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Summary

Understanding the physical phenomena of our planet requires the capability to

investigate the structural and thermodynamic properties of liquid-state materials

present in the Earth’s outer core. In particular, the melting curves of 3d metals such

as nickel and cobalt allow to constrain the temperature at the boundary between in-

ner and outer core in the Earth, the inner core boundary (ICB). This Thesis presents

the study of the melting curves and the local structure of nickel and cobalt under

extreme conditions. The experimental analysis was performed by X-ray absorption

spectroscopy (XAS), suitable technique for the study of the local structure. Ab-initio

calculations were performed as well in order to validate the melting criterion adopted

and to provide starting radial distribution function for the analysis of the local struc-

ture.

The melting curves of nickel and cobalt were determined with the XAS melting

criterion recently proposed for iron under extreme conditions. The criterion consists

in the flattening of the shoulder and the disappearance of the first two oscillations in

the X-ray Absorption Near Edge Structure (XANES). It has been validated by Focused

Ion Beam (FIB) coupled with Scanning Electron Microscopy (SEM) analysis on the

recovered samples, by means of a detection of textural changes in the sample. The

melting temperature was detected for nickel and cobalt at different pressures up to 1

Mbar for the two materials. A comparison between the melting curves of nickel and

cobalt with iron shows that the melting curves of these 3d metals up to 1 Mbar are

very similar, suggesting that: the number of d electrons has no clear influence on the

slope of the melting curves of these three materials and that the presence of nickel

in the outer core of Earth gives a negligible contribution for the determination of the

geotherm at the inner core boundary
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Ab-initio calculations performed on cobalt provided an additional confirmation

of the XAS melting criterion adopted. Moreover they permitted to understand that

the flattening of the oscillations in the XANES is due to the smearing of the struc-

tures in the density of the p states linked to the different environments surrounding

each absorbing atom in the liquid. These calculations allowed as well to evaluate

the compression of liquid cobalt at 5000 K and provided a starting radial distribution

function for the analysis of the experimental Extended X-ray Absorption Fine Struc-

ture (EXAFS) extracted from the measured XAS.

The EXAFS of the liquids along the melting curve was analysed providing a mea-

surement of the first neighbour distance in the liquid as a function of pressure for

both nickel and cobalt. In the two cases our experimental results show slightly less

compression than theoretically predicted. This can be interpreted as a first neigh-

bour bond that at higher pressures is slightly more rigid than predicted or as due to

an increase of 10-20 % of the coordination number. Combined to theory, our experi-

mental observation suggests that the local structure of liquid Co and Ni increasingly

deviates from a hard sphere model with P and T along the melting curve.

In conclusion, we have developed a protocol that allows validating the melting

criterion for a given solid structure. In this work it has been applied to 3d metals with

fcc structures and it can be applied to other structures. The presence of nickel and

cobalt in the outer core of Earth was found to be irrelevant for the determination of

the temperature at the ICB. XAS was shown to be an adequate technique to measure

the first neighbour bond under extreme conditions, although both experiment and

theory have large margin for improvement. The application of this method to more

complex liquid alloys opens the way to investigation of relevant geophysical systems.



Résumé

Pour bien appréhender et comprendre les phénomènes physiques se produisant

au sein du noyau terrestre externe, il est nécessaire d’étudier les propriétés structu-

rales et thermodynamiques des matériaux liquides en présence. Ainsi, les courbes de

fusion du nickel et du cobalt permettent de contraindre la température à la frontière

entre les noyaux interne et externe (ICB). Cette Thèse présente l’étude de la courbe de

fusion et de la structure locale du nickel et du cobalt liquide en conditions extrêmes

de pression et de température. L’analyse expérimentale a été effectuée par spectro-

scopie d’absorption des rayons X (XAS), technique bien adaptée à l’étude de la struc-

ture locale de la matière. Des calculs ab-initio ont permis de valider le critère de fu-

sion utilisé et de fournir une fonction de distribution radiale initiale pour l’analyse

de la structure locale.

Les courbes de fusion du nickel et du cobalt sont déterminées à partir des mesures

d’absorption et s’appuient sur un critère de fusion récemment proposé dans le cas du

fer. Le critère de fusion est basé sur la disparition simultanée de l’épaulement situé

au niveau du seuil d’absorption des métaux 3d et des deux premières oscillations

du spectre d’absorption. Une sonde ionique focalisée (FIB) couplée à un microscope

électronique à balayage (SEM) sont utilisés pour détecter post mortem les change-

ments d’état de l’échantillon et confirmer ainsi le critère de fusion. Les courbes de

fusion du nickel et du cobalt sont présentées jusqu’à des pressions de 1 Mbar. L’uti-

lisation du critère de fusion est généralisable à tous les métaux 3d. La comparaison

entre les courbes de fusion du nickel et du cobalt avec celle du fer montre que la

présence de ces deux matériaux dans le noyau externe de la Terre peut être négligée

pour la détermination du profil de température dans la planète.

Les calculs ab-initio montrent que la disparition des deux premières oscillations
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XANES est due au changement de densité des états électroniques p lors de la fusion

et à la perte de l’ordre structural dans le liquide. Ils permettent ainsi de valider le

critère de fusion empirique utilisé lors des mesures XAS et d’évaluer la compression

du cobalt liquide à 5000 K en fournissant une fonction de distribution radiale initiale

pour l’analyse expérimentale du spectre d’absorption.

Les oscillations EXAFS de la phase liquide du nickel et du cobalt sont analysées,

permettant ainsi de déterminer la distance des premiers voisins en fonction de la

pression. Les résultats expérimentaux montrent une compressibilité inférieure à celle

prévue par les calculs ab-initio. Cette différence peut être interprétée comme une

liaison atomique plus rigide entre premiers voisins ou comme une augmentation de

10 à 20% de la coordinence. Ainsi nos observations expérimentales combinées aux

calculs ab-initio suggèrent que la structure locale du nickel et du cobalt liquide dévie

du modèle des sphères rigides.

En conclusion, nous avons développé en parallèle une méthode expérimentale et

un protocole théorique qui permettent de valider le critère de fusion d’une structure

donnée. Nous les avons appliqués aux métaux 3d fcc afin de déterminer les courbes

de fusion du nickel et du cobalt. La similitude entre ces courbes de fusion et celle

du fer montre que la présence de cobalt et de nickel dans le noyau externe terrestre

peut être négligée pour la détermination de la température au niveau de l’interface

entre le noyau externe et le noyau interne de la Terre. L’étude des oscillations EXAFS

des liquides à haute pression et haute température permet de déterminer la distance

entre premiers voisins. Ces méthodes peuvent maintenant être appliquées à des li-

quides d’alliages complexes, plus pertinents pour la modélisation de phénomènes

géophysiques.
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Chapter 1
Introduction

This thesis uses X-ray absorption spectroscopy (XAS) to study liquid nickel and cobalt

under extreme thermodynamic conditions, combining the XAS analysis with simula-

tions of the X-ray absorption near edge structure (XANES) spectra based on ab-initio

calculations. This chapter is devoted to the description of the scientific background

that motivated this work. At first the two materials under analysis, nickel and cobalt,

will be presented, followed by the description of the fundamental interest inspiring a

study of their properties under extreme conditions. Then, the geophysical interest be-

hind this work will be outlined.

1.1 Nickel and cobalt

Nickel and cobalt are, as iron, metals with unfilled 3d bands. Due to their vicinity

in the periodic table, these three transition metals share similar properties. Their

density of states show very similar features [106, 155] and justifies their magnetic

properties. The structure of these metals is strongly influenced by magnetism which

stabilizes bcc and hcp structures for iron and cobalt respectively. If magnetism is ne-

glected, and considering only the number of 3d electrons, the predicted structure at

ambient conditions would be hcp for iron and fcc for cobalt [122].

While iron is the main component of the Earth’s core [98, 97, 2], nickel is it’s major

alloying constituent in the liquid outer core and cobalt is present in the same region

only in minor proportions. The choice of nickel and cobalt as a case study, though, is

not only justified by their presence in the Earth’s interior, but also and especially by

the similarity they exhibit with iron, yet being less reactive and thus easier to study.

11



12 1.1. Nickel and cobalt
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Figure 1.1 – Pictorial representation of nickel and cobalt phase diagrams. The existent
literature concerning the melting curves of nickel and cobalt is presented in Sections
3.1.1 and 3.1.2.

Nickel

According to Liu et al. [98], nickel is the third most abundant element in the outer

core of Earth with a concentration of 4.68 wt.%, preceded by iron (78.78 wt.%) and

oxygen (15.52 wt.%). While iron remains the primary component of the inner core

(92.89 wt.%), it is proposed that nickel is the second most abundant element (5.14

wt.%) [98]. Determining these concentrations has been the subject of numerous

studies [5, 4, 108, 97, 8, 72, 14], and it is widely accepted that nickel is an important

alloying constituent of iron in both the Earth’s inner and outer core, with a concen-

tration of about 5-10 wt.%.

The interest in nickel, however, is not only justified by its presence in the Earth’s

core, but is as well due to its simplicity. With two d electrons more than iron, the

electronic configuration of nickel is 1s22s22p63p63d84s2. Unlike iron and cobalt, the

phase diagram of nickel does not show any solid-solid phase transition up to 200 GPa

and ambient temperature [154], and up to the melting temperatures in the 0 - 110 GPa

range. In the regions experimentally probed up to now, nickel is always face centred

cubic (fcc), see Figure 1.1(a).

Therefore, nickel is an attractive material to start with, allowing to lay the basis for

the study of more complicated materials and alloys.
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Cobalt

Cobalt is only a minor alloying constituent of iron in the Earth’s outer core, with a

concentration of about 0.27 wt.% [97]. Its interest, however, goes beyond its presence

in our planet. Following iron in the periodic table and exhibiting a phase diagram

more complicated than nickel, it plays a crucial role in the systematic understanding

of melting and compression properties of 3d metals. Co and FeCo alloys also have

very important technological applications. An example is magnetic recording media

where strain plays an important role.

The electronic configuration of cobalt differs from the one of iron only by the

presence of one extra d electron, that therefore is 1s22s22p63p63d74s2. At ambient

conditions and for pressures up to 100 GPa and room temperature, cobalt is always

hexagonal close packed (hcp), see Figure 1.1(b). After a region of coexistence, it be-

comes fcc at pressures higher than 150 GPa at room temperature, or at temperatures

higher than 1500 K at ambient pressure. Before the transition to the liquid phase,

cobalt is fcc in the explored region of the phase diagram [169, 168, 156].

1.2 Fundamental interest

In 3d materials such as iron, nickel and cobalt, the outer electronic shell is com-

posed of unfilled d bands. The only exceptions are copper and zinc, whose d orbitals

are filled. The number of d electrons in the outer electronic shell was proposed as

an important factor in determining the slope of the melting curve. First measure-

ments of the melting curves of 3d metals, determined using as melting criterion the

visual observation of movement on the sample surface (known as ”speckle” method),

were in strong disagreement with the theoretically determined melting curves (this

will be developed for nickel and cobalt in Section 3.1). More specifically, theoretical

calculations [3] predicted that the melting temperature of transition metals should

increase with pressure much faster than those determined experimentally with the

”speckle” method, where the melting slopes were characterized by a dT/dP ∼ 0

[92, 25, 51, 78, 24, 50].

A semiempirical model [135] was developed to explain the reason of the low melt-

ing slopes, showing good consistency with the experimental data obtained for iron,

nickel and cobalt [78]. The model predicts that in the case of unfilled d band, the

transition to the liquid phase, and thus the loss of structural periodicity, is associated

to a broadening of the liquid DOS [45, 85, 86] and to an increased stability of the liq-

uid with respect to the solid. According to this model the melting curve steepness is
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thus directly linked to the number of d electrons, leading to low melting slopes in the

case of partially filled d electron bands.

Moreover, it is known that the d orbitals, unlike the spherically shaped s orbitals,

are directional. And it was proposed that in transition metals with strong directional

bonding induced by incomplete d bands, Peierls-Jahn-Teller distortions in the liquid

would remove the degeneracy of levels and thus the formation of localized bonds

would stabilize the system lowering the energy [133]. The presence of d-electron

bonding, moreover, matches well with the presence of icosahedral structures in a

liquid [64, 140, 95] (this will be developed in Section 5.1). The icosahedral structures

in liquids of early transition metals, however, are more distorted than the ones of late

transition metals, due to the different number of electrons in the d-bands [133, 134].

The compression of d-metals in a liquid could thus produce interesting non-uniform

effects, dependent on the number of d-electrons, that could influence the local struc-

ture.

The ”speckle” method that gave rise to these interpretations, however, was ques-

tioned by more recent X-ray diffraction studies [37, 40, 9] (this will also be developed

in Section 3.1), thus leaving uncertain the role of d-electrons in the slope of the melt-

ing curves and in the study of the local structure.

1.3 Geophysical interest

The deepest point that mankind was able to access is at 12.276 km, and it was

reached by drilling a borehole on the Kola Peninsula in Russia from 1970 to 1989 1

[1]. All other information we have about the Earth’s interior originates from indirect

observations. These form the basis for our present Earth models. The Earth models

can be divided in three interconnected categories: seismological, compositional and

thermal [125].

Seismic events, e.g. earthquakes, are documented, and the study of seismic waves

propagation and normal mode oscillation allows to formulate seismological models.

The Earth’s interior is thus described in terms of wave velocity, density, pressure and

elastic moduli as a function of the depth. Using the density profile in the Earth’s inte-

rior and the velocity profiles of the seismic waves, it is possible to formulate compo-

sitional models, which describe the composition of the Earth at different depths.

1. Longer boreholes have been drilled since then in Qatar, in 2008, and on the Russian island
Sakhalin, in 2011 [1], but the borehole on the Kola Peninsula is still the one that reached the deepest
artificial point inside the Earth.
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Figure 1.2 – Schematic representation of the Earth’s interior [10]. Top panel: the com-
positional model of the Earth at different depths is represented. The three main shells
are highlighted, with their believed composition and the pressure at the boundary
separating them. Bottom panel: the PREM data of seismic velocities (relative to lon-
gitudinal vp - black solid line - and transverse vs - blue solid lines - seismic waves),
density - red solid line - and pressure - purple dotted line - are represented as a func-
tion of the depth.
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Compositional models are not only formulated on the basis of seismologically

observed densities and sound velocities in the Earth’s interior [20, 109, 29], but they

also merge information obtained from compositional studies of meteorites, which

are testimony of the building blocks of the early solar system [28, 125], and deduc-

tions formulated to describe the origin of Earth’s magnetic field [147, 110].

Finally, the thermal models depend on thermodynamic parameters inferred by

geomagnetic variations or observations of the heat flux [80]. However, the tempera-

ture profile in the Earth (called geotherm), influences and is as well influenced by the

compositional models, showing that the three models are interdependent.

In 1923, Williamson and Adams [166] derived the density of the Earth as a function

of depth, by assuming a spherically symmetric Earth in hydrostatic equilibrium and

considering adiabatic compression. Hypothesizing that the Earth was made of those

materials that compose the crust, they estimated the variation of density solely due

to compression. Independently, they could derive a density profile inside the Earth

from the velocity of longitudinal (vp) and transverse (vs) seismic waves.

Comparing the density profiles obtained in these two ways, Williamson and Adams

realized that the high density in the Earth’s core could not be explained by compres-

sion alone. The high density could however be justified by assuming, in the core,

the presence of some metals, which are heavier than the materials composing the

crust. Observations of metal abundances in meteorites indicated that iron and nickel

(∼5%) could be good candidates [5]. However, the iron/nickel mixture is too dense

and for this reason the presence of 7-8% of light impurities such as S, Si, O and C was

proposed [4, 2, 175].

In 1981, a first model describing the average properties of Earth as a function of

the radius was conceived. It is called Preliminary Reference Earth Model (PREM) [47]

and its results are summarized in Figure 1.2. As depicted in Figure 1.2, the absence

of the shear velocities of seismic waves between 3000 and 5000 km of depth suggests

the presence of a liquid outer core. The shear waves cannot be supported by fluids as

their direction of oscillation is in a plane orthogonal to their propagation direction.

As proposed by Williamson and Adams, the sudden increase in the density at the

mantle core boundary (MCB) indicates a variation of composition between the man-

tle and the core. If Williamson’s and Adams’ explanation of this density change being

due to the presence of metal is true, this would account not only for the Earth’s den-

sity profile, but this would also explain the presence of our terrestrial magnetic field.

The geomagnetic field can in fact be explained by the presence of a metal such as iron

in the liquid region inside the Earth [110].
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Another density discontinuity is found at the boundary between the inner and

outer core, i.e. the inner core boundary (ICB). This discontinuity cannot solely be

explained by the liquid-solid transition density change, but it must be caused by the

partition of light impurities between solid and liquid. While estimates of the density

in the inner core are consistent with pure iron, in the outer core there could be light

impurities as well [2].

As the Earth cools down, light impurities are expelled in the liquid region, and due

to their density - lower than the one of iron - they would move further away from the

inner core thus driving the convective currents in the liquid part of the core [30]. Also

the latent heat released in the crystallization process of the inner core contributes to

convection movements. The motion of liquid iron in the outer core, which is hence

driven by compositional and thermal convection, is known as geodynamo and it is

believed to be the mechanism generating the Earth’s magnetic field.

Understanding the Earth’s core is important for several reasons. Firstly, the deter-

mination of the geotherm, i.e. the temperature profile inside our planet, is essential

for understanding the cooling dynamics of the Earth and the convection that takes

place in the outer core. In the hypothesis of a liquid in turbulent convection [2],

the distribution of the temperature in the core follows an adiabat. At the ICB the

geotherm crosses the melting curve of the materials composing the core, see Figure

1.3. Since the pressure of the ICB, where the two curves intersect, is known, the melt-

ing curve would provide a fixed point for the temperature profile inside the Earth.

For this reason, knowledge of the temperature in the core, combined with precise

understanding on how melting temperatures of Fe-rich systems vary with pressure

and composition, would allow to better constrain the identities and abundances of

light elements in the Earth’s core [59].

Many efforts have already been made towards determining the geotherm [79, 72,

7, 159, 113](and references within), and even if the discrepancies among methods of

investigations (described in Section 3.1) and melting temperatures of core materials

at the ICB pressure are decreasing in the past years [72, 91], uncertainties still exist.

Moreover, determining the physical properties of metals alloyed with light ele-

ments at extreme pressure and temperature conditions is very important for the un-

derstanding the characteristics of the molten outer core. The dynamics of the core

are in fact largely influenced by its density, viscosity and thermal conductivity [152].

Due to significant experimental challenges, complete studies on the experimental

determination of structural properties of liquid metals and alloys under extreme con-

ditions of pressure and temperature started to develop only recently. First measure-
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Figure 1.3 – Pictorial representation of the temperature profile at the inner core
boundary, i.e. at the boundary between the liquid and the solid core. The melting
temperature of core materials at the ICB pressure provides an anchoring point for
the determination of the geotherm, i.e. the temperature profile in the Earth.

ments on the equation of state of liquid iron [6, 141] and iron alloyed with light el-

ements such as FeS [138, 117, 33], FeNiS [114], FeSi [170, 136], FeNiSi [114] and FeC

[151, 139, 142] were performed. X-ray absorption spectroscopy was used up to about

10 GPa, while at higher pressure, up to about 95 GPa, the analysis was performed on

liquid diffuse scattering signal [152]. The findings of these works are that the presence

of sulphur reduces the density and the bulk modulus of pure liquid iron. Carbon was

found to affect iron in the same direction, but the reduction in density and bulk mod-

ulus is more moderate. The presence of silicon instead reduces slightly the density

but has almost no effect on the bulk modulus.

The use of X-ray absorption spectroscopy, known for its elemental selectivity, at

more extreme pressure and temperature conditions than before, would enable to

probe the local structure of the different elements in the alloy and it might help un-

derstanding how these light elements affect the local structure of iron.

1.4 Conclusions

In the following chapters we propose to validate a method based on X-ray ab-

sorption spectroscopy to investigate the transition from solid to liquid phase of 3d
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metals under extreme thermodynamic conditions. The aim is not only verifying or

questioning the experimental evidence that gave rise to the semiempirical models

connecting the number of d electrons to the slope of the melting curves, but also to

lay the foundations for future studies on more complex systems such as Fe (more re-

active than nickel or cobalt), FeNi, FeCo, FeO, FeC, FeS, NiS, FeNiS, FeMgO etc.. X-ray

absorption spectroscopy currently allows to reach about 130 GPa and 4000 K, i.e. the

conditions of the lower mantle, close to the mantle core boundary (MCB) at 136 GPa

and 4000 K. The long-term objective will be to improve the experimental techniques

so that conditions in the Earth’s core, up to about 360 GPa and 6500 K, can be directly

investigated.

Furthermore in order to unravel the effects of the directional d orbitals in a liquid

upon increasing pressure and to continue in the direction of determining the equa-

tion of states of core components, we propose a method to study the variation of the

bond length of the liquid as a function of pressure. Results of the analysis of the local

structure of liquid nickel and cobalt under pressure are shown. Once the method has

been established for relatively simple materials and at the pressures that are nowa-

days accessible, it will be possible to apply the same method to more complicated

systems and at pressures closer to the inner core boundary.
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Chapter 2
Experimental methods

Thanks to its short order sensitivity and its elemental selectivity X-ray absorption

spectroscopy (XAS) is a suitable technique to study local structure in liquids. In this

chapter XAS is presented in its near edge and extended regions. The in-situ experiments

in this work were all performed at the energy dispersive X-ray absorption spectroscopy

(EDXAS) beamline ID24 of the European Synchrotron Radiation Facility (ESRF) in Greno-

ble, France. The beamline is described here, with particular attention to those aspects

crucial for the success of these experiments. The attention is then focused on high pres-

sure and high temperature methods used to approach the conditions of the Earth’s

outer core. In this chapter is presented how XAS, high pressure and high temperature

are combined in the experiments. Finally, the technique used for ex-situ post analysis

is presented.

2.1 X-ray Absorption Spectroscopy

X-ray Absorption Spectroscopy is a powerful technique used to probe the local

structure of a selected element in a material. It is used to study solid matter, in crys-

talline or amorphous form, liquid matter and molecular gases [31].

The physical quantity measured is the absorption coefficient. It describes the

probability of an incident photon to be absorbed as a function of the incident photon

energy. The absorption coefficient µ can be calculated from the Lambert-Beer law

I = I0e–µx

as

µ(E)x = ln
I0
I
,

21
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where x is the thickness of the sample, I0 is the intensity of the probing X-rays without

the sample and I is the intensity transmitted by the sample.

The absorption coefficient is normally a smooth function of the energy µ(E) ∼
1/E3, where E is the energy of the incoming radiation. In the hard X-ray range how-

ever the absorption coefficient is mainly determined by core-electron excitations.

These give absorption edges in correspondence of the core binding energies that are

thus characteristic of the elements present in the sample. The absorption edges are

followed by characteristic oscillations that depend on the environment of the atom

that absorbed the radiation.

When an X-ray photon with an energy EX equal or greater than the binding en-

ergy E0 impinges on the sample and is absorbed, it generates a photoelectron whose

energy is given by Eph = EX – E0. This photoelectron can, to a first approximation, be

considered as a wave which diffuses from the absorbing atom and scatters from the

surrounding atoms, see Figure 2.1(a). The backscattered wavelets interfere with the

outgoing wave. This interference, at the origin, modulates the absorption probability

beyond the edge, giving rise to the oscillations observed as a function of energy in the

absorption coefficient, see Figure 2.1(b).

X-ray absorption is a quantum mechanical phenomenon [31]. The discussion

that follows is in the framework of a semiclassical 1 nonrelativistic approximation. In

the first order approximation of the time dependent perturbation theory, the transi-

tion rate Wif , and thus the absorption coefficient, is proportional to the square mod-

ulus of the perturbation matrix element between the final and the initial state mul-

tiplied by the density of states at the transition frequency. This is known as Fermi’s

golden rule

Wif =
2π

h̄
| < Ψf |ĤI|Ψi > |2ρ

where Ψi and Ψf are the initial and final states respectively, including all the electrons

of the absorber atom involved, ĤI is the interaction Hamiltonian and ρ is the den-

sity of states compatible with energy conservation Ef = Ei + h̄ω. The Hamiltonian

ĤI = – e~A·~p
me

describes the interaction between the X-ray electromagnetic field and the

electrons. Where ~p is the momentum operator of the electron and ~A is the vector

potential of the electromagnetic wave that, in the case of a linearly polarized (in the

direction ε̂) monochromatic plane wave, can be expressed as ~A = A0ε̂ cos (~k ·~r – ωt).

The absorption coefficient is then proportional to:

µ(E) ∝ | < Ψf |ε̂ · ~p ei~k·~r|Ψi > |2ρ(̄hω – (Ef – Ei)). (2.1)

1. The X-ray electromagnetic wave is considered as a classical field.
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(a) Schematic of the X-
ray absorpdion process,
where A is the absorber
atom and S the scatterer.

(b) Representation of a XAS spectrum. The XANES part is domi-
nated by a large number of multiple scattering processes, while the
EXAFS part is instead dominated by single scattering, or by multi-
ple scattering with three or four atoms.

Figure 2.1 – Schematic of the XAS process and representation of an absorption spec-
trum.
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The initial and final wavefuctions Ψi and Ψf are given by the contribution of the

wavefunctions of all the electrons in the atom. Only one electron is photoemitted,

all the others that do not interact directly with the perturbation can be assembled

in the term S2
0. The value of this parameter is normally between 0.75 and 1, taking

into account the relaxation of the non interacting electrons. In the dipole approxi-

mation and using the commutation relations with the interaction Hamiltonian (see

Appendix A for the derivation), Equation 2.1 can be written as

µ(E) ∝ S2
0| < ψf |ε̂ ·~r|ψi > |2ρ(̄hω – (Ef – Ei)), (2.2)

where in the initial state the electron is a core electron described by the wavefunction

ψi, the final state it is a photoemitted electron described by ψf . The photoabsorption

many-body problem is thus reduced to the problem of one electron moving in an

effective optical potential.

The final wavefunction of the photoemitted electron can be written as the sum of

the outgoing and the incoming scattered wavefunction: |ψf> = |ψ0
f + δψf>. If the

atom is isolated there is no backscattering and δψf = 0. The absorption coefficient

of the isolated atom µ0(E) is thus calculated considering just the outgoing part of

wavefunction. In the case of condensed matter the expression for the µ(E) is more

complicated, but since the initial state is strongly localized on the absorber atom, the

relevant part of the final state wavefunction for the matrix element will be localized

on the core electron.

The absorption spectrum can be divided in two energy ranges, the X-ray Absorp-

tion Near Edge Structure (XANES) describing the region closer to the edge and the

Extended X-ray Absorption Fine Structure (EXAFS) describing the oscillations about

50 eV after the edge, see Figure 2.1(b).

2.1.1 X-ray Absorption Near Edge Structure (XANES)

The interpretation of the XANES part of the spectrum is complex and several ap-

proaches known as scattering, Green’s function and band structure approach have

been proposed [116]. In the one-electron approximation, though, the three of them

are basically equivalent and they differ only for their formalism. According to the

problem to be solved, the more suitable can be chosen. Here it is worth citing that the

interpretation of the XANES can be based on the real space or the reciprocal space.

If the real space is considered, when the energy of the photoelectron is small, ap-

proximatively less than 30-50 eV, the mean free path is large and the photoelectron

is involved in multiple scattering processes with a large number of atoms, see Fig-



Chapter 2. Experimental methods 25

ure 2.1(b). In this region it is generally very difficult to keep a track of the path trav-

elled. Due to the complexity of the processes involved extracting structural parame-

ters from the shape of the XANES is possible in the framework of multiple scattering

calculations, but is not straightforward. The inverse problem, where the experimen-

tal spectra are qualitatively compared with simulations, is instead widely used and

is a part of this work. The procedure adopted to simulate the spectra is presented in

Section 4.2.3.

In the reciprocal space interpretation, the probability of absorption in the near

edge region is strongly influenced by the density of states just above the Fermi level.

In the case of a K edge the final states allowed for the dipole selection rules are the

p-states. As a result the shape of the near edge region of the spectrum reflects the

shape of the p empty states.

This region of the X-ray absorption spectrum contains information about the oxi-

dation state of the absorber and about its chemical speciation. Changes in the XANES

are adopted in this work as criterion to determine when the sample measured is solid

or liquid. More information will be provided in Section 3.2.

2.1.2 Extended X-ray Absorption Fine Structure (EXAFS)

The region of the absorption spectrum corresponding to an energy of the pho-

toelectron larger than ∼ 50 eV is called Extended X-ray Absorption Fine Structure

(EXAFS). In this region the mean free path is small (few Angstroms) and thus the pho-

toelectron can only undergo very few scattering events before losing its energy. If the

photoelectron loses its energy in a scattering event it means that the scattered wave

does not interfere with the outgoing wave and the information is lost. EXAFS is thus

dominated by single scattering and few multiple scattering processes. The informa-

tion contained here is about the local structure around the absorber, the number and

type of neighbours and their disorder.

Subtracting from the general absorption coefficient the contribution of the iso-

lated atom it is possible to isolate and extract only the information about the envi-

ronment. The EXAFS signal is then obtained as

χ(k) =
µ(E) – µ0(E)

µ0(E)
. (2.3)

where the wavevector k is

k =

√
2m(EX – E0)

h̄
.

In the description of a crystalline solid at sufficiently low temperatures, the radial

distribution function, which is the probability of finding an atom at distance r from
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the absorber, can be represented as a Gaussian radial distribution function. The EX-

AFS signal can thus be written as the sum of scattering contributions (or paths)

χ(k) = S2
0

∑
i

Ni
f i(k, π)

kR2
i

e
–2Ri
λ(k) e–2k2σ2i sin(2kRi + δi(k)) (2.4)

where in the case of single scattering Ni is the number of equal atoms at the same

distance Ri from the absorbing atom, and σ2
i is the variance of the Gaussian describ-

ing the radial distribution function, also known as mean square relative displacement

or Debye-Waller factor. The amplitude f i(k) and the phase δi(k) are due to the scatter-

ing, they are respectively the backscattering amplitude and the phase shift function.

In a muffin tin potential approximation δi(k) is given by the phase shift that takes

place when the photoelectron crosses the edge between the spherically symmetric

potential around the atoms and the interstitial region where the potential is constant.

Equation 2.4 can be generalized to include MS paths. In this case Ni is the num-

ber of identical paths, Ri is half the total path length 2, and f i and δi are the effective

scattering amplitude and phase respectively.

The two exponentials cause a damping of the signal due to the mean free path

λ(k), related to the core-hole lifetime and the inelastic scattering, and due to the ther-

mal and static disorder considered in σ2. The sinusoidal term
∑

i sin(2kRi) is the one

that modulates the constructive or destructive interference. The distance appears as

a frequency and it can be extracted performing a Fourier transform.

The Fourier transform is thus characterized by peaks in correspondence of the

leading frequencies of the EXAFS signal [63], and by fitting these peaks it is possible

to obtain information about the position, static and thermal disorder and coordina-

tion number of the different atomic shells. The Gaussian shell model here presented

though, is appropriate to describe only crystalline solids at low temperature, when

both the thermal and the static disorder are negligible.

Already at higher temperature it is required to go beyond the harmonic approxi-

mation and to describe the atomic positions using more sophisticated models or in

the cumulant expansion approach [62, 21]; therefore Equation 2.4 is no longer valid.

In the cumulant expansion approach dynamic and, to a certain extent, static dis-

order are taken into account in the mean square relative displacement σ2. Moreover

the asymmetry of the peaks in the radial distribution function due to the anharmonic

potential is considered into the third cumulant.

In the case of a liquid, where the configurational disorder is significant, the radial

2. In case of multiple scattering involving the three atoms A (the photoabsorber), B (first scatterer)
and C (second scatterer), half of the total path length will be RABC = (dAB + dBC + dCA)/2, where d is
the distance between two atoms.
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distribution function cannot be described as constituted by separate peaks associ-

ated to different atomic shells. While analysing the structure of a liquid an entirely

different approach is required, and it will be shown in Section 5.3.

2.2 The energy dispersive beamline ID24

The energy dispersive X-ray absorption spectroscopy (EDXAS) beamline ID24 was

designed for time resolved and extreme condition experiments, where time-resolution,

high flux and small focal spot are required [120].

The most important optical element in the dispersive geometry is the polychro-

mator - an elliptically bent Si(111) crystal - whose function is to create an angular

correlation of the X-ray photons’ energy and to focus the beam horizontally on the

sample. The beam is then transmitted by the sample and detected on a position sen-

sitive detector where the energy is correlated to the position. In this way the entire

XAS spectrum is simultaneously collected ensuring fast data collection.

The beamline is designed in two branches called S and L, see Figure 2.2, dedicated

to high pressure and chemistry respectively. The branch used for this work is the first

one, where a smaller beam can be obtained and where the laser heating setup for the

high temperatures is placed.

In the following, a more detailed description of the beamline from the X-ray beam

generation to its detection will be provided for the S branch. The ID24 source is lo-

cated on a 6 m-long straight section of the storage ring [120] and is composed of

a sequence of 27 mm (U27) and 32 mm (U32) period undulators whose combina-

tion allows to span an energy range between 5 and 28 keV. The gap of the undula-

tors is chosen according to the required energy and their tapering allows to obtain a

homogeneous flux over an energy bandwidth of about ∼1 keV at 7 keV. Energy dis-

persive XAS beamlines are usually installed on bending magnet sources. In this way

the large horizontal divergence necessary to obtain an energy dispersion ∆E able to

cover a whole EXAFS spectrum is already naturally provided. Nevertheless installing

a EDXAS beamline on an undulator source offers some advantages as well [121]. The

first one is the possibility of matching the bandwidth of emission of the undulator

and the acceptance of the polychromator by optimizing the gap, the taper and the

radius of curvature of the polychromator crystal, that results in a reduction of heat

load on the optics. Then there is a substantial reduction of unwanted harmonics. Fi-

nally an undulator provides higher brightness, lower vertical angular divergence and

low monochromatic horizontal and vertical divergences.

The beam generated by the undulators is a pink beam around the designated en-
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Figure 2.2 – The two branches of the beamline ID24 are here schematized. Mirrors are
in blue (MH is a mirror for horizontal focalization, MV for vertical one), polychroma-
tors are in green, sample positions in yellow and detectors in light green. The branch
used for the experiments in this work is EDXAS S.
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Figure 2.3 – Schematic of the principle of operation of the polychromator on ID24
[120], where the image of the X-ray source is the one projected by MH1S. In the right
panel is represented an absorption spectrum of a nickel foil placed in the sample
position.

ergy. The first optical elements encountered by this beam are a pair of mirrors (MV1

and MH1) in a Kirkpatrick-Baez configuration. The mirror for vertical focusing (MV1)

focalizes at 58 m from the source, see Figure 2.2. The mirror for horizontal focusing

(MH1) allows both to choose the branch and to transform the collimated pink beam

coming from the undulators into a diverging beam in the horizontal plane. The beam

is horizontally focused at about 33 m from the source, in the position of the focus of

the imaginary ellipse on which the elliptically bent polychromator lies, and then di-

verges until it hits the polychromator, see Figure 2.3. The idea is to maximize the

footprint of the beam on the polychromator that in this way collects the pink X-ray

beam at different angles. Following Bragg’s law 2d sin(θ) = λ = ch/E, different ener-

gies are reflected in different positions of the crystal, where d is the spacing between

the (111) planes in the silicon crystal, θ is the angle between the beam and the crys-

tal, λ is the wavelength of the beam and E its energy, c and h are the speed of light

and Planck’s constant respectively. Note that, as schematized in Figure 2.3 at smaller

incidence angles correspond a higher energy and vice versa. The full spectral range

diffracted by the polychromator can be expressed as

∆E = E0∆θ cot θ (2.5)

which means that it increases with the energy and, in the case of ID24 S is∼1 keV

at 8 keV.

After being dispersed and focused horizontally the X-ray beam can be focused

again vertically by means of a second mirror (MV2). Note that the function of the
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mirrors is not only to focus and direct the beam, but also to reject harmonics. The

beam converges to a focal point, where at 7 keV the resulting beam size can be of

∼4x4 µm2. The size of the beam is determined performing knife-edge scans on a

vertical and horizontal blade. A fit of the resulting intensity to a step function convo-

luted with a Gaussian; the FWHM of the Gaussian gives the FWHM size of the beam.

At higher energies the X-ray beam penetrates more into the bended polychromator

crystal; part of the beam is thus diffracted by a region of the crystal with a different

lattice parameter. This results in a larger beam, up to ∼7x7 µm2 with a tail of about

10 µm at 13 keV. When all the optical elements of the beamline have been aligned

and both the polychromator crystal and the MV2 are bended in order to optimize the

X-ray beam size, the sample is positioned in the focal point. The beam transmitted

by the sample diverges again towards a position sensitive detector, a FReLoN camera

with an Hamamatsu chip [82], where the energy is correlated to the position through

a calibration with a standard reference. In Figure 2.3 it is clear that different energies

reach the detector in different positions, thus allowing the collection of a whole XAS

spectrum in a single acquisition.

The XAS spectrum is then obtained as µ(E)x = ln(I0/I1), where x is the thickness

of the sample, and I0 and I1 are the X-ray intensities (as a function of the energy) mea-

sured on the same detector in different moments in the absence and in the presence

of the sample respectively.

In the energy range of interest for this work, which is between 7 and 9 keV, the en-

ergy resolution δE/E is less than 2x10–4 and the photon flux is≥1.5x1014 photons/s.

In conclusion, in the dispersive setup an absorption spectrum can be visualized in

real time on a position sensitive detector in its whole energy range. The micro-beam

and the fast readout are particularly convenient for the experiments performed in

this work. A reduced size of the beam permits to probe smaller samples thus to reach

more extreme conditions and a fast readout allows to reduce the sample exposure to

the laser thus lowering the probability of reactions, as illustrated later in this chapter.

2.3 Sample

In this work pure nickel and cobalt were measured.

The nickel sample is a 4 µm thick polycrystalline nickel foil 99.95% pure from

Goodfellow. The size of the larger grains is less then 2 µm.

The cobalt sample is a 4 µm deposition 99.95% pure provided by E. Monsifrot 3.

3. Eric Monsifrot, DEPHIS, Etupes, France.
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Figure 2.4 – Schematic of the Earth’s interior, with the two static high pressure tech-
niques that can be used for its investigation. RH-LVP stands for resistively heated
large volume press (picture from [132]) and LH-DAC is laser heated diamond anvil
cell. The pressures for the Earth’s interior reported here are the ones proposed by the
PREM model [47]. The temperatures are the ones proposed by Andrault et al. [7].

2.4 High pressure

In order to reproduce the conditions of Earth’s interior it is necessary to study

samples under high pressure. Different techniques can be used according to the con-

ditions that have to be reached. In Figure 2.4 are indicated the ranges of operation for

the two most common static high pressure techniques used to probe Earth’s interior:

resistively heated large volume press (RHLVP) and laser heated diamond anvil cell

(LH-DAC). The main purpose of this thesis is to probe materials in the region of the

liquid outer core, for this reason we used a laser heated diamond anvil cell. With

this technique it is in principle possible to reach pressures up to 200 GPa and 6000 K

[149, 148, 150], but when it is coupled to X-ray absorption on the ID24 beamline at

the ESRF, due to the present X-ray beam size, the conditions that can be reached are

only up to 130 GPa and 4000 K.
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2.4.1 Diamond Anvil Cell

In a diamond anvil cell (DAC) the sample is compressed between two diamonds

(of about 1/3 carats), whose tip, called culet, has been machined in order to be flat

and parallel to the table, as shown in the top part of Figure 2.5(b). The two diamonds

are glued on two separate parts of a cell that are called piston and cylinder. In this

work we used membrane DACs with Le Toullec design [96], see Figure 2.5(a). The

piston side is characterized by four pistons that are designed to slide into the four

cylinders in the cylinder side in a way that drives the two anvils to face one another.

A rocker and a small translation of the diamond seats allow a very fine alignment of

the two anvils that have to be perfectly concentric and parallel.

The pressure is defined as P = F
S , where F is a force and S is a surface where the

force is applied. This means that the smaller the culet of the diamond, the higher

the pressure that can be reached. The pressure on the sample is therefore given by a

force applied on the surface of the culet. In membrane cells, like the ones with the Le

Toullec design, the force is transmitted from the expansion of the membrane, which

is filled with helium through the capillary, to the back of the diamond and then from

the back of the diamond to its tip. Some of the force is lost due to the deformation

of the diamonds (even though it is the hardest known natural material) and the other

components of the DAC.

Diamonds

Due to their hardness and their transparency over a wide range of wavelengths,

diamonds are the most suitable anvils for high pressure experiments performed with

spectroscopy - such as Raman, infrared spectroscopy and X-ray absorption - and X-

ray diffraction.

In this work we used two different kinds of diamonds: single crystal and nano-

polycrystalline, see Figure 2.5(b). The single crystal diamonds, synthesized with a

multi anvil large volume pressure at 9 GPa and 1600 K [118], are transparent in

the visible range but during X-ray absorption experiments it often happens that, in

the range of energy probed, photon intensity at specific energies is lost due to Bragg

scattering, this results in a large deformation (glitches) of the XAS spectrum. Those

glitches can be moved at different energies by rotating the DAC, but sometimes it

is very difficult to eliminate them completely. The nano-polycrystalline diamonds

(NPD), instead, are composed of nano-sized crystalline grains oriented randomly

[74]. NPD diamonds prevent the appearance of Bragg peaks in the spectrum, see

Figure 2.5(b), thus allowing to record good quality EXAFS data over a wider range
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(a) Schematic of a membrane high pressure
cell [10] with Le Toullec design [96].

(b) Top: Schematic of Boehler-Almax dia-
monds [48]. Middle: picture of single crys-
tal and nano-crystalline diamonds. Bottom:
Bragg diffraction of a single crystal diamond
affecting the XAS spectrum [74].

Figure 2.5 – Components of a membrane diamond anvil cell.
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[75].

The diamonds used for this study have Boheler-Almax design [26], which allows

a mechanical stability superior to the one achievable with conventional (flat) dia-

monds. This is due to the optimized mechanical support for the anvil’s crown section

which matches perfectly with the seats. Moreover the Boheler-Almax design allows

the use of thinner diamonds, thus reducing the X-ray beam absorption, and the use of

seats with larger angular aperture (typically 70 deg for the DACs used in experiments

during this work), thus allowing more flexibility in the experimental setup. This last

point will be clearer in Section 2.5.1.

Gasket and pressure transmitting medium

The sample is embedded in a softer material, called pressure transmitting medium

(PTM), and both are placed in a chamber drilled in a gasket, see Figure 2.6. The gas-

ket is a metallic foil typically 200 µm thick. To increase its hardness the gasket is

normally pre-compressed between the two diamonds to a pressure of about 30 GPa.

During this procedure, called pre-indentation, the material deforms plastically and is

extruded outside the anvils [46]. The thickness between the two diamonds culets will

be about 25-45 µm and outside the anvils it will be greater than the original thick-

ness. A cylindrical hole is then drilled in the thin part of the gasket, to create the

sample chamber, whose diameter is normally between 1/2 and 1/3 of the diamond

culet. Here the sample is embedded in the pressure transmitting medium that can be

a gas, a liquid or a solid. In this configuration the uniaxial pressure provided by the

diamonds is transformed to an hydrostatic (or quasi-hydrostatic) pressure thanks to

the PTM and the resistance provided by the outer part of the gasket beyond the dia-

mond culets [46].

The properties of gaseous, liquid or solid pressure transmitting media are very

different. In particular the hydrostatic limit, i.e. the pressure at which the PTM is still

hydrostatic, can vary considerably according to the phase of the PTM [123]. Gases are

the most hydrostatic ones, among which He is the best. It has been recently demon-

strated that the effect of non-hydrostatic stress in the case of He can be neglected up

to 150 GPa [35]. The hydrostatic limit for liquids such as methanol-ethanol mixtures

or silicone oil is <12 GPa [87]. In the case of a solid PTM, such as alkali halides or

Al2O3, the hydrostatic limit is even lower. In this study we always used solid pressure

transmitting media since, despite their poorer hydrostatic properties, they normally

provide a good thermal insulation and can confine liquids.

Thermal insulation, chemical inactivity, ease of compaction and transparency
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Figure 2.6 – Schematic of the sample chamber.

amorphous
Characteristics KCl SiO2 KBr Al2O3

Thermal insulation X × X X
Chemical inactivity X X ∼ ?
Ease of compaction X × X ∼

Transparency (amb P) X ×(opaque) X ×(opaque)
Transparency (P>10 GPa) X X X X

Table 2.1 – Summary of tests on different pressure transmitting media performed in
the first experiment of this work. The question mark is due to insufficient number of
experimental runs performed with Al2O3.

were characterised for several selected solid pressure transmitting media; the rele-

vant properties are listed in Table 2.1. As these tests demonstrated the superiority

of KCl, this PTM was always used for all subsequent experiments. Drying the KCl

in an oven at 120 ◦C for at least four hours allows to minimize the amount of water

that could trigger chemical reactions between the sample and the carbon of the di-

amonds [38]. As additional caution, the sample loadings were performed in a glove

bag in nitrogen atmosphere.

2.4.2 Pressure determination

Several methods have been developed to measure the pressure in-situ in the di-

amond anvil cell. One method is to use X-ray diffraction on a standard (such as KCl,

Au, etc) where the pressure is obtained from the lattice parameters calculated from

the diffraction pattern. This procedure is particularly convenient if the experimental
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technique used to probe the sample is X-ray diffraction. Otherwise it is also possible

to use an optical sensor (such as a ruby or the diamond itself) as a pressure gauge.

The ruby fluorescence and the Raman signal of the diamond change with pressure

and have been already calibrated. Since the nano-polycrystalline diamonds do not

show a Raman signal we measured the pressure with this method very rarely.

The ruby is a Cr:Al2O3 crystal showing, if excited by a laser or by X-rays, a charac-

teristic luminescence doublet of peaks R1 and R2 at specific wavelengths, see Figure

2.7. In 1972 it was shown for the first time that the doublet shifts with pressure [61],

and several empirical laws to determine the pressure as a function of the wavelength

of peak R1 have been proposed since. The relationship between pressure in GPa and

the wavelength λ of the peak R1 in nanometres can be described, at room tempera-

ture, as

P =
1904

B

[(λ – λ0

λ0

)B
– 1
]

(2.6)

where λ0 is normally 694.24 nm and the parameter B is 5 in non-hydrostatic, 7.665

in quasi-hydrostatic [104] and 9.5 in hydrostatic conditions [36]. In Figure 2.7 several

ruby luminescence shifts are represented and the three different ruby scales here in-

troduced. The position of the ruby luminescence line R1 varies with the temperature

as well, with a slope of 0.068 Å/K [69].

In this work the pressure was determined with the ruby fluorescence method: one

or few tiny ruby crystals with a diameter of sim5 µm were always placed in the dia-

mond anvil cell in the pressure transmitting medium together with the sample, as in

Figure 2.6, and their luminescence was excited by a green (532 nm) laser or by X-rays

(with an energy between 7 and 8 keV). The ruby scale we used is the non-hydrostatic

one.

Pressure and temperature are not completely disentangled. The thermal motion

of the atoms in the lattice causes an increment Pth of the total pressure; the total

equation of state P(V,T) can be expressed as follows

P(V,T) = P(V, 300K) + Pth(V,T) (2.7)

where P(V, 300K) is the equation of state at ambient temperature and Pth is the ther-

mal pressure correction. During X-ray diffraction measurements, knowing the tem-

perature and the thermal equation of state of the standard (such as KCl), it is possible

to deduce the thermal pressure acting on the sample. In X-ray absorption measure-

ments this is not possible. The pressure is thus measured before and after heating

and the thermal pressure has to be calculated.
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Figure 2.7 – Ruby luminescence signal at different pressures (normalized for the in-
tensity of the peak R1) and the value of pressure as a function of the position of the
peak in the hydrostatic [36], quasi-hydrostatic and non-hydrostatic conditions [104].

The procedure adopted in this work to calculate the thermal pressure is the one

proposed by Lord et al. [100]. The thermal pressure can be described in its linear

dependence with the temperature as

Pth = αKT(T – T0), (2.8)

where T0 = 300 K while αKT is not known a priori and according to Lord it has to

be described as a function of pressure. The thermal pressure at the melting temper-

ature, Pm, can thus be expressed as Pm = αKT(Tm – T0), where Tm is the melting

temperature. Its trend as a function of pressure was empirically evaluated for KCl

by Lord et al. using X-ray diffraction. If P300 is the pressure measured on the ruby

at room temperature after heating, the thermal pressure at the melting temperature

can be calculated as Pm = 0.03 · P300. From these two equations it is then possible to

evaluate αKT. In the case of KCl Equation 2.8 can be written as

Pth =
0.03 · P300

Tm – T0
(T – T0). (2.9)

The error in the evaluation of the pressure is principally due to intrinsic gradients

in the cell and by the pressure variations that occur while heating. Gradients in the
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cell can be evaluated measuring several rubies placed in different positions of the

sample chamber; the difference of pressure between them can be of few GPa at 100

GPa. The difference in the pressure measured on the ruby before and after heating

the sample instead is ∼5 GPa at about 50 GPa and can be up to 10 GPa at 100 GPa.

In this work we considered that the main contribution to the error is given by the

sample pressure variation that occurs during heating that is evaluated as 10% of the

pressure value.

2.5 High temperature

A sample in a diamond anvil cell can be heated resistively or using lasers. In the

first method the entire sample chamber is heated by the Joule effect and the tem-

perature is measured with a thermocouple. The maximum temperature that can be

reached with this method is 1600 K, before the diamonds oxidise and the gasket starts

to flow. In order to go beyond 1600 K it is necessary to localize the heating on one

spot of the sample. This is achieved with the laser heating method, where temper-

atures up to 6000 K can be reached [149, 148, 150] and measured through the black

body radiation emitted by the heated spot. The system dedicated to X-ray absorp-

tion spectroscopy that is used on ID24 to laser heat and measure the temperature is

described here below.

2.5.1 Laser heating setup

The principal characteristics of a laser heating setup are the delivery of a laser

beam on the sample and an optical system that allows sample imaging and temper-

ature measurements via spectral-radiometry. The laser heating system used for this

work is then coupled with the detection of X-ray absorption spectroscopy that allows

in-situ measurements [153, 81]. The angular aperture of the DAC is thus crucial to

allow the simultaneous heating with the laser and temperature and X-ray absorption

measurement.

Two 120 W Nd:YAG fiber-coupled lasers in their fundamental TEM00 mode with a

wavelength of 1064 nm (2 in Figure 2.8) are delivered to the two opposite sides of the

diamond anvil cell (1 in Figure 2.8) with dedicated optics that consists in several mir-

rors with a proper antireflection coating cutting some of the laser tails and a 0.5 inch

diameter lens with a 50 mm focal distance (3 in Figure 2.8). Heating from both sides

minimises axial temperature gradients on the sample. The two lasers, whose beam

profile is Gaussian, hit the diamond anvil cell with an angle of 30 degrees with respect

to the direction normal to the sample. This configuration avoids back-reflections
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that could heat the lenses, thereby changing the focal distance. The laser beams are

slightly defocused in order to have a uniform temperature on the sample surface up

to 20 µm in diameter, at least 2-3 times larger than the X-ray spot.

Sample imaging and temperature measurement are coupled in this system. The

image of the cell and the thermal emission of the heated spot share the same path

for most of its length (from 1 to 5 or from 1 to 7 in Figure 2.8). The image of the

sample chamber, whose typical size is in the order of hundreds of microns, is magni-

fied by means of a couple of achromatic lenses mounted at the two extremities of a

custom-build objective (4 in Figure 2.8). The lens closer to the DAC has 30 mm focal

distance, while the other one has a 500 mm focal distance. In front of the first lens

is placed a removable aperture, or pupil. During the optical alignment of the DAC

it is completely open and the numerical aperture of the microscopes is 0.2; during

the temperature measurements the pupil is closed lowering the numerical aperture

to 0.065 and thus reducing the effect of chromatic aberrations [66]. The magnified

image is projected on a metallic mirror positioned at the entrance slit of a Czerny-

Turner type optical spectrometer (5 in Figure 2.8). The mirror has two ∼35 µm holes

separated vertically by ∼4 mm that are used to collect the light from the two sides of

the DAC. As a convention, the optical path from the DAC to the higher hole is called

upstream (US) and the other one is the downstream (DS). The mirror is tilted by ∼5

degree thus projecting the image on a high sensitivity colour digital video camera

(8 in Figure 2.8) used for X-rays and lasers alignment on the sample. The two holes

in the mirror, that correspond to few microns in diameter in the DAC image on the

camera, collect the light of the hot spot from two sides of the DAC simultaneously

into the spectrometer. In the spectrometer the light from the two sides is dispersed

and focused on a 1340x400 pixels Pixis back-illuminated CCD camera (6 in Figure

2.8) at two different heights, where they are recorded. In the spectrometer there are

three separate diffraction gratings that allow temperature measurements (where a

wide wavelength range is necessary: 570 - 980 nm) and pressure determination mea-

sured by ruby fluorescence or Raman signal of the diamond (where a high spectral

resolution is required).

A 532 nm green laser (12 in Figure 2.8) is used to excite the ruby luminescence

and the Raman signal of the diamonds and joins the optical path of one of the two

infrared lasers.

2.5.2 Temperature determination

The typical way to measure the temperature from a small hot spot (∼ 20 µm

in diameter) is via spectral radiometry. The spectrometer has to be calibrated in
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Figure 2.8 – Scheme of the laser heating system of ID24 at ESRF [153]. (1) water-
cooled copper holder where the diamond anvil cell is positioned, (2) fiber coupled IR
lasers whose optical path is indicated by a dashed red line, (3) laser focusing lenses,
(4) objectives for the images and the temperature measurement, (5) spectrometer,
(6) Pixis CCD back illuminated camera, (7) motorized zoom, (8) colour digital video
camera, (9) beam splitters and LED illumination modules, (10) removable notch fil-
ters, (11) neutral density filters, (12) green laser for ruby luminescence and Raman
excitation, its direction is indicated by a dashed green line. The direction of X-rays is
indicated by a black arrow.
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Figure 2.9 – Nano-polycrystalline diamond calibration.

wavelength and intensity. To calibrate the wavelength a neon lamp, whose spectrum

shows very sharp peaks in the range 580-750 nm, is used. To calibrate the intensity

a tungsten lamp, whose temperature as a function of the current applied is known,

is used. The lamp is placed in the position of the DAC (1 in Figure 2.8) and a po-

tential difference is applied until the current flowing in the lamp, measured with an

amperemeter, is 3 or 4 Ampere, corresponding to a temperature of 2436 or 2913 K

respectively.

Calibration

The intensity Im(λ) measured on the spectrometer as a function of the wavelength

is given by the intensity emitted by the source Ie(λ) (the calibration lamp or the hot

spot) multiplied by the response of the system S(λ) that includes the efficiency of each

optical element: filters, mirrors and grating and camera of the spectrometer. We can

thus write:

Im(λ) = Ie(λ) ∗ S(λ).

During the calibration Ie(λ) is known, since the temperature of the lamp is known,

Im(λ) is measured and S(λ) is calculated for the two paths upstream and downstream

separately. During a real measurement the Ie(λ) can be calculated assuming that

S(λ) is constant with the temperature. Because of its yellowish colour, when a nano-

polycrystalline diamond is used, its contribution has to be taken into account as well.

The procedure used to calculate the contribution of the nano-polycrystalline di-

amonds follows. A NPD diamond was glued on a pinhole with a 100 µm diame-
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ter, as shown in Figure 2.9, and INPD
m (λ) = Ie(λ) ∗ S(λ) ∗ P(λ) ∗ NPD(λ) was mea-

sured, where P(λ) is the contribution of the pinhole and NPD(λ) the one of the nano-

polycrystalline diamond. Then the same measurement was performed removing

the diamond and leaving the pinhole thus obtaining IPm(λ) = Ie(λ) ∗ S(λ) ∗ P(λ).

Since the current flowing in the lamp was unchanged, the temperature and thus

Ie(λ) remained unchanged as well. The calibration of the NPD is then calculated as

NPD(λ) = INPD
m (λ)/IPm(λ). During the experiment the Ie(λ) emitted by the hot spot is

calculated as Im(λ)/S(λ) when single crystal diamonds are used and as Im(λ)/(S(λ) ·
NPD(λ)) in the case of nano-polycrystalline diamonds, under the assumption that

NPD(λ) does not change with pressure and temperature.

Planck’s law

The Ie(λ) is then fitted with Planck’s law describing the spectral density of electro-

magnetic radiation emitted by a grey body at a given temperature T

P(λ,T) = ε
2πhc2

λ5

1

e
hc

λkBT – 1

(2.10)

Where h is the Planck’s constant, c the speed of light, λ the wavelength (in the 570

- 980 nm range). The two fit parameters are the emissivity ε, considered constant as a

function of the wavelength in the grey body approximation, and the temperature T.

Spectroradiometrical temperature determination is critical since large errors ap-

pear from wavelength dependent emissivity and both radial and axial thermal gradi-

ents. In fact the emissivity as a function of pressure is not known a priori, moreover

slight misalignments of the pinhole of the spectrometer on the hot spot can lead to

a misestimation of the temperature. Therefore another method, reported in the lit-

erature as ”sliding two-color” technique, has been used in this work to investigate

wavelength dependent irregularities that can be due to emissivity variations, optical

misalignment, chromatic aberrations etc. [66, 84]

Sliding two-color technique

Before presenting the two-color method we first need to introduce the Wien for-

mula [163, 66]. Assuming that e
hc

λKBT >> 1 approximates Equation 2.10 in

PW(λ,T) = ε
2πhc2

λ5 e
– hc

λkBT (2.11)
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If then we define the Wien function as

Wien(λ,T) =
KB

hc
ln
(
PW(λ,T)

λ5

2hc2

)
we obtain

Wien(λ,T) =
KB

hc
lnε –

1

λT

were the linear dependence with 1/T is clear.

The temperature can thus be expressed as

Ttwo–color(λ) =
1
λ – 1

λ+δ

Wien(λ) – Wien(λ+ δ)
(2.12)

where δ, that defines the width of the window, has to be properly chosen. The two-

color is then obtained shifting this window over the entire range in λ. A temperature

which is not constant over the spectral range shows that there are problems in the

measurements. The choice of δ, as discussed in Benedetti et al. [16], is critical. The

best δ is the smallest window width to which corresponds the lowest standard devi-

ation. A too small window would be affected too much by the noise of the thermal

radiation spectrum, while if the window is too big the sensitivity to wavelength vari-

ation is lost. For our temperature measurements we evaluated the best window to be

50 nm.

In this work we used the two-color fit not only to check that there were no wave-

length dependent behaviours in the measurement, but also, as suggested by Benedetti

et al. [16], to determine the error in the measurement. An example of Planck’s fit and

two-color fit is shown in Figure 2.10, where it is possible to notice that the error in-

creases with the increase of the temperature and that it is of the order of hundreds of

K.

To summarise, in this work the temperatures are obtained as a result of Planck fits,

adopting grey body approximation. The temperature is accepted when the two-color

plot is almost flat in a wavelength window≥ 250 nm. The temperature of the sample

is obtained averaging the temperature measured in the upstream and in the down-

stream side. Its error is chosen as the higher value between the difference between

the two sides and the error calculated propagating the standard deviation of the two-

color fit from the two sides through the average. Typically, the difference between

upstream and downstream is smaller than the uncertainty propagated through the

average.
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Figure 2.10 – Example of calibrated thermal emitted intensity fitted with the Planck’s
law, in red, at 2150 K and 3810 K. In the inset the two-color fits are shown with the
mean temperature in green, in comparison with the result of the Planck fit in red.
The dashed grey lines indicate the standard deviation around the mean value.

2.6 Measurement strategy

Up to now the measurement of the X-ray spectrum, of the pressure and of the

temperature were considered separately. During the experiments, though, the three

of them are entangled and synchronised as illustrated in the following.

The first step is to collocate the diamond anvil cell in its designated position in

the laser heating setup. When it is aligned in the optical path, meaning that its image

is visible with the colour digital video camera, the pressure can be increased and it

is measured exciting the ruby luminescence with the green laser. When the required

pressure is reached, the alignment of the spectral-radiometric optics and the X-rays

is checked: the fluorescence of the X-rays on the pressure transmitting medium has

to be aligned on the position of the spectrometer pinhole both upstream and down-

stream [111]. This alignment, crucial to ensure the collection of XAS and temperature

data from the same spot on the sample, is double-checked by verifying the X-rays po-

sition on gasket borders using knife-edge scans. Then different regions of the sample

are checked with the X-rays to find the best XAS signal; during the cell preparation

it is in fact possible to slightly ruin the sample that can become thinner in some re-

gions thus giving an inhomogeneous XAS background. The lasers are then aligned

on both sides of the chosen region and defocused in order to obtain a wide uniform
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Figure 2.11 – Synchronization scheme. The lasers pulse lasts 1.2 s. During this time
10-20 spectra of 100-50 ms each are collected on the FReLoN X-ray camera starting
with a delay of 50 ms after the onset of the laser pulse. The temperature is measured
with an integration time that depends on the emitted intensity (it ranges from 1 s to
0.01 s).

hotspot around the selected spot. Each heating run starts with a spectrum at room

temperature and is followed by a sequence of alternating hot and quenched (to room

temperature) spectra. The quenches allow tracking possible changes in the sample

due to chemical reactions or distortions of the sample. The laser power for each of

the two lasers can be chosen independently as a fraction of the total laser power. The

laser pulse, the XAS acquisition and temperature measurement are synchronized by

a trigger according to the scheme in Figure 2.11.

At first the laser is switched on. After 50 ms, delay chose to discard possible in-

stabilities due to sudden temperature variation, the temperature and the X-ray mea-

surement start. The acquisition time for the X-ray detector is chosen to optimize the

signal to noise ratio for XAS. Typically an acceptable signal quality for nickel in the

DAC is obtained averaging 10-20 acquisitions of 50-100 ms each, therefore the laser

pulse is of the order of the second, an interval sufficiently short to minimize chem-

ical reactions. The temperature is measured independently from both sides of the

cell, with an integration time varying according to the black body emission intensity:

typically 1 s at 1500 K and down to 0.01 s around 3000 K.

An on-line analysis is carried out in order to track changes in the absorption spec-

trum of the hot sample; the laser power is then increased to reach the melting tem-

perature. Every time a new run of measurement starts, a new position on the sample

is chosen, in order to avoid the probing of a region where the sample reacted or per-
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colated through the pressure medium.

2.7 Melting at ambient pressure

With the purpose of recording a liquid absorption spectrum at ambient pressure

to be compared with the ones at more extreme conditions, a device different than the

diamond anvil cell can be placed in the laser heating setup. While in a DAC most of

the photons are absorbed by the diamonds, if the sample is in air the number of pho-

tons reaching the detector is much more and it thus allows very fast measurements

[82].

The foil is placed on a sample holder and is installed in the focal position of the

two lasers and the X-rays. The sample holder is then enclosed in a plastic chamber,

insert in Figure 2.12, provided with small holes to let the lasers heat the sample and

the X-rays pass through the sample and reach the detector. In the chamber an inert

gas such as nitrogen is fluxed at 1.5 `/min in order to avoid contamination with the

oxygen present in air.

The synchronization is set as follows. X-ray spectra are measured continuously

with 250 µs integration time, the two lasers are switched on after 5 ms and they last

0.5 s. The procedure is repeated increasing every time the laser power by∼0.1 W until

the sample melts. At this speed it is not possible to measure the melting temperature

with the spectrometer, whose fastest acquisition time is 10 ms, but the transition to

the fcc phase and the melting are detected. An example is shown in Figure 2.12. The

temperature of these phase transitions is normally well known at ambient conditions.

In the case of cobalt, represented in Figure, we thus expect the first fcc spectra to be

at around 800 K and the first liquids at around 1800 K (the melting temperature is

1775 K).

2.8 Ex-situ techniques

After performing the in-situ measurement with X-rays while heating the sample,

an ex-situ post analysis on recovered samples can be performed. This allows to have

a more complete vision of the sample behaviour when it is laser-heated.

The post analysis performed during this work consisted in cutting the gaskets

along the axis of compression with a focused ion beam (FIB) milling, visualising the

exposed cross section with scanning electron microscopy (SEM) to detect textural

and shape changes upon heating. In one case we complemented the study with el-

emental analysis from energy dispersive spectrometry (EDS). The machine used is a
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Figure 2.12 – Sequence of spectra showing solid hcp at ambient pressure, a hot solid
in the fcc phase and a liquid spectrum. The integration time on the X-ray detector is
250 µs, it was not possible to measure the temperature but at this pressure the phase
transitions are well known. In the insert is shown the chamber enclosing the sample.
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Zeiss Neon40ESB, installed at the IMPMC (Institut de minéralogie, de physique des

matériaux et de cosmochimie) in Paris.

A portion of the gasket containing the sample chamber is cut with laser drilling

and separated from the remaining part of the gasket. A first rough cut of the sam-

ple close to the heated spot under analysis is then obtained with a triple ion-beam

milling system (LEICA EM TIC 3X). The remaining part of the sample is then coated

with a platinum strip (using the machine LEICA EM SCD500) whose function is to

protect the sample, in the following steps, from beam damage and beam contamina-

tion.

Several samples are then positioned in the FIB and SEM instrument, whose scheme

is represented in Figure 2.13. Here the milling is produced by a gallium beam oper-

ating at 30 kV and 2 nA - 500 pA for final surfacing. Gallium ions are in fact heavy

enough to rip the sample’s atoms off.

The visualization is performed by means of the SEM column, where the primary

electron beam is generated in the field emission gun (FE-gun) and is focused on the

sample. The surface of the sample irradiated by the primary electron beam emits

electrons at different energies. The visualization of the sample is possible due to the

detection of the secondary electrons (SE), i.e. those electrons that have undergone

multiple scattering events and that originate from a depth of 5-50 nm. Their spec-

tral distribution and intensity is not specific to a particular material, which explains

the poor contrast between different materials. The contrast in the resulting image is

instead given by differences in surface roughness and work function [101].

An accessory port is provided for energy dispersive X-ray spectroscopy (EDS),

which is an analytical technique used for the elemental analysis of the sample. A

high energy beam of electrons (5-25 keV) is focused on the sample and it creates core

holes in the atoms. When the core hole is filled, X-rays, whose energy depend on the

element, are emitted. The intensity of the emitted X-rays is measured by an energy

dispersive spectrometer and the resulting spectrum contains a clear signature of the

elements in the sample, thus allowing the measurement of the elemental composi-

tion.
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Figure 2.13 – Schematic of the Zeiss machine for milling and visualization. FIB and
SEM column are arranged at an inclination angle of 54◦. At the bottom, from the right
to the left, a glass with several samples already roughly cut with the triple ion beam
milling, zoom on one sample, zoom on the image of the exposed cross section of the
sample where the foil embedded in the pressure transmitting medium is visible.
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Chapter 3
Melting curves of nickel and cobalt

with XAS

In this chapter, the methods used so far in the literature to detect melting of nickel

and cobalt under pressure are resumed. The resulting curves are then presented and

compared. The melting criterion proposed for XAS is described and validated. The

melting curves for nickel and cobalt obtained using this criterion are shown and com-

pared with the literature. Finally critical aspects in the LH-DAC experiments are dis-

cussed, paying particular attention to those prevailing in XAS techniques.

3.1 State of the art

Ever since it became possible to combine high pressure and high temperature

techniques, there has been a growing interest in the scientific community towards

determining the melting curves of several materials, especially those with strong geo-

physical or technological implications. There are many examples of structural inves-

tigations focused on the detection of the first order phase transition from solid to

liquid (melting) and XAS has played an important role [41, 11]. In this section, we will

focus especially on the detection of melting at high pressures, i.e. the determination

of melting curves, achievable with the DAC.

The experimental methods that have been used so far in the literature for detect-

ing the melting curves of nickel and cobalt in laser-heated diamond anvil cell ex-

periments are: the direct observation of movements on the sample surface, X-ray

diffraction (XRD) measurements and detection of slope changes in the temperature

versus laser power relation. In addition to using experimental methods, it is possible

to calculate the melting curves from molecular dynamics.

51
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Visual observation (speckle)

In the visual observation of movements on the sample surface, the interference

pattern of a green laser beam is observed upon laser heating. A rapid and continuous

movement of the interference pattern, or speckle, can be associated to the melting

of the sample. This method has been used for both nickel [92, 51, 78, 50] and cobalt

[93, 51].

With this method, only the surface of the sample is examined. Critics to the

speckle melting criterion state that it is impossible to distinguish the transition to

the liquid state from a surface chemical reaction or from a solid-solid transition.

X-ray diffraction

The loss of constructive interference between the X-rays scattered from the atoms,

i.e. the loss of sharp peaks in the diffraction pattern, is due to the loss of long range

order, characteristic of the solid-liquid transition. The liquid diffuse scattering is then

a probe of the short range order.

This method has been applied on nickel [100], but to our knowledge a diffraction

study of the melting curve of cobalt is still missing.

The melting curves measured with XRD are very often steeper than those ob-

tained with the visual observation of speckle for different metals such as iron, lead

and tantalum, as well as nickel [37, 38, 9, 100]. For this reason, the pertinence of the

visual observation has been questioned and the speckle motion was suggested to be

a signature of fast recrystallisation of the solid samples rather than melting.

Temperature versus laser power

This method detects sudden changes in temperature evolution with heat input.

It consists of observing the slope of the variation in temperature as a function of the

provided laser power. This method does not probe directly the phase of the sample,

but the presence of a plateau in the temperature with increasing laser power has been

proposed as a signature of melting, since it could mean that the energy provided goes

towards the latent heat of fusion instead of increasing the temperature.

This criterion, which also probes only the surface of the sample, was used for

the determination of the melting curve of nickel to complement XRD measurements

[100]. Here it was applied in the case of continuous exposure to the laser, with grad-

ually increasing laser power. In this work, as explained in Section 2.6, the sample was
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always heated through laser pulses about 1 s long. Thus in our case the tempera-

ture is rarely a smooth monotonic function of the laser power and this criterion is not

applicable.

However the reason for the existence of such plateau in LH-DAC studies is still

debated. The plateau has been proposed to be caused by a change in the sample’s re-

flectivity, that would affect the laser absorption rather than be a signature of melting

[65].

Molecular dynamics calculations

In the literature, experimental melting curves are often compared with simulated

ones, generally based on molecular dynamics. Simulations differ by the potential

used to describe the system and how the interactions between atoms are computed,

that can be based on classical or quantum physics. We will refer to the first ones

as MD and the second ones as QMD or based on density functional theory (DFT).

With a procedure similar to the one described in Section 4.2.1, an atomic supercell is

generated at the desired pressure and temperature conditions. Typically, the system

is heated and then is left evolving.

There are several ways to describe the melting: the one-phase or hysteresis method,

the two-phase or solid-liquid coexistence method, the free energy method and the Z

method [173]. From these, we will discuss the first two, that are the most common

ones [112] and that were used for both nickel and cobalt. In the one-phase method,

the melting temperature is estimated from the average between the temperatures

of the overheating and overcooling states. Here, overheating and overcooling are de-

fined as states at which there is a jump in the volume versus temperature curve, while

heating or cooling respectively. Instead, in the two-phase method only half of the cell

is heated while the other half is kept frozen. When the system is left evolving, there is

a subsequent freezing or melting of the supercell that releases or absorbs latent heat.

As a consequence, the temperature that has been initially assigned to the system will

increase or decrease and it will reach equilibrium at the melting temperature Tm [15].

3.1.1 Nickel

The experimental and theoretical melting curves of nickel that can be found in the

literature are shown in Figure 3.1. The methods used are all those mentioned above.

A large discrepancy of about 700 K at 70 GPa is observed for the experimental melt-

ing curves (represented in Figure 3.1 as dashed lines + markers) derived from visual
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Figure 3.1 – Nickel phase diagram. Comparison between experimental data mea-
sured with different techniques (dashed lines+markers) and different theoretical cal-
culations (continuous lines). Experimental melting curves based on speckle melt-
ing criteria such as Lazor 1993 [92], Errandonea 2001 [51], Japel 2005 [78] and Er-
randonea 2013 [50] are at significantly lower temperatures than the XRD experi-
mental curve measured by Lord 2014 [100] - which is divided into melting points
determined with XRD, blue circles, and with the temperature versus laser power
plateau (TvsLP) points indicated with blue squares - and all the ab-initio calculations
[88, 102, 19, 127, 173, 32, 112].
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observation of the speckle and X-ray diffraction complemented by the temperature

plateau method.

Theoretical calculations have been performed on nickel using classical molecular

dynamics (MD) [88, 102, 19, 173, 32] and density functional theory (DFT) [127, 112].

Generally, a good agreement is found between theoretical and experimental curves

detected with XRD and the temperature plateau method. The calculations giving the

best agreement with the experimental curve of Lord [100] over the widest pressure

range are obtained from molecular dynamics using the embedded atom method with

Mendelev’s potential (and with both the one-phase and the two-phase approach)

[173], or in the case of first-principle calculations based on density functional theory

[127, 112]. None of the calculated curves, though, are able to reproduce the melting

detected by visual observation.

3.1.2 Cobalt

The experimental and theoretical melting curves for cobalt are shown in Figure

3.2. The studies reported in the literature are limited to two experiments, both us-

ing visual observation as melting criterion, and one theoretical calculation where the

Zhou’s embedded atom method potential was used with both one-phase and two-

phase approach, using Zhou’s and Pun’s potentials.

The agreement between the existing curves is quite poor. At 60 GPa there is a

difference of 400 K between the two experimental curves and between Lazor’s curve

[93] and the calculations using Zhou’s potential [174]. Between the two theoretical

curves the discrepancy is even larger.

A measurement with X-ray diffraction is still missing in the literature, as well as a

temperature versus laser power study. The purpose of this work is to provide a new

experimental melting curve of cobalt, based on X-ray absorption spectroscopy.

3.2 Choice and validation of the melting criterion

Another experimental method used to detect melting consists in the observation

of changes - typically discontinuities - in the XANES region of an absorption spec-

trum at increasing temperature. A precise measurement of the absorption coeffi-

cient at a single energy as a function of temperature can be used to detect a phase

transition. This is the basis of the “single energy X-ray absorption temperature scan”

method (T-scan method), that was used in the past years to detect not only solid-

liquid but also solid-solid phase transitions of several metals upon changes of tem-

perature or pressure. First experiments were performed at ambient pressure and in-



56 3.2. Choice and validation of the melting criterion

0 20 40 60 80 100 120
Pressure (GPa)

1500

2000

2500

3000

3500

4000

4500

5000

Te
m
p
e
ra
tu
re
 (
K
)

Experimental data:

Lazor 1994

Errandonea 2001

Calculations:

Zhang 2014 (Zhou)

Zhang 2014 (Pun)

(hcp)

solid (fcc)

liquid
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for two different potentials (Zhou’s and Pun’s potential).



Chapter 3. Melting curves of nickel and cobalt with XAS 57

Figure 3.3 – Example of T-scan method applied to nickel at ambient pressure from
the literature: Figure 1 in [41]. The variation of the absorption coefficient at 8.338
keV, indicated with δα, is plotted as a function of temperature upon heating (in red),
and cooling (in blue). The spectra of a solid (red) and undercooled liquid (blue) are
shown in the inset.

creasing temperature on iron and germanium. The already known bcc to fcc transi-

tion of iron was detected while melting temperature of germanium was investigated

[52]. The T-scan method was also used combined with X-ray diffraction to detect the

melting at ambient pressure of germanium [42], lead [57], copper iodide [158], tin

[44], copper [43] and nickel [41] as well as at moderate pressures and temperatures

for germanium (up to 0.67 GPa and 440 K) [126] and bismuth (up to 6 GPa and 800 K)

[128].

An example of T-scan method applied on the melting of nickel at ambient pres-

sure is shown in Figure 3.3. In the inset the XAS spectra are shown, where in red it is

represented a solid at 1500 K and in blue the undercooled liquid at the same temper-

ature.

The discontinuities detected with the T-scan method at a specific energy, can be

also visualized in the full XANES and in its derivative. In the case of iron at more ex-

treme conditions, melting was in fact identified with the flattening of the edge shoul-

der and disappearance of the first two oscillations [23].

3.2.1 The iron controversy

XAS was used to determine the melting curve at extreme conditions for the first

time in 2015 for iron, up to 100 GPa and 3800 K [11]. The result obtained is in agree-

ment with the melting curve of iron measured using visual observation of speckle.
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Since melting detection by visual observation had been questioned only a few years

before (2007 for lead [37] and 2013 for iron [9]), this result became the subject of a

great controversy. The ability of the XAS melting criterion to detect melting was thus

questioned: the observed changes in the XANES could be due to a solid-solid tran-

sition or be a signature of fast recrystallization. Moreover, even if this method were

indeed able to detect the solid-liquid transition, the discrepancy in the temperature

could be given by other factors such as the heating method adopted (several short

laser exposures as in Aquilanti et al. [11] or continuous laser ramp as in Anzellini et

al. [9]), systematic errors in the temperature measurement (the use of refractive op-

tics as in Aquilanti et al. [11] or reflective optics as in Anzellini et al. [9]) or chemical

reactions.

Therefore one of the purposes of this thesis is to apply the same criterion to other,

less reactive, 3d metals in order to validate it or reject it. Nickel and cobalt are the

best candidates: they are 3d metals very close to iron in the periodic table, sharing

the same face centred cubic crystal structure before melting and up to 90 GPa, and

are among the elements composing the Earth’s core. The laser heating system used

to heat the DAC and to detect the temperature is the same one employed by Aquilanti

et al.[11].

3.2.2 XAS probing melting at extreme conditions

With X-ray absorption spectroscopy the melting is identified through a clear char-

acteristic change of the XANES region of the spectrum. When the edge shoulder flat-

tens and the first two oscillations disappear the sample is considered molten, see the

bottom panel of Figure 3.4a.

Examples of the changes occurring in the XANES and EXAFS regions at different

pressures are shown for nickel in Figure 3.5. In cobalt the same changes occur, and

they are shown in Figure 3.6.

In this work, the onset of melting was determined in-situ by observing the evo-

lution of the XANES region of the collected spectra. The horizontal size of the beam

probing the XANES at the K edge of nickel or cobalt is about 3 µm. The volume of

the sample measured by X-rays and in which melting is detected is then 3×6×4 µm3

(horizontal beam× vertical beam× sample thickness).

The XANES spectra were normalized setting to 0 the absorption just below the

Ni K-edge (point Eb in Figure 3.4), and to 1 the absorption above the edge and im-

mediately following the first two oscillations (point Ea in Figure 3.4). The following
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Figure 3.4 – X-ray absorption spectroscopy melting criterion shown for nickel at 52
GPa. (a.) In the bottom panel the points Eb and Ea indicate where the normalization
was performed. The absorption at point Eb, below the edge, is set to 0 while the
absorption at point Ea, above the edge, is set to 1. The melting criterion consists in
the disappearance of the shoulder at point B and the flattening of the two oscillations
at points C and D. This can also be seen in the derivative shown in the top panel. The
flattening of the derivative at points B, C and D, is the signature of melting. (b.) The
variation of the derivative at the energy of point B (E=8338 eV) is plotted as a function
of temperature with empty squares. The filled symbols represent the spectra that
are plotted in the left panel with the same colour. A discontinuity in the derivative
appears in correspondence of the melting. (c.) The variation of the absorption as a
function of temperature at point B (E=8338 eV) is shown as a function of temperature
with empty circles. As in (b.) the filled symbols are the ones associated to the spectra
plotted in the left panel. A discontinuity in the T-scan appears in correspondence of
the melting, as in Figure 3.3.
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(a) XANES at 11 GPa. (b) EXAFS at 11 GPa.

(c) XANES at 52 GPa. (d) EXAFS at 52 GPa.

(e) XANES at 87 GPa. (f) EXAFS at 87 GPa.

Figure 3.5 – Melting of nickel at high pressure. Black spectra are at 300 K, blue and
green spectra are hot solids, orange are a solid-liquid mix and red are liquid.
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(a) XANES at 14 GPa. (b) EXAFS at 14 GPa.

(c) XANES at 80 GPa. (d) EXAFS at 80 GPa.

(e) XANES at 110 GPa. (f) EXAFS at 110 GPa. Due to the distortion of
the spectra at high temperature, it is not possi-
ble to analyse the EXAFS in this run.

Figure 3.6 – Melting of cobalt at high pressure. Black spectra are at 300 K, violet are
hot solids in the hcp phase, blue and green spectra are hot solids in the fcc phase,
orange are a solid-liquid mix and red are liquid.
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formula was used:

µnormalized(E) =
µraw(E) – µ(Eb)

µ(Ea)
.

In this way, small changes in the thickness of the sample were normalized and thus

neglected.

This melting criterion was applied to data from each heating run and the temper-

ature of the first spectrum which shows these changes was considered as the melting

temperature TM. Most of the times, even if the laser power was increased slowly,

the observed transition between solid and liquid was sharp. However, in some cases,

probably due to thermal gradients, the melting signature appears gradually due to

a solid/liquid coexistence in the sample. The laser-matter interaction occurs at the

surface of the sample and here is where the first nucleation of melting appears [65].

The temperature is measured at the surface of the sample as well. For this reason,

even if X-rays probe mixed phases of the sample and the volume of the liquid is small

compared to the volume of the solid, as soon as there is a small signature of liquid in

the XAS spectrum, the temperature measured is the temperature of the first melting.

In this thesis, the criterion was validated experimentally and theoretically. An ex-

situ analysis was performed using a focused ion beam (FIB) and a scanning electron

microscope (SEM) on the recovered sample. The procedure is described in Section

3.2.3. Theoretically, the disappearance of the shoulder and the flattening of the two

oscillations can be interpreted as the manifestation of a large number of different

local atomic configurations forming in the liquid phase. The physical phenomena

producing changes in the XANES will be shown in Section 4.6.

The discontinuity observed in the absorption spectrum upon melting can be used

to follow the phase transition as a function of temperature. This is the basis of the T-

scan method introduced at the beginning of this section.

An example of this method, applied to the data in this work, is represented in

Figure 3.4c, where the variation of the absorption coefficient at point B (E=8338 eV)

is represented as a function of temperature. The same is true for the derivative of

the spectrum, shown in the top panel of Figure 3.4a, where the trend of point B as a

function of temperature is shown in Figure 3.4b. The sudden jump of these trends as

a function of temperature represents the transition to the liquid phase. However in

some cases, probably due to thermal gradients, the melting signature appears gradu-

ally due to a solid/liquid coexistence in the sample. The T-scan method is very accu-

rate if the XAS spectra are not deformed with temperature, but at the extreme pres-

sures and temperatures used in this work, this is not always achieved and having the

possibility to record the full energy range of the XAS spectrum is an asset in these

difficult situations.
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Figure 3.7 – (a.) FIB and SEM melting criterion. In the first image in the top-left panel,
the borders of the sample foil are intact, corresponding to a heating temperature be-
low the melting. In the bottom-left panel, a liquid with its characteristic irregular
shape is shown. For both images, the corresponding XAS spectra are shown in the
right panel. (c.) A SEM and an EDS image are superimposed to show the composi-
tion of the cut. Some nickel diffused from the sample by Soret effect [145] into the
KCl both for the solid (b.) and the liquid (c.) heated spot.

3.2.3 Post analysis validation on nickel samples

Some of the nickel samples were recovered after the experiment, and cross sec-

tions of the laser-heated hotspots were prepared by focused ion beam (FIB) milling.

The exposed cross sections have been imaged using the scanning electron micro-

scope (SEM). This was done in collaboration with G. Morard 1.

This method has already been used to confirm the melting of tantalum and iron

alloys [83, 113], where the shape and the texture of the exposed cross section revealed

if the sample was molten or not. The shape of the cross section of a solid or liquid

heated spot are indeed noticeably different, see Figure 3.7a. Performing the cut at

different depths gives an idea of the three-dimensional sample texture through the

heated spot. In the case of the solid, the borders of the sample foil remain the same

as for the unheated sample. The section of a liquid shows a significant unevenness

with, very often, a non-uniform thickness. The variation of shape is due to surface

tension, which distinguishes the behaviour of liquid from solid matter. In Figure 3.7a,

the X-ray spot size is indicated in comparison with the laser spot size inferred from

1. Guillaume Morard, IMPMC, Paris.
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and 60% solid.

the shape of the sample. This represents approximately three times the X-ray beam

size, minimizing temperature gradients in the measured X-ray spot area.

In both cases, the section of the heated spot is surrounded by droplets of diffused

nickel, see Figure 3.7b. The nature of these diffused droplets has been verified with

Energy Dispersive Spectrometry (EDS) analysis. The presence of this contour helps

in recognizing the heated spot even when the sample was a hot solid. Solid migration

is due to the Soret effect [145].

For the six samples post-analyzed with this method, the observed features con-

firmed the corresponding XAS interpretations. In some cases, the shape of the sam-

ple was only slightly deformed with respect to the solid, corresponding to a solid-

liquid mix.

Thanks to this post analysis we were able to evaluate the minimum volume of

liquid that would be visible in the detection of melting. With this analysis we could
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in fact confirm that the two spectra shown in Figure 3.7 are as a matter of fact the

spectrum of hot solid just below the melting curve, and a liquid just above the melting

temperature. In Figure 3.8 is represented in green a linear combination of a hot solid

and a liquid generated as

µmix = µliquid · x + µsolid ∗ (1 – x),

where x is the proportion of liquid. We noticed that we would consider the sample

mixed when the proportion of liquid is about 40%.

3.3 Melting curve of nickel

The melting curve of nickel was measured probing the sample with XAS at differ-

ent pressures and temperatures. X-ray spectra were collected around the K-edge of

nickel, at 8333 eV. The experiment was performed as described in Section 2.6. The

results are shown in Figure 3.9, alongside those curves from the literature that show

the best agreement.

The points of the pressure-temperature phase diagram probed in this study are

illustrated in Figure 3.9. A melting temperature measured with a heating run is ac-

cepted only if the XANES at room temperature before and after melting are exactly

the same and if the EXAFS oscillations show the same frequencies. Otherwise, the

melting temperature cannot be accepted: sample modifications such as chemical re-

actions could have occurred.

The temperatures for the solid/mix/melt at different pressures are indicated in

Figure 3.9 by blue/orange/red symbols respectively. The white square symbols cor-

respond to the pressure and temperature conditions for which the state of the sam-

ple was confirmed with the FIB and SEM ex-situ analysis. All the six spots that were

checked with FIB and SEM confirmed the interpretation given by XAS. Even in the

case of a mixed phase it was possible to detect that the sample had liquefied, but

only partially.

The two points represented in the phase diagram with triangles are points where

a small reaction occurred. In Figure 3.10a the absorption spectrum before and after

heating of the point at 100 GPa is shown. While the difference in the background

could be due to a change in the thickness of the absorption spectrum, the change in

the XANES could be indicative of a chemical reaction. XRD performed on the recov-

ered sample showed the presence of NiO, see Figure 3.10b. It is possible to evaluate

the quantity of NiO in the sample with a linear combination of reference spectra of
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Figure 3.10 – (a.) XAS measured at 100 GPa before and after heating (and melting).
The first oscillation in the spectrum after heating (highlighted in the insert) is higher
than before heating. This corresponds to a content of NiO of approximately 7%. Note
that this quantity of NiO does not change the main frequency of the oscillations in the
EXAFS. (b.) The sample was recovered and an XRD map was performed at ambient
conditions. This pattern corresponds to the point measured at 100 GPa. (c.) Combi-
nation of a pure nickel spectrum and a NiO spectrum. The two are reference spectra
measured on the bending magnet beamline BM23. From the linear combination of
the two spectra it is possible to evaluate the effect of a certain quantity of NiO on the
spectrum.

Ni and NiO that were previously measured on the beamline BM23. By comparing

the shape of the XANES in Figure 3.10a with the one in Figure 3.10c we evaluated the

content of NiO in the sample to be about 7%. This quantity is enough to have an in-

fluence on the melting curve, as in the case of iron studied by Morard et al. [115], but

is not enough to have an influence on the main frequency of the EXAFS.

The error in the temperature was always determined using the two-color fit, see

Section 2.5.2. A linear relation between the temperature bilateral error (TE) and the

melting temperature itself (T) was found:

TE = 0.19 · T + 270, (3.1)

where both TE and T are expressed in Kelvin. The points are represented in Figure



68 3.3. Melting curve of nickel

Figure 3.11 – Temperature bilateral error bar as a function of temperature. The red
point represents the extrapolation at 5800 K, the melting temperature of nickel at the
ICB.

3.11. In Figure 3.9 the error bars are represented accordingly.

This study is compared with previous experiments and calculations found in the

literature. Within the experimental error, our data is in good agreement with the

experimental data recently measured by XRD [100], where in each heating run the

sample was heated continuously for 5-15 minutes at increasing temperature. There

is a very good agreement also with some of the theoretical works such as molecular

dynamics simulations using the embedded atom method with Mendelev’s potential

[173], first-principle calculations based on density functional theory [127, 112] and

non equilibrium molecular dynamics simulations to study shock induced melting in

nickel [88].

The good agreement between the melting determined by XRD [100] and this work

shows that for nickel neither the heating method (continuous laser ramp or several

short laser exposures), neither the optics used for the temperature measurement (re-

flective or refractive), nor the X-ray technique employed (XRD or XAS) introduce a

technical bias in the determination of the melting temperature. With these tech-

niques, two different facets of the same process are measured: XRD detects melting

through the loss of long range order, whilst XAS melting is detected through the ap-

pearance of different local configurations. Unlike with XRD, with XAS no signature of
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fast recrystallization is present.

A fit of the data to a Simon-Glatzel equation, presented in Appendix B.0.1, gives

TM(K) = 1728×
[

PM

15± 3
+ 1

] 1
2.60±0.02

.

The errors in the curve are defined performing the fit of the temperature data plus or

minus half of their error (the error is bilateral). The extrapolation of the melting tem-

perature to P = 330 GPa, the ICB pressure, gives a temperature of 5800 ± 410 K. The

error is given by the propagation of the temperature error along the curve in Equation

3.1. Despite the slight differences between the two data sets, our extrapolated value

is the same as the one found by Lord: 5800±700 K [100].

3.4 Melting curve of cobalt

The melting curve of cobalt was determined, as for nickel in Section 3.3, by prob-

ing the phase diagram at different pressures and temperatures.

X-ray absorption spectra were collected around the K-edge of cobalt at 7709 eV.

The points of the pressure and temperature phase diagram probed are represented

in Figure 3.12, alongside other curves found in the literature. For cobalt as well, the

melting run was accepted only if the XANES of a room temperature spectrum as well

as the frequencies of the oscillations of the EXAFS were the same before and after the

melting. The temperatures for the solid/mix/melt at different pressures are indicated

by blue/orange/red symbols respectively. The temperature error of the liquid points

is determined with the two-color fit and gives the following linear relation with tem-

perature:

TE = 0.155 · T + 171, (3.2)

where TE is the temperature bilateral error and T is the melting temperature, both

expressed in Kelvin.

A fit of the data to a Simon-Glatzel equation gives

TM(K) = 1775×
[ PM

29± 4
+ 1

] 1
1.93±0.05

The errors in the curve are defined in the same way as for nickel. The theoretical curve

by Zhang using Zhou’s potential shows the best agreement with our experimental

result. An extrapolation of the melting curve to 330 GPa, the ICB pressure, gives a

temperature of 6500±420 K, 700 K higher than the one obtained with nickel. The

error was found by extrapolating the linear relation in Equation 3.2.
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Figure 3.12 – Cobalt phase diagram measured by means of absorption spectroscopy.
Blue, orange and red symbols represent pressure and temperature conditions of the
solid, mixed and liquid phases respectively. The curve dividing the grey and white
regions is the Simon-Glatzel fit of the data. Our melting curve is in between Zhang’s
calculations using Zhou’s potential [174] and Lazor’s curve measured using visual ob-
servation of speckle movements [93].
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3.5 Details on the effect of melting on XANES and EXAFS spec-

tra

With the purpose of finding other melting criteria by X-ray absorption spectroscopy,

we looked for other reproducible changes that occur during melting.

Derivative of the absorption spectrum

A sharp change in the XANES is reflected by a change in its derivative. In Figure

3.13c the value of the derivative is shown as a function of temperature for the en-

ergy corresponding to point B of Figures 3.4 and 3.13b. The percent variation of the

derivative between the solid and the liquid is system dependent and for nickel it is

equal to 62±3 %. It was calculated as

d(Tmolten,P) – d(300 K,P)

d(Tmolten,P) + c(P)

where d(T,P) is the value of the derivative and c(P) is a pressure dependent constant.

This constant, calculated as c(P) = d(300 K, 0 GPa) – d(300 K,P), takes into account

that the shape of the edge region changes with pressure, in particular the shoulder

becomes more prominent as the pressure increases. The value of d(300 K,P) goes

from 0.004 at 10 GPa to -0.007 at 100 GPa.

These values, even if they can give an indication of the phase of the sample, are

not enough for a blind determination of the phase.

Fourier transform of the EXAFS signal

The analysis of the EXAFS is not always possible since in some cases, during melt-

ing, the absorption data has uneven background due to changes in the sample shape.

While changes in the XANES, whose range in energy is shorter, are still appreciable,

changes in the EXAFS are harder to detect.

When the background of the spectrum remains smooth, as in Figure 3.13a, it is

possible to extract the EXAFS signal and perform a Fourier transform, see Figure

3.13d. Figure 3.13e shows the value of the maximum of the Fourier transformation

as a function of temperature. The smooth decrease in intensity observed as the solid

heats up (due to the increased thermal variations) is abruptly interrupted by a sharp

dip.

This criterion works well when the background of the XAS spectrum is smooth,
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but it becomes impractical in the case of more complicated backgrounds or back-

grounds changing with temperature. In practice this method could become useful if

the XANES region is hidden by a big glitch. In the other cases it can be considered

complementary to the XANES melting criterion.

3.6 Critical issues

In this chapter were shown examples of melting runs that are relatively straight-

forward to interpret. However it is fair to mention the critical issues that can be

encountered when performing laser heating experiments with X-rays and especially

when using absorption spectroscopy as a probe.

Alignment

The alignment of X-rays, laser hot spot and pinhole for the pyrometry has to be

very precise and must be maintained throughout the experiment. A misalignment of

a few microns could lead to misreading the temperature and thus to an underestima-

tion or an overestimation of the melting temperature [66]. For this reason the melting

temperature obtained can be accepted only if before and after the heating run X-rays,

hot spot and pinhole are still aligned. The maximum misalignment accepted is 3 µm.

We noticed that the alignment is better preserved during the heating run if the DAC

is cooled down with a chiller to about 17 ◦C.

Background

During laser heating the sample can lose its uniformity and become very inho-

mogeneous, leading to an uneven background. This not only causes non-negligible

difficulties in the extraction and interpretation of the EXAFS, see Section 5.7, but also

makes it more difficult to interpret the melting. Normally the problem can be over-

come by choosing suitable points Eb and Ea for the normalization, but in some -

fortunately rare - cases the heating run has to be discarded.

Temperature measurement

It is very difficult to obtain the same melting temperature on the same spot after

the first melting. When the laser power is decreased and then increased again, after

the first melting the sample melts again but very often at different temperatures. This
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Figure 3.13 – Melting signatures for nickel at 35 GPa. The normalized absorption (a.),
the derivative of the normalized absorption (b.) and the Fourier transform of the
EXAFS signal (d.) are shown. In plot (c.) the trend in temperature of the value of the
derivative (b.) at the energy value E=8337.22 eV is highlighted. In (e.) the value of the
peak of the Fourier transform (d.) is plotted as a function of temperature.
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discrepancy could be due to sample modifications or to a change in emissivity. In the

first case a lower melting temperature could mean that the sample became thinner.

If only the superficial part of the sample melts, the portion of hot solid in the bulk

would be smaller in a thinner sample, leading to an earlier detection of melting.

Insulation

If the pressure medium (KCl) embedding the sample is not perfectly homoge-

neous, the differences of thermal insulation at different positions could lead to a

non-homogeneous laser hot spot. Fortunately this problem can be overcome using

KCl discs of the needed size cut with a femtosecond laser 2. The diameter of the disk

is normally equal to the one of the gasket hole, and its thickness typically∼10 µm.

Moreover, in other cases it becomes very difficult to increase the temperature,

even when not associated to a melting signature in the XAS (as it should be accord-

ing to the temperature versus laser power melting criterion). We interpret this as a

thinning of the insulating material. The lack of insulation could lead to difficulties in

heating the sample.

Sometimes the melting signature appears after the temperature starts decreasing.

In these cases we consider the highest temperature reached to be the melting point.

For all these reasons it is very important to pay particular attention to the align-

ment, check with the two-color fit the thermal gradients and heat every time a new

and intact part of the sample. The use of FIB and SEM can be very useful not only as

melting diagnostics but also to be aware of the sample conditions after heating.

3.7 Conclusions

In conclusion, XAS has been proven to be a suitable method for detecting melting

for 3d metals whose crystalline structure in the hot solid phase is face centred cubic.

The discrepancy found in the melting curve of iron between X-ray diffraction and

X-ray absorption is thus not due to the criteria themselves. The effect of reflective

and refractive optics has been extensively examined at the ESRF as a side project in

collaboration with a master student R. Giampaoli 3. Differences between the two op-

tics are observed for T > 3000 K, but are much smaller than the ones measured for

iron and in the opposite direction [66, 67]. We thus conclude that the melting curve

2. KCl discs were prepared and provided by Guillaume Morard, IMPMC, Paris.
3. Ruggero Giampaoli, Politecnico di Milano, Italy
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Figure 3.14 – The melting curve of iron obtained with X-ray diffraction is compared
with the melting curve of nickel and cobalt obtained with X-ray absorption in this
work.

discrepancy is not due to the optics used either.

Finally, it is possible to compare the melting curves of iron, nickel and cobalt. For

iron it was chosen the melting curve obtained by X-ray diffraction measurements [9],

while for nickel and cobalt the ones presented in this work. In Figure 3.14 the three

curves are plotted in the same graph. In the range of pressure studied they follow

quite closely one another and at 100 GPa they differ by only 100 K, which is much

lower than the error bar in our measurements (about±500 K for nickel at 3800 K).

In our measurements we do not notice any dependence of the number of 3d elec-

trons on the slope of the melting curve. The experimental evidence that gave rise to

the semiempirical models connecting the number of d electrons to the slope of the

melting curve (see 1.2) is thus questioned. Moreover, it is known that nickel content

in the Earth’s outer core is ∼5-10wt%, we can thus compare our experimentally de-

termined melting temperature of nickel to the one of pure iron at 90 GPa, in order to

check the effect of nickel in the determination of the temperature at the ICB. Assum-

ing a linear relation between the two endmembers, as supported by the existence of

solid solution in the Fe-Ni binary system [90], we obtain an increase of 2 K/wt% Ni

of the melting temperature of pure Fe, therefore the effect of Ni may be to increase

the melting temperature of the Earth’s core of ∼10-20 K. This is one order of magni-

tude lower than the effect of light element such as S, C or O [113] at 90 GPa and in

the opposite direction, and is, again, much lower than the sensitivity of our measure-
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ments. In conclusion, the effect of nickel can be neglected during the discussion of

temperature profile and melting relations under Earth’s core conditions.



Chapter 4
Ab initio calculations of X-ray

absorption on cobalt

Ab-initio calculations were performed to support and understand our experimen-

tal findings and are presented in this chapter. After a brief section on the state of the art

of calculations reproducing X-ray absorption near edge structures on iron, the theoret-

ical methods adopted in this work to generate atomic supercells of cobalt and simulate

spectra are presented. The validation of the XAS melting criterion is shown and ex-

plained. The same atomic supercells are used to calculate and compare the density of

states of a hot solid and a liquid at the same pressure.

4.1 State of the art

Performing ab initio calculations provides a very powerful tool to understand the

structural and electronic modifications that take place in a phase transition at spe-

cific pressure and temperature conditions.

Since X-ray absorption was proposed to be a suitable technique to study melting

at high pressure [23], several theoretical studies were performed on iron, with the aim

of reproducing and understanding the changes in the XANES region that occur in the

bcc to hcp, hcp to fcc and in the solid to liquid transitions [129, 130, 105, 107, 157].

The main result of these studies is that due to the very different features of bcc, hcp,

fcc and liquid spectra, XANES can detect solid-solid and solid-liquid transitions of

iron under pressure. In particular, an experimental resolution of ∼1 eV is enough to

discriminate between the different phases at pressure-temperature conditions such

as the ones at the Earth’s core [107]. According to the calculations, XAS can thus be

accepted as a suitable technique to detect melting in iron [129, 130, 107].

77
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The purpose of this work is to perform ab initio calculations on cobalt to repro-

duce the changes in the absorption spectra that occur in the solid-liquid transition,

with the aim of validating for cobalt the melting criterion used in this work and dis-

cussed in Section 3.2. Theoretically validating the criterion for another transition

metal allows to extend it to other similar materials. It is known that materials with

analogous atomic properties sharing the same structure have very similar absorption

spectra [146].

AIMD calculations on cobalt also provide the radial distribution function at dif-

ferent pressure and temperature conditions and a theoretical evaluation of the com-

pression of cobalt under pressure, as shown in Chapter 5.

Moreover, in the above mentioned theoretical studies on iron, only the absorption

spectra and the density of states already averaged on several atomic sites are shown.

In order to have a deeper understanding of the structural and electronic changes as-

sociated to the phase transition, we believe that showing the spectra associated with

different photoabsorbers can help in unravelling the local transformations that occur

during melting.

4.2 Methods

In order to understand the changes at the atomic scale that occur in the transition

between the solid and the liquid phase, density functional theory (DFT) based ab

initio molecular dynamics (AIMD) simulations have been performed and statistically

independent samples of the resulting structures were used as input to many-body

theory spectral calculations.

The purpose of this section is not to enter into too much detail of the calculations,

but to give a general overview of the procedure adopted. The case of cobalt will be

used to illustrate the method.

AIMD simulations were performed in the NVT ensemble on cobalt supercells for

several points in the temperature-pressure space. Statistically independent samples

of the equilibrated ensembles were used to generate radial distribution functions,

calculate the K-edge XANES spectra and the projected density of states for the ab-

sorption final-state. In the following sections, the different steps are more fully de-

scribed.
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4.2.1 Molecular Dynamics Simulations

The first step consists of the definition of an initial supercell containing a cho-

sen number of atoms of the desired species ordered with an initial crystallographic

phase; periodic boundary conditions are enforced. The simulation is done in the

NVT thermodynamics ensemble such that the number of atoms (between 32 and

128) is conserved and specified volume and temperature are maintained. The atoms

positions are evolved in time according to Newtonian dynamics with forces obtained

from a DFT calculation at each time step. The temperature enforced during the sim-

ulation provides thermal disorder. For a given density-temperature, the pressure was

obtained as result of the simulation. This procedure can be repeated as many times

as needed (between 100 and 1000 times) and each of the configurations will be re-

ferred to as thermodynamic configuration.

In AIMD, the interactions between nuclei obey classical mechanics, but the inter-

actions between electrons are calculated ab-initio by means of DFT. MD calculations

based on DFT require more computing power than those using classical effective po-

tentials, but they give a more accurate result.

This work was done in collaboration with the theoretician V. Recoules 1

4.2.2 Radial distribution function

The set of coordinates from the molecular dynamics simulation were used to cal-

culate the radial distribution function (RDF) or g(r) that describes the distribution of

distances between pairs of particles, in this case atoms, contained in a given volume.

In other words, the g(r) describes the probability of finding an atom in a shell dr at

a distance r from another atom chosen as reference. The number of atoms that are

enclosed in a shell with internal radius r and external radius r + dr can be expressed

as

dn(r) =
N

V
g(r)4πr2dr

and thus

g(r) =
dn(r)

dr

V

N

1

4πr2 (4.1)

where N is the total number of atoms in a volume V and their ratio is the number

density.

The calculation of radial distribution functions does not require much computing

power and in the framework of this work was performed with a home-made python

script. For each thermodynamic configuration the box was replicated 26 times around

1. Vanina Recoules, CEA/DAM-DIF in Arpajon, France
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the original one, in order to have a supercube made of 3x3 boxes. The distances be-

tween each of the atoms in the central box and all the other atoms in the supercube

are calculated and saved in a vector. At this point a matrix is generated whose first

vector is r, the second is dn and the third is the g(r). The vector r is a discretization

of the space between 0 Å and the size of the box. In a generic element of vector dn,

for example dn[i], are counted the number of distances whose value is between r and

r + dr, meaning how many distances have been found in the box that fit in the dis-

cretized space r[i]. The vector g(r) is then calculated using Equation 4.1. The g(r)s

obtained for each thermodynamic configuration are then averaged in order to give

the g(r) for that supercell. With this script the calculation of the g(r) from the given

supercells could take few hours.

Alternatively the radial distribution function was calculated with the program

Travis [27].

It is normally good practice to test several box sizes before proceeding with the

generation of the atomic supercells at all the desired pressure and temperature con-

ditions. Finding the smallest atomic supercell that still gives the same description of

a system as one with more atoms would help in saving computing power and time. A

way to determine if two atomic supercells are describing a system in the same way is

to compare their radial distribution function; this is the way that was adopted in this

work.

4.2.3 Calculations of XANES using the OCEAN code

The existing approaches to calculate absorption spectra can be divided into two

categories: the ones that use single particle theories and the ones based on the treat-

ment of many-body effects. The first approach, used by the well known code FEFF

[131], is less demanding in terms of computing power. It is able to well reproduce

the extended region of absorption, but it normally loses accuracy at the edge region.

In order to describe the XANES region, where the many-body interactions are impor-

tant, the second approach is required. The code used in this work, OCEAN (Obtaining

Core Excitations form Ab initio electronic structure and NBSE) [162, 68], is based on

this second approach and considers a two-particle picture.

For a basic understanding of the mode of operation of OCEAN two aspects have

to be mentioned and are going to be briefly developed. The first one is that, while

solving Equation 2.1, the final states are not calculated directly, but the problem is

moved to an operator, called the propagator, whose function is to describe the prob-

ability amplitude for a particle to travel from one place to another in a given time,

i.e. to propagate the excitation. The second one is that in the two-particle picture the
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absorption is described including the single particle terms of the core hole and the

excited photoelectron and the interaction between them.

The formalism that allows to describe the absorption process as a propagator act-

ing on the initial states follows. Equation 2.1 in the dipole approximation can be

rewritten with a slightly lighter formalism where |i > and |f > are the initial and final

states, d̂ is the dipole operator, and where the density of states is described as a delta

function.

µ(E) ∝
∑

f

| < f| d̂ |i > |2δ(̄hω – (Ef – Ei)) =

=
∑

f

< i| d̂† |f × f| d̂ |i > δ(̄hω – (Ef – Ei)) (4.2)

where the square has been expanded. The delta function can be written as the limit

for γ → 0 of a Lorentzian function 2, where γ is the inverse of the core-hole lifetime

that gives the broadening of the features in the absorption spectrum. Equation 4.2

can thus be written as

µ(E) ∝ –Im
∑

f

< i| d̂† |f × f| d̂ |i >
h̄ω – (Ef – Ei) + iγ

= –Im < i| d̂† ˆG(ω) d̂ |i > (4.3)

where
ˆG(ω) =

∑
f

|f × f|
h̄ω – (Ef – Ei) + iγ

is the Green function that propagates the excitation. It can be written as [143]

ˆG(ω) =
1

h̄ω – HBSE – Σ(̄hω)

where h̄ω is the energy of the X-ray photon, Σ(̄hω) accounts for the self energy and

lifetime effects of the electron and core hole, and HBSE is the Bethe-Salpeter Hamil-

tonian (BSH), given by the sum of the hole term Hh, the electron term He and the

electron-hole interaction Heh.

The terms describing the hole and the electron are diagonal in the basis used. The

2. The general expression of a Lorentzian function is

L(ω) =
1

π

γ

[̄hω – (Ef – Ei)]2 + γ2
,

where

πL(ω) = –Im
(
ω – iγ

ω2 + γ2

)
= –Im

(
1

ω + iγ

ω – iγ

ω – iγ

)
= –Im

(
1

ω + iγ

)
if for simplicity we refer to h̄ω – (Ef – Ei) as ω.
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Hh, with a Hartree Fock method, gives core-level eigenvalues Eh and eigenstates Ψh

of single atoms and that do not change with the environment. This calculation is per-

formed once and the result is the same for all atoms of the same species, independent

of local environment.

The He term gives the eigenvalues Ee and the eigenstates Ψe of conductive states

all over the supercell. The calculation is performed for each thermodynamic config-

uration by means of density functional theory (DFT) with the codes ABINIT or Quan-

tum ESPRESSO.

The calculation that requires the most of the computing power is the one that in-

volves the electron-hole interaction. The Heh is not diagonal and it can be written as

the sum of a Coulomb interaction (called the direct term), corrected by the screening

of the other electrons, and an exchange term. The exchange term is important only

around the absorber, while the direct term has to be calculated all over the supercell.

The eigenvalues and eigenvectors have to be calculated for each supercell, and for

each atom in the supercell considering every time a different site for the core-hole.

As with the radial distribution function, periodic boundary conditions are applied to

the atomic supercell.

In this work the XANES spectra have been calculated from the atomic supercells

as follows. 11 out of the 100 or 1000 thermodynamic configurations have been chosen

in order to sample the evolution of the system every 9 or 90 steps. For each thermo-

dynamic configuration the XANES is obtained by averaging the absorption spectra

calculated for every atom in the supercell with three orthogonal polarizations. At a

given pressure and temperature condition the spectrum is then the average of the

XANES obtained from each sampled supercell. Simulating an absorption spectrum

takes a couple of days.

This was done in collaboration with the theoretician K. Gilmore 3

4.2.4 Density of states

The calculation of the density of states is performed with density functional the-

ory as well. The total electron density obtained by ABINIT or Quantum ESPRESSO is

used to calculate the effective particle eigenvalues and eigenstates all over the super-

cell that allows to construct the density of states (DOS). For each site, the eigenstates

are projected onto atomic orbitals to give the projected density of states for that site

(PDOS).

The PDOS is calculated in the final-state picture, with a core-hole on the absorb-

ing site. For this reason a separate calculation is required for each atom in the su-

3. Keith Gilmore, Theory Group at the ESRF in Grenoble, France
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percell. To limit computational expense, the calculation was performed on 10 atomic

sites randomly chosen among the sites in the supercell. The same is repeated for 11

thermodynamic configurations and the results are averaged. Simulating the density

of states takes a couple of weeks.

This work was done in collaboration with the theoretician K. Gilmore 3.

4.3 Atomic supercell size

The calculations of the X-ray absorption near edge structure and the density of

state require non-negligible computing power. For this reason finding the smallest

atomic supercell that still describes the system under analysis is required. At first,

several atomic supercells with different sizes were tested.

In Figure 4.1 are represented in a phase diagram the different pressure tempera-

ture conditions of the generated atomic supercells with their sizes in terms of number

of atoms. In the insets the radial distribution functions of the atomic supercells are

compared. In the one in the left structures from atomic supercells with 128 and 54

atoms and 32 atoms are compared. The g(r) calculated from the smaller atomic su-

percell are slightly more noisy, but the position and the shape of the peaks is the same

as the one with more atoms. The same result is obtained for the first peak of the liq-

uid with 128, 54 or 32 atoms, as shown in the right inset. The inset in the centre shows

the comparison between the radial distribution function of solid fcc and the liquid.

In these examples the g(r) is calculated as the average of all the thermodynamic con-

figurations available (between 100 and 1000).

As a result of these preliminary tests, several atomic supercells were generated at

different pressure temperature conditions in the solid and liquid phase with 32 atoms

and 1000 thermodynamic configurations.

4.4 Validation of the melting criterion

Several XANES spectra have been calculated at most of the pressure temperature

conditions shown with symbols in Figure 4.1. Spectra are thus calculated for the three

phases: solid fcc, solid hcp and liquid.

The main result obtained is the theoretical validation of the melting criterion pro-

posed in Section 3.2. XANES spectra calculated for the fcc solid and the liquid are

compared at different pressures. The results are shown in Figure 4.2 for ∼25 GPa,

∼45 GPa and ∼65 GPa. Even if the pressure is different the change of phase between
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Figure 4.1 – Pressure temperature conditions of the atomic supercells calculated with
different sizes. Radial distribution functions are calculated for different configura-
tions in order to find the atomic supercell with the smaller amount of atoms that still
contains the correct structural information.
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Figure 4.2 – Solid and liquid spectra at different pressures.

the solid fcc and the liquid can be detected always in the same way: the shoulder dis-

appears and the first two oscillations flatten. The criterion used in this work to detect

the melting from an fcc solid phase to the liquid phase is thus validated not only for

nickel with ex-situ analysis on the recovered samples, but for cobalt as well, with the

support of theoretical calculations.

Moreover, these theoretical calculations allow to investigate the electronic and

structural modifications that influence the detected changes in the XANES. The elec-

tronic and atomic structure are deeply interconnected, but their effect is probed with

theoretical calculations in two different ways, that are thus here presented separately.

4.4.1 Atomic structure: contribution of the environment

The atomic structure of a liquid is very different from that of a solid. More details

about this will be given in Chapter 5, but to understand the following it is sufficient

to know that in the transition from solid to liquid the long range order typical of a

crystalline solid is lost, in favour of a dense quasi-random packing of atoms.

In a crystalline solid each atom sees the same coordination shell. The crystalline

order is disrupted only by thermal disorder. An example of atomic supercell rep-

resenting a thermodynamic configuration for the solid fcc at 45 GPa and 3000 K is

shown in the left panel of Figure 4.3(a). In the right panel are plotted the XANES spec-

tra calculated imposing each time a different atom as photoabsorber. The XANES in

magenta in the right panel is calculated imposing as photoabsorber the atom that

in the atomic supercell shown in the left panel is indicated with the colour magenta.

Periodic boundary conditions are applied to the atomic supercell and each atom is

surrounded by the same crystalline structure. The XANES spectra calculated for the

different atoms of the supercell thus exhibit the same features. Averaging over all the
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(a) Solid fcc atomic supercell representation and XANES at 45 GPa and 3000 K. Atoms are displaced
from crystallographic fcc sites due to thermal vibrations.

(b) Liquid atomic supercell representation and XANES at 46 GPa and 5000 K. Atoms are displaced not
only due to thermal disorder, but due to dynamical disorder as well.

Figure 4.3 – Solid and liquid configurations. Both for the solid and the liquid configu-
ration, the XANES spectra are calculated for each of the atoms of the atomic supercell
representations shown in the left. The spectrum in pink is the one associated to the
atom illustrated in pink in the atomic supercell representation.
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(a) Density of states of cobalt at about 45 GPa
for the solid fcc and the liquid phase.

(b) Calculated XANES spectrum of fcc cobalt
at 45 GPa and 3000 K.

Figure 4.4 – Density of states of solid and liquid cobalt. The arrows point at the fea-
tures which change between the solid and the liquid in the DOS and in the XAS.

atoms and 11 configurations will give as a result a XANES spectrum showing these

same features.

In a liquid, instead, due to the quasi-random displacement of atoms, each atom is

surrounded by different atomic structures. In this case, there are two factors disrupt-

ing the periodic order: the thermal disorder, as in the hot solid, and the dynamical

disorder. An atomic supercell representing a liquid at 46 GPa and 5000 K in one ther-

modynamic configuration is shown in the left panel of Figure 4.3(b). In the same way

as for the solid, the XANES imposing each different atom as a photoabsorber are plot-

ted in the right panel. However, in this case each atom is surrounded by a different

structure. As a consequence the leading frequencies are different for each photoab-

sorber and each XANES shows different features. The average over these XANES and

over 11 configurations gives a XANES which is almost featureless. For this reason the

transition to the liquid phase can be identified with the loss of those oscillations that

are typical of the fcc XANES.

4.4.2 Electronic structure: DOS simulations

The density of states have been calculated for the two configurations shown in

Figure 4.3. The results are shown in Figure 4.4(a) and the changes occurring to the

PDOS of the s, p and d atomic orbitals are due to the phase transition.

The atomic orbitals responsible for the flattening of the first two oscillations in

the XANES are the p orbitals. In Figure 4.4(a) the two peaks responsible for the first

two oscillations in the XANES, Figure 4.4(b), are highlighted with black arrows. These
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two peaks disappear in the PDOS of the liquid, meaning that the flattening of the first

two oscillations can also be explained by the change of the DOS.

In conclusion the first two oscillations in the XANES are more influenced by the

p states, while the shoulder is more influenced by the d states (probably hybridized

with the p states).

4.5 Discussion

The main purpose of these theoretical calculations was to validate the melting cri-

terion used in this thesis. However they also allowed to formulate other observations

that deserve to be mentioned.

4.5.1 Changes with pressure

Observing the differences in the XANES occurring in the solid and in the liquid

upon increasing pressure can also give some insights on the behaviour of the system

at high temperature at increasingly higher pressure.

Calculations

In Figure 4.5(a) and 4.5(b) are represented XANES spectra calculated for several

fcc solids and liquids respectively. As a general remark we observe that the oscilla-

tions after the whiteline are shifting to the right as pressure increases. It is interesting

to notice that the shift starts at about 4 eV from the E0 for both solids and liquids

structures.

Experiment

In Figure 4.5(c) and 4.5(d) are represented the experimental XANES measured at

similar temperatures. In Figure 4.5(c) is shown the trend at increasing pressure of the

XANES at about 2000-2300 K. In the solid, Figure 4.5(c), the first half of the whiteline

does not change with pressure, while the second half shifts to the right. The shoulder

becomes more evident at increasing pressure, while in the first two oscillations we

notice a gradual transition between a mixed hcp-fcc phase to a situation where the

fcc structure dominates. In the liquid as well, Figure 4.5(d), there are no differences

with pressure in the first half of the whiteline while the second half shifts to the right.
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(a) Calculated XANES spectra of fcc solids at
2000-2500 K at increasing pressure.

-20 0 20 40 60 80

N
or

m
al

iz
ed

 a
bs

or
pt

io
n 

(a
.u

.)

E-E0(eV)

 11GPa 5000K 
 24GPa 5000 K
 46 GPa 5000 K
 65 GPa 5000 K
 77GPa 5000K

Liquids

(b) Calculated XANES spectra of liquids at
5000 K at increasing pressure.

(c) Measured XANES spectra of solids at
2000-2500 K at increasing pressure. Between
37 and 65 GPa there is a transition from a
mixed hcp-fcc phase to a situation where fcc
dominates.

(d) Measured XANES spectra of liquids along
the melting line at increasing pressure.

Figure 4.5 – The first half of the whiteline does not change with pressure, while the
second half shows a shift to the right for both the solid and the liquid.
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Figure 4.6 – Direct comparison between measured and simulated spectra at similar
pressure-temperature conditions.

(a) EFermi (b) EFermi+4 eV

Figure 4.7 – Graphical representation of the Bloch functions in the 3D space. In the
reference system the red arrow represents the x, the green the y and the blue the z
direction.
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Figure 4.8 – Spatial distribution of the atomic orbitals for an fcc structure in its ground
state.

The qualitative agreement between the results obtained with the calculations and

the measurements is good. A direct comparison of measured and simulated spectra

at similar pressure-temperature conditions, Figure 4.6, shows that the features are

the same: a shoulder at about 5 eV, first two oscillations at about 19 eV and 28 eV

and a third oscillation at about 55-60 eV. The energy scale is not perfectly reproduced

in the calculations, as can be noticed in the position of the third oscillation, that in

the calculation appears at lower energies than in the measurement. Another differ-

ence between the two spectra is given by the resolution, which is much higher in the

calculations, showing sharper oscillations.

Going back to the comparison between changes at different pressures for solid

and liquid, shown in Figure 4.5 we notice that overall the changes consist in a shift to

the right of the oscillations, in agreement with a general compression of the system.

The first and the second half of the whiteline, though, seem to be affected differently

by the variation of pressure. Our interpretation for this is provided here. Figure 4.7(a)

shows isosurfaces of the square modulus of selected Bloch wavefunctions. Figure

4.7(a) presents the wavefunction of a Bloch state at the Fermi energy at the Γ point

in the Brillouin zone. The spatial distribution of this Bloch function resembles the

shape of a d orbital. We can thus affirm that at the Fermi energy the orbitals have

mainly a d character. Figure 4.7(b) gives a Bloch state at an energy about 4 eV higher
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than the Fermi energy. In this case, the orbitals have mainly a p character, with some

dz2 .

Figure 4.8 shows a 1D cut of the same wavefunction probability distributions along

the edge and the face diagonal direction for the two energies. The probability den-

sities are re-scaled for better clarity. The results show that in both directions the or-

bitals with mainly d character are more localized around the atomic positions, while

the orbitals with some p character exhibit some intensity in the interstitial region.

In conclusion, the p orbitals have a larger extension in space and are therefore

more sensitive to the changes in the structure driven by the increase of pressure.

The d orbitals are instead more localized around the atoms and less affected. This

could explain why the region of the XANES associated with final states with greater p

character changes more with pressure than features originating from final states with

more d character.

4.5.2 Changes with temperature

Calculated and experimental spectra can also be compared as a function of tem-

perature. An example is shown in Figure 4.9, where calculations and experiments are

compared.

In Figure 4.9(a) are shown two calculated spectra of solid cobalt at about 45 GPa

and a temperature of 2000 K and 3000 K. In Figure 4.9(b) instead is shown an exper-

imental run in temperature at 80 GPa. In the represented spectra the temperature

spans from 1850 K and 3600 K, with the exception of the spectrum represented in

black which is at ambient temperature. In both the calculated and measured XANES

it is clear that: the shoulder becomes less pronounced at increasing temperature, the

second half of the whiteline shifts to the left (contrary to the effect of the increase of

pressure), the first two oscillations damp. In the measured spectra in Figure 4.9(b)

the damping is even more evident in the EXAFS.

Liquid spectra can be compared as well as a function of temperature. In Figure

4.9(c) are shown three measured liquids 40 GPa. The damping of the first oscillations

is highlighted in the inset of Figure 4.9(c), while the small difference in temperature

does not allow to notice if there are relevant changes in the whiteline.

4.5.3 Polarization

The difference between the hcp and the fcc solid structure is visible not only in

the radial distribution function, as shown in Figure 4.1, but in the XANES spectra as

well. An example of XANES of hcp cobalt at 33 GPa is plotted with a black solid line
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(b) Measured XAS spectra of solids at 80 GPa
and increasing temperature. The black spec-
trum is measured at ambient temperature, the
temperatures of the others vary from 2270 K to
3650 K. In the inset the XAS is highlighted for
comparison with the calculations.
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(c) Measured XANES spectra of liquids at 40
GPa and increasing temperature, from 2650 K
to 2780 K. In the inset is highlighted the damp-
ing of one of the oscillations due to the in-
crease of temperature.

Figure 4.9 – The first half of the whiteline does not change with temperature, while in
the second half the there is a gradual shift to the left. The shoulder becomes less and
less visible when the temperature is increased.
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Figure 4.10 – The polarization for the three axes is shown for the simulated XANES of
the two solids (hcp and fcc) and the liquid configuration.

in the left panel of Figure 4.10. A XANES spectrum calculated for fcc cobalt at 61 GPa

and 3000 K is instead shown with a black solid curve in the middle panel of the same

Figure. Finally, the XANES of liquid cobalt at 75 GPa and 5000 K is shown in the right

panel.

In Figure 4.10 the contribution to the XANES of the three polarization directions

is highlighted for the two solids and the liquid configuration. In the fcc solid and

in the liquid the three polarization directions give the same XANES. Instead, in the

hcp solid the XANES calculated in the polarization direction 1 and 2 is different to

the one calculated in the polarization direction 3, as shown in the left panel of Figure

4.10. This is not surprising, as that the three directions are equivalent for fcc solid

and liquid. In the case of the hcp solid, as expected, the structure probed along one

of the three axes is different from the other two.

4.6 Conclusions

To conclude, ab-initio calculations provide an excellent tool that allows not only

to understand the experimental data, but to have some insight on the physical phe-

nomena taking place at the atomic scale.

In this work the AIMD calculations coupled with simulations of the XANES spec-

tra allowed to validate the XAS melting criterion used in this work. Moreover, the

calculations allowed to highlight that the observed changes in the data upon melting

can be interpreted in terms of modification of the structure of electronic states, two

views of the same physical phenomenon.



Chapter 5
Local structure of liquid nickel and

cobalt under pressure

In this chapter the structure of a liquid is discussed, with particular attention to

the structure of liquid nickel at ambient pressure that was subject of several theoretical

and experimental studies. Calculations showing the compression of nickel and cobalt

follow. The methods used for the EXAFS analysis of liquids are presented, with particu-

lar attention to the approach used on the data collected in this work. Finally the results

are compared with the literature and discussed.

5.1 Structure of a liquid

The structure of a liquid or an amorphous solid is quite complex, far from the pe-

riodicity of a solid crystal but still not purely random. The first theories to describe

the structure of a liquid were formulated in the mid-twentieth century. In the theory

proposed by Born and Green in 1946 it was considered as an imperfect gas. The math-

ematical description associated was too complex to be handled computationally and

the theory was soon discarded. According to Kirkwood and his followers (1939 to

1950) instead a liquid had to be considered as an imperfect solid. Even if this model

was accurately describing the variation of density in the phase transition, it failed in

understanding properties of entropy and pressure. A third model was then formu-

lated, associated with the name of Eyring (1958), in which the liquid was treated as

a mixture of submicroscopic crystals. The crystals themselves are ordered but they

are disposed in a disordered fashion ([18] and references therein). This third model

embodies the principal characteristic of liquids that is the lack of long range order

but the presence of short range order [95].

95
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In solids the radial distribution function g(r), representing the probability of find-

ing another atom at a distance r from the origin atom at r = 0, can be described as the

sum of independent isolated shells (each with its specific position, width, intensity

and asymmetry). In liquids instead it is characterized by a continuous distribution of

distances. In an homogeneous monoatomic system with macroscopic density ρ, the

number of atoms dN that can be found in a shell of width dr at a distance r from the

absorber atom can be written as

dN = 4πr2ρg(r)dr (5.1)

where the radial distribution function g(r) has three distinctive properties:

— g(r) = 0 for r < σ: the probability of finding an atom too close to the absorber

is zero below a certain approach distance σ that corresponds to the repulsive

part of the interaction potential. σ is as well the hard sphere diameter.

— lim
r→∞ g(r) = 1: at long distances the number density equals the macroscopic

density dN/(4πr2dr) = ρ

— g(r) > 0 for r > σ: due to the continuous distribution of distances the radial

distribution function is always strictly positive after the approach distance σ

Even if from the radial distribution function it is not possible to define univocally the

actual disposition of atoms in 3D space, it is possible to check if a structural model is

in agreement with a specific radial distribution function [18]. The g(r) depends only

on the distance from a given atom, different configurations of atoms would in fact

lead to the same radial distribution function. An equivalent way commonly used to

describe the local structure of a liquid is the structure factor S(Q), which is the Fourier

transform of the radial distribution function.

The most common model used in the literature to describe a local arrangement

of atoms in a liquid is based on a dense random packing of hard-spherelike atoms

[164, 18]. The structure is mainly determined by the form of the repulsive part of the

pair potential at short distances. Atoms in fact cannot approach closer than the sum

of their atomic radii. Actually since in liquid metals the bare atoms are only partially

screened by the electron gas, the effective interaction distance (or hard sphere diam-

eter) is larger than the diameter of bare ions [164]. In this model the liquid is treated

as a heap of atoms, the interactions between the atoms (that govern chemical short

range order, CSRO [119]) are to a first approximation ignored and the local structure

is described only by statistical geometry [18] (that govern topological short range or-

der (TSRO) [119]). This model was adopted in several works devoted to the study of
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the local structure of liquid metals, both theoretical [18, 71, 58] 1 and experimental

[164, 141].

The hard sphere model is sometimes considered too simplistic to describe the

atomic interactions in metallic liquids, but a complete theoretical understanding of

the structures of liquid metals seems to be still missing [95]. Liquid structures ob-

tained with molecular dynamics using different and more complicated pair poten-

tials sometimes agree with the experimental results for late transition metals but fail

for the early ones [95]. The promising point is that regardless the model adopted, the

most common tile found in the liquid structures is the icosahedral cluster.

The presence of icosahedral structures in liquids was proposed for the first time in

1952 by Frank [64]. According to his study the presence of icosahedral short range or-

der (ISRO) would hamper nucleation during the cooling of the liquid, and this would

explain the undercooling properties studied by Turnbull two years before [160]. Since

then many theoretical [58, 76, 77, 49, 103] and experimental [140, 95, 41] studies have

been performed to verify Frank’s hypothesis, many of them on nickel and mainly with

the aim of understanding the solidification process. Molecular dynamics, diffraction

and absorption all confirm the presence of icosahedral short range order in the liquid

metals at ambient pressure.

The common-neighbour analysis (CNA) has been performed both by ab-initio

molecular dynamics (AIMD) [103] and by a combination of X-ray absorption spec-

troscopy, reverse Monte Carlo and molecular dynamics [41]. The result of the AIMD

study performed by Ma et al. [103] is that the most common configuration is the one

with Honeycutt-Andersen indexes 1551, shown in Figure 5.1(a), which is the neces-

sary unit for the icosahedron. The other two most common structures are faulty units

shown in Figure 5.1(b) and 5.1(c). In this study the Voronoi’s tesselation method was

employed as well. It was found that the cluster formed only by 1551 pairs, the reg-

ular icosahedron (ICOS) shown in Figure 5.1(d), is the one with the longest average

lifetime but is not the most abundant. The most abundant one is instead a distorted

icosahedron (DICOS), shown in Figure 5.1(e). The presence of fcc type clusters is

excluded. The result of CNA shown in the study performed by Di Cicco et al. [41]

reaches as well the conclusion that highly distorted or defective icosahedra are the

most frequent configurations. Unlike the previous study some structures reminis-

cent of the fcc crystalline structure are found, that are slightly more abundant than

the perfect icosahedral structures.

1. The study by Bernal is considered as theoretical because it does not involve measurement on
liquid metals. In his study he performed a statistical analysis of the distribution of balls, that model
hard spheres.
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(a) 1551 (b) 1541 (c) 1431 (d) ICOS (e) DICOS

Figure 5.1 – The first three images represent the most common nearest neighbours
pairs in nickel [103]. In the captions are reported the Honeycutt-Andersen indexed.
The last two images are a regular icosahedral cluster (ICOS) and a distorted one (DI-
COS) [103].

Experimental studies of the behaviour of liquids under pressure are more chal-

lenging. To our knowledge the only ones performed on 3d metals are limited to iron

up to 5 GPa [137] and up to 58 GPa [141]. In the first study a change in the structure

of the liquid was detected in the vicinity of the δ-γ-liquid triple point upon increase

of temperature and pressure [137]. The other study [141] was focused on higher pres-

sures and no significant changes in the structure were detected. Iron resulted to be

well described by the hard-sphere model. However the authors did not perform a

detailed analysis on the g(r).

Liquid-liquid phase transitions normally appear in correspondence of a solid-

solid phase transition below the melting curve or in case of changes in slope of the

melting curve, as in the cases of sodium and bismuth [70, 167]. However it was re-

cently found that liquid-liquid transitions can as well appear in a metal with a pos-

itive slope of the melting curve and in the absence of solid-solid phase transitions

just below the melting curve [94]. The presence of the strong bond directionality that

occurs in early transition metals such as titanium, could lead to Jahn-Teller effects

that can cause a liquid-liquid structural transition. According to Lee et al. [94] in late

transition metals the bond directionality is negligible, thus preventing liquid-liquid

transitions.

Nickel and cobalt are late transition metals and they exhibit a smooth melting

curve, for these reasons we do not expect liquid-liquid transitions upon increase of

pressure. The liquid structure of iron, their neighbour in the periodic table, was re-

cently measured along the melting curve in X-ray diffraction [141], and no phase

transition was observed. Moreover, due to the directional nature of the unfilled d

orbitals, we can expect deviations from the behaviour of a hard sphere like liquid.
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Figure 5.2 – Compression of the first neighbour distance R in nickel calculated with
MD in Cao et al. [32] and AIMD in Lee et al. [94]. Cao’s points are calculated along the
melting curve, Lee’s points along the isotherm at 3000 K. The points were fitted with
a Vinet equation of state that serves mainly as guide for the eyes. Right panel: com-
pression of the first neighbour distance in cobalt calculated in this work with AIMD.
These points in the pressure-temperature phase diagram were calculated along an
isotherm at 5000 K.

5.2 Calculated compression of liquid nickel and cobalt

The compression of liquid nickel was recently calculated by Cao et al. in 2015

[32] and by Lee et al. in 2016 [94]. The literature about compression of liquid cobalt is

instead quite scarce. The volume as a function of pressure was calculated by Zhang et

al. in 2014 [174] by means of MD simulations performed with a Zhou’s EAM potential.

Since the radial distribution functions were not provided, the results of this paper will

be compared with ours only in paragraph 5.6.

Liyuan et al. performed in 2011 first-principle calculations with aim to study the

microstructure of liquid cobalt under pressure, up to 110 GPa. Their result shows that

the short range order increases with pressure, i.e. the number of icosahedra and dis-

torted icosahedra increases with pressure and temperature [99].
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Nickel

Cao et al. performed simulations along the melting curve, shown in Figure 3.1, by

means of molecular dynamics. Lee et al. instead simulated the structures along the

isotherm at 3000 K with ab-initio molecular dynamics. The resulting radial distribu-

tion functions at different pressure-temperature conditions are provided up to 7 and

8 Å respectively. A fit of the calculated radial distribution functions was performed

with a gamma distribution model [34, 53, 55] in order to extract the compression of

the first neighbours as a function of pressure. The bond length probability in its gen-

eral formulation, for (R – r)β < 2σ, is

p(r) =
2

σ|β|Γ( 4
β2

)

( 4

β2 +
2(r – R)

σβ

) 4
β2 –1

× exp
[

–
( 4

β2 +
2(r – R)

σβ

)]
, (5.2)

where Γ(z) is Euler’s gamma function 2 calculated for z = 4
β2

defined on the positive

real axis, R is the average distance, σ2 is the variance and β the skewness parameter

that defines the asymmetry of the distribution. The Gaussian limit is obtained for

β = 0. The fit was performed using the package grfit of the program GnXAS [56].

Note that the probability density p(r) of finding a bond with length r is related to the

g(r) through the expression Np(r) = 4πρr2g(r); the density ρ has to be known and the

result of the fit will give the parameters N, R, σ2 and β [54].

The resulting trends are represented in the left panel of Figure 5.2. The points are

fitted with a Vinet equation of state, that is normally used for solids but that serves

here as a guide for the eyes. Its formulation is presented in Appendix B.0.2. In the

case of Lee’s data [94] the densities were provided by the author 3. The coordination

number can be calculated as

NC = 4πρ

∫ rmin

0
g(r)r2dr, (5.3)

where rmin is the first minimum of the g(r). The densities, the values of the integrals

at the different pressures, the calculated coordination numbers and the fit results are

displayed in Table 5.1. We note that:

1. The ambient pressure value of NC is > 12.

2. NC is practically constant throughout the full pressure range 0-80 GPa: ∆N
N <0.005.

3. the mean square relative displacement σ2, reflecting the disorder, decreases

2. Γ(z) =
∫∞
0

xz–1e–xdx

3. Geun Woo Lee, Korea Research Institute of Standards and Science, Daejon 34114, Republic of
Korea
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very strongly. Since calculations are at constant T, this reduction reflects the

stiffening of the bonds (increase in force constants) due to compression.

4. β decreases, meaning that the distribution becomes more symmetric with pres-

sure.

In the case of Cao’s data, shown in Table 5.2, the coordination number is provided,

the density is thus calculated inverting the Equation 5.3. We note that:

1. The ambient pressure value of NC is > 12.

2. NC decreases in the pressure range 0-100 GPa: ∆N
N ∼ 0.05.

3. σ2 decreases along the melting curve, indicating that the stiffening of the bonds

due to compression is larger than thermal effects, which increase the vibration

amplitude. The total decrease is∼25%.

4. β stays approximately constant, meaning that the temperature and pressure

effect compensate.

The absolute value of the g(r) first peak’s position calculated by Cao or Lee differs

by 0.014 Å. The curve by Cao shows less compression, and this is reasonable since in

these calculations points at higher pressure are also at higher temperature.

Cobalt

The compression of liquid cobalt was calculated exploiting the radial distribution

functions extracted from the atomic supercell generated with ab initio molecular dy-

namics, see Section 4.2. About 1000 thermodynamical samples of supercells contain-

ing 32 atoms were used; the g(r) here were calculated with the program Travis [27].

The radial distribution functions were fitted with a gamma distribution model in or-

der to extract the compression along the isotherm at 5000 K. In this case the density

was calculated as the number of atoms in an atomic supercell divided by the size of

the supercell. The compression, shown in the right panel of Figure 5.2, is comparable

with the one found by Lee in nickel (∼0.4 Å over 100 GPa). Table 5.3 lists parameters

derived from the fit of the g(r). We note that:

1. The ambient pressure value of NC is > 12.

2. The NC increases with pressure in the pressure range 11-77 GPa: ∆N
N ∼ 0.08.

This is in contrast with the case of nickel.

3. The σ2 follows the same trend of those obtained form the calculations of Lee

for nickel, although the values are larger due to the different temperature. The

total decrease is 40%.
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Nickel at 3000 K, calculated by Lee et al.:

P (GPa) ρ(at/Å3) NC N R(Å) σ2(Å2) β

0 0.07924 13.36 11.1 2.652 0.148 0.987
21 0.09111 13.31 11.5 2.539 0.102 0.886
64 0.10547 13.41 11.4 2.402 0.066 0.815
81 0.10952 13.42 11.1 2.365 0.054 0.735

Table 5.1 – Density and coordination numbers of the g(r) calculated by Lee as a func-
tion of pressure [94]. The densities ρ were provided by the author; they are used to
calculate the NC and imposed in the fit. The NC where provided in the paper, the
densities were calculated exploiting the Equation 5.3. The fitting parameters (N, R,
σ2 and β) follow.

Nickel along the melting curve, calculated by Cao et al.:

P (GPa) - T (K) ρ(at/Å3) NC N R(Å) σ2(Å2) β

0 - 1400 0.08461 14.65 10.7 2.638 0.077 0.750
20 - 2100 0.09450 14.32 10.9 2.534 0.074 0.778
40 - 2700 0.10060 14.28 11.0 2.467 0.071 0.791
60 - 3250 0.10820 14.22 11.4 2.433 0.073 0.819
80 - 3770 0.11182 13.99 11.1 2.383 0.063 0.750

100 - 4300 0.11196 13.93 10.9 2.342 0.058 0.729

Table 5.2 – Density ρ and coordination numbers NC of the g(r) calculated by Cao as
a function of pressure [32]. The NC where provided in the paper, the densities were
calculated exploiting the Equation 5.3. The fitting parameters (N, R, σ2 and β) follow.

Cobalt at 5000 K, calculated in this work:

P (GPa) ρ(at/Å3) NC N R(Å) σ2(Å2) β

11 0.07585 12.28 10.06 2.65 0.19 0.87
24 0.08397 12.41 10.37 2.58 0.16 0.87
46 0.09329 12.69 10.91 2.51 0.13 0.84
65 0.09956 13.01 10.05 2.45 0.11 0.79
77 0.10267 13.26 10.25 2.44 0.11 0.81

Table 5.3 – Density and coordination numbers of the g(r) calculated as a function of
pressure from AIMD. The densities ρ were calculated dividing the number of atoms
in the supercell for the volume of the supercell and are then imposed in the fit. Co-
ordination numbers are calculated by means of Equation 5.3. The fitting parameters
(N, R, σ2 and β) follow.
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5.3 EXAFS data analysis for disordered systems

Here we present how to perform EXAFS data analysis on liquids, where the con-

figurational disorder is significant and the Gaussian shell model adopted to obtain

Equation 2.4 is no longer valid. To extract information about the local structure of a

liquid a completely different approach to the one presented as general case in Section

2.1.2 is required.

If γ is the EXAFS signal produced by one atom at a distance r from the absorber,

the total EXAFS signal χ(k) for a liquid, or a disordered system, is given by

χ(k) =

∫ ∞
0

4πr2ργ(k, r)g(r)dr. (5.4)

Due to the integral that relates the total EXAFS signal χ(k) and the radial distribution

function it is not possible to obtain the g(r) directly from Equation 5.4 [17, 165].

A procedure to overcome this problem was proposed by Filipponi [53, 55] together

with the realization of a program to perform the analysis: GnXAS [56]. The starting

point is a model g(r) describing the liquid system under the pressure and temperature

conditions of interest. It can be calculated with molecular dynamics or measured by

X-ray diffraction.

At first (step 1 in Figure 5.3) the model g(r) is decomposed in one (or two) short

distance peak(s) and a tail. The fit is performed using the package grfit that fits the

first peak with one (or two) gamma distributions, see Equation 5.2 [34, 53, 55]. The fit

gives parameters such as the position R, the width σ2, the intensity (strictly related to

the coordination number N) and the asymmetry β of the gamma distribution.

The EXAFS theoretical signal is calculated starting from R and N using the package

gnxas (step 2).

The package fitheo is then used to fit the calculated EXAFS signal to the experi-

mental one (step 3) including also the parameters σ2 and β. In this way the structural

parameters are refined.

The tail remains unvaried, since it refers to long range order to which EXAFS is

not sensitive. The experimental g(r) can finally be reconstructed by means of the

package grrec (step 4). The reconstructed radial distribution function best describes

the system under analysis.

The choice of fitting the radial distribution function with one or two peaks de-

pends on the quality of the data. If the experimental EXAFS signal is short (kmax < 8

Å–1) and the signal to noise ratio is poor, like in our case, the fit with two model EX-

AFS signals could be very unstable or lead to unphysical results. Therefore we have

adopted the procedure shown in Figure 5.3 using one peak to reproduce the first peak
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Figure 5.3 – With the program GnXAS [56] the fitting procedure for a liquid is per-
formed in four steps.
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Figure 5.4 – Liquid nickel spectra.

of the g(r).

A first treatment of the liquid nickel data with this approach gave very unstable

fits. The k range of the data obtained in the diamond anvil cell under extreme condi-

tions is in fact shorter than data that can be collected at ambient pressure. Moreover

due to the presence of the DAC and the higher pressure and temperature involved

(and thus the smaller samples) the data are more noisy than the ones previously ob-

tained by Di Cicco et al. [41]. In addition, sometimes the liquid is not homogeneous,

and this results in a distorted background. An example of treatable and non-treatable

spectra is shown in Figure 5.4. Only the best spectra can thus be selected for the anal-

ysis; fast measurements under extreme conditions come with a price.

5.3.1 Special approach for data under extreme conditions

Since fitting our data with the approach described could not provide stable fit

results, we adopted a more crude method that allows to evaluate the first neighbour

distance in the liquid. With this method the structural parameters are not fitted, but

several model signals are compared with the experimental data; the model giving the

best agreement defines the distance between first neighbour atoms. This analysis

though is insensitive to the mean square relative displacement and the asymmetry of

the radial distribution function.

More sophisticated analysis methods used in previous studies of liquids, such as

the EXAFS analysis on nickel or copper at ambient pressure [43, 41], are not possible

on these short and noisy data. The short range is a result of measurements recorded

on an energy dispersive beamline, which for the time being is however the only way
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Figure 5.5 – The radial distribution function is translated to several distances and the
EXAFS signal is calculated for each of them.

to record spectra in the seconds time scale. The noise is instead of non-statistical

nature, due to the size of the beam. The size of the beam specified is in fact the full

width half maximum (FWHM). The size including the tails of the Gaussian describing

the intensity of the beam in space would then be∼10 µm. If the sample is very small

(20 x 20 µm2) and the measurement is not performed exactly in the centre, there will

be a portion of the transmitted intensity that cannot be correctly normalized, thus

giving this non-statistical noise.

The method consists of several steps. At first a radial distribution function g(r)

is chosen, and it is rigidly translated to several distances, see Figure 5.5(a) for an ex-

ample. The program grxas then calculates the EXAFS signals associated to the radial

distribution functions exploiting Equation 5.4 and it provides the distances corre-

sponding to the leading frequency of the resulting χ(k). The calculated EXAFS signals

are shown in Figure 5.5(b). The density has to be provided, as well as the phase shifts

and cross sections, that have to be previously calculated for each material with the

package phagen.

The background extraction and the Fourier transform of the measured EXAFS are

performed with the package fitheo, that also allows to compare the theoretical EXAFS

signal with the extracted experimental one. The ”atomic” background subtraction

and the match between the model χ(k) and the experimental data is simultaneous.

The presence of double electron excitations [60] was considered in the background

extraction. The same procedure is repeated for several translated radial distribution

functions. Only the radial distribution function whose associated EXAFS signal is

able to reproduce the data is the one that describes the system. In Figure 5.6(a) an
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trum measured at 19 GPa and 2410 K is compared with the three theoretical EXAFS
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lation of -0.05 Å of the original g(r), gives the best agreement with the experimental
EXAFS. (b.) and (c.) Background extraction of the absorption spectrum at 19 GPa
and 2410 K and Fourier transform of the signal giving the best agreement (the one in
blue).

example is shown, where it is clear that the experimental EXAFS signal matches well

with the theoretical one calculated from the g(r) translated by -0.05 Å. The back-

ground extraction of the absorption spectrum and the Fourier transform of the signal

are shown in Figure 5.6(b and c).

A fit with a gamma distribution model, such as in Equation 5.2, of the g(r) that

shows the best agreement with the EXAFS spectrum defines the first neighbours dis-

tance. The closest translated radial distribution functions whose agreement with the

experimental signal is poor gives an overestimation of the error bar.
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Nickel:
P (GPa) 0 11 19 28 33 45 51 90 102

T (K) - 2220 2420 2750 2990 3120 3350 3200 3600
Tg (Å) 0.05 0.0 -0.05 -0.05 -0.1 -0.1 -0.1 -0.175 -0.175
R (Å) 2.41 2.36 2.32 2.32 2.27 2.27 2.27 2.19 2.19

Cobalt:
P (GPa) 0 10 31 41 56 68 83

T (K) - 2020 2930 2730 3590 3658 3624
Tg (Å) 0 0 -0.1 -0.1 -0.15 -0.2 -0.2
R (Å) 2.41 2.41 2.31 2.31 2.26 2.21 2.21

Table 5.4 – Pressure and temperature conditions of the spectra of liquid nickel and
cobalt whose EXAFS was analysed and the measured distance of the first neighbour
distance. Note that with 0 GPa we actually mean ambient pressure: 1.013·10–4 GPa.
At this pressure the temperature is not known. Tg(Å) is the translation of the radial
distribution function that gave the best match with the experimental data and R(Å)
the resulting position of the first peak. The error on the distance is 0.05 Å, which is
an overestimation of the error bar for the two materials, see Figure 5.6.

5.4 Measured compression of nickel

The procedure for data analysis described above was applied to several absorp-

tion spectra of liquid nickel at different pressures along the melting curve. The start-

ing radial distribution function was the one calculated by Lee at 81 GPa and 3000 K

and it was translated at several distances with steps of 0.05 Å.

In Table 5.4 the pressure and temperature conditions of the liquid spectra anal-

ysed are shown, with the resulting translations of the radial distribution function and

the corresponding distances as a function of pressure.

The match between experimental and theoretical EXAFS signals is shown in the

left panel of Figure 5.7(b). In the right panel the resulting compression of the first

neighbours distance is shown in comparison with the literature. The last two points

at high pressure (about 90 and 100 GPa) were discussed in Section 3.3. They are liq-

uids even if their temperature is below the accepted melting curve. They were found

to be contaminated with about 7% of NiO. This amount of NiO is enough to affect the

melting temperature, but is too low to have an influence on the first shell distance,

see Figure 3.10c. As additional proof we performed a fit of the data with a Vinet equa-

tion of state, see Appendix B.0.2, including or excluding the last two points. The two

fits are shown in the right panel of Figure 5.7(b); the purple curve includes the last

two points, while the blue one does not. The difference between the two curves in
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(b) Left panel: liquid nickel EXAFS signals of the analysed spectra (blue curves) at the different pres-
sures compared with the theory (red curves). Right panel: measured first neighbours distances as a
function of pressure. The last two points, in purple, are contaminated with 7% of NiO. The points are
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two points, the blue curve does not. For easier comparison with the literature the Vinet curve fitting the
data up to 60 GPa was translated on the first neighbour distance calculated by Cao at ambient pressure
and is represented as a dashed curve.

Figure 5.7 – Data analysis of nickel data in the liquid phase measured with EXAFS and
compare with calculations.
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negligible, but the last two points will always be shown but not considered in the fits

in the discussion that follows in this chapter.

The blue curve is then translated (blue dashed curve) upon the theoretical cal-

culations of the distance performed by Cao [32] for better comparison with the lit-

erature. Moreover it is known that the distance in EXAFS is correlated to the E0 pa-

rameter, the energy mismatch between theory and experiment, not known a priori

but imposed during the data analysis. For this reason EXAFS is reliable for relative

changes of the distances but not for their absolute values. The results often have to

be slightly translated to be in agreement with the literature.

The resulting trend shows, as expected due to the temperature differences, less

compression than the theoretical curve calculated by Lee [94]. While in the case of

Lee the temperature is constant (3000 K) in our measurements the temperature varies

from 1730 K to 4000 K. Our result, though, is not in agreement with the compression

found by Cao [32] either, even if both curves are calculated along the melting line.

5.5 Measured compression of cobalt

The same procedure used for nickel was applied on spectra of liquid cobalt along

the melting curve. The radial distribution function used here was calculated with

the procedure presented in Section 4.2.2 from 510 different thermodynamic config-

urations of a supercell containing 128 atoms, calculated at 44 GPa and 2500 K. The

resulting g(r) was translated at several distances with steps of 0.05 Å.

The conditions of the liquid cobalt spectra analysed are summarized in Table

5.4, together with the translations of the radial distribution function that give a good

agreement with the data and the resulting first shell distances.

The EXAFS signals matching with the ones calculated from the radial distribution

functions are presented in Figure 5.8(b). In the right panel of the same figure the re-

sulting compression is shown compared to theoretical calculations. The data derived

from EXAFS are fitted with a Vinet equation of state up to 80 GPa. For an easier com-

parison the curve is translated as a dark green dashed curve upon the Vinet equation

of state that fits the calculations at ambient pressure.

Liquid cobalt along the melting curve shows a compression that is very similar to

the one of nickel (about 0.2 Å over 80 GPa). If compared with calculated values along

the isotherm at 5000 K it shows much less compression. A direct comparison with

theoretical calculations along the melting curve is, for the time being, not possible.
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Figure 5.8 – Data analysis of cobalt data in the liquid phase measured with EXAFS and
compare with calculations.
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By analogy with the case of nickel, see Figure 5.7(b), we expect that the calculations

of R(P) along the melting curve will not differ significantly from those at constant

T=5000 K.

5.6 Discussion

The results presented in this chapter to our knowledge provide for the first time a

measurement of the compression of the bond between first neighbour atoms in liq-

uid nickel and cobalt under pressure. Due to the quality of the data, we adopted a

method of analysis that allows to extract only the bond distance, while other param-

eters, such as the coordination number, remain hidden. The aim of this section is to

open a discussion based on a qualitative evaluation of the volume and the coordina-

tion number.

To understand the discrepancy between experiment and theory, shown in the

trend of the first neighbour distance as a function of pressure, we evaluated the vol-

ume as a function of pressure from the EXAFS data and compare it to the theoretical

compression of the volume.

The evaluation of the volume from the first neighbours distance is straightfor-

ward for a crystalline solid whose structure is well known and characterized by a unit

cell that is repeated in space. In a liquid however, the structure is much more com-

plex, as described at the beginning of this chapter in Section 5.1. The volume can

be calculated from the experimental radial distribution function in ways that will be

presented at the end of this section.

In the following, the volume compressions of the liquid obtained with different

methods are presented and compared.

5.6.1 Volume from theoretical calculations

The theoretically calculated atomic volumes, defined as the ratio between the su-

percell volume and the number of atoms in the supercell, are here presented. Studies

on the compression of nickel can be found in the literature at a constant temperature

and at a temperature following the melting curve. These calculations were performed

by Lee [94] and Cao [32] respectively, and the volume is calculated as the inverse of

the density ρ reported in Tables 5.1 and 5.2.

The compression of cobalt at constant temperature was calculated in this work by

means of AIMD; the volumes are calculated as the inverse of the density reported in
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Table 5.3. The compression at a temperature following the melting curve was instead

calculated by Zhang et al. [174].

5.6.2 Volume evaluated with Clausius-Clapeyron equation using the melt-
ing curve obtained in this work

The volume of the liquid along the melting curve can be estimated using the

Clausius-Clapeyron relation, discussed in Appendix B.0.3 and reported here

dTm

dP
=

∆Vm

∆Sm
. (5.5)

The volume of the liquid along the melting curve is evaluated in the same way for

both nickel and cobalt. The steps followed are here presented:

1. dTm
dP is obtained from our measured melting curves

2. ∆S is assumed constant with pressure (assumption commonly adopted in the

literature [89])

3. the volume of the solid as function of pressure, Vsolid(P), is evaluated using

known V(P) equations from ∆V
V0

= αV∆T

4. the volume of the liquid as a function of pressure, Vliquid(P), is calculated as

Vliquid = Vsolid +
dTm

dP
·∆S (5.6)

In the literature several measurements and calculations have been performed to

determine the compression of solid nickel and cobalt along different isotherms. The

equation of state at ambient temperature up to 150 GPa was measured by Dewaele

for the two metals by means of X-ray diffraction [40]. Zeng [171] instead calculated

the EOS for solid nickel at different temperatures up to 180 GPa and 3000 K. EOS at

different temperatures were measured for fcc cobalt with X-ray diffraction up to 60

GPa and 2500 K [12].

Using the equation of thermal expansion

αV =
1

V

(∂V

∂T

)
P

(5.7)

and in the hypothesis that at these temperatures the volume coefficient of thermal

expansion does not change with temperature, the αV(P) was calculated as a function

of pressure. For nickel it is derived using the EOS at 2000 K and 3000 K, for cobalt

between 1500 K and 2000 K. The values at some of the pressures are reported in Ta-

ble 5.5; the volume coefficient of thermal expansion decreases with pressure and is
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P (GPa) 0 25 50 75 100
αV(P) nickel 4.99e-05 2.96e-05 2.15e-05 1.66e-05 1.32e-05
αV(P) cobalt 5.62e-05 3.94e-05 3.14e-05 2.63e-05 2.27e-05

Table 5.5 – Volume coefficient of thermal expansion for nickel and cobalt as a func-
tion of pressure.
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Figure 5.9 – Equation of states of the liquid at different temperatures evaluated from
the equation of states of the solids calculated by Zeng [171] for nickel and measured
by Armentrout [12] for cobalt. The red curve is the evaluation of the volume of the
liquid at the melting temperature, using Equation 5.6 with our experimental melting
curves.

smaller for nickel. With the volume coefficient of thermal expansion and knowing the

melting temperatures for the two materials, the volume of the solid along the melting

curve can be calculated using Equation 5.7.

This is a very strong approximation, and as further development we plan to obtain

a more realistic estimation of the high pressure and high temperature solid phase

using a Mie-Gruneisen-Debye model [176, 12].

Using the Clausius-Clapeyron equation (Equation 5.5) and in the assumption that

the variation of entropy does not change as a function of pressure the volume of the

liquid along the melting curve is evaluated. The value considered for the variation

of entropy is 10.1 J/mol·K for nickel [73] and 8.55 J/mol·K for cobalt [174]. Figure 5.9

represents for the two materials the equation of state of the solid at 2000 K (dotted

curve), the equation of state of the liquid calculated with the Clausius-Clapeyron re-
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lation at 2000 K and 4000 K (dashed curves), and the evaluation of the liquid volume

trend as a function of pressure and temperature along the melting curve (red solid

curve). The volume along the melting curve is lower than the curve at 2000 K ad low

pressure (as expected, since Tm< 2000 K at ambient pressure) and reaches the one at

4000 K around 100 GPa. The trend of the volume along the melting curve is in agree-

ment with Cao [32] for nickel (except between 80 and 100 GPa). Our calculations for

cobalt at 5000 K follow closely the estimated curve ad 4000 K. In the case of cobalt it

is in disagreement with Zhang [174].

The approximation used here that the melting entropy ∆Sm does not change with

pressure is commonly used in the literature [89]. It is justified by calculations per-

formed on cobalt and iron by Zhang [174, 172], where it is proposed that there could

be a slight decrease over pressure, but it was never measured due to experimental

difficulties associated to the measurement of the volume of the liquid as a function

of pressure.

5.6.3 Volume and coordination number calculated from the g(r) derived
from EXAFS measurements in this work

A way to determine the volume of a liquid starting from a radial distribution func-

tion was already introduced in this chapter and it exploits Equation 5.3 resulting in

V =
4π
∫ rmin
0 g(r)r2dr

NC
. (5.8)

This approach is a zero order approximation because the radial distribution function

used in the analysis is always the translation of the same g(r). The shape of first peak

is thus always the same for all the pressure and temperature conditions (see Figure

5.5(a)).

As discussed in Section 5.4, EXAFS is not sensitive to the absolute values but only

to relative changes. For this reason for nickel all the radial distribution functions in

agreement with our EXAFS data were translated in order to obtain at ambient pres-

sure a first neighbours distance of the same value of the one calculated by Cao [32]

at ambient pressure. Nickel EXAFS data were thus translated by 0.22 Å, see also Fig-

ure 5.7(b). The integral
∫ rmin
0 g(r)r2dr is then calculated at the different pressures and

is shown in the top left panel of Figure 5.10. The situation is more complicated in

the case of cobalt, where the only available distance is at 5000 K. As a first approxi-

mation the radial distribution functions were translated in order to obtain at ambi-

ent pressure a first neighbour distance in agreement with the AIMD calculations we

performed on cobalt at 5000 K. This is a very strong approximation, and we plan as
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further development to perform AIMD calculations at 2000 K, in order to obtain a

more realistic distance along the melting curve, but this is not yet available for the

time being. Cobalt EXAFS data were thus translated by 0.33 Å. The integral was then

calculated for the different radial distribution functions and the results are shown in

the top right panel of Figure 5.10.

Since the coordination numbers nor the volumes are known a priori, in Equation

5.8 one of the two variables has to be imposed from the literature. In this work the

volume is imposed equal to the theoretical value and the coordination number is

derived. For nickel the The volume is thus at first imposed to be the one calculated

by Cao and Zhang, for nickel and cobalt respectively, and then to the one evaluated

using the Clausius-Clapeyron relation coupled to the melting curves measured in this

work.

In Figure 5.10 the results for nickel and cobalt are shown. In the middle panel

the theoretical values of the volume are represented as a function of pressure. In the

bottom panel the calculated coordination numbers are represented. In both cases

we find an increase of the coordination number with increasing pressures, 12% for

nickel and 10-25% for cobalt.

In the case of nickel this results is in disagreement with the theoretical calcula-

tions performed by Lee [94] and [32], where the coordination number is constant or

decreases with pressure respectively.

In the case of cobalt instead the result agrees with the AIMD calculations per-

formed on cobalt in this work, where the coordination number slightly increases

(8%).

5.6.4 Volume in the hard sphere model

Another way of calculating the volume is in the framework of a hard sphere model

[13]

η =
πρσ3

6
,

where the compacity or packing factor η, representing the percentage of the total

volume occupied by hard spheres, is written as a function of the density ρ and the

hard sphere diameter σ. From this equation the volume can thus be expressed as

V =
πσ3

6η
. (5.9)

The packing factor η for liquid nickel and cobalt is 0.45 at ambient pressure [164].
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Figure 5.11 – The experimental volume calculated as a function of pressure by means
of Equation 5.9 is represented in comparison with the calculated and the evaluated
volume of the liquid along the melting curve. The dashed curve is the fit of experi-
mental volume translated upon the evaluated volume at ambient pressure.

The hard sphere diameter σ as a function of pressure was determined as

σ(P) = σ0 + Tg(P), where σ0 =
(6ηV0

π

) 1
3
,

Tg(P), that is reported in Table 5.4, represents the translation of the reference ra-

dial distribution function gref (r) applied in order to obtain an agreement with the

experimental data and V0 is the volume associated to the reference radial distribu-

tion function. The gref (r) is the radial distribution function calculated by Lee at 81

GPa and 3000 K for nickel and in this work at 44 GPa and 2500 K.

The results for nickel and cobalt are summarized in Figure 5.11 in comparison

with the evaluated volume of the liquid along the melting curve in the assumption

of:

1. validity of the hard sphere model

2. packing factor η pressure independent

The dashed curve, representing the translation of the experimental volume on the

theoretical one shows a very good agreement for nickel.
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Our Vliq(P) curve is smooth, as the calculated ones, consistent with the statement

that in late transition metals there are no liquid-liquid phase transitions [94]. In the

case of cobalt the agreement is poorer with both the theoretical and the evaluated

volume.

5.7 Critical issues

The data shown in this chapter provide the first measurement of the compres-

sion of liquid nickel and cobalt up to about 1 Mbar. The challenges encountered in

the analysis of the data are mainly due to the quality of the data that do not allow a

standard fitting procedure.

The main problems are due to the short k-range of the data, the low amplitude of

the EXAFS oscillations that makes the background extraction more challenging and

the non statistical noise in the data that appears at higher pressures when the sample

is smaller.

Background

The distortion of the background provides a significant limitation for the extrac-

tion of an EXAFS signal. It was shown in Section 3.2.3 that spectra of melts obtained

by laser heating a sample in a DAC often show an irregular shape. As a consequence

it is very rare to obtain data with smooth, physical background, and this is the reason

why only few spectra of liquids can actually be analysed to extract a bond length.

The results obtained on the few spectra that could be analysed are however very

promising and allow to give for the first time a measurement of the first neighbours

distance as a function of pressure, whose trend shows a slight difference with respect

to calculations.

Entropy evaluation

Thermodynamic parameters such as the entropy of melting, can in principle be

derived from the Clausius-Clapeyron relation:

∆Sm =
dTm

dP
·∆Vm, (5.10)

where the variation of volume upon melting is Vm = Vliq – Vsolid. While Vliq is the

volume of the first liquid after the melting, Vsol is the volume of the solid just before
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melting. This implies precise knowledge of:

1. dTm/dP

2. Vsol

3. Vliq

In the previous chapter we evaluated the volume of the solid along the melting curve

exploiting the experimental and theoretical equation of states in the literature. Us-

ing Equation 5.10, where the volume of the liquid is calculated with the hard sphere

model, Vliq = πσ3/(6η), we can evaluate the melting entropy as a function of pressure

by imposing on the experimental data a translation that allows to obtain a melting en-

tropy of 10.1 J/mol·K at ambient pressure [73]. In Figure 5.11 is represented the EXAFS

derived volume using the hard sphere model (blue dashed curve) translated upon the

Clausius Clapeyron derived volume of the liquid evaluated imposing a constant en-

tropy (black curve). Using the dashed curve to evaluate ∆S100GPa from Equation 5.10

gives 23 J/mol·K, whereas the black curve is calculated using 10 J/mol·K. However, the

difference between these two curves at P=100 GPa is much less than the error bar. We

therefore conclude that we do not have the sensibility to evaluate ∆Sm. A reduction

of a factor 10 of the error bar would be required.

5.8 Conclusions

In this work we extracted for the first time information on the local structure of

liquid nickel and cobalt under pressure, namely the first neighbour distance as a

function of pressure. Moreover, the comparison of the experimental liquid volume

compression with the theoretical one suggests an increase of the coordination num-

ber with pressure of about 15% for nickel and 10-20% for cobalt.

The present quality of the data does not allow to extract directly structural pa-

rameters other than the distance between first neighbours. The present experimen-

tal limitations will partially be overcome with the EBS (Extremely Brilliant Source)

project of the ESRF. The smaller horizontal source size and the reduced emittance will

allow the construction of an upgraded ID24 beamline, where one of the two branches

will be transformed in a fast scanning XAS beamline. It will be possible to record an

EXAFS spectrum in one second with a longer k-range and a smaller X-ray spot (1 µm

full size in both directions). This will provide higher quality data and the possibility

to work on smaller samples. With a spot of this size it will be possible to probe the full

outer core down to the ICB.
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Conclusions

This Thesis consists of a systematic study of the melting curves and the local

structure properties of compressed liquid nickel and cobalt: i.e. 3d metals with im-

portant technological and geophysical implications. The investigation has been car-

ried out with X-ray absorption spectroscopy, coupled with ab-initio calculations. X-

ray absorption spectroscopy, with its short order sensitivity, is a suitable technique to

probe the local structure in condensed matter. The aim of the theoretical calculations

is to validate the melting criterion adopted to define the transition to the liquid phase,

to supply a theoretical radial distribution function that provides a starting point for

the analysis of the liquid and finally to evaluate a theoretical compression to compare

the experimental results with.

The experimental techniques nowadays available for studies of extreme condi-

tions were fully exploited: nano polycrystalline diamond anvils that do not produce

sharp diffraction peaks in the spectra, a laser heating system that allows to reach tem-

peratures up to 4000 K, an X-ray beam that probes a small region of the sample where

the temperature can be considered uniform, and finally a fast detection of the ab-

sorption spectrum that allows to limit the exposure of the sample to the laser. By

combining these technologies it was possible to measure, for the first time with X-ray

absorption spectroscopy, the melting curve of nickel and cobalt, up to 1 Mbar and

4000 K, and the compression of the first neighbour bond.

In the following, the main results obtained in this work will be summarized and

finally the outlook and some general conclusions will be drawn.

Melting curves

The criterion recently adopted to measure the melting curve of iron with X-ray ab-
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sorption spectroscopy was reproposed in this work for nickel and cobalt with the aim

of providing a systematic validation for all the 3d metals showing similar electronic

and crystal structures.

The criterion was validated for nickel, by a FIB and SEM analysis on the recovered

samples, where the difference in the shape of a heated sample that remained solid

compared to one that was molten is noticeable.

The criterion was applied systematically and the melting temperature was de-

tected at several pressures, thus providing the melting curve up to 1 Mbar for the two

materials. The melting curve of nickel measured by XAS is in good agreement with

the one previously measured by XRD, finally proving that the two techniques probe

the same phenomenon. The melting curve of cobalt proposed in this work instead

provides a first experimental measurement performed with an X-ray technique.

The melting curves obtained in this work were compared with the melting curve

of iron measured by XRD, finding a negligible difference between the three at 100

GPa. As a result it is thus possible to state that the presence in the outer core of Earth

of about 5.6 % and 0.27 % in weight of nickel and cobalt respectively, gives a minor

contribution to the determination of the temperature at the inner core boundary.

Therefore the presence of nickel and cobalt can be neglected.

Ab-initio calculations

Ab-initio calculations and simulations of the XANES were performed. Starting

from MD generated atomic supercells XANES were calculated with the aim of pro-

viding an additional validation of the melting criterion adopted. The calculations

confirmed the melting criterion, but they also allow to understand why the detected

changes occur. The disappearance of the shoulder and the flattening of the first two

oscillations in the XANES reflects two related aspects: from an electronic point of

view the structures in the density of the p-states (those that give the recognisable

shape in the K-edge XANES of an fcc or hcp material) smear out in the transition to

the liquid phase. From the point of view of the atomic structure, the cause of the flat-

tening of the oscillations is given by the different environment that surrounds each

absorbing atom in a liquid.

As additional result the evolution of the first neighbour bonds of the liquid under

pressure at 5000 K was calculated from the clusters generated at different pressures.
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Study of the local structure

XAS data were analysed with the aim to measure the first neighbour distance as a

function of the applied pressure, for the liquids along the melting curve. The quality

of the data did not allow to obtain directly from the fit other structural parameters

such as the mean square relative displacement, indication of the static and thermal

disorder, and the coordination number.

The obtained experimental trend of the first neighbour distance compared to the-

oretical calculations shows that the first neighbour bond compresses less than pre-

dicted. This can be due to a bond that at higher pressures becomes more rigid than

foreseen, or to a gradual and slight increase of coordination number.

The volume is calculated from the data and it is compared to theoretical calcula-

tions. From the comparison it is possible to evaluate the coordination number. Our

finding is that the data collected in this work are in agreement with an increase of

coordination number of about 10-20 % for both nickel and cobalt.

Outlook

With this work we made the most of the present experimental techniques avail-

able to investigate two ”model” systems (nickel and cobalt) for structural studies

at extreme conditions. The results are nevertheless not completely satisfying, since

structural factors such as the coordination number cannot yet be extracted directly

from the data but their variation with pressure can only be evaluated a posteriori.

With the Extremely Brilliant Source and the construction of the new branch of the

beamline ID24 some of the constraints that limited this work will be eliminated and

new perspectives for the analysis initiated with this work will be opened.

A beam size of 1 µm full width will allow to extend these investigations to higher

pressures, spanning the full outer core and up to the inner core boundary, with ob-

vious geophysical implications. Moreover a smaller beam size coupled with a fast

scanning will allow to record EXAFS spectra on molten matter with a longer k-range,

less sensitive to changes in the background, thus leading to a more robust data anal-

ysis, which will lead to more accurate structural information and, perhaps, to the

evaluation of thermodynamic parameters such as the melting entropy.

The laser heating system will be improved as well by the insertion of a flat-top

beam shaper and the use of new objectives with higher spatial resolution. The flat-

top beam shaper has the function to transform the circular Gaussian shape of the

infrared laser beam into a circular beam with uniform intensity. The new objectives,
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now in phase of design, will allow to reduce the spatial resolution from few microm-

eters to less than 1 µm.

All of these changes will allow to measure spectra in regions with lower tempera-

ture gradients and to obtain more precise temperature measurements with a smaller

error bar.

In conclusion, with this work we proved that X-ray absorption spectroscopy is a

valuable technique for the determination of the melting curve of 3d metals and their

alloys with fcc or hcp structure before melting. Melting criteria for materials with

different solid structures could be established by following protocols developed in

this work.

X-ray absorption spectroscopy, because of its element selectivity, provides a probe

complementary to X-ray diffraction for the analysis of liquids under extreme condi-

tions. This will be important in the study of multi-element, more complex, systems.

With this work we lay the foundations for the study of more relevant systems such as

Fe alloys with light elements and all iron-containing minerals in our planet. The in-

vestigation of these materials, at relevant pressure and temperature conditions, with

the methods described in this work, will provide valuable knowledge for the under-

standing of the properties of the Earth’s interior, nowadays still obscure.
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Appendix A
Dipole approximation

In this appendix derivation of Equation 2.2 from Equation 2.1 is illustrated. Con-

sidering only the wavefunction of the photoelectron the matrix element can be writ-

ten as

< ψf |ε̂ · ~p ei~k·~r|ψi > . (A.1)

It is known that

[~r, ĤI] =
īh~p

me
.

This can be easily derived writing the Hamiltonian as the sum of potential and kinetic

energy

[~r, ĤI] = [~r, V̂ + T̂] = [~r, V̂] + [~r, T̂].

If we calculate the two terms separately we find

[~r,V(r)]f(r) =~r V̂(r)f(r) – V̂(r)~rf(r) = –~r
Zq2

r
f(r) +

Zq2

r
~rf(r) = 0

and

[~r, T̂] = [~r,
p̂2

2me
] =

1

2me
[~r, p̂2] =

1

2me

(
[~r, p̂]p + p[~r, p̂]

)
.

Where the property of commutators [a, bc] = abc – bac + bac – bca = [a,b]c + b[a, c]

was used.

We derive now the commutator of~r with the momentum operator p̂

[~r, p̂]f(r) =~r p̂f(r) – p̂~rf(r) = –~r īh
∂

∂r
f(r) + īh

∂

∂r

(
~r f(r)

)
=

= –~r īh
∂f(r)

∂r
+ īh

∂~r

∂r
f(r) + īh~r

∂f(r)

∂r
= īh

∂~r

∂r
f(r) = īhf(r)
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hence [~r, p̂] = īh and

[~r, ĤI] =
1

2me
i2̄hp̂ =

īh~p

me
. (A.2)

The momentum operator can then be obtained from Equation A.2 and substi-

tuted in Equation A.1.

< ψf |ε̂ · ~p ei~k·~r|ψi >= –i
me

h̄
< ψf |ei~k·~rε̂ · [~r, ĤI]|ψi >=

= –i
me

h̄

(
< ψf |ei~k·~rε̂ ·~r ĤI|ψi > – < ψf |ĤIε̂ ·~r ei~k·~r|ψi >

)
=

= –i
m

h̄

(
< ψf |ei~k·~rε̂ ·~r Ei|ψi > – < ψf |Ef ε̂ ·~r ei~k·~r|ψi >

)
=

= i
me

h̄
< ψf |ε̂ ·~r ei~k·~r(Ef – Ei)|ψi >= imeωfi < ψf |ε̂ ·~r ei~k·~r|ψi > . (A.3)

Moreover we assume that the wavelength of the electromagnetic radiation asso-

ciated to the transition between different atomic energies is generally much larger

than the size of the atom. This means that ~k ·~r � 1 and thus the exponential term

ei~k·~r can be expanded as 1 + i~k ·~r + ... . The corresponding expansion of Equation A.3

gives the dipole term, the quadrupole term etc.. In the dipole approximation only the

first order is considered leading to

< ψf |ε̂ · ~p ei~k·~r|ψi >∝< ψf |ε̂ ·~r |ψi >

as in Equation 2.2.
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Useful equations

Some of the equations that are commonly used in high pressure physics and that

were used in this work for the interpretation of the experimental results are here

briefly presented.

B.0.1 Simon-Glatzel equation

The Simon-Glatzel equation is an empirical way of describing the trend of the

melting temperature of a solid as a function of pressure. It was proposed for the first

time by Simon and Glatzel in 1929 [144], and since then it described satisfactorily the

melting curves of different substances [125].

It is usually written as
P – P0

a
=
(TM

T0

)c
– 1

where T0 and P0 are the temperature and the pressure of the triple point and a and c

are parameters that depend on the substance. The pressure of the triple point is for

most of the substances very close to zero and thus neglected, making T0 the melting

temperature at ambient pressure.

The formulation used in this work is then

TM(P) = T0 ×
(P

a
+ 1

) 1
c
. (B.1)

B.0.2 Vinet Equation of State

The Equation of State (EOS) is a thermodynamic equation that relates volume,

pressure and temperature of a particular phase of a substance. The effect of pressure
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along an isotherm on a material can be quantified with the Bulk modulus K0 as

K0 = ρ
(dP

dρ

)
T
,

where dρ is the variation of density caused by the variation dP of pressure applied

[39] and from which it is possible to write

P(V) = –K0
V – V0

V0
.

The Bulk modulus, however, is not constant with pressure and a new parameter such

as the pressure derivative of the Bulk modulus K′0 can be introduced for a better de-

scription. Among the EOS available to describe the relationship between P and V that

use parameters such as K0 and K′0 we used the one derived by Vinet [161]. Vinet EOS

already gave good results for several transition metals among which nickel and cobalt

[40] and its formulation is

P = 3K0

( V

V0

)– 2
3
[
1 –

( V

V0

) 1
3
]
exp

{3

2
(K′0 – 1)×

[
1 –

( V

V0

) 1
3
]}

. (B.2)

B.0.3 Clausius-Clapeyron relation

In case of transition between two phases, the Clausius-Clapeyron relation is a way

to relate the slope of a coexistence curve in the pressure-temperature diagram to the

variation of volume and entropy that occur in the transition. In case of transition

between a solid and a liquid phase the coexistence curve is the melting curve and the

variation of volume and entropy are the melting volume ∆Vm = VL – VS and the

melting entropy ∆Sm = SL – SS [124].

The equilibrium between solid and liquid along the coexistence curve can be ex-

pressed imposing the total differential change in Gibbs energy to zero:

dG = (VL – VS)dP – (SL – SS)dT = 0.

The Clausius-Clapeyron relation is:

dTm

dP
=

∆Vm

∆Sm
(B.3)

The melting entropy is generally positive, since the liquid is more disordered than

the solid, which means that some energy has to be absorbed by the system in the

phase transition. In case of negative melting slope the melting volume is then nega-
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tive, meaning that the liquid is denser than the solid.

The importance of the Clausius-Clapeyron relation is that it allows to give a ther-

modynamic description of a system starting from parameters that can be experimen-

tally measured such as the melting volume and the slope of the melting curve.
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List of Abbreviations

AIMD Ab-initio Molecular Dynamics
BSE Bethe-Salpeter Equation
CNA Common-Neighbour Analysis
DAC Diamond Anvil Cell
DICOS Distorted Icosahedral Structures
DOS Density of States
DFT Density Functional Theory
EBS Extremely Brilliant Source
EDS Energy Dispersive Spectrometry
EDXAS Energy Dispersive X-ray Absorption Spectroscopy
EOS Equation of State
EXAFS Extended X-ray Absorption Fine Structure
FIB Focused Ion Beam
FWHM Full Width Half Maximum
ICB Inner Core Boundary
ISRO Icosahedral Short Range Order
LH-DAC Laser Heated Diamond Anvil Cell
LDS Liquid Diffuse Scattering
MCB Mantle Core Boundary
MD Molecular Dynamics
NBSE NIST core-level Bethe-Salpeter Equation
NPD Nano-polycrystalline Diamond
OCEAN Obtaining Core Excitations from Ab-initio electronic structure and NBSE
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PDOS Projected Density of States
PREM Preliminary Reference Earth Model
PTM Pressure Transmitting Medium
QMD Quantum Molecular Dynamics
RDF Radial Distribution Function
RH-LVP Resistively Heated Large Volume Press
RMC Reverse Monte Carlo
SEM Scanning Electron Microscopy
SRO Shord Range Order
XRD X-ray Diffraction
XANES X-ray Absorption Near Edge Structure
XAS X-ray Absorption Spectroscopy
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résumé.
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