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Abstract

This Ph.D. dissertation develops theories of dynamic social influence. In a dynamic

framework, individuals interact repeatedly with their social environment and ex-

change beliefs and opinions on various economic, political and social issues.

In Chapter 2, we study influence processes modeled by ordered weighted aver-

aging operators. These operators are anonymous: they only depend on how many

agents share a belief. We find a necessary and sufficient condition for convergence

to consensus and characterize outcomes where the society ends up polarized. Fur-

thermore, we apply our results to fuzzy linguistic quantifiers.

In Chapter 3, we introduce the possibility of manipulation into the model by

DeGroot (1974). We show that manipulation can modify the trust structure and lead

to a connected society. Manipulation fosters opinion leadership, but the manipulated

agent may even gain influence on the long-run beliefs. Finally, we investigate the

tension between information aggregation and spread of misinformation.

In Chapter 4, we introduce conflicting interests into a model of non-Bayesian be-

lief dynamics. Agents meet with their neighbors in the social network and exchange

information strategically. With conflicting interests, the belief dynamics typically

fails to converge: each agent’s belief converges to some interval and keeps fluctuating

on it forever.

Keywords: Influence, social networks, anonymity, manipulation, conflict of in-

terest, consensus, belief fluctuations.
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Résumé

Titre : Essais sur l’influence sociale dynamique.

Cette dissertation de doctorat développe des théories de l’influence sociale dy-

namique. Dans un cadre dynamique, les individus interagissent à plusieurs reprises

avec leur environnement social et échangent leurs croyances et opinions sur dif-

férentes questions économiques, politiques et sociales.

Dans le Chapitre 2, nous étudions les processus d’influence modélisés par les

moyennes ordonnées pondérées. Ces dernières sont anonymes : elles ne dépendent

que du nombre d’agents qui partagent la même croyance. Nous exhibons une con-

dition nécessaire et suffisante pour la convergence au consensus et caractérisons les

résultats où la société se retrouve polarisée. Enfin, nous appliquons nos résultats

aux quantificateurs linguistiques flous.

Dans le Chapitre 3, nous introduisons la possibilité de manipulation dans le

modèle de DeGroot (1974). Nous montrons que la manipulation peut modifier la

structure de confiance et mène à une société connectée. La manipulation promeut

le leadership d’opinion, mais même l’agent manipulé peut gagner de l’influence sur

les croyances à long terme. Finalement, nous étudions la tension entre l’agrégation

d’informations et le déploiement de désinformations.

Dans le Chapitre 4, nous introduisons des conflits d’intérêt dans un modèle

de dynamique de croyance non-bayésienne. Les agents se rencontrent avec leurs

voisins dans le réseau social et échangent des informations stratégiquement. Avec

des conflits d’intérêt, la dynamique de croyance ne converge pas en général : la

croyance de chaque agent converge vers un certain intervalle et continue à fluctuer

sur celui-ci pour toujours.

Mots clés : Influence, réseaux sociaux, anonymat, manipulation, conflit d’intérêt,

consensus, fluctuations de croyance.
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Résumé prolongé

L’influence sociale s’intéresse à comment nos croyances, opinions et sentiments sont

affectés par d’autres. Provenant de la psychologie sociale, ce sujet a été étudié dans

différents domaines, y compris l’économie.

Cette dissertation de doctorat développe des théories de l’influence sociale dy-

namique. Dans un cadre dynamique, les individus interagissent à plusieurs reprises

avec leur environnement social. Pendant ces interactions, ils échangent leurs croy-

ances et opinions sur différentes questions économiques, politiques et sociales.

Notre objectif est de contribuer à la littérature sur l’influence sociale dynamique

non-bayésienne. Nous étudions trois aspects de l’influence sociale qui n’ont pas reçu

beaucoup d’attention dans la littérature : l’influence anonyme, la manipulation, et

les conflits d’intérêt. Nous analysons comment ces aspects affectent les croyances et

opinions à long terme dans la société.

Dans le Chapitre 2, nous étudions les processus stochastiques d’influence mod-

élisés par les moyennes ordonnées pondérées. Les agents ont une inclination (croy-

ance) à dire « oui » ou « non » sur une question commune, et les croyances peuvent

changer, dû à l’influence mutuelle entre agents. Chaque agent agrège à plusieurs

reprises les croyances des autres agents et de lui-même en utilisant sa moyenne or-

donnée pondérée. Ces dernières sont anonymes : elles ne dépendent que du nombre

d’agents qui partagent la même croyance. Ceci permet, par exemple, d’étudier des

situations semblables au vote par majorité, qui ne sont pas couvertes par les ap-

proches classiques basées sur les moyennes pondérées. Nous exhibons une condition

nécessaire et suffisante pour la convergence au consensus et caractérisons les résul-

tats où la société se retrouve polarisée. Nos résultats peuvent aussi être utilisés pour

comprendre des situations plus générales, où les moyennes ordonnées pondérées ne

sont utilisées que partiellement. Nous analysons la vitesse de convergence et les

probabilités des différents résultats du processus. Enfin, nous appliquons nos résul-

tats aux quantificateurs linguistiques flous, c.-à-d., des expressions comme « la plus

grande partie » ou « au moins quelques ».

Dans le Chapitre 3, nous introduisons la possibilité de manipulation dans le

13



14

modèle de DeGroot (1974). Chaque agent a une croyance initiale sur une question

commune. Les agents communiquent à plusieurs reprises avec leurs voisins dans le

réseau social, peuvent exercer un effort afin de manipuler la confiance des autres,

et mettent à jour leurs croyances par des moyennes pondérées des croyances des

voisins. La motivation de manipulation est donnée par les préférences des agents.

Nous montrons que la manipulation peut modifier la structure de confiance et mène

à une société connectée. La manipulation promeut le leadership d’opinion, mais

même l’agent manipulé peut gagner de l’influence sur les croyances à long terme.

Nous notons que, dans une société suffisamment homophile, la manipulation accélère

(ralentit) la convergence si elle diminue (augmente) l’homophilie. Finalement, nous

étudions la tension entre l’agrégation d’informations et le déploiement de désinfor-

mations. Si la manipulation est plutôt coûteuse et les agents qui (ne) vendent (pas)

bien leur informations perdent (gagnent) de l’influence globale, alors la manipulation

réduit la désinformation et les agents convergent conjointement vers des croyances

plus précises sur un état vrai sous-jacent.

Dans le Chapitre 4, nous introduisons des conflits d’intérêt dans un modèle de

dynamique de croyance non-bayésienne. Les agents se rencontrent deux par deux

avec leurs voisins dans le réseau social et échangent des informations stratégique-

ment. Nous démêlons les termes croyance (ce qui est considéré être) et opinion (ce

qui devrait être, dû à un biais) : l’expéditeur de l’information voudrait propager son

opinion (croyance biaisée), alors que le destinataire voudrait découvrir la croyance

exacte de l’expéditeur. A l’équilibre, l’expéditeur ne communique qu’un message

imprécis contenant des informations sur sa croyance. Le destinataire interprète le

message envoyé et met à jour sa croyance par la moyenne de l’interprétation et

sa croyance précédente. Avec des conflits d’intérêt, la dynamique de croyance ne

converge pas en général : la croyance de chaque agent converge vers un certain

intervalle et continue à fluctuer sur celui-ci pour toujours. Ces intervalles se confir-

ment mutuellement : ils sont les combinaisons convexes des interprétations utilisées

en communiquant, étant donné que tous les agents ont des croyances dans les inter-

valles correspondants.
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Chapter 1

Introduction

1.1 Social Influence

Our beliefs, opinions and feelings shape our social interactions and behaviors. They

are formed through personal experiences, observing the actions and experiences of

others as well as through communication with others. Social influence is concerned

with how these beliefs, opinions and feelings are affected by society.

Originating from social psychology, the topic has been intensively studied by

different fields, among them economics. This work develops theories of dynamic

social influence. We study how different aspects of social influence shape beliefs and

opinions in society.

In a dynamic framework, individuals interact repeatedly with their social en-

vironment – often referred to as their social network. This may include friends,

family, neighbors and coworkers as well as political actors, celebrities and news

sources. During these interactions, individuals exchange their beliefs and opinions

on various economic, political and social issues.

Our objective is to shed light on three particular aspects of social influence:

anonymous influence, manipulation, and conflicting interests. We analyze how these

aspects affect long-run beliefs and opinions in society.

1.2 State of the Art

Providing a complete survey of the literature on dynamic social influence is beyond

the scope of this work. We discuss the two main lines of research on the topic in eco-

nomics, which differ in the mechanism of information processing: in Bayesian models

rational agents update their beliefs using Bayes’ rule, while in non-Bayesian models

17



18 CHAPTER 1. INTRODUCTION

agents use some rather naïve rule to update their beliefs.1 Our work contributes to

the second stream of literature.

In models where agents are rational and update their beliefs using Bayes’ rule,

the common objective is to form a belief about (or to learn) an underlying state

by aggregating information that is initially dispersed in society.2,3 Gale and Kariv

(2003) were the first to study Bayesian learning in a dynamic framework. Each

agent starts with a prior (initial belief) about some underlying state and updates

this belief by repeatedly communicating with her neighbors in a social network. The

paper ignores strategic considerations of the agents, i.e., it is assumed that agents

communicate truthfully, and show that connected societies converge to a consensus,

but that in general this consensus will not be optimal.4

Acemoglu et al. (2014) study a model of Bayesian learning where they allow

for non-truthful communication. The agents’ objective is to form beliefs (acquire

information) about an irreversible decision that each agent has to make, eventually.

Each agent starts with an initial signal about the optimal decision and acquires

additional information by repeatedly communicating with her neighbors in a social

network. Each period, agents can decide whether to take the irreversible decision or

to wait, where waiting is costly in the sense that their payoff from taking the right

decision is discounted. Notice that in this setting agents might want to misreport

their information in order to delay the decisions of other agents. They show that

it is an equilibrium to report truthfully whenever truthful communication leads to

asymptotic learning, i.e., the fraction of agents taking the right decision converges

to 1 (in probability) as the society grows. Furthermore, they find that in some situ-

ations, misreporting can lead to asymptotic learning while truthful communication

1We focus on dynamic (repeated) models. For a survey on recent developments in Bayesian

and non-Bayesian learning, see Acemoglu and Ozdaglar (2011).
2In this literature, the objective is often phrased as to learn the action that maximizes the

agent’s payoff. When agents maximize their static payoffs, we can interpret observable actions as

truthful communication of beliefs.
3In a static framework, such models have been studied first by Banerjee (1992) and Bikhchan-

dani et al. (1992). Later, Acemoglu et al. (2011) introduced a network structure to this model.
4Bala and Goyal (1998, 2001) study models of social experimentation in a dynamic framework.

Boundedly rational agents repeatedly observe the actions and payoffs of their neighbors and update

their beliefs on the optimal action using these observations. Their model differs from social learning

models since agents learn from observing the outcome of experiments instead of trying to infer their

neighbors’ private information.
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would not.5,6

Next, we discuss the stream of literature on dynamic social influence our work

contributes to. In non-Bayesian models agents usually use some kind of “rule of

thumb” to update their beliefs or change their beliefs in a way similar to being

“infected” by a disease. A classical model where agents use a rule of thumb to update

their beliefs was introduced in DeGroot (1974), see also French (1956) and Harary

(1959) for antecedents. Each agent holds an initial belief about some common

issue of interest (which might not be further specified, but could as well be an

underlying state the agents would like to learn) and updates this belief by repeatedly

communicating with her neighbors in a social network. This network is weighted

such that the weight some agent places on another agent reflects the trust of the

former in the latter agent. Each period, agents communicate truthfully with their

neighbors and each agent’s updated belief is the weighted average of her neighbors’

beliefs (and possibly her own belief) from the previous period. In this model, the

conditions for convergence to consensus are fairly weak: the agents’ beliefs converge

to a consensus whenever the social network is connected and some weak regularity

condition is fulfilled.

The DeGroot model has been extensively studied in the literature. DeMarzo

et al. (2003) were the first to study social learning in this framework. Each agent

starts with an initial belief that is correlated with some underlying state. Further-

more, agents assign weights to their neighbors in a social network proportional to

the precision of their initial beliefs. While this leads to optimal updating of beliefs

in the beginning, agents fail to account for the repetition of information they re-

ceive in later periods. They refer to this phenomenon as persuasion bias and show

that it implies that the agents’ social influence depends not only on the precision of

their signals, but also on their network position. This explains why information is

aggregated non-optimally with the DeGroot updating rule.

Golub and Jackson (2010) study asymptotic learning in this model. Agents re-

ceive a noisy signal about the underlying state and communicate repeatedly with

their neighbors using the DeGroot updating rule. They show that all beliefs in a

large society converge to the underlying state if and only if the influence of the

5In an extension of the model they study endogenous formation of the social network. Initially,

agents are split up in several social cliques, which are groups of agents linked at zero cost. To

connect these cliques, agents need to form costly links. They show that sufficiently large cliques

kill incentives to connect to other cliques and thus prevent asymptotic learning.
6Closely related to Acemoglu et al. (2014) are Hagenbach and Koessler (2010) and Galeotti et al.

(2013), who study cheap-talk games on a network, but maintain the one-shot nature of cheap-talk

games à la Crawford and Sobel (1982).
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most influential agent vanishes as the society grows. Büchel et al. (2012) also study

learning and introduce non-truthful communication to the model. Agents act strate-

gically in the sense that they misreport their beliefs depending on their preferences

for conformity. The paper finds that lower conformity fosters opinion leadership. In

addition, the society becomes wiser if agents who are well informed are less conform,

while uninformed agents conform more with their neighbors.

A related model is studied in Acemoglu et al. (2010). They investigate the

tension between information aggregation and spread of misinformation in society.

Each agent starts with identical information about the underlying state. Agents

meet pairwise with their neighbors according to a stochastic process and update

their beliefs by adopting the average of both beliefs. They introduce forceful agents

who influence the beliefs of the other agents they meet, but almost do not change

their own beliefs. They show that all beliefs converge to a stochastic consensus.

Furthermore, they quantify the extent of misinformation by providing bounds on

the gap between the consensus value and the benchmark without forceful agents

where there is efficient information aggregation.

Grabisch and Rusinowska (2013) develop a framework where agents start with

yes-no beliefs about some issue and update their beliefs by repeatedly communicat-

ing with the other agents. Their approach is more general than the models discussed

above with respect to the mechanism used to aggregate the other agents’ beliefs.

They allow for arbitrary aggregation functions as the updating rule, which, for in-

stance, allow to account for the influence of groups of agents. They characterize

convergence of long-run beliefs in terms of influential coalitions (and agents).

The models discussed so far share a common feature: roughly speaking, agents

reach a mutual consensus whenever the society is connected.7 While this feature is

desirable when we are interested in social learning since it allows to compare the

consensus with the underlying state, this might be less the case in other situations.

For instance, when we want to explain voting behavior or the evolution of public

opinions on certain political issues, see, e.g., Kramer (1971) who documents large

swings in US voting behavior within short periods, and works in social and polit-

ical psychology that study how political parties and other organizations influence

political beliefs, e.g., Cohen (2003); Zaller (1992).

Several authors have proposed models to explain non-convergence of beliefs, usu-

7Things are a bit different in Grabisch and Rusinowska (2013) due to their complex updating

mechanism. Nevertheless, the mechanism’s monotonicity property imposes a tendency towards

consensus. Whether or not consensus will be attained in this model depends on the connectedness

of the associated hypergraph of influence capturing which coalitions are influential for which agents.
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ally incorporating some kind of homophily that leads to segregated societies and

polarized beliefs.8 Axelrod (1997) proposed such a model in a discrete belief setting,

and later on Hegselmann and Krause (2002) and Deffuant et al. (2000) studied the

continuous case, see also Lorenz (2005); Blondel et al. (2009); Como and Fagnani

(2011). In these works, agents have “bounded confidence” in the sense that they

only listen to agents that hold beliefs that are similar to their own beliefs. In other

words, they disregard agents that are too different. This behavior typically leads

to segregated societies, where each cluster of agents reaches a different consensus.

Another approach is developed in Golub and Jackson (2012), who study societies

consisting of different types of agents. They show that the presence of homophily,

i.e., agents of the same type are well connected, while there are not many connec-

tions between the types, can substantially slow down convergence and thus lead to

a high persistence of disagreement.

Though explaining persistent disagreement in society, the models discussed above

cannot capture the phenomenon of belief fluctuations like the large swings in US

voting behavior documented in Kramer (1971). Acemoglu et al. (2013) study a model

where agents meet pairwise with their neighbors according to a stochastic process

and update their beliefs by adopting the average of both beliefs. They introduce

stubborn agents that never change their beliefs, which leads to fluctuating beliefs

when the other agents update regularly from different stubborn agents. We can see

these stubborn agents as a more extreme version of the forceful agents introduced

in Acemoglu et al. (2010). While the latter are able to mislead the society in the

sense that information aggregation is less efficient, stubborn agents can completely

prevent information aggregation.

Finally, we briefly discuss non-Bayesian models where agents change their beliefs

in a way similar to being “infected” by a disease. These models study the diffusion

of beliefs or behaviors in a society, i.e., how beliefs or observable behaviors spread

from few individuals to the whole population. Morris (2000) studies a dynamic

framework where each agent interacts strategically with a finite subset of an infinite

population. Each period, agents take a binary action (behavior) that is a best

response to the actions of their neighbors in the previous period, i.e., each agent

chooses an action that was played by a sufficiently large fraction of her neighbors.

The paper characterizes when diffusion from a finite set of agents to the whole

population is possible.9 López-Pintado (2008) studies how behaviors spread in a

8An exception being Friedkin and Johnsen (1990), who study a variation of the DeGroot model

where agents can adhere to their initial beliefs to some degree. This leads as well to persistent

disagreement among the agents.
9Ellison (1993) studies learning in a dynamic large population coordination game. He focusses
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social network.10 Agents decide whether or not to adopt a new behavior as a function

of the decisions taken by their neighbors. She finds the threshold for the spreading

rate above which diffusion takes place and the new behavior becomes persistent in

the population. This diffusion threshold depends on the connectivity distribution of

the social network and the diffusion rule.

Both approaches, Bayesian and non-Bayesian models, have clear advantages and

disadvantages. Bayesian models assume that agents update their beliefs optimally

(from a statistical point of view), which makes them a nice benchmark of what we

can expect in an ideal situation. However, it also makes issues like spread of mis-

information difficult, almost impossible, to study, see also Acemoglu and Ozdaglar

(2011). Choi et al. (2012) report an experimental investigation of learning in three-

person networks and use the Bayesian framework of Gale and Kariv (2003) to inter-

pret the generated data. They adapt the Quantal Response Equilibrium model by

McKelvey and Palfrey (1995) to test the theory.11 The paper finds that the theory

can account for the behavior observed in the laboratory in a variety of networks and

informational settings. In particular, they observe that individuals fail to account

for repeated information, see also Corazzini et al. (2012).

These results suggest that the rationality assumption of Bayesian models is in-

deed quite demanding for individuals, especially when interacting on complex net-

works. On the other hand, the updating mechanism of non-Bayesian models may

be too simple, for instance, as Choi et al. (2012) showed, individuals act at least

boundedly rational. In another experimental work, Chandrasekhar et al. (2012) run

a unique lab experiment in the field across 19 villages in rural Karnataka, India,

to discriminate between models using Bayes’ rule and the DeGroot mechanism.12

They find evidence that the DeGroot model better explains the data than Bayesian

learning models.13 Moreover, they emphasize that many individuals come across

on the rate of diffusion and shows that when agents only interact with a small set of agents, it

is likely that evolution instead of historical factors determine the strategies of the agents, i.e.,

convergence is fast enough such that we can expect to see the limit behavior being played.
10See also Jackson and Yariv (2007) and López-Pintado (2012).
11Roughly speaking, the Quantal Response Equilibrium model allows for idiosyncratic preference

shocks such that the probability of a certain mistake is a decreasing function of the associated payoff

difference and agents take into account that others make mistakes.
12Notice that in order to compare the two concepts, they study DeGroot action models, i.e.,

agents take an action after aggregating the actions of their neighbors using the DeGroot updating

rule.
13At the network level (i.e., when the observational unit is the sequence of actions), both models

do a decent job with Bayesian learning explaining 62% of the actions and the degree weighting

DeGroot model explaining 76% of the actions taken by individuals. At the individual level (i.e.,

when the observational unit is the action of an individual given a history), both the degree weighting
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information sets the Bayesian model attaches zero probability to, which could be

interpreted as a lack of fit of the model.

1.3 The Approach

The objective of this work is to contribute to the literature on non-Bayesian social

influence models. We study three aspects of social influence that have not received

much attention in the literature.

• Anonymous social influence: agents are influenced only by the number of

agents sharing a belief. We study belief updating rules based on ordered

weighted averages, i.e., different to the weighted averaging rules widely studied

in the literature, weights are not attached to agents, but to the ranks of the

agents in the vector of beliefs.

• Manipulation: agents can manipulate the social network by increasing the at-

tention other agents pay to them. We introduce the possibility of manipulating

the trust weights of other agents into the model by DeGroot (1974).

• Conflicting interests: agents with conflicting interests communicate strategi-

cally with their neighbors. We introduce conflicting interests à la Crawford

and Sobel (1982) to a model of non-Bayesian belief dynamics.

These elements are key in understanding how beliefs and opinions evolve in our

societies. Anonymous social influence means the phenomenon that individuals are

influenced by groups of people whose identity is unknown to them. This kind of

influence has gained significant importance with the emergence of the internet, where

individuals often follow positive evaluations of products and advices of anonymous

people.

Second, manipulation is an aspect of social influence that is of importance when

individuals need the support of others to enforce their interests in society. In politics,

majorities are needed to pass laws and in companies, decisions might be taken by

a hierarchical superior. It can therefore be advantageous for individuals to increase

their influence on others and to manipulate the way others form their beliefs. This

behavior is often referred to as lobbying and widely observed in society, especially

in politics.

Furthermore, individuals in our societies typically have conflicting interests and

widely diverging views on many issues, as can be seen in daily political discussions

and the uniform DeGroot model largely outperform Bayesian learning models.
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or in all kinds of bargaining situations. In election campaigns, politicians have

incentives to argue solutions or proposals that differ from their beliefs. In budget

allocation problems, the recipients of capital, e.g., ministries, local governments or

departments of companies or universities, have incentives to overstate their capital

requirement, while the other side is concerned with efficiency. Another example

are court trials, where the accused has clearly incentives to misreport the events in

question.

1.4 Overview of the Results

We study societies that consist of n agents. Each agent i starts with an initial

belief (or opinion) xi(0) about some common issue of interest, which could be an

underlying state the agents would like to learn. The agents update their beliefs by

repeatedly meeting and communicating with the other agents. At time t ≥ 0, each

agent i holds a belief xi(t). Our work is concerned with how these beliefs evolve in

the long-run, i.e., when time tends to infinity.

In Chapter 2 (joint with Michel Grabisch and Agnieszka Rusinowska), we study

influence processes modeled by ordered weighted averaging operators, commonly

called OWA operators and introduced in Yager (1988). Agents start with “yes”

or “no” inclinations (beliefs) on some common issue, i.e., xi(0) ∈ {0, 1} (where “yes”

is coded as 1), and beliefs may change due to mutual influence among the agents.

Each agent repeatedly (and independently) aggregates the beliefs of the other agents

and possibly herself at discrete time instants using her OWA operator. This aggre-

gation determines the probability that “yes” is her updated belief after one step of

influence (and otherwise it is “no”). The other agents (only) observe the updated

beliefs of all agents, i.e., the social network is the complete network.

We show that OWA operators are the only aggregation functions that are anony-

mous in the sense that the aggregation does only depend on how many agents hold

a belief instead of which agents do so.14 Accordingly, we call a model anonymous if

the transitions between states of the process do only depend on how many agents

share a belief. We show that the concept is consistent: if all agents use anonymous

aggregation functions, then the model is anonymous. In particular, anonymous

models allow to study situations where the influence process is based on majori-

14An aggregation function is defined by the following two conditions: (i) unanimity of beliefs

persists (boundary conditions), and (ii) influence is positive (nondecreasingness), see Grabisch and

Rusinowska (2013).
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ties, which means that agents say “yes” if some kind of majority holds this belief.15

These situations are not covered by the classical approach of weighted averaging

aggregation.

We discuss the different types of terminal classes and characterize terminal states,

i.e., singleton terminal classes. The condition is simple: the OWA operators must

be such that all beliefs persist after mutual influence. In our main result, we find a

necessary and sufficient condition for convergence to consensus. The condition says

that there must be a certain number of agents such that if at least this number of

agents says “yes,” it is possible that after mutual influence more agents say “yes” and

if less than that number of agents says “yes,” it is possible that after mutual influence

more agents say “no.” In other words, we have a cascade that leads either to the

“yes”- or “no”-consensus. Additionally, we also present an alternative characterization

based on influential coalitions. We call a coalition influential on an agent if the latter

follows (adopts) the belief of this coalition – given all other agents hold the opposite

belief – with some probability. Furthermore, we generalize the model based on OWA

operators and allow agents to use a (convex) combination of OWA operators and

general aggregation functions (OWA-decomposable aggregation functions). We show

that the sufficiency part of our main result still holds.

Besides identifying all possible terminal classes of the influence process, it is

also important to know how quickly opinions will reach their limit. In Grabisch

and Rusinowska (2013) no analysis of the speed of convergence has been provided.

In this paper, we study the speed of convergence to terminal classes as well as

the probabilities of convergence to certain classes in the general aggregation model.

Computing the distribution of the speed of convergence and the probabilities of

convergence can be demanding if the number of agents is large. However, we find

that for anonymous models, we can reduce this demand substantially.

As an application of our model we study fuzzy linguistic quantifiers, which were

introduced in Zadeh (1983) and are also called soft quantifiers. Typical examples of

such quantifiers are expressions like “almost all,” “most,” “many” or “at least a few,”

see Yager and Kacprzyk (1997). For instance, an agent could say “yes” if “most of

the agents say ‘yes.’”16 Yager (1988) has shown that for each quantifier we can find

a unique corresponding OWA operator.17 We find that if the agents use quantifiers

that are similar in some sense, then they reach a consensus. Moreover, this result

holds even if some agents deviate to quantifiers that are not similar in that sense.

15Examples are simple majorities as well as unanimity of beliefs, among others.
16Note that the formalization of such quantifiers is clearly to some extent ambiguous.
17With the only restriction that, due to our model, the quantifier needs to represent positive

influence.
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Loosely speaking, quantifiers are similar if their literal meanings are “close,” e.g.,

“most” and “almost all.”

In Chapter 3 (joint with Ana Mauleon and Vincent Vannetelbosch), we introduce

the possibility of manipulation into the model by DeGroot (1974). Each agent

starts with an initial belief xi(0) ∈ R about some common issue and repeatedly

communicates with her neighbors in the social network. At each period, first one

agent is selected randomly and can exert effort to manipulate the social trust of an

agent of her choice. If she decides to provide some costly effort to manipulate another

agent, then the manipulated agent weights relatively more the belief of the agent

who manipulated her when updating her belief. Second, all agents communicate

with their neighbors and update their beliefs using the DeGroot updating rule, i.e.,

using her (possibly manipulated) weights, an agent’s updated belief is the weighted

average of her neighbors’ beliefs (and possibly her own belief) from the previous

period.

We first show that manipulation can modify the trust structure. If the society is

split up into several disconnected clusters of agents and there are also some agents

outside these clusters, then the latter agents might connect different clusters by

manipulating the agents therein. Such an agent, previously outside any of these

clusters, would not only get influential on the agents therein, but also serve as a

bridge and connect them. As we show by means of an example, this can lead to a

connected society, and thus, make the society reaching a consensus.

Second, we analyze the long-run beliefs and show that manipulation fosters opin-

ion leadership in the sense that the manipulating agent always increases her influence

on the long-run beliefs. For the other agents, this is ambiguous and depends on the

social network. Surprisingly, the manipulated agent may thus even gain influence

on the long-run beliefs. As a consequence, the expected change of influence on the

long-run beliefs is ambiguous and depends on the agents’ preferences and the social

network. We also show that a definitive trust structure evolves in the society and,

if the satisfaction of agents only depends on the current and future beliefs and not

directly on the trust, manipulation will come to an end and they reach a consensus

(under some weak regularity condition). At some point, beliefs become too simi-

lar to be manipulated. Furthermore, we discuss the speed of convergence and note

that manipulation can accelerate or slow down convergence. In particular, in suffi-

ciently homophilic societies, i.e., societies where agents tend to trust those agents

who are similar to them, and where costs of manipulation are rather high compared

to its benefits, manipulation accelerates convergence if it decreases homophily and

otherwise it slows down convergence.
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Finally, we investigate the tension between information aggregation and spread

of misinformation. We find that if manipulation is rather costly and the agents un-

derselling their information gain and those overselling their information lose overall

influence (i.e., influence in terms of their initial information), then manipulation

reduces misinformation and agents converge jointly to more accurate beliefs about

some underlying true state. In particular, this means that an agent for whom ma-

nipulation is cheap can severely harm information aggregation.

In Chapter 4, we introduce conflicting interests into a model of non-Bayesian

belief dynamics. We disentangle the terms belief and opinion (or biased belief ): the

belief of an individual about some issue of common interest will be what she holds

to be true given her information about the issue. On the other hand, her opinion (or

biased belief) will be what is ought to be the answer to the issue given her bias.18

At time t ≥ 0, each agent holds a belief xi(t) ∈ [0, 1] about some common issue.

Furthermore, each agent has a bias bi ∈ R that is common knowledge and that

determines her opinion (biased belief) xi(t) + bi. Each agent starts with an initial

belief xi(0) ∈ [0, 1] and repeatedly meets (communicates with) agents in her social

neighborhood according to a Poisson process in continuous time that is independent

of the other agents.

When an agent is selected by her associated Poisson process, she receives infor-

mation from one of her neighbors (called the sender of information) according to a

stochastic process that forms her social network. We assume that the sender wants

to spread his opinion, while the receiver wants to infer his belief in order to update

her own belief. In equilibrium, this conflict of interest leads to noisy communica-

tion à la Crawford and Sobel (1982): the sender sends one of finite messages that

contains information about his belief, which is then interpreted by the receiver. In

optimal equilibrium, communication is as informative as possible given the conflict

of interest, i.e., the sender uses as many messages as possible and discriminates as

finely as possible between different beliefs. Finally, the receiver updates her belief

by taking the average of the interpretation of the sent message and her pre-meeting

belief.

Our framework induces a belief dynamics process as well as an opinion dynamics

process. As a first observation, we note that we can concentrate our analysis on the

belief dynamics process since both processes have the same convergence properties.

We say that an agent’s belief fluctuates on an interval if her belief will never leave

the interval and if this does not hold for any subinterval. In other words, the belief

18In this sense, her opinion is a personal judgement about the issue for strategic reasons or taste

considerations.
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“travels” the whole interval, but not beyond.

In our main result, we show that for any initial beliefs, the belief dynamics

process converges to a set of intervals that is minimal mutually confirming. Given

each agent’s belief lies in her corresponding interval, these intervals are the convex

combinations of the interpretations the agents use when communicating. Further-

more, we show that the belief of an agent eventually fluctuates on her corresponding

interval whenever the interval is proper, i.e., whenever it contains infinitely many

elements (beliefs). As a consequence, the belief dynamics has a steady state if and

only if there exists a minimal mutually confirming set such that all its intervals are

degenerate, i.e., contain only a single point. Furthermore, we notice that as long

as conflicts are small and some agents communicate with several different agents,

outcomes with a steady state are non-generic.

The introduction of conflict of interest leads not only to persistent disagreement

among the agents, but also to fluctuating beliefs and opinions, a phenomenon that

is frequently observed in social sciences, see, e.g., Kramer (1971) who documents

large swings in US voting behavior within short periods, and works in social and

political psychology that study how political parties and other organizations influ-

ence political beliefs, e.g., Cohen (2003); Zaller (1992). At the same time, our result

is surprising in view of the literature on dynamic social influence: in most models,

a strongly connected network leads to mutual consensus among the agents in the

long-run.



Chapter 2

Anonymous Social Influence∗

2.1 Introduction

In the present work we study an important and widespread phenomenon which

affects many aspects of human life – the phenomenon of influence. Being undoubt-

edly present, e.g., in economic, social and political behaviors, influence frequently

appears as a dynamic process. In particular, social influence plays a crucial role in

the formation of opinions, beliefs and the diffusion of information and thus, it is

not surprising that numerous scientific works investigate different dynamic models

of influence.19

Grabisch and Rusinowska (2010, 2011) investigate a one-step deterministic model

of influence, where agents have “yes” or “no” inclinations (beliefs) on some common

issue and their opinions may change due to mutual influence among the agents.

Grabisch and Rusinowska (2013) extend it to a dynamic stochastic model based

on aggregation functions, which determine how the agents update their opinions

depending on the current opinions in the society. Each agent repeatedly (and in-

dependently) aggregates the opinions of the other agents and possibly herself at

discrete time instants. This aggregation determines the probability that “yes” is her

updated opinion after one step of influence (and otherwise it is “no”). The other

agents only observe this updated opinion. Since any aggregation function is allowed

when updating the opinions, the framework covers numerous existing models of

opinion formation. The only restrictions come from the definition of an aggrega-

tion function: unanimity of opinions persists (boundary conditions) and influence

∗This chapter is a modified version of the article published as: Förster, Manuel, Michel Grabisch,

and Agnieszka Rusinowska (2013). Anonymous social influence. Games and Economic Behavior

82, 621–35.
19For an overview of the vast literature on influence we refer, e.g., to Jackson (2008).

29
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is positive (nondecreasingness). Grabisch and Rusinowska (2013) provide a general

analysis of convergence in the aggregation model and find all terminal classes, which

are sets of states the process will not leave once they have been reached. Such a

class could only consist of one single state, e.g., the states where we have unanimity

of opinions (“yes”- and “no”-consensus) or a state where the society is polarized, i.e.,

some group of agents finally says “yes” and the rest says “no.”

Due to the generality of the model of influence based on arbitrary aggregation

functions introduced in Grabisch and Rusinowska (2013), it would be difficult to

obtain a deeper insight into some particular phenomena of influence by using this

model. This is why the analysis of particular classes of aggregation functions and

the exhaustive study of their properties are necessary for explaining many social and

economic interactions. One of them concerns anonymous social influence, which is

particularly present in real-life situations. Internet, accompanying us in everyday

life, intensifies enormously anonymous influence: when we need to decide which

washing machine to buy, which hotel to reserve for our eagerly awaited holiday,

we will certainly follow all anonymous customers and tourists that have expressed

their positive opinion on the object of our interest. In the present paper we exam-

ine a particular way of aggregating the opinions and investigate influence processes

modeled by ordered weighted averaging operators (ordered weighted averages), com-

monly called OWA operators and introduced in Yager (1988), because they appear

to be a very appropriate tool for modeling and analyzing anonymous social in-

fluence. Roughly speaking, OWA operators are similar to the ordinary weighted

averages (weighted arithmetic means), with the essential difference that weights are

not attached to agents, but to the ranks of the agents in the input vector. As a con-

sequence, OWA operators are in general nonlinear, and include as particular cases

the median, the minimum and the maximum, as well as the (unweighted) arithmetic

mean.

We show that OWA operators are the only aggregation functions that are anony-

mous in the sense that the aggregation does only depend on how many agents hold

an opinion instead of which agents do so. Accordingly, we call a model anony-

mous if the transitions between states of the process do only depend on how many

agents share an opinion. We show that the concept is consistent: if all agents use

anonymous aggregation functions, then the model is anonymous. However, as we

show by example, a model can be anonymous although agents do not use anony-

mous functions. In particular, anonymous models allow to study situations where

the influence process is based on majorities, which means that agents say “yes” if
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some kind of majority holds this opinion.20 These situations are not covered by the

classical (commonly used) approach of weighted averaging aggregation.

In the main part, we study the convergence of models based on OWA operators.21

We discuss the different types of terminal classes and characterize terminal states,

i.e., singleton terminal classes. The condition is simple: the OWA operators must

be such that all opinions persist after mutual influence. In our main result, we find

a necessary and sufficient condition for convergence to consensus. The condition

says that there must be a certain number of agents such that if at least this number

of agents says “yes,” it is possible that after mutual influence more agents say “yes”

and if less than that number of agents says “yes,” it is possible that after mutual

influence more agents say “no.” In other words, we have a cascade that leads either

to the “yes”- or “no”-consensus. Additionally, we also present an alternative charac-

terization based on influential coalitions. We call a coalition influential on an agent

if the latter follows (adopts) the opinion of this coalition – given all other agents

hold the opposite opinion – with some probability.22 Furthermore, we generalize the

model based on OWA operators and allow agents to use a (convex) combination of

OWA operators and general aggregation functions (OWA-decomposable aggregation

functions). In particular, this allows us to combine OWA operators and ordinary

weighted averaging operators. As a special case of this, we study models of mass

psychology (also called herding behavior) in an example. We find that this model

is equivalent to a convex combination of the majority influence model and a com-

pletely self-centered agent. We also study an example on important agents where

agents trust some agents directly that are important for them and otherwise follow

a majority model. Furthermore, we show that the sufficiency part of our main result

still holds.23

Besides identifying all possible terminal classes of the influence process, it is

also important to know how quickly opinions will reach their limit. In Grabisch

and Rusinowska (2013) no analysis of the speed of convergence has been provided.

In this paper, we study the speed of convergence to terminal classes as well as

the probabilities of convergence to certain classes in the general aggregation model.

Computing the distribution of the speed of convergence and the probabilities of

20Examples are simple majorities as well as unanimity of opinions, among others.
21Note that (implicitly) the social network is the complete network since agents observe all

opinions.
22Note that although Grabisch and Rusinowska (2013) have already studied conditions for con-

vergence to consensus and other terminal classes in the general model, our results are inherently

different due to our restriction to anonymous aggregation functions.
23When applying the condition to the OWA operators in the convex combinations.
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convergence can be demanding if the number of agents is large. However, we find

that for anonymous models, we can reduce this demand substantially.24

As an application of our model we study fuzzy linguistic quantifiers, which were

introduced in Zadeh (1983) and are also called soft quantifiers. Typical examples of

such quantifiers are expressions like “almost all,” “most,” “many” or “at least a few,”

see Yager and Kacprzyk (1997). For instance, an agent could say “yes” if “most of

the agents say ‘yes.’”25 Yager (1988) has shown that for each quantifier we can find

a unique corresponding OWA operator.26 We find that if the agents use quantifiers

that are similar in some sense, then they reach a consensus. Moreover, this result

holds even if some agents deviate to quantifiers that are not similar in that sense.

Loosely speaking, quantifiers are similar if their literal meanings are “close,” e.g.,

“most” and “almost all.” We also give examples to provide some intuition.

We terminate this section with a brief overview of the related literature. One of

the main differences between our work and the existing models on opinion formation

lies in the way agents are assumed to aggregate the opinions. Except, e.g., Grabisch

and Rusinowska (2013) many related works assume a convex combination as the way

of aggregating opinions. Additionally, while we consider “yes”/“no” opinions, in some

models of influence, like in the seminal model of opinion and consensus formation

due to DeGroot (1974), the opinion of an agent is a number in [0, 1]. Moreover, in

DeGroot (1974) every agent aggregates the opinions (beliefs) of other agents through

an ordinary weighted average. The interaction among agents is captured by the so-

cial influence matrix. Several scholars have analyzed the DeGroot framework and

proposed different variations of it, in which the updating of opinions can vary in time

and along circumstances. However, most of the influence models usually assume a

convex combination as the way of aggregating opinions. Golub and Jackson (2010)

examine convergence of the social influence matrix and reaching a consensus, and the

speed of convergence of beliefs, among other things. DeMarzo et al. (2003) consider

a model where an agent may place more or less weight on her own belief over time.

Another framework related to the DeGroot model is presented in Asavathiratham

(2000) and López-Pintado and Watts (2008). Büchel et al. (2011) introduce a gener-

alization of the DeGroot model by studying the transmission of cultural traits from

one generation to the next one. Büchel et al. (2012) analyze an influence model in

which agents may misrepresent their opinion in a conforming or counter-conforming

24We have to compute powers and inverses of matrices whose dimensions grow exponentially in

the number of agents. In anonymous models this reduces to linear growth.
25Note that the formalization of such quantifiers is clearly to some extent ambiguous.
26With the only restriction that, due to our model, the quantifier needs to represent positive

influence.
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way. Calvó-Armengol and Jackson (2009) study an overlapping-generations model

in which agents, that represent some dynasties forming a community, take yes-no

actions.

López-Pintado (2008, 2012) studies the spreading of behavior in society and

investigate the role of social influence therein. While these papers focus on the

social network and use simple diffusion rules that are the same for all agents, we

do not impose a network structure and allow for heterogeneous agents. Van den

Brink and his co-authors study power measures in weighted directed networks, see,

e.g., van den Brink and Gilles (2000); Borm et al. (2002). A different approach to

influence, i.e., a method based on simulations, is presented in Mäs (2010). Morris

(2000) analyzes the phenomenon of contagion which occurs if an action can spread

from a finite set of individuals to the whole population.

Another stream of related literature concerns models of Bayesian and obser-

vational learning, where agents observe choices over time and update their beliefs

accordingly, see, e.g., Banerjee (1992), Ellison (1993), Bala and Goyal (1998, 2001),

Gale and Kariv (2003) and Banerjee and Fudenberg (2004). This literature differs

from the influence models mentioned above as in the latter the choices depend on

the influence of others. Mueller-Frank (2010) considers continuous aggregation func-

tions with a special property called “constricting” and studies convergence applied

to non-Bayesian learning in social networks. Galeotti and Goyal (2009) model net-

works in terms of degree distributions and study influence strategies in the presence

of local interaction.

The literature on OWA operators comprises, in particular, applications to multi-

criteria decision-making. Jiang and Eastman (2000), for instance, apply OWA op-

erators to geographical multi-criteria evaluation, and Malczewski and Rinner (2005)

present a fuzzy linguistic quantifier extension of OWA in geographical multi-criteria

evaluation. Using ordered weighted averages in (social) networks is quite new, al-

though some scholars have already initiated such an application, see Cornelis et al.

(2010), who apply OWA operators to trust networks. To the best of our knowledge,

ordered weighted averages have not been used to model social influence yet.

The remainder of the paper is organized as follows. In Section 2.2 we present the

model and basic definitions. Section 2.3 introduces the notion of anonymity. Section

2.4 concerns the convergence analysis in the aggregation model with OWA operators.

In Section 2.5 the speed of convergence and the probabilities of different outcomes

are studied. In Section 2.6 we apply our results on ordered weighted averages to

fuzzy linguistic quantifiers. Section 2.7 contains some concluding remarks. The

longer proofs of some of our results are presented in Appendix 2.A.
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2.2 Model and Notation

Let N = {1, 2, . . . , n}, n ≥ 2, be the set of agents that have to make a “yes” or

“no” decision on some issue. Each agent i ∈ N has an initial opinion xi(0) ∈ {0, 1}

(called inclination) on the issue, where “yes” is coded as 1. Let us denote by 1S the

characteristic vector of S ⊆ N , i.e., (1S)j = 1 if j ∈ S and (1S)j = 0 otherwise. We

can represent the vector of initial opinions x(0) = (x1(0), x2(0), . . . , xn(0))
� by such

a characteristic vector.27 We say that S is the initial state or coalition if x(0) = 1S is

the vector of initial opinions. In other words, the initial state consists of the agents

that have the inclination “yes.” We sometimes denote a state S = {i, j, k} simply

by ijk and its cardinality or size by s. During the influence process, agents may

change their opinion due to mutual influence among the agents. They update their

opinion simultaneously at discrete time instants.

Definition 1 (Aggregation function). An n-place aggregation function is any map-

ping A : {0, 1}n → [0, 1] satisfying

(i) A(0, . . . , 0) = 0, A(1, . . . , 1) = 1 (boundary conditions) and

(ii) if x ≤ x� then A(x) ≤ A(x�) (nondecreasingness).

To each agent i we assign an aggregation function Ai that determines the way

she reacts to the opinions of the other agents and herself.28 Note that by using

these functions we model positive influence only. Our aggregation model A =

(A1, A2, . . . , An)
� is stochastic, the Ai, i = 1, 2, . . . , n, are mutually independent

and the output Ai(1S) ∈ [0, 1] of agent i’s aggregation function is her probability to

say “yes” after one step of influence when the current opinions are x(t) = 1S (at time

t), i.e., xi(t+1) = 1 with probability Ai(1S), and otherwise xi(t+1) = 0. The other

agents do not know these probabilities, but they observe the realization x(t+ 1) of

the updated opinions. Note that we do not explicitly model the realization of the

updated opinions, which is for agent i a (biased) coin toss with probability Ai(1S)

of “yes” and probability 1−Ai(1S) of “no.” Therefore, we can represent the realized

and observed opinions (after one step of influence) again by a state S � ⊆ N such

that i ∈ S � with probability Ai(1S).

The aggregation functions our paper is mainly concerned with are ordered weight-

ed averaging operators or simply ordered weighted averages. This class of aggregation

functions was first introduced by Yager (1988).

27We denote the transpose of a vector x by x�.
28Note that we use a modified version of aggregation functions by restricting the opinions to be

from {0, 1} instead of [0, 1]. We discuss this issue later on in Example 1.
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Definition 2 (Ordered weighted average). We say that an n-place aggregation

function A is an ordered weighted average A = OWAw with weight vector w, i.e.,

0 ≤ wi ≤ 1 for i = 1, 2, . . . , n and
�n

i=1 wi = 1, if A(x) =
�n

i=1 wix(i) for all

x ∈ {0, 1}n, where x(1) ≥ x(2) ≥ . . . ≥ x(n) are the ordered components of x.

The definition of an aggregation function ensures that the two consensus states –

the “yes”-consensus {N} where all agents say “yes” and the “no”-consensus {∅} where

all agents say “no” – are fixed points of the aggregation model A = (A1, A2, . . . , An)
�.

We call them trivial terminal classes. Before we go on, let us give an example of

an ordered weighted average already presented in Grabisch and Rusinowska (2013),

the majority influence model. Furthermore, we also use this example to argue why

we do restrict opinions to be either “yes” or “no.”

Example 1 (Majority). A straightforward way of making a decision is based on

majority voting. If the majority of the agents says “yes,” then all agents agree to say

“yes” after mutual influence and otherwise, they agree to say “no.” We can model

simple majorities as well as situations where more than half of the agents are needed

to reach the “yes”-consensus. Let m ∈ {�n
2
�+1, �n

2
�+2, . . . , n}. Then, the majority

aggregation model is given by

Maj
[m]
i (x) = x(m) for all i ∈ N.

All agents use an ordered weighted average where wm = 1. Obviously, the conver-

gence to consensus is immediate.

The restriction of opinions to {0, 1} is crucial in order to study situations that

depend on how many agents share an opinion. It allows us to specify the probability

to say “yes” after mutual influence for any possible number of agents having the

current opinion “yes” (with the restrictions given by the definition of an aggregation

function).29

Furthermore, let us look at some examples apart from the majority model.

Example 2 (Some ordered weighted averages). Consider some agent i ∈ N =

{1, 2, 3, 4, 5} who uses an ordered weighted average, Ai = OWAw.

(i) If w =
�
0, 0, 1

3
, 1
3
, 1
3

��
, then this agent will say “no” for sure if there is not even

a simple majority in favor of the issue. Otherwise, she will say “yes” with a

positive probability, which increases by 1
3

with each additional agent being in

favor of the issue.
29Allowing for opinions in [0, 1] would lead to a deterministic model where each agent’s updated

opinion is a weighted average of the ordered opinions in society. In particular, such a model would

require a different analytical approach.
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(ii) If w =
�
1
3
, 2
3
, 0, 0, 0

��
, then this agent will already say “yes” if only one agent

does so and she will be in favor for sure whenever at least two agents say “yes.”

This could represent a situation where it is perfectly fine for the agent if only

a few of the others are in favor of the issue.

(iii) If w =
�
1
2
, 0, 0, 0, 1

2

��
, then this agent will say “yes” with probability 1

2
if neither

all agents say “no” nor all agents say “yes.” This could be interpreted as an

agent who is indifferent and so decides randomly.

We have already seen that there always exist the two trivial terminal classes. In

general, a terminal class is defined as follows:

Definition 3 (Terminal class). A terminal class is a collection of states C ⊆ 2N

that forms a strongly connected and closed component, i.e., for all S, T ∈ C, there

exists a path30 from S to T and there is no path from S to T if S ∈ C, T /∈ C.

We can decompose the state space into disjoint terminal classes – also called

absorbing classes – C1, C2, . . . , Cl ⊆ 2N , for some l ≥ 2, and a set of transient states

T = 2N\(
�l

k=1 Ck). Let us now define the notion of an influential agent (Grabisch

and Rusinowska, 2013).

Definition 4 (Influential agent). (i) An agent j ∈ N is “yes”-influential on i ∈ N

if Ai(1{j}) > 0.

(ii) An agent j ∈ N is “no”-influential on i ∈ N if Ai(1N\{j}) < 1.

The idea is that j is “yes”-(or “no”-)influential on i if j’s opinion to say “yes” (or

“no”) matters for i in the sense that there is a positive probability that i follows the

opinion that is solely held by j. Analogously to influential agents, we can define

influential coalitions (Grabisch and Rusinowska, 2013).

Definition 5 (Influential coalition). (i) A nonempty coalition S ⊆ N is “yes”-

influential on i ∈ N if Ai(1S) > 0.

(ii) A nonempty coalition S ⊆ N is “no”-influential on i ∈ N if Ai(1N\S) < 1.

Making the assumption that the probabilities of saying “yes” are independent

among agents31 and only depend on the current state, we can represent our ag-

gregation model by a time-homogeneous Markov chain with transition matrix B =

30We say that there is a path from S to T if there is K ∈ N and states S = S1, S2, . . . , SK−1, SK =

T such that Ai(Sk) > 0 for all i ∈ Sk+1 and Ai(Sk) < 1 otherwise, for all k = 1, 2, . . . ,K − 1.
31This assumption is not limitative, and correlated opinions may be considered as well. In the

latter case, only the next equation giving bS,S� will differ.
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(bS,S�)S,S�⊆N , where

bS,S� = Πi∈S�Ai(1S)Πi/∈S�(1− Ai(1S)).

Hence, the states of this Markov chain are the states or coalitions of the agents

that currently say “yes” in the influence process. Thus, bS,S� denotes the probability,

given the current state S ⊆ N , that the process is in state S � ⊆ N after one step

of influence. Note that for each state S, the transition probabilities to states S � are

represented by a certain row of B. Notice also that this Markov chain is neither

irreducible nor recurrent since it has at least two terminal classes.32 The m-th power

of a matrix, e.g., B = (bS,S�)S,S�⊆N , is denoted by B
m = (bS,S�(m))S,S�⊆N .

2.3 Anonymity

We establish the notions of anonymous aggregation functions and models. In what

follows, we show that the notions of anonymity are consistent and that anonymous

functions are characterized by OWA operators.

Definition 6 (Anonymity). (i) We say that an n-place aggregation function A

is anonymous if for all x ∈ {0, 1}n and any permutation σ : N → N ,

A(x1, x2, . . . , xn) = A(xσ(1), xσ(2), . . . , xσ(n)).

(ii) Suppose B is obtained from an aggregation model with aggregation func-

tions A1, A2, . . . , An. We say that the model is anonymous if for all s, u ∈

{0, 1, . . . , n},

�

U⊆N :

|U |=u

bS,U =
�

U⊆N :

|U |=u

bS�,U for all S, S � ⊆ N of size s.

For an agent using an anonymous aggregation function, only the size of the

current coalition matters. Similarly, in models that satisfy anonymity, only the size

of the current coalition matters for the further influence process. In other words,

it matters how many agents share an opinion, but not which agents do so. Let us

now confirm that our notions of anonymity are consistent in the sense that models

where agents use anonymous functions are anonymous. Moreover, we characterize

anonymous aggregation functions by ordered weighted averages.

Proposition 1. (i) An aggregation model with anonymous aggregation functions

A1, A2, . . . , An is anonymous.

32In the language of Markov chains, terminal classes are also called communication classes.
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(ii) An aggregation function A is anonymous if and only if it is an ordered weighted

average.

Proof. We omit the proof of (i) as well as the necessity part of (ii). For the sufficiency

part, suppose that A is an anonymous aggregation function, i.e., for all x ∈ {0, 1}n

and any permutation σ : N → N , A(x1, x2, . . . , xn) = A(xσ(1), xσ(2), . . . , xσ(n)). This

is equivalent to A(1S) = A(1S�) for all S, S � ⊆ N such that |S| = |S �|. Hence, there

exists w ∈ R
n such that A(1S) =

�
i∈N wi(1S)(i) for all S ⊆ N . It follows by the

definition of aggregation functions that wi ≥ 0 for all i ∈ N (nondecreasingness)

and
�n

i=1 wi = 1 (boundary condition), which finishes the proof.

Note that the converse of the first part does not hold, a model can be anonymous

although not all agents use anonymous aggregation functions as we now show by ex-

ample. We study the phenomenon of mass psychology, also called herding behavior,

considered in Grabisch and Rusinowska (2013).

Example 3 (Mass psychology). Mass psychology or herding behavior means that

if at least a certain number m ∈ {�n
2
�+ 1, �n

2
�+ 2, . . . , n} of agents share the same

opinion, then these agents attract others, who had a different opinion before. We

assume that an agent changes her opinion in this case with probability λ ∈ (0, 1).

In particular, we consider n = 3 agents and a threshold of m = 2. This means

whenever only two agents are of the same opinion, the third one might change her

opinion. This corresponds to the following mass psychology aggregation model:

Mass
[2]
i (x) = λx(2) + (1− λ)xi for all i ∈ N.

Agents are “yes”- and “no”-influential on themselves and coalitions of size two or

more are “yes”- and “no”-influential on all agents. The model gives the following

digraph of the Markov chain:
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λ

1− λ

1− λ

λ

1− λ λ

1− λ

λ

The aggregation functions are not anonymous since agents consider their own opin-

ion with weight 1− λ > 0. However, the model turns out to be anonymous, there is

no differentiation between different coalitions of the same size, as can be seen from

the digraph.
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An immediate consequence of Proposition 1 is that models where agents use

OWA operators are anonymous.

Corollary 1. Aggregation models with aggregation functions Ai = OWAwi , i ∈ N ,

are anonymous.

2.4 Convergence Analysis

In this section, we study the convergence of aggregation models where the influence

process is determined by OWA operators, i.e., by anonymous aggregation functions.

In Grabisch and Rusinowska (2013, Theorem 2), the authors show that there are

three different types of terminal classes in the general model. To terminal classes of

the first type, singletons {S}, S ⊆ N , we usually refer to as terminal states. They

represent the two consensus states, {N} and {∅}, as well as situations where the

society is eventually polarized: agents within the class say “yes,” while the others

say “no.” Classes of the second type are called cyclic terminal classes, their states

form a cycle of nonempty sets {S1, S2, . . . , Sk} of any length 2 ≤ k ≤
�

n
�n/2�

�
(and

therefore they are periodic of period k) with the condition that all sets are pairwise

incomparable (by inclusion).33 In other words, given the process has reached a state

within such a class, the transition to the next state is deterministic. And the period

of the class determines after how many steps a state is reached again.

Terminal classes of the third type are called regular terminal classes. They are

collections R of nonempty sets with the property that R = R1 ∪ R2 ∪ · · · ∪ Rp,

where each sub-collection Rj is an interval {S ∈ 2N | Sj ⊆ S ⊆ Sj ∪ Kj}, with

Sj �= ∅, Sj ∪Kj �= N , and at least one Kj is nonempty.

Example 4 (Regular terminal class). Consider an aggregation model with three

agents and aggregation functions A1(x) = x2, A2(x) = x1 and A3(x) = (x1 + x2)/2.

Then, {{1}, {1, 3}} ∪ {{2}, {2, 3}} is a regular terminal class. The model gives the

following digraph of the Markov chain:

∅
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23
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13

2

N

1
2

1
2

1
2

1
2

33Sets S1, S2, . . . , Sk ⊆ N are called pairwise incomparable (by inclusion) if for any distinct

Si, Sj , i, j ∈ {1, 2, . . . , k}, both Si �⊆ Sj and Si �⊇ Sj .
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If such a class only consists of a single interval R1 = {S ∈ 2N | S1 ⊆ S ⊆ S1∪K1},

where S1, K1 �= ∅ and S1 ∪ K1 �= N , then we can interpret this terminal class

as a situation where agents in S1 finally decided to say “yes” and agents outside

S1 ∪ K1 finally decided to say “no,” while the agents in K1 change their opinion

non-deterministically forever. With more than one interval, the interpretation is

more complex and depends on the transitions between the intervals. Reaching an

interval Rj means that the process attains one of its states, i.e., the agents in Sj say

“yes” for sure and with some probability, also some agents in Kj do so.

Our aim is to investigate conditions for these outcomes under anonymous influ-

ence. We also relax our setup and study the case where agents use ordered weighted

averages only to some extent. Our results turn out to be – due to the restriction

to anonymous aggregation functions – inherently different from those in the general

model, see Grabisch and Rusinowska (2013). We first consider influential coalitions

and discuss (non-trivial) terminal classes. In the following, we derive a characteriza-

tion of convergence to consensus and finally provide a generalization of our setting.

Due to anonymity, it is not surprising that the influence of a coalition indeed

solely depends on the number of individuals involved.

Proposition 2. Consider an aggregation model with aggregation functions Ai =

OWAwi, i ∈ N .

(i) A coalition of size s, where 0 < s ≤ n, is “yes”-influential on i ∈ N if and only

if min{k ∈ N | wi
k > 0} ≤ s.

(ii) A coalition of size s, where 0 < s ≤ n, is “no”-influential on i ∈ N if and only

if max{k ∈ N | wi
k > 0} ≥ n+ 1− s.

Proof. Let S ⊆ N have size 0 < s ≤ n and be “yes”-influential on i ∈ N , i.e.,

Ai(1S) =
s�

k=1

wi
k > 0 ⇔ min{k ∈ N | wi

k > 0} ≤ s.

The second part is analogous.

The result on influential agents follows immediately.

Corollary 2. Consider an aggregation model with aggregation functions Ai=OWAwi,

i ∈ N . Then, all agents j ∈ N are “yes”-(“no”-)influential on i ∈ N if and only if

wi
1 > 0 (wi

n > 0).
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Note that this means that either all agents are “yes”-(or “no”-)influential on some

agent i ∈ N or none. Next, we study non-trivial terminal classes. We characterize

terminal states, i.e., states where the society is polarized (except for the trivial

terminal states), and show that – due to anonymity – there cannot be a cycle.

Proposition 3. Consider an aggregation model with aggregation functions Ai =

OWAwi, i ∈ N .

(i) A state S ⊆ N of size s is a terminal state if and only if
�s

k=1 w
i
k = 1 for all i ∈

S and
�s

k=1 w
i
k = 0 otherwise.

(ii) There does not exist any cycle.

Proof. The first part is obvious. For the second part, assume that there is a cy-

cle {S1, S2, . . . , Sk} of length 2 ≤ k ≤
�

n
�n/2�

�
. This implies that there exists

l ∈ {1, 2, . . . , k} such that sl ≤ sl+1, where Sk+1 ≡ S1. Thus,

sl�

j=1

wi
j = 1 for all i ∈ Sl+1

and hence Sl+1 ⊆ Sl+2, which is a contradiction to pairwise incomparability by

inclusion, see Grabisch and Rusinowska (2013, Theorem 2).

For regular terminal classes, note that an agent i ∈ N such that wi
1 = 1 blocks a

“no”-consensus and an agent j ∈ N such that wj
n = 1 blocks a “yes”-consensus – given

that the process has not yet arrived at a consensus. Therefore, since there cannot

be any cycle, these two conditions, while ensuring that there is no other terminal

state, give us a regular terminal class with anonymous aggregation functions.

Example 5 (Anonymous regular terminal class). Consider an aggregation model

with aggregation functions Ai = OWAwi , i ∈ N = {1, 2, 3}. Let agent 1 block a

“no”-consensus and agent 3 block a “yes”-consensus, i.e., w1
1 = w3

3 = 1. Furthermore,

choose w2
1 = w2

3 = 1
2
. Then, {{1}, {1, 2}} is a regular terminal class. We have

A(1{1}) = A(1{1,2}) = (1 1
2
0)�.

It is left to find conditions that avoid both non-trivial terminal states and reg-

ular terminal classes and hence ensure that the society ends up in a consensus.

The following result characterizes the non-existence of non-trivial terminal classes.

The idea is that – due to anonymity – for reaching a consensus, there must be some

threshold such that whenever the size of the coalition is at least equal to this thresh-

old, there is some probability that after mutual influence, more agents will say “yes.”

And whenever the size is below this threshold, there is some probability that after

mutual influence, more agents will say “no.”
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Theorem 1. Consider an aggregation model with aggregation functions Ai = OWAwi,

i ∈ N . Then, there are no other terminal classes than the trivial terminal classes if

and only if there exists k̄ ∈ {1, 2, . . . , n} such that both:

(i) For all k = k̄, k̄ + 1, . . . , n − 1, there are distinct agents i1, i2, . . . , ik+1 ∈ N

such that
k�

j=1

wil
j > 0 for all l = 1, 2, . . . , k + 1.

(ii) For all k = 1, 2, . . . , k̄ − 1, there are distinct agents i1, i2, . . . , in−k+1 ∈ N such

that
k�

j=1

wil
j < 1 for all l = 1, 2, . . . , n− k + 1.

The proof is in Appendix 2.A. Note that Theorem 1 implies a straightforward –

but very strict – sufficient condition:

Remark 1. Consider an aggregation model with aggregation functions Ai = OWAwi ,

i ∈ N . Then, there are no other terminal classes than the trivial terminal classes if

wi
1 > 0 for all i ∈ N (k̄ = 1), or wi

n > 0 for all i ∈ N (k̄ = n).

We get a more intuitive formulation of Theorem 1 by using influential coalitions.

Corollary 3. Consider an aggregation model with aggregation functions Ai=OWAwi,

i ∈ N . Then, there are no other terminal classes than the trivial terminal classes if

and only if there exists k̄ ∈ {1, 2, . . . , n} such that both:

(i) For all k = k̄, k̄+1, . . . , n−1, there are k+1 distinct agents such that coalitions

of size k are “yes”-influential on each of them.

(ii) For all k = 1, 2, . . . , k̄−1, there are n−k+1 distinct agents such that coalitions

of size n− k are “no”-influential on each of them.

In more general situations, the agents’ behavior might only partially be de-

termined by ordered weighted averages. We consider agents who use aggregation

functions that are decomposable in the sense that they are (convex) combinations of

ordered weighted averages and general aggregation functions.

Definition 7 (OWA-decomposable aggregation function). We say that an n-place

aggregation function A is OWAw-decomposable, if there exists λ ∈ (0, 1] and an

n-place aggregation function A� such that A = λOWAw + (1− λ)A�.
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Such aggregation functions do exist since convex combinations of aggregation

functions are again aggregation functions. Note that these functions are, in general,

not anonymous any more, though. However, the mass psychology influence model

presented in Section 2.3 – to which we will come back later on – is an example of an

anonymous model that uses these decomposable aggregation functions. To provide

some intuition for why these functions are useful, let us consider the class where

ordered weighted averages are combined with weighted averages.34

Example 6 (OWA-/WA-decomposable aggregation functions). Consider a convex

combination of an ordered weighted average and a weighted average,

A = λOWAw + (1− λ)WAw� ,

where λ ∈ (0, 1) and w,w� are any weight vectors. This allows us to somehow

combine our model with the classical model by DeGroot.35 We can interpret this as

follows: to some extent λ, an agent updates her opinion anonymously to account,

e.g., for majorities within her social group. But she might as well value her own

opinion somehow – like in the mass psychology model – or some agents might be

really important for her such that she wants to put also some weight directly on

them, as we will show in Example 8.

As it turns out, the sufficiency part of Theorem 1 also holds if agents use such

decomposable aggregation functions. If the ordered weighted average components of

the decomposable functions fulfill the two conditions of Theorem 1, then the agents

reach a consensus.36

Corollary 4. Consider an aggregation model with OWAwi-decomposable aggregation

functions Ai, i ∈ N . Then, there are no other terminal classes than the trivial

terminal classes if there exists k̄ ∈ {1, 2, . . . , n} such that both:

(i) For all k = k̄, k̄ + 1, . . . , n − 1, there are distinct agents i1, i2, . . . , ik+1 ∈ N

such that
k�

j=1

wil
j > 0 for all l = 1, 2, . . . , k + 1.

34We say that an n-place aggregation function A is a weighted average A = WAw with weight

vector w, i.e., 0 ≤ wi ≤ 1 for i = 1, 2, . . . , n and
�n

i=1
wi = 1, if A(x) =

�n

i=1
wixi for all x ∈

{0, 1}n.
35With the restriction that, differently to the DeGroot model, opinions are in {0,1}.
36It is clear that, in general, the necessity part does not hold since convergence to consensus may

as well be (partly) ensured by the other component.
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(ii) For all k = 1, 2, . . . , k̄ − 1, there are distinct agents i1, i2, . . . , in−k+1 ∈ N such

that
k�

j=1

wil
j < 1 for all l = 1, 2, . . . , n− k + 1.

Let us finally apply the concept of decomposable aggregation functions to more

specific examples. As it turns out, the example on mass psychology combines the

majority influence model and a completely self-centered agent.

Example 7 (Mass psychology, cont’d). We have seen in Example 3 that for param-

eters n = 3, m = 2 and λ ∈ (0, 1), we get the following mass psychology aggregation

model:

Mass
[2]
i (x) = λx(2) + (1− λ)xi for all i ∈ N.

This aggregation function is OWAw-decomposable with w2 = 1 and by Corollary 4,

taking k̄ = 2, we see that the group eventually reaches a consensus. This example

is a particular case of Example 6 and furthermore, it is equivalent to a convex

combination of the majority influence model and a completely self-centered agent:

Mass
[2]
i (x) = λMaj

[2]
i (x) + (1− λ)xi for all i ∈ N.

Hence, λ could be interpreted as a measure for how “democratically” – or, to put it

the other way, “egoistically” – an agent behaves.

Finally, we study an example where agents use the majority influence model,

but also put some weight directly on agents that are important for them. We study

a case that turns out to be as well anonymous and furthermore, it is in some sense

equivalent to the example on mass psychology.

Example 8 (Important agents). Although agents might follow somehow a majority

influence model, there might still be some important agents, e.g., very good friends

or agents with an excellent reputation, whom they would like to trust directly as well.

In particular, we consider n = 3 agents and that each agent follows to some extent

λ ∈ (0, 1) the simple majority model. Moreover, for each agent, the agent with the

next higher index has a relative importance of 1− λ for her.37 This corresponds to

the following important agents aggregation model:

Imp
[2;i+1]
i (x) = λMaj

[2]
i (x) + (1− λ)xi+1 for all i ∈ N.

Agent i + 1 is “yes”- and “no”-influential on agent i for all i ∈ N and coalitions of

size two or more are “yes”- and “no”-influential on all agents. The model gives the

following digraph of the Markov chain:

37We consider 4 ≡ 1.
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From the digraph, we can see that the model is anonymous although the aggregation

functions are not.38 Furthermore, when abstracting from the identity of the agents,

i.e., considering only the size of a state, this digraph is identical to the one of the mass

psychology example. Therefore, we can say that the two models are anonymously

equivalent : starting in a state of size one or two, both models stay within the set

of states of the same size with probability 1− λ and converge to the “no”- or “yes”-

consensus, respectively, with probability λ.

2.5 Speed of Convergence and Absorption

We first study the speed of convergence of the influence process to terminal classes.39

Secondly, we investigate the probabilities of convergence to each of the consensus

states and possibly other terminal classes. We call these probabilities absorption

probabilities. Since this analysis has not been done in Grabisch and Rusinowska

(2013), we provide it for the general aggregation model and also for anonymous

models, which cover particularly the case where all agents use OWA operators. This

section relies on results from Markov chain theory. We find that anonymity leads to

a substantial gain in computational tractability.

Suppose that B is obtained from an aggregation model with aggregation func-

tions A1, A2, . . . , An and that there is at least one transient state, i.e., T �= ∅. We

assume that the process starts from a transient state S ∈ T , i.e., x(0) = 1S. Note

that since the set of transient states is finite, we have convergence to the terminal

classes almost surely. We say that the influence process B converges to the terminal

classes at time t if x(t− 1) = 1S such that S ∈ T and x(t) = 1S� such that S � /∈ T .

Thus, the speed of convergence is the time it takes for the process to leave the set

38Note that this is a consequence of our choice of important agents. For most choices, the model

would not be anonymous, e.g., if two agents would be important for each other and one of them

would as well be important for the third one.
39In the language of Markov chains, the speed of convergence is also called time before absorption.
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of transient states.40

We define, given x(0) = 1S, S ∈ T , the speed of convergence as

τS := inf{t ∈ N | x(t) = 1S� such that S � /∈ T },

which is an almost surely finite stopping time on the probability space induced by the

aggregation model A = (A1, A2, . . . , An)
�. Our aim is to determine the distribution

of the speed of convergence. It turns out that the latter is solely determined by the

transition probabilities within the set of transient states. We denote the restriction

of B to these states by Q = (qS,S�)S,S�∈T := B|T = (bS,S�)S,S�∈T .

Proposition 4. Suppose B is obtained from an aggregation model with aggregation

functions A1, A2, . . . , An. If x(0) = 1S, S ∈ T , then

P(τS > t) =
�

S�∈T

qS,S�(t) and E[τS] =
∞�

m=0

�

S�∈T

qS,S�(m) < +∞.

Proof. The first part follows from Brémaud (1999, p. 154, Theorem 5.2). For the

expected value of τS, first note that it only takes nonnegative integer values. The

first equality of the following computation follows from this fact, whereas the third

equality and the inequality follow since T is finite and Q is strictly sub-stochastic,

i.e.,
�∞

m=0 Q
m < +∞.41

E[τS] =
∞�

m=0

P(τS > m) =
∞�

m=0

�

S�∈T

qS,S�(m) =
�

S�∈T

∞�

m=0

qS,S�(m) < +∞.

Next, suppose that B is obtained from an anonymous aggregation model A =

(A1, A2, . . . , An)
�. Then, B can be reduced from a 2n × 2n transition matrix to an

(n+ 1)× (n+ 1) matrix B
a = (bas,s�)s,s�∈{0,1,...,n}, where

bas,s� =
�

S�⊆N :

|S�|=s�

bS,S� , for any S ⊆ N of size s,

are the transition probabilities from coalitions of size s to coalitions of size s�. How-

ever, note that the gain in tractability (the dimensions of the transition matrix grow

only linearly instead of exponentially in the number of agents) comes at the cost of

40Note that we do not consider the speed of convergence to certain terminal classes since its

expected value will be infinite if there is a positive probability that this may not happen. Instead,

we consider later on the absorption probabilities of certain terminal classes.
41cf. Brémaud (1999, p. 155, Theorem 6.1). It is understood that the right member is a matrix

whose entries are all +∞.
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losing track of the transition probabilities to certain states. For a given terminal class

C and the set of transient states T , we define the corresponding anonymous terminal

class and the anonymous set of transient states by Ca = {s ∈ {0, 1, . . . , n} | ∃ S ∈

C such that |S| = s} and T a = {s ∈ {0, 1, . . . , n} | S ∈ T if |S| = s}, respectively.

Note that anonymous terminal classes are extended by states of the same size

as states within the original class. This implies that the speed of convergence will

be distorted in case it is possible that the process arrives at a state which is part

of an anonymous terminal class, but not of the corresponding original one. We call

such a model distorted. In this case, we need to use the original model to compute

the speed of convergence. Models that only have singleton terminal classes are not

distorted, though.

The speed of convergence, given x(0) = 1S, S ∈ T such that |S| = s, is denoted

by τs and the restriction of B
a to transient states by Qa = B

a|T . We find that

anonymity leads to a substantial gain in computational tractability since it suffices

to use Qa instead of Q to compute the distribution of the speed of convergence.

Corollary 5. Suppose B
a is obtained from an anonymous aggregation model with

aggregation functions A1, A2, . . . , An that is not distorted. If x(0) = 1S, S ∈ T such

that |S| = s, then

P(τs > t) =
�

s�∈T a

qas,s�(t) and E[τs] =
∞�

m=0

�

s�∈T a

qas,s�(m) < +∞.

The next step is to look at the absorption probabilities of certain terminal classes.

Define by

Dk = (dS,S�)S∈T ,S�∈Ck := (bS,S�)S∈T ,S�∈Ck

the matrix of transition probabilities from transient states to states within the ter-

minal class Ck. For our analysis it does not matter at which state the influence

process enters a terminal class and hence we can reduce the matrices Dk to a vec-

tor by considering a terminal class Ck simply as a terminal state �Ck. The transition

probabilities from transient states to a terminal class Ck are then given by the vector

�Dk :=

�
�

S�∈Ck

dS,S�

�

S∈T

.

Let us denote the matrix of transition probabilities from transient states to the

terminal classes by �D := (�D1 : �D2 : · · · : �Dl) and define F := (I−Q)−1.42 Further-

more, we define, given x(0) = 1S, S ∈ T , the time of absorption by the terminal

42Note that for absorbing Markov chains the matrix F always exists since Qm → 0 for m → ∞.
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class Ck as

τ kS := inf{t ∈ N | x(t) = 1S� such that S � ∈ Ck}.

Note that this stopping time is not almost surely finite in general. We have τ k
S = +∞

if the influence process was absorbed by a terminal class other than Ck. The following

result immediately follows from Brémaud (1999, p. 157, Theorem 6.2).

Proposition 5. Suppose B is obtained from an aggregation model with aggregation

functions A1, A2, . . . , An. If x(0) = 1S, S ∈ T , then we get for the absorption

probabilities:

P(τ kS < ∞) = gS,k, for k = 1, 2, . . . , l,

where (gS,k)S∈T ,k∈{1,2,...,l} := F �D.

The corresponding result for anonymous models is straightforward. The reason

is that if, in a distorted model, the influence process has reached a state that is part

of an anonymous terminal class, but not of the corresponding original one, then it

will converge to that original class immediately due to anonymity. This also provides

a justification for not considering such states as possible initial states.

Let Da
k = (ds,s�)s∈T a,s�∈Ca

k
:= (bs,s�)s∈T a,s�∈Ca

k
denote the matrix of transition prob-

abilities from transient states to states within the anonymous terminal class Ca
k .

Furthermore, let �Da
k :=

��
s�∈Ca

k
ds,s�

�
s∈T a

denote the reduced matrices, �Da := (�Da
1 :

�Da
2 : · · · : �Da

l ) their collection, and define F a := (I−Qa)−1. The time of absorption

by the anonymous terminal class Ca
k , given x(0) = 1S, S ∈ T such that |S| = s, is

denoted by τ k
s .

Corollary 6. Suppose B
a is obtained from an anonymous aggregation model with

aggregation functions A1, A2, . . . , An. If x(0) = 1S, S ∈ T such that |S| = s, then

we get for the absorption probabilities:

P(τ ks < ∞) = gas,k, for k = 1, 2, . . . , l,

where
�
gas,k

�
s∈T a,k∈{1,2,...,l}

:= F a�Da.

This finishes our analysis of the speed of convergence and absorption probabili-

ties.43 To illustrate the results, we come back the example on mass psychology.

43We could also discuss the convergence after the process has entered a terminal class. This is

obvious at least for singleton and cyclic terminal classes, though. For the latter, there is clearly no

convergence to a stationary distribution. Furthermore, it holds that regular classes are convergent

if and only if their corresponding transition matrix is aperiodic.
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Example 9 (Mass psychology, cont’d). We have seen in Example 3 that for param-

eters n = 3, m = 2 and λ ∈ (0, 1), we get the following mass psychology aggregation

model:

Mass
[2]
i (x) = λx(2) + (1− λ)xi for all i ∈ N.

Due to anonymity, we get for any initial opinions x(0) = 1S, 1 ≤ |S| = s ≤ 2:

P(τs > t) = (1− λ)t and E[τs] =
1

λ
.

So, the speed of convergence hinges on λ, the probability that an agent follows the

herd. If it is small, the process can take a long time. If initially two agents said “yes,”

the process terminates (with probability one) in the “yes”-consensus and otherwise,

it terminates in the “no”-consensus.

Recall that Example 8 on important agents is anonymously equivalent to this

example. Therefore, the speed of convergence is the same in both examples.

2.6 Applications to Fuzzy Linguistic Quantifiers

Instead of being sharp edged, e.g., as in the majority model, the threshold of an agent

initially saying “no” for changing her opinion might be rather “soft.” For instance,

she could change her opinion if “most of the agents say ‘yes.’” This is called a soft

majority and phrases like “most” or “many” are so-called fuzzy linguistic quantifiers.

Furthermore, soft minorities are also possible, e.g., “at least a few of the agents

say ‘yes.’” Our aim is to apply our findings on ordered weighted averages to fuzzy

linguistic quantifiers. Mathematically, we define the latter by a function which

maps the agents’ proportion that says “yes” to the degree to which the quantifier is

satisfied, see Zadeh (1983).

Definition 8 (Fuzzy linguistic quantifier). A fuzzy linguistic quantifier Q is defined

by a nondecreasing function

µQ : [0, 1] → [0, 1] such that µQ(0) = 0 and µQ(1) = 1.

Furthermore, we say that the quantifier is regular if the function is strictly increasing

on some interval (c, c̄) ⊆ [0, 1] and otherwise constant.

Notice that fuzzy linguistic quantifiers are more general than ordered weighted

averages since they assign a probability to say “yes” after mutual influence to any

proportion of agents currently saying “yes” and therefore do not depend on the

number of agents n in society.
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Fuzzy linguistic quantifiers like “most” are ambiguous in the sense that it is

not clear how to define them exactly mathematically. For example, one could well

discuss which proportion of the agents should say “yes” for the quantifier “most” to

be fully satisfied. Nevertheless, let us give some typical examples, see Yager and

Kacprzyk (1997).

Example 10 (Typical quantifiers). We define

(i) Qaa = “almost all” by

µQaa
(x) :=





1, if x ≥ 9
10

5
2
x− 5

4
, if 1

2
< x < 9

10

0, otherwise

,

(ii) Qmo = “most” by

µQmo
(x) :=





1, if x ≥ 4
5

5
2
x− 1, if 2

5
< x < 4

5

0, otherwise

,

(iii) Qma = “many” by

µQma
(x) :=





1, if x ≥ 3
5

5
2
x− 1

2
, if 1

5
< x < 3

5

0, otherwise

,

(iv) Qaf = “at least a few” by

µQaf
(x) :=

�
1, if x ≥ 3

10
10
3
x, otherwise

.

Note that these quantifiers are regular. For every quantifier, given the number

of agents n in society, there exists a corresponding ordered weighted average in the

sense that the latter represents the quantifier.44 We can find its weights as follows.

Lemma 1 (Yager, 1988). Let Q be a fuzzy linguistic quantifier defined by µQ. Then,

the weights of its corresponding ordered weighted average OWAQ are given by

wk = µQ

�
k

n

�
− µQ

�
k − 1

n

�
, for k = 1, 2, . . . , n.

44Note that this is due to our definition. The conditions in Definition 8 ensure that there exists

such an ordered weighted average. In general, one can define quantifiers also by other functions,

cf. Zadeh (1983).
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In other words, the weights wk of the corresponding ordered weighted average are

equal to the increase of µQ between (k−1)/n and k/n, i.e., since µQ is nondecreasing,

all weights are nonnegative and by the boundary conditions, it is ensured that they

sum up to one. We are now in the position to apply our results to regular quantifiers.

We find that if all agents use such a quantifier, then under some similarity condition,

the group will finally reach a consensus. This condition says that there must be a

common point where all the fuzzy quantifiers are strictly increasing. This implies

that there is a common non-zero weight of the corresponding OWA operators, which

turns out to be sufficient to satisfy the condition of Theorem 1. Moreover, we show

that the result still holds if some agents deviate to a quantifier that is not similar in

that sense. In the following, we denote the quantifier of an agent i by Qi.

Proposition 6. Consider an aggregation model with aggregation functions Ai =

OWAQi , i ∈ N .

(i) If Qi is regular for all i ∈ N and ∩i∈N(ci, c̄i) �= ∅, then there are no other

terminal classes than the trivial terminal classes.

(ii) Suppose mini∈N ci > 0, then the result in (i) still holds if less than �c̄dn� agents

deviate to a regular quantifier Qd such that c̄d < mini∈N ci.

(iii) Suppose maxi∈N c̄i < 1, then the result in (i) still holds if less than �(1− cd)n�

agents deviate to a regular quantifier Qd such that maxi∈N c̄i < cd.

The proof is in Appendix 2.A. Note that this result can be generalized such that

the deviating agents might also use different quantifiers. We can also characterize

terminal states in a model where agents use regular quantifiers. We find that S is

a terminal state if and only if the quantifiers of the agents in S are already fully

satisfied at s/n, while the quantifiers of the other agents are not satisfied at all at

this point.

Proposition 7. Consider an aggregation model with aggregation functions Ai =

OWAQi , i ∈ N . If Qi is regular for all i ∈ N , then a state S ⊆ N of size s is a

terminal state if and only if

max
i∈S

c̄i ≤
s

n
≤ min

i∈N\S
ci.

Proof. Suppose S ⊆ N of size s is a terminal state. By Proposition 3, we know that
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this is equivalent to

s�

k=1

wi
k = 1 for all i ∈ S and

s�

k=1

wi
k = 0 otherwise

⇔µQi(s/n) = 1 for all i ∈ S and µQi(s/n) = 0 otherwise

⇔max
i∈S

c̄i ≤
s

n
≤ min

i∈N\S
ci.

To provide some intuition, let us come back to Example 10 and look at the

implications our findings have on the quantifiers defined therein.

Example 11 (Typical quantifiers, cont’d). Consider an aggregation model with

aggregation functions Ai = OWAQi , i ∈ N .

(i) If Qi ∈ {Qaa,Qmo,Qma} for all i ∈ N , then there are no other terminal classes

than the trivial terminal classes. The result still holds if less than � 3
10
n� agents

deviate to Qaf.

(ii) If Qi ∈ {Qma,Qaf} for all i ∈ N , then there are no other terminal classes

than the trivial terminal classes. The result still holds if less than � 1
2
n� agents

deviate, each of them either to Qaa or Qmo.

(iii) A state S ⊆ N of size s is a terminal state if Qi = Qaf for all i ∈ S, Qi = Qaa

(Qi ∈ {Qaa,Qmo}) otherwise and 3
10

≤ s
n
≤ 1

2
(≤ 2

5
).

2.7 Conclusion

We study a stochastic model of influence where agents aggregate opinions using OWA

operators, which are the only anonymous aggregation functions. As one would ex-

pect, an aggregation model is anonymous if all agents use these functions. However,

our example on mass psychology shows that a model can be anonymous although

agents do not use anonymous functions.

In the main part of the paper, we characterize influential coalitions, show that

cyclic terminal classes cannot exist due to anonymity and characterize terminal

states. Our main result provides a necessary and sufficient condition for conver-

gence to consensus. It turns out that we can express this condition in terms of

influential coalitions. Due to our restriction to anonymous functions, these results

are inherently different to those obtained in the general case by Grabisch and Rusi-

nowska (2013). We also extend our model to decomposable aggregation functions.

In particular, this allows to combine OWA operators with the classical approach of
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ordinary weighted averages. This class of decomposed functions comprises our ex-

ample on mass psychology: it is equivalent to a convex combination of the majority

influence model and a completely self-centered agent. We also study an example on

important agents and show that in some cases, this model is anonymous as well and,

additionally, anonymously equivalent to the example on mass psychology. Moreover,

it turns out that our previous condition on convergence to consensus is still sufficient

in this generalized setting.

We analyze the speed of convergence to terminal classes as well as probabilities

of absorption by different terminal classes in the general model studied by Grabisch

and Rusinowska (2013) and in our case of anonymous models. For the latter, and

in particular models based on OWA operators, we can reduce the computational

demand substantially compared to the general case. Furthermore, we apply our

results to fuzzy linguistic quantifiers and show that if agents use in some sense similar

quantifiers and not too many agents deviate from these quantifiers, the society will

eventually reach a consensus.

These results rely on the fact that for each quantifier, we can find a unique corre-

sponding ordered weighted average (Lemma 1), which allows to apply our results on

OWA operators. Note that these corresponding ordered weighted averages clearly

depend on the number of agents in the society. Therefore, we can see a quantifier

as well as a more general definition of an OWA operator (usually called an extended

OWA operator ; see Grabisch et al., 2009), which does not anymore require a fixed

number of agents. In other words, assigning to each agent such an extended OWA

operator allows to vary the number of agents n in the society.

2.A Appendix

Proof of Theorem 1

First, suppose that there exists k̄ ∈ {1, 2, . . . , n} such that (i) and (ii) hold. Let us

take any coalition S � N of size s ≥ k̄ and show that it is possible to reach the

“yes”-consensus, which implies that S is not part of a terminal class. By choice of S,

it is sufficient to show that there is a positive probability that after mutual influence,

the size of the coalition has strictly increased. That is, it is sufficient to show that

there exists a coalition S � ⊆ N of size s� > s, such that Ai(1S) > 0 for all agents

i ∈ S �. Set k := s, then by condition (i), there are distinct agents i1, i2, . . . , ik+1 ∈ N
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such that

Ail(1S) =
k�

j=1

wil
j > 0 for all l = 1, 2, . . . , k + 1,

i.e., setting S � := {i1, i2, . . . , ik+1} finishes this part. Analogously, we can show by

condition (ii) that for any nonempty S ⊆ N of size s < k̄ it is possible to reach the

“no”-consensus. Hence, there are only the trivial terminal classes.

Now, suppose to the contrary that for all k̄ ∈ {1, 2, . . . , n} either (i) or (ii) does

not hold. Note that in order to establish that there exists a non-trivial terminal

class, it is sufficient to show that there are k∗, k
∗ ∈ {1, 2, . . . , n − 1}, k∗ ≤ k∗, such

that for all S ⊆ N of size s = k∗,

Ai(1S) < 1 for at most n− k∗ distinct agents i ∈ N (C∗[k∗])

and for all S ⊆ N of size s = k∗,

Ai(1S) > 0 for at most k∗ distinct agents i ∈ N. (C∗[k∗])

Indeed, condition (C∗[k∗]) says that it is not possible to reach a coalition with less

than k∗ agents starting from a coalition with at least k∗ agents. Similarly, condition

(C∗[k∗]) says that it is not possible to reach a coalition with more than k∗ agents

starting from a coalition with at most k∗ agents.45 Therefore, it is not possible to

reach the trivial terminal states from any coalition S of size k∗ ≤ s ≤ k∗, which

proves the existence of a non-trivial terminal class.

Let now k̄ = 1. Then, clearly condition (ii) is satisfied and thus condition (i)

cannot be satisfied by assumption. Hence, there exists k∗ ∈ {1, 2, . . . , n − 1} such

that there are at most k∗ distinct agents i1, i2, . . . , ik∗ such that

k∗�

j=1

wil
j > 0 for l = 1, 2, . . . , k∗.

This implies that condition (i) is not satisfied for k̄ = 1, 2, . . . , k∗. If k∗ ≥ 2 and

additionally condition (ii) was not satisfied for some k̄ ∈ {2, 3, . . . , k∗}, we were done

since then there would exist k∗ ∈ {1, 2, . . . , k∗−1} such that there are at most n−k∗

distinct agents i1, i2, . . . , in−k∗ such that

k∗�

j=1

wil
j < 1 for l = 1, 2, . . . , n− k∗,

45Note that monotonicity of the aggregation function implies that (C∗[k∗]) also holds if we replace

S by a coalition S� ⊆ N of size s� > k∗. Analogously for (C∗[k∗]).
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i.e., (C∗[k∗]) and (C∗[k∗]) were satisfied for k∗ ≤ k∗. Therefore, suppose without loss

of generality that condition (ii) is satisfied for all k̄ = 1, 2, . . . , k∗. (1)

For k̄ = n, clearly condition (i) is satisfied and thus condition (ii) cannot be

satisfied. Hence, using (1), there exists k∗ ∈ {k∗, k∗ + 1, . . . , n− 1} such that there

are at most n− k∗ distinct agents i1, i2, . . . , in−k∗ such that

k∗�

j=1

wil
j < 1 for l = 1, 2, . . . , n− k∗,

i.e., (C∗[k∗]) and (C∗[k∗]) are satisfied. We now proceed by case distinction:

(1) If k∗ = k∗, then we are done.

(2) If k∗ > k∗, then let k̄ = k∗. By assumption, either (i) or (ii) does not hold.

(2.1) If (i) does not hold, then there exists k∗∗ ∈ {k∗, k∗ + 1, . . . , n − 1} such

that there are at most k∗∗ distinct agents i1, i2, . . . , ik∗∗ such that

k∗∗�

j=1

wil
j > 0 for l = 1, 2, . . . , k∗∗,

i.e., (C∗[k∗]) and (C∗[k∗∗]) are satisfied for k∗ ≤ k∗∗ and hence we are done.

(2.2) If (ii) does not hold, then, using (1), there exists k∗∗ ∈ {k∗, k∗+1, . . . , k∗−

1} such that there are at most n−k∗∗ distinct agents i1, i2, . . . , in−k∗∗ such

that
k∗∗�

j=1

wil
j < 1 for l = 1, 2, . . . , n− k∗∗,

i.e., (C∗[k∗∗]) is satisfied. If k∗∗ = k∗, then we are done, otherwise we can

repeat this procedure using k∗∗ instead of k∗.

Since k∗∗ � k∗, we find k∗∗ = k∗ after a finite number of repetitions, which finishes

the proof.

Proof of Proposition 6

(i) By assumption, there exists c ∈ ∩i∈N(ci, c̄i). Let us define k̄ := min{k ∈ N |
k
n
> c}, then clearly k̄−1

n
≤ c. We show that conditions (i) and (ii) of Theorem

1 are satisfied for k̄. Since for all i ∈ N , µQi is nondecreasing and, in particular,

strictly increasing on the open ball B�(c) around c for some � > 0, we get by

Lemma 1 that

wi
k̄ = µQ

�
k̄

n

�
− µQ

�
k̄ − 1

n

�
≥ µQ

�
k̄

n

�
− µQ (c) > 0 for all i ∈ N.
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This implies that for all k = k̄, k̄ + 1, . . . , n− 1,

k�

j=1

wi
j ≥ wi

k̄ > 0 for all i ∈ N

and for all k = 1, 2, . . . , k̄ − 1,

k�

j=1

wi
j ≤

�

j �=k̄

wi
j = 1− wi

k̄ < 1 for all i ∈ N,

i.e., (i) and (ii) of Theorem 1 are satisfied for k̄, which finishes the first part.

(ii) Suppose mini∈N ci > 0 and denote by D ⊆ N the set of agents that deviate

to the quantifier Qd. Similar to the first part, there exists c ∈ ∩i∈N\D(ci, c̄i)

and we can define k̄ := min{k ∈ N | k
n

> c}. This implies that for all

k = k̄, k̄ + 1, . . . , n− 1,

k�

j=1

wi
j > 0 for all i ∈ N\D (2)

and for all k = 1, 2, . . . , k̄ − 1,

k�

j=1

wi
j < 1 for all i ∈ N\D. (3)

Furthermore, we have by assumption µQd
(k̄/n) = 1, which implies wi

j =

0 for all j = k̄+1, k̄+2, . . . , n and i ∈ D. Thus, for all k = k̄, k̄+1, . . . , n− 1

k�

j=1

wi
j =

k̄�

j=1

wi
j = 1 > 0 for all i ∈ D,

i.e., in combination with (2), condition (i) of Theorem 1 is satisfied for k̄. It is

left to check condition (ii). Define for i ∈ D,

k̃ := max{k ∈ N | wi
k > 0} = min{k ∈ N | k/n ≥ c̄d} ≤ k̄.

Hence, for k = 1, 2, . . . , k̃ − 1,

k�

j=1

wi
j < 1 for all i ∈ D.

If k̃ = k̄, condition (ii) is – in combination with (3) – satisfied for k̄ and any

D ⊆ N . Otherwise, we have k̃ < k̄ and then, for k = k̃, k̃ + 1, . . . , k̄ − 1,

k�

j=1

wi
j = 1 for all i ∈ D.
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This implies in combination with (3) that condition (ii) is only satisfied if

maxk=k̃,k̃+1,...,k̄−1(n− k + 1) = n− k̃ + 1 agents do not deviate, i.e.,

|D| ≤ n− (n− k̃ + 1) = k̃ − 1 ⇔ |D| � k̃ ⇔ |D| � �c̄dn�.

Thus, (i) and (ii) of Theorem 1 are satisfied for k̄ if |D| � �c̄dn�, which finishes

the proof.

(iii) Analogous to the second part.
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Chapter 3

Trust and Manipulation in Social

Networks

3.1 Introduction

Individuals often rely on social connections (friends, neighbors and coworkers as well

as political actors and news sources) to form beliefs or opinions on various economic,

political or social issues. Every day individuals make decisions on the basis of these

beliefs. For instance, when an individual goes to the polls, her choice to vote for one

of the candidates is influenced by her friends and peers, her distant and close family

members, and some leaders that she listens to and respects. At the same time, the

support of others is crucial to enforce interests in society. In politics, majorities are

needed to pass laws and in companies, decisions might be taken by a hierarchical

superior. It is therefore advantageous for individuals to increase their influence

on others and to manipulate the way others form their beliefs. This behavior is

often referred to as lobbying and widely observed in society, especially in politics.46

Hence, it is important to understand how beliefs and behaviors evolve over time

when individuals can manipulate the trust of others. Can manipulation enable a

segregated society to reach a consensus about some issue of broad interest? How

long does it take for beliefs to reach consensus when agents can manipulate others?

Can manipulation lead a society of agents who communicate and update naïvely to

more efficient information aggregation?

We consider a model of opinion formation where agents repeatedly communicate

with their neighbors in the social network, can exert some effort to manipulate the

46See Gullberg (2008) for lobbying on climate policy in the European Union, and Austen-Smith

and Wright (1994) for lobbying on US Supreme Court nominations.

59
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trust of others, and update their opinions taking weighted averages of neighbors’

opinions. At each period, first one agent is selected randomly and can exert effort to

manipulate the social trust of an agent of her choice. If she decides to provide some

costly effort to manipulate another agent, then the manipulated agent weights rela-

tively more the belief of the agent who manipulated her when updating her beliefs.

Second, all agents communicate with their neighbors and update their beliefs using

the DeGroot updating rule, see DeGroot (1974). This updating process is simple:

using her (possibly manipulated) weights, an agent’s new belief is the weighted aver-

age of her neighbors’ beliefs (and possibly her own belief) from the previous period.

When agents have no incentives to manipulate each other, the model coincides with

the classical DeGroot model of opinion formation.

The DeGroot updating rule assumes that agents are boundedly rational, failing

to adjust correctly for repetitions and dependencies in information that they hear

multiple times. Since social networks are often fairly complex, it seems reasonable

to use an approach where agents fail to update beliefs correctly.47 Chandrasekhar

et al. (2012) provide evidence from a framed field experiment that DeGroot “rule

of thumb” models best describe features of empirical social learning. They run a

unique lab experiment in the field across 19 villages in rural Karnataka, India, to

discriminate between the two leading classes of social learning models – Bayesian

learning models versus DeGroot models.48 They find evidence that the DeGroot

model better explains the data than the Bayesian learning model at the network

level.49 At the individual level, they find that the DeGroot model performs much

better than Bayesian learning in explaining the actions of an individual given a

history of play.50

Manipulation is modeled as a communicative or interactional practice, where the

manipulating agent exercises some control over the manipulated agent against her

47Choi et al. (2012) report an experimental investigation of learning in three-person networks and

find that already in simple three-person networks people fail to account for repeated information.

They argue that the Quantal Response Equilibrium (QRE) model can account for the behavior

observed in the laboratory in a variety of networks and informational settings.
48Notice that in order to compare the two concepts, they study DeGroot action models, i.e.,

agents take an action after aggregating the actions of their neighbors using the DeGroot updating

rule.
49At the network level (i.e., when the observational unit is the sequence of actions), the Bayesian

learning model explains 62% of the actions taken by individuals while the degree weighting DeGroot

model explains 76% of the actions taken by individuals.
50At the individual level (i.e., when the observational unit is the action of an individual given a

history), both the degree weighting and the uniform DeGroot model largely outperform Bayesian

learning models.
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will. In this sense, manipulation is illegitimate, see Van Dijk (2006). Agents only

engage in manipulation if it is worth the effort. They face a trade-off between their

increase in satisfaction with the opinions (and possibly the trust itself) of the other

agents and the cost of manipulation. In examples, we will frequently use a utility

model where agents prefer each other agent’s opinion one step ahead to be as close

as possible to their current opinion. This reflects the idea that the support of others

is necessary to enforce interests. Agents will only engage in manipulation when

it brings the opinion of the manipulated agent sufficiently closer to their current

opinion compared to the cost of doing so. In our view, this constitutes a natural

way to model lobbying incentives.

We first show that manipulation can modify the trust structure. If the society is

split up into several disconnected clusters of agents and there are also some agents

outside these clusters, then the latter agents might connect different clusters by

manipulating the agents therein. Such an agent, previously outside any of these

clusters, would not only get influential on the agents therein, but also serve as a

bridge and connect them. As we show by means of an example, this can lead to a

connected society, and thus, make the society reaching a consensus.

Second, we analyze the long-run beliefs and show that manipulation fosters opin-

ion leadership in the sense that the manipulating agent always increases her influence

on the long-run beliefs. For the other agents, this is ambiguous and depends on the

social network. Surprisingly, the manipulated agent may thus even gain influence

on the long-run opinions. As a consequence, the expected change of influence on

the long-run beliefs is ambiguous and depends on the agents’ preferences and the

social network. We also show that a definitive trust structure evolves in the society

and, if the satisfaction of agents only depends on the current and future opinions

and not directly on the trust, manipulation will come to an end and they reach a

consensus (under some weak regularity condition). At some point, opinions become

too similar to be manipulated. Furthermore, we discuss the speed of convergence

and note that manipulation can accelerate or slow down convergence. In partic-

ular, in sufficiently homophilic societies, i.e., societies where agents tend to trust

those agents who are similar to them, and where costs of manipulation are rather

high compared to its benefits, manipulation accelerates convergence if it decreases

homophily and otherwise it slows down convergence.

Finally, we investigate the tension between information aggregation and spread

of misinformation. We find that if manipulation is rather costly and the agents un-

derselling their information gain and those overselling their information lose overall

influence (i.e., influence in terms of their initial information), then manipulation re-
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duces misinformation and agents converge jointly to more accurate opinions about

some underlying true state. In particular, this means that an agent for whom ma-

nipulation is cheap can severely harm information aggregation.

There is a large and growing literature on learning in social networks. Models

of social learning either use a Bayesian perspective or exploit some plausible rule of

thumb behavior.51 We consider a model of non-Bayesian learning over a social net-

work closely related to DeGroot (1974), DeMarzo et al. (2003), Golub and Jackson

(2010) and Acemoglu et al. (2010). DeMarzo et al. (2003) consider a DeGroot rule

of thumb model of opinion formation and they show that persuasion bias affects

the long-run process of social opinion formation because agents fail to account for

the repetition of information propagating through the network. Golub and Jackson

(2010) study learning in an environment where agents receive independent noisy sig-

nals about the true state and then repeatedly communicate with each other. They

find that all opinions in a large society converge to the truth if and only if the

influence of the most influential agent vanishes as the society grows.52 Acemoglu

et al. (2010) investigate the tension between information aggregation and spread of

misinformation. They characterize how the presence of forceful agents affects infor-

mation aggregation. Forceful agents influence the beliefs of the other agents they

meet, but do not change their own opinions. Under the assumption that even force-

ful agents obtain some information from others, they show that all beliefs converge

to a stochastic consensus. They quantify the extent of misinformation by provid-

ing bounds on the gap between the consensus value and the benchmark without

forceful agents where there is efficient information aggregation.53 Friedkin (1991)

studies measures to identify opinion leaders in a model related to DeGroot. Recently,

Büchel et al. (2012) develop a model of opinion formation where agents may state

an opinion that differs from their true opinion because agents have preferences for

conformity. They find that lower conformity fosters opinion leadership. In addition,

the society becomes wiser if agents who are well informed are less conform, while

uninformed agents conform more with their neighbors.

51Acemoglu et al. (2011) develop a model of Bayesian learning over general social networks, and

Acemoglu and Ozdaglar (2011) provide an overview of recent research on opinion dynamics and

learning in social networks.
52Golub and Jackson (2012) examine how the speed of learning and best-response processes

depend on homophily. They find that convergence to a consensus is slowed down by the presence

of homophily but is not influenced by network density.
53In contrast to the averaging model, Acemoglu et al. (2010) have a model of pairwise interac-

tions. Without forceful agents, if a pair meets two periods in a row, then in the second meeting

there is no information to exchange and no change in beliefs takes place.
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We go further by allowing agents to manipulate the trust of others and we

find that the implications of manipulation are non-negligible for opinion leadership,

reaching a consensus, and aggregating dispersed information.

The paper is organized as follows. In Section 3.2 we introduce the model of

opinion formation. In Section 3.3 we show how manipulation can change the trust

structure of society. Section 3.4 looks at the long-run effects of manipulation. In

Section 3.5 we investigate how manipulation affects the extent of misinformation in

society. Section 3.6 concludes. The proofs are presented in Appendix 3.A.

3.2 Model and Notation

Let N = {1, 2, . . . , n} be the set of agents who have to take a decision on some

issue and repeatedly communicate with their neighbors in the social network. Each

agent i ∈ N has an initial opinion or belief xi(0) ∈ R about the issue and an initial

vector of social trust mi(0) = (mi1(0), mi2(0), . . . ,min(0)), with 0 ≤ mij(0) ≤ 1 for

all j ∈ N and
�

j∈N mij(0) = 1, that captures how much attention agent i pays

(initially) to each of the other agents. More precisely, mij(0) is the initial weight

or trust that agent i places on the current belief of agent j in forming her updated

belief. For i = j, mii(0) can be interpreted as how much agent i is confident in her

own initial opinion.

At period t ∈ N, the agents’ beliefs are represented by the vector x(t) = (x1(t),

x2(t), . . . , xn(t))
� ∈ R

n and their social trust by the matrix M(t) = (mij(t))i,j∈N .54

First, one agent is chosen (probability 1/n for each agent) to meet and to have the

opportunity to manipulate an agent of her choice. If agent i ∈ N is chosen at t, she

can decide which agent j to meet and furthermore how much effort α ≥ 0 she would

like to exert on j. We write E(t) = (i; j,α) when agent i is chosen to manipulate at

t and decides to exert effort α on j. The decision of agent i leads to the following

updated trust weights of agent j:

mjk(t+ 1) =

�
mjk(t)/ (1 + α) if k �= i

(mjk(t) + α) / (1 + α) if k = i
.

The trust of j in i increases with the effort i invests and all trust weights of j are

normalized. Notice that we assume for simplicity that the trust of j in an agent

other than i decreases by the factor 1/(1 + α), i.e., the absolute decrease in trust is

proportional to its level. If i decides not to invest any effort, the trust matrix does not

change. We denote the resulting updated trust matrix by M(t+1) = [M(t)](i; j,α).

54We denote the transpose of a vector (matrix) x by x�.
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Agent i decides on which agent to meet and on how much effort to exert according

to her utility function

ui

�
M(t), x(t); j,α

�
= vi

�
[M(t)](i; j,α), x(t)

�
− ci(j,α),

where vi
�
[M(t)](i; j,α), x(t)

�
represents her satisfaction with the other agents’ opin-

ions and trust resulting from her decision (j,α) and ci(j,α) represents its cost. We

assume that vi is continuous in all arguments and that for all j �= i, ci(j,α) is strictly

increasing in α ≥ 0, continuous and strictly convex in α > 0, and that ci(j, 0) = 0.

Note that these conditions ensure that there is always an optimal level of effort α∗(j)

given agent i decided to manipulate j.55 Agent i’s optimal choice is then (j∗,α∗(j∗))

such that j∗ ∈ argmaxj �=i ui

�
M(t), x(t); j,α∗(j)

�
.

Secondly, all agents communicate with their neighbors and update their beliefs

using the updated trust weights:

x(t+ 1) = [x(t)](i; j,α) = M(t+ 1)x(t) = [M(t)](i; j,α)x(t).

In the sequel, we will often simply write x(t + 1) and omit the dependence on the

agent selected to manipulate and her choice (j,α). We can rewrite this equation as

x(t+ 1) = M(t+ 1)x(0), where M(t+ 1) = M(t+ 1)M(t) · · ·M(1) (and M(t) = In

for t < 1, where In is the n× n identity matrix) denotes the overall trust matrix.

Now, let us give some examples of satisfaction functions that fulfill our assump-

tions.

Example 12 (Satisfaction functions).

(i) Let γ ∈ N and

vi
�
[M(t)](i; j,α), x(t)

�
= −

1

n− 1

�

k �=i

�
xi(t)−

�
M(t+ 1)γ x(t)

�
k

�2

,

where M(t+1) = [M(t)](i; j,α). That is, agent i’s objective is that each other

agent’s opinion γ periods ahead is as close as possible to her current opinion,

disregarding possible manipulations in future periods.

(ii)

vi
�
[M(t)](i; j,α), x(t)

�
= −

�
xi(t)−

1

n− 1

�

k �=i

xk(t+ 1)

�2

,

55Note that for all j, vi(M(i; j,α), x) is continuous in α and bounded from above since vi(·, x) is

bounded from above on the compact set [0, 1]n×n for all x ∈ R
n. In total, the utility is continuous

in α > 0 and since the costs are strictly increasing and strictly convex in α > 0, there always exists

an optimal level of effort, which might not be unique, though.
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where xk(t + 1) =
�
[M(t)](i; j,α)x(t)

�
k
. That is, agent i wants to be close to

the average opinion in society one period ahead, but disregards differences on

the individual level.

We will frequently choose in examples the first satisfaction function with param-

eter γ = 1, together with a cost function that combines fixed costs and quadratic

costs of effort.

Remark 2. If we choose satisfaction functions vi ≡ v for some constant v and all

i ∈ N , then agents do not have any incentive to exert effort and our model reverts

to the classical model of DeGroot (1974).

We now introduce the notion of consensus. Whether or not a consensus is reached

in the limit depends generally on the initial opinions.

Definition 9 (Consensus). We say that a group of agents G ⊆ N reaches a con-

sensus given initial opinions (xi(0))i∈N , if there exists x(∞) ∈ R such that

lim
t→∞

xi(t) = x(∞) for all i ∈ G.

3.3 The Trust Structure

We investigate how manipulation can modify the structure of interaction or trust in

society. We first shortly recall some graph-theoretic terminology.56 We call a group

of agents C ⊆ N minimal closed at period t if these agents only trust agents inside

the group, i.e.,
�

j∈C mij(t) = 1 for all i ∈ C, and if this property does not hold for

a proper subset C � � C. The set of minimal closed groups at period t is denoted

C(t) and is called the trust structure. A walk at period t of length K is a sequence

of agents i1, i2, . . . , iK+1 such that mik,ik+1
(t) > 0 for all k = 1, 2, . . . , K. A walk is

a path if all agents are distinct. A cycle is a walk that starts and ends in the same

agent. A cycle is simple if only the starting agent appears twice in the cycle. We say

that a minimal closed group of agents C ∈ C(t) is aperiodic if the greatest common

divisor57 of the lengths of simple cycles involving agents from C is 1.58 Note that

this is fulfilled if mii(t) > 0 for some i ∈ C.

56See Golub and Jackson (2010).
57For a set of integers S ⊆ N, gcd(S) = max {k ∈ N | m/k ∈ N for all m ∈ S} denotes the great-

est common divisor.
58Note that if one agent in a simple cycle is from a minimal closed group, then so are all.
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At each period t, we can decompose the set of agents N into minimal closed

groups and agents outside these groups, the rest of the world, R(t):

N =
�

C∈C(t)

C ∪R(t).

Within minimal closed groups, all agents interact indirectly with each other, i.e.,

there is a path between any two agents. We say that the agents are strongly con-

nected. For this reason, minimal closed groups are also called strongly connected

and closed groups, see Golub and Jackson (2010). Moreover, agent i ∈ N is part of

the rest of the world R(t) if and only if there is a path at period t from her to some

agent in a minimal closed group C �� i.

We say that a manipulation at period t does not change the trust structure if

C(t + 1) = C(t). It also implies that R(t + 1) = R(t). We find that manipulation

changes the trust structure when the manipulated agent belongs to a minimal closed

group and additionally the manipulating agent does not belong to this group, but

may well belong to another minimal closed group. In the latter case, the group of

the manipulated agent is disbanded since it is not anymore closed and its agents

join the rest of the world. However, if the manipulating agent does not belong to a

minimal closed group, the effect on the group of the manipulated agent depends on

the trust structure. Apart from being disbanded, it can also be the case that the

manipulating agent and possibly others from the rest of the world join the group of

the manipulated agent.

Proposition 8. Suppose that E(t) = (i; j,α), α > 0, at period t.

(i) Let i ∈ N , j ∈ R(t) or i, j ∈ C ∈ C(t). Then, the trust structure does not

change.

(ii) Let i ∈ C ∈ C(t) and j ∈ C � ∈ C(t)\{C}. Then, C � is disbanded, i.e.,

C(t+ 1) = C(t)\{C �}.

(iii) Let i ∈ R(t) and j ∈ C ∈ C(t).

(a) Suppose that there exists no path from i to k for any k ∈ ∪C�∈C(t)\{C}C
�.

Then, R� ∪ {i} joins C, i.e.,

C(t+ 1) = C(t)\{C} ∪ {C ∪R� ∪ {i}},

where R� = {l ∈ R(t)\{i} | there is a path from i to l}.

(b) Suppose that there exists C � ∈ C(t)\{C} such that there exists a path from

i to some k ∈ C �. Then, C is disbanded.
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All proofs can be found in Appendix 3.A. The following example shows that

manipulation can enable a society to reach a consensus due to changes in the trust

structure.

Example 13 (Consensus due to manipulation). Take N = {1, 2, 3} and assume

that

ui

�
M(t), x(t); j,α

�
= −

1

2

�

k �=i

�
xi(t)− xk(t+ 1)

�2
−

�
α2 + 1/10 · 1{α>0}(α)

�

for all i ∈ N . Notice that the first part of the utility is the satisfaction function in

Example 12 part (i) with parameter γ = 1, while the second part, the costs of effort,

combines fixed costs, here 1/10, and quadratic costs of effort. Let x(0) = (10, 5,−5)�

be the vector of initial opinions and

M(0) =



.8 .2 0

.4 .6 0

0 0 1




be the initial trust matrix. Hence, C(0) = {{1, 2}, {3}}. Suppose that first agent

1 and then agent 3 are drawn to meet another agent. Then, at period 0, agent 1’s

optimal decision is to exert α = 2.5459 effort on agent 3. The trust of the latter is

updated to

m3(1) = (.72, 0, .28) ,

while the others’ trust does not change, i.e., mi(1) = mi(0) for i = 1, 2, and the

updated opinions become

x(1) = M(1)x(0) = (9, 7, 5.76)� .

Notice that the group of agent 3 is disbanded (see part (ii) of Proposition 8). In the

next period, agent 3’s optimal decision is to exert α = .75 effort on agent 1. This

results in the following updated trust matrix:

M(2) =



.46 .11 .43

.4 .6 0

.72 0 .28


 .

Notice that agent 3 joins group {1, 2} (see part (iii,a) of Proposition 8) and therefore,

N is minimal closed, which implies that the group will reach a consensus, as we will

see later on.

59Stated values are rounded to two decimals for clarity reasons.
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However, notice that if instead of agent 3 another agent is drawn in period 1, then

agent 3 never manipulates since when finally she would have the opportunity, her

opinion is already close to the others’ opinions and therefore, she stays disconnected

from them. Nevertheless, the agents would still reach a consensus in this case due to

the manipulation at period 0. Since agent 3 trusts agent 1, she follows the consensus

that is reached by the first two agents.

3.4 The Long-Run Dynamics

We now look at the long-run effects of manipulation. First, we study the conse-

quences of a single manipulation on the long-run opinions of minimal closed groups.

In this context, we are interested in the role of manipulation in opinion leadership.

Secondly, we investigate the outcome of the influence process. Finally, we discuss

how manipulation affects the speed of convergence of minimal closed groups and

illustrate our results by means of an example.

3.4.1 Opinion Leadership

Typically, an agent is called opinion leader if she has substantial influence on the

long-run beliefs of a group. That is, if she is among the most influential agents

in the group. Intuitively, manipulating others should increase her influence on the

long-run beliefs and thus foster opinion leadership.

To investigate this issue, we need a measure for how remotely agents are located

from each other in the network, i.e., how directly agents trust other agents. For this

purpose, we can make use of results from Markov chain theory. Let (X
(t)
s )∞s=0 denote

the homogeneous Markov chain induced by the transition matrix M(t). The agents

are then interpreted as states of the Markov chain and the trust of i in j, mij(t), is

interpreted as the transition probability from state i to state j. Then, the mean first

passage time from state i to state j is defined as E[inf{s ≥ 0 | X (t)
s = j} | X(t)

0 = i].

Given the current state of the Markov chain is i, the mean first passage time to j is

the expected time it takes for the chain to reach state j.

In other words, the mean first passage time from i to j corresponds to the average

(expected) length of a random walk on the weighted network M(t) from i to j that

takes each link with probability equal to the assigned weight.60 This average length

60More precisely, it is a random walk on the state space N that, if currently in state k, travels

to state l with probability mkl(t). The length of this random walk to j is the time it takes for it

to reach state j.
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is small if the weights along short paths from i to j are high, i.e., if agent i trusts

agent j rather directly. We therefore call this measure weighted remoteness of j

from i.

Definition 10 (Weighted remoteness). Take i, j ∈ N , i �= j. The weighted remote-

ness at period t of agent j from agent i is given by

rij(t) = E[inf{s ≥ 0 | X(t)
s = j} | X(t)

0 = i],

where (X
(t)
s )∞s=0 is the homogeneous Markov chain induced by M(t).

The following remark shows that the weighted remoteness attains its minimum

when i trusts solely j.

Remark 3. Take i, j ∈ N , i �= j.

(i) rij(t) ≥ 1,

(ii) rij(t) < +∞ if and only if there is a path from i to j, and, in particular, if

i, j ∈ C ∈ C(t),

(iii) rij(t) = 1 if and only if mij(t) = 1.

To provide some more intuition, let us look at an alternative (implicit) formula

for the weighted remoteness. Suppose that i, j ∈ C ∈ C(t) are two distinct agents in

a minimal closed group. By part (ii) of Remark 3, the weighted remoteness is finite

for all pairs of agents in that group. The unique walk from i to j with (average)

length 1 is assigned weight (or has probability, when interpreted as a random walk)

mij(t). And the average length of walks to j that first pass through k ∈ C\{j} is

rkj(t) + 1, i.e., walks from i to j with average length rkj(t) + 1 are assigned weight

(have probability) mik(t). Thus,

rij(t) = mij(t) +
�

k∈C\{j}

mik(t)(rkj(t) + 1) .

Finally, applying
�

k∈C mik(t) = 1 leads to the following remark.

Remark 4. Take i, j ∈ C ∈ C(t), i �= j. Then,

rij(t) = 1 +
�

k∈C\{j}

mik(t)rkj(t).
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Note that computing the weighted remoteness using this formula amounts to

solving a linear system of |C|(|C|− 1) equations, which has a unique solution.

We denote by π(C; t) the probability vector of the agents’ influence on the final

consensus of their group C ∈ C(t) at period t, given that the group is aperiodic and

the trust matrix does not change any more.61 In this case, the group converges to

x(∞) = π(C; t)� x(t)|C =
�

i∈C

πi(C; t)xi(t),

where x(t)|C = (xi(t))i∈C is the restriction of x(t) to agents in C. In other words,

πi(C; t), i ∈ C, is the influence weight of agent i’s opinion at period t, xi(t), on

the consensus of C. Notice that the influence vector π(C; t) depends on the trust

matrix M(t) and therefore it changes with manipulation. A higher value of πi(C; t)

corresponds to more influence of agent i on the consensus. Each agent in a minimal

closed group has at least some influence on the consensus: πi(C; t) > 0 for all

i ∈ C.62

We now turn back to the long-run consequences of manipulation and thus, opin-

ion leaders. We restrict our analysis to the case where both the manipulating and

the manipulated agent are in the same minimal closed group. Since in this case the

trust structure is preserved we can compare the influence on the long-run consensus

of the group before and after manipulation.

Proposition 9. Suppose that at period t, group C ∈ C(t) is aperiodic and E(t) =

(i; j,α), i, j ∈ C. Then, aperiodicity is preserved and the influence of agent k ∈ C

on the final consensus of her group changes as follows,

πk(C; t+ 1)− πk(C; t) =
�

α/(1 + α)πi(C; t)πj(C; t+ 1)
�

l∈C\{i} mjl(t)rli(t) if k = i

α/(1 + α)πk(C; t)πj(C; t+ 1)
��

l∈C\{k}mjl(t)rlk(t)− rik(t)
�

if k �= i
.

Corollary 7. Suppose that at period t, group C ∈ C(t) is aperiodic and E(t) =

(i; j,α), i, j ∈ C. If α > 0, then

(i) agent i strictly increases her long-run influence, πi(C; t+ 1) > πi(C; t),

61In the language of Markov chains, π(C; t) is known as the unique stationary distribution of

the aperiodic communication class C. Without aperiodicity, the class might fail to converge to

consensus.
62See Golub and Jackson (2010).
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(ii) any other agent k �= i of the group can either gain or lose influence, depending

on the trust matrix. She gains if and only if

�

l∈C\{k,i}

mjl(t)
�
rlk(t)− rik(t)

�
> mjk(t)rik(t),

(iii) agent k �= i, j loses influence for sure if j trusts solely her, i.e., mjk(t) = 1.

Proposition 9 tells us that the change in long-run influence for any agent k

depends on the effort agent i exerts to manipulate agent j, agent k’s current long-

run influence and the future long-run influence of the manipulated agent j. In

particular, the magnitude of the change increases with i’s effort, and it is zero if

agent i does not exert any effort. Furthermore, notice that dividing both sides

by agent k’s current long-run influence, πk(C; t), yields the relative change in her

long-run influence.

When agent k = i, we find that this change is strictly positive whenever she

exerts some effort. In this sense, manipulation fosters opinion leadership. It is large

if the weighted remoteness of i from agents (other than i) that are significantly

trusted by j is large. To understand this better, notice that the long-run influence

of an agent depends on how much she is trusted by agents that are trusted. Or, in

other words, an agent is influential if she is influential on other influential agents.

Thus, there is a direct gain of influence due to an increase of trust from j and an

indirect loss of influence (that is always dominated by the direct gain) due to a

decrease of trust from j faced by agents that (indirectly) trust i. This explains why

it is better for i if agents facing a large decrease of trust from j (those trusted much

by j) do not (indirectly) trust i much, i.e., i has a large weighted remoteness from

them.

For any other agent k �= i, it turns out that the change can be positive or

negative. It is positive if, broadly speaking, j does not trust k a lot, the weighted

remoteness of k from i is small and furthermore the weighted remoteness of k from

agents (other than i) that are significantly trusted by j is larger than that from

i. In other words, it is positive if the manipulating agent, who gains influence for

sure, (indirectly) trusts agent k significantly (small weighted remoteness of k from

i), k does not face a large decrease of trust from j and those agents facing a large

decrease from j (those trusted much by j) (indirectly) trust k less than i does.

Notice that for any agent k �= i, j, this is a trade-off between an indirect gain

of trust due to the increase of trust that i obtains from j, on the one hand, and

an indirect loss of influence due to a decrease of trust from j faced by agents that

(indirectly) trust k as well as the direct loss of influence due to a decrease of trust
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from j, on the other hand. In the extreme case where j only trusts k, the direct loss

of influence dominates the indirect gain of influence for sure.

In particular, it means that even the manipulated agent j can gain influence. In

a sense, such an agent would like to be manipulated because she trusts the “wrong”

agents. For agent j, being manipulated is positive if her weighted remoteness from

agents she trusts significantly is large and furthermore, her weighted remoteness

from i is small. Hence, it is positive if the manipulating agent (indirectly) trusts her

significantly (small weighted remoteness from i) and agents facing a large decrease

of trust from her (those she trusts) do not (indirectly) trust her much. Here, the

trade-off is between the indirect gain of trust due to the increase of trust that i

obtains from her and the indirect loss of influence due to a decrease of trust from

her faced by agents that (indirectly) trust her. Note that the gain of influence is

particularly large if the manipulating agent trusts j significantly.

The next example shows that indeed in some situations an agent can gain from

being manipulated in the sense that her influence on the long-run beliefs increases.

Example 14 (Being manipulated can increase influence). Take N = {1, 2, 3} and

assume that

M(0) =



.25 .25 .5

.5 .5 0

.4 .5 .1




is the initial trust matrix. Notice that N is minimal closed. Suppose that agent

1 has the opportunity to meet another agent and decides to exert effort α > 0 on

agent 3. Then, from Proposition 9, we get

π3(N ; 1)− π3(N ; 0) =
α

1 + α
π3(N ; 0)π3(N ; 1)

�

l=1,2

m3l(0)rl3(0)− r13(0)

=
α

1 + α
π3(N ; 0)π3(N ; 1)

7

10
> 0,

since π3(N ; 0), π3(N ; 1) > 0. Hence, being manipulated by agent 1 increases agent

3’s influence on the long-run beliefs. The reason is that, initially, she trusts too

much agent 2 – an agent that does not trust her at all. She gains influence from

agent 1’s increase of influence on the long-run beliefs since this agent trusts her.

In other words, after being manipulated she is trusted by an agent that is trusted

more.

Furthermore, we can use Proposition 9 to compare the expected influence on the

long-run consensus of society before and after manipulation when all agents are in
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the same minimal closed group.63 For this result we need to slightly change our

notation. We denote the decision of agent i ∈ N when she is selected to meet

another agent by
�
j(i),α(i; j(i))

�
, i.e., agent i decides to exert effort α(i; j(i)) on

agent j(i).

Corollary 8. Suppose that at period t, C(t) = {N} and that N is aperiodic. Then,

aperiodicity is preserved and, in expectation, the influence of agent k ∈ N on the

final consensus of the society changes as follows from period t to t+ 1,

E[πk(N ; t+ 1)− πk(N ; t) | M(t), x(t)] =

πk(N ; t)

n

�
�

i∈N

�
α(i; j(i))

1 + α(i; j(i))
πj(i)(N ; t+ 1)

�

l �=k

mj(i)l(t)rlk(t)

�
−

�

i �=k

α(i; j(i))

1 + α(i; j(i))
πj(i)(N ; t+ 1)rik(t)

�
.

Notice that an agent gains long-run influence in expectation if and only if the

term in the square brackets is positive. For this to hold, it is necessary that

α(i; j(i)) > 0 for some i ∈ N at period t. Moreover, it follows from Corollary 7

part (i) that α(k; j(k)) > 0 and α(i; j(i)) = 0 for all i �= k at period t (i.e., only

agent k would manipulate if she was selected at t) is a sufficient condition for that

she gains influence in expectation. The reason is that agent k gains influence for sure

when she manipulates herself, and since no other agent manipulates when selected,

she gains in expectation. Notice that by dividing both sides by agent k’s current

long-run influence, πk(C; t), we get the expected relative change in her long-run

influence.

3.4.2 Convergence

We now determine where the process finally converges to. First, we look at the case

where all agents are in the same minimal closed group. Given the group is aperiodic,

we show that if the satisfaction level only depends on the opinions (before and after

manipulation), i.e., a change in trust that does not affect opinions does not change

the satisfaction of an agent, and if there is a fixed cost for exerting effort, then

manipulation comes to an end, eventually. At some point, opinions in the society

become too similar to be manipulated. Second, we determine the final consensus

the society converges to.

63Notice that if not all agents are in the same minimal closed group, then the group in question

could be disbanded with some probability and hence would not anymore reach a consensus.
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Lemma 2. Suppose that C(0) = {N} and that N is aperiodic. If for all i, j ∈ N

and α > 0,

(i) vi
�
M(i; j,α), x

�
− vi

�
M(i; j, 0), x

�
→ 0 if �x(i; j,α)− x(i; j, 0)� → 0, and

(ii) ci(j,α) ≥ c > 0,

then, there exists an almost surely finite stopping time τ such that from period t = τ

on there is no more manipulation, where �·� is any norm on R
n.64 The society

converges to the random variable

x(∞) = π(N ; τ)�M(τ − 1)x(0).

Now, we turn to the general case of any trust structure. We show that after

a finite number of periods, the trust structure settles down. Then, it follows from

the above result that, under the beforementioned conditions, manipulation within

the minimal closed groups that have finally been formed comes to an end. We also

determine the final consensus opinion of each aperiodic minimal closed group.

Proposition 10. (i) There exists an almost surely finite stopping time τ such

that for all t ≥ τ , C(t) = C(τ).

(ii) If C ∈ C(τ) is aperiodic and for all i, j ∈ C, α > 0,

(1) vi
�
M(i; j,α), x

�
−vi

�
M(i; j, 0), x

�
→ 0 if �x(i; j,α)−x(i; j, 0)� → 0, and

(2) ci(j,α) ≥ c > 0,

then, there exists an almost surely finite stopping time �τ ≥ τ such that at all

periods t ≥ �τ , agents in C are not manipulated. Moreover, they converge to

the random variable

x(∞) = π(C; �τ)� M(�τ − 1)|C M(�τ − 2)|C · · · M(1)|C x(0)|C .

In what follows we use τ and �τ in the above sense. We denote by πi(C; t) the

overall influence of agent i’s initial opinion on the consensus of group C at period

t given no more manipulation affecting C takes place. The overall influence is

implicitly given by Proposition 10.

64In our context, this means that τ is a random variable such that the event τ = t only depends

on which agents were selected to meet another agent at periods 1, 2, . . . , t, and furthermore τ is

almost surely finite, i.e., the event τ < +∞ has probability 1.
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Corollary 9. The overall influence of the initial opinion of agent i ∈ N on the

consensus of an aperiodic group C ∈ C(τ) is given by

πi(C; �τ) =
� �

π(C; �τ)� M(�τ − 1)|C M(�τ − 2)|C · · · M(1)|C
�
i

if i ∈ C

0 if i /∈ C
.

It turns out that an agent outside a minimal closed group that has finally formed

can never have any influence on its consensus opinion.

3.4.3 Speed of Convergence

We have seen that within an aperiodic minimal closed group C ∈ C(t) agents reach a

consensus given that the trust structure does not change anymore. This means that

their opinions converge to a common opinion. By speed of convergence we mean the

time that this convergence takes. That is, it is the time it takes for the expression

|xi(t)− xi(∞)|

to become small. It is well known that this depends crucially on the second largest

eigenvalue λ2(C; t) of the trust matrix M(t)|C , where M(t)|C = (mij(t))i,j∈C denotes

the restriction of M(t) to agents in C. Notice that M(t)|C is a stochastic matrix

since C is minimal closed. The smaller the eigenvalue in absolute value, the faster

the convergence to consensus (see Jackson, 2008).

Thus, the change in the second largest eigenvalue due to manipulation tells

us whether the speed of convergence has increased or decreased. In this context,

the concept of homophily is important, that is, the tendency of people to interact

relatively more with those people who are similar to them.65

Definition 11 (Homophily). The homophily of a group of agents G ⊆ N at period

t is defined as

Hom(G; t) =
1

|G|


�

i,j∈G

mij(t)−
�

i∈G,j /∈G

mij(t)


 .

The homophily of a group of agents is the normalized difference of their trust in

agents inside and outside the group. Notice that a minimal closed group C ∈ C(t) at-

tains the maximum homophily, Hom(C; t) = 1. Consider a cut of society (S,N\S),

S ⊆ N , S �= ∅, into two groups of agents S and N\S.66 The next lemma establishes

65Notice that we do not model explicitly the characteristics that lead to homophily.
66There exist many different notions of homophily in the literature. Our measure is similar to

the one used in Golub and Jackson (2012). We can consider the average homophily (Hom(S; t) +

Hom(N\S; t))/2 with respect to the cut (S,N\S) as a generalization of degree-weighted homophily

to general weighted averages.
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that manipulation across the cut decreases homophily, while manipulation within a

group increases it.

Lemma 3. Take a cut of society (S,N\S). If i ∈ N manipulates j ∈ S at period

t, then

(i) the homophily of S (strictly) increases if i ∈ S (and
�

k∈S mjk(t) < 1), and

(ii) the homophily of S (strictly) decreases if i /∈ S (and
�

k∈S mjk(t) > 0).

Now, we come back to the speed of convergence. Given the complexity of the

problem for n ≥ 3, we consider an example of a two-agent society that suggests that

homophily helps to explain the change in speed of convergence.

Example 15 (Speed of convergence with two agents). Take N = {1, 2} and suppose

that at period t, N is minimal closed and aperiodic. Then, we have that λ2(N ; t) =

m11(t)−m21(t) = m22(t)−m12(t). Therefore, we can characterize the change in the

second largest eigenvalue as follows:

|λ2(N ; t+ 1)| ≤ |λ2(N ; t)| ⇔ |m11(t+ 1)−m21(t+ 1)| ≤ |m11(t)−m21(t)|

⇔ |m22(t+ 1)−m12(t+ 1)| ≤ |m22(t)−m12(t)|.

It means that convergence is faster after manipulation if afterwards agents behave

more similar, i.e., the trust both agents put on agent 1’s opinion is more similar

(which implies that also the trust they put on agent 2’s opinion is more similar).

Thus, if for instance

m22(t) > (1 + α)m12(t), (4)

then agent 1 manipulating agent 2 accelerates convergence. However, if m22(t) <

m12(t), it slows down convergence since manipulation increases the already existing

tendency of opinions to oscillate. The more interesting case is the first one, though.

We can write (4) as

(1 + α)Hom({1}, t) + Hom({2}, t) > α,

that is, manipulation accelerates convergence if there is sufficient aggregated ho-

mophily in the society and agent 1 does not exert too much effort.

The example shows that manipulation can speed up or slow down the convergence

process. More important, it suggests that in a sufficiently homophilic society where

exerting effort is rather costly, manipulation reducing homophily (i.e., across the

cut, see Lemma 3) increases the speed of convergence. Notice that manipulation
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increasing homophily (i.e., within one of the groups separated by the cut) is not

possible in this simple setting since both groups are singletons. However, it seems

plausible that it would slow down convergence in homophilic societies.67

3.4.4 Three-agents Example

Finally, let us consider an example with three agents to illustrate the results of this

section. We use a utility model that is composed of the satisfaction function in

Example 12 (i) and a cost function that combines fixed costs and quadratic costs of

effort.

Example 16 (Three-agents society). Take N = {1, 2, 3} and assume that

ui

�
M(t), x(t); j,α

�
= −

1

2

�

k �=i

�
xi(t)− xk(t+ 1)

�2
−

�
α2 + 1/10 · 1{α>0}(α)

�

for all i ∈ N . Let x(0) = (10, 5, 1)� be the vector of initial opinions and

M(0) =



.6 .2 .2

.1 .4 .5

0 .6 .4




be the initial trust matrix. Notice that this society is connected. The vector of

initial long-run influence – and of long-run influence in the classical model without

manipulation – is π(N ; 0) = πcl = (.12, .46, .42)� and the initial speed of convergence

is measured by λ2(N ; 0) = λ2,cl = .55. At period 0, any agent selected to exert effort

would do so. It is either E(0) = (1; 3, 1.46), (2; 1, .6) or (3; 1, 1.4). In expectation, we

get E[π(N ; 1)] = (.2, .41, .39)� and E[λ2(N ; 1)] = .21. So, on average agent 1 profits

from manipulation. Since initially the other agents almost did not listen to her and

also her opinion was far apart from the others’ opinions, she exerts significant effort

when selected. In particular, the society is homophilic: taking the cut ({1}, {2, 3}),

we get

Hom({1}, 0) = .2 and Hom({2, 3}, 0) = .9.

So, since with probability one the manipulation is across the cut, the strong decrease

in the (expected) second largest eigenvalue supports our suggestion from Section

3.4.3 that manipulation reducing homophily (i.e., across the cut) increases the speed

of convergence.

67In the above example, increasing homophily is attained by increasing the weight of an agent

on herself, which leads to an increase of the second largest eigenvalue in sufficiently homophilic

societies.
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At the next period, there is only manipulation if at the last period an agent

other than agent 3 was selected to manipulate. In expectation, we get E[π(N ; 2)] =

(.22, .41, .38)� and E[λ2(N ; 2)] = .17. Again, agent 1 profits on average from ma-

nipulation, but only slightly since opinions are already closer and since she is not

as isolated as in the beginning. The convergence gets, on average, slightly faster as

well.

Manipulation ends here, that is, with probability one no agent exerts effort from

period 2 on, i.e M(t) = M(2) for all t ≥ 2. Hence, the expected influence of the

agents’ initial opinions on the consensus is

E[π(N ; 2)�] = E[π(N ; 2)�M(1)] = E[π(N ; 2)�M(1)] = (.21, .41, .38).

Thus, the expected consensus that society reaches is

E[x(∞)] = E[π(N ; 2)�]x(0) = 4.53.

Compared to this, the classical model gives xcl(∞) = π�
cl
x(0) = 3.88 and hence,

our model leads to an average long-run belief of society that is closer to the initial

opinion of agent 1 since she is the one who (on average) gains influence due to

manipulation.

3.5 The Wisdom of Crowds

We now investigate how manipulation affects the extent of misinformation in society.

In this section, we assume that the society forms one minimal closed and aperiodic

group. Clearly, societies that are not connected fail to aggregate information.68 We

use an approach similar to Acemoglu et al. (2010) and assume that there is a true

state µ = (1/n)
�

i∈N xi(0) that corresponds to the average of the initial opinions

of the n agents in the society. Information about the true state is dispersed, but

can easily be aggregated by the agents: uniform overall influence on the long-run

beliefs leads to perfect aggregation of information.69 Notice that, in general, agents

cannot infer the true state from the initial information since they only get to know

the information of their neighbors.

68However, as in Example 13, we can observe that manipulation leads to a connected society

and thus such an event can also be viewed as reducing the extent of misinformation in the society.
69We can think of the initial opinions as being drawn independently from some distribution with

mean µ. Then, uniform overall influence leads as well to optimal aggregation, the difference being

that it is not perfect in this case due to the finite number of samples.
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At a given period t, the wisdom of the society is measured by the difference

between the true state and the consensus they would reach in case no more manip-

ulation takes place:

π(N ; t)�x(0)− µ =
�

i∈N

�
πi(N ; t)−

1

n

�
xi(0).

Hence, �π(N ; t) − (1/n)I�2 measures the extent of misinformation in the society,

where I = (1, 1, . . . , 1)� ∈ R
n is a vector of 1s and �x�2 =

��
k∈N |xk|2 is the

standard Euclidean norm of x ∈ R
n. We say that an agent i undersells (oversells)

her information at period t if πi(N ; t) < 1/n (πi(N ; t) > 1/n). In a sense, an agent

underselling her information is, compared to her overall influence, (relatively) well

informed.

Definition 12 (Extent of misinformation). A manipulation at period t reduces the

extent of misinformation in society if

�π(N ; t+ 1)− (1/n)I�2 < �π(N ; t)− (1/n)I�2,

otherwise, it (weakly) increases the extent of misinformation.

The next lemma describes, given some agent manipulates another agent, the

change in the overall influence of an agent from period t to period t+ 1.

Lemma 4. Suppose that C(0) = {N} and that N is aperiodic. For k ∈ N , at period

t,

πk(N ; t+ 1)− πk(N ; t) =
n�

l=1

mlk(t)
�
πl(N ; t+ 1)− πl(N ; t)

�
.

In case there is manipulation at period t, the overall influence of the initial

opinion of an agent increases if the agents that overall trust her gain (on average)

influence from the manipulation. Next, we provide conditions ensuring that a ma-

nipulation reduces the extent of misinformation in the society. First, manipulation

should not be too cheap for the agent who is manipulating. Second, only agents

underselling their information should gain overall influence. We say that π(N ; t) is

generic if for all k ∈ N it holds that πk(N ; t) �= 1/n.

Proposition 11. Suppose that C(0) = {N}, N is aperiodic and that π(N ; t) is

generic. Then, there exists α > 0 such that E(t) = (i; j,α), α > 0, reduces the

extent of misinformation if

(i) α ≤ α, and
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(ii)
�n

l=1 mlk(t)
�
πl(N ; t+ 1)− πl(N ; t)

�
≥ 0 if and only if k undersells her infor-

mation at period t.

Intuitively, condition (ii) says that (relatively) well informed agents (those that

undersell their information) should gain overall influence, while (relatively) badly

informed agents (those that oversell their information) should lose overall influence.

Then, this leads to a distribution of overall influence in the society that is more

equal and hence reduces the extent of misinformation in the society – but only

if i does not exert too much effort on j (condition (i)). Otherwise, manipulation

makes some agents too influential, in particular the manipulating agent, and leads

to a distribution of overall influence that is even more unequal than before. In

other words, information aggregation can be severely harmed when for some agents

manipulation is rather cheap.

We now introduce a true state of the world into Example 16. On average,

manipulation reduces the extent of misinformation in each period and the society

converges to a more precise consensus.

Example 17 (Three-agents society, cont’d). Recall that N = {1, 2, 3} and that

ui

�
M(t), x(t); j,α

�
= −

1

2

�

k �=i

�
xi(t)− xk(t+ 1)

�2
−

�
α2 + 1/10 · 1{α>0}(α)

�

for all i ∈ N . Furthermore, x(0) = (10, 5, 1)� and

M(0) =



.6 .2 .2

.1 .4 .5

0 .6 .4


 .

Hence, µ = (1/3)
�

i∈N xi(0) = 5.33 is the true state. The vector of initial overall

influence is π(N ; 0) = π(N ; 0) = (.12, .46, .42)�. Recall that in expectation, we

obtain E[π(N ; 1)] = E[π(N ; 1)] = (.2, .41, .39)�, E[π(N ; 2)] = (.21, .41, .38)� and that

there is no more manipulation from period 2 on. Thus,

�π(N ; 0)− (1/3)I�2 = .268 > �E[π(N ; 1)]− (1/3)I�2 = .161

> �E[π(N ; 2)]− (1/3)I�2 = .158.

So, in terms of the expected long-run influence, manipulation reduces the extent

of misinformation in society. And indeed, the agents reach the expected consensus

E[x(∞)] = 4.53, which is closer to the true state µ = 5.33 than the consensus they

would have reached in the classical model of DeGroot, xcl(∞) = 3.88.
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This confirms the intuition that manipulation has the most bite in the begin-

ning, before potentially misleading opinions have spread. Furthermore, this example

suggests that manipulation can have positive effects on information aggregation if

agents have homogeneous preferences for manipulation.

3.6 Conclusion

We investigated the role of manipulation in a model of opinion formation where

agents have beliefs about some question of interest and update them taking weighted

averages of neighbors’ opinions. Our analysis focused on the consequences of manip-

ulation for the trust structure and long-run beliefs in the society, including learning.

We showed that manipulation can modify the trust structure and lead to a

connected society, and thus, to consensus. Furthermore, we found that manipulation

fosters opinion leadership in the sense that the manipulating agent always increases

her influence on the long-run beliefs. And more surprisingly, this may even be the

case for the manipulated agent. The expected change of influence on the long-run

beliefs is ambiguous and depends on the agents’ preferences and the social network.

We also showed that the trust structure of the society settles down and, if the

satisfaction of agents does not directly depend on the trust, manipulation will come

to an end and they reach a consensus (under some weak regularity condition). To

obtain insights on the relation of manipulation and the speed of convergence, we pro-

vided examples and argued that in sufficiently homophilic societies where manipula-

tion is rather costly, manipulation accelerates convergence if it decreases homophily

and otherwise it slows down convergence.

Regarding learning, we were interested in the question whether manipulation is

beneficial or harmful for information aggregation. We used an approach similar to

Acemoglu et al. (2010) and showed that manipulation reduces the extent of misin-

formation in the society if manipulation is rather costly and the agents underselling

their information gain and those overselling their information lose overall influence.

Not surprisingly, agents for whom manipulation is cheap can severely harm infor-

mation aggregation. Furthermore, our main example suggests that homogeneous

preferences for manipulation favor a reduction of the extent of misinformation in

society.

We should notice that manipulation has no bite if we use the approach of Golub

and Jackson (2010). They studied large societies and showed that opinions converge

to the true state if the influence of the most influential agent in the society is

vanishing as the society grows. Under this condition, manipulation does not change
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convergence to the true state since its consequences are negligible compared to the

size of the society. In large societies, information is aggregated before manipulation

(and possibly a series of manipulations) can spread misinformation. The only way

manipulation could have consequences for information aggregation in large societies

would be to enable agents to manipulate a substantial proportion of the society

instead of only one agent. Relaxing the restriction to manipulation of a single agent

at a time is left for future work.

We view our paper as first attempt in studying manipulation and misinforma-

tion in society. Our approach incorporated strategic considerations in a model of

opinion formation à la DeGroot. We made several simplifying assumptions and de-

rived results that apply to general societies. We plan to address some of the open

issues in future work, e.g., extending manipulation to groups and allowing for more

sophisticated agents.

3.A Appendix

Proof of Proposition 8

(i) Follows immediately since all minimal closed groups remain unchanged.

(ii) If agent i manipulates agent j, then mji(t + 1) > 0 and thus, since C � � j

is minimal closed at period t, there exists a path at t + 1 from l to i for all

l ∈ C �. Since C is still minimal closed, it follows that R(t + 1) = R(t) ∪ C �,

i.e., C(t+ 1) = C(t)\{C �}.

(iii) (a) If agent i manipulates agent j, then it follows that
�

l∈C∪{i} mkl(t+1) = 1

for all k ∈ C since C is closed at t. Furthermore, since by assumption

there is no path from i to k for any k ∈ ∪C�∈C(t)\{C}C
� and by definition of

R�,
�

l∈C∪R�∪{i} mkl(t + 1) = 1 for all k ∈ R� ∪ {i}. Hence, it follows that�
l∈C∪R�∪{i} mkl(t + 1) = 1 for all k ∈ C ∪ R� ∪ {i}, i.e., C ∪ R� ∪ {i} is

closed.

Note that moreover, since by assumption there is no path from i to k for

any k ∈ ∪C�∈C(t)\{C}C
�, there is a path from i to j (otherwise R� ∪ {i} was

closed at t). Thus, since C is minimal closed and i manipulates j, there is

a path from k to l for all k, l ∈ C ∪ {i} at t+ 1. Then, by definition of R�,

there is also a path from k to l for all k ∈ C ∪ {i} and l ∈ R�. Moreover,

again by assumption and definition of R�, there exists a path from k to l

for all k ∈ R� and all l ∈ C (otherwise a subset of R� was closed at t).
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Combined, this implies that the same holds for all k, l ∈ C∪R�∪{i}. Hence,

C ∪R� ∪ {i} is minimal closed, i.e., C(t+ 1) = C(t)\{C} ∪ {C ∪R� ∪ {i}}.

(b) If agent i manipulates agent j, then mji(t + 1) > 0 and thus, since C � j

is minimal closed at period t, there exists a path at t+1 from l to i for all

l ∈ C. Hence, by assumption there exists a path from agent j to k, but

not vice versa since C � � k is minimal closed. Thus, R(t+ 1) = R(t) ∪ C,

which finishes the proof.

Proof of Proposition 9

Suppose without loss of generality that C(t) = {N}. First, note that aperiodicity

is preserved since manipulation can only increase the number of simple cycles. We

can write

M(t+ 1) = M(t) + ejz(t)
�,

where ej is the j-th unit vector, and

zk(t) =

�
(mji(t) + α) / (1 + α)−mji(t) if k = i

(mjk(t)) / (1 + α)−mjk(t) if k �= i

=

�
α(1−mji(t))/ (1 + α) if k = i

−αmjk(t)/ (1 + α) if k �= i
.

From Hunter (2005), we get

πk(N ; t+ 1)− πk(N ; t) = −πk(N ; t)πj(N ; t+ 1)
�

l �=k

zl(t)rlk(t)

=

�
α/ (1 + α) πi(N ; t)πj(N ; t+ 1)

�
l �=i mjl(t)rli(t) if k = i

α/ (1 + α) πk(N ; t)πj(N ; t+ 1)
��

l �=k mjl(t)rlk(t)− rik(t)
�

if k �= i
,

which finishes the proof.

Proof of Corollary 7

We know that πk(C; t), πk(C; t + 1) > 0 for all k ∈ C. Note that if i manipulates

j, i.e., α > 0, then it must be that mji(t) < 1 since otherwise [M(t)](i; j,α) =

[M(t)](i; j, 0) and thus the agent would not have exerted effort. Thus, by Remark

3,
�

l∈C\{i} mjl(t)rli(t) > 0 and hence πi(N ; t+1) > πi(N ; t), which proves part (i).

Part (ii) is obvious. Part (iii) follows since mjk(t) = 1 implies
�

l∈C\{k}mjl(t)rlk(t) =

0, which finishes the proof.
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Proof of Lemma 2

By Proposition 8, we know that C(t) = {N} for all t ≥ 0, and furthermore, also

aperiodicity is preserved. First, we show that the opinions converge to a consensus

x(∞). Therefore, suppose to the contrary that the opinions (with positive prob-

ability) do not converge. This implies that there exists a periodic trust matrix

M∗ ∈ R
n×n such that for some sequence of agents {i∗(t)}t≥0 chosen to manipulate,

M(t) → M∗ for t → ∞. Denote the decision of i∗(t) at period t by (j∗(t),α∗(t)).

Notice that since M(t) is aperiodic for all t ≥ 0, i.e., M(t) �= M ∗ for all t ≥ 0, this

is only possible if there are infinitely many manipulations. (5)

Denoting by x∗(t) the opinions and by M ∗(t) the trust matrix at period t in the

above case, we get
��[x∗(t)]

�
i∗(t); j∗(t),α∗(t)

�
− [x∗(t)]

�
i∗(t); j∗(t), 0

���

=
��[M∗(t)]

�
i∗(t); j∗(t),α∗(t)

�
x∗(t)−M∗(t)x∗(t)

��

→ 0 for t → ∞,

and thus, by assumption,

vi∗
�
[M∗(t)]

�
i∗(t); j∗(t),α∗(t)

�
, x∗(t)

�
− vi∗

�
[M∗(t)]

�
i∗(t); j∗(t), 0

�
, x∗(t)

�

→ 0 < c ≤ ci∗(j
∗(t),α∗(t)) for t → ∞,

which is a contradiction to (5). Having established the convergence of opinions,

it follows directly that �[x(t)](i; j,α) − [x(t)](i; j, 0)� → 0 for t → ∞, any i se-

lected at t and her choice (j,α). Hence, by assumption, vi
�
[M(t)](i; j,α), x(t)

�
−

vi
�
[M(t)](i; j, 0), x(t)

�
→ 0 < c ≤ ci(j,α) for t → ∞, any i selected at t and her

choice (j,α), which shows that there exits an almost surely finite stopping time τ

such that for all t ≥ τ , E(t) = (i; ·, 0) for any i chosen to manipulate at t.

Furthermore, since M(τ) is aperiodic and no more manipulation takes place,

agents reach a (random) consensus that can be written as

x(∞) = π(N ; τ)�x(τ) = π(N ; τ)�M(τ)x(τ − 1)

= π(N ; τ)�M(τ − 1)M(τ − 2) · · ·M(1)x(0)

= π(N ; τ)�M(τ − 1)x(0),

where the second equality follows from the fact that π(N ; τ) is a left eigenvector of

M(τ) corresponding to eigenvalue 1, which finishes the proof.

Proof of Proposition 10

Suppose that the sequence (τk)
∞
k=1 of stopping times denotes the periods where the

trust structure changes, i.e., at t = τk the trust structure changes the k-th time.
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Notice that τk = +∞ if the k-th change never happens. By Proposition 8, it follows

that when τk < +∞, either

(a) 1 ≤ |C(τk + 1)| < |C(τk)| and |R(τk + 1)| > |R(τk)|, or

(b) |C(τk + 1)| = |C(τk)| and 0 ≤ |R(τk + 1)| < |R(τk)|

holds. This implies that the maximal number of changes in the trust structure is

finite, i.e., there exists K < +∞ such that there are at most K changes in the

structure and thus, almost surely τK+1 = +∞. Hence, τ = max{τk + 1 | τk <

+∞} < +∞, where τ0 ≡ 0, is the desired almost surely finite stopping time, which

finishes part (i). Part (ii) follows from Lemma 2. The restriction to C of the matrices

M(t) in the computation of the consensus belief is due to the fact that M(t)|C is a

stochastic matrix for all t ≥ 0 since C is minimal closed at t = �τ , which finishes the

proof.

Proof of Lemma 3

Suppose that i ∈ S. Since
�

k∈S mjk(t)−
�

k/∈S mjk(t) ≤ (<)1, it follows that

�

k∈S

mjk(t)−
�

k/∈S

mjk(t)

≤ (<)

�
�

k∈S

mjk(t)−
�

k/∈S

mjk(t)

�
/(1 + α) + α/(1 + α)

=


 �

k∈S\{i}

mjk(t)−
�

k/∈S

mjk(t)


 /(1 + α) + (mji(t) + α)/(1 + α)

=
�

k∈S

mjk(t+ 1)−
�

k/∈S

mjk(t+ 1)

and hence Hom(S; t + 1) ≥ (>)Hom(S; t), which finishes part (i). Part (ii) is anal-

ogous, which finishes the proof.

Proof of Lemma 4

We can write

πk(N ; t+ 1) =
n�

l=1

mlk(t)πl(N ; t+ 1)

=
n�

l=1

mlk(t)
�
πl(N ; t+ 1)− πl(N ; t)

�
+

n�

l=1

mlk(t)πl(N ; t)
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=
n�

l=1

mlk(t)
�
πl(N ; t+ 1)− πl(N ; t)

�
+

n�

l=1

mlk(t− 1)πl(N ; t)

� �� �
=πk(N ;t)

,

where the last equality follows since π(N ; t) is a left eigenvector of M(t), which

finishes the proof.

Proof of Proposition 11

Let N∗ ⊆ N denote the set of agents that undersell their information at period

t. Then, the agents in N ∗ = N\N∗ oversell their information and additionally,

N∗, N
∗ �= ∅. By Proposition 9, we have πk(N ; t+ 1)− πk(N ; t) → 0 for α → 0 and

all k ∈ N and thus by Lemma 4 we have

πk(N ; t+ 1)− πk(N ; t) → 0 for α → 0 and all k ∈ N . (6)

Let k ∈ N∗, then by (ii) and Lemma 4, πk(N ; t + 1) ≥ πk(N ; t). Hence, by (6),

there exists α(k) > 0 such that

1/n ≥ πk(N ; t+ 1) ≥ πk(N ; t) for all 0 < α ≤ α(k).

Analogously, for k ∈ N ∗, there exists α(k) > 0 such that

1/n ≤ πk(N ; t+ 1) < πk(N ; t) for all 0 < α ≤ α(k).

Therefore, setting α = mink∈N α(k), we get for 0 < α ≤ α

�π(N ; t)− (1/n) · I�22 =
�

k∈N

|πk(N ; t)− 1/n|2

=
�

k∈N∗

|πk(N ; t)− 1/n|2� �� �
≥|πk(N ;t+1)−1/n|2

+
�

k∈N∗

|πk(N ; t)− 1/n|2� �� �
>|πk(N ;t+1)−1/n|2

>
�

k∈N

|πk(N ; t+ 1)− 1/n|2

= �π(N ; t+ 1)− (1/n) · I�22,

which finishes the proof.



Chapter 4

Strategic Communication in Social

Networks

4.1 Introduction

Individuals form their beliefs and opinions on various economic, political and social

issues based on information they receive from their social environment. This may

include friends, neighbors and coworkers as well as political actors and news sources,

among others. Typically, all these individuals have widely diverging interests, views

and tastes, as can be seen in daily political discussions or in all kinds of bargaining

situations. In election campaigns, politicians have incentives to argue solutions or

proposals that differ from their beliefs. In budget allocation problems, the recipients

of capital, e.g., ministries, local governments or departments of companies or uni-

versities, have incentives to overstate their capital requirement, while the other side

is concerned with efficiency. Another example are court trials, where the accused

has clearly incentives to misreport the events in question. And in marketing, firms

might overstate the product quality to attract costumers.

When interests are conflicting, individuals will find it more advantageous not to

reveal their true belief for strategic reasons. However, in the literature on commu-

nication in social networks, it is usually assumed that agents report their beliefs

truthfully, see, e.g., DeGroot (1974); Golub and Jackson (2010); DeMarzo et al.

(2003); Acemoglu et al. (2010); Förster et al. (2013). DeMarzo et al. (2003) state

that this assumption is for simplicity, but that “[n]onetheless, in many persuasive

settings, (e.g., political campaigns and court trials) agents clearly do have incentives

to strategically misreport their beliefs.”

The terms belief and opinion are usually employed as synonyms in the literature.

87
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In this paper, we disentangle these two terms by introducing conflicting interests.

The belief of an individual about some issue of common interest will be what she

holds to be true given her information about the issue. On the other hand, her

opinion (or biased belief ) will be what is ought to be the answer to the issue given

her bias.70 We assume that when two individuals communicate, the receiver of

information would like to get to know the belief of the sender about the issue as

precisely as possible in order to refine her own belief, while the sender wants to

spread his opinion, i.e., he would like the receiver to update her opinion with his

opinion.

To illustrate this approach, consider an international meeting of politicians, e.g.,

the United Nations climate change conferences. The common issue of the decision-

makers at these meetings is to find and to agree on the measures or actions to take

in order to limit global warming. Each decision-maker holds a belief about which

measures are to be taken by the global community to achieve this goal. However,

the opinion they (intend to) support (communicate) in front of the other decision-

makers often differs from this belief due to strategic reasons that depend on the

local environment within their country. These reasons include local costs of adap-

tion of the measures, the risk profile of the country, and the local public opinion.

In other words, the opinion that a decision-maker intends to support is the ideal

measure or action from her point of view.71 During these meetings, politicians in-

teract repeatedly with each other. When receiving information, they would like to

do so as precisely as possible since the ideal action for each country depends on the

fundamentals of global warming, while they intend to communicate their opinion

when sending information in order to reach an outcome close to the ideal measure

for their country.

An important question for society is how the presence of these conflicts influences

information aggregation, long-run beliefs and opinions in society. We develop a

framework of belief (opinion) dynamics where individuals with conflicting interests

communicate strategically in a social network and update their beliefs with the

obtained information.

More precisely, we consider a society represented by a social network of n agents.

70In this sense, her opinion is a personal judgement about the issue for strategic reasons or taste

considerations.
71The 2009 United Nations climate change conference that took place in Copenhagen, Denmark,

led to a political agreement on the goal of limiting global warming to no more than two degrees

Celsius over the pre-industrial average. However, views on the measures to take remained widely

diverging depending on local environments and therefore prevented a full-fledged legal agreement,

see Bodansky (2010).
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At time t ≥ 0, each agent holds a belief xi(t) ∈ [0, 1] about some common issue.72

Furthermore, each agent has a bias bi ∈ R that is common knowledge and that

determines her opinion (biased belief) xi(t) + bi.
73 Each agent starts with an initial

belief xi(0) ∈ [0, 1] and meets (communicates with) agents in her social neighborhood

according to a Poisson process in continuous time that is independent of the other

agents.74

When an agent is selected by her associated Poisson process, she receives infor-

mation from one of her neighbors (called the sender of information) according to

a stochastic process that forms her social network.75 The sender wants to spread

his opinion, while the receiver wants to infer his belief in order to update her own

belief. In equilibrium, this conflict of interest leads to noisy communication à la

Crawford and Sobel (1982, henceforth CS): the sender sends one of finite messages

that contains information about his belief, which is then interpreted by the receiver.

In optimal equilibrium, communication is as informative as possible given the con-

flict of interest, i.e., the sender uses as many messages as possible and discriminates

as finely as possible between different beliefs.76

The receiver updates her belief by taking the average of the interpretation of the

sent message and her pre-meeting belief. Although simple, this updating rule reflects

the idea that agents fail to adjust for repetitions and dependencies in information

they hear several times due to the complexity of social networks, as argued by

DeMarzo et al. (2003).77

Our framework induces a belief dynamics process as well as an opinion dynamics

process. As a first observation, we note that we can concentrate our analysis on the

belief dynamics process since both processes have the same convergence properties.

We say that an agent’s belief fluctuates on an interval if her belief will never leave

72We refer to DeMarzo et al. (2003) for a discussion about the representation of beliefs by a

unidimensional structure.
73Notice that our notion is consistent with the literature in the sense that the terms belief and

opinion coincide in absence of a bias.
74See Acemoglu et al. (2010, 2013), who use this timing in related models.
75Note that we model communication as directed. We want to allow for asymmetric communi-

cation since, e.g., an agent might obtain a lot of information from another agent, but this might

not be the case vice versa. We can think of journalists whose information reach a large audience,

who themselves only receive information from few people, though.
76Note that CS argue that the optimal equilibrium is particularly plausible in a situation like

ours, where communication is repeated.
77Note that this updating rule has another appealing interpretation: if the initial beliefs were

drawn independently from a normal distribution with equal mean and equal variance and if there

was no conflict of interest, then this updating rule would be optimal. In view of this, we should

think about the conflicts of interest as being rather small.
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the interval and if this does not hold for any subinterval. In other words, the belief

“travels” the whole interval, but not beyond.

In our main result, we show that for any initial beliefs, the belief dynamics pro-

cess converges to a set of intervals that is minimal mutually confirming. Given each

agent’s belief lies in her corresponding interval, these intervals are the convex combi-

nations of the interpretations the agents use when communicating. Furthermore, we

show that the belief of an agent eventually fluctuates on her corresponding interval

whenever the interval is proper, i.e., whenever it contains infinitely many elements

(beliefs). As a consequence, the belief dynamics has a steady state if and only if

there exists a minimal mutually confirming set such that all its intervals are degen-

erate, i.e., contain only a single point. We illustrate our results by several examples.

Furthermore, we note that outcomes with a steady state must be constructed ex-

plicitly by choosing specific biases and configurations of the social network: as long

as conflicts are small and some agents communicate with several different agents,

outcomes with a steady state are non-generic.

The introduction of conflict of interest leads not only to persistent disagreement

among the agents, but also to fluctuating beliefs and opinions, a phenomenon that

is frequently observed in social sciences, see, e.g., Kramer (1971), who documents

large swings in US voting behavior within short periods, and works in social and

political psychology that study how political parties and other organizations influ-

ence political beliefs, e.g., Cohen (2003); Zaller (1992). At the same time, our result

is surprising in view of the literature on communication in social networks: in most

models, a strongly connected network leads to mutual consensus among the agents

in the long-run. To this respect, Acemoglu et al. (2013) is the closest to our work,

where the authors introduce stubborn agents that never change their belief, which

leads to fluctuating beliefs when the other agents update regularly from different

stubborn agents.

There exists a large literature on communication in social networks, using both

Bayesian and non-Bayesian updating rules.78 Apart from the various works that

assume truthful communication, Büchel et al. (2012) study a model where agents

act strategically in the sense that their stated belief differs from their true belief de-

pending on their preferences for conformity. Acemoglu et al. (2014) study a model

of Bayesian learning where the agents’ objective is to form beliefs (acquire informa-

78In Bayesian and observational learning models communication is typically assumed to be truth-

ful and agents converge to a mutual consensus, e.g., Banerjee and Fudenberg (2004); Gale and

Kariv (2003); Acemoglu et al. (2011). Another stream of literature studies how observable behav-

iors spread in a population, e.g., López-Pintado (2008, 2012); Jackson and Yariv (2007); Morris

(2000).
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tion) about an irreversible decision that each agent has to make, eventually. In this

setting, agents might want to misreport their information in order to delay the deci-

sions of other agents. The authors show that it is an equilibrium to report truthfully

whenever truthful communication leads to asymptotic learning, i.e., the fraction of

agents taking the right decision converges to 1 (in probability) as the society grows.

They also show that in some situations, misreporting can lead to asymptotic learn-

ing while truthful communication would not. However, also these models lead to

mutual consensus under the condition that the underlying social network is strongly

connected.

Several authors have proposed models to explain non-convergence of beliefs, usu-

ally incorporating some kind of homophily that leads to segregated societies and

polarized beliefs.79 Axelrod (1997) proposed such a model in a discrete belief set-

ting, and later on Hegselmann and Krause (2002) and Deffuant et al. (2000) studied

the continuous case, see also Lorenz (2005); Blondel et al. (2009); Como and Fag-

nani (2011). Golub and Jackson (2012) argue that the presence of homophily can

substantially slow down convergence and thus lead to a high persistence of disagree-

ment. While being able to explain persistent disagreement, these models fail to

explain belief fluctuations in society.

Furthermore, our work is related to contributions on cheap-talk games. Hagen-

bach and Koessler (2010), Galeotti et al. (2013) and Ambrus and Takahashi (2008)

extend the framework of CS to a multi-player (-sender) environment, but maintain

the one-shot nature of the model.

The paper is organized as follows. In Section 4.2 we introduce the model and

notation. Section 4.3 concerns the equilibrium in the communication stage. In

Section 4.4 we look at the long-run belief dynamics. In Section 4.5 we conclude and

discuss briefly some of our model choices. The proofs are presented in Appendix

4.A.

4.2 Model and Notation

We consider a set N = {1, 2, . . . , n}, with n ≥ 2, of agents who repeatedly commu-

nicate with their neighbors in a social network. At time t ≥ 0, each agent i ∈ N

holds a belief xi(t) ∈ [0, 1] about some common issue of interest. Furthermore, agent

i has a bias bi ∈ R that is common knowledge, i.e., her biased belief xi(t) + bi is the

79An exception being Friedkin and Johnsen (1990), who study a variation of the model by

DeGroot (1974) where agents can adhere to their initial beliefs to some degree. This leads as well

to persistent disagreement among the agents.
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ideal response to the issue from her point of view given her belief xi(t). We refer to

xi(t) + bi as her opinion at time t about the issue given her belief xi(t).

The social network is given by a stochastic matrix P = (pij)i,j∈N , i.e., pij ≥ 0

for all i, j ∈ N and
�

j∈N pij = 1 for all i ∈ N . For agent i, pij is the probability

to meet agent j, and Ni = {j ∈ N | pij > 0} denotes i’s neighborhood. Let (N , g)

denote the directed graph where g = {(i, j) | pij > 0} is the set of directed links

induced by meeting probabilities pij > 0. Throughout the paper we will make the

following assumption.

Assumption 1. (i) (Self-communication) Agents do not communicate with them-

selves, i.e., pii = 0 for all i ∈ N .

(ii) (Connectivity) The graph (N , g) is strongly connected, i.e., for all i, j ∈ N

there exists a directed path connecting i to j with links in g.

The first part states that “self-communication” is not possible. We make this

assumption for simplicity, but it could be included as a possibility to abstain from

communication. The second part guarantees that every agent “communicates” in-

directly with every other agent, possibly through several links. We make this as-

sumption for several reasons. First, it seems to be natural as evidence suggests that

our societies are indeed connected, see, e.g., Watts (2003). And second, it is known

to be a necessary condition for convergence of beliefs to a consensus. We want to

exclude that beliefs fail to converge because agents are not connected.

Each agent i ∈ N starts with an initial belief xi(0) ∈ [0, 1]. Agents meet (com-

municate) and update their beliefs according to an asynchronous continuous-time

model. Each agent is chosen to meet another agent at instances defined by a rate

one Poisson process independent of the other agents. Therefore, over all agents, the

meetings occur at time instances ts, s ≥ 1, according to a rate n Poisson process.

Note that by convention, at most one meeting occurs at a given time t ≥ 0. Hence,

we can discretize time according to the agent meetings and refer to the interval

[ts, ts+1) as the s-th time slot. There are on average n meetings per unit of abso-

lute time, see Boyd et al. (2006) for a detailed relation between the meetings and

absolute time. At time slot s, we represent the beliefs of the agents by the vector

x(s) = (x1(s), x2(s), . . . , xn(s))
�.80

If agent i ∈ N is chosen at time slot s, s ≥ 1 (probability 1/n), she meets agent

j ∈ N with probability pij and communicates with him. We assume that agent i

80We denote the transpose of a vector x by x�.
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updates her belief with information she receives from agent j.81 Agent j sends a

message (or signal) m ∈ M := {m1,m2, . . . ,mL} containing information about his

belief xj(s− 1), where L ∈ N is very large but finite, and which is interpreted by i

as an estimate yij(m) of xj(s− 1).82 Agent i then updates her belief by taking the

average of this interpretation and her pre-meeting belief:

xi(s) =
xi(s− 1) + yij(m)

2
.

If not stated otherwise, agent i will denote the agent that updates her belief (the

receiver of information), and agent j will denote the agent with whom she commu-

nicates (the sender of information). We write g(s) = ij if link (i, j) is chosen at

time slot s.

Next, we specify how communication between agents takes place. We adapt the

framework of Jäger et al. (2011) to conflicting interests and repeated communication.

Suppose that g(s) = ij; we make the following assumption about the objectives of

the agents.

Assumption 2 (Objectives). Agent i’s objective is to infer agent j’s belief xj(s−1),

while agent j’s objective is to spread his opinion xj(s− 1) + bj.

Thus, agent i’s ideal interpretation is yij(m) = xj(s−1). For agent j, notice first

that we can write i’s updated opinion as the average of the biased interpretation

yij(m) + bi and her pre-meeting opinion:

xi(s) + bi =
(xi(s− 1) + bi) + (yij(m) + bi)

2
,

i.e., i updates her opinion with the biased interpretation yij(m) + bi. Hence, agent

j’s ideal interpretation is yij(m) = xj(s− 1) + (bj − bi) since in this case i updates

her opinion with j’s opinion:

xi(s) + bi =
(xi(s− 1) + bi) + (xj(s− 1) + bj)

2
.

Note that in absence of conflict of interest (bi = bj) j’s ideal interpretation is equal

to his belief, i.e., ideal interpretations coincide.

Formally, the agents’ preferences are given by

ui(xj(s− 1), yij(m)) = h(|xj(s− 1)− yij(m)|)

81Note that agent j does not update his belief. Together with the directed social network, this

assumption allows for asymmetric communication.
82We know from CS that assuming a (sufficiently) large but finite number of messages represents

only a restriction in absence of conflict of interest. Since we focus on conflicting interests, we take

this assumption for analytical convenience.
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and

uj(xj(s− 1), yij(m)) = h(|xj(s− 1) + (bj − bi)− yij(m)|),

where h : R+ → R is a continuous, concave and strictly decreasing function. Agent

j wants to send a message m such that i�s interpretation is as close as possible to his

ideal interpretation xj(s − 1) + (bj − bi), while i wants to choose an interpretation

that is as close as possible to j’s belief xj(s−1).83 Thus, the belief dynamics is well-

defined since agent i optimally chooses an interpretation in [0, 1] whatever message

she receives. A simple example are quadratic preferences.

Example 18 (Quadratic preferences).

ui(x, y) = −(x− y)2 and uj(x, y) = −(x+ (bj − bi)− y)2.

Let F be an atomless distribution on [0, 1] with strictly positive and continuous

density f : [0, 1] → R+. We impose the following assumption on the beliefs of agents

about the other agents’ beliefs.

Assumption 3 (Distribution of beliefs). Prior to each round of communication,

agent i believes that j’s belief is distributed according to F on [0, 1].

This assumption reflects the idea that each round of communication is indepen-

dent. Since time is continuous and agents’ meetings are independent, they do not

know how many times others have updated their belief in a given period of time.

And moreover, since agents need to coordinate on the distribution in equilibrium, at

least after repeated communication, it seems plausible to keep it constant. Or, if we

think of the initial beliefs as being drawn independently from a commonly known

distribution F , then Assumption 3 means that agents believe that after updating

their beliefs they are still distributed according to F .

We employ Bayesian Nash equilibrium and exclude the possibility of any prior

commitment of the agents. In this signaling game, a strategy for the sender j is a

measurable function

mij : [0, 1] → M

that assigns a message to each possible belief and for the receiver i, it is a function

yij : M → [0, 1]

that assigns an interpretation to each possible message. We refer to the interpre-

tation of message ml as yl = yij(ml) and to the set of beliefs that induces ml as

83We can also interpret −uk(xj(s− 1), yij(m)) as the loss from communication, see Jäger et al.

(2011).
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Cl = (mij)−1(ml) = {x ∈ [0, 1] : mij(x) = ml} when there is no confusion. A

Bayesian Nash equilibrium of the game consists of strategies (mij, yij) such that

(i) for each message ml ∈ M,

yl ∈ argmax
y∈[0,1]

�

Cl

ui(x, y)F (dx), and

(ii) for each belief x ∈ [0, 1],

mij(x) ∈ argmax
m∈M

uj

�
x, yij(m)

�
.

Condition (i) says that for each of the messages, agent i chooses an interpreta-

tion that maximizes her expected utility under Assumption 3, i.e., upon receiving

message ml she chooses an interpretation yl that maximizes her expected utility

conditional on j’s belief being distributed according to F on Cl = (mij)−1(ml).

Condition (ii) says that for each belief agent j chooses a message that maximizes

his utility.

We assume without loss of generality that whenever two messages lead to the

same interpretation, then agent j only sends the message with the lower index. We

say that a message ml is induced (used) in equilibrium if Cl = (mij)−1(ml) has

positive measure, and otherwise we assume that Cl = ∅.84 Thus, we can restrict our

attention to the messages that are induced in equilibrium and their interpretations,

which are distinct.85 Throughout the paper we assume that Assumption 1, 2 and 3

hold.

4.3 Communication Stage

In this section we characterize, given g(s) = ij, how agent j communicates with

agent i. First, notice that the ideal (optimal) interpretations, x + (bj − bi) =

argmaxy∈R uj(x, y) and x = argmaxy∈R ui(x, y), are unique and strictly increasing

in j’s belief x. Furthermore, ideal interpretations differ under conflict of interest.

84Notice that there are equilibria where some Cl is a non-empty null set. But, since null sets

play no role for the expected utility of agent i, we can change j’s strategy on a null set without

affecting i’s strategy.
85Notice that we do not consider mixed strategies. Receiver i’s best reply to a message induced in

a (mixed) equilibrium is unique since y �→ ui(x, y) is strictly concave. For sender j, the restriction

to pure strategies comes without loss of generality since his best reply is F–almost everywhere

unique as we will see in the next section.
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Thus, we know from the analysis in CS that the number of messages induced in

equilibrium is bounded.

Suppose j uses messages m ∈ M|L(ij) := {m1,m2, . . . ,mL(ij)} in equilibrium

that lead to distinct interpretations (yl)
L(ij)
l=1 . Then, given j holds belief xj(s − 1),

he sends a message that maximizes his utility, i.e.,

mij(xj(s− 1)) ∈ argmax
m∈M|L(ij)

uj

�
xj(s− 1), yij(m)

�

= argmax
m∈M|L(ij)

h(|xj(s− 1) + (bj − bi)− yij(m)|)

= argmin
m∈M|L(ij)

|xj(s− 1) + (bj − bi)− yij(m)|,

where the last equality follows since h is strictly decreasing. Note that this choice is

not uniquely defined if xj(s−1)+(bj − bi) has equal distance to two interpretations,

but since the set of such beliefs forms a null set with respect to F , we can assume

without loss of generality that j sends the message with the lowest index in this

case.86 Hence, we can identify j’s strategy in equilibrium with a partition (Cl)
L(ij)
l=1

of [0, 1], where

Cl = (mij)−1(ml) = {x ∈ [0, 1] : mij(x) = ml} = [cl−1, cl)

is such that 0 = c0 < c1 < · · · < cL(ij) = 1. Note that cl refers to the belief where j

is indifferent between sending message ml and ml+1. So, in equilibrium he partitions

the unit interval and only communicates the element of the partition his belief is

from.

Upon receiving message ml, i will choose an interpretation yl = yij(ml) that

maximizes her expected utility conditional on j’s belief being distributed according

to F on Cl, i.e.,

yl = argmax
y∈[0,1]

�

Cl

ui(x, y)F (dx) = argmax
y∈[0,1]

� cl

cl−1

h(|x− y|)F (dx).

Note that yl is the unique best Bayesian estimator of Cl (under Assumption 3). The

number of messages induced in equilibrium is bounded under conflict of interest: we

show that the distance between any two interpretations induced in equilibrium is

larger than the distance |bj−bi| between the ideal interpretations of the agents. Only

the equilibrium with one message always exists: in this equilibrium, j’s strategy is

86Null sets play no role for the expected utility of agent i and therefore changing j’s strategy on

a null set does not change i’s strategy.
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given by C1 = [0, 1] and i uses the best Bayesian estimator (under Assumption 3)

of the unit interval,

y1 = argmax
y∈[0,1]

� 1

0

h(|x− y|)F (dx).

We refer to the finite upper bound on the number of messages (or the “size” of

the partition) induced in equilibrium by L(ij). We call the equilibrium using L(ij)

messages optimal equilibrium since it is most informative in the sense that it uses the

finest partition.87 Furthermore, this equilibrium is essentially unique in the sense

that all equilibria using L(ij) messages induce F–a.s. (almost surely) the same

partition. As the receiver’s interpretation of a given partition element is unique,

this implies that in all equilibria the relation between the sender’s belief and the

receiver’s interpretation is a.s. the same, see CS. And, following their argumentation,

we assume that agents coordinate on this equilibrium.88

In absence of conflicting interests, the same result holds since we only allow for a

finite number of messages. Agents use the maximal number of messages L(ij) = L

in optimal equilibrium. Since we do not want to restrict the game under conflict of

interest, we assume L ≥ max{L(ij) | bi �= bj}.

The following proposition summarizes our findings.

Proposition 12. Suppose that g(s) = ij.

(i) If bi �= bj, then there exists an upper bound 1 ≤ L(ij) < 1/|bj − bi| + 1 on the

number of messages in equilibrium.

(ii) The game has an essentially unique optimal equilibrium (mij, yij) in which

agent j uses L(ij) (L if bi = bj) messages and his strategy is given by a

partition (Cl)
L(ij)
l=1 , where Cl = (mij)−1(ml) = [cl−1, cl) is such that 0 = c0 <

c1 < · · · < cL(ij) = 1 and

|cl + (bj − bi)− yl| = |cl + (bj − bi)− yl+1| for l = 1, 2, . . . , L(ij)− 1.

Furthermore, agent i’s strategy is given by interpretations

yl = yij(ml) = argmax
y∈[0,1]

� cl

cl−1

h(|x− y|)F (dx) for l = 1, 2, . . . , L(ij).

87Notice that it is ex-ante pareto-superior to all other equilibria, see CS.
88They argue that this equilibrium seems to be particularly plausible in situations where com-

munication is repeated, that is, in our case.
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All proofs can be found in Appendix 4.A. We denote the optimal equilibrium

when g(s) = ij by the triple E ij = (L(ij), Cij, Y ij), where C ij = (c1, c2, . . . , cL(ij)−1)

denotes j’s strategy and Y ij = (y1, y2, . . . , yL(ij)) denotes i’s strategy.

A choice of the distribution F that is prominent in the sense that agents are

likely to be able to coordinate on it is the uniform distribution. And surprisingly,

this allows us to explicitly compute the equilibrium outcome.

Corollary 10. Suppose that g(s) = ij and that F = U(0, 1) is the uniform distri-

bution.

(i) If bi �= bj, then there exists a finite upper bound

L(ij) = max{l ∈ N | 1/(2l) > |(l − 1)(bj − bi)|}

on the number of messages in equilibrium.

(ii) The game has an essentially unique optimal equilibrium (mij, yij) in which

agent j uses L(ij) (L if bi = bj) messages and his strategy is given by a

partition (Cl)
L(ij)
l=1 , where Cl = (mij)−1(ml) = [cl−1, cl) is such that

cl = l/L(ij)− 2l(L(ij)− l)(bj − bi).

Furthermore, agent i’s strategy is given by interpretations

yl = yij(ml) = (2l − 1)/(2L(ij))−
�
(2l − 1)L(ij)− 2(l2 − l)− 1

�
(bj − bi)

for l = 1, 2, . . . , L(ij).

The next example illustrates how such equilibria can look like.

Example 19. Consider N = {1, 2}, the vector of biases b = (0, 1/20)� and the

uniform distribution F = U(0, 1). The first agent is not biased, while the second is

biased to the right.

When g(s) = 12, then L(12) = 3 messages are induced in optimal equilibrium

and strategies are C12 = (4/30, 14/30) and Y 12 = (2/30, 9/30, 22/30). This means

that if, for instance, agent 2’s belief is below c1 = 4/30, then he sends message m1

and agent 1 interprets this as y1 = 2/30. When g(s) = 21, then as well L(21) = 3

messages are induced in optimal equilibrium and strategies are C21 = (16/30, 26/30)

and Y 21 = (8/30, 21/30, 28/30). Both equilibria are depicted in Figure 4.1.
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E12 m1
c1 m2

c2 m3

y1 y2 y3

E21 m1
c1 m2

c2 m3

y1 y2 y3

Figure 4.1: Optimal equilibria in Example 19.

4.4 Belief Dynamics

In this section we study the long-run behavior of the belief dynamics. At each

time slot s, a pair of agents g(s) = ij is selected according to the social network

and communicates by employing the optimal equilibrium E ij. Agent i adopts the

average of her pre-meeting belief and the equilibrium outcome of communication

(her interpretation) as her updated belief. Hence, the belief dynamics {x(t)}t≥0

defines a Markovian stochastic process. Note that we can define as well the opinion

dynamics process {x(t) + b}t≥0, where b = (b1, b2, . . . , bn)
� denotes the vector of

biases.

Remark 5. The opinion dynamics {x(t) + b}t≥0 is obtained by a translation of the

state space of the belief dynamics {x(t)}t≥0. Hence, both processes have the same

properties in terms of convergence.

In the following, we will focus on the belief dynamics. The next example suggests

that conflicting interests might prevent society from finding a consensus and instead

lead to fluctuating beliefs.

Example 20. Consider N = {1, 2, 3}, the vector of biases b = (0, 1/25,−1/15)� and

the uniform distribution F = U(0, 1). Furthermore, all agents hold the same initial

belief xi(0) = 1/2 and the social network is given by

P =




0 1/2 1/2

1/2 0 1/2

1/2 1/2 0


 ,

i.e., each possible pair of agents is chosen with probability 1/6 at a given time slot.

This leads to the following equilibria in the communication stage:
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• E12 = (4, (6/600, 108/600, 306/600), (3/600, 57/600, 207/600, 453/600)),

• E13 = (3, (360/600, 560/600), (180/600, 460/600, 580/600)),

• E21 = (4, (294/600, 492/600, 594/600), (147/600, 393/600, 543/600, 597/600)),

• E23 = (2, (428/600), (214/600, 514/600)),

• E31 = (3, (40/600, 240/600), (20/600, 140/600, 420/600)),

• E32 = (2, (172/600), (86/600, 386/600)).

Figure 4.2: Long-run belief dynamics in Example 20. The solid line represents agent

1, the dashed line agent 2 and the dashed-dotted line agent 3.

The number of messages induced in equilibrium varies depending on the pair of

agents selected to communicate. Agents 1 and 2 use four messages when commu-

nicating. The agents with the largest conflict of interest, 2 and 3, only use two

messages in equilibrium, though. When looking at the long-run belief dynamics,

we find that beliefs do not converge although agents started with identical beliefs.
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Instead, the beliefs keep fluctuating forever. In particular, each belief fluctuates on

some subinterval of [0, 1]. Agent 1’s belief fluctuates on [180/600, 460/600], agent

2’s belief on [147/600, 393/600], and agent 3’s belief on [86/600, 420/600]. Figure

4.2 depicts one outcome of the long-run belief dynamics.

Note that the boundaries of the subintervals on which the beliefs fluctuate in the

above example are related to the interpretations used by the agents when receiving

information. In the following, we want to characterize the asymptotic behavior of

the belief dynamics. First, we formalize what we mean by fluctuation. We say that

an interval is proper if it contains infinitely many elements (beliefs).

Definition 13 (Fluctuation). We say that the belief of an agent i ∈ N fluctuates

on the closed and proper interval I ⊆ [0, 1] at time slot s if a.s. xi(s
�) ∈ I for all

s� ≥ s, but for any closed subinterval I � � I this does not hold.

In other words, fluctuation on some interval means that the agent’s belief never

leaves the interval again, but still it “travels” the whole interval. Next, we define the

concept of mutually confirming intervals. For j ∈ Ni, let

Y ij
��
Ij

= {y ∈ Y ij | y = yij(mij(x)) for some x ∈ Ij}

denote the restriction of Y ij to the interpretations that correspond to messages sent

when j’s belief is in Ij.

Definition 14 (Mutually confirming intervals). We say that a set of intervals

{Ii}i∈N is mutually confirming if, for all i ∈ N ,

Ii = conv
�
∪j∈Ni

Y ij
��
Ij

�
.

We say that a set of intervals {Ii}i∈N is minimal mutually confirming if there does

not exist a mutually confirming set {I �
i}i∈N such that I �

i ⊆ Ii for all i ∈ N and

I �
i � Ii for at least one i ∈ N .

Mutually confirming intervals are the convex combinations of the interpretations

of the messages sent when communicating, given each agent’s belief lies in her cor-

responding interval. The next theorem shows that the belief dynamics converges

to a minimal mutually confirming set of intervals. Furthermore, we show that the

belief of an agent eventually fluctuates on her corresponding interval whenever the

interval is proper.

Theorem 2. (i) For any vector of initial beliefs x(0) ∈ [0, 1]n, the belief dynamics

{x(t)}t≥0 converges to a minimal mutually confirming set of intervals {Ii}i∈N ,

and
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(ii) there exists an a.s. finite stopping time τ on the probability space induced by

the belief dynamics process such that the belief of agent i ∈ N fluctuates on Ii

at time slot s = τ if Ii is proper.

Theorem 2 implies that if all intervals of a minimal mutually confirming set are

degenerate, i.e., contain only a single point, then the belief dynamics process has a

steady state.

Corollary 11. The belief dynamics {x(t)}t≥0 has a steady state x∗ if and only if

there exists a minimal mutually confirming set of intervals {Ii}i∈N such that Ii is

degenerate for all i ∈ N . In this case, x∗ = (Ii)i∈N .

When each agent communicates only with one other agent, there is a steady

state for sure. The next example shows that this is also possible if some agent

communicates with several agents.

Example 21. Consider N = {1, 2, 3}, the vector of biases b = (0, 37/600,−26/600)�

and the uniform distribution F = U(0, 1). Furthermore, all agents hold the same

initial belief xi(0) = 1/2 and the social network is given by

P =



0 1/2 1/2

1 0 0

1 0 0


 ,

i.e., agent 1 is connected to all other agents, while these agents only listen to agent

1. This leads to the following equilibria in the communication stage:

• E12 = (3, (26/300, 126/300), (13/300, 76/300, 213/300)),

• E13 = (3, (152/300, 252/300), (76/300, 202/300, 276/300)),

• E21 = (3, (174/300, 274/300), (87/300, 224/300, 287/300)),

• E31 = (3, (48/300, 148/300), (24/300, 98/300, 224/300)).

All equilibria induce three messages in equilibrium. The vector of beliefs x∗ =

(76/300, 87/300, 98/300)� is a steady state of the process. Note that since agent 1

communicates with two different agents, it is key that the interpretation y = 76/300

is part of both equilibria when she is selected to update her belief. Figure 4.3 depicts

an outcome where beliefs converge to this steady state.
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Figure 4.3: Long-run belief dynamics in Example 21. The solid line represents agent

1, the dashed line agent 2 and the dashed-dotted line agent 3.

The above example shows that the belief dynamics might converge in certain

cases. However, such an outcome must be constructed explicitly by choosing specific

biases and network configurations. The network needs to be sparse since each time

an agent communicates with several agents, we need to find biases such that some

interpretation is part of all equilibria. And additionally, we must ensure that these

common interpretations are mutually confirming. In particular, a steady state is

not stable with respect to the biases.

Remark 6. If conflicts of interest are small enough such that in optimal equilibrium

agents send more than one message (no “babbling”) and some agents communicate

with at least two different agents, then outcomes with a steady state are non-generic.
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4.5 Discussion and Conclusion

We introduce conflicting interests into a model of long-run belief dynamics. Our

analysis is motivated by numerous examples such as political campaigns or court

trials, where conflicts between different individuals are clearly present. We consider

a society represented by a strongly connected network, agents meet (communicate)

pairwise with their neighbors and exchange information strategically.

We disentangle the terms belief and opinion, previously employed as synonyms

in the literature: the belief of an individual about some issue of common interest is

what she holds to be true given her information, and her opinion is what is ought

to be the answer to the issue given her bias. We assume that when two individuals

communicate, the receiver of information would like to learn the true belief of the

sender about the issue as precisely as possible in order to refine her own belief, while

the sender wants to spread his opinion, i.e., he would like the receiver to update her

opinion with his opinion.

This conflict of interest prevents the agents from revealing their true belief in

equilibrium, and instead it leads to noisy communication à la CS: the sender sends

one of finite messages that contains information about his belief, which is then

interpreted by the receiver. In optimal equilibrium, communication is as informative

as possible given the conflict of interest, i.e., the sender uses as many messages as

possible. The receiver updates her belief by taking the average of the interpretation

of the sent message and her pre-meeting belief.

In our main result, we show that the belief dynamics process converges to a

set of intervals that is minimal mutually confirming. Given each agent’s belief lies

in her corresponding interval, these intervals are the convex combinations of the

interpretations the agents use when communicating. Furthermore, we show that

the belief of an agent eventually fluctuates on her corresponding interval whenever

the interval is proper. As a consequence, the belief dynamics has a steady state if

and only if there exists a minimal mutually confirming set such that all its intervals

are degenerate.

We remark that outcomes with a steady state are non-generic as long as conflicts

of interest are small and some agents communicate with several different agents.

Hence, we can conclude that the introduction of conflict of interest leads not only

to persistent disagreement among the agents, but also to fluctuating beliefs and

opinions.

Though frequently observed in social science, the phenomenon of fluctuation

is barely studied in the literature on communication in social networks, the only
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exception being Acemoglu et al. (2013). While their result is very close to ours, they

achieve it with a different approach. Instead of conflicting interests, they introduce

stubborn agents that never change their belief into a model of belief dynamics.

This also leads to fluctuating beliefs when the other agents update regularly from

different stubborn agents. In our model, a stubborn agent would be an agent that

only communicates with herself.

Finally, we would like to comment briefly on some of our model choices. Our

paper presents a first attempt to enrich a model of belief dynamics with a framework

of communication that incorporates conflicting interests. We use a simple averaging

rule to update beliefs. Such a mechanism presents a natural starting point and has

been intensively argued in the literature. However, it would be interesting to see

whether (partially) Bayesian updating rules would generate similar results.

Due to the repeated nature of communication, the sender does not receive a

signal prior to communication that is drawn from a commonly known probability

distribution as in classical cheap-talk games. Instead she holds a belief resulting from

her initial belief and previous communication. Therefore, apart from the number of

messages, agents also need to coordinate on the distribution of the sender’s beliefs.

Viewing this distribution as the outcome of a coordination process suggests that

it should be kept constant over time. And furthermore, if we think of the initial

beliefs as being drawn independently from a probability distribution, then it seems

likely that agents can coordinate on this distribution. However, when agents are

(partially) Bayesian, it might be desirable to also allow them to update their beliefs

about the other agents’ beliefs. We leave these issues for future work.

4.A Appendix

Proof of Proposition 12

Suppose that agent j uses L� messages in equilibrium. We know that agent j’s

strategy is given by a partition (Cl)
L�

l=1, where Cl = (mij)−1(ml) = [cl−1, cl) is such

that 0 = c0 < c1 < · · · < cL� = 1 and

|cl + (bj − bi)− yl| = |cl + (bj − bi)− yl+1| for l = 1, 2, . . . , L� − 1.

And furthermore, agent i’s strategy is given by interpretations

yl = yij(ml) = argmax
y∈[0,1]

� cl

cl−1

h(|x− y|)F (dx) for l = 1, 2, . . . , L�.
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Next, we show that there is an upper bound on the number of messages induced in

equilibrium under conflict of interest, i.e., bi �= bj. Let yl < yl+1 be two interpreta-

tions induced in equilibrium. Then, cl satisfies |cl+(bj−bi)−yl| = |cl+(bj−bi)−yl+1|.

Hence, since h is strictly decreasing,

yl < argmax
y∈[0,1]

uj(cl, y) = argmax
y∈[0,1]

h(|cl + (bj − bi)− y|) = cl + (bj − bi) < yl+1, (7)

i.e., at cl, the point where j is indifferent between interpretations yl and yl+1, he

would prefer an interpretation to be implemented that lies strictly between these

two interpretations. On the other hand, the same is true for i given she knew that

j’s opinion is exactly cl:

yl = argmax
y∈[0,1]

� cl

cl−1

h(|x− y|)F (dx) < argmax
y∈[0,1]

h(|cl − y|)

=cl

< argmax
y∈[0,1]

� cl+1

cl

h(|x− y|)F (dx)

=yl+1. (8)

It follows from (7) and (8) that

|yl − yl+1| > |cl + (bj − bi)− cl)| = |bj − bi|

and hence, there exists a maximal number of messages L̄ < 1/|bj − bi| + 1 that is

feasible in equilibrium.

Note that if bi = bj, then there is no bound due to the biases and thus, the

number of messages in equilibrium is bounded by L̄ = L. We know already that

there always exists an equilibrium with only one message.

Altogether, agent j uses 1 ≤ L(ij) = L̄ messages in optimal (i.e., most infor-

mative) equilibrium and moreover, this equilibrium is essentially unique since i’s

interpretations are unique and j’s strategy is F–a.s. unique and thus all equilibria

induce F–a.s. the same partition, which finishes the proof.

Proof of Corollary 10

Consider the optimal equilibrium E ij = (L(ij), Cij, Y ij), C ij = (c1, c2, . . . , cL(ij)−1)

and Y ij = (y1, y2, . . . , yL(ij)). Since F = U(0, 1) and h is strictly decreasing, we get

yl = argmax
y∈[0,1]

� cl

cl−1

h(|x− y|)dx = argmin
y∈[0,1]

� cl

cl−1

|x− y|dx = (cl + cl−1)/2.



4.A. APPENDIX 107

Thus, j’s strategy satisfies

|cl + (bj − bi)− yl| = |cl + (bj − bi)− yl+1|

⇔|cl + (bj − bi)− (cl + cl−1)/2| = |cl + (bj − bi)− (cl+1 + cl)/2|

⇔|(cl − cl−1)/2 + (bj − bi)| = |(cl − cl+1)/2 + (bj − bi)|.

By monotonicity of the cl, this yields

cl+1 = 2cl − cl−1 + 4(bj − bi) for l = 1, 2, . . . , L(ij)− 1.

And by the boundary condition c0 = 0, it follows that

cl = lc1 + 2l(l − 1)(bj − bi) for l = 1, 2, . . . , L(ij).

The other boundary condition, cL(ij) = 1, implies that c1 = 1/L(ij) − 2(L(ij) −

1)(bj − bi) and hence,

cl = lc1 + 2l(l − 1)(bj − bi)

= l
�
1/L(ij)− 2(L(ij)− 1)(bj − bi)

�
+ 2l(l − 1)(bj − bi)

= l/L(ij)− 2l(L(ij)− l)(bj − bi). (9)

Hence,

yl = (cl + cl−1)/2

= (2l − 1)/(2L(ij))− l(L(ij)− l)(bj − bi)− (l − 1)(L(ij)− l + 1)(bj − bi)

= (2l − 1)/(2L(ij))−
�
l(2L(ij)− 2l + 1)− (L(ij)− l + 1)

�
(bj − bi)

= (2l − 1)/(2L(ij))−
�
(2l − 1)L(ij)− 2(l2 − l)− 1

�
(bj − bi).

Suppose that bi �= bj. Since this is an optimal equilibrium, L� = L(ij) is the largest

number of messages such that the strategy determined by (9) is feasible, which, by

monotonicity, is the case if and only if



c1 = 1/L� − 2(L� − 1)(bj − bi) > 0

cL�−1 = (L� − 1)/L� − 2(L� − 1)(bj − bi) < 1

⇔1/(2L�) > |(L� − 1)(bj − bi)|. (10)

Thus,

L(ij) = max{l ∈ N | 1/(2l) > |(l − 1)(bj − bi)|}. (11)

Note that (10) has only finitely many positive integer solutions, among them L� = 1,

and thus, (11) is well-defined, which finishes the proof.
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Proof of Theorem 2

To prove the theorem, we first construct a homogeneous Markov chain {�x(s)}s∈N =

{(�xi(s))i∈N}s∈N in discrete time with finite n-dimensional state space A = ×i∈NAi,

where Ai denotes the set of states for agent i. We know that we can replace the time-

continuous belief dynamics process {x(t)}t≥0 by the time-discrete process {x(s)}s∈N,

where x(s) is the vector of beliefs at time slot s. In the following, we also simplify

the state space of the process. We find a partition of the unit interval such that it

is enough to know in which element of the partition each agent’s belief is.

Let i ∈ N and C i = ∪j∈Ni
C ij denote the set of points for which some agent j ∈

Ni is indifferent between two messages when communicating with i. Furthermore,

Y i = ∪j∈Ni
Y ij denotes the set of agent i’s interpretations. We assume without loss

of generality that the set C i∪Y i consists of rational numbers for all i ∈ N .89 Then,

there exists a lowest common denominator d of the set ∪i∈NC i ∪ Y i.

This allows us to define the partition Cd = {k/d | 0 ≤ k ≤ d} of [0, 1], where

each partition element (without loss of generality) is an interval [(k − 1)/d, k/d),

k = 1, 2, . . . , d. This partition distinguishes the beliefs of the agents finely enough

to keep track of how the belief dynamics process evolves as we will show. Take

i ∈ N , j ∈ Ni and suppose that

xi(s− 1) ∈ [(ki − 1)/d, ki/d) and xj(s− 1) ∈ [(kj − 1)/d, kj/d),

1 ≤ ki, kj ≤ d. By construction of the partition, there exists 1 ≤ l ≤ L(ij) such that

xj(s− 1) ∈ [cl−1, cl), i.e., Cd is fine enough to determine the message mij(xj(s− 1))

sent in equilibrium by agent j. Moreover, also by construction, there exists 1 ≤ k̄ ≤

d− 1 such that the interpretation of this message is yij
�
mij(xj(s− 1))

�
= k̄/d. And

since xi(s− 1) ∈ [(ki − 1)/d, ki/d), it follows that

xi(s) = 1/2(xi(s− 1) + k̄/d) ∈ [(ki − 1 + k̄)/(2d), (ki + k̄)/(2d))

⊆ [(�(ki + k̄)/2� − 1)/d, �(ki + k̄)/2�/d),

i.e., Cd is also fine enough to determine i’s updated belief and altogether, it is fine

enough to keep track of the belief dynamics process.

Therefore, we can identify the continuous state space [0, 1]n of {x(s)}s∈N with

the finite state space A = An = {a1, a2, . . . , ad}
n of {�x(s)}s∈N, where ak ≡ [(k −

1)/d, k/d), k = 1, 2, . . . , d. In other words, a state a ∈ A specifies for each agent the

partition element of Cd her belief is in at time slot s.

89If some number is irrational, then we can approximate it arbitrarily well by a rational number,

e.g., using the method of continued fractions.
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Let x̄(ak) = (2k − 1)/(2d) denote the average value of [(k − 1)/d, k/d) and fur-

thermore, let ỹij(ak) = yij
�
mij(x̄(ak))

�
denote i’s interpretation of j’s message when

j’s belief is in [(k − 1)/d, k/d). We define the transition probabilities of {�x(s)}s∈N
as follows:

P[�x(s) = (a−i, al) | �x(s− 1) = a] = 1/n
�

j∈Ni:

(ai,aj)∈Bij(l)

pij (12)

for all a ∈ A and l ∈ {1, 2, . . . , d}, where

Bij(l) = {(ak, ak�) ∈ A2 | 1/2[x̄(ak) + ỹij(ak�)] ∈ [(l − 1)/d, l/d)}

is the set of all pairs of individual states (ai, aj) such that agent i changes from

state ai to state ai
�
= al given that she updates from agent j who is in state aj. All

other transition probabilities (i.e., those where more than one component changes)

are assumed to have zero probability. By construction, the following result holds.

Lemma 5. {�x(s)}s∈N is a homogeneous Markov chain with finite state space A and

transition probabilities given by (12), and, in particular, at any time slot s,

�x(s) = (ak1 , ak2 , . . . , akn)
� if and only if x(s) ∈ ×i∈N [(ki − 1)/d, ki/d).

Furthermore, for a set of states Z ⊆ A, let Z|k = {a ∈ A | ∃z ∈ Z : zk = a}

denote the set of all possible values the k-th component of states in Z can take.

Then, the following holds.

Lemma 6. If Z ⊆ A is a recurrent communication class of {�x(s)}s∈N, then {Ii}i∈N

is a minimal mutually confirming set of {x(t)}t≥0, where

(i) Ii =
�

k: ak∈Z|i
[(k − 1)/d, k/d] if |Z|i| ≥ 2, and

(ii) Ii = (k − 1)/d or Ii = k/d if Z|i = {ak}.

Proof. Suppose that Z is a recurrent communication class of {�x(s)}s∈N, i.e., the

Markov chain will never leave this class and each state z ∈ Z is visited infinitely

often by {�x(s)}s∈N. We show that {Ii}i∈N is a minimal mutually confirming set of

{x(t)}t≥0.

Note that for i ∈ N and each individual state zi ∈ Z|i, it is �xi(s) = zi for

infinitely many time slots s. Let

Y i
Z =

�

j∈Ni

�

zj∈Z|j

ỹij(zj)
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denote the set of all interpretations of agent i when �x(s) ∈ Z. Note that if ak, ak� ∈

Z|i for k < k�, then also ak�� ∈ Z|i for all k < k�� < k�. Thus, if |Z|i| ≥ 2,

Ii =
�

k: ak∈Z|i

[(k − 1)/d, k/d] = conv(Y i
Z)

since all intervals [(k−1)/d, k/d] in the union are visited by i. On the other hand, if

Z|i = {ak}, then i always uses the same interpretation when in Z, either (k − 1)/d

or k/d. Hence, Ii = (k − 1)/d = conv(Y i
Z) or Ii = k/d = conv(Y i

Z). Altogether, we

have Ii = conv(Y i
Z) for all i ∈ N . And furthermore, note that

Y i
Z =

�

j∈Ni

�

zj∈Z|j

ỹij(zj) =
�

j∈Ni

�

ak∈Z|j

ỹij(ak)

=
�

j∈Ni

�

ak∈Z|j

yij
�
mij(x̄(ak))

�

=
�

j∈Ni

�

k: ak∈Z|j

yij
�
mij((2k − 1)/(2d))

�

=
�

j∈Ni

Y ij
��
Ij
,

where the last equality follows from the definition of Ij. Hence, we get Ii =

conv
��

j∈Ni
Y ij|Ij

�
for all i ∈ N , i.e., we have shown that {Ii}i∈N is a mutually

confirming set of {x(t)}t≥0 and furthermore, it is also minimal since by assumption

Z is a recurrent communication class of {�x(s)}s∈N, which finishes the proof.

Since the state space of {�x(s)}s∈N is finite, there exists an a.s. finite stopping

time τ such that for any initial state �x(0) ∈ A,

�x(τ) ∈ {a ∈ A | ∃Z � a recurrent communication class of {�x(s)}s∈N}.90

So, suppose that �x(τ) ∈ Z. We show that this implies that the original chain

converges to the minimal mutually confirming set {Ii}i∈N defined in Lemma 6.

If |Z|i| ≥ 2, then part (i) of Lemma 6 implies that xi(τ) ∈ Ii. Furthermore,

since Z is a recurrent communication class of {�x(s)}s∈N, the boundaries of Ii are

used infinitely often as interpretations by i and thus, xi(τ) fluctuates on Ii.

On the other hand, if Z|i = {ak}, agent i uses only a single interpretation when

updating since (k − 1)/d and k/d cannot be both interpretations by choice of the

partition Cd. This implies that, without loss of generality, xi(t) → k/d = Ii for

t → ∞, and hence, x(t) → {Ii}i∈N for t → ∞, which finishes the proof.

90We refer, e.g., to Brémaud (1999) for this result.



Chapter 5

Concluding Remarks

The objective of this thesis was to contribute to the literature on non-Bayesian

social influence models by shedding light on three particular aspects of social influ-

ence: anonymous influence, manipulation, and conflicting interests. In a dynamic

framework, we analyzed how these aspects affect long-run beliefs and opinions in

society.

First, we studied influence processes modeled by OWA operators, which are the

only anonymous aggregation functions. As one would expect, an aggregation model

is anonymous if all agents use these functions. We characterized influential coali-

tions, showed that cyclic terminal classes cannot exist due to anonymity and charac-

terized terminal states. Our main result provides a necessary and sufficient condition

for convergence to consensus. Moreover, we extended our model to decomposable

aggregation functions. In particular, this allows to combine OWA operators with the

classical approach of ordinary weighted averages. It turned out that our previous

condition on convergence to consensus is still sufficient in this generalized setting.

We also analyzed the speed of convergence to terminal classes as well as probabilities

of absorption by different terminal classes. For anonymous models, we were able

to reduce the computational demand substantially compared to the general case.

Furthermore, we applied our results to fuzzy linguistic quantifiers and showed that

if agents use in some sense similar quantifiers and not too many agents deviate from

these quantifiers, the society will eventually reach a consensus.

Second, we introduced the possibility of manipulation into the model by De-

Groot (1974). We showed that manipulation can modify the trust structure and

lead to a connected society, and thus, to consensus. Furthermore, we found that

manipulation fosters opinion leadership in the sense that the manipulating agent

always increases her influence on the long-run beliefs. And more surprisingly, this

may even be the case for the manipulated agent. The expected change of influence

111
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on the long-run beliefs is ambiguous and depends on the agents’ preferences and the

social network. We also showed that the trust structure of the society settles down

and, if the satisfaction of agents does not directly depend on the trust, manipulation

will come to an end and they reach a consensus (under some weak regularity condi-

tion). Regarding learning, we were interested in the question whether manipulation

is beneficial or harmful for information aggregation. We used an approach similar to

Acemoglu et al. (2010) and showed that manipulation reduces the extent of misin-

formation in the society if manipulation is rather costly and the agents underselling

their information gain and those overselling their information lose overall influence.

Not surprisingly, agents for whom manipulation is cheap can severely harm infor-

mation aggregation. Furthermore, our main example suggests that homogeneous

preferences for manipulation favor a reduction of the extent of misinformation in

society.

Finally, we introduced conflicting interests into a model of non-Bayesian belief

dynamics. We disentangled the terms belief and opinion: the belief of an individual

about some issue of common interest is what she holds to be true given her informa-

tion, and her opinion is what is ought to be the answer to the issue given her bias.

We assumed that when two individuals communicate, the receiver of information

would like to learn the true belief of the sender about the issue, while the sender

wants to spread his opinion. This conflict of interest leads to noisy communication

à la Crawford and Sobel (1982) in equilibrium. In our main result, we showed that

the belief dynamics process converges to a set of intervals that is minimal mutually

confirming. Furthermore, we showed that the belief of an agent eventually fluctuates

on her corresponding interval whenever the interval is proper. We remarked that

outcomes with a steady state are non-generic as long as conflicts of interest are small

and some agents communicate with several different agents. Hence, we can conclude

that the introduction of conflict of interest leads not only to persistent disagreement

among the agents, but also to fluctuating beliefs and opinions. Remarkably, though

frequently observed in social science, the phenomenon of fluctuation is barely stud-

ied in the literature on communication in social networks, the only exception being

Acemoglu et al. (2013).

Our results contribute to the understanding of social influence and the evolution

of beliefs and opinions in our societies. In the following, we broadly discuss areas

for future research on this topic.

In Chapter 2, we presented a theoretical framework to study the phenomenon of

anonymous influence. We understand this as a starting point and further research

will be required to develop a deeper understanding of this important topic. One
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possible avenue of research is to generalize the model to extended OWA operators,

which do not depend on the number of agents and are therefore more flexible. For

instance, this would allow to introduce a network into the model such that agents

only get to know (directly) the beliefs of neighbors. Moreover, the implications of

anonymity for learning and spread of misinformation could be explored.

The latter also constitute a promising area for future research on their own. Af-

ter DeMarzo et al. (2003) and Golub and Jackson (2010) had studied learning in the

DeGroot model, Acemoglu et al. (2010, 2013) shifted the focus more toward spread

of misinformation. They showed that forceful agents, who almost do not change

their own beliefs, can prevent efficient information aggregation and furthermore,

that stubborn agents, who never change their beliefs, can completely prevent infor-

mation aggregation. We have contributed to this stream of literature by studying

manipulation within the framework of the DeGroot model. One insight from these

works is that somehow powerful agents can severely harm information aggregation,

and in some cases even prevent it. Since this seems to be less likely in models where

agents are at least partially Bayesian, it will be necessary to study manipulation

in partially Bayesian models in order to gain a deeper understanding of the issue.

Notice however that there is only little room left for manipulation when agents are

fully rational. The degree of rationality of the agents seems therefore to be a key

determinant in future research.

Another important avenue of research deals with the question whether society

reaches a consensus or whether disagreement persists. Many classical models of dy-

namic social influence, both Bayesian and non-Bayesian, lead to mutual consensus

among the agents in the long-run under the condition that the network is strongly

connected, see, e.g., DeGroot (1974); Acemoglu et al. (2010); Gale and Kariv (2003).

Since this result seems not to be plausible in many situations in real life, several

authors have proposed models to explain non-convergence of beliefs, see, e.g., Axel-

rod (1997); Golub and Jackson (2012); Acemoglu et al. (2013). However, in most of

these models the reason for persisting disagreement is some kind of homophily, which

either leads to segregated societies or substantially slows down convergence and thus

leads to a high persistence of disagreement. To this respect, Acemoglu et al. (2013)

is an exception, where the authors introduce stubborn agents that never change

their belief, which leads not only to persistent disagreement, but also to fluctuating

beliefs when the other agents update regularly from different stubborn agents. We

provided another explanation for persistent disagreement and fluctuation of beliefs

in Chapter 4: conflict of interest. Although there are now several different explana-

tions for non-convergence of beliefs, the picture stays incomplete and more insights
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are necessary to complement it.

In particular, further investigation on conflict of interest seems to be promis-

ing. In our contribution, we introduced agents with conflicting agents that, broadly

speaking, are rational within periods, but naïve across periods and showed that this

leads to non-truthful communication and fluctuating beliefs. On the other hand,

Acemoglu et al. (2014) have studied a model of Bayesian learning where agents

might want to misreport their information in order to delay the decisions of other

agents, i.e., they have also introduced a kind of conflict of interest. However, their

model still leads to mutual consensus under the condition that the underlying social

network is strongly connected. Thus, further research will be necessary to clarify

the role of conflict of interest in belief formation processes.
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