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Abstract

Wind erosion is a complex dynamic process consisting in an atmospheric boundary layer,
aeolian particle transport, sand dune deformation and their intricate interactions. This thesis
undertakes this problems by conducting three-dimensional numerical simulations of solid
particle transport over a fixed or deformable sand dune. Turbulent flow is calculated by a
developed numerical solver (Large-eddy simulation (LES) coupled with immersed boundary
method (IBM)). Solid particle trajectories are tracked by a Lagrangian approach. Particle
entrainment, particle-surface interactions and particle deposition are taken into account by
physical comprehensive wind erosion models.

Firstly, a new numerical solver has been developed to simulate turbulent flows over
moving boundaries by introducing the IBM into LES. Two canonical simulation cases of a
turbulent boundary layer flow over a Gaussian dune and over a sinusoidal dune are performed
to examine the accuracy of the developed solver. Recirculation region characteristics, mean
streamwise velocity profiles, Reynolds stress profiles as well as the friction velocity over the
dune are presented. In the Gaussian case, a good agreement between experimental data and
simulated results demonstrates the numerical ability of the improved solver. In the sinusoidal
case, the developed solver with wall modeling over the immersed boundary shows a better
performance than the pure one, when a relatively coarse grid is used.

Secondly, physical comprehensive modeling of wind erosion is described in detail,
based on the forces acting an individual particle. An instantaneous entrainment model for
both lifting and rolling-sliding modes is proposed to initialize particle incipient motions.
Lagrangian governing equations of aeolian particle motion are presented and used to simulate
the trajectories of solid particles. Particularly, Lagrangian governing equations of bed-load
particle motion are originally deduced and applied to model the particle rolling-sliding
movement on the bed surface. In addition, particle-surface interactions are taken into account
by probabilistic rebound/splash models.

Thirdly, numerical simulations of particle transport over a fixed Gaussian dune and
over a deformable sinusoidal dune are carried out. In the fixed Gaussian case, an overall
good agreement on the particle concentration profiles over the dune between the simulated
results and the experimental data of Simoëns et al. (2015) preliminarily validates the ability
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and accuracy of the developed numerical solver coupled with physical comprehensive
wind erosion models. In the deformable sinusoidal case, the simulated dune shapes are
compared with the experimental ones of Ferreira and Fino (2012). A good agreement
between them is observed at t = 2.0 min and an obvious underestimate of the dune shape is
shown at t = 4.0 min and t = 6.0 min. By analyzing the simulated results, it is shown that
the recirculation zone behind the dune is gradually reduced as the dune deforms and that
windward erosion and lee side deposition is observed. It is also shown after testing that the
splash entrainment is important for the lee side erosion. Moreover, a preliminary attempt is
presented to apply an improved splash model with accounting for the bed slope effect to the
simulation of sand dune deformation. A better performance on the simulated dune shape is
achieved at t = 4.0 min in comparison with the experimental one.

Keywords: Wind erosion, Solid particle transport, Boundary layer, Large eddy simulation,
Immersed boundary method, Sand dune deformation



Résumé

L’érosion èolienne est un phénomène complexe avec des interactions entre la couche limite
atmosphérique, le transport des particules et la déformation des dunes. Dans cette thèse des
simulations numériques de transport de particules solides sur des dunes fixes ou déformables
sont effectuées. L’écoulement turbulent est calculé par des simulation des grandes échelles
(LES) couplée avec une méthode de frontières immergées. Les particules solides sont
tractées par une approche Lagrangienne. L’entraînement des particules, leur interaction avec
la surface et leur dépôt sont pris en compte par des modèles physiques complets d’érosion.

D’un point de vue numérique, une méthode de frontières immergées a été introduite
pour simuler les écoulements turbulents sur des frontières mouvantes. Le nouveau solveur a
été validé en effectuant des comparaison avec les résultats expérimentaux de Simoëns et al.
(2015) dans le cas d’une colline Gaussienne.

D’un point de vue physique, des modèles complets ont été développés pour l’érosion
éolienne en se basant sur les forces agissant sur les particules. Des modèles instantanés
pour l’envol, le roulement et le glissement des particules sont développés pour initier le
mouvement des particules. Leur rebond et le splash sont également pris en compte. Des
équations Lagrangiennes sont utilisées pour simuler la trajectoire des particules solides dans
l’air. Une équation de transport d’un lit de particules a également été développée pour les cas
de glissement et de roulement des particules sur la surface. La déformation de la dune est
effectuée en faisant le bilan des particules qui s’envolent et se déposent. Ces modèles ont été
validés en comparant les résultats de simulation avec les résultats expérimentaux de Simoëns
et al. (2015) sur les profils de concentration autour d’une colline Gaussienne.

Enfin, des simulations numériques d’une dune sinusoïdale déformable sont effectuées.
La forme de la dune simulée est comparée avec les résultats expérimentaux de Ferreira and
Fino (2012). Un bon agrément est obtenu à t = 2.0 min, par contre la hauteur de la dune est
sous-estimée entre 4.0 min et 6.0 min. Les résultats numériques montrent que la zone de
recirculation diminue progressivement quand la dune se déforme. L’érosion, due à l’envol et
au splash, est important à l’avant de la dune tandis que les particules se déposent à l’arrière
de la dune. Le modèle de splash a été modifié pour prendre en compte l’effet de la pente, ce
qui a permis une meilleure estimation de la hauteur de la dune à t = 4.0 min.
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Ne jc Number of ejected particle by the splash scheme

Nx,Ny,Nz Number of grid nodes

nz Total number of staggered grid points

p Fluid pressure

p0 Reference level pressure

pr Fluid pressure of the base state

Pr Prandtl number defined by Pr = ν/κT



Nomenclature xxi

Prsgs Modeled SGS Prandtl number

qi Heat flux

R Gas constant

R Particle radius

r Heat radiation

Rep Particle Reynolds number normalized by particle-fluid relative velocity ur

Reδ Reynold number defined by Reδ =Ueδ/ν

si j Fluid strain tensor

StL,Stη Stokes number

T Fluid temperature

Tr Fluid temperature of the base state

U Mean streamwise velocity

u+ Mean streamwise velocity normalized by the friction velocity

u∗ Friction velocity

Ue External velocity

ui,u,v,w Fluid velocity

uli f ting
r,c ,uli f ting

∗,c Critical (friction) velocity of lifting particle incipient motion

urolling
r,c ,urolling

∗,c Critical (friction) velocity of rolling particle incipient motion

usliding
r,c ,usliding

∗,c Critical (friction) velocity of sliding particle incipient motion

vimp Impacting particle speed

vreb Rebounding particle speed

w(χ) Wake function

wt
p Particle terminal velocity

xreat Maximum position of the recirculation zone as shown in Figure 3.22
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xsep Minimum position of the recirculation zone as shown in Figure 3.22

z+ Distance form the wall normalized by the viscous lengthscale ∆ν

z0 Roughness height

zd Shift displacement

z f lat Prescribed height above which the curvilinear vertical coordinate coincides with the
Cartesian one, i.e., ξ ′ = z

zmin Height of the bottom boundary

u⃗r,ur Particle-fluid relative velocity and its norm

CS Smagorinsky coefficient

Dd Dune domain

F+
L Aerodynamic lift force normalized by ρν2

lS Smagorinsky length

u′′i Fluctuated velocity of scales smaller than the filtered scale
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Chapter 1

Introduction

In this chapter, we give a brief description of the process of wind erosion, which consists
in the atmospheric boundary layer, aeolian particle transport, topographical evolution and
their intricate interactions. Then, we review the recent researches of wind erosion, specially
the numerical modeling and approaches of wind erosion. Finally, the objective, method and
organization of this thesis are given.

1.1 Description of wind erosion

Wind erosion is an environmental topics involving many serious issues such as desertification,
land degradation, air pollution, etc.. Enormous desertification is slowly reducing our living
space. Large area of land degradation decreases the agricultural production. Severe air
pollution has a negative impact on our health and affects our daily life. Although wind
erosion proceeds unnoticed, it destroys our living environment, threatens people’s health and
causes economic damages like a chronic disease. Therefore, understanding, modeling and
controlling the physical mechanism of wind erosion becomes an increasingly important issue
for researches.

Wind erosion is a complex dynamic process consisting in the atmospheric dynamics, sand
particle motion, topography evolution, and their intricate interactions as shown in Figure 1.1
[Lancaster (2011)]. In the following, these main four parts are introduced in detail.

1.1.1 Atmospheric boundary layers

The understanding and modeling of atmospheric boundary layer is important for the study of
wind erosion. In atmospheric boundary layers, the multi-scale turbulence is generated by
both the wind shear and the buoyancy. In the layer close to the surface, the wind shear near
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Figure 1.1 Schematic illustration of the complex dynamic process of wind erosion.

the surface is responsible for the particle entrainment, and turbulent coherent structures play
a crucial role on particle transport and deposition. For the layer over a smooth surface, the
wall shear stress is easily evaluated since the viscous dissipation is dominant and turbulence
is weak in the viscous sublayer. When the surface consists of roughness elements, the
presence of roughness strongly affects the transfer process of turbulent kinetic energy and
the distribution of shear stress near the surface. Hence, it is of considerable importance to
estimate the wall shear stress with accounting for roughness effects in the investigation of
wind erosion. Commonly, the influence of wall roughness on the flow is taken into account
in an average way. Some models to account for the roughness effect on the mean velocity
profile is described in Appendix A. In computational fluid dynamics (CFD), the atmospheric
boundary layer is modeled by the simplified Navier-Stokes equations using Boussinesq
approximations [Stull (1988)], and the roughness effects are taken into account by imposing
a rough wall model [Byun (1990); Mason and Callen (1986)].

1.1.2 Aeolian particle transport

Individual sand particles are entrained by the aerodynamic forces, then transported in the
carried flow and lastly fall toward the surface due to the gravity effect. Owing to the
presence of turbulent structures near the surface, the aeolian particle motion becomes complex.
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Turbulent fluctuations bring certain uncertainty to the trajectory of individual particles and
the preferential concentration appears in the regions where the longitudinal velocity is small
[Vinkovic et al. (2011)]. Based on the experimental and field observations, Bagnold (1941)
suggested that the aeolian particle motion can be classified into three categories as shown in
Figure 1.2 (dp is the particle diameter):

• Suspension (dp ≤ 70 µm): such particles are often called dusts. They are easily
suspended in the atmospheric boundary layer since their terminal velocities are small.
Large quantities of such particles suspended in air result in the air pollution or dust
storm.

• Saltation (70 µm < dp ≤ 500 µm): the diameter of sand particles is generally within
this interval. The saltation is the major motion mode for the sand particle movement
during the process of wind erosion. Massive particle transport by saltation results in
the dune deformation, ripple formation, etc..

• Creep (dp > 500 µm): such particles are too heavy to be entrained by aerodynamic
forces. However, they can slide or roll on the surface, pushed by wind or by impact of
saltating particles. Hence, the creeping process plays a important role in the topography
deformation.

In numerical simulations, a Lagrangian model is usually used for calculating the trajectory
of aeolian particles [Vinkovic (2005)]. Moreover, continuum models are also developed and
applied for the simulation of aeolian particle transport [Sauermann et al. (2001)].

x

z

o
⊗y

Wind

Saltation

Creep

Suspension

Figure 1.2 Different modes of airborne particle motion: suspension, saltation, creep.
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1.1.3 Topographical evolution

In the geological view, wind erosion contributes greatly to the topographical evolution. Byun
(1990) found that the long-range transport of large quantities of dusts from continent to ocean
results in the formation of sand seas in the world. According to Raupach et al. (1994), wind
erosion causes the huge loss of topsoil, which results in the loss of soil nutrients and thus
in the agricultural land degradation. Moreover, desertification is a typical example of wind
erosion in the arid area. Every year several million hectares global drylands are converted
to deserts, and the rate is increasing [Greeley and Iversen (1985)]. Though desertification
is caused by many factors such as global warming, human activity, the transport of solid
particles is the direct cause of arable land transforming into deserts.

1.1.4 Intricate interactions

The interactions between the atmospheric boundary layer, the solid particle transport and the
bed surface (topography) are complex. They are briefly described in the following:

Wind and particle: Solid particles are carried by the wind and dispersed in the atmosphere,
whereas the motion of solid particle decelerates the carried flow. Technically, the interaction
between the carried flow and solid particle motions should be taken into account at the same
time, but it is obviously difficult to be achieved in numerical simulations. In practice, particle
motions are governed by the forces acting on it, such as the aerodynamic forces (drag and lift)
and gravity, etc., and simulated by Lagrangian tracking method. When the effect of particles
on the carried flow is accounted for, a strategy of two-way coupling is used by introducing
the feedback forcing inside the governing equations of the atmospheric flow.

Wind and topography: Particle emission by the wind is one origin of the topographical
evolution, whereas the topography complexity affects the near-wall flow characteristics.
When the wall shear stress is larger than the threshold one, particles start their incipient
motions, either to roll or slide on the surface, or to be lifted in the atmosphere. The
loss of many particles modifies the local topography structure. In contrary, the induced
topographical structure at micro-scale, also called roughness, breaks the near-wall flow
characteristics and then decreases the mean velocity of wall flows. More details of roughness
effect are introduced in Appendix A. In addition, for the topographical structures at the
meso-scale, such as sand dunes, hills, Hoffmann et al. (1985) and Muck et al. (1985) found
a convex curvature attenuates the pre-existing turbulence while a concave curvature leads
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to a quasi-inviscid generation of longitudinal vortices. In the case of large bed slopes, flow
separation takes place and the recirculation zones are created on the lee side of obstacles.

Particle and topography: Submitted to gravity, solid particles transported by wind in the
saltation layer ultimately fall toward the ground and collide with particles on the surface
[Beladjine et al. (2007)]. After the collision, there are two possibilities: firstly, if the particle
impacting velocity is large enough, then it rebounds and continues its motion in the fluid
with a new velocity (called rebound process). At the same time, some particles on the ground
may be ejected due to the absorption of kinetic energy lost during the collision (called splash
entrainment) [Kok and Renno (2009)]; secondly, if the impacting velocity is too small to
achieve the rebound process, it may continue to slide or roll on the surface until deposition
occurs due to the friction effect (called deposition). The processes of rebounding, splashing
and deposition depend on both the characteristics of the impacting particle and the local
properties of the surface topography, such as the sizes and shapes of the particles on the
ground, and the arrangement structure of particles, etc.. Conversely, particle emission by
splash entrainment and deposition contributes to the modification of local topographical
structures.

1.2 Review of recent researches

In this section, we briefly review the recent researches on the wind erosion from three aspects:
research methods, research process and numerical approaches. In particular, we list several
numerical methods, which have been used for simulating wind erosion in recent years.

1.2.1 Research methods

The comprehensive understanding of the wind erosion physics has been progressing through
three different approaches: experimental observations, theoretical studies and numerical
studies.

Field measurements and wind-tunnel experiments: Field observations and wind-tunnel
experiments are two effective ways of wind erosion researches. These studies focused on the
the investigation of the fundamental physics, such as the estimation of the critical shear stress
[Bagnold (1941); White (1982)], the influence of roughness on turbulent flows [Nikuradse
(1933); Zingg (1953)], the statistics of particle entrainment or of particle-surface collision
[Beladjine et al. (2007); Kok and Renno (2009) ]. Recently, wind-tunnel experimental studies
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of a saltation process were conducted to investigate the characteristics of particle transport
in a boundary layer, such as the mean profile of particle concentration, the phenomena of
particle preferential concentration [Creyssels et al. (2009); Ho et al. (2014); Simoëns et al.
(2015)].

Theoretical studies: The dynamic model of wind erosion is complex. Theoretical investi-
gations were carried out step by step. Firstly, these mathematical formulations of the forces
acting on an individual particle were derived, and then the dynamic equation of wind-blown
particles was obtained Maxey and Riley (1983). Based on the balance of these forces, the
theoretical formulation of the threshold friction velocity was deduced and compared with
experimental measurements [Greeley and Iversen (1985); Shao and Lu (2000)]. Secondly,
using this mathematical modeling, the analytical trajectory of an individual particle in a
boundary layer with mean velocity profiles was theoretically figured out [Sørensen (1991)].
This provides us a theoretical basis for the understanding and investigation of wind erosion.
Thirdly, using the analytical saltation trajectory, the dynamics of saltation layers can be mod-
eled from the uniform state to the non-uniform state [Shao (2008)]. Based on the momentum
balance of the saltation layer, the relation of saturated saltation flux is obtained, namely,
qs ∼ (u∗−u∗,c)p, where u∗ and u∗,c are the wind and critical friction velocities, and p = 3 is
a scaling exponent [Bagnold (1941); Durán and Herrmann (2006); Owen (1964)].

Numerical simulations: Comprehensive numerical modeling of wind erosion attracts the
attention of researchers in recent years [Durán et al. (2012); Huang et al. (2018); Kok and
Renno (2009); Lopes et al. (2013)]. Compared with other approaches, numerical simulation
of wind erosion provides more information on turbulent flows and particle motions, which are
potentially useful in understanding the physics of wind erosion, even they are submitted to
the validity and limited by the used modeling. In this thesis, the atmospheric boundary layer
is resolved by large eddy simulation and the trajectories of solid particles are simulated by a
Lagrangian tracking approach [Huang (2015); Wu et al. (2017)]. Different models have been
introduced to take into account the interactions of the particles with the surface, especially
the aerodynamic entrainment, the rebound and the splash. Other numerical approaches and
modeling are described in detail in Subsection 1.2.3.

1.2.2 Research process

In the view of fluid dynamics, the research on wind erosion is gradually advanced through
four different processes as shown in Figure 1.3: i), studies of boundary layers on a rough wall
estimates the roughness effect on turbulent flows; ii), investigations of the particle transport
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in a boundary layer figure out the characteristics of particle entrainment, particle transport
and particle deposition; iii), researches of the particle transport over a fixed dune focus on
the influence of the presence of an obstacle (hill, building, tree . . . ) on the flow and on the
particle transport; iv), studies on particle transport over a deformable dune contributes greatly
to the physical understanding of wind erosion, thus of the moving morphology of the ground.

(a) Boundary layers on a rough wall. (b) Particle transport in a boundary layer.

(c) Particle transport over a fixed dune. (d) Particle transport over a deformable dune.

Figure 1.3 Research processes of wind erosion in view of fluid mechanism and solid particle
transport.

Boundary layers on a rough flat wall: Roughness elements constitute the most frequently
the ground from which occurs the atmospheric boundary layer. Raupach et al. (1980) firstly
proposed the notion of roughness sublayer, in which roughness elements have an obvious
influence on the flow structures. Based on many experimental and numerical results, Raupach
et al. (1991) and Jiménez (2004) supported the point that the near-wall flow structures are
strongly affected within the roughness sublayer whereas the outer flow structure is nearly
unaffected, when the Reynolds number is high and the ratio of roughness height to the
boundary layer thickness is small. Moreover, Oke (1988) defined three flow regimes: isolated
flow, waked flow and skimming flow, according to the density of roughness elements in the
wind tunnel experiments of Hussain and Lee (1980). Simoens et al. (2007) experimentally
reproduced these three flow regimes using different spacings of squared obstacles and
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analyzed the vortex structures created within the canyons. Recently, Huang et al. (2016)
proposed an improved law of the wall with accounting for the roughness effect in the three
flow regimes, based on a collected dataset. The roughness effects in a boundary layer are
detailedly introduced in Appendix A.

Particle transport in a boundary layer on a flat plate: Particle entrainment, particle
transport and particle deposition in a boundary layer are crucial in the fundamental studies of
wind erosion. Numerous wind tunnel and numerical experiments of a saltation layer have
been conducted to investigate the fundamental properties and physical mechanism of particle
entrainment, transport and deposition. Creyssels et al. (2009) performed the experiment of
saturated particle transport in a turbulent boundary layer, and analyzed the mean profiles
of particle concentration and velocity. Ho et al. (2014) showed based on the wind-tunnel
experiments that the distribution of saltation length and height obeys a log-normal law, which
is independent on the flow strength. Based on numerical results, Rouson and Eaton (2001)
and Picciotto et al. (2005) found that the spatial distribution of solid particles is related to the
instantaneous flow topology. Solid particles are preferentially concentrated in the regions
of low-speed streaks. Vinkovic et al. (2011) and Yu (2015) conducted the direct numerical
simulation (DNS) cases of particle transport in channel flows and showed that the detachment
of solid particles from the wall are usually surrounded by ejections. This result is confirmed
more recently for non spheric particles [Ouchene et al. (2018)]. In the review of Soldati and
Marchioli (2009), the physical mechanism of particle deposition is described. Particles fall
through the accumulation region and deposit on the surface either by the direct impaction or
by the indirect action of near-wall turbulent fluctuations.

Particle transport in a boundary layer over a fixed dune: The presence of obstacles
in a boundary layer may cause a flow separation and create large recirculation zones, in
which solid particles are trapped and deposited. Almeida et al. (1993) used Laser-Doppler
measurements to investigate the recirculating flow behind two-dimensional, polynomial-
shaped dunes. Cao and Tamura (2006) carried out the experiments of boundary layers over
a rough sinusoidal dune and found that the roughness effect enhances the flow separation
and extends the reattachment length, which agrees well with the experimental results of
Simoëns et al. (2015). However, the investigation of Kanda et al. (2013) showed the opposite
point that the upwind wall roughness can suppress the flow separation and lead to a smaller
recirculation zone behind a trapezoidal dune. Thus the wall roughness effect on the control
of flow separation behind an obstacle is unclear and still needs further investigations. In this
thesis, we don’t study the roughness effect on flow separation but focus on the behavior of
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particle transport around the moving and deformable dune and the corresponding recirculation
zone. In a priori study of Huang (2015), particles are entrained on the windward side of the
dune due to the increase of upwind friction velocity and are deposited on the lee side due to
the reversed flow velocity in the recirculation zone.

Particle transport in a boundary layer over a deformable dune: To our knowledge, only
a few studies on the particle transport over a moving or deformable dune have been carried out.
Most of researches focused on the understanding and modeling of dune dynamics without
accounting for the turbulence effect on particle transport [Charru et al. (2013); Lancaster
(2011); Wiggs (2001)]. As the wind speed increases up the windward slope of an individual
dune and decreases on the lee side, sandy dunes migrate by erosion on the windward side
and deposition on the lee side [Ernstsen et al. (2007)]. Durán et al. (2012) and Durán et al.
(2014) developed numerical models of particle transport from bed load to saltation and
carried out numerical simulations of the dynamic formation of sand ripples. Lopes et al.
(2013) conducted the numerical simulation of sand dune deformation using classic wind
erosion models and compared the simulated results with the wind-tunnel experimental data
of Ferreira and Fino (2012). However, these two simulation cases are two-dimensional and
use the Reynolds Average Numerical methods (RANS).

1.2.3 Numerical approaches

With the rapid development of computational fluid dynamics (CFD), numerical modeling
and simulation of wind erosion attracts our attentions and becomes an effective research
method to investigate the physical mechanics of particle transport in atmospheric boundary
layers. Table 1.1 summarizes numerical approaches for simulation and modeling of the
fluid phase and of solid particles at different scales. For the fluid phase, the atmospheric
boundary layer is simulated by either DNS, Large eddy simulation (LES) or RANS, which
is used either without any modeling, or with subgrid-scale modeling, or with turbulent
modeling, respectively. For solid particles, the motion of dispersed particles in the carried
flow is computed by Lagrangian particle tracking. Particle entrainment, particle collision
and deposition are simulated either by Discrete element method (DEM) or by probabilistic
models.

RANS + Flux-divergence model: This method has been usually applied for the simulation
of the development and migration of large sand dunes, and of the emergence and evolution of
sand ripples [Charru et al. (2013); Wippermann and Gross (1986)]. Generally, it is achieved
by three steps:
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Modeling
Grid

size ∆

ABL numerical sim-
ulation

Grid
size ∆

Numerical simulation of
solid particle motions

Micro-scale
modeling

∆ < η
Direct numerical
simulation (DNS)

∆ < dp
Direct Element method
(DEM)

Large-scale
modeling

∆ ≫ η

and
∆ ≪ L

Large eddy simula-
tion (LES) + subgrid-
scale modeling

∆ ≫ dp
and

∆ ≪ Ls

Integrated wind erosion
models (Particle entrain-
ment, collision and deposi-
tion models) + Lagrangian
particle tracking

Statistically
Averaged
modeling

∆ > L

Reynold averaged
numerical simulation
(RANS) + turbulent
modeling

∆ > Ls
Flux-divergence model
(saturated transport flux)

Table 1.1 Numerical approaches of wind erosion at different scales. η is the dissipation scale
and L is the integral length of atmospheric boundary layer. dp is the particle diameter and Ls
is the saturation length.

• Step 1: computation of the atmospheric boundary layer using RANS in order to obtain
the local friction velocity, which is responsible for the sand particle transport flux;

• Step 2: determination of the distribution of the particle transport flux qs using the
friction velocity u∗ obtained from RANS simulation in Step 1, according to an empiric
formula of saturated transport flux: qs ≈ f (u∗);

• Step 3: determination of the erosion and deposition rate by evaluating the divergence
of particle transport flux, and then evolution of sand dune form according to the
conservation of mass.

Wippermann and Gross (1986) attempted to apply the flux-divergence model to simulate
the migration of a barchan dune from a conical pile of sand using the simple saturated flux
formula of Lettau (1978). The original flux-divergence model involved the local saturated
assumption of particle transport, under which the local flux can be replaced by the saturated
one. Andreotti et al. (2002); Charru et al. (2013); Durán et al. (2012) carried out the systematic
analysis of particle transport in a boundary layer and concluded that the local transport flux is
equal to the saturated one for the equilibrium transport state, and is suggested to be a function
of the saturated length, the saturated time, the saturated flux for the non-equilibrium state.
Charru and Hinch (2006) proposed an improved flux-divergence model by adding the erosion
rate and deposition rate, which are related to the particle motions. Moreover, Sauermann
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et al. (2001) developed a continuum saltation model coupled with the flux-divergence model
for sand dunes migration with accounting for the aeolian transport of dispersed particles.

RANS + Integrated wind erosion models + Lagrangian particle tracking: Integrated
wind erosion models consist in particle entrainment model, particle-surface collision model
(rebound and splash models) and particle deposition model, which are established based on
the forces acting on an individual particle. With this method, numerical simulation of wind
erosion is conducted by three steps:

• Step 1: computation of the atmospheric boundary layer using RANS in order to supply
the flow information for particle entrainment, transport and deposition;

• Step 2: determination of particle entrainment or deposition according to the corre-
sponded criterion in integrated wind erosion models and calculation of aeolian particle
motion by Lagrangian particle tracking. In particular, the particle-surface collision
is simulated by a probabilistic rebound model and the particle ejection caused by the
rebound is simulated by the splash model;

• Step 3: determination of the erosion and deposition rate by counting the number
of entrained particles and deposited particles, and the evolution of sand dune form
according to the conservation of mass.

Different from the flux-divergence model, the integrated wind erosion models coupled with
Lagrangian particle tracking take into account the different behaviors of solid particles:
particle entrainment, particle transport, particle deposition and particle-surface interaction.
Hence, this modeling seems more physical, comprehensive and closer to the real situation.
Kok and Renno (2009) applied the law of the wall of boundary layers on the rough wall for
step 1 and proposed a comprehensive numerical model of steady state saltation. Lopes et al.
(2013) used this approach for the numerical simulation of wind erosion with accounting
for both saltation and creep, and investigated the development of a large sinusoidal sand
dune. However, in the work of Lopes et al. (2013), the RANS simulation of boundary layers
is two-dimensional and the integrated wind erosion models are derived from the saturated
particle transport flux. Thus the local wind erosion is totally equivalent to an analytical
function of the friction velocity, which is similar to that in the flux-divergence model. This
severely reduces the accuracy of the wind erosion rate calculation for the unsaturated state
of particle transport. Further, the saturated particle transport flux is unknown for complex
terrains, e.g., it is hard to reach a good approximation of the flux using this model for several
successive dunes of different forms.
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LES + Integrated wind erosion models + Lagrangian particle tracking: This method
is almost the same as the previous one, except that LES is used for the calculation of the
boundary layer for step 1. Compared with RANS, LES provides more informations of
turbulent fluctuations, which are related to particle entrainment, transport and deposition.
To account for the effect of solid particles on turbulent flows, two-way coupling is used by
introducing an additional drag force in the fluid momentum equations. To account for the
influence of turbulence at small scales on particle motion, a stochastic model is established
by introducing the small-scale Lagrangian velocity fluctuation into the particle transport
equation [Vinkovic (2005)]. Shao (2008) used this method to investigate the saltation in a
boundary layer and found that the splash entrainment is important in the process of saltation.
By using the immersed boundary method to handle the bed topography deformation, Nabi
et al. (2012) successfully applied this method to simulate the dynamic process of underwater
ripple and dune formation. Based on this wind erosion modeling, Dupont et al. (2013)
conducted the numerical simulation of time-dependent saltation over a flat plate surface and
focused on the investigation of saltation intermittency. Recently, Huang et al. (2018) carried
out the numerical simulation of saltation over several successive fixed hills with different hill
spacings covering three basic cases of skimming, wake or isolated flow regimes proposed
by Oke (1988) and conducted the parametric studies of the presence of obstacles on the
characteristics of particle transport.

RANS + DEM: DEM is used for the direct numerical simulation of particle motions,
including particle entrainment, transport, deposition and particle-surface collision. A two-
way coupling is applied to take into account the influence of solid particles on the turbulent
flow. Durán et al. (2012) and Durán et al. (2014) used this two-phase numerical approach
based on DEM for particles coupled with RANS for boundary layers and conducted the
numerical investigation of saltation and of the aeolian ripple dynamics. However, these
simulations are two-dimensional. The computational cost of a three-dimensional simulation
of particle motions using DEM is extremely expensive.

DNS + Lagrangian particle tracking: The turbulent flow is simulated by DNS and solid
particles are tracked by a Lagrangian approach. This method is usually used for the investiga-
tion of particle distribution in a turbulent flow, for example, the preferential concentration of
particles in isotropic turbulence [Squires and Eaton (1991)] or in channel flows [Fessler et al.
(1994)]. Moreover, Vinkovic et al. (2011) and Yu (2015) used this method to study particle
transport in channel flows and showed that the detachment of solid particles from the wall
are usually surrounded by ejections. However, the employment of DNS in the simulation
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of boundary layers is extremely computationally expensive, especially with high Reynolds
number and with moving boundaries.

1.3 Objective, method and outline

As described in Section 1.1, wind erosion is a complex dynamic process and the physics
behind it has not yet been in-depth studied. As reviewed in Section 1.2, numerical models
have been developed for comprehensively simulating the dynamics of wind erosion. However,
most of numerical simulations focus on investigation of saltation dynamics over a rough wall
without obstacles or with immobile obstacles, and these simulations of sand ripple formation
or dune migration are either inaccurate using traditional saturated flux-divergence models, or
two-dimensional or underwater using more comprehensive wind erosion models. Hence, it
inspires us to conduct a three-dimensional numerical simulation of wind erosion using an
integrated wind erosion model coupled with LES.

1.3.1 Objective

The main goal of this thesis is to understand the physics of wind erosion by conducting
numerical simulation of a turbulent boundary layer over a deformable sand dune. Concretely,
the objectives are to:

• Develop a numerical method for wind simulation with moving boundaries: large eddy
simulation coupled with immersed boundary method (LES-IBM) is developed and
validated in this thesis. This numerical solver has the ability of simulating boundary
layers at high Reynold number and over moving boundaries.

• Develop physical models of wind erosion: a comprehensive wind erosion model is
proposed to simulate the processes of particle entrainment, transport, deposition and
particle/surface interaction (rebound and splash);

• Conduct numerical simulations of wind erosion and understand the physics of wind
erosion by analyzing the simulated results.

This work is an extension of the thesis of Huang (2015) for a fixed dune (as shown in
Figure 1.3(c)) to a deformable dune (as shown in Figure 1.3(d)). In this thesis, both the
implementation of the IBM into the ARPS code and physical modeling of wind erosion with
accounting for the interaction between solid particles and the moving surface are original.
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1.3.2 Numerical method

For the fluid phase, LES is used for the simulation of boundary layers and the immersed
boundary method is applied to treat moving boundaries. Compared with RANS, LES
allows the computation of the instantaneous evolution of large-scale turbulent structures
able to produce sweeping events responsible for aerodynamic entrainment of solid particles.
Compared with DNS, LES takes less computational cost.

For solid particles, the Lagrangian particle tracking approach coupled with integrated
wind erosion models is adopted for the simulation of particle motions. Concretely, the
Lagrangian particle tracking method is used to calculate the particle trajectory. The integrated
wind erosion models are applied to simulate the processes of particle entrainment, deposition
and particle-surface interaction (rebound and splash). This approach saves computing
resource compared with DEM, and accounts for particle motions and does not depend on the
saturated assumption compared with the flux-divergence model.

In this thesis, numerical simulation of wind erosion is achieved using the Advanced
Regional Prediction System (ARPS) code, which is originally developed by the Center for
Analysis and Prediction of Storms (CAPS) at the university of Oklahoma. Through the
efforts of our teams for many years, ARPS has been developed into a numerical solver
that can simulate the transport of solid particles in boundary layers. Vinkovic et al. (2006)
developed a Lagrangian stochastic model and implemented it in ARPS for the study of the
dispersion of solid particles in a turbulent boundary layer. Dupont et al. (2013) used ARPS
for the investigation of saltation dynamics over a flat surface. Huang (2015) implemented the
particle entrainment and rebound model in ARPS for the study of particle transport over one
or several Gaussian hills. Thanks to the work of S. Dupont at INRA (Institut National de la
Recherche Agronomique), Bordeaux, the MPI (Message Passing Interface) parallelization of
ARPS code has been completely accomplished, notably for the module of the calculation of
solid particle motion. The work of this thesis is also part of the continuous development of
this numerical tool.

1.3.3 Outline

This manuscript is organized as follows:

• In Chapter 2, the theoretical and numerical formulations of the LES code (ARPS with
the additional development of Vinkovic (2005) and Huang (2015)) are described.

• In Chapter 3, the implementation of immersed boundary method in ARPS is introduced
and the validation of this new numerical solver is presented.
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• In Chapter 4, physical modeling of wind erosion related to particle entrainment,
transport, deposition and particle-surface interaction is described.

• In Chapter 5, numerical simulation of sand dune deformation is conducted and the
analysis of results is given.

• In Chapter 6, the final conclusion is given.





Chapter 2

Governing equations and numerical
method

The objective of this thesis is to investigate the natural phenomena of wind erosion through
numerical approaches. The turbulent boundary layer flow is simulated by large eddy sim-
ulation (LES) using the Advanced Regional Prediction System (ARPS) code, primarily
developed by the Center for Analysis and Prediction of Storms (CAPS) at the university
of Oklahoma. This numerical model resolves the compressible Navier-Stokes equations
in a generalized terrain-following coordinate system, which describes a non-hydrostatic
atmospheric turbulent flow.

In the context of this thesis, we only focus in this chapter on the theoretical and numerical
description of the dynamic equations used in ARPS. In Section 2.1, the governing equations
of atmospheric flows are deduced from the general compressible Navier-Stokes equations
using the Boussinesq approximation; In Section 2.2, LES is described, including the filtered
governing equations, subgrid-scale modeling and near-wall treatment; In Section 2.3, nu-
merical details such as the discretization, the parallelization and the vertical grid stretching,
are introduced; In Section 2.4, the initialization, different boundary conditions and wall
modeling, are briefly presented.

2.1 Governing equations

The mechanical problem can be described in different scales: the quantum mechanics is used
to study the microscopic scale (molecular scale), the motion of a rigid structure or body is
figured out in macroscopic scale, and the fluid mechanics is a description in a scale, which
is larger than the molecular scale and smaller than the macroscopic scale. The basic theory
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of the fluid mechanics can be classified into the category of continuum mechanics, which
regards the material as a continuum phase and then deals with the mechanic behaviors and
the kinetic motion.

According to the basic concepts of continuum mechanics, the governing equations of
the continuum phase are derived from the conservation laws: conservation of mass resulting
in the continuity equation, conservation of linear momentum in the momentum equation,
conservation of angular momentum in the symmetry property of Cauchy stress tensor, and
the first thermodynamic law in the energy equation.

In this section, the general Navier-Stokes equations are introduced and an abridgment
is derived after using the Boussinesq approximation. These simplified governing equations
enable us to only focus on the temporal evolution of density, pressure, temperature variations,
due to the fact that the real density, pressure and temperature are close to the hydrostatic
state.

2.1.1 Navier-Stokes equations

Considering a fluid particle in a Cartesian coordinate system, according to the conservation
of mass, momentum and energy from the basic theory of continuum mechanics and the
thermodynamic properties of the fluid phase, the general Navier-Stokes equations are given
by:

Conservation of mass:
∂ρ

∂ t
+

∂ (ρui)

∂xi
= 0, (2.1a)

Conservation of linear momentum: ρ
∂ui

∂ t
+ρu j

∂ui

∂x j
=

∂σ ji

∂x j
+ρ fi, (2.1b)

Conservation of angular momentum: σi j = σ ji, (2.1c)

Conservation of energy: ρ
∂e
∂ t

+ρu j
∂e
∂x j

= si jσ ji +
∂q j

∂x j
+ρr, (2.1d)

Equation of state for a perfect gas: p = ρRT , (2.1e)

where ρ is the fluid density, xi the fluid position, ui the fluid velocity in i−th direction, σi j the
Cauchy stress tensor, fi the body force, e the internal energy, si j = (∂ui/∂x j +∂u j/∂xi)/2
the strain tensor, qi the heat flux, r the heat radiation, R the gas constant and T the temperature,
respectively. For an atmospheric flow, the body force contains the gravity due to the attraction
of the earth, and the Coriolis force due to the rotation of the earth, i.e., fi =−gδi3−2εi jkΩ juk,
where g is the gravitational acceleration and Ωk is the angular velocity. Here, δi j denotes the
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Kronecker delta tensor and εi jk is the Levi-Civita symbol. Equations (2.1) are not closed and
σi j, qi and r have to be modeled.

Generally, the Cauchy stress tensor is split up into two terms:

σi j =−pδi j + τi j, (2.2)

where p is the hydrostatic pressure, and τi j the deviatoric stress tensor, respectively. Stokes
proposed a linear constructive law for the deviatoric stress tensor τi j, based on three as-
sumptions: i), τi j is a linear function of the strain rate tensor si j or equivalently the velocity
gradient; ii), the fluid is isotropic; iii), for a fluid at rest, ∂τ ji/∂x j must be zero. The formula
proposed for a Newtonian fluid is given by:

τi j = µ

(
∂ui

∂x j
+

∂u j

∂xi

)
+λ

∂uk

∂xk
δi j = 2µsi j +λ skkδi j, (2.3)

where µ is the first coefficient of viscosity or shear viscosity, and λ is second coefficient

of viscosity or volume viscosity. Commonly, we take λ = −2
3

µ . As a consequence, the
momentum conservation equation (Equation (2.1b)) is rewritten as:

∂ui

∂ t
+u j

∂ui

∂x j
=− 1

ρ

∂

∂xi

(
p+

2
3

µskk

)
+

1
ρ

∂

∂x j

(
2µs ji

)
−gδi3 −2εi jkΩ juk. (2.4)

Since e = h− p/ρ where h is the enthalpy of the fluid, an alternative form of the energy
equation (Equation (2.1d)) is obtained as:

ρ
∂h
∂ t

+ρu j
∂h
∂x j

= ρ
D
Dt

(
p
ρ

)
+ si jσ ji +

∂q j

∂x j
+ρr, (2.5)

where D ·/Dt denotes the material derivative, i.e., D ·/Dt = ∂ ·/∂ t +u j∂ ·/∂x j, and r is the
thermal radiation. Note that the material derivative is a Lagrangian derivative following the
motion of the fluid particle.

For the ideal gas, the enthalpy and the heat flux can be expressed as a function of the
temperature, i.e., h = cpT , qi = λT ∂T/∂xi, where cp is the specific heat at constant pressure,
λT the thermal diffusivity, and T the temperature, respectively. Substituting the law of
Cauchy strain tensor (Equations (2.2) and (2.3)) into Equation (2.5), we have in the adiabatic
case (r = 0) by introducing the continuity equation (Equation (2.1a)):

∂T
∂ t

+u j
∂T
∂x j

=
1

cpρ

(
Dp
Dt

+2µ(si js ji −
1
3

siiskk)+
∂

∂x j

(
λT

∂T
∂x j

))
. (2.6)
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Defining the potential temperature Θ = T (p0/p)(γ−1)/γ with the coefficient γ = cp/(cp −R)

and p0 the reference level pressure, we obtain
1
Θ

DΘ

Dt
=

1
T

DT
Dt

− γ −1
γ

1
p

Dp
Dt

by taking the

material derivative. Due to the state equation (Equation (2.1e)), we have
γ −1

γ

1
p
=

1
cpρT

.

Therefore, Equation (2.6) can be rewritten as:

∂Θ

∂ t
+u j

∂Θ

∂x j
=

Θ

cpρT

(
2µ(si js ji −

1
3

siiskk)+
∂

∂x j

(
λT

∂T
∂x j

))
. (2.7)

For the subsonic or non-strongly heated flow, we can neglect the viscous dissipation,
Equation (2.7) can be approximated by defining the molecular conductivity κT = λT/(ρcp):

∂Θ

∂ t
+u j

∂Θ

∂x j
= κT

Θ

T
∂ 2T

∂x j∂x j
. (2.8)

Note that the Prandtl number is defined as the ratio of momentum diffusivity to thermal
diffusivity, i.e., Pr = ν/κT where the molecular viscosity is defined by ν = µ/ρ . In fact, Pr
is a dimensionless number, which indicates the relative significance of the thermal conduction
to the fluid convection. The hydrodynamic convection dominates if Pr ≫ 1 whereas the
thermal conduction is dominant if Pr ≪ 1. Generally, the Prandtl number takes a constant
value for a fluid at a certain state. For example, Pr ≈ 0.7 in the air at the ambient temperature,
which means that the heat diffusion speed is nearly equal to the fluid momentum diffusion’s.

2.1.2 Boussinesq approximation

Assuming that the thermodynamic physical variables are considered as a combination of a
time-invariant base state and a deviation, thus a decomposition can be written as:

p(xi, t) = pr(xi)+∆p(xi, t), (2.9a)

ρ(xi, t) = ρr(xi)+∆ρ(xi, t), (2.9b)

Θ(xi, t) = Θr(xi)+∆Θ(xi, t), (2.9c)

where pr, ρr, Θr denote the fluid pressure, the density, the potential temperature of the
base state, and ∆p, ∆ρ , ∆Θ the corresponding variations, respectively. The Boussinesq
approximation assumes that the ratio of variations to base states is small, i.e., ∆p ≪ pr,
∆ρ ≪ ρr and ∆Θ ≪ Θr.

The base state is governed by three equations: i), the hydrostatic equation; ii), the state
equation; iii), an equation specifying the atmosphere condition. Firstly, the base state should
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satisfy a hydrostatic equilibrium equation:

1
ρr

∂ pr

∂xi
=−gδi3. (2.10)

It indicates that the base state is horizontally homogeneous. Secondly, it should also satisfy
the equation of state for the base state (Equation (2.1e) for the perfect gas), i.e., pr = ρrRTr

where the base state temperature is given by Tr = Θr (p0/pr)
(1−γ)/γ . Thirdly, the atmospheric

condition should be specified, such as, an isentropic atmosphere, an isothermal atmosphere,
an atmosphere with constant static stability, etc..

When the base state is specified, the Navier-Stokes equations are transformed and sim-
plified. In the momentum equation (Equation (2.1b)), the term of pressure gradient force
becomes by taking the linear approximation:

1
ρ

∂ p
∂xi

=
1

ρr +∆ρ

(
∂ pr

∂xi
+

∂ (∆p)
∂xi

)
=

(
1
ρr

− ∆ρ

ρ2
r
+O((∆ρ)2)

)(
∂ pr

∂xi
+

∂ (∆p)
∂xi

)
=

(
1− ∆ρ

ρr

)
1
ρr

∂ pr

∂xi
+

1
ρr

∂ (∆p)
∂xi

+O(∆ρ).
(2.11)

Then following the definition of the potential temperature Θ = T (p0/p)(γ−1)/γ , Equation
(2.1e) can be rewritten as:

ρ = p(γ−1)/γ

0
p1/γ

RΘ
= pR/cp

0
p(1−R/cp)

RΘ
, (2.12)

which yields an approximation of the ratio of the density variation to the base state after the
linearization:

∆ρ

ρr
=

ρ

ρr
−1 =

(1+∆p/ρr)
(1−R/cp)

1+∆Θ/Θr
−1 = (1−R/Cp)

∆p
pr

− ∆Θ

Θr
+O(∆p,∆ρ)

=
∆p

ρrγRTr
− ∆Θ

Θr
+O(∆p,∆ρ) =

∆p
ρrc2

s
− ∆Θ

Θr
+O(∆p,∆ρ),

(2.13)

with the acoustic wave speed defined as cs =
√

γRTr. Applying Equation (2.9), substituting
Equation (2.11) into Equation (2.4) and then using Equation (2.13), a simplified form of
momentum equation is obtained after the linear approximation:

∂ui

∂ t
+u j

∂ui

∂x j
=− 1

ρr

∂

∂xi

(
∆p+

2
3

µskk

)
+

1
ρr

∂

∂x j

(
2µs ji

)
−gδi3

(
∆p

ρrc2
s
− ∆Θ

Θr

)
−2εi jkΩ juk.

(2.14)
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Taking the material derivative of Equation (2.12) and then replacing the material derivative
of density ρ−1Dρ/Dt by the divergence of fluid velocity ∂u j/∂x j using the continuity
equation (Equation (2.1a)), it becomes:

1
γ p

Dp
Dt

=
1
Θ

DΘ

Dt
− ∂u j

∂x j
. (2.15)

Using the decomposition of a variable into a base state and a derivation (Equation (2.9)), the
material derivative of pressure can be simplified as:

1
γ p

Dp
Dt

=
1

γ(pr +∆p)

(
Dpr

Dt
+

D(∆p)
Dt

)
=

1
γ pr

(
Dpr

Dt
+

D(∆p)
Dt

)
+O(∆p)

=
1

ρrc2
s

(
∂ (∆p)

∂ t
+u j

∂ (∆p)
∂x j

+u j
∂ pr

∂x j

)
+O(∆p).

(2.16)

Substituting Equation (2.16) into Equation (2.15) and then using Equation(2.10), the
dynamic equation of pressure variation is obtained:

∂ (∆p)
∂ t

+u j
∂ (∆p)

∂x j
= ρrgu jδ j3 −ρrc2

s
∂u j

∂x j
+ρrc2

s
1
Θ

DΘ

Dt
. (2.17)

The divergence terms are usually the dominant terms for most meteological applications. The
diabatic term is usually small, and is therefore neglected, then Equation (2.17) becomes:

∂ (∆p)
∂ t

+u j
∂ (∆p)

∂x j
= ρrgu jδ j3 −ρrc2

s
∂u j

∂x j
. (2.18)

To our knowledge, the pressure variations are of the order of M2 (M the Mach number),
that is ∆p/pr ∼ M2. At low Mach number (M < 0.3), after the Boussinesq approximation,
the hydrostatic pressure is dominant, and the relative pressures from the base state are of
lower order of ∆ρ/ρr, i.e., ∆p/pr ≪ ∆ρ/ρr [Lesieur (1987)]. In this case, the approximation
states:

∆Θ

Θr
≈ ∆T

Tr
≈−∆ρ

ρr
. (2.19)

Since Θ0 = T0 from the definition Θ = T (p0/p)(γ−1)/γ , we can take the approximation
∆T = ∆Θ at the lowest order. Neglecting the diffusion term of the base state temperature

∂ 2Tr

∂xk∂xk
and taking the lowest approximation

Θ

T
∂ 2(∆T )
∂xk∂xk

≈ ∂ 2(∆Θ)

∂xk∂xk
, the deviation of potential
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temperature satisfies from Equation (2.8):

∂ (∆Θ)

∂ t
+u j

∂ (∆Θ)

∂x j
=−u j

∂Θr

∂x j
+κT

∂ 2(∆Θ)

∂x j∂x j
. (2.20)

In conclusion, combining Equations (2.14), (2.18), and (2.20), the governing equations
after using the Boussinesq approximation are obtained:

∂ (∆p)
∂ t

+u j
∂ (∆p)

∂x j
= ρrgu jδ j3 −ρrc2

s
∂u j

∂x j
, (2.21a)

∂ui

∂ t
+u j

∂ui

∂x j
=− 1

ρr

∂

∂xi

(
∆p+

2
3

µskk

)
+

1
ρ

∂

∂x j

(
2µs ji

)
−gδi3

(
∆p

ρrc2
s
− ∆Θ

Θr

)
−2εi jkΩ juk,

(2.21b)

∂ (∆Θ)

∂ t
+u j

∂ (∆Θ)

∂x j
=−u j

∂Θr

∂x j
+κT

∂ 2(∆Θ)

∂x j∂x j
. (2.21c)

We remark that Boussinesq approximation replaces the real pressure, density, temperature by
their corresponding variations through using the hydrostatic equation, and then reduces the
number of governing equations from six to five. This is helpful to save the computational
resources and to improve the computational efficiency.

2.2 Large eddy simulation

Large eddy simulation (LES) is becoming an attractive practical numerical approach in the
community of computational fluid dynamics (CFD). The basic concept of LES is that the
large scales of the fluid velocity are directly resolved by the numerical method, while the
small scales are modeled by subgrid-scale (SGS) models. Hence, LES takes less computing
cost than the direct simulation (DNS) and captures more information on the large scale
structures than the Reynolds average numerical simulation (RANS).

Similar to the RANS closure for the Reynolds stress, SGS modeling is required for the
closure of the subgrid stress in LES. In isotropic turbulence, it is acceptable for most of
the researchers that the small scales probably obey to the universal law, e.g., −5/3 scaling
law of energy spectrum in the inertial range in isotropic turbulence, whereas the large
scales are dependent on the flow characteristics. Therefore, SGS models seem universal and
independent on the flow complexity.

When LES is used for the simulation of turbulent boundary flows, near-wall resolution is
important for the accuracy of simulated results. Commonly, LES methods are categorized
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into two approaches by whether taking into account the near-wall resolution or not: LES
with near-wall resolution (LES-NWR) and LES with near-wall modeling (LES-NWM). In
practice, LES-NWM is more useful in the simulation of complex flows, since it does not
require the high resolution in the near-wall region. When LES-NWM is applied in numerical
simulations, a wall model is usually used to specify the near-wall stresses.

In this section, we firstly deduce the filtered governing equations of LES, and then intro-
duce the subgrid-scale modeling and the near-wall treatment for LES-NWM. In particular,
we detail the SGS models, i.e., Smagorinsky’s model and the model based on the subgrid
kinetic energy, which are implanted in ARPS.

2.2.1 Filtered formulation

Since we have ∆ρ/ρr ≪ 1 from the Boussinesq approximation, taking the approximation at
the lowest order, the continuity equation (Equation (2.1a)) reduces to:

∂ui

∂xi
= sii = 0. (2.22)

It implies that the incompressibility assumption can be obtained when the Boussinesq
approximation is applied.

Considering a filter G̃(xi,∆) with the filtered scale ∆, the filtered part of an arbitrary
function f (xi, t) is defined as:

f̃ (xi, t) =
ˆ

R
G̃(xi −ξi,∆) f (ξi, t)dξi, (2.23)

with R denoting the control volume. Thus, a physical variable can be decomposed into the
large-scale part and the small-scale one. For example, the decomposition of the fluid velocity
is given by:

ui = ũi +u′′i , (2.24)

where ũi is the filtered velocity, and u′′i is the fluctuated velocity of scales smaller than the
filtered scale ∆.

Using the incompressibility assumption (Equation (2.22)) and applying the filter on the
simplified governing equations (Equations (2.21)), the filtered formulation are obtained as:

∂ (∆ p̃)
∂ t

+ ũ j
∂ (∆p̃)

∂x j
= ρrgũ jδ j3 −ρrc2

s
∂ ũ j

∂x j
, (2.25a)
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∂ ũi

∂ t
+ ũ j

∂ ũi

∂x j
=− 1

ρr

∂ (∆ p̃)
∂xi

+
1
ρr

∂

∂x j

(
2µ s̃ ji

)
+

∂ σ̃ ji

∂x j

−gδi3

(
∆p̃

ρrc2
s
− ∆Θ̃

Θr

)
−2εi jkΩ jũk,

(2.25b)

∂ (∆Θ̃)

∂ t
+ ũ j

∂ (∆Θ̃)

∂x j
=−ũ j

∂Θr

∂x j
+κT

∂ 2(∆Θ̃)

∂x j∂x j
+

∂ q̃ jΘ

∂x j
, (2.25c)

in which σ̃i j is the subgrid tensor and q̃ jΘ the subgrid flux. They are given by:

σ̃i j = ũiũ j − ũiu j, (2.26a)

q̃ jΘ = (∆Θ̃)ũ j − ˜(∆Θ)u j. (2.26b)

It should be noted that Equations (2.25) are not closed since the subgrid terms σ̃i j and q̃ jΘ

are unknown. Commonly, σ̃i j and q̃ jΘ are modeled by a SGS model, which are introduced in
detail in Subsection 2.2.2.

2.2.2 Subgrid-scale modeling

According to the energy cascade theory in turbulence, the energetic action of the subgrid
scales on the resolved scales is assumed and the mechanism of energy transfer from the
resolved scales to subgrid scales is supposed to be similar to the mechanism of energy
dissipation from the subgrid scales to the molecular scales, Hence, the eddy-viscosity
assumption reads:

τ̃i j = σ̃i j −
1
3

σ̃kkδi j = 2νsgs

(
s̃i j −

1
3

s̃kkδi j

)
, (2.27)

where νsgs is the subgrid viscosity, τ̃i j is the deviatoric part of σ̃i j and s̃i j the filtered strain
tensor. Equation (2.27) takes the linear relation between the subgrid tensor σ̃i j and the
filtered strain tensor s̃i j with a modeled coefficient νsgs. According to the local equilibrium
hypothesis, an equilibrium state of the energy transfer from larger scales and the dissipation
to smaller scales is achieved. In the spectral view, this means that there is no energy
accumulation in the inertial range, and that the energy spectrum in high wave-numbers keeps
time invariant. This enables us to express νsgs by the local resolved scales or subgrid scales,
rather than by the statistically average physical properties.

In the following, we introduce in detail Smagorinsky’s model and the model based on the
subgrid-scale kinetic energy, which are implanted in ARPS.



26 Governing equations and numerical method

Smagorinsky’s model: This model is based on the mixed-length hypothesis [Smagorinsky
(1963)]. It is widely used in numerical simulations of research and industrial domain, due to
its simple form and simplicity to be implanted. Based on the mixed-length hypothesis, an
eddy viscosity is given by:

νsgs = l2
S S̃ = (CS∆)2S̃, (2.28)

where S̃ =
√

2s̃i j s̃ ji is the characteristic filtered rate of strain, lS the Smagorinsky length
and CS the smagorinsky coefficient, respectively. In incompressible isotropic turbulence,
it is assumed that the size of filtered scale ∆ is located in the equilibrium inertial range,
where the energy spectrum satisfies the −5/3 scaling law, i.e., Ê(k̂, t) ∼ ε̃2/3k̂−5/3 where
k̂ is the wavenumber and ε̃ denotes the dissipation rate of filtered motions. In the limit of
infinite Reynold number, the inertial range is theoretically supposed to be infinite and the
energy spectrum reads Ê(k̂, t) = CK ε̃2/3k̂−5/3 where CK is the Kolmogorov constant, it is
then obtained:

⟨2s̃i j s̃ ji⟩=
ˆ

π/∆

0
2k̂2Ê(k̂, t)dk̂ =

ˆ
π/∆

0
2CK ε̃

2/3k̂1/3dk̂ =
3
2

π
4/3CK ε̃

2/3
∆
−4/3. (2.29)

Setting the ensemble averaged subgrid-scale kinetic energy dissipation identical to ε̃ , that is,
ε̃ = ⟨τ̃i j s̃ ji⟩, then eliminating τ̃i j using Equations (2.27) and (2.28), an approximated formula
of ε̃ is obtained:

ε̃ ≈ ⟨(CS∆)2√2s̃i j s̃ ji⟩⟨2s̃i j s̃ ji⟩ ≈ (CS∆)2⟨2s̃i j s̃ ji⟩3/2. (2.30)

Substituting Equation (2.29) into Equation (2.30) results in:

CS ≈
1
π

(
2

3CK

)3/4

. (2.31)

Theoretically, CK = 1.4 yields CS = 0.18. In practice, CS is usually between 0.10 and 0.20:
0.10 [Deardorff (1970)], 0.15 [Pope and Pope (2000)], 0.17 [Berselli et al. (2005)], 0.20
[Clark et al. (1979)]. Most researchers actually prefer CS = 0.10, which is consistent with
the experimental value CS ∈ [0.10,0.12] [Meneveau (1994); O’Neil and Meneveau (1997)].
In fact, the Smagorinsky model gives a good performance in the simulation of isotropic
turbulence [Clark et al. (1979)]. But it fails to simulate the quasi two-dimensional flow or to
capture the coherent structures near the wall in the simulations of boundary layers due its too
dissipative property.

Some drawbacks of Smagorinsky’s model are summarized as follows:



2.2 Large eddy simulation 27

• It is a time-irreversible model, which may result in the failure of capturing the energy
backscatter phenomena for complex turbulence simulation;

• Against the limiting consistency, νsgs does not vanish when the flow is transited into a
laminar regime;

• It is not a universal model. The Smagorinsky coefficient CS is not a single constant
for different turbulent flows. For example. CS ∼ (z+)3 in the near-wall region rather
than a limited value, where z+ is the normal distance from the wall normalized by the
viscous lengthscale, hence, the Smagorinsky model is too dissipative for the resolution
of near-wall dynamics .

Actually, in the simulations of complex flows, many corrections have been proposed to
improve the Smagorinsky’s model, i.e., Moin and Kim (1982) proposed a damping function
to correct the Smagorinsky coefficient CS, Germano et al. (1991) developed an approach to
dynamically adjust CS.

Model based on the subgrid-scale kinetic energy transport equation: By introducing
the subgrid-scale information, Deardorff (1980) proposed a SGS model where the eddy
viscosity is related to the subgrid-scale kinetic energy:

νsgs =CM∆
√

ksgs, (2.32)

where CM is the modeled coefficient, and ksgs = ũ′′i u′′i /2 is the subgrid-scale kinetic energy.
Here, u′′i denotes the subgrid-scale fluctuation, i.e., u′′i = ui − ũi from Equation (2.24). In
general, ksgs is governed by the modeled subgrid-scale kinetic energy transport equation:

∂ksgs

∂ t
+ ũ j

∂ksgs

∂x j
=−τ̃i j s̃ ji −C1

ksgs
√

ksgs

∆
+C2

∂

∂x j

(
∆
√

ksgs)
∂ksgs

∂x j

)
+ν

∂ 2ksgs

∂x j∂x j
(2.33)

with C1 = 1.0 and C2 = 0.1 proposed by Yoshizawa (1982), Yoshizawa and Horiuti (1985) and
Horiuti (1985). In practical simulation, to take into account the near-wall effect, Deardorff
(1980) and Moeng (1984) proposed C1 = 3.9 at the first grid near the wall, and C1 = 0.93
at the others. In Equation (2.33), the different terms are respectively the temporal evolution
term, the convection by the resolved modes, production by the resolved modes, turbulent
dissipation, and viscous dissipation.

In isotropic turbulence of high Reynold numbers, assuming the equilibrium energy
spectrum Ê(k̂, t) =CK ε̃2/3k̂−5/3 and ∆ in the inertial range, the subgrid-scale kinetic energy
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is given by:

ksgs =

ˆ
∞

π/∆

Ê(k̂, t)dk̂ =
ˆ

∞

π/∆

CK ε̃
2/3k̂−5/3dk̂ =

3
2

π
−2/3CKε

2/3
∆

2/3. (2.34)

Substituting Equation (2.34) into Equation (2.32), and then compared with the basic SGS

model νsgs =
A

CKπ4/3 ε
1/3

∆
4/3 deduced from dimensional analysis, the coefficient CM is

resolved as:

CM =
A
π

(
2

3C3
K

)1/2

. (2.35)

Aupoix and Cousteix (1982) found A= 0.438 using the two-fluid model (TFM) and A= 0.441
using the eddy-damping quasi-normal model (EDQNM). Theoretically, CK = 1.4 leads to
CM ≈ 0.069. In practice, Moeng and Wyngaard (1989) proposed CM = 0.1 for the closure.

Similarly, the subgrid flux q̃ jΘ in Equation (2.25c) can be modeled based on the eddy-
diffusivity assumption:

q̃ jΘ = κsgs
∂ Θ̃

∂x j
(2.36)

where κsgs is the subgrid diffusivity. Equation (2.36) uses a linear relation between the
subgrid flux and the filtered heat flux with a modeled coefficient κsgs. Generally, the subgrid
diffusivity κsgs is related to the subgrid viscosity by:

κsgs =
νsgs

Prsgs
, (2.37)

where Prsgs is the modeled turbulent Prandtl number. In ARPS, Prsgs is evaluated by
[Deardorff (1980)]:

Prsgs =

(
1+1.52

√
ksgs

∆

∣∣∣∣ g
Θr

∂Θr

∂ z

∣∣∣∣1/2
)−1

, (2.38)

where ksgs is the subgrid-scale kinetic energy evaluated by Equation (2.33), g is the gravity
and Θr the potential temperature of base state.

When an anisotropic filter is used, Deardorff (1970) proposed in the Cartesian case:

∆ = (∆x1∆x2∆x3)
1/3 (2.39)

where ∆xi is the filter cutoff length in the i−th direction. In ARPS, the filtered size is different
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in horizontal and vertical direction, which yields:

∆ =


√

∆x∆y, in the horizontal directions;

∆z, in the vertical direction,
(2.40)

where ∆x and ∆y are the filter cutoff length in horizontal directions, and ∆z is the filter cutoff
length in the vertical direction.

2.2.3 Near-wall treatment

In recent years, many researches found coherent structures in boundary layer flows, specially,
organized large scale structures – streaks formed by the fast fluid action (ejections) and the
slow fluid effect (sweeps). In the view of kinetic energy dynamics, it is found that sweeps
are related to the backward energy cascade) and ejections to the forward energy cascade.
Therefore, the near-wall resolution is important in the simulation of turbulent boundary layer
flows.

According to whether the flow field in the viscous wall layer is resolved or not, LES
is classified into two categories: LES-NWR called large-eddy simulation with near-wall
resolution, and LES-NWM called large-eddy simulation with near-wall modeling. When
LES-NWM is used, special treatments are required in order to capture the structures in
the near-wall region. Supposing ∆zmin the grid spacing near the wall and u∗ the friction
velocity, the dimensionless value ∆z+min = u∗∆zmin/ν is used as the quantitative indicator for
this classification.

Near-wall dynamics resolving (∆z+min < 2): If we want to investigate the kinetic energy
mechanism, the fluid field in the near wall region should be resolved. In numerical simulation,
a sufficiently fine grid should be used, i.e., the first grid point should be imposed deeply in
the viscous sublayer ∆z+min < 1 and the non-slip boundary condition is imposed on the solid
wall. Numerical tests indicates that ∆z+min < 2 can get the ability of estimating the near wall
dynamics and capturing the coherent structures. However, the restriction of ∆z+min < 2 takes
a lot of computing cost.

In addition, the near-wall dynamics resolving for rough wall is very difficult, because the
exact boundary condition on a rough wall is hard to be specified theoretically.

Near-wall dynamics modeling (20 < ∆z+min < 200): To reduce the computing costs, a
coarse mesh in the near-wall region is usually chosen. Commonly, the first mesh is out
of the viscous layer and is usually near or located in the logarithmic inertial layer, i.e.,
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20 < ∆z+min < 200. Hence, the near-wall dynamics should be modeled rather than resolved.
This special model used for representing the near wall dynamics is called the wall model. In
practice, the simulated physical quantities are averaged at the first grid, which then results
in the inaccurate value of wall stresses. Therefore, the wall model should specify the wall
stresses (τ13|w and τ23|w) and the wall-normal velocity component.

In the numerical simulations of wall flows with high Reynold numbers, a very fine grid
near wall is required to achieve the resolution of the viscous sublayer. Therefore, to reduce
the computational cost, LES-NWM is usually used in the simulation of atmospheric boundary
layer. A free-slip condition with imposing the wall models is usually used to specify the
velocity field on the wall.

2.3 Numerical method

In this thesis, the LES code ARPS is used to simulate the turbulent boundary layer flow. The
standard version is described in detail in the ARPS user’s guide Xue et al. (1995) and in Xue
et al. (2000) and Xue et al. (2001). In the recent yeas, this code has been developed to study
the characteristics of particle or scalar transport in a turbulent boundary layer. Vinkovic
(2005) developed the Lagrangian stochastic model for the dispersion of passive scalars or
solid particles, and implemented it in ARPS code. Dupont et al. (2013) parallelized the
module of the computation of solid particle motion, and simulated the sand saltation over
a flat surface. Huang (2015) improved the near-wall treatment for the rough surface and
the technique for generating the inlet boundary condition. After the validation of these
improvements, Huang et al. (2018) carried out the numerical simulation of particle transport
over Gaussian hills to study the behavior of aeolian erosion and deposition.

In this section, the numerical method used in ARPS is briefly presented, including the
numerical discretization, the parallelization, the vertical grid stretching.

2.3.1 Discretization

In the numerical simulation, the finite difference method is applied to discretize the computa-
tional time-space domain.

Time discretization: The mode-splitting time integration approach proposed by Klemp
and Wilhelmson (1978) is used to eliminate the acoustic waves effect. According to this
approach, the time domain is firstly discretized into a set of sub-domains with a large time
step, which is then divided into a number of computationally inexpensive small time steps.
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Only the acoustically active terms are updated in a small time integration while all the other
terms are advanced every large time step. As a consequence, the small time step is limited by
the acoustic wave effect.

For the large time integration, a centered three-level (leapfrog) time differencing scheme
is used and the time step size is limited by a stability condition based on convective and
(optionally) on gravity wave speeds. For the small time step integration, a forward scheme is
used in horizontal direction and the Crank-Nicolson scheme in vertical direction. This results
in an explicit discrete form of u and v equations and an implicit form of w and p equations.
The algorithm implicitly solving the vertical equations is absolutely stable regardless of the
acoustic waves. Thus, the small time step size only depends on the horizontal grid spacing.
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Figure 2.1 Sketch of the Arakawa C-grid and of the variable position.

Spatial discretization: In ARPS, the governing equations are spatially discretized on a
staggered grid using finite difference. In a staggered grid, the different physical variables
sharing the same grid index (i, j,k) are not located at the same position. Figure 2.1 shows
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the location of the physical variables staggered on the Arakawa C-grid [Arakawa (1966)].
The scalars, such as the pressure p, the density ρ , the potential temperature Θ, are defined at
the center of the grid cell. The three components of vectors, such as the velocity, are located
at the center of the corresponding cell faces, whose normal directions are same with the
components. For the shear stress tensor, the diagonal components are defined at the center of
the cell and the others are located at the center of cell sides, e.g., τ13 = ∂w/∂x is evaluated
on the Oxz plane, a half a grid interval below the w-point.

Except for the convection terms, a second-order accurate finite difference scheme is used
for the spatial discretization of governing equations. The convection terms can be discretized
by a second-order or fourth-order accurate finite difference. The discrete formulation of
governing equations are given in Appendix B.1.

Figure 2.2 Sketch of the domain decomposition (left) and of the message passage between
the sub-domains (right). Left figure taken from Xue et al. (1995). Right figure taken from
http://www.idris.fr/formations (MPI).

2.3.2 Parallelization

A parallelization strategy based on message passing interface is implemented in ARPS. As
shown in Figure 2.2, a large computing domain is divided into several small sub-domains,
which are assigned to different processors. The boundary information between the sub-
domains is supplied by using a message passage strategy. Each sub-domain sends the
boundary information to its four neighbors in the east, south, west, north direction and also
receives the information from them for a two-dimensional case. The MPI parallelization
improves the computing ability through using many processors. The efficiency depends on
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the balance of the computing resources required by each sub-domain and the ratio of the
message passing load to the computing load.

In ARPS, the finite difference method used for the discretization facilitates the process of
domain decomposition. The domain decomposition is applied only in horizontal directions,
due to the implicit scheme employed in the vertical direction. Thanks to the work of S.
Dupont at INRA, Bordeaux, the MPI parallelization for the module of the calculation of solid
particle motion in the APRS code has been accomplished.

2.3.3 Terrain-following mesh and vertical grid stretching

In ARPS, a vertical coordinate transformation is applied to convert the computational domain
with an irregular geometry to a regular, rectangular one. A general vertical coordinate
transformation is given by:

ζ = x,

η = y,

ξ = ξ (x,y,z),

(2.41)

where (x,y,z) are the Cartesian coordinates, and (ζ ,η ,ξ ) are the transformed curvilinear
coordinate (or the computational coordinate).

Two steps are required for the vertical coordinate transformation: i) the terrain-following
coordinate transformation ξ ′ = ξ ′(x,y,z); ii), the vertical grid stretching ξ = ξ (ξ ′). Firstly,
the terrain-following coordinate transformation is given by:

ξ
′ =

(z f lat − zmin)
z−h(x,y)

z f lat −h(x,y)
+ zmin, if zmin ≤ z ≤ z f lat ,

z, if z > z f lat ,
(2.42)

where ξ ′ is the transformed vertical coordinate, z the Cartesian vertical coordinate, h(x,y) the
terrain height in the Cartesian coordinate system, zmin the height of the bottom boundary in
the transformed coordinate system, z f lat the prescribed height above which the transformed
coordinate coincides with the Cartesian coordinate.

Secondly, we generate a vertically non-uniform grid in the coordinate system (ζ ,η ,ξ ′),
where the grid spacing ∆ξ ′ varies in the ξ ′- direction, and then apply the vertical grid
stretching ξ = ξ (ξ ′) to obtain a vertically uniform one with a grid spacing ∆ξ in the
coordinate system (ζ ,η ,ξ ). Note that the grid spacings in the ζ - and η- directions are
uniform. Particularly, if the vertical grid stretching is not used, we have ξ = ξ ′ and ∆ξ = ∆ξ ′,
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Figure 2.3 Sketch of the vertical grid stretching (left) and of its corresponding terrain-
following grid (right). The terrain-following mesh with the vertical stretching is generated by
the ARPS code and the grid control parameters are given by z f lat = 1.2, d1 = 0.8, d2 = 1.6,
∆ξ ′

min = 0.05, ∆ξ = 0.1 and nz = 37.

which means that the grid is also uniform in the vertical direction. In numerical simulations,
when the vertical grid stretching is applied, the discrete non-uniform grid spacing ∆ξ ′

k in the
coordinate system (ζ ,η ,ξ ′) is evaluated by:

∆ξ
′
k =


∆ξ ′

min, if 1 ≤ k ≤ n1,

∆ξ ′
m +

∆ξ ′
m −∆ξ ′

min
tanh(2αc)

tanh
(

2αc
k−nm

1−nm

)
, if n1 +1 ≤ k ≤ n1 +n2,

2∆ξ ′
m −∆ξ ′

min, if n1 +n2 +1 ≤ k ≤ nz,

(2.43)

where k is the vertical grid index, αc is a control parameter which takes a value in the range
of 0.2 - 5.0, nm = (1+n2)/2, ∆ξ ′

min, ∆ξ ′
m, 2∆ξ ′

m −∆ξ ′
min and n1, n2, n3 are the average grid

spacing and the number of grid levels in the bottom, middle and top layer in the terrain-
following coordinate system as shown in Figure 2.3, respectively. Concretely, nz is the
total number of staggered grid points and d is the depth of the entire domain, and d1, d2,
d −d1 −d2 are the depth of the bottom, middle and top layer respectively. ξ ′ = zmin denotes
the position of bottom wall and ξ ′ = zmin +d is the location of upper boundary. ∆ξ is the
vertical uniform grid increment in the coordinate system (ζ ,η ,ξ ). In ARPS, ∆ξ ′

min, ∆ξ , d1,
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d2 are the control parameters given in the input file and d can be evaluated by d = (nz−3)∆ξ

for a staggered grid. The only unknown parameter ∆ξ ′
m can be resolved by:

d1

∆ξ ′
min

+
d2

∆ξ ′
m
+

d −d1 −d2

2∆ξ ′
m −∆ξ ′

min
=

d
∆ξ

. (2.44)

The vertical stretching proposes a technique strategy for the grid refinement in the vertical
direction. In practice, a grid spacing less than ∆ξ is used in the bottom layer, in order to
refine the mesh near wall. This is helpful to capture the coherent structures located in the
near-wall region in the simulation of turbulent boundary layer flows.

2.4 Initialization and boundary conditions

To numerically solve the governing equations (Equations (2.25)), the flow field has to be
initialized for the time integration and the boundary conditions should be imposed to specify
the solution. Especially, the wall shear stresses must be specified as LES-NWM is used in
ARPS.

2.4.1 Initialization

Before beginning the time integration in a numerical simulation, the variables must be
initialized, including the time-independent base state, and the time-dependent variable
variations from base state.

The hydrostatic state can be resolved by using three equations: the hydrostatic equation
(Equation (2.10)), the state equation pr = ρrRTr and an equation specifying the atmosphere
condition, which have been introduced in Subsection 2.1.2.

For the velocity field, an average information is assigned. In ARPS, an empirical mean
velocity profile for a fully developed turbulent boundary layer is given by:

U =

u∗ fw

(
z
δv

)
+u∗

Π

κ
w
( z

δ

)
, for z/δ ≤ 1;

Ue, for z/δ > 1;
(2.45)

where U denotes the mean streamwise velocity, u∗ the friction velocity, δν = ν/u∗ the viscous
lengthscale in the inner layer, δ the thickness of boundary layers, z the vertical distance from
the wall, Ue the external velocity, respectively. The function fw represents the law of the
wall on a smooth or rough wall. w(χ) = 2sin2(χπ/2) is the wake function and Π is called
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the flow-dependent wake strength parameter. More detailed information on fw and Π is
presented in Appendix A.

For a boundary layer, since U =Ue at z = δ , we obtain from Equation (2.45):√
2

C f
=

Ue

u∗
= fw

(
δ

δv

)
+

2Π

κ
= fw

(
Reδ

u∗
Ue

)
+

2Π

κ
= fw

(
Reδ

√
C f

2

)
+

2Π

κ
, (2.46)

where Reδ = Ueδ/ν and C f = 2(u∗/Ue)
2 are the Reynolds number and the skin-friction

coefficient of a boundary layer. Equation (2.46) is called the friction law of boundary layers.
It indicates that the skin-friction coefficient C f is a function of the flow Reynold number Reδ .
Therefore, for a boundary layer with a given Reynold number Reδ , solving Equation (2.46)
yields a solution of the skin-friction coefficient C f .

In numerical simulations, δ and Ue are given, we then calculate C f from Equation (2.46),
namely, get the value of u∗. Therefore, the average velocity field is evaluated using Equation
(2.45) and the initialization of velocity field is achieved.

2.4.2 Boundary conditions

In the numerical simulation of a three-dimensional boundary layer, different boundary
conditions are developed and imposed on the boundaries of the computational domain. Some
of them are physical and some are non-physical or artificial. As shown in Figure 2.4, the rigid
wall condition, upper radiative boundary condition, periodic boundary condition, recycling
inlet boundary conditions, and radiative outlet boundary condition are used for the simulation
of boundary layers. Moreover, a zero-gradient boundary condition is set for the base state.
These boundary conditions are briefly described in the following. More details are found in
Appendix B.2.

Rigid wall condition: In ARPS, a non-penetrative free-slip boundary condition (or a mirror-
type boundary condition) is imposed on the bottom wall. In addition, for the simulation of
boundary layers, an additional wall model is required to evaluate the wall shear stress. The
detailed description of wall modeling is presented in Subsection 2.4.3.

Upper boundary condition: When the explicit scheme in the vertical direction is used, the
zero-gradient boundary condition can be considered as the top boundary conditions. When
the implicit scheme is used, the zero-normal gradient boundary condition is imposed for
the horizontal velocity and other physique quantities, except for the w and ∆p, which are
governed by the upper boundary condition proposed by Klemp and Durran (1983).
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Figure 2.4 Different boundary conditions for the numerical simulation of boundary layers in
ARPS.

Periodic lateral boundary condition: The periodic boundary condition is usually used in
the simulation of homogeneous isotropic turbulence. It assumes that the flow field can repeat
itself indefinitely outside the computational domain. If the periodic boundary condition
is set on the left and right side, then the variable value at the left boundary copies that at
the right boundary. Under periodic boundary conditions, the conservation of mass and of
linear momentum is achieved but the conservation of angular momentum is failed [Kuzkin
(2015)]. As boundary layers are usually statistically homogeneous in the spanwise direction,
the periodic boundary condition is applied on the two lateral sides.

Inlet boundary condition: The inlet boundary condition is important for boundary layers
simulation and the generation method is complicated. It should not only supply the average
velocity fields but also the random fluctuations, which contains the information on coherent
structures. In the works of Vinkovic (2005) and Huang (2015), a recycling method for
generating inflow turbulence has been implemented in ARPS. Figure 2.4 gives the schematic
illustration of the recycling procedure. This method, firstly proposed by Lund et al. (1998),
generates the velocity fluctuations from that at a downstream station, which is obtained by
resolving the discretized governing equations and thus seems more physical and realistic. For
the mean flow, the streamwise mean velocity profile is given by the similar law of boundary
layers (Equation (2.45)), and the spanwise and normal velocities are assumed to be null. The
inflow data generated by this method provides information of coherent structures and reduces
the flow transition length.
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Outlet boundary condition: An open radiative boundary condition is used at the exit of the
computational domain. This condition allows internally generated waves to propagate from
the outlet boundary with few reflections Durran and Klemp (1982). In radiative boundary
conditions, a simplified wave propagation equations is employed to evaluate the flux of
the predicted model variables at the outlet boundary. In ARPS, both the formulation of
Orlanski (1976) and of Klemp and Wilhelmson (1978) are implemented for the radiative
outlet condition.

Base state boundary condition: The base state boundary condition is applied at the end of
initialization. At the lateral boundaries, including the inlet and outlet boundaries, the fluid
base density ρr, pressure pr and potential temperature Θr are generated by the same method
as the interior domain. At the bottom and top boundaries, a zero-gradient condition is set for
Θr, and then ρr and pr are resolved using the hydrostatic relation.

2.4.3 Wall modeling

As discussed in Subsection 2.2.3, wall modeling is required to specify the near-wall flow
when LES-NWM is used. In the following, we firstly give a theoretical analysis on wall
modeling and then introduce the wall-stress model, which is widely used in the simulation of
boundary layers with high Reynold number.

As the average total stress is almost a constant in the inner layer, we have:

⟨τ13⟩|w = (µt(z)+µ)
∂U(z)

∂ z
, (2.47)

where µt is the turbulent viscosity and U(z) is the average stream-wise velocity. Integrating
Equation (2.47) from 0 to ∆zmin in the wall-normal direction, it is obtained:

⟨τ13⟩|w
ˆ

∆zmin

0

1
µt(z)+µ

dz =U(∆zmin). (2.48)

which yields:

⟨τ13⟩|w =

(
1

∆zmin

ˆ
∆zmin

0

1
µt(z)+µ

dz

)
U(∆zmin)

∆zmin
= µe

U(∆zmin)

∆zmin
, (2.49)

where µe is called the effective viscosity, ∆zmin is the grid increment near the wall. Equation
(2.49) shows that µe can not be equal to the local viscosity, when ∆z is large. Hence, ⟨τ13⟩|w
can not be calculated accurately in a coarse grid and needs to be specified by wall modeling.



2.4 Initialization and boundary conditions 39

τ23 is in the same situation. This explains why it is difficult to simulate correctly the dynamics
of the inner layer when ∆z+min is large and implies that an effective way of wall modeling is
to directly modify the wall shear stress.

Schumann (1975) proposed a model to specify the instantaneous wall shear stress τ13|w
and τ23|w:

τ13|w =

(
ũ(∆zmin)

U(∆zmin)

)
τw, (2.50a)

τ23|w =

(
ṽ(∆zmin)

U(∆zmin)

)
τw, (2.50b)

where ũ, ṽ denote the resolved stream-wise, spanwise velocity and τw the mean wall shear.
In this model, U(∆zmin) and τw are statistical physics quantities and are given a priori.
Grötzbach (1987) made an extension by using the logarithmic law to evaluate τw. Firstly,
the statistic average is approximated by the spatial average in the span-wise direction, that
is, U(∆zmin) = ⟨ũ(∆zmin)⟩y; Secondly, applying the logarithmic law to resolve the friction
velocity u∗, then the mean wall shear stress is obtained by τw = ρu2

∗. For example, a simple
logarithmic law U/u∗ = κ−1 ln(z/z0) is used for a rough case in ARPS, the mean wall shear
is then calculated by:

τw = ρ⟨ũ(∆zmin)⟩2
y

(
1
κ

ln
(

∆zmin

z0

))−2

, (2.51)

where z0 is the roughness length and κ denotes the von Kámán constant.

Another modification proposed by Mason and Callen (1986) is to replace the mean
stream-wise velocity U(∆zmin) by the local instantaneous surface velocity us(∆zmin) =√

ũ2 + ṽ2
∣∣∣
z=∆zmin

. By assuming that us(∆zmin) also obeys the logarithmic law, then Equation

(2.51) becomes:

τw = ρ
(
ũ2 + ṽ2)∣∣

z=∆zmin

(
1
κ

ln
(

∆zmin

z0

))−2

. (2.52)

Note that this first modification is based on the assumption that the logarithmic law is satisfied
for the spatial average velocity in span-wise direction, which is easily acceptable since the
flow is homogeneous in span-wise direction, and that the second modification requires that
the logarithmic law is obeyed for the local and instantaneous velocity, which may be true as
the resolved large scale velocity can be approximated by the mean velocity for a very coarse
grid.
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2.5 Conclusions

In this chapter, we introduce not only the theoretical formulation of governing equations used
in ARPS, but also the numerical details, such as discretization, parallelization, initialization
and boundary conditions. The governing equations of atmospheric boundary layers are
resolved by LES with a SGS model. After the development of Vinkovic (2005), the recycling
method for generating inflow turbulence was implemented and the wall modeling was
improved by introducing a new law of the wall of boundary layers on a rough surface [Huang
et al. (2016)]. The performance of this numerical model in the simulation of boundary layers
was validated in the thesis of Huang (2015). As shown in Figure 2.5, a good agreement is
achieved between the mean velocity and velocity RMS profile of the numerical results and of
experimental data.

(a) Mean streamwise velocity profile (b) Streamwise and normal velocity RMS profile

Figure 2.5 Validation of the numerical model (ARPS). Blue square: experimental results
[Vinçont et al. (2000) and Simoens et al. (2007)] with Reτ = 500. Black line: DNS results of
Spalart (1988) with Reτ = 660. Red circle: ARPS results. Adapted from Huang (2015).



Chapter 3

Immersed boundary method

In ARPS, the numerical simulation of turbulent boundary layer flows over complex geome-
tries is achieved through using terrain-following grids. However, it’s difficult to generate
good quality grids for geometries with extreme slopes. Moreover, the grid generation should
be repeatedly done at each time step for moving boundaries. An alternative choice overcom-
ing these difficulties is the immersed boundary method (IBM). This approach introduces an
additional forcing term into the governing equations in the vicinity of the boundary. Thus
irregular boundaries can be taken into account within a Cartesian grid and the flow fields
can be simulated by numerically resolving the modified governing equations. The immersed
boundary method facilitates the grid generation and the treatment of moving boundaries.
Developing a new numerical solver by introducing IBM into ARPS is of first importance in
this thesis, as our aim is to simulate boundary layers over moving dunes. The implementation
of IBM is one original point of this work.

In this chapter, we detail the implementation of the immersed boundary method into the
ARPS code. In Section 3.1, the development of the IBM is briefly introduced; In Section
3.2, the direct forcing method (ghost-cell finite-difference method) is detailedly described;
In Section 3.3, the details of the implementation of the IBM into ARPS are presented; In
Section 3.4, the developed numerical solver (IBM-ARPS) is validated through two numerical
simulation cases: a turbulent boundary layer (TBL) over a small dune and a TBL over a large
dune.

3.1 Basic description

The immersed boundary method was primarily proposed by Peskin (1972) in the simulation
of the blood flow in the heart [Peskin (1977)]. In the original method, an elastic boundary
condition was represented by introducing a boundary force, which satisfies the Hooke’s
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law. After that, the rigid boundary for IBM was developed by Briscolini and Santangelo
(1989) and Goldstein et al. (1993). In both approaches, the immersed rigid body was
regarded as the virtual fluid, whose velocity was enforced to zero by a feedback mechanism.
Soon after, Mohd-Yusof (1997) and Fadlun et al. (2000) proposed a discrete immersed
boundary method by directly imposing the immersed forcing on the computational nodes
near the boundary, rather than on the immersed interface. With this improvement, the desired
boundary conditions at the immersed boundary are achieved by reconstructing the flow field
in the vicinity of the boundary. For instance, the no-slip boundary condition was imposed
by reconstructing the velocity field through the interpolation or extrapolation between the
resolved velocities at the neighbor nodes and the zero velocity at the boundary [Mittal et al.
(2008); Tseng and Ferziger (2003)].

In this section, we introduce the basic conception of the IBM, give a brief description of
the development of the IBM and summarize its advantages and disadvantages.

3.1.1 General consideration

The basic idea of the immersed boundary method is that the irregular boundary geometries are
converted into the regular ones by enlarging the fluid domain and submerging the complex
boundaries, and the Navier-Stokes equations are modified by introducing the additional
forcing in the immersed zones. This modification facilitates the resolution of the governing
equations by using simple boundaries and computational grids.

Df

∂Df

Flow

Figure 3.1 Sketch of a boundary layer over a single dune (left) and of the corresponding
body-conformable grid (right).

For example, considering a turbulent boundary layer flow over a single dune, the govern-
ing equations of fluid fields are simply given by:

∂tψψψ +G ψψψ = 000 in D f , (3.1a)

B f ψψψ = 000 on ∂D f , (3.1b)
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where ψψψ means the vector of physical variables, D f and ∂D f are the computational domain
and the boundaries as shown in Figure 3.1, the operator G denotes the governing equations
without the temporal evolution term, and B represents the operator of boundary conditions
on ∂D f . To simulate this case using finite-difference method, ARPS generates the body-
conformable grid as shown in Figure 3.1 and the flow field is obtained by resolving the
governing equations in this terrain-following coordinate system.

Dd

∂Dd

∂(Df + Dd)

Df

Flow

Figure 3.2 Sketch of the computational domain (left) and of the corresponding Cartesian grid
(right) of a boundary layer over a single dune resolved by the immersed boundary method.

According to the immersed boundary method conception, the complex dune surface ∂Dd

is immersed into an enlarged and regular domain D f +Dd , and then the previous boundary
conditions B f ψψψ = 000 on ∂D f (Equation (3.1b)) is replaced by B f ψψψ = 000 on ∂ (D f +Dd) and
an additional boundary condition on the immersed dune Bdψψψ = 000 on ∂Dd . This immersed
condition Bdψψψ = 000 on ∂Dd is eliminated by introducing forcing terms Fψψψ into the general
governing equations (Equation (3.1a)) in the vicinity of the immersed boundary ∂Dd . Thus
Equation (3.1) is rewritten as:

∂tψψψ +G ψψψ = Fψψψ in D f +Dd , (3.2a)

B f ψψψ = 000 on ∂ (D f +Dd), (3.2b)

where D f +Dd denotes the new regular computational domain and ∂ (D f +Dd) represents
its corresponding boundaries. Figure 3.2 gives a sketch of domains D f , Dd , D f +Dd and
of boundaries ∂D f , ∂Dd , ∂ (D f +Dd). In general, Equation (3.2) is resolved using a simple
Cartesian grid as shown in Figure 3.2. Obviously, the task of grid generation is greatly
simplified by introducing the immersed boundary approach and the grid regeneration at each
time step is avoided for the moving boundary.
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3.1.2 Formulation of the forcing term

According to the way of imposing the boundary conditions, the immersed boundary method
can be classified into two groups [Mittal and Iaccarino (2005)]: i), the continuous forcing
method, in which the forcing function is introduced into the continuous governing equations
in the vicinity of immersed boundaries before the discretization; ii), the discrete forcing
method, in which the forcing term is incorporated into the discrete governing equations. In
the following, the mathematical formulations of the forcing term for these two methods are
introduced.

Continuous forcing method: The forcing function, also called the force density function
Fψψψ in Equation (3.2), is introduced into the governing equations to implicitly impose
the boundary conditions on the immersed surface. The formulation of continuous forcing
function Fψψψ is usually given by:

Fψψψ(xxxs, t) =
ˆ

D f+Dd

fff ψψψ(xxx, t)δδδ (xxx− xxxs)dxxx, (3.3)

where fff ψψψ is the boundary force for physical variable ψψψ , xxxs denotes the position of immersed
boundary, i.e., xxxs ∈ ∂Dd , and δδδ is the Dirac function, respectively. In numerical simulations,
the location of immersed surface does not usually coincide with the grid points, and the
forcing is then distributed over these surrounding grid points through replacing the δδδ function
by a smooth distribution function.

For rigid boundaries, a common formula of fff ψψψ for imposing no-slip condition is given
by [Goldstein et al. (1993)]:

fff ψψψ(xxx, t) = α0

ˆ t

0
ψψψ(xxx,τ)dτ +β0ψψψ(xxx, t), (3.4)

where α0, β0 are two coefficients and here ψ denotes the fluid velocity. Equation (3.4)
proposes a feedback control for the velocity field in the vicinity of the immersed boundaries.
When β0 = 0 and α0 =−κs where κs is a positive spring constant, Equation (3.4) reduces
to the approaches of Beyer and LeVeque (1992) and Lai and Peskin (2000). When α0 = 0
and β0 =−µ/K where K is the medium permeability coefficient, the penalization approach
proposed by Khadra et al. (2000) can be deduced from Equation (3.4).

The continuous forcing method proposes a mathematical formula of the immersed forcing
and thus is easy to implement into the existed codes. The drawback of continuous IBM with
rigid boundaries is that the coefficients in Equation (3.4) need to be specified by users and
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that the forcing usually induces spurious oscillations near the boundary, which are associated
with the numerical instability.

Discrete forcing method: The discrete method gives a good performance for the simulation
of turbulent flows with high Reynolds number, due to the imposition of the immersed
boundary conditions without calculating the forcing term. In discrete form, the forcing term
is regarded as a direct corrector on the resolved fluid flow in the vicinity of the immersed
boundary. This term can be determined at each time step by using the immersed boundary
conditions. For example, for the simple time-stepping scheme, to yield the desired boundary
conditions at the next time step, i.e., ψψψn+1 = ψψψ ib, the prescribed force at the time step n can
be expressed as:

Fψψψ
n =

1
∆t

(ψψψ ib −ψψψ
n)+G ψψψ

n, (3.5)

where ∆t is the time step and the supscript (·)n denotes the n-th time step. When the grid
coincides with the immersed boundary, ψψψ ib can be easily specified according to the boundary
conditions. In general, the immersed boundary cut off the grids, thus some questions are
raised: where are the immersed forcing located? how to reconstruct ψψψ ib? The answers are
summarized as follows:

• Location of the forcing: there are two possible locations of the discrete immersed
forcing Fψψψn: i), Mohd-Yusof (1997) firstly suggested that the discrete forcing was
imposed inside the solid field. This treatment was extended in the ghost-cell finite
difference method; ii), Fadlun et al. (2000) proposed the external forcing in the
simulation of three-dimensional complex flows. With this method, the forcing is
applied on the fluid nodes closest to the immersed boundary. Both the internal forcing
and the external forcing can effectively reconstruct the sharp representation of the
immersed boundary condition and give good simulated results.

• Reconstruction scheme for ψψψ ib: many reconstruction methods are available for
reconstructing the flow field at the immersed boundary. The standard reconstruction
method consists of a one-dimensional interpolation scheme and a reconstruction
direction. Fadlun et al. (2000) used the linear interpolation in the grid-line direction;
Gilmanov et al. (2003) and Balaras (2004) proposed the linear interpolation along the
well-defined line normal to the immersed boundary, in order to avoid the ambiguities
of choosing the grid lines; Peller et al. (2006) used the high-order Lagrange and least
squares interpolation along the grid-line direction for the flow reconstruction. The
reconstruction method is improved by applying the multi-dimensional interpolation
scheme. Iaccarino and Verzicco (2003) reconstructed the velocity at the solid nodes
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near the boundary using the linear multi-dimensional and quadratic multi-dimensional
interpolation; in the ghost-cell approach developed by Tseng and Ferziger (2003), the
linear and quadratic multi-dimensional interpolation is commonly used to evaluated the
velocity at the ghost cell, and the interpolation combined with the mirroring technique
is proposed for the special treatment in case of large negative value appearing when the
ghost cell is very near the immersed boundary; Gao et al. (2007) developed an inverse
distance weighted interpolation scheme based on the Taylor expansion analysis about
the boundary point for the improvement of the ghost approach.

The discrete (or direct) forcing method enforces the immersed boundary condition
through the reconstruction approach. The velocity gradient near wall can be predicted more
accurately through applying a high-order interpolation, especially for boundary layers and
for high Reynolds number flows. The advantage is that we implement this method without
calculating the forcing term and that no unknown parameters should be specified by users.

It is clearly concluded that the immersed boundary method is very suitable for the
simulation of complex or moving boundary problems. Commonly, the discrete forcing
method performs better in the simulation of turbulent flows with high Reynolds number than
the continuous method. Therefore, the ghost-cell finite-difference method, a direct forcing
approach proposed by Tseng and Ferziger (2003), has been chosen to be implemented in
the ARPS code, in order to simulate boundary layers over complex terrains, and thus to
investigate the wind erosion with moving dunes.

3.1.3 Advantages and disadvantages of the IBM

The first advantage of applying immersed boundary method in the simulation of turbulent
flows with complicated geometrical boundaries is that the process of grid generation is much
easier to be achieved. Commonly, it is difficult to generate an acceptable body-conformable
structured or unstructured mesh for complex boundaries, since the geometrical complexity
has a great influence on the quality of the generated grid, thus on the numerical accuracy and
stability. Moreover, as the geometry becomes more complicated, the process of generating a
good-quality body-conformable grid becomes increasingly difficult and the computational
operation count per grid point greatly increases. In contrary, the geometrical complexity can
not significantly affect the task of grid generation in immersed boundary method. Secondly,
the immersed boundary method can handle the moving boundary problem. Compared with
the usual methods, neither the grid-regeneration nor the grid deformation are required in the
numerical simulation. Hence, using immersed boundary method has a considerable decrease
of the numerical difficulties and of the computational time-consuming. In addition, it is



3.2 Ghost-cell finite-difference method 47

obvious that the implementation of immersed boundary method in an existed code is much
simpler compared with the other methods.

One drawback is that the imposition of immersed boundary conditions is not straightfor-
ward as the traditional approaches. Another one is that the problem of accuracy on boundary
treatment and of conservation properties of numerical schemes in vicinity of immersed
boundaries is not trivial. Moreover, when simulating turbulent flows with high Reynolds
number, the grid size greatly increases and this will lead to a substantial fraction of grid
points inside the body, where the resolved flow is not physical and useless.

3.2 Ghost-cell finite-difference method

The ghost-cell finite-difference method of Tseng and Ferziger (2003) is an extension of the
discrete immersed method of Mohd-Yusof (1997) and Fadlun et al. (2000). The basic idea
of this approach is to construct a sharp representation of the immersed boundary using the
ghost cells, which are defined as cells in the solid that have at least one neighbor in the fluid.
Then, the immersed boundary conditions can be achieved through reconstructing the velocity
fields on these ghost cells. Suggested by Lundquist et al. (2010), the bilinear interpolation
scheme combined with the mirroring technique is used to calculate the ghost cell velocity.
This method is suitable for the simulation of high Reynolds number flows.

In this section, we will describe in detail the ghost-cell finite-difference method, including
the representation of the immersed boundary, the classification of computational nodes, the
treatment of Dirichlet and Neumann Boundary condition, and near-wall models at the
immersed boundary.

3.2.1 Representation of the immersed boundary

To implement IBM into ARPS, the first step is to construct the discrete representation of the
immersed dune surface. The dune height h(x,y), a function of horizontal coordinates x and y,
is considered as a scalar variable on the horizontal plane defined on the staggered grid. As
shown in Figure 3.3, h(x,y) is defined at the center of a grid cell on xy-plane, and takes the
value of dune height in the z-direction.

Figure 3.4 shows an example of the numerical representation of dune elevation in ARPS,
which has the same resolution as the horizontal grid. This allows the treatment of the dune
height as a scalar variable located at the bottom wall. One advantage of this representation
is that the message passing between the dune height arrays at different processors can be
easily achieved by calling the parallelization modules in ARPS. Another advantage is that
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Figure 3.3 Sketch of the location of the dune height variable h(x,y) in an Arakawa C-grid
cell.

this representation will be compatible with the regional wind erosion model proposed in
Chapter 4, which determines the dune deformation.
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z

(a) Continuous dune surface.

x

z

(b) Discrete dune surface.

Figure 3.4 An example of the representation of dune height at the Arakawa C-grid.

3.2.2 Classification of computational nodes

The computational nodes can be classified into four groups: fluid nodes, wall nodes, ghost
nodes and solid (dune) nodes. They are described in detail as follows:
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Figure 3.5 An example of the classification of computational nodes.

1. Fluid nodes: located at the cells in the fluid field, which have no neighbors in the solid.
The flow field at the fluid nodes is obtained by resolving the normal Navier-Stokes
equations without the additional forcing term.

2. Wall nodes: located at the cells in the fluid field, which have at least one neighbor
in the solid. When the grid is fine enough, the wall nodes are considered as the fluid
nodes and the resolution at these nodes is credible. When the grid is coarse, the wall
models should be applied to correct the resolved fields at wall nodes. The details are
introduced in Subsection 3.2.4.

3. Ghost nodes: located at the cells in the solid (dune) field, which have at least one
neighbor in the fluid. Within the immersed boundary method, the forcing term is
directly imposed to reconstruct the flow field in the ghost nodes and thus to enforce
the immersed boundary conditions. The flow reconstruction is detailedly described in
Subsection 3.2.3.

4. Solid nodes: located at the cells in the solid (dune) field, which have no neighbor
in the fluid. Fadlun et al. (2000) and Iaccarino and Verzicco (2003) found that the
interior treatment has no influence on the simulated results of extremal flows for the
stationary surface, whereas the investigation of Liao et al. (2010) shows the importance
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of applying the internal forcing in the simulations of moving boundary problems.
Therefore, the treatment at solid nodes should be tested in this work.

For the staggered grid, the classification of the computational nodes should be done for
each physical variable. Figure 3.5 gives a schematic illustration of the locations of fluid
nodes, wall nodes, ghost nodes and solid nodes.

3.2.3 Flow reconstruction at the immersed boundary

The immersed forcing is implicitly imposed on the ghost cells by reconstructing the flow
field. The velocity on the ghost cells are reconstructed by a bilinear interpolation scheme
combined with the the mirroring technique proposed by Lundquist et al. (2010). The basic
two boundary conditions are Dirichlet and Neumann conditions, which are expressed as:

ψ|
∂D = ψ0, (3.6)

and
∂ψ

∂n

∣∣∣∣
∂D

= ψn, (3.7)

where ψ0 and ψn are two constants and ∂D represents the boundary.
The flow reconstruction at each ghost node can be achieved through the following three

steps:

• Step 1: Finding the image point using the mirroring technique. Given an example
as shown in Figure 3.6, we find G′ the image point of the ghost node G through the
immersed boundary (the dune surface in this thesis).

• Step 2: Determining the value of the physical variable at the image point through the
interpolation. As shown in Figure 3.6, the physical variable ψG′ at G′ is calculated
through the bilinear interpolation between these four neighbors P1, P2, P3,P4, in which
P1 is on the immersed boundary surface, and the others are fluid points or wall points.

• Step 3: Reconstruction at the ghost cells. In Figure 3.6, the value at the ghost cell G
equals to ψG = 2ψ0−ψG′ for the Dirichlet boundary condition and ψG = ψG′−GG′ψn

for the Neumann boundary condition.

Next, we introduce the details of the identification of these neighbors and the interpolation
scheme in the second step. Since the immersed boundary cuts the computational cell in
an arbitrary manner, the identification of the four neighbors depends on the geometric
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Figure 3.6 An example of reconstructing the physical variable ψ at the ghost node G. G′ is
the image point of G. P1, P2, P3, P4 are the four neighbors. n⃗ is the normal vector at P1.
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Figure 3.7 Sketch of case 1 for Dirichlet and Neumann boundary conditions.

relationship between the image point and the immersed boundary. We summarize the
different choices of these interpolation points as follows:

• Case 1: the immersed boundary is coincident with the computational nodes, thus the
image point is itself as shown in Figure 3.7. In this simple case, the treatment for the
Dirichlet boundary is different from that for the Neumann boundary. For the Dirichlet
boundary, the model variable is directly modified by ψG = ψ0 according to Equation
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(3.6). For the Neumann boundary, ψG can not be assigned by Equation (3.7), thus
should be specified through the interpolation between the neighbors P1, P2, P3, P4.
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(b) Neumann boundary condition.

Figure 3.8 Sketch of case 2 for Dirichlet and Neumann boundary conditions.

• Case 2: the image point is located in the cut computational cell and the immersed
boundary cuts two adjacent sides as shown in Figure 3.8. This is a typical case shown
in Figure 3.6. One of the four neighbors P1 is located at the interface. The treatment
for the Dirichlet and Neumann boundary is almost same.
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(b) Neumann boundary condition.

Figure 3.9 Sketch of case 3 for Dirichlet and Neumann boundary conditions.
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• Case 3: it is a special case of Case 2 or of Case 4, in which one computational node
is coincident with the immersed boundary. As shown in Figure 3.9, except for two
computational nodes, two points of intersection between the line D1D2 and the cut
computational cell are chosen as the interpolation points. Therefore, Equation (3.6) or
Equation (3.7) will be applied twice during the interpolation.
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(b) Neumann boundary condition.

Figure 3.10 Sketch of case 4 for Dirichlet and Neumann boundary conditions.

• Case 4: the immersed boundary cut two opposite sides of a computational cell and
the image point is located in the cut grid cell. In this case as shown in Figure 3.10, in
order not to lose generality, two intersection points between D1D2 and the cut grid cell
are chosen as two neighbors for the interpolation and the others are two fluid nodes
identified in the same way as Case 3. Hence, Equation (3.6) or Equation (3.7) will be
used twice during the interpolation.

• Case 5: the image point is out of the cut grid cell as shown in Figure 3.11. In this case,
the neighbors are four fluid points. Equation (3.6) and Equation (3.7) are no longer
used and the same interpolation treatment is applied for the Dirichlet and Neumann
boundary.
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Figure 3.11 Sketch of case 5 for Dirichlet and Neumann boundary conditions.

In this thesis, the immersed sand dune is homogeneous in the spanwise (y−) direction.
Hence, the bilinear interpolation scheme appreciate for two-dimensional dune is used for the
reconstruction:

ψ(x,z) = a1 +a2x+a3z+a4xz, (3.8)

where a1, a2, a3, a4 are the four unknown coefficients. Note that the trilinear reconstruction
scheme can be used for the extension to three-dimensional dune. The coefficients are resolved
using the flow field on the neighbors P1, P2, P3 and P4. The details are introduced as follows.

Dirichlet boundary condition: Using the flow field on the four neighbors (Pi with i ∈
{1,2,3,4}), we have from Equation (3.8):

PPPaaa = ψψψ , (3.9)

where the matrix PPP, aaa and ψψψ are given by:

PPP =


1 x1 z1 x1z1

1 x2 z2 x2z2

1 x3 z3 x3z3

1 x4 z4 x4z4

 , aaa =


a1

a2

a3

a4

 , ψψψ =


ψ1

ψ2

ψ3

ψ4

 . (3.10)

Here (xi,zi) denotes the position of point Pi and ψi takes the value of the physical variable at
the position Pi. When one of them is located at the immersed boundary, the physical variable
should take the value ψ0 according to Equation (3.6). By resolving Equation (3.9), the four
coefficients are obtained:

aaa = PPP−1
ψψψ , (3.11)
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where PPP−1 is the inverse matrix of PPP. In this thesis, the matrix inversion is achieved using
the algorithm of Gaussian elimination.

Neumann boundary condition: For the case 5 as shown in Figure 3.11, the interpolation
for the Neumann boundary condition is accomplished in the same manner as for the Dirichlet
boundary condition, since the four interpolation points are computational nodes. The un-
known interpolation coefficients in Equation (3.8) are resolved by Equation (3.11), where
the matrix PPP and ψψψ are constructed by Equation (3.10).

For the other cases where one or more identified neighbors coincide with the interface,
Equation (3.7) should be used for the interpolation to specify the immersed boundary condi-
tion. To satisfy the Neumann boundary condition for the coincident nodes on the immersed
surface, substituting Equation (3.8) into Equation (3.7) yields:

∂ψ

∂n
= n⃗ · ∇⃗ψ = a2nx +a3nz +a4(nxz+ xnz) = ψn, (3.12)

where the normal vector is denoted by n⃗ = (nx,ny,nz). In the present case that a two-
dimensional dune is used, we always have ny = 0. For instance, if only one of the neighbors
is on the immersed surface, the matrix PPP and ψψψ are rewritten as:

PPP =


0 nx nz nxz1 +nzx1

1 x2 z2 x2z2

1 x3 z3 x3z3

1 x4 z4 x4z4

 , ψψψ =


ψn

ψ2

ψ3

ψ4

 . (3.13)

After the coefficients ai are resolved using Equation (3.11), the variable value ψG′ can be
obtained according to Equation (3.8). Therefore, ψG at the ghost point is reconstructed
following step 3 noted at the beginning of Subsection 3.2.3 and the immersed boundary
condition is then achieved.

In practice, no-slip boundary condition is imposed on the immersed boundary, that is,
ũi = 0 treated as a Dirichlet boundary condition. If the pressure condition is considered, a
zero-gradient type condition is used, i.e., ∂ p̃/∂n = 0, which can be rewritten as ∂ (∆p̃)/∂n =

−∂ p̃r/∂n. This can be treated as a Neumann boundary condition.

3.2.4 Wall modeling at the immersed boundary

As discussed in Section 2.2.3 , when LES-NWM is used, the wall models should be used to
evaluate the near-wall flows. The numerical strategy of wall modeling has been implemented
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in IBM-ARPS for the simulation of high Reynolds number turbulent flows using a coarse
grid.
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Figure 3.12 An example of applying wall modeling at the wall node W . P is a fluid node, a
grid interval above W .

In our works, the strategy of wall modeling proposed by Mason and Callen (1986) is used.
Within this wall model, the fluid velocity at the first computational point is reconstructed
using the logarithmic law including the roughness effects. When the immersed boundary
method is applied, the first computational point is changed to the wall node, which is defined
as the first grid node near the interface in the fluid phase, thus applying the wall modeling
results in reconstructing the velocity field on the wall nodes.

Firstly, considering a plate immersed surface as shown in Figure 3.12, assuming that the
law of the wall fw is verified locally and instantaneously for the streamwise velocity, the
relation between (u1,w1) and (u2,w2) is given by:

u1 =
fw(d+

1 )

fw(d+
2 )

u2 and w1 =
d1

d2
w2, (3.14)

where d1 and d2 are the displacements from the points W and P to the immersed boundary
in the vertical direction, and d+

1 and d+
2 are the corresponding non-dimensional ones by

the viscous lengthscale. The friction velocity u∗ can be calculated by solving the equation
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u2 = u∗ fw(d2u∗/ν). Equation (3.14) proposes that the streamwise velocity is reconstructed
by the law of the wall while the normal velocity is evaluated by the linear interpolation. In this
simple case, the velocity reconstruction in the streamwise direction is completely independent
of that in the normal direction, which greatly simplifies the numerical implementation.
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Figure 3.13 An example of applying wall modeling at the wall node W . P is the interpolation
point for W . P1, P2, P3, P4 are the four neighbors of P.

For a two-dimensional immersed boundary of any shape, taking into account the bed
slope effect, we decompose the velocity into the normal one and the tangential one [DeLeon
et al. (2018)]. As shown in Figure 3.13, the tangential and normal velocities (ut ,wn) are
given by: [

ut

wn

]
=

[
cosθ sinθ

−sinθ cosθ

][
u
w

]
, (3.15)

where θ is the local bed slope and (u,w) are the fluid velocities in x- and z- directions.
Assuming that the law of the wall fw is verified locally and instantaneously for the tangential
velocity, similar to Equation (3.14), the relation between (ut

1,w
n
1) and (ut

2,w
n
2) is given by[

ut
1

wn
1

]
=

[
fw(d+

1 )/ fw(d+
2 ) 0

0 d1/d2

][
ut

2

wn
2

]
, (3.16)
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where d1 and d2 are the displacement from the points W and P to the immersed boundary
in the normal direction, and d+

1 and d+
2 are the corresponding non-dimensional ones by

the viscous lengthscale. The friction velocity u∗ can be calculated by solving the equation
ut

2 = u∗ fw(d2u∗/ν). Equation (3.16) proposes that the tangential velocity is reconstructed by
the law of the wall and the normal velocity is evaluated by the linear interpolation. Combining
Equation (3.15) and Equation (3.16), the reconstructed velocities on the wall node W are
obtained:[

u1

w1

]
=

[
cosθ sinθ

−sinθ cosθ

]−1[
fw(d+

1 )/ fw(d+
2 ) 0

0 d1/d2

][
cosθ sinθ

−sinθ cosθ

][
u2

w2

]
. (3.17)

Expanding Equation (3.17), we obtain the wall model formulation:

u1 =

(
fw(d+

1 )

fw(d+
2 )

cos2
θ +

d1

d2
sin2

θ

)
u2 +

(
fw(d+

1 )

fw(d+
2 )

− d1

d2

)
cosθ sinθw2, (3.18a)

w1 =

(
fw(d+

1 )

fw(d+
2 )

− d1

d2

)
cosθ sinθu2 +

(
fw(d+

1 )

fw(d+
2 )

sin2
θ +

d1

d2
cos2

θ

)
w2. (3.18b)

Equation (3.18) with θ = 0 reduces to the original rough wall model of Mason and Callen
(1986). It should be noted that Equation (3.18) shows a coupling between the velocity u
and w when the local bed slope is not zero, i.e., θ ̸= 0. This is different from the velocity
reconstruction at the ghost nodes, which can be separately done at the staggered grid.

In ARPS, the implementation of wall modeling is divided into three steps:

1. Finding the point P, whose normal distance from the immersed boundary is d2 as
shown in Figure 3.13. We set the difference of d1 and d2 equal to the grid size, i.e.,
d2 −d1 =

√
(∆x)2 +(∆z)2.

2. Evaluating the velocity (u2,w2) at the point P. In practice, the velocities u2 and w2

are obtain through the bilinear interpolation (Equation (3.8)) using its four neighbors
P1, P2, P3 and P4. The neighbors as interpolation points are identified according to
five cases shown in Figure 3.7, Figure 3.8, Figure 3.9, Figure 3.10 and Figure 3.11,
respectively.

3. Reconstructing the velocity (u1,w2) at the wall point W . Firstly, we calculate the
tangential velocity ut

2 at the point P using Equation (3.15). Then supposing that ut
2

satisfies the law of the wall fw, the friction velocity u∗ can be obtained by solving
ut

2 = u∗ fw(d2u∗/ν). Finally, we calculate d+
1 and d+

2 and reconstruct u1 and w1 using
Equation (3.18).
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Note that the law of the wall fw of boundary layers is introduced in detail in Appendix A.
In numerical simulations, we use the formulation (Equation (A.8) and Equation (A.9)) with
accounting for the different roughness regimes. The wall modeling is applied after the flow
reconstruction at every small time step. For the further development, a shear stress near-wall
model will introduced in IBM-ARPS. Like the velocity model, the shear stress tensor at
the wall nodes should be reformulated in terms of tangential and normal components with
accounting the bed slope and then be reconstructed according to the common wall models
for the plate walls. This will be complicated since the shear stress tensor has six independent
components for a general case.

3.2.5 Instability analysis of moving boundaries

As the flow field at the current time step is used to get the solution at the next time step,
non-physical value near the interface may be obtained if the role of ghost nodes changes.
In the simulation of wind erosion, the time step of flow simulation is usually much smaller
than the characteristic time scale of particle transport, that is, ∆t ≪ τp. Thus, the immersed
boundaries can not pass through more than one grid cell in a large time step. In this case,
there are three possible situations of the immersed boundary motion:

• Situation 1: Moving between two grid nodes. As shown in Figure 3.14, the immersed
boundary does not pass any computational grid nodes. Thus, the computational grid
nodes do not change their own role and no numerical stability problems arise.
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Figure 3.14 Situation 1 of the immersed boundary motion.
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• Situation 2: Moving toward the fluid and passing a wall node. As shown in Figure
3.15, the ghost node changes to a solid node and the wall node becomes a ghost node.
In this case, it does not cause the problems of numerical instability, as the flow field at
the new ghost point has a history from the previous time step.
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Figure 3.15 Situation 2 of the immersed boundary motion.

• Situation 3: Moving toward the solid and passing a ghost node. As shown in Figure
3.16, the ghost node becomes a wall nodes and the nearest solid node changes to a
ghost node. In this case, numerical instability may happen as the flow field at the new
wall node is not physical and the forcing at the new ghost node loses the history effect.
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Figure 3.16 Situation 3 of the immersed boundary motion.
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Nabi et al. (2012) found that the velocity derivatives near the immersed boundary are not
accurately calculated, since nonphysical velocities are introduced in the situation 3. In this
work, the procedure of wall modeling is applied to construct the velocity at the wall nodes,
and just help to correct the nonphysical value of the velocity in the situation 3. This treatment
is similar to the field-extension procedure proposed by Yang and Balaras (2006), which is
introduced to treat the grid points changing from solid phase to fluid phase. Therefore, the
reconstruction method coupled with wall modeling can be directly applicable to moving
boundary problems. In the simulation of wind erosion, a test of this immersed boundary
method found that the numerical instability sometimes takes place if the wall modeling
procedure is removed.

3.3 Implementation of IBM in ARPS

If the immersed boundary method is implemented in ARPS, some modifications will be
made in the modules of initialization, time integration and parallelization. In this section,
the detailed implementation of IBM in the ARPS code is given and the special treatment for
moving boundaries is introduced.

3.3.1 Initialization

In ARPS, the standard initialization module is used to specify the model control parameters,
to generate the terrain-following grid, and to create the initial flow field. Firstly, the physical
and numerical parameters of numerical cases are assigned by reading the input file. According
to the MPI technique, the computational domain is then divided into several sub-domains. In
each sub-domain, the computational grid is set up and the corresponding Jacobian matrix
is numerically calculated. At last, the base-state and time-dependent variation of physical
variables are initialized using the internal functions.

Figure 3.17 shows the initialization procedure after the implementation of IBM into
ARPS. An additional IBM module is implemented after the procedure of model variables
configuration. In this IBM module, the immersed boundary is firstly configured and then
the computational nodes are classified into the fluid nodes, wall nodes, ghost nodes and
solid nodes. At the end of initialization, the value of model variables at the ghost nodes
are re-assigned by the reconstruction method, in order to impose the immersed boundary
condition.

Since the scalar transport is not the research topic in this work, there is no treatment
for scalars at the immersed boundary. The pressure and density are evaluated by the state
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Figure 3.17 Initialization procedure in ARPS with the implementation of IBM. The red boxes
denotes the additional initialization IBM modules

equation, and thus do not need a forced boundary condition. The potential temperature is
allowed to be freely developed without imposing the forcing.

3.3.2 Time integration

As introduced in Section 2.3, a mode-splitting time integration is used for the numerical
time discretization in ARPS. The terms of acoustic and gravity wave modes are advanced
every small time step, while the other forcing terms are updated on the large time integration.
In particular, the subgrid kinetic energy ksgs used for evaluating the subgrid viscosity νsgs

is advanced on the large time step. In addition, Lagrangian type equation of tracking the
particle trajectories has been implemented in the subroutine for solving the TKE equation.

As illustrated in Figure 3.18, an IBM module is added in the procedure of time integration.
This module is implemented in the subroutine of small time integration. Within this module,
we reconstruct the field of velocity and pressure at the ghost nodes at the end of each small
time advancement. If a coarse grid is used, the wall modeling is used to correct the fluid
velocity at the wall nodes. In addition, the interior treatment at the solid nodes is also
implemented in the reconstruction modules. Obviously, the modification at the interior nodes
can affect the accuracy of velocity or scalar derivatives near the immersed boundary. There
are two possible options available for the artificial treatment of the interior nodes. One is to
impose the null velocity at the solid nodes. This is equivalent to applying the direct forcing
at each interior node as suggested by Saiki and Biringen (1996). The other is to leave the
interior domain free to develop a nonphysical flow without any treatments. From the studies
of Fadlun et al. (2000), Iaccarino and Verzicco (2003) and Lundquist et al. (2010), it was
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Figure 3.18 Time integration procedure in ARPS with the implementation of IBM. The red
box denotes the flow reconstruction and wall modeling IBM modules.

found that no influence on the flow fields at the fluid nodes appeared in test cases of different
interior treatments. In this thesis, we also investigate the effect of interior treatment on the
implementation of IBM in ARPS by carrying out numerical test cases

3.3.3 Parallelization

The IBM modules implemented in ARPS are parallelized in the horizontal directions. In
each sub-domain, the physical variables at the boundaries should be assigned according to
the boundary conditions imposed on the real boundaries, or through the message passing
from the neighbors, which are not located at the real boundaries. At the end of IBM modules,
the message passing is used again to exchange the information at the boundaries with its
neighbors since the value of some physical variables near the immersed boundary is modified
by the flow reconstruction procedure. In particular, if some nodes, used for the interpolation,
are located out of the sub-domain, then an additional message passing will be applied to
obtain the model variable value at these nodes.
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3.3.4 Moving boundaries

The ghost-cell finite-difference method introduced in Section 3.2 is directly used in the
simulation of moving boundary problems. As shown in Figure 3.19, the computational nodes
must be re-classified and the flow field at the ghost and wall nodes have to be reconstructed
again every time the immersed surface is updated according to the physical models of wind
erosion. In addition, when the immersed boundary is moving in a fixed grid, the role of
computational node near the interface may change during time integration, for example, a
ghost node becomes a wall node, or conversely.
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Figure 3.19 Time integration procedure for wind erosion problem in ARPS with the imple-
mentation of IBM.

In Figure 3.19, integrated physical models of wind erosion, including the particle en-
trainment, transport, deposition and particle/surface interaction models, are implemented
to simulate the wind erosion in an atmospheric boundary layer. In the case of sand dune
deformation, one particle is removed from a grid cell once the criterion of particle incipient
motion is satisfied. Commonly, the immersed interface is not able to completely cross one or
more grid cells every time step integration, as the time step is usually assigned by a small
value. For this case, the problems of numerical stability are discussed in Subsection 3.2.5.
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3.4 Validation of IBM-ARPS

In this section, two canonical simulation cases of a turbulent boundary layer (TBL) over
a fixed obstacle are performed to verify the accuracy of the immersed boundary method
implemented in ARPS. The first numerical case is a TBL over a small Gaussian dune, in
which the computational grid near the wall is very fine. The second is a TBL over a large
sinusoidal dune, in which the computational grid near the wall is relatively coarse. In both
cases, recirculation region characteristics, fluid velocity profiles and Reynolds stress profiles
at different stream-wise positions as well as the friction velocity are presented.

3.4.1 Turbulent boundary layer over a small Gaussian dune

The first canonical simulation case of a turbulent boundary layer flow over a small Gaussian
dune is performed to verify the accuracy of the immersed boundary method coupled with
ARPS. In this case, the dune height is much smaller than the thickness of the boundary layer,
i.e., the blockage ratio is H/δ = 1/7. In practice, a fine grid can be used for this simulation,
especially the vertical grid spacing in the near-wall region is able to take the value of order
of the characteristic length in the viscous sublayer using the vertical grid stretching approach,
i.e., ∆z+min = 15 in the buffer layer. This is helpful to obtain an accurate numerical solution
of near-wall flow fields. Using the simulated results, recirculation region characteristics,
longitudinal velocity profiles as well as Reynolds stress profiles at different streamwise
positions are presented and compared with the experimental results of Simoëns et al. (2015).

Experimental configuration: The experimental set-up is sketched in Figure 3.20. For the

Figure 3.20 Sketch of the wind tunnel set up of the experiment of Simoëns et al. (2015).
Taken from Huang (2015).

wind tunnel flow, the external velocity is set to Ue = 11.2 m/s, the thickness of the boundary
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layer is δ = 0.07 m and the friction velocity is u∗ = 0.46 m/s. Small particles of an average
diameter dp = 200 µm are uniformly and closely spread and glued on the ground in order to
obtain the rough wall condition. The obstacle shape is a Gaussian dune given by

h(x,y) = H exp
(
−
(

0.7
x
H

)2
)

, (3.19)

where H = 0.01 m is the dune height. Equation (3.19) shows that the dune height is indepen-
dent on y, and thus is homogeneous in the spanwise direction. The particle image velocimetry
(PIV) is used for the measurement of the fluid velocity.

Numerical configuration: The computational domain is illustrated in Figure 3.21. The
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Figure 3.21 Sketch of the computational domain of TBL over a small Gaussian dune.

Gaussian dune is located at the origin, and is considered as the immersed boundary, on
which no-slip boundary condition is imposed using the immersed boundary method. At the
beginning of the domain, there is a flow development region from x =−50H to x =−30H
for generating the inlet flow using the recycling method [Lund et al. (1998)]. The physical
parameters are shown in detail in Table 3.1 and the numerical parameters in Table 3.2. The
external velocity Ue, the boundary layer thickness δ and the friction velocity u∗ are given to
generate the inlet streamwise velocity profile and the initial base state using an improved
log-law formula [Huang et al. (2016)]. The size of the domain is determined by Lx, Ly and Lz

and Nx, Ny and Nz are the number of nodes in the three direction. The grid is uniform in the
streamwise and spanwise direction with the assigned values ∆x and ∆y. It is slightly stretched
in the wall-normal direction with an average grid increment ∆z and a refined increment near
the wall ∆zmin. Note that the refined region should cover the Gaussian dune to ensure the
accuracy of the interpolation used in the immersed boundary method. The grid testing has
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been done in the thesis of Huang (2015). Here, we chose the grid size shown in Table 3.2,
which has been examined and given a good performance for the numerical simulation.

H(m) δ (m) Ue(m · s−1) u∗(m · s−1) ReH Reδ Reτ

0.01 0.07 11.2 0.46 7467 52267 2147
Table 3.1 Physical parameters given for simulating TBL over a small Gaussian dune. The
Reynolds numbers are defined by ReH =UeH/ν , Reδ =Ueδ/ν and Reτ = u∗δ/ν .

Nx ×Ny ×Nz Lx/H Ly/H Lz/H ∆x/H ∆y/H ∆z/H ∆zmin/H ∆x+ ∆y+ ∆z+min

643×63×100 64 6 15 0.1 0.1 0.15 0.05 30 30 15
Table 3.2 Numerical parameters given for simulating TBL over a small Gaussian dune.

Test cases: As presented in Table 3.3, five numerical test cases with different treatments
are carried out using the same physical and numerical parameters shown in Table 3.2. Test
A is performed using ARPS without the implementation of immersed boundary method
as in Huang (2015). The simulated results of Test A are considered as the reference for
the comparisons with the results by IBM-ARPS in the investigation of the accuracy of the
immersed boundary method. Test B is conducted by IBM-ARPS, in which only the no-slip
boundary condition is imposed on the immersed surface and the fluid velocity inside the dune
is enforced to zero. Test C is performed using IBM-ARPS without any treatments inside
the dune. Test D is simulated by IBM-ARPS with near-wall treatments on the immersed
boundary. Test E is conducted by IBM-ARPS with imposing the zero-gradient condition
of the pressure fields on the immersed boundary. The latter three numerical cases are used
to investigate the influence of different treatments on the performance of the IBM-ARPS
simulation.

Test
ARPS or

IBM-ARPS Interior treatment Wall modeling
Pressure

reconstruction
Test A ARPS - - -
Test B IBM-ARPS Zero velocity Non Non
Test C IBM-ARPS Non Non Non
Test D IBM-ARPS Zero velocity Yes Non
Test E IBM-ARPS Zero velocity Non Yes

Table 3.3 Test cases with different treatments for a TBL over a small Gaussian dune.
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3.4.2 Results and comparisons

According to the works of Huang (2015), recirculation zones are characterized not only
by the separation position xsep and the reattachment position xreat , but also by a maximal
height LAB and a major axis LCD as shown in Figure 3.22. xsep is defined as the minimum
streamwise position of the recirculation zone and xreat the maximum one. LAB is defined as
the maximum distance from the dune surface to the recirculation streamline in the vertical
direction and LCD the longest one between the two extremities of the recirculation bubble.
The ratio LAB/LCD is then a useful parameter to characterize the shape of the bubble.

Figure 3.22 Sketch of the key characteristics of the recirculation zone behind a 2D obstacle.
Figure adapted from Huang et al. (2018).

Figure 3.23 shows the recirculation zones obtained by the experiments, by the ARPS
simulation and by the IBM-ARPS simulation. In Figure 3.23, the coordinates are scaled
by the dune height H and the origin is set at the dune center. Table 3.4 gives the values
of key parameters characterizing the form of recirculation zone, i.e., xsep, xreat , LAB, LCD

and LAB/LCD. The separation position xsep is the same between the two simulations but
slightly larger than that of the experiment, while xreat given by the ARPS simulation is a
little bigger than the experimental value and it becomes a little smaller when the immersed
boundary method is introduced. The length LAB is completely the same between the three
cases, whereas LCD obtained by the ARPS is slightly greater than that of the experiment and
LCD obtained by the IBM-ARPS is a little smaller. The ratio of LAB and LCD is nearly the
same and is around 0.18. This means that the recirculation zone simulated by the ARPS
becomes slightly smaller when the immersed boundary method is used, and that both the
simulated recirculation zone sizes are consistent with the experimental results of Simoëns
et al. (2015).
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(a) Experiment of Simoëns et al.
(2015).

(b) Numerical simulation using the
ARPS (Test A).
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Figure 3.23 Mean streamlines over a Gaussian dune and recirculation zones on the lee side.

xsep/H xreat/H LAB/H LCD/H LAB/LCD

Experiment 0.2 6.9 1.2 6.7 0.179
Test A 0.3 7.0 1.2 6.8 0.176
Test B 0.3 6.8 1.2 6.6 0.182

Table 3.4 Characterization of the recirculation zone behind a small Gaussian dune.
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Figure 3.24 Mean longitudinal velocity profiles over a small Gaussian dune. Points: ex-
periments of Simoëns et al. (2015). Dashed lines: ARPS simulation (Test A). Solid lines:
IBM-ARPS simulation (Test B).

The mean longitudinal velocities over a Gaussian dune at several different streamwise
stations are presented in Figure 3.24. The mean streamwise velocities are normalized by
the external one and located at the corresponding stations, i.e., x = 0.0, x = 2.0H, x = 4.0H,
x = 6.0H, x = 8.0H, x = 9.5H. The coordinates are scaled by the dune height H and the
origin is set at the dune center. It is shown that the flow near the boundary accelerates on
the windward side of the dune and then decreases on its lee side. The velocity profiles
located in the recirculation zone are reversed. A good agreement is achieved between the
two simulation results, even which is slightly smaller than experimental data.
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Figure 3.25 Reynold stress τuw = ⟨u′w′⟩ profiles over a small Gaussian dune. Points: ex-
periments of Simoëns et al. (2015). Dashed lines: ARPS simulation (Test A). Solid lines:
IBM-ARPS simulation (Test B).

In Figure 3.25, we illustrate profiles of mean Reynolds stress ⟨u′w′⟩ over the small
Gaussian dune at six different stremwise stations. Here, u′ denotes the fluctuation velocity in
the streamwise direction and w′ the fluctuation in the normal direction. The mean Reynolds
stress is scaled by the square of the external velocity. As shown in Figure 3.25, because of
the separation of shear flow, the Reynold stress increases obviously in the recirculation zone.
A good agreement between the ARPS simulation and the IBM-ARPS simulation is observed,
whereas the Reynolds stress obtained by both simulations is smaller than that of experiments.
Globally, the agreement on Reynolds stress, particularly near the wall, ensures us the validity
of the numerical methods, even though the numerical simulations underestimate the value of
Reynolds stress.

Figure 3.26 shows the friction velocity u∗ over a small Gaussian dune, which is responsi-
ble for the particle incipient motion. The friction velocity is defined by u∗ =

√
τw/ρ as in

Huang (2015), where τw is wall shear stress and ρ is the fluid velocity, and it is normalized by
the initial value. The friction velocity slightly decreases as the boundary layer flow develops,
increases on the windward side of the dune and until near the dune crest, suddenly drops
sharply due to the presence of flow separation and takes very small values in the recirculation
zone, then gradually grows after the reattachment point. Obviously, the friction velocity
vanishes at the separation and reattachment points. This is helpful to determine the value of
xsep and xreat . In Figure 3.26, the friction velocity obtained by the IBM-ARPS agrees well
with that by the ARPS.

In short, the recirculation zone characteristics, mean longitudinal velocity profiles and
Reynolds stress profiles obtained by the IBM-ARPS are in a good agreement with the
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Figure 3.26 Comparison of the friction velocity between the ARPS simulation (Test A) and
the IBM-ARPS simulation (Test B).

simulated results by the ARPS and the experimental data of Simoëns et al. (2015). The
friction velocity obtained by the IBM-ARPS is totally in agreement with the simulated one by
the ARPS without the immersed boundary method. This basically validates the accuracy of
the new numerical solver (called the standard IBM-ARPS), in which only no-slip boundary
condition is imposed on the immersed boundary.

In the following, we investigate the effect of interior treatment, wall modeling, pressure
reconstruction on the standard IBM-ARPS code through the comparisons of recirculation
zone characteristics, mean longitudinal velocity profiles, Reynolds stress profiles and the
friction velocity between simulated results.

Effect of interior treatment: When the immersed boundary method is used, there are
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(a) IBM-ARPS simulation with imposing zero ve-
locity on the solid nodes (Test B).

(b) IBM-ARPS simulation without any treatments
on solid nodes. (Test C).

Figure 3.27 Mean streamlines over a Gaussian dune and recirculation zones on the lee side.

two special treatments for the interior computational nodes (identified as solid nodes in
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(a) Mean longitudinal velocity profiles over a small Gaussian dune.
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(b) Reynold stress τuw = ⟨u′w′⟩ profiles over a small Gaussian dune.
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(c) Normalized friction velocity over a small Gaussian dune.

Figure 3.28 Comparison of flow fields simulated by the IBM-ARPS between with imposing
zero velocity on the solid nodes (Test B) and without any interior treatments (Test C).
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this thesis): imposing zero velocity at the solid nodes or leaving solid nodes free without
any modifications. Test B is conducted by the standard IBM-ARPS with directly enforcing
null velocity at all solid nodes and Test C without any special treatments in the interior
domain. Figure 3.27 shows the recirculation zones behind the small Gaussian dune of the
two numerical simulations. The size of these two bubbles is found nearly the same. For
instance, it is observed in Figure 3.28(c) that the starting and ending points of null friction
velocity are located at the same position for both Test B and Test C , which indicates that
xsep and xreat take almost the same values. Figure 3.28 presents mean longitudinal velocity
profiles, Reynold stress profiles and friction velocity of Test B and Test C. A good agreement
between them is observed, though a slight difference in Reynolds stress and friction velocity
is found within the recirculation zone. Briefly, the good agreement between the flow fields
of Test B and Test C shows no significant influence of interior treatments on the simulated
results. This point is supported by the studies of Fadlun et al. (2000), Iaccarino and Verzicco
(2003) and Lundquist et al. (2010), in which the influence of the internal treatments has been
checked and no essential influence was found.

Effect of wall modeling: The wall modeling is detailedly described in Subsection 3.2.4.
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(a) IBM-ARPS simulation without wall modeling
(Test B).

(b) IBM-ARPS simulation with wall modeling
(Test D).

Figure 3.29 Mean streamlines over a small Gaussian dune and recirculation zones behind the
dune.

It is interesting to investigate the effect of wall modeling on the numerical results when a
relatively fine grid is used. If the wall modeling is employed, the fluid velocity on the wall
nodes in the fluid domain is required to be reconstructed using a rough law of the wall. Test
B is conducted by the standard IBM-ARPS without wall modeling and Test D with wall
modeling. Figure 3.29 illustrates the recirculation zones of these two cases. It is found
that applying the wall modeling weakly reduces the size of recirculation zone. In Figure
3.31, mean longitudinal velocity profiles, Reynolds stress profiles and friction velocity are
presented and compared between Test B and Test D. A good agreement is observed on the
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longitudinal velocity as well as the friction velocity, and a slight difference exists for the
Reynolds stress. Moreover, as shown in Figure 3.31(c), the starting point of zero friction
velocity of Test D is slightly bigger than that of Test B, whereas the ending point of Test D
is a little smaller than that of Test B. This indirectly indicates that a smaller recirculation
zone is obtained using wall modeling coupled with immersed boundary method. In brief, a
very small effect on the simulated fields is observed when the wall modeling is applied in the
standard IBM-ARPS simulation with a fine grid.

Effect of pressure reconstruction: Technically, zero-gradient condition for fluid pressure
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(a) IBM-ARPS simulation without pressure recon-
struction (Test B).
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(b) IBM-ARPS simulation with pressure recon-
struction (Test E).

Figure 3.30 Mean streamlines over a Gaussian dune and comparison of the recirculation
zones behind the dune.

should be imposed on the immersed boundary while no-slip condition for fluid velocity is
imposed on it. Zero-gradient condition can be regarded as the Neumann boundary condition,
i.e., ∂ (∆p)/∂n = −∂ pr/∂n. In Test E, zero-gradient condition for pressure is achieved
by directly reconstructing the pressure value on the ghost nodes through the interpolation
introduced in Subsection 3.2.3. Figure 3.30 shows the recirculation zones behind the dune
of Test B and Test E, and that the bubble size of these two cases is almost the same. In
Figure 3.32, the mean longitudinal velocity profiles, Reynolds stress profiles and the friction
velocity are shown and a perfect agreement between Test B and Test E is observed. Hence, it
is concluded that the pressure reconstruction has no effect on the flow fields simulated by the
standard IBM-ARPS.

In a word, the good agreement between the (ARPS and IBM-ARPS) simulation results
and experimental data demonstrates the accuracy of the new numerical solver with the
implementation of immersed boundary method. It is also shown that neither the interior
treatment nor the pressure reconstruction has effect on the simulated results, whereas the
wall modeling has a slight influence, e.g., weakly reducing the recirculation zone.
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(a) Mean longitudinal velocity profiles over a small Gaussian dune.
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(b) Reynold stress τuw = ⟨u′w′⟩ profiles over a small Gaussian dune.
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(c) Normalized friction velocity over a small Gaussian dune.

Figure 3.31 Comparison of flow fields simulated by the IBM-ARPS between without wall
modeling (Test B) and with wall modeling (Test D).
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(a) Mean longitudinal velocity profiles over a small Gaussian dune.
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(b) Reynold stress τuw = ⟨u′w′⟩ profiles over a small Gaussian dune.
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(c) Normalized friction velocity over a small Gaussian dune.

Figure 3.32 Comparison of flow fields simulated by the IBM-ARPS between without pressure
reconstruction (Test B) and with pressure reconstruction (Test E).
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3.4.3 Turbulent boundary layer over a large sinusoidal dune

The second canonical simulation case of a turbulent boundary layer flow over a large
sinusoidal fixed dune is performed. This case comes from one of the few existing wind-
tunnel experiments on wind erosion over a deformable sand dune [Ferreira and Fino (2012)].
The main aim of this thesis is to reproduce the results of sand dune deformation in this
experiment by conducting a three-dimensional LES simulation with integrated wind erosion
models, even though a two-dimensional RANS simulation has been carried out by Lopes
et al. (2013). To achieve a complete wind erosion simulation with sand dune deformation,
we firstly focus on the simulation of a boundary layer over a fixed dune. Concretely, in
this case, the dune height is close to the thickness of the boundary layer, i.e., the blockage
ratio is H/δ = 3/5. In practice, a relatively coarse grid is used in this simulation, since the
refined vertical grid spacing is greatly larger than the characteristic length in the viscous
sublayer, i.e., ∆z+min = 42 in the log layer. Hence, the presence of this large dune increases
the difficulty of near-wall resolution, specially, the estimation of wall shear stress over the
dune, the prediction of flow separation and the formation of recirculation zone on the lee
side. Based on the simulated results, the flow characteristics over this large dune, including
recirculation zones, mean longitudinal velocity, Reynolds stress and friction velocity, are
studied, in order to validate the ability of the new numerical solver (IBM-ARPS).

Numerical configuration: In this simulation, the dune shape takes form of:

h(x,y) =
H
2

{
1+ sin

[
π ×

(
x

3H
+

1
2

)]}
, (3.20)

where H is the dune height. Equation (3.20) shows that h is independent on y, and thus is
homogeneous in the y- direction. The computational domain is illustrated in Figure 3.33.
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Figure 3.33 Sketch of the computational domain of TBL over a large sinusoidal dune.
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The large sinusoidal dune is located at the origin, and is regarded as the immersed boundary.
At the beginning of the domain, there is a flow development region from x = −30H to
x =−20H for generating the inlet flow using the recycling method. The physical parameters
are shown in detail in Table 3.5 and the numerical parameters in Table 3.6. The initial base
state of flow field is generated using an improved log-law formula [Huang et al. (2016)],
where the external velocity Ue, the boundary layer thickness δ and the friction velocity u∗
are given in an input file. Lx, Ly and Lz mean the domain size in the three dimensions and
Nx, Ny and Nz are the number of nodes. The grid is uniform in the streamwise and spanwise
direction with the assigned values ∆x and ∆y. It is slightly stretched in the wall-normal
direction with an average grid increment ∆z and a refined increment near the wall ∆zmin.

H(m) δ (m) Ue(m · s−1) u∗(m · s−1) ReH Reδ Reτ

0.06 0.10 9.1 0.42 36400 60667 2800
Table 3.5 Physical parameters given for simulating TBL over a small Gaussian dune. The
Reynolds numbers are defined by ReH =UeH/ν , Reδ =Ueδ/ν and Reτ = u∗δ/ν .

Nx ×Ny ×Nz Lx/H Ly/H Lz/H ∆x/H ∆y/H ∆z/H ∆zmin/H ∆x+ ∆y+ ∆z+min

1063×63×100 53 6 8.5 0.05 0.10 0.10 0.025 84 168 42
Table 3.6 Numerical parameters given for simulating TBL over a small Gaussian dune.

Test cases: Three numerical test cases are conducted for the simulation of a TBL flow over
a large sinusoidal dune. Test A′ is carried out using the ARPS with a terrain-following grid.
Test B′ is performed by the standard IBM-ARPS. Test C′ is conducted using the standard
IBM-ARPS with the additional wall modeling. On the one hand, comparisons between these
simulations can show the ability of the standard IBM-ARPS solver. On the other hand, the
effect of wall modeling on the IBM-ARPS simulation with a coarse grid can be figured out.

Test
ARPS or

IBM-ARPS Interior treatment Wall modeling
Pressure

reconstruction
Test A′ ARPS - - -
Test B′ IBM-ARPS Zero velocity Non Non
Test C′ IBM-ARPS Zero velocity Yes Non

Table 3.7 Test cases with different treatments for a TBL over a large sinusoidal dune.
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3.4.4 Results and comparisons

The recirculation zones obtained by Test A′, Test B′ and Test C′ are shown in Figure 3.34 and
the key parameters (xsep, xreat , LAB, LCD and LAB/LCD) are presented in Table 3.8. Compared
with the bubble obtained by the ARPS, the recirculation zone simulated by the standard
IBM-ARPS is greatly enlarged when a relatively coarse grid is employed. On the contrary,
the bubble is severely reduced when the wall modeling is coupled with the standard IBM-
ARPS. This indicates that the recirculation zone behind the dune is not able to be accurately
predicted by the standard IBM-ARPS with a coarse grid, and that the wall modeling has
a great influence on the characteristics of recirculation zone. Unfortunately, there is no
experimental data for the recirculation zone size in this case. In both the sinusoidal case and
the Gaussian dune case, the maximal dune slope is nearly the same: 32◦ for Gaussian dune
and 33◦ for the sinusoidal dune. According to the study of Huang (2015), it is found that
the blockage ratio has weak influence on the lee side flow separation and thus on the bubble
size, whereas an increase of Reynold number ReH delays the flow separation and then reduce
the recirculation zone. Therefore, the recirculation zone behind a large sinusoidal dune is
supposed to be much smaller than that behind a small Gaussian dune previous one, since the
Reynolds number ReH = 36400 in the former case is much greater than ReH = 7467 in the
latter case. This proves that the small recirculation obtained by IBM-ARPS simulation with
the wall modeling seems more reasonable and physical. This point is also supported by the
RANS simulation of Lopes et al. (2013), in which a very small recirculation zone behind the
dune is observed.

(a) Numerical simulation using the
ARPS (Test A′).

(b) Numerical simulation using
IBM-ARPS (Test B′).

(c) IBM-ARPS simulation with
wall modeling (Test C′).

Figure 3.34 Mean streamlines over a large sinusoidal dune and recirculation zones behind
the dune.

Figure 3.35 shows the mean longitudinal velocity profiles over a sinusoidal dune at seven
different streamwise stations, i.e., x = −1.5H, x = 0.0H, x = 1.5H, x = 3.0H, x = 4.5H,
x = 6.0H and x = 7.5H. The velocity is scaled by the external one Ue. It is found that the
flow accelerates on the windward side and separates near the crest on the lee side. Due to
the flow separation, the recirculation zone is created behind the dune. Within this bubble,
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xsep/H xreat/H LAB/H LCD/H LAB/LCD

Test A′ 0.97 4.48 0.80 3.60 0.222
Test B′ 0.36 8.22 1.20 7.91 0.152
Test C′ 1.67 3.83 0.44 2.21 0.199

Table 3.8 Characterization of the recirculation zone behind a large sinusoidal dune.
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Figure 3.35 Mean longitudinal velocity profiles over a large sinusoidal dune. Black points:
ARPS simulation (Test A′). Blue dashed lines: IBM-ARPS simulation without wall modeling
(Test B′). Red solid lines: IBM-ARPS simulation with wall modeling (Test C′).
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Figure 3.36 Reynold stress τuw = ⟨u′w′⟩ profiles over a large sinusoidal dune. Black points:
ARPS simulation (Test A′). Blue dashed lines: IBM-ARPS simulation without wall modeling
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the longitudinal velocity near the wall is reversed. Figure 3.36 presents the Reynolds stress
profiles over the sinusoidal dune. The Reynolds stress is normalized by U2

e . It is shown that



3.4 Validation of IBM-ARPS 81

the Reynolds stress is enhanced after the flow separation, especially in the recirculation zone.
As shown in Figures 3.35 and 3.36, a good agreement on mean longitudinal velocity and
Reynold stress is observed on the windward side, but an obvious difference is shown on the
lee side. Globally, the results simulated by the IBM-ARPS with the wall modeling is much
closer to that of the ARPS simulation than that of the standard IBM-ARPS simulation.
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Figure 3.37 Comparison of the friction velocity between the ARPS simulation (Test A′), the
ARPS simulation without wall modeling (Test B′) and the IBM-ARPS simulation with wall
modeling (Test C′).

In Figure 3.37, the friction velocities obtained by the ARPS simulation, the IBM-ARPS
simulation and the IBM-ARPS simulation with wall modeling are presented. The friction
velocity is scaled by the initial value. It is shown that the friction velocity over the dune
obtained by the standard IBM-ARPS simulation is obviously much smaller than that by the
other two simulations. Although the friction velocity of IBM-ARPS simulation with wall
modeling slightly differs from that of ARPS simulations on the lee side, a good agreement is
observed on the windward side and at the dune crest, especially on that of large values, which
is important for the particle entrainment. Briefly, Applying wall modeling in the standard
IBM-ARPS simulation is helpful to obtained a relatively accurate friction velocity over a
large dune when a coarse grid is used.

In conclusion, through the comparisons with the simulated results by the ARPS, the
accuracy of the IBM-ARPS simulation with wall modeling is more acceptable than the
standard IBM-ARPS simulation for the TBL flow over a large sinusoidal dune. It is also
concluded that the wall modeling is an effective way to improve the simulated flow fields
when the IBM-ARPS is used with a coarse grid.
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3.5 Conclusions

In this chapter, a new numerical solver of large-eddy simulation coupled with immersed
boundary method (IBM-APRS) is developed to simulate turbulent boundary layer flows over
complex or deformable obstacles of different sizes. The accuracy of this solver is validated
through the numerical simulations of a turbulent boundary layer over a small Gaussian and a
large sinusoidal dune.

In the first canonical validation case, we conduct several numerical simulations a TBL
over a small Gaussian dune using a relatively fine grid. A good agreement on the recirculation
zone characteristics, mean longitudinal velocity profiles, Reynolds stress profiles between the
(ARPS and IBM-ARPS) simulation results and experimental data demonstrates the ability
of this developed solver. Moreover, it is shown that neither the interior treatment nor the
pressure reconstruction has influence on the standard IBM-ARPS simulation results, whereas
the wall modeling has a slight effect, e.g., weakly reducing the recirculation zone.

In the second canonical validation case, we preforms numerical simulations a TBL over
a large sinusoidal dune using a relatively coarse grid. It is shown that the IBM-ARPS with
wall modeling gives a better performance than the standard IBM-ARPS by comparing the
results with simulated data by the ARPS with terrain-following grid. It is concluded that the
wall modeling plays a more important role in the IBM-ARPS simulation with a coarse grid
than that with a very fine grid. In our following works, this numerical approach will be used
to simulate the turbulent boundary layer flow with Lagrangian tracking of solid particles and
with a deformable dune. The dune deformation will be modeled by sand particle movement
with the physical wind erosion models proposed in Chapter 4.



Chapter 4

Physical modeling of wind erosion

Wind erosion consists in four complex processes: particle entrainment, particle transport,
particle deposition and particle/surface interaction. In order to study the wind erosion through
numerical simulations, physical modeling of these processes is required. In the previous
models of wind erosion, the erosion and deposition rates are usually modeled as functions
of the Shields number. However, these empiric functions are obtained from the saturated
(equilibrium) transport state, and hence, lack universality. Therefore, we propose a more
comprehensive and physical model of wind erosion, in which particle motions are determined
by the forces acting on it and particle/surface interaction are taken into account using a
probabilistic rebound/splash model.

In this chapter, original physical modeling of wind erosion is presented and integrated
wind erosion models are proposed. In Section 4.1, the forces acting on an individual
airborne particle are introduced and discussed. In Section 4.2, particle incipient motions
are theoretically analyzed and an instantaneous particle entrainment model is proposed.
In Section 4.3, Lagrangian governing equations of airborne and bed-load particle motions
are given. Moreover, a Lagrangian stochastic model and a two-way coupling strategy are
briefly described. In Section 4.4, particle-surface collision (rebound and splash) models
are introduced and the criterion of particle deposition is briefly given. In Section 4.5, an
avalanche model is presented and the governing equation of sand deformation is introduced.

4.1 Forces on an airborne particle

The forces acting on an airborne particle can be classified into two categories: i) forces
produced by the undisturbed ambient flow, ii) forces induced by the disturbance. The
undisturbed ambient flow is defined as the steady uniform or non-uniform flow in the absence
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of the particle, and the disturbance is produced by either the unsteady flow or the particle and
its unsteady motion with respect to the ambient flow.

Since the 19-th century, Stokes (1851) began the study on drag force acting on a sphere in
a steady uniform flow. Then Boussinesq (1885), Basset (1888a) and Oseen (1927) provided
the force formula of a moving particle in the fluid at rest, in order to study the dynamic
motion of a particle submerged in fluid. Faxén (1922) extended Stokes’ drag expression to
the non-uniform flow though replacing the uniform velocity by the undisturbed non-uniform
ambient velocity averaged over the particle surface. To study the particle motion in a moving
fluid, Tchen (1947) made two extensions on the forces: firstly, to an unsteady and uniform
flow; secondly, to an unsteady and non-uniform flow. Unfortunately, Corrsin and Lumley
(1956) lately stated several inconsistencies in Tchen’s second extension, specially the effect
of pressure gradient on the contribution to the forces on the particle. Lately, Buevich (1966)
made his contribution to improve this term induced by the undisturbed effect. Maxey and
Riley (1983) proposed the dynamic motion of a particle in unsteady and non-uniform flow
with complete and accurate force expressions. However, this equation is only applied to
particles of size smaller than the flow dissipation scale. Gatignol (1983) corrected this
limitation by several dissipation scales by using the Faxén correction [Faxén (1922)].

In this section, considering a singular particle flying in an unsteady turbulent boundary
flow or moving on the bed surface, we will briefly introduce analytical expressions of these
forces acting on it. We divide these forces into three groups: 1) the forces in undisturbed
ambient flows, including the aerodynamic drag and lift; 2) forces induced by the disturbance,
including the added-mass force, the Basset force, the effect by the pressure gradient; and 3)
the other forces independent on the flow, consisting in the submerged gravity, the adhesion
force and the friction due to the contact with the ground.

4.1.1 Forces in undisturbed ambient flows

The undisturbed ambient flows is defined as the steady uniform or non-uniform flow without
the effect of particles and particle motions. The main forces acting on a spheric particle
induced by the flow are the aerodynamic drag and the aerodynamic lift. Specially, the
aerodynamic lift of an immobile particle vanishes in an uniform flow, and it is generally
induced by the vortex (or shear) and particle rotation.

Drag force: The aerodynamic drag force is aligned with the relative velocity of particle to
fluid and slows down or accelerates the particle motion. This force for a spherical particle
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can be written as:
F⃗D =−π

8
CDρd2

pu2
r

ˆ⃗ur, (4.1)

where CD is the non-dimensional drag coefficient, ρ the fluid density, dp the particle diameter,
ur the norm of particle-fluid relative velocity u⃗r (⃗xp, t) = u⃗p − u⃗(⃗xp, t) with u⃗p the particle
velocity and u⃗(⃗xp, t) the fluid velocity at the particle center position x⃗p, and ˆ⃗ur the unit vector
of u⃗r, respectively. Hence, from Equation (4.1), the drag coefficient CD is evaluated by:

CD =
FD

π

8 ρd2
pu2

r
, (4.2)

where FD is the norm of the aerodynamic drag force F⃗D.

From experimental and simulated results, the drag coefficient can be written as a function
of particle Reynolds number Rep [Shields (1936)]:

CD(Rep) =
24

Rep
f (Rep), (4.3)

where Rep is defined as Rep = urdp/ν , and the function f is given by:

f (Rep) =

1+0.15Re0.687
p , if Rep < 1000;

0.0183Rep , otherwise.
(4.4)

In this thesis, special attention is paid to the aerodynamic drag force for a particle sitting
on the wall as shown in Figure 4.1. We define a new non-dimensional drag coefficient Cw

D as
follows:

Cw
D =

FD
π

8 ρd2
pu2∗

, (4.5)

with ur in Equation (4.2) replaced by the friction velocity u∗. For a particle lying on a
rough wall, we have ur = u(h+ dp/2) where h is the effective height of rough elements.
Using the law of the rough wall u+ = fw(z+,h+), we have ur = u∗ fw(h++d+

p /2,h+) and
Rep = d+

p fw(h++d+
p /2,h+) with d+

p = dpu∗/ν . Combining Equation (4.2) and Equation
(4.5), the relation between Cw

D and CD is obtained:

Cw
D(d

+
p ) =CD

(
d+

p fw

(
h++

d+
p

2
,h+
))

f 2
w

(
h++

d+
p

2
,h+
)

. (4.6)

Note that the law of the wall fw has been detailedly described in Appendix A for both the
smooth and rough cases. Specially, we have h+ = 0 in the case of a smooth wall.
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FD

Flow

Figure 4.1 Sketch of the aerodynamic drag
force F⃗D for a particle sitting on the wall.

~FL
Flow

Figure 4.2 Sketch of the aerodynamic lift
force F⃗L for a particle sitting on the wall.

Lift force: The aerodynamic lift is the component of the aerodynamic force orthogonal to
the direction of the fluid-particle relative velocity. The aerodynamic lift acting on a particle
can be divided into two parts: the fluid vortex induced part, and the particle rotation induced
part [Loth (2008)]. There is not an empirical and useful formula to describe the total lift
force, due to the nonlinear relation between these two parts. In our works, we study the
motion of spherical particles in boundary flows without accounting for the particle rotation,
therefore, the rotation-induced lift, also called the Magnus force, is neglected, and the vortex-
induced lift is then dominant. Generally, the vortex-induced lift takes form of [Legendre and
Magnaudet (1998)]:

F⃗L =
π

8
CLρd2u2

r
ˆ⃗ω × ˆ⃗ur, (4.7)

with CL the non-dimensional lift coefficient, ˆ⃗ω × ˆ⃗ur the direction of lift force. ω⃗ = ∇× u⃗
is the fluid vorticity at the center of the particle, and ˆ⃗ω is its unit vector. Hence, the lift
coefficient CL is defined in the same manner as CD (Equation (4.2)):

CL =
FL

π

8 ρd2
pu2

r
, (4.8)

where FL is the norm of the aerodynamic lift force F⃗L.

In a simple case of linear-shear vorticity, Saffman (1965) found an analytical formula of
FL for Rep ≪ 1:

FL = 1.615ρνurd2
p

√
ωshear

ν
, (4.9)

where ωshear denotes the vorticity in a linear shear flow. In boundary flows, we approximately
take ωshear = (u(zp +dp/2)−u(zp −dp/2))/dp with u the streamwise velocity and zp the
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particle position in the wall-normal direction. Substituting Equation (4.9) into Equation (4.8),
the Saffman-lift coefficient is expressed by a function of particle Reynolds number Rep and
of the non-dimensional vorticity number Reω :

CSaff
L (Rep,Reω) =

12.92
π

√
Reω

Rep
, (4.10)

where Reω is defined as Reω = dpωshear/ur. To eliminate the strong restriction Rep ≪ 1, Mei
(1992) used the numerical results of Dandy and Dwyer (1990) and obtained an approximate
formula of CL:

CL(Rep,Reω)=

CSaff
L

(
(1−0.2343Re1/2

ω )exp(−Rep/10)+0.2343Re1/2
ω

)
, if Rep ≤ 40,

0.0441CSaff
L

(
Re1/2

ω Rep

)1/2
, if Rep > 40,

(4.11)
where CSaff

L is the Saffman lift coefficient given by Equation (4.10).

In particular, for a particle resting on the wall, Mollinger and Nieuwstadt (1996) proposed
an empirical formula of the lift force by fitting with their experimental data:

FL = 15.57ρν
2
(

u∗dp

ν

)1.87

, (4.12)

where u∗ is the friction velocity. By introducing non-dimensional lift force F+
L = FL/(ρν2)

and particle diameter d+
p = u∗dp/ν , Equation (4.12) can be rewritten as:

F+
L = 15.57(d+

p )
1.87. (4.13)

Some other formula of F+
L are given in Table 4.1. It should be noted that the formula of Hall

(1988) and Mollinger and Nieuwstadt (1996) are obtained from the experiments of a particle
on a wall in a turbulent boundary layer. Zeng et al. (2009) found that the measured lift force
in a boundary layer is greater than those in a linear shear flow. In numerical simulations,
Descamps (2004) and Huang (2015) chosen the formula of Mollinger and Nieuwstadt (1996)
to simulate particle entrainment in an atmospheric boundary layers. Moreover, Zeng et al.
(2009) propose a simple expression of the shear-induced lift coefficient for a particle sitting
on the wall:

CL(Rep) =
3.63

(Re2
p +0.1173)0.22 . (4.14)

Note that CL is a pure function of the particle Reynolds number Rep in Equation (4.14),
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which is the same as the drag coefficient. This may facilitate the calculation of the lift force
of a particle contacted on the wall.

Formula of F+
L Formula of Cw

L Literature
F+

L = 0.81(d+
p )

3 Cw
L = 6.46

π
d+

p Saffman (1965) first order
F+

L = 0.81(d+
p )

3

− 0.27(d+
p )

4
Cw

L = 6.46
π

d+
p

− 4.32
π

(d+
p )

2 Saffman (1965) second order

F+
L = 0.58(d+

p )
4 Cw

L = 9.22
π

(d+
p )

2 Leighton and Acrivos (1985)
F+

L = 4.21(d+
p )

2.31 Cw
L = 20.90

π
(d+

p )
0.31 Hall (1988)

F+
L = 15.57(d+

p )
1.87 Cw

L = 56.90
π

(d+
p )

−0.13 Mollinger and Nieuwstadt (1996)
F+

L = 0.49(d+
p )

3.12 Cw
L = 4.24

π
(d+

p )
1.12 Zeng et al. (2009)

Table 4.1 Some formulas of the non-dimensional lift force F+
L and the wall lift coefficient

Cw
L .

In this thesis, we define a new non-dimensional lift coefficient Cw
L for a particle sitting on

a wall as shown in Figure 4.2, as follows:

Cw
L =

FL
π

8 ρd2
pu2∗

, (4.15)

with ur in Equation (4.8) replaced by the friction velocity u∗. For a particle lying on a
rough wall, we have ur = u(h+dp/2) where h means the effective height of rough elements.
Using the log law of the wall u+ = fw(z+,h+), we have ur = u∗ fw(h++d+

p /2,h+), Rep =

d+
p fw(h++d+

p /2,h+) and Reω =( fw(h++d+
p ,h

+)− fw(h+,h+))/ fw(h++d+
p /2,h+). Com-

bining Equation (4.8) and Equation (4.15), the relation between Cw
L and CL is obtained:
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L (d

+
p )= f 2
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2
,h+
)

CL
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p fw
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fw(h++d+
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+)− fw(h+,h+)

fw(h++d+
p /2,h+)

)
.

(4.16)
Specially, we take h+ = 0 in the smooth case. For example, it is known that the linear relation
lies in the viscous sublayer for a smooth wall, i.e., fw(z+) = z+, when CL takes the Saffman’s
formula (Equation (4.10)), applying Equation (4.16) yields:

Cw
L =

6.46
π

d+
p . (4.17)

It indicates that Cw
L is theoretically linear to d+

p when d+
p ≪ 1. Other formulas of

Cw
L are given in Table 4.1. Cw

L of different empirical formula are presented in Figure 4.3.
Unfortunately, these formula can not reach a common curve of Cw

L . This implies indirectly
that the intrinsic behavior of the aerodynamic lift is complicated. In Figure 4.3, we find that
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Figure 4.3 Lift coefficient Cw
L by different formula. : Equation (4.17); : Equation (4.14)

and Equation (4.16); : Saffman (1965) second order; : Leighton and Acrivos (1985);
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Figure 4.4 Ratio of lift to drag force for an immobile particle of diameter d+
p = 1 submerged

in a boundary layer on the smooth and rough wall. FD is calculated by Equation (4.1)
and Equation (4.3). FL is calculated by Equation (4.7) and Equation (4.11). The average
streamwise velocity field is generated by the wall of the law.
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a good agreement is achieved between Equation (4.14), Equation (4.17) and the formula of
Zeng et al. (2009). Hence, we prefer to chose the simple formula (Equation (4.14)) and use it
in the analysis of the threshold friction velocity of particle incipient motions.

Figure 4.4 shows the ratio of lift to drag force of an immobile particle in a boundary
layer with d+

p = 1.. It is found that FL/FD decreases rapidly with the distance between the
particle and wall z+p . If z+p > 10, we have CL/CD < 0.1 for both smooth and rough wall.
This indicates that the lift force is important for particle motions in the near-wall region,
particularly for the particle incipient motion, but can be negligible for particles detached far
away from the wall.

4.1.2 Forces induced by the disturbance

The disturbance is defined as the effect produced by either the unsteady flows or the particle
and its motion. The forces induced by the disturbance consist in the acceleration by the fluid
F⃗P, the added mass F⃗A and the Basset force F⃗B.

The acceleration by the fluid: It is produced by the effects of the undisturbed stresses
from the pressure and viscosity. Buevich (1966) proposed that F⃗P equals to the product of
fluid local acceleration and fluid mass, that is, for a spherical particle:

F⃗P =
1
6

πρd3
p

Du⃗
Dt

, (4.18)

where πρd3
p/6 is the fluid mass displaced by the moving particle, and D(·)/Dt denotes the

time derivative following the fluid particle motion.

The added mass force: It is the added effect acting on the submerged particle, due to the
fact that the moving submerged particle has to displace the same volume of the surrounding
fluid. The added mass force takes an opposite direction of particle-fluid relative motion and
equals:

F⃗A =− 1
12

πρd3
p

(
du⃗p

dt
− du⃗

dt

)
, (4.19)

where d(·)/dt denotes the time derivative following the solid particle motion.

The Basset force: It is a history force, which accounts for viscous effects and describes
the time-delay of particle-fluid relative velocity in boundary layers. Basset (1888b) gave its
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mathematical form of an accelerating sphere in a viscous flow:

F⃗B =−3
2

πρµd2
p

ˆ t

0

1√
πρµ(t − τ)

(
du⃗p

dτ
− du⃗

dτ

)
dτ . (4.20)

For a spherical particle of diameter dp in a boundary layer with the friction velocity
u∗ and the thickness δ , the ratio of these forces induced by the disturbance to the drag is
estimated in Table 4.2. It is found that these ratios are related to (d+

p )
2/δ+ with δ+ = δu∗/ν .

In this thesis, dp, u∗ and δ are of the order of 10−4m, 10−1m · s−1 and 10−1m, then we have
d+

p ∼ 1 and δ+ ∼ 103, which yields (d+
p )

2/δ+ ∼ 10−3. This indicates that FP, FA and FB

can be negligible when comparing to FD. Therefore, the forces induced by the disturbance
are not taken into account for the particle motion.

Force ratio FP/FD FA/FD FB/FD

Order of magnitude ∼ (d+
p )

2/δ+ ∼ (d+
p )

2/δ+ ∼
(
(d+

p )
2/δ+

)1/2

Table 4.2 Magnitude order of force ratio. Adapted from Vinkovic (2005).

4.1.3 Gravity, cohesion and friction

Gravity: As illustrated in Figure 4.5, the gravity of a particle submerged in a viscous flow
is given by

G⃗ =
1
6

π(ρp −ρ)gd3
p

ˆ⃗g, (4.21)

where ρp is the particle density, ρ denotes the fluid density, and g⃗ = (0,0,−g) is the gravita-
tional acceleration with its norm g and its unit vector ˆ⃗g.

~G

Flow

Figure 4.5 Sketch of the submerged gravity
G⃗.

~FC

Flow

Figure 4.6 Sketch of the cohesion force F⃗C.
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Cohesion: When the particle is small, the cohesion force is usually important and should be
taken into account. In the microscopic view, the cohesion force comes from these contacted
particles and equals the ensemble of the forces exerted by the neighbors. Following Zimon
et al. (1969), FC is modeled as a linear function of the particle diameter dp:

FC =CCdp, (4.22)

where the coefficient of cohesion is given by CC = 1.43× 10−5N ·m−1. The cohesion is
opposed to the particle motion and its direction is perpendicular to the contacted surface. In
this thesis, solid particles are regularly arranged on the surface, the cohesions from the left
neighbor and the right one are equal, hence, their resultant can be regarded as the adhesion
from the bed surface, which is always perpendicular to the surface as shown in Figure 4.6. In
this case, the cohesion coefficient will be modified by

√
3CC = 2.48×10−5N ·m−1.
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Figure 4.7 Sketch of the sliding friction Ff .
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MR
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Figure 4.8 Sketch of the rolling friction MR.

Friction: When a particle moves on a surface, there exists the friction resisting its motion.
According to Coulomb’s law, the sliding friction force Ff is a linear function of the reaction
N:

Ff = µsN, (4.23)

where µs is called the sliding friction coefficient. Ff and N are sketched out in Figure 4.7.
The sliding friction angle ϕs is defined as ϕs = arctan µs. Similarly, the reaction rolling
friction torque MR is also suggested to be a linear function of the reaction:

MR = µrRN, (4.24)

where µr denotes the rolling friction coefficient and R = dp/2 is the radius of particle. MR
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and N are sketched out in Figure 4.8. The rolling friction angle ϕr is defined as ϕr = arctan µr.
The friction force (or torque) is always in the opposite direction of the particle sliding (or
rolling) motion.

4.2 Particle incipient motion

In this section, particle incipient motions are theoretically studied, including lifting mode,
sliding mode and rolling mode. Firstly, the definition of the threshold friction velocity u∗,c
is presented and discussed. Based on the balance of forces or moments, we then obtain the
mathematical formulas of u∗,c and compare them with the experimental results. At last, we
propose an instantaneous criterion of particle incipient motions, which will be used in the
wind erosion simulation.

4.2.1 Threshold friction velocity

Particle incipient motion is the first subject to the wind erosion. In these classic models, one
defined a critical friction velocity u∗,c, above which a particle begins to move. The threshold
friction velocity firstly proposed by DuBoys (1879), is usually modeled by the Shield diagram
and is widely used for the quantitative description of the saltation (stream-wise) flux [Bagnold
(1941); Shields (1936)].

Figure 4.9 Probability of particle incipient motion versus the dimensional shear stress
τ = u2

∗/(γρgd). Taken from Wu and Lin (2002).
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In the macroscopic view, the threshold velocity is defined as the transition point from
no particle transport to particle transport regime. However, in the microscopic view at the
scale of particle size, how to define the event that a particle begins to move? it starts to slide,
to roll, or to be lifted? It is obviously difficult to make the decision according to the visual
observation. Moreover, in the stochastic view, the random instantaneous forces is not able
to result in a deterministic transition point from non-motion to motion of a particle. This is
why Lavelle and Mofjeld (1987) doubted the existence of critical threshold velocity. The
probability of particle entrainment has been evaluated by some stochastic models proposed
by Einstein et al. (1950), Cheng and Chiew (1998), Wu and Lin (2002) and Elhakeem et al.
(2017). For example, Figure 4.9 shows the particle pickup probability in a turbulent boundary
layer, it is found that the band of dimensional shear stress is wide from the null probability to
the unit. This convinces us that it is impossible to find an unique value of the friction velocity
to describe the transition band.

To most of researchers, it is acceptable that the conception of threshold is considered
as a time-space average notion. For example, Ibrahim et al. (2008) measured the threshold
friction velocities by defined the transition point as detaching 50% of particles on the surface.
Recently, Ho (2012) distinguished the static threshold and dynamic threshold using the
discontinuous transition from no transport to the transport regimes as shown in Figure 4.10.
The static threshold us

∗,c, which is totally determined by the turbulent flow, is defined as
the maximum friction velocity in the no transport regime. The dynamic threshold ud

∗,c, also
called the rebound threshold, is defined as the minimum friction velocity in the transport
regime. Its value can be obtained from the intersection point between the two measured
curves with and without transport.

Figure 4.10 Friction velocity u∗ versus the flow velocity Ue without and with particle transport.
Taken from Ferreira (2017).
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In this section, we focus on the (static) threshold velocity in the view of dynamic
mechanism by distinguishing different modes of particle incipient motions: lifting mode,
sliding mode and rolling mode. The particle incipient motions caused by the rebound events
are simulated by a probabilistic splash model.

4.2.2 Lifting, Sliding, Rolling mode

Considering a particle on a rough surface, it begins to move either by lifting, by sliding or by
rolling. Based on the balance of forces or torques, the critical condition of lifting, sliding,
and rolling can be expressed by

• Lifting mode: the resultant in the wall-normal direction is positive, i.e., ∑FN > 0, with
FN denoting the force (or force component) in the wall-normal direction;

• Sliding mode: the resultant in the stream-wise (tangential) direction is positive, i.e.,

∑FT > 0, with FT denoting the force (or force component) in the stream-wise direction,

• Rolling mode: the total torque in the span-wise direction is positive, i.e., ∑MS > 0,
with MS denoting the torques in the span-wise direction.

Next, we will introduce these three modes in detail, by using the forces acting on a particle
presented in Section 4.1.
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Figure 4.11 Sketch of the lifting mode of particle incipient motion. Left: the surface is plate
θ = 0; Right: a general sketch with a slope θ .
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Lifting mode: The forces in the wall-normal direction are sketched in Figure 4.11. Accord-
ing to the balance of forces, i.e., ∑FN > 0, the general criterion of particle incipient motion
by lifting on a rough sloping surface is:

FL −Gcosθ −FC > 0, (4.25)

where FL is the aerodynamic lift force, G the particle gravity, θ the bed slope, FC the cohesion
force, respectively. Assuming that a spherical particle is studied, these forces can be written
as FL =CL

π

8
ρu2

r d2
p, G = π(ρp −ρ)gd3

p/6, FC =CCdp, then the critical velocity is obtained
as:

uli f ting
r,c =

√
4
3

1
CL

γρgdp cosθ +
CC

CL

8
πρdp

, (4.26)

with γρ = (ρp −ρ)/ρ . Supposing that the aerodynamic lift is related to the friction velocity,

i.e., FL =Cw
L

π

8
ρu2

∗d2
p, Equation (4.26) becomes:

uli f ting
∗,c =

√
4
3

1
Cw

L
γρgdp cosθ +

CC

Cw
L

8
πρdp

, (4.27)

which is called the threshold friction velocity of the particle lifting mode. When the fluid
velocity (or the friction velocity) is greater than the critical value, the particle is then able to
be lifted by the carried flow.
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Figure 4.12 Sketch of the sliding mode of particle incipient motion. Left: the surface is plate
θ = 0; Right: a general sketch with a slope θ .

Sliding mode: When the particle is not able to be lifted, it will possibly slide or roll. The
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exerted forces for sliding mode are showed in Figure 4.12. Note that the support (reaction)
force exerted by the left neighbor is null, if the particle has the ability to slide over its right
neighbor one. According the force balance in the sliding direction (x-direction shown in
Figure 4.12), i.e., ∑FT > 0, the criterion of sliding mode can be expressed as:

N +FL cosϕ = FD sinϕ +Gcos(θ +ϕ)+FC cosϕ ,

FD cosϕ +FL sinϕ > Gsin(θ +ϕ)+FC sinϕ +Ff ,
(4.28)

where FD is the aerodynamic drag, N the reaction by the right neighbor particle, Ff the sliding
friction force, and ϕ the angle shown in Figure 4.12, respectively. Note that the angle ϕ

depends on the particle geometrical arrangement, ideally, ϕ = π/6. According to Coulomb
law, we have Ff = µsN with µs the sliding friction coefficient. It is found that the normal
force N is null when the lifting criterion is satisfied. This means that the sliding mode is
easier to take place than the lifting mode.

Eliminating N and Ff in Equation (4.28) by the use of Ff = µsN, we obtain after the
simplification:

FD −µse(Gcosθ +FC −FL)−Gsinθ > 0, (4.29)

where the equivalent sliding friction coefficient is µse = (µs + tanϕ)/(1− µs tanϕ). As-
suming µs = tanϕs, we have µse = tan(ϕs +ϕ). When an ideal case is considered, i.e.,
FD = 0, FL = 0 and FC = 0, a particle slides automatically at the opposite direction when the
local bed slope θ > ϕs +ϕ . This is consistent with the result of Equation (4.29), namely,
tan(−θ)+µse < 0. (since the direction of particle motion changes, the sign of bed slope will
also change θ →−θ .)

If these forces take the form of FD =CD
π

8
ρu2

r d2
p, FL =CL

π

8
ρu2

r d2
p, G = π(ρp−ρ)gd3

p/6,
FC =CCdp, the critical velocity is obtained from Equation (4.29) as:

usliding
r,c =

√
4
3

µse

CD +µseCL
γρgdp

(
cosθ +

sinθ

tanϕse

)
+

µseCC

CD +µseCL

8
πρdp

, (4.30)

with ϕse = ϕs +ϕ . Supposing the aerodynamic forces are related to the friction velocity, i.e.,
FD =Cw

D
π

8
ρu2

∗d2
p and FL =Cw

L
π

8
ρu2

∗d2
p, Equation (4.30) becomes:

usliding
∗,c =

√
4
3

µse

Cw
D +µseCw

L
γρgdp

(
cosθ +

sinθ

tanϕse

)
+

µseCC

Cw
D +µseCw

L

8
πρdp

, (4.31)

which is called the threshold friction velocity of the particle sliding mode. When the fluid
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velocity (or the friction velocity) is larger than the critical value of sliding mode and smaller
than the critical value of lifting mode, the particle has the ability to slide on the surface.
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Figure 4.13 Sketch of the rolling mode of particle incipient motion. Left: the surface is plate
θ = 0; Right: a general sketch with a slope θ .

Rolling mode: When both lifting and sliding mode are not able to be achieved, the rolling
mode probably takes place. The forces and moments are illustrated in Figure 4.13. Since the
particle can roll over the right neighbor one, the support (reaction) force exerted by the left
neighbor one should be null. According to the force and moment balance, i.e., ∑MS > 0, the
criterion of particle rolling mode is given by:

N +FL cosϕ = FD sinϕ +Gcos(θ +ϕ)+FC cosϕ ,

LDFD +LLFL > GRsin(θ +ϕ)+LLFC +MR,
(4.32)

where the rolling friction moment is determined by the rolling friction law MR = µrRN with
µr the rolling friction coefficient and R the particle radius. Eliminating N and MR using
MR = µrRN, Equation (4.32) is simplified to:

FD−
Rsinϕ +µrRcosϕ

LD −µrRsinϕ
Gcosθ − LL +µrRcosϕ

LD −µrRsinϕ
(FC−FL)−

Rcosϕ −µrRsinϕ

LD −µrRsinϕ
Gsinθ > 0.

(4.33)
When particles are regularly arranged as shown in Figure 4.13, the moment arms take the
value of LD = Rcosϕ and LL = Rsinϕ , then we get a similar formula of Equation (4.29):

FD −µre(Gcosθ +FC −FL)−Gsinθ > 0, (4.34)

where the equivalent rolling friction coefficient is µre = (µr + tanϕ)/(1−µr tanϕ). Assum-
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ing µr = tanϕr, we have µre = tan(ϕr +ϕ). Note that the angle ϕ depends on the particle
geometrical arrangement as shown in Figure 4.13, ideally, ϕ = π/6. Commonly, the rolling
friction angle ϕr = arctan µr is smaller that the sliding friction angle ϕs = arctan µs, since
µr < µs.

If these forces take the form of FD =CD
π

8
ρu2

r d2
p, FL =CL

π

8
ρu2

r d2
p, G = π(ρp−ρ)gd3

p/6,
FC =CCdp, the critical velocity is obtained from Equation (4.34):

urolling
r,c =

√
4
3

µre

CD +µreCL
γρgdp

(
cosθ +

sinθ

tanϕre

)
+

µreCC

CD +µreCL

8
πρdp

, (4.35)

with ϕre = ϕr +ϕ . Supposing the aerodynamic forces are related to the friction velocity, i.e.,
FD =Cw

D
π

8
ρu2

∗d2
p and FL =Cw

L
π

8
ρu2

∗d2
p, Equation (4.35) becomes:

urolling
∗,c =

√
4
3

µre

Cw
D +µreCw

L
γρgd

(
cosθ +

sinθ

tanϕre

)
+

µreCC

Cw
D +µreCw

L

8
πρd

, (4.36)

which is called the threshold friction velocity for the rolling mode.
Note that the particle incipient motion can also be caused by a complex process – the

bouncing mode. According to this mode, particles begin to move due to the collision with
the rebounding particle carrying great momentums. In our simulations, the splash function is
introduced to model the bouncing incipient motion. The splash entrainment model is further
discussed in Subsection 4.4.2.

4.2.3 Discussions on the threshold velocity

To facilitate the following discussion, we introduce the non-dimensional Shield number Sh,
which is defined by:

Sh =
u2
∗

γρgdp
. (4.37)

Then the critical Shield number is given by Shc = u2
∗,c/(γρgdp) if u∗ is replaced by the

threshold friction velocity u∗,c in Equation (4.37). According to dimension analysis, we
proposed that Shc is a function of dimensionless particle numbers and bed slope:

Shc = T
(

dp

δv
,
dp

dν

,θ

)
= T (d+

p ,d
−
p ,θ), (4.38)

where δν = ν/u∗ means the flow characteristic length in the near-wall region, dν =(ν2/(γρg))1/3

represents the viscous diameter and θ is the bed slope. Note that d+
p represents the ratio
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of the inertial effect to viscous effect of a fluid particle of a same diameter with the solid
particle, and that d−

p represents the ratio of particle inertial and gravitational effect to the
viscous effect.

According to previous results, several formulas of Shc with θ = 0 have been proposed
and are summarized as follows:

• Foucaut & Stanislas’s curve: By fitting with the measured result in wind tunnel
experiments, Foucaut and Stanislas (1996) proposed an empirical formula of the
critical shield number:

Shc =
1

d−
p

(
22.71(d−

p )
0.043 +10.23(d−

p )
−0.118 −32.5

)2
. (4.39)

It is found that Shc is a pure function of d−
p , and is independent on d+

p .

• Bagnold’s model: From the balance of force, Bagnold (1941) obtained:

Shc = F(d+
p ). (4.40)

Equation (4.40) indicates that the critical Shield number Shc is a pure function of d+
p .

Bagnold (1941) suggested F(d+
p ) = 0.01 for larger grains from the examination with

experimental data. However, Shc = 0.01 fails for small particles, i.e., dp < 100 µm,
since observations show that Shc increases rapidly with decreasing the particle diameter
dp.

• Greeley-Iversen’s model: Based on the idea that the inter-particle cohesion more
likely causes the rapid increase of Shc with decreasing the particle diameter dp, Greeley
and Iversen (1985) proposed a correction of Equation (4.40):

Shc = F(d+
p )(1+G(d−

p )), (4.41)

where F(d+
p ) depends on the aerodynamic effect, and G(d−

p ) depends on the effects of
inter-particle cohesion. F(d+

p ) and G(d−
p ) were obtained by fitting with experimental

data:

F(d+
p ) =


0.04(1+2.5d+

p )
−1, if 0.03 ≤ d+

p < 0.3,

0.0169(1.928(d+
p )

0.092 −1)−1, if 0.3 ≤ d+
p < 10,

0.0144(1−0.0858exp(−0.0617)(d+
p −10)))2, if d+

p ≥ 10,
(4.42)
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and
G(d−

p ) =
AGI

(d−
p )2.5 , (4.43)

with AGI = 6× 10−10.5/(ρgd2.5
ν ). For example, if we take ρ = 1.25kg ·m−3, g =

9.8m · s−2, ν = 1.5×10−5m2 · s−1 and ρp = 2650kg ·m−3, we obtain AGI = 6.72.

• Shao-Lu’s model: Inspired by the finding that a good agreement with experimental
results was achieved when F(d+

p ) could be simply given by a constant, i.e, F(d+
p ) =

CSL, Shao and Lu (2000) proposed a simple expression with accounting for the inter-
particle cohesion effect:

Shc =CSL(1+G(d−
p )), (4.44)

where G is a function accounting for the cohesion effect given by:

G(d−
p ) =

ASL

(d−
p )2 , (4.45)

with CSL = 0.0123, ASL = α/(ργρgd2
ν). Shao and Lu (2000) suggested that α =

3×10−4kg · s−2, which yields ASL = 23.60.

From Equations (4.27), (4.31) and (4.36), the critical Shield number of lifting mode,
sliding mode and rolling mode can be rewritten as:

Shli f ting
c =

4
3

1
Cw

L (d
+
p )

(
cosθ +

AC

(d−
p )2

)
, (4.46a)

Shsliding
c =

4
3

µse

Cw
D(d

+
p )+µseCw

L (d
+
p )

(
cosθ +

sinθ

tanϕse
+

AC

(d−
p )2

)
, (4.46b)

Shrolling
c =

4
3

µre

Cw
D(d

+
p )+µreCw

L (d
+
p )

(
cosθ +

sinθ

tanϕre
+

AC

(d−
p )2

)
, (4.46c)

where AC = 6CC/(πµuν) with uν = (γρgν)1/3. According to Equation (4.46), we propose a
common formula of Shc as follows:

Shc = F(d+
p )(H(θ)+G(d−

p )), (4.47)

where F(d+
p ) accounts for the aerodynamic effect, H(θ) accounts for the bed slope effect,

and G(d−
p ) accounts for the inter-particle cohesion effect. The expressions of F(d+

p ), H(θ)

and G(d−
p ) are presented in Table 4.3 and are shown in Figure 4.14. We find that G(d−

p ) takes
the same expression for lifting, sliding and rolling mode, and that the formulas of F(d+

p )

and H(θ) of sliding and rolling mode are similar, but both of them are different from the
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lifting mode. Obviously, when the bed slope is null, i.e., H(0) = 1, Equation (4.47) reduces
to F(d+

p )(1+G(d−
p )), which is consistent with Equation (4.41) and Equation (4.44).

Lifting mode Sliding mode Rolling mode

F(d+
p )

4
3

1
Cw

L (d
+
p )

4
3

µse

Cw
D(d

+
p )+µseCw

L (d
+
p )

4
3

µre

Cw
D(d

+
p )+µreCw

L (d
+
p )

H(θ) cosθ cosθ +
sinθ

tanϕse
cosθ +

sinθ

tanϕre

G(d−
p )

AC

(d−
p )2

Table 4.3 Mathematical formula of F(d+
p ), G(d−

p ) and H(θ) for lifting, sliding and rolling
mode.
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Figure 4.14 Functions F(d+
p ), H(θ) and G(d−

p ). : Lifting mode; : Sliding mode with
ϕse = 48◦; : Rolling mode with ϕre = 33◦.
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From Equation (4.46), since µse > µre, it is easy to find:

Shrolling
c < Shsliding

c < Shli f ting
c , (4.48)

which is also examined in Figure 4.15. It indicates that rolling is the easiest mode for particle
incipient motion. In practice, the critical Shield number Shc is measured using the transition
from no transport to particle transport in wind tunnel experiments. The measured value is
definitely a non-linear combination of Shli f ting

c , Shsliding
c and Shrolling

c . As shown in Figure
4.15, Shsliding

c and Shrolling
c are consist with the experimental data, whereas Shli f ting

c is greater
than them, specially for a large d−

p .
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Figure 4.15 Critical Shield numbers Shc of different particle diameters. : Lifting mode;
: Sliding mode with ϕse = 48◦; : Rolling mode with ϕre = 33◦; : Equation (4.39);
: Equation (4.40); : Equation (4.41); : Equation (4.44). ⊙⊙⊙: White (1982); ⊙⊙⊙:

Williams (1986); ⊙⊙⊙: Fernandez Luque and Van Beek (1976); ⊙⊙⊙: Fletcher (1976); ⊙⊙⊙: Chepil
(1945); ⊙⊙⊙: Greeley and Iversen (1985).

Figure 4.16 shows the effect of bed slope on the critical Shield number Shc of lifting,
sliding and rolling mode. It is found that Shc of lifting mode is always larger than that of
sliding or rolling mode for an arbitrary bed slope θ smaller than 60◦. For the lifting mode,
Shc is an even function of θ and decreases with increasing θ if θ > 0. For the sliding or
rolling mode, Shc is an increasing function of θ and tends to a constant about 0.1 for large
slopes.
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Figure 4.16 Bed slope effect on the critical Shield number Shc of lifting, sliding and rolling
mode. : Lifting mode; : Sliding mode with ϕse = 48◦; : Rolling mode with
ϕre = 33◦.

4.2.4 Instantaneous entrainment model

Inspired by the energy model of particle entrainment proposed by Valyrakis et al. (2013) and
Diplas et al. (2008), we propose a momentum criterion of particle incipient motions:

γe f f (s∆,sp)

ˆ t0+T

t0
Pi(t)dt > Mi, with Pi(t)> 0, t0 < t < t0 +T , (4.49)

where Pi(t) denotes the summation of all the instantaneous forces (or torques) at the initial
state, Mi the required minimum linear momentum (or angular momentum) for a particle
incipient motion, and γe f f (s∆,sp) the effective coefficient of the momentum passing from
the fluid in a grid cell on the particle during the incipient processes, respectively. It is
assumed that γe f f (s∆,sp) is a function of the cell surface s∆ = ∆x∆y and the particle section
area sp = πd2

p/4. Ideally, the coefficient γe f f (s∆,sp) is linear to the ratio of s∆ and sp, i.e.,
γe f f ∼ s∆/sp. This means that if the grid becomes twice coarser, for example, s′

∆
= 2s∆, to

keep the same number of entrained particles during the same duration under the same flow
condition, the momentum passing from the fluids in a grid cell to a particle will become
twice more, that is, the coefficient should satisfy γ ′e f f (s

′
∆
,sp) = 2γe f f (s∆,sp). Note that this

entrainment criterion considers not only the magnitude of the forces, but also the spatial and
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temporal effect in the numerical simulations. For the simplification, the effective coefficient
is assumed to take the same value for different modes.

In detail, an instantaneous entrainment model for lifting mode is given by:

γe f f (s∆,sp)

ˆ t0+T li f ting
i

t0
F li f ting

i dt > mpuli f ting
i , with F li f ting

i (t)> 0, t0 < t < t0 +T li f ting
i ,

(4.50)
where F li f ting

i (t) = F ′
L −Gcosθ −FC means the summation of forces acting the particle at

the initial state with F ′
L the instantaneous lift, T li f ting

i the characteristic time for an incipient
processes, mp the particle mass, uli f ting

i the required minimum velocity for an incipient pro-
cess, respectively. Valyrakis et al. (2013) and Diplas et al. (2008) defined an incipient motion
of lifting as displacing a height equal to the particle diameter in the direction perpendicular to
the surface as shown in Figure 4.17. To accomplish a complete incipient lifting process only
under the gravity, the minimum velocity should be assigned by uli f ting

i =
√

2gdpH li f ting(θ),
where the bed slope function takes form of H li f ting(θ) = cosθ .
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Figure 4.17 Sketch of a complete particle incipient process by lifting.

Similarly, an instantaneous entrainment model for sliding mode is given by:

γe f f (s∆,sp)

ˆ t0+T sliding
i

t0
Fsliding

i dt > mpurolling
i , with Fsliding

i (t)> 0, t0 < t < t0 +T sliding
i ,

(4.51)
where Fsliding

i (t) = F ′
D − µsi(Gcosθ + FC − F ′

L)− Gsinθ denotes the summation of the
instantaneous torques acting the particle at the initial state, T sliding

i the characteristic time for
an incipient processes, mp the particle mass, usliding

i the required minimum velocity for an
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incipient process, respectively. We defined in the same way an incipient motion of sliding
as displacing a distance equal to the particle diameter in the direction parallel to the surface
as shown in Figure 4.18. To accomplish a complete incipient lifting process, the minimum
velocity is approximated to usliding

i =
√

2µrigdpHsliding(θ), where the bed slope function

takes form of Hsliding(θ) =

(
cosθ +

sinθ

cosϕse

)
.
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Figure 4.18 Sketch of a complete particle incipient process by sliding.

In the same manner, an instantaneous entrainment model for rolling mode is given by:

γe f f (s∆,sp)

ˆ t0+T rolling
i

t0
Mrolling

i dt > Ipω
rolling
i , with Mi(t)> 0, t0 < t < t0 +T rolling

i , (4.52)

where Mrolling
i (t) = (F ′

D −µri(Gcosθ +FC −F ′
L)−Gsinθ)dp/2 represents the summation

of the instantaneous torques acting the particle at the initial state, T rolling
i the characteristic

time for an incipient processes, Ip the particle inertial moment, ω
rolling
i the required minimum

velocity for an incipient process, respectively. We defined in the same way an incipient
motion of rolling as rolling a distance equal to the particle diameter in the direction parallel
to the surface as shown in Figure 4.19. To accomplish a complete incipient rolling process,
the minimum rotation velocity is approximated to ω

rolling
i =

√
20µrigHrolling(θ)/(7dp),

where the bed slope function takes form of Hrolling(θ) =

(
cosθ +

sinθ

cosϕre

)
. Since we have
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Ip = 7mpd2
p/20 for spherical particles, Equation (4.52) can be rewritten as:

γe f f (s∆,sp)

ˆ t0+T rolling
i

t0
Frolling

i dt > mpurolling
i , with Frolling

i (t)> 0, t0 < t < t0 +T rolling
i ,

(4.53)
where the summation of the forces is given by Frolling

i (t) = F ′
D −µri(Gcosθ +FC −F ′

L)−
Gsinθ), the required minimum velocity equals urolling

i = 7ω
rolling
i dp/10.
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Figure 4.19 Sketch of a complete particle incipient process by rolling.

It is easy to find that the model of rolling mode is nearly same with that of sliding mode
except the desired minimum velocity, if µri in Equation (4.53) is replaced by µsi. Moreover,
Figure 4.15 shows that the threshold friction velocity of sliding mode is approximately equal
to that of rolling mode. Inspired by the similarity between these two modes, we propose a
mixed mode — rolling-sliding mode, to describe the particle incipient motion on the bed
surface. The corresponding instantaneous entrainment model is then given by:

γe f f (s∆,sp)

ˆ t0+T mixed
i

t0
Fmixed

i dt >mpumixed
i , with Fmixed

i (t)> 0, t0 < t < t0+T mixed
i , (4.54)

where the resultant force is given by Fmixed
i (t) = F ′

D −µmixed(Gcosθ +FC −F ′
L)−Gsinθ),

the required minimum velocity equals umixed
i =

√
2µmixedgdpHmixed(θ) with the bed slope

function of the mixed rolling-sliding mode given by Hmixed(θ) =

(
cosθ +

sinθ

cosϕmixed

)
. In

practice, the mixed friction angle ϕmixed is assigned by the angle of repose, i.e., ϕmixed = 33◦

for sand particles, and the static friction coefficient of the mixed rolling-sliding mode is then
given by µmixed = tanϕmixed .
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In a turbulent boundary layer, the mechanism of particle incipient motion is complex due
to the randomness of the aerodynamic force and the impact of near-wall turbulent structures.
White (1940) claimed that the particle entrainment events mainly takes place in the region
of high speed fluids. By using quadrant analysis on the experimental wind velocity, Wiggs
and Weaver (2012) then found that the particle incipient motion is highly correlated with the
the sweep events of a turbulent bursting process. Inspired by these findings, Huang (2015)
proposed a relation between the instantaneous aerodynamic forces and the average ones:

F ′
L = FL

u′⊕w′
⊖

⟨u′⊕w′
⊖⟩

, (4.55a)

F ′
D = FD

u′⊕w′
⊖

⟨u′⊕w′
⊖⟩

, (4.55b)

where u′⊕w′
⊖ means Reynolds stress of the sweep events related to the motion of high speed

fluid, and ⟨·⟩ denote the ensemble average. Equation (4.55) builds a strong relationship
between the sweep action and the particle entrainment. According to quadrant analysis, the
sweep event is given by u′⊕w′

⊖ = max(u′,0)×min(w′,0). In a boundary layer, the ensemble
average can be replaced by the spatial average in the homogeneous span-wise direction.

4.3 Particle transport motion

After the particle incipient motion, the particle moves into the nearby flow or slides on the
bed surface. When the particle detaches far away from the surface and flies within the flow,
the particle motion is mainly governed by the aerodynamic forces and the gravity. When the
aerodynamic lift force is not large enough to entrain the particle or the falling particle fails
to rebound, it will probably slide or roll on the bed surface due to the drag or gravity, and
finally slows down by the wall friction.

4.3.1 Equation of airborne particle motion

Contrary to the turbulent flow described in an Eulerian description, the particle motion is
studied in a Lagrangian description. The governing equations of particle motion are given
by:

d⃗xp(t)
dt

= u⃗p(⃗xp(t), t), (4.56a)

du⃗p(⃗xp(t), t)
dt

=
1

mp
∑ F⃗ , (4.56b)
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dω⃗p(⃗xp(t), t)
dt

=
1
Ip

∑M⃗, (4.56c)

where x⃗p(t) is the particle position at the time t, u⃗p(⃗xp(t), t) (or ω⃗p(⃗xp(t), t)) the particle
velocity (or angular velocity) at the position x⃗p(t) and at the time t, mp the particle mass, Ip

the inertial moment, F⃗ the forces acting on the particle, M⃗ the torques acting on the particle,
respectively.
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Figure 4.20 Schematic illustration of the forces acting on an airborne particle. u⃗ is the fluid
velocity, ω⃗ is the vorticity and u⃗p is the particle velocity. The aerodynamic drag F⃗D is in the
opposite direction of the particle-fluid relative velocity u⃗r = u⃗p − u⃗r according to Equation
(4.1). The aerodynamic lift F⃗L is in the direction of ω⃗ × u⃗r according to Equation (4.7).

Considering a heavy airborne particle whose density is much larger than the fluid’s, i.e.,
ρp ≫ ρ , it is known that the aerodynamic forces and the gravity are dominant, and that these
forces induced by the disturbance are negligible. Moreover, the particle rotation is usually
neglected. Hence, as shown in Figure 4.20, the motion of an airborne particle is determined
only by the forces of drag, lift and gravity. Therefore, Equation (4.56) is rewritten as:

d⃗xp(t)
dt

= u⃗p(⃗xp(t), t), (4.57a)

du⃗p(⃗xp(t), t)
dt

=
1

mp
(F⃗D + F⃗L + G⃗). (4.57b)

As discussed in Section 4.1, the aerodynamic lift is important in the near-wall region,
and can be neglected when the particle stays far away from the surface. For spherical heavy
particles, we have (ρp −ρ)/ρp ≈ 1 and mp = πρpd3

p/6. Then, inserting Equations (4.1) and



110 Physical modeling of wind erosion

(4.21) into Equation (4.57b) yields by neglecting F⃗L:

du⃗p(⃗xp(t), t)
dt

=
u⃗(⃗x = x⃗p(t), t)− u⃗p(⃗xp(t), t)

τ ′p
− g⃗, (4.58)

where τ ′p is the particle characteristic time scale responding to the fluid, which is given by:

τ
′
p =

ρpd2
p

18ρν

1
f (Rep)

=
τp

f (Rep)
, (4.59)

where τp = ρpd2
p/(18ρν) denotes the particle response time for Rep ≪ 1. Since τ ′p depends

on the instantaneous particle Reynolds number Rep, it is impossible to be evaluated a priori.
Therefore, τp is widely used to estimate the characteristic respond time scale of solid particles
in numerical simulations [Dupont et al. (2013); Vinkovic et al. (2006)].

When the force balance in the vertical direction is reached, the particle vertical accelera-
tion should be null, which yields the terminal velocity wt

p from Equation (4.58):

0 =
wt

p

τ ′p
−g. (4.60)

Substituting Equation (4.59) into Equation (4.60), we obtain the formula of the particle
terminal velocity:

wt
p =

gτp

f (Rep)
=

ρpgd2
p

18ρν

1
f (Rep)

. (4.61)

According to Equation (4.4), we have:

wt
p =


ρpgd2

p
18ρν

, if Rep ≪ 1;

1.66
√

γρgd, if Rep > 1000.
(4.62)

To characterize the airborne particle motion modes, some non-dimensional parameters
are introduced. Firstly, the Stokes number is defined as the ratio between the particle and
fluid characteristic time, i.e., St = τp/τ f which yields:

StL = τp/τL, if using the time scale of turbulent large structures τL;

Stη = τp/τη , if using the time scale of turbulent small structures τη .
(4.63)

Given a boundary layer with the thickness δ and the friction velocity u∗, the time scales
are defined by τL = δ/u∗ and τη =

√
νδ/u3∗. The Stokes number reflects the effect of the

particle inertia, which can characterize the particle motion modes as:
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• Stη ≪ 1, particles are carried by the turbulent small eddies. Thus, particles are in pure
suspension;

• StL ≫ 1, even large scale fluctuations is not able to affect the particle motions. The
trajectories of solid particles are mainly determined by the gravity and the interaction
with the ground. Thus, particles are in pure saltation.

Another useful non-dimensional parameter is the gravity parameter, which is defined as
the ratio of particle terminal velocity and the flow friction velocity, that is:

γg =
wt

p

u∗
. (4.64)

When Re ≪ 1, according to Equation (4.62), Equation (4.64) reduces to an simple formula
γg = gτp/u∗, which is widely used to evaluate the value of the gravity parameter in a priori
study. When τp is of the order of τη or of τL, i.e., Stη ≈ 1 or StL ≈ 1, the motion of solid
particles is determined by the gravity and the inertia. In this case, Taniere et al. (1997) used
the gravity parameter to distinguish two new regimes of particle motions:

• γg < 1, modified suspension;

• γg > 1, modified saltation.

4.3.2 Equation of bed-load particle motion

In this thesis, we firstly focus on the motion of bed-load particles, which are defined as
moving particles on the wall. For instance, some particles after the collision with the surface
fail to rebound and then slide or roll on the wall if their tangential velocities are large enough.
The dynamic equation of bed-load particle motion in the Lagrangian description is given by:

d⃗xp(t)
dt

= u⃗p(⃗xp(t), t)+ ω⃗p × r⃗p, (4.65a)

du⃗p(⃗xp(t), t)
dt

=
1

mp
∑ F⃗ , (4.65b)

dω⃗p(⃗xp(t), t)
dt

=
1
Ip

∑M⃗, (4.65c)

where x⃗p(t) is the particle position at the time t, u⃗p(⃗xp(t), t) (or ω⃗p(⃗xp(t), t)) the particle
velocity (or angular velocity), r⃗p the vector from the particle center to the contact point with
the bed, mp the particle mass, Ip the inertial moment, F⃗ the forces acting on the particle, M⃗
the torques acting on the particle, respectively.
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Considering a spherical particle submerged in a turbulent boundary layer rolling and
sliding on the wall surface, the aerodynamic lift, the friction and the cohesion forces must
obviously be taken into account, and the rotation is important for the displacement of rolling
particles. Hence, Equation (4.65) is rewritten as:

d⃗xp(t)
dt

= u⃗p(⃗xp(t), t)+ ω⃗p × r⃗p, (4.66a)

du⃗p(⃗xp(t), t)
dt

=
1

mp
(F⃗D + F⃗L + G⃗+ F⃗f + N⃗), (4.66b)

dω⃗p(⃗xp(t), t)
dt

=
1
Ip
(M⃗FD + M⃗FL + M⃗G + M⃗R), (4.66c)

where F⃗D, F⃗L, G⃗, F⃗f , N⃗ respectively denote the aerodynamic drag, the aerodynamic lift, the
gravity, the friction and the reaction from the wall, and M⃗FD , M⃗FL , M⃗G respectively represent
the moment induced by the aerodynamic drag, the aerodynamic lift, the gravity, and Ip is the
inertial moment of a sphere to the pivot point.
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Figure 4.21 Schematic illustration of the forces acting on a bed load particle and of its motion.
u⃗c

p is the particle velocity and ω⃗c
p is the particle angular velocity in the curvilinear coordinate

system (ζ ,η ,ξ ). FD denotes the aerodynamic drag, FL the aerodynamic lift, FC the cohesion,
G the gravity, N the reaction, Ff the friction, MR the friction torque, respectively.

As shown in Figure 4.21, supposing the sliding (and rolling) friction coefficient µs

(and µr), we then know Ff = µsN and MR = µrdpN/2. Using the curvilinear coordinate
system (ζ ,η ,ξ ) conformable with the rough surface, the corresponding particle velocities
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are denoted by uc, vc and wc. Hence, Equation (4.66) becomes:

dζp(t)
dt

= uc
p(ζp(t), t)+

dp

2
ω

c
p(ζp(t), t), (4.67a)

duc
p(ζp(t), t)

dt
=

cosϕ

mp
(FD −Gsinθ −µse(Gcosθ +FC −FL)), (4.67b)

dωc
p(ζp(t), t)

dt
=

dp cosϕ

2Ip
(FD −Gsinθ −µre(Gcosθ +FC −FL)), (4.67c)

where ζp(t) is the particle position on the rough wall, uc
p(ζp(t), t) the particle velocity,

ωc
p(ζp(t), t) the particle angular velocity, µse = tan(ϕs +ϕ) the equivalent sliding friction

coefficient with ϕs = arctan µs, µre = tan(ϕr +ϕ) the equivalent rolling friction coefficient
with ϕr = arctan µr and θ the local bed slope, respectively. Ip denotes the inertial moment
of a sphere to the pivot point O as shown in Figure 4.21, i.e., Ip = mpd2

p/10+mpd2
p/4 =

7mpd2
p/20. Note that Equation (4.67) is satisfied if FL ≤ Gcosθ +FC, whereas Equation

(4.57) is used to describe the particle motion if FL > Gcosθ +FC.

Assuming Uc
p(ζp(t), t) = uc

p(ζp(t), t)+ 1
2dpωc

p(ζp(t), t) and from Equation (4.67), the
governing equations of bed-load particle motion for the mixed mode — rolling-sliding are
deduced as:

dζp(t)
dt

=Uc
p(ζp(t), t), (4.68a)

dUc
p(ζp(t), t)

dt
=

1
mp,e f f

(
FD −Gsinθ −µe f f (Gcosθ +FC −FL)

)
, (4.68b)

where mp,e f f = 12cosϕ/(7mp) and µe f f = (7µse +5µre)/12 denote the effective mass and
the effective friction coefficient of the roll-sliding motion. respectively. It is known that
mp,e f f and µe f f depend on the unknown angle ϕ , which is determined by the arrangement
of solid particles and by the position of the moving particle on the rough surface. In our
numerical simulations, since the grid size is much larger than the particle diameter dp,
the local surface geometry at the scale of dp is not able to be described. Therefore, it is
impossible to evaluate µe f f and mp,e f f . In this case, the rough surface is assumed to be
regarded as a smooth one without accounting for the geometries at small scales. Hence, we
have mp,e f f = 12/(7mp) as ϕ = 0, and µe f f is considered as the dynamic friction coefficient
for a rough surface. Quartier et al. (2000) found from his experiments that the dynamic
angle of repose is 8.5◦ for a rough surface composited by sand piles. Hence, we suppose
µe f f = tan8.5◦. Actually, we will conduct some testing cases with different values of µe f f

and investigate the influence of the coefficient µe f f on the sand dune deformation in the
numerical simulation of wind erosion.
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4.3.3 Lagrangian stochastic model

In the equation of particle motion, e.g., in Equation (4.58), the fluid velocity ui(xp(t), t)
is exactly the summation of the filtered velocity ũi(xp(t), t) supplied by the LES and the
velocity of sub-grid scales u′′i (xp(t), t) introduced by the models, that is:

ui(xp(t), t) = ũi(xp(t), t)+u′′i (xp(t), t). (4.69)

According to Vinkovic et al. (2006), u′′i (xp(t), t) is evaluated by a Lagrangian stochastic
model:

du′′i (xp(t), t) =
(
− 1

T p
L
+

2
ksgs

dksgs

dt

)
u′′i (xp(t), t)dt +

√
4ksgs

3T p
L

dWi, (4.70)

where ksgs is the subgrid kinetic energy, T p
L the time scale of Lagrangian velocity correlation

following the particle motion, and dWi the Wiener process vector with ⟨dWidWj⟩ = δi jdt,
respectively. Equation (4.70) is a simple Langevin equation, which describes the diffusion
process of u′′i (xp(t), t) by a stochastic differential equation in terms of ksgs and T p

L . ksgs is
calculated by Equation (2.33), and the timescale T p

L following the particle motion is given
by:

T p
L =

TL

αgrav +αiner
, (4.71)

where αgrav and αiner are two coefficients accounting for gravitational and inertial effect
on decorrelating the particle motion from the fluid particle’s, and TL is the timescale of
Lagrangian velocity correlation following fluid particle motion:

TL =
4ksgs

3Cκ ε̃
, (4.72)

where Cκ is the Kolomogorov constant and ε̃ is the filtered dissipation rate. The further
details of the Lagrangian stochastic model can be found in the thesis of Aguirre (2005) and
Vinkovic (2005).

4.3.4 Two-way coupling

The two-way coupling is a numerical technique accounting for the effect of solid particles
on the carried flow. Firstly, an additional drag force is introduced to the fluid momentum
equation (Equation (2.25b)), that is:

f⃗ui,drag =− 1
ρVgrid

Np

∑
i=1

ρpVp f (Rep)
u⃗(⃗xp(t), t)− u⃗p(⃗xp(t), t)

τp
, (4.73)
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where Vgrid = ∆x∆y∆z is the grid cell volume, Vp the solid particle volume, Np the number
of solid particle in the grid cell, respectively. Secondly, the corresponding source term is
introduced in the transport equation of sub-grid kinetic energy (Equation (2.33)):

ssgs =− 1
ρVgrid

Np

∑
i=1

ρpVp f (Rep)
2ksgs

τp +TL
. (4.74)

As noted in Elghobashi (1994), the interaction between solid particles and the turbulent flows
can not be neglected, and two-way coupling should be applied in the numerical simulations
when the volume fraction, defined by Φp = ∑

Np
i=1Vp/Vgrid , is larger than 10−6.

4.4 Particle surface interaction

When the particle falls and makes the collision with the surface composed by particles, two
events occur: firstly, if its momentum is large, then it rebounds and continues its motion in
the fluid flow with a new velocity, and some of the particles in contact with the bouncing
one may begin their incipient motion; secondly, if its momentum is too small to achieve the
rebound process, it may continue to slide or roll on the surface until the deposition occurs
due to the friction effect.

4.4.1 Rebound processes

The rebound process is obviously a stochastic process, which is usually simulated by an
empiric model based on the experimental observations. Commonly, the particle-surface
collision process is finished in a very short time, hence, it is considered to be independent on
the influence of the surrounding flow. Figure 4.22 shows the sketch of the three-dimensional
rebound process P−O−R of a spherical particle. The impacting particle P with the incident
angle θi and the speed vimp falls down and makes the collision with the particle surface at
the origin O. After the collision, the rebounding particle gains a new speed vreb and a new
direction determined by the rebound angle θr and the y− deviation θr,y. In practice, due
to the difficulty of capturing the three-dimensional trajectories of solid particles by a fast
video camera, we usually analyzed the two-dimensional rebound process P−O−Ry on the
incident plane Oxz, in which the rebound speed and angle are expressed by vxz

reb and θr.
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Figure 4.22 Sketch of the rebound process. P−O−R describes the three-dimensional
rebound process with the incident angle θi, the impacting speed vimp, the rebound speed vreb,
the rebound angles θr and θr,y. P−O−Ry describes the two-dimensional rebound process
projected on the incident plane Oxz with its rebound speed vxz

reb and the rebound angle θr.

Probabilistic rebound model: In a saltating layer, the rebound probability proposed by
Anderson and Haff (1991) is given by:

Preb(vimp) = 0.95(1− exp(−βimpvimp)), (4.75)

where vimp is the impacting particle speed and βimp is an empirical parameter of order
2s ·m−1. Equation (4.75) indicates that the rebound probability monotonically decreases
with the impacting speed vimp, and that the null probability is obtained when vimp is equal to
0.

When the rebound processes is achieved, the velocity norm vreb and angles θr and θr,y of
the rebounding particle must be specified. Experimental results shown that:

• The remained kinetic energy (vxz
reb)

2 of rebounding particles in the incident plane
approximately obeys to a normal distribution [Wang et al. (2008)].

• The rebounding angle θreb almost satisfies an exponential distribution [Kang et al.
(2008); Rice et al. (1996); Willetts and Rice (1986)].

Unfortunately, it is difficult to investigate probabilistic characteristic of the deviated angle
θy in y- direction, due to the technical restriction from an experimental point of view.
In the numerical steady state saltation model of Kok and Renno (2009), the remained
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kinetic energy is approximately equal to 45± 22% of the impacting kinetic energy, i.e.,
(vxz

reb)
2 = (0.45±0.22)v2

imp; The rebounding angle obeys an exponential distribution with a
mean value 40◦ from the ground, whereas the deviated angle is not taken into account.

Beldajine’s model: A three-dimensional particle-surface collision experiment was carried
out by Beladjine et al. (2007). In this experiments, both the incident speed and the incident an-
gle varied in a wide range: 74

√
gdp ≤ vimp ≤ 161

√
gdp and 0◦ ≤ θi ≤ 90◦. Let’s denote the

incident velocity v⃗imp = (vimp,x,0,vimp,z) and the rebound velocity v⃗reb = (vreb,x,vreb,y,vreb,z)

as shown in Figure 4.22, the two-dimensional mean restitution coefficients ēz and ēxz are
obtained by fitting with the experimental data:

ēxz =

〈
vxz

reb
vimp

〉
= A−Bsin θ̄i, (4.76a)

ēz =

〈
vreb,z

vimp,z

〉
=

Az

sin θ̄i
−Bz ≈ ēxz sin θ̄r, (4.76b)

where vxz
reb =

√
v2

reb,x + v2
reb,z denotes the projection of the rebounding velocity on the incident

plan Oxz, θi is the incident angle, θr is the rebound angle, Az = 0.30, Bz = 0.15, A = 0.87,
and B = 0.72. Note that the rebounding velocity can be reconstructed by Equation (4.76),
except for the y- component vreb,y. According to Dupont et al. (2013), the horizontal deviated
angle θreb,y is assumed to be normally distributed with a zero mean and 10◦ variation, then
we have vreb,y = vreb,x tanθreb,y.

In ARPS, the two restitution coefficients are supposed to obey a Gaussian probabilistic
distribution. The mean values are evaluated by Equation (4.76), and the standard variations
are assumed to be:

σθr = θ̄r, (4.77a)

σexz =

(
2− θr

θ̄r

)
ēxz. (4.77b)

It is remarked that Equation (4.77) indicates that the rebound velocity is smaller when the
rebound angle takes a larger value, which is consist with the experimental observation of
Anderson et al. (1991).

4.4.2 Splash entrainment

The splash entrainment is caused by the rebound: when a particle with a large velocity
impacts on the surface composited by solid particles, some other particles can be ejected



118 Physical modeling of wind erosion

due to this strong collision. In practice, a splash model is used to specify the number and
velocity of the ejected particles. According to Ungar and Haff (1987), Kok and Renno (2009)
and Dupont et al. (2013), the number of ejected particles is considered as a function of the
impacting velocity:

Ne jc ≈
a√
gdp

vimp (4.78)

where a is a dimensional constant, which is suggested to be in range of 0.01−0.05. One
drawback of Equation (4.78) is that the incident angle of impacting particle is not taken into
account. By fitting with experimental data, Beladjine et al. (2007) obtained a power law as
follows:

Ne jc ≈ 0.02(1−A2 +2ABsinθi −B2 sin2
θi)

(
vimp√

gdp

)2−p

(4.79)

where p ≈ 0.5, θi is the incident angle, A, B are identical to the values found in Equation
(4.76a).

Similar to the rebound model, both the velocity norm ve jc and angle θe jc from the ground
need to be modeled. Anderson et al. (1991) suggested that ve jc follows an exponential
distribution:

P(ve jc) =
1

⟨ve jc⟩
exp
(
− ve jc

⟨ve jc⟩

)
(4.80)

where ⟨ve jc⟩ denotes the mean ejected speed. Rice et al. (1995) suggested ⟨ve jc⟩= 0.08vimp.
Using the conservation of momentum, the momentum lost during the rebound process is
totally spent on ejecting other particles, Kok and Renno (2009) found:

⟨ve jc⟩√
gdp

=
αe jc

a

(
1− exp

(
− vimp

40
√

gdp

))
(4.81)

where αe jc is the momentum fraction lying in the range of 0.14−0.20 [Rice et al. (1995)].
In the numerical model of saltation, Kok and Renno (2009) choses αe jc = 0.15. The ejection
angle θe jc follows a Gaussian distribution with a mean of 60◦ and a variation of 15◦. As
for the rebound process, the horizontal deviated angle θe jc,y is also assumed to be normally
distributed with a mean value of 0◦ and a variation of 10◦.

4.4.3 Particle deposition

Particle deposition describes the action that a particle slows down on a surface, lastly stops
and becomes part of the surface. It is completely different from the deposition process, which
means the process of falling down of an airborne particle. The particle will be deposited on
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the surface if its velocity is theoretically null. In numerical simulation, solid particles either
stop immediately after colliding with the surface or deposit after rolling a small distance. The
deposition criterion in ARPS is that the particle velocity is too small to move on the surface.

4.5 Sand dune deformation

4.5.1 Temporal evolution of dune height

According to the conservation of the mass, the evolution of dune height can be written as

∂h(⃗x, t)
∂ t

= E (⃗x, t)+D(⃗x, t) (4.82)

where h(⃗x, t) is the dune height, E (⃗x, t) the emission rate per unit area, and D(⃗x, t) the
deposition rate per unit area, respectively.

The emission and the deposition estimated during a small time step δ t are defined by:

E (⃗x, t) =− 1
ρpS(⃗x)

1
δ t

Ne(⃗x,t)

∑
n

mn
p, (4.83a)

D(⃗x, t) =
1

ρpS(⃗x)
1
δ t

Nd (⃗x,t)

∑
n

mn
p, (4.83b)

where ρp is the particle density, S(⃗x, t) the cell area at the position x⃗ and at the time t, Ne(⃗x, t)
(or Nd(x, t)) the number of entrained (or deposited) particles during t and t +δ t, mn

p the mass
of the n-th entrained (or deposited) particle, respectively.

In this thesis, we study the deformation in the stream-wise direction of a three-dimensional
dune, which is composed by mono-diameter particles. Hence, using mp = πρpd3

p/6, Equation
(4.82) and Equation (4.83) can be rewritten as follows:

∂h(x, t)
∂ t

= E(x, t)+D(x, t) (4.84a)

E(x, t) =−
πNe(x, t)d3

p

6S(x)δ t
, D(x, t) =

πNd(x, t)d3
p

6S(x)δ t
. (4.84b)

In numerical simulations, S(x) = ∆x∆y where ∆x and ∆y are the horizontal grid increments,
and δ t = ∆t where ∆t is the big time step. Ne(x, t) (or Nd(x, t)) is the number of entrained
(or deposited) particles between t and t +∆t.
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4.5.2 Avalanche model

The angle of repose is the maximal bed slope of a modelled dune. It is determined by the
intrinsic characteristic of sand particles. The avalanche is a process in which sand particle
slides or rolls down the steepest slope when the angle of the local slope exceeds the angle of
repose. In our simulations, the one-dimensional avalanche model has been implemented and
its algorithm is given by the following steps:

1. We locate the zones where the bed slope between two grid nodes exceeds the angle of
repose, for example, Location A denotes the upper of those two grids nodes and B the
lower one.

2. We lower the bed level at the position A to position B such that the bed slope between
A and B becomes equal to the angle of repose.

3. We determine the volume of sediment, which is removed by this process (Step 2)).

4. We raise the bed level at the position A and B according to the mass conservation law.

5. We repeat Steps 1) to 4) until the local bed slope everywhere on the dune is less than
the angle of repose.

The avalanche function needs many iterations to achieve a smooth dune form. This may turn
out to be time consuming. In our simulation, since the big dune deforms slowly, the avalanche
function is not applied at each time step during the total process of dune deformation.

4.6 Conclusions

In this chapter, physical modeling of wind erosion is described. Based on the forces acting
on an individual particle, integrated wind erosion models at the scale larger than particle
diameter and smaller than the saltation length, including particle entrainment models, particle
transport equations, particle deposition criterion and particle-surface interaction models, are
proposed or introduced in detail.

We firstly review the forces acting on an airborne particle, especially on an individual
particle contacting on the wall. For a small heavy particle submerged in a boundary layer, it
is found that the forces induced by the disturbance such as the added-mass force, the Basset
force and the acceleration by the fluid, are negligible compared with the aerodynamic drag.
For solid particles far away from the wall, the aerodynamic drag and the gravity are dominant.
For particles contacting on the wall, the aerodynamic lift, the cohesion and the wall friction
should be taken into account.
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Based on the balance of the forces acting on an individual particle contacting on the
wall, we theoretically investigate the particle incipient motions, including lifting, sliding and
rolling motions, and then obtain their corresponding analytical formulas of the threshold
friction velocity u∗,c. According to the dimension analysis, we propose a general formula
of the critical Shield number: Shc = F(d+

p )(H(θ) +G(d−
p )), where Shc = u2

∗,c/(γρgdp),
d+

p = u∗,cdp/ν and d−
p = (γρg)1/3dp/ν2/3. The function F(d+

p ) related to the drag and lift
coefficients accounts for the aerodynamic effect, H(θ) for the bed slope effect, G(d−

p ) for
the inter-particle cohesion effect, respectively. Using the Shield diagram, it is shown that Shc

of rolling and sliding agrees well with the measured critical Shield number in experiments
and Shc of lifting seems much larger (Figure 4.15), and that the bed slope effect on the lifting
mode is different from that on the rolling and sliding modes (Figure 4.16). Moreover, inspired
by the works of Diplas et al. (2008), we propose an instantaneous entrainment model with
not only accounting for the magnitude and duration of the forces but also for the numerical
grid spacing effect. Due to the high correlation between the particle incipient motion and the
sweep events observed in many experiments, the instantaneous aerodynamic forces in this
model are supposed to be the product of the mean force and the Reynolds stress related to
the sweep actions.

In the Lagrangian description, the governing equations of particle transport motion are
given. For the airborne particles, the particle motion is determined by the aerodynamic drag
and the gravity. The resulted equations are usually used to track the trajectories of solid
particles in numerical simulations. In particular, the motion of the bed-load particles, which is
supposed to be important for sand dune deformation, is firstly studied and the corresponding
governing equations are deduced. Since the bed-load particles slide or roll on the surface,
not only the aerodynamic forces and gravity but also the wall friction and the cohesion are
responsible for their motions. In addition, a Lagrangian stochastic model and a two-way
coupling strategy are briefly described.

For the particle-surface interaction, we describe the probabilistic properties of the rebound
and splash process and introduce two empirical models of them: the model of Kok and Renno
(2009) and the model of Beladjine et al. (2007). In the following simulations of wind erosion,
the rebound model of Beladjine et al. (2007) and the splash model of Kok and Renno (2009)
are used.

According to the conservation of mass, the governing equation of sand dune deformation
is deduced. For a two-dimensional dune or a three-dimensional dune homogeneous in the
spanwise direction, the temporal evolution of the dune height is determined by the local
erosion rate and deposition rate. During the deformation, an avalanche model is applied to
control the local bed slope, which should be smaller than the angle of repose.





Chapter 5

Numerical simulation of wind erosion

In the view of fluid dynamics, wind erosion is a two-phase complex problem with moving
boundaries. It induces many topographical, environmental and agricultural issues, such
as dune migration and ripple formation; air pollution and sand storms; desertification and
agricultural land degradation. Recently, numerical simulations of wind erosion have been
performed: Nabi et al. (2012) attempted to simulate the dynamic process of underwater
ripple and dune deformation; Lopes et al. (2013) conducted the simulation of sand dune
deformation using a empirical wind erosion model based on the saturated transport flux;
Durán et al. (2014) employed the discrete element method to directly simulate the process
of ripple formation in an atmospheric boundary layer. However, the simulations of Nabi
et al. (2012) are underwater, and Lopes et al. (2013), Durán et al. (2014) used the RANS and
conducted two-dimensional simulations. To our knowledge, few three-dimensional numerical
simulations of wind erosion have been carried out. Hence, in this thesis, we conduct a three-
dimensional numerical simulation of sand dune deformation in an atmospheric boundary
layer using integrated wind erosion models for solid particles and large-eddy simulation
(LES) coupled immersed boundary method (IBM) for turbulent flows with moving boundary.

In this chapter, the developed numerical solver of integrated wind erosion models coupled
with IBM-ARPS is preliminarily validated by comparing the simulated results of particle
transport over a fixed Gaussian dune with the experimental data of Simoëns et al. (2015) in
Section 5.1. Then, in Section 5.2, we use this numerical solver to conduct the numerical
simulation of wind erosion with sand dune deformation and compare the simulated dune
shapes at different times with the rare experimental results of Ferreira and Fino (2012). In
this wind erosion case, flow characteristics during the deformation is presented, quantitative
investigation of sand dune deformation is done and the influence of some parameters in the
integrated wind erosion models is studied. Moreover, a new splash model to account for the
bed slope effect is proposed and used for the numerical simulation of sand dune deformation.



124 Numerical simulation of wind erosion

5.1 Validation case: particle transport over a fixed Gaus-
sian dune

As noted in Section 3.4, the developed IBM-ARPS solver for simulating boundary layers over
obstacles has been validated. In this section, integrated wind erosion models are validated
through comparison between the numerically simulated and experimental results of particle
transport in a turbulent boundary layer over a fixed small Gaussian dune [Simoëns et al.
(2015)].

5.1.1 Experimental configuration

In the experiment of Simoëns et al. (2015), the wind-tunnel setup is illustrated in Figure 3.20.
Sand particles with a density of 1000 kg ·m−3 are placed in a box 20 cm×10 cm located at
the beginning of the fluid domain. The particle diameter has a mean value of 200 µm and
ranges from 170 µm to 250 µm. In order to obtain the static rough-wall conditions similar
to the realistic sand bed, particles of same characteristic are uniformly and closely spread
and glued on the ground and over the Gaussian dune. Hence, the process of particle rebound
occurs in a natural way but the splash entrainment caused by the rebound is artificially
eliminated.

Figure 5.1 Sketch of sandbox-type particle-feeding device. Figure adapted from Taniere et al.
(1997).

Figure 5.1 schematically shows the particle-feeding device used in this experiment. This
device is installed at the upstream position of the wind tunnel flow. Powered by an upward-
moving piston, solid particles are entrained into the boundary layer flow. Particles supplied
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from the sandbox device generate an relatively natural inlet condition for particle transport
in a boundary layer. When the state of particle transport becomes equilibrium, the particle
concentration and velocity field are measured by digital image treatment.

The characteristic parameters of solid particles are shown in Table 5.1. The Shields
number Sh = 0.14 reveals that saltation and suspension are two main modes of the particle
motion. As the particle relaxation time scale τp satisfies τη ≪ τp < τL, the particle motion
is hardly sensitive to the turbulent dissipative scale structures, but can be easily influenced
by the energetic scale structures. The gravity parameter γg > 1 indicates that the modified
saltation mode is dominant.

ρp(kg ·m−3) dp(µm) g(m2 · s−1) τp(s) Sh StL Stη γg

1000 200 9.81 0.12 0.14 0.75 35.01 2.56
Table 5.1 Parameters of solid particles.

5.1.2 Numerical configuration

In numerical implementation, a sand box is installed at the beginning of the computational
domain as shown in Figure 5.2. The box size takes the same value as those in the experiment
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Figure 5.2 Sketch of numerical configuration of particle transport over a Gaussian dune.

and solid particles are of a uniform diameter dp = 200 µm. In numerical simulations, the
particle incipient motions at the sand box are determined by the aerodynamic entrainment
model implemented in the ARPS code. The initial particle velocity depends on the mo-
mentum obtained from the nearby fluid flow. This implementation is compatible with the
experimental set-up. Particles supplied by the sand box forms an exponential profile of
particle concentration, which agrees well with the experimental result. In addition, the



126 Numerical simulation of wind erosion

physical and numerical parameters are the same as given in Table 3.1 and Table 3.2, and
more details of numerical set-up are found in Subsection 3.4.1.

In practice, two numerical cases are studied as illustrated in Table 5.2. Case A was
carried out using the ARPS with a terrain-following grid [Huang (2015)] and Case B is
performed using the developed IBM-ARPS solver with a Cartesian grid. In particular, the
sand dune surface in Case B is considered as the immersed boundary, on which no-slip
boundary condition is imposed by introducing the direct forcing method. In both cases,
an instantaneous entrainment model is applied to initialize the particle movement while
particle/soil interaction is taken into account by the rebound model. Since the bed surface is
static, the splash model is useless and then is not used in these two simulations. The details
of these models are introduced in Chapter 4. It should be noted that the Lagrangian stochastic
model and two-way coupling are not used in these simulations.

Case
ARPS or

IBM-ARPS
Particle

entrainment model
Rebound model Splash model

Case A [Huang
(2015)]

ARPS Yes Yes Non

Case B IBM-ARPS Yes Yes Non
Table 5.2 Numerical cases of particle transport in a TBL over a small Gaussian dune.

5.1.3 Results and analysis

In this subsection, the results of particle transport over a fixed Gaussian dune obtained by
LES coupled with integrated wind erosion models are shown and analyzed. Concretely,
visualization of particle transport in the carried flow is done by showing particle trajecto-
ries and quantitative description of particle transport is conducted by plotting the particle
concentration and velocity profiles. In order to validate the integrated wind erosion models,
comparisons of the particle concentration profiles between simulated results and experimental
data are carried out.

Particle trajectories: Figure 5.3 shows several sand particle trajectories around the Gaus-
sian hill. Sand particles are aerodynamically entrained at the location of the sandbox. Once
lifted-off, sand particles are transported by the carried flow. By the action of gravity they
might impact the wall and rebound. According to the rebound model proposed by Beladjine
et al. (2007), particles that impact the dune on the upstream side are highly dispersed in the
turbulent flow.
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Figure 5.3 Particle trajectories over a fixed Gaussian dune. Results obtained by the IBM-
ARPS simulation coupled with integrated wind erosion models (Case B).

Particle velocity profiles over a Gaussian dune: We study the kinetic aspects of particle
transport starting from the particle velocity profiles. Here, the particle velocity is defined as
the average value of particle velocities within a unit volume V in an Eulerian description. In
our case, the motion of solid particles is homogeneous in the spanwise direction. The unit
volume is given by V = ∆xpLy∆zp at a given position (x,z). In practice, we set ∆xp = 0.1H
and ∆zp = 0.1H and Ly is equal to the spanwise length of the computational domain. Thus,
the formula of Eulerian particle velocity is given by:

⟨Up⟩(x,z) =
1

∆xpLy∆p
∑
V

up, (5.1)

where up is the Lagrangian particle velocity within the unit volume V .
The comparison between the particle and fluid longitudinal velocity is shown on Figure

5.4. The velocity is normalized by the external one Ue. Due to the presence of zero
concentration as shown in Figure 5.5, an apparent discontinuity exists on the particle velocity
profile after the dune. On the upstream side, the fluid and particle velocities are close. Over
the dune, the particle velocity is obviously smaller than the fluid. Due to the presence of
the dune, the fluid velocity increases more rapidly than the particle’s because of the particle
response time to fluid solicitations (τp).

Particle concentration profiles over a Gaussian dune: The particle concentration ⟨C⟩
is defined as the mean volume fraction of all the solid particles within a unit volume V =

∆xpLy∆zp. It is written as:

⟨C⟩(x,z) = 1
∆xpLy∆p

∑
V

Vp, (5.2)
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Figure 5.4 Comparison between particle longitudinal velocity (points) and fluid velocity
(lines) over a Gaussian hill. Results obtained by the IBM-ARPS simulation coupled with
integrated wind erosion models (Case B).

where Vp is the volume of individual particles within V.
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Figure 5.5 Particle concentration profiles over a Gaussian dune. Points: experiments of
Simoëns et al. (2015). Dashed lines: ARPS simulation coupled with integrated wind erosion
models (Case A). Solid lines: IBM-ARPS simulation coupled with integrated wind erosion
models (Case B).

The profiles of particle concentration over a fixed Gaussian dune are shown in Figure 5.5.
Each profile is normalized by its maximal concentration. High values of the concentration
are obtained close to the surface and in the mixing layer at the interface of the recirculation
region and the outer flow. Behind the dune, in the recirculation region, particle concentration
is low and drops to zero. On the windward side, a good agreement is obtained between
simulation results and experimental data. On the lee side, the locations of the concentration
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peak are well predicted by both simulations (Case A and Case B), even if the simulated
concentration profiles differ from the experimental ones.

In conclusion, the integrated wind erosion models have been implemented into the IBM-
ARPS code. Globally, a good agreement between the simulated results and the experimental
data preliminarily demonstrates the ability of the IBM-ARPS solver coupled with integrated
wind erosion models.

5.2 Wind erosion case: particle transport over a deformable
sinusoidal dune

As the integrated wind erosion models are preliminarily validated in the previous section 5.1,
an attempt of simulating wind erosion with sand dune deformation is carried out using these
models for particle motions coupled with IBM-ARPS for calculating turbulent flows with
deformable immersed interface. Based on the simulated results, quantitative investigation
of dune deformation is conducted and the influence of some parameters in integrated wind
erosion models is studied.

5.2.1 Estimation of the duration of sand dune deformation

Supposing the saturated saltation flux q⃗s (kg ·m−1 · s−1), from a simple flux-divergence
model, the temporal evolution of the dune height h is governed by:

∂

∂ t
h(⃗x, t) =− 1

ρp
∇ · q⃗s(⃗x, t). (5.3)

where ρp is the average density of sand particles. Equation (5.3) indicates that the local
divergence of particle transport flux is responsible for the evolution of local dune elevation.

Considering a two-dimensional dune or a three-dimensional dune homogeneous in the
spanwise direction in a boundary layer, the dune height and saltation flux are thus simplified
to functions of the streamwise coordinate x, i.e., h = h(x, t) and qs = qs(x, t). Integrating
Equation (5.3) from x1 to x2, we obtain:

∂

∂ t

ˆ x2

x1

h(x, t)dx =− 1
ρp

ˆ x2

x1

∂qs(x, t)
∂x

dx, (5.4)

For the simplification, assuming that the saltation flux is nearly unchanged during the dune
deformation, for example, qs takes the initial value and only depends on the position, i.e.
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qs(x, t) = qs,0(x), then Equation (5.4) becomes:

∂

∂ t

ˆ x2

x1

h(x, t)dx =− 1
ρp

ˆ x2

x1

∂qs,0(x)
∂x

dx =− 1
ρp

(qs,0(x2)−qs,0(x1)). (5.5)

As qs,0 is a increasing function of the wall shear stress, i.e., qs ∼ (u∗− u∗,c)3, where
u∗ and u∗,c is the flow and critical friction velocity. As shown in Figure 3.26, the friction
velocity increases on the windward side of the dune, takes the maximal value near the crest.
Assuming that the interval [x1,x2] signifies the windward side of the sand dune, Equation
(5.6) is then approximately equal to:

∂

∂ t
1
2

S(t)≈− 1
ρp

qs,max, (5.6)

where S(t) denotes the dune surface and qs,max is the maximal saturated flux. Here, we note
qs,0(x2) = qs,max with the maximal friction velocity u∗ at the position x2 and qs,0(x1) = 0
since u∗ at the position x1 is smaller than the critical one. Supposing that qs,max is a constant
during the sand deformation, from Equation (5.6), it is known that the dune surface is
decreasing at a constant rate qs,max/ρp. Hence, the duration T for a sand dune erosion is
approximated by:

T ≈ ρpSdune

2qs,max
. (5.7)

For the wind erosion in a boundary layer over a large sinusoidal dune, we have u∗ =
0.42 m · s−1, dp = 500 µm, ρp = 2650 kg ·m−3, ρ = 1.25 kg ·m−3, H = 0.06 m. The satu-
rated flux qs is estimated by the formula of Bagnold (1941), i.e., qs = c0

√
dp/Dρu3

∗/g, where
c0 = 1.5, D = 250 µm, g = 9.8 m · s−2. Using Equation (5.7), the deformation duration of a
large sinusoidal dune is about:

T ≈ 2650×1.5×6×10−2 ×6×10−2

2×1.5×
√

500/250×1.25× (0.05×11.2)3/9.8
≈ 6.36

0.05
≈ 127.2 sec. (5.8)

Hence, the duration is about 2 min, which is consistent with the experimental result of
Ferreira and Fino (2012).

5.2.2 Experimental set-up

The wind-tunnel experiments were carried out by Ferreira and Fino (2012). This wind
tunnel is long of 5 m and has a cross-section of 2 m×2 m. The sand pile with a height of
H = 0.06 m is placed 36.7H from the input nozzle, and perpendicular to the streamwise
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direction as shown in Figure 5.6. For the fully developed boundary layer generated in the

Figure 5.6 View of a single sand pile in the wind tunnel. Taken from Ferreira and Fino (2012)

wind tunnel, the measured external velocity and layer thickness are Ue = 9.1 m · s−1 and
δ = 0.1 m. The Reynold number is 3.6×104.

The detailed information of solid particles is presented in Table 5.3. The Shields number
Sh = 0.02 shows a low transport capacity of sand particles by the turbulent flow. This
explains that the dune deformation caused by the particle transport takes a long time. As the
particle relaxation time scale τp satisfies τp ≫ τη and τp > τL, the particle motion is not only
hardly responsive to the turbulent dissipative scale structure, but also can not be influenced
by the energetic scale structure. The very large gravity parameter γ ≫ 1 indicates that the
modified saltation mode dominates and the creep mode might plays an important role on the
dune deformation.

ρp(kg ·m−3) dp(µm) g(m2 · s−2) τp(s) Sh StL Stη γg

2650 500 9.81 1.96 0.02 8.24 436.21 45.78
Table 5.3 Parameters of solid particles.

5.2.3 Numerical configuration

The computational domain is illustrated in Figure 5.7. The deformable dune is situated
at the origin and is considered as the immersed boundary. In the wind erosion case, sand
particles are entrained and deposited according to the corresponding criterion proposed by
the integrated wind erosion models. The local particle erosion rate and deposition rate are
then evaluated by calculating the mass loss using the countered entrained particles and the
mass gain using the deposited particles in a grid cell and in a time step. Therefore, applying
Equation (4.84) results in the instantaneous dune deformation. In particular, an avalanche
model is used to control the local bed slope, which should be smaller than the angle of repose.
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In this simulation, the physical and numerical parameters are given by Table 3.5 and Table
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Figure 5.7 Sketch of numerical configuration of wind erosion.

3.6, and more details of numerical set-up are found in Subsection 3.4.3. The characteristics
of solid particles are the same with the experiment’s as shown in Table 5.3.

Six numerical simulation cases are carried out for the wind erosion with sand dune
deformation. The turbulent boundary layer over a deformable dune is simulated by the
developed IBM-ARPS solver, and the particle motion is determined by the resolved flow and
integrated wind erosion models. Concretely, the particle incipient motions are modeled by
an instantaneous lifting or rolling-sliding entrainment model; then the entrained particles
are transported in the carried flow using a Lagrangian tracking approach; lastly, due to the
gravity effect, solid particles fall back to the dune surface and make a collision with particles
on the ground. After the collision, particles either rebound and continue their motions in the
flow or roll or slide on the surface until they deposit on the dune, according to the criterion in
the rebound model. In addition, owing to the collision, some new particles might be ejected
in the flow, which is simulated by a probabilistic splash model. In Case A′, the coefficient
in the particle entrainment model is assigned by γe f f = 0.6, which is obtained by fitting
the simulated dune shape with the experimental results at t = 2 min; The coefficient in the
equation of bed load particle motion is considered as the effective dynamic friction coefficient
of a rough surface composed by sand particles, which is measured as µe f f ≈ tan(8.5◦) in
Quartier et al. (2000); The rebound model proposed by Beladjine et al. (2007) and the splash
model of Kok and Renno (2009) are used. Cases B′ and C′ are conducted to investigate the
influence of the coefficient µe f f on the sand dune deformation. Cases D′ and E′ are used
to study the effect of the splash entrainment on the wind erosion. Case F′ is an attempt, in
which an improved splash model with accounting for the bed slope effect is applied. For
numerical simulations, it should be noted that the computing cost is very huge since LES is
used and the simulation is three-dimensional. For example, it should take about one month
for Case A′ to achieve 6 min of sand dune deformation, even if 128 CPUs are used using
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MPI parallelization as shown in Table 5.5. It should be noted that the Lagrangian stochastic
model and two-way coupling are not used in these simulations.

Case
Particle

entrainment model
Bed-load particle

motion
Rebound

model
Splash model

Case A′
γe f f = 0.6 µe f f = tan(8.5◦)

Beladjine
et al. (2007)

Kok and Renno
(2009) with

a = 0.05

Case B′ γe f f = 0.6 µe f f = tan(3.5◦)
Beladjine

et al. (2007)

Kok and Renno
(2009) with

a = 0.05

Case C′
γe f f = 0.6 µe f f = tan(13.5◦)

Beladjine
et al. (2007)

Kok and Renno
(2009) with

a = 0.05

Case D′ γe f f = 0.6 µe f f = tan(8.5◦)
Beladjine

et al. (2007)

Kok and Renno
(2009) with

a = 0.03

Case E′ γe f f = 0.6 µe f f = tan(8.5◦)
Beladjine

et al. (2007)

Kok and Renno
(2009) with

a = 0.10

Case F′ γe f f = 0.6 µe f f = tan(8.5◦)
Beladjine

et al. (2007)

Kok and Renno
(2009) with bed

slope effect
Table 5.4 Numerical cases of particle transport in a TBL over a small Gaussian dune.

Case Grid ∆t(s) Duration (min) Np CPU-H
Case A′ 1063×63×100 5×10−5 6.0 128 580

Table 5.5 Estimation of computational time for the numerical simulation of Case A′. ∆t is
the large time step. Np denotes the number of processors. CPU-H represents CPU hours
necessary for 6 min of Case A′.

5.2.4 Flow characteristics

In this subsection, the flow characteristics over a deformable dune is investigated by plotting
the recirculation zone, mean longitudinal velocity profiles, Reynolds stress profiles and the
friction velocity at different times.

Figure 5.8 shows the recirculation zones obtained by Case A′ at t = 0 min, t = 2 min,
t = 4 min and t = 6 min. In Figure 5.8, the coordinates are scaled by the initial dune height
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(a) t = 0.0 min. (b) t = 2.0 min..

(c) t = 4.0 min.. (d) t = 6.0 min..

Figure 5.8 Mean streamlines over a deformable dune and recirculation zones on the lee side.
Results obtained by Case A′.

H and the origin is set at the dune center. Table 5.6 presents the values of key parameters
characterizing the form of recirculation zone, i.e., xsep, xreat , LAB, LCD and LAB/LCD. As
the sand dune deforms, the dune height gradually decreases and the recirculation zone is
reduced accordingly. It is observed that the recirculation zone disappears behind the dune at
t = 6.0 min as shown in Figure 5.8(d). Concretely, the separation position increases from
xsep = 1.67H at t = 0.0 min to xsep = 3.28H at t = 6.0 min while the reattachment position
decreases from xreat = 3.83H at t = 0.0 min to xreat = 3.28H at t = 6.0 min. In particular, the
reattachment point moves forward a distance at t = 4.0 min as xreat = 3.92H at t = 4.0 min
is larger than xreat = 3.63H at t = 2.0 min. This abnormal process might be caused by the
deposition on the lee side, which leads to an increase in the dune area near the recirculation
zone. Moreover, both two lengths LAB and LCD also decrease as time goes by.

Time xsep/H xreat/H LAB/H LCD/H LAB/LCD

t = 0.0 min 1.67 3.83 0.44 2.21 0.199
t = 2.0 min 2.47 3.63 0.24 1.18 0.203
t = 4.0 min 2.77 3.92 0.20 1.17 0.171
t = 6.0 min 3.28 3.28 − − −

Table 5.6 Characterization of the recirculation zone behind a deformable dune. Results
obtained by Case A′.
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The mean longitudinal velocities over a deformable dune at several different streamwise
stations and at t = 0 min, t = 2 min, t = 4 min, t = 6 min, are shown in Figure 5.9. The mean
streamwise velocities are normalized by the external one and located at the corresponding
stations, i.e., x =−1.5H, x = 0.0H, x = 1.5H, x = 3.0H, x = 4.0H, x = 6.0H and x = 7.5H.
The coordinates are scaled by the dune height H and the origin is set at the dune center. It is
shown that the mean longitudinal velocity over the dune decreases as the sand dune deforms,
especially for the velocity at the dune crest from t = 0.0 min to t = 2.0 min. For the stations
far away form the dune, there is almost no difference between the mean streamwise velocity
profiles. This indicates that the dune deformation only affects nearby flows but has little
influence on the external flows.
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Figure 5.9 Mean longitudinal velocity profiles over a deformable dune. Results obtained by
Case A′.

In Figure 5.10, we present profiles of mean Reynolds stress ⟨u′w′⟩ over a deformable
dune at six different stremwise stations and at t = 0 min, t = 2 min, t = 4 min, t = 6 min.
Here, u′ denotes the longitudinal fluctuation velocity and w′ the vertical fluctuation. The
Reynolds stress is scaled by the square of the external velocity. It is observed that the Reynold
stress behind the dune decreases as the sand dune deforms: a sharp decrease from t = 0 min
to t = 2 min and a slight decline after t = 2 min. In particular, even when the recirculation
zone disappears at t = 6 min, there is also a slight increase on ⟨u′w′⟩ behind the dune.

Figure 5.11 gives the friction velocity u∗ over a deformable dune at t = 0 min, t = 2 min,
t = 4 min, t = 6 min. The friction velocity is defined by u∗ =

√
τw/ρ , where τw is wall

shear stress and ρ is the fluid velocity, and it is normalized by the initial value. Within the
integrated wind erosion models, the friction velocity is used to calculate the aerodynamic
lift and drag forces, which are responsible for the particle incipient motion. It is shown that
the friction velocity is reduced at the dune crest and enhanced both on the windward side
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Figure 5.10 Reynold stress τuw = ⟨u′w′⟩ profiles over a deformable dune. Results obtained
by Case A′.

and on the lee side as the sand dune deforms. As the saturated transport flux is commonly a
cubic function of local friction velocity, i.e., qs ∼ u3

∗, the reduced flux at the crest may be
much larger than the increased flux on both sides. Thus, this might lead to a decrease in the
erosion rate as time goes by. In addition, it is obviously found that the region of small friction
velocities is gradually reduced from t = 0 min to t = 6 min. This supports the previous point
that the recirculation zone gradually decreases during the sand dune deformation. We note
that some oscillations are observed on the friction velocity curves over the dune. These are
three possible reasons for them. Firstly, the discrete immersed boundary method constructs
a sharp representation of the immersed dune surface, which indeed induces some small
oscillations on u∗ as shown in Figure 3.26. Secondly, as the sand dune deforms, there appear
some discontinuities on the dune shape, which might cause some changes on the near-wall
flow and thus on the friction velocity. Thirdly, since the computing cost of Case A′ is huge,
only one numerical representation is used to evaluate the mean wall shear stress and thus the
friction velocity. Hence, lack of rich numerical data might induce some statistic fluctuations.

5.2.5 Sand dune deformation

In this subsection, quantitative investigation of simulated results and experimental data
is performed by comparing the sand dune shape after the deformation obtained by both
approaches. To evaluate the performance of the proposed integrated wind erosion model
coupled with the IBM-ARPS, the mean and root mean square of vertical dune height deviated
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Figure 5.11 Friction velocity at t = 0 min, t = 2 min, t = 4 min, t = 6 min. Results obtained
by Case A′.

to the experimental results are used. They read:

eh(t) =
∑i hi,num(t)−hi,exp(t)

∑i hi,exp(t)
, (5.9a)

σh(t) =

√
∑i(hi,num(t)−hi,exp(t))2

∑i hi,exp(t)
, (5.9b)

where hi,num(t) is the dune height at the grid index i and at the time t obtained by the
numerical simulation and hi,num(t) obtained by the experiment. Equation (5.9a) indicates
the difference of simulated area (mass) loss to the experiment during the deformation and
Equation (5.9b) is an indicator describing the global derivation of simulated dune shape to
the experiment’s.

Figure 5.12 shows the numerical results of sand dune deformation at t = 2 min using
the integrated wind erosion models coupled with IBM-ARPS. The simulated dune shape
is compared with the experimental data of Ferreira and Fino (2012). It is observed that a
perfect agreement between them is achieved. Both the mean and the root mean square are
very small, i.e., eh = −2.98% and σh = 0.71% as shown in Table 5.7. In Figure 5.13, the
accumulated erosion and deposition rates from t = 0 min to t = 2 min are presented. Note
that the accumulated erosion rate is evaluated by calculating the total area of eroded (or
entrained) particles between t = 0 min and t = 2 min and the accumulated deposition rate
by computing the total area of deposited particles. It is found that their summation takes a
negative value on the windward side and at the crest, and a positive value on the lee side near
the dune foot, precisely around the recirculation zone. This means erosion on the windward
side, where particles take off since the local friction velocity exceeds the critical value, and
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Figure 5.12 Sand dune shape at t = 2 min. Red lines: experiment of Ferreira and Fino (2012).
Blue lines and points: numerical simulation (Case A′).

deposition on the lee side, where transported particles are trapped into the recirculation zone
and then deposited on the surface since the reversed fluid velocities slow down the particle
motions. This observation is consistent with the previous conclusion obtained by a priori
study of wind erosion over a fixed Gaussian dune [Huang et al. (2018)].

Figure 5.14 gives the different contributions to erosion between t = 0 min and t = 2 min:
the lifting mode, the rolling-sliding mode and the splash mode. Here, we note that the
accumulated erosion rate of the lifting mode is defined by the area loss caused by the lifting
entrainment between t = 0 min and t = 2 min, which is equal to the product between the
area of an individual particle and the number of lifting particles during this duration. The
rolling and splash erosion rates are calculated in the same way. It is observed that the lifting
incipient motion occurs on the windward side, the splash entrainment mainly on the lee side
and the rolling-sliding incipient motion on both sides. This indicates that the aerodynamic
entrainment, including both lifting entrainment and rolling-sliding entrainment, is respon-
sible for the windward side deformation and the splash and rolling-sliding entrainment are
important for lee side deformation. It is noticed that non-negligible oscillations are found on
the erosion and deposition curves in Figure 5.13 and Figure 5.14. There are two possible
causes: firstly, this may be caused by the application of a probabilistic splash model in the
simulation. In these oscillated regions, the splash process occurs frequently, which results
in many ejected particles by the particle-surface collisions and thus in a very large erosion
rate. Most of them get a small initial velocity and then deposit immediately in the same grid
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Figure 5.13 Erosion and deposition. Erosion (violet lines and points): total area of particles
removed from the sand dune between t = 0 min and t = 2 min. Deposition (red lines and
points): total area of particles deposited on the sand dune between t = 0 min and t = 2 min.

cell. This explains why the oscillations on the rate curves are nearly situated at the same
position. Moreover, due to the limitation of computing ability, the erosion and deposition
rates are calculated using only one sample of Case A′. Hence, these oscillations might be a
representation of the randomness of the splash process. Secondly, the discontinuities on the
friction velocity over the dune (shown in Figure 5.11), might also cause some oscillations on
the lifting and rolling-sliding erosion rates.

Figure 5.15 and Figure 5.16 show the numerical simulated results of sand dune defor-
mation at t = 4 min and t = 6 min, respectively. In Figure 5.15(a) and Figure 5.16(a), the
dune shapes simulated by Case A′ are compared with the experimental data. It is found that
an acceptable agreement between them at t = 4 min is reached as the mean and root mean
square errors are small, i.e., eh = 1.50% and σh = 1.85%. Unfortunately, as shown in Figure
5.16(a), the simulated dune shape at t = 6 min differs from the experimental one on the lee
side. The mean and root mean square of the dune height are very large, i.e., eh = 13.40%
and σh = 3.91% given in Table 5.7. Comparing Figure 5.15(a) with Figure 5.16(a), we find
that there is almost no change in the shape of sand dune from x = 2H to x = 5H between
t = 4 min and t = 6 min. This indicates that the pure deposition rate on the lee side becomes
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Figure 5.14 Contributions to erosion between t = 0 min and t = 2min: lifting, rolling and
splash. Results obtained by Case A′.

negligible when the recirculation zone behind the dune is very small or even disappears.
Hence, the recirculation zone plays an important role for the deposition on the lee side.
Moreover, it is also observed that erosion occurs on the windward side and deposition on the
lee side as shown in Figure 5.15(b) and Figure 5.16(b).

t = 2 min t = 4 min t = 6 min
eh(t) −2.96% 1.50% 13.4%
σh(t) 0.71% 1.85% 3.91%

Table 5.7 eh and σh between the numerical results (Case A′) and the experimental data
(Ferreira and Fino (2012)).

Influence of the bed-particle motion model: In order to investigate the influence of the
bed-load particle motion model on the sand dune deformation, three numerical cases are
conducted with different values of µe f f , i.e., µe f f = tan(8.5◦) in Case A′, µe f f = tan(3.5◦)
in Case B′, µe f f = tan(13.5◦) in Case C′. To save the computing time, Case B′ and Case C′

are initialized using the restart file of Case A′ at t = 1 min. In Figure 5.17, the dune shapes
at t = 2 min simulated by Case A′, Case B′ and Case C′ are presented. No big difference
between them is observed, except for a slight change at the crest. Therefore, it seems that
the parameter µe f f in the bed-load particle motion equation has almost no influence on the
numerical simulation of sand dune deformation.
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(a) Sand dune shape at t = 4 min. Red lines: experiment of Ferreira and Fino (2012). Blue lines and
points: numerical simulation (Case A′).
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Figure 5.15 Sand dune deformation (Case A′) at t = 4 min.
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(a) Sand dune shape at t = 6 min. Red lines: experiment of Ferreira and Fino (2012). Blue lines and
points: numerical simulation (Case A′).
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Figure 5.16 Sand dune deformation (Case A′) at t = 6 min.
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Figure 5.17 Comparison of the dune shape at t = 2 min between Case A′, Case B′ and Case
C′.
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Figure 5.18 Comparison of the dune shape at t = 2 min between Case A′, Case D′ and Case
E′.

Influence of the splash model: As shown in Figure 5.14, the splash entrainment plays a
crucial role on the lee side deformation. Hence, it is necessary to study the effect of the
splash process on the sand dune deformation in numerical simulations. In the IBM-ARPS
code, a splash model proposed by Kok and Renno (2009) has been implemented and is
used to estimate the number of ejected particles. The velocity norm and direction of ejected
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particles are randomly assigned according to an empirical formula. The details of the splash
model is introduced in Subsection 4.4.2. In this thesis, we carry out three numerical cases
with different values of a in Equation (4.78), i.e., a = 0.05 in Case A′, a = 0.03 in Case D′,
a = 0.10 in Case E′. It should be noted that a larger value of a gives a greater number of
ejected particle, thus results in a stronger splash process. Figure 5.18 shows the dune shapes
at t = 2.0 min obtained by Case A′, Case D′ and Case E′. It is observed that no big difference
between the dune shapes simulated using a = 0.03 and a = 0.05. For Case E′ with a very
strong splash function a = 0.10, more erosion on the lee side is obtained than those of a
weak splash scheme a = 0.03 or a = 0.05. Hence, it is concluded that the parameter a in the
splash function has a slight influence on the lee side deformation although the splash process
is observed to be important for the lee side erosion.

5.2.6 Improved splash model with accounting for bed slope effect

To account for the effect of local bed slope, an improved splash model is proposed by
introducing a new function:

N′
e jc =

a√
gdp

vimp︸ ︷︷ ︸
Ne jc

(
2− cosθ − sinθ

tanϕ

)
︸ ︷︷ ︸

Bed slope effect

, (5.10)

where θ is the local bed slope and ϕ = 33◦ equals the angle of repose. In Equation (5.10),
Ne jc is the number of ejected particle by the splash process, which is estimated by an empirical
formula proposed by Kok and Renno (2009) and N′

e jc denotes the new number by introducing
a function of the local bed slope θ . Note that θ depends on the flow direction: θ takes
the dune slope when the flow velocity is positive in the streamwise direction; Conversely,
θ equals the negative value of the dune slope if the streamwise velocity is reversed, For
example, θ on the lee side is positive rather negative in the recirculation zone.

The idea behind Equation (5.10) is that the splash process is harder if θ > 0 since particles
are ejected against the gravity, whereas it is easier if θ < 0 as the gravity is helpful for the
ejection, namely, the number of ejected particle is smaller for θ > 0 and is conversely larger
for θ < 0. Hence, N′

e jc in Equation (5.10) is a strictly decreasing function of the bed slope θ .
Moreover, Equation (5.10) should satisfy N′

e jc = Ne jc if θ = 0 and N′
e jc should take a positive

value for an arbitrary slope, i.e., N′
e jc > 0,∀θ ∈ [−π/2,π/2]. With accounting for the bed

slope effect, it is hoped that a stronger splash entrainment will occur on the lee side near the
crest, which might be able to improve the simulated dune shapes after a long time where an
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unexpected strong lee side deposition near the crest is observed in our previous simulation
results as shown in Figure 5.15 and Figure 5.16.
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Figure 5.19 Dune shapes at t = 2 min obtained by the experiments of Ferreira and Fino
(2012), Case A′ and Case F′.

Figure 5.19 gives the simulated dune shape at t = 2 min using the improved splash model
with accounting for bed slope effect (Equation (5.10)) and compares it with the simulated
results using the previous model and the experimental data of Ferreira and Fino (2012). It is
observed that the dune height obtained by the new splash model is obviously smaller than
the previous simulated result on the lee side near the crest and is slightly larger than that near
the dune foot. The mean and root mean square of the new dune height are e′h = −4.54%
and σ ′

h = 2.11%, whose absolute value are slightly lager than those of the previous ones
eh =−2.98% and σh = 0.71%. This indicates that the improved splash model induces an
expected strong lee side erosion near the crest and accordingly brings slightly more deposition
near the foot, although the agreement between the new results and the experimental data is
not as perfect as the previous ones.

In Figure 5.20, the dune shapes at t = 4 min obtained using the new splash model, using
the previous model and by the experiments are illustrated. It is observed that the new dune
form agrees better with the experimental one than the previously simulated result. This point
is also supported by the comparison between the two qualified indicators: the mean and root
mean square of the new dune height e′h = 1.01% and σ ′

h = 1.50% are smaller than those of
the previous results eh = 1.50% and σh = 1.85%. This shows that the new splash model
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produces a strong erosion on the lee side near the crest as excepted, and thus obtains better
results of the dune shape after a long time deformation, although the improvement is not big.
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Figure 5.20 Dune shapes at t = 4 min obtained by the experiments of Ferreira and Fino
(2012), Case A′ and Case F′.

In short, we attempt to propose an improved splash model of Kok and Renno (2009)
with accounting for the bed slope effect. By the comparison between the newly simulated
results with the previously simulated and experimental ones, it is shown that the new splash
model has the ability of producing a stronger erosion on the lee side near the crest and thus
brings some improvements to the simulated results of the sand dune shape after a long time
deformation. On one hand, this attempt shows that the splash model is important for the
lee side erosion and this erosion will become stronger if the bed slope effect is taken into
account. On the other hand, as the current splash models are proposed based on the wind-
tunnel experiments on a plate surface, this attempt inspires us to carry out the experimental
investigation of the bed slope effect on the splash model.

5.3 Conclusions

In this chapter, two numerical simulations of wind erosion are carried out. Firstly, we
perform the simulation of particle transport in a TBL over a fixed Gaussian dune, in which
the turbulent flow is calculated by the IBM-ARPS and the motion of solid particles are
simulated by a Lagrangian tracking approach with integrated wind erosion models. The
simulated mean concentration profiles are presented and compared with the numerical results



5.3 Conclusions 147

of Huang (2015) and the experimental data of Simoëns et al. (2015). An overall agreement
between them preliminarily validates the ability and accuracy of the developed wind erosion
solver of the IBM-ARPS coupled with integrated wind erosion models.

Secondly, we conduct the simulation of wind erosion with sand dune deformation using
the original physical models proposed in Chapter 4. For the flow fields, it is shown that
the recirculation zone behind the dune is gradually reduced or even disappears as the sand
dune deforms, and that the mean longitudinal velocity, Reynolds stress as well as the friction
velocity over the dune decreases accordingly as the dune height decreases. For the dune
deformation, windward erosion and lee side deposition is observed. In particular, it is shown
that the reversed velocity in the recirculation zone is important for the particle deposition and
the splash entrainment plays a crucial role on the lee side erosion. It is concluded after testing
that the parameter in the equation of the bed-load particle motion has nearly no influence
on the dune deformation, and that the parameter in the splash model slightly affects the
lee side deformation. By comparing the simulated dune shapes with the experimental ones
of Ferreira and Fino (2012), it is observed that a perfect good agreement between them is
achieved at t = 2.0 min and an unexpected difference on the dune height on lee side near the
crest appears after t = 4.0 min. Moreover, we attempt to propose an improved splash model
with accounting for the bed slope effect and use it in this simulation. It is shown that the
improved splash model brings an expected strong lee side erosion near the crest and thus
slightly improves the simulated dune shapes at t = 4.0 min. We conclude that wind erosion
simulations using our developed IBM-ARPS solver coupled with integrated wind erosion
models succeed in obtaining a perfect results in a short period but underestimate the dune
shapes after a long duration.





Chapter 6

Conclusions and Perspectives

6.1 Conclusions

The goal of this thesis is to conduct the first three-dimensional large-eddy simulation of
wind erosion with sand dune deformation. Firstly, a new LES solver has been developed to
simulate an atmospheric boundary layer over moving boundaries by introducing the immersed
boundary method. Secondly, based on the forces acting on an individual particle, the physical
and comprehensive integrated wind erosion models have been proposed and used for the
Lagrangian tracking for the trajectories of solid particles carried by turbulent flows. Thirdly,
the ability of the developed numerical solver coupled with integrated wind erosion models
has been preliminarily validated by comparing the simulated results of particle transport
over a fixed Gaussian dune with the experimental data of Simoëns et al. (2015), and then
further examined by performing the simulation of wind erosion over a deformable dune and
comparing the simulated dune shapes with the experimental ones of Ferreira and Fino (2012).

Developing a numerical method for wind simulation: Due to the presence of a de-
formable boundary, a new numerical solver (IBM-ARPS) has been developed by introducing
the immersed boundary method into the LES code ARPS. A direct forcing approach called
ghost-cell finite-difference method has been chosen and implemented. This method con-
structs a shape representation of the immersed dune surface, on which no-slip boundary
condition is imposed through the flow reconstruction on the ghost cells. The accuracy of
this solver has been examined through the simulations of a boundary layer over a small
Gaussian dune and over a large sinusoidal dune. In the Gaussian case, it is shown that a good
agreement on the recirculation zone characteristics, mean longitudinal velocity profiles and
Reynolds stress profiles between the simulated results and experimental data is achieved
and thus demonstrates the ability of the developed IBM-ARPS solver. It is also shown after



150 Conclusions and Perspectives

testing that both the interior treatment and the pressure reconstruction have nearly no effect
on the standard IBM-ARPS results, whereas the wall-modeling has a slight influence, e.g.,
weakly reducing the recirculation zone. In the sinusoidal case, a relatively coarse grid is
used, i.e., ∆z+min = 42 in the log layer, since the Reynolds number and the blockage ratio are
large. It is shown that the results obtained by the IBM-ARPS with wall modeling is much
closer to the results simulated by the ARPS with terrain-following grid than those by the
standard IBM-ARPS. Particularly, the size of recirculation zone with wall modeling is found
to agree well with that in the RANS simulation of Lopes et al. (2013). We conclude that the
strategy of wall modeling is important for the IBM-ARPS simulation of a boundary layer
over obstacles when a coarse grid is used.

Physical modeling of wind erosion: The forces acting an individual particle submerged
within the carried flow or contacting the wall are reviewed. Based on the balance of these
forces, particle incipient motions, including lifting, sliding and rolling, have been theoretically
studied and their corresponding analytical formulas of the threshold (friction) velocity are
obtained. Using the dimension analysis and based on these analytical results, the critical
Shield number is supposed to be a combination of three functions: one accounting for the
aerodynamic effect, one for the bed slope effect, and the other for the inter-particle cohesion
effect. It is shown in the Shield diagram that the modeled values of the critical Shield number
of sliding and rolling agree well with the measured ones in different experiments, whereas
the values of lifting appears much larger, and that the bed slope effects on the sliding and
rolling are similar but different from that on lifting.

To establish integrated wind erosion models, firstly, two instantaneous entrainment
models, including lifting for particles detaching far away from the wall and rolling-sliding
for particles moving on the wall, are proposed. These models take into account not only
the magnitude and duration of the forces acting on the particle but also the numerical grid
spacing effect. Secondly, we introduce the governing equations of motion of an airborne
heavy particle, which is used for the Lagrangian tracking of the trajectories of solid particles
in numerical simulations. Moreover, we firstly focus on the motion of a bed-load particle,
which slides or rolls on the wall, and then deduce its equation of motion. Thirdly, a rebound
model and a splash model are introduced to account for the particle-surface interactions.
Since the movement of bed-load particles are considered, solid particles failing to rebound
might continue to slide or roll on the surface and then slow down by the wall friction,
or probably deposit immediately on the surface if its velocity is not large enough for the
movement. Hence, the criterion of particle deposition in this case is that the particle is located
on the surface and its velocity is too small to move. According to the conservation of mass,



6.1 Conclusions 151

the local erosion rate and deposition rate are responsible for the temporal evolution of the
dune height. During the deformation, an avalanche model is applied when the local bed slope
exceeds the angle of repose.

Numerical simulation of wind erosion: We have conducted three-dimensional numerical
simulations of wind erosion, in which turbulent flows are calculated using the IBM-ARPS
solver and solid particle trajectories are tracked by a Lagrangian approach. Particle entrain-
ment, particle-surface interaction and particle deposition are accounted for using integrated
wind erosion models. In detail, solid particles, are initialized according to the instantaneous
particle entrainment models, are then transported by the Lagrangian equations of motion,
and lastly collide with the surface or deposit on the wall. During the collision, a rebound
model is used to predict the rebounding velocity and angle, and a splash model is applied to
estimate the number and velocity of solid particles ejected by the collision.

Firstly, the simulation of particle transport in a TBL over a fixed Gaussian dune is carried
out. An overall agreement on the mean particle concentration profiles over the dune between
the simulations and the experiment of Simoëns et al. (2015) preliminarily validates the ability
of the IBM-ARPS solver coupled with integrated wind erosion models. Secondly, the wind
erosion case from the experiment of Ferreira and Fino (2012) is reproduced and studied.
For the flow fields, it is observed that the recirculation zone behind the dune is gradually
reduced as the dune height decreases, and even disappears at t = 6 min, and that the mean
longitudinal velocity, Reynolds stress as well as the friction velocity over the dune decreases
accordingly. For the dune deformation, the dune shapes are compared with the experimental
ones at t = 2.0 min, t = 4.0 min and t = 6.0 min. it is shown that a very good agreement
between them is achieved at t = 2.0 min and an unexpected difference on lee side near the
crest appears at t = 4.0 min and t = 6.0 min. From the curves of accumulated erosion rate
and deposition rate, windward erosion and lee side deposition is observed and the splash
entrainment is found to be important for the lee side erosion. By analyzing the simulated
dune shapes at different times associated with flow characteristics, it is concluded that the
presence of the recirculation zone is important for the particle deposition on the lee side. It is
also shown after testing that the value of µe f f in the equation of bed-load particle motion has
little effect on the dune deformation, and that a larger value of a in the splash model slightly
enhances the lee side erosion. Moreover, It is found from an attempt that a splash model
with accounting for the bed slope effect is able to enhance wind erosion near the crest and
thus slightly improve the simulated results at t = 4.0 min. We conclude that our developed
IBM-ARPS solver coupled with integrated wind erosion models shows a good performance
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for the numerical simulation of wind erosion in a short period and further improvements
need to be proposed for a long time simulation.

6.2 Perspectives

Following the works in this thesis, further studies could be focused on two aspects. On one
hand, there is plenty of room for improving the numerical method and the integrated wind
erosion models, even though they are currently able to produce an acceptable simulation
result of wind erosion:

• In Subsection 3.4.4, an obvious difference on the flow characteristics over a large
sinusoidal dune between the IBM-ARPS simulation without wall modeling, the IBM-
ARPS simulation with wall modeling and the ARPS simulation with a terrain-following
grid is observed. In-depth studies will give us a better understanding and explanation of
this observation, and be helpful for improving the accuracy of this developed numerical
solver.

• For the immersed boundary method, only two-dimensional interpolation scheme for
flow reconstruction has been implemented in ARPS in this thesis. An extension to
three-dimensional case will be accomplished in the future.

• The existing rebound and splash models are established based on the experimental
data. However, only two-dimensional trajectories of solid particles can be captured
by a fast video camera in the experiments. Therefore, they lack some important three-
dimensional properties. Moreover, the bed-slope effects on the processes of rebound
and splash have never been studied before. Further studies on this subject may bring
some improvements on the integrated wind erosion models.

On the other hand, since this numerical modeling of wind erosion has been preliminarily
validated, further numerical investigations on the physics of wind erosion will be carried out:

• Numerical simulation of sand ripple formation. It is interesting to find whether the
coherent structures in the near-wall regions have an influence on the dynamic formation
of sand ripples. Is there a correlation between the characteristic length of sand ripples
and the small scales of turbulent flows?

• · · · · · ·



Appendix A

Similarity theory in turbulent boundary
layer flows

A similarity theory describes the dynamic motion by similar functions of non-dimensional
physical parameters and scaling coefficients, which may be universal. For turbulent boundary
layer flows, a similarity law of the mean velocity is proposed and verified from most of DNS
and experimental results. In this appendix, the similar law for boundary layers on a smooth
surface is introduced and then the effect of the roughness is discussed.

A.1 Boundary layers on a smooth surface

Considering a simple boundary layer over a plate smooth surface with zero pressure gradient,
the mean velocity profile appears similar not only in different streamwise stations, but also
for wall flows with different Reynold numbers. This similarity has different mathematic
formulations for different regions of boundary layers. They are commonly called the law of
the wall in the inner region and the velocity-defect law in the outer layer. From this similarity,
the friction law, which describes the relation between the skin-friction coefficient and the
Reynold number, is theoretically deduced, and an approximated formula of the mean velocity
profile is obtained.

Law of the wall in the inner region (z/δ ≤ 0.10): For a fully developed turbulent boundary
layer flow at high Reynolds number, the mean velocity profile in the inner layer is expressed
as:

u+ = fw(z+),u+ =
U
u∗

,z+ =
z

δν

, (A.1)
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where U = ⟨u⟩ is the mean velocity, fw is the scaling law, u∗, δν are the characteristic
velocity and length. In the inner region, u∗ is usually given by the friction velocity defined as
u∗ =

√
τw/ρ with τw the wall shear stress, and δν is then expressed by δν = ν/u∗.

For a zero-pressure-gradient boundary layer on a smooth wall, previous studies show
that the scaling law fw is found to be a the linear function in the viscous sublayer, and a
logarithmic function in the log region. In the numerical simulation of Huang (2015), an
approximated formula of fw for the smooth case is given by:

u+ =


z+, if z+ ≤ 4;

−32.22(z+)−0.3147 +24.52, if 4 < z+ ≤ 90;
1
κ

lnz++B, if z+ > 90;

(A.2)

where κ = 0.41 is the von Kámán constant and B = 5.5.

Velocity-defect law in the outer layer (z+ > 50): The similarity in the outer region is
given by:

Ue −U
u∗

= Fd(χ),χ = z/δ , (A.3)

where Ue is the external velocity and δ is the thickness of boundary layers.

In boundary layers, the velocity departures from the log law is significant for z/δ > 0.2.
Hence, the defect law takes a form of:

Ue −U
u∗

=− 1
κ

ln(χ)+
Π

κ
(2−w(χ)), (A.4)

where the first term denotes the log law, and the second term represents the law of the wake.
Coles (1956) proposed a normalized wake function w(χ) = 2sin2(χπ/2), where Π is called
the wake strength parameter, and its value is flow dependent. Π ≈ 0.55 is recommended for
smooth-wall flows, and Π ≈ 0.7 for fully rough flows [Castro (2007)].

Friction law of boundary layers: Addition of Equation (A.1) and Equation (A.4) at z = δ

yields the friction law by introducing Equation (A.2):

Ue

u∗
=

1
κ

ln
(

δ

δv

)
+B+

2Π

κ
=

1
κ

ln
(

Reδ

u∗
Ue

)
+B+

2Π

κ
, (A.5)

where the Reynolds number is given by Reδ =Ueδ/ν . When Reδ is given, solving Equation
(A.5) yields a solution of u∗/Ue, hence the skin-friction coefficient C f = 2(u∗/Ue)

2. We can
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also obtain the friction law on a rough wall through replacing Equation (A.1) by Equation
(A.8).

Mean velocity profile: In the region of overlap between the inner and outer layer (z+ > 50
and z/δ < 0.1), it is easy to examined that the asymptotic forms of f (y+) (for large y+) and
F(η) (for small η) are matched if the logarithmic law is taken. In practice, an empirical
mean velocity profile of boundary layers is given by:

U =

u∗ fw

(
z
δv

)
+u∗

Π

κ
w
( z

δ

)
, for z/δ ≤ 1;

Ue, for z/δ > 1;
(A.6)

where the similarity law fw takes the formula of Equation (A.2). In numerical simulations, δ

and Ue are given, we calculate then u∗/Ue from Equation (A.5), namely, get the value of u∗.
Therefore, the average velocity field is evaluated using Equation (A.6) and the initialization
is achieved.

A.2 Boundary layers on a rough surface

Previous studies show that the wall roughness breaks the near-wall flow characteristic and
then decreases the mean velocity of wall flows. A rough wall is generally characterized by
the effective height of roughness elements h, which usually takes the value of the root mean
square (RMS) of rough element heights. With taking into account the roughness effect, the
similar law (Equation (A.1)) in the inner layer becomes:

u+ = fw(z+,h+),u+ =
U
u∗

,z+ =
u∗z
ν

,h+ =
u∗h
ν

. (A.7)

The presence of rough elements decreases the mean velocity in the inner region, thus a
common formula of the log-law of the wall with the roughness correction can be expressed
as [Castro (2007)]:

u+ =
1
κ

ln(z+− z+d )+B−∆u+, (A.8)

with z+d = u∗zd/ν and ∆u+ = ∆u/u∗. zd denotes the displacement less than h, and ∆u is the
shift velocity, which is a function of wall roughness. By fitting with the experimental data of
Nikuradse (1933), Ligrani and Moffat (1986) found the empirical formula of ∆u+ by setting
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z+d = 0:

∆u+ =


0, if h+ ≤ 2.25,(

1
κ

lnh+−3.3
)

sin
(

π

2
ln(h+/2.25)
ln(90/2.25)

)
, if 2.25 ≤ h+ < 90,

1
κ

lnh+−3.0, if h+ ≥ 90.

(A.9)

Equation (A.9) is illustrated in Figure A.1. the mean velocity departure ∆u+ increases as
the roughness height h+ increases. According to the proprieties of ∆u+, the wall roughness
effect is classified into three different regimes:

• Hydro-dynamically smooth regime (h+ ≤ 5): the rough elements are submerged in the
viscous sublayer, and the shift velocity is nearly zero as shown in Figure A.1;

• Transitionally rough regime (5 < h+ ≤ 70): the rough elements are located in the
buffer layer or at the beginning of the log layer, and ∆u+ is a complex function of h+;

• Fully rough regime (h+ > 70): the rough elements are completely submerged in the
log layer, and ∆u+ is a logarithmic function of h+.
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κ ln(h+) − 3.0
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Figure A.1 Experimental results of the shift velocity ∆u+ from Nikuradse (1933) and
schematic illustration of different roughness regimes: hydrodynamically smooth regime,
transitionally rough regime and fully rough regime.
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In particular, for the fully rough regime, one can find ∆u+ = 1/κ lnh++1/κ ln(z0/h)+B
with z0 representing the roughness height, then we have from Equation (A.8):

u+ =
1
κ

ln
(

z− zd

z0

)
. (A.10)

Using Equation (A.9), we obtain zd = 0 and 1/κ ln(z0/h)+B =−3.0. Taking κ = 0.41 and
B = 5.5, we have z0 = 0.031h ≈ h/30, which is consistent with the experimental results with
spherical grains of Bagnold (1941) and Kamphuis (1974): z0 = 0.03-0.1h.

According to the roughness configuration shown in Figure A.2, Oke (1988) shown that
the near-wall flow can be categorized into three different flow regimes [Huang et al. (2016)]:

• Isolated flow with a small roughness density (≤ 0.15) and zd ≤ 0.2h, in which the
interaction between the flow and one rough element is completely independent;

• Waked flow with a middle roughness density (0.15-0.35) and 0.75h < zd ≤ h, in which
the interaction between the flow and rough elements is interrelated;

• Skimming flow with a large roughness density (> 0.35) and 0.75h < zd ≤ h, in which
an isolated eddy is produced in each gap between rough elements and the interaction
with outer flow is small.

Figure A.2 Sketch of different flow regime depending on the roughness configuration: isolated
flow regime, waked flow regime and skimming flow regime. Taken from Oke (1988).
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Recently, Huang et al. (2016) introduced a new roughness characteristic scale defined
as ε = h− zd and the slip velocity uw as the corresponding average velocity at z = zd , then
proposed a new formula of the shift velocity:

∆u+ =
1
κ

ln(ε+)+u+w . (A.11)

By fitting with a collected dataset consisting of DNS results and experimental data, the slip
velocity takes a form of:

u+w =
1
κ

ln
(z0

ε

)
+W exp(4−4z/ε)+B, (A.12)

with W = 1.2 for both isolated and wake flow regimes, and W = 4.5 for the skimming flow
regime.



Appendix B

Numerical details in ARPS

B.1 Discretized formulation of governing equations

Using a vector of physical variables ψψψ , which consists of the pressure variation ∆p̃, the fluid
velocity ũi, and the potential temperature variation ∆θ̃ , i.e., ψψψ = (∆p̃, ũi,∆θ̃)t , the governing
equations (Equations (2.25)) simplify to:

∂ψψψ

∂ t
= W ψψψ +C ψψψ +Rψψψ +Dψψψ , (B.1)

where ∂ψψψ , W ψψψ , C ψψψ , Rψψψ are detailedly given by:

• ∂ψψψ/∂ t: temporal evolution of ψψψ , such as time partial difference of pressure variation
∂ (∆p̃)/∂ t, of velocity ∂ ũi/∂ t and of the potential temperature variation ∂ (∆θ̃)/∂ t in
Equation (2.25);

• W ψψψ : acoustic and gravitational wave term, such as −ρrc2
s ∂ ũ j/∂x j in Equation (2.25a),

and −ρ−1
r ∂ (∆ p̃)∂xi +gi(∆θ̃/θ̃r −∆p̃/(ρrc2

s )) in Equation (2.25b);

• C ψψψ: convective term of ψψψ , always taking form of −ũ j∂ψψψ/∂x j in Equations (2.25)
where the components of ψψψ are ∆p̃, ũi and ∆θ̃ ;

• Rψψψ: the rotational term, e.g., Rψψψ is represented by −2εi jkũ jΩk in Equation (2.25b);

• Dψψψ : the diffusive term, representing the viscous term in Equation (2.25b), the thermal
diffusion term in Equation (2.25c).

In the numerical simulation, the finite difference method is applied to discretize the
computational time-space domain. Specially, the mode-splitting time integration approach is
used to eliminate the acoustic waves effect. According to this approach, the time domain
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is firstly discretized into a set of sub-domains with a large time step, which is then divided
into a number of computationally inexpensive small time steps. Only the acoustically active
terms are updated in a small time integration while all the other terms are advanced every big
time step. As a consequence, only the small time step is limited by the acoustic wave effect.

Before deriving the discrete form of governing equations, several notions are introduced
here. Firstly, the fluid velocity will expressed as ũi = (ũ, ṽ, w̃) with corresponding coordinate
system (x,y,z). Secondly, the continuous time-space domain is discretized into the equal
sub-domains with large time step ∆t, small time-step ∆τ and spatial grid sizes ∆x, ∆y and ∆z,
which yields the discrete form of a physical variable:

ψψψ
n,m
i, j,k = ψψψ((i−1)∆x,( j−1)∆y,(k−1)∆z,(n−1)∆t +(m−1)∆τ), (B.2)

with i, j, k the position indexes, and n, m the large and small time indexes in the discrete
computing domain. The maximum of small time step is ∆t/∆τ . Note that the physical
variables of discrete form are staggered on an Arakawa C-grid shown in Figure 2.1, and
that ∆τ takes a value of ∆t divided by a non-zero integer and 1 ≤ m < ∆t/∆τ . For the
simplification in numerical discretization, two spatial increment and average operators are
defined as:

δ jψψψ(xi, t) = ψψψ

(
xi +

1
2

δi j∆x j, t
)
−ψψψ

(
xi −

1
2

δi j∆x j, t
)

, (B.3a)

µ jψψψ(xi, t) =
1
2

(
ψψψ

(
xi +

1
2

δi j∆x j, t
)
+ψψψ

(
xi +

1
2

δi j∆x j, t
))

. (B.3b)

For example, in the staggered grid, we have δ1ψψψ
n,m
i, j,k = ψψψ

n,m
i+1, j,k −ψψψ

n,m
i, j,k and µ2ψψψ

n,m
i, j,k =

(ψψψn,m
i, j,k +ψψψ

n,m
i, j+1,k)/2.

Then the discrete form of Equation (B.1) is obtained in a general way

ψψψ
n,m+1
i, j,k −ψψψ

n,m
i, j,k

∆τ
= βW ψψψ

n,m+1
i, j,k +(1−β )W ψψψ

n,m
i, j,k +C ψψψ

n,0
i, j,k +Rψψψ

n,0
i, j,k +Dψψψ

n−1,0
i, j,k , (B.4)

where β is the coefficient between 0 and 1, i.e., 0 ≤ β ≤ 1, W ψψψ uses small time integration
m, and the others C ψψψ , Rψψψ , Dψψψ use the large time integration n. Note that β = 0 results in
an explicit forward scheme, 0 < β ≤ 1 yields an implicit scheme, specially, β = 1 leads to a
backward scheme.

Forward scheme in the horizontal direction: Assuming that the base density ρr and base
potential temperature θr are close to constant, applying the forward scheme in the small time
integration by setting β = 0 in Equation (B.4), the momentum equation (Equation (2.25b))
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in the horizontal direction becomes after the discretization:

ũn,m+1
i, j,k − ũn,m

i, j,k

∆τ
=− 1

ρr

δ1(∆p̃)n,m
i, j,k

∆x
+L ũn,0

i, j,k, (B.5a)

ṽn,m+1
i, j,k − ṽn,m

i, j,k

∆τ
=− 1

ρr

δ2(∆p̃)n,m
i, j,k

∆y
+L ṽn,0

i, j,k, (B.5b)

where L ũ, L ṽ are the terms of large time integration, containing the convective term
C ũ,C ṽ, the rotation term Rũ,Rṽ and the diffusive term D ũ,D ṽ. Thus, L ũn,0

i, j,k and L ṽn,0
i, j,k

are expressed as:

L ũn,0
i, j,k = C ũn,0

i, j,k +Rũn,0
i, j,k +D ũn−1,0

i, j,k , (B.6a)

L ṽn,0
i, j,k = C ṽn,0

i, j,k +Rṽn,0
i, j,k +D ṽn−1,0

i, j,k . (B.6b)

Crank-Nicolson scheme in the vertical direction: After the Crank-Nicolson scheme is
used in the time discretization of Equation (2.25a) and Equation (2.25b) in vertical direction,
it is obtained from Equation (B.4):

(∆p̃)n,m+1
i, j,k − (∆ p̃)n,m

i, j,k

∆τ
=−ρrg(β µ3w̃n,m+1

i, j,k +(1−β )µ3w̃n,m
i, j,k)−ρrc2

s

δ1ũn,m+1
i, j,k

∆x

−ρrc2
s

(
β

δ3w̃n,m+1
i, j,k

∆z
+(1−β )

δ3w̃n,m
i, j,k

∆z

)
−ρrc2

s

δ2ṽn,m+1
i, j,k

∆y
+L p̃n,0

i, j,k,

(B.7a)

w̃n,m+1
i, j,k − w̃n,m

i, j,k

∆τ
=− 1

ρr

(
β

δ (∆ p̃)n,m+1
i, j,k

∆z
+(1−β )

δ (∆p̃)n,m
i, j,k

∆z

)
+

g
θr

µ3(∆θ̃)n,m
i, j,k

− g
ρrc2

s
(β µ3(∆p̃)n,m+1

i, j,k +(1−β )µ3(∆p̃)n,m
i, j,k)+L w̃n,0

i, j,k,

(B.7b)

where L w̃ and L p̃ represent the terms of large time integration, consisting of C w̃, Rw̃,
Dw̃ and C p̃, respectively. Thus, L w̃n,0

i, j,k and L p̃n,0
i, j,k are expressed as:

L w̃n,0
i, j,k = C w̃n,0

i, j,k +Rw̃n,0
i, j,k +Dw̃n−1,0

i, j,k , (B.8a)

L p̃n,0
i, j,k = C p̃n,0

i, j,k. (B.8b)

In numerical simulations with complex topology, to avoid the numerical instability caused
by the acoustic wave and gravitational wave, an implicit algorithm β ̸= 0 in the vertical
direction is usually chosen, i.e., β = 0.6 recommended in ARPS.

When β ̸= 0, the unknown terms are only (∆p)n,m+1
i, j,k and wn,m+1

i, j,k at future time step
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in Equation (B.7a) and Equation (B.7b). These two equations constitute a linear equation
system with the known coefficients, and should be resolved together. In detail, combining
Equation (B.7a) and Equation (B.7b), and eliminating the term (∆p̃)n,m+1

i, j,k , we obtain a linear
tridiagonal equation system:

Akw̃n,m+1
i, j,k−1 +Bkw̃n,m+1

i, j,k +Ckw̃n,m+1
i, j,k+1 = Dk, (B.9)

where the coefficients Ak, Bk, Ck and Dk are given by:

Ak =

(
2

∆z

)2

−
(

g
c2

s

)2

, (B.10a)

Bk =
4ρ2

r
(βcs∆τ)2 +2

(
2

∆z

)2

+2
(

g
c2

s

)2

, (B.10b)

Ck =

(
2

∆z

)2

+

(
g
c2

s

)2

, (B.10c)

Dk =
2

β∆τρrc2
s

(
2

∆z
− g

c2
s

)
((∆p̃)n,m

i, j,k−1 +L p̃n,0
i, j,k−1)+ w̃n,m

i, j,k +L w̃n,0
i, j,k

− 2
β∆τρrc2

s

(
2

∆z
+

g
c2

s

)
((∆p̃)n,m

i, j,k +L p̃n,0
i, j,k).

(B.10d)

It is found that the coefficients Ak, Bk, Ck are independent on the fluid velocity fields and that
only Dk changes with respect to the fluid motion. Combined with the boundary conditions of
w̃ described further in Section B.2, Equation (B.9) is solved using an alternating direction
implicit (ADI) method based on the Thomas algorithm in ARPS [Roache (1972)]. After
w̃n,m+1

i, j,k is obtained, substituting it into Equation (B.7a) yields a solution of (∆p̃)n,m+1
i, j,k .

Scalar discretization: Considering the potential temperature ∆Θ̃ in Equation B.4, we obtain
the discrete form of Equation (2.25c):

(∆Θ̃)n,m+1
i, j,k − (∆Θ̃)n,m

i, j,k

∆τ
=−µ1ũn,m+1

i, j,k

δ1(Θr)
n,m
i, j,k

∆x
−µ2ṽn,m+1

i, j,k

δ2(Θr)
n,m
i, j,k

∆y

−µ3w̃n,m+1
i, j,k

δ3(Θr)
n,m
i, j,k

∆z
+L Θ̃

n,0
i, j,k,

(B.11)

where L Θ̃ is the large time integration term, containing the convection term C Θ̃ and
diffusion term DΘ̃. Thus, L Θ̃

n,0
i, j,k is expressed as:

L Θ̃
n,0
i, j,k = C Θ̃

n,0
i, j,k +DΘ̃

n−1,0
i, j,k . (B.12)
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B.2 Detailed description of boundary conditions

Rigid wall condition: In ARPS, the bottom boundary condition on the ground is the
free-slip boundary condition given by:

∂ ũ
∂ z

∣∣∣∣
z=0

= 0,
∂ ṽ
∂ z

∣∣∣∣
z=0

= 0, . (B.13)

Using the incompressibility assumption, taking a z− derivative of the continuity equation
(Equation (2.1a)) yields:

∂ 2ũ
∂x∂ z

∣∣∣∣
z=0

+
∂ 2ṽ

∂y∂ z

∣∣∣∣
z=0

+
∂ 2w̃
∂ 2z

∣∣∣∣
z=0

= 0. (B.14)

Substituting Equation (B.13) into Equation (B.14) yields ∂ 2w̃/∂ z2
∣∣
z=0 = 0, and we have

w̃|z=0 = 0 from the non-penetrative condition of a rigid wall.
As the staggered grid is used in ARPS, the rigid wall condition is written as:

Streamwise velocity: ũn,m
i, j,1 = ũn,m

i, j,2,

Spanwise velocity: ṽn,m
i, j,1 = ṽn,m

i, j,2,

Wall-normal velocity: w̃n,m
i, j,1 =−w̃n,m

i, j,3 and w̃n,m
i, j,2 = 0.

(B.15)

Inlet boundary condition: The inlet boundary condition for boundary layer flow is impor-
tant and complex. It should supply not only the average velocity fields but also the random
fluctuations, which contains the information of coherent structures. Here we introduce two
approaches: the random approach, and the recycling approach.

Firstly, In the random method, the mean velocity Ui is given by the scaling law on the
smooth or rough wall, and the velocity fluctuations is generated through a series of random
number, to match a prescribed Reynold stress Ti j. At each time integration in the simulation,
the inflow data generated by the random strategy is regarded as inlet boundary condition.
The sequence of operations is presented as follows:

• Generating three sequences of random numbers ξi, each of which obeys the probabilis-
tic distribution with zero mean, unit variance, and zero covariance with the other two
distributions. The numerical strategies to generated ξi is found in Le et al. (1997),

• The fluid velocity field is then given by:

ui =Ui +ai jξi (B.16)
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with the coefficient tensor ai j, which is a function of Ti j via

ai j =


√

T11 0 0

T21/a11

√
T22 −a2

21 0

T31/a11 (T32 −a21a31)/a22

√
T33 −a2

31 −a2
32

 . (B.17)

Secondly, to provide more information of coherent structures and reduce the flow tran-
sition length, Lund et al. (1998) proposed a preliminary boundary layer and developed the
recycling method to generate inflow data.

Through the scaling law of average velocity profile (Equation (A.6)), we know:

Uinlt =

γUrecy, for η ≤ 1;

Urecy, for η > 1.
(B.18)

where Uinlt , Urecy are the mean velocity at the inlet and recycle station, γ = u∗,inlt/u∗,recy with
u∗,inlt , u∗,recy the friction velocity at the inlet and recycling station, and χ = χinlt = χrecy.

By assuming the scaling law of the fluctuations u′ = u−U as Equation (A.1) and Equation
(A.3), we have then the relation between the inlet station and recycling state is

u′inlt =

γu′recy, for χ ≤ 1;

u′recy, for χ > 1,
(B.19)

with u′inlt , u′recy the fluctuating velocity at the inlet and recycle station.

According to Equation (B.18) and Equation (B.19), one can find a same similarity
between the mean velocity U or the fluctuation u′ located in inlet station and recycle station,
which enables us to generate the inlet velocity by rescaling one at the recycling station. In
practice, a weighted composite velocity is used

uinlt = uinlt(1−W (χ))+urecyW (χ) (B.20)

with the weight function W defined as

W (χ) =
1
2

(
1+ tanh

(
a0(χ −b0)

(1−2b0)χ +b0

)
/ tanh(a0)

)
(B.21)

where a0 = 4 and b0 = 0.2.
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Outlet boundary condition: In practice, a radiative boundary condition is usually used as
the outlet boundary condition [Orlanski (1976)]:

∂ψψψ

∂ t
+ cψψψ

∂ψψψ

∂x
= 0, (B.22)

where cψψψ the phase velocity of the wave signals. In ARPS, cψψψ is approximated locally
through applying the same equation at one time step earlier and one grid point interior of the
boundary. Miller and Thorpe (1981) analyzed a number of variations of the original radiative
formulation of Orlanski (1976). Durran and Klemp (1982) proposed a vertical average
estimation on the local phase speed cψψψ and applied this averaged one in their numerical
simulation of atmospheric flows over mountains.

Another variation of radiative boundary condition suggested by Klemp and Wilhelmson
(1978) is:

∂ψψψ

∂ t
+(V +Cψψψ)

∂ψψψ

∂x
= 0, (B.23)

where V is the flow speed normal to the boundary, and Cψψψ is a constant phase speed of
dominant waves. The studies of Clark (1979) and Lilly (1981) showed that an overestimation
of the phase speed Cψψψ is better that an underestimation of Cψψψ . Hence, Cψψψ is commonly
assigned as the fastest speed of gravitational wave propagating.

Upper boundary condition When the explicit scheme in the vertical direction is used, the
zero-gradient boundary condition can be considered as the top boundary conditions. When
the implicit scheme is used, the zero-normal gradient boundary condition is imposed for
the horizontal velocity and other physique quantities, except for the w and ∆p, which are
governed by the upper boundary condition.

Klemp and Durran (1983) proposed the upper boundary condition based on an analysis of
linear hydrostatic gravity waves. It is a wave-permeable radiation boundary condition, which
generates a zero downward energy transport by the hydrostatic gravity waves. Supposing
ŵ, ∆p̂ the vertical velocity and pressure variation after the Fourier transformation, the upper
boundary condition is given by:

∆p̂ =
Nρr

k
ŵ, (B.24)

where ρr the density of base state, N the Brunt-V äisälä frequency defined as N =

√
− g

ρ

∂ρ

∂ z

and k =
√

k̂2
x + k̂2

y the horizontal wave-number, respectively.

The upper boundary condition has been implanted for the w and ∆p implicit solver in
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ARPS. In detail, the horizontal wave-numbers are k̂x =
2

∆x
sin
(

kx∆x
2

)
and k̂y =

2
∆y

sin
(

ky∆y
2

)
with ∆x, ∆y the grid increment in horizontal directions and kx, ky denoted as the wavenumber
of integer type. Neglecting the horizontal variation in the coefficient, and assuming that ∆p̂
is approximated to be the value at the w position in the staggered grid, Equation (B.24) at the
time t = (n−1)∆t +m∆τ is rewritten as:

∆p̂n,m+1
i, j,nz−2 =

Nρr

k
ŵn,m+1

i, j,nz−1, (B.25)

with nz the grid number in vertical direction, ∆p̂n,m
i, j,nz−2 the pressure variation located one-half

grid level below the top boundary, and ŵn,m
i, j,nz−1 the vertical velocity located at the boundary.

From the discrete pressure variation dynamic equation (Equation (B.7a)), we have by
setting k = nz−2:

(∆p̃)n,m+1
i, j,nz−2 = azw̃

n,m+1
i, j,nz−1 +bzw̃

n,m+1
i, j,nz−2 + cz, (B.26)

where

az = ∆τβ

(
gρr

2
− c2

s ρr

∆z

)
,

bz = ∆τβ

(
gρr

2
+

c2
s ρr

∆z

)
,

cz = (∆p̃)n,m
i, j,nz−2 −∆τρrc2

s
δ1ũn,m+1

i, j,nz−2

∆x
−∆τρrc2

s
δ2ṽn,m+1

i, j,nz−2

∆y
+∆τL p̃n,0

i, j,nz−2.

(B.27)

Assuming that the coefficient are slowly varying function of x and y, taking a Fourier
transform on Equation (B.26) yields:

p̂n,m+1
i, j,nz−2 = azŵ

n,m+1
i, j,nz−1 +bzŵ

n,m+1
i, j,nz−2 + cz, (B.28)

Eliminating p̂n,m
i, j,nz−2 by substituting Equation (B.28) into Equation (B.25) yields:(

az −
Nρr

k

)
ŵn,m+1

i, j,nz−1 +bzŵ
n,m+1
i, j,nz−2 + cz = 0, (B.29)

which will be regarded as the top boundary condition after being transformed back into the
physical space.
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