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Introduction Context

The vertex coloring problem (VCP) is a special case of graph labeling in graph theory and one of the most challenging combinatorial optimization problems in discrete mathematics. Given an undirected graph, the VCP aims to find a minimum number of colors to color the vertices of a graph such that no two adjacent vertices receive the same color. The VCP is one of the 21 fundamental problems whose NP-hardness was proved in the early 1970s [START_REF] Karp | Reducibility among combinatorial problems[END_REF]]. The VCP is extensively studied not only for its theoretical intractability, but also for its real world applications in many domains, such as timetabling, scheduling, register allocation, train platforming, frequency assignment, and communication networks for instances. In recent decades, the VCP as well as its generalizations are receiving more and more attention in the literature, these generalizations allowing more applications to be embraced. This thesis focuses on three generalized vertex coloring problem, namely the minimum sum coloring problem (MSCP), the bandwidth coloring problem (BCP, also known as the restricted T-coloring problem) and the bandwidth multicoloring problem (BMCP, also called the restricted set T-coloring problem).

The objective of the MSCP is to find a legal k-coloring of a graph such that the sum of the colors assigned to the vertices is minimized (colors are represented by consecutive integers 1, 2 . . . , k). The MSCP was introduced in [START_REF] Kubicka | The chromatic sum of a graph[END_REF]] from the graph theory point of view and in [START_REF] Supowit | Finding a maximum planar subset of a set of nets in a channel[END_REF]] from the application perspective. In practice, the MSCP is notable in VLSI design, scheduling, and resource allocation, etc. Let us consider the scheduling application in the open shop problem as an example: There are n jobs J 1 , . . . , J n to be executed and each job J i is composed of a set of t i tasks. Suppose each job has to be run on a processor for one unit of time and the number of processors is not limited. Different tasks of the same job cannot be processed simultaneously and one processor cannot run two tasks at the same time. The objective is to minimize the total time to complete all the jobs. This scheduling problem is equivalent to the MSCP where vertices represent jobs and edges represent the conflicts between the tasks.

The BCP and BMCP are two other important generalizations of the vertex coloring problem. Given an undirected graph, the BCP consists in finding a k-coloring with the smallest value of k such that the absolute value of the difference between the colors of adjacent vertices is not less than the weight of associated edge. The BCP can be generalized as the BMCP where each vertex can be colored with more than one color. A legal bandwidth multicoloring must satisfy two constraints: (1) the absolute value of the difference between the colors of adjacent vertices is not less than the weight of associated edge; (2) the absolute value of the difference between any two distinct colors of a vertex is at least the weight of the loop edge of this vertex. The BMCP is to find a legal bandwidth multicoloring with k minimum. The BCP and BMCP are notable for their applicability to a number of important applications in particular in the area of frequency assignment in mobile networks [START_REF] Aardal | Models and solution techniques for frequency assignment problems[END_REF]. Given a number of radio transmitters, each transmitter must be assigned an operating frequency and frequencies assigned to two nearby transmitters must be separated by a given threshold to avoid interferences. The objective is to minimize the number of assigned frequencies. This is equivalent to the BCP where colors represent frequencies, vertices represent transmitters and edge weights correspond to the required separation of frequencies for two nearby transmitters.

Since these generalizations of the vertex coloring problem (MSCP, BCP and BMCP) are NP-hard problems [Johnson andTrick 1996, Johnson et al. 2002], no polynomial-time algorithm can solve or approximate them effectively unless P = N P . In practice, heuristics and metaheuristics are often used to obtain suboptimal solutions in acceptable computing time. Hence, this thesis is dedicated to design effective hybrid metaheuristic algorithms for solving the MSCP, BCP and BMCP.

Objectives

This thesis aims to study hybrid approaches for the minimum sum coloring problem, the bandwidth coloring problem, and the bandwidth multicoloring problem. This thesis challenge is broken down into the following key objectives:

-Developing effective memetic algorithms which follow the general framework combining the populationbased evolutionary strategy and local optimization procedure.

-Designing an initial population generation technique by incorporating problem specific knowledge for generating diverse solutions of good quality to boost the effectiveness of the memetic algorithm.

-Designing effective crossover operators since the recombination is an important ingredient for hybrid memetic algorithms.

-Devising an updating rule to maintain a good quality and healthy diversity of the population.

-Developing a new hybrid search algorithm which explores the cooperative framework between an informed construction procedure and a local search procedure.

-Designing a learning technique and integrating learning information into the search process to reinforce the performance of the metaheuristic algorithm.

Contributions

The main contributions of this thesis are summarized below:

A memetic algorithm: For the minimum sum coloring problem, we proposed a memetic algorithm (MASC) based on a tabu search procedure with two neighborhoods and a multi-parent crossover operator. Experiments on a set of 77 well-known DIMACS andCOLOR 2002-2004 benchmark instances show that the proposed algorithm achieves highly competitive results in comparison with five state-of-the-art algorithms. This work is published in Computers & Operations Research [START_REF] Jin | A memetic algorithm for the minimum sum coloring problem[END_REF].

A hybrid search algorithm: The MSCP is further studied and a hybrid search algorithm (HSA) is proposed for computing the lower and upper bounds of this NP-hard problem. To create an initial population of good quality, a maximum independent set algorithm SBTS is used to generate in a step-by-step way k mutually disjoint independent sets. HSA relies on a joint use of two dedicated crossover operators to generate promising offspring solutions and an iterated double-phase tabu search procedure to improve offspring solutions. A distance-and-quality updating rule is used to maintain a healthy diversity in the population. Extensive experimental studies on 94 well-known DIMACS andCOLOR 2002-2004 benchmark instances show that the proposed algorithm matches most of the current best known results. In particular, it can find better solutions for 51 instances (24 instances for the upper bounds and 27 instances for the lower bounds).

Moreover, we show for the first time a landscape analysis of the MSCP to shed lights on the behavior of the proposed algorithm. A paper describing SBTS is published in Engineering Applications of Artificial Intelligence [START_REF] Hao | General swap-based multiple neighborhood tabu search for the maximum independent set problem[END_REF]] and this work is also detailed in [Jin and Hao 2015c].

An effective learning-based hybrid search algorithm: For the bandwidth coloring problem and the bandwidth multicoloring problem, we present a learning-based hybrid search (LHS). LHS combines a construction phase to progressively build feasible (partial) colorings and a local search phase to reestablish feasibility when an illegal partial solution is encountered. The construction phase relies on a learningbased guiding function to determine the next vertex for color assignment while the local search phase uses a tabu search procedure to repair coloring conflicts. Experiments on a set of 33 well-known benchmarks demonstrate that the proposed approach can match the best known solution for most benchmarks. In particular, LHS finds an improved solution for 14 instances. A paper describing this work is accepted in IEEE Transactions on Systems, Man, and Cybernetics: Systems [Jin and Hao 2015a].

Organization

The manuscript is organized in the following way:

-In the first and second chapter, we introduce the minimum sum coloring problem and the bandwidth (multi)coloring problem, then provide an overview of the most representative algorithms proposed in the literature as well as the benchmarks that are frequently used to evaluate the performance of algorithms for each problem.

-In the third chapter, we first present the general memetic framework of our MASC algorithm for solving the MSCP. Then, we describe the components in detail, including the population initialization, the crossover operator, the double-neighborhood tabu search procedure and the population updating. Finally, we evaluate our MASC algorithm on challenging benchmark instances and report experimental comparative results. Meanwhile, we investigate and analyze some key issues of the proposed memetic algorithm.

-In the fourth chapter, we describe the proposed HSA for computing upper bounds of the MSCP. Then, we explain the adjustments of the proposed algorithm to compute lower bounds. In the following, extensive computational results of HSA and comparisons with the state-of-the-art algorithms in the literature are reported to demonstrate the effectiveness of the proposed algorithm. Finally, we study the impact of the joint use of two crossover operators on the performance of HSA and analyze the landscape of the MSCP.

-In the fifth chapter, we first introduce a framework for solving the bandwidth coloring problem and the bandwidth multicoloring problem (LHS). Then, we present the components in detail, including the learning-based guiding function, the construction phase with forward checking and the tabu repair phase. Finally, we provide computational results of LHS on well-known benchmark instances and compare our approach with some best performing algorithms.

-In the last two chapters, we give a general conclusion of this thesis and propose some perspectives.

-In the appendix, we present the general swap-based multiple neighborhood tabu search for the maximum independent set problem. We first introduce the general procedure and then present the detailed intensification and diversification procedure. Finally, we provide computational results on well-known benchmarks to demonstrate the effectiveness of the proposed algorithm.

II
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The minimum sum coloring problem

Introduction

Given a graph G, a proper k-coloring of G is an assignment of k different colors {1, . . . , k} to the vertices of G such that two adjacent vertices receive two different colors. The Minimum Sum Coloring Problem (MSCP) is to find a proper k-coloring while minimizing the sum of the colors assigned to the vertices. To our knowledge, the MSCP was proposed by Kubicka [START_REF] Kubicka | The chromatic sum of a graph[END_REF]] in the field of graph theory and by Supowit [START_REF] Supowit | Finding a maximum planar subset of a set of nets in a channel[END_REF]] in VLSI design. Kubicka proposed the "chromatic sum" measure of a graph and proved its NP-hardness [START_REF] Kubicka | An introduction to chromatic sums[END_REF], Supowit introduced the "optimum cost chromatic partition problem" [START_REF] Supowit | Finding a maximum planar subset of a set of nets in a channel[END_REF]], and Kroon et al. [START_REF] Kroon | The optimal cost chromatic partition problem for trees and interval graphs[END_REF]] also proved the NPhardness of the MSCP. However, polynomial time algorithms exist for some specific graphs, such as trees, unicyclic graphs, outplanar graphs, chain bipartite graphs and k-split graphs [START_REF] Kroon | The optimal cost chromatic partition problem for trees and interval graphs[END_REF][START_REF] Kubicka | Polynomial algorithm for finding chromatic sum for unicyclic and outerplanar graphs[END_REF][START_REF] Kubicka | An introduction to chromatic sums[END_REF][START_REF] Salavatipour | On sum coloring of graphs[END_REF]].

The MSCP is closely related to the classical vertex coloring problem, which is notable for its practical applicability and theoretical intractability. The MSCP can find its applications in VLSI design, scheduling and resource allocation [START_REF] Kroon | The optimal cost chromatic partition problem for trees and interval graphs[END_REF][START_REF] Malafiejski | Sum coloring of graphs[END_REF][START_REF] Sen | On a graph partition problem with application to vlsi layout[END_REF] for instance. Due to the high computational complexity of the problem, no polynomial-time algorithm can solve or approximate it efficiently unless P = N P . In the past several decades, much efforts have been devoted to the development of various heuristics and metaheuristics, such as greedy algorithms [START_REF] Li | Greedy algorithms for the minimum sum coloring problem[END_REF][START_REF] Moukrim | Lower bounds for the minimal sum coloring problem[END_REF], tabu search [START_REF] Bouziri | A tabu search approach for the sum coloring problem[END_REF], breakout local search [START_REF] Benlic | A study of breakout local search for the minimum sum coloring problem[END_REF], iterated local search [START_REF] Helmar | A local search heuristic for chromatic sum[END_REF], ant colony [START_REF] Douiri | A new ant colony optimization algorithm for the lower bound of sum coloring problem[END_REF], genetic and memetic algorithms [START_REF] Douiri | New algorithm for the sum coloring problem[END_REF], Jin et al. 2014, Jin and Hao 2015c[START_REF] Kokosiński | On sum coloring of graphs with parallel genetic algorithms[END_REF][START_REF] Moukrim | Upper and lower bounds for the minimum sum coloring problem[END_REF][START_REF] Wang | Solving the minimum sum coloring problem via binary quadratic programming[END_REF] as well as heuristics based on independent set extraction [Wu and Hao 2012;[START_REF] Wu | Improved lower bounds for sum coloring via clique decomposition[END_REF]. Since greedy algorithms are fast but usually give solutions of poor quality they are often used to build initial solutions for other heuristic procedures. Besides, a greedy heuristic based on independent set extraction is effective especially on large instances [Wu and Hao 2012]. While various local search heuristics have been proposed to solve the MSCP, their main differences rely on the search space, the neighborhood structures and the strategies used to escape from a local optima. Hybrid metaheuristics lead to excellent performances in terms of solution quality. They often use local search as an improvement strategy and the two-(or multi-) parent(s) crossover operator.

CHAPTER 1. THE MINIMUM SUM COLORING PROBLEM

To the best of our knowledge, there is only one review in 2004 [START_REF] Kubicka | The chromatic sum of a graph: History and recent developments[END_REF]] that reports the history of the MSCP and the developments of polynomial-time algorithms on specific graphs as well as the generalizations and the applications. In this chapter, we provide a detailed review of the different MSCP solution approaches proposed in the recent literature for general graphs. In particular, we carry out an in-depth analysis of the studied approaches and encourage further studies on this problem.

In the following sections, we first provide a general definition of the MSCP, followed by the introduction of the studied heuristics and metaheuristics. Then, we report the "theoretical" lower and upper bounds. Finally, the MSCP benchmark instances are presented.

Definitions and formulation

Given a simple undirected graph G = (V, E) with vertex set V = {v 1 , . . . , v n } and edge set E ⊂ V ×V , a proper k-coloring c of G is a mapping c : V → {1, . . . , k} such that c(v i ) ̸ = c(v j ), ∀{v i , v j } ∈ E. A proper k-coloring c can also be defined as a partition of V into k independent sets V 1 , . . . , V k such that {v i , v j } ∈ V l × V l (l = 1, . . . , k) ⇒ {v i , v j } / ∈ E. The objective of the MSCP is to find a proper k-coloring c with a minimum sum of the colors assigned to all the vertices. The minimum sum of colors for the MSCP is called the chromatic sum of G, and is denoted by ∑ (G). Let C(G) be the set of all proper k-coloring of G and f (c) is presented in Eq. (1.1) 

f (c) = n ∑ i=1 c(v i ) or f (c) = k ∑ l=1 l|V l | (1.1)
where |V l | the cardinality of V l and |V 1 | ≥ . . . ≥ |V k |, then:

∑ (G) = min c∈C(G) f (c) (1.2)
Note that integer k is not fixed but larger than or equal to the chromatic number χ(G) of G in the classical vertex coloring problem (VCP). From the left graph in Fig. 1.1, we can see χ(G) = 3 but f (c) = 18, while in the right graph, k = 4 and ∑ (G) = 15. It could be observed that the sum of coloring may not be optimal when using χ(G) colors to color the graph, and using k > χ(G) colors to color the graph may lead to the minimum sum of coloring. Hence, the VCP algorithms cannot be adapted for solving the MSCP directly due to the difference of the objective function. Besides, the MSCP can also be formalized as a binary quadratic problem [START_REF] Sen | On a graph partition problem with application to vlsi layout[END_REF][START_REF] Wang | Solving the minimum sum coloring problem via binary quadratic programming[END_REF]:

min g(x) = ∑ n i=1 ∑ k l=1 l • x il subject to k ∑ l=1 x il = 1, i ∈ {1, . . . , n} x il + x jl ≤ 1, ∀{v i , v j } ∈ E, l ∈ {1, . . . , k} x il ∈ {0, 1} (1.3) 
where x il = 1 if v i is assigned color l (0 otherwise).

Heuristics and metaheuristics

As far as we know there is no exact algorithm especially designed for the MSCP except by applying CPLEX on the binary quadratic formulation of the MSCP [START_REF] Wang | Solving the minimum sum coloring problem via binary quadratic programming[END_REF]. Several efficient approximation algorithms are proposed for specific graphs, such as interval graphs, bipartite graphs, line graphs of trees, etc [START_REF] Bar-Noy | Minimum color sum of bipartite graphs[END_REF][START_REF] Bonomo | Minimum sum set coloring of trees and line graphs of trees[END_REF][START_REF] Hajiabolhassan | Minimal coloring and strength of graphs[END_REF][START_REF] Jansen | Approximation results for the optimum cost chromatic partition problem[END_REF][START_REF] Jiang | Coloring of trees with minimum sum of colors[END_REF][START_REF] Kroon | The optimal cost chromatic partition problem for trees and interval graphs[END_REF][START_REF] Kubicka | Approximation algorithms for the chromatic sum[END_REF][START_REF] Malafiejski | Sum coloring of graphs[END_REF][START_REF] Salavatipour | On sum coloring of graphs[END_REF]]. However, a number of studies focus on heuristic and metaheuristic algorithms in the recent decades. In this section, we review the most representative and effective MSCP heuristics and metaheuristics, see also the summary in Table 1.1 that contains comments on performances.

Greedy algorithms

Greedy algorithms for the MSCP are fast, simple, and classical. Since they usually achieve poor quality results they are often integrated into other optimization approaches. For instances, they can be used to limit the search space in exact algorithms or to build an initial (pool of) solution(s) in heuristics and metaheuristics strategies.

Two families of improved greedy algorithms are proposed in [START_REF] Li | Greedy algorithms for the minimum sum coloring problem[END_REF]]: MDSAT(n) and MRLF(n). They are based on two well-known greedy coloring heuristics DSATUR [START_REF] Brélaz | New methods to color the vertices of a graph[END_REF]] and RLF [START_REF] Leighton | A graph coloring algorithm for large scheduling problems[END_REF]]. The original DSATUR heuristic employs the saturation degree dsat of a vertex as the selection criterion to dynamically determine the next vertex to color. MDSAT(n) improves DSATUR by considering the impact of coloring a vertex where the impact measure is based on the number of vertices whose dsat would (not) be changed. The original RLF heuristic follows the partition perspective. It colors as many non-adjacent vertices as possible and continues the same coloring procedure with the next color. MRLF(n) improves RLF by considering the probability of using a new color with the target of minimizing the number of colors and makes the current color class as large as possible. The probability measure is based on the cardinality of a subset of uncolored vertices that could be colored with and without using a new color.

A more complicated greedy heuristic (EXSCOL) has been proposed in [Wu and Hao 2012]. It is based on independent sets extraction and is very effective for hard and large graphs. At each iteration, EXSCOL first identifies an independent set S as large as possible by using a tabu search procedure. Secondly, it searches as many independent sets as possible of size |S| to build a pool of candidate independent sets. Then, EXSCOL determines a maximum number of disjoint independent sets by solving a maximum set packing problem. Finally, each extracted independent set is assigned to the smallest available color. The above process is repeated until the graph becomes empty. Notice that there is no procedure to reconsider the extracted independent sets such that it is impossible for EXSCOL to attain an optimal solution once a "bad" independent set has been extracted.

Neighborhood search heuristics

Neighborhood search heuristics progressively modify a candidate solution by local transformations until a stop condition is reached. The essential components of a classical neighborhood search procedure are the evaluation function, the search space to be explored and the neighborhood structure. According to the neighborhood structure, we can classify the representative and effective MSCP algorithms into two categories: Single neighborhood search and multi-neighborhood search.

Single neighborhood search

The tabu search algorithm TS proposed in [START_REF] Bouziri | A tabu search approach for the sum coloring problem[END_REF] starts from a random initial coloring. If there exists conflicting vertices, TS will choose a best move (according to the objective function) to change the color of a conflicting vertex. Otherwise, TS will choose a (non-conflicting) vertex and change its color at random. The above steps are repeated until a stopping criterion is satisfied. Note that TS explores feasible and infeasible regions of the coloring search space.

The breakout local search algorithm (BLS) described in [START_REF] Benlic | A study of breakout local search for the minimum sum coloring problem[END_REF] jointly uses two descent methods and adaptive perturbation strategies to escape from local optima. Like TS, it starts from a random initial solution c and a move consists in changing the color of a vertex. If c is not a proper coloring, BLS applies a first descent strategy to solve the conflicts (to attain a proper coloring). If c is proper, BLS applies another descent search to attain a local optimum (without any improving neighbor). The perturbation strategies differ according to the strength of the perturbation (strong or weak) and the type of moves (directed or random). The perturbation mechanism is adaptively chosen and depends on the number of times a local optimum is visited. Note that BLS also alternates between feasible and infeasible regions of the search space.

Multi-neighborhood search

The MDS (5)+LS algorithm [START_REF] Helmar | A local search heuristic for chromatic sum[END_REF]] applies an iterated multi-neighborhood search and also explores the feasible and infeasible regions of the search space. It first employs the "swap" neighborhood operator that moves a vertex v i from color class V l to V l ′ and then moves all its adjacent vertices v j ∈ V l ′ ({v i , v j } ∈ E) to V l . Note that the obtained solution is not necessarily a proper coloring. When no further improvement exists for the swap changes, the "one-move" neighborhood operator is employed. It simply changes the color of a vertex until no improvement can be obtained. At this moment, the local solution is proper. Then it assigns all the vertices with their smallest legal color and changes the color labels according to the sorted cardinality of the color classes V l (|V 1 | ≥ . . . ≥ |V k |). Afterwards, a random perturbation operator is applied which consists in moving some vertices from their current color class to another one at random.

Evolutionary algorithms

Different from neighborhood search strategies which are based on a single solution, evolutionary algorithms use a pool of solutions and try to find gradually better solutions by applying genetic operators (e.g., crossover, mutation,...) to solutions of the population.

The most popular evolutionary algorithms for the MSCP jointly use a recombination operator and a local search improvement to explore the search space. They include, for instance, the MASC and MA MRLF(n) [START_REF] Li | Greedy algorithms for the minimum sum coloring problem[END_REF] Greedy algorithm A family of improved greedy algorithms based on the well-known greedy coloring strategies DSATUR and RLF.

TS [START_REF] Bouziri | A tabu search approach for the sum coloring problem[END_REF] Tabu search based on a single neighborhood A very simple tabu search but the results are better than those of the greedy algorithms MDSAT(n) and MRLF(n).

MDS (5)+LS [START_REF] Helmar | A local search heuristic for chromatic sum[END_REF] Neighborhood search based on a multi-neighborhood An iterated multi-neighborhood search combined with a random perturbation procedure achieving better results than MDSAT(n), MRLF(n) and TS.

BLS [START_REF] Benlic | A study of breakout local search for the minimum sum coloring problem[END_REF] Neighborhood search based on a single neighborhood A breakout local search combining a greedy descent strategy with an adaptive perturbation step. It performs well on the small DIMACS graphs.

EXSCOL [Wu and Hao 2012] Greedy algorithm A complicated greedy algorithm, based on independent sets extraction, which is quite effective for large graphs.

MA [START_REF] Moukrim | Upper and lower bounds for the minimum sum coloring problem[END_REF] Evolutionary algorithm A genetic algorithm with a two-parents crossover operator combined with a local search based on an hill climbing and a "destroy and repair" procedures. Results are competitive with MASC.

MASC [START_REF] Jin | A memetic algorithm for the minimum sum coloring problem[END_REF] Evolutionary algorithm A memetic algorithm based on a double-neighborhood tabu search and a multi-parent crossover operator. Most results are better than those of the local search heuristics.

HSA [Jin and Hao 2015c] Evolutionary algorithm A hybrid search algorithm based on a jointly use of two crossover operators and an iterated double-phase tabu search procedure. The lower and upper bounds obtained by the HSA are highly competitive with the best known results in the literature.

memetic algorithms [START_REF] Jin | A memetic algorithm for the minimum sum coloring problem[END_REF][START_REF] Moukrim | Upper and lower bounds for the minimum sum coloring problem[END_REF], the HSA hybrid search algorithm [Jin and Hao 2015c] and the BQP-PR evolutionary algorithm [START_REF] Wang | Solving the minimum sum coloring problem via binary quadratic programming[END_REF]. BQP-PR relies on a binary quadratic programming formulation of the problem and combines a path relinking approach with a tabu search procedure. Besides, the parallel genetic algorithm PGA [START_REF] Kokosiński | On sum coloring of graphs with parallel genetic algorithms[END_REF] employs assignment and partition crossovers, first-fit mutation, and proportional selection without any local search improvement.

MA is a hybrid genetic algorithm [START_REF] Moukrim | Upper and lower bounds for the minimum sum coloring problem[END_REF]] that focuses on the feasible search space. It includes a two-parents crossover operator (an adaptive variant of the well-known GPX crossover originally proposed for the classical vertex coloring problem [START_REF] Galinier | Hybrid evolutionary algorithms for graph coloring[END_REF]) and a local search based on a hill-climbing and a "destroy and repair" procedures. During the local search phase, the hill-climbing procedure is first applied to improve the current solution. The "destroy and repair" procedure is then used to escape from the local optimum. It randomly removes some vertices and re-inserts each of them into its largest available color class while keeping the solution proper. If there is no such a color class, the vertex is moved to a new color class. MA employs the above two procedures alternately until no further improvement can be obtained.

In this thesis, we introduce two new population-based heuristics. In Chapter 3, we present the MASC memetic algorithm [START_REF] Jin | A memetic algorithm for the minimum sum coloring problem[END_REF] which is based on a multi-parent crossover operator (MGPX) and a double-neighborhood tabu search procedure. MGPX is another variant of the GPX crossover [START_REF] Galinier | Hybrid evolutionary algorithms for graph coloring[END_REF]. It builds the color classes of the offspring (which is always a proper coloring) one by one and transmits entire color classes as large as possible until all vertices of the offspring are colored. Besides, the tabu search procedure applies two different and complementary neighborhoods N 1 and N 2 in a token-ring way to explore the search space. N 1 is an "exchange" operator which swaps some vertices from two color classes. N 2 is a "one-move" operator: It changes the color of a single vertex. MASC only explores the feasible search space of the MSCP since N 1 and N 2 include all the proper colorings that can be obtained from the current candidate solution by applying the "exchange" or "one-move" operator.

In Chapter 4, we present the HSA algorithm which is a hybrid search algorithm [Jin and Hao 2015c] that alternates between feasible and infeasible regions of the search space. HSA relies on a double-crossover recombination method and an iterated double-phase tabu search procedure. The recombination method jointly uses a diversification-guided crossover and a grouping-guided crossover to generate promising offspring solutions. During the double-phase tabu search procedure, it first identifies if the given solution c is a proper coloring. If c is proper, the first tabu search is called to improve its sum of colors. Otherwise, another tabu search is called for conflict resolution to attain a proper coloring which is further improved by the first tabu search according to the objective function. The double-phase tabu search only employs a "one-move" operator that changes the color of a single vertex.

Bounds

Theoretical bounds

For any undirected simple graph G = (V, E) with n = |V | vertices and m = |E| edges, the chromatic number χ(G) is the smallest number of colors needed to color the vertices of G such that a proper kcoloring is obtained and the chromatic sum ∑ (G) is the minimum sum of the colors assigned to all the vertices among all proper k-colorings of G. In this section, we list the theoretical lower and upper bounds of the MSCP according to [START_REF] Kokosiński | On sum coloring of graphs with parallel genetic algorithms[END_REF][START_REF] Moukrim | Upper and lower bounds for the minimum sum coloring problem[END_REF][START_REF] Thomassen | Tight bounds on the chromatic sum of a connected graph[END_REF]]:

∑ (G) ≤ n + m ⌈ √ 8m⌉ ≤ ∑ (G) ≤ ⌊ 3(m + 1) 2 ⌋ n + χ(G)(χ(G) -1) 2 ≤ ∑ (G) ≤ ⌊ n(χ(G) + 1) 2 ⌋ (1.4)
From Eq. (1.4), one easily observes that the best theoretical lower and upper bounds available for the MSCP are respectively

LB t = max{⌈ √ 8m⌉, n+ χ(G)(χ(G)-1) 2 } and U B t = min{n+m, ⌊ 3(m+1) 2 ⌋, ⌊ n(χ(G)+1) 2 ⌋}.

Computational bounds

Recall that the MSCP is to find a proper k-coloring while minimizing the sum of the colors assigned to the vertices. The quantity of Eq. (1.2) gives a "computational" upper bound for the MSCP.

Let G ′ = (V, E ′ ) (E ′ ⊆ E) be any partial graph of G = (V, E), ∑ (G ′ ) is a lower bound of ∑ (G) since any proper coloring of G must be a proper coloring of G ′ : ∑ (G) ≥ ∑ (G ′ ).
Partial graphs considered in the literature to estimate the "computational" lower bound f LB include bipartite graphs (trees and paths) [Kroon et al. 1997, Garey andJohnson 2002] and cliques, the decomposition into cliques providing better bounds [START_REF] Moukrim | Lower bounds for the minimal sum coloring problem[END_REF]. Let c = {S 1 , S 2 , . . . , S k } be a clique decomposition of G, then the quantity from Eq. (1.5) gives a "computational" lower bound for the MSCP.

To obtain a clique decomposition, one popular approach is to find a proper coloring of the complementary graph Ḡ of G [START_REF] Helmar | A local search heuristic for chromatic sum[END_REF], Jin and Hao 2015c[START_REF] Moukrim | Upper and lower bounds for the minimum sum coloring problem[END_REF][START_REF] Wu | Improved lower bounds for sum coloring via clique decomposition[END_REF], since each color class (independent set) of Ḡ is a clique of G.

f LB (c) = k ∑ l=1 |S l |(|S l | + 1) 2 (1.5)

Benchmark

We consider a set of 94 frequently used instances in order to evaluate the performance of MSCP algorithms, 58 of which were part of the COLOR 2002-2004 workshops, the 36 others come from the DIMACS challenge. This benchmark is available online from http://mat.gsia.cmu.edu/COLOR02. Compared to the well-known DIMACS instances, the COLOR 2002-2004 ones are relatively easy except the four "wap" large graphs. These instances refer to various topologies and densities, which can be classified into the 14 following types:

-Twelve classical random graphs (DSJCn.d,n ∈ {125,250,500,1 000},d ∈ {1,5,9}); -Three geometric graphs (DSJR500.d, d ∈ {1c, 1, 5}); -Six flat graphs (flat300_χ_0 with χ ∈ {20, 26, 28} and flat1000_χ_0 with χ ∈ {50, 60, 76}); -Twelve Leighton graphs (le450_χa,le450_χb,le450_χc,le450_χd,χ ∈ {5,15,25}); -Four latin square graph (latin_sqr_10 and qg.orderχ, χ ∈ {30, 40, 50}); -Two very large random graphs (C2000.5 and C4000.5); -Fourteen graphs based on register allocation (fpsol2.i.a, inithx.i.a, zeroin.i.a, mulsol.i.b, a ∈ {1, 2, 3} and b ∈ {1, 2, 3, 4, 5}); -Two graphs from the scheduling area (school1 and school1_nsh); -Twenty four graphs from the Donald Knuth's Stanford GraphBase (milesn with n ∈ {250, 500, 750, 1000, 1500}, anna, david, huck, jean, homer, games120, queen8.12, and queena.a, a ∈ {5, . . . , 16}); -Five graphs based on the Mycielski transformation (myciela, a ∈ {3, 4, 5, 6, 7}); -Four graphs that have a hard-to-find four clique embedded (mugn_a, n ∈ {88, 100}, a ∈ {1, 25}); -Two "insertion" graphs (2-Insert_3 and 3-Insert_3); -Four graphs from real-life optical network design problems (wap05, wap06, wap07, and wap08). Table 1.2 gives the detailed characteristics of the benchmark. Columns 1-5 and 8-12 present the number n of vertices, the number m of edges, the density d = 2m/n(n -1) and the chromatic number χ(G) of each graph. Columns 6-7 and 13-14 indicate the best theoretical lower and upper bounds (LB t and U B t respectively). Note that, since the chromatic number χ(G) of some difficult graphs are still unknown, we use the minimum k for which a k-coloring has been reported for G instead of χ(G) to compute U B t and LB t using the min / max equations introduced in Section 1.4.1.

The bandwidth (multi)coloring problem 2.1 Introduction

The Bandwidth Coloring Problem (BCP) and the Bandwidth MultiColoring Problem (BMCP) are two other important generalizations of the vertex coloring problem. The BCP is known as the restricted Tcoloring problem and the BMCP is also known as the restricted set T-coloring problem [START_REF] Hale | Frequency assignment: Theory and applications[END_REF][START_REF] Roberts | T-colorings of graphs: recent results and open problems[END_REF]]. The T-coloring and the set T-coloring problems have been introduced by Hale in connection with the channel assignment problem in communications [START_REF] Hale | Frequency assignment: Theory and applications[END_REF]]. Tresman presents a comprehensive survey of the literature on T-coloring [START_REF] Tesman | T-colorings, list T-colorings, and set T-colorings of graphs[END_REF]] and later Roberts summarizes the basic results of the T-coloring problem and provides some connected problems and their variations [START_REF] Roberts | T-colorings of graphs: recent results and open problems[END_REF]]. The studies on heuristic and metaheuristic methods for T-coloring and set T-coloring include the Dsatur algorithm [START_REF] Costa | On the use of some known methods for T-colorings of graphs[END_REF]], a generic tabu search algorithm [START_REF] Dorne | Tabu search for graph coloring, T-colorings and set T-colorings[END_REF], two hybrid evolutionary approaches combining an ACO algorithm and a tabu search [START_REF] Aicha | Two hybrid ant algorithms for the general T-colouring problem[END_REF] for instance.

The BCP and BMCP are notable for their applicability to a number of important applications in particular in the area of frequency assignment in mobile networks. There is extensive literature on this application, including exact approaches, heuristics and metaheuristics [START_REF] Aardal | Models and solution techniques for frequency assignment problems[END_REF][START_REF] Allen | Generation of lower bounds for minimum span frequency assignment[END_REF][START_REF] Bernardo | An application of reinforcement learning for efficient spectrum usage in next-generation mobile cellular networks[END_REF][START_REF] Castelino | A tabu search algorithm for frequency assignment[END_REF][START_REF] Gamst | Some lower bounds for a class of frequency assignment problems[END_REF][START_REF] Hale | Frequency assignment: Theory and applications[END_REF][START_REF] Hao | Tabu search for frequency assignment in mobile radio networks[END_REF][START_REF] Salcedo-Sanz | A hybrid hopfield networksimulated annealing approach for frequency assignment in satellite communications systems[END_REF][START_REF] Walser | Feasible cellular frequency assignment using constraint programming abstractions[END_REF][START_REF] Wang | Noisy chaotic neural networks with variable thresholds for the frequency assignment problem in satellite communications[END_REF][START_REF] Zoellner | A breakthrough in spectrum conserving frequency assignment technology[END_REF]. Aardal et al. provides a comprehensive survey of the frequency assignment problem [START_REF] Aardal | Models and solution techniques for frequency assignment problems[END_REF]], which introduces a broad description of the practical settings in which frequency assignment is applied and a classification of the different models and formulations in the literature.

Since the BCP and BMCP are NP-hard problems, much efforts have been devoted to the development of various heuristics and metaheuritics, such as neighborhood search algorithms based on a single solution [START_REF] Lim | Heuristic methods for graph coloring problems[END_REF][START_REF] Bui | An agent-based algorithm for generalized graph colorings[END_REF][START_REF] Lai | Multistart iterated tabu search for bandwidth coloring problem[END_REF][START_REF] Prestwich | Generalised graph colouring by a hybrid of local search and constraint programming[END_REF], Jin and Hao 2015a] and evolutionary algorithms based on a pool of solutions [Malaguti and Toth 2008[START_REF] Lai | Path relinking for bandwidth coloring problem[END_REF][START_REF] Dorne | An evolutionary approach for frequency assignment in cellular radio networks[END_REF][START_REF] Hao | Study of genetic search for the frequency assignment problem[END_REF]. More methods can be found in the 2008 special issue of Discrete Applied Mathematics [START_REF] Johnson | Special issue on computational methods for graph coloring and its generalizations[END_REF] dedicated to computational methods for graph coloring and its generalizations. This chapter thus aims to provide a detailed review of different BCP and BMCP solution approaches proposed in the recent literature.

In the following sections, we first provide a general definition of the BCP and BMCP, followed by the introduction of the studied heuristic and metaheuristic algorithms. Finally, the benchmark instances which are frequently used the BCP and the BMCP algorithms are presented.

Definitions and formulation

Given an undirected graph G = (V, E) with vertex set V = {v 1 , . . . , v n }, edge set E ⊂ V × V and edge weight d(i, j) for each edge {v i , v j } ∈ E (d(i, j) can also be considered as a distance between two adjacent vertices v i and v j ), a legal bandwidth coloring is a function c : V → {1, 2, ..., k} such that the absolute difference between c(v i ) and c(v j ) of an edge

{v i , v j } ∈ E is at least d(i, j), i.e., |c(v i ) -c(v j )| ⩾ d(i, j), ∀{v i , v j } ∈ E (2.1)
The bandwidth coloring problem is to find a legal bandwidth coloring of G with k minimum. The problem of k-BCP corresponds to BCP with k being fixed where one seeks a legal bandwidth coloring with k colors.

The BCP can be generalized as the bandwidth multicoloring problem where each vertex v i receives a subset S(i) ⊂ {1, 2, ..., k} of p(i) different colors. A legal bandwidth multicoloring must satisfy two distance constraints: The absolute difference between any member of S(i) and S(j) is at least d(i, j) for each edge {v i , v j } ∈ E and the absolute difference between two distinct values in

S(i) is at least d(i, i) for each vertex (d(i, i) is the color separation distance for vertex v i ), i.e., |x -y| ⩾ d(i, j), ∀{v i , v j } ∈ E, ∀x ∈ S(i), y ∈ S(j) |a -b| ⩾ d(i, i), ∀v i ∈ V, ∀a, b ∈ S(i) (2.
2)

The BMCP is to find a legal bandwidth multicoloring of G with k minimum.

Besides, the integer liner programming for the BCP and the BMCP are proposed in [START_REF] Malaguti | The vertex coloring problem and its generalizations[END_REF]]. The BCP is formulated as follows:

minimize k subject to (a) k ≥ y u u, u ∈ U (b) ∑ u∈U x iu = 1, i ∈ V (c) x iu + x jl ≤ 1, (i, j) ∈ E, u ∈ U, l ∈ {u -d(i, j) + 1, . . . , u + d(i, j) -1} (d) x iu ≤ y u , i ∈ V, u ∈ U (e) x iu ∈ {0, 1}, i ∈ V, u ∈ U (f ) y u ∈ {0, 1}, u ∈ U (2.3)
where U = {1, . . . , ū} (ū is an upper bound on the number of colors needed to color the graph) is the set of available colors,

x iu = 1(i ∈ V, u ∈ U ) if v i is assigned color u (0 otherwise), and the y u = 1 if color u is used (0 otherwise).
The objective function is to minimize the maximum color used with constraint (a). Constraint (b) imposes each vertex v i to receive only one color. Constraint (c) indicates that the absolute value of the difference between the colors assigned to vertices v i and v j must be at least equal to d(i, j). Constraint (d) assures that if a vertex v i receives a color u, the color u is used. Constraints (e) and (f ) impose the variables to be binary.

The formulation of the BMCP is given by the following binary program [START_REF] Malaguti | A survey on vertex coloring problems[END_REF].

minimize k subject to (a) k ≥ y u u, u ∈ U (b) ∑ u∈U x iu = w i , i ∈ V (c) x iu + x jl ≤ 1, (i, j) ∈ E, u ∈ U, l ∈ {u -d(i, j) + 1, . . . , u + d(i, j) -1} (d) x iu ≤ y u , i ∈ V, u ∈ U (e) x iu ∈ {0, 1}, i ∈ V, u ∈ U (f ) y u ∈ {0, 1}, u ∈ U (2.4)
where w i is the number of different colors for each vertex of the graph. The above constraints have the same meanings as the constraints for the BCP except constraint (b). It imposes that each vertex receives the specified number of colors.

Heuristics and metaheuristics

Neighborhood search heuristics

Neighborhood search heuristic is one of the most effective methods for solving the BCP and BMCP. The search space, the evaluation function and the neighborhood function form a search strategy for a neighborhood search algorithm. According to the search space, we can classify the representative and effective BCP and BMCP algorithms into two categories: Complete coloring strategy and partial coloring strategy.

Complete coloring strategy

The squeaky wheel optimization with tabu search heuristic (SWO+TS) [START_REF] Lim | Heuristic methods for graph coloring problems[END_REF] combines three important components: Greedy techniques, squeaky wheel optimization (SWO) and tabu search. SWO employs a traditional construct-analyze-prioritize cycle. The constructor procedure uses a greedy algorithm to build the solution which assigns colors to the vertices greedily based on the vertex sequence (the order of the vertices). The analyzer procedure identifies the vertices whose color exceeds a given target (they are called "trouble makers") and those vertices are given a blame value. The prioritizer procedure modifies the vertex sequence according to the blame value. SWO is run for a number of iterations and then the best solution is submitted to the tabu search procedure. The tabu search procedure applies a "swap" move that exchanges two vertices in the vertex sequence of a solution to generate a set of neighborhood solutions.

The agent-based algorithm ABGC [START_REF] Bui | An agent-based algorithm for generalized graph colorings[END_REF] jointly uses an iterated greedy algorithm, an ants repair phase and a local optimization procedure. It starts from an initial coloring c generated by an iterated greedy algorithm and applies a colony of ants to resolve the conflicts in c. Note that the ants are distributed among the vertices based on the conflicts at the vertices. If c is proper, ABGC applies a local optimization algorithm to further improve this coloring and the number of colors is decreased by 1 when c is improved. Otherwise, ABGC increases the number of colors by 1. ABGC is not an ant colony optimization algorithm (ACO) [START_REF] Dorigo | Ant algorithms for discrete optimization[END_REF] since each ant only colors a subset of the vertices of the graph and the ants do not use pheromone to communicate with each other.

The multistart iterated tabu search (MITS) [START_REF] Lai | Multistart iterated tabu search for bandwidth coloring problem[END_REF] integrates an iterated tabu search algorithm (ITS) with a multistart method. Starting from a random coloring, MITS applies an ITS procedure to improve this solution. The evaluation function calculates the degree of constraint violations. ITS applies tabu search to explore the search space by applying a "one-move" neighborhood that changes a conflicting vertex v i from its original color class V l to another color class V l ′ . When the tabu search procedure terminates, ITS employs a perturbation operator to jump out of the local optimum and then calls the tabu search again. ITS stops when the current best solution cannot be improved within a given maximum number of iterations. MITS combines this ITS procedure with a multistart technique and repeats this combination until a legal k-coloring is found or a timeout limit is reached.

Partial coloring strategy

The forward checking colouration neighborhood search (FCNS) [START_REF] Prestwich | Generalised graph colouring by a hybrid of local search and constraint programming[END_REF]] is based on a partial coloring strategy and combines a local search with a constraint propagation algorithm. FCNS enhances the impasse appraoch [START_REF] Prestwich | Coloration neighbourhood search with forward checking[END_REF]] by adding the constraint programming technique of forward checking such that some colors can be pruned during the search process. FCNS uses a domain to include the available colors of a vertex. FCNS selects uncolored vertices heuristically according to the domain cardinality to extend the partial solution until reaching a dead-end, i.e., when the domain of a vertex is empty. Afterwards, FCNS removes one or more colored vertices in a heuristic way to resolve the conflicts. This procedure is repeated until all the vertices are colored or a terminate condition is met.

The adaptive memory programming (AMP) [START_REF] Marti | Heuristics for the bandwidth colouring problem[END_REF]] combines a memory-based construction heuristic and a tabu search procedure. AMP constructs the partial coloring solution by selecting a vertex with its lowest evaluation value in the candidate list which incorporates frequency information until all the vertices are colored. Then, AMP uncolors some vertices whose color is larger than the given target, employs a tabu search procedure to randomly select a vertex to color and uncolor all the adjacent vertices so as to avoid violating the distance constraints. Notice that the color for the selected vertex is chosen based on the consideration that it minimizes the sum of edge weights incident with uncolored vertices. The constructive procedure is invoked once the tabu search procedure is terminated. This procedure is repeated until all the vertices are colored or a stop condition is met.

In Chapter 5 of this thesis, we introduce a learning-based hybrid search (LHS) [Jin and Hao 2015a]. It combines a construction phase to progressively build feasible partial colorings and a local search phase to reestablish feasibility when an illegal partial solution is encountered. LHS repeats two phases: A coloring construction phase and a repair phase. Starting from an empty solution, the coloring construction phase selects an uncolored vertex and tries to assign it an available color according to a learning-based guiding function. This phase extends a proper partial solution until no available color is possible for the selected vertex (a dead-end vertex). Then, the repair phase is invoked after assigning a random color to this dead-end vertex. Obviously, the current partial coloring is an illegal coloring owing to the dead-end vertex violates the distance constraints. The repair phase takes the current partial coloring as an input and applies a tabu search to resolve the conflicts. The tabu search procedure is terminated when a legal partial solution is found or a given target iteration is reached. If the former occurs, LHS switches back to the coloring construction phase. Otherwise, LHS drops the current partial solution and restarts a new round of "construction-repair" process by updating the guiding function to learn from this failure. LHS repeats the above process until a target number of maximum tries is reached or a complete legal k-coloring is obtained. [START_REF] Lim | Heuristic methods for graph coloring problems[END_REF] Neighborhood search based on a complete coloring strategy A neighborhood search combining the greedy techniques, squeaky wheel optimization and the tabu search procedure.

ABGC [START_REF] Bui | An agent-based algorithm for generalized graph colorings[END_REF] Neighborhood search based on a complete coloring strategy A local search applies a number of collaborative ants to attain a complete coloring which is further improved by a local optimization algorithm.

EA [Malaguti and Toth 2008] Evolutionary algorithm An evolutionary algorithm combining an effective tabu search algorithm with population management procedures, which performs well for the BCP benchmark as well as the BMCP benchmark.

FCNS [START_REF] Prestwich | Generalised graph colouring by a hybrid of local search and constraint programming[END_REF] Neighborhood search based on a partial coloring strategy Combination of a local search and a constraint propagation algorithm, which is effective for the BCP benchmark. AMP [START_REF] Marti | Heuristics for the bandwidth colouring problem[END_REF] Neighborhood search based on a partial coloring strategy A constructive heuristic that combines a memory-based construction approach and a tabu search procedure.

MITS [START_REF] Lai | Multistart iterated tabu search for bandwidth coloring problem[END_REF] Neighborhood search based on a complete coloring strategy An iterated tabu search algorithm combined with a multistart method, which is quite effective for the BMCP benchmark.

PR [START_REF] Lai | Path relinking for bandwidth coloring problem[END_REF] Evolutionary algorithm A memetic algorithm that combines a population based path relinking method and a tabu search based local search procedure, some results are improved when compared to the MITS.

LHS [Jin and Hao 2015a] Neighborhood search based on a partial coloring strategy A constructive algorithm that combines a construction phase to progressively build feasible partial colorings and a local search phase to reestablish feasibility when an illegal partial solution is encountered. Results are highly competitive with the best known results in the literature.

Evolutionary algorithms

Different from neighborhood search algorithms, evolutionary algorithms use a pool of solutions and need to balance the quality and the distance among these solutions.

The evolutionary approach (EA) presented in [Malaguti and Toth 2008] constructs an initial solution using the DSATUR algorithm [START_REF] Brélaz | New methods to color the vertices of a graph[END_REF]] and combines an effective tabu search algorithm with a population management procedure. Malaguti and Toth propose six different crossover operators and experimentally show that the distance-crossover is the best performing among these crossovers. The distancecrossover transmits all "tight distance" pairs from one parent P 1 to the offspring and keeps the same color assignment. The "tight distance" pair is two adjacent vertices whose absolute value of the difference between the colors is equal to the weight of the associated edge. Then, it transmits "tight distance" pairs from the other parent P 2 while keeping the same color assignment if this pair does not violate the distance constraints with respect to the colored vertices of the offspring. For the remaining uncolored vertices, it uses a greedy algorithm to obtain a partial proper k-coloring. The tabu search procedure explores partial k colorings where all the distance constraints are satisfied. It is based on an adaption of the impasse neighborhood [START_REF] Prestwich | Coloration neighbourhood search with forward checking[END_REF]]. The evaluation function measures the total distances of the set of uncolored vertices. A neighborhood solution is obtained by assigning a color to a vertex and uncoloring its adjacent vertices to avoid breaking the distance constraints.

The path relinking algorithm (PR) [START_REF] Lai | Path relinking for bandwidth coloring problem[END_REF]] combines a population based relinking method and a tabu search procedure. From a scratch, an initial population includes different solutions which are randomly generated and optimized by a tabu search procedure [START_REF] Lai | Multistart iterated tabu search for bandwidth coloring problem[END_REF]. Then, PR selects a solution pair at random and builds paths from the initiating solution to the guiding solution in order to generate two offspring solutions. Afterwards, PR employs the tabu search procedure to improve the offspring solution and a population updating procedure to determine whether this improved solution should be inserted into the population and which solution in the population should be replaced.

Benchmark

In order to evaluate the performance of BCP and BMCP algorithms, a data set of 66 well-known benchmark instances have been frequently used. The first set of benchmarks is composed of 33 BCP instances [START_REF] Johnson | Color02/03/04: Graph coloring and its generalizations[END_REF]. These instances belong to three types: GEOMn, GEOMna and GEOMnb (where n denotes the number of vertices of the graph). The first type refers to sparse graphs, while the two other types correspond to dense graphs. The second set of 33 BMCP instances is transformed from the BCP instances. Table 2.2 gives the detailed characteristics of the BCP and BMCP instances. Column 2-7 and column 8-13 present the number of vertices (n), the number of edges (m), the density of the graph (d), the average degree of a vertex (deg ave ), the minimum degree of a vertex (deg min ) and the maximum degree of a vertex (deg max ) respectively. In this chapter, we present a memetic algorithm (MASC) for computing upper bounds of the minimum sum coloring problem (MSCP). The proposed MASC algorithm employs a tabu search procedure with two neighborhoods and a multi-parent crossover operator. Experiments on a set of 77 well-known DIMACS andCOLOR 2002-2004 benchmark instances show that the proposed algorithm competes favorably with the current best performing algorithms for the MSCP. The content of this chapter is published in [START_REF] Jin | A memetic algorithm for the minimum sum coloring problem[END_REF] 

Introduction

This chapter is dedicated to the minimum sum coloring problem which is formally presented in Chapter 1. Recall that given an undirected graph G = (V, E), the MSCP is to find a legal assignment of colors (represented by natural numbers) to each vertex of G such that the total sum of the colors assigned to the vertices is minimized. We introduce a memetic algorithm MASC for the minimum sum coloring problem which relies on three key components. First, a double-neighborhood tabu search procedure (DNTS) is especially designed for the MSCP. DNTS is based on a token-ring application of two complementary neighborhoods to explore the search space and a perturbation strategy to escape from local optima. Second, a multi-parent crossover operator is used for solution recombination. Basically, it tries to transmit large color classes from the parents to the offspring. Finally, a population updating mechanism is devised to determine how the offspring solution is inserted into the population.

We evaluate the performance of MASC on 77 frequently used instances from DIMACS andCOLOR 2002-2004 graph coloring competitions. The computational results show that MASC can match the best known results in the literature for most cases. In particular, it improves the previous best solution for 15 graphs for which an upper bound is known. This chapter is organized as follows. Next section describes the general framework and the components of our MASC memetic algorithm, including the population initialization, the crossover operator and the double-neighborhood tabu search procedure. Detailed computational results and comparisons with five state-of-the-art algorithms are presented in Section 3.3. Before concluding, Section 3.4 investigates and analyzes three key issues of the proposed memetic algorithm.

Components of the MASC approach

A memetic algorithm is a population-based approach where the traditional mutation operator is replaced by a local search procedure [Moscato andCotta 2003, Neri et al. 2012]. Memetic algorithms are among the most powerful paradigms for solving NP-hard combinatorial optimization problems. In particular, they have been successfully applied to the tightly related VCP [START_REF] Galinier | Hybrid evolutionary algorithms for graph coloring[END_REF][START_REF] Lü | A memetic algorithm for graph coloring[END_REF], Malaguti et al. 2008[START_REF] Porumbel | An evolutionary approach with diversity guarantee and well-informed grouping recombination for graph coloring[END_REF].

Our MASC algorithm follows the general principle for designing effective memetic algorithms for discrete optimization [START_REF] Hao | Memetic algorithms in discrete optimization[END_REF]] and is summarized in Algorithm 1. After population initialization, MASC repeats a series of generations (limited to M axGeneration) to explore the search space which is defined by the set of all proper k-colorings (k is not a fixed value, Section 3.2.1). At each generation, two or more parents are selected at random (line 6) and used by the dedicated crossover operator to generate an offspring solution (line 7, Section 3.2.3). The offspring solution is then improved by a double neighborhood tabu search (line 8, 3.2.4). If the improved offspring has a better sum of colors, it is then used to update the current best solution found so far (lines 9-10). Finally, the population updating criterion decides whether the improved offspring will replace one existing individual of the population or not (line 12, Section 3.2.5).

Search space and evaluation function

The search space explored by MASC is the set C of all proper k-colorings of G (k is not fixed). For a given proper k-coloring c, its quality is directly assessed by the sum of colors

f (c) = ∑ v∈V c(v) = ∑ k l=1 l|V l |.

Initial population

Our algorithm begins with a population P of p feasible colorings. This population can be obtained by any graph coloring algorithm that is able to generate different proper colorings for a graph. In our case, we employ the well-known TABUCOL [START_REF] Hertz | Using tabu search techniques for graph coloring[END_REF], more precisely its improved version introduced in [Galinier and Hao 1999]. For a given graph G, TABUCOL tries to find a proper k-coloring Algorithm 1 An overview of the MASC memetic algorithm for the MSCP where k is the best known result for the VCP, i.e., the smallest k for which a k-coloring is known in the literature. If TABUCOL cannot reach a proper k-coloring for the current k value, TABUCOL is restarted with k increased by 1 (this makes the task of finding a legal coloring easier). This process is repeated until a proper k-coloring is obtained. Each resulting k-coloring is then submitted to the dedicated DNTS procedure to improve its coloring sum (see Section 3.2.4). Each improved k-coloring is finally inserted into P if the coloring is not already present in P (discarded otherwise). This process is repeated until P is filled with p different k-colorings. Notice that the solutions generated by TABUCOL may take different k values due to the stochastic nature of TABUCOL. Also in Section 3.4.3, we provide a comparative study to show to which extent the solutions can be improved by the proposed MASC approach.

Crossover operator

The crossover operator is an important component in a population-based algorithm. It is used to generate one or more new offspring individuals to discover new promising search areas. MASC uses a multi-parent crossover operator, called MGPX, which is similar to the one introduced in [START_REF] Hamiez | Scatter search for graph coloring[END_REF] as a variant of the well-known GPX crossover first proposed in [START_REF] Galinier | Hybrid evolutionary algorithms for graph coloring[END_REF] for the VCP (restricted to two parents). MGPX generates only one offspring solution o from α parents randomly chosen from P , where α varies from 2 to 4 according to n and the best k-coloring found for the VCP (see Eq. (3.1)).

α =    2, if n/k < 5 3, if 5 ≤ n/k ≤ 15 4, otherwise (3.1)
Motivations for these α values can be found in [START_REF] Porumbel | An evolutionary approach with diversity guarantee and well-informed grouping recombination for graph coloring[END_REF]]. The dense graphs obviously need more colors k such that the average color class sizes become very low (n/k < 5, i.e., the classes become very small). In this case, it is better to use 2 parents in order to avoid excessive disruptions when blending the color classes. Inversely, the sparse graphs need fewer colors such that the average class sizes are very high (n/k > 15). In this case, we use more parents (4 in our case) in order to increase the probability of selecting and inheriting good classes from different parents. Besides, we choose 3 parents for the graphs between these two extreme situations.

MGPX is summarized in Algorithm 2. It builds the color classes of the o offspring one by one, transmitting as many vertices as possible from the parents at each step (for quality purpose) (lines 8-15). Once a parent has been used for transmitting an entire color class to o, the parent is not considered for ⌊α/2⌋ steps Algorithm 2 Pseudo-code of the MGPX combination operator ). This strategy avoids transmitting always from the same parent and introduces some diversity in o [START_REF] Lü | A memetic algorithm for graph coloring[END_REF]. Note that the offspring solution is always a proper k coloring while the number of colors used by the offspring can be higher than those of the considered parents.

Figure 3.1 illustrates the detailed operations of our MGPX crossover. In the example, there are 3 parents (α = 3) with k = 4 colors, and 11 vertices a, b, ..., u. The forbidden length for each parent is initially set to 0 (τ (P ′ i ) = 0) which means all three parents can be selected at the beginning of the MGPX operator. At the first step, the largest color class {a, b, c, d, e} in parent P 1 is chosen to become the first class V 1 o of the offspring o. Then vertices a, b, c, d, e are removed from all three parents. Parent P 1 is forbidden for 1 step (⌊α/2⌋ = ⌊3/2⌋ = 1). Similarly, we build the color class V 2 o = {h, m, n} from parent P 3 , V 3 o = {r, u} from parent P 2 and V 4 o = {g} from parent P 1 respectively. After four steps, all the vertices are assigned such that a complete offspring is constructed. One notices that in this example, the sum of colors in the offspring is better than or equal with its parents.

A double-neighborhood tabu search

Local optimization is another important element within a memetic algorithm. In our case, its role is to improve as far as possible the quality (i.e., the sum of colors) of a given solution returned by the MGPX crossover operator. This is achieved by a Double-Neighborhood Tabu Search (DNTS) procedure specifically designed for the MSCP (see Algorithm 3).

DNTS is based on tabu search [START_REF] Glover | Tabu search. Handbook of Combinatorial Optimization[END_REF] and uses two different and complementary neighborhoods N 1 and N 2 which are applied in a token-ring way [START_REF] Di Gaspero | Neighborhood portfolio approach for local search applied to timetabling problems[END_REF]Schaerf 2006, Lü et al. 2011] to find good local optima (intensification) (lines 2-14). More precisely, we start our search with one neighborhood (lines 6-9) and when the search ends with its best local optimum, we switch to the other neighborhood to continue the search while using the last local optimum as the starting point (lines 10-13). When this second search terminates, we switch again to the first neighborhood and so on. DNTS continues the exploration of each neighborhood N i (i = 1, 2) until µ i (i = 1, 2) consecutive iterations fail to update the best solution found. This neighborhood-based intensification phase terminates if the best local optimum is not updated for µ ρ consecutive iterations (line 14). At this point, we enter into a diversification phase by triggering a perturbation to escape from the local optimum (line 15, Section 3.2.4). The DNTS procedure stops when a maximum number of iterations M axIters is met. We explain below the two neighborhoods, the tabu list management and the perturbation mechanism. The first neighborhood N 1 can be described by the operator Exchange(i, j). Given a proper k-coloring c = {V 1 , . . . , V k }, operator Exchange(i, j), (1 ≤ i ̸ = j ≤ k) swaps some vertices of a color class V i against some connected vertices of another color class V j . Formally, let G i,j (c) be the set of all connected components of more than one vertex in the subgraph of G induced by color classes V i and V j in a proper k-coloring c. For a k-coloring c, the size of neighborhood

N 1 is bounded by O( n 2 × k(k-1)
2 ) (n is the number of vertices). In Figure 3.2 (left) for instance, G i,j (c) is composed of two graphs (say g 1 and g 2 ): g 1 is the subgraph induced by {v 2 , v 3 , v 6 , v 7 , v 8 } and g 2 is induced by {v 4 , v 5 , v 9 }.

Neighborhood N 1 (c) is composed of the set G(c) of all possible elements in all the G i,j (c) sets: G(c) = ∪ 1≤i<j≤k G i,j (c). In other words, N 1 (c) includes all the proper k-colorings that can be obtained from the The second neighborhood N 2 is conventional and is simpler than N 1 . N 2 can be described by the operator OneM ove (v, i, j).

v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 V i V j v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 V i V j A proper k-coloring c A possible c ′ ∈ N 1 (c)
Given a proper k-coloring c = {V 1 , . . . , V k }, operator OneM ove(v, i, j), (1 ≤ i ̸ = j ≤ k) displaces one single vertex v of a color class V i to
another color class V j such that the resulting k-coloring remains proper. For instance, from the current coloring c of the left drawing of Figure 3.2, moving vertex v 1 from V i to V j gives a neighboring solution. Neighborhood N 2 (c) is composed of all the possible proper k-colorings by applying OneM ove (v, i, j) to the current k-coloring c. Like neighborhood N 1 , the solutions of this second neighborhood are also proper k-colorings. The size of the neighborhood N 2 is bounded by O(n × k). Moreover, the number of colors of the neighboring solutions remains the same as that of the current coloring.

Neighborhood examination and tabu list

DNTS applies these two neighborhoods N 1 and N 2 in a token-ring way [START_REF] Di Gaspero | Neighborhood portfolio approach for local search applied to timetabling problems[END_REF]Schaerf 2006, Lü et al. 2011]. The alternation between N 1 and N 2 is triggered when the current neighborhood is exhausted, i.e., when the current best solution cannot be further improved for a fixed number of consecutive iterations.

As shown in Algorithm 3, at each iteration of our DNTS, a best neighboring solution is selected among all the allowed solutions (from N 1 or N 2 ) to replace the current solution. Precisely, for the neighborhood N 1 defined by the operator Exchange(i, j), we first identify all the connected components in each pair of color classes for the current k-coloring. Theoretically, this step has a worst time complexity of O(

n 2 2 × k(k-1)

2

). But in practice, the time consuming is much lower since this operator is related to the density of the graph. Then we select the best connected components for exchange according to the objective function f (c) (ties are broken at random). When a set of vertices of a color class V i are exchanged with a set of vertices of another color class V j , exchanges between V i and V j are forbidden for the next T T iterations (called tabu tenure). Finally, we only need to update the connected components in the pairs of color classes which contain class V i or V j . For the neighborhood N 2 defined by the OneM ove(v, i, j) operator, we go through all legal moves (there are O(n × k) of them) and select a best move for the OneM ove(v, i, j) operation. When a vertex v of a color class V i is displaced to another color class V j , the vertex v is forbidden to go back to V i for the next T T iterations.

The tabu list is introduced to avoid short-term cycles [START_REF] Glover | Tabu search. Handbook of Combinatorial Optimization[END_REF] and is updated after each iteration. The tabu tenure T T is determined simply by taking a random number from {0, . . . k -1}. Moreover, a forbidden Exchange or OneM ove operation is always accepted if it leads to a neighboring solution better than the best solution found so far (this is called aspiration according to the tabu search terminology).

The perturbation mechanism

In addition to the basic diversification mechanism of the tabu list, our DNTS algorithm applies a stronger diversification strategy based on perturbations to escape deep local optima. The perturbation is triggered when the current intensification phase cannot update the recorded best solution c * for µ ρ consecutive iterations (see line 15, Algorithm 3). In this case, the search is considered to be trapped in a deep local optimum and a strong diversification is needed to bring the search to a new search region. To achieve this, we apply the following perturbation technique to modify the recorded best solution c * and then use this perturbed solution to initialize DNTS. Suppose c * is composed of k different color classes and let V l be the largest color class. We introduce an additional color class V k+1 and then move randomly one third of the vertices of V l into V k+1 . In order to prevent the subsequent search from coming back to c * , V l and V k+1 are classified tabu and cannot take part of an Exchange or a OneM ove operation for the next T T iterations (see Section 3.2.4).

Population updating

The management of the population usually controls and balances two important factors in populationbased heuristics: Quality and diversity. Quality can naturally be measured here using the coloring sum function (f ). The proper k-coloring c i is better than c j if f (c i ) < f (c j ). We use the following distance H to estimate the diversity. Given two coloring c i and c j , H i,j is the number of vertices in c i and c j which have different colors:

H i,j = |{v ∈ V : c i (v) ̸ = c j (v)}|.
A small H i,j value indicates a high similarity between c i and c j . H is also employed to measure how much diversity H i,P a particular k-coloring c i contributes to the entire population P : H i,P = min j̸ =i H i,j . Again, a small (large) H i,P value indicates that c i adds a low (high) diversity to P .

In MASC, f and H are combined in a s "score" function which is used to decide whether an offspring solution o replaces an individual in the population P or not: s(c i ) = f (c i ) + e 0.08n/H i,P ∀c i ∈ P . Precisely we first add o into P and compute all s(c i ). We then identify the worse configuration c w (i.e., s(c w ) is maximum). The replacement strategy applies the following rules: Notice that unlike partition based distances [START_REF] Porumbel | An evolutionary approach with diversity guarantee and well-informed grouping recombination for graph coloring[END_REF]], the distance used here does not consider explicitly the symmetry of solutions. We adopted this simpler distance for two practical reasons. First, given that the solutions are all improved by DNTS (tabu search), the population has generally a certain level of diversity. So the diversity control mechanism has a limited role. Second, the computation of a partition distance is much more expensive. The experimental results show that in the context of this work, the above distance seems sufficient for our MASC algorithm.

Experimental results

Our MASC approach was tested on a benchmark composed of 77 well-known graphs commonly used to report computational results for the MSCP: 39 are part of the COLOR 2002-2004 competitions and the 38 others are known as "DIMACS" instances. Most of these graphs are available on-line from http: //mat.gsia.cmu.edu/COLOR04. The main characteristics of each graph appear in Tables 3.2 and3.5, see columns 1- 4 (COLOR 20024 (COLOR -2004 instances are at the top of Table 3.2 and DIMACS instances at the bottom): Name of the graph, order (n), size (m), and the best known sum f b .

MASC is programmed in C++ and compiled using GNU gcc on a PC with 2.7 GHz CPU and 4 Gb RAM. Like many memetic algorithms, we use a small population of 10 individuals. The values of the other parameters were determined empirically, see Table 3.1. Notice that M axGenerations = 50 is the stop condition that determines the running time of the algorithm. Given its stochastic nature, MASC is run 30 times with different seeds. 

Computational results

Columns 6-10 in Table 3.2 present detailed computational results of our MASC algorithm: Best result obtained (f * ) with the number of required colors (k * ), success rate (SR, percentage of runs such that the sum of colors f * of MASC is at least the current best known value f b , i.e., f * ≤ f b ), average coloring sum (Avg.), standard deviation (σ) and average running time to reach f * (t, in minutes). Column k shows the chromatic number or its best upper bound (i.e., the smallest number of colors for which a k-coloring is ever reported). The reported values are based on 30 independent runs (i.e., with different random seeds).

From Table 3.2, one observes that for the 39 COLOR 2002-2004 instances with known upper bounds (see top part of the table), MASC improves the best known upper bound for two instances (miles500 and homer) and equals the best known results for the other 37 graphs. Furthermore, MASC achieves robust results here since SR = 30/30 and σ = 0.0 for these graphs except two instances (homer and queen9.9). The average running time of MASC ranges from less than one second to about 13 minutes except for the homer instance.

For the set of 24 DIMACS instances (bottom part), the MASC algorithm improves the best known upper bound for 3 graphs (flat300_28_0, le450_15c, and le450_15d) and equals the best known results for 10 instances. Unfortunately, MASC was unable to reach the best known results for the other 11 graphs (see lines where SR = 0/30). The average running time is less than 76 minutes except for the DSJC500.5 and flat300_28_0 instances. Finally, we notice that the number of colors needed to ensure the best sum coloring (k * ) can be larger than the chromatic number or its best upper bound (k). 2013], MDS5 [START_REF] Helmar | A local search heuristic for chromatic sum[END_REF], and MRLF [START_REF] Li | Greedy algorithms for the minimum sum coloring problem[END_REF]. No averaged value appears in the table for MA, MDS5 and MRLF since this information is not given in [START_REF] Helmar | A local search heuristic for chromatic sum[END_REF][START_REF] Li | Greedy algorithms for the minimum sum coloring problem[END_REF][START_REF] Moukrim | Upper and lower bounds for the minimum sum coloring problem[END_REF]]. Furthermore, "-" marks signal that some instances were not tested by some approaches.

Comparisons with state-of-the-art algorithms

Since most reference algorithms give only results for a (small) subset of the considered benchmark, it is difficult to analyze the performance of these algorithms by statistical tests. Hence, we compare the performance between MASC and these reference algorithms one by one and summarize the comparisons in Table 3.4. The first column of Table 3.4 indicates the name of the reference heuristics, followed by the number #G of graphs tested by each algorithm and shown in Table 3.3. The last three columns give the number of times MASC reports a better, equal, or worse result compared to each reference algorithm.

From Table 3.4, it can be observed that MASC obtains absolutely no worse results than MDS5 and MRLF (see the last three lines). Furthermore, MASC gets better results than these algorithms for 9 and 16 instances respectively. Our algorithm is also quite competitive with EXSCOL, BLS and MA which are the most recent and effective methods since it obtains better or equivalent results for 28, 22 and 49 graphs respectively. MASC reaches worse results than EXSCOL, BLS and MA only for 8, 3 and 8 graphs respectively.

Experiments on large graphs

We turn now our attention to the performance of our MASC algorithm to color large graphs with at least 500 vertices. These large graphs are known to be quite difficult for almost all the existing sum coloring approaches except EXSCOL which dominates the other heuristics particularly on large graphs. We show a new experiment with MASC applied to color 17 large graphs. In this experiment, we run MASC 10 times on each graph under exactly the same condition as in Section 3.3.1. The only difference is that we use the solution of EXSCOL1 as one of MASC's 10 initial solutions while the 9 other initial solutions are generated according to the procedure described in Section 3.2.2. With this experiment, we aimed to investigate two interesting questions. Is it possible for MASC to improve the results of the powerful EXSCOL algorithm? Does the initial population influence the performance of MASC? The computational outcomes of this experiment are provided in Table 3.5.

In Table 3.5, column 4 presents the best known result (f b ) in the literature, columns 5-6 present the best result (f * ) and the average coloring sum (Avg.) of EXSCOL and columns 7-11 present detailed computational results of our MASC algorithm: Best result obtained (f * ) with the number of required colors (k * ), average coloring sum (Avg.), standard deviation (σ), and average running time to reach f * (t, in minutes). One notices that the values of columns 4 and 5 (f b and f * ) are identical for EXSCOL except for the qg.order60 instance. Table 3.5 shows that with the help of its search mechanism, our MASC algorithm is able to further improve the best known results of 10 instances (entries in bold). This is remarkable given that very few existing approaches can even equal the previous best known results. Moreover, if we contrast the results of the three DSJC500.d graphs (d = 1, 5, 9) reported in Tables 3.2 and 3.5, it is clear that the initial population impacts directly MASC's outcomes. This indicates that the performance of MASC could be further improved by using a more powerful coloring algorithm to generate the initial solutions of its population. 

Analysis of MASC

In this section, we investigate the influence of three important ingredients of the proposed memetic algorithm, i.e., the multi-parent crossover operator, the combined neighborhood and the improvement of MASC over the initial population. Experiments were based on 16 selected graphs of different types, for which some reference algorithms cannot achieve the best known results. Hence, these selected instances can be considered to be difficult and representative.

Influence of the multi-parent crossover operator

For our memetic algorithm, it is relevant to evaluate the effectiveness of its crossover operator. To verify this, we carry out experiments on the 16 selected graphs and run both MASC (using the MGPX crossover) and DNTS (without MGPX) for 30 times (with the same parameter µ 1 , µ 2 , and µ ρ settings as defined in Table 3.1). The DNTS (without MGPX) starts with a single solution which is generated for MASC. DNTS stops after a maximum number of 5 × 10 5 iterations in order to make sure that MASC and DNTS are given the same search effort. The results are given in Table 3.6.

From Table 3.6, one notices that DNTS equals and improves respectively 5 and 3 best known results while MASC equals and improves respectively 5 and 11 best known results. Furthermore, the last column t-test indicates whether the observed difference between MASC and DNTS is statistically significant when a 95% confidence t-test is performed in terms of the best result obtained (f * ). If MASC and DNTS achieve always the same results, t-test column is marked by '-'. The t-test indicates that MASC is statistically better than DNTS for 12 out of 16 cases except for the instances where DNTS can achieve the best known results (f b ). These comparative results provide clear evidences that the MGPX crossover operator plays an important role in the MASC algorithm. 

Influence of the neighborhood combination

The neighborhood is an important element that influences the local search procedure. Our proposed algorithm relies on two different neighborhoods: N 1 (neighborhood based on connected components) and N 2 (neighborhood based on the one-vertex-move) which are explored in a token-ring way (see Section 3.2.4). In this section, we investigate the interest of this combined use of the two neighborhoods. For this purpose, we carried out experiments on the 16 selected graphs to compare the original Double-Neighborhood Tabu Search (DNTS) with two variants which uses only one neighborhood N 1 or N 2 . We use below TS N 1 and TS N 2 to denote these two variants. These three TS procedures (DNTS, TS N 1 and TS N 2 ) are run under the same stop condition, i.e. limited to 5 × 10 5 iterations.

We run 30 times these TS procedures to solve each of the 16 selected graphs and report the computational outcomes (the best and average results) in Table 3.7. One easily observes that DNTS obtains better or equal results compared to TS N 1 and TS N 2 for all the instances in terms of the best known result (f * ) and the average result (Avg.). The t-test t -test N i (i = 1, 2) in the last two columns confirms that with a 95% confidence level DNTS is slightly or significantly better than TS N 1 and TS N 2 . This experiment demonstrates thus the advantage of the token-ring combination of the two neighborhoods compared to each individual neighborhood. 

Improvements of MASC over TABUCOL

Recall that the initial population is generated by the well-known graph coloring procedure TABUCOL. It is interesting to know to which extent our MASC procedure (which is specially designed for the Minimum Sum Coloring Problem) can improve the quality of solutions generated by TABUCOL in terms of sum of colors. For this purpose, we re-run 30 times our MASC procedure on the set of 16 selected graphs. Like for the previous experiments, we report in Table 3.8 the best and average objective value f * both for TABUCOL (initial population) and MASC (final population). Given the stochastic nature of TABUCOL and MASC, some results reported in this experiment may be slightly different from those reported in Table 3.2.

From Table 3.8, one easily observes that MASC improves significantly the initial results generated by TABUCOL. Indeed, the best and average sums of colors achieved by MASC are systematically smaller (better) than those of TABUCOL for all the graphs except in one case (flat300_26_0) for which TABUCOL alone achieves already the best known result. Furthermore, the last column confirms with a 95% confidence level the significance of the improvements of MASC over the solutions provided by TABUCOL.

Conclusion

This chapter deals with the minimum sum coloring problem (MSCP), which is an important generalization of the classic vertex coloring problem (VCP). To approximate the MSCP, we proposed a memetic algorithm (MASC) which employs an effective tabu search procedure with a combination of two neighborhoods, a multi-parent crossover operator and a population updating mechanism to balance intensification and diversification.

We assessed the performance of MASC on 77 frequently used graphs from the DIMACS and COLOR 2002-2004 competitions. MASC can improve 15 best known upper bounds including 10 large and very hard graphs with at least 500 vertices while equaling 54 previous best results. Compared with five recent and effective algorithms which cover the best known results for the tested instances, our MASC algorithm remains quite competitive. Furthermore, we investigated two important components of the proposed algorithm. The experiments demonstrate the relevance of the multi-parent crossover operator and the combined neighborhood for the overall performance of MASC. Finally, we showed the proposed MASC approach significantly improves the classical tabu search graph coloring approach TABUCOL for the minimum sum coloring problem.

HSA: Hybrid Search Algorithm for minimum sum coloring

In this chapter, we further study the minimum sum coloring problem (MSCP). We are interested in the computation of both lower and upper bounds of the MSCP and introduce an effective hybrid search algorithm (HSA) which improves on upper bounds of our previous MASC algorithm and also provides lower bounds. The proposed algorithm relies on a joint use of two dedicated crossover operators (to generate offspring solutions) and an iterated double-phase tabu search procedure (to improve offspring solutions). A distance-and-quality updating rule is used to maintain a healthy diversity in the population. We show extensive experimental results to demonstrate the effectiveness of the proposed algorithm and provide a first landscape analysis of the MSCP. Besides, the differences with our previous MASC algorithm are discussed in Section 4.2.6. This work is detailed in [Jin and Hao 2015c 

Introduction

In this chapter, we further study the minimum sum coloring problem which is formally introduced in Chapter 1 and we are interested in the computation of both lower and upper bounds of the MSCP. In order to approximate these two optimization problems, we propose an effective hybrid search algorithm (HSA) and summarize the main contributions of this work as follows.

-From the algorithm perspective, the HSA approach integrates several special features to ensure a high search efficiency. These include an original recombination mechanism to generate offspring solutions and an iterated double-phase tabu search procedure to ensure local optimization. The solution recombination mechanism combines a diversification-guided crossover operator and a groupingguided crossover operator to create diversified and promising offspring solutions. The double-phase tabu search procedure is designed to handle both feasible and unfeasible solutions. A dedicated perturbation mechanism is also introduced to escape local optima. Finally, a population updating procedure is employed to maintain a healthy diversity and high-quality population.

-From the computational perspective, we evaluate the HSA approach on 94 well-known DIMACS and COLOR 2002-2004 benchmark instances. The computational results show that our HSA algorithm can achieve the best-known results for most of these benchmark instances established by several best performing algorithms. Moreover, HSA finds 51 improved best solutions (24 improved upper bounds and 27 improved lower bounds).

The rest of this chapter is organized as follows. Section 4.2 presents the proposed algorithm for computing upper bounds of the MSCP. Section 4.3 explains the adjustments of the proposed algorithm to compute lower bounds. Section 4.4 shows extensive computational results of HSA and comparisons with the stateof-the-art algorithms. Before concluding, Section 4.5 investigates and analyzes some key issues of the proposed algorithm.

Components of the HSA approach

The proposed hybrid search algorithm for the MSCP follows the general memetic framework which combines population-based evolutionary search and local optimization [Moscato andCotta 2003, Neri et al. 2012]. Our HSA algorithm repeatedly alternates between the double-crossover procedure that generates new offspring solutions (Section 4.2.3) and the iterated double-phase tabu search procedure (IDTS) that optimizes the newly generated offspring solutions (Section 4.2.4). As soon as an offspring solution is improved by IDTS, the population is accordingly updated based on the solution quality and population diversity (Section 4.2.5).

The general scheme of our HSA algorithm for the MSCP is summarized in Algorithm 4. HSA starts with an initial population of solutions (line 3, see Sect. 4.2.2) and then repeats a number of generations until a stop condition is met (lines 5-15, in our case, a time limit is used as stop condition). At each generation, two solutions from the population are selected at random to serve as parent solutions (line 6). Then, the double-crossover recombination procedure is employed to create two offspring solutions (line 7) which are further improved by the iterated double-phase tabu search procedure (IDTS) (lines 9). Subsequently, the population updating rule decides whether the improved solution should be inserted into the population and which existing solution is to be replaced (lines 13). In the following subsections, we describe these basic components.

Algorithm 4 An overview of the HSA algorithm for the MSCP 

Search space and evaluation function

A proper k-coloring satisfies the coloring constraint such that any two adjacent vertices {u, v} ∈ E belong to two different color classes. A k-coloring is improper if the coloring constraint is violated. The search space of our HSA algorithm contains the set Ω of all possible partitions of V into k color classes including both the proper and improper k-colorings. Given a proper coloring, its objective value is given by the f function presented in Eq. (1.1). For two proper k-coloring solutions c 1 ∈ Ω and c 2 ∈ Ω, c 1 is better than c 2 if and only if f (c 1 ) < f (c 2 ). We discuss the evaluation of improper colorings in Section 4.2.4.

Initial population

The initial population of our HSA algorithm is composed of p proper k-colorings. To create an individual, we use the maximum independent set algorithm SBTS [START_REF] Hao | General swap-based multiple neighborhood tabu search for the maximum independent set problem[END_REF] to generate in a step-by-step way k (k is not fixed) mutually disjoint independent sets (The SBTS algorithm is described in the Appendix of this thesis). At each step, we apply SBTS to extract a maximal independent set V i from the graph G and then remove from G the vertices of V i and their incident edges. This procedure is repeated until the graph becomes empty. The resulting independent sets {V 1 , . . . , V k } form a proper k-coloring.

Since SBTS is a stochastic local search algorithm, each SBTS run generally leads to a different kcoloring. Each new k-coloring is inserted into the population P if it does not duplicate any existing individual of the population. Otherwise, this k-coloring is discarded and another new individual is generated. This process is repeated until the population is filled up with p individuals (i.e., proper k-colorings). These individuals are generally of good quality and serve as the inputs for the double-crossover recombination procedure.

A double-crossover recombination procedure

Recombination is an important ingredient for population-based memetic approaches. In HSA, we propose a double-crossover recombination procedure which jointly uses two different operators to generate suitable offspring solutions: The diversification-guided crossover operator (DGX) and the grouping-guided crossover operator (GGX). At each generation of the HSA algorithm, HSA first randomly chooses two parents from the population which have not been selected to serve as parents in the previous generation, and then employs DGX and GGX to generate two offspring solutions respectively. Each offspring solution is finally submitted to the iterated double-phase tabu search procedure to improve its quality (minimizing its sum of colors).

Diversification-guided crossover

The diversification-guided crossover (DGX) aims to generate offspring solutions whose quality and diversity are both reasonably respected. Given two parent solutions (i.e., two proper k-colorings)

P 1 = {V 1 1 , . . . , V 1 k 1 } (|V 1 1 | ≥ . . . ≥ |V 1 k 1 |) and P 2 = {V 2 1 , . . . , V 2 k 2 } (|V 2 1 | ≥ . . . ≥ |V 2 k 2 |). The offspring solution o = {V o 1 , . . . , V o ko } is constructed as follows.
Step 1:

Let k min = min{k 1 , k 2 } and k max = max{k 1 , k 2 }.
We first transmit the vertices that share the same colors in both parents such that they keep their colors in the offspring. Formally, we set

V o i = V 1 i ∩ V 2 i , i = 1, . . . , k min .
Step 2:

Let U = V \ ∪ k min i=1 V o i be the set of unassigned vertices in o. We pick randomly m (see below) vertices from U to form U m . Then for each vertex v ∈ U m , v conserves its color of parent P 1 in o, i.e., if v ∈ V 1 i (i = 1, . . . , k 1 ), v is added into V o i .
Step 3: Finally, for each remaining vertex u of U \ U m , u conserves its color from parent

P 2 in o, i.e., if u ∈ V 2 j (j = 1, . . . , k 2 ), u is added into V o j .
The DGX operator uses m to control the relative importance of C,D,E,F,G,H,I, J} are collected in U and m is assumed to be 4. At step 2, we randomly choose m = 4 vertices from U (say {B, E, H, I}) and preserve them from parent P 1 into the offspring. Finally, the remaining unassigned vertices (i.e., {C, D, F, G, J}) are preserved from parent P 2 to complete the offspring solution.

One observes that the offspring solution generated by the DGX operator may be an improper k-coloring. If this happens, it is repaired by the iterated double-phase tabu search procedure described in Section 4.2.4.

Grouping-guided crossover

Unlike the previous DGX operator, the grouping-guided crossover (GGX) aims to transmit whole color classes from parents to offspring. Given two parent solutions (i.e., two proper k-colorings) Step 2: We transmit the non-empty color classes of P 1 to form the l+1, . . . , k o color classes of offspring o such that a complete offspring solution is constructed.

P 1 = {V 1 1 , . . . , V 1 k 1 } (|V 1 1 | ≥ . . . ≥ |V 1 k 1 |) and P 2 = {V 2 1 , . . . , V 2 k 2 } (|V 2 1 | ≥ . . . ≥ |V 2 k 2 |). The offspring solution o = {V o 1 , . . . , V o ko } is constructed in two steps. G H I J A B C D E F C D E F A G I B H J P P 1 2 o G H I J A B C D E F C D E F A G I B H J P P 1 2 o G H I J A B C D E F C D E F A G I B H J P P 1 2 o G H I J A B C D E F C D E F A G I B H J P P 1 2 o A A B H I E A B G C D H I F E J step 1 step 2 step 3 P is selected 1 P is selected 2 m = 3+rand(3) = 4 U = {B C D E F G H I J}
G H I J A B C D E F C D E F A G I B H J P P 1 2 o G H I J A B C D E F C D E F A G I B H J P P 1 2 o G H I J A B C C D E F A G I B H J P P 1 2 o G H I J A B C D E F C D E F A G I B H J P P 1 2 o step 1 step 2 step 3 C D E F C D E F C D E F G H I J A B D E F P is selected P is selected 1 2 l = rand(2) = 1
The value for l is based on the consideration that we wish to introduce some randomness when deciding the number of transmitted color classes while ensuring some distance between the offspring and each of its parent. An example of the GGX crossover is provided in Fig. 4.2 where l takes the value of 1. The time complexity of this GGX crossover is O(n × k).

Contrary to the DGX crossover, the GGX operator ensures that offspring solutions are always proper k-colorings. By conserving pertinent properties (color classes) of parent solutions, the offspring colorings are generally of good quality. In the shown example, the offspring even has a better quality than its parents even if this is not true in general.

An iterated double-phase tabu search procedure

Since the recombination procedure may lead to both feasible and unfeasible colorings, we devise an iterated double-phase tabu search (IDTS) able to repair unfeasible solutions while minimizing the sum of colors. The overall IDTS procedure is illustrated in Fig. 4.3. It uses a double-phase tabu search for intensified search and a perturbation mechanism for diversification. The intensification phase applies a tabu search procedure (denoted by T S O ) to improve the quality of a proper coloring according to the objective function and another tabu search procedure (denoted by T S F ) to reestablish the feasibility of an improper coloring. IDTS starts by checking whether a given solution c is a proper coloring. If this is the case, T S O is called to improve its sum of colors. Otherwise, T S F is applied for conflict-repairing to attain a proper coloring which is further improved by T S O according to the objective function. Notice that, to repair an improper coloring, T S F may increase the number k of used colors until obtaining a proper coloring. The perturbation mechanism is applied to escape local optima when T S O stagnates, i.e., no improved solution is reached after µ O consecutive iterations. The perturbed solution is submitted to the next round of the double-phase tabu search process until a maximum number of iterations fixed by maxIter is reached.

A double-phase tabu search

The two tabu search procedures T S O and T S F follow the general principle of the tabu search methodology [START_REF] Glover | Tabu search. Handbook of Combinatorial Optimization[END_REF]. Both procedures iteratively visit a series of solutions following the given neighborhood (see below). At each iteration, a best neighboring solution is chosen (ties are broken randomly) to replace the current solution, even if the selected solution does not improve the current solution.

To avoid cycling, a tabu list is used to avoid a visited solution to be re-visited during the next T T iterations (T T is called the tabu tenure). Nevertheless, a forbidden solution is always accepted if it is better than the best solution found so far (called aspiration criterion). The tabu search T S F stops once a proper coloring is obtained and the T S O procedure stops when the best solution cannot be improved within a given number of solution transitions.

Although both T S F and T S O employ the scheme of tabu search, they use different neighborhoods, evaluation functions and tabu tenures.

-Neighborhood: The neighborhood of the double-phase tabu search can be described by the "onemove" operator mv(v, V i , V j ) which displaces a vertex v from its original color class

V i to another color class V j (i ̸ = j). Given a k-coloring c = {V 1 , . . . , V k }, a vertex v ∈ V i is conflicting if v shares the same color with at least one adjacent vertex v ′ , i.e., ∃v ′ ∈ V i and v ′ ̸ = v, {v ′ , v} ∈ E.
The T S F procedure (to repair improper colorings) operates with conflicting vertices. At each iteration, it displaces a single conflicting vertex v. For a k-coloring c with nb conf conflicting vertices, the size of this neighborhood is bounded by O(nb conf × k). The T S O procedure (to minimize the sum of colors) applies mv(v, V i , V j ) to move a vertex v ∈ V i to another color class V j such that the resulting k-coloring remains proper (∀v ′ ∈ V j , {v ′ , v} / ∈ E). Hence, the size of this neighborhood is bounded by O(n × k). In our implementation, we employ an incremental evaluation technique [START_REF] Fleurent | Genetic and hybrid algorithms for graph coloring[END_REF]Ferland 1996, Galinier andHao 1999] to efficiently evaluate the whole neighborhood.

-Evaluation function: Both T S F and T S O scan their whole neighborhood to find a best neighboring solution to replace the current solution. The T S F procedure evaluates all the neighbor solutions by considering both the variation in the number of conflicting vertices ∆conf (v, V i , V j ) and the variation in the sum of colors ∆f (v, V i , V j ) when applying the mv(v, V i , V j ) operator. The evaluation of each candidate move is given in Eq. ( 4.1) which is adopted from [START_REF] Benlic | A study of breakout local search for the minimum sum coloring problem[END_REF]. For two neighboring solutions s ′ and s ′′ , s ′ is better than s ′′ if and only if ∆(s ′ ) < ∆(s ′′ ).

∆ = ∆conf (v, V i , V j ) × ∆f ′ , where ∆f ′ = { abs(∆f (v, V i , V j )) + k + 1, if ∆f (v, V i , V j ) < 0 k -∆f (v, V i , V j ) + 1, otherwise (4.1) 
The T S O procedure evaluates all the neighboring solutions only by considering the variation in the sum of colors ∆f (v, V i , V j ) in terms of the objective function defined by Eq. ( 1.1).

-Tabu tenure: Once a "one-move" mv(v, V i , V j ) is performed to transform the incumbent coloring c, vertex v cannot be moved back to the color class V i for the next T T iterations. The tabu tenure T T F for T S F is dynamically determined by T T F = rand( 10 

Perturbation mechanism

The above double-phase tabu search is generally able to attain solutions of good quality but can get stuck in local optima. To help the procedure to continue its search, we apply a perturbation mechanism to bring the search out of the problematic local optima. The perturbation consists in employing a (1, r)-swap (r = 0, 1, 2, . . .) in the case that the current iterations iter cur %100 ̸ = 0, otherwise, replacing the current solution by the local optimal solution. The (1, r)-swap procedure is employed in the following way. First, we randomly choose a vertex v (v ∈ V i ) and a color class V j (V j ̸ = V i ). Then, we identify all the vertices v ′ in V j which are adjacent to v ({v ′ , v} ∈ E). Finally, we move v from V i to V j and move all the vertices v ′ from V j to V i . These vertices are forbidden to move back to their original color class for the next T T P iterations (T T P = rand(10) + 0.1 * f (c)). This perturbation mechanism may introduce conflicts to the current solution such that the search can transit between the feasible and infeasible regions. From this perturbed solution, the double-phase tabu search procedure is relaunched.

Population updating

In order to avoid premature convergence of the search process, the population updating procedure is critical for our hybrid search algorithm. The population updating rule decides whether and how an offspring solution, which is optimized by the IDTS procedure, should replace an existing individual of the population. Basically, our updating rule is based on both solution quality and distance between solutions in the population [START_REF] Lü | A memetic algorithm for graph coloring[END_REF][START_REF] Porumbel | An evolutionary approach with diversity guarantee and well-informed grouping recombination for graph coloring[END_REF][START_REF] Sörensen | MA|PM: Memetic algorithms with population management[END_REF].

Definition 1. Distance between two individuals D ij : Given two individuals P i = {V i 1 , . . . , V i k i } and P j = {V j 1 , . . . , V j k j }, the distance between P i and P j is defined as the total number of the vertices whose corresponding colors are different in the two individuals,

D ij = |{v ∈ V : v ∈ V i k i , v ∈ V j k j , k i ̸ = k j }|.
The general scheme of our population updating strategy is described in Algorithm 5. In order to update the population, we calculate the distance D oi between the offspring P o and any existing solution of the population P i ∈ P (i = 1, . . . , p), record the minimum distance D min , and identify the closest individual Algorithm 5 The population updating procedure 

Discussions

In this section, we discuss the relation of our HSA algorithm with two previous algorithms (MASC) [START_REF] Jin | A memetic algorithm for the minimum sum coloring problem[END_REF]] and (MA) [START_REF] Moukrim | Upper and lower bounds for the minimum sum coloring problem[END_REF] for the MSCP. Indeed, all these algorithms follows the general memetic framework which combines population-based search and local optimization. However, our HSA algorithm distinguishes itself from these algorithms by its key components.

First, HSA employs a maximum independent set algorithm to generate proper initial solutions of high quality while MASC and MA use respectively the TABUCOL procedure [START_REF] Hertz | Using tabu search techniques for graph coloring[END_REF] and a greedy coloring heuristic [START_REF] Li | Greedy algorithms for the minimum sum coloring problem[END_REF]]. Second, for solution recombination, HSA uses two different crossover operators which can generate both feasible and infeasible solutions while MASC and MA allow only feasible solutions. Third, HSA applies an iterated two-phase tabu search procedure to make transitions between feasible and infeasible regions while MASC and MA only explore feasible solutions. Finally, HSA employs a more elaborated pool updating rule to decide whether an offspring solution should replace a worst (or closest) individual in the population. In MASC, this is achieved by a "scoring" function combining solution quality and distance while in MA only solution quality is considered.

As shown in Section 4.4 (experimental results), the proposed HSA algorithm equipped with its particular features shows a highly competitive performance for lower and upper bounds of the MSCP.

The lower bounds of the minimum sum coloring problem

As described in Chapter 1, we could try to find a partial graph of the original graph to calculate a lower bound for the MSCP and the original graph can be decomposed into partial graphs like trees, paths and cliques. Moreover, the clique decomposition provides better lower bounds than tree or path decomposition [START_REF] Moukrim | Lower bounds for the minimal sum coloring problem[END_REF]. Let c = {S 1 , S 2 , . . . , S k } be a clique decomposition of G, then the following quantity gives a lower bound for the MSCP:

f LB (c) = k ∑ l=1 |S l |(|S l | + 1) 2 (4.2)
To obtain a clique decomposition, one popular approach is to find a proper coloring of the complementary graph Ḡ of G [START_REF] Helmar | A local search heuristic for chromatic sum[END_REF][START_REF] Wu | Improved lower bounds for sum coloring via clique decomposition[END_REF][START_REF] Moukrim | Upper and lower bounds for the minimum sum coloring problem[END_REF] since each color class of Ḡ is a clique in G.

We apply our HSA algorithm to color the complementary graph Ḡ in order to obtain lower bounds. For this purpose, we need to make the following adjustments to our HSA algorithm:

-To evaluate the colorings, we use the objective function defined by Eq. ( 4.2) instead of sum of colors.

For the purpose of computing lower bounds, this objective function is to be maximized. For two proper k-coloring solutions c 1 and c 2 (of Ḡ), c 1 is better than c 2 if and only if

f LB (c 1 ) > f LB (c 2 ).
-The evaluation function used in the double-phase tabu search needs to be adjusted. The T S F procedure (for conflict repairing) applies the evaluation function Eq. ( 4.3) to evaluate a neighboring solution.

∆ = ∆conf (v, S i , S j ) × ∆f ′ LB , where ∆f ′ LB = { ∆f LB (v, S i , S j ) + k + 1, if ∆conf (v, S i , S j ) < 0 k -∆f LB (v, S i , S j ) + 1, otherwise (4.3) 
where ∆conf (v, S i , S j ) is the variation in the number of conflicting vertices and ∆f LB (v, S i , S j ) is the variation in the objective value of Eq. (4.2). For two neighboring solutions s ′ and s ′′ , s ′ is better than s ′′ if and only if ∆(s ′ ) < ∆(s ′′ ). The T S O procedure evaluates the neighboring solutions by only considering the variation in terms of the objective function from Eq. (4.2).

-For a k-coloring c = {S 1 , . . . , S k }, it is no more necessary to sort its color classes S i (i = 1, 2, . . . , k), since the calculation of the objective value f LB (Eq. ( 4.2)) does not sort the cardinality of S l according to

|S 1 | ≥ . . . ≥ |S k |.

Experimental results

To evaluate the efficiency of our proposed HSA algorithm, we carry out experiments on the set of 94 COLOR 2002-2004 and DIMACS instances already introduced in Chapter 1.

Experimental protocol

Our HSA algorithm is coded in C++ and compiled using g++ with the '-O3' option on a cluster running Linux with a 2.83 GHz processor and 8 GB RAM. When we run the DIMACS machine benchmark pro-gram 1 with g++ on our machine, we obtain the following results: 0.20 CPU seconds for graph r300.5, 1.23 CPU seconds for r400.5 and 4.68 CPU seconds for r500.5.

To obtain our computational results, each instance is solved 30 times independently with different random seeds. Each run is stopped when the processing time reaches a fixed timeout limit which is set to be 2 hours (which is a cutoff time frequently used in the literature). All the computational results are obtained with the parameter setting given in Table 4.1. 

Computational results

This section is dedicated to an evaluation of HSA's performance for the upper and lower bounds of the MSCP on the 94 benchmark instances. From Table 4.2, one observes that HSA is able to improve a number of best lower and upper bounds reported in the literature (indicated in bold) within a time limit of 2 hours. Specifically, for the upper bounds, HSA can improve the best results for 15 instances and match the previous best values for 61 instances. For the lower bounds, HSA can improve the previous best known results for 27 instances and match the previous best results for 59 instances.

When we compare the upper bounds and the lower bounds, we observe large gaps for the DIMACS instances. However, there are 21 instances where the upper bounds are identical to the lower bounds (underlined). Hence, the optimality of these instances is proven by our computational results.

On the other hand, we observe that the HSA algorithm performs less well on some large DIMACS instances which are known to be very difficult for most MSCP algorithms. In order to see if HSA can improve its results on these instances, we carry out another experiment focusing on 14 large graphs with at least 500 vertices as follows. We use the solution of EXSCOL [Wu and Hao 2012] as one of the 20 initial solutions of the population and rerun HSA 30 times on each of the 14 graphs under the same test condition as before. Interestingly, the results of this experiment show that HSA can improve the best known upper bounds for 10 out of 14 graphs (bold italic entries in Table 4.2).

Comparisons with four state-of-the-art algorithms for the lower bounds

In order to further evaluate the proposed HSA algorithm, we compare its lower and upper bounds with those obtained from some of the best performing algorithms in the literature. Table 4.3 gives the computational comparison for the lower bounds of our HSA algorithm with four state-of-the-art algorithms, which cover the best known lower bounds for all the tested graphs. These algorithms are respectively named RMDS(n) [START_REF] Moukrim | Lower bounds for the minimal sum coloring problem[END_REF], MDS( 5)+LS [START_REF] Helmar | A local search heuristic for chromatic sum[END_REF], EXCLIQUE [START_REF] Wu | Improved lower bounds for sum coloring via clique decomposition[END_REF] and MA [START_REF] Moukrim | Upper and lower bounds for the minimum sum coloring problem[END_REF]. Notice that the results of RMDS(n) are extracted directly from [START_REF] Helmar | A local search heuristic for chromatic sum[END_REF]. The experimental platforms used by the reference algorithms are as follows:

-RMDS(n) runs on an Intel Core i7 processor 2.93 GHz with 4 GB RAM and uses five heuristics.

-MDS(5)+LS runs on an Intel Core i7 processor 2.93 GHz with 4 GB RAM and uses a limit of 1 hour as the stop condition. -EXCLIQUE runs on a 2.8 GHz computer with 2GB RAM and iteratively extracts maximum independent sets until the graph is empty. -MA runs on an Intel Core 2 Duo T5450-1.66 GHz with 2 GB RAM and uses a limit of 2 hours as the stop condition.

Columns 1-2 in Table 4.3 present the tested graph and its best known lower bounds f b LB reported in the literature. The following 10 columns give the best results f * LB and the average results Avg. of the four reference algorithms and our HSA algorithm respectively. The "-" marks for the references algorithms in the table mean that the algorithms did not report results on the tested graphs. The italic entries in the table indicate that the reference algorithms fail to attain the best known results on the tested graphs. The last row in Table 4.3 also presents the number of cases where an algorithm can achieve the best known result (Suc#) over the total number of the tested graphs (T otal#). Given the differences among the programming languages, compiler options and computers, we focus on solution quality. We mention that our time limit (2h) is the same as MA, similar to EXCLIQUE on small instances but shorter than EXCLIQUE on large graphs, and longer than RMDS(n) and MDS(5)+LS. Since each reference algorithm only reports results for a subset of the considered 94 graphs, we compare the performances between our HSA algorithm and the four reference algorithms one by one and summarize the comparisons for the lower bounds of the MSCP in Figure 4.4. The heights of bars in the figure represent the number of graphs and the three different bars indicate the results obtained by our HSA algorithm are better than, equal to, and worse than the results obtained by each reference algorithm respectively. From Figure 4.4, we can observe that HSA obtains improved lower bounds for 21, 14, 24 and 30 graphs, equal results for 17, 24, 30 and 51 graphs and worse results for 0, 0, 8 and 0 graphs compared to RMDS(n), MDS(5)+LS, EXCLIQUE and MA respectively.

Finally, since MDS(5)+LS uses a time limit of 1 hour, we rerun our HSA algorithm under this reduced time condition. We observe that HSA still obtains better lower bounds for 14 instances, equal lower bounds for 24 instances and no worse results compared to the MDS(5)+LS algorithm. 

Comparisons with four state-of-the-art algorithms for the upper bounds

Table 4.4 summarizes the computational comparison for the upper bounds of our HSA algorithm with four very recent state-of-the-art algorithms, which cover the best known results for all the tested graphs. These algorithms are respectively named EXSCOL [Wu and Hao 2012], BLS [START_REF] Benlic | A study of breakout local search for the minimum sum coloring problem[END_REF], MASC [START_REF] Jin | A memetic algorithm for the minimum sum coloring problem[END_REF] and MA [START_REF] Moukrim | Upper and lower bounds for the minimum sum coloring problem[END_REF]]. The experimental platforms used by the reference algorithms are as follows:

-EXSCOL runs on a 2.8 GHz computer with 2GB RAM and iteratively extracts maximum independent sets until the graph is empty. -BLS runs on a Xeon E5440 with 2.83 GHz with 2GB RAM and uses a timeout limit of 2 hours as the stop condition. -MASC runs on a 2.7 GHz PC with 4GB RAM and uses 10 4 maximum iterations of TS procedure and 50 maximum generations. -MA runs on an Intel Core 2 Duo T5450-1.66 GHz with 2 GB RAM and uses a timeout limit of 2 hours as the stop condition. two variants: HSA GGX uses only the GGX crossover while HSA DGX uses only the DGX crossover. We carry out additional experiments on 20 selected graphs and run HSA, HSA GGX and HSA DGX for 30 times on each graph. These three algorithms use the same parameter settings given in Table 4.1 and the same timeout limits (2 hours). Table 4.5 summarizes the computational results of HSA, HSA GGX and HSA DGX . Column 1-3 recall the best known lower and upper bounds of the 20 graphs. Columns 4-15 present the upper bounds, the average upper bounds, the lower bounds and the average lower bounds achieved by HSA, HSA GGX and HSA DGX respectively. The last row gives the number of times an algorithm finds a better or equal result compared to the best known result. From Table 4.5, we can make the following observations. First, HSA with its two crossover operators can reach the best known lower and upper bounds for 36 out of the 40 cases. HSA GGX and HSA DGX can only reach the best known results for 27 and 30 instances respectively. Second, HSA is able to improve the best known results for 24 instances (bold) while HSA GGX and HSA DGX improve the best results for 16 and 17 instances respectively. Third, HSA obtains better results compared to HSA GGX and HSA DGX for 12 instances and worse results for 4 instances respectively (underlined). Besides, HSA GGX and HSA DGX can complement each other on some graphs, for instances, the DSJC500.9 and DSJR500.9 instances. In summary, using jointly the DGX and GGX crossovers allows HSA to reach a better performance than when these crossovers are used separately. This is particularly useful to handle different graphs with multiple topologies.

Landscape analyses

The fitness-distance correlation (FDC) coefficient ρ measures the correlation between the quality (fitness or objective function value) of local optima and their distances to the optimum of a given problem instance [START_REF] Jones | Fitness distance correlation as a measure of problem difficulty for genetic algorithms[END_REF]. If the solution quality increases with the diminution of distance to the optimum, then there is a path to the optimum via solutions with increasing (better) fitness. Even if FDC alone cannot fully characterize the hardness of a problem, it can provide useful information about the landscape of the problem. For a minimization problem, a ρ value close to 1 (the largest possible value) indicates a strong fitness-distance correlation while a ρ value close to -1 (the smallest possible value) means the absence of any correlation. The reverse is true for a maximization problem. In this section, we present for the first time a FDC analysis of the MSCP both for the problems of computing upper bounds (minimization) and lower bounds (maximization). Table 4.6 presents the results of the FDC analysis on the 20 selected graphs for the problems of calculating lower and upper bounds of the MSCP. For each graph, we collect 1200 local optima and identify the number of distinct local optima among these 1200 collected solutions (#lo), the average distance between local optima (avg d lo ), the average distance between a local optimum and the closest best known local optimum (avg d go ) and the FDC coefficient (ρ).

From Table 4.6, one notices that for the minimization problem of upper bounds, the ρ values of COLOR 2002-2004 instances (close to 1) are larger than the ρ values of most DIMACS instances (close to 0). For the In order to investigate the landscape in a visual way, we provide the FDC plots in Figure 4.6 with respect to the fitness difference and the distance between a local optimum and the nearest global optimum on three difficult DIMACS graphs (for the problems of lower and upper bounds). We can clearly see that there is no correlation for DSJC500.5 (for both problems of lower and upper bounds), for DSJR500.1 and le450_15b (lower bounds).

Conclusion

In this chapter, we presented an efficient hybrid search algorithm (HSA) for the lower and upper bounds of the minimum sum coloring problem (MSCP). HSA combines a double-crossover recombination method, a dedicated iterated double-phase tabu search (IDTS) procedure and a quality and diversity based population updating method. The recombination method jointly applies a diversification-guided crossover (DGX) and a grouping-guided crossover (GGX) to generate promising offspring solutions. The IDTS applies specific strategies to make transitions between feasible and infeasible solutions and a perturbation mechanism to escape from local optima traps.

Experimental evaluations on 94 benchmark instances showed that the proposed HSA algorithm is highly competitive in comparison with the state-of-the-art algorithms for the MSCP. HSA can match most of the current best known lower and upper bounds. In particular, it is able to improve the best known upper bounds for 24 graphs and the best known lower bounds for 27 graphs.

Additionally, we carried out experiments to verify the merit of the double-crossover recombination method. Moreover, we showed for the first time a landscape analysis on a number of selected instances for the lower and upper bounds of the MSCP, which allows us to understand why some instances are more difficult than others.

LHS: Learning-based Hybrid Search for bandwidth (multi)coloring

In this chapter, we consider the bandwidth coloring problem (BCP) and the bandwidth multicoloring problem (BMCP) which are two other important generalizations of the classic vertex coloring problem. This chapter introduces an effective learning-based hybrid search (LHS) for the BCP and BMCP. LHS is based on the cooperation framework of an informed construction procedure and a local search repair procedure. The proposed algorithm is evaluated on two sets of 66 commonly used BCP and BMCP benchmark instances in the literature. The computational results show that our LHS algorithm can achieve the best-known result for most of these benchmark instances established by several existing algorithms. Moreover, LHS finds an improved best solution for 14 instances (2 BCP instances and 12 BMCP instances). The content of this chapter is published in [Jin and Hao 2015a]. 

Introduction

This chapter is dedicated to the bandwidth coloring problem and the bandwidth multicoloring problem which are formally presented in Chapter 2. Recall that given an undirected graph, the BCP consists in finding a k-coloring with the smallest value of k such that the absolute value of the difference between the colors of adjacent vertices is not less than the weight of the associated edge. The BCP can be generalized as the BMCP where each vertex receives a number of different colors. A legal bandwidth multicoloring must satisfy two constraints: (1) the absolute value of the difference between the colors of adjacent vertices is not less than the weight of the associated edge; (2) the absolute value of the difference between any two distinct colors of a vertex is at least the weight of the loop edge of this vertex. The BMCP is to find a legal bandwidth multicoloring with k minimum.

In this chapter, we propose an effective heuristic approach, called Learning-based Hybrid Search (LHS) for the BCP and BMCP. LHS is based on the cooperation of an informed construction procedure and a local search repair procedure and integrates several distinguishing features. The main contributions of the work can be summarized as follows.

-From the algorithm perspective, the proposed LHS approach establishes an original cooperative framework between an informed construction approach and a local search approach. The construction procedure progressively builds feasible (partial) solutions while relying on 1) a dynamic learningbased guiding function to determine the order of vertices to be colored and 2) a forward checking technique to reduce the available colors of the considered vertex. In particular, the guiding function takes into account both static information of the instance under consideration and dynamic information learned during the construction and the repair processes. When the construction procedure runs into a dead-end (i.e., the partial solution under construction can not be extended any more without violating some constraints), the search switches to the repair procedure to try to unlock the dead-end situation in order to switch back to the coloring construction process. The local search repair procedure is based on the tabu search metaheuristic reinforced by a simple perturbation strategy. To our knowledge, this is the first hybrid algorithm of this kind proposed for the BCP and BMCP. Moreover, the underlying cooperative framework could be useful and adapted to other problems.

-From the computational perspective, we evaluate the LHS approach on two sets of 66 commonly used BCP and BMCP benchmark instances in the literature. The computational results show that our LHS algorithm can achieve the best-known result for most of these benchmark instances established by several existing algorithms. Moreover, LHS finds an improved best solution for 14 instances (2 BCP instances and 12 BMCP instances).

The rest of this chapter is organized as follows. Next section presents the learning-based hybrid search for the BCP and BMCP. Section 5.3 shows computational results on the benchmark instances and comparisons with some best performing algorithms. Before concluding, Section 5.4 shows an analysis of the proposed LHS approach.

Components of the LHS approach

The Learning-based Hybrid Search (LHS) approach is designed for the BCP (more precisely, for the k-BCP problem), since one can easily convert the BMCP into the BCP by defining a new graph as follows (see [START_REF] Dorne | Tabu search for graph coloring, T-colorings and set T-colorings[END_REF] for an example): For each vertex v i of the BMCP, we define a clique {v i 1 , v i 2 , ..., v p i } of cardinality p(i) with a distance d(i, i) for each edge of the clique. For each edge {v i , v j } ∈ E, the distance d(i, j) is duplicated for each pair of vertices {v ix , v jy } of the two corresponding cliques. Then the new graph has ∑ v i ∈V p(i) vertices and

∑ {v i ,v j }∈E p(i) × p(j) edges.
To approximate the BCP, we solve a series of k-BCP as performed in [START_REF] Dorne | Tabu search for graph coloring, T-colorings and set T-colorings[END_REF][START_REF] Lai | Multistart iterated tabu search for bandwidth coloring problem[END_REF], Malaguti and Toth 2008], i.e., to seek a legal bandwidth coloring with k colors (k can be initially fixed to be slightly a value larger than or equal to the best-known k in the literature). As soon as a legal k-coloring is found, we decrease the current value k to k -1 and solve the new k-BCP. We repeat this process until no legal k-coloring can be found and return the last k for which a legal k-coloring is reached. We describe below the LHS algorithm which basically solves the decision k-BCP problem.

General procedure

Our Learning-based Hybrid Search (LHS) approach repeats the following two phases: a coloring construction phase (Section 5.2.3) to extend in a step-by-step way a partial legal solution by coloring a new vertex at each step and a repair phase (Section 5.2.4) using tabu search [START_REF] Glover | Tabu search. Handbook of Combinatorial Optimization[END_REF] to solve constraint violations when the partial legal solution cannot be further extended. The main procedure of the LHS approach is summarized in Algorithm 6.

The coloring construction phase operates with partial (legal) solutions and tries to expand a partial solution to a complete solution without violating the problem constraints. Starting from an empty solution, the construction procedure selects at each step, according to a learning-based guiding function (see Section 5.2.2), an uncolored vertex and tries to assign to it an available color. For the selected vertex, if a color can be assigned to it without violating any distance constraints, the vertex receives the color and the construction phase continues. If no feasible coloring is possible for the selected vertex, a dead-end is encountered (in this case, the last selected vertex is called a dead-end vertex) and LHS switches to the tabu search repair phase to escape from the dead-end.

Suppose the partial legal solution is composed of L -1 colored vertices when the dead-end is encountered. Then the tabu search repair phase takes as its input the partial solution and extends it by assigning a randomly selected color from the given k colors to the dead-end vertex. Obviously, this extension leads inevitably to an illegal coloring (with L vertices) which violates some distance constraints. The purpose of the repair phase is then to try to find a legal coloring for the set of L vertices by re-coloring these vertices. At the end of the repair process, there are two possibilities. If the dead-end is resolved, i.e., a legal partial coloring is found for the set of L vertices, LHS switches back to the construction phase to continue its coloring construction. On the other hand, if the repair procedure fails to find a legal partial coloring for the set of L vertices, LHS drops the on-going process and prepares to restart a new round of construction-repair process. In order to learn from this failure, LHS updates the guiding function of some critical variables (see Section 5.2.2) with the help of an adaptive reinforcement learning strategy. As such, the next round of the construction phase will benefit from some learned information to re-order the vertices such that the critical vertices which are difficult to color will be considered with a high priority. LHS repeats the above process until a pre-fixed number of maximum tries is reached or a complete legal k-coloring is obtained.

Learning-based guiding function

As we explain above and in Section 5.2.3, the construction procedure employs a guiding function F to dynamically determine the order of vertices for color assignment. This guiding function constitutes thus one of the most critical components of the LHS algorithm and needs to be designed with care.

In our case, the guiding function F dynamically ranks each vertex v by taking into account both static and learning-based dynamic information and is called at each step of the construction process to select a vertex for color assignment (a vertex with the highest rank is selected, ties are broken at random). This function takes the following form: 

(v) = { deg(v) + f r_deg(v), T = 0 f b_val(v) + f r_deg(v), T > 0, ∀v ∈ V (5.1)
where T is the number of the failed 'construction-repair' rounds.

The deg(v) part of F represents the connection degree of vertex v, i.e., deg(v) = |Γ(v)| where Γ(v) = {u ∈ V : {v, u} ∈ E}. For a given graph, this part remains static and captures a basic and main characteristic of the graph. The use of this information within F is based on the consideration that a vertex with a large degree exhibits a stronger influence to its adjacent vertices than a vertex with a small degree. So a vertex with a high degree is selected with a higher priority for color assignment. This static part of F is only considered for the first round of the construction-repair process (T = 0) when there is no learning-based information available yet.

The freedom degree f r_deg(v) is the number of adjacent vertices of vertex v which received a color. {0, . . . , deg(v)}. For each vertex v, f r_deg(v) is initially set to 0. Then each time an adjacent vertex of v receives a color, f r_deg(v) is increased by 1. As such, F evolves dynamically with f r_deg to favor the coloring of those vertices which become more constrained by the coloring of its adjacent vertices. The f r_deg component of F is based on the following consideration. When f r_deg(v) is small relative to deg(v) (say close to 0), few of its adjacent vertices are colored. As a consequence, vertex v has a large freedom in the sense that it is easy to color. In this case, vertex v will be given a low F value, thus a low rank. Reversely, if f r_deg(v) is close to its maximum value deg (v), almost all of its neighboring vertices have already received a color. In this case, coloring vertex v is more difficult since this is strongly constrained by the colors of its adjacent vertices. Consequently, we give a high F value (thus a high rank) to such a vertex whose coloring becomes critical.

Let K(v) = {u ∈ Γ(v) : u is colored}, then f r_deg(v) = |K(v)|. Clearly, f r_deg(v) takes values in
The feedback value f b_val(v) is used to learn from each failed construction-repair process in order to influence the rank of vertices for the next round of coloring construction process. This part is initially set to 0 for each vertex at the beginning of the whole search process. Then two types of updates are dynamically operated after each failed construction-repair process, i.e., when a dead-end is encountered, which cannot be unblocked by the subsequent tabu search repair process (see Sections 5.2.3 and 5.2.4).

-Update of the dead-end vertex: Suppose that v is the last vertex under consideration when the construction phase encounters a dead-end (i.e., no color can be assigned to v without violating some distance constraints). Since the dead-end involving vertex v cannot be resolved by the subsequent tabu search repair phase, we consider the underlying vertex v to be difficult or critical to color.

In order to favor the selection of this vertex for color assignment for the next round of the coloring construction phase, we increase its feedback value f b_val(v) (thus its F rank) by a quantity ∆ = max u∈1,...,n {deg(u) : u ∈ V }.

-Update of the conflicting vertices: Suppose that c is the conflicting partial coloring after an improving or sideways (the number of conflicts is not changed) move of the tabu search repair process. We consider that the vertices that are still involved in constraint violations are difficult or critical to color.

In order to favor the selection of these vertices for the next round of the construction phase, we raise their rank. Precisely, let X be the set of colored vertices in c. We first identify the set CV of conflicting vertices in c:

CV = {v ∈ X : ∃u ∈ K(v), |c(v) -c(u)| < d(u, v)} where K(v) is the set of colored vertices adjacent to v. Then for each vertex v of CV , its feedback value f b_val(v) is increased by 1.
As such, if a vertex is repeatedly involved in constraint violations which are difficult to repair, its rank will progressively be augmented and the vertex will be selected for coloring with a high priority during the next round of the construction-repair process.

Construction phase with forward checking

The construction phase is the main component of the LHS approach responsible for generating legal k-colorings. The whole procedure of the construction phase is illustrated in Algorithm 7. During the construction phase, we maintain two sets of vertices S ⊂ V and U = V \ S. S is the current partial legal solution representing the set of vertices with their respective assigned colors while U contains the set of remaining vertices waiting for color assignment.

The construction phase initially starts with S = ∅ an U = V and then iteratively extends S by including a new vertex v from U with a legal color c(v) (i.e., c(v) satisfies the distance constraints expressed in Eq. ( 2.1)). The construction phase relies on two key elements: the learning-based guiding function F (Section 5.2.2) and a constraint satisfaction technique called forward-checking [START_REF] Haralick | Increasing tree search efficiency for constraint satisfaction problems[END_REF].

The learning-based guiding function F provides a dynamic order for the uncolored vertices of U. Using F, the construction procedure selects always the vertex with the largest F value (ties are broken at random). For each selected vertex, the forward-checking technique is applied to remove incompatible colors for the selected vertex v with respect to its adjacent vertices (i.e., the distance constraints). Forward-checking is an important component of the construction procedure. We explain its functioning in the rest of this section.

Let v ∈ U designate the selected vertex for color assignment, let D(v) be the set of the currently available colors of v initially set to {1, 2, . . . , k}. Two forward-checking operations are triggered to reduce D(v) with the computational complexity On the other hand, if the color domain D(v) becomes empty (i.e., no color can be assigned to v without violating some distance constraints), a dead-end is detected. At this point, the construction procedure is stopped and the search process switches to the tabu search repair procedure (Algorithm 7, lines 26-28). In this example, no dead-end is encountered during the construction phase. Generally, the application of forward-checking can eliminate all the colors of the vertex currently under consideration. In this case, the search switches to the repair phase for conflict resolution that we explain in the next section.

Θ(k × |Γ(v)|).

Tabu search repair phase

When the construction phase encounters a dead-end where the selected vertex v has no available colors (all its colors are removed by the forward-checking operations, see Section 5.2.3), LHS assigns a random color from {1, ..., k} to vertex v and updates the guiding function value F(µ) (i.e., f r_deg(µ)) for each uncolored vertex µ ∈ Γ(v). By doing this, some distance constraints are inevitably violated causing the current partial solution to be illegal. The purpose of the repair phase is then to try to transform this conflicting solution into a legal partial bandwidth coloring in order to switch back to the construction phase.

To achieve this, we develop a tabu search [START_REF] Glover | Tabu search. Handbook of Combinatorial Optimization[END_REF] repair procedure (TSRP) for the k-BCP which combines a basic tabu search procedure (TS) and a simple perturbation mechanism. The TS procedure is an adaptation of the Tabucol algorithm first introduced in [START_REF] Hertz | Using tabu search techniques for graph coloring[END_REF] for the conventional graph coloring problem and later improved in [Dorne and[START_REF] Galinier | Hybrid evolutionary algorithms for graph coloring[END_REF]Hao 1999].

Tabu search procedure

The general scheme of the tabu search repair procedure is shown in Algorithm 8. As shown in the algorithm, TSRP alternates between the tabu search procedure (lines 4-18, Algorithm 8) and the perturbation mechanism.

Suppose that the partial illegal solution S is composed of L vertices {v 1 , ..., v L } ⊂ V . Then the TS procedure explores a subset of the space Ω = {1, ..., k} L to seek a legal bandwidth coloring by using an evaluation function f , a neighborhood N and a tabu list (see Section 5.2.4). Notice that Ω contains both legal and illegal bandwidth k-colorings. The purpose of TS is to find a legal solution by making successive improvements.

From the partial illegal coloring S, TS improves its solutions by iteratively moving from the current solution to one neighboring solution guided by the evaluation function. The best solution (in terms of the evaluation function f ) is recorded in S * . At each iteration, TS moves from the current solution S to a best authorized neighboring solution, records the transition in the tabu list to prevent the search from revisiting solution S and possibly updates the best solution S * (lines 7-15). If the best solution cannot be improved for a given number maxIters of consecutive iterations, the search is considered to be trapped in a local optimum. To escape from the local optimum, TSRP triggers a perturbation mechanism (see Section 5.2.4) to modify the current solution which becomes the starting solution of the next round of the tabu search procedure (lines 19-20). The repair phase using TSRP stops either when a legal coloring is found by the tabu search procedure (lines 10-11) or after reaching a prefixed number maxTSruns of the tabu search runs (or perturbations) (lines 3,[22][23].

Evaluation function, constrained neighborhood and tabu list

We next describe the key elements of the tabu search procedure, i.e., the evaluation function to measure the quality of a candidate solution (bandwidth) coloring, the neighborhood to identify the neighboring solutions that can be attained at each iteration, and the tabu list to avoid short-term cycling.

Evaluation function f : Recall that a distance d(i, j) is defined for each edge {v i , v j } ∈ E and the distance constraint states that the absolute value of the difference between the colors assigned to adjacent vertices v i and v j must be at least the distance d(i, j). Given a partial (illegal) solution S, we use the evaluation function defined in Eq. ( 5.2) [START_REF] Lai | Multistart iterated tabu search for bandwidth coloring problem[END_REF] to quantify the quality of S.

f (S) = ∑ {i,j}∈E max{0, d(i, j) -|c(v i ) -c(v j )|} (5.2)
This function basically measures the degree of constraint violations induced by a solution. Given two solutions S 1 and S 2 , if f (S 1 ) < f (S 2 ) (i.e., S 1 has a smaller degree of constraint violations than S 2 ), S 1 is better than S 2 . If f (S) equals to 0, S is a feasible solution.

Constrained neighborhood N : TS uses a constrained neighborhood N which can be described by the move operator OneM ove (v, i, j). Let S be a solution composed of L vertices X = {v 1 , ..., v L }. Let CV be the set of conflicting vertices such that CV = {v ∈ X : the color of v is conflicting with the color of at least one vertex}. Select one best eligible move OneM ove (v, i, j) 8:

S ← S ⊕ OneM ove (v, i, j) 9:

Update the tabu list 10: (v, i, j) designate such a move and S ⊕ OneM ove (v, i, j) be the resulting neighboring solution from S. Then the neighborhood N of S is composed of all possible solutions that can be obtained by applying the OneM ove operator to S, i.e.,

if f (S) = 0, i.e.,
N (S) = {S ⊕ OneM ove(v, i, j) : v ∈ CV } With this neighborhood, TS explores a much restricted space of k |CV | (instead of k L )
where CV is usually a very small subset of vertices of the current coloring S. In order to render the neighborhood exploration as fast as possible, we adopt the incremental technique based on special data structures as explained in [START_REF] Dorne | Tabu search for graph coloring, T-colorings and set T-colorings[END_REF] to streamline the calculations.

Given this neighborhood, each iteration of TS selects the best OneM ove (v, i, j) operator among all the eligible candidate moves to be applied to the current solution. Ties are broken at random.

Tabu list management:

The tabu list is introduced to record forbidden moves that have been performed in the recent past. Each time TS makes a move OneM ove (v, i, j), the pair (v, j) is added to the tabu list, meaning that it is forbidden to remove color j from vertex v for the next T T (tabu tenure) iterations. In our case, the tabu tenure TT is adaptively determined by TT = f (S) + random( 10) [Dorne and[START_REF] Galinier | Hybrid evolutionary algorithms for graph coloring[END_REF]Hao 1999] where f (S) is the value of the evaluation function defined in Eq. ( 5.2) and random( 10) is a random integer from 1 to 10. Moreover, a forbidden move is always accepted if it leads to a neighboring solution better than the best solution found so far (aspiration criterion).

The perturbation mechanism

The tabu search procedure described above can be trapped in a local optimum, leading to search stagnation. When this happens, we employ a simple perturbation strategy to change (or perturb) the current solution S. Recall that S * records the best solution found so far. The perturbation procedure always replaces S by S * and thus uses S * as the new starting point of the next round of TS.

The perturbation strategy is based on the consideration that S * is a high quality configuration (i.e., having few conflicts) which could be close to a proper (legal) coloring. Using S * as its starting point, the tabu search procedure will explore a new search trajectory and hopefully encounters a proper coloring.

Discussions

In this section, we discuss the relation of our LHS algorithm with the Forward Checking Coloration Neighborhood Search (FCNS) approach [START_REF] Prestwich | Generalised graph colouring by a hybrid of local search and constraint programming[END_REF]] which is probably the closest study for the BCP. Indeed, both approaches employ forward checking to build a partial color assignment. However there are three notable differences between LHS and FCNS. First, unlike LHS, the heuristic used for vertex selection in FCNS does not integrate any learning technique. Second, when a dead-end is encountered (i.e., no color can be assigned to the vertex under consideration), LHS employs a tabu search procedure to repair the conflicting coloring while FCNS just uncolors one or more vertices in a heuristic way to resolve the conflict. Third, the process of dropping an on-going construction phase provides LHS with an opportunity of learning from previous failures while FCNS does not use such similar technique.

From a more general perspective, LHS is also related to the general GRASP metaheuristic [START_REF] Feo | Greedy randomized adaptive search procedures[END_REF] in the sense that both LHS and GRASP are composed of a construction phase and a local optimization phase. Yet, unlike GRASP which applies a local search procedure to improve a complete solution (complete color assignment in our case), the tabu search routine of LHS repairs partial (and conflicting) solutions.

As shown in the next section, the proposed LHS algorithm, equipped with its particular features, is a very competitive method for the bandwidth coloring problem.

Experimental results

Benchmark instances and experimental protocol

Our LHS approach was tested on two sets of 66 well-known benchmark instances (33 graphs for the BCP and 33 for the BMCP [START_REF] Johnson | Color02/03/04: Graph coloring and its generalizations[END_REF]). These instances belong to three types: GEOMn, GE-OMna and GEOMnb (where n denotes the number of vertices of the graph). The first type refers to sparse graphs, while the two other types correspond to dense graphs.

The LHS algorithm is coded in C++ and compiled using g++ with the '-O2' option on an Intel Xeon E5440 processor (2.83GHz and 4GB RAM). The run time required for solving the DIMACS machine benchmarks (available at: ftp://dimacs.rutgers.edu/pub/dsj/clique/) on our machine is 0.44, 2.63 and 9.85 seconds for graphs r300.5, r400.5 and r500.5 respectively. The computational results reported in this section were obtained with the parameter values shown in Table 5.1. Given the stochastic nature of our LHS algorithm, each problem instance is independently solved 20 times. As explained in Section 5.2, LHS solves the k-BCP problem by decreasing the k values. For the experiments reported in this chapter, we set the initial value of k to be the best-known (i.e., the smallest) value k * from the literature for all the graphs.

Bandwith coloring: Computational results

This section is dedicated to an evaluation of the LHS's performance for the bandwidth coloring problem using the 33 BCP benchmark graphs. Columns 1-4 in Table 5.2 present the characteristics of the tested graphs and column k * gives the current best-known results reported in the published literature and the unpublished paper [START_REF] Lai | Path relinking for bandwidth coloring problem[END_REF]]. The current best-known k * reported in the published literature is also given in parentheses. Columns 6-8 present detailed computational results of our LHS algorithm: The best result in terms of the number of colors (k), the success rate (SR, number of runs over 20 to attain the best result k) and the average running time to reach k (t, in seconds). Table 5.3 presents the comparative results of LHS and the four reference methods (FCNS, EA, MITS and PR). The "-" marks for the reference MITS algorithm in Table 5.3 mean that MITS fails to reach the best-known result for the tested graph and the best obtained k is not reported for these graphs. From Table 5.3, one observes that the reference algorithms can achieve the best reported k * for 17, 24, 28 and 29 instances respectively, while LHS achieves the best-known results for 30 instances. Table 5.3 also discloses that LHS obtains no worse results than FCNS, EA, MITS and PR. More importantly, LHS can improve the best-known results in the literature for two instances (entries in bold). Finally, to find a legal coloring with the same k value, LHS requires comparable computing times with respect to FCNS and EA, and shorter times than MITS and PR for many cases. These outcomes provide evidence of the efficacy of our LHS approach for the BCP.

Bandwith multicoloring: Computational results

We turn now our attention to an evaluation of the LHS algorithm on the bandwidth multicoloring problem using the set of 33 "GEOM" benchmark instances for the BMCP. LHS is designed for solving the BCP, we do not adjust the LHS algorithm but transform each instance of the BMCP to the corresponding instance of the BCP. We split each vertex v i into a clique of cardinality p(i) (each vertex v i receives a subset S(i) ⊂ {1, 2, ..., k} of p(i) different colors), with each edge of the clique having distance d(i, i), corresponding to the distance of the loop edge of vertex v i in the original graph. As a result, the new graph has ∑ i=1,...,n p(i) vertices [Lim et al. 2005, Malaguti andToth 2008].

In this section, we first present our detailed computational results, and then show a comparison between LHS and the five state-of-the-art algorithms OF-SW [START_REF] Chiarandini | Stochastic local search algorithms for graph set T-colouring and frequency assignment[END_REF], FCNS [START_REF] Prestwich | Generalised graph colouring by a hybrid of local search and constraint programming[END_REF], EA [Malaguti and Toth 2008], MITS [START_REF] Lai | Multistart iterated tabu search for bandwidth coloring problem[END_REF] and PR [START_REF] Lai | Path relinking for bandwidth coloring problem[END_REF]. Table 5.4 shows the detailed characteristics of each graph, the best-known result k * (the best-known k * in the published literature is also given in parentheses) and the result of our LHS approach. In addition to the best colors obtained (k) with the average running time to reach k (t in seconds), we also provide the success rate (SR) of LHS for attaining the best result k. Furthermore, we list the k value for each graph when LHS could achieve the robust results with a SR = 20/20. Table 5.5 reports the comparative results between LHS and the five reference algorithms. The experimental platform used by OF-SW algorithm is a 2GHz AMD Athlon MP 2400+ processor with 256 KB cache and 1 GB RAM, and the platforms of the other four reference algorithms are the same as given in Section 5.3.2.

From the results in Table 5.4, we observe that our LHS approach can match the best-known k * for all 33 instances. More importantly, LHS finds an improved best result for 12 out of 33 instances (entries in bold). This is remarkable given that 14 of these 33 best-known results were reported very recently in the unpublished work [START_REF] Lai | Path relinking for bandwidth coloring problem[END_REF]. In particular, LHS can consistently achieve the best-known k * in the literature with a perfect success rate for all graphs except GEOM80a, GEOM90a and GEOM110b. Besides, the indicated computing time corresponds to the average time for LHS to reach a legal coloring with the k value indicated in the table. From Table 5.4, one also observes that the running time increases when k decreases since this makes the problem more difficult to solve. Table 5.5 lists the comparative results of LHS and the five reference algorithms (OF-SW, FCNS, EA, MITS and PR). The "-" marks for the OF-SW algorithm mean that no result is available for the concerned graphs. From Table 5.5, one observes that OF-SW, FCNS, EA and MITS reach the best-known results for 6, 8, 13 and 18 cases respectively. While both the unpublished PR algorithm and our LHS algorithm attain the best-known results for all 33 instances (in italics), LHS requires a much shorter computing time for most instances. More importantly, our LHS algorithm can find an improved best solution for 12 instances (in bold). Once again, we do not emphasize on computing time since the compared approaches provide results with different k values. The computing times of FCNS [START_REF] Prestwich | Generalised graph colouring by a hybrid of local search and constraint programming[END_REF]] are much shorter, but its results are much worse in terms of solution quality. To find solutions of the same quality (with the same k), LHS does not consume more time than OF-SW [START_REF] Chiarandini | Stochastic local search algorithms for graph set T-colouring and frequency assignment[END_REF] and EA [Malaguti and Toth 2008]. Compared to the most recent and the two best performing algorithms MITS [START_REF] Lai | Multistart iterated tabu search for bandwidth coloring problem[END_REF] and PR [START_REF] Lai | Path relinking for bandwidth coloring problem[END_REF], LHS requires less computing times to find equal or better solutions.

In summary, LHS competes very favorably with the five high performing reference algorithms in the literature for the BMCP.

Analysis of LHS

In this section, we perform an additional experiment to assess the impact of the learning-based guiding function F defined in Eq. (5.1) (Section 5.2.2) which is a key element of the LHS approach. Indeed, as explained in Section 5.2.1, the construction phase uses the guiding function F to decide the next vertex for color assignment. This experiment aims to show its influence to the performance of LHS. For this purpose, we compare LHS (with F of Eq. (5.1)) and a LHS variant called LHS random . LHS random discards the guiding function F and selects randomly vertices for color assignment.

For this experiment, we focus on 24 most difficult and challenging benchmark instances for the BMCP. With the same experimental protocol, we run 20 times each of these two LHS procedures (LHS and LHS random ) to solve the 24 BMCP benchmark instances. The computational outcomes are reported in Table 5.6.

From Table 5.6, one observes that LHS achieves always a better or equal result compared to LHS random . In particular, the result of LHS is better for 15 out of the 24 instances, i.e., LHS requires a smaller number of colors to find a legal coloring, with a color reduction ranging from 1 up to 8. Given that finding a legal k-coloring with k close to the best-known value k * is already a difficult task, the improvement of LHS over LHS random is significant. Moreover, LHS requires less average time to reach its best solutions compared to LHS random . In summary, discarding the guiding function F makes LHS less effective and weakens its performance.

Finally, one notices that even the weakened LHS random procedure is competitive compared with the best existing methods since LHS random is able to match the best-known results in most cases and even finds two improved best results (indicated in bold). Thus this experiment indirectly shows the interest of the general cooperative approach of LHS which combines a construction procedure and a repair procedure.

Conclusion

In this chapter, we presented the learning-based hybrid search approach for the bandwidth coloring problem (BCP) and the bandwidth multicoloring problem (BMCP), which are two important generalizations of the vertex coloring problem. LHS alternates between an informed construction phase and a repair procedure until attaining a feasible solution. The construction phase is guided by a learning-based function to choose the next vertex for color assignment and applies a forward checking technique to eliminate incompatible colors for unassigned vertices. The tabu search based repair procedure is used to resolve dead-end situations when the construction phase cannot further extend the current partial solution.

Experimental evaluations on two sets of 66 benchmark instances showed that the proposed LHS approach is highly competitive in comparison with the current most effective algorithms for the BCP and BMCP. LHS can reach the best-known results for most benchmarks of both BCP and BMCP. In particular, LHS improves the best-known results for two BCP instances and 12 BMCP instances.

Finally, the general LHS algorithm follows a new framework which is different from the existing approaches. In the future, we hope to investigate its usefulness for solving other constrained combinatorial problems.
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Conclusions and perspectives

Conclusions

This thesis focuses on designing effective hybrid metaheuristic algorithms for solving three NP-hard generalizations of the vertex coloring problem, i.e., the minimum sum coloring problem (MSCP), the bandwidth coloring problem (BCP) and the bandwidth multicoloring problem (BMCP). Considering the theoretical intractability and the widespread real world applications of these problems, we studied several solution approaches to find high quality suboptimal solutions in acceptable computing time. The resulting algorithms are evaluated on a number of well-known benchmark instances and shown to be highly competitive in comparison with the best performing algorithms in the literature.

After providing an overview of the most representative algorithms proposed in the literature as well as the well-known benchmark instances for the studied coloring problems, we presented two hybrid algorithms for solving the minimum sum coloring problem in Chapter 3 and 4. The hybrid algorithms follow the general framework which combines the population-based evolutionary search and local optimization procedure. These two algorithms are effective in solving the MSCP and highly competitive with other state-of-the-art algorithms in the literature. Moreover, we can make the following conclusions. First, the quality of the initial population influences the performance of the hybrid algorithms especially on hard and large instances. Second, crossover operator is an important ingredient for the hybrid metaheuristics and the idea of the partition crossover is still useful for the MSCP. However, the crossover operator for the MSCP needs to be designed differently from the well-known GPX crossover since the objective function of the MSCP is different from that of the vertex coloring problem. Third, the landscape analysis on a number of instances for the MSCP demonstrates why some instances are more difficult than others.

In Chapter 5, we proposed a learning-based hybrid search approach (LHS) for the bandwidth coloring problem and the bandwidth multicoloring problem. LHS alternates between an informed construction phase and a repair procedure until attaining a feasible solution. The construction phase is guided by a learningbased function to choose the next vertex for color assignment and applies a forward checking technique to eliminate incompatible colors for unassigned vertices. The tabu search based repair procedure is used to resolve dead-end situations when the construction phase cannot further extend the current partial solution. Experimental evaluations on two sets of 66 benchmark instances showed that the proposed LHS approach is highly competitive in comparison with the current most effective algorithms for the BCP and BMCP. Moreover, we can make the following observations. First, this framework is general, simple and intuitive. CHAPTER 6. CONCLUSIONS AND PERSPECTIVES Second, this framework follows the constructive approach while incorporating local optimization to eliminate conflicts. Third, the learning technique plays an important role in this hybrid algorithm which needs to be carefully designed.

Additionally, we presented a general and unified swap-based tabu search algorithm (SBTS) for solving the maximum independent set problem, which is used to generate initial solutions in the hybrid search algorithm for the MSCP. SBTS explores the search space by a dynamic alternation between intensification and diversification steps. The search process is driven by the (k, 1)-swap operator combined with specific rules to examine four different neighborhoods. For the purpose of intensification, SBTS uses (0,1)-swap to improve the solution and (1,1)-swap to make side-walks with specific selection rules. To overcome local optima, SBTS adopts an adaptive perturbation strategy which applies either a (2,1)-swap for a weak perturbation or a (k, 1)-swap (k > 2) for a strong perturbation. A tabu mechanism is also employed to prevent the search from short-term cycles. We tested the proposed algorithm on two sets of 120 well-known instances (DIMACS and BHOSLIB) with multiple topologies and densities. Computational results show that SBTS competes favorably with 5 state-of-the-art algorithms in the literature.

Perspectives

The hybrid approaches seem highly promising given their excellent performance on the studied generalizations of the vertex coloring problem. However, several interesting ideas can be considered in future studies, which may reinforce the performance of the hybrid approaches.

First, concerning the hybrid algorithms for the MSCP, we found that the independent set extraction is effective for large and hard problem instances. One immediate extension is to design a combination of the EXSCOL algorithm [Wu and Hao 2012] which applies the independent set extraction and our hybrid memetic algorithm to benefit from their respective advantages. Another alternative is to design a local search to dynamically exploit the extraction and expansion of independent sets to construct a set of good initial solutions, and then use our hybrid search algorithm to improve these solutions.

Second, the hybrid search algorithm LHS for solving the BCP and BMCP establishes an original cooperative framework between an informed construction approach and a local search approach. We hope to adapt this LHS algorithm to other constrained combinatorial problems in order to investigate its usefulness. However, LHS drops all the colored vertices when it fails to find a legal coloring and starts from scratch although some information is learned but still some computing time is wasted. One possibility is to design a strategy to uncolor a subset of colored vertices instead of dropping all the colored vertices. Another possibility is to propose a memetic algorithm which combines the population-based evolutionary search and the LHS optimization procedure.

Finally, the proposed SBTS algorithm for the maximum independent set problem achieves highly competitive results on the well-known benchmarks, but the best results of some hard graphs are attained occasionally. More studies are needed to improve the stability and search capacity of the approach. One possibility is to collect some information during the search process and then use the learned information to guild the search trajectory. Another possibility is to develop a meaningful solution recombination mechanism that can be used within a population-based hybrid algorithm. 

Introduction

Given a simple undirected graph G = (V, E) with vertex set V = {v 1 , . . . , v n } and edge set E ⊂ V ×V , an independent set S is a subset of V such that no two vertices are adjacent, i.e., ∀v i , v j ∈ S, {v i , v j } ̸ ∈ E. An independent set is said maximum if it has the largest cardinality among all the independent sets of G. The maximum independent set problem (MIS) is to determine a maximum independent set of an arbitrary graph. As one of Karp's 21 NP-complete problems [START_REF] Karp | Reducibility among combinatorial problems[END_REF]], MIS is among the most popular problems in combinatorial optimization [Johnson and[START_REF] Johnson | Computers and intractability: A guide to the theory of NPcompleteness[END_REF][START_REF] Johnson | Cliques, coloring, and satisfiability: second DIMACS implementation challenge[END_REF].

In graph theory, there are two tightly related problems: The maximum clique problem (MC) and minimum vertex cover problem (MVC). A clique C of G is a subset of V such that all vertices in C are pairwise adjacent, i.e., ∀v i ,

v j ∈ C, {v i , v j } ∈ E. MC is to find a clique C of maximum cardinality. A vertex cover V C of G is a subset of V such that each edge of E is incident to at least one vertex of V C, i.e., ∀{v i , v j } ∈ E, v i ∈ V C ∨ v j ∈ V C. MVC is to determine a vertex cover of minimum cardinality. Let Ḡ = (V, Ē) be the complementary graph of G = (V, E) such that Ē ⊂ V × V and ∀v i , v j ∈ V, {v i , v j } ∈ Ē if and only if {v i , v j } ̸ ∈ E.
Then given a subset S of V , the following three statements are equivalent: S is an independent set in G, V \S is a vertex cover in G and S is a clique in Ḡ. As a consequence, MIS, MC and MVC are three equivalent problems such that any algorithm designed for one of these problems can be directly applied to solve the other two problems. These problems are relevant to a wide variety of applications such as code theory, information retrieval, signal transmission, classification theory, experimental design and many more others [START_REF] Bomze | The maximum clique problem[END_REF][START_REF] Johnson | Cliques, coloring, and satisfiability: second DIMACS implementation challenge[END_REF][START_REF] Wu | A review on algorithms for maximum clique problems[END_REF]. In this work, we focus on studying the MIS problem.

During the past decades, a large number of solution procedures for solving MIS, MC and MVC have been reported in the literature. Among them are several exact algorithms based on the general branch-andbound framework [START_REF] Carraghan | An exact algorithm for the maximum clique problem[END_REF][START_REF] Li | Combining graph structure exploitation and propositional reasoning for the maximum clique problem[END_REF][START_REF] Östergård | A fast algorithm for the maximum clique problem[END_REF][START_REF] San Segundo | An exact bit-parallel algorithm for the maximum clique problem[END_REF][START_REF] Tomita | An efficient branch-and-bound algorithm for finding a maximum clique with computational experiments[END_REF]. These exact methods are applicable to problem instances of limited sizes. For larger cases, various heuristics have been proposed to obtain near-optimal solutions. The most representative heuristics include tabu search [START_REF] Battiti | Reactive local search for the maximum clique problem[END_REF][START_REF] Friden | Stabulus: A technique for finding stable sets in large graphs with tabu search[END_REF], Wu et al. 2012, Wu and Hao 2013a], stochastic local search [START_REF] Andrade | Fast local search for the maximum independent set problem[END_REF][START_REF] Katayama | An effective local search for the maximum clique problem[END_REF][START_REF] Pullan | Phased local search for the maximum clique problem[END_REF]2008], parallel hyper-heuristics mixing several low-level heuristics [START_REF] Pullan | Cooperating local search for the maximum clique problem[END_REF]), simulated annealing [START_REF] Geng | A simple simulated annealing algorithm for the maximum clique problem[END_REF], variable neighborhood search [START_REF] Hansen | Variable neighborhood search for the maximum clique[END_REF], breakout local search [START_REF] Benlic | Breakout local search for maximum clique problems[END_REF], local search with edge weighting [START_REF] Cai | Numvc: An efficient local search algorithm for minimum vertex cover[END_REF][START_REF] Richter | A stochastic local search approach to vertex cover[END_REF]] and evolutionary algorithms [Brunato andBattiti 2011, Zhang et al. 2005]. According to the reported results on benchmark instances, in particular those of the well-known Second DIMACS Implementation Challenge on Cliques, Coloring, and Satisfiability [START_REF] Johnson | Cliques, coloring, and satisfiability: second DIMACS implementation challenge[END_REF], it seems that ILS and GLP [START_REF] Andrade | Fast local search for the maximum independent set problem[END_REF], BLS [START_REF] Benlic | Breakout local search for maximum clique problems[END_REF], NuMVC [START_REF] Cai | Numvc: An efficient local search algorithm for minimum vertex cover[END_REF], PLS [START_REF] Pullan | Phased local search for the maximum clique problem[END_REF]2008], CLS [START_REF] Pullan | Cooperating local search for the maximum clique problem[END_REF], COVER [START_REF] Richter | A stochastic local search approach to vertex cover[END_REF], MN/TS [Wu et al. 2012] and AMTS [Wu and Hao 2013a] are among the top performing heuristics in the literature. Nevertheless, due to the large variety of structures of these instances (they are random graphs or transformed from different real problems), no single approach can attain the best-known results for all the DIMACS instances. For more information, the reader can refer to [START_REF] Wu | A review on algorithms for maximum clique problems[END_REF] which provides an updated and comprehensive review on both exact and heuristic MC algorithms, with a special focus on recent developments.

In this work, we introduce a general Swap-Based Tabu Search (SBTS) heuristic for the maximum independent set problem. SBTS inspects the search space by a dynamic alternation between intensification and diversification steps [START_REF] Glover | Tabu search. Handbook of Combinatorial Optimization[END_REF][START_REF] Lourenço | Iterated local search[END_REF][START_REF] Schrimpf | Record breaking optimization results using the ruin and recreate principle[END_REF]]. The search process is driven by a general and unified (k, 1)-swap (k ≥ 0) operator combined with specific rules to explore four constrained neighborhoods. Given an independent set S, (k, 1)-swap exchanges one vertex (which is strategically selected) in V \S against its k adjacent vertices in S. For the purpose of intensification, SBTS uses (0,1)-swap to improve the solution and (1,1)-swap to make side-walks with the help of specific selection rules. To overcome local optima, SBTS adopts an adaptive perturbation strategy which applies either a (2,1)-swap for a weak perturbation or a (k,1)-swap (k > 2) for a strong perturbation. A tabu mechanism is also employed to prevent the search from short-term cycles. Compared with existing local search algorithms, SBTS distinguishes itself by its unified (k, 1)-swap operator, its specific neighborhoods and its dedicated rules for neighborhood exploration.

The proposed SBTS algorithm attains the best-known results for all 120 instances of the well-known DIMACS and BHOSLIB benchmarks with very different structures and topologies. This is the first time a single heuristic reaches such a performance. The best-known results are also attained on an additional set of 11 real instances from code theory.

Components of the SBTS approach

Our Swap-Based Tabu Search (SBTS) algorithm for MIS follows the iterated local search framework [START_REF] Lourenço | Iterated local search[END_REF]] and shares similarities with other methods like variable neighborhood search [START_REF] Hansen | Variable neighborhood search for the maximum clique[END_REF]] and the ruin-and-recreate search [START_REF] Schrimpf | Record breaking optimization results using the ruin and recreate principle[END_REF]]. However, as we explain in this section, SBTS possesses some particular features like four constrained neighborhoods and the specific rules for an effective exploration of these neighborhoods.

General procedure

The general SBTS procedure is summarized in Algorithm 9. SBTS uses a fast randomized construction procedure (Section 7.2.3) to obtain a first feasible independent set S (i.e., no two vertices of S are adjacent, S is also called a feasible solution or simply a solution in this Appendix). From this initial solution, SBTS tries to find improved solutions (i.e., larger independent sets) by a series of intensification and diversification steps (Sections 7.2.7 and 7.2.8). Both intensification and diversification steps are based on the general (k, 1)-swap operator (Section 7.2.5). Specifically, each intensification step makes a (k, 1)-swap move (k = 0, 1) to increase the cardinality of the independent set or search new solutions while keeping the cardinality unchanged. Inversely, a diversification step applies a (k, 1)-swap move (k ≥ 2) to decrease temporarily the quality of the current solution (the current solution loses k -1 vertices). Whenever there exist intensification moves, they are always preferred over diversification moves. Diversification moves are only applied to escape from a local optimum (i.e., when no eligible (k, 1)-swap move (k = 0, 1) is available). As we explain in Sections 7.2.7 and 7.2.8, both intensification and diversification are subject to dedicated rules which govern the way (k, 1)-swap moves are executed. SBTS uses a global variable S * to record the best solution ever discovered during the search and a tabu list to prevent short-term cycles (see Section 7.2.6). The algorithm stops when a fixed number of iterations are realized.

Search space and evaluation function

Before presenting the components of the SBTS algorithm, we define first the search space Ω explored by the algorithm as well as its evaluation function f to measure the quality of a candidate solution.

Algorithm 9 General procedure of the SBTS algorithm for MIS For a given graph G = (V, E), the search space Ω explored by SBTS is the set of all the independent sets of G, i.e., Ω = {S ⊆ V : v i , v j ∈ S, {v i , v j } ̸ ∈ E}. For any feasible solution S ∈ Ω, its quality is directly assessed by the cardinality of S, i.e., f (S) = |S|. Given two independent sets S and S ′ , S is better than S ′ if and only if f (S) > f (S ′ ).

Initial solution

The initial solution used by the SBTS algorithm is generated by the following sequential randomized heuristic (V is the vertex set of graph G).

1. Set S to empty 2. Select randomly a vertex u ∈ V and add u into S 3. Remove from V vertex u and all its adjacent vertices v ∈ V ({u, v} ∈ E) 4. Repeat steps 2-3 until V becomes empty and return S It is easy to observe that the resulting solution S is a feasible (and maximal) independent set. Due to the random choices at step 2, each run of this construction procedure may lead to a different solution. Given the stochastic nature of SBTS, this feature is useful for multiple runs of SBTS.

Preliminary definitions

To explain the intensification and diversification mechanisms of SBTS, we introduce some key concepts (measures) which are particularly useful to define the different neighborhoods and the application rules of the general (k, 1)-swap operator.

Definition 1. (Mapping Degree K M ) Given a graph G = (V, E) and an independent set S, the Mapping Degree of a vertex v i in V \S is the number of its adjacent vertices v j in S, i.e., ∀v i ∈ V \S, K M (v i ) = |{v j ∈ S : {v i , v j } ∈ E}|. A similar definition of Mapping Degree can be found in [START_REF] Andrade | Fast local search for the maximum independent set problem[END_REF]]. {2, 3, 5, 7, 9, 10}. According to the definition, vertex 2 in V \S has one adjacent vertex (1) in S, hence the Mapping Degree K M (2) = 1. Similarly, the Mapping Degrees of the other vertices in V \S are shown in Table 7.1. The Mapping Degree is used to partition the vertices of V \S into four subsets which define the neighborhoods used by SBTS (see Section 7.2.5).

Definition 2. (Expanding Degree K E ) The Expanding Degree of a vertex v i in S is the number of its adjacent vertices v j in V \S whose Mapping Degree K M equals to 1, i.e.,

∀v i ∈ S, K E = |{v j ∈ V \S : {v i , v j } ∈ E, K M (v j ) = 1}|.
In Fig. 7.1, among the 5 vertices of S, only vertices 1 and 4 have adjacent neighbors in V \S with a Mapping Degree of 1, thus their Expanding Degree is K E (1) = 1 and K E (4) = 2 while vertices 6 and 8 have zero Expanding Degree (see Table 7.1). The Expanding Degree is used to define the rule to exploit the neighborhood induced by (1,1)-swap (see Section 7.2.7). Definition 3. (Diversifying Degree K D ) Given a graph G = (V, E) and an independent set S, the Diversifying Degree of a vertex v i in V \S is the number of adjacent vertices v j in V \S, i.e.

∀v i ∈ V \S, K D (v i ) = |{v j ∈ V \S : {v i , v j } ∈ E}|.
The Diversifying Degree is used to differentiate vertices with the same Expanding Degrees when the neighborhood induced by (1,1)-swap is exploited (see Section 7.2.7). It is also employed to define the rule to select degrading, i.e., (k, 1)-swap (k > 1) moves to escape from local optima (see Section 7.2.8).

For the details of our example shown in Fig. 7.1, see Table 7.1. As shown in the Section 7.2.9, these measures will be dynamically updated after each iteration of the algorithm and this can be achieved efficiently in an incremental way.

(k, 1)-swap, neighborhoods and exploration of neighborhoods

The search process of the SBTS algorithm is basically driven by the general (k, 1)-swap (k = 0, 1, 2, . . .) operator. In this section, we provide a detailed presentation of this operator, the different neighborhoods induced by the operator and the way these neighborhoods are explored. Let S be an independent set and V \S its complementary set. Let "S ⊕ (k, 1)-swap" denote the application of (k, 1)-swap (k ≥ 0) to S. Then the resulting solution S ′ is given by S ′ ← S ⊕ (k, 1)-swap.

According to the value of k, (k, 1)-swap changes differently the cardinality of the current solution S.

The resulting solution has a larger or equal cardinality when k ≤ 1 (i.e., k = 0, 1). Otherwise (i.e., k ≥ 2), the resulting solution is deteriorated by k -1 units. Moreover, whatever the value k takes, applying a (k, 1)-swap move to an independent set always leads to a feasible solution.

To define the rules to apply this general (k, 1)-swap operator, we introduce four different neighborhoods. Precisely, given an independent set S (the current solution), we partition its complementary set V \S into four subsets according to the Mapping Degree of each vertex (see Section 7.2.4).

N S

k : the set of vertices v i in V \S whose Mapping Degree K M equals to k, i.e., N S k = {v i ∈ V \S : K M (v i ) = k}, (k = 0, 1, 2).
2. N S >2 : the set of vertices v i in V \S whose Mapping Degree K M is larger than 2, i.e., N S >2 = {v i ∈ V \S : K M (v i ) > 2}.

For the example of Fig. 7.1 where S = {1, 4, 6, 8} and V \S = {2, 3, 5, 7, 9, 10}, we have N S 0 = {9}, N S 1 = {2, 3, 5}, N S 2 = {10} and N S >2 = {7}.

Clearly, each N S k (k = 0, 1, 2, > 2) set defines unambiguously a different (and constrained) neighborhood when it is employed by the (k, 1)-swap operator. Precisely, for a given N S k , the associated neighborhood is composed of all the solutions obtained by swapping a vertex of N S k with its k adjacent vertices in S. For this reason, we will also use N S k (k = 0, 1, 2, > 2) to denote the associated neighborhoods interchangeably.

To explore the search space, the SBTS algorithm selects at each iteration a particular vertex from one N S k (k = 0, 1, 2, > 2) as follows. SBTS first examines N S 0 to see whether an improving (0,1)-swap move is applicable. If N S 0 is not empty, a (0,1)-swap move is applied with a vertex randomly chosen from N S 0 . Otherwise, if N S 1 offers eligible vertices, a side-walk (1,1)-swap move is applied to a vertex of N S 1 which is selected according to the specific rule presented in Section 7.2.7. If N S 1 is empty, SBTS makes a degrading (k, 1)-swap move with a vertex from N S 2 or N S >2 following the rule defined in Section 7.2.8. Hence, at each iteration, SBTS only checks a smaller number (i.e., |N S k | instead of |V \S|) of neighboring solutions to explore the search space. According to the value of k, each iteration corresponds to either an intensification step (k = 0, 1) or a diversification step (k ≥ 2). After each iteration, K M , K E , K D , along with the neighborhoods N S k and their sizes are updated accordingly (see the Section 7.2.9).

One understands intuitively that during the search process, N S 0 will be exhausted very rapidly. Among the remaining N S k (k = 1, 2, > 2) sets, N S k with k ≥ 2 can only deteriorate the solution and should not be used frequently. The only set that could lead to a hopeful improvement of the solution is N S 1 . In Section 7.2.7 and 7.2.8, we introduce dedicated rules for the exploration of the neighborhoods N S k with k ≥ 1.

Tabu list and aspiration rule

The SBTS algorithm uses a tabu list to avoid short-term cycles [START_REF] Glover | Tabu search. Handbook of Combinatorial Optimization[END_REF]. Precisely, each time a (k, 1)-swap move is executed, the k vertices which are swapped out from the independent set S are classified tabu in order to prevent these vertices from moving back to S for the next tt iterations (tt is called tabu tenure). On the other hand, the vertex which joins S is not subject to tabu prohibition. Thus the tabu list is updated only after a (k, 1)-swap with k ≥ 1.

Suppose (k, 1)-swap exchanges vertex v i ∈ N S k (k ≥ 1) and its k adjacent vertices (v j 1 , v j 2 ...v j k ) in S.
For each vertex v jp (p = 1...k), its tabu tenure tt is adaptively set as follows.

k = 1: These tabu tenure rules are purely empirical. However, for the case of k = 1, the first part corresponds to situations which occur usually and the adopted tabu tenure (tt = 10 + Random(|N S1|)) is inspired from the literature [START_REF] Dorne | Tabu search for graph coloring, T-colorings and set T-colorings[END_REF][START_REF] Galinier | Hybrid evolutionary algorithms for graph coloring[END_REF], Wu and Hao 2013a]. The second part (which occurs occasionally) is based on the consideration that when there are many side-walk moves (i.e., |N S 1 | is very high relative to |N S 2 | and |N S >2 |), the vertex that just left the solution will not be considered before having tried a number of side-walk moves as high as |N S 1 |. For the case of k > 1, since there are several vertices (at least two) leaving the independent set and these k vertices are not chosen according to specific objectives, there is no reason to prevent them from joining the solutions for a long period of time. For this reason, the tabu tenure for them can be set to a relatively small value. In fact, we observe that as long as the tabu tenure remains in the range of 4 to 10, it does not really impact the performance of the algorithm. So we set the tabu tenure to the middle value 7 which proves to be robust in our experiments. In Section 7.4.2, we provide more information about the tabu tenure.

If |N S 1 | < |N S 2 |+|N S >2 |, tt =
Notice that vertices in N S 0 are never forbidden by the tabu list given that any vertex in N S 0 can increase the current solution by one unit. This can be considered as an aspiration condition [START_REF] Glover | Tabu search. Handbook of Combinatorial Optimization[END_REF]] that revokes the tabu status of any vertex if it belongs to N S 0 .

Finally, given an independent set S and the associated sets N S k (k = 1, 2, > 2), a vertex from any N S k is said eligible if it is not forbidden by the tabu list.

Intensification

Intensification of the SBTS algorithm aims to find better solutions or to reach new solutions without deteriorating the current solution. For this purpose, whenever N S 0 is not empty, SBTS applies (0, 1)swap to improve the solution. For instance, in Fig. 7.1, given the current solution S = {1, 4, 6, 8}, N S 0 = {9} and N S 1 = {2, 3, 5}, SBTS will select vertex 9 to apply (0, 1)-swap to generate a better solution S = {1, 4, 6, 8, 9}. When N S 0 becomes empty, SBTS checks then the N S 1 neighborhood for a possible (1,1)-swap (side-walk) move.

If N S 1 offers multiple choices for a (1,1)-swap, one must decide which vertex of N S 1 is selected for the (1,1)-swap. One trivial strategy is to make this decision at random. However, as we illustrate below, the order of examining the vertices in N S 1 for (1,1)-swap may impact the solution quality. To make this decision as fruitful as possible, we devise a selection rule which takes into account problem specific information relative to the Expanding Degree and Diversifying Degree (see Section 7.2.4). The proposed selection rule favors the (1,1)-swap moves that tend to create new promising (e.g., improving) moves for future iterations.

Selection Rule for the N S 1 neighborhood examination: 1. Collect in set N S - 1 any vertex v i ∈ N S 1 such that its adjacent neighbor v j in S has the largest Expanding Degree; 2. If N S - 1 is composed of a single vertex, select this vertex; otherwise, select the vertex v i ∈ N S - 1 with the largest Diversifying Degree (ties are broken at random).

The first part of this Selection Rule is based on the following consideration. When swapping v i ∈ N S 1 with v j ∈ S such that v j has the largest Expanding Degree, we encourage the emergence of improving (0,1)-swap moves. For instance, in Fig. 7.1, given N S 1 = {2, 3, 5} and suppose that all the vertices in N S 1 are eligible for a (1,1)-swap move (the notion of eligibility under the tabu rule is explained in Section 7.2.6). Since vertices 3 and 5 of N S 1 have the adjacent vertex 4 in S with an Expanding Degree of 2 while vertex 2 of N S 1 has the adjacent vertex 1 in S with an Expanding Degree of 1, we have N S - 1 = {3, 5} (i.e., vertices 3 and 5 are preferred than vertex 2). At this point, one notices a (1,1)-swap using any vertex 3 or 5 of N S - 1 (say 3) will change the Mapping Degree of the other vertex (vertex 5) to 0. This makes the other vertex to become a member of the updated N S 0 and could be added to the independent set at the next iteration. In comparison, since vertex 2 ∈ N S 1 has an Expanding Degree of 1, swapping 2 into S cannot create any improving moves.

The second part of this Selection Rule is based on the consideration that the vertices of N S 1 with a larger Diversifying Degree could make the search more diversified after a (1,1)-swap move. Indeed, after swapping v i ∈ N S 1 and v j ∈ S, we need to update the Mapping Degree, the Expanding Degree and Diversifying Degree concerned by v i and v j (see Section 7.2.9), leading to modifications of the neighborhoods N S k (k = 0, 1, 2, > 2). By definition, a vertex v i ∈ N S 1 with a larger Diversifying Degree has more adjacent vertices in V \S. Selecting such a vertex for a (1,1)-swap move leads to more changes in V \S, thus more changes in the neighborhoods N S k (k = 0, 1, 2, > 2). In this sense, this helps to diversify the choices of the next iteration of the search procedure. For our example in Fig. 7.1, vertices 3 and 5 have respectively a Diversifying Degree of 2 and 3. According to the Selection Rule, vertex 5 (instead of vertex 3) is selected to take part in the swap move with vertex 4 in S. After this move, three vertices (2, 9 and 10 which are adjacent to 5 in V \S) take part in neighborhood updating. In comparison, vertex 3 in N S 1 (with a small Diversifying Degree) will induce fewer changes in the neighborhoods.

One notices that this heuristic selection rule has no theoretical guarantee of being able to always lead to the best choice. However, the rule is designed to favor a good choice when such a choice is available. The computational results shown in this work confirm its usefulness in practice.

Further reducing N S 1 neighborhood examination:

As explained above, among the vertices of N S 1 , those v i whose adjacent neighbor v j in S has an Expanding Degree of 1 are less promising than the other vertices since using these v i in (1,1)-swap can only lead to new side-walk (or degrading) moves and can never create new improving moves for the next iteration. In order to prevent the search from making uselessly too many side-walk moves, we define an additional rule to reduce N S 1 as follows. If there are more (1,1)-swap moves than (k, 1)-swap (k > 1)

moves (i.e., |N S 1 | > |N S 2 | + |N S >2 |),
we exclude from N S 1 any v i such that its adjacent neighbor v j has an Expanding Degree of 1. For instance, in Fig. 7.1, N S 1 = {2, 3, 5}. If we apply this reduction rule, vertex 2 will be excluded from N S 1 since the Expanding Degree of its neighbor in S (vertex 1) equals to 1. Experiments show that this reduction rule could improve the search efficiency for a number of situations where a large number of side-walk moves frequently appear during the search process.

Algorithm 10 The Intensification Step for MIS 1: Input: A feasible independent set S 2: Output: The independent set S ′ . 3: /* Explore neighborhood N S 0 with an improving (0,1)-swap move */ 4: if N S 0 is not empty then 5:

Choose randomly a vertex v i from N S 0 ; 6: The pseudo-code of one intensification iteration is given in Algorithm 10 where S is the current independent set and N S k (k = 0, 1, 2, > 2) are the associated neighborhoods.

S ′ ← S ⊕ (0,
Notice that after each (1, 1)-swap, the neighborhoods N S k are updated accordingly (see Section 7.2.9). Additionally, the vertex that is swapped out from S is added to the tabu list to prevent it from being moved back to S for a number of next iterations (see Section 7.2.6).

If N S 0 is empty and N S 1 does not offer any eligible (1,1)-swap move (i.e., N S 1 is empty or all the vertices of N S 1 are forbidden by the tabu list), the search continues with a diversification step which is explained in the next section.

Diversification

When the current solution cannot be further improved by a (0,1)-swap or changed by a (1,1)-swap, the search procedure is trapped in a local optimum. To escape from this local optimum, the SBTS algorithm resorts to (k, 1)-swap (k ≥ 2) moves to perturb the current solution in order to displace the search to a new search zone. These swap moves are carried out according to some dedicated rules which once again depend on problem specific information.

One observes first that a (k, 1)-swap (k ≥ 2) move applied to a solution S deteriorates the cardinality of S by exactly k -1 units. Consequently, a smaller k (e.g., k = 2) perturbs more weakly a solution while a larger k (e.g., k > 2) changes more strongly the solution. To control the perturbation strength, SBTS adopts an adaptive strategy relying on the number of possible (1, 1)-swap moves (i.e., |N S 1 |) and the number of of (k, 1)-swap (k > 1) moves (i.e., |N S 2 | + |N S >2 |):

1. If |N S 1 | > |N S 2 | + |N S >2 |, SBTS uses N S >2
to perform a strong perturbation by a (k, 1)-swap (k > 2) move as follows: Select an eligible vertex v i of N S >2 with the largest Diversifying Degree (ties are broken at random) and swap the chosen vertex v i with its k neighbors in S.

2. Otherwise, SBTS applies with equal probability either N S 2 or N S >2 to perform either a weak or strong perturbation.

k = 2: Select an eligible vertex v i of N S 2 with the largest Diversifying Degree (ties are broken at random) and then swap v i with its two neighbors in S. -k > 2: Determine an eligible v i of N S >2 at random without considering the tabu list and then swap the chosen vertex v i with its k neighbors in S.

The underlying rationale for point ( 1) is that when a local optimum is reached, all the vertices of N S 1 are prohibited by the tabu list (i.e., they have been removed recently from the independent set S, see Section 7.2.6). A large N S 1 indicates thus that in the recent past, the search has gone through a high number of side-walk moves. This situation corresponds to a kind of deep local optimum which is diffcult to escape. To displace the search into a new search zone, we need to apply a strong perturbation which is achieved by employing a (k, 1)-swap move with k > 2.

The second case corresponds to the situation where the search has made a relative small number of side-walk moves. In this case, we alternate probabilistically the perturbation strength to try to find better solutions in a zone around the current local optimum (with a weak perturbation) or far from current local optimum (with a strong perturbation).

Like for an intensification step, after a (k, 1)-swap (k ≥ 2), the neighborhood sets N S k (k = 0, 1, 2, > 2) are updated accordingly (see Section 7.2.9). The k vertices that are swapped out from S are added to the tabu list (Section 7.2.6).

Information updating procedure

After each (k, 1)-swap, SBTS updates the Mapping degree, Expanding degrees and Diversifying degree of some vertices as well as the associated neighborhoods N S k (k = 0, 1, 2, > 2). We explain below the updating procedure.

Suppose that v

i ∈ N S k (k = 0, 1, 2, > 2) is swapped with its k adjacent vertices v j ∈ S. Let v ia ∈ V \S be any adjacent vertex of v i (i.e., v ia ∈ V \S, {v ia , v i } ∈ E). For each v j , let v ja ∈ V \S be any adjacent vertex of v j (i.e., v ja ∈ V \S, {v ja , v j } ∈ E).
Then the updating procedure realizes the following operations:

1. First, for v i and each v j : Since v i moves from N S k to S, its Expanding Degree is initially set to 0.

Since v j is removed from S, its Mapping Degree and Diversifying Degree is initially set to 0.

2. Then, for each vertex v ia : its Diversifying Degree decreases by 1 and its Mapping Degree increases by 1. Meanwhile, the Mapping Degree of v j increases by 1. The Expanding Degree of v i increases by 1 if the Mapping Degree of v ia increases from 0 to 1 (including v j ) while the Expanding Degree of v i decreases by 1 if the Mapping Degree of v ia increases from 1 to 2.

When the Mapping Degree of v ia changes from k to k + 1 (k = 0, 1, 2), v ia moves from N S k to N S k+1 for k = 0, 1 and to N S >2 for k = 2. If k > 2, v ia stays in N S >2 . Notice that v j belongs now to N S 1 .

3. Finally, for each v j and its adjacent vertices v ja in V \S: The Diversifying Degree of v ja increases by 1 while the Mapping Degree of v ja decreases by 1. Meanwhile, the Diversifying Degree of v j increases by 1 for each v ja .

For any v ′ j ∈ S adjacent to v ja ({v ′ j , v ja } ∈ E, v ′ j ̸ = v j ), its Expanding Degree increases by 1 if the Mapping Degree of v ja decreases from 2 to 1. According to the decrease of the Mapping Degree of v

ja from k + 1 to k (k = 0, 1, 2), v ja displaces from N S k+1 (N S >2 if k > 2) to N S k . If k > 2, v ja stays in N S >2 .
Notice that no v j is swapped out from S if a (0,1)-swap is applied. In this case, only v i and its adjacent vertices in V \S need to be updated. This procedure can be efficiently performed in O(k + |{v ia }| + k|{v ja }|). For Fig. 7.1, if vertex 9 is added into the solution S ={1, 4, 6, 8} after a (0,1)-swap, the Mapping Degree of its neighbors {5, 7, 10} becomes K M (5) = 2, K M (7) = 4 and K M (10) = 3. The Expanding Degree of vertex 4 becomes K E (4) = 1. The new neighborhoods become: N S 0 = ∅, N S 1 = {2, 3}, N S 2 = {5} and N S >2 = {7, 10}.

Experimental results

Benchmark instances

To evaluate the efficiency of our proposed SBTS algorithm, we carry out experiments on three different data sets: DIMACS, BHOSLIB and CODE:

-DIMACS benchmark: This set was established for the Second DIMACS Implementation Challenge [START_REF] Johnson | Cliques, coloring, and satisfiability: second DIMACS implementation challenge[END_REF]. It contains 12 varieties of instances with multiple topologies and densities.

It is composed of 80 graphs with size ranging from less than 50 vertices and 1 000 edges up to more than 4 000 vertices and 5 000 000 edges. These instances are the most popular and frequently used for evaluating algorithms for MIS, MC and MVC. Among these 80 DIMACS instances, the maximum clique is now known for 74 of them except 6 graphs: 3 (large) random graphs with at least 500 vertices (C500.9, C1000.9, C2000.9) and 3 structured graphs (hamming10- were translated from hard random SAT instances [START_REF] Xu | A simple model to generate hard satisfiable instances[END_REF]. Each of the 40 instances has a known, but hidden optimal solution. These instances have a size ranging from less than 500 vertices and 100 000 edges up to more than 1 500 vertices and 10 000 000 edges. The set is more and more used in the literature for performance evaluation. These instances are available from http://www. nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm. -CODE benchmark: This set is composed of 11 large graphs arising from code theory with size ranging from 1 024 vertices and 7 936 edges up to 4 096 vertices and more than 184 320 edges. These instances have unknown optima and are the least frequently used in the literature. They are available from http://neilsloane.com/doc/graphs.html.

Since the original DIMACS graphs are proposed for MC, we use their complement graphs to test our SBTS algorithm. For BHOSLIB and CODE benchmarks, the original graphs are used.

Experimental protocol

Our SBTS algorithm is coded in C++ and compiled using g++ with the '-O2' option on a Cluster running Linux with 2.83GHz and 8GB. When we run the DIMACS machine benchmark program 1 on our machine, we obtain the following results: 0.20 CPU seconds for graph r300.5, 1.23 CPU seconds for r400.5 and 4.68 CPU seconds for r500.5.

Given its stochastic nature, we run SBTS independently 100 times to solve each instance with initial solutions generated by the procedure of Section 7.2.3. The stop condition of each run is a maximum of 10 8 iterations which are divided into 10 4 restarts, each restart being limited to 10 4 iterations (i.e., Iters max = 10 4 , Algorithm 9). This experimental protocol is typically used in the literature (see next section). SBTS runs with the self-tuned tabu tenure tt given in Section 7.2.6. Though fine-tuning tabu tenure would lead to improved results for some graphs, for our experiments, we used the above tabu tenure except as otherwise stated. No other parameter is required by SBTS. 7.3.3 Computational results of SBTS on DIMACS, BHOSLIB and CODE instances Tables 7.2,7.3 and 7.4 show respectively the computational statistics of the SBTS algorithm on the three sets of benchmark instances with respect to f bk which designates the optimal value or the best lower bound (i.e., the largest independent set ever reported in the literature). Notice that for the popular DIMACS and BHOSLIB benchmarks, recent heuristics can attain the f bk value for many cases, as it is shown in Table 7.5 of Section 7.3.4. Table 7.2 shows the computational statistics of the SBTS algorithm on the set of 80 DIMACS instances. Columns 1-4 give the characteristics of each graph: Name, number of vertices and edges, and optimal or best-known result f bk (optimal values are marked with '*'). The columns under heading "SBTS" list our best result f * , the average result f avg , the successful runs Success for reaching f * over the 100 independent runs, the average iterations AvgIters and the average CPU time t(s) (seconds) over the successful runs. 7.2 demonstrates that SBTS obtains quite competitive results on the set of DIMACS instances. Specifically, SBTS can consistently reach the previous best-known solutions for 75 out of the 80 instances with a perfect success rate. Furthermore, SBTS can reach the best-known results for all the instances with various topologies and densities, including the most difficult graphs (brock 800_x(x = 1, 2, 3, 4), C2000.9, MANN_a45 and MANN_a81). To the best of our knowledge, the top-performing heuristics in the literature miss at least one best-known result on these difficult graphs. On the other hand, one observes that SBTS has a low success rate (less than 50%) for 3 graphs. Notice that for the 6 open instances (C500.9, C1000.9, C2000.9, hamming10-4, johnson32_2_4, keller6), SBTS hits the best lower bounds for each run except for C2000.9. One can speculate that these lower bounds (except for C2000.9) would be close to or would be optimal solutions and thus are difficult to improve, even though this observation does not constitute a proof. As for the computing time, SBTS requires on average less than 1000 seconds except for C2000.9 and C4000.5. Table 7.3 reports the computational results of SBTS on the set of 40 BHOSLIB instances. The column 1-4 gives the characteristic of the graphs and column 5-9 presents the detailed results of the proposed SBTS algorithm. From this table, one finds that SBTS also performs well for this benchmark set. Specifically, SBTS reaches the optimal results with a perfect success rate for the instances with up to 1000 vertices. The BHOSLIB set is known to be more difficult compared to most of the DIMACS benchmark. Yet, SBTS can still attain the optimal results for all the 40 instances. On the other hand, SBTS has a low or very low success rate (less than 50%) for 11 graphs and requires a large computing time for the largest instances. Table 7.4 reports the computational statistics of our SBTS algorithm on the set of 11 CODE instances where the best-known results f bk are from [START_REF] Andrade | Fast local search for the maximum independent set problem[END_REF][START_REF] Sloane | Challenge problems: Independent sets in graphs[END_REF]]. The results of SBTS are obtained with the default tabu tenure tt except those of 1et.2048, 1tc2048 and 1zc.4096 for which tt = 40 + Random(|N S1|). From the table, one finds that SBTS attains the best-known results for all the CODE instances in a short time. SBTS reaches the best-known results with a perfect success rate for 9 out of 11 instances. However, for one case (1zc.4096), its success rate is very low (1%).

From the results on DIMACS, BHOSLIB and CODE benchmarks, one observes that there is no clear correlation between the problem size and the necessary time to solve it since the difficulty of an instance also depends on its structure.

Comparisons with seven state-of-the-art algorithms

To assess the performance of the proposed SBTS algorithm relative to the state-of-the-art methods, we compare in this section SBTS with some best-performing algorithms for MIS, MC and MVC in the literature. We present two comparisons which concern the DIMACS and BHOSLIB sets on the one hand and the CODE set on the other hand. Comparisons with five references algorithms on DIMACS and BHOSLIB benchmarks

For this comparison, we focus on 45 most difficult instances from DIMACS and BHOSLIB sets and ignore the other instances since they can be easily solved with a 100% success rate by all the compared algorithms. First we summarize below the experimental conditions used by 5 reference algorithms which are implemented on sequential architectures and report state-of-the-art computational results on both DIMACS and BHOSLIB benchmarks.

-MN/TS [Wu et al. 2012]: This is a multi-neighborhood tabu search algorithm which is designed for the equivalent maximum clique (and its weighted generalization). It is run on a PC with 2.83 GHz CPU and 8 GB RAM, and the stop condition is a maximum of 10 8 iterations. -BLS [START_REF] Benlic | Breakout local search for maximum clique problems[END_REF]: This is an iterated local search algorithm which combines a descent procedure with a dedicated and adaptive perturbation strategy. BLS is run on a Xeon E5440 with 2.83 GHz and 2 GB, and the stop condition is a maximum of 1.6 * 10 8 iterations. -PLS [START_REF] Pullan | Phased local search for the maximum clique problem[END_REF]2008]: This is a highly effective phased local search algorithm which relies on three sub-algorithms using different vertex selection rules. It is run on a Pentium IV machine with 512KB L2 cache and 512 MB RAM, and the stop condition is a maximum of 10 8 iterations for all instances except for MANN_a45 and MANN_a81 where 10 9 iterations are allowed. -COVER [START_REF] Richter | A stochastic local search approach to vertex cover[END_REF]]: This is a local search algorithm designed for the equivalent minimum vertex cover problem which uses edge weighting techniques. It is run on a machine with 2.13 GHz and 2 GB RAM, and the stop condition is a maximum of 10 8 iterations. -NuMVC [START_REF] Cai | Numvc: An efficient local search algorithm for minimum vertex cover[END_REF]: This is a very recent local search algorithm for MVC using edge weighting techniques. It is run on a machine with 3 GHz CPU and 4 GB RAM, and the stop condition is a cutoff time which is set to 2,000 seconds.

Table 7.5 summarizes the results of the competing algorithms. All the results are based on 100 independent runs for each graph. The reported results of the reference algorithms are extracted from the corresponding papers while the results of SBTS are from Tables 7.2 and 7.3.

For each compared algorithm, we show its best result f * , followed by the average result f avg given in parenthesis over 100 runs if the success rate is lower than 100%, and the average time in seconds t(s) over the successful runs. For COVER, as stated in [START_REF] Richter | A stochastic local search approach to vertex cover[END_REF]], t(s) is the median run time which is indicative of a typical run of the algorithm. "Best #" in the last row of Table 7.5 shows the number of instances for which an algorithm cannot reach the best-known results in the literature and "Avg." indicates the average value of f avg for the 45 instances for each algorithm. Note that, "-" in Table 7.5 means that the result is unavailable. One observes from Table 7.5 that except SBTS, each reference algorithm fails to find the best-known results for at least two instances (entries in italic). Indeed, given that these instances have very different characteristics and structures, it is known that it is very difficult for a single heuristic to perform well on all the instances [START_REF] Pullan | Cooperating local search for the maximum clique problem[END_REF]]. Besides, SBTS has a slightly better average result of 74.21 against 74.18 of PLS which is the best among the reference algorithms (except NuMVC whose average is an optimistic upper bound since its results are missing for six instances).

For the DIMACS instances, MN/TS, BLS and PLS (which are maximum clique or maximum independent set algorithms) reach the best reported results for the groups "brock", "C", and "keller" with a high success rate except for C2000.9 which is among the most difficult instance. For this instance, MN/TS and BLS achieve the best-known result (80) with an average of 78.37 and 78.60 respectively while PLS fails to find solutions larger than 78. For the group "MANN", MN/TS, BLS and PLS cannot reach the best-known results for MANN_a45 (345) and MANN_a81 (1100). The largest solutions they find have a size of 340, 342, and 344 for MANN_a45, and a size of 1090, 1094, and 1098 for MANN_a81 respectively. Generally, it seems that the typical MC or MIS algorithms (e.g., MN/TS, BLS, PLS) have serious difficulties to solve these two "MANN" instances.

By contrast, the typical MVC algorithms COVER and NuMVC perform well on the group "MANN" with a high success rate while they clearly encounter difficulties for the group "brock". Indeed, COVER fails to reach the best-known result for 6 out of the 12 brock instances. For the 6 brock instances tested by NuMVC, two results do not match the best-known values. Besides, for C2000.9, NuMVC can achieve the best-known result of 80 while COVER can only achieve a solution of size 78.

Our SBTS algorithm achieves the best-known results for all 25 DIMACS instances including the two "problematic" groups "brock" and "MANN". In particular, SBTS can attain the best results for MANN_a45 and MANN_a81 with a perfect success rate, which is better than the typical MC or MIS algorithms.

The average results given in parenthesis show that MN/TS, BLS, PLS, COVER and NuMVC can attain the reported best results in every single run for 20, 19, 21, 14, and 20 cases out of the 25 DIMACS instances respectively, while SBTS has a perfect success rate for 20 cases, which is more than BLS and COVER, equal to MN/TS and NuMVC and one less than PLS. However, for C2000.9, the average result of SBTS is slightly worse than the reference algorithms.

For the BHOSLIB instances, the reference algorithms can attain the best-known results except PLS which fails to reach the optimal solutions for frb59-26-1 and frb59-26-2. One observes from the average results that MN/TS, BLS, PLS, COVER and NuMVC can attain the optimal solutions in every single run for 3, 4, 1, 1, and 13 cases respectively. Our SBTS algorithm is able to reach the best-known results with a perfect success rate for 2 cases, which is more than PLS and COVER but less than MN/TS, BLS, and NuMVC.

Finally, it is more delicate to make a fully fair comparison of the computing time given that the compared algorithms are coded in different languages with different data structures, run on different platforms and more importantly lead to results of different quality for a number of graphs. As an indicative, we observe that to reach a result of equal quality, SBTS is more time consuming than MN/TS, COVER and NuMVC, but remains competitive with BLS and PLS.

Comparisons with two reference algorithms on CODE benchmark

The CODE benchmark is less popular than the DIMACS and BHOSLIB sets and few papers report results on the 11 CODE instances including [START_REF] Andrade | Fast local search for the maximum independent set problem[END_REF][START_REF] Butenko | Estimating the size of correcting codes using extremal graph problems[END_REF][START_REF] Etzion | Greedy and heuristic algorithms for codes and colorings[END_REF]]. However, we think the CODE instances are of interest since they come from real problems (code theory) and known to be relatively difficult. For this study, we adopt as our reference two most recent algorithms that use the CODE benchmark: ILS and GLP [START_REF] Andrade | Fast local search for the maximum independent set problem[END_REF]. Both ILS and GLP are run on a computer equipped with a 3.16 GHz Intel Core 2 Duo CPU and 4 GB of RAM. Unlike the reference studies of the last section which make 100 independent runs, the results of ILS and GLP reported in [START_REF] Andrade | Fast local search for the maximum independent set problem[END_REF]] are based on 15 runs. The stop condition for each run is the average arc (edge) scans limited to 2 17 [START_REF] Andrade | Fast local search for the maximum independent set problem[END_REF]].

In addition to the 11 CODE instances, the authors of [START_REF] Andrade | Fast local search for the maximum independent set problem[END_REF]] also report results on a subset of 33 DIMACS and 9 BHOSLIB instances (8 instances as they are introduced in Section 7.3.1 plus one additional challenging instance frb100-40). To make a fair comparison, we re-run SBTS 15 times (like ILS and GLP) on these 11 CODE instances and the 42 DIMACS/BHOSLIB instances. Since there is no evident way to relate the number of average arc (edge) scans used by ILS and GLP to the number of iterations used by SBTS, SBTS is run under the stop condition given in Section 7.3.4. To report the results, we only retain the 12 (out of 33) most difficult graphs for the DIMACS set while keeping the 11 CODE instances and the 9 BHOSLIB instances since for the remaining instances, all three compared algorithms reach the same results.

Table 7.6 shows the comparison of ILS (columns 3-4), GLP (columns 5-6), and SBTS (columns 7-8): best result f * followed by the average results f avg given in parenthesis over 15 runs and the average time in seconds t(s) over the successful runs. From Table 7.6, one observes that ILS and GLP cannot reach the best-known results for 9 (entries in italic) out of 21 difficult DIMACS and BHOSLIB instances while SBTS fails to reach the best-known result for 4 instances with its 15 runs (corresponding to the cases where its success rate is lower than 15%, see Tables 7.2 and7.3). Furthermore, the average results of SBTS on the instances which cannot be solved with a 100% success rate are all better than ILS and GLP except for C2000.9 where the average of SBTS (77.1) is worse than GLP (77.5) but better than ILS (76.9). We do not emphasize the computing time since the compared algorithms give several results of different quality (f * ).

For the CODE set, the three compared algorithms can achieve the best-known result for the 11 instances. Furthermore, ILS and GLP reach the best results with a 100% success rate for 5 and 6 cases respectively against 10 cases for our SBTS algorithm (i.e., except 1zc.4096).

To conclude, the comparative results indicate that the proposed SBTS algorithm is quite competitive with the reference algorithms not only for the best obtained solutions but also for the average solutions. SBTS seems to be the most comprehensive approach to solve the DIMACS, BHOSLIB and CODE instances with multiple topologies and densities. 

Analysis of SBTS

Now we turn our attention to an analysis of the important features of the proposed SBTS algorithm: the selection rule for intensification (Section 7.2.7) and the tabu tenure (Section 7.2.6).

Influence of the selection rule for intensification

As described in Section 7.2.7, SBTS uses a Selection Rule for the N S 1 neighborhood for (1,1)-swap moves. In this section, we carry out an experiment to verify the importance of this dedicated Selection Rule compared to a random selection rule. For this purpose, we create a variant of SBTS (denoted by SBTS random ) by replacing its Selection Rule with a random selection rule. With SBTS random , when N S 1 offers multiple eligible vertices, one of them is picked at random and used by the (1,1)-swap move.

For this experiment, we run SBTS and SBTS random 100 times on each of the 32 instances (DIMACS, BHOSLIB, CODE) of Section 7.3.4 under the same condition as before. The results are given in Table 7.7 which shows for each algorithm the best result f * , the average result f avg (in parenthesis) and the average time in second t(s) to reach the best result f * . From Table 7.7, one notices that SBTS performs better than SBTS random both in terms of the best result f * and the average result f avg . Precisely, SBTS achieves the best-known result for all the instances except frb100-40 while SBTS random attains the best-known result for only 25 cases out of 32 instances. Besides, SBTS has a perfect success rate for 20 cases against 13 cases for SBTS random . This experiment demonstrates the usefulness of using the proposed Selection Rule to explore the N S 1 neighborhood. 

Analysis of the tabu tenure tuning technique

Recall that the tabu tenure tt is set differently according to k = 1 or k > 1 (see Section 7.2.6). In this section, we carry out an experiment to show the usefulness of this tuning technique. For this purpose, we adopt for the case k > 1 the same tabu tenure as for the case k = 1 and denote the resulting variant by SBTS unique . We use SBTS unique to solve 100 times each of the 32 instances under the same condition as before.

Table 7.8 shows the comparative results of SBTS unique (column 3-4) and SBTS (column 5-6). For each algorithm, we show the best result f * followed by the average result f avg (in parenthesis) and the average time in second t(s). We observe that contrary to SBTS which finds all the best-known results except frb100-40 instance, SBTS unique fails to do so for 3 instances. SBTS has a perfect success rate of reaching the best-known result for 20 cases against 17 cases for SBTS unique . This study shows the interest of the adopted tabu tenue technique and confirms the importance of tuning the tabu tenure carefully.

Conclusion

In this Appendix, we have presented SBTS, a general and unified swap-based tabu search algorithm for solving the maximum independent set problem. The proposed algorithm explores the search space by a dynamic alternation between intensification and diversification steps. The search process is driven by the (k, 1)-swap operator combined with specific rules to examine four different neighborhoods. For the purpose of intensification, SBTS uses (0,1)-swap to improve the solution and (1,1)-swap to make side-walks with specific selection rules. To overcome local optima, SBTS adopts an adaptive perturbation strategy which applies either a (2,1)-swap for a weak perturbation or a (k,1)-swap (k > 2) for a strong perturbation. A tabu mechanism is also employed to prevent the search from short-term cycles.

We have tested the proposed SBTS on two sets of 120 well-known instances (DIMACS and BHOSLIB) with multiple topologies and densities. Computational results show that SBTS competes favorably with 5 state-of-the-art algorithms in the literature. In particular, SBTS can achieve the best-known results for all the 120 instances. An additional test of SBTS on a set of 11 instances from code theory has confirmed its competitiveness relative to two other reference methods.

Even though the proposed approach achieves competitive results on the three benchmarks, one observes that some best results can only be reached occasionally. More studies are needed to improve the stability and search capacity of the approach. One possibility would be to introduce multiple search strategies and apply them dynamically and adaptively according to learned guiding information. Another possibility would be to combine SBTS with the memetic search framework where a meaningful solution recombination mechanism must be sought.
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 1 c w is not o): Remove c w from P ; Case 2 (c w is o): Remove the second worse individual from P with probability 0.2, and discard o otherwise.

  P 1 and P 2 with respect to the generated offspring solution o. In order to avoid a dominance of one parent over the other parent, we set m = ⌊ 1 where |U | is the cardinality of U and rand(N ) gives a random number in {1, . . . , N }. This value for m ensures that o is separated from either parent by at least ⌊ 1 3 |U |⌋ vertices. The above steps have a time complexity of O(n). Since we need to maintain the order |V 1 | ≥ . . . ≥ |V k | of the color classes of the offspring, the total complexity of each crossover operation is O(n × k).
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 4 Fig. 4.1 shows an illustrative example with 3 color classes and 10 vertices represented by A, B,. . . , J. At step 1, the unique common vertex {A} of both parents is directly transmitted to the offspring solution. Then, the remaining vertices {B,C, D, E, F, G, H, I, J} are collected in U and m is assumed to be 4. At step 2, we randomly choose m = 4 vertices from U (say {B, E, H, I}) and preserve them from parent P 1 into the offspring. Finally, the remaining unassigned vertices (i.e., {C, D, F, G, J}) are preserved from parent P 2 to complete the offspring solution.
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  ) + 0.6 * nb conf where rand(10) takes a random number in {1, . . . , 10} and nb conf is the number of conflicting vertices. The tabu tenure T T O for T S O is dynamically determined by T T O = rand(10) + 0.1 * f (c) where c is the incumbent coloring.
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 5 Figure 5.1 illustrates the construction phase with forward checking. In the example, we use six colors (k = 6) to color a graph G with five vertices a, b, d, e and g and six edge weights. At the first construction step, the guiding function is F(a, b, d, e, g) = {2, 3, 2, 2, 3}, b and g are thus the vertices with the largest F value. Suppose a random selection between b and g gives vertex b and D(b) = {1, 2, 3, 4, 5, 6}. According to the first forward checking operation, no color can be removed from D(b). Then, according to the second forward checking operation, {2, 3, 4, 5} can be removed from D(b). Hence, D(b) = {1, 6} and the smallest color 1 is chosen to color the vertex b. Then the function F{a, b, d, e, g} is updated to {3, -, 3, 2, 4}. At this point, one construction step is successfully accomplished. The next steps of the construction phase will handle the remaining vertices g, d, e and a in this order and assign them colors 4, 6, 1, and 5 respectively.
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  10+Random(|N S1|) where Random(A) returns a random value from the domain {0...A -1}; Otherwise, tt = |N S 1 |.k > 1: tt is set to 7.
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 11 Main heuristics and metaheuristics for the MSCP

	Comments on performance		
	Type of approach		
	Reference		
	Algorithm	name	MDSAT(n)

Table 1 .

 1 2: Main characteristics of the MSCP benchmark (94 instances)

	Graph G	n	m	d χ(G) LBt U Bt	Graph G	n	m	d	χ(G)	LBt U Bt
	myciel3		20 0.36	4	17	27	zeroin.i.1	211	4100 0.19	49 1387 4311
	myciel4		71 0.28	5	33	69	zeroin.i.2	211	3541 0.16	30 646 3270
	myciel5		236 0.22	6	62 164	zeroin.i.3	206	3540 0.17	30 641 3193
	myciel6		755 0.17	7 116 380	wap05	905 43081 0.11	50 2130 23077
	myciel7		2360 0.13	8 219 859	wap06	947 43571 0.10	40 1727 19413
	anna		493 0.05	11 193 631	wap07	1809 103368 0.06 ≤ 46 2844 42511
	david		406 0.11	11 142 493	wap08	1870 104176 0.06 ≤ 47 2951 44880
	huck		301 0.11	11 129 375	qg.order30	900 26100 0.06	30 1335 13950
	jean		254 0.08	10 125 334	qg.order40	1600 62400 0.05	40 2380 32800
	homer		1628 0.01	13 639 2189	qg.order60	3600 212400 0.03	60 5370 109800
	queen5.5		160 0.53	5	36	75	DSJC125.1	125	736 0.09	5 135	375
	queen6.6		290 0.46	7	57 144	DSJC125.5	125	3891 0.50	17 261 1125
	queen7.7		476 0.40	7	70 196	DSJC125.9	125	6961 0.90	44 1071 2812
	queen8.8		728 0.36	9 100 320	DSJC250.1	250	3218 0.10	≤ 8	278 1125
	queen8.12		1368 0.30	12 162 624	DSJC250.5	250 15668 0.50 ≤ 28 628 3625
	queen9.9		1056 0.33	10 126 445	DSJC250.9	250 27897 0.90 ≤ 72 2806 9125
	queen10.10		1470 0.30	11 155 600	DSJC500.1	500 12458 0.10 ≤ 12 566 3250
	queen11.11		1980 0.27	11 178 726	DSJC500.5	500 62624 0.50 ≤ 47 1581 12000
	queen12.12		2596 0.25	12 210 936	DSJC500.9	500 112437 0.90 ≤ 126	8375 31750
	queen13.13		3328 0.23	13 247 1183	DSJC1000.1 1000 49629 0.10 ≤ 20 1190 10500
	queen14.14		4186 0.22	14 287 1470	DSJC1000.5 1000 249826 0.50 ≤ 82 4321 41500
	queen15.15		5180 0.21	15 330 1800	DSJC1000.9 1000 449449 0.90 ≤ 222	25531 111500
	queen16.16		6320 0.19	16 376 2176	DSJR500.1	500	3555 0.03	12 566 3250
	school1		19095 0.26	14 476 2887	DSJR500.1c 500 121275 0.97	84 3986 21250
	school1-nsh		14612 0.24	14 443 2640	DSJR500.5	500 58862 0.47	122 7881 30750
	games120		638 0.09	9 156 600	flat300_20_0 300 21375 0.48	20 490 3150
	miles250		387 0.05	8 156 515	flat300_26_0 300 21633 0.48	26 625 4050
	miles500		1170 0.14	20 318 1298	flat300_28_0 300 21695 0.48	28 678 4350
	miles750		2113 0.26	31 593 2048	flat1000_50_0 1000 245000 0.49	50 2225 25500
	miles1000		3216 0.40	42 989 2752	flat1000_60_0 1000 245830 0.49	60 2770 30500
	miles1500		5198 0.64	73 2756 4736	flat1000_76_0 1000 246708 0.49	76 3850 38500
	fpsol2.i.1		11654 0.09	65 2576 12150	le450_5a	450	5714 0.06	5 460 1350
	fpsol2.i.2		8691 0.09	30 886 6990	le450_5b	450	5734 0.06	5 460 1350
	fpsol2.i.3		8688 0.10	30 860 6587	le450_5c	450	9803 0.10	5 460 1350
	mug88_1		146 0.04	4	94 220	le450_5d	450	9757 0.10	5 460 1350
	mug88_25		146 0.04	4	94 220	le450_15a	450	8168 0.08	15 555 3600
	mug100_1		166 0.03	4 106 250	le450_15b	450	8169 0.08	15 555 3600
	mug100_25		166 0.03	4 106 250	le450_15c	450 16680 0.17	15 555 3600
	2-Insert_3		72 0.11	4	43	92	le450_15d	450 16750 0.17	15 555 3600
	3-Insert_3		110 0.07	4	62 140	le450_25a	450	8260 0.08	25 750 5850
	inithx.i.1		18707 0.05	54 2295 19571	le450_25b	450	8263 0.08	25 750 5850
	inithx.i.2		13979 0.07	31 1110 10320	le450_25c	450 17343 0.17	25 750 5850
	inithx.i.3		13969 0.07	31 1086 9936	le450_25d	450 17425 0.17	25 750 5850
	mulsol.i.1		3925 0.20	49 1373 4122	latin_sqr_10 900 307350 0.76 ≤ 97 5556 44100
	mulsol.i.2		3885 0.22	31 653 3008	C2000.5	2000 999836 0.50 ≤ 145	12585 147000
	mulsol.i.3		3916 0.23	31 649 2944	C4000.5	4000 4000268 0.50 ≤ 259	37670 522000
	mulsol.i.4		3946 0.23	31 650 2960			
	mulsol.i.5		3973 0.23	31 651 2976			
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	Comments on performance		
	Type of approach		
	Reference		
	Algorithm	name	SWO+TS

Table 2 .

 2 

		2: Main characteristics of the BCP and the BMCP benchmark (66 instances)
					BCP					BMCP		
	Instance	n	m	d	degave deg min degmax n	m	d	degave deg min degmax
	GEOM20	20	20	0.1053	2.00	0	4	118	1048	0.1518	17.76	4	27
	GEOM20a	20	37	0.1947	3.70	0	7	100	1327	0.2681	26.54	0	44
	GEOM20b	20	32	0.1684	3.20	1	6	40	132	0.1692	6.60	2	11
	GEOM30	30	50	0.1149	3.33	1	6	143	1419	0.1398	19.85	5	35
	GEOM30a	30	81	0.1862	5.40	2	10	171	3288	0.2262	38.45	12	63
	GEOM30b	30	81	0.1862	5.40	2	10	69	447	0.1905	12.96	6	21
	GEOM40	40	78	0.1000	3.90	0	6	220	3074	0.1276	27.95	1	41
	GEOM40a	40	146	0.1872	7.30	3	12	203	4473	0.2182	44.07	20	67
	GEOM40b	40	157	0.2013	7.85	2	13	84	743	0.2131	17.69	3	27
	GEOM50	50	127	0.1037	5.10	0	9	285	4935	0.1219	34.63	0	66
	GEOM50a	50	238	0.1943	9.52	4	16	302	9649	0.2123	63.90	22	115
	GEOM50b	50	249	0.2033	9.96	3	17	104	1140	0.2128	21.92	7	35
	GEOM60	60	185	0.1045	6.17	1	10	315	6174	0.1248	39.20	7	59
	GEOM60a	60	339	0.1915	11.30	6	18	362	13105	0.2005	72.40	33	124
	GEOM60b	60	366	0.2068	12.20	3	20	127	1785	0.2231	28.10	7	44
	GEOM70	70	267	0.1106	7.63	1	13	384	8584	0.1167	44.71	11	69
	GEOM70a	70	459	0.1901	13.11	7	20	379	14821	0.2069	78.21	33	120
	GEOM70b	70	488	0.202	13.94	4	24	148	2212	0.2033	29.89	10	53
	GEOM80	80	349	0.1104	8.72	3	14	465	12927	0.1198	55.60	21	89
	GEOM80a	80	612	0.1936	15.30	7	23	389	15545	0.2060	79.90	28	129
	GEOM80b	80	663	0.2098 16.575	5	29	169	3028	0.2133	35.83	11	62
	GEOM90	90	441	0.1101	9.80	5	15	530	16180	0.1154	61.05	27	96
	GEOM90a	90	789	0.1970	17.53	8	25	454	20455	0.1989	90.11	37	136
	GEOM90b	90	860	0.2147	19.11	6	34	184	3602	0.2139	39.15	12	64
	GEOM100	100	547	0.1105	10.94	5	18	581	19829	0.1177	68.25	28	104
	GEOM100a	100	992	0.2000	19.84	9	28	528	28496	0.2048 107.93	51	180
	GEOM100b	100	1050 0.2121	21.00	5	37	200	4429	0.2226	44.29	11	72
	GEOM110	110	638	0.1064	11.60	6	19	643	24799	0.1201	77.14	37	127
	GEOM110a	110	1207 0.2013	21.94	12	32	602	38783	0.2144 128.85	62	177
	GEOM110b	110	1256 0.2095	22.84	5	39	220	5163	0.2143	46.94	12	85
	GEOM120	120	773	0.1083	12.88	6	21	680	27759	0.1202	81.64	33	126
	GEOM120a	120	1434 0.2000	23.90	13	35	664	46429	0.2109 139.80	64	212
	GEOM120b	120	1491 0.2088	24.85	5	43	235	5779	0.2102	49.18	11	81
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  1: input: A graph G 2: output: The minimum sum coloring c * and f (c * ) found 3: Population_Initialization(P, p) /* Population P has p solutions, Section 3.2.2 */ 4: f * ← min c∈P f (c) /* f * records the best objective value found so far */ 5: for i ← 1 to M axGeneration do

	6:	P ′ ← Selection(P ) /* Select 2 or more parents at random for crossover */
	7:	o ← Crossover(P ′ ) /* Crossover to get an offspring solution, Section 3.2.3 */
	8:	o ← DNTS(o) /* Improve o with the DNTS procedure, Section 3.2.4*/
	9:	if f (o) < f * then
	10:	f * ← f (o); c * ← o
	11:	end if
	12:	Population_Updating(P, o) /* Section 3.2.5 */
	13: end for
	14: return f * , c *

Table 3 .

 3 1: Settings of parameters

	Parameter	Section Description	Value
	µ 1	3.2.4	Maximum number of non-improving moves for TS using N 1	500
	µ 2	3.2.4	Maximum number of non-improving moves for TS using N 2	1 000
	µρ	3.2.4	Maximum number of non-improving moves of TS for perturbation	4 000
	M axIters	3.2.4	Maximum iterations of TS procedure	10 000
	M axGenerations	3.2.5	Maximum number of generations	50

Table 3 .

 3 

3 compares MASC with 5 recent effective algorithms that cover the best known results for the considered benchmark: EXSCOL

[Wu and Hao 2012]

, BLS

[START_REF] Benlic | A study of breakout local search for the minimum sum coloring problem[END_REF]

, MA

[Moukrim et al. 

Table 3 .

 3 2: Detailed computational results of MASC on the set of 39 COLOR 2002-2004 instances (upper part) and 24 DIMACS instances (bottom part)

	Characteristics of the graphs				MASC			
	Name	n	m	f b	k	f * (k * )	SR	Avg.	σ	t
	myciel3	11	20	21	4	21(4) 30/30	21.0	0.0	0.0
	myciel4	23	71	45	5	45(5) 30/30	45.0	0.0	0.0
	myciel5	47	236	93	6	93(6) 30/30	93.0	0.0	0.0
	myciel6	95	755	189	7	189(7) 30/30	189.0	0.0	0.1
	myciel7	191	2 360	381	8	381(8) 30/30	381.0	0.0	1.1
	anna	138	493	276	11	276(11) 30/30	276.0	0.0	0.1
	david	87	406	237	11	237(11) 30/30	237.0	0.0	0.1
	huck	74	301	243	11	243(11) 30/30	243.0	0.0	0.0
	jean	80	254	217	10	217(10) 30/30	217.0	0.0	0.0
	homer	561	1 628	1 157	13	1 155(13)	1/30	1 158.5	1.7	63.9
	queen5.5	25	160	75	5	75(5) 30/30	75.0	0.0	0.0
	queen6.6	36	290	138	7	138(8) 30/30	138.0	0.0	1.1
	queen7.7	49	476	196	7	196(7) 30/30	196.0	0.0	0.0
	queen8.8	64	728	291	9	291(9) 30/30	291.0	0.0	12.8
	queen9.9	81	1 056	409	10	409(10)	9/30	410.5	1.2	1.2
	queen8.12	96	1 368	624	12	624(12) 30/30	624.0	0.0	0.0
	games120	120	638	443	9	443(9) 30/30	443.0	0.0	0.5
	miles250	128	387	325	8	325(8) 30/30	325.0	0.0	0.4
	miles500	128	1 170	≤ 708	20	705(20)	30/30	705.0	0.0	1.0
	fpsol2.i.1	496	11 654	3 403	65	3 403(65) 30/30	3 403.0	0.0	8.7
	fpsol2.i.2	451	8 691	1 668	30	1 668(30) 30/30	1 668.0	0.0	5.7
	fpsol2.i.3	425	8 688	1 636	30	1 636(30) 30/30	1 636.0	0.0	7.0
	mug88_1	88	146	178	4	178(4) 30/30	178.0	0.0	0.1
	mug88_25	88	146	178	4	178(4) 30/30	178.0	0.0	0.2
	mug100_1	100	166	202	4	202(4) 30/30	202.0	0.0	0.2
	mug100_25	100	166	202	4	202(4) 30/30	202.0	0.0	0.3
	2-Insertions_3	37	72	62	4	62(4) 30/30	62.0	0.0	0.0
	3-Insertions_3	56	110	92	4	92(4) 30/30	92.0	0.0	0.0
	inithx.i.1	864	18 707	3 676	54	3 676(54) 30/30	3 676.0	0.0	7.6
	inithx.i.2	645	13 979	2 050	31	2 050(31) 30/30	2 050.0	0.0	4.4
	inithx.i.3	621	13 969	1 986	31	1 986(31) 30/30	1 986.0	0.0	1.8
	mulsol.i.1	197	3 925	1 957	49	1 957(49) 30/30	1 957.0	0.0	0.1
	mulsol.i.2	188	3 885	1 191	31	1 191(31) 30/30	1 191.0	0.0	0.2
	mulsol.i.3	184	3 916	1 187	31	1 187(31) 30/30	1 187.0	0.0	0.2
	mulsol.i.4	185	3 946	1 189	31	1 189(31) 30/30	1 189.0	0.0	0.2
	mulsol.i.5	186	3 973	1 160	31	1 160(31) 30/30	1 160.0	0.0	0.2
	zeroin.i.1	211	4 100	1 822	49	1 822(49) 30/30	1 822.0	0.0	0.2
	zeroin.i.2	211	3 541	1 004	30	1 004(30) 30/30	1 004.0	0.0	0.1
	zeroin.i.3	206	3 540	998	30	998(30) 30/30	998.0	0.0	0.1
	DSJC125.1	125	736	326	5	326(7) 20/30	326.6	0.9	4.4
	DSJC125.5	125	3 891	1 012	17	1 012(18)	2/30	1 020.0	3.9	3.5
	DSJC125.9	125	6 961	2 503	44	2 503(44) 12/30	2 508.0	5.6	1.9
	DSJC250.1	250	3 218	973	8	974(9)	0/30	990.5	8.3	17.3
	DSJC250.5	250	15 668	3 214	28	3 230(31)	0/30	3 253.7 14.3	23.1
	DSJC250.9	250	27 897	8 277	72	8 280(74)	0/30	8 322.7 22.3	5.6
	DSJC500.1	500	12 458	2850	12	2 940(14)	0/30	3 013.4 28.3	50.4
	DSJC500.5	500	62 624	10 910	48	11 101(53)	0/30 11 303.5 73.9 202.5
	DSJC500.9	500 112 437	29 912	126 29 994(126)	0/30	30059.1 31.6	90.9
	flat300_20_0	300	21 375	3 150	20	3 150(20) 30/30	3 150.0	0.0	0.0
	flat300_26_0	300	21 633	3 966	26	3 966(26) 30/30	3 966.0	0.0	0.8
	flat300_28_0	300	21 695	≤ 4 261	28	4 238(30)	1/30	4 313.4 22.3 309.7
	le450_5a	450	5 714	1 350	5	1 350(5) 30/30	1 350.0	0.0	0.7
	le450_5b	450	5 734	1 350	5	1 350(5) 30/30	1 350.0	0.0	0.4
	le450_5c	450	9 803	1 350	5	1 350(5) 30/30	1 350.0	0.0	0.2
	le450_5d	450	9 757	1 350	5	1 350(5) 30/30	1 350.0	0.0	0.5
	le450_15a	450	8 168	2 632	15	2 706(19)	0/30	2 742.6 13.8	41.3
	le450_15b	450	8 169	2 642	15	2 724(19)	0/30	2 756.2 14.8	40.3
	le450_15c	450	16 680	≤ 3 866	15	3 491(16)	30/30	3 491.0	0.0	45.3
	le450_15d	450	16 750	≤ 3 921	15	3 506(17)	30/30	3 511.8	3.6	59.8
	le450_25a	450	8 260	3 153	25	3 166(27)	0/30	3 176.8	4.4	39.2
	le450_25b	450	8 263	3 366	25	3 366(26)	1/30	3 375.1	3.4	40.3
	le450_25c	450	17 343	4 515	25	4 700(31)	0/30	4 773.3 25.2	75.3
	le450_25d	450	17 425	4 544	25	4 722(29)	0/30	4 805.7 27.4	63.4

Table 3 .

 3 3: Comparisons of MASC with five state-of-the-art sum coloring algorithms

	Graph		EXSCOL		BLS	MA MDS5 MRLF	MASC
	Name	f b	f *	Avg.	f *	Avg.	f *	f *	f *	f *	Avg.
	myciel3	21	21	21.0	21	21.0	21	21	21	21	21.0
	myciel4	45	45	45.0	45	45.0	45	45	45	45	45.0
	myciel5	93	93	93.0	93	93.0	93	93	93	93	93.0
	myciel6	189	189	189.0	189	196.6	189	189	189	189	189.0
	myciel7	381	381	381.0	381	393.8	381	381	381	381	381.0
	anna	276	283	283.2	276	276.0	276	276	277	276	276.0
	david	237	237	238.1	237	237.0	237	237	241	237	237.0
	huck	243	243	243.8	243	243.0	243	243	244	243	243.0
	jean	217	217	217.3	217	217.0	217	217	217	217	217.0
	homer	1 157	-	-	-	-	1 157	-	-	1 155	1 158.5
	queen5.5	75	75	75.0	75	75.0	75	75	75	75	75.0
	queen6.6	138	150	150.0	138	138.0	138	138	138	138	138.0
	queen7.7	196	196	196.0	196	196.0	196	196	196	196	196.0
	queen8.8	291	291	291.0	291	291.0	291	291	303	291	291.0
	queen9.9	409	-	-	-	-	409	-	-	409	410.5
	queen8.12	624	-	-	-	-	624	-	-	624	624.0
	games120	443	443	447.9	443	443.0	443	443	446	443	443.0
	miles250	325	328	333.0	327	328.8	325	325	334	325	325.0
	miles500	≤ 708	709	714.5	710	713.3	708	712	715	705	705.0
	fpsol2.i.1	3 403	-	-	-	-	3 403	3 403	-	3 403	3 403.0
	fpsol2.i.2	1 668	-	-	-	-	1 668	-	-	1 668	1 668.0
	fpsol2.i.3	1 636	-	-	-	-	1 636	-	-	1 636	1 636.0
	mug88_1	178	-	-	-	-	-	178	-	178	178.0
	mug88_25	178	-	-	-	-	-	178	-	178	178.0
	mug100_1	202	-	-	-	-	-	202	-	202	202.0
	mug100_25	202	-	-	-	-	-	202	-	202	202.0
	2-Insertions_3	62	-	-	-	-	-	62	-	62	62.0
	3-Insertions_3	92	-	-	-	-	-	92	-	92	92.0
	inithx.i.1	3 676	-	-	-	-	3 676	-	-	3 676	3 676.0
	inithx.i.2	2 050	-	-	-	-	2 050	-	-	2 050	2 050.0
	inithx.i.3	1 986	-	-	-	-	1 986	-	-	1 986	1 986.0
	mulsol.i.1	1 957	-	-	-	-	1 957	-	-	1 957	1 957.0
	mulsol.i.2	1 191	-	-	-	-	1 191	-	-	1 191	1 191.0
	mulsol.i.3	1 187	-	-	-	-	1 187	-	-	1 187	1 187.0
	mulsol.i.4	1 189	-	-	-	-	1 189	-	-	1 189	1 189.0
	mulsol.i.5	1 160	-	-	-	-	1 160	-	-	1 160	1 160.0
	zeroin.i.1	1 822	-	-	-	-	1 822	-	-	1 822	1 822.0
	zeroin.i.2	1 004	-	-	-	-	1 004	1 004	-	1 004	1 004.0
	zeroin.i.3	998	-	-	-	-	998	998	-	998	998.0
	DSJC125.1	326	326	326.7	326	326.9	326	326	352	326	326.6
	DSJC125.5	1 012 1 017	1 019.7 1 012	1 012.9	1 013	1 015	1 141	1 012	1 020.0
	DSJC125.9	2 503 2 512	2 512.0 2 503	2 503.0	2 503	2 511	2 653	2 503	2 508.0
	DSJC250.1	973	985	985.0	973	982.5	983	977	1 068	974	990.5
	DSJC250.5	3 214 3 246	3 253.9 3 219	3 248.5	3 214	3 281	3 658	3 230	3 253.7
	DSJC250.9	8 277 8 286	8 288.8 8 290	8 316.0	8 277	8 412	8 942	8 280	8 322.7
	DSJC500.1	2 850 2 850	2 857.4 2 882	2 942.9	2 897	2 951	3 229	2 940	3 013.4
	DSJC500.5	10 910 10 910 10 918.2 11 187	11 326.3	11 082	11 717	12 717 11 101 11 303.5
	DSJC500.9	29 912 29 912 29 936.2 30 097	30 259.2	29 995	30 872	32 703 29 994 30 059.1
	flat300_20_0	3 150 3 150	3 150.0	-	-	3 150	-	-	3 150	3 150.0
	flat300_26_0	3 966 3 966	3 966.0	-	-	3 966	-	-	3 966	3 966.0
	flat300_28_0 ≤ 4 261 4 282	4 286.1	-	-	4 261	-	-	4 238	4 313.4
	le450_5a	1 350	-	-	-	-	1 350	-	-	1 350	1 350.0
	le450_5b	1 350	-	-	-	-	1 350	-	-	1 350	1 350.0
	le450_5c	1 350	-	-	-	-	1 350	-	-	1 350	1 350.0
	le450_5d	1 350	-	-	-	-	1 350	-	-	1 350	1 350.0
	le450_15a	2 632 2 632	2 641.9	-	-	2 681	-	-	2 706	2 742.6
	le450_15b	2 642 2 642	2 643.4	-	-	2 690	-	-	2 724	2 756.2
	le450_15c	≤ 3 866 3 866	3 868.9	-	-	3 943	-	-	3 491	3 491.0
	le450_15d	≤ 3 921 3 921	3 928.5	-	-	3 926	-	-	3 506	3 511.8
	le450_25a	3 153 3 153	3 159.4	-	-	3 178	-	-	3 166	3 176.8
	le450_25b	3 366 3 366	3 371.9	-	-	3 379	-	-	3 366	3 375.1
	le450_25c	4 515 4 515	4 525.4	-	-	4 648	-	-	4 700	4 773.3
	le450_25d	4 544 4 544	4 550.0	-	-	4 696	-	-	4 722	4 805.7

Table 3 .

 3 4: MASC vs. five state-of-the-art sum coloring algorithms

	Competitor	#G	Best results of MASC (f * ) Better Equal Worse
	EXSCOL [Wu and Hao 2012]	36	12	16	8
	BLS [Benlic and Hao 2012]	25	5	17	3
	MA [Moukrim et al. 2013]	57	10	39	8
	MDS5 [Helmar and Chiarandini 2011]	34	9	25	0
	MRLF [Li et al. 2009]	25	16	9	0

Table 3 .

 3 5: Results of MASC on 17 large graphs with at least 500 vertices

	Characteristics of the graphs		EXSCOL			MASC		
	Name	n	m	f b	f *	Avg.	k	f * (k * )	Avg.	σ	t
	DSJC500.1	500	12 458	2 850	2 850	2 857.4	12	2 841(14)	2 844.1	3.2	28.9
	DSJC500.5	500	62 624	10 910	10 910	10 918.2	48	10 897(51)	10 905.8	4.6	73.3
	DSJC500.9	500 112 437	29 912	29 912	29 936.2	126	29 896(131)	29 907.8	5.8	59.0
	DSJC1000.1	1 000	49 629	9 003	9 003	9 017.9	20	8 995(22)	9 000.5	3.0	70.7
	DSJC1000.5	1 000 249 826	37 598	37 598	37 673.8	83	37 594(87)	37 597.6	1.2 200.4
	DSJC1000.9	1 000 449 449 103 464	103 464	103 531.0	223 103 464(231) 103 464.0	0.0 125.9
	flat1000_50_0 1 000 245 000	25 500	25 500	25 500.0	50	25 500(50)	25 500.0	0.0	0.1
	flat1000_60_0 1 000 245 830	30 100	30 100	30 100.0	60	30 100(60)	30 100.0	0.0 114.6
	flat1000_76_0 1 000 246 708	37 167	37 167	37 213.2	82	37 167 (85)	37 167.0	0.0	1.1
	latin_sqr_10	900 307 350	42 223	42 223	42 392.7	98	41 444(100)	41 481.5 19.1 101.2
	wap05	905	43 081	13 680	13 680	13 718.4	50	13 669(51)	13 677.8	3.7	3.3
	wap06	947	43 571	13 778	13 778	13 830.9	46	13 776(48)	13 777.8	0.6	4.1
	wap07	1 809 103 368	28 629	28 629	28 663.8	46	28 617(50)	28 624.7	3.8	12.4
	wap08	1 870 104 176	28 896	28 896	28 946.0	45	28 885(50)	28 890.9	3.2	15.1
	qg.order30	900	26 100	13 950	13 950	13 950.0	30	13 950(30)	13 950.0	0.0	3.8
	qg.order40	1 600	62 400	32 800	32 800	32 800.0	40	32 800(40)	32 800.0	0.0	11.8
	qg.order60	3 600 212 400 109 800	110 925	110 993.0	60	109 800(60) 109 800.0	0.0 290.6

Table 3 .

 3 6: Comparative results of MASC and DNTS

	Name	Graph	f b	MASC f * Avg.	DNTS f *	Avg.	t-test
	anna		276	276	276.0	276	276.0	-
	queen6.6		138	138	138.0	138	138.0	-
	miles250		325	325	325.0	325	325.0	-
	miles500		≤ 709	705	705.0	705	705.6	Y
	DSJC125.1	326	326	326.6	326	328.6	Y
	DSJC125.5	1 012	1 012	1 020.0	1 016 1 029.8	Y
	DSJC125.9	2 503	2 503	2 508.0	2 506 2 530.1	Y
	DSJC250.1	973	974	990.5	981	997.7	Y
	DSJC250.5	3 219	3 230	3 253.7	3 234 3 301.7	Y
	DSJC250.9	≤ 8 286	8 280	8 322.7	8 321 8 381.9	Y
	flat300_26_0	3 966	3 966	3 966.0	3 966	3 966.0	-
	flat300_28_0 ≤ 4 282	4 238	4 313.4	4 303 4 406.3	Y
	le450_15c	≤ 3 866	3 491	3 491.0	3 491	3 492.1	Y
	le450_15d	≤ 3 921	3 506	3 511.8	3 506	3 515.0	Y
	le450_25c	4 515	4 700	4 773.3	4 749 4 803.9	Y
	le450_25d	4 544	4 722	4 805.7	4 784 4 835.3	Y

Table 3 .

 3 7: Comparative results of the tabu search improvement method according to the neighborhood employed

	Name	Graph	f b	DNTS f * Avg.	TS N 2 f * Avg.	TS N 1 f * Avg.	t -test N 2	t -test N 1
	anna		276	276	276.0	282	285.8	276	276.0	Y	-
	queen6.6		138	138	138.0	138	138.4	138	138.0	Y	-
	miles250		325	325	325.0	346	361.6	335	340.7	Y	Y
	miles500		≤ 709	705	705.6	722	736.0	719	730.9	Y	Y
	DSJC125.1	326	326	328.6	334	340.8	329	334.0	Y	Y
	DSJC125.5	1 012	1016	1029.8	1 031 1 045.1	1 020 1 031.8	Y	N
	DSJC125.9	2 503	2 506	2 530.1	2 514 2 557.6	2 512 2 538.3	Y	N
	DSJC250.1	973	981	997.7	1 004 1 021.3	1 022 1 039.9	Y	Y
	DSJC250.5	3 219	3 234	3 301.7	3 271 3 323.9	3 260 3 306.5	Y	N
	DSJC250.9	≤ 8 286	8 321	8 381.9	8 347 8 405.6	8 318 8 387.5	Y	N
	flat300_26_0	3 966	3 966 3 966.0	3 966 3 966.0	3 966 3 966.0	-	-
	flat300_28_0 ≤ 4 282	4 303	4 406.3	4 347 4 427.8	4 332 4 435.5	N	Y
	le450_15c	≤ 3 866	3 491	3 492.5	3 503 3 517.2	3 508 3 551.8	Y	Y
	le450_15d	≤ 3 921	3 506	3 515.0	3 528 3 538.5	3 526 3 568.2	Y	Y
	le450_25c	4 515	4 749	4 803.9	4 828 4 893.9	5 005 5 067.4	Y	Y
	le450_25d	4 544	4 784	4 835.3	4 848 4 907.0	5 035 5 119.1	Y	Y

Table 3 .

 3 8: Comparative results of MASC and TABUCOL

	Name	Graph	f b	MASC f * Avg.	TABUCOL f * Avg.	t-test
	anna		276	276	276.0	371	374.4	Y
	queen6.6		138	138	138.0	141	141.0	-
	miles250		325	325	325.0	429	436.6	Y
	miles500		≤ 709	705	705.0	1 040 1 066.0	Y
	DSJC125.1	326	326	327.0	337	348.2	Y
	DSJC125.5	1 012	1 012 1 021.5	1 028 1 047.0	Y
	DSJC125.9	2 503	2 503	2 509.6	2 523 2 563.9	Y
	DSJC250.1	973	985	993.8	1 022 1 059.1	Y
	DSJC250.5	3 219	3 230	3 263.2	3 279 3 312.4	Y
	DSJC250.9	≤ 8 286	8 290 8 319.5	8 338 8 373.8	Y
	flat300_26_0	3 966	3 966	3 966.0	3 966	3 966.0	-
	flat300_28_0 ≤ 4 282	4 238 4 313.4	4 363 4 430.4	Y
	le450_15c	≤ 3 866	3 491	3 491.0	3 532 3 584.7	Y
	le450_15d	≤ 3 921	3 506 3 512.6	3 567 3 591.8	Y
	le450_25c	4 515	4 743	4 798.3	5 384 5 448.6	Y
	le450_25d	4 544	4 750 4 833.4	5 226 5 464.4	Y
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  The best sum coloring c * found and its sum of colors f * 3: Population_Initialization(P, p) /* Generate p initial solutions, Sect. 4.2.2 */ 4: f * ← min c∈P f (c) /* f * records the best objective value found so far */ 5: repeat

	6:	(P 1 , P 2 ) ← Selection(P) /* Select at random parents for crossover */
	7:	(o 1 , o 2 ) ← Double-Crossover(P 1 , P 2 ) /* Use two crossover operators to generate two offspring o 1
		and o 2 , Sect. 4.2.3 */
	8:	for each i ∈ {1, 2} do
	9:	o ← IDTS(o i ) /* Improve o i with the IDTS procedure, Sect.4.2.4*/
	10:	if f (o) is better than f * then
	11: f 12: end if
	13:	Population_Updating(P, o) /* Use offspring o to update the population, Sect. 4.2.5 */
	14:	end for
	15: until Stop condition is met
	16: return f

1: Input: A graph G, population size p 2: Output: * ← f (o); c * ← o * , c *

1 :

 1 Input: Population P = {P 1 , . . . , P p } and offspring P o 2: Output: The updated population P 3: D min ← +∞ 4: for i ∈ {1, . . . , p} do 5: Calculate the distance D oi between P o and P i 6: /*Identify the closest individual P d with the minimum distance D min to P o */ Identify the worst individual P w with the largest objective value in P 13: if D min ≥ 0.1 × n and f (P o ) ≤ f (P w ) then d with respect to P o (lines 3-11). Meanwhile, the worst individual P w with the largest objective value (P w ∈ P ) is also identified (line 12). If D min is no smaller than 0.1 × n and f (P o ) is no worse than f (P w ), the offspring P o is inserted into the population and replaces the worst individual P w (lines 13-14). Otherwise, if f (P o ) is no larger than f (P d ), P o is close to P d but has a better quality than P d , then f (P o ) is inserted into the population and replaces the closest individual P d (lines 16-17). Otherwise, the worst individual P w is replaced by P o with a small probability of 0.1 (lines 19-20).

	7:	if D oi < D min then		
	8:	D min ← D oi		
	9:	P d ← P i		
	10:	end if		
	11: end for		
	12: 14:	Replace P w with P o : P = P	∪	{P o }\{P w }
	15: else		
	16: 17:	if f (P o ) ≤ f (P d ) then Replace P d with P o : P = P	∪	{P o }\{P d }
	18:	else		
	19: 20:	if rand(0, 1) ≤ 0.1 then Replace P w with P o : P = P	∪ {P o }\{P w }
	21:	end if		
	22:	end if		
	23: end if		

P

Table 4 .

 4 1: Settings of parameters

	Parameter	Sect.	Description	Value
	µ O	4.2.4	Maximum number of non-improving moves for T S O	10
	maxIter	4.2.4	Maximum number of iterations for perturbation	10 4
	p	4.2.2	Population size	20

Table 4 .

 4 2 present the characteristics of the tested graphs and columns f b U B and f b LB give the current best-known upper and lower bounds of the MSCP reported in the literature. Columns 6-8 present the detailed computational results of our HSA algorithm for the upper bound: The best upper bound f * U B , average upper bound Avg. and average running time t to reach the best value for each of the 30 runs (in minutes). Columns 9-11 show the computational results for the lower bound: The best lower bound f * LB , average lower bound Avg. and average running time t to reach the best value (in minutes).

Table 4 . 2 :

 42 Detailed computational results of HSA on the set of 58 COLOR 2002-2004 instances and 36 DIMACS instances

	Characteristics of the graphs				HSA			HSA	
	Name	n	m	f b U B	f b LB	f * U B	Avg.	t	f * LB	Avg.	t
	myciel3	11	20	21	16	21	21.0	0.0	16	16.0	0.0
	myciel4	23	71	45	34	45	45.0	0.0	34	34.0	0.0
	myciel5	47	236	93	70	93	93.0	0.0	70	70.0	0.0
	myciel6	95	755	189	142	189	189.0	0.0	142	142.0	0.3
	myciel7	191 2 360	381	286	381	381.0	0.0	286	286.0	2.4
	anna	138 493	276	273	276	276.0	0.2	273	273.0	0.4
	david	87	406	237	234	237	237.0	0.1	234	234.0	0.1
	huck	74	301	243	243	243	243.0	0.0	243	243.0	0.0
	jean	80	254	217	216	217	217.0	0.0	216	216.0	0.0
	homer	561 1 628	1 155	1 129	1 150	1 151.8	47.8	1 129	1 129.0	16.6
	queen5.5	25	160	75	75	75	75.0	0.0	75	75.0	0.0
	queen6.6	36	290	138	126	138	138.0	0.0	126	126.0	0.0
	queen7.7	49	476	196	196	196	196.0	0.0	196	196.0	0.0
	queen8.8	64	728	291	288	291	291.0	0.1	288	288.0	0.0
	queen8.12	96	1 368	624	624	624	624.0	0.0	624	624.0	0.0
	queen9.9	81	1 056	409	405	409	409.0	0.5	405	405.0	0.0
	queen10.10	100 1 470	553	550	553	553.6	29.6	550	550.0	0.0
	queen11.11	121 1 980	733	726	733	734.4	30.1	726	726.0	0.0
	queen12.12	144 2 596	944	936	943	947.0	41.1	936	936.0	0.0
	queen13.13	169 3 328	1 192	1 183	1 191	1195.4	29.3	1 183	1183.0	0.0
	queen14.14	196 4 186	1 482	1 470	1 482	1487.3	21.6	1 470	1 470.0	0.0
	queen15.15	225 5 180	1 814	1 800	1 814	1820.1	25.3	1 800	1 800.0	0.0
	queen16.16	256 6 320	2 197	2 176	2 193	2199.4	28.1	2 176	2 176.0	0.0
	school1	385 19 095	2 674	2 345	2 674	2674.0	0.1	2 439	2 418.9	70.6
	school1-nsh	352 14 612	2 392	2 106	2 392	2392.0	0.3	2 176	2 169.4	61.5
	games120	120 638	443	442	443	443.0	0.3	442	442.0	0.0
	miles250	128 387	325	318	325	325.0	1.4	318	318.0	0.2
	miles500	128 1 170	705	686	705	705.8	20.3	686	686.0	0.0
	Continued on next page									

Table 4 .

 4 3: Comparisons of HSA with four state-of-the-art sum coloring algorithms for the lower bounds of the MSCP on 94 graphs

	Graph		RMDS(n)	MDS(5)+LS	EXCLIQUE	MA		HSA
	Name	f b LB	f * LB	Avg.	f * LB	Avg.	f * LB	Avg.	f * LB	Avg.	f * LB	Avg.
	myciel3		16	-	16	-	16	16.0	16	16.0	16	16.0
	myciel4		34	-	34	-	34	34.0	34	34.0	34	34.0
	myciel5		70	-	70	-	70	70.0	70	70.0	70	70.0
	myciel6		142	-	142	-	142	142.0	142	139.5	142	142.0
	myciel7		286	-	286	-	286	286.0	286	277.5	286	286.0
	anna		272	-	273	-	273	273.0	273	273.0	273	273.0
	david		234	-	234	-	229	229.0	234	234.0	234	234.0
	huck		243	-	243	-	243	243.0	243	243.0	243	243.0
	jean		216	-	216	-	216	216.0	216	216.0	216	216.0
	homer	1	-	-	-	-	-	-	1 129 1 129.0	1 129 1 129.0
	queen5.5		75	-	75	-	75	75.0	75	75.0	75	75.0
	queen6.6		126	-	126	-	126	126.0	126	126.0	126	126.0
	queen7.7		196	-	196	-	196	196.0	196	196.0	196	196.0
	queen8.8		288	-	288	-	288	288.0	288	288.0	288	288.0
	queen8.12		-	-	-	-	-	-	624	624.0	624	624.0
	queen9.9		-	-	-	-	-	-	405	405.0	405	405.0
	queen10.10		-									

Table 4 .

 4 3 discloses that RMDS(n), MDS(5)+LS, EXCLIQUE, MA and our HSA algorithm can match the best known results for 17/38 (i.e., 17 over 38 tested graphs), 24/38, 46/62, 71/81 and 86/94 graphs respectively. In particular, our HSA algorithm can improve 27 best known lower bounds (see bold entries).

Table 4 .

 4 

	4: Comparisons of HSA with four state-of-the-art sum coloring algorithms for the upper bounds of
	the MSCP on 94 graphs										
	Graph		EXSCOL		BLS	MASC		MA		HSA
	Name	f b U B	f * U B	Avg.	f * U B	Avg.	f * U B	Avg.	f * U B	Avg.	f * U B	Avg.
	myciel3	21	21	21.0	21	21.0	21	21.0	21	21.0	21	21.0
	myciel4	45	45	45.0	45	45.0	45	45.0	45	45.0	45	45.0
	myciel5	93	93	93.0	93	93.0	93	93.0	93	93.0	93	93.0
	myciel6	189	189	189.0	189	196.6	189	189.0	189	189.0	189	189.0
	myciel7	381	381	381.0	381	393.8	381	381.0	381	381.0	381	381.0
	anna	276	283	283.2	276	276.0	276	276.0	276	276.0	276	276.0
	david	237	237	238.1	237	237.0	237	237.0	237	237.0	237	237.0
	huck	243	243	243.8	243	243.0	243	243.0	243	243.0	243	243.0
	jean	217	217	217.3	217	217.0	217	217.0	217	217.0	217	217.0
	Continued on next page										

Table 4 .

 4 5: Comparisons on 20 selected graphs for the upper and lower bounds of the MSCP

	Graph		HSA				HSA GGX			HSA DGX
	Name	f b U B f b LB	f * U B	avg U B f * LB	avg LB	f * U B	avg U B f * LB	avg LB	f * U B	avg U B f * LB	avg LB
	homer	1155	1150 1151.8 1129 1129.0	1150 1151.9 1129 1129.0	1151 1152.2 1129 1129.0
	queen11.11 733	733 734.4	726 726.0	733 736.2	726 726.0	733 735.2	726 726.0
	queen12.12 944	943 947.0	936 936.0	945 948.5	936 936.0	942 947.5	936 936.0
	queen13.13 1192	1191 1195.4 1183 1183.0	1194 1197.3 1183 1183.0	1192 1197.3 1183 1183.0
	miles250	325	325 325.0	318 318.0	325	325.0	318 318.0	325 325.0	318 318.0
	miles500	705	705 705.8	686 686.0	705	706.2	686 686.0	705 705.9	686 686.0
	DSJC250.1 973	970 980.4	570 569.2	977	981.0	570 569.5	972 980.9	570 568.8
	DSJC250.5 3214	3210 3235.6 1287 1271.6	3222 3243.7 1285 1275.1	3210 3235.7 1270 1261.6
	DSJC250.9 8277	8277 8277.2 4311 4279.4	8277 8279.4 4294 4269.4	8277 8277.0 4312 4273.1
	DSJC500.1 2841	2848 2867.1 1250 1243.4	2850 2870.4 1248 1244.4	2848 2870.4 1245 1241.2
	DSJC500.5 10897	10992 11063.2 2923 2896.0	10969 11066.2 2918 2898.6	11012 11094.0 2894 2876.1
	DSJC500.9 29896	29886 29910.4 11053 10950.1	29869 29900.0 11049 10952.0	29900 29927.0 10982 10853.3
	DSJR500.1 2173	2156 2170.7 2069 2069.0	2154 2167.1 2069 2069.0	2159 2172.6 2069 2069.0
	DSJR500.1c 16311	16286 16286.0 15398 15212.4	16286 16286.0 15313 15185.6	16286 16286.0 15118 15006.4
	DSJR500.5 25630	25440 25684.1 22974 22656.7	25439 25565.9 22641 22634.7	25935 26029.2 22999 22643.0
	flat300_28_0 4238	4260 4290.0 1547 1536.5	4270 4296.5 1544 1535.9	4261 4289.4 1533 1519.3
	le450_15a	2632	2634 2648.4 2331 2331.0	2637 2649.5 2331 2330.9	2642 2658.5 2331 2331.0
	le450_15b	2642	2632 2656.5 2348 2348.0	2644 2656.3 2348 2348.0	2641 2659.9 2348 2348.0
	le450_15c	3491	3487 3792.4 2610 2606.6	3490 3853.5 2610 2607.4	3491 3814.7 2610 2606.6
	le450_15d	3506	3505 3883.1 2628 2627.1	3829 3913.8 2628 2626.7	3504 3774.9 2628 2627.2
	suc#		16		20		10		17		14	16
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 4 6: FDC analysis on 20 selected graphs for the lower and upper bounds of the MSCP

	Graph		Upper bounds of the MSCP		Lower bounds of the MSCP
		#lo	avg d lo	avg dgo	ρ	#lo	avg d lo	avg dgo	ρ
	homer	1188	166.388	96.875 0.772	1011	540.925	0.542 -0.999
	queen11_11	1188	105.468	45.633 0.666	730	108.392	0.006 -0.999
	queen12_12	1191	119.169	31.407 0.874	784	131.224	0.084 -0.975
	queen13_13	1191	147.310	67.307 0.688	829	154.965	0.000 -0.999
	miles250	1137	36.563	3.991 0.865	1200	123.578	0.000 -0.999
	miles500	1191	69.946	28.412 0.729	1200	119.666	0.123 -0.704
	DSJC250.1	706	87.201	94.048	0.462	1200	246.501	243.506 -0.126
	DSJC250.5	1183	205.100	213.692 0.122	1198	236.674	222.969 -0.292
	DSJC250.9	1199	238.464	86.344 0.637	1198	214.859	168.488 -0.472
	DSJC500.1	942	354.208	184.689	0.675	1200	494.570	491.143 -0.100
	DSJC500.5	1200	484.804	482.820 0.150	1200	489.638	488.290 -0.094
	DSJC500.9	1200	491.331	490.818 0.056	1200	461.389	460.501 -0.133
	DSJR500.1	1185	279.052	226.710 0.646	1200	481.245	286.637 -0.272
	DSJR500.1c	1198	421.765	212.482 0.304	1200	440.222	450.543 -0.127
	DSJR500.5	1200	491.142	489.561 0.105	769	289.422	385.740 -0.020
	flat300_28_0	1199	274.961	262.538	0.341	1200	287.138	286.731 -0.139
	le450_15a	1159	273.573	299.082 0.161	1200	442.403	389.603 -0.151
	le450_15b	1115	234.293	202.203 0.527	1200	443.224	329.997 -0.130
	le450_15c	1108	352.946	230.713 0.921	1200	441.681	426.002 -0.217
	le450_15d	1086	350.593	418.864 0.122	1200	441.665	436.336 -0.056

  Algorithm 6 Learning-based Hybrid Search for the Bandwidth Coloring Problem

	Require: A graph G = (V, E), an integer k
	Ensure: A feasible k-coloring C * found or null
	1: T ← 0	/* T counts the failed 'construction-repair' rounds */
	2: C ← ∅	/* C is the current feasible coloring under construction */
	3: while T ≤ maxTries do
	4:	repeat
	5:	/* Construction phase */
	6:	(C, v i ) ← Construct_partial_solution(C) /* v i is the dead-end vertex encountered, Sect. 5.2.3 */
	7:	/* Tabu search based conflict repair phase */
	8:	C * ← Tabu_search_repair(C, v i ) /* Apply tabu search to solve conflicts, Sect. 5.2.4 */
	9:	if C * is still a conflicting coloring then
	10:	/* The current round of construction-local search fails */
	11:	Update the learning-based guiding function F /* Sect. 5.2.2 */
	12:	C ← ∅; C * ← ∅
	13:	break
	14:	else
	15:	C ← C *
	16:	end if
	17:	until |C */
	20:	end if
	21:	T ← T + 1
	22: end while
	23: return C

* | = n 18: if |C * | = n then 19: return C * /* C * is a complete and legal k-coloring, return C * * F

  Tabu search repair procedure Require: Graph G, color number k, partial illegal solution to be repaired S, maximum number of launching TS maxTSruns Ensure: a legal bandwidth k-coloring if found or the best solution found 1: S * ← S /* S * records the best solution found so far */ 2: α ← 0 /* Counts the number of launching TS */ 3: while α < maxTSruns do

	4:	/* Tabu search, see Section 5.2.4 */
	5:	β ← 0	/* Counts consecutive iterations failing to improve S * */
	6:	repeat	
	7:		

The OneM ove operator changes the current color i of a conflicting vertex v ∈ CV to Algorithm 8

  S is legal coloring then

	11:	return S
	12:	end if
	13: if f (S) < f (S 15: else
	16:	β ← β + 1
	17:	end if
	18:	until β = maxIters
	19:	/* The perturbation mechanism, see Section 5.2.4 */
	20:	

* ), i.e., S is better than S * then 14: S * ← S; β ← 0 S ← Perturbation(S * ) /* The perturbed solution becomes the starting point of the next TS run */ 21: α ← α + 1 22: end while 23: return S * another color j. Let OneM ove

Table 5 .

 5 1: Settings of parameters

		Parameter	Sect.	Description			Value
		maxTries	5.2.1	Maximum number of tries			10 3
		maxIters	5.2.4	Maximum number of non-improving moves for TS	10 4
		maxTSruns	5.2.4	Maximum iterations of launching TS			50
	Table 5.2: LHS: Detailed computational results on BCP instances
	Characteristics of the graphs	k *		LHS	
	Name	n	m	d		k	SR	t(s)
	GEOM20	20	20	0.1053	20	21	20/20	0.0
	GEOM20a	20	37	0.1947	20	20	20/20	0.0
	GEOM20b	20	32	0.1684	13	13	20/20	0.0
	GEOM30	30	50	0.1149	27	28	20/20	0.0
	GEOM30a	30	81	0.1862	27	27	20/20	0.0
	GEOM30b	30	81	0.1862	26	26	20/20	0.0
	GEOM40	40	78	0.1000	27	28	20/20	0.0
	GEOM40a	40	146	0.1872	37	37	20/20	0.0
	GEOM40b	40	157	0.2013	33	33	20/20	0.0
	GEOM50	50	127	0.1037	28	28	20/20	0.0
	GEOM50a	50	238	0.1943	50	50	20/20	0.1
	GEOM50b	50	249	0.2033	35	35	20/20	1.2
	GEOM60	60	185	0.1045	33	33	20/20	0.0
	GEOM60a	60	339	0.1915	50	50	20/20	0.1
	GEOM60b	60	366	0.2068	41	41	20/20	214.7
	GEOM70	70	267	0.1106	38	38	20/20	0.0
	GEOM70a	70	459	0.1901	61	61	20/20	23.7
	GEOM70b	70	488	0.2020	47	47	20/20	665.4
	GEOM80	80	349	0.1104	41	41	20/20	0.1
	GEOM80a	80	612	0.1936	63	63	20/20	6.6
	GEOM80b	80	663	0.2098	60	60	20/20	19.9
	GEOM90	90	441	0.1101	46	46	20/20	0.0
	GEOM90a	90	789	0.1970	63	63	20/20	23.8
	GEOM90b	90	860	0.2147	69	69	20/20	779.2
	GEOM100	100	547	0.1105	50	50	20/20	1.0
	GEOM100a	100	992	0.2000	67	67	8/20	1557.4
						68	20/20	189.8
	GEOM100b	100	1050	0.2121	72	71	12/20	2038.6
						72	20/20	759.6
	GEOM110	110	638	0.1064	50	50	20/20	1.3
	GEOM110a	110	1207	0.2013	71(72)	71	19/20	2218.7
						72	20/20	324.2
	GEOM110b	110	1256	0.2095	78	77	10/20	2598.7
						78	20/20	94.3
	GEOM120	120	773	0.1083	59	59	20/20	0.5
	GEOM120a	120	1434	0.2000	82	82	20/20	171.1
	GEOM120b	120	1491	0.2088	84	84	2/20	3568.1
						85	20/20	1829.7

Table 5 .

 5 3: Comparisons with four state-of-the-art algorithms on BCP instances

	Graph		FCNS		EA	MITS		PR		LHS
	Name	k *	k	t(s)	k	t(s)	k	t(s)	k	t(s)	k	t(s)
	GEOM20	20	21	0.0	21	0.0	-	-	21	0.0		0.0
	GEOM20a	20	20	0.0	20	0.0	20	0.0	20	0.0		0.0
	GEOM20b	13	13	0.0	13	0.0	13	0.0	13	0.0		0.0
	GEOM30	27	28	0.0	28	0.0	-	-	28	0.0		0.0
	GEOM30a	27	27	0.0	27	0.0	27	0.0	27	0.0		0.0
	GEOM30b	26										

Table 5 .

 5 4: Detailed computational results of LHS on the set of 33 BMCP instances

	Characteristics of the graphs		k *		LHS	
	Name	n	m	d		k	SR	t(s)
	GEOM20	118	1048	0.1518	149	149	20/20	1.8
	GEOM20a	100	1327	0.2681	169	169	20/20	0.5
	GEOM20b	40	132	0.1692	44	44	20/20	0.0
	GEOM30	143	1419	0.1398	160	160	20/20	0.1
	GEOM30a	171	3288	0.2262	209	209	20/20	16.2
	GEOM30b	69	447	0.1905	77	77	20/20	0.0
	GEOM40	220	3074	0.1276	167	167	20/20	0.2
	GEOM40a	203	4473	0.2182	213	213	20/20	9.0
	GEOM40b	84	743	0.2131	74	74	20/20	1.5
	GEOM50	285	4935	0.1219	224	224	20/20	0.3
	GEOM50a	302	9649	0.2123	312(314)	311	20/20	1452.6
						312	20/20	307.5
	GEOM50b	104	1140	0.2128	83	83	20/20	72.1
	GEOM60	315	6174	0.1248	258	258	20/20	1.3
	GEOM60a	362	13105	0.2005	354(356)	353	2/20	9007.1
						354	20/20	4996.0
	GEOM60b	127	1785	0.2231	113	113	20/20	910.7
	GEOM70	384	8584	0.1167	266(270)	266	20/20	2534.0
	GEOM70a	379	14821	0.2069	466(467)	465	6/20	36604.9
						466	20/20	12622.1
	GEOM70b	148	2212	0.2033	116	115	3/20	3640.7
						116	20/20	1844.7
	GEOM80	465	12927	0.1198	380(381)	379	20/20	357.8
						380	20/20	164.0
	GEOM80a	389	15545	0.2060	358(361)	357	2/20	43403.0
						358	7/20	25852.0
						360	20/20	13302.9
	GEOM80b	169	3028	0.2133	138(139)	138	20/20	46.5
	GEOM90	530	16180	0.1154	328(330)	328	20/20	162.2
	GEOM90a	454	20455	0.1989	372(375)	372	3/20	16782.1
						373	20/20	3164.5
	GEOM90b	184	3602	0.2139	144	142	7/20	7680.8
						143	20/20	4858.5
						144	20/20	1331.8
	GEOM100	581	19829	0.1177	404	404	20/20	64.9
	GEOM100a	528	28496	0.2048	436(442)	429	1/20	78363.1
						434	20/20	10767.1
						436	20/20	2310.7
	GEOM100b	200	4429	0.2226	156	153	1/20	10840.1
						155	20/20	3147.6
						156	20/20	726.3
	GEOM110	643	24799	0.1201	375(381)	375	20/20	1598.8
	GEOM110a	602	38783	0.2144	482(488)	478	1/20	49457.1
						480	20/20	2921.5
						482	20/20	375.3
	GEOM110b	220	5163	0.2143	201(204)	201	3/20	5388.4
						203	20/20	303.1
	GEOM120	680	27759	0.1202	396	396	20/20	626.1
	GEOM120a	664	46429	0.2109	539(554)	536	2/20	69518.6
						539	20/20	20286.1
	GEOM120b	235	5779	0.2102	189	187	8/20	8025.8
						188	20/20	1642.0
						189	20/20	315.2

Table 5 .

 5 6: Assessment of the learning-based guiding function

	Graph			LHS random			LHS	
	Name	k *	k	SR	t(s)	k	SR	t(s)
	GEOM50	224	224	20/20	0.3	224	20/20	0.3
	GEOM50a	312(314)	313	2/20	28288.6	311	20/20	1452.6
	GEOM50b	83	83	16/20	3492.4	83	20/20	72.1
	GEOM60	258	258	20/20	1.6	258	20/20	1.3
	GEOM60a	354(356)	354	7/20	12349.2	353	2/20	9007.1
	GEOM60b	113	113	1/20	3549.1	113	20/20	910.7
	GEOM70	266(270)	266	7/20	14235.4	266	20/20	2534.0
	GEOM70a	466(467)	466	9/20	30681.1	465	6/20	36604.9
	GEOM70b	116	117	3/20	7880.7	115	3/20	3640.7
	GEOM80	380(381)	379	6/20	18108.5	379	20/20	357.8
	GEOM80a	358(361)	360	1/20	64551.1	357	2/20	43403.0
	GEOM80b	138(139)	138	20/20	529.6	138	20/20	46.5
	GEOM90	328(330)	328	3/20	15547.1	328	20/20	162.2
	GEOM90a	372(375)	373	3/20	26154.4	372	3/20	16782.1
	GEOM90b	144	145	3/20	11794.4	142	7/20	7680.8
	GEOM100	404	404	20/20	302.8	404	20/20	64.9
	GEOM100a	436(442)	437	3/20	45299.8	429	1/20	78363.1
	GEOM100b	156	159	4/20	7565.8	153	1/20	10840.1
	GEOM110	375(381)	375	3/20	32435.4	375	20/20	1598.8
	GEOM110a	482(488)	481	6/20	24425.6	478	1/20	49457.1
	GEOM110b	201(204)	202	1/20	15397.1	201	3/20	5388.4
	GEOM120	396	396	20/20	14012.6	396	20/20	626.1
	GEOM120a	539(554)	542	1/20	76969.1	536	2/20	69518.6
	GEOM120b	189	190	2/20	12950.6	187	8/20	8025.8

1 :

 1 Input: A graph G, Iters max (maximum allowed iterations per run) 2: Output: The largest independent set S * found. 3: S ← Initialization() /* Generate a feasible independent set S, Sect. 7.2.3 */ 4: S * ← S /* S * records the largest independent set found so far */ 5: f * ← f (S) /* f * records the cardinality of S * */ 6: Initialize tabu_list /* Initialize the tabu list, Sect. 7.2.6 */ 7: for iters ← 1 to Iters max do

	8:	if there exists an intensification move then
	9:	S ← IntensificationStep(S) /* Apply (k, 1)-swap (k ≤ 1) to improve solution S, Sect. 7.2.7 */
	10:	if f (S) > f * then
	11:	S * ← S, f * ← f (S)
	12:	end if
	13:	else
	14:	S ← DiversificationStep(S) /* Apply (k, 1)-swap (k > 1) to perturb solution S, Sect. 7.2.8 */
	15:	end if
	16:	Update tabu_list /* Sect. 7.2.6 */
	17: end for
	18: return S *

Table 7 .

 7 1: Mapping Degree, Expanding Degree and Diversifying Degree on the illustrative graph.

	Vertices in V \S	Neighbors in S	Mapping Degree	Neighbors in V \S	Diversifying Degree
			K M		K D
	2	1	1	5	1
	3	4	1	7, 10	2
	5	4	1	2, 9, 10	3
	7	1, 6, 8	3	3, 9	2
	9		0	5, 7, 10	3
	10	1, 8	2	3, 5, 9	3
	Vertices in S	Neighbors in V \S whose Mapping Degree K M = 1	Expanding Degree K E
	1		2		1
	4		3, 5		2

  | > |N S 2 | + |N S >2 | then 10: Exclude vertices v i from N S 1 whose neighbor v j in S satisfies K E (v j ) = 1;

		1)-swap;
	7: else
	8:	/* Explore neighborhood N S 1 with a side-walk (1,1)-swap move */
	9: if |N S 1 11: end if
	12:	if A vertex v i (v i ∈ N S 1 ) is chosen according to Selection Rule then
	13:	S ′ ← S ⊕ (1, 1)-swap;
	14:	else
	15:	S ′ ← S;
	16:	end if
	17: end if
	18: Perform the updating procedure; /* see Section 7.2.9 */
	19: Return S ′ ;

  4, johnson32_2_4, keller6) [McCreesh and Prosser 2013, Wu and Hao 2015]. These instances are available from http: //www.cs.hbg.psu.edu/txn131/clique.html.-BHOSLIB benchmark: This set arose from the SAT'04 Competition. The BHOSLIB instances

Table 7 .

 7 2: Detailed computational results of SBTS on the set of 80 DIMACS instances. Each instance is solved 100 times and each run is limited to a maximum of 10 8 iterations.

	Characteristics of the graphs				SBTS		
	Name	n	m	f bk	f *	favg(Std.)	Success AvgIters	t(s)
	brock200_1	200	14834	21*	21	21.00	100/100	329	0.0005
	brock200_2	200	9876	12*	12	12.00	100/100	12859	0.0450
	brock200_3	200	12048	15*	15	15.00	100/100	11606	0.0296
	brock200_4	200	13089	17*	17	17.00	100/100	33277	0.0768
	brock400_1	400	59723	27*	27	27.00	100/100 15572682 66.3977
	brock400_2	400	59786	29*	29	29.00	100/100	4159016	20.2432
	brock400_3	400	59681	31*	31	31.00	100/100	340265	1.7676
	brock400_4	400	59765	33*	33	33.00	100/100	160679	0.8298
	brock800_1	800	207505	23*	23	21.52(0.88)	26/100 56901393 963.6288
	brock800_2	800	208166	24*	24	22.29(1.49)	43/100 46449467 784.3647
	brock800_3	800	207333	25*	25	24.16(1.35)	72/100 40752010 651.0726
	brock800_4	800	207643	26*	26	25.90(0.70)	98/100 25784326 421.6047
	C125.9	125	6963	34*	34	34.00	100/100	85	0.0001
	C250.9	250	27984	44*	44	44.00	100/100	492	0.0005
	C500.9	500	112332	57	57	57.00	100/100	23184	0.0540
	C1000.9	1000	450079	68	68	68.00	100/100	1438740	8.3696
	C2000.5	2000	999836	16*	16	16.00	100/100	7628	0.9211
	C2000.9	2000	1799532	80	80	77.29(0.64)	2/100 79591805 1515.5700
	C4000.5	4000	4000268	18*	18	18.00	100/100	4289342 1553.2406
	DSJC500.5	500	125248	13*	13	13.00	100/100	524	0.0074
	DSJC1000.5	1000	499652	15*	15	15.00	100/100	26455	2.2891
	keller4	171	9435	11*	11	11.00	100/100	27	0.0001
	keller5	776	225990	27*	27	27.00	100/100	2101	0.0194
	keller6	3361	4619898	59	59	59.00	100/100 12311511 754.8754
	MANN_a9	45	918	16*	16	16.00	100/100	3	0.0000
	MANN_a27	378	70551	126*	126	126.00	100/100	635	0.0008
	MANN_a45	1035	533115	345*	345	345.00	100/100	4763131	27.5632
	MANN_a81	3321	5506380 1100*	1100	1100.00	100/100	716340	22.6991
	hamming6-2	64	1824	32*	32	32.00	100/100	18	0.0000
	hamming6-4	64	704	4*	4	4.00	100/100	2	0.0000
	hamming8-2	256	31616	128*	128	128.00	100/100	217	0.0001
	hamming8-4	256	20864	16*	16	16.00	100/100	10	0.0000
	hamming10-2	1024	518656	512*	512	512.00	100/100	365	0.0004
	hamming10-4	1024	434176	40	40	40.00	100/100	255	0.0037
	gen200-p0.9-44	200	17910	44*	44	44.00	100/100	947	0.0005
	gen200-p0.9-55	200	17910	55*	55	55.00	100/100	576	0.0004
	Continued on next page								

Table 7 .

 7 3: Detailed computational results of SBTS on the set of 40 BHOSLIB instances. Each instance is solved 100 times and each run is limited to a maximum of 10 8 iterations.

	Characteristics of the graphs				SBTS	
	Name	n	m	f bk	f *	favg(Std.)	Success AvgIters	t(s)
	frb30-15-1	450	83198 30*	30 30.00	100/100	0.0264
	frb30-15-2	450	83151 30*	30	30.00	100/100	0.0562
	frb30-15-3	450	83216 30*	30	30.00	100/100	0.0498
	frb30-15-4	450	83194 30*	30	30.00	100/100	0.0564
	frb30-15-5	450	83231 30*	30	30.00	100/100	0.1611
	frb35-17-1	595	148859 35*	35	35.00	100/100	0.6895
	frb35-17-2	595	148868 35*	35	35.00	100/100	0.4014
	frb35-17-3	595	148784 35*	35	35.00	100/100	0.1027
	frb35-17-4	595	148873 35*	35	35.00	100/100	0.8445
	frb35-17-5	595	148572 35*	35	35.00	100/100	0.2411
	frb40-19-1	760	247106 40*	40	40.00	100/100	0.2384
	frb40-19-2	760	247157 40*	40	40.00	100/100	20.6966
	frb40-19-3	760	247325 40*	40	40.00	100/100	2.7152
	frb40-19-4	760	246815 40*	40	40.00	100/100	11.6519
	frb40-19-5	760	246801 40*	40	40.00	100/100	55.9365
	frb45-21-1	945	386854 45*	45	45.00	100/100	23.0019
	frb45-21-2	945	387416 45*	45	45.00	100/100	53.1387
	frb45-21-3	945	387795 45*	45	45.00	100/100	98.7293
	frb45-21-4	945	387491 45*	45	45.00	100/100	42.9933
	frb45-21-5	945	387461 45*	45	45.00	100/100	80.3013
	frb50-23-1 1150	580603 50*	50	49.75(0.43)	75/100	368.6880
	frb50-23-2 1150	579824 50*	50	49.49(0.50)	49/100	302.2116
	frb50-23-3 1150	579607 50*	50	49.13(0.34)	13/100	517.4469
	frb50-23-4 1150	580417 50*	50	50.00	100/100	94.6139
	frb50-23-5 1150	580640 50*	50	50.00	100/100	119.3523
	frb53-24-1 1272	714129 53*	53	52.03(0.17)	3/100	498.3600
	frb53-24-2 1272	714067 53*	53 52.30(0.46)	30/100	321.4827
	frb53-24-3 1272	714229 53*	53 52.66(0.47)	66/100	359.6429
	frb53-24-4 1272	714048 53*	53 52.22(0.41)	22/100	340.4545
	frb53-24-5 1272	714130 53*	53 52.91(0.29)	91/100	273.8870
	frb56-25-1 1400	869624 56*	56 55.07(0.26)	7/100	551.6357
	frb56-25-2 1400	869899 56*	56 55.06(0.31)	8/100	470.2750
	frb56-25-3 1400	869921 56*	56 55.30(0.46)	30/100	383.5283
	frb56-25-4 1400	869262 56*	56 55.86(0.35)	86/100	335.2178
	frb56-25-5 1400	869699 56*	56 55.79(0.41)	79/100	568.9961
	frb59-26-1 1534 1049256 59*	59 58.02(0.20)	2/100	261.1367
	frb59-26-2 1534 1049648 59*	59 57.96(0.24)	1/100	762.2700
	frb59-26-3 1534 1049729 59*	59 57.94(0.37)	4/100	388.9075
	frb59-26-4 1534 1048800 59*	59 58.00(0.32)	5/100	969.9380
	frb59-26-5 1534 1049829 59*	59 58.81(0.46)	84/100	394.9430

Table 7 .

 7 4: Detailed computational results of SBTS on the set of 11 CODE instances. Each instance is solved 100 times and each run is limited to a maximum of 10 8 iterations.

	Characteristics of the graphs				SBTS	
	Name	n	m	f bk	f *	favg(Std.)	Success AvgIters	t(s)
	1dc.1024 1024	24063	94	94 94.00	100/100	10764	0.0289
	1dc.2048 2048	58367 172	172	172.00	100/100	33895	0.1678
	1et.1024	1024	9600 171	171 171.00	100/100	38018	0.0669
	1et.2048	2048	22528 316	316	316.00	100/100	2016754	6.5911
	1tc.1024	1024	7936 196	196	196.00	100/100	10798	0.0157
	1tc.2048	2048	18944 352	352 352.00	100/100	1622215	6.5195
	1zc.1024	1024	33280 112	112 111.99(0.01)	99/100	9984898	29.7898
	1zc.2048	2048	78848 198	198 198.00	100/100	18931972	81.6927
	1zc.4096	4096 184320 379	379	373.00(3.57)	1/100	96720177 1187.4100
	2dc.1024 1024 169162	16	16 16.00	100/100	1371	0.0327
	2dc.2048 2048 504451	24	24 24.00	100/100	154941	6.9823

Table 7 .

 7 5: Comparisons of SBTS with five reference algorithms on 45 most difficult DIMACS and BHOSLIB instances.

	Graph		MN/TS		BLS		PLS		COVER		NuMVC	SBTS	
	Name	f bk	f *	t(s)	f *	t(s)	f *	t(s)	f *	t(s)	f *	t(s)	f *	t(s)
	brock200_1	21*	21	0.01	21	0.01	21	0.00	21	0.01	-	-	21	0.00
	brock200_2	12*	12	0.06	12	0.18	12	0.03	12	0.43	12	0.13	12	0.05
	brock200_3	15*	15	0.07	15	0.57	15	0.03	15	7.62	-	-	15	0.03
	brock200_4	17*	17	0.09	17	0.43	17	0.08	17	7.90	17	1.26	17	0.08
	brock400_1	27*	27	10.27 27	121.40 27	1.08	25(25.00) -	-	-	27	66.40
	brock400_2	29*	29	1.34	29	17.40 29	0.38	28(27.01) -	29(28.84) 572.39	29	20.24
	brock400_3	31*	31	0.63	31	5.08	31	0.18	31(30.50) 135.26 -	-	31	1.77
	brock400_4	33*	33	0.28	33	3.17	33	0.10	33(32.70) 112.98 33	4.98	33	0.83
	brock800_1	23*	23(22.72) 188.14 23(22.40) 1568.24 23	30.09 21(21.00) -	-	-	23(21.52) 963.63
	brock800_2	24*	24(23.88) 156.47 24(23.04) 1078.13 24	24.41 22(22.00) -	21(21.00) -	24(22.29) 784.36
	brock800_3	25*	25	118.57 25(24.52) 1020.11 25	15.08 23(23.00) -	-	-	25(24.16) 651.07
	brock800_4	26*	26	62.38 26	601.74 26	6.54	24(24.00) -	21(21.00) -	26(25.90) 421.60
	C125.9	34*	34	0.01	34	0.00	34	0.00	34	0.01	34	0.00	34	0.00
	C250.9	44*	44	0.01	44	0.00	44	0.00	44	0.01	44	0.00	44	0.00
	C500.9	57	57	0.06	57	0.00	57	0.19	57	0.31	57	0.13	57	0.05
	C1000.9	68	68	0.63	68	35.70 68	1.88	68	5.82	68	2.02	68	8.37
	C2000.5	16*	16	0.07	16	2.90	16	0.73	16	3.78	16	2.93	16	0.92
	C2000.9	80	80(78.37) 563.70 80(78.60) 4811.17 78(78.00) -	78(77.84) -	80(78.71) 1393.30	80(77.29) 1515.57
	C4000.5	18*	18	144.37 18	654.60 18	149.65 18	689.74 18	252.81	18	1553.24
	keller4	11*	11	0.01	11	0.00	11	0.00	11	0.01	11	0.00	11	0.00
	keller5	27*	27	0.05	27	0.09	27	0.05	27	0.07	27	0.04	27	0.02
	keller6	59	59	97.87 59	24.80 59(57.75) 550.95 59	15.63 59	2.51	59	754.88
	MANN_a27 126* 126	3.42	126	35.20 126	0.03	126	0.01	126	0.00	126	0.00
	MANN_a45 345* 340(340.00)90.58 342(340.82)-	344(344.00)28.76 345(344.41)-	345	86.36	345	27.56
	MANN_a81 1100* 1090	632.24 1094	-	1098	269.66 1100	-	1100	732.90	1100	22.70
			(1090.00)		(1092.17)		(1098.00)		(1098.11)		(1099.06)			

Table 7 .

 7 6: Comparisons of SBTS with two typical MIS algorithms ILS and GLP[START_REF] Andrade | Fast local search for the maximum independent set problem[END_REF]] on 32 representative instances.

	Graph		ILS		GLP		SBTS	
	Name	f bk	f *	t(s)	f *	t(s)	f *	t(s)
	brock400_1	27*	25(25.0)	11.00	27(25.1)	22.00	27	59.21
	brock400_2	29*	25(25.0)	11.00	29(27.7)	20.00	29	25.39
	brock400_3	31*	31(27.0)	11.00	31	19.00	31	1.01
	brock400_4	33*	33(30.3)	11.00	33	16.00	33	0.86
	brock800_1	23*	21(21.0)	60.00	23(21.1)	112.00 23(21.3)	1127.50
	brock800_2	24*	21(21.0)	60.00	21(21.0)	111.00 24(22.0)	787.93
	brock800_3	25*	22(22.0)	60.00	25(22.2)	111.00 25(24.4)	763.61
	brock800_4	26*	26(21.3)	60.00	26(21.7)	112.00 26(25.7)	400.82
	C2000.9	80	77(76.9)	103.00 79(77.5)	182.00 78(77.1)	1558.14
	C4000.5	18*	18(17.1)	1897.00 18	3708.00 18	1553.24
	MANN_a45 345* 345(344.5)	3.00	344(343.8)	5.00	345	17.99
	MANN_a81 1100* 1100	10.00	1098(1097.6)	17.00	1100	22.29
	frb30-15-1	30*	30	9.00	30	22.00	30	0.03
	frb35-17-1	35*	35(34.9)	13.00	35	32.00	35	1.93
	frb40-19-1	40*	40	19.00	40	43.00	40	0.87
	frb45-21-1	45*	45(44.7)	27.00	45(44.9)	62.00	45	34.50
	frb50-23-1	50*	50(48.9)	36.00	49(48.6)	82.00	50(49.7)	250.32
	frb53-24-1	53*	53(51.5)	42.00	52(51.3)	93.00	52(52.0)	52.36
	frb56-25-1	56*	55(54.2)	49.00	55(54.1)	111.00 55(55.0)	123.34
	frb59-26-1	59*	58(57.3)	57.00	57(57.0)	126.00 59(58.0)	436.48
	frb100-40	100* 96(95.3)	249.00 95(94.1)	495.00 96(95.4)	862.18
	1dc.1024	94	94(93.1)	14.00	94(93.1)	31.00	94	0.00
	1dc.2048	172	172(171.1)	32.00	172(171.5)	74.00	172	0.06
	1et.1024	171	171	8.00	171(170.9)	16.00	171	0.16
	1et.2048	316	316	16.00	316	40.00	316	4.13
	1tc.1024	196	196	8.00	196	18.00	196	0.03
	1tc.2048	352	352	15.00	352	37.00	352	19.10
	1zc.1024	112	112(111.1)	10.00	112	28.00	112	43.44
	1zc.2048	198	198(197.3)	22.00	198(197.8)	65.00	198	56.94
	1zc.4096	379	379(367.7)	51.00	379(374.4)	160.00 379(372.6)	99.83
	2dc.1024	16	16	50.00	16	198.00 16	0.01
	2dc.2048	24	24(23.8)	165.00 24	527.00 24	3.07

Table 7 .

 7 7: Comparisons of SBTS random with SBTS

	Graph		SBTS random	SBTS	
	Name	f bk	f * (favg)	t(s)	f * (favg)	t(s)
	brock400_1	27*	27	118.95	27	66.40
	brock400_2	29*	29	18.81	29	20.24
	brock400_3	31*	31	4.63	31	1.77
	brock400_4	33*	33	0.81	33	0.83
	brock800_1	23*	23(21.40)	874.88	23(21.52)	963.63
	brock800_2	24*	24(22.29)	823.12	24(22.29)	784.36
	brock800_3	25*	25(23.89)	937.43	25(24.16)	651.07
	brock800_4	26*	26(25.65)	671.61	26(25.90)	421.60
	C2000.9	80	78(76.30)	2117.21	80(77.29)	1515.57
	C4000.5	18*	18(17.99)	5482.05	18	1553.24
	MANN_a45	345*	345(344.06)	302.25	345	27.56
	MANN_a81	1100*	1098(1098.00)	452.82	1100	22.70
	frb30-15-1	30*	30	0.16	30	0.03
	frb35-17-1	35*	35	48.40	35	0.69
	frb40-19-1	40*	40	36.51	40	0.24
	frb45-21-1	45*	45(44.97)	327.35	45	23.00
	frb50-23-1	50*	50(48.92)	394.40	50(49.75)	368.69
	frb53-24-1	53*	52(51.25)	609.09	53(52.03)	498.36
	frb56-25-1	56*	55(54.11)	594.24	56(55.07)	551.64
	frb59-26-1	59*	58(57.04)	890.92	59(58.02)	261.14
	frb100-40	100*	95(94.22)	2094.28	97(95.48)	862.18
	1dc.1024	94	94	0.09	94	0.03
	1dc.2048	172	172	0.20	172	0.17
	1et.1024	171	171	0.02	171	0.07
	1et.2048	316	316(315.68)	116.37	316	6.59
	1tc.1024	196	196	0.02	196	0.02
	1tc.2048	352	352(351.96)	110.99	352	6.52
	1zc.1024	112	112(111.99)	44.57	112(111.99)	29.79
	1zc.2048	198	198(197.40)	172.03	198	81.69
	1zc.4096	379	377(356.02)	727.18	379(372.66)	99.83
	2dc.1024	16	16	0.35	16	0.03
	2dc.2048	24	24	188.08	24	6.98

Table 7 .

 7 8: Comparisons of SBTS unique with SBTS

	Graph		SBTS unique	SBTS	
	Name	f bk	f *	t(s)	f *	t(s)
	brock400_1	27*	27(26.98)	59.04	27	66.40
	brock400_2	29*	29	6.07	29	20.24
	brock400_3	31*	31	0.71	31	1.77
	brock400_4	33*	33	0.23	33	0.83
	brock800_1	23*	23(21.46)	452.06	23(21.52)	963.63
	brock800_2	24*	24(22.44)	653.53	24(22.29)	784.36
	brock800_3	25*	25(24.10)	739.92	25(24.16)	651.07
	brock800_4	26*	26(25.95)	458.71	26(25.90)	421.60
	C2000.9	80	79(76.85)	605.79	80(77.29)	1515.57
	C4000.5	18*	18	1981.74	18	1553.24
	MANN_a45	345*	345(344.25)	318.49	345	27.56
	MANN_a81	1100*	1100(1098.41)	1680.60	1100	22.70
	frb30-15-1	30*	30	0.03	30	0.03
	frb35-17-1	35*	35	0.47	35	0.69
	frb40-19-1	40*	40	0.74	40	0.24
	frb45-21-1	45*	45	68.51	45	23.00
	frb50-23-1	50*	50(49.55)	356.14	50(49.75)	368.69
	frb53-24-1	53*	53(52.03)	438.46	53(52.03)	498.36
	frb56-25-1	56*	56(55.09)	453.20	56(55.07)	551.64
	frb59-26-1	59*	59(57.86)	777.11	59(58.02)	261.14
	frb100-40	100*	97(95.28)	849.67	97(95.48)	862.18
	1dc.1024	94	94	0.03	94	0.03
	1dc.2048	172	172	0.07	172	0.17
	1et.1024	171	171	0.22	171	0.07
	1et.2048	316	316	27.23	316	6.59
	1tc.1024	196	196	0.01	196	0.02
	1tc.2048	352	352	13.73	352	6.52
	1zc.1024	112	112	52.26	112(111.99)	29.79
	1zc.2048	198	198(197.89)	178.46	198	81.69
	1zc.4096	379	377(365.26)	377.07	379(372.66)	99.83
	2dc.1024	16	16	0.01	16	0.03
	2dc.2048	24	24	2.78	24	6.98

Available at http://www.info.univ-angers.fr/pub/hao/exscol.html
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Like for the lower bounds (Table 4.3), columns 1-2 in Table 4.4 present the best known upper bounds f b U B , the following 10 columns give the best results f * U B and the average results Avg. of the four reference algorithms and our HSA algorithm respectively. The "-" marks for the reference algorithms in the table mean that the algorithms did not report results on the tested graphs. The italic entries in the table mean that the reference algorithms fail to attain the best known results on the tested graphs. The last row in Table 4.4 presents the number of cases where the algorithm can achieve the best known result (Suc#) over the total number of the tested graphs (T otal#). Once again, we only focus on solution quality and we mention that our timeout limit (2h) is the same as MA and BLS and similar to MASC and EXSCOL on the small instances but shorter than MASC and EXSCOL on the large graphs. Besides, EXSCOL, BLS, MASC, MA, and our HSA algorithm are tested on 52, 27, 77, 81 and 94 graphs respectively.

From Table 4.4, we observe that EXSCOL, BLS, MASC, MA and our HSA algorithm can match the best known results for 29, 18, 69, 61 and 85 graphs, but fail to reach the best results for 23, 9, 8, 20 and 9 instances respectively. In particular, our HSA algorithm can improve the best known results for 24 graphs (bold entries).

Like for the lower bounds, we compare our HSA algorithm with each of the four reference algorithms and summarize the comparisons in Figure 4.5 with the same information as in Figure 4.4. From Figure 4.5, we can observe that HSA obtains better results for 26, 10, 21 and 28 graphs, equal results for 19, 17, 52 and 53 graphs and worse results for 7, 0, 4 and 0 results compared to EXSCOL, BLS, MASC, and MA respectively. This comparison study shows clearly that the proposed HSA algorithm competes very favorably with the reference algorithms in terms of upper bounds of the MSCP.

Analysis of HSA

In this section, we study first the impact of the joint use of two crossover operators on the performance of the proposed HSA algorithm. Moreover, we perform a fitness distance analysis (FDA) [START_REF] Jones | Fitness distance correlation as a measure of problem difficulty for genetic algorithms[END_REF] in order to obtain some insight on the hardness of some benchmark instances, which may help understand the behavior of our HSA algorithm.

Analysis of the double-crossover operator

As indicated in Section 4.2.3, HSA employs two crossover operators (GGX and DGX) to generate offspring solutions. In order to investigate the positive role of this mechanism, we compare HSA with its -Second forward checking operation: This operation aims to eliminate any color from D(v) which is incompatible with the uncolored vertices in Γ(v) if the color is assigned to v. More precisely, for a color κ ∈ D(v), if there exists an adjacent uncolored vertex µ ∈ Γ(v) such that κ + d(v, µ) > k and κ -d(v, µ) < 1, color κ cannot be assigned to vertex v (since the uncolored vertex µ has no available colors if κ is assigned to v) and can be removed from D(v) (see Algorithm 7, lines 14-18).

After these forward checking operations, if the color domain D(v) is not empty, the current partial solution is extended by vertex v with the smallest color of D(v). Before moving to the next iteration of the construction phase, the algorithm updates the guiding function value F(µ) (i.e., f r_deg(µ)) for each uncolored vertex µ ∈ Γ(v) (Algorithm From Table 5.2, one observes that except for three small instances (indicated in italics), LHS can match the best-known results of the other 30 instances. Remarkably, LHS is able to improve the current bestknown result for two hard instances (GEOM100b and GEOM110b indicated in bold). Furthermore, LHS achieves robust results with a success rate SR = 20/20 except for five cases (GEOM100a, GEOM100b, GEOM110a, GEOM110b and GEOM120b). Besides, Table 5.2 also lists the k value of these five graphs when SR = 20/20. The average running time of LHS ranges from 0 second to 1 hour. Each computing time corresponds to the average time for LHS to reach a legal coloring with the k value indicated in the table.

In order to further evaluate our LHS method, we compare our results with those obtained by four best performing algorithms in the literature: Forward checking colouration neighbourhood search (FCNS) [START_REF] Prestwich | Generalised graph colouring by a hybrid of local search and constraint programming[END_REF]], evolutionary algorithm (EA) [Malaguti and Toth 2008], multistart iterated tabu search (MITS) [START_REF] Lai | Multistart iterated tabu search for bandwidth coloring problem[END_REF] and path relinking (PR) [START_REF] Lai | Path relinking for bandwidth coloring problem[END_REF]. For this purpose, we restrict our attention to solution quality, i.e., the smallest k used to obtain a legal k-coloring. Computing times are included only for indicative purposes since there is no sense to compare the computing times of two methods if they achieve colorings with different k values. As one can observe in Table 5.3, there are many such cases. Indeed, it is generally more difficult to find a legal k-coloring than a legal (k + 1)-coloring. This is particularly true when k is close to the best-known value k * (see for instance the cases GEOM100a, GEOM100b, GEOM110a and GEOM110b in Table 5.3). Finally, the experimental platforms used by the reference algorithms are as follows: A 733MHz Pentium III PC for FCNS, a PIV 2.4MHz computer with 512 MB RAM for EA and a 2.8GHz computer with 4GB RAM for MITS and PR. 

Abstract

The minimum sum coloring problem (MSCP) and the bandwidth coloring problem (BCP) are two important generalizations of the classical vertex coloring problem with numerous applications in diverse domains, including VLSI design, scheduling, resource allocation and frequency assignment in mobile networks, etc. Since the MSCP and BCP are NP-hard problems, heuristics and metaheuristics are practical solution methods to obtain high quality solutions in an acceptable computing time. This thesis is dedicated to developing effective hybrid metaheuristic algorithms for the MSCP and BCP. For the MSCP, we present two memetic algorithms which combine population-based evolutionary search and local search. An effective algorithm for maximum independent set is devised for generating initial solutions. For the BCP, we propose a learning-based hybrid search algorithm which follows a cooperative framework between an informed construction procedure and a local search heuristic.

The proposed algorithms are evaluated on well-known benchmark instances and show highly competitive performances compared to the current state-of-the-art algorithms from the literature. Furthermore, the key issues of these algorithms are investigated and analyzed.