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de la récurrence. Les valeurs d’intensité, pour les valeurs ADC,
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1.1 Introduction

1.1.1 Motivations

The constant improvement of oncology treatments has led to a significant in-
crease of medical data in the form of electronic records. The computational
power increase and the need to move towards a personalized approach to im-
prove patient care is leading towards the development of predictive models

1
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based on clinical evidence. Medicine is directing towards an era of personal-
ized medicine [8]. Personalized treatment is of particular interest since the
biological response of individual patients can vary greatly despite adminis-
tering a treatment in a similar way. Hence, tailoring treatments could signif-
icantly improve outcomes. Predictive models are currently being developed
to integrate the considerable amounts of oncology data [5]. The potential
of using Machine Learning (ML) techniques on big data is a promising path
towards reaching personalized patient care. Such techniques can be used to
support clinicians to reach more knowledgeable treatment decisions based on
previous clinical evidence of pass patients [51]. Bayesian approaches can be
used for learning from clinical evidence in a continuous manner allowing the
acceptance of the incorporation of new data leading to a continuous learning
approach.

1.1.2 Objective

The main objective is to develop biophysical models to predict clinical effects
by finding patterns from previously documented clinical records of patients
including medical images. While developing these prediction models we can
find parameters that play important roles in the clinical outcome. Bringing
to light these hidden important parameters leads towards a personalized
approach.

1.1.3 Personalized medicine approach

A personalized approach can surge from using the important parameters
identified during the development of biophysical models. Examples of pa-
rameters may include, number of radiation sessions, Grays per session, type
of machine used, technique used, response to treatment due to tumor size, age
related response, etc. The idea is to be able use those identified parameters
to personalize the approach of a patient being treated.

Personalized medicine refers to the tailoring of treatments taking into
account the response to therapy or undesired effects of the treatment for
subgroups of patients [3]. Precision medicine is a term often used in person-
alized medicine. Precision medicine is a strategy used for the amelioration
of patient-specific therapies, diagnosis etc [10]. Patterns are searched from
clinical data with the idea that these patterns are linked to the character-
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Pattern 2 Pattern 3

Pattern 1

Patient

Clinical data

Figure 1.1: Personalized medicine diagram in which a hypothetical patient has
three specific patterns represented by the overlapped section.

istics of an individual patient. As an illustration, the diagram in figure 1.1
shows the hypothetical identification of patterns from a clinical database with
a patient having the characteristics corresponding to each of the patterns.
Patterns found can overlap, for instance if a pattern involved requires age as
a parameter and another pattern requires number of radiation sessions, and
a last pattern involves blood type then the overlapping correspond to a pa-
tient which has the required age, radiation sessions, and blood type. Hence,
according to the patient characteristics, a personalized approach could be
developed for that particular patient.

1.2 Glioblastoma database

1.2.1 Glioblastoma

Glioblastoma is a very aggressive type of brain cancer typically resistant
to treatments, including to chemotherapy and radiotherapy. Glioblastoma
affect patients at different ages but predominantly affects older patients, and
the patients often show EGFR overexpression, PTEN (MMAC1) mutations
[28]. Glioblastomas are one of the most vascularized and highly invasive
cancers and lamentably prognostics have not shown much improvement in
decades[1]. Much work needs to be done to improve the prognostics from
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understanding the genetic mutations associated to it as well as very early
detection before it migrates anywhere else. The classification of brain tumors
ranks from grade I to grade IV, the latter being the most aggressive [27]. A
Glioblastoma multiform is a grade IV hence it is a very aggressive cancer. In
“the 2016 World Health Organization classification of tumors of the central
nervous system” report mentions that the classification now uses molecular
parameters in addition to histology [41].

1.2.2 Clinical data

Clinical data increase
Doctors or medical practitioners document the medical history of the pa-
tient including some clinical effects caused by the therapy. The well being of
the patient, hematologic grade, neurologic grade, blood pressure among many
other fields can potentially be found in clinical records. These clinical records
become utterly handy to estimate the efficacy of a treatment. Furthermore,
those clinical records containing quantifiable physical units are even more rel-
evant from a mathematical point of view. In addition, to the clinical records
documented, the medical images are ever more present in medicine provid-
ing a great source of quantifiable descriptive information about the patient.
Most Electronic Health Care Records (EHR) now include quantitative data
[45]. The amount of data that is being produced is drastically increasing and
the clinical records from clinics and hospitals often comes as EHR that are
technologically easy to acquire.

Data privacy considerations
The gathering of oncology data is technologically feasible and relatively un-
complicated in many cases. However, the administrative and necessary steps
for ensuring data privacy can considerably lengthen the process of working
with the data for research purposes. In this work, meticulous steps were
taken to ensure data privacy. For instance, the name of the patient is not
written in the database used for research, and the facial features of the med-
ical images concerning head scanning are unidentifiable to the researchers.
Another privacy measure considered was the protection of the dates used.
That is, measures were taken to avoid being able to identify a patient by
using purely the database.

Clinical data acquisition
The clinical data used in this work was obtained from the oncology cen-
ter “Centre François Baclesse” located in Normandy, France. The database
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consists of clinical records recollected throughout the medical history of ap-
proximately 90 patients suffering from Glioblastoma. The brain cancer was
chosen for several reasons such as the amount of medical imaging performed
during the Glioblastoma treatments. For this study a fix amount of data was
acquired but a long term goal would be to continuously keep adding data to
the database as a continuous study approach instead of a retrospective study.
Hence, at long term additional clinical records could be added.

Glioblastoma database
The data recollected is divided in two types of clinical records, data entries
and medical images. The data entries refers to fields that are registered and
entered in the computer such as the symptoms and gender of the patient,
overall data entries refer to most other fields that are not medical images.
Data entries can be quantitative or qualitative and come in different formats.
The gender is male or female, age is a float number, complications can be
written in grade scales. Some of the data entries can also be true or false,
such as if surgery was performed or not. The type of surgical removal was
recorded: either no surgical extraction, partial or complete extraction of the
tumor. The database also contains several different Magnetic Resonance
Images (MRIs) and Computer Tomography (CT) images, and these type of
clinical records are referred simply as medical images. The database contains
several different MRI sequences including the conventional sequence T1-Gd
and T2-Flair, and the diffusion sequence DW-MRI. The MRI sequences refer
to the specific type of MRI imaged performed and their specific meanings are
explained later on in the third chapter. Lastly, a field in this case represents
any clinical record; for instance age is a field and a single set of CT images
is another field.

Example of field:

Age is one field,

and a set of CT

images is another

Even though the medical history of patients in our database can vary
depending on the individual case we can illustrate a typical medical history
timeline of the patients. The medical history timeline representation is illus-
trated in figure 1.2. Typically the patient goes through a medical consultation
where data entries are recorded, for instance the symptoms and age are writ-
ten down. Medical exams are performed which can include medical imaging
exams. A diagnostic is made with the help of the medical exams and the
patient is treated in some cases starting with surgery then the radiotherapy
planning is performed following by the radiation therapy and the chemother-
apy. The database contains the CT scans, the 3D dosimetry, the contouring
of the targeted areas the organs at risks etc. Complications and several side
effects are also recorded. Due to the aggressive nature of Glioblastoma adju-
vant treatment(s) may be performed. The database also contains the clinical
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Figure 1.2: Medical history timeline representation of patients suffering from
Glioblastoma brain cancer. The clinical records generated throughout the medical
history are specified.

records of those treatments.

Overall the database contains a rich amount of clinical records which
allow for the analysis and development of clinically based models. However,
even though there are many fields the amount of clinical records vary from
patient to patient since the medical history of the patient is specific to each
patient. Hence, this affects the development of models since not all the data
of patients can be used for each model. That is, it reduces the number of
subjects used in the models. In general, interesting models can be developed
using this rich field database.

1.3 Main parts of the document

1.3.1 Bayesian formalism

The first part is about the development of a Bayesian framework for the
modeling of clinical data. The chapter starts with a comprehensive and
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intuitive explanation of the Bayesian approach that allows us to develop
clinically based prediction models. The three main inference objectives of
Bayes’ theorem are presented which are: estimating the parameter usually
by finding its posterior distribution, making a prediction for a new data set
using the posterior distribution of the parameter, comparison of models. One
of the main advantages of the Bayesian approach is that the uncertainty of
the parameters is predicted.

Several practical examples of personalized prediction models were devel-
oped using the Bayesian framework which includes neurologic grade predic-
tion models. The numerical approach to solving Bayes’ theorem is empha-
sized because it allows for the modeling of a wide range of situations. Lastly,
the solving process involves machine learning techniques.

1.3.2 Tumor recurrence predictions

The second part applies a reduced case of the Bayesian framework in which
Generalized Linear Models (GLM) were built to explore the correlations of
pre-treatment medical images in the form of magnetic resonance (MRI) and
computer tomography (CT) with the recurrence of the tumor. The MRI
sequences used include DW-MRI, T2-Flair, and T1-Gd. Then in a similar
manner more complex models using decision trees, from machine learning
techniques, were performed to unveil possible hidden correlations to the re-
currence which GLM models are incapable of finding.

The intensity values of the images corresponding to locations in the outer
surface of the tumor and its mirror image on the opposite side of the brain
were analyzed and compared. The mirror images were also used for normal-
ization purposes. Layers (of about 2 mm) were created normally increasing
from the surface of the tumor. A comparison of intensity values was done
independently for each of the several layers. This was possible because the
position of the recurrence and non-recurrence areas, within the layers, are
known from the medical image data. The relevance, and limitation of the
study are also discussed.
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1.3.3 Spherical mapping and cartography representa-
tion tools

The third part involves the development of spherical mapping and cartog-
raphy representation tools derived by the necessity to visually analyze the
tumor recurrence link to the intensity values of the recurrence. The develop-
ment of these tools are a continuation of the recurrence study and they were
developed because the mathematical models in part two failed to strongly
correlate the recurrence to a change in intensity values.

The first step to develop these tools is to construct a mesh covering the
expanded tumor structure in which each of the vertices has known Cartesian
coordinates. Then a couple of angles, latitude and longitude, are associated
to each vertex by following a clever algorithm developed by Brechbühler et
al., [6] which involves the concept of heat diffusion. With the latitude and
longitude angles we were able to create a spherical map of the expanded
tumor. Then 2D maps, of the surface of the spherical representation, in
the form of Mercator and Mollweide projections were constructed. The 2D
maps allow for a direct analysis of intensity values of the recurrence versus
non-recurrence locations.

1.4 Conclusions

The framework developed in this work allows for making predictions based
on evidence using the data rich Glioblastoma database. The potential uses
of the framework were illustrated by several examples including the neu-
rologic grade prediction models and Glioblastoma tumor recurrence predic-
tions. Overall, prediction based on clinical evidence allows to move forward
towards a personalized approach in health care. In this approach, unique
traits of patients can be used for developing individual predictions.
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2.1 Introduction

The purpose of this chapter is to illustrate the framework for the
development of clinically based biophysical prediction models using Bayesian

statistics.

Medical data is being increasingly generated in hospitals and clinics. An-
alyzing the stored data opens the door to learning from evidence. The data
can be further exploited by searching for patterns and correlations. In the
traditional style health practitioners rely on experiences with their own pa-
tients and in discussions with colleagues. Later on in retrospective studies,
in which the medical outcome of a fixed number of patients are studied, sup-
portive evidence of a claim is analyzed. However, a promising approach is to
do continuous studies to achieve personalized medicine. Data containing the
information of many patients can be stored and with relative ease more and
more patients can be added which is statistically favorable. Furthermore,
the rich oncology data has been known for its well suited candidacy to be
applied to big data analytics in order to improve cancer treatment [15].

The Bayesian approach is a mathematical tool that ca be used to perform
big data analytics. Such approach has been used in different areas such as in
finance and oceanic research [26, 21]. Health care is yet to fully benefit from
such approach. The main idea is to use a Bayesian approach to construct
a general framework to create prediction models based on growing evidence
using clinical data since the data of new patients could be added with ease.
This approach allows to move forward towards a continuous study instead of
relying purely in retrospective studies.

Intuitive Bayesian reasoning
Getting a feeling of the Bayesian reasoning is quite important to understand
the mathematical formulation later described in the chapter. The human
brain often does Bayesian reasoning by constantly searching for patterns and
constantly doing intuitive guesses to predict an outcome which comes quite
handy even for daily tasks. The brain looks for patterns quickly, we look at
the clouds and the brain finds figures such as shapes of animals; it is mostly a
matter of how quickly we look and then we see what we want to see. Directing
our eyes towards the full moon and the smiling face could be found, or
legends of human beings becoming mountains such as the Iztaccihuatl Aztec
legend because a mountain resembled a woman laying down on the ground.
The brain finds patterns nearly everywhere, and organize thoughts in order
to cases. The observed pattern helps us create a belief and the strength
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of the belief is modified in the next observation. The brain is constantly
modifying its believes, according to observations. Let us look at a quick
brain experiment.

Quick brain experiment

What is the probability of throwing a coin and landing tails? And
heads?

If the answer is 50%, then it was assumed that the coin is fair. The col-
lision of the two great statistic branches, the frequentists and the Bayesians,
can be distinguished from this extremely simple brain experiment. Frequen-
tists require to know a parameter linked to whether the coin is fair or not
while a Bayesian approach can guess if the coin is fair or not by using the pre-
vious belief that most coins are fair. Bayesian reasoning can be summarized
from this innocent example in which there was a previous belief of the coin
fairness. In the Bayesian approach, previous believes are constantly being
modified due to experiences. For instance, if a person keeps encountering
that coins are fair, then the belief that coins are fair keeps getting stronger.

Description of the chapter
The chapter begins by a quick review of essential statistical concepts to
understand the Bayesian formalism, then Bayes’ theorem is presented. Fol-
lowing, the full practical framework to develop clinically based prediction
models is presented then exemplified. The data mining concept is discussed
which refers to searching and looking for specific patterns in a dataset, in this
case medical oncology data. Machine Learning modeling is then introduced
and its potentiality is emphasized. Machine learning refers to developing al-
gorithms to teach the machine, computer, to learn automatically. Following,
practical examples are presented. In certain cases a problem involving Bayes’
theorem can be solved analytically specially taking advantage of conjugate
priors. Nonetheless, in practice it can seldom be solved analytically and a
numerical approach is an excellent alternative. The numerical approach used
(recommended) in this work is the Metropolis-Hastings algorithm M-H which
is a type of Monte Carlo Markov Chain method. In general terms the current
trend of the revival of the Bayesian approach is thanks to the increase of the
computer power that allows for the accomplishments of large data storage,
manipulation and for numerical approximations to be carried on. In other
words, in practice, numerical approximations are generally the norm.

The model building framework is exemplified by developing neurologic
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grade prediction models using the Glioblastoma database. First, a simpler
model was developed in which the Neurologic grade is predicted after the
treatment based on the initial neurologic grade before the treatment. A
second, enhanced, model is developed which also predicts the neurologic
grade before the treament but it uses as an input an additional parameter,
Gross Tumor Volume (GTV), which is related to the size of the tumor.

2.1.1 Three useful inference objectives

The three useful inference cases that the Bayesian formulation helps us
achieve are discussed. The first is parameter predictions, the second is the
estimation of data values, and third is the model comparison. The parame-
ter prediction is useful to predict the value and its uncertainty. The second
inference case is useful to make predictions for other datasets and the third
inference objective allows us to compare several models. A review of the
Bayesian methodology with emphasis on the three inference cases can be
found in John Kruscke’s book which it is worth taking a look at for addi-
tional reading in the subject [34].

Estimating parameters
The first objective is to estimate all the possible values of a parameter and
the weight or likelihood of each of these values. This answer is responded by
using the posterior function which is the solution of Bayes’ theorem!

To better understand, let us illustrate it with a real example from our
Glioblastoma database. We are often interested in finding correlations re-
lating toxicities or complication parameters. For instance, lets investigate a
parameter related to the skin toxicity after a radiation treatment. Lets call
this parameter “Toxicity frequency” θ ranging from zero meaning no change
of developing skin toxicity and 100 being completely certain (100%) of de-
veloping the toxicity. We are going to relate this parameter to the type of
radiotherapy technique used during the treatment, either 3D, ArcTherapy,
or TomoTherapy.

The number of patients who developed or not a skin toxicity are recorded
in table 2.1 and from this data, we can construct our likelihood function and
ultimately the posterior function. In a later section we will show specifically
how we solved for the posterior function analytically but for now let us assume
we know the posterior functions answered by Bayes’ theorem. The posterior
functions for each of the three possible cases are the density functions plotted
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3D ArcTherapy TomoTherapy Total
Toxicity 6 3 7 16

No toxicity 53 14 7 74
Total 59 17 14 90

Table 2.1: Technology related skin toxicity data. The number of patients who
developed skin toxicity or not corresponding to each type of technology used are
recorded.

in figure 2.1. For instance, the posterior or density function corresponding
to 3D is equals to P (θ3D|D = Toxicity,No toxicity) = P (θ|D = 6, 53) and
it tells us the range of parameter θ3D and the weight of the believe of this
parameter according to the value. Our strongest belief of the value of this
parameter is a value of around 10% seen from the toxity frequency corre-
sponding to the peak; the width of the graph represents the uncertainty of
the parameters. With the posterior distributions we have covered the first
inference objective.

Figure 2.1: Technology related skin toxicity induction pdf (probability density
function) for the three possible cases: 3D, ArcTherapy, and TomoTherapy. The
peak is related to the most likely value and the width of the graph represents the
uncertainty of the prediction.
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Finding data values
The posterior or density functions previously calculated can be used to pre-
dict the next data value. For instance, we are interested in calculating the
probability of developing skin toxicity following the treatment for some other
new patient, using one of the three radiotherapy techniques previously dis-
cussed. In other words, we are interested in making a prediction for new
data. More specifically a patient would have around 10% chances of develop-
ing skin toxicity if using the 3D technique during the treatment and a little
bit less than 20% if using the ArcTherapy, and finally around 50% chances
if using the TomoTherapy technique. These three values correspond to the
peaks of the Toxicity frequency. We can predict in multiple ways; we can
use the peak as the a reference as we just did but we can also use the mean,
the median etc but the objective of making a prediction for new data values
remains the same. The great advantage of having the posterior function of
the parameter is that the uncertainty is estimated as well.

Comparing models
The last inference objective is easier to understand but not so straight for-
ward to be carried on. Several different priors can be proposed therefore
different results for the posterior can be obtained. Each of different predic-
tions correspond to a different model. So the objective is to determine which
model is predicting the most accurately. Overall, choosing the most appro-
priate prediction is not always an easy task and a special attention should
be emphasized when comparing the models.

Dilemma

Which prediction is the most appropriate? Not always an easy task.

2.2 Bayesian formalism

2.2.1 Review of basic statistical concepts

Three basic concepts are reviewed in this section to better understand Bayes’
theorem; joint probability, conditional probability, and marginal probability.
We will illustrate these concepts using a simple example. We have 100 coins
which are either shiny or not. Some of the coins are made of gold and some are
not; we are interested in testing the gold content. After the measurements,
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we obtain table 2.2 that summarizes the results.

Joint probability
The joint probability is written as the probability of A and B,

p(A ∩ B)

A visual representation of joint probability is shown in figure 2.2 (using the
data in table 2.2), where the probability of a coin being shiny is represented
in the first circle, and the second circle represents the probability of a coin
being made out of gold. The overlapping section corresponds to the joint
probability of p(Shiny ∩ Gold). The probability of a coin being shiny and
made of gold is equals to the probability of a coin being made of gold and
being shiny.

We can say that the probability of A and B is the same as the probability
of B and A

p(A ∩B) = p(B ∩ A) (2.1)

This concept may seem basic but it is essential for the derivation of Bayes’
theorem later on.

P(Shiny) P(Gold)

P(Shiny ∩ Gold)

Figure 2.2: Joint probability illustration represented by the interception of the
circles. The area of the circles and their interception are proportional to their
corresponding probabilities. The probability of a coin being shiny is p(shiny) =
0.28, the probability of a coin being made out of gold is p(Gold)=0.20, and the
intercept has a probability of 0.18.

Conditional probability
The mathematical notation for conditional probability is read as probability
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Gold Coin Regular Coin Coins
Shiny 18 10 28

Not Shiny 2 70 72
Coins 20 80 100

Table 2.2: Coin data for illustration

of A given B,

p(A|B) =
p(A ∩B)

p(B)

For instance, given the coin data in table 2.2 let us find out certain prob-
abilities. First, the probability of being a gold coin given the coin is shiny
is,

P (Gold|Shiny) = p(Gold ∩ Shiny)

p(Shiny)
=

.18

.28
= 0.64

which is not the same as the probability of the coin being shiny given it is a
gold coin

P (Shiny|Gold) =
p(Shiny ∩ Gold)

p(Gold)
=

.18

.20
= 0.9

Notice that,
P (Gold|Shiny) 6= P (Shiny|Gold)

It is worth highlighting that this formulation only works if A and B are
dependent variables. The probabilities calculated say that gold coins are very
likely to be shiny but not all shiny coins are made of gold.

Marginal probability
The last concept to understand before proceeding to Bayes’ theorem is the
concept of marginal probability. The marginal probability of the gold or
regular coin illustration is the following. The marginal probability of a coin
being shiny is,

p(Shiny) = p(Shiny and Gold) + p(Shiny and Regular) = 0.28

The marginal probability of a Gold coin is,

p(Gold) = p(Gold and Shiny) + p(Gold and Not Shiny) = 0.20

which in this case summarizes as the total number of Shiny (S) coins. In a
more mathematical way the marginal probability of variable Gold (G) would
be,

p(G) = p(G ∩ S) + p(G ∩N) + ...
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which is equal to,

p(G) = p(S ∩G) + p(N ∩G) + ...1

According to the rules of joint probability p(S ∩ G) = p(S)p(G|S) Now, let
θ be the brightness parameter in which it includes if the coin is shiny or Not
Shiny. θ = [S,N ] Then,

p(G) =
n

∑

i=1

p(θi)p(G|θi) (2.2)

The data was normalized on purpose to 100 coins, therefore the marginal
distribution is the probability of a coin being made out of Gold. We could
even say it is simply the probability of Gold. The marginal distribution can
be used as a normalization constant with respect to a variable in this case
G. This concept will be used as a normalization factor of Bayes’ theorem.

2.2.2 Bayes’ theorem

Reviewing joint probability, conditional probability, and marginal probability
help us to better understand Bayes’ theorem. Bayes’ theorem provides a
mathematical formula to determine the probability of A given B and the
probability of B given A. Applied to the gold coin example, it provides a
mathematical formulation to determine the probability of a coin being made
of gold given it is shiny and the probability of a shiny coin being made of
gold. I describe it as a bridge between p(G|S) and p(S|G). This invaluable
bridge provides the foundation to study and develop models from clinical
data.

Derivation
To derive Bayes’ theorem the relation between the probability of A and B,
P (A ∩ B), and probability of B and A, p(B ∩ A), are essential:

p(A ∩ B) = P (A)P (B|A)

and
p(B ∩ A) = P (B)P (A|B)

Thanks to equation 2.1 we know that,

P (A ∩B) = P (B ∩ A)

1Variable inversion for later convenience when deriving Bayes’ theorem.
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Hence,
P (A ∩ B) = P (B)P (A|B)

Rearranging items,

P (A|B) =
P (A ∩B)

P (B)

thanks to our first relation

P (A|B) =
P (A)P (B|A)

P (B)

As a personal choice I prefer to derive it using A and B parameters but for
practicality in this work I would substitute θ for A and D for B. So that
it reads, probability of parameter2 θ given D (in which D refers to data).
Hence, Bayes’ theorem is,

P (θ|D) =
P (D|θ)P (θ)

P (D)
(2.3)

Where p(D) is marginal probability

p(D) =
n

∑

i=1

p(θi)p(D|θi) (2.4)

P (D) serves as a normalizing factor and it is often called the evidence when
referencing to the Bayes’ theorem.

Formulation
Bayes’ theorem creates a wonderful bridge between the probability of a pa-
rameter or parameters θ given data D is p(θ|D) and the probability of data D
given a parameter θ which is P (D|θ). For the moment it is sufficient to keep
in mind this connection but it would be further emphasized progressively
throughout the chapter.

It is customary to separate and name the Bayes’ theorem in four parts:
The Posterior, Likelihood, Prior, and the Evidence as shown in figure 2.3.

Previously we have seen that the Evidence acts as a normalizing factor,
which is the marginal probability of parameter D over all possibilities. The
Prior P (θ) corresponds to the confidence in the belief of parameter θ. For

2The notation is not restricted to a single parameter therefore θ can represent multiple
parameters.
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P (θ|D) =
P (D|θ)P (θ)

P (D)

Posterior
Likelihood

Prior

Evidence

Figure 2.3: Bayes’ theorem component names commonly used.

instance, in clinical data modeling we might have a complication parameter
(e.g., Alopecia parameter) of which we have a previous belief that a certain
oncology treatment causes hair loss. Prior is how confidence one is that hair
would fall after that treatment. The likelihood is related to the observation,
data or experiment and specifically means how likely or probable is an ob-
servation to happen. For instance, if out of three patients only one suffer
from hair loss then how likely is this configuration to occur give the Alopecia
parameter previously discussed. In mathematical terms the likelihood is,

P (D|θ) = P (D1|θ)× P (D2|θ)× ... P (Di|θ) (2.5)

In which D1 refers to event one in data D = [D1, D2, ...Di] and i refers to the
total number of patients. In product notations the likelihood is written as,

P (D|θ) =
N
∏

i=1

P (Di|θ) (2.6)

However, when solving for the likelihood it is often much more convenient
to use the log likelihood. A further description of the log likelihood can be
found in the following reference [16]. The log likelihood is,

LL(D|θ) =
N
∑

i=1

ln
(

P (Di|θ)
)

(2.7)

The Posterior is the new belief modified by the observations. That is, if
one believed a treatment causes hair loss 60% of the time (that is, Alopecia
parameter θ = 0.6) and after observing that only one patient of three loss
hair, then the new Posterior belief might be that perhaps a treatment does
not causes as much hair loss as previously believed. That is, the new belief
(Posterior) that θ is less than 60% seems reasonable.
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In simple words Bayes theorem can be read, a current belief (Prior) is
altered after making observations or experiments (Likelihood) resulting in a
new (Posterior) belief.

Simple analogy to

understand

Bayes’ theorem!

Choosing the prior
Deciding what the prior belief corresponding to a certain parameter θ is not
always an easy task. It can be challenging to state mathematically such belief;
the aim is to create a prior distribution function. The priors can be divided
in two main branches, one branch corresponds to the informative priors and
the other to uninformative priors. A branch diagram illustrating the two
main branches is shown in figure 2.4. The informative prior correspond to

Prior probability distribution

Informative

Previous knowledge

Uninformative

Jeffreys prior

Figure 2.4: Two main prior branches, the informative where previous knowledge
is known and the uninformative priors where no previous knowledge is known in
that case Jeffreys prior is used.

those priors which can be constructed from previous information about the
parameter of interest. A previous knowledge of the parameter can be found
in a previous study in the literature or from previous data. For instance, in
clinical model building we are often interested in complication or side effect
parameters. If a study already has certain knowledge about a complication
that study could potentially be used to construct the prior.

The uninformative priors correspond to the cases where no experimental
or observed information about the parameter is known. In that case a prior
probability distribution needs to be proposed in an educated manner. The
prior distribution needs to be a function that can be normalized otherwise it
would be an incorrect prior.

In order to come up with prior distributions, Jeffreys proposed an indirect
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way for proposing them [49]3. Jeffreys prior is the most widely used for the
non-informative (uninformative) priors [17]. Notice that multiple names are
used to refer to the uninformative prior such as non-informative, objective,
vague, among other names. However in this work, we will use only the name
uninformative for consistency.

Jeffreys prior is composed of the square root of the fisher information for
the parameter of interest θ [23],

P (θ) ∝
√

det(I(θ)) (2.8)

I(θ) is the Fisher information which is related to the information that an
observable variable carries about some unknown parameter θ. The fisher
information equation is,

Ii,j(θ) = −Eθ

[

∂2

∂θiθj
logf(x|θ)

]

(2.9)

Where E means the expectation over x given θ

f(x|θ) is the likelihood and ∂
∂θ
logf(x|θ) is the gradient of the log likelihood

known as the score function. For instance, if the likelihood function is a
binomial distribution and we solve equation 2.8 we would end up with

P (θ) = θ−1/2(1− θ)−1/2 =
1

√

θ(1− θ)

Despite the possible limitations of Jeffreys prior that can occur in certain
cases, such as where the prior is not possible to be normalized, it is still a
good departure point for uninformative priors in which no previous knowledge
of variable θ is known.

2.2.3 Practical examples

Up to now we have worked towards the derivation of Bayes’ theorem including
a review of probability concepts to better understand the derivation. In this
section the usage of Bayes’ theorem is emphasized. First, a simple example
is presented then a practical one closer to real life applications in order to
better understand the application of Bayes’ theorem in simple and practical
cases.

3Section 2.3 in page 5 of the cited document.
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Simple case
Let us create a simple hypothetical scenario in which a person is interested
in learning about hair loss after a medical treatment “M”. The person be-
lieves there is a 60% chances of loosing hair, but she is not 100% sure (she is
actually only 50%) because she also believes it could be 45% or even 70% but
she only believes half strongly of those two last percentages in comparison
with the 60%.
Therefore the three priors would be (letting hair loss parameter, Alopecia,
be equals to θ):

p(θ1 = 0.45) = 0.25

p(θ2 = 0.60) = 0.5

p(θ3 = 0.70) = 0.25

She feels the need to talk to patients who underwent the treatment, that is,
she is gathering data. She talks to 5 patients and records that the first two
patients lost their hair and the following three did not have any hair loss after
the treatment. After that encounter (observations) what does she believes
are the chances of loosing hair? Let us apply Bayes’ theorem to respond the
question.

The likelihood is how probable the configuration, of 2 patients loosing hair
and 3 not loosing hair, is to occur. According to equation 2.5 the likelihood
would be,

P (Patients|θ) = P (Patient1|θ)× P (Patient2|θ)× ...P (Patient5|θ)

in this case it is just the multiplication of patients. Where the probability of
not loosing hair is

P (Patienti = No hair loss|θi) = 1− θi

and the probability of loosing hair is,

P (Patienti = hair loss|θi) = θi

Therefore, the likelihood of that configuration is simply the probability of
not loosing hair times the probability of hair loss to the power of a (number
of patients with no hair loss) and b (number of patients with hair loss)
correspondingly. That is,

P (Patients|θ) = (1− θ)aθb = 0.02304 (2.10)
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For θ2 would be,

P (Patients|θ2 = 0.60) = (1− 0.60)30.602 = 0.02304

The evidence P (Patients) is simply the marginal probability of patients
who lost hair,

P (Patients) =
n

∑

i=1

P (θi)P (Patients|θi)

She is interested in knowing the probability of hair loss after the treatment
given her hair loss prior believes and the new observations she did by talking
to the 5 patients. We can use Bayes’ theorem 2.3 to answer her question,

P (θ|Patients) =
P (Patients|θ)P (θ)

P (Patients)

Therefore,

P (θ2 = 0.60|Patients) =
P (Patients|θ2)P (θ2)
n
∑

i=1

P (θ2)P (Patients|θ2)

P (θ2 = 0.60|Patients) =
0.02304× 0.5

0.02325
= 0.4954

She had a prior belief for the hair loss parameter to be that 60% (chances
of hair falling after the treatment) and the strength of that specific belief was
50% confident. After doing Bayes’ theorem she believes almost with the same
strength, 49.54% instead of 50%. Her belief did not change much for that
particular Alopecia parameter of θ = 0.60. At the beginning she believed
half strongly for θ1 = 0.45 and θ3 = 0.70. Now she believes more strongly
then before on θ1 and less strongly for θ3. As can be seen after doing the
calculations which are display on the left side of figure 2.5 when comparing
the plotted three points in the prior versus the posterior three points.

Practical case
It would be more reasonable to say that the person interested in knowing the
alopecia parameter has a wider range of beliefs not just θ1, θ2, and θ3. For
instance a more legitimate prior would be composed of a myriad of believes
ranging from 0 to 1.0. I chose 20 theta values and plot prior believes P (θ)
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using a normal distribution function since her prior beliefs are relatively
symmetric center at θ = 0.60 which can be observed in the upper right panel
in figure 2.5. Notice how the prior starts to look more like a probability
distribution than before.

In the simple case there were 5 observations, 2 people suffered from hair
loss after the treatment while 3 remain with the same hair. In practical cases
the more observations the better, in this practical case the observations were
increased to 25, 10 lost hair, while 15 remain the same.

Notice that for the practical case, displayed on the right panel of figure
2.5, how the likelihood pushes the posterior curve to the left in comparison
to the prior. It is important to keep in mind that in practical cases:

• Priors are often density functions

• It can be challenging to decide which prior to use

• The larger the number of observations the better

• The log likelihood is rather used

• Numerical approximations are often implemented

Priors are often density functions since as previously mentioned, it is of vital
interest to describe parameter θ over all of its possibilities. Notice that θ
does not have to be a probability ranging from 0 to 1; in this case it is but
it is not restricted, it can even range from a negative number to a positive
number. In real cases, choosing the right prior is not always an easy task
because it is hard to state exactly what we believe on. Therefore it seems
appropriate to analyze more in-depth the construction of the prior.

The next bullet point is more evident, statistically speaking the more data
one has the better. However, in medical data acquisition can be a burden
primary due to privacy issues. Authors in the literature start to discuss the
issues concerning privacy [42]. As the number of patients increase the likeli-
hood function values become extremely small since it is much less probable
to have a large sample configuration than a small configuration because in
the bigger configuration there are many more possible configurations. Hence
it is convenient to use the natural log of the likelihood. This can be seen in
comparing the likelihood of the simple case vs the practical one.
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Figure 2.5: Prior, Likelihood and Posterior calculations for the simple case (3
calculations on the left panel) and for the practical case (20 calculations on the
right panel). The practical case starts to resemble probability density functions.
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2.2.4 Analytical and numerical solving techniques

In the ideal case we would like to solve Bayes’ equation analytically. We
could solve it analytically in the traditional way by multiplying the likeli-
hood function times the prior and dividing by the evidence to get an exact
answer. Unfortunately this option is restricted to simple cases and can not
be applied to practical (i.e. often complex) cases in real life. Another op-
tion is to take advantage of the mathematical inverse relations known as the
conjugate priors which will be explained in the analytical approach. When
the analytical approach becomes such a burden or it cannot even calculated
we rely on the alternative of numerical approaches which refers to finding
an approximate but close solution to the problem. Relying on numerical ap-
proaches is very handy since we can solve more complex problems otherwise
nearly impossible to solve or too tedious to be solved analytically. In this
work we proposed the use of a Monte Carlo Markov Chain algorithm know
as the Metropolis-Hastings algorithm (M-H) because it provides an effective
and relatively fast approach to solve the problem.

Analytical approach
In the section for the simple and practical case we solved Bayes’ theorem using
numbers not mathematical expressions. We had 3 believes for the simple case
and 20 believes for the practical one. From the practical example we became
aware that the prior is often a probability distribution. We are going to
retake the skin toxicity example shown at the beginning of the chapter but
we are going to solve it by relying on a conjugate prior.

Recalling the problem: We investigated the skin toxicity frequency θ
given a certain number of patients developed skin toxicity depending on the
technique used (3D, ArcTherapy, TomoTherapy). The data corresponding
to this is shown in table 2.1. Let us choose one of the three techniques, for
instance the 3D case. Bayes theorem would look like this,

P (θ3D|D) =
P (D|θ3D)P (θ3D)

P (D)
(2.11)

The first step is to understand the type of data that we have to fill out for
each component of Bayes’ equation in figure (2.3). We know the likelihood
is related to how probable the configuration of the data is,

D = D3D = [Patient1, Patient2, ...Patient5]

with a total of 59 patients treated with the 3D technique. Where Patienti can
be equals to either Toxicity or No Toxicity. To express out data in a math-
ematical way let Toxicity be 1 and no toxicity be 0. Hence the data would
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be expressed as, D = [0, 1, 1..1] extracted from the Glioblastoma database 4.
Where θ represents the probability developing toxicity and 1 − θ represents

Patient ID 1 2 3 ... 59
Toxicity Data 0 1 1 ... 1

Probability (1-θ) θ θ ... θ

the probability of not developing a toxicity. By recalling that the likelihood
is the product of individual probabilities we can obtain the general likelihood
function,

P (D|θ3D) = P (Patient1|θ3D)× P (Patient2|θ3D)× ... P (Patient59|θ3D)

Notice that each individual probability can be represented by Bernoulli’s dis-
tribution (shown in appendix A.2). Hence the product of Bernoulli’s equa-
tions is the likelihood for this example which is,

P (D|θ3D) = P (Patient1|θ3D)× P (Patient2|θ3D)× ... P (Patient59|θ3D)
=

{

θPatient1
3D (1− θ3D)

1−Patient1
}

×
{

θPatient2
3D (1− θ3D)

1−Patient2
}

× ...
{

θPatient59
3D (1− θ3D)

1−Patient59
}

= (1− θ3D)× (θ3D)× ...× (θ3D)

Lastly, the product of Bernoulli’s distribution is proportional the Binomial
distribution! Therefore we can further simplify the likelihood function to,

Step one

Find likelihood

P (D|θ3D) ∝
(

N

n

)

θn3D(1− θ3D)
N−n → Binomial(N, n)

Where, N represents the total number of patients treated with the 3D tech-
nique (59 patients) and n represents the number of patients that develop
a toxicity (6 patients) with this technique that is, D=[N=59, n=6]; these
numbers can be found in table 2.1.

The next step is to define our prior function which needs to predict a
probability of the belief ranging from 0 to 1 likely in a non-uniform manner.
We choose a non-informative prior since we have no idea of the toxicity.

Step two

Find the prior

We are going to propose the beta distribution with parameters α = 1/2
and β = 1/2 as our prior since this function, with those specific values, is

4The exact order of zero and one in this precise case was used to illustrate since mul-
tiplication order does not matter in the end result of the likelihood for this example.
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the solution after solving for Jeffreys prior for a binomial likelihood function.
The proposed prior is,

P (θ3D) =
(1− θ3D)

β−1θα−1
3D

β(α, β)
→ Beta(α, β)

Where Beta(α, β) represents the Beta distribution. The next step is to deter-
mine the evidence, Using the data in table 2.1 we can calculate the evidence

Step three

Find evidence

to be,

P (D) =
n

∑

i=1

P (θi)P (D|θ
i
) =

(

59

90
× 6

59

)

+

(

17

90
× 3

17

)

+

(

14

90
× 7

14

)

= 0.177

Now we can multiply the likelihood times the prior normalized by the evi-
dence and get an answer, which can be tedious. Instead we are going to solve
it using a mathematical relation called the conjugate priors.

Advice

Use conjugate prior relations whenever possible to solve Bayes’ theorem
since it is much easier to directly obtain the posterior!

In this case, Bayes’ theorem can be solved using the Beta-Binomial con-
jugate prior relation since the likelihood is a binomial distribution and we
used a Beta distribution for the prior. If the likelihood function is a binomial
distribution and the prior (the conjugate prior of the binomial likelihood) is
a beta distribution the posterior is also a Beta distribution; a mathematical
proof can be found in the A.7 from the appendix section. In this case Bayes’
equation is,

P (θ3D|D) =
P (D|θ3D)P (θ3D)

P (D)

↓
Beta(α1, β1) = Binomial(N, n)× Beta(α, β)

(2.12)

Where α1 = (n + α) and β1 = (N − n + β). The α1 and β1 parameters are
derived in equation A.6 from the appendix section. Hence, α1 = (6+ 1/2) =
6.5 and β1 = (59− 6 + 1/2) = 53.5. Therefore the posterior function for the
3D case is simply,

Beta(6.5, 53.5)

We have solved indirectly using the conjugate prior relation, and it is
much easier! Extra work was done in this section with the intention of
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Likelihood Prior Posterior
P (D|θ) P (θ) P (θ|D)

Normal Normal Normal
Binomial Beta Beta
Poisson Gamma Gamma

Multinomial Dirichlet Dirichlet

Table 2.3: Some of the most used conjugate prior relationships.

demonstrating the process. In practical work, we only need to use the corre-
sponding conjugate prior relationships according to the prior and likelihood
cases; in table 2.3 some very useful conjugate priors are listed.

Numerical approach
Many posterior solutions cannot be obtained analytically so we have used
conjugate priors in the previous section. However, we are limited by the
type of prior we can use since the type of prior proposed depends on the
likelihood. For instance, if the likelihood used is a Binomial distribution
then we can propose a Beta distribution for the prior in order to also obtain
a Beta distribution as can be seen in table 2.3. However, if we propose a
different prior then the conjugate prior relations do not remain valid. Hence
the solution is to approach the problem in a numerical manner.

In this work we propose the use of a Monte Carlo Markov Chain (MCMC)
method called the Metropolis Hastings (M-H) to find the posterior function
P (θ|D). The M-H algorithm is a versatile MCMC algorithm which was
developed in the 1950s and later generalized by Hastings in the 1970s [12].

In general terms Monte Carlo methods refer to the use of random num-
bers, and MCMC methods refer to the use of random numbers for a calcula-
tion that immediately depend on a previous iteration. One example of this
is the famous random walk simulation. Overall, the random walk consist of
actually walking randomly (for instance, blindfolded) from a starting posi-
tion in which each random step taken directly depends on the previous step
since the previous step is the point of departure of the new step.

In this work we are going to use the M-H because it allows us to walk
or cover the whole function over an entire parameter’s range while still find-
ing the most probable sections which is the peak or peaks. If we use an
algorithm that only finds the maximum peak then that would be an opti-
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mization algorithm but we are interested in finding all the possibilities no
just the peak.

To illustrate the numerical approach using the M-H we are going to use
the technology related skin toxicity data in table 2.1. In the analytical section
we have solved the posterior distribution, using conjugate prior relations, for
the 3D technique, which was equals to,

P (θ3D|D) = Beta(6.5, 53.5)

Similarly we can obtain the posterior distribution corresponding to the
ArcTherapy technique,

P (θArcTherapy|D) =
P (D|θArcTherapy)P (θArcTherapy)

P (D)

↓

∝
N
∏

i=1

P (θArcTherapy|Di)× Beta(α, β)

∝ Binomial(N, n)× Beta(α, β)

∝ Binomial(17, 3)× Beta(1/2, 1/2)

(2.13)

We will call equation 2.13 the general posterior distribution and we are going
to use it to illustrate the M-H.

We know the analytical solution, thanks to the conjugate prior relations,
which is equal to,

P (θArchTherapy|D) = Beta(3.5, 14.5) (2.14)

in which α1 = (n+α) = (3+1/2) = 3.5 and β1 = (N−n+β) = (17−4+1/2) =
13.5 and total of 17 patients (N = 17) and 3 (n = 3) of them develop some
sort of skin toxicity after the radiation therapy treatment.

It makes no sense, other then for illustration purposes, to calculate it
numerically since we know the analytical solution which is equation 2.14.
Also, in this case we are very lucky that the likelihood reduces to the Bi-
nomial distribution, but what happens when we do not know the equation
ruling each individual probability P (θArcTherapy|Di) or when Bayes’ theorem
requires multiple θ parameters? In such situation, the numerical method is
a very useful approach.

We are solving the ArcTherapy problem numerically with the purpose
of showing how the M-H works well and that even with a low number of
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Monte Carlo iterations the numerical solution starts to approach the analyt-
ical posterior distribution. The solid line in figure 2.6 represents equation
2.14 and the dots represent calculations done using the M-H. Concerning the
dots in the figure: a random number θArcTherapy is generated and used to
solve Bayes’ theorem in equation 2.13 (posterior solution) represented by the
solid dot (first graph); the θArcTherapy value is accepted since it is the starting
position. A new number is randomly generated with a delta value chosen by
the user and is used to calculate again Bayes’ theorem, this new posterior
solution (solid dot in second graph) is compared to the previous posterior
solution (empty circle in second graph) and if the probability is higher we
keep the new θArcTherapy, which in this case it is clearly higher as it is visually
observed in the second graph from left to right. The third graph shows the
new posterior solution is lower (solid dot) then the previous posterior, hence
the acceptance of new random value (θArcTherapy) generated is subjected to
the condition shown in the box below

Condition

Let u = random number generated in the interval [0,1]

if
posteriornew

posteriorprevious
> u

then we accept the random θArcTherapy generated,
otherwise we reject the new value and keep the previous θArcTherapy as

the new value.

Similarly the fourth graph is subject to condition where as in the fifth
graph it is quite clear the the posterior solution of the new θArcTherapy is
higher then the previous so we keep the new value.

• Keep doing the process for about a thousand times

• Get rid of the first couple hundred accepted values commonly known
as the burn-in

• Store the accepted values of θArcTherapy

• Make a histogram of the accepted values and then we now obtain the
shape of a posterior pdf for the ArcTherapy technique which starts to
resemble the analytical solution given by equation 2.14 shown in solid
line in figure 2.7.
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In figure 2.7 we have shown that the analytical M-H can be used to estimate
the posterior distribution and it is very helpful when we have multiple θ
values which can become difficult to calculate. Hence with the numerical
approximation the problem is much simpler in terms of computational time.
Lastly, the M-H algorithm has demonstrated the ability to converge to the
true posterior pdf, which makes it a powerful tool to discover the pdf.

Figure 2.6: Posterior pdf generation using the Metropolis Hastings (M-H) algo-
rithm for ArcTherapy technique in which new posterior points are created by using
random θArcTherapy numbers and accepting the posterior point only if it meets a
specific condition depicted in the “Condition” box located in the text.
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Figure 2.7: Posterior pdf illustration for ArcTherapy technique. The solid line
represents the analytical solution and the histogram represents the numerical ap-
proximation using only a low number of iterations. It shows that even at low
iteration numbers the numerical approximation starts to closely resemble the an-
alytical solution.

2.2.5 Machine Learning

In this section a description of the framework for developing biophysical pre-
diction models based on clinical data is presented in order to better under-
stand the model building methodology. The Bayesian framework presented
so far allows for a continuous learning approach in which the posterior func-
tion becomes the new prior for some other calculation. Hence, we can add
new data to our database and run the code in order to get a new posterior
distribution meaning that new data can keep improving the predictions.

The need for continuous learning from large and complex datasets led us
into the Machine Learning modeling. A wide variety of Machine Learning
tools for oncology are being used which includes, Artificial Neural Networks,
Decision Trees, Support Vector Machines, and Bayesian Networks [31].

In this chapter we are going to focus on a Bayesian framework Machine
Learning modeling approach which is illustrated in figure 2.8. The typical
modeling approach we used to develop clinically based prediction models
using machine learning and Bayesian statistics is as follows:

• A set of clinically based data is gathered
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• Clinical observations are identified

• Certain known parameters specific to the patient are used as inputs to
initialized the computer model

• The user makes an educated guess of the parameters that we are inter-
ested in finding out; this is the initialization of the model parameters.

• The patient parameters and the model parameters complete the com-
puter model and the simulation is ran

• A prediction is made usually by a decision making algorithm such as
the M-H numerical approximation presented in the previous section

• The prediction is compared with the clinical observations

• Prediction errors are determined, for instance by data fitting methods

• The model is adjusted and new model parameters are passed to the
computer model to make a new simulation

• The decision making algorithm is ran thousands of times for the pur-
pose of exploring the posterior joint probability density function (pdf)
of the model parameters.

The workflow displayed in figure 2.8 describes the model building methodol-
ogy which can be used as a guide to develop a wider range of clinically based
models. It is worth insisting on the importance of related methodologies.
In the literature, the importance of machine learning methods to help us
understand cancer progression and treatment is highlighted [31, 13].
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Figure 2.8: General Machine Learning diagram used as a guide to develop clin-
ically based models. The objective is to find the unknown parameters by a con-
tinuous data fitting process to be able to make a prediction as close as possible to
the clinical observations.

2.3 Applications of the Bayesian formalism

in neurologic grade prediction models

We know how to solve a wider range of posterior functions using the nu-
merical approximations so now we can build more complex models guided
by the Machine Learning model building workflow presented in figure 2.8.
A simpler model and an enhanced model were developed which explore the
probability of developing neurologic issues after the first treatment. Identi-
fying the early signs of neurologic complications are important in managing
patients suffering from cancer [37]. Hence, neurologic complication models
is of relevant interest. The same methodology can be applied to any kind
of toxicity (skin, alopecia, ...), if the toxicity is correctly recorded and given
that we have a sufficiently large relevant data.

The mathematical point of view of modeling is emphasized in these neu-
rologic prediction models. The simpler model predicts the neurologic grade
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after the first treatment based on studying the neurologic grade before and
after the first treatment5. The enhanced model additionally requires the
Clinical Target Volume CTV with the purpose of directing towards a more
realistic prediction. We chose the CTV over the GTV because there was a
slightly better correlation between CTV and neurologic complications. The
tumor size is often relied on for assessing response to therapy, however not
a great number of studies have performed clinical correlation of tumor size
with patient outcome [14] .

2.3.1 Neurologic grade data

Let us follow the Machine Learning diagram in figure 2.8 to develop the neu-
rologic models. The first step is to gather, from the Glioblastoma database,
the clinical observations that we are interested in modeling which in this case
are the neurologic grade before and after the treatment.

The number of patients according to their neurologic grade before and
after the treatment are presented in figure 2.9. For instance, 26 patients
started with neurologic grade of one before the treatment and remain with the
same neurologic grade of one after the first treatment. From this figure we can
see that the larger the circle the higher the number of patients corresponding
to each case. There are 25 possible cases, five initial grade cases starting
from no neurologic complications (grade 0) all the way up to grade 4 which
is the grade with the highest neurologic complications. Even though we have
the data of about 90 patients we can clearly observe that only the neurologic
grades of 0 and 1 are more relevant.

5Due to the aggressive nature of Glioblastoma multi-treatment approach might have
been performed.
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Figure 2.9: Neurologic grade change before and after the treatment. The number
of patients are recorded according to each case; the higher the number of patients
the larger the corresponding circle.

2.3.2 Simpler model setup

We are going to use the neurologic grade data in figure 2.9 for those patients
who started with neurologic grade 0 in order to illustrate the modeling pro-
cess. The number of patients corresponding to each neurologic grade after
the treatment were used as input parameters for the model. To construct
the model we need to construct Bayes’ theorem, thus we need to create the
likelihood function and propose the prior distribution.

First we are going to calculate the likelihood. For the likelihood we are
interested in finding the probability of the configuration of 27 patients re-
maining with neurologic grade 0, 13 with grade 1, 1 with grade 3 and no
patients with grade 2 nor grade 4 after the first treatment (Data=D[x1=27,
x2=13, x3=0, x4=1, x5=0]). The following multinomial distribution is a good
candidate to predict such configuration therefore the likelihood is,

Construct the

likelihood
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P (x1, ..., xk|θ1, ..., θk) =
Γ(Σixi + 1)
∏

i Γ(xi + 1)

k
∏

i=1

θxi

i (2.15)

Where parameter θ1 represents the probability of developing grade 0, θ2 the
probability of developing grade 1 etc. A reasonable prior to propose6 could
be a prior of the form of a dirichlet distribution since the likelihood is a
multinomial distribution. Hence the prior chosen was,

Propose a prior

P (θ1, ..., θk) =
Γ(Σk

i=1αi)
∏k

i=1 Γ(αi)

k
∏

i=1

θ
αi−1

i (2.16)

where α[α1=1, α2=1, α3=1, α4=1, α5=1] would be for a uniform prior or we
could set a value of 1/2 for each θ component to make it a Jeffreys prior.

Lastly the evidence is given by,

p(D) =
n

∑

i=1

p(θi)p(D|θi) (2.17)

Bayes’ theorem can be solved analytically using conjugate prior relations in
table 2.3 therefore for this model the posterior is the Dirichlet distribution,

Solve for the

posterior

P (θ1, ..., θk|a1, ..., ak) =
Γ(Σk

i=1ai)
∏k

i=1 Γ(ai)

k
∏

i=1

θ
ai−1

i (2.18)

Where ai = (αi + xi) The issue with the posterior in equation 2.18 is that
it is a five dimensional distribution therefore a method to represent it in
a one dimensional manner is needed. Hence, we need to marginalize the
dirichlet distribution. The analytical solution of the marginalized dirichlet
distribution is the following beta distribution,

Marginalize the

posterior pdf

P (θ|ai, bi) =
(1− θ)bi−1θai−1

B(ai, bi)
(2.19)

where B(ai, bi) is the beta function described in the appendix A.5 and bi =
(a0 − ai).

The model was solved in both ways, by the analytical approach using
conjugate prior relations and numerically using the M-H approach. For the
numerical solving technique educated random θ values are proposed. The

6For more information in choosing a prior please take a look at Bayes’ theorem section.
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decision making algorithm (M-H) keeps track of the accepted θ values. Then
histograms are created for each of the final neurologic grade cases. From the
histogram shapes we can determine the marginalized pdf. A diagram of the
workflow highlights (figure 2.10) the comparison between the analytical and
numerical approach in order to obtain a one dimensional pdf of the parameter
of interest. The results are presented in the following section.

Approach

Analytical

Conjugate prior

Posterior distribution (5D)

Marginalized pdf (1D)

Numerical

Metropolis-Hastings

Marginalized pdf (1D)

Figure 2.10: Workflow, for the simple model, comparison between the analytical
and numerical approach. The analytical approach is possible especially when using
conjugate priors otherwise the numerical approach is recommended.

2.3.3 Simpler model predictions

The normalized marginal probability density functions (pdfs) for each of the
θi parameters corresponding to the five possible neurologic grades after the
treatment are plotted in figure 2.11. We rely on equation 2.19 to obtain
normalized analytical pdfs which are represented in solid lines. Recall that
the θi parameters represent the probability of developing a neurologic grade
given the patient started with neurologic grade 0. Finding the posterior
distributions of the parameters θi accomplishes the first inference objective.
The second inference objective was to predict a data value for another set of
data. This objective is accomplished by using the pdfs in figure 2.11 for the
prediction of the probability of developing a neurologic grade for an arbitrary
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new patient. For instance, according to the pdf corresponding to the final
grade 0, a patient has about 60% chances (θ1 ≈ 0.60) of remaining with no
neurologic complications, this is depicted by the peak of the pdf. Similarly a
patient has about 30% chances (θ2 ≈ 0.30) of developing a grade 1 after the
first treatment. The higher the vertical value the more probable θ is. The
width of the pdfs correspond to the uncertainty of the prediction.

Figure 2.11: Normalized marginal pdfs representing the probability of developing
a neurologic grade given patients started with grade 0. The solid lines represent
the analytical solutions and the color dotted lines represent the numerical approx-
imations.

The numerical predictions are overprinted in figure 2.11 using dotted lines.
The importance of plotting together the analytical and numerical pdfs is to
show how closely the numerical approximation is to the analytical prediction.
This resemblance can be used to validate the numerical algorithm. Markov
chains and autocorrelation functions (ACF) were plotted in order to verify
the stability of the numerical approximation. In figure 2.12 we can diagnose
and analyze the Markov Chains using the Auto Correlations (AC) (please see
the appendix for more information); these simulations are stable. In addition
the first two histograms have a more defined form which seems logical since
θ1 and θ2, associated with final grade 0 and grade 1 respectively, include
more data (27 and 13 patients correspondingly as stated in figure 2.9) than
for the rest of the neurologic grades after the treatment corresponding to
initial grade 0. The numerical approximations depicted by the dotted lines
in figure 2.11 are created using the histogram shapes in figure 2.12. The
middle (red) vertical solid line over the histogram correspond to the mean of
the corresponding θi value, the two outer lines immediately after the mean
correspond to the first quartile, and the outer most vertical lines correspond
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to the second quartile.

Figure 2.12: Markov chains and Auto Correlations (AC) show the more stable
numerical simulations correspond to the θ1 and θ2 parameters. The simulation
results in a histogram for each θi is direcly linked to the pdfs depicted in dotted
lines in figure 2.11.

2.3.4 Enhanced model setup

The objective is to work towards a more realistic model in which other pa-
rameters, in addition to the neurologic grade, are taken into account. The
enhanced model requires additionally the CTV. First we plot the neurologic
grade after the treatment versus the CTV only for grades 0 and 1 as shown in
figure 2.13 because significantly more data is available for these two grades.

The objective is to find a function that can predict the neurologic grade
with respect to the CTV. For this work the most relevant issue is not nec-
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Figure 2.13: Neurologic grade after the treatment vs CTV in which each point
represents a patient. Patients with smaller CTV sizes did not develop neurologic
grade 1 immediately after the treatment. This data is for patients who started
with no neurologic issues before the treatment.

essarily the proposed function but the methodology to numerically solve the
unknown parameters of the proposed function. The logistic function is a
type of sigmoid function that is widely used when dealing with binary data.
Hence we proposed the logistic function, to fit the data in figure 2.13,

f(CTV, a, b) =
1

1 + e−(CTV−a)b
(2.20)

with unknown parameters a and b. f(CTV, a, b) is the probability of devel-
oping a neurologic grade 1.

The aim is to solve for the posterior distribution of parameter a and b.
Since it is not possible to solve the problem analytically we will rely on the
numerical approach. First we start by constructing the likelihood which is,

P (GrF |CTV,GrI, a, b) =
N
∏

i=1

P (GrFi|CTVi, GrIi, a, b) (2.21)
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The likelihood is the product of individual probability, and each individ-
ual probability can be calculated by the proposed logistic function,

P (GrFi|CTVi, GrIi, a, b) =

{

f(CTVi, a, b) GrIi = 1
1− f(CTVi, a, b) GrIi = 0

(2.22)

Where GrF refers to the grade after the treatment, GrI to the grade before
the treatment and the index i refers to the patient number.

Following, we proposed a uniform prior distribution for a and b to simplify
the problem. Then the posterior distribution of a and b was determined using
the logistic function completed with these two parameters. A wide range of
parameters are available from the numerical simulation, hence there are many
possible solutions to the logistic function. The solutions are presented in the
following section.

2.3.5 Enhanced model prediction

The normalized marginal pdf for parameter a and b are plotted in figure
2.14. The a parameter ranges from about 160 to about 320 and has units of
cubic centimeters and b ranges from greater than zero to about 0.06. The
peak represents the most likely value and the width can be interpreted as
the uncertainty of the parameter. The most likely value for a is around 225
cm3 and about 0.025 cm-3 for b. The plot of the values of parameter b versus
a displayed in figure 2.15 allow us to see the most likely parameters in which
the color of each hexagon is associated to a certain number of simulations.
It is worth noting that the joined pdf (a vs b in this case) contains all the
information of our dataset for the model. It can be used as the prior for a
and b when new data becomes available.

The stability of the numerical simulation can be observed from the Markov
chains in figure 2.16 in which the a and b values vary randomly around a cer-
tain value covering the full range of parameter a and bmeaning the simulation
is stable. The logistic function with the most likely a and b values is plotted
in figure 2.17 represented as a solid black line. About a hundred other a and
b values were also used and the gray hallow circles next to the main solid line
represent those 100 plots. Each black solid circle, horizontal to the zero or
one grade value, represents a patient with its respective CTV size.

The enhanced model by using the completed logistic function can predict
the probability of developing grade 1 given the patient started with no neu-
rologic toxicity. It is not sufficient to determine the probability but also the



44 Chapter 2. Bayesian framework for modeling clinical data

uncertainty of the prediction which can be visually observed with the hallow
gray circles in image 2.17.

Figure 2.14: Normalized marginal pdf for parameter a and b. The most likely
value of a is about 225 and about 0.025 for b.

Figure 2.15: Value of parameter b versus a for each simulation in which the color
of the hexagons represent a certain number of counts of the simulation. The most
common value of a is about 225 and about 0.025 for b.
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Figure 2.16: Markov chains for parameter a and b. The stability of the numerical
simulation can be observed from the Markov chains in which the a and b values
vary randomly about the most likely value while covering the full range of the
parameters a and b.

Figure 2.17: Probability of developing neurologic grade one based on CTV size.
The solid black line is the logistic function with the most likely a and b parameters.
The hallow circles surrounding the solid line represents about 100 logistic functions
with other a and b parameters chosen randomly. The solid black circles at the very
bottom and top represent the original data to be fitted.
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2.3.6 Simple versus enhanced model comparison

The simple model versus the enhanced model are compared in order to notice
the high dependence on the CTV size. From figure 2.17 we can observe
the uncertainty of the probability of developing grade one (parameter θ2)
depending on the CTV. As an illustration let us observe three different cases
for the enhanced model; for CTV=100, 200, and 300 cm3. The uncertainty
represented in figure 2.17 is bigger for the 200 case then for the 100 case.
The uncertainty depicted by the vertical width created by the gray circles
correspond to parameter θ2, and those probabilities are plotted for the three
cases in figure 2.18. The simple model predicts a θ2 about 30% chances
developing a grade 1 where as the enhanced model greatly depends on the
CTV size. The enhanced model provides a more realistic prediction than the
simple model which does not take into account the CTV. Hence the enhance
model provides advantages in terms of personalized medicine in which specific
patient parameters are taken into consideration for making a prediction.

Figure 2.18: Normalized marginal pdfs for parameter θ2 for the simple model
and the enhanced model. Three pdfs are plotted for the enhanced model using
three different CTV sizes. These plots show that parameter θ2 is highly dependent
on the CTV size.
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2.4 Conclusions

The framework to develop clinically based models with the use of Bayesian
statistics and Machine Learning was presented in this chapter. A compre-
hensive and intuitive construction of Bayes’ theorem was described starting
from basic statistical concepts. Thereafter, we proceeded to construct the
likelihood, proposing a Prior, and determining the evidence. Proposing a
prior can be challenging since it is hard to clearly state what it is previously
believed in about a parameter of interest. It was shown that determining
the posterior distribution of the parameter of interest is essential for practi-
cal cases. The three main inference objectives when using Bayes’ framework
were emphasized. Real life examples of clinical data of patients suffering from
Glioblatoma were used to develop the model building methodology. The neu-
rologic enhanced prediction model demonstrates the high dependency on the
CTV size. The potential of the numerical approximations especially for large
datasets was emphasized.

The comprehensive intuitive build-up of Bayes’ theorem described using
real life examples and quantities intends to reach a wider range of audience.
For instance, a wider audience can have a grasp of the meaning of skin
toxicity, and neurologic complications following a radiotherapy treatment.
Quantities related to the size of the tumor seem intuitive to have an impact
on the prediction. However there can be other quantities that are not so
intuitive to guess that are playing a significant role. As an example, the
numerically calculated a and b parameters of the logistic function, start to
have a more difficult real life meaning. Hence, we can see that very easily we
can be confronted with many parameters that mostly have a mathematical
meaning. One way to try to identify those unknown parameters is to keep
developing models similar to the neurologic enhanced model presented in this
work. In order to develop more sophisticated models we need the database to
keep increasing. As a general rule, the larger the database the better it is for
developing more complex models. One of the toughest part of the Bayesian
methodology is to determine a reasonable prior, though the influence of the
prior is reduced as the volume of data increase. Lastly, a main significance
of the posterior pdf is that it contains all the information of the dataset.

The methodology in this chapter serves as foundation work for the con-
struction of models in the PMRT (Plateforme de Modélisation pour la Ra-
diothérapie) currently being built at LPC-Caen in collaboration with other
institutions. It is worth noting that this work does not intend to provide a
medical interpretation of the results but it is focused on the mathematical



48 Chapter 2. Bayesian framework for modeling clinical data

approach on modeling using real clinical data. For instance, the use of CTV
in the enhanced model instead of GTV was motivated by a better correlation
with the observed outcome. This observation suggests that the outcome is
related to the treatment rather than to the patient, but it is only a pro-
posal, not a demonstration. Such statement is made with the premise that
the GTV is inherent to the patient while the CTV is part of the treatment
since by definition the CTV is the GTV plus a certain margin belonging to a
protocol and not inherent to the patient. The methodology demostrates the
potential of the predictive capability of the Bayesian statistics together with
the Machine Learning approach. This approach can be especially useful for
large databases which directs towards a personalized predictive approach.
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3.1 Introduction

The purpose of this chapter is to study the medical images in the form of
MRI images and CT scans, from the Glioblastoma database, to explore tu-
mor evolution with special attention to the prediction of the location of the

49
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recurrence using pre-treatment imaging.

The medical images, including the Diffusion Weighted (DW), T2-Flair,
and T1-Gd MRI (Magnetic Resonance Imaging) sequences as well as the
CT (Computer Tomography)-scans, have become essential in the diagnostics
and treatment of brain cancers. The DW-MRI has gain particular recog-
nition in the study of brain cancer. Kono et al., hypothesis is that DW
imaging by means of the Apparent Diffusion Coefficient (ADC) values could
potentially provide further valuable information in diagnosis of brain tumors
[29]. A particular intriguing relation of a change in the intensity values of
the Glioblastoma recurrence area (from the pre-treatment images) was found
in a thesis work done by Emmanuel Meyer [44]. We decided to further an-
alyze such relation. His previous work consisted of manually selecting three
regions from the pre-treatment DW-MR images: (1) region corresponding to
the inside of the recurrence, (2) region corresponding to a location far from
the tumor (healthy region), (3) region corresponding to a non-recurrence lo-
cation near, but outside, the tumor contour. The ADC1 values were lower in
the recurrence (region 1) compared to the non-recurrence peritumoral (region
3).

The observations suggest that the ADC pixel values of the MRI im-
ages could provide helpful information for predicting the recurrence location.
Along a similar line, it is mentioned in the literature that tumor ADC val-
ues could potentially contribute useful information in the diagnosis of brain
tumors [29]. The potential useful information goes beyond diagnostics. For
example, DW imaging is useful in diagnostics but also in: grading tumors
and amount of tumor infiltration, looking for early responses or progression,
and in evaluating the residual or recurrence of the disease [54].

Guided by the supportive information that the medical images play a
role in brain cancer analysis, we decided to further investigate the influence
of DW, T2-Flair, and T1-Gd MRI sequences with special attention to the
ADC values of the DW-MR. Recently Chang et al., have observed a small but
statistically significant changes in the intensities of the ADC and Flair values
of the Glioblastoma recurrence regions [9]. Additionally, our work allows us
to investigate not only the ADC and Flair values but also the intensity values
of the T1-Gd and CT in relation to the recurrence.

1The DW-MR intensities in each voxel are measured in ADC values.
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3.2 Imaging

3.2.1 Medical images used in this work

MRI
The magnetic resonance imaging represents and incredible way to study mat-
ter by means of the nuclear magnetic resonance phenomenon [50]. In our case
this phenomenon is used to study and “see” the human tissues with the ob-
jective to identify an abnormality in the tissue. The introduction of MR
imaging in the clinic represented a very important advancement in the care
of patients with brain cancer [20]. MRIs play a crucial role in many areas
such as the detection of the tumor. The MRIs were used for several pur-
poses; for detecting the tumor area, identifying healthy tissues (necessary
for the radiotherapy planning), and monitoring the behavior of the tumoral
mass. Some of the basic principles of MR imaging are briefly presented in
this section to better understand the work of this chapter.

Magnetic resonance imaging is a type of medical imaging which rely on
the nuclear magnetic resonance properties to create an image of the internal
structures of the body. Powerful magnets surround gradient coils in such a
way such that a strong magnetic field is created. The field aligns protons,
from the Hydrogen atoms of the water (H2O) molecule, parallel or anti-
parallel to the field as illustrated in figure (3.1). The p inside a circle in the
figure represents a proton, the top one refers to the proton aligned parallel to
the magnetic field and the bottom proton represents the anti-parallel align-
ment. The protons wobble in a cyclic motion (w0) which is often referred
as precession movement. Before the magnetic field is applied, the protons
wobble in non-preferential directions. After the magnetic field is applied,
the net alignment is directed parallel to the field. Following, radiofrequency
is applied perpendicular to the magnetic field causing both the parallel and
anti-parallel protons to align parallel to the radiofrequency (represented in
step 2 of figure 3.2). However, this is not a stable state and the protons have
a tendency to go back to the parallel or anti-parallel positions illustrated in
step 3. The time it takes for the protons to relax and go back to the parallel
or anti-parallel positions is often called T1 relaxation time. At the same
time some protons are being miss aligned from their parallel anti-parallel
positions, a quantity related to this time is called the T2 relaxation time.

The MRI machine is able to detect or measure the T1 and T2 values and
the detection location. Since different tissues and parts of the body have
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different T1 and T2 values, an image can be created by using these values
and the detected locations. Therefore different tissues of the body can be
identified in the image.

The basic physics of MRI was briefly described above mainly to have an
idea of how the MRI images are created. However, the MRI is a vast field in
which many different types, commonly known as “MRI sequences”, of MRI
images are generated. Not all MRI requires the T1 and T2 times, but they
are important values for describing many types of MRI sequences. There is
a zoo of MRI images used in the medical field, some techniques additionally
require a contrast agent to better highlight certain tissues of interest. The
MRI sequences used in this work (for each patient) include the DW or ADC,
T2-Flair, and T1-Gd, sequences. Typical resolution of the MRI images are
slices of 2 mm with x and y resolutions of about 1-2 mm (often 1.15 mm).
The x and y resolution is of 1.15 mm and the slides were taken each 2 mm.
The patients included 5 women and 12 men. The average age of the patients
was 60.5 years old with standard deviation of 13.9.

Figure 3.1: Precession movement of protons under a magnetic field. The top
proton (p) is aligned parallel with the magnetic field where as the proton on the
bottom part is aligned anti-parallel. The precession movement is characterized by
a wobbling motion.
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Figure 3.2: Proton alignment process in MRI. Radiofrequency is applied which
forces the wobbling protons to momentarily align parallel to the direction of the
radio-frequency. Then after sometime the aligned protons return to the wobbling
motion. The time it takes for protons to return to align parallel or anti-parallel
to the magnetic field is called T1 relaxation time. Simultaneously those newly
aligned protons return to be aligned with the radio frequency; this is called T2
relaxation time. These two time values and their location of detection are used to
created MRI images since different tissues have different T1 and T2 values.

ADC or DW-MRI sequence
The contrast of the diffusion weighted (DW) MRI is determined by the tiny
microscopic movements of the protons of the water molecules [2]. In other
words, this MRI sequence is related the diffusion of water molecules. These
microscopic movements are important because they can be used for the study
of the human tissues. The diffusion MRI can be used for the study of in-
tracranial tumours [32]. The DW MRI are not only used for cancer purposes
but rather a wider variety of reasons such as the study by Nakahara et al., in
which they studied the severity of brain injuries [46]. Nonetheless, one main
use of the DW-MRI is for detection of brain cancer since the water in different
tissues have different diffusion coefficients. For instance, the diffusion coeffi-
cient of water in tissues is about two to three times less than free water [35].
The ADC value for free water at 37 degrees Celsius is about 3.0× 10−9m2/s
[36]. An explanation of the effect is that physical items such as cell mem-
branes, fibers etc impede the diffusion effect. The idea is that tumor areas
have different compositions compared to normal tissues hence their diffusion
coefficients differ, resulting in different contrast in the DW-MRI image.
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Figure 3.3: Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) se-
quence of the brain of a patient suffering from Glioblastoma. The red arrow
indicates the tumor location which displays higher ADC pixel values.

The DW-MRI helps medical doctors diagnose Glioblastoma by identifying
the abnormal tissue. For instance, in figure 3.3 a DW-MRI sequence of the
head of a patient suffering from Glioblastoma is shown. The image shows the
delineation of the contours of the patient in white and the brain (french word
cerveau) in green. The tumor location is distinguishable by the brighter area
in the image which represents higher diffusion coefficient intensity values.

T2-Flair MRI sequence
The etymology of the word tumor comes from the latin word tumere which
means “to swell”. The T2-Flair MRI is a type of sequence that allows for
the identification of the swelling section. Identifying the edema is important
especially for diagnostics since it depicts anatomical details. This MRI se-
quence is very useful since it assists in the identification of the swelling versus
the cerebrospinal fluid [4]. The acronym FLAIR stands for FLuid Attenuated
Inversion Recovery [19]. Identifying the swelling is important because there
is a link between cancer and inflammation [24].
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Figure 3.4: T2-Flair MRI sequence of the brain of a patient suffering from
Glioblastoma. This type of MRI sequence is used to identify the swelling which
can be observed inside the “FLAIR” contour.

In medical terminology the inflammation is referred as an edema. A
considerable edema is perceived in the T2-Flair MRI sequence displayed in
figure 3.4. The medical practitioners were responsible for all the contouring
of the anatomical details such as the edema shown in the image in figure 3.4.
From the mathematical modeling perspective, the edema represents different
pixel intensity values compared to the healthy tissue. The difference in values
is useful because it allows for the discrimination of the lesion or damaged area.

T1-Gd MRI sequence
After excising as much tumor mass as possible by a surgical procedure, the
radiotherapy planning can begin. However, also a T1-Gd MRI sequence was
performed since this sequence helps in the identification of organs at risk and
the tumor area which are necessary for the contouring in the radiotherapy
planing. Typically the T2-Flair sequence is used for identifying the edema
where as the T1-Gd is used for identifying healthy tissues as wells as the
border of the tumor region [22]. Hence, the T1-Gd sequence is used for
tumor contouring.

The post-surgical T1-Gd MRI image is shown in figure 3.5 in which we
can see that there is still tumor mass left after the excision. The patient
head, the brain, and the Gross Tumor Volume (GTV) are contoured in the
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image. The borders of the GTV, the tumor mass, are quite bright making
it easier to identify it. It is worth clarifying that the T1-Gd MRI sequence
refers to the T1-weighted sequence with contrast agent Gadolinium (Gd).
The contrast agent is typically injected intravenously to the patient with the
objective of enhancing the contrast of the image. The borders of the tumor
are highlighted since the contrast agent accumulates in that region [4].

Figure 3.5: T1-Gd MRI sequence, pre-radiotherapy, of the brain of a patient
suffering from Glioblastoma. The GTV, the brain (french word “cerveau”), and
the head of the patient are contoured. The borders of the GTV are brighter
because the contrast agent Gadolinium accumulates in that region.

The water, the fat, and blood flow in the form of blood vessels can be
identified from the image. The water is dark and it is shown in the middle
of the image in the form of an x shape. As a useful rule of thumb for the
T1-Gd MRI sequence the water is darker, the blood vessel is bright and the
fat is bright too.

In many cases, when possible, another T1-Gd MRI was performed but
after the treatment for following up the care of the patient. A post main
treatment T1-Gd MRI sequence is shown in figure 3.6 in which unfortunately
a tumor recurrence was observed. The recurrence area is delineated in dark
red (crimson) color.



3.2. Imaging 57

Figure 3.6: T1-Gd MRI sequence, after the main treatment, of the brain of a
patient suffering from Glioblastoma. The image was used for follow-up purposes.
Unfortunately, the image reveals a tumor recurrence (french word “RECIDIVE”)
which is contoured.

CT imaging
The computer tomography imaging is a technique used to reconstruct an
organ or object in a 3 dimensional manner by means of directing x-ray beams
around the patient (e.g., head) and measuring the attenuation of the beams.
The attenuation of the x-rays are used to reconstruct an image and many
slices are developed for the 3D reconstruction. An algorithm is used by
the computer to correlate the attenuation of the beams, depending on the
incoming direction, with the density of the tissue. The denser the tissue the
more the beam is attenuated. Hence the beam that passes through bone is
attenuated much more than a beam passing through soft tissue.

The Hounsfield units are used to refer to the pixel value in computer
tomography. The CT scanner needs to be calibrated for the relation of
Hounsfield units to tissue density [43]. For the calibration, an arbitrary
value of -1000 is set for a beam passing through air and zero is set when the
beam passes through water. One main important feature of the CT scanner
is that it allows for low contrast discrimination meaning certain tissues can
be better differentiated compared to a 2D x-ray image.

The CT started to answer the necessity for tumor and normal tissue
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delineation and localization in such a way that can be used for the planning
and delivery of therapy [18]. Perhaps the most important part of the CT
imaging is its relation to the energy deposited; the radiation absorbed dose
planning can be done using the material density inferred by the use of the
CT value expressed in Hounsfield Units.

Example of a CT image
A CT image acquired from our database is shown in figure 3.7. Three con-
tours are overprinted on the image: the tumor (GTV), the head of the pa-
tient, and the brain. The tumor area is darker than other areas in the CT
image. However, the outer contours of the tumor are not as well defined as
in the T1-Gd MRI depicted in figure 3.5.

Figure 3.7: Computer Tomography (CT) image of the brain of a patient suf-
fering from Glioblastoma. The GTV, the brain, and the head of the patient are
contoured. Bone structures such as the skull, area between the head of the patient
and the brain, are very clearly identified in CT images.

The attenuation is related to the electron density of the material as well
as the beam energy. The reason certain soft tissue structures are not well
differentiated can be explained by the close electronic density of the tissues.
The higher the electron density the more the x-rays will interact with the
material hence more x-rays are attenuated. For instance, the skull is well
defined by the bright area, between the patient and the brain, because it has
a higher electron density than soft tissue. Lastly, the CT image was used
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primarily for the planning of the radiotherapy treatment.

3.2.2 Successive layers outwardly from the GTV sur-
face

In order to study the recurrence, which happens in a progressive manner,
we decided to investigate the contents of the medical images by creating
successive layers outwardly from the GTV surface. Three of these outer
layers are illustrated in this section 2. First a tumor contour was selected
then it was used to do a three dimensional reconstruction of the tumor as
shown in figure 3.8. The units for all the three axes are in millimeters. In
many cases the tumor is somewhat spherical just like the one shown here.

Figure 3.8: Tumor 3D representation (in mm) created by using the contour
information. The tumor shows a somewhat spherical shape.

The contour of slice z=30 of the 3D image is plotted in a red curve in
figure 3.9, the axes are in millimeter units as in the 3D image. Additionally
three layers are represented as well. The first GTV contour expansion or layer

2Five layers were created each of 2 mm in thickness: 0-2, 2-4, 4-6, 6-8, 8-1.0 mm. After
performing multiple modeling trials we discovered that the first couple of layers were more
relevant to the models because the closer the layers are to the GTV the more recurrence
area is involved. This is because the recurrence often grows immediately around the GTV.
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is represented by golden brown circles ©, the second layer is represented by
dark salmon squares � and lastly, the third layer is represented by dark cyan
diamond shapes ♦. The outward expansions were done in a three dimensional
manner which explains why certain widths of the layers are much wider than
other sections as observed in figure 3.9.

Voxel intensity values of the CT-scan, DW-MRI, T1-Gd MRI, and T2-
Flair MRI were associated to the corresponding positions represented by the
small shapes in the figure 3.9. With this information we can calculate how
the voxel intensity values change outwardly. Since the recurrence area is also
known then we can associate the location of the recurrence and determine
which voxels of the outer layers belong to the recurrence location. With this
set-up we could analyze if there is a difference or not in voxel intensity values
in the corresponding recurrence area in the layers versus the healthy tissue
in the same layer.

Figure 3.9: Tumor contour (red) with three outer layers. The first layer is
represented by golden brown circles, the second by dark salmon squares, and the
third by cyan diamond shapes.
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3.2.3 Normalization of images

We developed several computer models for the purpose of predicting the
recurrence location which require the normalization of images; the normal-
ization methodology is presented below . The approach taken was to start
by comparing the healthy pixel values on the mirror image of the tumor then
to expand the GTV contour outwardly in layers of 2 millimeters each. By
creating the layers we can discriminate the voxels corresponding to a location
where there was a recurrence or not. In figure 3.10 the contours of the mirror
(green), the GTV or tumor (red), and the recurrence (navy blue) section are
overprinted onto a T1-Gd MRI (this sequence was used for the contouring
process) pre-treatment image. If we expand the tumor contour (red) we ex-
pect that there may be sections where the recurrence overlaps the expanded
layers. The mirror image of the tumor was acquired by an algorithm, that
we developed, using the tumor contour and the line that divides the brain
in two sections. The division line was defined manually using the CT-MRI
images.

Figure 3.10: T1-Gd Magnetic Resonance Image with overprinted contours of the
tumor, recurrence, and mirror. The division line was used to separate the brain in
two parts in order for an algorithm to calculate the mirror contour.

The mirror image serves as a reference for healthy tissue analysis versus
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the GTV and also for scaling or normalizing the pixel values of the GTV
related contours. Additionally, it is worth noting that the recurrence contours
were used to identify if a voxel position correspond to a location where the
recurrence appears. This information is crucial for developing the recurrence
prediction models presented in this chapter.

Pdfs of tumor and mirror sections
The region corresponding to the GTV was identified and the pdfs of intensity
values were created for the CT-scan, the DW-MRI, the T2-Flair MRI and for
the T1-Gd MRI; they are plotted in figure 3.11. About 20 pdfs are plotted in
each of the four graphs and each pdf represents the data of a single patient.
For instance, in the CT plot there are 20 pdfs in which we can observe that
the form of the pdf seems to be conserved, sort of a Gaussian shape, but
in some cases displaced. For the remaining three plots, the DW, FLAIR
and T1Gd, the intensity values seem to be scattered and do not show a
predominant pdf shape.

Similar pdf graphs concerning the mirror section were created and they
are displayed in figure 3.12. The mirror section refers to a mirror image of
the tumor which theoretically is a healthy region of the brain and somewhat
symetric to the tumor. The idea is first to compare the tumor and the mirror
region to observe a difference in intensities. One main difference between
them is that the pdf of the DW-MRI has a much more defined shape for
the mirror region than for the tumor region. The DW pdf shows higher
ADC values in units of mm2/seconds. That is, the ADC value called the
Apparent Diffusion Coefficient (ADC) is higher for the GTV. Additionally
the pdf for the T1-Gd corresponding to the tumor shows a more spread out
shape ranging from 100 to 600 where as the mirror region shows a slightly
less spread out pdf ranging primarily from 200 to 500.
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Figure 3.11: Pdfs of the intensity values of the GTV concerning about 20 pa-
tients; each individual pdf corresponds to a patient. The pdfs do not show very
specific patterns.
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Figure 3.12: Pdfs of the intensity values of the mirror area. The pdfs display
more organized values compared to the tumor pdfs displayed in figure 3.11.

Normalized pdfs of tumor and mirror sections
The mirror image was not only used as a reference to compare equivalent
tissue (healthy tissue) to the GTV but was also used for normalization or
calibration purposes. Due to a variety of reasons the pixel values of the
voxels vary from patient to patient which perils the tumor and mirror pdf
comparison. One reason of the pixel intensity variations is due to the fact
that patients acquired their medical images at different imaging centers and
those machines are not necessarily calibrated the same way. Second, bio-
logical differences such as age or other specific characteristics may influence
the intensity discrepancies in healthy tissue since the pdfs are not normally
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distributed and sometimes present important extensions (especially for the
DW and T1Gd). The approach we took was to normalize all the mirror
images by setting the median to zero value and dividing the values by the
difference between the third and first quartile. The shape of the pdfs after
the normalization procedure is better defined as can be seen in figure 3.13.
These pdfs in figure 3.13 are the same as in figure 3.12 but normalized.

Figure 3.13: Pdfs of the normalized intensity values of the mirror area. The pdfs
exhibit well organized distribution of values with consistent shapes.

Simultaneously, the pdfs corresponding to the tumor region were normal-
ized as well under a similar procedure. The mirror image of patient one was
used to calibrate the tumor image for patient one, and mirror image of patient
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Figure 3.14: Pdfs of the normalized intensity values of the GTV present consider-
able less consistent shapes compared to the mirror pdfs but much more consistent
shapes than the original not normalized tumor pdfs. A change of intensity values
are observed for all the images compared to the mirror images.
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two calibrates tumor image two and so on. The normalization corresponding
to the tumor region leads to the pdfs in figure ??. The normalized pdfs are
easier to compared to the mirror image. The FLAIR pdf for the tumor shows
an increase in normalized intensity values. The pdf corresponding to the DW
shows a wider range of values in the GTV than in the healthy tissue. The
pdf for the CT remains with a similar width but with less organized values,
meaning there are more uneven values than in the mirror pdf.

Pdfs of the outer layers
The voxels inside the layers can either be in a location where the tumor
regrows or in a region where the tumor does not regrows. The regrowth
location is known and we are assuming that the organ and tissue locations
in the brain remain static after the radiation therapy.

The pdfs concerning the normalized intensity values of the layers corre-
sponding to locations where the recurrence appeared are displayed in figure
3.15. The pdfs concerning the non-recurrence coordinates of the layers are
displayed in figure 3.16. The pdf for the CT displays a higher concentration
of normalized intensity values near the mean for the recurrence region of the
layers, this can be observed by noticing the higher peak nearing 1.5 in the
pdf versus almost 1 for the non-recurrence CT pdf. The pdf corresponding
to the DW image for the recurrence also displays a higher peak. Overall, the
images display higher peaks in the pdfs involving the recurrence. However,
the more drastic peak is observed when comparing the T1-Gd pdf; for the
non-recurrence pdf the peak reaches almost 0.9 whereas for the recurrence the
peak reaches approximately 2.0. Lastly, intensities of the medical images for
the voxels corresponding to the layer (0-2 mm) are plotted and additionally
the color of the dots represent whether a voxel correspond to a recurrence
or non-recurrence location. This creates the segmentation plots displayed in
figure 3.17. Unfortunately, a strong definite segmentation between the two
populations (recurrence vs non-recurrence) is difficult to observe.
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Figure 3.15: Pdfs of the normalized intensity values corresponding to the re-
currence regions. The plots display higher peaks compared to the non-recurrence
plots in figure 3.16.
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Figure 3.16: Pdfs of the normalized intensity values of corresponding to non-
recurrence regions.
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Figure 3.17: Segmentation plots of the medical images. The red points cor-
respond to the recurrence and the black ones to the non-recurrence area. It is
difficult to see a segmentation between the two populations.

3.2.4 Machine Learning

Multiple models, which involve Machine Learning techniques, were used with
an overall goal of segmenting the recurrence and non-recurrence voxels (see
figure 3.17) according to the medical image intensities.

Generalized linear models (GLMs)
The GLM models were developed using the R software glm() function. The
GLM models are generated by specifying the variables, the family of response
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function, as well as providing the data to be fit. The family item refers in
this case to a binary response. The mathematical expression for the equation
is given by,

linkfunction(Response(X)) = AX1 +BX2 + CX3...etc (3.1)

in which the X refers to the variables and the A, B, C are the equation
coefficients which are estimated by the optimization algorithm in the glm()
R function. The response comes from the data either in which a voxel, from
the layer, is inside or outside the recurrence. Notice that the right hand side
is linear with respect to the link function but as a whole the Response(X) is
not linear. The pre-determined link function for the binomial response is the
logit function

logit(p) = log
( p

1− p

)

(3.2)

which is the inverse of the logistic, commonly known as the sigmoid function,
is often used for binary data fitting. The binary fitting is also called the
logistic regression. Therefore the glm equation is,

logit(p(X1, X2, X3)) = A+BX1 + CX2 +DX3...etc (3.3)

Since the logit is the inverse of the logistic or sigmoid function, then p is,

p(X1, X2, X3) = sigmoid(A+BX1 + CX2 +DX3...etc) (3.4)

For our case, the glm equation for the full model is,
Full model

logit(p(ξ)) ={A+B(CT ) + C(DW ) +D(FLAIR) + E(T1Gd)

+ F (CT ×DW ) +G(CT × FLAIR)

+H(DW × FLAIR) + I(CT × T1Gd)

+ J(DW × T1Gd) +K(FLAIR× T1Gd)

+ L(CT ×DW × FLAIR)

+M(CT ×DW × T1Gd)

+N(CT × FLAIR× T1Gd)

+O(DW × FLAIR× T1Gd)

+ P (CT ×DW × FLAIR× TIGd)}

(3.5)

and the reduced glm model is,
Reduced model

logit(p(ξ)) = A+B(CT ) + C(DW ) +D(FLAIR) + E(T1Gd) (3.6)
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Where ξ = [CT,DW,FLAIR, T1Gd]. The constants A..P are the equation
coefficients and they are the unknown parameters of our models. The A
represents the intercept coefficient and for both models it was set to a value
of zero. For some models the A coefficient was zero meaning the intercept
is at zero. The variables CT, DW, FLAIR, T1Gd represent a voxel value of
the medical image at a certain position (x,y,z).

One can note that the GLM model of a binomial response can be inter-
preted under the Bayesian Framework where the prior would be uniform for
each parameter. An example of the work performed by the GLM model can
be seen in figure 3.18.

Figure 3.18: Illustration of the work performed by a binary response GLM model
involving hypothetical variable V1 and V2. The GLM is capable of predicting for
well differentiated data; the lower panel belongs to one type of response and the
upper panel to another type of response. The GLM prediction is depicted by a
solid line.

Decision tree models
Decision tree models were also used. A decision tree is a way of representing
a decision strategy to be able to determine a class [53]. The author Ross
mentions the importance that decision trees play in classification of objects
[47]. The decision trees are part of the supervised machine learning method-
ologies.

We can use the analogy of an actual living tree in which the tree starts
at the root then splits into main branches then subbranches and finally after
the last branch we can find a leaf. As an analogy, the nodes where a branch
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separates refers to a choice or the alternative(s), the leaf refers to the out-
come. In mathematics the outcome can often be the solution of an equation
which we are trying to solve.

There are specific programming codes available in several programming
software and languages for the decision tree modeling. The packages “tree”
and “rpart” from the R-software were used for the decision tree modeling.
An example of the three model equation used is written below as,

Tree model

Model3(CT,DW,FLAIR, T1Gd) =

tree{response ∼ CT +DW + FLAIR + T1Gd} (3.7)

The tree is a predefined function from the previous R packages mentioned.
This function creates the decision tree model which uses the voxel intensity
values (CT-scan plus the MRI images mentioned in the model) as input
parameters. The response is binary; of the voxel being either inside or outside
the recurrence area but the response of the equation is a probability.

Decision trees are more agile than GLM models in the sense that they
are able to separate non linearly separable variables (figure 3.19). It is worth
noting that they are prone to overfitting.

(a) GLM (b) Decision tree

Figure 3.19: Illustration of the agility of decision trees. The same points are
drawn for both figures. (a) The GLM is not capable of making a correct predic-
tion for such data. (b) The decision trees are capable of separating non linearly
separable variables as can be seen by the square region.

Bootstrapping and random forest methods
Challenges come across when trying to develop a model robust enough, that
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includes multiple parameters, is that the dataset can be drastically reduced.
For instance, out of the 92 patients only around 20 had the desired charac-
teristics for developing the recurrence modeling. The requirements includes
having the CT-scan, DW-MRI, T1-Gd MRI (before and after treatment), and
T2-Flair MRI. As well as having consistent image slices of about 2 mm in
the z direction, also the data should include the recurrence contoured among
other desired characteristics. The reduction of the number of patients en-
couraged the need to determine the uncertainty of the estimator parameter
based on a reduced number of subjects. The answer to this issue was to
implement bootstrapping methods. Bootstrapping allows to estimate the
confidence interval of a parameter of interest. For instance, if we calculate
the mean of a sample then the Bootstrapping method helps us determine the
pdf of the mean parameter.

Bootstrapping

The idea is to keep sampling from the same small dataset while allowing
replacement to determine the confidence interval of the parameter of
interest.

Sampling with replacement refers to allow to sample the same subject in
a new sample. Detail explanation can be found in the literature such as in
the following books by Chernick [11] and Kotz [30].

For the recurrence GLM modeling we performed about 100 bootstraps,
each resulting in an independent prediction. Then a global prediction was
obtained using the individual predictions. In a similar way about 100 boot-
strapping iterations were performed for the decision tree modeling. The
solution to the GLM are coefficients of an equation, however the solution
to the tree models are analogous to the leaves of a tree in which different
paths were taken; therefore we can not average the leaves. Notice that for a
GLM model we can easily average the coefficients of the 100 models which
resulted from the bootstraps for each GLM model. A method known as ran-
dom forest was used instead of a single tree. The random forest consists in
generating a large ensemble of trees and voting for the most popular clas-
sification [7]. More information about the random forest algorithm can be
found in the following reference [38] which includes applications in the R
software. Overall, the random forest allowed us to aggregate the predictions
of the 100 bootstrappings into a single prediction. In figure 3.20, an example
of the ensemble of predictions created by the random forest is depicted by
the blue squares.
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Figure 3.20: Random forest illustration. The ensemble of predictions are de-
picted by the square regions, and the blurriness of the squares represents the
uncertainty which is inherent to the nature of the random forest.

3.2.5 Evaluation of models using Receiver Operating
Characteristic (ROC) spaces

The Receiver Operating Characteristic (ROC) spaces were constructed for
the purpose of evaluating the accuracy of the models. A ROC space is con-
structed by plotting the True Positive Rate (TPR) versus the False Positive
Rate (FPR). The TPR concerns the number of times the model acurately
predicts the locations where the tumor recurred while the FPR concerns the
number of times the model accurately predicts a non-recurrence location.
The mathematical equation to construct the TPR is,

TPR =
TP

P
=

TP

TP + FN
(3.8)

and the FPR is given by,

FPR =
FP

N
=

FP

FP + TN
(3.9)

where:

• True Positive (TP): Number of points where location of recurrence
was correctly identify.

• False Positive (FP): Number of points where location of recurrence
was incorrectly (or falsely) identify.
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• True Negative (TN):Number of points where location of non-recurrence
was correctly identify.

• False Negative (FN):Number of points where location of non-recurrence
was incorrectly identify.

• Positive (P): Actual number of recurrence points.

• Negative (N): Actual number of non-recurrence points.

An ideal model would predict correctly most of the time meaning it would
have a TPR approaching 1, and it would rarely predict a recurrence location
where in reality it is a non-recurrence location. This would be equivalent as
saying FPR should be low. The top left corner of a ROC space has these two
conditions, high TPR and low FPR, hence an ideal model would predict in
the top left corner of a ROC space plot.

3.3 Recurrence predictions

3.3.1 Recurrence modeling conditions

Multiple models were developed with the aim of improving the recurrence
location prediction. For illustration purposes several conditions modelled are
presented; they are specified in the illustration in figure 3.21. The 0-2 and
2-4 mm layers were chosen because they seem to make better predictions
than the rest of the layers3. Lastly, in order to limit the imbalance between
“recurrence” and “not recurrence” data, the same amount of recurrence and
not recurrence data was randomly selected for each patient.

3Refer to section 3.2.2 for more information about the layers.
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Figure 3.21: Examples of several conditions modelled. First the type of model is
chosen either a GLM or a tree model then the layer to be used. The GLM model
is composed of the full model and the reduced model.

3.3.2 Coefficients of the GLM models

In this section the coefficients of conditions, 1-3, involving the GLM mod-
els are presented. The first condition correspond to the full model and the
last two conditions involve the reduced model. The average coefficients of
equation 3.5 for condition 1 are written in table 3.1 and their values are
identified with a blue vertical line in the coefficient histograms. The corre-
sponding coefficients refer to the coefficients associated to a certain variable.
For instance, the corresponding coefficient FLAIR for condition 1 refers to
constant D in equation 3.5. Due to the bootstrapping techniques many coef-
ficients were calculated. The histograms of the coefficients corresponding to
condition 1, are shown in figure 3.22. A red vertical line is also drawn in the
histograms to indicate the zero value with the intention to better visualize
the distance to the average blue line.

Note

All the histograms in this section correspond to the ensemble of 100
iterations of the bootstrapping and the average blue line correspond to
mean.
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Overall, the further the blue line is from the red line the more weight the
coefficient has on the equation. The purpose is to determine which variables
are the most relevant in the recurrence prediction equation. The more com-
plex variables composed of the FLAIR×T1Gd and the DW×FLAIR seem to
have a lesser weight as can be observed at how the mean value is closer to
zero than the rest of the coefficients as can be seen in figure 3.22.

From the histograms of the full model we observed that globally speaking
the interaction between images play a lesser role, hence we developed the
reduced model with the most relevant single coefficients (CT, DW, FLAIR,
T1Gd). The histograms corresponding to the reduced model, condition 2
and 3, are displayed in figure 3.23 and 3.24 and they closely resembled each
other. The corresponding coefficient for the CT, DW, and T1Gd appear
to have a larger absolute value for condition 2 than for condition 3. For
instance, the coefficient corresponding to the DW is -0.224 versus -0.161
and for the T1Gd is 0382 versus 0.286 (written in table 3.1). This means
that the layer from 0 to 2 mm is the most relevant layer. In other words,
the prediction power decreases with layer size suggests that pre-treatment
images are more relevant for the beginning of the recurrence process, which
is not really surprising. The higher FLAIR values indicate the swelling area
where as the low CT values indicates where the surgery was made. Lastly,
the low DW values agree with the initial findings of a previous medical thesis
work [44].
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Corresponding coefficient Condition

1 2 3

Intercept -0.277
CT -0.458 -0.544 -0.483
DW -0.183 -0.224 -0.161
FLAIR 0.169 0.102 0.106
T1Gd 0.422 0.382 0.286

CT×DW -0.109
CT×FLAIR -0.068
DW×FLAIR -0.015
CT×T1Gd 0.094
DW×T1Gd -0.154
FLAIR×T1Gd 0.003

CT×DW×FLAIR 0.048
CT×DW×T1Gd -0.084
CT×FLAIR×T1Gd -0.087
DW×FLAIR×T1Gd -0.014

CT×DW×FLAIR×T1Gd 0.032

Table 3.1: Coefficients for the modeling conditions 1,2,3. Condition 1 involves
the full model and conditions 2,3 involve the reduced model for the 2 mm and 4
mm layers.
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Figure 3.22: Coefficient histograms for Condition 1 involve a large number of
coefficients which include all the interactions between the CT,DW,FLAIR, and
T1Gd. Coefficients involving individual items (e.g., FLAIR shown in the red
boxes) seem to have a bigger impact than the complex items such as the coefficient
corresponding to DW × FLAIR × T1Gd. The interaction coefficients are not
statistically significant. One can conclude that interaction between images (black
panel box) plays no role in the prediction of the recurrence.
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Figure 3.23: Coefficient histograms for Condition 2. The blue line depicts the
mean and the red line corresponds to the value 0. The further the blue line is from
the red line the more relevant the coefficient is.

Figure 3.24: Coefficient histograms for Condition 3 which corresponds to the
layer of 2-4 mm. The results of these coefficients seem consistently similar to
those involving the 2 mm layer in figure 3.23.
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3.3.3 Decision trees

The results of the tree models, conditions 4 and 5, are presented in this
section. The tree model is described by equation 3.7. Examples of the
decision trees for condition 4 are shown in figure 3.25 and 3.26. There are
four variables in the models, the ctt, f lairt, adct, and t1gdt. The variable
names might sound a little bit unusual but this is because the tree is plotted
with the actual names of the variables used in the programming code and
these names were left in the tree to reduced a possible systematic error of
typing the wrong variable name. Instead, a short table (3.2) is presented as a
variable change guide. For instance, the adct variable name displayed in the
tree diagrams refers to the DW variable. To read a decision tree first read

Medical Image Actual variable in tree Variable name

CT-scan ctt CT
DW-MRI adct DW
T2-Flair flairt FLAIR
T1-Gd t1gdt T1Gd

Table 3.2: Guide for the variable names of the tree models. As an example, the
ctt variable displayed in the tree corresponds to the CT variable.

the variable at the top of the tree, for example take a look at the variable
ctt in figure 3.25. If the CT 4 of a pixel is greater than 0.22 the branch to
the left is followed, and if the T1Gdt is less than 0.54 and the DW (written
as adct) is greater or equal to -0.74, then there is a probability of 0.23 that
the position of the voxel corresponds to a location where the recurrence
appears. The percentage 18% right next to the probability of 0.23 refers to
how likely it is for the 0.23 probability to occur. These two values are in a
box which are known as leaves of a decision tree. The tree leads to many
leaves or possibilities. Notice that the percentages of the leaves must add up
to 100% and can also be interpreted as the higher the percentage the higher
the importance of the leaf.

From the second tree in figure 3.26, (which still corresponds to condition
4), we can see an interesting prediction of 0.94 probability of the location of
the voxel to be located inside the recurrence region if the CT is less than
-0.21 and T1Gdt is less than -1.1. Even though the prediction is quite good,
the chances of occurring are very low, less than 8%. Therefore it is not a

4Notice that the ctt variable correspond to the CT variable.
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likely prediction. A better predictive leaf would be the 0.80 probability leaf
with 19% chances of occurring.

Figure 3.25: Decision tree 1 for condition 4 in which decision leaves are depicted
at the bottom of the tree. The first leaf states that there is a 0.23 probability
of a voxel, having the pixel values corresponding to the branch, to be inside the
recurrence. The 18% right next to it is related to how likely it is for the 0.23
probability to occur.

A decision tree concerning condition 5 is shown in figure 3.27. The fourth
leaf from left to right of the tree in figure 3.27 is one of the best predictions
of the tree, but it is still not a good prediction. This leaf predicts a 0.6 prob-
ability of recurrence in a particular voxel satisfying the variable conditions
of CT less than 0.0068, T1Gd greater than -1. It is perhaps the best pre-
diction not because it gives the highest prediction of recurrence but because
it is the best balance leaf between high prediction and occurrence rate (of
55%). Nonetheless, we can observe all the tree leaves (in the blue rectangles
with round edges at the bottom of the trees) and not a single one is able to
strongly predict the recurrence location with sufficient accuracy.
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Figure 3.26: Another example of decision tree for condition 4. The last leaf
predicts a 0.94 probability of occurrence but the 8% right next to it indicates that
the 0.94 probability is not likely to occur.

Figure 3.27: Decision tree for condition 5. Even though the fourth leaf from
left to right makes the fines prediction from all the trees presented it is still not
sufficiently likely to occur. That leaf predicts a 0.6 probability of recurrence to
appear with 55% for this leaf to occur.



3.3. Recurrence predictions 85

3.3.4 Receiver Operating Characteristic (ROC) space

The ROC space for condition 1 is shown in figure 3.28 and for condition 2
and 3 are shown in figure 3.29. Overall the ROC space for the reduced model
in figure 3.29 show a slightly higher TPR than those corresponding to the full
model in figure 3.28. Condition 2 seems to make a slightly better prediction
than condition 3 meaning, layer 0-2 mm is more relevant.

Figure 3.28: Receiver Operating Characteristic space (ROC) for full GLMmodel,
condition 1. A reasonable amount of positive predictions are made but the model
also wrongly predicts.

The ROC space compare the accuracy of the prediction of 17 patients,
each number inside the ROC space represents a patient. Patients 1 and 7 are
some of the best predicted patients since their TPR are high and the FPR
relatively small. It means that the location of the recurrence was correctly
predicted with low false alarm predictions. However, as can be seen in the
plots, the majority of patients are concentrated in a TPR from 0.4-0.90 with
a FPR from 0.0-0.70. The models do not predict with sufficient confidence
the recurrence location.
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(a) Condition 2 (b) Condition 3

Figure 3.29: Receiver Operating Characteristic (ROC) spaces for the reduced
GLM model, conditions 2 and 3. Each number on the plot represents a patient.
The ideal prediction would be the top left corner meaning high correct predictions
and low incorrect predictions.

(a) Condition 4 (b) Condition 5

Figure 3.30: Receiver Operating Characteristic (ROC) spaces for the tree model,
conditions 4 and 5. The tree ROC space show an improvement compared to the
GLM models but despite such improvement, a strong reliability of the prediction
can not be established.

The decision tree ROC space for conditions 4 and 5 are presented in figures
3.30. The ROC space for the tree model compared to the GLM models seem
to be more reliable since the FPR is smaller and the TPR prediction is slightly
higher and more constrained in the region ranging from about 0.3 to 1.0. For
instance, we can see that the ROC space for patient 14 is slightly better for
the tree model. Despite the improvement in the model, it is hard to establish



3.3. Recurrence predictions 87

a strong reliability on the tree models as well. These ROC spaces allow us to
quickly evaluate the model predictions of the 17 patients in a single graph.

3.3.5 Prediction maps

In this section, visual representations of the results of the models are pre-
sented using image slices. Patient number listed as 7 in the previous ROC
spaces is used to construct the prediction maps. The slide z = 30 is displayed
for the CT-scan, DW or Diffusion MR, the T2-Flair MR, and the T1-Gd MR
(figure 3.32 and 3.33).

Figure 3.31 illustrates the prediction maps. First, the recurrence models
outputs as a result a probability value ranging from 0 to 1 in which the higher
the value the higher the probability that the voxel belongs to a recurrence
region according to the model. When the model predicts a probability higher
than 0.5 then it is interpreted as “yes” the voxel is in the recurrence region,
if it is less than 0.5 then the voxel is not in the recurrence region. Since
the recurrence region is known, then we can compare the (computer) model
prediction with the actual findings in real life from the medical database. The
True Positive (TP), refers to the correct prediction of a recurrence region
shown in red in figure 3.31. The green TN refers to correct prediction of
non-recurrence regions. In other words the red (TP), and green (TN) are
the correct predictions and the blue (FP) and purple (FN) are the wrong
predictions.

The prediction map in figure 3.32 is the prediction when using condition
2. If we take a look at the diffusion image (DW-MR) we can see that there
is a recurrence (In french, recidive) contour which is mostly inside the GTV
and some peaks of the recurrence surpasses the tumor. The left top corner
peak colored in purple incorrectly predicts that there is no recurrence where
as the peak on the right bottom corner of the recurrence correctly predicts
the recurrence in red. The blue color on the bottom left and top of the
GTV contour can be interpreted as the incorrectly detected recurrence. The
green region refers to the region where there is no recurrence and the model
correctly predicted the non-recurrence region.
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Figure 3.31: Prediction map guide. The True Positive (TP) in red and the
True Negative (TN) in green correspond to the correct predictions. The incorrect
predictions are the False Positive (FP) in blue and the False Negative (FN) in
purple.

The prediction map in figure 3.33 uses condition 4 (which correspond to
the tree model) for the prediction results. The tree and GLM prediction
maps resemble considerable well each other. Nonetheless, from this z = 30
slide the maps seem to slightly better predict when using the tree model but
it is dubious. This argument is based on the observation that the tree model
better predicts the top left corner of the recurrence region since this region
is red for the tree prediction map where as for the GLM model the color
is purple. On the negative side, the right bottom peak of the recurrence is
less well predicted in the tree model which can be observed since for the tree
model is half red, half purple where as for the GLM is entirely in red.

Evidently, conclusions can not be made using slices of a single patient.
The prediction maps generated served mostly as a guide to visualize the
results. A further discussion concerning the recurrence prediction based on
pre-treatment imaging is addressed in the conclusion section.



3.3. Recurrence predictions 89

Figure 3.32: Prediction map, involving the GLM model, overprinted on the CT-
scan, DW, T1-Gd, and T2-Flair. The voxels corresponding to a layer are displayed
in colors surrounding the GTV contour. The red color means correct prediction of
recurrence, green means correct prediction of non-recurrence. The false recurrence
prediction is depicted by blue and the erroneously overlooked recurrence is in
purple.
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Figure 3.33: Prediction map, involving the tree model, overprinted on the CT-
scan, DW, T1-Gd, and T2-Flair. The correct prediction of the recurrence does
not seem to have improved in comparison to the GLM model prediction in figure
3.32. However, the correct identification of non-recurrence area (green color) has
significantly improved.
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3.4 Conclusions

The results obtained in this work concur with a previous thesis study [44],
in which both the non-recurrence and recurrence peritumoral display higher
ADC values compared to healthy brain (for our case, the mirror area in the
brain). The ADC intensities of the recurrence regions have been found to
have lower values than the non-recurrence peritumoral area; the results show
a small but intriguing difference. In other words, the recurrence region dis-
plays a small decrease in ADC, however there is an increase in FLAIR values.
A study from the literature found that the ADC and FLAIR values decreased
9.5% (p < 0.001) and 9.2% (p < 0.001) respectively in the recurrence peri-
tumoral edema versus peritumoral non-recurrence regions [9]. Our findings
are in agreement with respect to the ADC but contradict the FLAIR values.
In that study they suggest that using multi-parametric logistic model seem
to better predict the recurrence region than a single intensity value alone.
In our work, we have performed multi-parametric value (DW, T2-Flair, T1-
Gd, and CT intensity values). Indeed, the multi-parametric modeling better
predicts the recurrence. However, after performing several multiparametric
GLM and decision trees, the models still can not provide a definite answer.
Therefore this led us to conclude that we consider improbable for models
to be able to predict the recurrence with absolute certainty only by using
the current MRI data (before and after the treatment). Several possibilities
exist: the difference in intensities values in the recurrence is too small which
makes it difficult to perceive with current imaging resolution, intermediate
MRIs are needed for the evolution of the tumor and recurrence, the different
calibration of MRIs from the different clinics are creating a bigger disruption
than previously anticipated, lastly the possibility that pieces of additional
information are missing to be able to predict the recurrence.
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4.1 Introduction

The purpose of this chapter is to try to understand why the previous recur-
rence machine learning models did not work sufficiently well. This is accom-
plished by developing visual representation tools in which the intensity values
on the surface of tumor like structures are plotted onto 2D maps. The goal
of these maps is to try to identify possible patterns of intensity values corre-
sponding to the recurrence versus non-recurrence locations. If clear patterns
are not detected then that would suggest the current medical data is insuffi-
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cient to be able to construct strong competent recurrence prediction models.

The analysis of 3D structures are central issues in the medical imaging
area [39]. The analysis of 3D structures includes a wide variety of applications
in medical physics. For instance, the study of the brain in neurology and the
analysis of proteins in molecular biology. That is, 3D structure analysis
applications include the mapping of the brain [33] and proteins onto a unit
sphere [48].

The mapping of the surface of 3D structures is referred as embedding
or surface parameterization [48]. The embedding of brain structures pro-
vides a way to compare brains which could potentially be used for detecting
abnormalities in the brain. The advantage of embedding the brain onto a
unit sphere is that the surface of the sphere can be plotted onto a 2D map
for a rapid analysis. Such convenience is quickly observed by noticing the
usefulness of a 2D regular world map in which a nearly spherical shape is
mapped onto a 2D map. Such world map allows for a rapid identification
of geographical locations, weather related forecast illustrations, among in-
numerable other applications. The convenience of displaying information of
3D structures using a portable 2D display is perhaps the biggest advantage.
That is precisely the representation tools we are looking for; to be able to
represent the surface of the expanded tumor structure onto a 2D map.

The visual representation tools originated as a by-product of the recur-
rence analysis work presented in the previous chapter. So far, the current
method for presenting the recurrence prediction is done by choosing a single
slide of a medical image such as a MRI slide and display the predictions on
the 2D image. However, there are many slides meaning that only a small
part of the prediction is observed at a time. Hence a better visualization tool
would be invaluable.

Instead of displaying the recurrence using a single medical image brain
slide we would ideally like to display all the recurrence and non-recurrence in-
tensity values in a single portable 2D map. Notice that the new visualization
tools are additional tools to analyze the recurrence and not a substitution of
previous methods of visualization used in the previous chapter.

Previous methods

of visualization

refer to the risk

maps in previous

chapter
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4.2 Projecting the surface of a 3D structure

onto a unit sphere then to a 2D map

A road map illustrating the steps taken for the development of the visualiza-
tion tools is shown in figure 4.1. The first main step is to choose a suitable
structure of interest such as a tumor or an expanded tumor. The second
main step is to created a mesh covering the surface of the 3D structure1.
With the (x,y,z) coordinates of each vertex on the mesh we can calculate the
latitude and longitude angles implementing concepts of the heat diffusion
equation. Each vertex of the mesh is associated to a latitude and longitude
angle. Obtaining the angles can be tricky; a detailed description is provided
in this chapter. Following, the calculated latitude and longitude angles are
used to project the 3D surface onto a unit sphere. Lastly, a 2D map of the
surface of the sphere is created.

Figure 4.1: Road map of the main steps taken to develop the visualization tools;
the final objective is to create a 2D map.

4.2.1 Mesh of the 3D structure

One crucial requirement for creating the mesh is that the surface of the tumor
structure belongs to the genus 0 surface category meaning the structure does
not have any holes. Fortunately, a good amount of the surfaces of tumors

1Triangular meshes were constructed for all the meshes in this work.
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seem to be suitable structures of the genus 0 category. Using the contours,
provided by the medical images in the Glioblastoma database, we were able
to select the voxels corresponding to the inside or outside of a contoured
structure of interest such as the tumor. The voxels inside the 3D contour
were assigned a value of 1 and voxels located on the outside were assigned
the value of 0. With this information we can reconstruct tumor structures.
Examples of 3D reconstructed tumor structures are displayed in figure 4.2.

(a) (b)

(c) (d)

Figure 4.2: Illustration of 3 dimensional tumor structures, (a),(b), and (d) are
suitable structures for the meshing process but (c) is not allowed since it is com-
posed of two structures.

The Glioblastoma tumor structures have a highly variable form as can be
observed. For instance, tumor (a) has a much more spherical looking shape
compared to the rest of the tumors, where as (b) has somewhat the shape of
a boot with the long top and thick and flatten bottom. The tumor structure
(c) is not a suitable structure to be parameterized since it is composed of
two GTV volumes; a main one and a smaller one at the top right hand side
of (c). The tumor 3D structures visually illustrates the kind of structures
that are suitable for the meshing process.

A triangular mesh of the outer surface of the structure was created us-
ing the function “contour3d” from the package “misc3d” of the R software
which uses the Marching Cubes algorithm. The algorithm calculates triangle
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(a)

Triangles of a vertex
17) 1 3 27 49 50

Vertices of triangles
1) 1 17 1703
3) 2 1703 17
27) 17 1 16
49) 2 17 28
50) 17 16 28

Neighboring vertices of
a vertex

17) 1 2 16 28 1703

(b)

Figure 4.3: Representation of the triangular meshing (a) and the contents of the
mesh (b). The mesh data contains the triangles of a vertex, vertices of triangles,
and the neighboring vertices of a particular vertex.

vertices implementing linear interpolation [40]. This algorithm is very useful
for processing 3D medical imaging data for the purpose of creating a mesh
on the surface of a structure. Henceforth, we used the algorithm for creating
the surface mesh using triangular parameterization.

The function “contour3d” was used to obtain a list of vertices V1, V2,
V3 in which each vertex contains (x, y, z ) coordinates; this is the pre-mesh.
This pre-mesh was used to create a new mesh which instead of containing a
list of the vertices containing coordinates, is composed of a list of triangles
of vertices, the vertices of the triangles, and the neighboring vertices of each
vertex. A representation of the meshing and the contents of the mesh data are
displayed in figure 4.3. For instance, vertice 17 contains triangles 1,3,27,49,
and 50. Triangle 1 is composed of vertices 1,17, and 1703. Lastly, the
neighboring of vertices of a vertex are written down. For example, vertex 17
has immediate vertices 1,2,16,28, and 1703. The mesh was re-organized in
this manner because it was needed for ease of manipulating the mesh data.

A real triangular mesh plotted on the surface of the tumor structure,
figure 4.2 (d), is displayed in figure 4.4. The visible small triangles covering
the surface of the tumor structure create the triangular facets and they are
about equal size but due to the angle of perspective some facets look smaller
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than the rest.

Figure 4.4: Illustration of a triangular mesh covering the surface of the tumor
structure shown in figure 4.2 (d). The small triangular facets composing the mesh
are clearly visible.

4.2.2 Latitude and longitude angles of the vertices of
the mesh

We used as a foundation the algorithm described by Brechbühler et al., [6] for
solving for the latitude and longitude angles associated to each vertex of the
triangular mesh. Their work provides one of the most practical algorithms
for performing the embedding of complex surfaces of genus 0 onto a unit
sphere.

Latitude angle calculation
The latitude angles were found using the premise of the distribution of heat
in which a hot point is arbitrarily chosen which we called North Pole then
another point as far away as possible was also chosen but this time it would
be a cold point which we named South Pole. The North Pole was assigned a
temperature of 1 where as the South Pole was assigned a temperature of 0.
The idea is to construct a set of equations that model the heat distribution
by solving for a temperature value at each vertex of the triangular mesh in
descending heat from the hottest point to the coldest point. The value of the
solved temperature is directly related to the value of the latitude angle.

Key point between

temperature and

latitude angle!

The equation to model the heat distribution is given by the Laplace equa-
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tion,

▽2θ = 0 BC

∣

∣

∣

∣

θN = 1
θs = 0

(4.1)

After setting the temperature Boundary Conditions (BC) of North Pole
= 1, and South Pole = 0. then the heat equation becomes,

Aθ = b (4.2)

This equation was used to solve for the temperature value at each of the
vertices of the mesh. In the equation, θ is a matrix of number of rows equals
to the total number of vertices of the mesh and of one column; θ represents
the temperature values (the values of the latitude angles)2. A is a matrix
that associates distances to vertices and matrix b is an auxiliary matrix and
it is of the same size as matrix θ. The expanded matrix version of equation
4.2 is,
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(4.3)

The index i and j represents the number of vertices of the triangular mesh of
an structure. The index j is of the same size of i. The elements of matrix A
are associated to a vertex and the diagonal values indicate the sum of all the
distances of the neighboring vertices to the vertex of interest. The indexes
(i, j ) of the diagonal elements indicate the vertex of interest. The θi values
are the variables to solve for, and they are related to vertexi. For instance,
θ1 is the latitude angle associated to vertex one. A guided construction of
equation 4.3 is given below to better understand.

Let us use the first row of A to illustrate the construction of matrix A.
The index i = j = 1 of the diagonal element A1,1 indicates that the vertex
of interest of row one is vertex one. A1,2 is associated to vertex two, A1,3 is
associated to vertex 3 and similarly for all the first row. A1,j is the distance
from vertex j to the vertex of interest, which in this row is vertex one. That
is, A1,2 is the distance from vertex 2 (indicated by j = 2) to the vertex of
interest which is vertex one. A1,j is assigned a value of zero if vertex j is not
a neigboring vertex of the vertex of interest. In a similar manner we find that
the vertex of interest of the second row is vertex two which is identified by

2The latitude angles are equals to θ × 2π.
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the indexes (i = j) of the diagonal element given by A2,2. Then the distances
of the neighboring elements j to the vertex of interest are calculated for the
rest of the columns of the second row. Similarly, all the other rows are filled
in the same way.

The single row matrix b is the remaining matrix to be filled. First, the
vertex index i of the direct neighbors of the South Pole are identified. Then,
the value of 1 (which represents the maximum temperature value) is assigned
to the elements bi only if vertex i is a direct neighbor of South Pole and the
value zero is assigned for all the rest of the elements of bi.

Lastly, the system of linear equations in 4.3 is solved for the latitude
angles θi. The filling of matrix A, using the real structures such as tumors,
results in a massive matrix but mostly empty. Solving for equation 4.3 for
a huge matrix becomes complex. The solution implemented was to define
A as a sparse matrix and solve equation 4.3 using the sparse matrix solvers
in R. The reason why matrix A is so big is because the size of A depends
on the number of total vertices of the triangular mesh and the mesh of real
structures consist of a huge number, several thousands, of vertices. However,
most elements in A are zero values since for each row only the distances Ai,j

associated to the immediate neighbors of the vertex of interest are calculated
and the rest of the elements are assigned the value of zero as stated in the
algorithm that we are following [6]. This situation leads to a matrix in which
most elements are zero hence defining A as a sparse matrix is necessary to
be able to solve equation 4.3.

An illustration of the heat distribution temperature (values of the latitude
angles) values at each of the vertices of the triangular mesh is shown in the
top left corner of figure 4.5. The temperature is represented in colors ranging
from the red color, hottest temperature of 1, to the blue color representing
the coldest temperature of zero. The North Pole is displayed with a small
red sphere on the upper part of the structure and the South Pole is at the
bluest bottom part. The nearly uniform green color clearly depicts that
the latitude angle θ is not well distributed as can be also confirmed by the
top right plot in which most of the θ values are concentrated at a value of
about 0.6. The step of making data more uniformly distributed was then
required. Such step was performed by normalizing data by means of the
empirical cumulative distribution function: θN = ecdf(θ) × θ. Where θN is
the normalized latitude. The normalized latitude values are plotted in the
left bottom side of figure 4.5. The heat distribution can be seen to have
greatly improved by the well differentiated rainbow colors on the the 3D
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structure and by the wider range of distribution of values displayed on the
bottom right side in figure 4.5.

Figure 4.5: Latitude angle heat distribution illustration. The heat distribution
is represented in colors in which the hottest spot is represented in red (North
Pole) and the coldest point in blue (South Pole). The top figures shown a non-
satisfactory distribution in which most latitude θ values are concentrated some-
where around the 0.6 value. After performing a normalization procedure, the heat
distribution greatly improves (bottom part) as seen by the well differentiated rain-
bow colors on the 3D image and by the wider distributed range of normalized
latitude θn values.

Longitude angle calculation
The second angle that we need in order to achieve the spherical parameteri-
zation is the longitude angle. The longitude angle is a bit more complex to
calculate but the heat distribution premise remains the same.

The first step is to create a departure line by finding the line of descend-
ing temperature from the North Pole to the South Pole which is equivalent
as saying descending value of latitude angle. Following, another path is cre-
ated right next to the departure line, almost parallel to it, which we are
going to call it the arrival line. A point from the departure line is selected,
and assigned a minimum temperature of 0, and its closest arrival point is
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selected as well but assigned a maximum temperature value of 1. A path is
created between the departure and arrival points in which the heat is evenly
distributed. The process is performed for all the departure points in a cyclic
manner resulting in a temperature value at each vertex of the mesh.

Summarizing the important steps to calculate longitude angles:

• Find the departure and arrival lines

• Paths are created between departure points and their immediate arrival
points

• The heat is evenly distributed between the paths by the heat distribu-
tion equation

• The heat distribution equation is solved using system of linear equa-
tions in a similar way as for the latitude angle, θ, heat distribution
problem.

• The even distribution of the heat can be verified by plotting the tem-
perature values (values of the longitude angles) on each vertex.

The following Laplace equation models the distribution of heat,

▽2φ = 0 BC

∣

∣

∣

∣

φ0+ = 0
φ0− = 1

(4.4)

After setting the Boundary Condition (BC) of φ0+ = φ0− + 1 the heat equa-
tion yields,

A′φ = b′ (4.5)

The boundary condition refers to the cyclic process of evenly distributing
heat between the departure points and the arrival points in which a sudden
change of temperature happens between the arrival point (temperature of
1) and the newly departure point for a new cycle. The value of 1 refers to
the maximum temperature. In a similar manner as for the latitude angle, a
distance related matrix A′ and the auxiliary matrix b′ are filled.

An example of a departure line is shown in figure 4.6(a) with the color
magenta and points on the arrival line are depicted as green spheres immedi-
ately on the right side of the departure line. Then, after solving the system of
linear equations we obtained the longitude angle, φ, values. These values are
plotted in figure 4.6(b); the arrival and departure lines are not plotted in (b)
but the drastic drop of temperature from deep red to blue clearly indicates it.
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(a) (b)

(c)

Figure 4.6: Illustrations concerning the longitude angle heat distribution. The
departure or date line (magenta color) and the arrival line (green spheres on the
right side of the magenta line) are depicted in (a); the departure line follows a
path of descending latitude angle values. The even heat distribution around the
surface can be seen in (b). Lastly, a Mercator projection of (b) is displayed in (c)
which shows a non-homogeneous distribution of points.

Notice the heat distribution difference concerning the values of the latitude
angles in figure 4.5 in which the heat is distributed from the North Pole to
the South Pole as opposed to around the surface as it is in the longitude
angle heat distribution problem.

A Mercator projection of the surface of the sphere was also created since
we have the polar angles, latitude and longitude, associated to each vertex of
the mesh on the surface of the sphere. Out of the hundreds of existing map
projections, the Mercator projection provides a relatively straight forward
mapping. To construct the Mercator projection we can use the following
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equations [52],

xMercator = φ (4.6a)

yMercator = ln

[

tan

(

1

4
π +

1

2
θ

)]

(4.6b)

Where, θ is the latitude angle (or polar angle) and φ is the longitude angle
(or azimuth angle). A Mercator projection of the surface in figure 4.6(b)
is shown in (c). Unfortunately the 2D map does not provide a satisfactory
enough even distribution of points but it does show a correct heat distribution
in the φ direction ranging from blue to red. Therefore an optimization must
be performed which is addressed in the following section.

Lastly, an illustration of some latitude (red) and longitude (green) lines
are depicted on the surface of a structure in figure 4.7. The bold thicker green
line represents the date line. The illustration allows us to better visualize
the problem.

Figure 4.7: Illustration of latitude and longitude lines on the surface of a 3D
structure. The red horizontal lines represent the latitude lines and the green
vertical lines represent the longitude lines. The thicker bold green line depicts the
date line.
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4.2.3 Optimized Mollweide projections

The latitude, θ, and longitude, φ, angles previously calculated are essential
for the spherical mapping. By converting these polar coordinates to Cartesian
coordinates we can plot the surface of a 3D complex structure of interest onto
a unit sphere; that is called spherical parameterization. For a sphere of radius
1, the conversion yields,

x = sin(θπ)cos(φ2π), (4.7a)

y = sin(θπ) sin(φ2π), (4.7b)

z = cos(θ), (4.7c)

This means that the vertices (Vi) of a mesh covering the surface of the
complex 3D amorphous structure are transformed to Cartesian coordinates
(xi, yi, zi). Each pair of latitude and longitude angles are associated to a
unique set of x, y, z values; this is called bijection. A spherical parameteriza-
tion using equations 4.7(a,b,c) is shown in figure 4.8. The wired frame shows
the uneven distribution of the parameterized vertices. A histogram of the
surface area created by the vertices of the mesh is also plotted which clearly
shows the serious discrepancies in the surface areas. The mean value of the
surface area is depicted by the red vertical line in the histogram. Following, a
Mollweide projection of the spherical mesh was created and it is depicted in
the top right corner of figure 4.8. The Mollweide projection was used since it
provides the area preserving advantage and it is widely used. The equations
used for the Mollweide projection are [25],

xMollweide = (2
√
2/π)φ cos(α) (4.8a)

yMollweide =
√
2 sin(α) (4.8b)

where the angle α is defined by solving,

2α + sin(2α) = π sin(θ)

similarly as before, θ represents the latitude and φ the longitude. In order to
solve the Mollweide projection equations we used a range from π/2 to −π/2
for the latitude and a range from −π to π for the longitude. The color of
the Mollweide projection in figure 4.8 indicates the size of the surface areas;
the colors in increasing size are red, yellow, green, blue. The small surface
areas are highly concentrated near the poles which can be observed by the
red color at the poles, whereas near the equator the color is mostly green and
blue indicating a larger surface area.
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The issue of uneven distribution of surface areas illustrated in figure 4.8
was addressed by developing an optimizer. This is an issue because the
uneven surface areas would mean that we could not generate a reliable 2D
conformal map. The approach taken for the optimization was to shrink
the biggest triangles composed of 3 vertices on the 2D Mollweide map. We
apply the idea of energy minimization in which the energy is analogous to
the area of the triangles. The idea is that by compressing the area of the
biggest triangles the smallest triangles increase. The reduction of the area
of the biggest triangles is done gradually in a loop by performing hundreds,
of iterations. For this operation, we select all triangles whose surfaces are
greater than 4pi/N. For each triangle, we compute its gravity center and
reduce the length from the mesh to the gravity center by 10%. We observed
a gradual improvement of the homogeneity of the size of the triangles. For the
specific cases in this work we used around 300 iterations for the optimization.

The optimized results are shown in figure 4.9. The even surface areas
can be observed on the surface of the sphere. The average of the surface
areas is depicted by the red vertical line in the histogram and we can see
that the values are highly concentrated around the mean. The vertices of
the surface of the sphere are plotted on the Mollweide map with the color
representing the area of the surface areas. The even distribution of the green
color clearly shows a great improvement in the even size of the surface areas.
We can conclude that the optimized version displays a reliable 2D projection
conformal mapping.
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Figure 4.8: Spherical parameterization illustration done by converting the lat-
itude and longitude angles into Cartesian coordinates using the set of equations
4.7(a,b,c). The surface areas created by the vertices are depicted on the surface
of the sphere and they vary greatly. A histogram of the surface areas shows the
uneven surface area distribution; the mean value is depicted by the red vertical
line. The vertices of the mesh are plotted on a Mollweide map on the top right
corner with the color displaying the surface area; red means small surface area up
to the color blue meaning the largest surface area.
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Figure 4.9: Illustration of the optimized spherical parameterization. The surface
areas created by the vertices are depicted on the surface of the sphere which
display even areas. A histogram of the surface areas shows the even surface area
distribution around the mean depicted by the red vertical line. The vertices of
the mesh are plotted on a Mollweide map on the top right corner with the color
associated to the surface area in which the green color clearly shows the even
distribution of the areas.
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4.3 Projection results

Mollweide projections first example
The optimized Mollweide projections of an expanded surface corresponding
to the intensity values of the MRIs and the CT, for a case where the recur-
rence is strongly linked to the medical images, are shown in the figure 4.10.
Certain locations of the expanded surface correspond to locations where the
tumor reappear after the main treatment. A binary Mollweide projection is
presented in sub-figure (a) in which the location of recurrence is represented
by the salmon color and the non-recurrence location is represented by the
turquoise bluish color. The importance of this projection is that it clearly
depicts the location of the recurrence.

The Mollweide map using the DW-MRI image is depicted in sub-figure
(b). The color range specifies the ADC values, red representing low values
where blue represents higher values. Overprinted latitude lines every 20
degrees and longitude lines every 30 degrees are shown on the Mollweide
maps. Mollweide maps were also obtained in a very similar manner for the
T2-Flair MRI, T1-Gd MRI, and the CT scan. The Mollweide map for the
T2-Flair image shows a much more homogeneous distribution of values with
a cold spot (represented by red) on the upper part of sub-figure (c). The
following two Mollweide projections, the T1-Gd in sub-figure (d) and the
CT-scan in (e), are interesting because they show a very prominent clear spot
of low values at the very center corresponding to the recurrence location.

Mollweide projections second example
We have seen some Mollweide projections in which they clearly depict a
change of intensity values in locations corresponding to the recurrence. How-
ever, it is often not the case. In this second example Mollweide projections, in
which it is not possible to detect a clear link by a visual analysis, are depicted
in figure 4.11. Only the DW-MRI projection in sub-figure (b) displays lower
intensity values (red) corresponding to the recurrence region. However, the
multiple regions with low intensity values diminishes the possible prediction
capability of the image.

Mollweide projections third example
The third and last example of Mollweide projections are shown in figure 4.12.
The projections do not seem to be able to show any difference in intensity
values corresponding to the recurrence. The recurrence seem to be covering
a great portion of the surface of the expanded tumor since most of the 2D
map in sub-figure (a) is depicted in the salmon color corresponding to the
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recurrence. Perhaps the fact that the recurrence is so big but not localized in
a single spot makes it more difficult for a clear change in intensities to take
place.
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(a)

(b) (c)

(d) (e)

Figure 4.10: Mollweide projections of the surface of expanded tumor (GTV +
2 mm) structure of example one: (a) for the recurrence versus non-recurrence
locations in which the recurrence positions are displayed in salmon color and non-
recurrence positions in turquoise, (b) using the ADC values of the DW-MRI image,
(c) the T2-Flair MRI image values, (d) T1-Gd MRI values, (e) CT scan values.
Projections (d) and (e) show a clear difference in pixel values corresponding to the
recurrence location.
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(a)

(b) (c)

(d) (e)

Figure 4.11: Mollweide projections of the surface of expanded tumor (GTV +
2 mm) structure of example two: (a) for the recurrence versus non-recurrence
locations in which the recurrence positions are displayed in salmon color and non-
recurrence positions in turquoise, (b) using the ADC values of the DW-MRI image,
(c) the T2-Flair MRI image values, (d) T1-Gd MRI values, (e) CT-scan values.
Projections do not show a change in pixel intensity values corresponding to the
recurrence location with the exception of a lower intensity spot on the DW-MRI
projection but its relevance is diminished because there are too many other low
intensity spots.
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(a)

(b) (c)

(d) (e)

Figure 4.12: Mollweide projections of the surface of expanded tumor (GTV +
2 mm) structure of example three: (a) for the recurrence versus non-recurrence
locations in which the recurrence positions are displayed in salmon color and non-
recurrence positions in turquoise, (b) using the ADC values of the DW-MRI image,
(c) the T2-Flair MRI image values, (d) T1-Gd MRI values, (e) CT-scan values.
None of the projections display any pattern, of the intensity values, corresponding
to the recurrence location.
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4.4 Conclusions

The 2D mapping of the surface of a structure of interest such as the tumor or
the expanded tumor provides a valuable visual representation tool especially
to quickly identify patterns in the intensity values concerning the medical
images. The visualization representation tools developed allowed for the
creation of the Mollweide projections which were used for the analysis of
recurrence link to the intensity values of the images. While some of the
2D maps depicted interesting correlations between the recurrence and the
intensity values, it does not completely provide a definitive answer concerning
the link between intensity values and recurrence location. However, it can be
concluded that occasionally some medical images show a tendency to display
a discrepancy of pixel values where the tumor will reappear.

The developed tools are not restricted for cancer related purposes since
they can be applied for other purposes as well, as long as sufficient medical
data is available, such as the analysis of well defined organ structures which
can be obtained by contouring techniques using the medical images. One
possible application could be for neurologic analysis studies. We can expect
an increase in the usage of visual representation tools, similar to those pre-
sented in this work, which will gain more attention in the medical field since
the amount and quality of medical images keep increasing.



5
C
HAPTER

Conclusions

The three main sections composing this work were the Bayesian framework
for modeling clinical data, the tumor recurrence analysis, and the develop-
ment of structure mapping visual representation tools. The data of Glioblas-
toma brain cancer was used for developing prediction models such as neuro-
logic grade and tumor recurrence predictions. The methodology for modeling
oncology data for the ambition of directing towards personalized medicine
was emphasized.

Bayesian framework for modeling clinical data
The Bayesian framework developed emphasized three useful inference objec-
tives of the Bayes’ theorem. The first objective was to predict a parameter
of interest by means of finding its pdf. The pdf of the parameter allows for
the prediction of the value of the parameter and its uncertainty. The pdf
contains all the possible values of the parameter and the likeliness of each
of those values. Often the parameter was needed to complete a prediction
model which was used to make predictions for a new data set. The use of the
newly identified pdf of the parameter for making predictions for a new data
set is the second inference objective. The comparison of multiple models is
the third and last Bayesian inference objective. The comparison of models
allows for identifying the best predicting model.

Bayes’ theorem is central for developing clinical based models. The the-
orem works as a bridge between the unknown parameters of interests and
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the observed data. In simple words Bayes’ theorem states that in order to
obtain a parameter given some observed data we need to multiply the like-
lihood function created by the observations, times the previous belief of the
parameter of interest. The model development was exemplified with practical
examples. The advantage of using conjugate prior relations was emphasized
as well. The strong solving capabilities of the numerical approach was high-
lighted. The numerical approach of the Bayesian framework allows for a
flexible and robust methodology for the development of a broad range of
models. For instance, neurologic prediction models were developed, first a
simpler model was constructed then a more complex one was added which
clearly demonstrates the flexibility of the framework which allows to keep
increasing the complexity of the models.

The neurologic simple versus complex model highlighted the drastic change
in prediction when the additional parameter of CTV size was added to the
prediction model; initially the simple model only predicted using the neuro-
logic grade before the treatment. The grade prediction greatly depended on
the CTV; the greater the CTV size the greater the probability of developing
a higher neurologic grade after the main treatment.

Tumor recurrence analysis
A reduced form of the Bayesian approach, the generalized linear model
(GLM), was used to analyze the possibility of predicting the recurrence lo-
cation based on medical imaging. The first step was to expand the tumor in
layers of 2 mm at a time; the layers that had a more profound impact in the
predictions were the first two layers. The intensity values pertaining to the
recurrence and non-recurrence locations, inside the layers, were identified and
the intensities of the medical images at those locations were selected. The
predictive models used those pixel intensity values.

The medical imaging included the DW, T2-Flair, and T1-Gd MRI se-
quences and the CT-scans. The models predict the location of the recurrence
given a certain intensity value corresponding to a voxel. First a complete
model was created which included all the MRI sequences and the CT-scan
as well as all their possible combinations. For instance one variable was re-
lated to DW-MRI, another to T2-Flair, and there were also the variables
corresponding to the possible combinations such as CT×DW×FLAIR. The
complete model stated that for the most part the single variables (e.g., CT)
were more important for the prediction than the composite variables such
as CT×DW×FLAIR. After eliminating the less important variables we pro-
ceeded to construct the reduced model which makes a slightly better predic-
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tion.

We used Machine Learning tools in the form of decision trees in addition
to the GLM models with the objective of making a prediction based on
discriminatory case analysis instead of a linear response as in the link function
of the GLM. The discriminatory cases are depicted by leaves of the decision
trees in which the path of a branch must be followed to arrive at a particular
leaf. The decision tree model improved the recurrence prediction compared
to the GLM models. However, the improvements were not sufficient to obtain
an indisputable accurate recurrence prediction model. The accuracy of the
predictions were corroborated by using the Receiver Operating Characteristic
(ROC) spaces in which the correct and incorrect recurrence predictions were
easily depicted. Additionally, prediction maps were shown on a single MRI
slice.

Structure mapping visual representation tools
The development of a new method of visualization analysis was desired be-
cause of the lack of reliable predictions of the GLM and tree models, as well
as the limitation of the prediction maps. This new method was the structure
mapping and visual representation tools. The method consisted of projecting
the expanded tumor structure onto a unit sphere and subsequently onto a
2D display in the form of the Mollweide projection.

The first step was to choose a suitable tumor structure with no holes.
Then a triangular mesh based on the Marching cubes algorithm was created.
With the aid of an ingenious method developed by Brechbühler et al., we
were able to calculate a latitude and longitude angle for each vertex of the
mesh. These polar angles were used for the unit sphere mapping and the
2D plotting. The unit sphere mapping revealed uneven surface areas created
by the vertices. Therefore an optimization method was developed with the
purpose of creating even surface areas. The newly created optimized vertices
were used to create the Mollweide maps.

The Mollweide maps depicted the pixel intensity values of the surface of
the expanded structure. We used the pixel values corresponding to DW, T2-
Flair, and T1-Gd MRI sequences and the CT-scans to create the Mollweide
maps. For some cases, the 2D maps revealed a change in pixel intensity
corresponding to the tumor recurrence location. The change is more evident
for the T1-Gd, and CT-scan and partially for the T2-Flair. However, a clear
recurrence pixel intensity pattern is not often the case. Hence, making a
conclusion of a definitive strong link between pixel intensity and recurrence
location is not currently possible. In spite of that, we did find a link.
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The inability of a solid recurrence prediction is unlikely related to the
quality of the modeling instead we believe it is do to external reasons. Sev-
eral possibilities exist for the lack of accuracy in the predictions. The first
strong possibility is that additional intermediate imaging is necessary for
the construction of the models not just the pre and post treatment imaging
which it is currently the case. A more precise tumor recurrence evolution
could be reconstructed with such additional imaging. Another possibility, is
that the current MRI resolution is not sufficient. It is likely that the resolu-
tion of medical imaging keeps improving and in that case similar GLMs and
decision trees models could be used to test the resolution effect. One other
strong possibility exists which is that medical imaging alone is not sufficient
to predict recurrence location. A personal opinion is that there are missing
pieces of information, hence the current medical imaging alone would not
suffice.

Prespectives
The generic methodology developed in this work provides a foundation for
a wide range of clinically based models. Different models could quickly be
built for other parameters of interest. The modeling is not limited to appli-
cations to Glioblastoma. Other types of tumors could be analyzed as well.
In fact, the methodology could even be used for a wider range of modeling
applications even for non-cancer related applications such as finance. For in-
stance, here we were interested in finding neurology toxicity parameters but
in finance we might be interested in finding investment risk parameters. An
important strength of the developed methodology is such flexibility which we
can see by the range of possible applications.

We expect the usage of 3D reconstructed surfaces to keep increasing for
a wide variety of purposes which includes applications for diagnostics or
even for the training of medical professionals. Along the same lines, the
2D Mollweide mapping could potentially be used for the analysis of others
diseases or neurologic studies. It can be used for other applications that also
involve the pixel intensity variations around the surface of specific structures.

Lastly, this work serves as a guide for the development of clinically based
models. A project called Plateforme de Modélisation pour la Radiothérapie
(PMRT) is currently being developed, in collaboration with multiple insti-
tutes, at the Laboratoire de Physique Corpusculaire (LPC) at the city of
Caen in Normandy France. The project consists of creating a modeling
platform for the purpose of developing models using oncology clinical data
from several clinics and hospitals. Big data modeling, such as the PMRT
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project, could greatly benefit the personalized medicine approach. In order
to improve personalized medicine, in France, a straightforward but privacy
friendly policy for accessing oncology clinical data for research purposes must
be implemented.





Résumé détaillé

Introduction

L’amélioration constante des traitements oncologiques a conduit à une
augmentation significative des données médicales sous forme de dossiers élec-
troniques. L’augmentation de la puissance de calcul et la nécessité d’adopter
une approche personnalisée pour améliorer les soins aux patients mènent
à l’élaboration de modèles prédictifs fondés sur des données cliniques. La
médecine s’evolue vers une médecine personnalisée [8]. Un traitement person-
nalisé est particulièrement intéressant, car la réponse biologique de chaque
patient peut varier considérablement malgré l’administration de traitements
identiques. Par conséquent, l’adaptation des traitements pourrait améliorer
considérablement les résultats. Des modèles prédictifs sont en cours d’élabora-
tion pour intégrer les quantités considérables de données oncologiques [5].
Le potentiel de l’utilisation des techniques d’apprentissage machine sur des
données volumineuses est une voie prometteuse vers la personnalisation des
soins aux patients. De telles techniques peuvent être utilisées pour aider les
cliniciens à prendre des décisions plus éclairées en matière de traitement en
se fondant sur les données cliniques antérieures concernant les patients [51].
Les approches bayésiennes peuvent être utilisées pour apprendre à partir des
données cliniques d’une manière continue permettant l’acceptation de l’in-
corporation de nouvelles données menant à une approche d’apprentissage
continu.

L’objectif principal est de développer des modèles biophysiques pour
prédire les effets cliniques en trouvant des modèles à partir de dossiers cli-
niques déjà documentés de patients, y compris des images médicales. En
développant ces modèles de prédiction, nous pouvons trouver des paramètres
qui jouent un rôle important dans les résultats cliniques. La mise en lumière
de ces paramètres importants cachés conduit à une approche personnalisée.
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La base de données Glioblastomes

Les données cliniques utilisées dans ce travail ont été obtenues du centre
de lutte contre le cancer “Centre François Baclesse” situé en Normandie,
France. La base de données comprend les dossiers cliniques recueillis tout
au long de l’histoire médicale d’environ 90 patients souffrant d’un glioblas-
tome. Le glioblastome est un type de cancer du cerveau très agressif qui
résiste généralement aux traitements, y compris la chimiothérapie et la ra-
diothérapie. Le glioblastome affecte les patients à différents âges, mais touche
surtout les patients plus âgés. Les patients présentent souvent une surexpres-
sion du R-EGF, des mutations du PTEN (MMAC1) [28] . Les glioblastomes
sont l’un des cancers les plus vascularisés et les plus invasifs, les pronostics
ne se sont pas améliorés depuis des décennies [1]. Il reste encore beaucoup de
travail à faire pour améliorer les pronostics à partir de la compréhension des
mutations génétiques qui y sont associées, ainsi que la détection très précoce.
La classification des tumeurs cérébrales va du grade I au grade IV, ce dernier
étant le plus agressif [27] . Un glioblastome multiforme est un cancer de grade
IV, c’est donc un cancer très agressif. Dans “la classification des tumeurs du
système nerveux central de l’Organisation mondiale de la santé de 2016”,
le rapport mentionne que la classification utilise désormais des paramètres
moléculaires en plus de l’histologie [41].

Pour cette étude, une quantité fixe de données a été acquise, mais un
objectif à long terme serait de poursuivre l’ajout des données à la base
de données en tant qu’étude continue plutôt qu’étude rétrospective. Par
conséquent, à long terme, des dossiers cliniques supplémentaires pourraient
être ajoutés. Les données recueillies sont divisées en deux types, les entrées
de données et les images médicales. Les entrées de données se réfèrent aux
champs qui sont enregistrés et entrés dans l’ordinateur comme les symptômes
et le sexe du patient, les entrées de données globales se réfèrent à la plu-
part des autres champs qui ne sont pas des images médicales. Les entrées
de données peuvent être quantitatives ou qualitatives et se présenter sous
différents formats. Le sexe est masculin ou féminin, l’âge est un nombre, les
complications peuvent être écrites dans des échelles de grades. Certaines des
entrées de données peuvent également être vraies ou fausses, par exemple si
une chirurgie a été pratiquée ou non. Le type d’ablation chirurgicale a été
enregistré : soit aucune extraction chirurgicale ou simple biopsie, soit exérèse
partielle ou complète de la tumeur. La base de données contient également
plusieurs IRM et images de tomodensitométrie différentes, la dosimétrie 3D
appliquée et les contourages opérés par le radiothérapeute oncologue. La
base de données contient plusieurs séquences d’IRM différentes, y compris les
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séquences classiques T1-Gd, T2-Flair, et la séquence de diffusion DW-MRI.
Les séquences d’IRM se réfèrent au type spécifique d’image d’IRM réalisée et
leur signification spécifique est expliquée plus loin dans le troisième chapitre.

Même si les antécédents médicaux des patients dans notre base de données
peuvent varier selon les individus, nous pouvons en illustrer une chronolo-
gie typique. La représentation chronologique des antécédents médicaux est
illustrée à la figure 1.2. Généralement, le patient passe par une consultation
médicale au cours de laquelle les données sont enregistrées, par exemple les
symptômes et l’âge sont notés. Des examens médicaux sont effectués, pouvant
inclure des examens d’imagerie médicale. Un diagnostic est fait à l’aide des
examens médicaux et le patient est traité dans certains cas en commençant
par la chirurgie, puis la radiothérapie est planifiée, suivie du le traitement en
radiothérapie et en chimiothérapie. La base de données contient les tomoden-
sitogrammes, la dosimétrie 3D, le contour des zones ciblées et des organes à
risque, etc. Des complications et plusieurs effets secondaires sont également
enregistrés. En raison de la nature agressive du glioblastome, un traitement
de rattrapage peut être effectué.

Formalisme Bayésien pour la modélisation de données cliniques

La première partie porte sur l’élaboration d’un cadre bayésien pour la
modélisation des données cliniques. Le chapitre commence par une explica-
tion complète et intuitive de l’approche bayésienne qui nous permet d’élaborer
des modèles de prédiction fondés sur des données cliniques. L’un des princi-
paux avantages de l’approche bayésienne est que l’incertitude des paramètres
est accessible.

Une construction complète et intuitive du théorème de Bayes a été décrite
à partir de concepts statistiques de base. Nous avons procédé à la construc-
tion de la probabilité en proposant un a priori et en déterminant les preuves.
Proposer un a priori peut s’avérer difficile car il est difficile d’énoncer clai-
rement ce en quoi on croyait auparavant au sujet d’un paramètre d’intérêt.
Il a été démontré que la détermination de la distribution a posteriori des
paramètres d’intérêt est essentielle pour les cas pratiques. Les trois princi-
paux objectifs d’inférence accessibles au moyen du formalisme Bayésien sont
présentés : l’estimation de paramètres habituellement en trouvant leur distri-
bution a posteriori, la prédiction d’un nouvel ensemble de données en utilisant
la distribution a posteriori des paramètres, la comparaison des modèles.

Plusieurs modèles, impliquant la base de données sur le glioblastome,
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ont été développés en utilisant le cadre bayésien qui inclut des modèles de
prédiction de grade neurologique. L’approche numérique pour résoudre le
théorème de Bayes est soulignée car elle permet la modélisation d’un large
éventail de situations ; le processus de résolution implique des techniques
d’apprentissage machine. Des exemples réels de données cliniques de pa-
tients atteints de glioblatome ont été utilisés pour développer la méthodologie
de construction du modèle. Le modèle de prédiction neurologique améliorée
démontre la forte dépendance à la taille du CTV alors que le modèle simple
prédit la même probabilité pour tout CTV puisqu’il ne tient pas compte
de cette quantité. Le potentiel du calcul numérique, par exemple en utilisant
l’algorithme de Metropolis-Hastings, en particulier pour les grands ensembles
de données, a été souligné.

Ce travail n’a pas pour but de fournir une interprétation médicale des
résultats, il est axé sur l’approche mathématique de la modélisation à par-
tir de données cliniques réelles. Par exemple, l’utilisation de CTV dans le
modèle amélioré au lieu de GTV était motivée par une meilleure corrélation
avec le résultat observé. Cette observation suggère que le résultat est lié
au traitement plutôt qu’au patient, mais ce n’est qu’une proposition, pas
une démonstration. La méthodologie démontre le potentiel de la capacité
prédictive des statistiques bayésiennes ainsi que l’approche de l’apprentissage
machine. Cette approche peut être particulièrement utile pour les grandes
bases de données qui s’orientent vers une approche prédictive personnalisée.

Prédiction de la zone de récidive de la tumeur

La deuxième partie applique un cas réduit du cadre bayésien dans lequel
des modèles linéaires généralisés (GLM) ont été construits pour explorer les
corrélations des images médicales de prétraitement sous forme de résonance
magnétique (IRM) et de tomodensitométrie (CT) avec la récidive de la tu-
meur. Les séquences d’IRM utilisées sont DW-MRI, T2-Flair et T1-Gd. Puis,
d’une manière similaire, des modèles plus complexes utilisant des arbres de
décision, issus de techniques d’apprentissage machine, ont été utilisés pour
révéler d’éventuelles corrélations cachées avec la récidive que les modèles
GLM sont incapables de trouver. L’évaluation du modèle GLM et du modèle
d’arbre est illustrée (figure I) à l’aide d’espaces ROC et comparée à certaines
courbes ROC que l’on trouve dans la littérature [9]. Les résultats de nos es-
paces ROC nous permet d’évaluer l’exactitude des prédictions pour chaque
patient. Alors que les courbes ROC dans la littérature ne donnent qu’un
résultat global.
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Les valeurs d’intensité des images correspondant aux endroits de la sur-
face externe de la tumeur et son image miroir du côté opposé du cerveau ont
été analysées et comparées. Les images miroirs ont également été utilisées
à des fins de normalisation. Des couches (d’environ 2 mm) ont été créées
en augmentant normalement autour de la tumeur. Une comparaison des va-
leurs d’intensité a été effectuée indépendamment pour chacune des différentes
couches. Cela a été possible parce que la position des zones de récidive et de
non-récurrence, à l’intérieur des couches, est connue à partir des données
d’images médicales. La pertinence et les limites de l’étude sont également
abordées.

Les résultats obtenus dans ce travail concordent avec une étude de thèse
précédente [44], dans laquelle la récidive péritumorale montre des valeurs
d’ADC (DW-MRI) comparativement plus basses qu’en dehors de la zone de
récidive. Dans ce travail, les résultats montrent une différence faible mais
statistiquement significative. Ces résultats sont comparés avec la littérature
dans laquelle une étude très récente suggère que les valeurs ADC et FLAIR
ont diminué respectivement de 9,5% (p < 0,001) et 9,2% (p < 0,001) dans les
régions de récidive de l’œdème péritumoral par rapport aux régions péritumo-
rales non récurrentes [9]. Cette étude suggère que l’utilisation d’un modèle
logistique multi-paramétrique semble mieux prédire la région de récurrence
qu’une seule valeur d’intensité. Dans notre travail, nous avons effectué des
ajustements multiparamétriques (DW, T2-Flair, T1-Gd et valeurs d’intensité
de CT) dans lesquelles les valeurs T1-Gd et CT semblent plus pertinentes
pour la prédiction de la récidive. Cependant, après avoir ajusté plusieurs
modèles multiparamétriques et arbres de décision, les modèles ne peuvent
toujours pas fournir une réponse définitive. En particulier, si l’évolution que
nous observons sur l’ADC est conforme à [9], nous trouvons une évolution
inverse pour FLAIR. Cela nous a donc amenés à conclure que nos modèles
sont incapables de prédire la récidive avec une certitude absolue en utilisant
uniquement les données actuelles de l’IRM (avant et après le traitement). Il
existe plusieurs possibilités. La différence d’intensité de la récidive est trop
faible, ce qui la rend difficile à percevoir avec la résolution d’imagerie actuelle.
Des IRM intermédiaires sont nécessaires pour l’évolution de la tumeur et de
la récidive. Les différents calibrages des IRM des différentes cliniques créent
une perturbation plus importante que prévu auparavant. Enfin il est pos-
sible que des informations supplémentaires manquent pour parvenir à une
prédiction de la récidive.
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Représentation en mapping sphérique de la surface tumorale

La troisième partie concerne le développement d’outils de cartographie
sphérique et de représentation cartographique dérivés de la nécessité d’ana-
lyser visuellement le lien entre la récidive tumorale et les valeurs d’intensité
de la récidive. Nous avons donc cherché ici à obtenir une représentation plane
du volume tumoral sur laquelle les coordonnées correspondent à une position
précise dans l’espace et l’intensité correspond à la valeur des images en ces co-
ordonnées. L’illustration décrivant la cartographie d’une structure d’intérêt
est illustrée sur la figure II. L’objectif est d’obtenir des cartes 2D pour ana-
lyser l’intensité des pixels correspondant au point de récurrence à trouver
pour un motif. Les cartes de Mollweide montrent un modèle clair, mais c’est
rarement le cas.

La première étape pour développer ces outils consiste à construire un
maillage couvrant la structure de la tumeur expansée dans lequel chacun des
sommets a des coordonnées cartésiennes connues. Un couple d’angles, lati-
tude et longitude, sont associés à chaque sommet en suivant un algorithme
développé par Brechbühler et al [6] qui est basé sur le concept de diffusion
thermique. Avec les angles de latitude et de longitude, nous avons pu créer
une carte sphérique de la tumeur étendue. Puis des cartes 2D, de la surface
de la représentation sphérique, sous forme de projections de Mercator et de
Mollweide ont été construites. Les cartes 2D permettent une analyse directe
des valeurs d’intensité des lieux de récurrence et de non-récurrence. La car-
tographie 2D de la surface d’une structure d’intérêt telle que la tumeur ou
son extension fournit un outil de représentation visuelle précieux, notamment
pour identifier rapidement des modèles dans les valeurs d’intensité concernant
les images médicales.

Les outils développés ne sont pas limités à des fins liées au cancer, ils
peuvent également être utilisés à d’autres fins, pourvu que l’on dispose de
données médicales suffisantes, comme l’analyse de structures d’organes bien
définies qui peuvent être obtenues par des techniques de contournage utili-
sant les images médicales. Une application possible pourrait être pour des
études d’analyse neurologique. On peut s’attendre à une utilisation plûs cou-
rant des outils de représentation visuelle, semblables à ceux présentés dans ce
travail, qui attireront davantage l’attention dans le domaine médical puisque
la quantité et la qualité des images médicales ne cessent de crôıtre.
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Perspectives

La méthodologie générique mise au point dans le cadre de ce travail
jette les bases d’une vaste gamme de modèles cliniques. Différents modèles
pourraient rapidement être construits pour d’autres paramètres d’intérêt.
La modélisation ne se limite pas aux applications au glioblastome. D’autres
types de tumeurs pourraient également être analysés.

D’un point de vue technique, la reconstruction 3D d’autres organes ou
parties du corps est réalisée de la même manière que la reconstruction tumo-
rale réalisée dans ce travail. Au cours des prochaines années, on s’attendrait à
ce que l’utilisation de surfaces reconstruites en 3D à l’aide d’images médicales
soit de plus en plus utilisée à des fins diverses. Dans le même ordre d’idées,
la cartographie 2D de Mollweide pourrait potentiellement être utilisée pour
l’analyse d’autres maladies ou des études neurologiques. Elle peut être utilisée
pour d’autres applications qui impliquent également les variations d’intensité
des pixels autour de la surface de structures spécifiques.

Enfin, ces travaux servent de guide pour le développement de modèles cli-
niques. Un projet appelé Plateforme de Modélisation pour la Radiothérapie
(PMRT) est en cours d’élaboration, en collaboration avec plusieurs insti-
tuts, au Laboratoire de Physique Corpusculaire (LPC) de Caen. Le projet
consiste à créer une plateforme de modélisation dans le but de développer des
modèles utilisant des données en oncologie provenant de plusieurs cliniques
et hôpitaux. La modélisation de grandes quantités de données, comme dans
le projet PMRT, pourrait grandement profiter à l’approche de la médecine
personnalisée. Afin d’améliorer la médecine personnalisée, en France, une po-
litique simple mais respectueuse de la vie privée pour accéder aux données
cliniques en oncologie à des fins de recherche doit être mise en place.
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Figure I: Les espaces ROC (Reciever Operating Characteristic) pour le
modèle GLM et l’arbre sont indiqués sur le côté gauche de la figure dans
laquelle chaque nombre représente un patient. L’espace ROC de l’arbre
présente un TFP inférieur à celui du modèle GLM. Sur le côté droit, une
courbe ROC d’un modèle de la littérature est montrée. Les courbes ROC de
la littérature et nos résultats spatiaux ROC ne se contredisent pas. Les es-
paces ROC présentés montrent clairement que le modèle prédit un haut TPR
(True Positive Rate) pour certains patients alors qu’il échoue de manière dras-
tique pour d’autres. D’autre part, la courbe de ROC peignée présente une
évaluation générale et ne permet pas de séparer les prédictions de ROC pour
chaque patient.
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Figure II: Illustration décrivant la cartographie 2D de la surface d’une struc-
ture d’intérêt. Tout d’abord, une structure tumorale est normalement dilatée
d’une épaisseur d’environ 2 mm vers l’extérieur. Les angles de latitude et de
longitude sont obtenus pour les sommets d’un maillage. Les lignes de longi-
tude et de latitude sont tracées sur la surface de la structure tumorale élargie.
La surface de la structure est paramétrée de façon sphérique, puis une pro-
jection de Mollweide 2D montre l’emplacement de la récurrence. Les valeurs
d’intensité, pour les valeurs ADC, FLAIR, T1Gd et CT correspondant au
lieu de récurrence sont représentées en couleurs. Un lien avec le domaine est
démontré, mais c’est rarement le cas.
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Mathematical expressions

Bernoulli’s distribution

P (x) =

{

θ, if x = 1

1− θ, if x = 0
(A.1)

this can also be written in more compact manner,

P (x) = θx(1− θ)1−x (A.2)

Where x represents a data value x = 0 represents failure, x = 1 represents
success and θ represents the probability of a success.

Binomial Distribution,

P (n|N) =

(

N

n

)

θn(1− θ)N−n

=
N !

n!(N − n)!
θn(1− θ)N−n

(A.3)

N represents the total number of trials, and n represents the number of
success events and θ represents the probability of a success.

The Beta distribution,

P (θ) =
(1− θ)β−1θα−1

B(α, β)
(A.4)
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132 Appendix A. Mathematical expressions

Where B(α, β) is the beta function serving to normalize,

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt

and the Beta can also be express using the gamma function that is;

β(α, β) =
Γ(α) Γ(β)

Γ(α + β)
(A.5)

Proof of the Beta-Binomial conjugate prior
Using Bayes’ theorem 2.3 Letting the likelihood function to be a binomial
distribution and the prior a Beta distribution as well as recalling that the
evidence function is to normalize to 1, then we get,

P (θ|D) =
P (D|θ)P (θ)

P (D)

=

{

1

P (D)

}{(

N

n

)

θn(1− θ)N−n

}{

1

β(α, β)
θα−1(1− θ)β−1

}

=

{

1

P (D)

(

N

n

)

1

β(α, β)

}{

θn(1− θ)N−n

}{

θα−1(1− θ)β−1

}

=
{

C
}{

θn(1− θ)N−n
}{

θα−1(1− θ)β−1
}

= C θn+α−1(1− θ)N−n+β−1

= C θα1−1(1− θ)β2−1

(A.6)

in which α1 = (n + α) and β1 = (N − n + β) and C is only a normalizing
factor even though it looks daunting! We know that to normalize a beta
distribution we can use the inverse of the beta function (A.5). Therefore the
posterior function is,

P (θ|D) = C θα1−1(1− θ)β2−1

=
1

β(α1, β1)
θα1−1(1− θ)β2−1 (A.7)

Therefore we have proofed that the posterior function is also a beta function!
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Diagnostics of Monte Carlo Markov Chains (MCMC)
First, let us understand that a MCMC was created by stipulating a certain
number of iterations and a certain step size. The purpose of the values of
the MCMC, in this work, is to cover all the possible values of the parameter
of interest (θ). A tool to diagnose MCMC is the Auto-Correlation Function
(ACF) which inspects the correlation of the chain with itself. Figure 2.12
shows the ACF for each of the corresponding MCMC.

For instance let us analyze AC θ2. The original MCMC is displayed
one unit (+1) or lag one, creating a new chain of lag one. Similarly many
(200) displacements are created. The ACF for the first couple of lags is
1 which means it is 100% correlated to itself which is logical since the lag
one chain is almost identical to the original one. On the other hand as
the lag increases the ACF drastically decreases, which indicates the chain is
no longer correlated. For example, it can be seen that the ACF is nearly
zero when the lag is about 100 for AC θ2; this result of the ACF help us
diagnose the MCMC. Such result can be interpreted as, the first iteration
of the MCMC is no longer correlated at all to the 100 iteration. The faster
the ACF descent the better. It is important because if the ACF value does
not descent fast enough we would need to consider increase the simulation
step size. Overall, the diagnostics tool of the ACF tells us that the obtained
MCMC are acceptable simulations.
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Bayesian statistics and modeling for the prediction of radiotherapy outcomes.
An application to glioblastoma treatment

A Bayesian statistics framework was created in this thesis work for developing clinical based
models in a continuous learning approach in which new data can be added. The objective
of the models is to forecast radiation therapy effects based on clinical evidence. Machine
learning concepts were used for solving the Bayesian framework. The models developed
concern an aggressive brain cancer called glioblastoma. The medical data comprises a
database of about 90 patients suffering glioblastoma; the database contains medical im-
ages and data entries such as age, gender, etc. Neurologic grade predictions models were
constructed for illustrating the type of models that can be build with the methodology.
Glioblastoma recurrence models, in the form of Generalized Linear Models (GLM) and
decision tree models, were developed to explore the possibility of predicting the recurrence
location using pre-radiation treatment imaging. Following, due to the lack of a sufficiently
strong prediction obtained by the tree models, we decided to develop visual representation
tools to directly observe the medical image intensity values concerning the recurrence and
non-recurrence locations. Overall, the framework developed for modeling of radiation ther-
apy clinical data provides a solid foundation for more complex models to be developed.

Key Words: Modeling, Bayesian statistics, Glioblastoma, Machine Learning, Tumor
recurrence.

Utilisation des statistiques bayésiennes et de la modélisation pour la prédiction
des effets de la radiothérapie. Application au traitement du glioblastome

Un cadre statistique bayésien a été créé dans le cadre de cette thèse pour le développement
de modèles cliniques basés sur une approche d’apprentissage continu dans laquelle de nou-
velles données peuvent être ajoutées. L’objectif des modèles est de prévoir les effets de la ra-
diothérapie à partir de preuves cliniques. Des concepts d’apprentissage machine ont été uti-
lisés pour résoudre le cadre bayésien. Les modèles développés concernent un cancer du cer-
veau agressif appelé glioblastome. Les données médicales comprennent une base de données
d’environ 90 patients souffrant de glioblastome ; la base de données contient des images
médicales et des entrées de données telles que l’âge, le sexe, etc. Des modèles de prévision
neurologique ont été construits pour illustrer le type de modèles qui sont obtenus avec la
méthodologie. Des modèles de récidive du glioblastome, sous la forme de modèles linéaires
généralisés (GLM) et de modèles d’arbres de décision, ont été développés pour explorer la
possibilité de prédire l’emplacement de la récidive à l’aide de l’imagerie préradiothérapie.
Faute d’une prédiction suffisamment forte obtenue par les modèles arborescents, nous avons
décidé de développer des outils de représentation visuelle. Ces outils permettent d’observer
directement les valeurs d’intensité des images médicales concernant les lieux de récidive
et de non-récurrence. Dans l’ensemble, le cadre élaboré pour la modélisation des données
cliniques en radiothérapie fournit une base solide pour l’élaboration de modèles plus com-
plexes.

Mots clés : Modélisation, Statistique bayésienne, Glioblastome, Apprentissage automa-
tique, Récidive.


