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RÉSUMÉ 
 

L'utilisation de franges d'interférence en lumière blanche comme une sonde optique en 

microscopie interférométrique est d'une importance croissante dans la caractérisation des 

matériaux, la métrologie de surfaces et l'imagerie médicale. La technique, basée sur la 

microscopie interférométrique, a l’avantage d’y parvenir en ne faisant qu’un balayage 

vertical de l’échantillon, alors que les techniques de mesure ponctuelle nécessitent un 

grand nombre de balayages dans le plan horizontal pour imager un échantillon. 

L'Interférométrie en lumière blanche (Coherence Scanning Interferometry, CSI, 

également connu comme White Light Scanning Interferometry, WLSI) est une technique 

basée sur la détection de l’enveloppe de franges d’interférence. Cette technique (CSI) 

utilise généralement un échantillonnage des franges selon l'axe optique par moyen d'une 

acquisition d'une pile d'images XYZ. Le traitement d'image est ensuite utilisé pour 

identifier les enveloppes des franges, le long de l’axe Z à chaque pixel afin de mesurer les 

positions d’une surface unique ou des structures enterrées dans une couche. La mesure de 

la forme de la surface en CSI, nécessite généralement la détection d’un pic ou l'extraction 

de la phase du signal de franges mono-dimensionnel.  

La plupart des méthodes sont basées sur un modèle de signal AM-FM, qui 

représente la variation de l'intensité lumineuse mesurée le long de l'axe optique d'un 

microscope interférométrique. Il a été démontré antérieurement, la capacité des approches 

2D à rivaliser avec certaines méthodes classiques utilisées dans le domaine de 

l'interférométrie, en termes de robustesse et de temps de calcul. En outre, alors que la 

plupart des méthodes tiennent compte seulement des données 1D, il semblerait 

avantageux de prendre en compte le voisinage spatial utilisant des approches 

multidimensionnelles (2D, 3D), y compris le paramètre de temps afin d'améliorer les 

mesures.   

Dans ce projet de recherche, nous sommes intéressés à développer de nouvelles 

approches n-D en utilisant Multi dimensionel Teager Kaiser qui sont appropriées pour 

une meilleure caractérisation des surfaces plus complexes et des couches transparentes. 

Dans ce travail, nous effectuons trois étapes pour le traitement des signaux de frange, à 

savoir le pré-traitement afin de supprimer le bruit et supprimer la composante de 



 

xvi 

 

décalage, la détection d'enveloppe et le post-traitement afin de déterminer plus 

précisément la mesure.  

Nous commençons notre étude en évaluant la détection d'enveloppe en utilisant 1D 

Teager kaiser Energy Operator dans le traitement des signaux de frange, qui est comparé 

à d'autres techniques. Nous avons développé un programme de simulation de franges 

blanches (sur MATLAB) qui permet de comparer les résultats de mesures synthétiques 

(une couche transparente) effectués par différentes techniques de traitement de signal. Ces 

méthodes consistent en la Transformée de Fourier (TF), ondelettes, la FSA (Five-Sample-

Adaptive), Opérateur d'énergie de Teager Kaiser (TKEO). Sur la base des résultats de 

simulation utilisant les images de franges synthétiques, il a été démontré que TKEO 

fournit les résultats les plus précis pour l'extraction de la surface supérieure et plus proche 

de la performance de CWT pour l'extraction de l'interface enterrée (surface arrière), mais 

présente l'avantage d'être plus compact et donc plus rapide. Les algorithmes TKEO et 

CWT fournissent également une meilleure extraction de surface que les algorithmes HT 

et FSA. Enfin, nous avons étudié la réalisation des algorithmes en utilisant des données 

réelles, c'est-à-dire l'image de frange de la couche de résine sur Silicium. Le résultat 

montre que CWT et TKEO ont des capacités différentes pour identifier deux positions de 

pic adjacentes. Sur la zone où se trouvent deux signaux de franges qui se chevauchent, le 

TKEO est capable d'obtenir l'enveloppe de frange qui distingue deux couches, tandis que 

CWT échoue dans le cas.  

Après avoir commencé sur des signaux 1D, nous avons implémenté des traitements 

sur des signaux 2D. Dans ce projet de recherche, l'étude de la robustesse du traitement des 

franges 2D en CSI a également été réalisée pour la caractérisation d'un film de polymère 

Mylar transparent. Nous avons démontré la capacité des approches 2D Teager Kaiser à 

concurrencer certaines méthodes classiques (approches 1D) utilisées dans le domaine de 

l'interférométrie, en termes de robustesse. Ces résultats démontrent que l'enveloppe de 

frange XZ extraite par les approches 2D Teager Kaiser donne des résultats plus 

satisfaisants que l'approche 1D en révélant les structures internes et la surface arrière. La 

technique permet également une amélioration des détails dans les images XZ ainsi que 

des mesures plus précises de l'épaisseur du film polymère. 

À la fin de ce travail, nous présentons l'étude de l'application de 3D Teager Kaiser 

Energy Operator (3DTKEO), qui est développé sur la base de l'opérateur d'énergie TK 

multi-dimensionnel. Grâce à une simulation utilisant un signal de frange synthétique, 
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nous avons évalué la robustesse des performances de 3DTKEO dans le traitement des 

signaux de franges, qui est comparé à l'approche 1D et 2D. De plus, nous avons 

également effectué l'algorithme sur des données réelles, c'est-à-dire une norme de hauteur 

de pas (VLSI Standard Inc.) afin d'évaluer la précision de la mesure. De plus, nous avons 

enrichi le domaine d'étude en testant l'algorithme sur différents échantillons, tels que le 

graphène, les DOE (Diffractive Optical Elements), la résine sur silicium, le câble et la 

roche. 
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GENERAL INTRODUCTION 
 

This thesis is the result of my PhD research carried out for more than three years in fringe 

signal analysis in the field of Coherence Scanning Interferometry (CSI). The work has 

been performed in the IPP team (Photonics Instrumentation and Processes), in the ICube 

laboratory, University of Strasbourg-CNRS. The PhD scholarship has been funded by the 

Ministry of Trade, Indonesian government from 2014 to 2018. The purpose of the project 

was to develop new n-D approaches (2D, 3D) which are suitable for improved 

characterization of more complex surfaces and transparent layers using white light 

interferometry. 

Several surface analysis techniques, such as the classical stylus probe, SEM 

(Scanning Electron Microscopy), AFM (Atomic Force Microscopy), confocal microscopy 

and interference microscopy, are important in the field of materials characterization, 

industrial metrology, and inspection [1],[2],[3]. It is often useful to use several techniques 

to elucidate the various surface characteristics, especially since there is no single 

technique capable of providing all the information on the morphology of a surface. The 

technique of interference microscopy, which makes use of light interference as the optical 

probe, has the advantages of being non-destructive and fast [4],[5],[6]. There are two 

families of techniques in interference microscopy: Phase Shifting Microscopy (PSM) and 

Coherence Scanning Interferometry (CSI). PSM is a mathematical method of fringe 

interpolation based on the introduction of known phase shifts between the two arms of the 

interferometer. The technique is well suited for the analysis of small surface roughness 

(depth < 200 nm) and commonly has a nanometric axial resolution. The dynamic range of 

PSM is limited to λ/2 due to the periodicity of the interference fringes that induce a 2π 

ambiguity in the measured surface profiles. 

Due to this limitation, the second family of techniques, i.e. CSI was developed to 

allow the measurement of much deeper surfaces. The advantages of this technique 

compared to the PSM are the larger vertical depth of field and the possibility of 

measuring height differences of several microns and more [7],[8]. Nowadays, the use of 

CSI, which is also common known as white light interferometry, is widely used in various 

fields, including surface metrology, materials characterization, and medical imaging. For 

instance in the field of metrology, white light interferometry has been applied in the 
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characterisation of the fabrication of Micro Electro Mechanical Systems (MEMS) and 

other micro-component devices [9],[10],[11]. White light interferometry has also been 

applied for the measurement of surface roughness and microscopic structures in materials 

science and microelectronics [12],[13]. In another field, Dubois et al. developed full-field 

optical coherence tomography  (FF-OCT) based on white light interferometry for high-

resolution optical imaging of biological tissue [14],[15],[16]. This technique achieves a 

better spatial resolution than conventional OCT, without using an expensive light source, 

achieving  a resolution of axial × transverse = 0.7 µm × 0.9 µm. Conventional OCT is 

usually based on a fibre Michelson interferometer illuminated by a broad-bandwidth 

spatially coherent source (laser). The measurement requires scanning of a point probe in 

the transverse direction over the sample in order to obtain the cross sectional image. The 

spatial resolution of OCT in the axial direction is defined by the coherence length of the 

illumination source, typically 10–15 µm in the case of a super luminescent diode (SLD) 

[16], [17], [18]. By using ultra-short femto second laser technology, the spatial resolution 

of OCT has improved down to ∼ 1 µm. Nowadays, OCT can be applied at the cellular 

level [14], [17].  

A schematic layout of a simplified OCT system is illustrated in Fig. 1. The light 

from a low coherence source is coupled into a fiber-optic Michelson interferometer. This  

light is then split at a fiber coupler into the reference and the sample arm. The light 

retroreflected from the reference mirror and the light backscattered from the sample is 

recombined in the coupler and generates an interference pattern, which is detected by a 

single point detector (a photodiode) [17], [19], [20].  

 

Fig. 1 Schematic of the OCT system [17] 
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 The use of white light interference fringes as an optical probe in microscopy has a 

long history. In 1665, Robert Hooke investigated the coloured fringe that can be observed 

in white light when the two glass plates are in contact [21]. This phenomenon can be 

called as the starting point of optical interferometry. Coloured fringe were then studied by 

Isaac Newton in 1717 as an interference pattern created by the reflection of light between 

two surfaces (known as “Newton’s rings”). Since then, the development of white light 

interferometry has been extended right up to the present day. The method developed for 

the three dimensional measurement of surface topography using white light 

interferometry is generally based on the analysis of fringe contrast. In this method, 

vertical fringe scanning (either the object or reference mirror) is carried out, followed by 

measuring the fringe intensity at each point of the object surface. The fringe pattern is 

observable when the optical path difference between the reference mirror position and the 

object surface is smaller than the coherence length of the used light. The zero value of the 

optical path difference is related to the surface position of the object (sample).  

Developments in digital signal processing now allow three dimensional 

measurement using white light interferometry rapidly and automatically. The first 

automated 3D measurement using white light interferometry was reported by 

Balasubramanian in 1980 [22]. The variation in fringe contrast is recorded using a 

detector (CCD), point by point for each surface position. If the maximum fringe contrast 

level is observed, that point is determined as having a zero path difference that indicates 

the surface position. In 1987, Davidson reported the application of white light 

interferometry for integrated circuit inspection and metrology [23]. In this application, the 

use of an automated mechanical piezoelectric stage for fringe scanning was applied. The 

fringe intensity was captured using a detector, and then the peak of the fringe contrast was 

detected for profiling the object (integrated circuits). In 1990, by extending the concept of 

the Davidson’s work and focusing on the profilometry capabilities of white light 

interferometry, Lee and Starnd reported the advantage of white light interferometry over 

the conventional microscope in lateral resolution [24]. In 1992, the work on three 

dimensional sensing using white light interferometry for rough objects was reported [25]. 

In 1990, Chim and Kino introduced another way of fringe analysis by digital filtering of 

the interferogram (interference data). The fringe analysis used two different algorithms 

based on the Fourier Transform and Hilbert transform for extracting the fringe envelope 

[26], [27]. In 1993, Caber used the demodulation technique adapted from 
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communications theory for retrieving the fringe envelope [7], [28], [29]. In 1993, 

Montgomery and Fillard applied the algorithm of PFSM (peak fringe scanning 

microscopy) [30], [31], a very efficient algorithm which was then adapted for 3D 

measurement in real time [32],[33]. In 1996, Larkin developed the Five Sample Adaptive 

(FSA) algorithm which is an efficient algorithm in computational time for retrieving the 

fringe contrast envelope [34]. This was then demonstrated to be a member of the wider 

family of very compact and efficient Teager-Kaiser Energy Operators by Salzenstein et 

al. (TKEO) [35], [36], [37]. The work demonstrated that the TKEO algorithms are robust 

and very competitive with the other types of fringe envelope detection algorithms, being 

very efficient in terms of computation time, and making them quicker than the other 

techniques when implemented on the appropriate hardware. The extended versions of this 

operator show that the method substantially provides the effective results in term of the 

surface measurement [38]. Then, another method using the wavelet transform algorithm 

in order to retrieve the fringe envelope in white-light interferometry was applied by 

Sandoz in 1997 [39]. The advantage of the wavelet transform method implemented in 

white light interferometry is that it is very robust to noise.      

Most of the above fringe envelope detection methods are implemented on the one 

dimensional fringe signal (1D approach). The work in [13] used a 2D imaging processing 

method of the XZ images in an image stack for tomographic analysis of transparent 

layers. We also demonstrated in [12], [40] the ability of 2D approaches to compete with 

some classical methods used in the field of interferometry, in terms of robustness. 

Whereas most methods only take into account the 1D data, it is advantageous to take into 

account the spatial neighborhood using multidimensional approaches (2D, 3D). The 

objective of this project was therefore to study and develop new n-D approaches using 

Teager Kaiser energy operators for fringe analysis in CSI. This study is one part of 

dealing with several challenges of fringe signal processing currently in CSI. The 

challenges include the precision required along Z (optical axis) and XY (lateral direction), 

speed of processing, quantitative and qualitative aspects, noise aspects, the offset 

component, n-D approaches, and a formalised protocol for processing. Another challenge 

is the degree of complexity of the surface, that can be classified going from the simplest 

to the more complex, by a smooth homogenous surface, a rough surface, a transparent 

layer with defects, a cell in water, and skin/tissue, as shown in Fig. 2.   
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Fig. 2 Challenges of fringe signal processing in CSI 

This thesis is composed of four main chapters.  

The first chapter discusses the state of the art of Coherence Scanning Interferometry 

as related to this project. We mainly discuss the general principles of CSI and the 

procedure of fringe analysis. We study and observe the structure of the fringe signal and 

the various approaches (Z-scan and XZ-scan techniques) for fringe analysis. The study of 

pre-processing for the offset component removal, microscope system, and description of 

the samples which we use in the work are also reported. 

In the second chapter, we begin our study by evaluating the performance of 

envelope detection using the 1D Teager Kaiser Energy Operator, which is compared to 

other techniques. These methods consist of the Fourier Transform (TF), wavelet, the FSA 

(Five-Sample-Adaptive). We have developed a simulation program (on MATLAB) that 

allows the comparison of the performance of different methods using a synthetic fringe 

signal (a synthetic transparent layer). Then, we have studied the realization of the 

algorithms using real data, in this case on fringe images from a resin layer on Silicon.   

In the third chapter, we implement the 2D approach using Teager Kaiser for fringe 

analysis. In this work, the study of the robustness of the 2D approach in CSI was carried 

out for the characterization of a transparent polymer film. The results demonstrate that the 

XZ fringe envelope extracted by the 2D Teager Kaiser approaches gives more satisfactory 

results than the 1D approach by revealing the internal structures and the rear surface of 
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the transparent polymer film. The technique also results in improved details in the XZ 

images as well as more accurate measurements of the thickness of the polymer film. 

In the fourth chapter, we present the study of the application of the 3D Teager 

Kaiser Energy Operator (3DTKEO), which is developed on the basis of the multi-

dimensional Teager Kaiser energy operator. Through a simulation using a synthetic fringe 

signal, we have evaluated the robustness of the 3DTKEO's performance in fringe signal 

processing, which is compared to the 1D and 2D approaches. In addition, we have also 

used the algorithm on real data, in this case a step height standard (VLSI Standard Inc.) to 

evaluate the accuracy of the measurement.  In addition, we have enriched the field of 

study by testing the algorithm on various other samples, such as graphene, DOE 

(Diffractive Optical Elements), resin on silicon, cable, and rock. 

  



 

7 

 

Chapter 1. COHERENCE SCANNING 

INTERFEROMETRY 

 

In this chapter, we discuss several of the existing three dimensional surface profiling 

techniques, including Atomic Force Microscopy (AFM), confocal microscopy, and  

interference microscopy. Futhermore, we describe how the technique of Coherence 

Scanning Interferometry (CSI) generates an interferogram (fringe signal). We study and 

observe the structure of the fringe signal and the various approaches (Z-scan and XZ-scan 

techniques) for the fringe analysis. Then, we focus on the steps of the fringe analysis 

procedure which we perform in this work. The study of pre-processing for the offset 

component removal and determination of the surface structure of the sample which we 

use in the work are also reported.  

1.1 3D SURFACE PROFILING  

The measurement of 3D surface structures is an important field in materials 

characterization and industrial metrology. The existing techniques of 3D surface 

topography measurement consist of contact profilometers and optical profilometers. A 

stylus profiler is the oldest contact profiler, using a tactile probe to measure the surface 

profile [1], [2]. The technique works by moving the object surface in relation to the stylus 

tip and sensing the height variations of the stylus tip to determine the surface height 

profile. In the 1980’s, another type of scanning probe profilometer involving near field 

microsopy was developed [41]. The first mode was Scanning Probe Microscopy (SPM), 

based on electron tunnelling, that works by moving a fine tip in close proximity to the 

sample surface, to within several nm to a few angstroms depending on the technique. The 

Atomic Force Microscope (AFM) is the most popular SPM, using Van der Waal’s forces 

that can provide 3D images of surfaces generally at the nanometer scale. AFM is popular 

particularly for use in measuring non-conductive materials such as cells, bacteria, viruses 

and proteins [42], [43]. 

AFM has the advantages of nanometric resolution, but the images take in general 

several minutes to several tens of minutes or more to acquire. Optical profilers on the 

other hand have the advantage of allowing high speed surface profiling. The two most 
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common optical profilers are confocal microscope and white light interferometery 

(Coherence Scanning Interferometry).  

Confocal microscope. The confocal microscope is based on focusing principle, as 

illustrated in Fig. 3. that uses a pinhole to ensure only light at the point of focus on the 

sample surface can enter the detector. Fig. 3(a) shows the sample in the focal plane of the 

objective, while the sample moving out of the focus is shown in Fig. 3(b). The complete 

image is formed through point by point scanning of the illuminating and detecting pinhole 

on the spot over the sample surface. The image will not be formed if the sample moves 

out of focus, as shown in Fig. 3(b).  

Another type, the chromatic confocal microscope was then developed which the 

vertical scanning is not required [1],[4], as shown in Fig. 3(c). Rather than using the 

vertical scanning, the technique uses an objective with an axial chromatic aberration that 

has a different focus position for each different wavelength corresponding to the height of 

the surface. A spectrometer in place of CCD as a detector, detects the wavelength value. 

The measurement of the object focus position based on the spectrum measurement makes 

the measurement process much faster. The technique has the disadvantage of the optical 

sensitivity for the inhomogeneous materials. Similarly as the conventional confocal 

system, another disadvantage is the necessity of lateral scanning of the sample.  

 

Fig. 3 Schematic of confocal microscope: showing the scanning (a) in the focal plane of 

the objective and (b) out of focus. (c) schematic of chromatic confocal microscopy [44] 
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Phase Shifting Microscopy. There are two main techniques used in interference  

microscopy: Phase Shifting Microscopy (PSM) and CSI [12],[8],[45]. PSM is a 

mathematical method of fringe interpolation based on the introduction of known phase 

shifts between the two arms of the interferometer. These phase shifts vary the optical path 

difference (OPD) which result in several interferograms. The technique is well suited for 

the analysis of small surface roughness (depth < 200 nm) and commonly has a nanometric 

axial resolution. The PSM also has the capability to deliver results with low noise and 

high precision for smooth optical surfaces. However, the dynamic range of PSM is 

limited to λ/2 due to the periodicity of the interference fringes that induce a 2π ambiguity 

in the measured surface profiles. Due to this limitation, the second family of techniques, 

i.e. CSI was developed to allow the measurement of much deeper surfaces. The 

advantages of this technique compared to the PSM are the larger vertical depth of field 

and the possibility of measuring height differences of several microns and more [7],[8].  

In PSM technique, a monochromatic or quasi-monochromatic light source is used 

for illumination on the sample such as with Köhler illumination. During the measurement, 

the optical path difference (OPD) is changed by taking three or more images using the 

camera. The phase of the interference signal is then analyzed at each point on the image 

using the PSM algorithm. The altitude which represents the surface profile is calculated 

based on the result of the phase measurement.  

The following Eq.(1.1) [46] express the intensity at a coordinate point (x,y) in an 

interference pattern: 

                                         (1.1) 

where Io(x,y) is the irradiance, γ0 is the fringe visibility (also called modulation or 

contrast), φ(x,y) is the signal phase, and αi is the phase shift. Based on the Eq. (1.1) 

mathematically, the three unknown parameters: Io(x,y), γ0 and φ(x,y) can be calculated by 

using at least three interferograms. The precision of the measurement in PSM technique 

can be improved using higher numbers of interferograms. 

In order to introduce the phase shifts in PSM, there are two basic modes, i.e. the 

discrete mode and continuous mode. For description of this phase shift in discrete and 

continuous mode, the algorithm of 4 steps of 120° is chosen as illustration. 
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Discrete mode. The discrete mode of this technique based on the discrete phase steps 

calculation is also known as the phase stepping microscopy. The illustration in Fig. 4 

shows a phase determination from 4 discrete mode which is represented by the intensity 

of the interference fringes. The phase is then can be calculated using the following 

equation, which is usually displayed as a grayscale image of the phase: 

      
     

     
      (1.2) 

 

 

Fig. 4 Phase determination, from 4 discrete steps of 120°[47]. 

 

Continuous mode. The continuous mode of the phase change technique in PSM, also 

known as the technique of the phase integration. As illustrated in Fig. 5, the technique is 

based on a linear variation of the phase. The parameter T is the period time of the change 

of the phase, while the parameter τ, which depends on the number of interferograms, is a 

time of the acquisition of an image. 

 

Fig. 5 The technique of the change of phase[47]. 
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In this technique several interferograms over the period T (assuming T is 

continuous) are recorded in order to determine the initial phase. On the other hand, one 

interferogram represents each integration time τ. Fig. 5 shows the illustration of phase 

determination in continuous mode corresponding to the example of Fig. 4. The integration 

time          
 

 
     

 

 
     

  

 
 represents respectively the phase determination of 

4 steps of 120°. 

 

PSM algorithms 

Several phase reconstruction algorithms have been developed. The phase measurement 

algorithms are based on the acquisition of a series of N interferograms (N ranging 

generally from 3 to 7) obtained with known phase shifts. The essential parameters in 

these measurement techniques are the mode of variation of the phase (discrete or 

continuous), the frequency of acquisition of the interference fringes and the number N of 

interferograms used to calculate the phase at a given instant. 

a. Three step technique 

If a phase shift of 2π is introduced between the object and reference beams, the phase 

φ(x,y) can be deduced from the intensities I1, I2, I3 of the three interferograms recorded for 

the angular offsets π/4, 3π/4, 5π/4. The intensities measured are given by: 
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The resolution of these equations gives the expressions of phase and visibility at a point 

of coordinates (x,y) as follows: 
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b. Four step technique 

The intensity of the interference fringes for phase shifts of 2π is given by: 
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(1.5) 

By a combination of these equations, the phase and visibility can be calculated with the 

following expressions: 
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(1.6) 

c. Five step technique 

The intensity of the interference fringes for phase shifts of 2π is given by: 
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   1.7) 

By a combination of these equations, the phase and visibility can be calculated by the 

following expressions: 
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As mentioned previously, the limited depth range of PSM led to the development of white 

light interferometry and a different technique altogether based on the fringe envelope 

detection to give unambiguous depth measurement over large depths. This is now 

presented in the next section. 

1.2 GENERAL PRINCIPLE OF CSI 

A typical layout of a CSI system is shown in Fig. 6(a) [11]. The working principle of the 

CSI technique is based on the cross coherence analysis between the reference beam and 

the reflected object beam which come from a low coherence source using a beam splitter. 

During the measurement of the sample surface, the reference beam is reflected from the 

reference mirror, whilst the reflected object beam is reflected from the sample [48]. 

 

(a) 

 

 

 

(b) 

Fig. 6 (a) A schematic layout of a CSI system (Leitz-Linnik interference microscope) 

and (b) typical signal from a single surface [49]. 

 

The two light beams are then combined at the detector. The interference will occur 

when the optical path difference between the reference beam and the reflected object 

beam is close to zero.  This is when the optical path length to the sample is nearly 

identical with the optical path length to the reference mirror. With the goal of finding the 

interference maximum, fringe scanning is carried out at each point on the sample surface, 

point by point. The fringe intensities, which vary according to the change in distance 

between the sample and the objective (in z axis), are captured by the detector (camera) 

generating the stored data signal, or interferogram. Fringe analysis is then applied in order 

to retrieve the peak of the fringe contrast envelope which indicates the axial position of 



 

14 

 

the surface of the sample. Fig. 7 shows how the interference is constructed at each pixel, 

point by point in the detector (camera). 

 

Fig. 7 The interferogram construction on a surface using CSI (source: Guide to the 

measurement using CSI [50]). 

The advantage of white light over monochromatic light is its ability to avoid 

ambiguity in order to determine the fringe order due to white light having a low 

coherence length. On the other hand, many factors can affect the accuracy of the CSI 

measurements, including the camera performance, the control and linearity of the piezo-

controlled vertical scanning, the metrology frame design, the environment, and the 

sample stability [50]. 

1.3 FRINGE SIGNAL 

The light intensity giving rise to the fringe signal, s(x,y,z), captured from a detector 

(CCD) as the optical path difference is varied through focus in a white light 

interferometer, has the following form [26], [34]: 

             0 0

0

4
, , , , , , .cos , ,

where

s x y z a x y z b x y g z z x y z z x y x y

z k






 
     

 

      

(1.9) 

The function s corresponds to the intensity signal at a given point of the sample 

surface (x,y), where z represents a vertical scanning position in relation to the surface. The 

parameter z is referred to as k, with k the index-scanning step and  the value of 

scanning step. The height of the surface z0(x,y) is a spatial function that depends on lateral 
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coordinates x and y. The quantity a(x,y,z) is an offset intensity related to the reference and 

object beam intensities, b(x,y) is the fringe contrast, g(z) is the fringe envelope function 

related to the spectral profile of the white light source, and λ0 is the mean wavelength of 

the light source. The phase offset related to the phase change on reflection is represented 

by α(x,y). The fringe signal in Fig. 6(b) shows a synthetic fringe signal from a single 

surface that has been generated based on the structure of white light interferences in 

Eq.(1.9).   

 

Fig. 8 Double signal of white light interference fringes from a transparent layer (synthetic 

signal). 

Eq.(1.9) corresponds to the simple case of light propagation in air which is assumed 

to be equal to 1. In the case of the light passing through a transparent layer, a double 

signal is produced, one from each side of the layer (Fig. 8). In this case the refractive 

index is greater than one and wavelength dependent, thus inducing the phenomenon of 

dispersion for the signal from the other side of the layer. In this case the actual distance 

for the second signal is measured by Eq.(1.10). CSI measures the optical path difference 

along the optical axis Z. By measuring the distance  separating the peaks of the two 

envelopes, the actual distance d of the transparent layer at that point (X,Y) can be 

measured. If the sample displacement d along the optical axis (Z) and the refractive index 

n of the layer is known, the actual distance d is:  


d
n

                                            (1.10) 

A completely description about this topic will be discussed in Chapter 2 and Chapter 3 in 

measurement the sample of resin on Si and Mylar polymer film.   
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1.4 Z-SCAN TECHNIQUE (ID) 

The description of fringe analysis in CSI using the Z-scan technique is shown in Fig. 9. 

By means of a single vertical scan of the sample, a stack of XYZ images is generated. 

Signal processing is then used to obtain the fringe envelopes along Z in order to measure 

the positions of the peak of the fringe envelope which corresponds to the height of the 

surface at each pixel in the XY image [51], [52]. 

 

Fig. 9 Z scan technique. 

Z-scan technique allows the initial manual investigation of the nature and quality of the 

fringe signal obtained which is generated by CSI. A priori information of the nature of the 

fringe signal is useful for the checking the presence of artefacts, for instance in a complex 

layer.     

1.5 XZ-SCAN TECHNIQUE (2D) 

Two dimensional fringe signal processing can be chosen using the raw XYZ data by 

operating on the XZY images as shown in Fig. 10. The technique is based on analyzing 

the XZ fringe images at a given point along the Y axis. The fringes are low pass filtered 

in 2D so as to find the fringe envelope. By processing a given XZ image, the cross 

sectional profile of a transparent sample can be obtained [52], also known as a B-scan in 

optical coherence tomography. 
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Fig. 10 XZ scan technique [49]. 

 

1.6 ANALYSIS OF WHITE LIGHT INTERFERENCE FRINGES 

In general, the techniques of signal processing developed in this work consist of three 

main steps: pre-filtering, envelope detection and post-filtering (Fig. 11). The envelope 

detection is needed in order to obtain the fringe envelope of which the peak represents the 

surface position. Pre-filtering is used to remove the offset component and reduce the 

noise, while post-filtering is used to determine more precisely the measurement.  

 

Fig. 11 The procedure of white light interference fringe analysis [53]. 
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1.6.1 Pre-filtering 

The robustness of the signal processing of fringe signals depends on the sensitivity to the 

different sources of signal noise and artifacts. Another problem lies in an additive offset 

component (background) which can appear in the fringe signals during the acquisition 

process, particularly over large scanning depths. In order to remove this offset component 

and the additive noise, it is important to filter out both of them before applying fringe 

envelope detection. 

1.6.2 Envelope Detection 

In the following we present the different techniques used to retrieve the fringe envelope in 

CSI. 

1. Analytic Signal (Hilbert Transform) 

In analytic signals, the Hilbert Transform is often used for the purpose of amplitude 

demodulation. If we consider a real signal s(t), then the analytic signal sA(t) is defined 

as: 

          expA Hs t s t is t A t i t        
        (1.11) 

Where the Hilbert transform of a signal is given by:  

    
 1 1

H

s u
s t s t du

t t u 





  
                 (1.12)  

In the frequency domain, the analytic signal corresponds to: 

      1AS sign S                (1.13) 

In particular, for obtaining the analytic signal sA(t), the negative frequency component 

of the signal is suppressed, which can be performed using a Fast Fourier Transform 

(FFT). The main steps of the Analytic Signal (Hilbert Transform) technique using a 

Fast Fourier Transform (FFT) calculation are outlined in Fig. 12. The FFT is applied to 

the signal in Fig. 12(a), producing the spectrum of the signal (Fig. 12(b)). The FFT 

coefficients that correspond to negative frequencies are then replaced with zeros (Fig. 

12(c)). Finally, the fringe envelope is extracted (Fig. 12(d)) by calculating the inverse 

FFT of the positive frequency packet in Fig. 12(c). By removing negative frequencies 

from the spectrum of real signal s(t), the signal provided by inverse FFT becomes 
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complex as shown in Eq. (1.11), which gives directly the phase (t) and the amplitude 

A(t).     

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 12 Fringe envelope detection process using Hilbert Transform technique [53]. 

 

2. Five Sample Adaptive (FSA) algorithm 

The FSA technique is a fast and simple algorithm which has been commonly used in 

CSI to retrieve the fringe envelope [34]. The main idea of the technique is the 

application of phase shifting algorithms for white light interferogram demodulation 

and to use the fringe visibility (or modulation) to calculate the fringe envelope. In the 

case of the FSA technique, five interferograms are captured by a digital imaging 

system.  

At each pixel location in the image (x,y), the value of the visibility(x,y) of the 

fringes at that point is calculated from the intensities of five sampling positions, In–2 to 

In+2, along the optical axis z (Fig. 13): 

   
2 2

2 4 1 3 5

1
( , ) 4 2

4
A x y I I I I I     

      (1.14) 

where I1 to I5 are the interferogram intensities, giving exact values when the phase 

shifting between interferograms is 90. The amplitude A(x,y) can be calculated with 
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just two multiplications and one square root operation, which gives the advantage of 

efficient computation time. This well-known technique in fact corresponds to a 

derivative of the signal followed by the discrete Teager Kaiser operator which we 

discuss next. 

 

Fig. 13 FSA Algorithm 

 

3. Teager Kaiser Energy Operator (TKEO) 

The Teager Kaiser Energy Operator (TKEO) [54] is an operator that tracks the 

instantaneous energy of a signal. This non-linear energy operator and its 1D/2D 

discrete versions has found applications in various fields of signal and image 

processing due to its success in analysing and demodulating AM-FM signals with 

high resolution, simplicity, and efficiency [55]. In its discrete version, only three 

samples are required at each time instant. In the continuous case, the Teager Kaiser 

Energy Operator is defined by: 

       
 

 
 

2 2

2

2

s z s z
s z s z s z s z s z

z z


   
                                 (1.15) 

where s(z) is the signal, s (z) and s (z) means the first derivative and the second 

derivative of s respectively. A discrete forward and backward approximation of the 

derivatives of Eq.(1.15) leads to the discrete TKEO [56]: 

       2 1 1s n s n s n s n                                                  (1.16) 
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Let us consider a mono-component continuous time AM-FM signal:  

      coss t a t t                                                       (1.17) 

where a(t) represents the spatially varying amplitude and (t) is the phase signal. The 

output of the Teager Kaiser Energy Operator applied to s(t), is given by 

     
2

s t a t t      
, where  t is the instantaneous phase. Moreover, the Energy 

Separation Algorithm (ESA), estimates the instantaneous envelope a(t) and the 

instantaneous phase  t as follows: 

 
 

 
 

 

 
;

s t s t
a t t

s ts t

 




       
     

                                     (1.18) 

The main disadvantage of the Teager Kaiser Energy Operator lies in its sensitivity to 

noise, due to the successive derivations. In the context of noisy data, a filter such as 

the Savitzky-Golay approach, improves the robustness of TKEO. 

 

4. Continuous Wavelet Transform (CWT) 

The Wavelet transform is a time-frequency analysis technique which has been widely 

used in signal analysis and processing [57], [58], [59]. Due to its ability to decompose 

locally the signal into different scale/frequencies, the CWT highlights the region of 

interest, where the local frequency corresponds to the carrier frequency of the CSI 

signal. Moreover, the CWT method seems to be robust to noise, providing accurate 

measurements of the surface. 

The CWT transform function of a fringe signal s(z) can be expressed as:  

   1/ 2

1
,

z b
W a b s z dz

aa






 
  

 
                                      (1.19) 

where W(a,b) represents the CWT coefficient function, ψ(z) is a continuous function 

in time and frequency domain called the mother wavelet, a is the scale factor, and b is 

the shift factor. The well-known complex Morlet wavelet [60], [61], [62], [55], [63], 

[64], [65] has been chosen as the mother wavelet since its properties have strong 
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similarities with the fringe signal, since the wavelet function corresponds to a 

Gaussian envelope modulated by a sinusoidal function. 

   2 / 2zi zz e e


                                                   (1.20) 

 

Fig. 14 The modulus of coefficient CWT of the fringe signal [53]. 

In order to compute each coefficient W(a,b), the fringe signal is convolved with a set of 

complex Morlet wavelets. As a function of scale factors a and shift b, W(a,b) can be 

represented by a scalogram, as shown in Fig. 14. The fringe envelope corresponds to the 

absolute modulus of the maximum correlation coefficient as shown by the red line in the 

scalogram.        

1.6.3 Post-filtering 

For noisy fringe signals, for instance as shown in Fig. 15(a) even though pre-filtering is 

used to remove the offset component and suppress the noise before the process of 

envelope detection, the noise can still appear in the resulting fringe signal, as shown in 

Fig. 15(b). This affects the process of envelope detection so that the fringe patterns appear 

in the resulting fringe envelope, as illustrated in Fig. 15(c). Because of this, a smoothing 

filter such as a cubic spline is needed to improve the envelope peak detection (Fig. 15(d)). 

Then, the curve fitting method using Gaussian fitting is implemented in order to 

determine more precisely the envelope peak. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 15 The use of post-filtering in CSI: (a) fringe signal, (b) prefiltered signal, and its 

envelope obtained (c) without post-filtering and (d) using post-filtering. 

1.7 PERFORMANCE EVALUATION OF DIFFERENT OFFSET 
COMPONENT REMOVAL TECHNIQUES IN CSI 

Generally, when we apply signal processing, the main aim is to remove part of the noise 

present in the signal or to eliminate different sources of variation (e.g. background) that 

are not related to the measured variable. The existence of a variable background offset to 

the signal can be caused by the effects of defocusing (3D PSF along Z), the Köhler 

illumination (conical illumination at each point on the sample), contrast variations across 

the sample (XY) and diffraction effects at step edges. In the case of fringe signal 

processing, it is important to filter out the background (offset component) before applying 

fringe envelope detection. The background variation is more observable on rougher 

surfaces or edges of structures and results from the response of the imaging objective to 

diffraction and out of focus effects. This generally consists of a slowly varying 
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component along the z-axis due to optical effects and has a lower spatial frequency than 

the fringes, as shown by the red line in Fig. 16. In this work, we present the performance 

evaluation results of different offset component removal techniques as a pre-processing 

step in fringe signal processing.  

 

Fig. 16 An example of background variation on the fringe signal (resin on Si)  

 

1.7.1 The Offset Component removal technique 

The following are most common offset component removal techniques in CSI: 

a. Global Average 

The global average technique makes use of the average of the signals in order to suppress 

the offset component. Global averaging removes the mean value from the vector x, which 

can be expressed as: 

1

1 N

i i i

i

x x x
N 

  
    

(1.21) 

b. Local Average 

The local averaging technique is a fast and simple algorithm which has been commonly 

used in signal processing to suppress the offset component. The value of the pre-filtered 
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signal for a single sampling position xi is calculated from the intensities of three sampling 

positions, xi–1 to xi+1, which can be expressed as: 

 1 1

3

i i i

i i

x x x
x x   
 

          
(1.22)

 

c. Central Derivative 

In signal processing, the derivative is a common method used to remove the background 

variation of a signal. The simplest form of numerical approximation of the derivative is 

the first order derivative based on the finite difference method, which has three form 

types, i.e. forward difference, backward difference, and central difference. By removing 

the values of the signal where their adjacent/neighbourhood values are almost equal, the 

first derivative effectively removes the lower frequencies of the signal, i.e. the offset 

component. Among the three types of the first derivative, the central difference gives the 

most accurate approximation, and hence it is commonly used for suppressing the trend 

and the offset in white light fringe analysis. The central difference formula for the first 

derivative of f(x) which is based on the values of the function at the points f(x+h) and f(x-

h), can be expressed as:    

 
   

'
2

f x h f x h
f x

h

  


       
(1.23) 

This Eq.(1.23) expresses that the first derivative of f(x) at a point x is derived by 

subtraction of its immediate neighboring points (x+h) and (x-h). It removes the values of 

two successive points of f(x) which are the same and leaves the values which are 

different. When it is performed on an entire signal, the first derivative f’(x) effectively 

removes the intensity background and suppresses the lower frequency signal, although it 

emphasizes the higher frequency signal which tends to accentuate the noise. The first 

derivative therefore works well for noiseless signals whose derivation values can be 

calculated precisely and is not good for high frequency suppression.        

d. Empirical Mode Decomposition 

After studying different techniques for supressing the background variation, as an 

alternative to the first derivative, we have introduced the use of the well-known 

decomposition technique known as Empirical Mode Decomposition (EMD). The EMD 

method has the ability to decompose a signal into oscillatory components, known as 

intrinsic mode functions (IMFs). The principle of EMD is the use of a repeated shifting 
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process on the analyzed signal. For a given signal x(t), all extrema (local maxima and 

minima) are detected and connected by an interpolation technique, such as the cubic 

spline, that produces respectively the upper envelope emax(t) and the lower envelope 

emin(t). The average of the two envelopes is then computed, m(t) = (emax(t) + emin(t))/2 and 

the remaining detail d(t) = x(t) – m(t), is extracted. The above procedure is repeated in 

order to obtain the first intrinsic mode functions (IMFs), d1(t) which satisfy two 

conditions:  

1. The number of extrema (the sum of the maxima and minima) and the number of 

zero-crossings must either be equal or differ at most by one. 

2. At any point of an IMF the mean value of the envelopes of the local maxima and 

minima is zero.      

After the 1
st
 IMF is obtained, a residue r(t) = x(t) – d1(t) is computed and processed as a 

new signal instead of x(t). The same procedure is applied to the new signal until other 

IMFs, d2(t), d3(t), dN(t) are obtained. Finally, the result of decomposition using the EMD 

method from the x(t) signal yields N component of IMF’s and a residue.  

   
1

( )
N

k

k

x t d t r t


                               (1.24) 

The lower-order IMF’s typically represents fast oscillation modes, while the higher 

order IMF’s and the residue typically represent slow oscillation modes. Due to this 

characteristic, the EMD technique seems to be well adapted for suppressing the slowly 

varying offset. However, as with the central derivative technique, the EMD method used 

as a pre-filter can also fail in the presence of significant noise. For this reason, we have 

tested more robust filters such as the Savitzky-Golay or Wiener family in combination 

with the derivative and EMD methods.    

In order to remove the offset and reduce the noise, three different algorithms have 

been studied in this work which combine the derivative/EMD technique and denoising 

filter (Savitzky-Golay/Wiener [66], [67], [68]). The corresponding algorithms are referred 

to with the following names:  

i) Pre-filter 1: combination of derivative and Wiener filter. 

ii) Pre-filter 2: combination of derivative and Savitzky-Golay filter.  

iii) Pre-filter 3: combination of EMD and Savitzky-Golay filter. 

 



 

27 

 

1.7.2 The denoising technique 

The following gives a description of the denoising techniques used in this work: 

a. Wiener Filter 

Let us consider the signal corrupted by an independent zero-mean white Gaussian noise, 

which is modeled as [69]: 

   , ( , ) ,y i j x i j n i j 
    

(1.25)

 
where y(i,j) is the noisy signal, x(i,j) is the original signal and n(i,j) is a Gaussian noise. 

The aim of the technique is to remove the noise and to obtain a linear estimate  ˆ ,x i j  

which minimizes the mean squared error (MSE) [69]. 

    
2

, 1

1
ˆ , ,

N

i j

MSE x i j x i j
N 

 
        

(1.26) 

where N is the number of elements in x(i,j). When x(i,j) and n(i,j) are stationary Gaussian 

processes the Wiener filter is the optimal filter. Specifically, when x(i,j) is also a white 

Gaussian process the Wiener filter has a very simple scalar form:  

 
 

   
      

2

2 2

,
ˆ , , , ,

, ,

x

x x

x n

i j
x i j y i j u i j u i j

i j i j



 
  


  

(1.27) 

where σ
2
, µ are the signal variances and means, respectively, and where we will normally 

assume the mean of the noise to be zero. 

 

b. Savitzky-Golay Filter 

The Savitzky-Golay filter is a smoothing technique for a signal that was proposed by 

Savitzky and Golay to increase the SNR (signal to noise ratio) without significantly 

distorting the signal. The filter is defined as a weighted moving average with weighting 

given as a polynomial of a specific degree [70],[68]. The illustration of Savizky Golay 

filer is shown in Fig. 17.  

 

Fig. 17 Illustration of the Savitzky Golay filter 

https://en.wikipedia.org/wiki/Signal-to-noise_ratio
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The coefficients of a Savitzky-Golay filter, when applied to a signal, perform a 

polynomial P of the degree k, is fitted to points of the signal, where N describes the 

window size (neighboring points, including the point to be smoothed). The advantage of 

this filter is that it tends to keep features of the distribution such as those relative to the 

maxima and minima which are often flattened by other smoothing techniques such as MA 

(moving average). 

 

1.7.3 Simulation results 

In order to test these techniques by simulation, we generate different types of synthetic 

fringe signals corresponding to the two fringe signals coming from the top and bottom 

surfaces of a transparent layer. We then used these to test all pre-processing techniques, 

based locally on the general model expressed by Eq. (1.9) along the optical axis Z, with a 

40 nm sampling step, for each lateral position X.  

 
(a) 

 
(b) 

 
(c) 

Fig. 18 Synthetic fringe signals with: (a) constant, (b) linear, (c) non-linear offset 

components. 
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The resulting synthetic signals are shown in Fig. 18 with the different types of (a) 

constant, (b) linear and (c) non-linear offsets added to the synthetic data that can 

commonly appear in the fringe signals during the acquisition process that can be due to 

the various optical effects. 

The previously cited pre-processing techniques were then applied to the synthetic 

fringe signals, namely global averaging, local averaging, the central derivative and the 

EMD filter. The results are then shown for the constant offset (Fig. 19), linear offset (Fig. 

20) and non-linear offset (Fig. 21). 

Based on the results in Fig. 19, Fig. 20, and Fig. 21, it can be seen that the type of 

pre-processing technique required to suppress the offset component from the fringe signal 

depends on the nature of the signal and the computational time available and the precision 

required. The computation times for each of these processes are given in Table 1 using 

Matlab on a PC equipped with an Intel Xeon processor (2.33 GHz, 8 Go RAM). 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 19 Prefiltered signal obtained using: (a) Global average, (b) Local average, (c) 

Central derivative, (d) EMD, applied to the synthetic fringe signal with a constant offset 

component. 



 

30 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 20 Prefiltered signal obtained using: (a) Global average, (b) Local average, (c) 

Central derivative, (d) EMD, applied to the synthetic fringe signal with a linear offset 

component. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 21 Prefiltered signal obtained using: (a) Global average, (b) Local average, (c) 

Central derivative, (d) EMD, applied to the synthetic fringe signal with a nonlinear offset 

component. 
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Table 1 Computation times for the different pre-processing techniques applied 

to the synthetic fringe signals 

 
Global  

Average 

Local  

Average 

Central 

Derivative 
EMD 

Time 

computation (ms) 
6.49 3.76 17.96 115.68 

 

The global averaging technique only works well for fringe signals with an offset 

which is relatively constant, but not for the linear and nonlinear offsets. The Local 

averaging technique is able to maintain the symmetry of the fringe pattern and has the 

fastest computation time (Table 1). However, as illustrated in Fig. 19(b), Fig. 20(b), and 

Fig. 21(b), the resulting amplitude of the fringe signal is clearly lower than the ideal 

synthetic fringe signal (without the offset). This means that a degradation of the 

intensities occurs during the pre-processing process. Similar results are also obtained 

using the central derivative technique, as illustrated in Fig. 19(c), Fig. 20(c), and Fig. 

21(c), although taking from 3 to 4 times longer than the global and local averaging. The 

resulting amplitude of the fringe signal is also clearly lower than the ideal synthetic fringe 

signal, although the decrease is not as great as that for the local averaging. A decrease in 

the intensity may seriously degrade the performance of the algorithm in order to extract 

the fringe envelope, particularly in areas where the SNR is low. The best results are 

provided by the EMD technique, as illustrated in Fig. 19(d), Fig. 20(d), and Fig. 21(d) 

which is clearly able to remove the offset, while almost maintaining the amplitude of the 

fringe signal. But this good result is at the expense of the computation time which takes 

from 6 to 31 times the time required by the three other techniques. 

1.8  SURFACE MEASUREMENT ERRORS IN CSI 

As with any measurement technique, while CSI has significant advantages for optical 

profiling, the measurements are also prone to different types of noise, artefacts and errors. 

These are now fairly well known and have been described in the literature over the last 

decade, namely: ghost steps, the batwing effect, slope dependent errors, material effects 

and multiple scattering effects. These are now described. 

a. Ghost Steps  

When measuring a perfectly flat surface with CSI, depending on the algorithm and 

parameters used, step artefacts can be introduced into the measurement [71], [72]. This 
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kind of error is commonly referred to as ghost steps. The simplest form is due to the 

sampling step when interpolation is not used. This results in the presence of steps 

corresponding to the scanning step between images. Another form of ghost step error is a 

type of fringe order error, which correspond to an error of the measured profile of 0/2 

[73]. The asymmetries in CSI, which arise for instance from imperfect beam splitter, can 

lead to the ghost step error in the measured profile [74].   

b. Batwing Effect 

This measurement error is known as batwing effect due to the shape, rather like that of 

batwings, as illustrated in Fig. 22. The error appears in the measurement of step height, 

which is less than the coherence length of the light source used [75], [76]. The batwing 

effect generally appears for the white light vertical scanning technique due to the 

diffraction effect on the edges. For a typical white light interferometer, the fringe contrast 

envelope obtained, which is Gaussian, skews on the surface close to the edges leading to 

the error. The batwing effect must be considered when carrying out the measurement 

calibration using a step height standard. . 

 

Source: Guide to the Measurement using CSI [50] 

Fig. 22 A square wave grating that shows the batwing effect at the step edges 

 

c. Multiple Scattering 

For the object with the depth profile such as V-grooves, the incident light is scattered 

multiple times due to the geometry of the object [73], [77]. The effect of multiple 

scattering is discussed in [78] using a silicon V-groove specimen, as shown in Fig. 23.  
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Fig. 23 Profile measurement of V-groove using white light interferometry [78] 

 

 As illustrated in the figure, at the bottom of the groove, the measured profile (blue line) 

and the known form of the groove (black line) only coincides at the apex, while the 

measured profile around the apex show the inverted form of the V-groove. Generally, in 

white light interferometry, multi scattering causes the over estimation for the surface 

roughness [73], which can be considered to be similar to small V-grooves.    

 

d. Dispersive Effects in Dissimilar Materials 

The optical properties of the object surface can also be a source of measurement error in 

white light interferometry [73], [79], [80]. The surface height measurement will be 

affected since different materials exhibit different phase changes on reflection [81]. For 

instance, because of the complex refractive index of metallic surface, this will lead to 

shifting of the position peak of the coherence envelope function which results in the 

measurement error. In the article [81], it is demonstrated that the largest phase dispersion 

on reflection is shown by metallic surfaces, shifting the peak position of the coherence 

envelope by 10 – 40 nm.      

1.9 MICROSCOPE SYSTEM 

The equipment developed for testing the developed algorithm for fringe signal processing 

in this thesis consists of four adapted microscopes, a Leica DMR-X microscope (Fig. 24) 

equipped with Mirau (x10, x40) and Michelson (x5) objectives, a Leitz-Linnik 

the measured profile 

the known form of the groove 

profile 
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microscope equipped with x50 (NA = 0.85) objectives (Fig. 6(a)), a modified Fogale 

microscope equipped with x40 immersion objectives used in water (“immersion” system) 

and a modified Fogale microscope equipped with a Nikon x50 Mirau objective 

(“Michelin” system). The sample is mounted on a piezo-controlled vertical scanning table 

(the PIFOC scanner from PI) for Z-scanning. The piezo actuator is controlled in a closed 

loop with a capacitive position sensor, having a position sensitivity of 1 nm. For the 

illumination, a halogen lamp is used in the Leica DMR-X, an incandescent lamp in the 

Leitz-Linnik (310 nm – 1100 nm) and white LED’s in the Fogale “immersion” and 

“Michelin” systems. Image acquisition is performed with either a digital Prosilica CCD 

(type EC1380) having 1360x1024 pixels and a Basler Ava1000 having 1024x1024 pixels 

and a Firewire connection or a Sony 3CCD (type DXC-390P) and standard color 

acquisition board. Acquisition and processing is carried out on a PC equipped with an 

Intel Xeon processor (2.4 GHz, 8 Go RAM). The measurement system is controlled with 

software that has been developed in LabView on Windows 7 (64-bit) [12], [52], [82], 

[83].  

The Leica DMR-X (Fig. 24) consists of the following five main elements [83]:  

a. The stand that supports and maintains various optical mechanisms and tubes.  

b. The illumination source (halogen or tungsten filament lamp or LED).  

c. The interference objective that makes it possible to view interference fringes 

superimposed on the image of the sample surface and to modify the degree of 

magnification.  

d. The motorised sample platform for focusing and positioning the observed sample.  

e. The observation head which allows both direct binocular observation by eye and 

image detection using a sensor such as a CCD camera to record the observed image.  
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Fig. 24 The modified Leica DMR-X interference microscope developed in the IPP team 

[83]. 

 

1.10 STRUCTURE OF THE SAMPLES SURFACE  

In order to evaluate the performance of the algorithms developed in this work, the 

following samples that have different structures were used. They were chosen because 

they vary from a simple smooth surface through to increasingly complex structures.  

a. Single surface 

The samples that have a single surface which are used in the thesis consist of two types of 

structures: (i) a sample having a smooth surface, such as a step height standard (SHS), 

with a step having a height of 1.7803 ± 0.011 µm [76], [84] and (ii) a sample having a 

rough surface, such as a rock surface, i.e. limestone, in which the fringes are very noisy 

[85]. The sample of SHS is used to calibrate and test the precision of the measurement 

using the developed algorithm, while the rock sample is used to test the robustness of the 

algorithm on the noisy data of the rough sample (Chapter 4). The interferograms of the 

samples are shown in Fig. 25. 
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(a) 

 
(b) 

Fig. 25 XZ images showing the interferograms from (a) a Step Height Standard and (b) a 

rock surface [85]. 

 

b. Transparent layer on substrate 

The next sample consists of a layer of resin on silicon used for making diffractive 

optical elements (Fig. 26) [86]. The description of acquisition data of resin on Si 

obtained by the microscope system is given in Appendix-1: Data of Sample. This 

sample is of interest because it produces two interferograms in each signal from the 

air/resin surface and resin/silicon interface, the distance between them indicating the 

optical thickness of the layer. Interference microscopy can thus also be used to non-
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destructively analyze a surface buried under a transparent layer. However, several 

factors can contribute to the degradation of the wavefront reflected from the interface, 

for instance the aberrations due to the presence of the transparent layer, the variations 

of the refractive index of the transparent layer, the shape and geometry of the 

transparent layer and interface, the edges of the layer etc. In Chapter 2, the transparent 

layer on substrate sample is used to evaluate the performance of certain algorithms to 

measure the thickness profile of the transparent layer and to analyze the layer/substrate 

interface.  

 

 

Fig. 26 An XZ image showing the interferogram on a transparent layer on a substrate 

consisting of a resin layer on a silicon substrate 

 

c. Transparent polymer film 

The transparent polymer film sample consists of a Mylar film used as an insulator in 

microelectronics (Fig. 27) [87], [88]. The description of acquisition data of Mylar 

polymer film obtained by the microscope system is given in Appendix-1: Data of 

Sample. This sample is of interest because as well as the upper and lower reflecting 

surfaces, it is a bit more complex since it contains low contrast buried structures which 

are not easily observable using classical optical techniques. The sample is used to test 

the performance of the developed algorithms in detecting the rear surface position and 

the presence of the buried structures (Chapter 3). 
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Fig. 27 An XZ image showing the interferogram of the transparent polymer film sample. 

 

1.11 RESOLUTION 

The spatial resolution of an optical technique refers to the smallest value that can be 

measured along the spatial dimension. In other words, the spatial resolution is the 

minimum distance that can be measured between two points of space. In this section, we 

will discuss the spatial resolutions of optical microscopes, i.e. lateral and axial resolution.   

1.11.1 Lateral resolution 

The optical microscope is limited by the diffraction of light, which leads to the spatial 

resolution of a microscope [89], [90]. In 1873, Ernst Abbe defined the resolution limit of 

an optical microscope as the minimum lateral distance between two objects allowing 

them to be observed separately. This distance is given by   = λ / (2  ), where λ is the 

wavelength of the light and NA is the numerical aperture of the objective.  The NA as 

applied to a microscope objective is a measure of the ability to gather light and resolve 

fine specimen detail at a fixed object distance. The higher the numerical aperture of the 

total system, the better the resolution. 

Two-point resolution  

The two-point resolution criterion corresponds to the ability of an imaging system (an eye 

or an optical instrument) to distinguish two point sources of equal luminosity and 

separated by a minimum distance. When two distinct points are very close, they will have 

a spots (Airy spots) which overlap and if they are not sufficiently separated, may 

therefore no longer be distinguished from each other. These point sources are represented 

by two well separated diffraction patterns, or Airy disks. Experimentally, the normalized 
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intensity of an Airy spot corresponds to the PSF (Point Spread Function) of the system. 

The two-point resolution criteria are based on the observation of PSF recovery from two 

point sources of equal intensity. Several the types of this criteria for example are the 

Rayleigh, Abbe, and Sparrow criteria. The distance between the two spots from the point 

sources is given by the following relation: 

KR K
NA


 

     
(1.28) 

with the numerical aperture of the objective microscope  A =   ⨯ sin θ where θ is the 

half angle of the cone of light that can enter the objective and   is the refractive index of 

the medium between the objective and the object, λ is the wavelength of the light source 

and K is a constant, between 0.47 and 1, according to the criterion and the illumination 

type of the light source used [91].  

 

Table 2 The lateral resolution criteria based on the illumination type 

Criteria Illumination type 

 Incoherent Coherent 

Rayleigh 0.61RR
NA


   - 

Sparrow 0.47SR
NA


   0.73SR

NA


   

Abbe 0.5AR
NA


   AR

NA


  

 

Point Spread Function (PSF) 

The incoherent impulse response or PSF (Point Spread Function) is the response of the 

microscope to a point source and therefore corresponds to the intensity of an Airy spot if 

we consider a perfect optical system, i.e. without aberrations. The ideal point spread 

function (PSF) is the diffraction pattern of light emitted from an infinitely small point 

source and transmitted through a high NA objective. 

According to the Rayleigh criterion, the distance of the maxima of the PSF is an 

essential value in the determination of the resolution and it is therefore important that the 

maxima are well separated from each other. This implies that the resolution is all the 

better as the diameter of the Airy spot is small. So another way to determine the resolving 
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power of an optical instrument is to measure the PSF's FWHM (Full Width at Half 

Maximum) [92], as shown in Fig. 28. 

 

Fig. 28 The illustration of 3D PSF 

 

1.11.2 Axial resolution 

The axial resolution of a microscope corresponds to the depth resolution and depends on 

the temporal coherence length of the illumination source and the numerical aperture of 

the lenses used. As for lateral resolution, the axial resolution can be determined from the 

system of PSF (point spread function) by measuring its width at half-height along the 

optical axis [14] and can be defined by the following relationship: 

22ln 2
axialR

n



 
 

       
(1.29) 

where n is the refractive index of the medium, λ is the central wavelength of the source 

and Δλ is the total spectral width at mid-height of the source (FWHM) [16]. The temporal 

coherence length of the source is given by    =   / Δλ where   is the speed of 

propagation of the wave. Therefore, the use of an illumination source with a wide 

spectrum, having a low coherence length, can improve the axial resolution of the system. 

When objectives have large numerical apertures, the axial resolution of the system 

depends mainly on the NA of the objectives [16] and can be approximated by the 

following relation: 

 
0.44

1 cos
axialR

n







          

(1.30) 

with α the half-angle of the opening cone and λ the central wavelength of illumination. 



 

41 

 

1.12 RÉSUMÉ DU CHAPITRE 1 

Dans ce chapitre, nous décrivons comment la technique de l'interférométrie à balayage de 

cohérence (CSI) génère un interférogramme (signal des franges). Nous étudions et 

observons la structure du signal des franges et les différentes approches (techniques Z-

scan et XZ-scan) pour l'analyse des franges. Ensuite, nous nous concentrons sur les étapes 

de la procédure d'analyse des franges que nous effectuons dans ce travail. L'étude du pré-

traitement pour enlever les composants "offset" et la détermination de la structure de 

surface de l'échantillon que nous utilisons dans le travail sont également rapportés. 

Le principe de la technique CSI est basé sur l'analyse de cohérence croisée de deux 

faisceaux lumineux de faible cohérence, le faisceau objet étant réfléchi par l'échantillon, 

tandis que le faisceau de référence est réfléchi par un miroir de référence. Les deux 

faisceaux lumineux sont ensuite combinés au niveau du détecteur. L'interférence se 

produit lorsque la différence de chemin optique entre le faisceau de référence et le 

faisceau d'objet réfléchi est proche de zéro. C'est-à-dire lorsque la longueur du trajet 

optique vers l'échantillon est presque identique à la longueur du trajet optique par rapport 

au miroir de référence. Dans le but de trouver le maximum d'interférence, un balayage de 

frange est effectué sur chaque point de la surface de l'échantillon, point par point. Les 

intensités de contraste des franges qui tiennent compte du changement de distance entre 

l'échantillon et l'objectif (en axe z) sont captées par le détecteur (caméra) générant le 

signal de frange, également connu sous le nom d'interférogramme. L'analyse des franges 

est alors nécessaire pour récupérer le pic d'enveloppe de contraste de frange qui indique la 

position de surface de l'échantillon. 

L'intensité lumineuse donnant lieu au signal de frange, s (x, y, z), capté à partir d'un 

détecteur (CCD) lorsque la différence de trajet optique varie par focalisation dans un 

interféromètre de lumière blanche, a la forme suivante: 

             0 0

0

4
, , , , , , .cos , ,

where

s x y z a x y z b x y g z z x y z z x y x y

z k






 
     

 

   

La fonction s correspond au signal d'intensité à un point donné de la surface de 

l'échantillon (x,y), où z représente une position de balayage vertical par rapport à la 

surface. La quantité a(x,y,z) est une intensité de décalage liée aux intensités de faisceau de 

référence et d'objet, b(x,y) est le contraste de frange, g(z) est la fonction d'enveloppe de 
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frange liée au profil spectral du source de lumière blanche, et λ0 est la longueur d'onde 

moyenne de la source lumineuse. Le déphasage lié au changement de phase à la réflexion 

est représenté par α(x,y). 

En général, les techniques de traitement du signal développées dans ce travail se 

composent de trois étapes principales: un pré-filtrage, la détection d'enveloppe et un post-

filtrage. La détection d'enveloppe est nécessaire pour obtenir l'enveloppe de franges dont 

le pic représente la position de surface. Le pré-filtrage est utilisé pour supprimer le 

composant de décalage et réduire le bruit, tandis que le post-filtrage est utilisé pour 

déterminer plus précisément la mesure. Dans ce chapitre, nous présentons les différentes 

techniques utilisées pour extraire l'enveloppe de frange dans la CSI, à savoir la 

Transformée de Hilbert (HT), l'algorithme Adaptatif à cinq échantillons (FSA), la 

Transformée en ondelettes continue (CWT) et l'Opérateur de Teager Kaiser-Energy 

(TKEO). Par contre, nous avons également rapporté notre étude de la comparaison des 

performances de différents pré-traitements afin d'éliminer la composante de décalage du 

signal de frange (moyenne globale, moyenne locale, dérivée centrale, décomposition en 

mode empirique). 

L'équipement développé pour exécuter l'algorithme pour le traitement des signaux 

de frange dans cette thèse consiste en deux microscopes adaptés, un microscope Leica 

DMR-X équipé d'objectifs Mirau (x10, x40) et Michelson (x5) et un microscope Leitz-

Linnik équipé d'objectifs de x50 (NA = 0,85). L'échantillon est monté sur une table de 

balayage vertical piézo-contrôlée pour le balayage en Z. L'actionneur piézoélectrique est 

commandé en boucle fermée avec un capteur de position capacitif, ayant une sensibilité 

de position de 1 nm. Une lampe à halogène est utilisée dans le Leica DMR-X et une 

lampe à incandescence est utilisée pour l'éclairage du Leitz-Linnik avec une lumière 

blanche (310 nm - 1100 nm). L'acquisition d'image est réalisée avec un CCD Prosilica 

numérique ayant 1360x1024 pixels et un Aval1000 Basler ayant 1024x1024 pixels. 

Afin d'évaluer la performance des algorithmes développés dans ce travail, les 

échantillons suivants qui ont différentes structures ont été utilisés. Ils ont été choisis parce 

qu'ils varient d'une simple surface lisse à des structures de plus en plus complexes, y 

compris une surface unique, une couche transparente sur le substrat et un film de 

polymère transparent. 
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Chapter 2. COMPARISON OF PRE-FILTERING 

AND ENVELOPE DETECTION TECHNIQUES 

 

In this chapter, we describe the Teager-Kaiser Energy Operator which we use as the 

proposed multidimensional algorithm (1D, 2D, 3D) for envelope detection in CSI. Then 

the study of the performance comparison of the different pre-filtering and envelope 

detection techniques in fringe signal processing is described. For comparison, results 

using the algorithms are presented on the synthetic fringe signal and on real data, i.e. the 

resin on silicon sample. In addition, a study of the selection of the mother wavelet for the 

Continuous Wavelet Transform is presented in its use for obtaining the fringe envelope. 

2.1 TEAGER KAISER ENERGY OPERATOR  

2.1.1 Signal energy 

The estimation of signal energy is commonly used to characterize a signal. In traditional 

signal processing, the energy of a signal is defined as the square of the signal magnitude, 

or the envelope of the squared signal magnitude or the integral of the squared signal 

magnitude.  

Let us consider a signal x(t). With a time period 2T, the signal x(t) has the energy E 

which is defined as follows: 

 
2

T

t T

E x t dt


 
        

(2.1) 

while the total energy is defined by 

 
2

,
t

E x t dt





 
        

(2.2) 

Note that the total energy of the signal in Eq.(2.2) is not the same as the 

instantaneous energy which is what we need to seek. Then the instantaneous amplitude 

can be found for fringe analysis. In the case of simple harmonic motion, i.e. fundamental 

sinusoidal oscillation, this expression shows that the energy required to produce a simple 
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sinusoidal signal is a function of the frequency and amplitude. This observation was used 

by Kaiser to define the Teager Kaiser-Energy Operator [54]. 

2.1.2 Teager Kaiser Energy Operator 

The above observation of the signal energy in light is discussed in the article by Kaiser 

[54]. Here, Kaiser derives the equation of energy for a simple oscillator from the basic 

physics of motion.  

The energy is presented as being directly corresponding to the square of the product 

of the pulsation frequency and amplitude. The second order differential equation in the 

case of using the basic physics of motion for a simple spring and mass oscillator is used 

as the beginning of the development of the operator, as illustrated in the following 

equation: 

2

2
0

d x k
x

dt m
 

     
(2.3) 

The Eq.(2.3) represents the law of motion of a system consisting of a mass m that is 

suspended from a spring with force constant k > 0. The system can be regarded as a 

model of a simple mechanical acoustical system, in which the object oscillates, generating 

the pressure wave in the neighbouring medium.  

The solution of Eq.(2.3) is the simple harmonic motion, which can be defined as 

x(t) = A cos (t + ) where A corresponds to the oscillation amplitude,  represents the 

oscillation frequency, that is given by 
k

m
  , and  is the arbitrary initial phase.  

The simple harmonic motion has the energy E that is defined as the total energy 

coming from the kinetic energy of the mass and the potential energy in the spring, as 

follows: 

2 21 1

2 2
E kx mx 

          
(2.4) 

By substituting the equation of x = A cos (ωt + φ) and its derivative,  
dx

x
dt

 , we 

can obtain the equation of energy: 

2 21

2
E m A       or       2 2E A

          
(2.5) 
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Based on this equation, we can observe that the energy of the simple harmonic 

system is proportional to the squared of the product of the frequency ω and the amplitude 

A, and varies as function of time t, while the x
2
(t) only takes into account the potential 

energy of the signal source. 

2.1.3 Discrete Teager Kaiser Energy Operator 

Let us consider a discrete-time signal xn representing the motion of the oscillator body, 

given by: 

 cosnx A n   
       

(2.6) 

Where A corresponds to the oscillation amplitude, Ω corresponds to the frequency 

and is given by Ω = 2πf/Fs, where f represents the oscillation frequency, Fs represents the 

sampling frequency, while the parameter φ corresponds to the arbitrary initial phase.  

In Eq.(2.6), there are three parameters A, Ω, and φ, with unknown values. This 

means that mathematically, it is necessary to construct three different equations based on 

the formula in Eq.(2.6) in order to obtain the values of these parameters from three 

samples of the signal xn. 

 

  

  

1

1

cos

cos 1

cos 1

n

n

n

x A n

x A n

x A n











  

   

   
    

(2.7) 

Through the trigonometric formulas, then we obtain:  

   2 2 2 2

1 1 cos sinn nx x A A     
   

(2.8) 

 2 2 2

1 1sin n n nA x x x   
        

(2.9) 

The solution to Eq.(2.9) with respect to Ω is specific and singular provided that Ω is 

restricted to be less than π/2 and has a positive value. The approximated approach of this 

equation can be carried out by noting that if Ω is small, sin (Ω) ≈ Ω. If we limit the value 

of Ω to Ω < π/4 = 0.7854, i.e. f /fs < 1/8 then the relative error is always below 11 %. 

Thus the discrete version of Teager Kaiser-Energy Operator can be defined as the 

following equation:  
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       2 1 1d x n x n x n x n      
          

(2.10) 

Based on the Eq.(2.10), the instantaneous energy d of a signal x(n) can be 

estimated by substituting x in the formula of the TK energy operator. This operator is 

nonlinear and has the following properties [36], [93]: 

• d [·] is independent of the initial phase φ0.  

• d [x(n)]= d [x(-n)].  

• d [x(n)] is robust to the division by zero error even when the signal passes through 

zero, as no division operation is required.  

• d [x(n)] is capable of responding rapidly to changes in both frequency and 

amplitude (instantaneous operator). 

 

2.1.4 Continuous Teager Kaiser Energy Operator 

The discrete version of the Teager-Kaiser Energy Operator has been defined in the 

previous section. In the continuous time domain, the Teager-Kaiser Energy Operator is 

then defined as: 

   
2 2

2c

dx d x
x t x t

dt dt


  
       
                                     

(2.11) 

 Let us consider a signal x(t) = A cos (ωt) and substitute it into the Eq.(2.11), yielding:   

         

    

2 2

2 2 2 2

2 2

sin cos cos

sin cos

c x t A t A t A t

A t t

A

     

  



     

 



 
     

(2.12) 

As illustrated in Eq.(2.12), the energy of the signal x(t) = A cos (ωt) is defined by the 

squared product of the frequency ω and the amplitude A. In fringe analysis, the main 

disadvantage of the Teager-Kaiser Energy Operator is its sensitivity to the signal noise 

that appears during the acquisition process. In the application of a noisy fringe signal, a 

denoising filter, such as the Savitzky-Golay filter can be applied in combination with the 

operator to make the envelope detection more robust to noise.   
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2.2 Performance Comparison Of Different Mother Wavelet 
In Continuous Wavelet Transform Algorithm On Fringe 
Signal Processing 

2.2.1 Application wavelet analysis in fringe signal processing 

The wavelet transform is a relatively robust mathematical tool for signal analysis and 

processing. In optical measurement, wavelet analysis has been widely used for fringe 

signal processing. In 1997, Sandoz applied the wavelet transform to the analysis of white 

light interferometry [39]. In this application, the accurate phase measurements are 

obtained from simple correlation computations which are used to accurately identify the 

local fringe peak, which indicates the surface height of a sample. Meanwhile, similar 

work was reported in 1997 [94] which also applied wavelets for the analysis of white 

light interferometry. In this application, the fringe envelope of a white light interferogram 

corresponds to the absolute modulus of the maximum correlation coefficient. The fringe 

analysis based on a local fringe peak can provide a higher resolution than current methods 

that are is based on a global envelope peak. Moreover, the wavelet analysis seems to be 

robust to noise [57],[95], providing accurate measurements of the surface. 

2.2.2 Mother wavelet selection 

The success of the CWT for retrieving the fringe envelope depends on the selection of a 

mother wavelet [64]. In order to obtain satisfactory results, the mother wavelet should be 

of the same form as the signal. The fringe signal which will be analysed is characterized 

by a high frequency sinusoid that is modulated by a Gaussian function. As regards the 

characterization, wavelet families that visually have a similar shape to that of the fringe 

signal are the Morlet, complex Morlet, Gaussian, complex Gaussian, and Mexican 

hat[96],[97],[98] as shown in Fig. 29. In this study, all these wavelets were tested and 

performed using a synthetic fringe signal. 

The synthetic signal we used in this simulation to test all the wavelets is based 

locally on the general model expressed by equation (1.9) along the optical axis Z, with a 

40 nm sampling step, for each lateral position X. The resulting XZ image is shown in Fig. 

30. The synthetic images represent a wavy transparent layer on a substrate i.e., a surface 

and an interface giving two fringe signals. An additive non-linear offset and Gaussian 

noise are added onto this synthetic data which commonly appear in a fringe signal during 

the acquisition process and results in reduced precision of surface measurement. The 
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Gaussian noise value is of 20%, which means that the mean value of the Gaussian noise is 

20% of the maximum of intensity of the buried interface fringe signal. 

 
(a)  

(b) 

 
(c) 

 
(d) 

 
(e) 

 

Fig. 29 Wavelet familes: (a) Morlet, (b) complex Morlet, (c) Gaussian, (d) complex 

Gaussian, and (e) Mexican hat 
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(a) 
(b) 

Fig. 30 Synthetic fringe signal in (a) XZ image and (1D) 

 

The results in Fig. 31 show the fringe envelopes obtained using wavelet families: (a) 

Morlet, (b) complex Morlet, (c) Gaussian, (d) complex Gaussian, and (e) Mexican hat. In 

this simulation, we adjust the scale frequency of 0.1 in the CWT algorithm, as refered to 

in article [99]. Based on these figures, it can be seen that only one of the wavelet families 

is suitable, i.e. the complex Morlet, which provides a well-defined fringe envelope, as 

shown in Fig. 31(b). The other wavelets: Morlet, Gaussian, Mexican hat provide a 

significantly noisier fringe envelope, as shown in Fig. 31(a-c-e). The fringe envelope 

obtained using these mother wavelets contain a fringe pattern. Meanwhile, the fringe 

envelope obtained using a complex Gaussian provides a well-defined envelope without 

containing a significant fringe pattern, as shown in Fig. 31(d).  However, the envelope 

amplitude increases by almost twice as much as the original fringe envelope. Further 

evaluation is required to see whether the increase in amplitude produces an effect on the 

height surface information contained in the peak of the fringe envelope. In this work, we 

therefore tested the use of the complex Gaussian as a mother wavelet in the CWT 

algorithm in order to obtain the envelope for fringe analysis, which is then compared to 

the complex Morlet.   
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Fig. 31 Fringe envelope obtained using wavelet familes: (a) Morlet, (b) complex Morlet, 

(c) Gaussian, (d) complex Gaussian, and (e) Mexican hat 

 

2.2.3 Simulation results 

For further observation of the use of the complex Gaussian and complex Morlet as mother 

wavelets in the CWT algorithm, we carried out the simulation using the procedure 

described in section 2.4.1, as shown in Fig. 35. In the simulations, we use the EMD and 
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Savitsky-Golay filters in the prefiltering step in order to remove the offset component and 

to suppress the noise. In the post-processing step, we only use the Gaussian estimation 

and interpolation to correct the peak curve, without smoothing due to the fringe envelope 

obtained using the CWT algorithms (complex Gaussian and complex Morlet) that already 

provides a well-defined fringe envelope without containing significant noise and fringe 

pattern. Fig. 32 and Fig. 33 show examples of the results of signal processing for the 

wavy transparent layers obtained using the CWT algorithms (complex Gaussian and 

complex Morlet). 

 

(a)  

(b) 

 

(c) 
 

(d) 

Fig. 32 Signal processing analysis for a wavy synthetic transparent surface: (a) output of 

pre-filtering using the EMD-SGolay filter; (b) surface profile, (c) 2D and (d) 1D fringe 

envelope obtained by CWT(complex Gaussian). 
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(a)  

(b) 

 

(c)  

(d) 

Fig. 33 Signal processing analysis for a wavy synthetic transparent surface: (a) output of 

pre-filtering using the EMD-SGolay filter; (b) surface profile, (c) 2D and (d) 1D fringe 

envelope obtained by CWT (complex Morlet). 

 

 Table 3 summarizes the results of the performance comparison of the complex 

Morlet and complex Gaussian in the CWT algorithm on fringe signal processing. The 

table shows the mean absolute error (mae) of surface extraction obtained using the CWT 

algorithm (complex Gaussian and complex Morlet wavelet), as illustrated in Fig. 32(b) 

and Fig. 33(b). The value of mean absolute error shows the precision of the measurement 

results using the fringe signal processing used. Comparing the results in the table, both 

the CWT using the complex Gaussian and complex Morlet wavelet are similar in terms of 

performance in the casees of the noiseless signal (σ=0%) and a noisy signal (σ=10% and 

σ=20%), providing a maximum difference of mae = 0.24 nm. Based on these results, it 

can be observed that the use of the complex Gaussian wavelet in the CWT algorithm is as 

competitive as the complex Morlet wavelet as the mother wavelet in fringe signal 
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processing. This means that even though the fringe envelope obtained using the CWT 

(Gaussian complex morlet) has the envelope amplitude that is twice the original envelope, 

this algorithm is still able to maintain the height surface information in its fringe envelope 

peak.    

 

Table 3 Mean absolute error (mae) of surface extraction obtained using the 

CWT algorithm (complex Gaussian and complex Morlet wavelet) 

Pre- 

filt. 

Suppress the offset: EMD 

Suppress the noise: Savitzky-Golay filter 

Env. 

Det. 
CWT (complex Morlet) CWT (complex Gaussian) 

Post-

filt. 
Correct the peak curve using Gaussian estimation and interpolation 

mean absolute error (nm) 

noise() 1st surf. 2nd surf. 1st surf. 2nd surf. 

0% 1.02 1.04 1.02 1.02 

10% 3.32 7.04 3.37 7.22 

20% 5.80 14.0 5.86 14.24 

 

2.3 COMPARISON OF PRE-FILTERING TECHNIQUES 

In order to remove the offset and reduce the noise, in this section we compare three 

different algorithms which combine the derivative/EMD technique and denoising filter 

(Savitzky-Golay/Wiener). The corresponding algorithms are referred to with the 

following names:  

 Pre-filter 1: combination of derivative and Wiener filter,  

 Pre-filter 2: combination of derivative and Savitzky-Golay filter,  

 Pre-filter 3: combination of EMD and Savitzky-Golay filter.  

For the performance evaluation of the above different pre-filters, we carry out the 

simulation by performing them on a synthetic fringe signal, with a 40 nm sampling step, 

as shown in Fig. 34(a). It can be noted that the scanning step height chosen in interference 

microscopy during the data acquisition is a fixed step both for PSM and the FSA 

algorithm (π/2, linked to the effective wavelength). The reason for this is that the phase 

used for the algorithm is fixed at π/2. Even though this step can be variable for other 

TKEO algorithms,  since the same fixed scanning step height is used for FSA, it will also 
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be used for the performance comparison. An additive non-linear offset and Gaussian 

noise are added onto the synthetic data (20%) which means that the root mean square 

(rms) of the added Gaussian noise is 20% of the maximum amplitude of the second layer 

fringe signal. Regarding the removal of the offset, two procedures are considered: a) the 

classical centered derivative, which has been chosen for its stability [100], and b) as an 

alternative method, the EMD which helps to remove the low frequency component given 

by the higher order IMF’s and the residue [101]. On the other hand, to process the noisy 

data, the Savitzky-Golay filter is compared with the classic Wiener filter, using a local 

window around each sample. Based on empirical data, the window length of 5 seems to 

optimize the performance for this approach (with a 40 nm sampling step). Concerning the 

Savitzky-Golay filter, we have applied it along the lateral axis using a third order 

polynomial. Based, on our data, this parameter seems to ensure the better robustness to 

noise.  

 

(a) 
 

(b) 

 

(c) 
 

(d) 

Fig. 34 (a) Synthetic signal with noise σ =20% and prefiltered signal resulting from: (b) 

pre-filter 1; (c) pre-filter 2; (d) pre-filter 3. 
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The simulation results of performance comparison of pre-filter 1, pre-filter 2, and 

pre-filter 3, are shown in Fig. 34(b,c,d). It can be observed in Fig. 34, that the three 

algorithms provide competitive results for the offset removal and noise reduction. 

However, they have different capabilities for maintaining the fringe signal intensities. 

Comparisons are made between the fringe signal intensities of the pre-filtered (red line, 

Fig. 34) and the ideal signals i.e. without the offset and noise (blue line, Fig. 34). As 

illustrated in Fig. 34(b), the resulting amplitude of the fringe signal using pre-filter 1, is 

clearly lower than the ideal synthetic fringe signal (without the offset or the noise). This 

means that a degradation of the intensities occurs during the pre-filtering process.  

Similar results are also obtained using pre-filter 2 (Fig. 34(c)), although it maintains 

better the fringe signal intensities of the second layer. This means that the use of the 

Savitzky-Golay filter is better at maintaining the amplitude of the fringe signal than the 

wiener filter in the pre-filtering step. A decrease in the intensity may seriously degrade 

the performance of the algorithm in order to extract the fringe envelope, particularly in 

the area where the SNR is low. Meanwhile, as illustrated in Fig. 34(d), the pre-filter 3 is 

able to remove the offset and reduce the noise, while almost maintaining the amplitude of 

the fringe signal. Based on the simulation, we observe that pre-filter 3 using a 

combination of the EMD and Savitzky-Golay provides a better result than the others in  

removing the offset, suppressing the noise and particularly in maintaining the fringe 

amplitude.     

2.4 COMPARISON OF ENVELOPE DETECTION TECHNIQUES 

2.4.1 Comparison Procedure 

In this section, results are presented of simulations performed using a Matlab program in 

order to compare the performance of the envelope detection techniques. The simulation 

procedure is illustrated in Fig. 35. In the simulation, we used a synthetic fringe signal 

corresponding to the known profile of the reference surface (href). Then we perform the 

fringe analysis procedure on the synthetic fringe signal. This consist of a first step of pre-

filtering for removing the offset component and suppressing the noise, a second step of 

fringe contrast envelope detection and a third step of post-filtering using smoothing and 

Gaussian fitting for determining more precise the envelope peak position, which indicates 

to the surface height (h). Finally, we calculate the error of the surface height estimation 



 

56 

 

(h) in respect to the reference surface (href). A smaller value of the error rate (mae) 

represents a higher accuracy. 

 

Fig. 35 The comparison procedure to evaluate the performance of the different 

algorithms[53]. 

2.4.2 Synthetic Samples 

The synthetic signal we used in this simulation to test all the cited algorithms is based 

locally on the general model expressed by Eq.(1.9) along the optical axis Z, with a 40 nm 

sampling step, for each lateral position X. The resulting XZ image is shown in Fig. 36. 

The two synthetic images used represent flat and wavy transparent layers on a substrate, 

giving two fringe signals along Z corresponding to the air/layer surface and 

layer/substrate interface. In this case, an additive non-linear offset and Gaussian noise are 

added onto the synthetic data (10% and 20%). The Gaussian noise value of 10% means 

that the root mean square (rms) of the added Gaussian noise is 10% of the maximum 

amplitude of the second layer fringe signal. Considering the synthetic fringe signal, the 

rms of 10% is equal to 19 dB, while the rms of 20% is equal to 13 dB. 



 

57 

 

 
(a) 

 
(b) 

Fig. 36 Synthetic fringe signal with a non-linear offset and 10% Gaussian noise (XZ 

image) 256 x 256 pixel on a (a) flat transparent layer and (b) wavy transparent layer. 

 

2.4.3 Simulation Results 

Fig. 37 and Fig. 38 show an example of the results of fringe analysis for the flat and wavy 

transparent layers as shown in Fig. 36 using the procedure as described in section 2.4.1. 

In detail, Fig. 37(a) and Fig. 38(a) show the pre-filtered signal in two dimensions (XZ 

image) after carrying out the pre-filtering process. In these figures, it can be seen that the 

pre-filter which we used has successfully removed the offset component and suppresses 

the noise (compare with the XZ image in Fig. 36). After the pre-filtering process, then we 

carry out the envelope detection on the pre-filtered signal, obtaining the fringe contrast 

envelope in two dimensional (XZ image), as shown in Fig. 37(b) and Fig. 38(b). The 

clearer observation of the pre-filtered signal and the fringe contrast envelope is illustrated 

in Fig. 37(d) and Fig. 38(d) in one dimension (the optical axis Z).            
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 37 Signal processing analysis for synthetic flat transparent surface: (a) output of pre-

filtering using EMD-SGolay filter; (b) surface profile, (c) XZ image of envelope and (d) 

1D fringe envelope obtained by TKEO. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 38 Signal processing analysis for a wavy synthetic transparent surface: (a) output of 

pre-filtering using EMD-SGolay filter; (b) surface profile, (c) XZ image of envelope and 

(d) 1D fringe envelope obtained by TKEO. 

After the pre-filtering and envelope detection process, we then perform the post-

processing using a cubic smoothing spline and Gaussian fitting on the fringe contrast 

envelope obtained in order to determine more precisely the peak of the envelope that 

indicates the height of the object surface. Fig. 37(b) and Fig. 38(b) show the measured 

surface profile (red line for the air/layer surface and green line for the layer/substrate 

interface) as the final result obtained by the fringe analysis using the procedure as 

described in section 2.4.1. In these figures, it can be seen that the measured profiles (red 

and green line) coincide with the reference surface (blue line) of the synthetic transparent 

layers which we used in the simulation. For quantitative evaluation, then the error rate 

(mean absolute error) of the measured profile is calculated in respect to the surface 

reference, as shown in Table 4, Table 5 and Table 6. 
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In this simulation, we carry out the procedure as described in the section 2.4.1 in 

order to compare the performance of fringe analysis using a combination of different pre-

filtering as described in the section 2.3 and different envelope detection as described in 

the section 1.6.2. The results of performance comparison using this procedure are 

summarized in the following Table 4 – Table 6.   

Table 4 Experiment result using pre-filter 1 and different envelope detection 

techniques (nm) 

 A B C D 

Pre- 

filt. 

Suppress the offset: 1st order central derivative 

Suppress the noise: Wiener filter  

Env. 

Det. 
HT FSA  TKEO CWT  

Post-

filt. 

Smooth the amplitude envelope using cubic smoothing spline   

Correct the peak curve using Gaussian estimation and interpolation 

mean absolute error (nm) 

noise() 1st surf. 2nd surf. 1st surf. 2nd surf. 1st surf. 2nd surf. 1st surf. 2nd surf. 

flat transparent layer 

0% 0.00 0.05 0.00 0.05 0.00 0.05 0.01 0.05 

10% 3.07 7.27 4.21 7.09 3.08 7.11 2.44 6.65 

20% 5.35 14.52 7.55 14.40 5.19 14.58 4.29 13.31 

time 2.6 s 1.6 s 3.2 s 27.3 s 

wavy transparent layer 

0% 1.12 2.17 1.18 3.95 1.15 2.31 1.14 1.39 

10% 5.58 10.20 7.56 11.42 5.49 11.31 4.57 8.15 

20% 10.54 19.48 15.23 21.90 10.25 18.73 8.39 15.71 

time 2.6 s 1.6 s 3.2 s 27.3 s 

 

Table 4, Table 5 and Table 6 correspond respectively to the pre-filter 1, 2 and 3, 

the related algorithms being respectively denoted by A, B, C, D (Table 4), E, F, G, H 

(Table 5) and I, J, K, L (Table 6). For each table, the envelope technique associated 

with each procedure is indicated. For instance: A, E, and I are related to the Hilbert 

Transform; B, F, and J are related to the FSA, C, G, and K are related to the TKEO, while 
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D, H, and L use CWT). The same post-processing mentioned in section 1.5.3, has been 

applied. For each procedure, the simulations have been calculated with different levels of 

noise (). The performance of each procedure has been quantitatively 

evaluated by the measurement of the calculation time and the error rate (mean absolute 

error) between the reference surface and the estimated one (for both surface layers). 

 

Table 5 Experiment result using pre-filter 2 and different envelope detection 

techniques (nm) 

 E F G H 

Pre- 

filt. 

Suppress the offset: 1st order central derivative 

Suppress the noise: Savitzky-Golay filter 

Env. 

Det. 
HT FSA  TKEO CWT  

Post-

filt. 

Smooth the amplitude envelope using cubic smoothing spline   

Correct the peak curve using Gaussian estimation and interpolation 

mean absolute error (nm) 

noise() 1st surf. 2nd surf. 1st surf. 2nd surf. 1st surf. 2nd surf. 1st surf. 2nd surf. 

flat transparent layer 

0% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10% 0.59 4.31 0.92 6.05 0.59 4.19 2.51 4.23 

20% 1.67 9.50 2.24 13.01 1.60 8.72 2.50 7.27 

time 2.6 s 1.6 s 3.2 s 27.3 s 

wavy transparent layer 

0% 1.02 1.03 1.02 1.02 1.03 1.06 1.02 1.04 

10% 3.96 8.68 5.05 12.00 3.79 8.75 3.91 7.53 

20% 7.03 17.81 10.06 28.03 7.03 16.74 6.08 14.33 

time 2.6 s 1.6 s 3.2 s 27.3 s 
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Table 6 Experiment result using pre-filter 3 and different envelope detection 

techniques (nm) 

 I J K L 

Pre- 

filt. 

Suppress the offset: EMD 

Suppress the noise: Savitzky-Golay filter 

Env. 

Det. 
HT FSA  TKEO CWT  

Post-

filt. 

Smooth the amplitude envelope using cubic smoothing spline   

Correct the peak curve using Gaussian estimation and interpolation 

mean absolute error (nm) 

noise() 1st surf. 2nd surf. 1st surf. 2nd surf. 1st surf. 2nd surf. 1st surf. 2nd surf. 

flat transparent layer 

0% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10% 0.56 4.25 0.80 5.06 0.51 4.01 1.05 3.73 

20% 1.66 8.35 1.96 10.45  1.58 8.32 1.65 7.28 

time 5.9 s 4.9 s 6.5 s 30.6 s 

wavy transparent layer 

0% 1..07 1.06 1.02 1.02 1.05 1.03 1.02 1.05 

10% 3.71 8.62 4.26 10.41 3.61 8.57 3.46 7.26 

20% 6.89 17.07 9.04 23.18 6.54 16..35 5.84 14.02 

time 5.9 s 4.9 s 6.5 s 30.6 s 

Based on the mae in the case of a noiseless signal (σ = 0%), all algorithms perform 

similarly providing an average value of mae = 0 nm for the flat transparent layer and 

average value of mae = 1 nm for the wavy transparent layer. In the presence of noisy data 

(σ =10% or σ =20%), the mae values significantly differ from each other. More precisely 

the mae values of E, F, G, and H in Table 5 are lower than the mae values of algorithms 

A, B, C, and D in Table 4, which indicates that the use of the pre-filter 2 provides a 

better performance than the pre-filter 1 in terms of precision. Thus, the Savitzky-Golay 

filter is more effective than the Wiener filter regarding the noise. However, the 

combination of EMD and the Savitzky-Golay filter (pre-filter 3) provides the best 

performance for removing the offset and reducing the noise which improves the precision 

of surface measurement, as shown by the smaller value of mae in Table 6. 
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In regard to the main step in the procedure of fringe analysis, i.e. envelope detection 

process, it can be observed that the TKEO algorithm (called “K”) is a competitive 

algorithm in terms of robustness and computational time compared with the other 

techniques. TKEO provides better surface extraction than the Hilbert Transform 

(algorithm called “I”) and FSA (algorithm called “J”). In the case of the flat transparent 

layer, TKEO provides the most precise results for the 1
st
 surface extraction and close to 

the performance of CWT (called “L”) for the buried interface (2
nd

 surface) extraction, 

having the smallest mean absolute error value as shown in Table 3. For the wavy 

transparent layer, the most precise measurement is provided by CWT, while the 

performance of TKEO is closer to CWT than the others. However, TKEO has the 

advantage of being more compact computationally so TKEO is far better in terms of 

computational time than CWT. For instance, TKEO taking 6.5 s while CWT taking 30.6 s 

in the context of a noisy fringe signal with σ = 20%. 

Table 7 Improvement of axial sensitivity of measurement obtained using 

Gaussian fitting (nm) 

Pre- 

filt. 

Suppress the offset: EMD 

Suppress the noise: Savitzky-Golay filter 

Env. 

Det. 
HT FSA  TKEO CWT  

Post-

filt. 
Smooth the amplitude envelope using cubic smoothing spline   

mean absolute error (nm) 

noise() 1st surf. 2nd surf. 1st surf. 2nd surf. 1st surf. 2nd surf. 1st surf. 2nd surf. 

flat transparent layer – without interpolation on Gaussian fitting 

0% 10.06 10.06 10.06  10.06 10.06 10.06 10.06 10.06 

10% 10.07 10.68 10.07 11.07 10.07 10.62 10.07 10.53 

20% 10.12 12.90 10.17 14.28  10.11 12.34 10.16 12.14 

flat transparent layer – using interpolation on Gaussian fitting 

0% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10% 0.56 4.25 0.80 5.06 0.51 4.01 1.05 3.73 

20% 1.66 8.35 1.96 10.45  1.58 8.32 1.65 7.28 
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On the other hand, we have also evaluated the performance of post-processing that 

we used in our procedure of fringe analysis. Table 7 shows the performance comparison 

between the fringe analysis with and without interpolation on Gaussian fitting. Based on 

these results, we have demonstrated that the use of interpolation with Gaussian fitting 

successfully improves the axial sensitivity of the profile measurement. The results 

provide a significant improvement in terms of precision of surface extraction, as 

represented by the smaller value of mae in Table 7, compared without the use of  

interpolation with Gaussian fitting as post-processing. The value of mae obtained for 

fringe analysis using interpolation with Gaussian fitting being 2 to 3 times smaller,  

corresponds to a higher precision.   

2.5 RESULTS USING MEASUREMENTS ON RESIN LAYER ON 
SILICON 

The performance of the algorithms using real data, i.e. a fringe image XZ measured on a 

resin layer on Si with (570 x 111) pixels, is shown in Fig. 39(a). This real data was taken 

on the Leitz-Linnik interference microscope with the following optical parameters: 

objective x50, numerical aperture 0.85, pixel size of 0.113 µm, and effective average 

wavelength of 720 nm. The step height of the piezo scanner in order to scan the sample 

along the optical axis was 90 nm over a dynamic range of 10 µm. A description of the 

acquisition data of the resin on Si sample obtained by the microscope system is given in 

Appendix-1: Data of Sample.     

 
(a) 

 
(b) 

Fig. 39 Real fringe measurements on the resin on silicon sample: (a) raw XZ image data 

and (b) output of pre-filtering of (a) using the EMD-SGolay filter.  
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The image in Fig. 39(a) clearly shows the presence of large variations in the offset 

along the optical axis near to the edges of the resin layer due to optical effects. In order to 

eliminate this background on the fringe image, pre-filtering is performed using the EMD 

technique combined with the Savitzky-Golay filter, as used in the previous simulation in 

section 2.3. The results in Fig. 39(b) shows how this pre-filtering approach effectively 

eliminates the variation in background intensity, while the intensity values of the fringe 

signals have not been degraded. 

Then, the different envelope detection techniques were performed to obtain the 

fringe envelope of the pre-filtered fringe signals. Fig. 40(a-d) compares the surface 

profiles extracted by HT, FSA, CWT, and TKEO. It can be observed that the performance 

of each technique is different, especially concerning the details near to the resin layer 

edges, which are particularly difficult to measure.    

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 40 2D envelope peak detection obtained by: (a) HT, (b) FSA, (c) CWT, (d) TKEO. 
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For the results of the measurements on this sample, the performance is evaluated by 

measuring the total (or peak-valley) roughness Rt and arithmetic roughness Ra of the 

profiles from each algorithm. The maximum height of the profile Rt, is computed as 

follows [102]: 

             max mintR z z 
     (2.13) 

Where zmax (resp. zmin) represents the highest (resp. the lowest) peak of the surface 

profile. Ra is the average deviation of the roughness profile height zj from a mean line z  

over the evaluation length N [103]. 

             
1

1 N

a j

j

R z z
N 

 
  

                (2.14) 

Then we propose to evaluate four different regions of interest (ROI) of the surface 

profile (Fig. 41):  

 ROI-1 = 0 – 9 µm on the left hand part of the bare silicon substrate. 

 ROI-2 = 20 – 45 µm on the air/layer surface. 

 ROI-3 = 55 – 64 µm on the right hand part of the bare silicon substrate. 

 ROI-4 = 20 – 45 µm on the layer/silicon interface. 

 

Fig. 41 Region of interest (ROI). 
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The smaller is the value of this roughness parameter, the better is the performance 

of the algorithm, in terms of sensitivity. The results comparing the different algorithms 

are given in Table 8. 

Based on the results in Table 8, for the single surfaces (ROI-1 and ROI-3), all the 

algorithms show excellent performance, as illustrated by the very small value of Rt = 

18.0–27.0 nm and Ra = 2.8–6.2 nm (which is below the sampling step of 90 nm). Then for 

the transparent surface regions (ROI-2 and ROI-4), the algorithms seem to provide 

comparable results according to the value of the roughness parameters Rt and Ra, where 

the maximum difference is 9 nm. The different envelope techniques provide similar 

performance for the single substrate surface as well as for the transparent layer, since the 

fringe image is slightly noisy. In accordance with the results of the performance 

comparison based on synthetic images, the performance of the different envelope 

detection techniques depends on the SNR in the fringe image, while they are similar for 

the noiseless fringe images. 

Table 8 Experiment result using pre-filter 3 and different envelope detection 

techniques (nm) 

 ROI-1 ROI-2 ROI-3 ROI-4 

axis/length (0 – 9 µm) 
(20 – 45 

µm) 

(55 – 64 

µm) 

(20 – 45 

µm) 

 HT 

Rt (nm) 18.0 99.0 27.0 63.0 

Ra (nm) 4.8 16.5 5.7 8.8 

 FSA 

Rt (nm) 18.0 108.0 27.0 63.0 

Ra (nm) 4.6 15.8 5.3 8.6 

 CWT 

Rt (nm) 18.0 108.0 27.0 63.0 

Ra (nm) 2.9 16.7 6.2 8.2 

 TKEO 

Rt (nm) 18.0 108.0 27.0 63.0 

Ra (nm) 2.8 17.3 5.9 8.3 
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However, let us now focus on the surface profile in the region located between 10 

and 13 µm, corresponding to the resin step. The results in Fig. 40(a)-(d), highlight the 

different capabilities of the envelope detection techniques to identify two adjacent peak 

positions. In such a region, an accurate discrimination of close neighboured positions may 

be required, in order to discriminate between the two surfaces. Fig. 42(a)-(d) show the 

fringe envelopes of the fringe signals near to the edge of the resin layer where the 

thickness of the layer is 0.87 µm at a distance of 11.41 µm (dotted line in Fig. 41) which 

has been obtained by HT, FSA, CWT, and TKEO. The capability to discriminate between 

two adjacent surfaces using the envelope detection technique is measured by the contrast 

value ∆i, which represents the difference in the intensity values between the smallest peak 

intensity and the neighbouring valley intensity (green vertical line). Thus, the higher is 

the contrast value ∆i, the better is the performance of the envelope detection technique in 

the presence of two adjacent peaks.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 42 1D fringe envelopes obtained by: (a) HT, (b) FSA, (c) CWT, and (d) TKEO at x = 

11.41 µm near the resin edge where the two surfaces are closer together. 
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The best performance is provided by HT (Fig. 42(a)) and TKEO (Fig. 42(d) with 

nearly similar values of 2.7 and 2.6 respectively. The value for FSA (Fig. 42(b)) is 

slightly worse, at 1.9, but nonetheless capable of discriminating the two surfaces. The 

parameter ∆I derived from the CWT approach, (see Fig. 42(c)) cannot be calculated since 

it fails to distinguish between the envelopes.  

In this work, the CWT algorithm actually used is not able to distinguish between 

two successive fringe envelopes, due to the non-optimal use of the CWT. Further work 

involving the testing of the trade-off between space and frequency to find the optimal 

value would most likely have made it possible to allow this distinction, but the wavelets 

technique was considered not to be central to the actual work in hand. 

 

The altitude (Z axis) measurement of resin on SI  

 

Fig. 43 Typical fringe signals from a sample of a resin layer on Silicon 

 

Fig. 43 illustrates a typical axial intensity profile of fringe signals on the sample of 

a layer of resin on Si. Two signals are observed, one due to the upper air surface and the 

other due to the buried substrate interface. The fringes corresponding to the air surface 

have a lower contrast than that of the fringes corresponding to the buried interface since 

the reflectivity of the silicon is higher than that of the resin. By measuring the distance  

separating the peaks of the two envelopes, the thickness d of the transparent layer at that 
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point (X,Y) can be measured. If the sample displacement d along the optical axis (Z) and 

the refractive index n of the resin is known, the thickness d is given by Eq.(2.15):  


d
n

                                   (2.15)                                          

For each point (X,Y), the identification of the position of the first envelope peak 

(Fig. 43) gives the posiiton of the surface (Z1) and the peak of the second envelope gives 

the positon along Z of the interface (Z2). If this procedure is carried out for each point, the 

(XZ) profile of the corresponding points on the surface and the buried interface can be 

made. A correction to the position of the interface profile needs to be performed due to 

the value of the refractive index of the resist layer (n = 1.644) being greater than unity, 

the corrected value of Z being:  


  1 2

1

Z Z
Z Z

n
                                            (2.16) 

Approximate empirical expression of the refractive index 

The Cauchy formulas are valid for media whose absorption bands are all in the 

ultraviolet. The resin verifies this condition which favored this choice of formulas: 

 
  

2 4

B C
n A                                             (2.17) 

Resin is a transparent material in the visible region: it is therefore far from the 

absorption bands, which allows on the one hand, to consider that its refractive index is 

real and on the other hand, to make a limited development based on the wavelength. 

 

Fig. 44 The dispersion curve corresponding to the resin layer 



 

71 

 

In these areas of transparency, the refractive index follows a function that decreases 

with wavelength (Fig. 44), or, which amounts to the same, a function that increases with 

frequency. Such a law of dispersion is called the law of normal dispersion. Media used in 

optics, which are obviously transparent in the visible, have larger indices of refraction in 

the blue than in the red: nblue > nred. 

The dispersion curve (Fig. 44) and the Cauchy equation (Eq.2.17) describe how the 

refractive index of the photosensitive resin changes as a function of the wavelength of the 

light incident on the film. The Cauchy equation is given by: 

 
2 4

B C
n A

 
  

     
(2.18) 

where λ corresponds to the wavelength, n corresponds to the refractive index, while A, B, 

C represent the coefficients. By performing the fitting using the data provided in Fig. 44, 

the coefficient values for resin can be obtained: 

B = 1.5935   

C = 1.8854 x10
6
  

D = 4.1211 x10
10

   

Thus, the refractive index of resin for λ = 610 nm is calculated as n = 1.644. By 

using this refactive index value and the Eq.(2.16), the altitude (Z axis) of the sample of 

resin on Si can be obtained, as illustrated by Fig. 45. 

 

Fig. 45 The altitude Z (axis) of resin on Si 
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2.6 CONCLUSION 

A study has been made on the comparison of different pre-processing and different 

envelope detection techniques in CSI using synthetic images and real measurements of 

different types of thin transparent films, resulting in the following conclusions: 

 The combination of EMD and Savitzky-Golay filters provides the best performance 

for suppressing noise and the offset component while maintaining the original signal 

intensity.  

 The CWT and TKEO are both competitive for providing surface extraction: 

- TKEO is slightly better in terms of computational time. 

- CWT is slightly better for the wavy transparent layer, but TKEO is quicker in 

terms of computational time.  

- In this work, TKEO is more competitive than CWT for resolving two close 

layers although this may be due to a non optimal use of the CWT used. The 

ability of CWT to allow different space frequency trade-offs that provides the 

opportunity to prioritize either space resolution or frequency resolution could 

lead to distinguishing between closely spaced layers. 

 The use of an interpolation method with Gaussian fitting as the post-processing has 

been successfully used to improve the the axial sensitivity of the measurement, with 

the error rate (mae) being from 2 to 3 times smaller than if it was not used,  

corresponding to a higher precision. 

2.7 RÉSUMÉ DU CHAPITRE 2 

Dans ce chapitre, nous décrivons l'opérateur d'énergie Teager-Kaiser que nous utilisons 

comme algorithme multidimensionnel proposé (1D, 2D, 3D) pour la détection 

d'enveloppe dans la CSI. Ensuite, l'étude de la comparaison des performances des 

différentes techniques de pré-filtrage et de détection d'enveloppe dans le traitement des 

signaux de franges est décrite. A titre de comparaison, des résultats utilisant les 

algorithmes sont présentés sur le signal de frange synthétique et sur des données réelles, 

c'est-à-dire l'échantillon de résine sur silicium. En outre, une étude de sélection de 

l'ondelette mère sur la transformée en ondelettes continue est présentée dans son 

utilisation pour l'obtention de l'enveloppe de franges. 

Afin de supprimer le décalage et réduire le bruit, nous comparons dans ce chapitre 

trois algorithmes différents qui combinent la technique dérivée / EMD et le filtre de 
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débruitage (Savitzky-Golay / Wiener). Les algorithmes correspondants sont référencés 

avec les noms suivants: 

 Pré-filtre 1: combinaison de dérivée et filtre de Wiener, 

 Pré-filtre 2: combinaison de dérivée et filtre Savitzky-Golay, 

 Pré-filtre 3: combinaison d'EMD et filtre Savitzky-Golay. 

Pour l'évaluation des performances de différents pré-filtres ci-dessus, nous effectuons la 

simulation en les effectuant sur un signal de franges synthétiques, avec un pas  

d'échantillonnage de 40 nm. Un décalage non linéaire additif et un bruit gaussien sont 

ajoutés aux données synthétiques (20%), ce qui signifie que le carré moyen (rms) du bruit 

gaussien ajouté est égal à 20% de l'amplitude maximale du signal de frange de la seconde 

couche. Sur la base de la simulation, nous observons que le préfiltre 3 utilisant la 

combinaison d'EMD et Savitzky-Golay fournit le meilleur résultat que d'autres afin de 

supprimer le décalage et le bruit, en particulier dans le maintien de l'amplitude des 

franges. 

Une autre simulation a été réalisée afin d'évaluer notre procédure d'analyse des 

franges, en utilisant une combinaison de pré-filtrage différent et de détection d'enveloppe 

différente. En ce qui concerne l'étape principale de notre procédure, à savoir la détection 

de l'enveloppe des franges, nous observons que le TKEO est un algorithme compétitif en 

termes de robustesse et de temps de calcul. TKEO fournit une meilleure extraction de 

surface que la transformée de Hilbert et FSA. Dans le cas d'une couche transparente plate, 

TKEO fournit les résultats les plus précis pour l'extraction de la surface (1
e
 surface) et 

plus proche de la performance de CWT pour l'extraction de l'interface enterrée (2
e
  

surface), donnant la valeur la plus petite d'erreur absolue moyenne. Pour la couche 

transparente ondulée, la mesure la plus précise est fournie par CWT, tandis que la 

performance de TKEO est la plus proche de CWT que les autres. Cependant, TKEO a 

l'avantage d'être plus compact en termes computationnels et ainsi bien meilleur en termes 

de temps de calcul que le CWT. Par exemple, TKEO prend 6,5 s tandis que CWT prend 

30,6 s dans le contexte d'un signal de frange bruyant avec σ = 20%. 

D'autre part, nous avons également évalué les performances de post-traitement que 

nous avons utilisées dans notre procédure d'analyse des franges. Sur la base des résultats, 

nous avons démontré que l'utilisation de l'interpolation sur l'ajustement gaussien améliore 

la sensibilité axiale de la mesure du profil. Les résultats donnent une amélioration 
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significative en termes de précision de l'extraction de surface, comme représenté par la 

plus petite valeur de mae, en tant que critère de comparaison, lorsque nous n'avons pas 

effectué l'interpolation sur l'ajustement gaussien comme post-traitement. La valeur de 

mae de l'analyse de frange en utilisant une interpolation sur un ajustement gaussien est 2 à 

3 fois plus petit, ce qui correspond à une plus grande précision. 

Ensuite, les algorithmes sont réalisés sur des données réelles, c'est-à-dire d'une 

couche de résine sur Si. L'interférogramme venant de l'échantillon montre clairement la 

présence de grandes variations du décalage le long de l'axe optique près des bords de la 

couche de résine en raison d'effets optiques. Afin d'éliminer ce fond sur l'image des 

franges, le pré-filtrage est réalisé en utilisant la technique EMD en combinaison avec le  

filtre Savitzky-Golay. Ensuite, les différentes techniques de détection d'enveloppe ont été 

réalisées pour obtenir l'enveloppe de frange des signaux de franges pré-filtrés. Basé sur 

les résultats, on peut observer que la performance de chaque technique est différente, 

notamment en ce qui concerne les détails proches des bords de la couche de résine, 

particulièrement difficiles à mesurer. Dans la région des bords de la couche de résine, les 

meilleures performances sont fournies par HT et TKEO que par les autres pour distinguer 

clairement entre deux couches proches.  
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Chapter 3. 2D FRINGE PROCESSING IN CSI 

 

In this chapter, we study the performance of 2D fringe processing in CSI developed based 

on the two dimensional Teager Kaiser Energy Operator [104] on a transparent film 

sample containing defects. A robust fringe analysis is needed for improved 

characterization of the transparent polymer film, i.e. a Mylar, which is complex and 

contains buried layers with low contrast. The algorithms are compared to the classical two 

dimensional Hilbert Transform [62],[105],[106],[107] and the 1D Fringe Processing using 

the well-known FSA algorithm. In addition, we also report the study of the developed 

algorithm for the detection of the layer number in multiple layers using Gaussian curve 

fitting.  

But first we discuss the notion of the independence of neighboring pixels, which is an 

assumption made in the CSI technique that leads to the ability to measure larger steps 

than in PSM. But in reality, as we shall see, there is a certain dependence between pixels 

due to the experimental conditions, which motivates the use of 2D and 3D processing.           

The dependence of neighbouring pixels in PSM processing 

As mentioned in chapter 1, the technique of PSM is limited to the measurement of small 

surface roughness or sample surfaces that are assumed to present height differences of 

less than /2 between neighbouring image points, as illustrated in Fig. 46(a). In the case 

of this surface type, representing a small step, PSM can be used to measure the height of 

each point independently of its neighbours. 

 

Fig. 46 The limitation of the PSM technique in height measurement  
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But in the case of a sample surface having a deeper smooth and continuous surface, 

for instance in the case of a spherical surface such as a microlens (Fig. 47), it is well 

known that the 2π phase discontinuities can be corrected as shown in Fig. 48. The use of 

phase unwrapping in the PSM technique therefore takes into account the neighbourhood 

values of pixels. This means that measurements using the PSM technique in this case are 

not independent of their neighbours.     

 

Fig. 47 The measurement of a spherical surface using the PSM technique resulting in 

phase discontinuities 

 

Fig. 48 The technique of phase unwrapping in PSM to measure deeper structures 

 

But in the case of sample surfaces having a step height difference of more than /2 

between neighboring pixels, the PSM technique is unable to measure the height due to the 

ambiguity of the number of 2π values for the correction as illustrated in Fig. 46(b).  
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The dependence of neighbouring pixels in CSI processing 

In the history of the development of interference microscopy, white light 

interferometry (CSI) was therefore proposed as a solution to measuring large step heights. 

Making the assumption that CSI allows the measurement of the absolute height of a 

surface at each point independently of its neighbours by localizing each point along Z in 

relation to the scanning performed by the piezoelectric actuator, in principle any step 

height can be measured. This is the reason why we can categorize this signal processing 

as 1D fringe signal processing.  

However, in practice, in an experimental system, the measurement at a given pixel  

is not absolutely independent of its neighbours for several reasons. Firstly, we can 

consider the effects of diffraction at a step or on details of a very rough surface, where we 

need to consider the 3D PSF (Point Spread Function) as sampled by the individual 

photodiodes on the camera sensor. The image in Fig. 49 illustrates the central Airy spot of 

a point source at infinity being correctly sampled by the camera according to the Nyquist 

criterion at twice the signal spatial frequency, a typical condition for microscope imaging. 

This means that there is a link between neighbouring pixels and that the measurement of 

the height of a surface at each point is not absolutely independently of its neighbours.  

 

Fig. 49 The illustration of airy spot on the pixels 

 

The neighbourhood link is also present in the measurement of certain step heights, 

as shown in Fig. 50 where there is over and undershoot near to the step instead of a 

square step when the height is close to the coherence length of the light illumination [75], 

[76]. This is known as the “batwing” effect on the edge of the step caused by the mixing 
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of signals from the top and bottom of the step, demonstrating again the dependence of 

neighboring pixels.   

 

Fig. 50 The batwing effect on the measurement of a step 

 

A third reason is that for most surfaces where there are no holes present, it can be 

assumed to be continuous laterally, whatever the roughness. The measurement of the 

surface roughness is always an approximation of the real surface topography, limited by 

the various parameters of the measurement system, so that the assumption needs to be 

made that a neighbouring point is linked to its neighbour. 

In the present work, we therefore propose performing 2D and 3D fringe processing 

that takes into account the spatial neighbourhood, so that the independence of 

measurements between neighboring pixels is therefore lost, at least on a small scale of 

several pixels. Taking into account diffraction, step effects and the assumption that the 

surface is locally continuous justifies the use of 2D/3D algorithms and their assumptions 

(that neighbouring pixels are linked) and the estimation of the local slope. 

 

3.1 2D FRINGE ENVELOPE DETECTION 

3.1.1 Analytic signal-Hilbert Transform (HT2D) 

The one dimensional form of the Hilbert transform of a signal is given by:  

    
 1 1

H

s u
s x s x du

x x u 





  
                 (3.1)  

This Hilbert transform is often used in analytic signals and is useful for the purpose of 

amplitude demodulation [108],[109]. In particular, for obtaining the analytic signal, the 
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negative frequency component of the signal is suppressed [110]. The analytic signal sA(x) 

is defined as: 

          expA Hs x s x is x A x i x        
        (3.2) 

In the frequency domain, the analytic signal corresponds to: 

      1AS sign S                (3.3) 

Based on Equation (17), it can be seen that we can obtain the instantaneous amplitude 

(envelope) of a real signal s(t) from the absolute value of sA(t). Meanwhile for the 2D 

signal, the technique is extended by a basic approach of the 2D Hilbert Transform 

H{s(x,y)}: 

   
 

   2 2

,1 1
, ,H

s u v
s x y s x y dudv

xy x u x v 





  
     (3.4) 

which leads to the 2D analytic signal sA(x,y), which is given by: 

     , , ,A Hs x y s x y is x y 

 

       (3.5) 

In the frequency domain, the 2D analytic signal sA(x,y) corresponds to: 

       , 1  ,AS i sign sign S            (3.6) 

Notice with this equation, that we can understand that Eq. (3.6) could be obtained by 

multiplying the transformed image and the appropriate mask in the frequency domain. If 

the 2D analytical signal      , , exp ,As x y A x y i x y    has been constructed, the phase 

and the amplitude of the signal s(x,y) could be obtained based on the following equation 

[106]:  

 
 

,
Re

 ,

A

A

s x y

i s x y


 
   

 

         (3.7) 

 ( , ) ,AA x y s x y          (3.8) 

3.1.2 Teager Kaiser Energy Operator (TKEO2D)  

For local energy tracking measurement, the Teager-Kaiser Energy Operator (TKEO) is 

well known in digital signal processing, particularly on oscillatory signals due to the fact 

that the operator is simple to implement and is computationally very efficient. In the one 
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dimensional and continuous version of the Teager Kaiser Energy Operator, the energy of 

a signal x(t) is defined by the following equation [104]: 

       
2

(1) (0) (2)s t s t s t s t                            (3.9) 

When applied to a signal s(t) = a(t) cos (ωt), the TKEO formula yields: a(t)
2
ω(t)

2
. It is 

assumed that the instantaneous amplitude a(t) and the instantaneous frequency ω(t) do not 

vary too much or too fast with respect to the average value of ω(t). Given the simplicity 

of the TKEO (and the extended versions of TKEO) and the broad applicability of the 

AM-FM model in signal processing and communication systems, this operator leads to 

the Energy Separation Algorithm (ESA) defined by [111]: 

 
 

 
 

 

 
;

x t x t
t a t

x t x t

 


 

       
         

          (3.10) 

The TK operator, which is usually called as TKEO limited to the second order, has been 

extended into higher-order differential operators (DEOs) [112]: 

         (1) ( 1) (0) ( )k k

k x t x t x t x t x t       
          (3.11) 

Practically, the operators (DEOs) have been implemented to the 2D case of fringe signals 

in the article [40],[113] in order to improve the fringe envelope extraction to detect the 

surface height of the sample.    

The generalization of the higher order differential operators (DEOs) is as follows [114]: 

         ( ) ( ) ( ) ( )

, , ,

p q m l

p q m l x t x t x t x t x t            
        (3.12) 

with integers p+q = m+l, (p,q) ≠ (m,l). For (p=1, q=1, m=0, l=2), the generalized operator 

is reduced to the TK operator. Finally, all these operators can be extended to the 

multidimensional case as k
th

-order tensors H (H stands for higher) [104]: 

 
 

, ,

d d d d
u

du du du duk p m

T T
m l p q

H m l p q

s s s s
s

   
         

   
         (3.13) 

with k=p+q=m+l, (m,l)=(p,q). Vector u = (x1 x2 … xn) is n-dimensional, s(u) is a 

multidimensional signal, and ⊗ means the Kronecker product. The second-order operator 

(k=2) provides the directional TKEO, which extends one dimensional classical TKEO 

using directional derivatives along any vector v as follows: 
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         
2 2

2,v 2 2
u = v u v u u u

v v

TT s s
s s s

  
             

     (3.14) 

The Eq. (3.14) can be applied for the AM-FM signal demodulation. For any n-

dimensional local AM-FM signal defined by: 

      u u cos us A                          (3.15) 

We have the following approximation [104]: 

           
2

2
2 2

2,v u u u u w u v
v

T
s A A

 
            

(3.16) 

w is the local frequency w = (w1,w2,...,wn)
 T

, which is the gradient of the phase , 

where  w u w  , when the local amplitude A(u) does not vary too fast compared to 

the carrier [115]. The vector v is a normalized vector v = (v1, v2,...,vn)
T

. The choose of the 

directional derivative has been discussed in article [116].    

It is then possible to compute the instantaneous envelope: 

 
 

 

 

 

2 2

2,v 2,v2

2

2 4,v

2,v

u u
u

u u

v

s s
A

s s

       
 

       
 

            (3.17) 

  

3.2 THE ROBUSTNESS EVALUATION OF 2DTKEO AND 
2DHT 

To evaluate the robustness of 2DTKEO [104] and 2DHT [62],[105],[106],[107], it has 

been applied respectively to a noiseless signal (σ=0%) and noisy signals (σ=10% and 

σ=20%) using a synthetic signal as shown in Fig. 51. In order to improve the axial 

sensitivity and precision regarding the peak detection, cubic spline smoothing followed 

by a Gaussian interpolation has been used, which is adapted to the physical model of the 

envelope. Fig. 52 and Fig. 53 show the results obtained.  
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(a) 

 

(b) 

Fig. 51 (a) Synthetic XZ fringe image 256 x 256 pixel and (b) profile of fringe signal 

along the optical axis Z. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 52 Analysis of a noisy synthetic fringe signal (σ=20%): (a) 2D and (b) 1D fringe 

envelope obtained by Z-scan technique (FSA), (c) surface profile. 
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Based on the surface profiles shown in Fig. 52(c) and Fig. 53(c), the qualitative 

performance comparison can be observed between the XZ-scan technique using 2DTKEO 

and the Z-scan technique using the FSA algorithm. In the figures the red line, green line 

and blue line represent respectively the top surface extraction (1
st
 surface), the bottom 

surface extraction (2
nd

 surface), and the reference surface. It can be observed that the XZ-

scan technique (2DTKEO) provides better surface extraction than the FSA both on the 

top and bottom surfaces. In addition, the mean absolute error rate (mae) has been 

computed, in relation to the reference surface, as shown in Table 9. 

 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 53 Analysis of a noisy synthetic fringe signal (σ=20%): (a) 2D and (b) 1D fringe 

envelope obtained by XZ-scan technique (2DTKEO), (c) surface profile. 
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Table 9 Mean absolute error (mae) of surface extraction corresponding to 

synthetic fringe image 

Methods 

noise=0% noise=10% noise=20% 

Surf1 Surf2 Surf1 Surf2 Surf1 Surf2 

mean absolute error (nm) 

1DFSA 2.1 2.1 6.0 27.9 11.5 57.3 

2DTKEO 2.1 2.1 3.2 12.3 5.1 25.2 

2DHT 2.1 2.1 3.2 13.0 5.2 28.5 

 

Comparing the results in Table 9, both the Z-scan technique (FSA) and XZ-scan 

technique (2DTKEO and 2DHT) are similar in terms of performance in the case of the 

noiseless signal (σ=0%) providing an average value of mae = 2.1 nm. Meanwhile for a 

noisy signal (σ=10% and σ=20%), the XZ-scan technique is generally more robust than 

the FSA. Moreover, it can also be observed that the use of 2DTKEO is as competitive as 

classical 2DHT in terms of performance for a noisy signal. The error rate value (mae) of 

surface measurement extracted by both of 2DTKEO and the 2DHT is nearly similar for a 

noisy signal (σ = 10% and σ = 20%). The reason that 2DTKEO is more robust than the 

FSA algorithm is due to the use of a 2D gradient smooth by two-dimensional Gaussian 

filter. 

3.3 DETECTION OF THE LAYERS NUMBER ON A 
TRANSPARENT LAYERS 

One of the benefits of CSI is the ability to separate multiple reflections from a transparent 

layer structure. Fig. 54 shows the scheme of the interferogram construction on a 

transparent layer using CSI. As illustrated in Fig. 54, we found that there are three clearly 

identifiable modulation envelopes corresponding to surface reflections from the 

transparent layer boundaries (top surface, rear surface, and structure). In the case of a 

transparent layer as shown in the figure, the interferogram has two conditions: (i) an 

interferogram has two modulation envelopes corresponding to the top and rear surfaces; 

(ii) an interferogram has more than two modulation envelopes due to the presence of the 

structures. In this case of the sample with multiple layers, an adaptive algorithm in fringe 

signal processing is required to identify the layers number on an interferogram.   
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Fig. 54 Scheme of the interferogram construction on a transparent layer using CSI [83] 

 

In this work, in order to find the layer number on an interferogram, we perform 

threshold filtering using Gaussian curve fitting on the fringe envelope, which is applied 

after the step of envelope detection. The Gaussian curve fitting is performed on the 

number of points around the identifiable local maximum on the fringe envelope during 

the peak detection process. Through this Gaussian curve fitting, we can obtain the 

characteristics of each of the Gaussian functions, such as its height, position, and width. 

Fig. 55(a) shows how this procedure has been tested on synthetic data which contains 

multiple Gaussian functions. As illustrated in Fig. 55(a), by using this procedure, we 

obtain the four identifiable Gaussian functions as the candidates. In order to identify the 

number of Gaussian function which indicates the different layers of the sample, we make 

use of the height and width obtained using Gaussian curve fitting to filter the Gaussian 

functions which are not suitable for the characteristics of the Gaussian functions that we 

seek to define. For example, we seek the Gaussian function with a width > 10 and a 

height (amplitude) > 2. By defining this threshold value of the height and width, then we 

obtain only two Gaussian functions which are suitable (red colour), as shown in Fig. 

55(b). The number of Gaussian functions (envelopes) on an interferogram indicates the 

number of layers in the sample.    
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Fig. 55 Identify the number of Gaussian function using curve fitting   

 For further evaluation, we have tested the algorithm with the detection of the layer 

number on a synthetic fringe signal of transparent layers and real data, i.e. a transparent 

polymer film. 

a. Simulation results on synthetic data 

In the simulation, the synthetic signal we have used to test the algorithm is based locally 

on the general model expressed by equation (1) along the optical axis Z, with a 80 nm 

sampling step, for each lateral position X. The resulting synthetic signal is shown in Fig. 

56. An additive offset and Gaussian noise (15%) is added onto this synthetic data which 

commonly appear in the fringe signal during the acquisition process. The value of 15% 

means that the root mean square (rms) of the added Gaussian noise is 15% of the 

maximum amplitude of the fringe signal of rear surface. 

 
(a) 

 
(b) 

Fig. 56 (a) Synthetic XZ fringe image 256 x 256 pixel and (b) profile of fringe signal 

along the optical axis Z of transparent multilayer. 
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Fig. 57 Fringe envelope of a synthetic transparent layers 

As illustrated by the interferogram in Fig. 56, we have generated the synthetic 

fringe signal corresponding to multiple layers (top surface, rear surface, and some 

structures). We perform the algorithm for the detection of the layer number as post-

processing after applying the process of envelope detection. Fig. 57 shows the fringe 

envelope of the synthetic fringe signal of the transparent layers. As illustrated in the 

figure, an adaptive algorithm is required as post-processing to identify whether an 

interferogram has two, three, or four modulated envelopes corresponding to the different 

positions of the layer/surface.  

In this simulation, the width of the Gaussian has been identified for our constructed 

synthetic fringe signal. We can adjust the minimum width threshold value corresponding 

to 0.75 times the identified width of the Gaussian based on the coherence length of the 

fringe signal. We did not choose the exact identified width threshold due to the fact that 

the fringe contrast envelope (Gaussian) which we seek could be distorted by the noise. 

Meanwhile, for the amplitude threshold, we adjust it by 3* the standard deviation of the 

noise. This amplitude threshold is obtained empirically and corresponds to the fringe 

amplitude being higher than 3* the standard deviation of the noise. The standard 

deviation of the noise is estimated on the region of the interferogram which does not have 

a fringe pattern (the background region). By using the adjusted threshold, this makes it 
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possible to detect the layer number and obtain the different positions of the layer and 

surface, as shown in Fig. 58.   

 
(a) 

 
(b) 

Fig. 58 (a) Surface detection on the synthetic transparent layers and (b) detected surface 

profile   

In order to evaluate the algorithm performance in term of accuracy, we used the 

statistical parameter, i.e. mean absolute error (mae). The error rate (mae) of the 

measurements in Fig. 58(b) for the top surface, internal structures (1-4), and rear surface 

is respectively 3.19 nm, 14.49 nm, 16.86 nm, 16.59 nm, 14.16 nm, 14.20 nm. It seems 

that the surface extraction of the top surface is more precise than the other surfaces due to 

the fringe contrast of the top surface being far higher than the others, as shown in Fig. 57. 

Besides that, we also used another parameter, i.e. the ratio of number of the detected 

surface and number of the reference surface. Based on the Fig. 59, it seems that the ratio 

value is 100%, which means that our algorithm is able to detect correctly the entire 

assembly of reference structures.   
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Fig. 59 Comparison of the measured structures with the reference structures 

    For the results of the measurements on this sample, the performance is also 

evaluated by measuring the local total (or peak-valley) roughness Rt and arithmetic 

roughness Ra of the profiles after removing the slopes. By using Eq.(2.13) and Eq.(2.14), 

it seems that the total roughness Rt for the top surface, internal structures (1-4), and rear 

surface has the same value, i.e. 5.33 nm, while the arithmetic roughness Ra also has the 

same value, i.e. 1.21 nm. The small value of roughness parameter indicates that the 

measured profiles has represent well the homogeneous reference structures. 

b. Real data (transparent polymer film) 

The performance of the algorithm was tested using real data, i.e. a transparent polymer 

film, of which the interferogram is shown in Fig. 60 and the envelope is illustrated in Fig. 

61. The description of acquisition data of the measurement of a transparent polymer film 

obtained by the microscope system is given in Appendix-1: Data of Sample. As shown in 

Fig. 61, it is apparent that there are three clearly identifiable envelopes in the 

interferogram which indicate the top surface, rear surface, and some internal structures. In 

order to apply our algorithm to this data, it was necessary to adjust the threshold value. As 

with the synthetic data, the amplitude threshold is adjusted by 3* the standard deviation 

of the noise, which is estimated on the region of interferogram without fringes. 

Meanwhile, the width threshold is adjusted based on the coherence length of the fringe 

signal. The width (variation) w of Gaussian function considering to the fringe envelope of 

the signal can then be calculated based on the following equation [117],[118]: 

2

02ln 2
8ln 2 2.3548cw L



 

 
     

     

(3.18) 
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Where 0 is the mean of wavelength from the light source, while  is the spectral 

bandwidth of the camera that will limit  (which is smaller than the wider spectral 

bandwidth of the black body emission of the light source) for the illumination actually 

used in the microscope.  

 
Fig. 60 Interferogram of a transparent polymer film 

 
Fig. 61 Fringe envelope of the interferogram from a transparent polymer film 

  

Fig. 62(a) shows the result of surface detection using the adjusted threshold 

(amplitude and width of Gaussian). As illustrated in Fig. 62(a), the algorithm succeeded 

in finding the layer number of the transparent polymer film, hence making it possible to 

identify the position of the top surface, the rear surface, and the presence of internal 

structures. However, it is apparent that there is still an artefact that appears during the 

processing of surface detection, as shown with the blue line in Fig. 62(a). In order to 

suppress the artefact, the neighbourhood number is added to the identifiable surface as a 

threshold parameter in the algorithm. This filters out the identifiable surface that has less 

than three surface neighbours to remain within the size of the Airy disc so as not to lose 

lateral information. The result is shown in Fig. 62(b). 
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Fig. 62 Result of surface detection using the neighborhoods number as the threshold  

 

3.4 RESULTS OF MEASUREMENTS ON MYLAR POLYMER 
FILM USING Z-SCAN AND XZ-SCAN TECHNIQUE 

The fringe signals from the Mylar polymer film (Fig. 63) were obtained using the adapted 

Leitz-Linnik interference microscope. The description of the acquisition data of the 

measurement of the Mylar polymer film obtained by the microscope system is given in 

Appendix-1: Data of Sample. The method using the averaging technique with dark and 

flat corrections was performed in order to reduce the noise [88]. The previously described 

techniques were then used to measure the position of the surface, the internal structures, 

and the rear surface. As illustrated in Fig. 63(b), the fringes corresponding to the top 

surface have a high contrast, contrarily to the fringes on the rear surface, due to imaging 

in air. Even though the averaging technique increases the SNR, the noise can still appear 

in the resulting fringe signals of the film.  

 

(a) 

 

(b) 

Fig. 63 (a) XZ fringe image of a Mylar polymer and (b) the fringe signal along the optical 

axis Z. 
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3.4.1 Z-scan technique (1D Fringe Processing) results 

Performing the Z-scan FSA approach on the fringe signal of the Mylar polymer film leads 

to the fringe envelope image shown in Fig. 64(a). The fringe envelope is shown as a  

logarithmic transformation in order to facilitate the identification of the presence of the 

structures and the rear surface. This XZ image is sufficient to provide the information 

regarding the structures and the rear surface. Fig. 64(b) shows the post-processing result 

using cubic spline smoothing. Positional measurements of the surface profiles and 

internal structures extracted by the Z-scan technique are shown in Fig. 65. It can be 

observed that the technique provides satisfactory results for measuring the top surface, 

but it is not sufficient for the accurate measurement of the depths of the internal structures 

nor of the rear surface. 

 

(a) 

 

(b) 

Fig. 64 Logarithmic transformation
1
 of fringe envelope obtained by (a) FSA, (b) post-

processing result using cubic spline smoothing. 
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Fig. 65 Surface extraction of Mylar polymer obtained by Z-scan technique using FSA 

algorithm. 

 

3.4.2 XZ-scan technique (2D Fringe Processing) results 

In order to obtain better results on the Mylar polymer film, the XZ-scan technique was 

performed with the previously mentioned post-processing techniques. Fig. 66(a) and Fig. 

67(a) show respectively the fringe envelope obtained by 2DTKEO and 2DHT. Fig. 66(b) 

and Fig. 67(b) then show the post-processing results using cubic spline smoothing which 

have been performed on the 2D fringe envelope. A slight improvement compared to the 

post-processing results in the Z-scan technique can be observed since it takes into account 

the lateral axis X and optical axis Z in the reduction of the noise. By performing such a 

technique, the rear surface depth can be measured with more precision as shown in Fig. 

68. 
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(a) 

 

(b) 

Fig. 66 Logarithmic transformation of fringe envelope obtained by (a) 2DTKEO, (b) its 

post-processing result using cubic spline smoothing. 

 

 

 

(a) 

 

(b) 

Fig. 67 Logarithmic transformation of fringe envelope obtained by (a) 2DHT, and (b) its 

post-processing result using cubic spline smoothing. 
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(a) 

 

(b) 

Fig. 68 Surface extraction of Mylar polymer obtained by XZ-scan technique using (a) 

2DTKEO and (b) 2DHT. 
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3.4.3 Measurement of thickness of Mylar polymer film 

The surface extraction using the XZ-scan technique can be used for the thickness 

measurement of the Mylar polymer film, known to be between 3 µm and 3.6 µm. Table 

10 and Fig. 70 show the mean values of the thickness for a given Region of Interest 

(ROI). The ROI is taken every lateral span of 10 µm along the lateral axis X. The 

thickness of the Mylar polymer film at the point X can be measured by calculating the 

distance ∆ separating the surface position along the optical axis Z [47], [119]. By using 

the value of refractive index (n) of the Mylar polymer film which is known (1.63 for λ = 

700 nm), the thickness d is: 


d
n

                                            (3.19) 

 

Fig. 69 The refractive index of the Mylar 

Fig. 69 shows the refractive index of the Mylar polymer film. Based on this figure, it can 

be seen that its value vary as a function of the wavelength. In order to calculate the index 

value of n(λ) of the Mylar polymer film, we applied the Cauchy equation, which shows 

the empirical relationship between the wavelength and the refractive index. The Cauchy 

equation is given by: 

 
2 4

C D
n B

 
  

     
(3.20) 

where λ corresponds to the wavelength, n corresponds to the refractive index, while B, C, 

D represent the coefficients. Through the information concerning the measured refractive 

index of Mylar at known wavelengths, as illustrated in Fig. 69, the values of the 
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coefficient can be computed by fitting the equation. By performing the fitting using the 

data provided in Fig. 69, the coefficient values for Mylar can be obtained: 

B = 1.6073   

C = 9.7817 x10
3
  

D = 6.2689 x10
8
   

Thus, the refractive index of Mylar polymer film for λeff = 720 nm is calculated as 

follows:  

 
3 8

1 2 4

9.7817 10  6.2689 10
720 1.6073 1.628

720 720
n

 
     

The inhomogeneity of the refractive index of the Mylar is a factor that can 

accentuate the degradation of the wavefront reflected by the interface, which introduces 

an additional measurement error. It was assumed in our study that the index is 

homogeneous and constant across the depth of the layer. In reality, several variations are 

possible: random, linear or quadratic. Each variation has a different effect on the value of 

the measurement.   

Table 10 Mean value of mylar polymer thickness 

Mylar thickness (µm) for each of ROI 

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 

3.48 3.44 3.36 3.27 3.32 3.24 3.28 2.98 2.90 
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Fig. 70 Thickness measurements of Mylar polymer film. 

 

3.4.4 Error Approximation of Thickness Measurement of Mylar 
Film 

The error approximation of the thickness measurement is given by: 

     
1

2

1 1

n
d

n n

 


 
                                        (3.20) 

 

 

Fig. 71 Thickness of Mylar polymer film. 
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The main sources of error are: 

- The variation of the refractive index n1 of the medium, 

- The variation in the measurement of ∆. 

a. Error n1 (δn)   

The main contribution of refractive index error comes from the light source used (white 

light), δλ: 

   1 1 1 2

2
n

n n 





     
(3.21) 

If we take into account the spectral response of the CCD sensor, that extends from λ1 = 

350 nm to λ2 = 1100 nm, the value of this error can be estimated by: 

   350 nm 1100 nm

2
n

n n





    
(3.22) 

The refractive index of Mylar polymer film for λeff = 720 nm is calculated as follows:  

 
3 8

1 2 4

9.7817 10  6.2689 10
720 1.6073 1.628

720 720
n

 
     

Meanwhile the refractive index for white light over the range of λ1 = 350 nm to λ1 = 1100 

nm, is given by:  

 
3 8

1 2 4

9.7817 10  6.2689 10
350 1.6073 1.729

350 350
n

 
     

 
3 8

1 2 4

9.7817 10  6.2689 10
1100 1.6073 1.616

1100 1100
n

 
     

By using Equation (31), we obtain the error approximation of the thickness contributed by 

the refractive index error, to be 0.0565. 

b. Error ∆ (δ∆)   

Inaccuracies in the position of the central fringe and systematic errors cause an error that 

affects the values of the scanning steps. The error contribution of δ∆ comes from the 

imperfection of the piezoelectric stepper calibration (δe) and the resolution of its plate 

displacement (δp). Using the values of δe = 5 nm and δp = 1 nm for the piezo stepper used, 

the error value of δ∆ is given by: 
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 0.005 0.001 μm =0.006 μm

e p    

 
 

Finally, we can obtain the error approximation of the thickness measurement of the Mylar 

to be: 

  

1

2

1 1

2

3.25 0.05650.006
 0.07μm

1.628 1.628

n
d

n n

 


 
 

   
 

 

 

3.5 CONCLUSION 

The study of the robustness of 2D fringe processing in CSI has been presented for the 

characterization of a transparent Mylar polymer film. We have demonstrated the ability of 

2D approaches to compete with some classical methods (1D approaches) used in the field 

of interferometry, in terms of robustness. These results demonstrate that the XZ fringe 

envelope extracted by the 2D fringe processing provides more satisfactory results than the 

1D fringe processing in revealing the internal structures and the rear surface, which is 

contained in Mylar polymer film. The technique also allows an improvement in the 

details in the XZ images as well as more accurate measurements of the thickness of the 

polymer film.          

3.6 RÉSUMÉ DU CHAPITRE 3 

Dans ce chapitre, nous étudions les performances du traitement des franges 2D en CSI 

développé basé sur deux dimensions-Teager Kaiser Energy Operator sur un échantillon 

multicouche. Une analyse de franges robuste est nécessaire pour une caractérisation 

améliorée du film de polymère transparent, c'est-à-dire un film de Mylar, qui est 

complexe et contient des structures internes et une couche enterrées avec un faible 

contraste. Les algorithmes sont comparés à la transformée de Hilbert bidimensionnelle 

classique et au traitement frange 1D en utilisant l'algorithme FSA bien connu. En outre, 

nous rapportons également l'étude de l'algorithme développé pour la détection du nombre 
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de couches dans un échantillon multicouche en utilisant l'ajustement de la courbe 

gaussienne. 

Pour évaluer la robustesse de 2DTKEO, comparée à la 1DFSA, nous avons effectué 

des simulations, qui étaient appliquées respectivement à un signal sans bruit (σ = 0%) et à 

des signaux bruyants (σ = 10% et σ = 20%) en utilisant un signal synthétique. Afin 

d'améliorer la sensibilité axiale et la précision de la détection de crête, un lissage spline 

cubique suivi d'une interpolation gaussienne a été utilisé, qui est adapté au modèle 

physique de l'enveloppe. Basé sur des profils de surface des résultats, la comparaison des 

performances qualitatives peut être observée entre la technique XZ-scan utilisant 

2DTKEO et la technique Z-scan utilisant l'algorithme FSA. On peut observer que la 

technique XZ-scan (2DTKEO) fournit une meilleure extraction de surface que la FSA à la 

fois sur les surfaces supérieure et arrière. De plus, le taux d'erreur absolu moyen (mae) a 

été calculé par rapport à la surface de référence. En comparant les résultats de l'évaluation 

quantitative, la technique Z-scan (FSA) et la technique XZ-scan (2DTKEO) sont 

similaires en termes de performance dans le cas du signal sans bruit (σ = 0%) fournissant 

une valeur moyenne de mae = 2,1 nm. La raison de 2DTKEO devrait être plus robuste 

que la FSA est l'utilisation d'une dérivée 2D par le biais du filtre gaussien, en présence de 

surfaces lisses. Pendant ce temps, pour un signal bruyant (σ = 10% et σ = 20%), la 

technique XZ-scan utilisant 2DTKEO est généralement plus robuste que la FSA, ce qui 

est montré par le taux d'erreur (mae) 2 fois plus petit, correspondant au une plus grande 

précision. 

Ensuite, nous évaluons ces deux algorithmes sur des données réelles, c'est-à-dire un 

film de Mylar qui a une couche multiple constituée de la surface supérieure, des 

structures internes et de la surface arrière. Les signaux de franges provenant du film de 

polymère Mylar ont été obtenus en utilisant le microscope interférentiel Leitz-Linnik 

adapté. La méthode utilisant la technique de moyennage avec des corrections champ 

sombre et plate a été réalisée afin de réduire le bruit. Les franges de Mylar correspondant 

à la surface supérieure ont un contraste élevé, contrairement aux franges sur la surface 

arrière, en raison de l'imagerie dans l'air. Même si la technique de moyennage a augmenté 

le SNR, le bruit peut encore apparaître dans les signaux de franges résultants du film. 

Basé sur du profil de surface obtenu en utilisant le traitement du signal frange 1D (FSA), 

nous avons observé que la technique fournit des résultats satisfaisants pour mesurer la 

surface supérieure, mais qu'elle n'est pas suffisante pour la mesure précise des 
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profondeurs des structures internes ou des surface arrière. Afin d'obtenir de meilleurs 

résultats sur le film polymère Mylar, la technique XZ-scan (2DTKEO) a été réalisée. Les 

résultats démontrent que l'enveloppe de frange XZ extraite par le traitement du signal de 

frange 2D fournit des résultats plus satisfaisants que le traitement du signal frange 1D en 

révélant les structures internes et la surface arrière, qui est contenue dans un film de 

polymère Mylar. La technique permet également une amélioration des détails dans les 

images XZ ainsi que des mesures plus précises de l'épaisseur du film polymère. 
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Chapter 4.  3D FRINGE PROCESSING IN CSI 

 

In the previous chapter 2 and 3, we report the study of 1D fringe signal processing (Z-

scan technique) and 2D fringe signal processing (XZ-scan technique) in CSI. We have 

demonstrated the ability of 2D approaches to compete with some classical methods (1D 

approaches) used in the field of interferometry, in terms of robustness. In addition, 

whereas most methods only take into account the 1D data, it would seem advantageous to 

take into account the spatial neighbourhood using multi-dimensional approaches (2D, 

3D).  

 In this chapter, we present the study of the application of the 3D Teager Kaiser 

Energy Operator (3DTKEO), which is developed based on the multi-dimensional energy 

operator (2009, Salzenstein and Boudraa) [104], [116]. Through a simulation using a 

synthetic fringe signal, we evaluated the robustness of the 3DTKEO performance in 

fringe signal processing, which is compared to the 1D and 2D approaches. Moreover, we 

also used the algorithm on real data, i.e. a step height standard (VLSI Standard Inc.) in 

order to evaluate the measurement accuracy. In addition, we enrich the field of study by 

testing the algorithm on measurements from different samples: Graphene, DOE 

(Diffractive Optical Elements), Resin on Silicon, Cable and Rock.  

 

4.1 XYZ-SCAN TECHNIQUE (3D) 

 

 

Fig. 72 The technique of 3D fringe processing using 3DTKEO 
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Three dimensional fringe signal processing can be chosen using the raw XYZ data by 

operating on the XZY images as shown in Fig. 72. The technique is defined as an "XYZ-

scan" which consists in analyzing the XYZ fringe signals (three dimensional signals). By 

processing a given XYZ fringe signals, we can obtain the 3D fringe envelope directly. 

4.2 3D TEAGER KAISER ENERGY OPERATOR 

In this work, we have applied the developed algorithm for continuous 3D Teager Kaiser 

Energy Operator based on the multi-dimensional energy operator [104], [116], for fringe 

signal analysis using white light interferometry. In addition, we have also introduced the 

mathematical model and its application of the discrete 3D Teager Kaiser Energy Operator 

in the same field of fringe signal processing in CSI.     

We now introduce the general image processing model of 3D Teager Kaiser Energy 

Operator for the three dimensions of AM-FM signal f(x,y,z) as follows: 

       0, , , , , , .cosf x y z a x y z c x y z ux vy wz     
 

  

 (4.1) 

where a(x,y,z) is the offset component, c(x,y,z) is the envelope function as a function of 

the variable ordinate x, y, z, α0 is the phase offset, and ux,vy,wz are respectively the phase 

along the x, y and z-axes. 

In this work we apply the 3D TKEO algorithm in order to identify the instantaneous 

amplitude on an optical physical recording model of fringe signals s(x,y,z), i.e. XYZ stack 

image, as for example as that shown in Fig. 73. The reason we apply the 3D TKEO to the 

XYZ image stack of fringe signals is the assumption that it physically corresponds to the 

local orientation of the continuous surface. 

 

Fig. 73 Stack image XYZ of fringe signals s(x,y,z) 
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In this work, we make the hypothesis that the XYZ image stack of the fringe signals 

generated by CSI follows the model of a three dimensional AM-FM signal. It is obviously 

intrinsically difficult to represent the 3D signal. We consider this three dimensional AM-

FM of XYZ fringe signal as a reconstruction of the projection of the XZ slices and YZ 

slices. For example, we have the 3D AM-FM signal of the fringe signal as follows:    

        0 0, , , , , .cos

where

s x y z a x y z g z z x y ux vy wz

z k

     

   
  

 (4.2)  

where a(x,y,z) is the offset component, g(z – z0(x,y)) is the envelope function, which 

contains intrinsically a 1D Gaussian function, α0 is the phase offset, and ux,vy,wz are 

respectively the phase along the x, y, and z-axes. The parameter z is referred to as k, 

with k the index-scanning step and  the value of scanning step. As an illustration, Fig. 74 

shows the stack image of XYZ fringe signals generated by CSI on the step height sample.  

 

Fig. 74 The stack image XYZ of fringe signal corresponds as reconstruction of the 

projection XZ slices and YZ slices 

Based on Eq.(4.2)  and as illustrated in Fig. 74, fixing a slice x0 yields the 2D AM-FM 

signal (YZ slice), which is represented by the following equation: 

        0 0 0 1, , , , .cos

where

s y z a x y z g z z x y vy wz

z k

    

     
  

 (4.3)  

where α1 depends on x0, u, and α0. The component  g(z – z0(x0,y)) is the envelope function, 

which contains intrinsically a 1D Gaussian function, as illustrated in Fig. 75(a). The 

parameter z is referred to as k, with k the index-scanning step and  the value of 
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scanning step. By using the 3D TKEO, we also can obtain the local frequency/orientation 

of the signal. If we choose a fixed slice y0, we obtain the 2D AM-FM signal (XZ slice), 

which is represented by the following equation: 

        0 0 0 2, , , , .cos

where

s x z a x y z g z z x y ux wz

z k

    

   
  

(4.4)  

where α2 depends on y0, v, and α0. The component  g(z – z0(x,y0)) is the envelope function, 

which contains intrinsically a 1D Gaussian function, as illustrated in Fig. 75. The 

parameter z is referred to as k, with k the index-scanning step and  the value of 

scanning step. This hypothesis seems to justify that the model of the developed 3D fringe 

processing is suitable for the XYZ image stack of the fringe signals. Therefore, we can 

obtain the surface profile which is the height of surface z0(x,y) of the sample, as 

illustrated in Fig. 76.  

 
(a) 

 
(b) 

Fig. 75 The fringe envelope and the local frequency/orientation 
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Fig. 76 3D surface profile, XY surface profile z0(x,y), and the line surface profile  

 

4.2.1 Continuous 3D Teager Kaiser Energy Operator 

The techniques of 2DTKEO and 3DTKEO are extended versions of the mono-

dimensional TKEO. The different operators extending mono-dimensional TKEO to 2D 

signals have been developed by Maragos and Bovik in 1995, Boudraa et al. in 2005, and 

Larkin in 2005. These operator outputs are proportional to the square of the product of the 

frequency and the amplitude of the input 2D signal, which is useful for AM-FM signal 

demodulation. In the case of the 2D signal, the operators can be expressed by a tensor as 

follows in Eq.(4.5):    

       
2

2 2 2 2

2 2

22 2 2 2

2 2

22 2 2

2

, , , ,

2

2 2

s x y s x y s x y s x y

s s s s s
s

x y x y x y

s s s s s s s
s

x y x y x y x y

s s s s
s s

x x y

          

      
              

             
             

                

       
       

       

2

2

11 12

21 22

2
s s s

s
y x y x y

 

 

      
     

         
 

  
 

(4.5) 

The following relations are the different operators developed by Maragos and Bovik, 

Boudraa, and Larkin for 2D signal s(x,y). These operators are denoted respectively by ΦB, 

ΦC and ΦD [40], [104]. 
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   

 

 

11 22

11 22 12 21

11 22 12 21

, ,  (Maragos and Bovik 1995)

,  (Boudraa et al. 2005)

,  (Larkin 2005)

B t

C

D

s x y trace s x y

s x y

s x y j j

  

   

   

            

       

       

 

 

In for the case of a 3D signal, the operators can be expressed by an energy tensor as 

follows [104], [116]: 

        
2

2

2 2 2 2 2 2

2 2 2

22 2

, , , , , , , ,

...

... 2 2 2

2 2 2

s x y z s x y z s x y z s x y z

s s s

x y z

s s s s s s
s

x y z x y x z y z

s s s s s s s s s

x y z x y x z y z

      

   
      

      
      

         

                  
              

                  

2 2 2 2 2 2

2 2 2

...

... 2 2 2
s s s s s s

s
x y z x y x z y z

 
 
  

      
      

         

(4.6) 
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2 2
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2 2

2

2 2
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y z

   
            

   
   

    

   
   

    

     
    

       

     
     
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  

  

11 12 132

21 22 23

31 32 33

s
s

y z

  
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  

 
    

          
 

   
(4.7) 

For a 3D signal, we have the following relations: 
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   

 

11 22 33

11 22 33 12 21 13 31 23 32

, , , ,

, ,

B t

C

s x y z trace s x y z

s x y z

   
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            

           

(4.8) 

 

4.2.2 Discrete 3D Teager Kaiser Energy Operator 

In this section, we recall the mathematical model of discrete 3D Teager Kaiser Energy 

Operator, which was introduced in the article [120]. As far as we know, no one has 

applied this discrete model to fringe signal processing, nor compared it with the 

performance of the algorithm of the continuous 3D Teager Kaiser Energy Operator. In a 

3D context, let us give a local discrete AM-FM signal s(i,j,k) = A(i,j,k) cos (Ωx i + Ωy j + 

Ωz k) where Ωx = ωxxe, Ωy = ωyye, Ωz = ωzze. The variable xe (resp. ye and ze) represents 

the sampling period along the x-axis (resp. the y-axis and z-axis). The discrete counterpart 

of the operator Φ2 denoted by 2

d  applied to the signal s(u) is obtained in the same way, 

by performing the sum of the absolute values of the matrix elements, as follows: 
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                   

   

   

   

 

 

      , , , , ,yzk s i j k s i j k

    
(4.9) 

Where sx(i,j,k), sy(i,j,k) and sz(i,j,k) represent the first order derivative along x (resp. y and 

z). The parameter sxy(i,j,k) represents the second order derivatives according to x and y 

(resp. sxz(i,j,k) and syz(i,j,k) ). The first part of (4.8) corresponds to the 2D discrete energy 

operator described in by Maragos and Bovik [121] and is identical to discrete energy 

operator developed in [122] for digital image edge detection. 

Consider a 3-dimensional an AM–FM signal defined by: 

     , , , , cos

where  ;  ;

x y z
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The variable xe (resp. ye and ze) represents the sampling period along the x-axis (resp. the 

y-axis and z-axis). The assumption that the amplitude A(i,j,k) varies more slowly than the 

carrier signal cos (Ωx i + Ωy j + Ωz k), (locally constant), yields immediately: 
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(4.11) 

Finally, a discrete version of the C2TKEO, where the amplitude A(i,j,k)  is locally 

constant, is given by: 
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(4.12) 

The same discrete gradient approximations and recurrence formula lead to: 
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(4.13) 

Thus (2) and (3) provide an estimation of the envelope. Note that using the formula (2) or 

(3), one can directly demodulate a local AM signal, provided that the factor |sin Ωx| + |sin 
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Ωy| + |sin Ωz| equals one. According to this remark, there are particular values of 

(ωx,ωy,ωz) and (xe,ye,ze) for which we expect more efficient demodulations. Finally, 

applying the transforms to the partial derivatives of an AM signal leads to the following 

results: 
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(4.14) 

The previous equations provide flexible ways to detect the carrier frequencies and the 

envelope, such as:  
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4.3 PROCEDURE OF 3D FRINGE PROCESSING  

In general, the techniques of 3D fringe processing developed in this work consist of three 

main steps: (i) pre-processing for offset removal and suppressing the noise, (ii) envelope 

detection and (iii) post-processing in order to determine the measurement results of 

surface height more accurately. In order to describe more clearly this procedure of 3D 

fringe signal processing, we use the measurements on the sample of Graphene, consisting 

of an image stack XYZ of 99 x 338 x 50 pixels. The description of the acquisition data of 

measurements on the Graphene obtained by the microscope system is given in Appendix-

1: Data of Sample. 

 

Fig. 77 Fringe signals of Graphene 

 

a. Pre-processing 

During the acquisition process in CSI, the different sources of signal noise and an 

additive offset component (background) can appear in the fringe signals. In order to 

remove this offset component and the additive noise, it is important to filter out both 
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of them before applying the fringe envelope detection. In CSI, it is common to use a 

prefilter, such as the Global average, Local average or Derivative. In this work, we 

have proposed using the EMD in order to remove the offset component which is 

applied with a denoising filter such as the wiener filter or Savitsky Golay filter. The 

selection of the type of pre-processing technique to perform fringe signal processing 

depends on the nature of the signal, the computation time available and the precision 

of the result required.  

In Fig. 77, the fringe signals from the Graphene can be seen to have an offset 

component which is relatively constant. Through the pre-processing step, we obtain 

the pre-filtered fringe signals of Graphene, as illustrated in Fig. 78. In the figure, it 

can be seen that the background of the fringe signals has been removed and its noise 

reduced.   

 

 

Fig. 78 Pre-filtered fringe signals of Graphene after pre-processing step 

 

b. Envelope Detection 

In 1D fringe signal processing, through the envelope detection technique, we obtain 

the fringe envelope in one dimension (optical axis-z), while in 2D fringe signal 

processing, we can obtain the cross sectional profile of a sample, also known as a B-

scan in optical coherence tomography (two dimensional: lateral axis-x and optical 

axis-z). Meanwhile, in 3D fringe signal processing, we can obtain directly the 3D 
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fringe envelope in volume (three dimensional: lateral axis-x, lateral axis-y and optical 

axis-z). Fig. 79 shows the volume of amplitude A(x,y,z) of fringe signals obtained 

using 3D fringe envelope detection. 

 

Fig. 79 The volume of amplitude A(x,y,z) of fringe signals obtained using 3D fringe 

envelope detection 

 

c. Post-processing 

In the case of noisy fringe signals, the fringe patterns can still appear in the resulting 

fringe envelope even though a pre-filtering process has been used before applying the 

fringe envelope detection. For this reason, a smoothing filter such as a cubic spline is 

used to suppress the fringe patterns on the envelope, hence allowing an improvement 

in the accuracy of the envelope peak detection. The peak position obtained is then 

used as an initial value along with the neighbourhood at the peak for the next process, 

i.e. Gaussian fitting. The curve fitting method using Gaussian fitting is implemented 

in order to determine more precisely the envelope peak and to improve the axial 

sensitivity. 
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Fig. 80 Improvement results of 3D envelope detection using post-processing 

 

Then, the final step of peak detection of the fringe envelope along the optical axis z at 

each point (x,y) along lateral axis is required since its peak represents the surface position 

of the sample. Fig. 81 shows the surface extraction of a sample of Graphene obtained 

using 3D fringe signal processing. 
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Fig. 81 Surface extraction of a sample of Graphene obtained using 3D fringe signal 

processing 

 

4.4 PERFORMANCE COMPARISON OF ENVELOPE 
DETECTION USING 1D, 2D, 3D FRINGE PROCESSING  

Some simulations have been performed using a Matlab program in order to compare the 

performance of the envelope detection techniques using the Z-scan technique (1D Fringe 

Processing), XZ-scan technique (2D Fringe Image Processing), and XYZ-scan technique 

(3D Fringe Processing). 

The synthetic surface and the associated fringe signals we have used in this 

simulation to test all the 1D, 2D, 3D Fringe Processing algorithms is based locally on the 

general model expressed by equation (1) along the optical axis Z, with a 40 nm sampling 

step, for each lateral position X. The resulting XYZ image of the synthetic surface is 

shown in Fig. 82. The synthetic surfaces and the associated fringe signals represent a flat 

and a wavy transparent layer on a substrate i.e, two surfaces. An additive non-linear offset 

and Gaussian noise are added onto this synthetic data (10% and 20%) which commonly 

appear in the fringe signal during the acquisition process and result in a reduced precision 

of the surface measurement.   
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 82 Synthetic surface (XYZ image) 256 x 256 x 25 pixel and it’s fringe signals: (a), 

(c), (e) flat transparent layer and (b), (d), (f) wavy transparent layer. 

 

Fig. 83 and Fig. 84 show the example of the results of signal processing for the 

flat and wavy transparent layers. Fig. 83(a) and Fig. 84(a) show the fringe envelope 

obtained, while Fig. 83(b) and Fig. 84(b) show the surface extracted by performing signal 

processing using 3D fringe processing. Meanwhile, Fig. 85 shows the results of surface 
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extraction obtained using 1D, 2D, and 3D fringe processing on a transparent and wavy 

synthetic fringe signal. 

 

 

(a) 

 

(b) 

Fig. 83 Signal processing analysis for synthetic flat transparent surface 



 

119 

 

 

 

(a) 

 

(b) 

Fig. 84 Signal processing analysis for synthetic wavy transparent surface 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 85 Surface extracted obtained using: (a) and (b) Z-scan Technique (1DTKEO), (c) 

and (d) XZ-scan Technique (2DTKEO), (e) and (f) XYZ-scan Technique (3DTKEO). 

 

Based on Fig. 86, the qualitative performance comparison for obtaining the fringe 

envelope can be observed for the different types of fringe signal processing. As illustrated 

in the figure, it can be observed that the fringe envelope obtained using 2D and 3D fringe 

processing (taking into account the spatial neighbourhood) is better than 1D fringe 

processing. The shape of the envelope obtained using 2D and 3D fringe signal processing 
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is closer to a Gaussian function than with 1D fringe signal processing. This result makes 

it easier to determine the peak of envelope more precisely. 

 
(a) 

 
(b) 

 
(c) 

Fig. 86 1D Fringe envelope obtained using (a) 1DTKEO, (b) 2DTKEO, (c) 3DTKEO 

 

Table 11 Performance Comparison of Envelope Detection using 

1D TKEO, 2D TKEO and 3D TKEO (nm) 

Pre- 

filt. 

Suppress the offset: EMD 

Suppress the noise: Savitzky-Golay filter 

Env. 

Det. 

Z-Scan Technique 

(1D Fringe Processing 

using 1DTKEO) 

XZ-Scan Technique 

(2D Fringe Processing 

using 2DTKEO) 

XYZ-Scan Technique 

(3D Fringe Processing 

using 3DTKEO) 

Post-

filt. 

Smooth the amplitude envelope using cubic smoothing spline 

Correct the peak curve using Gaussian estimation and interpolation 

mean absolute error (nm) 

noise() 1
st
 surf. 2

nd
 surf. 1

st
 surf. 2

nd
 surf. 1

st
 surf. 2

nd
 surf. 

flat transparent layer 

10% 0.71  4.55  0.52  3.94  0.33  1.47  

20% 2.05  8.75  1.39  8.19  0.41  3.49  

wavy transparent layer 

10% 3.51  8.63  3.10  6.41  1.87  2.91  

20% 6.08  18.17  5.51  13.06  2.42  4.83  
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Table 11 summarizes the results of the performance comparison of fringe signal 

processing using 1D TKEO, 2D TKEO and 3D TKEO. Based on the table, we observe 

that the fringe signal processing which takes into account the spatial neighbourhood (2D, 

3D) has the advantage of better measurements in the terms of precision. This can be 

observed by the smaller mean absolute error value. The smaller is the value of this mean 

absolute error, the better is the performance of the algorithm, in terms of precision.   

4.5 EVALUATION OF THE MEASUSUREMENT ACCURACY 
USING STEP HEIGHT STANDARD 

For further evaluation of the developed algorithm of continuous 3DTKEO, the 

measurement accuracy is calibrated using a calibration standard, i.e. Step Height Standard 

(SHS). These standards are common used for measurement calibration of mechanical or 

optical profilers, including interference microscopy. For the traceability of the standard, it 

is certified by a National Metrology Institute (NMI). The feature of SHS that we used for 

this calibration is the step height parameter. In this work, we used a step height standard 

fabricated by VLSI Standard Inc, consisting of a 25 mm x 25 mm x 3 mm and has step 

height value of 1.7803 ± 0.011 µm. Fig. 87 shows the camera image of the step-height 

standard (VLSI Standard Inc.). 

 

Fig. 87 Camera image (XY slice) of the step-height standard (VLSI Standard Inc.) 

 

For the calibration, three different microscopes in the IPP team were used to 

provide measurements for performing the technique of 3D fringe processing. They are the 

modified Leitz-Linnik microscope, the new Fogale microscope ("Michelin"), and the 
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modified (immersion) Fogale microscope. The description of acquisition data of the 

measurements on the SHS sample obtained by the microscope system is given in 

Appendix-1: Data of Sample.    

a. Measurement results obtained by the Leitz-Linnik microscope 

 

Fig. 88 Fringe signal processing of Step Height Standards (SHS) by the modified Leitz-

Linnik microscope 

 

 

Fig. 89 Surface extracted of the Step Height Standards (SHS) obtained using 3D fringe 

signal processing on measurements from the modified Leitz-Linnik microscope 
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Fig. 90 Line profile of the Step Height Standards (SHS) obtained using 3D fringe signal 

processing on measurements with the modified Leitz-Linnik microscope 

 

 

b. Measurement results obtained by the new Fogale microscope ("Michelin") 

 

Fig. 91 Fringe signal processing of the Step Height Standards (SHS) from measurements 

on the new Fogale microscope ("Michelin") 
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Fig. 92 Surface extracted of the Step Height Standard (SHS) obtained using 3D fringe 

signal processing from measurements with the new Fogale microscope ("Michelin") 

 

 

Fig. 93 Line profile of the Step Height Standards (SHS) obtained using 3D fringe signal 

processing from measurements with the new Fogale microscope ("Michelin") 
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c. Measurement results obtained by the "immersion" Fogale microscope 

 

Fig. 94 Fringe signal processing of the Step Height Standard (SHS) from measurements 

with the "immersion" Fogale microscope 

 

 

Fig. 95 Surface extracted of the Step Height Standard (SHS) obtained using 3D fringe 

signal processing on measurements with the "immersion" Fogale microscope 
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Fig. 96 Line profile of the Step Height Standard (SHS) obtained using 3D fringe signal 

processing on measurements with the "immersion" Fogale microscope 

 

Table 12 Calibration results of 3D fringe signal processing (3D TKEO) using 

Step Height Standards (SHS) 

Microscope type 

Step Height 

Standard 

(µm) 

Measurement results 

(µm) 

Error 

(µm) 

Leitz-Linnik Mic. 

1.7803 ± 0.011 

1.79 0.009 

“Michelin” Fogale 

Mic. 
1.778 0.002 

“Immersion” Fogale 

Mic. 
1.776 0.004 

 

Table 12 and Fig. 97 show the calibration results of 3D fringe signal processing 

(3D TKEO) using the Step Height Standard (SHS). Based on the table, we observe that 

the measurement error generated by the Leitz-Linnik microscope, the new Fogale 

(Michelin) Microscope, and the "immersion" Fogale microscope using 3D fringe signal 

processing is still below the tolerance limit of the Step Height Standard (SHS) error, 

having a value of 0.011 µm.  The results show that the 3D fringe signal processing (3D 

TKEO) algorithm developed is compatible with the 3D microscopes in the IPP team and 

give accurate results.  



 

128 

 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 97 The measured step height obtained using: (a) Leitz-Linnik microscope; (b) 

"Michelin" Fogale Microscope; (c) "immersion" Fogale microscope 
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4.6 PERFORMANCE OF 3D FRINGE PROCESSING ON 
DIFFERENT REAL SAMPLES 

We have also applied the algorithm to other real data, i.e. DOE (Diffractive Optical 

Elements), Resin on Silicon, Cable and Rock. The description of acquisition data of the 

mentioned samples obtained by the microscope system is given in Appendix-1: Data of 

Sample. 

a. DOE (80x 512 x 40) 

 
Fig. 98 Fringe signals of DOE (Diffractive Optical Elements) 

 

 

 
Fig. 99 Surface extraction of a sample of DOE (Diffractive Optical Elements) obtained 

using 3D fringe signal processing 
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These first results on a real sample, in this case a DOE, show very good 

measurement, indicated by the surface being continuous and containing less unmeasured 

points.  

b. Resin on Si (166 x 908 x 20) 

 
Fig. 100 Fringe signals of  Resin on Silicon 

 

 

 
(a) 

 
(b) 

Fig. 101 (a) Surface extraction of a sample of Resin on Silicon obtained using 3D fringe 

signal processing and (b) the line profile  
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In the case of the Resin on Silicon, the measurement is particularly successful, 

indicated by the improved measurement at the edges of the resin layer.  

c. Cable (669 x 100 x 100) 

 
Fig. 102 Fringe signals from measurements on a Cable 

 

 

 

Fig. 103 Surface extraction of a sample of Cable obtained using 3D fringe signal 

processing 

 

In the case of the Cable, the measurement using 3DTKEO also show very good 

result, indicated by the surface being continuous and containing less unmeasured points. 
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d. Rock (322 x 256 x 256) 

 
Fig. 104 Fringe signals of measurements on a Rock surface 

 

 

 

Fig. 105 Surface extraction of a sample of Rock obtained using 3D fringe signal 

processing 

In the case of the Rock surface, this is the most difficult surface to measure 

precisely because of the present of many step and possibly transparent layers. The 

measurements using 3DTKEO also show very good results, indicated by the surface 
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being continuous and containing less unmeasured points than if we had measured with the 

classical algorithm. 

4.7  PERFORMANCE COMPARISON OF 3D FRINGE 
PROCESSING USING CONTINUOUS 3DTKEO AND 
DISCRETE 3DTKEO 

In the previous section, we have described the developed mathematical model of discrete 

3DTKEO in order to analyse directly the stack image of the fringe signal. It is obvious 

that we hope this discrete approach of 3DTKEO will give the advantageous in terms of 

computational time. In this section, we report the study of the application of the discrete 

3DTKEO on fringe signal processing in a comparison with the results from the 

continuous 3DTKEO. For this purpose, we use a real data sample, i.e. measurements 

made on the Cable, which has the fringe signals, as illustrated in Fig. 106.   

 
(a) 

 
(b) 

Fig. 106 (a) Fringe image of a Cable and (b) its fringe profile in 1D  
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As illustrated in Fig. 106, it seems that before applying the envelope detection, the 

pre-processing step is needed in order to remove the offset and to suppress the noise.  Fig. 

107 shows the pre-filtered fringe image and its fringe profile in 1D after the pre-

processing step.   

 
(a) 

 
(b) 

Fig. 107 Prefiltered fringe image of a measurements from the Cable after the pre-

processing step and (b) its prefiltered fringe profile in 1D 

 

The following shows the comparison of the results of the fringe analysis between 

the continuous 3DTKEO and discrete 3DTKEO algorithms: 

a. Fringe envelope detection 

Fig. 108 shows the position of the fringe envelope obtained using the Continuous 

3DTKEO and Discrete 3DTKEO. As illustrated in the figure, both of the fringe 

envelopes obtained using the algorithms provide satisfactory results with good 

contrast, the fringe envelopes being clearly observable in the images. But if the 

amplitude of the envelopes is considered, the fringe envelope obtained using the 

Discrete 3DTKEO is found to have a better contrast than that using the Continuous 
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3DTKEO, as shown in Fig. 109. As illustrated in the figure, the fringe envelope 

amplitude has twice the fringe envelope amplitude obtained using the Continuous 

3DTKEO. Then by further observation, we found that very small artefacts (almost 

unobservable by eye) appear on the fringe envelope obtained using the Discrete 

3DTKEO, as illustrated by the red rectangular in Fig. 108(b). In comparison, there 

are no artefact that appear in the fringe envelope obtained using the Continuous 

3DTKEO, as illustrated by the red rectangular in Fig. 108(a).    

 

Fig. 108 XZ fringe envelope obtained using (a) Continuous 3DTKEO and (b) 

Discrete 3DTKEO 

 

Fig. 109 Comparison fringe envelope profile in 1D obtained using (a) Continuous 

3DTKEO and (b) Discrete 3DTKEO 
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b. Surface extraction 

As illustrated in Fig. 109, it can be observed that both of the algorithms provide 

fringe envelopes which have the structure of a Gaussian function. This gives the 

advantage in the process of peak detection to indicate the surface height. The 

difference between the envelopes is the amplitude. Further studies are required to 

find out whether this difference in amplitude could lead to a difference information 

of the surface height. The following shows the results of surface extraction obtained 

using the algorithms. Fig. 110 shows the three dimensional profile of the surface of 

the Cable sample obtained using (a) Continuous 3DTKEO and (b) Discrete 

3DTKEO, while Fig. 111 shows the image version of the surface profile in two 

dimensions.     

 
(a) 

 
(b) 

Fig. 110 3D Surface extraction obtained using (a) Continuous 3DTKEO and (b) Discrete 

3DTKEO 
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(a) 

 
(b) 

Fig. 111 Image of surface profile obtained using (a) Continuous 3DTKEO and (b) 

Discrete 3DTKEO 

 

 

Fig. 112 Line profile comparison of Cable surface obtained using (a) Continuous 

3DTKEO and (b) Discrete 3DTKEO 

  

Fig. 112 shows the line profiles of the surface of the Cable sample obtained using (a) 

Continuous 3DTKEO and (b) Discrete 3DTKEO from the positions of the red lines 

in the images of the surface profile in Fig. 111. Based on this figure, it can be 

observed that the characteristics/structure of the surface profile obtained using the 

Continuous 3DTKEO (blue line) and Discrete 3DTKEO (red line) are relatively 

similar. Then the results are compared quantitatively by calculating the deviation of 

the surface profiles, as shown in Fig. 113. The average value of the deviation for this 

line profile is 9.9 nm (with a sampling step of 90 nm).           
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Fig. 113 Deviation value
2
 of surface extraction obtained using (a) Continuous 3DTKEO 

and (b) Discrete 3DTKEO 

 

c. Computation time 

As regards the computation time of the 3D fringe signal processing, the Discrete 

3DTKEO has the advantage of being more compact computationally due to the partial 

differential variables required for the energy computation being already provided in the 

signal itself. For the application of the algorithms on the Cable sample, this results in the 

Discrete 3DTKEO taking 16.53 s compared with the Continuous 3DTKEO taking 246.19 

s in the context of a fringe signal with a data size of 251701100 pixels. The Discrete 

3DTKEO is therefore far better in terms of computational time than the Continuous 

3DTKEO.  

 

                                                 
2
 Deviation is the difference value of surface height obtain using Continuous 3DTKEO and Discrete 

3DTKEO.  
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4.8 CONCLUSION 

An application of the 3D-Teager Kaiser Energy Operator (3DTKEO), which is developed 

based on the multi-dimensional energy operator has been carried out for fringe analysis in 

CSI. Through simulation using a synthetic fringe signal, we have demonstrated the 

competitiveness of 3DTKEO performance, compared with the 1D and 2D approaches. 

Moreover, we have also performed the algorithm on real data, i.e. a step height standard 

(VLSI Standard Inc.) for measurement calibration in order to evaluate the accuracy. 

Based on the results, we observe that the error rate of our measurement on a calibration 

standard is still below the tolerance limit of the Step Height Standards (SHS) error (< 

0.011 µm). In addition, we have tested the algorithm on different samples, such as 

Graphene, DOE (Diffractive Optical Elements), Resin on Silicon, Cable and Rock. The 

algorithm works very satisfactorily and provides very good surface profiles of the 

samples. On other hand, we have also developed and applied the discrete version of 

3DTKEO in order to analyse directly the 3D fringe signal. Compared with the continuous 

3DTKEO, we found that the discrete approach of 3DTKEO gives the additional 

advantage of computational time, while the continuous 3DTKEO is more robust to noise 

than the discrete 3DTKEO.     

4.9 RÉSUMÉ DU CHAPITRE 4 

Dans ce chapitre, nous présentons l'étude de l'application de 3D-Teager Kaiser Energy 

Operator (3DTKEO), qui est développé basé sur l'opérateur d'énergie multi-dimensionnel. 

Grâce à une simulation utilisant un signal de frange synthétique, nous avons évalué la 

robustesse de la performance 3DTKEO dans le traitement des signaux des franges, et 

comparé les résultats à l'approche 1D et 2D. De plus, nous avons également appliqué 

l'algorithme sur des données réelles, c'est-à-dire un étalon de hauteur (VLSI Standard 

Inc.) afin d'évaluer la précision de la mesure. De plus, nous enrichirons le domaine 

d'étude en testant l'algorithme sur différents échantillons, tels que le graphène, les DOE 

(Diffractive Optical Elements), la résine sur silicium, le câble et la roche. 

Les 2DTKEO et 3DTKEO continus peuvent être développés comme une version 

étendue de TKEO monodimensionnel. Les différents opérateurs qui étendent les signaux 

TKEO mono-dimensionnels aux signaux 2D ont été développés par Maragos et Bovik en 

1995, Boudraa et al. en 2005, et Larkin en 2005. L'application de l'opérateur à un signal 

AM-FM correspond au carré du produit de la fréquence et de l'amplitude du signal 2D 
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d'entrée, ce qui est utile pour la démodulation du signal AM-FM. Dans le cas d'un signal 

TKEO à 3D tridimensionnel, les opérateurs peuvent être exprimés par un tenseur 

d'énergie: 

        
2

, , , , , , , ,s x y z s x y z s x y z s x y z        

En outre, nous avons également introduit le modèle mathématique de discret 3D 

Teager Kaiser Energy Operator dans le même domaine de traitement des signaux des 

franges en CSI. Dans un contexte 3D, un signal AM-FM discret local a la forme  s(i,j,k) = 

A(i,j,k) cos (Ωx i + Ωy j + Ωz k) où Ωx = ωxxe, Ωy = ωyye, Ωz = ωzze. La variable xe 

(respectivement ye et ze) représente la période d'échantillonnage le long de l'axe des x 

(respectivement l'axe des y et l'axe des z). La contrepartie discrète de l'opérateur Φ2 notée 

par 2

d  appliquée au signal s(u) est obtenue de la même manière, en effectuant la somme 

des valeurs absolues des éléments de la matrice. 

             

             

               

2 2

2

2
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2 , , , , , , , , 2 , , , , , , , ,

d

x y xy

x z xz y z yz

s x y z s i j k s i j k s i j k s i j k s i j k s i j k

s i j k s i j k s i j k s i j k s i j k s i j k s i j k

s i j k s i j k s i j k s i j k s i j k s i j k s i j k s i j k

          

     

   

 

 Pour l'évaluation de l'algorithme développé de 3DTKEO continu en termes de 

précision, la mesure 3D est étalonnée en utilisant une norme d'étalonnage, c'est-à-dire une 

norme de hauteur de pas (SHS). Ces normes sont couramment utilisées pour l'étalonnage 

de mesure de profileur mécanique ou optique, y compris la microscopie interférentielle. 

Pour la traçabilité de la norme, il est certifié par l'Institut National de Métrologie. La 

caractéristique de SHS que nous avons utilisée pour cet étalonnage est le paramètre de 

hauteur de pas. Dans ce travail, nous avons utilisé une norme de hauteur de pas qui est 

fabriquée par VLSI Standard Inc, consistant en 25 mm x 25 mm x 3 mm, et qui a une 

valeur de hauteur de pas de 1,7803 ± 0,011 μm. Sur la base des résultats de l'étalonnage 

utilisant notre traitement de signal de frange 3D développé, nous observons que le taux 

d'erreur de notre mesure sur un étalon est toujours en dessous de la limite de tolérance de 

de l'erreur SHS (< 0.011 μm). 

D'autre part, nous avons également développé et appliqué la version discrète de 

3DTKEO afin d'analyser directement le signal de frange 3D. L'intérêt espéré de cette 

approche discrète de 3DTKEO est un avantage en termes de temps de calcul. Dans ce 
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chapitre, nous rapportons l'étude de l'application de 3DTKEO discrète sur le traitement 

des signaux de franges, qui est comparée à la 3DTKEO continue. A titre de comparaison, 

nous utilisons des données réelles, c'est à dire un câble, comme échantillon. Nous 

commençons par l'observation de la topographie de l'enveloppe des franges obtenue en 

utilisant le 3DTKEO continue et le 3DTKEO discret. Les enveloppes de franges obtenues 

en utilisant les deux algorithmes fournissent des résultats satisfaisants qui ont un contraste 

élevé, les enveloppes de frange étant clairement visibles sur l'image. En regardant de plus 

prêt, l'enveloppe de franges obtenue en utilisant le 3DTKEO discret a un meilleur 

contraste que ce du 3DTKEO continu. L'amplitude d'enveloppe de frange a deux fois 

l'amplitude de l'enveloppe de frange obtenue en utilisant le 3DTKEO continu. Ensuite, 

avec une observation plus approfondie, nous avons constaté la présence de petits artéfacts 

(presque inobservables) qui apparaissent dans l'image obtenue en utilisant le 3DTKEO 

discret. Par contre, aucun artefact apparaît sur l'image obtenue en utilisant le 3DTKEO 

continue. 

Ensuite, nous observons les profils de surface obtenus par les deux algorithmes. 

Basé sur de ceux-ci, nous avons observé que la caractéristique / structure du profil de 

surface obtenue en utilisant le 3DTKEO Continu et Discret sont relativement similaires. 

Puis nous avons comparé les résultats quantitativement en calculant la déviation des 

profils de surface. La valeur moyenne de la déviation pour ce profil de ligne est de 9,9 nm 

(avec un pas d'échantillonnage de 90 nm). En ce qui concerne le temps de calcul du 

traitement du signal des franges 3D, le 3DTKEO discret a l'avantage d'être plus compact 

en termes de calcul. Par exemple, en appliquant les algorithmes sur des mesures d'un 

échantillon de câble, le 3DTKEO discret prend 16,53 s alors que le 3DTKEO Continu 

prend 246,19 s pour un signal de frange avec une taille de données de 251701100 

pixels. Le 3DTKEO discret est bien meilleur en termes de temps de calcul que ce du 

3DTKEO continu.  
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GENERAL CONCLUSION 
 

In this thesis, we have presented the study of the use of Teager Kaiser Signal processing 

for fringe analysis in CSI. The main aim of the research project was to develop new n-D 

approaches (1D, 2D, 3D) which are suitable for improved characterization of more 

complex surfaces and transparent layers using white light interferometry. 

We begin our study by evaluating the performance of envelope detection using the 

1D Teager Kaiser Energy Operator, which is compared to other techniques. These 

methods consist of the Fourier Transform (TF), wavelet and the FSA (Five-Sample-

Adaptive) algorithm. We have developed a simulation program (in MATLAB) that allows 

the comparison of the performance of the different methods using a synthetic fringe 

signal (a synthetic transparent layer). Further comparison was then carried out using real 

data, i.e. the fringe image of a resin layer on Silicon. In addition, we also evaluated the 

performance of different types of pre-processing in order to remove the offset component 

and suppress the noise in the fringe analysis. This study yields the following conclusions: 

 The combination of EMD and Savitzky-Golay filters provides the best performance 

for suppressing the noise and the offset component while maintaining the original 

signal intensity.  

 CWT and TKEO are both competitive for providing surface extraction: 

- TKEO is slightly better in terms of computational time. 

- CWT is slightly better for the wavy transparent layer, but TKEO is quicker in 

terms of computational time.  

- TKEO is more competitive than CWT for resolving between two close layers. 

After a study of 1D fringe signal processing, we implement the 2D approach using 

Teager Kaiser for fringe analysis. The study of the robustness of 2D fringe processing in 

CSI has been carried out for the characterization of a transparent Mylar polymer film. We 

have demonstrated the ability of 2D approaches to compete with some classical methods 

(1D approaches) used in the field of interferometry, in terms of robustness. These results 

demonstrate that the XZ fringe envelope extracted by the XZ-scan technique provides 

more satisfactory results than the Z-scan approach in revealing the internal structures and 

the rear surface. The technique also allows an improvement in the details in the XZ 

images as well as more accurate measurements of the thickness of the polymer film.          
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The final part of this thesis work reports an application of the 3D-Teager Kaiser 

Energy Operator (3DTKEO), based on the multi-dimensional energy operator for fringe 

analysis in CSI. Through a simulation using a synthetic fringe signal, we have 

demonstrated the competitiveness of the 3DTKEO performance, compared with the 1D 

and 2D approaches. Furthermore, we tested the algorithm on real data, i.e. a step height 

standard (VLSI Standard Inc.) for measurement calibration in order to evaluate the 

accuracy. Based on these results, we observed that the error rate of the measurements on a 

calibration standard is still below the tolerance limit of the Step Height Standards (SHS) 

error (< 0.011 µm). In addition, we have tested the algorithm on different samples, such 

as Graphene, DOE (Diffractive Optical Elements), Resin on Silicon, Cable and Rock. The 

algorithm works very well and provides satisfactory surface profiles of the samples. On 

the other hand, we have also developed and applied the discrete version of 3DTKEO in 

order to analyse directly the 3D fringe signal. Comparing this with the continuous 

3DTKEO, we found that the discrete approach of 3DTKEO gives the advantage of shorter 

computational time, while the continuous 3DTKEO is more robust to noise than the 

discrete 3DTKEO.     
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CONCLUSION GÉNÉRALE 
 

Dans cette thèse, nous avons présenté l'étude de l'utilisation du traitement du signal de 

Teager Kaiser pour l'analyse des franges dans CSI. L'objectif principal du projet de 

recherche était de développer de nouvelles approches n-D (1D, 2D, 3D), qui conviennent 

à la caractérisation améliorée de surfaces plus complexes et de couches transparentes 

utilisant l'interférométrie à lumière blanche.  

Nous commençons notre étude en évaluant la performance de la détection 

d'enveloppe en utilisant l'opérateur 1D Teager Kaiser Energy, qui est comparé à d'autres 

techniques. Ces méthodes consistent en la Transformée de Fourier (TF), ondelettes, la 

FSA (Five-SampleAdaptive), Opérateur d'énergie de Teager Kaiser (TKEO). Nous avons 

développé un programme de simulation de franges blanches (sur MATLAB) qui permet 

de comparer les résultats de mesures synthétiques (une couche transparente) effectués par 

différentes techniques de traitement de signal. D'autre comparaison a ensuite été réalisée 

en utilisant des données réelles, c'est-à-dire l'image de frange de la couche de résine sur 

Silicium. En outre, nous avons également évalué les performances de différents types de 

pré-traitement afin de supprimer la composante de décalage et supprimer le bruit dans 

l'analyse des franges. Cette étude conduit les conclusions suivantes: 

 La combinaison des filtres EMD et Savitzky-Golay permet d'obtenir les meilleures 

performances pour supprimer le bruit et supprimer le composant de décalage tout en 

maintenant l'intensité du signal original. 

 CWT et TKEO sont compétitifs pour fournir l'extraction de surface: 

- TKEO est légèrement meilleur en termes de temps de calcul. 

- CWT est légèrement meilleur pour la couche transparente ondulée, mais TKEO 

est plus rapide en termes de temps de calcul. 

- TKEO est plus compétitif que CWT pour résoudre entre deux couches proches. 

Après une étude du traitement du signal frange 1D, nous implémentons l'approche 

2D en utilisant Teager Kaiser pour l'analyse des franges. L'étude de la robustesse du 

traitement des franges 2D en CSI a également été réalisée pour la caractérisation d'un film 

de polymère Mylar transparent. Nous avons démontré la capacité des approches 2D 

Teager Kaiser à concurrencer certaines méthodes classiques (approches 1D) utilisées dans 

le domaine de l'interférométrie, en termes de robustesse. Ces résultats démontrent que 
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l'enveloppe de frange XZ extraite par les approches 2D Teager Kaiser donne des résultats 

plus satisfaisants que l'approche 1D en révélant les structures internes et la surface arrière. 

La technique permet également une amélioration des détails dans les images XZ ainsi que 

des mesures plus précises de l'épaisseur du film polymère. 

La dernière partie de ce travail de thèse rapporte une application de 3D Teager 

Kaiser Energy Operator (3DTKEO), basée sur l'opérateur d'énergie TK multi-

dimensionnel. pour l'analyse des franges dans CSI. Grâce à une simulation utilisant un 

signal de frange synthétique, nous avons démontré la compétitivité de la performance de 

3DTKEO par rapport aux approches 1D et 2D. De plus, nous avons testé l'algorithme sur 

des données réelles, c'est-à-dire une norme de hauteur de pas (VLSI Standard Inc.) pour 

l'étalonnage de mesure afin d'évaluer la précision. Sur la base de ces résultats, nous avons 

observé que le taux d'erreur des mesures sur une norme d'étalonnage est encore inférieur à 

la limite de tolérance de l'erreur de norme de hauteur de pas (<0,011 μm). De plus, nous 

avons testé l'algorithme sur différents échantillons, tels que le graphène, les DOE 

(Diffractive Optical Elements), la résine sur silicium, le câble et la roche. L'algorithme 

fonctionne très bien et fournit des profils de surface satisfaisants des échantillons. D'autre 

part, nous avons également développé et appliqué la version discrète de 3DTKEO afin 

d'analyser directement le signal de frange 3D. En comparant cela avec le 3DTKEO 

continu, nous avons trouvé que l'approche discrète de 3DTKEO donne l'avantage d'un 

temps de calcul plus court, tandis que le 3DTKEO continu est plus robuste au bruit que le 

3DTKEO discret. 
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APPENDIX-1: DATA OF SAMPLE 
Resin on Si (Chapter 2) 

Sample  = Resin on Si 

 

Piezo parameters 

Nb steps = 111 

step height =   0,090 µm 

Dynamic range =  10,000 µm 

 

 

Image parameters 

X size  = 570   Pixels 

Y size  = 111   Pixels 

Img size X =  64,473 µm 

Img size Y =  12,578 µm 

Img size Z = 1 nm 

 

 

Optical parameters 

NA  =   0,850 µm 

Pixel X  =   0,113 µm 

Pixel Y  =   0,113 µm 

Lateral Resol =   0,438 µm 

Lambda eff =   720,0 nm 

Lambda eff/8 =    90,0 nm 

Camera  = Basler AVA 1000 Couleur 

Objective = x50 Linnik 

Filter  = 350 - 1000 nm 

Zoom  = x1,0 

 

Mylar Polymer film (Chapter 3) 

The system developed to carry out the experiment is an adapted Leitz-Linnik interference 

microscope composed of x50 objectives (NA = 0.85). The image acquisition is performed with a 

Basler avA1000-100gc GigE CCD camera having 1024x1024 pixels and a Giga Ethernet 

connection. The sample is mounted on a piezoelectric table (PIFOC, from PI) for Z-scanning. The 

piezo actuator is controlled in a closed loop with a capacitive position sensor, having a position 

sensitivity of 1 nm. Acquisition and processing is carried out on a PC equipped with an Intel® 

Xeon® CPU processor (2.40 GHz, 8 Go RAM) with a Windows 7 (64 bits) operating system. 

 

Graphene FLG ABL ETCH 20 ml (Chapter 4) 

Sample  = Graphene FLG ABL ETOH 20 ml 

 

Piezo parameters 

Nb steps = 111 

step height =   0,090 µm 

Dynamic range =  10,000 µm 

 

Image parameters 

X size  = 1352   Pixels 

Y size  = 111   Pixels 

Img size X = 181,893 µm 
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Img size Y =  53,761 µm 

Img size Z = 1 nm 

 

 

Optical parameters 

NA  =   0,850 µm 

Pixel X =   0,135 µm 

Pixel Y =   0,134 µm 

Lateral Resol =   0,438 µm 

Lambda eff =   720,0 nm 

Lambda eff/8 =    90,0 nm 

Camera = Mono - Prosilica DCAM 1.31 

Objective = x50 Linnik 

Filter  = 350 - 1000 nm 

Zoom  = x1,0 

 

DOE (Chapter 4) 

Sample  = DoE 

 

Piezo parameters 

Nb steps = 78 

step height =   0,090 µm 

Dynamic range =   7,000 µm 

 

 

Image parameters 

X size  = 1024   Pixels 

Y size  = 1024   Pixels 

Img size X = 115,826 µm 

Img size Y = 116,031 µm 

Img size Z = 1 nm 

 

Optical parameters 

NA  =   0,850 µm 

Pixel X  =   0,113 µm 

Pixel Y  =   0,113 µm 

Lateral Resol =   0,438 µm 

Lambda eff =   720,0 nm 

Lambda eff/8 =    90,0 nm 

Camera  = Basler AVA 1000 Couleur 

Objective = x50 Linnik 

Filter  = 350 - 1000 nm 

Zoom  = x1,0 

 

Rock (Chapter 4) 

Sample  = Rock brown 

 

Piezo parameters 

Nb steps = 320 

step height =   0,072 µm 

Dynamic range =  23,000 µm 
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Image parameters 

X size  = 1024   Pixels 

Y size  = 1024   Pixels 

Img size X = 115,826 µm 

Img size Y = 116,031 µm 

Img size Z = 1 nm 

 

 

Optical parameters 

NA  =   0,850 µm 

Pixel X  =   0,113 µm 

Pixel Y  =   0,113 µm 

Lateral Resol =   0,416 µm 

Lambda eff =   580,0 nm 

Lambda eff/8 =    72,5 nm 

Camera  = Basler AVA 1000 Couleur 

Objective = x50 Linnik 

Filter  = Choisi 

Zoom  = x1,0 

 

Cable (Chapter 4) 

Leitz Linnik Cronenbourg 

 

[Informations de la mesure] 

Nombre d'images = 669,000000 

Dynamique (µm) = 60,120000 

Pas du piezo (µm) = 0,090000 

Largeur de l'image (pixels) = 1392 

Hauteur de l'image (pixels) = 1040 

 

Etalon step (Chapter 4) 

Leitz Linnik Cronenbourg 

 

[Informations de la mesure] 

Nombre d'images = 102 

Dynamique (µm) = 9,09 

Pas du piezo (µm) = 0,090000 

Largeur de l'image (pixels) = 1392 

Hauteur de l'image (pixels) = 1040 

 

Etalon step (Chapter 4) 

New Fogale Illkirch 

 

[Informations de la mesure] 

Nombre d'images = 143 

Dynamique (µm) = 10 

Pas du piezo (µm) = 0,070000 

Largeur de l'image (pixels) = 1392 

Hauteur de l'image (pixels) = 1040 
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Lambda effectif (nm) = 560 

Systeme = Fogale Mirau x50 ON 0.55 

 

Etalon step (Chapter 4) 

Old Fogale Cronenbourg 

 

[Informations de la mesure] 

Nombre d'images = 114 

Dynamique (µm) = 9,12 

Pas du piezo (µm) = 0,080000 

Largeur de l'image (pixels) = 1392 

Hauteur de l'image (pixels) = 1140 

Lambda effectif (nm) = 640 

Systeme = Fogale Mirau x40 ON 0.60 
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APPENDIX-2: MULTI-SCALE ROUGHNESS MEASUREMENT 

OF CEMENTITIOUS MATERIALS USING WINDOW RESIZING 

ANALYSIS 

The work during this PhD also involved a contribution to the development of the 

"window re-sizing" technique [123],[124],[125] for comparing the results of 

measurements performed by two different profiling systems (interference microscopy and 

confocal chromatic microscopy). This work was carried out in the context of 

collaboration with the GCE team at ICube. 

1.1 Development of "window resizing" technique 

The usual roughness amplitude parameters are measured, namely Hmm, the peak-valley 

roughness, the difference in height between the highest and lowest measured points,  Ra,  

the arithmetic average of the absolute values of the roughness and Rq, the root mean 

square (RMS) value of the roughness.  

1.2 Sliding window method used 

In order to compare data from both techniques, the average value of these roughness 

parameters (Hmm, Ra and Rq) is calculated at different scales from the data in the form of 

an XYZ matrix using sliding windows XY of increasing size [126],[127].  

 

Fig. 114 Coordinate system used showing basic cell for δ = 1 (in this case giving 3x3 = 9 

points) 

The (x,y,z) coordinates of the measured points are considered on a regular grid as 

defined in Fig. 114 where the crossings of the grid lines correspond to the positions of 
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pixels in the image data. The points are positioned every dx and dy along the x and y axes 

respectively (see Fig. 114) and dx = dy. The height, zi,j, measured at a given pixel 

corresponds to the i
th 

column and j
th 

row. 

A sliding window or cell is defined as a set of points forming a square with a size 

δ, an integer. A cell centred on a point (i,j), contains all of the points from (xi,j − δdx) to 

(xi,j + δdx) and from (yi,j − δdx) to (yi,j + δdx). For example, for δ = 1, the cell contains 9 

points; for δ = 2, the cell contains 25 points, etc. The value of δ is increased up to the 

point where there are less than four cells for averaging the different roughness 

parameters. Each point is centred on a cell having the length of a side equal to 2δdx (Fig. 

114). The points that are too close to the edges where it is not possible to centre a cell of 

the correct size are eliminated. The number of columns and rows used are imax and jmax 

respectviely. 

The values of (zmax − zmin) are calculated for each cell, and then averaged over all of the 

cells, where: 

(zmax)i,j = Max(zn,m),n ∈ [i − δ,i + δ],m ∈ [j − δ,j + δ] 

     (zmin)i,j = Min(zn,m),n ∈ [i − δ,i + δ],m ∈ [j − δ,j + δ]                        (1.1) 

                                                             

The average value of Hmm is then given by: 

       
 

                  
                

      
     

      
     

                                 

(1.2)                                                                 

The average value of Ra is given by: 
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The average value of Rq is given by:    
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Where: 
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With: 

                   
 

       
      

   
     

   
     

                                                                   
(1.6)                                                               

And < . >i,j denotes the average of the quantity (.) within the cell centered at the point 

(i,j). 

 

1.3 Results of roughness measurements 

The results of the roughness measurements of the unpolished samples using SCM and 

CSI are shown in Fig. 115. The CSI results show deep roughness up to 20 µm with large 

grain lateral sizes from µm to tens of µm. The SCM results show that there are larger 

grains up to several hundreds of µm in width. 

 

  

(a) SCM measurement (150 days curing) CSI measurement (165 days curing) 

Fig. 115 Measurement of surface roughness of unpolished samples using SCM and CSI 

 

The results of the average roughness values Hmm and Rq as a function of dx of the 

unpolished samples calculated with the Fortran program (developed by Christophe Fond, 

GCE, ICube) are given in Fig. 116. The plots of the results for the three samples 

measured with SCM overlap each other, showing very similar results. In the same way, 

the results for both the samples measured with CSI are very close to each other over the 

range considered. Comparing both sets of results from the two techniques it can be seen 

that the curves overlap extremely well in the 4 – 12 µm window size region. The 

similarity in the results from the two techniques is most likely due to the fact that in the 

case of the unpolished samples since the surfaces consist mainly of large blocks or grains 
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with relatively smooth facets, the difference between the lateral resolutions of both 

techniques does not affect much the results. For the measurement of large smooth grains, 

the details obtained with both techniques are almost identical. There is a relatively low 

proportion of high lateral spatial frequency information in the measurements, resulting in 

the SCM technique being able to resolve most of the details in a similar manner to that of 

the CSI technique. In addition, the difference (15 days) between the curing times of the 

samples measured with CSI and SCM has no significant influence on the results. 

  

(a) Peak/valley roughness Hmm (b) RMS roughness Rq 

Fig. 116 Variation of different roughness values as a function of window size δdx for 

unpolished cement 
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