir le grade de Docteur délivré par 

L’Université Libanaise 

L’Ecole Doctorale des Sciences et Technologie 

 

Spécialité: Mathématiques Appliquées 
Présentée et soutenue publiquement par 

SABBAGH Lamis Marlyn Kenedy  

Le 22/11/2018 

Étude du mouvement de solides rigides dans un fluide visqueux 

Directeurs de thèse : HILLAIRET Matthieu et  TALHOUK Raafat  

 

 

 

 

 Membre du Jury : 
M. GLASS Olivier, Professeur, Université Paris-Dauphine 
Mme. GRANDMONT Céline, Directrice de Recherche, INRIA de Paris 
M. HILLAIRET Matthieu, Professeur, Université de Montpellier 
M. MENDEZ Simon, chargé de recherche, CNRS, Université de  Montpellier 
M. MOURAD Ayman, Professeur, Université Libanaise 
M. MUHA Boris, Associate professor, University of Zagreb 
M. TALHOUK Raafat, Professeur, Université Libanaise 
M. TAKAHASHI Takéo, Chargé de recherche, INRIA-Nancy 

Président du jury 
Examinateur 
Directeur de thèse 
Examinateur 
Examinateur 
Rapporteur  
Directeur de thèse 
Rapporteur 

 

 
 

 

 



Dedicated to the soul of my father.





Acknowledgements

I would first like to sincerely thank my supervisor Professor Matthieu Hillairet, who

was abundantly helpful and offered invaluable assistance, support and guidance through the

preparation of my PhD thesis. I owe my deepest gratitude to my second supervisor Professor

Raafat Talhouk for all the discussions, ideas and the constant support. Thank you both for

your insight and amazing patience with my constant interruptions. I have been amazingly

fortunate to have conducted my thesis under your direction.

I would also like to express my gratitude to the committee members: Professor Olivier

Glass, Professor Céline Grandmont, Professor Simon Mendez, Professor Ayman Mourad,

Professor Boris Muha, and Professor Takéo Takahashi, for the time they have invested to

read and review my thesis. I feel proud and honoured that you have accepted to be on my

committee.

Also, I am grateful to the members of the Mathematics Laboratory in the Doctoral School

of Science and Technology (EDST) in Beirut, for their valuable help. Special thanks to Abir

Moukadem for her help and support in all administrative problems which I have faced in the

beginning of the thesis. Thanks for the laboratory IMAG in the university of Montpellier for

giving me the opportunity of doing this thesis with cooperation with the Lebanese university.

Special acknowledgement goes to all its members, especially to professors Damien Calaque,

Remi Carles, and Simon Mendez. Thanks to Azm and Saadeh association, without its

financial support this PhD thesis wouldn’t have been possible.

Three more colleagues I owe a special gratitude. At first, I would like to thank Houssein

Naser El Dine for the incredible enthusiasm and support and for the good words in all the

ups and downs in my work. Deep gratitude to Ali Janbain and Nasab Yassine for being

always next to me in the right moments as a real friends. Thank you all!



Deep thanks to my beloved family: my mother, my brothers Jimmy and Cyrus, and my

sisters Anna and Nataly, for the incredible support, for the positive energy, for everything.

You are the best family in the world!

iv



Abstract

This thesis is devoted to the mathematical analysis of the problem of motion of a fi-

nite number of homogeneous rigid bodies within a homogeneous incompressible viscous fluid.

Viscous fluids are classified into two categories: Newtonian fluids, and non-Newtonian fluids.

First, we consider the system formed by the incompressible Navier-Stokes equations coupled

with Newton’s laws to describe the movement of several rigid disks within a homogeneous

viscous Newtonian fluid in the whole space R2. We show the well-posedness of this system

up to the occurrence of the first collision. Then we eliminate all type of contacts that may

occur if the fluid domain remains connected at any time. With this assumption, the con-

sidered system is well-posed globally in time. In the second part of this thesis, we prove

the non-uniqueness of weak solutions to the fluid-rigid body interaction problem in 3D in

Newtonian fluid after collision. We show that there exist some initial conditions such that we

can extend weak solutions after the time for which contact has taken place by two different

ways. Finally, in the last part, we study the two-dimensional motion of a finite number of

disks immersed in a cavity filled with a viscoelastic fluid such as polymeric solutions. The

incompressible Navier–Stokes equations are used to model the flow of the solvent, in which

the elastic extra stress tensor appears as a source term. In this part, we suppose that the

extra stress tensor satisfies either the Oldroyd or the regularized Oldroyd constitutive dif-

ferential law. In both cases, we prove the existence and uniqueness of local-in-time strong

solutions of the considered moving-boundary problem.

Key words: Fluid-solid interaction, Navier-Stokes equations, strong solutions, contact

problem, viscous fluids, Oldroyd model.





Résumé

Cette thèse est consacrée à l’analyse mathématique du problème du mouvement d’un
nombre fini de corps rigides homogènes au sein d’un fluide visqueux incompressible ho-
mogène. Les fluides visqueux sont classés en deux catégories: les fluides newtoniens et les
fluides non newtoniens. En premier lieu, nous considérons le système formé par les équations
de Navier Stokes incompressible couplées aux lois de Newton pour décrire le mouvement de
plusieurs disques rigides dans un fluide newtonien visqueux homogène dans l’ensemble de
l’espace R2. Nous montrons que ce probleme est bien posé jusqu’à l’apparition de la première
collision. Ensuite, nous éliminons tous les types de contacts pouvant survenir si le domaine
fluide reste connexe à tout moment. Avec cette hypothèse, le système considéré est globale-
ment bien posé. Dans la deuxième partie de cette thèse, nous montrons la non-unicité des
solutions faibles au problème d’interaction fluide-solide 3D, dans le cas d’un fluide newtonien,
après collision. Nous montrons qu’il existe des conditions initiales telles que nous pouvons
étendre les solutions faibles après le temps pour lequel le contact a eu lieu de deux manières
différentes. Enfin, dans la dernière partie, nous étudions le mouvement bidimensionnel d’un
nombre fini de disques immergés dans une cavité remplie d’un fluide viscoélastique tel que
des solutions polymériques. Les équations de Navier Stokes incompressible sont utilisées
pour modéliser le solvant, dans lesquelles un tenseur de contrainte élastique supplémentaire
apparaît comme un terme source. Dans cette partie, nous supposons que le tenseur de con-
trainte supplémentaire satisfait la loi differentielle d’Oldroyd ou sa version regularisée. Dans
les deux cas, nous prouvons l’existence et l’unicité des solutions fortes locales en temps du
problème considéré.

Mots clés: Interaction fluide-solide, équations de Navier-Stokes, solutions fortes, prob-
lème de contact, fluides visqueux, modèle Oldroyd.





Aperçu de la thèse

Cette thèse est consacrée à l’étude du mouvement d’un nombre fini de corps rigides ho-

mogènes dans un fluide visqueux incompressible. Ce problème figure parmi les problèmes

les plus populaires en sciences appliquées, car il comprend des applications biologiques telles

que la circulation sanguine dans les artères et les veines, la coagulation sanguine et la mod-

élisation de la parole. En outre, il est couramment utilisé pour décrire le comportement des

pulvérisations et pour concevoir et développer des implants prothétiques.

Il existe plusieurs approches pour modéliser les interactions des particules avec les fluides.

Ces approches dépendent de la taille des structures (petite ou grande), des propriétés des

particules (déformables ou rigides), du type de fluide: compressible versus incompressible,

newtonien versus non newtonien, etc. On suppose que les particules sont volumineuses,

indéformable et avoir des limites lisses. En particulier, nous supposons que les particules

sont des disques de dimension 2 et sont des sphères de dimension 3. De plus, nous supposons

que le fluide est un fluide visqueux et incompressible homogène et se déplaçant sous l’action

d’une force externe du corps.

Le problème d’interaction fluide-solide peut être divisé en trois parties: problème du

fluide, problème solide et condition de couplage. Nous utilisons l’approche eulérienne qui est

le point de vue habituel en mécanique des fluides pour décrire le mouvement du fluide. Plus



précisément, nous utilisons les équations incompressibles de Navier-Stokes pour décrire le

mouvement du flux. Nous utilisons également les lois de Newton pour le moment linéaire et

angulaire pour décrire le mouvement des particules. Le couplage entre le sous-système fluide

et le sous-système solide se fait via la ou les interfaces fluides-solides en supposant que la

vitesse du fluide à chaque frontière fluide-solide est égale à la vitesse du solide qui s’y trouve.

Le déplacement du corps solide modifie le domaine fluide. Par conséquent, le domaine des

fluides est inconnu a priori et nous avons affaire à un problème à frontière libre.

les modèles fluide/particule décrits ci-dessus ont été largement étudiés ces 18 dernières

années. Dans un premier temps, des solutions ont été construites localement en temps. «Lo-

calement» pour n’avoir considéré le système qu’avant d’éventuelles collisions entre particules.

En 2 dimensions, il est même apparu que le contact est le seul phénomène empêchant de

construire des solutions globales [41]. Etude de la collision en temps fini s’est faite pour

ces 13 dernières années. Des outils pour contrôler la distance entre les particules ont été

développées [12, 24]. Ils permettent de mettre en évidence l’absence de contact et ainsi de

fournir des solutions globales aux systèmes Navier-Stokes + Newton dans les configurations

simplifiées (une sphere ou un disque se déplace dans une cavité de forme simple). Dans [24],

l’auteur montre que toute solution forte est globale sous l’absence de forces externes dans le

cas d’un disque en mouvement dans le demi-espace R2
+. Notre premier objectif dans cette

thèse est de généraliser les résultats d’existence locale de solutions fortes pour le cas d’un

seul solide [12, 40] au cas de plusieurs corps rigides se déplaçant dans un fluide visqueux

dans toute l’espace R2. Plus précisément, nous montrons le caractère bien posé de ce sys-

tème jusqu’à l’apparition de la première collision. Ensuite, nous éliminons tous les types

de contacts pouvant survenir si le domaine fluide reste connexe à tout moment. Avec cette
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hypothèse, le système considéré est globalement bien posé. Nous soulignons que l’hypothèse

sur le domaine des fluides doit être connexe à tout moment est toujours valable dans le cas

de deux corps en mouvement et que des contacts multiples sont vraiment improbables si

nous partons d’une suspension suffisamment diluée. Cette non-collision est paradoxale. Elle

repose sur le fait que les limites des structures solides sont suffisamment régulières. Rien

n’est aussi lisse qu’un disque ou une sphère. Par exemple, les auteurs de [20] ont étudié l’effet

induit par la rugosité du corps rigide et la limite du domaine sur le processus de collision.

Ils montrent que la collision se produit pour le modèle d’un corps singulier qui tombe sur

une rampe.

La question de l’existence de solutions faibles au problème d’interaction fluide solide

indépendamment de la collision a été posée par San Martin et ses coauteurs dans [34] en

dimension 2 et par Feireisl [16] en dimension 3. Par la suite, [39] à étudié la question

de l’unicité des solutions faibles dans le cas à deux dimensions. Il a prouvé que l’unicité

des solutions faibles ne tient pas après un contact en 2D. Ce résultat de non-unicité peut-

être raisonnablement expliqué par le fait qu’il n’y a pas de loi de rebond pour décrire la

dynamique après une collision. La question de l’unicité des solutions faibles en 3D est le

deuxieme resultat de cette thèse. Nous prouvons la non-unicité des solutions faibles au

problème de l’interaction fluide-rigide en 3D pour un le fluide newtonien après la collision.

Plus précisément, nous montrons qu’il existe des conditions initiales telles que nous pouvons

étendre les solutions faibles après le temps pour lequel le contact a eu lieu de deux manières

différentes. Pour la première solution, le corps s’éloigne du bord de la cavité, tandis que

la seconde solution est construite de telle sorte que le corps reste en contact avec le bord

de la cavité après une collision. La nouveauté de ce travail est que nous prouvons la non-
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unicité des solutions faibles pour le problème du mouvement d’un corps rigide dans un fluide

visqueux en 3D après un contact avec un terme de source raisonnable.

Enfin, nous étudions le mouvement bidimensionnel d’un nombre fini de disques immergés

dans une cavité remplie d’un fluide viscoélastique tel que des solutions polymériques. Les

équations incompressibles de Navier – Stokes sont utilisées pour modéliser le flux du solvant,

dans lesquelles un tenseur de contrainte supplémentaire élastique apparaît comme un terme

source. Ici, nous supposons que le tenseur de contrainte supplémentaire satisfait à la loi

différentielle d’Oldroyd ou à sa version régularisée. Nous montrons l’existence et l’unicité

des solutions fortes locales. En l’absence de particules l’existence globale de solutions faibles

au modèle Oldroyd standard sans diffusion dans le cas de corotation uniquement (a = 0)

est démontré [31] pour toutes les données. Dans le cas général, l’existence et l’unicité des

solutions fortes locales ont été présentées dans [22]; de plus, si le fluide n’est pas trop élastique

et si les données sont suffisamment petites, alors les solutions sont globales. L’hypothèse

de petitesse a été supprimée plus tard dans [33]. Finalement, à notre connaissance, seuls

quelques résultats concernent l’existence et l’unicité de solutions solides pour le modèle

diffusif d’Oldroyd: l’existence de solutions globales fortes en 2D pour le modèle diffusif

Oldroyd-B (soit a = +1) et unicité de la solution parmi une classe de solutions fortes [11].
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Fluid-structure interaction ((FSI) for short) is the interaction of some movable or

deformable structure(s) with an internal or surrounding fluid flow. Studying the interaction

between fluid and solid structure(s) is a crucial concern in many engineering systems. The

success or failure of a product depends on how well it handles interactions between fluids

and structures. When fluid solid interaction occurs, the flow of the fluid may cause the

structure(s) to move, spin or even change shape due to flow-induced pressure and shear

loads, which in turn changes the fluid flow. This two-way interaction loop continues through



Chapter 1. Introduction

multiple cycles, possibly resulting in structural damage or less-than-optimal flow. Tacoma

Narrows Bridge is one of the famous examples of large-scale failure. The bridge collapsed in

1940 because normal speed winds produced aeroelastic 1 flutter that matched the bridge’s

natural frequency [6] (see Figure 1).

Figure 1.1 – Tacoma Narrows Bridge roadway twisted and vibrated violently under 64km/h
winds on the day of the collapse

Aircraft wings and turbine blades may also break due to resulting oscillations from FSI.

In an aircraft, as the speed of the wind increases, there may be a point at which the structural

damping is insufficient to damp out the motions which are increasing due to aerodynamic

energy being added to the structure. This vibration can cause structural failure and therefore

considering flutter characteristics is an essential part of designing aircraft. In wind turbines,

the trend nowadays is to design larger turbines to increase the power output. However,

manufacturing larger turbines presents new challenges for structural engineers and might

require blade materials that are both lighter and stiffer than the ones currently used. Wind

turbin designs with larger turbines and relatively softer blades and flexible blades introduces

1. Aeroelasticity is the branch of physics and engineering that studies the interactions between the inertial,
elastic, and aerodynamic forces (force exerted on a body by the air or other gases) that occur when an elastic
body is exposed to a fluid flow.

2



Figure 1.2 – Size evolution of wind turbines over time [32]

considerable aeroelastic effects due to (FSI). These effects might cause aeroelastic instability

problems, such as edgewise instability and flutter, which result in devastating the blades and

the wind turbine. Therefore, designing larger turbins with flexible blades need a aprecise

(FSI) modelling [46]. We remark that such kind of FSI models will be not the subject of

this thesis.

Figure 1.3 – Blood flow in arteries

Moreover, (FSI) is among the most popular problem in applied sciences and includes

biological applications such as blood flow in arteries and veins, blood coagulation and speech

modelling. More precisely, interactions of biological cells and tissues with flows are important

3



Chapter 1. Introduction

to the circulatory, respiratory and digestive systems. For example, understanding of the

complex interaction between the arterial wall and blood which consists of red blood cells,

platelets, and white blood cells in a circulatory system is crucial to understand the physiology

of the human circulation. In addition, fluid solid interactions are significant in medical field.

For example, FSI is commonly used to describe the behaviour of sprays and to design and

developing prosthetic implants. We emphasize that the density of air is much smaller than

that of the structure, and density of blood is comparable with density of the vessel. Therefore,

the coupling nonlinearity is much stronger in the biomedical applications (in a sense that

added-mass effect is much stronger) and numerical schemes are therefore different.

Figure 1.4 – Blood flow in normal and narrowed artery by arteriosclerosis

There are several approaches to model fluid-structure interaction depending on the the

size of structures (small versus large) and other properties such as deformable versus rigid,

etc... In this thesis, we focus on the macroscopic level to model a finite number of homoge-

neous rigid bodies immersed in a viscous fluid which is either a Newtonian or viscoelastic

fluid in dimension 2 or 3. In such models, the fluid solid interaction problem can be divided

into three parts: fluid problem, solid problem, and coupling condition. The equations used

to describe the fluid solid interaction problem are complex and challenging due to the high

nonlinearity of the problem. Not only the fluid equation exhibits nonlinearity, the displace-

ment of the solid body modifies the fluid domain which generates geometrical nonlinearity

4



1.1 The governing equations

as well.

In this chapter, we introduce the general framework of the thesis. In Section 1.1, we

write the governing equations of the fluid solids interaction problem. In Section 1.2, we give

an overview of recent works on fluid-solid interaction problem. The scope of this work is

addressed in Section 1.3. This introductory chapter ends with the outline of the thesis and

its main contributions, Section 1.4.

1.1 The governing equations

In this section, we write the equations of the motion describing the fluid solid interac-

tion problem. To fix the geometry, we consider k rigid bodies B1(t), . . . , Bk(t) in Rd, where

k is a positive integer and d = 2 or 3, immersed in a homogeneous incompressible viscous

fluid. We assume that the boundaries ∂Bi(t) for i = 1, . . . , k of the solids are circular in

dimension 2 and spheres in dimension 3. The spatial domain occupied by the fluid changes

in time and depends on the position of the k rigid bodies. Therefore, the domain occupied

by the fluid at time t, denoted by ΩF (t), is defined as the complement of the set of solids in

Rd or in a bounded domain of Rd if the solids are moving in a cavity.

We denote by hi(t) and ωi(t) the center of mass and the angular velocity of the i−th

body at time t. We suppose that the rigid bodies are homogeneous and each has a constant

density ρi. Hence the mass mi and the moment of inertia Ji of the i−th body related to the

center of mass hi(t) are given by

mi =
∫
Bi(t)

ρidx,

Ji =
∫
Bi(t)

ρi|x− hi(t)|2dx, if d = 2

Ji =
∫
Bi(t)

ρi

(
|x− hi(t)|2I3 − (x− hi(t))⊗ (x− hi(t))

)
dx, if d = 3.

Since the rigid bodies are homogeneous spheres, then then the above quantities are time
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Chapter 1. Introduction

independent. Moreover, we have

Ji =
( ∫

Bi(t)
ρi|x− hi(t)|2dx

)
I3, if d = 3.

For the sake of simplicity, ΩF (0) and Bi(0) will be denoted later on by ΩF and Bi respectively.

Furthermore, we assume that there is no contact initially between the rigid bodies and the

boundary of the flow. Precisely, we suppose that γ = γ(0) > 0, where

γ(t) = min
1≤i≤k

{d(Bi(t), ∂ΩF (t))) : i 6= j} > 0. (1.1.1)

There are two approaches to describe the motion of a fluid and its associated properties.

The first approach is based on following an individual fluid parcel as it moves through space

and time. This approach is called Lagrangian approach. More precisely, the fluid parcels are

labelled by some vector field x0 which is often chosen to be the center of mass of the parcels

at some initial time t0. In the Lagrangian description, the flow is described by a function

X (x0, t) giving the position of the parcel labelled x0 at time t. The second approach is

the Eulerian approach which is based on identifying or labelling a certain fixed location in

the flow field and follow the change in its property, as different materials pass through that

location. For example, the flow velocity is represented by a function u (x, t) at position x

and at certain time t. The two approaches are related as they describe the velocity of the

parcel labelled x0 at time t as follows

u (X(x0, t), t) = ∂X
∂t

(x0, t) ,

In this thesis, we use the Eulerian approach which is the usual stand point in fluid me-

chanics. More precisely, we use the incompressible Navier–Stokes equations to describe the

motion of the flow. In terms of fluid velocity u, external body force f , the incompressible

Navier –Stokes equation are given by

ρ(∂tu+ (u · ∇)u) = ∇ · σ + f, x ∈ ΩF (t), t ∈ (0, T ), (1.1.2)

∇ · u = 0, x ∈ ΩF (t), t ∈ (0, T ), (1.1.3)

6



1.1 The governing equations

where ρ denotes the density of the fluid.

Of course, one should add initial data and suitable conditions later at the boundary of the

fluid domain. Due to the isotropy, the Cauchy stress tensor writes

σ = −pI + τ, (1.1.4)

where the scalar p is the hydrostatic pressure (determined by the flow) and τ is the extra-

stress tensor which satisfies a constitutive law depending on the type of the fluid. Mainly,

viscous fluids are classified into two categories:

a) Newtonian fluids: are fluids with no memory and the stress depends on the instan-

taneous value of the velocity gradient, not on the prior history of the deformation.

Thus the extra-stress is expressed as

τ = 2ηD[u], (1.1.5)

where η is the fluid viscosity and D[u] is the rate of deformation tensor defined as

follows

D[u] = 1
2(∇u+∇uT ).

Water, air, mercury... are some of the examples of Newtonian fluids.

b) Non-Newtonian Fluids: are those fluids which do not follow the linear law of

Newton’s law of viscosity (1.1.5) and the relation between the shear stress and the

shear rate is non-linear. The viscosity of non-Newtonian fluid is not constant and it

depends on other factors such as the rate of shear in the fluid, the container of the

fluid and on the previous history of the fluid. The non-Newtonian fluids are further

classified into several classes.

For example, quasi-newtonian fluids are those for which the viscosity η satisfies the

power-law model

η(D) = η0 + 1
2
(
trace(|D[u]|2)

)n−1
.

For n = 1 we recover the Newtonian fluid, whereas for n < 1 this equation describes
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Chapter 1. Introduction

a shear thinning fluid. Latex paints, blood plasma, and syrup are examples of shear

thinning fluid. For n > 1, the viscosity is directly proportional with the shear rate

and the fluid is called a shear thickening or dilatant fluid [35]. Such fluids are rarely

encountered, but one common example of this fluid is oobleck which is a mixture of

cornstarch and water that hardens upon application of high enough forces, allowing

people to run across large pools filled with such mixture. A more natural example is

that of wet sand. Walk across it slowly and you will start to sink down but apply

enough force by running and the beach will harden beneath you.

Figure 1.5 – Flow curves for Newtonian, shear thinning and shear thickening (dilatant) fluids:
(a) shear stress as a function of shear rate; (b) viscosity as a function of shear rate.

Another category of non- Newtonian fluids contains characteristics of both solids

and fluids and exhibit partial elastic recovery after deformation. These are known

as viscoelastic fluids. Such fluids have memory. In other words, the value of the

extra-stress tensor at the present time t of this type of fluids depends on the history

of the past deformations and not only on the present deformation. Many important

industrial fluids (polymer melts or solutions, metals at very high temperature...) and

biological fluids are examples of viscoelastic fluids as they exhibit both viscous and

elastic characteristics when undergoing deformation.

In this thesis, we focus mainly on a class of constitutive laws which are widely used

in the polymer community due to their relative simplicity, in particular for numerical

simulations, the differential models. These differential constitutive laws are basically

8



1.1 The governing equations

derived from molecular or continuum mechanics considerations. An important class

of them have the following differential form

τ + λ1
Daτ
Dt

+ β(τ,D[u]) = 2η
(
D[u] + λ2

Da
Dt

(D[u])
)
, x ∈ ΩF (t), t ∈ (0, T ). (1.1.6)

Here, λ1 and λ2 denote respectively the relaxation and retardation time, such that

0 ≤ λ2 < λ1. As the considered fluid is viscoelastic, we restrict our study to the case

when λ2 > 0. The operator Da
Dt

is a kind of time derivative which is frame indifferent

Daτ
Dt

=
(
∂t + (u · ∇)u

)
τ + ga(∇u, τ),

where ga (−1 ≤ a ≤ 1) is a bilinear mapping defined as follows

ga(∇u, τ) = τW [u]−W [u]τ − a(D[u]τ + τD[u]),

where W [u] = 1
2(∇u−∇uT ) is the vorticity tensor.

The particular cases a = −1, 0, 1 correspond respectively to the lower convected

derivative, Jaumann derivative and upper convected derivative. We focus here in the

Oldroyd constitutive law which corresponds to β = 0 and its transient version, known

as the regularized or diffusive Oldroyd model for which an additional dissipative term

ε∆τ appears in the stress equation (1.1.6), see [4] .

The motion of the i-th body is governed by the balance equations for linear and angular

momentum (Newton’s Laws):

mih
′′

i (t) = −
∫
∂Bi(t)

σνidΓi + ρi

∫
Bi(t)

f(t)dx, t ∈ (0, T ), (1.1.7)

Jiω
′

i(t) = −
∫
∂Bi(t)

(x− hi(t))× σνidΓi + ρi

∫
Bi(t)

(x− hi(t))× f(t)dx, t ∈ (0, T ). (1.1.8)

For d = 3, we have denoted by x × y the classical cross product for x, y ∈ R3 whereas for

d = 2, for x, y ∈ R2 and a ∈ R, we have denotes x×y = −x1y2 +x2y1 and a×x = a(−x2, x1).

The symbol νi stands for the unit normal vector directed toward the interior of the i-th body.

9
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We impose the no-slip boundary conditions at the fluid/rigid body interfaces:

u(x, t) = h
′

i(t) + ωi(t)× (x− hi(t)) x ∈ ∂Bi(t), t ∈ [0, T ], i ∈ {1, . . . , k}. (1.1.9)

Moreover, if the rigid bodies are suspended in a cavity O filled with viscous fluid, we assume

that

u(x, t) = 0, x ∈ ∂O × [0, T ]. (1.1.10)

To complete the system, we impose initial conditions at t = 0 :

u(x, 0) = u0(x), x ∈ ΩF (1.1.11)

hi(0) = h0
i , h

′
i(0) = h1

i , ωi(0) = ω0
i , i = 1, . . . , k, (1.1.12)

τ(x, 0) = τ0(x), x ∈ ΩF . (1.1.13)

1.2 A brief historical overview

In this section we present a short historical overview of the Cauchy theory for fluid

solid interaction problem. We recall that we focus on the macroscopic level of modelling as

the moving particles contained in the fluid are assumed to be indeformable and sufficiently

large and we use the the Eulerian approach to describe the motion of the fluid. The coupling

between the fluid and solid subsystems is via the fluid-solid interface(s) by supposing that

the fluid velocity at each fluid-solid boundary is equal to the velocity of the solid at it.

The problem of motion of one or several bodies in a viscous Newtoninan incompressible

fluid was the interest of many studies (see [10, 13, 14, 27, 29, 36, 37], and references therein).

These studies investigated the existence of weak solutions (in a sense which will be defined

below) up to "collision" of the fluid rigid body interaction problem. The question of existence

of global weak solutions regardless collision, was answered by San Martin and his coauthors

in [34] in dimension 2 and by Feireisl [16] in dimension 3. Thereafter, the author in [39]

investigated the question of uniqueness of such solutions in the two dimensional case. He

proved that uniqueness of weak solutions does not hold after contact in 2D. This non-
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1.2 A brief historical overview

uniqueness result can be reasonably explained by the fact that there is no bouncing law to

describe the dynamics after collision. The method used in [39] to prove the non-uniqueness

of weak solutions was to construct a weak solution, colliding in finite time, when the fluid

domain and the solid are two disks. Then one may extend this solution after contact by two

different ways so that one obtains two weak solutions with different behaviours: for the first

solution, the body moves away from the boundary of the flow, whereas the second solution

is constructed such that the body stays in contact with the flow boundary after collision.

Hillairet and his co-author give an example for which the solid collides with the boundary

of the flow in finite time in dimension 3 [25]. The question of uniqueness of weak solutions

in 3D is one of our interests in this thesis.

As far as we know, the problem of existence of strong solutions for (FSI) in the case of

single moving rigid body of arbitrary shape in a cavity is investigated in several studies. A

local-in-time existence result of strong solutions in this case was proved in [21], provided that

the inertia of the rigid body is large enough with respect to the inertia of the fluid. Further

development in this domain is the work of Takahashi in [40]. The author proves the existence

and uniqueness of global strong solution without taking in consideration the assumption

in [21]. The first no collision result for strong solutions was provided by T. Hesla [23] and

M. Hillairet [24]. In [24], the author shows that any strong solution is global under the

absence of external forces in the case of a moving disk in the half space R2
+. Thereafter,

it has been studied the roughness-induced effect of the rigid body and the boundary of the

domain on the collision process [20].

One of the available results in the case when the fluid domain is the exterior of a single

ringid body is due Takahashi and Tucsnak [41]. The authors in [41] prove the existence and

uniqueness of strong solutions for an infinite cylinder in dimension 2. A similar result has

been proved in Silvestre and Galdi [18] for a rigid body having an arbitrary form. Lately,

Cumsile and Takahashi improved the result in [41]. They established the existence and

uniqueness of strong solution globally in dimension 2 and also in dimension 3 if the data are

small enough [12]. A one-dimensional version of the problem of several rigid bodies is studied

in Vázquez and Zuazua [45] where the asymptotic behavior of solutions is also investigated.

11



Chapter 1. Introduction

Recently, the problem of motion of rigid bodies in non-Newtonian fluids has attracted

great attention of many authors due to the wide applications of the fluid solid interaction

problem in many biological fields as well as in industrial fields. In the case of non Newtonian

fluid of a power-law type, Feireisl, Hillairet, and Nec̆asová established in [17] the existence of

global-in-time weak solutions for the problem describing the motion of several rigid bodies

with such type of fluids. Lately, Geissert, Gotze, and Hieber investigated in [19] the fluid

solid interaction problem in the case of generalized Newtonian fluid of power-law type of

exponent d ≥ 1. The authors prove the existence of a unique, local, strong solution in the Lp

setting of the considered problem when p > 5. In the context that a fluid of viscoelastic type

occupies the whole cavity, that is in the absence of interaction with obstacles or particles,

global existence of weak solutions to the standard Oldroyd model without diffusion in the

corotational case only (a = 0) was proved in [31] for any data. In the general case, the

existence and uniqueness of local strong solutions was shown in [22]; besides, if the fluid is

not too elastic and if the data are sufficiently small, then solutions are global. The smallness

assumption was removed later on in [33]. However, as far as we know, only few results

concerning the existence and uniqueness of strong solutions for the diffusive Oldroyd model:

the existence of global strong solutions in 2D for the diffusive Oldroyd-B model (i.e. a = +1)

and uniqueness of the solution among a class of strong solutions was proved in [11].

1.3 Scope of this work

In this thesis, we focus on a common model used to describe the behaviour of sprays which

is based on modelling the carrier fluid by the incompressible Navier-Stokes equations and

assuming the particles it contains to be bulky and indeformable so that their displacements

are described by Euler equations for rigid body dynamics. A strongly coupled system is

thus obtained because the displacement of the particles fixes the area occupied by the fluid

as well as the value of the fluid velocity field at its edge. On the other hand, the stresses

exerted by the fluid influence the particle dynamics.

The first objective of the thesis is to show the well-posed character of the Navier-Stokes
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+ Newton system when we consider the displacement of an arbitrary number of spherical

particles in an infinite domain. We extend the known result of existence of solution in a

context where the cavity is infinite and generalize the tools to control the distance between

solids to complex configurations. We emphasize that this result is a major contribution be-

cause examples of contacts which has been built previously are for particular configurations.

This result illustrates how special they are.

The second objective of this thesis is to investigate the question of uniqueness of weak

solutions to (FSI) in dimension 3. We show that there exists some initial conditions for

which a weak solution for the (FSI) problem can be extended into two different ways after

contact.

Finally, we show the well-posed of the system composed of Navier-Stokes equations for

which the extra stress tensor satisfies a differential constitutive law of Oldroyd or regular-

ized Oldroyd type + Newton’s laws modelling the displacement of an arbitrary number of

spherical particles in a cavity filled with viscoelastic fluid such as polymeric solutions. Here,

we extend the known result on the existence of classical solution in a context that the fluid

occupies the whole cavity [22].

1.4 Thesis outline and main contributions

This PhD thesis is organized as follows. The main contributions of this thesis are

reported in Chapters 2, 3 and 4 and are summarized here below. In Chapter 2, we show

the well-posedness of the problem of motion of several bodies of circular form in a Newtonian

viscous fluid globally in time if the the fluid domain is connected domain in R2 at any time.

In Chapter 3, we show that uniqueness of weak solutions to the fluid solid interaction

problem in three dimensional case does not hold after contact. The non-uniqueness result

is due to the lack of collision law in the model under consideration. In Chapter 4, we

investigate the well-posedness of the problem of interaction of rigid solids with a viscoelastic

fluid which obeys either differential constitutive laws of Oldroyd or diffusive Oldroyd type.
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1.4.1 Chapter 2. On the Motion of Several Disks in an Unbounded

Viscous Incompressible Fluid

In this chapter, we study the time evolution of a finite number of homogeneous rigid disks

within a viscous homogeneous incompressible Newtonian fluid in the whole domain R2. The

motion of the fluid is governed by Navier-Stokes equations (1.1.2)-(1.1.3) with the Cauchy

stress σ given as in (1.1.4)-(1.1.5), whereas the movement of each rigid body is described by

the standard conservation laws of linear and angular momentum (1.1.7)-(1.1.8).

The regularity of classical solutions to the fluid solid interaction problem is computed

through a change of variable X which maps the ΩF into ΩF (t). The existence of such

transform will be discussed in greater details later. More precisely, for a function u(., t) :

ΩF (t)→ R2, we set U(y, t) = u(X(y, t), t) and we use the following notations:

L2(0, T ; Hk(ΩF (t))) = {u : U ∈ L2(0, T ; Hk(ΩF ))},

H1(0, T ; L2(ΩF (t))) = {u : U ∈ H1(0, T ; L2(ΩF ))},

C([0, T ],Hk(ΩF (t))) = {u : U ∈ C([0, T ],Hk(ΩF ))},

L2(0, T ; Ḣ1(ΩF (t))) = {u : U ∈ L2(0, T ; Ḣ1(ΩF ))}.

Moreover, we define U(0, T ; ΩF (t)) as follows

U(0, T ; ΩF (t)) = L2(0, T ; H2(ΩF (t))) ∩ C([0, T ],H1
Γ(ΩF (t))) ∩H1(0, T ; L2(ΩF (t))).

We remark here that the definition of the above spaces is independent of the choice of the

mapping X, see for instance, [40]. In the above spaces, we have denoted the Lebesgue and

Sobolev spaces by Lp(Ω), 1 ≤ p ≤ ∞, with norms ‖ · ‖Lp(Ω) and Hk(Ω), with norm ‖ · ‖Hk(Ω).

L2(Ω) and Hk(Ω) are spaces of vector valued or tensor valued functions with components in

Lp(Ω) and Hk(Ω) respectively.

Before stating our main results , it is convenient to introduce the following definition.

Definition 1.4.1 Suppose that T > 0. We say that (u, p, (hi, ωi)i∈{1,...,k}) is a strong solution
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of problem (1.1.2)-(1.1.5), (1.1.7)-(1.1.12) if

(u, p, (hi, ωi)i∈{1,...,k}) ∈ U(0, T ; ΩF (t))×L2(0, T ; Ḣ1(ΩF (t)))×
(
H2(0, T ;R2)×H1(0, T ;R)

)k
,

and if (1.1.2)-(1.1.5), (1.1.7)-(1.1.12) are satisfied almost everywhere in (0, T ) and in ΩF (t)

or in the trace sense and

γ(t) := min
1≤i,j≤k

{d(Bi(t), Bj(t)) : i 6= j} > 0.

Our first result is the following existence and uniqueness of strong solutions up to the first

collision.

Theorem 1.4.1 Suppose that f ∈ L2(0,∞; L2(R2)), γ > 0, h0
i ∈ R2, h1

i ∈ R2, ω0
i ∈ R, u0 ∈

H1(R2), and that

∇ · u0 = 0, in ΩF,

u0(x) = h1
i + ω0

i (x− h0
i )⊥, x ∈ ∂Bi, ∀i ∈ {1, . . . , k}.

Then there exists T0 > 0 depending on γ, h0
i , h

1
i , ω

0
i , ‖u0‖H1(ΩF ) and ‖f‖L2(0,∞;L2(R2)) such that

problem (1.1.2)-(1.1.5), (1.1.7)-(1.1.12) admits a unique strong solution (u, p, (hi, ωi)i∈{1,...,k})

on [0, T ] such that T < T0.

Moreover, one of the following alternatives holds true:

1. T0 = +∞,

2. T0 is finite and lim sup
t→T0

1
γ(t) = +∞.

The proof of Theorem 1.4.1 follows a standard scheme: existence and uniqueness of local

solution and analysis of blow up alternative. We emphasize that one key ingredient in the

blow up alternative is to show that under the only assumption that γ(t) is bounded by below

then ‖u(t)‖H1(ΩF (t)) is also bounded.

Our second result concerns the global existence and uniqueness of strong solution of the

tackled problem. More precisely, we prove:
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Theorem 1.4.2 Assume that the hypotheses of Theorem 1.4.1 hold true and that

the fluid domain is connected at any time. (H1)

Then problem (1.1.2)-(1.1.4), (1.1.7)-(1.1.12) admits a unique global strong solution.

The idea of proof of Theorem 1.4.2 is to act by contradiction. We assume that collision can

occur in finite time. We multiply (1.1.2) with a divergence-free vector-field v before collision.

We construct a multiplier v locally on the neighbourhood of contact point between the

colliding disks and then we extend it by a regular vector field. When two disks approach each

other, the viscous term dominates the acceleration term leading to a differential inequality

which can be integrated to obtain the no collision result.

We emphasize that the assumption (H1) is always valid in the case of two moving bodies

and that many body contacts are really unlikely if we start from a sufficiently dilute suspen-

sion of bodies. The main difficulty to handle the case of more than two rigid bodies is that

collision could possibly divide the fluid domain into several connected components. On such

situation, each neighbourhood of the contact point between the colliding particles inside

the fluid domain has two connected components. Unfortunately, the flux of the multiplier

v which we construct in these neighbourhoods does not vanish on each of the connected

components even if their sum does. This prevents us from extending the multiplier v to the

whole fluid domain by a divergence free vector field.

1.4.2 Chapter 3. Nonuniqueness of Weak Solutions to Fluid Solid

Interaction Problem in 3D

This chapter answers the question of uniqueness of weak solutions to the fluid-rigid

body problem in dimension three. We consider a single rigid body moving in an incompress-

ible homogeneous Newtonian viscous fluid. The rigid body is supposed to be a ball and the

fluid domain has exactly two holes, so that the moving ball can fill exactly the gap between

the holes if collision occurs. We prove that uniqueness of weak solutions to the fluid solid

interaction problem in three dimensional case does not hold after contact. More precisely,
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the full system of equations modeling the motion of the fluid and the rigid body reads as

∂tu+ (u · ∇)u = ∇ · σ + f, in ΩF (t), t ∈ (0, T ), (1.4.1)

∇ · u = 0, in ΩF (t), t ∈ (0, T ), (1.4.2)

u(x, t) = Ġ(t) + ω × (x−G(t)), x ∈ ∂B(t) t ∈ (0, T ), (1.4.3)

u(x, t) = 0, x ∈ ∂O, t ∈ (0, T ), (1.4.4)

mG̈(t) = −
∫
∂B(t)

σndΓ + ρB

∫
B(t)

f(t)dx, t ∈ (0, T ), (1.4.5)

Jω̇(t) = −
∫
∂B(t)

(x−G(t))× σndΓ + ρB

∫
B(t)

(x−G(t))× f(t)dx, t ∈ (0, T ) (1.4.6)

In the above system, we denote by B(t) the domain occupied by the moving body with

center of mass G(t) at time t and radius 1. The set ΩF (t) = O\B(t) denotes the fluid

domain occupied at time t, where O ⊂ R3 is a bounded open smooth set. For simplicity, we

suppose that the fluid has a constant density 1. To complete the system, we impose initial

conditions at t0:

u|ΩF = u0, G(0) = G0, Ġ(0) = G1, ω(0) = ω0. (1.4.7)

We suppose that there is no contact initially between the moving ball and the boundary of

the flow; that is γ = γ(0) > 0, where

γ(t) = d(B(t), ∂O).

Before stating our result, we introduce the notion of weak solutions. To this end, we recall

that the global density ρ and the global velocity ũ of the system are given respectively by

ρ(t, x) = 1ΩF (t)(x) + ρB1B(t)(x),

ũ(t, x) = u(t, x)1ΩF (t)(x) +
(
Ġ(t) + ω(t)× (x−G(t))

)
1B(t)(x).

For simplicity, we shall denote the global velocity by u instead of ũ.
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Consider domains B and O in R3 such that B ⊂ O. Let

V(O) = {u ∈ D(O) : ∇ · u = 0 in O}, (1.4.8)

and denote by H(O) and V (O)the closure of V(O) respectively in L2(O) and H1(O). Ac-

cording to classical results (see [43]) we have

H(O) = {u ∈ L2(O) : ∇ · u = 0 inO, u · n = 0 on ∂O},

V (O) = {u ∈ H1
0(O) : ∇ · u = 0 in O}.

We introduce the following spaces which will be used in the sequel:

H(B,O) = {u ∈ H(O) : D[u] = 0 in B},

K(B,O) = {u ∈ V (O) : D[u] = 0 in B}.

By Lemma 1.1 in [44], we have D[u] = 0 in B if and only if there exists a vector a and a

skew-symmetric tensor Q ∈ R6 such that

u(x) = a+Qx, for x ∈ B.

In particular, there exists a vector ω such that Qx = ω × x.

Definition 1.4.2 Assume that G0 ∈ O such that γ > 0 and u0 ∈ H(O). We say that (u,G)

is a weak solution to problem (3.1.1)-(3.1.8) on [0, T ] if the velocity field u and the center of

mass of G satisfy

G ∈ W 1,∞(0, T ), with G(0) = G0,

γ(t) ≥ 0,

u ∈ L∞(0, T ;H(O)) ∩ L2(0, T ;V (O)), with u(0) = u0,

u(x, t) = Ġ(t) + ω(t)× (x−G(t)), ∀x ∈ ∂B(t),
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and

∫
O×[0,T )

(
ρu ·∂tv+ρu⊗u : D[v]−2νD[u] : D[v]+ρf ·v

)
dxds = −

∫
O
ρ(0)u0 ·v(0)dx, ∀v ∈ S,

(1.4.9)

where

S = {ϕ ∈ D([0, T )×O) : ∇ · ϕ = 0 on I ×O, D[ϕ] = 0 on a neighbourhood of B(t)}.

We remark that the test function ϕ used in the above weak formulation must be zero when B

touches the two holes whereas the velocity u need not.

Our result is the following:

Theorem 1.4.3 There exists initial conditions such that problem (1.4.1)-(1.4.7) admits at

least two weak solutions.

The geometry of the problem is crucial to prove the above theorem. We suppose that the

cavity O is symmetric with respect to some line (D) and has exactly two spherical holes Bl

and Br each of radius 1. We assume that the holes are symmetric with respect to the line

(D) and separated by a distance equal to the diameter of the moving ball B so that the ball

B can fill exactly the gap between the two holes at collision. Moreover, we assume that ∂O

is flat near ∂D ∩ ∂O. An example of such geometry is represented in the following figure:

Figure 1.6 – Example of the geometry
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The proof of Theorem 1.4.3 follows the same idea as in [39]. The idea of the proof is

based on the construction of a weak solution colliding in finite time to problem (1.4.1)-(1.4.7)

with O as described above. Then we extend this solution after contact by two different ways

so that one obtains two weak solutions with different behaviours: for the first solution, the

body moves away from the boundary of the flow, whereas the second solution is constructed

such that the body stays in contact with the flow boundary after collision. The novelty

of this result is that we prove the non-uniqueness of weak solutions for the problem of

the motion of a rigid body in viscous fluid in 3D after contact with external source term

f ∈ L2(0, T ; Lp(O)) with p < 2.

1.4.3 Chapter 4. Existence Results for the Motion of Rigid Bodies

in Viscoelastic Fluids

In this chapter, we study the two dimensional motion of a finite number of homogeneous

rigid disks in a cavity O filled with incompressible viscoelastic fluids such as polymeric

solutions. We shall consider the system composed of (1.1.2)-(1.1.4) to model the flow of the

solvent for which the extra-stress τ satisfies the Oldroyd or regularized Oldroyd differential

constitutive law together with Newton’s laws to describe the motion of the disks and the

no-slip boundary conditions, and write it in a more mathematical tractable fashion. We

decompose the extra-stress tensor τ into two parts: one corresponding to the Newtonian

part τ s (the solvent) whereas the other one corresponds to the purely elastic part τ p (the

polymer). In other words, we write

τ = τ s + τ p, (1.4.10)

with

τ s = 2ηsD[u], (1.4.11)

where ηs = λ2

λ1
η represents the solvent viscosity and η is the total fluid viscosity (η = ηs+ηp,

ηp denotes the polymer viscosity).
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Substituting (1.4.10) and (1.4.11) in (1.1.2) and (1.1.6), we obtain that

ρ
(
∂tu+ (u · ∇)u

)
+∇p = ηs∆u+∇ · τp + f, in ΩF (t), t ∈ (0, T ), (1.4.12)

τp + λ1
Daτp
Dt

= 2ηpD[u], in ΩF (t), t ∈ (0, T ). (1.4.13)

For simplicity, we shall denote from now on τp by τ .

It is more convenient to write the considered problem using dimensionless variables so that

the physical parameters appear. We define the Weissenberg number We = λ1

UL
, Reyonolds

number Re = ρ
UL

η
, mi = miU

ηL
and J i = JiU

ηL3 , where U and L represent a typical velocity

and a typical length of the flow. We set

x = x∗

L
, u = u∗

U
, t = U

L
t∗, p = L

ηU
p∗, τ = L

ηU
τ ∗, f = L2

ηU
f ∗, ωi = L

U
ω∗i ,

where stars are attached to dimensional variables.

Hence, in nondimensional variables system (1.1.2)-(1.1.4), (1.1.7)-(1.1.10) reads as (see,

for instance, [22]):

Re(∂t + u · ∇)u− (1− r)∆u+∇p = ∇ · τ + f, x ∈ ΩF (t), t ∈ (0, T ), (1.4.14)

∇ · u = 0, x ∈ ΩF (t), t ∈ (0, T ), (1.4.15)

u(x, t) = h′i(t) + ωi(t)(x− hi(t))⊥, x ∈ ∂Bi(t), t ∈ (0, T ), (1.4.16)

u(x, t) = 0, x ∈ ∂O, t ∈ (0, T ), (1.4.17)

mih
′′

i (t) = −
∫
∂Bi(t)

σνidΓi + ρi

∫
Bi(t)

f(t)dx, t ∈ (0, T ), (1.4.18)

J iω
′

i(t) = −
∫
∂Bi(t)

(x− hi(t))⊥ · σνidΓi + ρi

∫
Bi(t)

(x− hi(t))⊥ · f(t)dx, t ∈ (0, T ), (1.4.19)

where the retardation parameter r is defined by r = 1 − λ2

λ1
. We remark the total stress

tensor σ is given by

σ = −pI + 2(1− r)D[u] + τ.
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Moreover, the Oldroyd model without dimension reads as

We
(
∂tτ + (u · ∇)τ + ga(∇u, τ)

)
+ τ = 2rD[u], x ∈ ΩF (t), t ∈ (0, T ), (1.4.20)

The Oldroyd model has a transient version known as the regularized or diffusive Oldroyd

model. In the latter case the elastic extra-stress tensor τ is expressed as a solution of a

second order parabolic partial differential equation:

We
(
∂tτ + (u · ∇)τ + ga(∇u, τ)

)
+ τ − ε∆τ = 2rD[u], x ∈ ΩF (t), t ∈ (0, T ), (1.4.21)

ε
∂τ

∂n
(x, t) = 0, x ∈ ∂ΩF (t), t ∈ (0, T ), (1.4.22)

The additional dissipative term ε∆τ in the above stress equation corresponds to a center of

mass of diffusion term in the dumbell models. We refer the reader to [4] and the references

therein for the derivation of (1.4.21)-(1.4.22). In standard derivation of Oldroyd model from

kinetic models for dilute polymers, the diffusive term is routinely omitted on the grounds

that it is several orders of magnitude smaller than the other terms in the equation. To

complete the system, one should initial data at t = 0 :

u(x, 0) = u0(x), x ∈ ΩF (1.4.23)

hi(0) = h0
i , h

′
i(0) = h1

i , ωi(0) = ω0
i , i = 1, . . . , k, (1.4.24)

τ(x, 0) = τ0(x), x ∈ ΩF . (1.4.25)

To study the system of equations modelling the motion of the fluid coupled with either the

Oldroyd model or the regularized Oldroyd model, we introduce the following function spaces:

U(0, T ; ΩF (t)) = L2(0, T ; H2(ΩF (t))) ∩ C([0, T ],H1(ΩF (t))) ∩H1(0, T ; L2(ΩF (t))),

T(0, T ; ΩF (t)) =
{
τ ∈ L2(0, T ; H2(ΩF (t))) ∩ C([0, T ],H1(ΩF (t))) ∩H1(0, T ; L2(ΩF (t))) : τ = τT

}
.

Before stating our existence result concerning the resolution of the regularized Oldroyd

model, we need to introduce the following definition.
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Definition 1.4.3 Suppose that T > 0. We say that (u, p, τ, (hi, ωi)i∈{1,...,k}) is a strong

solution of problem (1.4.14)-(1.4.19), (1.4.21)-(1.4.25) if

u ∈ U(0, T ; ΩF (t)), p ∈ L2(0, T ; Ḣ1(ΩF (t))), τ ∈ T(0, T ; ΩF (t)),

(hi, ωi) ∈ H2(0, T ;R2)×H1(0, T ;R),

and if (1.4.14)-(1.4.19), (1.4.21)-(1.4.25) are satisfied almost everywhere in (0, T ) and in

ΩF (t) or in the trace sense and

γ(t) = min
i 6=j

(d(Bi(t), Bj(t)), d(Bi(t), ∂O)) > 0.

We give the first existence result of local-in-time solutions to problem (1.4.14)-(1.4.19) cou-

pled with the regularized Oldroyd constitutive law.

Theorem 1.4.4 (Regularized Oldroyd model) Suppose that ∂O ∈ C2, f ∈ L2(0, T ; L2(ΩF )),

u0 ∈ H1(ΩF ), τ0 ∈ H1(ΩF ), γ > 0, and that

∇ · u0 = 0, in ΩF ,

u0(x) = h1
i + ω0

i (x− h0
i )⊥, x ∈ ∂Bi, ∀i ∈ {1, . . . , k},

u0(x) = 0, x ∈ ∂O.

Then there exists T0 > 0 such that problem (1.4.14)-(1.4.19), (1.4.21)-(1.4.25) admits unique

strong solution on [0, T1] for all T1 ∈ [0, T0).

Moreover, one of the following alternatives holds true:

1. T0 = +∞,

2. lim sup
t→T0

‖u(t)‖H1(ΩF (t)) + ‖τ(t)‖H1(ΩF (t)) + 1
γ(t) = +∞.

However, when coupling the Navier-Stokes and Newton’s laws with the Oldroyd model,
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classical solutions belong to more regular spaces:

Ũ(0, T ; ΩF (t)) =
{
u ∈ L2(0, T ; H3(ΩF (t))) ∩ C([0, T ],H2(ΩF (t))) :

u′ ∈ L2(0, T ; H1(ΩF (t))) ∩ C([0, T ]; L2(ΩF (t)))
}
,

T̃(0, T ; ΩF (t)) =
{
τ ∈ C([0, T ],H2(ΩF (t))) : τ ′ ∈ C([0, T ],H1(ΩF (t))) and τ = τT

}
.

Definition 1.4.4 Suppose that T > 0. We say that (u, p, τ, (hi, ωi)i∈{1,...,k}) is a strong

solution of problem (1.4.14)-(1.4.20), (1.4.23)-(1.4.25) if

u ∈ Ũ(0, T1,ΩF (t)), p ∈ L2(0, T1;H2(ΩF (t))) ∩ C([0, T1], Ḣ1(ΩF (t))),

τ ∈ T̃(0, T1; ΩF (t)), (hi, ωi) ∈ W 2,∞([0, T1]× R2)×W 1,∞([0, T1]× R),

and if (1.4.14)-(1.4.20), (1.4.23)-(1.4.25) are satisfied almost everywhere in (0, T ) and in

ΩF (t) or in the trace sense and

γ(t) = min
i 6=j

(d(Bi(t), Bj(t)), d(Bi(t), ∂O)) > 0.

Our second result is the following local existence theorem.

Theorem 1.4.5 (Oldroyd model) Suppose that ∂O ∈ C3,γ > 0, f ∈ L2(0, T ; H1(O)),

f ′ ∈ L2(0, T ;H−1(O)), u0 ∈ H2(ΩF ), τ0 ∈ H2(ΩF ), and that

∇ · u0 = 0, in ΩF ,

u0(x) = h1
i + ω0

i (x− h0
i )⊥, x ∈ ∂Bi, ∀i ∈ {1, . . . , k},

u0(x) = 0, x ∈ ∂O.

Then there exists T0 > 0 such that problem (1.4.14)-(1.4.20), (1.4.23)-(1.4.25) admits a

unique strong solution for all T1 ∈ [0, T0).

Moreover, one of the following alternatives holds true:

1. T0 = +∞,
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2. lim sup
t→T0

‖u(t)‖H2(ΩF (t)) + ‖τ(t)‖H2(ΩF (t)) + 1
γ(t) = +∞.

The movement of rigid bodies modifies the fluid domain and hence the first step to study

the models introduced above is to write the equations in a cylindrical domain. To do this,

we use a non-linear, local change of coordinates X which only acts on a neighbourhood of

the rigid bodies. The method used to prove the above local existence results is similar to

the one used in [22, 40]. First, we rewrite the full non-linear transformed problem corre-

sponding to each model as a fixed point of a mapping defined by solving linearzed problems

associated to the transformed models. After this reformulation, our approach is based on

maximal regularity estimates for the linearized transformed problem. Mainly, we study two

linearized problems, one for the velocity and the other for the elastic extra-stress tensor. Ex-

istence and uniqueness of classical solutions to the regularized Oldroyd model follows then

by implementing classical fixed point theorem. When considering the regularized model, we

apply a standard Picard iteration procedure. However, for the Oldroyd model we must turn

to a finer version: the Schauder fixed point theorem. We emphasize that one of the critical

difficulties in studying the Oldroyd model is that we are dealing with a hyperbolic equa-

tion whose transport coefficient does not vanish on the boundaries of the disks. However,

the change of variable X which is used to write the model in cylindrical domain has many

noteworthy features. Mainly, the transport coefficient in the transformed Oldroyd model is

orthogonal to the normal vector on the boundary of the flow.
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In this chapter, we consider the system formed by the incompressible Navier-Stokes equa-

tions coupled with Newton’s laws to describe the motion of a finite number of homogeneous

rigid disks within a viscous homogeneous incompressible fluid in the whole space R2. In

Section 2.1, we introduce the model describing the movement of solids in the fluid. Then, we

write our model in cylindrical domain in Section 2.2 as we are dealing with a free boundary

problem. In Section 2.3, we generalize the existence result of strong solutions of Takahashi

in [40] and that of Cumsille and Takahashi in [12] to the case of several rigid bodies. Section

2.4 is devoted to extend solutions up to collision. In the last section, we prove contact be-

tween rigid bodies cannot occur for almost arbitrary configurations by studying the distance
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between solids by a multiplier approach [20].

2.1 Statement of the problem

We consider a finite number of homogeneous rigid bodies – each being represented by

a closed disk Bi(t) ⊂ R2– moving in a viscous homogeneous incompressible fluid which

occupies a domain ΩF (t) at time t, where ΩF (t) = R2\
k⋃
i=1
Bi(t), with k ∈ N∗ denoting the

number of rigid bodies.

We suppose that the fluid is of viscosity ν > 0, pressure p, velocity field u and for

simplicity, of density one. The motion of the fluid is governed by the Navier-Stokes equations

for incompressible fluids:

∂tu− ν∆u+ (u · ∇)u+∇p = f, x ∈ ΩF (t), t ∈ (0, T ), (2.1.1)

∇ · u = 0, x ∈ ΩF (t), t ∈ (0, T ), (2.1.2)

where f ∈ L2((0, T )× R2) denotes an external body force.

For each rigid body, we define the density ρi, the center of mass hi(t), the angular velocity

ωi(t) and the inertia matrix Ji related to the center of mass of the i-th body by

ρi = mi

|Bi(0)| , hi(t) = 1
|Bi(0)|

∫
Bi(t)

x dx, Ji(t) =
∫
Bi(t)

ρi|x− hi(t)|2dx =
∫
Bi(0)

ρi|y|2dy,

where mi denotes the mass of the i-th body. Hence Bi(t) is the closed disk of center hi(t)

and radius ri.

The motion of the i-th body is governed by the balance equations for linear and angular

momentum (Newton’s Laws):

mih
′′

i (t) = −
∫
∂Bi(t)

σνidΓi + ρi

∫
Bi(t)

f(t)dx, t ∈ (0, T ), (2.1.3)

Jiω
′

i(t) = −
∫
∂Bi(t)

(x− hi(t))⊥ · σνidΓi + ρi

∫
Bi(t)

(x− hi(t))⊥ · f(t)dx, t ∈ (0, T ). (2.1.4)

In the above equations, the matrix σ denotes the Cauchy stress tensor in the fluid and is

given by

σ(u, p) = −pI + 2νD[u],
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where I is the identity matrix and D[u] denotes the rate of deformation tensor defined as

follows

D[u] = 1
2(∇u+∇uT ).

We denote by (x1, x2)⊥ = (−x2, x1) the orthogonal vector of (x1, x2) and we use the notation

∂Bi(t) to denote the boundary of the i-th body at time t. The symbol νi(x, t) stands for the

unit normal vector directed toward the interior of the i-th body. For simplicity, ΩF (0) and

Bi(0) will be denoted later on by ΩF and Bi respectively.

We impose the no-slip boundary conditions at the fluid/rigid body interfaces

u(x, t) = h′i(t) + ωi(t)(x− hi(t))⊥, x ∈ ∂Bi(t), t ∈ [0, T ], i ∈ {1, . . . , k}. (2.1.5)

To complete the system, we impose initial conditions at t = 0 :

u|ΩF = u0, hi(0) = h0
i , h

′
i(0) = h1

i , ωi(0) = ω0
i , ∀i ∈ {1, . . . , k}. (2.1.6)

Throughout this chapter, we assume that there is no contact initially between the rigid

bodies; that is

γ = γ(0) = min
1≤i,j≤k

{d(Bi(0), Bj(0)) : i 6= j} > 0. (2.1.7)

Since we are dealing with a free boundary problem, the regularity of classical solutions has

to be made precise. We recall that the regularity of classical solutions is computed through

a change of variable X which maps the fluid domain to its initial shape. More precisely,

for a function u(., t) : ΩF (t) → R2, we set U(y, t) = u(X(y, t), t) and we use the following

notations:

L2(0, T ; H2(ΩF (t))) = {u : U ∈ L2(0, T ; H2(ΩF ))},

H1(0, T ; L2(ΩF (t))) = {u : U ∈ H1(0, T ; L2(ΩF ))},

C([0, T ],H1(ΩF (t))) = {u : U ∈ C([0, T ],H1(ΩF ))},

L2(0, T ; Ḣ1(ΩF (t))) = {u : U ∈ L2(0, T ; Ḣ1(ΩF ))}.

In the above spaces, we have denoted the Lebesgue and Sobolev spaces by Lp(Ω), 1 ≤ p ≤ ∞,

with norms ‖ · ‖Lp(Ω) and Hk(Ω), with norm ‖ · ‖Hk(Ω). L2(Ω) and Hk(Ω) are spaces of

vector valued or tensor valued functions with components in Lp(Ω) and Hk(Ω) respectively.

29



Chapter 2. On the Motion of Several Disks in a Viscous Incompressible Fluid

Moreover, we define U(0, T ; ΩF (t)) as follows

U(0, T ; ΩF (t)) = L2(0, T ; H2(ΩF (t))) ∩ C([0, T ],H1(ΩF (t))) ∩H1(0, T ; L2(ΩF (t))).

This chapter is devoted to prove the following two main results:

Theorem 2.1.1 Suppose that f ∈ L2(0,∞; L2(R2)), γ > 0, h0
i ∈ R2, h1

i ∈ R2, ω0
i ∈ R, u0 ∈

H1(R2), and that

∇ · u0 = 0, in ΩF,

u0(x) = h1
i + ω0

i (x− h0
i )⊥, x ∈ ∂Bi, ∀i ∈ {1, . . . , k}.

Then there exists T0 > 0 depending on γ, h0
i , h

1
i , ω

0
i , ‖u0‖H1(ΩF ) and ‖f‖L2(0,∞;L2(R2)) such

that problem (2.1.1)-(2.1.6) admits a unique strong solution

(u, p, (hi, ωi)i∈{1,...,k}) ∈ U(0, T ; ΩF (t))×L2(0, T ; H1(ΩF (t)))×
(
H2(0, T ;R2)×H1(0, T ;R)

)k
,

on [0, T ] such that T < T0.

Moreover, one of the following alternatives holds true:

1. T0 = +∞,

2. T0 is finite and lim sup
t→T0

1
min
i 6=j

d(Bi(t), Bj(t))
= +∞.

The proof of Theorem 2.1.1 follows a standard scheme: existence and uniqueness of local

solution and analysis of blow up alternative. We emphasize that one key ingredient in the

blow up alternative is to show that under the only assumption that min
i 6=j

d(Bi(t), Bj(t)) is

bounded by below then ‖u(t)‖H1(ΩF (t)) is also bounded.

Then we prove the global existence and uniqueness of strong solution of the tackled

problem by adapting the method of Gérard-Varet and Hillairet in [20] to our case and we

arrive to the following result:

Theorem 2.1.2 Assume that the hypotheses of Theorem 2.1.1 hold true and that

the fluid domain is connected at any time. (H1)

Then problem (2.1.1)-(2.1.6) admits a unique global strong solution.
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We act by contradiction and we assume that collision can occur in finite time. We multiply

(2.1.1) with a divergence-free vector-field v before collision. When two disks approach each

other, the viscous term dominates the acceleration term leading to a differential inequality

which can be integrated to obtain the no collision result. The main restriction of the global-

in-time existence result in Theorem 1.4.1 is that we need the fluid domain to be connected

at any time. However, this assumption is always valid in the case when we have just two

moving bodies and that many body contacts are really unlikely if we start from a sufficiently

dilute suspension of bodies.

The main difficulty to handle the case of more than two rigid bodies is that collision could

possibly divide the fluid domain into several connected components. On such situation, each

neighbourhood of the contact point between the colliding particles inside the fluid domain has

two connected components. Unfortunately, the flux of the multiplier v which we construct

in these neighbourhoods does not vanish on each of the connected components even if their

sum does. This prevents us from extending the multiplier v to the whole fluid domain by a

divergence free vector field.

2.2 Equations in cylindrical domain

This section is devoted to write the free boundary value problem (2.1.1)-(2.1.6) in cylin-

drical domain. First, we introduce a mapping X which maps the fluid domain into its initial

shape. Then, we reduce our problem to a problem in cylindrical domain using the transform

X. We fix k functions hi : t 7→ hi(t) such that for i ∈ {1, . . . , k}, we have hi ∈ H2(0, T ;R2).

Moreover, from now on we fix ε such that 0 < ε < γ. With this choice, we have

Bi ⊂ Ui ⊂ U i ⊂ B
(
hi(0), ri + γ

2

)
,

where

Ui = B(hi(0), ri + γ − ε
2 ).

Consider a family of smooth functions ψ1, . . . , ψk, such that

• supp ψi ⊂ B(hi(0), ri + γ
2 )

• 0 ≤ ψi(x) ≤ 1
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• ψi ≡ 1 in U i.

Finally, we define the mapping Λ : R2 × [0, T ]→ R2 by

Λ(x, t) =
k∑
i=1
∇⊥

(
hi(t) · x⊥ψi(x)

)
. (2.2.1)

Since the cut-off functions ψ1, . . . , ψk are smooth and the center of masses of the rigid bodies

are H2 in time, it follows that for all t ∈ [0, T ] the function Λ(t, .) ∈ C∞(R2;R2) and that

for all x ∈ R2, the function Λ(., x) is of class H1(0, T ;R2). Moreover, we have:

Lemma 2.2.1 The mapping Λ defined in (2.2.1) satisfies the following properties:

i. ∃r > 0, such that Λ ≡ 0 outside B(0, r), for all t ∈ [0, T ],

ii. ∇ · Λ = 0 in R2 × [0, T ],

iii. Λ(x, t) = h′i(t) in B(hi(0), ri + γ−ε
2 ).

The mapping X is defined as the solution of the following Cauchy problem:


∂X

∂t
(y, t) = Λ(X(y, t), t), t ∈]0, T ],

X(y, 0) = y ∈ R2.

(2.2.2)

By Cauchy-Lipschitz-Picard theorem, we have:

Lemma 2.2.2 For all y ∈ R2, the initial-value problem (2.2.2) admits a unique solution

X(y, .) : [0, T ]→ R2, which is C1 on [0, T ]. Moreover, we have the following properties:

i. For all t ∈ [0, T ], the mapping X(., t) is a C∞-diffeomorphism from R2 onto itself and

from Bi onto Bi(t) whenever Bi(t) ⊂ B(hi(0), ri + γ−ε
2 ).

ii. Let Y (., t) be the inverse mapping of X(., t). Then, for all x ∈ R2, the mapping

t→ Y (x, t) is a C1 function in [0, T ].

iii. For all (y, t) ∈ R2 × [0, T ]; the determinant of the jacobian matrix JX of the mapping

X(., t) is one due to the classical result of Liouville (see, for instance [2]).
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Next, we define the functions U , P , and F using the transform X defined previously as

follows:

U(y, t) = JY (X(y, t), t)u(X(y, t), t),

P (y, t) = p(X(y, t), t),

F (y, t) = JY (X(y, t), t)f(X(y, t), t).

Formal computations implies that (U, P, (hi, ωi)i=1,...,k) satisfies the following set of equations:

∂U

∂t
− ν[LU ] + [MU ] + [NU ] + [GP ] = F, in ΩF×]0, T [, (2.2.3)

∇ · U = 0, in ΩF×]0, T [, (2.2.4)

U(y, t) = h′i(t) + ωi(t)(y − hi(0))⊥, in ∂Bi × [0, T [, (2.2.5)

U(y, 0) = u0(y), y ∈ ΩF , (2.2.6)

and for all i ∈ {1, . . . , k}, we have:

mih
′′

i (t) = −
∫
∂Bi

ΣνidΓi + ρi

∫
∂Bi

F (t)dy, t ∈]0, T [, (2.2.7)

Jiω
′

i(t) = −
∫
∂Bi

(y − hi(0))⊥ · ΣνidΓi + ρi

∫
∂Bi

(y − hi(0))⊥ · F (t)dy, t ∈]0, T [, (2.2.8)

hi(0) = h0
i , h

′
i(0) = h1

i , ωi(0) = ω0
i , ∀i ∈ {1, . . . , k}, (2.2.9)

where Σ(U, P ) is the Cauchy stress tensor field associated to U and P . The operators

[LU ], [MU ], [NU ] and [GP ] that appear in the left hand side of (2.2.3) are defined as follows:

[LU ]i =
2∑

j,k=1

∂

∂yj
(gjk ∂Ui

∂yk
) + 2

2∑
j,k,`=1

gk`Γij,k
∂Uj
∂y`

+
2∑

j,k,`=1

{
∂

∂yk
(gk`Γij,`) +

2∑
m=1

gk`Γmj,`Γik,m
}
Uj,

(2.2.10)

[MU ]i =
2∑
j=1

∂Yj
∂t

∂Ui
∂yj

+
2∑

j,k=1

{
Γij,k

∂Yk
∂t

+ ∂Yi
∂xk

∂2Xk

∂t∂yj

}
Uj, (2.2.11)
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[NU ]i =
2∑
j=1

Uj
∂Ui
∂yj

+
2∑

j,k=1
Γij,kUjUk, (2.2.12)

[GP ]i =
2∑
j=1

gij
∂P

∂yj
, (2.2.13)

with for all i, j, k ∈ {1, 2}, we have denoted

gij =
2∑

k=1

∂Yi
∂xk

∂Yj
∂xk

, gij =
2∑

k=1

∂Xk

∂yi

∂Xk

∂yj
, Γki,j = 1

2

2∑
`=1

gk`
{
∂gi`
∂yj

+ ∂gj`
∂yi
− ∂gij
∂y`

}
. (2.2.14)

Proposition 2.2.1 Suppose that for all i ∈ {1, . . . , k}, we have hi ∈ H2(0, T ;R2) is such

that

Bi(t) ⊂ B(hi(0), ri + γ − ε
2 ), ∀t ∈ [0, T ].

Then,

(u, p, (hi, ωi)i=1,...,k) ∈ U(0, T,ΩF (t))× L2(0, T, Ḣ1(ΩF (t)))×
(
H2(0, T ;R2)×H1(0, T ;R)

)k

satisfies problem (2.1.1)-(2.1.6) if and only if

(U, P, (hi, ωi)i=1,...,k) ∈ U(0, T,ΩF )× L2(0, T, Ḣ1(ΩF ))×
(
H2(0, T ;R2)×H1(0, T ;R)

)k

satisfies (2.2.3)-(2.2.9).

Proof. We recall that the equivalence between (2.1.1) and (2.2.3) has been done in [28]. The

incompressibility condition follows by noting the following equality:

∇ · U(y, t) = ∇ · u (X(y, t), t), ∀(y, t) ∈ ΩF × [0, T ]. (2.2.15)

Noting that JXJY = I, we have for all (y, t) ∈ ΩF × [0, T ]

∇ · U(y, t) =
2∑

i,j=1

∂

∂yi

{
∂Yi
∂xj

(X(y, t), t)uj(X(y, t), t)
}

=
2∑
j=1

trace
(
JY
−1∂xjJY

)
uj(X(y, t), t) +∇ · u (X(y, t), t).
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2.2 Equations in cylindrical domain

We recall Jacobi’s formula which expresses the derivative of the determinant of a matrix A

in terms of the adjugate of A and the derivative of A. If A is a differentiable map from the

real numbers to n× n matrices, then

d

dt
detA(t) = trace

(
(adj A(t))dA(t)

dt

)
.

Hence Jacobi’s formula implies that

∇ · U(y, t) =
2∑
j=1

∂det(JY )
∂xj

uj(X(y, t), t) +∇ · u (X(y, t), t).

Equality (2.2.15) the follows by noting that det(JY ) = 1.

From the definition of the mapping X in (2.2.2), we get for all y ∈ ΩF

U(y, 0) = JY (X(y, 0), 0)u(X(y, 0), 0)

= JY (y, 0)u(y, 0)

= u(y, 0).

Consequently, the initial condition (2.1.6) is equivalent to (2.2.6).

Using the fact that

X(y, t) = y + hi(t)− hi(0), ∀(y, t) ∈ ∂Bi × [0, T ],

it follows that for all y ∈ ∂Bi

U(y, t) = u(y + hi(t)− hi(0), t)

= h′i(t) + ωi(t)(y − hi(0))⊥.

Hence, (2.1.5) is equivalent to (2.2.5).

By using the change of variable X, we get

∫
∂Bi(t)

σνidΓi =
∫
∂Bi

(
− p(X(y, t), t)I + 2νD[u(X(y, t), t)]

)
νidΓi.
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At this point the equivalence between (2.1.3) and (2.2.7) and that between (2.1.4) and (2.2.8)

hold by noticing again that

X(y, t) = y + hi(t)− hi(0), ∀(y, t) ∈ ∂Bi × [0, T ].

�

2.3 Local existence of solutions

The present section is devoted to prove the existence and uniqueness of strong solutions

to problem (2.1.1)-(2.1.6) up to collision or blow up of the H1 norm of the velocity of the

fluid. For sake of simplicity, we suppose that the external body force f = 0 throughout this

section. First we consider the following linear problem in the fixed domain ΩF obtained from

(2.2.3)-(2.2.9) by neglecting the non-linear terms.

∂U

∂t
− ν∆U +∇P = F, in ΩF×]0, T ], (2.3.1)

∇ · U = 0, in ΩF×]0, T ], (2.3.2)

U(y, t) = h′i(t) + ωi(t)(y − hi(0))⊥, y ∈ ∂Bi, t ∈ [0, T ], i ∈ {1, . . . , k}, (2.3.3)

mih
′′

i (t) = −
∫
∂Bi

Σ(U, P )νidΓi, t ∈]0, T ], i ∈ {1, . . . , k}, (2.3.4)

Jiω
′
i(t) = −

∫
∂Bi

(y − hi(0))⊥ · Σ(U, P )νidΓi, t ∈]0, T ], i ∈ {1, . . . , k}, (2.3.5)

with initial conditions:

U(y, 0) = u0(y), y ∈ ΩF , (2.3.6)

hi(0) = h0
i , h

′
i(0) = h1

i , ωi(0) = ω0
i , i ∈ {1, . . . , k}, (2.3.7)

where we keep the notation Σ = −PI + 2νD[U ] as before and we suppose that there is no

contact between the rigid bodies. The unknowns in the above system are (U, P, (hi, ωi)i=1,...,k)

and whereas u0, (h0
i , h

1
i , ω

0
i )i=1,...,k and F are given. Following the same approach used in [41]

where the authors studied a similar system, one can show the following theorem:
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2.3 Local existence of solutions

Theorem 2.3.1 Let F ∈ L2(0, T ; L2(ΩF )) and u0 ∈ H1(ΩF ) such that

∇ · u0 = 0, in ΩF,

u0(y) = h1
i + ω0

i (y − h0
i )⊥, y ∈ Bi, ∀i ∈ {1, . . . , k}.

Then the system (2.3.1)-(2.3.7) admits a unique solution (U, P, (hi, ωi)i=1,...,k) with

U ∈ U(0, T ; ΩF ), P ∈ L2(0, T ; Ḣ1(ΩF )), hi ∈ H2(0, T ;R2), ωi ∈ H1(0, T ;R).

Moreover, there exists a positive constant K depends only on ΩF and T ; non-decreasing with

respect to T , such that

‖U‖L2(0,T ;H2(ΩF )) + ‖U‖L∞(0,T ;H1(ΩF )) + ‖U‖H1(0,T ;L2(ΩF )) + ‖∇P‖L2(0,T ;L2(ΩF ))

+
k∑
i=1
‖hi‖H2(0,T ;R2) + ‖ωi‖H1(0,T ;R) ≤ K

(
‖u0‖H1(R2) + ‖F‖L2(0,T ;L2(ΩF ))

)
.

Next, we write the solution (U, P, (hi, ωi)i=1,...,k) of problem (2.2.3)-(2.2.9) as a fixed point
of a mapping N which is defined from the set

K =
{

(W,Q, (hi, ωi)i=1,...,k) ∈ U(0, T ; ΩF )× L2(0, T ; H1(ΩF ))×
(
H2(0, T ;R2)×H1(0, T ;R)

)k
:

‖W‖U + ‖Q‖L2(0,T ;H1(ΩF )) +
k∑
i=1
‖h′′i ‖L2(0,T ;R2) + ‖ω′i‖L2(0,T ;R) ≤ R

}
.

into

U(0, T ; ΩF )× L2(0, T ; H1(ΩF ))× [H2(0, T ;R2)×H1(0, T ;R)]k

as follows

N (W,Q, (hi, ωi)i=1,...,k) = (U, P, (h̃i, ω̃i)i=1,...,k),

where (U, P, (h̃i, ω̃i)i=1,...,k) satisfies:

∂U

∂t
− ν∆U +∇P = F, in ΩF×]0, T ], (2.3.8)

∇ · U = 0, in ΩF×]0, T ], (2.3.9)

U(y, t) = h̃′i(t) + ω̃i(t)(y − hi(0))⊥, y ∈ ∂Bi, t ∈ [0, T ], i ∈ {1, . . . , k}, (2.3.10)
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mih̃
′′

i (t) = −
∫
∂Bi

Σ(U, P )νidΓi, t ∈]0, T ], i ∈ {1, . . . , k}, (2.3.11)

Jiω̃
′
i(t) = −

∫
∂Bi

(y − hi(0))⊥ · Σ(U, P )νidΓi, t ∈]0, T ], i ∈ {1, . . . , k}, (2.3.12)

with initial conditions at t = 0:

U(y, 0) = u0(y), y ∈ ΩF , (2.3.13)

h̃i(0) = h0
i , h̃

′
i(0) = h1

i , ω̃i(0) = ω0
i , i ∈ {1, . . . , k}, (2.3.14)

and

F = ν[(L−∆)W ]− [MW ] + [(∇−G)Q]− [NW ]. (2.3.15)

We will see later that the source term F is in the good space to apply Theorem 2.3.1 so that

the mapping N is well defined.

It follows from the following proposition that for T small enough and R large enough, the

mapping N has a fixed point in K.

Proposition 2.3.1 For T small enough and R large enough, we have:

i. N (K) ⊂ K

ii. the mapping N : K → K is a contraction.

The rest of this section is devoted then to prove Proposition 2.3.1. In the sequel, we denote

by K0 and C0 positive quantities which satisfies the following conditions:

(i) K0 is a positive function of (ω0
i , h

1
i )i=1,...,k, ‖u0‖H1(ΩF ), T, r andR which is non-decreasing

with respect to T,R, ‖u0‖H1(ΩF ) and (|h0
i |, |h1

i |, |ω0
i |)i=1,...,k.

(ii) C0 is a positive function of (ω0
i , h

1
i )i=1,...,k, ‖u0‖H1(ΩF ), r, and T which is non-decreasing

with respect to T, ‖u0‖H1(ΩF ) and (|h0
i |, |h1

i |, |ω0
i |)i=1,...,k.

Proof of Proposition 2.3.1 We start by proving the first assertion in Proposition 2.3.1.

Let (W,Q, (hi, ωi)i=1,...,k) ∈ K, and set

(U, P, (h̃i, ω̃i)i=1,...,k) = N (W,Q, (hi, ωi)i=1,...,k).
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According to Theorem 2.3.1, there exists a positive constant K depends only on ΩF and T ;

non-decreasing with respect to T such that

‖U‖L2(0,T ;H2(ΩF )) + ‖U‖L∞(0,T ;H1(ΩF )) + ‖U‖H1(0,T ;L2(ΩF )) + ‖∇P‖L2(0,T ;L2(ΩF ))

+
k∑
i=1
‖hi‖H2(0,T ;R2) + ‖ωi‖H1(0,T ;R) ≤ K(‖u0‖H1(R2) + ‖F‖L2(0,T ;L2(ΩF ))), (2.3.16)

where the source term F is given by (2.3.15).

To bound the source term F in L2(0, T ; L2(ΩF )), we need some necessary estimates for the

transforms X and Y . Using similar arguments as in [40], we get that there exists a constant

K0 satisfying condition (i) such that

∥∥∥∥∂Xi

∂yj

∥∥∥∥
L∞(R2×[0,T ])

≤ K0,

∥∥∥∥∂Yi∂xj

∥∥∥∥
L∞(R2×[0,T ])

≤ K0, (2.3.17)∥∥∥∥ ∂2Xi

∂yj∂yk

∥∥∥∥
L∞(R2×[0,T ])

≤ TK0,
∥∥∥∥ ∂2Yi
∂xj∂xk

∥∥∥∥
L∞(R2×[0,T ])

≤ TK0, (2.3.18)∥∥∥∥ ∂3Xi

∂yj∂y`∂yk

∥∥∥∥
L∞(R2×[0,T ])

≤ TK0,
∥∥∥∥ ∂3Yi
∂xj∂x`∂xk

∥∥∥∥
L∞(R2×[0,T ])

≤ TK0. (2.3.19)

Moreover, one has

∥∥∥∥∂Xm

∂y`
− δ`m

∥∥∥∥
L∞(R2×[0,T ])

≤ TK0,
∥∥∥∥∂Ym∂x`

− δ`m
∥∥∥∥
L∞(R2×[0,T ])

≤ TK0, (2.3.20)

‖gm` − δ`m‖L∞(R2×[0,T ]) ≤ TK0, ‖gm` − δ`m‖L∞(R2×[0,T ]) ≤ TK0, (2.3.21)

where δ`m denotes the Kronecker delta (Leopold Kronecker) function. It is easy to check that

[(L−∆)W ]i =
2∑

j,k=1

(
gjk − δjk

) ∂2Wi

∂yj∂yk
+

2∑
j,k=1

∂(gjk)
∂yj

∂Wj

∂yk
+ 2

2∑
j,k,`=1

gk`Γij,k
∂Wj

∂y`

+
2∑

j,k,`=1

{
∂

∂yk
(gk`Γij,`) +

2∑
m=1

gk`Γmj,`Γik,m
}
Wj.

Combining the above relation with the above estimates, we get that the coefficients of the

W and its first derivatives are bounded in L∞([0, T ] × R2) by K0 and that of its second

derivative by TK0.
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On the other hand, we have

‖W‖L2(0,T ;H1(ΩF )) ≤ T 1/2‖W‖L∞(0,T ;H1(ΩF )),

and thus for T small enough, we obtain

‖[(L−∆)W ]i‖L2(0,T ;L2(ΩF )) ≤ K0T
1/2. (2.3.22)

Using similar arguments, one has

‖[MW ]‖L2(0,T ;L2(ΩF )) ≤ K0T
1/2, (2.3.23)

‖[(∇−G)P ]‖L2(0,T ;L2(ΩF )) ≤ K0T. (2.3.24)

It remains to bound the non-linear term [NW ] in the expression of the source term F . By

Holdder’s inequality we have

‖(W · ∇)W‖L2(0,T ;L2(ΩF )) ≤ T 1/10‖(W · ∇)W‖L5/2(0,T ;L2(ΩF )).

Lemma 5.2 in [41] implies that there exists C > 0 such that

‖(W · ∇)W‖L2(0,T ;L2(ΩF )) ≤ CT 1/10‖W‖6/5
L∞(0,T ;H1(ΩF ))‖W‖

4/5
L2(0,T ;H2(ΩF )).

Consequently,

‖(W · ∇)W‖L2(0,T ;L2(ΩF ))) ≤ K0T
1/10.

Combining the above inequality with the estimates (2.3.17) and (2.3.18), we get for T small

enough

‖[NW ]‖L2(0,T ;L2(ΩF )) ≤ K0T
1/10.

It follows from the above inequality and (2.3.22)-(2.3.24) that

‖F‖L2(0,T ;L2(ΩF )) ≤ K0T
1/10.
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Therefore for T small enough, there exists a constant K0 satisfying condition (i) and a

constant C0 satisfying condition (ii) such that

‖U‖L2(0,T ;H2(ΩF )) + ‖U‖L∞(0,T ;H1(ΩF )) + ‖U‖H1(0,T ;L2(ΩF )) + ‖∇P‖L2(0,T ;L2(ΩF ))

+
k∑
i=1
‖h̃′i‖H2(0,T ;R2) + ‖ω̃i‖H1(0,T ;R) ≤ C0 +K0T

1/10.

Thus, for R > C0 and T is small enough, the above estimate implies that

‖U‖L2(0,T ;H2(ΩF )) + ‖U‖L∞(0,T ;H1(ΩF )) + ‖U‖H1(0,T ;L2(ΩF )) + ‖∇P‖L2(0,T ;L2(ΩF ))

+
k∑
i=1
‖h̃′i‖H2(0,T ;R2) + ‖ω̃i‖H1(0,T ;R) ≤ R.

Therefore, for R > C0 and T is small enough we have

(U, P, (h̃i, ω̃i)i=1,...,k) ∈ K.

Thus for R > C0 and T is small enough, the mapping N maps the set K into itself.

We turn now to prove that forR > C0 and T is small enough, the mappingN : K → K is a

contraction. To this end, we consider (W 1, Q1, (h1
i , ω

1
i )i=1,...,k) and (W 2, Q2, (h2

i , ω
2
i )i=1,...,k) in

K and we denote by Y i, X i,Γikj,`, U i, P i, etc. the terms corresponding to (W i, Qi, (h1
j , ω

1
j )j=1,...,k).

Also, we denote by (U i, P i, (h̃ij, ω̃ij)j=1,...,k) the image of (W i, Qi, (h1
j , ω

1
j )j=1,...,k) by the map-

ping N . Moreover, we denote by Y = Y 1− Y 2, hi = h1
i − h2

i , etc. We get that the difference

(U, P, (h̃i, ω̃i)i=1,...,k) satisfies the following system:

∂U

∂t
− ν∆U +∇P = F, in ΩF×]0, T ], (2.3.25)

∇ · U = 0, in ΩF×]0, T ], (2.3.26)

U(y, t) = h̃′i(t) + ω̃i(t)(y − hi,0)⊥, y ∈ ∂Bi, t ∈ [0, T ], i ∈ {1, . . . , k}, (2.3.27)

mih̃
′′

i (t) = −
∫
∂Bi

ΣνidΓi, t ∈]0, T ], i ∈ {1, . . . , k}, (2.3.28)

Jiω̃
′
i(t) = −

∫
∂Bi

(y − hi,0)⊥ · ΣνidΓi, t ∈]0, T ], i ∈ {1, . . . , k}, (2.3.29)
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with initial conditions at t = 0:

U(y, 0) = 0, y ∈ ΩF , (2.3.30)

h̃i(0) = 0, h̃′i(0) = 0, ω̃i(0) = 0, i ∈ {1, . . . , k}, (2.3.31)

and

F = ν[(L1−∆)W ] +ν[LW 2]− [M1W ]− [MW 2] + [(∇−G1)Q] + [GQ2] + [N1W 1]− [N2W 2].

Following similar arguments as in [40], there exists a constant K0 such that

∥∥∥∥ ∂i+jX
∂yi1∂y

j
2

∥∥∥∥
L∞(R2×[0,T ])

≤ C0T
1/2

k∑
`=1
‖h′′i ‖L2(0,T,R2), (2.3.32)

∥∥∥∥ ∂i+jY
∂xi1∂x

j
2

∥∥∥∥
L∞(R2×[0,T ])

≤ C0T
1/2

k∑
`=1
‖h′′i ‖L2(0,T,R2). (2.3.33)

Consequently,

‖[LW 2]‖L2(0,T ;L2(ΩF )) ≤ K0T
1/2

k∑
i=1
‖h′′i ‖L2(0,T,R2),

‖[MW 2]‖L2(0,T ;L2(ΩF )) ≤ K0T
1/2

k∑
i=1
‖h′′i ‖L2(0,T,R2),

‖[GQ2]‖L2(0,T ;L2(ΩF )) ≤ K0T
1/2

k∑
i=1
‖h′′i ‖L2(0,T,R2),

‖[N1W 1]− [N2W 2]‖L2(0,T ;L2(ΩF )) ≤ K0T
1/10

( k∑
i=1
‖h′′i ‖L2(0,T,R2) + ‖W‖U(0,T,ΩF )

)
.

Noticing that the transforms X1 and its inverse Y 1 satisfy (2.3.17)-(2.3.21), then one can

treat the other terms in the source term F in a similar way as before. Hence, it follows that

‖F‖L2(0,T ;L2(ΩF ) ≤ K0T
1/10

(
‖W‖U(0,T,ΩF )+‖Q‖L2(0,T,H1(ΩF ))+

k∑
i=1
‖hi‖H2(0,T ;R2)+‖ωi‖H1(0,T ;R)

)
.

According to Theorem 2.3.1, one has
‖U‖U(0,T ;ΩF ) + ‖∇P‖L2(0,T ;L2(ΩF )) +

k∑
i=1
‖h̃i‖H2(0,T ;R2) + ‖ω̃i‖H1(0,T ;R)

≤ K0T
1/10

(
‖W‖U(0,T,ΩF ) + ‖Q‖L2(0,T,H1(ΩF )) +

k∑
i=1
‖hi‖H2(0,T ;R2) + ‖ωi‖H1(0,T ;R)

)
. (2.3.34)
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2.4 Existence of solutions up to collision

Thus for T is small enough, we get that N is contraction on K. This ends up the proof. �

Remark 2.3.1 By fixed point theorem and Proposition 2.3.1, the mapping N admits a

unique fixed point in the space K. Hence, problem (2.2.3)-(2.2.9) admits a unique strong

solution. Therefore, according to Proposition 2.2.1 existence of unique strong solution to

problem (2.1.1)-(2.1.6) follows using the inverse transform Y . We remark that according to

Theorem 2.3.1, we can extend our solution on [0, T1] as long as there is no contact between

the rigid bodies and ‖u(t)‖H1(ΩF (t)) is bounded for all t ∈ [0, T1].

Remark 2.3.2 The assumption that all the rigid bodies have to be disks is not essential to

obtain the existence and uniqueness of local strong solutions of problem (2.1.1)-(2.1.6). Strong

solutions still exist if the rigid bodies are of arbitrary shape but still connected and closed

subset of R2 with boundaries of class C3. However, to prove the that the solution of problem

(2.1.1)-(2.1.6) is global, we need the boundaries to be too smooth (see [20]). Therefore, we

have to assume that the rigid bodies are closed disks. Moreover, this assumption has simplified

the change of variable X as there is no need to introduce the rotation in the definition of the

change of variable to transform the fluid domain into its initial shape. Otherwise, on should

also transform (otherwise you should also transform hi and ωi.

2.4 Existence of solutions up to collision

In the previous section, we have shown that there exists a time T > 0 such that problem

(2.1.1)-(2.1.6) admits a unique strong solution (u, p, (hi, ωi)i=1,...k) in [0, T ]. We define the

global velocity as follows:

ũ(t, x) =

 u(t, x) in ΩF (t),

h′i(t) + ωi(t)(x− hi(t))⊥ in Bi(t), 1 ≤ i ≤ k.

Moreover, if we define T0 such that:

T0 := sup
{
T ∈ R∗+ : problem (2.1.1)− (2.1.6) admits a unique strong solution in [0, T ]

}
,

then the following alternative holds true:
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1. T0 = +∞,

2. lim sup
t→T0

‖ũ(t)‖H1(R2) + 1
min
i 6=j

d(Bi(t), Bj(t))
= +∞.

For simplicity, we denote from now on the global velocity by u instead of ũ and we fix ε such

that 0 < ε < γ. We focus here on the blow up alternatives. We prove that the H1 norm of

the solution does not blow up in finite time as long as no the rigid bodies are not in contact.

Proposition 2.4.1 If T0 < +∞ and min
i 6=j

d(Bi(t), Bj(t)) > ε > 0 on [0, T0], then the

mapping

t→ ‖u(t)‖H1(R2)

is bounded on [0, T0) by a constant that depends on ε, γ, ‖f‖L2(0,T0,L2(R2)) and the initial data.

Remark 2.4.1 Theorem 2.1.1 is an immediate consequence of the above proposition and

Remark 2.3.1.

We split the proof of Proposition 2.4.1 into two lemmas. First, we control the L2 norm of

the solution.

Lemma 2.4.1 Let (u, p, (hi, ωi)i=1,...k) be the strong solution associated to problem (2.1.1)-

(2.1.6) on [0, T ]. If T0 <∞, then there exists a positive constant M = M(T0, (ρi, Bi)i=1,...,k),

such that

sup
[0,T0)

(
||u(t)||2L2(ΩF ) +

k∑
i=1

(|h′i(t)|2 + |ωi(t)|2)
)

+ 2ν
∫ T0

0
||∇u(t)||2L2(R2)dt

≤M
(
||f ||2L2(0,T0;L2(R2)) + ||u0||2L2(ΩF ) +

k∑
i=1

(|h1
i |2 + |ω0

i |2)
)
.

Proof. By taking the inner product of equation (2.1.1) with u, and integrating over ΩF (t),

we get that

∫
ΩF (t)

∂u

∂t
(t) · u(t)dx− ν

∫
ΩF (t)

∆u(t) · u(t)dx+
∫

ΩF (t)
(u(t) · ∇)u(t) · u(t)dx

+
∫

ΩF (t)
∇p(t) · u(t)dx =

∫
ΩF (t)

f(t) · u(t)dx. (2.4.1)

By Reynold’s theorem, we have

∫
ΩF (t)

∂u

∂t
(t) · u(t)dx = 1

2
d

dt

∫
ΩF (t)

|u(t)|2dx− 1
2

K∑
i=1

∫
Bi(t)

(u(t) · νi)|u(t)|2dΓi. (2.4.2)
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2.4 Existence of solutions up to collision

By integrating by parts and noting (2.1.2), we have

∫
ΩF (t)

(u(t) · ∇)u(t) · u(t)dx = 1
2

k∑
i=1

∫
∂Bi(t)

|u(t)|2u(t) · νidΓi.

The incompressibility condition (2.1.2) implies that

∆u · u = 2∇ · (D[u]) · u = 2∇ · (D[u]u)− 2D[u] : D[u]. (2.4.3)

The above equality implies that

∫
ΩF (t)

∆u(t) · u(t)dx = 2
∫

ΩF (t)
∇ · (D[u(t)]u(t))dx− 2

∫
ΩF (t)

|D[u(t)]|2dx

= 2
k∑
i=1

∫
∂Bi(t)

(D[u(t)]u(t)) · u(t)dΓi − 2
∫

ΩF (t)
|D[u(t)]|2dx.

(2.4.4)

By performing integration by parts; noting (2.1.2), and combining (2.4.2) with (2.4.4), we

obtain that

1
2
d

dt

∫
ΩF (t)

|u(t)|2dx+ 2ν
∫

ΩF (t)
|D[u(t)]|2dx− 2ν

k∑
i=1

∫
∂Bi(t)

(D[u(t)]u(t)) · νidΓi

+
k∑
i=1

∫
Bi(t)

p(t)u(t) · νidΓi =
∫

ΩF (t)
f(t) · u(t)dx. (2.4.5)

Thus,

1
2
d

dt

∫
ΩF (t)

|u(t)|2dx+ 2ν
∫

ΩF (t)
|D[u(t)]|2dx =

k∑
i=1

∫
∂Bi(t)

(σu(t)) · νidΓi +
∫

ΩF (t)
f(t) · u(t)dx.

(2.4.6)

Taking now the inner product of (2.1.3) with h′i(t) and that of (2.1.4) by ωi(t), we get that

mi

2
d

dt
|h′i(t)|2 + Ji

2
d

dt
|ωi(t)|2 = −

∫
∂Bi(t)

(h′i(t) + ωi(t)(x− hi(t))⊥) · σνidΓi

+ ρi

∫
Bi(t)

(h′i(t) + ωi(t)(x− hi(t))⊥) · f(t)dx, ∀i ∈ {1, . . . , k}. (2.4.7)
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The no-slip condition (2.1.5) implies that

mi

2
d

dt
|h′i(t)|2 + Ji

2
d

dt
|ωi(t)|2 = −

∫
Bi(t)

u(t) · σνidΓi

+ ρi

∫
Bi(t)

(h′i(t) + ωi(t)(x− hi(t))⊥) · f(t)dx, ∀i ∈ {1, . . . , k}. (2.4.8)

Combining (2.4.6) with the k equations in (2.4.8) and noticing that the Cauchy stress tensor

field σ is symmetric, we get that

1
2
d

dt

(∫
ΩF (t)

|u(t)|2dx+
k∑
i=1

(mi|h′i(t)|2 + Ji|ωi(t)|2)
)

+ 2ν
∫

ΩF (t)
|D[u(t)]|2dx

=
∫

ΩF (t)
f(t) · u(t)dx+ ρi

∫
Bi(t)

(h′i(t) + ωi(t)(x− hi(t))⊥) · f(t)dx. (2.4.9)

Integrating the above inequality from 0 to t, we get for almost t ∈ [0, T0)

||u(t)||2L2(ΩF ) +
k∑
i=1

(mi|h′i(t)|2 + Ji|ωi(t)|2) + 2ν
∫ t

0

∫
R2
|∇u(t)|2dx

≤
∫ t

0

(
||u(s)||2L2(ΩF (s))+

k∑
i=1

(mi|h′i(s)|2+Ji|ωi(s)|2)
)
ds+C

(
‖f(s)‖2

L2(0,T0,L2(R2))ds+||u(0)||2L2(R2)

)
.

Therefore the energy estimate is then follows from applying Gronwall lemma. �

In the rest of the section, we keep the constant M as it is defined in the above lemma and

we define K1 by

K1 =
(
||f ||2L2(0,T0;L2(R2) + ||u0||2L2(ΩF ) +

k∑
i=1

(|h1
i |2 + |ω0

i |2)
) 1

2
.

Proposition 2.4.1 will be then deduced from the following lemma:

Lemma 2.4.2 Let (u, p, (hi, ωi)i=1,...,k) be the strong solution in [0, T1], where T1 < T0 is

small enough and depends on ν, M and the initial data. Then there exists K > 1 such that

sup
t∈[0,T1]

‖∇u(t)‖2
L2(R2) ≤ K

(
‖∇u(0)‖2

L2(R2) + 1
)
, (2.4.10)

46



2.4 Existence of solutions up to collision

and

∫ T1

0

∥∥∥∥∂u∂t
∥∥∥∥2

L2(ΩF (s))
ds+

k∑
i=1

( ∫ T1

0
|h′′i (s)|2ds+

∫ T1

0
|ω′i(s)|2ds

)
≤ K

(
‖∇u(0)‖2

L2(R2) + 1
)2
.

(2.4.11)

where the constant K depends on ΩF , Bi, ν, ρi, T0, ‖u0‖L2(ΩF ), |h1
i |, |ω0

i | and ‖f‖L2(0,T0;L2(R2)).

Remark 2.4.2 As the system is autonomous, then for all t ≥ 0 the above proposition is still

valid on any interval [t, t+ T1] ⊂ [0, T0[.

Before giving the proof of Lemma 2.4.2, let us see how it implies Proposition 2.4.1. Lemma

2.4.2 implies that the mapping t 7→ ‖∇u(t)‖L2(R2) is bounded on [0, T1] for T1 is small enough.

We can choose T1 such that T0 = NT1, for some N ∈ N∗. This implies that

‖∇u(t)‖2
L2(R2) ≤ K‖∇u((n− 1)T1)‖2

L2(R2) +K, a.e on [(n− 1)T1, nT1[, n = 1, . . . , N.

By induction, we get that

‖∇u(t)‖2
L2(R2) ≤ Kn‖∇u(0)‖2

L2(R2) + Kn+1 −K
K − 1 , a.e on [(n− 1)T1, nT1[, n = 1, . . . , N,

and thus

sup
t∈[0,T0[

‖∇u(t)‖2
L2(R2) ≤ KN‖∇u(0)‖2

L2(R2) + KN+1 −K
K − 1 .

Combining this result with Lemma 2.4.1, we get that for T0 < +∞, the mapping

t→ ‖u(t)‖H1(R2)

is bounded on [0, T0) whenever there is no contact between the rigid bodies.

We focus now on the proof of Lemma 2.4.2. To this end, we follow the method of Cumsille

and Takahashi in [12] and we start with defining some auxiliary functions.

We consider a family of smooth functions {ζi}i=1,...,k ; each of compact support contained in

B(hi(0), ri + δ
2) and equals 1 in a neighbourhood of Bi. For a fixed i in {1, . . . , k}, we set

ψ̂i(x, t) = ζi(x− hi(t) + hi(0)) and we define the mapping Λ̂ : R2 × [0, T ]→ R2 by

Λ̂(x, t) =
k∑
i=1
∇⊥

(
h′i(t) · x⊥ψ̂i(x, t)

)
.
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Let X̂ be the solution of the initial value problem


∂X̂

∂t
(y, t) = Λ̂(X̂(y, t), t), t ∈]0, T ],

X̂(y, 0) = y ∈ R2.

(2.4.12)

Then for y ∈ Bi, we have

X̂(y, t) = y + hi(t)− hi(0).

It is easy to see that

∃C > 0 such that ||Λ̂||W2,∞(ΩF (t)) ≤ C
k∑
i=1
|h′i(t)|.

By Lemma 2.4.1, we get

||Λ̂||W2,∞(ΩF (t)) ≤ CM
1
2K1.

Taking the inner product of equation (2.1.1) with ∂tu+ (Λ̂ · ∇)u− (u · ∇)Λ̂ yields

∫
ΩF (t)

∣∣∣∣∂u∂t
∣∣∣∣2dx+

∫
ΩF (t)

∂u

∂t
·
(

(Λ̂·∇)u−(u·∇)Λ̂
)
dx−

∫
ΩF (t)

∇·σ(u, p)·
(
∂u

∂t
+(Λ̂·∇)u−(u·∇)Λ̂

)
dx

= −
∫

ΩF (t)
[(u ·∇)u] ·

(
∂u

∂t
+(Λ̂ ·∇)u−(u ·∇)Λ̂

)
dx+

∫
ΩF (t)

f ·
(
∂u

∂t
+(Λ̂ ·∇)u−(u ·∇)Λ̂

)
dx.

With similar arguments as in Lemma 4.3 in [12], we have

−
∫

ΩF (t)
[∇ · σ(u, p)] · (∂u

∂t
+ (Λ̂ · ∇)u− (u · ∇)Λ̂)dx

= ν
d

dt

∫
ΩF (t)

|D[u]|2dx+
k∑
i=1

(
mi|h

′′

i (t)|2+Ji|ω
′

i(t)|2−
∫
Bi(t)

ρif(x, t)·(h′′i (t)+ω′i(t)(x−hi(t))⊥
)

+ 2ν
∫

ΩF (t)
D[u] : (∇u∇Λ̂)dx− 2ν

∫
ΩF (t)

D[u] : D[(u · ∇)Λ̂])dx.
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It follows that

∥∥∥∥∂u∂t
∥∥∥∥2

L2(ΩF (t))
+ν d

dt

∫
ΩF (t)

|D[u]|2dx+
k∑
i=1

(
mi|h

′′

i (t)|2 + Ji|ω
′

i(t)|2
)

= 2ν
∫

ΩF (t)

(
D[u] : D[(u · ∇)Λ̂]−D[u] : (∇u∇Λ̂)

)
dx

+
k∑
i=1

∫
Bi(t)

ρif(x, t) ·
(
h
′′

i (t) + ω
′

i(t)(x− hi(t))⊥
)

−
∫

ΩF (t)

∂u

∂t
·
(

(Λ̂ · ∇)u− (u · ∇)Λ̂
)
dx

−
∫

ΩF (t)
[(u · ∇)u] ·

(
∂u

∂t
+ (Λ̂ · ∇)u− (u · ∇)Λ̂

)
dx

+
∫

ΩF (t)
f ·
(
∂u

∂t
+ (Λ̂ · ∇)u− (u · ∇)Λ̂

)
dx, a.e in (0, T1).

(2.4.13)

Lemma 2.4.1 implies that there exists a positive constant C1 = C1(T0, ν, (ρi, Bi)i=1,...,k), such

that the following holds true for almost t ∈ (0, T )

∣∣∣∣2ν ∫
ΩF (t)

D[u] : D[(u · ∇)Λ̂]−D[u] : (∇u∇Λ̂)dx
∣∣∣∣ ≤ C1

(
(1 +K2

1)‖∇u‖2
L2(ΩF (t)) +K4

1

)
,∣∣∣∣ ∫

Bi(t)
ρif(x, t) ·

(
h
′′

i (t) + ω
′

i(t)(x− hi(t))⊥
∣∣∣∣ ≤ ρi‖f‖2

L2(Bi(t)) + Ji
2 |ω

′

i(t)|2 + mi

2 |h
′′

i (t)|2,

∣∣∣∣ ∫
ΩF (t)

∂u

∂t
·
(

(Λ̂ · ∇)u− (u · ∇)Λ̂
)
dx
∣∣∣∣ ≤ 1

4

∥∥∥∥∂u∂t
∥∥∥∥2

L2(ΩF (t))
+ C1K

2
1(‖∇u‖2

L2(ΩF (t)) +K2
1),∣∣∣∣ ∫

ΩF (t)
[(u · ∇)u] ·

(
∂u

∂t
+ (Λ̂ · ∇)u− (u · ∇)Λ̂

)
dx
∣∣∣∣ ≤ 1

8

∥∥∥∥∂u∂t
∥∥∥∥2

L2(ΩF (t))
+ 3‖(u · ∇)u‖2

L2(ΩF (t))

+C1K
2
1‖∇u‖2

L2(ΩF (t)) + C1K
4
1 ,∣∣∣∣ ∫

ΩF (t)
f ·
(
∂u

∂t
+ (Λ̂ · ∇)u− (u · ∇)Λ̂

)
dx
∣∣∣∣ ≤ 1

8

∥∥∥∥∂u∂t
∥∥∥∥2

L2(ΩF (t))
+ C1K

2
1‖∇u‖2

L2(ΩF (t))

+5
2‖f‖

2
L2(ΩF (t)) + C1K

4
1 .

Combining the above estimates with (2.4.13), we obtain for almost t ∈ (0, T )

1
2

∥∥∥∥∂u∂t
∥∥∥∥2

L2(ΩF (t))
+ ν

d

dt

∫
ΩF (t)

|D[u]|2dx+ 1
2

k∑
i=1

(
mi|h

′′

i (t)|2 + Ji|ω
′

i(t)|2
)

≤ C1

(
K4

1 + (K2
1 + 1)‖∇u‖2

L2(ΩF (t)) + ‖f‖2
L2(R2)

)
+ 3‖(u · ∇)u‖2

L2(ΩF (t)). (2.4.14)
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We are now in position to estimate the term (u·∇)u in terms of the left hand side of inequality

(2.4.14). Here, we adapt the method followed by Cumsille and Takahashi in [12] to the case

of several rigid bodies. See [13] for an alternative approach. We state the following two

technical lemmas and we postpone their proof to Appendix A at the end of the thesis.

Lemma 2.4.3 Let γ > ε > 0. Then there exists a strong 2-extension operator E for ΩF (t).

Moreover, there exists a positive constant k = k(ε) such that for u ∈ H2(ΩF (t)), we have:

‖Eu‖L2(R2) ≤ k‖u‖L2(ΩF (t)), (2.4.15)

‖Eu‖H1(R2) ≤ k‖u‖H1(ΩF (t)), (2.4.16)

‖Eu‖H2(R2) ≤ k‖u‖H2(ΩF (t)). (2.4.17)

Lemma 2.4.4 Let u be the unique strong solution of problem (2.1.1)-(2.1.6). Then there
exists T1 small enough, such that for almost every t ∈ [0, T1], we have

‖u(t)‖H2(ΩF (t)) ≤ K
(∥∥∥∂u
∂t

(t)
∥∥∥

L2(ΩF (t))
+‖u(t)‖2L2(ΩF (t))+‖∇u(t)‖2L2(ΩF (t))+‖f(t)‖L2(ΩF (t))+‖Λ‖H2(R2)+1

)
,

where K is a positive constant that depends on ΩF , Bi, ρi, ν, T0, ‖u0‖L2(R2) and ‖f‖L2(0,T0;L2(R2)).

We return now to complete the proof of Lemma 2.4.2. Lemma 2.4.3 implies that there

exists a strong 2-extension operator E for ΩF (t)

‖(u · ∇)u‖2
L2(ΩF (t)) ≤ ‖(Eu · ∇)Eu‖2

L2(R2) ≤ ‖Eu‖2
L4(R2)‖∇Eu‖2

L4(R2).

Moreover, using the continuous embedding of H1/2(R2) into L4(R2) and the interpolation

inequality in Lions–Magenes [30], we have that

‖z‖L4(R2) ≤ C2‖z‖H1/2(R2) ≤ C2‖z‖1/2
L2(R2)‖z‖

1/2
H1(R2), ∀z ∈ H

1(R2),
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where C2 = C2(R2) is a positive real constant. Hence, we get

‖(u · ∇)u‖2
L2(ΩF (t)) ≤ C2‖Eu‖L2(R2)‖Eu‖H1(R2)‖∇Eu‖L2(R2)‖∇Eu‖H1(R2)

≤ C2‖u‖L2(ΩF (t))‖u‖H1(ΩF (t))‖Eu‖H1(R2)‖Eu‖H2(R2)

≤ C2‖u‖L2(ΩF (t))‖u‖2
H1(ΩF (t))‖u‖H2(ΩF (t))

≤ C2‖u‖L2(ΩF (t))
(
‖u‖2

L2(ΩF (t)) + ‖∇u‖2
L2(ΩF (t))

)
‖u‖H2(ΩF (t)).

(2.4.18)

Let K > 1 be a constant that depends on ΩF , Bi, ρi, ν, T0, ‖u0‖L2(R2) and ‖f‖L2(0,T0;L2(R2))

that may changes between lines.

Combining (2.4.18) with Lemma 2.4.4, we get for T1 small enough

‖(u·∇)u‖2
L2(ΩF (t)) ≤ K‖u‖L2(ΩF (t))

(
‖u‖2

L2(ΩF (t))+‖∇u‖2
L2(ΩF (t))

)(∥∥∥∥∂u∂t
∥∥∥∥

L2(ΩF (t))
+‖u‖2

L2(ΩF (t))

+ ‖∇u‖2
L2(ΩF (t)) + ‖f‖L2(ΩF (t)) + 1

)
, a.e t ∈ [0, T1].

By Young’s inequality, we get for all ε > 0

‖(u·∇)u‖2
L2(ΩF (t)) ≤

K

ε
‖u‖2

L2(ΩF (t))

(
‖u‖2

L2(ΩF (t))+‖∇u‖2
L2(ΩF (t))

)2
+ε
(∥∥∥∥∂u∂t

∥∥∥∥2

L2(ΩF (t))
+‖u‖4

L2(ΩF (t))

+ ‖∇u‖4
L2(ΩF (t)) + ‖f‖2

L2(ΩF (t)) + 1
)
, a.e t ∈ [0, T1].

By combining (2.4.14) with the above inequality taking ε = 1
12 , then integrating the resulting

inequality with respect to t, and using Lemma 2.4.1 we get for almost t in [0, T1]

1
4

∫ t

0

∥∥∥∥∂u∂t
∥∥∥∥2

L2(ΩF (s))
ds+ ν

2

∫
R2
|∇u|2dx+ 1

2

k∑
i=1

(
mi

∫ t

0
|h′′i (s)|2ds+ Ji

∫ t

0
|ω′i(s)|2ds

)

≤ ν

2‖∇u(0)‖2
L2(R2) +K

(
1 +

∫ t

0
‖∇u‖2

L2(R2)ds+
∫ t

0
‖∇u‖4

L2(R2)ds
)
. (2.4.19)

By Gronwall lemma and using again Lemma 2.4.1, we get that

‖∇u(t)‖2
L2(R2) ≤ K

(
‖∇u(0)‖2

L2(R2) + 1
)
. a.e on [0, T1]. (2.4.20)

Moreover, by combining (2.4.19) with (2.4.20), estimate (2.4.11) holds. This ends the proof.

�
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Chapter 2. On the Motion of Several Disks in a Viscous Incompressible Fluid

2.5 Mechanism preventing from collision

This section is devoted to accomplish the proof of Theorem 1.2. We follow the approach

used in [20] and [24]. We act by contradiction and we assume that collision can take place

in finite time T0 under the assumption (H1). For T < T0, we recall that for any divergence

free w ∈ H1((0, T )× R2), such that D[w] vanishes on the solid domain, we have

∫
R2

(
ρu · ∂tw + ρu⊗ u : D[w]− 2νD[u] : D[w] + ρf · w

)
dx = d

dt

∫
R2
ρu · wdx, (2.5.1)

where

ρ(x, t) = ρF (x, t) +
k∑
i=1

ρi(x, t) = 1ΩF (t)(x) +
k∑
i=1

ρi1Bi(t)(x),

denotes the global density. The key-idea of the proof is to construct a proper candidate v

and use it as a test function in the weak formulation (2.5.1) leading to a differential equation

which can be integrated so that we get the no-collision result.

2.5.1 Construction and estimates for the test function

B1 B2

B5

B6

B7

B8

B9

B4

B3

B10

Figure 2.1 – Example of collision at time T0

We suppose that T0 < +∞ and we start to prove that collision in pair - as that between

the disks B1 and B2 or between B8 and B7 in Figure 2.1 - could not take place. Both cases

can be summarized by the assumption that one disk has a collision with only one other disk.

Up to renumbering, this assumption can be stated as follows:

d(B1(T0), B2(T0)) = 0, and d(B1(T0), Bi(T0)) > 0, ∀ i = 3, . . . , k. (H2)

Since the disks B1 and B2 collide at time T0, then we can choose an initial time t0 < T0

such that for all t ≥ t0 and all j /∈ J , we have d(B1(t), B2(t)) < 2rj, where J = {1, 2}.
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2.5 Mechanism preventing from collision

In other words, we can choose initial time t0 such that there is no possibility to find a
disk separating the rigid bodies B1(t) and B2(t) for all t ∈ [t0, T0]. For all i ∈ {2, . . . , k},
we define d1,i(t) := d(B1(t), Bi(t)). Since d1,i(T0) is positive as long as i /∈ J , then β :=

inf
t0≤t≤T0

min
i/∈J

d1,i(t) > 0. Also contact at time T0 can only occur at a single point between any
pair of disks as the domains of the rigid bodies are convex.

y2

y1

r2

2δ−2δ
r1

Aδ,h

B1

B2

y2 = ψtop(y1) y2 = ψb(y1)

Figure 2.2 – Geometry in the local coordinates

We will see later that the expression of the vector field v involves the boundary functions

of the disks in the neighbourhood of the contact point. Hence, it is more convenient to work

in a local orthonormal frame of origin attached to the center of mass h1 of the disk B1, and

whose associated orthonormal basis (e1, e2) are given by: e1 = −e⊥2 and e2 = h1 − h2

|h1 − h2|
. In

the new coordinates, B1 is the disk of center (0, 0) and radius r1 whereas B2 is the disk of

center (0,−r1 − r2 − h) and radius r2, where h denotes the distance between B1 and B2

(see Figure 2.2). Moreover, we can always represent the boundaries of the disks close to the

contact point at collision by a suitable boundary functions of simple expressions in the new

frame: one is the lower boundary of the disk B1 and the other is the upper boundary of the

disk B2.

For any x ∈ R2, we denote by (y1, y2) the coordinates in the new frame. More precisely,

we define Y = (y1, y2) as follows:

Y (t, x) =
(
−(x− h1(t)) · (h1(t)− h2(t))⊥

|h1(t)− h2(t)| ,
(x− h1(t)) · (h1(t)− h2(t))

|h1(t)− h2(t)|

)
. (2.5.2)
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Chapter 2. On the Motion of Several Disks in a Viscous Incompressible Fluid

In what follows, we fix h ∈ (0, dmax) where dmax := sup
t0≤t≤T0

d1,2(t). Also, we fix δ > 0 such

that 2δ < min(r1, r2), and we define the bridge Aiδ,h in the local coordinates by

Aiδ,h := {y ∈ R2 : |y1| < 2δ, ψb(y1) < y2 < ψtop(y1)},

where the boundary functions ψtop and ψb of the disks B1 and B2 respectively are given by:

ψtop(y1) := −
√
r2

1 − y2
1, ∀y1 ∈ [−r1, r1],

ψb(y1) :=
√
r2

2 − y2
1 − r1 − r2 − h, ∀y1 ∈ [−r2, r2].

Moreover, we choose δ such that

Aδ,d1,2(t) ∩Bj(t) = ∅, ∀t ∈ [t0, T0], ∀j /∈ {1, 2}.

Before we proceed, we mention some properties of the boundary functions ψtop and ψb that

will be useful later on. It is easy to see that for all y ∈ Aiδ,h, we have:

y2 − ψb(y1) ≤ ψtop(y1)− ψb(y1) and h ≤ ψtop(y1)− ψb(y1). (2.5.3)

Moreover, there exists a constant K = K(δ, r1, r2) such that

|ψ′top(y1)| ≤ K|y1|, |ψ′b(y1)| ≤ K|y1|, ∀y1 ∈ [−2δ, 2δ], (2.5.4)

|ψ′′top(y1)| ≤ K, |ψ′′top(y1)| ≤ K, ∀y1 ∈ [−2δ, 2δ]. (2.5.5)

Furthermore, the following inequality

t2

2 ≤ 1−
√

1− t2 ≤ t2, ∀t ∈ [−1, 1],

implies that

h+ ay2
1 ≤ ψtop(y1)− ψb(y1) ≤ h+ 2ay2

1, ∀y1 ∈ [−2δ, 2δ] (2.5.6)

with a = 1
2r1

+ 1
2r2

.

We turn now to define the test function v. To describe v in the neighbourhood of B1, we

define a smooth function φ : R2 7→ R with compact support included in B(0, α) such that
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2.5 Mechanism preventing from collision

φ ≡ 1 in a neighbourhood of B1, where

α ≤ min(r1 + β,
√
r2

1 + δ2).

By noting that the distance between the disks B1 and B(0, α) equals to α− r1, we get

r1 + α− r1

2 < α.

It follows that r1 + α

2 < α,

and hence

B1 ⊂ B
(

0, r1 + α

2

)
⊂ B(0, α).

Thus, we can choose φ ≡ 1 onB(0, r1+α
2 ). Then we introduce a smooth function χ : R 7→ [0, 1]

such that

χ(r) =

 1 if |r| ≤ δ,

0 if |r| ≥ 2δ.

We set

vh := ∇⊥g̃h, (2.5.7)

where g̃h(y) = y1ϕh with ϕh : R2 → R is defined as follows:

ϕh = φ in R2\
(
Aiδ,h ∪

(
B2 ∩B(0, α)

))
,

ϕh = (1− χ(y1))φ(y) + χ(y1)
(

y2 − ψb(y1)
ψtop(y1)− ψb(y1)

)2(
3− 2 y2 − ψb(y1)

ψtop(y1)− ψb(y1)

)
in Aiδ,h,

ϕh = 0 inB2 ∩B(0, α).

Finally, we define

v(t, x) = JX(Y (x, t), t)v(Y (x, t), t), (2.5.8)

where the mapping v is defined from R2 × [0, T0) into R2 by

v(y, t) = vd1,2(t)(y). (2.5.9)
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Chapter 2. On the Motion of Several Disks in a Viscous Incompressible Fluid

Remark 2.5.1 We note that ϕh and hence vh are regular up to h = 0 outside Aiδ,h, and

singularities at h = 0 correspond to

gh(y) = y1

(
y2 − ψb(y1)

ψtop(y1)− ψb(y1)

)2(
3− 2 y2 − ψb(y1)

ψtop(y1)− ψb(y1)

)
, y ∈ Aiδ,h, (2.5.10)

as it involves the difference term between the boundary functions ψtop and ψb. Hence, all the

Sobolev norms of vh are dominated by a constant in ΩF,h\Aiδ,h, where ΩF,h denotes the fluid

domain in the new geometry.

We state some properties of vh in the following lemma and in this respect, we refer the reader

to [24].

Lemma 2.5.1 Let h > 0, then vh ∈ H1(R2) and has a compact support. Moreover, we have:

i. ∇ · vh = 0 in R2,

ii. vh = e2 on B1.

iii. vh = 0 on the other disks.

To prove that collision can not occur between disks in finite time, we need some estimates

on the test function v. The following lemma shows that we can perform such estimates on

the vector field v instead of v.

Lemma 2.5.2 Let u(t) ∈ H1(R2) and v(t) ∈ Lp(R2) be two vector fields with p ≥ 1. We

define u(y, t) = JY (X(y, t), t)u(X(y, t), t), where X denotes the inverse of the diffeomorphism

Y defined in (2.5.2). Then we have:

‖v(t)‖Lp(R2) = ‖v(t)‖Lp(R2), t ∈ [0, T0),

D[u] : D[v] = D[u] : D[v], ∀v ∈ H1(R2).

The above lemma is straightforward from the fact that the diffeomorphism Y is an isometry.

Next, we state the following lemma which enables to estimate some terms in the weak

formulation, such as the non-linear term and the source term.

Lemma 2.5.3 Let h ∈ (0, dmax) and consider the vector field vh defined in (2.5.7). Then

there exists a constant Km = Km(δ, r1, r2, dmax) such that the vector field vh ∈ Lp(R2) for all
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2.5 Mechanism preventing from collision

1 ≤ p < 3 and we have

‖vh‖Lp(R2) ≤ Km. (2.5.11)

Proof. By Remark 2.5.1, all the Sobolev norms of vh in ΩF,h\Aiδ,h are dominated by a

constant. From the definition of gh in (2.5.10), we have

vh(y) = ∇⊥
(
y1 (1− χ(y))φ(y)

)
+ gh(y)∇⊥χ(y) + χ(y)∇⊥gh(y), ∀y ∈ Aiδ,h.

Using the properties of the boundary functions ψtop and ψb stated in the previous section,

we get that there exists K = K(δ, r1, r2) > 0 and C > 0 such that

|gh(y)| ≤ K, (2.5.12)∣∣∣∣∂gh∂y1
(y)
∣∣∣∣ ≤ C +K

y2
1

ψtop(y1)− ψb(y1) , (2.5.13)∣∣∣∣∂gh∂y2
(y)
∣∣∣∣ ≤ C

|y1|
ψtop(y1)− ψb(y1) . (2.5.14)

This implies that for all y ∈ Aiδ,h, we have:

|vh,1(y)| ≤ C
(

1 +K + |y1|
ψtop(y1)− ψb(y1)

)
and |vh,2(y)| ≤ C

(
1 +K + Ky2

1
ψtop(y1)− ψb(y1)

)
.

For 1 < p < 3, there exists a positive constant Km = Km(δ, r1, r2, dmax) such that

‖vh(y)‖pLp(Ai
δ,h

) ≤ Km

(
1 +

∫ 2δ

0

yp1(
ψtop(y1)− ψb(y1)

)p−1dy1

)
.

Using the inequality (2.5.6), we obtain

∫ 2δ

0

yp1(
ψtop(y1)− ψb(y1)

)p−1dy1 ≤
∫ 2δ

0

yp1(
h+ ay2

1

)p−1dy1,

and thus

‖vh(y)‖pLp(Ai
δ,h

) ≤ Km

(
1 +

∫ 2δ

0

dy1

yp−2
1

)
.

The integral in the right hand side of the above inequality is finite as |p− 2| < 1, Therefore

(2.5.11) holds. �
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Chapter 2. On the Motion of Several Disks in a Viscous Incompressible Fluid

To estimate the term that contains ∂tv in the weak formulation, we need the following lemma:

Lemma 2.5.4 Let h ∈ (0, dmax). Then there exists a positive constantKm = Km(δ, r1, r2, dmax)

such that ∥∥∥∂hg̃h∥∥∥L2(R2)
≤ Km. (2.5.15)

Proof. From the definition of g̃h in (2.5.7) and by standard calculations, we have for all

y ∈ Aiδ,h:

∂hg̃h(y)(y) = 6y1χ(y1)
( (y2 − ψb(y1))3

(ψtop(y1)− ψb(y1))4 − 2 (y2 − ψb(y1))2

(ψtop(y1)− ψb(y1))3 + y2 − ψb(y1)
(ψtop(y1)− ψb(y1))2

)
.

Hence, there exists some C > 0 such that

|∂hg̃h(y)| ≤ C
|y1|

ψtop(y1)− ψb(y1) , ∀y ∈ A
i
δ,h.

Combining the above inequality with the fact that g̃h is smooth outside Aiδ,h and is with

compact support, we get that there exists Km > 0 that depends on δ, r1, r2 and dmax such

that ∫
R2
|∂hg̃h(y)|2dy ≤ Km + C

∫ 2δ

0

y2
1

ψtop(y1)− ψb(y1)dy1.

Hence, ∫
R2
|∂hg̃h(y)|2dy ≤ Km + C

a

∫ 2δ

0

ay2
1

h+ ay2
1
dy1,

and as ay2
1 ≤ h+ ay2

1, we get the estimate (2.5.15). �

From now on, we denote by Vu,i = (V 1
u,i, V

2
u,i) the translational velocity of the i-th rigid body.

The following proposition shows why the vector field v is a good candidate to our

problem.

Proposition 2.5.1 Let h ∈ (0, dmax) and u ∈ H1(R2) such that for all i ∈ {1, . . . , k}, we

have

u(y) = Vu,i + ωi(y − yGi)⊥ on B(Gi, ri),

where Gi denotes the center of mass of the i-th disk in the local coordinates. Then there

exists a pressure qh : ΩF,h 7→ R, such that qh ∈ L2(ΩF,h) and a positive constant Km =

58



2.5 Mechanism preventing from collision

Km(δ, r1, r2, dmax) such that

∣∣∣∣2ν ∫
Ai
δ,h

D[vh] : D[u]dy − ñ1(h)
(
Vu,1 − Vu,2

)
· e2

∣∣∣∣
≤ Km

(
‖u‖L2(ΩF,H̃n

i
) + ‖u‖L∞(B1∪B2) + ‖∇u‖L2(R2)

)
, (2.5.16)

where

ñ1(h) =
∫
∂Ai

δ,h
∩∂B1

(
2νD[vh]− qhI

)
ndΓ1 · e2.

Moreover, there exists an absolute constant K = K(δ, r1, r2) such that

ñ1(h) ≥ K

h
3
2
.

Proof. Without loss, we may assume that ν = 1. By noting that

∆vh · u = 2∇ · (D[vh]u)− 2D[vh] : D[u]

and performing integration by parts, we get

∫
Ai
δ,h

(
∆vh −∇qh

)
· udy = −

∫
Ai
δ,h

D[vh] : D[u]dy +
∫
∂Ai

δ,h

(
D[vh]n− qhn

)
· udΓ, (2.5.17)

for some pressure qh. The idea now is to find a good pressure field qh on Aiδ,h such that

(2.5.17) holds. We start with computing laplacian of vh and we find that

∆vh =

−∂112g̃h − ∂222g̃h

∂111g̃h + ∂122g̃h

 .
We construct the pressure field qh such that

∆vh −∇qh =

−2∂112g̃h − y1(1− χ)∂222φ

∂111g̃h

 .
To match this property, we define

qh(y, t) = ∂12g̃h(y) +
∫ y1

−2δ

12 s χ(s)
(ψtop(s)− ψb(s))3ds, ∀y ∈ A

i
δ,h. (2.5.18)
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On the other hand, we have

∫
Ai
δ,h

(
−∆vh+∇qh

)
·udy =

∫
Ai
δ,h

(
2∂112g̃hu1−∂111g̃hu2

)
dy+

∫
Ai
δ,h

y1(1−χ(y1))∂222φ(y)u1dy.

(2.5.19)

By performing integration by parts, we obtain

∫
Ai
δ,h

(
2∂112g̃hu1−∂111g̃hu2

)
dy = −

∫
Ai
δ,h

∂11g̃h

(
2∂u1

∂y2
−∂u2

∂y1

)
dy+

∫
∂Ai

δ,h

∂11g̃h
(
2u1n2−u2n1

)
dΓ.

(2.5.20)

For y ∈ Aiδ,h, we have

∂11g̃h(y) = ∂11
(
y1(1− χ(y1))φ(y)

)
+ ∂11χ(y1)gh(y) + 2∂1χ (y1)∂1gh(y) + χ(y1)∂11gh(y).

Hence there exists C > 0 and K = K(δ, r1, r2) > 0 such that

|∂11g̃h(y)| ≤ K
(

1 + |y1|
ψtop(y1)− ψb(y1)

)
+ C.

This implies that there exists a positive constant Km = Km(δ, r1, r2, dmax) such that

‖∂11g̃h(s)‖2
L2(Ai

δ,h
) ≤ Km

(
1 +

∫ 2δ

0

y2
1

h+ ay2
1
dy1

)
,

and thus

‖∂11g̃h(y)‖2
L2(Ai

δ,h
) ≤ Km.

The above inequality implies that

∣∣∣∣ ∫
Ai
δ,h

∂11g̃h

(
2∂u1

∂y2
− ∂u2

∂y1

)
dy
∣∣∣∣ ≤ Km

(∥∥∥∥∂u1

∂y2

∥∥∥∥
L2(Ai

δ,h
)
+
∥∥∥∥∂u2

∂y1

∥∥∥∥
L2(Ai

δ,h
)

)
. (2.5.21)

We turn now to estimate the boundary term in (2.5.20) and in this respect we have

∣∣∣∣ ∫
∂Ai

δ,h

∂11g̃hu2n1dΓ
∣∣∣∣ ≤ Km

(
||u||L∞(B1)

∫ 2δ

−2δ

|y1||ψ′top(y1)|3

(ψtop(y1)− ψb(y1))2dy1

+ ||u||L∞(B2)

∫ 2δ

−2δ

|y1||ψ′b(y1)|3
(ψtop(y1)− ψb(y1))2dy1 +

∣∣∣∣ ∫
∂Ai

δ,h
∩{|y1|=2δ}

∂11g̃hu2n1dΓ
∣∣∣∣). (2.5.22)
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2.5 Mechanism preventing from collision

Noting that ∂11g̃h is odd, we get that

∫
∂Ai

δ,h
∩{|y1|=2δ}

∂11g̃hu2n1dΓ =
∫ ψtop(2δ)

ψb(2δ)
∂11g̃h(2δ, y2)(u2(2δ, y2)− u2(−2δ, y2))dy2

=
∫ ψtop(2δ)

ψb(2δ)
∂11g̃h(2δ, y2)

∫ 2δ

−2δ
∂1u2(s, y2)dsdy2.

This implies that there exists a positive constant C such that

∣∣∣∣ ∫
∂Ai

δ,h
∩{|y1|=2δ}

∂11g̃hu2n1dΓ
∣∣∣∣ ≤ C‖∂1u2‖L2([−2δ,2δ]×[ψb(2δ),ψtop(2δ)]).

Combining (2.5.22) with the above inequality noting (2.5.4) and (2.5.6), we obtain that

∣∣∣∣ ∫
∂Ai

δ,h

∂11g̃hu2n1dΓ
∣∣∣∣ ≤ Km

(
||u||L∞(B1∪B2) + ‖∂1u2‖L2([−2δ,2δ]×[ψb(2δ),ψtop(2δ)])

)
. (2.5.23)

Moreover, we have

∫
∂Ai

δ,h

∂11g̃hu1n2dΓ =
∫ 2δ

−2δ
∂11g̃h(y1, ψtop(y1))

(
V 1
u,1 − ω1 ψtop(y1)

)
dy1

+
∫ 2δ

−2δ
∂11g̃h(y1, ψb(y1))

(
V 1
u,2 − ω2 (ψb(y1) + r1 + r2 + h)

)
dy1.

As ∂11g̃h is odd with respect to y1 in the time ψtop and ψb are even with respect to y1, we

get that ∫
∂Ai

δ,h

∂11g̃hu1n2dΓ = 0. (2.5.24)

Combining (2.5.21),(2.5.23) and (2.5.24) with (2.5.19) yields to

∣∣∣∣ ∫
Ai
δ,h

(
∆vh −∇qh

)
· udy

∣∣∣∣ ≤ Km

(
‖u‖L2(Ai

δ,h
) + ‖u‖L∞(B1∪B2) +

∥∥∥∥∂u1

∂y2

∥∥∥∥
L2(Ai

δ,h
)

+
∥∥∥∥∂u2

∂y1

∥∥∥∥
L2(Ai

δ,h
)
+
∥∥∥∥∂u2

∂y1

∥∥∥∥
L2([−2δ,2δ]×[ψb(2δ),ψtop(2δ)])

)
. (2.5.25)

We turn now to compute the line integral on (2.5.17). It is not difficult to check that

qh,
∂vh,1
∂y1

and ∂vh,2
∂y2
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are even with respect to y1 whereas

∂vh,1
∂y2

and ∂vh,2
∂y1

are odd with respect to y1. This implies that

∫
∂Ai

δ,h

(
2D[vh]n− qhn

)
· u(t)dΓ = ñ1(h) Vu,1 · e2 + ñ2(h) Vu,2 · e2 +

∫
∂Ai

δ,h
∩|y1|=2δ

(
2D[vh]n− qhn

)
· udΓ

with

ñi(h) =
∫
∂Ai

δ,h
∩∂Bi

(
2D[vh]n− qhn

)
dΓi · e2, i = 1, 2.

As ∇vh and qh are regular on ∂Aiδ,h∩{|y1| = 2δ}, then there exists a constant K independent

of h such that ∫
∂Ai

δ,h
∩|y1|=2δ

(
D[vh]n− qhn

)
· udΓ ≤ K‖u‖H1(Ai

δ,h
).

This implies that

∣∣∣∣2 ∫
Ai
δ,h

D[vh] : D[u]dy − ñ1(h)Vu,1 · e2 − ñ2(h)Vu,2 · e2

∣∣∣∣
≤ Km

(
‖u‖L2(ΩF,h) + ‖u‖L∞(B1∪B2) + ‖∇u‖L2(R2)

)
. (2.5.26)

By integration by parts, we have

∫
Ai
δ,h

(∆vh −∇qh)dy · e2 = −
∫
∂Ai

δ,h

(
2D[vh]n− qhn

)
dΓ · e2.

Since

∫
∂Ai

δ,h
∩{|y1|=2δ}

(
2D[vh]n− qhn

)
dΓ · e2 = 2

∫ ψtop(2δ)

ψb(2δ)

(
∂vh,1
∂y2

(−2δ, y2) + ∂vh,1
∂y2

(2δ, y2)
)
dy2

+ 2
∫ ψtop(2δ)

ψb(2δ)

(
∂vh,2
∂y1

(−2δ, y2) + ∂vh,2
∂y1

(2δ, y2)
)
dy2,

and as ∂vh,2
∂y1

and ∂vh,2
∂y1

are odd with respect to y1, then the above integral vanishes and

hence we get ∫
Ai
δ,h

(−∆vh +∇qh)dy · e2 = ñ1(h) + ñ2(h).
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Setting u = e2 in (2.5.25), we get that

∣∣∣∣ ∫
Ai
δ,h

(∆vh −∇qh)dy · e2

∣∣∣∣ ≤ Km.

This implies that

ñ2(h) = −ñ1(h) +O(Km).

Combining the above result with (2.5.26), we obtain that

∣∣∣∣2 ∫
Ai
δ,h

D[vh] : D[u]dy−ñ1(h)
(
Vu,1−Vu,2

)
·e2

∣∣∣∣ ≤ Km

(
‖u‖L2(ΩF,h)+‖u‖L∞(B1∪B2)+‖∇u‖L2(R2)

)
.

(2.5.27)

Thus, (2.5.16) holds.

By similar way, one has:

∣∣∣∣2 ∫
Ai
δ,h

|D[vh]|2dy − ñ1(h)Vvh,1 · e2 − ñ2(h)Vvh,2 · e2

∣∣∣∣
≤ Km

(
‖vh‖L2(Ai

δ,h
)) + ‖vh‖L∞(B1∪B2) +

∥∥∥∥∂vh,1∂y2

∥∥∥∥
L2(Ai

δ,h
)
+
∥∥∥∥∂vh,2∂y1

∥∥∥∥
L2(Ai

δ,h
)

)
.

By Lemma 2.5.1, we have vh = e2 on B1 and vanishes on B2. This implies that

ñ1(h) ≥ 2
∫
Ai
δ,h

|D[v1
h]|2dy−Km

(
‖vh‖L2(Ai

δ,h
))+‖vh‖L∞(B1∪B2)+

∥∥∥∥∂vh,1∂y2

∥∥∥∥
L2(Ai

δ,h
)
+
∥∥∥∥∂vh,2∂y1

∥∥∥∥
L2(Ai

δ,h
)

)
.

(2.5.28)

Standard calculations show that

∂vh,1
∂y2

(y) = −y1(1− χ(y1)∂22φ− 6y1χ(y1)
( 1

(ψtop(y1)− ψb(y1))2 − 2 y2 − ψb(y1)
(ψtop(y1)− ψb(y1))3

)
.

TIt follows that ∣∣∣∣∂vh,1∂y2
(y)
∣∣∣∣ ≤ C

(
1 + |y1|

(ψtop(y1)− ψb(y1))2

)
.
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Combining the above estimates with the fact that ∂vh,2
∂y1

= −∂11g̃h, we get that

∥∥∥∥∂vh,1∂y2

∥∥∥∥
L2(Ai

δ,h
)
≤ Km

h
3
4
, (2.5.29)

∥∥∥∥∂vh,2∂y1

∥∥∥∥
L2(Ai

δ,h
)
≤ Km. (2.5.30)

To bound from below D[vh] in L2(Aiδ,h), it suffices to bound from below ∂vh,1
∂y2

in L2(Aiδ,h).

In this respect, there exists K = K(δ, r1, r2) such that

‖∂vh,1
∂y2
‖L2(Ai

δ,h
) ≥

K

h
3
4
.

Combining (2.5.28) with (2.5.29), (2.5.30), and the above result, we obtain

ñ1(h) ≥ K

h
3
2
.

�

2.5.2 No collision result

This subsection is dedicated to prove the following theorem from which we can deduce

the proof of Theorem 1.2.

Theorem 2.5.1 Assume (H2) holds true, then we have d(B1, B2)(T0) > 0.

Proof. Since (h1, h2) ∈ H2(0, T ), the test function v defined in (2.5.8) satisfies v ∈ H1((0, T )×

R2)). Because of Lemma 2.5.1, v is a good candidate to apply (2.5.1). We obtain:

∫
R2

(
ρu · ∂tv + ρu⊗ u : D[v]− 2νD[u] : D[v] + ρf · v

)
dx = d

dt

∫
R2
ρu · vdx, (2.5.31)

on (0, T0). We start to estimate each term separately. Lemma 2.5.2 and Lemma 2.5.3 imply

that there exists a positive constant Km = Km(δ, dmax) such that

∣∣∣∣ ∫
R2
ρ(s)f(s) · v(s)dx

∣∣∣∣ ≤ Km‖ρ‖L∞([0,T0)×R2)‖f‖L2(R2). (2.5.32)
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We turn now to bound the non-linear term and we have

∣∣∣ ∫
R2
ρ(s)u(s)⊗u(s) : D[v(s)]dx

∣∣∣ ≤ Km‖ρ‖L∞([0,T0)×R2)
(
‖u‖2H1(R2)+

∣∣∣ ∫
Aδ,d1,2(s)

u(s)⊗u(s) : D[v(s)]dx
∣∣∣).

By performing integration by parts, applying Holder inequality and noting that the vector
field v is uniformly bounded outside the Aiδ,h, we get

∣∣∣ ∫
Aδ,d1,2(s)

u(s)⊗ u(s) : D[v(s)]dx
∣∣∣ ≤ ∣∣∣ ∫

Aδ,d1,2(s)

(u(s) · ∇)u(s) · v(s)dx
∣∣∣+
∣∣∣ ∫

∂Aδ,d1,2(s)

(u(s) · v(s))(u(s) · n)dΓ
∣∣∣

≤ C‖u(s)‖2H1(R2)‖vd1,2(s)‖L5/2(Aδ,d1,2(s)) +Km(‖u(s)‖2L2(R2) + ‖∇u(s)‖2L2(R2)).

Combining the above result with Lemma 2.5.3, we obtain

∣∣∣∣ ∫
R2
ρ(s)u(s)⊗ u(s) : D[v(s)]dx

∣∣∣∣ ≤ Km‖ρ‖L∞([0,T0)×R2)

(
‖u‖2

L∞([0,T0),L2(R2)) + ‖∇u(s)‖2
L2(R2)

)
.

(2.5.33)

For simplicity, we denote d1,2(t) by h(t). With this notation and from the definition of the

vector field v in (2.5.8), we have

∫
R2
ρ(s)u(s) · ∂tv(s)dx =

∫
R2
ρ(s)u(x, s) · ∂t

(
JX(Y (x, s), s)v(Y (x, s), s)

)
dx

=
∫
R2
ρ(s)u(x, s) · ∂t

(
JX(Y (x, s), s)

(
∇⊥y g̃h(s)

)
(Y (x, s))

)
dx.

By noting that

∂g̃h(s)

∂yi
((Y (x, s), s) =

2∑
j=1

∂Xj

∂yi
(Y (x, s), s)∂xj

(
g̃h(s)(Y (x, s))

)
,

we obtain

JX(Y (x, s), s)
(
∇⊥y g̃h(s)

)
(Y (x, s), s) = ∇⊥x

(
g̃h(s)(Y (x, s))

)
,

and thus

∫
R2
ρ(s)u(s) · ∂tv(s)dx =

∫
R2
ρ(s)u(x, s) · ∂t∇⊥x

(
g̃h(s)(Y (x, s))

)
dx.
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By performing integration by parts on the space variable, we get that

∫
R2
u(x, s) · ∂t∇⊥x

(
g̃h(s)(Y (x, s))

)
dx =

∫
R2

(
∂u1

∂x2
(x, s)− ∂u2

∂x1
(x, s)

)
∂t

(
g̃h(s)(Y (x, s))

)
dx.

By noting that

∂t

(
g̃h(t)(Y (x, s)

)
= h′(t)∂hg̃h(t)((Y (x, t)) +

2∑
i=1

Y ′i (x, t)∂yi g̃h(t)(Y (x, t)),

and ∥∥∥∥∂Xi

∂yj

∥∥∥∥
L∞(R2)

≤ 1,
∥∥∥∥∂Yi∂xj

∥∥∥∥
L∞(R2)

≤ 1, ‖Y ′i ‖L∞loc(R2) ≤ c
2∑
i=1
|h′i(t)|,

we get that there exists a positive constant C such that

∣∣∣∣ ∫
R2
u(x, s) · ∂t∇⊥x

(
g̃h(s)(Y (x, s), s)

)
dx
∣∣∣∣ ≤ C‖∇u(s)‖L2(R2)

{
|h′(s)|

(
‖∂hg̃h(s)‖L2(R2\Ai

δ,h(s))

+
[ ∫

Ai
δ,h(s)

|∂hg̃h(t)(y)|2dy
] 1

2
)

+Km

2∑
i=1
|h′i(t)|

}
.

By Lemma 2.5.4, we get that

∣∣∣∣ ∫
R2
ρ(s)u(s) · ∂tv(s)dx

∣∣∣∣ ≤ Km‖ρ‖L∞(R2×[0,T0))

(
sup

s∈[0,T0)
|h′(s)|+

2∑
i=1
|h′i(t)|

)
‖∇u(s)‖L2(R2).

(2.5.34)

Adding the term ñ1(d1,2(s))(Vu,1−Vu,2) · e2(h) to both sides of the weak formulation (2.5.31)

and combining the resulting equation with Proposition 2.5.1, Lemma 2.5.2 and the estimates

in (2.5.32), (4.2.13) and (2.5.34), we get that

∣∣∣∣ ddt
∫
R2
ρ(s)u(s) · v(s)dx+ ñ1(d1,2(s))(Vu,1 − Vu,2) · e2(h)

∣∣∣∣ ≤ K ′m
(
1 + ‖u‖2

L2(R2) + ‖∇u‖2
L2(R2)

)
,

where K ′m = (δ, dM , ‖ρ‖L∞([0,T0)×R2), ‖f‖L2(R2)) is a positive real constant.

By noting that

u(y, s) = JY h
′
1(s) + ω1(s)y⊥, y ∈ ∂B(G1, r1),

u(y, s) = JY h
′
2(s) + ω2(s)(y − yG2)⊥, y ∈ ∂B(G2, r2),
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we obtain (
Vu,1 − Vu,2

)
· e2 = d

′

1,2(s).

This implies that

∣∣∣∣ ddt
∫
R2
ρ(s)u(s) · v(s)dx+ d

′

1,2(s)ñ1(d1,2(s))
∣∣∣∣ ≤ K ′m

(
1 + ‖u‖2

L2(R2) + ‖∇u‖2
L2(R2)

)
.

Integrating the above inequality from t0 to t < T0, we get that∣∣∣∣ ∫
R2
ρ(t)u(t) · v(t)dx−

∫
R2
ρ(t)u(t0) · v(t0)dx+

∫ t

t0
d
′

1,2(s)ñ1(d1,2(s))ds
∣∣∣∣

≤ K ′m
(
T0 + T0 sup

t∈[0,T0)
‖u‖2

L2(R2) +
∫ t

t0
‖∇u‖2

L2(R2)

)
,

Combining together Lemma 2.4.1 with Lemma 2.5.3, we get that there exists M > 0 that

depends on T0 and the initial data such that

∣∣∣∣ ∫ t

t0
d
′

1,2(s)ñ1(d1,2(s))ds
∣∣∣∣ ≤ K ′mM.

With the change of variable h(s) = d1,2(s), we get that

∣∣∣∣ ∫ d1,2(t)

d1,2(t0)
ñ1(h)dh

∣∣∣∣ ≤ K ′mM.

Again by Proposition 2.5.1, we get that

∣∣∣∣ ∫ d1,2(t)

d1,2(t0)

dh

h
3
2

∣∣∣∣ ≤ K ′mM,

and thus
1

[d1,2(t)] 1
2
≤ 1

[d1,2(t0)] 1
2

+K ′mM.

The last inequality implies that

sup
t≤T0

1
[d1,2(t)] 1

2
≤ 1

[d1,2(t0)] 1
2

+K ′mM.

Proof of Theorem 2.1.2 It follows from Theorem 2.1.1 that our proof reduces to obtaining

that no collision occurs in finite time under the hypothesis (H1). We act by contradiction
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Bi`−1

Bi`C1

C2

P C1 ∩ ΩF,h C2 ∩ ΩF,h

hi`+1

hi`

Bi`+1

Figure 2.3 – Collision between particles dividing the fluid domain into two connected com-
ponents.

and we assume that collision could take place in finite time. We define the the non-empty

set J of cardinal 2 ≤ m ≤ k as follows

J =
{
j ∈ {1, . . . , k} : ∃i 6= j, 1 ≤ i ≤ k, d(Bi, Bj)(T0) = 0

}
.

For i ∈ J , we define the non-empty set of indices Ji by

Ji =
{
j ∈ J : j 6= i, d(Bi, Bj)(T0) = 0

}
.

We claim that there exists i ∈ J such that card(Ji) = 1. Otherwise, we have card(Ji) ≥ 2

for all i ∈ J . Hence for a fixed i0 ∈ J , there exists i1 ∈ Ji0 and as card(Ji1) ≥ 2, then there

exists i2 ∈ Ji1\{i0}. By recurrence, we construct a sequence {i`}`∈N such that for all ` ∈ N,

we have i`+1 ∈ Ji`\{i`−1}. Since cardJ is finite, then there exists two positive integers ` and

p such that i`+p = i`. Moreover, the center of masses hi` , . . . , hi`+p of the disks Bi` , . . . , Bi`+p

form a set of vertices of a simple polygon P , whose complement is the union of at least two

connected components C1 and C2. Furthermore, the fluid domain ΩF,h ⊂ P c and we have

ΩF,h∩Ci 6= ∅, for i = 1, 2 (see Figure 2.3). This contradicts the assumption (H1) in Theorem

2.1.1.

Let j denote the index of the disk that the disk Bi only collide with at time T0. Up to a
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renumbering, we assume that i = 1 and j = 2, so that (H2) holds true. We apply then

Theorem 2.5.1 and we obtain a contradiction. �

Remark 2.5.2 To illustrate the difficulties which prevent from ruling out the further con-
nectedness assumption, we study the asymptotic behaviour of a moving body in a rectangular
domain when it is approaching the boundary of Ω. In the orthonormal system (O,~i,~j), we
set Ω = [0, 5]× [0, 5] and we suppose that the moving body is a disk of radius 1 and its center
of mass G moves along the line (D) : y = x. We assume that there is no contact initially
between the rigid disk B and ∂Ω. We denote by h(t) the distance between the ball B and the
boundary of the flow at time t.

Gh

ΩF,h

e
Γ2 A1

δ,h

h

h
1

δ

A2
δ,h

Γ1

Γ3

G

Figure 2.4 – Description of the model

It follows that

G(t) = Gh(t) = (1 + h(t), 1 + h(t)).

The domain occupied by the fluid at time t is given by ΩF,h(t) = Ω\B(t). If there exists some

time T∗ such that When h(T∗) = 0, then fluid domain has two connected components at time

T∗. We show that, for solutions to fluid-solid interaction problems, such configurations are

excluded. But, we obtain that the mechanism preventing from collision is different to the one

exhibited above. Let t ∈ [0, T∗) such that h(t) > 0 on [0, T∗] and let consider vh ∈ H1(Ω)

such that

i. ∇ · v = 0

ii. v(t) = h′(t)e on B(t), with e = − 1√
2(~i+~j).

69



Chapter 2. On the Motion of Several Disks in a Viscous Incompressible Fluid

iii. v vanishes on ∂Ω.

as should be the fluid-velocity-field in our fluid-solid interaction problem. Let For 0 < δ < 1

and given h > 0, we set

A1
δ,h = {x ∈ ΩF,h : 1− δ < x < 1 + δ, 0 < y < ψh(x)},

and

A2
δ,h = {x ∈ ΩF,h 1 < y < 1 + δ, 0 < x < ψh(y)},

where ψh(s) = 1 + h−
√

1− (s− 1− h)2.

Let us consider the domain

G = {x ∈ ΩF,h : 0 < x < 1 + h− δ, 0 < y < 1 + h− δ}

The no-slip condition implies that

∫
∂G
v · ndΓ = 0. (2.5.35)

The boundary ∂G of the domain G consists of 4 parts:

∂G = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4,

where Γ1 = ∂G ∩ {x = 1 + h − δ}, Γ2 = ∂G ∩ ∂B, Γ3 = ∂G ∩ {y = 1 + h − δ}, and

Γ4 = ∂G ∩ {x = 0 or y = 0}. Since v vanishes on Γ4, we get that

∫
Γ2
v · ndΓ = −

∫
Γ1
v · ndΓ−

∫
Γ3
v · ndΓ. (2.5.36)

Since v = h′(t)e on ∂B, then

∣∣∣ ∫
Γ2
v · ndΓ

∣∣∣ = |h′(t)||x1 − x2|,

where x1 = (1 + h− δ, 1 + h−
√

1− δ2) and x2 = (1 + h−
√

1− δ2, 1 + h− δ).
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It follows that

√
2(
√

1− δ2 − δ)h′(t) = −
∫ 1+h−

√
1−δ2

0
v1(1 + h− δ, y)dy −

∫ 1+h−
√

1−δ2

0
v2(x, 1 + h− δ)dx.

Moreover, since 0 < δ∗ < δ, then we get

√
2(
√

1− δ2
∗ − δ∗)|h′(t)| ≤

∫ 1+h−
√

1−δ2

0
|v1(1 + h− δ, y)|dy +

∫ 1+h−
√

1−δ2

0
|v2(x, 1 + h− δ)|dx.

By integrating the above inequality over δ ∈ (0, r) for r ∈ (0, 1) and using Cauchy-Schwartz

inequality, we obtain

|h′(t)|r ≤
√
r

c(δ∗)
sup
δ∈(0,r)

(
1 + h−

√
1− δ2

)1/2{( ∫ r

0

∫ 1+h−
√

1−δ2

0
|v1(1 + h− δ, y)|2dydδ

)1/2

+
( ∫ r

0

∫ 1+h−
√

1−δ2

0
|v2(x, 1 + h− δ)|2dxdδ

)1/2}
,

where c(δ∗) =
√

2|δ −
√

1− δ2|.

Since v1(1 + h− δ, 0) = v2(0, 1 + h− δ) = 0, then by Poincaré we get that

|h′(t)|r ≤
√
r

c(δ∗)
sup
δ∈(0,r)

(
1 + h−

√
1− δ2

)3/2{( ∫ r

0

∫ 1+h−
√

1−δ2

0
|∂yv1(1 + h− δ, y)|2dydδ

)1/2

+
( ∫ r

0

∫ 1+h−
√

1−δ2

0
|∂xv2(x, 1 + h− δ)|2dxdδ

)1/2}
,

Therefore, we obtain

|h′(t)|r ≤
√
r

c(δ∗)
sup
δ∈(0,r)

(
1 + h−

√
1− δ2

)3/2( ∫ r

0

∫ 1+h−
√

1−δ2

0
|∇v|2dxdy

)1/2

One may check that

1 + h−
√

1− δ2 ≤ δ2 + h, for all δ ∈ (0, r).

When h < 1, setting r =
√
h, we get that

|h′(t)| ≤ 2h5/4

c(δ∗)
‖∇v‖L2(ΩF ).
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Therefore, we obtain ∣∣∣∣h′(t)
h

5
4

∣∣∣∣ ≤ 2
c(δ∗)

‖∇v‖L2(ΩF ).

To conclude, in fluid interaction systems, we expect the fluid velocity-field to be bounded in

L2(0, T ;H1(ΩF (t))). The above computations entail that we should have a bound on 1/h1/4

preventing then from collision in finite time. However, we observe that we do not need to

involve the Newton’s law to prove the no-collision result. Moreover, the exponent (1/4) that

is involved is different to the one (1/2) we had in our previous proof. For these reasons, the

proof we give above does not adapt easily to this case.
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Nonuniqueness of Weak Solutions to

Fluid Solid Interaction Problem in 3D

Sommaire
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Existence of local solutions to the regularized Oldroyd model . 100

4.2.1 The linearized problem . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2.2 Proof of Theorem 4.1.1 . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3 Local existence to standard Oldroyd model . . . . . . . . . . . 110

In this chapter, we consider the three-dimensional motion of a rigid body immersed in

an incompressible homogeneous viscous fluid. The rigid body is supposed to be a ball and

the fluid domain has exactly two holes so that it can fill exactly the gap between the holes if

collision occurs. With this geometrical configuration, we show that there exists at least two

weak solutions of different behaviours to this problem: the body either moves away from the

boundary of the flow or it remains in contact with it. The novelty of this work is that we

prove the non-uniqueness of weak solutions for the problem of the motion of a rigid body

in viscous fluid in 3D after contact with external physical source term f ∈ L2(0, T ; Lp(O))



Chapter 3. Nonuniqueness of Weak Solutions to Fluid Solid Interaction Problem in
3D

with p < 2.

The plan of this chapter is as follows: in Section 3.2 we construct a velocity field for

which the body touches the boundary of the cavity O at time t∗ ∈ (0, T ). Then, we prove

that there exists an external body force f such that the constructed velocity field is a weak

solution of problem (3.1.1)-(3.1.8). After collision, we extend this solution so that the body

goes away from the boundary. In Section 3.3, we construct another solution with the same

function f . However, we extend the solution this time such that the body stays attached to

the boundary of the flow after contact.

3.1 Introduction

In this chapter we investigate the question of uniqueness of weak solutions to the

problem of motion of a rigid body immersed in an incompressible homogeneous viscous

fluid. We consider a homogeneous rigid ball B moving in a cavity in O ⊂ R3 filled with a

homogeneous viscous Newtonian fluid. We assume that the motion of the fluid is described

by the classical incompressible Navier–Stokes equations, whereas the motion of the rigid body

will be governed by Newton’s laws. More precisely, the full system of equations modelling

the motion of the fluid and the rigid body reads as:

∂tu+ (u · ∇)u = ∇ · σ + f, in ΩF (t), t ∈ (0, T ), (3.1.1)

∇ · u = 0, in ΩF (t), t ∈ (0, T ), (3.1.2)

u(x, t) = Ġ(t) + ω(t)× (x−G(t)), x ∈ ∂B(t) t ∈ (0, T ), (3.1.3)

u(x, t) = 0, x ∈ ∂O, t ∈ (0, T ), (3.1.4)

mG̈(t) = −
∫
∂B(t)

σndΓ + ρB

∫
B(t)

f(t)dx, t ∈ (0, T ), (3.1.5)

Jω̇(t) = −
∫
∂B(t)

(x−G(t))× σndΓ + ρB

∫
B(t)

(x−G(t))× f(t)dx, t ∈ (0, T ) (3.1.6)

In the above system, we denote by B(t) the domain occupied by the moving body with

center of mass G(t) at time t and radius 1. The displacement of the solid body B modifies

the fluid domain and makes it time dependent. The set ΩF (t) = O\B(t) denotes the fluid

domain occupied at time t. We suppose that the fluid has a constant density 1 and that
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it moves under the influence of a given body force f . We denote respectively by u and p

the velocity and the pressure of the fluid. The total stress tensor σ (also called the Cauchy

stress) of the fluid is given by

σ = −pI3 + 2νD[u],

where p denotes the pressure, ν > 0 is the fluid viscosity, and D[u] is the rate of deformation

tensor defined as follows:

D[u] = 1
2(∇u+∇uT ).

Moreover, we suppose that the moving body is of constant density ρB and has a mass

m = ρB|B(0)|. The moment of inertia matrix J of B(t) related to the center of mass G(t)

at any time t > 0 is given by

J =
[ ∫

B(t)
ρB|x−G(t)|2dx

]
I3.

The vector ω denotes the angular velocity of the ball B and the sign × stands for the vector

product. To complete the system, we impose initial conditions at t0:

u(x, 0) = u0(x), x ∈ ΩF (0), (3.1.7)

G(0) = G0, Ġ(0) = G1, ω(0) = ω0. (3.1.8)

We suppose that there is no contact initially between the moving ball and the boundary of

the flow; that is γ = γ(0) > 0, where

γ(t) = d(B(t), ∂O).

In this chapter, we show that uniqueness of weak solutions to the fluid solid interaction

problem in three dimensional case does not hold after contact. Before stating our result, we

introduce the notion of weak solutions. To this end, we recall that the global density ρ and

the global velocity ũ are given respectively by

ρ(t, x) = 1ΩF (t)(x) + ρB1B(t)(x),

ũ(t, x) = u(t, x)1ΩF (t)(x) +
(
Ġ(t) + ω(t)× (x−G(t))

)
1B(t)(x).
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For simplicity, we denote below the global velocity by u instead of ũ.

Consider domains B and O in R3 such that B ⊂ O. Let

V(O) = {u ∈ D(O) : ∇ · u = 0 in O}, (3.1.9)

and denote by H(O) and V (O)the closure of V(O) respectively in L2(O) and H1(O). Ac-

cording to classical results (see [40]) we have

H(O) = {u ∈ L2(O) : ∇ · u = 0 inO, u · n = 0 on ∂O},

V (O) = {u ∈ H1
0(O) : ∇ · u = 0 in O}.

We introduce the following spaces which will be used in the sequel:

H(B,O) = {u ∈ H(O) : D[u] = 0 in B},

K(B,O) = {u ∈ V (O) : D[u] = 0 in B}.

By Lemma 1.1 in [44], we have D[u] = 0 in B if and only if there exists a vector a and a

skew-symmetric tensor Q ∈ R6 such that

u(x) = a+Qx, for x ∈ B.

In particular, there exists a vector ω such that Qx = ω × x.

Definition 3.1.1 Assume that G0 ∈ O such that γ > 0 and u0 ∈ H(O). We say that (u,G)

is a weak solution to problem (3.1.1)-(3.1.8) on [0, T ] if the velocity field u and the center of

mass of G satisfy

G ∈ W 1,∞(0, T ), with G(0) = G0,

γ(t) ≥ 0,

u ∈ L∞(0, T ;H(O)) ∩ L2(0, T ;V (O)), with u(0) = u0,

u(x, t) = Ġ(t) + ω(t)× (x−G(t)), ∀x ∈ ∂B(t),
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and

∫
O×[0,T )

(
ρu·∂tv+ρu⊗u : D[v]−2νD[u] : D[v]+ρf ·v

)
dxds = −

∫
O
ρ(0)u(0)·v(0)dx, ∀v ∈ S,

(3.1.10)

where

S = {ϕ ∈ D([0, T )×O) : ∇ · ϕ = 0 on I ×O, D[ϕ] = 0 on a neighbourhood of B(t)}.

We remark that the test function ϕ used in the above weak formulation must be zero when

B touches the two holes whereas the velocity u need not. Our result is the following:

Theorem 3.1.1 There exists initial conditions and a source term f such that problem

(3.1.1)-(3.1.8) admits at least two weak solutions.

The geometry of the problem is crucial to prove the above theorem. We suppose that the

cavity O is symmetric with respect to some line (D) and has exactly two spherical holes Bl

and Br each of radius 1. We assume that the holes are symmetric with respect to the line

(D) and separated by a distance equal to the diameter of the moving ball B so that the ball

B can fill exactly the gap between the two holes at collision. Moreover, we assume that ∂O

is flat near ∂D ∩ ∂O. An example of such geometry is represented in the following figure:

Figure 3.1 – Example of the cavity O

The proof of Theorem 3.1.1 follows the same idea as in [39]. The idea of the proof is

based on the construction of a weak solution colliding in finite time to problem (3.1.1)-(3.1.8)
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with O as described above. Then we extend this solution after contact by two different ways

so that one obtains two weak solutions with different behaviours: for the first solution, the

body moves away from the boundary of the flow, whereas the second solution is constructed

such that the body stays in contact with the flow boundary after collision.

3.2 Construction of the First solution

In this section, we construct a weak solution u for which the moving ball B touches the

boundary of the cavity in a finite time then it moves away from the boundary. We assume

that the ball touches the boundary of the cavity at time t∗ ∈ (0, T ). We start by describing

the geometry for which we build the weak solution. Let (e1, e2, e3) denote the orthonormal

basis such that e1 is the direction of the line joining the centers of the two holes B` and Br

whereas the unit vector e3 is the direction holding the straight line (D). To be more precise,

we shall assume that the line (D) is confounded with the z − axis and the center of the

holes, denoted by G` and Gr, are placed at (−2, 0, 0) and (2, 0, 0) respectively. Moreover, we

suppose that the ball B moves along (D). Hence, its center of mass G(t) at time t is given

by the altitude d(t). In other words,

G(t) = (0, 0, d(t)).

It is important to point out that with this geometry, the only possible contact which may

occur is between the ball B and the two holes as other kinds of contact are ruled out due

to [26]. If we denote by h(t) the common distance between the ball B and the holes B` and

Br at time t (i.e h(t) = d(B(t), Bl) = d(B(t), Br)), then standard arguments yield

d(t) =
√
h(t)2 + 4h(t). (3.2.1)

It follows that

G(t) = Gh(t)(t) = (0, 0,
√
h(t)2 + 4h(t)). (3.2.2)

From now on we replace G by Gh and we denote by Bh the moving ball of center Gh

and radius 1. The fluid domain is then given by ΩF,h = O\Bh. We emphasize that with the
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Figure 3.2 – Description of the geometry

above notations, collision occurs when the altitude d or the distance h between the ball B

and the holes vanish. Without loss of generality, we may assume that the ball is above the

holes before contact, i.e d(t) > 0 before collision. Moreover, since collisions between B and

∂O\(∂B` ∪ ∂Br) are impossible, then there exists hmax > 0 such that for all h ∈ (0, hmax]

we have

d
(
Bh, ∂O\(∂B` ∪ ∂Br)

)
≥ δ0 > 0.

We turn now to construct a velocity field u satisfying the weak formulation (3.1.10) in the

geometry described above and colliding in finite time. This field should satisfy the following:

u = 0 on ∂O, ∇ · u = 0 in O and u = ḋ(t)e3 in B(t). (3.2.3)

The authors in [25] show that there is a family of vector fields (w[h])h>0 such that for all

h ∈ (0, hmax], w[h] satisfies the following properties:

i. w[h] ∈ C(O)

ii. ∇ · w[h] = 0

iii. w[h] = e3 on Bh and w[h] = 0 on ∂O
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Setting

u(x, t) = ḋ(t)w[h(t)](x), (3.2.4)

we get that u satisfies (3.2.3).

For later purpose, it is more convenient to recall the definition of the vector field w[h]

constructed in [25]. The vector field w[h] was built first in the half space P` := {(x1, x2, x3) ∈

R3;x1 ≤ 0} and it was then extended by symmetry in the other half space Pr := {(x1, x2, x3) ∈

R3;x1 ≥ 0}. In each half space, it is more convenient to work in a local orthonormal frame

attached to the moving ball B. The origin of this local frame is G and the associated direct

orthonormal basis is (ẽ1, ẽ2, ẽ3) are such that ẽ2 = e2 and ẽ1 = G−G`

2 + h
. We denote the

coordinates of any x ∈ R3 in the new frame by x̃ = (x̃1, x̃2, x̃3). More precisely, we have

x̃ = Qα(x−G) or x = G+Q−1
α x̃,

with Qα is the rotation with axis Re2 and angle α = (e3, G−G`).

In the following, for any set S ⊂ R3 the following holds:

S̃ = Qα(S −G) or S = G+Q−1
α S̃.

Actually, in the new frame the ball B is fixed and centered at 0 whereas the center G` of B`

has moving coordinates (0, 0,−2− h). For this reason, we prefer to use B̃∗ for the image of

B and B̃h for the image of B`. Relate the cylindrical coordinates (r, θ, z) to (x̃1, x̃2, x̃3) by

setting:

x̃1 = r cos(θ), x̃2 = r sin(θ), x̃3 = z.

When h = 0, the fluid domain becomes singular. Hence, in order to surround the singularities

we introduce a family of neighbourhoods Ω̃h,δ of the points realizing the distance between

B̃∗ and B̃h. Precisely, for h ∈ (0, hmax) and δ ∈ (0, 1), we define:

Ω̃h,δ := {(r, θ, z) ∈ Ω̃F,h : r ∈ [0, δ), z ∈ (−(2 + h), 0)}.

We remark that there exists δ > 0 such that Ω̃h,δ ⊂ P̃`. Moreover, the upper and lower
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boundary of Ω̃h,δ are parametrized respectively by:

(r, θ, z) ∈ ∂Ω̃h,δ ∩ B̃∗ ⇐⇒ {r ∈ [0, δ) and z = δ∗(s)},

where

δ∗(s) = −
√

1− s2, ∀s ∈ [0, 1),

and

(r, θ, z) ∈ ∂Ω̃h,δ ∩ B̃h ⇐⇒ {r ∈ [0, δ) and z = δh(s)},

where

δh(s) = −(2 + h) +
√

1− s2, ∀s ∈ [0, 1).

Without loss of generality one may assume δ = 1/2. Since the geometry outside Ω̃h,1/4 is

regular, then for any h ∈ [0, hmax] there exists a width h0 surrounding the boundaries of B̃∗
and the hole B̃h such that if d(x̃, B̃h) ≤ h0 then x̃ ∈ P̃`.

In the local frame of local orthonormal basis (ẽ1, ẽ2, ẽ3), consider the vector field w̃‖[h] defined

by:

w̃‖[h] =


curlã‖, in R3\

(
B̃∗ ∪ B̃h

)
,

ẽ1, in B̃∗,

0, in B̃h,

where ã‖ is defined in R3\
(
B̃∗ ∪ B̃h

)
as follows:

ã‖ =


η1/2(r)ãd‖ + (1− η1/2(r))ãs‖, in Ω̃h,1/2,

ãs‖, in R3\
(

Ω̃h,1/2 ∪ B̃∗ ∪ B̃h

)
,
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with ãs‖ and ãs⊥ are given as follows:

ãs‖ = ηh0(|x̃+ (0, 0, 2 + h)| − 1)
2

(
0, z + 2 + h

2 ,
r sin θ

2
)

+ ηh0(|x̃| − 1)
2 (ẽ1 × x̃), ∀x̃ ∈ R3, (3.2.5)

ãd‖(r, θ, z) =
(
0, φ‖(r, z),

1
2r sin θ

)
, ∀(r, θ, z) ∈ Ω̃h,1/2. (3.2.6)

For all β > 0 we have denoted by ηβ = η(./β) where η : [0,∞) → [0, 1] a smooth function

such that

η(s) =

 1, if s < 1
2 ,

0, if s > 1,

We stress that we have chosen h0 such that if x̃ /∈ Ω̃h,1/4, then at most one of the functions

ηh0(|x̃+ (0, 0, 2 +h)|−1) and ηh0(|x̃|−1) is different from zero. Moreover, φ‖ is a truncation

function enabling w̃‖[h] to be ẽ1 on ∂B̃∗ and zero on ∂B̃h. To match this property, we set

φ‖(r, z) = −P‖(λ(r, z))
4 (δ∗(r)− δh(r)) + 2 + h

4 , (3.2.7)

with

P‖(s) = 2s2 − 2s+ 1, ∀s ∈ [0, 1], (3.2.8)

where λ is defined as follows

λ(r, z) = z − δh(r)
δ∗(r)− δh(r)

. (3.2.9)

From [25, Proposition 3], we have for any h > 0 the vector field w̃‖[h] ∈ C(R3) and satisfies

w̃‖[h] = ẽ1 on B̃∗ and w̃‖[h] = 0 on B̃h. (3.2.10)

Moreover, in the neighbourhood of ∂P̃`, we have

w̃‖[h][x̃] = curlx̃
(
ηh0(|x̃| − 1)

2 (ẽ1 × x̃)
)
.

We remark that w̃‖[h] is regular up to h = 0 outside Ω̃h,1/2 and singularities at h = 0
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corresponds to the "diverging part"

w̃d
‖(r, θ, z) = curl ãd‖[h] =

(1
2 − ∂zφ‖(r, z), 0, cos θ∂rφ‖(r, z)

)
, ∀(r, θ, z) ∈ Ω̃h,1/2. (3.2.11)

We turn now to introduce the normal component w̃⊥[h] of the vector field w̃[h]. We set

w̃⊥[h] =


curlã⊥, in R3\

(
B̃∗ ∪ B̃h

)
,

ẽ3, in B̃∗,

0, in B̃h,

where

ã⊥ =


η1/2(r)ãd⊥ + (1− η1/2(r))ãs⊥, in Ω̃h,1/2,

ãs⊥, in R3\
(

Ω̃h,1/2 ∪ B̃∗ ∪ B̃h

)
,

with

ãs⊥ = ηh0(|x̃| − 1)
2 (ẽ3 × x̃), ∀x̃ ∈ R3.

In cylindrical coordinates, ãd⊥ is defined in Ω̃h,1/2 as follows:

ãd⊥(r, θ, z) =
(
− φ⊥(r, z) sin θ, φ⊥(r, z) cos θ, 0

)
, ∀(r, θ, z) ∈ Ω̃h,1/2,

where

φ⊥(r, z) = rP⊥(λ)

with λ as in (3.2.9) and

P⊥(s) = 1
2s

2(3− 2s), ∀s ∈ [0, 1]

Again from [25, Proposition 4] we have for any h > 0, w̃⊥[h] ∈ C(R3) and satisfies

w̃⊥[h] = ẽ3 on B̃∗ and w̃⊥[h] = 0 on B̃h. (3.2.12)
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Moreover, in the neighbourhood of ∂P̃`, we have

w̃‖[h][x̃] = curlx̃
(
ηh0(|x̃| − 1)

2 (ẽ3 × x̃)
)
.

Furthermore, w̃⊥[h] is regular up to h = 0 outside Ω̃h,1/2 and singularities at h = 0 corre-

sponds to the "diverging part":

w̃d
⊥(r, θ, z) = curl ãd‖[h] =

(
− ∂zφ⊥ cos θ,−∂zφ⊥ sin θ, ∂rφ⊥ + φ⊥

r

)
, ∀(r, θ, z) ∈ Ω̃h,1/2.

(3.2.13)

Since the ball B is moving along the straight line (D), then the velocity vector field w̃[h]

should be collinear with the unit vector e3. By noting that

e3 = cos(α)ẽ3 − sin(α)ẽ1,

with α ∈ (0, π/2) given by

sin(α) = 2
2 + h

and cos(α) =
√
h2 + 4h
2 + h

, (3.2.14)

we set

w̃[h](x̃) = cos(α)w̃⊥[h](x̃)− sin(α)w̃‖[h](x̃). (3.2.15)

In the global frame of basis (e1, e2, e3), w̃[h] reads:

w[h](x) = Q−αw̃[h]
(
Qα(x−Gh)

)
. (3.2.16)

More precisely, for all x ∈ P` we have:

w[h](x) = cos(α)Q−αw̃⊥[h]
(
Qα(x−Gh)

)
− sin(α)Q−αw̃‖[h]

(
Qα(x−Gh)

)
.

In the remainder of the geometry, we define w[h] by symmetry. Mainly, we set

w[h](x) = SD[w[h]](x), ∀x ∈ Pr,
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where the symmetric mapping SD around axis (D) of a vector field v is given by

SD[v](x) = (−v1,−v2, v3)(−x1,−x2, x3).

Let us study some properties of the vector field u.

Lemma 3.2.1 For all t ∈ [0, t∗) the vector field u defined in (3.2.4) satisfies:

‖u‖L2(O) ≤ C
ḣ(t)√
h(t)

, (3.2.17)

‖∇u‖L2(O) ≤ C
ḣ(t)√
h(t)

(
1 +

√
ln(1/h(t))

)
, (3.2.18)

‖∂tu‖2L2(O) ≤ C

(
(ḧ(t))2

h(t) + (ḣ(t))4

h(t)3 + (ḣ(t))4

h(t)
(
1 + 1

h(t) + 1
h(t) ln(1/h(t))

))
,(3.2.19)

‖(u · ∇)u‖2L2(O) ≤ C
(ḣ(t))2

h(t)
(
1 + ln(1/h(t))

)
, (3.2.20)

Proof. According to Proposition 5 in [25], for all h > 0 the vector field w̃[h] satisfies:

‖w̃[h]‖L2(Ω̃h,1/4) ≤ C, (3.2.21)

‖∇w̃[h]‖L2(Ω̃h,1/4) ≤ C
√

ln(1/h), (3.2.22)

where C is a positive positive constant independent of h.

Moreover, it was shown in the above reference that

|w̃d
‖| ≤ C, |∇w̃d

‖| ≤ C
1

δ∗ − δh
,

|w̃d
⊥| ≤ C

(
1 + r

δ∗ − δh

)
, |∇w̃d

⊥| ≤ C
(

r

(δ∗ − δh)2 + 1
δ∗ − δh

)
.

Noting that

| cosα| ≤ C
√
h and | sinα| ≤ 1,

we get

∣∣∣(w̃[h] · ∇)w̃[h]
∣∣∣ ≤ C

( 1
(δ∗ − δh)

+
√
h

r

(δ∗ − δh)2 + h
r2

(δ∗ − δh)3

)
, in Ω̃h,1/4.
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Lemma 1 in [25] implies that

∥∥∥(w̃[h] · ∇)w̃[h]
∥∥∥2

L2(Ω̃h,1/4)
≤ C

(
1 + ln(1/h)

)
.

At this point, estimates (3.2.17)-(3.2.18) follow by noting that Qα is a unit transformation

and

|ḋ(t)| ≤ C
ḣ(t)√
h(t)

.

By chain rule, we compute

∂tu(t, x) = d̈(t)w[h(t)](x) + ḋ(t)ḣ(t)∂hw[h(t)](x). (3.2.23)

By Proposition 6 in [25], we have

‖∂hw[h]‖L2(Pl\Ω̃h,1/4) ≤
C√
h
,

|∂hw[h]| ≤ C
(

1 + 1√
h(δ∗ − δh)

+ r

(δ∗ − δh)2

)
, in Ω̃h,1/4.

By Young’s inequality and noting that

h+ r2 ≤ δ∗(r)− δh(r) ≤ h+ 2r2, ∀r ∈ (0, 1),

we get that
r

(δ∗ − δh)2 ≤
h+ r2

2
√
h(δ∗ − δh)2

≤ 1
2
√
h(δ∗ − δh)

.

Consequently,

|∂hw[h]| ≤ C
(

1 + 1√
h(δ∗ − δh)

)
, in Ω̃h,1/4.

Using again Lemma 1 in [25], we get that

‖∂hw[h]‖2
L2(Ω̃h,1/4) ≤ C

(
1 + 1

h
ln(1/h)

)
.

Therefore,

‖∂hw[h]‖2
L2(Pl) ≤ C

(
1 + 1

h
+ 1
h

ln(1/h)
)
. (3.2.24)
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Hence, estimate (3.2.19) follows by noting that

|d̈(t)|2 ≤ C
((ḧ(t))2

h(t) + (ḣ(t))4

h(t)3

)
.

�

In the following lemma, we construct a suitable pressure field so that the external body force

f belongs to L2(0, T ;Lp(O)) for all 1 < p < 2.

Lemma 3.2.2 Given h > 0, there exists a smooth function q̃h such that

−∆w̃[h] +∇q̃h = f̃ 0 + f̃ 1 + f̃ 2, (3.2.25)

with

‖f̃ 0‖2
L2(Ω̃h,1/4) ≤ C ln(1/h),

‖f̃ 1‖2
L2(Ω̃h,1/4) ≤ C,

‖f̃ 2‖Lp(Ω̃h,1/4) ≤ C, ∀ 1 < p < 2.

Proof. Following similar arguments as those in [26, Lemma 3.8], we construct a pressure q̃⊥
such that

−∆w̃d
⊥ +∇q̃⊥ = f̃⊥, in P l,

with

|f̃⊥| ≤ C
(

r2

(δ∗ − δh)4 + 1
(δ∗ − δh)2

)
.

It follows then from Lemma 1 in [25] that

‖f̃⊥‖2
L2(Ω̃h,1/4) ≤ C

(1
h

+ ln(1/h)
)
. (3.2.26)

From the definition w̃‖ we have

−∆w̃‖ =


0

0

− cos(θ)∂rzzφ//

+


∆(∂zφ//)

0

− cos(θ)∂rrrφ//

−


0

0

cos(θ)
(

1
r
∂rrφ// − 1

r2∂rφ//
)

 .

87



Chapter 3. Nonuniqueness of Weak Solutions to Fluid Solid Interaction Problem in
3D

We remark here that

∂rzzφ//(r, z) = − 2δ′h(r)
δ∗(r)− δh(r)

∂zλ(r, z).

Consequently, setting

q̃‖(r, θ, z) = cos(θ)λ(r, z)
( 2δ′h(r)
δ∗(r)− δh(r)

)
,

we get

∂z q̃‖ = − cos(θ)∂rzzφ//.

Noting that

∇x̃1,x̃2 q̃‖ =
(

cos(θ), sin(θ)
)
∂rq̃‖ + 1

r

(
− sin(θ), cos(θ)

)
∂θq̃‖,

with

∂rq̃‖ = 2 cos(θ)
[(

δ
′′
h(r)

δ∗(r)− δh(r)
+ 2 (δ′h(r))2

(δ∗(r)− δh(r))2

)
λ(r, z) + δ

′
h(r)

δ∗(r)− δh(r)
∂rλ(r, z)

]
,

∂θq̃‖ = − sin(θ) 2δ′h(r)
δ∗(r)− δh(r)

λ(r, z),

Using Lemmas 2 and 4 in [25] we get that

|∇x̃1,x̃2 q̃‖| ≤ C
( 1
δ∗(r)− δh(r)

+ r2

δ∗(r)− δh(r)

)
.

Consequently,

| cos(θ)∂rzzφ‖ẽ3 +∇x̃q̃‖| ≤ C
( 1
δ∗(r)− δh(r)

+ r2

δ∗(r)− δh(r)

)
.

Therefore, we get

‖ cos(θ)∂rzzφ‖ẽ3 +∇x̃q̃‖‖2
L2(Ω̃h,1/4) ≤ C ln(1/h). (3.2.27)

Finally, setting
q̃h = cosαq̃⊥ + sinαq̃‖,

f̃ 0 = sinα
(
−∆(∂zφ‖), 0, cos θ∂rrrφ‖

)
,

f̃ 1 = sinα
(

cos(θ)∂rzzφ‖ẽ3 +∇x̃q̃‖
)

+ cosαf̃⊥,

f̃ 2 = sinα cos θ
(1
r
∂rrφ‖ −

1
r2∂rφ‖

)
ẽ3,
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and noting that

|∆(∂zφ‖)| ≤
C

δ∗ − δh
,

| cos θ∂rrrφ‖| ≤
C

δ∗ − δh
,∣∣∣∣ cos θ

(1
r
∂rrφ‖ −

1
r2∂rφ‖

)∣∣∣∣ ≤ C

r
,

| cosα| ≤ C
√
h,

and (3.2.26)-(3.2.27), we get that

‖f̃ 0‖2
L2(Ω̃h,1/4) ≤ C ln(1/h),

‖f̃ 1‖2
L2(Ω̃h,1/4) ≤ C

(
1 + h ln(1/h)

)
≤ C,

‖f̃ 2‖Lp(Ω̃h,1/4) ≤ C, ∀p < 2.

�

Consider the following function h given by;

h(t) = (t− t∗)4

T 4 . (3.2.28)

It is not difficult to check that |h(t)| ≤ 1 for all t ∈ [0, T ] and vanishes at time t∗. With this

choice, Lemma 3.2.1 implies that the constructed vector field u ∈ L∞(0, t∗;H)∩L2(0, t∗;V )

and its time derivative ut ∈ L2(0, t∗; L2(O). By Aubin Simon theorem [8], we get u ∈

C([0, t∗], H). In other words, we can extend u by continuity to t = t∗. For t > t∗, we define

u by

u(x, t) = −ḋ(t)w[h(t)](x), (3.2.29)

where h is as in (3.2.28). Therefore, the vector field u has the following regularity:

u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), and ut ∈ L2(0, T ; L2(O). (3.2.30)

Moreover, we have

u ∈ L2(0, T ;K(B(t),O)), and (u · ∇)u ∈ L2(0, T ; L2(O)). (3.2.31)

89



Chapter 3. Nonuniqueness of Weak Solutions to Fluid Solid Interaction Problem in
3D

Furthermore, according to Lemma 3.2.2 there exists a pressure p such that

−∆u+∇p ∈ L2(0, T ; Lp(ΩF (t))), ∀ p such that 6
5 < p < 2.

Consequently, with h, u, and G are given by (3.2.28), (3.2.4),(3.2.29) and (3.2.2) respectively

the pair (u,G) is a weak solution to problem (3.1.1)-(3.1.8) with external body force f ∈

L2(0, T ; Lp(ΩF (t))) (6
5 < p < 2) defined by

f = ∂tu+ (u · ∇)u−∆u+∇p. (3.2.32)

It remains to construct f on the disks. If f is constant, then from the definition of center of

mass, we have ∫
B(t)

ρB(x−G(t)× fdx = 0.

Also, Since the solution u is symmetric with respect to the z-axis, then one has

∫
∂B(t)

(x−G(t))× σndΓ = 0.

Thus, if f is constant then (3.1.6) is satisfied as ω = 0.

Now, we move to construct F such that

mG̈(t) = −
∫
∂B(t)

σ(u, p)ndΓ + F,

with F = ρB

∫
B(t)

f(t)dx.

Again, since the solution is symmetric with respect to the z-axis and G(t) = d(t)e3 we get

that F1 = F2 = 0. Therefore, F = F3e3 where F3 satisfies

F3 = md̈(t) + ḋ(t)
∫
∂B(t)∩∂Ωh,1/2

σ(w, q)n · e3dΓ.

But ∫
∂Ωh,1/2

σ(w, q)n · e3dΓ = −
∫

Ωh,1/2

(−∆w +∇q) · wdx+
∫

Ωh,1/2

|D[w]|2dx.
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By using Lemma 3.2.1 and Lemma 3.2.2, we get that

∣∣∣∣ ∫
∂B(t)∩∂Ωh,1/2

σ(w, q)n · e3dΓ
∣∣∣∣ ≤ C

(
1 + ln( 1

h
)
)
.

Therefore,

|F3| ≤ m|d̈(t)|+ C|ḋ(t)|
(

1 + ln( 1
h

)
)
.

This implies that |F3| ≤ C. Setting f = 1
m
F on B(t) with F = F3e3, we get that

ρB

∫
B(t)

f(t)dx = F and hence our solution satisfies Newton’s law for linear and angular

momentum as f is only time dependent.

3.3 Construction of the second solution

In the previous section, we have constructed a weak solution for problem (3.1.1)-

(3.1.8) which moves away from the boundary of the flow after t∗ with external body force

f ∈ L2(0, T ; L2(O)). In this section, we construct a second weak solution of problem (3.1.1)-

(3.1.8) with same external body force f . The second weak solution, denoted by v, is another

extension of the vector field u defined in (3.2.4) such that the ball B stays near the boundary

after contact. In other words, we set

v(t, x) = u(t, x), for all t ∈ [0, t∗],

and we assume that

B(t) = B∗ = B(t∗), for all t ∈ (t∗, T ].

More precisely, the center of mass G of the ball B is defined on [0, T ] by:

G(t) =

 d(t)e3, if 0 < t ≤ t∗,

0, if t∗ < t ≤ T,

with d is given by (3.2.1)-(3.2.28).

Consequently,

v(t, x) = 0, if x ∈ B(t), t ∈ (t∗, T ]. (3.3.1)
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In the domain O\B∗, we define the function v to be the weak solution of the Navier-Stokes

equation with zero boundary and initial data (v(x, t∗) = u(x, t∗) = 0 for any x ∈ O)

and external body force f ∈ L2(0, T ; Lp(O)) defined as in (3.2.32). Although the domain

O\B∗ is not smooth, we still able to prove that there exists a unique vector field v ∈

L∞(t∗, T ;H(O\B∗)) ∩ L2(t∗, T ;V (O\B∗))satisfying

∫ T

t∗

∫
O\B∗

(
ρvt · ϕ− (ρv ⊗ v − 2νD[v]) : D[ϕ]− ρf · ϕ

)
dxdt = 0, (3.3.2)

for all ϕ ∈ D((t∗, T ) × O\B∗) such that div ϕ = 0, by using similar arguments as in

Proposition 3.1 in [16].

Proposition 3.3.1 The pair (v,G) is a weak solution to problem (3.1.1)-(3.1.8) with given

source term f defined in (3.2.32).

Proof. From the definition of the function v and the external body force f , it follows that v

satisfies

∫ t∗

0

∫
O

(
ρv·∂tϕ+ρv⊗v : D[ϕ]−2νD[v] : D[ϕ]+ρf ·ϕ

)
dxdt = −

∫
O
ρ(0)v(0)·ϕ(0)dx, (3.3.3)

for all ϕ ∈ {ϕ ∈ D([0, t∗)×O) : ∇ ·ϕ = 0 on [0, t∗)×O, D[ϕ] = 0 on a neighbourhood of Bi(t)}.

Since v(t∗) = u(t∗) = 0, then it remains to check that v satisfies

∫ T

t∗

∫
O

(
ρvt · ϕ− (ρv ⊗ v − 2νD[v]) : D[ϕ]− ρf · ϕ

)
dxdt = 0, (3.3.4)

for all ϕ ∈ {ϕ ∈ D((t∗, T )×O) : ∇·ϕ = 0 on (t∗, T )×O, D[ϕ] = 0 on a neighbourhood of Bi(t)}.

Since v satisfies (3.3.2), then one has only to realize that any test function

ϕ ∈ {ϕ ∈ D((t∗, T )×O) : ∇·ϕ = 0 on (t∗, T )×O, D[ϕ] = 0 on a neighbourhood of Bi(t)}.

belongs to D((t∗, T )×O\B∗). This end the proof. �

3.4 Conclusion
It is clear that the first solution u constructed in Section 3.2 is different from the second
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solution v which is given in the previous section. It follows that the solution of problem
(3.1.1)-(3.1.8) is not unique after contact. Thus, Theorem 3.1.1 is proved.
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In this chapter, we study the two dimensional motion of a finite number of homogeneous

rigid disks in a cavity filled with incompressible viscoelastic fluids such as polymeric solutions.

The incompressible Navier–Stokes equations are used to model the flow of the solvent, in

which the elastic extra stress tensor appears as a source term. The extra stress tensor, which

stems from the random movement of polymer chains in the solvent, satisfies a differential

constitutive law. We focus here in two types of differential constitutive laws: The first

one corresponds to the regularized Oldroyd model whereas the other one corresponds to

Oldroyd model. The movement of the rigid disks are described by the standard conservation
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laws of linear and angular momentum. We prove the existence and uniqueness of local-in-

time strong solutions of the considered moving-boundary problem in the case of regularized

Oldroyd constitutive law as well as in the Oldroyd Model. This chapter is structured as

follows: In Section 4.1, we introduce the Oldroyd and the regularized Oldroyd models. Then

since we are dealing with a free boundary problem, we rewrite the models in cylindrical

domain. Section 4.2 is devoted to study two linear problems associated to the transformed

regularized Oldroyd model in cylindrical domain. We end this section by proving the local-

in-time existence of strong solutions in the case of the diffusive Oldroyd model. In Section 4.3

we investigate the local-in-time existence of strong solutions in the case of Oldroyd model.

4.1 Introduction

In this chapter we study the movement of several homogeneous rigid disks inside a cav-

ity filled with an incompressible viscoelastic fluid such as polymeric solutions which obeys

constitutive laws of differential type. Due to the elasticity, viscoelastic fluids have memory

and hence in contrast with Newtonian fluids, the dynamic of the flow at a given time de-

pends on the past deformations and not only on the present deformations. We suppose that

the considered solvent of the viscoelastic fluid is a homogeneous incompressible, viscous, and

Newtonian fluid. Hence, the governing equations for the fluid are the classical incompressible

Navier-Stokes equations in which the elastic extra stress tensor appears as a source term,

whereas the motion of the rigid bodies is governed by the balance equations for linear and

angular momentum (Newton’s laws).

Let O ⊂ R2 be an open bounded set representing the domain occupied by the fluid and

the k rigid bodies. We recall that ΩF (t) denotes the domain occupied by the fluid and by

Bi(t), i = 1, . . . , k the domain occupied by the rigid bodies at time t. In the sequel, we

concentrate on two models: namely the Oldroyd model and its transient version which is

known by the regularized Oldroyd model or the diffusive Oldroyd model. In dimensionless
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variables, the Oldroyd model can be written as (see, for instance, [22]):

Re(∂t + u · ∇)u− (1− r)∆u+∇p = ∇ · τ + f, x ∈ ΩF (t), t ∈ (0, T ), (4.1.1)

∇ · u = 0, x ∈ ΩF (t), t ∈ (0, T ), (4.1.2)

u(x, t) = h′i(t) + ωi(t)(x− hi(t))⊥, x ∈ ∂Bi(t), t ∈ (0, T ), (4.1.3)

u(x, t) = 0, x ∈ ∂O, t ∈ (0, T ), (4.1.4)

mih
′′

i (t) = −
∫
∂Bi(t)

σνidΓi + ρi

∫
Bi(t)

f(t)dx, t ∈ (0, T ), (4.1.5)

J iω
′

i(t) = −
∫
∂Bi(t)

(x− hi(t))⊥ · σνidΓi + ρi

∫
Bi(t)

(x− hi(t))⊥ · f(t)dx, t ∈ (0, T ), (4.1.6)

u(x, 0) = u0(x), x ∈ ΩF (0), (4.1.7)

hi(0) = h0
i , h′i(0) = h1

i , ωi(0) = ω0
i ,

(4.1.8)
We

(
∂tτ + (u · ∇)τ + ga(∇u, τ)

)
+ τ = 2rD[u], x ∈ ΩF (t), t ∈ (0, T ), (4.1.9)

τ(x, 0) = τ0(x), x ∈ ΩF (0). (4.1.10)

However, the elastic extra-stress tensor τ in the regularized Oldroyd model is expressed

as a solution of a second order parabolic partial differential equation. More precisely, in the

diffusive model we replace the stress equation (4.1.9) in the above system by

We
(
∂tτ + (u · ∇)τ + ga(∇u, τ)

)
+ τ − ε∆τ = 2rD[u], x ∈ ΩF (t), t ∈ (0, T ), (4.1.11)

ε
∂τ

∂n
(x, t) = 0, x ∈ ∂ΩF (t), t ∈ (0, T ). (4.1.12)

The additional dissipative term ε∆τ with ε > 0 in the stress equation (4.1.11) corresponds

to a center of mass of diffusion term in the dumbell models. We refer the reader to [4] and the

references therein for the derivation of (4.1.11)-(4.1.12). In standard derivation of Oldroyd

model from kinetic models for dilute polymers, the diffusive term is routinely omitted on the

grounds that it is several orders of magnitude smaller than the other terms in the equation.

However, the omission of the diffusive term in (4.1.11) changes the type of equation from

parabolic into hyperbolic (first order transport) equation.

In both models, the unknowns are u(t, x) (the velocity vector field of the fluid), τ(t, x)

(the symmetric elastic extra stress tensor), p(t, x) (the hydrostatic pressure of the fluid),
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hi(t) (the position of mass center of the i-th rigid body) and ωi(t) (the angular velocity of

the i-th rigid body). For all x = (x1, x2), we denote by x⊥ the vector x⊥ = (−x2, x1).

Moreover, we have denoted by ∂O the boundary of the cavity O, by ∂Bi(t) the boundary

of the i-th body at time t, by νi the unit normal vector directed toward the interior of

the i-th disk, and by f(t, x) the force acting on the fluid. Re = ρ
UL

η
and We = λ1

UL
are

respectively the well-known Reynolds number and Weissenberg number. Here, U and L

represent a typical velocity and a typical length of the flow, ρ and η are respectively the fluid

density and viscosity, and λ1 > 0 is a relaxation time. Further, the dimensionless numbers

mi and J i are given by mi = miU

ηL
, J i = JiU

ηL3 , where ρi,mi and Ji denote respectively the

density, the mass and the moment of inertia of the i-th rigid body.

We recall that the total stress tensor σ (also called the Cauchy stress) is given by

σ = −pI + 2(1− r)D[u] + τ,

where r is a retardation parameter and D[u] = 1
2(∇u+∇uT ) is the deformation tensor (AT

denotes the transpose of the matrix A). Also, ga is a bilinear tensor-valued mapping defined

by

ga(∇u, τ) = τW [u]−W [u]τ − a(D[u]τ + τD[u]),

where W [u] = 1
2(∇u−∇uT ) is the vorticity tensor and a is a real number satisfying −1 ≤

a ≤ 1.

Finally, we suppose that there is no contact initially between the rigid bodies and between

them and the boundary of the cavity; that is γ = γ(0) > 0, where

γ(t) = min
i=1,...,k

d(Bi(t), ∂ΩF (t)).

The movement of rigid bodies modifies the fluid domain and hence the first step to study

the models introduced above is to write the modeling equations in a cylindrical domain. To

do this, we use a non-linear, local change of coordinates X introduced in Section 2.2. Next
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for (y, t) ∈ ΩF (0)× [0, T ], we set

 U(y, t) = JY (X(y, t), t)u(X(y, t), t), P (y, t) = p(X(y, t), t),

F (y, t) = JY (X(y, t), t)f(X(y, t), t), T (y, t) = τ(X(y, t), t),
(4.1.13)

where JX and JY are respectively the Jacobian matrix of the diffeomorphism X(., t) and

the Jacobian matrix of inverse Y (., t), the inverse mapping of X(., t). We recall that the

mapping Y maps the fluid domain into its initial shape ΩF (0) [40]. For simplicity, ΩF (0)

will be denoted throughout this chapter by ΩF and Bi(0) by Bi.

Formal computations show that (U, P, T , (hi, ωi)i=1,...,k) satisfies the following set of equa-

tions:

Re
(
∂U

∂t
+ [MU ] + [NU ]

)
− (1− r)[LU ] + [GP ] = [div T ] + F, in ΩF×]0, T [, (4.1.14)

∇ · U = 0, in ΩF×]0, T [, (4.1.15)

U(y, t) = h′i(t) + ωi(t)(y − hi(0))⊥, in ∂Bi × [0, T [, (4.1.16)

U(y, t) = 0, in ∂O×]0, T [, (4.1.17)

U(y, 0) = u0(y), y ∈ ΩF , (4.1.18)

and for all i ∈ {1, . . . , k}, we have:

mih
′′

i (t) = −
∫
∂Bi

ΣνidΓi + ρi

∫
Bi
F (t)dy, t ∈]0, T [, (4.1.19)

J iω
′

i(t) = −
∫
∂Bi

(y − hi(0))⊥ · ΣνidΓi + ρi

∫
Bi

(y − hi(0))⊥ · F (t)dy, t ∈]0, T [, (4.1.20)

hi(0) = h0
i , h

′
i(0) = h1

i , ωi(0) = ω0
i . (4.1.21)

In the case of regularized Oldroyd model, T solves

We
(∂T
∂t

+
((
U + ∂Y

∂t

)
· ∇
)
T + [Ga(U, T )]

)
+ T − ε[ŁT ] = 2r[DU ], in ΩF×]0, T [, (4.1.22)

ε
∂T
∂n

(y, t) = 0, on ∂ΩF×]0, T [, (4.1.23)

T (y, 0) = τ0(y), y ∈ ΩF , (4.1.24)
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whereas in the case of standard Oldroyd model, we have

We
(∂T
∂t

+
((
U + ∂Y

∂t

)
· ∇
)
T + [Ga(U, T )]

)
+ T = 2r[DU ], in ΩF×]0, T [, (4.1.25)

T (y, 0) = τ0(y), y ∈ ΩF . (4.1.26)

We remark that the total stress tensor field associated to U, P and T is given by

Σ(U, P, T ) = −PI + 2(1− r)D[U ] + T .

The operator [LU ] is the transform of ∆u , [MU ] is the remainder term in the expansion of

∂tu, [GP ] is a term related to the pressure p, [div T ] denotes the transform of ∇· τ , whereas

[NU ] is a non-linear term corresponding to (u · ∇)u in equation (4.1.1). Moreover, the

operators [ŁT ], [DU ], [WU ] and [Ga(U, T )) in the transformed stress equation are related

respectively to rewriting of ∆τ,D[u],W [u] and the bilinear function ga. We precise the

expression of these operator in due course. We construct below a functional framework

in which the equations (4.1.1)-(4.1.6) are rigorously equivalent to (4.1.14)-(4.1.21) and the

regularized Oldroyd differential law is equivalent to (4.1.14)-(4.1.24) whereas the Oldroyd

differential law is equivalent to (4.1.25)-(4.1.26). Namely for a function u(., t) : ΩF (t)→ R2,

we set U(y, t) = u(X(y, t), t) and we define the following functional spaces as follows:

L2(0, T ; Hk(ΩF (t))) = {u : U ∈ L2(0, T ; Hk(ΩF ))},

H1(0, T ; L2(ΩF (t))) = {u : U ∈ H1(0, T ; L2(ΩF ))},

C([0, T ],Hk(ΩF (t))) = {u : U ∈ C([0, T ],Hk(ΩF ))},

L2(0, T ; Ḣ1(ΩF (t))) = {u : U ∈ L2(0, T ; Ḣ1(ΩF ))}.

In the above spaces, we have denoted the Lebesgue and Sobolev spaces by Lp(Ω), 1 ≤ p ≤ ∞,

with norms ‖ · ‖Lp(Ω) and Hk(Ω), with norm ‖ · ‖Hk(Ω). L2(Ω) and Hk(Ω) are spaces of vector

valued or tensor valued functions with components in Lp(Ω) and Hk(Ω) respectively. We

remark here that the definition of the above spaces is independent of the choice of the

mapping X.
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Moreover, we introduce the following function spaces:

U(0, T ; ΩF (t)) = L2(0, T ; H2(ΩF (t))) ∩ C([0, T ],H1(ΩF (t))) ∩H1(0, T ; L2(ΩF (t))),

T(0, T ; ΩF (t)) = {τ ∈ L2(0, T ; H2(ΩF (t))) ∩ C([0, T ],H1(ΩF (t))) ∩H1(0, T ; L2(ΩF (t))) : τ = τT },

Ũ(0, T ; ΩF (t)) =
{
u ∈ L2(0, T ; H3(ΩF (t))) ∩ C([0, T ],H2(ΩF (t))) :

u′ ∈ L2(0, T ; H1(ΩF (t))) ∩ C([0, T ]; L2(ΩF (t)))
}
,

T̃(0, T ; ΩF (t)) =
{
τ ∈ C([0, T ],H2(ΩF (t))) : τ ′ ∈ C([0, T ],H1(ΩF (t))) and τ = τT

}
.

In the rest of the chapter, we focus mainly in studying the transformed regularized Oldroyd

constitutive law and the transformed Oldroyd model. Classical solutions of the original models are

then computed through the change of variable X.

We focus first in studying the local existence and uniqueness of strong solutions of the regular-

ized Oldroyd model. In this respect, our first result reads:

Theorem 4.1.1 (Regularized Oldroyd model) Suppose that ∂O ∈ C2, f ∈ L2
loc(0,∞; L2(O)),

u0 ∈ H1(ΩF ), τ0 ∈ H1(ΩF ), ε > 0, γ > 0, and that

∇ · u0 = 0, in ΩF ,

u0(x) = h1
i + ω0

i (x− h0
i )⊥, x ∈ ∂Bi, ∀i ∈ {1, . . . , k},

u0(x) = 0, x ∈ ∂O.

Then there exists T0 > 0 such that problem (4.1.1)-(4.1.8), (4.1.10)-(4.1.12) admits unique strong

solution

u ∈ U(0, T ; ΩF (t)), p ∈ L2(0, T ; Ḣ1(ΩF (t))), τ ∈ T(0, T ; ΩF (t)), (hi, ωi) ∈ H2(0, T ;R2)×H1(0, T ;R),

on [0, T ] for all T ∈ [0, T0).

Moreover, one of the following alternatives holds true:

1. T0 = +∞,

2. lim sup
t→T0

‖u(t)‖H1(ΩF (t)) + ‖τ(t)‖H1(ΩF (t)) + 1
γ(t) = +∞.

Our second result concerns the resolution of the Oldroyd model.

Theorem 4.1.2 (Oldroyd model) Suppose that ∂O ∈ C3, f ∈ L2
loc(0,∞; H1(O)),
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f ′ ∈ L2
loc(0,∞; H−1(O)), u0 ∈ H2(ΩF ), τ0 ∈ H2(ΩF ), γ > 0, and that

∇ · u0 = 0, in ΩF ,

u0(x) = h1
i + ω0

i (x− h0
i )⊥, x ∈ ∂Bi, ∀i ∈ {1, . . . , k},

u0(x) = 0, x ∈ ∂O.

Then there exists T0 > 0 such that problem (4.1.1)-(4.1.10) admits a unique strong solution

u ∈ Ũ(0, T,ΩF (t)), p ∈ L2(0, T ;H2(ΩF (t))) ∩ C([0, T ], Ḣ1(ΩF (t))),

τ ∈ T̃(0, T ; ΩF (t)), (hi, ωi) ∈W 2,∞([0, T ]× R2)×W 1,∞([0, T ]× R),

for all T ∈ [0, T0).

Moreover, one of the following alternatives holds true:

1. T0 = +∞,

2. lim sup
t→T0

‖u(t)‖H2(ΩF (t)) + ‖τ(t)‖H2(ΩF (t)) + 1
γ(t) = +∞.

4.2 Existence of local solutions to the regularized Ol-

droyd model

The present section is devoted to prove Theorem 4.1.1. As already mentioned, the method

used to prove existence of local unique strong solution to the regularized Oldroyd model is based on

the application of the classical fixed point theorem to the mapping N defined by solving linearzed

problems associated to the transformed problem in cylindrical domain. Let us first deal with two

linear problems which will be the key ingredient to prove Theorem 4.1.1.

4.2.1 The linearized problem

We study here two linearized problems, one for the velocity U and the other for the elastic

extra-stress tensor T . In the following, we endow the Banach space U(0, T ; ΩF ) with the norm

‖U‖U(0,T ;ΩF ) = ‖U‖L2(0,T ;H2(ΩF )) + ‖U‖C([0,T ],H1(ΩF )) + ‖U‖H1(0,T ;L2(ΩF ))

and the Banach space T(0, T ; ΩF ) with the norm

‖T ‖T(0,T ;ΩF ) = ‖T ‖L2(0,T ;H2(ΩF )) + ‖T ‖C([0,T ],H1(ΩF )) + ‖T ‖H1(0,T ;L2(ΩF )).
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Let T be a positive real number, we consider the following linear problem associated to the velocity:

Given initial data u0, (h0
i , h

1
i , ω

0
i )i=1,...,k and source terms F0, F1,i and F2,i. Find (U,P, (hi, ωi)i=1,...,k)

such that



Re ∂tU − (1− r)∆U +∇P = F0, in ΩF×]0, T ],

∇ · U = 0, in ΩF×]0, T ],

U(y, t) = h′i(t) + ωi(t)(y − hi(0))⊥, (y, t) ∈ ∂Bi×]0, T ], i = 1, . . . , k,

U(y, t) = 0, (y, t) ∈ ∂O×]0, T ],

mih
′′
i (t) = −

∫
∂Bi

ΣνidΓi + F1,i, t ∈]0, T ], i ∈ {1, . . . , k},

Jω′i(t) = −
∫
∂Bi

(y − hi(0))⊥ · ΣνidΓi + F2,i, t ∈]0, T ], i ∈ {1, . . . , k},

U(y, 0) = u0(y), y ∈ ΩF ,

hi(0) = h0
i , h

′
i(0) = h1

i , ωi(0) = ω0
i , i = 1, . . . , k,

(4.2.1)

where Σ = −PI + 2(1− r)D[U ].

The proof of existence of solutions of system (4.2.1) is based on semi-group theory. For more

details, we refer the reader to [40] where the authors studied a similar linear problem. In order to

state the existence and uniqueness result of system (4.2.1), it is convenient to extend u0 over the

rigid disks by setting u0(x) = h1
i + ω0

i (y − h0
i )⊥ over Bi. More specifically we have the following.

Theorem 4.2.1 Assume that ∂O ∈ C2, F0 ∈ L2(0, T ; L2(ΩF )), F1,i ∈ L2(0, T ;R2), F2,i ∈ L2(0, T ;R)

for all i = 1, . . . , k, and u0 ∈ H1(ΩF ) such that

∇ · u0 = 0, in ΩF ,

u0(y) = h1
i + ω0

i (y − h0
i )⊥, y ∈ Bi, ∀i = 1, . . . , k,

u0(y) = 0, y ∈ ∂O.

Then problem (4.2.1) admits a unique solution (U,P, (hi, ωi)i=1,...,k) with

U ∈ U(0, T ; ΩF ), P ∈ L2(0, T ; Ḣ1(ΩF )), hi ∈ H2(0, T ;R2), ωi ∈ H1(0, T ;R).

Moreover, there exists a positive constant K depending only on ΩF and T ; non-decreasing with

respect to T , such that

‖U‖U(0,T ;ΩF ) + ‖P‖L2(0,T ;Ḣ1(ΩF )) +
k∑
i=1
‖hi‖H2(0,T ;R2) + ‖ωi‖H1(0,T ;R)

≤ K
(
‖u0‖H1(O) + ‖F0‖L2(0,T ;L2(ΩF )) +

k∑
i=1
‖F1,i‖L2(0,T ;R2) + ‖F2,i‖L2(0,T ;R)

)
.
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We turn now to study the linearized problem associated to the differential constitutive law of

regularized Oldroyd model:


We

∂T
∂t

+ T − ε∆T = G, in ΩF×]0, T ],

ε
∂T
∂n

= 0, on ∂ΩF×]0, T ],

T (0) = τ0, in ΩF ,

(4.2.2)

where G and τ0 are given functions.

Concerning the resolution of the above system, we have the following proposition.

Proposition 4.2.1 Let G ∈ L2(0, T ; L2(ΩF )) and τ0 ∈ H1(ΩF ) such that G = GT and τT0 = τ0.

Then problem (4.2.2) admits a unique solution T ∈ T(0, T ; ΩF ). Moreover, there exists a positive

constant K depending only on ΩF and T ; non-decreasing with respect to T , such that

‖T ‖L2(0,T ;H2(ΩF )) + ‖T ‖L∞(0,T ;H1(ΩF )) + ‖T ‖H1(0,T ;L2(ΩF )) ≤ K
(
‖τ0‖H1(ΩF ) + ‖G‖L2(0,T ;L2(ΩF ))

)
.

The proof of the above proposition follows from semi-group theory and Theorem 3.4.3 in [3].

4.2.2 Proof of Theorem 4.1.1

We define the closed set K for T and R > 0 as follows:

K =
{

(W,Q, T , (hi, ωi)i=1,...,k) ∈ U(0, T ; ΩF )×L2(0, T ; Ḣ1(ΩF ))×T(0, T ; ΩF )×
(
H2(0, T ;R2)×H1(0, T ;R)

)k :

‖W‖U(0,T ;ΩF ) + ‖Q‖L2(0,T ;Ḣ1(ΩF )) +
k∑

i=1
‖h

′′

i ‖L2(0,T ;R2) + ‖ω′
i‖L2(0,T ;R) + ‖T ‖T(0,T ;ΩF ) ≤ R

}
.

For all T > 0, K 6= ∅ if R is sufficiently large say R > ‖u0‖H1(ΩF ) + ‖τ0‖H1(ΩF ). We choose

T such that the regularized Oldroyd model in [0, T ] is equivalent to the transformed problem

(4.1.14)-(4.1.24) in cylindrical domain. We emphasize that this is equivalence always holds as long

as γ(t) > 0, that is in absence of collision so that the fluid domain is non-singular. For simplicity,

we assume that the external body force f = 0 throughout this chapter. Consider the mapping

N defined from the set K into

U(0, T ; ΩF )× L2(0, T ; Ḣ1(ΩF ))× T(0, T ; ΩF )×
(
H2(0, T ;R2)×H1(0, T ;R)

)k
as follows:

N (W,Q, T , (hi, ωi)i=1,...,k) = (U,P, T̃ , (h̃i, ω̃i)i=1,...,k),
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where (U,P, T̃ , (h̃i, ω̃i)i=1,...,k) is the unique solution of system (2.3.1)-(4.2.2) with source terms:

F0 = (1− r)[(L−∆)W ] + [(∇−G)Q]−Re[MW ]−Re[NW ] + [divT ], (4.2.3)

F1,i = −
∫
∂Bi

T νidΓi, (4.2.4)

F2,i = −
∫
∂Bi

T νi · (y − h0
i )⊥dΓi, (4.2.5)

G = 2r[DW ]−We
(
[Ga(W, T )] +

((
W + ∂tY ) · ∇

)
T
)

+ ε[(Ł−∆)T ]. (4.2.6)

The operators [LU ], [MU ], [NU ], [GP ], [div T ], [ŁT ] and [Ga(U, T ) in (4.2.3) and (4.2.6) are given

by:

[LU ]i =
2∑

j,k=1

∂

∂yj
(gjk ∂Ui

∂yk
) + 2

2∑
j,k,`=1

gk`Γij,k
∂Uj
∂y`

+
2∑

j,k,`=1

{
∂

∂yk
(gk`Γij,`) +

2∑
m=1

gk`Γmj,`Γik,m

}
Uj ,

(4.2.7)

[MU ]i =
2∑
j=1

∂Yj
∂t

∂Ui
∂yj

+
2∑

j,k=1

{
Γij,k

∂Yk
∂t

+ ∂Yi
∂xk

∂2Xk

∂t∂yj

}
Uj , (4.2.8)

[NU ]i =
2∑
j=1

Uj
∂Ui
∂yj

+
2∑

j,k=1
Γij,kUjUk, (4.2.9)

[GP ]i =
2∑
j=1

gij
∂P

∂yj
, (4.2.10)

[div T ]i =
2∑

k,`,m=1

∂Yi
∂xk

∂Ym
∂x`

∂Tk`
∂ym

, (4.2.11)

[ŁT ]ij =
2∑

`,m=1
g`,m

∂2Tij
∂y`∂ym

+
2∑
`=1

∆Y`
∂Tij
∂y`

, (4.2.12)

[Ga(U, T )]ij =
2∑

k=1
[WU ]ikTkj − Tik[WU ]kj − a

(
[DU ]ikTkj + Tik[DU ]kj

)
. (4.2.13)

where

gij =
2∑

k=1

∂Yi
∂xk

∂Yj
∂xk

, gij =
2∑

k=1

∂Xk

∂yi

∂Xk

∂yj
, Γki,j = 1

2

2∑
`=1

gk`
{
∂gi`
∂yj

+ ∂gj`
∂yi
− ∂gij
∂y`

}
, (4.2.14)

where X(., t) is a C∞-diffeomorphism from ΩF into ΩF (t) for any t ∈ [0, T ] and Y (., t) denotes

its inverse. Moreover, the operators [DU ] and [WU ] represent the symmetric and skew-symmetric

part of ∇u with

(∇u)ij =
2∑

`,m=1

∂2Xi

∂y`∂ym

∂Y`
∂xj

Um + ∂Xi

∂ym

∂Y`
∂xj

∂Um
∂y`

. (4.2.15)
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We will see later that the source terms F0, F1, F2 and G are in the good spaces for applying Theorem

4.2.1 and Proposition 4.2.1, and hence the mapping Ñ is well defined. A fixed point of N in K is

clearly a solution of problem (4.1.14)-(4.1.24). First, we prove that for R� NC and T small enough,

we have so that N (K) ⊂ K. Then, we show that for T small enough, the mapping N : K → K

is a contraction. Hence, existence and uniqueness of strong solutions of problem (4.1.14)-(4.1.24)

follows from the classical Picard’s fixed pont theorem to the mapping N on the convex set K. The

conclusion of Theorem 4.1.1 is then obtained using the transform X.

In the sequel, we denote by NK and NC positive quantities which satisfy the following conditions:

i. NK is a positive function of (h1
i , ω

0
i )i=1,...,k, ‖u0‖H1(ΩF ), ‖τ0‖H1(ΩF ), T and R which is non-

decreasing with respect to T,R, ‖u0‖H1(ΩF ) and (|h0
i |, |h1

i |, |ω0
i |)i=1,...,k.

ii. NC is a positive function of (h1
i , ω

0
i , )i=1,...,k, ‖u0‖H1(ΩF ), r, and T which is non-decreasing

with respect to T, ‖u0‖H1(ΩF ), ‖τ0‖H1(ΩF ) and (|h0
i |, |h1

i |, |ω0
i |)i=1,...,k.

We are now in position to prove that for T small enough and R � NC , the mapping N maps

K into itself. Let (W,Q, T , (hi, ωi)i=1,...,k) ∈ K, F0, F1,i, F2,i and G be the source terms defined in

(4.2.3)-(4.2.6). We focus on the terms involved by the new elastic extra-stress tensor and we move

fast on the other terms which are classical due to [40, p. 19-20]. Using Lemma A.1.1 and following

similar arguments as in the former reference, we get that there exists a constant NK satisfying (i)

such that

‖[(L−∆)W ]‖L2(0,T ;L2(ΩF )) ≤ NKT
1/2, (4.2.16)

‖[MW ]‖L2(0,T ;L2(ΩF )) ≤ NKT
1/2, (4.2.17)

‖[(∇−G)P ]‖L2(0,T ;L2(ΩF )) ≤ NKT, (4.2.18)

‖[NW ]‖L2(0,T ;L2(ΩF )) ≤ NKT
1/10, (4.2.19)

Moreover using Lemma A.1.1 and Holder’s inequality, it follows that there exists a constant

NK > 0 satisfying (i), such that

‖[divT ]‖L2(0,T ;L2(ΩF )) ≤ NK‖T ‖L2(0,T ;H1(ΩF ))

≤ NKT
1/2‖T ‖L∞(0,T ;H1(ΩF )).

Since (W,Q, T , (hi, ωi)i=1,...,k) ∈ K, we get that

‖[divT ]‖L2(0,T ;L2(ΩF )) ≤ NKT
1/2. (4.2.20)
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It follows from (4.2.16)-(4.2.20) and the definition of F0 in (4.2.3) that for small T , one has

‖F0‖L2(0,T,R2) ≤ NKT
1/10.

Using the continuity of trace mapping and Holder’s inequality, one has

‖F1‖L2(0,T,R2) ≤ NKT
1/2,

‖F2‖L2(0,T,R) ≤ NKT
1/2.

By applying Theorem 4.2.1, there exists a constant NK satisfying (i) and a constant NC satisfying

(ii) such that

‖U‖U(0,T,ΩF ) + ‖∇P‖L2(0,T,L2(ΩF )) +
k∑
i=1
‖h̃i‖H2(0,T ;R2) + ‖ω̃i‖H1(0,T ;R) ≤ NKT

1/10 +NC .

Using again Lemma A.1.1, Holder’s inequality and classical Sobolev embeddings, we obtain

‖[(Ł−∆)T ]‖L2(0,T ;L2(ΩF )) ≤ NKT, (4.2.21)

‖[(∂tY · ∇)T ]‖L2(0,T ;L2(ΩF )) ≤ NKT
1/2, (4.2.22)

‖[(W · ∇)T ]‖L2(0,T ;L2(ΩF )) ≤ NKT
1/10, (4.2.23)

‖[DT ]‖L2(0,T ;L2(ΩF (t))) ≤ NKT
1/2, (4.2.24)

We move now to bound [Ga(W, T )] in L2(0, T ; L2(ΩF )). Lemma A.1.1 implies that

‖[WW ]ikTkj‖2L2(ΩF ) ≤ NKT
2
∫

ΩF
|W (y, t)|2|T (y, t)|2dy +NK

∫
ΩF
|∇W (y, t)|2|T (y, t)|2dy.

By Holder’s inequality and classical Sobolev embeddings, it follows that

‖[WW ]ikTkj‖2L2(0,T ;L2(ΩF )) ≤ NK

{
T 2‖W‖2L∞(0,T,H1(ΩF ))‖T ‖

2
L2(0,T ;H1(ΩF ))

+ T 1/5
(
‖T ‖2L∞(0,T ;H1(ΩF ))‖W‖

2/5
L∞(0,T ;H1(ΩF ))‖W‖

8/5
L2(0,T ;H2(ΩF ))

)}
. (4.2.25)

Hence,

‖[WW ]ikTkj‖L2(0,T ;L2(ΩF )) ≤ NKT
1/10.
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We estimate the other terms of [Ga(W, T )] in similar way and we obtain

‖[Ga(W, T )]‖L2(0,T ;L2(ΩF (t))) ≤ NKT
1/10. (4.2.26)

It follows from (4.2.21)-(4.2.24), (4.2.26) and the definition of the source term G in (4.2.6) that for

small T , we have

‖G‖L2(0,T ;L2(ΩF (t))) ≤ NKT
1/10.

Therefore according to Proposition 4.2.1 there exists a constant NK satisfying (i) and a constant

NC satisfying (ii) such that

‖T̃ ‖T(0,T,ΩF ) ≤ NKT
1/10 +NC .

Choosing R = 3NC , then one has

‖U‖U(0,T,ΩF )+‖∇P‖L2(0,T,L2(ΩF ))+
k∑
i=1
‖h̃i‖H2(0,T ;R2)+‖ω̃i‖H1(0,T ;R)+‖T̃ ‖T(0,T,ΩF ) ≤ NKT

1/10+2
3R.

It follows that for T small enough

‖U‖U(0,T,ΩF ) + ‖∇P‖L2(0,T,L2(ΩF )) +
k∑
i=1
‖h̃i‖H2(0,T ;R2) + ‖ω̃i‖H1(0,T ;R) + ‖T̃ ‖T(0,T,ΩF ) ≤ R,

and thus (U,P, (h̃i, ω̃i)i=1,...,k, T̃ ) ∈ K. Therefore, N (K) ⊂ K holds by choosing R � NC and T

small enough.

We turn now to show that for T small enough, the mapping N : K → K is a contraction. Let

(W 1, Q1, T 1, (h1
i , ω

1
i )i=1,...,k) and (W 2, Q2, T 2, (h2

i , ω
2
i )i=1,...,k) in K. Denote by Y i, Xi,Γikj,`, etc. the

terms corresponding to (W i, Qi, T i, (hij , ωij)j=1,...,k), with i = 1, 2 and by

(U i, P i, T̃ i, (h̃ij , ω̃ij)j=1,...,k) = N (W i, Qi, T i, (hij , ωij)j=1,...,k).

Also, we denote by Y = Y 1−Y 2, hi = h1
i−h2

i , etc. We get that the difference (U,P, T̃ , (h̃i, ω̃i)i=1,...,k)

satisfies system (4.2.1)-(4.2.2) with zero initial data and source terms given as follows:

F0 = (1− r)
(
[(L1 −∆)W ] + [(L1 − L2)W 2]

)
+ [(∇−G1)Q]− [(G1 −G2)Q2]−Re([M1W ]

+[(M1 −M2)W 2] + [N1W 1]− [N2W 2]) + [div1T ] + [(div1 − div2)T 2],

G = 2r([D1W ] + [(D1 −D2)W 2])−We
(
[G1

a(W 1, T 1)]− [G2
a(W 2, T 2)]− (W 1 · ∇)T 1

+(W 2 · ∇)T 2 − ([(∂tY 1 · ∇)T ]) + [(∂tY · ∇
)
T 2]

)
+ ε([(Ł1 −∆)T ] + [(Ł1 − Ł2)T 2]),

(4.2.27)
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F1,i = −
∫
∂Bi

T νidΓi, (4.2.28)

F2,i = −
∫
∂Bi

T νi · (y − h0
i )⊥dΓi. (4.2.29)

Lemma A.1.2 implies that there exists a constant NK satisfying (i) such that

‖[(L1 − L2)W 2]‖L2(0,T ;L2(ΩF )) ≤ NKT
1/2

k∑
i=1
‖h′′i ‖L2(0,T,R2),

‖[(M1 −M2)W 2]‖L2(0,T ;L2(ΩF )) ≤ NKT
1/2

k∑
i=1
‖h′′i ‖L2(0,T,R2),

‖[(G1 −G2)Q2]‖L2(0,T ;L2(ΩF )) ≤ NKT
1/2

k∑
i=1
‖h′′i ‖L2(0,T,R2),

‖[N1W 1]− [N2W 2]‖L2(0,T ;L2(ΩF )) ≤ NKT
1/10

( k∑
i=1
‖h′′i ‖L2(0,T,R2) + ‖W‖U(0,T,ΩF )

)
.

(4.2.30)

We refer the reader to [40] for a detailed proof of similar estimates. It is not difficult to check that

[(div1 − div2)T 2]i =
2∑

k,`,m=1

{
∂Y 1

i

∂xk
(X1)

(∂Ym
∂x`

(X1) + ∂Y 2
m

∂x`
(X1)− ∂Y 2

m

∂x`
(X2)

)

+
(
∂Yi
∂xk

(X1) + ∂Y 2
i

∂xk
(X1)− ∂Y 2

i

∂xk
(X2)

)
∂Y 2

m

∂x`
(X2)

}
∂T 2

k`

∂ym
.

By applying mean value theorem on the mapping ∂Y 2
m

∂x`
(x, .) and using Lemma A.1.1, we get

∥∥∥∂Y 2
m

∂x`
(X1)− ∂Y 2

m

∂x`
(X2)

∥∥∥
L∞([0,T ]×R2)

≤ NK‖X1 −X2‖L∞([0,T ]×R2).

Noting that the difference X = X1−X2 satisfies ‖X‖L∞([0,T ]×R2) ≤ NKT
1/2

k∑
i=1
‖h′′i (t)‖L2([0,T ]×R2),

we obtain ∥∥∥∂Y 2
m

∂x`
(X1)− ∂Y 2

m

∂x`
(X2)

∥∥∥
L∞([0,T ]×R2)

≤ NKT
1/2

k∑
i=1
‖h′′i (t)‖L2([0,T ]×R2)

It follows from Lemma A.1.2 and the above estimate that there exists a constant NK satisfying (i)

such that

‖[(div1 − div2) T 2]‖L2(0,T ;L2(ΩF )) ≤ NKT
1/2

k∑
i=1
‖h′′i ‖L2(0,T,R2). (4.2.31)

Combining the above estimate with (4.2.16)-(4.2.20) and (4.2.30), we get that for T small

‖F0‖L2(0,T ;L2(ΩF ) ≤ NKT
1/10

(
‖W‖U(0,T,ΩF )+‖Q‖L2(0,T,H1(ΩF ))+

k∑
i=1
‖hi‖H2(0,T ;R2)+‖ωi‖H1(0,T ;R)

)
.
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Moreover, by the continuity of trace theorem there exists a constant C > 0 depending on ΩF such

that

‖F1,i‖L2(0,T,R2) ≤ CT 1/2‖T ‖L∞(0,T,H1(ΩF )),

‖F2,i‖L2(0,T,R) ≤ CT 1/2‖T ‖L∞(0,T,H1(ΩF )).

Theorem 4.2.1 implies that

‖U‖L2(0,T ;H2(ΩF )) + ‖U‖L∞(0,T ;H1(ΩF )) + ‖U‖H1(0,T ;L2(ΩF )) + ‖∇P‖L2(0,T ;L2(ΩF ))

+
k∑
i=1
‖h̃i‖H2(0,T ;R2) + ‖ω̃i‖H1(0,T ;R) ≤ NKT

1/10
(
‖W‖U(0,T,ΩF ) + ‖Q‖L2(0,T,H1(ΩF ))

‖T ‖T(0,T,ΩF ) +
k∑
i=1
‖hi‖H2(0,T ;R2) + ‖ωi‖H1(0,T ;R)

)
. (4.2.32)

Moreover, it follows from Lemma A.1.2 that there exists a constant NK satisfying (i) such that

‖[(Ł1 − Ł2)T 2]‖L2(0,T ;L2(ΩF )) ≤ NKT
1/2

k∑
i=1
‖h′′i ‖L2(0,T,R2), (4.2.33)

‖[(∂tY · ∇)T 2]‖L2(0,T ;L2(ΩF )) ≤ NKT
1/2

k∑
i=1
‖h′′i ‖L2(0,T,R2), (4.2.34)

‖[(D1 −D2)W 2]‖L2(0,T ;L2(ΩF )) ≤ NKT
1/2

k∑
i=1
‖h′′i ‖L2(0,T,R2), (4.2.35)

‖(W 1 · ∇)T 1 − (W 2 · ∇)T 2‖L2(0,T ;L2(ΩF )) ≤ NKT
1/10(‖W‖U(0,T,ΩF ) + ‖T ‖T(0,T,ΩF )

)
. (4.2.36)

We collect the terms of the difference [Ga(W 1, T 1)]− [Ga(W 2, T 2)] as follows:

[G1
a(W 1, T 1)]ij−[G2

a(W 2, T 2)]ij =
(
[W1W 1]ikT 1

kj−[W2W 2]ikT 2
kj)+

(
T 1
ik[W1W 1]kj−T 2

ik[W2W 2]kj)

− a
(
[D1W 1]ikT 1

kj − [D2W 2]ikT 2
kj

)
− a

(
T 1
ik[D1W 1]kj − T 2

ik[D2W 2]kj
)
. (4.2.37)

We rewrite

[W1W 1]ikT 1
kj − [W2W 2]ikT 2

kj = [W1W ]ikT 1
kj + [W1W 2]ikTkj + [(W1 −W2)W 2]ikT 2

kj . (4.2.38)
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Returning to inequality (4.2.25), we obtain:

‖[W1W ]ikT 1
kj‖L2(0,T ;L2(ΩF )) ≤ NKT

1/10‖W‖U(0,T,ΩF ), (4.2.39)

‖[W1W 2]ikTkj‖L2(0,T ;L2(ΩF )) ≤ NKT
1/10‖T ‖T(0,T,ΩF ). (4.2.40)

By Lemma A.1.2 and using classical Sobolev embedding, we have

‖[(W1 −W2)W 2]ikT 2
kj‖L2(0,T ;L2(ΩF )) ≤ NKT

1/2
k∑
i=1
‖h′′i (t)‖L2(0,T ;R2).

Combining the above estimate with the estimates in (4.2.39) and (4.2.40), we get

‖[W1W 1]ikT 1
kj−[W2W 2]ikT 2

kj‖L2(0,T ;L2(ΩF )) ≤ NKT
1/10

(
‖W‖U(0,T ;ΩF )+‖T ‖T (0,T ;ΩF )+

k∑
i=1
‖h

′′

i (t)‖L2(0,T ;R2)

)
.

By estimating the other terms in (4.2.37) in a similar manner, we obtain

‖[G1
a(W 1, T 1)]−[G2

a(W 2, T 2)]‖L2(0,T ;L2(ΩF )) ≤ NKT
1/10

(
‖W‖U(0,T ;ΩF )+‖T ‖T(0,T ;ΩF )+

k∑
i=1
‖h

′′

i (t)‖L2(0,T ;R2)

)
.

Combining the above inequality with (4.2.21)-(4.2.24), (4.2.26), (4.2.33)-(4.2.33), it follows that

‖G‖T(0,T,ΩF ) ≤ NKT
1/10

(
‖W‖U(0,T ;ΩF ) + ‖T ‖T (0,T ;ΩF ) +

k∑
i=1
‖h′′i (t)‖L2(0,T ;R2)

)
.

According to Theorem 4.2.1, there exists a constant NK satisfying (i) such that

‖T̃ ‖T(0,T,ΩF ) ≤ NKT
1/10

(
‖W‖U(0,T ;ΩF ) + ‖T ‖T (0,T ;ΩF ) +

k∑
i=1
‖h′′i (t)‖L2(0,T ;R2)

)
.

Gathering the above inequality with inequality (4.2.32), we get that

‖U‖L2(0,T ;H2(ΩF )) + ‖U‖L∞(0,T ;H1(ΩF )) + ‖U‖H1(0,T ;L2(ΩF )) + ‖∇P‖L2(0,T ;L2(ΩF )) + ‖T̃ ‖T(0,T,ΩF )

+
k∑
i=1
‖h̃i‖H2(0,T ;R2) + ‖ω̃i‖H1(0,T ;R) ≤ NKT

1/10
(
‖W‖U(0,T,ΩF ) + ‖Q‖L2(0,T,H1(ΩF ))

‖T ‖T(0,T,ΩF ) +
k∑
i=1
‖hi‖H2(0,T ;R2) + ‖ωi‖H1(0,T ;R)

)
.

It follows that for T small enough, the mapping N is a contraction mapping. This completes the

proof. �

111



Chapter 4. Existence Results for the Motion of Rigid Bodies in Viscoelastic Fluids

4.3 Local existence to standard Oldroyd model

In this section, we show the existence and uniqueness of strong solutions locally in time of the

Oldroyd model. The main difficulty here is that the Oldroyd differential law exhibits hyperbolic

behaviour and hence the study of strong solutions to the coupled problem requires one to work

with velocity fields u that have Sobolev regularity at least in L1(0, T,H3(ΩF (t))). We are then

enforced to start with more regular data to improve the regularity of the transport coefficient u.

First, we start by improving the regularity result in Theorem 4.2.1. To achieve this, we extend

the velocity field U over the rigid disks by setting

U(y, t) = h′i(t) + ωi(t)(y − h0
i )⊥, if y ∈ Bi, i ∈ {1, . . . , k}.

It is thus natural to define the following spaces:

H = {φ ∈ L2(O) : ∇ · φ = 0 inO, D[φ] = 0 inBi, i = 1, . . . , k, φ · n = 0 on ∂O},

V = {φ ∈ H1
0(O) : ∇ · φ = 0 inO, D[φ] = 0 inBi, i = 1, . . . , k},

D(A) = {φ ∈ H1
0(O) : φ|ΩF ∈ H2(ΩF ), ∇ · φ = 0 inO, D[φ] = 0 inBi, ∀i = 1, . . . , k}.

According to Lemma 1.1 in [44], for any φ ∈ H, there exists (Vφ,i, ωφ,i) ∈ R2 × R such that

φ(y) = Vφ,i + ωφ,i(y − h0
i )⊥, in Bi, i ∈ {1, . . . , k}.

The space H is equipped with the scalar product

(φ, ψ)H = Re

∫
ΩF

φ · ψ dy +
k∑
i=1

miVφ,i · Vψ,i + J iωφ,i ωψ,i,

and the space V with

(φ, ψ)V = Re

∫
ΩF

φ · ψ dy +
∫

ΩF
∇φ · ∇ψ dy +

k∑
i=1

miVφ,i · Vψ,i + J iωφ,i ωψ,i.

We denote by V ∗ the dual space of V and we equip the Banach space V ∗ with the norm

‖F‖V ∗ = sup
‖φ‖V =1

|〈F,ψ〉V ∗,V |.

We recall that if (U,P ) is a solution of problem (2.3.1), then U is a solution of the following
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4.3 Local existence to standard Oldroyd model

Cauchy problem [41]:  U ′ +AU = PF,

U(0) = U0,
(4.3.1)

where operator A : D(A)→ H, such that

AU = PAU, ∀U ∈ D(A), (4.3.2)

with P denotes the orthogonal projection from L2(O) onto H in ‖.‖L2(O), and

AU =


−1− r

Re
∆U, in ΩF ,

2(1− r)
mi

∫
∂Bi

D[U ]νidΓi +
(2(1− r)

J i

∫
∂Bi

(y − h0
i )⊥ ·D[U ]νidΓi

)
(y − h0

i )⊥, on Bi,

(4.3.3)

and

F =


1
Re

F0, in ΩF ,

1
mi
F1,i + 1

J i
F2,i(y − h0

i )⊥, onBi,∀i ∈ {1, . . . , k}.
(4.3.4)

Moreover, the initial velocity U0 is defined as follows:

U0(x) = u0(x)1ΩF (x) +
k∑
i=1

(
h1
i + ω0

i (y − h0
i )⊥

)
1Bi(x). (4.3.5)

In the following we show that a solution of (2.3.1) is more regular, if the data are more regular.

Proposition 4.3.1 Suppose that ∂O ∈ C3, F ∈ C([0, T ]; L2(O)), F1,i ∈ L2(0, T ;R2)), F2,i ∈

L2(0, T ;R)), for all i = 1, . . . , k, F0 ∈ L2(0, T ; H1(ΩF )), F ′ ∈ L2(0, T ;V ∗) and u0 ∈ H2(ΩF ) such

that
∇ · u0 = 0, in ΩF ,

u0(y) = h1
i + ω0

i (y − h0
i )⊥, y ∈ Bi, ∀i = 1, . . . , k,

u0(y) = 0, y ∈ ∂O.

Then problem (2.3.1) admits a unique solution (U,P, (hi, ωi)i∈{1,...,k}) with

U ∈ Ũ(0, T,ΩF ), P ∈ L2(0, T ;H2(ΩF ) ∩ Ḣ1(ΩF )), ∇P ∈ C([0, T ],L2(ΩF )),

∂t∇P ∈ L2(0, T ; H−1(ΩF )), hi ∈W 2,∞(0, T ;R2), ωi ∈W 1,∞(0, T ;R2).
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Moreover, there exists a positive constant K depending only on ΩF and T ; non-decreasing with

respect to T , such that

‖U‖Ũ(0,T ;ΩF ) + ‖P‖L2(0,T ;H2(ΩF )) + ‖∇P‖L∞(0,T ;L2(ΩF )) + ‖∂t∇P‖L2(0,T ;H−1(ΩF ))

+
k∑
i=1
‖hi‖W 2,∞(0,T ;R2)+‖ωi‖W 1,∞(0,T ;R) ≤ K

(
‖F0‖L2(0,T ;H1(ΩF ))+

k∑
i=1
‖F1,i‖L2(0,T ;R2)+‖F2,i‖L2(0,T ;R)

+ ‖F ′‖L2(0,T ;V ∗) + ‖AU(0)‖H + ‖PF (0)‖H
)
.

Proof. Consider the following Cauchy problem:

 Z ′ +AZ = PF ′,

Z(0) = Z0,
(4.3.6)

where Z0 = PF (0)−AU0 with U0 is defined as in (4.3.5).

By noting that U0 ∈ D(A) and F ∈ C([0, T ]; L2(O)), we get that AU0 and PF are well defined and

belongs to H and hence Z0 ∈ H.

Suppose that Z is a classical solution of problem (4.3.6), then we get by continuity and density

that
d

dt
(Z(t), Y )H + 2(1− r)

∫
O
D[Z(t)] : D[Y ]dy =

〈
F ′(t), Y

〉
V ∗,V

, ∀ Y ∈ V. (4.3.7)

This leads to the following weak formulation:

For F ′ ∈ L2(0, T ;V ∗) and Z0 ∈ H, find Z ∈ L2(0, T ;V ) such that Z(0) = Z0 and

d

dt
(Z(t), Y )H + 2(1− r)

∫
O
D[Z(t)] : D[Y ]dy = d

dt
(F (t), Y )H , ∀ Y ∈ V. (4.3.8)

It is important to point out that it is not clear whether Z(0) has sense if Z has the above regularity.

Consider the mapping A defined as follows

A : V → V ∗

Z → AZ : V → R

Y → 〈AZ, Y 〉V ∗,V = 2(1− r)
∫
O
D[Z] : D[Y ]dy.

The mapping A is a linear and continuous mapping from V into V ∗. Indeed for Z ∈ V one has

‖AZ‖V ∗ = sup
‖Y ‖V ≤1

|〈AZ, Y 〉V ∗,V | ≤ C‖Z‖V
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Moreover, if Z ∈ L2(0, T, V ), then AZ ∈ L2(0, T, V ∗) and hence PF ′ −AZ ∈ L2(0, T, V ∗).

Furthermore, the weak formulation (4.3.8) implies that

〈dZ
dt
, Y
〉
V ∗,V

= 〈F ′ −AZ, Y 〉V ∗,V . (4.3.9)

Consequently, we get Z ′ ∈ L2(0, T, V ∗) with

‖Z ′‖L2(0,T ;V ∗) ≤ C
(
‖Z‖L2(0,T ;V ) + ‖F ′‖L2(0,T ;V ∗)). (4.3.10)

It follows that Z ∈ E2,2 = {u ∈ L2(0, T ;V ) : u′ ∈ L2(0, T ;V ∗)}. Using the fact that E2,2 ↪→

C([0, T ], H) (see, for instance, [8]), we get that Z ∈ C([0, T ], H) and thus Z(0) has sense in (4.3.8).

Therefore, problem (4.3.6) is equivalent to:

For F ′ ∈ L2(0, T ;V ∗) and Z0 ∈ H, find Z ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) such that Z(0) = Z0 and

d

dt
(Z(t), Y )H + 2(1− r)

∫
O
D[Z(t)] : D[Y ]dy = 〈F ′(t), Y 〉V ∗,V , ∀ Y ∈ V. (4.3.11)

Since the space V is separable, we use Galerkin method to prove that problem (4.3.11) admits a

unique solution Z ∈ C([0, T ], H) ∩ L2(0, T );V ) such that

‖Z‖L∞([0,T ],H) + ‖Z‖L2(0,T ;V ) ≤ C
∥∥F ′‖L2(0,T ;V ∗) + ‖Z0‖H

)
.

Combining the above inequality with (4.3.10), it follows that

‖Z ′‖L2(0,T,V ∗) + ‖Z‖L∞([0,T ],H) + ‖Z‖L2(0,T ;V ) ≤ C
(
‖F ′‖L2(0,T ;V ∗) + ‖Z0‖H

)
. (4.3.12)

We set U(t) =
∫ t

0
Z(s)ds+ U0. It follows that

U ′(t) +AU(t)− PF (t) = Z(t) +A

∫ t

0
Z(s)ds+AU0 − P

∫ t

0
∂tF (s)ds− PF (0)

=
∫ t

0

(
Z ′(s) +AZ(s)− PF ′(s)

)
ds+ Z0 +AU0 − PF (0).

It follows from (4.3.6) that

U ′(t) +AU(t)− PF (t) = 0.
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Hence, U is the primitive of Z and solves (4.3.1). Therefore, (4.3.12) implies that

U ′ ∈ C([0, T ], H) ∩ L2(0, T );V ), U ′′ ∈ L2(0, T, V ∗),

and satisfies

‖U ′′‖L2(0,T,V ∗) + ‖U ′‖L∞([0,T ],H) + ‖U ′‖L2(0,T ;V ) ≤ C
(
‖AU0‖H + ‖F ′‖L2(0,T ;V ∗) + ‖PF (0)‖H

)
.

(4.3.13)

Consequently, we get

U ′ ∈ L2(0, T ; H1(ΩF )) ∩ C([0, T ],L2(ΩF )), hi ∈W 2,∞(0, T ;R2), ωi ∈W 1,∞(0, T ;R),

and

‖U ′‖L∞(0,T ;L2(ΩF )) + ‖U ′‖L2(0,T ;H1(ΩF )) +
k∑
i=1
‖h′′i ‖W 2,∞(0,T ;R2) + ‖ω′i‖W 1,∞(0,T ;R)

≤ K
(
‖F ′‖L2(0,T ;V ∗) + ‖AU0‖H + ‖PF (0)‖H

)
. (4.3.14)

Moreover, we find



−(1− r)∆U +∇P = F0 −Re
∂U

∂t
∈ L2(0, T ; H1(ΩF )), in ΩF×]0, T ],

∇ · U = 0, in ΩF×]0, T ],

U(y, t) = h′i(t) + ωi(t)(y − hi(0))⊥, (y, t) ∈ ∂Bi× ∈]0, T ], i ∈ {1, . . . , k},

U(y, t) = 0, (y, t) ∈ ∂O×]0, T ].

Using the regularity results of the steady Stokes equations [43], we deduce that U ∈ L2(0, T ; H3(ΩF )),

P ∈ L2(0, T,H2(ΩF )) such that
∫

ΩF
P (y)dy = 0 and

‖U‖L2(0,T ;H3(ΩF )) + ‖P‖L2(0,T,H2(ΩF )) ≤ C
(
‖F0‖L2(0,T ;H1(ΩF )) + ‖U ′‖L2(0,T ;H1(ΩF ))

+
k∑
i=1
‖hi‖H1(0,T ;R2) + ‖ωi‖L2(0,T ;R2)

)
,

where C is a positive constant that depends on r and ΩF .

Thanks to (4.3.14) and Theorem 4.2.1,

‖U‖L2(0,T ;H3(ΩF )) +‖P‖L2(0,T,H2(ΩF )) ≤ K
(
‖PF‖L2(0,T ;V ) +‖F ′‖L2(0,T ;V ∗) +‖PF (0)‖H +‖AU0‖H

)
,

(4.3.15)
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where K is a positive constant that depends on r,ΩF and T .

Noting that U ∈ L2(0, T ; H3(ΩF )) with U ′ ∈ L2(0, T ; H1(ΩF )), it follows that U ∈ C([0, T ],H2(ΩF ))

and there exists a positive constant K depending on r,ΩF and T , such that

‖U‖L∞([0,T ];H2(ΩF )) ≤ K
(
‖U‖L2(0,T ;H3(ΩF )) + ‖U ′‖L2(0,T ;H1(ΩF )) + ‖U0‖H

)
.

By Proposition 5.3 in [40], we have ‖U‖H2(ΩF ) ≤ C‖AU‖L2(ΩF ), where C is a positive constant.

This implies that

‖U‖L∞([0,T ];H2(ΩF )) ≤ K
(
‖U‖L2(0,T ;H3(ΩF )) + ‖U ′‖L2(0,T ;H1(ΩF )) + ‖AU0‖H

)
.

Thanks again to (4.3.14) and (4.3.15), we get

‖U‖L∞([0,T ];H2(ΩF )) ≤ K
(
‖PF‖L2(0,T ;V ) + ‖F ′‖L2(0,T ;V ∗) + ‖PF (0)‖H + ‖AU0‖H

)
.

By noting that ∇P = F0 −ReU ′ + (1− r)∆U and (4.3.14), we get that

∇P ∈ C([0, T ],L2(ΩF )), ∂t∇P ∈ L2(0, T ; H−1(ΩF )).

Consequently we obtain

‖∇P‖L∞([0,T ];L2(ΩF )) ≤ K
(
‖F‖L2(0,T ;H1(ΩF )) + ‖F ′‖L2(0,T ;V ∗) + ‖PF (0)‖H + ‖AU0‖H

)
,

‖∂t∇P‖L2(0,T ;H−1(ΩF )) ≤ K
(
‖F ′‖L2(0,T ;V ∗) + ‖PF (0)‖H + ‖AU0‖H

)
.

Since
∫

ΩF
P (y)dy = 0, then by Proposition 1.2 in [43] we get that

P ∈ C([0, T ], Ḣ1(ΩF )), ∂tP ∈ L2(0, T ;L2(ΩF )),

and

‖P‖L∞([0,T ];H1(ΩF )/R) ≤ K
(
‖F‖L2(0,T ;H1(ΩF )) + ‖F ′‖L2(0,T ;V ∗) + ‖PF (0)‖H + ‖AU0‖H

)
,

‖∂tP‖L2(0,T ;L2(ΩF )/R) ≤ K
(
‖F ′‖L2(0,T ;V ∗) + ‖PF (0)‖H + ‖AU0‖H

)
.

This ends the proof. �
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We proceed by defining the mapping Ñ for which a solution to problem (4.1.14)-(4.1.21),(4.1.25)-

(4.1.26) is a fixed point of Ñ . For T > 0, R > 0 and R′ > 0, we define the set

K̃ =
{

(W,Q, T , (hi, ωi)i=1,...,k) ∈ S̃(0, T,ΩF ) : ‖W‖Ũ(0,T ;ΩF )+‖T ‖L∞(0,T ;H2(ΩF ))+‖Q‖L2(0,T ;H2(ΩF ))

+ ‖∇Q‖L∞(0,T ;L2(ΩF )) + ‖∂t∇Q‖L2([0,T ];H−1(ΩF )) +
k∑
i=1
‖h′′i ‖L∞([0,T ]×R2) + ‖ω′i‖L∞([0,T ]×R) ≤ R,

‖T ′‖L∞(0,T ;H1(ΩF )) ≤ R′
}
,

where

S̃(0, T ; ΩF ) := Ũ(0, T ; ΩF )×L2(0, T ;H2(ΩF ))× T̃(0, T ; ΩF )×
(
W 2,∞(0, T ;R2)×W 1,∞(0, T ;R)

)k
.

We note that if R is large enough, then K̃ 6= ∅ for all T > 0 (see for instance, [22]). Moreover, by

Aubin-Simon’s theorem [8], the set K̃ is convex, closed and compact in XT , where

XT = C([0, T ],H1(ΩF ))× C([0, T ], L2(ΩF ))× C([0, T ],H1(ΩF ))×
(
C1([0, T ],R2)× C([0, T ],R)

)k
.

Consider the mapping

Ñ : K̃ → XT

(W,Q, T , (hi, ωi)i=1,...,k) → (U,P, T̃ , (h̃i, ω̃i)i=1,...,k),

where (U,P, T̃ , (h̃i, ω̃i)i=1,...,k) satisfies equations (2.3.1), (4.2.3)-(4.2.5) and the following transport

equation:

∂T̃
∂t

+
((
W + ∂Y

∂t

)
· ∇
)
T̃ = −[Ga(W, T̃ )]− 1

We
T̃ + 2r

We
[DW ], in ΩF×]0, T [, (4.3.16)

T̃ (y, 0) = τ0(y), y ∈ ΩF . (4.3.17)

For the rest of the paper, we use Einstein convention for summation. Moreover, we denote by K0

and C0 which satisfy the following assertions:

i. K0 is a positive function of (h1
i , ω

0
i )i=1,...,k, ‖u0‖H2(ΩF ), ‖τ0‖H2(ΩF ), T and R which is non-

decreasing with respect to T,R, ‖u0‖H2(ΩF ) and (|h0
i |, |h1

i |, |ω0
i |)i=1,...,k.

ii. C0 is a positive function of (h1
i , ω

0
i , )i=1,...,k, ‖u0‖H2(ΩF ), and T which is non-decreasing with
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respect to T, ‖u0‖H2(ΩF ), ‖τ0‖H2(ΩF ) and (|h0
i |, |h1

i |, |ω0
i |)i=1,...,k.

Before proceeding, we need some results which will be used in the course of proof Theorem 4.1.2.

It can be shown using Lemma A.1.3 the following proposition:

Proposition 4.3.2 Suppose that (W,Q, T , (ξi, ωi)i=1,...,k) ∈ K̃, then there exists a constant K0

satisfying (i) such that

‖[(L−∆)W ]‖L2(0,T ;H1(ΩF )) ≤ K0T
1/2,

‖[MW ]‖L2(0,T ;H1(ΩF )) ≤ K0T
1/2,

‖[(∇−G)P ]‖L2(0,T ;H1(ΩF )) ≤ K0T,

‖[NW ]‖L2(0,T ;H1(ΩF )) ≤ K0T
1/2,

‖[div T ]‖L2(0,T;H1(ΩF)) ≤ K0T1/2,

‖F1,i‖L2(0,T,R2) ≤ K0T
1/2,

‖F2,i‖L2(0,T,R) ≤ K0T
1/2.

Proof. By Lemma A.1.3, one can prove easily that the terms [(L − ∆)W ], [MW ], [div T ],F1,i

and F2,i are bounded by K0T
1/2 in L2(0, T ; L2(ΩF )). Using similar arguments as in [40], we get

that [(∇ − G)P ] is bounded by K0T in L2(0, T ; L2(ΩF )), and [NW ] is bounded by K0T
1/10 in

L2(0, T ; L2(ΩF )). Hence, to complete proof of the above estimates, it remains to bound the first

order derivatives in space of these operators.

Let p ∈ {1, 2}. We start by computing ∂yp[(L−∆)W ]i:

∂yp[(L−∆)W ]i = ∂gjk

∂yp

∂2Wi

∂yj∂yk
+ (gjk − δjk)

∂3Wi

∂yj∂yk∂yp
+ ∂2gjk

∂yp∂yj

∂Wj

∂yk
+ ∂(gjk)

∂yj

∂2Wj

∂yp∂yk

+ 2 ∂

∂yp

(
gk`Γij,k

)∂Wj

∂y`
+ 2gk`Γij,k

∂2Wj

∂y`∂yp

+ ∂

∂yp

{
∂

∂yk
(gk`Γij,`) + gk`Γmj,`Γik,m

}
Wj +

{
∂

∂yk
(gk`Γij,`) + gk`Γmj,`Γik,m

}
∂Wj

∂yp
,

where

gij(y, t) = ∂Yi
∂xk

(X(y, t), t)∂Yj
∂xk

(X(y, t), t) and Γij,k(y, t) = ∂Yi
∂x`

(X(y, t), t) ∂2X`

∂yk∂yj
(y, t).

By Lemma A.1.3, Corollary A.1.1, and using the fact that ‖W‖Ũ(0,T ;ΩF ≤ R we get that

‖∂yp[(L−∆)W ]i‖L2(0,T,L2(ΩF )) ≤ K0T
1/2.
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Hence, estimate (4.3.18) holds true.

By chain rule, we have

∂yp[MW ]i = ∂2Yj
∂t∂x`

∂X`

∂yp

∂Wi

∂yj
+ ∂Yj

∂t

∂2Wi

∂yp∂yj
+
{

Γij,k
∂Yk
∂t

+ ∂Yi
∂xk

∂2Xk

∂t∂yj

}
∂Wj

∂yp

+
{
∂Γij,k
∂yp

∂Yk
∂t

+ Γij,k
∂2Yk
∂t∂x`

∂X`

∂yp
+ ∂2Yi
∂x`∂xk

∂X`

∂yp

∂2Xk

∂t∂yj
+ ∂Yi
∂xk

∂3Xk

∂t∂yp∂yj

}
Wj .

Lemma A.1.3 implies that there exists a constant K0 such that

‖∂yp[MW ]i‖L2(0,T ;L2(ΩF )) ≤ K0T
1/2‖W‖L∞(0,T ;H2(ΩF )).

This implies that ‖∂yp[MW ]i‖L2(0,T ;L2(ΩF )) ≤ K0T
1/2.

From the definition of [GQ], we have:

∂yp[(∇−G)Q]i = ∂gij

∂yp

∂Q

∂yj
+ (gij − δij)

∂2Q

∂yp∂yj
.

Hence,

‖∂yp[(∇−G)Q]i‖L2(0,T ;L2(ΩF )) ≤ TK0‖Q‖L2(0,T ;H2(ΩF ),

and using the fact that ‖Q‖L2(0,T ;H2(ΩF ) ≤ R, we get

‖∂yp[(∇−G)Q]i‖L2(0,T ;L2(ΩF )) ≤ K0T.

To show (4.3.18), we calculate:

∂yp[NW ]i = ∂Wj

∂yp

∂Wi

∂yj
+Wj

∂2Wi

∂yp∂yj
+
∂Γij,k
∂yp

WjWk + Γij,k
(∂Wj

∂yp
Wk +Wj

∂Wk

∂yp

)
.

By Holder inequality and the Sobolev injection of H1(ΩF ) into L4(ΩF ), we get

‖WjWk‖L2(0,T ;L2(ΩF )) ≤ CT 1/2‖W‖2L∞(0,T ;H2(ΩF )),∥∥∥Wj
∂Wk

∂yp

∥∥∥
L2(0,T ;L2(ΩF ))

≤ CT 1/2‖W‖2L∞(0,T ;H2(ΩF )),∥∥∥∂Wi

∂yj

∂Wj

∂yp

∥∥∥
L2(0,T ;L2(ΩF ))

≤ CT 1/2‖W‖2L∞(0,T ;H2(ΩF )),

where C is a positive constant that depends on ΩF .

Again by Holder inequality and the Sobolev injection of H2(ΩF ) into L∞(ΩF ), there exists C > 0

120



4.3 Local existence to standard Oldroyd model

depending on ΩF such that:

∥∥∥Wj
∂2Wi

∂yp∂yj

∥∥∥
L2(ΩF )

≤ C‖Wj‖L∞(ΩF )

∥∥∥ ∂2Wi

∂yp∂yj

∥∥∥
L2(ΩF )

≤ C‖Wj‖H2(ΩF )‖Wi‖H2(ΩF )

≤ C‖W‖2H2(ΩF ).

This implies that ∥∥∥Wj
∂2Wi

∂yp∂yj

∥∥∥
L2(0,T ;L2(ΩF ))

≤ CT‖W‖2L∞(0,T ;H2(ΩF )),

and thus ∥∥∥Wj
∂2Wi

∂yp∂yj

∥∥∥
L2(0,T ;L2(ΩF ))

≤ K0T.

We deduce that

‖∂yp[NW ]i‖L2(0,T ;L2(ΩF )) ≤ CT 1/2‖W‖2Ũ(0,T ;ΩF ),

and thus estimate (4.3.18) holds.

Estimate (4.3.18) is straightforward by calculating the first order derivatives of [div T ] and Lemma

A.1.3. More precisely, we have:

∂yp[div T ]i = ∂

∂yp

( ∂Yi
∂xk

∂Ym
∂x`

)∂Tk`
∂ym

+ ∂Yi
∂xk

∂Ym
∂x`

∂2Tk`
∂yp∂ym

.

The last two estimates are easy to derive and we leave the verification to the reader. �

It can be deduced from the following that the time derivative of the function F defined throughout

(4.2.3)-(4.2.5) and (4.3.4) is in the good space to apply Proposition 4.3.1.

Proposition 4.3.3 Suppose that (W,Q, T , (ξi, ωi)i=1,...,k) ∈ K̃, then there exists a constant K0

satisfying (i) such that

‖F ′‖L2(0,T ;V ∗) ≤ K0(1 +R′)T 1/2. (4.3.18)

Proof. Let F be the source term defined throughout (4.2.3)-(4.2.5) and (4.3.4). and let φ ∈ V .

Then we have

〈
F ′, φ

〉
V ∗,V

= d

dt

〈
F, φ

〉
V ∗,V

= d

dt
〈F, φ〉V ∗,V

= d

dt
(F, φ)H .
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This implies that

〈
F ′, φ

〉
V ∗,V

= d

dt

∫
ΩF

F0 · φdy +
k∑
i=1

F ′1,i · Vφ,i + F ′2,i ωφ,i.

It follows that there exists a positive constant C depending on ΩF such that

|F1,i| ≤ C‖T ′‖H1(ΩF ) and |F2,i| ≤ C‖T ′‖H1(ΩF ).

Hence, we obtain

‖F ′‖V ∗ ≤ sup
‖φ‖V =1

∣∣∣ d
dt

∫
ΩF

F0 · φ dy
∣∣∣+ CR′. (4.3.19)

Classical computations implies that ∂t[(L−∆)W ]i:

∂t[(L−∆)W ]i = ∂

∂yj

((
gjk − δjk

) ∂2Wi

∂t∂yk

)
+ ∂gjk

∂t

∂2Wi

∂yj∂yk
+ ∂2gjk

∂t∂yj

∂Wj

∂yk
+ ∂gjk

∂yj

∂2Wj

∂t∂yk

+ 2∂t
(
gk`Γij,k

)∂Wj

∂y`
+ 2gk`Γij,k

∂2Wj

∂t∂y`
+ ∂t

{
∂

∂yk
(gk`Γij,`) +

2∑
m=1

gk`Γmj,`Γik,m

}
Wj

+
{

∂

∂yk
(gk`Γij,`) +

2∑
m=1

gk`Γmj,`Γik,m

}
∂Wj

∂t
.

It follows from Lemma A.1.3 and Corollary A.1.1 in Appendix A and performing integration by

parts that

∣∣∣ d
dt

∫
ΩF

[(L−∆)W ]iφidy
∣∣∣ ≤ ∣∣∣− ∫

ΩF

(
gjk − δjk

) ∂2Wi

∂t∂yk

∂φi
∂yj

dy +
∫
∂ΩF

(
gjk − δjk

) ∂2Wi

∂t∂yk
φinjdΓ

∣∣∣
+K0

(
‖W‖H2(ΩF ) + ‖∂tW‖L2(ΩF ) + T

∥∥∥ ∂2Wj

∂t∂yk

∥∥∥
L2(ΩF )

)
‖φ‖L2(ΩF ).

Noting that the term gjk− δjk vanishes on the boundary of the fluid and using again Lemma A.1.3,

we get

∣∣∣ d
dt

∫
ΩF

[(L−∆)W ]iφidy
∣∣∣ ≤ K0T‖∂tW‖H1(ΩF )‖φi‖H1(ΩF )

+K0
(
‖W‖H2(ΩF ) + ‖∂tW‖L2(ΩF ) + T‖∂tW‖H1(ΩF )

)
,

and thus

sup
‖φ‖V =1

∣∣∣ d
dt

∫
ΩF

[(L−∆)W ]iφidy
∣∣∣ ≤ K0

(
‖W‖H2(ΩF ) + ‖∂tW‖L2(ΩF ) + T‖∂tW‖H1(ΩF )

)
. (4.3.20)
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Moreover, from the definition of the operator M,N and [divT ] in (4.2.8),(4.2.9) and (4.2.11), we

have

∂t[MW ]i = ∂t
[(∂Y

∂t
· ∇
)
Wi

]
+
{

Γij,k
∂Yk
∂t

+ ∂Yi
∂xk

∂2Xk

∂t∂yj

}
∂Wj

∂t

+ ∂t

{
Γij,k

∂Yk
∂t

(X(y, t), t) + ∂Yi
∂xk

(X(y, t), t) ∂
2Xk

∂t∂yj
(y, t)

}
Wj

∂t[NW ]i = ∂t[(W · ∇)Wi] +
∂Γij,k
∂t

WjWk + Γij,k
(∂Wj

∂t
Wk +Wj

∂Wk

∂t

)
,

∂t[divT ]i =
( ∂2Yi
∂xk∂t

+ ∂2Yi
∂xk∂xj

∂Xj

∂t

)∂Ym
∂x`

∂Tk`
∂y`

+ ∂Yi
∂xk

( ∂2Ym
∂x`∂t

+ ∂2Ym
∂xj∂x`

∂Xj

∂t

)∂Tk`
∂y`

+ ∂Yi
∂xk

∂Ym
∂x`

∂2Tk`
∂y`∂t

.

From Lemma A.1.3 and (4.3.20) it follows that for all φ ∈ V such that ‖φ‖V = 1, we have

∣∣∣ d
dt

∫
ΩF

F0·φdy
∣∣∣ ≤ Re∣∣∣ d

dt

∫
ΩF

((∂Y
∂t

+W
)
·∇
)
W ·φdy

∣∣∣+∣∣∣ d
dt

∫
ΩF

[(G−∇)Q]·φdy
∣∣∣+K0

(
‖WjWk‖L2(ΩF )

+K0T
∥∥∥∂Wj

∂t
Wk

∥∥∥
L2(ΩF )

+‖T ‖H1(ΩF )+‖T ′‖H1(ΩF )+‖W‖H2(ΩF )+‖∂tW‖L2(ΩF )+T‖∂tW‖H1(ΩF )
)
.

(4.3.21)

We remark that from the definition of Y in Appendix A, we have

∇ ·
(∂Y
∂t

(X(y, t), t) +W (y, t)
)

= 0.

By performing integration by parts, we get

∫
ΩF

((∂Y
∂t

+W
)
· ∇
)
W · φ dy = −

∫
ΩF

W ·
((∂Y

∂t
+W

)
· ∇
)
φ dy +

∫
∂ΩF

W · φ
(∂Y
∂t

+W
)
· n dΓ,∫

ΩF
[(G−∇)Q] · φ dy = −

∫
ΩF

∂

∂yj

(
gij − δij

)
Q
∂φi
∂yj

dy +
∫
∂ΩF

(
gij − δij

)
QφidΓ.

We remark that W = h′i(t) + ωi(t)(y − h0
i )⊥ on Bi and vanishes over ∂O. Hence, (A.1.3) implies

that (∂Y
∂t

(X(y, t)) +W (y, t)
)
· n = 0, for all (y, t) ∈ ∂ΩF × [0, T ].

Moreover, since gij − δij vanishes on ∂ΩF we get

∫
ΩF

((∂Y
∂t

+W
)
· ∇
)
W · φ dy = −

∫
ΩF

((∂Y
∂t

+W
)
· ∇
)
φ ·W dy,∫

ΩF
[(G−∇)Q] · φ dy = −

∫
ΩF

∂

∂yj

(
gij − δij

)
Q
∂φi
∂yj

dy.
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It follows that

d

dt

∫
ΩF

((∂Y
∂t

+W
)
· ∇
)
W ·φ dy = −

∫
ΩF

(∂2Yj
∂t2

+ ∂2Yj
∂t∂xk

∂Xk

∂t

)∂φi
∂yj

Wi dy−
∫

ΩF
(∂tW · ∇)φ ·Wdy

−
∫

ΩF

((∂Y
∂t

+W
)
· ∇
)
φ · ∂tWdy,

and

d

dt

∫
ΩF

[(G−∇)Q] · φ dy = −
∫

ΩF

∂2

∂t∂yj

(
gij − δij

)
Q
∂φi
∂yj

dy −
∫

ΩF

∂

∂yj

(
gij − δij

)∂Q
∂t

∂φi
∂yj

dy.

By Holder Inequality and using the embedding of H2(ΩF ) into L∞(ΩF ) we get that

∣∣∣ d
dt

∫
ΩF

((∂Y
∂t

+W
)
· ∇
)
W · φ dy

∣∣∣ ≤ K0

(
‖W‖H1(ΩF ) + ‖∂tW‖L2(ΩF )(‖W‖H2(ΩF ) + 1)

)
‖φ‖V (4.3.22)∣∣∣ d

dt

∫
ΩF

[(G−∇)Q] · φ dy
∣∣∣ ≤ K0T

(
‖Q‖L2(ΩF ) + ‖∂tQ‖L2(ΩF )

)
‖φ‖V , (4.3.23)

Moreover, by Holder’s inequality and the Sobolev embedding of H1(ΩF ) into L4(ΩF ) one can show

that

‖WjWk‖L2(ΩF ) ≤ C‖W‖2H1(ΩF ), (4.3.24)∥∥∥∂Wj

∂t
Wk

∥∥∥
L2(ΩF )

≤ C
∥∥∥∂W
∂t

∥∥∥
H1(ΩF )

‖W‖H1(ΩF ). (4.3.25)

Combining (4.3.22)-(4.3.25) with (4.3.21), we obtain

sup
‖φ‖V =1

∣∣∣ d
dt

∫
ΩF

F0 · φ dy
∣∣∣ ≤ K0

(
‖W‖2H1(ΩF ) + ‖W‖H2(ΩF ) + (1 + ‖W‖H2(ΩF ))‖∂tW‖L2(ΩF )

+ ‖Q‖L2(ΩF ) + ‖T ‖H1(ΩF ) + ‖T ′‖H1(ΩF )
)

+K0T
(
(1 + ‖W‖H1(ΩF ))‖∂tW‖H1(ΩF ) + ‖∂tQ‖L2(ΩF )

)
. (4.3.26)

Returning to (4.3.19), we get

‖F ′‖V ∗ ≤ K0
(
‖W‖2H1(ΩF ) + ‖W‖H2(ΩF ) + (1 + ‖W‖H2(ΩF ))‖∂tW‖L2(ΩF ) + ‖Q‖L2(ΩF )

+ ‖T ‖H1(ΩF ) + ‖T ′‖H1(ΩF )
)

+K0T
(
(1 + ‖W‖H1(ΩF ))‖∂tW‖H1(ΩF ) + T‖∂tQ‖L2(ΩF )

)
. (4.3.27)

Therefore, estimate (4.3.18) follows by noting that (W,Q, T , (ξi, ωi)i=1,...,k) ∈ K̃. �

Next, we prove the following lemma.

Lemma 4.3.1 Assume that ∂O ∈ C1, τ0 ∈ H2(ΩF ), and (W,Q, (hi, ωi)i=1,...,k) ∈ K̃. Then problem
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(4.3.16)-(4.3.17) admits a unique solution T̃ in C([0, T ],H2(ΩF )). Moreover, there exists a positive

constant c such that

‖T̃ ‖L∞(0,T ;H2(ΩF ) ≤
(
‖τ0‖H2(ΩF ) + 2r

We

)
exp

(
K0T

1/2
)
. (4.3.28)

Furthermore, we get T̃ ′ belongs to C([0, T ],H1(ΩF )) and satisfies

‖T̃ ′‖L∞(0,T ;H1(ΩF )) ≤ K0
(
‖τ0‖H2(ΩF ) + 2r

We

)
exp

(
K0T

1/2
)
. (4.3.29)

Proof. First we recall that transport coefficientW+ ∂Y

∂t
∈ L1(0, T ; H3(ΩF )) and globally Lipschitz.

Moreover, the transport coefficient satisfies (see (A.1.3) in Appendix A)

(
W (y, t) + ∂Y

∂t
(X(y, t), t))

)
· n = 0, ∀(y, t) ∈ ∂ΩF × [0, T ]. (4.3.30)

Therefore the existence of a unique solution of the hyperbolic partial differential equation (4.3.16)

follows by applying the method of characteristics. We turn now to prove estimate (4.3.28). To

this end, we multiply scalar equation (4.3.16) by T̃ in H2. By performing integration by parts and

using (4.3.30), we get

We

2
d

dt
‖T̃ (t)‖2H2(ΩF ) + ‖T̃ (t)‖2H2(ΩF ) = 2r

(
[DW ], T̃

)
H2(ΩF ) −We

(
[Ga(W, T̃ )], T̃

)
H2(ΩF )

−We

{∫
ΩF

∂

∂yk

(
W`(y, t) + ∂Y`

∂t
(X(y, t), t)

)∂T̃ij
∂y`

(y, t)∂T̃ij
∂yk

(y, t)dy

+
∫

ΩF

∂2

∂yk∂ym

(
W`(y, t) + ∂Y`

∂t
(X(y, t), t)

)∂T̃ij
∂y`

(y, t) ∂2T̃ij
∂yk∂ym

(y, t)dy

+2
∫

ΩF

∂

∂yk

(
W`(y, t) + ∂Y`

∂t
(X(y, t), t)

) ∂2T̃ij
∂y`∂ym

(y, t) ∂2T̃ij
∂yk∂ym

(y, t)dy
}
. (4.3.31)

Using the Sobolev embeddings H2(ΩF ) ↪→ L∞(ΩF ) andH1(ΩF ) ↪→ L4(ΩF ), it follows from Lemma

A.1.3 that there exists K0 such that

We

2
d

dt
‖T̃ (t)‖2H2(ΩF ) + ‖T̃ (t)‖2H2(ΩF ) ≤ K0We

(
1 + ‖W (t)‖H3(ΩF )

)
‖T̃ (t)‖2H2(ΩF )

+ 2rK0‖W (t)‖H3(ΩF )‖T̃ (t)‖H2(ΩF ).

This implies that

‖T̃ (t)‖H2(ΩF )
d

dt
‖T̃ (t)‖H2(ΩF )+

1
We
‖T̃ (t)‖2H2(ΩF ) ≤ K0

(
1+‖W (t)‖H3(ΩF )

)
‖T̃ (t)‖H2(ΩF )

(
‖T̃ (t)‖H2(ΩF )+

2r
We

)
.
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Consequently

1
2
d

dt

(
‖T̃ (t)‖H2(ΩF ) + 2r

We

)2
≤ K0

(
1 + ‖W (t)‖H3(ΩF )

)(
‖T̃ (t)‖H2(ΩF ) + 2r

We

)2
. (4.3.32)

Integrating (4.3.32) over (0, t) ⊂ (0, T ), we obtain

1
2
(
‖T̃ (t)‖H2(ΩF )+

2r
We

)2
≤ 1

2
(
‖τ0‖H2(ΩF )+

2r
We

)2
+K0

∫ t

0

(
1+‖W (s)‖H3(ΩF )

)(
‖T̃ (s)‖H2(ΩF )+

2r
We

)2
ds.

Gronwall lemma implies that

(
‖T̃ (t)‖H2(ΩF ) + 2r

We

)2
≤
(
‖τ0‖H2(ΩF ) + 2r

We

)2
exp

( ∫ T

0

(
1 + ‖W (s)‖H3(ΩF )

)
ds
)
,

and as ‖W‖L2(0,T ;H3(ΩF )) ≤ R, we get

‖T̃ (t)‖H2(ΩF ) + 2r
We
≤
(
‖τ0‖H2(ΩF ) + 2r

We

)
exp(K0T

1/2). (4.3.33)

To prove T̃ ∈ C([0, T ],H2(ΩF )), we define the characteristics y that pass through y0 at time t as

follows:

d

ds
y(s, t, y0) = W (s, y(s, t, y0)) + dY

ds

(
s,X(s, y(s, t, y0))

)
, y(t, t, y0) = y0,

d

ds
T̃ (s, y(s, t, y0)) = 1

We

(
2r[DW ]− T̃ −We[Ga(W, T̃ )]

)
(s, y(s, t, y0)).

Integrating the last inequality over (0, t) ⊂ (0, T ), we get

T̃ (t, y(t, t, y0))− T̃ (0, y(0, t, y0)) = 1
We

∫ t

0

(
2r[DW ]− T̃ −We[Ga(W, T̃ )]

)
(s, y(s, t, y0))ds.

Consequently, we obtain

T̃ (t, y0) = τ0
(
y(0, t, y0)

)
+ 1
We

∫ t

0

(
2r[DW ]− T̃ −We[Ga(W, T̃ )]

)
(s, y(s, t, y0))ds.

The above formula implies that T̃ ∈ C([0, T ],H2(ΩF )) (see [7]).

Moreover, since W ∈ C([0, T ],H2(ΩF )) and Y ′ ∈ C([0, T ],R2), we get that T̃ ′ given by (4.3.16)

belongs to C([0, T ],H1(ΩF )) and

‖T̃ ′(t)‖H1(ΩF ) ≤ K0
(
‖W (t)‖H2(ΩF ) +

(
1 + 1

K0We

))(
‖T̃ (t)‖H2(ΩF ) + 2r

We

)
.
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Inequality (4.3.33) implies that

‖T̃ ′(t)‖H1(ΩF ) ≤
(
K0 + 1

We

)(
‖τ0‖H2(ΩF ) + 2r

We

)
exp(K0T

1/2).

With these preliminaries in mind, we turn to prove that Ñ maps K̃ into itself.

Corollary 4.3.1 For T small enough, R and R′ sufficiently large, we have Ñ (K̃) ⊂ K̃.

Proof. Let (W,Q, T , (hi, ωi)i=1,...,k) ∈ K̃ and denote by (U,P, T̃ , (h̃i, ω̃i)i=1,...,k) ∈ K̃ its image by

the mapping Ñ . It follows from Proposition 4.3.2 that

‖F0‖L2(0,T ;H1(ΩF )) + ‖F1,i‖L2(0,T ;R2) + ‖F2,i‖L2(0,T ;R) ≤ K0T
1/2

Moreover, since

‖PF (0)‖H ≤ C(‖u0‖H2(ΩF ) + ‖τ0‖H2(ΩF )),

it follows from Proposition 4.3.1 and Proposition 4.3.3 that for T small enough, we have

‖U‖Ũ(0,T ;ΩF ) + ‖P‖L2(0,T ;H2(ΩF )) + ‖∇P‖L∞(0,T ;L2(ΩF )) + ‖∂t∇P‖L2(0,T ;H−1(ΩF ))

+
k∑
i=1
‖h̃i‖W 2,∞(0,T ;R2)+‖ω̃i‖W 1,∞(0,T ;R) ≤ K

(
‖Au0‖H+K0(1+R′)T 1/2+‖u0‖H2(ΩF )+‖τ0‖H2(ΩF )

)
.

Therefore, by choosing T small enough and R� 2K(‖Au0‖H + ‖u0‖H2(ΩF ) + ‖τ0‖H2(ΩF )) we get

‖U‖Ũ(0,T ;ΩF ) + ‖P‖L2(0,T ;H2(ΩF )) + ‖∇P‖L∞(0,T ;L2(ΩF )) + ‖∂t∇P‖L2(0,T ;H−1(ΩF ))

+
k∑
i=1
‖h̃i‖W 2,∞(0,T ;R2) + ‖ω̃i‖W 1,∞(0,T ;R) ≤

R

2 . (4.3.34)

Moreover, for T < (ln2)2/K0 in Lemma 4.3.1, we have

‖T̃ (t)‖H2(ΩF ) ≤ 2
(
‖τ0‖H2(ΩF ) + 2r

We

)
, ∀t ∈ [0, T ],

‖T̃ ′(t)‖H1(ΩF ) ≤ 2
(
K0 + 1

We

)(
‖τ0‖H2(ΩF ) + 2r

We

)
, ∀t ∈ [0, T ].

Choosing R > 4
(
‖τ0‖H2(ΩF ) + 2r

We

)
and R′ > 2

(
K0 + 1

We

)(
‖τ0‖H2(ΩF ) + 2r

We

)
imply that

‖T̃ ‖L∞([0,T ],H2(ΩF )) ≤
R

2 , and ‖T̃ ′‖L∞([0,T ],H1(ΩF )) ≤ R′.
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Combining the last inequality with that in (4.3.34), we get (U,P, T̃ , (h̃i, ω̃i)i=1,...,k) ∈ K̃. �

Next, we prove the following:

Proposition 4.3.4 The mapping Ñ : K̃ → XT is continuous for the topology of XT .

Proof. To prove the continuity of the mapping Ñ for the topology of XT , it suffices to prove the

continuity of Ñ from (K̃, ‖.‖XT ) into (XT , ‖.‖YT ), where

YT = C([0, T ]; L2(ΩF ))× C([0, T ];L2(ΩF ))× C([0, T ]; L2(ΩF ))×
(
C1([0, T ];R2)× C([0, T ];R)

)k
.

Assume for instance that the mapping Ñ is continuous from (K̃, ‖.‖XT ) into (XT , ‖.‖YT ). Let

(W,Q, T , (hi, ωi)i=1,...,k) ∈ K̃ and consider the sequence (Wn, Qn, T n, (hni , ωni )i=1,...,k) ∈ K̃ such

that

(Wn, Qn, T n, (hni , ωni )i=1,...,k) −→ (W,Q, T , (hi, ωi)i=1,...,k), as n→ +∞, in the topology of XT .

We denote by Xn, Y n, gij,n,Γk,ni,j , . . . the terms corresponding to (Wn, Qn, T n, (hni , ωni )i=1,...,k) and

by X,Y, gij ,Γki,j , . . . the terms corresponding to (W,Q, T , (hi, ωi)i=1,...,k).

Consider the sequence:

(Un, Pn, T̃ n, (h̃ni , ω̃ni )i=1,...,k) = Ñ (Wn, Qn, T n, (hni , ωni )i=1,...,k),

and let

(U,P, T̃ , (h̃i, ω̃i)i=1,...,k) = Ñ (W,Q, T , (hi, ωi)i=1,...,k).

By Corollary 4.3.1, we obtain

(Un, Pn, T̃ n, (h̃ni , ω̃ni )i=1,...,k) ∈ K̃.

Since K̃ is closed, convex and bounded set in XT , then by Ascoli’s theorem K̃ is compact in XT .

This implies that there exists (U?, P ?, T̃ ?, (h̃?i , ω̃?i )i=1,...,k) ∈ K̃, such that

(Un, Pn, T̃ n, (h̃ni , ω̃ni )i=1,...,k) −→ (U?, P ?, T̃ ?, (h̃?i , ω̃?i )i=1,...,k), as n→ +∞,

for the topology of XT , and thus for the topology of YT .
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The continuity of the mapping Ñ in the topology of YT implies that

(Un, Pn, T̃ n, (h̃ni , ω̃ni )i=1,...,k) −→ (U,P, T̃ , (h̃i, ω̃i)i=1,...,k), as n→ +∞, in the topology of YT .

By uniqueness of the limit, it follows that

(Un, Pn, T̃ n, (h̃ni , ω̃ni )i=1,...,k) −→ (U,P, T̃ , (h̃i, ω̃i)i=1,...,k), as n→ +∞, in the topology ofXT .

Thus the mapping Ñ is continuous from (K̃, ‖.‖XT ) into (XT , ‖.‖XT ).

Now we are in position to prove the continuity of the mapping Ñ from (K̃, XT ) into (XT , YT ). To

this end, we define:

Ũn = U − Un, P̃n = P − Pn, Zn = T̃ − T̃ n, H̃n
i = h̃i − h̃ni , and W̃n

i = ω̃i − ω̃ni .

Since the Cauchy stress tensor field Σ(Ũn, P̃n) is symmetric and using the fact that

∇ ·
(
Wn(y, t) + dY n

dt
(Xn(y, t), t)

)
= 0 and

(
Wn(y, t) + dY n

dt
(Xn(y, t), t)

)
· n|∂ΩF = 0,

it follows that

1
2
d

dt

(
Re‖Ũn(t)‖2L2(ΩF ) +

k∑
i=1

mi|(H̃n
i )′(t)|2 + J i|W̃n

i (t)|2
)

+ 2(1− r)
∫
O
|D[Ũn(t)]|2dy

=
∫

ΩF
Fn0 (t) · Ũn(t)dy + Fn1,i(t) · (H̃n

i )′(t) + Fn2,i(t)W̃n
i (t), (4.3.35)

and
We

2
d

dt

(
‖Zn(t)‖2L2(ΩF )

)
+ ‖Zn(t)‖2[L2(ΩF )]4 ≤ ‖G

n(t)‖L2(ΩF )‖Zn(t)‖L2(ΩF ), (4.3.36)

where

Fn0 = (1− r)
(
[(L−∆)(W −Wn)] + [(L− Ln)Wn]

)
+ [(∇−G)(Q−Qn)]− [(G−Gn)Qn]

−Re
(
[M(W −Wn)] + [(M −Mn)Wn] + [NW ]− [NnWn]

)
+ [div(T − T n)] + [(div− divn)T n],

Fn1,i = −
∫
∂Bi

(T − T n)νidΓi,

Fn2,i = −
∫
∂Bi

(T − T n)νi · (y − h0
i )⊥dΓi,

Gn = We

{
[Gna(Wn, T̃ n)]− [Ga(W, T̃ )]−

((
W −Wn + ∂Y

∂t
(X(y, t), t)− ∂Y n

∂t
(Xn(y, t), t)

)
· ∇
)
T̃
}

+2r
(
[D(W −Wn)] + [(D −Dn)Wn]

)
.
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To proceed we need to bound the terms in the right hand side of (4.3.35) and (4.3.36) in terms of

the terms in the left hand side of each one of them. However, before deriving these estimates, we

shall introduce some new notations which we are going to use fro now on. We define

• gij(X`) =
2∑

k=1

∂Yi
∂xk

(X`(y, t), t)∂Yj
∂xk

(X`(y, t), t), gij,n(X`) =
2∑

k=1

∂Y n
i

∂xk
(X`(y, t), t)

∂Y n
j

∂xk
(X`(y, t), t),

• ḡij,n(X`) = gij(X`)− gij,n(X`),

• Γij,k(X`) =
2∑

m=1

∂Yi
∂xm

(X`(y, t), t) ∂
2Xm

∂yk∂yj
(y, t), Γi,nj,k(X

`) =
2∑

m=1

∂Y n
i

∂xm
(X`(y, t), t) ∂

2Xn
m

∂yk∂yj
(y, t).

Proposition 4.3.5 Suppose that (W,Q, T , (hi, ωi)i=1,...,k) ∈ Ũ(0, T ; ΩF )×L2(0, T ; Ḣ1(ΩF ))×T̃(0, T ; ΩF )×(
W 2,∞(0, T ;R2)×W 1,∞(0, T ;R)

)k. Then there exists a positive constant K0 satisfying (i) such that

‖[(L− Ln)W ]‖L2(ΩF ) ≤ K0T‖W‖H2(ΩF )

k∑
i=1
‖h′i − (hni )′‖L∞([0,T ]×O), (4.3.37)

‖[(M −Mn)W ]‖L2(ΩF ) ≤ K0‖W‖H1(ΩF )

k∑
i=1
‖h′i − (hni )′‖L∞([0,T ]×O), (4.3.38)

‖[(G−Gn)Q]‖L2(ΩF ) ≤ K0T‖Q‖H1(ΩF )

k∑
i=1
‖h′i − (hni )′‖L∞([0,T ]×O), (4.3.39)

‖[(div− divn) T ]‖L2(ΩF ) ≤ K0T‖T ‖H1(ΩF )

k∑
i=1
‖h′i − (hni )′‖L∞([0,T ]×O), (4.3.40)

‖[(D −Dn)W ]‖L2(ΩF ) ≤ K0T‖W‖H1(ΩF )

k∑
i=1
‖h′i − (hni )′‖L∞([0,T ]×O), (4.3.41)

‖[(W −Wn)W ]‖L2(ΩF ) ≤ K0T‖W‖H1(ΩF )

k∑
i=1
‖h′i − (hni )′‖L∞([0,T ]×O). (4.3.42)

Proof. We start by computing [(L− Ln)W ] and we find that

[(L− Ln)W ]i =
2∑

j,k=1

(
gjk(X)− gjk,n(Xn)

) ∂2Wi

∂yj∂yk
+ ∂

∂yj

(
gjk(X)− gjk,n(Xn)

)∂Wi

∂yk

+2
2∑

j,k,`=1

(
gk`(X)Γij,k(X)− gk`,n(Xn)Γi,nj,k(X

n)
)∂Wj

∂y`
+

2∑
j,k,`=1

{ ∂

∂yk

(
gk`(X)Γij,`(X)−gk`,n(Xn)Γi,nj,` (X

n)
)

+
2∑

m=1

(
gk`(X)Γmj,`(X)Γik,m(X)− gk`,n(Xn)Γm,nj,` (Xn)Γi,nk,m(Xn)

)}
Wj . (4.3.43)

It is not difficult to check that

gk`(X)Γij,k(X)−gk`,n(Xn)Γi,nj,k(X
n) = gk`(X)

(
Γij,k(X)−Γi,nj,k(X

n)
)

+
(
gk`(X)−gk`,n(Xn)

)
Γi,nj,k(X

n).

Lemmas A.1.3 and A.1.4 imply that

‖gk`(X)Γij,k(X)− gk`,n(Xn)Γi,nj,k(X
n)‖L∞([0,T ]×O) ≤ K0T

k∑
m=1
‖h′m − (hnm)′‖L∞([0,T ]×O).
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Next, we move to bound the coefficients of W in the expression (4.3.43). To this end, we write

∂

∂yk

(
gk`(X)Γij,`(X)− gk`,n(Xn)Γi,nj,` (X

n)
)

= ∂

∂yk

(
gk`(X)

)(
Γij,`(X)− Γi,nj,` (X

n)
)

+ gk`(X) ∂

∂yk

(
Γij,`(X)− Γi,nj,` (X

n)
)

+ ∂

∂yk

(
gk`(X)− gk`,n(Xn)

)
Γi,nj,` (X

n) +
(
gk`(X)− gk`,n(Xn)

) ∂

∂yk

(
Γi,nj,` (X

n)
)
.

(4.3.44)

By using the estimates in lemmas A.1.3 and A.1.4, we obtain

∥∥∥ ∂

∂yk

(
gk`(X)Γij,`(X)− gk`,n(Xn)Γi,nj,` (X

n)
)∥∥∥

L∞([0,T ]×O)
≤ K0T

k∑
m=1
‖h′m − (hnm)′‖L∞([0,T ]×O).

The second coefficients of W in (4.3.43) can be rewritten as follows

gk`(X)Γmj,`(X)Γik,m(X)− gk`,n(Xn)Γm,nj,` (Xn)Γi,nk,m(Xn) =
(
gk`(X)− gk`,n(Xn)

)
Γmj,`(X)Γik,m(X)

+
{

Γmj,`(X)
(
Γik,m(X)− Γi,nk,m(Xn)

)
+
(
Γmj,`(X)− Γm,nj,` (Xn)

)
Γi,nk,m(Xn)

}
gk`,n(Xn). (4.3.45)

By using again the estimates in lemmas A.1.3 and A.1.4, we get

∥∥gk`(X)Γmj,`(X)Γik,m(X)−gk`,n(Xn)Γm,nj,` (Xn)Γi,nk,m(Xn)
∥∥
L∞([0,T ]×O) ≤ K0T

k∑
m=1
‖h′m−(hnm)′‖L∞([0,T ]×O).

By combining Lemma A.1.5 and all the proceeding estimates with the expression in (4.3.43), we

deduce that

‖[(L− Ln)W ]‖L2(ΩF ) ≤ K0T‖W‖H2(ΩF )

k∑
i=1
‖h′i − (hni )′‖L∞([0,T ]×O). (4.3.46)

One can write

[(M−Mn)W ]i =
2∑
j=1

(∂Yj
∂t

(X, .)−
∂Y n

j

∂t
(Xn, .)

)∂Wi

∂yj
+

2∑
j,k=1

{
Γij,k(X)∂Yk

∂t
(X, .)−Γi,nj,k(X

n)∂Y
n
k

∂t
(Xn, .)

+ ∂Yi
∂xk

(X, .) ∂
2Xk

∂t∂yj
− ∂Y n

i

∂xk
(Xn, .)∂

2Xn
k

∂t∂yj

}
Wj . (4.3.47)

We start by estimating the coefficient of ∂Wi

∂yj
in (4.3.47). One can easily prove that

∂Yj
∂t

(X, .)−
∂Y n

j

∂t
(Xn, .) =

∂Ȳ n
j

∂t
(X, .) +

∂Y n
j

∂t
(X, .)−

∂Y n
j

∂t
(Xn, .).
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The above identity implies that

∣∣∣∂Yj
∂t

(X, .)−
∂Y n

j

∂t
(Xn, .)

∣∣∣ ≤ ∥∥∥∂Ȳ n

∂t

∥∥∥
L∞([0,T ]×O)

+ ‖X̄n‖L∞([0,T ]×O)

∥∥∥∂2Y n

∂t∂x

∥∥∥
L∞([0,T ]×O)

.

By writing down the Cauchy problem satisfied by Ȳ n, we get

∥∥∥∂Ȳ n

∂t

∥∥∥
L∞([0,T ]×O)

≤ K0

k∑
i=1
‖h′i − (hni )′‖L∞([0,T ]×O),

and thus ∣∣∣∂Yj
∂t

(X, .)−
∂Y n

j

∂t
(Xn, .)

∣∣∣ ≤ K0

k∑
i=1
‖h′i − (hni )′‖L∞([0,T ]×O). (4.3.48)

It is easy to verify that

Γij,k(X)∂Yk
∂t

(X, .)− Γi,nj,k(X
n)∂Y

n
k

∂t
(Xn, .) = Γij,k(X)∂Ȳ

n
k

∂t
(X, .)

+ Γij,k(X)
(∂Y n

k

∂t
(X, .)− ∂Y n

k

∂t
(Xn, .)

)
+
(
Γij,k(X)− Γi,nj,k(X

n)
)∂Y n

k

∂t
(Xn, .).

By mean value theorem, we have

∣∣∣Γij,k(X)∂Yk
∂t

(X, .)− Γi,nj,k(X
n)∂Y

n
k

∂t
(Xn, .)

∣∣∣ ≤ K0T
k∑

m=1
‖h′m − (hnm)′‖L∞([0,T ]×O)

+K0‖X̄n‖L∞([0,T ]×O)‖∂t∇Y 2‖L∞([0,T ]×O) +K0|Γij,k(X)− Γi,nj,k(X
n)|.

Lemmas A.1.3 and A.1.4 imply that∣∣∣Γij,k(X)∂Yk
∂t

(X, .)− Γi,nj,k(X
n)∂Y

n
k

∂t
(Xn, .)

∣∣∣ ≤ K0T
k∑
i=1
‖h′i − (hni )′‖L∞([0,T ]×O). (4.3.49)

By writing

∂2Xk

∂t∂yj
(y, t) ∂Yi

∂xk
(X(y, t), t)− ∂2Xn

k

∂t∂yj
(y, t)∂Y

n
i

∂xk
(Xn(y, t), t) = ∂2Xk

∂t∂yj
(y, t)∂Ȳ

n
i

∂xk
(X(y, t), t)+

∂2X̄n
k

∂t∂yj
(y, t)∂Y

n
i

∂xk
(X(y, t), t) + ∂2Xn

k

∂t∂yj
(y, t)

(∂Y n
i

∂xk
(X(y, t), t)− ∂Y n

i

∂xk
(Xn(y, t), t)

)
,

and using mean value theorem, we get

∣∣∣ ∂2Xk

∂t∂yj
(y, t) ∂Yi

∂xk
(X(y, t), t)− ∂2Xn

k

∂t∂yj
(y, t)∂Y

n
i

∂xk
(Xn(y, t), t)

∣∣∣ ≤ K0

k∑
m=1
‖h′m − (hnm)′‖L∞([0,T ]×O).

(4.3.50)
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Gathering together the estimates (4.3.48), (4.3.49), and (4.3.50) with the identity in (4.3.47), we

obtain the desired estimate (4.3.38).

From the definition of the operator G in (4.2.10), we have:

[(G−Gn)Q]i =
2∑
j=1

(
gij(X)− gij,n(Xn)

) ∂Q
∂yj

.

By Lemma A.1.5, we get

‖[(G1 −G2)Q]i‖L2(ΩF ) ≤ K0T‖∇Q‖L2(ΩF )

k∑
j=1
‖h′j − (hnj )′‖L∞([0,T ]×O).

Moreover, the definition of the operator [divT ] in (4.2.11) implies that

[(div−divn)T ]i(y, t) =
{(

∂Ȳ n
i

∂xk
(X(y, t), t) + ∂Y n

i

∂xk
(X(y, t), t)− ∂Y n

i

∂xk
(Xn(y, t), t)

)
∂Ym
∂x`

(X(y, t), t)

+∂Y n
i

∂xk
(Xn(y, t), t)

(∂Ym
∂x`

(X(y, t), t)− ∂Ym
∂x`

(Xn(y, t), t) + ∂Ȳ n
m

∂x`
(Xn(y, t), t)

)} ∂Tk`
∂ym

(y, t).

Consequently, we get

‖[(div− divn) T ]‖L2(ΩF ) ≤ K0T‖T ‖[H1(ΩF )]4
k∑
i=1
‖h′i − (hni )′‖L∞([0,T ]×O).

The last two estimate follows analogously. �

In the following proposition, we estimate on the difference [NW ]− [NnWn] in L2(ΩF ).

Proposition 4.3.6 Let (W,Q, T , (hi, ωi)i=1,...,k) and (Wn, Qn, T n, (hni , ωni )i=1,...,k) ∈ K̃. Then

there exists a positive constant K0 satisfying condition (i) such that

‖[NW ]− [NnWn]‖L2(ΩF ) ≤ K0‖W −Wn‖H1(ΩF ) +K0T
k∑
i=1
‖h′i − (hni )′‖L∞([0,T ]×O). (4.3.51)

Proof. It is easy to check that

[NW ]i − [NnWn]i = (W · ∇)(Wi −Wn
i ) +

[
(W −Wn) · ∇

]
Wn
i

+
(
Γij,k(X)− Γi,nj,k(X

n)
)
WjWk + Γi,nj,k(X

n)
(
(Wj −Wn

j )Wk +Wn
j (Wk −Wn

k )
)
.
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By Holder inequality and the Sobolev injection of H2(ΩF ) into L∞(ΩF ), we get

‖(W · ∇)(Wi −Wn
i )‖L2(ΩF ) ≤ ‖W‖L∞(ΩF )‖∇(Wi −Wn

i )‖L2(ΩF )

≤ C‖W‖H2(ΩF )‖W −Wn‖H1(ΩF ).

By similar way, one can show that

‖[(W −Wn) · ∇]Wn
i ‖L2(ΩF ) ≤ ‖W −Wn‖H1(ΩF )‖Wn‖H2(ΩF ).

Combining the last two inequalities and using the estimates in Lemma A.1.5 and Lemma A.1.3, we

get that

‖[NW ]− [NnWn]‖L2(ΩF ) ≤ K0‖W −Wn‖H1(ΩF ) +K0T
k∑
i=1
‖h′i − (hni )′‖L∞([0,T ]×O).

�

We return now to complete the proof of Proposition 4.3.4. Lemma A.1.3 implies that

∣∣∣ ∫
ΩF

[(L−∆)(W −Wn)] · Ũndy
∣∣∣ ≤ 2∑

i,j,k=1

∣∣∣ ∫
ΩF

∂

∂yj

((
gjk(X)− δjk

)∂(Wi −Wn
i )

∂yk

)
Ũni dy

∣∣∣
+K0‖W −Wn‖H1(ΩF )‖Ũn‖L2(ΩF ).

By performing integration by parts noting that gjk = δjk on ∂Bi for all i = 1, . . . , k and vanishes on

∂O, we obtain

∣∣∣ ∫
ΩF

[(L−∆)(W −Wn)] · Ũndy
∣∣∣ ≤ 2∑

i,j,k=1

∣∣∣ ∫
ΩF

(
gjk(X)− δjk

)∂(Wi −Wn
i )

∂yk

∂Ũni
∂yj

dy
∣∣∣

+K0‖W −Wn‖H1(ΩF )‖Ũn‖L2(ΩF ).

Using again Lemma A.1.3 and Young’s inequality, we get that there exists ε′ > 0 such that

∣∣∣ ∫
ΩF

[(L−∆)(W −Wn)] · Ũndy
∣∣∣ ≤ K0‖W −Wn‖2H1(ΩF ) + ‖Ũn‖2L2(ΩF ) + ε′

2 ‖∇Ũ
n‖2L2(ΩF ).

By performing again integration by parts noting that gjk = δjk on ∂Bi for all i = 1, . . . , k and
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vanishes on ∂O, we obtain

∫
ΩF

[(∇ − G)(Q − Qn)] · Ũndy =
∫

ΩF

∂gij

∂yj
(Qi − Qni )Ũni dy −

∫
ΩF

(δij − gij)(Qi − Qni )∂Ũ
n
i

∂yj
dy.

By Lemma A.1.3 and using Young’s inequality, we get that there exist ε′ > 0 such that

∣∣∣ ∫
ΩF

[(∇−G)(Q−Qn)] · Ũndy
∣∣∣ ≤ K0T‖Q−Qn‖2L2(ΩF ) + ε′

2 ‖∇Ũ
n‖2L2(ΩF ) + ‖Ũn‖2L2(ΩF ).

Furthermore, it follows from lemmas A.1.3, and Corollary A.1.1 in Appendix A at the end of this

thesis that

‖[div(T − T n)]‖L2(ΩF ) ≤ K0‖T − T n‖H1(ΩF ), (4.3.52)

‖[M(W −Wn)]‖L2(ΩF ) ≤ K0
( k∑
i=1
‖h′i − (hni )′‖L∞([0,T ]×O) + ‖W −Wn‖L2(ΩF )

)
. (4.3.53)

Combining the above inequalities with Proposition 4.3.5 and Proposition 4.3.6, we get that

∣∣∣ ∫
ΩF

Fn0 (t) · Ũn(t)dy
∣∣∣ ≤ K0

(
‖W −Wn‖2H1(ΩF ) + ‖∇(Q−Qn)‖2H−1(ΩF ) + ‖T − T n‖2H1(ΩF )

+
k∑
i=1
‖h′i − (hni )′‖2L∞([0,T ]×O)

)
+ 3‖Ũn‖2L2(ΩF ) + ε′‖∇Ũn‖2L2(ΩF ),

and thus by Young’s inequality, we obtain that

1
2
d

dt

(
Re‖Ũn(t)‖2L2(ΩF ) +

k∑
i=1

mi|(H̃n
i )′(t)|2 + J i|W̃n

i (t)|2
)

+ 2(1− r)‖∇Ũn(t)‖2L2(O)

≤ K0
(
‖W −Wn‖2H1(ΩF ) + ‖∇(Q−Qn)‖2H−1(ΩF ) + ‖T − T n‖2H1(ΩF ) +

k∑
i=1
‖h′i − (hni )′‖2L∞([0,T ]×O)

)

+ 4
Re

(Re
2 ‖Ũ

n‖2L2(ΩF ) +
k∑
i=1

mi|(H̃n
i )′(t)|2 + J i|W̃n

i (t)|2
)

+ ε′‖∇Ũn(t)‖2L2(ΩF ).

By choosing ε′ small enough, we get

1
2
d

dt

(
Re‖Ũn(t)‖2L2(ΩF ) +

k∑
i=1

mi|(H̃n
i )′(t)|2 + J i|W̃n

i (t)|2
)

+ (2(1− r)− ε′)‖∇Ũn‖2L2(O)

≤ 4
Re

(Re
2 ‖Ũ

n(t)‖2L2(ΩF )+
k∑
i=1

mi|(H̃n
i )′(t)|2+J i|W̃n

i (t)|2
)

+K0
(
‖W−Wn‖2H1(ΩF )+‖T −T

n‖2H1(ΩF )

+ ‖∇(Q−Qn)‖2H−1(ΩF ) +
k∑
i=1
‖h′i − (hni )′‖2L∞([0,T ]×O)

)
. (4.3.54)
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By integrating the above inequality over (0, t) ⊂ [0, T ], we get that for almost t ∈ (0, T ):

1
2
(
Re‖Ũn(t)‖2L2(ΩF ) +

k∑
i=1

mi|(H̃n
i )′(t)|2 + J i|W̃n

i (t)|2
)

≤ 4
Re

∫ t

0

(Re
2 ‖Ũ

n(s)‖2L2(ΩF ) +
k∑
i=1

mi

2 |(H̃
n
i )′(s)|2 + J i

2 |W̃
n
i (s)|2

)
ds+K0T

(
‖W−Wn‖2L∞(0,T ;H1(ΩF ))

+ ‖∇(Q−Qn)‖2L∞(0,T ;H−1(ΩF )) + ‖T − T n‖2L∞(0,T ;H1(ΩF )) +
k∑
i=1
‖h′i − (hni )′‖2L∞([0,T ]×O)

)
.

By Gronwall’s lemma, we obtain for almost t ∈ (0, T )

1
2
(
Re‖Ũn(t)‖2L2(ΩF ) +

k∑
i=1

mi|(H̃n
i )′(t)|2 + J i|W̃n

i (t)|2
)

≤ K0T
(
‖W −Wn‖2L∞(0,T ;H1(ΩF )) + ‖∇(Q−Qn)‖2L∞(0,T ;H−1(ΩF )) + ‖T − T n‖2L∞(0,T ;H1(ΩF ))

+
k∑
i=1
‖h′i − (hni )′‖2L∞([0,T ]×O)

)
. (4.3.55)

Thus (Ũn, (H̃n
i , W̃

n
i )i=1,...,k)→ 0, as n→ +∞ in L∞(0, T ; L2(ΩF ))×

(
L∞(0, T ;R2)×∞(0, T ;R2)

)k.
We set

Ũn(t) =
∫ t

0
Ũn(s)ds and Fn0 (t) =

∫ t

0
Fn0 (s)ds.

We note that Ũn and F̃n0 belong to C([0, T ]; H−1(ΩF )). By integrating (4.3.1) from 0 to t and since

Ũn(0) = 0, we get that

(1− r)
∫

ΩF
∇Ũn : ∇φ = 〈Re Ũn(t) + Fn0 , φ〉H−1(ΩF ),H1(ΩF ),

for all φ ∈ H1(ΩF ) such that ∇ · φ = 0 and t ∈ [0, T ]. By applying De Rahm theorem, for each

t ∈ [0, T ], there exists Pn(t) in D(ΩF ) such that

Re Ũn(t)− (1− r)∆Ũn(t) +∇Pn(t) = Fn0 (t).

We emphasize that ∇P̃n ∈ C([0, T ]; H−1(ΩF )) and hence P̃n ∈ C([0, T ]; L2(ΩF )). Moreover, it

follows (4.3.54) from that ∇Ũn → 0 as n→∞ in L2(0, T ; L2(O)) and hence

∇P̃n → 0, as n→∞ in L2(0, T ; H−1(ΩF )).
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Setting

P̃n = dP̃n

dt
,

we obtain

Re ∂tŨ
n − (1− r)∆Ũn +∇P̃n = Fn0 , in ΩF × (0, T ),

and

∇P̃n → 0, as n→ +∞, inH−1(0, T ; H−1(ΩF )).

The pressure P̃n, defined as above, appears in general as a distribution on ΩF × (0, T ). By Propo-

sition 1.2 in [43], we get that

P̃n → 0, as n→ +∞, inH−1(0, T ;L2(ΩF )/R).

Since Ñ maps K̃ into itself, then we have P̃n is bounded in L∞(0, T ;H1(ΩF )) and ∂tP̃n is bounded

in L2(0, T ; Ł2(ΩF )). By Aubin-Simon theorem in [8], there exists a subsequence denoted also by

{P̃n}n such that

P̃n → P ∗, as n→ +∞, in L∞(0, T ;L2(ΩF )).

By the concept of uniqueness of limit, we get P ∗ = 0.

To conclude the continuity of the mapping Ñ , it remains to show that Zn → 0, as n → +∞

in L∞([0, T ],H1(ΩF )). To this end, we move now to bound ‖Gn‖L2(ΩF ) in the right hand side of

(4.3.36).

We collect the terms of the difference [Gna(Wn, T̃ n)]− [Ga(W, T̃ )] as follows:

[Gna(Wn, T̃ n)]ij − [Ga(W, T̃ )]ij =
(
[WnWn]ikT̃ nkj − [WW ]ikT̃kj) +

(
T̃ nik [WnWn]kj − T̃ik[WW ]kj)

− a
(
[DnWn]ikT̃ nkj − [DW ]ikT̃kj

)
− a

(
T nik [DnWn]kj − T̃ik[DW ]kj

)
. (4.3.56)

It is not difficult to verify that

[WnWn]ikT̃ nkj − [WW ]ikT̃kj = [Wn(Wn −W )]ikT̃ nkj + [WnW ]ikZnkj + [(Wn −W)W ]ikT̃kj .

This implies that

‖[WnWn]ikT̃ nkj − [WW ]ikT̃kj‖L2(ΩF ) ≤ ‖[Wn(Wn −W )]ik‖L2(ΩF )‖T̃ nkj‖L∞(ΩF )

+ ‖[WnW ]ik‖L∞(ΩF )‖Znkj‖L2(ΩF ) + ‖[(Wn −W)W ]ik‖L2(ΩF )‖T̃kj‖L∞(ΩF ).
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By the Sobolev injection of H2(ΩF ) into L∞(ΩF ), we get that

‖[WnWn]ikT̃ nkj − [WW ]ikT̃kj‖L2(ΩF ) ≤ ‖[Wn(Wn −W )]‖L2(ΩF )‖T̃ n‖H2(ΩF )

+ ‖[WnW ]ik‖L∞(ΩF )‖Zn‖L2(ΩF ) + ‖[(Wn −W)W ]‖L2(ΩF )‖T̃ ‖H2(ΩF ).

Using again Lemma A.1.3 and Proposition 4.3.5 noting that ‖T̃ ‖H2(ΩF ) ≤ R as the mapping Ñ

maps K̃ into itself, we obtain

‖[WnWn]ikT̃ nkj − [WW ]ikT̃kj‖L2(ΩF )

≤ K0
(
‖Wn −W‖H1(ΩF ) + ‖W‖H3(ΩF )‖Zn‖L2(ΩF ) +

k∑
i=1
‖h′i − (hni )′‖L∞([0,T ]×‰)

)
.

The other terms in (4.3.56) can be treated in similar way, and thus we obtain

‖[Gna(Wn, T̃ n)]− [Ga(W, T̃ )]‖L2(ΩF )

≤ K0
(
‖Wn −W‖H1(ΩF ) + ‖W‖H3(ΩF )‖Zn‖[L2(ΩF )]4 +

k∑
i=1
‖h′i − (hni )′‖L∞([0,T ]×O)

)
. (4.3.57)

Moreover, by Holder’s inequality and using the Sobolev injections noting that ‖T̃ ‖H2(ΩF ) ≤ R, we

obtain

∥∥∥((W −Wn + ∂Y

∂t
(X(., t), t)− ∂Y n

∂t
(Xn(., t), t)

)
· ∇
)
T̃
∥∥∥

L2(ΩF )

≤ K0
(
‖W −Wn‖H1(ΩF ) +

k∑
i=1
‖h′i − (hni )′‖L∞([0,T ]×O))

)
. (4.3.58)

Using similar arguments as above, we get

‖[(D −Dn)Wn]‖L2(ΩF ) ≤ K0T
k∑
i=1
‖h′i − (hni )′‖L∞([0,T ]×O), (4.3.59)

‖[D(W −Wn)]‖L2(ΩF ) ≤ K0‖W −Wn‖H1(ΩF ). (4.3.60)

Putting together inequalities (4.3.57)-(4.3.60), we deduce that

‖Gn(t)‖L2(ΩF ) ≤ K0
{

(We+ 2r)
(
‖W (t)−Wn(t)‖H1(ΩF ) +

k∑
i=1
‖h′i − (hni )′‖L∞([0,T ]×O)

)
+We‖W (t)‖H3(ΩF )‖Zn(t)‖L2(ΩF )

}
.
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By combining the above estimate with inequality (4.3.36), we obtain that

We

2
d

dt

(
‖Zn(t)‖2L2(ΩF )

)
+ ‖Zn(t)‖2L2(ΩF ) ≤ K0We‖W‖H3(ΩF )‖Zn(t)‖2[L2(ΩF )]4

+K0
(
‖W −Wn‖H1(ΩF ) +

k∑
i=1
‖h′i − (hni )′‖L∞([0,T ]×O)

)
‖Zn(t)‖L2(ΩF ).

By Young’s inequality, we get that

We

2
d

dt
‖Zn(t)‖2L2(ΩF ) ≤ K0

(
We‖W (t)‖H3(ΩF )‖Zn(t)‖2L2(ΩF )

+ ‖W (t)−Wn(t)‖2H1(ΩF ) +
k∑
i=1
‖h′i − (hni )′‖2L∞([0,T ]×O)

)
.

Integrating both sides of the above inequality with respect to time on (0, t) ⊂ (0, T ), we get that

‖Zn(t)‖2L2(ΩF ) ≤ K0We

∫ t

0
‖W (s)‖H3(ΩF )‖Zn(s)‖2L2(ΩF )ds

+K0T
(
‖W −Wn‖2L∞(0,T ;H1(ΩF )) +

k∑
i=1
‖h′i − (hni )′‖2L∞([0,T ]×O)

)
.

Gronwall’s lemma implies that

‖Zn(t)‖2L2(ΩF ) ≤ K0T
(
‖W −Wn‖2L∞(0,T ;H1(ΩF )) +

k∑
i=1
‖h′i − (hni )′‖2L∞([0,T ]×O)

)
.

The above relation implies that

T̃ n → T̃ , as n→ +∞ in L∞(0, T ; L2(ΩF )).

We deduce from Corollary 4.3.1 and Proposition 4.3.4 that the mapping Ñ admits at least one

fixed point by applying Schauder fixed-point theorem . Consequently, we obtain the local existence

of a strong solution of problem (4.1.14)-(4.1.21), (4.1.25)-(4.1.26). Therefore, to prove Theorem

4.1.2 we need to show the uniqueness of the solution in its class of existence.

Suppose that the mapping Ñ admits two fixed points (W 1, Q1, T 1, (h1
i , ω

1
i )i=1,...,k) and

(W 2, Q2, T 2, (h2
i , ω

2
i )i=1,...,k) in K̃. This implies that

Ñ (W 1, Q1, T 1, (h1
i , ω

1
i )i=1,...,k) = (W 1, Q1, T 1, (h1

i , ω
1
i )i=1,...,k),

Ñ (W 2, Q2, T 2, (h2
i , ω

2
i )i=1,...,k) = (W 2, Q2, T 2, (h2

i , ω
2
i )i=1,...,k).
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Denote by Y i, Xi, gk`,i,Γk,ij,` , U i, P i, etc the terms corresponding to (W i, Qi, T i, (h1
j , ω

1
j )j=1,...,k).

Moreover, we denote by Y = Y 1 − Y 2, hi = h1
i − h2

i , etc. We get that the difference (W,Q, T ,

(hi, ωi)i=1,...,k) satisfies system (2.3.1) and

∂T
∂t

+
((
W 1 + ∂Y 1

∂t
(X1(y, t), t)

)
· ∇
)
T = G, in ΩF×]0, T ], (4.3.61)

with zero initial conditions and source terms:

F0 = (1− r)
(
[(L1 −∆)W ] + [(L1 − L2)W 2]

)
+ [(∇−G1)Q]− [(G1 −G2)Q2]−Re([M1W ]

+[(M1 −M2)W 2] + [N1W 1]− [N2W 2]) + [div1T ] + [(div1 − div2)T 2],

F1,i = −
∫
∂Bi

T νidΓi,

F2,i = −
∫
∂Bi

T νi · (y − h0
i )⊥dΓi,

G = −
((
W + ∂Y 1

∂t
(X1(y, t), t)− ∂Y 2

∂t
(X2(y, t), t)

)
· ∇
)
T̃ 2 − [Ga(W 1, T̃ 1)] + [Ga(W 2, T̃ 2)]

− 1
We
T̃ + 2r

We
[D1W ] + 2r

We
[(D1 −D2)W 2].

Using similar arguments as previously, we obtain

1
2
d

dt

(
Re‖W (t)‖2L2(ΩF ) +

k∑
i=1

mi|h′i(t)|2 + J i|ω(t)|2
)

+ (1− r)‖∇W (t)‖2L2(O)

=
∫

ΩF
F0(t) ·W (t)dy −

∫
∂ΩF
T (t)n ·W (t)dΓ. (4.3.62)

By performing integration by parts, one has:

∫
ΩF

[div1T ] ·W dy = −
∫

ΩF

∂

∂ym

(∂Y 1
i

∂xk
(X1)∂Y

1
m

∂x`
(X1)Wi

)
Tk`dy +

∫
∂ΩF
T (t)n ·W dΓ. (4.3.63)

However, we have by Lemma A.1.3∣∣∣ ∫
ΩF

∂

∂ym

(∂Y 1
i

∂xk
(X1)∂Y

1
m

∂x`
(X1)Wi

)
Tk`dy

∣∣∣ ≤ K0‖W‖2L2(ΩF ) + ‖T ‖2L2(ΩF ) + ε′‖∇W‖L2(ΩF ). (4.3.64)

Moreover, using again Lemma A.1.3 we get

∣∣∣ ∫
ΩF

[(L1 −∆)W ] ·Wdy
∣∣∣ ≤ K0T‖W‖2H1(ΩF ), (4.3.65)∣∣∣ ∫

ΩF
[(∇−G1)Q] ·Wdy

∣∣∣ ≤ K0T‖∇Q‖H−1(ΩF )‖W‖L2(ΩF ). (4.3.66)∣∣∣ ∫
ΩF

[M1W ] ·Wdy
∣∣∣ ≤ ε′‖∇W‖2L2(ΩF ) + ‖W‖2L2(ΩF ). (4.3.67)
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4.3 Local existence to standard Oldroyd model

Replacing X by X1 and Xn by X2 in propositions 4.3.5 and 4.3.6, we get that

‖[(L1 − L2)W 1]‖L2(ΩF ) ≤ K0T
k∑
i=1
‖h′i‖L∞([0,T ]×O),

‖[(M1 −M2)W 1]‖L2(ΩF ) ≤ K0

k∑
i=1
‖h′i‖L∞([0,T ]×O),

‖[(G1 −G2)Q1]‖L2(ΩF ) ≤ K0T
k∑
i=1
‖h′i‖L∞([0,T ]×O),

‖[(div1 − div2) T 1]‖L2(ΩF ) ≤ K0T
k∑
i=1
‖h′i‖L∞([0,T ]×O).

Moreover, we have

∣∣∣ ∫
ΩF

([N1W 1]i − [N2W 2]i) ·Wdy
∣∣∣ ≤ K0‖W‖2L2(ΩF ) + ε′‖∇W‖2L2(ΩF ) +K0T

k∑
i=1
‖h′i‖2L∞([0,T ]×O).

(4.3.68)

De Rham theorem implies that

‖∇Q‖H−1(ΩF ) ≤ C
(
‖W‖H1(ΩF ) + ‖F0‖H−1(ΩF )

)
. (4.3.69)

Hence, by using the above estimates and choosing ε and T small enough we get

1
2
d

dt

(
Re‖W (t)‖2L2(ΩF ) +

k∑
i=1

mi|h′i(t)|2 + J i|ω(t)|2
)

≤ K0
(
Re‖W (t)‖2L2(ΩF ) +

k∑
i=1

mi‖h′i(t)‖2L∞([0,T ]×O) + ‖T (t)‖2L2(ΩF )

)
(4.3.70)

By multiplying equation (4.3.61) scalar by T in L2(ΩF ) and using similar arguments as above, we

get

We

2
d

dt
‖T (t)‖2L2(ΩF ) + ‖T (t)‖2L2(ΩF )

≤ K0
((

1 + ‖W 1(t)‖H3(ΩF )
)
‖T (t)‖2[L2(ΩF )]4 + ε′‖W (t)‖2H1(ΩF ) +

k∑
i=1
‖h′i(t)‖2L∞([0,T ]×O)

)
.
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It follows that

1
2
d

dt

(
Re‖W (t)‖2L2(ΩF ) +

k∑
i=1

mi|h′i(t)|2 + J i|ω(t)|2 +We‖T (t)‖2L2(ΩF )

)

≤ K0
(
1 + ‖W 1(t)‖H3(ΩF )

)(
Re‖W (t)‖2L2(ΩF ) +

k∑
i=1

mi‖h′i(t)‖2L∞([0,T ]×O) +We‖T (t)‖2L2(ΩF )

)
.

Integrating the above inequality over (0, t) ⊂ [0, T ], and applying Gronwall lemma we get that for

T small enough

(W,∇Q, τ, (hi, ωi)i=1,...,k) = 0, in ΩF × [0, T ].
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A
Appendix

In the first part of this appendix, we recall some properties of the transforms X. The second

part is devoted to show that there exists a strong 2-extension operator E for ΩF (t). We end this

part by bounding the H2 norm of the velocity field u. Finally, we prove Proposition 4.2.1 in the

last part.

A.1 Technical details on the change of variables X

In this section, we recall the the transform X and some easily verified properties of X and its

inverse mapping Y . To this end, we fix k functions hi : t 7→ hi(t) such that for i ∈ {1, . . . , k}, we

assume that hi ∈ H2(0, T ;R2). Moreover, we define a family of regular cut-off function {ψi}ki=1 such

that each has a compact support contained in B(hi(0), ri + γ
2 ) and equal 1 in a neighbourhood VBi

of i-th disk contained in B(hi(0), ri+ γ
2 ), where ri denotes the radius of the i-th disk. Furthermore,

we define the mapping Λ : R2 × [0, T ]→ R2 by

Λ(x, t) =
k∑
i=1
∇⊥(h′i(t) · x⊥ψi(x)).



Chapter A. Appendix

The mapping X is defined as a solution of the following Cauchy problem:


∂X

∂t
(y, t) = Λ(X(y, t), t), t ∈]0, T ],

X(y, 0) = y ∈ R2.

(A.1.1)

For all y ∈ R2, the initial-value problem (A.1.1) admits a unique solution X(y, .) : [0, T ] → R2,

which is C1 on [0, T ]. Moreover, the mapping X(., t) is a C∞-diffeomorphism from O into itself and

from Bi onto Bi(t) whenever Bi(t) ⊂ VBi . Furthermore, the inverse mapping Y of X satisfies


∂Y

∂t
(x, s) = −Λ(Y (x, s), t− s), t ∈]0, T ],

Y (x, 0) = x ∈ R2,

(A.1.2)

Hence, one can easily verify that for all t such that Bi(t) ⊂ VBi we have

Y (x, t) = x− hi(t) + hi(0), if x ∈ ∂Bi(t),

Y (x, t) = 0, if x ∈ ∂O.

Moreover, we have

dY

dt
(x, t) = −h′i(t), if x ∈ ∂Bi(t), (A.1.3)

dY

dt
(x, t) = 0, if x ∈ ∂O. (A.1.4)

First, we recall that for T > 0,

K =
{

(W,Q, T , (hi, ωi)i=1,...,k) ∈ U(0, T ; ΩF )×L2(0, T ; Ḣ1(ΩF ))×T(0, T ; ΩF )×
(
H2(0, T ;R2)×H1(0, T ;R)

)k :

‖W‖U(0,T ;ΩF ) + ‖Q‖L2(0,T ;Ḣ1(ΩF )) +
k∑

i=1
‖h

′′

i ‖L2(0,T ;R2) + ‖ω′
i‖L2(0,T ;R) + ‖T ‖T(0,T ;ΩF ) ≤ R

}
.

We recall also that NK and NC be two positive quantities which satisfy the following conditions

(see Chapter 4):

i. NK is a positive function of (h1
i , ω

0
i )i=1,...,k, ‖u0‖H1(ΩF ), ‖τ0‖H1(ΩF ), T and R which is non-

decreasing with respect to T,R, ‖u0‖H1(ΩF ) and (|h0
i |, |h1

i |, |ω0
i |)i=1,...,k.

ii. NC is a positive function of (h1
i , ω

0
i , )i=1,...,k, ‖u0‖H1(ΩF ), r, and T which is non-decreasing

with respect to T, ‖u0‖H1(ΩF ), ‖τ0‖H1(ΩF ) and (|h0
i |, |h1

i |, |ω0
i |)i=1,...,k.
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The following lemma allows us to bound the coefficients of the operators in the source terms in

the linearized problem corresponding to problem (4.1.14)-(4.1.24). We refer the reader to [40] for

a similar proof.

Lemma A.1.1 Suppose that (W,Q, T , (hi, ωi)i=1,...,k) ∈ K, then there exists two constants NK and

NC satisfying conditions (i) and (ii) respectively, such that

∥∥∥∂X
∂y

∥∥∥
L∞([0,T ]×O)

≤ NK ,
∥∥∥ ∂i+jX
∂yi1∂y

j
2

∥∥∥
L∞([0,T ]×O)

≤ NKT, 1 < i+ j ≤ 3,

∥∥∥∂Y
∂x

∥∥∥
L∞([0,T ]×O)

≤ NK ,
∥∥∥ ∂i+jY
∂xi1∂x

j
2

∥∥∥
L∞([0,T ]×O)

≤ NKT, 1 < i+ j ≤ 3,

∥∥∥∂2Xm

∂t∂y`

∥∥∥
L∞([0,T ]×O)

≤ NK ,
∥∥∥ ∂2Ym
∂t∂x`

∥∥∥
L∞([0,T ]×O)

≤ NK , `,m, n ∈ {1, 2},∥∥∥∂Xm

∂y`
− δ`m

∥∥∥
L∞([0,T ]×O)

≤ NKT,
∥∥∥∂Ym
∂x`

− δ`m
∥∥∥
L∞([0,T ]×O)

≤ NKT, `,m ∈ {1, 2},

‖gm` − δ`m‖L∞([0,T ]×O) ≤ NKT, ‖gm` − δ`m‖L∞([0,T ]×O) ≤ NKT, `,m ∈ {1, 2}.

By using Cauchy-Schwartz inequality and mean value theorem, one can easily check the following.

Lemma A.1.2 Suppose that (W 1, Q1, T 1, (h1
i , ω

1
i )i=1,...,k) and (W 2, Q2, T 2, (h2

i , ω
2
i )i=1,...,k) in K,

and let Y i, Xi,Γikj,`, etc. the terms corresponding to (W i, Qi, T i, (hij , ωij)j=1,...,k). Then there exists

a constant NK satisfying condition (i), such that the functions hi = h1
i − h2

i , X = X1 −X2, and

Y = Y 1 − Y 2 satisfy the following inequalities:

‖h′`‖L∞([0,T ]×O) ≤ NKT
1/2

k∑
i=1
‖hi‖L2(0,T ;R2), 1 ≤ ` ≤ k,

∥∥∥ ∂m+nX

∂ym1 ∂y
n
2

∥∥∥
L∞([0,T ]×O)

≤ NKT
1/2

k∑
i=1
‖hi‖L2(0,T ;R2), 0 ≤ m+ n ≤ 3,

∥∥∥ ∂m+nY

∂xm1 ∂x
n
2

∥∥∥
L∞([0,T ]×O)

≤ NKT
1/2

k∑
i=1
‖hi‖L2(0,T ;R2), 0 ≤ m+ n ≤ 3,

∥∥∥∂2Xm

∂t∂yn

∥∥∥
L∞([0,T ]×O)

≤ NKT
1/2

k∑
i=1
‖hi‖L2(0,T ;R2), m, n ∈ {1, 2}

∥∥∥ ∂2Ym
∂t∂xn

∥∥∥
L∞([0,T ]×O)

≤ NKT
1/2

k∑
i=1
‖hi‖L2(0,T ;R2), m, n ∈ {1, 2}.
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Next, we recall that

K̃ =
{

(W,Q, T , (hi, ωi)i=1,...,k) ∈ S̃(0, T,ΩF ) : ‖W‖Ũ(0,T ;ΩF )+‖T ‖L∞(0,T ;H2(ΩF ))+‖Q‖L2(0,T ;H2(ΩF ))

+ ‖∇Q‖L∞(0,T ;L2(ΩF )) + ‖∂t∇Q‖L2(0,T ;H−1(ΩF )) +
k∑
i=1
‖h′′i ‖L∞([0,T ]×R2) + ‖ω′i‖L∞([0,T ]×R) ≤ R,

‖T ′‖L∞(0,T ;H1(ΩF )) ≤ R′
}
,

Also, we recall that K0 and C0 are two positive constants which satisfy the following assertions

(see Chapter 4):

i. K0 is a positive function of (h1
i , ω

0
i )i=1,...,k, ‖u0‖H2(ΩF ), ‖τ0‖[H2(ΩF )]4 , T and R which is non-

decreasing with respect to T,R, ‖u0‖H2(ΩF ) and (|h0
i |, |h1

i |, |ω0
i |)i=1,...,k.

ii. C0 is a positive function of (h1
i , ω

0
i , )i=1,...,k, ‖u0‖H2(ΩF ), and T which is non-decreasing with

respect to T, ‖u0‖H2(ΩF ), ‖τ0‖[H2(ΩF )]4 and (|h0
i |, |h1

i |, |ω0
i |)i=1,...,k.

The following lemma is essential to prove that the source term F0 defined in (4.2.3) is in the good

space to apply Proposition 4.3.1. We refer the reader again to [40] for a similar proof.

Lemma A.1.3 Suppose that (W,Q, T , (hi, ωi)i=1,...,k) ∈ K̃ and let Λ, X, and Y be the terms corre-

sponding to (W,Q, T , (hi, ωi)i=1,...,k) ∈ K̃. Then then there exists a constant K0 satisfying (i) and

a constant C0 satisfying (ii) such that

‖h′`‖L∞([0,T ]×O) ≤ C0 +K0T,
∥∥∥ ∂i+jΛ
∂xi1∂x

j
2

∥∥∥
L∞([0,T ]×O)

≤ C0 +K0T, 0 ≤ i+ j ≤ 4, 1 ≤ ` ≤ k,

∥∥∥∂X
∂y

∥∥∥
L∞([0,T ]×O)

≤ K0,
∥∥∥ ∂i+jX
∂yi1∂y

j
2

∥∥∥
L∞([0,T ]×O)

≤ K0T, 1 < i+ j ≤ 4,

∥∥∥∂Y
∂x

∥∥∥
L∞([0,T ]×O)

≤ K0,
∥∥∥ ∂i+jY
∂xi1∂x

j
2

∥∥∥
L∞([0,T ]×O)

≤ K0T, 1 < i+ j ≤ 4,

∥∥∥∂2Xm

∂t∂y`

∥∥∥
L∞([0,T ]×O)

≤ K0,
∥∥∥ ∂3Xm

∂t∂y`∂yn

∥∥∥
L∞([0,T ]×O)

≤ K0, `,m, n ∈ {1, 2},∥∥∥ ∂2Ym
∂t∂x`

∥∥∥
L∞([0,T ]×O)

≤ K0,
∥∥∥ ∂3Ym
∂t∂x`∂xn

∥∥∥
L∞([0,T ]×O)

≤ K0, `,m, n ∈ {1, 2},∥∥∥∂2X

∂t2

∥∥∥
L∞([0,T ]×O)

≤ K0,
∥∥∥∂2Y

∂t2

∥∥∥
L∞([0,T ]×O)

≤ K0,∥∥∥∂Xm

∂y`
− δ`m

∥∥∥
L∞([0,T ]×O)

≤ K0T,
∥∥∥∂Ym
∂x`

− δ`m
∥∥∥
L∞([0,T ]×O)

≤ K0T, `,m ∈ {1, 2}.

We recall that the functions gij , gi,j and Γki,j are defined as follows:

gij =
2∑

k=1

∂Yi
∂xk

∂Yj
∂xk

, gij =
2∑

k=1

∂Xk

∂yi

∂Xk

∂yj
, Γki,j = 1

2

2∑
`=1

gk`
{
∂gi`
∂yj

+ ∂gj`
∂yi
− ∂gij
∂y`

}
.
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By noting that gij(0) = gij(0) = δij and using mean-value theorem, we get

‖gij − δij‖L∞([0,T ]×O) ≤ K0T, ‖gij − δij‖L∞([0,T ]×O) ≤ K0T, ∀i, j ∈ {1, 2} (A.1.5)

Moreover, we get the following as a direct consequence of Lemma A.1.3 .

Corollary A.1.1 There exists a constant K0 satisfying (i) such that

‖gij‖L∞([0,T ]×O) ≤ K0, ‖Γij,k‖L∞([0,T ]×O) ≤ K0T,∥∥∥∂gij
∂y`

∥∥∥
L∞([0,T ]×O)

≤ K0T,
∥∥∥∂Γij,k
∂y`

∥∥∥
L∞([0,T ]×O)

≤ K0T,∥∥∥ ∂2gij

∂y`∂ym

∥∥∥
L∞([0,T ]×O)

≤ K0T,
∥∥∥ ∂2Γij,k
∂y`∂ym

∥∥∥
L∞([0,T ]×O)

≤ K0T.∥∥∥∂gjk
∂t

∥∥∥
L∞([0,T ]×O)

≤ K0,
∥∥∥∂Γij,k
∂t

∥∥∥
L∞([0,T ]×O)

≤ K0,∥∥∥ ∂2gjk

∂t∂yk

∥∥∥
L∞([0,T ]×O)

≤ K0,
∥∥∥∂2Γij,k
∂t∂y`

∥∥∥
L∞([0,T ]×O)

≤ K0.

We move now to derive some estimates which will be helpful in bounding the terms in the right

hand side of (4.3.35) and (4.3.36) in terms of the terms in the left hand side of each one of them.

For (Wn, Qn, T n, (hni , ωni )i=1,...,k) and (W,Q, T , (hi, ωi)i=1,...,k) ∈ K̃, we denote by Xn, Y n, gij,n,

Γk,ni,j ,... the terms corresponding to (Wn, Qn, T n, (hni , ωni )i=1,...,k) and by X,Y, gij ,Γki,j , . . . the terms

corresponding to (W,Q, T , (hi, ωi)i=1,...,k).

It is important to note that the transforms X and Xn satisfy the estimates in Lemma A.1.3

independent of n. We denote by X̄n = X−Xn and Ȳ n = Y −Y n. Then using arguments identical

to that given in [40] shows that X̄n and Ȳ n satisfy the following.

Lemma A.1.4 Assume that (W,Q, T , (hi, ωi)i=1,...,k) and (Wn, Qn, T n, (hni , ωni )i=1,...,k) ∈ K̃, for

all n ≥ 1.

Then there exists a constant K0 satisfying (i) and a positive constant C such that

∥∥∥∂`+mX̄n

∂y`1∂y
m
2

∥∥∥
L∞([0,T ]×O)

≤ K0T
k∑
i=1
‖h′i − (hni )′‖L∞([0,T ]×O), 0 ≤ `+m ≤ 3,

∥∥∥∂`+mȲ n

∂x`1∂x
m
2

∥∥∥
L∞([0,T ]×O)

≤ K0T
k∑
i=1
‖h′i − (hni )′‖L∞([0,T ]×O), 0 ≤ `+m ≤ 3,

∥∥∥∂1+`+mX̄n

∂t∂y`1∂y
m
2

∥∥∥
L∞([0,T ]×O)

≤ K0

k∑
i=1
‖h′i − (hni )′‖L∞([0,T ]×O), 1 ≤ `+m ≤ 3,

∥∥∥∂1+`+mȲ n

∂t∂x`1∂x
m
2

∥∥∥
L∞([0,T ]×O)

≤ K0

k∑
i=1
‖h′i − (hni )′‖L∞([0,T ]×O), 1 ≤ `+m ≤ 3.
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Finally, the following is a direct consequence of Lemma A.1.4.

Lemma A.1.5 There exists a positive constant K0 satisfying (i) such that

‖gij(X)− gij,n(Xn)‖L∞([0,T ]×O) ≤ K0T
k∑
`=1
‖h′` − (hn` )′‖L∞([0,T ]×O),

∥∥∥ ∂

∂yk

(
gij(X)− gij,n(Xn)

)∥∥∥
L∞([0,T ]×O)

≤ K0T
k∑
`=1
‖h′` − (hn` )′‖L∞([0,T ]×O),

∥∥Γij,k(X)− Γi,nj,k(X
n)
∥∥
L∞([0,T ]×O) ≤ K0T

k∑
`=1
‖h′` − (hn` )′‖L∞([0,T ]×O),

∥∥∥ ∂

∂yk

(
Γij,`(X)− Γi,nj,` (X

n)
)∥∥∥

L∞([0,T ]×O)
≤ K0T

k∑
m=1
‖h′m − (hnm)′‖L∞([0,T ]×O).

A.2 Proof of Lemma 2.4.3 and Lemma 2.4.4

Let X be the transform defined in (2.2.2) and consider the operators [LU ], [MU ], [NU ], and

[GP ] are defined as in (4.2.7)-(4.2.10) (see Chapter 2). First, we show the existence of a strong

2-extension operator E for ΩF (t).

Lemma A.2.1 There exists a strong 2-extension operator E for ΩF (t). Moreover, there exists a

positive constant k = k(ε) such that for u ∈ H2(ΩF (t)), we have:

‖Eu‖L2(R2) ≤ k‖u‖L2(ΩF (t)), (A.2.1)

‖Eu‖H1(R2) ≤ k‖u‖H1(ΩF (t)), (A.2.2)

‖Eu‖H2(R2) ≤ k‖u‖H2(ΩF (t)). (A.2.3)

proof. Let t < T0, 0 < ε < γ and u ∈ H2(ΩF (t)). We consider a family of smooth functions

{χi}i=1,...,k each of compact support included in [−ri− ε
2 , ri +

ε
2 ] and equals to one on [−ri, ri]. For

each i ∈ {0, . . . , k}, we define the function u(i) : ΩF (t)→ R2, such that

u(i)(x) = χi(|x− hi(t)|)u(x), 1 ≤ i ≤ k

and

u(0) = u−
k∑
i=1

u(i).
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Moreover, for i ∈ {1, . . . , k}, we define the function v(i) : B(hi(0), ri + ε
2)\Bi(0)→ R2 by

v(i) = u(i)(x+ hi(t)− hi(0)).

We note that v(i) ∈ H2(B(hi(0), ri + ε
2)\Bi(0)

)
for all i ∈ {1, . . . , k}. We set v(i) = Ev(i), where E

is a strong 2-extension operator for ΩF . By Theorem 5.22 in [1], there exists a constant k = k(ε)

such that

‖v(i)‖L2(R2) ≤ k‖u(i)‖L2(ΩF (t)), (A.2.4)

‖v(i)‖H1(R2) ≤ k‖u(i)‖H1(ΩF (t)), (A.2.5)

‖v(i)‖H2(R2) ≤ k‖u(i)‖H2(ΩF (t)). (A.2.6)

We note that v(i) vanishes outside B(hj(t), rj + ε
2) for all j 6= i. Finally, we set

Eu = ũ(0) +
k∑
i=1

u(i),

where u(i)(x) = v(i)(x− hi(t) + hi(0)), ∀i ∈ {1, . . . , k} and ũ(0) is the extension of u(0) by zero over

the disks. We remark here that ũ(0) ∈ H2(R2) and for simplicity we remove the tilde.

Hence, for x ∈ ΩF (t) we have

Eu(x) = u(0)(x) +
k∑
i=1

v(i)(x− hi(t) + hi(0)).

If x ∈ B(hj(t), rj + ε
2)\Bj(t), then x− hj(t) + hj(0) ∈ B(hj(0), rj + ε

2)\Bj(0) and x /∈ B(hi(t), ri +
ε
2)\Bi(t) for all i 6= j. Hence, for all i 6= j, we have x− hi(t) + hi(0) /∈ B(hi(0), ri + ε

2)\Bi(0) and

thus
Eu(x) = u(0)(x) + v(j)(x− hj(t) + hj(0))

= u(0)(x) + v(j)(x− hj(t) + hj(0))

= u(0)(x) + u(j)(x)

= u(x).

Now, if x ∈ ΩF (t)\
k⋃
i=1

B(hi(0), ri + ε

2), then x− hi(t) + hi(0) /∈ B(hi(0), ri + ε
2) and thus

Eu(x) = u(0)(x) = u(x).
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Moreover, there exists a positive real constant k = k(ε) such that

‖Eu‖L2(R2) ≤ ‖u(0)‖L2(R2) +
k∑
i=1
‖u(i)‖L2(R2)

≤ k‖u‖L2(ΩF (t)) +
k∑
i=1
‖v(i)‖L2(R2).

This implies that

‖Eu‖L2(R2) ≤ k‖u‖L2(ΩF (t)) + k
k∑
i=1
‖u(i)‖L2(ΩF (t)).

Hence, we get

‖Eu‖L2(R2) ≤ k‖u‖L2(ΩF (t)). (A.2.7)

In a similar way, we can prove

‖Eu‖H1(R2) ≤ k‖u‖H1(ΩF (t)), (A.2.8)

‖Eu‖H2(R2) ≤ k‖u‖H2(ΩF (t)). (A.2.9)

Next we prove the following Lemma.

Lemma A.2.2 Let u be the unique strong solution of problem (2.1.1)-(2.1.6). Then there exists

T1 small enough, such that for almost every t ∈ [0, T1], we have

‖u(t)‖H2(ΩF (t)) ≤ K
(∥∥∥∂u
∂t

(t)
∥∥∥

L2(ΩF (t))
+ ‖u(t)‖2L2(ΩF (t)) + ‖∇u(t)‖2L2(ΩF (t)) + ‖f(t)‖L2(ΩF (t)) + 1

)
,

where K is a positive constant that depends on ΩF , Bi, ρi, ν, T0, ‖u0‖L2(R2) and ‖f‖L2(0,T0;L2(R2)).

proof. We can consider that the solution (u, p) is a solution of the following problem at a fixed

time t > 0: 
u− ν∆u+∇p = f̃ , in ΩF (t),

∇ · u = 0, in ΩF (t),

u(x, t) = h′i(t) + ωi(t)(x− hi(t))⊥, x ∈ Bi(t), ∀i ∈ {1, . . . , k},

(A.2.10)

where

f̃ = −∂u
∂t
− (u · ∇)u+ f + u. (A.2.11)
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We define for (y, t) ∈ R2 × [0, T ] and i ∈ {1, . . . , k}, the mappings:

wi(y, t) = h′i(t) · y⊥ + ωi(t)
2 |y − hi(0)|2.

Finally, we define the mapping Λ : R2 × [0, T ]→ R2 by

Λ(x1, x2, t) =
k∑
i=1
∇⊥(wiζi). (A.2.12)

We note here that

Λ(y, t) = h′i(t) + ωi(t)(y − hi(0))⊥, ∀y ∈ Bi,

and

||Λ(t)||H2(ΩF (t)) ≤ C
k∑
i=1

(|h′i(t)|+ |ωi(t)|), ∀t ∈ [0, T0).

Lemma 2.4.1 implies that

||Λ||H2(ΩF (t)) ≤ CM
1
2K1.

By using the change of variables X defined in (2.2.2), we see that (U,P ) as defined in Chapter

2 (see Section 2.2) satisfies the following problem:


U − ν∆U +∇P = g̃, in ΩF ,

∇ · U = 0, in ΩF ,

U |∂Bi = Λ|∂Bi , ∀i ∈ {1, . . . , k},

(A.2.13)

with

g̃ = ν[(L−∆)U ]− [(G−∇)P ]− [MU ]− [NU ]− ∂U

∂t
+ F + U, (A.2.14)

where [LU ], [MU ], [NU ], and [GP ] are defined as in (4.2.7)-(4.2.10).

By Theorem 2.1 in [15], there exists a unique (U,P ) ∈ H2(ΩF ) × Ḣ1(ΩF ) solution of problem

(A.2.13). Moreover, there exists a constant C3 = C3(ν,ΩF ) > 0 such that

‖U‖[H2(ΩF )]2 + ‖∇P‖[L2(ΩF )]2 ≤ C3
(
‖g̃‖[L2(ΩF )]2 + ‖Λ‖[H2(R2)]2

)
. (A.2.15)
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We start with estimating the first term in the expression of g̃. We have:

∥∥[(L−∆)U ]i
∥∥
L2(ΩF ) ≤

2∑
j,k=1

‖gjk − δjk‖L∞(ΩF )

∥∥∥ ∂2Ui
∂yj∂yk

∥∥∥
L2(ΩF )

+
2∑

j,k=1

∥∥∥∂gjk
∂yj

∥∥∥
L∞(ΩF )

∥∥∥∂Ui
∂yk

∥∥∥
L2(ΩF )

+ 2
2∑

j,k,`=1
‖gk`‖L∞(ΩF )‖Γij,k‖L∞(ΩF )

∥∥∥∂Uj
∂y`

∥∥∥
L2(ΩF )

+
2∑

j,k,`=1

{∥∥∥∂gk`
∂yk

∥∥∥
L∞(ΩF )

‖Γij,`‖L∞(ΩF + ‖gk`‖L∞(ΩF )

∥∥∥∂Γij,`
∂y`

∥∥∥
L∞(ΩF )

+
2∑

m=1
‖gk`‖L∞(ΩF )‖Γmj,`‖L∞(ΩF )‖Γik,m‖L∞(ΩF )

}
‖Uj‖L2(ΩF ),

(A.2.16)

In what follows, we denote by K a positive constant that depends on ΩF , Bi, ρi, ν, T0, ‖u0‖L2(R2)

and ‖f‖L2(0,T0;L2(R2)) that may changes between lines.

From the definition of gij , gi,j and Γki,j respectively in (2.2.14), and by applying the same technique

of proof of Lemma 6.4 and Corollary 6.5 in [40], we get for all 1 ≤ i, j, k ≤ 2:

‖gij − δij‖L∞(R2) ≤ KT1, ‖gij − δij‖L∞(R2) ≤ KT1,∥∥∥∂gij
∂yk

∥∥∥
L∞(R2)

≤ KT1,
∥∥∥∂gij
∂yk

∥∥∥
L∞(R2)

≤ KT1,

‖Γki,j‖L∞(R2) ≤ KT1,
∥∥∥∂Γki,j
∂y`

∥∥∥
L∞(R2)

≤ KT1.

Combining the above estimates with (A.2.16), we obtain that

∥∥[(L−∆)U ]i
∥∥
L2(ΩF ) ≤ KT1‖U‖H2(ΩF ). (A.2.17)

By the same way, we get that there exists some positive constant C such that

∥∥[(∇−G)P ]i
∥∥
L2(ΩF ) ≤ KT1‖∇P‖L2(ΩF ),∥∥[MU ]i
∥∥
L2(ΩF ) ≤ C‖U‖H1(ΩF ),∥∥[NU ]i
∥∥
L2(ΩF ) ≤ ‖(U · ∇)U‖L2(ΩF ) +KT1‖U‖2L2(ΩF ),

and thus

‖g̃‖[L2(ΩF )]2 ≤
∥∥∥∂U
∂t

∥∥∥
L2(ΩF )

+ ‖(U · ∇)U‖L2(ΩF ) +KT1(‖U‖H2(ΩF ) + ‖∇P‖L2(ΩF ))

+ C(‖F‖L2(ΩF ) + ‖U‖2L2(ΩF ) + ‖∇U‖2L2(ΩF ) + 1). (A.2.18)
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Combining the above inequality with the estimate in (A.2.15), we obtain for T1 is small enough:

‖U‖H2(ΩF ) +‖∇P‖L2(ΩF ) ≤
C3

1−KT1

{∥∥∥∂U
∂t

∥∥∥
L2(ΩF )

+‖(U ·∇)U‖L2(ΩF ) +‖U‖2L2(ΩF ) +‖∇U‖2L2(ΩF )

+ ‖F‖L2(ΩF ) + ‖Λ‖H2(R2) + 1
}
. (A.2.19)

Bounding the transform X and its derivatives up to order 3 from above as in Lemma 6.4 in [40],

we get that

‖u‖L2(ΩF (t)) ≤ K‖U‖L2(ΩF ), (A.2.20)

‖U‖L2(ΩF ) ≤ K‖u‖L2(ΩF (t)), (A.2.21)∥∥∥∂U
∂t

∥∥∥
L2(ΩF )

≤ K
(∥∥∥∂u
∂t

∥∥∥
L2(ΩF (t))

+ ‖u‖H1(ΩF (t))
)
, (A.2.22)

‖(U · ∇)U‖L2(ΩF ) ≤ K‖u‖2H1(ΩF (t)), (A.2.23)

‖∇u‖[L2(ΩF )]4 ≤ K‖U‖H1(ΩF ), (A.2.24)

‖∇2u‖[L2(ΩF )]8 ≤ K‖U‖H2(ΩF ). (A.2.25)

By combining these estimates with that in (A.2.19), the proof of Lemma 2.4.4 is complete. �

A.3 Proof of Proposition 4.2.1

For completeness, we recall the statement of Proposition 4.2.1.

Proposition A.3.1 Let G ∈ L2(0, T ; L2(ΩF )) and τ0 ∈ H1(ΩF ) such that τT0 = τ0. Then problem


We

∂T
∂t

+ T − ε∆T = G, in ΩF×]0, T ],

ε
∂T
∂n

= 0, on ∂ΩF×]0, T ],

T (0) = τ0, in ΩF .

(A.3.1)

admits a unique solution T ∈ T(0, T ; ΩF ). Moreover, there exists a positive constant K depending

only on ΩF and T ; non-decreasing with respect to T , such that

‖T ‖L2(0,T ;H2(ΩF )) + ‖T ‖L∞(0,T ;H1(ΩF )) + ‖T ‖H1(0,T ;L2(ΩF )) ≤ K
(
‖τ0‖H1(ΩF ) + ‖G‖L2(0,T ;L2(ΩF ))

)
.
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Before giving the proof of the above proposition , let us define the following spaces:

L2
sym = {T ∈ L2(ΩF ) : T T = T },

H1
sym = {T ∈ H1(ΩF ) : T T = T },

D(AN ) = {T ∈ H2(ΩF ) : T T = T , ∂T
∂n

= 0 on ∂ΩF }.

For T and σ in L2
sym, we define the scalar product (., .)L2

sym
as follows:

(T , σ)L2
sym

= We

∫
ΩF
T : σdy. (A.3.2)

Hence, Problem 2 is equivalent to the following Cauchy problem:

 T
′ +ANT = G̃,

T (0) = τ0,
(A.3.3)

where AN : D(AN )→ L2
sym is defined as follows

ANT = 1
We

(−ε∆T + T ), ∀T ∈ D(AN ),

and G̃ = 1
We
G.

We use semi group theory to solve problem (A.3.3). For (T , σ) ∈ [D(AN )]2, we have

(ANT , σ)L2
sym

= ε

∫
ΩF
∇T : ∇σdy +

∫
ΩF
T : σdy. (A.3.4)

Thus AN is symmetric and we are almost ready to prove that AN is self -adjoint. To do so, it

suffices to show only that it is maximal monotone [9].

Setting σ = T in (A.3.4), we get that AN is monotone. Now, we are in position to show that AN
is maximal monotone. This is equivalent to show that for all g ∈ L2

sym, there exists T ∈ D(AN )

such that

(I +AN )T = g. (A.3.5)

To this end, we multiply scalar (A.3.5) by σ ∈ L2
sym and we get that

(T , σ)L2
sym

+ (ANT , σ)L2
sym

= (g, σ)L2
sym
. (A.3.6)
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In particular for σ ∈ H1
sym, we have

(We+ 1)
∫

ΩF
T : σdy + ε

∫
ΩF
∇T : ∇σdy = We

∫
ΩF

g : σdy. (A.3.7)

By Lax-Milligram theorem, there exists unique T ∈ H1
sym satisfying (A.3.7).

Equation (A.3.7) holds for all σ ∈ D(ΩF ) such that σT = σ. This means that

(We+ 1)T − ε∆T = Weg, in ΩF ,

holds in the sense of distribution.

By continuity and density, the above equation implies that for all σ ∈ H1(ΩF ), we have

(We+ 1)
∫

ΩF
T : σdy + ε

∫
ΩF
∇T : ∇σdy − ε

∫
∂ΩF

∂T
∂n
· σdΓ = We

∫
ΩF

g : σdy.

By comparing the above equation with that in (A.3.7), we get that ε∂T
∂n

= 0.

Thus T satisfies the following problem:

(We+ 1)T − ε∆T = Weg, in ΩF ,

ε
∂T
∂n

= 0, on ∂ΩF .

By Theorem 3.4.3 in [3], we get that T ∈ H2(ΩF ) and thus AN is a maximal monotone symmetric

operator. Consequently, AN is also self-adjoint. The proof is accomplished by recalling the known

identification

D(A1/2
N ) ≡ H1(ΩF )

from [5] and the application of Propostion 3.3 in [41]. �

155





Bibliography

[1] R. A. Adams and J. F. John Fournier, Sobolev spaces, Pure Appl. Math., Academic

Press, 140 (2003).

[2] V. I. Arnold, Ordinary Differential Equations, Springer, Berlin, translated from the

third Russian edition, (1992), pp. 249.

[3] V. Barbu, Partial differential equations and boundary value problems (Vol. 441).

Springer Science & Business Media, (2013).

[4] J. Barrett and E. Suli, Existence of global weak solutions to some regularized kinetic

models for dilute polymers, Multiscale Model. Simul., (2007), pp. 506-546.

[5] A. Bensoussan, G. Da. Prato, M. C. Delfour, and S. K. Mitter, Representation

and control of infinite dimensional systems, (Vol. 1). Boston: Birkhäuser, (1993), pp.

432-438.

[6] K. Billah and R. Scanlan, Resonance, Tacoma Narrows Bridge Failure, and Under-

graduate Physics Textbooks, American Journal of Physics, (1991).

[7] J. P. Bourguignon and H. Brezis, Remarks on the Euler equations, J. Funct. Anal-

ysis (1976) pp. 341-363.

[8] F. Boyer and P. Fabrie, Eléments d’analyse pour l’étude de quelques modèles

d’écoulements de fluides visqueux incompressibles, Vol. 52. Springer Science & Business

Media, (2005).

[9] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations,

Springer Science and Business Media, 2010.

[10] C. Conca, J.A. San Martin, and M. Tucsnak, Existence of solutions for the equa-

tions modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential

Equations, 25 (2000), pp. 99–110.



BIBLIOGRAPHY

[11] P. Constantin and M. Kliegl, Note on global regularity for two-dimensional

Oldroyd-B fluids with diffusive stress, Arch. Ration. Mech. Anal., (2012), 206(3):725–740.

[12] P. Cumsille and T. Takahashi, Well posedness for the system modelling the motion

of a rigid body of arbitrary form in an incompressible viscous fluid, Czechoslovak Math.

J., 58 (2008), pp. 961–992.

[13] B. Desjardins and M. Esteban, Existence of weak solutions for the motion of rigid

bodies in a viscous fluid, Arch. Ration. Mech. Anal., 146 (1999), pp. 59–71.

[14] B. Desjardins and M. Esteban, On weak solutions for fluidrigid structure interac-

tion: Compressible and incompressible models, Comm. Partial Differential Equations, 25

(2000), pp. 263–285.

[15] R. Farwig and H. Sohr, The stationary and non-stationary stokes system in exterior

domains with non-zero divergence and non-zero boundary values, Math. methods Appl.

Sci., 17 (1994), pp. 269–291.

[16] E. Feireisl, On the motion of rigid bodies in a viscous fluid, Appl. Math., 47 (2002),

pp. 463–484.
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