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“Teach me knowledge and good judgment, 
 for I trust your commands.” 

Psalms 119:66  
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You’ve always believed in me 

This is my gift to you... 
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e : Molar extinction coefficient 

f : Quantum yield 

l : Wavelength 

n : Frequency 
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RESUME DES TRAVAUX DE THÈSE 
 

Les groupements protecteurs photolabiles (GPP) sont des composés chimiques photoactivables, 

qui lorsqu’ils sont attachés à une biomolécule (comme un neurotransmetteur ou une molécule 

de signalisation cellulaire) permettent de restaurer la fonctionnalité de la biomolécule sous 

l’action de la lumière. Ce processus dénommé « uncaging » génère également un sous-produit 

de photolyse.  

Si ce dernier est un rapporteur capable de générer un signal spécifique (par exemple un signal 

fluorescent), le processus de photolibération pourrait être analyser et ainsi nous devrions 

pouvoir quantifier le saut de concentration de l’effecteur biologique en particulier lors d’études 

sur des milieux complexes comme les organes ou les tissus. (Schéma 1). Le développement de 

rapporteur optiques de la photolibération n'a attiré que très peu d'attention et ce, principalement 

en raison de la faible différence de fluorescence observée entre le précurseur photolabile de 

biomolécule (« caged-compound ») et le sous-produit de photolyse.  

 

 
Schéma 1: Représentation du processus de libération par photoclivage. 

 

Le premier exemple de libération d’un effecteur biologique avec une augmentation de la 

fluorescence associée à la libération de ce dernier été rapporté avec des nucléotides cycliques 

photoactivables qui utilisent un GPP de type coumarinique (Schéma 2). Cependant, l'absence 

d'émission de fluorescence des précurseurs photolabiles de nucléotides a été réalisée par une 

extinction de la fluorescence (« quenching ») de la coumarine par le substrat nucléotidique. 

 

 
Schéma 2: Photoclivage de coumarin Adenosine monophosphate cagé. 
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Une stratégie plus intéressante et indépendante du substrat a été développée plus récemment 

par le groupe de L. Jullien, en utilisant des groupes photolabiles de type o-hydroxycinnamate 

conçus pour libérer un sous-produit présentant une bonne fluorescence. Dans cette série, le 

groupement photolabile non fluorescent est en mesure de libérer efficacement une biomolécule, 

masquée via une fonction alcool, avec libération concomitante d'un sous-produit de type 

coumarinique.  

Toutefois, cette plate-forme très efficace du point de vue du relargage d’un rapporteur optique 

de la photolyse est restée limitée à quelques substrats bien spécifiques. 

Dans le laboratoire, des nouveaux groupements photolabiles ont été développé récemment: les 

composés ortho-Nitro biphényle divisés en 2 familles majeures : les ortho-nitrophenéthyles ([I], 

o-NPE) et les ortho-nitrobenzyles ([II], o-NB) (Schéma 3).  

 

 
Schéma 3: Les 2 familles de GPP de type ortho-Nitro biphényle. 

 

Ces composés présentent une efficacité élevée pour l'absorption à 2 photons en raison d’une 

structure biphenylique donneur-accepteur (schéma 4-5). Le phénomène d’absorption bi-

photonique repose sur la capacité d’un chromophore à absorber simultanément deux photons 

afin d’accéder à des états excités de haute énergie. Lorsque cette propriété d’optique non-

linéaire est appliquée aux groupements protecteurs photolabiles cela permet d’envisager une 

photoactivation localisée dans la fenêtre de transparence optique des tissus (comprise le plus 

souvent entre 600 et 1200 nm). 

Pour suivre avec précision la photo-libération, par exemple sur des cellules, nous souhaitons 

développer des nouveaux groupes photolabiles basés sur le noyau o-nitrobiphenyl en 

implémentant une propriété de rapporteur de fluorescence au sous-produit de photolyse.  
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Sur la base des mécanismes photolytiques de nos groupements photolabiles sensibles à deux 

photons, nous souhaitions concevoir des nouveaux groupements photolabiles peu fluorescents 

qui libèrent un sous-produit fortement fluorescent (A et B) induit par la conjugaison crée par 

les doubles liaisons (respectivement alcène et énol) lors de la formation des sous-produits de 

photolyse (Schémas 4 et 5). 

 

 
Schéme 4: Mécanisme de photoclivage de I. 

 

 
Schéma 5: Mécanisme de photoclivage de II. 

 

Afin de développer ces nouveaux GPP, un schéma rétrosynthétique (Schéma 6) a été imaginé 

afin d’accéder aux deux familles de GPP via l’époxyde 3.  

 

 
Schéma 6: Une stratégie rétrosynthétique pour le développement de ce groupe de cage. 
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Après avoir obtenu l’époxyde 3 en 5 étapes. Plusieurs essais d'ouverture de l'époxyde ont été 

réalisés à l'aide d'agents de méthylation dérivés de composés organométalliques commerciaux 

tels que: MeLi, MeMgBr, Me3Al et d'autres agents de méthylation qui ont été générés in situ 

tels que Me2CuLi et Me3ZnLi avec ou sans activateurs (AlCl3, BF3.EtO2, CuI). Tous les essais 

mentionnés ci-dessus n’ont pas permis d’ouvrir efficacement l’époxyde en raison d’une 

réaction acido-basique survenante plus rapide que l’ouverture de l’époxyde.  

 

Une nouvelle stratégie a été explorée, cette dernière repose sur l’utilisation de 4 pour effectuer 

une réaction de Barbier en utilisant un composé organozincique. Cette stratégie fonctionne très 

bien avec une conversion très élevée et donne exclusivement un accès direct à la famille des 

GPP de type o-nitrobenzyle II. Nous avons réussi à synthétiser quatre composés tout en variant 

les substituants entre les groupements électro-donneur (NMe2 et OCH3) et les groupements 

électro-attracteur (NO2) (schéma 7) visant à observer une longueur d'onde décalée vers le rouge 

du signal fluorescent photoinduit via le mécanisme présenté dans le schéma 5. 

 

 
Schéma 7: Synthèse de groupement o-nitrobenzyl 7a-c cagés. 

 

Ces GPP présentent des propriétés photophysiques, photochimiques et optiques très 

intéressantes lorsqu'elle est couplée à un chromophore. Lors de l'irradiation (libération 

monophotonique à 405 nm), nous avons observé une diminution de l'absorbance UV (Schéma 

8A) et une augmentation considérable de la fluorescence (Schéma 8B) due à la formation du 

nitroso-énol conjugué (B, schéma 5) après libération du chromophore (utilisé ici pour 

quantifier, par CLHP, le taux de conversion de la photolyse en fonction du temps d’irradiation). 

 



  

 
Schéma 8: (A) Variation de l’absorbance UV pendant l’irradiation et (B) Variation de 

l’intensité de fluorescence entre le produit de départ et le produit de photolibération de 

composé 7c. 

 

En comparant les propriétés photochimiques et photophysiques de ces composés 7a-c, on a 

observé une augmentation importante de l’intensité de fluorescence après photolyse complète 

des composées (100% de libération (Ifull)) comparé à l’intensité avant irradiation I0. De façon 

remarquable, l’ajout d’un groupement électro-donneur (OCH3) engendre un décalage vers le 

rouge de la longueur d’onde d’émission lemm du fluorophore photolibéré et avec une 

augmentation de fluorescence de 200x (Tableau 1). 

 

Composé lem(nm) I0 x108 % de libération 

moyenne* 

Ifull x108 moyenne* Ifull / 

I0 

6 504 0.5254 95 21.006 40 

7a 489 4.4211 93 143.233 32 

7b 480 0.3409 83 -** -** 

7c 526 1.0296 97 214.721 208 

* Moyenne de trois manipes différentes 

** le sous-produit subit beaucoup de bleaching, on n’a pas pu calculer les intensités de 

fluorescence correspondantes. 

 

La formation d’un sous-produit en équilibre céto-enolique a été confirmée à l’aide d’analyses 

RMN-1H, cela a permis de vérifier la formation du produit énol (B, Schéma 5), en équilibre 

avec un apha-hydroxystibene fortement conjugué responsable du signal fluorescent du sous-

produit de photolyse. 

 



  

Les excellentes propriétés du composé 7c, qui présente la plus forte augmentation linéaire de 

fluorescence photo-induite et une émission de fluorescence la plus déplacée vers le rouge, nous 

a permis d’utiliser ce GPP pour évaluer la possibilité de suivre la photolibération par 

microscopie de fluorescence sur des cellules en culture. Pour ce faire, nous avons synthétisé le 

composé 11, une version soluble dans l’eau du dérivé méthoxy-o-nitrobiphenyl 7c (Schéma 9).  

 

 
Schéma 9: Synthèse de 11: une version soluble du composé méthoxy-o-nitrobiphenyl 7c. 

i) NaH, bromoacetate d’éthyl, THF, 0°C, 2h, 87 %; ii) CF3COOH/ dichlorométhane, 

3h, température ambiante, 100 %; iii) 5, DMAP, diisopropylcarbodiimide, 

dichlorométhane, 0°C, 48 %; vi) 4-méthoxyphényl acide boronique, K2CO3, 

Ethanol/Toluène/eau, Pd(PPh3)4, 80°C, 45 min, 30 %. 

 

Des cellules HeLa ont été incubées avec une solution de 11. Les cellules ont été incubées 

pendant 5 minutes puis irradiées (365 nm) pendant 15 min en continue. Une nette augmentation 

de l'intensité de fluorescence a été observée lors de l'irradiation. Par contre, les cellules incubées 

pendant 35 min avec une solution de 11 montraient une très faible intensité de fluorescence qui 

montre que la fluorescence observée dans les cellules est dû de l’accumulation de sous-produit 

de photolyse du composé 11. Par conséquent, nous pouvons suivre l'événement de libération de 

ce nouveau type de GPP par l'augmentation d'un signal de fluorescence dans les cellules. 

 

Après avoir testé la photolyse de GPP de série o-nitrobenzyle 7a-c et 11, et ses propriétés de 

fluorescence très avantageuses, nous avons décidé d’adapter la même stratégie de synthèse sur 

un GPP récemment développer au sein du laboratoire. Ce composé présente un cœur 

hétéroaromatique de type thiophène7 plus sensible à la lumière et permet d’envisager des temps 

d’irradiation plus court afin de pouvoir envisager des applications biologiques du GPP (Schéma 

10). Nous avons utilisé la même stratégie de synthèse afin d’accéder au GPP capable de former 

un sous-produit fluorescent après photolyse.  

 

NO2 O

Br

N

O
O

O
8

HO O
O
8

O

O
O

O
8

HO

O
O

O
8

NO2 O

O

N

O
O

O
8

8 9 10 11

i ii iii vi



  

La molécule 13 a été synthétisée en 8 étapes et a montré après photolyse un sous-produit avec 

des propriétés de fluorescence très intéressantes. Un dérivé soluble de 13 est actuellement utilisé 

au sein du laboratoire afin de développer des précurseurs photolabiles du Glutamate (le 

principal neurotransmetteur excitateur des cellules neuronales).  

 

 
Schéma 10: Synthèse de groupement o-nitrobenzyl à cœur hétéroaromatique cagé 13. 

 

Il existe un besoin important de GPP capables de générer un sous-produit de photolyse 

facilement quantifiable, en particulier pour être en mesure d’évaluer le saut de concentration 

photo-induit d'un effecteur biologique donné couplé. Cela nous a amèné à synthétiser une 

nouvelle classe de groupements photolabiles de la famille des o-nitrobenzyles capables de 

générer un sous-produit de photolyse fluorescent. Ces derniers composés ont été conçus afin de 

produire après photoréaction un sous-produit de type nitrosocétone capable de réaliser une 

tautomérie céto-énolique conduisant à un produit conjugué de type a-hydroxystilbene. Chaque 

GGP synthétisé a montré un signal de fluorescence très faible avant irradiation. À l'exception 

du dérivé 7b, une libération presque quantitative (≥93%) a été observée après la photolyse 

complète de chaque précurseur 7a-c. Tous ces composés ont montré une augmentation 

intéressante du signal fluorescent induite par la réaction photolytique.  

En particulier, le dérivé 7c a montré une augmentation de l’intensité de fluorescence de plus de 

200x avec un décalage de la longueur d’onde d’émission vers le rouge (526 nm) après 

photoclivage complet. Par conséquent, une version soluble dans l'eau de ce composé a été 

utilisée avec succès dans des expériences d’imagerie sur des cellules et a permis de suivre en 

temps réel le signal fluorescent induit par la formation du sous-produit de photolyse sur des 

cellules en culture.  
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Nos futures études vont se concentrer sur l'utilisation de cette stratégie pour le développement 

de groupes photolabiles sensibles à la lumière visible plus efficaces dans la serie o-NB afin de 

pouvoir corréler la libération d’un effecteur biologique, comme un neurotransmetteur, à la 

formation d’un signal fluorescence induit par la libération du sous-produit de photolyse. 
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1. Photoremovable Protecting Groups (PPGs) 
 

1.1. Definition: 
 
Photoremovable or so-called photo-cleavable, photo-activatable, photo-releasable Protecting 

Groups (PPGs) are photolabile chemical compounds that when attached to a biomolecule (for 

example neurotransmitters or cell signaling molecules) form a stable inactive “caged 

compound”; this designates that the biomolecule is protected by the PPG. Upon photo-

irradiation of the resulting compound, the biomolecule is released and restores its active 

functionality along with the by-product of the PPG; this process is called uncaging (Klàn et al., 

2013) (Scheme I.1). 
 

Scheme I.1: Description of the uncaging process and the release of the biomolecule. 
 

Photoremovable protecting groups provide spatial and temporal control over the release of 

diverse compounds such as biomolecules (neurotransmitters), organic acids and bases or ions 

(Ca2+) [Baltrop et al., 1962, Barton et al., 1962; 1965, Ellis-Davies., 2007] 
 

1.2. Requirements: 
 
Several requirements need to be fulfilled by the PPG depending on its application, not all the 

protecting groups follow the same requirements because they vary depending on the application 

needed or expected for the system. Many of these properties were originally introduced by 

Sheehan and Umezawa (Sheehan et al., 1973) and were used to evaluate the potential of a PPG: 

i- The PPG should show an absorption wavelength above 300 nm, because irradiations 

below this wavelength tend to be absorbed by biological entities like proteins and 

nucleic acids and thus leading to photo-damage resulting in the formation of 

initiators for mutations. 

ii- The PPG should be stable, clean and pure prior to use because any trace of impurities 

could affect the irradiation and the cleavage process. The chosen PPG should show 

stability during the irradiation process as well. 
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iii- The photocleavage reaction should be clean and occur with a remarkable quantum 

yield of release frel. This quantum yield is described as: 

frel = nrel / np where nrel is the amount of substrate released and np is the number of 

photons absorbed by the caged compound upon irradiation 

iv- The PPG should be stable and soluble in the media of examination and if possible 

should present an affinity toward the target molecules (binding site on cancer cells, 

active sites on enzymes…). 

v- The by-product released after the release of the bioactive molecule should show no 

competitive absorbance with the starting material i.e be transparent to the 

wavelength of irradiation. 

vi- The released by-product should be inert and biocompatible i.e does not react with 

the system investigated.  

These are the important guidelines and properties for an ideal PPG, but still, a caged 

compound is considered useful even if it lacks one or two of these properties. The absence 

of several requirements may be a huge limitation of the PPG in several applications. 
 

1.3. Types of PPGs 
 
Several examples of PPG that fulfill the requirements mentioned above, have been reported and 

found to have interesting chemical, photophysical and optical properties.  
 

1.3.1. Benzoin PPGs 
 
Sheehan and Wilson (Sheehan et al., 1964, 1971) were the first to explore the photochemical 

rearrangements of certain benzoin derivatives yielding a 2-phenylbenzofuran by-product. These 

rearrangements occur by the release of the group attached in position a to the carbonyl function. 

It was found that 3’,5’-dimethoxybenzoin (DMB) could serve as a PPG for carboxylic acids 

releasing 2-phenyl-5, 7-dimethoxybenzofuran (DMBF) as a side product, after irradiation in 

quantitative yields and with a quantum yield of 0.64 ± 0.03 (Scheme I.2). 
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Scheme I.2: Photocyclization of DMB acetate. 

 

DMB phototriggers have been used for several applications for example in the drug delivery 

field, in order to study protein folding and muscle relaxation (Rock et al., 1996, Rock et al., 

2004). 

Another benzoin derivative (R=H) was reported by Givens et al., 2012 this latter showed a 

quantitative release of phosphates. This study was extended for the release of neucleotides 

through the synthesis and photolysis of benzoin-cAMP. The same derivative was found to likely 

protect and release GABA and glutamates (a- or N- protected Glu). 

 

1.3.2. Arylcarbonylmethyl or Phenacyls (Pac) 
 
Arylcarbonylmethyl groups are aromatic ketones that are thermally stable and easy to access 

by synthesis. These groups undergo a mechanism of photocleavage that involves hydrogen 

abstraction from an H-donor by an excited state of the carbonyl function of the phenacyl leading 

to a ketyl ester intermediate (scheme I.3). 
 

 
Scheme I.3: H-abstraction mechanism of photocleavage of phenacyls. 

 

A very recent application of phenacyls was reported by Speckmeier and his co-workers 

(Speckmeier et al., 2018) where in this study, this PPG was used to protect amine function by 

the formation of Phenacyl (Pac) Urethanes (the amines were linked to Pac by the formation of 

carbamate linkage). The latter “caged amine” undergoes a photocatalytical cleavage using blue 

LEDs (l =455 nm) in the presence of a Ruthenium photocatalyst in order to release the amine 

function along with acetophenone (Scheme I.4). This method avoids the drawbacks of using 

UV irradiation and is carried out in a mixture of acetonitrile and water (4:1), in addition to its 

applicability to a diverse family of amines, amino acids and anilines.  
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The presence of the [Ru (bipy)3](PF6)2 is significant to avoid the oxidation of the released amine 

in combination with ascorbic acid as a reductive quencher in water acetonitrile mixture. 
 

 
Scheme I.4: Photocatalytical cleavage of phenacyl protected amines. 
 
 

1.3.3. Coumarin-4-ylmethyl  
 
The photolysis of 7-methoxycoumarinyl-4-methyl (MCM) derivatives was first introduced by 

Givens and collaborators (Givens et al., 1984) that demonstrated the use of coumarins as 

photoactivatable phosphate-releasing groups (Entry1, Scheme I.5).  

The use of these derivatives was limited until the introduction of coumarin protecting 

carboxylic acids by Schade and his colleagues (Schade et al., 1999) that shows upon the 

irradiation of MCM-ester, the release of the free carboxylic acid along with MCM-OH in water 

(Entry 2, Scheme I.5). 
 

 
Scheme I.5: 1-Photocleavage of MCM phosphate derivative liberating free phosphate. 
                     2-Photocleavage of MCM-ester derivative liberating free carboxylic acid. 
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Compared to other PPGs the coumarin derivatives doesn’t possess a very high quantum yield 

(f = 0.25 for the best derivative), but they possess a remarkable molar extinction coefficient 

along with their rapid photolysis that makes these coumarin derivatives great candidates for the 

photo-liberation of biomolecules.  

That’s why these derivatives where applied in several research works for the liberation of 

carboxylic acids (Schade et al., 1999), phosphates (Givens and Matuszewski, 1984), cyclic 

nucleotides (Furuta and Iwamura, 1998) and glutamates (Furuta et al., 1999). A selection of 

coumarin caged compounds with their relative quantum yield of disappearance fdis and their 

molar extinction coefficient e is presented in Table 1. 

 
Caged compounds Substrate fdis e (325nm) 

 

Benzoic acid 0.005 13000 

 

Phosphate 0.05 14000 

 

cGMP 0.21 13300 

 

Glutamate 0.02 15000 

Table 1: Liberation quantum yield of different caged compounds of the 7-methoxycoumarinyl-4-methyl 
family in 1:1 methanol/HEPES buffer 
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Over the time, several structural modifications were studies in order to modify the 

photochemical and optical properties of coumarin derivatives.  

Certain modifications succeeded in presenting the first coumarin Photoremovable Protecting 

Group model sensitive to two-photon excitation based on 6-bromo-7-hydroxycoumarin-4-

ylmethyl (Bhc) which presents an interesting two-photon efficiency cross section du of 1 GM 

(Goeppert-Mayer) at 740 nm for the release of glutamates as described by Furuta and co-

workers (Furuta et al., 1999), but this series suffers from low water-solubility. Another 

interesting and more soluble generation of coumarin was presented by introducing an electron 

donating amino group in position 7 for example, 7-N,N-diethylamino-coumarin-4-yl 

(DEACM). This structural modification permitted to observe an important red-shift in the 

absorbance maximum from 325 nm to around 400 nm which makes these derivatives more 

adapted for in vivo applications (Shembekar et al., 2005). The performance in two-photon 

excitation of the DEACM PPG in water was studied by Lin and collaborators (Lin et al., 2012) 

and showed an efficiency cross section du = 0.12 GM at 800 nm. These values of cross section 

are relatively important and permits the uses of these derivatives for the photo-regulation of 

various biological events (plasma membrane-specific photoactivation, modulation of calcium 

ion oscillations). 

Recently the group of Ellis-Davies used the DEACM platform to synthesize a new PPG, the 

DEAC450. This latter presents an extended p-conjugated system that induces a red-shifted 

absorbance leading to an absorption maximum lmax at 450 nm. Also, the DEAC450 

Photoremovable Protecting Group shows an interesting activity for two-photon excitation with 

an uncaging cross section du = 0.5 GM at 900 nm for the liberation of glutamates (Olson et al., 

2013). These interesting results make this coumarin derivative an intriguing tool for biological 

experimentation. The structure of the 3 PPG mentioned above are presented in Scheme I.6. 
 

 
Scheme I.6: Structures of the coumarin derivatives efficient in two-photon excitation. 
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1.3.3.1. Thio-carbonyl Coumarin PPGs 
 
Most of the presently reported photoremovable protecting groups show strong absorbance 

below 450 nm, a region where riboflavin and carotenoids absorb light. Research groups are 

working on adjusting the chemical structure of these groups in order to overcome this limitation 

of absorbance. One of the explored strategies is to increase the conjugation of the absorbing 

chromophore and/or to insert heteroatoms in the backbone of the chromophore.  

An interesting study on the photophysics and the photochemistry of thiocarbonyls (thiones) was 

established by Maciejewski and his co-workers (Maciejewski et al., 1993) and emphasizing on 

the fact that the energy of the C=S bond is weaker than a C=O bond therefore the excited 

electronic states are found at lower energies in the sulfur-containing species leading to the fact 

that C=S species absorb light at higher wavelengths compared to that of C=O.  

A more recent work on thiones and their use in the field of PPG photoactivation focuses on the 

use of thiocoumarin (tc) backbone which possesses a red-shifted absorption compared to the 

carbonyl analogue (Fournier et al., 2013). This derivative was used to cage cyclofen-OH (Ind) 

in order to photocontrol the activity of a transcription factor (En2) fused into modified estrogen 

receptors. The tcInd system shows a maximum of absorbance at 469 nm with etcInd = 270000 

M-1 cm-1 and upon irradiation tcInd is converted into tcOH and Ind (Scheme I.7). 
 

 
Scheme I.7: Synthesis of a caged thicoumarin-cyclofen system. 
 
Another research work on coumarin groups was established recently aiming to increase the 

absorption wavelength of these derivatives (Lin et al., 2018). This work focused on the 

development of new coumarin based PPGs by modifying position 3 by adding an electron rich 

(donor) styryl moieties which give access to red-shifted absorption wavelengths. Several donor 

groups were used like 4’-N,N-dimethylaminostyryl (1a, Scheme I.8) and julolidinestyryl (1b, 

Scheme I.8), and these groups were also incorporated in the thiocoumarin platforms (2a and 2b 

Scheme I.8). 

O

OH

SEt2N
+ H2N

O

OH

DIC  CH2Cl2

DMAP
O

O

SEt2N

H
N

O
O

OH

tcOH

Ind tcInd



 

 9 

 
Scheme I.8: Different structural modifications of coumarin and their effect on the absorption 
wavelength. 
 
In this study, the incorporation of julolidine rings contributes to a 10 nm shift due to the better 

conjugation of the amino group with the aromatic core and the incorporation of the sulfur atom 

induces a 40-50 nm shift due to an intramolecular charge transfer to the empty 3d orbitals of 

the sulfur atom. 
 

1.3.3.2. Coumarin-Caged Adenosine Cyclic 3’,5’-Monophosphates 
 
Fluorescence is very important for following the liberation of the attached biomolecules after 

irradiation of the caged compounds and can be used to monitor the “uncaging” event. Coumarin 

derivatives like MCM and DEAC possess a fluorescence emission between 397 and 491 nm in 

methanol/HEPES buffer depending on the substitution on the coumarinyl moiety.  

One drawback of coumarins is that the starting PPG possesses the same fluorescence as the 

released by-product (MCM-OH) and in this manner the follow up of the uncaging becomes 

impossible.  

Only one example of the uncaging event quantification by fluorescence using a coumarin PPG 

was reported by Bendig and co-workers (Bendig et al., 1999) in the case of coumarin-caged 

Adenosine Cyclic 3’,5’-Monophosphates (MCM-caged cAMP).  
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This work focuses on the fact that CM-caged nucleotides are weakly fluorescent whereas their 

by-product MCM-OH presents strong fluorescence which facilitates monitoring the release 

process (Scheme I.9). 
 

 
Scheme I.9: Photocleavage of coumarin-caged cAMP 

 

This system is characterized by the difference in fluorescence between the starting caged 

compound and the uncaging by-product. Normally coumarin-based caged compounds are 

fluorescent before photocleavage but when attached to adenosine nucleotides they show a very 

weak fluorescence due to an accelerated internal conversion from the excited state caused by 

mixing the pp* and the np* states. This energy transfer between the coumarin moiety and the 

adenosine moiety leads to a drop in the fluorescence or so-called fluorescence quenching. This 

quenching is advantageous in this case because it helps in quantifying the release of cAMP 

from the fluorescence observed after photocleavage due to the liberation of the coumarin by-

product. 

As much as this example is interesting it still has an important limitation were this fluorescence 

quenching is exclusive for coumarin-caged adenosine and is not valid for other biomolecules 

attached to coumarins. 
 

1.3.3.3. Coumarins for signaling lipids uncaging at the plasma membrane 
 
Another interesting use of coumarin PPGs was demonstrated by Schultz and co-workers 

(Nadler et al., 2015) in the end of 2015, this study focused on the use of the fluorescence 

characteristic of coumarin for plasma membrane-specific photoactivation.  
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The principle of this study was to synthesize hydrophilic sulfonated coumarin caged fatty acids 

that shows before uncaging a fluorescent signal on the cellular membrane, followed by a lipid 

flip-flop. Upon photocleavage by UV light the fatty acid remains in the plasma membrane 

whereas the coumarin-OH by-product is released inside the cellular space and a fluorescence is 

observed at the vesicles level due to the entrance of the highly hydrophilic coumarin-OH to 

these vesicles by endocytosis. With further irradiations the fluorescence signal starts to decrease 

due to photobleaching (Scheme I.10, Nadler et al., 2015). 
 

 
Scheme I.10: The mechanism of plasma membrane photoactivation using sulfonated coumarin caged 
fatty acid. 
 
This method, that was recently developed using coumarin derivatives, acts as a tool in plasma 

membrane marking. But yet this method has its limitations since it doesn’t provide any 

information about the concentration jump of the biological effector and it remains a qualitative 

method (fluorescence) more than quantitative (concentration). 

 
1.3.4. O-hydroxycinnamates PPGs 

 
In 2007, inspired by the work of Porter’s group in the late 1980s (Turner et al., 1988), Ludovic 

Jullien and his coworkers (Gagey et al., 2007) investigated the use of hydroxycinnamates for 

alcohols uncaging. This work focuses on the release of a coumarin by-product and taking 

advantage of the fluorescence signal induced by this uncaging by-product after photo-cleavage 

to quantify the release and report the uncaging event. These cinnamates occur in two 

stereoisomers, the Z and E isomers, induced by light irradiation.  

The transformation of the E isomer to the Z isomer under the action of light leads to the 

liberation of an alcohol along with a coumarin by-product (Scheme I.11). 
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Scheme I.11: Mechanism of photo-release of alcohols and coumarin after irradiation of 
hydroxycinnamates. 
 
Both isomers show weak fluorescence as long as the alcohol is attached, and whenever the 

alcohol is released under the action of light, strong fluorescent coumarin by-product is released. 

This signal is helpful to quantify the release of alcohols from these caged-systems.  
 

Another very recent interesting example for the use of o-hydroxycinnamates is that illustrated 

by Paul and his collaborators (Paul et al.; 2017). This example introduces excited-state 

intramolecular proton transfer (ESIPT) induced fluorescent o-hydroxycinnamates. ESIPT is an 

ultrafast enol-keto phototautomerization exhibited by a proton transfer intramolecularly in the 

excited state.  
 

In this study, ESIPT induces a fluorescence that help monitoring the uncaging in real time by 

the release of the benzothiazole-coumarin by-product and this study can extend to diverse 

bioactive molecules containing a terminal hydroxyl function. The ESIPT has two advantageous 

effects on these hydroxycinnamates; (1) a huge stokes’ fluorescence shift (orange color) and 

(2) a distinct fluorescence color change upon photorelease. In other words, the uncaging is 

monitored by the drastic change in fluorescence color from orange (hydroxycinnamates) to blue 

(benzothiazole-coumarin) after photocleavage (Scheme I.12). 

(E) o-Hydroxycinnamate (Z) o-Hydroxycinnamate

coumarin
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Scheme I.12: Photoinduced uncaging of alcohols from the ESIPT induced fluorescent o-
hydroxycinnamates. 
 
But still this system has its limitations and drawbacks since these cinnamates tend to auto-

isomerize even in absence of light leading to a leak in the biomolecule since the transformation 

of the E isomer to Z isomer leads to the release of the alcohol attached. Another drawback is 

that this system is only adapted for the release of alcohols and thus it is not valid for a diversity 

of biomolecules. 

 
1.3.5. Nitroindoline groups 

 
The 7-nitroindoline (NI) derivatives were first introduced as photo-labile protecting groups in 

organic synthesis for the protection of carboxylic acids in aprotic medium (Amit et al., 1976). 

After that, the group of Papageorgiou (Papageorgiou et al., 1999) adapted these derivatives in 

order to adjust their photochemical properties and to render them useful as photoremovable 

protecting groups that are stable (in aqueous media) and efficient caged compounds for the 

photo-release of L-glutamates (Scheme I.13). 
 

 
Scheme I.13: Different photolysis pathways for the nitroindoline derivatives with respect to the medium 
used. In aprotic medium, the irradiation releases a nitroindoline by-product along with the carboxylic 
acid attached (right pathway). In physiological buffer, the irradiation releases a nitrosoindoline by-
product of photolysis along with the release of L-Glutamate (left pathway). 
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These nitroindoline derivative present a negligible hydrolysis percentage in physiological 

conditions in contrary to coumarins, and in addition to that, Kerry and his group (Kerry et al., 

1988) has demonstrated that the photochemical reaction leads to the liberation of glutamate 

from nitroindoline is faster (order of nanoseconds) compared to the kinetics of activation of 

glutamate receptors.  

Inspite of their low quantum yields (f = 0.085), these groups have a very weak basal activity 

due to the hydrolytical stability (Canepari et al., 2001) making them a good candidate in 

investigating the central nervous system using caged neurotransmitters. 

 
1.3.6. O-nitroaryls 

 
1.3.6.1. O-nitrobenzyl groups 

 
The o-nitrobenzyl (o-NB) groups have been introduced by in 1970 and they have been reported 

as the most used protecting groups due their efficiency in protecting different functional groups: 

carboxylic acids, imidazoles, phosphates for the synthesis of nucleosides, alcohols and amines 

(Patchornik et al., 1970). These groups undergo the following mechanism upon irradiation 

(Scheme I.14): (a) photoactivation of the nitro function leading to the formation of an aci-nitro 

intermediate (I1), followed by a (b) cyclization to form a 1,3-dihydrobenz-isoxazol-1-ol 

intermediate (I2), that upon (c) ring opening releases the attached biomolecule (X) along with 

the nitrosocarbonyl by-product (R=H nitrosoaldehyde, R=Ar, Ph, CH3,… nitrosoketone). 

 

 
Scheme I.14: Mechanism of photocleavage of o-NB protecting groups. 
 
O-nitrobenzylic protecting groups have been the most used PPGs for synthetic and biological 

applications. One example is the use of o-NB under mild conditions for automated RNA and 

DNA synthesis developed by Stutz and Pitsch (Stutz et al., 1999) by protecting the oxygen atom 

of the four nucleic bases (Adenine, Cytosine, Guanine, and Uracil) for the synthesis of 

oligoribonucleotides (Scheme I.15). 
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Scheme I.15: O-NB caged nucleotides as building blocks for the automated RNA synthesis. 
 
Also, o-nitrobenzyl PPGs were used in natural product synthesis like the one reported by Wong 

in 1993 in the total synthesis of Leukotriene (LTC4). During the final steps of the synthetic 

route, a deprotection is done by irradiating the o-NB-caged system at 350 nm to afford the final 

compound (Scheme I.16). 

 

 
Scheme I.16: Final steps in the total synthesis of N-methyl LTC4. 
 
Over the years, several modifications were applied to this type of PPGs in order to render them 

more stable, more efficient, and also to increase the quantum yield and/or the wavelength of 

absorbance (for efficiency in biological applications) together with the rate of release. In order 

to do that two important modifications were done: (1) substitution in the benzylic position and 

(2) substitution of the aromatic ring of the o-NB group.  

 
1.3.6.1.1. Substitution in the benzylic position 

 
In the 1970s, Woodward has proposed such modification by adding a substituent in the benzylic 

position. These substituents provide an electronic effect at the benzylic site and also adds a 

second hydrogen-abstracting unit that helps in increasing the efficiency of the group.  
 

One synthetic drawback could be faced when having a chiral benzylic center (due to a 

substituent different from the o-NB core) because it will be more difficult to protect chiral 

molecules especially in the synthesis of amino acids and oligonucleotides.  
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When using substituted o-NB core at the benzylic position, a significant increase in the quantum 

yield of release was observed. This increase could be explained through the mechanism of 

photocleavage of this family of PPG after the formation of the aci-nitro intermediate, leading 

to the release of nitrosocarbonyl. In the case of substituted o-NB, the molecule released is a 

nitrosoketone which shows a higher quantum yield of release compared to that observed for 

nitrosoaldehyde (originating from no benzylic position substitution) after photocleavage.  

It is also known that water-solubility is really an important criterion for the use of PPGs in 

biological applications, this property can be achieved by adding substituents that render the 

molecule more soluble such as COOH functions. Forming more water-soluble groups tend to 

increase the yield of release compared to that of the non-soluble analog. This was confirmed by 

an example illustrated by Bassani and his group (Bassani et al., 2010), where a-carboxy-6-

nitroveratryl (aCNV) tend to release carboxylic acids with f = 0.17 and a yield of release 3 

times more than the parent compound a-carboxynitrobenzyl (aCNB). This proves that adding 

a water-solubilizing substituent to the molecule increase the yield of release of the protected 

compound (Scheme I.17).  

 

 
Scheme I.17: Structures of aCNB and aCNV. 
 

1.3.6.1.2. Substitution of the aromatic ring of the o-NB group 
 
Due to the drawback of chirality that could be induced by the substitution on the benzylic 

position and their negligible effect on the absorbance wavelength, numerous modifications have 

been applied on the aromatic ring of the o-NB chromophore. 

These modifications could induce 3 important effects: (1) tuning the absorbance wavelength 

and/or having a better quantum yield, (2) possibility of attaching the compound to a solid 

support or on a linker and (3) possibility to modify the solubility properties of the molecule. 

For example, addition of another electron-withdrawing nitro substituent leads to an increase of 

the quantum yield from 0.13 for 1 to 0.62 for 2 for the release of amines from carbamates. 
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Another example of modification is the addition of a carboxylic acid with one carbon spacer to 

form compound 3 making it more soluble than the parent compound 1. Also, the addition of 2 

methoxy group substituents to 1 makes compound 4 absorb at longer wavelength (>350 nm). 

These examples are illustrated in Scheme I.18. 

 

  
Scheme I.18: Different modification on the aromatic ring of o-NB. 
 
As a conclusion, the substitution at the benzylic position and the substitution on the aromatic 

ring of o-NB protecting groups has a significant effect on the photochemical and photophysical 

properties. Substituent effects are not only of crucial importance for the absorption spectrum of 

the chromophore but are also prominent for the stability of the C–R bond (where R is the caged 

function).  

 

By only making minor changes in the substitution pattern of structural derivatives of the ortho-

nitrobenzyl protecting group it is possible to create PPGs that can be photocleaved with 

different wavelengths of light (ldeprotect: 345–420 nm). The most useful way to obtain a 

bathochromic (red) shift of the absorption band is the addition of an electron-withdrawing group 

(EWG) at the para-position. Additionally, substituting the ortho-nitrobenzyl core with a 

moderately electron-donating group (EDG) like alkoxy (–OR) in the meta-position permits 

cleavage with longer wavelength of light. A significant hypsochromic shift can be obtained by 

changing the a-substituent with respect to the R-group. Furthermore, extending the linker 

between the chromophore and the cleavable C–R bond gives similar results. Scheme I.19 shows 

the shift in wavelength of absorbance depending on the different substitutions and modifications 

on the molecules.  
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Scheme I.19: Effect of modification on the aromatic ring and the benzylic position of o-NB on the 
wavelength of absorption. 
 
Alexander Heckel group has demonstrated very recently (Becker et al., 2018) that the addition 

of a dimethyl amino (DMA) group to the nitro dibenzofuran (NDBF) shifts the wavelength of 

absorbance from 312 nm to 424 nm. Another system was developed by Specht and his co-

workers in 2012 based on a nitro biphenyl core (NBP) with different R groups, this system 

shows a maximum of absorbance at 405 nm which is due to the conjugation of the nitrobenzene 

with the second phenyl ring (Donato et al., 2012). 

 
1.3.6.2. o-Nitrophenethyl groups 

 
Another interesting series of o-nitroaryls is the o-nitrophenethyl (o-NPP), where the 

biomolecule is attached on carbon 2 of the ethyl substituent at the ortho position to the nitroaryl 

moiety. These PPGs have been synthesized and tested for their efficiency in photocleavage 

mainly by Specht’s group (Donato et al., 2012 and Herbivo et al., 2013) for the release of 

GABA and inorganic phosphate. These groups undergo a complex mechanism that was 

described in 2001 (Walbert et al., 2001). In fact, two mechanistic photochemical pathways for 

these o-NPP groups exist. One of these pathways is a b-elimination based pathway (Pathway 

A) which is commonly known as the major pathway leading to the photo-liberation of the 

biomolecule in aqueous medium. But there exists a second pathway considered as the minor 

one which leads to the formation of the nitroso-derivative (Pathway B). This latter mechanism 

doesn’t induce any photolysis leading to photo-liberate biomolecule attached. Upon irradiating 

the o-NPP PPG, it absorbs an amount of energy that permits the system to pass from a 

fundamental state to an excited state, in this state an a-exo-cyclic hydrogen transfer towards the 

nitro group occurs, that leads to the formation of the aci-nitro intermediate which is kinetically 

favored (Scheme I.20).  
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The acid-base equilibrium of the aci-nitro intermediate is the determining step of which 

photochemical pathway is adopted. The weak basic character of water is sufficient for the 

deprotonation of the aci-nitro intermediate to form a new anionic form which undergoes further 

a b-elimination liberating the biomolecule along with o-nitrostyrene (Pathway A, Scheme I.20). 

In the presence of an acidic medium (millimolar order of hydrochloric acid) the acid base 

equilibrium is shifted toward the formation of the neutral aci-nitro intermediate which then 

favors the formation of a cyclic intermediate followed by the formation of the o-nitroso 

derivative (Pathway B, Scheme I.20). 

 

 
Scheme I.20: Mechanism of photo-liberation of a biomolecule from the o-NPP series following 2 
pathways: (A) which is the favored mechanism in basic medium releasing o-nitrostyrene along with the 
liberation of the biomolecule and (B) which is favored in “acidic” medium and forms o-nitroso 
derivative and doesn’t permit the liberation of the biomolecule. 
 
The removal of the organic molecule attached to the protecting groups mentioned previously 

(among many others) necessitates the use of UV-near visible irradiations. It is well known that 

these irradiation wavelengths are not biocompatible since these lights are absorbed by tissues 

mainly oxyhemoglobin which absorbs every light below 650 nm. On the other hand, water 

molecules become absorbent at wavelengths >950 nm. Depending on this information a 

“phototherapeutic window” could be defined for the tissue transparency above 650 nm and 

below 950 nm (Scheme I.21, Juzenas et al., 2002).  
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Scheme I.21: Transparency window for living tissue absorbance showing the absorption spectra of 
various endogenous relevant molecules. 
 
The majority of chromophores absorb light in the regions below 400 nm and some caged 

compounds absorb visible light which makes them very complicated to handle. In addition to 

that, the use of wavelengths between 650-950 helps in reducing photodamage and phototoxicity 

as well as increasing the depth of tissue penetration. In order to overcome these problems and 

to use a diversity of PPG in biological applications an important approach is the use of two-

photon excitation (2-PE). 

 

2. Two-Photon Excitation 
 

2.1. Overview 
 
The use of mono-photonic excitation in the field of in vivo applications of Photoremovable 

Protecting Groups has been problematic until the introduction of two-photon excitation was 

proposed. This technique uses types of irradiations different from those used for the classical 

mono-photon excitation. The two-photon excitation functions in a non-linear optic process 

defined by the following equation (1): 
 

𝑃 ∝
1
2
𝛿&	𝐼)																				(1) 
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Where P is the molecule excitation probability, da is two-photon absorption cross section. The 

efficiency of a molecule to absorb two photons is expressed in GM (1 GM = 10-50 cm4. s. photon-

1) in the honor of Maria Goeppert-Mayer that was the first to introduce the theoretical 

phenomenon of non-linear optics in 1930 (Goeppert-Mayer et al., 1931). Finally, I is the light 

intensity of the excitation source. P is directly proportional to the square of the light intensity I, 

this shows that the possibility to excite a molecule will be higher in the zone where the light 

intensity is at its maximum. In other words, the focal point of the optical system used for 

irradiation in 2-PE presents the highest light intensity for excitation whereas in the classical 

confocal microscopy the excitation takes place over the full optical length (Scheme I.22).  
 

 
Scheme I.22: Difference in fluorescence emission between mono and bi-photonic excitation. 
 
This phenomenon was used in the development of 3D imaging, photonics, photodynamic 

therapy… The two-photon excitation technique requires light irradiations with very high 

intensities which can only be achieved by using ultrafast pulsed laser like the titanium:sapphire 

laser that provides 3 mm bean at 100 fs pulse duration with a frequency of 90 MHz. This laser 

type provides optimum radiations at 800 nm which is compatible with biological applications 

and corresponds to minimum mammalian tissue absorbance.  

The excitation of a molecule is observed when the molecule absorbs one or more photons with 

a certain energy in order to pass from the fundamental ground state to the excited state. In order 

for this to happen, the molecule absorbs either one photon with E = hn (mono-photonic 

absorption) or two photons with E = hn/2 (bi-photonic absorption). Using lower energy for 2-

PE reduces photodamage and cytotoxicity and using higher excitation wavelengths reduces the 

risk of tissue proteins absorbance and mutations (Scheme I.23, Benninger and Piston, 2013). 
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Scheme I.23: Simplified Jablonski (energy-level) diagram of conventional one-photon excitation (left) 
and nonlinear two-photon excitation (right). In each case, the absorption of photon(s) populates an 
excited state from which the molecule can relax by emitting a photon. 
 

2.2. Design 
 
In order to increase the efficiency of compounds to increase their two-photon excitation 

sensitivity, several approaches have been developed on fluorophores and chromophores. 

Numerous chromophore geometries have been investigated; linear (1D), planar (2D) and 

tetrahedral (3D) structures, and these investigations led to the construction of the optimal and 

typical chromophore architecture.  

The smallest system to be useful in biology is composed of a donor (D)-acceptor (A) system 

with p-system cores incorporated in the system as well. The extension of the p-system (increase 

in conjugation) improves the 2-PE properties of the molecule (Scheme I.24). 

 

 
Scheme I.24: Typical structure of 1D two photon absorption chromophore 
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A wide range of electron-donating and electron-accepting terminal groups have been 

investigated including many p-deficient heterocycles (Albota et al., 1998, Mongin et al., 2007 

and Terenziani et al., 2008) and it was found that D-p-D and D-p-A-p-D structures are more 

efficient than A-p-A and A-p-D-p-A systems (Pawlicki et al., 2009) as shown in Scheme I.25. 

 

 
Scheme I.25: Variation of two-photon action cross section by structural modifications. 
 
It is known that the use of electron donating groups (EDG) like alkylamino increases the two-

photon efficiency more than electron accepting groups (EAG) like SO2CF3. And also, the use 

of alkylamino as EDG is more efficient than using alkoxy or other oxygen-based donors. And 

it is remarkably interesting to use phenoxides which are very strong donors and give very high 

2-PE cross sections as in the case of the pink molecule in Scheme I.25 (Pawlicki et al., 2009). 

Similarly to mono-photon absorption, it is possible to determine the two-photon uncaging 

action cross section (du) of a molecule by multiplying the two-photon absorption cross section 

(da expressed in GM) by the two-photon quantum yield of uncaging (fu): 

 
𝛿𝑢 = 	𝛿𝑎	. 𝜙𝑢																		(2) 

 
Not all PPGs present a structure that shows efficiency in two-photon excitation since few PPGs 

have the donor-acceptor core with an extended p-system. It has been demonstrated that a 

photoremovable protecting group with da < 0.1 GM and fu <10% is considered as non-efficient 

for biological applications (Corrie et al., 2005).  
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In order to develop new molecules with good performance in 2-PE, there are several factors 

that influence the values of the two-photon absorption cross section (da) (He et al., 2008; 

Pawlicki et al., 2009).  

The main parameters that affect these values of da are mainly the (a) presence of a coplanar 

conjugated system in the main structure and its length, (b) the presence of electron donating 

and/or electron accepting groups, (c) the rigidity or flexibility of the likers between the donor-

acceptor moiety and (d) the nature of the linker (alkene or alkyne). (Scheme 26). 

 
Scheme I.26: Structural modifications of different systems with efficiency in two-photon excitation. 
 
As shown in the scheme above, 3 important factors or structural modifications have a huge 

influence on the values of da: (1) the addition of electron donating groups (blue) like 

dimethylamino, (2) the extension of the conjugation inside the molecule (red) that favors the 

electrons delocalization and (3) blocking the free rotation of the molecule by making the 

structure more rigid (pink). 

These important factors that show an effect on the values of da have led to identify a series of 

photoremovable protecting groups sensitive to bi-photonic excitation.  
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With several modification in the structures of these groups initially used in mono-photon 

excitation, these groups became active in two-photon excitation, like the example of the ortho-

nitrophenethyl series o-NPP (Scheme I.27).  

The addition of electron donating/accepting groups or the extension of the conjugation inside 

the molecule as well as rendering the structure more rigid led to the transformation of these o-

NPP from mono-photon sensitive groups to two-photon active molecules for the liberation of 

g-amino butyric acid (GABA) and Glutamates (Glu). 

 

 
Scheme I.27: Effect in the structural modification on the value of da for the o-NPP series used for two-
photon liberation of Glutamates (left) and g-amino butyric acid (right). 
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3. Applications of two-photon sensitive PPGs in biology 
 
Photoremovable protecting groups have made a breakthrough in the domains of synthesis, 

inorganic chemistry, biochemistry and biology. The development of these groups has attracted 

the researchers’ attention for several years now and their use is biological applications is 

providing access to novel methods to control the functions of the cells such as cellular 

regulations that can be temporally and spatially defined.  

Photomanipulation of cellular chemistry using caged compounds especially those sensitive to 

two-photon excitation can allow light to pass through the cellular membrane allowing the 

release of a biomolecule into the cytoplasm and also irradiation at the extracellular region 

allows to observe changes like the case mentioned in section 1.3.3.3 for the coumarins used in 

cell signaling lipids. Also, in the domain of caged biomolecules, o-nitroaryls have also made a 

breakthrough in numerous domains of biology and the results obtained were interesting and 

promising in the field. The control of biological systems dose-dependently in time and space is 

a key requirement for studying dynamic cellular processes in tissues or organisms in vivo. The 

use of photolabile groups attached to a biomolecule can render biologically active compounds 

inactive. This approach typically leads to excellent ON/OFF behavior and has formed the basis 

of very interesting studies in chemical biology and material sciences. Two-photon excitation 

can achieve tissue penetration using near-IR light reaching up to 1 cm depth. Several interesting 

applications will be discussed in the coming section. 

 
3.1. Light control release of neurotransmitters 

 
Caged neurotransmitters are useful photochemical tools for selective stimulation of synapses. 

Before illumination, the caged compound is biologically inert. Photolysis breaks a covalent 

bond, liberating the neurotransmitter. Release can be rapid, so the resultant synaptic stimulation 

can mimic a natural one (Matsuzaki et al., 2001). Uncaging does not replace traditional 

electrode stimulation commonly used to study the neurotransmission; rather, it is a useful 

complementary method to it for several reasons: (1) a single neurotransmitter is normally 

photoreleased, (2) stimulation of voltage-gated ion channels is not required for neurotransmitter 

release, (3) receptors at many synapses can be activated simultaneously according to the area 

(or volume) of illumination and (4) subquantal or supraquantal neurotransmitter release is 

feasible. Photochemical uncaging of neurotransmitters is especially useful when studying 

neurons in acutely isolated brain slices (Callaway et al., 2002).  
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3.1.1. Two-Photon Uncaging of GABA (the principal inhibitory neurotransmitter) 
 
GABA is one of the major inhibitory neurotransmitters in the adult brain, but the description of 

caged GABA has been limited to few examples. One example is the use of two-photon uncaging 

of GABA from CDNI (4-carboxymethoxy-5,7- dinitroindolinyl) in brain tissues but this cage 

shows low two-photon uncaging cross section (du = 0.3 GM at 720 nm).  

Another example for two-photon uncaging of GABA is N-DCAC- GABA (N-DCAC = 7-

(dicarboxymethyl)-aminocoumarin) at 800 nm on hippocampal neurons in brain slices.  

This system has two limitations: (1) the low two-photon excitation efficiency of 0.37 GM at 

800 nm and also (2) the long half time of GABA release (4 ms).  The release of GABA is an 

important field of study and it is yet challenging in the neuroscience domain to develop a two-

photon efficient caged-GABA. In 2012, Donato and co-workers have described the release of 

the GABA neurotransmitter at 800 nm using a two-photon sensitive photoremovable protecting 

group based on a o-nitrobiphenyl core (Donato et al., 2012). The same group have been 

developing two-photon efficient groups in the 2-(o-nitrophenyl)-propyl series with donor-

acceptor chromophores with high two-photon absorption cross sections like the PMNB cage 

mentioned above for the release of glutamates with a two-photon uncaging efficiency of 3.1 

GM at 740 nm. Replacing the alkoxy donor group with a functionalized di-alkylamino leads to 

the formation of a new PPG with improved solubility and an increased two-photon uncaging 

cross section up to 11 GM at 800 nm. The new groups: 2-(4’-(bis(carboxymethyl)amino)-4-

nitro-[1,1’- biphenyl]-3-yl) propan-1-ol (CANBP) and 2-(4’-(bis((2-

methoxyethoxy)ethyl)amino)-4-nitro-[1,1’-biphenyl]-3-yl) propan-1-ol (EANBP) were used 

for the rapid and spatially controlled GABA release in intact brain slices. EANBP-GABA 

samples were irradiated at 405 nm in a phosphate buffer (pH = 7.4) and it was obvious the caged 

compound’s concentration started to decrease as the irradiation times increase and a new 

absorption band related to the uncaging by-product starts to appear with time (Scheme I.28). 
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Scheme I.28: UV/Visible spectrum changes of EANBP-GABA during photolysis at 405 nm in 
phosphate buffer (50 mM pH 7.4). 
 
The caged CANBP-GABA system was tested ex vivo to evaluate the release of GABA at the 

neuronal level of intact brain tissue. A voltage clamp recording was performed in rat cortical 

brain slices to record the outward GABAergic currents.  

An 800 nm laser light was scanned over the aptical dendrite (Scheme I.29, A) and results in an 

outward current (Scheme I.29, B-CTR) that validates the fact that GABA was released from 

the cage molecule during the light scanning. Another experiment was done by blocking the 

GABA channel receptors using picrotoxin (PTX) which led to a complete destruction of the 

current confirming that the current previously obtained was completely originated from the 

GABA receptors activated by the GABA released after photocleavage (Scheme I.29, B-PTX). 

 

 
Scheme I.29: Laser light scanning (l = 800 nm) of aptical dendrite of rat cortical brain slices (A) and 
the resulting current recording upon GABA release (B - black) and its destruction upon the use of GABA 
channel blockers (B - red). 
 
 



 

 29 

This research work has validated that changing the alkoxy group into a PEG or bis 

(carboxymethyl) amino group increases the solubility of the molecule in water and also 

enhances the efficiency of uncaging of GABA.  

The two studied molecules of the 2-(o-nitrophenyl)-propyl series has proven to have interesting 

activity in two-photon excitation (up to 11 GM) at wavelengths compatible with biological 

experiments (800 nm). 

 
3.1.2. Two-Photon Uncaging of Glutamates (the principal excitatory neurotransmitter) 

 
Glutamate is generally acknowledged to be the most important transmitter for normal brain 

function. Nearly all excitatory neurons in the central nervous system are glutamatergic, and it 

is estimated that over half of all brain synapses release this agent. Glutamate plays an especially 

important role in clinical neurology because elevated concentrations of extracellular glutamate, 

released as a result of neural injury, are toxic to neurons.  

Ellis-Davies and his group have synthesized a caged glutamate (4-carboxymethoxy-5,7-

dinitroindolinylglutamate or CDNI-Glu) that releases glutamate with an uncaging quantum 

yield of 0.5 GM (Ellis-Davies et al., 2007).  

 

A small comparison between this new cage and the 4-methoxy-7-nitroindolinylglutamate or 

MNI-Glu (developed by Corrie et al., 1999 and Matsuzaki et al., 2001) showed that the CDNI 

cage is 6 times more efficient (quantum yield is 6 times higher) than the MNI cage in 

monophoton irradiations (350 nm) and two-photon excitation at 720 nm. The structures of MNI-

Glu and CDNI-Glu are represented in the Scheme I.30. 

 

 
Scheme I.30: Structures of MNI-Glu and CDNI-Glu. 
 
 

NO2

OMe

N
O
CO2

-

NH3+

MNI-Glu

NO2

O

N
O
CO2

-

NH3+

O2N

OHO

CDNI-Glu



 

 30 

AMPA-type glutamate receptors open with rise-times of approximately 100 –500 µs, so, 

ideally, the rate of glutamate uncaging should be 100,000/s.  

Irradiations were done on neurons in isolated cortical brain slices and it was evident that the 

response of glutamate receptors was higher when using CDNI-Glu and the AMPA-receptor 

induced current was four to five times larger than that of MNI-Glu (Scheme I.31). 

 

 
Scheme I.31: AMPA-receptor current induced upon the release of glutamate after uncaging from MNI 
(black) and CDNI (red). 
 
Another example of the design of caged glutamates was the one by Specht’s group (Gug et al., 

2008), where they designed a series of two-photon sensitive caged glutamates with efficiencies 

that were never reported for caged glutamates. The design focused on several chemical 

modifications that help in red-shifting the wavelength of absorbance and also the two-photon 

efficiency of uncaging. The main modifications were adding electron-donating groups or by 

extending the conjugation by adding p systems (Scheme I.32). 

 
Scheme I.32: Structure of the new caged glutamate with high two-photon efficiency. 
 
These newly developed groups show interesting advantages on previously designed caged-

glutamates like CDNI-Glu and MNI-Glu. Caged glutamates BNSMB-Glu and BNSF-Glu 

afforded 60 % and 65 % yields of glutamate release per glutamate unit, respectively. As each 

caging system incorporates two caged glutamates, the overall yield of glutamate release reaches 

120% per molecule. A significant red-shift is evident for these two new cages, as well as a 

strong increase in molar extinction coefficient (Table 2). 
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Caged	Glutamate	 lmax	(nm)	 e	(lmax)	[M-1	cm-1]	 dufu	(GM)	

BNSMB-Glu	 400	 39340	 0.9	

BNSF-Glu	 415	 63960	 5.0	

MNI-Glu	 350	 4300	 0.06	

CDNI-Glu	 350	 4500	 0.5	

PMNB-Glu	 317	 9900	 0.45	

Table 2: One- and two-photon photophysical properties of caged glutamates. 
 
 
These examples of caged-GABA and caged-Glutamates have demonstrated the importance of 

the use of two-photon sensitive photoremovable protecting groups in neuroscience.  

 

The design of several PPGs has led to a breakthrough for the use of caged neurotransmitters, 

and it has led to the introduction of new families of two-photon sensitive caged 

neurotransmitters that recently showed interesting photophysical properties in terms of 

absorption wavelength, molar extinction coefficient, yield of neurotransmitter release and two-

photon uncaging cross section. 

 

3.2. Calcium as second messenger in physiological and biochemical processes. 
 
Photomanipulation of cellular chemistry using caged compounds provides a uniquely powerful 

means to interact with such cellular dynamics, as it can touch upon any one of the above 

dimensions. Thus, since light passes through cell membranes, uncaging can rapidly release a 

biomolecule in an intracellular compartment. This space is not readily accessible to many 

second messengers (inositol-1,4,5-trisphosphate (IP3), ATP, Ca2+, cAMP, cGMP) when they 

are applied to cells externally, as their charge makes them impermeable to the plasma 

membrane. Furthermore, uniform illumination results in release throughout the cytosol, or the 

release can be localized by focusing the uncaging beam on one part of a cell.  

Calcium is an important second messenger for wide variety of physiological and biochemical 

processes such as muscle contraction, neurotransmitter release, ion-channel gating, exocytosis, 

etc… One approach for the use of calcium developed by Tsien and co-workers (Tsien et al., 

1988) that involves reducing the Ca2+-buffering capacity of a 1,2-bis(o-aminophenoxy)-ethane-

N, N, N’, N’-tetraacetic acid derivative (BAPTA).  
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Another approach was that described by Ellis-Davies and his group (Ellis-Davies et al., 1994), 

that consists on synthesizing photosensitive derivatives (NP-EGTA) that have high affinity for 

Ca2+ that upon irradiation produces two moieties that are known to have very low affinity to 

Ca2+ and thus the bound calcium ions are released (Scheme I.33). Upon irradiation, the 

coordination sphere of calcium with the chelator is broken into diacetic acid by-products that 

show very low affinity towards calcium ions that are freely released inside the medium. 

 

 
Scheme I.33: Photorelease of Ca2+ from NPEGTA. Ca2+ is liberated from the chelator cation complex 
by lysis of the chelator backbone. The two imino di-acetic acid photoproducts have a lower affinity for 
Ca2+. 
 
Normally, PPGs are linked by covalent bonds to the biomolecule, but in the case of calcium 

ions uncaging, new strategy has been developed focusing on the synthesis of photolabile groups 

with known high affinity calcium chelators (BAPTA, EDTA, and EGTA) releasing by-product 

with much lower affinity to calcium and thus releasing free Ca2+ in the system.  

Another interesting and more recent example for photo-releasable caged calcium was the one 

described in 2016 (Agarwal et al., 2016). Uncaging remains a uniquely powerful way to control 

the concentration of intracellular calcium ions. An o-nitrobenzyl based cage was developed by 

Ellis-Davies and co-workers with a new chromophore; bisstyrylthiophene (BIST, blue core 

Scheme I.34). This PPG has a one-photon absorption maximum at 440 nm and also shows a 

large two-photon absorption cross-section of at least 250 GM in the range of 720-830 nm. A 

photosensitive PPG was developed using ethylene glycoltetra-acetic acid (EGTA) as a Calcium 

chelator that upon photoirradiation releases the nitroso derivative of BIST along with the amino 

diacetic acid and the free calcium ions (Scheme I.34). 

 

 

Scheme I.34: Photo-liberation of calcium ions from o-NB-BIST-EGTA caged chelator. 
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Since this calcium caged BIST shows high efficiency in two-photon, it was used for the 

photocontrol of local Ca2+ signaling. In cardiac myocyte cells a small amount of Ca2+ enters the 

cytoplasm upon depolarization and initiates Ca2+- induced Ca2+ release from the sarcoplasmic 

reticulum (SR) store. Such release events can remain highly localized or initiate “Ca2+ waves” 

that propagate through the cell.  

Some of the cells were treated with caffeine, this latter completely offloads calcium ions from 

SR and allows the pure photolytic calcium to be detected. Examined myocytes were loaded 

with BIST-2EGTA and rhodamine (rhod-2) as a fluorescent dye, followed by a two-photon 

irradiation at 810 nm releasing calcium ions in a larger manner than that observed with BIST-

2EGTA in caffeine-treated cells (Scheme I.35). 

 

 

Scheme I.35: Localized control of Ca2+-induced Ca2+ release in cardiac myocytes using 2P photolysis. 
Single cardiac myocytes were loaded with BIST-2EGTA and rhod-2. Changes in [Ca2+]free were 
monitored in line scan mode using laser-scanning confocal microscopy at 561 nm after 2P uncaging at 
the center of the line with a mode-locked Ti:sapphire laser tuned to 810 nm. (a) Point 2P irradiation with 
5 ms pulse (red bar) triggered local Ca2+-induced Ca2+ release from the SR. (b) Photolysis of BIST-
2EGTA produced highly spatially confined Ca2+ release. The cell was treated with caffeine (20 mM) to 
unload the Ca2+ from the SR. (c) Increasing pulse duration to 20 ms initiated a Ca2+ “mini” wave, with 
discrete Ca2+ release events apparent beyond the initial uncaging location. (d) Reducing pulse duration 
to 1 ms produced rapid, efficient, and highly localized Ca2+-induced Ca2+ release. (e) Pure photolytic 
release of Ca2+ from BIST-2EGTA during irradiation for 1 ms (cell treated with caffeine as in b). 
 
The newly developed BIST protecting group showed to be an exceptional photosensitive caged 

Ca2+ probe that presents interesting activity in one-photon and two-photon excitation. This cage 

molecule was used to quantify the release of calcium ions inside cells and to photocontrol 

calcium ion signaling as well. 
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3.3. Light control of Protein Expression  
 
Generally, RNA is known as an essential molecule involved in various biological roles, 

particularly, in regulating gene expression: messenger RNA (mRNA) and interfering RNA 

(iRNA). These two types of RNA have become the most used tools to study gene expression. 

However, it is very difficult to regulate such molecules through a strictly optogenetic-based 

approach. In order to overcome this difficulty, making these mRNA/iRNA spatially and 

temporally controllable, by the use of light as an activator, would broaden their range of use. 

Therefore, the use of a chemical approach, using photoremovable protecting groups, helps in 

strictly applying an optogenetic approach; light-controlled of protein expression. 

 
3.3.1. DNA Hybridization by Two-Color Two-Photon Uncaging 

 
In a recent study by Heckel group in collaboration with our group (Fichte et al., 2016) aimed 

to introduce two-photon sensitive caged phosphoramidites into DNA and to prove that DNA 

hybridization could be controlled with 3D resolution. This study developed and “orthogonal” 

two-color two-photon uncaging that is defined as the selective addressing to one group among 

a set of coexisting photolabile groups while leaving the others untouched.  

Two uncaging chromophores were used for this study, [7-(diethylamino) coumarin-4-yl]methyl 

(DEACM) used to nucleobase-protect a dT residue (Scheme I.36, blue) and p-

dialkylaminonitrobiphenyl (ANBP) for a dG residue (Scheme I.36, red), with two-photon 

action cross-sections of 0.12 and 11 GM, respectively at 800 nm. 

 

 
Scheme I.36: Two different caged thiol-modified DNA sequences: DNA 1 and DNA 2. X and Y 
represent the caged nucleotides dTDEACM and dGANBP respectively. 
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Since the uncaging process in DNA cannot be followed by spectroscopic methods, a strand-

displacement assay where to each strand DNA1 and DNA2 a DNA duplex probe consisting of 

a fluophore and a quencher (shorter-sense strand).  

Upon uncaging, the shorter sense strand (quencher) is displaced marking the uncaging at a 

specific site with the characteristic emission of the fluophore (Scheme I.37, top); the uncaging 

process was studied on hippocampal neurons with specific site irradiations (Scheme I.37, 

bottom). 

 

 
Scheme I.37: (Left) Schematic representation of the strand-displacement strategy used for the 
visualization of one-photon and two-photon uncaging, (Right) the duplex probe together with DNA1 
were holographically illuminated at 780 nm for two-photon excitation (white circle indicates the location 
of the illumination spot). 

3.3.2. Light Induced Gene Expression  
 
Alternatively to the regulation of RNAs, the light control of gene expression can also be 

performed at the post-transcriptional level using small caged trans-activator together with 

ligand-induced gene expression systems. 

The Tet system is the most commonly used ligand-inducible gene expression systems that takes 

advantage of an Escherichia coli antibiotic resistance mechanism. This tetracycline-responsive 

gene regulation system is highly specific and efficient and is thus used widely for transgene 

expression. Its main element is the homodimeric Tet repressor (TetR) (Gossen et al., 1992 and 

Gossen et al., 1995).  

TetR tightly binds its effector tetracycline, or the more potent derivative doxycycline, as a 

magnesium (II) chelate to a regulatory core domain. This leads to an allosteric conformational 

change in TetR that results in its dissociation from the operator DNA sequence (TetOff system).  

Expansion of the biological space for TetR-based expression systems has led to novel 

eukaryotic transcriptional activators.  
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Random mutagenesis coupled with phenotypic screening has given rise to variants termed rtTA 

(reverse tetracycline-controlled trans-activator), which exhibit a reversed allosteric response 

and require the tetracycline agonists anhydrotetracycline or doxycycline for DNA binding 

(TetOn system) (Das et al., 2016, Urlinger et al., 2000). 

 In a very recent work, Specht’s group have described two caged Doxycycline systems: 

EANBP-9-aminodoxycyline and PEG7-DEACM-9-aminodoxycycline (Goegan et al., 2018 

Scheme I.38). 

 

 
Scheme I.38: Structures of the two caged-doxycycline systems used for light induced gene expression. 
 

Adding PEG7-DEACM-9-aminodoxycycline to Tet system competent neuronal cultures did not 

produce any appreciable levels of background fluorescence. In turn, quantitative 

photoactivation of PEG7-DEACM-9- aminodoxycycline before adding it to the cultures yielded 

levels of GFP fluorescence that were very similar to those induced by unmodified PEG7-

DEACM-9-aminodoxycycline. This strongly suggested that the side product of the photolytic 

reaction (PEG7-DEACM-OH) did not exhibit any significant toxicity as the sensitive gene 

expression as well as neuronal morphology were not impaired (Scheme I.39). 
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Scheme I.39: Photoactivated transgene induction with doxycycline (Dox) derivatives. Representative 
images of GFP expression (24 h after induction) with different doxycycline derivatives. One-photon 
irradiation (430 nm) was performed prior to administration to cells. (caged NH2-Dox = PEG7-DEACM-
9-aminodoxycycline). 
 

There is a sizeable need for two-photon sensitive caged doxycycline derivatives which can be 

used to induce transgene expression in dense three-dimensional tissue with two-photon 

irradiation. The use of 9-aminodoxycycline allows easy and efficient grafting of visible-light 

and two-photon sensitive photoremovable chromophores onto it (i.e. EANBP and PEG7-

DEACM). The 9- aminodoxycyline derivative induces similar transgene expression levels as 

the ‘gold standard’ doxycycline, albeit at higher concentrations. In summary, a new caged 

doxycycline derivative can be used in combination with the TetOn system for photoactivated 

gene expression. 

3.4. Photo-triggering of Cell Adhesion  
 
One of the fundamental biological processes are cell migration and cell adhesion which are 

implicated in several biological phenomena like cellular development or the metastasis 

propagation (Ridley et al., 2004). The study of the selectivity and the mechanism that drives 

the cells to adhere to a certain surface has been an interesting subject to study.  
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Different methods to control the adhesion were studied: thermal control (Okano et al., 1995), 

electrochemical control (Yeo et al., 2001) and even photochemical control (Nakanishi et al., 

2007), all these served in establishing an artificial control for the triggering of cell adhesion 

(Scheme I.40).  

 

 
Scheme I.40: The functioning principal of photo-triggered cell adhesion. 
 
Since photo-labile protecting groups have the capacity to liberate a biological effector that 

retains it reactive functionality after irradiation, in the case of cellular adhesion the peptide 

responsible for adhesion is liberated. The use of two-photon excitation is not only advantageous 

because it used near IR wavelengths that fall in the transparency window for biology, but also 

because it allows an important spatial control.  

An important example of Photo-triggering cell adhesion was described using cyclopeptide RGD 

that was caged with a 3-(4,5-Dimethoxy-2-nitrophenyl)-2-butyl ester (DMNPB) 

photoremovable group (Petersen et al., 2008). The presence of the cage compounds with the 

peptide blocks the integrin receptors on the surface of the cells from recognizing the peptide, 

but after irradiation and the departure of the PPG, the RGD is released and the integrin receptors 

could recognize this peptide and thus permits the cells to adhere (Scheme I.41). 
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Scheme I.41: Chemical structure of cyclo[RGD(DMNPB)fK] (pentapeptide: cyclo (-Arg-Gly-Asp-D-
Phe-Val-), DMNPB (red) attached to the surface through the TEG linker (green). The caging group is 
released upon irradiation at 351 nm. 
 
These results show that cell attachment to surfaces can be inhibited efficiently by blocking the 

carboxylic acid side chain of the aspartic acid residue in the RGD motif by connecting a PPG. 

In conclusion, the cells attached to RGD-containing surfaces already show a high degree of 

spreading, whereas cells attached to caged-RGD-containing surfaces show much slower 

spreading. The use of the photosensitive DMNBP cage as a trigger for light-modulated cell 

adhesion provides much better results in terms of efficiency and selectivity than other reported 

photoactivation strategies based on the azobenzene unit (Schutt et al., 2003, Milbardt et al., 

2005, Auernheimer et al., 2005). 
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4. Recently Developed Photoremovable Protecting Groups with 
New Properties 

 
The importance of photolabile protecting groups has been evident in several domains and their 

usage has increased in the last decade and their activity has attracted researchers’ attention. 

Several modifications in the chemical structure of these groups has led to significant 

modifications in their respective photochemical and photophysical properties. A major 

limitation of these popular photocages is that their chromophores absorb mostly in the 

ultraviolet region of the optical spectrum. Ultraviolet light has limited tissue penetration, 

restricting photo-caging studies to cells and tissue slices. In addition, exposure of cells or tissues 

to intense UV light results in phototoxic cell damage or death. The ideal wavelength range to 

be used in animal tissues, known as the biological window, is ~600- 1000 nm, where tissues 

have maximal light transmittance. At these far red/near-IR wavelengths, light achieves maximal 

tissue penetration while minimizing phototoxicity. 

This part will be dedicated to research works on photoremovable protecting groups recently 

published. These research works still present limitations like (1) the sensitivity of the PPG to 

light presenting long irradiation times or (2) the release of non-fluorescent by-product which 

is a major drawback for the usage in biological systems that makes it impossible to follow the 

uncaging events in cellular media or (3) solvent-dependent photolysis; photochemical reaction 

that work in specific solvents that are not biocompatible like DMSO. 

 
4.1. BODIPY Photocages 

 
One recent work by Petersen and co-workers (Petersen et al., 2018) describes a family of 

BODIPY photocages using Visible/Near IR light. The photocleavage of these BODIPY 

photocages is realized in alcohols under light irradiation in order to break the carbamate or 

carbonate linkage and release the attached molecule (Scheme I.42). 

 

 
Scheme I.42: Mechanism of photocleavage of BODIBY-photocages in alcohols. 
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Following the structure-activity relationship, this group described the synthesis of a set of 

BODIPY photocages by chemically modifying several positions aiming to tune the 

photophysical and photochemical properties (Scheme I.43). 

 

 
Scheme I.43: Structures of different BODIPY photocages with their respective wavelength of 
absorption. 
 
However, boron-alkylation leads to a large increase in the quantum yield of release, while not 

significantly perturbing the λmax of the chromophore. For example, the boron-alkylated 

derivative (Scheme I.43, red) shows a quantum yield ~20 times larger than its boron- fluorinated 

analog. Whereas, adding strong electron-donating groups (bismethyl amino) to the bis(styryl) 

linker leads to a red-shifted absorption maximum up to 50 nm (Scheme I.43, red and green). 

One of these derivatives was chemically modified in the aim for testing the usefulness of these 

photocages in live cell imaging. 4-nitrobenzoic acid was used as the leaving group, since 

nitrobenzoic acids are known fluorescence quenchers of BODIPY dyes. A short ethylene glycol 

chain was added to the bis(styryl) groups to aid with water solubility. The synthesized 

compound (Scheme I.44) does not exhibit detectable fluorescence when kept in the dark at room 

temperature. Upon irradiation, the nitrobenzoic acid is released and thus the photocage retains 

its fluorescence signal and thus shows an increase in fluorescence in cells at 610 nm after 6 

minutes of irradiation. Also, the incubation of the compound with the cells doesn’t show any 

fluorescence without irradiation even after 6 minutes, this implies that the fluorescence obtained 

is due to the release of the quencher and not due to the interaction of the photocage with cellular 

proteins (Scheme I.44). 
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Scheme I.44: Fluorescence images of HeLa cells incubated with 20 μM of the compound: (A-D) 
irradiated with 635 nm light and (E-H) cells incubated with the compound with no irradiation as a 
function of time. (I) Increase in the fluorescence intensity upon irradiation of compound (red, Scheme 
I.44) in a cuve for up to 120 minutes in H2O with 5% BSA (J) structure of the compound incubated with 
the cells. 
 
This example shows that BODIPY can be useful photocages that help to follow the uncaging 

event by fluorescence in cells. These photocages exhibit interesting absorbance wavelength that 

fall in the transparency window for biological experiments. But these photocages present two 

major limitations:  

A) These cages are already fluorescent without photocleavage except when attached to 

fluorescence quenchers (nitrobenzoic acid for example) making them not interesting for 

attaching a diversity of biological effectors that don’t act as quenchers for such 

photoremovable protecting groups. 

B) These cages show low sensitivity towards light and this demonstrated by the low values 

of the one-photon quantum yield (0.0041% - 0.14%) and by the long irradiation times 

that go up to 2 hours in order to observe a strong fluorescence which is contradictory to 

what is awaited from an efficient PPG in biology; a rapid cleavage resulting in a rapid 

jump in the concentration of the biological effector. 
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4.2. Thiochromone-Type Groups 
 
Another research work on photoremovable protecting groups that release a fluorescent by-

product has been recently described for the quantification of the photo-deprotection of caged 

resveratrol by fluorescence (Hikage et al., 2017). In this study the authors have used 

thiochromone (TCM)-type PPG for the release of resveratrol by light irradiation following the 

release mechanism that releases a highly fluorescent by-product (Scheme I.45). 

 

 
Scheme I.45: Mechanism of photocleavage of thiochromone-type PPG. 
 
A reaction called luciferin−luciferase reaction generates the chemiluminescent (CL) product 

oxyluciferin, and resveratrol is known to be an antioxidant or an inhibitor of luciferase. Thus, 

when resveratrol is present in the luciferin− luciferase reaction, it has been reported to insert 

preferentially into the active site of luciferase thus blocking the luciferin− luciferase reaction 

and inhibiting the formation of oxyluciferin and diminishing its generation. III-caged 

resveratrol (III corresponds to the attachment of 3 thiochromone units on resveratrol) was used 

in order to block the formation of oxyluciferin and the uncaging process was followed by 

fluorescence induced from the released by-product. Upon irradiation at 360 nm, the photo-

deprotection of III-caged resveratrol in DMSO induces a fluorescent signal where its intensity 

increases with the increase in irradiation time where more resveratrol is released and more by-

product of photocleavage is accumulated (Scheme I.46). 
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Scheme I.46: Fluorescence spectra of the photo-deprotection process of III-caged resveratrol (irradiated 
at 360 nm in DMSO). 
 
As the time of irradiation increases, more resveratrol is released in the medium and thus more 

luciferase reactions are blocked and thus less oxyluciferin is generated. Using these caged-

resveratrol, the inhibitory ability of resveratrol was evaluated; as the irradiation time increase 

the relative luminescence unit (RLU); which defines the amount of oxyluciferin present in the 

medium; decreases as more resveratrol is released in the medium (Scheme I.47). 

 

 
Scheme I.47: RLU of oxyluciferin in each photo-deprotection process of III-caged resveratrol. 
 
This is one example of how to monitor the uncaging process via fluorescence measurements 

through a newly developed thiochromone-type caged resveratrol. The caged resveratrol with 

thiochromone-type PPGs succeeded in increasing the oxyluciferin generation through the 

inhibitory ability of resveratrol.  

After photoirradiation of the caged resveratrol in DMSO, the CL intensity of oxyluciferin, 

derived from the luciferin−luciferase reaction, diminished. Therefore, the original inhibitory 

ability of resveratrol was regenerated.  
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Additionally, the fluorescence intensity of the highly fluorescent by-product which is released 

from the thiochromone- type PPG during photoirradiation, increased. Furthermore, a good 

linear correlation was observed between the increasing rate of FL intensity and diminishing rate 

of CL intensity. This example shows that one way to quantitatively monitor the uncaging of 

caged resveratrol is by measuring fluorescence, but this work has a major limitation: the 

photocleavage could only be done in DMSO due to the poor solubility of the caged compound 

in other solvents and the by-product shows interesting fluorescence but only when released in 

DMSO which is known to be a toxic solvent for biological experiments and toxic for cellular 

media. 

 
4.3. Bimane-Based Photolabile Groups 

 
An example of a recently developed Photoremovable Protecting Group is the one described by 

Chaudhuri and his colleagues (Chaudhuri et al., 2017). In this work, the authors have reported 

the synthesis of bimane-based PPG that induce fluorescent signal after the single or dual release 

of respectively carboxylic acids and amino acids. The bimane moiety present several interesting 

properties like a strong fluorescent nature, significant absorbance in the visible region and good 

water solubility and in addition to those, such groups have been used for biological purposes 

like labeling of human red cells (Kosower et al., 1979) and thiol sensing (Montoya et al., 2015). 

This work describes the photolysis of these bimane-based PPGs for the release of one or two 

(similar or different) carboxylic acids or amino acids according to the mechanism presented in 

Scheme I.48. 

 

 
Scheme I.48: Mechanism of photocleavage of bimane-based PPG and the dual release of carboxylic or 
amino acids. 
 
Upon irradiation the bimane-type caged acids undergo photolysis releasing the attached acids 

in a mixture of acetonitrile/water at 365 nm and the reaction was monitored by HPLC in order 

to quantify the release of the acid and the by-product. It is evident that the caged compound 

starts to disappear and thus liberating the free acid previously attached to it (Scheme I.49). 
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Scheme I.49: HPLC follow-up of the photolysis of a mono-acid bimane caged compound with 
irradiation time in acetonitrile/water (7/3). 
 
These systems could be used as well with a range of biological effectors since they can attach 

to molecules with acid functionality thus to a diversity of bio-efficient molecules (eg: amino 

acids). But this PPG has a major limitation; the irradiation times are too long, and this makes 

the system less efficient to light (after 90 minutes of irradiation, 20% of starting material is still 

present), this makes the bimane-type cage less efficient for certain biological experiments 

because in such cases a rapid release followed by a rapid increase in the biological effector’s 

concentration is required. 

 

In conclusion, these groups present interesting photochemical and photophysical properties and 

they show promising results in biological tests. Despite the limitation of usage (solvent, 

irradiation time, absorption wavelength…) they present a fluorescence signal that permits to 

follow the uncaging event and to monitor the release of the biomolecule into the biological 

medium. 
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5. Fluorescence as an Important Method to Monitor Uncaging 
 
Throughout the several parts discussed above it was evident that photoremovable protecting 

groups act as an important method for controlling biological processes as well as synthetic 

chemical steps. These groups present interesting photochemical properties that makes them 

sensitive to light and undergo photochemical reactions in their excited state and also interesting 

photophysical properties shown by their ability to absorb light at wavelengths that fall in the 

transparency window for tissues that makes them efficient utilities in biological experiments. 

However, it’s difficult to calibrate the light intensity to efficiently induce the uncaging events, 

and any biological application requires a time-consuming study to find the right light intensity 

on a given biological system. Therefore, it might be advantageous if the uncaging event could 

be monitored by the emergence of fluorescence (e.g. Optical reporting). Except for cinnamate 

type and thiochromone-type photoremovable groups, the development of optical reporters of 

uncaging has only attracted little attention. Interestingly, these two last PPGs have been 

designed to release a fluorophore as a side product.  

As fluorophores play the central role in fluorescence spectroscopy and imaging we will start 

with an investigation of their manifold interactions with light. A fluorophore is a component 

that causes a molecule to absorb energy of a specific wavelength and then re-remit energy at a 

different but equally specific wavelength. The amount and wavelength of the emitted energy 

depend on both the fluorophore and the chemical environment of the fluorophore. Fluorophores 

are specific chromophores, that are not only able to absorb light through their chromophoric 

unit, but also to emit light after excitation. Fluorescence denotes allowed transitions with a 

lifetime in the nanosecond range from higher to lower excited singlet states of molecules.  

Several factors affect the intensity of fluorescence and the fluorescence emission efficiency: the 

nature of the chromophoric unit (presence or absence of a heteroatom), the nature of the bonds 

linking the several units (single, double or triple), the chemical environment surrounding the 

molecule (coordination bonds with metals as an example) and the length of the conjugation 

inside the system that determines the extension of the electron delocalization throughout the 

system. 
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6. Project 
 
The first project was financed by an IdEx Grant “Linus Pauling 2015” and the work was done 

in the “Laboratoire de Conception et d’Application de Molècules Bioactives” (CAMB) at the 

University of Strasbourg - Faculty of Pharmacy. 

 
This project aimed for the design of two-photon sensitive photoremovable protecting groups of 

the o-nitroaryl series releasing a fluorescent by-product for the monitoring of uncaging in 

biological media. These compounds have been widely used in synthesis and biological 

applications, but no example of fluorescent by-products release was reported. We wish to 

optimize a synthetic route for the development of photoremovable protecting groups from the 

o-nitroaryl family. We also aim to synthesize groups with high efficiency in two-photon 

excitation making them useful candidates for biological applications. Also, photoremovable 

groups with a conjugated system would increase the fluorescence of the by-product and also 

would modulate the photophysical and photochemical properties. The obtained compounds will 

be used for testing the uncaging of neurotransmitters and their release in neurons while taking 

advantage of the fluorescence of the by-product that will act as an optical reporter for the 

uncaging event. 

 

 
Scheme I.50: Design of o-nitroaryl PPG releasing a fluorescent by-product. 
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The second project was done in collaboration between the “Laboratoire de Conception et 

d’Application de Molècules Bioactives” (CAMB) at the Faculty of Pharmacy of Strasbourg and 

“Laboratoire de Chimie Biophysique” (UMR 8640) at the École Normale Supérieure-

Département de Chimie in Paris-France. 

 

This project aimed for the design of new photoremovable protecting groups for light-controlled 

cell adhesion. The architecture of the used system includes the photoremovable protecting 

group with long polyethylene glycol (PEG) chains. This system is further coupled to Poly-L-

Lysine (PLL) chains. We wish to use compounds previously developed in the lab to optimize 

the synthesis of new analogs that are further coupled to long polymeric chain of Poly-L-Lysine. 

These caged-polymers will be used in the photoregulation of adhering cells using fluorophores 

or long chains with reactive terminals for further surface modifications. 

 

 
Scheme I.51: Use of Photoremovable Protecting Group for the light control of cell adhesion. 
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1. Strategy 
 
The design of the pro-fluorescent photoremovable protecting group to be synthesized was 

inspired by the previous work done in the lab. EANBP (5, R = bis (2-methoxyethoxy)ethyl, 

Scheme II.1) was the o-nitrophenethyl (o-NPP) protecting group previously used for caged 

glutamates and caged doxycycline. It showed important two-photon efficiency due to the 

conjugated biphenyl core and the donor-acceptor nitro and bis-alkylamino groups (Donato et 

al., 2012 and Goegan et al., 2018). The photochemical properties were promising, and this was 

evident from the irradiation times that translated the sensitivity of this group to light and the 

efficient photo-release of the biomolecule after irradiation. We took these advantages into 

account and decided to synthesize a structural analog with an extended conjugation. 

 

 
Scheme II.1: Synthesis of two-photon efficient photremovable protecting group – EANBP (5). 
 
(i) tBuOK, tert-butylchloroacetate, DMF, room temp., 2 h, 96 % (ii) a) NaH, CH3I, THF, room temp., 5 
h, b) DIBAL-H, THF, room temp., 3 h, 83 %, (iii) K2CO3, Bu4NBr, Pd(OAc)2, EtOH/H2O (2:1), 
microwave, 160 °C, 10 min, 70 %. 
 
In order to have access to EANBP analogs with an extended conjugation of the uncaging by 

product (Scheme I.50, Top), we proposed to adapt two synthetical strategies for the construction 

of this PPG family already reported in the literature. 

The first strategy is using a vicarious nucleophilic substitution (VNS) of the nitrobenzene 

derivative 1. This substitution was described by Makosza and co-workers (Makosza et al., 1987 

and Makosza et al., 2010); substitution of aromatic H-adducts by an a-halocarbanions to 

nitroarenes undergo fast base induced b-elimination giving nitrobenzylic carbanions that 

affords products of replacement of the ring hydrogen with the carbanion moiety (Scheme II.2).  

It includes the substitution of an aromatic proton in ortho or para position to nitro group with 

the carbanion of an a-halo carbonyl, sulfonyl, esters and malonate derivatives.  
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Scheme II.2: Mechanism of the vicarious nucleophilic substitution of aromatic protons with carbonyl 
compounds 
 
In the synthesis of EANBP, derivative 2 was obtained by the VNS of the enolate of tert-

butylchloroacetate on the nitrobenzene derivative 1.  

 

The second reported strategy for the construction of o-nitrophenethyl derivatives is based on 

the coupling of nitro ethylbenzene 6 and paraformaldehyde (Bühler et al., 2004 and Smirnova 

et al., 2005). The strategy implements the deprotonation of the CH2 of the ethyl chain with 
tBuOK in tBuOH followed by the nucleophilic attack of the anion on the carbonyl function in 

order to form the alcohol 7. This strategy was tested by Bühler and co-workers (Bühler et al., 

2004) on several nitro ethylbenzene derivatives (R1, R2, R3, R4 = H, NH2, NO2, Cl, Br, I) but 

only on paraformaldehyde as electrophile. (Scheme II.3).  

 

 
Scheme II.3: Synthesis of o-nitrophenethyl 7 via carbanion of 6 and paraformaldehyde.  
 
(i) Paraformaldehyde, tBuOK, tBuOH, DMSO, room temp, 1h, 100%. 
 
Another recent work by Silvestri and his group (Silvestri et al., 2015) uses a similar strategy 

based on the deprotonation of substituted nitrotoluene derivatives 8 by sodium ethoxide in 

DMSO in order to form the alcohol 9 by a nucleophile addition of the formed carbanion with 

benzaldehyde. By using aromatic aldehydes, it is possible to access more conjugated o-

nitrophenethyl groups (Scheme II.4) 
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Scheme II.4: Synthesis of o-nitrophenethyl 9 via carbanion of 8 and benzaldehyde. 
 
(i) Benzaldehyde, EtONa, anhydrous DMSO, room temp, 12h, 44%. 
 

2. Design 
 
These two strategies are promising for the synthesis of o-nitrophenthyl derivatives and our aim 

is to adapt those strategies for the synthesis of EANBP analogs with the possibility to extend 

the conjugation. This conjugation would give rise to a fluorescent by-product after 

photocleavage according to the mechanism of photocleavage of the o-nitrophenethyl series 

presented in section 1.3.6.2. This mechanism is illustrated in Scheme II.5 (where the red circle 

represents the biomolecule, R = Ar-X and R’ = CH3). 

 

 
Scheme II.5: Mechanism of photoactivation of o-nitrophenethyl PPG with an extended conjugation for 
the release of a fluorescent by-product. 
 
So, we suggested two different retrosynthetic strategies (Scheme II.6) for the construction of a 

conjugated analog of EANBP using modified procedures of the strategies discussed above. 
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Scheme II.6: Retrosynthetic analysis for the synthesis of o-nitrophenethyl derivative: conjugated analog 
of EANBP. 
Retrosynthesis pathway A: Vicarious Nucleophilic Substitution using para substituted nitrobenzene 
derivatives with para substituted a-chlorocarbonyl derivatives. 
Retrosynthesis pathway B: Nucleophilic attack of carbanion derived from methyl or ethyl nitrobenzene 
on para substituted benzaldehyde derivatives. 
 

2.1. Exploration of Pro-Fluorescent EANBP Analog Synthesis Via Vicarious 
Nucleophilic Substitution 

 
The key step for the synthesis of EANBP analog was via vicarious nucleophilic substitution. 

Various para-substituted aromatic a-chlorocarbonyl derivatives 11 were used in order to be 

able to extend the conjugation on the target product (Compound 14 Scheme II.7).  

We suggested a retrosynthetic pathway in order to synthesize the conjugated analog of EANBP 

15 starting from the nitrobenzene derivative 1. 

 

 
Scheme II.7: Retrosynthetic strategy for the synthesis of the conjugated analog 15 of EANBP. 
 
The first aim was to synthesize the a-chlorocarbonyl derivatives 11 starting from the 

commercially available para-substituted acetophenones 10 described by Lee and collaborators 

(Lee et al., 2003, Scheme II.8). 
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Scheme II.8: Synthesis of a-chlorocarbonyl derivatives 11a-c. 
 
(i) N-chlorosuccinimide, p-TsOH, acetonitrile, 85°C. 
 
The reaction was carried out in acetonitrile at reflux with NCS as chlorinating agent overnight, 

and the reaction was tested on 3 different derivatives of 10: p-bromo acetophenone 10a, p-iodo 

acetophenone 10b and p-methoxy acetophenone 10c.  

 

The target compounds were obtained in good yields and we noticed an 8-12% of dichlorinated 

compound 11’ which was characterized by the chemical shift of the proton on the carbon 

holding the 2 chloro groups that appears at 6.58 ppm in CDCl3 whereas the characteristic peak 

of the target compound appears at 4.65 ppm.  

The following step of the synthesis is the vicarious nucleophilic substitution of 11a-c with 4-

nitro bromobenzene 1. This step had previously been optimized in the lab with aliphatic a-halo 

esters like tert-butylchloroacetate and the same conditions were used for our synthesized 

aromatic a-halo ketones 11a-c.  

Using tBuO-K+ as base, the reaction of the 3 chlorinated derivatives 11a-c with 1 was tried out 

but unfortunately, we succeeded to isolate only the product 16c from 11c, but 16a and 16b were 

not obtained (Scheme II.9). 

 

 
Scheme II.9: Synthesis of derivative 16a-c through a vicarious nucleophilic substitution. 
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Trying to solve the problem of the substrate dependency of this reaction, we tried to modify 

several parameters:  

i- We tried to add the tBuOKbase on our solution in DMF either at 0°C or at room 

temperature (20-25°C) and also, we tried to carry out the reaction at 25°C-50°C-

80°C and 100°C but all what we obtained after quenching the reaction was the 2 

non-reacted starting compounds 

ii- We tried to modify the order of addition of the reagents; (1) adding the suspension 

of  tBuOK in DMF over the 2 compounds 1 and 11 and the reverse, and also (2) we 

tried to prepare the enolate before adding the nitrobenzene 1 derivative by reacting 

the tBuOK base with the chlorinated derivative 11 and (3) adding the mixture of 1 

and 11 onto a freshly prepared suspension of tBuOK in DMF and this trial was the 

only one that worked and only for 11c. We succeeded to isolate the target product 

16c with yields varying from 39-68% but the reaction was not reproducible using 

11a and 11b. 

iii- As an alternative, we tried to change the base; instead of using tBuOK we used 

sodium hydride (NaH) and 1,8-Diazabicyclo [5.4.0] undec-7-ene (DBU) and 

varying the conditions previously discussed (temperature and order of reagent 

addition) the reaction only yielded starting material for 11a and 11b. However, by 

changing these 3 parameters, compounds 16a and 16b were never obtained. 

 

An alternative has been put for trial; constructing the bis (methylamino) nitro-biphenyl 17 at 

first and then trying the vicarious using the previously synthesized derivatives 11a-c in order to 

obtain the target compound 12a-c (Scheme II.10). 

 

 
Scheme II.10: Synthesis of compound 12 through a VNS on the nitrobiphenyl 17 
 
(i) K2CO3, Bu4NBr, Pd(OAc)2, EtOH/H2O (2:1), microwave, 160 °C, 15 min, 100 % (ii) tBuOK, 11a-c, 
DMF, room temp, 2h, Yields 12a (24-52%) and 12c (30-35%). 
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The synthesis of 17 was done following the classical Suzuki-Miyaura conditions (Suzuki, 

Miyaura, 1995) using dimethylamino phenylboronic acid along with 1 in a mixture of ethanol 

and water (2:1) with potassium carbonate as base and tetrabutylammonium bromide. The 

mixture is degassed 3 times before adding palladium (II) acetate [Pd(OAc)2] in order to remove 

any traces of air and the reaction was performed under microwave heating at 160 °C and in only 

15 minutes the reaction was done and the target product 17 was obtained quantitatively. The 

following step is the vicarious nucleophilic substitution under the same conditions used for the 

derivative 1 and using the reaction conditions that gave the best results for 16c we succeeded 

to obtain the target compounds 12a in 24-52% yield and 12c in 30-35% yield.  

 

The next step, to get access to EANBP analogs, is the methylation in a-to ketone using methyl 

iodide (MeI) as methylation agent while testing the strength of several bases in order to obtain 

compounds 19a and 19c respectively. The same procedure was followed for the methylation of 

compound 16c obtained previously to obtain the methylated compound 18c (Scheme II.11). 

 

 
Scheme II.11: Methylation of compounds 16c and 12a,c in the presence of MeI and a base. 
 
(i) MeI, Base, Solvent, T°C, overnight. 
 
Several reaction conditions were tested for this methylation reaction varying the base used, the 

solvent of the reaction and the reaction temperature. The results are described in the following 

table. 

 

 

 

 

 

 

R

NO2

O

X

i

R

NO2

O

X

16c    R = Br                   
          X = OCH3
12a    R = Ph-N(CH3)2   
          X = Br
12c    R =  Ph-N(CH3)2   
             X = OCH3

18c    R = Br                   
          X = OCH3
19a    R = Ph-N(CH3)2   
          X = Br
19c    R =  Ph-N(CH3)2   
             X = OCH3



 

 58 

Entry	 Compound	 Base	 Solvent	 Temperature	(°C)	 Time	(h)	 Yield	(%)	

1	 16c	 NaH	 THF	 0à	room	temp	 14	 20	

2	 16c	 NaH	 THF	 0à	room	temp	 24	 18	

3	 16c	 NaH	 THF	 50	 14	 23	

4	 16c	 DBU	 CH3CN	 0à	room	temp	 14	 64	

5	 12a	 NaH	 THF	 0à	room	temp	 14	 -	

6	 12a	 NaH	 THF	 50	 14	 -	

7	 12a	 DBU	 CH3CN	 0à	room	temp	 14	 -	

8	 12c	 DBU	 CH3CN	 0à	room	temp	 14	 36	

9	 12c	 DBU	 CH3CN	 0à	room	temp	 24	 35	

Table 3: Results for the methylation of 16c and 12a,c varying several reaction conditions. 
 
We tried to optimize the methylation reaction by varying the reaction conditions, it was found 

that the bromo derivative 12a shows no conversion with either bases used. It could be explained 

that the anion, if formed, tends to be weakly nucleophilic and doesn’t trap the methyl cation. 

 

The two versions of the methoxy derivative (16c and 12c) tend to weakly react with the NaH 

base and showed partial conversion but by using a more hindered base like DBU we were able 

to overcome this problem and obtain higher yields (Entries 1 and 4). The addition of the base 

was done at 0°C in all reactions, and the mixtures were left to warm up to room temperature, in 

some cases we tired heating to 50°C in order to push the reaction of the anion formed with the 

methylation agent but unfortunately it didn’t have a significant influence on the yield of the 

reaction (Entries 1 and 3) and sometimes it had no influence at all (Entries 5 and 6).  

The step following the methylation is the reduction of the ketone into a secondary alcohol, this 

step should be less problematic since selective reducing agents are accessible. There are two 

functions that can undergo reduction; the nitro group and the ketone group. To our knowledge, 

the best reducing agent that can reduce selectively the ketone group is the diisobutyl aluminum 

hydride (DIBAL-H). The reduction of the two methoxy derivatives 18c and 19c was successful 

and the reduced compounds 20c and 21c were obtained in 85% and 78% yield respectively 

(Scheme II.12).  

The construction of the biphenyl core from derivative 20c was done using the same conditions 

for the synthesis of 17. By the help of microwave heating the target compound 21c was obtained 

from 20c in 100% yield after 45 minutes.  



 

 59 

 

 
Scheme II.12: Reduction of the methoxy derivatives 18c and 19c into their respective secondary 
alcohols 20c and 21c followed by the Suzuki coupling on derivative 20c to obtain the photoremovable 
group 22c. 
 
(i) DIBAL-H, THF, room temp, overnight (ii) K2CO3, Bu4NBr, Pd(OAc)2, EtOH/H2O (2:1), microwave, 
160 °C, 15 min, 100% 
 
As an overall view, the vicarious nucleophilic substitution strategy was not the right way to 

synthesize EANBP analogs with an extended conjugation of the uncaging sub-product. The 

strategy worked in the case of the bromoaryl derivative, but it was not reproducible and even 

the yields were too low. In the case of the iodo aryl derivatives, we never succeeded to obtain 

the target compound. The only case where the VNS strategy could be used to synthesis pro-

fluorescent EANBP analogs efficiently, is related to the methoxy-aryl derivative 21c. But 

unfortunately, this EANBP derivative could not be further functionalized in order to extend its 

conjugation and the structure as it is, doesn’t promise to give a huge fluorescence increase after 

irradiation. 

This molecule 21c has been previously tested by Dr Bastien GOEGAN for the release of organic 

acids and the fluorescence increase was also evaluated.  

It was found that the molecule was able to release 95% of the acid and it appeared to be sensitive 

to light (very short irradiation times) releasing the by-product 21’c (Scheme II.13). 
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Scheme II.13: Photolysis of 21c under irradiation at 405 nm and the release of the acid along with the 
by-product 21’c. 
 
The fluorescence study of this photolysis reaction showed that 21c presents a weak fluorescence 

before irradiation (Scheme II.14, blue) and upon irradiation and the release of the organic acid, 

the by-product of uncaging, 21’c shows a significant increase in the fluorescence intensity 

(Scheme II.14, green).  

 

 
Scheme II.14: Fluorescence increase before and after irradiation of 21c and the release of the acid along 
with by-product 21’c. 
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Even though this molecule shows the liberation of a by-product with fluorescent properties, this 

fluorescence increase is still not quite eligible for application in biology in particular since the 

fluorescent increase is only around 10 times and the emission wavelength is in the blue region; 

that’s why our aim was to synthesize an EANBP derivative that could be modified in order to 

extend the conjugation and increase the electronic delocalization over the system giving rise to 

a more intense red shifted fluorescent signal. Unfortunately, the vicarious nucleophilic 

substitution step was problematic and cannot really be reproducible when we change from a-

chloro-aliphatic esters (tert-butyl chloroacetate) to a-chloro-aromatic ketones (compounds 

11a-c). 

 

The alternative strategy to synthesize these pro-fluorescent EANBP analogs 15 is based on the 

deprotonation of alkyl benzene and the reaction with various benzaldehydes (Retrosynthetic 

pathway B, Scheme II.6). 

 
2.2. Exploration of Pro-Fluorescent EANBP Analog Synthesis Via 

Deprotonation of Methyl/Ethyl Nitrobenzene 
 
This strategy that have been developed by Pfleiderer and his co-workers (Bühler et al., 2004 

and Smirnova et al., 2005) describes the synthesis of 2-(2-nitrophenyl propan-1-ol) derivatives 

7 through the deprotonation of 1-ethyl-2-nitrobenzene derivatives in the presence of tBuOK as 

a base and reacting the formed carbanion with paraformaldehyde.  

We decided to use this strategy in order to construct our conjugated o-nitrophenethyl derivatives 

of EANBP 15 following the retrosynthetic pathway presented in Scheme II.15. 

 

 
Scheme II.15: Retrosynthetic analysis for the construction of 15 via deprotonation of ethyl nitrobenzene 
derivative 24. 
 
 

 

NO2

N

OH

R NO2

N

OH

XR

NO2

Br

241415

NO2

N

R

22

+
X

O R NO2

Br

123



 

 62 

The first step is the synthesis of 24 through the methylation (24a, R = H) or the ethylation (24b, 

R = CH3) of 1 using organometallic reagents like RMgX (Bartoli et al., 1985) or RLi (Kienzle, 

1978) in the presence of oxidants like potassium permanganate (KMnO4) or 2,3-Dichloro-5,6-

dicyano-1,4-benzoquinone (DDQ).  

 

The purpose behind the synthesis of the ethylated compound 24b is to have readily the methyl 

group at the benzylic position after the reaction with aldehyde. Of note, and as mentioned in 

the introduction, the presence of an alkyl function at the benzylic position of o-nitrophenethyl 

PPGs dramatically increases the quantum yield of uncaging. The synthesis of compounds 24a,b 

is presented in Scheme II.16. 

 

 
Scheme II.16: Synthesis of methylated (24a) and ethylated (24b) compounds using organometallic 
reagents. 
 
(i) RMgX or RLi, DDQ or KMnO4, THF, -30°C, room temperature, overnight. 
 
For the synthesis of compound 24a, we first used MeMgBr as a Grignard reagent and DDQ as 

oxidant at -30°C. This reaction showed 60% conversion and the increase of the time of reaction 

(overnight to 24h) did not increase the yield of conversion.  

After purification the product 24a was obtained in 46% yield. Changing the oxidant to KMnO4 

(using the same MeMgBr Grignard reagent) yielded the same results almost with the same 

conversion.  

Interestingly, the replacement of MeMgBr with MeLi showed a complete conversion of the 

starting 4-nitro bromobenzene 1 in the presence of DDQ and the target product 24a was 

obtained in 88% yield. On the contrary, the use of EtMgBr along with DDQ yielded 81% of the 

ethylated compound 24b with a 100% conversion of the starting material. 

Following the alkylation step is the deprotonation step followed by the reaction with the 

aldehyde using the conditions adapted from La Regina’s work (La Regina et al., 2015).  

 

We chose to use the 4-bromo benzaldehyde which is commercially available and the bromoaryl 

function should grant an access for further conjugation of the system using palladium catalyzed 

cross-coupling reactions.  
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The deprotonation of 24a was done using sodium alkoxide in anhydrous DMSO and the 

resulting carbanion was reacted with 4-bromo benzaldehyde to obtain compound 25 (Scheme 

II.17). 
 

 
Scheme II.17: Synthesis of derivative 25 via deprotonation of 24a in presence of 4-bromo 
benzaldehyde. 
 
(i) Sodium ethoxide, anhydrous DMSO, 4-bromo benzaldehyde, 25°C < T < 80°C, 14h-24h. 
 
The reaction was tried in the presence of sodium ethoxide (NaOEt) as a base in anhydrous 

DMSO at -30°C, in order to prepare the carbanion before adding the aldehyde. The reaction 

was done afterwards at room temperature, unfortunately it only resulted in starting material 

24a. Using the same base and solvent, the reaction was repeated by heating the reaction media 

at 80°C. We aimed, by heating, to kinetically drive the nucleophilic attach of the carbanion on 

the aldehyde, but again the reaction yielded only starting compound.  

 

Finally, the reaction was repeated using the condition described by Bühler’s group (Bühler et 

al., 2004 and Smirnova et al., 2005). Therefore, using potassium tert-butoxide (tBuOK) as base 

in a mixture of anhydrous tert-butanol (tBuOH) and DMSO.  

Varying the temperature reaction from 25°C up to 80°C didn’t change the reactivity of the either 

reagents and yielded only starting material too. 

We switched to 4-bromo-2-ethyl-1-nitrobenzene 24b where we used the same reaction 

conditions as for 24a; varying the base either tBuOK or NaOEt and the temperature between 

25°C and 80°C; unfortunately, we never succeeded to obtain the target product 26 (Scheme 

II.18). 
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Scheme II.18: Synthesis of derivative 26 via deprotonation of 24b in presence of 4-bromo 
benzaldehyde. 
 
(i) NaOEt or tBuOK, anhydrous DMSO, 4-bromo benzaldehyde, 25°C < T < 80°C, 14h-24h. 
 
 
Seeing that these 2 reaction conditions yielded only starting material, we suggested an 

alternative method; using n-BuLi as base, but in this case, we have to construct the biphenyl 

unit before going through the deprotonation in order to avoid the lithium halogen exchange. 

The synthesis of the methylated/ethylated biphenyl compound 27a,b could be done either by a 

Suzuki cross-coupling reaction starting from 24a,b and dimethylamino phenylboronic acid, or 

by alkylating the previously synthesized compound 17. The methylation of the nitro 

dimethylamino biphenyl 17 using MeLi yielded 82% of compound 27a and the ethylation using 

EtMgBr gave 27b in 78% yield (Scheme II.19). 

 

 
Scheme II.19: Synthesis of 14a,b via deprotonation of alkyl biphenyl 27a,b synthesized by alkylation 
of 17. 
 
(i) MeLi / DDQ for 27a and EtMgBr / DDQ for 27b, THF, -30°C, room temperature, overnight (ii) n-
BuLi, anhydrous THF, -80°C, 4-bromo benzaldehyde, room temperature, overnight. 
 
 
When n-BuLi was added to compound 27a,b at -80°C for couple tenth of minutes we observed 

an extreme change in the color of the solution from brownish-red to bright purple. This latter 

change in the color of the solution is in agreement with the formation of the carbanion of 27a,b 

(a highly delocalized species).  
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After adding the 4-bromo benzaldehyde to the carbanion formed in situ, and after leaving the 

reaction warm up to room temperature overnight we observed only starting material after 14h 

of reaction. This latter result could be explained by the weak reactivity of the aldehyde used, so 

in order to increase the reactivity of the latter we decided to use an electron deficient aldehyde 

like 5-bromo-2-nitrobenzaldehyde. The reaction of 27a,b with the chosen aldehyde didn’t show 

any progress and didn’t provide except starting material. 

 

Seeing that this strategy had lots of problems and yielded no target compound 14a,b, we 

decided to completely change the strategy. Therefore, an original strategy using the umpolung 

effect was explored in order to synthesize the conjugated EANBP analogs. 

 

2.3. Exploration of Pro-Fluorescent EANBP Analog Synthesis Via Umpolung 
Effect 

 
The methodology of synthetic organic chemistry has been greatly enriched by the development 

of functional group equivalents which provide an umpolung of the normal pattern of reactivity. 

In this concept, acyl anions and enolate cations are particularly valuable reactive functions.  

 

The term umpolung was coined by Corey and Seebach to describe this temporary reversal of 

the characteristic pattern of reactivity of a functional group (Corey et al., 1965 and Seebach and 

Corey., 1975). They suggested that certain sulfur stabilized anions could be suitable for use as 

masked nucleophilic acylating agents. The most successful sulfur stabilized acyl anion 

equivalents that have been studied to date, in terms of availability, ease of preparation and 

stability, are the cyclic 1,3-dithiane derivatives II (Scheme II.20). 
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Scheme II.20: The mechanism of umpolung effect; reverse reactivity of carbonyl groups. 
 
As indicated in Scheme II.19, the sulfur stabilized anion III directly reverses the normal pattern 

of reactivity of the carbonyl group and is thus an equivalent of an acyl anion IV. After reaction 

with an electrophile “E” the formed dithioacetal compound V may be hydrolyzed to provide 

the corresponding ketone VI. 

 

In order to adapt this strategy to our target molecules, we suggested the following retrosynthetic 

analysis to access compound 14 via an umpolung effect of a carbonyl function (Scheme II.21). 

 

 
Scheme II.21: Retrosynthesis of compound 14 via umpolung effect of thio-protected carbonyl 29 and 
nitrobenzene derivative 28. 
 
The first step of this strategy is the synthesis of thiol-protected aldehyde 29 using 1,3-

propandithiol and 4-bromo benzaldehyde 30. This synthesis was done in an acidic medium 

using p-toluene sulfonic acid (p-TsOH). The deprotonation of the cyclic dithiane 29 needs n-

BuLi, so it is important to avoid the use of any halogenated aldehydes. Therefore, we decide to 

extend the conjugation of the pro-fluorescent EANBP derivatives by using Sonogashira cross 

coupling reaction.  
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Therefore, we decided to synthesis the protected alkyne derivative 31. This later compound was 

obtained through a Sonogashira reaction between compound 29 and trimethylsilyl acetylene. In 

parallel, the synthesis of compound 28 was done in 3 steps; the first step is the nitration of 3-

bromo benzaldehyde 32 in a mixture of nitric and sulfuric acid. The following step is the 

reduction of the aldehyde function into a primary alcohol in the presence of NaBH4 to obtain 

compound 34. The final step is the bromination of the alcohol function using PPh3 and CBr4 to 

obtain the target compound 28 (Scheme II.22). 

 

 
Scheme II.22: Synthesis of precursors 28 and 31 for the umpolung reaction leading to the formation of 
35 
 
(i)1,3-propandithiol, p-TsOH, CH2Cl2, 50°C, 24h, 78%. (ii) trimethylsilyl acetylene, Pd(PPh3)4, CuI, 
Et3N, THF, 50°C, overnight, 92%. (iii) H2SO4, HNO3, 0°C, 2h, 72%. (iv) NaBH4, THF, room 
temperature, 2h, 94%. (v) PPh3, CBr4, THF, room temperature, 4h, 65%. (vi) n-BuLi, THF, -80°C, room 
temperature, 14h-24h. 
 

At -80°C, compound 31 was reacted with n-BuLi in an anhydrous and oxygen-free medium for 

30 minutes before adding the electrophile 28 and leaving the reaction overnight. The reaction 

shows only starting materials with no traces of product 35 characterized by the disappearance 

of the peak at 5.76 ppm corresponding to the proton of the dithiane 31. 

 

Seeing that the 3 explored strategies produce lots of synthetic problems in terms of reactivity 

of reagents and stability of products in the reaction media, an alternative strategy should be 

proposed. The strategy should provide easy access to products that are stable, and their synthesis 

should be reproducible in big scales.  
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As mentioned in the chapter I, o-Nitroaryls are divided into two major categories: the o-

nitrophenethyls and o-nitrobenzyls. This chapter focused on the possibility to access 

exclusively on pro-fluorescent o-nitrophenethyl derivatives.  

In the following chapter III, we will describe an original strategy based on biphenyl epoxide 

derivatives, that due to its dissymmetric structure, could give access to both o-nitrophenethyl 

and o-nitrobenzyl PPGs family.  
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CHAPTER III 
 
 
 
 
 
 
 
 
 
 

 
 

Towards the Synthesis of O-
Nitroaryls Groups: via 

Epoxidation 
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1. Strategy 
 
Epoxides were found to be really important chemical compounds that are useful in constructing 

several complex structures like nucleic acids (Hemminki et al., 1980), sugars (Manzano et al., 

2008) and modified amino acids (Babič et al., 2006). Direct transformations of carbonyl groups 

into other versatile functional groups, such as epoxides, further increase the importance of these 

groups in synthesis. Several ways to obtain epoxides were demonstrated to be efficient, fast, 

good yielding and reproducible (Scheme III.1). The conversion of aldehydes into epoxides is 

usually done by using sulfur ylides enabling the transformation of alkenes to epoxides in 

presence of alkyl hydroperoxides (tert-butyl hydroperoxide tBuOOH as an example) and 

catalyzed by Vanadium (V), Molybdenum (VI) or Titanium (II) and a, b-haloalcohols give 

epoxides under the action of suitable base (NaOH as an example). 

 

 
Scheme III.1: The plausible ways to synthesize di-substituted epoxides. 
 

It could be useful to implement the use of di-substituted epoxides to construct pro-fluorescent 

o-nitroaryls PPGs. Interestingly, the construction of a di-substituted yet non-symmetrical 

epoxide E would be advantageous since the opening of this epoxide leads to two separate 

products with different properties. In our case, the epoxide opening of E will lead to the 

formation of two products: an o-nitrophenethyl derivative A and an o-nitrobenzyl derivative B 

(Scheme III.2). So, by synthesizing this epoxide E and after its opening, we can get access to 

both families of pro-fluorescent PPGs. 
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Scheme III.2: Synthesis of o-nitrophenethyls A and o-nitrobenzyls B via epoxide opening. 
 

2. Design 
 

2.1. Retrosynthetic Analysis 
 
The design of the target epoxide 36 takes into account the presence of the nitrobiphenyl core 

and to be able to introduce a halogenoaryl function that serves as a reactive entity to increase 

the conjugation of the pro-fluorescent o-nitro-biphenyl PPGs.  

A proposed retrosynthetic analysis for the target epoxide is presented in Scheme III.3. 

 

 
Scheme III.3: Retrosynthetic analysis to obtain the target epoxide 36. 
 
We chose to synthesize the epoxide via a sulfur ylide nucleophilic addition on benzaldehyde 

derivatives because this synthetical strategy has been demonstrated to be the shortest and best 

yielding compared to the strategies that use haloalcohols and olefins to access the epoxide. After 

constructing the nitrobiphenyl aldehyde 37 we could obtain the target epoxide 36 by reacting 

the aldehyde with the sulfur ylides 42. 
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2.2. Epoxide Synthesis 
 
The synthesis of the epoxide is divided in two parts: I) the synthesis of the nitrobiphenyl 

aldehyde 37 and II) the synthesis of the sulfur salt 42.  

For the synthesis of aldehyde 37, the 3-bromobenzaldehyde is nitrated in the presence of a 

mixture of sulfuric and nitric acid in order to obtain the 5-bromo-2-nitrobenzaldehyde 33 in 

72% yield.  

To construct the biphenyl core via a Suzuki cross-coupling it was necessary to protect the 

aldehyde function in order to avoid any competing reaction of the palladium on the o-nitro 

benzaldehyde moiety. The protection of the aldehyde was done in the presence of ethylene 

glycol in toluene in the presence of a catalytical amount of p-toluene sulfonic acid using a Dean-

Stark apparatus in order to azeotropically remove water from the reaction medium leading to 

the formation of dioxolane 39.  

After having protected the aldehyde function, the pallado-catalyzed Suzuki cross-coupling 

reaction between 39 and 4-(dimethylamino) phenylboronic acid leads to the formation of the 

nitro biphenyl dioxolane 38 in 85% yield (15% is lost due to the homocoupling of the boronic 

acid).  

After deprotection of the aldehyde in presence of p-TsOH the nitrobiphenyl aldehyde 37 was 

obtained quantitatively (Scheme III.4) 
 

 
Scheme III.4: Total synthesis of epoxide 36 in two parts I) synthesis of the nitrobiphenyl aldehyde 37 
and II) synthesis of the sulfur salts 42. 
 
(i) H2SO4, HNO3, 0°C, 2h, 72%. (ii) ethylene glycol, p-TsOH, toluene, 130°C, 2h, 98%. (iii) 4-
(dimethylamino) phenylboronic acid, K2CO3, Bu4NBr, Pd (OAc)2, EtOH/H2O (2:1), microwave, 160°C, 
15 min, 85 %. (iv) p-TsOH, H2O, CH2Cl2, CH3CN, 80°C, 100%. (v) acetone, 14h, 93%. (vi) 1,5,7-
triazabicyclodec-5-ene, CH2Cl2, 90%. 
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The tetrahydrothiophenium bromide salt 42 is prepared from tetrahydrothiophene 40 and 4-

bromobenzyl bromide 41 in anhydrous acetone, and these salts start to appear progressively and 

precipitate in the solution. 

The synthesis of the epoxide 38 needs a base that is efficient in deprotonating the thiophenium 

salt 42 and forming the sulfur ylide. We tried hydroxides (KOH and NaOH) as well as 

carbonates (CsCO3), but using these bases no formation of epoxide product 36 was observed. 

The use of the azabicyclo-undecene base, led to the formation of the product and interestingly, 

the use of 1,5,7-triazabicyclodec-5-ene (TBD) as a base led to the formation of the target 

epoxide 38 in 90% yield with no undesired side reactions. 

This epoxide could result in the formation of the two families of PPG of interest (Scheme III.2) 

upon its opening using nucleophiles like organometallic compounds (organozincates, 

organocupprates, organolithiums and organoaluminates) or metallic salts (lithium halides, 

lithium hydroxides…). In our case of interest, opening the epoxide with a methyl anion will 

lead to the formation of our 2 target compounds (A and B, Scheme III.2, X=CH3). 

 
2.3. Epoxide Opening 

 
Several researches about the reactions of epoxides have been done in order to demonstrate the 

orientation of the epoxide opening (Parker et al., 1959 and Solladié-Cavallo et al., 2005). In the 

general case of reaction with an unsymmetrically substituted epoxide two products are possible 

depending on the nature of the medium:  

 

 
Scheme III.5: Epoxide opening products depending on the pH of the medium. 
 
Examinations of orientational studies on these types of epoxides are divided into reactions 

carried out under basic or neutral conditions and reactions carried out under acidic conditions.  

These examination show that, under basic or neutral conditions, the product corresponding to 

the attack on the least substituted carbon atom is nearly always the major or only isolated 

product.  
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This provides strong evidence for an SN2 attack of a reagent molecule or ion on the epoxide 

ring carbon atom. In the case of a reaction in acidic medium, the orientation is carried out via 

an SN1 type attack by the formation of the more stable carbocation (the carbon holding more 

substituents) followed by the attack of the nucleophilic reagent or ion. 

In our strategy, we decided to use organometallic methylating agents in order to insert the 

methyl substituent on the two products that we expect to obtain: o-nitrophenethyl and o-

nitrobenzyl groups. We used a wide diversity of methyl organometallic reagents like MeLi, 

Me3Al, MeMgBr, Me2Cu(CN)Li (prepared from MeLi and CuCN) and Me3ZnLi (prepared 

from MeLi and ZnCl2), using epoxide activators like BF3.OEt2, CuI, PPh3 and AlCl3, and 

anhydrous solvents like diethyl ether, toluene, and THF. The results of all the experiments done 

are presented in the Table 4 below. 

 
Methylating	agent	 Activator	 Solvent	/	temperature	 Yield	

MeLi	(3eq)	 -	 THF	/	-78°C	 -	

MeLi	(3eq)	 BF3.OEt2	(3eq)	 THF	/	-78°C	 -	

MeLi	(3eq)	 CuI	(1,5eq)	 Ether	-78°C	 -	

MeLi	(5eq)	 CuI	(3eq)	 Ether	/	0°C	 -	

MeLi	(2eq)	+	CuCN	(1eq)	 BF3.OEt2	(2eq)	 THF	/	-78°C	 -	

MeLi	(1.2eq)	 AlCl3	(2eq)	 THF	/	-78°C	 -	

Me3Al	(1.2eq)	 AlCl3	(1,2eq)	 THF	/	-78°C	 -	

MeLi	(3eq)	 BF3.OEt2	(3eq)	 Toluene	/	-78°C	 -	

MeLi	(3eq)	 BF3.OEt2	(3eq)	 Ether	/	-78°C	 -	

Me3Al	(1eq)	 PPh3	(5%)	 Toluene	/	25°C	 -	

MeMgBr	(1.5eq)	 CuI	(10%)	 THF	/	-30°C	 -	

ZnCl2(1eq)	+	MeLi	(3eq)	 -	 THF	/	-85°C	 -	

ZnCl2(1eq)	+	MeLi	(3eq)	 BF3.OEt2	(3eq)	 THF	/	-85°C	 -	

Table 4: Epoxide opening using various methylating agents and activators in different solvents. 
 
All the above trials were done in basic medium due to the basic character of all the 

organometallic compounds used (order of the basicity of these compounds depend on the 

polarity of the carbon-metal bond and the nature of the metal).  
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Due to the basicity of these reagents, all the above reactions yielded starting material; the acid-

base reaction between the proton at the benzylic position of the o-nitrobenzyl moiety and the 

organometallic reagent occurs faster than the epoxide opening reaction yielding, after 

hydrolysis, to starting material (Scheme III.6). 

 

 
Scheme III.6: Acid-base reaction occurring upon the addition of the organometallic reagent on the 
epoxide 36. 
 
The presence of a nitro group gives the epoxide proton at the benzylic position of the o-nitrobenzyl 

moiety, a highly acidic character leading to the formation of 36’ upon the addition of the 

methylating agent. This latter presents a basic character and thus leads to the formation of the 

deprotonated compound rather than the expected SN2 product that leads to the opening of the 

epoxide and giving the target product. 

 
2.4. Epoxide Reduction 

 
The reduction of epoxides has attracted lot of attention in the synthesis of asymmetric alcohols 

and several ways to reduce epoxides were applied. Seeing that the opening of epoxides is 

problematic due to the acid base exchange, we thought about reducing the epoxide to its 

corresponding alcohols using the common known reducing agents like aluminum hydrides and 

boron hydrides (Solladié-Cavallo et al., 2002; Florio et al., 2014). The reduction of our non-

symmetric epoxide 36 leads to the formation of two corresponding alcohols 43 and 43’ (Scheme 

III.7). 
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Scheme III.7: Reduction of epoxide 36 leading to the formation of the 2 alcohols 43 and 43’. 
 
We used several chemoselective reducing agents like aluminum hydrides (LiAlH4 and DIBAL-

H) and boron hydrides like NaBH4, it is important to note that the use of H2 over Pd/C is not 

advised since we can risk the reduction of the nitro group to its amino function. The results of 

all the reactions tried for reducing epoxide 36 are presented in the table 5 below. 

 
Entry	 Reducing	agent	 Activator	 Solvent/Temperature	 Conversion	

1	 LiAlH4	 -	 Ether	/	0°C	 0%	

2	 LiAlH4	(2eq)	 AlCl3	 Ether	/	0°C	 60%	

3	 LiAlH4	(5eq)	 AlCl3	 Ether	/	0°C	 60%	

4	 LiAlH4	(5eq)	 AlCl3	 THF	/	0°C	 60%	

5	 LiAlH4	(5eq)	 AlCl3	 THF	/	50°C	 60%	

6	 DIBAL-H	(3eq)	 -	 CH2Cl2	/	-40°C	 0%	

7	 DIBAL-H	(3eq)	 AlCl3	 CH2Cl2	/	-40°C	 0%	

8	 NaBH4	 -	 THF	/	0°C	 0%	

Table 5: Epoxide reduction using various aluminum and boron hydrides with activators in different 
solvents. 
 
The use of lithium aluminum hydride (LiAlH4) as reducing agent in diethyl ether didn’t show 

any result without an activator (Entry 1), whereas upon adding an activator like aluminum 

trichloride (AlCl3) we observed a 60% conversion of starting material (Entry 2), unfortunately, 

this conversion was not affected by the increase of equivalents of LiAlH4 (Entry 3).  
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We decided to change the solvent to anhydrous THF due to the low solubility of the epoxide in 

ether at 0°C and keeping the same number of equivalents of LiAlH4 we observed no change in 

the conversion even upon heating the solution to 50°C (Entries 4 and 5).  

Another aluminum hydride alternative is diisobutylaluminum hydride (DIBAL-H) in anhydrous 

dichloromethane, unfortunately, this reducing agent shows no conversion of the starting 

material with or without activator (Entries 6 and 7). The final trial was using sodium 

borohydride (NaBH4) in anhydrous THF, this reducing agent shows no reaction with our 

epoxide and thus yielding only starting material 36 (Entry 8). Only the reactions with LiAlH4 

tend to convert partially (60%) the starting material 36 and we observed the formation of 43 

and 43’in approximately 70% to 30% respectively (in reference to the NMR spectrum of the 

crude product). The starting material and the obtained products 43 and 43’ show similar polarity 

and thus it was impossible to purify these compounds neither over column nor using HPLC and 

thus we couldn’t obtain a pure compound to proceed further. 

 
2.5. Epoxide Alkylation 

 
Due to the problem of purification of the reduced epoxide products, we suggested a new 

reaction that takes advantage of the acidity of the proton in alpha to nitro (discussed in section 

2.3). Since in the presence of methylating agents we only observed acid-base reaction, we 

decided to take advantage of this undesirable reaction to alkylate the epoxide and then reducing 

it to its corresponding alcohols (Scheme III.8). 

 

 
Scheme III.8: the alkylation of the epoxide 36 followed by the reduction of the corresponding product 
44 into the alcohols 45 and 45’.  
 
(i) MeLi, RX, THF, -80°Càroom temperature. (ii) LiAlH4, THF, AlCl3, 0°C. 
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We chose MeLi as the base since it has the most basic character among the other organometallic 

species, and we decided not only to methylate the epoxide using MeI but also to add a propargyl 

substituent using propargyl bromide which could serve in rendering the final molecule soluble 

by introducing PEG chains via click chemistry. The reactions that were done and their results 

are presented in Table 6. 

 
Base	 R-X	 Solvent	/	Temperature	 Conversion	

MeLi	 Me-I	(1,5eq)	 THF	/	-80°C	 30%	

MeLi	 Me-I	(5eq)	 THF	/	-80°C	 30%	

MeLi	 Propargyl-Br	(5eq)	 THF	/	-80°C	 0%	

MeLi	 (TMS-propargyl)-Br	(5eq)	 THF	/	-80°C	 70%	

Table 6: Alkylation of epoxide 36 with methyl or propargyl using MeLi (1.2 eq) as base to obtain 44. 
 
Using MeLi as a base we were able to deprotonate the epoxide 36 and alkylate it using 

iodomethane but the conversion was not total even when we increased the equivalents of MeI 

from 1.5 to 5, the conversion remained at 30% unchanged. The obtained fraction with 30% of 

product couldn’t be purified due to the close polarity of the product 44 and starting epoxide 36. 

The use of propargyl bromide led to the formation of the product of attack of propargylate over 

the propargyl bromide and not on the epoxide so we used the protected propargyl (TMS-

propargyl-Br). Interestingly this reaction, in anhydrous THF and 1.2 eq of MeLi, led to a 70% 

conversion of the starting material 36 and the formation of product 44 (R = propargyl) that was 

isolated as pure compound. The reduction of 44 using LiAlH4 in presence of AlCl3 as activator 

in anhydrous THF led only to starting material with no traces of the corresponding alcohols 45 

and 45’ (R = propargyl). 

The opening of the epoxide before or after alkylation seems to be problematic which could be 

explained by the steric hindrance of the epoxide making it inaccessible by anions and due to 

the electronic densities around the epoxide is makes it more difficult to activate and thus less 

reactive towards organometallic reagents and hydrides. 

 

All in all, the synthesis of the epoxide was an interesting alternative to access conjugated 

EANBP analogs. The production of the epoxide is high yielding and reproducible, but we faced 

lots of problems during the epoxide opening and reduction.  
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The presence of a nitro group near the epoxide moiety led to an acid-base reaction between the 

proton at the benzylic position and the organometallic compound used for the opening of the 

epoxide. Also, during the reduction, and due to close polarities of the product and the starting 

material, we were not able to isolate the target compound. 

The synthesized epoxide has a conjugated system in its architecture which could induce a 

fluorescence signal in solution. Interestingly, this epoxide has a reactive bromoaryl function 

that could be used to increase the conjugation and obtain a higher fluorescence emission 

wavelengths. If this is the case, this epoxide could be an interesting candidate as a fluorescent 

dye for imaging studies in biological systems (via the synthesis of a soluble version).  In the 

following section, we decided to evaluate the fluorescence quantum yield of the obtained 

epoxide as well as its two-photon absorption cross section and compare them to the starting 

aldehyde. 

 

2.6. Determination of the Two-Photon Absorption (2-PA) Cross-Section da 
 
The experimental determination of the 2-PA cross section (δa) of a molecule, which represents 

its efficiency in absorbing photons in two-photonic excitation, is possible using different 

techniques (Twarowski and Kliger, 1977). The two most commonly used experimental methods 

for the determination of two-photon absorption cross sections are the Z-Scan method (Sheik-

Bahae et al., 1990) and the two-photon excitation-induced fluorescence method (Xu and Webb, 

1996). In our case, we decided to check the efficiency of our epoxide 36 in absorbing two-

photons which can make this compound a remarkable candidate for imaging. We were 

interested in determining its absorption cross-section section in 2-PE (δa) by the measurement 

of fluorescence intensity induced by two-photon excitation. 

 
2.6.1. Determination of δa using the method of fluorescence 

 
The direct measurement of the two-photon absorption cross section (δa) is difficult to obtain, 

therefore, it is more common to obtain this value indirectly through a reference compound by 

measuring its two-photon fluorescence (δf) cross section according to equation (3): 

 
𝛿1 = 	𝛿&	. 𝜙1																					(3) 
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Therefore, in order to obtain the value of δa, we have to be able, first, to experimentally 

determine the fluorescence quantum yield (ff) of our epoxide 36. The method used in order to 

be able to measure the fluorescence quantum yield of a compound through a known reference 

is discussed in the section below. 

 

2.6.1.1. Determination of the Fluorescence Quantum Yield ff   
 
The quantum fluorescence yield (ff) is defined as the ratio of the number of photons emitted to 

the number of photons absorbed by the sample. Normally, a quantum yield of fluorescence for 

an unknown compound is determined using a reference compound whose quantum yield is well 

known.  

It is necessary to obtain the values of the fluorescence intensities of our studied compound 

(Iepoxide) and of the compound taken as a reference (Iref), these values have to be obtained using 

the same absorbance for both the compound and the reference.  

We selected the Quinin Sulfate in solution in sulfuric acid as a reference with a quantum yield 

of fluorescence (ff = 0.54) as determined by direct method (Heller et al., 1974).  

In the measurements of the spectra, the concentrations of the compound to be studied and the 

compound taken as reference are chosen so that the absorbance of the two solutions are identical 

for the selected excitation wavelength. 

 
Equation (4) can be simplified by deleting the ratio of the respective absorbances. Since the 

sample solvent of our epoxide (Toluene) is not the same as the reference (water), a corrective 

factor of their respective refractive indices must be introduced in the calculation of quantum 

yield (Durham et al., 1982). 

 

𝜙1
3456783 = 	𝜙1

931 	:
𝐴931

𝐴3456783
<	:

𝐼3456783

𝐼931
<	=

𝑛?
3456783

𝑛?
931 @

)

															(4) 

 
𝜙1
3456783	: Quantum yield of fluorescence of epoxide to be determined 

𝜙1
931	: Quantum yield of fluorescence of reference Quinin Sulfate 

𝐴931,3456783 : Absorbance of the reference and the epoxide respectively 

𝐼3456783,931  : Emission intensity of the epoxide and the reference respectively 

𝑛?
3456783,931 : Refractive index of the solvent used for the epoxide and the reference respectively 
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Simply, by replacing the terms in equation (4) by their corresponding values, we obtained a 

quantum yield of fluorescence 𝜙1
3456783	 = 0.18 for our epoxide 36. In the same manner, we 

calculated the 𝜙1
&C83DE83	and we found a value of 0.18. These values were calculated and 

validated from 3 separate trials. The interest of calculating this term for the aldehyde 37 is to 

calculate the efficiency of this compound in 2-PA and compare it with that of the epoxide. 

 
2.6.1.2. Determination of the Two-Photon Absorption Cross-Section δa 

 
The two-photon absorption cross-section (δa) of the epoxide 36 has been determined by 

comparing its fluorescence intensity by two-photon excitation with that of Rhodamine B, whose 

two-photon absorption spectra and fluorescence quantum yield are precisely known (Xu et al., 

1995). In practice, a femtosecond pulse Ti: Sapphire laser was used to irradiate the solutions 

containing the reference Rhodamine B (Rho B) in ethanol and our epoxide 36 in toluene.  

We irradiated by scanning the wavelength (λ) between 700 and 900 nm and noting the values 

of the resulting two-photon fluorescence intensities.  

Similar to the experimental determination of the quantum fluorescence yield, the 2-PA cross 

section can be calculated according to equation (5):  

 

𝛿&
3456783 = 	𝛿&FD5G 	:

𝐴FD5G

𝐴3456783
<	:

𝐼3456783

𝐼FD5G
<	=

𝜙1FD5G

𝜙1
3456783@	=

𝑛?FD5G

𝑛?
3456783@															(5) 

 
𝛿&FD5G	     : Two-photon absorption cross-section of the Rhodamine B 

𝛿&
3456783	 : Two-photon absorption cross-section of the epoxide 

𝜙1
3456783	: Quantum yield of fluorescence of epoxide calculated 

𝜙1FD5G	    : Quantum yield of fluorescence of reference Rhodamine B  

𝐴FD5G,3456783 : Absorbance of the reference and the epoxide respectively 

𝐼3456783,FD5G  : Emission intensity of the epoxide and Rho B respectively 

𝑛?
3456783,FD5G : Refractive index of the solvent used for the epoxide (toluene) and Rho B 

(ethanol) respectively 

 

 

 

 



 

 82 

Both the reference, Rhodamine B, and the compound of interest, epoxide 36 and aldehyde 37, 

were irradiated by the laser and the intensities of fluorescence (I) obtained were replaced by 

their values in equation (5) and we were able to construct the two-photon absorption spectra of 

both the aldehyde and the epoxide (Scheme II.9).  

Interestingly, the fluorescence quadratic-intensity dependence correlates linearly with the 

power of the laser which indicates clearly the process of two-photon absorption. 
 

 
Scheme II.9: Two-photon absorption spectra of epoxide 36 (red) and aldehyde 37 (black). 
 
 
In reference to the spectra, it is evident that the epoxide is more efficient in 2-PA than the 

corresponding aldehyde in toluene. Even though they both show the same quantum yield of 

fluorescence 𝜙1
&C83DE83	=  𝜙1

3456783	 = 0.18, the epoxide tends to produce more intense emission 

under the action of laser irradiations. The epoxide possesses a two-photon absorption cross-

section (δa) values up to 140 GM whereas the aldehyde shows a max of 20 GM in the 

wavelength range of 700-830 nm.  

Using this mentioned method, same experiments were done on the two compounds but in 

dichloromethane, a non-polar and non-aromatic solvent, but we observed no fluorescence signal 

using two-photon excitations for both compounds no matter the wavelength used. 
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Even though the epoxide is not a Photoremovable Protecting Group and cannot be used for 

biological activities for the release of biological molecules, yet it can act as an interesting 

fluorophore for imaging and we can at all times modify the structure by increasing the 

conjugation and/or solubility. 

 

To conclude, even though the synthetic strategy for epoxide seemed promising as an access to 

both o-nitroaryl groups of interest, but, due to several mechanistic, reactivity, structural and 

functional reasons this strategy had lots of limitations. Staying in the same synthetic route, we 

decided to take advantage of the aldehyde 37 in order to synthesize one group of the o-nitroaryl 

family, the o-nitrobenzyl Photoremovable Protecting Group. 
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CHAPTER IV 
 
 
 
 
 
 
 
 
 
 

 
 

Towards the Synthesis of 
O-Nitrobenzyl Group: 
A Pro-Fluorescent 

Photoremovable Protecting 
Group 
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1. Strategy 
 
After all the trails on the epoxide opening, reduction and alkylation, we decided to change the 

strategy again but this time staying in the same synthetic route. The synthesis of the epoxide 

was done through the reaction of an aldehyde 37 function with a sulfur ylide, since the aldehyde 

is easily synthesized in good yielding multiple steps, we decided to use this aldehyde and react 

it with organometallic compounds in order to generate the alcohol 47. Theoretically, this 

strategy would give access to a photoremovable group in just one additional step. The 

retrosynthetic analysis is described in Scheme IV.1. 

 

 
Scheme IV.1: Retrosynthetic analysis for the synthesis of conjugated photoremovable protecting group 
47. 
 
Using the aldehyde 37 we can access the alcohol 46 that could undergo further cross coupling 

reactions in order to increase the conjugation and obtain compound 47. This strategy gives 

direct access to only one group of the o-nitroaryl family; the o-nitrobenzyl photoremovable 

protecting group. Even though it doesn’t grant access to the o-nitrophenethyl group, yet it is 

chemically accessible and synthetically possible.  

 

2. Synthesis of o-nitrobenzyl Photoremovable Protecting Group  
 

2.1. Synthesis of the bromo derivative of o-nitrobenzyl PPG 
 
The synthesis of compound 46 is presented in the Scheme IV.2. The first part (I) is the same 

procedure that has already been used for the epoxide synthesis and led to the production of the 

aldehyde 37, the second part (II) is the generation of the organometallic compound that will be 

used for the nucleophile attack on the electrophilic aldehyde function of compound 37. 

The generation of the organometallic compound is a challenging reaction due to the low 

stability of the formed compounds in solutions and the risk of intramolecular reaction.  
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The synthesis of the organometallic derivative of bromobenzyl bromide 41 was done using zinc 

powder activated with lithium chloride (LiCl), 1,2-dibromoethane (DBE) and 

trimethylsilylchloride (TMSCl) under microwave heating in freshly distilled anhydrous THF at 

70°C for 1h. We were able to generate a solution of bromobenzyl zinc bromide 48 that was 

titrated iodometrically in order to know its corresponding concentration in THF. The freshly 

synthesized reagent 48 was added to the solution of aldehyde 37 at -78°C for a duration of 14h 

leading to the formation of the o-nitrobenzyl biphenyl Photoremovable Protecting Group 46 in 

80% yield. We observed the presence of the intramolecular reaction product 48’ that is 

produced upon the undesired reaction between the organozinc compound 48 and the starting 4-

bromobenzylbromide 41. 

 

 
Scheme VI.2: Total synthesis of o-nitrobenzyl PPG 46 in two parts I) synthesis of the o-nitrobiphenyl 
aldehyde 37 and II) synthesis of the bromobenzyl zinc bromide 48.  
 
(i) H2SO4, HNO3, 0°C, 2h, 72%. (ii) ethylene glycol, p-TsOH, toluene, 130°C, 2h, 98%. (iii) 4-
(dimethylamino) phenylboronic acid, K2CO3, Bu4NBr, Pd (OAc)2, EtOH/H2O (2:1), microwave, 160°C, 
15 min, 85 %. (iv) p-TsOH, H2O, CH2Cl2, CH3CN, 80°C, 100%. (v) Zn, LiCl, 1,2-dibromoethane, 
trimethylsilyl chloride, 85°C, 5 min, 4-bromobenzylbromide 41, anhydrous THF, microwave, 70°C, 1h. 
(vi) anhydrous THF, -78°C, overnight, 80%. 
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In order to study the behaviour of this newly synthesized Photoremovable Protecting Group 46 

and its photochemical and photophysical properties, we attached an organic acid that acts as a 

chromophore in order to follow the photocleavage and quantify the cleavage efficiency by 

HPLC. 

For this reason, we have coupled 3,4-dimethoxyphenyl acetic acid (MPAA) to our PPG in order 

to obtain the caged compound 49 (Scheme IV.3). 

 
Scheme IV.3: Synthesis of the o-nitrobenzyl “caged” acid 49. 
 
(i) DIC, DMAP, CH2Cl2, 0°C, 3h, 68%. 
 
The coupling reaction was done using MPAA with N,N’-diisopropyl carbodiimide (DIC) with 

catalytic amount of dimethylaminopyridin (DMAP) in dichloromethane in order to get access 

to the ester 49 in 68 % yield. Previous trials for the same coupling were done in the lab using 

DCC as coupling agent, but in our case, we replaced this latter with DIC since it is more soluble 

in dichloromethane (the reaction solvent) and the corresponding urea salts, produced at the end 

of the reaction, could be removed by simple crystallization in cold acetonitrile. 

 
2.1.1. Study of the Photolysis by one-photon Excitation 

 
The photolysis of the o-nitrobenzyl series occurs according to the mechanism described in 

Scheme I.14. Upon irradiation of a sample of 49 with known concentration, a photolysis by-

product 49’ is released (Scheme IV.4). The nitrosoketone product 49’ is present in equilibrium 

with its tautomeric nitroso-enol form 49’’, the ratio of these products depends on the 

concentration of the solution and/or the conjugation of the product after cleavage i.e. by 

increasing the conjugation of the system, the nitroso-enol becomes the favored form. 
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Scheme IV.4: Photolysis of 49 by irradiation at 405 nm leading to the release of MPAA. 
 

2.1.1.1. Absorption / Emission Profiles 
 
A solution of 49 with a concentration of 135 µM in a mixture of acetonitrile / PBS (1/1 v/v) 

was irradiated at 405 nm with the help of an LED lamp. For every irradiation time, few µL of 

the solution were injected in HPLC in order to follow the progress of the photolytical reaction 

by observing the decrease of the peak of the starting material and the appearance of the by-

product’s peak. Also, upon each irradiation, the UV/Vis profile was recorded (Scheme IV.5). 
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Scheme IV.5: Variation of UV absorbance after irradiation at 405 nm of 135 μM solution 
(Acetonitrile/PBS 1:1 in vol.) of 49. 
 
By referring to the UV spectrum, compound 49 shows an absorbance maximum at lmax = 413 

nm characteristic of the nitro-biphenyl core with an e = 7750 M-1.cm-1. Two isosbestic points 

are observed for this compound at 360 nm and 485 nm respectively, indicating a clean 

photochemical process leading to stable photoproducts. As we irradiate the sample we observe 

a decrease in the absorbance values that indicates the decrease of the concentration of the 

starting compound 49, and by HPLC peak integrations we observed that after 60 minutes of 

irradiation, 75% of the chromophore MPAA was released and only 25% of 49 was remaining. 

 

 
Scheme IV.6: Variation of fluorescence emission after irradiation at 405 nm of 135 μM solution 
(Acetonitrile/PBS 1:1 in vol.) of 49. 
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Interestingly, as we irradiate our sample, we observe a significant increase in the fluorescence 

intensity and the emission of the compound is centered at  lem = 504 nm (Scheme IV.6). The 

starting compound 49 shows a weak fluorescence at t = 0 in acetonitrile/PBS 1/1 and after full 

cleavage, we observed a ratio of Ifull / I0 = 40 times increase in the fluorescence intensity.  

 
2.1.1.2. Titration of the release of MPAA 

 
In order to quantify the actual amount of the MPAA released over time, it is necessary to 

perform an HPLC analysis through the measurement of the peak area formed over time, in order 

to draw a standard calibration curve (Scheme IV.7).  

This standard curve was obtained by injecting successively in HPLC 100 µL of five different 

concentrations (25, 50, 100, 125 and 150 µM), and each point designates the concentration 

injected with the corresponding area (expressed in µV.sec). 

 

 
Scheme IV.7: Calibration curve of different concentrations of MPAA (25µM – 150µM). Each 
concentration was injected three times in HPLC and the average value of the area was taken. 
 
After obtaining five points, the equation expressing the concentration of MPAA (y) in function 

of the peak area (x) was determined:  
 

𝑦 = 6 × 10MN𝑥 − 1.0859																			(6) 
 

 

y = 6E-05x - 1,0859
R² = 0,9994
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It is possible, by the help of the equation (6), to determine the percentage released at any time 

of photolysis. For example, after HPLC injection of a batch containing a constant volume (µL) 

of 135 µM solution of 49 being irradiated for 60 min, the area obtained by integration of the 

peak corresponds to x = 1 630 000 µV.sec, which gives according to the equation (6) y = 96 

μM or 75% of MPAA released after 60 min of photolysis corresponding to 95% of the expected 

value (75% x 135 µM = 101 µM).  

All the quantifications of the amount of MPAA release, will be calculated in the same manner, 

for all upcoming results.  
 

2.2. Synthesis of the conjugated derivatives of o-nitrobenzyl PPG 
 
The aim of this work is to synthesize a Photoremovable Protecting Group that could release a 

fluorescent by-product of photocleavage, the bromo derivative 49 gave promising results, and 

in order to achieve better shift in emission wavelength, a more intense fluorescence and a better 

ratio of increase (Ifull / I0), we suggest increasing the conjugation of the caging group that could 

induce a more intense red-shifted fluorescent signal after photolysis. 

In order to increase the conjugation of our newly-developed o-nitrobenzyl PPG, we suggested 

a series of pallado-catalyzed Suzuki couplings on 49 with various p-substituted phenylboronic 

acids (p-NMe2, p-NO2, p-OMe). The suggested synthesis is presented in Scheme IV.8. 
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Scheme IV.8: Synthesis of the conjugated derivatives of o-nitrobenzyl Photoremovable Protecting 
Group 50a-c. 
 
(i) K2CO3, Ethanol/water/toluene (2/1/7), Pd(PPh3)4, microwave, 80°C, 45 min for 50a 
dimethylaminophenyl boronic acid, 55% , for 50b 4-nitrophenyl boronic acid, 58%, for 50c 4-
methoxyphenyl boronic acid, 46%. 
 
The bromoaryl derivative 49 was used to increase the conjugation of this system with electron 

donating (NMe2 and OMe) or electron withdrawing (NO2) groups using Suzuki-Miyaura cross-

coupling reaction, under microwave heating at 80°C in presence of potassium carbonate as a 

base, leading to the formation of compound 50a-c in 46-58 % yields. 

 

2.2.1. Study of the photolysis reaction 
 
Similarly to the bromo derivative 49, compounds 50a-c were irradiated using LED lamp at 405 

nm and their photochemical and photophysical properties were evaluated. The construction of 

these derivative by increasing the conjugation aims to red-shift the wavelength of emission and 

to obtain an enhanced fluorescent intensity. Also, this conjugation increase will help the 

equilibrium described in Scheme IV.4 to shifts towards the formation of the nitroso-enol form 

were the 2 biphenyl units are linked by a double bond. After irradiation for a certain amount to 

time, the released chromophore (MPAA) was quantified and the properties of the released by-

product 50’a-c were well determined (Scheme IV.9). 
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Scheme IV.9: Photolysis reaction of derivatives 50a-c by the irradiation at 405 nm. 
 

2.2.1.1. Absorption / Emission Profiles 
 
By referring to the UV spectrum, compound 50a shows an absorbance maximum at lmax = 413 

nm characteristic of the nitro-biphenyl core. Two isosbestic points are observed for this 

compound at 387 nm and 480 nm respectively, indicating a clean photochemical process as 

well (Scheme IV.10). As we irradiate the sample we observe a decrease in the absorbance values 

that indicates the decrease of the concentration of the starting compound 50a, and by HPLC 

peak integrations we observed that after 37 minutes of irradiation, 55% of the chromophore 

MPAA was released and 45% of 49 was left. 
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 Scheme IV.10: Variation of UV absorbance after irradiation at 405 nm of 100 μM solution 
(Acetonitrile/PBS 1:1 in vol.) of 50a. 
 
As we irradiate our sample, we observe a significant increase in the fluorescence intensity and 

the emission of the compound is centered at  lem = 489 nm (Scheme IV.11). The starting 

compound 50a shows a weak fluorescence at t = 0 in acetonitrile/PBS 1/1 and after full 

cleavage, we observed a ratio of Ifull / I0 = 32 times increase in the fluorescence intensity. We 

expected a red-shifted emission and an improved ratio of increase for 50a compared to 49 since 

we are increasing the conjugation with an electron donating group (NMe2). Evidently, the 

amino group tends to get protonated in the solution of analysis to form the corresponding cation 

and thus becoming an electron poor group that tends to withdraw electrons from the system 

thus acting as an electron-attracting group and leading to a blue shifted emission instead. 
 

 
Scheme IV.11: Variation of fluorescence emission after irradiation at 405 nm of 100 μM solution 
(Acetonitrile/PBS 1:1 in vol.) of 50a. 
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By referring to the UV spectrum, compound 50b shows an absorbance maximum at lmax = 413 

nm characteristic of the nitro-biphenyl core. No isosbestic points are observed for this 

compound which indicates a complex photolysis pathway (Scheme IV.12). As we irradiate the 

sample we observe a decrease in the absorbance values that indicates the decrease of the 

concentration of the starting compound 50b, and by HPLC peak integrations we observed that 

after 40 minutes of irradiation, 53% of the chromophore MPAA was released and 47% of 50b 

was left. 

 

Compound 50b showed during irradiation a more complex fluorescent behavior presumably 

due to the photodegradation of the photolytical by-product leading first to an increase followed 

by a decrease of the fluorescence intensity (Scheme IV.13). This compound shows an emission 

at lem = 480 nm which is blue-shifted compared to the bromo and dimethyl methoxy derivatives 

49 and 50a respectively, this due to the strong electron-attracting character of the nitro group. 

We were not able to evaluate the ratio of increase Ifull / I0 due to the photobleaching of the 

fluorophore formed after irradiation of 50b. 
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Scheme IV.12: Variation of UV absorbance after irradiation at 405 nm of 75 μM solution 
(Acetonitrile/PBS 1:1 in vol.) of 50b. 
 
 

 
Scheme IV.13: Variation of fluorescence emission after irradiation at 405 nm of 75 μM solution 
(Acetonitrile/PBS 1:1 in vol.) of 50b. 
 
The UV profile of the photolysis of compound 50c shows an absorbance maximum at lmax = 

413 nm with two isosbestic points are observed for this compound at 370 nm. and 495 nm 

respectively, indicating a clean photochemical process as well (Scheme IV.14). As we irradiate 

the sample we observe a decrease in the absorbance values that indicates the decrease of the 

concentration of the starting compound 50b, and by HPLC peak integrations we observed that 

after 25 minutes of irradiation, 59% of the chromophore MPAA was released and 41% of 50c 

was left. 
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Scheme IV.14: Variation of UV absorbance after irradiation at 405 nm of 55 μM solution 
(Acetonitrile/PBS 1:1 in vol.) of 50c. 

 

As we irradiate our sample, we observe a significant increase in the fluorescence intensity and 

the emission of the compound is centered at  lem = 526 nm (Scheme IV.15). The starting 

compound 50a shows a weak fluorescence at t = 0 in acetonitrile/PBS 1/1 and after full 

cleavage, we observed a ratio of Ifull / I0 = 208 times increase in the fluorescence intensity. As 

expected, a red-shifted emission was observed due to the electron-donating property of the OMe 

group and an improved ratio of increase for 50c compared to 49, 50a and 50b due to the increase 

in conjugation with an electron donating group (OMe). 

 

 
Scheme IV.15: Variation of fluorescence emission after irradiation at 405 nm of 55 μM solution 
(Acetonitrile/PBS 1:1 in vol.) of 50c. 
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2.2.1.2. Dosing the release of MPAA 
 
By the help of the equation (6), we were able to determine the percentage of MPAA released at 

any time of photolysis for every compound 50a-c. For example, after HPLC injection of a 

constant volume (µL) of 100 µM solution of 50a being irradiated for 37 min, the area obtained 

by integration of the peak corresponds to x = 870 600 µV.sec, which gives according to the 

equation (6) y = 51 μM or 55% of MPAA released after 37 min of photolysis corresponding to 

93% of the expected value (55% x 100 µM = 55 µM). 

 

For compound 50b, a sample of 75 µM irradiated for 40 min, was injected in HPLC and a peak 

area of x = 568 100 µV.sec, which gives according to the equation (6) y = 33 μM or 55% of 

MPAA released after 40 min of photolysis corresponding to 83% of the expected value (53% x 

75 µM = 40 µM). 

 

Finally, for compound 50c, a sample of 55 µM being irradiated for 25 min showed an area (by 

integration of the peak) corresponding to x = 543 100 µV.sec, which gives according to the 

equation (6) y = 31 μM or 59% of MPAA released after 25 min of photolysis corresponding to 

97% of the expected value (59% x 55 µM = 32 µM). 

 

 

To sum up, the bromoaryl derivative 49 was used in order to increase the conjugation of this 

new o-nitrobenzyl Photoremovable Protecting Group system with electron donating or electron 

withdrawing groups using Suzuki-Miyaura cross-coupling reaction leading to the formation of 

compound 50a-c. These 4 newly-developed o-nitrobenzyl PPG derivatives 49 and 50a-c show 

interesting photochemical and photophysical properties. The extension of conjugation on these 

derivatives led to monitoring the emission properties of these compounds. MPAA coupling was 

chosen in this study to easily quantify the uncaging efficacy by HPLC analysis.  
 

All compound showed a similar absorbance peak at 413 nm characteristic of the amino-nitro-

biphenyl system. Interestingly, each compound shows a very weak fluorescence (in the blue-

green region) before irradiation, which increases upon the liberation of the acid by irradiation. 

Table 7 sums up the totality of the photochemical and photophysical properties of compounds 

49 and 50a-c. 
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Compounda	 lem(nm)	 I0	x108	 Average	%	of	photocleavageb	 Average**	Ifull	x108	 Ifull/I0	

49	 504	 0.5254	 95	 21.006	 40	
50a	 489	 4.4211	 93	 143.233	 32	
50b	 480	 0.3409	 83	 -c	 -c	
50c	 526	 1.0296	 97	 214.721	 208	

Table 7: Variation of fluorescence intensity ratio and emission wavelength of derivatives 49 and 50a-
c. 
a100 μM solutions (PBS/acetonitrile 1/1 v/v)/ bCalculated from 3 separate irradiation times/ cDue to 
photo-bleaching, it was difficult to calculate Ifull for 50b. 
 
 

2.2.2. Hydrolytical stability 
 
In order to study the hydrolytic stability of these PPGs in solution, we explored their stability 

by HPLC in acetonitrile/phosphate buffer (pH = 7.4) mixture (1/1, v/v) at room temperature. 

No hydrolysis was observed after 24 h for 49 and 50a-c. In addition to that, we dissolved the 

compound in a mixture of acetonitrile/acid (1/1 v/v) and varying the acids with various pH; 

citric acid/sodium citrate (pH = 3.2) and acetic acid/sodium acetate (pH = 4.4), similarly, we 

didn’t observe neither hydrolysis of the ester bond nor any product degradation after 24h. 

 

2.3. Characterization of the nitroso photo-product 
 
The postulated mechanism for the photo-induced liberation of a nitrosoketone derivative should 

be able to achieve a keto-enol tautomerism to generate a conjugated a-nitrosohydroxystilbene 

derivative stabilized by intramolecular hydrogen bond between the nitrogen of the nitroso group 

and the H of the enol group (Scheme IV.16). 

 

 
Scheme IV.16: Mechanism of photolysis of o-nitrobenzyl derivative. 
 
 
 
 
 
In order to validate the formation of these photo-products, we proceeded with FT-IR, 1H 

NMR and UV/HPLC analysis in order to characterize the photo-product released after the 

irradiation of each newly developed o-nitrobenzyl PPG. 
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2.3.1. FT-IR Analysis 
 
A 267 μM solution of compound 50c was prepared in acetonitrile and its corresponding IR 

spectrum was recorded before and after irradiation and the results are presented in Scheme 

IV.17 and Scheme IV.18. 

The IR spectra of this product before and after irradiation show main differences in the 1300-

1500 cm-1 region. The band at 1465 cm-1 which can be attributed to the 19a vibration of NO2 

group (according to Wilson et al., 1934) is decreasing while a band is appearing at 1446 cm-1 

attributed to the 19b vibration of NO group (Richner et al., 2011) and at 1372 cm-1 attributed 

to an enol form (Dutta et al., 2014). In addition to these characteristic bands, a weak absorption 

was detected at 3175 cm-1 could also indicate an enol O-H bond vibration, the weakness of this 

band is explained due to the formation of the hydrogen bond between the enolic proton and the 

nitrogen of the nitroso group. 
 

 
Scheme IV.17: Full Infrared spectrum of the non-irradiated (red) and irradiated 40 minutes (black) 
samples of 50c with concentration of 267 μM. 
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Scheme IV.18: Infrared spectrum of the non-irradiated (red) and irradiated 40 minutes (black) samples 
of 50c with concentration of 267 μM (zone 900 - 1850 cm-1). 
 
 

2.3.2. 1H NMR Analysis 
 
To confirm the keto-enol tautomerism, a 1H-NMR study was undertaken using compound 49 

in deuterated acetonitrile CD3CN at respectively 267µM and 405 µM. The 267µM solution was 

irradiated for 90 minutes and showed 85% cleavage, and the 405 µM solution was irradiated 

150 minutes and showed 80% cleavage (calculated by HPLC peak integration). 

The NMR spectra nicely showed the release of the MPAA together with 3 major sub-products 

based on the 1H dimethyl-amino signals (3.00-3.05 ppm). More interestingly, in a concentration 

dependent manner, 3 new NMR signals together with 2 new signals were detected respectively 

between 4-5.2 ppm and 9.5-10 ppm (Scheme IV.19). The singlet at 4.1 ppm is in good 

agreement with the CH2 of the nitroso-keto sub-product. And the two singlets at 4.87 ppm and 

5.19 ppm together with the two singlets at 9.69 ppm and 9.97 ppm are also in good agreement 

with the 1H expected signals for respectively the Alkene =CH and the OH signals of the 2 

stereoisomers (cis and trans) of the enols sub-products (Scheme IV.20 and Scheme IV.21). 
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Scheme IV.19: Full 1H-NMR spectra overlap of the non-irradiated (top), irradiated 405 μM solution of 
49 (middle) and irradiated 267 μM solution of 49 (bottom). 
 

 
Scheme IV.20: 1H-NMR spectra overlap of the non-irradiated (top), irradiated 405 μM solution of 49 
(middle) and irradiated 267 μM solution of 49 (bottom) zone 4.0-5.3 ppm. 
 

 
Scheme IV.21: 1H-NMR spectra overlap of the non-irradiated (top), irradiated 405 μM solution of 49 
(middle) and irradiated 267 μM solution of 49 (bottom) zone 8.5-10.5 ppm. 
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2.3.3. HPLC and UV profiles 
 
As mentioned, a constant volume (μL) of a solution of each compound in PBS/acetonitrile (1/1 

v/v) was injected in HPLC before irradiation and after each irradiation time in order to evaluate 

the photolysis and to quantify the liberated acid. A sample of 100 μM of 49, injected before 

irradiation, shows a retention time tR = 24.77 min (Scheme IV.22-left) and after irradiating this 

sample for 60 minutes we observed only 30% of the remaining starting compound and a new 

peak appeared at tR = 23.53 min (Scheme IV.22-right).  

It is most probable that this latter corresponds to the nitroso by-product since it shows a red-

shifted absorbance around 430 nm explained by the formation of the conjugated form 49’’ 

(Scheme IV.22). 

 

 

 
Scheme IV.22: HPLC profiles of the non-irradiated (top left) and irradiated (top right) sample of 49 
100 μM and their corresponding UV profiles: non-irradiated (bottom blue) and irradiated (bottom red). 
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After these analyses, we were able to characterize the nitroso photo-product released after the 

photocleavage of the o-nitrobenzyl series of PPG recently developed. The nitrosoketone by-

product tend to be transformed into nitroso-enol, its tautomeric form, that is stabilized by the 

extended conjugation of the system due to the formation of a double bond between the two 

cores of the molecule.  

Interestingly, this conjugation is the reason behind the fluorescence of the photo-products of 

each compound, and their emission intensity varies with the length of the conjugation and the 

electronic nature of the substituent donor and/or acceptor. 

3. Fluorescent uncaging report in cells 
 
After the successful synthesis of the conjugated o-nitrobenzyl Photoremovable Protecting 

Group derivatives, and after evaluating the photophysical and photochemical properties of each 

compound of this family of PPGs, we were interested in studying the behaviour of this series 

in cellular medium. What stays the most important requirement for application in vivo when it 

comes to photoremovable protecting groups, is the ability to follow the uncaging event in cells, 

one, and the most efficient way to achieve that is fluorescence. Since the newly developed series 

of compounds show interesting emission properties, we decided to verify the reproducibility of 

these properties on cells. 

 
3.1. Synthesis of a soluble o-nitrobenzyl derivative 

 
After evaluating the photolysis reaction of each compound and after determining their 

respective photophysical and photochemical properties, we have chosen compound 50c as the 

best candidate to test on cells. This compound has shown the highest increase in the 

fluorescence intensity after photocleavage (Ifull / I0 = 208) in addition to a red-shifted emission 

wavelength (lem = 526 nm). In order to use this compound on cells, we should first, proceed 

with the synthesis of a soluble version of this derivative, one way is by attaching polyethylene 

glycol chain (PEG) that induces solubility in water. 

We have decided to synthesize a pegylated carboxylic acid that replaces MPAA and enhances 

the solubility of the final molecule. The total synthesis of the pegylated version of methoxy o-

nitrobenzyl derivative 55 is described in Scheme IV.23. 

Using the commercial Octaethylene Glycol Monomethyl Ether 51, we were able to obtain the 

pegyl-tert-butyl ester 52 in 87% yield. The tert-butyl group was removed by the action of TFA 

(trifluoroacetic acid) in dichloromethane in order to obtain the PEG-COOH 53 quantitatively. 
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In the same coupling manner with MPAA, this PEG-COOH was coupled to the bromo 

derivative 46 using DMAP and DIC in order to obtain the bromo pegylated version 54.  

The final compound 55 was obtained after a Suzuki coupling of 54 with 4-methoxyphenyl 

boronic acid in 30% yield. 
 

 
Scheme IV.23: Synthesis of 55: a PEGylated version of the o-nitrobiphenyl methoxy derivative.  
 
(i)  NaH, tert-butyl bromoacetate, THF, 0°C, 2h, 87%. (ii) CF3COOH/dichloromethane, 3h, room 
temperature, 100%. (iii) 46, DMAP, diisopropylcarbodiimide, dichloromethane, 0°C, 48%. (vi) 
4-methoxyphenyl boronic acid, K2CO3, Ethanol/Toluene/Water, Pd(PPh3)4, 80°C, 45 min, 30%. 
 

3.2. Uncaging on cells 
 
A 40 μM solution of 55 was prepared in a mixture of PBS/acetonitrile (8/2 v/v), the compound 

was diluted in the cell culture medium to obtain a concentration of 1 μM on cells (<0.5% of 

acetonitrile). 

Two separate batches of cells were prepared for these experiments: 

1- HeLa cells were incubated with compound 55 for 35 minutes with no irradiation in order 

to evaluate the stability of the compound in cellular medium; to ensure that the 

fluorescent signal is not due to the hydrolysis of the compound whereas it is due to the 

accumulation of the side-product of photolysis. Interestingly, HeLa cells incubated 35 

min with a 1 µM solution showed only weak fluorescence intensity (Entry F, Scheme 

IV.24). 

2- HeLa cells were incubated 5 min with a 1 µM solution of 55 and these cells were 

irradiated with 365 nm light from an SPE microscope for 5-minute intervals. A confocal 

image was taken each 5 min for 20 min of continuous irradiation (the experiment was 

stopped after 20 min due to phototoxicity of the UV irradiation). A clear increase in the 

detected fluorescence intensity was observed upon irradiation due to the accumulation 

of the conjugated side-product (Entries A-E, Scheme IV.24). 
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Scheme IV.24: Evaluation of fluorescence intensity on HeLa cells (A) incubated for 5 minutes with no 
irradiation (B) 10 minutes total incubation time irradiated for 5 minutes (C) 15 minutes total incubation 
time irradiated for 5 minutes (D) 15 minutes total incubation time irradiated for 5 minutes (E) 20 minutes 
total incubation time irradiated for 5 minutes (F) incubated for 30 minutes no irradiation. 
 
A quantitative analysis of the fluorescence intensity was performed on 5 cells. It shows a linear 

increase in the fluorescence intensity for the first 15 minutes of irradiation and reaching a 

plateau starting from the 20th minutes of irradiation (Scheme IV.25).  

 

 
Scheme IV.25:  Fluorescence increase in function of irradiation time observed on HeLa cells treated 
with 1 μM of compound 55. 
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These tests showed clearly that our compound releases a fluorescent by-product after photolysis 

and the use of this family of photoremovable protecting groups could help in monitoring the 

uncaging event in cells. 

 

This work has introduced the very first example of o-nitrobenzyl PPG releasing a fluorescent 

by-product that helps in monitoring the uncaging event on cells “optically” via fluorescence. 

The development of these new conjugated o-nitrobenzyl derivatives demonstrated the fact that 

the generation of a fluorescent signal of a by-product from a non-fluorescent compound is the 

important solution for monitoring biological events through fluorescence; being one of the most 

important reporters of uncaging. 

 

Throughout this work, we described new o-nitrobenzyl (o-NB) based photocleavable protecting 

groups with the capability of optical reporting as an important tool for the quantification of 

bioactive molecules photodelivery. The o-nitrobenzyl derivatives have been known to be very 

interesting PPGs. However, the need for bioactive evaluation after photoirradiation have 

increased, and we were able to modify the o-nitrobenzyl derivatives to release the fluorescent 

side product after photoirradiation by conjugating stilbene derivatives. This approach is very 

effective to monitor the real-time biological events. 

 

These groups present, beside their baggage of advantages, one limitation: their low sensitivity 

to light. This limitation is translated in long irradiation times that is not well received in 

biological applications. What is interesting for these applications is to obtain a very rapid 

concentration jump of the bioactive molecule, in our case, the o-NB derivatives show irradiation 

times to the order of minutes. In the coming chapter, we will present the design and synthesis 

of a new, more light-sensitive, o-nitrobenzyl PPG efficient using two-photon excitation. 
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CHAPTER V 
 
 
 
 
 
 
 
 
 

 
 

Towards the Synthesis of 
Thiophene-based 

O-Nitrobenzyl Group: 
A Pro-Fluorescent 

Photoremovable Protecting 
Group 
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1. State of Art 
 
Throughout the previous chapter we have detailed the design of the first example of two-photon 

sensitive photoremovable protecting group of the o-nitrobenzyl family releasing a fluorescent 

by-product of photocleavage. The only drawback for this group is the long irradiation times 

that limits the use of this group in biological application since the interest of biologists is to 

observe a rapid concentration jump of the biological effector, so the irradiation times cannot go 

up to the order of minutes. That’s why we tried to combine the two-photon performance of the 

previously developed PPG with the fluorescence characteristic of the by-product into a new 

more sensitive to light PPG in the o-nitrobenzyl series. In this chapter, we will detail the design 

and synthesis of a new family of o-nitrobenzyl photoremovable protecting group with a 

fluorescent reporter of uncaging. 

What was interesting for us was the PPG recently developed by Ellis-Davies and his group, that 

was discussed in section 3.2 as a new generation of caged calcium based on an o-nitrobenzyl 

moiety for the release of Calcium as second messenger (Agarwal et al., 2016). This o-

nitrobenzyl PPG showed extremely interesting photophysical and photochemical properties. 

Since the synthetical method described previously (organozinc chemistry) is able to generate 

pro-fluorescent PPGs as discussed in the previous chapter, it could be applied to any o-NB 

group. Therefore, we were interested in applying the same strategy on the PPG developed by 

Ellis-Davies. This type of PPG presented two main advantages: 
 

1- The o-nitrobenzyl series have been widely used over the whole history of 

photoremovable protecting groups for the release of molecules using one-photon. There 

have been several interests in modifying the structure of this series in order to render it 

more efficient for two-photon excitation for absorbing wavelength in the near infra-red 

region (Agarwal et al., 2016 and Jakkampudi et al., 2016). These two research groups 

have demonstrated the efficiency of this series in the release of calcium ions by two-

photon excitation and they developed photoremovable protecting groups that presented 

interesting two-photon uncaging cross-sections (Scheme V.1). 
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Scheme V.1: Structures of new generation o-nitrobenzyl based photoremovable protecting groups 
presenting interesting two-photon efficiency in DMSO. The irradiation at 740 and 775 nm is able to 
release free calcium ions by breaking the breaking the complexation between the chelate and the calcium 
ion. 
 

2- The mechanism of photocleavage of o-nitrobenzyl proceeds through one mechanistic 

pathway presented in section 1.3.6.1 releasing a nitrosocarbonyl by-product. This means 

that the photocleavage of o-nitrobenzyl series proceeds by a clean photolytical reaction 

through a unique photochemical mechanism passing by an aci-nitro intermediate. 

 

2. Design and Synthetic Strategy 
 
The aim of the synthesis was to develop a two-photon sensitive photoremovable protecting 

group based on the o-nitrobenzyl core. The structure of this new PPG was inspired from that 

developed by Ellis-Davies’s group (Agarwal et al., 2016) since it shows values of uncaging 

cross-sections in two-photon excitation more promising than those of the PPG developed by 

Jakkampudi’s group (Jakkampudi et al., 2016). Using this chromophore and the strategy 

developed and presented in Chapter IV, we should be able to develop a PPG that is 

photosensitive, two-photon efficient and releases a fluorescent by-product.  

This molecule presents as well, two reactive sites for extending the conjugation to release a 

fluorescent by-product and also the gives the possibility to attach two times the same biological 

effector. An important property that should be taken into account, is the solubility since the 

majority of PPG are tested and used in non-physiological solvents like DMSO and acetonitrile. 

This latter property could be addressed by incorporating solubilizing groups into the structure 

like sugars and PolyEthylene Glycol (PEG) groups. 
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2.1. Retrosynthetic Analysis 
 

Taking in consideration all the requirements for the development of an efficient pro-fluorescent 

PPG, we proposed to synthesize a new o-NB based PPG represented in Scheme V.2 under the 

name BNPET-BB 57 that stands for 2,5-Bis (NitroPhenylEthynyl)Thiophene-BromoBenzyl. 

 

 
Scheme V.2: Retrosynthetic scheme for the synthesis of the o-nitrobenzyl photoremovable protecting 
group with a thiophene core, BNPET-BB 
 

2.2. Design 
 
The design of the newly developed PPG shows a lot of strong points of interest in terms of 

structure or properties: 

 
a) Heterocyclic core: 

 
In the design of a two-photon efficient chromophores the presence of electron donor and 

electron acceptors is necessary for the electronic distribution and the presence of a non-carbon 

atom in the core of the chromophoric structure can lead to important modulation of the optical 

and chemical properties.  
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Several chromophores have been designed containing pyrole, furan and thiophene cores. These 

compounds have been found to possess excellent properties in non-linear optics (Beverina et 

al., 2005; Cheng et al., 1991; Mignani et al., 1990).  

During the last 8 years, several research groups have introduced the thiophene core inside 

fluorophores for two-photon imaging in biological applications (Andrade et al., 2010; Yao et 

al., 2012). 

 
b) Coplanarity: 

 
One of the important factors that affects the performance of a molecule in two-photon excitation 

is the geometry that affects directly the delocalization of the electrons throughout the whole 

structure. In order to increase the efficiency and to enhance its performance of our newly 

developed PPG in two-photon excitation by enhancing the value of the two-photon absorption 

cross section (da), we decided to replace the double bonds of the structure developed by Ellis-

Davies’s group (Agarwal et al., 2016) by triple bonds that render the structure more rigid and 

decrease the steric hindrance generated from the double bonds and also preserves the 

coplanarity of the molecule due to the enhanced electron delocalization. In the lab, Dr Sylvestre 

GUG (unpublished results) has demonstrated the effect of the nature of the bond inside the 

conjugated system on the efficiency of the molecule in two-photon excitation.  

Double bonds in a delocalized p-system are suspected to undergo photo-isomerization under 

the action of light; during irradiations a part of the absorbed energy is devoted for the 

isomerization rather than for the photolysis reaction. This was demonstrated in the lab with the 

liberation of glutamate from 4 different o-nitrophenethyl groups where the insertion of double 

bonds in the structure led to enormous decrease in the yield of liberation (Scheme V.3). 
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Scheme V.3: Comparison of the yield of liberation of 4 different groups of the o-nitrophenethyl series. 
It is evident that the presence of the double bonds inside the p-system consumes a big part of the 
absorbed energy to undergo photo-isomerization rather than a photolysis reaction. 
 

c) The PolyEthylene Glycol (PEG) chains: 

 
After the results obtained with the photoremovable group developed in the previous chapter, 

we decided to incorporate PEG chains into the structure of the BNPET through metallo-

catalyzed reaction with the benzyl bromide of BNPET (Scheme V.2) in order to enhance the 

solubility of our compound. Since our compound contains two sites of attachment, we can 

attach two PEG chains and enhance more and more the solubility. 

 
2.3. Synthesis of pro-fluorescent BNPET-BB derivative 

 
The multi-step synthesis of the BNPET-BB 57 starts with the nitration of the commercial 3-

bromobenzaldehyde through an electrophilic aromatic substitution to obtain compound 33. The 

second step is the protection of the aldehyde function, using ethylene glycol in the presence of 

p-TsOH as acid catalyst by the help of a Dean-Stark apparatus, that serves for trapping water 

molecules released during the reaction and preventing them from returning to the mixture and 

hydrolyzing the dioxolane protection group of the formed 5-bromo-2-nitro-dioxolane 39. 

Compound 61 was obtained through a Sonogashira coupling between 39 and 

timethylsilyacetylene in the presence of a palladium catalyst (Sonogashira et al., 1975).  
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The protection step is necessary before the coupling reaction in order to prevent that 

nucleophilic attack of the cupprate species obtained during the transmetallation step on the 

highly electrophilic aldehyde function; it has been reported that without this step the yields of 

this coupling reaction drops to 30%. The free alkyne 60 is obtained in 94% yield by the removal 

of the silyl group in basic medium using potassium carbonate (Scheme V.4). 

 

 
Scheme V.4: Synthesis of the free alkyne 60. 
 
(i) HNO3, H2SO4, 1h30, RT, 85%. (ii) Ethylene glycol, p-TsOH, anhydrous toluene, 1h30, 120°C, 99%. 
(iii) trimethylsilylacetylene, DIPEA, CuI, Pd(PPh3)2Cl2, THF, RT, 16h, 94%. (iv) K2CO3, CH3OH, RT, 
30 min, 94 %. 
 
The following step is another Sonogashira coupling between the free alkyne 60 and 

dihalothiophene 59 and this step was previously optimized in the lab by Dr Bastien Goegan. 

The coupling was tested first using the 2,5-dibromothiophene 59 (X=Br) and by using catalysts 

like Pd(PPh3)4, Pd(OAc)2 or Pd(PPh3)2Cl2 and CuI in co-catalytical amount (4 mol %) and by 
varying the reaction time, the solvent used, the type of base and also the method of heating 

(heating plate or microwave reactor) the reaction never yielded more than 20% of the target 

compound 62 but rather yielded the product of homocoupling of the alkyne 62’ (Scheme V.5).  

 

 
Scheme V.5: The double Sonogashira coupling between the free alkyne 60 and the 2,5-dihalothiophene 
59 to obtain the bis-coupled compound 62. 
 
This metal catalyzed coupling reaction demonstrated showed that the use of copper (I) as co-

catalyst in the presence of palladium accelerates the coupling reactions and makes it possible 

to do the reaction at room temperature rather than at high temperature (classic conditions) 

(Sonogashira et al., 1975). 

  

O

Br

O

Br

NO2

Br

NO2 O

O

NO2 O

O

Si

NO2 O

Oi ii iii iv

33 39 61 60

NO2 O

O S
X

X
O2N

O O

S
NO2

OO

+

X = Br, I
O2N NO2

O
O

+

O
O

60 59
62 62’

i



 

 115 

The presence of CuI in the mixture with base promotes the formation of copper acetylene that 

causes the production of the homocoupling product after the oxidation of Pd(0) to Pd(II) by an 

oxidant. The homocoupling side product also known as the Glaser homocoupling product 

(Siemsen et al., 2000; 2002) is formed after the palladium being oxidized from Pd(0) to Pd(II) 

with two acetylene ligands leading to the reductive elimination of the Glaser product 62’ 

(Scheme V.6). 

 

 
Scheme V.6: Catalytical cycle demonstrating the proposed mechanism for the formation of the Glaser 
homocoupling product upon the oxidation of Pd(0) into Pd(II). 
 
The major problem of this reaction is the oxidation of palladium that is induced by the presence 

of an oxidant which is probably air in our case and which is kinetically faster to occur. In order 

to prevent the oxidation problem, we decided to proceed by degazing of the reaction medium 

before adding the palladium and this was done by following a “freeze-thaw-pump cycles” 

procedure in order to remove any traces of air from the solution (solvents and reagents). Another 

limitation for this reaction is the 2,5-dihalothiophene 59 used; the use of 2,5-dibromothiophene 

could be also one reason for the formation of the homocoupling product due to the oxidant 

properties of such a reagent. That’s why one solution was the use of 2,5-diiodothiophene to 

perform this double coupling of Sonogashira because the Iodo analog shows higher reactivity 

compared to that of the Bromo analog. 

 

After several trials to optimize this reaction and the formation of the target product 62 in high 

yields and with the lowest yield of Glaser homocoupling, the optimum condition was the use 

of Palladium bis (triphenylphosphine) dichloride Pd(PPh3)Cl2 (10 mol %) with triethylamine as 

the base and copper iodide as co-catalyst (4 mol%) at 50°C for 4h with classical heating method. 
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These conditions led in our case to the formation of the target product 62 with 88% yield along 

with only 12% of the Glaser homocoupled product 62’ (Scheme V.5). 

 

 
Scheme V.7: Synthetic scheme for the formation of the new photoremovable group BNPET-BB caged 
acid 63. 
 
(i) pTsOH, H2O/ACN/DCM, 80 °C, 6 h, 99 %. (ii) a) LiCl, Zinc, THF, trimethylsilylchloride, 80°C, 5 
min, 1,2- dibromoethane, 80°C, 5 min, Bromobenzyl bromide, 70°C, 1h b) 0°C to room temperature, 
THF, overnight. (iii) 3,4-dimethoxyphenyl acetic acid, DIC, DMAP, DCM, 0°C to room temperature, 
overnight, 80%. 
 
The formed dioxolane 62 is deprotected in presence of p-TsOH in order to form the BNPET 

bisaldehyde 58 in quantitative yield. Similarly to the procedure described in the previous 

chapter, a freshly prepared batch of bromobenzyl zinc bromide was added to the bisaldehyde 

58 in order to form the target product 57. This reaction was optimized in order to obtain the 

highest yield of compound 57, since we observed the formation of the monosubstituted product 

57’ along with the target disubstituted compound. The use of bromobenzyl zinc bromide in 

huge excess (10 eq) gave the best conversion; 80% of 57 and 20% of 57’. Both compounds 

were inseparable by silica gel purification at this step, so the mixture was used as it is for the 

coupling reaction with the MPAA chromophoric acid. Using the same coupling conditions, DIC 

and DMAP, and using the same acid chromophore MPAA, we were able to isolate the target 

ester 63 in 80% after HPLC purification. 
 

2.4. Study of the Photolysis by One-Photon 
 
We have described in the previous chapter (IV) the photolysis of the o-nitrobenzyl series, and 

we were able to demonstrate the mechanism described in Scheme I.14. this mechanism that 

proceeds by releasing a nitrosoketone product that is present in equilibrium with its tautomeric 

nitroso-enol form. 
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And we have validated the formation of the nitroso-enol form where it favors the conjugation 

of the system by the creation of a double bond between the two extremities of the molecule. 

In the case of the new BNPET PPG 63, we could observe the formation of the nitroso-enol form 

on both sides 63’’ with the release of 2 equivalents of MPAA (Scheme V.8). 

 

 
Scheme V.8: Photolysis of 63 upon irradiation at 405 nm and the release of the MPAA chromophore 
along with the nitroso-enol 63’’. 
 

2.4.1. Absorption / Emission Profiles 
 
A solution of 63 at a concentration of 50 µM in a mixture of acetonitrile / PBS (3/7 v/v) was 

irradiated at 405 nm with the help of an LED lamp. For every irradiation time, few µL of the 

solution were injected in HPLC in order to follow the progress of the photolytical reaction by 

following the decrease of the peak of the starting material and the appearance of the by-

product’s peak. The starting material presents 2 absorption bands at 280 nm and 387 nm 

respectively with a molar extinction coefficient of e = 27000 M-1.cm-1. Upon each irradiation, 

the UV/Vis profile was recorded (Scheme IV.9). 
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Scheme V.9: Variation of UV absorbance after irradiation at 405 nm of 50 μM solution 
(Acetonitrile/PBS 3:7 in vol.) of 63. 
 

 
Scheme V.10: Variation of fluorescence emission after irradiation at 405 nm of 50 μM solution 
(Acetonitrile/PBS 3:7 in vol.) of 63. 
 
Interestingly, this PPG shows a complete loss of starting material after only 30 seconds of 

irradiation (black and red) and an appearance of a new compound (purple) most probable to be 

the mono released compound with an absorption maximum at 375 nm. This latter disappears 

completely after 50 seconds and a new absorbance appears with a maximum of absorption at 

365 nm (green).  
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Starting from 70 seconds, this absorption starts to decrease progressively, and a very broad 

band appears after 330 seconds (5.5 minutes) with a possible absorption maximum around 400 

nm and extends till 730 nm (orange). On HPLC, after 30 seconds we observed the complete 

disappearance of the starting material peak and the appearance of a new peak. The MPAA 

HPLC assay showed that after 30 seconds of irradiation, 100% of released MPAA was detected, 

that refers to the cleavage on one side of the BNPET PPG. Upon further irradiation, we observed 

the gradual disappearance of the second peak and a gradual appearance of a third peak 

accompanied by the increase of the peak of MPAA that reflects the release of more 

chromophore in the solution. 

 

Before irradiation, compound 63 shows a very weak fluorescence but, interestingly, as we 

irradiate our sample, we observe a significant increase in the fluorescence intensity with 2 

emission bands of the compound at  lem = 435 nm and lem = 415 nm (Scheme V.10). We 

weren’t able to evaluate the fluorescence intensity at full cleavage (Ifull) since the compound 63 

tend to partially cleave (one side cleavage) at first releasing one fluorescent by-product and 

upon further irradiation we observe the cleavage on the second side leading to the release of 

another fluorescent by-product in a mixture of PBS/acetonitrile. 

 
In order to be able to correlate the fluorescent uncaging report with the control by light of a 

biological event (for example with the release of a neurotransmitter), we decided to synthesize 

a water-soluble version. Therefore, a PEGylated version of the BNPET PPG was designed. We 

decided to graft PEG chains on this PPG using metallo-catalyzed coupling of a pegylated aryl 

directly on molecule 63.  

As a result, we have decided to increase the conjugation of 63 and its solubility via the addition 

of PEG8 by a Suzuki coupling. 

3. Towards the synthesis of the PEGylated derivative of BNPET 
 

3.1. Suzuki Cross-Coupling Reaction via Synthesis of Boronic Derivatives 
 
We realized first the synthesis of the PEGylated aryl derivative. The first step consists of a 

tosylation of the starting product, Octaethylene glycol monomethyl ether 51 using p-Tosyl 

chloride under basic conditions to obtain the tosylated PEG8 product 64 with a yield of 93%. 

This latter was reacted with 4-bromophenol to form the product 65 with a yield of 88% after 

purification (Scheme V.11).  
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Scheme V.11: Synthesis of PEG8 bromo aryl 65 from PEG8-OH. 
 
(i) p-TsCl, NaOH, THF, 0°C, overnight, 93%. (ii) 4-bromophenol, K2CO3, DMF, 80°C, 24h, 88%. 
 
The third step is the formation of the boronic derivative for the Suzuki coupling, we proposed 

two separate synthetic routes in order to access this derivative. The first proposed route is using 

n-BuLi and Trimethylborate (Route A, Scheme V.12). This reaction yielded no target product 

66 and no conversion of the starting product into the desired product was observed. We 

therefore chose to perform this reaction catalytically using a palladium complex PdCl2(dppf)2 

and Bis(pinacolato) diborane (Route B, Scheme V.12). The target product 67 was obtained once 

and this reaction was unreproducible due to the poor reactivity of the bromo derivative 65, so 

we switched to the iodo derivative (4-iodophenol) that is suspected to have better reactivity 

towards palladium complexes. 

 

 
Scheme V.12: Two proposed synthetic routes for the synthesis of the boronic derivative of 65.  
Route A using n-BuLi and trimethyl borate and Route B catalytically using palladium complex. 
 
(i) n-BuLi, B(OCH3)2, THF, -78°C, 14h, HCl (ii) PdCl2(dppf)2, Bis(pinacolato) diborane, CH3COOK, 
DMSO, 90°C, 14h. 
 
Due to the unavailability of the commercial PEG8-OH 51 in the lab, we managed to synthesize 

the PEG7-OH 70 derivative which has the same solubility properties as its PEG8 analog. Starting 

from this PEG7-OH derivative 70, and after its tosylation into 71, we were able to isolate the 

PEG7-iodophenyl 72 in 65% yield. The catalytical reaction between this latter and the Pd(dppf)2 

complex led to the formation of the target PEG7-phenyl boronic ester 73 but in a partial 

conversion.  
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Due to the presence of some starting iodo derivative 72 in the crude, we proceeded to the 

purification in order to isolate a pure boronic derivative, in order to prevent the Suzuki between 

the leftover of 72 and the formed 73 (Scheme V.13). Since the formed PEG7 derivative 73 is 

too polar, the purification was performed in presence of 5% MeOH, this latter led to the trans-

esterification of the boronic derivative 73 giving B(OCH3)2 as a non-reactive species. 

 

 
Scheme V.13: Synthesis of PEG7 phenylboronic ester 73 from PEG-iodo aryl 72. 
 
(i) K2CO3, DMF, 80°C, 24h, 60%. (ii) p-TsCl, NaOH, THF, 0°C, overnight, 88%. (iii) 4-iodophenol, 
K2CO3, DMF, 80°C, 24h, 65%. (iv) PdCl2(dppf)2, Bis(pinacolato) diborane, CH3COOK, DMSO, 90°C, 
14h, 65%. 
 
 
We decided to switch to a less polar i.e. shorter PEG chains in order to be able to purify the 

boronic ester by a methanol-free silical gel purification. 

In order to achieve that, we decided to work with PEG4-OH 74 that was tosylated to form PEG4-

OTs 75. This latter was reacted with 4-iodophenol to form 76 in 68% yield and via the 

catalytical pathway we were able to obtain PEG-4 phenylboronic ester 77 after purification in 

63% yield (Scheme V.14). 

 
Scheme V.14: Synthesis of PEG4 phenylboronic ester 77 from PEG4-iodo aryl 76. 
 
(i) p-TsCl, NaOH, THF, 0°C, overnight, 82%. (ii) 4-iodophenol, K2CO3, DMF, 80°C, 24h, 63%. (iii) 
PdCl2(dppf)2, Bis(pinacolato) diborane, CH3COOK, DMSO, 90°C, 14h, 63%. 
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After having obtained the PEGylated boronic ester, we proceeded to the Suzuki cross-coupling 

of this latter with our BNPET-BB compound 63 using palladium catalyst (Scheme V.15). 

 

 
Scheme V.15: Synthesis of PEGylated BNPET-BB 78 via a Suzuki cross-coupling using PEG4-
phenylboronic ester 77. 
 
(i) 77, Pd(PPh3)4, K2CO3, Toluene/Ethanol/water (7/2/1 v/v/v), microwave, 80°C, 45 min. 
 
The reaction was done using a palladium (0) complex in a mixture of toluene, ethanol and water 

under microwave heating at 80°C for 45 minutes. Unfortunately, we were not able to see the 

formation of the pegylated product 78, the reaction yielded only starting material 63. 

Another alternative for the synthesis of the pegylated version of the pro-fluorescent BNPET 

PPG is the use of a Sonogashira cross-coupling using Pegylated phenyl acetylene derivatives. 

This strategy was explored and detailed in the following section. 

 

3.2. Sonogashira Cross-Coupling Reaction via Synthesis of Acetylene 
Derivatives 

 
Using PEGylated phenyl acetylene derivatives is advantageous since it doesn’t just increase the 

solubility of the target product but should also dramatically increase the conjugation of the 

system by the introduction of a triple bond. And also, acetylene derivatives are known to be 

stable, so this eliminates the risk of degradation during purification like in the case of PEGylated 

boronic esters. 

We realized the synthesis of the PEGylated phenyl acetylene derivative 81 using the already 

prepared PEG7-OTs 71. The first step for the preparation of 71 consists of an acetylation of the 

4-iodophenol using trimethylsilyl acetylene and PdCl2(PPh3)2 with CuI catalysts in order to 

obtain the protected alkyne 80 in 88%.  

This latter was reacted with PEG7-OTs 71 in presence of K2CO3 to obtain in one step the 

deprotection of the alkyne and the tosylation of the phenyl to form the free PEGylated phenyl 

acetylene 81 with a yield of 73% after purification (Scheme V.16).  

O2N

S
NO2

Br
O

O

O

O

O

O

Br

O
O

63

O2N

S

O

O

O
O

78

O
O

4

2

i



 

 123 

 

 
Scheme V.16: Synthesis of PEG7 phenylacetylene 81 from 4-iodo phenol 79. 
 
(i) PdCl2(PPh3)2, CuI, Et3N, THF, 80°C, 3h, 88%. (ii) K2CO3, DMF, 80°C, 14h, 73%. 
 
After having obtained the free alkyne 81, we tried a Sonogashira coupling reaction with the 

previously obtained BNPET-BB 63 in order to get access to a water soluble version of this 

BNPET derivative (82, Scheme V.17).  
 

 
Scheme V.17: Synthesis of PEGylated BNPET-BB 82 via a Sonogashira cross-coupling using PEG7-
phenylacetylene 81. 
 
(i) 81, [Pd], CuI, Et3N, THF, 80°C, 45 min. 
 
 
This reaction was tried twice changing the palladium catalyst and the order of addition of 

reagents. Trial 1 was done using Pd(II) catalyst PdCl2(PPh3)2 in presence of CuI as co-catalyst 

in THF and triethylamine base, under heating at 80°C and following the reaction by HPLC. 

After 5h of heating no product appeared only starting material and the homocoupling of the 

acetylene derivative 81 were observed.  

 

Trial 2 was done using Pd(0) catalyst Pd(PPh3)4 and adding copper iodide at the end to prevent 

the formation of the homocoupling of the acetylene derivative. The reaction was heated at 80°C 

and followed by HPLC and after 7h we observed a degradation of the BNPET derivative 

originating from the degradation of its thiophene core. 
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These results could be explained by the steric hindrance of the BNPET-BB derivative as well 

as the weak reactivity of the bromo aryl toward metal-catalyzed cross-coupling (Suzuki or 

Sonogashira). 

 

One solution would be to prepare the iodo derivative of BNPET-BB that, evidently, is more 

reactive than its bromo analog towards Sonogashira or Suzuki crosss-coupling reactions. This 

could be done by preparing the iodobenzyl zinc iodide and reacting this latter with the BNPET-

dialdehyde 58 in order to obtain the iodo analog of 57. This is one solution to overcome this 

synthetic problem, and as soon as the target compound is obtained it will be tested for the release 

of neurotransmitters and following the uncaging event by fluorescence. 

4. Photo-Physical Properties of BNPET Derivative 
 
After the synthesis of this photoremovable protecting group with the heteroatom core 63, we 

were interested in investigating the photo-physical properties of this compound. The core of 

this molecule (nitrophenyl ethynyl) being new, we are interested in determining its photo-

physical and photo-chemical properties of this molecule in order to evaluate its efficiency in 

two-photon excitation. Similarly to the epoxide, to determine the two-photon uncaging cross-

section (du), it is necessary to determine the two-photon absorption cross-section (da) using the 

equation (2) of chapter I: 

 

𝛿S	 = 	 𝛿&	𝜙S															(2) 

 

The characterization that were done on this chromophore BNPET represented in SchemeV.18 

and the experimental procedures of the synthesis of this chromophore were adopted by Jung’s 

group (Jung et al., 2000). 
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Scheme V.18: Structure of BNPET chromophore and the photochemical mechanism of cleavage of 
BNPET-BB and the release of the a-nitrosohydroxystilbene by-product. 
 

4.1. Determination of the Two-Photon Absorption Cross-Section (da) of 
BNPET 

 
We used here the same method applied to determine the 2-PA cross-section of the epoxide in 

order to determine the photophysical characteristics of BNPET chromophore. 

In order to determine the fluorescence quantum yield of BNPET (ff) we selected Harmalol as 

a solution in a mixture of ethanol-sulfuric acid as a reference with a quantum yield of 

fluorescence (ff = 0.48) as determined by direct method (Pardo et al., 1988).  

 

In the measurements of the spectra, the concentrations of the compound to be studied and the 

compound taken as reference are chosen so that the absorbances of the two solutions are 

identical for the selected excitation wavelength. Since the sample solvent of our BNPET 

chromophore (CH2Cl2) is not the same as the reference (EtOH, H2SO4), a corrective factor of 

their respective refractive indices must be introduced in the calculation of quantum yield 

described by equation (4) in Chapter III. Simply, by replacing the terms in equation (4) by their 

corresponding values, we obtained a quantum yield of fluorescence 𝜙1GTUVW	 = 0.16 for our 

BNPET.  

In order to determine the 2-PA cross-section (da) of the BNPET, we used the same method 

applied to the epoxide in Chapter III using Rhodamine B as a reference and varying the 

wavelength between 700 and 900 nm.  
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Both the reference, Rhodamine B, and the compound of interest, BNPET, were irradiated by 

the laser and the intensities of fluorescence (I) obtained were replaced by their values in 

equation (5) and we were able to construct the two-photon absorption spectra of both the 

BNPET (Scheme V.19). interestingly, the fluorescence quadratic-intensity dependence 

correlates linearly with the power of the laser which indicates clearly the process of two-photon 

absorption. 

 

 
Scheme V.19: Two-photon absorption spectra of BNPET chromophore. 
 
In reference to the spectra, it is evident that the BNPET is efficient in 2-PA, it possesses two-

photon absorption cross-section (δa) values up to 150 GM in the wavelength range of 700-830 

nm. This wavelength range is very interesting for in vivo applications since these wavelengths 

fall in the near-infrared region, this zone where the biological chromophores tend to weakly 

absorb light irradiations.  

 

This BNPET chromophore has several characteristics that makes it a very useful PPG for 

biological applications: (1) We succeeded to synthesize a conjugated analog of BNPET and this 

latter showed interesting fluorescence reporting properties after uncaging. This photoremovable 

protecting group shows interestingly (2) short irradiation times and (3) high efficiency in two-

photon absorption. 
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However, to be able to correlate the fluorescent uncaging report with the control by light of a 

biological event (for example with the release of a neurotransmitter) we still have to be able to 

generate a more soluble version of this new photoremovable protection group with uncaging 

fluorescent properties. 
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CHAPTER VI 
 
 
 
 
 
 
 
 
 

 
 

Use of o-Nitroaryl PPGs for 
Light-Controlled Cell Adhesion 
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1. State of Art 
 
This project was done in collaboration with the Group of Doctor Christophe Tribet from the 

Ecole Normale Supérieure (ENS): Biophysical Chemistry Department-Paris. This group works 

on a functionalized copolymer that permits the control of the adhesive property of cellular 

surfaces. This copolymer is constituted mainly of a poly-L-Lysine (PLL) chain grafted with a 

poly-ethylene glycol (PEG) chain (Dalier et al., 2016).   

The principle behind the method of PLL coating, is that the polycationic polylysine molecules 

adsorb strongly to various solid surfaces, leaving cationic sites which combine with the anionic 

sites on cell surfaces. The cell adhesion is interpreted simply as the interaction between the 

polyanionic cell surfaces and the polycationic layer of adsorbed polylysine. The attachment of 

cells to the polylysine-treated surfaces can be exploited for a variety of experimental 

manipulations. 

In this project, we aim to introduce to this copolymer a photocleavable bond by the insertion of 

modified, previously synthesized, photoremovable protecting groups PPG (o-nitrobenzyls and 

o-nitrophenethyls) that will help the light-control and quantification of cell adhesion (Scheme 

VI.1). 

 

 
Scheme VI.1: Use of photoremovable protecting groups in order to control cell adhesion by light. 
 
Cell adhesion is involved in stimulating signals that regulate cell differentiation, cell cycle, cell 

migration, and cell survival. Cell adhesion is also essential in cell communication and 

regulation and showed of fundamental importance in the development and maintenance of 

tissues. Changes in cell adhesion can be the defining event in a wide range of diseases including 

cancer (Khalili et al., 2015). 

In order to achieve the best architecture for the copolymer system used for light-controlled cell 

adhesion, the cleavage of the bond should occur at a wavelength>350 nm to avoid cellular 

damage. The best candidate for this purpose is the o-nitrobiphenyl PPG that was recently 

developed in the lab. For this purpose, we need to modify the structure of the PPG in order to 

introduce functions that can be used to graft the polymer chain and the PLL chain. 



 

 130 

2. Design and Synthesis 
 

2.1. Synthesis of o-nitrophenethyl (o-NPP) caged copolymer 
 
The first proposed photoremovable group is the o-nitrophenethyl with the o-nitrobiphenyl core 

bearing a triple bond and an alcohol function. The proposed architecture of this compound is 

presented in Scheme VI.2. 

 

 
Scheme VI.2: Proposed architecture for the o-nitrophenethyl caged PLL. 
 
This compound is synthesized in 6 steps starting with a vicarious nucleophilic substitution of 

4-nitrobromobenzene 1 with tert-butyl chloroacetate to obtain compound 2 in 55% yield. The 

following step is the acid-catalyzed trans-esterification of 2 in MeOH in order to obtain the 

methyl ester 83 in quantitative yield. The alkylation of 83 using trimethylsilylpropargyl 

bromide was done in anhydrous acetonitrile and using DBU as base led to the formation of 84 

in 72% yield. In order to obtain the free alcohol function, the methyl ester was reduced using 

DIBAL-H to obtain compound 85 in 73% yield (Scheme VI.3). 

 

 
Scheme VI.3: 1st part of the synthesis of the target cage compound starting from 4-nitrobromo benzene. 
 
(i) tert-butyl chloroacetate, DMF, 0°C, room temperature, 14h, 55%. (ii) MeOH, H2SO4, 65°C, 4h, 
100%. (iii) trimethylsilylpropargyl bromide, DBU, acetonitrile, 24h, 72%. (iv) DIBAL-H, THF, 0°C, 
4h, 73%. 
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After obtaining compound 85, we proceeded with the Suzuki coupling in order to construct the 

biphenyl core; this reaction was done in presence of Pd(PPh3)4 catalyst in a mixture of 

Toluene/Ethanol/Water to obtain the nitrobiphenyl 86 in 55% yield. The free alkyne 87 was 

obtained in quantitative yield after deprotection of the TMS protecting group using TBAF in 

THF for 1h.  

After obtaining the free alkyne 86, we were able to attach the PEG52-NH2 chain using CuAAC 

in presence of Copper in a mixture of anhydrous DMF/tert-butanol/water in order to obtain the 

target compound 88 in 90% yield (Scheme VI.4). 

 

 
Scheme VI.4: 2nd part of the synthesis of the target cage compound starting from compound 85 
 
(i) 4-(dimethylamino) phenylboronic, K2CO3, Toluene/EtOH/Water (7/2/1 v/v/v), Pd(PPh3)4, 
microwave, 80°C, 45 min, 55%. (ii) Tetrabutylamonium fluoride (TBAF), THF, room temperature, 1h, 
100%. (iii) N3-CH2-PEG52-CH2-NH2, DMF/tBuOH/H2O (1/15/1 v/v/v), Ascorbic acid, L-Proline, 
CuSO4.5H2O, 65°C, 48h, 90%. 
 

2.1.1. Evaluation of surface adhesive properties via surface fluorescence loss 
 
In order to evaluate the control of cell adhesion by light, one proposed method is using loss of 

fluorescence on the surface. In other words, a fluorescent dye is statistically coupled to our 

PPG, this dye will help quantify the release of the PPG from the surface by the loss of 

fluorescence rising from the departure of the PPG-dye core from the surface after 

photocleavage.  
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Scheme VI.5: Evaluation of surface adhesive properties by surface fluorescence loss. 
 
In order to apply this method, a cyanine dye (Cy3-NHS ester) was statistically coupled to our 

PPG-PEG compound 88 using diisopropylethylamine (DiPEA) as base in anhydrous DMF in 

order to obtain the compound 89. This latter was reacted with acetic acid in presence of DiPEA 

as base and PyBoP as coupling reagent. This caping step is crucial in order to protect the amino 

function that may undergo, in presence of a base, intramolecular cyclisation after the coupling 

with trisphosgene. After obtaining the N-caped compound 90, PLL was coupled to our 

compound using DiPEA and trisphosgene in anhydrous THF to obtain the final compound 91 

(Scheme VI.6). It is important to note that the PLL coupling was done in a manner to achieve 

30% of surface modification. 

 

 
Scheme VI.6: Synthesis of Cage-PEG-PLL coupled with a dye for the evaluation of the adhesive 
properties by surface fluorescence loss. 
 
(i) DiPEA, Cy3-NHS ester, anhydrous DMF, 0°C, room temperature, 3h, 95%. (ii) PyBoP, acetic acid, 
DiPEA, anhydrous DMF, 0°C, room temperature, 3h, 100%. (iii) DiPEA, trisphosgene, Poly-L-Lysine, 
anhydrous THF, 0°C, room temperature, 2h. 
 
The compound was attached to a surface and this surface was irradiated at 405 nm and the 

emission intensity was recorded before and after photocleavage. We noticed an important loss 

of the surface fluorescence but unfortunately, the cyanine dye tends to photobleach upon 

irradiation at the mentioned wavelength. Therefore, we were not able to quantify the release of 

PLL copolymer by light using fluorescence imaging. 
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2.1.2. Evaluation of surface adhesive properties via surface mass loss 
 
An alternative method for the evaluation of surface adhesive properties is via the measurement 

of surface mass loss using a Quartz Crystal Microbalance with Dissipation monitoring (QCM-

D). This method studies the polymer behavior on surfaces via the measurement of the mass lost 

on surface that will help evaluate the percentage of cleavage by light. Upon irradiation of the 

surface, the PPG-PEG is cleaved from the surface releasing the PLL chains; the evaluation of 

this mass loss after photocleavage is a mean to evaluate the amount of PEG-PPG released after 

irradiation (Scheme VI.7). 

 
Scheme VI.7: Evaluation of surface adhesive properties by surface mass loss. 
 
In order to apply this method, an alternative PEG chain was used: PEG32-OCH3, this latter was 

clicked to the free alkyne 87 to obtain compound 92 after 72h. Poly-L-Lysine chains were 

coupled to compound 92 using trisphosgene in basic medium to obtain the target compound 93 

after dialysis in water (Scheme VI.8). 

 

 
Scheme VI.8: Synthesis of Cage-PEG-PLL with OCH3 terminal for the evaluation of the adhesive 
properties by surface zeta potential. 
 
(i) N3-CH2-PEG32-CH2-OCH3, DMF/tBuOH/H2O (1/15/1 v/v/v), Ascorbic acid, L-Proline, 
CuSO4.5H2O, 65°C, 72h, 95%. (ii) DiPEA, trisphosgene, Poly-L-Lysine, anhydrous THF, 0°C, room 
temperature, 2h. 
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This o-nitrophenethyl-PEG system was irradiated on surface and the mass loss was recorded 

using the QCM-D technique. We observed only a 5% mass loss; this could be explained by the 

fact that o-NPP PPGs tend to have lower photolytical efficiency when in water solution. The 

photochemistry of this class of photoresponsive molecules (i.e. orthonitrophenethyl 

derivatives) is strongly dependent on solvent and basicity (Walbert et al., 2001). One could 

speculate that the hydrophobic environment near the EANBP caging group in the polymer could 

potentially lead to a new major photochemical pathway and a photorearrangement producing a 

hydroxy-nitroso product. (Scheme I.20). Yet, 5% of mass loss could not mainly mean that no 

cleavage occurred, it could mean that this family of photoremovable group cleave weakly in 

water in presence of polymeric chains. That’s why we switched to the o-nitrobenzyl PPG that 

we discovered in previous chapters that they tend to cleave in a quantitative manner. 

 

2.2. Synthesis of o-nitrobenzyl (o-NB) caged copolymer 
 
Due to the problems of cleavage and light sensitivity in water faced with the o-NPP, we decided 

to switch to the other series of the o-nitroaryls; o-nitrobenzyl (o-NB) that we know, from 

previous results (Chapter IV) that the cleavage is almost quantitative. 

We suggested a similar PPG-copolymer architecture to that described for o-NPP in the previous 

section with a free alkyne for click chemistry with the PEG chain and the alcohol function for 

the coupling with PLL (Scheme VI.9). 

 

 
Scheme VI.9: Proposed architecture for the o-NB caged-PLL 
 
The synthesis of this compound requires the reaction between an aldehyde function 

(electrophilic center) and propargylzinc bromide (nucleophile). Form the previously 

synthesized biphenyl aldehyde 37, we initiated the synthesis of the target compound using 

freshly prepared propargylzinc bromide. Using propargyl bromide with activated zinc on 37 led 

to the formation of the target compound 95 in 94% yield (Scheme VI.10). 
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Scheme VI.10: Synthesis of o-NB photoremovable group for caging PLL. 
 
(i) THF, -78°C, 2h, room temperature, 14h, 94%. 
 

2.2.1. Evaluation of adhesive properties via after cleavage on-surface click reactions 
 
The purpose behind this method is to be able to apply post irradiation surface modification 

using reactive chain terminals. In other words, the terminal chain function will be used in order 

to modify the surface fluorescence after the release of the PPG-PEG entity. In our case, we used 

a PEG-azide terminal function in order to attach a fluorophore, on the surface, after irradiation 

via click chemistry (Scheme VI.11). 

 

 
Scheme VI.11: Evaluation of surface adhesive properties by post-irradiation surface modification by 
attaching a fluorophore on the surface via click chemistry. 
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The aim of this strategy is to evaluate the fluorescence of the surface after cleavage via the 

attachment of a fluorophore. The post-cleavage fluorescence intensity will help in quantifying 

the release of the PLL. This depends on the free azide functions left on the surface after 

cleavage. 

After the synthesis of the target PPG 95, the PEG chain was attached to the compound via a 

click reaction in a mixture of solvents in order to obtain the PPG-PEG system 96 in 92% yield. 

This latter was coupled to a HOOC-PEG7-CH2-N3 chain to obtain compound 97. The synthesis 

of this product needs to be optimized and sent to our collaborator for post irradiation surface 

modification (Scheme VI.12). 

 

 
Scheme VI.12: Synthesis of Cage-PEG-azide for post cleavage surface modification using click 
chemistry with a fluorophore. 
 
(i) N3-CH2-PEG52-CH2-NH2, DMF/tBuOH/H2O (1/15/1 v/v/v), Ascorbic acid, L-Proline, CuSO4.5H2O, 
65°C, 72h, 92%. (ii) PyBoP, HOOC-PEG7-CH2-N3, DiPEA, anhydrous DMF, 0°C, room temperature, 
3h, 100%. 
 

2.2.2. Evaluation of surface adhesive properties on o-NB containing PLL polymers 
 
The final trial in this project is the evaluation of the surface adhesive properties by measuring 

the surface mass loss before and after cleavage in order to quantify the release of PLL. Similarly 

to the method described in section 2.1.2 with o-NPP, we synthesized the PPG-PEG-PLL system 

using o-NB compound 95. 
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Scheme VI.13: Synthesis of o-NB Cage-PEG-PLL with OCH3 terminal for the evaluation of the 
adhesive properties by surface mass loss. 
 
(i) N3-CH2-PEG32-CH2-OCH3, DMF/tBuOH/H2O (1/15/1 v/v/v), Ascorbic acid, L-Proline, 
CuSO4.5H2O, 65°C, 72h, 95%. (ii) DiPEA, trisphosgene, Poly-L-Lysine, anhydrous THF, 0°C, room 
temperature, 2h. 
 

Compound 98 was obtained after a CuAAC reaction between 95 and N3-CH2-PEG32-CH2-

OCH3. This latter was coupled to Poly-L-Lysine in the presence of trisphosgene and DiPEA to 

obtain compound 99. 

 

2.2.2.1. UV/Visible Profiles of Irradiation 
 

Three solutions of compound 99 with similar concentration of 0.5 mg/mL was prepared in a 

mixture of PBS/acetonitrile (1/1 v/v, Scheme VI.14), Ethanol/PBS (1/1 v/v, Scheme VI.15) and 

pure PBS (Scheme VI.16). These solutions were irradiated at 405 nm for the shown times and 

their corresponding UV absorbances were recorded at each irradiation time. The UV/Visible 

profiles show clean photochemical reactions in the used solvents with well-defined isosbestic 

points. 
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Scheme VI.14: UV/Visible profile upon irradiation of a solution of 99 (0.5 mg/mL) in Acetonitrile/PBS 
(1/1 v/v) at 405 nm. 
 

 
Scheme VI.15: UV/Visible profile upon irradiation of a solution of 99 (0.5 mg/mL) in Ethanol/PBS 
(1/1 v/v) at 405 nm. 
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Scheme VI.16: UV/Visible profile upon irradiation of a solution of 99 (0.5 mg/mL) in 100% PBS at 
405 nm. 

 

The main aim of this project was to develop a new PPG-PEG-PLL system for the light-

controlled evaluation of the adhesive properties of a surface. We were able to optimize the 

synthesis of caged poly-L-Lysine using two series of o-nitroaryls: the o-nitrophenethyls and o-

nitrobenzyls. 

Using different physical properties like fluorescence and surface mass loss, we aimed to 

evaluate the surface adhesive properties before and after cleavage. The synthetic part was done 

in the lab and the final pure compounds were sent to our collaborators for the irradiation 

experiments and the surface adhesive properties. 
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1. Conclusions 
 
There is a great need for photoremovable protecting groups able to generate an easy way to 

quantify their side-products, in particular to be able to monitor in real time the light induced 

concentration jump of a given biological effector. One of the ways to monitor the release of a 

biomolecule is via fluorescence as an “optical reporter” of the uncaging event. So, the aim of 

this thesis work was to design photoremovable protecting groups that are able to release a 

fluorescent by-product of uncaging. In order to achieve this goal, we suggested several 

strategies in order to construct our target compound that was inspired by the structure of 

EANBP PPG previously developed in the lab (Scheme VII.1). Both strategies; the vicarious 

nucleophilic substitution and the deprotonation of an alkyl benzene followed by an addition to 

a carbonyl function, showed lots of reactivity and reproducibility problems.  

 

An alternative method was developed using biphenyl benzyl epoxide opening in order to get 

access to both o-nitroaryls families: o-nitrophenethyls and o-nitrobenzyls. The multi-step 

synthesis of the epoxide was successful, and the yields of every individual step was promising. 

The epoxide opening didn’t work due to the acidity of the proton in the benzylic position to the 

nitro benzyl moiety and the basicity of the organometallic compound used. As an alternative, 

we proposed a reduction/alkylation of the epoxide in order to get access to our pro-fluorescent 

PPGs. However, the low yield of conversion and the close polarity of the starting epoxide and 

the target product could not lead to an efficient synthetical pathway to get access to pro-

fluorescent PPGs. Despite these synthetic, reactivity and polarity problems, the synthesized 

epoxide showed interesting fluorescence properties in toluene compared to the starting 

aldehyde. This fluorescence; that could be tuned by increasing the conjugation of the epoxide; 

could act as an optical reporter for cell biology imaging studies or as a fluorescent probe. 



 

 142 

 
Scheme VII.1: The proposed strategies to access o-nitrophenethyl photoremovable protecting groups. 
 
In order to solve all these problems, and to achieve the synthesis of the target compounds, we 

decided to use the aldehyde isolated during the total synthesis of the epoxide. Although this 

method doesn’t give access to both families of o-nitroaryls PPGs, yet it is a way to synthesize 

o-nitrobenzyl PPGs that can be chemically modified to get access to a pro-fluorescent 

photoremovable protecting groups. This leads us to synthesize a new class of o-nitrobenzyl 

photoremovable groups able to generate a fluorescent side-product. These compounds were 

designed in order to produce after the photoreaction a nitrosoketone by-product able to achieve 

a keto–enol tautomerism leading to a conjugated α-hydroxystilbene product.  

 

 
Scheme VII.2: The proposed strategies to access o-nitrobenzyl photoremovable protecting groups. 
 

A 1,2- addition of bromoaryl organozinc halides to dimethylamino-nitrobiphenyl carbaldehyde 

followed by Miyaura–Suzuki cross coupling reactions was used in order to synthesize biphenyl 
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substituted o-nitrobenzyl (o-NB) photoremovable groups. Interestingly each synthesized o-NB 

PPG shows a very weak fluorescence signal before irradiation. To be able to quantify the 

photorelease of carboxylic acid functions a chromophoric 3,4-dimethoxyphenylacetic acid 

(MPAA) was coupled to our o-NB PPGs. Except for the p-nitrobiphenyl derivative, an almost 

quantitative (≥93%) release of MPAA was measured by HPLC after complete photo-conversion 

for each photolytic precursor of MPAA. More interestingly, all these compounds showed an 

interesting fluorescence signal increase induced by the photolytic reaction. In particular, the p-

methoxy biphenyl derivative showed 200 times increase in the green (l = 526 nm) emission 

intensity after full photocleavage.  

 

Therefore, a water-soluble version of this compound has been successfully synthesized and 

used for in vitro cell imaging and real time monitoring of the uncaging event. These experiments 

showed an increase in the fluorescence of the cells upon each irradiation time due to the 

accumulation of the by-product inside the cytoplasm. We were able to synthesize and report 

the first o-nitrobenzyl photoremovable protecting group that is capable of releasing a 

fluorescent by-product that serves as an optical reporter of the uncaging event. The only 

disadvantage of these newly developed PPGs is the long irradiation times needed to accomplish 

full cleavage, these irradiation times (in the order of minutes) is no compatible with the release 

of biological effectors. Therefore, we aimed to develop a new, thiophene-based, PPG system 

that was previously tested in the lab (non-fluorescent version) and was found to be highly 

sensitive to light.  

 

The architecture of the new system is based on 2 nitrophenyl ethylene moieties linked by a 

thiophene core. This PPG has shown an interesting sensitivity to light translated by short 

irradiation times (order of seconds). This property led us to use the same synthetic strategy 

applied to the newly developed o-NB on this thiophene-based PPG. By reacting the bis-

nitrophenyl aldehyde with bromobenzyl zinc bromide, we succeeded to obtain di-substituted o-

NB compound that was later coupled to MPAA. This latter showed interesting fluorescent 

properties; as we irradiated the compound we observed a significant increase of the fluorescent 

intensity due to the formation of a conjugated system.  

 

This compound is expected to show interesting results for the release of biological effectors, 

that’s why we tried to synthesize a soluble version by attaching PEG chains via Suzuki or 

sonogashira couplings. Unfortunately, both cross-coupling reactions didn’t work which could 

be due to the steric hindrance of the PPG. 
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2. Perspectives 
 
Our future studies will focus on the use of more efficient visible light sensitive photoremovable 

groups in the o-NB series (BNPET) in order to follow the uncaging events simultaneously by 

fluorescence analysis and with a physiological event (for example induced by the photorelease 

of a neurotransmitter). 

The solubility of the BNPET PPG needs to be enhanced in order to use it in biological 

applications. This could be achieved by adding solubilizing groups like PEG chains or sugar 

derivatives. The coupling of the PEG chains should be optimized, for example, by replacing 

the bromobenzyl zinc bromide by iodobenzyl zinc iodide since iodo derivatives are known to 

be more reactive towards metal cross-coupling reactions compared to the bromo derivatives. 

Once the soluble version of the BNPET PPG is obtained, the molecule will be tested in 

biological media mainly on neurons. The BNPET will be used to cage neurotransmitters 

(excitatory: glutamate and inhibitory: GABA), and its activity will be tested, and the uncaging 

event will be followed by biological response and by fluorescent signal (Scheme VII.3). 

 
Scheme VII.3: Photorelease of glutamates from a pro-fluorescent BNPET photoremovable group. 
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1. Experimental Part 
 

1.1. Materials and Methods 
 
NMR Spectroscopy.  

The NMR spectra of proton (1H) and carbon-13 (13C) of all compounds were realized on NMR 

spectrometers 400 et 500 MHz Brucker® in the Faculty of Pharmacy. The chemical shifts (δ) 

are indicated in ppm with respect to an internal reference corresponding to the references of 

deuterated solvents (CDCl3: 7.26 ppm, CD3OD: 3.31 ppm, CD3CN: 1.94 ppm, (CD3)2CO: 2.05 

ppm in 1H-NMR and CDCl3: 77.16 ppm, CD3OD: 49.00 ppm, CD3CN: 1.31 et 118.26 ppm, 

(CD3)2CO: 29.84 et 206.26 ppm in 13C-NMR). The attributions are given in the following 

manner: chemical shift followed in bracket: Multiplicity of the signal (s, d, t, q, m, dd, et dq 

corresponding respectively to singlet, doublet, triplet, quadruplet, multiplet, double doublet and 

double quadruplet), Coupling constant in Hz, and Number of protons. 

 

Mass Spectrometry.  

The LCMS analysis were realized using an Agilent 1200 SL/QTof 6520 spectrometer coupled 

to a Hypersil Gold C18 column with 1.9 μm particles size and 1x30 mm dimensions and the 

ESI mass spectra were realized using an Agilent 1200 SL spectrometer MicroTOF (Bruker®) 

equipped with an electrospray source.  

 

UV-Visible absorption and emission spectroscopy.  

UV-visible absorption spectra were measured using a double beam spectrophotometer 

UVIKON XS. The fluorescence emission spectra were obtained using a spectrofluorometer 

fluoroMax from Horiba-Jobin Yvon. Fluorescence quantum yields were measured by the 

relative method, using quinine sulfate as reference. The absorbance of the samples and the 

reference were chosen so that they were in the 0.1-0.15 range and nearly identical at the same 

excitation wavelength. Emission quantum yields were then calculated according to the method 

described by Crosby and Demas, taking into account the differences between the refractive 

indices of the sample and reference solutions. 

 

Micro-wave.  

The pallado-catalysed reactions were done using an Anton Paar Monowave 300.  
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Chromatography.  

Thin Layer Chromatography (TLC) were realized using plates covered with silica gel 60 F254 

Merck. Column chromatography were done on silica gel 60 (230-400 mesh, 0,040-0,063 mm) 

Merck.  

 

High Performance Liquid Chromatography (HPLC).  

HPLC analysis were realized over a series of high performance chromatography Waters® 

(Waters 600 double body pumps with diode detector Dionex UVD340V or Waters 1525 pump 

with Waters 2996 detector) equipped with Phenomenex C18 PolarRP 4-micron (4.6, 250 mm) 

analytical columns, Thermo Betabasic 5-micron (4.6, 250 mm) analytical columns, Agilent 

Zorbax SB-C18 5-microns (4.6, 250 mm) columns or Kromasil 100-5C18 (4.6, 250 mm) 

columns. The analysis were done using a gradient starting from 100% mQ H2O acidified with 

0.01% of TFA and reaching 100% of acetonitrile in 30 min. HPLC purifications were realized 

over a series of high performance chromatography Waters® (Waters 600 double body pumps 

with diode detector Dionex UVD340V equipped with a semi-preparative Phenomenex C18 

PolarRP 10-micron (10, 250 mm) column, Thermo Betabasic 5-micron (10, 250 mm) column, 

ou Kromasil 100-5C18 (10, 250 mm) column. These purifications were done using an isocratic 

solvent elution.  

 

Solvents et reagents.  

The reagents and anhydrous solvents used for the synthesis were ordered at Sigma-Aldrich, 

Alfa Aesar, TCI EUROPE or Acros Organics. All commercial reagents were used for the 

synthesis without any further purification. The tetrahydrofuran used in the reactions was freshly 

distilled using sodium metal and benzophenone.  

 

Irradiation procedure. 

The same irradiation procedure was followed for the irradiations of 49,50a-c and 55: 

A 2 mL solution of 49 (135 μM), 50a (100 μM), 50b (75 μM), 50c (60 μM) and 55 (40 μM) in 

10 mM pH 7.4 phosphate buffer/acetonitrile (1:1 v:v) was exposed to a LUMOS 43 LED source 

(Atlas Photonics Inc.) at 405 nm (Typical optical output: 200 mW/cm2). The reaction was 

monitored by UV and aliquots of samples (100 μL) were analyzed by HPLC to determine the 

percentage of released (3,4-dimethoxyphenyl) acetic acid (MPAA) using a calibration curve. 
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UV-Visible monitoring of photolysis.  

The irradiations were monitored by UV spectroscopy by measuring the absorbance at each 

irradiation time using a using a double beam spectrophotometer UVIKON XS with acetonitrile 

as a blank between 250 and 750 nm.  

 

FTIR study of the photolysis.  

A sample of compound 7b was prepared in acetonitrile (C = 267 μM). The solution was 

irradiated using the LUMOS 43 LED source (Atlas Photonics Inc.) at 405 nm (Typical optical 

output: 200 mW/cm2) for 40 minutes. The infrared spectra of the starting material and the 

photolysis products were recorded on a brucker FT-IR ALPHA.  

 

NMR protocol for the study of the photolytical reaction. 

Two samples of compound 49 were prepared in deuterated acetonitrile (CD3CN) with 

respective concentrations of 267 μM and 405 μM. The samples were irradiated at 405 nm for 

90 minutes and 150 minutes respectively and their respective NMR spectra were recorded 

immediately. The acquisitions for the NMR spectra were recorded on a 500 MHz Bruker 

Avance II and 1H NMR spectra were recorded at 500 and 130 MHz. This spectrometer is 

equipped with a dual cryoprobe 1H/13C (5 mm cryoprobe double resonance probe fixed 

frequency DCH 13C/1H/D z-grad). 

 

Fluorescence on cells.  

Studies on cell culture were performed on HeLa cells. HeLa cells were cultured in DMEM 

complete culture medium containing phenol red at 37°C with 5% CO2. They were seeded and 

maintained in 25 mL Falcon culture flask or multi well LabTek (Lab-Tek® II) culture flasks. 

The imaging experiments were performed in IBIDI 60 μ-Dish. Confocal images were obtained 

on a Leica DMI4000B TSP SPE microscope. Photolysis was performed on the same 

microscope stand with using a Leica EL6000 light source with a DAPI filter cube (ex. 340- 380 

nm, dicroïc 400 nm, em. LP 425 nm) in epifluorescence mode.  
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1.2. Synthesis 
 
For any additional information on the synthesis of the molecules mentioned in this dissertation 

and all the analysis data and characterization of the compounds, please contact the author: 

Elie Abou Nakad : elieabounakad@hotmail.com 

                                    Alexandre Specht : specht@unistra.fr 
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o-Nitrobenzyl photoremovable groups with
fluorescence uncaging reporting properties†

E. Abou Nakad, F. Bolze and A. Specht *

o-Nitrobenzyl (o-NB) derivatives are the most widely applied photoremovable groups for the study of

dynamic biological processes. By introducing different substituents to the benzylic position we were able

to generate a fluorescence signal upon irradiation. This signal originates from the formation of a nitroso-

ketone by-product able to achieve a keto–enol tautomerism leading to pi-conjugated α-hydroxystilbene
derivatives. These o-NB caging groups can be used to directly monitor the uncaging event by the release

of a detectable fluorescent side-product.

Introduction
Biological processes are very complex phenomena ruled by a
series of precise spatio-temporal events. To reveal the intimate
mechanism of these phenomena, cellular activity needs to be
precisely controlled and tuned with the help of orthogonal
tools. During the last decade, light has become one of the
major orthogonal triggers1–4 which was initially developed for
neuroscience1–6 and is used today in many fields of biology,
such as genetics or embryology.1–4,7 Chemical photo-triggers
provide the capability to rapidly cause the initiation of a wide
range of dynamic biological processes. This strategy uses light
irradiation to induce a photolytic reaction, leading to the
release of chemically or biologically active compounds. During
the last two decades, the challenge has been to overcome the
dilemma that only high energy light can induce photochemi-
cal reactions. One strategy to lower the phototoxicity within
the domain of the one-photon excitation process is to tailor
the caging groups with extended π-conjugation and introduce
heteroatoms and functional groups in the ring system so that
a larger dipole change can be generated when being
excited.1–4,8,9

Therefore, blue light sensitive photoremovable groups have
been reported in coumarin,10–12 cinnamate,13–18

orthonitrophenethyl19–24 and orthonitrobenzyl25–27 series.
o-Nitrobenzyl (o-NB) derivatives have been the most widely
applied photoremovable protecting groups (PPGs) for the
study of dynamic biological processes.1–4,8,9 However, this type

of PPG and the uncaging secondary product exhibit similar
weak brightness leading to light induced triggering of the
studied responses without the possibility of quantification of
the biological effector delivery.

It would be very advantageous to monitor the uncaging
event, for example by the emergence of a fluorescence signal
(e.g. optical reporting). Except for cinnamate13–18 type and
thiochromone-type28–31 photoremovable groups, the develop-
ment of optical reporters of uncaging has only attracted little
attention.32,33 Interestingly, these two PPGs have been
designed to release a fluorophore as a side product.13–18,28–31

In this work, we propose a new caging group designed to allow
direct monitoring of the uncaging event by the release of an
easily detectable fluorescent side product in the o-NB series by
using 1-(2-nitrophenyl)-2-phenylethan-1-ol PPGs.

Results and discussion
Design

Based on the photolytic release mechanism of the o-NB PPG
leading to the formation of a nitrosoketone derivative,9 we
decided to introduce benzyl substituents at the benzylic posi-
tion of this class of PPGs. This new class of PPGs should lead
to the formation of a nitrosoketone derivative able to achieve a
keto–enol tautomerism to generate a conjugated
α-hydroxystilbene derivative.

We postulate that this conjugated compound could lead to
a fluorescent chromophore (Scheme 1).

To achieve our goal, we selected a blue light sensitive
chromophore in the o-NB series. The N,N-dimethyl-4′-nitro-
[1,1′-biphenyl]-4-amine core was selected since this chromo-
phore showed long wavelength absorption (around 400 nm)
induced by the introduction of electron-donating groups to
promote internal charge transfer (ICT) and good two-photon

†Electronic supplementary information (ESI) available. See DOI: 10.1039/
c8ob01330f
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absorption cross-sections induced by a push–pull donor–
acceptor biphenyl system.

Synthesis

Substituted o-NB derivatives based on the N,N-dimethyl-4′-nitro-
[1,1′-biphenyl]-4-amine core were synthesized following the
sequence of reactions shown in Scheme 2. Commercially avail-
able 3-bromobenzaldehyde 1 was nitrated at the ortho position
using a mixture of concentrated nitric and sulfuric acids
leading to 5-bromo-2-nitrobenzaldehyde 2 with 70% yield. The
aldehyde function of the latter was protected, using ethylene
glycol, leading quantitatively to the dioxolane 3. The biphenyl
derivative 4 was obtained in 75% yield after a Suzuki–Miyaura
cross-coupling reaction34 between the dioxolane 3 and 4-(di-
methylamino)phenylboronic acid followed by the deprotection
of the dioxolane to obtain compound 4. The 2-(4-bromophenyl)-
1-(4′-(dimethylamino)-4-nitro-[1,1′-biphenyl]-3-yl)ethan-1-ol key
intermediate 5 was obtained in 85% yield by the reaction of
freshly prepared 4-bromobenzyl zinc bromide35 with aldehyde
4. However, intermediate 5 could not be separated from 1,2-bis
(4-bromophenyl)ethane obtained by homocoupling as a side

product in this step. 3,4-Dimethoxyphenylacetic acid (MPAA)
was then grafted to this first o-NB substituted PPG 5 using N,N′-
diisopropyl carbodiimide (DIC) with a catalytic amount of N,N′-
dimethylaminopyridine (DMAP) in order to get access to the
pure ester 6 in 68% yield. Of note is that MPAA coupling was
chosen in this study instead of a biologically relevant acid (e.g.
glutamate, GABA, etc) to easily quantify the uncaging efficacy by
HPLC analysis. Finally, the bromoaryl derivative 6 was used in
order to increase the conjugation of this system with electron
donating or electron withdrawing groups using a Suzuki–
Miyaura cross-coupling reaction leading to the formation of
compounds 7a–c in 46–58% yield.

Photophysical and photochemical characterization

The photophysical properties of compounds 6 and 7a–c
(100 μM) were studied in a 1/1 (v/v) mixture of phosphate
buffer (pH 7.4, 0.1 mM) in acetonitrile. All compounds showed
a similar absorbance peak at 413 nm with an absorption coeffi-
cient of 7750 M−1 cm−1 due to the 4,4′-amino-nitro-biphenyl
system. Interestingly each compound shows a very weak fluo-
rescence (in the blue-green region, Φ < 0.2%) before
irradiation. The photoinduced liberation of MPAA from 6 and
7a–c was monitored by UV-visible spectroscopy and HPLC.

Photolysis was carried out by irradiation of samples
(between 60 and 135 μM) at 405 nm (using a LUMOS 43 LED
source from Atlas Photonics Inc.) in an acetonitrile/phosphate
buffer (pH 7.4, 0.1 mM) mixture (1/1, v/v). The isosbestic
points at 360 nm and 485 nm for 6 (see the ESI†), at 387 nm
and 480 nm for 7a (see the ESI†) and at 370 and 495 nm for 7b
(Fig. 1A) indicate that a clean photochemical reaction occurred
leading to stable photoproducts. However, the absence of iso-
sbestic points for 7c (Fig. S25†) indicates a much complex
photochemical behavior for this compound. An almost quanti-
tative (≥95%) release of MPAA was measured by HPLC for the
photo-conversion of 6 and 7a–c. The hydrolytic stability was

Scheme 1 Proposed photolytic reaction for aryl substituted (1-(2-nitro-
phenyl)ethyl) derivatives.

Scheme 2 Synthesis of substituted 4’-nitro-[1,1’-biphenyl]-4-amine o-NB at the benzylic position. (i) HNO3/H2SO4, 0 °C, 3 h, 70%, (ii) ethylene
glycol, toluene, 165 °C, 4 h, 100%, (iii) 4-(dimethylamino)phenyl boronic acid, K2CO3, Bu4NBr, Pd(OAc)2, ethanol/water, 160 °C, 15 min, p-TsOH,
acetonitrile/water/dichloromethane, 80 °C, 3 h, 88%, (iv) bromobenzylzinc bromide, THF, −78 °C, overnight, 80%, (v) 2-(3,4-dimethoxyphenyl)acetic
acid, DMAP, diisopropylcarbodiimide, dichloromethane, 0 °C, 3 h, 68% and (vi) K2CO3, ethanol/water/toluene, Pd(PPh3)4, 80 °C, 45 min for 7a di-
methylamino phenyl boronic acid, 55%, for 7b 4-methoxy phenyl boronic acid, 46%, for 7c 4-nitro phenyl boronic acid, 58%.
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also explored by HPLC in an acetonitrile/phosphate buffer (pH
7.4, 0.1 mM) mixture (1/1, v/v) at room temperature. No hydro-
lysis was observed after 24 h for 6 and 7a–c. The postulated
mechanism for the photo-induced liberation of a nitrosoke-
tone derivative (adapted from the literature) should be able to
achieve a keto–enol tautomerism to generate a conjugated
α-hydroxystilbene derivative stabilized by an intramolecular
hydrogen bond between the nitrogen from the nitroso group
and the H of the enol group.

In order to characterize the formation of the nitroso photo-
products (see Scheme 1) an FT-IR study was undertaken using
compound 7b in acetonitrile. The IR spectra of this product
before and after irradiation (Fig. S28 and S29†) show the main
differences in the 1300–1500 cm−1 region. The band at
1465 cm−1 which can be attributed to the 19a vibration of the
NO2 group (according to the Wilson notation36) is decreasing
while a band is appearing at 1446 cm−1 (attributed to the 19b
vibration of the NO group37) and at 1372 cm−1 (which could be
attributed to an enol form signature).38

A weak absorption can be detected at 3175 cm−1 which
could also indicate an enol O–H bond vibration.

To confirm the keto–enol tautomerism, a 1H-NMR study
was undertaken using compound 6 in deuterated acetonitrile
(CD3CN) at 267 and 405 μM, respectively. After 85% and 80%
cleavage respectively, the NMR spectra nicely showed the
release of the MPAA (see the ESI†) together with 3 major sub-
products based on the 1H dimethyl-amino signals. More inter-
estingly, in a concentration dependent manner, 3 new NMR
signals together with 2 new signals were detected respectively
between 4–5.2 ppm and 9.5–10 ppm (Fig. S31 and S32†). The
singlet at 4.1 ppm is in good agreement with the CH2 of the
nitroso-keto sub-product. And the two singlets at 4.87 ppm
and 5.19 ppm together with the two singlets at 9.69 ppm and
9.97 ppm are also in good agreement with the 1H expected
signals for the alkene vCH and the OH signals of the enol
sub-products (cis and trans), respectively.

After having confirmed the occurrence of a keto–enol tau-
tomerism in the uncaging sub-product, we assumed that the

elongated conjugated system of the α-hydroxystilbene
should induce a strong enhancement of the UV-vis absorp-
tion and emission properties. In order to study the photo-
induced changes in fluorescence, emission spectra were
recorded for the irradiated samples (100 μM, 405 nm) in an
acetonitrile/phosphate buffer (pH 7.4, 0.1 mM) mixture (1/1,
v/v). For all four compounds, the fluorescence emission is
very weak before photocleavage (with a maximum at 504,
489, 575 and 480 nm for 6, 7a, 7b and 7c respectively). After
complete photoconversion, compounds 6 and 7a showed a
moderate increase in their emission intensity (×40 and ×32
for 6 and 7a respectively). In contrast, for 7b an intense red
shifted (526 nm) emission was observed with more than 200
times increase in the fluorescence intensity (Fig. 1B). Of
note is that this emission band seems to indicate that the
increase of the conjugation length of the system and substi-
tution with strong electron donating groups are able to gene-
rate a red-shifted emission band upon photocleavage.
Finally, compound 7c showed during irradiation a more
complex fluorescence behavior presumably due to the
photodegradation of the photolytic by-product leading first
to an increase followed by a decrease in the fluorescence
intensity (Table S4†).

All photochemical and photophysical properties of com-
pounds 6 and 7a–c are summarized in Table 1.

Fig. 1 Variation of UV absorbance (A) and fluorescence emission (B) after irradiation at 405 nm of a 55 μM solution (acetonitrile/PBS 1 : 1 in v/v) of
7b.

Table 1 Variation of the fluorescence intensity ratio and emission
wavelength of derivatives 6 and 7a–c

Compounda
λem
(nm) I0 × 108

Average % of
photocleavageb

Averageb

Ifull × 108 Ifull/I0

6 504 0.5254 95 21.006 40
7a 489 4.4211 93 143.233 32
7b 526 1.0296 97 214.721 208
7c 480 0.3409 83 —c —c

a 100 μM solutions. b Average of 3 separate irradiation times. cNot cal-
culated due to the high bleaching of the sub-product.
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Biological evaluation of the uncaging fluorescence reporting
property on HeLa cells

Since compound 7b showed the highest photoinduced fluo-
rescence linear increase and the most red-shifted fluorescence
emission upon irradiation, we decided to use this compound
to evaluate the possibility to monitor the uncaging events by
fluorescence recording on cell culture. For this reason, we syn-
thesized compound 11, a PEGylated version of the o-nitrobi-
phenyl methoxy derivative 7b. The product was synthesized
(Scheme 3) in 4 steps starting from an octaethylene glycol
monomethyl ether which was reacted with tert-butyl-bromoace-
tate to form 8 which was then deprotected to afford compound
9. This was reacted with 5 followed by a Suzuki coupling to
give 11 in 30% yield.

HeLa cells were incubated for 5 min with a 1 μM solution of
11. The cells were irradiated with 365 nm light from an
EL6000 lamp (see the ESI†) of a Leica SPE microscope. A con-
focal image was obtained each 5 min for 15 min of continuous
irradiation (the experiment was stopped after 15 min due to
the phototoxicity of the UV irradiation). A clear increase in the
detected fluorescence intensity was observed upon irradiation
(see Fig. S33†). Of note is that the HeLa cells incubated for
35 min with a 1 μM solution of 11 showed only weak fluo-
rescence intensity. A quantitative analysis of the fluorescence
intensity was performed on 5 cells showing a linear increase in

the fluorescence intensity for the first 15 min and reaching a
plateau (Fig. 2). Therefore, we could follow the uncaging event
of this new type of o-nitrobenzyl PPG by the increase of fluo-
rescence signal on cells.

Conclusions
There is a great need for photoremovable groups able to gene-
rate an easy way to quantify their side-products, in particular
to be able to monitor in real time the light induced concen-
tration jump of a given biological effector. This leads us to syn-
thesize a new class of o-nitrobenzyl photoremovable groups
able to generate a fluorescent side-product. These compounds
were designed in order to produce after the photoreaction a
nitrosoketone by-product able to achieve a keto–enol tautomer-
ism leading to a conjugated α-hydroxystilbene product. A 1,2-
addition of bromoaryl organozinc halides to 4′-(dimethyl-
amino)-4-nitro-[1,1′-biphenyl]-3-carbaldehyde followed by
Miyaura–Suzuki cross coupling reactions was used in order to
synthesize biphenyl substituted (1-(2-nitrophenyl)ethyl) photo-
removable groups. Interestingly each synthesized o-NB PPG
shows a very weak fluorescence signal before irradiation. To be
able to quantify the photorelease of carboxylic acid functions a
chromophoric 3,4-dimethoxyphenylacetic acid was coupled to
our o-NB PPGs. Except for the p-nitrobiphenyl derivative 7c, an
almost quantitative (≥93%) release of MPAA was measured by
HPLC after complete photo-conversion for each photolytic pre-
cursor of MPAA. More interestingly, all these compounds
showed an interesting fluorescence signal increase induced by
the photolytic reaction. In particular, the p-methoxy biphenyl
derivative 7b showed a 200 times increase in the green
(526 nm) emission intensity after full photocleavage.
Therefore, a water-soluble version of this compound has been
successfully used for in vitro cell imaging and real time moni-
toring of the uncaging event. Our future studies will focus on
the use of this strategy for the development of more efficient
visible light sensitive photoremovable groups in the o-NB
series8 in order to follow the uncaging events simultaneously
by fluorescence analysis and with a physiological event (for
example induced by the photorelease of a neurotransmitter).

Scheme 3 Synthesis of 11: a PEGylated version of the o-nitrobiphenyl methoxy derivative. (i) NaH, tert-butylbromoacetate, THF, 0 °C, 2 h, 87%; (ii)
CF3COOH/dichloromethane, 3 h, room temperature, 100%; (iii) 5, DMAP, diisopropylcarbodiimide, dichloromethane, 0 °C, 48%; (vi) 4-methoxyphe-
nyl boronic acid, K2CO3, ethanol/toluene/water, Pd(PPh3)4, 80 °C, 45 min, 30%.

Fig. 2 Fluorescence increase as a function of irradiation time observed
for HeLa cells treated with 1 μM of 11.
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Experimental
Nitro-3-bromo-benzaldehyde (2)

3-Bromobenzaldehyde (16.21 mmol, 0.35 mL) was dissolved in
15 mL of 98% H2SO4. To this mixture, HNO3 (52 mmol,
3.6 mL) was added dropwise under vigorous stirring at 0 °C for
1 h and then at room temperature for 2 h. The mixture was
poured into ice water and extracted with ethyl acetate, the com-
bined organic phases were dehydrated with MgSO4 and the
crude product was purified over a SiO2 column using heptane/
ethyl acetate (9/1) as the eluent. The target compound 2 was
isolated as pale-yellow crystals (2.6 g, 70%, Rf = 0.31).

1H NMR (400 MHz, CDCl3): δ = 10.41 (s, 1 H), 8.06 (s, 1H),
8.03 (d, 3J (H,H) = 8.6 Hz, 1H), 7.88 (dd, 3J (H,H) = 8.6 Hz,
4J (H,H) = 2.2 Hz, 1H) ppm.

13C NMR (100 MHz, CDCl3): δ = 186.9, 148.2, 136.6, 132.8,
132.7, 129.7, 126.3 ppm.

MS(ESI): [M + H]+ (C7H5BrNO3
+) m/z calcd: 229.93, m/z

found: 229.82.

2-(5-Bromo-2-nitrophenyl)-1,3-dioxolane (3)

In 50 mL of anhydrous toluene, 2 (655 mg, 2.84 mmol) was
dissolved and ethylene glycol (0.2 mL, 3.41 mmol) was added
to a mixture with p-toluene sulfonic acid (55 mg, 0.284 mmol).
The mixture was heated under reflux using a Dean–Stark
apparatus. After 4 h the reaction was complete (monitored by
TLC) and the solvent was evaporated. The mixture was
extracted 3 times with dichloromethane and washed with
water affording the target compound 3 as a light brown solid
(780 mg, 100%, Rf = 0.52 AcOEt/heptane 1/9 in vol.).

1H NMR (400 MHz, CDCl3): δ = 7.94 (s, 1H), 7.81 (d, 3J (H,H)
= 9 Hz, 1H), 7.63 (d, 3J (H,H) = 9 Hz, 4J (H,H) = 2.2 Hz, 1H),
6.48 (s, 1H), 4.05 (m, 4H) ppm.

13C NMR (100 MHz, CDCl3): δ = 147.5, 135.3, 132.7, 130.9,
127.9, 126.1, 99.1, 65.4 ppm.

MS(ESI): [M + H]+ (C9H8BrNO4
+) m/z calcd: 273.96, m/z

found: 273.84.

3′-(1,3-Dioxolan-2-yl)-N,N-dimethyl-4′-nitro-[1,1′-biphenyl]-
4-amine

In a microwave vial, 365 mg of 3 (1.33 mmol) with 264 mg of 4-
(dimethyl amino)phenyl boronic acid (1.6 mmol), potassium
carbonate (3.6 mmol) and tetrabutylammonium bromide
(1.33 mmol) were dissolved in 13 mL of ethanol and 6.5 mL of
water (2/1 v/v). The mixture was degassed 2 times (freeze–thaw
cycles) and then Pd(OAc)2 (30 mg, 0.133 mmol) was added and
the mixture was degassed 1 more time before heating under
microwave radiation at 160 °C for 15 minutes. The solvent was
evaporated, and the residue was extracted with water and ethyl
acetate and dried over MgSO4. The solvent was evaporated
under vacuum and the biphenyl acetal product was isolated as
a reddish-brown solid (418 mg, 85%, Rf = 0.46 AcOEt/heptane
1/9 in vol.). The yield obtained is estimated since the side
product (15% homocoupling of boronic acid from 1H NMR
integration) has the same Rf as the target product, so in this
step the product was used without further purification.

1H NMR (400 MHz, CDCl3): δ = 8.01 (d, 3J (H,H) = 7.6 Hz,
1H), 7.97 (s, 1H), 7.63 (d, 3J (H,H) = 9.6 Hz, 4J (H,H) = 2.2 Hz,
1H), 7.56 (d, 3J (H,H) = 8.4 Hz, 2H), 6.79 (d, 3J (H,H) = 9.6 Hz,
2H), 6.60 (s, 1H), 4.07 (m, 4H), 3.03 (s, 6H) ppm.

MS(ESI): [M + H]+ (C17H19N2O4
+) m/z calcd: 315.13, m/z

found: 315.05.

4′-(Dimethylamino)-4-nitro-[1,1′-biphenyl]-3-carbaldehyde (4)

A solution of p-toluenesulfonic acid (2.61 g, 13.75 mmol) in
acetonitrile (20 mL) and water (7 mL) was added to a solution
of biphenyl aldehyde (432 mg, 1.375 mmol) in dichloro-
methane (8 mL). The mixture was then stirred at 80 °C under
reflux for 3 h (monitored by TLC). After cooling to room temp-
erature, the solvent was evaporated, and the residue was
extracted with dichloromethane and washed with water. The
crude product was purified over a column to afford the target
product 4 as a bright red solid (297 mg, 88%, Rf = 0.3 AcOEt/
heptane 15/85 in vol.).

1H NMR (400 MHz, CDCl3): δ = 10.53 (s, 1H), 8.17 (d,
3J (H,H) = 8 Hz, 1H), 8.07 (s, 1H), 7.86 (d,3J (H,H) = 7.2 Hz,
4J (H,H) = 2.2 Hz, 1H), 7.6 (d, 3J (H,H) = 8 Hz, 2H), 6.79 (d,
3J (H,H) = 9.2 Hz, 2H), 3.03 (s, 6H) ppm.

13C NMR (100 MHz, CDCl3): δ = 189.1, 151.2, 147.3, 146.3,
132.5, 129.3, 128.1, 125.9, 125.5, 124.5, 124.3, 112.4, 40.2 ppm.

MS(ESI): [M + H]+ (C15H15N2O3
+) m/z calcd: 271.01, m/z

found: 270.99.

4-Bromobenzyl zinc bromide: preparation

LiCl (170 mg, 4 mmol) was added to a microwave reaction vial
and dried with a flame for a few minutes in open air. This vial
was allowed to cool down in a desiccator under vacuum. Air
was used to back pressurize the desiccator and Zn powder
(265 mg, 4 mmol) was added. The vial was heated again on a
flame for a few minutes in open air and allowed to cool down
in a desiccator under vacuum, and argon was added to back
pressurize the desiccator. A stirring bar was added, the vial
was sealed, and 3 mL of anhydrous THF was injected via the
septum followed by 1,2-dibromoethane (10 µL, 0.1 mmol). The
mixture was heated in a microwave oven at 85 °C for
5 minutes. TMSCl (2.5 µL, 0.02 mmol) was added to the sus-
pension and once again it was heated at 85 °C for 5 minutes.
4-Bromobenzyl bromide (500 mg, 2 mmol) was then added as
a solution in 2 mL THF and the vial was heated for 1 h at
70 °C. Iodometric titration indicated that the obtained solu-
tion of 4-bromobenzyl zinc bromide had a concentration of 0.4
M.

2-(4-Bromophenyl)-1-(4′-(dimethylamino)-4-nitro-
[1,1′-biphenyl]-3-yl)ethan-1-ol (5)

In 10 mL of anhydrous THF, 4 (130 mg, 0.48 mmol) was dis-
solved. At −78 °C, a solution of 4-bromobenzyl zinc bromide
(3.6 mL, 1.44 mmol) was added dropwise and the mixture was
stirred for 1 h at −78 °C and allowed to warm up to room
temperature and stirred overnight. The reaction was quenched
with 10% HCl and extracted with water and ethyl acetate and
the crude compound was purified on a column with heptane/
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AcOEt 85/15 in vol. as the eluent to afford 5 as orange-red
paste (210 mg, 80%, Rf = 0.32 AcOEt/heptane 15/85 in vol.).

1H NMR (400 MHz, CDCl3): δ = 8.08 (d, 3J (H,H) = 8 Hz, 1H),
8.01 (s, 1H), 7.59 (d, 3J (H,H) = 9.6 Hz, 4J (H,H) = 2.2 Hz, 1H),
7.55 (d, 3J (H,H) = 9.6 Hz, 2H), 7.48 (d, 3J (H,H) = 9.6 Hz, 2H),
7.23 (d, 3J (H,H) = 9.6 Hz, 2H), 6.79 (d, 3J (H,H) = 9.6 Hz, 2H),
5.59 (d, 3J (H,H) = 10 Hz, 1H), 3.26 (d, 3J (H,H) = 12.4 Hz, 1H),
3.03 (s, 6H), 2.8–2.86 (dd, 2J (H,H) = 23, 3J (H,H) = 13.6, 1H)
ppm.

HRMS(ESI): [M + H]+ (C22H22N2O3
+) m/z calcd: 441.0703,

m/z found: 441.0177.

2-(4-Bromophenyl)-1-(4′-(dimethylamino)-4-nitro-
[1,1′-biphenyl]-3-yl)ethyl-2-(3,4-dimethoxyphenyl)acetate (6)

In 25 mL anhydrous dichloromethane, compound 5 (450 mg,
1.02 mmol) was dissolved and 2-(3,4-dimethoxyphenyl)acetic
acid (300 mg, 1.53 mmol) was added along with 4-dimethyl
aminopyridine (DMAP) (7 mg, 0.051 mmol) under argon.
At 0 °C, N,N′-diisopropyl carbodiimide (DIC) (0.24 mL,
1.53 mmol) was added dropwise and the reaction was stirred
for 1 h at 0 °C, and then for 2 h at room temperature. The reac-
tion was monitored by HPLC. The mixture was filtered on a
glass-frit funnel and the filtrate was extracted with dichloro-
methane and water. To remove diisopropyl urea salts, the
product is dissolved in cold acetonitrile. The crude product
was purified over a column with silica gel using 20/80 AcOEt/
heptane in vol. as the eluent to afford 6 as orange powder
(430 mg, 68%, Rf = 0.38 AcOEt/heptane 20/80 in vol.).

1H NMR (400 MHz, CDCl3): δ = 8.1 (d, 3J (H,H) = 8 Hz, 1H),
7.55 (d, 3J (H,H) = 9.6 Hz, 4J (H,H) = 2.2 Hz, 1H), 7.41 (d, 3J (H,
H) = 9.6 Hz, 2H), 7.38 (s, 1H), 7.23 (d, 3J (H,H) = 9.6 Hz, 2H),
7.18 (d, 3J (H,H) = 9.6 Hz, 2H), 6.79 (d, 3J (H,H) = 9.6 Hz, 2H),
6.65–6.75 (m, 3H), 6.57 (d, 3J (H,H) = 10 Hz, 1H), 3.85 (s, 3H),
3.75 (s, 3H), 3.52 (s, 2H), 3.32 (d, 3J (H,H) = 12.4 Hz, 1H), 3.16
(s, 6H), 2.9–3.01 (dd, 2J (H,H) = 23 Hz, 3J (H,H) = 13.6 Hz, 1H)
ppm.

HMMS(ESI): [M + H]+ (C32H32N2O6Br+) m/z calcd: 619.1443,
m/z found: 619.1436.

1-(4′-(Dimethylamino)-4-nitro-[1,1′-biphenyl]-3-yl)-2-
(4′-methoxy-[1,1′-biphenyl]-4-yl)ethyl-2-(3,4-dimethoxyphenyl)
acetate (7b)

In a microwave vial, 52 mg of 6 (0.084 mmol) with 15 mg of
4-methoxyphenyl boronic acid (0.1 mmol) and potassium car-
bonate (30 mg, 0.21 mmol) were dissolved in 2 mL of ethanol,
1 mL of water and 7 mL of toluene (2/1/7 in vol.). The mixture
was degassed 2 times (freeze–thaw cycles) and then Pd(PPh3)4
(5 mg, 4.2 × 10−3 mmol) was added and the mixture was
degassed 1 more time before heating under microwave radi-
ation at 80 °C for 45 minutes. The solvents were evaporated,
and the residue was extracted with ethyl acetate, washed with
water and dried over MgSO4. The solvent was evaporated under
vacuum and the crude product was purified over a column
with silica gel using 40/60 AcOEt/heptane as the eluent to
afford product 7b as reddish paste (25 mg, 46%, Rf = 0.32
AcOEt/heptane 40/60 in vol.).

The same procedure was followed for the synthesis of 7a (4-
(dimethyl amino)phenyl boronic acid) with a yield of 55% and
7c (4-nitrophenyl boronic acid) with a yield of 58%.

1H NMR (400 MHz, CDCl3): δ = 8.08 (d, 3J (H,H) = 8.4 Hz,
1H), 7.54 (d, 3J (H,H) = 8.8 Hz, 2H), 7.52 (d, 3J (H,H) = 7.6 Hz,
1H), 7.45 (d, 3J (H,H) = 8.4 Hz, 2H), 7.31 (s, 1H), 7.19–7.24 (m,
4H), 6.98 (d, 3J (H,H) = 9.8 Hz, 2H), 6.67–6.72 (m, 5H), 6.63 (d,
3J (H,H) = 8.4 Hz, 1H), 3.86 (s, 3H), 3.77 (s, 3H), 3.70 (s, 3H),
3.52 (s, 2H), 3.39 (d, 3J (H,H) = 14 Hz, 1H), 3.05–3.11 (dd, 2J (H,
H) = 22.8 Hz, 3J (H,H) = 15.2 Hz, 1H), 3.02 (s, 6H) ppm.

HRMS(ESI): [M + H]+ (C39H39N2O7
+) m/z calcd: 647.2757,

m/z found: 647.2767.

1-(4′-(Dimethylamino)-4-nitro-[1,1′-biphenyl]-3-yl)-2-
(4′-(dimethylamino)-[1,1′-biphenyl]-4-yl)ethyl-2-(3,4-
dimethoxyphenyl)acetate (7a)

This compound was obtained in 55% yield.
1H NMR (400 MHz, CDCl3): δ = 8.08 (d, 3J (H,H) = 9.36 Hz,

1H), 7.52 (d, 3J (H,H) = 9.6 Hz, 4J (H,H) = 2.2 Hz, 1H), 7.46 (d,
3J (H,H) = 7.6 Hz, 2H), 7.31 (s, 1H), 7.19–7.22 (m, 4H), 6.82 (d,
3J (H,H) = 7.6 Hz, 2H), 6.68–6.71 (m, 5H), 6.63 (d, 3J (H,H) = 8.8
Hz, 1H), 3.77 (s, 3H), 3.71 (s, 3H), 3.53 (s, 2H), 3.38 (d, 3J (H,H)
= 14.4 Hz, 1H), 3.05–3.11 (dd, 2J (H,H) = 23.6 Hz, 3J (H,H) = 13.6
Hz, 1H), 3.01 (s, 6H), 3.00 (s, 6H) ppm.

HRMS(ESI): [M + H]+ (C40H42N3O6
+) m/z calcd: 660.3073,

m/z found: 660.3047.

1-(4′-(Dimethylamino)-4-nitro-[1,1′-biphenyl]-3-yl)-2-(4′-nitro-
[1,1′-biphenyl]-4-yl)ethyl-2-(3,4-dimethoxyphenyl)acetate (7c)

This compound was obtained in 58% yield.
1H NMR (400 MHz, CDCl3): δ = 8.17 (d, 3J (H,H) = 8.8 Hz,

2H), 7.96 (d, 3J (H,H) = 9.6 Hz, 1H), 7.6 (d, 3J (H,H) = 7.6 Hz,
4J (H,H) = 2.2 Hz, 2H), 7.41 (d, 3J (H,H) = 8.8 Hz, 1H), 7.38 (d,
3J (H,H) = 8.8 Hz, 2H), 7.18 (d, 3J (H,H) = 8 Hz, 2H), 7.13 (s,
1H), 7.09 (d, 3J (H,H) = 6.8 Hz, 2H), 6.56–6.63 (m, 5H), 6.54 (d,
3J (H,H) = 8.4 Hz, 1H), 3.67 (s, 3H), 3.58 (s, 3H), 3.43 (s, 2H),
3.28 (d, 3J (H,H) = 13.2 Hz, 1H), 2.97–3.02 (dd, 2J (H,H) = 23.6
Hz, 3J (H,H) = 13.6 Hz, 1H), 2.90 (s, 6H) ppm.

HRMS(ESI): [M + H]+ (C38H36N3O8
+) m/z calcd: 662.2502,

m/z found: 662.2502.

tert-Butyl-2-(2-methoxyoctaethoxy)acetate (8)

To a stirred solution of octaethylene glycol monomethyl ether
(250 mg, 0.65 mmol) in anhydrous THF (8 mL) was added
NaH (40 mg, 1.62 mmol, 60% dispersion in mineral oil) at
0 °C. The solution was stirred for 30 minutes at 0 °C, and tert-
butyl bromoacetate (0.18 mL, 1.17 mmol) was added dropwise
over 2 minutes. The resulting solution was allowed to warm to
room temperature and stirred for 2 h. The reaction was
quenched with a saturated solution of NH4Cl, the aqueous
phase was washed three times with dichloromethane, the com-
bined organic extracts were dried over MgSO4 and the solvent
was evaporated under reduced pressure. The residue was puri-
fied by silica gel column chromatography using 100% AcOEt
and then 98/2 AcOEt/MeOH (in vol.) as the eluent to afford 8
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(282 mg, 87%, Rf = 0.32 AcOEt/MeOH 98/2 in vol.) as a yellow-
ish oil.

1H NMR (400 MHz, CDCl3): δ = 4.01 (s, 2H), 3.62–3.72 (m,
30H), 3.52–3.56 (m, 2H), 3.37 (s, 3H), 1.46 (s, 9H) ppm.

13C NMR (100 MHz, CDCl3): δ = 168.3, 83.5, 71.6, 70.1, 69.5,
68.1, 56.9, 31.7 ppm.

2-(2-Methoxyoctaethoxy)acetic acid (9)

272 mg of 8 was dissolved in 3 mL of CH2Cl2 and 1.5 mL of
CF3COOH (2/1 in vol.) and stirred for 3 h. The solvent was
evaporated and the remaining CF3COOH was co-evaporated 3
times with CH2Cl2 to afford 9 in quantitative yield (240 mg,
Rf = 0.33 AcOEt/MeOH 98/2 in vol.).

1H NMR (400 MHz, CDCl3): δ = 10.1 (broad s, 1H), 4.17 (s,
2H), 3.62–3.77 (m, 30H), 3.54–3.58 (m, 2H), 3.38 (s, 3H) ppm.

13C NMR (100 MHz, CDCl3): δ = 173.3, 71.6, 70.1, 69.5, 68.1,
67.5, 56.9 ppm.

2-(4-Bromophenyl)-1-(4′-(dimethylamino)-4-nitro-[1,1′-
biphenyl]-3-yl)ethyl-2-(2-methoxyoctaethoxy)acetate (10)

In 10 mL anhydrous dichloromethane, compound 5 (210 mg,
0.47 mmol) was dissolved and 9 (306 mg, 0.71 mmol) was
added along with N,N′-dimethylaminopyridine (DMAP) (7 mg,
0.026 mmol) under argon. At 0 °C, N,N′-diisopropyl carbodi-
imide (DIC) (0.11 mL, 0.71 mmol) was added dropwise and the
reaction was stirred for 1 h at 0 °C, and then for 2 h at room
temperature. The reaction was monitored by HPLC. The
mixture was filtered on a glass-frit funnel and the filtrate was
extracted with dichloromethane and water. To remove diiso-
propyl urea salts, the product is dissolved in cold acetonitrile.
The crude product was purified over a column with silica gel
using 100% AcOEt and then 98/2 AcOEt/MeOH in vol. as the
eluent to afford 10 (194 mg, 48%, Rf = 0.38 AcOEt/MeOH 98/2
in vol.) as an orange paste.

1H NMR (400 MHz, CDCl3): δ = 8.06 (d, 3J (H,H) = 9.2 Hz,
1H), 7.54 (s, 1H), 7.38–7.48 (m, 4H), 7.14–7.23 (m, 3H), 6.76 (d,
3J (H,H) = 7.6 Hz, 2H), 6.63 (d, 3J (H,H) = 8.8 Hz, 1H), 4.06 (s,
2H), 3.49–3.72 (m, 32H), 3.34 (s, 3H), 3.31 (d, 2J (H,H) = 18.6
Hz, 1H), 3.02–3.07 (dd, 2J (H,H) = 21.3 Hz, 3J (H,H) = 13.6 Hz,
1H), 3.01 (s, 6H) ppm.

MS(ESI): [M + H]+ (C41H58N2O13
+) m/z calcd: 865.30, m/z

found: 865.43.

1-(4′-(Dimethylamino)-4-nitro-[1,1′-biphenyl]-3-yl)-2-(4′-
methoxy-[1,1′-biphenyl]-4-yl)ethyl-2-(2-methoxyoctaethoxy)
acetate (11)

In a microwave vial, 115 mg of 10 (0.135 mmol) with 25 mg of
4-methoxyphenyl boronic acid (0.162 mmol) and potassium
carbonate (50 mg, 0.34 mmol) were dissolved in 3 mL of
ethanol, 1.5 mL of water and 10 mL of toluene (2/1/7 in vol.).
The mixture was degassed 2 times (freeze–thaw cycles), then
Pd(PPh3)4 (8 mg, 6.75 × 10−3 mmol) was added and the
mixture was degassed 1 more time before heating under micro-
wave radiation at 80 °C for 45 minutes. The solvent was evapor-
ated, and the residue was extracted with water and dichloro-
methane and dried over MgSO4. The solvent was evaporated

under vacuum and the residue was purified over a silica gel
column to afford the product 11 as reddish paste (36 mg, 30%,
Rf = 0.37 AcOEt/MeOH 98/2 in vol.).

1H NMR (400 MHz, CDCl3): δ = 8.09 (d, 3J (H,H) = 8 Hz, 1H),
7.57 (dd, 3J (H,H) = 10.4 Hz, 4J (H,H) = 2.2 Hz, 1H), 7.48–7.53
(m, 5H), 7.40 (d, 3J (H,H) = 9.6 Hz, 2H), 7.32 (d, 3J (H,H) = 7.6
Hz, 2H), 6.97 (d, 3J (H,H) = 7.6 Hz, 2H), 6.72–6.75 (m, 3H), 4.11
(s, 2H), 3.85 (s, 3H), 3.75 (s, 3H), 3.51–3.66 (m, 32H), 3.44 (d,
3J (H,H) = 14 Hz, 1H), 3.12–3.19 (dd, 2J (H,H) = 22 Hz, 3J (H,H) =
12.7 Hz, 1H), 3.01 (s, 6H) ppm.

MS(ESI): [M + H]+ (C48H65N2O14
+) m/z calcd: 893.44, m/z

found: 893.57.
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ABOU NAKAD Elie 

Synthèse de groupements 
protecteurs photolabile pro-

fluorescents sensibles à 
l’excitation bi-photonique 

 

Résumé 
 
Les groupes protecteurs photolabile (GPP) ont été largement utilisés en synthèse organique et pour 
des applications biologiques. Parmi la grande diversité de ces groupes, les groupement o-nitrobenzyl 
sont les plus utilisés. En particulier, ils ont été abondement employés dans la préparation de nombreux 
précurseurs photolabiles d’effecteurs biologiques. Ce qui permet d’utiliser une réaction photochimique 
afin de transformer un composé biologiquement inerte en composé actif avec formation d’un sous- 
produit de photolyse. Afin de pouvoir quantifier le saut de concentration de l’effecteur biologique en 
particulier sur des cellules, nous avons développé des nouveaux GPP dérivés d’o-nitrobenzyle, qui 
libère un sous-produit de photolyse présentant des propriétés de fluorescence. Ainsi en nous basant 
sur le mécanisme de photolyse de dérivés o-nitrobenzyl sensible à l’excitation bi-photonique, nous 
avons pu concevoir un GPP non-fluorescent qui libère un fluorophore après photoclivage. Les 
propriétés de fluorescence du sous-produit de photolyse ont également été optimisées. Enfin à l’aide 
de ces PPG pro-fluorescent nous avons pu valider que la réaction photolytique peut être suivie par 
microscopie de fluorescence sur des cellules en culture. 

Mots-clés : Groupements protecteur photolabiles, absorption bi-photonique, fluorescence, uncaging 

 

Abstract 
 
Photoremovable Protecting Groups (PPG) have been widely used in organic synthesis and in various 
biological applications. Among the wide diversity of these groups, o-nitrobenzyl groups are the mostly 
used chromophores. In particular, they have been extensively used for the design of caged 
compounds. Those latter type of compounds are able to release a biological effector together with an 
uncaging side-product leading to the spatiotemporal control of various biological processes. In order 
to acutely monitor the uncaging event for example in cells, we developed new PPGs, based on o-
nitrobenzyl derivatives, able to release a fluorescent side product. Based on the photolytical 
mechanism of two-photon sensitive o-nitrobenzyl PPGs, we were able to design new non-fluorescent 
PPGs able to release fluorophores as side products. We were also able to tune the fluorescent 
properties of the photo-released by product using molecular engineering. Finally, those pro-fluorescent 
PPGs have been used in order to follow the uncaging events by fluorescent microscopy on cell 
cultures.  

Keywords: Photoremovable Protecting Groups, two-photon absorption, fluorescence, uncaging. 
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