
HAL Id: tel-02164604
https://theses.hal.science/tel-02164604

Submitted on 25 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid metaheuristic algorithms for sum coloring and
bandwidth coloring

Yan Jin

To cite this version:
Yan Jin. Hybrid metaheuristic algorithms for sum coloring and bandwidth coloring. Computation
and Language [cs.CL]. Université d’Angers, 2015. English. �NNT : 2015ANGE0062�. �tel-02164604�

https://theses.hal.science/tel-02164604
https://hal.archives-ouvertes.fr

Thèse de Doctorat

Yan JIN
Mémoire présenté en vue de l’obtention du
grade de Docteur de l’Université d’Angers
sous le label de l’Université de Nantes Angers Le Mans

École doctorale : 503 (STIM)

Discipline : Informatique
Spécialité : Informatique
Unité de recherche : Laboratoire d’Études et de Recherches en Informatique d’Angers (LERIA)

Soutenue le 29 Mai 2015
Thèse n° : 1421

Hybrid metaheuristic algorithms for sum
coloring and bandwidth coloring

Métaheuristiques hybrides pour la somme coloration et la
coloration de bande passante

JURY

Rapporteurs : M. Alexandre CAMINADA, Professeur, Université de Technologie de Belfort-Montbéliard
M. Aziz MOUKRIM, Professeur, Université de Technologie de Compiègne

Examinateur : M. Jean-Charles BILLAUT, Professeur, Ecole Polytechnique de l’université de Tours
Directeur de thèse : M. Jin-Kao HAO, Professeur, Université d’Angers

M. Jean-Philippe HAMIEZ, Maître de Conférences, Université d’AngersCo-encadrant d e thèse :

, Professeur, Ecole Polytechnique de l’Université de Tours

Contents

I General introduction 9

II The minimum sum coloring problem and the bandwidth (multi)coloring prob-
lem: A state-of-the-art 15

1 The minimum sum coloring problem 17
1.1 Introduction . 17
1.2 Definitions and formulation . 18
1.3 Heuristics and metaheuristics . 19

1.3.1 Greedy algorithms . 19
1.3.2 Neighborhood search heuristics . 20
1.3.3 Evolutionary algorithms . 20

1.4 Bounds . 22
1.4.1 Theoretical bounds . 22
1.4.2 Computational bounds . 23

1.5 Benchmark . 23

2 The bandwidth (multi)coloring problem 25
2.1 Introduction . 25
2.2 Definitions and formulation . 26
2.3 Heuristics and metaheuristics . 27

2.3.1 Neighborhood search heuristics . 27
2.3.2 Evolutionary algorithms . 30

2.4 Benchmark . 30

III Personal contributions 33

3 MASC: A Memetic Algorithm for minimum Sum Coloring 35
3.1 Introduction . 35
3.2 Components of the MASC approach . 36

3.2.1 Search space and evaluation function . 36
3.2.2 Initial population . 36
3.2.3 Crossover operator . 37
3.2.4 A double-neighborhood tabu search . 39
3.2.5 Population updating . 41

3.3 Experimental results . 42
3.3.1 Computational results . 42
3.3.2 Comparisons with state-of-the-art algorithms . 42
3.3.3 Experiments on large graphs . 44

3.4 Analysis of MASC . 46

5

6 CONTENTS

3.4.1 Influence of the multi-parent crossover operator 46
3.4.2 Influence of the neighborhood combination . 47
3.4.3 Improvements of MASC over TABUCOL . 48

3.5 Conclusion . 48

4 HSA: Hybrid Search Algorithm for minimum sum coloring 49
4.1 Introduction . 50
4.2 Components of the HSA approach . 50

4.2.1 Search space and evaluation function . 51
4.2.2 Initial population . 51
4.2.3 A double-crossover recombination procedure . 51
4.2.4 An iterated double-phase tabu search procedure 53
4.2.5 Population updating . 55
4.2.6 Discussions . 56

4.3 The lower bounds of the minimum sum coloring problem 57
4.4 Experimental results . 57

4.4.1 Experimental protocol . 57
4.4.2 Computational results . 58
4.4.3 Comparisons with four state-of-the-art algorithms for the lower bounds 60
4.4.4 Comparisons with four state-of-the-art algorithms for the upper bounds 63

4.5 Analysis of HSA . 65
4.5.1 Analysis of the double-crossover operator . 65
4.5.2 Landscape analyses . 67

4.6 Conclusion . 68

5 LHS: Learning-based Hybrid Search for bandwidth (multi)coloring 71
5.1 Introduction . 71
5.2 Components of the LHS approach . 72

5.2.1 General procedure . 73
5.2.2 Learning-based guiding function . 73
5.2.3 Construction phase with forward checking . 75
5.2.4 Tabu search repair phase . 77
5.2.5 Discussions . 80

5.3 Experimental results . 80
5.3.1 Benchmark instances and experimental protocol 80
5.3.2 Bandwith coloring: Computational results . 81
5.3.3 Bandwith multicoloring: Computational results 83

5.4 Analysis of LHS . 86
5.5 Conclusion . 87

IV General conclusion 89

6 Conclusions and perspectives 91
6.1 Conclusions . 91
6.2 Perspectives . 92

CONTENTS 7

V Appendix 93

7 SBTS: Swap-Based Tabu Search for maximum independent set 95
7.1 Introduction . 96
7.2 Components of the SBTS approach . 97

7.2.1 General procedure . 97
7.2.2 Search space and evaluation function . 97
7.2.3 Initial solution . 98
7.2.4 Preliminary definitions . 98
7.2.5 (k, 1)-swap, neighborhoods and exploration of neighborhoods 99
7.2.6 Tabu list and aspiration rule . 101
7.2.7 Intensification . 101
7.2.8 Diversification . 103
7.2.9 Information updating procedure . 104

7.3 Experimental results . 105
7.3.1 Benchmark instances . 105
7.3.2 Experimental protocol . 105
7.3.3 Computational results of SBTS on DIMACS, BHOSLIB and CODE instances . . . 106
7.3.4 Comparisons with seven state-of-the-art algorithms 108

7.4 Analysis of SBTS . 113
7.4.1 Influence of the selection rule for intensification 113
7.4.2 Analysis of the tabu tenure tuning technique . 114

7.5 Conclusion . 114

List of figures 117

List of tables 119

List of publications 121

References 123

I
General introduction

9

Introduction

Context

The vertex coloring problem (VCP) is a special case of graph labeling in graph theory and one of the
most challenging combinatorial optimization problems in discrete mathematics. Given an undirected graph,
the VCP aims to find a minimum number of colors to color the vertices of a graph such that no two adja-
cent vertices receive the same color. The VCP is one of the 21 fundamental problems whose NP-hardness
was proved in the early 1970s [Karp 1972]. The VCP is extensively studied not only for its theoretical
intractability, but also for its real world applications in many domains, such as timetabling, scheduling,
register allocation, train platforming, frequency assignment, and communication networks for instances.
In recent decades, the VCP as well as its generalizations are receiving more and more attention in the
literature, these generalizations allowing more applications to be embraced. This thesis focuses on three
generalized vertex coloring problem, namely the minimum sum coloring problem (MSCP), the bandwidth
coloring problem (BCP, also known as the restricted T-coloring problem) and the bandwidth multicoloring
problem (BMCP, also called the restricted set T-coloring problem).

The objective of the MSCP is to find a legal k-coloring of a graph such that the sum of the colors as-
signed to the vertices is minimized (colors are represented by consecutive integers 1, 2 . . . , k). The MSCP
was introduced in [Kubicka 1989] from the graph theory point of view and in [Supowit 1987] from the ap-
plication perspective. In practice, the MSCP is notable in VLSI design, scheduling, and resource allocation,
etc. Let us consider the scheduling application in the open shop problem as an example: There are n jobs
J1, . . . , Jn to be executed and each job Ji is composed of a set of ti tasks. Suppose each job has to be run on
a processor for one unit of time and the number of processors is not limited. Different tasks of the same job
cannot be processed simultaneously and one processor cannot run two tasks at the same time. The objective
is to minimize the total time to complete all the jobs. This scheduling problem is equivalent to the MSCP
where vertices represent jobs and edges represent the conflicts between the tasks.

The BCP and BMCP are two other important generalizations of the vertex coloring problem. Given an
undirected graph, the BCP consists in finding a k-coloring with the smallest value of k such that the absolute
value of the difference between the colors of adjacent vertices is not less than the weight of associated edge.
The BCP can be generalized as the BMCP where each vertex can be colored with more than one color. A
legal bandwidth multicoloring must satisfy two constraints: (1) the absolute value of the difference between
the colors of adjacent vertices is not less than the weight of associated edge; (2) the absolute value of the
difference between any two distinct colors of a vertex is at least the weight of the loop edge of this vertex.
The BMCP is to find a legal bandwidth multicoloring with k minimum. The BCP and BMCP are notable for
their applicability to a number of important applications in particular in the area of frequency assignment
in mobile networks [Aardal et al. 2007]. Given a number of radio transmitters, each transmitter must be
assigned an operating frequency and frequencies assigned to two nearby transmitters must be separated by
a given threshold to avoid interferences. The objective is to minimize the number of assigned frequencies.
This is equivalent to the BCP where colors represent frequencies, vertices represent transmitters and edge
weights correspond to the required separation of frequencies for two nearby transmitters.

11

12

Since these generalizations of the vertex coloring problem (MSCP, BCP and BMCP) are NP-hard prob-
lems [Johnson and Trick 1996, Johnson et al. 2002], no polynomial-time algorithm can solve or approximate
them effectively unless P = NP . In practice, heuristics and metaheuristics are often used to obtain sub-
optimal solutions in acceptable computing time. Hence, this thesis is dedicated to design effective hybrid
metaheuristic algorithms for solving the MSCP, BCP and BMCP.

Objectives
This thesis aims to study hybrid approaches for the minimum sum coloring problem, the bandwidth

coloring problem, and the bandwidth multicoloring problem. This thesis challenge is broken down into the
following key objectives:

– Developing effective memetic algorithms which follow the general framework combining the population-
based evolutionary strategy and local optimization procedure.

– Designing an initial population generation technique by incorporating problem specific knowledge
for generating diverse solutions of good quality to boost the effectiveness of the memetic algorithm.

– Designing effective crossover operators since the recombination is an important ingredient for hybrid
memetic algorithms.

– Devising an updating rule to maintain a good quality and healthy diversity of the population.

– Developing a new hybrid search algorithm which explores the cooperative framework between an
informed construction procedure and a local search procedure.

– Designing a learning technique and integrating learning information into the search process to rein-
force the performance of the metaheuristic algorithm.

Contributions
The main contributions of this thesis are summarized below:

A memetic algorithm: For the minimum sum coloring problem, we proposed a memetic algorithm
(MASC) based on a tabu search procedure with two neighborhoods and a multi-parent crossover operator.
Experiments on a set of 77 well-known DIMACS and COLOR 2002–2004 benchmark instances show that
the proposed algorithm achieves highly competitive results in comparison with five state-of-the-art algo-
rithms. This work is published in Computers & Operations Research [Jin et al. 2014].

A hybrid search algorithm: The MSCP is further studied and a hybrid search algorithm (HSA) is pro-
posed for computing the lower and upper bounds of this NP-hard problem. To create an initial population
of good quality, a maximum independent set algorithm SBTS is used to generate in a step-by-step way k
mutually disjoint independent sets. HSA relies on a joint use of two dedicated crossover operators to gener-
ate promising offspring solutions and an iterated double-phase tabu search procedure to improve offspring
solutions. A distance-and-quality updating rule is used to maintain a healthy diversity in the population.
Extensive experimental studies on 94 well-known DIMACS and COLOR 2002–2004 benchmark instances
show that the proposed algorithm matches most of the current best known results. In particular, it can find
better solutions for 51 instances (24 instances for the upper bounds and 27 instances for the lower bounds).

13

Moreover, we show for the first time a landscape analysis of the MSCP to shed lights on the behavior of
the proposed algorithm. A paper describing SBTS is published in Engineering Applications of Artificial
Intelligence [Jin and Hao 2015b] and this work is also detailed in [Jin and Hao 2015c].

An effective learning-based hybrid search algorithm: For the bandwidth coloring problem and the
bandwidth multicoloring problem, we present a learning-based hybrid search (LHS). LHS combines a con-
struction phase to progressively build feasible (partial) colorings and a local search phase to reestablish
feasibility when an illegal partial solution is encountered. The construction phase relies on a learning-
based guiding function to determine the next vertex for color assignment while the local search phase uses
a tabu search procedure to repair coloring conflicts. Experiments on a set of 33 well-known benchmarks
demonstrate that the proposed approach can match the best known solution for most benchmarks. In par-
ticular, LHS finds an improved solution for 14 instances. A paper describing this work is accepted in IEEE
Transactions on Systems, Man, and Cybernetics: Systems [Jin and Hao 2015a].

Organization
The manuscript is organized in the following way:

– In the first and second chapter, we introduce the minimum sum coloring problem and the bandwidth
(multi)coloring problem, then provide an overview of the most representative algorithms proposed
in the literature as well as the benchmarks that are frequently used to evaluate the performance of
algorithms for each problem.

– In the third chapter, we first present the general memetic framework of our MASC algorithm for solv-
ing the MSCP. Then, we describe the components in detail, including the population initialization,
the crossover operator, the double-neighborhood tabu search procedure and the population updating.
Finally, we evaluate our MASC algorithm on challenging benchmark instances and report experi-
mental comparative results. Meanwhile, we investigate and analyze some key issues of the proposed
memetic algorithm.

– In the fourth chapter, we describe the proposed HSA for computing upper bounds of the MSCP. Then,
we explain the adjustments of the proposed algorithm to compute lower bounds. In the following,
extensive computational results of HSA and comparisons with the state-of-the-art algorithms in the
literature are reported to demonstrate the effectiveness of the proposed algorithm. Finally, we study
the impact of the joint use of two crossover operators on the performance of HSA and analyze the
landscape of the MSCP.

– In the fifth chapter, we first introduce a framework for solving the bandwidth coloring problem and
the bandwidth multicoloring problem (LHS). Then, we present the components in detail, including
the learning-based guiding function, the construction phase with forward checking and the tabu repair
phase. Finally, we provide computational results of LHS on well-known benchmark instances and
compare our approach with some best performing algorithms.

– In the last two chapters, we give a general conclusion of this thesis and propose some perspectives.

– In the appendix, we present the general swap-based multiple neighborhood tabu search for the max-
imum independent set problem. We first introduce the general procedure and then present the de-
tailed intensification and diversification procedure. Finally, we provide computational results on
well-known benchmarks to demonstrate the effectiveness of the proposed algorithm.

II
The minimum sum coloring problem and the

bandwidth (multi)coloring problem: A
state-of-the-art

15

1
The minimum sum coloring problem

1.1 Introduction

Given a graph G, a proper k-coloring of G is an assignment of k different colors {1, . . . , k} to the
vertices of G such that two adjacent vertices receive two different colors. The Minimum Sum Coloring
Problem (MSCP) is to find a proper k-coloring while minimizing the sum of the colors assigned to the
vertices. To our knowledge, the MSCP was proposed by Kubicka [Kubicka 1989] in the field of graph
theory and by Supowit [Supowit 1987] in VLSI design. Kubicka proposed the “chromatic sum” measure of
a graph and proved its NP-hardness [Kubicka and Schwenk 1989], Supowit introduced the “optimum cost
chromatic partition problem” [Supowit 1987], and Kroon et al. [Kroon et al. 1997] also proved the NP-
hardness of the MSCP. However, polynomial time algorithms exist for some specific graphs, such as trees,
unicyclic graphs, outplanar graphs, chain bipartite graphs and k-split graphs [Kroon et al. 1997, Kubicka
2005, Kubicka and Schwenk 1989, Salavatipour 2003].

The MSCP is closely related to the classical vertex coloring problem, which is notable for its practical
applicability and theoretical intractability. The MSCP can find its applications in VLSI design, scheduling
and resource allocation [Kroon et al. 1997, Malafiejski 2004, Sen et al. 1992] for instance. Due to the
high computational complexity of the problem, no polynomial-time algorithm can solve or approximate it
efficiently unless P = NP . In the past several decades, much efforts have been devoted to the develop-
ment of various heuristics and metaheuristics, such as greedy algorithms [Li et al. 2009, Moukrim et al.
2010], tabu search [Bouziri and Jouini 2010], breakout local search [Benlic and Hao 2012], iterated local
search [Helmar and Chiarandini 2011], ant colony [Douiri and Elbernoussi 2012], genetic and memetic
algorithms [Douiri and Elbernoussi 2011, Jin et al. 2014, Jin and Hao 2015c, Kokosiński and Kwarciany
2007, Moukrim et al. 2013, Wang et al. 2013] as well as heuristics based on independent set extraction [Wu
and Hao 2012; 2013b]. Since greedy algorithms are fast but usually give solutions of poor quality they are
often used to build initial solutions for other heuristic procedures. Besides, a greedy heuristic based on in-
dependent set extraction is effective especially on large instances [Wu and Hao 2012]. While various local
search heuristics have been proposed to solve the MSCP, their main differences rely on the search space,
the neighborhood structures and the strategies used to escape from a local optima. Hybrid metaheuristics
lead to excellent performances in terms of solution quality. They often use local search as an improvement
strategy and the two- (or multi-) parent(s) crossover operator.

17

18 CHAPTER 1. THE MINIMUM SUM COLORING PROBLEM

To the best of our knowledge, there is only one review in 2004 [Kubicka 2004] that reports the history
of the MSCP and the developments of polynomial-time algorithms on specific graphs as well as the gener-
alizations and the applications. In this chapter, we provide a detailed review of the different MSCP solution
approaches proposed in the recent literature for general graphs. In particular, we carry out an in-depth anal-
ysis of the studied approaches and encourage further studies on this problem.

In the following sections, we first provide a general definition of the MSCP, followed by the introduc-
tion of the studied heuristics and metaheuristics. Then, we report the “theoretical” lower and upper bounds.
Finally, the MSCP benchmark instances are presented.

1.2 Definitions and formulation

Given a simple undirected graph G = (V,E) with vertex set V = {v1, . . . , vn} and edge set E ⊂ V ×V ,
a proper k-coloring c of G is a mapping c : V → {1, . . . , k} such that c(vi) ̸= c(vj), ∀{vi, vj} ∈ E. A
proper k-coloring c can also be defined as a partition of V into k independent sets V1, . . . , Vk such that
{vi, vj} ∈ Vl × Vl (l = 1, . . . , k)⇒ {vi, vj} /∈ E. The objective of the MSCP is to find a proper k-coloring
c with a minimum sum of the colors assigned to all the vertices. The minimum sum of colors for the MSCP
is called the chromatic sum of G, and is denoted by

∑
(G). Let C(G) be the set of all proper k-coloring of

G and f(c) is presented in Eq. (1.1)

f(c) =
n∑

i=1

c(vi) or f(c) =
k∑

l=1

l|Vl| (1.1)

where |Vl| the cardinality of Vl and |V1| ≥ . . . ≥ |Vk|, then:∑
(G) = min

c∈C(G)
f(c) (1.2)

Note that integer k is not fixed but larger than or equal to the chromatic number χ(G) of G in the clas-
sical vertex coloring problem (VCP). From the left graph in Fig. 1.1, we can see χ(G) = 3 but f(c) = 18,
while in the right graph, k = 4 and

∑
(G) = 15. It could be observed that the sum of coloring may not be

optimal when using χ(G) colors to color the graph, and using k > χ(G) colors to color the graph may
lead to the minimum sum of coloring. Hence, the VCP algorithms cannot be adapted for solving the MSCP
directly due to the difference of the objective function.

1 2

33

3

1

12

2

2 4

11

3

1

11

1

Figure 1.1: An illustrative example for the MSCP

1.3. HEURISTICS AND METAHEURISTICS 19

Besides, the MSCP can also be formalized as a binary quadratic problem [Sen et al. 1992, Wang et al.
2013]:

min g(x) =
∑n

i=1

∑k
l=1 l · xil

subject to

k∑
l=1

xil = 1, i ∈ {1, . . . , n}

xil + xjl ≤ 1, ∀{vi, vj} ∈ E, l ∈ {1, . . . , k}
xil ∈ {0, 1}

(1.3)

where xil = 1 if vi is assigned color l (0 otherwise).

1.3 Heuristics and metaheuristics
As far as we know there is no exact algorithm especially designed for the MSCP except by applying

CPLEX on the binary quadratic formulation of the MSCP [Wang et al. 2013]. Several efficient approxi-
mation algorithms are proposed for specific graphs, such as interval graphs, bipartite graphs, line graphs of
trees, etc [Bar-Noy and Kortsarz 1998, Bonomo et al. 2011, Hajiabolhassan et al. 2000, Jansen 2000, Jiang
and West 1999, Kroon et al. 1997, Kubicka et al. 1991, Malafiejski 2004, Salavatipour 2003]. However, a
number of studies focus on heuristic and metaheuristic algorithms in the recent decades. In this section, we
review the most representative and effective MSCP heuristics and metaheuristics, see also the summary in
Table 1.1 that contains comments on performances.

1.3.1 Greedy algorithms
Greedy algorithms for the MSCP are fast, simple, and classical. Since they usually achieve poor quality

results they are often integrated into other optimization approaches. For instances, they can be used to limit
the search space in exact algorithms or to build an initial (pool of) solution(s) in heuristics and metaheuris-
tics strategies.

Two families of improved greedy algorithms are proposed in [Li et al. 2009]: MDSAT(n) and MRLF(n).
They are based on two well-known greedy coloring heuristics DSATUR [Brélaz 1979] and RLF [Leighton
1979]. The original DSATUR heuristic employs the saturation degree dsat of a vertex as the selection
criterion to dynamically determine the next vertex to color. MDSAT(n) improves DSATUR by considering
the impact of coloring a vertex where the impact measure is based on the number of vertices whose dsat
would (not) be changed. The original RLF heuristic follows the partition perspective. It colors as many
non-adjacent vertices as possible and continues the same coloring procedure with the next color. MRLF(n)
improves RLF by considering the probability of using a new color with the target of minimizing the number
of colors and makes the current color class as large as possible. The probability measure is based on the
cardinality of a subset of uncolored vertices that could be colored with and without using a new color.

A more complicated greedy heuristic (EXSCOL) has been proposed in [Wu and Hao 2012]. It is based
on independent sets extraction and is very effective for hard and large graphs. At each iteration, EXSCOL
first identifies an independent set S as large as possible by using a tabu search procedure. Secondly, it
searches as many independent sets as possible of size |S| to build a pool of candidate independent sets.
Then, EXSCOL determines a maximum number of disjoint independent sets by solving a maximum set
packing problem. Finally, each extracted independent set is assigned to the smallest available color. The

20 CHAPTER 1. THE MINIMUM SUM COLORING PROBLEM

above process is repeated until the graph becomes empty. Notice that there is no procedure to reconsider
the extracted independent sets such that it is impossible for EXSCOL to attain an optimal solution once a
“bad” independent set has been extracted.

1.3.2 Neighborhood search heuristics
Neighborhood search heuristics progressively modify a candidate solution by local transformations until

a stop condition is reached. The essential components of a classical neighborhood search procedure are
the evaluation function, the search space to be explored and the neighborhood structure. According to
the neighborhood structure, we can classify the representative and effective MSCP algorithms into two
categories: Single neighborhood search and multi-neighborhood search.

Single neighborhood search

The tabu search algorithm TS proposed in [Bouziri and Jouini 2010] starts from a random initial color-
ing. If there exists conflicting vertices, TS will choose a best move (according to the objective function) to
change the color of a conflicting vertex. Otherwise, TS will choose a (non-conflicting) vertex and change its
color at random. The above steps are repeated until a stopping criterion is satisfied. Note that TS explores
feasible and infeasible regions of the coloring search space.

The breakout local search algorithm (BLS) described in [Benlic and Hao 2012] jointly uses two descent
methods and adaptive perturbation strategies to escape from local optima. Like TS, it starts from a random
initial solution c and a move consists in changing the color of a vertex. If c is not a proper coloring,
BLS applies a first descent strategy to solve the conflicts (to attain a proper coloring). If c is proper,
BLS applies another descent search to attain a local optimum (without any improving neighbor). The
perturbation strategies differ according to the strength of the perturbation (strong or weak) and the type of
moves (directed or random). The perturbation mechanism is adaptively chosen and depends on the number
of times a local optimum is visited. Note that BLS also alternates between feasible and infeasible regions
of the search space.

Multi-neighborhood search

The MDS(5)+LS algorithm [Helmar and Chiarandini 2011] applies an iterated multi-neighborhood
search and also explores the feasible and infeasible regions of the search space. It first employs the “swap”
neighborhood operator that moves a vertex vi from color class Vl to Vl′ and then moves all its adjacent
vertices vj ∈ Vl′({vi, vj} ∈ E) to Vl. Note that the obtained solution is not necessarily a proper coloring.
When no further improvement exists for the swap changes, the “one-move” neighborhood operator is em-
ployed. It simply changes the color of a vertex until no improvement can be obtained. At this moment, the
local solution is proper. Then it assigns all the vertices with their smallest legal color and changes the color
labels according to the sorted cardinality of the color classes Vl (|V1| ≥ . . . ≥ |Vk|). Afterwards, a random
perturbation operator is applied which consists in moving some vertices from their current color class to
another one at random.

1.3.3 Evolutionary algorithms
Different from neighborhood search strategies which are based on a single solution, evolutionary algo-

rithms use a pool of solutions and try to find gradually better solutions by applying genetic operators (e.g.,
crossover, mutation,...) to solutions of the population.

The most popular evolutionary algorithms for the MSCP jointly use a recombination operator and a
local search improvement to explore the search space. They include, for instance, the MASC and MA

1.3. HEURISTICS AND METAHEURISTICS 21

Ta
bl

e
1.

1:
M

ai
n

he
ur

is
tic

s
an

d
m

et
ah

eu
ri

st
ic

s
fo

rt
he

M
SC

P
A

lg
or

ith
m

na
m

e
R

ef
er

en
ce

Ty
pe

of
ap

pr
oa

ch
C

om
m

en
ts

on
pe

rf
or

m
an

ce

M
D

SA
T

(n
)

M
R

L
F(

n)
[L

ie
ta

l.
20

09
]

G
re

ed
y

al
go

ri
th

m
A

fa
m

ily
of

im
pr

ov
ed

gr
ee

dy
al

go
ri

th
m

s
ba

se
d

on
th

e
w

el
l-

kn
ow

n
gr

ee
dy

co
lo

ri
ng

st
ra

te
gi

es
D

SA
T

U
R

an
d

R
L

F.

T
S

[B
ou

zi
ri

an
d

Jo
ui

ni
20

10
]

Ta
bu

se
ar

ch
ba

se
d

on
a

si
ng

le
ne

ig
hb

or
ho

od
A

ve
ry

si
m

pl
e

ta
bu

se
ar

ch
bu

tt
he

re
su

lts
ar

e
be

tte
rt

ha
n

th
os

e
of

th
e

gr
ee

dy
al

go
ri

th
m

s
M

D
SA

T
(n

)a
nd

M
R

L
F(

n)
.

M
D

S(
5)

+L
S

[H
el

m
ar

an
d

C
hi

ar
an

di
ni

20
11

]
N

ei
gh

bo
rh

oo
d

se
ar

ch
ba

se
d

on
a

m
ul

ti-
ne

ig
hb

or
ho

od
A

n
ite

ra
te

d
m

ul
ti-

ne
ig

hb
or

ho
od

se
ar

ch
co

m
bi

ne
d

w
ith

a
ra

nd
om

pe
rt

ur
ba

tio
n

pr
oc

ed
ur

e
ac

hi
ev

in
g

be
tte

rr
es

ul
ts

th
an

M
D

SA
T

(n
),

M
R

L
F(

n)
an

d
T

S.

B
L

S
[B

en
lic

an
d

H
ao

20
12

]
N

ei
gh

bo
rh

oo
d

se
ar

ch
ba

se
d

on
a

si
ng

le
ne

ig
hb

or
ho

od
A

br
ea

ko
ut

lo
ca

ls
ea

rc
h

co
m

bi
ni

ng
a

gr
ee

dy
de

sc
en

ts
tr

at
eg

y
w

ith
an

ad
ap

tiv
e

pe
rt

ur
ba

tio
n

st
ep

.I
tp

er
fo

rm
s

w
el

lo
n

th
e

sm
al

lD
IM

A
C

S
gr

ap
hs

.

E
X

SC
O

L
[W

u
an

d
H

ao
20

12
]

G
re

ed
y

al
go

ri
th

m
A

co
m

pl
ic

at
ed

gr
ee

dy
al

go
ri

th
m

,b
as

ed
on

in
de

pe
nd

en
ts

et
s

ex
tr

ac
tio

n,
w

hi
ch

is
qu

ite
ef

fe
ct

iv
e

fo
rl

ar
ge

gr
ap

hs
.

M
A

[M
ou

kr
im

et
al

.2
01

3]
E

vo
lu

tio
na

ry
al

go
ri

th
m

A
ge

ne
tic

al
go

ri
th

m
w

ith
a

tw
o-

pa
re

nt
s

cr
os

so
ve

ro
pe

ra
to

rc
om

bi
ne

d
w

ith
a

lo
ca

l
se

ar
ch

ba
se

d
on

an
hi

ll
cl

im
bi

ng
an

d
a

“d
es

tr
oy

an
d

re
pa

ir
”

pr
oc

ed
ur

es
.R

es
ul

ts
ar

e
co

m
pe

tit
iv

e
w

ith
M

A
SC

.

M
A

SC
[J

in
et

al
.2

01
4]

E
vo

lu
tio

na
ry

al
go

ri
th

m
A

m
em

et
ic

al
go

ri
th

m
ba

se
d

on
a

do
ub

le
-n

ei
gh

bo
rh

oo
d

ta
bu

se
ar

ch
an

d
a

m
ul

ti-
pa

re
nt

cr
os

so
ve

ro
pe

ra
to

r.
M

os
tr

es
ul

ts
ar

e
be

tte
rt

ha
n

th
os

e
of

th
e

lo
ca

ls
ea

rc
h

he
ur

is
tic

s.

H
SA

[J
in

an
d

H
ao

20
15

c]
E

vo
lu

tio
na

ry
al

go
ri

th
m

A
hy

br
id

se
ar

ch
al

go
ri

th
m

ba
se

d
on

a
jo

in
tly

us
e

of
tw

o
cr

os
so

ve
ro

pe
ra

to
rs

an
d

an
ite

ra
te

d
do

ub
le

-p
ha

se
ta

bu
se

ar
ch

pr
oc

ed
ur

e.
T

he
lo

w
er

an
d

up
pe

rb
ou

nd
s

ob
ta

in
ed

by
th

e
H

SA
ar

e
hi

gh
ly

co
m

pe
tit

iv
e

w
ith

th
e

be
st

kn
ow

n
re

su
lts

in
th

e
lit

er
at

ur
e.

22 CHAPTER 1. THE MINIMUM SUM COLORING PROBLEM

memetic algorithms [Jin et al. 2014, Moukrim et al. 2013], the HSA hybrid search algorithm [Jin and Hao
2015c] and the BQP-PR evolutionary algorithm [Wang et al. 2013]. BQP-PR relies on a binary quadratic
programming formulation of the problem and combines a path relinking approach with a tabu search proce-
dure. Besides, the parallel genetic algorithm PGA [Kokosiński and Kwarciany 2007] employs assignment
and partition crossovers, first-fit mutation, and proportional selection without any local search improvement.

MA is a hybrid genetic algorithm [Moukrim et al. 2013] that focuses on the feasible search space. It
includes a two-parents crossover operator (an adaptive variant of the well-known GPX crossover originally
proposed for the classical vertex coloring problem[Galinier and Hao 1999]) and a local search based on
a hill-climbing and a “destroy and repair” procedures. During the local search phase, the hill-climbing
procedure is first applied to improve the current solution. The “destroy and repair” procedure is then used
to escape from the local optimum. It randomly removes some vertices and re-inserts each of them into its
largest available color class while keeping the solution proper. If there is no such a color class, the vertex
is moved to a new color class. MA employs the above two procedures alternately until no further improve-
ment can be obtained.

In this thesis, we introduce two new population-based heuristics. In Chapter 3, we present the MASC
memetic algorithm [Jin et al. 2014] which is based on a multi-parent crossover operator (MGPX) and a
double-neighborhood tabu search procedure. MGPX is another variant of the GPX crossover [Galinier and
Hao 1999]. It builds the color classes of the offspring (which is always a proper coloring) one by one and
transmits entire color classes as large as possible until all vertices of the offspring are colored. Besides, the
tabu search procedure applies two different and complementary neighborhoods N1 and N2 in a token-ring
way to explore the search space. N1 is an “exchange” operator which swaps some vertices from two color
classes. N2 is a “one-move” operator: It changes the color of a single vertex. MASC only explores the
feasible search space of the MSCP since N1 and N2 include all the proper colorings that can be obtained
from the current candidate solution by applying the “exchange” or “one-move” operator.

In Chapter 4, we present the HSA algorithm which is a hybrid search algorithm [Jin and Hao 2015c] that
alternates between feasible and infeasible regions of the search space. HSA relies on a double-crossover
recombination method and an iterated double-phase tabu search procedure. The recombination method
jointly uses a diversification-guided crossover and a grouping-guided crossover to generate promising off-
spring solutions. During the double-phase tabu search procedure, it first identifies if the given solution c
is a proper coloring. If c is proper, the first tabu search is called to improve its sum of colors. Otherwise,
another tabu search is called for conflict resolution to attain a proper coloring which is further improved
by the first tabu search according to the objective function. The double-phase tabu search only employs a
“one-move” operator that changes the color of a single vertex.

1.4 Bounds

1.4.1 Theoretical bounds

For any undirected simple graph G = (V,E) with n = |V | vertices and m = |E| edges, the chromatic
number χ(G) is the smallest number of colors needed to color the vertices of G such that a proper k-
coloring is obtained and the chromatic sum

∑
(G) is the minimum sum of the colors assigned to all the

vertices among all proper k-colorings of G. In this section, we list the theoretical lower and upper bounds
of the MSCP according to [Kokosiński and Kwarciany 2007, Moukrim et al. 2013, Thomassen et al. 1989]:

1.5. BENCHMARK 23

∑
(G) ≤ n+m

⌈
√
8m⌉ ≤

∑
(G) ≤ ⌊3(m+ 1)

2
⌋

n+
χ(G)(χ(G)− 1)

2
≤

∑
(G) ≤ ⌊n(χ(G) + 1)

2
⌋

(1.4)

From Eq. (1.4), one easily observes that the best theoretical lower and upper bounds available for the
MSCP are respectively LBt = max{⌈

√
8m⌉, n+χ(G)(χ(G)−1)

2
} and UBt = min{n+m, ⌊3(m+1)

2
⌋, ⌊n(χ(G)+1)

2
⌋}.

1.4.2 Computational bounds

Recall that the MSCP is to find a proper k-coloring while minimizing the sum of the colors assigned to
the vertices. The quantity of Eq. (1.2) gives a “computational” upper bound for the MSCP.

Let G′ = (V,E ′) (E ′ ⊆ E) be any partial graph of G = (V,E),
∑

(G′) is a lower bound of
∑

(G) since
any proper coloring of G must be a proper coloring of G′:

∑
(G) ≥

∑
(G′).

Partial graphs considered in the literature to estimate the “computational” lower bound fLB include bi-
partite graphs (trees and paths) [Kroon et al. 1997, Garey and Johnson 2002] and cliques, the decomposition
into cliques providing better bounds [Moukrim et al. 2010]. Let c = {S1, S2, . . . , Sk} be a clique decom-
position of G, then the quantity from Eq. (1.5) gives a “computational” lower bound for the MSCP.

To obtain a clique decomposition, one popular approach is to find a proper coloring of the complemen-
tary graph Ḡ of G [Helmar and Chiarandini 2011, Jin and Hao 2015c, Moukrim et al. 2013, Wu and Hao
2013b], since each color class (independent set) of Ḡ is a clique of G.

fLB(c) =
k∑

l=1

|Sl|(|Sl|+ 1)

2
(1.5)

1.5 Benchmark
We consider a set of 94 frequently used instances in order to evaluate the performance of MSCP algo-

rithms, 58 of which were part of the COLOR 2002–2004 workshops, the 36 others come from the DIMACS
challenge. This benchmark is available online from http://mat.gsia.cmu.edu/COLOR02. Com-
pared to the well-known DIMACS instances, the COLOR 2002-2004 ones are relatively easy except the
four “wap” large graphs. These instances refer to various topologies and densities, which can be classified
into the 14 following types:

– Twelve classical random graphs (DSJCn.d, n ∈ {125, 250, 500, 1 000}, d ∈ {1, 5, 9});
– Three geometric graphs (DSJR500.d, d ∈ {1c, 1, 5});
– Six flat graphs (flat300_χ_0 with χ ∈ {20, 26, 28} and flat1000_χ_0 with χ ∈ {50, 60, 76});
– Twelve Leighton graphs (le450_χa, le450_χb, le450_χc, le450_χd, χ ∈ {5, 15, 25});
– Four latin square graph (latin_sqr_10 and qg.orderχ, χ ∈ {30, 40, 50});
– Two very large random graphs (C2000.5 and C4000.5);
– Fourteen graphs based on register allocation (fpsol2.i.a, inithx.i.a, zeroin.i.a, mulsol.i.b, a ∈ {1, 2, 3}

and b ∈ {1, 2, 3, 4, 5});
– Two graphs from the scheduling area (school1 and school1_nsh);

http://mat.gsia.cmu.edu/COLOR02

24 CHAPTER 1. THE MINIMUM SUM COLORING PROBLEM

Table 1.2: Main characteristics of the MSCP benchmark (94 instances)
Graph G n m d χ(G) LBt UBt Graph G n m d χ(G) LBt UBt

myciel3 11 20 0.36 4 17 27 zeroin.i.1 211 4100 0.19 49 1387 4311
myciel4 23 71 0.28 5 33 69 zeroin.i.2 211 3541 0.16 30 646 3270
myciel5 47 236 0.22 6 62 164 zeroin.i.3 206 3540 0.17 30 641 3193
myciel6 95 755 0.17 7 116 380 wap05 905 43081 0.11 50 2130 23077
myciel7 191 2360 0.13 8 219 859 wap06 947 43571 0.10 40 1727 19413
anna 138 493 0.05 11 193 631 wap07 1809 103368 0.06 ≤ 46 2844 42511
david 87 406 0.11 11 142 493 wap08 1870 104176 0.06 ≤ 47 2951 44880
huck 74 301 0.11 11 129 375 qg.order30 900 26100 0.06 30 1335 13950
jean 80 254 0.08 10 125 334 qg.order40 1600 62400 0.05 40 2380 32800
homer 561 1628 0.01 13 639 2189 qg.order60 3600 212400 0.03 60 5370 109800
queen5.5 25 160 0.53 5 36 75 DSJC125.1 125 736 0.09 5 135 375
queen6.6 36 290 0.46 7 57 144 DSJC125.5 125 3891 0.50 17 261 1125
queen7.7 49 476 0.40 7 70 196 DSJC125.9 125 6961 0.90 44 1071 2812
queen8.8 64 728 0.36 9 100 320 DSJC250.1 250 3218 0.10 ≤ 8 278 1125
queen8.12 96 1368 0.30 12 162 624 DSJC250.5 250 15668 0.50 ≤ 28 628 3625
queen9.9 81 1056 0.33 10 126 445 DSJC250.9 250 27897 0.90 ≤ 72 2806 9125
queen10.10 100 1470 0.30 11 155 600 DSJC500.1 500 12458 0.10 ≤ 12 566 3250
queen11.11 121 1980 0.27 11 178 726 DSJC500.5 500 62624 0.50 ≤ 47 1581 12000
queen12.12 144 2596 0.25 12 210 936 DSJC500.9 500 112437 0.90 ≤ 126 8375 31750
queen13.13 169 3328 0.23 13 247 1183 DSJC1000.1 1000 49629 0.10 ≤ 20 1190 10500
queen14.14 196 4186 0.22 14 287 1470 DSJC1000.5 1000 249826 0.50 ≤ 82 4321 41500
queen15.15 225 5180 0.21 15 330 1800 DSJC1000.9 1000 449449 0.90 ≤ 222 25531 111500
queen16.16 256 6320 0.19 16 376 2176 DSJR500.1 500 3555 0.03 12 566 3250
school1 385 19095 0.26 14 476 2887 DSJR500.1c 500 121275 0.97 84 3986 21250
school1-nsh 352 14612 0.24 14 443 2640 DSJR500.5 500 58862 0.47 122 7881 30750
games120 120 638 0.09 9 156 600 flat300_20_0 300 21375 0.48 20 490 3150
miles250 128 387 0.05 8 156 515 flat300_26_0 300 21633 0.48 26 625 4050
miles500 128 1170 0.14 20 318 1298 flat300_28_0 300 21695 0.48 28 678 4350
miles750 128 2113 0.26 31 593 2048 flat1000_50_0 1000 245000 0.49 50 2225 25500
miles1000 128 3216 0.40 42 989 2752 flat1000_60_0 1000 245830 0.49 60 2770 30500
miles1500 128 5198 0.64 73 2756 4736 flat1000_76_0 1000 246708 0.49 76 3850 38500
fpsol2.i.1 496 11654 0.09 65 2576 12150 le450_5a 450 5714 0.06 5 460 1350
fpsol2.i.2 451 8691 0.09 30 886 6990 le450_5b 450 5734 0.06 5 460 1350
fpsol2.i.3 425 8688 0.10 30 860 6587 le450_5c 450 9803 0.10 5 460 1350
mug88_1 88 146 0.04 4 94 220 le450_5d 450 9757 0.10 5 460 1350
mug88_25 88 146 0.04 4 94 220 le450_15a 450 8168 0.08 15 555 3600
mug100_1 100 166 0.03 4 106 250 le450_15b 450 8169 0.08 15 555 3600
mug100_25 100 166 0.03 4 106 250 le450_15c 450 16680 0.17 15 555 3600
2-Insert_3 37 72 0.11 4 43 92 le450_15d 450 16750 0.17 15 555 3600
3-Insert_3 56 110 0.07 4 62 140 le450_25a 450 8260 0.08 25 750 5850
inithx.i.1 864 18707 0.05 54 2295 19571 le450_25b 450 8263 0.08 25 750 5850
inithx.i.2 645 13979 0.07 31 1110 10320 le450_25c 450 17343 0.17 25 750 5850
inithx.i.3 621 13969 0.07 31 1086 9936 le450_25d 450 17425 0.17 25 750 5850
mulsol.i.1 197 3925 0.20 49 1373 4122 latin_sqr_10 900 307350 0.76 ≤ 97 5556 44100
mulsol.i.2 188 3885 0.22 31 653 3008 C2000.5 2000 999836 0.50 ≤ 145 12585 147000
mulsol.i.3 184 3916 0.23 31 649 2944 C4000.5 4000 4000268 0.50 ≤ 259 37670 522000
mulsol.i.4 185 3946 0.23 31 650 2960
mulsol.i.5 186 3973 0.23 31 651 2976

– Twenty four graphs from the Donald Knuth’s Stanford GraphBase (milesn with n ∈ {250, 500, 750,
1000, 1500}, anna, david, huck, jean, homer, games120, queen8.12, and queena.a, a ∈ {5, . . . , 16});

– Five graphs based on the Mycielski transformation (myciela, a ∈ {3, 4, 5, 6, 7});
– Four graphs that have a hard-to-find four clique embedded (mugn_a, n ∈ {88, 100}, a ∈ {1, 25});
– Two “insertion” graphs (2-Insert_3 and 3-Insert_3);
– Four graphs from real-life optical network design problems (wap05, wap06, wap07, and wap08).

Table 1.2 gives the detailed characteristics of the benchmark. Columns 1–5 and 8–12 present the number
n of vertices, the number m of edges, the density d = 2m/n(n − 1) and the chromatic number χ(G) of
each graph. Columns 6–7 and 13–14 indicate the best theoretical lower and upper bounds (LBt and UBt

respectively). Note that, since the chromatic number χ(G) of some difficult graphs are still unknown, we
use the minimum k for which a k-coloring has been reported for G instead of χ(G) to compute UBt and
LBt using the min /max equations introduced in Section 1.4.1.

2
The bandwidth (multi)coloring problem

2.1 Introduction

The Bandwidth Coloring Problem (BCP) and the Bandwidth MultiColoring Problem (BMCP) are two
other important generalizations of the vertex coloring problem. The BCP is known as the restricted T-
coloring problem and the BMCP is also known as the restricted set T-coloring problem [Hale 1980, Roberts
1991]. The T-coloring and the set T-coloring problems have been introduced by Hale in connection with the
channel assignment problem in communications [Hale 1980]. Tresman presents a comprehensive survey of
the literature on T-coloring [Tesman 1989] and later Roberts summarizes the basic results of the T-coloring
problem and provides some connected problems and their variations [Roberts 1991]. The studies on heuris-
tic and metaheuristic methods for T-coloring and set T-coloring include the Dsatur algorithm [Costa 1993],
a generic tabu search algorithm [Dorne and Hao 1999], two hybrid evolutionary approaches combining an
ACO algorithm and a tabu search [Aicha et al. 2010] for instance.

The BCP and BMCP are notable for their applicability to a number of important applications in particu-
lar in the area of frequency assignment in mobile networks. There is extensive literature on this application,
including exact approaches, heuristics and metaheuristics [Aardal et al. 2007, Allen et al. 2002, Bernardo
et al. 2010, Castelino et al. 1996, Gamst 1986, Hale 1980, Hao et al. 1998, Salcedo-Sanz et al. 2004, Walser
1996, Wang et al. 2008, Zoellner and Beall 1977]. Aardal et al. provides a comprehensive survey of the
frequency assignment problem [Aardal et al. 2007], which introduces a broad description of the practical
settings in which frequency assignment is applied and a classification of the different models and formula-
tions in the literature.

Since the BCP and BMCP are NP-hard problems, much efforts have been devoted to the development
of various heuristics and metaheuritics, such as neighborhood search algorithms based on a single solu-
tion [Lim et al. 2005, Bui and Nguyen 2006, Lai and Lü 2013, Prestwich 2008, Jin and Hao 2015a] and
evolutionary algorithms based on a pool of solutions [Malaguti and Toth 2008, Lai et al. 2014, Dorne and
Hao 1995, Hao and Dorne 1996]. More methods can be found in the 2008 special issue of Discrete Ap-
plied Mathematics Johnson et al. [2008] dedicated to computational methods for graph coloring and its
generalizations. This chapter thus aims to provide a detailed review of different BCP and BMCP solution
approaches proposed in the recent literature.

25

26 CHAPTER 2. THE BANDWIDTH (MULTI)COLORING PROBLEM

In the following sections, we first provide a general definition of the BCP and BMCP, followed by the
introduction of the studied heuristic and metaheuristic algorithms. Finally, the benchmark instances which
are frequently used the BCP and the BMCP algorithms are presented.

2.2 Definitions and formulation

Given an undirected graph G = (V,E) with vertex set V = {v1, . . . , vn}, edge set E ⊂ V ×V and edge
weight d(i, j) for each edge {vi, vj} ∈ E (d(i, j) can also be considered as a distance between two adjacent
vertices vi and vj), a legal bandwidth coloring is a function c : V → {1, 2, ..., k} such that the absolute
difference between c(vi) and c(vj) of an edge {vi, vj} ∈ E is at least d(i, j), i.e.,

|c(vi)− c(vj)| ⩾ d(i, j), ∀{vi, vj} ∈ E (2.1)

The bandwidth coloring problem is to find a legal bandwidth coloring of G with k minimum. The prob-
lem of k-BCP corresponds to BCP with k being fixed where one seeks a legal bandwidth coloring with k
colors.

The BCP can be generalized as the bandwidth multicoloring problem where each vertex vi receives a
subset S(i) ⊂ {1, 2, ..., k} of p(i) different colors. A legal bandwidth multicoloring must satisfy two dis-
tance constraints: The absolute difference between any member of S(i) and S(j) is at least d(i, j) for each
edge {vi, vj} ∈ E and the absolute difference between two distinct values in S(i) is at least d(i, i) for each
vertex (d(i, i) is the color separation distance for vertex vi), i.e.,

|x− y| ⩾ d(i, j),∀{vi, vj} ∈ E, ∀x ∈ S(i), y ∈ S(j)

|a− b| ⩾ d(i, i), ∀vi ∈ V, ∀a, b ∈ S(i)
(2.2)

The BMCP is to find a legal bandwidth multicoloring of G with k minimum.

Besides, the integer liner programming for the BCP and the BMCP are proposed in [Malaguti 2009].
The BCP is formulated as follows:

minimize k

subject to

(a) k ≥ yuu, u ∈ U

(b)
∑
u∈U

xiu = 1, i ∈ V

(c) xiu + xjl ≤ 1, (i, j) ∈ E, u ∈ U, l ∈ {u− d(i, j) + 1, . . . , u+ d(i, j)− 1}
(d) xiu ≤ yu, i ∈ V, u ∈ U

(e) xiu ∈ {0, 1}, i ∈ V, u ∈ U

(f) yu ∈ {0, 1}, u ∈ U

(2.3)

where U = {1, . . . , ū} (ū is an upper bound on the number of colors needed to color the graph) is the set of
available colors, xiu = 1(i ∈ V, u ∈ U) if vi is assigned color u (0 otherwise), and the yu = 1 if color u is
used (0 otherwise).

The objective function is to minimize the maximum color used with constraint (a). Constraint (b)
imposes each vertex vi to receive only one color. Constraint (c) indicates that the absolute value of the
difference between the colors assigned to vertices vi and vj must be at least equal to d(i, j). Constraint (d)

2.3. HEURISTICS AND METAHEURISTICS 27

assures that if a vertex vi receives a color u, the color u is used. Constraints (e) and (f) impose the variables
to be binary.

The formulation of the BMCP is given by the following binary program [Malaguti and Toth 2010].

minimize k

subject to

(a) k ≥ yuu, u ∈ U

(b)
∑
u∈U

xiu = wi, i ∈ V

(c) xiu + xjl ≤ 1, (i, j) ∈ E, u ∈ U, l ∈ {u− d(i, j) + 1, . . . , u+ d(i, j)− 1}
(d) xiu ≤ yu, i ∈ V, u ∈ U

(e) xiu ∈ {0, 1}, i ∈ V, u ∈ U

(f) yu ∈ {0, 1}, u ∈ U

(2.4)

where wi is the number of different colors for each vertex of the graph. The above constraints have the
same meanings as the constraints for the BCP except constraint (b). It imposes that each vertex receives the
specified number of colors.

2.3 Heuristics and metaheuristics

2.3.1 Neighborhood search heuristics

Neighborhood search heuristic is one of the most effective methods for solving the BCP and BMCP.
The search space, the evaluation function and the neighborhood function form a search strategy for a neigh-
borhood search algorithm. According to the search space, we can classify the representative and effective
BCP and BMCP algorithms into two categories: Complete coloring strategy and partial coloring strategy.

Complete coloring strategy

The squeaky wheel optimization with tabu search heuristic (SWO+TS) [Lim et al. 2005] combines three
important components: Greedy techniques, squeaky wheel optimization (SWO) and tabu search. SWO em-
ploys a traditional construct-analyze-prioritize cycle. The constructor procedure uses a greedy algorithm to
build the solution which assigns colors to the vertices greedily based on the vertex sequence (the order of
the vertices). The analyzer procedure identifies the vertices whose color exceeds a given target (they are
called “trouble makers”) and those vertices are given a blame value. The prioritizer procedure modifies the
vertex sequence according to the blame value. SWO is run for a number of iterations and then the best
solution is submitted to the tabu search procedure. The tabu search procedure applies a “swap” move that
exchanges two vertices in the vertex sequence of a solution to generate a set of neighborhood solutions.

The agent-based algorithm ABGC [Bui and Nguyen 2006] jointly uses an iterated greedy algorithm, an
ants repair phase and a local optimization procedure. It starts from an initial coloring c generated by an
iterated greedy algorithm and applies a colony of ants to resolve the conflicts in c. Note that the ants are
distributed among the vertices based on the conflicts at the vertices. If c is proper, ABGC applies a local
optimization algorithm to further improve this coloring and the number of colors is decreased by 1 when c is
improved. Otherwise, ABGC increases the number of colors by 1. ABGC is not an ant colony optimization

28 CHAPTER 2. THE BANDWIDTH (MULTI)COLORING PROBLEM

algorithm (ACO) [Dorigo et al. 1999] since each ant only colors a subset of the vertices of the graph and
the ants do not use pheromone to communicate with each other.

The multistart iterated tabu search (MITS) [Lai and Lü 2013] integrates an iterated tabu search algorithm
(ITS) with a multistart method. Starting from a random coloring, MITS applies an ITS procedure to improve
this solution. The evaluation function calculates the degree of constraint violations. ITS applies tabu search
to explore the search space by applying a “one-move” neighborhood that changes a conflicting vertex vi
from its original color class Vl to another color class Vl′ . When the tabu search procedure terminates, ITS
employs a perturbation operator to jump out of the local optimum and then calls the tabu search again. ITS
stops when the current best solution cannot be improved within a given maximum number of iterations.
MITS combines this ITS procedure with a multistart technique and repeats this combination until a legal
k-coloring is found or a timeout limit is reached.

Partial coloring strategy

The forward checking colouration neighborhood search (FCNS) [Prestwich 2008] is based on a partial
coloring strategy and combines a local search with a constraint propagation algorithm. FCNS enhances the
impasse appraoch [Prestwich 2002] by adding the constraint programming technique of forward checking
such that some colors can be pruned during the search process. FCNS uses a domain to include the available
colors of a vertex. FCNS selects uncolored vertices heuristically according to the domain cardinality to ex-
tend the partial solution until reaching a dead-end, i.e., when the domain of a vertex is empty. Afterwards,
FCNS removes one or more colored vertices in a heuristic way to resolve the conflicts. This procedure is
repeated until all the vertices are colored or a terminate condition is met.

The adaptive memory programming (AMP) [Marti et al. 2010] combines a memory-based construction
heuristic and a tabu search procedure. AMP constructs the partial coloring solution by selecting a vertex
with its lowest evaluation value in the candidate list which incorporates frequency information until all the
vertices are colored. Then, AMP uncolors some vertices whose color is larger than the given target, employs
a tabu search procedure to randomly select a vertex to color and uncolor all the adjacent vertices so as to
avoid violating the distance constraints. Notice that the color for the selected vertex is chosen based on the
consideration that it minimizes the sum of edge weights incident with uncolored vertices. The constructive
procedure is invoked once the tabu search procedure is terminated. This procedure is repeated until all the
vertices are colored or a stop condition is met.

In Chapter 5 of this thesis, we introduce a learning-based hybrid search (LHS) [Jin and Hao 2015a]. It
combines a construction phase to progressively build feasible partial colorings and a local search phase to
reestablish feasibility when an illegal partial solution is encountered. LHS repeats two phases: A coloring
construction phase and a repair phase. Starting from an empty solution, the coloring construction phase
selects an uncolored vertex and tries to assign it an available color according to a learning-based guiding
function. This phase extends a proper partial solution until no available color is possible for the selected
vertex (a dead-end vertex). Then, the repair phase is invoked after assigning a random color to this dead-end
vertex. Obviously, the current partial coloring is an illegal coloring owing to the dead-end vertex violates
the distance constraints. The repair phase takes the current partial coloring as an input and applies a tabu
search to resolve the conflicts. The tabu search procedure is terminated when a legal partial solution is found
or a given target iteration is reached. If the former occurs, LHS switches back to the coloring construction
phase. Otherwise, LHS drops the current partial solution and restarts a new round of “construction-repair”
process by updating the guiding function to learn from this failure. LHS repeats the above process until a
target number of maximum tries is reached or a complete legal k-coloring is obtained.

2.3. HEURISTICS AND METAHEURISTICS 29

Ta
bl

e
2.

1:
M

ai
n

he
ur

is
tic

an
d

m
et

ah
eu

ri
st

ic
ap

pr
oa

ch
es

fo
rt

he
B

C
P

an
d

th
e

B
M

C
P

A
lg

or
ith

m
na

m
e

R
ef

er
en

ce
Ty

pe
of

ap
pr

oa
ch

C
om

m
en

ts
on

pe
rf

or
m

an
ce

SW
O

+T
S

[L
im

et
al

.2
00

5]
N

ei
gh

bo
rh

oo
d

se
ar

ch
ba

se
d

on
a

co
m

pl
et

e
co

lo
ri

ng
st

ra
te

gy
A

ne
ig

hb
or

ho
od

se
ar

ch
co

m
bi

ni
ng

th
e

gr
ee

dy
te

ch
ni

qu
es

,s
qu

ea
ky

w
he

el
op

tim
iz

at
io

n
an

d
th

e
ta

bu
se

ar
ch

pr
oc

ed
ur

e.

A
B

G
C

[B
ui

an
d

N
gu

ye
n

20
06

]
N

ei
gh

bo
rh

oo
d

se
ar

ch
ba

se
d

on
a

co
m

pl
et

e
co

lo
ri

ng
st

ra
te

gy
A

lo
ca

ls
ea

rc
h

ap
pl

ie
s

a
nu

m
be

ro
fc

ol
la

bo
ra

tiv
e

an
ts

to
at

ta
in

a
co

m
pl

et
e

co
lo

ri
ng

w
hi

ch
is

fu
rt

he
ri

m
pr

ov
ed

by
a

lo
ca

lo
pt

im
iz

at
io

n
al

go
ri

th
m

.

E
A

[M
al

ag
ut

ia
nd

To
th

20
08

]
E

vo
lu

tio
na

ry
al

go
ri

th
m

A
n

ev
ol

ut
io

na
ry

al
go

ri
th

m
co

m
bi

ni
ng

an
ef

fe
ct

iv
e

ta
bu

se
ar

ch
al

go
ri

th
m

w
ith

po
pu

la
tio

n
m

an
ag

em
en

tp
ro

ce
du

re
s,

w
hi

ch
pe

rf
or

m
s

w
el

lf
or

th
e

B
C

P
be

nc
hm

ar
k

as
w

el
la

s
th

e
B

M
C

P
be

nc
hm

ar
k.

FC
N

S
[P

re
st

w
ic

h
20

08
]

N
ei

gh
bo

rh
oo

d
se

ar
ch

ba
se

d
on

a
pa

rt
ia

lc
ol

or
in

g
st

ra
te

gy
C

om
bi

na
tio

n
of

a
lo

ca
ls

ea
rc

h
an

d
a

co
ns

tr
ai

nt
pr

op
ag

at
io

n
al

go
ri

th
m

,w
hi

ch
is

ef
fe

ct
iv

e
fo

rt
he

B
C

P
be

nc
hm

ar
k.

A
M

P
[M

ar
ti

et
al

.2
01

0]
N

ei
gh

bo
rh

oo
d

se
ar

ch
ba

se
d

on
a

pa
rt

ia
lc

ol
or

in
g

st
ra

te
gy

A
co

ns
tr

uc
tiv

e
he

ur
is

tic
th

at
co

m
bi

ne
s

a
m

em
or

y-
ba

se
d

co
ns

tr
uc

tio
n

ap
pr

oa
ch

an
d

a
ta

bu
se

ar
ch

pr
oc

ed
ur

e.

M
IT

S
[L

ai
an

d
L

ü
20

13
]

N
ei

gh
bo

rh
oo

d
se

ar
ch

ba
se

d
on

a
co

m
pl

et
e

co
lo

ri
ng

st
ra

te
gy

A
n

ite
ra

te
d

ta
bu

se
ar

ch
al

go
ri

th
m

co
m

bi
ne

d
w

ith
a

m
ul

tis
ta

rt
m

et
ho

d,
w

hi
ch

is
qu

ite
ef

fe
ct

iv
e

fo
rt

he
B

M
C

P
be

nc
hm

ar
k.

PR
[L

ai
et

al
.2

01
4]

E
vo

lu
tio

na
ry

al
go

ri
th

m
A

m
em

et
ic

al
go

ri
th

m
th

at
co

m
bi

ne
s

a
po

pu
la

tio
n

ba
se

d
pa

th
re

lin
ki

ng
m

et
ho

d
an

d
a

ta
bu

se
ar

ch
ba

se
d

lo
ca

ls
ea

rc
h

pr
oc

ed
ur

e,
so

m
e

re
su

lts
ar

e
im

pr
ov

ed
w

he
n

co
m

pa
re

d
to

th
e

M
IT

S.

L
H

S
[J

in
an

d
H

ao
20

15
a]

N
ei

gh
bo

rh
oo

d
se

ar
ch

ba
se

d
on

a
pa

rt
ia

lc
ol

or
in

g
st

ra
te

gy
A

co
ns

tr
uc

tiv
e

al
go

ri
th

m
th

at
co

m
bi

ne
s

a
co

ns
tr

uc
tio

n
ph

as
e

to
pr

og
re

ss
iv

el
y

bu
ild

fe
as

ib
le

pa
rt

ia
lc

ol
or

in
gs

an
d

a
lo

ca
ls

ea
rc

h
ph

as
e

to
re

es
ta

bl
is

h
fe

as
ib

ili
ty

w
he

n
an

ill
eg

al
pa

rt
ia

ls
ol

ut
io

n
is

en
co

un
te

re
d.

R
es

ul
ts

ar
e

hi
gh

ly
co

m
pe

tit
iv

e
w

ith
th

e
be

st
kn

ow
n

re
su

lts
in

th
e

lit
er

at
ur

e.

30 CHAPTER 2. THE BANDWIDTH (MULTI)COLORING PROBLEM

2.3.2 Evolutionary algorithms
Different from neighborhood search algorithms, evolutionary algorithms use a pool of solutions and

need to balance the quality and the distance among these solutions.

The evolutionary approach (EA) presented in [Malaguti and Toth 2008] constructs an initial solution
using the DSATUR algorithm [Brélaz 1979] and combines an effective tabu search algorithm with a pop-
ulation management procedure. Malaguti and Toth propose six different crossover operators and experi-
mentally show that the distance-crossover is the best performing among these crossovers. The distance-
crossover transmits all “tight distance” pairs from one parent P1 to the offspring and keeps the same color
assignment. The “tight distance” pair is two adjacent vertices whose absolute value of the difference be-
tween the colors is equal to the weight of the associated edge. Then, it transmits “tight distance” pairs from
the other parent P2 while keeping the same color assignment if this pair does not violate the distance con-
straints with respect to the colored vertices of the offspring. For the remaining uncolored vertices, it uses a
greedy algorithm to obtain a partial proper k-coloring. The tabu search procedure explores partial k color-
ings where all the distance constraints are satisfied. It is based on an adaption of the impasse neighborhood
[Prestwich 2002]. The evaluation function measures the total distances of the set of uncolored vertices. A
neighborhood solution is obtained by assigning a color to a vertex and uncoloring its adjacent vertices to
avoid breaking the distance constraints.

The path relinking algorithm (PR) [Lai et al. 2014] combines a population based relinking method and a
tabu search procedure. From a scratch, an initial population includes different solutions which are randomly
generated and optimized by a tabu search procedure [Lai and Lü 2013]. Then, PR selects a solution pair
at random and builds paths from the initiating solution to the guiding solution in order to generate two
offspring solutions. Afterwards, PR employs the tabu search procedure to improve the offspring solution
and a population updating procedure to determine whether this improved solution should be inserted into
the population and which solution in the population should be replaced.

2.4 Benchmark
In order to evaluate the performance of BCP and BMCP algorithms, a data set of 66 well-known bench-

mark instances have been frequently used. The first set of benchmarks is composed of 33 BCP instances
[Johnson et al. 2002]. These instances belong to three types: GEOMn, GEOMna and GEOMnb (where n
denotes the number of vertices of the graph). The first type refers to sparse graphs, while the two other types
correspond to dense graphs. The second set of 33 BMCP instances is transformed from the BCP instances.

Table 2.2 gives the detailed characteristics of the BCP and BMCP instances. Column 2–7 and column
8–13 present the number of vertices (n), the number of edges (m), the density of the graph (d), the average
degree of a vertex (degave), the minimum degree of a vertex (degmin) and the maximum degree of a vertex
(degmax) respectively.

2.4. BENCHMARK 31

Table 2.2: Main characteristics of the BCP and the BMCP benchmark (66 instances)
BCP BMCP

Instance n m d degave degmin degmax n m d degave degmin degmax

GEOM20 20 20 0.1053 2.00 0 4 118 1048 0.1518 17.76 4 27
GEOM20a 20 37 0.1947 3.70 0 7 100 1327 0.2681 26.54 0 44
GEOM20b 20 32 0.1684 3.20 1 6 40 132 0.1692 6.60 2 11
GEOM30 30 50 0.1149 3.33 1 6 143 1419 0.1398 19.85 5 35
GEOM30a 30 81 0.1862 5.40 2 10 171 3288 0.2262 38.45 12 63
GEOM30b 30 81 0.1862 5.40 2 10 69 447 0.1905 12.96 6 21
GEOM40 40 78 0.1000 3.90 0 6 220 3074 0.1276 27.95 1 41
GEOM40a 40 146 0.1872 7.30 3 12 203 4473 0.2182 44.07 20 67
GEOM40b 40 157 0.2013 7.85 2 13 84 743 0.2131 17.69 3 27
GEOM50 50 127 0.1037 5.10 0 9 285 4935 0.1219 34.63 0 66
GEOM50a 50 238 0.1943 9.52 4 16 302 9649 0.2123 63.90 22 115
GEOM50b 50 249 0.2033 9.96 3 17 104 1140 0.2128 21.92 7 35
GEOM60 60 185 0.1045 6.17 1 10 315 6174 0.1248 39.20 7 59
GEOM60a 60 339 0.1915 11.30 6 18 362 13105 0.2005 72.40 33 124
GEOM60b 60 366 0.2068 12.20 3 20 127 1785 0.2231 28.10 7 44
GEOM70 70 267 0.1106 7.63 1 13 384 8584 0.1167 44.71 11 69
GEOM70a 70 459 0.1901 13.11 7 20 379 14821 0.2069 78.21 33 120
GEOM70b 70 488 0.202 13.94 4 24 148 2212 0.2033 29.89 10 53
GEOM80 80 349 0.1104 8.72 3 14 465 12927 0.1198 55.60 21 89
GEOM80a 80 612 0.1936 15.30 7 23 389 15545 0.2060 79.90 28 129
GEOM80b 80 663 0.2098 16.575 5 29 169 3028 0.2133 35.83 11 62
GEOM90 90 441 0.1101 9.80 5 15 530 16180 0.1154 61.05 27 96
GEOM90a 90 789 0.1970 17.53 8 25 454 20455 0.1989 90.11 37 136
GEOM90b 90 860 0.2147 19.11 6 34 184 3602 0.2139 39.15 12 64
GEOM100 100 547 0.1105 10.94 5 18 581 19829 0.1177 68.25 28 104
GEOM100a 100 992 0.2000 19.84 9 28 528 28496 0.2048 107.93 51 180
GEOM100b 100 1050 0.2121 21.00 5 37 200 4429 0.2226 44.29 11 72
GEOM110 110 638 0.1064 11.60 6 19 643 24799 0.1201 77.14 37 127
GEOM110a 110 1207 0.2013 21.94 12 32 602 38783 0.2144 128.85 62 177
GEOM110b 110 1256 0.2095 22.84 5 39 220 5163 0.2143 46.94 12 85
GEOM120 120 773 0.1083 12.88 6 21 680 27759 0.1202 81.64 33 126
GEOM120a 120 1434 0.2000 23.90 13 35 664 46429 0.2109 139.80 64 212
GEOM120b 120 1491 0.2088 24.85 5 43 235 5779 0.2102 49.18 11 81

III
Personal contributions

33

3
MASC: A Memetic Algorithm for minimum
Sum Coloring

In this chapter, we present a memetic algorithm (MASC) for computing upper bounds of the minimum
sum coloring problem (MSCP). The proposed MASC algorithm employs a tabu search procedure with two
neighborhoods and a multi-parent crossover operator. Experiments on a set of 77 well-known DIMACS
and COLOR 2002-2004 benchmark instances show that the proposed algorithm competes favorably with
the current best performing algorithms for the MSCP. The content of this chapter is published in [Jin et al.
2014].

Contents
3.1 Introduction . 35
3.2 Components of the MASC approach . 36

3.2.1 Search space and evaluation function . 36
3.2.2 Initial population . 36
3.2.3 Crossover operator . 37
3.2.4 A double-neighborhood tabu search . 39
3.2.5 Population updating . 41

3.3 Experimental results . 42
3.3.1 Computational results . 42
3.3.2 Comparisons with state-of-the-art algorithms . 42
3.3.3 Experiments on large graphs . 44

3.4 Analysis of MASC . 46
3.4.1 Influence of the multi-parent crossover operator 46
3.4.2 Influence of the neighborhood combination . 47
3.4.3 Improvements of MASC over TABUCOL . 48

3.5 Conclusion . 48

3.1 Introduction
This chapter is dedicated to the minimum sum coloring problem which is formally presented in Chapter

1. Recall that given an undirected graph G = (V,E), the MSCP is to find a legal assignment of colors (rep-
resented by natural numbers) to each vertex of G such that the total sum of the colors assigned to the vertices

35

36 CHAPTER 3. MASC: A MEMETIC ALGORITHM FOR MINIMUM SUM COLORING

is minimized. We introduce a memetic algorithm MASC for the minimum sum coloring problem which
relies on three key components. First, a double-neighborhood tabu search procedure (DNTS) is especially
designed for the MSCP. DNTS is based on a token-ring application of two complementary neighborhoods
to explore the search space and a perturbation strategy to escape from local optima. Second, a multi-parent
crossover operator is used for solution recombination. Basically, it tries to transmit large color classes from
the parents to the offspring. Finally, a population updating mechanism is devised to determine how the
offspring solution is inserted into the population.

We evaluate the performance of MASC on 77 frequently used instances from DIMACS and COLOR
2002-2004 graph coloring competitions. The computational results show that MASC can match the best
known results in the literature for most cases. In particular, it improves the previous best solution for 15
graphs for which an upper bound is known.

This chapter is organized as follows. Next section describes the general framework and the components
of our MASC memetic algorithm, including the population initialization, the crossover operator and the
double-neighborhood tabu search procedure. Detailed computational results and comparisons with five
state-of-the-art algorithms are presented in Section 3.3. Before concluding, Section 3.4 investigates and
analyzes three key issues of the proposed memetic algorithm.

3.2 Components of the MASC approach
A memetic algorithm is a population-based approach where the traditional mutation operator is replaced

by a local search procedure [Moscato and Cotta 2003, Neri et al. 2012]. Memetic algorithms are among the
most powerful paradigms for solving NP-hard combinatorial optimization problems. In particular, they have
been successfully applied to the tightly related VCP [Galinier and Hao 1999, Lü and Hao 2010, Malaguti
et al. 2008, Porumbel et al. 2010].

Our MASC algorithm follows the general principle for designing effective memetic algorithms for dis-
crete optimization [Hao 2012] and is summarized in Algorithm 1. After population initialization, MASC
repeats a series of generations (limited to MaxGeneration) to explore the search space which is defined
by the set of all proper k-colorings (k is not a fixed value, Section 3.2.1). At each generation, two or more
parents are selected at random (line 6) and used by the dedicated crossover operator to generate an off-
spring solution (line 7, Section 3.2.3). The offspring solution is then improved by a double neighborhood
tabu search (line 8, 3.2.4). If the improved offspring has a better sum of colors, it is then used to update the
current best solution found so far (lines 9-10). Finally, the population updating criterion decides whether
the improved offspring will replace one existing individual of the population or not (line 12, Section 3.2.5).

3.2.1 Search space and evaluation function

The search space explored by MASC is the set C of all proper k-colorings of G (k is not fixed). For
a given proper k-coloring c, its quality is directly assessed by the sum of colors f(c) =

∑
v∈V c(v) =∑k

l=1 l|Vl|.

3.2.2 Initial population

Our algorithm begins with a population P of p feasible colorings. This population can be obtained by
any graph coloring algorithm that is able to generate different proper colorings for a graph. In our case,
we employ the well-known TABUCOL [Hertz and de Werra 1987], more precisely its improved version
introduced in [Galinier and Hao 1999]. For a given graph G, TABUCOL tries to find a proper k-coloring

3.2. COMPONENTS OF THE MASC APPROACH 37

Algorithm 1 An overview of the MASC memetic algorithm for the MSCP
1: input: A graph G
2: output: The minimum sum coloring c∗ and f(c∗) found
3: Population_Initialization(P, p) /* Population P has p solutions, Section 3.2.2 */
4: f∗ ← minc∈P f(c) /* f∗ records the best objective value found so far */
5: for i← 1 to MaxGeneration do
6: P ′ ← Selection(P) /* Select 2 or more parents at random for crossover */
7: o← Crossover(P ′) /* Crossover to get an offspring solution, Section 3.2.3 */
8: o← DNTS(o) /* Improve o with the DNTS procedure, Section 3.2.4*/
9: if f(o) < f∗ then

10: f∗ ← f(o); c∗ ← o
11: end if
12: Population_Updating(P, o) /* Section 3.2.5 */
13: end for
14: return f∗, c∗

where k is the best known result for the VCP, i.e., the smallest k for which a k-coloring is known in the
literature. If TABUCOL cannot reach a proper k-coloring for the current k value, TABUCOL is restarted
with k increased by 1 (this makes the task of finding a legal coloring easier). This process is repeated until a
proper k-coloring is obtained. Each resulting k-coloring is then submitted to the dedicated DNTS procedure
to improve its coloring sum (see Section 3.2.4). Each improved k-coloring is finally inserted into P if the
coloring is not already present in P (discarded otherwise). This process is repeated until P is filled with
p different k-colorings. Notice that the solutions generated by TABUCOL may take different k values due
to the stochastic nature of TABUCOL. Also in Section 3.4.3, we provide a comparative study to show to
which extent the solutions can be improved by the proposed MASC approach.

3.2.3 Crossover operator

The crossover operator is an important component in a population-based algorithm. It is used to generate
one or more new offspring individuals to discover new promising search areas. MASC uses a multi-parent
crossover operator, called MGPX, which is similar to the one introduced in [Hamiez and Hao 2002] as a
variant of the well-known GPX crossover first proposed in [Galinier and Hao 1999] for the VCP (restricted
to two parents). MGPX generates only one offspring solution o from α parents randomly chosen from P ,
where α varies from 2 to 4 according to n and the best k-coloring found for the VCP (see Eq. (3.1)).

α =


2, if n/k < 5
3, if 5 ≤ n/k ≤ 15
4, otherwise

(3.1)

Motivations for these α values can be found in [Porumbel et al. 2010]. The dense graphs obviously need
more colors k such that the average color class sizes become very low (n/k < 5, i.e., the classes become
very small). In this case, it is better to use 2 parents in order to avoid excessive disruptions when blending
the color classes. Inversely, the sparse graphs need fewer colors such that the average class sizes are very
high (n/k > 15). In this case, we use more parents (4 in our case) in order to increase the probability of
selecting and inheriting good classes from different parents. Besides, we choose 3 parents for the graphs
between these two extreme situations.

MGPX is summarized in Algorithm 2. It builds the color classes of the o offspring one by one, trans-
mitting as many vertices as possible from the parents at each step (for quality purpose) (lines 8-15). Once a
parent has been used for transmitting an entire color class to o, the parent is not considered for ⌊α/2⌋ steps

38 CHAPTER 3. MASC: A MEMETIC ALGORITHM FOR MINIMUM SUM COLORING

Algorithm 2 Pseudo-code of the MGPX combination operator
1: input: A set P ′ of α parents randomly chosen from P
2: output: An offspring o
3: ν ← 0 /* Counts the number of colored vertices in o */
4: κ← 0 /* Counts the number of colors used in o */
5: ω ← 0 /* Counts the iterations */
6: Set forbidden length for each parent: τ(P ′

i) = 0, i = 1, ..., α
7: while ν < n do
8: κ← κ+ 1
9: Identify the non-forbidden parents: P ′

s={P ′
i |τ(P ′

i) ⩽ ω}
10: Find the maximum cardinality class V j

∗ (V j
∗ ∈ P ′

j) from P ′
s

11: ν ← ν + |V j
∗ |

12: for all v ∈ V j
∗ do

13: o(v)← κ
14: Remove v from α parents P ′

15: end for
16: τ(P ′

j)← ω + ⌊α/2⌋ /* Forbid parent P ′
j for ⌊α/2⌋ steps */

17: ω ← ω + 1
18: end while
19: return o

P1

P2

P3

offspring o

a b c d e g h m n r u
a b c d e g h m n r u

r uh m na b c d e g
V1

o ={ }a b c d e

remove a, eb, c, d,
forbid P1 for 1 step

g h m n r u
g h m n r u

g h m n r u
a b c d e

g h m n r u
g h m n r u

g h m n r u
a b c d e

P1

P2

P3

offspring o

Vo = { }

remove
forbid P for 1 step

g r u
g r u

g r u
a b c d e

2 h m n

h, m, n

3
h m n

g r u
g r u
g r u

a b c d e h m n

P1

P2
P3

offspring o

Vo = { }

remove
forbid P for 1 step

g
g
g

a b c d e h m n

3 r u

r, u

2
r u

g
g
g

a b c d e h m n r u

P1

P2
P3

offspring o

Vo = { }

remove

forbid P for 1 step
a b c d e h m n r u

4 g

g

1
g

Figure 3.1: An illustrative example of the MGPX crossover

with the purpose of varying the origins of the color classes of o (line 16). This strategy avoids transmitting
always from the same parent and introduces some diversity in o [Lü and Hao 2010]. Note that the offspring
solution is always a proper k coloring while the number of colors used by the offspring can be higher than
those of the considered parents.

Figure 3.1 illustrates the detailed operations of our MGPX crossover. In the example, there are 3 parents
(α = 3) with k = 4 colors, and 11 vertices a, b, ..., u. The forbidden length for each parent is initially set
to 0 (τ(P ′

i) = 0) which means all three parents can be selected at the beginning of the MGPX operator. At
the first step, the largest color class {a, b, c, d, e} in parent P1 is chosen to become the first class V 1

o of the
offspring o. Then vertices a, b, c, d, e are removed from all three parents. Parent P1 is forbidden for 1 step
(⌊α/2⌋ = ⌊3/2⌋ = 1). Similarly, we build the color class V 2

o = {h,m, n} from parent P3, V 3
o = {r, u}

from parent P2 and V 4
o = {g} from parent P1 respectively. After four steps, all the vertices are assigned

such that a complete offspring is constructed. One notices that in this example, the sum of colors in the
offspring is better than or equal with its parents.

3.2. COMPONENTS OF THE MASC APPROACH 39

3.2.4 A double-neighborhood tabu search
Local optimization is another important element within a memetic algorithm. In our case, its role is to

improve as far as possible the quality (i.e., the sum of colors) of a given solution returned by the MGPX
crossover operator. This is achieved by a Double-Neighborhood Tabu Search (DNTS) procedure specifi-
cally designed for the MSCP (see Algorithm 3).

DNTS is based on tabu search [Glover and Laguna 1999] and uses two different and complementary
neighborhoods N1 and N2 which are applied in a token-ring way [Di Gaspero and Schaerf 2006, Lü et al.
2011] to find good local optima (intensification) (lines 2-14). More precisely, we start our search with one
neighborhood (lines 6-9) and when the search ends with its best local optimum, we switch to the other
neighborhood to continue the search while using the last local optimum as the starting point (lines 10-13).
When this second search terminates, we switch again to the first neighborhood and so on. DNTS continues
the exploration of each neighborhood Ni (i = 1, 2) until µi (i = 1, 2) consecutive iterations fail to update
the best solution found.

This neighborhood-based intensification phase terminates if the best local optimum is not updated for
µρ consecutive iterations (line 14). At this point, we enter into a diversification phase by triggering a
perturbation to escape from the local optimum (line 15, Section 3.2.4). The DNTS procedure stops when a
maximum number of iterations MaxIters is met. We explain below the two neighborhoods, the tabu list
management and the perturbation mechanism.

Algorithm 3 Pseudo-code of double-neighborhood tabu search for MSCP
1: Input: A k-coloring c of a graph G
2: Output: the best improved k-coloring
3: c∗ ← c
4: while a stop condition is not met do
5: repeat
6: c← TS(N1, c, µ1) /* Tabu search with neighborhood N1, Section 3.2.4 */
7: if f(c) < f(c∗) then
8: c∗ ← c
9: end if

10: c← TS(N2, c, µ2) /* Tabu search with neighborhood N2, Section 3.2.4 */
11: if f(c) < f(c∗) then
12: c∗ ← c
13: end if
14: until c∗ not improved for µρ consecutive iterations
15: c ← Perturbation(c∗) /* Search is stagnating, generate a new starting solution by perturbing the best k-coloring found

so far, Section 3.2.4 */
16: end while

N1: A neighborhood based on connected components

The first neighborhood N1 can be described by the operator Exchange(i, j). Given a proper k-coloring
c = {V1, . . . , Vk}, operator Exchange(i, j), (1 ≤ i ̸= j ≤ k) swaps some vertices of a color class Vi

against some connected vertices of another color class Vj . Formally, let Gi,j(c) be the set of all connected
components of more than one vertex in the subgraph of G induced by color classes Vi and Vj in a proper
k-coloring c. For a k-coloring c, the size of neighborhood N1 is bounded by O(n

2
× k(k−1)

2
) (n is the number

of vertices). In Figure 3.2 (left) for instance, Gi,j(c) is composed of two graphs (say g1 and g2): g1 is the
subgraph induced by {v2, v3, v6, v7, v8} and g2 is induced by {v4, v5, v9}.

Neighborhood N1(c) is composed of the set G(c) of all possible elements in all the Gi,j(c) sets: G(c) =
∪1≤i<j≤kGi,j(c). In other words, N1(c) includes all the proper k-colorings that can be obtained from the

40 CHAPTER 3. MASC: A MEMETIC ALGORITHM FOR MINIMUM SUM COLORING

v1

v2

v3

v4

v5

v6

v7

v8

v9

Vi Vj

v1

v2

v3

v4

v5

v6

v7

v8

v9

Vi Vj

A proper k-coloring c A possible c′ ∈ N1(c)

Figure 3.2: N1: An illustrative example with two partial colorings (c and c′ are restricted here to two Vi and
Vj color classes)

current k-coloring c by exchanging the vertices of a connected component induced by color classes Vi and
Vj . Figure 3.2 shows an example where by exchanging the two sets of vertices {v2, v3} and {v6, v7, v8} of
connected component g1 of the current k-coloring c (left drawing), we obtain a neighboring k-coloring c′

(right drawing).

N2: A neighborhood based on one-vertex-move

The second neighborhood N2 is conventional and is simpler than N1. N2 can be described by the
operator OneMove(v, i, j). Given a proper k-coloring c = {V1, . . . , Vk}, operator OneMove(v, i, j), (1 ≤
i ̸= j ≤ k) displaces one single vertex v of a color class Vi to another color class Vj such that the resulting
k-coloring remains proper. For instance, from the current coloring c of the left drawing of Figure 3.2,
moving vertex v1 from Vi to Vj gives a neighboring solution. Neighborhood N2(c) is composed of all the
possible proper k-colorings by applying OneMove(v, i, j) to the current k-coloring c. Like neighborhood
N1, the solutions of this second neighborhood are also proper k-colorings. The size of the neighborhood
N2 is bounded by O(n×k). Moreover, the number of colors of the neighboring solutions remains the same
as that of the current coloring.

Neighborhood examination and tabu list

DNTS applies these two neighborhoods N1 and N2 in a token-ring way [Di Gaspero and Schaerf 2006,
Lü et al. 2011]. The alternation between N1 and N2 is triggered when the current neighborhood is ex-
hausted, i.e., when the current best solution cannot be further improved for a fixed number of consecutive
iterations.

As shown in Algorithm 3, at each iteration of our DNTS, a best neighboring solution is selected among
all the allowed solutions (from N1 or N2) to replace the current solution. Precisely, for the neighborhood N1

defined by the operator Exchange(i, j), we first identify all the connected components in each pair of color
classes for the current k-coloring. Theoretically, this step has a worst time complexity of O(n

2

2
× k(k−1)

2
).

But in practice, the time consuming is much lower since this operator is related to the density of the graph.
Then we select the best connected components for exchange according to the objective function f(c) (ties
are broken at random). When a set of vertices of a color class Vi are exchanged with a set of vertices of
another color class Vj , exchanges between Vi and Vj are forbidden for the next TT iterations (called tabu
tenure). Finally, we only need to update the connected components in the pairs of color classes which con-
tain class Vi or Vj . For the neighborhood N2 defined by the OneMove(v, i, j) operator, we go through all
legal moves (there are O(n×k) of them) and select a best move for the OneMove(v, i, j) operation. When

3.2. COMPONENTS OF THE MASC APPROACH 41

a vertex v of a color class Vi is displaced to another color class Vj , the vertex v is forbidden to go back to Vi

for the next TT iterations.

The tabu list is introduced to avoid short-term cycles [Glover and Laguna 1999] and is updated after
each iteration. The tabu tenure TT is determined simply by taking a random number from {0, . . . k − 1}.
Moreover, a forbidden Exchange or OneMove operation is always accepted if it leads to a neighboring
solution better than the best solution found so far (this is called aspiration according to the tabu search
terminology).

The perturbation mechanism

In addition to the basic diversification mechanism of the tabu list, our DNTS algorithm applies a stronger
diversification strategy based on perturbations to escape deep local optima. The perturbation is triggered
when the current intensification phase cannot update the recorded best solution c∗ for µρ consecutive itera-
tions (see line 15, Algorithm 3). In this case, the search is considered to be trapped in a deep local optimum
and a strong diversification is needed to bring the search to a new search region. To achieve this, we apply
the following perturbation technique to modify the recorded best solution c∗ and then use this perturbed
solution to initialize DNTS. Suppose c∗ is composed of k different color classes and let Vl be the largest
color class. We introduce an additional color class Vk+1 and then move randomly one third of the vertices
of Vl into Vk+1. In order to prevent the subsequent search from coming back to c∗, Vl and Vk+1 are classified
tabu and cannot take part of an Exchange or a OneMove operation for the next TT iterations (see Section
3.2.4).

3.2.5 Population updating

The management of the population usually controls and balances two important factors in population-
based heuristics: Quality and diversity. Quality can naturally be measured here using the coloring sum
function (f). The proper k-coloring ci is better than cj if f(ci) < f(cj). We use the following distance H to
estimate the diversity. Given two coloring ci and cj , Hi,j is the number of vertices in ci and cj which have
different colors: Hi,j = |{v ∈ V : ci(v) ̸= cj(v)}|. A small Hi,j value indicates a high similarity between
ci and cj . H is also employed to measure how much diversity Hi,P a particular k-coloring ci contributes to
the entire population P : Hi,P = minj ̸=i Hi,j . Again, a small (large) Hi,P value indicates that ci adds a low
(high) diversity to P .

In MASC, f and H are combined in a s “score” function which is used to decide whether an offspring
solution o replaces an individual in the population P or not: s(ci) = f(ci) + e0.08n/Hi,P ∀ci ∈ P . Precisely
we first add o into P and compute all s(ci). We then identify the worse configuration cw (i.e., s(cw) is
maximum). The replacement strategy applies the following rules:

Case 1 (cw is not o): Remove cw from P ;

Case 2 (cw is o): Remove the second worse individual from P with probability 0.2, and discard o otherwise.

Notice that unlike partition based distances [Porumbel et al. 2010], the distance used here does not
consider explicitly the symmetry of solutions. We adopted this simpler distance for two practical reasons.
First, given that the solutions are all improved by DNTS (tabu search), the population has generally a
certain level of diversity. So the diversity control mechanism has a limited role. Second, the computation
of a partition distance is much more expensive. The experimental results show that in the context of this
work, the above distance seems sufficient for our MASC algorithm.

42 CHAPTER 3. MASC: A MEMETIC ALGORITHM FOR MINIMUM SUM COLORING

3.3 Experimental results
Our MASC approach was tested on a benchmark composed of 77 well-known graphs commonly used

to report computational results for the MSCP: 39 are part of the COLOR 2002–2004 competitions and the
38 others are known as “DIMACS” instances. Most of these graphs are available on-line from http:
//mat.gsia.cmu.edu/COLOR04. The main characteristics of each graph appear in Tables 3.2 and
3.5, see columns 1–4 (COLOR 2002–2004 instances are at the top of Table 3.2 and DIMACS instances at
the bottom): Name of the graph, order (n), size (m), and the best known sum fb.

MASC is programmed in C++ and compiled using GNU gcc on a PC with 2.7 GHz CPU and 4 Gb
RAM. Like many memetic algorithms, we use a small population of 10 individuals. The values of the other
parameters were determined empirically, see Table 3.1. Notice that MaxGenerations = 50 is the stop
condition that determines the running time of the algorithm. Given its stochastic nature, MASC is run 30
times with different seeds.

Table 3.1: Settings of parameters
Parameter Section Description Value

µ1 3.2.4 Maximum number of non-improving moves for TS using N1 500
µ2 3.2.4 Maximum number of non-improving moves for TS using N2 1 000
µρ 3.2.4 Maximum number of non-improving moves of TS for perturbation 4 000

MaxIters 3.2.4 Maximum iterations of TS procedure 10 000
MaxGenerations 3.2.5 Maximum number of generations 50

3.3.1 Computational results
Columns 6–10 in Table 3.2 present detailed computational results of our MASC algorithm: Best result

obtained (f∗) with the number of required colors (k∗), success rate (SR, percentage of runs such that the
sum of colors f∗ of MASC is at least the current best known value fb, i.e., f∗ ≤ fb), average coloring sum
(Avg.), standard deviation (σ) and average running time to reach f∗ (t, in minutes). Column k shows the
chromatic number or its best upper bound (i.e., the smallest number of colors for which a k-coloring is ever
reported). The reported values are based on 30 independent runs (i.e., with different random seeds).

From Table 3.2, one observes that for the 39 COLOR 2002–2004 instances with known upper bounds
(see top part of the table), MASC improves the best known upper bound for two instances (miles500 and
homer) and equals the best known results for the other 37 graphs. Furthermore, MASC achieves robust
results here since SR = 30/30 and σ = 0.0 for these graphs except two instances (homer and queen9.9).
The average running time of MASC ranges from less than one second to about 13 minutes except for the
homer instance.

For the set of 24 DIMACS instances (bottom part), the MASC algorithm improves the best known
upper bound for 3 graphs (flat300_28_0, le450_15c, and le450_15d) and equals the best known results for
10 instances. Unfortunately, MASC was unable to reach the best known results for the other 11 graphs (see
lines where SR = 0/30). The average running time is less than 76 minutes except for the DSJC500.5 and
flat300_28_0 instances. Finally, we notice that the number of colors needed to ensure the best sum coloring
(k∗) can be larger than the chromatic number or its best upper bound (k).

3.3.2 Comparisons with state-of-the-art algorithms
Table 3.3 compares MASC with 5 recent effective algorithms that cover the best known results for the

considered benchmark: EXSCOL [Wu and Hao 2012], BLS [Benlic and Hao 2012], MA [Moukrim et al.

http://mat.gsia.cmu.edu/COLOR04
http://mat.gsia.cmu.edu/COLOR04

3.3. EXPERIMENTAL RESULTS 43

Table 3.2: Detailed computational results of MASC on the set of 39 COLOR 2002-2004 instances (upper
part) and 24 DIMACS instances (bottom part)

Characteristics of the graphs MASC
Name n m fb k f∗(k∗) SR Avg. σ t
myciel3 11 20 21 4 21(4) 30/30 21.0 0.0 0.0
myciel4 23 71 45 5 45(5) 30/30 45.0 0.0 0.0
myciel5 47 236 93 6 93(6) 30/30 93.0 0.0 0.0
myciel6 95 755 189 7 189(7) 30/30 189.0 0.0 0.1
myciel7 191 2 360 381 8 381(8) 30/30 381.0 0.0 1.1
anna 138 493 276 11 276(11) 30/30 276.0 0.0 0.1
david 87 406 237 11 237(11) 30/30 237.0 0.0 0.1
huck 74 301 243 11 243(11) 30/30 243.0 0.0 0.0
jean 80 254 217 10 217(10) 30/30 217.0 0.0 0.0
homer 561 1 628 1 157 13 1 155(13) 1/30 1 158.5 1.7 63.9
queen5.5 25 160 75 5 75(5) 30/30 75.0 0.0 0.0
queen6.6 36 290 138 7 138(8) 30/30 138.0 0.0 1.1
queen7.7 49 476 196 7 196(7) 30/30 196.0 0.0 0.0
queen8.8 64 728 291 9 291(9) 30/30 291.0 0.0 12.8
queen9.9 81 1 056 409 10 409(10) 9/30 410.5 1.2 1.2
queen8.12 96 1 368 624 12 624(12) 30/30 624.0 0.0 0.0
games120 120 638 443 9 443(9) 30/30 443.0 0.0 0.5
miles250 128 387 325 8 325(8) 30/30 325.0 0.0 0.4
miles500 128 1 170 ≤ 708 20 705(20) 30/30 705.0 0.0 1.0
fpsol2.i.1 496 11 654 3 403 65 3 403(65) 30/30 3 403.0 0.0 8.7
fpsol2.i.2 451 8 691 1 668 30 1 668(30) 30/30 1 668.0 0.0 5.7
fpsol2.i.3 425 8 688 1 636 30 1 636(30) 30/30 1 636.0 0.0 7.0
mug88_1 88 146 178 4 178(4) 30/30 178.0 0.0 0.1
mug88_25 88 146 178 4 178(4) 30/30 178.0 0.0 0.2
mug100_1 100 166 202 4 202(4) 30/30 202.0 0.0 0.2
mug100_25 100 166 202 4 202(4) 30/30 202.0 0.0 0.3
2-Insertions_3 37 72 62 4 62(4) 30/30 62.0 0.0 0.0
3-Insertions_3 56 110 92 4 92(4) 30/30 92.0 0.0 0.0
inithx.i.1 864 18 707 3 676 54 3 676(54) 30/30 3 676.0 0.0 7.6
inithx.i.2 645 13 979 2 050 31 2 050(31) 30/30 2 050.0 0.0 4.4
inithx.i.3 621 13 969 1 986 31 1 986(31) 30/30 1 986.0 0.0 1.8
mulsol.i.1 197 3 925 1 957 49 1 957(49) 30/30 1 957.0 0.0 0.1
mulsol.i.2 188 3 885 1 191 31 1 191(31) 30/30 1 191.0 0.0 0.2
mulsol.i.3 184 3 916 1 187 31 1 187(31) 30/30 1 187.0 0.0 0.2
mulsol.i.4 185 3 946 1 189 31 1 189(31) 30/30 1 189.0 0.0 0.2
mulsol.i.5 186 3 973 1 160 31 1 160(31) 30/30 1 160.0 0.0 0.2
zeroin.i.1 211 4 100 1 822 49 1 822(49) 30/30 1 822.0 0.0 0.2
zeroin.i.2 211 3 541 1 004 30 1 004(30) 30/30 1 004.0 0.0 0.1
zeroin.i.3 206 3 540 998 30 998(30) 30/30 998.0 0.0 0.1
DSJC125.1 125 736 326 5 326(7) 20/30 326.6 0.9 4.4
DSJC125.5 125 3 891 1 012 17 1 012(18) 2/30 1 020.0 3.9 3.5
DSJC125.9 125 6 961 2 503 44 2 503(44) 12/30 2 508.0 5.6 1.9
DSJC250.1 250 3 218 973 8 974(9) 0/30 990.5 8.3 17.3
DSJC250.5 250 15 668 3 214 28 3 230(31) 0/30 3 253.7 14.3 23.1
DSJC250.9 250 27 897 8 277 72 8 280(74) 0/30 8 322.7 22.3 5.6
DSJC500.1 500 12 458 2850 12 2 940(14) 0/30 3 013.4 28.3 50.4
DSJC500.5 500 62 624 10 910 48 11 101(53) 0/30 11 303.5 73.9 202.5
DSJC500.9 500 112 437 29 912 126 29 994(126) 0/30 30059.1 31.6 90.9
flat300_20_0 300 21 375 3 150 20 3 150(20) 30/30 3 150.0 0.0 0.0
flat300_26_0 300 21 633 3 966 26 3 966(26) 30/30 3 966.0 0.0 0.8
flat300_28_0 300 21 695 ≤ 4 261 28 4 238(30) 1/30 4 313.4 22.3 309.7
le450_5a 450 5 714 1 350 5 1 350(5) 30/30 1 350.0 0.0 0.7
le450_5b 450 5 734 1 350 5 1 350(5) 30/30 1 350.0 0.0 0.4
le450_5c 450 9 803 1 350 5 1 350(5) 30/30 1 350.0 0.0 0.2
le450_5d 450 9 757 1 350 5 1 350(5) 30/30 1 350.0 0.0 0.5
le450_15a 450 8 168 2 632 15 2 706(19) 0/30 2 742.6 13.8 41.3
le450_15b 450 8 169 2 642 15 2 724(19) 0/30 2 756.2 14.8 40.3
le450_15c 450 16 680 ≤ 3 866 15 3 491(16) 30/30 3 491.0 0.0 45.3
le450_15d 450 16 750 ≤ 3 921 15 3 506(17) 30/30 3 511.8 3.6 59.8
le450_25a 450 8 260 3 153 25 3 166(27) 0/30 3 176.8 4.4 39.2
le450_25b 450 8 263 3 366 25 3 366(26) 1/30 3 375.1 3.4 40.3
le450_25c 450 17 343 4 515 25 4 700(31) 0/30 4 773.3 25.2 75.3
le450_25d 450 17 425 4 544 25 4 722(29) 0/30 4 805.7 27.4 63.4

44 CHAPTER 3. MASC: A MEMETIC ALGORITHM FOR MINIMUM SUM COLORING

2013], MDS5 [Helmar and Chiarandini 2011], and MRLF [Li et al. 2009]. No averaged value appears in
the table for MA, MDS5 and MRLF since this information is not given in [Helmar and Chiarandini 2011,
Li et al. 2009, Moukrim et al. 2013]. Furthermore, “–” marks signal that some instances were not tested by
some approaches.

Since most reference algorithms give only results for a (small) subset of the considered benchmark,
it is difficult to analyze the performance of these algorithms by statistical tests. Hence, we compare the
performance between MASC and these reference algorithms one by one and summarize the comparisons
in Table 3.4. The first column of Table 3.4 indicates the name of the reference heuristics, followed by the
number #G of graphs tested by each algorithm and shown in Table 3.3. The last three columns give the
number of times MASC reports a better, equal, or worse result compared to each reference algorithm.

From Table 3.4, it can be observed that MASC obtains absolutely no worse results than MDS5 and
MRLF (see the last three lines). Furthermore, MASC gets better results than these algorithms for 9 and
16 instances respectively. Our algorithm is also quite competitive with EXSCOL, BLS and MA which
are the most recent and effective methods since it obtains better or equivalent results for 28, 22 and 49
graphs respectively. MASC reaches worse results than EXSCOL, BLS and MA only for 8, 3 and 8 graphs
respectively.

3.3.3 Experiments on large graphs

We turn now our attention to the performance of our MASC algorithm to color large graphs with at least
500 vertices. These large graphs are known to be quite difficult for almost all the existing sum coloring
approaches except EXSCOL which dominates the other heuristics particularly on large graphs. We show a
new experiment with MASC applied to color 17 large graphs. In this experiment, we run MASC 10 times
on each graph under exactly the same condition as in Section 3.3.1. The only difference is that we use the
solution of EXSCOL 1 as one of MASC’s 10 initial solutions while the 9 other initial solutions are generated
according to the procedure described in Section 3.2.2. With this experiment, we aimed to investigate two
interesting questions. Is it possible for MASC to improve the results of the powerful EXSCOL algorithm?
Does the initial population influence the performance of MASC? The computational outcomes of this ex-
periment are provided in Table 3.5.

In Table 3.5, column 4 presents the best known result (fb) in the literature, columns 5–6 present the
best result (f∗) and the average coloring sum (Avg.) of EXSCOL and columns 7–11 present detailed com-
putational results of our MASC algorithm: Best result obtained (f∗) with the number of required colors
(k∗), average coloring sum (Avg.), standard deviation (σ), and average running time to reach f∗ (t, in min-
utes). One notices that the values of columns 4 and 5 (fb and f∗) are identical for EXSCOL except for the
qg.order60 instance.

Table 3.5 shows that with the help of its search mechanism, our MASC algorithm is able to further
improve the best known results of 10 instances (entries in bold). This is remarkable given that very few
existing approaches can even equal the previous best known results. Moreover, if we contrast the results
of the three DSJC500.d graphs (d = 1, 5, 9) reported in Tables 3.2 and 3.5, it is clear that the initial popu-
lation impacts directly MASC’s outcomes. This indicates that the performance of MASC could be further
improved by using a more powerful coloring algorithm to generate the initial solutions of its population.

1. Available at http://www.info.univ-angers.fr/pub/hao/exscol.html

http://www.info.univ-angers.fr/pub/hao/exscol.html

3.3. EXPERIMENTAL RESULTS 45

Table 3.3: Comparisons of MASC with five state-of-the-art sum coloring algorithms
Graph EXSCOL BLS MA MDS5 MRLF MASC

Name fb f∗ Avg. f∗ Avg. f∗ f∗ f∗ f∗ Avg.
myciel3 21 21 21.0 21 21.0 21 21 21 21 21.0
myciel4 45 45 45.0 45 45.0 45 45 45 45 45.0
myciel5 93 93 93.0 93 93.0 93 93 93 93 93.0
myciel6 189 189 189.0 189 196.6 189 189 189 189 189.0
myciel7 381 381 381.0 381 393.8 381 381 381 381 381.0
anna 276 283 283.2 276 276.0 276 276 277 276 276.0
david 237 237 238.1 237 237.0 237 237 241 237 237.0
huck 243 243 243.8 243 243.0 243 243 244 243 243.0
jean 217 217 217.3 217 217.0 217 217 217 217 217.0
homer 1 157 – – – – 1 157 – – 1 155 1 158.5
queen5.5 75 75 75.0 75 75.0 75 75 75 75 75.0
queen6.6 138 150 150.0 138 138.0 138 138 138 138 138.0
queen7.7 196 196 196.0 196 196.0 196 196 196 196 196.0
queen8.8 291 291 291.0 291 291.0 291 291 303 291 291.0
queen9.9 409 – – – – 409 – – 409 410.5
queen8.12 624 – – – – 624 – – 624 624.0
games120 443 443 447.9 443 443.0 443 443 446 443 443.0
miles250 325 328 333.0 327 328.8 325 325 334 325 325.0
miles500 ≤ 708 709 714.5 710 713.3 708 712 715 705 705.0
fpsol2.i.1 3 403 – – – – 3 403 3 403 – 3 403 3 403.0
fpsol2.i.2 1 668 – – – – 1 668 – – 1 668 1 668.0
fpsol2.i.3 1 636 – – – – 1 636 – – 1 636 1 636.0
mug88_1 178 – – – – – 178 – 178 178.0
mug88_25 178 – – – – – 178 – 178 178.0
mug100_1 202 – – – – – 202 – 202 202.0
mug100_25 202 – – – – – 202 – 202 202.0
2-Insertions_3 62 – – – – – 62 – 62 62.0
3-Insertions_3 92 – – – – – 92 – 92 92.0
inithx.i.1 3 676 – – – – 3 676 – – 3 676 3 676.0
inithx.i.2 2 050 – – – – 2 050 – – 2 050 2 050.0
inithx.i.3 1 986 – – – – 1 986 – – 1 986 1 986.0
mulsol.i.1 1 957 – – – – 1 957 – – 1 957 1 957.0
mulsol.i.2 1 191 – – – – 1 191 – – 1 191 1 191.0
mulsol.i.3 1 187 – – – – 1 187 – – 1 187 1 187.0
mulsol.i.4 1 189 – – – – 1 189 – – 1 189 1 189.0
mulsol.i.5 1 160 – – – – 1 160 – – 1 160 1 160.0
zeroin.i.1 1 822 – – – – 1 822 – – 1 822 1 822.0
zeroin.i.2 1 004 – – – – 1 004 1 004 – 1 004 1 004.0
zeroin.i.3 998 – – – – 998 998 – 998 998.0
DSJC125.1 326 326 326.7 326 326.9 326 326 352 326 326.6
DSJC125.5 1 012 1 017 1 019.7 1 012 1 012.9 1 013 1 015 1 141 1 012 1 020.0
DSJC125.9 2 503 2 512 2 512.0 2 503 2 503.0 2 503 2 511 2 653 2 503 2 508.0
DSJC250.1 973 985 985.0 973 982.5 983 977 1 068 974 990.5
DSJC250.5 3 214 3 246 3 253.9 3 219 3 248.5 3 214 3 281 3 658 3 230 3 253.7
DSJC250.9 8 277 8 286 8 288.8 8 290 8 316.0 8 277 8 412 8 942 8 280 8 322.7
DSJC500.1 2 850 2 850 2 857.4 2 882 2 942.9 2 897 2 951 3 229 2 940 3 013.4
DSJC500.5 10 910 10 910 10 918.2 11 187 11 326.3 11 082 11 717 12 717 11 101 11 303.5
DSJC500.9 29 912 29 912 29 936.2 30 097 30 259.2 29 995 30 872 32 703 29 994 30 059.1
flat300_20_0 3 150 3 150 3 150.0 – – 3 150 – – 3 150 3 150.0
flat300_26_0 3 966 3 966 3 966.0 – – 3 966 – – 3 966 3 966.0
flat300_28_0 ≤ 4 261 4 282 4 286.1 – – 4 261 – – 4 238 4 313.4
le450_5a 1 350 – – – – 1 350 – – 1 350 1 350.0
le450_5b 1 350 – – – – 1 350 – – 1 350 1 350.0
le450_5c 1 350 – – – – 1 350 – – 1 350 1 350.0
le450_5d 1 350 – – – – 1 350 – – 1 350 1 350.0
le450_15a 2 632 2 632 2 641.9 – – 2 681 – – 2 706 2 742.6
le450_15b 2 642 2 642 2 643.4 – – 2 690 – – 2 724 2 756.2
le450_15c ≤ 3 866 3 866 3 868.9 – – 3 943 – – 3 491 3 491.0
le450_15d ≤ 3 921 3 921 3 928.5 – – 3 926 – – 3 506 3 511.8
le450_25a 3 153 3 153 3 159.4 – – 3 178 – – 3 166 3 176.8
le450_25b 3 366 3 366 3 371.9 – – 3 379 – – 3 366 3 375.1
le450_25c 4 515 4 515 4 525.4 – – 4 648 – – 4 700 4 773.3
le450_25d 4 544 4 544 4 550.0 – – 4 696 – – 4 722 4 805.7

46 CHAPTER 3. MASC: A MEMETIC ALGORITHM FOR MINIMUM SUM COLORING

Table 3.4: MASC vs. five state-of-the-art sum coloring algorithms
Competitor #G

Best results of MASC (f∗)
Better Equal Worse

EXSCOL [Wu and Hao 2012] 36 12 16 8
BLS [Benlic and Hao 2012] 25 5 17 3
MA [Moukrim et al. 2013] 57 10 39 8
MDS5 [Helmar and Chiarandini 2011] 34 9 25 0
MRLF [Li et al. 2009] 25 16 9 0

Table 3.5: Results of MASC on 17 large graphs with at least 500 vertices
Characteristics of the graphs EXSCOL MASC

Name n m fb f∗ Avg. k f∗(k∗) Avg. σ t
DSJC500.1 500 12 458 2 850 2 850 2 857.4 12 2 841(14) 2 844.1 3.2 28.9
DSJC500.5 500 62 624 10 910 10 910 10 918.2 48 10 897(51) 10 905.8 4.6 73.3
DSJC500.9 500 112 437 29 912 29 912 29 936.2 126 29 896(131) 29 907.8 5.8 59.0
DSJC1000.1 1 000 49 629 9 003 9 003 9 017.9 20 8 995(22) 9 000.5 3.0 70.7
DSJC1000.5 1 000 249 826 37 598 37 598 37 673.8 83 37 594(87) 37 597.6 1.2 200.4
DSJC1000.9 1 000 449 449 103 464 103 464 103 531.0 223 103 464(231) 103 464.0 0.0 125.9
flat1000_50_0 1 000 245 000 25 500 25 500 25 500.0 50 25 500(50) 25 500.0 0.0 0.1
flat1000_60_0 1 000 245 830 30 100 30 100 30 100.0 60 30 100(60) 30 100.0 0.0 114.6
flat1000_76_0 1 000 246 708 37 167 37 167 37 213.2 82 37 167 (85) 37 167.0 0.0 1.1
latin_sqr_10 900 307 350 42 223 42 223 42 392.7 98 41 444(100) 41 481.5 19.1 101.2
wap05 905 43 081 13 680 13 680 13 718.4 50 13 669(51) 13 677.8 3.7 3.3
wap06 947 43 571 13 778 13 778 13 830.9 46 13 776(48) 13 777.8 0.6 4.1
wap07 1 809 103 368 28 629 28 629 28 663.8 46 28 617(50) 28 624.7 3.8 12.4
wap08 1 870 104 176 28 896 28 896 28 946.0 45 28 885(50) 28 890.9 3.2 15.1
qg.order30 900 26 100 13 950 13 950 13 950.0 30 13 950(30) 13 950.0 0.0 3.8
qg.order40 1 600 62 400 32 800 32 800 32 800.0 40 32 800(40) 32 800.0 0.0 11.8
qg.order60 3 600 212 400 109 800 110 925 110 993.0 60 109 800(60) 109 800.0 0.0 290.6

3.4 Analysis of MASC

In this section, we investigate the influence of three important ingredients of the proposed memetic
algorithm, i.e., the multi-parent crossover operator, the combined neighborhood and the improvement of
MASC over the initial population. Experiments were based on 16 selected graphs of different types, for
which some reference algorithms cannot achieve the best known results. Hence, these selected instances
can be considered to be difficult and representative.

3.4.1 Influence of the multi-parent crossover operator

For our memetic algorithm, it is relevant to evaluate the effectiveness of its crossover operator. To verify
this, we carry out experiments on the 16 selected graphs and run both MASC (using the MGPX crossover)
and DNTS (without MGPX) for 30 times (with the same parameter µ1, µ2, and µρ settings as defined in
Table 3.1). The DNTS (without MGPX) starts with a single solution which is generated for MASC. DNTS
stops after a maximum number of 5× 105 iterations in order to make sure that MASC and DNTS are given
the same search effort. The results are given in Table 3.6.

From Table 3.6, one notices that DNTS equals and improves respectively 5 and 3 best known results
while MASC equals and improves respectively 5 and 11 best known results. Furthermore, the last column
t-test indicates whether the observed difference between MASC and DNTS is statistically significant when
a 95% confidence t-test is performed in terms of the best result obtained (f∗). If MASC and DNTS achieve
always the same results, t-test column is marked by ‘-’. The t-test indicates that MASC is statistically
better than DNTS for 12 out of 16 cases except for the instances where DNTS can achieve the best known
results (fb). These comparative results provide clear evidences that the MGPX crossover operator plays an
important role in the MASC algorithm.

3.4. ANALYSIS OF MASC 47

Table 3.6: Comparative results of MASC and DNTS
Graph MASC DNTS

t-testName fb f∗ Avg. f∗ Avg.
anna 276 276 276.0 276 276.0 -
queen6.6 138 138 138.0 138 138.0 -
miles250 325 325 325.0 325 325.0 -
miles500 ≤ 709 705 705.0 705 705.6 Y
DSJC125.1 326 326 326.6 326 328.6 Y
DSJC125.5 1 012 1 012 1 020.0 1 016 1 029.8 Y
DSJC125.9 2 503 2 503 2 508.0 2 506 2 530.1 Y
DSJC250.1 973 974 990.5 981 997.7 Y
DSJC250.5 3 219 3 230 3 253.7 3 234 3 301.7 Y
DSJC250.9 ≤ 8 286 8 280 8 322.7 8 321 8 381.9 Y
flat300_26_0 3 966 3 966 3 966.0 3 966 3 966.0 -
flat300_28_0 ≤ 4 282 4 238 4 313.4 4 303 4 406.3 Y
le450_15c ≤ 3 866 3 491 3 491.0 3 491 3 492.1 Y
le450_15d ≤ 3 921 3 506 3 511.8 3 506 3 515.0 Y
le450_25c 4 515 4 700 4 773.3 4 749 4 803.9 Y
le450_25d 4 544 4 722 4 805.7 4 784 4 835.3 Y

3.4.2 Influence of the neighborhood combination

The neighborhood is an important element that influences the local search procedure. Our proposed al-
gorithm relies on two different neighborhoods: N1 (neighborhood based on connected components) and N2

(neighborhood based on the one-vertex-move) which are explored in a token-ring way (see Section 3.2.4).
In this section, we investigate the interest of this combined use of the two neighborhoods. For this purpose,
we carried out experiments on the 16 selected graphs to compare the original Double-Neighborhood Tabu
Search (DNTS) with two variants which uses only one neighborhood N1 or N2. We use below TSN1 and
TSN2 to denote these two variants. These three TS procedures (DNTS, TSN1 and TSN2) are run under the
same stop condition, i.e. limited to 5× 105 iterations.

We run 30 times these TS procedures to solve each of the 16 selected graphs and report the computa-
tional outcomes (the best and average results) in Table 3.7. One easily observes that DNTS obtains better or
equal results compared to TSN1 and TSN2 for all the instances in terms of the best known result (f∗) and the
average result (Avg.). The t-test t− testNi

(i = 1, 2) in the last two columns confirms that with a 95% con-
fidence level DNTS is slightly or significantly better than TSN1 and TSN2. This experiment demonstrates
thus the advantage of the token-ring combination of the two neighborhoods compared to each individual
neighborhood.

Table 3.7: Comparative results of the tabu search improvement method according to the neighborhood
employed

Graph DNTS TSN2 TSN1 t− testN2 t− testN1Name fb f∗ Avg. f∗ Avg. f∗ Avg.
anna 276 276 276.0 282 285.8 276 276.0 Y -
queen6.6 138 138 138.0 138 138.4 138 138.0 Y -
miles250 325 325 325.0 346 361.6 335 340.7 Y Y
miles500 ≤ 709 705 705.6 722 736.0 719 730.9 Y Y
DSJC125.1 326 326 328.6 334 340.8 329 334.0 Y Y
DSJC125.5 1 012 1016 1029.8 1 031 1 045.1 1 020 1 031.8 Y N
DSJC125.9 2 503 2 506 2 530.1 2 514 2 557.6 2 512 2 538.3 Y N
DSJC250.1 973 981 997.7 1 004 1 021.3 1 022 1 039.9 Y Y
DSJC250.5 3 219 3 234 3 301.7 3 271 3 323.9 3 260 3 306.5 Y N
DSJC250.9 ≤ 8 286 8 321 8 381.9 8 347 8 405.6 8 318 8 387.5 Y N
flat300_26_0 3 966 3 966 3 966.0 3 966 3 966.0 3 966 3 966.0 - -
flat300_28_0 ≤ 4 282 4 303 4 406.3 4 347 4 427.8 4 332 4 435.5 N Y
le450_15c ≤ 3 866 3 491 3 492.5 3 503 3 517.2 3 508 3 551.8 Y Y
le450_15d ≤ 3 921 3 506 3 515.0 3 528 3 538.5 3 526 3 568.2 Y Y
le450_25c 4 515 4 749 4 803.9 4 828 4 893.9 5 005 5 067.4 Y Y
le450_25d 4 544 4 784 4 835.3 4 848 4 907.0 5 035 5 119.1 Y Y

48 CHAPTER 3. MASC: A MEMETIC ALGORITHM FOR MINIMUM SUM COLORING

Table 3.8: Comparative results of MASC and TABUCOL
Graph MASC TABUCOL

t-testName fb f∗ Avg. f∗ Avg.
anna 276 276 276.0 371 374.4 Y
queen6.6 138 138 138.0 141 141.0 -
miles250 325 325 325.0 429 436.6 Y
miles500 ≤ 709 705 705.0 1 040 1 066.0 Y
DSJC125.1 326 326 327.0 337 348.2 Y
DSJC125.5 1 012 1 012 1 021.5 1 028 1 047.0 Y
DSJC125.9 2 503 2 503 2 509.6 2 523 2 563.9 Y
DSJC250.1 973 985 993.8 1 022 1 059.1 Y
DSJC250.5 3 219 3 230 3 263.2 3 279 3 312.4 Y
DSJC250.9 ≤ 8 286 8 290 8 319.5 8 338 8 373.8 Y
flat300_26_0 3 966 3 966 3 966.0 3 966 3 966.0 -
flat300_28_0 ≤ 4 282 4 238 4 313.4 4 363 4 430.4 Y
le450_15c ≤ 3 866 3 491 3 491.0 3 532 3 584.7 Y
le450_15d ≤ 3 921 3 506 3 512.6 3 567 3 591.8 Y
le450_25c 4 515 4 743 4 798.3 5 384 5 448.6 Y
le450_25d 4 544 4 750 4 833.4 5 226 5 464.4 Y

3.4.3 Improvements of MASC over TABUCOL
Recall that the initial population is generated by the well-known graph coloring procedure TABUCOL.

It is interesting to know to which extent our MASC procedure (which is specially designed for the Min-
imum Sum Coloring Problem) can improve the quality of solutions generated by TABUCOL in terms of
sum of colors. For this purpose, we re-run 30 times our MASC procedure on the set of 16 selected graphs.
Like for the previous experiments, we report in Table 3.8 the best and average objective value f∗ both for
TABUCOL (initial population) and MASC (final population). Given the stochastic nature of TABUCOL
and MASC, some results reported in this experiment may be slightly different from those reported in Table
3.2.

From Table 3.8, one easily observes that MASC improves significantly the initial results generated by
TABUCOL. Indeed, the best and average sums of colors achieved by MASC are systematically smaller
(better) than those of TABUCOL for all the graphs except in one case (flat300_26_0) for which TABUCOL
alone achieves already the best known result. Furthermore, the last column confirms with a 95% confidence
level the significance of the improvements of MASC over the solutions provided by TABUCOL.

3.5 Conclusion
This chapter deals with the minimum sum coloring problem (MSCP), which is an important general-

ization of the classic vertex coloring problem (VCP). To approximate the MSCP, we proposed a memetic
algorithm (MASC) which employs an effective tabu search procedure with a combination of two neighbor-
hoods, a multi-parent crossover operator and a population updating mechanism to balance intensification
and diversification.

We assessed the performance of MASC on 77 frequently used graphs from the DIMACS and COLOR
2002-2004 competitions. MASC can improve 15 best known upper bounds including 10 large and very
hard graphs with at least 500 vertices while equaling 54 previous best results. Compared with five recent
and effective algorithms which cover the best known results for the tested instances, our MASC algorithm
remains quite competitive.

Furthermore, we investigated two important components of the proposed algorithm. The experiments
demonstrate the relevance of the multi-parent crossover operator and the combined neighborhood for the
overall performance of MASC. Finally, we showed the proposed MASC approach significantly improves
the classical tabu search graph coloring approach TABUCOL for the minimum sum coloring problem.

4
HSA: Hybrid Search Algorithm for minimum
sum coloring

In this chapter, we further study the minimum sum coloring problem (MSCP). We are interested in
the computation of both lower and upper bounds of the MSCP and introduce an effective hybrid search
algorithm (HSA) which improves on upper bounds of our previous MASC algorithm and also provides
lower bounds. The proposed algorithm relies on a joint use of two dedicated crossover operators (to generate
offspring solutions) and an iterated double-phase tabu search procedure (to improve offspring solutions).
A distance-and-quality updating rule is used to maintain a healthy diversity in the population. We show
extensive experimental results to demonstrate the effectiveness of the proposed algorithm and provide a first
landscape analysis of the MSCP. Besides, the differences with our previous MASC algorithm are discussed
in Section 4.2.6. This work is detailed in [Jin and Hao 2015c].

Contents
4.1 Introduction . 50
4.2 Components of the HSA approach . 50

4.2.1 Search space and evaluation function . 51
4.2.2 Initial population . 51
4.2.3 A double-crossover recombination procedure . 51
4.2.4 An iterated double-phase tabu search procedure 53
4.2.5 Population updating . 55
4.2.6 Discussions . 56

4.3 The lower bounds of the minimum sum coloring problem 57
4.4 Experimental results . 57

4.4.1 Experimental protocol . 57
4.4.2 Computational results . 58
4.4.3 Comparisons with four state-of-the-art algorithms for the lower bounds 60
4.4.4 Comparisons with four state-of-the-art algorithms for the upper bounds 63

4.5 Analysis of HSA . 65
4.5.1 Analysis of the double-crossover operator . 65
4.5.2 Landscape analyses . 67

4.6 Conclusion . 68

49

50 CHAPTER 4. HSA: HYBRID SEARCH ALGORITHM FOR MINIMUM SUM COLORING

4.1 Introduction

In this chapter, we further study the minimum sum coloring problem which is formally introduced in
Chapter 1 and we are interested in the computation of both lower and upper bounds of the MSCP. In order
to approximate these two optimization problems, we propose an effective hybrid search algorithm (HSA)
and summarize the main contributions of this work as follows.

– From the algorithm perspective, the HSA approach integrates several special features to ensure a
high search efficiency. These include an original recombination mechanism to generate offspring
solutions and an iterated double-phase tabu search procedure to ensure local optimization. The solu-
tion recombination mechanism combines a diversification-guided crossover operator and a grouping-
guided crossover operator to create diversified and promising offspring solutions. The double-phase
tabu search procedure is designed to handle both feasible and unfeasible solutions. A dedicated
perturbation mechanism is also introduced to escape local optima. Finally, a population updating
procedure is employed to maintain a healthy diversity and high-quality population.

– From the computational perspective, we evaluate the HSA approach on 94 well-known DIMACS and
COLOR 2002-2004 benchmark instances. The computational results show that our HSA algorithm
can achieve the best-known results for most of these benchmark instances established by several best
performing algorithms. Moreover, HSA finds 51 improved best solutions (24 improved upper bounds
and 27 improved lower bounds).

The rest of this chapter is organized as follows. Section 4.2 presents the proposed algorithm for comput-
ing upper bounds of the MSCP. Section 4.3 explains the adjustments of the proposed algorithm to compute
lower bounds. Section 4.4 shows extensive computational results of HSA and comparisons with the state-
of-the-art algorithms. Before concluding, Section 4.5 investigates and analyzes some key issues of the
proposed algorithm.

4.2 Components of the HSA approach

The proposed hybrid search algorithm for the MSCP follows the general memetic framework which
combines population-based evolutionary search and local optimization [Moscato and Cotta 2003, Neri
et al. 2012]. Our HSA algorithm repeatedly alternates between the double-crossover procedure that gen-
erates new offspring solutions (Section 4.2.3) and the iterated double-phase tabu search procedure (IDTS)
that optimizes the newly generated offspring solutions (Section 4.2.4). As soon as an offspring solution
is improved by IDTS, the population is accordingly updated based on the solution quality and population
diversity (Section 4.2.5).

The general scheme of our HSA algorithm for the MSCP is summarized in Algorithm 4. HSA starts
with an initial population of solutions (line 3, see Sect. 4.2.2) and then repeats a number of generations until
a stop condition is met (lines 5–15, in our case, a time limit is used as stop condition). At each generation,
two solutions from the population are selected at random to serve as parent solutions (line 6). Then, the
double-crossover recombination procedure is employed to create two offspring solutions (line 7) which are
further improved by the iterated double-phase tabu search procedure (IDTS) (lines 9). Subsequently, the
population updating rule decides whether the improved solution should be inserted into the population and
which existing solution is to be replaced (lines 13). In the following subsections, we describe these basic
components.

4.2. COMPONENTS OF THE HSA APPROACH 51

Algorithm 4 An overview of the HSA algorithm for the MSCP
1: Input: A graph G, population size p
2: Output: The best sum coloring c∗ found and its sum of colors f∗
3: Population_Initialization(P, p) /* Generate p initial solutions, Sect. 4.2.2 */
4: f∗ ← minc∈Pf(c) /* f∗ records the best objective value found so far */
5: repeat
6: (P1, P2)← Selection(P) /* Select at random parents for crossover */
7: (o1, o2) ← Double-Crossover(P1, P2) /* Use two crossover operators to generate two offspring o1

and o2, Sect. 4.2.3 */
8: for each i ∈ {1, 2} do
9: o← IDTS(oi) /* Improve oi with the IDTS procedure, Sect.4.2.4*/

10: if f(o) is better than f∗ then
11: f∗ ← f(o); c∗ ← o
12: end if
13: Population_Updating(P, o) /* Use offspring o to update the population, Sect. 4.2.5 */
14: end for
15: until Stop condition is met
16: return f∗, c∗

4.2.1 Search space and evaluation function

A proper k-coloring satisfies the coloring constraint such that any two adjacent vertices {u, v} ∈ E
belong to two different color classes. A k-coloring is improper if the coloring constraint is violated. The
search space of our HSA algorithm contains the set Ω of all possible partitions of V into k color classes
including both the proper and improper k-colorings. Given a proper coloring, its objective value is given by
the f function presented in Eq. (1.1). For two proper k-coloring solutions c1 ∈ Ω and c2 ∈ Ω, c1 is better
than c2 if and only if f(c1) < f(c2). We discuss the evaluation of improper colorings in Section 4.2.4.

4.2.2 Initial population

The initial population of our HSA algorithm is composed of p proper k-colorings. To create an individ-
ual, we use the maximum independent set algorithm SBTS [Jin and Hao 2015b] to generate in a step-by-step
way k (k is not fixed) mutually disjoint independent sets (The SBTS algorithm is described in the Appendix
of this thesis). At each step, we apply SBTS to extract a maximal independent set Vi from the graph G and
then remove from G the vertices of Vi and their incident edges. This procedure is repeated until the graph
becomes empty. The resulting independent sets {V1, . . . , Vk} form a proper k-coloring.

Since SBTS is a stochastic local search algorithm, each SBTS run generally leads to a different k-
coloring. Each new k-coloring is inserted into the population P if it does not duplicate any existing indi-
vidual of the population. Otherwise, this k-coloring is discarded and another new individual is generated.
This process is repeated until the population is filled up with p individuals (i.e., proper k-colorings). These
individuals are generally of good quality and serve as the inputs for the double-crossover recombination
procedure.

4.2.3 A double-crossover recombination procedure

Recombination is an important ingredient for population-based memetic approaches. In HSA, we pro-
pose a double-crossover recombination procedure which jointly uses two different operators to generate
suitable offspring solutions: The diversification-guided crossover operator (DGX) and the grouping-guided

52 CHAPTER 4. HSA: HYBRID SEARCH ALGORITHM FOR MINIMUM SUM COLORING

crossover operator (GGX). At each generation of the HSA algorithm, HSA first randomly chooses two par-
ents from the population which have not been selected to serve as parents in the previous generation, and
then employs DGX and GGX to generate two offspring solutions respectively. Each offspring solution is
finally submitted to the iterated double-phase tabu search procedure to improve its quality (minimizing its
sum of colors).

Diversification-guided crossover

The diversification-guided crossover (DGX) aims to generate offspring solutions whose quality and
diversity are both reasonably respected. Given two parent solutions (i.e., two proper k-colorings) P1 =
{V 1

1 , . . . , V
1
k1
} (|V 1

1 | ≥ . . . ≥ |V 1
k1
|) and P2 = {V 2

1 , . . . , V
2
k2
} (|V 2

1 | ≥ . . . ≥ |V 2
k2
|). The offspring solution

o = {V o
1 , . . . , V

o
ko
} is constructed as follows.

Step 1: Let kmin = min{k1, k2} and kmax = max{k1, k2}. We first transmit the vertices that
share the same colors in both parents such that they keep their colors in the offspring. Formally, we set
V o
i = V 1

i ∩ V 2
i , i = 1, . . . , kmin.

Step 2: Let U = V \
∪kmin

i=1 V o
i be the set of unassigned vertices in o. We pick randomly m (see below)

vertices from U to form Um. Then for each vertex v ∈ Um, v conserves its color of parent P1 in o, i.e., if
v ∈ V 1

i (i = 1, . . . , k1), v is added into V o
i .

Step 3: Finally, for each remaining vertex u of U \Um, u conserves its color from parent P2 in o, i.e., if
u ∈ V 2

j (j = 1, . . . , k2), u is added into V o
j .

The DGX operator uses m to control the relative importance of P1 and P2 with respect to the generated

offspring solution o. In order to avoid a dominance of one parent over the other parent, we set m = ⌊1
3
|U |⌋

+ rand(⌊1
3
|U |⌋) where |U | is the cardinality of U and rand(N) gives a random number in {1, . . . ,N}.

This value for m ensures that o is separated from either parent by at least ⌊1
3
|U |⌋ vertices.

The above steps have a time complexity of O(n). Since we need to maintain the order |V1| ≥ . . . ≥ |Vk|
of the color classes of the offspring, the total complexity of each crossover operation is O(n× k).

Fig. 4.1 shows an illustrative example with 3 color classes and 10 vertices represented by A,B,. . . , J .
At step 1, the unique common vertex {A} of both parents is directly transmitted to the offspring solution.
Then, the remaining vertices {B,C,D,E, F,G,H, I, J} are collected in U and m is assumed to be 4. At
step 2, we randomly choose m = 4 vertices from U (say {B,E,H, I}) and preserve them from parent
P1 into the offspring. Finally, the remaining unassigned vertices (i.e., {C,D, F,G, J}) are preserved from
parent P2 to complete the offspring solution.

One observes that the offspring solution generated by the DGX operator may be an improper k-coloring.
If this happens, it is repaired by the iterated double-phase tabu search procedure described in Section 4.2.4.

Grouping-guided crossover

Unlike the previous DGX operator, the grouping-guided crossover (GGX) aims to transmit whole
color classes from parents to offspring. Given two parent solutions (i.e., two proper k-colorings) P1 =
{V 1

1 , . . . , V
1
k1
} (|V 1

1 | ≥ . . . ≥ |V 1
k1
|) and P2 = {V 2

1 , . . . , V
2
k2
} (|V 2

1 | ≥ . . . ≥ |V 2
k2
|). The offspring solution

o = {V o
1 , . . . , V

o
ko
} is constructed in two steps.

4.2. COMPONENTS OF THE HSA APPROACH 53

G H I J A B C D E F

C D E F A G I B H J

P

P

1

2

o

G H I J A B C D E F

C D E F A G I B H J

P

P

1

2

o

G H I J A B C D E F

C D E F A G I B H J

P

P

1

2

o

G H I J A B C D E F

C D E F A G I B H J

P

P

1

2

o A

A B H I EA B GC D H I F E J

step 1

step 2

step 3

P is selected1

P is selected2

m = 3+rand(3) = 4
U = {B C D E F G H I J}

Figure 4.1: An illustrative example of the DGX crossover.

G H I J A B C D E F

C D E F A G I B H J

P

P

1

2

o

G H I J A B C D E F

C D E F A G I B H J

P

P

1

2

o

G H I J A B C

C D E F A G I B H J

P

P

1

2

o

G H I J A B C D E F

C D E F A G I B H J

P

P

1

2

o

step 1

step 2

step 3

C D E F

C D E FC D E F G H I J A B

D E F

P is selected

P is selected1

2

l = rand(2) = 1

Figure 4.2: An illustrative example of the GGX crossover.

Step 1: We generate an integer l = rand(⌈2
3
k2⌉) and transmit the first l color classes from one parent

(randomly selected, say P2) to construct a partial offspring solution o = {V o
1 , . . . , V

o
l }. We remove the

vertices v (v ∈ o) from the other parent (P1).

Step 2: We transmit the non-empty color classes of P1 to form the l+1, . . . , ko color classes of offspring
o such that a complete offspring solution is constructed.

The value for l is based on the consideration that we wish to introduce some randomness when deciding
the number of transmitted color classes while ensuring some distance between the offspring and each of its
parent. An example of the GGX crossover is provided in Fig. 4.2 where l takes the value of 1. The time
complexity of this GGX crossover is O(n× k).

Contrary to the DGX crossover, the GGX operator ensures that offspring solutions are always proper
k-colorings. By conserving pertinent properties (color classes) of parent solutions, the offspring colorings
are generally of good quality. In the shown example, the offspring even has a better quality than its parents
even if this is not true in general.

4.2.4 An iterated double-phase tabu search procedure

Since the recombination procedure may lead to both feasible and unfeasible colorings, we devise an
iterated double-phase tabu search (IDTS) able to repair unfeasible solutions while minimizing the sum of
colors.

54 CHAPTER 4. HSA: HYBRID SEARCH ALGORITHM FOR MINIMUM SUM COLORING

is proper

Yes

No
TSF

TSO

Perturbation

c

c c’

Figure 4.3: An illustration for the IDTS procedure.

The overall IDTS procedure is illustrated in Fig. 4.3. It uses a double-phase tabu search for intensified
search and a perturbation mechanism for diversification. The intensification phase applies a tabu search
procedure (denoted by TSO) to improve the quality of a proper coloring according to the objective function
and another tabu search procedure (denoted by TSF) to reestablish the feasibility of an improper coloring.
IDTS starts by checking whether a given solution c is a proper coloring. If this is the case, TSO is called
to improve its sum of colors. Otherwise, TSF is applied for conflict-repairing to attain a proper coloring
which is further improved by TSO according to the objective function. Notice that, to repair an improper
coloring, TSF may increase the number k of used colors until obtaining a proper coloring. The perturbation
mechanism is applied to escape local optima when TSO stagnates, i.e., no improved solution is reached after
µO consecutive iterations. The perturbed solution is submitted to the next round of the double-phase tabu
search process until a maximum number of iterations fixed by maxIter is reached.

A double-phase tabu search

The two tabu search procedures TSO and TSF follow the general principle of the tabu search method-
ology [Glover and Laguna 1999]. Both procedures iteratively visit a series of solutions following the given
neighborhood (see below). At each iteration, a best neighboring solution is chosen (ties are broken ran-
domly) to replace the current solution, even if the selected solution does not improve the current solution.
To avoid cycling, a tabu list is used to avoid a visited solution to be re-visited during the next TT iterations
(TT is called the tabu tenure). Nevertheless, a forbidden solution is always accepted if it is better than the
best solution found so far (called aspiration criterion). The tabu search TSF stops once a proper coloring
is obtained and the TSO procedure stops when the best solution cannot be improved within a given number
of solution transitions.

Although both TSF and TSO employ the scheme of tabu search, they use different neighborhoods, eval-
uation functions and tabu tenures.

– Neighborhood: The neighborhood of the double-phase tabu search can be described by the “one-
move” operator mv(v, Vi, Vj) which displaces a vertex v from its original color class Vi to another
color class Vj (i ̸= j). Given a k-coloring c = {V1, . . . , Vk}, a vertex v ∈ Vi is conflicting if v shares
the same color with at least one adjacent vertex v′, i.e., ∃v′ ∈ Vi and v′ ̸= v, {v′, v} ∈ E. The
TSF procedure (to repair improper colorings) operates with conflicting vertices. At each iteration,
it displaces a single conflicting vertex v. For a k-coloring c with nbconf conflicting vertices, the size
of this neighborhood is bounded by O(nbconf × k). The TSO procedure (to minimize the sum of
colors) applies mv(v, Vi, Vj) to move a vertex v ∈ Vi to another color class Vj such that the resulting
k-coloring remains proper (∀v′ ∈ Vj, {v′, v} /∈ E). Hence, the size of this neighborhood is bounded
by O(n × k). In our implementation, we employ an incremental evaluation technique [Fleurent and
Ferland 1996, Galinier and Hao 1999] to efficiently evaluate the whole neighborhood.

4.2. COMPONENTS OF THE HSA APPROACH 55

– Evaluation function: Both TSF and TSO scan their whole neighborhood to find a best neighboring
solution to replace the current solution. The TSF procedure evaluates all the neighbor solutions by
considering both the variation in the number of conflicting vertices ∆conf(v, Vi, Vj) and the varia-
tion in the sum of colors ∆f(v, Vi, Vj) when applying the mv(v, Vi, Vj) operator. The evaluation of
each candidate move is given in Eq. (4.1) which is adopted from [Benlic and Hao 2012]. For two
neighboring solutions s′ and s′′, s′ is better than s′′ if and only if ∆(s′) < ∆(s′′).

∆ = ∆conf(v, Vi, Vj)×∆f ′,where

∆f ′ =

{
abs(∆f(v, Vi, Vj)) + k + 1, if ∆f(v, Vi, Vj) < 0

k −∆f(v, Vi, Vj) + 1, otherwise
(4.1)

The TSO procedure evaluates all the neighboring solutions only by considering the variation in the
sum of colors ∆f(v, Vi, Vj) in terms of the objective function defined by Eq. (1.1).

– Tabu tenure: Once a “one-move” mv(v, Vi, Vj) is performed to transform the incumbent coloring
c, vertex v cannot be moved back to the color class Vi for the next TT iterations. The tabu tenure
TTF for TSF is dynamically determined by TTF = rand(10) + 0.6 ∗ nbconf where rand(10) takes
a random number in {1, . . . , 10} and nbconf is the number of conflicting vertices. The tabu tenure
TTO for TSO is dynamically determined by TTO = rand(10) + 0.1 ∗ f(c) where c is the incumbent
coloring.

Perturbation mechanism

The above double-phase tabu search is generally able to attain solutions of good quality but can get
stuck in local optima. To help the procedure to continue its search, we apply a perturbation mechanism to
bring the search out of the problematic local optima. The perturbation consists in employing a (1, r)-swap
(r = 0, 1, 2, . . .) in the case that the current iterations itercur%100 ̸= 0, otherwise, replacing the current
solution by the local optimal solution. The (1, r)-swap procedure is employed in the following way. First,
we randomly choose a vertex v (v ∈ Vi) and a color class Vj (Vj ̸= Vi). Then, we identify all the vertices
v′ in Vj which are adjacent to v ({v′, v} ∈ E). Finally, we move v from Vi to Vj and move all the vertices
v′ from Vj to Vi. These vertices are forbidden to move back to their original color class for the next TTP

iterations (TTP = rand(10) + 0.1 ∗ f(c)). This perturbation mechanism may introduce conflicts to the
current solution such that the search can transit between the feasible and infeasible regions. From this
perturbed solution, the double-phase tabu search procedure is relaunched.

4.2.5 Population updating
In order to avoid premature convergence of the search process, the population updating procedure is

critical for our hybrid search algorithm. The population updating rule decides whether and how an off-
spring solution, which is optimized by the IDTS procedure, should replace an existing individual of the
population. Basically, our updating rule is based on both solution quality and distance between solutions in
the population [Lü and Hao 2010, Porumbel et al. 2010, Sörensen and Sevaux 2006].

Definition 1. Distance between two individuals Dij: Given two individuals Pi = {V i
1 , . . . , V

i
ki
} and

Pj = {V j
1 , . . . , V

j
kj
}, the distance between Pi and Pj is defined as the total number of the vertices whose

corresponding colors are different in the two individuals, Dij = |{v ∈ V : v ∈ V i
ki
, v ∈ V j

kj
, ki ̸= kj}|.

The general scheme of our population updating strategy is described in Algorithm 5. In order to update
the population, we calculate the distance Doi between the offspring Po and any existing solution of the
population Pi ∈ P (i = 1, . . . , p), record the minimum distance Dmin, and identify the closest individual

56 CHAPTER 4. HSA: HYBRID SEARCH ALGORITHM FOR MINIMUM SUM COLORING

Algorithm 5 The population updating procedure
1: Input: Population P = {P1, . . . , Pp} and offspring Po

2: Output: The updated population P
3: Dmin ← +∞
4: for i ∈ {1, . . . , p} do
5: Calculate the distance Doi between Po and Pi

6: /*Identify the closest individual Pd with the minimum distance Dmin to Po*/
7: if Doi < Dmin then
8: Dmin ← Doi

9: Pd ← Pi

10: end if
11: end for
12: Identify the worst individual Pw with the largest objective value in P
13: if Dmin ≥ 0.1× n and f(Po) ≤ f(Pw) then
14: Replace Pw with Po: P = P

∪
{Po}\{Pw}

15: else
16: if f(Po) ≤ f(Pd) then
17: Replace Pd with Po: P = P

∪
{Po}\{Pd}

18: else
19: if rand(0, 1) ≤ 0.1 then
20: Replace Pw with Po: P = P

∪
{Po}\{Pw}

21: end if
22: end if
23: end if

Pd with respect to Po (lines 3–11). Meanwhile, the worst individual Pw with the largest objective value
(Pw ∈ P) is also identified (line 12). If Dmin is no smaller than 0.1 × n and f(Po) is no worse than
f(Pw), the offspring Po is inserted into the population and replaces the worst individual Pw (lines 13–14).
Otherwise, if f(Po) is no larger than f(Pd), Po is close to Pd but has a better quality than Pd, then f(Po)
is inserted into the population and replaces the closest individual Pd (lines 16–17). Otherwise, the worst
individual Pw is replaced by Po with a small probability of 0.1 (lines 19–20).

4.2.6 Discussions

In this section, we discuss the relation of our HSA algorithm with two previous algorithms (MASC) [Jin
et al. 2014] and (MA) [Moukrim et al. 2013] for the MSCP. Indeed, all these algorithms follows the general
memetic framework which combines population-based search and local optimization. However, our HSA
algorithm distinguishes itself from these algorithms by its key components.

First, HSA employs a maximum independent set algorithm to generate proper initial solutions of high
quality while MASC and MA use respectively the TABUCOL procedure [Hertz and de Werra 1987] and
a greedy coloring heuristic [Li et al. 2009]. Second, for solution recombination, HSA uses two different
crossover operators which can generate both feasible and infeasible solutions while MASC and MA allow
only feasible solutions. Third, HSA applies an iterated two-phase tabu search procedure to make transi-
tions between feasible and infeasible regions while MASC and MA only explore feasible solutions. Finally,
HSA employs a more elaborated pool updating rule to decide whether an offspring solution should replace
a worst (or closest) individual in the population. In MASC, this is achieved by a “scoring” function com-
bining solution quality and distance while in MA only solution quality is considered.

As shown in Section 4.4 (experimental results), the proposed HSA algorithm equipped with its particular
features shows a highly competitive performance for lower and upper bounds of the MSCP.

4.3. THE LOWER BOUNDS OF THE MINIMUM SUM COLORING PROBLEM 57

4.3 The lower bounds of the minimum sum coloring problem

As described in Chapter 1, we could try to find a partial graph of the original graph to calculate a lower
bound for the MSCP and the original graph can be decomposed into partial graphs like trees, paths and
cliques. Moreover, the clique decomposition provides better lower bounds than tree or path decomposition
[Moukrim et al. 2010]. Let c = {S1, S2, . . . , Sk} be a clique decomposition of G, then the following
quantity gives a lower bound for the MSCP:

fLB(c) =
k∑

l=1

|Sl|(|Sl|+ 1)

2
(4.2)

To obtain a clique decomposition, one popular approach is to find a proper coloring of the complemen-
tary graph Ḡ of G [Helmar and Chiarandini 2011, Wu and Hao 2013b, Moukrim et al. 2013] since each
color class of Ḡ is a clique in G.

We apply our HSA algorithm to color the complementary graph Ḡ in order to obtain lower bounds. For
this purpose, we need to make the following adjustments to our HSA algorithm:

– To evaluate the colorings, we use the objective function defined by Eq. (4.2) instead of sum of colors.
For the purpose of computing lower bounds, this objective function is to be maximized. For two
proper k-coloring solutions c1 and c2 (of Ḡ), c1 is better than c2 if and only if fLB(c1) > fLB(c2).

– The evaluation function used in the double-phase tabu search needs to be adjusted. The TSF pro-
cedure (for conflict repairing) applies the evaluation function Eq. (4.3) to evaluate a neighboring
solution.

∆ = ∆conf(v, Si, Sj)×∆f ′
LB,where

∆f ′
LB =

{
∆fLB(v, Si, Sj) + k + 1, if ∆conf(v, Si, Sj) < 0

k −∆fLB(v, Si, Sj) + 1, otherwise
(4.3)

where ∆conf(v, Si, Sj) is the variation in the number of conflicting vertices and ∆fLB(v, Si, Sj) is
the variation in the objective value of Eq. (4.2). For two neighboring solutions s′ and s′′, s′ is better
than s′′ if and only if ∆(s′) < ∆(s′′). The TSO procedure evaluates the neighboring solutions by
only considering the variation in terms of the objective function from Eq. (4.2).

– For a k-coloring c = {S1, . . . , Sk}, it is no more necessary to sort its color classes Si (i = 1, 2, . . . , k),
since the calculation of the objective value fLB (Eq. (4.2)) does not sort the cardinality of Sl according
to |S1| ≥ . . . ≥ |Sk|.

4.4 Experimental results

To evaluate the efficiency of our proposed HSA algorithm, we carry out experiments on the set of 94
COLOR 2002-2004 and DIMACS instances already introduced in Chapter 1.

4.4.1 Experimental protocol

Our HSA algorithm is coded in C++ and compiled using g++ with the ‘-O3’ option on a cluster running
Linux with a 2.83 GHz processor and 8 GB RAM. When we run the DIMACS machine benchmark pro-

58 CHAPTER 4. HSA: HYBRID SEARCH ALGORITHM FOR MINIMUM SUM COLORING

gram 1 with g++ on our machine, we obtain the following results: 0.20 CPU seconds for graph r300.5, 1.23
CPU seconds for r400.5 and 4.68 CPU seconds for r500.5.

To obtain our computational results, each instance is solved 30 times independently with different ran-
dom seeds. Each run is stopped when the processing time reaches a fixed timeout limit which is set to be 2
hours (which is a cutoff time frequently used in the literature). All the computational results are obtained
with the parameter setting given in Table 4.1.

Table 4.1: Settings of parameters
Parameter Sect. Description Value

µO 4.2.4 Maximum number of non-improving moves for TSO 10
maxIter 4.2.4 Maximum number of iterations for perturbation 104

p 4.2.2 Population size 20

4.4.2 Computational results
This section is dedicated to an evaluation of HSA’s performance for the upper and lower bounds of

the MSCP on the 94 benchmark instances. Columns 1–3 in Table 4.2 present the characteristics of the
tested graphs and columns f b

UB and f b
LB give the current best-known upper and lower bounds of the MSCP

reported in the literature. Columns 6–8 present the detailed computational results of our HSA algorithm
for the upper bound: The best upper bound f ∗

UB , average upper bound Avg. and average running time t to
reach the best value for each of the 30 runs (in minutes). Columns 9–11 show the computational results for
the lower bound: The best lower bound f ∗

LB, average lower bound Avg. and average running time t to reach
the best value (in minutes).

Table 4.2: Detailed computational results of HSA on the set of 58 COLOR 2002-2004 instances and 36
DIMACS instances

Characteristics of the graphs HSA HSA
Name n m fb

UB fb
LB f∗

UB Avg. t f∗
LB Avg. t

myciel3 11 20 21 16 21 21.0 0.0 16 16.0 0.0
myciel4 23 71 45 34 45 45.0 0.0 34 34.0 0.0
myciel5 47 236 93 70 93 93.0 0.0 70 70.0 0.0
myciel6 95 755 189 142 189 189.0 0.0 142 142.0 0.3
myciel7 191 2 360 381 286 381 381.0 0.0 286 286.0 2.4
anna 138 493 276 273 276 276.0 0.2 273 273.0 0.4
david 87 406 237 234 237 237.0 0.1 234 234.0 0.1
huck 74 301 243 243 243 243.0 0.0 243 243.0 0.0
jean 80 254 217 216 217 217.0 0.0 216 216.0 0.0
homer 561 1 628 1 155 1 129 1 150 1 151.8 47.8 1 129 1 129.0 16.6
queen5.5 25 160 75 75 75 75.0 0.0 75 75.0 0.0
queen6.6 36 290 138 126 138 138.0 0.0 126 126.0 0.0
queen7.7 49 476 196 196 196 196.0 0.0 196 196.0 0.0
queen8.8 64 728 291 288 291 291.0 0.1 288 288.0 0.0
queen8.12 96 1 368 624 624 624 624.0 0.0 624 624.0 0.0
queen9.9 81 1 056 409 405 409 409.0 0.5 405 405.0 0.0
queen10.10 100 1 470 553 550 553 553.6 29.6 550 550.0 0.0
queen11.11 121 1 980 733 726 733 734.4 30.1 726 726.0 0.0
queen12.12 144 2 596 944 936 943 947.0 41.1 936 936.0 0.0
queen13.13 169 3 328 1 192 1 183 1 191 1195.4 29.3 1 183 1183.0 0.0
queen14.14 196 4 186 1 482 1 470 1 482 1487.3 21.6 1 470 1 470.0 0.0
queen15.15 225 5 180 1 814 1 800 1 814 1820.1 25.3 1 800 1 800.0 0.0
queen16.16 256 6 320 2 197 2 176 2 193 2199.4 28.1 2 176 2 176.0 0.0
school1 385 19 095 2 674 2 345 2 674 2674.0 0.1 2 439 2 418.9 70.6
school1-nsh 352 14 612 2 392 2 106 2 392 2392.0 0.3 2 176 2 169.4 61.5
games120 120 638 443 442 443 443.0 0.3 442 442.0 0.0
miles250 128 387 325 318 325 325.0 1.4 318 318.0 0.2
miles500 128 1 170 705 686 705 705.8 20.3 686 686.0 0.0
Continued on next page

1. ftp://dimacs.rutgers.edu/pub/dsj/clique/

ftp://dimacs.rutgers.edu/pub/dsj/clique/

4.4. EXPERIMENTAL RESULTS 59

Continued from previous page
Characteristics of the graphs HSA HSA

Name n m fb
UB fb

LB f∗
UB Avg. t f∗

LB Avg. t
miles750 128 2 113 1 173 1 145 1 173 1173.6 16.1 1 145 1 145.0 0.0
miles1000 128 3 216 1 679 1 623 1 666 1670.5 28.6 1 623 1 623.0 0.1
miles1500 128 5 198 3 354 3 239 3 354 3354.0 0.5 3 239 3 239.0 0.0
fpsol2.i.1 496 11 654 3 403 3 403 3 403 3 403.0 8.5 3 403 3 403.0 13.1
fpsol2.i.2 451 8 691 1 668 1 668 1 668 1 668.0 0.8 1 668 1 668.0 8.9
fpsol2.i.3 425 8 688 1 636 1 636 1 636 1 636.0 1.2 1 636 1 636.0 7.2
mug88_1 88 146 178 164 178 178.0 0.0 164 164.0 0.1
mug88_25 88 146 178 162 178 178.0 0.0 162 162.0 0.1
mug100_1 100 166 202 188 202 202.0 0.0 188 188.0 0.2
mug100_25 100 166 202 186 202 202.0 0.0 186 186.0 0.2
2-Insert_3 37 72 62 55 62 62.0 0.0 55 55.0 0.0
3-Insert_3 56 110 92 84 92 92.0 0.0 84 84.0 0.1
inithx.i.1 864 18 707 3 676 3 676 3 676 3 676.0 1.3 3 676 3 675.3 82.1
inithx.i.2 645 13 979 2 050 2 050 2 050 2 050.0 1.3 2 050 2 050.0 21.5
inithx.i.3 621 13 969 1 986 1 986 1 986 1 986.0 0.0 1 986 1 986.0 18.8
mulsol.i.1 197 3 925 1 957 1 957 1 957 1 957.0 0.2 1 957 1 957.0 0.5
mulsol.i.2 188 3 885 1 191 1 191 1 191 1 191.0 0.0 1 191 1 191.0 0.6
mulsol.i.3 184 3 916 1 187 1 187 1 187 1 187.0 0.0 1 187 1 187.0 0.5
mulsol.i.4 185 3 946 1 189 1 189 1 189 1 189.0 0.0 1 189 1 189.0 0.6
mulsol.i.5 186 3 973 1 160 1 160 1 160 1 160.0 0.0 1 160 1 160.0 0.2
zeroin.i.1 211 4 100 1 822 1 822 1 822 1 822.0 0.0 1 822 1 822.0 0.5
zeroin.i.2 211 3 541 1 004 1 004 1 004 1 004.0 0.0 1 004 1 004.0 1.1
zeroin.i.3 206 3 540 998 998 998 998.0 0.0 998 998.0 0.5
wap05 905 43 081 13 669 12 428 13 887 13 962.7 43.8 12 449 12 438.9 57.9

13656 13 677.8 1 872.5
wap06 947 43 571 13 776 12 393 14 028 14 090.6 46.0 12 454 12 431.6 53.2

13773 13 777.6 621.3
wap07 1 809 103 368 28 617 24 339 29 154 29261.1 4.4 24 800 24 783.6 72.6
wap08 1 870 104 176 28 885 24 791 29 460 29542.3 3.0 25 283 25 263.4 65.6
qg.order30 900 26 100 13 950 13 950 13 950 13 950.0 0.0 13 950 13 950.0 0.1
qg.order40 1 600 62 400 32 800 32 800 32 800 32 800.0 0.0 32 800 32 800.0 0.3
qg.order60 3 600 212 400 109 800 109 800 109 800 109 800.0 0.2 109 800 109 800.0 2.7
DSJC125.1 125 736 326 247 326 326.1 5.2 247 247.0 0.4
DSJC125.5 125 3 891 1 012 549 1 012 1012.2 10.1 549 548.5 34.0
DSJC125.9 125 6 961 2 503 1 689 2 503 2 503.0 0.3 1 691 1 691.0 18.8
DSJC250.1 250 3 218 973 569 970 980.4 30.7 570 569.2 49.0
DSJC250.5 250 15 668 3 214 1 280 3 210 3 235.6 47.1 1 287 1 271.6 65.6
DSJC250.9 250 27 897 8 277 4 279 8 277 8 277.2 24.6 4 311 4 279.4 58.1
DSJC500.1 500 12 458 2 841 1 250 2 848 2 867.1 82.6 1 250 1 243.4 62.0

2836 28 36.0 1 997.9
DSJC500.5 500 62 624 10 897 2 921 10 992 11 063.2 97.0 2 923 2 896.0 65.6

10 886 10 891.5 4 919.3
DSJC500.9 500 112 437 29 896 10 881 29 886 29910.4 95.4 11 053 10 950.1 68.6

29 862 29 874.3 5 513.3
DSJC1000.1 1 000 49 629 8 995 2 762 9 182 9 237.2 101.6 2 719 2 707.6 66.0

8 991 8 996.5 5 604.4
DSJC1000.5 1 000 249 826 37 594 6 708 38 520 37 597.6 33.5 6 582 6 541.3 44.6

37 575 37 594.7 3 090.3
DSJC1000.9 1 000 449 449 103 464 26 557 104 483 105 221.3 103.1 26 296 26 150.3 51.8

103 445 103 463.3 211.2
DSJR500.1 500 3 555 2 173 2 061 2 156 2 170.7 99.8 2 069 2 069.0 4.2
DSJR500.1c 500 121 275 16 311 15 025 16 286 16 286.0 21.7 15 398 15 212.4 65.0
DSJR500.5 500 58 862 25 630 22 728 25 440 25 684.1 97.6 22 974 22 656.7 32.0
flat300_20_0 300 21 375 3 150 1 524 3 150 3 150.0 0.0 1 531 1 518.2 75.1
flat300_26_0 300 21 633 3 966 1 536 3 966 3 966.0 0.4 1 548 1 530.3 70.2
flat300_28_0 300 21 695 4 238 1 541 4 260 4 290.0 49.7 1 547 1 536.5 62.5
flat1000_50_0 1 000 245 000 25 500 6 601 25 500 25 500.0 0.3 6 476 6 452.1 51.5
flat1000_60_0 1 000 245 830 30 100 6 640 30 100 30 100.0 2.7 6 491 6 466.5 46.2
flat1000_76_0 1 000 246 708 37 167 6 632 38 089 38 313.5 36.8 6 509 6 482.8 34.1

37 164 37 165.9 2 237.0
le450_5a 450 5 714 1 350 1 190 1 350 1 350.0 0.1 1 193 1 191.5 67.4
le450_5b 450 5 734 1 350 1 186 1 350 1 350.1 0.8 1 189 1 185.0 67.0
le450_5c 450 9 803 1 350 1 272 1 350 1 350.0 0.9 1 278 1 270.4 66.8
le450_5d 450 9 757 1 350 1 269 1 350 1 350.0 0.3 1 282 1 274.2 71.6
le450_15a 450 8 168 2 632 2 329 2 634 2 648.4 91.5 2 331 2 331.0 23.3
le450_15b 450 8 169 2 642 2 348 2 632 2 656.5 89.9 2 348 2 348.0 4.8
le450_15c 450 16 680 3 491 2 593 3 487 3 792.4 86.7 2 610 2 606.6 57.3
Continued on next page

60 CHAPTER 4. HSA: HYBRID SEARCH ALGORITHM FOR MINIMUM SUM COLORING

Continued from previous page
Characteristics of the graphs HSA HSA

Name n m fb
UB fb

LB f∗
UB Avg. t f∗

LB Avg. t
le450_15d 450 16 750 3 506 2 622 3 505 3 883.1 82.7 2 628 2 627.1 54.9
le450_25a 450 8 260 3 153 3 003 3 157 3 166.7 88.5 3 003 3 003.0 1.2
le450_25b 450 8 263 3 366 3 305 3 365 3 375.2 88.6 3 305 3 305.0 1.0
le450_25c 450 17 343 4 515 3 638 4 553 4 583.8 84.8 3 657 3 656.9 41.7
le450_25d 450 17 425 4 544 3 697 4 569 4 607.6 92.4 3 698 3 698.0 8.3
latin_sqr_10 900 307 350 41 444 40 950 41 492 41 672.8 98.3 40 950 40 950.0 0.0
C2000.5 2 000 999 836 132 515 15 091 139 141 139 676.0 21.4 14 498 14 442.9 24.2

132 483 132 513.9 161.8
C4000.5 4 000 4 000 268 473 234 33 033 513 457 514 639.0 75.3 31 525 31 413.3 66.5

From Table 4.2, one observes that HSA is able to improve a number of best lower and upper bounds re-
ported in the literature (indicated in bold) within a time limit of 2 hours. Specifically, for the upper bounds,
HSA can improve the best results for 15 instances and match the previous best values for 61 instances.
For the lower bounds, HSA can improve the previous best known results for 27 instances and match the
previous best results for 59 instances.

When we compare the upper bounds and the lower bounds, we observe large gaps for the DIMACS
instances. However, there are 21 instances where the upper bounds are identical to the lower bounds (un-
derlined). Hence, the optimality of these instances is proven by our computational results.

On the other hand, we observe that the HSA algorithm performs less well on some large DIMACS in-
stances which are known to be very difficult for most MSCP algorithms. In order to see if HSA can improve
its results on these instances, we carry out another experiment focusing on 14 large graphs with at least 500
vertices as follows. We use the solution of EXSCOL [Wu and Hao 2012] as one of the 20 initial solutions
of the population and rerun HSA 30 times on each of the 14 graphs under the same test condition as before.
Interestingly, the results of this experiment show that HSA can improve the best known upper bounds for
10 out of 14 graphs (bold italic entries in Table 4.2).

4.4.3 Comparisons with four state-of-the-art algorithms for the lower bounds
In order to further evaluate the proposed HSA algorithm, we compare its lower and upper bounds with

those obtained from some of the best performing algorithms in the literature.

Table 4.3 gives the computational comparison for the lower bounds of our HSA algorithm with four
state-of-the-art algorithms, which cover the best known lower bounds for all the tested graphs. These
algorithms are respectively named RMDS(n) [Moukrim et al. 2010], MDS(5)+LS [Helmar and Chiaran-
dini 2011], EXCLIQUE [Wu and Hao 2013b] and MA [Moukrim et al. 2013]. Notice that the results of
RMDS(n) are extracted directly from [Helmar and Chiarandini 2011]. The experimental platforms used by
the reference algorithms are as follows:

– RMDS(n) runs on an Intel Core i7 processor 2.93 GHz with 4 GB RAM and uses five heuristics.
– MDS(5)+LS runs on an Intel Core i7 processor 2.93 GHz with 4 GB RAM and uses a limit of 1 hour

as the stop condition.
– EXCLIQUE runs on a 2.8 GHz computer with 2GB RAM and iteratively extracts maximum indepen-

dent sets until the graph is empty.
– MA runs on an Intel Core 2 Duo T5450–1.66 GHz with 2 GB RAM and uses a limit of 2 hours as the

stop condition.

Columns 1–2 in Table 4.3 present the tested graph and its best known lower bounds f b
LB reported in

the literature. The following 10 columns give the best results f ∗
LB and the average results Avg. of the four

reference algorithms and our HSA algorithm respectively. The “–” marks for the references algorithms in

4.4. EXPERIMENTAL RESULTS 61

the table mean that the algorithms did not report results on the tested graphs. The italic entries in the table
indicate that the reference algorithms fail to attain the best known results on the tested graphs. The last
row in Table 4.3 also presents the number of cases where an algorithm can achieve the best known result
(Suc#) over the total number of the tested graphs (Total#). Given the differences among the programming
languages, compiler options and computers, we focus on solution quality. We mention that our time limit
(2h) is the same as MA, similar to EXCLIQUE on small instances but shorter than EXCLIQUE on large
graphs, and longer than RMDS(n) and MDS(5)+LS.

Table 4.3: Comparisons of HSA with four state-of-the-art sum coloring algorithms for the lower bounds of
the MSCP on 94 graphs

Graph RMDS(n) MDS(5)+LS EXCLIQUE MA HSA
Name fb

LB f∗
LB Avg. f∗

LB Avg. f∗
LB Avg. f∗

LB Avg. f∗
LB Avg.

myciel3 16 16 – 16 – 16 16.0 16 16.0 16 16.0
myciel4 34 34 – 34 – 34 34.0 34 34.0 34 34.0
myciel5 70 70 – 70 – 70 70.0 70 70.0 70 70.0
myciel6 142 142 – 142 – 142 142.0 142 139.5 142 142.0
myciel7 286 286 – 286 – 286 286.0 286 277.5 286 286.0
anna 273 272 – 273 – 273 273.0 273 273.0 273 273.0
david 234 234 – 234 – 229 229.0 234 234.0 234 234.0
huck 243 243 – 243 – 243 243.0 243 243.0 243 243.0
jean 216 216 – 216 – 216 216.0 216 216.0 216 216.0
homer 1 129 – – – – – – 1 129 1 129.0 1 129 1 129.0
queen5.5 75 75 – 75 – 75 75.0 75 75.0 75 75.0
queen6.6 126 126 – 126 – 126 126.0 126 126.0 126 126.0
queen7.7 196 196 – 196 – 196 196.0 196 196.0 196 196.0
queen8.8 288 288 – 288 – 288 288.0 288 288.0 288 288.0
queen8.12 624 – – – – – – 624 624.0 624 624.0
queen9.9 405 – – – – – – 405 405.0 405 405.0
queen10.10 550 – – – – – – 550 550.0 550 550.0
queen11.11 726 – – – – – – 726 726.0 726 726.0
queen12.12 936 – – – – – – 936 936.0 936 936.0
queen13.13 1 183 – – – – – – 1 183 1 183.0 1 183 1 183.0
queen14.14 1 470 – – – – – – 1 470 1 470.0 1 470 1 470.0
queen15.15 1 800 – – – – – – 1 800 1 800.0 1 800 1 800.0
queen16.16 2 176 – – – – – – 2 176 2 176.0 2 176 2 176.0
school1 2 345 – – – – – – 2 345 2 283.3 2 439 2 418.9
school1-nsh 2 106 – – – – – – 2 106 2 064.6 2 176 2 169.4
games120 442 442 – 442 – 442 441.4 442 442.0 442 442.0
miles250 318 316 – 318 – 318 316.2 318 318.0 318 318.0
miles500 686 677 – 686 – 677 671.4 686 686.0 686 686.0
miles750 1 145 – – – – – – 1 145 1 145.0 1 145 1 145.0
miles1000 1 623 – – – – – – 1 623 1 623.0 1 623 1 623.0
miles1500 3 239 – – – – – – 3 239 3 239.0 3 239 3 239.0
fpsol2.i.1 3 403 3 402 – 3 151 – 3 403 3 403.0 3 403 3 403.0 3 403 3 403.0
fpsol2.i.2 1 668 – – – – – – 1 668 1 668.0 1 668 1 668.0
fpsol2.i.3 1 636 – – – – – – 1 636 1 636.0 1 636 1 636.0
mug88_1 164 163 – 164 – 164 162.3 – – 164 164.0
mug88_25 162 161 – 162 – 162 160.3 – – 162 162.0
mug100_1 188 186 – 188 – 188 188.0 – – 188 188.0
mug100_25 186 183 – 186 – 186 183.4 – – 186 186.0
2-Insert_3 55 55 – 55 – 55 55.0 – – 55 55.0
3-Insert_3 84 84 – 84 – 84 82.8 – – 84 84.0
inithx.i.1 3 676 3 581 – 3 486 – 3 676 3 676.0 3 676 3 616.0 3 676 3 675.3
inithx.i.2 2 050 – – – – – – 2 050 1 989.2 2 050 2 050.0
inithx.i.3 1 986 – – – – – – 1 986 1 961.8 1 986 1 986.0
mulsol.i.1 1 957 – – – – – – 1 957 1 957.0 1 957 1 957.0
mulsol.i.2 1 191 – – – – – – 1 191 1 191.0 1 191 1 191.0
mulsol.i.3 1 187 – – – – – – 1 187 1 187.0 1 187 1 187.0
mulsol.i.4 1 189 – – – – – – 1 189 1 189.0 1 189 1 189.0
mulsol.i.5 1 160 – – – – – – 1 160 1 160.0 1 160 1 160.0
zeroin.i.1 1 822 – – – – – – 1 822 1 822.0 1 822 1 822.0
zeroin.i.2 1 004 1 004 – 1 004 – 1 004 1 004.0 1 004 1 002.1 1 004 1 004.0
Continued on next page

62 CHAPTER 4. HSA: HYBRID SEARCH ALGORITHM FOR MINIMUM SUM COLORING

Continued from previous page
Graph RMDS(n) MDS(5)+LS EXCLIQUE MA HSA

Name fb
LB f∗

LB Avg. f∗
LB Avg. f∗

LB Avg. f∗
LB Avg. f∗

LB Avg.
zeroin.i.3 998 998 – 998 – 998 998.0 998 998.0 998 998.0
wap05 12 428 – – – – 12 428 12 339.3 – – 12 449 12 438.9
wap06 12 393 – – – – 12 393 12 348.8 – – 12 454 12 431.6
wap07 24 339 – – – – 24 339 24 263.8 – – 24 800 24 783.6
wap08 24 791 – – – – 24 791 24 681.1 – – 25 283 25 263.4
qg.order30 13 950 – – – – 13 950 13 950.0 13 950 13 950.0 13 950 13 950.0
qg.order40 32 800 – – – – 32 800 32 800.0 32 800 32 800.0 32 800 32 800.0
qg.order60 109 800 – – – – 109 800 109 800.0 109 800 109 800.0 109 800 109 800.0
DSJC125.1 247 238 – 238 – 246 244.1 247 244.6 247 247.0
DSJC125.5 549 504 – 493 – 536 522.4 549 541.0 549 548.5
DSJC125.9 1 689 1 600 – 1 621 – 1 664 1 592.5 1 689 1 677.7 1 691 1 691.0
DSJC250.1 569 537 – 521 – 567 562.0 569 558.4 570 569.2
DSJC250.5 1 280 1 150 – 1 128 – 1 270 1 258.8 1 280 1 249.4 1 287 1 271.6
DSJC250.9 4 279 3 972 – 3 779 – 4 179 4 082.4 4 279 4 160.9 4 311 4 279.4
DSJC500.1 1 250 1 163 – 1 143 – 1 250 1 246.6 1 241 1 214.9 1 250 1 243.4
DSJC500.5 2 921 2 616 – 2 565 – 2 921 2 902.6 2 868 2 797.7 2 923 2 896.0
DSJC500.9 10 881 10 074 – 9 731 – 10 881 10 734.5 10 759 10 443.8 11 053 10 950.1
DSJC1000.1 2 762 2 499 – 2 456 – 2 762 2 758.6 2 707 2 651.2 2 719 2 707.6
DSJC1000.5 6 708 5 787 – 5 660 – 6 708 6 665.9 6 534 6 182.5 6 582 6 541.3
DSJC1000.9 26 557 23 863 – 23 208 – 26 557 26 300.3 26 157 24 572.0 26 296 26 150.3
DSJR500.1 2 061 – – – – – – 2 061 2 052.9 2 069 2 069.0
DSJR500.1c 15 025 – – – – – – 15 025 14 443.9 15 398 15 212.4
DSJR500.5 22 728 – – – – – – 22 728 22 075.0 22 974 22 656.7
flat300_20_0 1 524 – – – – 1 524 1 505.7 1 515 1 479.3 1 531 1 518.2
flat300_26_0 1 536 – – – – 1 525 1 511.4 1 536 1 501.6 1 548 1 530.3
flat300_28_0 1 541 – – – – 1 532 1 515.3 1 541 1 503.9 1 547 1 536.5
flat1000_50_0 6 601 – – – – 6 601 6 571.8 6 433 6 121.5 6 476 6 452.1
flat1000_60_0 6 640 – – – – 6 640 6 600.5 6 402 6 047.7 6 491 6 466.5
flat1000_76_0 6 632 – – – – 6 632 6 583.2 6 330 6 074.6 6 509 6 482.8
le450_5a 1 190 – – – – – – 1 190 1 171.5 1 193 1 191.5
le450_5b 1 186 – – – – – – 1 186 1 166.5 1 189 1 185.0
le450_5c 1 272 – – – – – – 1 272 1 242.3 1 278 1 270.4
le450_5d 1 269 – – – – – – 1 269 1 245.2 1 282 1 274.2
le450_15a 2 329 – – – – 2 329 2 313.7 2 329 2 324.3 2 331 2 331.0
le450_15b 2 348 – – – – 2 343 2 315.7 2 348 2 335.0 2 348 2 348.0
le450_15c 2 593 – – – – 2 591 2 545.3 2 593 2 569.1 2 610 2 606.6
le450_15d 2 622 – – – – 2 610 2 572.4 2 622 2 587.2 2 628 2 627.1
le450_25a 3 003 – – – – 2 997 2 964.4 3 003 3 000.4 3 003 3 003.0
le450_25b 3 305 – – – – 3 305 3 304.1 3 305 3 304.1 3 305 3 305.0
le450_25c 3 638 – – – – 3 619 3 597.1 3 638 3 617.0 3 657 3 656.9
le450_25d 3 697 – – – – 3 684 3 627.4 3 697 3 683.2 3 698 3 698.0
latin_sqr_10 40 950 – – – – 40 950 40 950.0 – – 40 950 40 950.0
C2000.5 15 091 – – – – 15 091 15 077.6 – – 14 498 14 442.9
C4000.5 33 033 – – – – 33 033 33 018.8 – – 31 525 31 413.3
Suc#/Total# 17/38 24/38 46/62 71/81 86/94

Table 4.3 discloses that RMDS(n), MDS(5)+LS, EXCLIQUE, MA and our HSA algorithm can match
the best known results for 17/38 (i.e., 17 over 38 tested graphs), 24/38, 46/62, 71/81 and 86/94 graphs
respectively. In particular, our HSA algorithm can improve 27 best known lower bounds (see bold entries).

Since each reference algorithm only reports results for a subset of the considered 94 graphs, we compare
the performances between our HSA algorithm and the four reference algorithms one by one and summarize
the comparisons for the lower bounds of the MSCP in Figure 4.4. The heights of bars in the figure represent
the number of graphs and the three different bars indicate the results obtained by our HSA algorithm are
better than, equal to, and worse than the results obtained by each reference algorithm respectively. From
Figure 4.4, we can observe that HSA obtains improved lower bounds for 21, 14, 24 and 30 graphs, equal
results for 17, 24, 30 and 51 graphs and worse results for 0, 0, 8 and 0 graphs compared to RMDS(n),
MDS(5)+LS, EXCLIQUE and MA respectively.

Finally, since MDS(5)+LS uses a time limit of 1 hour, we rerun our HSA algorithm under this reduced
time condition. We observe that HSA still obtains better lower bounds for 14 instances, equal lower bounds
for 24 instances and no worse results compared to the MDS(5)+LS algorithm.

4.4. EXPERIMENTAL RESULTS 63

HSAvs.RMDS(n) HSAvs.MDS(5)+LS HSAvs.EXCLIQUE HSAvs.MA

better. equal. worse.
N

um
be

r
of

 g
ra

ph
s

0
10

20
30

40
50

60

21

17

0

14

24

0

24

30

8

30

51

0

Figure 4.4: Comparisons of HSA and four reference algorithms for the lower bounds.

4.4.4 Comparisons with four state-of-the-art algorithms for the upper bounds
Table 4.4 summarizes the computational comparison for the upper bounds of our HSA algorithm with

four very recent state-of-the-art algorithms, which cover the best known results for all the tested graphs.
These algorithms are respectively named EXSCOL [Wu and Hao 2012], BLS [Benlic and Hao 2012],
MASC [Jin et al. 2014] and MA [Moukrim et al. 2013]. The experimental platforms used by the reference
algorithms are as follows:

– EXSCOL runs on a 2.8 GHz computer with 2GB RAM and iteratively extracts maximum independent
sets until the graph is empty.

– BLS runs on a Xeon E5440 with 2.83 GHz with 2GB RAM and uses a timeout limit of 2 hours as the
stop condition.

– MASC runs on a 2.7 GHz PC with 4GB RAM and uses 104 maximum iterations of TS procedure and
50 maximum generations.

– MA runs on an Intel Core 2 Duo T5450–1.66 GHz with 2 GB RAM and uses a timeout limit of 2
hours as the stop condition.

Table 4.4: Comparisons of HSA with four state-of-the-art sum coloring algorithms for the upper bounds of
the MSCP on 94 graphs

Graph EXSCOL BLS MASC MA HSA
Name fb

UB f∗
UB Avg. f∗

UB Avg. f∗
UB Avg. f∗

UB Avg. f∗
UB Avg.

myciel3 21 21 21.0 21 21.0 21 21.0 21 21.0 21 21.0
myciel4 45 45 45.0 45 45.0 45 45.0 45 45.0 45 45.0
myciel5 93 93 93.0 93 93.0 93 93.0 93 93.0 93 93.0
myciel6 189 189 189.0 189 196.6 189 189.0 189 189.0 189 189.0
myciel7 381 381 381.0 381 393.8 381 381.0 381 381.0 381 381.0
anna 276 283 283.2 276 276.0 276 276.0 276 276.0 276 276.0
david 237 237 238.1 237 237.0 237 237.0 237 237.0 237 237.0
huck 243 243 243.8 243 243.0 243 243.0 243 243.0 243 243.0
jean 217 217 217.3 217 217.0 217 217.0 217 217.0 217 217.0
Continued on next page

64 CHAPTER 4. HSA: HYBRID SEARCH ALGORITHM FOR MINIMUM SUM COLORING

Continued from previous page
Graph EXSCOL BLS MASC MA HSA

Name fb
UB f∗

UB Avg. f∗
UB Avg. f∗

UB Avg. f∗
UB Avg. f∗

UB Avg.
homer 1 155 – – – – 1 155 1 158.5 1 157 1 481.9 1 150 1 151.8
queen5.5 75 75 75.0 75 75.0 75 75.0 75 75.0 75 75.0
queen6.6 138 150 150.0 138 138.0 138 138.0 138 138.0 138 138.0
queen7.7 196 196 196.0 196 196.0 196 196.0 196 196.0 196 196.0
queen8.8 291 291 291.0 291 291.0 291 291.0 291 291.0 291 291.0
queen8.12 624 – – – – 624 624.0 624 624.0 624 624.0
queen9.9 409 – – – – 409 410.5 409 411.9 409 409.0
queen10.10 553 – – – – – – 553 555.2 553 553.6
queen11.11 733 – – – – – – 733 735.4 733 734.4
queen12.12 944 – – – – – – 944 948.7 943 947.0
queen13.13 1 192 – – – – – – 1 192 1 197.0 1 191 1 195.4
queen14.14 1 482 – – – – – – 1 482 1 490.8 1 482 1 487.3
queen15.15 1 814 – – – – – – 1 814 1 823.0 1 814 1 820.1
queen16.16 2 197 – – – – – – 2 197 2 205.9 2 193 2 199.4
school1 2 674 – – – – – – 2 674 2 766.8 2 674 2 674.0
school1-nsh 2 392 – – – – – – 2 392 2 477.1 2 392 2 392.0
games120 443 443 447.9 443 443.0 443 443.0 443 443.0 443 443.0
miles250 325 328 333.0 327 328.8 325 325.0 325 325.4 325 325.0
miles500 705 709 714.5 710 713.3 705 705.0 708 711.2 705 705.8
miles750 1 173 – – – – – – 1 173 1 183.9 1 173 1 173.6
miles1000 1 679 – – – – – – 1 679 1 697.3 1 666 1 670.5
miles1500 3 354 – – – – – – 3 354 3 357.2 3 354 3 354.0
fpsol2.i.1 3 403 – – – – 3 403 3 403.0 3 403 3 403.0 3 403 3 403.0
fpsol2.i.2 1 668 – – – – 1 668 1 668.0 1 668 1 668.0 1 668 1 668.0
fpsol2.i.3 1 636 – – – – 1 636 1 636.0 1 636 1 636.0 1 636 1 636.0
mug88_1 178 – – – – 178 178.0 – – 178 178.0
mug88_25 178 – – – – 178 178.0 – – 178 178.0
mug100_1 202 – – – – 202 202.0 – – 202 202.0
mug100_25 202 – – – – 202 202.0 – – 202 202.0
2-Insert_3 62 – – – – 62 62.0 – – 62 62.0
3-Insert_3 92 – – – – 92 92.0 – – 92 92.0
inithx.i.1 3 676 – – – – 3 676 3 676.0 3 676 3 679.6 3 676 3 676.0
inithx.i.2 2 050 – – – – 2 050 2 050.0 2 050 2 053.7 2 050 2 050.0
inithx.i.3 1 986 – – – – 1 986 1 986.0 1 986 1 986.0 1 986 1 986.0
mulsol.i.1 1 957 – – – – 1 957 1 957.0 1 957 1 957.0 1 957 1 957.0
mulsol.i.2 1 191 – – – – 1 191 1 191.0 1 191 1 191.0 1 191 1 191.0
mulsol.i.3 1 187 – – – – 1 187 1 187.0 1 187 1 187.0 1 187 1 187.0
mulsol.i.4 1 189 – – – – 1 189 1 189.0 1 189 1 189.0 1 189 1 189.0
mulsol.i.5 1 160 – – – – 1 160 1 160.0 1 160 1 160.0 1 160 1 160.0
zeroin.i.1 1 822 – – – – 1 822 1 822.0 1 822 1 822.0 1 822 1 822.0
zeroin.i.2 1 004 – – – – 1 004 1 004.0 1 004 1 004.0 1 004 1 004.0
zeroin.i.3 998 – – – – 998 998.0 998 998.0 998 998.0
wap05 13 669 13 680 13 718.4 – – 13 669 13 677.8 – – 13 656 13 677.8
wap06 13 776 13 778 13 830.9 – – 13 776 13 777.8 – – 13 773 13 777.6
wap07 28 617 28 629 28 663.8 – – 28 617 28 624.7 – – 29 154 29 261.1
wap08 28 885 28 896 28 946.0 – – 28 885 28 890.9 – – 29 460 29 542.3
qg.order30 13 950 13 950 13 950.0 – – 13 950 13 950.0 13 950 13 950.0 13 950 13 950.0
qg.order40 32 800 32 800 32 800.0 – – 32 800 32 800.0 32 800 32 800.0 32 800 32 800.0
qg.order60 10 9800 110 925 110 993.0 – – 10 9800 10 9800.0 10 9800 10 9800.0 10 9800 10 9800.0
DSJC125.1 326 326 326.7 326 326.9 326 326.6 326 327.3 326 326.1
DSJC125.5 1 012 1 017 1 019.7 1 012 1 012.9 1 012 1 020.0 1 013 1 018.5 1 012 1 012.2
DSJC125.9 2 503 2 512 2 512.0 2 503 2 503.0 2 503 2 508.0 2 503 2 519.0 2 503 2 503.0
DSJC250.1 973 985 985.0 973 982.5 974 990.5 983 995.8 970 980.4
DSJC250.5 3 214 3 246 3 253.9 3 219 3 248.5 3 230 3 253.7 3 214 3 285.5 3 210 3 235.6
DSJC250.9 8 277 8 286 8 288.8 8 290 8 316.0 8 280 8 322.7 8 277 8 348.8 8 277 8 277.2
DSJC500.1 2 841 2 850 2 857.4 2 882 2 942.9 2 841 2 844.1 2 897 2 990.5 2 836 2 836.0
DSJC500.5 10 897 10 910 10 918.2 11 187 11 326.3 10 897 10 905.8 11 082 11 398.3 10 886 10 891.5
DSJC500.9 29 896 29 912 29 936.2 30 097 30 259.2 29 896 29 907.8 29 995 30 361.9 29 862 29 874.3
DSJC1000.1 8 995 9 003 9 017.9 9 520 9 630.1 8 995 9 000.5 9 188 9 667.1 8 991 8 996.5
DSJC1000.5 37 594 37 598 37 673.8 40 661 41 002.6 37 594 37 597.6 38 421 40 260.9 37 575 37 594.7
DSJC1000.9 103 464 103 464 103 531.0 – – 103 464 103 464.0 105 234 107 349.0 103 445 103 463.3
DSJR500.1 2 173 – – – – – – 2 173 2 253.1 2 156 2 170.7
DSJR500.1c 16 311 – – – – – – 16 311 16 408.5 16 286 16 286.0
DSJR500.5 25 630 – – – – – – 25 630 26 978.0 25 440 25 684.1
flat300_20_0 3 150 3 150 3 150.0 – – 3 150 3 150.0 3 150 3 150.0 3 150 3 150.0
flat300_26_0 3 966 3 966 3 966.0 – – 3 966 3 966.0 3 966 3 966.0 3 966 3 966.0
flat300_28_0 4 238 4 282 4 286.1 – – 4 238 4 313.4 4 261 4 389.4 4 260 4 290.0
Continued on next page

4.5. ANALYSIS OF HSA 65

Continued from previous page
Graph EXSCOL BLS MASC MA HSA

Name fb
UB f∗

UB Avg. f∗
UB Avg. f∗

UB Avg. f∗
UB Avg. f∗

UB Avg.
flat1000_50_0 25 500 25 500 25 500.0 – – 25 500 25 500.0 25 500 25 500.0 25 500 25 500.0
flat1000_60_0 30 100 30 100 30 100.0 – – 30 100 30 100.0 30 100 30 100.0 30 100 30 100.0
flat1000_76_0 37 167 37 167 37 213.2 – – 37 167 37 167.0 38 213 39 722.7 37 164 37 165.9
le450_5a 1 350 – – – – 1 350 1 350.0 1 350 1 350.0 1 350 1 350.0
le450_5b 1 350 – – – – 1 350 1 350.0 1 350 1 350.0 1 350 1 350.1
le450_5c 1 350 – – – – 1 350 1 350.0 1 350 1 350.0 1 350 1 350.0
le450_5d 1 350 – – – – 1 350 1 350.0 1 350 1 350.0 1 350 1 350.0
le450_15a 2 632 2 632 2 641.9 – – 2 706 2 742.6 2 681 2 733.1 2 634 2 648.4
le450_15b 2 642 2 642 2 643.4 – – 2 724 2 756.2 2 690 2 730.6 2 632 2 656.5
le450_15c 3 491 3 866 3 868.9 – – 3 491 3 491.0 3 943 4 048.4 3 487 3 792.4
le450_15d 3 506 3 921 3 928.5 – – 3 506 3 511.8 3 926 4 032.4 3 505 3 883.1
le450_25a 3 153 3 153 3 159.4 – – 3 166 3 176.8 3 178 3 204.3 3 157 3 166.7
le450_25b 3 366 3 366 3 371.9 – – 3 366 3 375.1 3 379 3 416.2 3 365 3 375.2
le450_25c 4 515 4 515 4 525.4 – – 4 700 4 773.3 4 648 4 700.7 4 553 4 583.8
le450_25d 4 544 4 544 4 550.0 – – 4 722 4 805.7 4 696 4 740.3 4 569 4 607.6
latin_sqr_10 41 444 42 223 42 392.7 – – 41 444 41 481.5 – – 41 492 41 672.8
C2000.5 132 515 132 515 132 682.0 – – – – – – 132 483 132 513.9
C4000.5 473 234 473 234 473 211.0 – – – – – – 513 457 514 639.0
Suc#/Total# 29/52 18/27 69/77 61/81 85/94

Like for the lower bounds (Table 4.3), columns 1–2 in Table 4.4 present the best known upper bounds
f b
UB , the following 10 columns give the best results f ∗

UB and the average results Avg. of the four reference
algorithms and our HSA algorithm respectively. The “–” marks for the reference algorithms in the table
mean that the algorithms did not report results on the tested graphs. The italic entries in the table mean that
the reference algorithms fail to attain the best known results on the tested graphs. The last row in Table
4.4 presents the number of cases where the algorithm can achieve the best known result (Suc#) over the
total number of the tested graphs (Total#). Once again, we only focus on solution quality and we mention
that our timeout limit (2h) is the same as MA and BLS and similar to MASC and EXSCOL on the small
instances but shorter than MASC and EXSCOL on the large graphs. Besides, EXSCOL, BLS, MASC, MA,
and our HSA algorithm are tested on 52, 27, 77, 81 and 94 graphs respectively.

From Table 4.4, we observe that EXSCOL, BLS, MASC, MA and our HSA algorithm can match the
best known results for 29, 18, 69, 61 and 85 graphs, but fail to reach the best results for 23, 9, 8, 20 and 9
instances respectively. In particular, our HSA algorithm can improve the best known results for 24 graphs
(bold entries).

Like for the lower bounds, we compare our HSA algorithm with each of the four reference algorithms
and summarize the comparisons in Figure 4.5 with the same information as in Figure 4.4. From Figure 4.5,
we can observe that HSA obtains better results for 26, 10, 21 and 28 graphs, equal results for 19, 17, 52
and 53 graphs and worse results for 7, 0, 4 and 0 results compared to EXSCOL, BLS, MASC, and MA re-
spectively. This comparison study shows clearly that the proposed HSA algorithm competes very favorably
with the reference algorithms in terms of upper bounds of the MSCP.

4.5 Analysis of HSA
In this section, we study first the impact of the joint use of two crossover operators on the performance of

the proposed HSA algorithm. Moreover, we perform a fitness distance analysis (FDA) [Jones and Forrest
1995] in order to obtain some insight on the hardness of some benchmark instances, which may help
understand the behavior of our HSA algorithm.

4.5.1 Analysis of the double-crossover operator
As indicated in Section 4.2.3, HSA employs two crossover operators (GGX and DGX) to generate

offspring solutions. In order to investigate the positive role of this mechanism, we compare HSA with its

66 CHAPTER 4. HSA: HYBRID SEARCH ALGORITHM FOR MINIMUM SUM COLORING

HSAvs.EXSCOL HSAvs.BLS HSAvs.MASC HSAvs.MA

better. equal. worse.
N

um
be

r
of

 g
ra

ph
s

0
10

20
30

40
50

60

26

19

7
10

17

0

21

52

4

28

53

0

Figure 4.5: Comparisons of HSA and four reference algorithms for the upper bounds.

two variants: HSAGGX uses only the GGX crossover while HSADGX uses only the DGX crossover. We
carry out additional experiments on 20 selected graphs and run HSA, HSAGGX and HSADGX for 30 times
on each graph. These three algorithms use the same parameter settings given in Table 4.1 and the same
timeout limits (2 hours).

Table 4.5: Comparisons on 20 selected graphs for the upper and lower bounds of the MSCP
Graph HSA HSAGGX HSADGX

Name fb
UB fb

LB f∗
UB avgUB f∗

LB avgLB f∗
UB avgUB f∗

LB avgLB f∗
UB avgUB f∗

LB avgLB

homer 1155 1129 1150 1151.8 1129 1129.0 1150 1151.9 1129 1129.0 1151 1152.2 1129 1129.0
queen11.11 733 726 733 734.4 726 726.0 733 736.2 726 726.0 733 735.2 726 726.0
queen12.12 944 936 943 947.0 936 936.0 945 948.5 936 936.0 942 947.5 936 936.0
queen13.13 1192 1183 1191 1195.4 1183 1183.0 1194 1197.3 1183 1183.0 1192 1197.3 1183 1183.0
miles250 325 318 325 325.0 318 318.0 325 325.0 318 318.0 325 325.0 318 318.0
miles500 705 686 705 705.8 686 686.0 705 706.2 686 686.0 705 705.9 686 686.0
DSJC250.1 973 569 970 980.4 570 569.2 977 981.0 570 569.5 972 980.9 570 568.8
DSJC250.5 3214 1280 3210 3235.6 1287 1271.6 3222 3243.7 1285 1275.1 3210 3235.7 1270 1261.6
DSJC250.9 8277 4279 8277 8277.2 4311 4279.4 8277 8279.4 4294 4269.4 8277 8277.0 4312 4273.1
DSJC500.1 2841 1250 2848 2867.1 1250 1243.4 2850 2870.4 1248 1244.4 2848 2870.4 1245 1241.2
DSJC500.5 10897 2921 10992 11063.2 2923 2896.0 10969 11066.2 2918 2898.6 11012 11094.0 2894 2876.1
DSJC500.9 29896 10881 29886 29910.4 11053 10950.1 29869 29900.0 11049 10952.0 29900 29927.0 10982 10853.3
DSJR500.1 2173 2061 2156 2170.7 2069 2069.0 2154 2167.1 2069 2069.0 2159 2172.6 2069 2069.0
DSJR500.1c 16311 15025 16286 16286.0 15398 15212.4 16286 16286.0 15313 15185.6 16286 16286.0 15118 15006.4
DSJR500.5 25630 22728 25440 25684.1 22974 22656.7 25439 25565.9 22641 22634.7 25935 26029.2 22999 22643.0
flat300_28_0 4238 1541 4260 4290.0 1547 1536.5 4270 4296.5 1544 1535.9 4261 4289.4 1533 1519.3
le450_15a 2632 2329 2634 2648.4 2331 2331.0 2637 2649.5 2331 2330.9 2642 2658.5 2331 2331.0
le450_15b 2642 2348 2632 2656.5 2348 2348.0 2644 2656.3 2348 2348.0 2641 2659.9 2348 2348.0
le450_15c 3491 2593 3487 3792.4 2610 2606.6 3490 3853.5 2610 2607.4 3491 3814.7 2610 2606.6
le450_15d 3506 2622 3505 3883.1 2628 2627.1 3829 3913.8 2628 2626.7 3504 3774.9 2628 2627.2
suc# 16 20 10 17 14 16

Table 4.5 summarizes the computational results of HSA, HSAGGX and HSADGX . Column 1–3 recall
the best known lower and upper bounds of the 20 graphs. Columns 4–15 present the upper bounds, the
average upper bounds, the lower bounds and the average lower bounds achieved by HSA, HSAGGX and
HSADGX respectively. The last row gives the number of times an algorithm finds a better or equal result
compared to the best known result.

4.5. ANALYSIS OF HSA 67

Table 4.6: FDC analysis on 20 selected graphs for the lower and upper bounds of the MSCP
Graph Upper bounds of the MSCP Lower bounds of the MSCP

#lo avg dlo avg dgo ρ #lo avg dlo avg dgo ρ

homer 1188 166.388 96.875 0.772 1011 540.925 0.542 -0.999
queen11_11 1188 105.468 45.633 0.666 730 108.392 0.006 -0.999
queen12_12 1191 119.169 31.407 0.874 784 131.224 0.084 -0.975
queen13_13 1191 147.310 67.307 0.688 829 154.965 0.000 -0.999
miles250 1137 36.563 3.991 0.865 1200 123.578 0.000 -0.999
miles500 1191 69.946 28.412 0.729 1200 119.666 0.123 -0.704
DSJC250.1 706 87.201 94.048 0.462 1200 246.501 243.506 -0.126
DSJC250.5 1183 205.100 213.692 0.122 1198 236.674 222.969 -0.292
DSJC250.9 1199 238.464 86.344 0.637 1198 214.859 168.488 -0.472
DSJC500.1 942 354.208 184.689 0.675 1200 494.570 491.143 -0.100
DSJC500.5 1200 484.804 482.820 0.150 1200 489.638 488.290 -0.094
DSJC500.9 1200 491.331 490.818 0.056 1200 461.389 460.501 -0.133
DSJR500.1 1185 279.052 226.710 0.646 1200 481.245 286.637 -0.272
DSJR500.1c 1198 421.765 212.482 0.304 1200 440.222 450.543 -0.127
DSJR500.5 1200 491.142 489.561 0.105 769 289.422 385.740 -0.020
flat300_28_0 1199 274.961 262.538 0.341 1200 287.138 286.731 -0.139
le450_15a 1159 273.573 299.082 0.161 1200 442.403 389.603 -0.151
le450_15b 1115 234.293 202.203 0.527 1200 443.224 329.997 -0.130
le450_15c 1108 352.946 230.713 0.921 1200 441.681 426.002 -0.217
le450_15d 1086 350.593 418.864 0.122 1200 441.665 436.336 -0.056

From Table 4.5, we can make the following observations. First, HSA with its two crossover operators
can reach the best known lower and upper bounds for 36 out of the 40 cases. HSAGGX and HSADGX can
only reach the best known results for 27 and 30 instances respectively. Second, HSA is able to improve
the best known results for 24 instances (bold) while HSAGGX and HSADGX improve the best results for 16
and 17 instances respectively. Third, HSA obtains better results compared to HSAGGX and HSADGX for
12 instances and worse results for 4 instances respectively (underlined). Besides, HSAGGX and HSADGX

can complement each other on some graphs, for instances, the DSJC500.9 and DSJR500.9 instances. In
summary, using jointly the DGX and GGX crossovers allows HSA to reach a better performance than when
these crossovers are used separately. This is particularly useful to handle different graphs with multiple
topologies.

4.5.2 Landscape analyses

The fitness-distance correlation (FDC) coefficient ρ measures the correlation between the quality (fitness
or objective function value) of local optima and their distances to the optimum of a given problem instance
[Jones and Forrest 1995]. If the solution quality increases with the diminution of distance to the optimum,
then there is a path to the optimum via solutions with increasing (better) fitness. Even if FDC alone cannot
fully characterize the hardness of a problem, it can provide useful information about the landscape of the
problem. For a minimization problem, a ρ value close to 1 (the largest possible value) indicates a strong
fitness-distance correlation while a ρ value close to -1 (the smallest possible value) means the absence of
any correlation. The reverse is true for a maximization problem. In this section, we present for the first time
a FDC analysis of the MSCP both for the problems of computing upper bounds (minimization) and lower
bounds (maximization).

Table 4.6 presents the results of the FDC analysis on the 20 selected graphs for the problems of calcu-
lating lower and upper bounds of the MSCP. For each graph, we collect 1200 local optima and identify the
number of distinct local optima among these 1200 collected solutions (#lo), the average distance between
local optima (avg dlo), the average distance between a local optimum and the closest best known local op-
timum (avg dgo) and the FDC coefficient (ρ).

From Table 4.6, one notices that for the minimization problem of upper bounds, the ρ values of COLOR
2002-2004 instances (close to 1) are larger than the ρ values of most DIMACS instances (close to 0). For the

68 CHAPTER 4. HSA: HYBRID SEARCH ALGORITHM FOR MINIMUM SUM COLORING

0

20

40

60

80

100

120

140

160

180

200

F
it
n
es
s
D
iff
er
en
ce

0 50 100 150 200 250 300 350 400 450 500
Distance to global optimum

0

20

40

60

80

100

120

140

160

180

200

F
it
n
es
s
D
iff
er
en
ce

0 50 100 150 200 250 300 350 400 450 500
Distance to global optimum

DSJR500.1 Upper bounds DSJR500.1 Lower bounds

0

200

400

600

800

1000

1200

1400

1600

1800

2000

F
it
n
es
s
D
iff
er
en
ce

0 50 100 150 200 250 300 350 400 450 500
Distance to global optimum

0

50

100

150

200

250

300

350

400

450

500

F
it
n
es
s
D
iff
er
en
ce

0 50 100 150 200 250 300 350 400 450 500
Distance to global optimum

DSJC500.5 Upper bounds DSJC500.5 Lower bounds

0

30

60

90

120

150

180

210

240

270

300

F
it
n
es
s
D
iff
er
en
ce

0 40 80 120 160 200 240 280 320 360 400
Distance to global optimum

0

30

60

90

120

150

180

210

240

270

300

F
it
n
es
s
D
iff
er
en
ce

0 50 100 150 200 250 300 350 400 450 500
Distance to global optimum

le450_15b Upper bounds le450_15b Lower bounds

Figure 4.6: FDC plots on 4 graphs for the lower and upper bounds

maximization problem of lower bounds, the ρ values of COLOR 2002-2004 instances are close to -1 while
the ρ values of most DIMACS instances are close to 0. These observations indicate that most DIMACS
instances would be more difficult to solve compared to the COLOR 2002-2004 instances. This is indeed
coherent with the experimental results of Section 4.4.2. In order to investigate the landscape in a visual
way, we provide the FDC plots in Figure 4.6 with respect to the fitness difference and the distance between
a local optimum and the nearest global optimum on three difficult DIMACS graphs (for the problems of
lower and upper bounds). We can clearly see that there is no correlation for DSJC500.5 (for both problems
of lower and upper bounds), for DSJR500.1 and le450_15b (lower bounds).

4.6 Conclusion

In this chapter, we presented an efficient hybrid search algorithm (HSA) for the lower and upper bounds
of the minimum sum coloring problem (MSCP). HSA combines a double-crossover recombination method,
a dedicated iterated double-phase tabu search (IDTS) procedure and a quality and diversity based population
updating method. The recombination method jointly applies a diversification-guided crossover (DGX) and
a grouping-guided crossover (GGX) to generate promising offspring solutions. The IDTS applies specific

4.6. CONCLUSION 69

strategies to make transitions between feasible and infeasible solutions and a perturbation mechanism to
escape from local optima traps.

Experimental evaluations on 94 benchmark instances showed that the proposed HSA algorithm is highly
competitive in comparison with the state-of-the-art algorithms for the MSCP. HSA can match most of the
current best known lower and upper bounds. In particular, it is able to improve the best known upper bounds
for 24 graphs and the best known lower bounds for 27 graphs.

Additionally, we carried out experiments to verify the merit of the double-crossover recombination
method. Moreover, we showed for the first time a landscape analysis on a number of selected instances
for the lower and upper bounds of the MSCP, which allows us to understand why some instances are more
difficult than others.

5
LHS: Learning-based Hybrid Search for
bandwidth (multi)coloring

In this chapter, we consider the bandwidth coloring problem (BCP) and the bandwidth multicoloring
problem (BMCP) which are two other important generalizations of the classic vertex coloring problem. This
chapter introduces an effective learning-based hybrid search (LHS) for the BCP and BMCP. LHS is based on
the cooperation framework of an informed construction procedure and a local search repair procedure. The
proposed algorithm is evaluated on two sets of 66 commonly used BCP and BMCP benchmark instances
in the literature. The computational results show that our LHS algorithm can achieve the best-known result
for most of these benchmark instances established by several existing algorithms. Moreover, LHS finds an
improved best solution for 14 instances (2 BCP instances and 12 BMCP instances). The content of this
chapter is published in [Jin and Hao 2015a].

Contents
5.1 Introduction . 71
5.2 Components of the LHS approach . 72

5.2.1 General procedure . 73
5.2.2 Learning-based guiding function . 73
5.2.3 Construction phase with forward checking . 75
5.2.4 Tabu search repair phase . 77
5.2.5 Discussions . 80

5.3 Experimental results . 80
5.3.1 Benchmark instances and experimental protocol 80
5.3.2 Bandwith coloring: Computational results . 81
5.3.3 Bandwith multicoloring: Computational results 83

5.4 Analysis of LHS . 86
5.5 Conclusion . 87

5.1 Introduction
This chapter is dedicated to the bandwidth coloring problem and the bandwidth multicoloring problem

which are formally presented in Chapter 2. Recall that given an undirected graph, the BCP consists in

71

72CHAPTER 5. LHS: LEARNING-BASED HYBRID SEARCH FOR BANDWIDTH (MULTI)COLORING

finding a k-coloring with the smallest value of k such that the absolute value of the difference between the
colors of adjacent vertices is not less than the weight of the associated edge. The BCP can be generalized
as the BMCP where each vertex receives a number of different colors. A legal bandwidth multicoloring
must satisfy two constraints: (1) the absolute value of the difference between the colors of adjacent vertices
is not less than the weight of the associated edge; (2) the absolute value of the difference between any two
distinct colors of a vertex is at least the weight of the loop edge of this vertex. The BMCP is to find a legal
bandwidth multicoloring with k minimum.

In this chapter, we propose an effective heuristic approach, called Learning-based Hybrid Search (LHS)
for the BCP and BMCP. LHS is based on the cooperation of an informed construction procedure and a local
search repair procedure and integrates several distinguishing features. The main contributions of the work
can be summarized as follows.

– From the algorithm perspective, the proposed LHS approach establishes an original cooperative
framework between an informed construction approach and a local search approach. The construction
procedure progressively builds feasible (partial) solutions while relying on 1) a dynamic learning-
based guiding function to determine the order of vertices to be colored and 2) a forward checking
technique to reduce the available colors of the considered vertex. In particular, the guiding function
takes into account both static information of the instance under consideration and dynamic informa-
tion learned during the construction and the repair processes. When the construction procedure runs
into a dead-end (i.e., the partial solution under construction can not be extended any more without
violating some constraints), the search switches to the repair procedure to try to unlock the dead-end
situation in order to switch back to the coloring construction process. The local search repair proce-
dure is based on the tabu search metaheuristic reinforced by a simple perturbation strategy. To our
knowledge, this is the first hybrid algorithm of this kind proposed for the BCP and BMCP. Moreover,
the underlying cooperative framework could be useful and adapted to other problems.

– From the computational perspective, we evaluate the LHS approach on two sets of 66 commonly used
BCP and BMCP benchmark instances in the literature. The computational results show that our LHS
algorithm can achieve the best-known result for most of these benchmark instances established by
several existing algorithms. Moreover, LHS finds an improved best solution for 14 instances (2 BCP
instances and 12 BMCP instances).

The rest of this chapter is organized as follows. Next section presents the learning-based hybrid search
for the BCP and BMCP. Section 5.3 shows computational results on the benchmark instances and com-
parisons with some best performing algorithms. Before concluding, Section 5.4 shows an analysis of the
proposed LHS approach.

5.2 Components of the LHS approach

The Learning-based Hybrid Search (LHS) approach is designed for the BCP (more precisely, for the k-
BCP problem), since one can easily convert the BMCP into the BCP by defining a new graph as follows (see
[Dorne and Hao 1999] for an example): For each vertex vi of the BMCP, we define a clique {vi1 , vi2 , ..., vpi}
of cardinality p(i) with a distance d(i, i) for each edge of the clique. For each edge {vi, vj} ∈ E, the dis-
tance d(i, j) is duplicated for each pair of vertices {vix , vjy} of the two corresponding cliques. Then the
new graph has

∑
vi∈V p(i) vertices and

∑
{vi,vj}∈E p(i)× p(j) edges.

To approximate the BCP, we solve a series of k-BCP as performed in [Dorne and Hao 1999, Lai and
Lü 2013, Malaguti and Toth 2008], i.e., to seek a legal bandwidth coloring with k colors (k can be initially

5.2. COMPONENTS OF THE LHS APPROACH 73

fixed to be slightly a value larger than or equal to the best-known k in the literature). As soon as a legal
k-coloring is found, we decrease the current value k to k − 1 and solve the new k-BCP. We repeat this
process until no legal k-coloring can be found and return the last k for which a legal k-coloring is reached.
We describe below the LHS algorithm which basically solves the decision k-BCP problem.

5.2.1 General procedure

Our Learning-based Hybrid Search (LHS) approach repeats the following two phases: a coloring con-
struction phase (Section 5.2.3) to extend in a step-by-step way a partial legal solution by coloring a new
vertex at each step and a repair phase (Section 5.2.4) using tabu search [Glover and Laguna 1999] to solve
constraint violations when the partial legal solution cannot be further extended. The main procedure of the
LHS approach is summarized in Algorithm 6.

The coloring construction phase operates with partial (legal) solutions and tries to expand a partial so-
lution to a complete solution without violating the problem constraints. Starting from an empty solution,
the construction procedure selects at each step, according to a learning-based guiding function (see Section
5.2.2), an uncolored vertex and tries to assign to it an available color. For the selected vertex, if a color can
be assigned to it without violating any distance constraints, the vertex receives the color and the construc-
tion phase continues. If no feasible coloring is possible for the selected vertex, a dead-end is encountered
(in this case, the last selected vertex is called a dead-end vertex) and LHS switches to the tabu search repair
phase to escape from the dead-end.

Suppose the partial legal solution is composed of L− 1 colored vertices when the dead-end is encoun-
tered. Then the tabu search repair phase takes as its input the partial solution and extends it by assigning
a randomly selected color from the given k colors to the dead-end vertex. Obviously, this extension leads
inevitably to an illegal coloring (with L vertices) which violates some distance constraints. The purpose of
the repair phase is then to try to find a legal coloring for the set of L vertices by re-coloring these vertices.
At the end of the repair process, there are two possibilities. If the dead-end is resolved, i.e., a legal partial
coloring is found for the set of L vertices, LHS switches back to the construction phase to continue its
coloring construction. On the other hand, if the repair procedure fails to find a legal partial coloring for the
set of L vertices, LHS drops the on-going process and prepares to restart a new round of construction-repair
process. In order to learn from this failure, LHS updates the guiding function of some critical variables (see
Section 5.2.2) with the help of an adaptive reinforcement learning strategy. As such, the next round of the
construction phase will benefit from some learned information to re-order the vertices such that the critical
vertices which are difficult to color will be considered with a high priority. LHS repeats the above process
until a pre-fixed number of maximum tries is reached or a complete legal k-coloring is obtained.

5.2.2 Learning-based guiding function

As we explain above and in Section 5.2.3, the construction procedure employs a guiding function F to
dynamically determine the order of vertices for color assignment. This guiding function constitutes thus
one of the most critical components of the LHS algorithm and needs to be designed with care.

In our case, the guiding function F dynamically ranks each vertex v by taking into account both static
and learning-based dynamic information and is called at each step of the construction process to select a
vertex for color assignment (a vertex with the highest rank is selected, ties are broken at random). This
function takes the following form:

74CHAPTER 5. LHS: LEARNING-BASED HYBRID SEARCH FOR BANDWIDTH (MULTI)COLORING

Algorithm 6 Learning-based Hybrid Search for the Bandwidth Coloring Problem
Require: A graph G = (V,E), an integer k
Ensure: A feasible k-coloring C∗ found or null
1: T ← 0 /* T counts the failed ‘construction-repair’ rounds */
2: C ← ∅ /* C is the current feasible coloring under construction */
3: while T ≤ maxTries do
4: repeat
5: /* Construction phase */
6: (C, vi)← Construct_partial_solution(C) /* vi is the dead-end vertex encountered, Sect. 5.2.3 */
7: /* Tabu search based conflict repair phase */
8: C∗ ← Tabu_search_repair(C, vi) /* Apply tabu search to solve conflicts, Sect. 5.2.4 */
9: if C∗ is still a conflicting coloring then

10: /* The current round of construction-local search fails */
11: Update the learning-based guiding function F /* Sect. 5.2.2 */
12: C ← ∅; C∗ ← ∅
13: break
14: else
15: C ← C∗
16: end if
17: until |C∗| = n
18: if |C∗| = n then
19: return C∗ /* C∗ is a complete and legal k-coloring, return C∗ */
20: end if
21: T ← T + 1
22: end while
23: return C∗

F(v) =

{
deg(v) + fr_deg(v), T = 0

fb_val(v) + fr_deg(v), T > 0,∀v ∈ V
(5.1)

where T is the number of the failed ‘construction-repair’ rounds.

The deg(v) part of F represents the connection degree of vertex v, i.e., deg(v) = |Γ(v)| where
Γ(v) = {u ∈ V : {v, u} ∈ E}. For a given graph, this part remains static and captures a basic and
main characteristic of the graph. The use of this information within F is based on the consideration that
a vertex with a large degree exhibits a stronger influence to its adjacent vertices than a vertex with a small
degree. So a vertex with a high degree is selected with a higher priority for color assignment. This static
part of F is only considered for the first round of the construction-repair process (T = 0) when there is no
learning-based information available yet.

The freedom degree fr_deg(v) is the number of adjacent vertices of vertex v which received a color.
Let K(v) = {u ∈ Γ(v) : u is colored}, then fr_deg(v) = |K(v)|. Clearly, fr_deg(v) takes values in
{0, . . . , deg(v)}. For each vertex v, fr_deg(v) is initially set to 0. Then each time an adjacent vertex of
v receives a color, fr_deg(v) is increased by 1. As such, F evolves dynamically with fr_deg to favor
the coloring of those vertices which become more constrained by the coloring of its adjacent vertices. The
fr_deg component of F is based on the following consideration. When fr_deg(v) is small relative to
deg(v) (say close to 0), few of its adjacent vertices are colored. As a consequence, vertex v has a large free-
dom in the sense that it is easy to color. In this case, vertex v will be given a low F value, thus a low rank.
Reversely, if fr_deg(v) is close to its maximum value deg(v), almost all of its neighboring vertices have
already received a color. In this case, coloring vertex v is more difficult since this is strongly constrained by
the colors of its adjacent vertices. Consequently, we give a high F value (thus a high rank) to such a vertex
whose coloring becomes critical.

5.2. COMPONENTS OF THE LHS APPROACH 75

The feedback value fb_val(v) is used to learn from each failed construction-repair process in order to
influence the rank of vertices for the next round of coloring construction process. This part is initially set to
0 for each vertex at the beginning of the whole search process. Then two types of updates are dynamically
operated after each failed construction-repair process, i.e., when a dead-end is encountered, which cannot
be unblocked by the subsequent tabu search repair process (see Sections 5.2.3 and 5.2.4).

– Update of the dead-end vertex: Suppose that v is the last vertex under consideration when the con-
struction phase encounters a dead-end (i.e., no color can be assigned to v without violating some
distance constraints). Since the dead-end involving vertex v cannot be resolved by the subsequent
tabu search repair phase, we consider the underlying vertex v to be difficult or critical to color.
In order to favor the selection of this vertex for color assignment for the next round of the color-
ing construction phase, we increase its feedback value fb_val(v) (thus its F rank) by a quantity
∆ = maxu∈1,...,n{deg(u) : u ∈ V }.

– Update of the conflicting vertices: Suppose that c is the conflicting partial coloring after an improving
or sideways (the number of conflicts is not changed) move of the tabu search repair process. We
consider that the vertices that are still involved in constraint violations are difficult or critical to color.
In order to favor the selection of these vertices for the next round of the construction phase, we raise
their rank. Precisely, let X be the set of colored vertices in c. We first identify the set CV of con-
flicting vertices in c: CV = {v ∈ X : ∃u ∈ K(v), |c(v) − c(u)| < d(u, v)} where K(v) is the
set of colored vertices adjacent to v. Then for each vertex v of CV , its feedback value fb_val(v) is
increased by 1.

As such, if a vertex is repeatedly involved in constraint violations which are difficult to repair, its rank
will progressively be augmented and the vertex will be selected for coloring with a high priority during the
next round of the construction-repair process.

5.2.3 Construction phase with forward checking

The construction phase is the main component of the LHS approach responsible for generating legal
k-colorings. The whole procedure of the construction phase is illustrated in Algorithm 7. During the con-
struction phase, we maintain two sets of vertices S ⊂ V and U = V \ S . S is the current partial legal
solution representing the set of vertices with their respective assigned colors while U contains the set of
remaining vertices waiting for color assignment.

The construction phase initially starts with S = ∅ an U = V and then iteratively extends S by including
a new vertex v from U with a legal color c(v) (i.e., c(v) satisfies the distance constraints expressed in Eq.
(2.1)). The construction phase relies on two key elements: the learning-based guiding function F (Section
5.2.2) and a constraint satisfaction technique called forward-checking [Haralick and Elliott 1980].

The learning-based guiding function F provides a dynamic order for the uncolored vertices of U . Using
F , the construction procedure selects always the vertex with the largestF value (ties are broken at random).
For each selected vertex, the forward-checking technique is applied to remove incompatible colors for the
selected vertex v with respect to its adjacent vertices (i.e., the distance constraints). Forward-checking is
an important component of the construction procedure. We explain its functioning in the rest of this section.

Let v ∈ U designate the selected vertex for color assignment, let D(v) be the set of the currently
available colors of v initially set to {1, 2, . . . , k}. Two forward-checking operations are triggered to reduce
D(v) with the computational complexity Θ(k × |Γ(v)|).

76CHAPTER 5. LHS: LEARNING-BASED HYBRID SEARCH FOR BANDWIDTH (MULTI)COLORING

Algorithm 7 Pseudo-code of the construction phase with forward checking
Require: S a partial feasible coloring
Ensure: Either S a complete legal coloring or (S, v) an extended partial coloring of S with a dead-end vertex v

1: U ← V \S /* U is the set of uncolored vertices of graph G */
2: while U ̸= ∅ do
3: Select a vertex v ∈ U with the largest F value (break ties randomly)
4: D(v)← {1, 2, . . . , k} /* Initial color set of vertex v */
5: for each κ ∈ D(v) do
6: /* Let Γ(v) be the set of vertices adjacent to vertex v */
7: for each µ ∈ Γ(v) do
8: if µ is a colored adjacent vertex of v then
9: if |κ− c(µ)| < d(v, µ) then

10: /* Distance constraint violation, delete κ from D(v) */
11: D(v)← D(v)− {κ}
12: end if
13: else
14: /* µ is an uncolored adjacent vertex of v */
15: if κ+ d(v, µ) > k and κ− d(v, µ) < 1 then
16: /* Color κ for v is incompatible with an uncolored vertex µ, delete κ from D(v) */
17: D(v)← D(v)− {κ}
18: end if
19: end if
20: end for
21: end for
22: if D(v) ̸= ∅ then
23: Choose the smallest color κ ∈ D(v) and assign κ to v
24: Extend S with v and its color κ
25: For each uncolored vertex µ ∈ Γ(v), update its guiding function value F(µ)
26: else
27: /* D(v) becomes empty, a dead-end is detected, return S and the dead-end vertex v for the repair phase */
28: return (S, v)
29: end if
30: end while
31: return S

– First forward checking operation: This operation aims to eliminate any color from D(v) which is
incompatible with the colored vertices in Γ(v). More precisely, for a color κ ∈ D(v), if there exists
an adjacent colored vertex µ ∈ Γ(v) such that |κ − c(µ)| < d(v, µ), color κ can not be assigned to
vertex v (due to distance constraint violation) and can be removed from D(v) (See Algorithm 7, lines
8-12).

– Second forward checking operation: This operation aims to eliminate any color from D(v) which is
incompatible with the uncolored vertices in Γ(v) if the color is assigned to v. More precisely, for a
color κ ∈ D(v), if there exists an adjacent uncolored vertex µ ∈ Γ(v) such that κ + d(v, µ) > k and
κ− d(v, µ) < 1, color κ cannot be assigned to vertex v (since the uncolored vertex µ has no available
colors if κ is assigned to v) and can be removed from D(v) (see Algorithm 7, lines 14-18).

After these forward checking operations, if the color domain D(v) is not empty, the current partial
solution is extended by vertex v with the smallest color of D(v). Before moving to the next iteration of
the construction phase, the algorithm updates the guiding function value F(µ) (i.e., fr_deg(µ)) for each
uncolored vertex µ ∈ Γ(v) (Algorithm 7, lines 22-25).

5.2. COMPONENTS OF THE LHS APPROACH 77

ab 3

d e

g

5

1

3
b is selected to color

D(b)={1,6}

c(b)=1

g is selected to color

D(g)={4,5,6}

d is selected to color
D(d)={6}

4

ab 3

d e

g

5

1

3

4

ab 3

d e

g

5

1

3

4

c(b)=1

ab 3

d e

g

5

1

3

4

c(b)=1

c(d)=6

3 3 3

3

ab 3

d e

g

5

1

3

4

c(b)=1

c(d)=6

3

e is selected to color

ab 3

d e

g

5

1

3

4

c(b)=1

c(d)=6

3

a is selected to color

c(g)=4

c(g)=4c(g)=4c(g)=4

D(e)={1}

c(e)=1c(e)=1
D(a)={5,6}

c(a)=5

Figure 5.1: An illustrative example of the construction phase with forward checking.

On the other hand, if the color domain D(v) becomes empty (i.e., no color can be assigned to v without
violating some distance constraints), a dead-end is detected. At this point, the construction procedure is
stopped and the search process switches to the tabu search repair procedure (Algorithm 7, lines 26-28).

Figure 5.1 illustrates the construction phase with forward checking. In the example, we use six colors
(k = 6) to color a graph G with five vertices a, b, d, e and g and six edge weights. At the first construction
step, the guiding function is F(a, b, d, e, g) = {2, 3, 2, 2, 3}, b and g are thus the vertices with the largest F
value. Suppose a random selection between b and g gives vertex b and D(b) = {1, 2, 3, 4, 5, 6}. According
to the first forward checking operation, no color can be removed from D(b). Then, according to the second
forward checking operation, {2, 3, 4, 5} can be removed from D(b). Hence, D(b) = {1, 6} and the smallest
color 1 is chosen to color the vertex b. Then the function F{a, b, d, e, g} is updated to {3, -, 3, 2, 4}. At
this point, one construction step is successfully accomplished. The next steps of the construction phase will
handle the remaining vertices g, d, e and a in this order and assign them colors 4, 6, 1, and 5 respectively.

In this example, no dead-end is encountered during the construction phase. Generally, the application
of forward-checking can eliminate all the colors of the vertex currently under consideration. In this case,
the search switches to the repair phase for conflict resolution that we explain in the next section.

5.2.4 Tabu search repair phase
When the construction phase encounters a dead-end where the selected vertex v has no available colors

(all its colors are removed by the forward-checking operations, see Section 5.2.3), LHS assigns a random
color from {1, ..., k} to vertex v and updates the guiding function value F(µ) (i.e., fr_deg(µ)) for each
uncolored vertex µ ∈ Γ(v). By doing this, some distance constraints are inevitably violated causing the
current partial solution to be illegal. The purpose of the repair phase is then to try to transform this con-
flicting solution into a legal partial bandwidth coloring in order to switch back to the construction phase.

78CHAPTER 5. LHS: LEARNING-BASED HYBRID SEARCH FOR BANDWIDTH (MULTI)COLORING

To achieve this, we develop a tabu search [Glover and Laguna 1999] repair procedure (TSRP) for the k-
BCP which combines a basic tabu search procedure (TS) and a simple perturbation mechanism. The TS
procedure is an adaptation of the Tabucol algorithm first introduced in [Hertz and de Werra 1987] for the
conventional graph coloring problem and later improved in [Dorne and Hao 1999, Galinier and Hao 1999].

Tabu search procedure

The general scheme of the tabu search repair procedure is shown in Algorithm 8. As shown in the al-
gorithm, TSRP alternates between the tabu search procedure (lines 4-18, Algorithm 8) and the perturbation
mechanism.

Suppose that the partial illegal solution S is composed of L vertices {v1, ..., vL} ⊂ V . Then the TS
procedure explores a subset of the space Ω = {1, ..., k}L to seek a legal bandwidth coloring by using an
evaluation function f , a neighborhood N and a tabu list (see Section 5.2.4). Notice that Ω contains both
legal and illegal bandwidth k-colorings. The purpose of TS is to find a legal solution by making successive
improvements.

From the partial illegal coloring S, TS improves its solutions by iteratively moving from the current
solution to one neighboring solution guided by the evaluation function. The best solution (in terms of the
evaluation function f) is recorded in S∗. At each iteration, TS moves from the current solution S to a best
authorized neighboring solution, records the transition in the tabu list to prevent the search from revisiting
solution S and possibly updates the best solution S∗ (lines 7-15). If the best solution cannot be improved
for a given number maxIters of consecutive iterations, the search is considered to be trapped in a local
optimum. To escape from the local optimum, TSRP triggers a perturbation mechanism (see Section 5.2.4)
to modify the current solution which becomes the starting solution of the next round of the tabu search
procedure (lines 19-20). The repair phase using TSRP stops either when a legal coloring is found by the
tabu search procedure (lines 10-11) or after reaching a prefixed number maxTSruns of the tabu search runs
(or perturbations) (lines 3, 22-23).

Evaluation function, constrained neighborhood and tabu list

We next describe the key elements of the tabu search procedure, i.e., the evaluation function to measure
the quality of a candidate solution (bandwidth) coloring, the neighborhood to identify the neighboring so-
lutions that can be attained at each iteration, and the tabu list to avoid short-term cycling.

Evaluation function f : Recall that a distance d(i, j) is defined for each edge {vi, vj} ∈ E and the
distance constraint states that the absolute value of the difference between the colors assigned to adjacent
vertices vi and vj must be at least the distance d(i, j). Given a partial (illegal) solution S , we use the
evaluation function defined in Eq. (5.2) [Lai and Lü 2013] to quantify the quality of S.

f(S) =
∑

{i,j}∈E

max{0, d(i, j)− |c(vi)− c(vj)|} (5.2)

This function basically measures the degree of constraint violations induced by a solution. Given two
solutions S1 and S2, if f(S1) < f(S2) (i.e., S1 has a smaller degree of constraint violations than S2), S1 is
better than S2. If f(S) equals to 0, S is a feasible solution.

Constrained neighborhood N : TS uses a constrained neighborhood N which can be described by the
move operator OneMove(v, i, j). Let S be a solution composed of L vertices X = {v1, ..., vL}. Let CV
be the set of conflicting vertices such that CV = {v ∈ X : the color of v is conflicting with the color of
at least one vertex}. The OneMove operator changes the current color i of a conflicting vertex v ∈ CV to

5.2. COMPONENTS OF THE LHS APPROACH 79

Algorithm 8 Tabu search repair procedure
Require: Graph G, color number k, partial illegal solution to be repaired S , maximum number of launching TS

maxTSruns
Ensure: a legal bandwidth k-coloring if found or the best solution found

1: S∗ ← S /* S∗ records the best solution found so far */
2: α← 0 /* Counts the number of launching TS */
3: while α < maxTSruns do
4: /* Tabu search, see Section 5.2.4 */
5: β ← 0 /* Counts consecutive iterations failing to improve S∗ */
6: repeat
7: Select one best eligible move OneMove(v, i, j)
8: S ← S ⊕OneMove(v, i, j)
9: Update the tabu list

10: if f(S) = 0, i.e., S is legal coloring then
11: return S
12: end if
13: if f(S) < f(S∗), i.e., S is better than S∗ then
14: S∗ ← S; β ← 0
15: else
16: β ← β + 1
17: end if
18: until β = maxIters
19: /* The perturbation mechanism, see Section 5.2.4 */
20: S ← Perturbation(S∗) /* The perturbed solution becomes the starting point of the next TS run */
21: α← α+ 1
22: end while
23: return S∗

another color j. Let OneMove(v, i, j) designate such a move and S ⊕ OneMove(v, i, j) be the resulting
neighboring solution from S. Then the neighborhood N of S is composed of all possible solutions that can
be obtained by applying the OneMove operator to S , i.e.,

N(S) = {S ⊕OneMove(v, i, j) : v ∈ CV }

With this neighborhood, TS explores a much restricted space of k|CV | (instead of kL) where CV is
usually a very small subset of vertices of the current coloring S. In order to render the neighborhood explo-
ration as fast as possible, we adopt the incremental technique based on special data structures as explained
in [Dorne and Hao 1999] to streamline the calculations.

Given this neighborhood, each iteration of TS selects the best OneMove(v, i, j) operator among all the
eligible candidate moves to be applied to the current solution. Ties are broken at random.

Tabu list management: The tabu list is introduced to record forbidden moves that have been performed
in the recent past. Each time TS makes a move OneMove(v, i, j), the pair (v, j) is added to the tabu list,
meaning that it is forbidden to remove color j from vertex v for the next TT (tabu tenure) iterations. In
our case, the tabu tenure TT is adaptively determined by TT = f (S) + random(10) [Dorne and Hao
1999, Galinier and Hao 1999] where f(S) is the value of the evaluation function defined in Eq. (5.2) and
random(10) is a random integer from 1 to 10. Moreover, a forbidden move is always accepted if it leads to
a neighboring solution better than the best solution found so far (aspiration criterion).

80CHAPTER 5. LHS: LEARNING-BASED HYBRID SEARCH FOR BANDWIDTH (MULTI)COLORING

The perturbation mechanism

The tabu search procedure described above can be trapped in a local optimum, leading to search stag-
nation. When this happens, we employ a simple perturbation strategy to change (or perturb) the current
solution S . Recall that S∗ records the best solution found so far. The perturbation procedure always re-
places S by S∗ and thus uses S∗ as the new starting point of the next round of TS.

The perturbation strategy is based on the consideration that S∗ is a high quality configuration (i.e., hav-
ing few conflicts) which could be close to a proper (legal) coloring. Using S∗ as its starting point, the tabu
search procedure will explore a new search trajectory and hopefully encounters a proper coloring.

5.2.5 Discussions
In this section, we discuss the relation of our LHS algorithm with the Forward Checking Coloration

Neighborhood Search (FCNS) approach [Prestwich 2008] which is probably the closest study for the BCP.
Indeed, both approaches employ forward checking to build a partial color assignment. However there are
three notable differences between LHS and FCNS. First, unlike LHS, the heuristic used for vertex selec-
tion in FCNS does not integrate any learning technique. Second, when a dead-end is encountered (i.e., no
color can be assigned to the vertex under consideration), LHS employs a tabu search procedure to repair
the conflicting coloring while FCNS just uncolors one or more vertices in a heuristic way to resolve the
conflict. Third, the process of dropping an on-going construction phase provides LHS with an opportunity
of learning from previous failures while FCNS does not use such similar technique.

From a more general perspective, LHS is also related to the general GRASP metaheuristic [Feo and
Resende 1995] in the sense that both LHS and GRASP are composed of a construction phase and a local
optimization phase. Yet, unlike GRASP which applies a local search procedure to improve a complete solu-
tion (complete color assignment in our case), the tabu search routine of LHS repairs partial (and conflicting)
solutions.

As shown in the next section, the proposed LHS algorithm, equipped with its particular features, is a
very competitive method for the bandwidth coloring problem.

5.3 Experimental results

5.3.1 Benchmark instances and experimental protocol
Our LHS approach was tested on two sets of 66 well-known benchmark instances (33 graphs for the

BCP and 33 for the BMCP [Johnson et al. 2002]). These instances belong to three types: GEOMn, GE-
OMna and GEOMnb (where n denotes the number of vertices of the graph). The first type refers to sparse
graphs, while the two other types correspond to dense graphs.

The LHS algorithm is coded in C++ and compiled using g++ with the ‘-O2’ option on an Intel Xeon
E5440 processor (2.83GHz and 4GB RAM). The run time required for solving the DIMACS machine
benchmarks (available at: ftp://dimacs.rutgers.edu/pub/dsj/clique/) on our machine is
0.44, 2.63 and 9.85 seconds for graphs r300.5, r400.5 and r500.5 respectively. The computational results
reported in this section were obtained with the parameter values shown in Table 5.1. Given the stochastic
nature of our LHS algorithm, each problem instance is independently solved 20 times. As explained in
Section 5.2, LHS solves the k-BCP problem by decreasing the k values. For the experiments reported in

ftp://dimacs.rutgers.edu/pub/dsj/clique/

5.3. EXPERIMENTAL RESULTS 81

Table 5.1: Settings of parameters
Parameter Sect. Description Value
maxTries 5.2.1 Maximum number of tries 103

maxIters 5.2.4 Maximum number of non-improving moves for TS 104

maxTSruns 5.2.4 Maximum iterations of launching TS 50

Table 5.2: LHS: Detailed computational results on BCP instances
Characteristics of the graphs k∗ LHS

Name n m d k SR t(s)
GEOM20 20 20 0.1053 20 21 20/20 0.0
GEOM20a 20 37 0.1947 20 20 20/20 0.0
GEOM20b 20 32 0.1684 13 13 20/20 0.0
GEOM30 30 50 0.1149 27 28 20/20 0.0
GEOM30a 30 81 0.1862 27 27 20/20 0.0
GEOM30b 30 81 0.1862 26 26 20/20 0.0
GEOM40 40 78 0.1000 27 28 20/20 0.0
GEOM40a 40 146 0.1872 37 37 20/20 0.0
GEOM40b 40 157 0.2013 33 33 20/20 0.0
GEOM50 50 127 0.1037 28 28 20/20 0.0
GEOM50a 50 238 0.1943 50 50 20/20 0.1
GEOM50b 50 249 0.2033 35 35 20/20 1.2
GEOM60 60 185 0.1045 33 33 20/20 0.0
GEOM60a 60 339 0.1915 50 50 20/20 0.1
GEOM60b 60 366 0.2068 41 41 20/20 214.7
GEOM70 70 267 0.1106 38 38 20/20 0.0
GEOM70a 70 459 0.1901 61 61 20/20 23.7
GEOM70b 70 488 0.2020 47 47 20/20 665.4
GEOM80 80 349 0.1104 41 41 20/20 0.1
GEOM80a 80 612 0.1936 63 63 20/20 6.6
GEOM80b 80 663 0.2098 60 60 20/20 19.9
GEOM90 90 441 0.1101 46 46 20/20 0.0
GEOM90a 90 789 0.1970 63 63 20/20 23.8
GEOM90b 90 860 0.2147 69 69 20/20 779.2
GEOM100 100 547 0.1105 50 50 20/20 1.0
GEOM100a 100 992 0.2000 67 67 8/20 1557.4

68 20/20 189.8
GEOM100b 100 1050 0.2121 72 71 12/20 2038.6

72 20/20 759.6
GEOM110 110 638 0.1064 50 50 20/20 1.3
GEOM110a 110 1207 0.2013 71(72) 71 19/20 2218.7

72 20/20 324.2
GEOM110b 110 1256 0.2095 78 77 10/20 2598.7

78 20/20 94.3
GEOM120 120 773 0.1083 59 59 20/20 0.5
GEOM120a 120 1434 0.2000 82 82 20/20 171.1
GEOM120b 120 1491 0.2088 84 84 2/20 3568.1

85 20/20 1829.7

this chapter, we set the initial value of k to be the best-known (i.e., the smallest) value k∗ from the literature
for all the graphs.

5.3.2 Bandwith coloring: Computational results

This section is dedicated to an evaluation of the LHS’s performance for the bandwidth coloring problem
using the 33 BCP benchmark graphs. Columns 1–4 in Table 5.2 present the characteristics of the tested
graphs and column k∗ gives the current best-known results reported in the published literature and the un-
published paper [Lai et al. 2014]. The current best-known k∗ reported in the published literature is also
given in parentheses. Columns 6–8 present detailed computational results of our LHS algorithm: The best
result in terms of the number of colors (k), the success rate (SR, number of runs over 20 to attain the best
result k) and the average running time to reach k (t, in seconds).

82CHAPTER 5. LHS: LEARNING-BASED HYBRID SEARCH FOR BANDWIDTH (MULTI)COLORING

Table 5.3: Comparisons with four state-of-the-art algorithms on BCP instances
Graph FCNS EA MITS PR LHS

Name k∗ k t(s) k t(s) k t(s) k t(s) k t(s)
GEOM20 20 21 0.0 21 0.0 - - 21 0.0 21 0.0
GEOM20a 20 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0
GEOM20b 13 13 0.0 13 0.0 13 0.0 13 0.0 13 0.0
GEOM30 27 28 0.0 28 0.0 - - 28 0.0 28 0.0
GEOM30a 27 27 0.0 27 0.0 27 0.0 27 0.0 27 0.0
GEOM30b 26 26 0.0 26 0.0 26 0.0 26 0.0 26 0.0
GEOM40 27 28 0.0 28 0.0 - - 28 0.0 28 0.0
GEOM40a 37 37 0.0 37 0.0 37 0.0 37 0.0 37 0.0
GEOM40b 33 33 0.0 33 0.0 33 0.0 33 0.0 33 0.0
GEOM50 28 28 0.0 28 0.0 28 0.0 28 0.0 28 0.0
GEOM50a 50 50 2.0 50 0.0 50 0.0 50 0.0 50 0.1
GEOM50b 35 35 0.0 35 0.0 35 3.0 35 1.0 35 1.2
GEOM60 33 33 0.0 33 0.0 33 0.0 33 0.0 33 0.0
GEOM60a 50 50 1.0 50 0.0 50 1.0 50 0.0 50 0.1
GEOM60b 41 43 0.0 41 29.0 41 277.0 41 105.0 41 214.7
GEOM70 38 38 0.0 38 0.0 38 0.0 38 0.0 38 0.0
GEOM70a 61 62 2.0 61 12.0 61 45.0 61 47.0 61 23.7
GEOM70b 47 48 1.0 48 52.0 47 8685.0 47 6678.0 47 665.4
GEOM80 41 41 0.0 41 0.0 41 0.0 41 0.0 41 0.1
GEOM80a 63 63 12.0 63 150.0 63 21.0 63 12.0 63 6.6
GEOM80b 60 61 0.0 60 145.0 60 322.0 60 191.0 60 19.9
GEOM90 46 46 3.0 46 0.0 46 0.0 46 0.0 46 0.0
GEOM90a 63 64 2.0 63 150.0 63 230.0 63 191.0 63 23.8
GEOM90b 69 72 2.0 70 1031.0 69 20144.0 69 23560.0 69 779.2
GEOM100 50 50 0.0 50 2.0 50 2.0 50 2.0 50 1.0
GEOM100a 67 68 9.0 68 273.0 67 11407.0 67 5556.0 67 1557.4

68 189.8
GEOM100b 72 73 15.0 73 597.0 72 24561.0 72 41832.0 71 2038.6

72 759.6
GEOM110 50 50 4.0 50 3.0 50 2.0 50 5.0 50 1.3
GEOM110a 71(72) 73 7.0 72 171.0 72 1529.0 71 5140.0 71 2218.7

72 324.2
GEOM110b 78 79 2.0 78 676.0 78 24416.0 78 18136.0 77 2598.7

78 94.3
GEOM120 59 60 4.0 59 0.0 59 1.0 59 2.0 59 0.5
GEOM120a 82 84 4.0 84 614.0 82 34176.0 82 62876.0 82 171.1
GEOM120b 84 86 9.0 84 857.0 - - 85 66301.0 84 3568.1

85 1829.7

From Table 5.2, one observes that except for three small instances (indicated in italics), LHS can match
the best-known results of the other 30 instances. Remarkably, LHS is able to improve the current best-
known result for two hard instances (GEOM100b and GEOM110b indicated in bold). Furthermore, LHS
achieves robust results with a success rate SR = 20/20 except for five cases (GEOM100a, GEOM100b,
GEOM110a, GEOM110b and GEOM120b). Besides, Table 5.2 also lists the k value of these five graphs
when SR = 20/20. The average running time of LHS ranges from 0 second to 1 hour. Each computing time
corresponds to the average time for LHS to reach a legal coloring with the k value indicated in the table.

In order to further evaluate our LHS method, we compare our results with those obtained by four
best performing algorithms in the literature: Forward checking colouration neighbourhood search (FCNS)
[Prestwich 2008], evolutionary algorithm (EA) [Malaguti and Toth 2008], multistart iterated tabu search
(MITS) [Lai and Lü 2013] and path relinking (PR) [Lai et al. 2014]. For this purpose, we restrict our atten-
tion to solution quality, i.e., the smallest k used to obtain a legal k-coloring. Computing times are included
only for indicative purposes since there is no sense to compare the computing times of two methods if they
achieve colorings with different k values. As one can observe in Table 5.3, there are many such cases.
Indeed, it is generally more difficult to find a legal k-coloring than a legal (k+ 1)-coloring. This is particu-
larly true when k is close to the best-known value k∗ (see for instance the cases GEOM100a, GEOM100b,
GEOM110a and GEOM110b in Table 5.3). Finally, the experimental platforms used by the reference algo-
rithms are as follows: A 733MHz Pentium III PC for FCNS, a PIV 2.4MHz computer with 512 MB RAM
for EA and a 2.8GHz computer with 4GB RAM for MITS and PR.

5.3. EXPERIMENTAL RESULTS 83

Table 5.3 presents the comparative results of LHS and the four reference methods (FCNS, EA, MITS
and PR). The “-” marks for the reference MITS algorithm in Table 5.3 mean that MITS fails to reach the
best-known result for the tested graph and the best obtained k is not reported for these graphs. From Table
5.3, one observes that the reference algorithms can achieve the best reported k∗ for 17, 24, 28 and 29
instances respectively, while LHS achieves the best-known results for 30 instances. Table 5.3 also discloses
that LHS obtains no worse results than FCNS, EA, MITS and PR. More importantly, LHS can improve the
best-known results in the literature for two instances (entries in bold). Finally, to find a legal coloring with
the same k value, LHS requires comparable computing times with respect to FCNS and EA, and shorter
times than MITS and PR for many cases. These outcomes provide evidence of the efficacy of our LHS
approach for the BCP.

5.3.3 Bandwith multicoloring: Computational results

We turn now our attention to an evaluation of the LHS algorithm on the bandwidth multicoloring prob-
lem using the set of 33 “GEOM” benchmark instances for the BMCP. LHS is designed for solving the
BCP, we do not adjust the LHS algorithm but transform each instance of the BMCP to the corresponding
instance of the BCP. We split each vertex vi into a clique of cardinality p(i) (each vertex vi receives a subset
S(i) ⊂ {1, 2, ..., k} of p(i) different colors), with each edge of the clique having distance d(i, i), corre-
sponding to the distance of the loop edge of vertex vi in the original graph. As a result, the new graph has∑

i=1,...,n p(i) vertices [Lim et al. 2005, Malaguti and Toth 2008].

In this section, we first present our detailed computational results, and then show a comparison between
LHS and the five state-of-the-art algorithms OF-SW [Chiarandini and Stützle 2007], FCNS [Prestwich
2008], EA [Malaguti and Toth 2008], MITS [Lai and Lü 2013] and PR[Lai et al. 2014].

Table 5.4 shows the detailed characteristics of each graph, the best-known result k∗ (the best-known k∗
in the published literature is also given in parentheses) and the result of our LHS approach. In addition to
the best colors obtained (k) with the average running time to reach k (t in seconds), we also provide the
success rate (SR) of LHS for attaining the best result k. Furthermore, we list the k value for each graph
when LHS could achieve the robust results with a SR = 20/20. Table 5.5 reports the comparative results
between LHS and the five reference algorithms. The experimental platform used by OF-SW algorithm is
a 2GHz AMD Athlon MP 2400+ processor with 256 KB cache and 1 GB RAM, and the platforms of the
other four reference algorithms are the same as given in Section 5.3.2.

From the results in Table 5.4, we observe that our LHS approach can match the best-known k∗ for all
33 instances. More importantly, LHS finds an improved best result for 12 out of 33 instances (entries in
bold). This is remarkable given that 14 of these 33 best-known results were reported very recently in the
unpublished work [Lai et al. 2014]. In particular, LHS can consistently achieve the best-known k∗ in the
literature with a perfect success rate for all graphs except GEOM80a, GEOM90a and GEOM110b. Besides,
the indicated computing time corresponds to the average time for LHS to reach a legal coloring with the
k value indicated in the table. From Table 5.4, one also observes that the running time increases when k
decreases since this makes the problem more difficult to solve.

Table 5.5 lists the comparative results of LHS and the five reference algorithms (OF-SW, FCNS, EA,
MITS and PR). The “-” marks for the OF-SW algorithm mean that no result is available for the concerned
graphs. From Table 5.5, one observes that OF-SW, FCNS, EA and MITS reach the best-known results for 6,
8, 13 and 18 cases respectively. While both the unpublished PR algorithm and our LHS algorithm attain the
best-known results for all 33 instances (in italics), LHS requires a much shorter computing time for most in-
stances. More importantly, our LHS algorithm can find an improved best solution for 12 instances (in bold).

84CHAPTER 5. LHS: LEARNING-BASED HYBRID SEARCH FOR BANDWIDTH (MULTI)COLORING

Table 5.4: Detailed computational results of LHS on the set of 33 BMCP instances
Characteristics of the graphs k∗ LHS

Name n m d k SR t(s)
GEOM20 118 1048 0.1518 149 149 20/20 1.8
GEOM20a 100 1327 0.2681 169 169 20/20 0.5
GEOM20b 40 132 0.1692 44 44 20/20 0.0
GEOM30 143 1419 0.1398 160 160 20/20 0.1
GEOM30a 171 3288 0.2262 209 209 20/20 16.2
GEOM30b 69 447 0.1905 77 77 20/20 0.0
GEOM40 220 3074 0.1276 167 167 20/20 0.2
GEOM40a 203 4473 0.2182 213 213 20/20 9.0
GEOM40b 84 743 0.2131 74 74 20/20 1.5
GEOM50 285 4935 0.1219 224 224 20/20 0.3
GEOM50a 302 9649 0.2123 312(314) 311 20/20 1452.6

312 20/20 307.5
GEOM50b 104 1140 0.2128 83 83 20/20 72.1
GEOM60 315 6174 0.1248 258 258 20/20 1.3
GEOM60a 362 13105 0.2005 354(356) 353 2/20 9007.1

354 20/20 4996.0
GEOM60b 127 1785 0.2231 113 113 20/20 910.7
GEOM70 384 8584 0.1167 266(270) 266 20/20 2534.0
GEOM70a 379 14821 0.2069 466(467) 465 6/20 36604.9

466 20/20 12622.1
GEOM70b 148 2212 0.2033 116 115 3/20 3640.7

116 20/20 1844.7
GEOM80 465 12927 0.1198 380(381) 379 20/20 357.8

380 20/20 164.0
GEOM80a 389 15545 0.2060 358(361) 357 2/20 43403.0

358 7/20 25852.0
360 20/20 13302.9

GEOM80b 169 3028 0.2133 138(139) 138 20/20 46.5
GEOM90 530 16180 0.1154 328(330) 328 20/20 162.2
GEOM90a 454 20455 0.1989 372(375) 372 3/20 16782.1

373 20/20 3164.5
GEOM90b 184 3602 0.2139 144 142 7/20 7680.8

143 20/20 4858.5
144 20/20 1331.8

GEOM100 581 19829 0.1177 404 404 20/20 64.9
GEOM100a 528 28496 0.2048 436(442) 429 1/20 78363.1

434 20/20 10767.1
436 20/20 2310.7

GEOM100b 200 4429 0.2226 156 153 1/20 10840.1
155 20/20 3147.6
156 20/20 726.3

GEOM110 643 24799 0.1201 375(381) 375 20/20 1598.8
GEOM110a 602 38783 0.2144 482(488) 478 1/20 49457.1

480 20/20 2921.5
482 20/20 375.3

GEOM110b 220 5163 0.2143 201(204) 201 3/20 5388.4
203 20/20 303.1

GEOM120 680 27759 0.1202 396 396 20/20 626.1
GEOM120a 664 46429 0.2109 539(554) 536 2/20 69518.6

539 20/20 20286.1
GEOM120b 235 5779 0.2102 189 187 8/20 8025.8

188 20/20 1642.0
189 20/20 315.2

5.3. EXPERIMENTAL RESULTS 85

Table 5.5: Comparisons of LHS with five state-of-the-art algorithms on the set of 33 BMCP instances
Graph OF-SW FCNS EA MITS PR LHS

Name k∗ k t(s) k t(s) k t(s) k t(s) k t(s) k t(s)
GEOM20 149 - - 149 4.0 149 18.0 149 2.0 149 1.0 149 1.8
GEOM20a 169 - - 170 2.0 169 9.0 169 15.0 169 7.0 169 0.5
GEOM20b 44 44 30.0 44 0.0 44 5.0 44 0.0 44 0.0 44 0.0
GEOM30 160 - - 160 0.0 160 1.0 160 0.0 160 0.0 160 0.1
GEOM30a 209 209 380.0 214 11.0 210 954.0 209 10.0 209 26.0 209 16.2
GEOM30b 77 77 80.0 77 0.0 77 0.0 77 0.0 77 0.0 77 0.0
GEOM40 167 - - 167 1.0 167 20.0 167 0.0 167 1.0 167 0.2
GEOM40a 213 214 500.0 217 299.0 214 393.0 213 328.0 213 133.0 213 9.0
GEOM40b 74 74 140.0 74 4.0 74 1.0 74 2.0 74 4.0 74 1.5
GEOM50 224 - - 224 1.0 224 1197.0 224 8.0 224 2.0 224 0.3
GEOM50a 312(314) 315 1080.0 323 51.0 316 4675.0 314 40373.0 312 270860.0 311 1452.6

312 307.5
GEOM50b 83 84 200.0 86 1.0 83 197.0 83 1200.0 83 723.0 83 72.1
GEOM60 258 258 710.0 258 77.0 258 139.0 258 19.0 258 23.0 258 1.3
GEOM60a 354(356) 356 1420.0 373 10.0 357 8706.0 356 38570.0 354 34580.0 353 9007.1

354 4996.0
GEOM60b 113 117 300.0 116 12.0 115 460.0 113 104711.0 113 63579.0 113 910.7
GEOM70 266(270) 267 1060.0 277 641.0 272 1413.0 270 7602.0 266 130844.0 266 2534.0
GEOM70a 466(467) 478 1470.0 482 315.0 473 988.0 467 38759.0 466 6952.0 465 36604.9

466 12622.1
GEOM70b 116 120 380.0 119 55.0 117 897.0 116 213545.0 116 26110.0 115 3640.7

116 1844.7
GEOM80 380(381) 382 1490.0 398 361.0 388 132.0 381 212213.0 380 34493.0 379 357.8

380 164.0
GEOM80a 358(361) 360 1510.0 380 109.0 363 8583.0 361 41235.0 358 41772.0 357 43403.0

360 13302.9
GEOM80b 138(139) 139 490.0 141 37.0 141 1856.0 139 255.0 138 705.0 138 46.5
GEOM90 328(330) 334 1810.0 339 44.0 332 4160.0 330 4022.0 328 134941.0 328 162.2
GEOM90a 372(375) 377 1910.0 382 13.0 382 5334.0 375 10427.0 372 282456.0 372 16782.1

373 3164.5
GEOM90b 144 147 590.0 147 303.0 144 1750.0 144 211366.0 144 14648.0 142 7680.8

144 1331.8
GEOM100 404 404 2170.0 424 7.0 410 3283.0 404 40121.0 404 16355.0 404 64.9
GEOM100a 436(442) 437 2500.0 461 26.0 444 12526.0 442 381.0 436 9108.0 429 78363.1

436 2310.7
GEOM100b 156 159 690.0 159 367.0 156 3699.0 156 213949.0 156 86308.0 153 10840.1

156 726.3
GEOM110 375(381) 378 2510.0 392 43.0 383 2344.0 381 183.0 375 25401.0 375 1598.8
GEOM110a 482(488) 490 3120.0 500 29.0 490 2318.0 488 926.0 482 9819.0 478 49457.1

482 375.3
GEOM110b 201(204) 208 790.0 208 5.0 206 480.0 204 944.0 201 47653.0 201 5388.4

203 303.1
GEOM120 396 397 2730.0 417 9.0 396 2867.0 - - 396 15341.0 396 626.1
GEOM120a 539(554) 549 3690.0 565 41.0 559 3873.0 554 1018.0 539 45147.0 536 69518.6

539 20286.1
GEOM120b 189 191 910.0 196 3.0 191 3292.0 189 213989.0 189 14371.0 187 8025.8

189 315.2

86CHAPTER 5. LHS: LEARNING-BASED HYBRID SEARCH FOR BANDWIDTH (MULTI)COLORING

Table 5.6: Assessment of the learning-based guiding function
Graph LHSrandom LHS

Name k∗ k SR t(s) k SR t(s)
GEOM50 224 224 20/20 0.3 224 20/20 0.3
GEOM50a 312(314) 313 2/20 28288.6 311 20/20 1452.6
GEOM50b 83 83 16/20 3492.4 83 20/20 72.1
GEOM60 258 258 20/20 1.6 258 20/20 1.3
GEOM60a 354(356) 354 7/20 12349.2 353 2/20 9007.1
GEOM60b 113 113 1/20 3549.1 113 20/20 910.7
GEOM70 266(270) 266 7/20 14235.4 266 20/20 2534.0
GEOM70a 466(467) 466 9/20 30681.1 465 6/20 36604.9
GEOM70b 116 117 3/20 7880.7 115 3/20 3640.7
GEOM80 380(381) 379 6/20 18108.5 379 20/20 357.8
GEOM80a 358(361) 360 1/20 64551.1 357 2/20 43403.0
GEOM80b 138(139) 138 20/20 529.6 138 20/20 46.5
GEOM90 328(330) 328 3/20 15547.1 328 20/20 162.2
GEOM90a 372(375) 373 3/20 26154.4 372 3/20 16782.1
GEOM90b 144 145 3/20 11794.4 142 7/20 7680.8
GEOM100 404 404 20/20 302.8 404 20/20 64.9
GEOM100a 436(442) 437 3/20 45299.8 429 1/20 78363.1
GEOM100b 156 159 4/20 7565.8 153 1/20 10840.1
GEOM110 375(381) 375 3/20 32435.4 375 20/20 1598.8
GEOM110a 482(488) 481 6/20 24425.6 478 1/20 49457.1
GEOM110b 201(204) 202 1/20 15397.1 201 3/20 5388.4
GEOM120 396 396 20/20 14012.6 396 20/20 626.1
GEOM120a 539(554) 542 1/20 76969.1 536 2/20 69518.6
GEOM120b 189 190 2/20 12950.6 187 8/20 8025.8

Once again, we do not emphasize on computing time since the compared approaches provide results
with different k values. The computing times of FCNS [Prestwich 2008] are much shorter, but its results
are much worse in terms of solution quality. To find solutions of the same quality (with the same k), LHS
does not consume more time than OF-SW [Chiarandini and Stützle 2007] and EA [Malaguti and Toth 2008].
Compared to the most recent and the two best performing algorithms MITS [Lai and Lü 2013] and PR [Lai
et al. 2014], LHS requires less computing times to find equal or better solutions.

In summary, LHS competes very favorably with the five high performing reference algorithms in the
literature for the BMCP.

5.4 Analysis of LHS
In this section, we perform an additional experiment to assess the impact of the learning-based guiding

function F defined in Eq. (5.1) (Section 5.2.2) which is a key element of the LHS approach.

Indeed, as explained in Section 5.2.1, the construction phase uses the guiding function F to decide the
next vertex for color assignment. This experiment aims to show its influence to the performance of LHS.
For this purpose, we compare LHS (with F of Eq. (5.1)) and a LHS variant called LHSrandom. LHSrandom

discards the guiding function F and selects randomly vertices for color assignment.

For this experiment, we focus on 24 most difficult and challenging benchmark instances for the BMCP.
With the same experimental protocol, we run 20 times each of these two LHS procedures (LHS and
LHSrandom) to solve the 24 BMCP benchmark instances. The computational outcomes are reported in
Table 5.6.

From Table 5.6, one observes that LHS achieves always a better or equal result compared to LHSrandom.
In particular, the result of LHS is better for 15 out of the 24 instances, i.e., LHS requires a smaller number
of colors to find a legal coloring, with a color reduction ranging from 1 up to 8. Given that finding a legal
k-coloring with k close to the best-known value k∗ is already a difficult task, the improvement of LHS over

5.5. CONCLUSION 87

LHSrandom is significant. Moreover, LHS requires less average time to reach its best solutions compared
to LHSrandom. In summary, discarding the guiding function F makes LHS less effective and weakens its
performance.

Finally, one notices that even the weakened LHSrandom procedure is competitive compared with the best
existing methods since LHSrandom is able to match the best-known results in most cases and even finds two
improved best results (indicated in bold). Thus this experiment indirectly shows the interest of the general
cooperative approach of LHS which combines a construction procedure and a repair procedure.

5.5 Conclusion
In this chapter, we presented the learning-based hybrid search approach for the bandwidth coloring

problem (BCP) and the bandwidth multicoloring problem (BMCP), which are two important generaliza-
tions of the vertex coloring problem. LHS alternates between an informed construction phase and a repair
procedure until attaining a feasible solution. The construction phase is guided by a learning-based function
to choose the next vertex for color assignment and applies a forward checking technique to eliminate incom-
patible colors for unassigned vertices. The tabu search based repair procedure is used to resolve dead-end
situations when the construction phase cannot further extend the current partial solution.

Experimental evaluations on two sets of 66 benchmark instances showed that the proposed LHS ap-
proach is highly competitive in comparison with the current most effective algorithms for the BCP and
BMCP. LHS can reach the best-known results for most benchmarks of both BCP and BMCP. In particular,
LHS improves the best-known results for two BCP instances and 12 BMCP instances.

Finally, the general LHS algorithm follows a new framework which is different from the existing ap-
proaches. In the future, we hope to investigate its usefulness for solving other constrained combinatorial
problems.

IV
General conclusion

89

6
Conclusions and perspectives

6.1 Conclusions

This thesis focuses on designing effective hybrid metaheuristic algorithms for solving three NP-hard
generalizations of the vertex coloring problem, i.e., the minimum sum coloring problem (MSCP), the band-
width coloring problem (BCP) and the bandwidth multicoloring problem (BMCP). Considering the theoret-
ical intractability and the widespread real world applications of these problems, we studied several solution
approaches to find high quality suboptimal solutions in acceptable computing time. The resulting algo-
rithms are evaluated on a number of well-known benchmark instances and shown to be highly competitive
in comparison with the best performing algorithms in the literature.

After providing an overview of the most representative algorithms proposed in the literature as well
as the well-known benchmark instances for the studied coloring problems, we presented two hybrid algo-
rithms for solving the minimum sum coloring problem in Chapter 3 and 4. The hybrid algorithms follow
the general framework which combines the population-based evolutionary search and local optimization
procedure. These two algorithms are effective in solving the MSCP and highly competitive with other
state-of-the-art algorithms in the literature. Moreover, we can make the following conclusions. First, the
quality of the initial population influences the performance of the hybrid algorithms especially on hard and
large instances. Second, crossover operator is an important ingredient for the hybrid metaheuristics and the
idea of the partition crossover is still useful for the MSCP. However, the crossover operator for the MSCP
needs to be designed differently from the well-known GPX crossover since the objective function of the
MSCP is different from that of the vertex coloring problem. Third, the landscape analysis on a number of
instances for the MSCP demonstrates why some instances are more difficult than others.

In Chapter 5, we proposed a learning-based hybrid search approach (LHS) for the bandwidth coloring
problem and the bandwidth multicoloring problem. LHS alternates between an informed construction phase
and a repair procedure until attaining a feasible solution. The construction phase is guided by a learning-
based function to choose the next vertex for color assignment and applies a forward checking technique to
eliminate incompatible colors for unassigned vertices. The tabu search based repair procedure is used to
resolve dead-end situations when the construction phase cannot further extend the current partial solution.
Experimental evaluations on two sets of 66 benchmark instances showed that the proposed LHS approach
is highly competitive in comparison with the current most effective algorithms for the BCP and BMCP.
Moreover, we can make the following observations. First, this framework is general, simple and intuitive.

91

92 CHAPTER 6. CONCLUSIONS AND PERSPECTIVES

Second, this framework follows the constructive approach while incorporating local optimization to elimi-
nate conflicts. Third, the learning technique plays an important role in this hybrid algorithm which needs to
be carefully designed.

Additionally, we presented a general and unified swap-based tabu search algorithm (SBTS) for solving
the maximum independent set problem, which is used to generate initial solutions in the hybrid search
algorithm for the MSCP. SBTS explores the search space by a dynamic alternation between intensification
and diversification steps. The search process is driven by the (k, 1)-swap operator combined with specific
rules to examine four different neighborhoods. For the purpose of intensification, SBTS uses (0,1)-swap
to improve the solution and (1,1)-swap to make side-walks with specific selection rules. To overcome
local optima, SBTS adopts an adaptive perturbation strategy which applies either a (2,1)-swap for a weak
perturbation or a (k, 1)-swap (k > 2) for a strong perturbation. A tabu mechanism is also employed to
prevent the search from short-term cycles. We tested the proposed algorithm on two sets of 120 well-known
instances (DIMACS and BHOSLIB) with multiple topologies and densities. Computational results show
that SBTS competes favorably with 5 state-of-the-art algorithms in the literature.

6.2 Perspectives
The hybrid approaches seem highly promising given their excellent performance on the studied gener-

alizations of the vertex coloring problem. However, several interesting ideas can be considered in future
studies, which may reinforce the performance of the hybrid approaches.

First, concerning the hybrid algorithms for the MSCP, we found that the independent set extraction is
effective for large and hard problem instances. One immediate extension is to design a combination of
the EXSCOL algorithm [Wu and Hao 2012] which applies the independent set extraction and our hybrid
memetic algorithm to benefit from their respective advantages. Another alternative is to design a local
search to dynamically exploit the extraction and expansion of independent sets to construct a set of good
initial solutions, and then use our hybrid search algorithm to improve these solutions.

Second, the hybrid search algorithm LHS for solving the BCP and BMCP establishes an original co-
operative framework between an informed construction approach and a local search approach. We hope to
adapt this LHS algorithm to other constrained combinatorial problems in order to investigate its usefulness.
However, LHS drops all the colored vertices when it fails to find a legal coloring and starts from scratch
although some information is learned but still some computing time is wasted. One possibility is to design
a strategy to uncolor a subset of colored vertices instead of dropping all the colored vertices. Another possi-
bility is to propose a memetic algorithm which combines the population-based evolutionary search and the
LHS optimization procedure.

Finally, the proposed SBTS algorithm for the maximum independent set problem achieves highly com-
petitive results on the well-known benchmarks, but the best results of some hard graphs are attained oc-
casionally. More studies are needed to improve the stability and search capacity of the approach. One
possibility is to collect some information during the search process and then use the learned information to
guild the search trajectory. Another possibility is to develop a meaningful solution recombination mecha-
nism that can be used within a population-based hybrid algorithm.

V
Appendix

93

7
SBTS: Swap-Based Tabu Search for maximum
independent set

This Appendix presents a general swap-based tabu search (SBTS) heuristic for the maximum indepen-
dent set problem (MIS), which is used to generate initial solutions in the hybrid search algorithm for the
minimum sum coloring problem (see Chapter 4). Given a graph G, the MIS aims to determine a subset
S ⊆ V of maximum cardinality such that no two vertices of S are adjacent. SBTS integrates distinguished
features including a general and unified (k, 1)-swap operator, four constrained neighborhoods and spe-
cific rules for neighborhood exploration. Extensive evaluations on two popular benchmarks (DIMACS and
BHOSLIB) of 120 instances show that SBTS attains the best-known results for all the instances with very
different structures and topologies. The best-known results are also attained on an additional set of 11 real
instances from code theory. The content of this Appendix is published in [Jin and Hao 2015b].

Contents
7.1 Introduction . 96
7.2 Components of the SBTS approach . 97

7.2.1 General procedure . 97
7.2.2 Search space and evaluation function . 97
7.2.3 Initial solution . 98
7.2.4 Preliminary definitions . 98
7.2.5 (k, 1)-swap, neighborhoods and exploration of neighborhoods 99
7.2.6 Tabu list and aspiration rule . 101
7.2.7 Intensification . 101
7.2.8 Diversification . 103
7.2.9 Information updating procedure . 104

7.3 Experimental results . 105
7.3.1 Benchmark instances . 105
7.3.2 Experimental protocol . 105
7.3.3 Computational results of SBTS on DIMACS, BHOSLIB and CODE instances . . . 106
7.3.4 Comparisons with seven state-of-the-art algorithms 108

7.4 Analysis of SBTS . 113
7.4.1 Influence of the selection rule for intensification 113
7.4.2 Analysis of the tabu tenure tuning technique . 114

95

96 CHAPTER 7. SBTS: SWAP-BASED TABU SEARCH FOR MAXIMUM INDEPENDENT SET

7.5 Conclusion . 114

7.1 Introduction
Given a simple undirected graph G = (V,E) with vertex set V = {v1, . . . , vn} and edge set E ⊂ V ×V ,

an independent set S is a subset of V such that no two vertices are adjacent, i.e., ∀vi, vj ∈ S, {vi, vj} ̸∈ E.
An independent set is said maximum if it has the largest cardinality among all the independent sets of G.
The maximum independent set problem (MIS) is to determine a maximum independent set of an arbitrary
graph. As one of Karp’s 21 NP-complete problems [Karp 1972], MIS is among the most popular problems
in combinatorial optimization [Johnson and Garey 1979, Johnson and Trick 1996].

In graph theory, there are two tightly related problems: The maximum clique problem (MC) and mini-
mum vertex cover problem (MVC). A clique C of G is a subset of V such that all vertices in C are pairwise
adjacent, i.e., ∀vi, vj ∈ C, {vi, vj} ∈ E. MC is to find a clique C of maximum cardinality. A vertex
cover V C of G is a subset of V such that each edge of E is incident to at least one vertex of V C, i.e.,
∀{vi, vj} ∈ E, vi ∈ V C ∨ vj ∈ V C. MVC is to determine a vertex cover of minimum cardinality.

Let Ḡ = (V, Ē) be the complementary graph of G = (V,E) such that Ē ⊂ V × V and ∀vi, vj ∈
V, {vi, vj} ∈ Ē if and only if {vi, vj} ̸∈ E. Then given a subset S of V , the following three statements
are equivalent: S is an independent set in G, V \S is a vertex cover in G and S is a clique in Ḡ. As a
consequence, MIS, MC and MVC are three equivalent problems such that any algorithm designed for one
of these problems can be directly applied to solve the other two problems. These problems are relevant to
a wide variety of applications such as code theory, information retrieval, signal transmission, classification
theory, experimental design and many more others [Bomze et al. 1999, Johnson and Trick 1996, Wu and
Hao 2015]. In this work, we focus on studying the MIS problem.

During the past decades, a large number of solution procedures for solving MIS, MC and MVC have
been reported in the literature. Among them are several exact algorithms based on the general branch-and-
bound framework [Carraghan and Pardalos 1990, Li and Quan 2010, Östergård 2002, San Segundo et al.
2011, Tomita and Kameda 2007]. These exact methods are applicable to problem instances of limited sizes.
For larger cases, various heuristics have been proposed to obtain near-optimal solutions. The most repre-
sentative heuristics include tabu search [Battiti and Protasi 2001, Friden et al. 1989, Wu et al. 2012, Wu and
Hao 2013a], stochastic local search [Andrade et al. 2012, Katayama et al. 2005, Pullan 2006; 2008], parallel
hyper-heuristics mixing several low-level heuristics [Pullan et al. 2011]), simulated annealing [Geng et al.
2007], variable neighborhood search [Hansen et al. 2004], breakout local search [Benlic and Hao 2013],
local search with edge weighting [Cai et al. 2014, Richter et al. 2007] and evolutionary algorithms [Brunato
and Battiti 2011, Zhang et al. 2005]. According to the reported results on benchmark instances, in particular
those of the well-known Second DIMACS Implementation Challenge on Cliques, Coloring, and Satisfia-
bility [Johnson and Trick 1996], it seems that ILS and GLP [Andrade et al. 2012], BLS [Benlic and Hao
2013], NuMVC [Cai et al. 2014], PLS [Pullan 2006; 2008], CLS [Pullan et al. 2011], COVER [Richter et al.
2007], MN/TS [Wu et al. 2012] and AMTS [Wu and Hao 2013a] are among the top performing heuristics in
the literature. Nevertheless, due to the large variety of structures of these instances (they are random graphs
or transformed from different real problems), no single approach can attain the best-known results for all
the DIMACS instances. For more information, the reader can refer to [Wu and Hao 2015] which provides
an updated and comprehensive review on both exact and heuristic MC algorithms, with a special focus on
recent developments.

In this work, we introduce a general Swap-Based Tabu Search (SBTS) heuristic for the maximum in-
dependent set problem. SBTS inspects the search space by a dynamic alternation between intensification

7.2. COMPONENTS OF THE SBTS APPROACH 97

and diversification steps [Glover and Laguna 1999, Lourenço et al. 2001, Schrimpf et al. 2000]. The search
process is driven by a general and unified (k, 1)-swap (k ≥ 0) operator combined with specific rules to
explore four constrained neighborhoods. Given an independent set S, (k, 1)-swap exchanges one vertex
(which is strategically selected) in V \S against its k adjacent vertices in S. For the purpose of intensifi-
cation, SBTS uses (0,1)-swap to improve the solution and (1,1)-swap to make side-walks with the help of
specific selection rules. To overcome local optima, SBTS adopts an adaptive perturbation strategy which
applies either a (2,1)-swap for a weak perturbation or a (k,1)-swap (k > 2) for a strong perturbation. A tabu
mechanism is also employed to prevent the search from short-term cycles. Compared with existing local
search algorithms, SBTS distinguishes itself by its unified (k, 1)-swap operator, its specific neighborhoods
and its dedicated rules for neighborhood exploration.

The proposed SBTS algorithm attains the best-known results for all 120 instances of the well-known
DIMACS and BHOSLIB benchmarks with very different structures and topologies. This is the first time a
single heuristic reaches such a performance. The best-known results are also attained on an additional set
of 11 real instances from code theory.

7.2 Components of the SBTS approach
Our Swap-Based Tabu Search (SBTS) algorithm for MIS follows the iterated local search framework

[Lourenço et al. 2001] and shares similarities with other methods like variable neighborhood search [Hansen
et al. 2004] and the ruin-and-recreate search [Schrimpf et al. 2000]. However, as we explain in this section,
SBTS possesses some particular features like four constrained neighborhoods and the specific rules for an
effective exploration of these neighborhoods.

7.2.1 General procedure
The general SBTS procedure is summarized in Algorithm 9. SBTS uses a fast randomized construction

procedure (Section 7.2.3) to obtain a first feasible independent set S (i.e., no two vertices of S are adjacent,
S is also called a feasible solution or simply a solution in this Appendix). From this initial solution, SBTS
tries to find improved solutions (i.e., larger independent sets) by a series of intensification and diversifica-
tion steps (Sections 7.2.7 and 7.2.8). Both intensification and diversification steps are based on the general
(k, 1)-swap operator (Section 7.2.5).

Specifically, each intensification step makes a (k, 1)-swap move (k = 0, 1) to increase the cardinality
of the independent set or search new solutions while keeping the cardinality unchanged. Inversely, a di-
versification step applies a (k, 1)-swap move (k ≥ 2) to decrease temporarily the quality of the current
solution (the current solution loses k − 1 vertices). Whenever there exist intensification moves, they are
always preferred over diversification moves. Diversification moves are only applied to escape from a lo-
cal optimum (i.e., when no eligible (k, 1)-swap move (k = 0, 1) is available). As we explain in Sections
7.2.7 and 7.2.8, both intensification and diversification are subject to dedicated rules which govern the way
(k, 1)-swap moves are executed.

SBTS uses a global variable S∗ to record the best solution ever discovered during the search and a tabu
list to prevent short-term cycles (see Section 7.2.6). The algorithm stops when a fixed number of iterations
are realized.

7.2.2 Search space and evaluation function
Before presenting the components of the SBTS algorithm, we define first the search space Ω explored

by the algorithm as well as its evaluation function f to measure the quality of a candidate solution.

98 CHAPTER 7. SBTS: SWAP-BASED TABU SEARCH FOR MAXIMUM INDEPENDENT SET

Algorithm 9 General procedure of the SBTS algorithm for MIS
1: Input: A graph G, Itersmax (maximum allowed iterations per run)
2: Output: The largest independent set S∗ found.
3: S ← Initialization() /* Generate a feasible independent set S, Sect. 7.2.3 */
4: S∗ ← S /* S∗ records the largest independent set found so far */
5: f∗ ← f(S) /* f∗ records the cardinality of S∗ */
6: Initialize tabu_list /* Initialize the tabu list, Sect. 7.2.6 */
7: for iters← 1 to Itersmax do
8: if there exists an intensification move then
9: S ← IntensificationStep(S) /* Apply (k, 1)-swap (k ≤ 1) to improve solution S, Sect. 7.2.7 */

10: if f(S) > f∗ then
11: S∗ ← S, f∗ ← f(S)
12: end if
13: else
14: S ← DiversificationStep(S) /* Apply (k, 1)-swap (k > 1) to perturb solution S, Sect. 7.2.8 */
15: end if
16: Update tabu_list /* Sect. 7.2.6 */
17: end for
18: return S∗

For a given graph G = (V,E), the search space Ω explored by SBTS is the set of all the independent
sets of G, i.e., Ω = {S ⊆ V : vi, vj ∈ S, {vi, vj} ̸∈ E}. For any feasible solution S ∈ Ω, its quality is
directly assessed by the cardinality of S, i.e., f(S) = |S|. Given two independent sets S and S ′, S is better
than S ′ if and only if f(S) > f(S ′).

7.2.3 Initial solution
The initial solution used by the SBTS algorithm is generated by the following sequential randomized

heuristic (V is the vertex set of graph G).

1. Set S to empty

2. Select randomly a vertex u ∈ V and add u into S

3. Remove from V vertex u and all its adjacent vertices v ∈ V ({u, v} ∈ E)

4. Repeat steps 2–3 until V becomes empty and return S

It is easy to observe that the resulting solution S is a feasible (and maximal) independent set. Due to the
random choices at step 2, each run of this construction procedure may lead to a different solution. Given
the stochastic nature of SBTS, this feature is useful for multiple runs of SBTS.

7.2.4 Preliminary definitions
To explain the intensification and diversification mechanisms of SBTS, we introduce some key concepts

(measures) which are particularly useful to define the different neighborhoods and the application rules of
the general (k, 1)-swap operator.

Definition 1. (Mapping Degree KM) Given a graph G = (V,E) and an independent set S, the
Mapping Degree of a vertex vi in V \S is the number of its adjacent vertices vj in S, i.e., ∀vi ∈ V \S,
KM(vi) = |{vj ∈ S : {vi, vj} ∈ E}|. A similar definition of Mapping Degree can be found in [Andrade
et al. 2012].

7.2. COMPONENTS OF THE SBTS APPROACH 99

1

2

3

4

5

6

7

8

9

10

S V\S

2

3

5

7

9

10

1

4

6

8

Figure 7.1: An illustrative example of graph G

Fig. 7.1 shows a graph G with 10 vertices and an independent set S = {1, 4, 6, 8} and V \S =
{2, 3, 5, 7, 9, 10}. According to the definition, vertex 2 in V \S has one adjacent vertex (1) in S, hence
the Mapping Degree KM(2) = 1. Similarly, the Mapping Degrees of the other vertices in V \S are shown
in Table 7.1. The Mapping Degree is used to partition the vertices of V \S into four subsets which define
the neighborhoods used by SBTS (see Section 7.2.5).

Definition 2. (Expanding Degree KE) The Expanding Degree of a vertex vi in S is the number of its
adjacent vertices vj in V \S whose Mapping Degree KM equals to 1, i.e., ∀vi ∈ S,KE = |{vj ∈ V \S :
{vi, vj} ∈ E,KM(vj) = 1}|.

In Fig. 7.1, among the 5 vertices of S, only vertices 1 and 4 have adjacent neighbors in V \S with a
Mapping Degree of 1, thus their Expanding Degree is KE(1) = 1 and KE(4) = 2 while vertices 6 and 8
have zero Expanding Degree (see Table 7.1). The Expanding Degree is used to define the rule to exploit the
neighborhood induced by (1,1)-swap (see Section 7.2.7).

Definition 3. (Diversifying Degree KD) Given a graph G = (V,E) and an independent set S, the Diver-
sifying Degree of a vertex vi in V \S is the number of adjacent vertices vj in V \S, i.e. ∀vi ∈ V \S,KD(vi) =
|{vj ∈ V \S : {vi, vj} ∈ E}|.

The Diversifying Degree is used to differentiate vertices with the same Expanding Degrees when the
neighborhood induced by (1,1)-swap is exploited (see Section 7.2.7). It is also employed to define the rule
to select degrading, i.e., (k, 1)-swap (k > 1) moves to escape from local optima (see Section 7.2.8).

For the details of our example shown in Fig. 7.1, see Table 7.1. As shown in the Section 7.2.9, these
measures will be dynamically updated after each iteration of the algorithm and this can be achieved effi-
ciently in an incremental way.

7.2.5 (k, 1)-swap, neighborhoods and exploration of neighborhoods

The search process of the SBTS algorithm is basically driven by the general (k, 1)-swap (k = 0, 1, 2, . . .)
operator. In this section, we provide a detailed presentation of this operator, the different neighborhoods
induced by the operator and the way these neighborhoods are explored.

100 CHAPTER 7. SBTS: SWAP-BASED TABU SEARCH FOR MAXIMUM INDEPENDENT SET

Table 7.1: Mapping Degree, Expanding Degree and Diversifying Degree on the illustrative graph.
Vertices in V \S Neighbors in S Mapping Degree

KM
Neighbors in V \S Diversifying Degree

KD

2 1 1 5 1
3 4 1 7, 10 2
5 4 1 2, 9, 10 3
7 1, 6, 8 3 3, 9 2
9 0 5, 7, 10 3
10 1, 8 2 3, 5, 9 3

Vertices in S Neighbors in V \S whose Mapping Degree KM = 1 Expanding Degree KE

1 2 1
4 3, 5 2

Let S be an independent set and V \S its complementary set. Let “S ⊕ (k, 1)-swap” denote the applica-
tion of (k, 1)-swap (k ≥ 0) to S. Then the resulting solution S ′ is given by S ′ ← S ⊕ (k, 1)-swap.

According to the value of k, (k, 1)-swap changes differently the cardinality of the current solution S.
The resulting solution has a larger or equal cardinality when k ≤ 1 (i.e., k = 0, 1). Otherwise (i.e., k ≥ 2),
the resulting solution is deteriorated by k − 1 units. Moreover, whatever the value k takes, applying a
(k, 1)-swap move to an independent set always leads to a feasible solution.

To define the rules to apply this general (k, 1)-swap operator, we introduce four different neighborhoods.
Precisely, given an independent set S (the current solution), we partition its complementary set V \S into
four subsets according to the Mapping Degree of each vertex (see Section 7.2.4).

1. NSk: the set of vertices vi in V \S whose Mapping Degree KM equals to k, i.e., NSk = {vi ∈ V \S :
KM(vi) = k}, (k = 0, 1, 2).

2. NS>2: the set of vertices vi in V \S whose Mapping Degree KM is larger than 2, i.e., NS>2 =
{vi ∈ V \S : KM(vi) > 2}.

For the example of Fig. 7.1 where S = {1, 4, 6, 8} and V \S = {2, 3, 5, 7, 9, 10}, we have NS0 =
{9}, NS1 = {2, 3, 5}, NS2 = {10} and NS>2 = {7}.

Clearly, each NSk (k = 0, 1, 2, > 2) set defines unambiguously a different (and constrained) neighbor-
hood when it is employed by the (k, 1)-swap operator. Precisely, for a given NSk, the associated neighbor-
hood is composed of all the solutions obtained by swapping a vertex of NSk with its k adjacent vertices
in S. For this reason, we will also use NSk (k = 0, 1, 2, > 2) to denote the associated neighborhoods
interchangeably.

To explore the search space, the SBTS algorithm selects at each iteration a particular vertex from one
NSk (k = 0, 1, 2, > 2) as follows. SBTS first examines NS0 to see whether an improving (0,1)-swap
move is applicable. If NS0 is not empty, a (0,1)-swap move is applied with a vertex randomly chosen from
NS0. Otherwise, if NS1 offers eligible vertices, a side-walk (1,1)-swap move is applied to a vertex of NS1

which is selected according to the specific rule presented in Section 7.2.7. If NS1 is empty, SBTS makes a
degrading (k, 1)-swap move with a vertex from NS2 or NS>2 following the rule defined in Section 7.2.8.
Hence, at each iteration, SBTS only checks a smaller number (i.e., |NSk| instead of |V \S|) of neighboring
solutions to explore the search space. According to the value of k, each iteration corresponds to either an
intensification step (k = 0, 1) or a diversification step (k ≥ 2). After each iteration, KM , KE, KD, along
with the neighborhoods NSk and their sizes are updated accordingly (see the Section 7.2.9).

7.2. COMPONENTS OF THE SBTS APPROACH 101

One understands intuitively that during the search process, NS0 will be exhausted very rapidly. Among
the remaining NSk (k = 1, 2, > 2) sets, NSk with k ≥ 2 can only deteriorate the solution and should not be
used frequently. The only set that could lead to a hopeful improvement of the solution is NS1. In Section
7.2.7 and 7.2.8, we introduce dedicated rules for the exploration of the neighborhoods NSk with k ≥ 1.

7.2.6 Tabu list and aspiration rule

The SBTS algorithm uses a tabu list to avoid short-term cycles [Glover and Laguna 1999]. Precisely,
each time a (k, 1)-swap move is executed, the k vertices which are swapped out from the independent set S
are classified tabu in order to prevent these vertices from moving back to S for the next tt iterations (tt is
called tabu tenure). On the other hand, the vertex which joins S is not subject to tabu prohibition. Thus the
tabu list is updated only after a (k, 1)-swap with k ≥ 1.

Suppose (k, 1)-swap exchanges vertex vi ∈ NSk (k ≥ 1) and its k adjacent vertices (vj1 , vj2 ...vjk) in S.
For each vertex vjp (p = 1...k), its tabu tenure tt is adaptively set as follows.

– k = 1: If |NS1| < |NS2|+|NS>2|, tt = 10+Random(|NS1|) where Random(A) returns a random
value from the domain {0...A− 1}; Otherwise, tt = |NS1|.

– k > 1: tt is set to 7.

These tabu tenure rules are purely empirical. However, for the case of k = 1, the first part corresponds
to situations which occur usually and the adopted tabu tenure (tt = 10+Random(|NS1|)) is inspired from
the literature [Dorne and Hao 1999, Galinier and Hao 1999, Wu and Hao 2013a]. The second part (which
occurs occasionally) is based on the consideration that when there are many side-walk moves (i.e., |NS1| is
very high relative to |NS2| and |NS>2|), the vertex that just left the solution will not be considered before
having tried a number of side-walk moves as high as |NS1|. For the case of k > 1, since there are several
vertices (at least two) leaving the independent set and these k vertices are not chosen according to specific
objectives, there is no reason to prevent them from joining the solutions for a long period of time. For this
reason, the tabu tenure for them can be set to a relatively small value. In fact, we observe that as long as the
tabu tenure remains in the range of 4 to 10, it does not really impact the performance of the algorithm. So
we set the tabu tenure to the middle value 7 which proves to be robust in our experiments. In Section 7.4.2,
we provide more information about the tabu tenure.

Notice that vertices in NS0 are never forbidden by the tabu list given that any vertex in NS0 can in-
crease the current solution by one unit. This can be considered as an aspiration condition [Glover and
Laguna 1999] that revokes the tabu status of any vertex if it belongs to NS0.

Finally, given an independent set S and the associated sets NSk (k = 1, 2, > 2), a vertex from any NSk

is said eligible if it is not forbidden by the tabu list.

7.2.7 Intensification

Intensification of the SBTS algorithm aims to find better solutions or to reach new solutions without
deteriorating the current solution. For this purpose, whenever NS0 is not empty, SBTS applies (0, 1)-
swap to improve the solution. For instance, in Fig. 7.1, given the current solution S = {1, 4, 6, 8},
NS0 = {9} and NS1 = {2, 3, 5}, SBTS will select vertex 9 to apply (0, 1)-swap to generate a better
solution S = {1, 4, 6, 8, 9}. When NS0 becomes empty, SBTS checks then the NS1 neighborhood for a
possible (1,1)-swap (side-walk) move.

102 CHAPTER 7. SBTS: SWAP-BASED TABU SEARCH FOR MAXIMUM INDEPENDENT SET

If NS1 offers multiple choices for a (1,1)-swap, one must decide which vertex of NS1 is selected for
the (1,1)-swap. One trivial strategy is to make this decision at random. However, as we illustrate below, the
order of examining the vertices in NS1 for (1,1)-swap may impact the solution quality. To make this deci-
sion as fruitful as possible, we devise a selection rule which takes into account problem specific information
relative to the Expanding Degree and Diversifying Degree (see Section 7.2.4). The proposed selection rule
favors the (1,1)-swap moves that tend to create new promising (e.g., improving) moves for future iterations.

Selection Rule for the NS1 neighborhood examination:
1. Collect in set NS−

1 any vertex vi ∈ NS1 such that its adjacent neighbor vj in S has the largest
Expanding Degree;

2. If NS−
1 is composed of a single vertex, select this vertex; otherwise, select the vertex vi ∈ NS−

1 with
the largest Diversifying Degree (ties are broken at random).

The first part of this Selection Rule is based on the following consideration. When swapping vi ∈ NS1

with vj ∈ S such that vj has the largest Expanding Degree, we encourage the emergence of improving
(0,1)-swap moves. For instance, in Fig. 7.1, given NS1 = {2, 3, 5} and suppose that all the vertices in
NS1 are eligible for a (1,1)-swap move (the notion of eligibility under the tabu rule is explained in Section
7.2.6). Since vertices 3 and 5 of NS1 have the adjacent vertex 4 in S with an Expanding Degree of 2 while
vertex 2 of NS1 has the adjacent vertex 1 in S with an Expanding Degree of 1, we have NS−

1 = {3, 5}
(i.e., vertices 3 and 5 are preferred than vertex 2). At this point, one notices a (1,1)-swap using any vertex
3 or 5 of NS−

1 (say 3) will change the Mapping Degree of the other vertex (vertex 5) to 0. This makes the
other vertex to become a member of the updated NS0 and could be added to the independent set at the next
iteration. In comparison, since vertex 2 ∈ NS1 has an Expanding Degree of 1, swapping 2 into S cannot
create any improving moves.

The second part of this Selection Rule is based on the consideration that the vertices of NS1 with a
larger Diversifying Degree could make the search more diversified after a (1,1)-swap move. Indeed, after
swapping vi ∈ NS1 and vj ∈ S, we need to update the Mapping Degree, the Expanding Degree and Diver-
sifying Degree concerned by vi and vj (see Section 7.2.9), leading to modifications of the neighborhoods
NSk (k = 0, 1, 2, > 2). By definition, a vertex vi ∈ NS1 with a larger Diversifying Degree has more
adjacent vertices in V \S. Selecting such a vertex for a (1,1)-swap move leads to more changes in V \S,
thus more changes in the neighborhoods NSk (k = 0, 1, 2, > 2). In this sense, this helps to diversify the
choices of the next iteration of the search procedure. For our example in Fig. 7.1, vertices 3 and 5 have
respectively a Diversifying Degree of 2 and 3. According to the Selection Rule, vertex 5 (instead of vertex
3) is selected to take part in the swap move with vertex 4 in S. After this move, three vertices (2, 9 and 10
which are adjacent to 5 in V \S) take part in neighborhood updating. In comparison, vertex 3 in NS1 (with
a small Diversifying Degree) will induce fewer changes in the neighborhoods.

One notices that this heuristic selection rule has no theoretical guarantee of being able to always lead to
the best choice. However, the rule is designed to favor a good choice when such a choice is available. The
computational results shown in this work confirm its usefulness in practice.

Further reducing NS1 neighborhood examination:

As explained above, among the vertices of NS1, those vi whose adjacent neighbor vj in S has an Ex-
panding Degree of 1 are less promising than the other vertices since using these vi in (1,1)-swap can only
lead to new side-walk (or degrading) moves and can never create new improving moves for the next it-
eration. In order to prevent the search from making uselessly too many side-walk moves, we define an
additional rule to reduce NS1 as follows. If there are more (1,1)-swap moves than (k, 1)-swap (k > 1)
moves (i.e., |NS1| > |NS2| + |NS>2|), we exclude from NS1 any vi such that its adjacent neighbor vj

7.2. COMPONENTS OF THE SBTS APPROACH 103

has an Expanding Degree of 1. For instance, in Fig. 7.1, NS1 = {2, 3, 5}. If we apply this reduction rule,
vertex 2 will be excluded from NS1 since the Expanding Degree of its neighbor in S (vertex 1) equals to
1. Experiments show that this reduction rule could improve the search efficiency for a number of situations
where a large number of side-walk moves frequently appear during the search process.

Algorithm 10 The Intensification Step for MIS
1: Input: A feasible independent set S
2: Output: The independent set S′.
3: /* Explore neighborhood NS0 with an improving (0,1)-swap move */
4: if NS0 is not empty then
5: Choose randomly a vertex vi from NS0;
6: S′ ← S ⊕ (0, 1)-swap;
7: else
8: /* Explore neighborhood NS1 with a side-walk (1,1)-swap move */
9: if |NS1| > |NS2|+ |NS>2| then

10: Exclude vertices vi from NS1 whose neighbor vj in S satisfies KE(vj) = 1;
11: end if
12: if A vertex vi (vi ∈ NS1) is chosen according to Selection Rule then
13: S′ ← S ⊕ (1, 1)-swap;
14: else
15: S′ ← S;
16: end if
17: end if
18: Perform the updating procedure; /* see Section 7.2.9 */
19: Return S′;

The pseudo-code of one intensification iteration is given in Algorithm 10 where S is the current inde-
pendent set and NSk (k = 0, 1, 2, > 2) are the associated neighborhoods.

Notice that after each (1, 1)-swap, the neighborhoods NSk are updated accordingly (see Section 7.2.9).
Additionally, the vertex that is swapped out from S is added to the tabu list to prevent it from being moved
back to S for a number of next iterations (see Section 7.2.6).

If NS0 is empty and NS1 does not offer any eligible (1,1)-swap move (i.e., NS1 is empty or all the
vertices of NS1 are forbidden by the tabu list), the search continues with a diversification step which is
explained in the next section.

7.2.8 Diversification

When the current solution cannot be further improved by a (0,1)-swap or changed by a (1,1)-swap, the
search procedure is trapped in a local optimum. To escape from this local optimum, the SBTS algorithm
resorts to (k, 1)-swap (k ≥ 2) moves to perturb the current solution in order to displace the search to a new
search zone. These swap moves are carried out according to some dedicated rules which once again depend
on problem specific information.

One observes first that a (k, 1)-swap (k ≥ 2) move applied to a solution S deteriorates the cardinality
of S by exactly k−1 units. Consequently, a smaller k (e.g., k = 2) perturbs more weakly a solution while a
larger k (e.g., k > 2) changes more strongly the solution. To control the perturbation strength, SBTS adopts
an adaptive strategy relying on the number of possible (1, 1)-swap moves (i.e., |NS1|) and the number of
of (k, 1)-swap (k > 1) moves (i.e., |NS2|+ |NS>2|):

104 CHAPTER 7. SBTS: SWAP-BASED TABU SEARCH FOR MAXIMUM INDEPENDENT SET

1. If |NS1| > |NS2| + |NS>2|, SBTS uses NS>2 to perform a strong perturbation by a (k, 1)-swap
(k > 2) move as follows: Select an eligible vertex vi of NS>2 with the largest Diversifying Degree
(ties are broken at random) and swap the chosen vertex vi with its k neighbors in S.

2. Otherwise, SBTS applies with equal probability either NS2 or NS>2 to perform either a weak or
strong perturbation.
- k = 2: Select an eligible vertex vi of NS2 with the largest Diversifying Degree (ties are broken at

random) and then swap vi with its two neighbors in S.
- k > 2: Determine an eligible vi of NS>2 at random without considering the tabu list and then swap

the chosen vertex vi with its k neighbors in S.

The underlying rationale for point (1) is that when a local optimum is reached, all the vertices of NS1

are prohibited by the tabu list (i.e., they have been removed recently from the independent set S, see Section
7.2.6). A large NS1 indicates thus that in the recent past, the search has gone through a high number of
side-walk moves. This situation corresponds to a kind of deep local optimum which is diffcult to escape.
To displace the search into a new search zone, we need to apply a strong perturbation which is achieved by
employing a (k, 1)-swap move with k > 2.

The second case corresponds to the situation where the search has made a relative small number of
side-walk moves. In this case, we alternate probabilistically the perturbation strength to try to find better
solutions in a zone around the current local optimum (with a weak perturbation) or far from current local
optimum (with a strong perturbation).

Like for an intensification step, after a (k, 1)-swap (k ≥ 2), the neighborhood sets NSk (k = 0, 1, 2, > 2)
are updated accordingly (see Section 7.2.9). The k vertices that are swapped out from S are added to the
tabu list (Section 7.2.6).

7.2.9 Information updating procedure
After each (k, 1)-swap, SBTS updates the Mapping degree, Expanding degrees and Diversifying degree

of some vertices as well as the associated neighborhoods NSk (k = 0, 1, 2, > 2). We explain below the
updating procedure.

Suppose that vi ∈ NSk (k = 0, 1, 2, > 2) is swapped with its k adjacent vertices vj ∈ S. Let via ∈ V \S
be any adjacent vertex of vi (i.e., via ∈ V \S, {via, vi} ∈ E). For each vj , let vja ∈ V \S be any adjacent
vertex of vj (i.e., vja ∈ V \S, {vja, vj} ∈ E). Then the updating procedure realizes the following operations:

1. First, for vi and each vj: Since vi moves from NSk to S, its Expanding Degree is initially set to 0.
Since vj is removed from S, its Mapping Degree and Diversifying Degree is initially set to 0.

2. Then, for each vertex via: its Diversifying Degree decreases by 1 and its Mapping Degree increases
by 1. Meanwhile, the Mapping Degree of vj increases by 1.
The Expanding Degree of vi increases by 1 if the Mapping Degree of via increases from 0 to 1
(including vj) while the Expanding Degree of vi decreases by 1 if the Mapping Degree of via increases
from 1 to 2.
When the Mapping Degree of via changes from k to k + 1 (k = 0, 1, 2), via moves from NSk to
NSk+1 for k = 0, 1 and to NS>2 for k = 2. If k > 2, via stays in NS>2. Notice that vj belongs now
to NS1.

3. Finally, for each vj and its adjacent vertices vja in V \S: The Diversifying Degree of vja increases
by 1 while the Mapping Degree of vja decreases by 1. Meanwhile, the Diversifying Degree of vj
increases by 1 for each vja.

7.3. EXPERIMENTAL RESULTS 105

For any v′j ∈ S adjacent to vja ({v′j, vja} ∈ E, v′j ̸= vj), its Expanding Degree increases by 1 if the
Mapping Degree of vja decreases from 2 to 1.
According to the decrease of the Mapping Degree of vja from k + 1 to k (k = 0, 1, 2), vja displaces
from NSk+1 (NS>2 if k > 2) to NSk. If k > 2, vja stays in NS>2.

Notice that no vj is swapped out from S if a (0,1)-swap is applied. In this case, only vi and its adjacent
vertices in V \S need to be updated.

This procedure can be efficiently performed in O(k + |{via}| + k|{vja}|). For Fig. 7.1, if vertex 9
is added into the solution S ={1, 4, 6, 8} after a (0,1)-swap, the Mapping Degree of its neighbors {5, 7,
10} becomes KM(5) = 2, KM(7) = 4 and KM(10) = 3. The Expanding Degree of vertex 4 becomes
KE(4) = 1. The new neighborhoods become: NS0 = ∅, NS1 = {2, 3}, NS2 = {5} and NS>2 = {7, 10}.

7.3 Experimental results

7.3.1 Benchmark instances
To evaluate the efficiency of our proposed SBTS algorithm, we carry out experiments on three different

data sets: DIMACS, BHOSLIB and CODE:
– DIMACS benchmark: This set was established for the Second DIMACS Implementation Challenge

[Johnson and Trick 1996]. It contains 12 varieties of instances with multiple topologies and densities.
It is composed of 80 graphs with size ranging from less than 50 vertices and 1 000 edges up to
more than 4 000 vertices and 5 000 000 edges. These instances are the most popular and frequently
used for evaluating algorithms for MIS, MC and MVC. Among these 80 DIMACS instances, the
maximum clique is now known for 74 of them except 6 graphs: 3 (large) random graphs with at least
500 vertices (C500.9, C1000.9, C2000.9) and 3 structured graphs (hamming10-4, johnson32_2_4,
keller6) [McCreesh and Prosser 2013, Wu and Hao 2015]. These instances are available from http:
//www.cs.hbg.psu.edu/txn131/clique.html.

– BHOSLIB benchmark: This set arose from the SAT’04 Competition. The BHOSLIB instances
were translated from hard random SAT instances [Xu et al. 2005]. Each of the 40 instances has a
known, but hidden optimal solution. These instances have a size ranging from less than 500 vertices
and 100 000 edges up to more than 1 500 vertices and 10 000 000 edges. The set is more and more
used in the literature for performance evaluation. These instances are available from http://www.
nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm.

– CODE benchmark: This set is composed of 11 large graphs arising from code theory with size
ranging from 1 024 vertices and 7 936 edges up to 4 096 vertices and more than 184 320 edges. These
instances have unknown optima and are the least frequently used in the literature. They are available
from http://neilsloane.com/doc/graphs.html.

Since the original DIMACS graphs are proposed for MC, we use their complement graphs to test our
SBTS algorithm. For BHOSLIB and CODE benchmarks, the original graphs are used.

7.3.2 Experimental protocol
Our SBTS algorithm is coded in C++ and compiled using g++ with the ‘-O2’ option on a Cluster running

Linux with 2.83GHz and 8GB. When we run the DIMACS machine benchmark program 1 on our machine,
we obtain the following results: 0.20 CPU seconds for graph r300.5, 1.23 CPU seconds for r400.5 and 4.68
CPU seconds for r500.5.

1. ftp://dimacs.rutgers.edu/pub/dsj/clique/

http://www.cs.hbg.psu.edu/txn131/clique.html
http://www.cs.hbg.psu.edu/txn131/clique.html
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
http://neilsloane.com/doc/graphs.html
ftp://dimacs.rutgers.edu/pub/dsj/clique/

106 CHAPTER 7. SBTS: SWAP-BASED TABU SEARCH FOR MAXIMUM INDEPENDENT SET

Given its stochastic nature, we run SBTS independently 100 times to solve each instance with initial
solutions generated by the procedure of Section 7.2.3. The stop condition of each run is a maximum of 108

iterations which are divided into 104 restarts, each restart being limited to 104 iterations (i.e., Itersmax =
104, Algorithm 9). This experimental protocol is typically used in the literature (see next section). SBTS
runs with the self-tuned tabu tenure tt given in Section 7.2.6. Though fine-tuning tabu tenure would lead to
improved results for some graphs, for our experiments, we used the above tabu tenure except as otherwise
stated. No other parameter is required by SBTS.

7.3.3 Computational results of SBTS on DIMACS, BHOSLIB and CODE instances
Tables 7.2, 7.3 and 7.4 show respectively the computational statistics of the SBTS algorithm on the three

sets of benchmark instances with respect to fbk which designates the optimal value or the best lower bound
(i.e., the largest independent set ever reported in the literature). Notice that for the popular DIMACS and
BHOSLIB benchmarks, recent heuristics can attain the fbk value for many cases, as it is shown in Table 7.5
of Section 7.3.4.

Table 7.2 shows the computational statistics of the SBTS algorithm on the set of 80 DIMACS instances.
Columns 1-4 give the characteristics of each graph: Name, number of vertices and edges, and optimal or
best-known result fbk (optimal values are marked with ‘*’). The columns under heading “SBTS” list our
best result f∗, the average result favg, the successful runs Success for reaching f∗ over the 100 independent
runs, the average iterations AvgIters and the average CPU time t(s) (seconds) over the successful runs.

Table 7.2: Detailed computational results of SBTS on the set of 80 DIMACS instances. Each instance is
solved 100 times and each run is limited to a maximum of 108 iterations.

Characteristics of the graphs SBTS
Name n m fbk f∗ favg(Std.) Success AvgIters t(s)
brock200_1 200 14834 21* 21 21.00 100/100 329 0.0005
brock200_2 200 9876 12* 12 12.00 100/100 12859 0.0450
brock200_3 200 12048 15* 15 15.00 100/100 11606 0.0296
brock200_4 200 13089 17* 17 17.00 100/100 33277 0.0768
brock400_1 400 59723 27* 27 27.00 100/100 15572682 66.3977
brock400_2 400 59786 29* 29 29.00 100/100 4159016 20.2432
brock400_3 400 59681 31* 31 31.00 100/100 340265 1.7676
brock400_4 400 59765 33* 33 33.00 100/100 160679 0.8298
brock800_1 800 207505 23* 23 21.52(0.88) 26/100 56901393 963.6288
brock800_2 800 208166 24* 24 22.29(1.49) 43/100 46449467 784.3647
brock800_3 800 207333 25* 25 24.16(1.35) 72/100 40752010 651.0726
brock800_4 800 207643 26* 26 25.90(0.70) 98/100 25784326 421.6047
C125.9 125 6963 34* 34 34.00 100/100 85 0.0001
C250.9 250 27984 44* 44 44.00 100/100 492 0.0005
C500.9 500 112332 57 57 57.00 100/100 23184 0.0540
C1000.9 1000 450079 68 68 68.00 100/100 1438740 8.3696
C2000.5 2000 999836 16* 16 16.00 100/100 7628 0.9211
C2000.9 2000 1799532 80 80 77.29(0.64) 2/100 79591805 1515.5700
C4000.5 4000 4000268 18* 18 18.00 100/100 4289342 1553.2406
DSJC500.5 500 125248 13* 13 13.00 100/100 524 0.0074
DSJC1000.5 1000 499652 15* 15 15.00 100/100 26455 2.2891
keller4 171 9435 11* 11 11.00 100/100 27 0.0001
keller5 776 225990 27* 27 27.00 100/100 2101 0.0194
keller6 3361 4619898 59 59 59.00 100/100 12311511 754.8754
MANN_a9 45 918 16* 16 16.00 100/100 3 0.0000
MANN_a27 378 70551 126* 126 126.00 100/100 635 0.0008
MANN_a45 1035 533115 345* 345 345.00 100/100 4763131 27.5632
MANN_a81 3321 5506380 1100* 1100 1100.00 100/100 716340 22.6991
hamming6-2 64 1824 32* 32 32.00 100/100 18 0.0000
hamming6-4 64 704 4* 4 4.00 100/100 2 0.0000
hamming8-2 256 31616 128* 128 128.00 100/100 217 0.0001
hamming8-4 256 20864 16* 16 16.00 100/100 10 0.0000
hamming10-2 1024 518656 512* 512 512.00 100/100 365 0.0004
hamming10-4 1024 434176 40 40 40.00 100/100 255 0.0037
gen200-p0.9-44 200 17910 44* 44 44.00 100/100 947 0.0005
gen200-p0.9-55 200 17910 55* 55 55.00 100/100 576 0.0004
Continued on next page

7.3. EXPERIMENTAL RESULTS 107

Continued from previous page
Characteristics of the graphs SBTS

Name n m fbk f∗ favg(Std.) Success AvgIters t(s)
gen400-p0.9-55 400 71820 55* 55 55.00 100/100 1504 0.0027
gen400-p0.9-65 400 71820 65* 65 65.00 100/100 186 0.0006
gen400-p0.9-75 400 71820 75* 75 75.00 100/100 432 0.0010
c-fat200-1 200 1534 12* 12 12.00 100/100 34 0.0001
c-fat200-2 200 3235 24* 24 24.00 100/100 119 0.0009
c-fat200-5 200 8473 58* 58 58.00 100/100 89 0.0005
c-fat500-1 500 4459 14* 14 14.00 100/100 63 0.0013
c-fat500-2 500 9139 26* 26 26.00 100/100 76 0.0020
c-fat500-5 500 23191 64* 64 64.00 100/100 102 0.0031
c-fat500-10 500 46627 126* 126 126.00 100/100 157 0.0045
johnson8-2-4 28 210 4* 4 4.00 100/100 1 0.0000
johnson8-4-4 70 1855 14* 14 14.00 100/100 3 0.0000
johnson16-2-4 120 5460 8* 8 8.00 100/100 1 0.0000
johnson32-2-4 496 107880 16 16 16.00 100/100 1 0.0000
p_hat300-1 300 10933 8* 8 8.00 100/100 35 0.0002
p_hat300-2 300 21928 25* 25 25.00 100/100 22 0.0001
p_hat300-3 300 33390 36* 36 36.00 100/100 32 0.0001
p_hat500-1 500 31569 9* 9 9.00 100/100 105 0.0028
p_hat500-2 500 62946 36* 36 36.00 100/100 157 0.0011
p_hat500-3 500 93800 50* 50 50.00 100/100 607 0.0028
p_hat700-1 700 60999 11* 11 11.00 100/100 1620 0.0476
p_hat700-2 700 121728 44* 44 44.00 100/100 57 0.0014
p_hat700-3 700 183010 62* 62 62.00 100/100 153 0.0021
p_hat1000-1 1000 122253 10* 10 10.00 100/100 48 0.0069
p_hat1000-2 1000 244799 46* 46 46.00 100/100 343 0.0150
p_hat1000-3 1000 371746 68* 68 68.00 100/100 700 0.0127
p_hat1500-1 1500 284923 12* 12 12.00 100/100 85232 13.0180
p_hat1500-2 1500 568960 65* 65 65.00 100/100 365 0.0202
p_hat1500-3 1500 847244 94* 94 94.00 100/100 683 0.0169
san200_0.7_1 200 13930 30* 30 30.00 100/100 6682 0.0139
san200_0.7_2 200 13930 18* 18 18.00 100/100 765 0.0015
san200_0.9_1 200 17910 70* 70 70.00 100/100 890 0.0008
san200_0.9_2 200 17910 60* 60 60.00 100/100 37 0.0001
san200_0.9_3 200 17910 44* 44 44.00 100/100 3192 0.0025
san400_0.5_1 400 39900 13* 13 13.00 100/100 2586 0.0248
san400_0.7_1 400 55860 40* 40 40.00 100/100 137032 0.8490
san400_0.7_2 400 55860 30* 30 30.00 100/100 11758 0.0691
san400_0.7_3 400 55860 22* 22 22.00 100/100 14543 0.0818
san400_0.9_1 400 71820 100* 100 100.00 100/100 3823 0.0075
san1000 1000 250500 15* 15 15.00 100/100 1410471 46.4781
sanr200_0.7 200 13868 18* 18 18.00 100/100 435 0.0008
sanr200_0.9 200 17863 42* 42 42.00 100/100 665 0.0004
sanr400_0.5 400 39984 13* 13 13.00 100/100 552 0.0041
sanr400_0.7 400 55869 21* 21 21.00 100/100 559 0.0026

Table 7.2 demonstrates that SBTS obtains quite competitive results on the set of DIMACS instances.
Specifically, SBTS can consistently reach the previous best-known solutions for 75 out of the 80 instances
with a perfect success rate. Furthermore, SBTS can reach the best-known results for all the instances with
various topologies and densities, including the most difficult graphs (brock 800_x(x = 1, 2, 3, 4), C2000.9,
MANN_a45 and MANN_a81). To the best of our knowledge, the top-performing heuristics in the literature
miss at least one best-known result on these difficult graphs. On the other hand, one observes that SBTS
has a low success rate (less than 50%) for 3 graphs. Notice that for the 6 open instances (C500.9, C1000.9,
C2000.9, hamming10-4, johnson32_2_4, keller6), SBTS hits the best lower bounds for each run except
for C2000.9. One can speculate that these lower bounds (except for C2000.9) would be close to or would
be optimal solutions and thus are difficult to improve, even though this observation does not constitute a
proof. As for the computing time, SBTS requires on average less than 1000 seconds except for C2000.9
and C4000.5.

Table 7.3 reports the computational results of SBTS on the set of 40 BHOSLIB instances. The column
1-4 gives the characteristic of the graphs and column 5-9 presents the detailed results of the proposed SBTS
algorithm. From this table, one finds that SBTS also performs well for this benchmark set. Specifically,
SBTS reaches the optimal results with a perfect success rate for the instances with up to 1000 vertices. The
BHOSLIB set is known to be more difficult compared to most of the DIMACS benchmark. Yet, SBTS
can still attain the optimal results for all the 40 instances. On the other hand, SBTS has a low or very low
success rate (less than 50%) for 11 graphs and requires a large computing time for the largest instances.

108 CHAPTER 7. SBTS: SWAP-BASED TABU SEARCH FOR MAXIMUM INDEPENDENT SET

Table 7.3: Detailed computational results of SBTS on the set of 40 BHOSLIB instances. Each instance is
solved 100 times and each run is limited to a maximum of 108 iterations.

Characteristics of the graphs SBTS
Name n m fbk f∗ favg(Std.) Success AvgIters t(s)
frb30-15-1 450 83198 30* 30 30.00 100/100 8182 0.0264
frb30-15-2 450 83151 30* 30 30.00 100/100 15420 0.0562
frb30-15-3 450 83216 30* 30 30.00 100/100 14226 0.0498
frb30-15-4 450 83194 30* 30 30.00 100/100 15057 0.0564
frb30-15-5 450 83231 30* 30 30.00 100/100 44397 0.1611
frb35-17-1 595 148859 35* 35 35.00 100/100 171245 0.6895
frb35-17-2 595 148868 35* 35 35.00 100/100 96263 0.4014
frb35-17-3 595 148784 35* 35 35.00 100/100 26607 0.1027
frb35-17-4 595 148873 35* 35 35.00 100/100 232484 0.8445
frb35-17-5 595 148572 35* 35 35.00 100/100 61897 0.2411
frb40-19-1 760 247106 40* 40 40.00 100/100 46853 0.2384
frb40-19-2 760 247157 40* 40 40.00 100/100 4316200 20.6966
frb40-19-3 760 247325 40* 40 40.00 100/100 550507 2.7152
frb40-19-4 760 246815 40* 40 40.00 100/100 2187043 11.6519
frb40-19-5 760 246801 40* 40 40.00 100/100 9738592 55.9365
frb45-21-1 945 386854 45* 45 45.00 100/100 2800152 23.0019
frb45-21-2 945 387416 45* 45 45.00 100/100 6617043 53.1387
frb45-21-3 945 387795 45* 45 45.00 100/100 13044028 98.7293
frb45-21-4 945 387491 45* 45 45.00 100/100 5276955 42.9933
frb45-21-5 945 387461 45* 45 45.00 100/100 10366230 80.3013
frb50-23-1 1150 580603 50* 50 49.75(0.43) 75/100 37020418 368.6880
frb50-23-2 1150 579824 50* 50 49.49(0.50) 49/100 40728061 302.2116
frb50-23-3 1150 579607 50* 50 49.13(0.34) 13/100 62285352 517.4469
frb50-23-4 1150 580417 50* 50 50.00 100/100 10398673 94.6139
frb50-23-5 1150 580640 50* 50 50.00 100/100 17773506 119.3523
frb53-24-1 1272 714129 53* 53 52.03(0.17) 3/100 55616513 498.3600
frb53-24-2 1272 714067 53* 53 52.30(0.46) 30/100 34698236 321.4827
frb53-24-3 1272 714229 53* 53 52.66(0.47) 66/100 43238016 359.6429
frb53-24-4 1272 714048 53* 53 52.22(0.41) 22/100 42301012 340.4545
frb53-24-5 1272 714130 53* 53 52.91(0.29) 91/100 27705528 273.8870
frb56-25-1 1400 869624 56* 56 55.07(0.26) 7/100 54577332 551.6357
frb56-25-2 1400 869899 56* 56 55.06(0.31) 8/100 51319979 470.2750
frb56-25-3 1400 869921 56* 56 55.30(0.46) 30/100 41946192 383.5283
frb56-25-4 1400 869262 56* 56 55.86(0.35) 86/100 34350025 335.2178
frb56-25-5 1400 869699 56* 56 55.79(0.41) 79/100 38964414 568.9961
frb59-26-1 1534 1049256 59* 59 58.02(0.20) 2/100 25836232 261.1367
frb59-26-2 1534 1049648 59* 59 57.96(0.24) 1/100 78884128 762.2700
frb59-26-3 1534 1049729 59* 59 57.94(0.37) 4/100 42283734 388.9075
frb59-26-4 1534 1048800 59* 59 58.00(0.32) 5/100 74758342 969.9380
frb59-26-5 1534 1049829 59* 59 58.81(0.46) 84/100 40168986 394.9430

Table 7.4 reports the computational statistics of our SBTS algorithm on the set of 11 CODE instances
where the best-known results fbk are from [Andrade et al. 2012, Sloane 2000]. The results of SBTS
are obtained with the default tabu tenure tt except those of 1et.2048, 1tc2048 and 1zc.4096 for which
tt = 40 + Random(|NS1|). From the table, one finds that SBTS attains the best-known results for all the
CODE instances in a short time. SBTS reaches the best-known results with a perfect success rate for 9 out
of 11 instances. However, for one case (1zc.4096), its success rate is very low (1%).

From the results on DIMACS, BHOSLIB and CODE benchmarks, one observes that there is no clear
correlation between the problem size and the necessary time to solve it since the difficulty of an instance
also depends on its structure.

7.3.4 Comparisons with seven state-of-the-art algorithms

To assess the performance of the proposed SBTS algorithm relative to the state-of-the-art methods,
we compare in this section SBTS with some best-performing algorithms for MIS, MC and MVC in the
literature. We present two comparisons which concern the DIMACS and BHOSLIB sets on the one hand
and the CODE set on the other hand.

7.3. EXPERIMENTAL RESULTS 109

Table 7.4: Detailed computational results of SBTS on the set of 11 CODE instances. Each instance is solved
100 times and each run is limited to a maximum of 108 iterations.

Characteristics of the graphs SBTS
Name n m fbk f∗ favg(Std.) Success AvgIters t(s)
1dc.1024 1024 24063 94 94 94.00 100/100 10764 0.0289
1dc.2048 2048 58367 172 172 172.00 100/100 33895 0.1678
1et.1024 1024 9600 171 171 171.00 100/100 38018 0.0669
1et.2048 2048 22528 316 316 316.00 100/100 2016754 6.5911
1tc.1024 1024 7936 196 196 196.00 100/100 10798 0.0157
1tc.2048 2048 18944 352 352 352.00 100/100 1622215 6.5195
1zc.1024 1024 33280 112 112 111.99(0.01) 99/100 9984898 29.7898
1zc.2048 2048 78848 198 198 198.00 100/100 18931972 81.6927
1zc.4096 4096 184320 379 379 373.00(3.57) 1/100 96720177 1187.4100
2dc.1024 1024 169162 16 16 16.00 100/100 1371 0.0327
2dc.2048 2048 504451 24 24 24.00 100/100 154941 6.9823

Comparisons with five references algorithms on DIMACS and BHOSLIB benchmarks

For this comparison, we focus on 45 most difficult instances from DIMACS and BHOSLIB sets and
ignore the other instances since they can be easily solved with a 100% success rate by all the compared al-
gorithms. First we summarize below the experimental conditions used by 5 reference algorithms which are
implemented on sequential architectures and report state-of-the-art computational results on both DIMACS
and BHOSLIB benchmarks.

– MN/TS [Wu et al. 2012]: This is a multi-neighborhood tabu search algorithm which is designed for
the equivalent maximum clique (and its weighted generalization). It is run on a PC with 2.83 GHz
CPU and 8 GB RAM, and the stop condition is a maximum of 108 iterations.

– BLS [Benlic and Hao 2013]: This is an iterated local search algorithm which combines a descent
procedure with a dedicated and adaptive perturbation strategy. BLS is run on a Xeon E5440 with
2.83 GHz and 2 GB, and the stop condition is a maximum of 1.6 ∗ 108 iterations.

– PLS [Pullan 2006; 2008]: This is a highly effective phased local search algorithm which relies on
three sub-algorithms using different vertex selection rules. It is run on a Pentium IV machine with
512KB L2 cache and 512 MB RAM, and the stop condition is a maximum of 108 iterations for all
instances except for MANN_a45 and MANN_a81 where 109 iterations are allowed.

– COVER [Richter et al. 2007]: This is a local search algorithm designed for the equivalent minimum
vertex cover problem which uses edge weighting techniques. It is run on a machine with 2.13 GHz
and 2 GB RAM, and the stop condition is a maximum of 108 iterations.

– NuMVC [Cai et al. 2014]: This is a very recent local search algorithm for MVC using edge weighting
techniques. It is run on a machine with 3 GHz CPU and 4 GB RAM, and the stop condition is a cutoff
time which is set to 2,000 seconds.

Table 7.5 summarizes the results of the competing algorithms. All the results are based on 100 in-
dependent runs for each graph. The reported results of the reference algorithms are extracted from the
corresponding papers while the results of SBTS are from Tables 7.2 and 7.3.

For each compared algorithm, we show its best result f∗, followed by the average result favg given in
parenthesis over 100 runs if the success rate is lower than 100%, and the average time in seconds t(s) over
the successful runs. For COVER, as stated in [Richter et al. 2007], t(s) is the median run time which is
indicative of a typical run of the algorithm.

“Best #” in the last row of Table 7.5 shows the number of instances for which an algorithm cannot reach
the best-known results in the literature and “Avg.” indicates the average value of favg for the 45 instances
for each algorithm. Note that, “-” in Table 7.5 means that the result is unavailable.

110 CHAPTER 7. SBTS: SWAP-BASED TABU SEARCH FOR MAXIMUM INDEPENDENT SET

Table 7.5: Comparisons of SBTS with five reference algorithms on 45 most difficult DIMACS and
BHOSLIB instances.

Graph MN/TS BLS PLS COVER NuMVC SBTS
Name fbk f∗ t(s) f∗ t(s) f∗ t(s) f∗ t(s) f∗ t(s) f∗ t(s)
brock200_1 21* 21 0.01 21 0.01 21 0.00 21 0.01 - - 21 0.00
brock200_2 12* 12 0.06 12 0.18 12 0.03 12 0.43 12 0.13 12 0.05
brock200_3 15* 15 0.07 15 0.57 15 0.03 15 7.62 - - 15 0.03
brock200_4 17* 17 0.09 17 0.43 17 0.08 17 7.90 17 1.26 17 0.08
brock400_1 27* 27 10.27 27 121.40 27 1.08 25(25.00) - - - 27 66.40
brock400_2 29* 29 1.34 29 17.40 29 0.38 28(27.01) - 29(28.84) 572.39 29 20.24
brock400_3 31* 31 0.63 31 5.08 31 0.18 31(30.50) 135.26 - - 31 1.77
brock400_4 33* 33 0.28 33 3.17 33 0.10 33(32.70) 112.98 33 4.98 33 0.83
brock800_1 23* 23(22.72) 188.14 23(22.40) 1568.24 23 30.09 21(21.00) - - - 23(21.52) 963.63
brock800_2 24* 24(23.88) 156.47 24(23.04) 1078.13 24 24.41 22(22.00) - 21(21.00) - 24(22.29) 784.36
brock800_3 25* 25 118.57 25(24.52) 1020.11 25 15.08 23(23.00) - - - 25(24.16) 651.07
brock800_4 26* 26 62.38 26 601.74 26 6.54 24(24.00) - 21(21.00) - 26(25.90) 421.60
C125.9 34* 34 0.01 34 0.00 34 0.00 34 0.01 34 0.00 34 0.00
C250.9 44* 44 0.01 44 0.00 44 0.00 44 0.01 44 0.00 44 0.00
C500.9 57 57 0.06 57 0.00 57 0.19 57 0.31 57 0.13 57 0.05
C1000.9 68 68 0.63 68 35.70 68 1.88 68 5.82 68 2.02 68 8.37
C2000.5 16* 16 0.07 16 2.90 16 0.73 16 3.78 16 2.93 16 0.92
C2000.9 80 80(78.37) 563.70 80(78.60) 4811.17 78(78.00) - 78(77.84) - 80(78.71) 1393.30 80(77.29) 1515.57
C4000.5 18* 18 144.37 18 654.60 18 149.65 18 689.74 18 252.81 18 1553.24
keller4 11* 11 0.01 11 0.00 11 0.00 11 0.01 11 0.00 11 0.00
keller5 27* 27 0.05 27 0.09 27 0.05 27 0.07 27 0.04 27 0.02
keller6 59 59 97.87 59 24.80 59(57.75) 550.95 59 15.63 59 2.51 59 754.88
MANN_a27 126* 126 3.42 126 35.20 126 0.03 126 0.01 126 0.00 126 0.00
MANN_a45 345* 340(340.00)90.58 342(340.82)- 344(344.00)28.76 345(344.41)- 345 86.36 345 27.56
MANN_a81 1100* 1090 632.24 1094 - 1098 269.66 1100 - 1100 732.90 1100 22.70

(1090.00) (1092.17) (1098.00) (1098.11) (1099.06)

frb50-23-1 50* 50(49.84) 116.92 50(49.96) 882.22 50(49.72) 1045.59 50(49.89) 171.92 50 38.14 50(49.75) 368.69
frb50-23-2 50* 50(49.47) 161.77 50(49.56) 1074.17 50(49.45) 1171.15 50(49.30) 1.72 50 176.59 50(49.49) 302.21
frb50-23-3 50* 50(49.15) 214.58 50(49.08) 1037.68 50(49.16) 1041.40 50(49.24) 2.61 50(49.95) 532.81 50(49.13) 517.45
frb50-23-4 50* 50 11.91 50 55.51 50 126.44 50 16.94 50 7.89 50 94.61
frb50-23-5 50* 50 50.90 50 142.93 50(49.99) 436.29 50(49.98) 88.94 50 19.53 50 119.35
frb53-24-1 53* 53(52.03) 240.36 53(52.04) 2306.74 53(52.06) 1707.39 53(52.09) 11.31 53(52.86) 715.12 53(52.03) 498.36
frb53-24-2 53* 53(52.30) 209.89 53(52.16) 2015.13 53(52.23) 1548.89 53(52.34) 4.24 53 205.35 53(52.30) 321.48
frb53-24-3 53* 53(52.91) 253.96 53(52.88) 1199.95 53(52.66) 1185.68 53(52.91) 157.80 53 51.23 53(52.66) 359.64
frb53-24-4 53* 53(52.45) 178.01 53(52.54) 1361.23 53(52.46) 1423.27 53(52.24) 10.74 53 266.87 53(52.22) 340.45
frb53-24-5 53* 53(52.90) 278.31 53(52.90) 1100.00 53(52.85) 979.85 53(52.84) 253.05 53 39.89 53(52.91) 273.89
frb56-25-1 56* 56(55.22) 174.02 56(55.20) 2304.83 56(55.10) 1240.19 56(55.15) 20.73 56 470.68 56(55.07) 551.64
frb56-25-2 56* 56(55.12) 127.16 56(55.06) 1500.44 56(54.93) 1702.39 56(55.12) 30.33 56(55.97) 617.49 56(55.06) 470.28
frb56-25-3 56* 56(55.25) 209.48 56(55.20) 1409.09 56(55.08) 1476.61 56(55.76) 435.30 56 121.30 56(55.30) 383.53
frb56-25-4 56* 56(55.85) 158.14 56(55.86) 999.51 56(55.66) 1304.03 56(55.84) 291.11 56 49.45 56(55.86) 335.22
frb56-25-5 56* 56 85.57 56 591.49 56(55.81) 1089.08 56(55.98) 89.58 56 26.76 56(55.79) 569.00
frb59-26-1 59* 59(58.05) 242.75 59(57.96) 3298.21 58(57.85) - 59(58.11) 30.76 59(58.88) 687.85 59(58.02) 261.14
frb59-26-2 59* 59(58.01) 396.38 59(58.00) 2399.92 58(57.63) - 59(58.06) 40.86 59(58.38) 1160.02 59(57.96) 762.27
frb59-26-3 59* 59(58.23) 197.36 59(58.31) 2338.59 59(57.77) 1929.05 59(58.12) 65.04 59(58.96) 580.03 59(57.94) 388.91
frb59-26-4 59* 59(58.10) 192.45 59(58.20) 1823.63 59(57.71) 2044.91 59(58.01) 73.92 59(58.79) 741.21 59(58.00) 969.94
frb59-26-5 59* 59(58.99) 96.09 59 403.30 59(58.77) 1193.22 59(58.89) 292.60 59 61.91 59(58.81) 394.94
Best #(Avg.) -2(74.02) -2(74.05) -5(74.18) -7(74.01) -(≥ 2)(≤ 74.36) 0(74.21)

One observes from Table 7.5 that except SBTS, each reference algorithm fails to find the best-known
results for at least two instances (entries in italic). Indeed, given that these instances have very different
characteristics and structures, it is known that it is very difficult for a single heuristic to perform well on all
the instances [Pullan et al. 2011]. Besides, SBTS has a slightly better average result of 74.21 against 74.18
of PLS which is the best among the reference algorithms (except NuMVC whose average is an optimistic
upper bound since its results are missing for six instances).

For the DIMACS instances, MN/TS, BLS and PLS (which are maximum clique or maximum indepen-
dent set algorithms) reach the best reported results for the groups “brock”, “C”, and “keller” with a high
success rate except for C2000.9 which is among the most difficult instance. For this instance, MN/TS and
BLS achieve the best-known result (80) with an average of 78.37 and 78.60 respectively while PLS fails to
find solutions larger than 78. For the group “MANN”, MN/TS, BLS and PLS cannot reach the best-known
results for MANN_a45 (345) and MANN_a81 (1100). The largest solutions they find have a size of 340,
342, and 344 for MANN_a45, and a size of 1090, 1094, and 1098 for MANN_a81 respectively. Generally,

7.3. EXPERIMENTAL RESULTS 111

it seems that the typical MC or MIS algorithms (e.g., MN/TS, BLS, PLS) have serious difficulties to solve
these two “MANN” instances.

By contrast, the typical MVC algorithms COVER and NuMVC perform well on the group “MANN”
with a high success rate while they clearly encounter difficulties for the group “brock”. Indeed, COVER
fails to reach the best-known result for 6 out of the 12 brock instances. For the 6 brock instances tested by
NuMVC, two results do not match the best-known values. Besides, for C2000.9, NuMVC can achieve the
best-known result of 80 while COVER can only achieve a solution of size 78.

Our SBTS algorithm achieves the best-known results for all 25 DIMACS instances including the two
“problematic” groups “brock” and “MANN”. In particular, SBTS can attain the best results for MANN_a45
and MANN_a81 with a perfect success rate, which is better than the typical MC or MIS algorithms.

The average results given in parenthesis show that MN/TS, BLS, PLS, COVER and NuMVC can attain
the reported best results in every single run for 20, 19, 21, 14, and 20 cases out of the 25 DIMACS instances
respectively, while SBTS has a perfect success rate for 20 cases, which is more than BLS and COVER,
equal to MN/TS and NuMVC and one less than PLS. However, for C2000.9, the average result of SBTS is
slightly worse than the reference algorithms.

For the BHOSLIB instances, the reference algorithms can attain the best-known results except PLS
which fails to reach the optimal solutions for frb59-26-1 and frb59-26-2. One observes from the average
results that MN/TS, BLS, PLS, COVER and NuMVC can attain the optimal solutions in every single run
for 3, 4, 1, 1, and 13 cases respectively. Our SBTS algorithm is able to reach the best-known results with
a perfect success rate for 2 cases, which is more than PLS and COVER but less than MN/TS, BLS, and
NuMVC.

Finally, it is more delicate to make a fully fair comparison of the computing time given that the compared
algorithms are coded in different languages with different data structures, run on different platforms and
more importantly lead to results of different quality for a number of graphs. As an indicative, we observe
that to reach a result of equal quality, SBTS is more time consuming than MN/TS, COVER and NuMVC,
but remains competitive with BLS and PLS.

Comparisons with two reference algorithms on CODE benchmark

The CODE benchmark is less popular than the DIMACS and BHOSLIB sets and few papers report re-
sults on the 11 CODE instances including [Andrade et al. 2012, Butenko et al. 2009, Etzion and Ostergard
1998]. However, we think the CODE instances are of interest since they come from real problems (code
theory) and known to be relatively difficult. For this study, we adopt as our reference two most recent algo-
rithms that use the CODE benchmark: ILS and GLP [Andrade et al. 2012]. Both ILS and GLP are run on a
computer equipped with a 3.16 GHz Intel Core 2 Duo CPU and 4 GB of RAM. Unlike the reference studies
of the last section which make 100 independent runs, the results of ILS and GLP reported in [Andrade et al.
2012] are based on 15 runs. The stop condition for each run is the average arc (edge) scans limited to 217

[Andrade et al. 2012].

In addition to the 11 CODE instances, the authors of [Andrade et al. 2012] also report results on a sub-
set of 33 DIMACS and 9 BHOSLIB instances (8 instances as they are introduced in Section 7.3.1 plus one
additional challenging instance frb100-40). To make a fair comparison, we re-run SBTS 15 times (like ILS
and GLP) on these 11 CODE instances and the 42 DIMACS/BHOSLIB instances. Since there is no evident
way to relate the number of average arc (edge) scans used by ILS and GLP to the number of iterations used
by SBTS, SBTS is run under the stop condition given in Section 7.3.4. To report the results, we only retain

112 CHAPTER 7. SBTS: SWAP-BASED TABU SEARCH FOR MAXIMUM INDEPENDENT SET

Table 7.6: Comparisons of SBTS with two typical MIS algorithms ILS and GLP [Andrade et al. 2012] on
32 representative instances.

Graph ILS GLP SBTS
Name fbk f∗ t(s) f∗ t(s) f∗ t(s)
brock400_1 27* 25(25.0) 11.00 27(25.1) 22.00 27 59.21
brock400_2 29* 25(25.0) 11.00 29(27.7) 20.00 29 25.39
brock400_3 31* 31(27.0) 11.00 31 19.00 31 1.01
brock400_4 33* 33(30.3) 11.00 33 16.00 33 0.86
brock800_1 23* 21(21.0) 60.00 23(21.1) 112.00 23(21.3) 1127.50
brock800_2 24* 21(21.0) 60.00 21(21.0) 111.00 24(22.0) 787.93
brock800_3 25* 22(22.0) 60.00 25(22.2) 111.00 25(24.4) 763.61
brock800_4 26* 26(21.3) 60.00 26(21.7) 112.00 26(25.7) 400.82
C2000.9 80 77(76.9) 103.00 79(77.5) 182.00 78(77.1) 1558.14
C4000.5 18* 18(17.1) 1897.00 18 3708.00 18 1553.24
MANN_a45 345* 345(344.5) 3.00 344(343.8) 5.00 345 17.99
MANN_a81 1100* 1100 10.00 1098(1097.6) 17.00 1100 22.29

frb30-15-1 30* 30 9.00 30 22.00 30 0.03
frb35-17-1 35* 35(34.9) 13.00 35 32.00 35 1.93
frb40-19-1 40* 40 19.00 40 43.00 40 0.87
frb45-21-1 45* 45(44.7) 27.00 45(44.9) 62.00 45 34.50
frb50-23-1 50* 50(48.9) 36.00 49(48.6) 82.00 50(49.7) 250.32
frb53-24-1 53* 53(51.5) 42.00 52(51.3) 93.00 52(52.0) 52.36
frb56-25-1 56* 55(54.2) 49.00 55(54.1) 111.00 55(55.0) 123.34
frb59-26-1 59* 58(57.3) 57.00 57(57.0) 126.00 59(58.0) 436.48
frb100-40 100* 96(95.3) 249.00 95(94.1) 495.00 96(95.4) 862.18

1dc.1024 94 94(93.1) 14.00 94(93.1) 31.00 94 0.00
1dc.2048 172 172(171.1) 32.00 172(171.5) 74.00 172 0.06
1et.1024 171 171 8.00 171(170.9) 16.00 171 0.16
1et.2048 316 316 16.00 316 40.00 316 4.13
1tc.1024 196 196 8.00 196 18.00 196 0.03
1tc.2048 352 352 15.00 352 37.00 352 19.10
1zc.1024 112 112(111.1) 10.00 112 28.00 112 43.44
1zc.2048 198 198(197.3) 22.00 198(197.8) 65.00 198 56.94
1zc.4096 379 379(367.7) 51.00 379(374.4) 160.00 379(372.6) 99.83
2dc.1024 16 16 50.00 16 198.00 16 0.01
2dc.2048 24 24(23.8) 165.00 24 527.00 24 3.07

the 12 (out of 33) most difficult graphs for the DIMACS set while keeping the 11 CODE instances and the 9
BHOSLIB instances since for the remaining instances, all three compared algorithms reach the same results.

Table 7.6 shows the comparison of ILS (columns 3-4), GLP (columns 5-6), and SBTS (columns 7-8):
best result f∗ followed by the average results favg given in parenthesis over 15 runs and the average time in
seconds t(s) over the successful runs.

From Table 7.6, one observes that ILS and GLP cannot reach the best-known results for 9 (entries in
italic) out of 21 difficult DIMACS and BHOSLIB instances while SBTS fails to reach the best-known result
for 4 instances with its 15 runs (corresponding to the cases where its success rate is lower than 15%, see
Tables 7.2 and 7.3). Furthermore, the average results of SBTS on the instances which cannot be solved with
a 100% success rate are all better than ILS and GLP except for C2000.9 where the average of SBTS (77.1)
is worse than GLP (77.5) but better than ILS (76.9). We do not emphasize the computing time since the
compared algorithms give several results of different quality (f∗).

For the CODE set, the three compared algorithms can achieve the best-known result for the 11 instances.
Furthermore, ILS and GLP reach the best results with a 100% success rate for 5 and 6 cases respectively
against 10 cases for our SBTS algorithm (i.e., except 1zc.4096).

To conclude, the comparative results indicate that the proposed SBTS algorithm is quite competitive
with the reference algorithms not only for the best obtained solutions but also for the average solutions.
SBTS seems to be the most comprehensive approach to solve the DIMACS, BHOSLIB and CODE instances
with multiple topologies and densities.

7.4. ANALYSIS OF SBTS 113

Table 7.7: Comparisons of SBTSrandom with SBTS
Graph SBTSrandom SBTS

Name fbk f∗(favg) t(s) f∗(favg) t(s)
brock400_1 27* 27 118.95 27 66.40
brock400_2 29* 29 18.81 29 20.24
brock400_3 31* 31 4.63 31 1.77
brock400_4 33* 33 0.81 33 0.83
brock800_1 23* 23(21.40) 874.88 23(21.52) 963.63
brock800_2 24* 24(22.29) 823.12 24(22.29) 784.36
brock800_3 25* 25(23.89) 937.43 25(24.16) 651.07
brock800_4 26* 26(25.65) 671.61 26(25.90) 421.60
C2000.9 80 78(76.30) 2117.21 80(77.29) 1515.57
C4000.5 18* 18(17.99) 5482.05 18 1553.24
MANN_a45 345* 345(344.06) 302.25 345 27.56
MANN_a81 1100* 1098(1098.00) 452.82 1100 22.70

frb30-15-1 30* 30 0.16 30 0.03
frb35-17-1 35* 35 48.40 35 0.69
frb40-19-1 40* 40 36.51 40 0.24
frb45-21-1 45* 45(44.97) 327.35 45 23.00
frb50-23-1 50* 50(48.92) 394.40 50(49.75) 368.69
frb53-24-1 53* 52(51.25) 609.09 53(52.03) 498.36
frb56-25-1 56* 55(54.11) 594.24 56(55.07) 551.64
frb59-26-1 59* 58(57.04) 890.92 59(58.02) 261.14
frb100-40 100* 95(94.22) 2094.28 97(95.48) 862.18

1dc.1024 94 94 0.09 94 0.03
1dc.2048 172 172 0.20 172 0.17
1et.1024 171 171 0.02 171 0.07
1et.2048 316 316(315.68) 116.37 316 6.59
1tc.1024 196 196 0.02 196 0.02
1tc.2048 352 352(351.96) 110.99 352 6.52
1zc.1024 112 112(111.99) 44.57 112(111.99) 29.79
1zc.2048 198 198(197.40) 172.03 198 81.69
1zc.4096 379 377(356.02) 727.18 379(372.66) 99.83
2dc.1024 16 16 0.35 16 0.03
2dc.2048 24 24 188.08 24 6.98

7.4 Analysis of SBTS

Now we turn our attention to an analysis of the important features of the proposed SBTS algorithm: the
selection rule for intensification (Section 7.2.7) and the tabu tenure (Section 7.2.6).

7.4.1 Influence of the selection rule for intensification

As described in Section 7.2.7, SBTS uses a Selection Rule for the NS1 neighborhood for (1,1)-swap
moves. In this section, we carry out an experiment to verify the importance of this dedicated Selection
Rule compared to a random selection rule. For this purpose, we create a variant of SBTS (denoted by
SBTSrandom) by replacing its Selection Rule with a random selection rule. With SBTSrandom, when NS1

offers multiple eligible vertices, one of them is picked at random and used by the (1,1)-swap move.

For this experiment, we run SBTS and SBTSrandom 100 times on each of the 32 instances (DIMACS,
BHOSLIB, CODE) of Section 7.3.4 under the same condition as before. The results are given in Table 7.7
which shows for each algorithm the best result f∗, the average result favg (in parenthesis) and the average
time in second t(s) to reach the best result f∗. From Table 7.7, one notices that SBTS performs better than
SBTSrandom both in terms of the best result f∗ and the average result favg. Precisely, SBTS achieves the
best-known result for all the instances except frb100-40 while SBTSrandom attains the best-known result for
only 25 cases out of 32 instances. Besides, SBTS has a perfect success rate for 20 cases against 13 cases for
SBTSrandom. This experiment demonstrates the usefulness of using the proposed Selection Rule to explore
the NS1 neighborhood.

114 CHAPTER 7. SBTS: SWAP-BASED TABU SEARCH FOR MAXIMUM INDEPENDENT SET

Table 7.8: Comparisons of SBTSunique with SBTS
Graph SBTSunique SBTS

Name fbk f∗ t(s) f∗ t(s)
brock400_1 27* 27(26.98) 59.04 27 66.40
brock400_2 29* 29 6.07 29 20.24
brock400_3 31* 31 0.71 31 1.77
brock400_4 33* 33 0.23 33 0.83
brock800_1 23* 23(21.46) 452.06 23(21.52) 963.63
brock800_2 24* 24(22.44) 653.53 24(22.29) 784.36
brock800_3 25* 25(24.10) 739.92 25(24.16) 651.07
brock800_4 26* 26(25.95) 458.71 26(25.90) 421.60
C2000.9 80 79(76.85) 605.79 80(77.29) 1515.57
C4000.5 18* 18 1981.74 18 1553.24
MANN_a45 345* 345(344.25) 318.49 345 27.56
MANN_a81 1100* 1100(1098.41) 1680.60 1100 22.70

frb30-15-1 30* 30 0.03 30 0.03
frb35-17-1 35* 35 0.47 35 0.69
frb40-19-1 40* 40 0.74 40 0.24
frb45-21-1 45* 45 68.51 45 23.00
frb50-23-1 50* 50(49.55) 356.14 50(49.75) 368.69
frb53-24-1 53* 53(52.03) 438.46 53(52.03) 498.36
frb56-25-1 56* 56(55.09) 453.20 56(55.07) 551.64
frb59-26-1 59* 59(57.86) 777.11 59(58.02) 261.14
frb100-40 100* 97(95.28) 849.67 97(95.48) 862.18

1dc.1024 94 94 0.03 94 0.03
1dc.2048 172 172 0.07 172 0.17
1et.1024 171 171 0.22 171 0.07
1et.2048 316 316 27.23 316 6.59
1tc.1024 196 196 0.01 196 0.02
1tc.2048 352 352 13.73 352 6.52
1zc.1024 112 112 52.26 112(111.99) 29.79
1zc.2048 198 198(197.89) 178.46 198 81.69
1zc.4096 379 377(365.26) 377.07 379(372.66) 99.83
2dc.1024 16 16 0.01 16 0.03
2dc.2048 24 24 2.78 24 6.98

7.4.2 Analysis of the tabu tenure tuning technique

Recall that the tabu tenure tt is set differently according to k = 1 or k > 1 (see Section 7.2.6). In this
section, we carry out an experiment to show the usefulness of this tuning technique. For this purpose, we
adopt for the case k > 1 the same tabu tenure as for the case k = 1 and denote the resulting variant by
SBTSunique. We use SBTSunique to solve 100 times each of the 32 instances under the same condition as
before.

Table 7.8 shows the comparative results of SBTSunique (column 3-4) and SBTS (column 5-6). For each
algorithm, we show the best result f∗ followed by the average result favg (in parenthesis) and the average
time in second t(s). We observe that contrary to SBTS which finds all the best-known results except
frb100-40 instance, SBTSunique fails to do so for 3 instances. SBTS has a perfect success rate of reaching
the best-known result for 20 cases against 17 cases for SBTSunique. This study shows the interest of the
adopted tabu tenue technique and confirms the importance of tuning the tabu tenure carefully.

7.5 Conclusion

In this Appendix, we have presented SBTS, a general and unified swap-based tabu search algorithm for
solving the maximum independent set problem. The proposed algorithm explores the search space by a
dynamic alternation between intensification and diversification steps. The search process is driven by the
(k, 1)-swap operator combined with specific rules to examine four different neighborhoods. For the purpose
of intensification, SBTS uses (0,1)-swap to improve the solution and (1,1)-swap to make side-walks with
specific selection rules. To overcome local optima, SBTS adopts an adaptive perturbation strategy which

7.5. CONCLUSION 115

applies either a (2,1)-swap for a weak perturbation or a (k,1)-swap (k > 2) for a strong perturbation. A tabu
mechanism is also employed to prevent the search from short-term cycles.

We have tested the proposed SBTS on two sets of 120 well-known instances (DIMACS and BHOSLIB)
with multiple topologies and densities. Computational results show that SBTS competes favorably with 5
state-of-the-art algorithms in the literature. In particular, SBTS can achieve the best-known results for all
the 120 instances. An additional test of SBTS on a set of 11 instances from code theory has confirmed its
competitiveness relative to two other reference methods.

Even though the proposed approach achieves competitive results on the three benchmarks, one observes
that some best results can only be reached occasionally. More studies are needed to improve the stability and
search capacity of the approach. One possibility would be to introduce multiple search strategies and apply
them dynamically and adaptively according to learned guiding information. Another possibility would be to
combine SBTS with the memetic search framework where a meaningful solution recombination mechanism
must be sought.

List of figures

1.1 An illustrative example for the MSCP . 18

3.1 An illustrative example of the MGPX crossover . 38
3.2 N1: An illustrative example with two partial colorings (c and c′ are restricted here to two Vi

and Vj color classes) . 40

4.1 An illustrative example of the DGX crossover. 53
4.2 An illustrative example of the GGX crossover. 53
4.3 An illustration for the IDTS procedure. 54
4.4 Comparisons of HSA and four reference algorithms for the lower bounds. 63
4.5 Comparisons of HSA and four reference algorithms for the upper bounds. 66
4.6 FDC plots on 4 graphs for the lower and upper bounds 68

5.1 An illustrative example of the construction phase with forward checking. 77

7.1 An illustrative example of graph G . 99

117

List of tables

1.1 Main heuristics and metaheuristics for the MSCP . 21
1.2 Main characteristics of the MSCP benchmark (94 instances) 24

2.1 Main heuristic and metaheuristic approaches for the BCP and the BMCP 29
2.2 Main characteristics of the BCP and the BMCP benchmark (66 instances) 31

3.1 Settings of parameters . 42
3.2 Detailed computational results of MASC on the set of 39 COLOR 2002-2004 instances

(upper part) and 24 DIMACS instances (bottom part) . 43
3.3 Comparisons of MASC with five state-of-the-art sum coloring algorithms 45
3.4 MASC vs. five state-of-the-art sum coloring algorithms 46
3.5 Results of MASC on 17 large graphs with at least 500 vertices 46
3.6 Comparative results of MASC and DNTS . 47
3.7 Comparative results of the tabu search improvement method according to the neighborhood

employed . 47
3.8 Comparative results of MASC and TABUCOL . 48

4.1 Settings of parameters . 58
4.2 Detailed computational results of HSA on the set of 58 COLOR 2002-2004 instances and

36 DIMACS instances . 58
4.3 Comparisons of HSA with four state-of-the-art sum coloring algorithms for the lower bounds

of the MSCP on 94 graphs . 61
4.4 Comparisons of HSA with four state-of-the-art sum coloring algorithms for the upper bounds

of the MSCP on 94 graphs . 63
4.5 Comparisons on 20 selected graphs for the upper and lower bounds of the MSCP 66
4.6 FDC analysis on 20 selected graphs for the lower and upper bounds of the MSCP 67

5.1 Settings of parameters . 81
5.2 LHS: Detailed computational results on BCP instances 81
5.3 Comparisons with four state-of-the-art algorithms on BCP instances 82
5.4 Detailed computational results of LHS on the set of 33 BMCP instances 84
5.5 Comparisons of LHS with five state-of-the-art algorithms on the set of 33 BMCP instances 85
5.6 Assessment of the learning-based guiding function . 86

7.1 Mapping Degree, Expanding Degree and Diversifying Degree on the illustrative graph. . . 100
7.2 Detailed computational results of SBTS on the set of 80 DIMACS instances. Each instance

is solved 100 times and each run is limited to a maximum of 108 iterations. 106
7.3 Detailed computational results of SBTS on the set of 40 BHOSLIB instances. Each instance

is solved 100 times and each run is limited to a maximum of 108 iterations. 108
7.4 Detailed computational results of SBTS on the set of 11 CODE instances. Each instance is

solved 100 times and each run is limited to a maximum of 108 iterations. 109

119

120 LIST OF TABLES

7.5 Comparisons of SBTS with five reference algorithms on 45 most difficult DIMACS and
BHOSLIB instances. 110

7.6 Comparisons of SBTS with two typical MIS algorithms ILS and GLP [Andrade et al. 2012]
on 32 representative instances. 112

7.7 Comparisons of SBTSrandom with SBTS . 113
7.8 Comparisons of SBTSunique with SBTS . 114

List of publications

International journals

– Yan Jin and Jin-Kao Hao. Effective learning-based hybrid search for bandwidth coloring. Accepted
to IEEE Transactions on Systems, Man, and Cybernetics: Systems Sept 2014.
DOI: http://dx.doi.org/10.1109/TSMC.2014.2360661

– Yan Jin and Jin-Kao Hao. General swap-based multiple neighborhood tabu search for finding maxi-
mum independent set. Engineering Applications of Artificial Intelligence 37: 20-33, 2015.

– Yan Jin, Jin-Kao Hao, Jean-Philippe Hamiez. A memetic algorithm for the minimum sum coloring
problem. Computers & Operations Research 43(3): 318-327, 2014.

Submitted and on-going papers

– Yan Jin and Jin-Kao Hao. Hybrid evolutionary search for the minimum sum coloring problem of
graphs. Submitted, Mar. 2015.

– Yan Jin, Jean-Philippe Hamiez and Jin-Kao Hao. A review on algorithms for the minimum sum col-
oring problem. Apr. 2015.

http://dx.doi.org/10.1109/TSMC.2014.2360661

References

Aardal, K. I., Van Hoesel, S. P., Koster, A. M., Mannino, C., and Sassano, A. (2007). Models and solution
techniques for frequency assignment problems. Annals of Operations Research, 153(1):79–129. (Cited
on pages 11 and 25.)

Aicha, M., Malika, B., and Habiba, D. (2010). Two hybrid ant algorithms for the general T-colouring
problem. International Journal of Bio-Inspired Computation, 2(5):353–362. (Cited on page 25.)

Allen, S. M., Smith, D. H., and Hurley, S. (2002). Generation of lower bounds for minimum span frequency
assignment. Discrete Applied Mathematics, 119(1):59–78. (Cited on page 25.)

Andrade, D. V., Resende, M. G., and Werneck, R. F. (2012). Fast local search for the maximum independent
set problem. Journal of Heuristics, 18(4):525–547. (Cited on pages 96, 98, 108, 111, 112, and 120.)

Bar-Noy, A. and Kortsarz, G. (1998). Minimum color sum of bipartite graphs. Journal of Algorithms,
28(2):339–365. (Cited on page 19.)

Battiti, R. and Protasi, M. (2001). Reactive local search for the maximum clique problem. Algorithmica,
29(4):610–637. (Cited on page 96.)

Benlic, U. and Hao, J.-K. (2012). A study of breakout local search for the minimum sum coloring problem.
Simulated Evolution and Learning, pages 128–137. (Cited on pages 17, 20, 21, 42, 46, 55, and 63.)

Benlic, U. and Hao, J.-K. (2013). Breakout local search for maximum clique problems. Computers &
Operations Research, 40(1):192–206. (Cited on pages 96 and 109.)

Bernardo, F., Agustí, R., Pérez-Romero, J., and Sallent, O. (2010). An application of reinforcement learning
for efficient spectrum usage in next-generation mobile cellular networks. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, 40(4):477–484. (Cited on page 25.)

Bomze, I. M., Budinich, M., Pardalos, P. M., and Pelillo, M. (1999). The maximum clique problem.
Handbook of Combinatorial Optimization, pages 1–74. (Cited on page 96.)

Bonomo, F., Durán, G., Marenco, J., and Valencia-Pabon, M. (2011). Minimum sum set coloring of trees
and line graphs of trees. Discrete Applied Mathematics, 159(5):288–294. (Cited on page 19.)

Bouziri, H. and Jouini, M. (2010). A tabu search approach for the sum coloring problem. Electronic Notes
in Discrete Mathematics, 36:915–922. (Cited on pages 17, 20, and 21.)

Brélaz, D. (1979). New methods to color the vertices of a graph. Communications of the ACM, 22(4):251–
256. (Cited on pages 19 and 30.)

Brunato, M. and Battiti, R. (2011). R-evo: a reactive evolutionary algorithm for the maximum clique
problem. IEEE Transactions on Evolutionary Computation, 15(6):770–782. (Cited on page 96.)

123

124 REFERENCES

Bui, T. N. and Nguyen, T. H. (2006). An agent-based algorithm for generalized graph colorings. In
Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pages 19–26.
ACM. (Cited on pages 25, 27, and 29.)

Butenko, S., Pardalos, P., Sergienko, I., Shylo, V., and Stetsyuk, P. (2009). Estimating the size of correcting
codes using extremal graph problems. Optimization, pages 227–243. (Cited on page 111.)

Cai, S., Su, K., Luo, C., and Sattar, A. (2014). Numvc: An efficient local search algorithm for minimum
vertex cover. arXiv preprint arXiv:1402.0584. (Cited on pages 96 and 109.)

Carraghan, R. and Pardalos, P. M. (1990). An exact algorithm for the maximum clique problem. Operations
Research Letters, 9(6):375–382. (Cited on page 96.)

Castelino, D., Hurley, S., and Stephens, N. (1996). A tabu search algorithm for frequency assignment.
Annals of Operations Research, 63(2):301–319. (Cited on page 25.)

Chiarandini, M. and Stützle, T. (2007). Stochastic local search algorithms for graph set T-colouring and
frequency assignment. Constraints, 12(3):371–403. (Cited on pages 83 and 86.)

Costa, D. (1993). On the use of some known methods for T-colorings of graphs. Annals of Operations
Research, 41(4):343–358. (Cited on page 25.)

Di Gaspero, L. and Schaerf, A. (2006). Neighborhood portfolio approach for local search applied to
timetabling problems. Journal of Mathematical Modelling and Algorithms, 5(1):65–89. (Cited on
pages 39 and 40.)

Dorigo, M., Caro, G., and Gambardella, L. (1999). Ant algorithms for discrete optimization. Artificial Life,
5(2):137–172. (Cited on page 28.)

Dorne, R. and Hao, J.-K. (1995). An evolutionary approach for frequency assignment in cellular radio
networks. In IEEE International Conference on Evolutionary Computation, volume 2, pages 539–544.
(Cited on page 25.)

Dorne, R. and Hao, J.-K. (1999). Tabu search for graph coloring, T-colorings and set T-colorings. In
Meta-Heuristics, pages 77–92. Springer. (Cited on pages 25, 72, 78, 79, and 101.)

Douiri, S. M. and Elbernoussi, S. (2011). New algorithm for the sum coloring problem. International
Journal of Contemporary Mathematical Sciences, 6(10):453–463. (Cited on page 17.)

Douiri, S. M. and Elbernoussi, S. (2012). A new ant colony optimization algorithm for the lower bound of
sum coloring problem. Journal of Mathematical Modelling and Algorithms, 11(2):181–192. (Cited on
page 17.)

Etzion, T. and Ostergard, P. R. (1998). Greedy and heuristic algorithms for codes and colorings. IEEE
Transactions on Information Theory, 44(1):382–388. (Cited on page 111.)

Feo, T. A. and Resende, M. G. (1995). Greedy randomized adaptive search procedures. Journal of Global
Optimization, 6(2):109–133. (Cited on page 80.)

Fleurent, C. and Ferland, J. A. (1996). Genetic and hybrid algorithms for graph coloring. Annals of
Operations Research, 63(3):437–461. (Cited on page 54.)

Friden, C., Hertz, A., and de Werra, D. (1989). Stabulus: A technique for finding stable sets in large graphs
with tabu search. Computing, 42(1):35–44. (Cited on page 96.)

REFERENCES 125

Galinier, P. and Hao, J.-K. (1999). Hybrid evolutionary algorithms for graph coloring. Journal of Combi-
natorial Optimization, 3(4):379–397. (Cited on pages 22, 36, 37, 54, 78, 79, and 101.)

Gamst, A. (1986). Some lower bounds for a class of frequency assignment problems. IEEE Transactions
on Vehicular Technology, 35(1):8–14. (Cited on page 25.)

Garey, M. R. and Johnson, D. S. (2002). Computers and intractability, volume 29. WH Freeman. (Cited
on page 23.)

Geng, X., Xu, J., Xiao, J., and Pan, L. (2007). A simple simulated annealing algorithm for the maximum
clique problem. Information Sciences, 177(22):5064–5071. (Cited on page 96.)

Glover, F. and Laguna, M. (1999). Tabu search. Handbook of Combinatorial Optimization, pages 2093–
2229. (Cited on pages 39, 41, 54, 73, 78, 97, and 101.)

Hajiabolhassan, H., Mehrabadi, M. L., and Tusserkani, R. (2000). Minimal coloring and strength of graphs.
Discrete Mathematics, 215(1):265–270. (Cited on page 19.)

Hale, W. K. (1980). Frequency assignment: Theory and applications. Proceedings of the IEEE,
68(12):1497–1514. (Cited on page 25.)

Hamiez, J.-P. and Hao, J.-K. (2002). Scatter search for graph coloring. In Artificial Evolution, pages
168–179. Springer Berlin Heidelberg. (Cited on page 37.)

Hansen, P., Mladenović, N., and Urošević, D. (2004). Variable neighborhood search for the maximum
clique. Discrete Applied Mathematics, 145(1):117–125. (Cited on pages 96 and 97.)

Hao, J.-K. (2012). Memetic algorithms in discrete optimization. In Handbook of Memetic Algorithms,
pages 73–94. Springer. (Cited on page 36.)

Hao, J.-K. and Dorne, R. (1996). Study of genetic search for the frequency assignment problem. In Artificial
Evolution, pages 333–344. Springer. (Cited on page 25.)

Hao, J.-K., Dorne, R., and Galinier, P. (1998). Tabu search for frequency assignment in mobile radio
networks. Journal of Heuristics, 4(1):47–62. (Cited on page 25.)

Haralick, R. M. and Elliott, G. L. (1980). Increasing tree search efficiency for constraint satisfaction prob-
lems. Artificial Intelligence, 14(3):263–313. (Cited on page 75.)

Helmar, A. and Chiarandini, M. (2011). A local search heuristic for chromatic sum. In Proceedings of the
9th Metaheuristics International Conference, pages 161–70. (Cited on pages 17, 20, 21, 23, 44, 46, 57,
and 60.)

Hertz, A. and de Werra, D. (1987). Using tabu search techniques for graph coloring. Computing, 39(4):345–
351. (Cited on pages 36, 56, and 78.)

Jansen, K. (2000). Approximation results for the optimum cost chromatic partition problem. Journal of
Algorithms, 34(1):54–89. (Cited on page 19.)

Jiang, T. and West, D. B. (1999). Coloring of trees with minimum sum of colors. arXiv preprint
math/9904140. (Cited on page 19.)

Jin, Y. and Hao, J.-K. (2015a). Effective learning-based hybrid search for bandwidth coloring. Accepted to
IEEE Transactions on Systems, Man, and Cybernetics: Systems Sept 2014, DOI: http://dx.doi.
org/10.1109/TSMC.2014.2360661. (Cited on pages 13, 25, 28, 29, and 71.)

http://dx.doi.org/10.1109/TSMC.2014.2360661
http://dx.doi.org/10.1109/TSMC.2014.2360661

126 REFERENCES

Jin, Y. and Hao, J.-K. (2015b). General swap-based multiple neighborhood tabu search for the maximum in-
dependent set problem. Engineering Applications of Artificial Intelligence, 37:20–33. (Cited on pages 13,
51, and 95.)

Jin, Y. and Hao, J.-K. (2015c). Hybrid search for upper and lower bounds of the minimum sum coloring
problem. Submitted for publication. (Cited on pages 13, 17, 21, 22, 23, and 49.)

Jin, Y., Hao, J.-K., and Hamiez, J.-P. (2014). A memetic algorithm for the minimum sum coloring problem.
Computers & Operations Research, 43:318–327. (Cited on pages 12, 17, 21, 22, 35, 56, and 63.)

Johnson, D. S. and Garey, M. R. (1979). Computers and intractability: A guide to the theory of NP-
completeness. Freeman, San Francisco, New York, page 32. (Cited on page 96.)

Johnson, D. S., Mehrotra, A., and Trick, M. A. (2002). Color02/03/04: Graph coloring and its generaliza-
tions. (Cited on pages 12, 30, and 80.)

Johnson, D. S., Mehrotra, A., and Trick, M. A. (2008). Special issue on computational methods for graph
coloring and its generalizations. Discrete Applied Mathematics, 156(2):145–146. (Cited on page 25.)

Johnson, D. S. and Trick, M. A. (1996). Cliques, coloring, and satisfiability: second DIMACS implemen-
tation challenge, October 11-13, 1993. American Mathematical Soc. (Cited on pages 12, 96, and 105.)

Jones, T. and Forrest, S. (1995). Fitness distance correlation as a measure of problem difficulty for genetic
algorithms. In ICGA, volume 95, pages 184–192. Citeseer. (Cited on pages 65 and 67.)

Karp, R. M. (1972). Reducibility among combinatorial problems. Complexity of Computer Computations,
pages 85–103. (Cited on pages 11 and 96.)

Katayama, K., Hamamoto, A., and Narihisa, H. (2005). An effective local search for the maximum clique
problem. Information Processing Letters, 95(5):503–511. (Cited on page 96.)

Kokosiński, Z. and Kwarciany, K. (2007). On sum coloring of graphs with parallel genetic algorithms.
Adaptive and Natural Computing Algorithms, pages 211–219. (Cited on pages 17 and 22.)

Kroon, L. G., Sen, A., Deng, H., and Roy, A. (1997). The optimal cost chromatic partition problem for
trees and interval graphs. In Graph-Theoretic Concepts in Computer Science, pages 279–292. Springer.
(Cited on pages 17, 19, and 23.)

Kubicka, E. (1989). The chromatic sum of a graph. PhD thesis, Western Michigan University. (Cited on
pages 11 and 17.)

Kubicka, E. (2004). The chromatic sum of a graph: History and recent developments. International Journal
of Mathematics and Mathematical Sciences, 2004(30):1563–1573. (Cited on page 18.)

Kubicka, E. (2005). Polynomial algorithm for finding chromatic sum for unicyclic and outerplanar graphs.
Ars Combinatoria 76. (Cited on page 17.)

Kubicka, E., Kubicki, G., and Kountanis, D. (1991). Approximation algorithms for the chromatic sum. In
Computing in the 90’s, pages 15–21. Springer. (Cited on page 19.)

Kubicka, E. and Schwenk, A. J. (1989). An introduction to chromatic sums. In Proceedings of the 17th
Conference on ACM Annual Computer Science Conference, pages 39–45. ACM. (Cited on page 17.)

Lai, X. and Lü, Z. (2013). Multistart iterated tabu search for bandwidth coloring problem. Computers &
Operations Research, 40(5):1401–1409. (Cited on pages 25, 28, 29, 30, 72, 78, 82, 83, and 86.)

REFERENCES 127

Lai, X., Lü, Z., Hao, J.-K., Glover, F., and Xu, L. (2014). Path relinking for bandwidth coloring problem.
CoRR abs/1409.0973. (Cited on pages 25, 29, 30, 81, 82, 83, and 86.)

Leighton, F. T. (1979). A graph coloring algorithm for large scheduling problems. Journal of Research of
the National Bureau of Standards, 84(6):489–506. (Cited on page 19.)

Li, C.-M. and Quan, Z. (2010). Combining graph structure exploitation and propositional reasoning for
the maximum clique problem. In IEEE International Conference on Tools with Artificial Intelligence
(ICTAI), 2010 22nd, volume 1, pages 344–351. IEEE. (Cited on page 96.)

Li, Y., Lucet, C., Moukrim, A., and Sghiouer, K. (2009). Greedy algorithms for the minimum sum coloring
problem. Logistique et Transports. (Cited on pages 17, 19, 21, 44, 46, and 56.)

Lim, A., Zhu, Y., Lou, Q., and Rodrigues, B. (2005). Heuristic methods for graph coloring problems.
In Proceedings of the 2005 ACM Symposium on Applied Computing, pages 933–939. ACM. (Cited on
pages 25, 27, 29, and 83.)

Lourenço, H. R., Martin, O. C., and Stutzle, T. (2001). Iterated local search. arXiv preprint math/0102188.
(Cited on page 97.)

Lü, Z. and Hao, J.-K. (2010). A memetic algorithm for graph coloring. European Journal of Operational
Research, 203(1):241–250. (Cited on pages 36, 38, and 55.)

Lü, Z., Hao, J.-K., and Glover, F. (2011). Neighborhood analysis: a case study on curriculum-based course
timetabling. Journal of Heuristics, 17(2):97–118. (Cited on pages 39 and 40.)

Malafiejski, M. (2004). Sum coloring of graphs. Graph Colorings, 352:55–65. (Cited on pages 17 and 19.)

Malaguti, E. (2009). The vertex coloring problem and its generalizations. 4OR, 7(1):101–104. (Cited on
page 26.)

Malaguti, E., Monaci, M., and Toth, P. (2008). A metaheuristic approach for the vertex coloring problem.
INFORMS Journal on Computing, 20(2):302–316. (Cited on page 36.)

Malaguti, E. and Toth, P. (2008). An evolutionary approach for bandwidth multicoloring problems. Euro-
pean Journal of Operational Research, 189(3):638–651. (Cited on pages 25, 29, 30, 72, 82, 83, and 86.)

Malaguti, E. and Toth, P. (2010). A survey on vertex coloring problems. International Transactions in
Operational Research, 17(1):1–34. (Cited on page 27.)

Marti, R., Gortazar, F., and Duarte, A. (2010). Heuristics for the bandwidth colouring problem. Interna-
tional Journal of Metaheuristics, 1(1):11–29. (Cited on pages 28 and 29.)

McCreesh, C. and Prosser, P. (2013). Multi-threading a state-of-the-art maximum clique algorithm. Algo-
rithms, 6(4):618–635. (Cited on page 105.)

Moscato, P. and Cotta, C. (2003). A gentle introduction to memetic algorithms. In Handbook of Meta-
heuristics, pages 105–144. Springer. (Cited on pages 36 and 50.)

Moukrim, A., Sghiouer, K., Lucet, C., and Li, Y. (2010). Lower bounds for the minimal sum coloring
problem. Electronic Notes in Discrete Mathematics, 36:663–670. (Cited on pages 17, 23, 57, and 60.)

Moukrim, A., Sghiouera, K., Lucetb, C., and Li, Y. (2013). Upper and lower bounds for the minimum sum
coloring problem. https://www.hds.utc.fr/~moukrim/dokuwiki/doku.php?id=en:
mscp. (Cited on pages 17, 21, 22, 23, 42, 44, 46, 56, 57, 60, and 63.)

https://www.hds.utc.fr/~moukrim/dokuwiki/doku.php?id=en:mscp
https://www.hds.utc.fr/~moukrim/dokuwiki/doku.php?id=en:mscp

128 REFERENCES

Neri, F., Cotta, C., and Moscato, P. (2012). Handbook of memetic algorithms, volume 379. Springer. (Cited
on pages 36 and 50.)

Östergård, P. R. (2002). A fast algorithm for the maximum clique problem. Discrete Applied Mathematics,
120(1):197–207. (Cited on page 96.)

Porumbel, D. C., Hao, J.-K., and Kuntz, P. (2010). An evolutionary approach with diversity guarantee
and well-informed grouping recombination for graph coloring. Computers & Operations Research,
37(10):1822–1832. (Cited on pages 36, 37, 41, and 55.)

Prestwich, S. (2002). Coloration neighbourhood search with forward checking. Annals of Mathematics and
Artificial Intelligence, 34(4):327–340. (Cited on pages 28 and 30.)

Prestwich, S. (2008). Generalised graph colouring by a hybrid of local search and constraint programming.
Discrete Applied Mathematics, 156(2):148–158. (Cited on pages 25, 28, 29, 80, 82, 83, and 86.)

Pullan, W. (2006). Phased local search for the maximum clique problem. Journal of Combinatorial Opti-
mization, 12(3):303–323. (Cited on pages 96 and 109.)

Pullan, W. (2008). Approximating the maximum vertex/edge weighted clique using local search. Journal
of Heuristics, 14(2):117–134. (Cited on pages 96 and 109.)

Pullan, W., Mascia, F., and Brunato, M. (2011). Cooperating local search for the maximum clique problem.
Journal of Heuristics, 17(2):181–199. (Cited on pages 96 and 110.)

Richter, S., Helmert, M., and Gretton, C. (2007). A stochastic local search approach to vertex cover. KI
2007: Advances in Artificial Intelligence, pages 412–426. (Cited on pages 96 and 109.)

Roberts, F. S. (1991). T-colorings of graphs: recent results and open problems. Discrete Mathematics,
93(2):229–245. (Cited on page 25.)

Salavatipour, M. R. (2003). On sum coloring of graphs. Discrete Applied Mathematics, 127(3):477–488.
(Cited on pages 17 and 19.)

Salcedo-Sanz, S., Santiago-Mozos, R., and Bousoño-Calzón, C. (2004). A hybrid hopfield network-
simulated annealing approach for frequency assignment in satellite communications systems. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34(2):1108–1116. (Cited on
page 25.)

San Segundo, P., Rodríguez-Losada, D., and Jiménez, A. (2011). An exact bit-parallel algorithm for the
maximum clique problem. Computers & Operations Research, 38(2):571–581. (Cited on page 96.)

Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., and Dueck, G. (2000). Record breaking optimization
results using the ruin and recreate principle. Journal of Computational Physics, 159(2):139–171. (Cited
on page 97.)

Sen, A., Deng, H., and Guha, S. (1992). On a graph partition problem with application to vlsi layout.
Information Processing Letters, 43(2):87–94. (Cited on pages 17 and 19.)

Sloane, N. (2000). Challenge problems: Independent sets in graphs. (Cited on page 108.)

Sörensen, K. and Sevaux, M. (2006). MA|PM: Memetic algorithms with population management. Com-
puters & Operations Research, 33(5):1214–1225. (Cited on page 55.)

Supowit, K. J. (1987). Finding a maximum planar subset of a set of nets in a channel. IEEE Transactions
on Computer-aided Design of Integrated Circuits and Systems, pages 93–94. (Cited on pages 11 and 17.)

REFERENCES 129

Tesman, B. A. (1989). T-colorings, list T-colorings, and set T-colorings of graphs. UMI. (Cited on page 25.)

Thomassen, C., Erdös, P., Alavi, Y., Malde, P. J., and Schwenk, A. J. (1989). Tight bounds on the chromatic
sum of a connected graph. Journal of Graph Theory, 13(3):353–357. (Cited on page 22.)

Tomita, E. and Kameda, T. (2007). An efficient branch-and-bound algorithm for finding a maximum clique
with computational experiments. Journal of Global Optimization, 37(1):95–111. (Cited on page 96.)

Walser, J. P. (1996). Feasible cellular frequency assignment using constraint programming abstractions. In
Proceedings of the Workshop on Constraint Programming Applications, in conjunction with the Second
International Conference on Principles and Practice of Constraint Programming (CP96). (Cited on
page 25.)

Wang, L., Liu, W., and Shi, H. (2008). Noisy chaotic neural networks with variable thresholds for the
frequency assignment problem in satellite communications. IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, 38(2):209–217. (Cited on page 25.)

Wang, Y., Hao, J.-K., Glover, F., and Lü, Z. (2013). Solving the minimum sum coloring problem via binary
quadratic programming. arXiv preprint arXiv:1304.5876. (Cited on pages 17, 19, and 22.)

Wu, Q. and Hao, J.-K. (2012). An effective heuristic algorithm for sum coloring of graphs. Computers &
Operations Research, 39(7):1593–1600. (Cited on pages 17, 19, 21, 42, 46, 60, 63, and 92.)

Wu, Q. and Hao, J.-K. (2013a). An adaptive multistart tabu search approach to solve the maximum clique
problem. Journal of Combinatorial Optimization, 26(1):86–108. (Cited on pages 96 and 101.)

Wu, Q. and Hao, J.-K. (2013b). Improved lower bounds for sum coloring via clique decomposition. CoRR
abs/1303.6761. (Cited on pages 17, 23, 57, and 60.)

Wu, Q. and Hao, J.-K. (2015). A review on algorithms for maximum clique problems. European Journal
of Operational Research, 242(3):693–709. (Cited on pages 96 and 105.)

Wu, Q., Hao, J.-K., and Glover, F. (2012). Multi-neighborhood tabu search for the maximum weight clique
problem. Annals of Operations Research, 196(1):611–634. (Cited on pages 96 and 109.)

Xu, K., Boussemart, F., Hemery, F., and Lecoutre, C. (2005). A simple model to generate hard satisfiable
instances. arXiv preprint cs/0509032. (Cited on page 105.)

Zhang, Q., Sun, J., and Tsang, E. (2005). An evolutionary algorithm with guided mutation for the maximum
clique problem. IEEE Transactions on Evolutionary Computation, 9(2):192–200. (Cited on page 96.)

Zoellner, J. A. and Beall, C. L. (1977). A breakthrough in spectrum conserving frequency assignment
technology. IEEE Transactions on Electromagnetic Compatibility, 19(3):313–319. (Cited on page 25.)

Thèse de Doctorat

Yan JIN

Hybrid metaheuristic algorithms for sum coloring and bandwidth coloring
Métaheuristiques hybrides pour la somme coloration et la coloration de bande
passante

Résumé
Le problème de somme coloration minimum (MSCP)
et le problème de coloration de bande passante (BCP)
sont deux généralisations importantes du problème de
coloration des sommets classique avec de
nombreuses applications dans divers domaines, y
compris la conception de circuits imprimés, la
planication, l’allocation de ressource, l’affectation de
fréquence dans les réseaux mobiles, etc. Les
problèmes MSCP et BCP étant NP-difficiles, les
heuristiques et métaheuristiques sont souvent
utilisées en pratique pour obtenir des solutions de
bonne qualité en un temps de calcul acceptable. Cette
thèse est consacrée à des métaheuristiques hybrides
pour la résolution efcace des problèmes MSCP et
BCP. Pour le problème MSCP, nous présentons deux
algorithmes mémétiques qui combinent l’évolution
d’une population d’individus avec de la recherche
locale. Pour le problème BCP, nous proposons un
algorithme hybride à base d’apprentissage faisant
coopérer une méthode de construction “informée”
avec une procédure de recherche locale. Les
algorithmes développés sont évalués sur des
instances biens connues et se révèlent très
compétitifs par rapport à l’état de l’art. Les principaux
composants des algorithmes que nous proposons
sont également analysés.

Abstract
The minimum sum coloring problem (MSCP) and the
bandwidth coloring problem (BCP) are two important
generalizations of the classical vertex coloring
problem with numerous applications in diverse
domains, including VLSI design, scheduling, resource
allocation and frequency assignment in mobile
networks, etc. Since the MSCP and BCP are NP-hard
problems, heuristics and metaheuristics are practical
solution methods to obtain high quality solutions in an
acceptable computing time. This thesis is dedicated to
developing effective hybrid metaheuristic algorithms
for the MSCP and BCP. For the MSCP, we present two
memetic algorithms which combine population-based
evolutionary search and local search. An effective
algorithm for maximum independent set is devised for
generating initial solutions. For the BCP, we propose a
learning-based hybrid search algorithm which follows
a cooperative framework between an informed
construction procedure and a local search heuristic.
The proposed algorithms are evaluated on well-known
benchmark instances and show highly competitive
performances compared to the current state-of-the-art
algorithms from the literature. Furthermore, the key
issues of these algorithms are investigated and
analyzed.

Mots clés
Somme coloration de graphe, Coloration de bande
passante, Stable maximum, Optimisation
combinatoire, Métaheuristiques, Recherche tabou,
Algorithme hybride.

Key Words
Graph sum coloring, Bandwidth coloring, Maximum
independent set, Combinatorial optimization,
Metaheuristics, Tabu search, Hybrid algorithm.

L’UNIVERSITÉ NANTES ANGERS LE MANS

	fengmian
	these
	I General introduction
	II The minimum sum coloring problem and the bandwidth (multi)coloring problem: A state-of-the-art
	The minimum sum coloring problem
	Introduction
	Definitions and formulation
	Heuristics and metaheuristics
	Greedy algorithms
	Neighborhood search heuristics
	Evolutionary algorithms

	Bounds
	Theoretical bounds
	Computational bounds

	Benchmark

	The bandwidth (multi)coloring problem
	Introduction
	Definitions and formulation
	Heuristics and metaheuristics
	Neighborhood search heuristics
	Evolutionary algorithms

	Benchmark

	III Personal contributions
	MASC: A Memetic Algorithm for minimum Sum Coloring
	Introduction
	Components of the MASC approach
	Search space and evaluation function
	Initial population
	Crossover operator
	A double-neighborhood tabu search
	Population updating

	Experimental results
	Computational results
	Comparisons with state-of-the-art algorithms
	Experiments on large graphs

	Analysis of MASC
	Influence of the multi-parent crossover operator
	Influence of the neighborhood combination
	Improvements of MASC over TABUCOL

	Conclusion

	HSA: Hybrid Search Algorithm for minimum sum coloring
	Introduction
	Components of the HSA approach
	Search space and evaluation function
	Initial population
	A double-crossover recombination procedure
	An iterated double-phase tabu search procedure
	Population updating
	Discussions

	The lower bounds of the minimum sum coloring problem
	Experimental results
	Experimental protocol
	Computational results
	Comparisons with four state-of-the-art algorithms for the lower bounds
	Comparisons with four state-of-the-art algorithms for the upper bounds

	Analysis of HSA
	Analysis of the double-crossover operator
	Landscape analyses

	Conclusion

	LHS: Learning-based Hybrid Search for bandwidth (multi)coloring
	Introduction
	Components of the LHS approach
	General procedure
	Learning-based guiding function
	Construction phase with forward checking
	Tabu search repair phase
	Discussions

	Experimental results
	Benchmark instances and experimental protocol
	Bandwith coloring: Computational results
	Bandwith multicoloring: Computational results

	Analysis of LHS
	Conclusion

	IV General conclusion
	Conclusions and perspectives
	Conclusions
	Perspectives

	V Appendix
	SBTS: Swap-Based Tabu Search for maximum independent set
	Introduction
	Components of the SBTS approach
	General procedure
	Search space and evaluation function
	Initial solution
	Preliminary definitions
	(k,1)-swap, neighborhoods and exploration of neighborhoods
	Tabu list and aspiration rule
	Intensification
	Diversification
	Information updating procedure

	Experimental results
	Benchmark instances
	Experimental protocol
	Computational results of SBTS on DIMACS, BHOSLIB and CODE instances
	Comparisons with seven state-of-the-art algorithms

	Analysis of SBTS
	Influence of the selection rule for intensification
	Analysis of the tabu tenure tuning technique

	Conclusion

	List of figures
	List of tables
	List of publications
	References

	these18032015
	these
	I General introduction
	II The minimum sum coloring problem and the bandwidth (multi)coloring problem: A state-of-the-art
	The minimum sum coloring problem
	Introduction
	Definitions and formulation
	Heuristics and metaheuristics
	Greedy algorithms
	Neighborhood search heuristics
	Evolutionary algorithms

	Bounds
	Theoretical bounds
	Computational bounds

	Benchmark

	The bandwidth (multi)coloring problem
	Introduction
	Definitions and formulation
	Heuristics and metaheuristics
	Neighborhood search heuristics
	Evolutionary algorithms

	Benchmark

	III Personal contributions
	MASC: A Memetic Algorithm for minimum Sum Coloring
	Introduction
	Components of the MASC approach
	Search space and evaluation function
	Initial population
	Crossover operator
	A double-neighborhood tabu search
	Population updating

	Experimental results
	Computational results
	Comparisons with state-of-the-art algorithms
	Experiments on large graphs

	Analysis of MASC
	Influence of the multi-parent crossover operator
	Influence of the neighborhood combination
	Improvements of MASC over TABUCOL

	Conclusion

	HSA: Hybrid Search Algorithm for minimum sum coloring
	Introduction
	Components of the HSA approach
	Search space and evaluation function
	Initial population
	A double-crossover recombination procedure
	An iterated double-phase tabu search procedure
	Population updating
	Discussions

	The lower bounds of the minimum sum coloring problem
	Experimental results
	Experimental protocol
	Computational results
	Comparisons with four state-of-the-art algorithms for the lower bounds
	Comparisons with four state-of-the-art algorithms for the upper bounds

	Analysis of HSA
	Analysis of the double-crossover operator
	Landscape analyses

	Conclusion

	LHS: Learning-based Hybrid Search for bandwidth (multi)coloring
	Introduction
	Components of the LHS approach
	General procedure
	Learning-based guiding function
	Construction phase with forward checking
	Tabu search repair phase
	Discussions

	Experimental results
	Benchmark instances and experimental protocol
	Bandwith coloring: Computational results
	Bandwith multicoloring: Computational results

	Analysis of LHS
	Conclusion

	IV General conclusion
	Conclusions and perspectives
	Conclusions
	Perspectives

	V Appendix
	SBTS: Swap-Based Tabu Search for maximum independent set
	Introduction
	Components of the SBTS approach
	General procedure
	Search space and evaluation function
	Initial solution
	Preliminary definitions
	(k,1)-swap, neighborhoods and exploration of neighborhoods
	Tabu list and aspiration rule
	Intensification
	Diversification
	Information updating procedure

	Experimental results
	Benchmark instances
	Experimental protocol
	Computational results of SBTS on DIMACS, BHOSLIB and CODE instances
	Comparisons with seven state-of-the-art algorithms

	Analysis of SBTS
	Influence of the selection rule for intensification
	Analysis of the tabu tenure tuning technique

	Conclusion

	List of figures
	List of tables
	List of publications
	References

	these.pdf
	I General introduction
	II The minimum sum coloring problem and the bandwidth (multi)coloring problem: A state-of-the-art
	The minimum sum coloring problem
	Introduction
	Definitions and formulation
	Heuristics and metaheuristics
	Greedy algorithms
	Neighborhood search heuristics
	Evolutionary algorithms

	Bounds
	Theoretical bounds
	Computational bounds

	Benchmark

	The bandwidth (multi)coloring problem
	Introduction
	Definitions and formulation
	Heuristics and metaheuristics
	Neighborhood search heuristics
	Evolutionary algorithms

	Benchmark

	III Personal contributions
	MASC: A Memetic Algorithm for minimum Sum Coloring
	Introduction
	Components of the MASC approach
	Search space and evaluation function
	Initial population
	Crossover operator
	A double-neighborhood tabu search
	Population updating

	Experimental results
	Computational results
	Comparisons with state-of-the-art algorithms
	Experiments on large graphs

	Analysis of MASC
	Influence of the multi-parent crossover operator
	Influence of the neighborhood combination
	Improvements of MASC over TABUCOL

	Conclusion

	HSA: Hybrid Search Algorithm for minimum sum coloring
	Introduction
	Components of the HSA approach
	Search space and evaluation function
	Initial population
	A double-crossover recombination procedure
	An iterated double-phase tabu search procedure
	Population updating
	Discussions

	The lower bounds of the minimum sum coloring problem
	Experimental results
	Experimental protocol
	Computational results
	Comparisons with four state-of-the-art algorithms for the lower bounds
	Comparisons with four state-of-the-art algorithms for the upper bounds

	Analysis of HSA
	Analysis of the double-crossover operator
	Landscape analyses

	Conclusion

	LHS: Learning-based Hybrid Search for bandwidth (multi)coloring
	Introduction
	Components of the LHS approach
	General procedure
	Learning-based guiding function
	Construction phase with forward checking
	Tabu search repair phase
	Discussions

	Experimental results
	Benchmark instances and experimental protocol
	Bandwith coloring: Computational results
	Bandwith multicoloring: Computational results

	Analysis of LHS
	Conclusion

	IV General conclusion
	Conclusions and perspectives
	Conclusions
	Perspectives

	V Appendix
	SBTS: Swap-Based Tabu Search for maximum independent set
	Introduction
	Components of the SBTS approach
	General procedure
	Search space and evaluation function
	Initial solution
	Preliminary definitions
	(k,1)-swap, neighborhoods and exploration of neighborhoods
	Tabu list and aspiration rule
	Intensification
	Diversification
	Information updating procedure

	Experimental results
	Benchmark instances
	Experimental protocol
	Computational results of SBTS on DIMACS, BHOSLIB and CODE instances
	Comparisons with seven state-of-the-art algorithms

	Analysis of SBTS
	Influence of the selection rule for intensification
	Analysis of the tabu tenure tuning technique

	Conclusion

	List of figures
	List of tables
	List of publications
	References

