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ABSTRACT

Abstract

One promising area of research in clinical routine involves using photoplethysmography

(PPG) for monitoring respiratory activities. PPG is an optical signal acquired from

oximeters, whose principal use consists in measuring oxygen saturation. Despite its

simplicity of use, the deployment of this technique is still limited because of the signal

sensitivity to distortions and the non-reproducibility between subjects, but also for the

same subject, due to age and health conditions. The main aim of this work is to develop

robust and universal methods for estimating accurate respiratory rate regardless of

the intra- and inter-individual variability that a�ects PPG features. For this purpose,

�rstly, an adaptive artefact detection method based on template matching and decision

by Random Distortion Testing is introduced for detecting PPG pulses with artefacts.

Secondly, an analysis of several spectral methods for Respiratory Rate (RR) estimation

on two di�erent databases, with di�erent age ranges and di�erent respiratory modes,

is proposed. Thirdly, a Spectral Respiratory Quality Index (SRQI) is attributed to

respiratory rate estimates, in order that the clinician may select only RR values with

a large con�dence scale. Promising results are found for two di�erent databases. The

RMSE found when comparing the estimated RR values to RR references is about

0.66breath/min for the Capnobase data with an acceptance rate of 67%. For Reastoc

data, the RMSE is about 0.31breath/min with an acceptance rate of 75.6%.

Keywords: photoplethysmography, respiratory rate, artifacts detection, quality

index.
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RÉSUMÉ

Résumé

1. Introduction

La surveillance de l'évolution des signaux physiologiques, en routine clinique et pour les

applications de télémedicine, requiert des procédés automatisés de suivi et de détection

d'anomalie. Il y a un besoin évident de méthodes non invasives, �ables et simples pour

le suivi en temps réel des activités cardio-respiratoires des patients.

La photopléthysmographie (PPG) est une technologie prometteuse qui peut assurer,

en théorie, d'estimer les fréquences cardiaques et respiratoires. Il s'agit d'un signal

optique acquis à partir de l'oxymètre de pouls, dont l'usage principal consiste à mesurer

la saturation en oxygène. Le signal PPG est largement utilisé par les cliniciens vu sa

simplicité d'acquisition mais à ce jour il n'existe pas de méthodes automatisées pour

le traitement de ce signal.

Dans la littérature, plusieurs méthodes ont été proposées pour l'étude du signal PPG

dans des conditions parfaites loin d'être similaires aux conditions réelles en milieux

hospitalier. Nous avons constaté beaucoup de di�érences de performances d'une base

de données à une autre et entre les di�érents patients de la même base. En dépit de

sa simplicité, le signal du PPG est sensible aux distorsions et à la non-reproductibilité

entre les sujets, mais aussi pour les mêmes sujets, en raison de l'âge et des conditions

de santé.

L'originalité des travaux de cette thèse réside essentiellement dans la recherche

de méthodes plutôt universelles qui s'appliquent à tous les patients quelques soient les

conditions d'acquisition et par la suite réussir à automatiser le traitement de PPG dans

les conditions réelles. Dans ce contexte, les travaux de cette thèse ont pour objectifs le

développement de méthodes robustes et universelles a�n d'avoir une estimation précise

de la fréquence respiratoire indépendamment de la variabilité intra et interindividuelle

du signal PPG.

Dans une première partie nous présentons les principales caractéristiques et appli-

cation du signal PPG. Dans une deuxième partie nous exposons la problématique de

la détection des artéfacts à partir du signal de PPG en proposant une méthode orig-
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RÉSUMÉ

inale de comparaison de pulses. Dans une troisième partie, une analyse de plusieurs

méthodes spectrales d'estimation de la fréquence respiratoire (FR) est proposée. Fi-

nalement, dans une quatrième partie, un indice de qualité respiratoire spectral (SRQI)

est conçu dans le but de communiquer au clinicien que les valeurs d'estimation de la

fréquence respiratoire ayant un certains indice de con�ance.

2. Les caractéristiques du signal PPG

2.1. La forme d'onde du PPG

Le PPG est un signal complexe constitué de di�érents composants. La composante

principale du PPG est la forme d'onde pulsatile qui est synchronisée à chaque battement

cardiaque (AC). Cette composante est superposée et modulée par un composant (DC)

qui varie lentement et qui est relié à la respiration et aux activités vasomotrices. Par

conséquence, la fréquence cardiaque (FC) correspond à l'inverse des distances entre les

pulses appelé PtoP et la FR corresponds la fréquence des modulations du PPG.

La modélisation mathématique de la forme d'onde du PPG permet aux chercheurs

d'évaluer les performances de leurs algorithmes. Certains chercheurs ont proposés

quelques modèles gaussien et logarithmiques. Mais ces modèles ne re�ètent pas néces-

sairement les signaux de PPG acquis dans des conditions réelles. En e�et, la représen-

tation du caractère impulsionnel du signal ainsi que les di�érentes modulations respi-

ratoires n'est pas si évident. La non reproductibilité du signal et la variabilité selon les

conditions du sujet limite la �abilité d'une telle modélisation.

2.2. Application clinique du signal PPG

La principale application directe du PPG est la mesure de la saturation en oxygène dans

le sang par oxymètre de pouls. D'autres applications subordonnées ont été étudiées

durant ces dernières années dont on cite le suivi des activités cardiaques et respiratoires.

En e�et, la composante pulsatile de PPG est synchronisée avec le cycle cardiaque. Par

conséquence, la fréquence cardiaque peut être estimée en calculant la distance entre les

maxima consécutifs des pulses. Cette application de PPG est intéressante dans le cadre

de suivi clinique où les électrodes ECG peuvent être inconfortables à porter, comme

pour les sujets sous traitement d'hémodialyse. L'irrégularité des battements cardiaques

peut alors être détectée en utilisant des informations sur la morphologie du pouls et

de la fréquence cardiaque. Ainsi, di�érents types d'arythmies peuvent être détectées à
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RÉSUMÉ

partir du PPG. Quant à la fréquence respiratoire, les méthodes existantes de mesure et

de suivi des FR sont encore limitées par leur di�culté d'utilisation et leur inexactitude.

En fait, le fait de placer une bande étroite autour du thorax du patient constitue une

mesure non reproductible et de plus inconfortable pour le patient. D'autres techniques,

comme la capnographie ou les mesures acoustiques, sont limitées aux unités de soins

intensifs et aux salles d'opération. Une approche alternative est donc proposée: c'est

d'extraire la FR du signal PPG et d'étudier son évolution au cours du temps.

2.3. Description des données

Capnobase

Capnobase est une base de données en ligne qui contient des signaux physiologiques

recueillis de patients, adultes et enfants, sous anesthésie à l'hôpital d'enfant de Britsh

Colombia et à l'hôpital St Paul à Vancouver. Cette base de données contient 42 enreg-

istrements de longueur de 8 minutes. Pour chaque patient, il y a trois signaux enreg-

istrés simultanément: l'ECG, la capnométrie et le PPG. Nous allons utiliser l'ECG et

la capnométrie comme vérité terrain avec lesquelles on compare la fréquence cardiaque

et respiratoire estimées à partir du PPG.

Réastoc

Il s'agit de données recueillies au service de réanimation à l'hôpital de la Cavale Blanche

à Brest. Les enregistrements (ECG, PPG, ABP) ont été réalisés grâce au logiciel

Synapse développé par l'unité INSERM Rennes au LTSI de Rennes. Pour notre étude,

nous avons sélectionné des séquences de 22 patients de longueur variable selon le pa-

tient. La fréquence cardiaque et respiratoire de référence ont été notées par le personnel

soignant. Cette base de données est en cours d'évolution et d'autres informations y

seront intégrées.

3. La détection des artéfacts du signal PPG par la

RDT

Une estimation précise de FC et FR repose sur la qualité des signaux PPG. En e�et,

le signal de PPG est sensible aux artéfacts associés aux conditions de mesure et aux

mouvements du patient. En observant la morphologie de la forme d'onde PPG, nous
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remarquons qu'elle est composée d'impulsions de formes similaires et de légères dif-

férences d'amplitude et de forme. En cas d'artefacts, la forme des impulsions change

soudainement, ce qui entraîne une distorsion du signal. Autrement, lorsque l'activité

physiologique varie, par exemple en FC ou FR, les changements de forme du pouls sont

lents et faibles.

3.1. Aperçu de la littérature

Les artefacts ont une distribution inconnue et peuvent avoir plusieurs formes. Comme

la plupart des signaux physiologiques, le PPG n'est pas stationnaire et ses paramètres

changent considérablement au �l du temps. Ainsi, la comparaison avec un modèle ou

des signaux de référence n'est pas évidente.

La première approche proposée est basée sur le �ltrage. Les méthodes de �ltrage

ordinaires ne permettent pas d'éliminer les artefacts, car il existe un chevauchement

entre la bande de fréquences des artefacts et celle des signaux PPG utiles. D'autres

méthodes de �ltrage sont proposées comme le �ltrage adaptatif, les ondelettes ou la

Décomposition en Modes Empiriques. En dépit de la cohérence méthodologique de

ces méthodes de �ltrage, ils ont des performances limitées pour les applications en

temps réel. En fait, il n'y a pas de modèle statistique pour le PPG, les artefacts et

leurs variations dans le temps. Pire encore, des informations utiles sur les activités

respiratoires ou cardiaques peuvent être omises lors de l'application du �ltrage sur des

portions propres de PPG.

La seconde approche proposée est basée sur la classi�cation. Il s'agit de décomposer

le signal en un ensemble de pulses et de les classer en pulses propres ou pulses altérés

par des artéfacts. Mais cette approche a également ses limites. En e�et, les méthodes

de classi�cation nécessitent de larges bases de données représentatives ; ce qui semble

compliqué à mettre en ÷uvre. Jusqu'à présent, il n'y a pas de normalisation du pro-

tocole de l'acquisition du signal du PPG. Il existe donc une grande variabilité entre

les enregistrements. De plus, la nature dynamique du comportement physiologique en-

gendre un signal PPG non-stationnaire avec une distribution inconnue. Il existe donc

un besoin d'un système autonome avec peu de paramètres prédé�nis, qui pourrait être

adapté à chaque enregistrement et pourrait mettre à jour ses paramètres lorsque des

modi�cations substantielles se produisent.
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3.2. Méthodes proposées et résultats

A partir de la littérature existante, les méthodes de comparaison de modèles sont les

mieux adaptées pour détecter les signaux PPG avec des artefacts sans endommager les

informations utiles. Mais le problème est toujours de savoir comment choisir le seuil

et la métrique de comparaison les plus appropriés. Comme dans Sukor & al., l'idée

générale consiste à calculer un modèle de pulse et à utiliser une métrique pour com-

parer ce modèle avec les autres pulses. Pour se faire, nous introduisons une approche

universelle a�n d'avoir un système autonome qui pourrait être adapté à tout enreg-

istrement, sans avoir de paramètres à ajuster. Nous avons proposé deux approches: la

première avec une détection simple et la deuxième avec une détection adaptative.

Détection simple

Tout d'abord un prétraitement est e�ectué a�n de détecter les maximas et d'extraire les

pulses. La deuxième étape consiste à sélectionner un template. Le signal est découpé

en plusieurs segments. Sur chaque segment, la corrélation entre le pulse moyen et les

autres pulses du même segment est calculée. Le segment le plus stable est celui où la

moyenne des corrélations est maximale. Ainsi sur ce segment, le template, la moyenne

des corrélations µ et la variance des corrélations σ sont initialisées.

En troisième étape, le calcul de tous les coe�cients de corrélation entre le template

générée et les autres pulse est réalisé. En�n, un test d'hypothèse est proposé pour

prendre une décision sur la présence ou pas des artéfacts. Le test utilisé est le RDT

(Random Distortion Testing) qui est une technique qui nous permet de tester si la dis-

tance entre la corrélation correspondante à chaque pulse et le moyenne des corrélation

µ dépasse une certaine tolérance τ . Ainsi, si cette distance est supérieur au seuil RDT,

on décide que le pulse est pollué par des artéfacts

Pour évaluer les performances de cette méthode, la base de données de Sukor & .al

est utilisé. Cette base contient 104 enregistrement de PPG contenants des annotations

manuelles des artéfacts. Chaque enregistrement est de longueur d'une minute. Le 1/3

des pulses sont des artéfacts. Des bonnes performances ont été retrouvé surtout par

rapport à la spéci�cité et la précision qui sont respectivement 85% ± 12 et 83% ± 8.

L'avantage de notre méthode basé sur le test RDT est qu'elle utilise un seul seuil

spéci�que à chaque enregistrement alors que Sukor utilise 6 seuils empiriques. De plus,

vu que nous utilisons peu de paramètre, il n'y a pas de besoin de faire un nouveau

apprentissage à chaque changement de base de donnée.
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Détection adaptative des artéfacts

Les variations de la FR et FC peuvent causer des légères �uctuations de la forme des

pulses PPG surtout pour les longs enregistrements. Il faut donc di�érentier ces e�ets

physiologiques des vrais artéfacts. D'où la nécessité d'avoir une détection adaptative

pour les longs enregistrements.

Comme pour la détection simple, une étape primordiale est d'initialiser les

paramètres de la détection. La première minute de l'enregistrement est choisie pour

identi�er un segment stable sur lequel le template, µ et σ sont initialisés. Après ini-

tialisation, nous continuons notre comparaison avec les autres pulses. Si il n'y a pas

de détection d'artéfact, le template, µ et σ sont actualisés. Sinon, en cas des artéfacts,

on passe au pulse suivant sans actualisation. Evidement ici notre seuil de décision qui

dépend de µ et σ devient adaptative vu l'actualisation des paramètres.

Cette méthode adaptative a été testée sur une portion des deux bases de données

Réactoc et Capnobase. Une nette amélioration de la précision est observée par rapport

à la détection simple. Pour Capnobase, la précision est passée de 74% en utilisant une

détection simple à 91% en utilisant la détection adaptative. De même pour Réastoc,

la précision est passée de 80% en utilisant une détection simple à 92% en utilisant la

détection adaptative.

3.3. Discussion

La méthode de détection adaptative des artéfacts basée sur l'utilisation d'un seuil RDT

adaptative a permis une nette diminution du taux de fausses alarmes et par la suite une

amélioration de la précision. En e�et, par cette technique un ajustement du template

au fur et à mesure de l'enregistrement est réalisé sans être biaisé par les artéfacts.

Les performances trouvées sont semblables pour les deux bases de données sans

pour autant avoir recours à une nouvelle étape d'apprentissage à chaque changement

de base de données.

L'approche proposée peut être appliquée à d'autres signaux biomédicaux qui ont

les mêmes caractéristiques que le PPG. En d'autres termes, ces signaux sont quasi-

périodiques ayant une forme similaire qui se répète au cours du temps e que se déforme

brusquement suite à des artéfacts.
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4. L'estimation de la fréquence respiratoire à partir du

PPG

La fréquence respiratoire (FR) est un indicateur physiologique largement utilisé en soins

cliniques. C'est un marqueur vital de la détérioration clinique lorsque des changements

suspects sont détectés. Le signal de PPG constitue une bonne alternative aux méthodes

traditionnelles de mesure de la FR, grâce à sa simplicité d'utilisation et son caractère

non invasif.

4.1. Aperçu de la littérature

Les e�ets physiologiques liés à l'activité respiratoire et cardiaque induisent plusieurs

modulations des signaux PPG. De ce fait, la plupart des algorithmes, dans la littéra-

ture, proposent une étape préliminaire pour extraire les modulations du signal PPG.

La deuxième étape consiste à estimer les valeurs de FR à partir de chaque modulation.

En�n, la troisième étape est d'analyser les FRs extraites des modulations et puis cal-

culer la FR �nale. Nous nous intéressons plus particulièrement à la méthode de Karlen

qui est une méthode de référence dans la littérature.

Le processus usuel pour estimer la FR, dans la littérature, est comme suie: La

première étape est l'estimation de chaque modulation après extraction des minimas et

des maximas:

� Modulation des amplitudes (AM): C'est la variation des amplitudes des pulses.

Il s'agit de calculer la hauteur entre le maximum et le minimum de chaque pulse.

� Modulation de la bande de base (BW): C'est la variation d'intensité induite par

les voies respiratoires. Il s'agit du milieu de la distance entre le maximum et le

minimum de chaque pulse

� Modulation des fréquences (FM): C'est la variation des fréquences cardiaques. Il

s'agit de la distance entre les maxima successifs des pulses.

La deuxième étape consiste à estimer FR de chaque modulation. La FR corre-

spond à la fréquence du pic maximal de chaque spectre de modulation sur la bande

fréquentielle correspondante aux fréquences respiratoires usuelles [0.013,1 Hz].

La troisième étape est d'estimer la FR �nale. Dans la méthode Fusion de Karlen,

il s'agit de la moyenne des trois FR estimés des modulations AM, BW et FM. Karlen
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a ensuite proposé un processus de décision, appelé Smart Fusion, a�n de limiter les

erreurs dues aux valeurs aberrantes. En e�et, si l'écart type des trois FR est supérieur

à 4 respirations / minute, la valeur de la FR �nale est rejetée. Ce processus de décision

a permis d'améliorer nettement le taux d'erreur mais le taux de rejet reste très impor-

tant. Ce qui peut limiter l'application de cette méthode dans les conditions réelles de

surveillance de FR.

4.2. Méthodes proposées

Dans ce travail de thèse, nous proposons de tester un ensemble de méthodes spec-

trales a�n de trouver une méthode générique d'estimation de la FR quel que soit l'état

du patient. La première approche consiste à appliquer le consensus spectrum sur un

signal PPG brut sans passer par l'extraction des modulations. Il s'agit de multiplier

des spectres successifs de FFT. Cette méthode, que nous appelons CS-PPG, permet

d'accentuer les pics correspondants à la fréquence respiratoire et de diminuer ceux

résultants des artéfacts. Le pic maximal sur la bande de fréquence respiratoire corre-

spond à la fréquence respiratoire du sujet. La deuxième approche consiste à utiliser les

signaux de modulation respiratoire du PPG qui sont AM, BW et FM. Quatre méthodes

sont proposées:

� FFT-Med: Il s'agit d'appliquer la FFT sur une fenêtre de chaque modulation.

La FRMod est le pic maximum de chaque spectre. La FRfinale est donnée par la

médiane des trois FRMod.

� CS-Med: Il s'agit d'appliquer le consensus spectrum sur n fenêtres consécutives de

chaque modulation. La FRMod est le pic maximum de chaque spectre résultant du

consensus spectrum. La FRfinale est donnée par la médiane des trois FRMod.

� SF-Med: Il s'agit d'appliquer la FFT sur une fenêtre de chaque modulation puis

fusionner les spectres des trois modulation par la médiane. La FRfinale est donnée

par le pic maximum du spectre résultant.

� SF-CS: Il s'agit d'appliquer la FFT sur une fenêtre de chaque modulation puis

fusionner les spectres des trois modulation par le consensus spectrum. La FRfinale

est donnée par le pic maximum du spectre résultant.
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4.3. Résultats et discussion

Les performances des algorithmes proposés sont testées sur deux bases de données

Capnobase et Réastoc pour di�érentes tranches d'âge et pour deux modes de respi-

ration: spontanée et sous ventilation mécanique. Les meilleures performances pour

Capnobase sont données par la méthode CS-Med avec un RMSE de 1.75(0.59− 3.63)

respiration/min. Alors que pour Réastoc, les meilleures performances sont données par

la méthode CS-PPG avec un RMSE de 0.35(0.18− 2.11) respiration/min

Cette divergence des performances selon les bases de données peut être expliquée par

le fait que la qualité des signaux de modulations dépend de di�érents facteurs comme

le type de capteur, la fréquence d'échantillonnage, l'environnement d'acquisition...

Pour une même base de donnée, les performances divergent selon l'âge et le mode de

respiration. En e�et, l'estimation de FR est meilleure chez les patients sous ventilation

mécanique. Ceci peut être expliqué par le fait qu'ils ont une respiration plus stable.

Les performances des algorithmes dépendent aussi du l'âge du patient. Ceci peut être

expliqué par le fait que l'e�ort respiratoire dépend du l'âge du patient.

Les performances des algorithmes ont été comparées à certaines méthodes de la

littérature, principalement la méthode Smart Fusion proposée par Karlen & al.

Pour Capnobase, l'algorithme que nous proposons CS-Med se comporte bien par

rapport à l'algorithme Fusion. Cependant, l'algorithme Smart Fusion de Karlen

présente les meilleures performances aux dépens d'une diminution du taux d'estimation.

En fait, pour Capnobase, seules 55 % des fenêtres sont conservées. Néanmoins, con-

trairement aux méthodes de Karlen, avec notre méthode CS-Med, aucun prétraitement

pour l'élimination des artefacts n'a été e�ectué et 100% du signal a été analysé.

5. Optimisation de l'estimation de FR

L'estimation du FR à partir du signal PPG constitue une alternative prometteuse.

Mais jusqu'à présent, son utilisation est encore limitée dans les conditions réelles en

raison de la non-robustesse des méthodes utilisées. En fait, comme indiqué dans la

section précédente, les performances des algorithmes varient considérablement en fonc-

tion des bases de données et des caractéristiques des sujets. Dans ce chapitre, nous

présentons une analyse des facteurs qui a�ectent les signaux respiratoires et nous pro-

posons quelques outils pour a�cher au clinicien uniquement les valeurs de fréquences

respiratoires pertinentes.

xv



RÉSUMÉ

5.1. Optimisation par élimination des artéfacts

Des tests ont été conduits a�n de véri�er la pertinence de l'élimination des pulses pollués

par des artéfacts avant de réaliser une estimation de FR. Il s'agit de voir l'évolution du

RMSE en fonction des pulses éliminés. Nous avons constaté une légère amélioration

des résultats de RMSE après l'élimination des artéfacts. Mais cette amélioration n'est

pas su�sante pour garantir une estimation robuste de la FR.

L'analyse menée dans ce chapitre con�rme que les pulses avec des artefacts ne

sont pas la seule cause d'une mauvaise estimation de la FR. En e�et, les méthodes de

détection d'artefacts, notamment celles basées sur la comparaison de la morphologie

des impulsions, ne concernent que les caractéristiques temporelles et pulsatiles du signal

PPG sans se préoccuper des modulations du signal et de la qualité de la composante

spectrale.

Une analyse plus approfondie du spectre de certains segments PPG pour lesquels

CS-Med et CS-PPG n'ont pas permis d'obtenir un FR précis révèle que les pics corre-

spondant à FR ne sont pas toujours dominants, même en l'absence d'artefacts. Dans

certains cas, des pics d'harmoniques apparaissent dans les spectres avec une amplitude

supérieure à celle du pic de la FR réel. Dans d'autres cas, des pics parasites non identi-

�ables sont observés. Ces pics ont des amplitudes dans la même plage que le pic FR et

leurs fréquences correspondantes sont inférieures à la fréquence de la FR de référence.

Une nouvelle métrique est alors nécessaire pour évaluer les propriétés spectrales

des signaux respiratoires. La conception de cette métrique est le sujet de la section

suivante.

5.2. Optimisation par indice de qualité spectrale de l'activité

respiratoire

L'analyse spectrale du signal respiratoire est un outil prometteur pour évaluer la per-

tinence de l'estimation de la FR. En e�et, un indice est nécessaire pour évaluer si le

pic maximum dans la bande de fréquence respiratoire (0, 15 − 1Hz) est su�samment

dominant pour être considéré comme une fréquence respiratoire pertinente, par rapport

aux autres pics du même intervalle. À cet égard, l'indice de qualité respiratoire spec-

trale (SRQI) est dé�ni comme le rapport entre la puissance autour du pic dominant

et la puissance totale du signal dans la bande de fréquences respiratoires. Tel qu'il est

dé�nit , le SRQI a tendance à décroitre en fonction de l'énergie des pics �uctuants.
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Par exemple si on a deux pics dominants le SRQI tend vers 0.5. Si on a un seul pic, le

SRQI tend vers 1 .

Nous avons étudié les variations de RMSE pour di�érentes valeurs de seuil Q de

SRQI entre 0 et 1. Les meilleures performances ont été trouvées pour la méthode CS-

Med combinée au SRQI quel que soit le type de donnée. Pour Capnobase, le RMSE

trouvé lors de la comparaison des valeurs de FR estimées aux valeurs de références de

la FR est 0, 66 respiration / min avec un taux d'acceptation de 67%. Pour Reastoc, le

RMSE est de 0, 31 respiration / min avec un taux d'acceptation de 75, 6%.

Le critère SRQI associé à la méthode CS-Med présente de nombreux avantages

par rapport aux méthodes de la littérature. Le principal avantage est la simplicité

de la méthode par son nombre réduit de paramètres. Ceci est un élément clé pour

la mise en ÷uvre future dans un contexte en temps réel. Le deuxième avantage est

l'universalité de la méthode. En e�et, des performances similaires ont été trouvées

pour les bases de données Capnobase et Reastoc, pour toutes les tranches d'âge et

pour di�érents modes de respiration. Le troisième avantage est la robustesse de cette

méthode par rapport aux artefacts. En e�et, le SRQI peut détecter et rejeter les cas

où des segments d'artefacts a�ectent l'estimation de la FR. Par conséquent, aucun

module de traitement supplémentaire dédié à la détections d'artefacts n'est nécessaire.

Néanmoins, l'amélioration du RMSE est au prix d'une réduction du taux d'acceptation

mais ce taux d'acceptation reste raisonnable par rapport à la méthode Smart Fusion

de Karlen.

6. Conclusion

Dans cette thèse, nous avons abordé la problématique de développement de méthodes

robustes et universelles a�n d'avoir une estimation précise de la fréquence respiratoire

indépendamment de la variabilité intra et interindividuelle du signal PPG.

Nous avons développé une méthode de détection des artéfacts basée sur la génération

d'un modèle adaptatif de pulse et la comparaison par le test RDT. Cette méthode est

performante pour di�érentes base de données et a plusieurs avantages. En e�et, la

méthode présentée nécessite peu de paramètres. De plus, contrairement aux méthodes

de classi�cation, il n'y a pas de besoin d'apprentissage à chaque changement du type

de données.

Dans une deuxième phase, un ensemble d'outils spectraux ont été développés a�n

d'estimer la FR. La méthode CS-MED associée au critère SRQI donne des estimations
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précises de la FR sans avoir recours à la détection d'artefact. Grâce à sa simplicité,

à sa �abilité et à ses minimes besoins en ressources, l'approche proposée peut être

intégrée dans des traitements cliniques en temps réel pour di�érentes applications de

surveillance, que ce soit dans les hôpitaux ou les soins à domicile. Elle représente

également une alternative aux méthodes de classi�cation, qui nécessitent de larges

données d'apprentissage.

En résumé, la surveillance des signes vitaux à partir du signal PPG constitue une

bonne alternative aux systèmes de mesures traditionnels. Néanmoins, quelques limites

liées à la compréhension des phénomènes physiologiques du signal restent à étudier.

Comme perspective, des tests cliniques à large échelle avec plus de données

hétérogènes (cas des arythmies, des apnées. . . ) sont à réaliser. D'autre part, une

amélioration du taux d'acceptation par une analyse plus approfondie des phénomènes

physiologiques a�ectant la respiration est envisagée. De manière plus globale, il est

important de réaliser une étude d'un système qui prend en considération les données

propres à chaque patient en plus du signal PPG.
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1.1 Context

As in many �elds, the health industry is strongly impacted by the advent of new tech-

nologies. New healthcare technologies present relevant solutions to better control the

potential consequences of the life expectancy increase and chronic diseases growth.

This digital revolution in medicine is termed by Hood & al. [4] the 4P medicine:

personalized, predictive, preventive and participatory medicine. In fact, new system

approaches will be centered on individual patients characteristics (genetic, environ-

mental, etc.). New analytic, computational and mathematical tools combined with

the available and potentially growing amount of health information can predict the

risk of developing some diseases and then propose the most appropriate treatments,

medications. Prevention and early detection of diseases are rendered possible by opti-

mizing the wellness and improving the people's quality of life with new technologies.

With the emergence of Internet and social networks, the patients become the actors of

their healthcare and actively participate in the process of their health trouble treat-

ment. New measurement technologies by smart, non-invasive and wearable sensor

devices, permits real-time monitoring of patients, e�cient and optimal management of

resources, faster and more accurate diagnosis.
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1.2 Motivation

One of the �elds where the use of new technology is promising is the monitoring of

physiological signals in emergency care. In fact, the quality of emergency care and

resuscitation requires automated devices for anomaly detection and discrimination for

the purpose of monitoring the evolution of various physiological signals.

Due to the important workload in emergency and intensive care, the automation

of monitoring physiological signals re�ecting the patient's condition is essential. Clin-

icians are thus in need for better decision aid tools. Principal clues for this system

are cost e�ciency, accuracy, reliability and e�ectiveness of the signal monitoring. The

main di�culty in physiological signal monitoring is the multiplicity of forms that can

take the signal from one case to another. In fact, this great variety of cases makes

uneasy the use of standard detection methods because no known nominal model is

available. In the same way, classi�cation and discrimination approaches are very dif-

�cult to implement. Indeed, these approaches require large representative datasets.

Despite the great development in automated data recording, several constraints make

very di�cult and costly the realization of such databases in emergency medicine. We

mention for example: the multiplicity of cases encountered, the almost impossibility

to label these cases in emergency situations, the security and con�dentiality of the

patient's information.

In emergency care, the main indicators of patient's health deterioration are the

cardiac and respiratory activities. It turns out that performing reliable cardiac and

respiratory monitoring from only one non-invasive sensor is possible by exploiting the

Photoplethysmography (PPG) signal. PPG measurement is a simple non-invasive tech-

nique for measuring blood oxygen saturation through oximeter. New studies are in-

terested in characterizing cardiac and respiratory activities from the temporal and

spectral components of the PPG signal. Despite the great assets of such a technique,

some constraints limit the spread of the PPG use in clinical setting. In fact, the PPG

signal is very sensitive to artifacts resulting from patient's motions and environmental

acquisitions. Other limit is the extreme inter- and intra- variability of the PPG signal.

In fact, the PPG signal behavior is di�erent from one subject to another and even for

the same subject, depending on its health status. As a consequence, methods proposed

in the literature su�er from a lack of universality because of this extreme signal vari-

ability and also because of the PPG's dependency to subject state and environmental

conditions.
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1.3 Objectives

This thesis investigates the feasibility of estimating accurate respiratory rate from only

one non-invasive physiological signal. The considered signal is the PPG, which is widely

used in clinical routine and also in remote home-care. The main aim of this work is

to develop robust and universal methods for estimating respiratory rate regardless of

the intra- and inter-individual variability that a�ects PPG features. To overcome the

di�culties resulting from the signal variability, we focus on methods that require no

hypothesis on the signal distribution. This fact illustrates the fundamental di�erence

between the approach we follow and the usual approaches where distribution parame-

ters are assumed to be unknown deterministic or random. To assess the reproducibility

of our algorithms, two databases are used: the Capnobase database, which is an online

database, standardly used in the literature to benchmark methods and that we will use

in this respect; the Reastoc database, which contains physiological signal recordings

from patients in intensive care at the University Hospital of Brest and which will be

used to explore the versatility of our approach when facing another dataset.

1.4 Outline of the thesis

This thesis is organized as follows:

Chapter 2 introduces the PPG signal and its main waveform characteristics, by

presenting the technical features of its measurement. Then, an overview of the main

clinical uses of the PPG signal are exposed. In addition, the constraints inherent to

the PPG signal and that limit its use are discussed. Finally, the databases considered

in this thesis are also introduced.

In Chapter 3, an adaptive artifact detection method is presented. The method is

based on template matching and hypothesis testing by Random Distortion Testing.

This hypothesis testing is a novel statistical decision strategy introduced by Pastor &

al. [5] for diverse applications in signal processing and telecommunication. The RDT

is introduced for comparing the pulse template to the signal pulses and then detecting

the PPG pulses with artifact. This method requires little parameterization and has the

advantage of �tting the model to each considered signal. The results of this method

are then discussed and compared to the literature.

In Chapter 4, an overview of existing methods for estimating RR is exposed. Then,

we propose some novel spectral methods for Respiratory Rate (RR) estimation, which

3
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aims to get the best spectral peak resolution corresponding to the respiratory rate.

The proposed methods are tested on two di�erent datasets Capnobase and Reastoc.

The results are analyzed according to patient's conditions such as age and ventilatory

mode.

In Chapter 5, we experimentally show that detection of artifacts is not enough to

get accurate respiratory rate estimation. In fact, other physiological e�ects impact the

PPG signal and limit the algorithms ability to get accurate respiratory rate. For this

reason, we introduce a quality measurement attributed to respiratory rate estimates,

in order that the clinician might select only RR values with a large con�dence index.

In this respect, the Spectral Respiratory Quality Index (SRQI) is de�ned to qualify

the resolution and the dominance of the respiratory frequency peak in each spectrum.

Results yielded by this novel criterion are then discussed and compared to existing

methods.

Chapter 6 contains the conclusions where we summarize the main results of the

thesis and present the possible extensions of the presented methods.
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2.1 Introduction

In recent decades, the desire for miniaturization, ease-of-use, robustness and noninva-

sive device are key factors for oximeter and Photoplethysmography (PPG) emergence.

Many clinical physiological measurements and monitoring use henceforth PPG signals.

In this chapter, we introduce general technical facts about PPG. Then, we present its

physiological characteristics and how PPG-based techniques may replace heavy devices

for monitoring cardiovascular and respiratory activities. Finally, a description of phys-

iological signal databases is set forth. These databases contains annotated PPG signals

recorded in di�erent contexts that will be used later to assess the proposed algorithms

in this thesis.

2.2 PPG measuring characteristics

2.2.1 Technical facts about PPG

Photoplethysmography is an optical technique introduced by Hertzman and Spealman

in 1937 [6]. It measures local blood volume variations in the tissue at the surface of

the skin.
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Figure 2.1 � An example of a raw PPG from the Capnobase database: pulsatile
component AC and stationary component DC are easily discerned

The principle of this method is simple. A light source emits light which will be

dispersed in the tissues and partially absorbed. A photosensitive sensor detects unab-

sorbed light. Since blood absorption coe�cient is higher compared to other underlying

tissues, blood �ow changes are detected by sensors and reported as a photoplethys-
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mogram (PPG)[7]. So, PPG is a representation of the intensity of the detected light

(�gure 2.1).

The PPG has two major parts:

� The Direct Current (DC) component is the stationary feature of the PPG. It

re�ects the optical character of the surrounding tissue and the venous blood �ows.

It �uctuates slowly due to respiration, vasomotor activity and vasoconstrictor

waves.

� The Alternating Current (AC) component is the pulsatile feature of the PPG wave-

form. It corresponds to the arterial pulsations and has its fundamental frequency,

typically around the heart rate.

PPG is easily measured from the skin. For wavelengths from 600 to 1300nm, the

volume and depth of tissue reached by the light is important. Therefore, most devices

use visible or near infrared light. In 1974, Takuo Aoyagi [8] discovered that deoxy-

genated hemoglobin Hb and oxygenated hemoglobin HbO2 have a distinct di�erence

in absorption of light waves. In fact, HbO2 absorbs more in the infrared wavelengths

(850 to 1000nm) than Hb. In the other hand, the Hb absorbs more in the spectrum of

Red wavelengths (600 to 750nm) than HbO2.

Since the 1980s, with the developments in semiconductor technology and light emit-

ting diodes, the use of PPG in pulse oximetry has become a standard device for measur-

ing pulse oxygen saturation and providing valuable information about cardiovascular

system [9].

The principle of the oximeter is as follows: two light-emitting diodes (LEDs) illu-

minate the tissue and a sensor detects the light re�ected by the tissue at two distinct

wavelengths: 660nm (red) and 940nm (infrared) [10] are the most used. Pulse oxy-

gen saturation (SpO2) is calculated by measuring the di�erence in absorption between

oxygenated hemoglobin and deoxygenated hemoglobin. The former tends to absorb

infrared light and transmit red light, whereas the later tends to absorb red light and

transmits infrared light.

2.2.2 Sites and devices for measuring PPG

In clinical setting, the most used devices for PPG acquisition are pulse oximeters. They

are usually worn on the �nger but also on the toe and the ear . Depending on the case,

it may happen that blood �ow to the periphery may be reduced due to hypothermia

7
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or shock, resulting in PPG with no detectable cardiac pulse. In this case, a PPG can

be obtained from the ear, nasal septum or forehead [9].

There are other emerging technologies like PPG imaging technology [11]. With the

recent advances in digital signal processing technology, PPG sensors are also integrated

into wearable devices such as smart watches, smartphones and �tness gadgets [12].

They are mostly used for estimating heart rate.

2.2.3 Measurement protocol and reproducibility

Reproducibility is an essential element to validate accuracy of clinical physiological

measurements. Comparison in absolute numbers between PPG records acquired from

di�erent subjects or measurement sites is not possible. The reasons are the following

ones.

Up to now, there are no recognized standards to normalize PPG clinical measure-

ments. In fact, absorption of light by an oximeter depends on local factors such as

sensor placement, subject posture, movement artifact, medical treatment and relax-

ation [9, 10]. The shape of AC di�ers depending on the device wavelength: longer

wavelengths penetrate deeper into the tissue than shorter ones.

PPG signal characteristics, for example amplitude, should then be considered as

arbitrary and only relative comparisons can be made. Published research tends to

be based on very di�erent studies and technologies of measurement protocols, thus

limiting reliability and relevance of comparison between di�erent methods provided by

di�erent research centers.

2.3 PPG waveform characteristics

With the development of signal processing techniques and the importance of automa-

tion of circulatory and respiratory monitoring, the analysis of the PPG waveform has

become of increasing interest for researchers.

2.3.1 Pulse characteristics

The morphology of PPG pulses can be de�ned in two phases. The �rst phase is the rise

of the pulse called the anacrotic phase, which corresponds to the systole. The second

phase is the descent of the impulse, known as the catacrotic phase, which corresponds

8
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to the diastole and the wave re�ections from the periphery. Systole and diastole phases

correspond respectively to the heart ventricles contraction and heart re�ll.
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(a) PPG signal with less pronounced notch: systolic and diastolic phases combined.
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(b) PPG signal with more pronounced notch: systolic and diastolic phases separated.

Figure 2.2 � Comparison between di�erent shapes of pulses with notch

A dicrotic notch is usually observed in the catacrotic phase of subjects without

problems of arterial compliance. It is a small downward de�ection in the pulse, marking

the end of the systole, which corresponds to the transient increase in aortic pressure

following the closure of the aortic valve. Two examples of PPG signals with and without

notches are presented in �gure 2.2a and �gure 2.2b.

From the literature, many features based on the PPG have been studied. Figures

2.4 and 2.3 summarize the main ones:

Systolic Wave

y

x

Systolic Peak Dicrotic Notch

Diastolic Peak

Diastolic Wave

Figure 2.3 � Example of a PPG pulse and its parameters with area of
anacrotic/systolic and catacrotic/diastolic phase. x and y are the amplitude of, re-

spectively, systolic and diastolic peak.
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� Peak to Peak: The distance between the maximum of two consecutive pulses is

called Peak to Peak (PtoP) distance. This interval represents a cardiac cycle.

Therefore, this feature is used to calculate the heart rate.

� Amplitude: Distance between the pulse maximum and the baseline.It is an indi-

cator directly related to arterial blood �ow around the measurement site. The

amplitude varies according to several factors such as vasoconstruction and varia-

tion in blood volume.

� Pulse Transit Time:

It is the distance between the maximum notch time and the maximum pulse time.

It corresponds to the time required by the re�ected wave to travel from the aorta

to the measurement site. Pulse Transit Time (PTT) is highly correlated with the

arterial sti�ness and elasticity of the vascular walls.

� Shape:

The PPG pulses have a similar shape. However this shape can undergo sudden

changes due to movements. These artifacts require pre-processing in order to limit

their impact on the information extracted from PPG.

� Variability:

Variability of each of these parameters and their evolution are also important

indicators for clinical monitoring.

Amplitude 

PtoP 

PTT 

Figure 2.4 � Features of PPG pulse

2.3.2 PPG waveform modulations

Actually, physiologic e�ects related to respiratory activity and cardiac cycle induce

several modulations of PPG (Figure 2.5). Albeit not fully understood, the mechanism

mainly consists of three modulations that can brie�y be described as follows:
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� Baseline Wander (BW): also known as respiratory induced intensity variation. In

fact, respiration causes blood volume �uctuations in the peripheral vascular bed.

The intrathoracic pressure variates as a result of a change in the blood volume

and contribution from abdominal and thoracic muscles. This �uctuation induces

exchange of blood between the pulmonary and the systemic circulations. This

results in a variation of the perfusion baseline.

� Amplitude Modulation (AM): also known as respiratory induced amplitude vari-

ation. PPG amplitude is also a�ected by the respiratory rate: it decreases with

increased respiratory rate due to variation in peripheral pulse strength.

� Frequency Modulation (FM): also known as respiratory induced frequency varia-

tion. Heart rate changes induced by respiratory activity is known as Respiratory

Sinus Arrhythmia (RSA). In fact, the heart rate increases during inspiration and

decreases during expiration.

Figure 2.5 � PPG modulated with respiratory signals AM and BW

2.3.3 Factors a�ecting PPG waveform

PPG waveform could be characterized by several features. However, it should be noted

that those features could variate from one subject to another or for the same subject

due to health conditions. Arteriosclerosis, hypertension and some dermatoses are some

diseases that a�ect the PPG waveform.

In addition to health conditions, PPG waveform variates with age and gender. In

[13], a study analysis how age a�ects the dicrotic notch and the PTT. In fact, the

notch amplitudes are larger for older subjects than younger ones. Also, experiments

has shown that PTT is higher in the female group than in the male group.

Vasoconstriction and vasodilatation are physiological mechanisms corresponding

to the decrease, inversely the increase, in the diameter of the blood vessels. Those
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phenomena a�ect imperatively the PPG amplitude. In [14], an example of how PPG

amplitude increases after infusion of vasodilator Nipride.

2.3.4 PPG mathematical model

Mathematical modeling of the PPG waveform is the center of interest of many re-

searchers. Modeling helps researchers to assess algorithms for PPG processing. In the

literature, there are mainly two approaches for PPG modeling, depending on the study

purpose: temporal modeling and shape modeling.

2.3.4.1 Modeling based on respiratory modulation

As described above, PPG is modulated by three signals induced by respiratory activity.

Using this information, PPG can be simulated as a sinusoidal signal shifted by the

baseline with a variable amplitude and frequency.

x(t) = b(t) + a(t)cos(2πfHR(t))

where a(t), b(t) and fHR(t) refer to AM, BW and FM modulation depending on the

respiratory rate fRR.

2.3.4.2 Modeling based on pulse morphology

This type of representation is generally used in the literature either in the framework

of artifacts detection or for testing blood pressure estimation, since it speci�cally takes

the pulse morphology and the presence of notches into account.

� Gaussian model

In [15, 16], PPG pulses are modeled as a sum of two Gaussians. The �rst one

represents the systolic part and the second one represents the diastolic part.

x(t) = a1 exp(−(t− b1)2

2c2
1

) + a2 exp(−(t− b2)2

2c2
2

)

where a1 and a2 are the amplitude of the curves, b1 and b2 are the maxima location

and c1 and c2 are the width parameters.

� Logarithmic model
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Gaussian modeling has good accuracy for characterizing pulse maximum and notch

but did not take the shape of pulse sides into account. Studies in [17], characterize

pulses as long-tail. In fact, contrary to the Gaussian law, a long tail distribution

has a large number of occurrences in the extreme ends of the distribution [18]. So,

"tails" are longer than Gaussien law.

Every pulse is then decomposed into four long-tails. A Lognormal basisWi is then

used to �t the PPG signal and to improve the model accuracy. The lognormal

basis Wi is de�ned as:

Wi(t) =
αi

t− ti
exp(

(ln(t− ti)− βi)2

γi
), γi < 0, i = 1, 2, 3, 4

The pulse waveform is then characterized by a feature vector:

L = {αi, βi, γi, ti, tend}, i = 1, 2, 3, 4

Successive �tting functions are then used by minimizing the Mean Square Error

MSEi between Wi and original pulse.

2.3.4.3 Limits of mathematical models

PPG mathematical modeling is a tool for researchers to assess algorithms. But, the

question remains to what extent these models are close to PPG acquired in real con-

ditions. In fact, model based on respiratory modulation does not take PPG pulse

shape parameters into account, which limits its use to only assessing RR estimation

algorithm.

The studies around the temporal model of the pulse, ie how the parameters vary

over time and how they are a�ected by respiratory activity, remain limited. In [15],

authors combine both shape modeling and temporal modeling. A Gaussian model is

applied to parametrize pulse shape and autoregressive moving average is applied for

modeling temporal behavior of each pulse shape parameter. This method yields good

results to synthesize missing segments from PPG signals and to derive probabilistic

distributions of pulse shape parameter. However, the relationship between respiratory

modulation, temporal pulse shape parameter evolution and patient conditions is still

ambiguous. In fact, these models do not allow the tracking of the respiratory activity.

PPG model should include other parameters relative to subject conditions such as

age and gender and combine both respiration and shape modeling. To our knowledge,

such models are not studied yet.
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2.4 PPG for clinical physiological monitoring

PPG has widespread uses in many clinical settings. The main direct application is the

measurement of blood oxygen saturation by pulse oximeter. In the following, we will

focus on the monitoring of blood oxygen saturation and other subordinate applications

for PPG signal.

2.4.1 Monitoring blood oxygen saturation

As described in Section 2.2.1, pulse oximeters are based on absorption di�erences be-

tween Red (R) and infrared (IR) light waves. The photodetector continuously analyzes

the R / IR ratio. From the equivalence Table 2.1 between this R / IR ratio and cal-

ibration values of oxygen saturation, the monitor displays the value of the measured

oxygen saturation. The correspondence between the values of R/IR and those of SpO2

reported in Table 2.1 are obtained from a calibration algorithm. In fact, the pairs

(R/IR,SpO2) with SpO2 measured between 75 and 100% are obtained from experi-

ments on healthy volunteers. For SpO2 below 75%, the displayed values are obtained

by extrapolation of the data between 75 and 100% [1].

Table 2.1 � Conventional pulse oximetry algorithm: R / IR: Absorption ratio of the
red / infrared light waves. SpO2: Plethysmographic saturation in O2. [1]

R/IR SpO2(%)
2,5 0
1,75 20
1,60 30
1,50 40
1,25 60
1,00 82
0,75 91
0,67 95
0,43 99
0,40 100

In recent years, monitoring of arterial oxygen saturation with oximeter has elicited

a considerable interest essentially in operating room and in intensive care. The main

application of pulse oximetry is the detection of hypoxemia, or more speci�cally, the

decrease of oxygen carried in the blood. In operating room, hypoxemias early detection

allows faster correction and so improved safety especially in the practice of anesthesia.

14



CHAPTER 2. THE PHOTOPLETHYSMOGRAPHY SIGNAL

In intensive care unit, pulse oximeters are a common indicative tool for assessing pa-

tient oxygenation. It is used for adapting the fraction of oxygen inspired and detecting

abnormalities in mechanical ventilation[19].

Outside hospital setting, pulse oximeters are used by pilots and mountain climbers

operating in unpressurized environment where oxygen levels are low. Oximeters are

used for reminding the need for supplement oxygen.

2.4.2 Monitoring heart activity

As described previously, the pulsatile component of PPG is synchronized with the car-

diac cycle. Therefore, heart rate can be estimated by calculating the distance between

consecutive pulses' maxima . This application of PPG is interesting in clinical set-

ting where the ECG electrodes may be uncomfortable to wear, as for subjects under

hemodialysis treatment.

Heart beat irregularity can be then detected using information about pulse mor-

phology and heart rate. In the literature [20, 21, 22], researchers are interested in

detecting some types of arrhythmia using a simple PPG with no need to ECG record.

In [22], Premature Ventricular Contractions (PVC) are detected by extracting fea-

tures characterizing pulse amplitude, dicrotic notch and pulse interval. A linear clas-

si�er is then used to classify ventricular premature beats. PPG analysis has similar

performance than ECG analysis performance with an accuracy of 99.3%.

PVC are most of the time benign but can be caused by some heart diseases or

because of stress or intensi�ed exercise. Atrial Fibrillation (AF) is the most common

type of serious arrhythmia. This type of arrhythmia increases the risk for heart failure

and stroke. Discriminating AF from other benign heart rhythm turbulence is a major

challenge because detection of abnormalities during monitoring heart activity in early

stage could help clinician for early diagnosis and enable better treatment.

Arrhythmia discrimination between Normal Sinus Rhythm (NSR), AF, PVC and

Premature Arterial Contraction (PACs) were studied in [20], A smartphone application

was introduced by classifying PPG time series exploiting pulsatil features (amplitude,

frequency), their variability and Poincare plot. A �owchart in [20] details the discrim-

ination procedure. The results show that the proposed algorithm detects NSR with

speci�city of 0.9886, and di�erentiates PVCs and PACs from AF with sensitivities of

0.9684 and 0.9783, respectively.
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2.4.3 Monitoring respiratory activity

Respiratory Rate (RR) is a physiological signal widely used in clinical care including

critical and neonatal care, sleep study evaluation and anaesthetics. It is the most sen-

sitive vital sign marker of clinical deterioration when suspicious changes are detected.

Continuous RR monitoring provides highly informative indicator about health status of

patients in hospitals, in intensive or emergency care units or at home in case of remote

monitoring of chronic diseases and postoperative rehabilitation via mobile sensors.

Despite the relevance of RR in assessing physiological state of ambulatory patients,

existing methods for measuring and monitoring RR are still limited by their di�-

culty of use and their inaccuracy. In fact, placing a tight-�tting band around the

patient's thorax is uncomfortable and a non reproductible measure. Other techniques

like capnography or acoustic measurements are limited to intensive care units and oper-

ating rooms. Some new noncontact respiratory monitoring methods using optical and

electromagnetic waves are developed. However, their e�ciency is still debatable. In ad-

dition, they raise questions about the patients' safety because of the risk of interference

with existing medical equipments.

Another approach for measuring RR is proposed: extracting RR from photoplethys-

mography (PPG). As described in 2.3.2, respiratory rate can be estimated from PPG

signal. In addition, respiratory activity is tightly related to blood circulation. In

fact, the intensity of modulations could be indicative of thoracic pressure changes that

characterize breath e�ort.

So, not only respiratory rate could be extracted from PPG, but other characteristic

features could be extracted from PPG to diagnose related respiratory pathologies. In

[23], PPG signal is used to analyze respiratory e�ort by considering PPG modulations

parameter and PTT features. Distinctive monotonic relationships were found between

many of the PPG parameters and the coached breathing protocol developed in this

experiment.

Another important application for monitoring breathing activity is the detection

of sleep disorder. The most common is Obstructive Sleep Apnea (OSA), which is

induced by complete or partial obstructions of the upper airway. Despite the e�ort

exerted by the patient to breath, these obstructions are associated with repetitive

episodes of super�cial or interrupted breathing during sleep. These obstructions are

also accompanied by some decrease in blood oxygen saturation. OSA has been widely

identi�ed as a major risk factor for many health anomalies causing mortality [24].
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OSA is diagnosed by Polysomnography (PSG): It is a multichannel test that su-

pervises physiological signal including heart rate, brain activity, eye movement and

muscle activity during a full night in-lab sleeping. It is a costly and heavy procedure

for patients and clinicians.

Many studies [10, 25, 26, 27, 28] cite the potential of PPG to replace PSG for

detecting OSA. In fact, PPG signal contains many physiological indicators similar to

PSG. PTT is inversely proportional to blood pressure. Respiratory rate and respiratory

e�ort could be monitored from the PPG modulations. And �nally heart rate could also

be extracted from the PPG. Simultaneous experiments with PSG showed that PPG

compares well in the diagnosis of OSA.

2.4.4 Monitoring hypovolemia

Non invasive measurement of blood volume is clinically very important. In a periop-

erative study, Shamir & al. [29] demonstrate that during moderate hypovolemia (10%

subtraction of the blood mass), respiratory variability from the AM signal extracted

from PPG is modi�ed in the same direction and the same amplitude as arterial signals

features such as Systolic Pressure Variation (SPV) which is an index used traditionally

for detecting hypovolemia. Moreover, AM variation is noticed earlier than in SPV.

Studies demonstrate the value of this method in assessing moderate hypovolemia in

the perioperative period and during anesthesia.

2.5 PPG database

In this chapter, we present principle characteristics of PPG signals. As �rst observa-

tions, we notice that PPG waveforms depend on several factors. This dependence and

the lack of standardization of measurement induce a large variability between subjects

and also for the same subject in case of changes of physiological activities or measure

circumstances.

As discussed in the following chapters, methods in the literature su�er from lack of

generality. In other words, performance di�ers from one PPG record to another. For

this reason, we use three di�erent databases for assessing our algorithms.

17



CHAPTER 2. THE PHOTOPLETHYSMOGRAPHY SIGNAL

2.5.1 Sukor Data

Sukor Data was collected during a study in the University of New South Wales, Sydney,

Australia [2]. 13 healthy subjects (10 males and 3 females) aged between 24 and 32

year participated to the study.

Eight pulse oximetry measurements were recorded from each patient's �nger.

Records were then digitized to 1000Hz. One minute was allocated to each record-

ing. The protocol of the PPG acquisition is as follows: during the �rst and last 20s

of the recording, the hand remained stationary, resting on a table top; in the middle

of the recording the subject did movements for approximately 20s. Eight di�erent

movements were conducted for each subject.
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Figure 2.6 � An example of a clean PPG signal segment from Sukor Database

A total of 104 recordings of PPG signals was thus obtained. A manually annotated

gold standard was constructed by two independent experts. For every pulse of the

records, a score is attributed to describe the quality of the pulse: bad or good.

Sukor database is a good reference for assessing algorithms for artifact detection

for the following reasons: It is a relatively large database well annotated; it contains

several di�erent types of induced movement artifacts.

2.5.2 CapnoBase Data

CapnoBase is a collaborative research project that provides an online physiological sig-

nals benchmark dataset [30]. Benchmark data were selected from physiological signals

collected during elective surgery and routine anesthesia from St. Pauls Hospital and

British Columbia Children's Hospital in Vancouver. It contains 42 PPG signals of 8
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minute recording each one sampled at 300Hz acquired from 29 pediatric and 13 adults

during spontaneous or controlled breathing.

The data set contains reliable labels about artifacts and simultaneous physiologi-

cal signal acquisition. Each record includes: age, type of respiration (spontaneous or

ventilated), PPG and artifacts label, ECG and artifact label, CO2 signal and instanta-

neous RR, instantaneous HR derived from PPG and ECG. All reference gold standards

were validated by an expert. In addition, results from SmartFusion algorithm [31] were

included for each record to allow other researchers to compare performances.
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Figure 2.7 � An example of PPG signal segment from Capnobase

Unlike Sukor data, Capnobase is collected from clinical setting. It contains addi-

tional information about patients like age and respiratory mode. Records are longer

and permit best analysis of PPG parameter evolution over time. Thanks to it labels,

it could also be used as a reference for testing many algorithms: artifact detection,

respiratory rate estimation, heart estimation.

2.5.3 ReaStoc data

ReaStoc is a research project, which aims to build a database of physiological signals

within the intensive care unit of the Brest University Hospital. Signals were collected

from 80 patients with di�erent gender, age, cardiovascular anomalies and respiratory

mode.

Each record contains ECG, PPG and arterial blood pressure. Data were collected

using Synapse tool, which is a software developed by INSERM LTSSI unit in Rennes.

Synapse is used to recover physiological signals records from the monitor. They are

then �ltered, resampled and stored. This database is referenced by the U.S. National

Library of Medicine on their website http:/www.clinicaltrials.gov under the iden-
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ti�er (NCT02893462). It is a worldwide database of privately and publicly funded

clinical studies.
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Figure 2.8 � An example of PPG signal segment from ReaStoc

In this study, we will focus on PPG records. Signals are sampled at a sampling rate

of 125Hz and their lengths are between 5 and 25 minutes. Several records can exist

for the same patient.

Every record contains references about patients' antecedent, illness, medical treat-

ment and also average HR and RR for the two �rst hours. 14 records contain expert

labels for artifacts.

This database is still under development and structuring. It aims to collect not only

the physiological data but also the data speci�c to each patient. This data constitutes

a great potential in particular for seeking the possible interaction between the evolution

of physiological signals and each patient's speci�cities.

2.6 Conclusion

In this chapter we have introduced the most important characteristics of the PPG

signal. In addition to its principal use for measuring oxygen saturation, PPG could

be used in clinical settings for monitoring cardiac and respiratory activity. Despite its

simplicity of use, the deployment of this technique is still limited by the non repro-

ducibility between subjects, but also for the same subject, due to the signal sensibility

to conditions. Several databases are presented to analyze PPG signals behaviour. Vari-

ability between records is easily noted when we observe records from di�erent bases

(2.6, 2.7, 2.8).
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3.1 Introduction

Heart rate (HR) and respiratory rate (RR) can be estimated from PPG signals. But

motion and environmental artifacts cause distortions in PPG signals, which may induce

erroneous estimations of HR and RR. So, it is essential to detect segments correspond-

ing to artifacts. Reduced con�dence for HR and RR values can then be assigned to

these segments.
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In this chapter, an overview of methods for artifact detection used in the literature

is presented. Then, we will introduce an original method based on pulse template

matching and a novel statistical decision strategy: Random Distortion Testing [5],

which proved its e�ciency in other signal processing applications. Finally, we will

discuss results and performance of our method when applied to di�erent databases.

3.2 Artifact causes and impact

As described in 2.2.1, PPG acquisition is based on an optical technique for measuring

blood �ow. Despite its e�ciency for many clinical applications, acquisition of clean

PPG is not a trivial task in clinical settings, due to its sensitivity to artifacts.

By observing the morphology of the PPG waveform, we notice that it is composed

of pulses with similar forms and slight di�erences in amplitude and shape. In case

of artifacts, the shape of the pulses suddenly changes, which entails signal distortion.

Otherwise, when physiological activity varies, for instance in HR or RR, the pulse

shape changes are slow and small.

Several factors a�ect the PPG waveform. Motion artifacts are the most common

ones. They are caused by voluntary or involuntary patient's movements. Other factors

related to measurement conditions such as misplacement of the oximeter, variation of

light and temperature, lead to signal distortion.

Artifacts have unknown distribution and can have several forms. As most physio-

logical signals, PPG is non stationary and its parameters change considerably overtime.

So, comparison with a model or reference signals is not obvious. In addition, ordinary

�ltering methods are inadequate to eliminate artifacts, because there is an overlap

between the frequency band of the artifacts and that of useful PPG signals.

3.3 State of the art

Limiting artifact e�ects on PPG has been a challenging task since the emergence of

oximeters. Researchers proposed several approaches on the topic. Some methods

[32, 33] use accelerometers to detect patient's movements but have still limited use

because of the need for additional sensors. In addition, accelerometers detect motion

artifacts only and do not consider other PPG signal distortion.
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Figure 3.1 � An example of PPG signal with artifacts from Sukor Database [2]

Two strategies for limiting artifact e�ects using only PPG signals have been pre-

sented in the literature. The �rst one involves using �ltering methods in the purpose of

reducing artifacts e�ects and restoring PPG signals. The second one involves detecting

segments with artifacts and just removing the polluted sequences. In the following, we

present some of the algorithms for both processes.

3.3.1 Filtering method with PPG restoration

3.3.1.1 Adaptive �ltering

Adaptive �ltering is known to be a powerful tool for denoising signals, especially for

in-band noise. It has the advantage of adjusting parameters when the signal changes.

Least mean square adaptive �ltering is the most common algorithm used in the case of

artifact cancellation. Figure 3.2 presents the �owchart of the main steps for methods

using adaptive �ltering to denoise PPG. The di�erence between algorithms in the

literature lies specially in the selection of the reference signal.

Preprocessing Reference input 
generation 

Adaptive  
filtering  

Raw 
PPG 

PPG processed 

Reference Clean  
PPG 

Figure 3.2 � Flow chart for removing artifacts with adaptive �ltering method

More precisely, it is assumed that PPG clean signals and PPG artifacts are indepen-

dent. The �rst step consists of a preprocessing of the PPG by �ltering the signal by a

passband �lter [0.1−5Hz]. The second step consists of generating the reference signal.
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In the third step, the reference and �ltered PPG signals are introduced as inputs of

the adaptive �lter so as to obtain the clean PPG.

The critical step in adaptive �ltering is the construction of the reference signal. De-

pending on studies, the reference can be noise or clean PPG. In [34], Ram & al. extract

reference noise from the PPG spectrum. Peaks corresponding to heart frequency and

respiratory frequency are canceled. All other peaks are considered as noise. Inverse

FFT is then applied to generate the reference noise signal.

Nevertheless, in [35], Peng & al. proposed another approach in which the reference

clean PPG is generated by Constrained Independent Component Analysis (c-ICA). In

fact, as clean PPG and artifacts are considered as two independent sources, c-ICA

can extract the desired signals. Unlike the standard ICA method, prior information

is introduced in the c-ICA algorithm. In the case of PPG signals, this information

concerns the periodicity of the PPG and it is introduced in the c-ICA algorithm by

considering a rectangular signal with a period equivalent to heart rate as a reference .

The method proposed by Ram & al. [34] needs prior information of HR and FR,

which limits the use of this method when these pieces of information are not available.

Besides, the second method proposed by Peng & al. [35] used a �xed period for

constructing the reference signal. Unfortunately, the PPG periodicity could change over

time, which questions the performance of the method in real-time real-life applications.

Although the aforementioned algorithms demonstrate their e�ectiveness for recov-

ering PPG pulsatile components, the e�ect of such �ltering methods on respiratory

modulations is not treated.

3.3.1.2 Wavelet �ltering

Wavelet decomposition is a powerful processing tool for discriminating signal irregu-

larities [36]. For this reason, it is a common robust alternative for denoising signals

in signal processing �eld. Signal can be decomposed into di�erent scales by wavelet

�lter banks: approximation coe�cients are obtained after low pass �ltering and de-

tailed coe�cients are obtained after high pass �ltering. The same process is applied to

approximation signal again depending on the decomposition level.

In the case of PPG, after applying wavelet decomposition, signi�cant peaks appear

in the detailed band in case of artifacts. Raghurami & al. [37] exploited this fact and

presented a performance comparison of di�erent wavelet types for detecting artifacts.

Denoising PPG signal consists of three key steps as illustrated in �gure 3.3:
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1. Wavelet decomposition: After selecting the wavelet to test and an appropriate level

N , compute the wavelet decomposition of x at level N .

2. Thresholding: Search for the suitable threshold which will be applied to the de-

tailed coe�cients.

3. Wavelet reconstruction: Carry out the inverse transform by keeping original ap-

proximation coe�cients and adding the modi�ed detailed coe�cients of levels from

1 to N .

Wavelet 
 decomposition 

Thresholding Wavelet 
reconstruction 

Raw 
PPG 

Clean  
PPG 

Figure 3.3 � Flow chart for removing artifacts with wavelet method

Experiments in [37], shows that Daubechies wavelets are the most e�cient wavelet

type for removing artifacts without altering PPG features. In this study, performance

of the algorithm is shown by calculating SpO2 values and comparing them to a refer-

ence. But, no numerical test was carried out to prove the in�uence of such algorithm

on respiratory rate estimation from PPG. However, the authors only provide us a sub-

jective analysis by observing PPG. In addition, selecting the appropriate threshold is

problematic and no indication has been given about the choice of the threshold and

the level.

In [38], Nguyen & al. present a solution for a similar problem to calculate optimal

threshold in the context of detecting abrupt change in the �ow signal during assisted

mechanical ventilation. After applying wavelet decomposition, the detailed band is

considered as composed of gaussian noise and peaks. Peaks correspond to the irregu-

larity in the original signal and should be detected. The thresholding function depends

then on the noise standard deviation. The interest of the approach is that the threshold

can be chosen so as peaks are detected optimally. The criterion for optimality involves

possible deviations around 0. These deviations are resulted from phenomena that are

poor of interest to detect.

Such approach could seemingly be a good alternative for thresholding detail co-

e�cients at certain resolution levels for the purpose of detecting artifacts. However,

the problem encountered with PPG is that artifacts cannot be restricted to speci�c

frequency bands. So, the choice of the decomposition level and the detail coe�cients

could not be generalized to all cases.
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3.3.1.3 Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) is an appropriate method for analyzing non-

linear or non stationary signals. It has the advantage of preserving instantaneous

frequency variability [39]. In this context, the PPG signal is considered to be a sum

of oscillatory signals with di�erent frequencies [40]. EMD decomposes signals into a

Figure 3.4 � Flow chart for removing artifacts with EMD method

�nite number of functions of di�erent scale resolutions called Intrinsic Mode Functions

(IMF). An IMF represents a simple oscillatory function which satis�es two criteria:

First, the di�erence between the number of zero crossings and the number of extrema

should be one or zero. Second, envelopes de�ned by local maxima and minima should

be symmetric. Unlike harmonic function, an IMFs can have di�erent amplitudes and

frequencies over time.

IMF can better identify local features of a signal and adjust it to pulse changes over

time. In addition, IMFs are directly extracted from the signal unlike wavelet analysis

where we need to select a prede�ned wavelet function. Figure 3.5 explains the process

�ow to extract IMF from a given signal S(t).

After extracting IMFs from PPG signals, the �rst three IMFs extracted from PPG

signal are selected. An Hilbert Transform is then applied to each IMF, which per-

mits to identify localized features and extracting the instantaneous frequency f(t) and

amplitude a(t).

Clean PPG is then obtain by:

x(t) =
N∑
j=1

aj(t) exp(i

∫
fj(t)dt)

where N is the number of selected IMF scales, aj(t) is the instantaneous amplitude of

the selected IMFs and θj(t) is the instantaneous frequency of these same IMFs.

The results in [40] show a great potential of EMD to restore PPG signals, especially

in the context of heartbeat estimation. However, tests, in this study, were conducted

on a limited database. In fact, PPG records were collected from healthy subjects

which were asked to bend their �nger. The motion artifacts are then induced by such

movements. In addition, the �rst three scales were chosen subjectively to reconstruct
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Figure 3.5 � Process �ow for extracting IMF from a given signal S(t) (�gure from
[3])

signals. Performance could be a�ected in real conditions if the scale selection is not

optimized.

3.3.2 Morphology analysis and artifact detection method

3.3.2.1 Morphology comparison

Signal quality metrics are assigned to pulses so that only good quality pulses are kept.

Another approach based on a decision tree and prede�ned thresholding detection is

introduced by Sukor & al. [2]. Every pulse is compared to a reference by computing

the Euclidean distance. Many prede�ned thresholds are then used to decide if a given
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pulse can be accepted or rejected. This method cannot be integrated in a standalone

system because templates and thresholds are manually �xed.

3.3.2.2 Classi�cation

Classi�cation methods that combine several waveform morphology features are used in

the literature. Pulse morphology can be de�ned by many features such as amplitude,

width, PtoP distance as described in 2.3.1. These features are generally similar and

vary slightly. But large variations occur when PPG is corrupted.

From this observation, researchers in [41] extract standard deviation of pulse pa-

rameters to characterize pulse variability: PtoP intervals, PtoP amplitude, PTT and

pulse shape. Features are then introduced into Support Vector Machine (SVM) to

build boundaries, in the purpose to discriminate clean pulses from corrupted ones. Al-

gorithm shows good performance with an accuracy of 94% when tested on a labeled

database of 11 healthy volunteers in case of controlled movements and daily activity

movements.

In [42], Li and Cli�ord proposed a method based on template matching and classi-

�cation. A template is calculated by averaging the pulses extracted from the �rst 30s

seconds of each record. Comparison between new pulses and the template is carried

out by de�ning four metrics for the signal quality:

� Direct matching: The length of the pulses is �xed equal to that of the template.

The �rst sample of each pulse begins at some �ducial point, for instance, the

instant when some noticeable pulse feature (minimum, maximum, etc) occurs.

The correlation between the pulse and the template is then calculated.

� Linear resampling: Pulses are selected in their entirety. They are then resampled

so that the number of samples equals that of the template. The correlation is then

calculated.

� Dynamic time warping: Pulses are realigned to template using DTW, which

is a technique for searching for the optimal matching between two time series.

Correlation between pulse and template is then calculated.

� Clipping detection: Beats are clipped within a prede�ned threshold. The per-

centage of the remained beat is de�ned as clipping detection.

These four metrics, their fusion, and the number of pulses in each analysis window

were then introduced into a multi layer perceptron neural network classi�er. This
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method yields good results with an accuracy of 95% for detecting pulses with artifacts

when tested on a database of 1055 expert-labeled beats. The PPG data were recorded

from 104 patient in critical care.

Classi�cation methods have good results for detecting bad pulses on databases on

which they were trained. Retraining the classi�er to �x its weight must however be

remade when new data is acquired from di�erent subjects in di�erent environments

are added. So, labeling data should be systematically carried out. This seems hardly

feasible for practical purpose because of the extreme variability between individuals

and environment measures as well as the long time needed for experts to label signals.

3.4 RDT for artifact detection

Despite methodological consistence, the �ltering methods presented previously have

limited performance for real time application. In fact, there is no statistical model

either for PPG or artifacts and their variations over time. Even worse, useful infor-

mation about respiratory or cardiac activities can be omitted when applying �ltering,

even on clean portions of PPG. The second approach based on classi�cation has also

its limitations. Classi�cation methods need large scale databases for training issues,

which seems complicated. Indeed, until now, there is no standardization or measure-

ment protocol. So, there is a large inter variability between records. In addition, the

dynamic nature of physiological behavior causes non stationarity and unknown distri-

bution of the PPG signal. So, there is a need for a standalone system with not many

prede�ned parameters, which could be adapted for every record and could update its

parameters when substantial changes occur.

For this purpose, we introduce a novel method for detecting artifacts. This method

is based on a pulse morphology comparison and a decision test, with no need for either

preliminary information on the observation distribution or any training on a large

database.
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Raw 
PPG 

PPG 
processed Reference 

Decision		

Pulses standard 
deviations 

Observation  
to test 

Figure 3.6 � Flow chart for removing artifacts with RDT method
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Basically, from the existing literature, template matching methods are best suited

to monitor PPG signals with artifacts without damaging useful information. But the

problem is still how to choose the most appropriate threshold. As in [2], the general

idea involves computing a pulse template and using a metric to compare pulses to

this template. In this respect, we introduce a universal strategy to have a standalone

system that could be adapted to any record, with no necessity for �xed parameters.

The general �owchart of the method is described in �gure 3.6 and described in the next

section.

3.4.1 Simple artifact detection for short records

3.4.1.1 Preprocessing

Useful information pertaining to the PPG signal is localized in the band 0.05 − 5Hz.

PPG signals are then �ltered with a Butterworth pass band �lter corresponding to the

same band.

3.4.1.2 Pulse segmentation

The pulse to pulse period T PtoP is known to be approximatively the inverse of the heart

frequency, which may vary over time. This frequency matches with the maximum peak

between 0.5 and 3Hz when applying the Fourier transform to PPG. A window of length

L is used to have a local estimation of the heart rate frequency fHR. To avoid errors

related to local maximum peaks due to signal noise or diastolic peaks [43], blocks of

interest are generated using moving averages that demarcate heartbeat areas. More

speci�cally, block limits are estimated by calculating the minima of the resulting signal

xMA (�gure 3.7).

xMA =
1

W

(
x

(
n− (w − 1)

2

)
+ ..+ x(n) + ..+ x

(
n+ (w − 1)

2

))
where W = TPtoP

2
= 1

2fHR
is the length of the moving average window, n is the number

of samples and x is the PPG signal.

The maximum values of the pulses cannot be estimated directly from xMA because

of the delay introduced by moving average. Pulse maxima are then the maximum

values of x(n) in each block of interest marked out by calculating the minima of xMA.
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Figure 3.7 � Detecting blocks of interest by applying moving average on x then
estimating mimima on the resulting signal xMA. Pulse maximum is the maximum

value on x in the selected block of interest.

3.4.1.3 Pulse matching

In this study, the pulse length is calculated on the basis of the Heart Rate (HR). A

global estimation of HR by Fast Fourier Transform (FFT) is then carried out to get

an average of PtoP by:

TPtoP =
1

fHR

where fHR is HR frequency.

In order to compare pulses, pulses are extracted by maintaining the same length

and the same time feature characteristics. We choose to take the pulse maximum as

a �ducial point which will mark the middle of each pulse. Pulse lengths are �xed to

TPtoP in such a way that, for every pulse Pn considered below, the pulse maximum is

localized at TPtoP

2
.

Pulse matching is then carried out by corresponding every pulse at their maximum

point as shown in �gure 3.8.

3.4.1.4 Template generation

PPG pulses can have slight variable length during recording. This di�erence is a result

of heart and respiratory variability.

For every record, the �rst one minute segment is taken to compute the initial pulse

template. The choice of a one minute segment follows from our experience with the

databases described in Section 2.5. Indeed, within this time frame, su�cient infor-

mation about pulse morphology variations can be gathered to detect artifacts without
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altering the detection performance. This segment is divided into N windows of length

L. This is for the purpose to �nd the most stable window without artifacts.

In each window i ∈ {1, . . . , N}, a local pulse template Ptpi is generated by averaging
all the pulses extracted in the window i (�gure 3.8).

The correlation coe�cient Ci(n) between the pulse template Ptpi and each pulse

Pn extracted from window i is calculated. The most stable window then corresponds

to the one that yields the maximum correlation between the local pulse template and

the pulses within this window. The �nal pulse template Ptp is then de�ned as the

local template corresponding to this most stable window. This computation can be

summarized as:

j = argmax
i

(Ci : Ci = mean(corr(Ptpi , Pn)), i = 1..N)

Ptp = Ptpj
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Figure 3.8 � Superposing pulses and calculating pulse template by averaging.

3.4.1.5 Pulse comparison

After selecting the optimal template Ptp, a comparison between Ptp and all the pulses

of the record is carried out. The comparison is performed as follows. T PtoP is now

�xed to the length of Ptp. The same template matching as described previously is

applied: for a given pulse Pk of the record, we match its maximum with that of the

template. From either side of this maximum, we select TPtoP

2
samples. The correlation

coe�cient ck is then calculated between the template Ptp and the part of the pulse Pk
so extracted.

When an artifact occurs, the correlation coe�cients of the pulses a�ected by this

artifact have low values compared to those in clean signals. Thresholding is necessary
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to decide which correlation coe�cient is acceptable to discriminate good from bad

pulses.

However, physiological variability between subjects a�ects PPG pulse characteris-

tics as described in 2.3.3. Therefore, having a �xed threshold for all PPG signals is not

feasible. Threshold should be adapted to every record and depends on pulse variability

for each subject.

3.4.1.6 Decision test

Let us consider a correlation coe�cient Y (k) between a given clean pulse Pk and the

template Ptp. This correlation coe�cient can be considered as a sum of a nominal

model C0 and some noise X(k) resulting from measure errors and physiological e�ect.

When artifacts occur, a distortion with unknown distribution ∆(k) will a�ect pulse

and therefore Y (k). So, Y (k) becomes:

Y (k) = C0 +X(k) + ∆(k)

The question now is to know if this distortion ∆(k) is su�ciently high to consider

pulse as a bad pulse. The detection of artifacts then amounts to knowing whether

there exists k where the amplitude of the distortion ∆(k) is su�ciently large to mean

the presence of some artifacts.

In order to quantify the amplitude above which a distortion is considered as resulting

from the presence of some artifacts, we introduce a non-negative real value τ , called

tolerance. If we de�ne the noiseless observation:

Θ(k) = C0 + ∆(k)

the problem is then the testing of |∆(k)| ≤ τ versus |∆(k)| > τ . Let g : R→ R be the

map de�ned for every x ∈ R by g(x) = 2C0 − x. Basically, we have |g(Θ(k)) − C0| =
|Θ(k)−C0| and |g(Y (k))−C0| = |Y (k)−C0|. In addition, g(Θ(k)+X(k)) = g(Θ(k))+W

with W = −X. Therefore, if W has same distribution as X, the problem of testing

|Θ(k)−C0| ≤ τ against |Θ(k)−C0| > τ remains unchanged whether we observe Y (k)

or g(Y (k)). This basic invariance leads to consider the class of all the tests that return

the same decision whether we observe Y (k) or g(Y (k)). Of course, in this class, we are

then interested by �nding an optimal test with respect to a certain criterion. Under the

additional assumption that noise X is Gaussian distributed with X ∼ N (0, σ2), the

solution to this question is provided in [5, 38, 44] where such problem is resolved by a

33



CHAPTER 3. DETECTION OF ARTIFACTS IN PPG SIGNAL

novel statistical decision strategy introduced by Pastor & al. for diverse applications in

signal processing and telecommunication. This approach is called Random Distortion

Testing (RDT).
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(a) PPG signal with gold standard annotation in red, (*) indicate pulses where artifacts were detected by
RDT algorithm.
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(b) Values of |Y (k)− C0| compared to the RDT threshold η.

Figure 3.9 � Results of RDT artifact detection on PPG signal

It is a robust non-parametric hypothesis testing which requires no prior information

on the signal distribution and could evaluate signal of interest by comparing with a

given model.

RDT is a good alternative for physiologic signal processing. In fact, real signals

often do not correspond strictly to a nominal model. Independently of noise, there is

always some distortion due to physics �uctuation. In addition, in our PPG context,

the nominal case is that when there is no artifact because the measure is supposed to

be carried out when the patient is motionless. An artifact represents an anomaly. So

the purpose is to guarantee a maximum value for the false alarm probability � that is,

the probability of erroneously detecting an artifact �, while guaranteeing an optimal

detection in case of an artifact.
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In our context of artifact detection, the RDT decision test is then:

Dartifact =

{
1 (artifact) if |Y (k)− C0| > η

0 (no artifact) if |Y (k)− C0| ≤ η

In this equation, η is the threshold calculated as:

η = σλγ(
τ

σ
)

in which λγ(ρ) is the unique solution in x to equation 1− [Φ(x− ρ)−Φ(−x− ρ)] = γ,

Φ(.) is the standard normal cumulative distribution function, γ is the probability of

false alarm and σ2 is the variance of the additive noise [5].

The window, in which the pulse template Wintp is computed, is considered as the

reference signal for estimating nominal model. More speci�cally, the mean correlation

coe�cient CWintp computed in this window Wintp is considered as the true correlation

coe�cient C0. The slight pulse variability due to physiological e�ect is characterized

in this study by calculating the variance σ2 of pulse correlation coe�cients in a clean

segment. This segment corresponds to Wintp where template were generated.

3.4.2 Adaptive RDT for artifact detection

By observing the morphology of the PPG waveform, we notice that it is composed of

pulses with similar forms and slight di�erences in amplitude and shape. This di�erence

is due to physiological e�ect. In the method introduced previously, the template is

automatically estimated on a selected stable segments in order to not skew comparison

between pulses. This method is suitable for short records of approximately one minute.

However, a small shape variation is noticed when cardiac rhythm and/or respiratory

rhythm change. So using a �xed template and a �xed threshold for long record seems

irrelevant. Some pulses could be detected as artifacts although they derive from a

little change due to physiological e�ect. In the following we introduce a new method

to automatically update parameter for long PPG record.

In case of artifacts, the shape of the pulses suddenly changes. Otherwise, when

physiological conditions change, the pulse shape variation is slow and small. We then

extend the method described in Section 3.4.1 by introducing a new strategy that con-

sists in updating the pulse template and sigma used for threshold calculation.
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3.4.2.1 Initial template and RDT parameters generation

For every record, the �rst one minute segment is taken to compute a �rst pulse template

and initialize RDT algorithm. As in Section 3.4.1, Ptp1 is selected from the most stable

windowWintp. After selecting the optimal template Ptp1 , we compute µ1 and σ1 which

are, respectively the mean and the variance of all correlation coe�cients in the window

Wintp.

3.4.2.2 Template and RDT parameter updates

A comparison between Ptp1 and every pulse k of the record is carried out. The compar-

ison is performed as follows. For a given pulse of the record, we match its maximum

with that of the template. From either side of this maximum, we select TPtoP

2
sam-

ples, where T PtoP is the length of Ptp1 . The correlation coe�cient ck is then calculated

between the template and the part of the pulse Pk so extracted.

Thresholding is then necessary for decision. As described in the previous method

in Section 3.4.1.6, RDT is used for detecting pulses with artifacts. However, for the

adaptive case, the nominal model C0 and the threshold η are adjusted gradually as

artifact detection is carried out. In the following, we will note µi the nominal model,

which represents the mean of the correlations between the template and the clean

pulses. σ2
i represents the variance of the correlation values between the template and

the clean pulses.

The RDT decision test then becomes:

Dartifact =

{
1 (artifact) if |Y (k)− µi| > ηi

0 (no artifact) if |Y (k)− µi| ≤ ηi

In this equation, ηi is the threshold calculated as:

ηi = σiλγ(
τ

σi
)

in which λγ(ρ) is the unique solution in x to equation 1−[Φ(x−ρ)−Φ(−x−ρ)] = γ. As

above, Φ(.) is the standard normal cumulative distribution function, γ is the probability

of false alarm and σ2
i is the additive variance of the noise [5].

If the decision is that the given pulse is free from artifacts, parameters are updated

using the following equations where i represents the number of clean pulses detected

and used for updating Ptpi , µi and σ
2
i :
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� Pulse template update:

Ptpi = ((i− 1)/i)Ptpi−1
+ Pk/i

� Nominal model update:

µi = ((i− 1)/i)µi−1 + ck/i

� Variance update:

σi
2 = ((i− 1)/i)(σ2

i−1 + µ2
i−1) + c2

k/i− µ2
i

The iterative process is summarized in algorithm 1.

Algorithm 1 Updating Ptpi , µi, σi
2

Require: i > 2, k > 2, N > 2 (number of pulses)
for k = 1 : N do

if decision (Pk) is NO ARTIFACT then

Ptpi ← ((i− 1)/i)Ptpi−1
+ Pk/i

µi ← ((i− 1)/i)µi−1 + ck/i
σi

2 ← ((i− 1)/i)(σ2
i−1 + µ2

i−1) + c2
k/i− µ2

i

i← i+ 1
end if

end for

3.5 Results and discussion

As already mentioned above, methods described in the literature su�er from lack of

generality. In other words, performance di�ers from one circumstance to another. To

assess our algorithm , di�erent databases with di�erent lengths. In fact, performance

of simple RDT is tested on short records of Sukor data. However, the adaptive RDT is

carried out on long records from Capnobase and ReaStoc. A comparison between the

two processes is then presented.

3.5.1 Simple RDT detection performance

After pulse segmentation of records from Sukor data, we obtain 7550 pulses in which

2771 are labeled as bad pulses due to artifacts.
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Figure 3.9 shows an example of how the correlation coe�cient permits to track high

pulse morphology variations. The RDT threshold takes into account low morphology

variations resulting from respiratory and vasomotor activities. These variations are

involved via the way σ is estimated on clean PPG segments.

The window length L, used to calculate the pulse template, is an important param-

eter that in�uences accuracy. In fact, if the window is too small, pulses in the window

will be almost the same. In this case, σ will be low and, in turn, the threshold will

be even smaller. As a result, the false positive rate will be very high. However, if the

window is too large, there is high probability that artifacts a�ect some pulses. So, the

pulse template will be biased, σ will be too high and then, the true positive rate will

be too low. Figure 3.10 shows the ROC curve behavior when changing L for γ = 10−1

and τ = 4.5. The best accuracy point is for L = 12s.
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Figure 3.10 � ROC curve of the RDT algorithm for di�erent values of L = 4 : 30s,
γ = 10−1 and τ = 4.5

Table 3.1 details performance based on a comparison between the manually anno-

tated gold standard and the output of our algorithm vs. Sukor & al., tested on the

same database (104 records). The sensitivity and speci�city results of Table 3.1 in-

dicate that, for raw PPG signals, the algorithm has correctly classi�ed about 83% of

actual pulses with artifact and 85% of good pulses.

Tolerance τ is an empirical value which can be �xed by the clinician. In theory,

as proved in [5], the false alarm rate should be lower than γ. This theoretical result

is not satis�ed in this study for two possible reasons. First, there are some errors in

the database labeling as shown in �gure 3.11. Second, assumptions about the pre-

sented model are not ful�lled in practice. As a consequence, there is an unavoidable

bias between the theoretical result and the practical one. However, as detailed be-

low, the results obtained pinpoint the added-value brought by the method. Indeed,
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Table 3.1 � Performances of RDT method compared to Sukor & al. L = 12s,
γ = 10−1 and τ = 4.5

Performance metrics Simple RDT Sukor & al.
Sensivity 84%± 16% 89%± 11%
Speci�city 85%± 12% 77%± 19%
Accuracy 83%± 8% 83%± 11%

with a reduced number of parameters and a very limited adjustment of these ones, it

achieves performance similar to that of methods signi�cantly more demanding in terms

of tuning.

The total accuracy of the algorithm is approximately 83%, which is approximately

the same result as Sukor & al. But we notice that standard deviation obtained is less

than that yielded by the approach of Sukor & al., which demonstrates the robustness

of our algorithm regardless of the PPG characteristics. In the developed algorithm,

only one automatic threshold has been introduced in contrast to the six prede�ned

thresholds of [2].

Moreover, the thresholds used in [2] are empirically chosen so as to achieve the best

results on the whole database, whereas the thresholding propounded in our method is

adaptively adjusted to the PPG signal under consideration. It must also be noticed that

the scores are negatively impacted by questionable annotations of the gold standard.

In fact, there is no clear de�nition of what is a PPG pulse corrupted by an artifact.

Even expert human scorers have di�culty in di�erentiating such pulses. This is clearly

illustrated by Figure 3.11, where the gold standard is that artifact is present, whereas

the decision made by the test that no artifact is actually present seems correct.
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Figure 3.11 � In this example, RDT detects no artifacts however the label indicates
that there are bad pulses (red). If we observe the shape of these questionable pulses,

we notice no actual artifact.
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Other studies using classi�cation methods su�er from lack of generality. Li & al.

[42] uses a multi-layer perceptron (MLP) neural network to combine several signal

quality features. A database of 1055 expert-labeled pulses was used. The weights of

the trained MLP were speci�c to the type of database on which it was trained. If

we change the database, for example, when another type of oximeter is used or when

the environment where data are recorded is di�erent, the MLP must be retrained.

This is hardly acceptable in real conditions such as those encountered in intensive care

units, because annotating pulses is a cumbersome task for professional. In addition,

as cited before, the labeling may di�er from one expert to another. Finally, having

a representative database of all possible cases seems impossible due to the variability

between individuals.

3.5.2 Adaptive RDT performance

To evaluate the performance of the adaptive RDT method, two databases are used

in the purpose to validate the universality of the method, whatever the acquisition

devices, the environment and the subject.

3.5.2.1 Capnobase

After pulse segmentation of the whole database (42 records), we obtain 28282 pulses

in which 105 are labeled as bad pulses due to artifacts. The portion of bad pulses is

quite small compared to that of good pulses. Therefore, the records that contain the

largest number of artifacts are selected to check how the algorithm behaves. In this

case, we have 4 records with 2297 pulses in which 59 are labeled as bad pulses due to

artifacts.

The window length L, used to calculate the pulse template Ptpi is �xed to 10s.

The RDT parameters are �xed by experiments on a portion of the database as follows:

γ = 10−3 and τ = 2.

Table 3.2 details the performance measurements based on a comparison between

the manually annotated gold standard and the output of adaptive RDT vs. simple

RDT. Speci�city and accuracy are remarkably enhanced when using adaptive RDT.

This is explained by the decrease of the false positive rate. In fact, �xed template

parameters are too severe when they are used for long records.
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Table 3.2 � Capnobase: Performances of adaptive RDT method compared to simple
RDT L = 10s, γ = 10−3 and τ = 2

Portion of the database Total database
Performance metrics adaptive RDT simple RDT adaptive RDT simple RDT

Sensitivity 95% 96% 88% 86%
Speci�city 84% 25% 91% 74%
Accuracy 85% 27% 91% 74%

3.5.2.2 ReaStoc

From ReaStoc database, we select 14 artifact-labeled records from patients who have

no arrhythmia troubles. After pulse segmentation of the PPG signals, we obtain 19818

pulses in which 626 are labeled as bad pulses. As in the latter case, the records with

the most artifacts are selected. In this case, We have 5 records with 8206 pulses, in

which 518 are labeled as bad pulses.

The window length L, used to calculate the pulse template Ptpi, is �xed to 10s.

The RDT parameters are �xed experiments on a portion of the database as follows:

γ = 10−3 and τ = 1.5.

Table 3.3 � Reastoc: Performance of adaptive RDT method compared to simple
RDT L = 10s, γ = 10−3 and τ = 1.5

Portion of the database Total database
Performance metrics adaptive RDT simple RDT adaptive RDT simple RDT

Sensitivity 89% 88% 88% 88%
Speci�city 90% 74% 92% 80%
Accuracy 90% 75% 92% 80%

As for the Capnobase data, the adaptive RDT method outperforms simple RDT

method (table 3.3). In fact, the template is adjusted step by step to signal charac-

teristics without being biased by possible artifacts. We also notice that although the

acquisition condition di�erence of the PPG signals, performance for both databases is

still within the same range.

Otherwise, the method of Sukor & al. is not tested on Capnobase and Reastoc

because of the lack of information about the values of the thresholds used to compare

pulses. A training step may be used to �x those thresholds but it is a costly step that

cannot be repeated for every new type of data.
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3.5.3 Possible improvement and extension to other physiologi-

cal signals

The physiological signal contamination by artifacts is a common problem in the biomed-

ical engineering �eld. Without a phase of artifacts detection, the estimates and predic-

tions made on these signals are often biased. If we take signals like electrocardiograph,

blood pressure signals and electroencephalograph, we notice common points with PPG.

They are quasi-periodic signals. Therefore, there is a pattern which is repeated peri-

odically and which is deformed in case of artifacts.

The three main steps, as used for PPG, remain operative.

� Template initialization: choosing the most stable signal segment to compute initial

parameter template.

� Comparison metric: choosing the metric (correlation, distance..) that will be used

to compare the template to the other patterns

� Adaptive RDT: using adaptive RDT to make decision if the pattern is good or bad

and then updating the template.

3.6 Conclusion

In this chapter, we have introduced the problem of detecting artifacts a�ecting PPG

signals. In this respect, we have presented di�erent approaches encountered in the

literature to solve this problem. More speci�cally, we have introduced our methods

based on template matching and decision by RDT testing. In the next chapter, we will

focus on respiratory rate estimation and we will then explain how artifact detection

could ameliorate RR estimation.
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4.1 Introduction

One of the most promising use of PPG signal is the estimation of respiratory rate in

di�erent contexts as in clinical setting or in e-health applications for remote monitoring

of patients. A wide range of methods from the literature and from our experiments

are presented. This chapter set out the behavior of di�erent RR estimation algorithms

when applied to di�erent datasets with di�erent age ranges and di�erent respiratory

modes. An analysis of the results is then presented to understand why the use of PPG

for estimating RR remains skeptical for clinicians.

4.2 State of art

Respiratory rate (RR) is a physiological signal widely used in clinical care. It is the

most sensitive vital sign marker of clinical deterioration when suspicious changes are

detected. As described in 2.3.2 and 2.4.3, PPG signals obtained from pulse oximeter

are a good alternative to traditional methods for measuring RR thanks to the simplicity

of use and non invasiveness of pulse oximeter techniques.

In the literature, many methods are proposed for PPG-based RR estimation. These

methods can be classi�ed into two categories: RR estimation from raw PPG and RR

estimation based on making decision from derived PPG signals.

4.2.1 RR estimation from raw PPG

Cardiovascular and respiratory activity can be characterized by spectral analysis. In

fact, HR frequency is known to range in 0.5 − 3Hz. RR frequency is by the range

of 0.15 − 1Hz. In some cases with "perfect" PPG records, simple FFT is su�cient

to get HR and FR. HR and FR, then, correspond to the maximum peak in their

respective frequency range. By perfect we mean that signals are free from artifacts

and contain distinct modulations. However, in most of the cases, peaks are most of

the time drowned in noise especially for RR which is localized in low frequency bands

and yields peaks with small amplitude. Other unknown physiological e�ects can also

impact the PPG modulation signals. Advanced techniques are then proposed in the

literature.

In [45], researchers introduce the so-called Correntropy Spectral Density to estimate

HR and RR. The correntropy function is a nonlinear similarity measure used especially
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for non-gaussien signal processing. It is de�ned by:

V (m) = E[K(x(n)− x(n−m))]

where E[.] is the statistical expectation and K is the gaussian kernel de�ned by:

K(x(n)− x(n−m)) =
1√

(2πσ)
exp(−(x(n)− x(n−m))2

2σ2
)

where σ is the kernel parameter. Such function is particularly useful in the impulsive

noise environment for detecting nonlinear characteristics in signals. The Correntropy

Spectral Density is the Fourier Transform of the Correntropy function.

P (f) =
+∞∑

m=−∞

V (m) exp(−i2πfm)

HR and RR correspond then to the maximum peak in their corresponding frequency

range.

This method is particularly interesting for its robustness in case of artifacts. In fact,

K(x(n)−x(n−m)) tends to 0, when either x(n) or x(n−m) is an artifact, whereas the

other one is from a clean PPG segment, because of the big di�erence between the two

samples. The median Root Mean Square Error (RMSE) obtained from this method

for estimating RR was 0.95(breath/min) when tested in capnobase data. However,

some outliers still limit the algorithm performance because of harmonic peaks that are

sometimes higher than peaks corresponding to RR. An other limitation of this method

is the choice of sigma. A calibration step preceded the RR estimation step is necessary

when changing database.

4.2.2 RR estimation from derived PPG signals

As described in 2.3.2, physiologic e�ects related to respiratory activity and cardiac cycle

induce several modulations of PPG signals. Based on this fact, most of the algorithms,

in the literature, propose as a preliminary step to extract PPG signal modulations.

Then, RR values are estimated from these extracted signals. Table 4.1 resumes some

of the proposed methods on the topic. Three major steps compose the process of

establishing RR:

1. Extracting signals from PPG
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2. Estimating RR

3. Analyzing RR and calculating �nal RR

4.2.2.1 Variable Frequency Complex Demodulation

In [46], Chon al. present a method based on Variable Frequency Complex Demodula-

tion (VFCDM). It is a time frequency approach with high resolution that permits to

get instantaneous accurate values of signal amplitude and signal frequency. A bank of

low pass �lters is used to decompose PPG signals into a series of band limited sinusoid

modulations. An Hilbert transform is then applied to get instantaneous frequency,

amplitude and phase for every modulation. The instantaneous frequency and ampli-

tude are then respectively the FM and AM signals. The RR is then estimated by the

maximum peak in the RR frequency band of the Power Spectrum Density (PSD).

Tested on 15 healthy subjects, the presented algorithm reveals that accuracy for

estimating RR depends on frequency range. Good performance is observed for low

frequencies, corresponding often to RR in the normal range between 0.2 − 0.3Hz.

However, for fast breathing rates 0.4 − 0.6Hz, the performance is limited but still

acceptable. The RR estimated from FM outperforms the ones from AM. So, the

authors kept only estimations from FM for the �nal RR values. Although the method

has reliable performance, we believe that the database used for testing the algorithm is

limited and not very representative in terms of number of breaths and health situations.

In fact, it was tested only on healthy subjects under laboratory conditions.

4.2.2.2 Wavelet transform

In [47, 48, 49], authors introduce a method based on the wavelet transform. AM and

FM signals are extracted by detecting ridges corresponding to respiratory band from

scalogram, which is the energy density function of the wavelet transform. A weighted

averaging method is used to provide con�dence metrics for the extracted RR values

from AM and FM. This con�dence metrics depends on the presence or not of artifacts.

Good performance of this method has been related. A good agreement was found

between the reported RR and the reference with a mean di�erence of −0.23br/min

and standard deviation of 1.14br/min in case of healthy subjects. However, for test

in clinical �oor, results are a little less good: −0.48br/min and standard deviation of

1.77br/min.
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The details of the decision process on how weights are attributed to the RR values

are not mentioned in the publications of this research study. As a matter of fact, this

study is realized in an industrial context, which might explain the lack of details of the

proposed method.

4.2.2.3 Smart fusion

In [31], Karlen & al. present a method for estimating RR from three respiratory-

induced modulations from PPG. The �rst step involves estimating the maximum and

minimum of every pulse. The second step is the estimation of every signal AM, BW

and FM as follows. The pulse amplitude is the height between the maximum and the

minimum of a given pulse. AM is then the time series of amplitudes of all PPG pulses.

BW is the envelope of the PPG. It corresponds to the time series of the pulse maxima.

FM is the instantaneous heart frequency. It corresponds to the time series of inverses

of peak-to-peak distances. We remind the reader the PtoP distance is the distance

between the maxima of two consecutive pulses.

Every modulation is then sampled at 4Hz. After that, maximal spectral power

approach is carried out for each modulation to estimate RR In other words, the res-

piratory frequency corresponds to the frequency with maximal spectrum power. The

�nal RR is the mean of the three RR estimated from AM, BW and FM. Indeed, a

decision process, named Smart Fusion, is introduced to limit errors due to aberrant

values. In fact, if the standard deviation of the three RR is greater than 4breaths/min,

the �nal RR value is rejected.

The smart fusion improves substantially the �nal RR value compared to simple

fusion as well as individual estimation from every signal modulation. Simple fusion

involves just calculating the mean of the three RR estimations. The RMSE was by

3 ± 4.7breaths/min when tested on Capnobase data. However, we believe that the

reject rate (38.5% of RR values were rejected) of this decision process is too large

and then the method is too strict for RR monitoring application. Another drawback

of this algorithm is that aberrant values are founded when estimating low frequency

respiration rate, especially those below 7breaths/min.

Extrac'ng	PPG	
modula'on	 Es'ma'ng	RR	

Analyzing	RR	
and	calcula'ng	

final	RR	

Figure 4.1 � Typical steps of most algorithms for estimating RR
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Table 4.1 � Summary of main methods presented in the literature

Method reference Derived
signals

Extracting
method

Estimating
RR method

Decision making

Chon al. [46] FM ; AM VFCDM and
Hilbert trans-
form

PSD Only FM is kept

Addison al. [47, 48] FM ; AM Wavelet Wavelet Weighted averag-
ing

Karlen al. [31] FM ; AM ;
BW

Pulse seg-
mentation

FFT Fusion and
Smart fusion

Orphanidou al. [50] FM ; AM ;
BW

Pulse seg-
mentation

Autoregressive
spectral anal-
ysis

Pole ranking cri-
terion

Lazaro al. [51] Pulse width
variability

Pulse bound-
ary detection

Welch peri-
odogram

Temporal
smooth-
ing RRi =
0.2RRest +
0.8RRi−1

Pimentel al. [52] AM, BW, FM Pulse seg-
mentation

Autoregressive
models with
multiple
model order

Median value
depending on
model orders

4.2.2.4 Other methods for RR estimation from PPG modulations

Methods based on RR estimation from PPG modulations are widespread. In the

literature, slight di�erences exist between methods presented for estimating RR. The

di�erences reside essentially on how to estimate the RR from the modulation signals.

We summarize these methods in table 4.1.

In [53], a review of several methods for estimating RR from ECG and PPG is

presented. It is worth noting that RR could be estimated from the ECG. In fact,

respiratory activity has analogous e�ect on ECG features as on PPG ones. So, methods

used for ECG can be also applied to PPG. In this respect, the study conducted by

Charlton & al. is interesting because it assessed every possible combination between

RR algorithms for extracting and fusing RR estimations. Comparison is then carried

out on the same database and with the same statistical performance measure. The

database used in this study was collected from healthy participants.
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Results show that algorithms using time domain RR estimations generally perform

better than frequency domain techniques. This can be explained by the criterion of

quasi-stationarity of the respiratory signal, which is not always ensured. The smart fu-

sion method remains the best way for fusing RR estimation despite of its high rejection

rate.

4.2.3 General limits of the existing methods

Existing studies for estimating RR privilege more methods based on PPG modula-

tions than those based on raw PPG. We cannot generalize that the methods of the

�rst category are more reliable than those of the second, up to now, there has been

no comparative study in this respect, involving the same database and the same error

statistical measures. The fact that the exploitation of the PPG modulation for esti-

mating RR is the most widespread method can be explained intuitively by the fact

that exploiting several signals reduces the probability of making errors. In addition,

the same methodology applied on ECG has been proven to have good performance

[53].

Despite of the broad spectrum study presented in [53], some limitations prevent

from having general conclusions about the methods considered in this review. In fact,

the methods were tested on one database of healthy volunteers only. Indeed, robustness

of the proposed algorithms against artifacts and arrhythmia cases is not presented.

Common limitations have been found for most algorithms for both types of meth-

ods. In general, the estimation of RR in very low frequency band is not reliable.

Another limitation is that these algorithms do not allow apnea detection, which is a

very important vital indicator. Also, universality of the methods, whatever the base,

is not demonstrated, especially for the methods which require a prede�ned parameter

like the order for AR methods or the level of decomposition for wavelet transforms.

Another critical point is the robustness of a given method in case of artifacts. In fact,

the methods presented either work on clean signals or require additional preprocessing

block to remove artifacts .

4.3 Consensus spectrum for RR estimation

In this section, we present a method for estimating RR from raw PPG signal. With

this method, there is no need to extract the modulations of the PPG signal.
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By observing the PPG spectrum, many facts are revealed. Two main peaks are

observed in the PPG spectrum. The highest one is localized in the frequency band be-

tween 0.5 and 3Hz. This band corresponds to the heart frequency range and, therefore,

the peak corresponds to the subject heart rate. The second peak is localized in the

frequency band between 0.015 and 1Hz, which corresponds to the actual respiratory

rate range and the peak corresponds to the subject respiratory frequency. Some other

peaks can appear, which may result from artifacts or other physiological activity.

Amplitudes of peaks due to artifacts may exceed or hide those of HR and RR.

However, the peaks corresponding to RR and HR are quasi-stationary over time, unlike

the other peaks that have a variable behavior.

Based on this observation, we introduce a novel method for smoothing spectra so as

to minimize the impact of artifacts on PPG spectrum and accentuate peaks of interest,

namely RR and HR.

This method was originally introduced in computational molecular biology and

is known as Consensus Spectrum. The method is based on multiple cross spectrum

of Fourier transform in the purpose of �nding common frequencies between di�erent

spectra [54, 55].

In the case of PPG signals, Consensus Spectrum is the result obtained by multiply-

ing k consecutive PSD:

C =
k∏
i=1

|Pi|

where Pi is the PSD of PPG signal for the window i.

As it can be noticed in �gure 4.2, resolution of stationary peaks is increased, whereas

other peaks induced by artifacts are reduced. RR then corresponds to the maximum

value of the resulting spectrum C in the frequency band corresponding to the speci�ed

RR range.

This method has interesting advantages in comparison to those cited in the litera-

ture. In fact, the consensus spectrum method needs very few prede�ned parameters.

Indeed, only the length of the FFT and the overlap between 2 consecutive FFT win-

dows are required. Another advantage is that there is no need of pulse segmentation

or modulation extraction, which minimizes the algorithm implementation cost. In ad-

dition, with this type of smoothing, little peaks induced by artifacts tend to disappear.

Therefore, the RR estimation performance is less a�ected by the presence of localized

artifacts.
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(a) Illustration of consecutive spectra of a PPG before smoothing where respi-
ratory band is delimited with red lines: many irregular peaks appear, however,

peaks around 0.6Hz are more stable over time
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(b) Spectrum of a PPG after smoothing on respiratory band : irregular peaks
noticed in �gure (a) are reduced. However a well distinguished peak is observed

around 0.6Hz, which corresponds to RR

Figure 4.2 � Comparison between simple PSD vs. Consensus of four spectra: Peaks
are well di�erentiated in (b).
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4.4 RR from PPG modulations

The general �ow of the proposed method is based on three principal steps as in 4.2.2

and �gure 4.1: extraction of respiratory modulations, RR estimation, analyzing RR

and calculating �nal RR. No artifact detection is taken into account in the proposed

method. In the following, an optimization of every step is proposed to get a robust

stand-alone system for RR real time monitoring.

In the sequel, the following notation is used to distinguish between the local values

of estimated RR from the induced respiratory signals and the �nal RR values given to

the clinician.

� RRAM is the value of RR estimated from AM signal.

� RRFM is the value of RR estimated from FM signal.

� RRBW is the value of RR estimated from BW signal.

� RRFin is the �nal value of RR

4.4.1 Extracting PPG modulations

4.4.1.1 Preprocessing

Similar to artifact detection in chapter 2, PPG signals need to be �ltered in the useful

signal range band. All records are �ltered with a Butterworth passband �lter with

frequency band equal to 0.05− 5Hz.

4.4.1.2 Pulse detection

Classic methods for peak detection using simple derivative have limits when applied to

PPG signals. In fact, pulse shape may di�er from one subject to another, depending

on age and cardiovascular dysfunction. PPG notches (second peak) tend to be less

pronounced when aging. To avoid the detection of notches instead of pulses, the method

based on blocks of interest for detecting peaks, described previously in 3.4.1.2, is also

applied in this section.

In brief, the pulse to pulse period T PtoP is known to be approximately the inverse of

the heart rate (HR). When applying the Fourier transform to PPG, the heart rate can

then be estimated by seeking the maximum peak between 0.5− 3Hz. The PPG signal
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x is then smoothed by applying a moving average �lter. Peaks cannot be immediately

detected from the smoothed signals xAM because of the delay introduced by the moving

average �lter. So, we propose to demarcate pulses approximately by calculating the

minimum of the resulting signal xMA. These demarcated limits are blocks of interest.

Maximum of every pulse corresponds then to the maximum of signal x in each block

of interest.

4.4.2 Extraction of respiratory modulations

Respiration waveforms modulation AM, FM and BW are extracted from the PPG. Let

us consider peaks as a series of pairs,(tpki,xpki) where i is the pulse index. Let Npk

be the number of peaks. Similarly, let us consider the pairs (ttri,xtri) of troughs and

denote by Ntr the number of troughs. The number of troughs and peaks, Ntr and Npk,

are equal or di�er at most by one. For simpli�cation reason, we will denote by N the

number of pulses with N = min(Npk, Ntr).

� AM is the value of every pulse amplitude. It corresponds to the di�erence between

the maximum and its corresponding minimum.

xAM = |xpki − xtri|, i = 1, 2, .., N

A time series tAM is de�ned for the signal xAM as follows

tAM =
tpki + ttri

2
, i = 1, 2, .., N

This time series will be useful later for comparison purpose with the reference

signal.

� FM is the instantaneous heart frequency. It corresponds to the inverse of the peak

to peak distance. The pair (xFM , tFM) is thus de�ned by:

xFM = |xpki+1 − xpki|, i = 1, 2, . . . , N − 1

tFM =
tpki + tpki+1

2
, i = 1, 2, .., N − 1

� BW is the time series of the means between the amplitude of each pulse peak and

the amplitude of its corresponding trough, which re�ects the changes in the signal
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Figure 4.3 � Each signal AM, FM and BW (a,d,g) is interpolated and oversampled
at frequency 4Hz to get signals over time (b,e,h). Finally, every signal is �ltered to

eliminate noise resulted from sampling (c,f,i)

baseline. The pair (xBW , tBW ) is therefore de�ned by:

xBW =
xpki + xtri

2
, i = 1, 2, .., N

tBW =
tpki + ttri

2
, i = 1, 2, .., N

The obtained signals AM, FM and BW are by construction heterogeneous. In addi-

tion, samples are not regularly spaced, which prevents the proper use of some processing

tools, especially the Fourier transform that need evenly sampled data. Each signal is

then resampled to 4Hz using linear interpolation. Some high and low frequencies can

arise due to physiological e�ects and linear interpolation. To reduce the imperfections

resulting from the previous process, each signal is �ltered with a 5th-order Butterworth

bandpass �lter between 0.83 and 1Hz, which corresponds to the respiratory frequency
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band. Figure 4.3 presents an example of the impact of each step on the three mod-

ulations AM, FM and BW. The length of the three signals can be slightly di�erent.

Signals are then truncated to the minimum length of the AM, BW and FM signals.

4.4.3 RR estimation

The estimation of the respiratory rate from the modulation signals presents two major

problems: the �rst is how to calculate the respiratory frequency from every modulation

and the second is how to fuse RRAM , RRFM and RRBW and making decision on the

�nal value of the respiratory rate. In the following, we present three di�erent methods

for estimating the �nal RR from the respiratory modulation signals.

4.4.3.1 FFT and median �ltering for RR estimation

First, a spectral method is used in this step to extract RR. A Hanning window with

length L is applied to signals. An FFT is applied to every window then power spectrum

is calculated. The same strategy is then used to extract RR from spectrum: Respiratory

frequency is the maximum between 0.1 and 1Hz. In some cases, the heart frequency

can be less than 1Hz. Physiologically, it is not possible to have RR superior than

HR. In this case, the respiratory frequency range is then between 0.1Hz and the heart

frequency.

In the study presented in Karlen & al. [31], the mean of the three signal modulations

is used to fuse values. For smart fusion, if the standard deviation of the three RR

extracted from the three signal modulations is more than 4breath/min, the �nal RR

estimation value is considered as aberrant. Using simple mean, as Karlen & al., seems

to bias �nal values. Indeed, the standard deviation criterion for smart fusion is too

strict. In fact, experiments pinpoint that respiratory rate estimation from the three

signals can include outliers (aberrant values of RR) from one signal or several of them.

For example, we have a PPG signal which reference RR value is 20breath/min.

RRAM , RRBW and RRFM are estimated as described previously. We obtained the

three following RR values from the modulation signals: 20, 20 and 10breath/min; the

mean of these values is 16.66breath/min and the standard deviation is 5.77breath/min.

Using the criterion of Karlen & al., this �nal RR estimation is rejected because the

standard deviation is above 4breath/min. Intuitively, the use of the median is more

robust. In fact, the median is better suited to calculate central tendency for RR
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Figure 4.4 � Example of a 32s window used for RR estimation from the induced
respiratory signals resampled and �ltered. The power spectrum is calculated for each
respiratory modulation signal (right column) and the maximum power (red line) is
selected. In this example, the three respiratory frequencies coincide at the same

frequency 0.3125Hz, which corresponds to 18.75breath/min

values. If we take the latter example, the median of the RR values is 20breath/min

which corresponds to the real RR given by the reference.
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4.4.3.2 Consensus spectrum and median for RR estimation

In this section, the consensus spectrum method, presented in 4.3, is used for every

respiratory induced signal AM, BW and FM. A sliding window with a prede�ned

overlap is applied to the signals. With this method, the respiratory peak in the spectra

is accentuated, whereas other peaks resulting from artifacts are masked.

To estimate the �nal value of RR, the median is used to fuse the three values

obtained from the respiratory induced signals. In some cases like the example presented

in �gure 4.5, the peak of the harmonic in the FM consensus spectrum is higher than the

peak corresponding to the real value of RR. In the other two spectra, the respiratory

peak is successfully localized. By calculating the median of the three RR, the �nal RR

estimation RRfin corresponds to the reference value.

4.4.3.3 Spectral fusion for RR estimation

As noticed in the precedent example in �gure 4.5, the peaks resulting from harmon-

ics are a challenging problem. In fact, sometimes these peaks are higher than that

corresponding to the actual respiratory frequency. So, keeping only maximum peak

from every AM, BW and FM spectrum can hide some useful information about other

potential peaks that may also correspond to respiratory frequency.

The question is then to test if the fusion of spectra could be more e�cient than fusing

values estimated from the three spectra. In this section, we propose to fuse spectra of

the three modulation signals in order to keep all the potential peak candidates that

may correspond to the actual RR peak.

Like previous methods, the FFT is calculated by using a sliding Hanning window

for every modulation signal. The spectral amplitudes from AM, FM and BW are not

on the same magnitude order. So, a normalization step is carried out. Every spectrum

is normalized as follows:

PXN =
PX

PXmax

where PXmax is the maximum of the given power spectrum PX of signal X, which is

AM, PM or BW.

A spectral fusion step is then performed to take the three di�erent estimates into

account. We propose two techniques for this purpose.

� Fusion with median �lter
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Figure 4.5 � Example of four spectra from four 32s sliding windows with an overlap
of 16s (left column). The resulted consensus spectrum for each signal modulation is
presented in the right column and the maximum peak (red line) is selected. In this
example, two respiratory frequencies coincide at the same frequency 0.3125Hz, which
corresponds to 18.75breath/min. However, in the FM signal, the maximum coincides

with an harmonic at 0.6Hz.
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(a) Spectral fusion with median �lter
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(b) Spectral fusion with consensus spectrum

Figure 4.6 � Example of a fused spectrum from the windowed FFTs of the AM,
FM and BW signals. The respiratory frequency is estimated at 0.3125 Hz, which
corresponds to 18.75 breath/min. The harmonic observed in Figure 4.5d is dimmed

in this case

The median �lter can eliminate outliers, in contrast to the mean, which can be

contaminated with outliers. For every frequency from each of the three spectra, a

median value is calculated as follows:

Pmed
Fus (i) = median(PAM(i), PFM(i), PBW (i)), for i = 1..L

with L is the length of the spectrum and i is the frequency bin index.

� Fusion with consensus spectrum

Consensus spectrum is another way for seeking common frequency between the

three spectra. The three spectra from AM, FM and BW are multiplied by each

other, frequency per frequency.

P cons
Fus (i) = (PAM(i)× PFM(i)× PBW (i)), for i = 1..L

with L is the length of the spectrum and i is the frequency bin index.

The �nal estimate RRfin is then given by the frequency with the maximum ampli-

tude in the resulting spectrum Pfus. Figure 4.6 shows the resulting spectra from the

two methods. A well distinguished peak is observed at frequency of 0.312Hz, which

corresponds to the real respiratory rate 18.75breath/min for this example.
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4.5 Results

In this section, performance measurements of the algorithms introduced above are

given and commented. Several tools are presented to compare the estimated RR to the

reference RR values. Two di�erent databases are considered in this study: Capnobase

and Reastoc. These databases are described in Section 2.5.

4.5.1 Results on Capnobase

Capnobase is a collaborative database collected from clinical setting (section 2.5.2).

For assessing the proposed algorithms, we consider the whole Capnobase except one

�le, namely �le ′0031_8min′ of which RR reference �le contains many aberrant values.

In summary, we used 41 PPG signals. Each signal was sampled at 300Hz and lasts

8 minutes. The data were acquired from di�erent subjects with di�erent ages, during

spontaneous or controlled breathing. For each record, the RR reference values were

extracted from Capnography. In fact, the capnography is the plot of the concentration

of CO2 in the air exhaled by a patient. Two anesthsiologists annotate the begin and the

end of every respiratory cycle. A time coordinate was attributed to each measured RR

value. Obtained RR measurements were not performed on a regular basis. A reference

value is available every 4 seconds on average.

Performance of the algorithms Fusion and Smart Fusion developed by Karlen &

al. [31] are included in Capnobase, which makes it possible to perform a comparative

study between these algorithms and our methods. In what follows, We always use the

following notation to designate the methods proposed in this work:

� Consensus Spectrum from PPG (CS-PPG) (section 4.3)

� FFT combined to Median �lter (FFT-Med) (section 4.4.3.1)

� Consensus Spectrum combined to Median �lter (CS-Med) (section 4.4.3.2)

� Spectral Fusion combined to Median �lter (SF-Med) (section 4.4.3.3)

� Spectral Fusion combined to Consensus Spectrum (SF-CS) (section 4.4.3.3)

4.5.1.1 Comparison with reference gold standard

A synchronization step is needed to have the same number of RR references and RR

estimates and also to match the RR reference and RR estimate time scales. Depending

60



CHAPTER 4. RESPIRATORY RATE ESTIMATION FROM PPG

on the �le, the number of estimations can be greater or less than the number of RR

references:

� If the number of RR estimations is less than the number of references, the �nal

estimate is taken as the median of the reference RR values corresponding to the

time interval where RR is estimated from PPG:

RRref = median(RRref (t)) with t1 ≤ t ≤ t2

where t1 and t2 are the instant of beginning and end of the corresponding interval.

� Otherwise, a linear interpolation of the RR references is carried out.

4.5.1.2 Parameter choice

The methods for RR estimation presented in this chapter use fewer parameters than

methods presented in the literature. Some preliminary tests are thus required to �x

the length of the FFTs, the number of FFTs needed for Consensus Spectrum and the

size of the overlap between FFT windows. Note that the choice of the overlapping rate

depends on how often clinicians wish to obtain an RR estimation.

Window length test The problem with the Fourier Transform is how to �nd a

compromise between the frequency measurement accuracy, on the one hand, and the

processing time for real time application, on the other hand. Four window sizes without

zero padding are tested { 32s, 64s, 128s, 256s}. These window sizes are appropriate

to the physiological characters of the respiratory activity and meet the clinician's re-

quirements.

Figure 4.7 gives an example of how the CS-Med algorithm evolves as the length of

FFT window changes. The short windows 32s and 64s enable a real-time monitoring

of the respiratory frequency, even when small changes occur. However, for the windows

with lengths 128s and 256s, RR estimates are more accurate.

The methods were assessed by using the root mean square error (RMSE) de�ned

as:

RMSE =

√√√√ 1

n

n∑
k=1

(RRref (k)−RRGen(k))2

where n is the number of RR estimations and, for the kth estimation, RRref (k) is the

RR reference and RRGen(k) is the �nal RR estimated by a given algorithm.
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(a) RR estimated with CS-Med method using a win-
dow of 32s
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(b) RR estimated with CS-Med method using a win-
dow of 64s

0 50 100 150 200 250 300 350 400
15

16

17

18

19

20

21

22

Time (s)

R
R

 (
b

re
a

th
/m

in
)

 

 

RR reference

RR CS−med 256

(c) RR estimated with CS-Med method using a win-
dow of 128s
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(d) RR estimated with CS-Med method using a win-
dow of 256s

Figure 4.7 � Example of RR estimated with CS-Med method using di�erent window
sizes compared to the RR values from reference.

RMSE are calculated for each �le from Capnobase for di�erent window sizes

{32s, 64s, 128s, 256s} in Figure 4.8. The central mark of each box is the median,

the edges of the box are the lower quartile q1 (25th percentile) and the upper quartile

(75th percentile) q3. The whiskers extend to the most extreme data points de�ned by

1.5 times the interquartile range (q3− q1). Values greater than q3 + 1.5(q3− q1) or less

than q1 − 1.5(q3 − q1) are considered as outliers and represented by red crosses.

RMSE median values obtained for all methods are between 0.11 and

2.38breath/min. The larger the window size, the smaller the RMSE. However, the

upper quartile and the number of outliers di�er from one method to another. In fact,

high values of RMSE are also observed for large windows of 256s. The best perfor-

mance compromise found in this context is for the CS-Med algorithm with a window

of 64s, where the RMSE median is 0.3breath/min and the upper quartile value of the

RMSE is about 0.7breath/min.
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Figure 4.8 � Results from RMSE analysis of capnobase data to select the best FFT
window size {32s, 64s, 128s, 256s}.

Number of FFTs for Consensus Spectrum The number of FFTs needed to

optimize error rates for the CS-Med and CS-PPG methods is studied in this paragraph

(4.9). According to the results above, the window length is �xed to 64s with an overlap

of 16s. The higher the number of FFTs, the better the RMSE median. There is no

signi�cant di�erence between the values of the RMSE median obtained with either CS-

Med or CS-PPG (between 0.27 and 0.53breath/min for CS-PPG method and between

0.35 and 0.57breath/min for CS-Med method). However, like in the previous �gure 4.8,

the CS-Med method is more stable: upper quartile values for the CS-Med method are

less than those obtained with the CS-PPG method. The best performance is observed

by selecting 8 FFTs but, from a computational point of view, it is a costly choice,

especially because it induces no signi�cant performance gain. For this reason, in the

following, we will �x the number of FFTs to 4.

4.5.1.3 Performance by age

Anatomical and physiological changes with age a�ect the respiratory system of sub-

jects. In this section, we aim to study the behavior of the respiratory rate estimation

algorithms with respect to to the patients' age.

Participants of the Capnobase project are from di�erent ages including pediatrics

and adults. PPG records are classi�ed into 3 groups according to age. The RMSE of

the proposed algorithms within each age range is presented in Table 4.2 and Figure

4.10.
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Figure 4.9 � Results from RMSE analysis of capnobase data to select the best
number of FFTs needed for Consensus Spectrum calculation in CS-PPG and CS-Med

Parameters are �xed to 64s and 4 �ts for both CS-Med and CS-PPG. The best

performance measurements are observed for the CS-Med algorithm for all age classes.

Comparable RMSE results are achieved by the CS-Med method for all age classes.

Another observation is that the CS-PPG algorithm outperforms the CS-Med algorithm

for ages between 12 and 29 years. However, the behavior of the CS-PPG algorithm

is unstable for the other age classes. For the other methods, high RMSE values are

more observed for young subjects (< 12 years). This di�erence in performance can be

explained by the respiratory rate range and the quality of the respiratory modulation

signals, which can di�er according to the patients' age.

Table 4.2 � Performance of the RR estimation algorithms, according to the age
ranges, for windows of 64s. In each age group, N is the number of records. For each
method, we give the median and inter-quartile range (25th- 75th) percentile of the

RMSE expressed in breath/min.

Age range N CS-PPG CS-Med FFT-Med SF-Med SF-CS

< 12 16
0.31

(0.17-3.56)
0.37

(0.25-0.62)
0.95

(0.47-6.2)
0.75

(0.32-6.77)
1.11

(0.39-6.51)

12-29 11
0.21

(0.11-0.32)
0.31

(0.21-0.36)
0.42

(0.29-3.75)
1.03

(0.29-3.36)
0.43

(0.25-2.49)

> 30 14
0.88

(0.11-9.14)
0.33

(0.31-0.5)
0.57

(0.37-3.12)
0.56

(0.32-3.68)
1.27

(0.31-2.71)
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Figure 4.10 � Results from RMSE analysis of capnobase data using 64s window.
Comparison of all methods according to age range

Figure 4.11 � Results from RMSE analysis of capnobase data using 64s window.
Comparison of all methods according to ventilation mode

4.5.1.4 Performance by ventilation mode

Under di�erent ventilatory conditions, the pulmonary volume and the intra-thoracic

pressure are modi�ed. So, respiratory induced signals change behavior. In this sec-

tion, the proposed methods are analyzed according to the available ventilation modes.
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Capnobase data contains 21 subjects under controlled ventilation and 20 subjects with

spontaneous respiration.

Figure 4.11 and table 4.3 present the RMSE analysis for the two respiration modes.

A substantial di�erence is observed for the two respiration modes. The RMSE values

are lower for patients under controlled ventilation than for patients with spontaneous

respiration. This can be explained by the fact that respiration activity is more stable

and with less variations under controlled ventilation.

It is also worth noting that the CS-PPG method outperforms slightly the CS-

Med method for patients under controlled respiration. However, the CS-PPG method

yields strong outliers for patients with spontaneous respiration, which questioned the

reliability of the method.

Table 4.3 � Performance of the RR estimation algorithms with respect to the ven-
tilation mode for window of 64s. N is the number of records. For each method,
the RMSE results are given in terms of median and inter-quatile range (25th- 75th)

percentile expressed in breath/min.

Ventilation
mode

N CS-PPG CS-Med FFT-Med SF-Med SF-CS

Controlled
respiration

21
0.11

(0.09-0.37)
0.31

(0.23-0.35)
0.55

(0.36-3.17)
0.55

(0.30-2.58)
0.46

(0.28-2.40)

Spontaneous
respiration

20
0.36

(0.24-7.66)
0.42

(0.34-1.37)
1.23

(0.39-6.10)
2.04

(0.34-5.95)
1.96

(0.39-5.60)

4.5.1.5 Global comparison

In addition to the RMSE analysis, several statistical tools are presented to assess the

methods.

� Bland and Altman: It is a data plotting method that compares a technique

of parameter measuring to the reference technique. It involves computing a bias

by calculating the mean di�erences (MeanDi�) obtained between the two tech-

niques and �xing a con�dence interval with limits MeanDiff − 1.96 × SD and

MeanDiff + 1.96 × SD where SD is the standard deviation of the di�erences.

The lower are the bias and the SD, the closer is the measurement method to the

reference method [56].

� Scatter plot and correlation A scatterplot is a graphical tool for showing the

relationship between two variables. In our context where we want to compare an

RR estimate and an RR reference, the abscissa of each point is the RR reference
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and the ordinate is the RR estimate. The best �t line is the identity line x = y.

The closer the points to the best �t line, the closer the correlation to 1 or -1.

Table 4.4 � Performance of RR estimation methods. N is number of RR estimates.
RMSE is calculated for each record and expressed in breath/min as median and inter-
quartile range (25th- 75th) percentile. We display the mean di�erence between the RR
references and the estimates, with con�dence intervals. We also give the correlation

between the RR references and estimates.

Method N RMSE (br/min) Mean di�erence (br/min) Correlation

CS-PPG 164 0.26 (0.11-4.15) -2.25 (-15.89 - 11.37) 0.75

CS-Med 164 0.34 (0.27-0.47) -0.24 (-3.77 - 3.28) 0.97

FFT-Med 287 0.66 (0.37-3.91) -0.45 ( -7.81 - 6.89) 0.87

SF-Med 287 0.66 (0.31-4.14) -0.38 (-8.82 - 8.05) 0.83

SF-CS 287 1.06 (0.30-3.46) -0.38 (-8.05 - 7.27) 0.86

The performance measurements of the proposed methods with respect of the for-

going criteria are detailed in table 4.4. There are signi�cant di�erences between the

CS-MED method and the other proposed methods. Although the CS-PPG method

has the lowest median RMSE, the corresponding inter-quartile distance is the high-

est. Considering this fact, the CS-Med method has the best median RMSE with the

smallest distance.

For the mean di�erence criterion evaluated by the Bland-Altman plot, the CS-Med

method has the lowest bias and also a narrower con�dence interval comparing to the

other methods. This result is illustrated in Figure 4.12. The con�dence interval is

between −3.77 and 3.28 breath/min, which is an acceptable RR error range for real

applications. Indeed, only four outliers are observed outside the con�dence interval.

The same behavior is observed by using the correlation. CS-Med has the highest

value of correlation. This fact is also con�rmed by Figure 4.13. In fact, the scatter

plot shows that RR values estimated with the CS-Med method are the closest to the

best �t line, with fewer outliers than the other methods.

4.5.1.6 Comparison to Karlen methods

In this section, CS-Med is compared to methods from literature whose performance

results on the Capnobase data are available. In most literature reviews, the Smart
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Figure 4.12 � Bland-Altman plot of the comparison between RR reference and RR
estimate from CS-Med. Mean Di�erence line is in black at −0.24, Con�dence interval

limits are between −3.77 and 3.28
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Figure 4.13 � Scatter plot comparing RR references with RR estimated from PPG
by using CS-PPG, CS-Med, FFT-Med, SF-Med and SF-CS methods. The best �t

line is represented by a blue broken line.

Fusion method proposed by Karlen [31] outperforms most proposed algorithms. Details

of the Karlen method were already described in Section 4.2.2.3. A brief reminder for

the reader: the Fusion method involves estimating RRAM , RRFM and RRBW from the
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induced respiration signals; then, the �nal RR is calculated by computing the mean

of the three RR values. An additional preprocessing module rejects windows where

artifacts are detected. The Smart Fusion eliminates aberrant RR values by rejecting

RR estimates when the standard deviation of RRAM , RRFM and RRBW is more than

4 breath/min.

The Karlen methods give an RR estimate every 3s. The FFT window length is set

to 64s. In order to compare our proposed method CS-Med to the Fusion and Smart

Fusion from Karlen study, the overlap of the CS-Med method is adjusted to have a

constant occurrence of RR estimates. For the CS-Med method, no preprocessing for

selecting windows is used. All PPG signals are analyzed. Results are detailed in Table

4.5. Two comparison approaches are used in this study:

� The instantaneous RR, which is estimated every 3s, is compared to the instanta-

neous reference RR.

� The global RR, which is the median of the instantaneous RR values per �le, is

compared to the global reference RR.

Table 4.5 � Performance of RR estimation methods for instantaneous and global RR.
N is the number of RR estimations over the whole dataset (% of accepted windows).
The RMSE is calculated for each record and expressed in breath/min as median and
inter-quartile range (25th- 75th) percentile. We display the mean di�erence between
the references and and the estimates, along with the con�dence intervals and the
correlations between the RR references and estimates. The percentage of accepted
windows is calculated for each �le: The mean and ± the standard deviation of these

percentages is given by NF

Instantaneous RR

Method N RMSE (br/min) Mean di�erence (br/min) Correlation

CS-Med 5542 (100%) 1.75 (0.59-3.63) -0.59 (-9.48, 8.29) 0.81

Fusion 5231 (94,3%) 3.37 (1.91-4.90) -0.6032 (-10.43 , 9.22) 0.75

Smart Fusion 3083 (55,63%) 1.16 (0.57-3.17) 0.59 (-5.10, 6.30) 0.93

Global RR

Method NF RMSE (br/min) Mean di�erence (br/min) Correlation

CS-Med 100% 0.31 (0.17-0.31) -0.41 (-3.74 , 2.90) 0.97

Fusion 94% (± 1%) 0.62 (0.18-2.65) -0.50 (-7.30 , 6.29) 0.89

Smart Fusion 55,63% (± 3%) 0.31 (0.11-1.92) 0.44 (-4.27 , 5.16) 0.95

The RMSE analysis of instantaneous measures show that CS-Med and Smart Fu-

sion yield comparable results. In contrast, a more signi�cant di�erence is observed
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between CS-Med and Smart Fusion (�gure 4.14). In fact, the con�dence interval is

more restricted when using the smart fusion method (�gure 4.15). The smart fusion

method has also the highest correlation value.

CS−Med Fusion Smart Fusion
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Figure 4.14 � Results from RMSE analysis when comparing instantaneous RR refer-
ences to estimates from Karlen methods: Fusion and Smart Fusion and our proposed

method CS-Med

However, when considering global measures, the CS-Med method outperforms all

methods according with respect to each comparison tool. The CS-Med has not only the

best error rate comparing to Karlen methods but also it has the best estimation rate. In

other words, all the PPG windows are considered when using CS-Med, independently

of the presence or not of artifacts. This is a signi�cant advantage compared to smart

fusion which rejects 45% of the PPG signals.

In the scatter plots of Figure 4.15, it is noteworthy how Smart Fusion discards

aberrant RR estimates comparing to Fusion. But, even if Smart Fusion is a good

tool for selecting best RR estimates, it cannot ameliorate measure accuracy. This

fact can explain the di�erence between instantaneous and global performance for the

CS-Med method and the Smart Fusion method. In addition, median �lter applied

to the reference permits to compensate measure errors and also the lag between the

RR reference measurement time from the capnography signal and the RR estimation

time from the PPG signal. In fact, synchronization between PPG signal and the

Capnography signal on which RR reference is measured is not always accurate and

some delays are often introduced. On the other hand, median �lter applied to RR
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(a) Scatter plot comparing instantaneous RR refer-
ences with RR estimates from CS-PPG
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(b) Bland-Altman plot of the global RR reference and
global RR estimates from CS-Med.
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(c) Scatter plot comparing instantaneous reference
RR with RR estimates from Fusion
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(d) Bland-Altman plot of the global RR reference and
global RR estimates from Fusion.
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(e) Scatter plot comparing instantaneous RR refer-
ences with RR estimates from Smart Fusion
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(f) Bland-Altman plot of the global RR references
and global RR estimates from Smart Fusion.

Figure 4.15 � Performance comparison of the CS-Med method, Fusion method and
Smart Fusion method with respect to instantaneous and global measures.

estimated by the CS-Med method eliminates aberrant RR values; which explains the

performance improvement for the CS-Med method when considering a whole 8 minute

record.
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4.5.2 Results on Reastoc

In this section, we evaluate in a clinical setting the performance of our proposed meth-

ods for estimating RR and that of the Smart Fusion method proposed by Karlen & .al.

Tests are carried out on a portion of the Reastoc database (section 2.5.3). Reference

RR values on Reastoc were measured manually by medical sta� during the �rst two

hours of the recording for each patient. Only one reference value is available for each

patient. Unlike the Capnobase dataset whose instantanous RR references are available,

instantaneous comparison between RR references and RR estimates from Reastoc data

is not possible. In addition, the reference RR value for the Reastoc data does not re-

�ect possible variation of the patient's respiratory activity. Although this RR variation

can be enhanced by estimating RR through the proposed algorithms, we have not suf-

�cient reference RR values to be able to assess this feature of the proposed methods.

Therefore, only patients under controlled ventilation are analyzed in this study. In

fact, mechanically ventilated patients have generally stable breathing rate adjusted on

the ventilator by the clinician. In some cases, patients under mechanical ventilation

can still have unstable respiratory activity. So, we have selected only patients whose

RR reference measured by the clinician is equal to the RR �xed on the ventilator sys-

tem. In this way, patient respiratory activity is more likely to be stable and then we

can guarantee an accurate reference. For the same reasons, patients su�ering from

arrhythmia are also excluded from this study. Consequently, 26 patients are selected.

The length of each record is variable from 5 to 25 minutes.

The number of patients may be considered as too limited for valuable clinical as-

sessment of RR estimation. But, our goal is to assess, as much as possible with respect

to Reastoc constraints, the behavior of the methods on di�erent data and contexts.

Of course, for clinical validity of such methods, it will be necessary to complete the

assessment through experiments conducted according to a well de�ned clinical protocol

involving more patients' contexts.

As for Capnobase data, the FFT window length is �xed to 64s. The number of

FFTs needed for consensus spectrum for the CS-Med and CS-PPG methods is �xed to

4. The median of all RR values estimated per �le is then calculated for each record.

Performance results are detailed in Table 4.6.

The behavior of the proposed algorithms for the Reastoc database is di�erent from

Capnobase data. The CS-PPG method outperforms all other methods according to

the RMSE analysis (Figure 4.16). The same results are also observed according to the
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Table 4.6 � Performance of RR estimation methods for estimating RR. N is the
number of �les where RR values were estimated. The RMSE is calculated for each
record and expressed in breath/min as median and inter-quartile range (25th- 75th)
percentile. We display the mean di�erence between the references and and the es-
timates, along with the con�dence intervals and the correlations between the RR

references and estimates.

Method N RMSE (br/min) Mean di�erence (br/min) Correlation

CS-PPG 26 0.35 (0.18-2.11) 1.03 (-4.68 ; 6.75) 0.84

CS-Med 26 0.34 (0.12-5.62) 2.44 (-6.21 ; 11.09) 0.64

FFT-Med 26 0.4 (0.15-5.15) 2.36 (-6.12 ; 10.86) 0.62

SF-Med 26 0.34 (0.12-4.68) 2.29 (-5.67 ; 10.26) 0.67

SF-CS 26 0.43 (0.25-2.96) 2.11 (-5.07 ; 9.30 ) 0.71

Smart Fusion Karlen 23 0.5 (0.17-6.16) 3.02 (-6.29 ; 12.34) 0.61

Bland Altman analysis (table 4.6). In fact, the CS-PPG method yields the least mean

di�erence and the most restrained con�dence interval.

CS−PPG CS−Med FFT−Med SF−Med SF−CS Smart Fusion
−2
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Figure 4.16 � Results of the RMSE analysis when comparing RR references to RR
estimates for the methods: CS-PPG, CS-Med, FFT-Med, SF-Med, SF-CS and Smart

Fusion

Scatter plot of all the methods is given by �gure 4.17. We note that there are

some cases where most methods underestimate RR. This fact can be the result of low

frequency non respiratory �uctuations due to other physiological processes. The true
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RR frequency is then hidden by these spurious frequencies. This phenomenon is known

as Mayer waves which are arterial blood oscillations that occur at a frequency lower

than respiration frequency (about 0.1Hz) and might result from sympathetic nervous

activity.
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Figure 4.17 � Scatter plot comparing RR references with RR estimates. The best
�t line is represented by a blue broken line

Another noticeable fact is that performance measurements of the Smart Fusion are

poor comparing to the other methods. In addition, 3 records have been eliminated

by the Smart Fusion. In fact, the criterion of RR selection of the Smart Fusion has

discarded all possible RR estimations for these records.

To further analyze RR estimation on the Reastoc dataset, we propose to observe

the behavior of the proposed algorithms with respect to age range. In �gure 4.18, we

notice that there is a considerable di�erence in performance for all methods between

patients over 60 years and patients under 60 years. The respiratory frequency is not

discernible for patients over 60 years. This results from the metabolism change for

elderly persons, which a�ects the respiratory activity.
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Figure 4.18 � RMSE analysis according to age range

4.6 Discussion

4.6.1 Comparison between the proposed algorithms

The proposed algorithms were tested in two di�erent contexts: Capnobase data and

Reastoc data. By this approach, we aimed to investigate if there is a generic method

for estimating RR regardless of the patient's state. We proposed to compare several

types of methods. The �rst method was the CS-PPG method based on the spectral

analysis of the whole raw PPG signal. Then, we were interested in the analysis of

respiratory induced signal AM, BW and FM and how to estimate the �nal RR which

will be communicated to the clinician. The �rst approach, given by the CS-Med and

FFT-Med methods, was to fuse RR values estimated from the modulation signals by

median �lter. The second approach, given by the SF-Med and SF-CS methods, was to

fuse spectrum of modulation signals AM, BW and FM then estimating RR from the

resulted spectrum.

A summary is given in �gure4.19. Spectral fusion methods have limited perfor-

mances on Capnobase comparing to the CS-Med. In fact, fusing power spectra has

generated secondary frequency peaks that have hidden the respiratory frequency. How-

ever, it is worth to note that the SF-CS method has interesting performance for the
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Reastoc data but instable when observing the con�dence range of the Bland Altman

performance.

For methods based on combining RRAM , RRFM and RRBW , the CS-Med method

surpasses the FFT-Med method for both Capnobase and Reastoc. In fact, the spectral

smoothing engendered by consensus spectrum eliminates �uctuations in the modulation

signals. Compared to the CS-PPG, which estimates RR from raw PPG, the CS-Med

outperforms the CS-PPG for the Capnobase data. On the contrary, for the Reastoc

data, the CS-PPG method gives better results than the others. But, when selecting

patients under 60 years from the Reastoc data, the gap between the performance of

the two algorithms is less important. The performance di�erence between the two

methods CS-Med and CS-PPG when changing database remains a critical point that

limits the universality of the proposed algorithms. The most likely hypothesis for this

performance di�erence could be the quality of the extracted respiratory signals. . In

fact, some oximeters contain internal modules for �ltering DC components in order

to have a better representation of the PPG signal. It is recalled that the AM and

BW modulations are closely related to the baseline of the PPG signal. So,these signal

processing stages can corrupt mainly the AM and BWmodulation signals. Further tests

are necessary to construct a decision process to choose the right method depending on

the PPG acquisition mode and on patient characteristics.

4.6.2 Age impact on algorithms performance

The strength of the respiratory induced signals are likely to be deteriorated by several

factors as described in section 2.3.3. The most obvious �nding in the presented results

is the age impact on respiratory induced signals. The medical explanation of this

phenomenon is that the respiratory system undergoes several physiological changes

with age. In [57], authors present how aging impacts respiratory activities. Some

factors like chest wall deformation and muscle atrophy of the lung and diaphragm,

are the principal causes of lung compliance decrease. By lung compliance we mean

the lung ability to change its volume in response to a change in pressure. According

to [57], this decline of lung compliance is accelerated after 60 years old. As AM and

BW signals are mainly related to the intrathoracic pressure and FM signals are related

to the respiratory sinus arrhythmia, the quality of those signals is thus deteriorated

for aged patients whose intrathoracic pressure becomes low. In this case, the RR

estimation accuracy from PPG cannot always be guaranteed for patients over age 60.

Indeed, within this age class in the Reastoc data and although PPG signals are free
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from artifacts, all algorithms underestimate RR in most cases. However, the patients

of the Reastoc data are under mechanical ventilation. Therefore, their intrathoracic

pressure tends to be high, which should favor good RR estimation from the modulation

signals. We have two contradictory facts. Unfortunately, the number of patients in

this age class is not enough to explain the increase of the number of errors that we

have noticed for aged patients within the Reastoc dataset. A thorough understanding

of how age impacts respiratory signals from PPG is necessary to have a robust RR

estimator. Adding weights to the signal modulations according to their strength could

maybe ameliorate the performance for this age class.

4.6.3 Comparison with others methods

The performance of the algorithms was compared to that yielded by some methods of

the literature, principally the Smart Fusion method proposed by Karlen & al., which are

reference methods for Capnobase data. These methods are also generally used in many

comparative studies. For Capnobase Data, our proposed algorithm CS-Med behaves

well compared to the Fusion algorithm. When comparing to Smart Fusion, according to

error statistics, Smart Fusion has the best performances at the expense of decreasing

the estimation rate. In fact, only 55% of the windows are retained. Nevertheless,

unlike Karlen's methods, for the CS-Med, no preprocessing for eliminating artifacts

was carried out and 100% of the signal was analyzed. The di�erence between the

accuracy of Smart Fusion and CS-Med is not very signi�cant. So, the CS-Med remains

a good compromise between robustness, accuracy and estimation rate. Besides, the

Smart Fusion method failed to estimate acceptable RR values for the Reastoc data.

Consequently, the criterion of standard deviation comparison introduced by the Smart

Fusion method to eliminate RR aberrant values is not su�cient.

Much of the available literature presents a plethora of methods for estimating RR

in di�erent contexts: healthy subjects, ambulatory patients or patients in in general

care �oor. Thus, a quantitative comparison of all methods seems not possible for many

reasons. First, performance of methods depends on the characteristics of the subjects

in the used database. Second, replication of algorithms of the literature is not accurate

to the original algorithms because of the lack of information given by authors about

parameter adjustment. Third, RR estimation is presented in some studies as a module

of a whole process aimed at monitoring physiological signals where PPG is coupled to

other signals.
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However, we can present a qualitative comparison between our proposed methods

and some others. Compared to the algorithms listed in Table 4.1, the paramount

advantage of the CS-Med and CS-PPG methods is that few parameters are needed

regardless of the data characteristics. In fact, wavelet and autoregressive methods

need a calibration step to �x order parameters. However, these order parameters could

change when the algorithms are applied to another database. In addition, the proposed

methods are relatively simple and take the physiological �uctuation of the PPG signal

into account. Consequently, the computational requirements of the algorithms are not

costly and are appropriate for implementation in real-time setting.

Proposed methods 

RR from raw PPG 

CS-PPG 

- Capnobase: 
Instable 
performances but 
good for class of 
patient under 
mechanical 
ventilation. 
 
- Reastoc:  
Good performances 
for all age classes. 
 

RR from signal 
modulations 

RR fusion 

CS-Med 

- Capnobase:  
Good and stable 
performances for all 
age classes and 
ventilatory mode. 
 
- Reastoc:  
Instable 
performances but 
good for age class 
<60.   

FFT-Med 

- Capnobase: 
Limited 
performances 
compared to CS-
Med for all age 
classes and 
ventilatory mode. 
 
- Reastoc:  
Limited 
performances.   

Spectral fusion 

SF-Med 

- Capnobase: 
Limited 
performances 
compared to CS-
Med for all age 
classes and 
ventilatory mode. 
 
- Reastoc:  
Limited 
performances.   

SF-CS 

- Capnobase: 
Limited 
performances 
compared to CS-
Med for all age 
classes and 
ventilatory mode. 
 
- Reastoc:  
Good performances 
but instable.  

Karlen method 

RR from signal 
modulations 

RR fusion 

Smart Fusion 

- Capnobase: 
Good and stable 
performances but 
only 55% of the 
estimated RR are 
accepted. 
 
- Reastoc:  
Limited 
performances.   

Figure 4.19 � Summary of the RR estimation methods analyzed in this chapter

In a recent study [58], Pimental and .al presented a new method for estimating

RR by fusing multiple autoregressive models of di�erent orders from the three signal

modulations. The algorithm was tested on Capnobase and on BIDMC dataset. BIDMC

dataset contains records of patient in intensive care unit. It has many characteristics

similar to Reastoc: the same sampling rate (125 Hz) and the same median age (about

64 years). It is worth noting that the algorithm proposed by Pimental and .al has

comparable behavior to the CS-Med and CS-PPG, especially when CS-Med and CS-

PPG are applied to the Reastoc dataset. In fact, the Mean Absolute Error is higher

when the algorithm is applied to BIDMC dataset. On the scatter plot, the algorithm

presented in the cited study underestimates also RR for the BIDMC dataset. Authors

have also presented performance of Smart Fusion on the BIDMC data and similar
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ascertainment is determined: the Smart Fusion estimates RR only for 34% of the

windows and the results are worst than the proposed algorithm.

From this study and the previous exposed results, it can be concluded that Cap-

nobase is a good online dataset to benchmark studies about estimating RR but cannot

be considered as an absolute reference because of its lack of representativity of di�erent

age classes and patient states. Therefore, algorithms tend to have many errors when

tested on patients in intensive care. The proposed algorithms CS-Med and CS-PPG

perform well compared to the other proposed algorithms and algorithms from the lit-

erature for a large proportion of the data. But, in some cases, the results obtained by

CS-PPG are extremely limited, while CS-Med performs well and inversely. The CS-

PPG method seems more adapted for patient under mechanical ventilation. However,

the CS-Med method seems more adapted for young patients. A new strategy should

be investigated to understand in-depth the performance variability then developing a

system that takes the advantages of every method. In addition, there is a need for

developing an index that de�nes the quality of signals and considers factors that could

deteriorate performances.

4.7 Conclusion

In this chapter, we analyzed spectral methods for estimating RR from PPG signals.

RR can be estimated from raw PPG signals with the CS-PPG method or also from the

respiratory induced signals using the CS-Med method. The two methods perform well

on both Capnobase and Reastoc, but with some di�erences. In fact, the results depend

on several pulse oximeter factors, such as the sampling frequency and PPG processing

modules, and also on patient conditions such as age and ventilatory mode.

Future work with large scale tests is necessary to validate the algorithms in order

to generalize this technique of estimating RR from PPG signals in clinical practice. In

the following chapter, we investigate the universality and robustness of the proposed

algorithms in case of artifacts and we study the contributions of a quality index for

determining cases where RR could be estimated with a large con�dence scale.
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5.1 Introduction

There is a growing interest for noninvasive respiratory rate monitoring in diverse clinical

applications. Estimating RR from PPG signal presents a promising alternative but

still has limited use in real conditions because of the non robustness of the methods
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proposed until today. In fact, as established in the precedent chapter, there is an

important variability in performance of the algorithms depending on the databases

and the subjects characteristics.

In this chapter, we present an analysis of factors that a�ect respiratory signals and

we propose some tools to display to clinicians only relevant respiratory rate values.

Results are compared to Karlen methods. Then, we present the advantages of the

proposed method compared to some other studies in the literature.

5.2 Artifact detection impact on respiratory rate es-

timation

5.2.1 Motivation

Artifacts are a limiting issue for monitoring physiological signals. In the literature,

artifact detection in PPG signals has been studied in various scopes and contexts. Pre-

viously, in chapter 3, we presented di�erent algorithms from the literature for artifact

detection and then we proposed the adaptive RDT algorithm for artifact detection,

which is especially appropriate for long records. Studies in the literature about arti-

fact detection usually assess their algorithm by comparing the detected contaminated

pulses to a gold standard. In some other studies [59, 60], authors discuss the impact of

artifact detection on heart rate estimation. Signi�cant improvement of HR estimation

is then noted. This result is expected because of the close interaction between the HR

and the PPG pulsatile component.

However, researches about respiratory rate estimation do not explicitly discuss the

impact of artifact detection for improving RR estimation accuracy. In fact, studies on

respiratory rate estimation [31, 53, 58] often present a preprocessing module for elimi-

nating contaminated segments. These modules for identifying segments with artifacts

are always referenced as Signal Quality Indices (SQI). Heuristic thresholds are used

to �x the SQI value above which the PPG segments are considered to be clean from

artifacts. Segments with low SQI are rejected based on the assumption that they are

too contaminated by artifacts to provide a good RR estimate. However, the interest of

artifact rejection with respect to RR estimation improvement is not discussed in the

literature. Speci�cally, the performance of the algorithms is presented without a focus

on the actual relevance of the artifact detection module on the improvement of the RR

estimation accuracy.
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Based on these remarks and the previous experiments presented in chapter 3 and

chapter 4, we present a novel contribution by analyzing the impact of artifact detections

on RR estimations for both the Capnobase and Reastoc datasets.

5.2.2 Analysis methodology

In what follows, adaptive RDT for artifact detection is applied on PPG records for

detecting pulses with artifacts. The number of Pulses with Artifacts per Window

(nPAW) is introduced to characterize how much a given PPG segment is corrupted

with artifacts. nPAW is simply the number of pulses that are detected as artifacts

for a given window. As described in �gure 5.1, when nPAW exceeds some threshold

value T , the RR estimation in the corresponding window is not considered as accurate

enough and is thus rejected.

The proposed algorithms CS-Med and CS-PPG are used for RR estimation. These

two algorithms gave the best performance in the experiments of chapter 3. Afterwards,

the RMSE values are calculated for each record for di�erent values of T . We then

discuss the e�ect of artifact detection on these RMSE values.

Preprocessing Artifacts  
detection RR estimation 

Raw 
PPG 

PPG 
processed PAW < T 

No	RR	
es'ma'on	

PAW > T 

RR 
 value 

Figure 5.1 � Flowchart of the process for RR estimation coupled to artifact detection

5.2.3 Results on Capnobase

The RDT parameters are �xed as validated in Section 3.5.2.1: γ = 10−3 and τ = 2.

The window length for FFT is equal to 64s, the number of windows for consensus

is �xed to 4 windows and a shift of 3s is applied for every FFT window. Overall,

for a given RR estimate, a segment of length 73s is needed. This segment contains on

average about 85 pulses. In fact, we remind that the number of PPG pulses per minute

is equal to the heart rate which is on average about 70 beat/min for adults. However,

the heart rate changes with age. So, an heuristic interval is �xed for nPAW which then

takes a value from 1 to 60. For example, if nPAW = 1, all windows with at least one
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artifactual pulse are rejected. Similarly, for nPAW = 60, all windows with more than

60 artifactual pulses are discarded.

The results are given in �gure 5.2 and 5.3. For each value of nPAW, the median,

the 25th percentile and the 75th percentile of the RMSE are given. The percentage

of accepted RR values is de�ned as the number of accepted RR values divided by the

number of RR values obtained when no artifact detection method is carried out and

no segment is rejected.
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Figure 5.2 � RMSE of RR estimates by CS-PPG applied to the Capnobase data,
versus the percentage of windows accepted as nPAW increases.

For the CS-PPG method (�gure 5.2), a minor improvement of the RMSE median

and 75th percentile is observed, compared to the RMSE when no artifact detection is

used. The RMSE 75th percentile remains however too high, despite the elimination

of almost all windows containing artifacts. Consequently, artifact detection has no

signi�cant impact on the performance of the CS-PPG method. Other factors have

therefore caused the bad RR estimates.

For the CS-Med method (�gure 5.3), a slight progress is observed when discarding all

windows with nPAW = 1. This improvement is not substantial either. In particular,

only 58% of the RR estimates are accepted. Little improvement of the RMSE median

is observed. However, no signi�cant amelioration is observed for the 75th percentile

curve. The interquartile distance is still large.
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Figure 5.3 � RMSE of RR estimates by CS-Med applied to the Capnobase data,
versus the percentage of windows accepted as nPAW increases

5.2.4 Results on Reastoc

The same strategy is adopted for the Reastoc dataset. The RDT parameters are �xed

as in Section 3.5.2.2: γ = 10¯3 and τ = 1.5. For the RR estimation algorithms, the

window length is �xed to 64s ans the number of windows for consensus spectrum is

�xed to 4.
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Figure 5.4 � RMSE of RR estimates by CS-PPG applied to the Reastoc data, versus
the percentage of windows accepted as nPAW increases

85



CHAPTER 5. OPTIMIZATION OF RESPIRATORY RATE MONITORING FROM PPG

For both the CS-PPG and CS-Med algorithms (�gure 5.4 and �gure 5.5), The me-

dian value of the RMSE is not impacted by the reject of the windows with artifacts.

However, the di�erence between the 75th percentile and the median of the RMSE is re-

duced for the CS-PPG method for values of nPAW between 1 and 3. For nPAW=3, the

percentage of accepted windows is about 71% with RMSE= 0.3 (0.14-1.17) breath/min.

For the CS-Med method, the gap between RMSE values is reduced, but still high and

�uctuating compared to the performance of the CS-PPG.
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Figure 5.5 � RMSE of RR estimates by CS-Med applied to the Reastoc data ,versus
the percentage of windows accepted as nPAW increases

In summary, artifact detection could ameliorate the RR estimation in some in-

stances. However, this processing step is not su�cient to guarantee a robust RR

estimation from PPG signals. In fact, RR estimation depends on several factors like

age and pre-existing health conditions. Besides, the results presented in chapter 4

show that there is a close connection between RR estimation algorithm performance

and age class in one hand, and also between RR estimation algorithm performance and

ventilation mode in the other hand.

5.2.5 Limits of artifact detection

Previous researches conducted in the literature have focused on artifact detection for

more accurate RR estimation. However, the analysis conducted in this chapter con�rms

that pulse with artifacts are not the only cause for bad estimation of RR. Figure 5.6

shows an example of a clean PPG signal with no artifact; but RR estimation for this
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Figure 5.6 � Example of a PPG segment where there is no artifact but the CS-Med
method fails to estimate good RR.

signal is most of the time erroneous. Indeed, artifact detection methods, especially

those based on comparing pulse morphology, concern only temporal characteristics of

the PPG signal. In fact, these methods handle pulsatile PPG waveform components

with no concern to the signal modulations and the spectral component quality.
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Figure 5.7 � Spectrum of the PPG signal presented in the latter �gure 5.6. Spurious
peaks in this spectrum have higher amplitude than the peak corresponding to the real

RR (0.156 Hz). This causes erroneous estimation of RR.

A deeper analysis of the spectrum of some PPG segments where CS-Med and CS-

PPG failed to give an accurate RR reveals that peaks corresponding to RR are not

always dominant even when there are no artifacts (�gure 5.7). In some cases, harmonic

peaks appear in the spectra with greater amplitude than the real RR peak. In other
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cases, unidenti�able spurious peaks are observed. These peaks have amplitudes in

the same range as the RR peak and their corresponding frequencies are lower than the

frequency of the reference RR. These peaks may correspond to Mayer waves as found in

[61] and section 4.5.2. A new metric is then necessary to assess the spectral properties

of the respiratory signals. The design of such metric is the topic of the next section.

5.3 SRQI impact on respiratory rate estimation

5.3.1 SRQI de�nition

Artifact detection fails to improve RR estimation because it considers only the pulsatile

aspect of the PPG signal and not its modulations. On the other hand, the spectral

magnitude analysis of the respiratory signal is a promising tool to assess the pertinence

of the RR estimate. In fact, an index is needed to evaluate if the maximum peak in

the respiratory frequency band (0.15− 1Hz) is su�ciently dominant to be considered

as a relevant respiratory frequency, in comparison with the other peaks in the same

interval. In this respect, the Spectral Respiratory Quality Index (SRQI) is de�ned as

the ratio of the power of the dominant peak by the total signal power in the respiratory

frequencies band.

The SRQI is thus given by:

SRQI =

imax+2∑
i=imax−2

Si

iRFmax∑
i=iRFmin

Si

where: i corresponds to the frequency bins index; Si is the ith value of the power

spectrum of a given signal s; iRFmin
and iRFmax are the bins corresponding respectively

to the limits of the respiratory frequency band [0.15, 1] Hz; imax is the bin index of the

maximum of the spectrum. As a spectral peak can have many frequency components,

the dominant peak is de�ned, in this context, by the maximum of Si and its two

adjacent bins from either side in the respiratory frequency band.

As de�ned, when only one dominant peak appears in the spectrum, the amplitudes

of the other peaks become comparatively negligible with respect to the dominant peak

amplitude. Thus,
imax+2∑
i=imax−2

Si tends to
iRFmax∑
i=iRFmin

Si. So, SRQI tends to 1. In this case,

this peak is more likely to correspond to the respiratory frequency. To the contrary,
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Figure 5.8 � Examples of two di�erent cases illustrating the variation of the SRQI
according to the number of peaks present in the spectrum. In red, the bins corre-
sponding to the dominant peak. The RR reference value in this example is the 9th

bin, which corresponds to 0.14 Hz

the more spurious frequency peaks there are, the smaller the SRQI value is. In this

case, the estimated RR is not plausible. Two examples are given in �gure 5.8.

5.3.2 Analysis methodology

In this section, the SRQI metric is assessed when used with the proposed algorithms

CS-PPG and CS-Med and also when it is applied to Karlen methods Fusion and Smart

Fusion.

The CS-PPG method uses the consensus spectrum of the raw PPG signal. There-

fore, an SRQI is calculated for every resulting consensus spectrum. A strategy similar

to that followed for artifact detection is applied: for a given window, if the SRQI is

inferior to some threshold value Q, the RR estimation in the corresponding window is

considered to be not accurate enough and is thus rejected. The RMSE values are then

calculated for each record for di�erent values of Q between 0 and 1.

For CS-Med, RR is estimated from modulation signals. An SRQI is attributed

to every consensus spectrum derived from the AM, BW and FM signals. Only RR

estimates with corresponding SRQI higher than Q for the three signals are kept to

calculate the �nal RR estimate. The �nal RR estimate is then given by the median of

RRi|i = {AM,FM,BW} that were kept. If all of the three AM, BW and FM signals

fail to provide an SRQI above Q, no �nal RR estimate is given.

89



CHAPTER 5. OPTIMIZATION OF RESPIRATORY RATE MONITORING FROM PPG

RR =

median(RRAM (if SRQIAM > Q), (RRBW (if SRQIBW > Q), (RRFM (if SRQIFM > Q))

The same analysis is also applied for scrutinizing the impact of SRQI on Karlen

methods Fusion and Smart Fusion. So, an SRQI is attributed to every power spectrum

of each signal AM, BW and FM and then the �nal RR is given by the same formula

as above.

5.3.3 Results on Capnobase

The window length for RR estimation is �xed to 64s and the number of windows for

consensus is �xed to 4 windows. No artifact detection module is used for the CS-PPG

and CS-Med methods. The threshold Q on SRQI takes values from 0 to 1 with a step

of 0.05. For Q = 0, SRQI has no impact and all the RR estimates are accepted. It is

worth noting that the value Q = 1 cannot be achieved in reality because of the small

�uctuations always present in the spectrum. So, the largest value is �xed to 0.99.
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Figure 5.9 � RMSE of RR estimates from the CS-PPG method applied to the
Capnobase data, versus the percentage of windows accepted as Q increases.

The results are given in �gure 5.9 and 5.10.
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Figure 5.10 � RMSE of RR estimates from the CS-Med method applied to the
Capnobase data, versus the percentage of windows accepted as Q increases.

For each value of Q, the median, the 25th percentile and the 75th percentile of the

RMSE are given. The percentage of the accepted RR values is given by the number of

accepted RR values divided by the total number of RR estimates.

Little improvement is observed for the CS-PPG method after discarding RR esti-

mates whose SRQI is less than 0.7. But, the values of the RMSE 75th percentile are

still too high and do not guarantee a good accuracy of RR estimates.

However, for the CS-Med method (�gure 5.10), similar variations are observed for

the acceptance rate curve and the RMSE 75th percentile curve. In fact, as the windows

of poor spectral quality are discarded, the accuracy of the RR estimation is improved

and the inter quantile distance is reduced. The best performance measurements are

found for Q = 0.99 where the median of RMSE is 0.66 breath/min and the 25th and

the 75th percentile are 0.39 and 0.89 breath/min, respectively. The consensus spectrum

have the advantages of getting high resolution peaks. In fact, the regular peak, which

frequency is the same for consecutive windows, has a high amplitude compared to other

peaks. The amplitude of the other peaks becomes negligible. For this reason, although

the SRQI threshold is high, we get an important percentage of accepted windows, which

is about 67.2%.

The SRQI criterion is then tested with reference methods of the literature: the

Fusion and Smart Fusion of Karlen & al.. The online Capnobase package contains the

results of Karlen methods for a window of 64s with a shift of 3s. RR estimates from
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Figure 5.11 � RMSE of RR estimates from the Fusion method applied to the Cap-
nobase data, versus the percentage of windows accepted as Q increases.
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Figure 5.12 � RMSE of RR estimates from the Smart Fusion method applied to the
Capnobase data, versus the percentage of windows accepted as Q increases.

AM, FM and BW signals are given for each clean window. Results from artifactual

segments detected by the IMS method described in [31], are automatically discarded

for both the Fusion and the Smart Fusion methods. In addition to this preliminary

selection, for the Smart Fusion method, only RR estimates that meet the Smart Fusion

criterion [31] are kept . For this reason, before applying the SRQI criterion, the initial

acceptance rate for the Fusion method is 96.7% and is about 57% for the Smart Fusion

method.
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Now, when using the SRQI criterion, the performance measurements of the Fusion

method are improved from a RMSE of 3.53(1.85-4.99) breath/min to a RMSE of 0.81

(0.39-2.08) breath/min. However, the accepted rate is deteriorated and is about 25.5%

(�gure 5.11).

The same observations are found with the Smart Fusion method when coupled

to the SRQI criterion. A great amelioration is noticed for Q = 0.99. In fact, the

RMSE decreases from 1.54 (0.58-3.2) breath/min to 0.33 (0.49-0.84) breath/min but

the accepted rate drops to 21.65%.

5.3.4 Results on Reastoc

The same tests are carried out with the Reastoc records. For the CS-PPG method

(�gure 5.13), no change in the RMSE values has been observed fromQ = 0 toQ = 0.75.

But, from Q = 0.8 to Q = 0.95, the RMSE values increase. In fact, the SRQI criterion

rejected good RR estimates and not erroneous ones, thus generating a higher RMSE.

This trend was corrected for Q = 0.95 where RMSE=0.39(0.19-1.41) breath/min and

the accepted rate is about 75.6%.
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Figure 5.13 � RMSE of RR estimates from the CS-PPG method applied to the
Reastoc data, versus the percentage of windows accepted as Q increases.

However, for the CS-Med method (�gure 5.14), the SRQI has better impact on

the RMSE results. The same behavior as for the Capnobase data is observed. The

RMSE 75th percentile decreases as Q increases, which shows that the SRQI criterion

is rejecting non relevant RR estimates. The best performance is observed for Q=0.99
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Figure 5.14 � RMSE of RR estimates from the CS-Med method applied to the
Reastoc data, versus the percentage of windows accepted as Q increases.

with RMSE=0.31 (0.06-0.43) breath/min. Nerveless, it has to be noted that this error

rate has same magnitude order as that found with Capnobase.
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Figure 5.15 � RMSE of RR estimates from the Fusion method applied to the Reastoc
data versus the percentage of windows accepted as Q increases.

Let us see now if the SRQI can improve results obtained from the Fusion and Smart

Fusion methods. In fact, in �gure 5.15, for the Fusion method, we observe that the

RMSE results are ameliorated as Q increases but are not stable. In fact, for Q>0.9,
the SRQI has the tendency to discard good RR estimates.
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Figure 5.16 � RMSE of RR estimates from the Smart Fusion method applied to the
Reastoc data, versus the percentage of windows accepted as Q increases.

For the Smart Fusion method (�gure 5.16), a signi�cant improvement is observed

for thresholds Q>0.75. However, the accepted rate is too low. In fact, the selective

condition of the Smart Fusion [31] in addition to the SRQI are too strict. Thus,

performance is improved at the expense of the percentage of accepted RR estimates.

5.3.4.1 Results according to age range and ventilation mode

In section 4.5.1, for Capnobase data, results were impacted by the patient's age range

and the respiration ventilatory mode. Further tests are carried out in this section to

assess the SRQI e�ect according to age and ventilatory mode. The RMSE results are

reported in Table 5.1 when using the CS-Med method. Based on the previous tests,

we �x the SRQI threshold to 0.99.

Results are signi�cantly improved for all age ranges. But, this improvement was

followed by some degradation of the acceptance rate, especially for persons over 30

years, for whom the acceptance rate is about 55.64%.

According to the ventilation mode, results are improved as well. However, there is no

signi�cant di�erence between performance measurements for patients under controlled

ventilation and patients under spontaneous respiration.

In section 4.5.2, a high gap was found in the CS-Med performance between subjects

< 60 and subjects > 60 years.
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Table 5.1 � RMSE performances on Capnobase data when SRQI threshold is �xed
to 0.99.

Results according to age range

Age range RMSE (breath/min) Acceptance rate

<12 0.6803 (0.6641 - 0.7824) 67.30%

12-30 0.5078 (0.2958 - 1.7936) 81.22%

>30 0.5082 (0.3940 - 0.7602) 55.64%

Results according to ventilation mode

Ventilation mode RMSE (br/min) Acceptance rate

spontaneous 0.6665 (0.4852 - 0.7492) 68.70%

controlled 0.6488 (0.3589 - 1.7936) 65.46%

For tests involving the SRQI criteria, a great amelioration is observed especially for

subjects > 60. The RMSE passes from 3.43 (0.29-8.76) breath/min to 0.28 (0.12-4.31)

breath/min. But, in return, the acceptance rate becomes only 58.9%.

Table 5.2 � RMSE performances on Reastoc data when the SRQI threshold is �xed
to 0.99.

Results according to age range

Age range RMSE (breath/min) Acceptance rate

<60 0.3125 (0.0469 - 0.4375) 88.61 %

>=60 0.2812 (0.1250 - 4.3125) 58.9 %

5.4 Discussion

5.4.0.1 Artifact detection versus SRQI

The artifact detection module improves slightly the performance of the RR estimation.

However, this improvement is not su�cient. In fact, having good RR estimates is

conditioned by many other factors besides artifacts. These factors cannot be detected

by observing the temporal components of the PPG signals only. Spectral analysis of

PPG signals reveals that the respiratory frequency is in some cases hidden by other

phenomena, even if the PPG signal is clean of noise as shown in �gure 5.6.

The SRQI permits to classify spectra into two categories: The �rst one involves the

good spectra that have one dominant peak only in the respiratory frequency range.

The second category contains suspicious spectra that contain more than one dominant
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peak. For the latter category, the frequency peak corresponding to the actuall RR

could not be distinguished from harmonics or from other peaks resulting from Mayer

waves.

Artifact distortion can be observed in the PPG spectrum. In fact, random peaks

resulting from artifacts appear in the spectrum. If the magnitudes of the artifact peaks

are negligible in comparison to RR peaks, the SRQI will be close to 1. In this case, good

RR estimation can be assured, although the signal distortion results from artifacts. To

the contrary, if the magnitudes of the artifact peaks are in the same range as that of

the RR peak, the SRQI will have a low value and thus good RR estimates cannot be

reliable. The SRQI reveals to be an appropriate tool for detecting relevant segments for

RR estimation, even in case of signal distortions resulting from artifacts. Consequently,

in the context of RR estimation, when using the SRQI criteria, the artifact detection

step turns out to have no signi�cant contribution. Therefore, a considerable processing

time can be saved by involving SRQI criteria only.

By observing the results of the SRQI impact for each method and each database,

the best performance is given by the CS-Med method for both the Capnobase and

Reastoc databases.

When comparing the CS-Med to the CS-PPG, the CS-Med gives better accuracy

than the CS-PPG. In fact, the respiration information can be present in one of the

three respiratory signals or more. The selection, via the SRQI criterion, of the better

respiratory signals among the AM, BW and FM signals permits to estimate the RR

from pertinent signals only. In addition, the information about respiration activity is

more likely to be distinguishable from the AM, BW and FM signals than from raw

PPG signals. Besides, no conclusion could be drawn up about the accuracy prevalence

of one signal among the three available respiratory signals. A remarkable performance

change is noticed especially for the Reastoc database. In fact, without the use of the

SRQI, the CS-PPG outperforms the CS-Med. However, with the integration of the

SRQI, the balance shifted in favor of the CS-Med method.

When comparing the CS-Med to Karlen's methods Fusion and Smart Fusion, the

CS-Med method provides the best compromise between performance and acceptance

rate. The use of the SRQI criterion on the Consensus spectrum is more e�cient than

when it is applied to the FFT spectrum. In fact, the resolution of peaks resulting from

the consensus method is better than that obtained by FFT. The magnitudes of the

peaks in the neighborhood of a peak of interest in the consensus spectrum is very high

in comparison to those of other peaks. However, for the FFT spectrum, peaks due to

brief phenomena (artifacts, noise, �ltering e�ects) can have magnitudes around those
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of peaks of interest. Consequently, the ratio of energy de�ned by the SRQI is more

likely to tend to 1 when applied to the consensus spectrum than when applied to the

FFT spectrum. This observation explains the fact that the Fusion and Smart Fusion

methods have very low acceptance rate compared to the CS-Med method.

5.4.0.2 Comparison to existing methods

As described previously, in the literature, few studies involved the description of ex-

plicit quality indexes for respiratory signals. Proposed algorithms contain usually a

preprocessing module for detecting artifacts and thus qualifying temporal and pulsatile

components of PPG signals. Otherwise, some criteria are used to select the more accu-

rate RR estimates when fusing values from the three respiratory signals. For example,

in Karlen & al. [31], the criterion selecting the best estimates is the standard deviation

of the three respiratory rates RRAM , RRFM and RRBW . If the standard deviation

is more than 4, all the RR estimates in the corresponding window are rejected. This

criterion assumes implicitly the homogeneity of the three RR values. All the three RR

values should be in the same range. However, it does not take into consideration the

quality of the respiratory modulations, as the SRQI actually does. Thanks to the SRQI

criterion, only one good modulation signal can be su�cient for estimating the �nal RR.

Indeed, with this selection, the acceptance rate of the Smart Fusion is about 55,63%

for Capnobase data and 38% for Reastoc data which is considered too low compared

to the method of CS-Med coupled to the SRQI. In addition, the performance stability

of the Smart Fusion method remains questionable when changing the database. In

contrast, the same performance range is established for both the Capnobase and the

Reastoc databases when using the CS-Med equipped with the SRQI.

Another recent study by Drew & al. [62] was interested in establishing respiratory

modulation quality from AM, FM and BW signals for both PPG and ECG signals. For

every modulation signal, three Respiratory Quality Index (RQI) metrics are calculated

for each window. The methods used are based on FFT, auto-regression and auto

correlation. The three RQIs metrics are then fused using a linear regression model.

After obtaining a single value for each window and each signal modulation, the six

resulting RQIs (AM, FM and BW from both ECG and PPG ) are thresholded. The

RQIs higher than the threshold are then kept. A weighted average of the RR estimates

is then calculated using the retained RQIs as weights.

The method by Drew& al. has a good performance with a good acceptance rate.

In fact, for the Capnobase data, the mean absolute error (MAE) was 0.71 ± 0.89
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breath/min, while eliminating only 1.3 % of the windows through the proposed RQI

criterion. For the BIDMC dataset, which was also used in the study [58] discussed

in section 4.6.3, the MAE was about 3.12 ± 4.39 breath/min and the reject rate was

about 23.2%. It is true that such algorithm gives the best performance until today for

estimating RR. However, this method requires simultaneous ECG signal in addition

to the PPG signal. This condition cannot be a�ordable in all patients monitoring

contexts, especially for remote home monitoring. Other disadvantage of this method

is the heavy processing cost. In fact, for each window, in all, 18 (6x3) RQI values

must be calculated. The linear regression model for fusing RQI values was trained

on a proportion of Capnobase data, then applied to MIMIC data, which may explain

the di�erence of performance between the two databases. Consequently, the model for

fusing RQI can be not representative for all age classes and subject conditions.

The SRQI criterion with the CS-Med method presents many advantages compared

to the latter method. The main one is the simplicity of the method with very few

parameters. This is a key element for future implementation in real-time environments.

The second advantage is the universality of the method. In fact, similar performance

is found for both the Capnobase and the Reastoc databases, for all age ranges and for

di�erent ventilatory modes. The third advantage is the robustness of this method with

respect to artifacts. Indeed, the SRQI can detect and reject cases where artifactual

segments a�ect RR estimation. Therefore, there is no need for additional processing

module dedicated to artifact detections.

However, the acceptance rate of the CS-Med method is still relatively moderate

compared to the results found by Drew& al.. However, it is worth noticing that the

use of the ECG signal compensates the lack of respiratory information from the PPG

signal, which may explain the acceptance rate di�erence between our method and that

of Drew& al.. Nevertheless, further experiments should be carried out to ameliorate

this acceptance rate by developing tools that di�erentiate RR peak from harmonics

and Mayer's wave peaks. Large scale dataset composed of subjects from intensive care,

ambulatory and at home health care should be tested to validate the stability of the

proposed method.

5.5 Conclusion

In this chapter, we have presented an analysis of the impact of artifact detection

for improving RR estimation. The positive impact of such detection is somewhat

relative and not that dramatic. It follows that other tools are necessary to improve RR
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estimation from PP signal modulations. In this respect, we have assessed a new metric

for qualifying respiratory frequency spectral peaks. The SRQI criterion combined to

the RR estimation methods exhibits good alternative for selecting good RR estimations

and improving the performance of the estimation algorithms.

The best performance was observed when combining the SRQI to the CS-Med

method for both the Capnobase and the Reastoc datasets. The accuracy of the RR

estimation has been considerably improved. In summary, the key steps for an e�ective

respiratory rate estimation system are given by �gure 5.17.
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Figure 5.17 � Main steps for a respiratory rate estimation system based on the
CS-Med method and SRQI criterion.

Otherwise, the acceptance rate of this method is still moderate especially for aged

people. Further studies should be investigated to ameliorate this rate. Nevertheless,

additional tests are required to validate the reproducibility of this algorithm's perfor-

mance in others contexts.
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In this thesis, we addressed the problem of developing an e�ective system for robust

estimations of the respiratory rate from PPG signal. The main conclusions and original

contributions are summarized in this chapter. Possible perspectives are then proposed.

6.1 Summary and main contributions

As stated in Chapter 1, the main objective of this thesis was to develop e�ective non-

invasive methods for estimating accurate respiratory rate from only PPG signal. The

choice of this signal is justi�ed by the fact that PPG signal is widely used in clinical

routine and also in other applications such as remote monitoring. In chapter 2, an

overview of the PPG signal features was presented. In addition to the principal use of

PPG signals for measuring blood oxygen saturation, vital indicators such as HR and

RR can be extracted from the PPG signal. The main advantages of this signal are:

non-invasiveness, simplicity of use, cost-e�ectiveness. However, some drawbacks limit

the use of the PPG signal for monitoring HR and RR. The two main limits of PPG are:

�rstly, the sensitivity of the PPG signal to artifacts resulting from subject's motion

and acquisition environments; secondly, the variability of the signal depending on age,

gender and subject's health state. Therefore, mathematical modeling of the PPG signal

cannot always be representative of the real PPG characteristics and variability. To get

out from these limitations, new signal processing approaches were proposed. In chapter

3, methods for detecting artifacts from the literature were discussed. As a result of the

PPG signal variability, there are no statistical models to di�erentiate clean PPG from

artifactual PPG. So �ltering methods fail to return clean valuable PPG signals. The
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classi�cation methods have good potential but the training issues encountered every

time datasets may change limit their use for operational application in presence of

unknown new PPG signals. We propose a novel method based on pulse morphology

comparison by template matching and a decision test by Random Distortion Testing.

This method requires little parameterization and has the advantage of �tting the model

to each considered signal. A �rst step, with �xed RDT threshold for every record, was

carried out by testing the proposed method on short records. The algorithm performs

well compared to the state-of-the-art method proposed by Sukor & al. The method

was then generalized by proposing an adaptive threshold for long records. In this case,

the RDT threshold is updated progressively as new clean pulses are detected. So, little

�uctuations resulting from physiological activity are taken into account through the

new updated threshold. The accuracy achieved by adaptive RDT when applied to

Capnobase data and Reastoc data were respectively, 91% and 92%. The originality

of the proposed approach lies in its universality and reproducibility. In fact, we have

proposed a standalone system that can be adapted for every record and could update

its parameters when substantially changes occur.

After this preliminarily step, we have discussed in chapter 4 the feasibility of a

system for robust estimation of the respiratory rate. Literature presents a plethora of

methods for estimating RR, generally in one of the following contexts: healthy sub-

jects, ambulatory patients or patients in general care �oor. However, the assessment of

these methods, whatever the base is, is not always discussed, especially for the methods

which require a prede�nition parameter like the order for AR methods or the level of

decomposition for wavelet transforms. We have proposed some spectral methods for es-

timating RR from raw PPG signals and also from respiratory induced signals extracted

from PPG signals. We have looked for accurate tools that allow us to have the best

spectral peak resolution corresponding to the respiratory rate. Best performance was

founded with the so-called CS-PPG method, which is used with raw PPG signals, and

so-called CS-Med method, which is used with respiratory induced signals. In fact, we

have employed the Consensus Spectrum (CS) by multiplying consecutive FFT spectra

in order to reveal the regular peak corresponding to the respiratory frequency. The

paramount advantage of the CS-Med and CS-PPG methods is that few parameters are

needed regardless of the data characteristics. In addition, the proposed methods are

relatively simple. Consequently, the computational requirements of the algorithms are

not costly and are appropriate for implementation in real-time setting. However, the

estimation of RR by these methods depend on several factors, such as age and venti-

latory mode. We have experimentally demonstrated in chapter 5 that even for PPG

102



CHAPTER 6. CONCLUSION AND PERSPECTIVES

signals without artifacts, the algorithms may fail to estimate an accurate RR. Actually,

having good RR estimates does not depend necessarily on the pulsatile PPG compo-

nents, but rather on the quality of the PPG modulation signals. Therefore, the Spectral

Respiratory Quality Index is introduced in chapter 5 to qualify the resolution of the

spectral respiratory peak. A great improvement in performance is observed especially

when combining the SRQI criterion to the CS-Med method. We have thus proposed a

whole system for an e�ective estimation of RR. This system involves extracting PPG

modulations, calculating RR from the three modulation signals by consensus spectrum,

estimating the �nal RR by calculating the median value of the three RR with respect

to the SRQI criterion and �nally communicating the �nal RR estimate to the clinician.

Another contribution of this thesis is the experimental testing carried out for di�er-

ent patients' states. The �rst database that we have used to assess our algorithms for

estimating RR was Capnobase. It is a good online data set to benchmark studies on RR

estimation. We have used this dataset to compare our results to those of Karlen's meth-

ods and other methods from the literature. We have found that our proposed system

outperforms the Karlen methods in terms of accuracy and also in terms of acceptance

rate. However, the Capnobase data cannot be considered as an absolute reference for

assessing results, because of its lack of representativity of di�erent age classes. We

therefore have explored the versatility of our approach when facing another dataset by

using the Reastoc dataset. Patients from this datasets are in intensive care. They are

relatively aged compared to Capnobase data and under mechanical ventilation. We

have shown that the CS-Med coupled to the SRQI criterion has also good performance

for the Reastoc data.

In summary, monitoring vital signs from PPG signal is a good alternative to tradi-

tional measurement systems. Artifact detection from PPG is important to get pulsatile

information from PPG such as HR measurement and to study HR variability. How-

ever, the artifact detection is not necessarily useful when it comes to estimating RR.

The CS-MED method combined to the SRQI criterion gives accurate RR estimates

without recourse to artifact detection. Thanks to its simplicity, reliability and mini-

mum resource requirement, the proposed approach can be integrated in real-time clin-

ical work�ows for di�erent monitoring applications, whether in hospitals or in remote

home care. It represents also an alternative to classi�cation methods, which require

large training data.
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6.2 Perspectives and future works

Possible research lines to enlarge the work in this thesis are presented. Future work

with large-scale tests is necessary to validate the algorithms in order to generalize

this technique of estimating RR for di�erent patients and contexts. In addition, the

presented results are validated in this thesis on o�ine data. Further tests should

evaluate the potential of the proposed system in real-time clinical environments. The

major clinical interest for estimating RR is the monitoring of the respiratory activity

in order to detect abnormalities on patients' health state. Additional computing tools

should be developed to detect these events. Then, continuous monitoring tests should

be carried out for speci�c patient anomalies to assess the potential of the proposed

method for detecting alarming cases.

Despite the accuracy of the proposed method for estimating RR, the acceptance

rate may be judged to be insu�cient for real monitoring application. Other lines of

investigations should thus be examined to improve this rate. In fact, knowledge from

the patient's data concerning his/her age and health state should be analyzed and

introduced in the RR estimation methods. Until today, the proposed algorithms for

monitoring PPG signals generally consider only features about the signals, but do

not use parameters characterizing the patient status in the processing system. Fu-

ture approach should therefore involve subjects' characteristics and not signals only to

discriminate novel medical states.

In the present work, we have proposed some methods for detecting artifacts and

estimating features from PPG signal. However, these methods can be generalized to

other physiological signals with similar characteristics, especially if they involve recur-

sive patterns with some signal modulations. This is the case, for example, with ECG

signals. Therefore, it would be desirable to carry out further studies and experiments

to assess the universality of the proposed methods for other physiological signals.
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Titre : Estimation robuste de la fréquence respiratoire par traitement et analyse du signal de 
photoplethysmographie 

Mots clés : photopléthysmogramme, fréquence respiratoire, détection des artéfacts, indice de 
qualité 

Résumé : Le photopléthysmogramme (PPG) est un signal optique acquis à partir de l’oxymètre de 
pouls, dont l’usage principal consiste à mesurer la saturation en oxygène. Avec le développement 
des technologies portables, il est devenu la technique de base pour la surveillance de l’activité 
cardio-respiratoire des patients et la détection des anomalies. En dépit de sa simplicité 
d'utilisation, le déploiement de cette technique reste encore limité pour deux principales raisons: 1. 
L’extrême sensibilité du signal aux distorsions. 2. La non-reproductibilité entre les sujets et pour 
les mêmes sujets, en raison de l'âge et des conditions de santé. L’objectif de cette thèse est le 
développement de méthodes robustes et universelles afin d’avoir une estimation précise de la 
fréquence respiratoire (FR) indépendamment de la variabilité intra et interindividuelle du PPG. 
Plusieurs contributions originales en traitement statistiques du signal PPG sont proposées. En 
premier lieu, une méthode adaptative de détection des artefacts basée sur la comparaison de 
modèle a été développée. Des tests par la technique Random Distortion Testing sont introduits 
pour détecter les pulses de PPG avec des artefacts. En deuxième lieu, une analyse de plusieurs 
méthodes spectrales d’estimation de la FR est proposée. Afin de mettre en évidence la robustesse 
des méthodes proposées face à la variabilité du signal, plusieurs tests ont été effectués sur deux 
bases de données avec de différentes tranches d'âge et des différents modes respiratoires. En 
troisième lieu, un indice de qualité respiratoire spectral (SRQI) est conçu dans le but de 
communiquer au clinicien que les valeurs fiables de la FR avec un certain degré de confiance.  

 

Title : Effective signal processing methods for robust respiratory rate estimation from 
photoplethysmography signal 

Keywords : photoplethysmography, respiratory rate, artifacts detection, quality index 

Abstract : One promising area of research in clinical routine involves using 
photoplethysmography (PPG) for monitoring respiratory activities. PPG is an optical signal 
acquired from oximeters, whose principal use consists in measuring oxygen saturation. Despite its 
simplicity of use, the deployment of this technique is still limited because of the signal sensitivity to 
distortions and the non-reproducibility between subjects, but also for the same subject, due to age 
and health conditions. The main aim of this work is to develop robust and universal methods for 
estimating accurate respiratory rate regardless of the intra- and inter-individual variability that 
affects PPG features. For this purpose, firstly, an adaptive artefact detection method based on 
template matching and decision by Random Distortion Testing is introduced for detecting PPG 
pulses with artefacts. Secondly, an analysis of several spectral methods for Respiratory Rate (RR) 
estimation on two different databases, with different age ranges and different respiratory modes, is 
proposed. Thirdly, a Spectral Respiratory Quality Index (SRQI) is attributed to respiratory rate 
estimates, in order that the clinician may select only RR values with a large confidence scale. 
Promising results are found for two different databases.  
 

 
 

 


	Remerciements
	Dédicace
	Abstract
	Résumé
	Abbreviations
	Introduction
	Context
	Motivation
	Objectives
	Outline of the thesis

	The photoplethysmography signal
	Introduction
	PPG measuring characteristics
	Technical facts about PPG
	Sites and devices for measuring PPG
	Measurement protocol and reproducibility

	PPG waveform characteristics
	Pulse characteristics
	PPG waveform modulations
	Factors affecting PPG waveform
	PPG mathematical model

	PPG for clinical physiological monitoring
	Monitoring blood oxygen saturation
	Monitoring heart activity
	Monitoring respiratory activity
	Monitoring hypovolemia

	PPG database
	Sukor Data
	CapnoBase Data
	ReaStoc data

	Conclusion

	Detection of artifacts in PPG signal
	Introduction
	Artifact causes and impact
	State of the art
	Filtering method with PPG restoration
	Morphology analysis and artifact detection method

	RDT for artifact detection
	Simple artifact detection for short records
	Adaptive RDT for artifact detection

	Results and discussion
	Simple RDT detection performance
	Adaptive RDT performance
	Possible improvement and extension to other physiological signals

	Conclusion

	Respiratory rate estimation from PPG
	Introduction
	State of art
	RR estimation from raw PPG
	RR estimation from derived PPG signals 
	General limits of the existing methods

	Consensus spectrum for RR estimation
	RR from PPG modulations
	Extracting PPG modulations
	Extraction of respiratory modulations
	RR estimation

	Results
	Results on Capnobase
	Results on Reastoc

	Discussion
	Comparison between the proposed algorithms
	Age impact on algorithms performance
	Comparison with others methods

	Conclusion

	Optimization of respiratory rate monitoring from PPG
	Introduction
	Artifact detection impact on respiratory rate estimation
	Motivation
	Analysis methodology
	Results on Capnobase
	Results on Reastoc
	Limits of artifact detection

	SRQI impact on respiratory rate estimation
	SRQI definition
	Analysis methodology
	Results on Capnobase
	Results on Reastoc

	Discussion
	Conclusion

	Conclusion and perspectives
	Summary and main contributions
	Perspectives and future works

	Bibliographie



