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École doctorale n°37

Sciences Pour l’Ingénieur et Microtechniques

Doctorat d’Informatique

par

CITLALLI GÁMEZ SERNA
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N◦ 2 0 1 9 U B F C A 0 0 4





école doctorale sciences pour l ’ingénieur et microtechniques
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Résumé :
Cette thèse de doctorat s’intéresse au suivi
de trajectoire basé sur la perception visuelle
et la localisation en milieu urbain. L’approche
proposée comprend deux systèmes. Le premier
concerne la perception de l’environnement.
Cette tâche est effectuée en utilisant des
techniques d’apprentissage profond pour extraire
automatiquement les caractéristiques visuelles 2D
et utiliser ces derniers pour apprendre à distinguer
les différents objets dans les scénarios de conduite.
Trois techniques d’apprentissage approfondi sont
adoptées : la segmentation sémantique pour
assigner chaque pixel d’une image à une classe, la
segmentation d’instance pour identifier les instances
séparées de la même classe et la classification
d’image pour reconnaı̂tre davantage les étiquettes
spécifiques des instances. Ici, notre système
considère 15 classes d’objets et reconnaı̂t les
panneaux de signalisation. Le deuxième système
fait référence au suivi de chemin numérisé. Dans
un premier temps, le véhicule équipé enregistre
d’abord l’itinéraire avec un système de vision

stéréo et un récepteur GPS (étape d’apprentissage
ou numérisation du chemin). Ensuite, le système
proposé analyse hors ligne la trajectoire GPS et
identifie exactement les emplacements des courbes
dangereuses (brusques) et les limitations de vitesse
via les données visuelles. Enfin, une fois que
le véhicule est capable de se localiser lui-même
durant la phase de suivi de chemin, le module de
contrôle du véhicule piloté avec notre algorithme
de négociation de vitesse, prend en compte les
informations extraites et calcule la vitesse idéale
à exécuter. Grâce aux résultats expérimentaux des
deux systèmes, nous prouvons que le premier est
capable de détecter et de reconnaı̂tre précisément
les objets d’intérêt dans les scénarios urbains, tandis
que le suivi de trajectoire réduit significativement
les erreurs latérales entre le trajet appris et le
trajet parcouru. Nous soutenons que la fusion
des deux systèmes améliorera le suivi de chemin
pour prévenir les accidents ou assurer la conduite
autonome.

Title: Towards Visual Urban Scene Understanding for Autonomous Vehicle Path Tracking using GPS
Positioning Data
Keywords: Autonomous driving, Environment perception, CNN, Semantic segmentation, Instance
segmentation, Image classification, Traffic signs, Curvature estimation, Path tracking, Lateral control.
Abstract:
This PhD thesis focuses on developing a path
tracking approach based on visual perception and
localization in urban environments. The proposed
approach comprises two systems. The first one
concerns environment perception. This task is
carried out using deep learning techniques to
automatically extract 2D visual features and use
them to learn in order to distinguish the different
objects in the driving scenarios. Three deep learning
techniques are adopted: semantic segmentation
to assign each image pixel to a class, instance
segmentation to identify separated instances of the
same class and, image classification to further
recognize the specific labels of the instances.
Here our system segments 15 object classes and
performs traffic sign recognition. The second system
refers to path tracking. In order to follow a path, the
equipped vehicle first travels and records the route

with a stereo vision system and a GPS receiver
(learning step). The proposed system analyses
off-line the GPS path and identifies exactly the
locations of dangerous (sharp) curves and speed
limits. Later after the vehicle is able to localize
itself, the vehicle control module together with our
speed negotiation algorithm, takes into account the
information extracted and computes the ideal speed
to execute. Through experimental results of both
systems, we prove that, the first one is capable to
detect and recognize precisely objects of interest in
urban scenarios, while the path tracking one reduces
significantly the lateral errors between the learned
and traveled path. We argue that the fusion of both
systems will ameliorate the tracking approach for
preventing accidents or implementing autonomous
driving.
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CONTEXT AND PROBLEMS
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1
INTRODUCTION

1.1/ BACKGROUND

Since the last century, automated driving has been one of the research topics that industry

and academia have focused on due to the advantages it can provide. Among them are :

— Safety. Reduce the number of accidents cause by human errors.

— Efficiency. Increase the transport system efficiency while reducing traffic jams and

transportation time.

— Environmental impacts. Decrease energy consumption and vehicle emissions due

to the transportation efficiency.

— Comfort. Allows the user to do something else than driving.

— Social inclusion. Enables mobility for everyone, including the elderly and handicap-

ped people.

The first idea dates back to the 1930s when the General Motors (GM) Corporation had an

exhibition about self driving cars. Later, during the 1950s, GM implemented an automatic

system for speed control and variable spacing [2]. The cars with such systems were

able to navigate on highways with the use of receivers able to detect special circuits

installed in the road. Nevertheless, due to intrusive infrastructure modifications and to the

limited drivable area, other parties were motivated and joined the research in the field.

With the advances in imaging sensors and computer capabilities, in Japan 1977, the

MITI’s Mechanical Engineering Laboratory was able to control automatically the vehicle’s

steering wheel with the use of binocular machine vision at 30 km/h [5]. However, it was

until 1987, when Ernst Dickmanns achieved an important milestone with the VaMoRs

vehicle [14] (see Fig. 1.1), a Mercedes-Benz van modified to control the steering wheel,

throttle, and brakes through computer commands based on image sequences. VaMoRs

van demonstrated to be the first car being able to drive by itself with computer vision

3



4 CHAPITRE 1. INTRODUCTION

FIGURE 1.1 – VaMoRs vehicle and a view of its interior. 1

guidance at speeds up to 96 km/h in highway. Since then, computer vision has been

adopted to perceive the environment for autonomous vehicles.

Subsequently to Dickmanns breakthrough, numerous efforts by academia and automo-

tive industry have been made around the world to construct a vehicle with high level

of autonomy. The Defense Advanced Research Projects Agency (DARPA) Challenges

[30, 26, 46] were the most important events that push many research teams to build dri-

veless vehicles facing real scenarios. For the first DARPA grand challenge, launched in

2003 to navigate 142 miles through the Mojave desert, 107 teams were registered and

15 raced, but none of the cars navigated more than 5% of the course. Because of that,

the grand challenge was repeated in 2005 with 195 teams registered, racing 23, and this

time having a winner, the Stanford’s robot car ”Stanley”. Due to this success, the DARPA

urban challenge [46] was organized in 2006 to drive 97 km in a urban environment in-

teracting with other moving vehicles and obeying the California Driving Handbook. In

this challenge, 89 teams were registered from which only 11 were selected to compete.

The winner of the urban challenge was a vehicle named ”Boss” developed by the Tar-

tan Racing Team composed of students, staff and researches from several organizations

including Carnegie Mellon University, General Motors, Caterpillar, Continental and Intel.

Motivated by the DARPA challenge results, many research groups continued improving

their vehicles, leading to progressions in the field and emerging companies. Up to date,

some of the projects already implemented, the ones in progress and future estimations

can be seen in Fig. 1.2.

Nonetheless, in order to standardize a common definition of what is considered autono-

mous, in 2014, the Society of Automotive Engineers (SAE) defined 5 levels of vehicle

automation to bring better clarity and use them as a standard classification tool [97]. This

definition was based on the earlier work made by the US Department of Transportation’s

1. https ://medium.com/twentybn/germany-asleep-at-the-wheel-d800445d6da2
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2016-2018

FIGURE 1.2 – Autonomous vehicles : adoptions and applications extracted from the report
study [176].

National Highway Traffic Safety Administration (NHTSA) in 2013, which defined 4 levels

having an extensive definition for the last one. Regarding the European Union, the Ger-

man Federal Highway Research Institute (BASt) issued as well 5 levels [70]. A summary

of the 3 notations is expressed in Table 1.1. This thesis will refer to the SAE’s notation

when talking about the different levels.

To this end, we know that some Advanced Driver Assistance Systems (ADAS) already im-

plemented in commercial vehicles like Adaptive Cruise Control, Lane-Keeping Assist and

Automatic Emergency Braking, correspond to level 2 since the system is able to control

the steering or speed based on sensor measurements like distance or visual lane recog-

nition. Moreover level 3 vehicles are able to perceive the environment and operate under

certain conditions, but require the driver to stay alerted in case of an unexpected event

that will require to take over the control. Currently, in our knowledge, some commercial

vehicles have reached level 3 (Tesla, Audi), but the only one promoted in the market with

this level, is the Audi A8 with its AI Traffic Jam Pilot 2. Level 4 vehicles already exist (taxis,

low-speed shuttles) but are pilot projects restricted to operate under certain conditions

(areas, weather, speeds) and analyzed with continuous test evaluations to prove their

efficiency. SAE level 5 vehicles will not have operational restrictions and will be able to

navigate anywhere at any time.

2. https ://www.youtube.com/watch?v=WsiUwq M8lE&feature=youtu.be
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TABLE 1.1 – BASt, NHTSA and SAE levels of driving automation. System refers to the
driver assistance system, combination to driver assistance systems, or automated driving
systems, as appropriate.
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mance
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(driving
modes)
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0 0
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the fulltime performance by the human
driver of all aspects of the dynamic

driving task, even when enhanced by
warning or intervention systems

Human Human Human n/a

A
ss

is
te

d

1 1
Driver As-
sistance

the driving mode-specific execution by
a driver assistance system of either
steering or acceleration/deceleration
using information about the driving

environment and with the expectation
that the human driver perform all
remaining aspects of the dynamic

driving task

Human
and

System
Human Human

Some
driving
modes

P
ar
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lly
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to

m
at

ed

2 2
Partial Au-
tomation

the driving mode-specific execution by
one or more driver assistance systems

of both steering and
acceleration/deceleration using

information about the driving
environment and with the expectation

that the human driver perform all
remaining aspects of the dynamic

driving task

System Human Human
Some
driving
modes

H
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y

au
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m
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3 3
Conditional
Automa-
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the driving mode-specific performance
by an automated driving system of all
aspects of the dynamic driving task
with the expectation that the human
driver will respond appropriately fo a

request to intervene

System System Human
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driving
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3/4 4
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the driving mode-specific performance
by an automated driving system of all
aspects of the dynamic driving task,

even if a human driver does not
respond appropriately to a request to

intervene

System System System
Some
driving
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3/4 5
Full Auto-

mation

the full-time performance by an
automated driving system of all

aspects of the dynamic driving task
under all roadway and environmental
conditions that can be managed by a

human driver

System System System
All dri-
ving
modes

1.2/ PROBLEM DEFINITION

In order to understand what problems the research community is facing to achieve level

5 (full automation), we need to briefly introduce how automated vehicles work, the status

of these technologies until now and the future plans to make the dream come true.
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Environment Vehicle 
Actuators

Vehicle Control

Decision 
MakingPath Planning

Localizaon 
and Mapping

Environment 
Percepon

Sensors

FIGURE 1.3 – Overview of the autonomous navigation process. Light blue blocks indicate
the five main components for autonomy. The light blue blocks with additional dotted boxes
make reference to the components this thesis focus on for contributions.

The system architecture of autonomous vehicle navigation comprises five main compo-

nents (light blue blocks in Fig. 1.3) : Environment perception, Localization and Mapping,

Path Planning, Decision Making and Vehicle Control [185]. Environment perception re-

quires to interpret the vehicle’s surroundings with the use of several sensors measure-

ments ; in other words, it needs to detect and quantify all relevant elements in the envi-

ronment similar to how humans do. Localization and Mapping has the function to locate

the vehicle globally and locally regarding a reference point and to map the perceived en-

vironment with the sensor information. Once the vehicle knows what is around and where

it is, the Path Planning module requires to calculate the possible routes to navigate safely.

From all the proposed outputs from the Path Planning module, the Decision Making mo-

dule needs to choose the optimal one taking into account the perceived information and

respecting driving rules. Then, the vehicle control module will compute the appropriate

acceleration and steering wheel angle commands to pass them to the vehicle actuators

to follow the chosen route.

The five components just described, make reference to an automated vehicle able to

perceive the environment, make decisions and execute the appropriate commands in

a continuously manner all by itself. The final aim in this field, is to reach level 5 (full

automation) providing safety not only for the passenger, but for every agent involved in

the driving scenario. The current state of the art have reached level 3 for commercial

vehicles and level 4 for some companies pilot projects (refer to [185] for a more detailed

and comprehensive overview).
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In the efforts to demonstrate the advantages of automated vehicles, even with a driver

behind the steering wheel, several accidents (comprising the leading companies Google,

Tesla, Uber, Navya) have initiated concerns regarding the technology’s limitations, reliabi-

lity, appropriate driving scenarios, and the drivers’ understanding and capability of using

the technology safely [164]. Most of the incidents, either involved error on the part of

the other driver, or failures in perceiving the environment and/or driver not responding in

time 3 4.

Considering that the only possible changeable factor to reduce the number of accidents

involving automated vehicles, is to improve the environment perception module. Sensing

correctly everything in the driving scenarios is of vital importance and one of the main

goals for autonomous driving that researchers are working with. This issue, when solved

properly, will allow automated vehicles to pass from level 4 (high automation) to level 5

(full automation). For this reason, the perception module requires an enormous increase

in robustness to be able to handle complex environments and situations not only in high-

ways, but also in urban scenarios.

Furthermore, as the automated vehicle’s navigation also relies on a priory digital map for

environment perception of certain elements like speed limits, road geometry or driving

directions ; if the digital map is out of date and contains erroneous or missing informa-

tion, the vehicle behavior might result in dangerous maneuvers. For the Vehicle Control

module, this information is crucial in order to be able to calculate the right commands

(acceleration/deceleration, steering angle) and control the lateral and longitudinal move-

ments properly following as close as possible the chosen path (route). Therefore, if digital

map is not available and neither the GPS information to localize the vehicle position, the

perception module will need to provide sufficient information to the following modules to

navigate a safe route.

The importance of road geometry, speed information and detection of other relevant

agents in the environment, were the main motivations for the work in this thesis to per-

form path tracking. The dotted light blue blocks in Fig. 1.3 illustrate the modules we will

focus on for contribution. Although most of the works in the literature make used of fusing

sensory information [174], the work presented here will focus on the most available com-

mercial sensors : camera for the environment perception and GPS receiver to locate and

record the pathways to follow for the vehicle control module.

3. https ://www.digitaltrends.com/cool-tech/most-significant-self-driving-car-crashes/
4. https ://www.theverge.com/2017/11/8/16626224/las-vegas-self-driving-shuttle-crash-accident-first-day
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1.3/ OBJECTIVES

With the aim of improving path tracking in urban scenarios using vision and GPS receiver

as the main sensors, our research addresses the following topics :

— Vision-based environment perception through semantic segmentation.

— Visual object detection and classification of potential objects of interest like traffic

signs.

— Path tracking by the means of vehicle control analyzing the road geometry and

speed limits.

We focused on vision-based perception for the simple reason that vision is the main

sense used by human drivers to perceive the environment. The final goal of its use, is to

emulate it and if possible, improve it. Therefore, using cameras to capture the real world

through images and applying computer vision techniques to analyze them, is crucial for

autonomous driving technologies. GPS, on the other hand, provides global localization

of the vehicle and is used for drawing the recorded path in a map to later use it for path

tracking.

As mentioned earlier, the contributions of this thesis make reference to two modules of

the autonomous vehicle (Fig. 1.3) : environment perception and vehicle control. We enu-

merate our objectives in the following :

1. Due to the lack of public information regarding French urban scenarios, the first ob-

jective is to construct the necessary datasets to work with. A dataset called UTBM-2

is proposed which includes visual and GPS information. The images are labeled in

a per-pixel manner with 27 semantic classes and 10 instance ones. Such data-

set is proposed for evaluating path tracking, semantic and instance segmentation

approaches. A second dataset, comprising European traffic signs, is proposed to

perform classification tasks. This dataset contemplates a standard common defini-

tion of traffic signs to categorize them according the Vienna Convention on Road

Signs and Signals [1]. The purpose of this dataset was to deal with intraclass va-

riability for European traffic signs and be able to classify them robustly after the

perception module identifies them. In order to evaluate traffic sign detection in a

well known benchmark considering all possible traffic signs in urban scenarios, an

extended version of the German Traffic Sign Detection Benchmark (GTSDB) [83]

was proposed. This third proposed dataset was labeled with masks of all the mis-

sing traffic signs. The three proposed datasets are important as they will be used
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later to achieve other objectives.

2. The second objective is to perform accurate path tracking. This task required the

evaluation of multiple control algorithms to find the advantages and drawbacks for

each tested method. Based on the results, we proposed to include road geometry

and speed information to improve lateral errors for the vehicle control based on GPS

information. Our proposed inclusion module for the vehicle control system considers

GPS information, creates a speed limits dataset and extracts sharp curved regions

to perform path tracking.

3. Furthermore as the vision is necessary to perceive the environment, the third objec-

tive is to detect all objects of interest in the driving scenario. These objects include

the road, lane markings, pedestrians, cyclists, traffic signs, traffic lights, crosswalks

as well as cars, trucks and buses. In this thesis, we proposed a system that com-

bines semantic segmentation approaches to detect the environment, with instance

segmentation to localize individual instances of certain classes for further classifi-

cation. The proposed system follows a strict data flow and filters to provide a good

representation of the environment.

4. The fourth objective is to classify the individual instances of the traffic sign class.

Here we proposed a Convolutional Neural Network architecture (CNN) to perform

traffic sign classification which is included in the general environment perception

system.

1.4/ THESIS ORGANIZATION

We will like to remark the reader that all the objectives mentioned above, were implemen-

ted not necessarily in the order they were described, but for comprehension reasons, we

will present them following the organization given below.

Chapter 2 introduces the three proposed datasets constructed for French environment

perception, path tracking, traffic sign detection and classification of text and symbol signs.

Each dataset is used for evaluation in the rest of the thesis chapters.

In Chapter 3, we perform traffic sign classification with our proposed CNN architecture

called Class CNN, and evaluated it with the proposed European traffic sign dataset. We

introduce this contribution first, as vehicle control requires the visual recognition of speed

limit signs and because this classifier will be included after the traffic sign detection is

performed.
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Chapter 4 is considered as the main heart of this thesis. Here we present a system

proposal composed of two modules to perceive visually the objects of interest in the

driving scenarios. The system is capable of segmenting the object regions (semantic

segmentation module) while at the same time classifying individual traffic sign instances

with the proposed CNN classifier presented in Chapter 3 (traffic sign recognition module).

Each module is evaluated separately with the proposed UTBM-2 dataset, but their outputs

are fused to provide a final image representation.

While the final contribution chapter dedicated to path tracking, Chapter 5, is presented

at the end, its implementation was performed at the beginning of my research work. To-

wards a general overview of path tracking considering both GPS and visual information,

the proposed control system is discussed at last. Nevertheless, due to lack of time, our

contributions relate only to GPS signal analysis. The proposed vehicle control system

handles road geometry and speed information to provide accurate path tracking respec-

ting speed limits according to the French traffic zone rules.

Chapter 6 concludes this thesis and specifies the possible research directions to amelio-

rate this work.
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2
PROPOSED DATASETS

2.1/ INTRODUCTION

Diverse and large scale datasets [106, 127, 116] have been proposed for supervised

learning tasks in computer vision. Depending on the problem, there are different types

of labeled datasets. However, regarding autonomous driving, the existing datasets are

limited to certain scenes, sizes, complexity, annotation type and geographic distribution

[45, 78, 79, 83, 135, 166].

As we will focus on scene understanding, particularly for French urban scenes, we re-

quire databases that fit this requirement. Apart from the Stereopolis dataset [52], which

provides only information for traffic signs detection ; there is not many material to work

with. To overcome such limitations, we proposed two datasets : one designed for clas-

sifying traffic signs and, another one for identifying every object in the scene (including

drivable areas, static and moving objects). Additionally, a third dataset is proposed for

the detection of German traffic signs. This last dataset was introduced for evaluation pur-

poses and comparison with other approaches.

In this chapter, we explain how the datasets proposed are constructed with the goal to

contribute in some research areas with new challenges, and to use them for evaluation in

our work.

We will start describing a dataset for traffic sign classification (ETSD) to continue with

another one created for semantic and instance segmentation approaches (UTBM-2). The

aforementioned one is created with the purpose of categorizing every object in a French

urban scene (environment perception). Lastly, we will introduce the extended version of

the GTSDB[83], a proposed dataset for traffic sign detection focused on 164 text and

symbol traffic signs classes.

15
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FIGURE 2.1 – Intraclass variability examples of European traffic signs.

2.2/ EUROPEAN TRAFFIC SIGNS DATASET (ETSD)

2.2.1/ INTRODUCTION

Traffic signs provide crucial visual information in order to understand the proper driving

conditions [187]. For example, they inform about speed limits, drivable lanes, obstacles,

temporary situations, roadway access, restrictive areas, etc. Reasons why they are de-

signed to be easily detectable, recognizable and interpretable by humans [79]. Standard

shapes, colors, pictographs and text are used to define their meaning.

Nevertheless and besides the efforts to standardize traffic signs [1], there exists inter

and intra variability between countries and between classes for specific traffic signs. For

example, the inter variability is mostly seen between countries that do not follow a com-

mon convention [77], while intra variability is perceptible among places which agreed to

follow one. In Europe, the Convention on Road Signs and Signals [1] established the com-

mon sizes, shapes and colors to be used but allows each country to choose its own sym-

bols and inscriptions. Fig. 2.1 illustrates some examples of intra class variability where

it can be seen that symbols do not only vary between countries but also inside each of

them. Regarding the last issue, Croatia and France (Fig. 2.1 second row) use 2 sym-

bols for pedestrian crossing sign in Danger category while Belgium has speed limit signs

with and without adding the Km inscription. Germany also uses 2 different symbols in the

pass-right class which belongs to Mandatory category (Fig. 2.1 fourth row). At the same

time, the background color in some categories can vary as defined in [1]. For example,

Croatia uses the two possible colors (yellow and white) for danger and prohibitory signs

(Fig. 2.1, first and third rows) while the other countries stick to only one.

Due to the needs of a standard and more complete definition of traffic signs in Europe, we
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FIGURE 2.2 – European Traffic Sign Categories Definition. From left to right : main cate-
gory, subcategories and most common shapes.

introduce a real-world dataset for traffic signs classification. The proposed ETSD dataset

contains more than 80,000 images divided in 164 classes, which at the same time belong

to 4 main categories following the Vienna Convention of Road Signs [1] (see Fig. 2.2).

At the same time, our dataset deals with intra variability of classes (small variations of

symbols or text for a class) which in our knowledge, not many studies have addressed.

The Dataset is composed of traffic sings from 6 European countries : Belgium, Croatia,

France, Germany, Netherlands and Sweden. It gathers public available datasets and com-

plements French traffic signs with sequences recorded in Belfort (France) and surroun-

dings during Spring and Summer in 2014, 2015 and 2018. The sequences are composed

of urban and rural environments and cover daytime and sunset conditions. The public da-

tasets are composed of different scenarios (urban, rural, highway) mostly captured during

daytime.

In the following subsections, a description of the standard data definition for the propo-

sed dataset is provided to follow with, the acquisition procedure made to complement

French traffic signs and be able to use the dataset for French urban scenarios. In the last

subsection, we will describe the final composition of our proposed ETSD dataset.

2.2.2/ DATA DEFINITION

In order to standardize traffic signs, a lot of efforts have been made since 1909 to establish

a common structure. Yet, in 1968 in Vienna, the United Nations Economic Commission for
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FIGURE 2.3 – Examples of French directional signs.

Europe (UNECE) established the Convention on Road Signs and Signals which entered

into force on 1978 [1]. Currently, 62 countries follow it with small variations in colors,

pictographs and text.

The proposed dataset is divided into 4 relevant categories and subcategories (see Fig.

2.2) following the Vienna Convention on Road Signs and Signals [1] :

1. Danger warning signs. Warn road-users of a danger on the road and inform them

of its’ nature.

2. Regulatory signs. Inform road-users of special obligations, restrictions or prohibi-

tions with which they must comply.

3. Informative signs. Guide road-users while they are traveling or provide them with

other information which may be useful.

4. Others. Added class to inform road-users about important situations.

Regulatory and informative categories have subcategories that other datasets have consi-

dered for defining their traffic signs classes [79, 157]. For example, the German Traffic

Sign Recognition Benchmark (GTSRB) [79] divided the traffic signs in 3 categories : 1)

Danger, 2) Prohibitory, 3) Mandatory, and, include Other as a irrelevant category. Cate-

gories 2 and 3 belong to the Regulatory category defined in the Vienna Convention.

As we will explain in the following subsection, most of the public available datasets in-

clude only Danger or Mandatory signs. In the contrary, our proposed dataset considers a

complete definition (including Informative signs) for traffic sign classification. The reason

behind this, resides on facilitating the tedious task to recognize traffic signs which are

not only composed of standard shapes with pictographs, but also to be able to recognize

more complex signs for later interpretation. Directional signs are an example of that. They

are composed with text and shapes to indicate certain direction (Fig. 2.3).

At the same time, additional panels provide complementary information to interpret traffic

signs correctly. The broad selection of traffic signs resulted in 164 classes shown in Fig.
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2.4.

A CSV file describing class names together with their categories and subcategories they

belong to, is provided upon request together with the respective European dataset. In

the following subsections (2.2.3 and 2.2.4), we provide more information about how our

proposed dataset was built.
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(b) Regulatory - Priority

(a) Danger warning signs

FIGURE 2.4 – Random representation of the 164 classes in
the European traffic sign dataset.
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2.2.3/ DATA COLLECTION - UTBM DATASET

We used the equipped vehicle of the UTBM laboratory to capture several sequences of

images around university campus. The vehicle is equipped with multiple sensors (see Fig.

2.5) : a Bumblebee 3D stereo vision camera mounted on the top, a Real Time Kinema-

tic (RTK) GPS sensor and several Light Detection and Ranging (LIDAR) devices. Data

collection with the Bumblebee camera was performed with automatic exposure control

and a frame rate of 16 fps. The sequences are captured during daytime covering urban

environments with a resolution of 1280×960 pixels. Images for annotation were chosen

every 3.5 meters.

FIGURE 2.5 – Equipped UTBM car.

In addition to the previous sequences, we captured images in the surroundings of Bel-

fort with a conventional Canon Eos M camera with automatic exposure and focusing

point. Driving scenarios cover urban and rural environments. The resolution of the video

is 1920×1080 pixels at a frame rate of 24 fps. Images for annotation were chosen every

6 fps.

Data annotation was performed using the Training Image Labeler tool from MATLAB (see

Fig. 2.6). Regions of interest of all seen traffic signs are labeled manually, cropped and

saved in PPM file format.
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FIGURE 2.6 – Screenshot of the Matlab Training Image Labeler tool used for the manual
annotation.

Every labeled sequence was recorded on a single tour in different days and places. Some

sequences were recorded several times at different seasons and lighting conditions, this

with the aim to include variance in the image dataset. All the recordings belong to France

subset dataset.

Details about the number of images and traffic signs labeled will be provided in the next

subsection, together with the other datasets.

2.2.4/ DATA ORGANIZATION

ETSD gathers public available datasets from 6 countries : Belgium with the KUL Belgium

Traffic Signs dataset [111], Croatia with MASTIF datasets [57], France with the Stereo-

polis dataset [52, 78], Germany with the well-known German TSR Benchmark (GTSRB)

[79], Netherlands with the RUG Traffic Sign Image Database [16] and Sweden with the

Swedish Traffic Signs Dataset (STS dataset) [61].

In order to complement the already provided classes and add the missing ones (signs

from Informative and Other categories), we labeled the German Traffic Signs Detection

Benchmark (GTSDB) [83] and the RUG [16] datasets.

A detailed description of the traffic signs per dataset is given below :

1. Belgium. KUL Belgium Traffic Signs dataset [111] is a dataset for classification

where each image represents a sign with 10% offset. They are cropped according

to the ground truth information to obtain only the Regions of Interests (RoIs). The

original dataset is divided into 62 classes with 4,561 images for training and 2,528

images for testing. For the proposed ETSD dataset, its class 35 was divided into
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3 classes (3 Mandatory signs), class 32 was divided into 6 classes (6 Prohibitory

signs) ending up with 69 European classes.

2. Croatia. MASTIF datasets [57]. There are 3 datasets collected in different years

(2009-2011). Each sign was annotated 4-5 times at different distances from the car.

In order to distinguish images from each dataset, we put as prefix the dataset year

for each image name.

1. 2009. It was the richest classification dataset containing 6,423 signs already

representing the RoIs. This dataset is composed of 97 classes from which we

divided ”b31” class into 7 prohibitory classes, merged 19 classes into 6 and

dropped 2, resulting in a total of 88 classes with 6,411 signs for our dataset.

2. 2010. It is a detection dataset composed of 3,862 images of resolution

720×576 pixels. Signs were cropped according to the ground truth obtaining

5,184 RoIs divided into 88 classes. We separated ”A17” class into 2 dange-

rous classes, ”b31” into 5 prohibitory classes, merged 18 classes into 4 and

dropped 1 class. The total number of classes resulted in 68 in our dataset.

3. 2011 dataset provides 1,013 images with the same resolution as in 2010 data-

set. 1,429 traffic signs were cropped and distributed into 53 classes according

to the ground truth. We divided ”b31” class into 2 prohibitory classes, ”c35”

into 2 Special Regulation classes, ”e19” into 2 Additional Information classes

and merged 12 classes into 2. A total of 41 classes emerged for our European

dataset.

3. France.

1. Stereopolis dataset [52, 78] includes images acquired in Paris, France, grab-

bing a picture every 5 meters. It is made of 847 images of resolution 960×1080

pixels. We cropped the traffic signs with the ground truth provided and obtai-

ned 271 road signs divided into 10 classes. We split ”a13a” class into 2 Danger

classes and ”b6a1” into 2 Prohibitory classes resulting in 12 classes for our da-

taset.

2. UTBM dataset is composed of 86 classes with 2,631 signs. Image resolution

varies as described in Section 2.2.3. A total of 1,863 images were labeled com-

prising 4 sequences captured with the Bumblebee camera and 6 sequences

with the Canon Eos M.

4. Germany.



24 CHAPITRE 2. PROPOSED DATASETS

1. GTSRB [79] dataset contains a total of 51,839 images comprising 43 classes.

The training and testing sets were used for our European dataset as their ori-

ginal definitions.

2. GTSDB [83] dataset comprises 900 full images with a resolution of 1360×1024

pixels. Originally 43 classes are labeled according to GTSRB, but we extended

the dataset labeling manually with RoIs the sings not considered in the image.

We obtained 1,187 RoIs composed of 46 additional classes. In total, we ob-

tained 89 classes for our dataset (46 labeled classes + 43 original classes).

We named these images with the prefix ”GTSDB ” followed by a unique index

number.

5. Netherlands. RUG Dataset [16] contains 48 images of size 360×270 pixels in PNG

format. Originally, the dataset was used to classify 3 classes (pedestrian crossing,

compulsory for bikes and intersection). We labeled all traffic signs seen including

the 3 classes as no ground truth is provided. 75 signs belonging to 12 classes were

cropped and saved with the prefix ”neth ” followed by a unique number.

6. Sweden. STS Dataset [61] provides 2 sets (Set1 and Set2) with a total of 3,777

images labeled manually with RoIs. 6,363 signs were extracted from the ground

truth full images divided into 19 classes. We separated class ”OTHER” into 34

classes. We named the new signs with the prefix ”set1 ” and ”set2 ” followed by

a unique index for each corresponding set.

The naming convention used for each sign is as follows : X originalName.ppm Where X

is replaced with a ”B” for Belgium, ”C” for Croatia, ”F” for France, ”G” for Germany, ”N”

for Netherlands and ”S” for Sweden. We provide a CSV ground truth file to reference the

given names with the original files in the necessary cases.

Traffic sign sizes vary between 6 and 780 pixels w.r.t the longer edge. Bounding boxes

are not necessarily squared due to the nature of the traffic signs. Our final dataset takes

care of intra class variability, as can be seen in Fig. 2.7, comprising 82,476 signs with 164

classes. We split the dataset into training and testing considering 70 - 30 % ratio only in

the cases where the class contains at least 10 signs. If the class contains less than 10, we

consider 100% for training. Fig. 2.8 illustrates the distribution by category of the classes

with less than 10 signs. Moreover, we carefully selected random images per country for

testing. In this way, we make sure the testing phase validates the accuracy for European

signs and not for a specific country. The training and testing sets are ordered by class.

Table 2.1 shows a summary of the classes and images considered for training and testing

per country.
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FIGURE 2.7 – Examples of some classes that contain intra class variability. Letters in
the images are the initial of the country name they belong to. For example, B stands for
Belgium, C for Croatia, etc.

FIGURE 2.8 – Number of classes per category with less than 10 signs.

It is important to mention that even though the dataset is unbalanced as seen in Fig.

2.9 (with some classes containing less than 10 images), the purpose of its definition was

to expand and establish a common notation for traffic signs classification based on the

Vienna Convention [1]. The aforementioned will allow future researchers to contribute

with more data in some categories or specific classes.
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TABLE 2.1 – Relation of classes and total number of traffic sings by country.

Country Dataset
Original European Training Testing Total

classes classes images images images

Belgium KUL 62 69 4561 2528 7089

Croatia MASTIF-2009 97 88 4568 1843 6411

MASTIF-2010 88 68 3694 1490 5184

MASTIF-2011 53 41 1037 389 1426

France Stereopolis 10 12 203 68 271

UTBM 86 86 1878 753 2631

Germany GTSRB 43 43 39209 12630 51839

GTSDB 43 89 859 328 1187

Netherlands RUG 3 12 58 17 75

Sweden STS-Set1 19 52 2092 829 2921

STS-Set2 19 52 2409 1033 3442

FIGURE 2.9 – Number of images grouped by category and sub-category of the proposed
European dataset.

ETSD contains images that deal with occlusions, different lighting conditions, motion blur,

human made artifacts and perspectives (see Fig. 2.10). Although, it does not contain

signs captured during night or extreme weather conditions, data-augmentation is a well-

known and applied technique in the literature for classification tasks to generate data and

reduce the effect of over-fitting [158, 182]. Normally, the synthetic images are generated

applying different transformations, simulating dark or bright scenarios, adding noise, blur,

etc. to compensate the lack of information and avoid data collection and labeling. In this

way, if data-augmentation is applied, we can say that our proposed dataset possesses

the necessary characteristics as illustrated in Fig. 2.10 to consider it more exhaustive for
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classification tasks.
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FIGURE 2.10 – Examples of challenging signs

2.2.5/ CONCLUSIONS

We proposed a traffic sign European dataset which deals with intra-class variability from 6

countries (Belgium, Croatia, France, Germany, Netherlands and Sweden). Such charac-

teristic is a crucial aspect for Advanced Driver Assistant Systems (ADAS) or autonomous

vehicles when driving from one country to another, since a classifier does not perform pro-

perly when traffic signs (pictographs or text) are slightly different from each other [158]. In

Europe, this is a vital issue considering that countries are relatively close to each other.

For this reason, defining a traffic sign dataset that contemplates the aforementioned pro-

blem, conducts our work to make an important contribution for intelligent vehicles.

Interestingly, no matter how many conditions our proposed European dataset considers

(Fig. 2.10), there will always be hard situations for the classifiers to learn. In order to over-

come this issue, image processing techniques can be used to enhance the visibility of an

image and data-augmentation can be applied to improve the learning process generating

more samples with different transformations.

The nature of Information category classes (classes based on text and with very different

aspect ratios) makes them hard to learn since, as they contain text that varies depending

on the country, the appearance is always different. This category was proposed in the

dataset with the aim to allow other researchers to choose the signs they are interested

in and provide data to solve other complex tasks like text recognition and interpretation.
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At the same time, it can open new horizons to interpret correctly the traffic signs when

additional panels (Informative subcategory) are located below a traffic sign.

2.3/ UTBM-2 - A SEMANTIC AND INSTANCE SEGMENTATION DATA-

SET

2.3.1/ INTRODUCTION

Visual scene understanding is one of the main goals of ADAS or autonomous vehicles

[119]. It requires visual data analysis in order to interpret the traffic agents and make

the right driving decisions. This visual analysis requires the recognition of relevant scene

object categories as well as locating and enumerating them. Most of the time, the scene

understanding is performed through deep learning approaches which need a substantial

amount of annotated data and computational resources to achieve it in real time [166].

The image scene analysis can be performed directly by detecting certain objects (object

detection) and finding their locations with bounding boxes and their instances [99, 117,

126, 99, 143], categorizing each pixel in the scene (semantic segmentation) [175, 141,

123, 114], or a combination of both (instance semantic segmentation). The last approach

detects individual objects and identifies the specific pixels which belong to the object class

[162, 136].

Numerous efforts have been carried out in the design and creation of street level datasets

to facilitate the complex visual understanding task. Some examples of such datasets are

CamVid [45], Kitti Vision Benchmark Suite [82], Cityscapes [135], Leuven [35], Daimler

Urban Segmentation [89] and Mapillary Vistas [166]. Nevertheless, some datasets are li-

mited to the number of images, classes, geographic distribution, appearances and image

size. As our objective is concerned with French urban scenarios to recognize specific

classes like road, pedestrians, cars, traffic lights, traffic signs, lane markings and cross-

walks ; we proposed a new ground truth dataset called UTBM-2 which allows quantitative

evaluation for recognition, detection and segmentation approaches.

We first describe the specification of the dataset regarding the acquisition and charac-

teristics. Then, the labeling procedure is explained to continue with the data division for

training and testing sets. The dataset is constructed in different formats for compatibility

with other datasets. In the last subsection, we summarize the characteristics and advan-

tages of our UTBM-2 dataset.
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2.3.2/ DATA SPECIFICATIONS

The UTBM-2 dataset belongs to a video sequence recorded by Qiao et al. [125] in Belfort,

France. The sequence was captured with the equipped vehicle of the UTBM laboratory

around university campus. Images were captured with Bumblebee stereo vision camera

with automatic exposure control and a frame rate of 16 fps. The outputs are 3 RGB images

corresponding to left, center and right cameras. Each 8 bit image was rectified using the

estimated intrinsic parameters obtained with the method [11].

Additionally, every image is associated with a geographical position captured by the Real

Time Kinematic (RTK) GPS sensor. In this way, a precise location of the images is stored

for localization purposes.

UTBM-2 sequence has the following characteristics :

— It was captured during daytime representing typical French urban environments.

— Image resolution is 1280×960 pixels.

— Images for annotation were chosen from the left camera every 3.5 meters, resulting

in a total of 541 images for UTBM-2 dataset.

2.3.3/ DATA LABELING

After a careful inspection of UTBM-2 images, we identified 27 classes of interest including

fixed and moving objects. Classes were selected based on their relevance for applications

as well as their compatibility with existing datasets [45, 135, 166]. We based the initial

labeling on the Cityscapes dataset [135] as it was the only real world dataset in 2017

that contain lane markings on the road. The class names and their corresponding colors

are given in Fig. 2.11. The void label makes reference to irrelevant objects. We used the

color-index assignments following Brostow et al. [45] for the common classes and adding

new colors for the extra 8 classes considered (last 2 rows of Fig. 2.11). For the new

classes, we want to highlight the need of textTrafficSigns for its inclusion in recognition

approaches, crosswalk to detect the hazardous zones where pedestrian are most likely

to traverse, and refugeeIsland to not drive where usually traffic lights and traffic signs are

place on.

We labeled UTBM-2 dataset in a pixel-precision manner allowing accurate learning of

appearance and shape. In other words, we labeled every pixel in the image with a cor-

responding class which is mostly used for semantic segmentation approaches. We used

LIBLABEL [98], a tool written in MATLAB, to annotate object classes through polygons.
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FIGURE 2.11 – List of the 27 classes and their corresponding colors used for labeling.

Each polygon drawn is saved as an instance of the semantic class selected. In this way,

it is possible to have an ID of the semantic class and an ID of the instance to simulta-

neously detect objects and segment them (instance segmentation). The annotation pro-

cedure was performed labeling objects from back to front to avoid non-labeled pixels and

to define clear object boundaries. This procedure took approximately 316 hours of work

for 541 images.

In order to provide a useful dataset for instance segmentation approaches, we chose 10

of the 27 classes to save their corresponding instances. These instance classes include

moving objects (pedestrians, bicyclists, cars, buses, trucks, bicycles) as well as stationary

objects (symbol-based traffic signs, text-based traffic signs, traffic lights, crosswalks). The

decision of the stationary objects resides on the interest of : 1) detecting and classifying

traffic signs, either all of them or only the symbol-based signs as covered in the GTSRB

[79] and GTSDB [83], 2) identify traffic lights for approaches that use them as the base for

control algorithms (stop-red, go-green), 3) detect the closest pedestrian crosswalk marks

on the road to be alert if moving objects are detected in/near the area.

Fig. 2.12 shows the distribution of the annotated pixels for each of the 27 classes grou-

ped into 8 categories : flat, marking, construction, nature, vehicle, object, human and

void. Traffic signs, lane markings, crosswalks, traffic lights, pedestrian, among others, are

some of the less representative classes of the UTBM-2 dataset (see Fig. 2.12) due to the

size they occupy in the image as well as the frequency they appear. Because of these

characteristics, detection and recognition approaches have troubles identifying them pro-

perly.

The number of instances per class is illustrated in Fig. 2.13. Different from other datasets

[45, 135, 166], we separated the traffic sign class into text and symbol classes, and pro-

vided their instances separately. In this way, if the text traffic signs are of interest for the

researcher, they can be taken into account.
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FIGURE 2.12 – Number of finely annotated pixels (y-axis) per class and their associated
categories (x-axis).

2.3.4/ DATASET SPLITTING AND FORMATTING

Similar to Cityscapes [135] and Mapillary Vistas datasets [166], we decided to fix a ratio to

split the dataset into training and testing sets. We divided it into 70%-10%-20% for train,

validation and test sets equivalent to 378, 54 and 109 images respectively. Initially, we

split the UTBM-2 dataset randomly and analyzed the data representation of the test set.

If more than 5 consecutive images in the sequence are chosen, we discard 2 and chose

others representing a different street scenario. In this way, the test set contains variability

of scenarios.

Fig. 2.14 shows an example of a labeled image of UTBM-2 dataset together with its cor-

responding semantic and instance outputs. The dataset is converted into CamVid [45],

Cityscapes [135] and Mapillary [166] formats to facilitate its usability depending on the

goal task. Table 2.2 describes in general terms the UTBM-2 dataset characteristics toge-

ther with its different formats.

Additionally, we labeled each traffic sign with its corresponding class based on 164

classes of the European traffic sign database proposed in our previous section 2.2. This

dataset contains symbol and text based signs grouped into 4 main categories (danger,

regulatory, informative and others) with very different shapes, colors and aspect ratios.
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FIGURE 2.13 – Illustration of number of labeled instances per category and corresponding
class.

TABLE 2.2 – Number of semantic and instance classes annotated in the UTBM-2 dataset
and its corresponding conversion to different formats (CamVid, CityScapes, Mapillary).
’Original’ makes reference to the number of classes that the original dataset format has,
while ’Added’ means the number of classes not included in the dataset but considered for
annotation as extra ones.

Dataset
Semantic classes Instance classes

# Images Resolution (pixels)
Original Added Original Added

UTBM-2 27 0 10 0 541 1280x960

UTBM-2 (CamVid) 32 8 0 10 541 1280x960

UTBM-2 (Cityscapes) 30 7 10 4 541 1280x960

UTBM-2 (Mapillary) 66 0 37 0 541 1280x960

We inspected each traffic sing labeled in the semantic images and discarded the signs

which are not recognizable by human eye (normally very small and far signs). In the same

way as the GTSDB [83], we saved in a txt file the traffic sign class information together

with the corresponding RoI. In case that, semantic segmentation approaches require the

specific traffic sign label as part of the semantic classes, a multiplication of the RoI with

its corresponding mask will allow to exchange the label classes.

2.3.5/ CONCLUSIONS

A dataset representing urban French scenarios was proposed for semantic, instance seg-

mentation and detection approaches. Our UTBM-2 dataset is composed of 541 images
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FIGURE 2.14 – Example of a captured image of UTBM-2 dataset and its corresponding
semantic and instance labels. For the semantic classes refer to Fig. 2.11. Instance labels
are numbered from 1 to n for each class but for visualization purposes they are presented
with random colors.

with a resolution of 1280 × 960. It is labeled with 27 representative semantic classes for

street scenarios from which 10 also include instance IDs.

Lane markings, crosswalks as well as parking blocks are important to consider for the

environment perception since they provide information about the driving lanes, potential

hazardous zones where pedestrians walk and possible non drivable areas designated to

park even if they seem part of the driving road. At the same time, we distinguished bet-

ween text and symbol based traffic signs to allow more flexibility when detecting certain

types of objects. In the literature, most of the works focus on symbol signs but text signs

are also important to interpret the environment specially when no GPS is available or

road works deviate the traffic.

Additionally, the specific class for each traffic sign is provided contemplating the ETSD

definition (164 classes). At the same time, temporal information can be taken into ac-

count, as the UTBM-2 dataset belongs to a video sequence. The precise geographical

information of each image is also stored for vehicle localization and mapping approaches

if required.

Even if our proposed dataset contains few images, the goal of our contribution was to have

a suitable set of French urban scenarios to work with and be able to evaluate methods on

our own data. In this way, the comparison results can be performed on public available

datasets and on data focusing on our problem.
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2.4/ EXTENDED GTSDB - TRAFFIC SIGN DETECTION DATASET

2.4.1/ INTRODUCTION

One of the challenging real world computer vision problems is traffic sign detection. It

has been studied for a couple of decades to help humans respect the traffic rules and

enhance driving safety. Its main applications reside in advance driver assistance systems

(ADAS), mapping and more recently, in autonomous cars [171]. Nevertheless, due to the

dynamic nature of the outside environments, this task remains difficult.

Several datasets around the world have been proposed in an attempt to solve this pro-

blem. Among the most popular ones are : the Netherlands RUG dataset [57], the French

Stereopolis dataset [52], the US LISA traffic sign dataset [77], the Croatian MASTIF data-

sets [57], the Swedish Traffic Sign dataset (STS) [61], the German Traffic Sign Detection

Benchmark (GTSDB) [83], the KUL Belgium Traffic Signs Dataset [111], the Chinese Traf-

fic Sign Dataset (CTSD) [153] and its expanded version CSUST [169], and the Chinese

Tsinghua-Tencent 100K benchmark [155]. Regardless of all the previous contributions,

most of the datasets are labeled with only symbol traffic signs and a limited number of

classes, discarding important information provided by text traffic signs. For example, di-

rectional signs, inform the driver which path to take to reach certain place while deviation

signs, provide alternative routes if road construction works are taking place. Additional

panels, composed of text and symbols, are small signs usually located below a symbol

sign to specify the cases that apply for that signalization. Only the MASTIF dataset in-

cludes text signs but most of the state of the art works focused on the GTSDB [83] and

the GTSRB [79] to evaluate their proposed traffic sign recognition systems.

Following the trend for evaluating traffic sign detection methods, we proposed an exten-

ded version of the GTSDB, labeling traffic signs not included in the dataset but visible

and recognizable in the scenes. This version contains the same number of images with

complete information about the text and symbol traffic signs. The extended GTSDB com-

prises 6 extra categories from its original version (only includes four : danger, prohibitory,

mandatory and others) with 164 classes, following the definition from ETSD dataset des-

cribed in section 2.2. Fig. 2.15 shows some examples of the traffic signs visible in the

original GTSDB and not contemplated in their ground truth.

In the next subsection a description of the GTSDB is first presented followed by the data

labeling procedure to end up with a summary of our contribution.
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a) Directional signs b) Additional panels c) Missing signs

FIGURE 2.15 – Examples of traffic signs not included in the GTSRB. (a) shows four direc-
tional signs. (b) shows two examples containing additional panels. In the first example,
the truck below the 30 speed limit sign, indicates that the restriction only applies for that
type of vehicles ; while in the second example of (b), the first panel announces that the
speed limit is only applicable for 600 m and the second panel indicates the timing ap-
plicable. The missing signs (c) make reference to curves, obstacles, barriers and limited
access on the side.

2.4.2/ DATA DEFINITION

The GTSDB dataset [83] introduced in 2013, is composed of 900 images of resolution

1360×1024 pixels. The annotated traffic signs correspond to the 43 classes of the GTSRB

[79] grouped into 4 main categories : prohibitive, mandatory, danger and other signs. The

annotations are provided in a txt file with the RoI for each sign, together with its corres-

ponding label class and the relations for each category. The dataset also includes labels

of irrelevant classes considered in the category named ’other’. This last category was not

included in their competition, but later works [181, 153] considered it for evaluation as

well.

The training set consists of 600 images and 300 images correspond to the evaluation set.

The traffic sign sizes vary between 16 and 128 pixels. Even though sizes seem relatively

small, there are cases where smaller signs are visible and recognizable in the picture, but

they were not labeled. Furthermore, there are many more important signs in the same

scenario that were not considered. For this reason, we introduced the extended version

of the GTSDB which comprises signs belonging to the 9 sub-categories of the ETSD

[184]. The ETSD comprises a broad selection of traffic signs including text-based signs

as well as signs with very different aspect ratios. A more detailed description about this

dataset is provided in section 2.2 and, some classification comparisons between methods

using the ETSD dataset can be found in [184].
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2.4.3/ DATA LABELING

Meletis and Dubbelman [183] labeled the masks for the 43 classes originally considered

in the GTSDB and provided them to us. We labeled the GTSDB dataset with all the signs

not included in the original dataset, but considered in the ETSD. The labels are provided

in a pixel-precision manner to allow accurate learning of appearances and shapes. In

other words, we labeled all the pixel in the image that correspond to a traffic sign, and

the rest of pixels are labeled as background (2 classes - traffic sign and background). We

used the LIBLABEL [98] tool in MATLAB, and annotated all the recognizable traffic signs

with a polygon. In this way, we obtain a mask and instance for each sign to follow the

same standard as in [183].

We inspected each traffic sing labeled and discarded the signs which were not recogni-

zable by human eye (normally very small and far signs). The annotation procedure took

approximately 75 hours of work for 900 images.

After the labeling and inspection were performed, the masks of the original signs [183]

were combined with the masks of the missing signs (masks labeled). This merging pro-

cedure was performed carefully to preserve unique instance IDs for each sign. As the

pixel labeling procedure contemplated a general traffic sign class and background, we

used the Mapillary [166] format as a standard definition for the segmentation images.

Fig. 2.16 shows an example of a labeled image of the GTSDB database together with its

corresponding semantic and instance outputs.

a) Original image b) Semantic labels c) Instance labels

FIGURE 2.16 – Example of a GTSDB image and its corresponding semantic and instance
labels. The semantic color class correspond to the Mapillary [166] definition. Instance
labels are numbered from 1 to n, but for visualization purposes they are presented with
random colors.

Additionally, each labeled traffic sign mask is saved with its corresponding class based on

the 164 classes from the ETSD. The total number of traffic signs is expanded from 1213

to 2655 for the full dataset (900 images). Table 2.3 shows a description of the traffic signs

by category of the original GTSDB database and its proposed extended version.
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TABLE 2.3 – Number of signs by category for the training and testing sets of each dataset.
The Others category in the original GTSDB and its extended version do not represent the
same classes (refer to [83] for the classes in the original GTSDB and see Fig. ?? for the
extended GTSDB) but we put it like that for the name convention. The unknown category
contains traffic signs labeled which class does not correspond to any of the considered
ones.

Category
Original GTSDB Extended GTSDB
Train Test Train Test

Danger 156 63 156 66
Priority - - 128 74

Prohibitory 396 161 478 193
Mandatory 114 49 122 56

Special regulation - - 115 73
Information - - 0 1
Direction - - 355 171

Additional panels - - 172 109
Others 186 88 284 92

Unknown - - 4 6
Total 852 361 1814 841

In the same way as in the GTSDB [83], a txt file containing the traffic sign RoI and

class information is provided for detection approaches. In case that semantic segmen-

tation approaches require the specific traffic sign label as part of the semantic classes,

a multiplication of the RoI with its corresponding mask will allow to exchange the la-

bels. The proposed extended GTSDB database can be found in https://github.com/citlag/

Traffic-Sign-Recognition.

2.4.4/ CONCLUSIONS

We proposed the extended version of the GTSDB which allows quantitative evaluation for

recognition, detection and segmentation approaches. In other words, the dataset provides

information about the RoI for each sign, as regular detection approaches need, but also

a corresponding mask useful for segmentation and instance segmentation approaches.

The dataset is composed of 1814 traffic sign instances in the training set (962 signs more

than in the original version) and 841 in the test set (480 added signs). It contemplates 164

symbol and text based classes grouped into 9 categories (danger, priority, prohibitory,

mandatory, special regulation, informative, directional, additional panels and others) for

detection approaches, and an extra category called ’unknown’ for traffic signs not included

in the ETSD.

https://github.com/citlag/Traffic-Sign-Recognition
https://github.com/citlag/Traffic-Sign-Recognition
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Its definition was introduced with the aim of encouraging researches to contemplate the

detection and recognition of all traffic signs. Thus, considering all the important and com-

plementary information to interpret precisely the traffic rules. In this fashion, the intelligent

vehicle system will be able to make the right decisions and pass them to the control agent

to execute them. It is worth mentioning that, for complex driving scenarios with multiple

visible signs, a hierarchy should be taken into account for priority rules.

2.5/ CONCLUSIONS

In this chapter, three datasets were proposed. The first one introduced to contemplate

intra-variability of traffic signs between classes and European countries. Its 164 classes

grouped into 9 categories-subcategories allow a exhaustive dataset definition for traffic

sign classification approaches. The inclusion of text and symbol signs, give researchers

the freedom to chose the classes they are interested in, and the possibility to contribute

with more class variability. The introduction of this dataset allows multi-country traffic

signs recognition which is an indispensable point for vehicles driving in a place different

than where it was manufactured. Because in France, reaching one of the 6 neighboring

countries is very common, autonomous vehicles need to take into account this vital issue

for safety. In Chapter 3, we will analyze the importance of considering a complete traffic

sign dataset evaluating it with a proposed CNN architecture and other state of the art

methods.

The second dataset, UTBM-2, was introduced to evaluate environment perception in

French urban scenarios. We contemplated 27 semantic classes from which we will focus

on 9 to detect the road, moving objects, traffic signs, traffic lights and crosswalks. Due

to the need of detecting separately instances for some objects, specially traffic signs, a

proposed method for traffic sign recognition will be presented in Chapter 4.

Furthermore, the extended GTSDB dataset was constructed with the intention of pro-

ving that the traffic sign recognition cannot be considered as a solved problem without

contemplating all the traffic sign information encountered in an image scenario. The incor-

poration of regulatory, informative and other category signs, drops methods performance

regarding traffic sign detection and classification. However, their information, as we will

present in Chapter 3 and 4, needs to be considered for a proper interpretation of the traffic

rules and to provide safety while driving.
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TRAFFIC SIGN CLASSIFICATION

3.1/ INTRODUCTION

As mentioned in Chapter 1, a part of the environment perception consists in identifying

precisely traffic signs. This identification is carried out by computer vision systems through

two steps : detection and classification. In this chapter we will focus on the classification

part while the detection will be explored in Chapter 4.

Traffic sign recognition plays an important role for Intelligent Autonomous Vehicles and

Advanced Driver Assistance Systems (ADAS). In the first case, the vehicle should be

able to identify the traffic sign class to make a control decision similar to how humans

do ; if the identification is wrong, or not perceivable, it will lead, in the worst case, to

traffic accidents. For ADAS, the system helps the driver notice the traffic sign and, in

consequence, ameliorate the driving route behavior.

Even though traffic sign classification seems to be an easy task and several research

studies have claimed to achieve very high results [167], it still remains a challenging real-

world computer vision problem due to the different and complex scenarios where traffic

signs are placed into. For example, as traffic signs are found in outside environments,

their appearances vary a lot due to illumination changes, weather conditions, aging and

even the addition of some sticker or paint can make the traffic sign not easy to recognize.

Moreover, considering that the vehicle is moving, other factor might affect the appea-

rances like motion blur, not sharp image due to the camera focus, different perspectives

and sometimes occlusions by other objects.

In an effort to deal with traffic sign recognition and because of the high industrial demand

for autonomous vehicles, many studies have been published together with datasets from

all over the world [16, 57, 61, 64, 78, 79, 111, 121, 77, 139]. Such systems, rely on

either selected hand-coded features or the ones extracted automatically by learning. The

39
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most effective ones, as proved in [79], rely on Convolutional Neural Networks (CNNs)

architectures and are the ones in which we will focus on later in this Chapter.

Nevertheless, all approaches proposed to recognize traffic signs, are limited to a country

and/or certain types of signs (shape, category). Being able to recognize the same traffic

sign in different countries is still a problem that in our knowledge, not many studies have

addressed, specially in a continent (Europe) where countries are a few hours apart.

In order to deal with all the previous constraints, a large number of sign examples should

be considered to allow the system respond correctly when a traffic sign is encountered.

For this reason, we will use our proposed European Traffic Sign Dataset (ETSD), des-

cribed in Chapter 2, Section 2.2, to evaluate and compare several CNN architectures,

among them our proposed one called Class CNN.

We summarize our contributions in this chapter to the following :

— A proposed CNN architecture, composed of 5 blocks, capable of handling very

robustly traffic sign classification.

— A comparative study of 6 CNN architectures trained with our proposed ETSD and

the German Traffic Sign Recognition Benchmark (GTSRB) [79].

The rest of this chapter is organized as follows : Section 3.2 presents related work for

traffic sign classification. Section 3.3 describes the neural networks architectures used

for training with both datasets to continue with the description of our proposed Class CNN

in section 3.4. The analysis results are discussed in section 3.5, while conclusions and

future work are presented in section 3.6.

3.2/ RELATED WORKS

The first work on traffic sign recognition was carried out in Japan in 1984 [24] and, since

then, a broad number of works have been proposed to solve the problem through different

techniques [158]. The most common ones are based on Support Vector Machines (SVM)

[153, 51], template matching [7, 27, 56] and recently CNNs.

CNNs surpassed human performance on traffic sign classification [79, 158]. However,

their architectures differ significantly from each other.

Even though traffic sign classification has been studied for decades, research works

couldn’t be compared until the German Traffic Sign Recognition Benchmark (GTSRB)

[79] and the German Traffic Sign Detection Benchmark (GTSDB) [83] were proposed.
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Previously all research solutions have based their results on different public available

datasets or on information acquired by their own.

The work of Abedin et al. [157] is an example of the formerly mentioned. They propo-

sed the whole pipeline for detection and recognition. The recognition is carried out using

SURF descriptors trained by an artificial neural network (ANN) with signs collected by

themselves through video sequences in Bangladesh.

Islam et al. [163] performed classification on 10 Malaysian signs through an artificial neu-

ral network with a 2-layer feed-forward and a softmax classifier. Each class was compo-

sed of 100 samples dividing them into 70%-15%-15% for train, test and validation sets

respectively. The signs were captured on roads and highways during different daytimes

and weather conditions. Their dataset was also used by Lau et al. [121] to compare 2

classification methods, a Radial Basis Function Neural Network (RBFNN) and a CNN.

Li et al. [140] proposed a convolutional neural network (CNN) to detect and classify U.S

speed limit signs [77]. Their network is based on a modified version of R-CNN [99] for the

detection and a Cuda-convnet [47] for the classification. They claim to achieve 93.89%

mean AUC [140] for 4 classes (No Turn, Speed Limit, Stop and Warning).

In the same manner, Jung et al. [139], collected and classified 6 types of traffic sings in

South Korea. The training procedure was performed with LeNet-5 CNN architecture [9]

predicting correctly 16 traffic signs on the road within an observable range.

Yang et al. [153] went beyond all the previously mentioned works, classifying not only

the respective traffic sign classes but also their superclass (categories). Their system is

based on 4-class SVM classifiers with RBF kernel using Color HOG features to detect

the traffic sign categories. Then, three CNNs are used to perform real time traffic sign

recognition. Each CNN contains two convolutional layers followed by sub-sampling layers,

plus a fully-connected Multilayer Perceptron (MLP) in the last two layers. Their method

was trained and evaluated with the GTSDB [79].

Aghdam et al. [158] designed a CNN architecture inspired by Ciseran et al. [68] and

compared their work to 3 other networks [68, 90, 102] reducing by 65%, 63% and 54%

the number of training parameters respectively. Their proposed CNN is trained with the

GTSRB [79] and fine-tuned with the Belgium dataset [64, 111] in order to prove that their

architecture is not only efficient, but also transferable.

Recent work proposed by Li and Wang [181] manages traffic sign detection and classifi-

cation. Their traffic sign classification CNN uses different asymmetric kernels in order to
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reduce the number of convolutional operations. Additionally, they fused different spatial

information using an inception module by concatenating the output of 2 CNN branches

along the channel axis. The CNN model was trained with the GTSRB proving to be effec-

tive and robust by obtaining 99.66% accuracy.

In our study, we will train different CNN architectures on the same datasets applying a

common data preprocessing step and number of epochs in order to provide a fair com-

parison of traffic sign recognition approaches.

3.3/ CONVOLUTIONAL NEURAL NETWORKS FOR TRAFFIC SIGN

CLASSIFICATION

It has been proven that CNNs are capable to solve problems with really high accuracy

compared to human performance [118, 68]. Since the GTSRB [79], a lot of works were

proposed to deal with traffic sign classification through different machine learning me-

thods [68, 158, 139], from which CNNs outperform the others. As traffic sign classification

is in high demand for the automotive industry, a lot of efforts have been made to achieve

real time classification [68, 139].

We will describe 5 CNNs that achieve some of the best performances in the state of the

art regarding Traffic Sign Classification.

3.3.1/ LENET-5

LeCun et al. [9] proposed the well-known LeNet-5 convolutional neural network that is

mostly used for handwritten recognition. Besides it was introduced in 1998, it became

popular to solve other problems due to its simple and efficient architecture (see Fig. 3.1).

It is composed of 7 layers, 3 Convolutional layers followed by Sub-sampling layers (except

in the last), 1 Fully connected layer and the final output layer composed of Euclidean RBF

units. The input size for this network is 32×32 pixels.

Jung et al. [139] used LeNet-5 to classify 6 types of Korean traffic signs obtaining an

accuracy of 100% recognizing correctly 16 signs while driving on the KAIST campus

road. As the results were promising in their study, we also trained the network with our

proposed ETSD dataset for comparison.
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FIGURE 3.1 – LeNet-5 Network architecture proposed by Lecun et al. [9] for digits recog-
nition.

FIGURE 3.2 – Network architecture proposed by Ciseran et al. [68]. (a) DNN architecture.
(b) MCDNN architecture. (c) Training a DNN.The dataset is preprocessed before training
(P block), then, at the beginning of every epoch, the images are distorted (D block).

3.3.2/ IDSIA MODEL

Ciseran et al. [68] based their work on combining several Deep convolutional Neural

Networks (DNN) columns to form a Multi-column DNN (MCDNN). Their DNN network is

composed of 2 Convolutional layers followed by Maxpooling layers. At the end, 2 fully

connected hidden layers are used to pass the output to a final fully connected layer with

6 neurons to perform classification. They used a scaled hyperbolic tangent activation

function for convolutional and fully connected layers. Their net takes as input 2 images

of 48×48 pixels and performs some distortions in each column to average at the end the

final predictions of each DNN. The MCDNN architecture is illustrated in Fig. 3.2.

Aghdam et al. [158] trained this model with the GTSRB dataset and obtained an accuracy

of 98.52% performing data-augmentation for the training set. In our study, we will train and

evaluate their DNN architecture without considering an ensemble (MCDNN). This in order
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FIGURE 3.3 – Network architecture proposed by Aghdam et al. [158]. Light blue repre-
sents the convolution layers, green the ReLu activation layers, yellow the pooling layers,
dark blue the fully connected layers and red the dropout layer

to compare the capability of their proposed DNN.

3.3.3/ URV MODEL

Aghdam et al. [158] made a comparative study between methods using the GTSRB [79].

Their CNN based on Ciseran et al. work [68] demonstrated, in their results, that their

network is able to reduce complexity and computational time, improving accuracy com-

pared to the one of Ciseran et al. Their Network is based on 3 convolution-pooling layers

and 2 fully connected layers with a dropout layer in between to avoid over-fitting. ReLU

activations [54] after each convolutional layer and after the first fully-connected layer are

applied. Their network takes as input a 48×48 RGB image and classifies it into one of

the 43 traffic sign classes of the GTSRB dataset. They claim to achieve 98.94% accuracy

performing data-augmentation for the dataset. Fig. 3.3 shows their network architecture.

3.3.4/ CNN WITH ASYMMETRIC KERNELS

Li and Wang [181] based their CNN design on convolutional layers using asymmetric

kernel sizes to replace the usual symmetric n×n kernel (e.g. 3×3,5×5,7×7), with asym-

metric ones defined by n×1 and 1×n in some convolutional layers. This replacement de-

creases the number of convolutional operations making the network more efficient. Their

CNN architecture is composed of 3 convolutions with symmetric kernels, 6 convolutional

layers with asymmetric ones (7×1, 1×7, 1×3, 3×1, 1×7 and 7×1), and 2 fully connected

layers. Each of these layers except for the last one (Softmax classifier) are followed by
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FIGURE 3.4 – CNN architecture drawn from [181]. Light blue blocks represent the Convo-
lution + BatchNormalization + ReLu layers, yellow the pooling layers, red the dropout
layer, green in this case refers to layer concatenation, dark blue shows a fully-connected
layer + BatchNormalization + ReLu while purple refers to dense layer with Softmax acti-
vation. The numbers indicated for the Convolution layers refer to the kernel sizes used.

Batch Normalization [120] and ReLu activations [54]. They used an inception module with

asymmetric kernels after the third convolution to learn different spatial information. The

last two convolutional layers use symmetric kernels. Dropout technique [110] is used by

the authors to avoid over-fitting. As they trained the network with the GTSRB, the output

is set to 43 and input size to 48×48×3 (RGB image). The architecture of their CNN is

illustrated in Fig. 3.4.

The performance of this CNN achieved 99.66% accuracy on the GTSRB test set trained

with data-augmentation for 200 epochs. Despite the use of asymmetric kernels to de-

crease the complexity of the network, the number of parameters for this architecture is

still high, compared to the others we will study here. A comparison study including the

number of parameters will be provided in section 3.5.

3.3.5/ CNN 8-LAYERS

Besides the previously mentioned architectures, we decided to train a classifier that does

not represent a really deep network but competes with the state of the art. Networks com-

posed with deep architectures (several hidden layers) have proven to provide the best

results (Inception [128], VGG16 [109], ResNet[138]), but their complexity kills the compu-

tational time. For this reason, simple networks are used considering information prepro-

cessing and data-augmentation [108] if the dataset does not contain enough examples

for the learning phase.

Chilamkurthy [159] worked on the traffic sign image classification problem. Even though

he did not mention in which Network he based his work, we could see that his proposal is

like a VGG architecture [109]. There are blocks of Convolutional layers, activated by ReLu
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FIGURE 3.5 – Architecture drawn from Chilamkurthy proposal [159].

function [54], followed by Max Pooling and additionally Dropout layers. His architecture

can be seen in Fig. 3.5. Different from VGG architecture, he added dropout layers with a

range of 0.2 after each block of convolutional layers and, in the same way, after the fully

connected layer with a range of 0.5. Dropout layers are used to prevent over-fitting and to

make the network learn robustly its parameters [110].

Chilamkurthy reported 97.92% and 98.29% accuracies without and with data-

augmentation respectively on the GTSRB test set. His network takes RGB images of

size 48×48 pixels as input, while transforming them to HSV color space and performing

histogram equalization in the V channel.

A comparison of all the previously mentioned architectures will be performed in section

3.5 using the GTSRB and our European dataset.

3.4/ PROPOSED CNN (CLASS CNN)

After referring to several architectures [63, 68, 102, 153, 158, 181, 182], we defined a

CNN based on 5 convolutional blocks to identify the specific traffic sign class. We call it

Class CNN and its architecture is defined in Table 3.1.

Our proposed architecture is inspired by VGG-16 network [109] setting up blocks of

convolutional layers with kernel sizes of 3 × 3. In an attempt to reduce the number of pa-

rameters and convolutional operations, we performed the same strategy as Li and Wang

[181] did, and replace the n × n kernel by a n × 1 and 1 × n kernels [150]. Using asym-

metric convolutions, the computational cost decreases certain percentage calculated with

(n×n−1×n−n×1)/(n×n). For example, replacing a 5×5 kernel with asymmetric ones will

save (5×5−1×5−5×1)/(5×5) ≈ 60% of computational cost, while for a 3×3 will decrease

by 33%. Authors in [150] claimed that this replacement doesn’t work good in early layers

but gives good results applied to feature maps of sizes between 12 and 20. We applied
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TABLE 3.1 – Architecture of our CNN for traffic sign class identification (Class CNN).
’chan’ makes reference to the number of channels, ’kS’ to kernel size, ’std’ to stride and
’kpProb’ to the probability of keeping the original feature.

type outMap chan kS std kpProb
I input image 48 × 48 3 - - -

B1 convolution 48 × 48 32 3 × 3 1 -
convolution 48 × 48 32 3 × 3 1 -
maxpooling 24 × 24 32 2 × 2 2 -
dropblock 24 × 24 32 3 × 3 - 0.8

B2 convolution 24 × 24 64 3 × 3 1 -
convolution 24 × 24 64 3 × 3 1 -
maxpooling 12 × 12 64 2 × 2 2 -
dropblock 12 × 12 64 3 × 3 - 0.8

B3 convolution 12 × 12 128 3 × 3 1 -
convolution 12 × 12 128 3 × 3 1 -
maxpooling 6 × 6 128 2 × 2 2 -
dropblock 6 × 6 128 3 × 3 - 0.75

B4 convolution 6 × 6 256 5 × 1 1 -
convolution 6 × 6 256 1 × 5 1 -
dropblock 6 × 6 256 3 × 3 - 0.75

B5 convolution 6 × 6 320 3 × 1 1 -
convolution 6 × 6 320 1 × 3 1 -
maxpooling 3 × 3 320 2 × 2 2 -
dropblock 3 × 3 320 3 × 3 - 0.75

C fully connected 1 × 1 256 - - -
dropout 1 × 1 256 - - 0.5

fully connected 1 × 1 43 - - -

asymmetric convolutions in blocks 2 and 3 (B2 and B3) but it only made worse the results.

In our case, applying them in blocks 4 and 5 (B4 and B5) gave us he best outcome.

Differently from the state of the art, we applied 2 types of regularization techniques :

dropout [110] and dropblock [178]. Dropout excludes randomly activations in the feature

maps, keeping only certain percentage. It helps the model learn more robustly the pa-

rameters preventing overfitting. Dropblock, on the other hand, discards information of a

continuous region (defined by a block of size n × n) of the map. In this way, neurons with

similar features are discarded and propagated through the whole network changing every

epoch and allowing it to generalize better (see Fig. 3.6). In consequence, the model tends

to be more stable during learning as it forces itself to learn from the remaining activations

in order to classify the input image. Because dropblock applies two dimensional kernels, it

can only be used for convolutional operations whose feature maps have at least the same
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FIGURE 3.6 – Dropblock processing pipeline. The blue regions in the image representing
the activation units, contain semantic information. Dropping continuous regions removes
closely related information and consequently enforce remaining units to learn features
every epoch for classifying the input image.

size as the region block. We performed experiments using both regularization techniques

(see Section 3.5) and found that dropblock improves our model performance.

Additionally, Batch Normalization [120] (BN) is applied after each convolution to help the

model learn more easily its parameters. ReLU [54] activations are used after the BN layer

for each convolutional layer and fully connected layer, except for the last one, which uses

a Softmax activation to output certain number of probabilities for each input. The output

number is set to 43 in Table 3.1 due to the number of classes that GTSRB [79] has. This

output changes depending on the desired number of classes.

For comparison purposes and in order to evaluate our proposed CNN, we trained the

classifier (Table 3.1) with 43 output classes according to the GTSRB and with 164 outputs

on the ETSD [184]. The experimental results are provided in the next Section.

3.5/ EXPERIMENTAL RESULTS

In order to perform a fair comparison between different networks, we trained the models

described in section 3.3 and our proposed Class CNN with the GTSRB and the ETSD.

All models are trained in GPU mode using a NVIDIA GeForce GTX1080Ti with 11GB of

memory, an IntelCore i7K-8700K (6 cores 12 threads, 12 Mb cache memory) processor

and RAM of 32GB. The learning process varied according to the complexity of each



3.5. EXPERIMENTAL RESULTS 49

TABLE 3.2 – Accuracy percentage results obtained on the GTSRB and European test
sets. The input size refers to image ”width×height×channels”, while the number of para-
meters is presented in millions (M) and time in milliseconds (ms).

Model Input size
GTSRB European

Time
Parameters Accuracy Parameters Accuracy

LeNet-5 32x32x1 0.13 M 89.1% 0.35 M 89.8% 0.0067 ms

IDSIA 48x48x3 1.54 M 94.62% 1.58 M 95.82% 0.6 ms

URV 48x48x3 1.12 M 96.1% 1.16 M 96.53% 0.61 ms

CNN asymmetricK 48x48x3 2.92 M 97.88% 2.95 M 98.48% 0.39 ms

Improved CNN 8-layers 48x48x3 1.48 M 98.52% 1.51 M 97.88% 0.15 ms

Class CNN 48x48x3 2.09 M 98.51% 2.12 M 98.25% 0.16 ms

model.

3.5.1/ PERFORMANCE COMPARISONS WITHOUT DATA AUGMENTATION

The URV model proposed by Aghdam et al. [158] and the IDSIA model proposed by Cise-

ran et al. [68] are implemented in the Caffe framework 1. The input image of both models

is an RGB image of 48×48 pixels. We trained both models with the original parameters

as stated by Aghdam et al. [158] changing only the batch size from 100 to 128 and the

number of iterations to make it learn for the equivalent of 40 epochs (11500 iterations for

the GTSRB and 17500 for the European dataset). In the same way, the test iterations are

modified according to the validation dataset : 31 for the GTSRB and 48 for the European

one.

Towards a fair comparison, we normalize the European dataset subtracting the mean

image like it is done for the GTSRB dataset. The results presented in [158], based their

accuracy on augmented-data carried out with 12 transformations (see paper [158] for

more details).

UVR and IDSIA models were trained without performing any data-augmentation or pre-

processing. This with the aim to evaluate the performance of the pure models. We use

10% of the training sets for validation (3921 images for GTSRB and 6055 for European

dataset). The results obtained can be seen in Table 3.2, where the classification accura-

cies presented come from evaluating the models on the test sets.

In the same manner, we trained the models : LeNet-5 [9], the CNN with asymmetric ker-

nels proposed by Li and Wang [181] (CNN asymmetricK), and the model proposed by

1. https ://github.com/pcnn/traffic-sign-recognition
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Chilamkurthy [159] implementing some changes to increase the model accuracy (Impro-

ved CNN 8-layers). All these architectures are implemented in the Tensorflow framework.

Due to the nature of LeNet-5 [9], images are converted into gray-scale and resized to

32 × 32 pixels. We set the batch size to 128 and the number of epochs to 40 to train on

both datasets. The rest of the training parameters are left unchanged according to the

original implementation 2.

Since the outputs of LeNet-5 fully connected (FC) layers are reduced from 400 (total

number of neurons after the pooling layer of the second convolution) to 120-84-N (output

classes), we had to modify the number of neurons of the FC layers in order to be able to

classify 164 classes for our proposed ETSD. For that, we changed the first output of the

first FC to 300 and the second one to 200. In this way, we are able to classify 164 classes

as the desired output. Results are available in Table 3.2.

Furthermore the model of Li and Wang [181] was trained as well for 40 epochs on both

datasets. Images are resized to 48×48 pixels keeping the 3 color channels (RGB). Dif-

ferent from the authors in [181], we applied a preprocessing step converting the image

to HSV color space and equalizing the V channel. Preprocessing methods are used to

normalize the image and give better contrast [102]. The mean image was also subtracted

in each dataset. We used the model parameters as proposed in [181] and the results

obtained are shown in Table 3.2. We refer to this model as CNN asymmetricK.

Moreover, and in order to improve the accuracy of 97.92% reported by Chilamkurthy on

the GTSRB, the CNN 8-layers model [159] was modified adding 1) L2 regularization on

each convolutional and fully connected layers and, 2) Batch Normalization after each

convolutional layer and before the ReLu activations. The modified CNN is refereed as

Improved CNN 8-layers. The effect of Batch Normalization [120] has proven to make the

network learn robustly normalizing the input parameters in each batch at each layer, to

reduce their covariance shift. Regularization, in the other hand, helps reduce over-fitting

adding a penalty in the loss function to combat high variance. L2 regularization was added

with a value of 1e-4. The optimizer was changed from Stochastic Gradient Descent (SGD)

to Adam [104] with an initial learning rate of 1e-3 and a regularization coefficient of 1e-3.

Batch size was set to 128 and the input to 48×48 pixels with 3 channels (RGB image).

In the same way as with CNN asymmetricK model, the input image is preprocessed as

mentioned earlier. The model was trained for 40 epochs validating the training process

using the validation set (10% of the training set) which stops the training when over-

2. https ://github.com/sujaybabruwad/LeNet-in-Tensorflow
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fitting occurs (validation loss starts increasing and validation accuracy start decreasing).

In this way, we make sure the CNN model learns correctly. For example, while training the

Improved CNN 8-layers model with the ETSD, it stops learning at epoch 16 obtaining a

testing accuracy of 98.52% (see Table 3.2).

The changes implemented in the CNN 8-layers (Improved CNN-8layers) model made the

network improved its accuracy by 0.6% in total, from 97.92% reported by Chilamkurthy

[159] to 98.52% on the GTSRB dataset without performing data-augmentation. Besides

the accuracy improvement, and due to the addition of Batch Normalization (BN) layers,

the number of parameters also increased from 1.36 to 1.48 Millions in reference to the

GTSRB dataset (43 outputs). Nevertheless and regardless the increase of complexity, the

Improved CNN 8-layers model is still competitive in accuracy and time compared to the

others reported in Table 3.2.

Regarding our proposed Class CNN architecture, we trained it initially for 40 epochs using

Adam optimizer with a learning rate of 1e-3 and a weight decay of 1e-6. Additionally, we

monitored the validation loss with a patience of 20 and factor of 0.2 to reduce the learning

rate when the validation loss stops decreasing. In this way, only the best weights are

saved preventing over-fitting. The RGB images are resized to 48 × 48, converted to HSV

color space, and converted back to RGB after equalizing the V channel. An accuracy of

98.51% was obtained for the GTSRB while 98.25% resulted for the ETSD (see Table 3.2).

The accuracies obtained on both datasets (Table 3.2) are similar, varying from 0.26% -

1.2% between the GTSRB and ETSD, no matter the model used. Hence we can say that

models are stable and results depend on the dataset itself.

The processing time for each model depends on its number of parameters and the fra-

mework used. For instance, the processing times presented in Table 3.2 are computed to

predict the traffic sign class of a single image in GPU mode. Essentially, we can see that

the models implemented in the Caffe framework (IDISA and URV) are relatively slower

than the ones implemented in Tensorflow. For example, the IDSIA model (Caffe) has 1.54

Million parameters and takes 0.6 milliseconds to make a prediction, while CNN asymme-

tricK model (Tensorflow) has 2.92 Million parameters and takes 0.39 milliseconds (around

40% faster).
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FIGURE 3.7 – An example of some augmented traffic signs from the European dataset.

3.5.2/ PERFORMANCE COMPARISONS WITH DATA AUGMENTATION

As mentioned before, techniques like data-augmentation also help to improve the accu-

racy of a classifier without acquiring and labeling more data. Therefore, we applied this

technique with the 3 models which obtained the best accuracies on the test datasets :

the CNN asymmetricK model [181], the Improved CNN-8 layers model and our propo-

sed Class CNN. Luckily, as these models are implemented in Keras using Tensorflow

as back-end ; Keras provides an option to perform real-time data-augmentation with its

ImageDataGenerator class. We considered the following 5 transformations :

1. Width shift = +-4 pixels

2. Height shit = +-4 pixels

3. Scaling = [0.8,1.2]

4. Shear = [0,0.1] radians

5. Rotation = +-10 degrees

Besides that transformations, histogram equalization is also considered as data prepro-

cessing. For this, the exact same procedure is applied as stated by the author in [159].

Some examples of augmented images can be seen in Fig. 3.7.

Considering that the models were previously trained without data-augmentation, we used

their pre-trained weights as initializers for the new training procedures. This technique is

also called transfer learning and, avoids learning everything from scratch. Normally, it is

more common to use it with deep architectures which were trained on huge amount of

data to adapt the model to a new output with less training examples [55]. In our case, we

used it as initialization for the architectures to continue learning with the new generated
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TABLE 3.3 – Accuracy percentage results obtained on the GTSRB test set. The input size
refers to image ”width×height×channels”, while the number of parameters is presented in
millions (M) and time in milliseconds (ms).

CNNs Input size Data augmentation Parameters Accuracy (dropout) Accuracy (dropblock) Time

Class CNN Symmetric 48x48x3 Yes 3.59 M 99.19% 99.54% 0.2 ms

Class CNN 48x48x3 Yes 2.09 M 99.41% 99.51% 0.16 ms

Class CNN RB 48x48x3 Yes 2.40 M 99.08% 99.14% 0.17 ms

data. The training parameters were left unchanged as defined previously and only the

number of epochs was set to 50.

3.5.2.1/ PROPOSED CLASS CNN

Before comparing the three CNNs chosen for training with data-augmentation, we will first

demonstrate the performance of our proposed Class CNN defined in Table 3.1, with self

comparisons of the architecture adding the following modifications :

1. A classifier that changes the asymmetric kernels for symmetric ones of size 3 × 3

(Class CNN Symmetric).

2. A classifier which adds 2 residual blocks (Class CNN RB), one between B3 and B4

(see Table 3.1) and one between B4 and B5. The first residual block uses a convo-

lutional layer with 128 filters and kernel size 1 × 1 and the second one a convolu-

tional layer with 64 filters and size 3 × 3. Both convolutions in the residual blocks

are followed by BN and ReLu, and are concatenated according to the ResNet [138]

definition.

3. The 3 CNNs (Class CNN, Class CNN Symmetric and Class CNN RB) defined only

with dropout as regularization.

For a visual representation of our Class CNN modifications, refer to Fig. 3.8. Table 3.3

shows the results obtained for training the classifiers with the GTSRB [79] together with

the parameters of each CNN. The accuracy results are obtained evaluating them on the

test set.

From the Table 3.3 we can see that, all classifiers perform better when dropblock [178] is

used instead of dropout [110]. If we compare the accuracies obtained using only dropout

as regularization, the asymmetric kernels of the proposed Class CNN not only reduce

the number of parameters but also increased the performance by 0.22% compared to

the symmetric ones (Class CNN Symmetric), and by 0.33% with the CNN with residual

blocks (Class CNN RB). On the other hand, comparing the accuracies obtained using
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FIGURE 3.8 – Visual representation of Class CNN Symmetric, Class CNN and Class -
CNN RB.

TABLE 3.4 – Class CNN accuracy percentage results obtained on the GTSRB test set.

Trials Accuracy (dropout) Accuracy (dropblock)
1 99.41% 99.51%
2 99.33% 99.48%
3 99.37% 99.61%
4 99.30% 99.54%
5 98.83% 99.50%

Average 99.25% ±0.21 99.53% ± 0.05

dropblock, the ones obtained from Class CNN Symmetric and Class CNN are almost

the same. The possible reason behind this behavior could be due to the way dropblock

discards the activations. Dropout discards randomly the percentage defined, while drop-

block, turns off the activations with continuous similarities, adding more stabilization to

the learning process. In both accuracy results, the Class CNN RB performs the worse,

eliminating the possibility to use this strategy for not deep networks. The CNN with asym-

metric kernels (Class CNN) proposed in this study, provides the best trade off between

accuracy and complexity, proving its good performance.

Furthermore, in order to analyze the stability of the proposed Class CNN, we trained it

5 times with data-augmentation. We performed the same procedure using dropout and

dropblock to compare how the two regularizations affect the model. Table 3.4 shows the

results obtained for 50 epochs each called trials.
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TABLE 3.5 – Accuracy percentage results obtained on the GTSRB and European test sets
without and with performing data-augmentation.

Model
GTSRB European

Original Augmentation Original Augmentation
CNN asymmetricK 97.88% 99.37% 98.48% 98.89%

Improved CNN 8-layers 98.52% 99.37% 97.88% 98.99%
Class CNN 98.51% 99.53% 98.25% 99.11%

Analyzing the results obtained in Table 3.4, we confirm that the regularization has an

important role in the model stability. The learning variability in our proposed CNN archi-

tecture decreased from 0.21 to 0.05 using dropblock, reason why it was chosen. The best

test accuracy obtained was 99.61% while the average was 99.53%.

3.5.2.2/ CNNS COMPARISONS

Now, after discussing the performance of our proposed Class CNN, it is time to compare it

with the other two best CNN architectures which provide the best results in Table 3.2. We

trained the three CNNs on both datasets and the results obtained are shown in Table 3.5.

The testing accuracies obtained with the CNN asymmetricK model [181] are improved

with data augmentation by 1.49% on the GTSRB dataset and 0.41% in the ETSD, while

with the Improved CNN 8-layers model, they are improved by 0.85% and 1.11% respecti-

vely. Regarding our proposed Class CNN, we obtained an improvement of 1.02% on the

GTSRB test set and 0.86% on the ETSD test set.

The average human performance for detecting traffic signs on the GTSRB dataset is

98.84% as reported in [79]. The three CNNs trained in this study with data-augmentation

surpassed the human performance with both datasets. For the URV model proposed by

Aghdam et al. [158], we obtained 96.1% accuracy without data-augmentation while they

reported 98.94% applying 12 transformations on the dataset. With this in mind, we can

affirm that a classifier learns more robustly if the dataset comprises a wide variety of data

situations.

3.5.3/ DISCUSSION

Due to the fact that the proposed ETSD comprises a wider range of situations and in

consequence a larger number of training data, it also includes difficult classes to learn.

Because of that, most of the accuracy results obtained for each model without data-
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(b) ETSD(a) GTSRB 

FIGURE 3.9 – Sign symbol classes grouped in Others category for the GTSRB and the
ETSD.

TABLE 3.6 – Error percentage predictions by category on the GTSRB and ETSD test sets.
Results are computed from the CNN models trained with data-augmentation.

Category
GTSRB European

Signs in GT CNN asymmetricK Improved CNN 8-layers Class CNN Signs in GT CNN asymmetricK Improved CNN 8-layers Class CNN
Danger 2790 1.25% 0.39% 0.79% 4626 1.75% 1.36% 1.23%
Priority - - - - 2946 0.17% 0.20% 0.24%

Prohibitory 5670 0.00% 0.83% 0.39% 8625 1.18% 0.94% 0.83%
Mandatory 1770 0.66% 0.83% 0.17% 2818 0.43% 0.64% 0.53%

Special Regulation - - - - 1550 1.35% 1.35% 1.03%
Information - - - - 59 0.00% 3.39% 0%
Direction - - - - 706 2.55% 3.12% 3.26%

Additional panels - - - - 392 0.77% 1.79% 1.02%
Others 2400 0.17% 0.11% 0.46% 208 0.96% 0.96% 0.96%
Total 12630 0.63% 0.63% 0.46% 21930 1.11% 1.01% 0.89%

augmentation (see Table 3.2) on the ETSD are almost the same or even lower than the

ones obtained on the GTSRB. Nevertheless, with data-augmentation (Table 3.5), all mo-

dels could improve their accuracies on both datasets but, on the ETSD, models barely

achieved around 99%. We will analyze the predictions in both datasets with the three

CNN models trained with data-augmentation to find out the reasons that made the clas-

sifiers failed.

Table 3.6 presents the relations of the incorrect classes by category per model and da-

taset. It is worth mentioning that, by naming convention, the ’Others’ category does not

represent the same classes on the GTSRB and the ETSD. Fig. 3.9 shows the classes co-

vered in ’Others’ category for both datasets. We present the errors by category because

it is the common way in the literature [79, 83, 153, 167] to compare the differences bet-

ween groups of classes with similar characteristics (shape, color). For the ETSD (Table

3.6), we can see that the CNN asymmetricK model has troubles learning the categories

Danger, Prohibitory, Special Regulation and Direction with more than 1% error, while the

Improved CNN 8-layers model has troubles with Danger, Special Regulation, Informa-

tion, Direction and Additional panels with more than 1% error as well. For our proposed

Class CNN, we only have troubles in 4 categories : Danger, Special regulation Direction

and Additional panels.
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FIGURE 3.10 – Image size analysis for the incorrect predictions on the ETSD test set.
Results are obtained with the CNN models trained with data-augmentation.

A deeper analysis for the incorrect predictions on the ETSD is performed to find out the

characteristics of the traffic signs hard to recognize for the classifiers.

The first intuition for bad predictions was image size and aspect ratio. We counted the

number of misclassified signs that were 1) rectangular or squared and 2) big or small. A

squared sign is considered if its aspect ratio falls between 0.9 and 1.1, while small signs

are considered if the image has less than 255 pixels. The latest parameter is set taking

into account that the smallest image size on the GTSRB is 15×15 pixels (255 pixels).

As a reference, the total number of incorrect predictions with the CNN asymmetricK mo-

del is 244, for the Improved CNN 8-layers model is 222 while for our Class CNN is 196.

Fig. 3.10 shows the relation of the incorrect predictions according to the parameters pre-

viously mentioned. There, we can see that only a few signs from the incorrect predictions

are small for each of the classifiers (8.2% for CNN asymmetricK model, 13.06% for the

Improved CNN 8-layers model and 14.79% for the Class CNN model), while almost half

of the incorrect predicted signs are rectangular for the three classifiers. We considered

these metrics because : 1) when the image size is small, even for humans, it is hard to

distinguish the correct class ; and 2) when the image is rectangular, the classifier resizes

it to a squared size suffering from information loss.

In the same way, we analyzed the predicted probabilities for the misclassified signs. We

consider as uncertain predictions the ones which are incorrect and predicted with a pro-

bability equal or bigger than 0.9. The most uncertain predictions obtained with the CNN -

asymmetricK model were 107/244 = 43.85%, for Improved CNN 8-layers model were

65/222 = 29.28% while for the Class CNN were 75/196 = 38.27%. This kind of analy-
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FIGURE 3.11 – Random sample of incorrect predictions of the ETSD with the CNN -
asymmetricK model trained with data-augmentation.

FIGURE 3.12 – Random sample of incorrect predictions of the ETSD with the Improved -
CNN 8-layers model trained with data-augmentation.

sis can help a classifier refuse the prediction if the confidence probability is less than a

certain threshold, however, in this approach, it is not applicable. As we are interested in

the visual characteristics that make the signs difficult to classify correctly, we inspected

all the incorrect predictions. Figures 3.11, 3.12 and 3.13 illustrate some of the incorrect

predictions for the CNN asymmetricK model [181], Improved CNN 8-layers model [159]

and Class CNN model respectively.

After the visual inspection, we found that most of the misclassified signs possess the

following characteristics :

— Strong motion blur.

— Incomplete signs (cropped).

— Occlusions.
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FIGURE 3.13 – Random sample of incorrect predictions of the ETSD with our proposed
Class CNN model trained with data-augmentation.

— Strong shadows or highlights.

— Strong perspectives.

— Human added artifacts.

— Poor image quality.

— Aging.

— Very different aspect ratios (rectangular signs).

Most of the errors in Danger and Regulatory categories are due to the characteristics

listed above. For the Informative category, the misinterpreted signs are mostly due to

their visual complexity and to the very different aspect ratios. Informative signs contain

text, which by nature, makes them the hardest ones to recognize. At the same time, their

very different aspect ratios conduce to information loss once the classifier resizes them

to a common input shape, normally, a squared shape. For example, in the Direction sub-

category, most of the errors reside on confusion of class 139 (Direction to place) with

class 138 (Advance directional signs) and vice-versa (see Fig. 3.12) due to the fact that

both contain text and their appearances vary a lot.

Interestingly, no matter how many conditions the ETSD considers (see Fig. 2.10), there

will always be hard situations for the classifiers to learn. In order to overcome this issue,

image processing techniques can be used to enhance the visibility of an image and data-

augmentation can be applied to improve the learning process generating more samples

with different transformations.

In summary, our proposed CNN architecture is capable of classifying in our PC, in GPU

mode, a traffic sign in 0.16 milliseconds which makes it optimal for the whole pipeline of
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traffic sign recognition. Evaluating its performance, our Class CNN is capable of classi-

fying correctly on the ETSD 98.48% traffic signs with a confidence probability bigger or

equal to 0.9 and, 99.31% with the same conditions on the GTSRB. This parameter allows

us to confirm that the architecture is robust and reliable enough to classify traffic signs.

3.6/ CONCLUSION AND FUTURE WORKS

In this chapter, we have reviewed, proposed and evaluated several CNNs architectures

to perform traffic sign classification. Differently from the state of the art models, which

focus only on symbol-based signs, we have considered traffic signs with text and with

very different aspect ratios (ETSD). These two characteristics increase the complexity

for a classifier to learn and distinguish appropriately the traffic sign classes. Despite this,

such classes provide relevant information about the driving environment as : a) they can

indicate a direction to take, b) alternatives routes when road works happen, c) provide

complementary information to understand precisely the traffic sign (additional panels), d)

limit the driving area with signs such as obstacle, access on the side, barrier, zone for

pedestrians or bicycles, among others, or e) simple inform about certain situations like

parking zones, residential areas, etc.

We have trained several state of the art CNN models with the GTSRB and the ETSD and,

showed that accuracy drops when the classes complexity increases. At the same time, we

demonstrated that Deep CNNs are not required to solve traffic sign classification. Instead,

techniques like image preprocessing and data-augmentation are used to improve classi-

fication accuracy. The best accuracy results were obtained with our proposed Class CNN

with 99.53% and 99.11% on the GTSRB and our ETSD test sets respectively.

However, all CNN architectures trained on the ETSD, exhibited the same behavior with

classes based on text and with very different aspect ratios (most belonging to Informative

category). They were the most challenging classes to learn due to the input definition of

the CNNs architectures. Since CNN models require a fixed size (most of the time squa-

red), information might be discarded when downscaling the image, or distorted from the

original input. Simultaneously, the text signs were always confused with other classes due

to their appearance variabilities. For example, directional signs and advanced directional

signs were always confused between them and some additional panels as well.

In future work, we intent to take into account the class imbalance problem to improve

recognition accuracy. In this regard we will : 1) take into account more transformations
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for data-augmentation as performed in [158], 2) generate data, simulating night scenarios

with different levels of brightness changes and noise additions 3) apply class independent

transformations like horizontal flip to signs which allow changing one class to another and

4) vertical flip to signs that do not change meaning. Besides the classification, we will

also attempt to 5) perform traffic sign detection in an image considering all traffic signs no

matter their shapes, colors, and text, to provide a complete traffic sign recognition system

for autonomous vehicles.





4
VISUAL PERCEPTION SYSTEM FOR

URBAN ENVIRONMENTS

4.1/ INTRODUCTION

Scene understanding is one of the main goals of autonomous driving systems. Extracting

information from the environment and being able to process it correctly, involves seve-

ral steps including data collection, data preparation, processing, and sometimes post-

processing. The data collection and preparation was performed as introduced in Chapter

2 while part of the data processing for traffic sign recognition was carried out in Chapter

3 to continue with the work presented here.

A considerable amount of research has been dedicated to the development of computer

vision tasks for safety enhancement [171]. Among them, rely the ones to locate and clas-

sify objects of different sizes such as road, lanes, traffic signs, traffic lights, vehicles and

pedestrians.

Recently deep learning methods, in particular, Convolutional Neural Networks (CNNs)

have shown very good performance on detection and classification tasks opening a door

for researchers to explore solutions based on them. Nevertheless, the nature of the ob-

jects may lead to complicated cases, since, every object possesses different characte-

ristics and appears in different sizes. For example, road, sky and buildings represent a

considerable portion of the image making them easier to detect and recognize, while in

the other hand, traffic signs, traffic lights and lane markings are harder cases due to the

small size they occupied in the captured images. In addition, illumination changes, wea-

ther conditions and occlusions influence as well the learning procedure to succeed on

accurate localization and in consequence classification.

Driver assistance systems are an example of applications which deal with the detection

63
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c) Instance segmentationb) Semantic segmentationa) Object detections

Car CarCarPerson
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FIGURE 4.1 – Visual representation of the differences between object detection (objects
enclosed with RoIs), semantic segmentation (dense pixel inference) and instance seg-
mentation (dense pixel inference of the detected objects).

and recognition of small objects in the scene. Lane departure warning systems and traffic

signs recognition are useful and important operations to increase safety. In fact, many

tasks require the recognition of small significant objects, reason why it is of major interest

to revise and evaluate methods which perform well for such tasks.

Detection approaches like R-CNN [99], Fast R-CNN [117], Faster R-CNN [126] are able to

detect regions of interest (RoI) with their corresponding labels in a considerable amount

of time. However, most of the time, these techniques require localization refinement for

accurate results.

Other approaches like semantic segmentation, are used for environment perception to

classify each pixel in the image with a corresponding label [161]. Their performances

depend on the actual image size and, their accuracies on the size of the objects. They

have proven to perform good on big objects while conducting poorly on small ones. When

talking about detecting and recognizing objects in the scene, it is necessary to detect all

objects that belong to a class, together with their individual instances, as some of them

may require further classification, like traffic signs. Semantic segmentation approaches

are able to classify each object of the same class, but fail to detect their different ins-

tances. In order to deal with the previously mentioned problem, instance segmentation

came into play to not only detect individual objects in the scene, but also segment their

masks (portion of the image pixels which actually belong to the object). Both approaches

work differently. For instance, semantic segmentation classifies each pixel with a label,

while, instance segmentation first detects objects in the scene as portions of the image

and then, based on that, decide which pixels belong to the actual class. In this way, a

single class possesses several instances which are useful for identifying or tracking single

objects. Fig. 4.1 shows an example of the differences between object detection, semantic

segmentation and instance segmentation.

Traffic signs are one of the classes represented with a single label for semantic segmen-
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tation approaches, but require additional classification to identify the specific traffic sign

class. For this reason, in this chapter, we propose a pipeline to perform environment per-

ception for urban scenarios, recognizing objects in the scene into 15 categories using

semantic segmentation, while at the same time, through instance segmentation, identi-

fication of certain classes like traffic signs, moving objects, traffic lights and crosswalks

will be separated into their instances. The objective of this, resides in the goal to perform

further processing. In our case, we will further identify the specific traffic sign classes with

an additional proposed CNN.

We summarize the contributions to the following :

1. Proposed a whole pipeline to identify important traffic agents in urban environments.

2. Through fine-tuning of different semantic segmentation approaches, we analyzed

and chose the one that better adapts to French urban scenarios, validating them on

the proposed UTBM-2 dataset.

3. We trained Mask R-CNN [162], an instance segmentation approach, as the base

detector on the Mapillary Vistas dataset [166] to identify 19 instance classes as

possible objects of interest for autonomous driving systems. Later, with the weights

obtained, we fine-tuned them on : the GTSDB, the proposed extended GTSDB and

the proposed UTBM-2 dataset, to focus mainly on symbol and text traffic signs for

German and French roads.

4. Evaluation of traffic sign detection and classification will be performed with a careful

selection of 132 urban classes in the extended GTSDB and the UTBM-2 datasets.

The rest of this Chapter is organized as follows : Section 4.2 presents related works.

Section 4.3 describes the proposed system for environment perception and traffic sign

recognition. Section 4.4 continues with details about the datasets used, the training pro-

cedures and the analysis of the results obtained evaluating the system on French and

German roads. Conclusions and future work are presented in Section 4.5.

4.2/ RELATED WORKS

We will discuss some related works regarding semantic segmentation for scene unders-

tanding. At the same time, works on traffic sign recognition will be reviewed, focusing

particularly on detection as classification was discussed previously in Chapter 3.
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4.2.1/ SEMANTIC SEGMENTATION

Semantic segmentation is a popular problem in computer vision since, it is one of the

high-level tasks that will allow to achieve complete scene understanding. It requires the

estimation of a function F to map an input image I to an output label map L, with the same

size as the input image. Each label index in the label map corresponds to a semantic class

of the input pixel (e.g. road, sky, building, etc.). Because of its dense per-pixel inference

and due to the success of CNNs in classification and detection approaches, semantic

segmentation also adopts them to solve its complex problem.

The pioneering work to perform semantic segmentation was proposed by Long et al. [123]

with the Fully Convolutional Network (FCN). Based on CNNs architectures, they replaced

the fully connected layers with convolutional ones to output spatial maps instead of clas-

sification scores. The maps are up-sampled using fractionally stride convolutions called

deconvolutions [65]. In this way, it is possible to infer a class label for each input pixel

(dense per-pixel output). Their work is considered as a milestone because it proved that

taking advantage of CNNs and their ability to learn feature representations automatically,

the task could be solved in an end-to-end manner.

Apart from the FCN architecture which can convert any well known classification model -

like AlexNet [73], VGG [109], GoogleNet [128] and ResNet [138] - into a model for dense

segmentation tasks, other techniques were also proposed to solve this problem. Among

them rely the ones that implement decoders [114] instead of using FCN, or the ones that

integrate context information [170, 130, 175] for more accurate prediction.

SegNet [114] is one example of the methods that used decoders. In theory, it is composed

of an encoder and a decoder. The first one refers to any CNN architecture removing

the fully connected layers to produce low resolution image representations or feature

maps. The decoder, on the other hand, needs to learn how to decode or map those

low resolution images to pixel-wise predictions of the same size as the input image. In

the case of SegNet, which is based on VGG16 [109], after removing the fully connected

layers, 13 blocks of convolutional layers represent the encoder. Its decoder consists of a

set of upsampling and convolutional layers. Each downscaled feature map is performed

with max-pooling while the decoder has an upsampling layer for each of them. This in

order to restore the original resolution and feed it to a softmax classifier to produce the

final dense segmentation.

Although, the FCN and encoder-decoder approaches seem to perform good to solve the
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problem, as soon as the image gets down-sampled with the CNNs, boundary information

gets lost leading to similar object appearances and, in consequence, errors in predic-

tions. For this reason, context information should also be considered when dealing with

semantic segmentation.

Integrating context information can be done through different techniques. One of them is

enlarging the receptive field-of-view of neural networks using dilated convolutions [130,

145, 170, 175]. Dilated convolutions, also known as à-trous (french word meaning with

holes in) convolutions, allow expanding the field-of-view of kernel filters at any CNN layer

without loosing resolution, which makes them a good strategy as no additional cost is

encountered. Among the common CNNs that make use of this strategy are PSPNet [170]

and DeepLab [96, 175] models.

Other works, have combined multi-scale features [148, 132] to include context informa-

tion. Normally these approaches make use of multiple networks that target different scales

and, at the end, merge the predictions to output a single result. Additionally, driven by the

image pyramid, Chen et al. [175] proposed the Atrous Spatial Pyramid Pooling (ASPP)

module to capture context information of different receptive fields. Zhao et al. [170] pro-

posed the Pyramid Pooling Module (PPM) to fuse features under four different pyramid

scales in the final layer feature map, for global scene prior construction. Besides that,

fusing global and local feature maps [122, 146] extracted from different layers in the CNN

architecture, also increases the segmentation accuracy.

Yu et al. [186] tried to deal with the semantic segmentation problem focusing on designing

a CNN (BiSeNet) capable of dealing with the spatial and the context information through

two different paths and, fusing the features with their proposed fusion module.

In order to deal with the boundary loss mentioned before, Conditional Random Fields

(CRF) are used as post-processing step to refine the segmentation results [131, 175]. The

CRF of DeepLab [175], models each pixel as a node in the field and employs one pairwise

term for each pixel pair. In this way, the system is able to recover detailed structures of the

object. In a similar manner, the work proposed in [115] uses a densely connected CRF to

refine the results of the CNN applied to material classification.

In Section 4.3.1, we will analyze in detail some CNN models that make use of decoders,

include contextual information and use CRF for boundary refinement to evaluate them

later in Section 4.4 and choose the one that fits best for our system.



68 CHAPITRE 4. VISUAL PERCEPTION SYSTEM FOR URBAN ENVIRONMENTS

4.2.2/ TRAFFIC SIGN RECOGNITION

Traffic sign recognition is usually carried out in two steps : detection and classification.

The detection consists of localizing spatially in an image the region where the object

of interest appears. Normally this region is represented through pixel coordinates called

Region of Interest (RoI) and it can be detected through different approaches depending

on the final aim. Classification, on the other hand, consists of predicting a label for the

input, based on a series of features learned by the classifier. It is performed after the

detection is carried out identifying the RoIs and using them as input to decide whether or

not a RoI is a traffic sign and infer its specific class.

As traffic signs are grouped into categories with similar shapes and colors [1], a conside-

rable amount of approaches have been proposed taking advantage of these key characte-

ristics. Color-based detection methods [22, 34, 36, 59, 153, 151] segment the most used

traffic sign colors (red, blue and yellow) converting RGB images to other color spaces in

order to reduce illumination sensitivity and enhance the target hues to extract RoIs. For

example, Maldonado et al. [36], Kuo et al. [34] and De la Escalera et al. [19] use the

hue-saturation-intensity (HSI) color space to enhance red, blue and yellow colors using

the hue and saturation components. Then color thresholds together with size and aspect

ratios are used to segment traffic sign regions for further processing. Also, Yang et al.

[153] exploit color for detection, but instead of HSI, they converted RGB values to Ohta

space, proposing a color probability model to transform color images into probability maps

to finally use Maximally Stable Extremal Regions (MSER) detector to keep only the most

stable regions as RoIs.

On the other hand, as color is a key component but not suitable for outside environ-

ments due to illumination changes, shape-based approaches came into play discarding

this information and focusing only on detecting certain contours like squares, circles or

triangles to identify specific traffic sign categories. Edge detectors, Hough transforms

[34, 48, 69, 59], radial symmetry voting [18, 25] as well as template matching [10] are

the most common techniques. Edge based methods make use of Canny algorithms and

Hough transforms to identify shapes. Garcı́a Garrido et al. [69] detected Spanish circular

and triangular signs with Canny edge detector and refined with Hough transforms from

gray-scale images. Two Support Vector Machines (SVM) were used to further classify

each shaped signs.

Radial symmetry voting is a variation of Hough transform that finds points of interest in

an image and detects circular signs in an more efficient way. This kind of approach was
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extended in [20] to detect also triangular, square and octagonal signs. Template matching

as its name suggests, utilizes templates to scan the whole image and find similarities

through distance transforms.

Some approaches use a combination of both, color and shape, to detect traffic signs

[19, 34, 151]. In this case, color locates the signs roughly and the shape, filters out false

positives that do not fall into the characteristics of certain categories. Additionally, other

methods like support vector machines (SVM) [36, 153], clustering [103] or Artificial Neural

Networks (ANNs) [94] are used in combination with color and shape to detect traffic signs.

However, all the previously mentioned methods are limited to specific definitions and are

sensitive to weather conditions, illumination changes, reflections, occlusions, rotations,

etc., reasons that make them very ineffective for real world environments.

Besides shape and color methods, machine learning approaches have been used for traf-

fic sign detection after the successful application in image classification and their adapta-

tion to object detection. These methods treat detection as a classification task and their

performance depends on the features selected. Hand-crafted features like saliency [129],

local binary patterns (LBP) [107, 142], histogram of gradients (HoG) [92, 129, 153], inte-

gral channel features (ICF) [112] or aggregated channel features (ACF) [168] have been

applied for this task. Nevertheless, it has been proven that automatically learned features

through CNNs perform better than the hand-crafted ones. More comprehensive reviews

about detection methods for traffic signs are presented in [77, 167].

Since 2013, CNNs have been used for object detection to first calculate some generic

region proposals and then perform classification on the candidates. R-CNN [99] is one

example of the formerly mentioned. It extracts regions through Selective Search [91] and

with a CNN, feature maps are extracted for each proposal to be passed to bounding box

regressors and SVM classifiers. However, due to the inefficiency of R-CNN, numerous

efforts were made to improve this approach. Fast R-CNN [117] jointly optimizes classifi-

cation and bounding box regression, replacing the SVM classifier with a Softmax layer.

Faster R-CNN [126] improves the object proposal step introducing Region Proposal Net-

works (RPNs) which share full-image convolutional features making the detection suitable

for real-time systems. Thanks to the object detection success of these approaches, re-

searches have been inspired and different methods have been proposed for traffic sign

detection. Quian et al. [147] focused on detecting traffic signs painted on the road using

Maximally Stable Extremal Regions (MSER) [21] detectors and EdgeBoxes [113] (boun-

ding box proposals using edges) to identify region proposals and pass them to Fast R-
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CNN for further feature extraction, classification and bounding box regression. Huang et

al. [179] made use of Generative Adversial Networks (GANs) together with Faster R-CNN

to deal with the problem of detecting small objects like traffic signs. Their idea was to map

features of the small traffic signs into large object features with the same feature distri-

bution to be able to provide a more accurate prediction. Li and Wang [181] also used

Faster R-CNN to detect candidate traffic signs and proposed a refinement of the can-

didate regions through color segmentation and Hough transforms to identify 4 shapes

(circle, rectangle, triangle, octagon).

Until now and despite the good performance of detection approaches based on CNNs

like Faster R-CNN, small size objects are not detected accurately and, in consequence,

further processing is required. In order to deal with this issue, we use as a detection

approach, Mask R-CNN [162]. Mask R-CNN is based on Faster R-CNN predicting the

class, bounding box coordinates and a mask for each RoI. In our case, we aim to use the

mask branch as a localization refinement for traffic signs. In this way, if the RoI predicted

is not accurate enough as Li and Wang [181] encountered, the mask will discard the extra

background pixels and a more accurate classification will be performed in further steps.

4.3/ VISUAL PERCEPTION SYSTEM

Our proposed system for environment perception is composed of two modules. The first

one deals with the recognition and localization of 15 object classes in the scene through

semantic segmentation. As small objects are not clearly recognizable and instances are

not possible to obtain, the second module deals with these shortcomings using instance

segmentation and focuses on traffic signs to identify the specific traffic sign classes. In

other words, this last module performs traffic sign recognition with instance segmentation

and a proposed CNN architecture. An overview of our proposed pipeline is illustrated in

Fig. 4.2.

In the semantic segmentation module, we will provide a comparison study of four ap-

proaches described in subsection 4.3.1 for French urban environments. Regarding traf-

fic sign recognition, we will compare our proposed system with the state of the art ap-

proaches dealing with detection and classification on the well known GTSDB [83] and the

GTSRB [79] datasets. Additionally, and in order to deal with text traffic signs, we will pro-

vide comparison results between the GTSDB and the proposed extended GTSDB (see

Section 2.4) to analyze the difficulties of handling both, text and symbol-based signs.
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FIGURE 4.2 – System proposal pipeline composed of two modules : Semantic segmenta-
tion and Traffic sign recognition.

Lastly, evaluation of traffic sign recognition will be performed on French environments

with the UTBM-2 dataset.

As a result, the output of both modules provides an accurate scene interpretation of urban

environments.

4.3.1/ ENVIRONMENT PERCEPTION THROUGH SEMANTIC SEGMENTATION AP-

PROACHES

One of the primary motivations for semantic segmentation is road scene understan-

ding. It requires the ability to model the appearance, shape and understand the spatial-

relationship (context) between different classes like road and sidewalk. At the same time,

it should be able to delineate object boundaries independently of their sizes. Several me-

thods [161] have been proposed based on CNNs to deal with all these issues.

In this section, we will describe four semantic segmentation models that use different

techniques to perform dense per-pixel inference. These are : SegNet [114] which uses an

encoder-decoder method, PSPNet [170] which fuses multi-scale features, DeepLab [175]

that fuses multi-scale features + boundary refinement and, BiSeNet [186] which deals

with spatial and context information separately to fuse the features.



72 CHAPITRE 4. VISUAL PERCEPTION SYSTEM FOR URBAN ENVIRONMENTS

FIGURE 4.3 – SegNet architecture extracted from [114].

4.3.1.1/ SEGNET

Bandrinarayanan et al. [114] proposed SegNet, a semantic segmentation network. Its

structure is based on an encoder-decoder network. The encoder is topologically identical

to VGG16 [109] removing its fully connected layers. The key component of SegNet relies

in the decoder network which consists of a series of decoders, each corresponding to one

encoder. In other words, the decoders used the max-pooling indices of the corresponding

encoder to perform non-linear up-sampling of the feature map. Fig. 4.3 illustrates the

SegNet architecture.

The encoder network consists of 13 convolutional layers after removing the fully connec-

ted ones from VGG16. Consequently, the decoder is also composed of 13 deconvolutional

layers, for which at the end, the output is fed to a multi-class softmax classifier to produce

class probabilities for each pixel.

Each encoder consists of a convolutional layer to produce feature maps. Then, these fea-

ture maps are batch normalized [120] and activated with ReLu [54]. After that each map

is downscaled using max-pooling and saving only the indices (locations of the maximum

feature value in each pooling window). For the decoders, each feature map is upsampled

using the memorized indices to produce sparse maps. After this, each map is convolved

with a trainable decoder filter bank producing dense maps. Next, the dense feature maps

are followed by batch normalization and ReLu activations as performed with the enco-

ders. At the end, the output of the last decoder is passed to a softmax classifier to predict

K (number of classes) output probabilities for each pixel value. The class with maximum

probability will define the final class.
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FIGURE 4.4 – Overview of the PSPNet architecture [170]. The feature map in (b) corres-
ponds to the map obtained after removing the fully connected layers of ResNet [138].

4.3.1.2/ PYRAMID SCENE PARSING NETWORK (PSPNET)

Zhao et al. [170] decided to make use of the pyramid structure to capture contextual

information and improve the segmentation results. The architecture of their proposed

PSPNet is illustrated in Fig. 4.4.

PSPNet makes use of dilated convolutions FCN [123] to keep dense feature maps resolu-

tion. It is based on ResNet [138] model to extract the final feature map. This map is 1/8 of

the input image size. The pyramid pooling module takes this map as input and produces

four feature maps performing pooling with different sizes (1 × 1, 2 × 2, 3 × 3 and 6 × 6).

Each of these pooled feature maps is then convolved with a kernel size of 1× 1 to reduce

dimensionality. Once the four feature maps are convolved, they are up-sampled using

bilinear interpolation to recover the same size as the original input feature map obtained

from ResNet.

Additionally, and in order to include global contextual information, the feature map obtai-

ned from ResNet and the four feature maps computed with the pyramid pooling module

are concatenated and convolved one more time to generate the final prediction map. As

mentioned before, the map is 1/8 of the image input size, for which the convolved final

feature map is up-sampled by a factor of 8 and passed to the final softmax classifier to

output the probability map with the N number of classes for each input pixel.

4.3.1.3/ DEEPLAB

Chen et al. [175] proposed a deep convolutional neural network (DCNN) architecture

to perform semantic segmentation incorporating context information with their proposed

atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales.
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FIGURE 4.5 – DeepLab architecture [175].

Moreover, they refined the object boundaries using a fully connected Conditional Random

Field (CRF). Their model architecture is illustrated in Fig. 4.5.

The backbone of their model is either VGG-16 [109] or ResNet-101 [138]. In our case, we

will use ResNet-101 for training. The fully connected layers of the backbone architecture

are transformed to fully convolutional layers (FCN). At the same time, through the atrous

convolutions, the final feature map is down-sampled from 32x to 8x without any additional

cost. The dilated convolutions are transformed from a kernel size k × k to a kernel size

ke = k + (k − 1)(r − 1), with rate r which introduces r − 1 zeros between consecutive filter

values.

Furthermore, contemplating different scales of feature representations, have proved to

improve segmentation results due to the inclusion of context information. Through their

proposed ASPP technique, inspired by the Spatial Pyramid Pooling in [101], multiple fea-

tures are extracted and further processed in separate branches to generate the final

feature map. Once obtained, this map is up-sampled by a factor of 8 to recover a feature

map with the same original image size.

Due to the convolution and max-polling operations, the final feature map possesses a lot

of smoothness which makes it hard to delineate object boundaries in the final prediction.

To overcome that limitation, Chen et al. integrated in their architecture the fully connected

CRF model of [60] and showed that it is remarkably successful for accurate semantic

segmentation results.
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FIGURE 4.6 – Overview of the Bilateral Segmentation Network (BiSeNet) extracted from
[186].

4.3.1.4/ BILATERAL SEGMENTATION NETWORK (BISENET)

Yu et al. [186] focused on addressing the semantic segmentation problem dividing their

CNN architecture into two paths. One is able to deal with the spatial information and

to generate a high resolution feature, while the another one, is capable of handling the

context information to, at the end, fuse both feature maps. Their architecture is presented

in Fig. 4.6.

The spatial path (SP) contains three major layers, each corresponding to a convolution

with stride 2 + batch normalization [120] + ReLu activations [54], extracting a feature map

of 1/8 of the original image size. This map encodes rich spatial information of the input.

The context path (CP) models the context information using Xception [160] as backbone

to down-sample fast the feature map and obtain large receptive fields. Three feature maps

are obtained from the Xception as seen in Fig. 4.6a. The authors proposed as well an

attention refinement module (ARM) to refine the features through global average pooling.

Lastly, the features obtained from both paths are fused though the feature fusion module

(FFM) as shown in Fig. 4.6c. The authors claimed that performing global pooling after the

concatenated convolved feature map, the weight vector obtained is able to re-weight the

features and provide a correct feature representation of the input image. The final feature

map is upsampled and passed to a softmax to provide the segmented output image.



76 CHAPITRE 4. VISUAL PERCEPTION SYSTEM FOR URBAN ENVIRONMENTS

T.S. class

Discard
FT P ≥ 0.9
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CNN classifier

Preprocessing

T.S. proposal FT S ≥ 0.8

RoI from maskMask R-CNN
Input 
image

FIGURE 4.7 – Pipeline of our proposed traffic sign recognition module. T.S. refers to Traffic
Sign. The Mask R-CNN block represents the detection module while the refinement is
composed of the RoI extraction and class score (S) filtering. The CNN classifier block
makes reference to the classification module that will output a traffic sign class only if the
predicted probability (P) is at least 0.9.

All the previously described networks will be trained and evaluated in Section 4.4 to per-

form environment recognition in French urban scenarios with the proposed UTBM-2 da-

taset.

4.3.2/ TRAFFIC SIGN RECOGNITION

Our traffic sign recognition module is illustrated in Fig. 4.7. The detection is capable of

localizing the RoI where the sign is present. In our case this step is carried out by Mask R-

CNN [162]. The advantage of using this approach resides in the localization refinement of

the traffic sign performed at the same time when the mask is obtained. The classification,

on the other hand, is accomplished with the proposed CNN to categorize the traffic signs

and provide the specific classes for each category. This step takes as input the filtered

output of the detection approach, pre-processes the image and labels each object with a

corresponding class.

In the following sub-subsections, we describe in details the detection, refinement and

classification tasks.
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4.3.2.1/ TRAFFIC SIGN DETECTION

Traffic signs in real scenes have large differences in color, shape and size, reasons that

make them hard to detect. Fortunately, deep learning approaches came into play with

CNNs extracting automatically complex features without the need to design or chose

manually the ones that will perform better to detect traffic signs.

We chose Mask R-CNN [162] as a general detector to identify static and moving objects

seen in outside environments, but in this work, we only focus on traffic signs. This ap-

proach is based on Faster R-CNN [126] which detects objects in two stages : 1) propose

candidate regions (RoI) through a Region Proposal Network (RPN) and 2) extract fea-

tures for each RoI using the RoIPool layer to perform classification and bounding box

regression. On the other hand, Mask R-CNN introduces a new branch to segment a bi-

nary mask for each RoI and replaces the RoIPool layer with a RoIAlign layer. The whole

pipeline is illustrated in Fig. 4.8.

Conv
layers

Mask

FCNs
Class
Box

RoI feature vector

RoIAlign

RPN

Conv layer
RoI proposals

RoI scores

Feature map
Conv layers

FIGURE 4.8 – Mask R-CNN data flow.

The input image is passed to a series of convolutional layers (based Conv layers) that

output a feature map. In our case, ResNet-101 architecture was used together with Fea-

ture Pyramid Network (FPN) as feature extractor. Then, region proposals are obtained

with the RPN. This network uses a n × n spatial window to slide it through the whole fea-

ture map. Each window is mapped to a lower dimensional feature which serves as input

to two fully connected layers : a box-regression layer and a box-classification layer. k re-

gion proposals, called anchors, are predicted at each sliding window location where the

box-regression layer outputs 4k values (box coordinates) and the class-regression layer

2k scores (foreground or background). Normally, the anchors predicted are centered on

the window and set with different sizes and aspect ratios (normally 3 each). In order to re-

duce redundancy of the overlapping region proposals, non-maximum suppression (NMS)

is used based on the RoI scores. Only the regions with at least 0.7 IoU are then forwarded



78 CHAPITRE 4. VISUAL PERCEPTION SYSTEM FOR URBAN ENVIRONMENTS

to the detection and mask branches.

An intermediate layer to extract the features for each RoI from the image feature map is

carried out by RoIAlign. This layer replaced RoIPool to overcome the feature misalign-

ment introduced by quantization while mapping the extracted feature map into fixed size.

Instead of quantizing the smaller feature map using max pool into a certain number of

bins (e.g. 7 × 7), RoiAlign samples each bin into 4 locations and computes their value by

bi-linear interpolation from the nearby grid points. In this way, each bin aggregates the

result of the 4 points using maximum or average operation to extract the exact values of

the input features. This substitution leads to a more precise per-pixel segmentation and

box regression [162].

Following the data flow in Fig. 4.8, each RoI feature vector is fed to the detection and

mask branches to obtain its corresponding bounding box coordinates (x,y,w,h), its score

class and its respective binary mask, where (x,y) indicate the top-left corner and (w,h) the

width and hight of the box.

The decision of choosing this detector resides on the following reasons :

— It is based on Faster R-CNN [126], a fast detector, which has been used in several

works [147, 134, 165, 179, 181] to identify traffic signs due to its capacity to detect

small objects. In [173], the authors compared several architectures to detect traffic

signs, specifically German signs from the GTSDB [83], and proved that, among

the detectors (not including Mask R-CNN), Faster R-CNN outperforms the others

no matter the backbone CNN used as feature extractor.

— Detection evaluation in [162], showed that the replacement of RoIPool (Faster R-

CNN) with RoIAlign layer (Mask R-CNN), improved significantly the results.

— No further processing of the RoIs is required to detect certain shapes [181] since

the mask branch serves as localization refinement.

— The detector is not constrained to certain shapes like all the previous works mentio-

ned in Subsection 4.2.2. Any traffic sign shape (circle, rectangle, triangle, square,

octagon, etc.) will be detected and further classified.

— Its implementation is publicly available for different deep learning frameworks ma-

king it easy to use, adaptable to specific tasks and reproducible.

In this work we used the implementation made for Tensorflow [156] and trained the detec-

tor on the Mapillary dataset [166]. Details about the training and evaluations are presented

in Section 4.4.
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4.3.2.2/ TRAFFIC SIGN REFINEMENT AND CLASSIFICATION

Once the outputs of Mask R-CNN are obtained, the refinement module extracts the exact

RoIs using mask outputs and only keeps the regions for which class scores of being a

traffic sign are bigger or equal than 0.8. This filtering is done to reduce the number of

mistaken objects as traffic signs and to pass to the classifier a cleaner set. It is worth

mentioning that the class scores do not influence the detection results but they are used

for filtering because they provide a good hint to discriminate objects which do not belong

to the traffic sign class.

The goal of the classifier is to identify properly the traffic signs classes and discard the

false positives (background RoIs) for the recognition system. Traditionally, this filtering

is done in the detection part, but as detectors are never perfect, the classifier needs to

account for this as well. Fortunately, with the capability of CNNs, this task can also be

done adding to the classifier an extra class for learning background objects. Here we will

make reference to our proposed Class CNN described in Chapter 3, and we will introduce

another CNN capable of learning traffic sign categories (Cat CNN). The performance of

our deeper CNN (Class CNN) is competitive with the state of the art CNNs for traffic sign

classification. Any of the CNNs is referenced as the classification module (CNN classifier)

in Fig. 4.7.

As a reminder, our proposed Class CNN is based on 5 blocks to identify the specific class

and from there, we extracted another CNN with 3 blocks to identify the traffic sign category

(Cat CNN). The category classifier (Cat CNN) shares the same definition of blocks 1 and

2 from the class classifier (Class CNN) changing the third block with a convolutional layer

of size 80. Fig. 4.9 illustrates both CNN definitions previously mentioned and Table 4.1

and Table 3.1 (Chapter 3) show specific details.

In Table 4.1, the output is set to 5 in order to recognize the 4 categories defined in the

GTSDB [83] (Danger, Prohibitory, Mandatory and Others) plus a background class. The

category classifier has fewer layers compared to the class classifier, because recognizing

the category is simpler than the class, as mostly shapes and colors are necessary. It

is well known that the first few layers of a CNN detect lines and corners, while deeper

layers learn more complex features. For this reason, only three modules are used for the

category classifier whose details are shown in Table 4.1.

For comparison purposes and in order to evaluate the traffic sign recognition module, we

trained the class classifier (Table 3.1 in Chapter 3) with 43 output classes according to
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shared blocks

Categories
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20
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B3

Classes
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2880

256
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FIGURE 4.9 – CNN structure represented by blocks for the category and class classifiers.
Block 1 and 2 (B1 & B2) are the same for both classifiers.

TABLE 4.1 – Architecture of our CNN for traffic sign categories identification (Cat CNN).
’chan’ makes reference to the number of channels, ’kS’ to kernel size, ’std’ to stride and
’kpProb’ to the probability of keeping the original feature.

type outMap chan kS std keep prob
I input image 48 × 48 3 - - -

B1 convolution 48 × 48 32 3 × 3 1 -
convolution 48 × 48 32 3 × 3 1 -
maxpooling 24 × 24 32 2 × 2 2 -
dropblock 24 × 24 32 3 × 3 - 0.8

B2 convolution 24 × 24 64 3 × 3 1 -
convolution 24 × 24 64 3 × 3 1 -
maxpooling 12 × 12 64 2 × 2 2 -
dropblock 12 × 12 64 3 × 3 - 0.8

B3 convolution 12 × 12 80 3 × 3 1 -
maxpooling 6 × 6 80 2 × 2 2 -
dropblock 6 × 6 80 3 × 3 0.75

C fully connected 1 × 1 20 - - -
dropout 1 × 1 20 - - 0.5

fully connected 1 × 1 5 - - -

the GTSRB plus a background class. Furthermore, we trained four more CNNs with the

same architecture : one for each category of the GRSDB (Danger, Prohibitory, Mandatory

and Others) and another CNN with a chosen subset of urban/rural classes extracted from

our proposed ETSD [184] described in Chapter 2.2. In the same way, we trained one

CNN with the category classifier architecture (Table 4.1) with 5 outputs to recognize the

GTSDB categories plus background. The experimental results are provided in Section

4.4.
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4.4/ EXPERIMENTAL RESULTS

In this section, we will evaluate both modules on French and German roads. The eva-

luation for the environment perception will be performed only on French urban scenarios,

while for the traffic sign recognition module, experiments will be performed on French and

German roads.

We will start with a brief description of the datasets used for evaluation to continue with

details about the training procedures for each module. We will finish with the actual per-

formances obtained between the different semantic segmentation methods evaluated on

UTBM-2 test set and, a comparative study between our traffic sign recognition results and

the ones reported by the competitors.

4.4.1/ DATASETS

4.4.1.1/ SEMANTIC SEGMENTATION DATASET

The evaluation of the environment perception module performed through semantic seg-

mentation considers only French urban scenes. Our proposed UTBM-2 dataset described

in Chapter 2.3 consists of 541 images of resolution 1280 × 960, labeled with 27 classes.

For our experiments, we considered only 15 object classes :

1. building

2. pole

3. sky

4. vegetation

5. road

6. lane marking

7. parking block

8. sidewalk

9. crosswalks

10. humans

11. refugee island

12. vehicle

13. bicycle motorcycle

14. traffic lights

15. traffic signs

We fused building class with 2 others (fence and bridge), vehicle class with 3 (car, bus,

trailer), human class with pedestrian and bicyclist, traffic signs with symbol and text signs

classes and vegetation together with tree class. The rest of the classes not mentioned

previously and included in the UTBM-2 labels, are fused as the extra void class. The

color representations used for each class are taken from the Mapillary [166] definition.

We have decided to keep some classes as the originals due to the importance they pro-

vide for the environment perception. For example, road, sidewalks, parking blocks and
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refugee island are relevant to distinguish for an autonomous vehicle in order to know the

drivable territory. In the same way, lane markings intend to guide the vehicle to keep in its

corresponding lane, while traffic signs and traffic lights tend to provide traffic rules while

driving. Crosswalks were added to the classes of interest to distinguish the most dange-

rous zones where pedestrians tend to appear while crossing the road. All these classes

will be evaluated in Section 4.4.3 considering only the 109 images of the UTBM-2 test

set.

4.4.1.2/ TRAFFIC SIGN DETECTION AND CLASSIFICATION DATASETS

In order to evaluate the proposed traffic sign recognition module, we use the GTSRB

[79] and the GTSDB [83] to compare our method with other approaches. Nevertheless,

these benchmarks are not representative enough for real world applications since 1) they

include only pictographic/symbol based traffic signs with regular shapes and colors, 2) im-

portant classes are discarded like temporal signs, text-based signs, supplemental panels,

etc., 3) symbol variations are not contemplated neither inside the same country nor for

multi-country purposes (intra-class variability), and 4) images used for detection present

considerable big traffic signs.

Hence, our proposed datasets, the extended GTSDB (see Chapter 2 Section 2.4) and

UTBM-2 (see Chapter 2 Section 2.3), will be used as well to handle the shortcomings

mentioned before when evaluating traffic sign recognition.

Furthermore, we extracted a urban subset of traffic signs from the ETSD [184] to handle

intra-class variability (shortcoming three), symbol and text based signs, and multi-shape

and multi-color signs for classification purposes. We carefully selected a group of 132

classes representative of urban/rural environments. The selection was made after a rigo-

rous examination of frequent signs appearing in the GTSDB and UTBM-2 datasets. Fig.

4.10 shows the classes contemplated in this study which are analyzed further in Section

4.4.4.

In summary the datasets that will be used for traffic sign detection (Mask R-CNN) are :

the GTSDB, the extended GTSDB and UTBM-2. Where the first one includes only symbol

signs (4 categories) and the last two include more complex signs (9 categories including

text traffic signs). Regarding traffic sign classification, we will use the GTSRB and the

urban set from the ETSD.
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(h) Others

(g) Informative - Additional panels

(f) Informative - Direction

(e) Regularory - Special regulation

(d) Regulatory - Mandatory

(c) Regulatory - Prohibitory

(b) Regulatory - Priority

(a) Danger warning signs

FIGURE 4.10 – Urban/rural subset selection of the ETSD. (f) and (g) correspond to text-
based signs while the rest make reference to symbol-based signs.

We emphasize the need to include text traffic signs (directional and additional panels si-
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gns) or signs with very different aspect ratios (others category) since they provide useful

information for the autonomous vehicle to interpret correctly traffic scenarios. The limi-

tations and challenges encountered with these type of signs were discusses in Chapter

3. We will see how the performance drops when the detection and classification on the

GTSDB dataset include other categories than symbol-based signs. We will compare the

results obtained for the detection and classification on the GTSDB dataset, its extended

version and UTBM-2.

4.4.2/ TRAINING

All models are trained in GPU mode using a NVIDIA GeForce GTX1080Ti with 11GB of

memory, an IntelCore i7K-8700K (6 cores 12 threads, 12 Mb cache memory) processor

and RAM of 32GB.

4.4.2.1/ SEMANTIC SEGMENTATION APPROACHES

For training the four semantic segmentation models described in Section 4.3.1, we made

use of the semantic segmentation suite in Tensorflow 1 which contains the implementation

for the four models.

We set the input image size to the original of the dataset, 1280 × 960 pixels, to segment

15 classes. In order to increase the number of images for the training set, we perform

data augmentation flipping the image horizontally and applying ±10 degrees of random

rotation. The mean image was subtracted from the dataset to account for normalization.

All the models were configured to use ResNet101 [138] as the backbone CNN together

with the pre-trained weights in ImageNet [127]. The number of epochs to train each model

was fixed to 100 with a batch size of 1. This small batch size was chosen according to

the capabilities of our graphic card. To train all the variants we use the Root Mean Square

Propagation (RMSprop) optimizer [81] with a fixed learning rate of 0.0001 and momentum

of 0.995. A validation set of 54 images is used to ensure the learning and prevent over

fitting.

The best weights for each model are chosen according to the validation loss obtained

at every epoch. When this loss starts increasing, it means the model is over fitting and

it is time to stop the training. In consequence, the weights obtained before this behavior

1. https ://github.com/GeorgeSeif/Semantic-Segmentation-Suite
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occurred, will be the ones that reached the global minimum and the picked ones for

testing.

4.4.2.2/ TRAFFIC SIGN DETECTION

We used the implementation of Mask R-CNN in Keras and Tensorflow 2. This implemen-

tation uses ResNet101 with Feature Pyramid Networks (FPN) as backbone for feature

extraction. The ResNet architecture divides its convolutional layers into 5 stages which

are used later by the FPN to generate the final feature map. This feature map is compo-

sed of 5 pyramid stages which are convolved with 256 filters using a kernel size of 3 × 3.

Once the feature map is extracted, the Region Proposal Network (RPN) takes it as input

and feeds it into a convolutional layer of 512 filters with kernel size of 3 to generate 9

region proposals (using 3 scales and 3 aspect ratios [162]) for every window size loca-

tion in the feature map. As the feature map is composed of 5 stages (ResNet and FPN),

every stage is passed to the RPN network to extract RoIs in different scales together with

their probabilities (RoI scores) of being foreground or background. Considering that the

positive RoIs may be overlapping, non-maximum suppression is used to obtain only one.

We set to 255 the number of maximum detected RoIs per image, where a positive output

is selected if there is at least 70% overlap with the ground truth and discarded it if the

overlap is less than 30%. Subsequently, the target RoIs are passed to the RoIAling layer

(see Fig. 4.8) to extract fixed size features per proposal and feed them into the class and

mask branches. For the classification branch, the RoI feature is passed to 2 convolutional

layers with 1024 filters of size 3 × 3 and 1 × 1 followed by BN [120] and ReLU activations

[54]. This convolutional layers are shared for the class and box heads. The class head

uses Softmax activation to output the probability of the RoI to belong to a certain class

(traffic signs), while the bounding box head utilizes linear activation to obtain the spatial

locations of the RoI. The mask branch, on the other hand, takes the RoI feature and

performs 4 convolutional operations with 256 filters using kernel size 3 × 3. In the same

way as in the classification branch, each convolutional operation is followed by BN and

ReLU activations. The mask for every RoI is obtained in the last layer with a per-pixel

Sigmoid activation in order to have a binary mask.

Taking into account that the GTSDB contains only 600 images for training, we first trained

Mask R-CNN with the Mapillary Vistas dataset [166] to obtain some initial weights and

fine-tune them later. This dataset contains 25,000 high resolution images representing

2. https ://github.com/matterport/Mask RCNN
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street-level scenarios. It is labeled in a per-pixel manner with 64 semantic classes and 37

instance ones. We chose this dataset for training as 1) it contains only driving scenarios,

2) traffic signs class contains symbol and text-based signs, 3) a diversity of scenarios

is provided (urban, rural, highways), 4) the high image resolution allows to choose the

proper size according to the needs of the task and 5) the number of images is enough to

train a robust detector/classifier.

The Mapillary dataset is divided into 18,000 / 2,000 images for training and validation

respectively. For our approach, we set the training size to 1280×960 discarding all images

in the dataset that do not fit our requirement. 17,979 images were used for training Mask

R-CNN, while 1995 were used for validation. We chose carefully 19 instance classes

comprising static and moving objects of interest to detect objects like cars, pedestrians,

traffic lights, pedestrian crossing, traffic signs among others.

The training procedure was set to 32 epochs using Stochastic Gradient Descent (SGD)

as the optimizer with learning rate equals to 0.01, momemtum of 0.9 and weight decay

of 0.0001. Due to the image size and capabilities of our GPU, only 1 image per batch

was used. The ImageNet weights, trained in ResNet50, were used as initialization for

fine-tuning all layers of Mask R-CNN with the Mapillary dataset. This procedure took 18

days, 23 hours, 29 minutes and 49 seconds.

Once the Mapillary weights were obtained, we continue to the second training stage to

fine-tune the previously obtained weights with the original GTSDB [83], the proposed

extended GTSDB and the proposed UTBM-2 datasets. The training parameters were

almost the same changing the number of epochs to 50 for the three datasets. The training

and validation steps for the GTSDB were set to 600 and 300 respectively, while for the

UTBM-2 dataset, they were set to 389 and 42 (number of images in the train an validation

sets). These training procedures took approximately 7 hrs each for the GTSDB and its

extended version, whereas for the UTBM-2 dataset, it took around 5 hrs. The minimum

validation loss for each dataset was obtained at epoch 46 for the original GTSDB, at

epoch 45 for its proposed extended version and, at epoch 20 for UTBM-2.

The learning time was quite long due to the number of parameters that Mask R-CNN has

(63,830,282), the image size (1280 × 960) and the batch size (1) used for training.
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4.4.2.3/ TRAFFIC SIGN CLASSIFICATION

We trained 7 classifiers with the two CNN architectures described in Section 4.3.2.2 using

Keras and Tensorflow back-end. The training procedure is almost the same as we per-

formed for the Class CNN in Chapter 3 ; the only difference is that we have included a

background class to discard some false matches and we have trained the classifiers for

100 epochs instead of 50 with data augmentation. The preprocessing and training pa-

rameters are left unchanged. It is important to mention that the type of preprocessing

influences the performance of the classifier. For instance, we have trained Class CNN

applying histogram equalization in the lighting channel, adaptive histogram equalization

and without any preprocessing, obtaining the best accuracy results with histogram equa-

lization.

The background class was generated using the negative anchors from the Mask R-CNN

on UTBM-2 and GTSDB. We have saved 20 RoIs per image as background class and

inspected them to discard the non appropriate ones (covering almost the whole image or

RoIs including traffic signs).

We have trained Class CNN on the GTSRB (43 + background classes) with data augmen-

tation. In the same manner, we trained the urban/rural subset (132 + background class)

subtracted from the ETSD [184] and used it to evaluate the detection and classification

performances. The results obtained are presented in the Section 4.4.4.

In the literature, there are approaches which used only 1 classifier to perform the recogni-

tion, while others used several, one for each category to identify its classes [153]. Hence,

we trained 5 additional classifiers to compare the performance of the recognition system.

One classifier is trained using the Cat CNN architecture described in Table 4.1 to identify

the category of the detected sign, and four more classifiers using the Class CNN archi-

tecture (Table 3.1) to recognize the classes for each category. In such way, the output of

the category classifier (4 categories + background) filters out false positives and defines

the input for the corresponding class classifier. The four class classifiers : Danger - 15

classes, Prohibitory - 12 classes, Mandatory - 8 classes and Others - 8 classes, (all of

them adding the background class +1) are responsible for identifying the specific class in

the respective category. The training procedure follows the same standard as described

for the GTSRB (train for 40 epochs without data augmentation and use the weights as

initialization to train it again for 100 epochs using data augmentation).
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4.4.3/ SEMANTIC SEGMENTATION EVALUATION

We quantify the performance of the four semantic segmentation models described in

Section 4.3.1 with the UTBM-2 dataset to perform environment perception on French

urban scenarios.

The same training procedure, described in Section 4.4.2.1, was applied for all the se-

mantic models. This in order to be able to compare the models performances when the

dataset, training capabilities and training parameters are standardized.

Several metrics are used for evaluation, the most common ones reside on pixel accuracy

and Intersection over Union (IoU). Pixel accuracy is the simplest metric as it only ex-

presses the ratio between the amount of correctly classified pixels over the total number

of them. It is mostly presented as a global measure and/or in a per class manner when it

is averaged over the total number of classes. It is computed with the following equation :

mPA =
1

k + 1

k∑
i=0

pii
k∑

j=0
pi j

(4.1)

Where k represents the number of classes, pii the number of pixels of class i inferred

to belong to class i (true positives) while pi j and p ji represent false positives and false

negatives respectively.

Even though mPA metric seems to be good, it is biased towards the classes that occupy

bigger portions in the image. For this reason, the mean IoU (mIoU) came into play for a fair

class evaluation and it is the most preferred metric for semantic segmentation evaluation.

It computes the ratio between the intersection (true positives) and the union of two sets

(true positives, false negatives and false positives). Normally it is computed in a per-class

basis and then averaged.

mIoU =
1

k + 1

k∑
i=0

pii
k∑

j=0
pi j +

k∑
j=0

p ji − pii

(4.2)

For each model, we inspected the validation losses at each epoch and found out that

the models were learning correctly until they reached 100 epochs. Hence, we used the

weights of the last epoch to evaluate the models on the UTBM-2 test set. Table 4.2 shows

the comparison results for each model. We decided to include the number of parameters,
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TABLE 4.2 – Quantitative comparison of deep networks for semantic segmentation on the
UTBM-2 dataset. The training time corresponds to 100 epochs while the testing time to
the average per image.

Model
Training Testing

Parameters Data augmentation Time Time (s) Global PA Class mPA mIoU

SegNet 34,970,214 Yes 13 hrs 50 min 0.2814 92.85% 57.34% 0.5072

PSPNet 56,002,278 Yes 10 hrs 45 min 0.1685 93.36% 61.69% 0.5521

DeepLabV3 47,957,184 Yes 9 hrs 26 min 0.0899 93.85% 64.37% 0.5844

BiSeNet 47,768,080 Yes 9 hrs 45 min 0.1106 95.74% 69.07% 0.6473

training and testing time together with the metrics mentioned before for evaluation. In this

way, we are able to compare quantitatively not only their performances on the test set, but

also the models’ complexity relating the training and testing times. The test time presented

corresponds to the average time obtained to segment one image in GPU mode. From

Table 4.2, we can see that the best model regarding pixel accuracy and IoU is BiSeNet

[186]. The fastest one predicting an image output is DeepLab [175] followed by BiSeNet.

Even though SegNet seems to be the simplest model with the 34.9 millions of parameters,

the training and testing times are the longest compared to the other three methods. The

reason behind this behavior could be due to the deconvolutional and up-sampling layers,

as the model has to pass through the same number of convolutional blocks to recover

the input image size. PSPNet [170], on the other hand, is the most complex model, but

due to the pyramid strategy, it is able to perform training in a considerable amount of

time comparing it to the others. Regarding the results between DeepLab and BiSeNet,

the models’ complexities are similar considering their training and testing times, but their

performances vary significantly. BiSeNet outperforms DeepLab with 2% in the global PA,

around 5% for the Class mPA and 0.06 for mIoU. Quantitatively, the mIoU results could

appear to be low, and a per class evaluation will be useful to know in which specific

classes the model is having troubles.

Table 4.3 indicates the mIoU results per class for the four models. Analyzing these re-

sults, we can see that all models have troubles segmenting small object classes like lane

markings, crosswalks, humans, traffic signs, traffic lights, bicycles and poles with less

than 0.6 IoU, while succeeding for the frequent big ones. This behavior is not surprising

because classes like buildings, sky, road, appear in every single image, and they occupy

a considerable percentage of the total image size. Consequently, due to the class imba-

lance, the models are able to learn the classes with higher number of pixels better than

for the ones with small representations (refer to Fig. 2.12).
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TABLE 4.3 – mIoU quantitative comparisons of semantic segmentation models on the
UTBM-2 test set for 15 classes.
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SegNet 0.7674 0.2502 0.8939 0.8829 0.9388 0.4781 0.7360 0.8254 0.4724 0 0.3459 0.7353 0 0 0.2823 0.5072

PSPNet 0.7942 0.3593 0.9150 0.9033 0.9360 0.5002 0.6891 0.8252 0.2751 0.2524 0.3788 0.7719 0.0036 0.1711 0.5063 0.5521

DeepLabV3 0.8030 0.3797 0.9202 0.9034 0.9453 0.5045 0.7379 0.8516 0.4891 0.2183 0.5749 0.7980 0.0607 0.1538 0.4254 0.5844

BiSeNet 0.8459 0.4420 0.9494 0.9342 0.9624 0.6266 0.8459 0.8949 0.5741 0.3240 0.6662 0.8581 0 0.2170 0.5683 0.6473

Besides quantitative comparisons, qualitative ones are also necessary to evaluate the

models performances regarding boundary distinctions. Fig. 4.11 shows some example

results performed on the UTBM-2 test set. SegNet results present smooth boundary tran-

sitions between classes, but it is not capable to distinguish the boundaries of small objects

like traffic signs. It also has troubles detecting human class and traffic lights (Table 4.3).

For PSPNet, the image results show that the model detects better small classes like traffic

signs, traffic lights and humans, but, for some other classes like road, vehicle, sidewalks,

it has difficulties in learning the context information since it is not able to differentiate

them properly. The same behavior is present for DeepLab results, as most of the classes

contain holes (small pixel portions with a different class than its surroundings). The in-

teresting fact is that in its definition, the model uses CRF to improve boundaries, but for

some images, it does not seem be working properly. Regarding BiSeNet, the image re-

sults show that, its context path definition is able to distinguish the classes properly. Small

size objects are segmented more accurately together with their boundaries.

Quantitatively and qualitatively, BiSeNet outperforms the other models. It is able to seg-

ment with at least 0.85 IoU the following classes of interest : road, sidewalk, parking block,

vehicle. Nevertheless, for some other important classes like humans, traffic signs, traffic

lights and crosswalks, its performance is less than 0.6 IoU. Even though BiSeNet is not

perfect, it is the one that we will use for environment perception as it provides the best

results and its execution time is considerable for this kind of task.

Regardless of the semantic segmentation method chosen, individual object distinction

is not possible with this kind of approach. For this reason, a complementary module is

needed to distinguish and classify traffic signs.
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a) Test samples b) Ground truth c) SegNet d) PSPNet e) DeepLabV3 f) BiSeNet

FIGURE 4.11 – Semantic segmentation results on test samples of UTBM-2 dataset.

4.4.4/ TRAFFIC SIGN RECOGNITION EVALUATION

Because the detector module (Mask R-CNN) identifies a unique class for traffic signs,

the category identification is performed further with the classification module. Hereupon,

we will discuss first the classification results in order to continue with the final detection

performance in Section 4.4.4.2.
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TABLE 4.4 – Classifiers’ accuracy results and characteristics trained on the proposed
Class CNN and Cat CNN described in Section 4.3.2.2.

Model Classifier name No. Classes Data augmentation Parameters Accuracy

Cat CNN Categories 5 Yes 170,621 99.92%

Class CNN Danger 16 Yes 2,081,712 99.25%

Class CNN Prohibitory 13 Yes 2,080,941 99.76%

Class CNN Mandatory 9 Yes 2,079,913 99.89%

Class CNN Unique 9 Yes 2,079,913 99.64%

Class CNN All 44 Yes 2,088,908 99.55%

Class CNN Urban 133 Yes 2,111,781 99.07%

4.4.4.1/ CLASSIFICATION PERFORMANCE

As seen in Chapter 3 our proposed Class CNN provides good stability and trade off bet-

ween model complexity (number of parameters) and recognition accuracy compared to

the state of the art. Moreover, we inspected the running time and confidence of our pro-

pose network. Our model is capable of classifying in our PC, in GPU mode, a traffic

sign in 0.16 milliseconds which makes it optimal for the whole pipeline of traffic sign re-

cognition. Evaluating its performance, our Class CNN is capable of classifying correctly

99.38% traffic signs with a confidence probability bigger or equal to 0.9. For this reason,

this threshold was chosen for our pipeline (see Fig. 4.7) to predict or discard a detected

traffic sign. In this way, we make sure the output of the proposed traffic sign recognition

module is accurate and reliable for driving vehicles.

Adding the background class, the 7 classifiers comprising Class CNN (Table 3.1) and

Cat CNN (Table 4.1) are trained 5 times and only the top results are presented in Table

4.4 together with their characteristics. As a reminder, the first six classifiers are trained on

the GTSRB including a background class, while the last one called ’Urban’, is trained on

the subset chosen from the ETSD comprising as well the background class. If we com-

pare the accuracy performance of the Class CNN before including the background class,

we have obtained 99.61% (top accuracy), while the current performance is 99.55%, drop-

ping by 6%. This behavior is normal since the background class contains random cha-

racteristics making it hard for any classifier to learn properly the representative features.

On the other hand, comparing the classifier called ’All’ with the ’Categories’ one, we can

see in Table 4.4 that the accuracy performance is better with the Cat CNN (99.92%) than

with the Class CNN (99.55%) despite the ×12.23 less number of parameters. This perfor-

mance is quite surprising but we will analyze in the next section the results obtained once
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the detector (Mask R-CNN) passes its outputs to the classifier.

Including other category types, the ’Urban’ classifier trained with Class CNN, decreases

accuracy performance as text traffic signs are the hardest ones to recognize. Neverthe-

less, its accuracy remains above 99% which makes it a reliable classifier even with text

and rectangular traffic signs.

The traffic sign recognition module is evaluated together with the detection module (Mask

R-CNN) and all the classifiers from Table 4.4.

4.4.4.2/ DETECTION PERFORMANCE

Here, we evaluate the detection performance with Mask R-CNN and several classifiers.

The first evaluation is made for symbol-based signs on the GTSDB to detect 4 Categories

(43 classes) with 2 classifiers : one which is only capable of detecting the categories

(Cat CNN Categories from Table 4.4) and another one capable of performing the class

identification (Class CNN All from Table 4.4). The second evaluation is performed for

symbol and text-based signs with two datasets. The first one is the proposed extended

version of the GTSDB and the second dataset is UTBM-2. Both are evaluated to detect

8 categories (132 classes) of traffic signs (Class CNN Urban classifier from Table 4.4) :

danger, priority, prohibitory, mandatory, special regulation, direction, additional panels,

and others.

In both cases, a correct detected traffic sign is considered if its Jaccard similarity co-

efficient (Intersection over Union - IoU) is at least 0.5. The IoU is computed following

Equation 4.3.

IoU(A, B) =
| A ∩ B |
| A ∪ B |

=
| A ∩ B |

| A | + | B | − | A ∩ B |
(4.3)

When the IoU is equal or bigger than 0.5, it counts as a True Positive (TP), otherwise as a

False Positive (FP). The traffic signs which are not detected by Mask R-CNN are treated

as False Negatives (FN).

The evaluation of detection approaches is performed most commonly with Precision-

Recall values and the area under this curve (AUC). Precision indicates how good the

model is on the detected traffic signs and it is computed with Equation 4.4. Recall, on the

other hand, refers to how many good detections were actually identified according to the

ground truth (Equation 4.5). Most of the related works that evaluated their detectors on
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the GTSDB, only considered the AUC and Recall values. Hence, we will use the same

metrics for these detectors.

Precision =
T P

T P + FP
(4.4)

Recall =
T P

T P + FN
(4.5)

Initially, and in order to compare the detection performance with other methods, we eva-

luate Mask R-CNN on the GTSDB using the fine-tuned weights obtained at epoch 46

to detect the original 4 Categories of the German symbol-based traffic signs. As Mask

R-CNN only predicts if the detected RoI is a traffic sign, a lot of objects, including false

matches, are passed to the Refinement module to perform some filtering and then pass

its output to the classifier. This filtering process is carried out keeping only the detected

RoIs whose confidence probability (class score) is equal or bigger than 0.8 (threshold set

manually). As the class probability of a positive RoI does not influence in the detection, it

gives a good notion of the actual traffic sign since negative or false matches tend to have

low confidence probabilities. After this process is done, the inputs (filtered detected RoIs)

are preprocessed as described in subsection 4.4.2.3. Next, the classifier receives the in-

puts which are not always traffic signs and has to be able to filter out the backgrounds

while performing the category identification. This final filtering is made by the classifier,

learning a background class together with the others.

The Cat CNN classifier, defined in Table 4.1 and trained with background class (first row

in Table 4.4 and the Class CNN classifier, defined in Table 3.1 and trained as well with

background class (Class CNN All in Table 4.4), are evaluated together with Mask R-CNN

to detect 4 categories on the GTSDB test set. Fig. 4.12 shows the precision-recall curves

obtained with an IoU of 0.5. For the danger (Fig. 4.12a), prohibitory (Fig. 4.12b) and

others (Fig. 4.12d) categories we can see that both CNNs performed almost the same,

while for the mandatory category (Fig. 4.12c), the category classifier (Cat CNN) has more

troubles identifying the classes.

The detection performances are compared quantitatively with the state of the art in Table

4.5. Treating all traffic signs as one category, we obtained directly from Mask R-CNN,

99% recall and 86% precision. The recall value reached, allows us to confirm that Mask

R-CNN serves as good detector as it only missed to detect 5 signs of the 361 in the test

set. However, for the precision value, we can see that, even if it is good detecting most of
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(a) Danger (b) Prohibitory (c) Mandatory (d) Others

FIGURE 4.12 – Precision-Recall curves of the detection module (Mask R-CNN) using 2
CNNs for category identification. Cat CNN refers to the categories classifier defined in
Table 4.1, while Class CNN refers to the classes classifier defined in Table 3.1.

TABLE 4.5 – Detection results on the GTSDB test set for 0.5 IoU (AUC values)

Method Danger Prohibitory Mandatory Others

Tr
ad

iti
on

al
fe

at
ur

es HOG+LDA+SVM [92] 99.91% 100% 100% -

ICF [87] 100% 100% 96.98% -

HOG+SVM [85] 98.85% 100% 92% -

ROI+HOG+SVM [88] 98.72% 99.98% 95.76% -

HOG+CNN [93] 99.73% - 97.62% -

ROI+HOG+SVM [153] 97.13% 99.29% 96.74% -

A
ut

om
at

ic
al

ly
fe

at
ur

es ROI+Multi-task CNN [182] 98.34% 99.99% 98.72% -

Faster-RCNN+CNN [181] 100% 96% 100% 99%

2Dpose-boundary CNN [180] 99.73% 99.89% 99.16% -

modified YOLOv2 [169] 96.12% 96.81% 94.02% -

MaskRCNN+Cat CNN (Ours) 98.21% 99.99% 90.27% 98.57%

MaskRCNN+Class CNN (Ours) 98.21% 99.95% 93.88% 98.80%

the correct traffic signs, it also detects several false matches (57). Nevertheless, after the

classifier is applied, we are able to obtain a mean average precision mAP (considering

the 4 Categories) of 96.76% with the categories classifier (Mask-RCNN+Cat CNN) and

97.71% with the classes classifier (Mask-RCNN+Class CNN). Such results let us affirm

that, the classes classifier (Class CNN) performs better than the Cat CNN even if its

classification accuracy is higher than learning all classes at once (Table 4.4). Both CNNs

have troubles learning the mandatory category as most of the state of the art methods

shown in Table 4.5. As the CNN with deeper layers (Class CNN) performed better, we will

consider it as the final classifier for our proposed system.

Methods based on HoG [92, 87] features obtained almost perfect results (see Table 4.5),

but these approaches are shape dependent, which makes them very specific for certain

tasks. On the contrary, CNN based approaches are more suitable for general purposes,



96 CHAPITRE 4. VISUAL PERCEPTION SYSTEM FOR URBAN ENVIRONMENTS

TABLE 4.6 – Detection results on the extended GTSDB and UTBM-2 test sets using Mas-
kRCNN+Urban Class CNN for 0.5 IoU (AUC values)

Category Extended GTSDB UTBM-2

Danger 98.41% -

Priority 97.08% 69.44%

Prohibitory 96.12% 62.06%

Mandatory 93.50% 8.33%

Special regulation 70.60% 67.68%

Direction 66.02% 60.23%

Additional panels 80.14% -

Others 67.55% 90.91%

putting aside the tedious and hard work to chose the right features for specific shapes.

Comparing our results with the state of the art methods that use CNNs, our proposed

pipeline (Mask R-CNN + Class CNN) is very competitive in terms of traffic sign detec-

tion including the Others (Unique) category that many studies did not take into account.

Only the authors in [181] (Faster-RCNN+CNN) considered this last category and reported

very high AUC values in their results. However, they mentioned to have achieved a mAP

of 84.5% and recall of 97.81%, which make us believe that their results reported are not

actually AUC values, but instead recall ones. For this reason, we discarded the method

Faster-RCNN+CNN [181] for comparison. From the methods that extract features auto-

matically, only [182] and [180] perform slightly better than ours (around 1.3% and 1.8%

mAP respectively) which makes our method competitive.

Furthermore, and in order to evaluate other important traffic signs, we performed detec-

tion on the proposed extended version of the GTSDB and UTBM-2 datasets and analyzed

their results. Mask R-CNN was run using the fine-tuned weights for both datasets, toge-

ther with the Class CNN classifier trained on the selected urban/rural subset of the ETSD

(Urban Class CNN from Table 4.4).

Regarding the extended GTSDB dataset, we obtained 83.68% mAP, 81% precision and

83% recall ; while for UTBM-2 dataset a mAP of 59.78% was accomplished, 76% preci-

sion and 77% recall. These results show that, the UTBM-2 dataset is more challenging

than the extended GTSDB. Considering only the German roads, we can see that when

including other than symbol signs, the detector missed 140 signs (FN) and detected in-

correctly 168 ones (FP). The AUC values for each dataset and category can be seen in

Table 4.6.
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FIGURE 4.13 – Comparison between AUC values of the common categories between the
GTSDB and its extended version.

According to Table 4.5 and Table 4.6, the detection rate for the danger category in the

extended GTSDB, increased by 0.2% from the original GTSDB (see Fig. 4.13), even

when the number of danger sign classes is higher in the urban set. The AUC value for the

prohibitory and mandatory categories dropped by 3.79% and 0.38% respectively (Fig.

4.13). The reason behind this behavior is due to the variety of classes on the urban

set and the sizes of the signs labeled. In the original GTSDB, only the most close and

distinguishable signs are considered, while for the extended version, we labeled all signs

visible and recognizable by human eye. The rest of the categories in the extended GTSDB

performed poorly (below 90%) because the classes are harder to recognize due to the

very different aspect ratios they possess and to the fact that they include text. By nature

these signs are very difficult to recognize.

Since the Class CNN outputs the label of the specific sign, and from this label we infer

it’s category, Fig. 4.14 and Fig. 4.15 illustrate some examples of the results obtained by

our traffic sign recognition module on the GTSDB and UTBM-2 datasets respectively.

The traffic sign accuracy indicated in green/red text at the bottom left in every image,

corresponds to the classification accuracy obtained for the detected signs only in that

image.

For French roads, Fig. 4.15 illustrates some examples where the recognition module is

able to performed very good ≈ 100% (left column in Fig. 4.15), but also, poorly for some

other images (right column in Fig. 4.15). Judging visually, for UTBM-2 dataset, the mo-

dule fails to recognize very small traffic signs, confuses other objects with signs, like street

name panels, and images with very different lighting conditions (over saturated light sen-

sor) are some of the problems that encountered the recognition module.
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TABLE 4.7 – Classification evaluation for German and French roads with the GTSDB, the
extended GTSDB and UTBM-2 test sets. The evaluation is performed on the detected
signs extracted by Mask R-CNN + the Urban Class CNN.

Category
Original GTSDB Extended GTSDB UTBM-2

Detected Correct class Accuracy Detected Correct class Accuracy Detected Correct class Accuracy

Danger 62 62 100.00% 59 59 100.00% - - -

Priority - - - 75 72 96.00% 17 10 58.82%

Prohibitory 165 162 98.18% 202 187 92.57% 41 33 80.49%

Mandatory 45 45 100.00% 63 53 84.13% 1 0 0.00%

Special regulation - - - 58 48 82.76% 18 18 100.00&

Direction - - - 124 101 81.45% 71 59 83.10%

Additional panels - - - 44 39 88.64% - - -

Others 88 87 98.86% 76 63 82.89% 9 9 100.00%

All 360 356 98.89% 701 622 88.73% 157 129 82.17%

Nevertheless, for the GTSDB (Fig. 4.14), the module did not encountered the same issues

as with UTBM-2, and in consequence its performance is higher. In Fig. 4.14, the column

on the left represents results computed on GTSDB recognizing 43 classes (4 Categories),

while the column on the right, shows detection and classification results obtained on the

extended version of GTSDB recognizing 132 classes from the urban set extracted from

the ETSD [184]. In the extended version, we are able to detect and classify directional

signs, obstacle signs, additional panels as well as special regulation signs. Hence, a more

reliable interpretation of the environment for driving scenarios can be made recognizing

all traffic signs with our proposed traffic sign recognition module.

Additionally, we provide classification evaluation on the traffic sign proposals detected by

Mask R-CNN using the Class CNN trained with the urban set of the ETSD [184]. The

classification evaluation is performed on the GTSRB and UTBM-2 datasets. Firstly, we

evaluate the recognition on GTSDB and its extended version (see Table 4.7). For the

GTSDB we have contemplated 360 signs after filtering processes (detection class score

≥ 0.8 and classification probability ≥ 0.9) from which only 356 are classified correctly

obtaining a classification accuracy of 98.89%. In the extended GTSDB, 701 signs were

detected, where 622 are predicted correctly resulting in 88.73% accuracy. It should be

noted that the Others category does not include the same classes in both datasets (refer

to Fig. 3.9 in Chapter 3) but are displayed like that in order to match the naming conven-

tion. Fig. 4.16 and Fig. 4.17 show some examples of the misclassified detected signs for

the GTSDB and its extended version respectively. In Fig. 4.16, the detected signs are not

labeled in the ground truth indicating that their label is background class (GT :43). For

Fig. 4.17, we have the same issue. Even if some signs seem to be traffic signs, because

they were not recognizable by human eye, we did not label them.
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Referring to the classification evaluation of UTBM-2 on the detected traffic signs by Mask

R-CNN (see Table 4.7), we have contemplated 157 signs after the filtering process (de-

tection class score ≥ 0.8 and classification probability ≥ 0.9) from which 129 signs are

classified correctly obtaining a classification accuracy of 82.17%. Some misclassified si-

gns from the UTBM-2 test set are illustrated in Fig. 4.18. There we can see that, the traffic

signs are not recognizable and mostly, as they are not labeled in the dataset, their ground

truth becomes automatically background class (GT : 132).

Yang et al. [153] reported 98.24% accuracy recognition rate after all the signs were de-

tected on the GTSDB. Comparing their method to ours (98.89%), we surpass their per-

formance with 0.65% accuracy more. Other studies do not provide the recognition rate

after the detection module. For this reason it is not possible to compare with them. Along

with this accuracy, we evaluated the classification rate on the detected signs per image,

as shown in the examples of our recognition module (Fig. 4.14 and Fig. 4.15). Then we

averaged the results, obtaining on the GTSDB test set (300 images) 99.39% with Mas-

kRCNN+Class CNN (43 classes + background), 89.97% with MaskRCNN+Urban Class -

CNN (132 classes + background) on the extended GTSDB test set, and 80.19% with

MaskRCNN+Urban Class CNN (132 classes + background) on UTBM-2 test set (109

images). Since the complexity of each dataset and every image varies a lot, this type

of evaluation is useful if individual outputs are required giving the same weight to each

image.

The running time is not considered in this study for comparison purposes, because the

time reported by each approach depends on the hardware capabilities where they were

tested. Nonetheless, we can give the reader an estimation of the running time of our traffic

sign recognition module tested in our PC in GPU mode. For an image size of 1280 × 960

pixels, it takes approximately 0.32 seconds to detect and classify all traffic signs. In other

words, our system is capable of running at ∼ 3.3 f ps which makes it relatively a good

choice for real-world applications.

Interestingly, no matter the difficulty of some categories, like additional panels, special re-

gulation and, others ; the recognition system needs to consider them to interpret correctly

the driving rules in a similar way to how humans do. For this reason, our proposed system

is a good choice for Driver Assistant Systems (ADAS) and autonomous vehicles.
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4.5/ CONCLUSIONS AND FUTURE WORKS

In this Chapter, we proposed a system composed of two modules to perform environment

perception and traffic sign classification. The first module makes use of a semantic seg-

mentation approach for outside scene understanding. For this module, we have analyzed

four CNN architectures and compared them between each other to reveal the practical

trade-offs between training time, memory, and accuracy. The comparative study is perfor-

med on the proposed UTBM-2 dataset to accomplish environment perception on French

urban scenes.

The second module, proposes a symbol and text-based traffic sign recognition system

for European urban environments. The detection part (Mask R-CNN) identifies possible

traffic signs while at the same time segments a mask for each of them. These masks

serve as a localization refinement avoiding other post processing tasks, like shape es-

timation, to provide an accurate RoI. The refinement procedure is introduced to discard

objects that may not be traffic sign and pre-process the inputs before passing them to

the classifier. The classification part, performed with a proposed CNN, filters out the RoI

inputs which are background and recognizes the specific classes and categories of the

traffic signs.

The proposed Class CNN architecture obtains a top accuracy of 99.61% on the GTSRB

test set, while at the same time, its learning process is very stable using Dropblock as

regularization technique. The performance of our CNN architecture provides a good trade

off between the number of parameters, accuracy and computational time compared to

other methods in the state of the art, which most of the time, use an ensemble model with

severals CNNs.

A urban/rural subset subtracted from the ETSD [184], allowed us to consider a complete

dataset with symbol and text signs dealing at the same time with intra-class variability

from 6 countries (Belgium, Croatia, France, Germany, Netherlands and Sweden). Such

characteristics are of vital importance for a system to recognize properly the same class,

even if small variations are presented when driving from one place to another, or changing

countries.

Both modules work with an image size of 1280 × 960 to avoid information loss from small

objects (traffic signs) when resizing the images. The environment perception module (first

module) is able to detect with at least 0.85 IoU classes of interest like road, parking block,

sidewalk, and vehicle, while performing poorly on the ones with small objects. For this
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reason the second module was introduced to recognize these kind of objects, specifically

traffic signs.

The traffic sign recognition module provides an overall recall detection rate of 99% on the

GTSDB test set with 98.89% accuracy classification on the detected signs and an ave-

rage accuracy (accuracy per image) of 99.39%. For the proposed extended version of the

GTSDB, it obtains 83% recall detecting symbol and text signs while achieving 88.73% ac-

curacy when recognizing them, and 89.97% accuracy as an average (evaluating images

individually). Whereas for the UTBM-2 dataset, it reaches 77% recall rate for symbol and

text signs recognizing the detected ones with 82.17% accuracy and 80.19% in average

(109 images). Detection and classification dropped on the extended GTSDB version due

to the nature of the classes it contains. The most challenging ones are based on text and

with very different aspect ratios (belonging to Directional and Additional panels catego-

ries).

By nature, small signs like Additional panels are hard to detect, which makes them the

most difficult ones for detection approaches as the portion they occupy in the image is

relatively small compared to other objects in the scene. At the same time, text-based

signs are confused with other objects containing text, like advertisements, store signs or

street name panels due to the variability of appearances they have.

In future work we intent to : 1) Establish a based CNN architecture to extract a com-

mon feature map and use it for both modules 2) take into account data augmentation for

instance segmentation in order to increase the detection performance of Mask R-CNN,

since the training sets of the GTSDB and UTBM-2 datasets are quite small (600 and 482

images respectively) ; 3) train other detectors based on CNNs to evaluate the running

times and compare their performances ; 4) apply GANs like authors in [179] did, to gene-

rate features for the very small traffic signs similar to the ones of clear and big signs, this

in order to improve our detection and recognition.

Henceforth that we have a system to perceive the environment, in the following chapter we

will focus on the second problem of this thesis work : path tracking. In a typical automated

driving system, the path to follow and speed are already defined based on what was

perceived in the environment, the vehicle localization and the path planning module. In

our case, the reference path is provided as a priori information, analyzed and passed

to the vehicle control. The speed will be computed based on an off-line analysis of the

visual information. Thus, the vehicle control will have the necessary data to calculate the

steering angle for tracking successfully the reference path.
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(a) GTSDB (b) Extended GTSDB

FIGURE 4.14 – Example of detection and classification results by our proposed traffic
sign recognition module on the GTSDB. Column (a) shows some images evaluated on
the original GTSDB using Mask R-CNN + Class CNN trained on the GTSRB to detect 43
classes. Column (b) refers to the detection with Mask R-CNN on the extended version
of the GTSDB + Urban Class CNN trained in the urban set of the ETSD to detect 132
classes.
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FIGURE 4.15 – Example of detection and classification results by our proposed traffic sign
recognition module on UTBM-2 dataset. The recognition is performed with Mask R-CNN
+ Urban Class CNN trained in the urban set of the ETSD to detect 132 classes. The
left column shows image examples with recognition accuracy above 75% while the right
column shows images with traffic sign recognition accuracy under 75%.
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FIGURE 4.16 – Incorrect predictions after detection performed on the GTSDB with the
Class CNN trained on the GTSRB.
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FIGURE 4.17 – Incorrect predictions after detection performed on the GTSDB extended
version with the Urban Class CNN trained on the selected urban set of the ETSD.
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FIGURE 4.18 – Incorrect predictions after detection performed on the UTBM-2 dataset
with the Urban Class CNN trained on the selected urban set of the ETSD.



5
DYNAMIC SPEED ADAPTATION

SYSTEM FOR PATH TRACKING BASED
ON CURVATURE INFORMATION AND

SPEED LIMITS

5.1/ INTRODUCTION

Autonomous vehicle navigation has been a challenging field of study where today the

main goal is to provide safety. In order to accomplish that, vehicle control has to perform

accurate path tracking ; in other words, it should minimize the lateral distance between

the vehicle’s position and the defined path.

In real driving scenarios, speeding is one of the main causes for traffic accidents [66]

which has been considered for Advance Driver Assistance Systems (ADAS). The corre-

lation between speeding and lateral errors is positive, and in consequence, safety related

issues will depend on vehicle’s speed control.

Intelligent Speed Adaptation (ISA) systems have proven in several studies [23, 31, 37, 74]

to reduce accidents by respecting speed limits. However, there are several other factors

that need to be considered for precise speed control. One of the major ones involves road

geometry.

Analyzing road structure will permit the identification of straight and curved segments

ahead while driving, allowing the lateral control system to adjust the vehicle’s speed ac-

cordingly. Curve detection is of vital importance since crash rate is at least 1.5 times

higher than in tangent (straight) segments [75]. In addition, when a curve becomes shar-

per, the number of accidents increases [71, 3]. Hence, different studies have focused on

analyzing how processing road structure [33, 84, 124] may benefit control systems.

105
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Using speed limit information, systems like ISA will inform the driver when exceeding

speed limits. On the other hand, approaches considering curvature information [33, 84]

will emit warnings when approaching the curve too fast. In any case, control systems

require precise knowledge of the vehicle’s global position. This location information is

usually provided by Global Positioning Systems (GPS), but its main drawback is that

it suffers from big positioning errors. These errors are caused by different factors like

blockage, multipath, etc., specially in urban environments. In order to overcome these

big errors, different solutions proposed the use of additional sensors such stereo vision,

IMU, radar, or LiDAR [124, 28, 67, 100]. For example, vision-based solutions together

with digital maps, are capable of estimating the ego motion of the vehicle and correct the

vehicle’s global position using a map-matching algorithm [67]. In [100] the use of cameras,

accurate digital map, GPS and inertial measurements improve the ego-localization of the

vehicle using a variant of Kalman filter [6]. The main limitation of vision approaches is

visibility, since shadows, highlights, occlusions, or weather conditions affect the accuracy

of data analysis. Moreover, IMU sensors are able to estimate the current position of the

vehicle. Fusing GPS and IMU with typically Kalman filter [6], provides absolute position

and orientation, even if GPS data is not available all the time [152].

Road map databases (GIS maps) together with GPS data provide accurate road geo-

metry and localization [75, 43]. An approach to analyze road geometry identifying critical

curves where accidents occur frequently was proposed in [75]. Wang et al. [43] calculated

road ahead of the vehicle through a flexible road model. Nevertheless, GIS information is

not always available and GPS is starting to be accessible or will be soon for the general

public. For this reason, the choice of GPS data for tracking approaches is convenient. The

work presented here is based on real time kinematics GPS (RTK-GPS), which has the

highest absolute position accuracy (up to a few centimeters), to implement an automatic

approach that goes beyond warnings for adjusting the vehicle speed depending on the

upcoming road characteristics, e.g. curves or speed limit zones.

In this Chapter, we propose a dynamic speed adaptation (DSA) method for control sys-

tems, which together with a speed limit database creation and curve extraction, adjusts

automatically the vehicle’s speed (see Fig. 5.1). These two approaches, speed limits da-

tabase creation and curve extraction, are performed off-line including the preprocessing

step. Their output provides the main parameters to be analyzed by the speed negotiation

algorithm of DSA in order to compute the ideal speed. The identification of sharp curves is

performed using GPS positions to define segments which belong to a curve or a tangent

line. This in order to estimate the convenient driving speed for the detected high curva-
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FIGURE 5.1 – Overall work-flow of the vehicle path tracking system. Blue dotted bounding
box highlights our contributions.

ture segments. The speed limit database is created for the traveled paths identifying the

positions where speed limits change. As the tracking performance is evaluated through

lateral errors, our DSA is tested in simulations with different steering control algorithms.

On the modeling level, our proposed work would :

— preprocess GPS path,

— extract position information of sharp curves and speed limit zones,

— compute recommended speed for each sharp curve,

— obtain the speed limits for the path,

— analyze the current vehicle position in the traveled GPS path,

— compute the triggered distance at which the vehicle needs to start decelerating to

ensure smooth speed transitions,

— adjust speed during triggered distance to respect sharp curved speed or speed

limits,

— control automatically vehicle’s speed.

The rest of this Chapter is organized as follows. Section 5.2 presents a review of related

works. Section 5.3 provides an overview of the steering control algorithms that we used to

test our approach. Section 5.4 explains our DSA method. In section 5.5 we discuss and

analyze the results obtained with and without considering automatic speed adaptation

in the different steering control algorithms. The last section presents conclusions and

highlights the main contributions to continue with future work directions.
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5.2/ RELATED WORKS

As our DSA method estimates the speed based on either curvature information or speed

limits, works related to these two problems are considered.

5.2.1/ INTELLIGENT SPEED ADAPTATION SYSTEMS

Intelligent Speed Adaptation (ISA) systems have proven to reduce the number of injuries

and fatal accidents as shown in studies conducted in UK [23, 74], Sweden [15], Belgium

[37], Denmark [38, 50], Australia [58], France [31], as well as in a study made by the

European Union with the project DaCoTA [66].

Utilizing ISA systems does not only help to reduce tragic crashes or injuries but also :

(1) gives the control system more time to identify and respond to hazards (unexpected

events) [29] and (2) reduces the driver’s need to monitor the speedometer with respect to

external speed limit signs. For young drivers, it increases their safety since their inexpe-

rience of sharing their attention while driving and monitoring the speed to respect traffic

rules could lead to accidents [58].

It is also known that in order to take advantage of fully controlled ISA systems, the speed

limit information and the positioning system must be accurate [50]. For this reason, speed

limit databases up to date with possible variations (time of the day, weather conditions,

type of vehicle) are necessary. An approach to develop and use a speed limit database

in ISA warning system was implemented as a mobile application software for Australian

roads [149].

Even though Google maps application provides speed limits, it doesn’t contain information

regarding temporal situations (i.e. weather conditions, timing, construction areas) since

it is an exhaustive work to maintain an updated database worldwide. Our speed limit

database is based on static speed limits defined by the traffic speed regulations in France

[12].

5.2.2/ CURVE SPEED ESTIMATION

The analysis of traffic accidents on curves has been a major concern of vehicle safety

for several years [3]. No matter the efforts made to highlight dangerous curves with traf-

fic signs [13], drivers are still surprised with the speed they need to reach to have an
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appropriate control over the steering wheel.

Nowadays, in the era of autonomous navigation, various solutions have been proposed

to try to overcome this problem. One of them focused on analyzing human behavior while

driving in curves. Lehtonen et al. [105] examined how drivers anticipate their eyes look-

ahead fixations on curves to provide visual guidance for steering. Zhang et al. [95] propo-

sed a driver speed model for curved roads based on the recorded behavior of the driver.

Other works based their curve speed computation on the road shape estimation, either

for implementing it in semi-autonomous or autonomous solutions. Related to road geo-

metry analysis, identification of curved or straight segments has been performed either

by analyzing vehicle’s ahead motion [32, 41, 62], or by measuring physically related para-

meters like curve radius, length and angle [71, 75] using GPS and GIS information. Once

these curves are identified, their corresponding speeds are calculated considering road

friction and super-elevation angles [137, 33, 124].

Curve speed warning systems correspond to semi-autonomous solutions which consist

in informing the driver, through sound or display, the recommended speed [44, 8, 33, 15].

E.g. Varhelyi [15] proposed a system which goes beyond curves, considering as well

factors such as wet roads and visibility conditions (darkness) to compute the appropriate

speed and inform the driver visually or audibly. Alternatively, the warning signal may come

through some force applied to the throttle (accelerator) to prevent speeding. That is the

case of Huth et al. [72], who proposed a curve warning system for motorcyclists through

a force feedback throttle or a haptic glove.

Adaptive Cruise Control (ACC) systems, which are another type of semi-autonomous

solutions, have also considered curve speeds together with speed limits to adjust velocity

respecting headway distance to the lead vehicle [84].

Concerning autonomous solutions, it is not a surprise that the automotive industry is

trying to develop control systems which consider every possible situation to drive safely.

Nevertheless, user acceptance is still a factor to overcome in order to bring to reality

autonomous vehicles [15, 58]. Through simulations, Park et al. [124] calculated curve

speeds and applied them in a path tracking algorithm.

Even though curve speed estimation has been considered in several works, only few of

them have been actually implemented and tested either in simulations or real environ-

ments [33, 84, 124]. Glaser et al. [33] as well as Park et al. [124] have computed the ideal

speed for curves based on the analysis of geometric information, but no speed limits
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FIGURE 5.2 – Illustration of Pure Pursuit geometry [49].

have been contemplated. On the other hand, Lee et al. [84] considered speed limits and

curve speeds, but their implementation is made for an ACC which is a semi-autonomous

solution where the driver is able to take control of the vehicle and override appropriate

speeds. Our work is targeted to be implemented as an autonomous solution for path

tracking algorithms.

5.3/ STEERING CONTROL ALGORITHMS FOR PATH TRACKING

Path tracking has been one of the main challenges for autonomous navigation for the last

30 years. Its functionality resides in computing the appropriate commands for the vehicle

to track a reference trajectory as accurately as possible. One of these commands is the

desired vehicle orientation (θ) which together with speed (v) will seek to achieve good

performance.

This section provides a review of some steering control algorithms used in already tested

autonomous vehicles. These methods will be evaluated in section 5.5 through simulations

in order to prove that their performance can be improved significantly with our proposed

Dynamic Speed Adaptation method.

5.3.1/ PURE PURSUIT

Geometric based pure pursuit is one of the most basic and simple methods to compute

steering wheel angle (δ) for a lateral controller. Its calculation relies on defining a goal

point (gx, gy) in a reference path according to a certain distance called look ahead distance

(ld), to try to reach it at every time step t through a circular arc (see Fig. 5.2).
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FIGURE 5.3 – Illustration of Stanley steering controller [28].

The pure pursuit control law is given as [49] :

δ(t) = arctan
(
2L sin(α(t))

ld

)
(5.1)

Where L is the distance between the front axle and rear axle (wheelbase) and α is the

angle between the vehicle heading vector and the look-ahead vector.

This algorithm suffers mainly of cutting corners (neglects curvature information) if look

ahead distance is big, and of severe oscillations if it is defined too small.

5.3.2/ STANLEY METHOD

The Stanley steering controller was developed by the Stanford Racing Team and im-

plemented in their autonomous vehicle (Stanley) for the DARPA Grand Challenge. Their

controller is based on a non-linear feedback function based on lateral errors [28] measu-

red from front wheel axle.

Four parameters are considered for the steering angle (δ) computation at each time step

(t) : lateral error (x), vehicle speed (u), a gain value (k) and the angle difference (ψ) bet-

ween the vehicle and the nearest path segment orientation. An illustration can be seen in

Fig. 5.3 and its equation is given by :

δ(t) = ψ(t) + arctan
kx(t)
u(t)

(5.2)

This method is a simple basic approach which proved to be efficient in the DARPA race

with an average lateral offset of ±74 cm.
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FIGURE 5.4 – Illustration of Alice steering controller [40].

5.3.3/ ALICE METHOD

The Caltech Team developed a control strategy for trajectory tracking based on a nonli-

near control law [40]. The method was implemented in the Alice autonomous car which

took part in the DARPA Urban Challenge.

The vehicle assumed to have Ackerman steer dynamics leading to use an approximation

of the bicycle model. A graphical illustration is shown in Fig. 5.4 where the real vehicle

is projected orthogonally onto the closest point of the reference path F. The rear axle

center, O, is projected onto R and the yaw of the arising virtual vehicle is aligned with the

tangent of the trajectory at R.

The steering wheel angle (Φ) is computed with the following formula at each time step t :

tan(Φ(t)) =
− cos(θ(t))e⊥(t) − (l1 + l2) sin(θ(t))

l1 − (l1 + l2) cos(θ(t)) + sin(θ(t))e⊥(t)
(5.3)

Where e⊥ is the lateral rear axle error (cross track error), θ is the angle between the

vehicle direction and the tangent of the projected vehicle position in the path (yaw error),

l1 is the vehicle wheelbase and l2 is the distance to the target point.

The aim of this method is to reduce e⊥ and eθ which is equivalent to measuring the lateral

error from the vehicle center line. For our purpose, the results presented in section 5.5

will show only the lateral error from the center of the car. This to provide a common

comparison indicator when evaluating all the considered steering wheel methods.

5.3.4/ LOMBARD METHOD

Lombard et al. [144] proposed a steering controller based on the well known pure pursuit

algorithm. Their method was implemented in a Renault Scenic car and showed at the
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FIGURE 5.5 – Illustration of Lombard steering controller [144].

Intelligent Transportation System World Congress (2015).

The computation of the steering angle introduces a coefficient k, defined as 1 − αS (see

equation 5.4), with the aim to reduce cutting corners effect without changing the target

point distance or vehicle’s speed. In other words, this coefficient tries to attenuate the

area surface (S) between the reference path and the arc drawn from pure pursuit (refer

to Fig. 5.5). The steering angle parameter (δ) is defined as follows :

δ = arctan
(
(1 − αS )

E
R

)
(5.4)

Where E is the distance between the axles of the car, R is the radius of the circle drawn

to follow the target point, and α is a coefficient set to 0.02.

Lombard’s method provides lateral errors smaller than 1 m when the speed is set to 36

km/h.

5.4/ DYNAMIC SPEED ADAPTATION (DSA)

It is well known in path tracking literature that vehicle speed may increase or decrease

lateral errors. In the ideal case, a good definition should lead the vehicle to track accura-

tely the trajectory (with no errors) [80]. For this reason, most of the works have focused

on defining a maximum speed (which is usually a small value [86, 124]) to tune the best

performance with their algorithms. Nevertheless, speed variations in different situations

need to be considered to simulate human driving behavior. The objective of our proposed

DSA method is to simulate this behavior.

Our DSA approach defines the speed to be applied (through a speed negotiation algo-

rithm) by the lateral control system in order to travel a safe trajectory. First, GPS informa-

tion is preprocessed in order to remove noise and reduce the number of points. Second,



114CHAPITRE 5. DYNAMIC SPEED ADAPTATION SYSTEM FOR PATH TRACKING BASED ON CURVATURE INFORMATION AND SPEED LIMITS

FIGURE 5.6 – Overall data-flow of the Dynamic Speed Adaptation module.

road speed limits together with their corresponding positions are detected in the traveled

GPS path and saved in a database. Third, sharp curves are identified along with their po-

sitions, radius and length in order to compute their convenient speeds and send them to

the speed negotiation algorithm (see Fig. 5.6). A more detailed description is presented

in the following sub-sections.

5.4.1/ GPS PRE-PROCESSING

Real Time Kinematic (RTK) refers to a technique able to correct positioning information

(GPS) with centimeter level accuracy. This correction is carried out by a base station

which reduces or removes positioning errors [42] caused by environmental surroundings

or weather conditions.

RTK-GPS was used during data collections in order to have reliable GPS paths. Never-

theless, due to different circumstances like loss of connection between the base and re-

ceiver, noise appeared in the GPS data. This noise was removed manually in our datasets

in order to have reliable learning routes. We identified the noisy points and interpolated

their new positions based on the previous and following points.

Once GPS noisy points are removed, we computed the euclidean distance between each

pair of points to keep GPS positions at approximately 3.5 meters distance between each
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other. This with the aim to reduce the amount of data for further processing, i.e. road

curvature estimation and speed limits extraction.

5.4.2/ SPEED LIMIT DATABASE

Speed limits vary between countries, types of roads, areas, vehicles and inclusive timing

[149]. They may also be affected by certain circumstances like constructions or special

events around a zone (i.e. fairs, carnivals, street markets, etc.). Even though it is important

to consider all possible scenarios for the speed limit database, it is very hard to maintain

updated zones where temporary situations occur.

Digital maps contain speed limits information, but most of them are not free. Opens-

treetmaps [39], on the other hand, provides open data with fixed speed limits (without

considering temporary data), but for our traveled paths, the information is not included.

We created our own speed limits database, based on the typical manual driving situa-

tions and considering the code regulations established by the French government [12].

In France, urban areas have speed limits of 50 km/h varying to 30 or even 20 km/h in

agglomeration areas, residential areas or school zones [12].

According to the recorded RTK-GPS information, we :

1. Define start and end points.

2. Identify positions where speeds limits change.

3. Compute distance (dl) from the speed limit change point to the reference starting

point in the path.

4. Save distance (dl) for every speed limit changed position identified together with its

respective speed limit value (vl).

We identified positions where speed limits change from 50 km/h to 30 km/h and vice-

versa. By default the speed limit at the starting point is set to 50 km/h if no other speed

limit is identified. An illustration of the procedure is presented in Fig. 5.7.

The creation of the speed limits database is performed off-line and only after GPS infor-

mation is preprocessed. The description of the datasets and their speed limits identified

is provided in section 5.5.
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FIGURE 5.7 – Speed limit driving scenario

5.4.3/ CURVE SPEED ESTIMATION

Driving through an unknown sharp curve is always risky if the speed is not adapted to

control the vehicle. In real life, the driver should be able to maneuver the steering wheel

and reduce speed simultaneously in order to stay in the lane and pass the curve with

comfort and safety. The same principle should be applied for autonomous control systems

(reduce speed before going through a curve).

In order to control appropriately vehicle’s speed, curve identification needs to be perfor-

med for the traveled GPS path to proceed with the computation of convenient speeds

for each curve. Li et al. [75] extracted and classified curves considering road data from

Geographic Information Systems (GIS). GIS store different types of information providing

very accurate road geometry, but it is not always available. In our work, curvature analysis

is performed with GPS data following the technique in [75] with minor modifications and

extending its curve estimation to identify sharp curves.

Curve analysis is a very important step for intelligent vehicle systems [53] since it will

keep lateral errors as small as possible, and at the same time, it will reduce the number

of crash accidents.

5.4.3.1/ SHARP CURVE ESTIMATION

Sharp curves are defined as dangerous curves if their radius are small or central angles

are big [75]. This type of curves deserve special attention due to the fact that they corres-

pond to locations where the vehicle needs to decrease speed in order to take the curve
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a) Representation of curve             

parameters

b) Bearing angle between segments           

AB and BC

FIGURE 5.8 – Curve parameters representation

as if a human was driving, keeping small lateral errors [137].

In order to identify sharp curves, we first localized all possible curves in the traveled

GPS path based on Li et al. [75] work. Localizing curves, means identifying their start

and end points, which are also called points of tangency (PT) and points of curvature

(PC) respectively. Once these points are identified, their curve characteristics can be

computed : point of intersection (PI), curve length (L), radius (R) and central angle (θ). An

illustration of all these characteristics is shown in Fig. 5.8a.

Classifying points as being part of a curve or of a straight segment, is the first step to

identify start and end points (PT and PC) in a curve. This procedure is performed by

computing the bearing angle (α) between two consecutive segments formed with 3 points

(A,B,C) as seen in Fig. 5.8b, using Equation 5.5.

α = cos−1

 (xB − xA)(xC − xB) + (yB − yA)(yC − yB)√
(xB − xA)2 + (yB − yA)2 ×

√
(xC − xB)2 + (yC − yB)2

 × 180
π

(5.5)

Once the bearing angle is computed, a threshold value is assigned to determine if the

point B is considered as part of a curve or not. If the angle α is bigger than the defined

threshold, the center point B is described as being part of a curve. Choosing the right

threshold is a very important step, since curvature identification depends on this value.

In this work a threshold value of 1.25◦ was chosen as proposed in [75] after evaluating

curvature identification with different values. It is worth mentioning that values smaller

than 1.25 gave us false positives, as almost every point was considered being part of a

curve, and values bigger than 1.25 discarded long and smooth curves.

Based on Li et al. work [75], curves were classified as simple or compound. A compound

curve is a curve formed with at least 2 consecutive curves separated by a certain distance

between each other. In our datasets, this distance was set to 10.5 m which is the approxi-

mation of considering 3 consecutive points in our preprocessed GPS path. An example
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FIGURE 5.9 – Curve classification

of these 2 types of curves is illustrated in Fig. 5.9.

After each curve is defined by its start and end points (PT and PC), its geometric informa-

tion, consisting of its radius (R), length (L) and central angle (θ), are computed through

the Equations 5.6-5.8. In order to perform these computations, the central point of the

curve (O) is identified following the work [75].

R =

√
(xPC − xO)2 + (yPC − yO)2 (5.6)

C =

√
(xPT − xPC)2 + (yPT − yPC)2 (5.7)

θ = 2 × sin−1
( C
2R

)
×

180
π

(5.8)

Curve length (L) was estimated by summing up the euclidean distances between the

segments that form the curve.

As we are interested in considering only dangerous curves, sharp curves were catego-

rized if their angle ranges from 30◦ to 180◦, or their radius is between 5 and 18 meters

according to the American Association of State Highway and Transportation Officials’ (AA-

SHTO’s) ”A Policy on Geometric Design of Highways and Streets” [17]. Fig. 5.10 shows

an example of the curve classification according to [75] and marked in red circles are the

sharp curves identified with our method. In this work, only sharp curves are considered

to adjust the speed in path tracking simulations.
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FIGURE 5.10 – Curve classification of UTBM-2 dataset. Sharp curves are marked with
red circles.

5.4.3.2/ SPEED COMPUTATION FOR SHARP CURVES

Curve speed estimation depends on centripetal and centrifugal forces. Centripetal force,

which relies on the friction between tires and the roadway, is the one that makes the

vehicle follow the curve while centrifugal force tries to move the vehicle outwards the

curve. In order to compensate this last force, road curves are designed with an inclination

known as banked angle (θ) or super-elevation angle (e). In other words, ideal speed in

curves will be computed depending on the curvature of the path (k), friction coefficient (µ)

and super-elevation angle (e) as shown in figure 5.11, where N is the normal force, f is

the friction force, µ is the friction coefficient, m is the vehicle mass, g is the gravity and Fnet

is the net force.

Through the normal force (N), friction force (f) and weight force (mg) vectors, the centri-

petal force is defined as :

FC =
mv2

r
(5.9)

Where m represents vehicle mass, v vehicle speed and r the curve radius.

Summing up the vertical components, normal force can be described following Equation
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FIGURE 5.11 – Centripetal force diagram

5.10.

N cos θ = mg + f sin θ (5.10)

N =
mg

cos θ − µ sin θ
(5.11)

The net force is calculated through the horizontal components :

Fnet = N sin θ + Nµ cos θ (5.12)

Substituting the normal force in Equation 5.12,

Fnet =

(
mg

cos θ − µ sin θ

)
(sin θ + µ cos θ) =

tanθ + µ

1 − µ tan θ
mg (5.13)

Since friction coefficient (µ) usually varies from 0.1 to 0.16 [124], the value in the denomi-

nator tends to be around one, so it can be discarded. Now, the net force can be defined

as the centripetal force (Fnet = Fcentripetal), obtaining the following equation :

(tan θ + µ)g =
v2

r
(5.14)

Using super-elevation e = tan θ and curvature information r = 1
k , we substitute both terms

into 5.14. The ideal speed will be given by equation 5.15, which is exactly the same

definition as in [124].
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FIGURE 5.12 – Curve driving scenario.

v =

√
(e + µ)g

k
(5.15)

Following this equation, convenient speeds for each sharp curve (vc) were estimated

considering a super-elevation value between 6% and 12%, which, according to the Ame-

rican Association of State Highway and Transportation Officials’ (AASHTO’s) [17], is the

value defined for rural and urban roads. k is the curvature information computed as the

reciprocal of the radius, k = 1
r .

Finally, given a sharp curve detected in the traveled GPS path, we computed the distance

(dc) from the reference start point of the path to each curve starting point (PT) as shown in

figure 5.12. This distance together with its respective curve length (lc) and the convenient

speed (vc) are the parameters passed to the speed negotiation algorithm, detailed in the

next subsection.

5.4.4/ SPEED NEGOTIATION ALGORITHM

In typical manual driving situations, drivers notice the upcoming speed limit sign or curve,

and slow down or accelerate (depending on the current driving speed) to handle the

road properly. Automating this procedure in ground vehicles requires knowledge ahead

to adjust vehicle’s speed before entering a sharp curve or arriving to a new speed limit

zone. Our work covered this knowledge extraction in subsections 5.4.2 and 5.4.3.
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FIGURE 5.13 – Curve driving scenario projecting vehicle position into the reference path.

The speed negotiation algorithm tries to simulate human driving behavior based on the

knowledge extracted from curves and speed limits to decide the ideal speed (videal) the

vehicle should be traveling with. This negotiation depends mainly on the actual vehicle

position in the GPS path, and the analysis of the input parameters coming from curve

and speed limits as shown in Fig. 5.6.

Initially, the lateral control system computes the lateral error (ε) and the current vehicle

traveled distance (dcurrent) in the path (see Fig. 5.13). This computation is estimated by

projecting the current vehicle position on the reference path through spline interpolation

to match the GPS points.

Once the projected vehicle position is known, the speed negotiation algorithm analyses

which type of road segment (curve or speed limits) is closer to the current vehicle position

and computes a trigger distance. This trigger distance (dtrig) has the objective to take

into account a smooth deceleration behavior to reach the ideal speed with comfort. It is

calculated with the following equation :

dtrig =
v2

target − v2
current

2a
(5.16)

Where :

— vtarget is either the speed limit (vl) or curve speed (vc),

— vcurrent is the current vehicle’s speed, and

— a is the deceleration value to be applied.
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Data : dcurrent, vcurrent, vl, dl, vc, lc, dc

Result : videal

aux dc=dc-dcurrent;
aux dl=dl-dcurrent;
if aux dc < aux dl then

videal = vc;
else

videal = vl;
end

Compute dtrig =
v2

ideal − v2
current

2a
;

if vcurrent > videal then
if videal == vc then

if (dcurrent ≥ dc − dtrig) AND (dcurrent ≤ dc + lc) then
Apply aneg until vcurrent = videal ;

end
else

if (dcurrent ≥ dl − dtrig) AND (dcurrent < dl) then
Apply aneg until vcurrent = videal ;

end
end

else
Apply amax until reaching videal;

end
Algorithme 1 : Speed negotiation pseudo-algorithm

An appropriate deceleration value is considered according to a study made by Maurya

et al. [76] which compares several deceleration behaviors at different speeds in various

vehicle types. In our case, we set a maximum acceleration (amax) and deceleration (aneg)

to 2 m/s2 to provide a comfortable transition between speeds and avoid longitudinal jerks.

If sharp curved positions overlap with zones where a speed limit is lower than 50 km/h,

our algorithm gives priority to the lower speed, which is usually the curve speed.

Considering all aspects discussed above, the speed negotiation algorithm works as fol-

lows :

At each time step, an ideal speed (videal) results from the speed negotiation algorithm.

This speed is used by the lateral control system to calculate an appropriate angle (θ) to

be applied by the vehicle steering wheel. During every control cycle, the lateral control

system sends to the vehicle, speed and angle parameters to provide a smooth tracking

performance.

The goal of reducing ahead the speed before arriving to a curve or a speed limit zone,

will provide the passenger comfort avoiding abrupt rapid decelerations. At the same time,
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FIGURE 5.14 – Datasets with sharp curves and speed limits marked. Normal black line
represents a speed limit of 50 km/h, green line a speed limit of 30 km/h and sharp curves
are in red.

respecting the ideal speed definition will increase safety and provide more time to react

in case hazard situations occur. As a result, lateral errors will decrease, which is the aim

of path tracking algorithms.

5.5/ RESULTS

In this section we perform simulations with different lateral control algorithms on a simula-

ted path and real datasets. This with the aim to show how tracking accuracy is improved

if correct speed definitions are taken into account for each segment in the traveled path.

Consequently, a sense of comfort and safety will be provided to the passenger reducing

traffic accidents and severe injuries [66].

Three paths (one created and two real) were considered for the simulations. Each path

has different length, curve characteristics and speed limits. The real datasets (traveled

paths) were acquired by Qiao et al. [125] with the university equipped vehicle in Belfort,

France. The data of the paths is based only on GPS information captured by GPS and

RTK-GPS receivers. The simulated path was created with the aim to compare how noise

affects the tracking performance of lateral control algorithms.

A visual representation of the considered paths can be seen in Fig. 5.14. They are briefly

presented below.

1. Simulated path. This path is composed of 210 continuous points in a 8 shape

form. Its total distance is about 374 m with 4 sharp curves identified. Since it is a

virtual path, we set the speed limit for the entire track to 50 km/h as it is the default
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speed limit in urban areas in France [12].

2. Dataset UTBM-2. The traveled path contains 541 points after the preprocessing

step performed as described in subsection 5.4.1. The distance of this track is about

2.2 km with detected speed limits of 30 km/h in school zones. 6 sharp curves were

identified with different geometric characteristics.

3. Dataset UTBM-3. This path is the longest one with a distance of about 4.5 km. It

is represented by 1136 points after the preprocessing step. The number of sharp

curves (dangerous curves) detected was 17. The speed limits for this path are 30

km/h in residential areas and 50 km/h otherwise.

Different path tracking simulations were performed through the tool developed by Lom-

bard et al. [144]. These simulations include the analysis of different lateral control algo-

rithms with and without considering the ideal speeds obtained by our DSA method.

In order to compare the performance of our proposed DSA method between the different

steering control algorithms : 1) Pure Pursuit (PP), 2) Stanley, 3) Alice and 4) Lombard ; we

compute the root mean square error (erms) per each dataset for each of the four algorithms

as follows :

erms =

√∑
(pd(t) − pc(t))2

m
(5.17)

where pd and pc represent the desired and current vehicle position respectively. The

difference between pd and pc is the lateral error, while m is the total number of sampling

results every 400ms (latency of the system). Then, the average error on the total number

of datasets per each method is calculated as :

erms =
1
N

∑
erms (5.18)

Where N is the number of datasets per algorithm to be evaluated. In the case of curve

evaluation, N equals to 3 (2 real and 1 simulated datasets) while for speed limits, N equals

to 2 (the 2 real datasets).

In France, the speed limit in urban areas is defined as 50 km/h [12], which is the maximum

speed assigned in the simulations. Other than that, in our datasets, speed limit zones of

30 km/h were identified and considered to adjust vehicle speed. Regarding curve speeds,

they vary from 14 to 36 km/h depending on the sharpness detected for each curve.
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TABLE 5.1 – Error comparison in zones of 30 km/h with different Lateral Control methods.
Results are expressed in meters.

Dataset Stanley Stanley DSA Alice Alice DSA PP PP DSA Lombard Lombard DSA

UTBM-2 0.0182 0.0158 0.0452 0.0416 0.1005 0.0554 0.0845 0.0550

UTBM-3 0.0210 0.0112 0.2840 0.1934 0.3346 0.2823 0.3374 0.2817

Average 0.0196 0.0135 0.1646 0.1175 0.2175 0.1688 0.2109 0.1683

FIGURE 5.15 – Root mean square error (erms) comparison of lateral errors obtained in 30
km/h speed limit segments.

We analyzed lateral errors produced when speed limits change from 50 to 30 km/h in

UTBM-2 and UTBM-3 datasets (see Table 5.1). In other words, we analyzed lateral errors

in segments of 30 km/h (green zones as seen in Fig. 5.14) and compared the results

for each lateral control method. Speed limit zone of 30 km/h in UTBM-2 is a straight

segment, and even if the lateral errors in all the methods are similar (15-20 cm error),

the performance of all methods is improved considering our DSA method (see figure

5.15a). Lateral errors in UTBM-3 dataset vary more due to its road geometry, therefore,

improvements with our DSA method are more noticeable as shown in figure 5.15b.

In average, the evaluation of speed limits in segments of 30 km/h improved all the me-

thods with our DSA, but not more than 5 cm as seeing in figure 5.16. It is worth mentioning

that the literature has proven that respecting speed limits increases safety [38, 23, 31, 37].

Autonomous vehicles capable of adjusting automatically speed limits will be preferred,

since, in real scenarios, drivers go beyond the authorized speeds being prone to cause

accidents.

Now, we will focus our analysis on the most dangerous segments, which are the sharp

curves. Tables 5.2, 5.3 and 5.4 show lateral error results obtained by the different steering

control algorithms in the detected curves for each path.

We will start comparing the simulations performed between paths which contain or not
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FIGURE 5.16 – Average root mean square error (erms) of lateral error comparison between
methods for 30 km/h speed limit segments.

TABLE 5.2 – Error comparison in sharp curves of different Lateral Control methods for the
Simulated path. Results are expressed in meters.

Curve Stanley Stanley DSA Alice Alice DSA PP PP DSA Lombard Lombard DSA

1 0.0599 0.0388 0.7637 0.6249 0.1935 0.2257 0.1854 0.0613

2 0.0762 0.0302 0.8286 0.6128 0.7972 0.0603 0.1752 0.04807

3 0.1029 0.0508 1.2195 0.9323 0.4351 0.2239 0.2223 0.09659

4 0.0493 0.0315 0.5757 0.4726 0.2107 0.1204 0.1531 0.04335

Av 0.0721 0.0378 0.8469 0.6607 0.4091 0.1576 0.1840 0.06233

noisy information. Regarding tracking error results obtained in the simulated path (Table

5.2), we can see that most of lateral errors are the smallest (except for Alice method)

compared to errors obtained in real datasets (Tables 5.3 and 5.4). A visual representation

of this comparison can be seen in Fig. 5.17a. We can confirm that noise is an important

factor for tracking algorithms and it deserves special attention to reduce it before control-

ling autonomous cars. In the literature, authors have combined different information to

deal with noise, e.g. taking into account the dynamics of the car (position, orientation,

speed) [50].

The improvements of each method, with and without considering speed regulations in

curves, range from 22% to 88% depending on the path. For example, in the simulated

path (see Fig. 5.17b), tracking error is reduced by 19 cm in Alice method (22% improve-

ment). In UTBM-2, the method with the largest root mean square errors is Pure Pursuit

(1.2 m), for which the error is reduced by 72 cm with our DSA (see Fig. 5.17c). A visual

representation of lateral errors on UTBM-2 dataset is shown in Fig. 5.18, which illustrates
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TABLE 5.3 – Error comparison in sharp curves of different Lateral Control methods for
UTBM-2 dataset. Results are expressed in meters.

Curve Stanley Stanley DSA Alice Alice DSA PP PP DSA Lombard Lombard DSA

1 0.0722 0.0288 0.5747 0.3308 0.8657 0.2451 0.4231 0.0552

2 0.0743 0.0245 0.6572 0.4945 0.7135 0.2372 0.5050 0.0589

3 0.2586 0.1797 1.2132 0.7815 1.5847 0.6940 0.9028 0.1292

4 0.0574 0.0265 0.5724 0.2591 0.5528 0.2396 0.2616 0.0382

5 0.1214 0.0449 1.0485 0.5650 1.0909 0.3627 0.5347 0.0751

6 0.1001 0.0441 0.9109 0.4528 1.4346 0.7075 0.7563 0.0687

Av 0.114 0.0581 0.8295 0.4807 1.0404 0.4143 0.5639 0.0709

FIGURE 5.17 – Root mean square error (erms) comparison of lateral errors obtained in
sharp curves for each dataset.

how our DSA method is able to reduce errors significantly in sharp curves. At the same

time, it is clearly noticeable that the biggest lateral errors are present in sharp curves

confirming the need to adapt vehicle’ speed. Furthermore, in UTBM-3 dataset (see Fig.

5.17d), tracking error is reduced by about 45 cm in the Pure Pursuit method, while for

Lombard method, it is reduced by 69 cm (88% improvement).

In general, the performance of our DSA method in sharp curves showed significant (at

least 10 cm error) improvements for most of the methods (see Fig. 5.19), except for
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FIGURE 5.18 – Speed and lateral error comparison in UTBM-2 dataset using PP method
with and without DSA.

FIGURE 5.19 – Average root mean square error (erms) of lateral error comparison between
methods for sharp curves.

Stanley method (improvement of around 5 cm). The reason behind this behavior is the

definition of its goal point. Since Stanley method is based on Pure Pursuit (PP), and the

goal point is defined with a short distance, it does not suffer a lot from the ”cutting corners”

effect.

As tracking errors for speed limits decrease, but not significantly (1 cm for Stanley, 5 cm

for Alice and 3 cm for Pure Pursuit and Lombard), we will base our final conclusion on the

results obtained in sharp curves. Tracking errors with our DSA method improved signifi-

cantly 3 methods, Pure Pursuit (PP), Alice and Lombard. Even though the improvements

for Stanley method are not considered significant, there is an improvement of about 5

cm when speed adaptation is used. The 2 methods which benefit the most with DSA are
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Pure Pursuit and Lombard (as seen in Fig. 5.19) with about 50 and 47 cm difference res-

pectively for sharp curves. For Alice method, the difference is about 30 cm which is also a

very good improvement. This proves that, having the adapted speeds to pass through out

sharp curves, certainly leads to provide the passenger confidence and safety for taking a

ride in an autonomous vehicle.

One of the main limitations for our proposed method, resides in GPS noise. Nevertheless,

this limitation can be treated combining more information, for example vehicle dynamics

[50] to analyze position, orientation and speed. Inaccurate curvature geometry extrac-

tion is another limitation when noisy GPS information is present. Nonetheless, this last

problem can be overcome extracting curve parameters from digital maps.

5.6/ CONCLUSION AND FUTURE WORKS

In this chapter, we have proposed a real time Dynamic Speed Adaptation (DSA) method

based on the analysis of speed limits and curvature information. A speed limit database of

the traveled paths was created and considered as input for our DSA. Curvature informa-

tion extraction allowed DSA to identify sharp curves and to compute the recommended

speed for each one. The speed limit database and curve geometric information are ex-

tracted off-line from GPS paths in order to provide knowledge ahead of the road while

traveling on it.

The tracking performance using our approach, showed significant reduction of lateral

errors. This improvement may potentially prevent accidents and reduce severe injuries in

real driving scenarios, which is exactly the aim of any autonomous vehicle.

The main advantage of our proposed DSA method is its adaptability, since it can be im-

plemented in the vehicle lateral control system independently of the steering wheel angle

computation. Besides, it enables the car to drive with recommended speeds through

straight and curved segments respecting traffic regulations. Also, it is smart enough to

localize upcoming sharp curves and apply a comfortable deceleration value before arri-

ving to them, reaching their ideal speeds to traverse them.

Future works will include the collection and analysis of vehicle dynamics in order to deal

with GPS noise. This information will correct noisy points in the path by comparing the

vehicle’s speed and orientation with the GPS data.

Furthermore, we will incorporate the visual information extracted in Chapter 4 in order to
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bring perception capabilities to the autonomous vehicle. This information will allow us to :

(1) detect the road if GPS is not available ; (2) identify speed limit traffic signs in case no

speed limit database is accessible ; (3) recognize lane markings on the road to guide the

algorithm for road boundary detection and shape estimation, (4) detect pedestrians and

vehicles to take them into account for obstacle avoidance, (5) locate crosswalks in the

road to pay attention for possible braking situations if pedestrians are positioned close to

them or overlapping (pedestrian is already crossing using the crosswalk area). Anyhow,

we know that visual perception is necessary for the autonomous vehicle due to its utility

for the different applications to provide safety. For this reason, the environment perception

module plays an important role to achieve full automation (level 5), which is the aim of

every research group and private company involved in this field.
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TABLE 5.4 – Error comparison in sharp curves of different Lateral Control methods for
UTBM-3 dataset. Results are expressed in meters.

Curve Stanley Stanley DSA Alice Alice DSA PP PP DSA Lombard Lombard DSA

1 0.0763 0.0328 0.6984 0.3589 0.5012 0.2007 0.4840 0.0574

2 0.0910 0.0311 0.7711 0.4342 0.5934 0.1141 0.5959 0.0530

3 0.0545 0.0258 0.3409 0.2619 0.4462 0.1409 0.4498 0.0337

4 0.0421 0.0196 0.3409 0.1912 0.4056 0.0975 0.3857 0.0218

5 0.0893 0.0296 0.7401 0.4422 0.6162 0.0948 0.6225 0.0519

6 0.4570 0.4209 1.4465 1.0717 1.3936 1.3865 1.4099 0.2663

7 0.1697 0.1054 1.0596 0.6294 0.8554 0.565 0.8769 0.0835

8 0.1781 0.0705 1.1031 0.7269 0.9603 0.3007 0.9640 0.0818

9 0.0718 0.0297 0.3765 0.3331 1.1918 0.3802 1.2084 0.0523

10 0.0753 0.0278 0.5634 0.3694 1.0366 0.1566 1.0426 0.0488

11 0.0344 0.0183 0.2441 0.1671 0.5754 0.4024 0.5825 0.0240

12 0.0472 0.0247 0.4376 0.2123 0.2039 0.1248 0.2053 0.0306

13 0.0209 0.0193 0.2167 0.0885 0.1104 0.1312 0.1101 0.0145

14 0.1573 0.0669 0.9394 0.6268 0.9873 0.1431 0.9973 0.0613

15 0.1027 0.0389 0.9034 0.4698 0.5558 0.2250 0.5589 0.0651

16 0.1171 0.0424 0.7964 0.4465 0.9738 0.3490 0.8710 0.0706

17 0.1505 0.0615 0.5531 0.6594 0.934 0.2574 0.8212 0.0813

Av 0.1138 0.0627 0.6783 0.4405 0.7259 0.2982 0.7168 0.0646
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6
CONCLUSIONS AND FUTURE WORKS

This chapter summarizes the contributions of the thesis together with its main conclusions

and recommendations for future research. Detailed conclusions for each individual topic

can be found in the corresponding chapters.

6.1/ CONCLUSIONS

We have addressed two out of the five components for intelligent autonomous vehicles :

the environment perception and vehicle control. A reliable environment perception is pro-

bably one of the most important parts for automated vehicles because it enables the

vehicle understand what is happening in its surroundings. Analyzing the visual informa-

tion was performed through the use of deep learning techniques, which, after a careful

review of the state of the art, leaded to our proposed methods presented in chapters 3

and 4.

The global localization of the vehicle was carried out through an RTK GPS for accurate

positioning. This information was used for the vehicle control to track the recorded path

applying lateral and longitudinal movements. A comparative analysis of different control

algorithms was performed in chapter 5 conducting to our contribution for dynamic speed

adaptation when curves are perceived.

A general conclusion for each of our contributions is presented in the following paragraphs

regarding each chapter.

Our first contribution relates to data information. Three datasets were introduced in

chapter 2 with the aim to contribute in some research areas with new challenges. The

first dataset, European Traffic Sign Dataset (ETSD), was proposed as a standard defini-

tion for European traffic signs with 164 classes. This dataset gathers information from 6

135
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countries and deals with intraclass variability. We are confident this dataset will help the

European community to achieve the connected and automated mobility plan expected

by 2030 [177]. The second dataset, UTBM-2, was labeled in a pixel manner with 27 se-

mantic classes and 10 instance ones. This dataset provides visual information in French

urban scenarios and includes the GPS position for each image. At the same time, the ins-

tances for each traffic sign are labeled with its corresponding traffic sign class following

the definition of our proposed ETSD. Lastly, the extended GTSDB dataset, labeled for de-

tection, semantic and instance segmentation approaches, contains labels for only traffic

signs. The difference between the original and the proposed extended version relies on

the number of traffic signs labeled and consequently the number of classes considered.

We provide three different formats of ground truth, (1) a txt file with the RoIs position and

label (detection approaches), (2) an image labeled in a dense pixel manner with the traf-

fic sign class (semantic segmentation) and (3) an image labeled in a dense pixel manner

with the traffic sign class and the instance IDs for each sign (instance segmentation).

Regarding our second contribution presented in chapter 3, we have proposed a CNN

architecture to perform traffic sign classification. Our classifier called Class CNN, inspired

by VGG-16 network, is designed with 5 blocks of convolutional layers, a fully connected

layer and a Softmax classifier. The CNN uses a new regularization technique (Dropblock)

which made the performance improved while at the same time, the learning process be-

came more stable. A comparison study between different CNN architectures is provided

with evaluations on a common standard dataset (GTSRB) and our proposed ETSD data-

set.

In our third contribution (chapter 4), we have proposed a system for visual environ-

ment perception. The pipeline of our system is composed of two modules, one in charge

of segmenting each image pixel in 15 classes of interest, and the other one to detect

and classify individual traffic signs. The traffic sign recognition first detects traffic sign

instances through Mask R-CNN and, using the masks, we extract the image region, pre-

process it and pass it to either our proposed category classifier (Cat CNN) or to the class

classifier (Class CNN). Several filtering processes are taken into account to discard any

background information and provide a reliable output. Each module is evaluated separa-

tely to account for segmentation results, traffic sign detection and traffic sign classification.

The experimental results for the semantic segmentation module showed that, identifying

the borders between classes is a challenging task no matter the different methods’ stra-

tegies to include context and spatial information. As the classes imbalance will always be

a problem for learning approaches, data augmentation techniques should always be ap-



6.2. FUTURE WORKS 137

plied. Regarding the results for traffic sign recognition, we have proved that, for traffic sign

classification, a deeper CNN (Class CNN) performs better than a simpler one (Cat CNN)

and that with the inclusion more challenging signs, like text based or with very different as-

pect ratios, the system performance decreases. Nevertheless, its inclusion is necessary

for a correct interpretation of the traffic driving rules in the perceived environment.

For our fourth and last contribution, a method to improve vehicle control was intro-

duced in chapter 5. The proposed method is characterized for its adaptability as it can

be incorporated for any vehicle control algorithm affecting only the speed computation. It

requires an off line process to analyze the GPS recorded path which is used to find the

sharp curved segments. In parallel, the identification of speed limits is required to create

a speed limits database. When this information is extracted and passed to the vehicle

control module, a speed negotiation algorithm evaluates the current vehicle position and

decides the ideal speed to execute. If a sharp curve is detected to come, it computes

the recommended speed to traverse it together with the distance ahead needed for the

vehicle to apply constant deceleration. The speed limits serve as the maximum threshold

the vehicle can travel with, even if the recommended curve speed is above the speed

limit, the negotiation algorithm will not exceed it. Experimental results showed that our

proposed method reduces the lateral errors in all the tested control algorithms, making it

a reliable choice to improve path tracking.

6.2/ FUTURE WORKS

Based on the results obtained in this thesis, we believe that the following ideas will

conduct to improvements.

The research community have already demonstrated that the engineering part to achieve

automated/autonomous/intelligent vehicles is not the only factor needed it. It will require

infrastructure, legal liability and social acceptance [177]. The European Union is already

taking care of this transition phase and, in order to contribute a bit, we plan to include

in our proposed ETSD, traffic signs from more European countries. The ideal solution

for autonomous vehicles will be to recognize the same traffic sign (intraclass variability)

no matter the European country where the vehicle will be located. At the moment, the

dataset includes traffic signs from 6 countries but, we have found other public datasets

captured in Italy [154] and Spain [51] that will help for this contribution.

Regarding the proposed visual environment perception system, currently it uses 3 sepa-
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rate networks, one for semantic segmentation, one for instance segmentation and one for

traffic sign classification. The system performance can be improved if the three models

share a common feature extractor. This will involve a new CNN architecture definition

with shared convolutional layers to define a common feature map. Similar to the Mask

R-CNN flow, several branches and losses will be needed it to perform every task of each

CNN used in our system. In this way, the system execution performance could be impro-

ved. Nevertheless, a new limitation will be introduced as the traffic sign CNN classifier in

this work (Class CNN) learned from a separate dataset (ETSD), which contains a wide

variability and amount of samples in each class, and using a common feature map repre-

senting a whole scene will limit the classifier to learn only the traffic signs labeled in that

dataset. Further research will be needed it to solve this last problem or more data will be

required to learn properly traffic sign classes (labeled in a pixel precision manner/masks

in the scene image).

Another possible perspective for the environment perception system is to take advantage

of depth information. Computing disparity maps from the stereo vision Bumblebee ca-

mera, depth estimation of certain classes of interest can be obtained for further use. For

example, computing the distance to certain objects like cars or pedestrians, will comple-

ment the perception to help the vehicle control negotiate speeds if objects are placed too

close to its actual position. At the same time, this distance information can be exploited to

map local visual information into a global map like Openstreetmaps. Using the GPS coor-

dinates together with the segmented image information and the depth map, we can select

stationary key objects in the scene like traffic signs, traffic lights or crosswalks to create

new raster layers in Openstreetmaps and map this new information if it is not already

contemplated. A conversion from camera to global coordinate system will be required to

make the necessary transformations and map correctly the information. This high level

application could result useful for autonomous vehicles if, for example, speed limit infor-

mation is not available in the map, we can add it or update it if changes have been made

in the road.

Furthermore, in order to have a robust environment perception system, the fusion of mul-

tiple sensory data is required. Camera sensors are vulnerable to illumination changes

and weather conditions but provide rich information about color and shape of the ob-

jects. Radar sensors provide accurate distance information but detect poorly the objects’

shape. LIDARs, on the other hand, provide good shape and distance information but are

expensive sensors. For all these previous reason, there have been approaches in the

literature that make use of sensor fusion [26, 28, 30, 46] to cover all surroundings of the
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vehicle. However, implementing this approach will require multiple sensor calibration to

relate each sensor output in a common space. Once performed, the perception system

will be capable to understand more precisely the environment overcoming the limitations

of each sensor.

For the path tracking approach, fusing the perceived visual information would lead to

improvements and, in the author’s point of view, the following work implementation could

be done :

— Removal of speed limit database creation. Thanks to the traffic signs recognition

performed in the environment perception system, the vehicle control won’t need to

extract the speed limit information off-line, but will require the speed negotiation al-

gorithm to apply immediately, after a speed limit sign (e.g. Zone 30) is recognized,

deceleration/acceleration to reach the limit detected considering a maximum dis-

tance threshold. The amount of acceleration/deceleration will have to be computed

according to the threshold defined and always considering a comfortable amount

to avoid abrupt changes. In this way, the vehicle control will have to act as humans

do after seeing a sign, react and apply the proper actions to obey the traffic speed

limits authorized. Here, a priori map data could also be considered to double check

the speed limit before the vehicle acts on it. Additionally to this last idea, we will

have to implement a system verification to make sure that the information provided

by the perception system is accurate and corresponds to the one provided by the

map. Otherwise, if the perceived information is correct and missing in the map, the

vehicle should contemplate only the perceived one. For this reason map verifica-

tion is a relevant topic for autonomous vehicles and requires updated information

to plan or follow precisely a path.

— As the our dynamic speed negotiation algorithm for the vehicle control module

considers as well the road geometry, the segmented lane markings and road visual

information could be exploited. Implementing on top of the segmentation, a system

like RALPH : rapidly adapting lateral position handler [4], the road curvature could

be computed through images together with the lateral offset of the vehicle relative

to the lane center. The segmented road will have to be projected in a birds eye view

choosing a trapezoid and sampling the image into a rectangular one in black and

white. Following the hypothesis of road curvatures, the image is unwrapped with

different distances to transform the lane markings into linear ones and then assign

a respective score. The unwrapped image with the highest score will correspond

to the best road curvature. We refer the reader to [4] for a more comprehensive
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overview. As a result, the off-line curvature analysis of the reference path could be

avoided for path tracking. The only limitation of this approach is that lane markings

are necessary and in urban environments this information is not always available.

— Alternatively, end-to-end approaches could also be considered to perform path tra-

cking. As a future work plan, we have recorded several circuits around university

campus where the stereo vision system together with GPS data and vehicle infor-

mation (speed and steering wheel angle) were saved synchronizing each sensor

to relate images with the others sensor’s data. Hence, a model like the one pro-

posed by NVIDIA [133] could be used to learn how to steer depending on the

input image. Another approach could also be considered with the use of vehicle

information. Image classification could be carried out relating the steering wheel

angle captured at each image to distinguish the road into straight, curve left, curve

right, sharp curve left or sharp curve right segments. An analysis and definition of

steering wheel angle thresholds will be required. In this way, a CNN could perform

road type classification and alleviate the GPS road geometry analysis performed

off-line in our path tracking proposal. The only inconvenient of this last approach

will be the speed computation as not every curve or sharp curve require the same

speed to traverse them safely. Furthermore, the captured vehicle speed will have

to be considered as well during training to output not only the road type segment

but also the ideal vehicle speed.

With all the presented possible improvements, we believe that a path tracking approach

with level 3 (conditional automation) could be feasible to achieve. We hope the work of this

thesis could be helpful as a base for upcoming Ph.D students at UTBM that will conduct

research in this area.
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[60] KRÄHENBÜHL, P., AND KOLTUN, V. Efficient inference in fully connected crfs
with gaussian edge potentials. In Advances in neural information processing
systems (2011), pp. 109–117.



BIBLIOGRAPHIE 145

[61] LARSSON, F., AND FELSBERG, M. Using Fourier descriptors and spatial mo-
dels for traffic sign recognition. In Scandinavian Conference on Image Analysis
(2011), Springer, pp. 238–249.
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