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Résumé

La théorie des fonctions des croyances offre des outils puissants pour modéliser et traiter les informations imparfaites. En effet, cette théorie peut représenter l'incertitude, l'imprécision et l'ignorance. Dans ce contexte, les données sont stockées dans des bases de données spécifiques qu'on appelle les bases de données crédibilistes. Une base de donnée crédibiliste a deux niveaux d'incertitudes: (i) l'incertitude au niveau des attributs qui se manifeste à travers des degrés de véracité sur les hypothèses des attributs; (ii) l'incertitude au niveau des tuples représentée par des intervalles de confiance sur l'existence des tuples au sein de la table en question. D'autre part, la base de donnée crédibiliste peut être modélisée sous deux formes: (i) la forme compacte caractérisée par un ensemble d'attributs et un ensemble de tuples; (ii) la forme des mondes possibles représentée par un ensemble de base de données candidates où chaque base candidate est une représentation possible de la base de donnée compacte. Interroger la représentation des mondes possibles est une étape fondamentale pour valider les méthodes d'interrogation sur la base compacte crédibiliste. En effet, un modèle de base de donnée est dit système fort si le résultat de l'interrogation de sa représentaion compacte est équivalent au résultat de l'interrogation de sa représentation des mondes possibles.

Cette thèse est une étude sur les fondements des bases de données crédibilistes. Les contributions sont résumées comme suit: (i) La modélisation et l'interrogation de la base crédibiliste (EDB): Nous mettons en pratique le modèle compacte de la base de données (EDB) en proposant une implémentation objet-relationnelle, ce qui permet d'introduire l'interrogation de ce modèle avec les opérateurs relationnels. D'autres part, nous présentons le formalisme, les algorithmes et les expérimentations d'autres types de rêquetes: les top-k évidentiel et le skyline évidentiel que nous appliquons sur des données réelles extraites de la plateforme Tripadvisor.

(ii) La modélisation de la base de données sous sa forme des mondes possibles: Nous modélisons la forme de mondes possibles de la base de données (EDB) en traitant les deux niveaux d'incertitudes (niveau attributs et niveau tuples).

(iii) La modélisation et l'interrogation de la base de données crédibiliste (ECD): Après avoir prouvé que le modèle des bases de données (EDB) n'est pas un système de représentation fort, nous développons le modèle de la base de données crédibiliste conditionnelle nommée (ECD). Nous présentons le formalisme de l'interrogation sur les deux formes (compacte et mondes possibles) de la base de données (ECD). Finalement, nous discutons les résultats de ces méthodes d'interrogation et les spécificités du modèle (ECD).

Cette thèse inclut cinq chapitres:

Chapitre 1: Les Bases de données imparfaites: Le contexte général

Ce chapitre englobe quelques notions générales reliées au contexte général de notre thèse, à savoir les théories d'imperfection et les bases de données imparfaites. Premièrement, nous présentons les différents types d'imperfection (incertitude, imprécision et inconsistance). Ces types d'imperfection sont illustrés avec des exemples bien détaillés. Après, nous présentons quelques théories d'imperfection, introduites historiquement pour gérer l'imperfection selon ces types. Nous avons choisi la théorie des probabilités, la théorie des possibilités et la théorie des fonctions de croyances. Finalement, nous présentons quelques modèles de bases de données imparfaites basés sur ces théories, qui sont les bases de données probabilistes, les bases de données possibilistes et les bases de données crédibilistes.

Chapitre 2: La théorie des fonctions de croyances Dans ce chapitre, nous présentons quelques concepts de bases reliés à la théorie des fonctions de croyances. Des notions comme les règles de combinaison, l'extension à vide, l'indépendance cognitive et évidentielle sont illustrées avec des exemples détaillés afin de gérer les données modélisées à travers cette théorie.

Chapitre 3: Les bases de données crédibilistes: La forme compacte Ce Chapitre est à propos la forme compacte des bases de données évidentielles (EDB) et il est divisé en trois parties: Dans la première, nous présentons l'unique modèle existant sur les bases de données évidentielles [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF][START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF]Lee, 1992a). Dans la deuxième partie, nous définissons le méta-modèle, ainsi que l'implémentation du modèle des base de données (EDB) [START_REF] Bousnina | Object-relational implementation of evidential databases[END_REF]. Dans la dernière partie, nous nous focalisons sur l'interrogation de la forme compacte de (EDB). En effet, nous rappelons les opérateurs relationnels évidentiels étendus [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF] et nous appliquons l'opérateur de sélection-projection étendu on se basant sur l'algorithme présenté. Finalement, nous discutons deux opérateurs préférentiels; (i) le top-k évidentiel (Bousnina et al., 2017a) qui permet de donner les k meilleurs résultats avec leurs intervalles de confiance et (ii) le skyline évidentiel [START_REF] Elmi | Computing skyline from evidential data[END_REF][START_REF] Bousnina | Skyline operator over tripadvisor reviews within the belief functions framework[END_REF] qui permet de donner les meilleurs résultats qui ne sont pas dominés par aucun autre résultat dans la base de données. Pour appliquer le skyline évidentiel, nous avons collecté des données réelles de la plateforme T ripAdvisor. Ces données ont été traitées et modélisées à travers les outils de la théorie des fonctions des croyances.

Chapitre 4: Les bases de données crédibilistes: La forme des mondes possibles Ce chapitre est à propos la modélisation et l'interrogation des bases de données évidentielles sous la forme des mondes possibles. Premièrement, nous définissons les systèmes de représentation et leurs propriétés. Après, nous présentons le modèle des bases de données évidentielles (EDB) sous sa forme non compacte, c'est à dire, les mondes possibles. La génération des mondes possibles nécessite le traitement de l'incertitude niveau attributs et niveau tuples. En effet, elle se déroule sur trois étapes intermédiaires: (1) la génération des mondes imprécis à partir de la base compacte; (2) la génération des mondes incertains à partir des mondes imprécis; (3) la génération des mondes possibles à partir des mondes incertains. Une fois nous avons les deux représentations équivalentes de la base de données (EDB), nous définissons le processus d'interrogation. Interroger les deux formes permet d'évaluer les méthodes d'interrogation appliquées sur ce modèle afin de déterminer la nature de son système de représentation. Nous avons prouvé, à la dernière partie de ce chapitre, que le modèle (EDB) ne représente pas un système fort.

Chapitre 5: Les bases de données crédibilistes Conditionnelles

Ce chapitre est à propos la modélisation et l'interrogation des bases de données évidentielles conditionnelles, appelées ec-tables. En effet, nous utilisons les points forts des bases de données conditionnelles classiques et ceux de la théorie des fonctions des croyances pour introduire un nouveau modèle de bases de données évidentielles appelé les bases de données évidentielles conditionnelles (ECD). Tout d'abord, nous présentons ce modèle sous ces deux formes: la forme compacte et la forme des mondes possibles. La génération des mondes possibles pour le modèle (ECD) se déroule sur deux étapes intermédiaires: (1) la génération des mondes incertains à partir de la base compacte; (2) la génération des mondes possibles à partir des mondes incertains. A travers ces étapes nous traitons l'incertitude niveau tuple. Une fois nous avons les deux représentations nous présentons le processus d'interrogation et nous appliquons l'opérateur de sélection-projection. En effet, les méthodes d'interrogation sont utilisées pour vérifier l'équivalence entre les réponses issues de chacune des deux représentations. En plus, nous montrons que chaque base de données crédibiliste (EDB) peut être transformée en base de données crédibiliste (ECD). Cette transformation peut être un moyen de rendre le modèle (EDB) un système de représentation fort. Finalement, nous discutons les spécificités des bases de données conditionnelles qui présente une base solide pour la définition d'un système de représentation fort dans le cadre crédibiliste.

Abstract

The theory of belief functions (a.k.a, the Evidence Theory) offers powerful tools to model and handle imperfect pieces of information. Thus, it provides an adequate framework able to represent conjointly uncertainty, imprecision and ignorance. In this context, data are stored in a specific database model called evidential databases. An evidential database includes two levels of uncertainty: (i) the attribute level uncertainty expressed via some degrees of truthfulness about the hypotheses in attributes; (ii) the tuple level uncertainty expressed through an interval of confidence about the existence of the tuple in the table. An evidential database itself can be modeled in two forms: (i) the compact form represented as a set of attributes and a set of tuples; (ii) the possible worlds' form represented as a set of candidate databases where each candidate is a possible representation of the imperfect compact database. Querying the possible worlds' form is a fundamental step in order to check the querying methods over the compact one. In fact, a model is said to be a strong representation system when results of querying its compact form are equivalent to results of querying its non compact form. This thesis focuses on foundations of evidential databases in both modeling and querying. The main contributions are summarized as follows:

(i) Modeling and querying the compact evidential database (EDB): We implement the compact evidential database (EDB) using the object-relational design which allows to introduce the querying of the database model under relational operators.

We also propose the formalism, the algorithms and the experiments of other types of queries: the evidential top-k and the evidential skyline that we apply over a real dataset extracted from T ripAdvisor.

(ii) Modeling the possible worlds' form of (EDB): We model the possible worlds' form of the evidential database (EDB) by treating both levels of uncertainty (the tuple level and the attribute level).

(iii) Modeling and querying the evidential conditional database (ECD): After proving that the evidential database (EDB) is not a strong representation system, we develop a new evidential conditional database model named (ECD). Thus, we present the formalism of querying the compact and the possible worlds' forms of the (ECD) to evaluate the querying methods under relational operators. Finally, we discuss the results of these querying methods and the specificities of the (ECD) model.

CONTENTS

List of Tables Imperfect information is prevalent in real life fields. For example in the medical domain doctors can provide more than one hypothesis about a patient's diagnosis. In weather forecasting also, experts often give approximations about the weather, etc. In fact, several types of imperfection can be encountered, depending on the domain, like imprecision, uncertainty, ignorance, ambiguity, inconsistency, etc. Therefore, lots of theories were introduced to handle some types of these imperfection. One of the most known and used is the probability theory [START_REF] Laplace | Théorie analytique des probabilités[END_REF]. Other theories were later introduced to offer different models like the possibility theory [START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF], the fuzzy sets theory [START_REF] Zadeh | Fuzzy sets[END_REF], the rough sets theory [START_REF] Pawlak | Rough sets[END_REF] and the belief functions theory [START_REF] Shafer | A mathematical theory of evidence[END_REF][START_REF] Dempster | Upper and lower probabilities induced by a multiple valued mapping[END_REF]. The latter, called also the evidence theory, models and combines imperfect information through an explicit representation of uncertainty, imprecision and ignorance. It offers several powerful tools to aggregate information coming form one or more sources in order to improve the decision making.

Managing imperfect information requires storing them under specified database models. Therefore, based on the mentioned theories above, different database models were introduced: such as the probabilistic databases [START_REF] Cavallo | The theory of probabilistic databases[END_REF], the possibilistic databases [START_REF] Bosc | About projection-selection-join queries addressed to possibilistic relational databases[END_REF] and the evidential databases [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF][START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF]Lee, 1992a), etc. In the case of an evidential database, two equivalent forms can be modeled: (i) the compact form [START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF]Lee, 1992a;[START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF] where attributes' values are distributions (ii) the possible worlds' form, also named the non compact form [START_REF] Bousnina | A new formalism for evidential databases[END_REF]Bousnina et al., 2018a) where the database is a distribution of candidate databases.

(i) In the compact form, the uncertainty is expressed in two levels:

1. The attribute level uncertainty where an evidential distribution is assigned to each hypothesis in the imperfect attribute. This assignment is called a mass.

2. The tuple level uncertainty where an interval is assigned to each tuple that reflects the confidence on the existence of the tuple in the database. This interval is named the confidence level.

(ii) The possible worlds, is the other representation where the evidential database is modeled through a distribution of candidate databases.

The compact representation is the only feasible model in practice because the number of the generated possible worlds can increase exponentially. Added to that it is quasi-impossible to store and query all of them. However, defining possible worlds is fundamental to evaluate and validate representation systems. According to [START_REF] Imielinski | Incomplete information in relational databases[END_REF] and [START_REF] Abiteboul | Foundations of databases: the logical level[END_REF], a model is said to be a strong representation system when querying the compact form is equivalent to querying its possible worlds.

Many researchers have been interested in modeling and querying the compact model of an evidential database [START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF]Lee, 1992a;[START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF][START_REF] Bousnina | Object-relational implementation of evidential databases[END_REF]. Indeed, this model was used in real evidential databases like the amphiphilic chemical database [START_REF] Samet | Mining over a reliable evidential database: Application on amphiphilic chemical database[END_REF] and the TripAdvisor reviews' database [START_REF] Bousnina | Skyline operator over tripadvisor reviews within the belief functions framework[END_REF]. However, to the best of our knowledge, no model was proved to be a strong representation system for evidential databases.

The main purpose of this thesis is to study the evidential databases from a modeling and querying point of view. Thus, we address the following research questions: Is the most used evidential database [START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF]Lee, 1992a;[START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF] a strong representation system? How to model its possible worlds' form? How to treat the double uncertainty levels? How to query evidential databases? Is there another database model that represents and queries efficiently the evidential data?

Our main contributions to respond to these research issues are the following:

(i) Modeling and querying the compact Evidential DataBase (EDB):

-Object-Relational Evidential Implementation [START_REF] Bousnina | Object-relational implementation of evidential databases[END_REF]: We give an object relational model for the evidential database on its compact form [START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF]Lee, 1992a;[START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF]. Then we present the object relational implementation using SQL3 and Java. In fact, we take advantage of Oracle Database Management characteristics to evaluate two evidential relational operators: the select and the project.

-Evidential Top-K query (Bousnina et al., 2017a;[START_REF] Bousnina | Evidential top-k queries evaluation: Algorithms and experiments[END_REF]:

We introduce a new ranking query under the evidential framework. Thus, we present a formalism to select the best k responses when querying the evidential database on its compact form. Then, the semantic aspect and the experimental study are detailed. The evidential Top-k query evaluation is based on the object-relational evidential implementation.

-Evidential skyline query [START_REF] Bousnina | Skyline operator over tripadvisor reviews within the belief functions framework[END_REF]: We face the problem of aggregating information coming from different sources to construct an evidential database where information are coming from a real application platform (the TripAdvisor platform). Then, the evidential skyline query, as introduced in [START_REF] Elmi | Computing skyline from evidential data[END_REF], is applied.

(ii) Modeling and querying the possible worlds of the Evidential DataBase (EDB):

Modeling evidential databases as Possible worlds (Bousnina et al., 2018a):

We model the evidential database [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF] on its non compact form, i.e, the possible worlds' form. This contribution is based on a previous work [START_REF] Bousnina | A new formalism for evidential databases[END_REF]. When modeling the evidential database into possible worlds we manage the two levels of uncertainties (the tuple level uncertainty and the attribute level uncertainty). This work allows the evaluation of querying methods in order to check if the EDB [START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF]Lee, 1992a;[START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF] is a strong representation system or not.

(iii) Modeling and querying the Evidential Conditional Database (ECD):

Evidential Conditional Tables: We prove that the most used evidential database EDB [START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF]Lee, 1992a;[START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF] is not a strong representation system. Indeed, we introduce a new evidential database model, named ec-tables, ECD for short. In fact, we present the mathematical formulation of this database model on its compact form and then on its possible worlds' form. This model, i.e, the ec-tables, represents a further step towards strong representation systems under relational operators. We use several detailed examples to illustrate the presented formalism. The remainder of this thesis is organized as follows:

• In chapter 1, we present a survey about imperfection. First, we recall the different types of imperfect information and we give several illustrative examples. Then, we present the most used and known theories of imperfection: the probability theory, the possibility theory and the evidence theory. Finally, we present the imperfect database models, based on these theories, into their both representations (the compact and the possible worlds' forms).

• In chapter 2, we provide the background material related to the belief functions theory. This theory provides strong mathematical assets to model, manage and combine imperfect data coming from multiple sources. Thus, it models uncertain and imprecise information. Added to that, it handles partial and total ignorance. The evidence theory provides the appropriate tools for the decision making, when data are imperfect.

• In chapter 3, we recall the definition of an evidential database EDB on its compact form. Then, we present the object-relational implementation of this database model. Querying data comes as a natural step after the storage. Thus, we first of all present the evidential relational queries; the evidential select and the evidential project are evaluated using the object-relational implementation. After that, we introduce the evidential top-k query that we apply over the compact form. Finally, we use the evidential skyline query to evaluate the real data extracted from the TripAdvisor platform.

• In chapter 4, we define representation systems as the way of modeling imperfect databases from the compact form to the possible worlds' form. In fact, we introduce the formalism of generating possible worlds from an evidential database EDB. We consider the tuple level uncertainty and the attribute level uncertainty which imply several intermediate forms: the imprecise possible worlds, the uncertain possible worlds and finally the possible worlds. We discuss the similarities between the probabilistic and the evidential models. The last part is an investigation about the nature of the evidential database model EDB. Indeed, we prove that this model is not a strong representation system.

• Chapter 5 is dedicated to modeling and querying evidential conditional databases. This model comes to rectify the issues discussed in the previous chapter. Indeed, the evidential conditional database ECD, named also ec-tables is a new model that handles evidential data by conditioning the tuples. The model handles also the two levels of uncertainty and can transform any evidential database modeled as an EDB to an ECD. We prove that this model is very promising to be a strong representation system under relational operators.

Part I

Background Material 

Summary

This chapter encompasses notions about the general context related to the subject of this thesis. It presents theories of imperfection and imperfect databases. First, we present the types of data imperfection associated with illustrative examples. Then, we present some imperfect theories, historically introduced to manage imperfect data according to their types. Finally, we give a brief review about the database models that store and query the imperfect data based on the presented theories.

Introduction

Imperfect information can be detected in various domains like meteorology, medicine, industry, aeronautics, etc. Having imperfect data in such domains may generate defective and unreliable results that may lead to the wrong decisions. This is why imperfect information should be efficiently treated. Indeed, theories of imperfection like the theory of probability [START_REF] Laplace | Théorie analytique des probabilités[END_REF], the theory of possibility [START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF], the fuzzy sets theory [START_REF] Zadeh | Fuzzy sets[END_REF], the rough sets theory [START_REF] Pawlak | Rough sets[END_REF] and the belief functions theory [START_REF] Shafer | A mathematical theory of evidence[END_REF][START_REF] Dempster | Upper and lower probabilities induced by a multiple valued mapping[END_REF] were introduced. Based on the typology and the domain of the imperfect information, these theories offer several tools to model and manage such data [START_REF] Dubois | Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities[END_REF][START_REF] Hong | Neural network-based real-time malfunction diagnosis of reactive ion etching using in situ metrology data[END_REF][START_REF] Willink | Principles of probability and statistics for metrology[END_REF][START_REF] Pfeiffer | Concepts of probability theory[END_REF][START_REF] Yang | Application of dempster-shafer theory in fault diagnosis of induction motors using vibration and current signals[END_REF][START_REF] Yang | Risk evaluation in failure mode and effects analysis of aircraft turbine rotor blades using dempster-shafer evidence theory under uncertainty[END_REF][START_REF] Zhang | Conflict problem of dempster-shafer evidence theory (n)[END_REF]. Hence, the emergence of several database models like probabilistic, possibilistic, fuzzy and evidential databases. These database models can store and query the imperfect data in order to provide reliable results. Any imperfect database model can be modeled in two equivalent representations: the first is compact and the second is a distribution of possible worlds. This chapter presents briefly the general context related to this thesis dissertation. Indeed, it provides a typology of the imperfect information. Then, it introduces theories and database models of imperfection.

Typology of Imperfection

Imperfect data is so obvious in several real life applications (like medicine, genetics, industry, meteorology, etc). Types of imperfection can vary depending on the nature of fields, on the reliability of sources, etc. In fact, several types of imperfect data can be detected and they are partitioned into three major categories [START_REF] Smets | Imperfect information: imprecision and uncertainty[END_REF]:

1. Uncertainty: is the lack of certainty or a state of a limited knowledge. It is a property related to the veracity of the information.

2. Imprecision: is the lack of precision or exactness. It is a property related to the content of the information.

3. Inconsistency: is the lack of coherence. It is a property related to the content of the information.

Example 1 Suppose that we have four sources, each source gave an information as follows:

• John has at least two children and I am not sure about it.

=⇒ This information is imprecise and uncertain.

Typology of Imperfection

• John has at least two children and I am sure about it.

=⇒ This information is imprecise and certain.

• John has three children and I am not sure about it.

=⇒ This information is precise and uncertain.

• John has three children and I am sure about it.

=⇒ This information is precise and certain.

1. Uncertainty can be:

• Objective: based on random events and applies the chance concepts.

Example 2 Suppose having two same 6-sided dice. The chance of one dice being a particular number is 1 6

. The chance of two dice being a same number

is 1 6 * 1 6 = 1 36 .
• Subjective: based on experts' opinions about the truthfulness of a statement.

For example, John is learning how to ride a bike, there are many chances that he falls.

2. Imprecision can be itself divided into two parts:

2.1. Imprecision without error:

-Ambiguity: is an indefinite information.

As an example, the food is hot. =⇒ The food is spicy or the food's temperature is high.

-Vagueness: is an unclear or not explicitly expressed information. For example, John is young.

=⇒ Young represents a vague information.

-Incompleteness: An information lacking some part.

As an example, John does not have the last score of the game.

Imprecision with error:

-Invalidity: is a deficient information.

For an example, John is 2000 years old.

-Bias: a misrepresented information, i.e, the set of individuals does not represent the population. For example, 250 ml of the persons living on earth have severe obesity.

3. Inconsistency can be:

• Conflict: is a state of disagreement about one idea or information.

For example, One doctor is sure that the disease of the patient is anemia and the second doctor is sure that the same patient does not have anemia.

• confusion:. is an unclear and incomprehensible information.

For example, I am waiting for a bill of 150 euros and i get one with 300 euros. Dealing with imperfect data requires the use of mathematical theories that can model and explicitly represent these imperfect data. Uncertainty and imprecision are modeled via these theories, except for inconsistency that can only be detected after a combination1 .

Theories of Imperfection

Theories of imperfection were introduced to represent and manage the imperfect data, depending on their types. The most known and classical theory is the probability theory [START_REF] Laplace | Théorie analytique des probabilités[END_REF]. It was introduced to handle the uncertain data. Then, other non-classical theories were proposed to offer different models like the possibility theory [START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF] that represents the uncertain and the imprecise data, the fuzzy sets theory [START_REF] Zadeh | Fuzzy sets[END_REF] that represents the ambiguous data, the rough sets theory [START_REF] Pawlak | Rough sets[END_REF] that represents uncertain and vague data and the belief functions theory [START_REF] Shafer | A mathematical theory of evidence[END_REF][START_REF] Dempster | Upper and lower probabilities induced by a multiple valued mapping[END_REF] that represents uncertainty, imprecision and ignorance. In this section we give a brief refresher about three well known theories: the probability theory, the possibility theory and the evidence theory.

The Theory of Probabilities

The probability theory has it roots in attempts to solve problems related to the games of chance in the sixteenth century. It is the oldest and the most acknowledged among theories of imperfection. The theory of probabilities was fully defined and considered in the nineteenth century by Pierre Laplace [START_REF] Laplace | Théorie analytique des probabilités[END_REF].

Defintion 1 Let Ω be a finite and countable set, called sample space, that relates to the set of all possible outcomes. Let x be an element ∈ Ω, for each x a probability distribution is attached and that satisfies the following properties:

p(x) ∈ [0; 1], ∀x ∈ Ω (1.1) x∈Ω p(x) = 1 (1.2)
An event is defined as any subset E of the sample space Ω with E ⊆ Ω. The probability of event E is defined such as:

P (E) = x∈E p(x) (1.3)

Properties

• P (∅) = 0 and P (Ω) = 1

• ∀ E 1 , E 2 ⊂ Ω, if E 1 ∩ E 2 = ∅, P (E 1 ∪ E 2 ) = P (E 1 ) + P (E 2 ) (Additivity)
• ∀ E ⊂ Ω, P (E) = 1 -P (E) (Duality)

The Possibility Theory

The possibility theory was introduced by [START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF] and developed by Dubois and Prade [START_REF] Dubois | Théorie des possibilités[END_REF]. It handles uncertainty in a qualitative way based on the min/max algebra. This theory offers double representation/interpretation: the numerical representation and the ordinal representation.

Defintion 2 Let Ω be the universe of discourse and x be a variable that takes its values from Ω. A possibility distribution π x is attached to the variable x such that:

π x : Ω -→ L
L is a scale of a totally ordered plausibilities ([0,1], finite,...)

An event E is defined as a subset of Ω. Each event associates two measures, the possibility degree Π(E) and the necessity degree N (E).

The possibility and the necessity are dual measures such that:

N (E) = 1 -Π(E)
The possibility theory provides two interpretations as detailed in Figure 1.1:

• Numerical interpretation: When degrees of values reflect a specific sens.

-

Π(E) = 1
=⇒ The event E is completely possible.

-Π(E) = 0 =⇒ The event E is completely impossible.

• Ordinal interpretation: When values reflect an ordering between the different states of the world.

-

Π(E 1 ) > Π(E 2 )
=⇒ E 1 is more possible/more preferred than E 2 .

Figure 1.1: Numerical and Ordinal interpretations of the Possibility Theory

The Evidence Theory

The theory of evidence2 also called the theory of belief functions or the Dempster-Shafer theory, was introduced by Dempster [START_REF] Dempster | Upper and lower probabilities induced by a multiple valued mapping[END_REF] in the context of statistical inference, mathematically formalized by Shafer [START_REF] Shafer | A mathematical theory of evidence[END_REF] and later popularized by Smets (Smets, 1998a) with the transferable belief model (TBM). The theory of belief functions models and manages imperfect information through two levels: the credal and the pignistic levels. In the credal level, beliefs are quantified, modeled and can be aggregated. In the pignistic level, decisions are made considering the learned beliefs.

Defintion 3 Let Θ be a frame of discernment (the domain) containing all entities of a given situation Θ = {θ 1 , θ 2 , .., θ n } and 2 Θ is the set of all subsets of Θ. A basic belief mass is the degree of belief of an hypothesis A from the set 2 Θ such that:

A⊆Θ m Θ (A) = 1
The mass m is the truthfulness degree about hypothesis A.

Imperfect Databases

Classical relational databases deal with certain data, contrary to imperfect databases that store sets of imperfect data. Indeed, several databases like probabilistic databases [START_REF] Cavallo | The theory of probabilistic databases[END_REF], possiblistic databases [START_REF] Bosc | About projection-selection-join queries addressed to possibilistic relational databases[END_REF], evidential databases [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF][START_REF] Choenni | Handling uncertainty and ignorance in databases: A rule to combine dependent data[END_REF]Lee, 1992a;[START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF], etc, were introduced for the aim of storage, querying, datamining and reporting.

An imperfect database can be modeled as a distribution of candidate representative databases throughout treating the imperfection. Thus, two forms are studied in the literature:

• The compact form where attributes' values are distributions.

• The possible worlds' form where the database is a distribution of candidate databases.

When a result of a query processed over a compact database is the same when that query is applied over its possible worlds, we say that the result is reliable and that the model is a strong representation system.

Probabilistic Databases

Probabilistic databases were introduced by [START_REF] Cavallo | The theory of probabilistic databases[END_REF], then popularized by [START_REF] Barbara | The management of probabilistic data[END_REF]. Later on, [START_REF] Fuhr | A probabilistic framework for vaque queries and imprecise information in databases[END_REF]Fuhr, 1992a;[START_REF] Fuhr | Probabilistic models in information retrieval[END_REF][START_REF] Fuhr | A probabilistic relational model for the integration of ir and databases[END_REF] defined a more elaborated model of the probabilistic databases.

1. A probabilistic database, on its compact form, is an imperfect database that includes N objects and D attributes where the imperfect values are expressed via the probability theory [START_REF] Cavallo | The theory of probabilistic databases[END_REF][START_REF] Barbara | The management of probabilistic data[END_REF][START_REF] Fuhr | A probabilistic framework for vaque queries and imprecise information in databases[END_REF]Fuhr, 1992a;[START_REF] Fuhr | Probabilistic models in information retrieval[END_REF][START_REF] Fuhr | A probabilistic relational model for the integration of ir and databases[END_REF].

2. A probabilistic database, on its non compact form, is a set of possible worlds associated with degrees of probability. The probabilistic possible worlds represent the set of all possible states generated from this database, where each probabilistic possible world is a candidate to represent the compact probabilistic database [START_REF] Abiteboul | Foundations of databases: the logical level[END_REF][START_REF] Suciu | Probabilistic databases[END_REF]. • The tuple level uncertainty: a degree of probability P is associated to each tuple, P ∈ [0, 1] where 0 represents a non existent tuple and 1 represents a certain one.

• The attribute level uncertainty: a degree of probability is assigned to hypotheses that reflect their veracity degree in the attribute.

Example 3 As pieces of information can be imperfect in the medical domain, let us assume that a doctor gave his diagnoses about three patients as shown in the probabilistic database in Table 1.2. He expresses his beliefs about each hypothesis using the probability degrees. For instance, the tuple w.r.t ID#1 exists in the PDB with a probability of 0.3.

For the tuple ID#3, the disease is a dataset of values, i.e., Asthma with a probability degree of 0.5 or Anemia with a probability degree of 0.5. Applying a query Q over a probabilistic database returns a set of tuple-probability pairs {(t 1 , p 1 ), (t 2 , p 2 ), ...}.

ID

W 8 ={(1,Flu)} = 0.3*(1-0.2)*(1-0.5) = 0.12 W 9 ={(2,Anemia)} = (1-0.3)*0.2*(1-0.5)=0.07 W 10 ={(3,Anemia)} = (1-0.3)*(1-0.2)*0.25=0.14 W 11 ={(3,Asthma)} = (1-0.3)*(1-0.2)*0.25=0.14 W 12 ={∅} = (1-0.3)*(1-0.2)*(1-0.5)= 0.
To evaluate the querying methods of the probabilistic database model, three steps are required:

1. Querying the probabilistic compact form: It gives a compact result, which is a set of tuples and their probabilities responding to the condition of the query.

2. Querying the possible worlds' form of the probabilistic database: It means applying the query Q on each possible world. Each possible world gives one or more possible answers. These answers are the set of tuples and with their probabilities constitute the reply to Q. 

Possibilistic Databases

Possibilistic databases were introduced by Prade and Testmale [START_REF] Prade | Generalizing database relational algebra for the treatment of incomplete or uncertain information and vague queries[END_REF], then were popularized by [START_REF] Bosc | About projection-selection-join queries addressed to possibilistic relational databases[END_REF].

1. A possibilistic database, on its compact form, has N objects, D attributes in which imperfect values are expressed via the possibility theory [START_REF] Bosc | An initial approach to the evaluation of possibilistic queries addressed to possibilistic databases[END_REF][START_REF] Bosc | About projection-selection-join queries addressed to possibilistic relational databases[END_REF][START_REF] Bosc | Modeling and querying uncertain relational databases: A survey of approaches based on the possible worlds semantics[END_REF].

2. A possibilistic database, on its non compact form, defined as a set of possible worlds that associate degrees of possibilities. Each possibilistic world is a candidate to represent the real world described by means of the compact database [START_REF] Bosc | Modeling and querying uncertain relational databases: A survey of approaches based on the possible worlds semantics[END_REF]. • The tuple level uncertainty: a degree of possibility Π or necessity N is assigned to each tuple.

• The attribute level uncertainty: a degree of possibility is assigned to hypotheses in attributes. When the possibility of one hypothesis is equal to 1 then it is completely possible and when the degree is equal to 0 then the hypothesis is completely impossible. 

W 1 W 2 W 3 W 4 (1, 1/F lu ) (1, 1/F lu) (1, 0.7/Asthma) (1, 0.7/Asthma) (2, 1/Cancer) (2, 0.3/Anemia) (2, 1/Cancer) (2, 0.3/Anemia) (3, 1/Asthma) (3, 1/Asthma) (3, 1/Asthma) (3, 1/Asthma) (4, 1/Anemia) (4, 1/Anemia) (4, 1/Anemia) ( 4 
, 1/Anemia) min(1,1,1,1)=1 min(1,0.3,1,1)=0.3 min(0.7,1,1,1)=0.7 min(0.7,0.3,1,1)=0.3

Table 1.5: Possible worlds of the possibilistic database

In Table 1.5, we give the different possible worlds that correspond to PosDB of Table 1.4. For example, the possible world W 4 that includes {(1,0.7/Asthma), (2,0.3/Anemia), (3,1/Asthma), (4,1/Anemia)} has a possibility degree of 0.3 (=min(0.7, 0.3, 1, 1)).

Applying a query Q over a possibilistic database returns a set of tuple-possibility pairs {(t 1 , Π 1 ), (t 2 , Π 2 ), ...}

To evaluate the querying methods of the possibilistic database model, three steps are needed:

• Querying the compact possibilistic database: It provides a compact result, which is a set of tuples and their degrees of possibility responding to query Q.

• Querying the possible worlds of the possibilistic database: Each possible world is interrogated with Q independently of other possible worlds. The set of the derived results from each world constitutes the set of answers, where each answer associates a possibility degree.

• Comparing results: Answers derived form the compact form and answers derived from the possible worlds' form are evaluated. Their equivalence means that the possibilistic database model is a strong representation system. 

Evidential Databases

Evidential databases (EDBs) were introduced by Lee et al., [START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF]Lee, 1992a;[START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF]. It is an imperfect database model that permits to represent certain and uncertain data using the theory of belief functions.

1. An evidential database, on its compact form, is a set of N tuples and D attributes where imperfect information is expressed by means of the evidence theory [START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF]Lee, 1992a;[START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF].

2. An evidential database, on its non compact form, is a set of possible worlds with degrees of belief and plausibility 3 where each world is a candidate to represent the compact model [START_REF] Bousnina | A new formalism for evidential databases[END_REF]. An evidential database has two levels of uncertainty:

• The tuple level uncertainty: an interval of minimum and maximum degrees of credibility are assigned to each tuple. This interval, named confidence level, reflects degrees of faith about the existence of the tuple.

• The attribute level uncertainty: a mass function is assigned to each hypothesis in attributes. It reflects the degree of truthfulness about the hypothesis.

Example 5 We give an example of a doctor that expresses his medical diagnoses about two patients by giving multiple hypotheses and their assignments. Its diagnoses are modeled using the belief functions' theory and stored in the following compact evidential Table 1.6. The latter includes three attributes ID, Disease, Symptom. The domain of attribute Disease is Θ DE = {Diabetes, Anemia, Stroke, Asthma} and the domain of attribute Symptom Θ SY = {F atigue, N ausea, V ertigo}. For instance, the doctor believes that the second patient ID#2 has either the diabetes with a degree of 0.1 or a stroke with a degree of 0.9. The degree of belief about each hypothesis given by the doctor is called a mass (m). 

W 1 involves W 1 ={(1,Diabetes,Fatigue);(2,Diabetes,Vertigo)} with a confidence interval of [0.04;0,1] 4 .
Applying a query Q over an evidential database returns a set of tuple-interval pairs {(t 1 , CL 1 ), (t 2 , CL 2 ), ...}

To evaluate the querying methods of the evidential database model, three steps are needed:

1. Querying the compact evidential database: It provides a compact result, which is a set of tuples and their confidence levels responding to query Q. A confidence level is an interval of belief and plausibility.

2. Querying the possible worlds of the evidential database: Each queried possible world generates a possible answer. The set of answers involves a set of tuples and their confidence levels.

3. Comparing results: Answers derived from the compact form and answers derived from the possible worlds' form are compared. If they are equivalent the evidential database model is a strong representation system, otherwise it is not. To the best of our knowledge, no previous work focused on representations of evidential databases and the querying evaluation process. The compact form is the only conceivable form in practice but modeling the non compact from remains fundamental to validate the querying methods of the compact representation. In this thesis, we investigate the evidential database representations issue.

Conclusion

Imperfection is widespread in several domains, hence the emergence of theories that represent and handle the incomplete data. These theories like the probability theory, the possibility theory, the belief functions theory, etc., came as powerful solutions to effectively manage multiple types of imperfection. Their appearance throughout the past years engendered the appearance of the database models of imperfection. These database models are based on these theories and they came as a natural step to store and query the imperfect data.

In this chapter, we presented a review about typologies of imperfection. Then, we briefly presented three theories of imperfection (probability, possibility and belief functions) and the database models that support these models. The evidence theory and the evidential databases represent the core of this dissertation, they are detailed in the coming chapters.

Chapter2. Theory of Evidence

Introduction

The evidence theory is used in lots of domains like chemistry [START_REF] Samet | Mining over a reliable evidential database: Application on amphiphilic chemical database[END_REF], sensor detection and data fusion [START_REF] Ayoun | Data association in multi-target detection using the transferable belief model[END_REF], etc. In fact, this theory [START_REF] Dempster | Upper and lower probabilities induced by a multiple valued mapping[END_REF][START_REF] Shafer | A mathematical theory of evidence[END_REF]Smets, 1998a) models and manages imperfect information through an explicit representation of uncertainty, imprecision and ignorance. It extends the probability theory by making a difference between equi-probability and ignorance. For example, an expert and a newbie will give their opinions about racing horses {h 1 , h 2 , h 3 }. The expert thinks that all the three horses have the same chance to win the race. The newbie does not have any idea about racing and horses.

• In probability theory their opinions are modeled such that:

-Expert: P (h 1 )= 1/3; P (h 2 )= 1/3; P (h 3 )= 1/3 -Newbie: P (h 1 )= 1/3; P (h 2 )= 1/3; P (h 3 )= 1/3
• In evidence theory their opinions are modeled such that:

-Expert: m(h 1 )= 1/3; m(h 2 )= 1/3; m(h 3 )= 1/3 ⇒ Equi-probability. -Newbie: m({h 1 , h 2 , h 3 })=1 ⇒ Ignorance.
Note that m can be interpreted as a subjective probability.

The belief functions theory manages the imperfect information via two levels. The first is the credal level where beliefs are quantified, represented and combined. The second is the pignistic level where decisions are made (See Figure 2.1). Indeed, the evidence theory provides the convenient tools to model, manage, aggregate and decide when having imperfect information.

This chapter is dedicated to the basic notions of the belief functions theory that will be used in the next chapters.

Basic Concepts

In this section, basic concepts of evidence theory as the frame of discernment, the basic belief assignment, the body of evidence, belief and plausibility functions are detailed.

Frame of discernment

In the theory of belief functions, a frame of discernment (or universe of discourse) is a set that contains all hypotheses of a given situation. Thus, Θ = {θ 1 , θ 2 , ..., θ n } is a finite, non empty and exhaustive set of n elementary and mutually exclusive hypotheses related to a given problem. The power set 2 Θ is the set of all subsets of Θ. It includes hypotheses of Θ and all disjunctions of Θ. It is defined as follows:

2 Θ = {A : A ⊆ Θ} = {∅, θ 1 , θ 2 , ..., θ n , {θ 1 , θ 2 }, .., {θ 1 , θ 2 , ..., θ n }} (2.1)
Each element of 2 Θ is a proposition (an event, an alternative or a solution).

Example 6 Let us consider a medical problem where a doctor gives his propositions about the possible diseases of some patients. The possible diseases in our example are either Flu, Asthma or Anemia. Thus, the frame of discernment is defined as follows:

Θ DE = {F lu, Asthma, Anemia}.
The different possible combinations for Θ DE are defined in the following set:

2 Θ DE = {∅, {F lu}, {Asthma}, {Anemia}, {F lu, Asthma}, {F lu, Anemia}, {Asthma, Anemia}, {F lu, Asthma, Anemia}}.
This application will be used through out this manuscript.

Basic belief assignment

A basic belief assignment (bba), noted m Θ , is a mapping from 2 Θ to the interval [0, 1] that assesses a degree of belief to some elements of the power set. A bba also called mass function is defined such that:

A⊆Θ m Θ (A) = 1 (2.2)
The amount m Θ (A) is called basic belief mass (bbm) and mass for short. It represents the degree of faith on the truth of hypothesis A. The mass m Θ (A) is the degree of belief on A that is not distributed on its subsets.

Example 7

The doctor believes that this patient suffers from F lu with a degree of belief equal to 0.7 or from F lu or Anemia with a degree of belief equal to 0.3. The following basic belief assignment illustrates the beliefs of the doctor:

m Θ DE ({F lu}) = 0.7 m Θ DE ({F lu, Anemia}) = 0.3 .

Body of evidence

Subsets A of the frame of discernment Θ where m Θ (A) is strictly positive, are named focal elements such that:

m Θ (A) > 0 (2.3)
We denote F the set of all focal elements and the couple {F, m Θ } the body of evidence.

The union of all focal elements is called core and is defined as follows:

ϕ = A∈F :m Θ (A)>0 A (2.4)
Example 8 Let us consider the focal elements {F lu} and {F lu, Anemia} of m Θ DE such that:

F = {{F lu}, {F lu, Anemia}}: is the set of focal elements.
The couple (F, m Θ DE ): is the body of evidence. ϕ DE = {F lu} ∪ {F lu, Anemia} = {F lu, Anemia}: is the core.

Belief and plausibility functions

The belief and the plausibility are functions derived from the basic belief mass (m). They reflect degrees of faith about some hypotheses. The belief function (bel) and the plausibility (pl) are considered as different expressions of the same information.

Belief function

The belief function denoted bel, is the degree of faith exactly committed to hypothesis A [START_REF] Shafer | A mathematical theory of evidence[END_REF]. It assigns to each subset A of Θ the sum of the masses of belief committed exactly to each subset of A by m Θ . The belief function is considered as the minimal degree of belief given to A and it is defined as follows:

bel

: 2 Θ -→ [0, 1] bel(A) = B,A⊆Θ:B⊆A m Θ (B) (2.5) Properties • bel(∅) = 0 and bel(Θ) = 1 if m(∅) = 0 • bel(A) + bel(A) ≤ 1 (Sub additivity) • A ⊆ B ⇒ bel(A) ≤ bel(B) (Monotonicity) • bel(A ∪ B) ≥ bel(A) + bel(B)
Note that A is the complement of A.

Example 9

The belief function (bel) corresponding to the basic belief assignment of Example 7 is as follows:

bel(∅) = 0 bel({F lu}) = 0.7 bel({Anemia}) = 0 bel({Asthma}) = 0 bel({F lu, Anemia}) = 0.3 + 0.7 = 1 bel({F lu, Asthma}) = 0.7 + 0 = 0.7 bel({Anemia, Asthma}) = 0 bel(Θ DE ) = bel({F lu, Anemia, Asthma}) = 0 + 0.3 + 0.7 = 1

Plausibility function

The plausibility function denoted pl is equal to the sum of masses relative to subsets of hypothesis B that do not contradict hypothesis A. It contains those parts of belief that are compatible with A. The plausibility function is considered as the maximal amount of belief given to hypothesis A and it is defined as follows:

pl : 2 Θ -→ [0, 1] pl(A) = B,A⊆Θ:A∩B =∅ m Θ (B) (2.6) Properties • pl(A) = 1 -bel(A) (Duality) • pl(Θ) = 1 and pl(∅) = 0 if m(∅) = 0 • pl(A ∪ B) ≤ pl(A) + pl(B) • bel(A) ≤ pl(A) • A ⊆ B ⇒ P l(A) ≤ P l(B) (Monotonicity) • P l(A) + P l(A) ≥ 1 (Sub additivity)
Example 10 The plausibility function corresponding to the basic belief assignment of Example 7 is represented as follows:

pl(∅) = 0 pl({F lu}) = 0.7 + 0.3 = 1 pl({Anemia}) = 0.3 pl({Asthma}) = 0 pl({F lu, Anemia}) = 0.3 + 0.7 = 1 pl({F lu, Asthma}) = 1 pl({Anemia, Asthma}) = 0 + 0.3 = 0.3 pl(Θ DE ) = 1

Duality between bel and pl

The duality between the belief and the plausibility functions is one the properties proposed by [START_REF] Shafer | A mathematical theory of evidence[END_REF]. Let A and A be two independent1 hypotheses such that :

bel(A) = 1 -pl(A) since pl(A) = 1 -bel(A) (2.7) pl(x) = 1 -bel(x) since bel(x) = 1 -pl(x) (2.8)

Extended belief and plausibility functions

In the standard evidence theory, definitions of the belief and plausibility functions can not handle comparisons like ( =, =, <, >,≤, ≥). That is why the definition of belief bel and plausibility pl functions were extended in (Lee, 1992a;[START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF][START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF] to deal with comparisons between two independent basic belief assignments (bbas).

Defintion 4 (Equality) Let x and y be two random independent variables and their mass functions,

m Θ x , m Θ y : 2 Θ -→ [0, 1],
A, B ⊆ Θ are their respective focal elements. The equality between x and y are defined in the following way [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF]:

bel(x = y) = |A|=1 m Θ x (A) * m Θ y (A) (2.9) pl(x = y) = A∩B =∅ m Θ x (A) * m Θ y (B) (2.10)
Note that * is the product operator.

Example 11 Let us consider information about Diseases of two patients given by a doctor. The latter believes that the first patient is either diabetic or has a stroke. He thinks that the second patient has either Anemia or Diabetes or stroke. His degrees of belief are represented as follows in Table 2.1:

Patient Disease x
Diabetes 0.1 Stroke 0.9 y Anmeia 0.3 {Diabetes, Stroke} 0.7

Table 2.1: A medical diagnosis for two patients

We want to compute the belief (bel) and the plausibility pl values for the proposition that both patients have the same disease.

Thus, according to definition 4:

• bel(x = y) = 0

• pl(x = y) = 0.1 * 0.7 + 0.9 * 0.7 = 0.7

Defintion 5 (Inequality) Let x and y be two random independent variables and their mass functions, m Θ x , m Θ y : 2 Θ -→ [0, 1], A, B ⊆ Θ are their respective focal elements. The inequality between x and y is computed such that [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF]:

bel(x = y) = A∩B=∅ m Θ x (A) * m Θ y (B) (2.11) pl(x = y) = A⊆Θ m Θ x (A) * B⊆Θ and [A=B implies |A|>1] m Θ y (B) (2.12)
Example 12 Let us consider the same diagnosis of Table 2.1. We want now to compute the belief (bel) and the plausibility (pl) of both patients for the proposition that they have different diseases. Thus, according to definition 5:

• bel(x = y) = 0.1 * 0.3 + 0.9 * 0.3 = 0.3 • pl(x = y) = 0.1 * 0.3 + 0.9 * 0.3 + 0.1 * 0.7 + 0.9 * 0.7 = 1
Defintion 6 (Inferior Inequality) Let x and y be two random independent variables and their mass functions, m Θ x , m Θ y : 2 Θ -→ [0, 1], A, B ⊆ Θ are their respective focal elements. The inferior inequality can be measured as follows [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF]:

bel(x < y) = A⊆Θ m Θ x (A) * B⊆Θ∧A< ∀ B m Θ y (B) (2.13) where A < ∀ B means that a < b for all a ∈ A, b ∈ B. pl(x < y) = A⊆Θ m Θ x (A) * B⊆Θ∧A< ∃ B m Θ y (B) (2.

14)

where A < ∃ B means for every a ∈ A there exists b ∈ B such that a < b.

Defintion 7 (Inferior or Equal Inequality) Let x and y be two random independent variables and their mass functions, m Θ x , m Θ y : 2 Θ -→ [0, 1], A, B ⊆ Θ are their respective focal elements. x ≤ y is computed as follows [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF]:

bel(x ≤ y) = A⊆Θ m Θ x (A) * B⊆Θ∧A≤ ∀ B m Θ y (B) (2.15) where A ≤ ∀ B means that a ≤ b for all a ∈ A, b ∈ B. pl(x ≤ y) = A⊆Θ m Θ x (A) * B⊆Θ∧A≤ ∃ B m Θ y (B) (2.

16)

where A ≤ ∃ B means for every a ∈ A there exists b ∈ B such that a ≤ b.

Example 13 The doctor orders diseases from the less to the most serious. Indeed, he says that Stroke is more serious than Diabetes which is it self more serious than Anemia. The descendant order is represented such that:

Anemia < Diabetes < Stroke.

We want now to compare values of attribute Disease for both patients in Table 2.1. We compute the bel and the pl for the proposition (x < y) and (x ≤ y).

Thus, according to Definitions 6 and 7.

• bel(x < y) = 0

• pl(x < y) = 0.1 * 0.7 = 0.07

• bel(x ≤ y) = 0.1 * 0.7 = 0.07 • pl(x ≤ y) = 0.1 * 0.7 + 0.9 * 0.7 = 0.7
Defintion 8 (Superior Inequality) Let x and y be two random independent variables and their mass functions, m Θ x , m Θ y : 2 Θ -→ [0, 1], A, B ⊆ Θ are their respective focal elements. The superior inequality is calculated such that [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF]:

bel(x > y) = A⊆Θ m Θ x (A) * B⊆Θ∧A> ∀ B m Θ y (B) (2.17) where A > ∀ B means that a > b for all a ∈ A, b ∈ B. pl(x > y) = A⊆Θ m Θ x (A) * B⊆Θ∧A> ∃ B m Θ y (B) (2.

18)

where A > ∃ B means for every a ∈ A there exists b ∈ B such that a > b.

Defintion 9 (Superior or Equal Inequality) Let x and y be two random independent variables and their mass functions, m Θ x , m Θ y : 2 Θ -→ [0, 1], A, B ⊆ Θ are their respective focal elements. x ≥ y is measured as follows [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF]:

bel(x ≥ y) = A⊆Θ m Θ x (A) * B⊆Θ∧A≥ ∀ B m Θ y (B) (2.19) where A ≥ ∀ B means that a ≥ b for all a ∈ A, b ∈ B. pl(x ≥ y) = A⊆Θ m Θ x (A) * B⊆Θ∧A≥ ∃ B m Θ y (B) (2.

20)

where A ≥ ∃ B means for every a ∈ A there exists b ∈ B such that a ≥ b.

Example 14 Let us continue with the same example of Table 2.1. We want now to calculate the bel and the pl of both patients for the proposition (x>y) and (x≥y) for the attribute Disease. Thus, according to Definitions 6 and 7.

• bel(x > y) = 0.1 * 0.3 + 0.9 * 0.3 = 0.3

• pl(x > y) = 0.1 * 0.3 + 0.9 * 0.3 + 0.9 * 0.7 = 0.93

• bel(x ≥ y) = 0.1 * 0.3 + 09 * 0.3 + 0.9 * 0.7 = 0.93

• pl(x ≥ y) = 0.1 * 0.3 + 09 * 0.3 + 0.9 * 0.7 + 0.1 * 0.7 = 1

Special belief functions

Other types of belief functions were proposed in the literature as the vacuous belief function, the certain belief function, the consonant belief function and the bayesian belief function.

Vacuous belief function

A vacuous belief function is a special belief function [START_REF] Shafer | A mathematical theory of evidence[END_REF] where Θ is its unique focal element. In this case, the basic belief assignment bba quantifies the total ignorance. In other words it represents a bba with no information. It is defined such that:

m Θ (Θ) = 1 and m Θ (A) = 0 where A = Θ (2.21)
Example 15 The frame of discernment relative to attribute Disease is

Θ DE = {F lu, Asthma, Anemia}. m Θ DE ({F lu, Asthma, Anemia}) = 1 is called a vacuous basic belief assignment.

Certain belief function

A certain belief function is a bba with only one focal element which is a singleton. That bba represents the total certainty. It is defined such that:

m Θ (A) = 1, A ∈ Θ and | A |= 1 m Θ (B) = 0 ∀B = A (2.22)
Example 16 The frame of discernment of attribute Disease is

Θ DE = {F lu, Asthma, Anemia}.
m Θ DE ({Anemia}) = 1 is called a certain basic belief assignment. This bba reflects the full certainty about information Anemia.

Bayesian belief function

A bayesian belief function is a particular case of belief function. When all focal elements are singletons the bba is named bayesian and the distribution is said to be probabilistic [START_REF] Shafer | A mathematical theory of evidence[END_REF]. It is defined such that: 

m Θ (A) ∈]0, 1], if | A |= 1 m Θ (A) = 0 otherwise (2.23)
• bel(A ∪ B) = bel(A) + bel(B) ; A, B ⊂ Θ and A ∩ B = ∅ • bel(A) + bel(A) = 1 ; A ⊂ Θ • bel = pl
Example 17 Suppose the same frame of discernment of attribute Disease:

Θ DE = {F lu, Asthma, Anemia}.
Let's consider the following masses:

m Θ DE ({Asthma}) = 0.2 m Θ DE ({Anemia}) = 0.3 m Θ DE ({F lu}) = 0.5 m Θ DE (Θ) = 0
Focal elements in this example are singletons. Thus, the distribution, in this case, is probabilistic and the bba is bayesian.

Consonant belief function

A consonant belief function is a function with nested focal elements such that:

A 1 ⊂ A 2 ⊂ ... ⊂ Θ (2.24) Figure 2.
3 is an illustration of a consonant mass function. • pl(A ∪ B) = max(pl(A), pl(B)): Possibility measure.

Example 18 Let's consider the same frame of discernment Θ DE = {F lu, Asthma, Anemia}.

We have the following masses:

m Θ DE ({Asthma} = 0.3 m Θ DE ({Asthma, Anemia} = 0.5 m Θ DE ({F lu, Asthma, Anemia}) = 0.2
In this case, all focal elements are nested. Hence, this bba is called consonant.

Simple support function

A simple support function is a mass that supports only one subset of Θ; it has at most one focal element different from Θ. This focal element is named the focus of the simple support function [START_REF] Smets | The canonical decomposition of a weighted belief[END_REF]. It is defined such that:

m Θ (B) =      ω if B = Θ 1 -ω if B = A, for some A ⊂ Θ 0 otherwise (2.

25)

Where:

A is the focus function.

ω is the degree of support of Θ, ω ∈ [0, 1].
1 -ω is the degree of support of the focus A. m Θ is a simple support function with {Anemia, Asthma} is its focus.

Dogmatic and non dogmatic functions

• A dogmatic mass function is defined such that [START_REF] Smets | The canonical decomposition of a weighted belief[END_REF]:

m Θ (Θ) = 0 (2.

26)

• A non dogmatic mass function is defined such that [START_REF] Smets | The canonical decomposition of a weighted belief[END_REF]:

m Θ (Θ) > 0 (2.27)
Smets defined the notions of the closed and the open worlds assumptions [START_REF] Smets | Belief functions[END_REF]. Thus, under the closed world assumption, all possible hypotheses are enumerated in Θ; where Θ is exhaustive. On the other side, when it is difficult to enumerate from the beginning all the hypotheses the open world assumption is considered. Under the open word assumption, the set of hypotheses are unknown; where Θ is not necessarily exhaustive. Note that the closed world assumption is the one considered by the Dempster-Shafer model [START_REF] Dempster | Upper and lower probabilities induced by a multiple valued mapping[END_REF][START_REF] Shafer | A mathematical theory of evidence[END_REF].

Under the closed world assumption, the mass function is considered as a normalized basic belief function. Under the open world assumption, the mass function is a nonnormalized one. The normalization can be executed such as:

   m * Θ (A) = m Θ (A) 1 -m Θ (∅) ∀A ⊆ Θ m * Θ = 0 (2.28)
Information modeled and managed using the belief functions theory may come from different sources that can be reliable and/or unreliable. Sometimes it is necessary to merge them in order to make some decisions. Thus, the emergence of several combination rules under the evidential framework.

Combination Rules

In belief functions' theory, Combination rules appear as an interesting solution to get a more reliable information, specially in the presence of imperfect information (uncertain, imprecise, incomplete). The major interest of combining several sources is to have at the end one mass function that represents to the best all combined ones. Many combination rules are proposed in the framework of evidence theory. In this section, the most commonly used rules in literature are presented. Namely, the Dempster's rule [START_REF] Dempster | Upper and lower probabilities induced by a multiple valued mapping[END_REF], the conjunctive and the disjunctive rules [START_REF] Smets | Belief functions: The disjunctive rule of combination and the generalized bayesian theorem[END_REF], Dubois and Prade combination rule [START_REF] Dubois | Representation and combination of uncertainty with belief functions and possibility measures[END_REF]), Yager's rule [START_REF] Yager | On the dempster-shafer framework and new combination rules[END_REF].

In below, definitions of some basic notions related to combination rules are shown:

-Independence is the occurrence that one information does not affect the assignment of the occurrence of an other one.

-Reliability is the ability to provide a trustworthy information.

-Normalization is an adjustment of a measured values to either have a non negative ones or to asses them to a common scale.

Dempster's rule of combination

Suppose having M independent, distinct and reliable sources of information to combine. Each source S j with j ∈ [1, M ] expresses its belief over a defined problem and gives the corresponding mass m Θ j [START_REF] Dempster | Upper and lower probabilities induced by a multiple valued mapping[END_REF]. The combination (called the joint mass) is calculated as follows:

m Θ ⊕ = m Θ 1 ⊕ .. ⊕ m Θ M (2.29)
⊕ is the orthogonal sum.

The Dempster's rule of combination is a normalized rule defined under the closed world assumption.

Defintion 10 Let m Θ 1 and m Θ 2 be two independent mass functions, the joint mass m Θ 1⊕2 is computed such that:

m Θ 1⊕2 (A) =      B∩C=A m Θ 1 (B).m Θ 2 (C) 1 -B∩C=∅ m Θ 1 (B).m Θ 2 (C) ∀A = ∅ 0 ∀A = ∅ (2.30)
The figure 2.5 shows how to combine M independent sources using the Dempster's rule. [START_REF] Dempster | Upper and lower probabilities induced by a multiple valued mapping[END_REF] Example 20 Suppose having two different doctors S 1 and S 2 , each one gives his diagnosis about the same patient. The combination of their diagnoses using the Dempster's rule of combination is shown in Table 20. 

⊕ m Θ DE 2 ({Asthma}) m Θ DE 2 ({F lu}) m Θ DE 2 ({Θ}) =0.4 =0.5 =0.1 m Θ DE 1 ({Asthma}) m Θ DE 1,2 ({Asthma}) m Θ DE 1,2 (∅) m Θ DE 1,2 ({Asthma}) =0.5 =0.2 =0.25 =0.05 m Θ DE 1 ({Asthma, m Θ DE 1,2 ({Asthma}) m Θ DE 1,2 (∅) m Θ DE 1,2 ({Asthma, Anemia}) = 0.1 =0.04 =0.05 Anemia}) = 0.01 m Θ DE 1 ({F lu}) m Θ DE 1,2 (∅) m Θ DE 1,2 ({F lu}) mΘ DE 1,2 ({F lu}) =0.2 =0.08 =0.1 =0.2 m Θ DE 1 (Θ) m Θ DE 1,2 ({Asthma}) m Θ DE 1,2 ({F lu}) m Θ DE 1,2 (Θ) =0.2 =0.08 =0.1 =0.02
• m Θ DE 1⊕2 ({Asthma, Anemia}) = 0.

Conjunctive rule of combination

The conjunctive rule of combination for two mass functions m Θ 1 and m Θ 2 defined on the same frame of discernment Θ was introduced by Smets [START_REF] Smets | Belief functions: The disjunctive rule of combination and the generalized bayesian theorem[END_REF] and it is defined as follows:

m Θ 1 ∩ m Θ 2 (C) = A,B⊆θ:A∩B=C m Θ 1 (A).m Θ 2 (B) (2.31)
The conjunctive rule of combination merges bbas m Θ 1 and m Θ 2 provided by different, independent and reliable sources, the result is the joint bba induced from the combination of m 

m Θ DE 1 ({F lu, Anemia}) = 0.7 m Θ DE 1 ({Asthma, Anemia}) = 0.3 m Θ DE 2 ({F lu, Asthma}) = 0.5 m Θ DE 2 ({Asthma, Anemia}) = 0.5
Now, we apply the conjunctive rule of combination. Results are shown in Table 2

.3. ∩ m Θ DE 1 ({F lu, Anemia}) m Θ DE 1 ({Asthma, Anemia}) = 0.7 = 0.3 m Θ DE 2 ({F lu, Asthma}) m Θ DE 1,2 ({F lu}) m Θ DE 1,2 ({Asthma}) = 0.5 = 0.35 = 0.15 m Θ DE 2 ({Asthma, Anemia}) m Θ DE 1,2 ({Anemia}) m Θ DE 1,2 ({Asthma, Anemia}) = 0.5 = 0.35 = 0.15
Table 2.3: An application of the conjunctive rule of combination

• m Θ DE 1 ∩ m Θ DE 2
({F lu}) = 0.5 * 0.7 = 0.35

• m Θ DE 1 ∩ m Θ DE 2 ({Asthma}) = 0.5 * 0.3 = 0.15 • m Θ DE 1 ∩ m Θ DE 2 ({Anemia}) = 0.5 * 0.7 = 0.35 • m Θ DE 1 ∩ m Θ DE 2
({Asthma, Anemia}) = 0.5 * 0.3 = 0.15

Disjunctive rule of combination

The disjunctive rule of combination was also proposed by Smets [START_REF] Smets | Belief functions: The disjunctive rule of combination and the generalized bayesian theorem[END_REF]. This combination rule relies on independent sources with at least one of them is reliable. It is based on the union of focal elements. Combining bbas m Θ 1 and m Θ 2 with the disjunctive rule leads to a combined bba which focal elements are the union of focal elements of m Θ 1 and m Θ 2 . Combining two bbas m Θ 1 and m Θ 2 defined on the same frame of discernment Θ is defined as follows:

m Θ 1 ∪ m Θ 2 (C) = A,B⊆θ:A∪B=C m Θ 1 (A).m Θ 2 (B). (2.32) Example 22
We consider the same mass function as in the previous example. Suppose now that one of the sources is reliable but we don't know which one. We apply the disjunctive rule of combination as shown in Table 2.4.

∪ m Θ DE 1 ({F lu, Anemia}) m Θ DE 1 ({Asthma, Anemia}) = 0.7 = 0.3 m Θ DE 2 ({F lu, Asthma}) m Θ DE 1,2 ({F lu, Asthma, m Θ DE 1,2 ({F lu, Asthma, = 0.5 Anemia}) = 0.35 Anemia}) = 0.15 m Θ DE 2 ({Asthma, Anemia}) m Θ DE 1,2 ({F lu, Asthma, m Θ DE 1,2 ({Asthma, Anemia}) = 0.5 Anemia}) = 0.35 = 0.15
Table 2.4: An application of the disjunctive rule of combination

• m Θ DE 1 ∪ m Θ DE 2
({F lu, Asthma, Anemia}) = (0.5 * 0.7) + ((0.5 * 0.3) + (0.5 * 0.7) = 0.85 In case of having reliable and unreliable sources, where degrees of reliability can be measured, the discounting rule is used.

• m Θ DE 1 ∪ m Θ DE 2 ({Asthma, Anemia})= 0.5 * 0.3 = 0.15

Discounting

A particular combination is the discounting that considers sources' reliabilities into their mass functions. It is a specific mechanism to the belief functions theory that discounts masses proportionally to their sources' reliabilities. However, sources' reliabilities need to be learned before the discounting.

The reliability factor α in [0, 1] characterizes the reliance of a source. Note that (i) α = 1 represents a fully reliable source, (ii) α = 0 represents an unreliable source. The discounting rate is 1 -α.

The discounted mass m Θ,α is computed as follows:

m Θ,α (A) = α.m Θ (A) ∀A ⊂ Θ m Θ,α (Θ) = α.m Θ (Θ) + (1 -α) (2.33)
Example 23 Let's consider this bba:

• m Θ DE ({F lu}) = 0.4 • m Θ DE ({Anemia, Asthma}) = 0.5 • m Θ DE (Θ DE ) = 0.1
This bba is discounted with the reliability degree of the doctor which is α = 0.9.

• m Θ DE ,α ({F lu}) = 0.9 * 0.4 = 0.36

• m Θ DE ,α ({Anemia, Asthma}) = 0.9 * 0.5 = 0.45 • m Θ DE ,α (Θ DE ) = 0.9 * 0.1 + (1 -0.9) = 0.19
Basic belief assignments can be combined only when they are defined on the same frame of discernment. Thus, when two basic belief assignments are defined on different frames of discernments, a compatible frame can be specified.

Compatible Frames of Discernments

Vacuous extension, coarsening and refinement [START_REF] Shafer | A mathematical theory of evidence[END_REF] are tools to define a relationship between compatible frames of discernment in order to specify beliefs on anyone of them.

Vacuous Extension

In some cases, we need to combine two bbas m Θ 1 and m Θ 2 which are not defined on the same frame of discernment. However, all combination rules require that bbas have the same frame of discernment. The vacuous extension of belief functions [START_REF] Shafer | A mathematical theory of evidence[END_REF]) is a tool that defines bbas on a compatible frame of discernment. It consists in extending the frames of discernment Θ 1 and Θ 2 , corresponding to the mass functions m Θ 1 and m Θ 2 , to the joint frame of discernment Θ defined as:

Θ = Θ 1 × Θ 2
Each focal element is extended to its cylindrical extension (A × Θ 2 is the cylindrical extension of A ⊆ Θ 1 ).

The extended mass function of any evidential value of the extended focal element A, denoted by m Θ , is defined as follows: The following Table 2 Note that Θ denotes the joint frame of Θ DE and Θ BT and that ↑ denotes the vacuous extension. 

m Θ 1 ↑Θ 1 ×Θ 2 (A) = m Θ 1 (B) where A = B × Θ 2 , B ⊆ Θ 1 0 otherwise (2.34)
ID Θ DE ↑ Θ Θ BT ↑ Θ 1 F lu × Θ BT A × Θ DE {Asthma, Anemia} × Θ BT 2 Anemia × Θ BT B × Θ DE {B, O} × Θ DE

Refinement and Coarsening

Let Θ and Ω be two different and compatible frames of discernment. The set Ω is a refinement of Θ provided by splitting hypotheses of Θ. The set Θ is called a coarsening of Ω obtained by gathering hypotheses of Ω. • ω({Asthma})= {Asthma}.

• ω({Anemia}) ={Thalassaemia, Aplastic-anemia, Fanconi-anemia, Haemolytic-anemia}.

The set Θ is a coarsening of Ω.

Cognitive and Evidential Independences

The cognitive and the evidential independences are properties introduced by [START_REF] Shafer | A mathematical theory of evidence[END_REF]. Then, other works based on the evidential independence were proposed [START_REF] Chebbah | Combining partially independent belief functions[END_REF].

Cognitive Independence

Defintion 11 " Two frames of discernment may be called cognitively independent with respect to the evidence if new evidence that bears on only one of them will not change the degree of support for propositions discerned by the other" [START_REF] Shafer | A mathematical theory of evidence[END_REF].

The cognitive independence is the weak independence. Two variables x and y are cognitively independent with respect to a mass function m Θ2 if new evidence that bears on only one of them does not change the degree of support for propositions discerned by the other one such that: Suppose a mass function m Θ defined on the joint frame Θ such that:

pl(x ∧ y) = pl(x) × pl(y) (2.
m Θ ((M, O)) = 0.26 m Θ ((F, O)) = 0.16 m Θ ((M, O) ∪ (F, O)) = 0.58
The plausibilities pl Θ O ↑Θ and pl Θ G ↑Θ are computed in Table 2.8.

Θ O pl Θ O ↑Θ Θ G pl Θ G ↑Θ ∅ 0 ∅ 0 O 0.84 M 1 O 0.74 F 0 O ∪ O 1 M ∪ F 1 Table 2.8: pl Θ O ↑Θ and pl Θ G ↑Θ
Variables "Obesity" and "Gender" are cognitively independent according to m Θ when the following equalities are verified:

2 Θ = Θx × Θy          pl Θ ((O, M )) = pl Θ O ↑Θ (O) × pl Θ G ↑Θ (M ) pl Θ ((O, F )) = pl Θ O ↑Θ (O) × pl Θ G ↑Θ (F ) pl Θ ((O, M )) = pl Θ O ↑Θ (O) × pl Θ G ↑Θ (M ) pl Θ ((O, F )) = pl Θ O ↑Θ (O) × pl Θ G ↑Θ (F ) Thus,          pl Θ ((O, M )) = pl Θ O ↑Θ (O) × pl Θ G ↑Θ (M ) = 0.84 * 1 = 0.84 pl Θ ((O, F )) = pl Θ O ↑Θ (O) × pl Θ G ↑Θ (F ) = 0.84 * 0 = 0 pl Θ ((O, M )) = pl Θ O ↑Θ (O) × pl Θ G ↑Θ (M ) = 0.74 * 1 = 0.74 pl Θ ((O, F )) = pl Θ O ↑Θ (O) × pl Θ G ↑Θ (F ) = 0.74 * 0 = 0

Evidential Independence

Defintion 12 "Two frames of discernment are evidentially independent with respect to a support function if that support function could be obtained by combining evidence that bears on only one of them with evidence that bears on only the other" [START_REF] Shafer | A mathematical theory of evidence[END_REF].

The evidential independence is the strong independence. Two variables x and y are evidentially independent with respect to a mass function m Θ if m Θ can be obtained by combining evidence that bears on only one of them with evidence that bears on only the other one such that:

pl(x ∧ y) = pl(x) × pl(y) bel(x ∧ y) = bel(x) × bel(y) (2.36)
Example 27 Variables "Obesity" and "Gender" are evidentially independent according to m Θ when the following equalities are verified:

         bel Θ ((O, M )) = bel Θ O ↑Θ (O) × bel Θ G ↑Θ (M ) bel Θ ((O, F )) = bel Θ O ↑Θ (O) × bel Θ G ↑Θ (F ) bel Θ ((O, M )) = bel Θ O ↑Θ (O) × bel Θ G ↑Θ (M ) bel Θ ((O, F )) = bel Θ O ↑Θ (O) × bel Θ G ↑Θ (F )          pl Θ ((O, M )) = pl Θ O ↑Θ (O) × pl Θ G ↑Θ (M ) pl Θ ((O, F )) = pl Θ O ↑Θ (O) × pl Θ G ↑Θ (F ) pl Θ ((O, M )) = pl Θ O ↑Θ (O) × pl Θ G ↑Θ (M ) pl Θ ((O, F )) = pl Θ O ↑Θ (O) × pl Θ G ↑Θ (F )
The requirement on pl is already checked in Example 26. The beliefs bel Θ O ↑Θ and bel Θ G ↑Θ are computed in Table 2.9.

Θ O bel T heta O ↑Θ Θ G bel Θ G ↑Θ ∅ 0 ∅ 0 O 0.26 M 1 O 0.16 F 0 O ∪ O 1 M ∪ F 1 Table 2.9: bel Θ O ↑Θ and bel Θ G ↑Θ          bel Θ ((O, M )) = bel Θ O (O) × bel Θ G (M ) = 0.26 * 1 = 0.26 bel Θ ((O, F )) = bel Θ O (O) × bel Θ G (F ) = 0.26 * 0 = 0 bel Θ ((O, M )) = bel Θ O (O) × bel Θ G (M ) = 0.16 * 1 = 0.16 bel Θ ((O, F )) = bel Θ O (O) × bel Θ G (F ) = 0.16 * 0 = 0

Decision Making

In the credal level, theory of belief functions permits to model and handle imperfect information. It also allows the combination of beliefs coming from different sources.

In the pignistic level, evidence theory ensures the decision making by providing several solutions. This decision process can be not feasible because of the bbas' nature. Indeed, these bbas are modeled as singletons or as subsets. Hence, to facilitate the decision making process, the belief functions theory offers the following tools:

• Pignistic probability [START_REF] Smets | The transferable belief model for quantified belief representation[END_REF][START_REF] Smets | The transferable belief model[END_REF].

• Maximum of credibility [START_REF] Janez | Rappels sur la théorie de l'évidence[END_REF][START_REF] Basir | Engine fault diagnosis based on multi-sensor information fusion using dempster shafer evidence theory[END_REF].

• Maximum of plausibility [START_REF] Janez | Rappels sur la théorie de l'évidence[END_REF][START_REF] Basir | Engine fault diagnosis based on multi-sensor information fusion using dempster shafer evidence theory[END_REF].

• Distance based [START_REF] Essaid | A distance-based decision in the credal level[END_REF].

Pignistic Probability

The pignistic probability, denoted BetP , was introduced by the transferable belief model [START_REF] Smets | Belief functions[END_REF][START_REF] Smets | The transferable belief model[END_REF]. This measure represents a compromise between the credibility function and the plausibility function. Thus, it transforms the beliefs to probability functions. The pignistic probability depends on choosing the most probable singleton hypothesis such that:

BetP (A) = B⊆Θ |A ∩ B| * m Θ (B) |B| * (1 -m Θ (∅)) ∀A ⊆ Θ (2.37)
Example 28 Suppose the following basic belief assignment where

Θ DE ={Flu,Asthma,Anemia}: m({F lu}) = 0.5 m({Asthma, F lu}) = 0.2 m(Θ) = 0.3
The corresponding pignistic probability BetP to this bba is computed as follows:

• BetP ({F lu}) = 0.5 1 + 0.2 2 + 0.3 3 = 0.7 • BetP ({Asthma}) = 0.2 2 + 0.3 3 = 0.2 • BetP ({Anemia}) = 0.3 3 = 0.1
The hypothesis that maximizes the BetP function is {Flu}. It is the most probable hypothesis.

Maximum of Credibility

The maximum of credibility consists in selecting the most credible hypothesis. The latter has the maximal value of belief bel.

The maximum of credibility determines the best hypothesis with the least chance of being realized. It uses a pessimistic decision criterion [START_REF] Janez | Rappels sur la théorie de l'évidence[END_REF] and it is defined such that:

argmax[bel(A)] ∀A ⊆ Θ (2.38)
Example 29 Let's compute the maximal credibility function of the same bba as the previous Example 28.

• bel({F lu}) = 0.5

• bel({Asthma} = 0

• bel({Anemia} = 0

The hypothesis that maximizes the bel function is {Flu}. It is the most credible hypothesis.

Maximum of Plausibility

The maximum of plausibility consists in selecting the most plausible hypothesis. The latter has the maximal value of plausibility pl. The maximum of plausibility determines the best hypothesis with the most chance of being realized. It uses an optimistic decision criterion [START_REF] Janez | Rappels sur la théorie de l'évidence[END_REF] and it is defined such that:

argmax[pl(A)] ∀A ⊆ Θ (2.39)
Example 30 Let's compute the maximal plausibility function of the same bba in Example 28.

• pl({F lu}) = 1

• pl({Asthma} = 0.5

• pl({Anemia} = 0.3

The hypothesis that maximizes the pl function is {Flu}. It is the most plausible hypothesis.

Conclusion

In this chapter, we presented the basic concepts of the belief functions theory. All notions like the frame of discernment, the belief function, the plausibility function, combination rules, vacuous extension, etc., were detailed with examples. We also presented the decision making tools as the pignistic probability, the maximum of credibility and the maximum of plausibility.

These tools will be used in the rest of our dissertation to model and handle evidential databases.

3

Evidential Databases: The Compact Form 

Summary

This chapter is about the compact form of evidential databases (EDB) and it is divided into three major parts: first, we present the only existing model of evidential databases [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF][START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF]Lee, 1992a). Second, we present how we practically modeled and implemented this database model [START_REF] Bousnina | Object-relational implementation of evidential databases[END_REF]. Finally, we focus on querying the compact form of EDB. Thus, we recall the extended evidential relational queries [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF]. Then, we discuss two preferential queries; the evidential top-k query (Bousnina et al., 2017a) and the evidential skyline query [START_REF] Elmi | Computing skyline from evidential data[END_REF][START_REF] Bousnina | Skyline operator over tripadvisor reviews within the belief functions framework[END_REF].

Introduction

Relational databases store only certain data where each attribute contains singleton values with no additional information. Imperfect databases store sets of imperfect data like uncertain, imprecise, missing ones, etc, where each attribute can handle a set of values with other information about their existence in the table; hence, the divergence between the relational databases and the imperfect databases in terms of querying.

Several models of imperfect databases and their querying methods were introduced such as probabilistic databases [START_REF] Cavallo | The theory of probabilistic databases[END_REF], possiblistic databases [START_REF] Bosc | About projection-selection-join queries addressed to possibilistic relational databases[END_REF], and evidential databases [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF][START_REF] Choenni | Handling uncertainty and ignorance in databases: A rule to combine dependent data[END_REF]Lee, 1992a;[START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF].

In this chapter, our interest goes to the compact form of the evidential database (EDB). In fact, we present the most elaborated evidential database model [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF]Lee, 1992a;[START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF]. Then, we focus on the querying methods that can be applied over (EDB): The evidential relational queries [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF], the evidential top-k queries (Bousnina et al., 2017a) and the evidential skyline queries [START_REF] Bousnina | Skyline operator over tripadvisor reviews within the belief functions framework[END_REF]. We also present the Object-relational implementation of the evidential compact database EDB [START_REF] Bousnina | Object-relational implementation of evidential databases[END_REF] that serves as a basis to practically evaluate the presented querying methods.

Evidential Databases Model

The most used and known evidential database model is the one introduced by [START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF]Lee, 1992a) and extended later in [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF]. Thus, authors defined an evidential database model in a compact form semantics. It is formally defined as follow:

Defintion 13 (Compact form)

An Evidential Database, EDB, on its compact form, is a database with N tuples and D attributes, storing perfect and imperfect data. Imperfection is expressed in two levels:

• The attribute level uncertainty, modeled via the evidential values. An evidential value, denoted V ta , is the value of an attribute a for the tuple t. An evidential value is a bba, such that

V ta : 2 Θa → [0, 1] (3.1) with m Θ ta (∅) = 0 and B⊆Θa m Θ ta (B) = 1 (3.2)
The set of focal elements of the bba V ta is noted F ta such that:

F ta = {B ⊆ Θ a /m Θ ta (B) > 0} (3.
3)

The tuple level uncertainty, expressed through a particular attribute called confidence level. It is denoted CL and it stores confidence intervals given by experts about the existence of each tuple t in the evidential database. Each interval is a pair of belief and plausibility, such that:

CL = [bel; pl] where Θ CL = {exist, exist} CL ⊆ [0; 1] bel ≤ pl (3.4)
Example 31 Let us have an example of a doctor that expressed his medical diagnoses about three patients by giving multiple hypotheses and their assignments. His diagnoses are modeled using the belief functions' theory and stored in the following compact evidential Table 3 Since evidential databases store more complex data compared to relational databases, the relational structure seems to be not adequate to their storage. Hence, the need to introduce a model that fits the structure of this evidential data.

Implementing Evidential Databases

An evidential database [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF] is a model that handles uncertainty, imprecision and ignorance. Storing these kind of data requires a specific model. At the best of our knowledge there is no efficient implementation relative to evidential databases for a querying purpose.

In our work [START_REF] Bousnina | Object-relational implementation of evidential databases[END_REF], we introduce a meta-model and an objectrelational implementation for EDBs that offer a scalable and flexible solution to manage evidential data.

Meta-model

In classical databases, tables store data in a matrix format; attributes in columns and objects in lines. In evidential databases, data are stored in object-relational format. As shown in the class diagram of the evidential meta-model of Figure 3.1. An evidential database is composed of tables where each table has N tuples and D attributes. These attributes are based on the structure of basic belief assignments, bbas . An attribute has a name and contains one bba for each tuple. A bba is composed of one or more focal elements. A focal element has a mass and contains hypotheses. Each hypothesis has a content. The belief and the plausibility functions compute respectively the minimal and the maximal degrees of believes about a set of hypotheses in a bba. They are defined as methods at the bba structure. Each evidential table stores N tuples. A tuple is identified by its ID and its confidence level, CL that quantifies the confidence level degree of the tuple's source. 

Object-Relational Implementation

To put into practice the proposed meta-model, we relied on a commercial Object-Relational Database Management System (ORDBMAS), Oracle 10g. Its main asset is the Oriented-Object feature that facilitates the implementation of the complex structure of an evidential database, as designed in Figure 3.1. We define the bba type which is basically a collection of focal elements, whose type contains two compartments, a collection of hypotheses, and its mass value. As explained earlier, this modeling is impossible to implement in the relational framework, because of the first normal form constraint.

In addition to the previous advantage, a commercial ORDBMS offers an interesting I/O cost optimization. Indeed, Oracle uses a System Global Area (SGA) to keep in cache reused data (the database buffer cache) and reused queries (the shared pool). The database buffer cache contains previous extracted data. In case of querying some of (or these) data, the database server avoids disk access and returns the result directly from physical memory. In the other hand, queries execution plans whose computation is costly, are stored in the shared pool in the SGA. In case of executing an existing query in the pool, the system avoids syntactic analysis and execution plan computation which saves important CPU time. Added to that, the use of indexes in DBMSs that accelerates information extraction especially, in our case, when we use Nested tables vs. Varying Arrays to store collections. Indeed, a varying arrays attribute (in Oracle, the type is named varray) is physically stored in the same segment of the table. On the other hand, a nested table attribute is stored in a separate segment. Thus, data of that segment are indexable. For example, the attribute symptom in Table 3.1 is a collection of focal elements. The use of nested table type implies the possibility to create an index on that attribute which induces more efficiency when selecting tuples with a symptom criterion.

Moreover, we benefit from the use of SQL3 when employing the Object-Relational model in Oracle. Thus, if we want to create a bba type, which is mainly a collection of focal elements, we need to create first the type hypos; because the focal element structure contains a mass value, and also a collection of hypotheses (it can be one hypothesis or a set of hypotheses). The type hypos is a collection of a basic data type:

CREATE TYPE FOCALELEMENT AS OBJECT (content HYPOS, mass NUMBER, MEMBER FUNCTION) Includes (search FOCALELEMENT) RETURN NUMBER, MEMBER FUNCTION Intersect (search FOCALELEMENT) RETURN NUMBER);
The bba type is defined as an object with one attribute; content and two methods; bel and pl. Content is defined as a collection of focal elements. bel and pl are methods that compute respectively belief and plausibility of comparison with another bba. To integrate the tuple uncertainty level, we define the type CL that is an interval of numbers.

CREATE TYPE CL AS OBJECT (bel NUMBER, pl NUMBER);

Example 32 To create the evidential The methods bel and pl are very important because we may select objects whose attributes' values (bbas) are compared as follows:

• Symptom="Fatigue": The search criterion is a single value. Then, "Fatigue" is a bba with a single focal element, having a single hypothesis with a mass equal to one (a certain bba).

• Symptom= "Fatigue" OR "Nausea": It is a bba with one focal element that is {"Fatigue","Nausea"} having a mass equal to one.

• e.Symptom=d.Symptom: It consists in comparing two bbas. For example, comparing symptoms of patient (ID=1) and patient (ID=2).

Querying is a form of questioning the stored data. Depending on the format of the data's storage, several families of queries can be applied like relational queries, ranking queries, preferential queries, etc.

Querying Evidential Databases EDB

Processing queries over evidential data is very challenging because of the complex structure of their modeling. Thus, each hypothesis can be uncertain and/or imprecise with two levels of assignment: at the attribute with masses and at the tuple with confidence intervals. Specific queries to deal with evidential data were introduced like the evidential relational queries [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF], evidential top-k queries (Bousnina et al., 2017a;[START_REF] Bousnina | Evidential top-k queries evaluation: Algorithms and experiments[END_REF] and evidential Skyline queries [START_REF] Elmi | Computing skyline from evidential data[END_REF][START_REF] Elmi | Requêtes skyline en présence des données évidentielles[END_REF][START_REF] Bousnina | Skyline operator over tripadvisor reviews within the belief functions framework[END_REF].

Evidential Relational Queries

The relational operators (selection, projection, Cartesian product, union and difference) were introduced by [START_REF] Codd | A relational model of data for large shared data banks[END_REF] based on the relational algebra [START_REF] Kamel | Relational algebra and uniform spaces[END_REF] and set theory [START_REF] Moore | Foundations of point set theory[END_REF]. These operators represent the fundamental operators to query any database. Hence, authors [START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF]Lee, 1992a;[START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF] extended the classical relational operators to be suitable with the complex structure of an evidential database.

Extended Select Operator

The relational select operator consists in extracting some tuples from a given table whose attributes satisfy some conditions defined via the query. In the evidential database model as presented in (Lee, 1992a;[START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF], the evidential select operator behaves almost the same as the classical ones except for the computation of confidence levels.

A new CL t defined on Θ a Θ CL is computed such that:

CL t = [bel Θa a (a = h) × bel θ 1 CL t ; pl Θa a (a = h) × pl θ 1 CL t ] (3.5)
Where bel a and pl a are respectively the belief and the plausibility of attribute a with an hypothesis h responding to the condition of the query; bel t and pl t are respectively the belief and the plausibility of the tuple.

Example 33 Let's apply the following select query over Table 3.1.

Q 1 : SELECT ID FROM EDB WHERE Disease = ''Stoke''
Tuples that do not satisfy the condition are eliminated. The returned relation includes the two tuples that verify the criterion. The confidence level of each tuple in the result is computed using Equation (3.5) as shown in Table 3.2.

Extended Project Operator

The relational project operator consists in taking as an input a relation and then giving as an output one attribute or more from attributes of the same relation. The evidential project operator as presented in [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF][START_REF] Choenni | Handling uncertainty and ignorance in databases: A rule to combine dependent data[END_REF]Lee, 1992a) is ID CL 2 [0.9*0.4 ; 0.9*0.9] = [0.36 ; 0.81] 3 [0*1; 0.7*1] = [0 ; 0.7] 

Extended Cartesian Product

The relational Cartesian product of two relations, denoted ×, consists in making the product of every tuple of the first relation with every tuple of the second relation. The evidential Cartesian product is defined in the same way except for the value of CL. It is computed using the conjunctive combination between two tuples [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF]Lee, 1992a).

Defintion 14 Let CL 1 [bel 1 ; pl 1 ] and CL 2 [bel 2 ; pl 2 ] be two evidential confidence levels, the conjunctive combination is defined such that:

[bel 1 ; pl 1 ] ∧ [bel 2 ; pl 2 ]) = [bel 1 * bel 2 ; pl 1 * pl 2 ] (3.6)
Example 35 Let Table 3.4 and Table 3.5 be two evidential tables. The Cartesian product of EDB 1 × EDB 2 is presented in 

Extended Join

The relational join operation, denoted , combines tuples from two (or more) tables using the common values for each table. The result of a join operation is a selection on Cartesian product of the joined relations. In evidential context, the extended join behaves the same except for the confidence levels values which are calculated using the conjunctive combination of equation (3.6) [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF]Lee, 1992a;[START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF].

Example 36 We apply the extended join operator over Tables 3.4 and3 

Experiments

The Object-Relational implementation of the compact evidential database model [START_REF] Bousnina | Object-relational implementation of evidential databases[END_REF] allowed us to evaluate some extended relational operators and to analyze the results. Indeed, we implemented the evidential select and project operators. These operators can make use of any comparison operator {<,>,≤,≥} to define a criterion on a bba or to define a bel and a pl threshold.

Example 37 As an example, the query in below is about selecting patients whose diseases are equal to "Anemia" with belief grater that 0.2. The searched symptom is processed by the bel function as a bba with a single focal element whose mass is equal to one.

Q: SELECT d.* FROM disease d WHERE d.bel(bba(FOCALELEMENT('Anemia',1)), '=') > 0.2;

We evaluated the proposed Object-Relational implementation from a performance point of view. We used a windows 8 desktop with a 2.67 GHZ CPU and 8GB RAM. We also used SQL3 and PL/SQL for implementation on Oracle 10g server. The size of the System Global Area (SGA) in Oracle server is set to 1GB.

Data sets

The used data sets are synthetic with the following parameters (1) N the size of the database, (2) %IR the imperfection rate of data, i.e., number of imperfect tuples over N , ( 3) nf e the maximum number of focal elements per bba, (4) sf e the maximum size of each focal element (5) D number of attributes and ( 6) d i size of attribute domain.

To generate a synthetic evidential database, the used algorithm uses a main procedure that generates a synthetic bba. This procedure operates as follows: it computes randomly a fixed number of focal elements in the interval [1, nf e]. Then, for each focal element, it generates randomly a number in the interval [1, sf e]; that's the size of current focal element. Each hypothesis in the focal element is randomly generated in the interval [1, d], d i being the cardinality of our attribute domain. Masses of focal elements are generated in the interval [0, 1]. We used the random function of JAVA which is based on the uniform law.

We managed several constraints like uniqueness of hypotheses into one focal element, uniqueness of focal elements in a bba, and normalization of a bba (sum of focal elements' masses must be equal to one). Then, we generated for each tuple one bba per attribute. We repeat this operation for %IR of N . Remaining tuples are perfect and contain in every attribute one bba with one singleton focal element whose mass is equal to one.

Evaluation The experiments showed interesting results from a performance point of a view although it has some limits when some parameters of the database reach some thresholds.

Default values used in experiments are fixed to N = 1000, nf e = 4, sf e = 2, d i = 10 and %IR = 70. In the first experiments, we varied the parameter N from 1000 tuples to 500000. The system crashed when we set N = 500000. For N = 100000 the system answers our test query in approximately 17 seconds. Experiments produced very acceptable time of execution until the limit of 60000 tuples (about 6 seconds at the worst). Figure 3.2(a) shows the experiment results.

Then, we varied the number of focal elements. Until nf e = 50, the system answers with acceptable execution time, without exceeding 4 seconds. We judge the value of 50 as appropriate, because an expert (the doctor in our example) does not give a such great number of believable hypotheses (in our case diagnoses). Results of this experiment are shown in Figure 3.2(b).

For focal elements' sizes, we varied the parameter sf e from 2 to 10. Figure 3.2(c) shows the results. Execution time did not exceed 0.3 seconds. This acceptable performance is due to bel Comp (respectively pl Comp) PL/SQL implementation. First of all, PL/SQL is integrated in Oracle (such that every transactional programming language), which reduces I/O costs. Second, scanning focal elements for belief/plausibility computations' amounts to scanning Oracle nested tables. Searching these structures is optimized by Oracle which offers for them sequential and direct access.

Each attribute is characterized by its domain cardinality. It refers to the frame of discernment size. We varied this parameter from 10 to 1000, the results are presented in Figure 3.2(d). The performance is again very acceptable although we reached a high size of cardinality (1000). Note that complexity of a generated bba also depends on number and size of focal elements that are controlled by parameters nf e and sf e. If we do not control these parameters, we can reach 21000 focal elements, with sizes that could reach 1000. This situation is not realistic, because expressing a so huge number of focal elements in one bba is impossible.

To mimic real imperfect databases, our solution should process objects that are either perfect or imperfect. To show the impact of imperfect objects on our solution performance, we varied the rate of imperfect objects in the database from 20% to 100%. It's logical that performance decreases in case of high values of the imperfection rate. Processing evidential bbas v.s. certain bbas involves more belief/plausibility computations. However in general, the performance was acceptable (it didn't exceed 0.5 seconds) even when the rate reached 100%. An important feature of commercial databases consists in using memory caches to speed-up queries answering. In general, two memory caches are used in most of commercial solutions: (i) the database buffer cache, for keeping previous extracted data; (ii) the shared pool for keeping syntactic and execution information of previous queries. To evaluate the contribution of caching data and queries in our solution, we compared first execution of the test query (without cache), with next executions(with cache). Naturally, the difference is clear and expected. Table 3 

Evidential Top-k Query

Top-k queries, also known as Ranking queries, were introduced in the multimedia systems by Fagin [START_REF] Fagin | Combining fuzzy information from multiple systems[END_REF][START_REF] Fagin | Fuzzy queries in multimedia database systems[END_REF].They represent a powerful tool to order queries' results and give only the most interesting answers. Generally, top-k queries rank the results using a defined score function where only the k (k ≥ 1) most important ones are returned; i.e, only answers with the highest scores are returned. Top-k queries are needed in real worlds applications: for example movies can be ordered by the most watched ones, music can be ranked by the most listened songs, researchers can be ranked by their H-index, athletes by their race time, etc.

Several top-k processing techniques exist in the literature. In the uncertain data context, they can be classified into three categories [START_REF] Ilyas | A survey of top-k query processing techniques in relational database systems[END_REF]:

• Exact methods over certain data, where top-k queries and data are deterministic.

The majority of top-k processing techniques are based on exact methods and certain data.

• Approximate methods over certain data, where processing top-k queries over certain data produces approximate results [START_REF] Amato | Region proximity in metric spaces and its use for approximate similarity search[END_REF][START_REF] Theobald | An efficient and versatile query engine for topx search[END_REF].

• Methods over uncertain data, where top-k processing techniques deal with imperfect data. The top-k queries are based on different uncertainty models. At the best of our knowledge, only top-k queries' approaches that deal with probabilities exist in the literature [START_REF] Re | Efficient top-k query evaluation on probabilistic data[END_REF][START_REF] Soliman | Top-k query processing in uncertain databases[END_REF] but there is no work that deals with other types of imperfect data.

Similarly to the probabilistic top-k queries [START_REF] Soliman | Top-k query processing in uncertain databases[END_REF], Evidential Topk queries should return the k answers that respond to an evidential query with the highest scores based on a scoring function that takes into consideration the degrees of imperfection in the database. Indeed, we introduced a new type of uncertain top-k queries; the Evidential Top-k Queries (Bousnina et al., 2017a) that we apply over an evidential relation. Thus, we introduced as a first step a new scoring function for evidential data that returns an interval bounded by a belief and a plausibility. To rank the evidential scores, we relied on the method of comparison of [START_REF] Wang | A preference aggregation method through the estimation of utility intervals[END_REF]. We also presented a new imperfect top-k semantics specific to the evidential scenario.

Formalism

Processing queries over evidential databases gives answers, each one quantified with a degree of confidence in a form of interval. That degree reflects the lower and the upper bounds of trust in that response which is calculated from the database. In this case, one can not rank such answers, so the user is not able to choose the most interesting ones from the set of results according to some defined criteria. In order to provide the decision maker with a method to select the k best answers to this query, we need to introduce a new top-k approach specific for evidential databases. Table 3.9 presents an example of an evidential table that stores some users' appreciations about books: b 1 , b 2 , b 3 , b 4 . It is a relation with three attributes: The first one is ID that represents the identifier of a specific reader. The second attribute is BookRate where the reader expresses its preferred books using the evidence theory 1 . The uncertainty here is of the attribute level nature. The third attribute is CL, it stores the interval of confidence about the user's appreciations (it deals with uncertainty at the tuple level).

ID BookRate CL 1 b 1 0.3 [0.5;1] {b 2 , b 3 } 0.7 2 b 2 0.5 [0.3;0.8] b 4 0.5 3 {b 1 , b 2 , b 3 } 1 [1;1] 4 b 3 1 [0.5;0.9]
Table 3.9: Books Appreciations' Table : BAT

1
The literature is abundant in term of methods of preference elicitation using the evidence theory. We cite two main works [START_REF] Ben Yaghlane | Elicitation of expert opinions for constructing belief functions[END_REF][START_REF] Ennaceur | Multi-criteria decision making method with belief preference relations[END_REF] The new formalism of ranking evidential results is based on several steps. First, we process a query Q over an evidential database. Then, for each generated response an Evidential Score is computed. That score is an interval of belief and plausibility, defined as follows:

Defintion 15 (Evidential Score) Let R i be a response generated from processing a query Q over an evidential database EDB, S(R i ) is the score function of R i and bel(R i ) and pl(R i ) are respectively its belief and plausibility in the table.

S(R i ) = [bel(R i ); pl(R i )] (3.7) Where bel(R i ) = N l=1 bel l (R i ) * bel l N pl(R i ) = N l=1 pl l (R i ) * pl l N Note that
bel l and pl l are respectively the belief and the plausibility of the tuple l, defined on Θ CL = {exist, exist}.

The belief of an answer, bel(R i ), is a disjunction of the response's beliefs in each object of the database. The belief of a response in one object l is the product of its belief in the attribute and the belief of that object. Same for the plausibility of an answer, pl(R i ). It is the disjunction of the response's plausibilities in each object of the database where the plausibility of a response in one object t is the product of its plausibility in the attribute and the plausibility of that object [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF]Lee, 1992a).

Example 38 Let's process the query Q over the evidential Table 3.9 in order to get the most two appreciated books (k=2) by all readers in the table.

Q 2 : SELECT BookRate FROM BAT ORDER BY S(BookRate) LIMIT 2;

The score of each item in the relation that may be a response to the query Q is computed as follows:

• The first possible response is book b 1 , it appears in tuples l 1 and l 3 . Therefore: The computed evidential scores are shown in Table 3.10.

Item EvidentialScore b

1 R 1 = [0.0375 ; 0.325] b 2 R 2 = [0.0375 ; 0.525] b 3 R 3 = [0.125 ; 0.65] b 4 R 4 = [0.0375 ; 0.1]
Table 3.10: Evidential Score per Item Classical Top-k queries are based on a defined score function that produces precise values. However, the evidential top-k queries are based on a score function that Defintion 16 (Preference Degree) Let S(R i )=[bel i ; pl i ] and S(R j )=[bel j ; pl j ] be two evidential scores. Each one is an interval composed of a degree of belief and a degree of plausibility. The degree of one interval to be greater than the other one is called a degree of preference and denoted P .

The degree of preference that S(R i ) > S(R j ) is defined such that:

P (S(R i ) > S(R j )) = max(0, pl i -bel j ) -max(0, bel i -pl j ) (pl i -bel i ) + (pl j -bel j ) (3.8)
The degree of preference that S(R i ) < S(R j ) is defined such that:

P (S(R i ) < S(R j )) = max(0, pl j -bel i ) -max(0, bel j -pl i ) (pl i -bel i ) + (pl j -bel j ) (3.9)
The different cases of comparing intervals S(R i ) and S(R j ) are as follows :

• If P (S(R i ) > S(R j )) > P (S(R j ) > S(R i )), then S(R i
) is said to be superior to S(R j ), denoted by S(R i ) S(R j ).

• If P (S(R i ) > S(R j )) = P (S(R j ) > S(R i )) = 0.5, then S(R i ) is said to be indif- ferent to S(R j ), denoted by S(R i ) ∼ S(R j ). • If P (S(R j ) > S(R i )) > P (S(R i ) > S(R j )), then S(R i ) is said to be inferior to S(R j ), denoted by S(R i ) ≺ S(R j ). Theorem 3.1 Let S(R i )=[bel i ; pl i ]
and S(R j )=[bel j ; pl j ] be two evidential scores such that:

• Case 1: if S(R i ) = S(R j ) then P (S(R i )) > P (S(R j )) = P (S(R i )) < P (S(R j )) = 0.5.
• Case 2: if bel i ≥ pl j then P (S(R i ) > S(R j )) = 1.

• Case 3: if bel i ≥ bel j and pl i ≥ pl j then P (S(R i ) > S(R j )) ≥ 0.5 and P (S(R j ) > S(R i )) ≤ 0.5.

In order to detect the dominant interval between the score of relation R i denoted S(R i ) and the score of relation R j denoted S(R j ), we need to compute the degree of preference that S(R i ) > S(R j ) and the degree of preference that S(R i ) < S(R j ).

The complexity of this computation can be reduced thanks to the complementarity of P (S(R i ) > S(R j )) and P (S(R i ) < S(R j )).

The complementarity is only feasible when :

S(R i ) = S(R j ) bel i < pl j (3.10)
Proof (Complementarity)

P (S(R i ) < S(R j )) = max(0, pl j -bel i ) -max(0, bel j -pl i ) (pl i -bel i ) + (pl j -bel j ) P (S(R j ) < S(R i )) = max(0, pl i -bel j ) -max(0, bel i -pl j ) (pl i -bel i ) + (pl j -bel j ) P (S(R i ) < S(R j )) + P (S(R j ) < S(R i )) = max(0, pl j -bel i ) -max(0, bel j -pl i ) (pl i -bel i ) + (pl j -bel j ) + max(0, pl i -bel j ) -max(0, bel i -pl j ) (pl i -bel i ) + (pl j -bel j ) = max(0, pl j -bel i ) -0 + max(0, pl i -bel j ) -0 (pl i -bel i ) + (pl j -bel j ) = pl j -bel i + pl i -bel j pl i -bel i + pl j -bel j = 1 P (S(R i ) < S(R j )) + P (S(R j ) < S(R i )) = 1
The interpretations of probabilistic top-k queries can not be considered for evidential top-k queries. Thus, a new specific semantics for Evidential Top-k Queries is defined as follows:

Defintion 18 (E-Top-k)
Let EDB be an evidential database with N objects and A attributes; CL is an attribute where the intervals associated to objects reflects the degrees of confidence about these objects. Let S(R i ) be a score function that maximizes both CL and the interval of belief on each result. Responses R are ordered according to the computed scores.

An E-topk returns the k most credible answers from the set of answers such that:

S(R i ) = Argmax R i ∈R ([bel(R i ); pl(R i )]) (3.12)
Example 39 Let's carry on with the same example of Table 3.9. We want to give a total ranking of the resulting evidential scores and we want to deduce the top-2 answers and their semantics. 

Algorithms

The Object-Relational implementation of Evidential top-k queries (Bousnina et al., 2017a) involves two methods to handle the evidential scores (evidential intervals):

N aiET opKN ote. Note that complexity depends also on the intervals' nature generated randomly as detailed theoretically above. 

Evidential Skyline Query

The skyline operator [START_REF] Börzsönyi | The skyline operator[END_REF] filters answers from a database to give only those tuples that are not worse than any other. For example, a user wants to select the cheapest and the closest hotels to the beach. The skyline operator in this case selects those hotels that are not worse than any others in price and distance. The evidential skyline operator [START_REF] Elmi | Computing skyline from evidential data[END_REF], denoted e-sky, is based on the belief and plausibility dominance in order to give answers that are not worse than any other. This evidential skyline operator was applied over some reviews collected from a real platform: the T ripAdvisor; T ripAdvisor is one of the most well known crowd-sourcing platforms where travelers express their opinions about hotels they visited through an evaluation form. Since the T ripAdvisor platform do not answer a multi-criteria request. Then, we proposed to use these collected reviews to answer users' queries about the best hotels regarding some criteria like distance, price, etc.

T ripAdvisor provides a reviewing form for travelers in order to evaluate hotels according to several criteria. A response about one criteria for a specific hotel can be in {-1;1;2;3;4;5}. If the response is in {1;2;3;4;5}, it is precise and certain. Thus, it induces a precise and certain belief function. If the response is -1, then it reflects the total ignorance. These reviews need to be transformed and then stored in the real T ripAdvisor evidential database, to be later queried with e-sky. Four major steps are made:

• Construction of mass functions: A reviewer response is translated into a bba, in the context of belief functions theory.

• Reliability estimation and discounting: Reviews are discounted based on the reliability of each reviewer.

• Combination of reviews: All responses to the same review (same hotel and same criteria) are combined in order to provide one bba that summarizes all the reviewers' evaluations.

• Evidential skyline query: The e-sky is applied over the obtained T ripAdvisor evidential database.

Construction of Mass Functions

Belief functions theory allows the construction of basic belief assignments (bbas) from the set of hypotheses. The mass of an hypothesis A as modeled in Equation ( 2.2) and denoted, m(A), is interpreted as the degree of support given by an expert and that reflects his belief on that response A. This mass can not be divided on subsets of A. In T ripAdvisor platform, each traveler chooses one rate from 1 to 5. If he does not provide a rate, his response is interpreted as -1. From the evidence theory point of view, the frame of discernment is Θ= {1, 2, 3, 4, 5} and -1 is interpreted as total ignorance, m Θ (Θ) = 1. Each non empty response is interpreted as certain and precise belief functions over Θ.

Example 40 The first reviewer Rev 1 gives a rate 3 for the service of hotel h 1 . Its response is interpreted as m Θ (3) = 1. Table 3.15 is an interpretation of Table 3.14, in the context of belief functions' theory for criteria: Price, Place and Service.

Reviewers Hotels P rice P lace Service

Score Rev 1 h 1 m Θ (3) = 1 m Θ (4) = 1 m Θ (3) = 1 0.136 Rev 2 h 1 m Θ (Θ) = 1 m Θ (4) = 1 m Θ (2) = 1 0.99 Rev 3 h 2 m Θ (4) = 1 m Θ (Θ) = 1 m Θ (5) = 1 0.036 Rev 4 h 2 m Θ (3) = 1 m Θ (5) = 1 m Θ (Θ) = 1 0.733
Table 3.15: Construction of mass functions

The obtained mass functions need to be combined in order to have only one bba for each object. However, the reviews must be discounted by the estimated reliabilities before their combination.

Reliability Estimation and Discounting

The conflict may appear according to different cases [START_REF] Martin | Conflict management in information fusion with belief functions[END_REF]. in our case, the conflict reflects the unreliability of at least one of the experts' opinions. A user's estimated reliability is used to weaken its given opinions modeled through the basic belief assignments (bbas).

The T ripAdvisor platform gives to each reviewer a number of points depending to its contributions. These points are accumulated when the traveler (reviewer) gives an opinion about a hotel that he visited. Figure 3.5(a) shows how the T ripAdvisor rewards reviewers that add photos, videos, helpful reviews, etc. Added to that, T ripAdvisor divides its reviewers into 6 levels, shown in Figure 3.5(b): the first level is assigned to travelers having 300 to 2499 points and the final and the sixth level is affected to travelers with points starting from 10.000. Method of rewarding travelers as illustrated in Figure 3.5 is fixed by the T ripAdvisor platform.

We proposed to estimate the reliability of each reviewer based on points and levels given by the T ripAdvisor platform. Thus, two methods are proposed: the first is to calculate a reliability for each reviewer having points from 300 to 10.000 relatively to the sixth level, as shown in Equation (3.13), and the second is to compute the reliability score for reviewers having more than 10.000 point (i.e, travelers that acquire the last level and accumulating more points), as shown in Equation (3.14).

The maximal score is fixed to 0.9 for the 10.000 points. Based on that, a reliability is computed for reviewers having points under 10.000, such that: Score = (points * 0.9)/10.000 (3.13) When the number of points accumulated by a reviewer are greater that 10000, the reliability is computed such that:

Score = 1 -(1/points) (3.14)
Figure 3.6 shows the reviewers' reliabilities according to accumulated points.

Example 41 the first reviewer R 1 in Table 3.14 has accumulated 1510 points and since his number of points is lower than 10000 then his reliability score is computed using method (i): Score R 1 = 1510 * 0.9 / 10000 = 0.136. The second reviewer R 2 has accumulated more points than 10000 then his reliability score is computed using method (ii): Score R 2 = 1 -(1 /22800) = 0.99. Estimated reliabilities for all reviewers are shown in Table 3.15.

The reliability estimated for each reviewer is used to discount the basic belief assignments that reflect their reviews about hotels using Equation (2.33).

Example 42 The reviewer R 1 , the reliability degree is α = 0.136. Thus:

m α P rice (3) = 0.136 * 1 = 0.136 m α P rice (Θ) = 0.136 * 0 + (1 -0.136) = 0.864
Results of discounted mass functions are shown in Table 3.16.

Once the reviews, modeled as bbas, are discounted, they are combined.

Reviewers Hotels P rice P lace Service

Rev 1 h 1 m Θ (3) = 0.136 m Θ (4) = 0.136 m Θ (3) = 0.136 m Θ (Θ) = 0.864 m Θ (Θ) = 0.864 m Θ (Θ) = 0.864 Rev 2 h 1 m Θ (Θ) = 1 m Θ (4) = 0.99 m Θ (2) = 0.99 m Θ (Θ) = 0.01 m Θ (Θ) = 0.01 Rev 3 h 2 m Θ (4) = 0.036 m Θ (Θ) = 1 m Θ (5) = 0.036 m Θ (Θ) = 0.964 m Θ (Θ) = 0.964 Rev 4 h 2 m Θ (3) = 0.733 m Θ (5) = 0.733 m Θ (Θ) = 1 m Θ (Θ) = 0.267 m Θ (Θ) = 0.267
Table 3.16: Discounting of mass functions

Combination of Reviews

In theory of belief functions, combination rules aggregate data from different sources to get one mass function that reflects all sources' opinions.

Example 43 Reviews about hotel h 2 for attribute P rice are combined as shown in Table 3.17. Note that m Θ 3 is the mass function given by reviewer 3 and that m Θ 4 is the mass function given by reviewer 4.

P rice \ h 2 m Θ 3 (Θ) = 0.964 m Θ 3 (4) = 0.036 m Θ 4 (Θ) = 0.267 m Θ (Θ) = 0.26 m Θ (4) = 0.01 m Θ 4 (3) = 0.733 m Θ (3) = 0.7 m Θ (∅) = 0.03
Table 3.17: Combination of bbas about the Price of h 2

The joint mass of reviewers Rev 3 and Rev 4 , m Θ 3⊕4 about the price of hotel h 2 is:

(i) m Θ 3⊕4 (3) = 1/(1 -0.03) * 0.7 = 0.72 (ii) m Θ 3⊕4 (4) = 1/(1 -0.03) * 0.03 = 0.012; (iii) m Θ 3⊕4 (Θ) = 1/(1 -0.03) * 0.26 = 0.268.
Similarly, we combine all bbas for each attribute for the different hotels. The obtained evidential database EDB is in Table 3.18.

The obtained database is evidential with either precise bbas, or partial ignorance bbas. This EDB is then queried with preference conditions using the skyline operator. Preference conditions may deal either with one attribute like Price, Place or Service or with a combination of these attributes leading to the multi criteria filtering.

Hotels P rice P lace

Service h 1 m Θ (3) = 0.136 m Θ (4) = 0.9814 m Θ (2) = 0.98 m Θ (Θ) = 0.864 m Θ (Θ) = 0.0086 m Θ (3) = 0.01 m Θ (Θ) = 0.01 h 2 m Θ (3)= 0.72 m Θ (4) = 0.992 m Θ (5) = 0.036 m Θ (4) = 0.012 m Θ (Θ) = 0.008 m Θ (Θ) = 0.964 m Θ (Θ) = 0.268
Table 3.18: The obtained Evidential Database from T ripAdvisor

Evidential Skyline Operator

The evidential skyline operator [START_REF] Elmi | Computing skyline from evidential data[END_REF] is based on two methods: the bdominance and the p-dominance; i.e, the skyline is computed using the dominance of beliefs and plausibilities. This formalism was applied over the extracted data from the T ripAdvisor platform. As a consequence, the evidential skyline query in the T ripAdvisor context [START_REF] Bousnina | Skyline operator over tripadvisor reviews within the belief functions framework[END_REF] ameliorates the skyline performance compared to the basic evidential skyline [START_REF] Elmi | Computing skyline from evidential data[END_REF]. This amelioration is due to the simple modeling of reviews in the evidential table which reduces the computations' cost.

Conclusion

In this chapter, we presented the most known and used evidential database model on its compact form [START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF]Lee, 1992a;[START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF]. In fact, we presented the Object-Relational implementation of this model using Java and SQL3 [START_REF] Bousnina | Object-relational implementation of evidential databases[END_REF]. The proposed implementation was used to apply queries like extended relational operators [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF], evidential skyline and evidential Top-k [START_REF] Bousnina | Skyline operator over tripadvisor reviews within the belief functions framework[END_REF]. The latter is a ranking query that provides the k best credible answers via an interval scores.

To evaluate the compact evidential model (EDB), we need to model it through its possible worlds' representation. The non compact form is fundamental to evaluate the querying methods of (EDB). 

Summary

This chapter is about modeling and querying evidential databases as possible worlds. First, we define representation systems. After that, we present the evidential databases (EDB) on their non compact form, i.e, the possible worlds and their querying process. Finally, we evaluate querying methods applied over this database model in order to determine what kind of representation system it is.

Introduction

The compact form is the only conceivable representation in practice. In fact, implementing and querying the possible worlds is expensive in terms of memory and CPU. However, the possible worlds' form remains fundamental; first, it defines clear semantics for the imperfect database, and second, it is used to validate querying methods over the compact form. Although, a model is considered as a strong representation system when querying the compact form is equivalent to querying the possible worlds of the imperfect database.

Several researches [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF][START_REF] Choenni | Handling uncertainty and ignorance in databases: A rule to combine dependent data[END_REF]Lee, 1992a;[START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF]) focused on modeling, querying and mining evidential databases on their compact forms. In [START_REF] Bousnina | A new formalism for evidential databases[END_REF], we proposed a method for modeling and querying an evidential database on its possible worlds form treating the attribute level uncertainty (ALU). Then, we generalized the evidential possible worlds model by considering the tuple level uncertainty (TLU) in addition to the attribute level uncertainty. Table 4.1 is an example of an evidential table that stores blood types of two patients. The blood types' domain is Θ BT = Θ BT F = {A, B, O}. This table contains four attributes where Blood Type, BloodTypeFather involve imperfect information modeled thanks to the mass functions (to express the ALU) and the confidence level CL (to express the TLU). 

ID BloodType BloodTypeFather

CL 1 A 0.5 A [0.5;1] B 0.5 2 A 0.3 B 0.8 [0.3;0.8] {A, B} 0.7 {A, B} 0.2

Representation Systems

The concept of representation systems was introduced by [START_REF] Imielinski | Incomplete information in relational databases[END_REF]. It constitutes the way of modeling an imperfect database from its compact form to its possible worlds' form and it is formally defined such that:

Defintion 19 A Representation System is a set of instances and a function Rep that associates to each imperfect database DB the set of instances Rep(DB). 

Evidential Database as Possible Worlds

The definition of the possible worlds form is motivated by two reasons:

1. Semantic interpretation: Most of uncertainty theories represent imperfect information through a distribution of hypotheses where each one matches the solution with a degree of uncertainty. In the same way, the possible worlds form models an imperfect database with some degree of uncertainty. Thus, it is considered as a clearer semantics than the compact form. It represents an imperfect database as a distribution of candidate databases. Each candidate is a consistent database that can match to the real database with a certain degree of credibility.

2. Use for proofs: Querying an imperfect database should be equivalent to querying its possible worlds as stated in [START_REF] Imielinski | Incomplete information in relational databases[END_REF] and well presented in (Abiteboul et al., 1995a). A querying model over imperfect databases is considered as a strong representation system when it is equivalent to querying their possible worlds.

In the remaining of this section, we explain how to produce possible worlds from a compact evidential database using the Dempster-Shafer tools. A summarizing schema in Figure 4.3; and a recapitulate example of Figure 4.4 are provided at the end of this section to illustrate the overall model.

The evidential non compact form is obtained by expanding the compact form into different states where each state is representative of the evidential database (compact form) with a degree of support. Thus, an evidential database EDB on its non compact form, is a set of evidential objects.

Defintion 23 An evidential object is a basic belief assignment computed via the combination of all object's evidential values. Its frame of discernment Θ is the joint frame of all attributes' domains. The mass function m Θ t relative to the tuple t is the conjunctive combination of all evidential values m Θ ta issued from the vacuous extension to the joint frame. An evidential object is defined such that:

m Θ t = ∩ a∈[1,D] m Θa↑Θ ta with Θ = a∈[1,D] Θ a (4.2)
Note that m ta is the mass function of an attribute a for a tuple t, with D is the number of attributes.

Example 45 Obtaining the evidential objects of Table 4.1 is based on two steps1 :

• First, evidential values are extended to the joint frame Θ (using the vacuous extension given in Section 2.5.1) as shown in Table 4.2.

• Then, the extended evidential values are combined (using the conjunctive rule of combination described in Section 2.3.2) as detailed in Table 4.3.

Θ ID ↑ Θ Θ BT ↑ Θ Θ BT F ↑ Θ CL 1 × Θ BT × Θ BT F A × Θ ID × Θ BT F A × Θ ID × Θ BT [0.5;1] B × Θ ID × Θ BT F 2 × Θ BT × Θ BT F A × Θ ID × Θ BT F B × Θ ID × Θ BT [0.3;0.8] {A, B} × Θ ID × Θ BT F {A, B} × Θ ID × Θ BT Table 4.2: Vacuous extension of the focal elements of the evidential Table 4.1 ∩ CL (1, A, A) 0.5 = 1 × 0.5 × 1 [0.5;1] (1, B, A) 0.5 = 1 × 0.5 × 1 (2, A, B) 0.24 = 1 × 0.3 × 0.8 [0.3;0.8] (2, {A, B}, B) 0.56 = 1 × 0.7 × 0.8 (2, A, {A, B}) 0.06 = 1 × 0.3 × 0.2 (2, {A, B}, {A, B}) 0.14 = 1 × 0.7 × 0.2 Table 4

.3: Combination of the extended bbas using the conjunctive rule of combination

The expansion of the compact form leads to two intermediate results before getting the possible worlds form (non compact form), the first is the generation of the imprecise worlds and the second is the generation of uncertain worlds.

Imprecise Possible Worlds

The imprecise possible worlds form [START_REF] Bousnina | A new formalism for evidential databases[END_REF] is defined as follows:

Defintion 24 The non-compact form of an EDB is a finite set of imprecise possible worlds such that EDB = {IW 1 , IW 2 , ..., IW i }. Each imprecise possible world has N objects, where each object involves one focal element per attribute [START_REF] Bousnina | A new formalism for evidential databases[END_REF].

The number of all imprecise possible worlds, I, is induced from sizes of sets F ta (∀t ∈ [1; N ] and ∀a ∈ [1; D], where N is the size of tuples and D is the size of attributes) as follows:

I = N t=1 D a=1 | F ta | (4.3)
Example 46 The number of imprecise possible worlds generated from Table 4.1 is These worlds are qualified by imprecise because they include imprecise values as attributes' values. For example, {A, B} is an imprecise value of the attribute BloodT ypeF ather for the second tuple in Table 4.4.

I = 8.
An evidential database EDB is the union of its evidential objects, similarly an evidential database on its non compact form is the disjunctive combination of its evidential objects [START_REF] Bousnina | A new formalism for evidential databases[END_REF].

Defintion 25 A non-compact evidential database is presented via a basic belief assignment derived from the disjunctive combination of the set of its evidential objects. That mass is defined such that:

m Θ = ∪ t∈[1,N ] m Θ t (4.4)
Example 47 The disjunctive combination of all evidential objects is presented in Table 4.5.

The bba m Θ IW is defined on Θ IW .

Θ IW = {IW 1 , IW 2 , IW 3 , IW 4 , IW 5 , IW 6 , IW 7 , IW 8 } is the set of all imprecise possible worlds , denoted IW i . m Θ IW ({IW 1 }) = 0.12 m Θ IW ({IW 2 }) = 0.07 m Θ IW ({IW 3 }) = 0.12 m Θ IW ({IW 4 }) = 0.07 m Θ IW ({IW 5 }) = 0.03 m Θ IW ({IW 6 }) = 0.28 m Θ IW ({IW 7 }) = 0.03 m Θ IW ({IW 8 }) = 0.28
The bba m Θ IW reflects the degree of belief on which imprecise possible world represents the compact EDB in its imprecise state.

The confidence level CLs of the tuples in each imprecise world IW i are inherited from objects' CL of the compact from (see Table 4.1). For example, The first tuple of IW 1 inherits its CLs from the first tuple of Table 4.1.

Imprecise possible worlds are the first intermediate non compact form. They represent the compact form into several states but include imprecision. Uncertain possible worlds are the second intermediate non compact form after imprecise worlds. They treat the imprecision of the previous form but include uncertainty.

Uncertain Possible Worlds

Each imprecise possible world has different states called Uncertain Possible Worlds U W j . In fact, each imprecise possible world can be expanded into several uncertain possible worlds by splitting imprecise values (attributes' values) into several possible precise

IW 1 EvidentialObjects CL (1, A, A) [0.5;1] (2, A, B) [0.3;0.8] IW 2 EvidentialObjects CL (1, A, A) [0.5;1] (2, {A, B}, {A, B}) [0.3;0.8] IW 3 EvidentialObjects CL (1, B, A) [0.5;1] (2, A, B) [0.3;0.8] IW 4 EvidentialObjects CL (1, B, A) [0.5;1] (2, {A, B}, {A, B}) [0.3;0.8] IW 5 EvidentialObjects CL (1, A, A) [0.5;1] (2, A, {A, B}) [0.3;0.8] IW 6 EvidentialObjects CL (1, A, A) [0.5;1] (2, {A, B}, B) [0.3;0.8] IW 7 EvidentialObjects CL (1, B, A) [0.5;1] (2, A, {A, B}) [0.3;0.8] IW 8 EvidentialObjects CL (1, B, A) [0.5;1] (2, {A, B}, B) [0.3;0.8]
Table 4.5: Combination of the evidential objects of EDB using the disjunctive rule of combination values. Worlds are still uncertain because of tuples' confidence levels. These confidence levels measure the credibility and the plausibility about the existence of tuples. Note that the attribute level uncertainty is treated at this step (the step of generating uncertain possible worlds). For example IW 5 has two uncertain states {(1,A,A);(2,A,A)} and {(1,A,A);(2,A,B)}.

The number of uncertain possible worlds, J, is computed from sizes of cores ϕ m Θa ta as follows:

J = N t=1 D a=1 |ϕ m Θa ta | (4.5)
The set Θ IW is the set of imprecise possible worlds IW i . Each IW i leads to one or more uncertain possible worlds. The set Θ U W enumerates all uncertain possible worlds. Therefore, Θ U W is a refinement of Θ IW and Θ IW is a coarsening of Θ U W .

Thus, the mass function m Θ U W on which uncertain possible world is the best candidate to the evidential table, is deduced from m Θ IW .

Example 48 Table 4.6 presents the set of uncertain possible worlds derived from the imprecise worlds of Table 4.5 with the basic belief assignment m Θ U W derived from m Θ IW . Note that Θ IW = {IW 1 , . . . , IW 8 } is the set of all imprecise possible worlds, and that Θ U W = {U W 1 , . . . , U W 8 } represents the set of all uncertain possible worlds, such that Θ U W is a refinement of Θ IW and:

IW 1 → {U W 1 } IW 2 → {U W 1 , U W 3 , U W 4 , U W 5 } IW 3 → {U W 2 } IW 4 → {U W 2 , U W 6 , U W 7 , U W 8 } IW 5 → {U W 1 , U W 3 } IW 6 → {U W 1 , U W 5 } IW 7 → {U W 2 , U W 6 } IW 8 → {U W 2 , U W 7 } U W 1 EvidentialObjects CL (1, A, A) [0.5;1] (2, A, B) [0.3;0.8] U W 2 EvidentialObjects CL (1, B, A) [0.5;1] (2, A, B) [0.3;0.8] U W 3 EvidentialObjects CL (1, A, A) [0.5;1] (2, A, A) [0.3;0.8] U W 4 EvidentialObjects CL (1, A, A) [0.5;1] (2, B, A) [0.3;0.8] U W 5 EvidentialObjects CL (1, A, A) [0.5;1] (2, B, B) [0.3;0.8] U W 6 EvidentialObjects CL (1, B, A) [0.5;1] (2, A, A) [0.3;0.8] U W 7 EvidentialObjects CL (1, B, A) [0.5;1] (2, B, B) [0.3;0.8] U W 8 EvidentialObjects CL (1, B, A) [0.5;1] (2, B, A) [0.3;0.8] Table 4.6: Uncertain Possible worlds of EDB m Θ U W ({U W 1 }) = m Θ IW ({IW 1 }) = 0.12 m Θ U W ({U W 1 , U W 3 , U W 4 , U W 5 }) = m Θ IW ({IW 2 }) = 0.07 m Θ U W ({U W 2 }) = m Θ IW ({IW 3 }) = 0.12 m Θ U W ({U W 2 , U W 6 , U W 7 , U W 8 }) = m Θ IW ({IW 4 }) = 0.07 m Θ U W ({U W 1 , U W 3 }) = m Θ IW ({IW 5 }) = 0.03 m Θ U W ({U W 1 , U W 5 }) = m Θ IW ({IW 6 }) = 0.28 m Θ U W ({U W 2 , U W 6 }) = m Θ IW ({IW 7 }) = 0.03 m Θ U W ({U W 2 , U W 7 }) = m Θ IW ({IW 8 }) = 0.28
It is obvious that a same uncertain possible world can be derived from various imprecise worlds. For example, U W 1 is derived from IW 1 and IW 5 . Uncertain possible worlds inherit their degrees of belief from their imprecise possible worlds.

CLs per uncertain world U W need to be taken into consideration. In fact, they are computed based on their mass functions as presented above.

U W 1 ∈ {IW 1 , IW 2 , IW 5 , IW 6 } then its confidence level is U W 1 [0.12;0.5] and it is computed as follows:

-bel({U W 1 })= 0.12 -pl({U W 1 }) = 0.12 + 0.07 + 0.03 + 0.28 = 0.5

U W 2 ∈ {IW 3 , IW 4 , IW 7 , IW 8 } then U W 2 [0.12;0.5] U W 3 ∈ {IW 2 , IW 5 } then U W 3 [0;0.1] U W 4 ∈ {IW 2 } then U W 4 [0;0.07] U W 5 ∈ {IW 2 , IW 6 } then U W 5 [0;0.35] U W 6 ∈ {IW 4 , IW 7 } then U W 6 [0;0.1] U W 7 ∈ {IW 4 , IW 8 } then U W 7 [0;0.35] U W 8 ∈ {IW 4 } then U W 8 [0;0.07] Table 4.7: Uncertain Possible worlds of EDB
These confidence levels at uncertain worlds' level (see Table 4.7) are considered when computing the confidence levels at the tuple level as shown in Table 4.8. 

U W 1 CL U W 2 CL (1, A, A) [0.06;0.5] (1, B, A) [0.06;0.5] (2, A, B) [0.036;0.4] (2, A, B) [0.036;0.5] U W 3 CL U W 4 CL (1, A, A) [0;0.1] (1, A, A) [0;0.07] (2, A, A) [0;0.08] (2, B, A) [0;0.056] U W 5 CL U W 6 CL (1, A, A) [0;0.35] (1, B, A) [0;0.1] (2, B, B) [0;0.28] (2, A, A) [0;0.08] U W 7 CL U W 8 CL (1, B, A) [0;0.35] (1, B, A) [0;0.07] (2, B, B) [0;0.28] (2, B, A) [0;0.056]

Possible Worlds

Generating possible worlds from uncertain possible worlds induces the treatment of the tuple level uncertainty.

Each possible world W jp is a candidate to represent the evidential relation where j (1 ≤ j ≤ J) and p (1 ≤ p ≤ P ).

The number of possible worlds P is induced from possibilities about the existence of tuples in uncertain worlds U W j such that:

P = 2 N (4.6)
Thus, an uncertain world U W j is expanded into 2 N possible worlds where each W jp is a combination of tuples belonging to U W j .

Defintion 26 A possible world W jp is a precise subset from an uncertain possible world U W j . Each uncertain possible world can be divided into one or more precise possible worlds by handling uncertainty due to the confidence level. Each uncertain possible world generates N + 2 possible worlds. The confidence level is bounded by the bel and the pl of the existence of each object in the table. Therefore, Θ W is a refinement of

Θ U W and Θ U W is a coarsening of Θ W .
Example 49 Four possible worlds are carried out from U W 1 :

• {t 1 , t 2 } : Both tuples 1 and 2 exist simultaneously.

• {t 1 } : Only tuple 1 exists.

• {t 2 } : Only tuple 2 exists.

• {∅} : None of the tuples exist.

Thus:

W 11 = {(1, A, A); (2, A, B)} W 13 = {(2, A, B)} W 12 = {(1, A, A)} W 14 = {∅} Defintion 27
The number of possible worlds, denoted P , varies between J and J * 2 N with J is the number of uncertain possible worlds and N is the number of objects of EDB.

• P = J : if all confidence levels are equal to [1;1]; in this case, the tuple level uncertainty is not managed [START_REF] Bousnina | A new formalism for evidential databases[END_REF].

• P = J × 2 N : if all confidence levels are different from [0;0] and [1;1].

• P ∈ J, J × 2 N : if some confidence levels are either [0;0] or [1;1].

Example 50 Table 4.9 includes the 32 = 8 * 4 possible worlds derived from the uncertain worlds:

U W 1 U W 2 W 11 = {(1, A, A); (2, A, B)} W 21 = {(1, B, A); (2, A, B)} W 12 = {(1, A, A)} W 22 = {(1, B, A)} W 13 = {(2, A, B)} W 23 = {(2, A, B)} W 14 = {∅} W 24 = {∅} U W 3 U W 4 W 31 = {(1, A, A); (2, A, A)} W 41 = {(1, A, A); (2, B, A)} W 32 = {(1, A, A)} W 42 = {(1, A, A)} W 33 = {(2, A, A)} W 43 = {(2, B, A)} W 34 = {∅} W 44 = {∅} U W 5 U W 6 W 51 = {(1, A, A); (2, B, B)} W 61 = {(1, B, A); (2, A, A)} W 52 = {(1, A, A)} W 62 = {(1, B, A)} W 53 = {(2, B, B)} W 63 = {(2, A, A))} W 54 = {∅} W 64 = {∅} U W 7 U W 8 W 71 = {(1, B, A); (2, B, B)} W 81 = {(1, B, A); (2, B, A)} W 72 = {(1, B, A)} W 82 = {(1, B, A)} W 73 = {(2, B, B)} W 83 = {(2, B, A)} W 74 = {∅} W 84 = {∅}
Table 4.9: Possible Worlds Defintion 28 Let W be a possible world generated from an uncertain world U W . The confidence level of W is computed as follows:

CL = [bel Θ W W ; pl Θ W W ] (4.7) bel Θ W W = bel(t i ) * (1 -pl(t j )) pl Θ W W = pl(t i ) * (1 -bel(t j )) (4.8)
where t i , t j ∈ U W and t i ∈ W ; t j / ∈ W Example 51 Confidence levels of possible worlds are computed using Definition 28 based on equations (2.8) (2.7), (2.36) such that:

{t 1 , t 2 }: {t 1 } : • bel(t 1 ∧ t 2 ) = bel 1 * bel 2 • bel(t 1 ∧ t 2 ) = bel 1 * (1 -pl 2 ) • pl(t 1 ∧ t 2 ) = pl 1 * pl 2 • pl(t 1 ∧ t 2 ) = pl 1 * (1 -bel 2 ) {t 2 }: {∅}: • bel(t 1 ∧ t 2 ) = (1 -pl 1 ) * bel 2 • bel(t 1 ∧ t 2 ) = (1 -pl 1 ) * (1 -pl 2 ) • pl(t 1 ∧ t 2 ) = (1 -bel 1 ) * pl 2 • pl(t 1 ∧ t 2 ) = (1 -bel 1 ) * (1 -bel 2 )
Thus, confidence levels of possible worlds: W 11 , W 12 , W 13 , W 14 generated from U W 1 are computed as follows:

W 11 :
• bel(t 1 ∧ t 2 ) = bel 1 * bel 2 = 0.06 * 0.036 = 0.0021

• pl(t 1 ∧ t 2 ) = pl 1 * pl 2 = 0.5 * 0.4 = 0.2 CL 11 = [0.0021; 0.2] W 12 : • bel(t 1 ∧ t 2 ) = bel 1 * (1 -pl 2 ) = 0.06 * (1-0.4) = 0.048 • pl(t 1 ∧ t 2 ) = pl 1 * (1 -bel 2 ) = 0.5 * (1-0.036)= 0.482 CL 12 = [0.048; 0.482] W 13 : • bel(t 1 ∧ t 2 ) = (1 -pl 1 ) * bel 2 = 0.036 * (1-0.5) = 0.018 • pl(t 1 ∧ t 2 ) = (1 -bel 1 ) * pl 2 = 0.4 * (1-0.06) = 0.376 CL 13 = [0.018; 0.376] W 14 : • bel(t 1 ∧ t 2 ) = (1 -pl 1 ) * (1 -pl 2 ) = (1-0.5) * (1-0.2) = 0.4 • pl(t 1 ∧ t 2 ) = (1 -bel 1 ) * (1 -bel 2 ) = (1-0.06)*(1-0.036) = 0.9 CL 14 = [0.4; 0.9]
All possible worlds and their confidence levels of Table 4.1 are presented in Table 4.10. Generating the possible worlds of an evidential database is a complex process as shown above. Figure 4.3 summarizes this process. Thus, it illustrates the obtained intermediate non-compact forms:

U W 1 CL U W 2 CL W 11 = {(1, A, A);
• Imprecise Possible Worlds (IW).

• Uncertain Possible Worlds (UW).

• Possible Worlds (W).

It also details the used Dempster-Shafer theory tools and concepts:

• Conjunctive Rule of Combination ∩ and Disjunctive Rule of Combination ∪ .

• Splitting focal elements for the attribute level uncertainty treatment.

• Evidence Independence for the tuple level uncertainty treatment. • Starting from the EDB in the left, we obtain the imprecise worlds by using the conjunctive rule of combination on evidential values of the same object (here we have only one attribute), and then by applying the disjunctive rule of combination on the obtained evidential objects.

• The result is a bba of imprecise worlds whose masses are mentioned between parentheses in the first lines. Then, we consider only the imprecise world IW 2 .

We split the composite focal elements and we obtain two uncertain worlds U W 1 and U W 2 .

• At this stage, each world is precise, but still uncertain because of the CL of each object. Then, we show how the world U W 2 is expanded into four possible worlds which is the number of possible combinations of coexistence of two uncertain objects. The confidence levels of the obtained possible worlds are computed using the notion of evidential independence. Note that obtained confidence levels are mentioned in the first worlds' lines. 

Querying Possible Worlds

Querying possible worlds is an essential step after the modeling in order to evaluate the representation system in question. Indeed, we introduced in [START_REF] Bousnina | A new formalism for evidential databases[END_REF] how to query possible worlds' form.

Let Q be the query processed on each possible world W . Querying each possible world W (noted Q(W )) gives a possible answer R u :

R u = Q(W )
Example 52 We evaluate the following query Q over the possible worlds' form of Table 4.10 possible worlds form.

Q: SELECT * FROM BT WHERE (BloodType==BloodTypeFather);

Eight possible answers responded to query Q. Responses and their confidence levels are presented as follows:

R 1 = Q(W 11 ) = {(1, A, A)}; CL R 1 = [0.0021 ; 0.2] R 1 = Q(W 12 ) = {(1, A, A)}; CL R 1 = [0.048 ; 0.482] R 2 = Q(W 13 ) = {∅}; CL R 2 = [0.018 ; 0.376] R 2 = Q(W 14 ) = {∅}; CL R 2 = [0.4; 0.9] R 2 = Q(W 21 ) = {∅}; CL R 2 = [0.0021; 0.2] R 2 = Q(W 22 ) = {∅}; CL R 2 = [0.048; 0.482] R 2 = Q(W 23 ) = {∅}; CL R 2 = [0.018; 0.376] R 2 = Q(W 24 ) = {∅}; CL R 2 = [0.4; 0.9] R 3 = Q(W 31 ) = {(1, A, A); (2, A, A)}; CL R 3 = [0 ; 0.008] R 1 = Q(W 32 ) = {(1, A, A)}; CL R 1 = [0; 0.1] • R 6 ={(2,B,B)}; CL R 6 = [(1-(1-0)*(1-0)*(1-0));(1-(1-0.28)*(1-0.28)*(1-0.098))] = [0;0.53]

Generalizing Probabilistic Databases

Evidential database model as introduced in the pioneer work [START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF]) is an extension of the relational model where two levels of uncertainties are considered; the tuple-level and the attribute-level, managed through the evidence theory. The main advantage of this kind of imperfect database resides in its theoretical basis; the evidence theory. This framework manages several kinds of imperfection, including those handled by probability and possibility theories. Therefore, in this section, we discuss the particular cases where evidential values are exclusively (1) probabilistic (bbas with singleton focal elements) and ( 2) possibilistic (bbas with nested focal elements).

In the first case, the database is typically probabilistic. Attributes store probability distributions (which is a special bba) and tuples are characterized by a maybe probability2 which is the belief bound of the confidence level. If we perform the process of generating possible worlds (shown in Figure 4.3), we will start, for each tuple, by combining the distributions of its attributes. The conjunctive rule of combination is based on the cross product, which is exactly the same technique used for the probabilistic model 3 . We obtain a normalized distribution for each original tuple. These distributions are again combined, using the disjunctive rule of combination, that is also based on multiplying masses of focal elements (tuples in our case). We obtain a probabilistic distribution of possible worlds. The resulted possible worlds could not be imprecise because the input distributions do not include composite focal elements. At this stage, we treated the attribute level uncertainty. Then, each tuple t in each world has a maybe probability, which corresponds to the tuple belief in the evidential model. When a tuple t has a probability p t < 1, we have two possible scenarios; t exists with a probability p t and t does not exist with the probability 1 -p t . In our evidential model, t has a belief (probability) bel(t). Thus t exists with the belief: bel(t), and does not exist with the belief 1 -pl(t) where pl(t) is the plausibility of t. However, when an evidential scenario is particularly probabilistic, belief and plausibility have exactly the same value [START_REF] Shafer | A mathematical theory of evidence[END_REF]. Thus, we fall into the same model, and the overall evidential process to generate possible worlds matches the probabilistic process.

This observation is not surprising because of two statements. First, conjunctive and disjunctive rules combine bbas by multiplying masses, which matches the probability combination method. Thus, the attribute uncertainty level is handled in the same way.

Second, belief and plausibility measures provide the same value in the probabilistic case, matching the probability value. Therefore, the tuple uncertainty level is also performed in the same way.

In case of possibilistic data (i.e. when bbas have consonant focal elements), we obtain the same possible worlds. Indeed, both models4 use the cross product operator to generate possible tuples and then worlds (for processing the attribute uncertainty level). They also handle in the same way the problem of tuples' existences, and generate for each tuple the two possibilities of existence and non-existence. Therefore, the two models generate the same possible worlds. However, obtained distributions produce different uncertainty measures. This is inherent from the theories on which the models are based. Indeed, if combination rules in evidence theory uses the multiplication operator, in possibility theory [START_REF] Zadeh | Fuzzy sets[END_REF], combination is based on the minimum/maximum operators.e singletons, e.g. the first tuple of attribute BT in Table 4.1. Possibilistic data are also a special case for evidential data when focal elements are nested, e.g. the second tuple of attribute BT in Table 4.1. As a consequence, semantics relative to probabilistic and possibilistic worlds can be generalized with evidential possible worlds [START_REF] Agrawal | Generalized uncertain databases: first steps[END_REF].

EDB: What Kind of Representation System?

As explained earlier, an evidential database EDB [START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF]Lee, 1992a;[START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF] has two representations: (i) the compact form and (ii) the possible worlds' form.

(i) Querying the compact form provides a compact answer Q(EDB). This evidential compact answer is expanded into several possible worlds that give themselves the possible answers {R 1 , . . . , R u } and their confidence levels {CL 1 , . . . , CL u }.

(ii) Querying the possible worlds' form provides the possible answers {R 1 , . . . , R s } and their confidence levels {CL 1 , . . . , CL s }.

The derived results from (i) and (ii) are compared in order to check weather the evidential database is a strong representation system (SRS). 4.11 about medical diagnosis that includes three attributes: ID, Disease which contains hypotheses and their masses given by the doctor about his patients and CL that reflect the tuple level uncertainty. In this example, we choose a certain CL [1;1] to simplify computations. Our aim is to check the nonequivalence between the compact form and the possible worlds' form. EDB • Step 1: Modeling EDB from the compact form to the possible worlds' form.

If Q(Rep(EDB)) ≡ Rep(Q(EDB)) then EDB is said a SRS If Q(Rep(EDB)) = Rep(Q(EDB)) then EDB is not a SRS

ID

-Table 4.11 can be expanded into two imprecise possible worlds {IW 1 , IW 2 } as shown in Table 4.12.

The computed mass functions of IW 1 and IW 2 are:

m Θ IW ({IW 1 }) = 0.2 * 1 = 0.2 IW 1 ID Disease CL 1 {Cancer, Anemia} [1;1] 2 Anemia [1;1] IW 2 ID Disease CL 1 Anemia [1;1] 2 Anemia [1;1] Table 4.12: Imprecise Worlds of EDB m Θ IW ({IW 2 }) = 0.8 * 1 = 0.8
The confidence levels, in this example, have no impact because tuples are certain ones.

-Table 4.12 itself is exploded into two possible worlds {W 1 , W 2 } as shown in Table 4.13.

W 1 ID Disease 1 Cancer 2 Anemia W 2 ID Disease 1 Anemia 2 Anemia
Table 4.13: Possible Worlds of EDB Their masses are inherited from masses of their imprecise possible worlds.

m({W 1 , W 2 }) = m({IW 1 }) = 0.2 m({W 2 }) = m({IW 2 }) = 0.8
• Step 2: Querying EDB from the compact form to the possible worlds' form.

We suppose the following query:

Q : SELECT * FROM EDB WHERE < Disease = Cancer >
-We apply query Q over the compact Table 4.11. The result is the compact answer Q(EDB) that contains tuples that only respond to query Q. This relation is imperfect, i.e, it includes uncertainty and imprecision. Indeed, it is modeled on its non compact form. In fact, the relation Q(EDB) is expanded into possible worlds whose provide the possible answers {R 1 , R 2 } and their confidence levels {CL 1 , CL 2 }. These steps are detailed in The possible worlds' form gave the answers:

R 1 = {1, Cancer} with CL 1 = [0; 0.2] R 2 = ∅ with CL 2 = [0.8; 1]
Results are not the same which is due to structure of an evidential database that returns the hole tuple when one of its elements responds to a given query.

This counter example proves that the evidential database model as presented in the pioneer work [START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF]Lee, 1992a;[START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF] is not a strong representation system.

Conclusion

Representation systems are defined as the way of modeling an imperfect database from its compact form to its possible worlds' form. In this chapter, we presented how to model the compact evidential database [START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF]Lee, 1992a;[START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF] into its possible worlds' form by treating the tuple level and the attribute level uncertainties. This process provided two intermediate non compact forms: the imprecise possible worlds and the uncertain possible worlds. Moreover, we showed that querying this database model through its two equivalent forms is not a strong representation system. Hence, the need to introduce an evidential database model that revises the weaknesses of the EDB model towards a strong representation system under the relational algebra. 

Evidential Conditional databases

Summary

This chapter is about modeling and querying evidential conditional databases, called ec-tables. In fact, we use the strengths of classical conditional databases and evidence theory to introduce a new evidential database model called evidential conditional databases (ECD). First, we represent this model into its both representations: the compact and the possible worlds; then, we present how to interrogate it using the relational select-project operators. Indeed, the querying methods are used to check the equivalence between both forms. Finally, we discuss the evidential conditional databases' specificities in order to make the ECD model a strong representation system for evidential databases under select-project operators.

Introduction

As shown in the previous chapter, an evidential database can be modeled through a distribution of candidate databases called the possible worlds. Defining possible worlds is a fundamental step towards the evaluation of the querying methods applied over an evidential database model. We proved with a counter example that the evidential database model (EDB) [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF]Lee, 1992a;[START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF] is not a strong representation system, i.e, querying the compact from is not equivalent to querying the possible worlds' form. Therefore, the need to introduce a new model that can treat the weaknesses of the EDB model.

In this chapter, we introduce the evidential conditional databases, named ec-tables and its assets. In fact, we use the strengths of the conditional databases and theory of belief functions to elaborate the ec-tables model that represents an advanced step towards strong representation systems under relational select-project operators. We also discuss the specificities of ec-tables and how to translate a table from the classical EDB model to the evidential conditional database model ECD.

Conditional Tables

Conditional databases were introduced to condition assumptions that can not coexist at the same time. For example, in the medical domain, we can find two diseases that can not appear together or two medicines that can not be used at the same time. In addition to that, the exclusivity of elements in the frame of discernment is based on the fact that the existence of one hypothesis implies the non existence of other hypotheses. Indeed, an evidential conditional database model relays on these two observations. Several representations systems that cope with incomplete and probabilistic databases, were introduced in the literature: first, the Codd tables [START_REF] Codd | Relational completeness of data base sublanguages[END_REF] appeared as relations that model incomplete data with null values. Later on, the v-tables extended Codd tables [START_REF] Imielinski | Incomplete information in relational databases[END_REF]. Then, other representation systems like e-tables, g-tables, maybe tables, or-set-?-tables, c-tables, [START_REF] Imielinski | Incomplete information in relational databases[END_REF][START_REF] Abiteboul | Foundations of databases: the logical level[END_REF][START_REF] Sarma | Working models for uncertain data[END_REF] were introduced where each representation system handles imperfect data in a different context.

• Codd tables: Relations are annotated with constants and null variables [START_REF] Codd | Relational completeness of data base sublanguages[END_REF]. In the Codd table in Table 5.1, the name and the disease fields of lines 2 and 3 are unknown. Null values @ represent here the incompleteness of the data.

• v-tables: Relations involve constants and also variables that represent incomplete data [START_REF] Imielinski | Incomplete information in relational databases[END_REF]. Note here that variables define a correlation although they are unknown. For example, in Table 5.4 is an ec-table where a doctor expresses his diagnoses about several patients. In the first tuple, the doctor reveals that the first patient has either Anemia with a confidence level [0.2 ; 0.8] or Asthma with a confidence level [0.5 ; 0.7]. The attribute condition here indicates that when the first hypothesis is true (Disease='Anemia'), the second hypothesis (Disease='Asthma') is false and vis versa. Confidence levels reflect the minimal and maximal beliefs about each tuple.

Modeling ec-tables: Possible Worlds' Form

Most of theories that deal with imperfection represent the imperfect information as a distribution of hypotheses. Each one of them performs as a candidate to the solution. The main objective is to query the compact model and to get back a correct and reliable answers. Even though the only feasible model in practice is the compact one, the possible worlds' form is a fundamental step to validate the querying methods. Thus, possible worlds provide shaper semantics when querying the imperfect database. In fact, generating possible worlds is a way to model the compact database into several states by treating its uncertainties.

For the ECD case, generating the possible worlds; i.e, the non compact form, goes through an intermediate representation where imprecision is treated.

Defintion 33 (Non compact form of ECD)

A Conditional Evidential Database, ECD for short, on its non compact form is a finite set of uncertain possible worlds such that:

{t 1 , t 2 }: {t 1 } : • bel(t 1 ∧ t 2 ) = bel 1 * bel 2 • bel(t 1 ∧ t 2 ) = bel 1 * (1 -pl 2 ) • pl(t 1 ∧ t 2 ) = pl 1 * pl 2 • pl(t 1 ∧ t 2 ) = pl 1 * (1 -bel 2 ) {t 2 }: {∅}: • bel(t 1 ∧ t 2 ) = (1 -pl 1 ) * bel 2 • bel(t 1 ∧ t 2 ) = (1 -pl 1 ) * (1 -pl 2 ) • pl(t 1 ∧ t 2 ) = (1 -bel 1 ) * pl 2 • pl(t 1 ∧ t 2 ) = (1 -bel 1 ) * (1 -bel 2 )
Example 57 The number of possible worlds generated from Table 5.5 is P = 16 . Confidence levels are computed using Definition 34. Possible worlds are shown in Table 5.6. Since the ECD is an imperfect database model, querying its compact form using the relational operators requires their evaluation through querying also the possible worlds' form. Figure 5.1 illustrates the querying and the evaluation process for the ECD model under its both forms: the compact and the possible worlds. Example 58 We process a query Q over possible worlds presented in Table 5.6.

U W 1 W 11 = {(1,Anemia),(2,Anemia)} [0.1;0.4] W 12 ={(1,Anemia)} [0.1;0.4] W 13 = {(2,Anemia)} [0.2;0.4] W 14 = {∅} [0.1;0.4] U W 2 W 21 = {(1,Anemia),(
Q : SELECT * FROM ECD WHERE < Disease = Cancer > Q(W 11 ) = {∅} with [0.1 ; 0.4] = R 1 Q(W 12 ) = {∅} with [0.1 ; 0.4] = R 1 Q(W 13 ) = {∅} with [0.2 ; 0.4] = R 1 Q(W 14 ) = {∅} with [0.1 ; 0.4] = R 1 Q(W 21 ) = {(2, Cancer)} with [0.06 ; 0.72] = R 2 Q(W 22 ) = {∅} with [0.02 ; 0.56] = R 1 Q(W 23 ) = {(2, Cancer)} with [0.06 ; 0.72]= R 2 Q(W 24 ) = {∅} with [0.02 ; 0.56] = R 1 Q(W 31 ) = {∅} with [0.25 ; 0.35] = R 1 Q(W 32 ) = {∅} with [0.25 ; 0.35] = R 1 Q(W 33 ) = {∅} with [0.15 ; 0.25] = R 1 Q(W 34 ) = {∅} with [0.15 ; 0.25] = R 1 Q(W 41 ) = {(2, Cancer)}with [0.15 ; 0.63] = R 2 Q(W 42 ) = {(2, Cancer)} with [0.09 ; 0.45] = R 2 Q(W 43 ) = {∅} with[0.05 ; 0.49] = R 1 Q(W 44 ) = {∅} with [0.03 ; 0.35] = R 1
Applying the query Q over possible worlds may provide redundant tuples with different confidence levels. This is due to the combination of the tuples when generating the possible worlds; i.e. the CL of a same tuple can be taken into consideration in several possible worlds. The redundancy is treated using Definitions 29, 30.

Example 59 If we carry on with the same example, two possible answers {R 1 , R 2 } were generated. Each response with the two ones has different confidence levels. Redundant answers are treated using Definition 30 such that: Thus, the final CLs for answers derived from the possible worlds' form when applying the query Q are then:

• R 1 = {∅} [1-(1-
R 1 = {∅} with CL R 1 =[0.79 ; 0.998] R 2 = {2, Cancer} with CL R 2 =[0.31;0.98]
After querying the possible worlds of an ECD, we query the compact form in order to evaluate the equivalence between results in a further step.

Querying ec-tables: Compact form

Querying the compact form ECD gives a relation Q(ECD) that responds to query Q. This result needs to be expanded into several possible states, called possible answers {R 1 , ..., R s }.

Example 60 We process the same query Q over the compact form (Table 5.4), the result (Q(ECD)) is presented in Table 5.7.

Q(ECD) 2 Cancer [0.3 ; 0.9] Table 5.7: Compact result of query Q: Q(ECD)
The compact result itself is expanded into possible worlds as shown in Table 5 

Checking the equivalence

An ec-table is said to be SRS if querying its compact form is equivalent to querying its possible worlds. Note that according to the query of Example 58, we obtained exactly the same results for the possible worlds form and for the compact form, which are {(2,Cancer)}, {∅}. This result was not surprising, since c-tables were proved to be a strong representation system [START_REF] Imielinski | Incomplete information in relational databases[END_REF]. In fact, c-tables are considered as a particular case of ec-tables where the CL is [1 ; 1]. Considering a CL ⊆ [1 ; 1] has not an effect on content of the possible worlds but on their quantifications, i.e, their computed CLs.

Example 61 For our example, the equivalence under the select-project query is valid. Indeed, possible answers are equivalent:

{R 1 , R 2 }={R 1 , R 2 }.
Formally, according to Definition 22, ec-tables are strong representation system if Rep(Q(ECD)) ≡ Q(Rep(ECD)). Rep(ECD) = W 1..j in a set of couples (W j , CL j ); W j is a possible world and CL j is its associated confidence level. Thus, Q(W 1..j ) is the application of Q on each world in (Rep(ECD)), and the result is the set of tuples satisfying Q in each world denoted R u . On the other hand, Q(ECD) provides the tuples in the ec-table that satisfy the query Q. It produces couples (t j , CL j ) where t j is a tuple satisfying Q and CL j its confidence level. This process is exactly the same as in the regular c-tables, proved to be SRS in [START_REF] Imielinski | Incomplete information in relational databases[END_REF] under the relational algebra. Now to quantify belief and plausibility of each world, either generated from Q(Rep(ECD)) or from Rep(Q(ECD)), we use the same tool, i.e., the evidential and cognitive independence formulas, based on the same confidence levels associated to the ec-table tuples.

Discussion

Evidential databases as defined in [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF] can handle several types of imperfection like uncertainty, imprecision and ignorance. However, this model was proven not to be a strong representation system (cf. section 4.6). Transforming the evidential databases into ec-tables is a way to remodel this representation towards a strong representation system. In Example 62, below, we show how this transformation may be performed.

Example 62 Table 5.9 represents an evidential database EDB as introduced in [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF], with three attributes: ID, Disease and CL; where experts expressed their beliefs about some patients' diseases. Table 5.10 constitutes an ec-table with four attributes: ID, Disease, CL and Condition. Thus, it represents a translation of Table 5.9. Indeed, hypotheses are transformed to singletons and their confidence levels are a combination of masses and CLs. First, the belief and the plausibility of each hypothesis are deduced from its mass functions. Then, a confidence level is associated to this hypothesis. This CL is the product of bel and pl deduced from the masses (at the attribute level) and bel and pl deduced from the tuple's existence (at the tuple level). For our example, the first tuple in Table 5.9, includes two hypotheses < Anemia; Cancer >. This tuple is interpreted in ec-table of Figure 5.2. Thus, hypothesis < Cancer > of the first tuple associates a computed CL. This CL is the product of bel and pl of < Cancer > coming from the attribute level, and bel and pl of < Cancer > coming from the tuple level. Indeed, the CL of hypothesis < Cancer > is [0*1 ; 0. In addition, evidential conditional tables may be seen as a generalization of the probabilistic conditional tables, when considering only the belief degree of the confidence level. In this case, the belief degree is considered equivalent to the probability degree of each tuple. Moreover, when the confidence level is equal to [1;1], ec-tables and c-tables are equivalent. This interpretation is very important since the whole Dempster-Shafer theory is considered as the generalization of the probability in the discrete case.

Example 63 We present now a complete example of modeling and querying an evidential database, being first an EDB and transformed then to an ECD. As detailed in Figure 5.4, first of all, we present an example of an evidential database EDB on its compact form. This model is represented on its possible worlds' form. Both forms are queried by applying query Q and the results are verified. Second, the compact EDB is translated into a compact ECD. The latter is modeled into its possible worlds and then both forms are interrogated with the same query Q. Finally, results of EDB and results of ECD are compared. (a) Modeling the EDB from its compact form to its possible worlds' form:

Table 5.11 is an evidential database EDB that stores medical information about two patients given by a doctor. 

ID

(IW 1 ) = 0.2 * 0.5 = 0.1 m(IW 2 ) = 0.2 * 0.5 = 0.1 m(IW 3 ) = 0.8 * 0.5 = 0.4 m(IW 4 ) = 0.8 * 0.5 = 0.4 m(IW 1 ) = m({U W 1 , U W 2 }) = 0.1 m(IW 2 ) = m({U W 3 , U W 4 }) = 0.1 m(IW 3 ) = m({U W 1 }) = 0.4 m(IW 4 ) = m({U W 3 }) = 0.4
Imperfect worlds themselves give four uncertain possible worlds as shown in Table 5.13 ⇒ {R 1 , R 2 } = {R 1 , R 2 }.

m(IW 1 ) = {U W 1 , U W 2 } = 0.1 U W 1 CL W 11 ={(1,

2.

Translating an EDB to an ECD: The compact evidential database EDB is translated into the compact evidential database ECD of Table 5.17. Confidence levels are attributed to each hypothesis by combining its CL in attribute level and its CL in tuple level. -When the first tuple with (x=1) exists and the second tuple with (y=1) does not. Its CL is [0.2 ; 0.52].

-When both tuples with condition (x=1) and (y = 1) exist but the latter does not respond to Q. Its CL is [0.14 ; 0.4].

-When the first tuple with (x=1) exists and the second tuple with (y = 1) does not exist. Its CL is [0.2 ; 0.52]

• The second answer R 2 ={∅} is also coming from different cases, computed the same way; i.e, considering all the cases where R 2 can appear based on the existence of tuples in the compact database of Table 5.17 As shown both results, coming from the compact ECD and from the non compact ECD, are equivalent, namely:

{R 1 , R 2 } = {R 1 , R 2 }

Discussing results:

Even though the classical evidential model, denoted EDB can be more informative than the ECD model, it does not provide a strong representation system under relational operators. In the other side, we showed that the ECD model is an advanced step towards a strong representation system. Translating the EDB model to the ECD model is then very beneficial. Thus, the EDB can explicitly illustrate the imperfect information within the belief functions' theory tools and the ECD manages very well the querying methods under relational operators. In fact, we showed throughout Example 62 that querying the EDB model into its both forms provides non equivalent results, but transforming this model into an ECD and querying it into its both forms provide equivalent ones.

Conclusion

A representation system may be queried over its compact or its possible worlds forms. While the possible worlds form is not an implementable model, proving that a repre-

Conclusion

Generally, modeling imperfect information can be a very challenging process. Thus, several theories were introduced to handle imperfect information depending on contexts, domains and the nature of information. Theory of belief functions (or the evidence theory) is one of these theories that offered efficient tools to model, manage and combine imperfect data. In fact, it provides a good framework to represent uncertainty, imprecision and ignorance. Evidential databases store information modeled via the belief functions theory. It has two equivalent representations: the compact and the possible worlds. Results of querying both forms should be equivalent to consider the database model as a strong representation system.

Our aim in this thesis is to investigate all techniques and methods of modeling and querying evidential databases in order to set a strong representation system. Indeed, we started by developing the possible worlds' representation for evidential databases EDB. While generating the non compact form, we treated the tuple level uncertainty and the attribute level uncertainty. This step is essential to validate querying methods over the compact form. Then, we developed an object-oriented implementation for evidential databases EDB in order to prepare the querying step. Thanks to the objectoriented design, we applied several types of querying over the compact form: evidential relational queries, evidential top-k queries and evidential skyline queries. Results were satisfying in terms of execution time for all applied queries. Added to that, we used a real data that we extracted from the Tripadvisor platform in order to construct the evidential database. To construct this database, we used the mathematical tools provided by the belief functions theory. We also proposed a formalism to rank evidential results and select the best ones. Studying in depth the evidential database EDB guided us to conclude that this representation system is not strong. Thus, we prove with a counter example that querying the compact EDB and querying the non compact EDB does not provide the same results, neither the same confidence levels. Therefore, we introduced a new evidential database system: the ec-tables ECD. This database model combines the strengths of conditional tables and the specificities of the evidence theory. After modeling the evidential ECD from its compact form to its possible worlds' form, we proved that this system offers a strong representation system under select-project operators.

Our major contributions are summarized as follows:

(1) Modeling and querying the compact evidential database (EDB):

-Object-Relational Evidential Implementation [START_REF] Bousnina | Object-relational implementation of evidential databases[END_REF]: We presented an object relational model for the evidential database on its compact form [START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF]Lee, 1992a;[START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF]. Then we presented the implementation of this object relational model using SQL3 and Java. Finally, we evaluated the select and the project operators under the belief functions framework.

-Evidential Top-K query (Bousnina et al., 2017a;[START_REF] Bousnina | Evidential top-k queries evaluation: Algorithms and experiments[END_REF]: We introduced a new ranking querying formalism for the evidential data. Its aim is to select the best k responses when querying an evidential database on its compact form. We made use of the object-relational evidential implementation to implement and evaluate the evidential Top-k query. Added to that, we introduced new semantics for this kind of queries.

-Evidential skyline query [START_REF] Bousnina | Skyline operator over tripadvisor reviews within the belief functions framework[END_REF]: We treated the aggregation of information coming from different sources to construct an evidential database where information are coming from a real platform (the TripAdvisor platform). Then, we applied the evidential skyline query as introduced in [START_REF] Elmi | Computing skyline from evidential data[END_REF].

(2) Modeling and querying the possible worlds of the evidential database (EDB):

Modeling Evidential databases as Possible worlds' (Bousnina et al., 2018a):

We modeled the evidential database [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF] on its possible worlds' form. We used a previous contribution as a basis [START_REF] Bousnina | A new formalism for evidential databases[END_REF] for this work. Thus, we modeled the non compact form of the evidential database by treating the two levels of uncertainties (the tuple level uncertainty and the attribute level uncertainty). This contribution was a very important step towards the evaluation and the validation of querying methods of an EDB [START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF]Lee, 1992a;[START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF].

(3) Modeling and querying the evidential conditional database (ECD):

Evidential Conditional Tables: We proved that the most used evidential database EDB [START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF]Lee, 1992a;[START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF] is not a strong representation system. Then, we introduced a new evidential database model, named ec-tables (ECD). We discuss how the ec-tables present a vigorous basis towards a strong representation system under relational operators. We used several detailed examples to support the presented formalism.

As future works, we intend to improve and extend our researches in other directions:

-In the last part of this thesis, we developed the ec-tables model under selectproject. We intend to validate the rest of querying method (Cartesian product, join and union) for evidential conditional databases. In fact, checking if the ectables are strong representation system is a very complex mathematical process and needs to evaluate all relational operators.

-We started to collect real data in the medical domain where doctors give their diagnoses and their beliefs about patients' diseases. To evaluate the queries and their results, we started to implement the evidential conditional database model. Conditions are essential in such application because some hypotheses (like diseases, blood types, pharmaceuticals, etc,.) can not coexist at the same time.

-Using the evidential conditional databases in aeronautics can be a very promising future work. Thus, in air crashes for example, hypotheses relative to reasons of the crash can not coexist simultaneously. Added to that, hypotheses are given by experts and can associate degrees of truthfulness about each hypothesis. Therefore, we intend to collect real data and evaluate the relational queries that we intend to apply over this data.

-We presented the evidential top-k queries (Bousnina et al., 2017a) and the evidential skyline queries [START_REF] Elmi | Computing skyline from evidential data[END_REF][START_REF] Bousnina | Skyline operator over tripadvisor reviews within the belief functions framework[END_REF][START_REF] Abidi | Skyline queries over possibilistic RDF data[END_REF][START_REF] Elmi | Efficient skyline maintenance over frequently updated evidential databases[END_REF] for the EDB model. It will be interesting to extend these queries using the ec-tables model.

-Data-mining methods applied earlier over evidential databases [START_REF] Bach Tobji | Extraction des itemsets fréquents à partir de données imparfaites : application à une base de données éducationnelles[END_REF][START_REF] Bach Tobji | A new algorithm for mining frequent itemsets from evidential databases[END_REF][START_REF] Samet | Mining over a reliable evidential database: Application on amphiphilic chemical database[END_REF][START_REF] Samet | Classification with evidential associative rules[END_REF][START_REF] Samet | Evidential data mining: precise support and confidence[END_REF] can be extended to be applied over the ECD model.

-It would be also interesting to extend the evidential models to the case of Nosql datasets framework.

Modeling and Querying Evidential Databases

An evidential database has two equivalent representations: (1) the compact representation represented as a set of attributes and a set of tuples; (2) the possible worlds' representation modeled as a distribution of candidate databases. Querying the possible worlds' form is a fundamental step in order to check the querying methods over the compact one. In fact, a model is said to be a strong representation system when results of querying its compact form are equivalent to results of querying its non compact form. Throughout this thesis, we study the foundations of evidential databases in both modeling and querying via three major parts: (i) first by modeling and querying the compact form of the evidential database (EDB); (ii) second by modeling the possible worlds' form of the evidential database (EDB) through treating the tuple level uncertainty and the attribute level uncertainty; (iii) finally by modeling and querying the evidential conditional database (ECD) in its both forms (the compact and the non compact).

Keywords: Databases Management; Imperfect databases; Dempster-Shafer theory; Evidential Databases; Possible worlds; Evidential Conditional databases; Representation system; Querying; Evidential Top-k.

Modélisation et Exploitation des Bases de Données Crédibilistes

Une base de donnée crédibiliste a deux représentations équivalentes: (1) la représentation compacte caractérisée par un ensemble d'attributs et un ensemble de tuples; (2) la représentation des mondes possibles représentée par une distribution de base de données candidates. Interroger la représentation des mondes possibles est une étape fondamentale pour valider les méthodes d'interrogation sur la base compacte crédibiliste. En effet, un modèle de base de donnée est dit système fort si le résultat de l'interrogation de sa représentation compacte est équivalent au résultat de l'interrogation de sa représentation des mondes possibles. Tout au long de cette thèse, nous étudions les fondements des bases de données crédibilistes à travers trois parties majeures: (i) premièrement par la modélisation et l'interrogation de la base de donnée crédibiliste (EDB) sous sa forme compacte; (ii) deuxièmement par la modélisation de la base de données crédibiliste (EDB) sous sa forme des mondes possibles en traitant les niveaux incertitudes par attributs et par tuples; (iii) finalement par la modélisation et l'interrogation de la base de données crédibiliste (ECD) sous ces formes compacte et non compacte.

Mots clés: Bases de données -Gestion; Bases de données imparfaites; Théorie de Dempster-Shafer; Bases de données crédibilistes; Bases de données crédibilistes conditionnelles; Mondes possibles; Système de représentation; Bases de données -Interrogation; Top-k évidentiel.
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 25 Figure 2.5: Combination of M independent sources[START_REF] Dempster | Upper and lower probabilities induced by a multiple valued mapping[END_REF] 

  01 1 -(0.25 + 0.05 + 0.08) = 0.05 • m Θ DE 1⊕2 ({F lu}) = 0.1 + 0.02 + 0.1 1 -(0.25 + 0.05 + 0.08) = 0.355 • m Θ DE 1⊕2 (Θ) = 0.02 1 -(0.25 + 0.05 + 0.08) = 0.035

Θ 1 and m Θ 2 .

 2 The conjunctive rule of combination is an unnormalized rule defined under the open world assumption. Example 21 Let us consider the following frame of discernment Θ DE = {Flu, Asthma, Anemia}. Sources S 1 and S 2 gave respectively the following masses m Θ DE 1 and m Θ DE for Patient P :
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 2 Figure 2.6 represents an illustration of the vacuous extension operator

  Figure 2.7 illustrates the relationship of coarsening and refinement between Θ and Ω.
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 27 Figure 2.7: Coarsening and Refinement

  35) Example 26 Let Θ O = {O, O}, O for an obese person and O for a non obese person. The frame of discernment Θ G = {M, F }, M for a male and F for a female. The joint frame of discernment of Θ O and Θ G is Θ.
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 3 Figure 3.1: Meta-Model of Evidential Databases

  CREATE TYPE bba AS OBJECT (content FOCALELEMENT), MEMBER FUNCTION bel Comp (search bba, op CHAR(2)) RETURN NUMBER, MEMBER FUNCTION pl Comp (search bba, op CHAR(2)) RETURN NUMBER, MEMBER FUNCTION bel(FOCALELEMENT F) RETURN NUMBER, MEMBER FUNCTION pl(FOCALELEMENT F) RETURN NUMBER);

  1 ) = [bel(b 1 ); pl(b 1 )] = [0.0375; 0.325] • The second possible response is book b 2 , it appears in tuples l 1 , l 2 and l 3 . Therefore: 2 ) = [bel(b 2 ); pl(b 2 )] = [0.0375; 0.525] • The third possible response is book b 3 , it appears in objects l 1 , l 3 and l 4 . Therefore: 0.5) + (0 * 0.3) + (0 * 1) + (1 * 0.5) 4 pl(b 3 ) = (0.7 * 1) + (0 * 0.8) + (1 * 1) + (1 * 0.9) 4 Thus: S(b 3 ) = [bel(b 3 ); pl(b 3 )] = [0.125; 0.65] • The final possible answer is book b 4 , it appears only in object l 2 . Therefore: 4 ) = [bel(b 4 ); pl(b 4 )] = [0.0375; 0.1]

4 then b 2 b 1 b 4 ( 2 then b 3 b 2

 4422 (i) Since bel b 1 = bel b 2 = bel b 4 and pl b 2 > pl b 1 > pl b ii) Since bel b 3 > bel b 2 and pl b 3 > pl b The final ranking deduced from (i) and (ii) is: b 3 b 2 b 1 b 4 . The Top-2 appreciated books are : • b 3 with a confidence level [0.125 ; 0.65] • b 2 with a confidence level [0.0375 ; 0.525] Books b 3 and b 2 are the most appreciated credible answers from the set of results.
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 4 Figure 4.5 shows the process of querying the compact EDB and its possible worlds as detailed above.
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 47 Figure 4.7: The querying process of the non compact form of EDB
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 482 Figure 4.8: Checking the equivalence between possible answers issued from both forms of EDB
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 5 Figure 5.1: ECD Model

  0.1)*(1-0.1)*(1-0.2)*(1-0.1)*(1-0.02)*(1-0.02)*(1-0.25)*(1-0.25)*(1-0.15)*(1-0.15)*(1-0.05)*(1-0.03) ; 1-(1-0.4)*(1-0.4)*(1-0.4)*(1-0.4)*(1-0.56)*(1-0.56)*(1-0.35)*(1-0.35)*(1-0.25)*(1-0.25)*(1-0.49)*(1-0.35)] = [0.79; 0.998] • R 2 = {2, Cancer} = [1-(1-0.06)*(1-0.06)*(1-0.15)*(1-0.09) ; 1-(1-0.72)*(1-0.72)*(1-0.63)*(1-0.45)] = [0.31;0.98]

Figure 5 . 3 :Figure 5 . 4 :

 5354 Figure 5.3: From the compact ec-table to its possible worlds

( c )R 2 =

 c2 Querying the possible worlds' from of EDB:Let's now process the same query Q over the non compact form.Q(W 11 )= {1,Cancer} with[0.056 ; 0.2] = R 1 Q(W 12 )= {1,Cancer} with[0.1 ; 0.288] = R 1 Q(W 13 )= {∅} with [0.168 ; 0.4] = R 2 Q(W 14 )= {∅} with[0.3 ; 0.576] = R 2 Q(W 21 )= {∅}with [0 ; 0.01] = R 2 Q(W 22 )= {∅} with [0 ; 0.1 ] = R 2 Q(W 23 )= {∅} with [0 ; 0.1 ] = R 2 Q(W 24 )= {∅} with [0.8 ; 1] = R 2 Q(W 31 )= {1,Cancer} with [0.056 ; 0.2] = R 1 Q(W 32 )= {1,Cancer} with [0.1 ; 0.288] = R 1 Q(W 33 )= {∅} with [0.168 ; 0.4] = R 2 Q(W 34 )= {∅} with [0.3 ; 0.576] = R 2 Q(W 41 )= {∅} with [0 ; 0.01] = R 2 Q(W 42 )= {∅} with [0 ; 0.1] = R 2 Q(W 43 )= {∅} with [0 ; 0.1] = R 2 Q(W 44 )= {∅}with [0.81 ; 1] = R 2 Applying query Q over the possible worlds gives the set of possible answers {R 1 , R 2 }. These answers are redundant. In fact, answer R 1 ={(1,Cancer)} has different CLs coming from W 11 , W 12 , W 31 and W 32 . Answer R 2 ={∅} has also different CLs coming from worlds W 13 , W 14 , W 21 , W 22 , W 23 , W 24 , W 33 , W 34 , W 41 , W 42 , W 43 and W 44 . The redundancy of answers is treated using Definition 30 such that: 0)*(1-0)*(1-0.81); 1-(1-0.4)*(1-0.576)*(1-0.01)*(1-0.1)*(1-1)*(1-0.2)*(1-0.288)*(1-0.4)*(1-0.576)*(1-0.01)*(1-0.1)*(1-1)] = [0.98 ; 1] Thus, the final answer when applying the query Q over the possible worlds of EDB: R 1 = {(1,Cancer)} [0.27;0.67] {∅} = [0.98 ; 1] (d) Checking the equivalence: It is obvious that both results; ie. the one coming from querying the compact form and the one coming from the possible worlds' form, are not equivalent.

R 2 =• R 2 =R 2 =

 222 . Computed CLs are:-R 2 =[0.07 ; 0.3] -R 2 =[0.1 ; 0.39] -R 2 =[0.07 ; 0.8] of answers R 1 and R 2 are treated such that:• R 1 = {(1,Cancer)} = [1-(1-0.14)*(1-0.2)*(1-0.14)*(1-0.2);1-(1-0.4)*(1-0.52)*(1-0.4)*(1-0.52)] = [0.52; 0.91] • R 2 = {∅} = [1derived from applying query Q over the compact ECD are: R 1 = {(1,Cancer)} =[0.52; 0.91] {∅} = [0.88 ; 0.999] (c) Querying the possible worlds' from of ECD:Let's now apply the same query Q over the possible worlds' form:Q(W 11 ) = {1, Cancer} with [0.14 ; 0.4] = R 1 Q(W 12 ) = {1, Cancer} with [0.2 ; 0.52] = R 1 Q(W 13 ) = {∅} with [0.07 ; 0.3] = R 2 Q(W 14 ) = {∅} with [0.1 ; 0.39] = R 2 Q(W 21 ) = {1, Cancer} with [0.14 ; 0.4] = R 1 Q(W 22 ) = {1, Cancer} with [0.2 ; 0.52] = R 1 Q(W 23 ) = {∅} with [0.07 ; 0.3] = R 2 Q(W 24 ) = {∅} with [0.1 ; 0.39] = R 2 Q(W 31 ) = {∅} with [0 ; 0.08] = R 2 Q(W 32 ) = {∅} with [0 ; 0.11] = R 2 Q(W 33 ) = {∅} with [0.3 ; 0.5] = R 2 Q(W 34 ) = {∅} with[0.42 ; 0.65] = R 2 Q(W 41 ) = {∅} with [0 ; 0.08] = R 2 Q(W 42 ) = {∅} with [0 ; 0.11] = R 2 Q(W 43 ) = {∅} with [0.3 ; 0.5] = R 2 Q(W 44 ) = {∅} with [0.42 ; 0.65] = R 2Applying query Q over the possible worlds of ECD gives a set of possible answers. Due to redundancy, multiple confidence levels are given. To combine the selected tuples, we use Definitions 29 and 30.•R 1 = {(1,Cancer)} = [1{∅} = [1-(1-0.07)*(1-0.1)*(1-0.07)*(1-0.1)*(1-0)*(1-0)*(1-0.3)*(1-0.42)*(1-0)*(1-0)*(1-0.3)*(1-0.42); 1-(1-0.3)*(1-0.39)*(1-0.8)*(1-0.39)*(1-0.08)*(1-0.4)*(1-0.5)*(1-0.65)*(1-0.08)*(1-0.11)*(1-0.5)*(1-65)] = [0.88 ; 0.999] Thus, the answers derived from applying query Q over the possible worlds' form are: R 1 = {(1,Cancer)} = [0.52 ; 0.91] {∅} =[0.88 ; 0.999] (d) Checking the equivalence:
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		Table 1: Notations
	N otation M eaning
	DB	an imperfect database
	EDB	an evidential database
	CD	a conditional database
	ECD	an evidential conditional database
	t l	a tuple/object
	a	an attribute
	N	number of tuples of an EDB
	D	number of attributes of an EDB
	m Θ	mass function
	F	set of focal elements of a bba
	ϕ m Θ	the core of a bba m Θ
	I	number of imprecise possible worlds
	J	number of uncertain possible worlds
	P	number of possible worlds
	V IW	an imprecise possible world
	U W	uncertain possible world
	W	a possible world
	Θ, Ω	frames of discernment
	Θ IW	the set of imprecise possible worlds
	Θ U W	the set of uncertain possible worlds
	Θ W	the set of possible worlds
	CL	a confidence level composed of two values [bel; pl]
	bel	belief measure
	pl	plausibility measure
	x, y	hypothesis
	A, B	focal elements
	M	independent sources
	S j	a source ∈ {1..M }
	R i	a response of a given query Q
	R u	a possible response derived from the possible worlds' form
	R s	a possible response derived from the compact form
	%IR	imperfect rate
	nf e	number of focal elements
	sf e	size of focal elements
	d	size of attribute domain
	λ	preference degree quantification
	S(R	

ta evidential value of the tuple t (1 ≤ t ≤ N ) for the attribute a (1 ≤ a ≤ D) i ) score of evidential answer R i

Table 1 .

 1 1 summarizes the types of imperfection.

	Uncertainty Imprecision Inconsistency
	objective	ambiguity	conflict
	subjective	vagueness	confusion
		incompleteness	
		invalidity	
		bias	
	Table 1.1: Recapitulation of imperfection types

Table 1 .

 1 6: An evidential table EDB

	ID	Disease	Symptom
	1	Diabetes	F atigue 0.4
			{F atigue, N ausea} 0.6
	2	Diabetes 0.1	V ertigo
		Stroke 0.9	
	Possible Worlds			Confidence Level
	W 1 ={(1,Diabetes,Fatigue);(2,Diabetes,Vertigo)} [0.04;0,1]
	W 2 ={(1,Diabetes,Fatigue);(2,Stroke,Vertigo)}	[0.36;0,9]
	W 3 ={(1,Diabetes,Nausea);(2,Diabetes,Vertigo)} [0;0,06]
	W 4 ={(1,Diabetes,Nausea);(2,Stroke,Vertigo)}	[0;0,54]

Possible worlds of EDB are detailed in Table 1.7.

Table 1 .

 1 

7: Possible worlds of the evidential table EDB In Table 1.7 we provide the different possible worlds issued from Table 1.6. As an example, the possible world

Table 2 .

 2 2: Dempster's Rule of combination over two different diagnoses of a same patient

	• m Θ DE 1⊕2 ({Asthma}) =	0.2 + 0.05 + 0.04 + 0.08 1 -(0.25 + 0.05 + 0.08)	= 0.56

Table 2 .

 2 5 represents an overview of the use of the presented combination rules. Note that:

	∩	⊕	∪
	Independent and reliable Independent and reliable Independent and at least one
	pieces of evidence	pieces of evidence	of evidence pieces is reliable
	non-normalized	Normalized	non-normalized

Table 2 . 5

 25 

: An overview of combination rules properties

Table 2 .

 2 .6 illustrates the doctor's diagnosis about two patients. 6: Diagnoses of two patients The vacuous extension of the evidential Table 2.6 is demonstrated in Table 2.7.

	ID	Disease	Blood Type
	1	Flu	A
		{Asthma,Anemia}	
	2	Anemia	B
			{B,O}

Table 2 .

 2 7: The vacuous extension of Table2.6

Table 3 .

 3 .1. The latter includes four attributes ID, Disease, Symptom and the confidence level CL. The tuple level uncertainty is presented by the CL and the attribute level uncertainty is expressed by the mass functions in the Disease and Symptom attributes. 1: A Medical Evidential Table

	ID	Disease	Symptom	CL
	1	Diabetes	F atigue 0.4	[0.5 ; 1]
			{F atigue, N ausea} 0.6	
	2	Diabetes 0.1	V ertigo	[0.4 ; 0.8]
		Stroke 0.9		
	3	Anemia 0.3	F ainting	[1 ; 1]
		{Diabetes, Stroke} 0.7		

  Table of Example 3.1, we define the type on which is based the table, i.e., the type diagnosis: CREATE TYPE diagnosis AS OBJECT (ID NUMBER, Disease bba, Symptom bba, CL CL); And then we create the object table, called diagnoses, based on the type diagnosis: CREATE TABLE diagnoses OF diagnosis (PRIMARY KEY(id), NESTED TABLE Disease STORE AS tab diseases (NESTED TABLE content STORE AS hypos), NESTED TABLE Symptom STORE AS tab symptoms (NESTED TABLE content STORE AS hypos);

Table 3 .

 3 2: Result of query Q 1 quite similar to classical one. Thus, it gives as a result the attribute values associated with their masses. Example 34 Let's apply the following project query over same table 3.1. Q 2 : SELECT ID, Disease FROM EDB Attributes that do not satisfy the query are eliminated. The result is presented in Table 3.3.

	ID	Disease
	1	Diabetes 1
	2	Diabetes 0.1
		Stroke 0.9
	3	Anemia 0.3
		{Diabetes, Stroke} 0.7

Table 3 . 3 :

 33 Result of query Q 2

Table 3

 3 

	.6.

Table 3 . 6

 36 

: Cartesian Product: EDB 1 × EDB 2

Table 3 .

 3 .5. The result of the evidential join is shown in Table3.7.

	ID Disease Disease Symptom BloodT ype	CL
	2	Anemia Anemia	V ertigo	O	[0; 0.63]

7: Join: EDB 1 EDB 2

Table 3 . 8

 38 .8 shows the result of this experimentation for different values of the parameter n (size of the database).

	Database size First execution time (s) Next executions' times (s)
	1000	0.2	0.03
	5000	0.8	0.04
	10 000	4.1	0.06
	50 000	5.8	0.12
	70 000	6.4	0.16
	100 000	17	1.2

: Contribution of caches to queries re-execution

Table 3 .

 3 

	Tuples Number (N)	Execution Time (s)
		NaiETopK Method OptETopK Method
	10	1	0
	50	2	0
	100	2	0
	200	3	0
	300	4	1
	500	8	5
	800	19	13
	1000	33	28
	1500	69	60
	2000	125	121
	3000	279	277

13: Impact of the database size for methods: NaiTopK and OptTopK

Table 3 .

 3 14: Reviews about Hotels

	Reviewers Hotels P rice P lace Service Score
	Rev 1	h 1	3	4	3	1510
	Rev 2	h 1	-1	4	2	22800
	Rev 3	h 2	4	-1	5	400
	Rev 4	h 2	3	5	-1	8140

Table 4 .

 4 

1: Medical Evidential Table about Blood Types

Table 4

 4 .4 is an example of one imprecise world generated from Table4.1.

	ID	BloodT ype BloodT ypeF ather
	1	A	A
	2	A	{A,B}
		Table 4.4: An Imprecise World

Table 4 .

 4 8: Uncertain Possible worlds of EDB Each uncertain possible world U W j can be expanded itself into different states called Possible Worlds, denoted W jp . In possible worlds, tuple uncertainty level is treated in addition to the attribute uncertainty level (already handled in uncertain possible worlds).

Table 4 .

 4 10: Possible Worlds with their CLs

Table 4 .

 4 11: An Evidential Table

		Disease	CL
	1	{Cancer, Anemia} 0.2 [1 ; 1]
		Anemia 0.8	
	2	Anemia 1	[1 ; 1]

Table 5 .

 5 1, the v-table includes two unknown names for lines 2 and 3 that are different. Such information is Defintion 32 (Evidential Conditional Tables ECD)An Evidential Conditional Database, ec-tables for short, on its compact form has N tuples and D attributes. An ec-table, is an evidential table with conditions over tuples. A confidence level, denoted CL is an attribute that contains degrees of confidence about the existence of each tuple. It is a pair of belief bel and plausibility pl such that:

	{[bel; pl] ∈ [0; 1]|bel ≤ pl}			
	ID Disease Condition	CL
	1	Anemia	x=1	[0.2; 0.8]
	1	Asthma	x =1	[0.5 ; 0.7]
	2	Anemia	y=1	[0.5 ; 0.5]
	2	Cancer	y =1	[0.3 ; 0.9]

Table 5 . 4

 54 

: A medical ec-table

Table 5 .

 5 6: Possible worlds of ec-table

	2,Cancer)} [0.06;0.72]
	W 22 ={(1,Anemia)}	[0.02;0.56]
	W 23 = {(2,Cancer)}	[0.06;0.72]
	W 24 = {∅}	[0.02;0.56]
	U W 3	
	W 31 = {(1,Asthma),(2,Anemia)} [0.25;0.35]
	W 32 ={(1,Asthma)}	[0.25;0.35]
	W 33 = {(2,Anemia)}	[0.15;0.25]
	W 34 = {∅}	[0.15;0.25]
	U W 4	
	W 41 = {(1,Asthma),(2,Cancer)} [0.15;0.63]
	W 42 ={(1,Asthma)}	[0.05;0.49]
	W 43 = {(2,Cancer)}	[0.09;0.45]
	W 44 = {∅}	[0.03;0.35]

•

  The first response R 1 = {∅} has 12 different CLs coming from W 11 , W 12 , W 13 , W 14 , W 22 , W 24 , W 31 , W 32 , W 33 , W 34 , W 42 and W 44 .

• The second response R 2 = {(2, Cancer)} has 4 different CLs coming from W 21 , W 23 , W 41 and W 43 .

Table 5 .

 5 .8. The first possible world W 1 reveals the existence of the tuple result and the possible worlds W 2 reveals the non existence of the tuple result. 8: The possible worlds of the compact result of query Q

	W 1	W 2
	2 Cancer	∅
	The possible answer of query Q over the compact form are:
	R 1 = {2, Cancer}	
	R 2 = {∅}	
	• The first response R 1 ={(2,cancer)} is coming from the following cases:
	1. When the first tuple with the condition (x=1) and the second tuple with the
	condition (y = 1) exist together. Hence, the first tuple that store the value
	< Anemia >, does not appear in the set of results. The computed CL for
	this response < ∅, (2, cancer) > is [0.06 ; 0.72].
	2. When the first tuple with condition (x=1) does not exist but the second tuple
	with the condition (y = 1) exists. Its computed CL is [0.06 ; 0.72].
	3. When the second tuple with condition (y = 1) exists with the first tuple with
	condition (x = 1 ). The latter tuple does not respond to the query Q. The

computed CL for this response < ∅, (2, cancer) > is [0.15 ; 0.63]. 4. When the first tuple with condition (x = 1) does not exist but the second tuple with (y = 1) exists. Its computed CL is [0.15 ; 0.63].

Table 5 .

 5 2*1] = [0 ; 0.2]. The CL of < Anemia > in the first tuple is computed the same way; it is a combination of its CL coming the attribute level [0.8 ; (0.8+0.2)] and its CL coming the tuple level [1 ; 1], which is [0.8*1 ; 1*1] = [0.8 ; 1]. The rest of hypothesis in the table are considered the same way. Results of computed CLs are shown in Table 5.10.

	ID	Disease	CL
	1 {Cancer, Anemia} 0.2	[1 ; 1]
		Anemia 0.8	
	2	Anemia 1	[0.6 ; 0.9]
	3	Asthma 0.5	[0.7 ; 1]
		Anemia 0.5	
		9: An Evidential table EDB
	ID Disease	CL	Condition
	1 Anemia	[0.8 ; 1]	x = 1
	1	Cancer	[0 ; 0.2]	x = 1
	2 Anemia [0.6 ; 0.9]	y = 1
	3 Asthma [0.35 ; 0.5]	z = 1
	3 Anemia [0.35 ; 0.5]	z = 1

Table 5 .

 5 

10: Obtained Conditional Evidential table Figure 5.2: The first tuple's interpretation from EDB to ECD

Table 5 .

 5 11: A medical evidential database EDBThis compact EDB(Table 5.11) gives four imperfect possible worlds as shown in Table5.12.

			Disease		CL
		1 {Cancer, Anemia} 0.2 [0.5;0.8]
			Cancer 0.8		
		2	Asthma 0.5		[0.7;1]
			Anemia 0.5		
		IW 1			IW 3
	ID	Disease	CL	ID Disease	CL
	1 {Cancer, Anemia} [0.5;0.8]	1	Cancer [0.5;0.8]
	2	Asthma	[0.7;1]	2 Asthma	[0.7;1]
		IW 2			IW 4
	ID	Disease	CL	ID Disease	CL
	1 {Cancer, Anemia} [0.5;0.8]	1	Cancer [0.5;0.8]
	2	Anemia	[0.7;1]	2 Anemia	[0.7;1]

Table 5 .
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12: Imperfect worlds of EDB m

Table 5 .

 5 15: Possible worlds of EDBQuerying the compact EDB gives a compact result Q(EDB) as shown in Table5.16. This table generates possible answers R .

	Cancer);(2,Asthma)} [0.056;0.2]
	W 12 ={(1,Cancer)}	[0.1;0.288]
	W 13 ={(2,Asthma)}	[0.168;0.4]
	W 14 ={∅}		[0.3;0.576]
	U W 2		CL
	W 21 ={(1,Anemia);(2,Asthma)} [0;0.01]
	W 22 ={(1,Anemia)}	[0;0.1]
	W 23 ={(2,Asthma)}	[0;0.1]
	W 24 ={∅}		[0.81;1]
	U W 3		CL
	W 31 ={(1,Cancer);(2,Anemia)} [0.056;0.2]
	W 32 = {(1,Cancer)}	[0.1;0.288]
	W 33 ={(2,Anemia)}	[0.168;0.4]
	W 34 ={∅}		[0.3;0.576]
	U W 4		CL
	W 41 ={(1,Anemia);(2,Anemia)} [0;0.01]
	W 42 ={(1,Anemia)}	[0;0.1]
	W 43 ={(2,Anemia)}	[0;0.1]
	W 44 = {∅}		[0.81;1]
	ID	Disease	CL
	1 {Cancer,Anemia} 0.2 [1;1]
		Cancer 0.8	

Table 5 .

 5 16: Table result Q(EDB)

	R 1 = {1,Anemia} [0;0.2]
	R 2 ={1,Cancer} [0.8;1]

Table 5 .

 5 20: The compact result Q(ECD)

	U W 1	CL
	W 11 ={(1,Cancer);(2,Asthma)} [0.14;0.4]
	W 12 ={(1,Cancer)}	[0.2;0.52]
	W 13 ={(2,Asthma)}	[0.07;0.3]
	W 14 ={∅}	[0.1;0.39]
	U W 2	CL
	W 21 ={(1,Cancer);(2,Asthma)} [0.14;0.4]
	W 22 ={(1,Cancer)}	[0.2;0.52]
	W 23 ={(2,Asthma)}	[0.07;0.3]
	W 24 ={∅}	[0.1;0.39]
	U W 3	CL
	W 31 ={(1,Anemia);(2,Asthma)} [0;0.08]
	W 32 = {(1,Anemia)}	[0;0.11]
	W 33 ={(2,Asthma)}	[0.3;0.5]
	W 34 ={∅}	[0.42;0.65]
	U W 4	CL
	W 41 ={(1,Anemia);(2,Anemia)} [0;0.08]
	W 42 = {(1,Anemia)}	[0;0.11]
	W 43 = {(2,Anemia)}	[0.3;0.5]
	W 44 ={∅}	[0.42;0.65]
	Table 5.19: Possible worlds of EDB
	1 Cancer [0.4;0.8] X = 1

Combining two information coming from two different sources (two doctors for example) about one variable can cause the conflict or a confusion

More details about this theory are explicitly presented in chapter 2

Notions of belief and plausibility are defined in Chapter 2.

Details of confidence intervals' computations will be explained in Chapter 3.

Chapter1. Imperfect Databases: General Context

Two hypotheses are said to be independent when the occurrence of one does not affect the assignment of occurrence of the other.

Chapter2. Theory of Evidence

bel and pl are the two functions defined in the object-relational implementation of evidential databases in[START_REF] Bousnina | Object-relational implementation of evidential databases[END_REF] 

Note that ΘID, ΘBT and ΘBT F are respectively the frames of discernment of the attributes ID, BloodT ype and F ather sBloodT ype

Chapter4. Evidential Databases: The Possible Worlds' Form

Term introduced in[START_REF] Agrawal | Trio: A system for data, uncertainty, and lineage[END_REF] and refers to the probability of a tuple's existence

The process of generating possible worlds in the case of probabilistic database is described in[START_REF] Suciu | Probabilistic databases[END_REF]; an excellent survey about probabilistic databases.

Please refer to[START_REF] Bosc | Modeling and querying uncertain relational databases: A survey of approaches based on the possible worlds semantics[END_REF] for an excellent state of the art about possibilistic database models.

Chapter5. Evidential Conditional databases
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Summary

In this chapter, basic concepts of the evidence theory are presented. Other tools like combination rules, vacuous extension, cognitive and evidential independences are illustrated to manage imperfect data using this theory.

Part II Evidential Database Models

Defintion 17 (Optimized Preference Degree)

Let S(R i )=[bel i ; pl i ] and S(R j )=[bel j ; pl j ] be two evidential scores. Every interval is composed of degrees of belief (bel) and plausibility (pl) and P is the calculated preference degree. P (S(R i ) > S(R j )) = max(0, pl i -bel j ) -max(0, bel i -pl j ) (pl i -bel i ) + (pl j -bel j ) = λ (3.11) The different cases of comparing intervals S(R i ) and S(R j ) are as follows:

• If λ > 0.5 then S(R i ) S(R j ).

• If λ = 0.5 , then S(R i ) ∼ S(R j ).

• If λ < 0.5 then S(R i ) ≺ S(R j ). The transitivity property is necessary to achieve a complete ranking order for scores.

In [START_REF] Wang | A preference aggregation method through the estimation of utility intervals[END_REF], authors proved that preference relations are transitive.

Property 1 (Transitivity) Let S(R i ) = [bel i ; pl i ], S(R j ) = [bel j ; pl j ] and S(R k ) = [bel k ; pl k ] be three intervals. If S(R i ) S(R j ) and S(R j ) S(R k ) then S(R i ) S(R k ).

Previous definitions provide a total ranking of answers that respond to the proposed top-k query. But how to interpret any evidential answer ?

The top-k queries in deterministic databases are semantically clear. However, the interpretation of top-k queries in imperfect databases is challenging. In [START_REF] Soliman | Top-k query processing in uncertain databases[END_REF], authors introduced new semantics relative to probabilistic top-k queries. They defined them as the most probable query answers. Their work is based on the possible worlds' model and they proposed interpretations like: (i) The top-k tuples in the most probable world. (ii)The most probable top-k tuples that belong to a valid possible world.

• The first method is naive, it consists in computing the preference degrees through three steps each time: (a) it computes the preference degree that the first interval is superior to the second one and then (b) it computes the preference degree that the first interval is inferior to the second one, (c) finally, it compares results and gives the partial ranking. This algorithm is presented in Table 3.11.

• The second method is an optimization of the first one. Indeed, it consists in computing only in one step the preference degree and then deduces the partial order between two intervals. This algorithm is detailed in Table 3.12.

After that, the final order is treated using a sorting algorithm, that ranks all evidential intervals and provides the k most interesting ones. The presented implementations offer two methods of evidential intervals' ranking. Both algorithms use the objectoriented paradigm for its programming benefits. 

Naive Method

Experiments

The Object-Relational implementation of evidential top-k queries (Bousnina et al., 2017a) allowed us to evaluate this new operator based on the Object-Relational implementation of the compact evidential database [START_REF] Bousnina | Object-relational implementation of evidential databases[END_REF]. Indeed, we implemented the evidential top-k operator using two methods of partial ranking scores (a naive and an optimized ones). Data sets We evaluated both algorithms from a performance point of view. We used a windows 10 operating system with 2.10 GHz CPU and 4 GB RAM. We also used Java programming language and NetBeans platform. We used synthetic data sets with the following parameters (a) N the size of the database, (b) S the evidential score which is an interval of belief and plausibility [bel; pl] with bel, pl ∈ [0;1] and bel ≤ pl 2 . To generate a synthetic evidential database, the used algorithm uses a procedure that generates a synthetic S. Indeed, the procedure computes randomly a fixed number of evidential scores in the interval [0, 1]. Then, we process the algorithms (naive or optimized) in order to rank the intervals (scores). Finally, a sorting function is used to provide the final complete ranking of all intervals. Note that each interval is associated to one unique item in the evidential database. In our example, the item is a book.

ETop-k Method

Evaluation Experiments showed interesting results from a performance point of view. In fact, we varied the database size parameter (N ) from 10 to 3000. The execution time did not exceed 4 minutes and 50 seconds for both algorithms. Results of the impact of the database size for both methods is presented in Table 3.13. Both algorithms showed interesting results. Moreover, OptET opK gave better ones as shown in A representation system [START_REF] Abiteboul | Foundations of databases: the logical level[END_REF]) should be able to represent any imperfect database. This property is called completeness of the RS. In addition, it should be able to represent any query answers under the possible worlds' form. This property is called closure and is a consequence of the first one (the opposite is not true [START_REF] Suciu | Probabilistic databases[END_REF]). More formally, completeness and closure are defined as follow:

Defintion 20 (Completeness) A representation system is said to be complete if it can represent any imperfect database [START_REF] Sarma | Working models for uncertain data[END_REF].

Defintion 21 (Closure) A representation system is said to be closed under a query language if for any query Q and any database DB there is a database DB that represents Q(Rep(DB)) [START_REF] Sarma | Working models for uncertain data[END_REF]. A Strong representation system, denoted SRS, is closed when answers generated from the compact form and answers generated from the possible worlds form are equivalent [START_REF] Abiteboul | Foundations of databases: the logical level[END_REF]. Figure 4.2 shows in details the steps towards the validation of any imperfect database representation system.

Defintion 22 (Strong Representation System)

An imperfect database DB is said to be a strong representation system if:

Where Rep(DB) = {W 1 ..W j } is the set of possible worlds generated from DB and

Redundancy comes from different beliefs for identical tuples. In relational databases, redundancy is considered automatically using the property of sets of the table. In evidential databases, redundancy is handled in a different way such that [START_REF] Hau | Belief combination and propagation in a latticestructured interference network[END_REF][START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF][START_REF] Lee | Imprecise and uncertain information in databases : an evidential approach[END_REF]:

Defintion 29 Let DB be an evidential database and t 1 and t 2 be two identical tuples with t 1 .CL 1 = t 2 .CL 2 and CL 1 and CL 2 are ∈ [0;1], then t 1 and t 2 are called redundant tuples.

Defintion 30 Let E 1 and E 2 be two independent events. Each event has a confidence level of belief and plausibility where CL 1 = [bel 1 ; pl 1 ] and CL 2 = [bel 2 ; pl 2 ]. The disjunction of the events E 1 and E 2 are defined such that:

Note that in the case where both confidence levels are equal to [1;1], the redundancy is removed automatically via the set property.

Example 53 Let us carry on with the same example and compute the CLs for each answer by treating the redundancy: • or-set-?-tables: Relations include attributes on finite domains. Each attribute may be imprecise; i.e., it involves several values where only one is true. The "?" denotes the uncertainty that the tuple exists [START_REF] Sarma | Working models for uncertain data[END_REF]. Table 5.1 illustrates an or-set-?-table where name and disease of the first and the second tuples, respectively, are imprecise. Also note that the second tuple may not exist at all.

An illustrative example is presented in Table 5.1 to clarify these representation systems of imperfect databases. [START_REF] Imielinski | Incomplete information in relational databases[END_REF]. A conditional database is defined in [START_REF] Suciu | Probabilistic databases[END_REF] as follows:

Codd table

Defintion 31 (Conditional Database CD) Named c-tables for short, CD = {R 1 , ..., R K , Φ} where {R 1 , .., R k } is a relational database instance and Φ assigns a propositional formula Φ t for each tuple t in each relation R 1 , .., R k . Given a valuation ∂ of variables in Φ, the world associated with ∂ is

Example 55 Table 5.2 is an illustration of a c-table that includes four attributes: the ID, the social security number SSN , the N ame and the Condition over random variables for each tuple. The attribute Condition involves conditions on random variables reflecting the existence of the labeled tuple and its relation with the other tuples. For example, the first Name is 'Smith' that can not exist twice with two different social security numbers. Therefore, conditions on a random variable X is added to the first two tuples such that only one of them holds. Thus, if X = 1, the SSN of Smith is 185.

In this case the second tuple does not hold. Otherwise, if X = 1, the first tuple does not hold and the SSN of Smith is 785. This table can be expanded into two possible worlds as detailed in Table 5.3. 5.2 [START_REF] Suciu | Probabilistic databases[END_REF] have shown that the c-tables are strong representation systems. Thus, querying the compact c-table is equivalent to querying its possible worlds. In the general case, to prove that a representation system is strong, the equivalence between querying the compact form and the possible worlds' form should be demonstrated. There is no work that interested to combine the strengths of c-tables and the belief functions theory to build a strong representation database model.

Evidential Conditional Tables

In conditional tables (c-tables), a propositional formula is assigned to each tuple. This mechanism is very interesting because it defines the co-existence of one relation's tuples. For evidential conditional tables (ec-tables), this property is kept and a confidence level is assigned to each tuple in order to define the belief on tuples' existence. An evidential conditional database (ECD) has two equivalent forms: (i) the compact form and (ii) the possible worlds' form.

Modeling ec-tables: Compact form

Formally, evidential conditional tables are defined as follow:

Each uncertain possible world includes N tuples where each tuple contains one singleton focal element per attribute.

Example 56 In Table 5.5, four uncertain worlds U W 1 , U W 2 , U W 3 and U W 4 are generated from Table 5 Then, each U W i generates itself one or more possible worlds. Each possible world W j is a combination of the uncertain world's tuples. Generating possible worlds is due to handling confidence levels. Thus, each possible world is a subset of tuples that can co-exist according to their defined propositional formulas, using equations (2.8) (2.7), (2.36).

Defintion 34 (Possible World)

A possible world, denoted W j , is a subset of an uncertain world U W i . Each generated possible world W j has a confidence level CL j that represents the bel W j and the pl W j of the existence of each tuple in the conditional table and it is defined such that:

where t v , t z ∈ U W i and t v ∈ W j ; t v / ∈ W j Note that equation (5.2) is based on equations (2.8),(2.7) and (2.36).

Suppose we have uncertain worlds with two tuples, the generated possible worlds and their corresponding confidence levels are computed based on tuples' existence as follows:

Answers R 1 and R 2 are redundant. Redundancy is treated using Definition 30. Their CLs are combined as follows: 

We compute now confidence levels of uncertain worlds by taking into consideration their inherited mass functions. (a) Modeling the ECD from its compact form to its possible worlds' form:

The compact ECD generates four uncertain worlds as shown in The uncertain worlds generate the set of possible worlds as shown in Table 5.19.

(b) Querying the compact from of ECD:

Let's apply the same query Q on the compact ECD. The result is shown in Table 5.20.

Q: SELECT * FROM ECD WHERE (Disease='Cancer'); Two possible answer are derived from the compact ECD:

• The first answer R 1 ={(1,Cancer)} is coming from different cases:

-When the first tuple with condition (x=1) and the second tuple with the condition (y=1) exist together, but the latter does not respond to the query Q. Its CL is [0.14 ; 0.4].