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Abstract

The adaptive immune system is able to produce a specific response against

almost any pathogen that could penetrate our organism and inflict diseases.

This task is assured by the production of antigen-specific antibodies secreted

by B-cells. The agents which causes this reaction are called antigens: during an

immune response B-cells are submitted to a learning process in order to improve

their ability to recognize the immunizing antigen. This process is called antibody

affinity maturation.

We set a highly flexible mathematical environment in which we define and

study simplified mathematical evolutionary models inspired by antibody affinity

maturation. We identify the fundamental building blocks of this extremely

efficient and rapid evolutionary mechanism: mutation, division and selection.

Starting by a rigorous analysis of the mutational mechanism in Chapter 2, we

proceed by successively enriching the model by adding and analyzing the division

process in Chapter 3 and affinity-dependent selection pressures in Chapter 4.

Our aim is not to build a very detailed and comprehensive mathematical

model of antibody affinity maturation, but rather to investigate interactions

between mutation, division and selection in a simplified theoretical context. We

want to understand how the different biological parameters affect the system’s

functionality, as well as estimate the typical time-scales of the exploration of

the state-space of B-cell traits.

Beyond the biological motivations of antibody affinity maturation modeling,

the analysis of this learning process leads us to build a mathematical model

which could be relevant to model other evolutionary systems, but also gossip

or virus propagation. Our method is based on the complementarity between

probabilistic tools and numerical simulations.
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Résumé

Le système immunitaire adaptatif est capable de produire une réponse spécifique

contre presque tous le pathogènes qui agressent notre organisme. Ceci est du

aux anticorps qui sont des protéines sécrétées par les cellules B. Les molécules

qui provoquent cette réaction sont appelées antigènes : pendant une réponse

immunitaire, les cellules B sont soumises à un processus d’apprentissage afin

d’améliorer leur capacité à reconnaître un antigène donné. Ce processus est

appelé maturation d’affinité des anticorps.

Nous établissons un cadre mathématique très flexible dans lequel nous définis-

sons et étudions des modèles évolutionnaires simplifiés inspirés par la maturation

d’affinité des anticorps. Nous identifions les éléments constitutifs fondamentaux

de ce mécanisme d’évolution extrêmement rapide et efficace : mutation, divi-

sion et sélection. En commençant par une analyse rigoureuse du mécanisme de

mutation dans le Chapitre 2, nous procédons à l’enrichissement progressif du

modèle en ajoutant et analysant le processus de division dans le Chapitre 3,

puis des pressions sélectives dépendantes de l’affinité dans le Chapitre 4.

Notre objectif n’est pas de construire un modèle mathématique très détaillé

et exhaustif de la maturation d’affinité des anticorps, mais plutôt d’enquêter sur

les interactions entre mutation, division et sélection dans un contexte théorique

simplifié. On cherche à comprendre comment les différents paramètres bi-

ologiques influencent la fonctionnalité du système, ainsi qu’à estimer les temps

caractéristiques de l’exploration de l’espace d’états des traits des cellules B.

Au-delà des motivations biologiques de la modélisation de la maturation

d’affinité des anticorps, l’analyse de ce processus d’apprentissage nous a amenée

à concevoir un modèle mathématique qui peut également s’appliquer à d’autres

systèmes d’évolution, mais aussi à l’étude de la propagation de rumeurs ou

de virus. Notre travail théorique s’accompagne de nombreuses simulations

numériques qui viennent soit l’illustrer soit montrer que certains résultats de-

meurent extensibles à des situations plus compliquées.
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Chapter 1

Introduction

This thesis is devoted to the construction and the study of a simplified mathe-

matical evolutionary model of antibody affinity maturation. Our strategy con-

sists in analyzing and successively coupling fundamental building blocks of this

learning process: mutation, division and selection, that we study through a rig-

orous mathematical analysis.

Antibody affinity maturation is a key process in adaptive immunity, leading

to the production of high-affinity antibodies upon immunization. This task is as-

sured by B-cells, special lymphocytes which are activated by the encounter with

an antigen and then directed through the peripheral lymphoid follicles. There

they give rise to germinal centers, transient high specialized micro environments

in which they undergo multiple rounds of mutation, division and selection. Once

B-cells have improved their affinity with respect to the presented antigen, they

successfully complete the germinal center reaction and differentiate into mem-

ory or plasma B-cells.

B-cell antigen-dependent affinity maturation is a key mechanism of adap-

tive immunity. Perturbations or malfunctions in this mechanism lead to va-

rious pathologies. One of them is the Chronic Lymphocytic Leukemia (CLL),

the starting point of our project. CLL is a disease derived from antigen-

experienced B-cells that differ in the level of mutations in their receptors [31].

It is the commonest form of leukemia in the Western world, with an incidence

of 4.2 : 100000/year, increasing up to more than 30 : 100000/year among people

older than 80 years [44]. In CLL, leukemia B-cells can mature partially but not

completely, and survive longer than normal cells, crowding out healthy B-cells.

Even if major progresses have been made in the identification of molecular and

cellular markers predicting the expansion of this disease in patients, the pathol-
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ogy remains incurable [40, 44]. Understanding how the immune system works in

a healthy individual would certainly provide suggestions about the causes that

lead to CLL, and motivation for further research on possible treatments.

Beside this initial motivation, improving our knowledge of the functioning

of immune system is one of the fundamental research axes both in Biology and

in Medicine, equally from a physiopathological (e.g. autoimmune diseases) and

therapeutical (e.g. vaccination, immunotherapy) points of view. In the last few

decades immunotherapy has become an important part of treating some types

of diseases such as cancers. The development of these treatments has been

possible thanks to the spectacular advances in our understanding of adaptive

immunity over the past 30 years. Immunotherapy consists in the treatment of

diseases either by stimulating the patient’s immune system to work harder or

smarter, or by giving to the immune system extra components, such as artifi-

cially synthesized proteins. There already exists a variety of strategies in this

direction, new immune treatments are now under investigation and may impact

cancer treatment in the future. One can think for instance to immune check-

point therapies [84], or to adoptive cell therapies [113]. Their development is

extending and saving lives of thousands of patients suffering from cancer. More-

over, since they are highly personalized therapies, they offer the promise of high

specificity and safety [118], having significantly fewer side effects than existing

drugs. Immunotherapies have been shown to be really promising also for the

treatment of other diseases, such as autoimmune diseases or allergic asthma,

the commonest form of asthma, which still causes significant morbidity (and

sometimes mortality), particularly in the pediatric population [87].

Beyond the fundamental understanding of physiological processes and their

associated pathologies, the study of directed evolution mechanisms at the heart

of antibody affinity maturation have been inspiring many methods for the

synthetic production of specific antibodies for drugs, vaccines or cancer im-

munotherapy [6, 79, 122]. Indeed, this production process involves the selection

of high affinity peptides and requires smart methods to generate an appropriate

diversity [34]. Besides the biomedical motivations, the study of this learning

process has recently given rise to a new class of bio-inspired algorithms (e.g.

[30, 107]), mainly addressed to solve optimization and learning problems [25].

The study of the immune system, their components and mechanisms, is

therefore an important subject of intense investigation, from an experimental,

medical and theoretical points of view. For this reason, we believe that it is

important to establish solid mathematical foundations of this extremely com-
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plicated biological process: this has still not been done rigorously, to our know-

ledge. Moreover, this would bring us to investigate interesting mathematical

problems which go beyond initial modeling purposes. For instance, our analysis

suggested to model the mutation-division process of B-cells in germinal centers

as branching random walks on graphs, a type of branching processes which have

not been deeply investigated so far, despite the growing number of applications

in biological, chemical, physical and economical systems [90, 28, 29].

Chapter 1 details the biological background and gives a panorama of the

existing models of germinal center reaction and antibody affinity maturation.

It provides as well an overview on the main results obtained in this thesis.

Chapter 2 focuses on pure mutational models. We set the state-space of B-

cell traits and define several mutational mechanisms on it. The aim of this part

is to understand how the typical time-scales of state-space exploration change

depending on the choosen mutational rule. Namely, for each rule, we derive

explicit formulas to evaluate the expected hitting time to reach a specific con-

figuration. This allows to compare the impact of the rule on the efficiency of

antibody affinity maturation.

In Chapter 3 we introduce a branching process over the state-space of B-cell

traits, modeling the division of B-cells. We apply the theory of expander graphs

to establish results about the ability of different mutational rules to make the

exponentially growing population fill the state-space of all possible B-cell traits.

We observe an unexpected saturation phenomenon: increasing the mutation

rate above a certain threshold has only marginal effects on the speed of state-

space covering.

In Chapter 4, we study more comprehensive models including mutation, di-

vision, death and affinity-dependent selection mechanisms. We formalize these

models by opportunely using multi-type Galton Watson processes. Investigat-

ing how the interaction of different parameters affects the system functionality,

we identify an optimal selection rate which maximizes the production of output

cells.

Finally in Chapter 5 we suggest some limitations and possible extensions of

our models, providing motivation for further research.

Throughout the project we pursue three fundamental objectives:

3



i) we reflect upon the modeling assumptions and methods,

ii) we make a rigorous mathematical analysis of the objects that we introduce,

which leads to new theoretical results. Then, we provide the corresponding

biological interpretation,

iii) we perform for each Chapter extensive numerical simulations: on the one

hand, they validate our theoretical results and, on the other, they con-

jecture how these results extend to cases which we are not able to study

mathematically.

Each chapter is self-contained and can be read independently from the o-

thers. Chapters 2, 3 and 4 have been collected into three papers, [10, 11, 12]

respectively.

1.1 The germinal center reaction

Antibody Affinity Maturation (AAM) is defined as the increasing of the av-

erage affinity of serum specific antibodies during the course of an immune re-

sponse [132]. This is achieved through an evolutionary Darwinian process of

B-lymphocytes, which takes place in Germinal Centers (GCs) in secondary lym-

phoid follicles.

The initiation and development of the GC Reaction (GCR) is assured by

a coordinated cascade involving different cell types which move dynamically

within and between GCs [36]. The GCR starts with the activation of B-cells

Figure 1.1: Organization of a lymph node
(source [102])

after the encounter of an anti-

gen. This encounter takes

place in the secondary lym-

phoid organs, which include

lymph nodes, the spleen and

the mucosal-associated lym-

phoid tissue [126]. Here

the antigen arrives either via

blood or lymphatic vessels

or transported by conven-

tional dendritic cells (cDCs).

All secondary lymphoid or-

gans contain lymphoid folli-

cles, which are critical for the

functioning of the adaptive immune system. In the absence of an immune re-

sponse to an antigen, the follicle appears as a primary lymphoid follicle, a loose
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test many different LZ B-cells and progressively increase the strength of the

selection pressure over GC B-cells [36]. Therefore Tfh cells have a crucial role

in the selection of high-affinity antibodies. In addition, the positive selection of

B-cells in GCs is fine tuned by antigen masking on FDCs via antibodies secreted

by B-cells which have already differentiate into plasma cells. Since antibodies

can infiltrate in neighboring GCs and Tfh cells can freely move between GCs, a

coordination between several GCs can be achieved and contributes in improving

AAM [36].

Lower-affinity B-cells that fail to receive proper selection signals from Tfh

cells die by apoptosis and are rapidly cleaned by TBM: this mechanism elimi-

nates not only B-cells which have lost antigen binding, but also those that have

acquired autoreactive specificities [74]. Positive selected B-cells can either exit

the GC differentiating into later plasma cells and memory B-cells, or re-enter

the DZ upregulating CXCR4. In this case, they undergo further rounds of divi-

sion and mutation. Apparently the differentiation of a GC B-cell into a plasma

cell is driven by the acquisition of a high-affinity BCR and can be triggered by

signals from Tfh cells. On the contrary, the differentiation process into memory

B-cells seems to be stochastic, as throughout GCR, GC B-cells are constantly

selected to enter the memory pool [102, 126]. LZ to DZ transition after positive

selection signals is triggered in about 10 to 30% of high-affinity B-cells, and

the magnitude of Tfh cells help provided in the LZ determines the behavior

of the LZ B-cells when they reenter the DZ. Indeed, recent evidence [55] sug-

gests that the number of B-cell divisions per DZ cycle is variable (from 1 to 6),

and proportional to the strength of B-Tfh-cell interaction in the LZ. Therefore,

higher-affinity B-cells gain a proliferative advantage leading them to dominate

the GC B-cell population [74]. Moreover, since each cell division is associated

with mutations of the Ig genes, the finding that Tfh cells regulate the number

of division cycles in the DZ suggests that they also regulate SHM [55].

AAM is therefore achieved by multiple rounds of division and random SHM

in the DZ followed by a Darwinian competition for Tfh cells help in the LZ,

which selects B-cells with increasing affinity for the presented antigen. Re-

circulation between the two zones, in which B-cells alternate distinct genetic

programs, facilitate the production of high-specialized antibodies, essential for

the effectiveness of the immune response [136, 36, 132, 55]. The GCR reaches

its peak within approximately 2 weeks [144] then after about 3 weeks the GC

begins to dissipate and disappears in a time which can vary greatly, passing

from a few days to several weeks.

8









tope strongly influence the binding. These strong sites may contribute about

one-half of the total free energy of the reaction, while the other amino-acids in-

fluence only marginally the binding strength, or even have no detectable effect.

Simultaneously, a BCR contains a variety of possible binding sites and each an-

tibody binding site defines a paratope: about 50 variable amino-acids make up

the potential binding area of a BCR. In agreement with the above, only around

15 among these 50 amino-acids physically contact a particular epitope: these

define the structural paratope. Consequently, antibodies have a large number of

potential paratopes as the 50 or so variable amino-acids composing the binding

region define many putative groups of 15 amino-acids [80].

The V(D)J recombination, which is responsible for the initial antibody reper-

toire of B-cells, takes place in the bone marrow without interactions of B-cells

with antigens. Even if this primary repertoire is large, it does not suffice to face

all possible antigens that the immune system could encounter during an indi-

vidual lifetime. Hence B-cells undergo a second phase of diversification when

they get activated after the encounter with an antigen. This is achieved through

SHM during the GCR. SHM incorporates point mutations in the recombined

V(D)J exon of the heavy and light chain encoding genes to enhance the affinity

of the antibody to specific antigens.

The genetic code is a sequence of four nucleotides, guanine (G), adenine (A)

(called purines), thymine (T) and cytosine (C) (pyrimidines), joined together.

They make three-letter words: the codons. Each codon corresponds to a specific

amino-acid or to a stop signal, which interrupts the building of the protein dur-

ing translation. Different kind of genetic mutations can affect the DNA sequence

of a gene. They can be regrouped in three main categories: base substitutions,

insertions and deletions. A single base substitution is a switch of a nucleotide

with another. This is the simplest kind of mutation and it can turn out to be

missense, nonsense or silent, once we observe the resulting new protein. We said

that a mutation is missense if the result of the genetic mutation is a different

amino-acid in the protein. The mutation is nonsense when the genetic mutation

results in a stop codon instead of an amino-acid. Finally, a silent mutation is

a mutation with no effect on the amino-acid string, i.e. the mutated sequence

codes for an amino-acid with identical binding properties. We talk about inser-

tion (resp. deletion) when one or more nucleotides are added (resp. removed)

at some place in the DNA code.

SHM is driven by an enzyme called activation-induced cytidine deaminase

(AID) which is expressed specifically in this case. AID was classified into
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dels generated during SHM of activated B-cells are associated to hotspots and

localized predominantly in CDRs. It has been estimated that the frequency of

indels mutations in circulating B-cells is up to 6.5%. The majority of in vivo

in-frame indels mutations are short, with ∼ 90% being of at most 3 amino-acids

[26], and none of more than 9 amino-acids.

1.2 Mathematical modeling of AAM, an overview

GCs represent a typical example of a highly dynamic biological system, in

which various coupled reaction processes occur in a spatially compartmental-

ized microenvironment, involving the contributions of different cell types and

chemokine gradients [49]. The interactions among all such components are ex-

tremely intricate and not fully understood. One of the main goals of mathemat-

ical modeling is to identify and characterize the main mechanisms, as well as

the interactions among the elementary components involved in a GCR, in order

to deduce the generic macroscopic properties and features of the system [108].

Understanding the basic functional and physical principles of GC kinetics is not

only important in medical science, but it also contributes to the fundamental

understanding of molecular evolution [148, 103]. Indeed the immune system is

faced to the challenge of producing high-affinity antigen-specific antibodies from

initial low affinity precursors: its strategy is the same followed by germline evo-

lution to produce novel proteins, which is an iterative alternation of mutation,

clonal expansion and selection [103]. While germline evolution takes millions of

years to be achieved, AAM needs only a few weeks to improve of ∼ 100 fold the

initial affinity of naive B-cells for the target antigen, representing an example

of an extremely efficient and rapid evolutionary mechanism. Hence the study of

GCR could also enhance our understanding of population dynamics in evolution.

As we have already underlined in Section 1.1, the key dynamics and main

components of GCR are now well characterized and understood thanks to the

combined effort of cellular and molecular biologists and immunologists. Never-

theless, there are still facts that remain unclear and which can not been eluci-

dated via in vivo experiments. Indeed it is still very hard to follow and sequence

each B-cell at any time within a single GC in order to gather precise phyloge-

netic data of the B-cell repertoire during a GCR. Similarly, it is really difficult

to have precise spatial and temporal data about lymphocytes within the GC

during an immune response, or to understand the exact dynamic of mutation

and selection of B-cells while they are submitted to AAM [98, 42]. Mathe-

matical modeling has already played an important role contributing to improve

our understanding of the GC kinetics and AAM. Since it allows to capture the
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global coordinated behavior of the GCR in a simplified way, it can eventually

suggest how certain interactions among cells and molecules could lead to the

experimentally observed results [108]. This suggestions can give rise to in vivo

experimentation and lead to new insights. One can think, for example, to [75]:

there T. B. Kepler and A. S. Perelson suggested for the first time the hypothesis

of the existence of a recycling mechanism of B-cells during GCR after positive se-

lection signals. Other examples are given by [96, 93], where M. Meyer-Hermann

and coworkers predicted a dominant limiting role for Tfh cells to induce AAM.

These mechanisms have now been confirmed by experiments [139, 119].

There exist many different possible approaches to conceive and study math-

ematical models of GCR and AAM. In [108] A. S. Perelson and G. Weinsbuch

present an overview of several immunological problems which they formalize

using physical concepts and mathematical methods. For instance they estimate

the size of the immune repertoire and predict the size of epitopes by using prob-

abilistic methods, or they propose a model of receptor cross-linking and affinity

maturation. For the latter they have opportunely applied laws of mass action

to define the concentrations of ligands, kinetic constants and Ordinary Differ-

ential Equation (ODE) systems. These are highly theoretical works with the

objective of capturing some general features of the system. Similarly in [105]

A. S. Perelson and M. Oprea describe the B-cell population in a typical GC as

a result of dynamic interactions between mutation and selection. In particular,

they develop a model of somatic mutation and B-cell expansion trying to un-

derstand from an optimal control perspective how the relatively few mutations

that lead to high affinity antibodies are consistently observed. Following the dy-

namics of a single average GC, they propose that the optimal GCR is obtained

by alternating cycles of expansion without mutation, followed by mutation and

selection.

Other theoretical works investigate the problem of SHM and AAM as framed

in the language of optimal control theory. For example, in [76] T. B. Kepler and

A. S. Perelson have developed a single-compartment model for the process of

AAM and an optimization algorithm based on the Pontryagin’s maximum prin-

ciple to find the optimal mutation schedule: the quantity to be maximized is the

total affinity, which takes into account both the average affinity for the immuniz-

ing antigen and the number of B-cells involved in the response. Here again their

results suggest that the optimal mutation schedule is one with brief bursts of

high mutation rates interspersed between periods of mutation-free growth. They

model mutations using a transition probability matrix over the state-space of

possible Ig genotypes. In addition they overcome the highly complicated prob-
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lem of specifying the binding affinity to a given antigen as a function of the Ig

primary sequence, by defining affinity classes with respect to the presented anti-

gen. This problem has further been discussed in [122], where the authors try to

measure the similarities of amino-acid chains and then predict binding affinities

by essentially using two tools: a similarity kernel on the set of fundamental

amino-acids and a good amino-acid substitution matrix (e.g. BLOSUM62 [60]).

An interesting theoretical framework to study AAM, which shares some sim-

ilarities with the one considered in Chapter 2, is given in [70] where S. A.

Kauffman and E. D. Weinberger introduce the NK models. Amino-acid chains

are represented as N length strings, and K corresponds to the number of sites

whose state bears on the fitness contribution of each site. Hence the parameter

K assures the richness of epistatic interactions among sites. When K increases

with respect to N the affinity landscape passes from smooth and single peaked

to jagged and multipeaked. They choose the hypercube vertex set as the basic

structure to define the affinity landscape of BCRs. They assign to each node

an affinity strength and perform adaptive random walks, biased with respect

to the affinity gradient: a clone lying on a given node can jump to a neighbor

node after mutation if the latter is fitter than the first one. They investigate the

affinity landscape exploration trying to understand how it changes depending

on the richness of epistasis.

In more recent years biologically very detailed models of GCs were proposed

using, for instance, agent-based models (e.g. [92, 120, 94]), mostly analyzed

through extensive numerical simulations. For example in [77] the authors fo-

cus on the dynamics of a single GC, investigating the impact of T cells on GC

kinetics and termination. They allow for T-B-cell interactions and consider

antigen consumption by LZ B-cells. Here and in [100] the major causes of GCR

termination are investigated: this is still not fully understood. Two main hy-

potheses arise from these papers: a lack of antigen on FDCs or an increasing

differentiation of B-cells into plasma and memory B-cells as a consequence of

differentiation of FDCs and Tfh cells. A crucial parameter in [77] is the proba-

bility that a positive selected B-cell recycles back to the DZ. Understanding the

mechanism and regulation of recycling is also considered as a key to understand

AAM in [64]. Here, by comparing model predictions with experimental data,

the authors propose that the selection probability of B-cells and the recycling

probability of selected B-cells are not constant, but rather vary during the GCR

with respect to time.

Another process affecting B-cells during a GCR which remains unclear is the
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selection mechanism. This was investigated for example in [98] through a non-

linear, non-local and inhomogeneous parabolic PDE, describing a population of

B-cells submitted to mutation, division and selection during a GCR. Conversely

to e.g. [76, 70, 96], in [98] the space of traits is continuous (the interval [0, 1]),

and is directly translated into an affinity function characterizing the likelihood

that a given B-cell binds to the immunizing antigen. In this framework the

termination is regulated by the number of selected B-cells, since the division

rate is defined as a decreasing function of the selected pool size. A substan-

tially different approach to investigate selection mechanisms in GCs is applied

in [96]. There M. Meyer-Hermann and coworkers employ an extended version of

a previously described agent-based model for GCR [92, 95]: they suggest that

for physiologically reasonable parameter values only clonal competition for Tfh

cells help or a refractory time for B-FDCs interactions can enable AAM while

generating the experimentally observed GC characteristics. They consider a

very detailed model which results really hard to study mathematically, as well

as in e.g. [94] by M. Meyer-Hermann et al. Indeed, they take into account dif-

ferent cell type populations, interactions, cell motility and diffusion of molecular

signals.

In most papers GCs are considered as isolated from each others. In [148]

the authors present a coarse-grained model mathematically formalized through

deterministic mean field differential equations, to calculate the B-cell population

development in AAM. There they study the enhancement of affinity improve-

ment due to B-cell migration between GCs. They investigate the reasons behind

optimal parameters such as the optimal mutation rate or the optimal selection

strength. Their findings suggest that GCs have been optimized by evolution to

generate high-affinity antibodies efficiently and in a very short timeframe. In

[148] two puzzles observed in the previous works of A. S. Perelson and cowork-

ers [76, 105] are solved. For instance these previous models did not succeed

in showing the extremely high improvement of affinity (∼ 100 fold) and the

"all-or-none" phenomenon observed in experiments. The latter refers to the fact

that the fraction of strong affinity B-cells, usually characterized by a certain key

mutation or a unique piece of Ig gene sequence, is more likely to be high or low,

but less likely to be intermediate.

Most of papers presented so far consider a deterministic continuum approach,

where cell concentrations are described by a set of coupled ODEs changing de-

terministically and continuously during time. This approach has many compu-

tational advantages and has often been employed to model biological systems.

Nevertheless it is not able to take into account those local inhomogeneities
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related to the discrete nature of cells and stochastic fluctuations in reaction

processes. M.T. Figge in [49] introduce a microscopic reaction-diffusion model

for GCR on a d-dimensional lattice, performing numerical simulations within a

stochastic discrete event approach. In particular, in order to simulate the cor-

rect time evolution of this complex biological system, each single reaction event

is monitored in space and time. Each reaction changes the lattice configuration

into another configuration with a given probability, and the reactions occur in a

stochastic manner. In [45] Y. Elhanati et al find biological evidence for an evo-

lutionary model of B-cells where substitution rates across sites in the Ig primary

chain strictly depend on the context. In order to do so they apply probabilistic

inference methods and advanced statistical techniques to quantify the process

that shape B-cell repertoire diversity. In [91] the authors developed and applied

modern statistical methods to investigate selection on BCRs and infer B-cell se-

quence evolution. They use stochastic mapping and empirical Bayes estimates,

comparing the evolution of BCRs rearrangements.

The work we develop in Chapters 2-4 is inserted in this extremely varied and

stimulating context. Our aim is to define a simplified mathematical model of

the learning process of B-cells in GC, focusing on the most basic mechanisms:

mutation, division and selection. We introduce and successively couple these

fundamental processes, and we perform a rigorous mathematical analysis using

probabilistic tools ranging from simple random walks to multi-types Galton

Watson processes. Our simplified mathematical framework allowed to introduce

and study many different mutation-division-selection processes while already

bringing interesting mathematical problems.

1.3 Main modeling assumptions and results

The aim of this thesis is to contribute to the mathematical foundations of adap-

tive immunity by building and analyzing a simplified mathematical model of the

mutation-division-selection process of B-cells in GCs leading to AAM. Mutation,

division and selection correspond for us to the fundamental building blocks of

the AAM process: our approach consists in studying precisely each block and

progressively enriching our model with supplementary bricks. We want to un-

derstand how the different biological parameters affect the system’s functional-

ity. We are particularly interested in estimating via probabilistic methods how

different mutational rules affect typical time-scales to reach a specific configura-

tion (or a set) of the traits of B-cells, as a function of the given mutational rule,

as well as in quantifying GCs’ efficiency. Beyond the fundamental understan-

ding of physiological processes and their associated pathologies, this research is
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also motivated by important biotechnological applications, such as the synthetic

production of specific antibodies for drugs, vaccines or cancer immunotherapy

[6, 79, 122]. Indeed this production process involves the selection of high affin-

ity peptides and requires smart methods to generate an appropriate diversity

[34]. Moreover, the study of this learning process has also given rise in recent

years to bio-inspired algorithms such as in [30, 107], mainly addressed to solve

optimization and learning problems [25].

Chapter 2 focuses on pure mutational models, aiming to model the SHM

mechanism and understanding how different mutational rules can drive the ex-

ploration of the state-space of B-cell traits, hence affect AAM. Moreover, under-

standing the role and functional implication of mutations is a central question

in biological evolutionary theory[50, 145, 57, 47], as well as for the study of evo-

lutionary algorithms [9, 2]. The preliminary analysis we made of SHM suggests

us to pattern these mutations as random walks on graphs, whose characteristics

change depending on the introduced mutational rule. Hence we focus on the

variation of hitting times as a function of the underlying graphs. This allows

us to relate mutation rules to the characteristic time-scales of the process. In

order to simplify the problem, here and in Chapter 3 we suppose we are al-

lowed to classify the amino-acids which determine the chemical properties of

both BCRs and antigen into two classes, named 0 and 1 respectively. They may

corresponds to amino-acids positively charged and negatively charged. Hence-

forth BCRs and antigen are represented by binary strings of same fixed length

N : the BCR state-space is {0, 1}N . This simplified choice is motivated by the

difficulty of modeling e.g. the binding affinity between BCR and antigens, as

well as the effect of genetic mutations affecting the Ig primary sequence over the

geometrical structure of the resulting binding region of BCRs. We consider a

linear contact between BCR and antigen, i.e. for the sake of simplicity, we state

that 0 matches with 0 and 1 with 1, and define the affinity as the number of

identical bits shared by the BCR representing string and the antigen represent-

ing string. In all following Chapters the antigen representing string is denoted

by x. Definitions and notations are clarified in Section 2.2.

We follow the evolution of the trait, hence the binding affinity, of a single B-

cell for a given antigen. We suppose it is submitted to mutations in the absence

of other biasing mechanisms such as division and selection. The choice of a mu-

tation rule corresponds to the prescription of a graph structure over {0, 1}N : a

mutation step is modeled as a random jump to a neighbor node of the obtained

graph. In Section 2.2 we define the basic mutational rule: at each time step a

randomly chosen amino-acid composing the BCR switches the class it belongs
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to. Mathematically this corresponds to a Simple Random Walk (SRW) on the

N -dimensional hypercube, which is denoted by HN . We denote by P the tran-

sition probability matrix corresponding to this mutational rule. Of course the

SRW over HN has already been studied in different contexts. After recalling

some already known results about RWs on graphs applied to this specific case,

we consider the evolution of the Hamming distance to x during this mutational

process, seen as a RW on {0, . . . , N}. Due to the perfect symmetry of the hy-

percube and our particular choice of the affinity (which is directly related to

the Hamming distance), by studying this new RW we reduce considerably the

number of vertices of the graph, passing from 2N to N +1 nodes, without losing

the most important properties of the corresponding transition matrix, e.g. its

eigenvalues. By studying this RW we obtain a new explicit formula to evaluate

the hitting time to cover a given initial Hamming distance for the SRW on HN ,

which is proportional to the number of vertices. Moreover in Theorem 2.2.12 we

improve this result by giving an explicit formula to compute the mean hitting

time to reach a sphere of radius r centered in x.

It is possible to modify this basic mutational rule in many different ways

to define more complex mutational mechanisms. We want to understand the

effects of different mutational models on the connectivity of the graph and the

efficiency of state-space exploration. In Section 2.3 we introduce and study

several mutation rules on {0, 1}N , their effects on the structure of the graph

and, consequently, the associated RWs. In particular, using both spectral and

probabilistic methods, we compute the hitting times: starting from a random

initial condition, we count the time expected to reach a target node. It has a

clear biological interpretation, as it represents the expected number of muta-

tions we need to build the BCR with fittest affinity, given a particular antigen

and the initial lower-affinity BCR trait. This allows us to compare the ability

of different mutational rules in exploring the state-space of all possible BCRs.

We especially focus on two mutation rules that are the combination of simpler

ones: the class switch of 1 or 2-length strings, where the mutation rule depends

on the distance to the target, and the mutation rule which allows to do more

than a single mutation at each step, defined as a convex combination of Pi for

0 ≤ i ≤ k, and k fixed at most equal to N . Therefore here k represents the

amplitude of the maximal change in the affinity strength in a single time step.

We estimate that at least for N big enough, the hitting time corresponding to

the model of class switch of 1 or 2-length strings is halved comparing to the ba-

sic mutational model, which is confirmed by numerical simulations (Proposition

2.3.11 and Table 2.3). We define two variants of the model of multiple point

mutations, whose corresponding transition probability matrices are respectively
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1
k

∑k
i=1 Pi =: P(k) and Pk. Since in this case the Hamming distance does not

correspond to the graph distance (except if k = 1) we average the hitting time

over all couples of nodes having an initial Hamming distance d. By applying

a general formula given in [85] we succeed in determining an explicit formula

to evaluate these mean hitting times, which is given in Proposition 2.29. We

observe that for k > 2 the mutational model which assures the best hitting time

is given by Pk. Table 2.2 summarizes the main results of Section 2.2 and 2.3.

In Section 2.4 we present a biologically more involved model and discuss its

numerical outputs within our mathematical framework, providing as well limita-

tions and possible extensions of our approach. In particular we deeply describe

the SHM process and how a single genetic mutation affect the composition of the

corresponding amino-acid chain. We take into account the possibility of insert-

ing or deleting an amino-acid from the string as a consequence of SHM. Indeed

SHM introduces mostly single nucleotide exchanges, but also small deletions

and duplications, i.e. insertions of extra copies of a portion of genetic material

already present within the DNA code [63, 26, 27]. We observe numerically how

it affects the hitting time (Table 2.6). We also discuss our choice of a binary

representation and how our estimations can be compared to other models with

a bigger amino-acid alphabet.

In Chapter 3 we introduce the division process in the same mathematical

framework set in Chapter 2. We want to understand how interactions between

division and different mutational models affect the diversification of the B-cell

population repertoire as a consequence of clonal expansion and SHM and in the

absence of any selection mechanism. Therefore we are particularly interested in

analyzing characteristic time-scales for which a certain proportion of possible

traits is expressed in the population: starting from a single individual, what

would be the typical time until a finite proportion of the traits are covered by

the exponentially increasing population? We consider {0, 1}N as the state-space

of all possible BCRs and the mutational rules already discussed in Sections 2.2

and 2.3. A division event is always associated to mutation, meaning that the

newborn particles move to neighbor nodes according to a given mutation rule.

Therefore we model the division-mutation process as Branching Random Walks

with constant division rate 2 (2-BRW) (except for Section 3.5.2) over the graph

defined on {0, 1}N by the prescription of a given mutational rule. By applying

the theory of expander graphs on the underlying graphs, we obtain estimates

for the partial cover times of the considered BRWs.

In Section 3.4 we consider a simple 2-BRW (also called COBRA walk [43, 33])
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where two or more particles having the same trait coalesce into a single one.

The coupling of branching mechanisms and random walks necessarily implies an

important speedup in the characteristic time-scales of state-space exploration,

typically passing from a time O(2N ) to O(N) for the SRW on HN . Of course

this has a cost: considering a branching process means also to produce new

individuals at each time step. Indeed, in a time T = O(N) we have 2T individ-

uals (in the case in which multiplicity is taken into account; ≤ 2N otherwise),

as we do not consider here neither selection nor death. Therefore we decide to

estimate which is the proportion of nodes we expect to activate in a time of

the order of N and depending on the mutational rule. We want to compare the

ability of different mutational models in increasing the diversity of expressed

BCRs after O(N) rounds of clonal expansion and mutation. Therefore in Sec-

tion 3.4 we compare the 2-BRW referring to the mutational models underlined

by P and P(k) respectively. The main results of this section are collected in

Table 3.1: while the basic mutational model allows to cover a small portion of

the state-space in O(N), in a time of the same order the model corresponding

to P(k) allows to explore almost a half of the state-space. In order to obtain

these results (Theorems 3.4.9 and 3.4.13) we have characterized the expansion

properties of the corresponding mutational graphs.

The mathematical analysis we made of the 2-BRW-P(k) has revealed an

interesting phenomenon concerning the impact of the mutation rate on the ex-

ploration speed. Intuitively, one would suggest that increasing the number of

mutations at each division would result in a BRW with a faster exploration

time-scale. However, in Section 3.4.3 we show the existence of an early satura-

tion phenomenon: when increasing from one to two mutations, the exploration

is indeed faster, but allowing more than two mutations (up to N) modifies only

marginally the exploration speed. This discovery is also confirmed by numerical

simulations, as shown in Figure 3.4.

In Section 3.5 we propose some extensions of the model. In particular, we

introduce the BRW with multiplicity and obtain the transition matrix related

to the number of individuals carrying a given trait together with their limiting

distribution (Lemma 3.5.3). This adds a further building block to our model.

Indeed, taking into account the number of particles lying on the same vertex

allows to consider the size of the effective population and not only how many dif-

ferent BCR configurations are expressed at a certain time. In a further step we

investigate how this distribution can change by introducing a division rate, and

provide comparisons between different mutation-division models. In this way,

theoretical results presented in previous sections are displayed in a wider con-
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text. In particular Lemma 3.5.5 shows that the addition of a division rate allows

to overcome the problem of the eventual bipartite structure of the considered

graph. Moreover in Section 3.5.3 we propose a model in which the division rate

is dependent on the affinity. This is consistent with the experimentally observed

fact that Tfh-B-cells interactions determine the number of cycles of proliferation

of positive selected B-cells which recycle back to the DZ. This seems to be pro-

portional to their affinity strength (Section 1.1). We observe through numerical

simulations that this actually allows the fittest clones to have an advantage over

the low-affinity population.

In Chapter 4 we introduce and study more complex models involving muta-

tion, division and affinity-dependent selection mechanisms. In this context we

refer to some more general modeling assumptions. For instance we do not need

to define a specific state-space for B-cell traits, but rather we suppose that all

BCRs can be classified into a certain number of affinity classes with respect to

the presented antigen. They are enumerated from 0, the higher affinity class, to

N, the lower one, and we assume that all B-cells belonging to the same affinity

class have similar binding abilities. Affinity classes may contain all B-cells hav-

ing the same Hamming distance from the target, if we suppose that B-cell traits

are represented as N -length binary strings and their affinity is described using

the Hamming distance, as in Chapters 2 and 3. SHM implies that a mutated

clone eventually passes from the affinity class of its mother cell to another one:

this is modeled through a transition probability matrix over {0, . . . , N}. Under

modeling assumptions of Chapters 2 and 3, the transition probability matrix

over {0, . . . , N} describes the evolution of the Hamming distance to x as a con-

sequence of SHM.

In Section 4.2 we define the main model analyzed in Chapter 4. The process

starts with z0 naive B-cells entering the GC at time 0, eventually belonging to

different affinity classes. At each time step each GC B-cell can die with rate

rd. If not it can divide with rate rdiv, giving rise to two newborn cells with

a mutated trait, according to the allowed mutational rule. Then, each cell in

the population can be submitted to selection with rate rs: a threshold is fixed

for positive selection. If the B-cell submitted to selection has a worst fitness

than the threshold, it dies by apoptosis, otherwise it exits the GC and enters

the selected pool. Hence in this case no recycling mechanisms are taken into

account.

We mathematically formalize this model in Section 4.3 by opportunely using

a (N + 3)-type Galton Watson (GW) process. This model predicts the evolu-
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tion of GC population and provides useful information concerning the extinction

probability of the GC, the average affinity of clones, the expected size of the

GC and the expected number of selected cells. These qualitative informations

are rigorously addressed in this section (Proposition 4.3.9).

What is the behavior of the expected number of selected B-cells as a func-

tion of the model parameters? In particular, is there an optimal value of the

selection rate which maximizes this number? Thanks to the spectral decomposi-

tion of the matrix describing the average behavior of the introduced multi-type

GW process, we determine explicitly the optimal value of the selection pressure

which maximizes the expected number of selected B-cells at a given time step.

This corresponds to 1/t independently from all other parameters and from the

mutational model (Corollary 4.3.11).

The model we set can be easily modified to define e.g. other affinity-

dependent mechanisms, which could be studied at least numerically. Indeed in

Section 4.4 we propose two variants of the previous model: a positive selection

model and a negative selection one. In the first case the selection mechanism

acts only positively, meaning that if a B-cell submitted to selection has a trait

good enough to be positive selected, then it exits the GC and reach the se-

lected pool like in the main model. On the contrary, when its affinity is not

high enough, nothing happens: it remains in the GC for the next time step.

The model of negative selection acts in the opposite way: a positive selected

B-cell stays in the GC for further rounds of mutation-division-selection, while a

negative selected B-cell dies. This last model corresponds to the case of 100%

of recycling.

Because of the peculiar structure of matrices containing the average evolution

of each type cell for both models of positive selection and of negative selection,

we are not able to compute explicitly their spectra. Henceforth we can not give

an explicit formula for e.g. the extinction probability of the corresponding GCs

or evaluate the optimal values of the selection rate to maximize the production

of output cells as we did for the model analyzed in Section 4.3. Nevertheless

we can give some estimations (Proposition 4.4.3) by using standard arguments

for positive matrices such as the Perron Frobenius Theorem. Moreover we can

easily perform numerical simulations illustrating our theoretical results: we give

and comment some of the obtained graphics in Section 4.4.2. In particular in

Figure 4.7 we compute the optimal choice of the selection rate which maximizes

the expected number of selected B-cells at a given time step, for the model of

positive selection. We show that from one hand the searched optimal value
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depends on the relation between the initial affinity of naive B-cell clones and

the fixed affinity threshold. On the other hand it seems that for t big enough

the optimal rs tends to 1/t as in the main model and independently from the

other parameters. One has to interpret this result as the ideal optimal strength

of the selection pressure to obtain a peak of the GC production of output cells

at a given time step. For example, let us suppose that a time step corresponds

to 1 day. The peak of the GC reaction has been measured to be close to day

12 [144]: for the kind of model we built and analyzed in this paper, a constant

selection pressure of 1/12 assures that the production of plasma and memory

B-cells is maximized at the GC peak.

In Section 4.5 we discuss the modeling assumptions considered in Chapter

4 and provide possible extensions of the presented models. Indeed the mathe-

matical tools used in Sections 4.3 and 4.4 can be applied to define and study

models with different affinity-dependent selection mechanisms, as well as models

in which one or more parameters vary during time, or with alternate periods

of mutation-free growth. We plot in Figure 4.9 an example of the profiles we

can expect letting the selection pressure increase over time. This shall take into

account, for instance, the early GC phase in which simple clonal expansion of

B-cells with no selection occurs [36].

Chapters 2-4 define a simple but powerful mathematical framework in which

many different evolutionary processes can be formalized and studied. We demon-

strate how it is possible to enrich the models by progressively adding new bricks

and hypotheses. We provide as well suitable mathematical tools to study the

introduced models and perform many numerical simulations which confirm our

theoretical results. Of course the framework remains highly theoretical and can

be improved in many different ways. In Chapter 5 we discuss some limitations

and propose some possible improvements of the models described so far.
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Chapter 2

Random walks on binary

strings applied to the

somatic hypermutation of

B-cells

Summary Within the germinal center in follicles, B-cells proliferate, mu-

tate and differentiate, while being submitted to a powerful selection: a micro-

evolutionary mechanism at the heart of adaptive immunity. A new foreign

pathogen is confronted to our immune system, the mutation mechanism that

allows B-cells to adapt to it is called somatic hypermutation: a programmed

process of mutation affecting B-cell receptors at extremely high rate. By con-

sidering random walks on graphs, we introduce and analyze a simplified math-

ematical model in order to understand this extremely efficient learning process.

The structure of the graph reflects the choice of the mutation rule. We focus on

the impact of this choice on typical time-scales of the graphs’ exploration. We

derive explicit formulas to evaluate the expected hitting time to cover a given

Hamming distance on the graphs under consideration. This characterizes the ef-

ficiency of these processes in driving antibody affinity maturation. In a further

step we present a biologically more involved model and discuss its numerical

outputs within our mathematical framework. We provide as well limitations

and possible extensions of our approach.
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2.1 Introduction

Understanding the role and functional implication of mutations is a central ques-

tion in biological evolutionary theory [50, 145, 57, 47], but also for the study of

evolutionary algorithms [9, 2]. Beyond the mutation rate, which is naturally an

important parameter, our aim in this Chapter is to highlight the role of various

mutation rules on the exploration of the space of traits. In our mathematical

framework, configurations are represented as vertices of a graph which are con-

nected if there exists a mutation allowing to pass from one trait to another.

We are mainly interested in understanding the characteristic time-scales for the

exploration of the state-space as a function of the mutation rule. To this end,

we relate mutation rules with specific graph topologies and build upon random

walks on graphs and spectral graph theories to analyze resulting time-scales.

More precisely, beyond general theoretical results, we are particularly in-

terested to apply our framework to the B-cell affinity maturation in Germinal

Centers (GCs). The adaptive immune system is able to create a specific response

against almost any kind of pathogens penetrating our organism and inflicting

diseases. This task is performed by the production of high affinity antigen-

specific antibodies. These proteins are produced by B-lymphocytes which are

submitted to a learning process improving their affinity to recognize a particular

antigen. This process is called Antibody Affinity Maturation (AAM) and takes

place in GCs [102]. Even if substantial progress has been made in adaptive

immunology, since somatic hypermutation was discovered by the nobel price

Susumu Tonegawa [135] in 1987, there are still facts that remain unclear about

the GC reaction and the exact dynamics of AAM. Indeed, it seems difficult

to make exact measurements of the antigenic repertoire in vivo inside a single

GC, following and sequencing each B-cell at any time, or to have precise spatial

and temporal data about lymphocytes within the GC during an immune re-

sponse, or to understand the exact dynamic of mutation and selection of B-cells

while they are submitted to AAM (e.g. [48, 106]). Nevertheless, some refined

techniques start to be available [131, 55], showing possible correlations between

proliferation and mutation rates with respect to B-cells’ affinity to the presented

antigen. This provides further motivation for setting appropriate mathematical

frameworks to describe such systems.

The affinity of a B-cell is biologically observed as a matching between the B-

cell receptor (BCR) and the antigen. We aim at understanding how mutation

rules allow to explore possible trait-configurations of BCRs. The mutational

mechanism that B-cells undergo in GCs to improve their affinity is called So-
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matic Hypermutation (SHM): it targets, at a very high rate, the DNA encoding

for the specific portion of the BCR involved in the binding with the antigen,

called Variable (V) region. SHM can introduce mutations at all four nucleotides,

and mutation hot-spots have been identified [133, 45, 127]. The effect of these

mutations on the BCR, once expressed on the outer surface of B-cells, is very

complex, as the substitution of a single amino-acid can modify the geometrical

structure of the BCR, creating or deleting bonds (see [1], Chapter 4, for more

details about the crystal structure of BCRs and their binding with antigens).

Although mutations occur at the level of the DNA, their outcome might

be expressed at the level of amino-acids composing the BCR. In the present

Chapter, SHMs are taken in account this way (Section 2.4.3). However, the

structure of our mathematical model can be left substantially unchanged when

considering mutations at the DNA level, which leads to modify the definition of

affinity and the size of the state-space.

There already exists a certain number of mathematical models about GC

reaction and AAM. In particular, [75, 76] proposed deterministic population

modeling of SHM and AAM, considering for instance the hypothesis of recy-

cling mechanisms during GC reaction, later investigated by experiments [139].

In [105, 108, 52, 64], the authors introduced and discussed several immunological

problems, such as the size of the repertoire, or the strength of antigen-antibody

binding, or the pourcentage of recycling. They provide suitable mathematical

tools, using both deterministic and probabilistic approaches, together with nu-

merical simulations. More recently, biologically very detailed models of GCs

were proposed [92, 120], using, for instance, agent-based models [94], mostly

analyzed through extensive numerical simulations. Our aim here is not to build

a very complex model, but rather to contribute to the theoretical foundation

of adaptive immunity modeling through the mathematical analysis of generic

mutation models on graphs. So far, this approach has not been developed and

applied to GC reaction and AAM modeling. In particular, this framework en-

ables the study of various mutation rules, as for instance, affinity-dependent

mutations, which are currently debated in the biological literature [55]. Our

mathematical framework shares some similarities with the NK models proposed

by S. A. Kauffman and E. D. Weinberger in [70], for instance the choice of the

hypercube vertex set as the basic structure to define the affinity landscape of

BCRs. Nevertheless their approach and goals are fundamentally different from

ours. Indeed, in [70] the graph which defines the mutational rule is predefined

(i.e. they refer only to the basic mutational rule we introduced as well in Section

2.2), while the affinity function changes according to the main parameters of the
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model, N and k for instance. Therefore, the random walks over these affinity

landscapes, modeling the maturation of the immune response, are biased with

respect to the affinity gradient. In our mathematical framework the structure

of the graph reflects the mutational rule, hence it is not predefined. Moreover,

since in this Chapter we only take into account mutations, the random walks

over the state-space are not biased by the fitness of each trait to the target one.

From our point of view the selection pressure should be taken into account as a

separate operator (see below).

This research is also motivated by important biotechnological applications.

The fundamental understanding of the evolutionary mechanisms involved in an-

tibody affinity maturation have been inspiring many methods for the synthetic

production of specific antibodies for drugs, vaccines or cancer immunotherapy

[6, 79, 122]. Indeed, this production process involves the selection of high affin-

ity peptides and requires smart methods to generate an appropriate diversity

[34]. Beyond the biomedical motivations, the study of this learning process has

also given rise in recent years to a new class of bio-inspired algorithms such as

in [30, 107], mainly addressed to solve optimization and learning problems [25].

In this Chapter, we consider pure mutational models obtained as random

walks on graphs given by alterations of the edge set of the N -dimensional hyper-

cube. We focus on the variation of hitting times as a function of the underlying

graphs, hence relating mutation rules to the characteristic time-scales of the

process. Our intention here is not to provide biologically relevant outcomes,

since the AAM involves several mechanisms (division, selection, etc) that we

do not take into account in this Chapter. Instead we provide a rigorous anal-

ysis of an essential single building block: mutation. We study the structure

of RWs on the hypercube and compute hitting times depending on the graph

associated to the mutational rule. We prove that they are proportional to the

number of vertices (see Table 2.2). Therefore our specific approach consists in

observing how different mutational rules allow to explore the state-space and

lead a naive B-cell to build the fittest possible trait. We are not interested here

in proposing new statistical or phylogenetic strategies to infer the more realis-

tic phylogenetic trees given a final antibodies repertoire [54, 32]. Nevertheless

we define accurately the biological context since it is relevant for further steps.

Clearly, other mechanisms such division and mutations provide significant bi-

ases of hitting times, our approach consists in studying precisely the differences

when enriching our model with supplementary bricks. For instance, by branch-

ing we introduce a population dispatched on the vertices of the hypercube which

decreases the hitting time, but at the cost of the biological maintaining of the
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population (Chapter 3). This is our strategy here and in the forthcoming Chap-

ters.

Section 2.2 contains results on random walks theory [104, 97, 111] and, more

specifically, random walks on graphs [85, 4]. This is a topic of active research

due to the great number of important applications in recent years, such as

graph clustering [117], ranking algorithms for search-engines [19, 68], or social

network modeling [72, 56, 78]. We start with the most basic mutational model

which is the simple random walk on the N -dimensional hypercube [41, 58, 39,

140]. We set notations in order to define the models, then we overview various

properties of random walks on graphs, and establish particular results in the

case of the hypercube. In Section 2.3 we study several mutation rules and their

effects on the structure of the graph and, consequently, its associated random

walk. In particular we compute the hitting times: starting from a random

initial condition, we count the expected time to reach a target node with the

best fitness. We use both spectral and probabilistic methods. We especially

focus on two mutation rules that are the combination of simpler ones: the class

switch of 1 or 2-length strings, where the mutation rule depends on the distance

to the target, and the mutation rule which allows to do more than a single

mutation at each step. Table 2.2 in Section 2.3.2 summarizes the main results

of Section 2.2 and 2.3: we display expected times to reach some position of the

graph, as a function of each mutation rule. Finally, Section 2.4 is dedicated to

modeling aspects and discussions about possible extensions and limitations of

the proposed framework.

2.2 A basic mutational model

In this section we set the general mathematical framework, which we keep in

order to pattern and study mutational mechanisms discussed in the current

section and in Section 2.3. Indeed, we state a basic mutational model. The

choice of this environment is motivated by the modeling of amino-acids chains

and their modifications during SHM. It is for this reason that we often recall

biological facts and refer to BCRs and antigens. Nevertheless, this framework is

flexible and adapts to different mutational rules in a more general evolutionary

context.

We assume that it is possible to classify the amino-acids into 2 classes de-

noted by 0 and 1 respectively (they could represent amino-acids negatively and

positively charged respectively). Henceforth BCRs and antigen are represented

by binary strings of same fixed length N , hence, the state-space of all possi-
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ble BCR configurations is {0, 1}N . We will give some more details about these

hypotheses in Section 2.4.3.

Definition 2.1. We denote by HN the standard N -dimensional hypercube.

BCR and antigen configurations are represented by vertices of HN , denoted

by xi with 1 ≤ i ≤ 2N , or sometimes simply by their indices. We denote the

antigen target vertex by x: it is given at the beginning of the process and never

changes.

We suppose that there is a single B-cell entering the GC reaction. The

configuration of its receptors is denoted by X0. If Xt is the configuration of

the BCR after t mutations, then depending on the mutational rule, one or more

bits in Xt can change after the next mutation. This gives rise to a Random

Walk (RW) on {0, 1}N , where a mutation on the BCR corresponds to a jump

to a neighbor node. Of course, the definition of neighbors changes depending

on the mutation rules we introduce (we specify the neighborhood set each time

we discuss a new mutation rule). In a general way:

Definition 2.2. Given xi, xj ∈ {0, 1}N , we say that xi and xj are neighbors,

and denote xi ∼ xj , if there exists at least one edge (or loop) between them.

As far as the complementarity is concerned, we have to make a further simpli-

fication. As we have already discussed in the Introduction, the tridimensional

structure of the BCR is hard to model. For this reason we consider a linear

contact, i.e. positively charged amino-acids are complementary to negatively

charged ones when they are at the same position within the binary string. For

the sake of simplicity, we state that 0 matches with 0 and 1 with 1 (we can sup-

pose that the antigen representing string is given in its complementary form).

Formally, we define the affinity as the number of identical bits shared by the

BCR representing string and x. Equivalently, one can see x as the optimal BCR

trait, with the highest affinity for the immunizing antigen.

Definition 2.3. For all xi ∈ {0, 1}N , its affinity with x, aff(xi, x) is given

by aff(xi, x) := N − h(xi, x), where h(·, ·) : ({0, 1}N × {0, 1}N ) → {0, . . . , N}
returns the Hamming distance.

Definition 2.4. For all x = (x1, . . . , xN ), y = (y1, . . . , yN ) ∈ {0, 1}N , their

Hamming distance is given by:

h(x, y) =
N∑

i=1

δi where δi =





1 if xi 6= yi

0 otherwise

Other definitions of affinity are often (e.g. [92]) constructed as functions of

the Hamming distance aff(xi, x) = F (h(xi, x)), for instance with F given by
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the Gaussian probability density function. These modeling aspects become im-

portant when considering the selection mechanism, which is not treated in the

present article. Therefore, for our purpose, we can focus on the above definition

of affinity.

As a first basic mutational rule, we study single switch-type mutations: at

each time step a randomly chosen amino-acid within the BCR binary string

switches its amino-acid class. This clearly leads us to a Simple Random Walk

(SRW) on HN . Indeed, we formalize it as follows:

Definition 2.5. Let Xn ∈ HN be the BCR at step n. Let i ∈ {1, . . . , N} be a

randomly chosen index. Then Xn+1 := (Xn,1, . . . , Xn,i−1, 1 − Xn,i, Xn,i+1, . . . , Xn,N ).

Remark 1. Referring to Definition 2.2 of neighborhood, as we consider here the

standard N -dimensional hypercube, ∀ xi, xj ∈ HN , xi ∼ xj ⇔ h(xi, xj) = 1.

We denote the transition probability matrix of the SRW on HN by PN or

simply by P if no misunderstanding is possible. For all xi, xj ∈ HN :

P(Xn = xj | Xn−1 = xi) =: p(xi, xj) =





1/N if xj ∼ xi,

0 otherwise.

The entries of P are (p(xi, xj))xi,xj∈HN
. The unique stationary distribution for

P is the homogeneous probability distribution on HN , denoted by π: ∀ xi ∈
HN , πi := π(xi) = 2−N . Indeed, (Xn)n≥0 is clearly reversible with respect to

π. The uniqueness follows by the Ergodic Theorem.

We also recall a property of HN that we will have to deal with: the bipar-

titeness.

Definition 2.6. A graph G = (V, E) is bipartite if there exists a partition of

the vertex set V = V1 ⊔ V2, s.t. every edge connects a vertex in V1 to a vertex

in V2.

Typically a bipartition of the hypercube can be obtained by separating the

vertices with an odd number of 1’s in their string from those with an even num-

ber of 1’s. In Figure 2.1 we emphasize the bipartite structure of the hypercube

H3.

A direct and elementary consequence of this property is the periodic be-

havior of the SRW on HN , which in particular causes some problems for the

convergence through π. This problem is classically overcome by adding N loops
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110 111

101100

010 011

001000

110 111

101 100

010011

001000

Figure 2.1: Hypercube for N = 3 showing its bipartite structure.

at each vertex, that makes this RW become a lazy Markov chain [83]. The cor-

responding transition probability matrix is given by PL := (P + I2N )/2, where

In denotes the n-dimensional identity matrix.

2.2.1 Spectral analysis

Most matrices describing the characteristics of the SRW on HN can be ob-

tained recursively, thanks to the recursive construction of the hypercube and

the operation of cartesian product between two graphs.

Definition 2.7. Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the

cartesian product between G1 and G2, G1 × G2, is a graph with vertex set

V = V1 × V2 = {(u, v) | u ∈ V1, v ∈ V2}. Two different vertices (u1, v1) and

(u2, v2) are adjacent in G1 × G2 if either u1 = u2 and v1v2 ∈ E2 or v1 = v2 and

u1u2 ∈ E1.

It is a known result [58] that for N > 1, HN is obtained from HN−1 as:

HN = HN−1 × H1. This characteristic implies the recursive construction of the

adjacency matrix and allows to determine the corresponding eigenvalues and

eigenvectors. We denote by AN the adjacency matrix corresponding to HN ; by

In the n-dimensional identity matrix. Then we have:

A1 =
0

1




0 1

1 0


 ; A2 =

00

01

10

11




0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0




=




A1 I2

I2 A1




Here we wrote in gray the strings corresponding to each row: in order to obtain

the adjacency matrices in this form, we simply have to order vertices of HN in

lexicographical order.
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By iteration we obtain [51]:

An =




An−1 I2n−1

I2n−1 An−1




This iterative construction allows also to determine recursively the spectra

of AN and, consequently, of PN = AN /N (as HN is a N -regular graph, the

transition probability matrix corresponds to the adjacency matrix divided by

N). Here below we recall the explicit values of the eigenvalues of AN and PN

respectively. An extensive proof can be found in [51].

Theorem 2.2.1. The eigenvalues of AN are: N, N −2, N −4, . . . , −N +4, −N +

2, −N . If we order the N + 1 distinct eigenvalues of AN as λA
1 > λA

2 > · · · >

λA
N+1, then the multiplicity of λA

k is
(

N
k−1

)
, 1 ≤ k ≤ N + 1

Corollary 2.2.2. The eigenvalues of PN are: 1, 1 − 2/N, 1 − 4/N, . . . , −1 +

4/N, −1 + 2/N, −1. If we order the N + 1 distinct eigenvalues of P as λ1 >

λ2 > · · · > λN+1, then the multiplicity of λk is
(

N
k−1

)
, 1 ≤ k ≤ N + 1

Finally we recall the expression of the eigenvectors of AN (and then also of

P), that we gather together into a matrix. The eigenvectors for A1 are:

z1 =




1

1


 for λA

1 = 1 and z2 =




1

−1


 for λA

2 = −1 ⇒ Z1 = [z1, z2]

Thanks to the relations between the cartesian product of two graphs and

their eigenvectors, it follows by induction that [51]:

Zn =




Zn−1 Zn−1

Zn−1 −Zn−1




Finally, one renormalizes each vector zi multiplying it by
√

2−N . We denote

by QN the resulting matrix, where each column is a 2N vector vi =
√

2−N zi.

2.2.2 Evolution of Hamming distances to a fixed node

In this section we focus on the distance process, which is the process obtained

from the SRW on HN by looking at the Hamming distance between the B-cell

representing string at each mutation step and the antigen target representing

string. More precisely, (Dn)n≥0 := (h(Xn, x))n≥0 is a RW on {0, . . . , N}. From
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a biological point of view this process represents the evolution of the affinity of

the mutating B-cell to the presented antigen. The idea of analyzing the distance

of a RW on a graph to some position, where distance means the minimal number

of steps that separate two positions, is not unusual. N. Berestycki in [18] applied

that to genome rearrangements, where the distance on the graph corresponds

biologically to the minimal number of reversals or other mutations needed to

transform one genome into the other. Due to the perfect symmetry of the graph

under consideration and our particular choice of the affinity (which is directly

related to the Hamming distance), by studying (Dn) we reduce considerably

the number of vertices, passing from 2N to N + 1 nodes, without losing the

most important properties of the corresponding transition matrix. However, if

we consider more complicated models of mutation, it is not possible to reduce

the study of the process to the distances to a fixed node. In Figure 2.2 we

show explicitly how to pass from (Xn) to (Dn): since x is fixed and known, we

are able to group the vertices by their Hamming distance to x. Moreover we

keep the original probability of going to the next distance class by considering

weighted and directed edges.

1
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1
3

1
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Figure 2.2: From the (Xn) process (on the left) to the (Dn) process (on
the right) (case N = 3). Near each arrow the probability to travel in the
corresponding direction is exhibited. The red vertex always corresponds to x,
while we represent vertices at the same distance with the same color (yellow for
h = 1, green for h = 2, and blue for h = 3).

The transition probability matrix for (Dn), denoted by Q, is given by Propo-

sition 2.2.3 below.

Proposition 2.2.3. For all d, d′ ∈ {0, . . . , N}:

P(Dn = d′ | Dn−1 = d) =: q(d, d′) =





d/N if d′ = d − 1

(N − d)/N if d′ = d + 1

0 if |d′ − d| 6= 1

(2.1)
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Q = (q(d, d′))d, d′∈ {0,...,N} is a (N + 1) × (N + 1) tridiagonal matrix where

the main diagonal consists of zeros. The stationary distribution for Q is the

binomial probability distribution B
(
N, 1

2

)
=
(
Cd

N
1

2N

)
d∈{0,...,N}

, where Cd
N =(

N
d

)
= N !

d!(N−d)! is the binomial coefficient. It is the unique stationary distribu-

tion for Q: a simple calculation points out the fact that (Dn)n≥0 is reversible

with respect to B
(
N, 1

2

)
, then the uniqueness follows by the Ergodic Theorem.

Anew, we have to deal with bipartiteness: the graph we are taking into

account in this section is clearly bipartite, since we can separate its vertices into

two subsets containing odd and even nodes respectively and no edge connects

any vertices in the same subset. In order to overcome this problem we add N

loops at each vertex xi ∈ HN which means that the new transition probability

matrix for the (Dn) process is, for all d, d′ ∈ {0, . . . , N}:

P(Dn = d′ | Dn−1 = d) =: qL(d, d′) =





1/2 if d′ = d

d/(2N) if d′ = d − 1

(N − d)/(2N) if d′ = d + 1

0 if |d′ − d| 6= 1

(2.2)

We denote by QL := (qL(d, d′))d, d′∈ {0,...,N}.

Proposition 2.2.4. (Dn)n≥0 converges in law to a binomial random variable

with parameters N and 1/2. Explicitly:

(QL)d → B
(

N,
1
2

)

d

for n → +∞

Proof. The proof follows directly observing that QL represents an irreducible

and, now, aperiodic MC, with the same stationary distribution as Q (see [104]

for a proof of the general result).

The spectral analysis of Q gives the following result.

Theorem 2.2.5. For fixed N , the spectra of the transition probability matrix

Q corresponding to the (Dn) process is composed by the same N + 1 distinct

eigenvalues as the spectra of P, each with multiplicity 1.

Proof. The proof consists of a simple calculation of the eigenvalues of matrix

Q, which is easily done for N = 1, 2. Then we reason by iteration. We can

also give the system we use for determining the eigenvectors. For fixed N let us
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denote by λ±k the eigenvalue ±(N−2k)
N for 0 ≤ k ≤ ⌊N/2⌋. We denote by x±k

the corresponding unknown eigenvector. Then we have the following matrix

equation:

Q x±k = λ±kx±k

Which is: 



x±k,2 = λ±kx±k,1

1
N x±k,1 + N−1

N x±k,3 = λ±kx±k,2

2
N x±k,2 + N−2

N x±k,4 = λ±kx±k,3

...

N−1
N x±k,N−1 + 1

N x±k,N+1 = λ±kx±k,N

x±k,N = λ±kx±k,N+1

Remark 2. Using the classical results of S. N. Ethier and T. G. Kurtz [46]

it is possible to prove that, denoting by xN (t) the process xN (t) = D⌊Nt⌋

N ,

it converges in probability through x(t), solution of the differential equation

ẋ(t) = −2x(t) + 1 on a finite time window:

∀ ε > 0, ∀ T > 0, P

(
sup

t∈[0,T ]

|xN (t) − x(t)| > ε

)
→ 0 for N → ∞.

Remark 3. We can easily observe that x(t) rapidly converges to 1/2 for all

x0 ∈ [0, 1]. In particular if we start at x0 = 1/2 , we stay there for all t. That

suggests that the (Dn) process, for N going to infinity, reaches a value of about

N/2 exponentially fast, and then tends to remain there.

From an heuristic viewpoint we can explain how we derived the above equa-

tion. First of all, we take into account the following rescaled process:

xn := Dn/N
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As (Dn) ∈ {0, . . . , N}, xn ∈ [0, 1]. Denoting by qn(x) = P(xn = x) and using

Equation (2.1), we have:

qn+1(x) = (1 − x)qn

(
x − 1

N

)
+ xqn

(
x +

1
N

)

Now we apply the Taylor theorem for N ≫ 1:

qn+1(x) = (1−x)
(

qn(x) − 1
N

q′
n(x) + o

(
1
N

))
+x

(
qn(x) +

1
N

q′
n(x) + o

(
1
N

))

From which we get:

qn+1(x) − qn(x) =
1
N

(x − (1 − x))q′
n(x) + o

(
1
N

)

Defining the process q̃(t, x) = q⌊Nt⌋(x), with t = n
N , we obtain:

∂tq̃(t, x) = (2x − 1)∂xq̃(t, x) + o

(
1
N

)

And consequently, the corresponding transport equation is:

∂tq(t, x) = (2x − 1)∂xq(t, x) (2.3)

The differential equation associated with Equation (2.3) (its characteristic equa-

tion) is:

ẋ(t) = −2x(t) + 1

which has solution:

x(t) =
1
2

+
(

x0 − 1
2

)
e−2t

It is also possible to derive a diffusion approximation by expanding the gen-

erator at second order.

2.2.3 Hitting times

In this section we give explicit formulas to compute the hitting time from node

xi to xj : the expected number of steps before xj is visited, starting from xi.

More precisely, we define by τ{xj} := inf{n ≥ 0 | Xn = xj}: we are interested

in studying its expectation, Exi
[τ{xj}]. The formula we gave in Section 2.2.3

is directly obtained from the more general one given by L. Lovász in [85]: we

recall it simply because we will need it later. On the other hand, the formula

given in Section 2.2.3 is obtained from the (Dn) process and the procedure is

inspired by those used in [82].
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Analysis of Ex0
[τ{x}] using the spectrum of P.

Definition 2.8. Let H be the 2N × 2N symmetric matrix having as (i, j)th-

entry: (H)ij = H(i, j) = Exi
[τ{xj}] for all xi, xj ∈ HN . Clearly H(i, i) = 0 for

all i.

The N -regularity of the graph implies that:

H(i, j) = 1+
∑

{k|h(i,k)=1}

PikH(k, j) = 1+
1
N

∑

{k|h(i,k)=1}

H(k, j) for i 6= j (2.4)

To relate the hitting time with the spectrum, we first define F := J2N + PH − H,

where J2N is a 2N × 2N matrix whose entries are all 1. From Equation (2.4),

it follows that F is a diagonal matrix, as (H)ij = (J2N )ij + (PH)ij for i 6= j.

Moreover F ′π = 1, where 1 = (1, . . . , 1)′, since

F ′π = (J2N + (P − I2N )H)′
π = J2N π+H ′(P−I2N )′π = J2N π+H ′(P ′π−π) = J2N π = 1

Therefore, we deduce that F = 2N I2N and H is solution of

(I2N − P)H = J2N − 2N I2N (2.5)

Theorem 2.2.6. Given a SRW on HN , the hitting time from vertex i to j is

given by:

H(i, j) = 2N
2N∑

k=2

1
1 − λk

(v2
kj − vkivkj), (2.6)

where λk is the kth-eigenvalue of P and vki corresponds to the ith-component of

the kth-eigenvector of P, as given in Section 2.2.1.

Proof. We can not directly solve equation (2.5), since matrix (I2N − P) is sin-

gular. The spectral decomposition theorem insures that R2N

= ⊕2N

i=1Span{vi}.

On the subspace ⊕2N

i=2Span{vi}, (I2N − P) is invertible. At the same time, the

right hand side in (2.5) reduces to a constant times the identity matrix when

restricted to this same subspace. Thus a possible candidate solving (2.5) is:

H̃ = −2N
2N∑

i=2

(1 − λi)−1viv
′
i

Nevertheless, for every vector w ∈ R2N

, H̃ + 1w′ is a solution of (2.5) as well.

Thus H can be unambiguously determined by imposing the condition over its

main diagonal: H(i, i) = 0 for all i ∈ {0, . . . , 2N }.
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Analysis of Ex0
[τ{x}] from the Dn viewpoint.

For the sake of simplicity, we denote H(D0) := Ex0
[τ{x}] as it depends only on

the initial Hamming distance of X0 to x, D0.

Remark 4. Due to (2.1), starting at point x0 with D0 = d, we have:





P(D1 = d + 1 | D0 = d) =: q(d, d + 1) = (N − d)/N

P(D1 = d − 1 | D0 = d) =: q(d, d − 1) = d/N

We are now able to define a new recursive formula for (2.4), which will be more

convenient if evaluated explicitly:

H(d) = 1 +
N − d

N
H(d + 1) +

d

N
H(d − 1) (2.7)

with boundary conditions:

H(0) = 0 and H(1) = 2N − 1 =
N∑

j=0

Cj
N − 1 (2.8)

Taking the difference ∆(d) := H(d) − H(d − 1), we obtain:

∆(d + 1) = H(d + 1) − H(d) =
d

N

(
∆(d + 1) + ∆(d)

)
− 1

And finally:

∆(d + 1) =
d

N − d
∆(d) − N

N − d
with ∆(1) = H(1) (2.9)

Then we can prove by iteration the following result:

Theorem 2.2.7. Given a SRW on HN , the hitting time to cover a Hamming

distance equal to d, H(d) with 0 ≤ d ≤ N is obtained as:

H(d) =
d−1∑

d=0

∑N−1−d
j=1 Cd+j

N + 1

Cd
N−1

(2.10)

Proof. One have to prove that:

∆(d + 1) =

∑N−1−d
j=1 Cd+j

N + 1

Cd
N−1

(2.11)
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∆(d + 1) =
d · ∆(d)
N − d

− N

N − d
=

d

N − d

(
(d − 1) · ∆(d − 1)

N − (d − 1)
− N

N − (d − 1)

)
− N

N − d

=
d(d − 1) · ∆(d − 1)

(N − d)(N − (d − 1))
− N

(
d

(N − d)(N − (d − 1))
+

1
N − d

)
(2.12)

Proceeding by iteration we obtain two terms, where the first one multiplies ∆(1).

From Equation (2.9) we know that ∆(1) = H(1) =
∑N

j=0 Cj
N − 1. A convenient

use of the properties of the factorial operator allows us to reach the following

expression:

(2.12) =
d!(N − 1 − d)!

(N − 1)!




N∑

j=0

Cj
N − 1


− N

(
d!(N − 1 − d)!

(N − 1)!
+

d!(N − 1 − d)!
2!(N − 2)!

+ · · ·

+
d!(N − 1 − d)!

(d − 1)!(N − (d − 1))!
+

d!(N − 1 − d)!
d!(N − d)!

)
=

=
d!(N − 1 − d)!

(N − 1)!


1 +

N−1−d∑

j=1

N !
(d + j)!(N − (d + j))!


 =

∑N−1−d
j=1 Cd+j

N + 1

Cd
N−1

By using again (2.9), we can now easily express H(d) in the following way

H(d) =
d−1∑

d=0

∆(d + 1) =
d−1∑

d=0

∑N−1−d
j=1 Cd+j

N + 1

Cd
N−1

which can be evaluated for reasonable values of N .

We can immediately observe that H(d) is a monotonically increasing func-

tion. Moreover, H is concave. Indeed, thanks to Proposition 2.2.7 we can prove

that ∀ d ∈ {1, . . . , N − 1}:

H(d) − H(d − 1) ≥ H(d + 1) − H(d) ⇐⇒ ∆(d) ≥ ∆(d + 1)

Furthermore, we can evaluate the following limit:

lim
N→∞

H(αN)
2N

for α ∈]0, 1]. (2.13)

Remark 5. The case α = 0 is trivial: if α = 0 this limit is equal to 0 since

H(0) = 0.

Remark 6. Proposition 2.2.8 below, which evaluates (2.13), confirms the state-

ment made in Remark 3: as N goes to infinity, (Dn) goes quickly to N/2 and

then H(d) is always of order ∼ 2N irrespective of d 6= 0.
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Proposition 2.2.8. For all α ∈]0, 1]:

lim
N→∞

H(αN)
2N

= 1

Proof. Since H is an increasing function and by using Equation (2.10) we have:

2N − 1 = H(1) ≤ H(αN) ≤ H(N) =
N−1∑

d=0

1
Cd

N−1

+
N−1∑

d=0

N−1−d∑

j=1

Cd+j
N

Cd
N−1

=: S1 + S2

We examine the two terms of the last member separately.

S1 ≤ 2 +
2

N − 1
+ (N − 4)

2
(N − 1)(N − 2)

(2.14)

We can prove it just by looking at Pascal’s triangle.

Now, if we consider S2, we see that there is no contribution for d = N − 1,

as the internal sum is zero valued. Moreover we have:

N−1−d∑

j=1

Cd+j
N ≤

N∑

j=0

Cj
N = 2N

And so:

S2 ≤ 2N
N−2∑

d=0

1
Cd

N−1

(2.14)

≤ 2N

(
1 +

2
N − 1

+ (N − 4)
2

(N − 1)(N − 2)

)

By putting together all these inequalities and dividing by factor 2N we get that:

1− 1
2N

≤ H(αN)
2N

≤ 1+
2

N − 1
+

2(N − 4)
(N − 1)(N − 2)

+
1

2N

(
2 +

2
N − 1

+
2(N − 4)

(N − 1)(N − 2)

)

The result comes directly by applying the squeeze theorem.

This result can be extended to a SRW on a generic state-space SN , with

|S| = s. More precisely, one can prove in a similar way as we did for HN the

following result:

Proposition 2.2.9. The order of magnitude of the hitting time for a switch-

type mutational model on the state-space SN , with |S| = s, is sN , for N big

enough.

This is the consequence of Theorem 2.2.10 and Proposition 2.2.11 below.
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Theorem 2.2.10. Given a SRW on SN , the hitting time to cover a Hamming

distance equal to d, Hs(d) with 0 ≤ d ≤ N is obtained as:

Hs(d) =
d−1∑

d=0

∑N
j=d+1 Cj

N (s − 1)j

Cd
N−1(s − 1)d

(2.15)

Proposition 2.2.11. For all α ∈]0, 1]:

lim
N→∞

Hs(αN)
sN

= 1

Remark 7. In the current Section and in Section 2.3 we evaluate the expected

hitting time to reach a specific vertex of HN . From a biological viewpoint this

means to reach the optimal B-cell trait against the presented antigen. The

single-peak landscape assumption has already been discussed in other math-

ematical models of GC reaction [121, 70, 69]. Looking for a perfect comple-

mentarity of the whole BCR to the target profile might not be really biolog-

ically significant: the matching of entire strings means designing a receptor

for each possible antigen, this is not reasonable considering repertoire sizes.

Therefore, we evaluate the hitting time of a set of vertices instead. This im-

plies, of course, a speed-up of the time-scales (see Table 2.1 for instance). Let

Ar := {xi ∈ HN | h(xi, x) ≤ r} be the sphere of radius r in the graph met-

ric, centered in the target vertex x, and considering P as transition probability

matrix. We are interested in explicitly evaluate the mean hitting time to enter

Ar. We consider the distances process defined in Section 2.2.2, hence the graph

underlined by matrix Q (Proposition 2.2.3). The sphere Ar can be characterized

as:

Ar := {j ∈ {0, . . . , N} | j ≤ r}

We denote by Hi(r) the expected time to reach Ar starting from initial Hamming

distance i. By using Equation (2.1), we obtain:





Hi(r) = 0 if i ≤ r

Hi(r) = 1 +
i

N
Hi−1(r) +

N − i

N
Hi+1(r) if i > r

(2.16)

Let us define ∆r(i) as the difference between Hi(r) and Hi−1(r):

∆r(i) := Hi(r) − Hi−1(r)
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Therefore:

∆r(i) = 1 +
i

N
Hi−1(r) +

N − i

N
Hi+1(r) − Hi−1(r)

= 1 +
N − i

N
(Hi+1(r) − Hi−1(r))

= 1 +
N − i

N
(∆r(i + 1) + ∆r(i))

And finally:

∆r(i) =
N − i

i
∆r(i + 1) +

N

i
(2.17)

With the condition:

∆r(N) := HN (r) − HN−1(r) = 1 + HN−1(r) − HN−1(r) = 1 (2.18)

Theorem 2.2.12. For all i > r ≥ 0 the mean hitting time to reach Ar starting

from initial Hamming distance i from x is given by:

Hi(r) =
i∑

s=r+1

∑N−s
j=0 Cj

N

CN−s
N−1

(2.19)

Table 2.1: Average expected times to reach the sphere Ar of radius r centered
in x, for different values of r. Simulations correspond to N = 10 and an initial
Hamming distance h(X0, x) = 10. Table 2.1 shows results obtained over 20480
simulations. We denote by |Ar| the number of vertices of HN included in Ar.
H10(r) corresponds to the theoretical value obtained by Equation (2.19). We
denote by τ̂{x}n

the average value obtained over n = 20480 simulations and by
σ̂n its corresponding estimated standard deviation.

.

r |Ar| H10(r) τ̂{x}n

σ̂n√
n

0 1 1186.540 1184.499 8.1736

1 11 163.540 163.747 1.064

2 56 50.984 51.729 0.298

3 176 24.095 24.118 0.116

Remark 8. One can demonstrate that Hi(0) = H(i) as defined by Equation

(2.10).

Proof. Considering Equations (2.17) and (2.18) we can demonstrate by iteration
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that ∀ k ∈ {0, . . . , N − 1}:

∆r(N − k) =
1

Ck
N−1

k∑

j=0

Cj
N (2.20)

The result follows by observing:

Hi(r) =
i∑

s=r+1

∆r(s) =
i∑

s=r+1

∆r(N − (N − s)) (2.21)

We simulate the average expected time to reach a sphere of radius r centered

in the vertex x, for different values of r. Table 2.1 shows the results obtained

over more than 20000 simulations. We clearly see that the average hitting time

decreases significantly if we consider bigger radius r, as expected.

2.3 More mutational models: how does the struc-

ture of the hypercube change?

In this section, we explore other mutation rules, which change the internal

graph structure of the hypercube, therefore the dynamics of the RW and the

characteristic time-scales of the exploration of the state-space.

2.3.1 Study of various mutation rules

In this section, we study four mutation rules:

• a model of permutation of two bits;

• a model of switch of k-length strings;

• a model of switch of 1 or 2-length strings depending on the Hamming

distance to a fixed node representing the antigen target cell;

• multiple point mutations models.

The exchange mutation model.

We consider a model where given an initial B-cell representing string, each

mutation step consists in permuting two randomly chosen bits.
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Definition 2.9. Let Xn ∈ {0, 1}N be the BCR at step n. Let i ∈ {1, . . . , N},

j ∈ {1, . . . , N} \ {i} two randomly chosen indexes. We can suppose, without

loss of generality, that j > i:

Xn+1 = (Xn,1, . . . , Xn,i−1, Xn,j , Xn,i+1, . . . , Xn,j−1, Xn,i, Xn,j+1, . . . , Xn,N )

With this mutation rule, we loose a very important property: the connec-

tivity of the graph. We denote by H(s) ⊂ {0, 1}N the set containing the Cs
N

vertices having s 1 in their strings. The state-space {0, 1}N is divided into N +1

connected components: H(s), 0 ≤ s ≤ N .

Proposition 2.3.1. There are exactly N(N−1)
2 (non-oriented) edges ending

at each vertex counting the possible loops. Each node x ∈ H(s) has exactly
(N−s)2−(N−s2)

2 loops.

Corollary 2.3.2. P(Xn = xj |Xn−1 = xj) = (N−s)2−(N−s2)
N(N−1) . In particular, the

probability of remaining on the same node is 1 if s = 0 or s = N .

Proof. (Proposition 2.3.1) The first statement is obtained by simple combina-

tory arguments. Let us consider x ∈ H(s) with 0 ≤ s ≤ N : it is composed

by exactly s ones and N − s zeros. For the sake of clarity let us consider that

{0, . . . , N} = I ⊔ J so that |I| = s, |J | = N − s and xi = 1 ∀ i ∈ I, xj = 0

∀ j ∈ J . We obtain a loop each time we choose both random indices either in I

(C2
s possibilities) or in J (C2

N−s possibilities). Then the total number of loops

is obtained by the sum of these two cases, i.e. (N−s)2−(N−s2)
2 .

We can also describe qualitatively the behavior of the (Dn) process referring

to this current model. As a general principle, we have that Dn = Dn−1 + i,

i ∈ {0, ±2}. Therefore, clearly P(Dn = d′|Dn−1 = d) = 0 if |d′ − d| > 2 or

|d′ − d| = 1. Moreover, we have maximal and minimal values of Dn depending

on s0 and s so that X0 ∈ H(s0) and x ∈ H(s). Indeed:

Proposition 2.3.3. Given x ∈ H(s) and X0 ∈ H(s0), then ∀ n ≥ 0:





|s − s0| ≤ Dn ≤ s + s0 if s + s0 ≤ N

|s − s0| ≤ Dn ≤ (N − s) + (N − s0) if s + s0 > N

Proof. The proof follows immediately by counting how many possibilities there

are to arrange s ones and N − s zeros in a N -length string.
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Remark 9. From Proposition 2.3.3 one can see that if s = s0 =: s and 2s 6= N

then:

0 ≤ Dn < N

Class switch of k-length strings.

Let X0 = (X0,1, . . . , X0,N ) ∈ {0, 1}N be the B-cell entering the somatic hyper-

mutation process. At each mutation step we switch the class of k consecutive

amino-acids.

Definition 2.10. Let Xn ∈ {0, 1}N be the BCR at step n. Let i ∈ {1, . . . , N −
(k − 1)} be a randomly chosen index. Then Xn+1 := (Xn,1, . . . , Xn,i−1, 1 −
Xn,i, . . . , 1 − Xn,i+k−1, Xn,i+k, . . . , Xn,N ).

Remark 10. If k = 1 we are in the case of a SRW on HN .

If k = N we stay on a 2-length cycle. Indeed we have that Xl = X0 for l even

and Xl = 1 − X0 for l odd. For this reason the case k = N does not appear

interesting neither from a mathematical nor from a biological point of view.

Here below we give some basic properties of this RW, that one can easily

prove by simple combinatory arguments.

Proposition 2.3.4. Each vertex has exactly N −(k−1) neighbors and no loops.

Therefore, for all xi, xj in {0, 1}N :

P(Xn = xj |Xn−1 = xi) =: pk(i, j) =





1
N − (k − 1)

if xj ∼ xi

0 otherwise

Remark 11. As regards to this current model, given xi, xj ∈ {0, 1}N , we have:

xi ∼ xj ⇔ h(xi, xj) = k and the k different elements have consecutive indexes.

Thus, Pk = (pk(xi, xj))xi,xj∈Hk
is the 2N ×2N transition probability matrix.

For fixed k ∈ {1, . . . , N} the graph underlying the RW corresponding to

the model of class switch of k-length strings has exactly 2k−1 connected com-

ponents, each one composed of 2N−(k−1) elements.

Because of the non connectivity of the graph, we can focus on the connected

component to which X0 belongs and find out the properties of our RW on it.

For fixed N and k and dealing with each connected component separately, we

are describing a SRW on a (N − (k −1))-hypercube. Henceforth we obtain 2k−1

distinct hypercube-type structures of the same size.
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We can limit our study to the connected component containing X0, which is,

up to a change of variables, a (N − (k − 1))-dimensional hypercube. Let Pk be

the restriction of Pk to this connected component. If we conveniently order the

2N−(k−1) distinct vertices, than Pk = PN−(k−1). At this stage, it is possible to

translate all classical results we know about the SRW on Hn, for n = N −(k−1),

on each connected component of this current graph, remembering the definition

of neighborhood given in Remark 11.

Class switch of 1 or 2-length strings depending on the Hamming dis-

tance to x.

The exchange mutation model and the model of class switch of k-length strings

present an important limitation: the underlying graphs are non-connected. Due

to our choice of affinity, a model which does not enable to explore the whole

state-space is not very relevant. Indeed, if the graph is non-connected and the

target chain does not belong to the connected component containing the B-

cell which first enters the somatic hypermutation process, then we never reach

the target configuration. From a biological viewpoint, it may be more relevant

to consider a smoother affinity model, in which the BCR representing string

reaches the target when most, but not all, bits are similar. In this case, consid-

ering a non-connected graph, is not necessarily a problem.

Another way to overcome the problem of non-connectivity is to consider a

model which allows to vary the length of the strings submitted to switch-type

mutations. Moreover, it is biologically credible that during the GC process B-

cells can modify their mutation rate, making it somehow proportional to their

affinity to the antigen [22, 17, 55]. Indeed, B-cells compete for different rescue

signals (from Helper T-cells or FDCs), and that determines their fate: undergo

further mutations or differentiate into plasma cells or memory cells ([1], Chapter

7). Here we suppose that the mutational rate is inversely proportional to the

affinity: the greater the affinity, the lower is the mutational rate. We found

the hypothesis that the regulation of the hypermutation process is dependent

on receptor affinity also in other works, as [30, 2], where the authors proposed

computational implementations of the clonal selection principle to design genetic

optimization algorithms, taking into account AAM during an adaptive immune

response. In terms of our mathematical model, we can translate it by making

the size k of the strings which can mutate to be directly proportional to the

Hamming distance to x at each mutation step:

kn = f(Dn), with f : {0, . . . , N} → {0, . . . , N} being an increasing function.
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Despite many choices of the function f are possible, hereinafter we consider a

very elementary case, where f is a step function on two intervals.

Definition 2.11. Let Xn ∈ {0, 1}N be the BCR at step n. We denote by kn:

kn := f (Dn) =





1 if Dn ≤ 1

2 if Dn > 1

Let i ∈ {1, . . . , N − (kn − 1)} be a randomly chosen index. Then:

Xn+1 := (Xn,1, . . . , Xn,i−1, 1 − Xn,i, . . . , 1 − Xn,i+kn−1, Xn,i+kn
, . . . , Xn,N ).

This model is an interesting and simple way to generalize the basic mu-

tational model without losing the property of connectivity of the graph. The

addition of this flexibility was not only motivated by biological reasons, but we

also expect that this modification decreases the hitting time to a fixed node.

This is actually true: the hitting time is halved compared to the basic model

(at least for N big enough). We will also show that the stationary distribution

is concentrated on a half part of the hypercube, the one to whom x belongs.

Remark 12. For fixed N and k = 2 the graph is divided into two connected

components composed of 2N−1 vertices. Two nodes belonging to the same con-

nected component have a Hamming distance of 2t with 0 ≤ t ≤ ⌊N/2⌋. On the

other hand, two vertices belonging to different connected components have a

Hamming distance of (2t + 1) with 0 ≤ t ≤ ⌊(N − 1)/2⌋.

In order to analyze this process, we have to distinguish two cases. For fixed

N and x, the process we obtain:

case 1: D0 = 2t, t > 0. X0 belongs to the same connected component as x,

so we are working on a (N −1)-dimensional hypercube, following the model

of class switch of 2-length strings. we stay in this connected component all

over the process till we arrive at x, as it is impossible to obtain a Hamming

distance equal to 1.

case 2: D0 = 2t + 1, t > 0. We necessarily take k = 2 and Remark 12 im-

plies that X0 belongs to a different connected component than x. In

order to reach the connected component containing x, we have to visit

a node x∗ so that h(x∗, x) = 1, and |{x∗ | h(x∗, x) = 1}| = N . Then,

if D0 = 1 we are allowed to change only one element of the B-cell rep-

resenting string. With probability 1/N we arrive directly at x and with

probability (N − 1)/N we obtain D1 = 2. Then we go back to case 1.

Proposition 2.3.5. The graph corresponding to the current model is divided

into two connected components: H(1−2)
N and its complementary HN

(1−2)
, s.t.

50



x ∈ HN
(1−2)

. HN
(1−2)

is accessible from H(1−2)
N , but not conversely. Vertices

belonging to HN
(1−2)

are positive recurrent and vertices belonging to H(1−2)
N are

transient.

Proof. The existence of two connected components depends on the use of the

model of switch of 2-length strings. Indeed the structure of the graph we are

considering here essentially corresponds to that of the graph underlying the

model of switch of 2-length strings, up to the addition of some oriented edges

from H(1−2)
N to HN

(1−2)
. As long as we stay in HN

(1−2)
or H(1−2)

N we are just

allowed to switch 2-length strings. Moreover, we have already observed that

when we are in HN
(1−2)

we can’t exit, while when we are in H(1−2)
N we can

reach HN
(1−2)

by visiting one among the N nodes having Hamming distance 1

from x, and that happens in a finite number of steps. Therefore:





P(τxi
< ∞) = 1 for all xi ∈ HN

(1−2) ⇒ xi is recurrent

P(τxi
< ∞) < 1 for all xi ∈ H(1−2)

N ⇒ xi is transient

In particular, vertices belonging to HN
(1−2)

are positive recurrent as the chain

is irreducible on HN
(1−2)

and |HN
(1−2)| < ∞.

The following known result about stochastic processes, justifies Corollary

2.3.7 below.

Theorem 2.3.6. Let (Xn)n≥0 be a Markov chain on a state-space S and xi ∈ S
be positive recurrent. Let mi be the mean return time: mi = E(τ{xi} | X0 = xi).

Denoting by Sr ⊆ S the positive recurrent connected component to which xi

belongs, then a stationary distribution π is given by:

πi = mi ∀ xi ∈ Sr

πi = 0 ∀ xi ∈ S \ Sr

Theorem 2.3.6 is proven by considering the relations among recurrent and

transient classes, stationary distributions and return time (see [104] for some

more details).

Corollary 2.3.7. The stationary distribution for the RW we describe in the
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present section, π, is given by:

πi =





1
2N−1

if xi ∈ HN
(1−2)

0 if xi ∈ H(1−2)
N

(2.22)

Corollary 2.3.7 is a consequence of Theorem 2.3.6 and the study of the SRW

on an N -dimensional hypercube.

Allowing 1 to k mutations

In this section we analyze how the N -dimensional hypercube changes if we allow

1 to k independent switch-type mutations at each step, with k fixed, k ≤ N .

Definition 2.12. Let Xn ∈ {0, 1}N be the BCR at step n. Let k be an integer,

1 ≤ k ≤ N and ∀ i, 1 ≤ i ≤ k, ai := P(i independent switch-type mutations).

Then with probability ai, Xn+1 is obtained from Xn by repeating i times,

independently, the process described by Definition 2.5.

By definition, the corresponding transition probability matrix is a convex

combination of Pi, for 1 ≤ i ≤ k (Pi is the transition probability matrix corre-

sponding to i iterations of the process of a single bit mutation):

k∑

i=1

aiPi, with
k∑

i=1

ai = 1. (2.23)

Definition 2.13. Let us fix ai = 1/k ∀ i. We denote by P(k) := 1/k
∑k

i=1 Pi.

Accordingly, we denote the graph underlying this RW H(k)
N .

Remark 13. Since the mutations are assumed to be independent, then k rep-

resents the maximum Hamming distance the process can cover in a single mu-

tation step. Thanks to the independence of each single mutation, two or more

mutations may nullify their respective action: in particular for k ≥ 2 there is a

non-zero probability of remaining at the same position. From a biological point

of view, this behavior can be interpreted as the possibility of doing mutations

which have no effect on the BCR structure.

We can now evaluate the eigenvalues of P(k), λ
(k)
j by using the eigenvalues

λj of P (Section 2.2.1). Due to the fact that all Pi commute with each other,

the eigenvalues are given by:

λ
(k)
j =

1
k

k∑

i=1

λi
j (2.24)
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and P(k) and P have the same eigenvectors. We give explicitly the expression

of all λ
(k)
i and concentrate on the second largest eigenvalue, λ

(k)
2 .

Proposition 2.3.8. The N + 1 distinct eigenvalues of matrix P(k) are:

• λ
(k)
1 = 1 ;

• λ
(k)
j =

λj

k
·

1 − λk
j

1 − λj
for 2 ≤ j ≤ N ;

• λ
(k)
N+1 =

1
2k

(
(−1)k − 1

)
=





0 if k is even

-1/k if k is odd

The multiplicity of λ
(k)
j is

(
N

j−1

)
, 1 ≤ j ≤ N + 1

Proof. This result comes directly from the evaluation of Equation (2.24), for

the already known values of all λj (Corollary 2.2.2).

Then, in particular, the second largest eigenvalue of P(k) is:

λ
(k)
2 =

N − 2
2k

(
1 −

(
1 − 2

N

)k
)

(2.25)

Remark 14. For all k ≥ 2, λ2 > λ
(k)
2 . First of all, we can observe that λ

(k)
2

decreases for increasing k. Therefore:

λ2 − λ
(k)
2 ≥ λ2 − λ

(2)
2 =

N − 2
4N2

(4N − N2 + (N − 2)2) =
N − 2

N2
> 0

For N ≫ 1, the series expansion of λ
(k)
2 gives us:

λ
(k)
2 =

N − 2
2k

(
1 −

(
1 − 2k

N
+

2k(k − 1)
N2

+ O
(

1
N3

)))

=
N − 2

N
− (N − 2)(k − 1)

N2
+ O

(
1

N2

)

We can observe how the spectral gap changes. If we consider the series

expansion of
(
1 − 2

N

)k
for N → ∞, we get:

λ
(k)
1 − λ

(k)
2 =

2
N

+
(N − 2)(k − 1)

N2
+ O

(
1

N2

)

It can be interesting to choose k as a function of N . Let us consider, for

example, k = αN , with 0 < α ≤ 1. In this case, we have:
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λ
(αN)
2 =

N − 2
2αN

(
1 −

(
1 − 2

N

)αN
)

for N → ∞
=

N − 2
2αN

(
1 −

(
e−2α + O

(
1
N

)))

=
(N − 2)

(
1 − e−2α

)

2αN
+ O

(
1
N

)
→ 1 − e−2α

2α
for N → ∞

We can observe that 1−e−2α

2α =: λ
(αN)

2 decreases when α increases. Moreover:

• λ
(αN)

2 → 1 for α → 0, which means that the spectral gap, 1 − λ
(αN)
2

converges to zero for N → ∞ and α → 0;

• If α = 1 then λ
(N)

2 = 1
2 − 1

2e2 . Therefore, the spectral gap is 1
2 + 1

2e2

The spectral gap indicates how quickly a RW converges to its stationary

distribution. As expected, if α → 0 then the spectral gap gets close to 0. On

the other hand for all α > 0 the spectral gap tends to a strictly positive quantity,

while the spectral gap corresponding to the case of the basic model converges

to zero for N → ∞. In particular, when α = 1 (i.e. we are considering the

optimal case, in which we are allowed to do among 1 and N mutations at each

mutation step), the spectral gap, 1
2 + 1

2e2 , is significantly bigger than the one

obtained for the basic model, 2/N .

2.3.2 Comparison of hitting times

In this section we compare hitting times referring to some relevant mutational

models we have already presented. We do not consider models that entail non-

connected graphs (the exchange mutation model and the model of class switch

of k-length strings). Indeed, as we have already discussed in Section 2.3.1, the

loss of graph connectivity implies a great lack of the model due to our choice of

affinity. In Table 2.2 we collect most important characteristics of these RWs on

{0, 1}N : the hitting time and its approximation for big N , that we will discuss

in this current section, the stationary distribution and the value of the second

larger eigenvalue when known.

Class switch of 1 or 2-length strings depending on the Hamming dis-

tance to x.

We use results obtained in Section 2.2 for the (Dn) process concerning the

SRW on the N -dimensional hypercube and we apply them to this model. Here

we shall introduce another definition of the distance, which is adapted to a
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Table 2.2: Table 2.2 summarizes the main characteristics of most random pro-
cesses we introduce and analyze in Sections 2.2 and 2.3.

Model Hitting time Stationary
distribu-
tion

Second
biggest
eigenvalue

Basic
model

H(d) =
∑d−1

d=0

∑
N−1−d

j=1
Cd+j

N
+1

Cd
N−1

∼
2N

π 1 − 2
N

Switch
1-2

∼ 2N−1 π
∣∣
HN

(1−2) -

Allowing
1 to k
muta-
tions

T
(k)

N (d) =
∑2N

l=2 µ
(k)
l −

1

2N Cd
N

∑2N

l=2 µ
(k)
l RN (l, d)

π N−2
2k

(
1 −

(
N−2

N

)k
)

connected component HN,2 ⊂ {0, 1}N , where HN,2 denotes one of the two

parts in which {0, 1}N is divided applying the model of class switch of 2-length

strings. We recall that HN,2 is a (N − 1)-dimensional hypercube, and that the

graph underlying the model of class switch of 1 or 2-length strings corresponds

essentially to the graph obtained with the model of switch of 2-length strings,

up to the addition of some oriented edges from H(1−2)
N to HN

(1−2)
.

Definition 2.14. For all xi, xj ∈ HN,2 we denote by h(2)(xi, xj) the number

of edges in a shortest path connecting them. Simultaneously we denote by

D
(2)
n = h(2)(Xn, x), D

(2)
n ∈ {0, . . . , N − 1} ∀ n ≥ 0.

Considering the process (D(2)
n )n≥0, all results stated in Section 2.2 hold

true. Furthermore, let us denote by E
(2)
xi

[τA] the expected number of steps

before set A ∈ HN,2 is visited starting at xi ∈ HN,2 and following the model

of switch of 2-length strings. Then, we also denote by H
(2)
N−1(d) = E

(2)
x [τ{x}]

where d = h(2)(x, x).

Remark 15. Clearly if D0 = 2t and t > 0, which means that X0 and x belong to

the same connected component in the model of class switch of 2-length strings,

then the mean hitting time for the current model will be of the order of a half

the mean hitting time for the basic model. Indeed, we are considering here a

(N − 1)-dimensional hypercube instead of a N -dimensional one.

The result below, which is an immediate application of the Ergodic Theorem,

will help us understand better the general behavior of this mean hitting time:

Proposition 2.3.9. Let (Xn)n≥0 be a SRW on HN . We denote by T +
d :=

55



inf{n ≥ 1 | Dn = d} and Td := inf{n ≥ 0 | Dn = d}. Then:

ED0=d[T +
d ] =

2N

Cd
N

(2.26)

Proof. The proof is obtained by applying the Ergodic Theorem to the (Dn)

process and its stationary distribution, the binomial probability distribution.

For the discussion we made in Section 2.2.2 and, in particular, Remark 3 we

can conclude that for N ≫ 1 the order of magnitude of the time we spend to

reach the N nodes at Hamming distance 1 from x is:

ED0=d[T1] ∼ 2N

N
(2.27)

Then we can claim the following result, which comes directly from Equation

(2.27):

Proposition 2.3.10. Let us suppose that D0 = 2t∗ + 1 with 0 < t∗ ≤ ⌊(N −
1)/2⌋. Then for N ≫ 1 we have:

E
(2)
D0=d[T1] ∼ 2N−1

N

Finally:

Proposition 2.3.11. We denote by E
(1−2)
x0 [τ{x}] the mean hitting time to reach

x starting from x0 and referring to the mutation model of class switch of 1 or

2 length strings. Then, for N ≫ 1 we have:

E(1−2)
x0

[τ{x}] ∼ 1
2
Ex0

[τ{x}] with Ex0
[τ{x}] ∼ 2N ,

where Ex0 [τ{x}] is the hitting time from x0 to x according to the basic model,

as defined in Section 2.2.3.

Proof. First of all we observe that the last statement is a direct consequence of

Proposition 2.2.8. As far as the first statement is concerned, we observe that

according to the model we are analyzing here and due to Proposition 2.3.10, for

N ≫ 1 the order of magnitude of E(1−2)
x0 [τ{x}] is:

E(1−2)
x0

[τ{x}] ∼ 1
2

(
2N−1

N
+ 2N−1

)
+

1
2

2N−1

where the first term corresponds to the case x0 /∈ HN
(1−2)

and the second one

corresponds to the opposite case (as we choose randomly the first vertex, x0,
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we have probability 1/2 that it belongs to each part of the hypercube). For

the last term we used again Proposition 2.2.8 applied to a (N − 1)-dimensional

hypercube and according to the (D(2)
n ) process and the corresponding hitting

time H
(2)
N−1(d). The result follows.

Table 2.3: Average expected times from [0, . . . , 0] to [1, . . . , 1], comparing the
basic mutational model and the model of class switch of 1 or 2 length strings.
Here we denote by τ̂{x}n

the average value obtained over n simulations and by
σ̂n its corresponding estimated standard deviation.

Mutational model N n τ̂{x}n

σ̂n√
n

Basic 10 5000 1188.7996 16.2930

11 5000 2312.5648 32.1073

Switch 1-2 10 5000 602.8124 8.4773

11 5000 1181.5174 16.9023

Remark 16. We simulated the basic mutational model and the model of class

switch of 1 or 2 length strings in order to compare the hitting times from x0 :=

[0, . . . , 0] to x := [1, . . . , 1] for both mutational models. We consider the case

N = 10 and N = 11 in order to have an example in which the process starts

from HN
(1−2)

and from H(1−2)
N respectively. Indeed, if N = 10 the process starts

from the connected component to which x belongs, while when N = 11 we have

to reach one of the N nodes having distance 1 from x to reach the connected

component containing x. The average resulting hitting times are summarized

in Table 2.3.

Allowing 1 to k mutations.

In this section we study the mean hitting time to cover a fixed Hamming distance

d. First of all, we give the expression of the hitting time from node i to node j

using the spectra. This formula is deduced by the more general one given in [85],

in the case of regular graphs (the graph obtained by a convex combination of

matrices Pi is a regular multigraph). We refer to the notations given in Section

2.2 for the eigenvectors of matrix P: vs = (vs1, . . . , vs2N ) is the normalized

eigenvector of P corresponding to λs. These eigenvectors are the columns of

matrix QN (Section 2.2.1), and each component vsi corresponds to node i, as

they were organized while constructing the adjacency matrix. Denoting by

T (i, j) the hitting time from node i to node j in H(k)
N , we obtain the following
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expression:

T (i, j) = 2N
2N∑

l=2

1

1 − λ
(k)
l

(v2
lj − vlivlj),

which can be written using column vectors of ZN .

T (i, j) =
2N∑

l=2

1

1 − λ
(k)
l

(z2
lj − zlizlj)

We are interested in studying the equation below:

T
(k)

N (d) :=
1

2N Cd
N

∑

h(i,j)=d

T (i, j) =
1

2N Cd
N

2N∑

l=2

1

1 − λ
(k)
l

∑

h(i,j)=d

(z2
lj − zlizlj),

(2.28)

where 2N Cd
N corresponds to the number of couples of nodes of {0, 1}N having

Hamming distance d.

First of all we can observe that for all l and for all j, z2
lj = 1. Moreover,

in order to simplify notations, we denote µ
(k)
l := (1 − λ

(k)
l )−1. Also, we denote

RN (l, d) :=
∑

h(i,j)=d

zlizlj . Finally we obtain:

Proposition 2.3.12.

T
(k)

N (d) =
2N∑

l=2

µ
(k)
l − 1

2N Cd
N

2N∑

l=2

µ
(k)
l RN (l, d) (2.29)

All the elements of this equation are known, except RN (l, d). Let us consider

the 2N × (N + 1) matrix RN = (RN (l, d)), with 1 ≤ l ≤ 2N and 0 ≤ d ≤ N .

One can prove by iteration:

Proposition 2.3.13.

RN = ZN · LN (2.30)

where ZN := (z1, . . . , z2N ) is recursively obtained from ZN−1 (Section 2.2.1),

and





L1 = 2I2, In being the n-dimensional identity matrix

LN =




2 · LN−1 02N−1

02N−1 2 · LN−1


 , 0n being the n-length zero column vector
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Numerical simulations

In Figure 2.3 we plot some examples of the dependence of T
(k)

N (d) on d and k

for different values of N .

Figure 2.3 (a) shows that for increasing k, T
(k)

N (d) varies on a smaller inter-

val: [1023, 1186.5] for k = 1, [1028.1, 1068.6] for k = 5 and [1025.6, 1044.8] for

k = 10. It is intuitive to understand this fact: the hitting time depends less from

the initial Hamming distance if we allow more mutations at the same mutational

step. Indeed, we can actually visit more distant nodes since the first steps, so

the initial Hamming distance has a smaller influence on the result. Figures 2.3

(b) and 2.3 (c) show the dependence of T
(k)

N (d) on k. We obtain the best result

for the biggest k, except in the case d = 1 (as already shown by Figure 2.3 (a)).

Curves corresponding to the case d = 5 and d = 10 are really close: we can

evaluate their minimal and maximal values, which are respectively 1043.25 and

1177.60 for d = 5; 1044.82 and 1186.54 for d = 10. This fact highlights once

again that if d > 1, the initial Hamming distance poorly influences the value

of the hitting time. The case d = 1 shows surprisingly that the hitting time is

not necessarily a monotone function of k. Figure 2.3 (c) allows us to focus to

this behavior and better understand its causes. Indeed, as N is quite small, this

figure shows more clearly the oscillating behavior of T
(k)

N (d) while studying its

dependence on k: for even values of k, T
(k)

5 (1) increases, while for odd values

of k it decreases. Intuitively, as the distance we want to cover is d = 1, if we

allow to do 2 mutations instead of simply one, then we have a high probability

to go further since the beginning of the process. Let us now look to Equation

(2.28) and, in particular to the factor:
∑2N

l=2(1 − λ
(k)
l )−1. We can understand

the phenomenon plotted in Figure 2.3 (c) by looking at Proposition 2.3.8. If

k is odd and little enough then the last eigenvalue, which is negative (equal to

−1/k), has an important negative influence over the value of T
(k)

N (d). Clearly,

this fact has a substantial effect only if N and k are little enough, otherwise it

will be compensated by the effect of all other eigenvalues.

One may wonder what would be the best choice for the coefficients ai (De-

finition 2.12), 1 ≤ i ≤ k, so that T
(k)

N (d) is minimized for a fixed k. We have

to minimize the convex combination
∑k

i=1 aiλ
i
l. The answer is quite evident:

if k > 2 the minimum is obtained by taking all ai = 0 and ak∗ = 1, where

k∗ = 2⌊(k +1)/2⌋−1. Consequently, the best choice for the transition probabil-

ity matrix is Pk∗

. The fact that we need to consider the greater odd component

has also another explanation, which is more intuitive. Indeed if we consider the

RW given by P2t, we will be trapped in one of the connected-components of
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the graph, due to the bipartite structure of the hypercube. Indeed, the graph

underlined by P2t is non-connected ∀ t > 0. Therefore, we will not be able to

reach those nodes having a different parity of 1s in their string, referring to X0.

In Figures 2.3 (d), 2.3 (e), 2.3 (f) and 2.3 (g) we plotted together the values

of hitting times to cover a Hamming distance d for different values of N , k,

and d, comparing the process given by P(k) and the one corresponding to Pk∗

.

This gives more evidence of the fact that the second one is the optimal one.

It is interesting to look at the case in which d is fixed and we let k vary. For

k = 1 both processes gave the same result as P1∗

= P = P(1). Moreover, for

k = 2 the process P(2) is clearly the faster one: we recall that defining Pk∗

we

consider the greater odd k, and then P2∗

= P, while the process P(2) allows

to do 1 or 2 mutations at each mutation step. Then Pk∗

is actually the best

choice among all possible convex combinations of Pi iff k > 2. In Figures 2.3

(d) and 2.3 (e) we observe the oscillating behavior of T
k∗

N (d). That depends

on the structure of RN , considering that
∑2N −1

l=2 RN (l, d) = 0 for d odd and∑2N −1
l=2 RN (l, d) = −2(2N Cd

N ) for d even. One can get convinced of this fact by

explicitly computing T
k∗

N (d) for N = 3. Moreover simulations show that this

behavior is softened for increasing d, and that T
k∗

N (N − 1) > T
k∗

N (N). This fact

is confirmed by simulations on the real process. Finally, Figures 2.3 (f) and 2.3

(g) clearly show that for k = 2 the process given by P(k) allows to cover quickly

a fixed Hamming distance. As expected, the best hitting time is obtained for

k = N , and for increasing N and k the value of this hitting time has a smaller

variation.

Table 2.4: An example of comparison between the theoretical and experimental

values of T
(5)

5 (4) for P(5).
̂

T
(5)

5 (4)n denotes the average value obtained over n
simulations and σ̂n its corresponding estimated standard deviation.

Transition probability
matrix

N d k n T
(5)

5 (4)
̂

T
(5)

5 (4)
n

σ̂n√
n

P(k) 5 4 5 480000 34.62 34.67 0.05

We can test all these observations by simulating the real process for both

transition probability matrices, Pk∗

and P(k). Results obtained are consistent

with our theoretical analysis. In order to give an idea of experimental values

obtained by testing the process, in Table 2.4 we compare the theoretical value

of T
(k)

N (d) corresponding to P(k), and the experimental value with its precision,

for N = 5, k = 5 and d = 4.
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2.4 Modeling issues

The mathematical framework described in previous sections can be used to

model mutations characteristic of SHM. In Sections 2.4.1 and 2.4.2 we give

some more details about GCs and the binding between B-cells and antigens.

Therefore, in Section 2.4.3 we set the modeling assumptions which justify to

mathematically describe SHMs as RWs on binary strings. Of course, this is a

not exhaustive approximation. Hence, some limitations are discussed in Section

2.4.4 and some propositions for further developments are given as well.

2.4.1 The germinal center reaction

Antigen-activated B-cells, together with their associated T cells, move into a

primary lymphoid follicle, where they proliferate and ultimately form a GC.

GCs are composed mainly of B-cells, but antigen specific T-cells, which have

also been activated and migrated to the lymphoid follicle, make up about 10%

of GC lymphocytes and provide indispensable help to B-cells [110, 124, 102].

Indeed, when B-cells start to proliferate in GC, they need to receive proper

survival signals, or they die by apoptosis. The number of B-cells within a

germinal center grows at high pace: it can double every 6-8 hours [55, 36].

After about 3 days of strong proliferation, B-cells start undergoing SHM, in

order to diversify the variable region of their BCRs, and those cells that express

newly generated BCRs are selected for enhanced antigen binding. The fast

proliferation rate of B-cells is required for the generation of a large number of

modified BCRs within a short frame time (one cell gives 104 blasts in 72 hours).

Some B-cells positively selected in the light zone differentiate into memory B-

cells or plasma cells. The GC reaches its maximal size within approximately

two weeks, after which the structure slowly involutes and disappears within

several weeks [136]. During the GC process B-cells are subjected to powerful

selection mechanisms that facilitate the generation of high affinity antibodies:

a B-cell that express a newly generated BCR needs to be tested for enhanced

antigen binding. This process is mediated by FDCs and follicular helper T-cells.

BCR stimulation through antigen binding coupled with co-stimulatory signals

transmitted by GC T-cells, provides survival signals to the cell. By contrast,

failure of the BCR to bind antigen and receive proper rescue signals causes cell

death by apoptosis [36]. The final differentiation of a GC B-cell into a plasma

cell or a long-lived memory B-cell is driven by the acquisition of a high-affinity

BCR. For short-lived memory B-cells, the differentiation process seems to be

stochastic, as throughout GC reaction B-cells are constantly selected to enter

the memory pool [102, 126].
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2.4.2 B-cell receptors and antigen-antibody binding

Immunoglobulins (Ig) present at the antigen receptor are Y-shaped macro pro-

teins composed of four polypeptide chains assembled by disulfide bonds: two

identical heavy (H) chains and two identical light (L) chains. Each chain con-

sists of two regions: a constant (C) region, which has an effector function, and

a variable (V) region composed by the variable parts of the two chains together.

During GC reaction the only one involved in SHMs is the V region, which also

determines the antigen binding site ([102], Chapter 1). We call antigen binding

site or paratope the specialized portion of the BCR V region used for identifying

other molecules, while the regions on any molecule that paratopes can recognize

are called epitopes. B-cells are able to bind ligands whose surfaces are ‘comple-

mentary’ to that of their antigen binding site, where complementarity means

that the amino-acids composing the paratope and the epitope are distributed

in such a way to form bonds which hold the antigen to the B-cell. In this case

these bonds are all non-covalent (as hydrogen bonds, electrostatic bonds, van

der Waals forces and hydrophobic bonds), which are by their nature reversible.

Multiple bonding between the antigen and the B-cell ensures that the antigen

is bound tightly to the B-cell. The interaction between paratope and epitope

can be characterized in terms of a binding affinity, proportional to their comple-

mentarity. The affinity is the strength of the reaction between a single antigenic

determinant and a single combining site on the B-cell: it summarizes the at-

tractive and repulsive forces operating between the antigenic determinant and

the combining site of the B-cell, and corresponds to the equilibrium constant

that describes the antigen-B-cell reaction [1, 141, 80].

Each antigen typically has several epitopes, so that the surface of an antigen

presents variable motifs that B-cells, through their receptors, can discriminate

as distinct epitopes. If we define an epitope by its spatial contact with a BCR

during binding, the number of relevant amino-acids is approximately 15, and

among these amino-acids only around 5 in each epitope strongly influence the

binding. These strong sites may contribute about one-half of the total free en-

ergy of the reaction, while the other amino-acids influence in binding constant

by up to one order of magnitude or even have no detectable effect. Simulta-

neously, a BCR contains a variety of possible binding sites and each antibody

binding site defines a paratope: about 50 variable amino-acids make up the

potential binding area of a BCR. In agreement with the above, only around

15 among these 50 amino-acids physically contact a particular epitope: these

define the structural paratope. Consequently, antibodies have a large number of

potential paratopes as the 50 or so variable amino-acids composing the binding
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region define many putative groups of 15 amino-acids [80].

Substitutions both in and away from the binding site can change the spatial

conformation of the binding region and affect the binding reaction. The conse-

quence of mutation at a particular site depends on the original amino-acid and

the amino-acid used for substitution ([1], Chapter 4).

2.4.3 From DNA to amino-acids: choosing the best view-

point

Mutations observed on the binding site of B-cells during the GC process are the

result of genetic mutations produced by SHM on the portion of DNA encoding

for the BCR V region. In the current section we discuss a model of genetic mu-

tations and its effects on the amino-acid string, under the assumption of having

two amino-acid classes. We show that the framework we set up in previous sec-

tions can adapt to model the effects of SHM over BCRs and study the variation

of the affinity with the presented antigen.

The genetic code is a sequence of four nucleotides, guanine (G), adenine (A)

(called purines), thymine (T) and cytosine (C) (pyrimidines), joined together.

They make three-letter words: the codons. Each codon corresponds to a spe-

cific amino-acid or to a stop signal, which interrupts the building of the protein

during translation. As the number of possible combinations of 4 nucleotides

in 3-length words is 64, and there exists 20 amino-acids in naturally derived

proteins, more than a single codon codes for the same amino-acid [125]. Table

2.5 shows the correspondence between codons and amino-acids.

Different kind of genetic mutations can affect the DNA sequence of a gene.

They can be regrouped in three main categories: base substitutions, insertions

and deletions. A single base substitution is a switch of a nucleotide with an-

other. This is the simplest kind of mutation and it can turn out to be missense,

nonsense or silent, once we observe the resulting new protein. We said that a

mutation is missense if the result of the genetic mutation is a different amino-

acid in the protein. The mutation is nonsense when the genetic mutation results

in a stop codon instead of an amino-acid. Finally, a silent mutation is a muta-

tion with no effect on the amino-acid string, i.e. the mutated sequence codes for

an amino-acid with identical binding properties. We talk about insertion (resp.

deletion) when one or more nucleotides are added (resp. removed) at some place

in the DNA code. These last kinds of mutations can both be frameshift mu-

tations, which are given by the insertion or deletion of a number of bases that
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Table 2.5: The correlation between codons and amino-acids: most of the amino-
acids derives from more than a single codon.

T C A G

T

TTT Phe (F) TCT Ser (S) TAT Tyr (Y) TGT Cys (C) T

TTC Phe (F) TCC Ser (S) TAC Tyr (Y) TGC Cys (C) C

TTA Leu (L) TCA Ser (S) TAA Stop TGA Stop A

TTG Leu (L) TCG Ser (S) TAG Stop TGG Trp (W) G

C

CTT Leu (L) CCT Pro (P) CAT His (H) CGT Arg (R) T

CTC Leu (L) CCC Pro (P) CAC His (H) CGC Arg (R) C

CTA Leu (L) CCA Pro (P) CAA Gln (Q) CGA Arg (R) A

CTG Leu (L) CCG Pro (P) CAG Gln (Q) CGG Arg (R) G

A

ATT Ile (I) ACT Thr (T) AAT Asn (N) AGT Ser (S) T

ATC Ile (I) ACC Thr (T) AAC Asn (N) AGC Ser (S) C

ATA Ile (I) ACA Thr (T) AAA Lys (K) AGA Arg (R) A

ATG Met (M) ACG Thr (T) AAG Lys (K) AGG Arg (R) G

G

GTT Val (V) GCT Ala (A) GAT Asp (D) GGT Gly (G) T

GTC Val (V) GCC Ala (A) GAC Asp (D) GGC Gly (G) C

GTA Val (V) GCA Ala (A) GAA Glu (E) GGA Gly (G) A

GTG Val (V) GCG Ala (A) GAG Glu (E) GGG Gly (G) G

is not a multiple of 3, altering the reading frame of the gene. SHM introduces

mostly single nucleotide exchanges, together with small deletions and duplica-

tions, i.e. the insertion of extra copies of a portion of genetic material already

present within the DNA code [63, 26, 27]. Among these point mutations, tran-

sitions (i.e. substitution of a purine nucleotide with another purine one, or a

pyrimidine with a pyrimidine) dominate over transversions (substitution of a

purine with a pyrimidine or conversely). About half of the mutations (53%)

have been estimated to be silent, about 28% nonsense, and only about 19% of

all mutations have been estimated to be missense and then have an effect on

affinity, which can either be of an improving nature, or of worsening and even

lead to the formation of autoreactive clones [64].

The 20 existing amino-acids are typically classified in charged amino-acids,

polar (non-charged) amino-acids and hydrophobic amino-acids, depending on

their chemical characteristics. As we have already discussed in Section 2.4.2 the

bonding between BCR and antigen is made thanks to non-covalent bonds, in
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particular ionic bonds and hydrogen bonds. Ionic bonds are the result of in-

teractions between two amino-acids oppositely charged: arginine (R) and lysine

(K) are positively charged, while aspartic acid (D) and glutamic acid (E) are

negatively charged. As long as hydrogen bonds are concerned, also polar amino-

acids can participate. In particular arginine (R), lysine (K) and tryptophan (W)

have hydrogen donor atoms in their side chains; aspartic acid (D) and glutamic

acid (E) have hydrogen acceptor atoms in their side chain while asparagine (N),

glutamine (Q), histidine (H), serine (S), threonine (T) and tyrosine (Y) have

both hydrogen donor and acceptor atoms in their side chains.

Stop codons also have an important role. Indeed, during translation (the

last step necessary to build a protein starting from the DNA molecule) amino-

acids continue to be added until a stop codon is reached. There exists two types

of mutations involving stop codons, named nonsense and nonstop respectively.

The first one corresponds to the substitution of an amino-acid with a stop codon,

while the second one is the opposite case. In both cases the resulting protein

has an abnormal length, which often causes a loss of function. Moreover, errors

given by both nonsense and nonstop mutations are linked to over 10% of human

genetic diseases [24].

Concerning mutation in activated B-cells, SHM is driven by an enzyme called

activation-induced cytidine deaminase (AID) which is expressed specifically in

this case. This protein can bind to single-stranded DNA only. Thus it seems

to target only genes being transcribed (for which the transcription phenomenon

separates temporarily double stranded DNA into small portions of two single

stranded DNA sequences) [71]. AID converts Cytosine (C) in Uracil (U) by

deamination. This substitution occurs at higher rates in hot spots motives like

DGY W/WRCH where (G : C is the mutable position and D ∈ {A, G, T},

H ∈ {A, C, T}, R ∈ {A, G}, W ∈ {A, T} and Y ∈ {C, T}, and the underlined

letters are the loci of mutations) [112, 63]. Then, two mechanisms tend to repair

lesions in the DNA caused by these substitutions of C by U [115]:

a) either mismatch repair: substitution for the damaged zone by another se-

quence of nucleotides thanks to proteins MSH 2/6. The U base is read as T

leading to a transition from a C : G pair to T : A.

b) or base excision repair: U is excised by a successive action of uracil-DNA

glycolase (UNG) and apurinic/apyrimidinic endonuclease (APE1). The DNA

contains then a nick, after replication, a random nucleotide is inserted in

order to fill the vacant space leading to transversions and transitions.

From a mathematical point of view this is equivalent to define the switch with a
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random nucleotide depending on the motives present in the chain. The proba-

bility concerning the choice of this nucleotide to be inserted shall not be uniform

due to the presence of mismatch and excision repairs [37, 115]. This is not taken

into account in the model we developed.

We can therefore make the following three main assumptions to model the

SHM process acting on the BCR V region:

Modeling assumption 1. SHM introduces only single point mutations in the

DNA strand, missense or silent. Therefore we do not take into account nonsense

mutations, in order to avoid an interruption of the mutation process due to the

introduction of a stop codon. The choice of the base used for substitution is

made randomly, without considering that we have mostly A ↔ T and G ↔ C

substitutions.

Modeling assumption 2. We consider only electrostatic and hydrogen bonds as

responsible for the bonding between BCR and antigen. We suppose we have two

amino-acid classes represented as 0 and 1 respectively: we denote by 1 those

amino-acids which have hydrogen donor atoms in their side chains (or which are

positively charged) and by 0 those amino-acids which have hydrogen acceptor

atoms in their side chains (or which are negatively charged). We arbitrary chose

to assign 0 or 1 to amino-acids which can act as an acid or a base in hydrogen

bonds. As an exemple, as serine can form hydrogen bonds with arginine and

threonine, one can assign 0 to serine and 1 to threonine (arginine is represented

by 1 as it is positively charged). While translating the amino-acid chain into a

binary chain, we omit all hydrophobic amino-acids, as they do not participate

in electrostatic or hydrogen bonds. Their position corresponds to an empty

case, which does not contribute to the affinity between B-cell and antigen. This

is clearly an important simplification. We will further discuss this choice in

Section 2.4.4.

Modeling assumption 3. We consider a linear contact between two amino-acid

strings, without taking into account the geometrical configuration of both the

BCR and the antigen.

The process starts from a DNA chain coding for a BCR, Xdna
0 ; from which

we can obtain the corresponding amino-acid chain, Xaa
0 (Table 2.5) and, conse-

quently, its binary expression, Xbin
0 .

Example 1.

• Xdna
0 = (GTT, GAG, CTA, GTG, GAA, AGT, GGA, GCC, GAA, GTA, AAA,

AAG, CCA, GGT, AGT, AGT, GTT, AAA, GTC, AGT, TGT, AAA, GCA)
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• Xaa
0 = (V, Q, L, V, E, S, G, A, E, V, K, K, P, G, S, S, V, K, V, S, C, K, A)

• Xbin
0 = (−, 1, −, −, 0, 0, −, −, 0, −, 1, 1, −, −, 0, 0, −, 1, −, 0, 0, 1, −)

Notation 1. Given a vector X, we denote by |X| its length (counting also the

empty cases, if there are some). Equivalently, given a set S, we denote by |S|
its size

We can formalize the translation of the nucleotides chain into the amino-

acids chain as follows.

Definition 2.15. Let N and A be two sets of letters with size respectively

|N | = k1 and |A| = k2. Let l be an integer positive number so that kl
1 ≥ k2.

Then we define fk1,k2,l : N l → A, which associate at least an l-length sequence

of letters belonging to N to a letter in A.

In our specific case, following definition 2.15, N := {G, A, T, C} is the set

of nucleotides, while A is the set containing all possible amino-acids, together

with the stop signal. Therefore k1 = 4 and k2 = 21. Moreover we know that

l = 3 and the function f4,21,3 is detailed in Table 2.5.

Remark 17. We can easily observe that l = min
{

n ∈ N | k1
n ≥ k2

}
. Indeed,

having 4 nucleotides available to build a DNA strand, we need to read them

at least by 3-length blocks in order to be able to synthesize all 20 amino-acids.

Moreover, choosing this value for the parameter l avoids to have too many

sequences of nucleotides coding for the same amino-acid.

At the beginning of the process, the antigen string in its three representations

is given as well: xdna, xaa and xbin, with |Xdna| = |xdna| =: 3N . Antigen

representing strings remain unchanged. Assumptions 1-3 imply that for all

t ≥ 0, |Xbin
t | = |xbin| = N . At each time step a single point mutation (missense

or silent) is introduced in the DNA chain coding for the BCR. So, if Xdna
t is the

DNA code at time t, we randomly choose an index i ∈ {1, . . . , 3N}, a letter

a ∈ N and we place (Xdna
t+1 )i := a. If the new codon is a stop codon, then we

choose a′ ∈ N \ {a} and we put (Xdna
t+1 )i := a′, and so on.

In order to test the affinity, we consider the binary expression of both the

BCR and the antigen, which we take in its complementary form, i.e. x′bin :=

(1 − xbin
1 , . . . , 1 − xbin

N ). This leads us back to the definition of affinity we made

in Section 2.2: 0 matches with 0 and 1 with 1.

As we consider a linear contact between Xbin
t and x′bin, at the positions where

either Xbin
t or x′bin has an hydrophobic amino-acid, we suppose that no match
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is possible. Therefore we can extend Definition 2.4 of the Hamming distance in

a very natural way to this more general case:

Definition 2.16. We denote by Hy(Xbin
t ) (resp. Hy(x′bin)) the set of the in-

dices corresponding to hydrophobic amino-acids in Xbin
t (resp. in x′bin). There-

fore the Hamming distance between Xbin
t and x′bin is given by:

h(Xbin
t , x′bin) =

∑

i∈{1,...,N}

i/∈Hy(Xbin
t )∪Hy(x′bin)

δi + |Hy(Xbin
t ) ∪ Hy(x′bin)|

where δi =





1 if (Xbin
t )i 6= (x′bin)i

0 otherwise

Then, for all t ≥ 0:

|Hy(Xbin
t ) ∪ Hy(x′bin)| ≤ h

(
Xbin

t , x′bin
)

≤ N

We consider that the optimal clone is reached when:

aff
(

Xbin
t , x′bin

)
:= N − |Hy(x′bin)|

The effects of nucleotides exchanges on the binary expression of BCRs can

be multiple:

No detectable effect : this is the result of either a silent mutation or a mis-

sense mutation which substitutes an amino-acid with another one belong-

ing to the same amino-acid class.

Class-switch , derived from a missense mutation which leads to the substitu-

tion of an amino-acid with another one belonging to the other amino-acid

class.

We can further complexify this model by replacing Assumption 1 with the

following one:

Modeling assumption 4. SHM introduces mostly single point mutations in the

DNA, missense or silent. With weak probability, deletions or insertions can

occur. For the sake of simplicity, we suppose that a deletion (resp. an insertion)

consist in the elimination (resp. the addition) of a non-stop codon. Moreover, in

order to avoid the problem of a variation in the length of the BCR representing

string, when a deletion occur, those bits situated on the right of the deleted

one shift to the left, and a random extra codon is added at the right bottom.

Conversely, if an insertion occurs, the right bottom bit is deleted.
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creases. The results obtained through 10000 simulations are collected in Table

2.6.

Table 2.6: Average number of mutations needed to reach x′bin, for N = 10 and
starting from Hamming distance 7. In x′bin, only 2 amino-acids are hydrophobic,
so by Definition 2.16, the optimal affinity one can reach is 8. We compare three
models: in the first one no deletions nor insertions are allowed. In the second
model 10% of all mutations are deletions or insertions, 50% in the last one. We
denote by ̂τ{x′bin}n

the average value obtained over n simulations and by σ̂n its

corresponding estimated standard deviation. Simulations show that ̂τ{x′bin}n
increases when the pourcentage of deletions or insertions grows, and so does the
corresponding variation.

% deletions/insertions |x′bin
| h(Xbin

0 , x′bin
) n ̂τ{x′bin}n

σ̂n√
n

0 10 7 10000 8824.93 86.80

10 10 7 10000 9091.12 92.01

50 10 7 10000 10075.89 100.59

We can discuss which viewpoint is the most suitable to study mutations

and their effects over the interactions between BCR and antigen. It is really

hard to define a clear correspondence between genetic mutations and the evo-

lution of the affinity, even while considering a simple linear contact between

molecules (hence without observing the changes in the geometrical structure of

the protein). Indeed, in order to test the affinity between BCR and antigen we

constantly need to project the DNA string on the smaller state-space containing

the binary representations of B-cell traits. If we directly consider mutations on

binary strings, then the resulting process is faster, as we do not observe missense

mutations, and the evaluation of the affinity is immediate.

The comprehension of the nature of genetic mutations and their conse-

quences on the new generated protein, suggested us to make Assumptions 1-3

to formalize the model. In particular, we found reasonable to look directly to

amino-acid chains and their binary representation: this allows to study the affin-

ity between BCR and antigen using the Hamming distance. Therefore, under

these hypotheses the general mathematical framework described in Section 2.2

can be applied to study how different kinds of missense mutations affect the dy-

namics of AAM. As we show in Sections 2.2-2.3, this already brings interesting

and complexes mathematical problems.
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2.4.4 Limitations and extensions

In this Chapter we propose and study mutational processes on N -length bi-

nary strings, which can be variously applied to evolutionary contexts. As far as

the application to the SHM process is concerned, we can make some remarks

about our assumptions, which can bring us to enrich and complexify the model

through a more coherent representation of the true biological process.

First of all we have decided to consider only two amino-acid classes. From one

side this assumption is justified as charged and polar amino-acids are effectively

the most responsible in creating bonds which determine the antigen-antibody

interaction. Therefore they strongly influence the affinity between BCR and

antigen. Nevertheless, by making this simplification we omit all hydrophobic

amino-acids from the string, and that is not without consequences. The elim-

ination of hydrophobic amino-acids from the string significantly changes the

structure of the chain, therefore the ability for charged and polar amino-acids

to be in contact with each-others. Moreover, the effects of genetic mutations on

the new generated protein could be even more complex than the ones we have

considered in this Chapter. Finally, by taking into account also hydrophobic

amino-acids, we would be able to consider hydrophobic bonds, which also influ-

ences the antigen-antibody interaction. Therefore it seems more appropriate to

consider three, or more, amino-acids classes (e.g. [108, 101]).

As far as the nature of mutations is concerned, we have essentially described

mutational processes given by combinations of single point mutation mecha-

nisms. During SHM nucleotide exchanges are the most frequent among all

possible mutations. Despite this, also some deletions and insertions occur. This

has two main consequences. Firstly it means that the length of the BCR repre-

senting string could change during the process, while we consider it as fixed and

equal to the length of the antigen. We can maybe overcome this problem by say-

ing that the chain represented in our model corresponds to the portion of BCR

in contact with the antigen, and this is almost fixed (Section 2.4.2). Moreover

these mutations can imply substantial changes into the amino-acid chain, hence

they can bring a great jump of the affinity to the presented antigen. Therefore,

even if these are rare mutational events, they may have an important effect in

AAM. Consequently it could be interesting to take also insertions and deletions

into account. All these observations lead interesting mathematical questions.

Of course we can also envisage developments in other directions. For exam-

ple by considering the creation of bonds among amino-acids of the BCR (resp.
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the antigen) itself, which determines the geometrical structure of the protein

and consequently the portion of the BCR and the antigen that can actually be

in contact. Another interesting possibility is to consider that mutations at one

site are influenced by other amino acids composing the string. This assumption

was firstly proposed by S. A. Kauffman and E. D. Weinberger in [70], where

they introduced the NK models. In this context the parameter K assures the

richness of epistatic interactions among sites. More recently Y. Elhanati et al in

[45] find biological evidence for an evolutionary model where substitution rates

strictly depend on the context.

We propose some numerical simulations to evaluate the consequences over

the hitting time of both the addiction of extra amino-acid classes and the pos-

sibility of having a BCR string longer than the antigen one.

A. S. Perelson and G. Weisbuch in [108] proposed a model with 3 amino-

acid classes: hydrophobic, hydrophilic positively charged and hydrophilic ne-

gatively charged. Hydrophobic amino-acids match with hydrophobic and hy-

drophilic positively charged with hydrophilic negatively charged. We simulated

the expected time to reach a given configuration comparing the model with

2 amino-acid classes and the one with 3 amino-acid classes, and considering

single switch-type mutations. We take two random 10-length strings having

maximal distance between each-others. We extend Definition 2.4 of Hamming

distance to the state-space {0, 1, 2}N in a natural way, keeping the same no-

tation: ∀ x = (x1, . . . , xN ), y = (y1, . . . , yN ) ∈ {0, 1, 2}N , their Hamming

distance is given by:

h(x, y) =
N∑

i=1

δi where δi =





1 if xi 6= yi

0 otherwise
(2.31)

Therefore the affinity is defined as in Definition 2.3. We simulated for both cases

a single switch-type mutational model (Definition 2.5 for 2 amino-acid classes

and Definition 2.17 below for 3 amino-acid classes), testing the time we need to

reach the target vertex.

Definition 2.17. Let Xn ∈ {0, 1, 2}N be the BCR at step n. Let i ∈
{1, . . . , N} be a randomly chosen index, and a ∈ {0, 1, 2} \ {Xn,i} a randomly

chosen number. Then Xn+1 := (Xn,1, . . . , Xn,i−1, a, Xn,i+1, . . . , Xn,N ).

Table 2.7 shows the results we obtained over 10000 simulations.

We already knew from theoretical analysis that the order of magnitude for

the hitting time of the basic mutational model is 2N for N big enough. Sim-
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Table 2.7: Average expected times to cover a Hamming distance h(X0, x) =
10 = N , comparing the model with 2 amino-acid classes and the one with 3
amino-acid classes. Here we denote by τ̂{x}n

the average value obtained over n
simulations and by σ̂n its corresponding estimated standard deviation.

Amino-acid classes N h(X0, x) n τ̂{x}n

σ̂n√
n

2 10 10 10000 1213.2108 12.0138

3 10 10 10000 62160.8263 635.0458

ulations clearly show that when we consider 3 amino-acid classes, the order of

magnitude of the hitting time of a single switch-type mutational model signif-

icantly increases, and is of the order of 3N , as proved by Proposition 2.2.9.

Moreover we observe that the variance corresponding to the second model is

significantly bigger as well.

It is clear that if we consider more amino-acid classes, it takes much longer

to reach a precise element of the new state-space. Nevertheless, one can under-

stand that if we keep the same distance function as defined in Equation (2.31),

than we are asking for a higher degree of precision while building the B-cell

trait. Therefore, we can not directly compare hitting times corresponding to a

model with a greater number of amino-acid classes and keeping the same affinity

function as the one used with only two amino-acid classes. If one want to obtain

a comparable result by using more than two amino-acid classes, one has to use

a weaker definition of affinity.

Definition 2.18. Let S be a set of letters, |S| = s > 2. Let us partition S into

two subsets: S := S1 ⊔ S2. ∀ x, y ∈ SN , their distance is given by:

hS1,S2
(x, y) =

N∑

i=1

δi where δi =





1 if xi ∈ S1, yi ∈ S2 or conversely

0 otherwise

Consequently, their affinity is given by:

aff(x, y) = N − hS1,S2(x, y)

By using this new affinity function we can compare the hitting times and

the order of magnitude is clearly the same.

Let us now go back to Assumption 2 and to the structure of the string
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given in Section 2.4.3 (in particular, hydrophobic amino-acids are represented

by empty cases). Contrary to what stated by Assumption 4, we suppose that

the BCR length can be modified by insertions and deletions. Consequently, also

a modification of the distance function is needed. We arbitrarily fixe a BCR

and an antigen with given affinity. We do not consider those base substitutions

leading to no detectable effect, i.e. at each time step we can observe a variation

of the affinity function. We suppose that 90% of all mutation events are single

point mutations, 10% deletions or insertions. If we are in this case and |Xbin
t | >

|x′bin|, then with probability 1/2 a deletion occurs and with probability 1/2 an

insertion occur. Otherwise, it will be necessarily an insertion (this is to avoid

to obtain |Xbin
t | = 0). As long as the affinity is concerned, if |Xbin

t | > |x′bin|,
|Xbin

t | := n1, |x′bin| := n2, then their distance is the smaller possible one, i.e.:

h(Xbin
t , x′bin) = min

1≤i≤n1−n2+1

{
h(Xi, x′bin) | Xi :=

(
Xbin

t,i , Xbin
t,i+1, . . . , Xbin

t,i+n2−1

)}
,

h as in Definition 2.16.

Table 2.8: Average number of mutations needed to reach x′bin, for N = 7
and starting from a Hamming distance 5. In x′bin, only 2 amino-acids are
hydrophobic, so by Definition 2.16, the optimal Hamming distance one can
reach is 2. We compare a model in which no deletions nor insertions are allowed
and a model in which 10% of all mutations are deletions or insertions. We
denote by ̂τ{x′bin}n

the average value obtained over n simulations and by σ̂n its
corresponding estimated standard deviation.

% deletions/insertions |x′bin
| h(Xbin

0 , x′bin
) n ̂τ{x′bin}n

σ̂n√
n

0 7 5 5000 374.28 5.38

10 7 5 5000 251.48 3.54

In this case, and thanks to the definition of Hamming distance as the min-

imal one, we clearly have more chances to obtain a good B-cell trait. This is

confirmed by results collected in Table 2.8. When deletions and insertions can

occur, even with very weak probability, and if we allowed the BCR length to be

greater than the antigen one, then the expected number of mutations needed to

built the optimal BCR is more than 30% smaller.
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2.5 Conclusion

In this Chapter, we have introduced a mathematical framework to study the

impact of various mutation rules on the exploration of the space of traits in

an evolutionary model. In particular, we have connected mutation rules to

characteristic time-scales, such as hitting-times, through the study of associated

graph structures. As a leading example, which was the original motivation for

this study, we have considered applications of these results to the modeling of

somatic hypermutations in the germinal center. The models considered so far

do not include division and selection, which would lead to studying branching

random walks on graphs, a topic investigated in next Chapters.
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Chapter 3

Branching random walks on

binary strings for

evolutionary processes

Summary In this Chapter, we study branching random walks on graphs mod-

eling division-mutation processes inspired by adaptive immunity. We apply the

theory of expander graphs on mutation rules in evolutionary processes and ob-

tain estimates for partial cover times of branching random walks. This analysis

reveals an unexpected saturation phenomenon: increasing the mutation rate

above a certain threshold does not enhance the speed of state-space exploration.

3.1 Introduction

The aim of this Chapter is to understand interactions between mutation and

division in evolutionary processes. In particular, we are interested in analyzing

characteristic time-scales for which a certain proportion of possible traits is ex-

pressed in the population: starting from a single individual, what would be the

typical time until a finite proportion of the traits are covered by the exponen-

tially increasing population? In the models we consider, traits are represented

as vertices of the N -dimensional hypercube, and the choice of a mutation rule

corresponds to the prescription of a graph structure. The division-mutation

process is then modeled as a Branching Random Walk (BRW) on this graph.

A division event is always associated to mutation, meaning that the newborn

particles move to neighboring nodes according to a given mutation rule. We

consider two kinds of branching processes: a simple BRW (also called COBRA

walk [43, 33]) where two or more particles having the same trait coalesce into
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AAM already exists. In particular, T. B. Kepler and A. S. Perelson in [75, 76]

proposed deterministic population dynamics models for SHM and AAM, consid-

ering for the first time the hypothesis of the existence of a recycling mechanism of

B-cells during GC reaction. This mechanism has now been confirmed by exper-

iments [139]. In [105, 108, 52, 64] the authors introduced and discussed several

immunological problems, such as the size of the repertoire, or the strength of

antigen-antibody binding, while providing as well suitable mathematical tools.

More recently, other articles have focused on biologically detailed models of the

GC reaction (e.g. [92]), in particular with an agent-based modeling framework

([94], mostly analyzed through extensive numerical simulations). In 2015 the

journal Philosophical Transactions of the Royal Society B has entirely dedicated

an issue to the dynamics of antibody repertoires. For instance, in [45, 91, 32] the

authors developed and applied modern statistical methods to investigate selec-

tion on BCRs and infer B-cell sequence evolution. We are interested in studying

from an analytical point of view evolutionary pathways of BCRs during SHM.

Here and in Chapters 2 and 4, we provide some significant building blocks in

this direction and study their mathematical features.

Besides the biological motivations, the class of models studied in this Chap-

ter is interesting from a mathematical point of view, as it is a discrete-time BRW

on graphs, a type of branching process which has not been deeply investigated

so far to our knowledge, despite its growing number of applications. Since the

first articles about branching processes in the 50’s and 60’s [73, 16, 65, 66, 67],

this class of stochastic processes has been used in various situations to model

biological, genetic, physical, chemical or technological processes. For example

branching processes can model the dynamics of population in genetics [116],

or the spread of a piece of data, a rumor or a virus [13]. Most of the works

that have been published so far are not interested in studying these processes

on graphs. Nevertheless, in some recent papers [20, 21] the authors considers

BRWs on multigraphs and mostly focus on weak and strong survival conditions.

Dutta C. et al in [43] exhibits bounds on cover times for COBRA walks on trees,

grids, and expander graphs (useful later in our analysis) in the context of gossip

propagation. Results on expander graphs have been improved in [33] using a

new duality relation between the COBRA walk and a discrete epidemic process.

Another field of recent interest is the study of BRWs in random environnement.

We refer, for example, to [3], where the authors study local and total particle

populations or to [86] where conditions for recurrence and transience (almost

surely wrt the random environment) are found, for the discrete-time BRW on a

rooted tree with random environment. Branching annihilating RWs have been

extensively studied in last years due to their applications in biological, chemi-
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cal, physical and economical systems [90, 28, 29]. In [128] the authors consider

these processes on random regular graphs, which they study using Monte Carlo

simulations and generalized mean-field analysis.

In this Chapter, we focus on BRWs on {0, 1}N with constant division rate 2

(except for Section 3.5.2), inspired by cellular division. The coupling of branch-

ing mechanism and random walk necessarily implies an important speedup in

the characteristic time-scales of state-space exploration. Typically, for the sim-

ple random walk on the N -dimensional hypercube, the addition of a branching

process enables a speedup from a time O(2N ) to O(N) (Section 3.4.2). Of

course this has a cost: considering a branching process means also to produce

new individuals at each time step. Indeed, in a time T = O(N) we have 2T

individuals (in the case in which multiplicity is taken into account; ≤ 2N oth-

erwise), as we do not consider here neither selection nor death. The mutation

rule, which defines the structure of the graph, also determines the ability of

the BRW in covering the vertices of the graph. In particular, using expansion

properties, in Section 3.4 we prove that the best result we can obtain in a time

O(N) for finite connected expander graphs over the state-space {0, 1}N , is to

cover a half of the graph.

Moreover, our mathematical analysis of the partial cover times has revealed

an interesting phenomenon concerning the impact of the mutation rate on the

exploration speed. Intuitively, one would suggest that increasing the number

of mutations at each division would result in a BRW with a faster exploration

time-scale. However, we show in Section 3.4.3 the existence of an early satura-

tion phenomenon: when increasing from one to two mutations, the exploration

is indeed faster, but allowing more than two mutations (up to N) modifies only

marginally the exploration speed.

In Section 3.2 we state the main definitions and notations setting up a general

mathematical framework. Section 3.3 contains preliminary results concerning

generic BRWs on graphs and their possible bipartite structure. Bipartiteness

influences the dynamic of the branching process. In Section 3.4, we establish

quantitative results concerning the portion of the state-space invaded in O(N)

for two different kinds of BRWs (Theorems 3.4.9 and 3.4.13). In order to do

so, we need to determine some characteristics of the graphs, in particular their

expansion properties. These results provide quantitative estimates of the typical

time-scale for state-space exploration resulting from the interaction between

division and mutation. Then, in Section 3.5, we propose some extensions of

the model. In particular, we introduce the BRW with multiplicity and obtain
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the transition matrix related to the number of individuals carrying a given

trait together with their limiting distribution. We investigate as well how this

distribution can change by introducing a division rate, and provide comparisons

between different mutation/division models. In this way, theoretical results

presented in previous sections are displayed in a wider context. Finally, in

Section 3.6 we conclude with a brief summary of this work and discuss the

biological setting in which it is embedded justifying our hypotheses. We present

as well consequences of our results and discuss possible improvements in order

to cover the state-space faster in time, or to drive the covering to main interest

areas of the graph.

3.2 Definitions and Notations

We start this section with some definitions and notations, establishing an ele-

mentary mathematical framework for the modeling of antibody affinity matu-

ration in the germinal center.

We first assume that it is possible to classify the amino acids, which de-

termine the chemical properties of both epitope and paratope, into 2 classes,

typically positively charged and negatively charged. Henceforth BCRs and anti-

gen are represented by binary strings of a same length N , hence, the state-space

of all possible BCR configurations is {0, 1}N (we refer to Chapter 2 for more

details).

Definition 3.1. We denote by HN the standard N -dimensional hypercube.

BCR and antigen configurations are represented by vertices of HN , denoted by

xi with 1 ≤ i ≤ 2N , or sometimes simply by their indices.

In this Chapter we introduce and discuss models including mutation and

division. Mathematically, this gives rise to BRWs on {0, 1}N . The structure of

the graph depends then on the mutation rule we consider.

We suppose that there is a single B-cell entering the GC reaction. At each

time step, each B-cell divides and mutates according to a given mutational rule.

A mutation corresponds to a jump on a neighbor node.

Definition 3.2. Given xi, xj ∈ {0, 1}N , we say that xi and xj are neighbors,

and denote xi ∼ xj , if there exists at least one edge (or loop) between them.

We are mostly interested in studying the variation of the number of expressed

traits within the population, as a result of the interaction between division and
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mutation. In this Chapter we refer to two different kinds of BRWs: the simple

c-BRW (also called coalescing BRW [43]) and the c-BRW with multiplicity.

Definition 3.3 (Simple c-BRW). The process starts at an arbitrary node (rep-

resenting the BCR of a B-cell entering the process of division and mutation

during the GC reaction), labelled as active. If at time t node xi is active (i.e.

the trait xi is expressed in the GC population at time t), then at time t + 1

it chooses c of its neighbors, independently and with replacement, to become

active, while xi becomes inactive again (unless, of course, another active node

at time t chooses it). In this model, the number of times a node is chosen to

become active is not taken into account. We suppose c > 1, otherwise the BRW

simply becomes a RW.

Definition 3.4 (c-BRW with multiplicity). The process starts with a B-cell

entering the process of mutation and division, lying on an arbitrary node which

corresponds to its trait. At each time step a particle lying on a certain node xi

of {0, 1}N gives rise to c daughter cells, with c > 1, and die. Each one of the c

newborn particles choses a neighbor node, independently and with replacement,

and move on it. More than one particle can lie on the same vertex of HN , and

each one divides at each time step.

Notation 2. Let S ⊆ V be a subset of vertices of a graph G = (V, E). Then we

denote by N (S) the set of the neighbors of all vertices in S. We denote by |S|
and |N (S)| the number of vertices in S and in N (S) respectively. N (S) may

include also some vertices of S.

Notation 3. Given a simple c-BRW on a generic graph G, for all t ≥ 0 we

note by St the set of all active nodes at time t and by N (St) the set of all the

neighbors of the vertex set St.

The structure of the graph, and consequently the dynamics of the BRW on

it, depends on the introduced mutation rule, which is defined thanks to the

transition probability matrix.

Definition 3.5. Let M be the transition probability matrix of a graph G. We

denote the BRW referring to M and with constant division rate c by c-BRW-M.

In particular, we refer to two mutational rules (see Chapter 2 for more de-

tails). Here below we give the definitions of the corresponding transition prob-

ability matrices.
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Definition 3.6. For all xi, xj ∈ HN :

P(Xn = xj | Xn−1 = xi) =: p(xi, xj) =





1/N if xj ∼ xi

0 otherwise

Matrix P := (p(xi, xj))xi,xj∈HN
gives to {0, 1}N the structure of a standard

N -dimensional hypercube.

We further introduce another transition matrix, which models a mutation

rule in which up to k symbols of the string are independently mutated at each

division:

Definition 3.7. Let k ∈ {1, . . . , N}, P(k) :=
1
k

k∑

i=1

Pi, P given by Definition

3.6.

We finally recall the definition of Hamming distance, which measures, in our

model, the affinity between two traits (Chapter 2):

Definition 3.8. For all x = (x1, . . . , xN ), y = (y1, . . . , yN ) ∈ {0, 1}N , their

Hamming distance is given by:

h(x, y) =
N∑

i=1

δi where δi =





1 if xi 6= yi

0 otherwise

Definition 3.9. For all xi ∈ {0, 1}N , its affinity with a given vertex x, aff(xi, x)

is given by aff(xi, x) := N − h(xi, x), where h(·, ·) : ({0, 1}N × {0, 1}N ) →
{0, . . . , N} returns the Hamming distance.

3.3 c-BRW on graphs and bipartiteness

The bipartiteness deeply influences the characteristics of the BRW and, in par-

ticular, its possibility of covering all nodes of the graph simultaneously at a

certain time.

Definition 3.10. A graph G = (V, E) is bipartite if there exists a partition of

the vertex set V = V1 ⊔ V2, s.t. every edge connects a vertex in V1 to a vertex

in V2.

We emphasize the relations between a generic c-BRW on a given graph

G = (V, E), with c ≥ 2, and the eventual bipartite structure of the above-

mentioned graph.
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3.3.1 c-BRW on bipartite graphs

Let us consider a simple c-BRW on a generic bipartite graph Gb(V1 ⊔ V2, E).

Instead of considering a single random active node at the beginning, we suppose

that the process starts with a given initial distribution p of the active set. The

results presented in this section do not change if we consider a c-BRW with

multiplicity instead of a simple c-BRW. The fact that the trials are made with

replacement does not have any consequences either.

Proposition 3.3.1. If the initial distribution p is concentrated on V1 or on V2

then |St| ≤ maxi=1,2 (|Vi|) for all t ≥ 0, otherwise St = V1 ⊔ V2 for some t > 0

with positive probability.

Proof. The proof is a direct consequence of the bipartite structure of Gb. Let us

suppose, without loss of generality, that p is concentrated on V1. Then, due to

the bipartite structure of Gb after an even number of steps we have necessarily

S2t ⊆ V1, while after an odd number of steps we have S2t+1 ⊆ V2, and so the

first statement is proven.

If, on the contrary, p is not concentrated on V1 nor on V2, then for all t ≥ 0 we

have a positive probability that St = St,1 ⊔ St,2 with St,1 ⊆ V1 and St,2 ⊆ V2,

and consequently, w.p.p. we have St = V1 ⊔ V2 for some t > 0.

Remark 18. This qualitative result does not change if we take into account the

number of times a node is chosen to become active for the next time step or if

we decide to make trials without replacement: these choices only have effects

on the speed of the covering.

3.3.2 c-BRW on non-bipartite connected graphs

Let us now consider a non-bipartite connected graph G = (V, E). We recall a

classical result about bipartite graphs [114], which will be useful later:

Proposition 3.3.2. A graph is bipartite if and only if it has no odd cycles.

We shall prove the following statement:

Theorem 3.3.3. Given a c-BRW on a finite non-bipartite connected graph,

then, w.p.p., there exists a time t > 0 such that St = V .

The proof of this theorem is based on the following three lemmas:

Lemma 3.3.4. If G = (V, E) is a finite connected graph, then, independently

from the initial distribution, ∀ xi ∈ V there exists a time t < ∞ s.t. xi ∈ St.

In other words, if the graph is finite and connected, then each node will be

activated by the BRW at least once in a finite time interval.
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Proof. The hitting time of the c-BRW to reach any node of a finite connected

graph, starting from every possible initial distribution is finite, thanks to the

connectivity of the graph and the fact that it has a finite set of nodes. (Note

that this is still true if c = 1, i.e. for a SRW on a finite connected graph).

Lemma 3.3.5. If there exists a time t ≥ 0 such that ∃ x1, x2, x1 ∼ x2 and

{x1, x2} ∈ St, then w.p.p. there exists a time T > t s.t. ST = V (independently

from the initial distribution).

This means that if at a given time t we have two neighbor nodes both active,

then we have a positive probability to reach ST = V later.

Proof. Let us suppose that x1, x2 are two neighbor nodes and St∗ = {x1, x2}
(we suppose that all other nodes are non-active). Then we are able to show that

w.p.p., for all t ≥ t∗, St ⊂ N (St) and St = N (St) ⇔ St = V , where we recall

that N (St) is the set of all neighbors of St. This implies that w.p.p. the active

set can always grow until we reach St = V . This result is quite intuitive, indeed

if x1 ∼ x2 and St∗ = {x1, x2}, then necessarily St∗ ⊂ N (St∗) and, consequently,

there is a positive probability that St∗ ⊂ St∗+1. That means that w.p.p. St∗+1

contains x1, x2 and at most c − 1 distinct neighbors of x1 and c − 1 distinct

neighbors of x2. Then we can repeat the same argument with all the couples

of neighbors active at time t∗ + 1 (w.p.p. all nodes in St∗+1 are neighbors two

by two). Thanks to the connectivity of the graph and the fact that it is a finite

graph, w.p.p. we can go on with this procedure until we reach St = V .

Lemma 3.3.6. If there exists at least an odd cycle on G = (V, E), then, inde-

pendently from the initial distribution, w.p.p. for a time t ≥ 0 there exist two

nodes x1, x2, x1 ∼ x2 and x1, x2 ∈ St.

Proof. Let us suppose that in graph G there exists an odd cycle of length 2n+1:

C = (x1, x2, . . . , x(2n+1), x1). Lemma 3.3.4 implies the existence of a time T <

∞ s.t. x1 ∈ ST . Then w.p.p. we have that {x2, x(2n−1)} ⊆ ST +1 (we recall that

c ≥ 2). We make another step and w.p.p. we have that {x1, x3, x2n} ⊆ ST +2.

After n steps, w.p.p. we have {x(n+1), x(n+2)} ⊆ ST +n, and x(n+1) ∼ x(n+2),

which proves Lemma 3.3.6.

Proof. (Theorem 3.3.3) Let G = (V, E) be a finite non-bipartite connected graph

and C = (x1, x2, . . . , x(2n+1), x1) an odd cycle of G (it necessarily exists as G

is non-bipartite (Proposition 3.3.2)). Lemma 3.3.4 assures that there exists a

finite time t1 s.t. x1 ∈ St1 . Then, thanks to Lemma 3.3.6, w.p.p. there exists

a time t2 > t1 s.t. {x(n+1), x(n+2)} ⊆ St2 , and x(n+1) ∼ x(n+2). The proof of

Theorem 3.3.3 can now be achieved by applying Lemma 3.3.5.
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3.4 Portion of HN covered in O(N) for the simple

2-BRW-P and the simple 2-BRW-P (k)

In this Section our aim is to estimate the size of the active nodes set in a time

of the order of N . It clearly depends on the mutational model allowed on the

state-space. We can interpret it as the number of possible BCR configurations

expressed in our population after O(N) mutation steps. In Table 3.1 we sum-

marize the main results of the current section. In Sections 3.4.2 and 3.4.3 we

estimate the size of the active set in O(N) for the simple 2-BRW referring to P
and P(k) (Definitions 3.6 and 3.7). We prove that the 2-BRW-P covers a small

portion of HN , while a half of the state-space will be covered if we take into

account P(k) as transition probability matrix, at least for N big enough.

Table 3.1: Summary of the main results of Sections 3.4.2 and 3.4.3.

Model |ST| in T = O(N)

P |ST | ≥ 2N−r, r >
N2e−2 + N − 2
Ne−2 + N − 2

P(k) |ST | ≥ δ2N , δ ≤ 1/2

In order to estimate these quantities, we apply a method used in [43] to

determine the partial cover time for expander graphs. The partial cover time

corresponds to the expected time required to visit at least a certain portion of the

state-space. We need to evaluate the expansion properties of graphs described

by P and P(k) respectively. For this reason in Section 3.4.1 we recall some

definitions and results about expander graphs. For a more complete overview

about this subject see e.g. [62].

3.4.1 Expander graphs

Informally, an expander graph is a graph G = (V, E) which has strong connec-

tivity properties (quantified using vertex, edge or spectral expansion). We give

some mathematical characterization of this property.

Unless stated otherwise, throughout this section a graph G = (V, E) is a

connected undirected d-regular graph with |V | = n.

Definition 3.11 ((α, δ)-expander graph). G is said to be an (α, δ)-expander

graph, with δ ≤ 1/2, if: ∀ S ⊆ V s.t. |S| ≤ δn ⇒ |N (S)| ≥ α|S|.
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In other words, an (α, δ)-expander graph is a graph where the set of all

neighbors of each subset S with at most δn nodes, has at least α|S| vertices.

Spectrum and expansion

Let us denote by AG the adjacency matrix of G and by PG its transition prob-

ability matrix. As G is a d-regular graph, then PG = 1
d AG. We denote by

d = λA
1 ≥ λA

2 ≥ · · · ≥ λA
n and 1 = λ1 ≥ λ2 ≥ · · · ≥ λn the eigenvalues of AG

and PG respectively.

Definition 3.12. We say that G is a λ eigenvalue expander, with λ < d, if

λA
2 ≤ λ. It is a λ absolute eigenvalue expander if |λA

2 |, |λA
n | ≤ λ.

Remark 19. All d-regular connected graphs are λA
2 eigenvalue expanders. Indeed

under these hypotheses, the first largest eigenvalue of the adjacency matrix

corresponds to d and d > λA
2 ≥ λA

i for all i ≥ 2.

Then we have the following known result (first proved by R. M. Tanner in

[129]):

Theorem 3.4.1 (Vertex expansion). Let G be a λ eigenvalue expander. Let

S ⊆ V s.t. |S| ≤ n/2. N (S) is large, in particular:

|N (S)| ≥ |S|
λ2

d2 +
(
1 − λ2

d2

) |S|
n

Remark 20. One easily notices that
(

λ2

d2 +
(

1 − λ2

d2

)
|S|
n

)−1

→ 1 for λ → d, is

decreasing wrt λ.

We also give another characterization of d-regular expander graphs with

respect to their eigenvalues.

Definition 3.13. We say that G is an ε-expander graph, with ε < 1, if the

eigenvalues of its adjacency matrix are such that |λA
i | ≤ εd for i ≥ 2.

Then in particular, we have the following proposition.

Proposition 3.4.2. Let G be not bipartite. G is a λ2-expander graph.

Proof. As PG = 1
d AG, we have that: |λA

i | = |λi| · d ≤ λ2 · d, ∀ i ≥ 2. This is not

true for bipartite graphs as their spectrum is symmetric with respect to zero.

Therefore |λA
n | = d > λ2 · d.

As an immediate consequence of Theorem 3.4.1 applied to ε-expander graphs,

we have:
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Proposition 3.4.3. Let G be a ε-expander graph. For all S ⊆ V s.t. |S| ≤ δn,

δ ≤ 1/2:

|N (S)| ≥ |S|
ε2(1 − δ) + δ

Finally, let us underline the clear relation existing between Definitions 3.13

and 3.11 of ε-expander graphs and (α, δ)-expander graphs respectively:

Corollary 3.4.4. Let G be not bipartite with second largest eigenvalue λ2, δ ≤
1/2. G is a (α, δ)-expander graph with:

α =
1

λ2
2(1 − δ) + δ

Proof. First of all, Proposition 3.4.2 tells us that G is a λ2-expander graph.

Then the condition on α is given by Proposition 3.4.3.

3.4.2 Simple 2-BRW-P
A simple 2-BRW-P on HN is a generalization of a Simple RW on HN (Chapter

2). We want to estimate the size of the active set in O(N) using P as transition

probability matrix. In order to do so, we use an application of a more general

method used in [43] to evaluate partial cover times. We show that the partial

cover time for the simple 2-BRW-P is linear in N , while we already know that

for the SRW on HN it is exponential in N [8]. This highlights how the branching

process gives an important speedup in exploring the hypercube. This speedup

in covering is not without a cost. Indeed, for a time t large enough, the size of

the population will be of the order of the maximal possible size of St, which is

2N−1 in this case (as HN is bipartite) and 2N in the case of the simple 2-BRW-

P(k).

Let us start with a preliminary result about the standard N -dimensional

hypercube, HN .

Proposition 3.4.5. For any N ≥ 1, HN is a N -regular (r, 2−r)-expander

graph, where r ∈ {1, . . . , N}, i.e.:

∀ r ∈ {1, . . . , N}, ∀ S ⊂ {0, 1}N s.t. |S| ≤ 2N−r ⇒ |N (S)| ≥ r|S|

Before giving the proof of Proposition 3.4.5, let us observe the maximal

number of common neighbors among two or more nodes in HN .

Remark 21. Two distinct vertices x1, x2 ∈ HN cannot share more than two

common neighbors. More generally, s distinct vertices in HN , {xi}1≤i≤s≤2N

cannot share more than s common neighbors.
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Let AN be the standard representation of the transition probability matrix

of HN , obtained recursively as follows [51]:

A1 =




0 1

1 0


 ; AN =




AN−1 I2N−1

I2N−1 AN−1


 ,

where I2N−1 is the 2N−1-identity matrix. The result is obvious since the main

diagonal of AN−1 is composed by zeros and that AN−1 is a symmetric matrix.

Proof. (Proposition 3.4.5) We prove Proposition 3.4.5 by double induction on

N and on r.

First of all, the statement is true for N = 1 and r = 1, and for N = 2 and

r ∈ {1, 2}. We suppose the statement true up to dimension N − 1 and for all

r ∈ {1, . . . , N −1}, and we prove it for dimension N and for all r ∈ {1, . . . , N}.

If r = N it is true, as HN is a N -regular graph. Let r = N − 1. Then we

want to show that ∀ S ⊂ {0, 1}N s.t. |S| ≤ 2 ⇒ |N (S)| ≥ (N − 1)|S|. If

|S| = 1, for the N -regularity we have necessarily: |N (S)| = N > N − 1.

We suppose |S| = 2, and we consider the graph underlined by AN . If we

choose both vertices xi with 0 ≤ i ≤ 2N−1, then we know, for the induction

hypothesis on N and observing that the top right block of AN is an identity

matrix, that: |N (S)| ≥ (N − 2)|S| + |S| = (N − 1)|S|.

Let us consider two vertices xi and xj s.t. i ∈ {1, . . . , 2N−1} and j ∈
{2N−1 + 1, . . . , 2N }. If we do not want to increase considerably |N (S)|, once xi

is fixed, we need to choose xj so that xi and xj share two common neighbors

(Remark 21). Then, at least we have |N (S)| ≥ 2N −2 = (N −1)2 = (N −1)|S|.

We suppose that the statement is true for dimension N and for all r ∈ {t + 1, . . . , N}.

We prove that it’s also true for r = t, i.e.:

∀ S ⊂ {0, 1}N s.t. |S| ≤ 2N−t ⇒ |N (S)| ≥ t|S|

If |S| ≤ 2N−(t+1) < 2N−t, for the induction hypothesis on r, we have:

|N (S)| ≥ (t + 1)|S| > t|S|

Let us suppose 2N−(t+1) < |S| ≤ 2N−t. Again, if we choose all vertices xi so
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that i ∈ {1, . . . , 2N−1}, for the induction hypothesis on N and as r < N − 1,

we have: |N (S)| ≥ (t − 1)|S| + |S| = t|S|.

Let S = {xi}1≤i≤2N−t so that:

S = S1 ⊔ S2 S1 = {xi1}1≤i1≤2N−1 and S2 = {xi2}2N−1+1≤i2≤2N

Furthermore, we suppose: |S1| ≤ 2N−(t+1) and |S2| ≤ 2N−(t+1), as the other

cases are less favorable, if our purpose is to minimize |N (S)|. From the induction

hypothesis on N , together with Remark 21:

|N (S)| = |N (S1 ⊔ S2)| ≥ t|S1| + |S1| + t|S2| + |S2| − |S| = t|S|.

Remark 22. Considering a simple c-BRW-P starting from a single node, we have

that N (St) ∩ St = ∅ because of the bipartite structure of the graph. This is not

true for generic non-bipartite graphs (see Section 3.3).

We start by demonstrating the following lemma:

Lemma 3.4.6. Given a simple 2-BRW-P:

∀ t ≥ 0 s.t. |St| ≤ 2N−r ⇒ E[|St+1|] ≥ (1 + ν)|St|

for some constant ν > 0 and for r > N2e−2+N−2
Ne−2+N−2 .

Before demonstrating Lemma 3.4.6, we prove an elementary result, that we

will need later:

Lemma 3.4.7. Let c > 0 and a, b > 1 such that a ≤ b. Then:

e−ca + e−cb < e−c(a−1) + e−c(b+1)

Proof.

e−ca + e−cb −
(

e−c(a−1) + e−c(b+1)
)

= e−ca (1 − ec) + e−c(b+1) (ec − 1)

= (1 − ec)
(

e−ca − e−c(b+1)
)

< 0

since c > 0 and a < b + 1

Proof. (Lemma 3.4.6) Let t ≥ 0 so that |St| ≤ 2N−r, for a certain r ∈
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{1, . . . , N} that we will discuss later. The claim is proved if we show:

E[|N (St) − St+1|] ≤ |N (St)| − (1 + ν)|St| (3.1)

For all vertices v ∈ N (St), let Xv be the indicator variable:

Xv =





1 if v /∈ St+1

0 otherwise

Then we have: P[Xv = 1] =
(
1 − 1

N

)2dv =: p, where dv represents the number

of edges connecting v to St (1 ≤ dv ≤ N).

Clearly E[Xv] = p. Now we have:

E[|N (St) − St+1|] ≤ E


 ∑

v∈N (St)

Xv


 =

∑

v∈N (St)

(
1 − 1

N

)2dv

≤
∑

v∈N (St)

e− 2dv
N

Thanks to Lemma 3.4.7, we can claim that this expression is maximized if for

any v (except possibly for one) dv is either 1 or N . In particular let us suppose

that all dv are equal to 1 or to N and let us denote:

R1 = |{v ∈ N (St) | dv = 1}| and RN = |{v ∈ N (St) | dv = N}|

If we are able to demonstrate the result in this particular case, then it will be

true for all possible distributions of dv in N (St). Observing that
∑

v∈N (St) dv =

N |St| thanks to the N regularity, we have:





R1 + RN = |N (St)|

R1 + NRN = N |St|
⇒





R1 =
N

N − 1
(|N (St)| − |St|)

RN =
1

N − 1
(N |St| − |N (St)|)

Then:

E[|N (St) − St+1|] ≤ R1e− 2
N + RN e−2

=
N

N − 1
(|N (St)| − |St|)e− 2

N +
1

N − 1
(N |St| − |N (St)|)e−2
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In order to obtain (3.1), we have to impose that:

N

N − 1
(|N (St)|− |St|)e− 2

N +
1

N − 1
(N |St|− |N (St)|)e−2 ≤ |N (St)|− (1+ν)|St|

This is equivalent to:

|N (St)|
(

1 − N

N − 1
e− 2

N +
1

N − 1
e−2

)
+|St|

(
N

N − 1
e− 2

N − N

N − 1
e−2 − 1

)
≥ ν|St|

By hypothesis |St| ≤ 2N−r, which implies |N (St)| ≥ r|St| (Proposition 3.4.5).

Since 1 − N
N−1 e− 2

N + 1
N−1 e−2 > 0, the last inequality is true if:

r

(
1 − N

N − 1
e− 2

N +
1

N − 1
e−2

)
+
(

N

N − 1
e− 2

N − N

N − 1
e−2 − 1

)
≥ ν (3.2)

Therefore, our aim is to find r(N) s.t. for all r > r(N):

r

(
1 − N

N − 1
e− 2

N +
1

N − 1
e−2

)
+
(

N

N − 1
e− 2

N − N

N − 1
e−2 − 1

)
> 0 (3.3)

This is true iff:

r >
Ne−2 + N − 1 − Ne− 2

N

e−2 + N − 1 − Ne− 2
N

=: r(N) (3.4)

We rearrange (3.3) writing:

(r − 1)
(

1 − N

N − 1
e− 2

N

)
− N − r

N − 1
e−2 > 0

Since e− 2
N ≤ 1 − 2

N + 2
N2 (thanks to the second-order Taylor expansion with

integral rest), we obtain that (3.3) is satisfied if:

(r − 1)
(

1 − N

N − 1

(
1 − 2

N
+

2
N2

))
− N − r

N − 1
e−2 > 0

And finally:

r >
N2e−2 + N − 2
Ne−2 + N − 2

Remark 23.

• If N ≥ 2, the condition on r that we found in Lemma 3.4.6 is met if:

r > 1 + Ne−2

(
N − 1
N − 2

)
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• If N ≥ 3, this condition is satisfied if r > 1 + 2Ne−2.

We could also express r as a function of ν (we refer to (3.2)):

Corollary 3.4.8. E[|St+1|] ≥ (1 + ν)|St| for some constant ν > 0 and for

N ≥ r ≥ ν(N − 1) + Ne−2 − Ne− 2
N + N − 1

e−2 − Ne− 2
N + N − 1

:= rN (ν)

Therefore |St| has an exponential growth with rate ν until it reaches the size of

2N−r and for r ≥ rN (ν). Moreover, as expected, if we define ν∗ as the bigger

admissible ν, i.e. ν∗ = sup{ν | rN (ν) ≤ N}, then ν∗ ≤ 1.

Proof. The proof consists in elementary computations, starting from (3.2). In

particular as far as the second statement is concerned, we impose rN (ν) ≤ N ,

and clearly this condition is satisfied iff:

ν ≤ N − 1 − Ne− 2
N

Then, as e− 2
N ≥ 1 − 2

N , we can conclude.

We are now able to state the following result:

Theorem 3.4.9. Given a simple 2-BRW-P, there exists a time T such that

T = O(N) and with high probability |ST | ≥ 2N−r, r satisfying the hypothesis of

Lemma 3.4.6.

Proof. The proof is a direct application of a result obtained for generic expander

graphs in [43], Section 4. This result applies to our specific case thanks to

Lemma 3.4.6. The main idea to prove Theorem 3.4.9 is to describe the change in

the number of active nodes as a Markov process which lower bounds the growth

of the size of the active set |St|. The statement is proven for this Markov process

and, consequently, it is true also for our BRW.

3.4.3 Simple 2-BRW-P(k)

Let us start by examining an analog of Lemma 3.4.6 for the 2-BRW-P(k), where

we recall that P(k) =
1
k

k∑

i=1

Pi (Definition 3.7). We show that in this case the

BRW covers a significantly bigger proportion of vertices in a time O(N). We

follow again the method used in [43].

First of all, we prove that the 2-BRW-P(k) allows, for k ≥ 2, an exponential

growth until it covers at least a half of the vertex set of the hypercube:
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loops) connecting these vertices. Moreover, because of the bipartite structure of

HN with an i-length walk we can not pass from j to l so that h(j, l) = i−(2t+1),

t ≥ 0 (i.e. with an i-length walk we can connect nodes having distance k ≤ i,

k with the same parity as i). It is also clear that if h(j, l) > i, then there does

not exists any i-length walk from j to l. The minimal number of i-length walks

to connect two nodes j, l s.t. h(j, l) = i − 2t, t ≥ 0 corresponds to the case

t = 0. First, if h(j, l) = i we are counting the number of paths between j and

l, and that corresponds to i! (we have just to choose the order of switching of

the i different bits). We briefly prove by combinatory arguments that given j1,

l1, j2, l2 s.t. h(j1, l1) = i and h(j2, l2) = i − 2, i ≤ N , then
(
Ai
)

j1,l1
≤
(
Ai
)

j2,l2

i.e.
(
Ai
)

j2,l2
≥ i!. In order to cover a distance i − 2 with an i-length walk we

need to change the i − 2 different bits in i steps. Then the number of possible

i-length walks to go from j2 to l2 is given by the sum for k = 0 to i − 2 of those

walks given by the compositions of:

• a k-length path from j2 to j2,1 s.t. h(j2,1, l2) = i − 2 − k:
(

i−2
k

)
k! possible

choices;

• a step from j2,1 to j2,2 s.t. h(j2,2, l2) = i−1−k: (N − (i−2−k)) possible

choices;

• an (i − k − 1)-length path from j2,2 to l2: (i − k − 1)! possible choices.

Finally:
(
Ai
)

j2,l2
=

i−2∑

k=0

(
i − 2

k

)
k!(N − (i − 2 − k))(i − k − 1)! (3.5)

We have now to prove that (3.5)≥ i!:

i−2∑

k=0

(
i − 2

k

)
k!(N − (i−2−k))(i−k −1)! = (i−2)!

i−2∑

k=0

(N − (i−2−k))(i−k −1)

And then (3.5)≥ i! ⇔ ∑i−2
k=0(N − (i − 2 − k))(i − k − 1) ≥ i(i − 1). One can

prove by an elementary computation that
∑i−2

k=0(N − (i − 2 − k))(i − k − 1) =
1
6 i(i − 1)(3N − 2i + 4). Consequently the result is proven if 3N − 2i + 4 ≥ 6:

3N − 2i + 4 ≥ N + 4 as i ≤ N , and N + 4 ≥ 6 since N ≥ 2.

We give recursively the number of neighbors of each node within our graph:

Proposition 3.4.12. Let d
(k)
N be the number of neighbors of a generic node l (in-

cluding possibly l) in the graph corresponding to P(k): d
(k)
N =

∣∣∣
{

l
∣∣ (P(k)

)
j,l

6= 0
}∣∣∣
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for all l ∈ {1, . . . , 2N } fixed. Then, ∀ N ≥ 2:





d
(1)
N = N

d
(2)
N = N + d

(2)
N−1

d
(k)
N = d

(k−1)
N−1 + d

(k)
N−1 for 3 ≤ k ≤ N − 1

d
(N)
N = 2N

Proof. For k = 1 and k = N the proof is straightforward. If k = 1 we are

considering the standard N -dimensional hypercube, and d
(1)
N corresponds to

the regularity of the graph. If k = N , since we allow all possible switch-type

mutations, each vertex is connected to itself and any other node within the

graph. Therefore, d
(N)
N = 2N , the size of the state-space. In order to prove

both cases k = 2 and 3 ≤ k ≤ N − 1 we rewrite d
(k)
N by using powers of AN .

Indeed, as P(k) = 1
k

∑k
i=1

(
1
N AN

)i
, we have: d

(k)
N =

∣∣∣∣
{

l
∣∣
(∑k

i=1 Ai
N

)
j,l

6= 0
}∣∣∣∣.

Proposition 3.4.12 can now be proven by using the recursive construction of the

adjacency matrix of HN [51].

Proof. (Theorem 3.4.10) Let t ≥ 0 so that |St| ≤ δ2N , for δ ≤ 1/2 still unknown.

As we did while proving Lemma 3.4.6, our aim is to show:

E[|N (St) − St+1|] ≤ |N (St)| − (1 + ν)|St| (3.6)

For all vertices v ∈ N (St), let Xv be the indicator variable:

Xv =





1 if v /∈ St+1

0 otherwise

P[Xv = 1] =
∏

j∼v, j∈St

(
1 − P(k)

jv

)2

=: p. We can maximize p as follows:

p ≤
∏

j∼v, j∈St

(
1 − 1

k

k∑

i=1

MN,i

)2

=

(
1 − 1

k

k∑

i=1

MN,i

)2dv

,

where dv represents the number of neighbors that v has in St (1 ≤ dv ≤ d
(k)
N ).
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As E[Xv] = p, we have:

E[|N (St) − St+1|] ≤
∑

v∈N (St)

(
1 − 1

k

k∑

i=1

MN,i

)2dv

(3.7)

Denoting by ∆ := (1/k)
∑k

i=1 MN,i, we finally obtain:

(3.7) ≤
∑

v∈N (St)

e−2∆·dv (3.8)

Applying Lemma 3.4.7 this expression is maximized if for any v (except possibly

for one) dv = 1 or dv = d
(k)
N . In particular let us suppose that all dv are equal

to 1 or to d
(k)
N and let us denote R1 = |{v ∈ N (St) | dv = 1}| and R2 = |{v ∈

N (St) | dv = d
(k)
N }|. We demonstrate the statement in this particular case. As∑

v∈N (St) dv = d
(k)
N |St|:





R1 + R2 = |N (St)|

R1 + d
(k)
N R2 = d

(k)
N |St|

⇒





R1 =
d

(k)
N

d
(k)
N − 1

(|N (St)| − |St|)

RN =
1

d
(k)
N − 1

(d(k)
N |St| − |N (St)|)

Then we have:

E[|N (St)−St+1|] ≤ d
(k)
N

d
(k)
N − 1

(|N (St)|−|St|)e−2∆+
1

d
(k)
N − 1

(N |St|−|N (St)|)e−2∆d
(k)

N

Equation (3.6) is satisfied if:

d
(k)
N

d
(k)
N − 1

(|N (St)|−|St|)e−2∆+
1

d
(k)
N − 1

(N |St|−|N (St)|)e−2∆d
(k)

N ≤ |N (St)|−(1+ν)|St|

As the graph we are considering is a λ
(k)
N,2-expander graph (where λ

(k)
N,2 = N−2

2k(
1 −

(
N−2

N

)k
)

is the second largest eigenvalue of P(k)
N , see Chapter 2), and

applying Proposition 3.4.3, the last inequality is true if:

α
(k)
N

(
1 − d

(k)
N · e−2∆

d
(k)
N − 1

+
e−2∆d

(k)

N

d
(k)
N − 1

)
+

(
d

(k)
N · e−2∆

d
(k)
N − 1

− d
(k)
N · e−2∆d

(k)

N

d
(k)
N − 1

− 1

)
> 0,

(3.9)
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where α
(k)
N =

1

δ
(

1 − λ
(k)
N,2

2)
+ λ

(k)
N,2

2 . That means

δ <
e−2∆d

(k)

N − d
(k)
N e−2∆ + d

(k)
N − 1(

1 − λ
(k)
N,2

2)(
d

(k)
N e−2∆d

(k)

N − d
(k)
N e−2∆ + d

(k)
N − 1

) −
λ

(k)
N,2

2

1 − λ
(k)
N,2

2 := δ
(k)
N

(3.10)

Finally, let us prove that for fixed k ≥ 2, δ
(k)
N tends to 1 for N going to infinity.

Indeed we have:

• Let k ≥ 2: ∆ = 1
k

∑k
i=1 MN,i = 1

k

(
1
N + 2

N2

)
+ 1

k

∑k
i=1

i!
Ni . Hence, for

N → ∞, ∆ ∼ O
(

1
N

)

• For fixed k, dN (k) is monotonically increasing:

– k = 1 ⇒ d
(1)
N = N > N − 1 = d

(1)
N−1;

– k = 2 ⇒ d
(2)
N = N + d

(2)
N−1 > d

(2)
N−1;

– 3 ≤ k ≤ N − 1 ⇒ d
(k)
N = d

(k−1)
N−1 + d

(k)
N−1 > d

(k)
N−1;

• Let k ≥ 2: d
(k)
N ≥ d

(2)
N . By definition: d

(2)
N = N + d

(2)
N−1 =

∑N−3
i=0 (N −

i) + d
(2)
2 = N2+N+2

2 . Therefore, for fixed k ≥ 2, ∆d
(k)
N tends to infinity for

N → ∞.

Finally we have, for k ≥ 2 fixed:

δ
(k)
N =

e−2∆d
(k)

N − d
(k)
N

(
e−2∆ − 1

)
− 1(

1 − λ
(k)
N,2

2)(
d

(k)
N e−2∆d

(k)

N − d
(k)
N (e−2∆ − 1) − 1

)−
λ

(k)
N,2

2

1 − λ
(k)
N,2

2 → 1 for N → ∞

Consequently, the strongest condition on δ is the one given by Proposition

3.4.3 (that we need to obtain (3.9)): δ ≤ 1/2. Therefore, the 2-BRW-P(k)

grows exponentially until it covers half of the hypercube. The way the rest of

the hypercube is covered is not known.

As we saw in the previous section, we are now able to prove an equivalent

of Theorem 3.4.9 for this BRW:

Theorem 3.4.13. Given a simple 2-BRW-P(k), there exists a time T such that

T = O(N) and with high probability |ST | ≥ δ2N , δ satisfying the hypothesis of

Theorem 3.4.10.

In Figure 3.3 we plot the value of the maximal proportion of vertices of the

hypercube we can cover in O(N) considering a 2-BRW-P(k). Of course, the case

corresponding to k = 1 (P(k) = P) is obtained by Lemma 3.4.6, and we denote

δ
(1)
N := 2−r(N) as obtained in (3.4). These simulations show that δ

(k)
N > 1/2
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We observe that although for the complete graph, which has the best expan-

sion property, in a time t = N we can cover about a half of the state-space, as

with the simple 2-BRW-P(k). Even for small t > 0, the process corresponding to

P(7) is faster when compared to the 2-BRW-P7. It is interesting to compare this

fact with a phenomenon observed in Chapter 2 where we have investigated the

typical time-scale of the exploration of HN considering RWs without branching.

We have demonstrated that for k > 2, Pk optimizes the hitting time to reach

a certain configuration, if compared to P(k). When we take into account the

branching equivalent of these RWs, the exploration of HN is more efficient using

P(k) as transition probability matrix instead of Pk. That suggests that once

added a branching process, the oscillations due to bipartiteness are of greater

amplitude and forbid a quick covering even for small t.

3.5 Extensions of the model

In this Section we set some variants of the model considered so far, in which we

take into account the multiplicity of each vertex. This adds a further building

block to our model. Indeed, taking into account the number of particles lying

on the same vertex allows to consider the size of the effective population and

not only how many different BCR configurations are expressed at a certain

time. Moreover, considering multiplicity also allows us to have a better chance

of making |St| grow faster, where |St| represents here the number of vertices of

{0, 1}N on which at least one particle lies. In Section 3.5.1 we consider BRWs

with multiplicity and fixed number of offsprings c at each time step. Then, in

Section 3.5.2, we give to each individual a probability p to divide: we observe

the impact of division on the limiting distribution. Finally, in Section 3.5.3,

we observe and discuss, through computer simulations, a model for which the

division rate depends on affinity.

3.5.1 c-BRW with multiplicity

At time t ≥ 0 we have exactly ct particles, as there is no death nor selection.

We consider the distribution of these ct particles within HN . In order to do so,

we define the Markov process (Xi
t)t≥0, where for all i ∈ {1, . . . , 2N }, Xi

t corre-

sponds to the number of particles lying on the ith node at time t. Proposition

3.5.1 is given in the more general case of a c-BRW with multiplicity on a given

d-regular graph: the case we are interested in is an application with c = 2 and

d = N .

Proposition 3.5.1. Given a c-BRW with multiplicity on a d-regular graph, for
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all s ≥ 0:

P


Xi

t = s

∣∣∣∣∣∣
∑

j∼i

Xj
t−1 = n


 =





(
cn

s

)
(d − 1)cn−s

dcn
if s ≤ cn,

0 otherwise.

Proof. We show that conditioning on
∑

j∼i Xj
t−1 = n, Xi

t follows a binomial

distribution B
(
cn, 1

d

)
. For all j ∼ i let us define the random variables Zj

l,r,

where Zj
l,r corresponds to the vertex chosen by the lth-particle lying on j in its

rth-trial, with j ∈ St−1 ∩ N ({i}), 1 ≤ l ≤ Xj
t−1 and 1 ≤ r ≤ c. Then we have:

P[Zj
l,r = i] = 1/d ∀ j, l, r

At each trial of each particle lying on a vertex j, the probability of success

(i.e. going on vertex i) is exactly 1/d and the probability of failure is 1 − 1/d.

Moreover, there are exactly cn independent and identically distributed trials.

The result follows.

In particular:

Proposition 3.5.2. Given a c-BRW with multiplicity on the complete graph on

d vertices Kd, the distribution of Xi
t given Xi

t−1 = s′ is a binomial distribution

with parameters ct − cs′ and 1
d−1 , i.e. for all s ≥ 0:

P[Xi
t = s | Xi

t−1 = s′] =





(
ct − cs′

s

)(
1

d − 1

)s(
1 − 1

d − 1

)ct−cs′−s

if s ≤ ct − cs′,

0 otherwise.

Proposition 3.5.2 shows that, for a complete graph on N vertices, the prob-

ability of having s particles at time t on the ith-node depends on the number of

particles laying on i at time t − 1.

Proof. In this particular case, i is connected to all nodes of the graph, except

itself. Therefore each one of the ct particles produced at time t has a probability

1/(d − 1) to go to i: we have to remove the particles that will leave from i, and

this is exactly cs′.

We establish another property of the c-BRW with multiplicity: the asymp-

totic distribution of the ct individuals for t → ∞. This concludes this section.
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Lemma 3.5.3. Let M be the transition probability matrix corresponding to a

finite connected graph G = (V, E), m its stationary distribution. Let us suppose

M aperiodic, and let us consider a c-BRW-M starting from a generic initial

distribution p. Therefore:

∀ i ∈ V,
Xi

t

ct
→ mi in probability, for t → ∞.

Proof. The position of each of the ct individuals at time t corresponds to the

position reached by a RW with M as transition probability matrix, starting

from the initial distribution p and independently form others individuals. In

other words, at time t we are considering the position of ct parallel RWs-M
starting from the same initial distribution. For all j ∈ {1, . . . , ct}, let (Xj,t)t≥0

i.i.d RWs with transition probability matrix M and starting from the initial

distribution p. By hypothesis, for all i ∈ V , P(Xj,t = i) → mi for t → ∞.

The result follows since convergence in law to a constant implies convergence in

probability.

Remark 26. Numerically, we compare the average size of St for t = N = 10 for

the simple 2-BRW-P, the simple 2-BRW-K29,29 and the 2-BRW-P with multi-

plicity. Table 3.2 below shows the average values obtained over 100 simulations.

As expected, the 2-BRW-P with multiplicity is faster than the simple 2-BRW-P
because of the number of particles within the population, which is not affected

nor by selection or death, neither by coalescence. At each step, each particle can

divide and colonize a new vertex of the hypercube, therefore we have a better

chance to cover faster a half of the state-space (we recall that P is a bipartite

graph). Moreover, we can observe that the simple 2-BRW-K29,29 is faster than

the simple 2-BRW-P. Indeed K29,29 has better expander properties, and thus

the BRW invades more efficiently the state-space as noticed in Sec. 3.4.

Table 3.2: Average size of St after 10 time steps, comparing the simple 2-BRW-
P, the simple 2-BRW-K29,29 and the 2-BRW-P with multiplicity. We denote by

|̂S10|n the average value obtained over n simulations and by σ̂n its corresponding
estimated standard deviation.

Model N n |̂S10|
n

σ̂n√
n

Simple 2-BRW-P 10 100 222.36 3.376

Simple 2-BRW-K29,29 10 100 318.04 1.231

2-BRW-P with multiplicity 10 100 398.42 0.972
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3.5.2 Limiting distribution for the BRW-P with multiplic-

ity and division rate p.

Lemma 3.5.3 can not be applied to the 2-BRW-P with multiplicity. Indeed, the

bipartite structure of the corresponding graph prevents the convergence through

the stationary distribution, i.e. the homogeneous probability distribution. We

denote the homogeneous probability distribution by π (Chapter 2). We can

overcome this problem by considering a BRW-P with multiplicity and with a

non constant division rate p.

Definition 3.14. Let us fix p ∈ ]0, 1[. The process starts with a single indi-

vidual located on an arbitrary node of HN . Each time step, a particle lying on

a certain node xi of HN gives rise to 2 daughter cells and die with probability

p. With probability 1 − p, it remains in the population for the next time step.

When division occurs, each newborn particle choses a neighbor node according

to matrix P, independently and with replacement, and move on it.

The introduction of a division rate has two immediate consequences. First, it

slows down the population’s growth. In order to evaluate the expected number

of individuals at time t, we consider a generic Galton-Watson process ([59],

Chapter I).

Proposition 3.5.4. Let Zt be the random variable (rv) describing the number of

individuals at generation t starting from Z0 = 1 individual. We assume that each

individual divides indepently from the others and from previous generations. Let

p := (pk, k = 0, 1, 2, . . . ) be a probability distribution s.t. pk gives the probability

of having k offsprings in the next generation. At each time step, given Zt = k,

Zt+1 behaves as k independent copies of Z1. Therefore: E(Zt) = (E(Z1))t
.

In our specific case we have:

• p1 = 1 − p

• p2 = p

• pk = 0 for all k 6= 1, 2

Which gives:

E(Zt) = (1 + p)t < 2t as p < 1. (3.11)

Remark 27. One can observe that Zt =
2N∑

i=1

Xi
t , where Xi

t describes the number

of individuals lying on vertex i at time t.
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The addition of the parameter p overcomes issues related to the bipartite

structure of the graph, discussed in Section 3.3.

Lemma 3.5.5. Let us consider a BRW with multiplicity on a finite connected

bipartite graph Gb. Let p := (pk, k = 0, 1, 2, . . . ) be the probability distribution of

the number of offsprings of each individuals for the next generation, s.t. p1 > 0

and p0 + p1 < 1. Then there exists a time t ≥ 0 and two nodes x1, x2 s.t.

x1 ∼ x2 and x1, x2 ∈ St.

Lemma 3.5.5 implies that for this type of BRWs, independently from the

bipartite structure of Gb = (V, E), there exists a time t > 0 s.t. St = V (see

Section 3.3.2).

Proof. Let 0 < T < ∞ s.t. xi ∈ ST (T exists as Gb is finite and connected).

As p0 + p1 < 1, ∃ k ≥ 2 s.t. pk > 0. Then with probability pk, ∃ xi,1, . . . , xi,k ∈
N ({xi}) s.t. {xi,1, . . . , xi,k} ∈ ST +1. As p1 > 0, with positive probability

at least one among these k vertices does not divide: let k ∈ {1, . . . , k} s.t.

xi,k ∈ ST +2. Moreover w.p.p. one among {xi,1, . . . , xi,k} \ {xi,k} divides and

w.p.p. one of its offsprings migrates to xi. Therefore, w.p.p. {xi,k, xi} ∈ ST +2,

and xi,k ∼ xi.

We give an equivalent of Lemma 3.5.3 for BRWs characterized by Definition

3.14.

Lemma 3.5.6. Let M be the transition probability matrix corresponding to a

finite connected graph G = (V, E), m its stationary distribution. Let us consider

a BRW-M with multiplicity starting from a generic initial distribution. Let p :=

(pk, k = 0, 1, 2, . . . ) be the probability distribution of the number of offsprings of

each individual for the next generation, with p1 > 0 and p0 + p1 < 1. We

denote by Zt the r.v. describing the population size at generation t (starting

from Z0 = 1). For all i ∈ V let Xi
t be the r.v. describing the number of

individuals lying on vertex i at time t. Therefore:

∀ i ∈ V,
Xi

t

(E(Z1))t → mi in probability for t → ∞.

Proof. The proof is the same as for Lemma 3.5.3. In this case, we do not need

the hypothesis of aperiodicity of M as the problem of an eventual periodicity is

overcome by the addition of the distribution of the number of offsprings p, as

shown in Lemma 3.5.5.

Lemma 3.5.6 allows to prove:
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Corollary 3.5.7. Let us consider a BRW-P with multiplicity and division rate

p ∈ ]0, 1[.

∀ i ∈ {0, 1}N ,
Xi

t

(1 + p)t
→ 1

2N
in probability for t → ∞.

Proof. We have already determined E(Zt) corresponding to the BRW-P with

multiplicity and division rate p (cf. (3.11)). Therefore, in order to prove Corol-

lary 3.5.7 we have just to observe that the stationary distribution for P is the

homogeneous probability distribution on {0, 1}N . Then the result follows ap-

plying Lemma 3.5.6.

Remark 28. In Chapter 2 we overcame the problem of the bipartiteness of the

graph underlined by P by adding N loops at each node. That corresponds to

take into account matrix PL := 1
2 (P +I2N ) instead of P. Considering a BRW-P

with multiplicity and division rate p = 1/2 is equivalent to consider a 2-BRW-

PL with multiplicity, but with coalescence of offsprings which decide to remain

in place. The only difference is the size of the population at time t, which is 2t

in the case of a 2-BRW-P with multiplicity and is expected to be (3/2)t in the

other case. The choice of PL as transition probability matrix has also biological

motivations. Indeed division of B-cells in GCs is asymmetric [94, 15]: only one

between the two daughter cells has a mutated trait.

Remark 29. More generally, let us consider a transition probability matrix M on

a graph G = (V, E), with |V | = n. We can see a BRW-M with multiplicity and

division rate p as a 2-BRW-Mp with multiplicity, where Mp := pM+(1−p)In.

Of course, we need to take the same caution as in Remark 28 about the number

of individuals at time t.

3.5.3 BRW-P with multiplicity and affinity dependent di-

vision

In previous sections, the limiting distribution of traits (with or without division

rate) only depends on the stationary distribution of the considered transition

probability matrix. In particular, if the stationary distribution is homogeneous,

for t big enough all individuals are uniformly distributed over the state-space.

From a biological point of view, it does not seem so efficient to explore all the

state-space. It will be rather more interesting to drive mutations through the

region of the state-space with greater affinity for the target trait. We can there-

fore propose a model in which we introduce a division rate dependent on the

affinity of the cell.
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simple function for the division rate, defined ∀ xi ∈ HN , as follows:

pd(xi) =





0 if aff(xi, x) < N − hs

1 if aff(xi, x) ≥ N − hs

(3.12)

We plot results obtained for N = 7 and hs = 3: all individuals having affinity

at least 4 with the target trait divide and mutate accordingly to matrix P, they

remain unchanged in the population otherwise.

In Figure 3.6 (a) we represent the final distribution of the affinity of traits

within the population after 15 time steps. As expected, the distribution cor-

responding to the first model is binomial and does not depend on the initial

Hamming distance. Indeed, from Corollary 3.5.7 we know that the distribu-

tion of traits is uniform on {0, 1}N . We have just to remark that in {0, 1}N

there are exactly
(

N
h

)
nodes having Hamming distance h from a given vertex,

0 ≤ h ≤ N : this determines the proportion of individuals having a given affinity

after 15 time steps. The support of the distribution at time step 15 for the sec-

ond model corresponds to vertices having affinity 3, 4 or 6 (resp. 3, 5, 7) with

the target trait for an initial affinity a0 = 7, (resp. a0 = 6). Indeed, as a0 ≥ 4,

the total population can be divided in two subpopulations. The sub-population

whose affinity with the target trait is greater than 4 follows a standard 2-BRW-

P with multiplicity. Therefore, we can observe the effects of the bipartiteness

of the graph: only traits whose affinity has the same parity as a0 are expressed

at even time steps. On the contrary, at odd time steps only vertices with affin-

ity having the opposite parity as a0 are expressed. The other sub-population is

composed by those individuals that after an unfavorable mutation obtain a trait

having affinity exactly 3. They remain unchanged for all further time steps, as

they can not divide nor die. Therefore, through further time steps, individuals

with affinity 3 can only continue to accumulate. This is due to the definition of

pd(xi) as a step function.

Figure 3.6 (b) shows the average affinity of the population after 15 time

steps. We can see that for the BRW-P with division rate 0.6 this depends very

lightly from the initial affinity, while, as expected, the initial affinity strongly

influences the final one if we allow only individuals having affinity greater than

3 to divide. Finally in Figure 3.6 (c) we see the size of the population after

15 time steps. Again, in the case of random division with rate 0.6, the initial

affinity does not affect the final population size, which is always approximately

1.615 ≃ 1152.92.
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3.6 Conclusions and perspectives

In this Chapter, we introduce and study BRWs on binary strings, modeling the

evolution of cells in a mutation-division process. The edge set (or graph) associ-

ated to HN := {0, 1}N , hence the corresponding transition probability matrix,

reflects mutations allowed during the evolutionary process. Graph’s character-

istics determine the behavior of the BRW, e.g. its ability in covering HN or the

limiting distribution of the traits, as shown in Sections 3.4 and 3.5.

We particularly focus on the expander property of the graphs when giving

quantitative results about the expected portion of HN covered in O(N). We ob-

serve that strong expansion properties enable a faster invasion of the state-space.

From a biological point of view, this property is significant since it ensures that

starting from one or a few B-cells, the GC can produce, hence test a huge variety

of BCRs against the target antigen. Indeed, GCs seem to be oligoclonal [81, 88],

which means that they develop from very few initial naive B-cells (three, on av-

erage). Therefore, starting from a single clonal population, it is of interest to

understand how a B-cell population invades the BCR state-space.

For this reason, in Section 3.4, we consider the state-space HN of every

possible N -length strings (modeling B-cell traits), and compare the ability of

different mutation rules in colonizing HN in a time O(N). We develop upon a

method used in [43] to evaluate partial cover times on expander graphs. Nev-

ertheless, our approach differs from [43]. Indeed, we fix the state-space and the

main question becomes: how many nodes we are able to activate in a time O(N)

for a given graph? In particular, we observe that while matrix P, which denotes

the structure of the standard N -dimensional hypercube, can cover a quite small

portion of HN in a time O(N), the mutation rule P(k) = 1
k

∑k
i=1 Pi leads to a

significantly bigger expansion which does not strongly depends on k, for values

of k greater than 2.

In Section 3.4, we show that if we simply consider the expansion properties of

the structure built over HN , the covering in O(N) is limited at a half the state-

space (Lemma 3.4.14). This favors the hypothesis that the expansion property

is not enough to insure a quick covering of a large portion of the state-space:

considering self-avoiding BRWs on connected graphs could be more efficient,

although these are not necessarily good expanders. On the other hand, from a

biological point of view, it may not be so efficient to explore the whole state-

space, but rather to steer mutations toward a specific region of the state-space

with the best affinity. Indeed, the production of new clones has a cost in terms
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of time and energy, therefore it does not make sense to produce a huge variety

of cells with any possible fitness with the presented antigen. Models considered

in this Chapter share this drawback: even if a bigger portion of possible traits

is expressed in a time O(N), we can not say much about their average fitness.

We can propose many possible solutions to this problem. We can for example

privilege individuals with good fitness by considering a model with affinity de-

pendent division, as discussed in Section 3.5.3. Another possibility is to consider

transition probability matrices whose stationary distribution is concentrated on

a specific region of the state-space containing the fittest traits. Indeed, as we

observe in Section 3.5.1, given this hypothesis than the distribution of traits for

a 2-BRW with multiplicity only depends on the stationary distribution of the

transition probability matrix under consideration. In this case the problem is:

does this matrix accounts for realistic mutations? Another way to drive muta-

tions towards a specific region of the state-space is, of course, the introduction

of a selection mechanism, which we study in Chapter 4.
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Chapter 4

Multi-type Galton-Watson

processes with

affinity-dependent selection

applied to antibody affinity

maturation

Summary We analyze the interactions between division, mutation and selec-

tion in a simplified evolutionary model, assuming that the population observed

can be classified into fitness levels. The construction of our mathematical frame-

work is motivated by the modeling of antibody affinity maturation of B-cells in

Germinal Centers during an immune response. This is a key process in adap-

tive immunity leading to the production of high affinity antibodies against a

presented antigen. Our aim is to understand how the different biological param-

eters affect the system’s functionality. We identify the existence of an optimal

value of the selection rate, able to maximize the number of selected B-cells for

a given generation.

4.1 Introduction

Antibody Affinity Maturation (AAM) takes place in Germinal Centers (GCs),

specialized micro-environnements which form in the peripheral lymphoid organs

upon infection or immunization [137, 36]. GCs are seeded by ten to hundreds

distinct B-cells [132], activated after the encounter with an antigen, which ini-
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tially undergo a phase of intense proliferation [36]. Then, AAM is achieved

thanks to multiple rounds of division, Somatic Hypermutation (SHM) of the

B-cell receptor proteins, and subsequent selection of B-cells with improved abil-

ity of antigen-binding [89]. B-cells which successfully complete the GC reaction

output as memory B-cells or plasma cells [138, 36]. Indirect evidences suggest

that only B-cells exceeding a certain threshold of antigen-affinity differentiate

into plasma cells [109]. The efficiency of GCs is assured by the contribution

of other immune molecules, for instance Follicular Dendritic Cells (FDCs) and

follicular helper T-cells (Tfh). Nowadays the key dynamics of GCs are well

characterized [89, 36, 55, 132]. Despite this there are still mechanisms which

remain unclear, such as the dynamics of clonal competition of B-cells, hence

how the selection acts. In recent years a number of mathematical models of the

GC reaction appear to investigate these questions, such as [96, 142], where the

authors have developed agent-based models, mostly analyzed through extensive

numerical simulations, or [148] where the authors have established a coarse-

grained model, looking for optimal values of e.g. the selection strength and the

initial B-cell fitness maximizing the affinity improvement.

Our aim in this Chapter is to contribute to the mathematical foundations

of adaptive immunity by introducing and study a simplified evolutionary model

inspired by AAM, including division, mutation, affinity-dependent selection and

death. We focus on interactions between these mechanisms, identify and ana-

lyze the parameters which mostly influence the system functionality, through

a rigorous mathematical analysis. This research is motivated by important

biotechnological applications. The fundamental understanding of the evolution-

ary mechanisms involved in AAM have been inspiring many methods for the

synthetic production of specific antibodies for drugs, vaccines or cancer im-

munotherapy [6, 79, 122]. Indeed, this production process involves the selection

of high affinity peptides and requires smart methods to generate an appropriate

diversity [34]. Beyond biomedical motivations, the study of this learning pro-

cess has also given rise in recent years to a new class of bio-inspired algorithms

[30, 107, 134], mainly addressed to solve optimization and learning problems.

We consider a model in which B-cells are classified into N +1 affinity classes

with respect to a presented antigen, N being an integer big enough to oppor-

tunely describe the possible fitness levels of a B-cell with respect to a specific

antigen [143, 146]. A B-cell is able to increase its fitness thanks to SHMs of its

receptors: only about 20% of all mutations are estimated to be affinity-affecting

mutations [121, 123]. By conveniently define a transition probability matrix, we

can characterize the probability that a B-cell belonging to a given affinity class
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passes to another one by mutating its receptors thanks to SHMs. Therefore

we define a selection mechanism which acts on B-cells differently depending on

their fitness. We mainly focus on a model of positive and negative selection in

which B-cells submitted to selection either die or exit the GC as output cells,

according to the strength of their affinity with the antigen. Hence, in this case,

no recycling mechanism is taken into account. Nevertheless the framework we

set is very easy to manipulate: we can define and study other kinds of affinity-

dependent selection mechanisms, and eventually include recycling mechanisms,

which have been demonstrated to play an important role in AAM [139]. We

demonstrate that independently from the transition probability matrix defining

the mutational mechanism and the affinity threshold chosen for positive selec-

tion, the optimal selection rate maximizing the number of output cells for the

tth generation is 1/t (Corollary 4.3.11).

From a mathematical point of view, we study a class of multi-types Galton-

Watson (GW) processes in which, by considering dead and selected B-cells as

two distinct types, we are able to formalize the evolution of a population sub-

mitted to an affinity-dependent selection mechanism. To our knowledge, the

problem of affinity-dependent selection in GW processes has not been deeply

investigated so far.

In Section 4.2 we define the main model analyzed in this Chapter. We give

as well some definitions that we will use in next sections, such as affinity classes

and mutational model. Section 4.3 contains the main mathematical results. A

conveniently use of a multi-type GW process allows to study the evolution of

both GC and output cells during time. Proposition 4.3.9 collects the formulas

which describe the expected size and average affinity of both populations. More-

over, in Section 4.3.3 we determine the optimal value of the selection rate which

maximizes the expected number of selected B-cells at time t. This value is 1/t

independently from all other parameters. We conclude Section 4.3 with some

numerical simulations. In Section 4.4 we define two possible variants of the

model described in previous sections, and provide some mathematical results

and numerical simulations as well. Section 4.4 evidences how the mathematical

tools used in Section 4.3 easily apply to define other affinity-dependent selection

models. Finally, in Section 4.5 we discuss our modeling assumptions and give

possible extensions and limitations of our mathematical model.
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4.2 Definitions and modeling assumptions

This section provides the mathematical framework of this Chapter. Let us

suppose that given an antigen target cell x, all B-cell traits can be divided in

exactly N + 1 distinct affinity classes, named 0 to N .

Definition 4.1. Let x be the antigen target trait. Given a B-cell trait x, we

denote by ax(x) the affinity class it belongs to with respect to x, ax(x) ∈
{0, . . . , N}. The maximal affinity corresponds to the first class, 0, and the

minimal one to N .

Definition 4.2. Let x be a B-cell trait belonging to the affinity class ax(x)

with respect to x. We say that its affinity with x is given by:

aff(x, x) = N − ax(x)

Of course, this is not the only possible choice of affinity. Typically affinity is

represented as a Gaussian function [142, 96], having as argument the distance

between the B-cell trait and the antigen in the shape space of possible traits. In

our model this distance corresponds to the index of the affinity class the B-cell

belongs to. Nevertheless the choice of the affinity function does not affect our

model.

During the GC reaction B-cells are submitted to random mutations. This

implies switches from one affinity class to another with a given probability.

Definition 4.3. Let (Xt)t≥0 be a RW on the state-space of B-cell traits describ-

ing a pure mutational process of a B-cell during the GC reaction. We denote

by QN = (qij)0≤i,j≤N the transition probability matrix over {0, . . . , N} which

gives the probability of passing from an affinity class to another during the given

mutational model. For all 0 ≤ i, j ≤ N :

qij = P(ax(Xt+1) = j | ax(Xt) = i)

The main model we study in this Chapter is defined as follows:

Definition 4.4. The process starts with z0 ≥ 1 B-cells entering the GC, be-

longing to some affinity classes in {0, . . . , N}. In case they are all identical, we

denote by a0 the affinity class they belong to, with respect to the antigen target

cell x. At each time step, each GC B-cell can die with a given rate rd. If not,

each B-cell can divide with rate rdiv: each daughter cell may have a mutated

trait, according to the mutational rule allowed. Hence it eventually belongs to a

different affinity class than its mother cell. Clearly, it also happens that a B-cell
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stays in the GC without neither die nor divide. Finally, with rate rs each B-cell

can be submitted to selection, which is made according to its affinity with x. A

threshold as is fixed: if the B-cell belongs to an affinity class with index greater

than as, the B-cell dies. Otherwise, the B-cell exits the GC pool and reaches

the selected pool. Therefore, for any GC B-cell and at any generation, we have:

• P(death) = rd

• P(division) = rdiv

• P(selection) = rs
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Figure 4.1: Schematic representation of model described by Definition 4.4.
Here we denote by affs the fitness corresponding to the affinity class as.

The mutation rule reflects the edge set associated to the state-space {0, . . . , N}:

this is given by a transition probability matrix.

Once the GC reaction is fully established (∼ day 7 after immunization), it is

polarized into two compartments, named Dark Zone (DZ) and Light Zone (LZ)

respectively. The DZ is characterized by densly packed dividing B-cells, while

the LZ is less densely populated and contains FDCs and Tfh cells. This is the

preferential zone for selection [36]. The transition of B-cells from the DZ to the

LZ seems to be determined by a timed cellular program: over a 6 hours period

about 50% of DZ B-cells transit to the LZ, where they compete for positive
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selection signaling [14, 136]. In our simplified mathematical model we do not

take into account any spatial factor and in a single time step a GC B-cell can

eventually undergo both division (with mutation) and selection. Hence the time

unity has to be chosen big enough to take into account both mechanisms.

In Chapters 2 and 3 we have modeled B-cells and antigens as N -length binary

strings, hence their traits correspond to elements of {0, 1}N . In this context we

have characterized affinity thanks to the Hamming distance between B-cell and

antigen representing strings.

Definition 4.5. For all x = (x1, . . . , xN ), y = (y1, . . . , yN ) ∈ {0, 1}N , their

Hamming distance is given by:

h(x, y) =
N∑

i=1

δi where δi =





1 if xi 6= yi

0 otherwise

Consequently, in this specific case, the ith-affinity class contains B-cells ha-

ving Hamming distance i from x and the fitness is defined as follows:

Definition 4.6. For all xi ∈ {0, 1}N , its affinity with a given vertex x is given

by aff(xi, x) := N − h(xi, x).

While performing numerical simulations (Sections 4.3.4 and 4.4.2) we refer

to the following transition probability matrix on {0, . . . , N}:

Definition 4.7. For all i, j ∈ {0, . . . , N}:

qij = P(h(Xt, x) = j | h(Xt, x) = i) =





i/N if j = i − 1

(N − i)/N if j = i + 1

0 if |j − i| 6= 1

QN := (qij)0≤i,j≤N is a tridiagonal matrix where the main diagonal consists of

zeros.

If we model B-cell traits as vertices of the state-space {0, 1}N , this corre-

sponds to a model of simple point mutations (see Chapter 2 for more details

and variants of this basic mutational model on binary strings).

Except for numerical simulations, in this Chapter we do not restrict to Def-

initions 4.5 to 4.7. All mathematical results obtained in following sections are

independent from the hypotheses corresponding to Definitions 4.5-4.7. Indeed,
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in order to define our model we only need to determine N + 1 distinct affinity

classes of B-cell traits with respect to a presented antigen and the probabilities

that a GC B-cell passes from a given affinity class to another one thanks to

SHMs during the GC reaction.

4.3 Results

In this Section we formalize mathematically the model introduced above. This

enables the estimation of various qualitative and quantitative measures of the

GC evolution and of the selected pool as well. In Section 4.3.1 we show that a

simple GW process describes the evolution of the size of the GC and determine

a condition for its extinction. In order to do this we do not need to know the

mutational model. Nevertheless, if we want to understand deeply the whole

reaction we need to consider a (N + 3)-type GW process, which we introduce

in Section 4.3.2. Therefore we determine explicitly other quantities, such as the

average affinity in the GC and the selected pool, or the evolution of the size of

the latter. We conclude this section by numerical simulations (Section 4.3.4).

4.3.1 Evolution of the GC size

The aim of this section is to estimate the evolution of the GC size and its

extinction probability. In order to do so we define a simple GW process, with

respect to the parameters rd, rdiv and rs. Indeed, each B-cell submitted to

selection exits the GC pool, independently from its affinity with x. Hence

we apply some classical results about generating functions and GW processes

(see [59], Chapter I). We collect these results for our specific case in Theorem

4.3.2. Corollary 4.3.3 gives explicitly the expected size of the GC at time t and

conditions for the extinction of the GC.

Definition 4.8. Let Z
(z0)
t , t ≥ 0 be the random variable (rv) describing the

GC-population size at time t, starting from z0 ≥ 1 initial B-cells. (Z(z0)
t )t∈N is a

MC (as each cell behaves independently from the others and from the previous

generations) on {0, 1, 2, . . . }.

If z0 = 1 and there is no confusion, we denote Zt := Z
(1)
t . By Definition

4.8, Z1 corresponds to the number of cells in the GC at the first generation,

starting from a single seed cell. Thanks to Definition 4.4 one can claim that

Z1 ∈ {0, 1, 2}, with the following probabilities:
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p0 := P(Z1 = 0) = rd + (1 − rd)rs(1 − rdiv + rdivrs)

p1 := P(Z1 = 1) = (1 − rd)(1 − rs)(1 − rdiv + 2rdivrs)

p2 := P(Z1 = 2) = rdiv(1 − rd)(1 − rs)2

(4.1)

As far as next generations are concerned, conditioning to Zt = k, Zt+1 is

distributed as the sum of k independent copies of Z1, i.e. P(Zt+1 = k′ | Zt =

k) = P

(∑k
i=1 Z1 = k′

)
.

Definition 4.9. Let X be an integer valued rv, pk := P(X = k) for all k ≥ 0.

Its probability generating function (pgf) is given by:

FX(s) =
+∞∑

k=0

pksk

FX is a convex monotonically increasing function over [0, 1], and FX(1) = 1.

If p0 6= 0 and p0 + p1 < 1 then F is a strictly increasing function.

Definition 4.10. Given F , the pgf of a rv X, the iterates of F are given by:

F0(s) = s

F1(s) = F (s)

Ft(s) = F (Ft−1(s)) for t ≥ 2

Proposition 4.3.1.

(i) If E(X) exists (respectively V(X)), then E(X) = F ′
X(1) (respectively V(X) =

F ′′
X(1) − (E(X))2 + E(X)).

(ii) If X and Y are two integer valued independent rvs, then X + Y is still an

integer valued rv and its pgf is given by FX+Y = FXFY .

The pgf for Z1 is given by:

F (s) = p0 + p1s + p2s2

= rd + (1 − rd)rs(1 − rdiv + rdivrs)

+(1 − rd)(1 − rs)(1 − rdiv + 2rdivrs)s

+rdiv(1 − rd)(1 − rs)2s2 (4.2)
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Definition 4.11. We denote by η the extinction probability of the process

(Zt)t∈N:

η := lim
t→∞

Ft(0)

Theorem 4.3.2.

(i) The pgf of Z
(z0)
t , t ∈ N, which represents the population size of the tth-

generation starting from z0 ≥ 1 seed cells, is F
(z0)
t = (Ft)z0 , Ft being the

tth-iterate of F (Equation (4.2)).

(ii) The expected size of the GC at time t and starting from z0 B-cells is given

by:

E(Z(z0)
t ) = (E(Zt))

z0 =
(

(E(Z1))t
)z0

, (4.3)

(iii) η is the smallest fixed point of the generating function F , i.e. η is the

smallest s s.t. F (s) = s.

(iv) If E(Z1) =: m is finite, then:

• if m ≤ 1 then F has only 1 as fixed point and consequently η = 1;

• if m > 1 then F as exactly a fixed point on [0, 1[ and then η < 1.

(v) Denoted by ηz0 the probability of extinction of (Z(z0)
t ), one has:

ηz0
= ηz0

where η is given by (iii).

By applying Theorem 4.3.2 and Equation (4.1) above, one can prove:

Corollary 4.3.3.

(i) The expected size of the GC at time t and starting from z0 initial B-cells is

given by:

E(Z(z0)
t ) = ((1 − rd)(1 + rdiv)(1 − rs))tz0 (4.4)

(ii) Denoted by ηz0
the extinction probability of the GC population starting from

z0 initial B-cells, one has:

• if rs ≥ 1 − 1
(1 − rd)(1 + rdiv)

, then ηz0 = 1

• otherwise ηz0
= ηz0 < 1, η being the smallest fixed point of (4.2)

In particular the process is subcritical or supercritical independently from

z0. In the supercritical case, increasing the number of B-cells at the beginning

of the process makes the probability of extinction decrease. More precisely, in
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the case η < 1, then ηz0
→ 0 if z0 → ∞.

This section shows that a classical use of a simple GW process enables to

understand quantitatively the GC growth. Moreover, Corollary 4.3.3 (ii) gives a

condition over the main parameters for the extinction of the GC: if the selection

pressure is too high, with probability 1 the GC size goes to 0, independently from

the initial number of seed cells. Intuitively, a too high selection pressure prevents

those B-cells with bad affinity to improve their fitness undergoing further rounds

of mutation and division. Most B-cells will be rapidly submitted to selection,

hence either exit the GC as output cells or die by apoptosis if they fail to receive

positive selection signals [89].

4.3.2 Evolution of the size and fitness of GC and selected

pools

The GW process defined in the previous Section only describes the size of the

GC. Indeed, we are not able to say anything about the average fitness of GC

clones, or the expected number of selected B-cells, or their average affinity.

Hence, we need to consider a more complex model and take into account the pa-

rameter as and the transition probability matrix characterizing the mutational

rule. We introduce a multi-type GW Process (see for instance [7], chapter V).

Definition 4.12. Let Z
(i)
t = (Z(i)

t,0, . . . , Z
(i)
t,N+2), t ≥ 0 be a MC where for all

0 ≤ j ≤ N , Z
(i)
t,j describes the number of GC B-cells belonging to the jth-affinity

class with respect to x, Z
(i)
t,N+1 the number of selected B-cells and Z

(i)
t,N+2 the

number of dead B-cells at generation t, when the process is initiated in state

i = (i0, . . . , iN , 0, 0).

For all j ∈ {0, . . . , N + 2} the generating function gives the number of

offsprings of each type that a type j particle can produce. It is defined as

follows:

f (j)(s0, . . . , sN+2) =
∑

k0,...,kN+2≥0

p(j)(k0, . . . , kN+2)sk0
0 · · · s

kN+2

N+2 , (4.5)

0 ≤ sα ≤ 1 for all α ∈ {0, . . . , N + 2}

where p(j)(k0, . . . , kN+2) is the probability that a type j cell produces k0 cells

of type 0, k1 of type 1, . . . , kN+2 of type N + 2 for the next generation.

We denote:

• p(k) = (p(0)(k), . . . , p(N+2)(k)), for k = (k0, . . . , kN+2) ∈ ZN+3
+
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• f(s) = (f (1)(s), . . . , f (N+1)(s)), for s = (s0, . . . , sN+2) ∈ CN+3 where

CN+3 := {x ∈ RN+3 | 0 ≤ xα ≤ 1, α ∈ {0, . . . , N + 2}}

The probability generating function of Z1 is given by:

f(s) =
∑

k∈Z
N+3
+

p(k)sk, s ∈ CN+3 (4.6)

Again, the generating function of Zt, ft(s), is obtained as the tth-iterate of f ,

and it holds true that:

ft+r(s) = ft[fr(s)], s ∈ CN+3.

Let mij := E[Z(i)
1,j ] the expected number of offspring of type j of a cell of

type i in one generation. We collect all mij in a matrix, M = (mij)0≤i,j≤N+2.

We have:

mij =
∂f (i)

∂sj
(1)

and:

E[Z(i)
t,j ] =

∂f
(i)
t

∂sj
(1) (4.7)

Finally:

E[Z(i)
t ] = iMt (4.8)

We can now explicitly give the elements of M by using matrix QN given by

Definition 4.3.

Proposition 4.3.4. M is a (N + 3) × (N + 3) matrix, which we can define as

a block matrix in the following way:

M =




M1 M2

02×(N+1) I2




Where:

• 02×(N+1) is a 2 × (N + 1) matrix with all entries 0;

• In is the identity matrix of size n;

• M1 = 2(1 − rd)rdiv(1 − rs)QN + (1 − rd)(1 − rdiv)(1 − rs)IN+1

• M2 = (m2,ij) is a (N + 1) × 2 matrix where for all i ∈ {0, . . . , N}:

– if i ≤ as:
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m2,i1 = (1 − rd)(1 − rdiv)rs + 2(1 − rd)rdivrs

as∑

j=0

qij,

m2,i2 = rd + 2(1 − rd)rdivrs

N∑

j=as+1

qij

– if i > as:

m2,i1 = 2(1 − rd)rdivrs

as∑

j=0

qij,

m2,i2 = rd + (1 − rd)(1 − rdiv)rs + 2(1 − rd)rdivrs

N∑

j=as+1

qij

Proof. It suffices to compute f (i)(s) for i = 0, . . . , N + 2, which depend on rd,

rdiv, rs and the elements of QN . First, the elements of the (N + 2)th and

(N + 3)th-lines are obviously determined: all selected (resp. dead) cells remain

selected (resp. dead) for next generations, as they can not give rise to any

other cell type offspring (we do not take into account here any type of recycling

mechanism). Let i ∈ {0, . . . , N} be a fixed index: we evaluate mij for all

j ∈ {0, . . . , N + 2}. The first step is to determine the value of p(i)(k) for

k = (k0, . . . , kN+2) ∈ ZN+3
+ . There exists only a few cases in which p(i)(k) 6= 0,

which can be explicitly evaluated:

• p(i)(0, . . . , 0, 1) =





rd if i ≤ as

rd + (1 − rd)(1 − rdiv)rs otherwise

• p(i)(0, . . . , 0, 1, 0) =





(1 − rd)(1 − rdiv)rs if i ≤ as

0 otherwise

• p(i)(0, . . . , 0, 1
i
, 0, . . . , 0, 0) = (1 − rd)(1 − rdiv)(1 − rs)

• p(i)(0, . . . , 0, 2) = (1 − rd)rdivr2
s

N∑

j1=as+1

qij1

N∑

j2=as+1

qij2

• p(i)(0, . . . , 0, 2, 0) = (1 − rd)rdivr2
s

as∑

j1=0

qij1

as∑

j2=0

qij2

• p(i)(0, . . . , 0, 1, 1) = 2(1 − rd)rdivr2
s

as∑

j1=0

qij1

N∑

j2=as+1

qij2

• For all j1 < j2 ∈ {0, . . . , N}:

– p(i)(0, . . . , 0, 2
j1

, 0, . . . , 0, 0) = (1 − rd)rdiv(1 − rs)2q2
ij1

– p(i)(0, . . . , 0, 1
j1

, 0, . . . , 0, 1
j2

, 0, . . . , 0, 0) = 2(1 − rd)rdiv(1 − rs)2qij1
qij2
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– p(i)(0, . . . , 0, 1
j1

, 0, . . . , 0, 1) = 2(1 − rd)rdivrs(1 − rs)qij1

N∑

j2=as+1

qij2

– p(i)(0, . . . , 0, 1
j1

, 0, . . . , 0, 1, 0) = 2(1 − rd)rdivrs(1 − rs)qij1

as∑

j2=0

qij2

• p(i)(k) = 0 otherwise

We can therefore evaluate f (i)(s), with s = (s0, . . . , sN+2) ∈ CN+3.

For all i ≤ as:

f (i)(s) = rdsN+2 + (1 − rd)(1 − rdiv)rssN+1 + (1 − rd)(1 − rdiv)(1 − rs)si

+ (1 − rd)rdivr2
s




N∑

j1=as+1

qij1

N∑

j2=as+1

qij2
s2

N+2

+
as∑

j1=0

qij1

as∑

j2=0

qij2s2
N+1 + 2

as∑

j1=0

qij1

N∑

j2=as+1

qij2sN+1sN+2




+ (1 − rd)rdiv(1 − rs)2




N∑

j1=0

q2
ij1

s2
j1

+ 2
N∑

j1=0

qij1

N∑

j2<j1=0

qij2sj1sj2




+ 2(1 − rd)rdivrs(1 − rs)
N∑

j1=0

qij1




N∑

j2=as+1

qij2sN+2 +
as∑

j2=0

qij2sN+1


 sj1

(4.9)

If i > as then f (i)(s) is the same except for the first line, which becomes:

(rd + (1 − rd)(1 − rdiv)rs)sN+2 + (1 − rd)(1 − rdiv)(1 − rs)si

The values of each mij are now obtained by evaluating all partial derivatives of

f (i)(s) in 1, keeping in mind that for all i ∈ {0, . . . , N},
∑N

j=0 qij = 1.

Example 2. One can give explicitly the form of matrix M2 corresponding to the

mutational model defined in Definition 4.7:
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M2 =

0

...

as − 1

as

as + 1

as + 2

...

N




α rd

...
...

α rd

α − β + β as

N rd + β N−as

N

β as+1
N rd + α − β + β N−(as+1)

N

0 rd + α

...
...

0 rd + α




,

where:

• α := (1 − rd)(1 + rdiv)rs

• β := 2(1 − rd)rdivrs

Remark 30. Independently from the given mutational model, α+rd corresponds

to the expected number of selected or dead B-cells that each GC B-cell can

produce in a single time step.

Of course in the multi-type context we recover again results from Section

4.3.1. For this sake, let us recall some results about the extinction probability

for multi-type GW processes [7].

Definition 4.13. Let q(i) be the probability of eventual extinction of the pro-

cess, when it starts from a single type i cell. As above bold symbols denote

vectors i.e. q := (q(0), . . . , q(N+2)) ≥ 0.

Definition 4.14. We say that (Zt) is singular if each particle has exactly one

offspring, which implies that the branching process becomes a simple MC.

Definition 4.15. Matrix M is said to be strictly positive if it has non-negative

entries and there exists a t s.t. (Mt)ij > 0 for all i, j. (Zt) is positive regular

iff M is strictly positive.

Notation 4. Let u, v ∈ Rn. We say that u ≤ v if ui ≤ vi for all i ∈ {1, . . . , n}.

Moreover, we say that u < v if u ≤ v and there exists at least an index j s.t.

uj < vj .
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Theorem 4.3.5. Let (Zt) be non singular and strictly positive. Let ρ be the

maximum eigenvalue of M. The following three results hold:

1. If ρ < 1 (subcritical case) or ρ = 1 (critical case) then q = 1. Otherwise,

if ρ > 1 (supercritical case), then q < 1.

2. lim
t→∞

ft(s) = q, for all s ∈ CN+3.

3. q is the only solution of f(s) = s in CN+3.

The spectra of matrix M defined in Definition 4.3.4 is obtained as follows:

Proposition 4.3.6. Let M be defined as a block matrix as in 4.3.4. Let λM,i

be its ith-eigenvalue. The spectra of M is given by:

• For all i ∈ {0, . . . , N}, λM,i = (1 − rd)(1 − rs)(1 + rdiv(2λi − 1)), where

λi is the ith-eigenvalue of matrix QN .

• whereas λM,N+1 = 1 with multiplicity 2.

Proof. As M is a block matrix with the lower left block composed of zeros, then

Spec(M) = Spec(M1) ∪ Spec(I2). The result follows.

Therefore we obtain the same condition as in Corollary 4.3.3 for the extinc-

tion probability in the GC:

Proposition 4.3.7. Let q be the extinction probability for the process (Zt)

defined in Definition 4.20 and restricted to the first N + 1 components ( i.e.

we refer only to matrix M1, which defines the expectations of GC B-cells).

Therefore:

• if rs ≥ 1 − 1
(1 − rd)(1 + rdiv)

, then q = 1

• otherwise q < 1 is the smallest fixed point of f(s) in CN+3.

Proof. QN is a stochastic matrix, therefore its largest eigenvalue is 1. The

corresponding eigenvalue of matrix M1 is: λM1,1 = (1−rd)(1−rs)(1+rdiv). The

proposition is proved by observing that λM1,1 ≤ 1 ⇔ rs ≥ 1− 1
(1 − rd)(1 + rdiv)

and applying Theorem 4.3.5 (note that M1 is positive regular: this is not the

case for matrix M).

In order to determine the expected number of selected cells at a given time

t, we need to introduce another multi-type GW process.
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Definition 4.16. Let Z̃
(i)
t = (Z̃(i)

t,0, . . . , Z̃
(i)
t,N+2), t ≥ 0 be a MC where for all

0 ≤ j ≤ N , Z̃
(i)
t,j describes the number of GC B-cells belonging to the jth-affinity

class with respect to x, Z̃
(i)
t,N+1 the number of selected B-cells and Z̃

(i)
t,N+2 the

number of dead B-cells at generation t, when the process is initiated in state

i = (i0, . . . , iN , 0, 0) and before the selection mechanism is performed for the

tth-generation.

Proceeding as we did for Z
(i)
t , we can determine matrix M̃ whose elements

are m̃ij := E[Z̃(i)
1,j ] for all i, j ∈ {0, . . . , N + 2}.

Proposition 4.3.8. M̃ is a (N + 3) × (N + 3) matrix, which only depends on

matrix QN , rd and rdiv and can be defined as a block matrix as follows:

M̃ =




M̃1 M̃2

02×(N+1) I2




Where:

• M̃1 = 2(1 − rd)rdivQN + (1 − rd)(1 − rdiv)IN+1

• M̃2 = (0N+1, rd · 1N+1), where 0N+1 (resp. 1N+1) is a (N + 1)-column

vector whose elements are all 0 (resp. 1).

Notation 5. Let St, t ≥ 0 be the random variable describing the number of

selected B-cells at time t. By hypothesis S0 = 0. (St)t∈N is a MC on {0, 1, 2, . . . }.

We can therefore prove the following results:

Proposition 4.3.9. Let i be the initial state.

• The expected size of the GC at time t is given by:

N∑

k=0

(iMt)k (4.10)

• The average affinity in the GC at time t is given by:

N∑

k=0

(N − k)(iMt)k

N∑

k=0

(iMt)k

(4.11)
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• The expected number of selected B-cells at time t is given by:

E(St) = rs

as∑

k=0

(
iMt−1M̃

)
k

(4.12)

• The expected number of selected B-cells produced until time t is given by:

E

[
t∑

n=0

Sn

]
= E

[(
Z

(i)
t

)
N+2

]
=
(
iMt

)
N+2

(4.13)

• The average affinity of selected B-cells at time t is given by:

as∑

k=0

(N − k)
(

iMt−1M̃
)

k

as∑

k=0

(
iMt−1M̃

)
k

(4.14)

• The average affinity of selected B-cells until time t is given by:

rs

t∑

s=1

as∑

k=0

(N − k)
(

iMs−1M̃
)

k

(iMt)N+2

(4.15)

Proof. Equations (4.10), (4.11) and (4.13) are a direct application of what stated

in Equation (4.8). In order to prove Equation (4.13) we have to observe that:

E

[
Z̃

(i)
t

]
= iMt−1M̃ , (4.16)

since due to the Markov property of the process, the behavior of Z̃
(i)
t only

depends on the distribution of Z
(i)
t−1. Moreover, we have to remark that the

expected number of selected B-cells at time t is obtained from the expected

number of B-cells in GC at time t (before the selection mechanism is performed)

having fitness good enough to be positive selected. This is clearly given by∑as

k=0

(
iMt−1M̃

)
k
, thanks to (4.16). We have just to multiply this expectation

for the probability that each of these B-cells is submitted to mutation, i.e. rs.

Finally, results about the average affinity in both the GC and the selected

pool (Equations (4.11), (4.14) and (4.15)) are obtained from the previous ones

by multiplying the number of individuals belonging to the same class by their

fitness (Definition 4.2), and dividing by the total number of individuals in the

considered pool. The definition of affinity as function of the affinity classes,

determines Equations (4.11), (4.14) and (4.15).
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The expected size of the GC at time t can be obtained applying a simple

GW process (Section 4.3.1) and is given by (4.4). It is possible to prove the

same result starting from the (N + 3)-type GW process (4.10). For the sake of

simplicity, let us suppose that the process starts from a single B-cell belonging

to the affinity class a0 = i with respect to the target trait. We do not need to

specify the transition probability matrix used to define the mutational model

allowed.

We can easily prove by iteration that:

Mt =




Mt
1

t−1∑

k=0

Mk
1M2

02×(N+1) I2




(4.17)

Therefore we can claim that (iMt)k corresponds to the kth-component of the

ith-row of matrix Mt
1 = (2(1−rd)rdiv(1−rs)QN +(1−rd)(1−rdiv)(1−rs)IN+1)t,

where QN is a stochastic matrix. Matrices A := 2(1 − rd)rdiv(1 − rs)QN and

B := (1 − rd)(1 − rdiv)(1 − rs)IN+1 clearly commute, therefore we write:

(A + B)t =
t∑

j=0

Cj
t At−jBj (4.18)

For all j, 0 ≤ j ≤ t:

At−jBj = 2t−j(1 − rd)t−jrt−j
div (1 − rs)t−j(1 − rd)j(1 − rdiv)j(1 − rs)jQt−j

N

= (1 − rd)t(1 − rs)t(2rdiv)t−j(1 − rdiv)jQt−j
N

Hence:

(A + B)t = (1 − rd)t(1 − rs)t
t∑

j=0

Cj
t (2rdiv)t−j(1 − rdiv)jQt−j

N

And consequently:

N∑

k=0

(iMt)k =
N∑

k=0

(
i (A + B)t

)
k

= (1 − rd)t(1 − rs)t
t∑

j=0

Cj
t (2rdiv)t−j(1 − rdiv)j

N∑

k=0

(
iQt−j

N

)
k
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Since QN is a stochastic matrix, for all n, Qn
N is still a stochastic matrix, i.e.

the entries of each row of Qn
N sum to 1. Therefore:

N∑

k=0

(iMt)k = (1 − rd)t(1 − rs)t
t∑

j=0

Cj
t (2rdiv)t−j(1 − rdiv)j

= (1 − rd)t(1 − rs)t(2rdiv + 1 − rdiv)t = (1 − rd)t(1 − rs)t(1 + rdiv)t ,

as stated by Equation (4.4) for z0 = 1. This result can be easily generalized to

the case of z0 ≥ 1 initial B-cells.

4.3.3 rs maximizing the expectation of selected B-cells at

time t

What is the behavior of the expected number of selected B-cells as a function of

the model parameters ? In particular, is there an optimal value of the selection

rate which maximizes this number ? In this section we show that, indeed, the

answer is positive.

To do so we detail hereafter the computation of E(St) (Equation (4.12)),

given by Proposition 4.3.9.

Let us suppose, for the sake of simplicity, that QN is diagonalizable:

QN = RΛN L , (4.19)

where ΛN = diag(λ0, . . . , λN ), and R = (rij) (resp. L = (lij)) is the transition

matrix whose rows (resp. lines) contain the right (resp. left) eigenvectors of

QN , corresponding to λ0, . . . , λN . This is the case, for example, if we consider

the mutational model given by Definition 4.7. Moreover, in this specific case,

the N + 1 distinct eigenvalues of QN are known explicitly (Chapter 2):

λ0 = 1 ≤ 1 − 1
N

≤ 1 − 2
N

≤ · · · ≤ −1 +
2
N

≤ −1 +
1
N

≤ −1 = λN

It follows from (4.17) and (4.19) that for all t ≥ 1, Mt can be written as:

Mt =




RDtL

(
R

t−1∑

k=0

DkL

)
M2

02×(N+1) I2




, (4.20)
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where D = 2(1−rd)rdiv(1−rs)ΛN +(1−rd)(1−rdiv)(1−rs)IN+1 is a diagonal

matrix. We obtain its expression thanks to Proposition 4.3.4.

Moreover, by Proposition 4.3.8 and Equation (4.19) we have:

M̃ =




RD̃L M̃2

02×(N+1) I2


 , (4.21)

where D̃ = 2(1 − rd)rdivΛN + (1 − rd)(1 − rdiv)IN+1 is a diagonal matrix.

Proposition 4.3.10. Let us suppose that at time t = 0 there is a single B-cell

entering the GC belonging to the ith-affinity class with respect to the target cell.

Moreover, let us suppose that QN = RΛN L. For all t ≥ 1, the expected number

of selected B-cells at time t, is:

E(St) = rs(1 − rs)t−1(1 − rd)t
N∑

ℓ=0

(2λℓrdiv + 1 − rdiv)t
as∑

k=0

riℓlℓk ,

Proof. Proposition 4.3.9 claims:

E(St) = rs

as∑

k=0

(
iMt−1M̃

)
k

We have to explicitly write
(

iMt−1M̃
)

k
. From Equations (4.20) and (4.21):

Mt−1M̃ =




RDt−1D̃L RDt−1LM̃2 +

(
R

t−2∑

k=0

DkL

)
M2

02×(N+1) I2




Since, by hypothesis, i = (0, . . . , 0, 1, 0, . . . , 0, 0), with the only 1 being at po-

sition i, 0 ≤ i ≤ N , then
(

iMt−1M̃
)

denotes the ith-row of matrix Mt−1M̃.

Therefore, we are interested in the sum between 0 and as of the elements of the

ith-row of matrix Mt−1M̃, i.e. of the ith-row of matrix RDt−1D̃L, since clearly

as ≤ N . Dt−1D̃ is a diagonal matrix whose ℓth-diagonal element is given by:

(
Dt−1D̃

)
ℓ

= (2(1 − rd)rdiv(1 − rs)λℓ + (1 − rd)(1 − rdiv)(1 − rs))t−1

·(2(1 − rd)rdivλℓ + (1 − rd)(1 − rdiv))

= (1 − rs)t−1(1 − rd)t (2λℓrdiv + 1 − rdiv)t
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The result follows observing that:
(

RDt−1D̃L
)

ik
=
∑N

ℓ=0

(
Dt−1D̃

)
ℓ
riℓlℓk.

As an immediate consequence of Proposition 4.3.10, we can claim:

Corollary 4.3.11. For all time t ≥ 1 the value rs(t) which maximizes the

expected number of selected B-cells at time t is:

rs(t) =
1
t

Proof. Since (1 − rd)t
∑N

ℓ=0(2λℓrdiv + 1 − rdiv)t
∑as

k=0 riℓlℓk is a non negative

quantity independent from rs, the value of rs which maximizes E(St) is the one

that maximizes rs(1 − rs)t−1. The result trivially follows.

Under certain hypotheses about the mutational model and the GC evolution,

one could justify the claim of Corollary 4.3.11 by heuristic arguments, without

considering the (N +3)-type GW process. This leads to approximately estimate

the expected number of selected B-cells at time t.

Hypothesis 1. QN converges through its stationary distribution, denoted by

m = (mi), i ∈ {0, . . . , N}.

Hypothesis 2. Zt explodes, where (Zt)t∈N is given by Definition 4.8.

Let Z̃t, t ≥ 0 be the random variable describing the GC-population size at

time t before the selection mechanism is performed for this generation. For the

sake of simplicity, let us suppose Z̃0 = 1. (Z̃t)t∈N is a MC on {0, 1, 2, . . . }.

Denoted by p̃k := P(Z̃1 = k), k ∈ {0, 1, 2}:





p̃0 = rd

p̃1 = (1 − rd)(1 − rdiv)

p̃2 = (1 − rd)rdiv

(4.22)

It follows: m̃ := E(Z̃1) = (1−rd)(1−rdiv)+2(1−rd)rdiv = (1−rd)(1+rdiv).

Conditioning to Zt = k, Z̃t+1 is distributed as the sum of k independent

copies of Z̃1, which gives:

E(Z̃t) = E(Zt−1)E(Z̃1) = E(Z1)t−1E(Z̃1) = (1−rd)t(1+rdiv)t(1−rs)t−1 (4.23)
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Thanks to Hypotheses 1 and 2, if t is big enough, there is approximately a

proportion of mi elements in the ith-affinity class with respect to x. Therefore,

on average at time t there are approximately
∑as

i=0 miE(Z̃t) B-cells in the GC

belonging to an affinity class with index at most equal to as with respect to x,

before the selection mechanism is performed for this generation. Each one of

these cells can be submitted to selection with probability rs, and in this case it

will be positively selected. Hence:

E(St) ≃ rs

as∑

i=0

miE(Z̃t) = (1 − rd)t(1 + rdiv)t(1 − rs)t−1rs

as∑

i=0

mi , (4.24)

which is maximized at time t ≥ 1 for rs(t) = 1/t.

Remark 31. One observes that the approximation in (4.24) gives the same value

for the optimal rs(t) as in Corollary 4.3.11. Nevertheless, it does not allow to

describe exactly the behavior of E(St), since it is obtained by approximating

the distribution of B-cells in the GC with their stationary distribution.

4.3.4 Numerical simulations

We evaluate numerically results of Proposition 4.3.9. The (N +3)-type GW pro-

cess allows a deeper understanding of the dynamics of both populations: inside

the GC and in the selected pool. Through numerical simulations we emphasize

the dependence of the quantities defined in Proposition 4.3.9 on parameters in-

volved in the model.

We suppose that at the beginning of the process there is a single B-cell

entering the GC belonging to the affinity class a0. Of course, the model we set

allows to simulate any possible initial conditions. Indeed, by fixing the initial

vector i, we can decide to start the reaction with more B-cells, in different affinity

classes. We consider QN given by Definition 4.7 as transition probability matrix

characterizing the mutational mechanism. When it is not stated otherwise,

we set N = 10, rs = 0.1, rd = 0.1, rdiv = 0.9, a0 = 3 and as = 3. This

parameter choice implies a small extinction probability, hence a great probability

of explosion of the GC population (Corollary 4.3.3).

Evolution of the GC population

The evolution of the size of the GC can be studied by using the simple GW

process defined in Section 4.3.1. Equation (4.4), in the case of a single initial

B-cell, evidences that the expected number of B-cells within the GC for this
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It is obvious from Proposition 4.3.12 that this quantity only depends on the

initial affinity with the target trait, the transition probability matrix QN and

the division rate rdiv. The average affinity within the GC does not depend on

as (as one can clearly see in Figure 4.2 (a)), nor by rs or rd. One can intu-

itively understand this behavior: independently from their fitness, all B-cells

submitted to mutation exit the GC. Moreover, rs and rd impact the GC size,

but not its average affinity, as selection and death affect all individuals of the

GC independently from their fitness.

It can be interesting to observe the evolution of the expected average affinity

within the GC during time. Simulations shows that the expected average affin-

ity in the GC converges through N/2, independently from the affinity of the first

naive B-cell (Figure 4.2 (b)). This depends on the mutational model we choose

for these simulations. Indeed, providing that the GC is in a situation of explo-

sion, for t big enough the distribution of GC clones within the affinity classes

is governed by the stationary distribution of matrix QN . Since for QN given

by Definition 4.7 one can prove that the stationary distribution over {0, . . . , N}
is the binomial probability distribution (Chapter 2), the average affinity within

the GC will quickly stabilizes at a value of N/2.

Evolution of the selected pool

The evolution of the number of selected B-cells during time necessarily depends

on the evolution of the GC. In particular, let us suppose we are in the super-

critical case, i.e. the extinction probability of the GC is strictly smaller than

1. Than, with positive probability, the GC explodes and so does the selected

pool. On the other hand, if the GC extinguishes, the number of selected B-cells

will stabilize at a constant value, as once a B-cell is selected it can only stay

unchanged in the selected pool.

As already mentioned in Section 4.3.3, there exists an optimal value of the

parameter rs which maximizes the expected number of selected B-cells at time

t. Figure 4.3 (a) evidences this fact. Moreover, as expected, simulations show

that the expected size of selected B-cells at a given time t increases with the

threshold as chosen for positive selection (Figure 4.3 (b)). This is a conse-

quence of Proposition 4.3.10: as determines the number of elements of the sum∑as

k=0 riℓlℓk.

Figure 4.3 (c) underlines the correspondence between theoretical results

given by Proposition 4.3.9 and numerical values obtained by simulating the
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pool. Indeed the selected population remains in the GC. Here below we give

the definitions of both models. In Section 4.4.1 we formalize these problems

mathematically, then in Section 4.4.2 we show some numerical results.
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(b) Negative selection

Figure 4.4: Schematic representations of models described (a) by Definitions
4.17 and (b) by Definitions 4.18 of exclusively positive (resp. exclusively nega-
tive) selection.
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4.4.1 Definitions and results

Let us consider the process described in Definition 4.4. We change only the

selection mechanism.

Definition 4.17 (Positive selection). If a B-cell submitted to selection belongs

to an affinity class with index greater than as, nothing happens. Otherwise, the

B-cell exits the GC pool and reaches the selected pool.

Definition 4.18 (Negative selection). If a B-cell submitted to selection belongs

to an affinity class with index greater than as, it dies. Otherwise, nothing

happens.

In Figure 4.4 we represent schematically both processes of positive selection

and of negative selection. It is clear from Figure 4.4 (b) that in the case of

Definition 4.18 we do not need to consider the selected pool anymore.

Positive selection

Definition 4.19. Let Z+
t

(i)
= (Z+

t,0

(i)
, . . . , Z+

t,N+2

(i)
), t ≥ 0 be a MC where

for all 0 ≤ j ≤ N , Z+
t,j

(i)
describes the number of GC B-cells belonging to

the jth-affinity class with respect to x, Z+
t,N+1

(i)
the number of selected B-cells

and Z+
t,N+2

(i)
the number of dead B-cells at generation t, when the process

is initiated in state i = (i0, . . . , iN , 0, 0), and following the evolutionary model

described by Definition 4.17.

Let us denote by M+ = (m+
ij)0≤i,j≤N+2 the matrix containing the expected

number of type-j offsprings of a type-i cell corresponding to the model defined

by Definition 4.17. We can explicitly write the value of all m+
ij depending on

rd, rdiv, rs, and the elements of matrix QN .

Proposition 4.4.1. M+ is a (N + 3)2 matrix, which we can define as a block

matrix in the following way:

M+ =




M+
1 M+

2

02×(N+1) I2




Where:

• M+
1 = (m+

1,ij) is a (N + 1)2 matrix. For all i ∈ {0, . . . , N}:

– ∀ j ≤ as: m+
1,ij = 2(1−rd)rdiv(1−rs)qij +(1−rd)(1−rdiv)(1−rs)δij

– ∀ j > as: m+
1,ij = 2(1 − rd)rdivqij + (1 − rd)(1 − rdiv)δij

where δij is the Kronecker delta.
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• M+
2 = (m+

2,ij) is a (N + 1) × 2 matrix where for all i ∈ {0, . . . , N}
m+

2,i1 = m2,i1, and m+
2,i2 = rd. We recall that m2,i1 is the ith-component

of the first column of matrix M2, given in Proposition 4.3.4.

Negative selection

Definition 4.20. Let Z−
t

(i)
= (Z−

t,0

(i)
, . . . , Z−

t,N+1

(i)
), t ≥ 0 be a MC where

for all 0 ≤ j ≤ N , Z−
t,j

(i)
describes the number of GC B-cells belonging to the

jth-affinity class with respect to x and Z−
t,N+1

(i)
the number of dead B-cells

at generation t, when the process is initiated in state i = (i0, . . . , iN , 0, 0), and

following the evolutionary model described by 4.18.

Let us denote by M− = (m−
ij)0≤i,j≤N+1 the matrix containing the expected

number of type-j offsprings of a type-i cell corresponding to the model defined

by Definition 4.20.

Proposition 4.4.2. M− is a (N + 2)2 matrix, which we can define as a block

matrix in the following way:

M− =




M−
1 m−

2

0′
N+1 1




Where:

• M−
1 = (m−

1,ij) is a (N + 1)2 matrix. For all i ∈ {0, . . . , N}:

– ∀ j ≤ as: m−
1,ij = 2(1 − rd)rdivqij + (1 − rd)(1 − rdiv)δij

– ∀ j > as: m−
1,ij = 2(1−rd)rdiv(1−rs)qij +(1−rd)(1−rdiv)(1−rs)δij

• m−
2 is a (N + 1) column vector s.t. for all i ∈ {0, . . . , N} m+

i = m2,i2,

m2,i2 being the ith-component of the second column of matrix M2, given

in Proposition 4.3.4.

• 0′
N+1 is a (N + 1) row vector composing of zeros.

We do not prove Propositions 4.4.1 and 4.4.2, since the proofs are the same

as for Proposition 4.3.4.

Results stated in Proposition 4.3.9 hold true for these new models, by simply

replacing matrix M with M+ (resp. M−). Of course, in the case of negative

selection, as we do not consider the selected pool, we only refer to (4.10) and

(4.11) quatifying the growth and average affinity of the GC. Matrix M̃ is the

same for both models as only selection principles change.
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Because of peculiar structures of matrices M+ and M−, we are not able to

compute explicitly their spectra. Henceforth we can not give an explicit formula

for the extinction probability or evaluate the optimal values of the selection rate

rs as we did in Sections 4.3.2 and 4.3.3.

Nevertheless, by using standard arguments for positive matrices, the greatest

eigenvalue of both matrices M+
1 and M−

1 can be bounded, and hence give

sufficient conditions for extinction.

Proposition 4.4.3. Let q+ (resp. q−) be the extinction probability of the GC

for the model corresponding to matrix M+
1 (resp. M−

1 ).

• If rdiv ≤ rd

1 − rd
, then q+ = q− = 1.

• If rs < 1 − 1
(1 − rd)(1 + rdiv)

, then q+ < 1 and q− < 1.

Proof. Since both matrices M+
1 and M−

1 are strictly positive matrices (Defi-

nition 4.15), the Perron Frobenius Theorem insures that the spectral radius is

also the greatest eigenvalue. Then the following classical result holds [99]:

Theorem 4.4.4. Let A = (aij) be a square nonnegative matrix with spectral

radius ρ(A) and let ri(A) denote the sum of the elements along the ith-row of

A. Then:

min
i

ri(A) ≤ ρ(A) ≤ max
i

ri(A)

Simple calculations provide:

min
i

ri(M+
1 ) = (1 − rd)(1 + rdiv) − rs(1 − rd)


2rdiv min

i

as∑

j=0

qij + 1 − rdiv




max
i

ri(M+
1 ) = (1 − rd)(1 + rdiv) − 2rsrdiv(1 − rd) max

i

as∑

j=0

qij

min
i

ri(M−
1 ) = (1 − rd)(1 + rdiv) − rs(1 − rd)


2rdiv min

i

N∑

j=as+1

qij + 1 − rdiv




max
i

ri(M−
1 ) = (1 − rd)(1 + rdiv) − 2rsrdiv(1 − rd) max

i

N∑

j=as+1

qij

The result follows by observing that for all i ∈ {0, . . . , N}, 0 ≤ ∑as

j=0 qij ,∑N
j=as+1 qij ≤ 1, and applying Theorem 4.3.5.
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negative selection one has to consider greater values for the parameter rs, but

this affects the probability of extinction of the process.

We can expect this discrepancy between the average affinity for the selected

pool for M+ and the one of the GC for M−. Indeed, in the first case we are

looking to all those B-cells which have been positive selected, hence belong at

most to the ath
s -affinity class. On the contrary in the case of M−, we consider

the average affinity of all B-cells which are still alive in the GC at a given time

step. Among these clones, if rs < 1, with positive probability there are also

individuals with affinity smaller than the one required for escaping negative

selection, which remain in the GC because they have not been submitted to

selection. These B-cells make the average affinity decrease. Of course rs is not

the only parameter affecting the quantities plotted in Figure 4.8. In particular,

one can observe that choosing a greater value for as also have a significant effect

over the growth of both pools, as discussed in Remark 33.

4.5 Conclusions and perspectives

In this Chapter we formalize and analyze a mathematical model describing an

evolutionary process with affinity-dependent selection. We use a multi-type GW

process, obtaining a discrete-time probabilistic model, which includes division,

mutation, death and selection. In the main model developed here, we chose a

selection mechanism which acts both positively and negatively on individuals

submitted to selection. This leads to build matrix M, which contains the ex-

pectations of each type (Proposition 4.3.4) and enables to describe the average

behavior of all components of the process. Moreover, thanks to the spectral

decomposition of M we were able to obtain explicitly some formulas giving the

expected dynamics of all types. In addition, we exhibited an optimal value of

the selection rate maximizing the expected number of selected clones for the

tth-generation (Corollary 4.3.11).

This is one possible choice of the selection mechanism. From a mathematical

point of view, the matrix M is particularly easy to manipulate, as we can obtain

explicitly its spectra. On the other hand, the positive and negative selection

model leads, for example, to a selection threshold that does not have any im-

pact on the evolution of the GC size. From a biological point of view this seems

counterintuitive, since we could expect that the GC dynamics is sensible to the

minimal fitness required for positive selection. Moreover, this process does not

take into account any recycling mechanism, which has been confirmed by ex-

periments [139] and which improves GCs’ efficiency. In addition, we considered
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that only the selection mechanism is affinity dependent, while in the GC reac-

tion other mechanisms, such as the death and proliferation rate, may depend on

fitness [55, 5]. Of course it is possible to define models with affinity-dependent

division and death mechanisms with our formalism. This would clearly lead to

a more complicated model, which can be at least studied numerically.

The mathematical tools used in Section 4.3 can be applied to define and

study other selection mechanisms. For instance in Section 4.4 we propose two

variants of the model analyzed in Section 4.3, in which selection acts only pos-

itively, resp. only negatively. This Section shows how our mathematical en-

vironment can be modified to describe different selection mechanisms, which

can be studied at least numerically. Moreover, it gives a deeper insight of the

previous model of positive and negative selection, by highlighting the effects of

each selection mechanism individually, when they are not coupled.

From a biological viewpoint there exist many possibilities to improve the

models proposed in this Chapter. First of all it is extremely important to fix

the system parameters, which have to be consistent with the real biological

process. The choice of N defines the number of affinity level with respect to

a given antigen. This value can be interpreted in different ways. On the one

hand it can correspond to the number of key mutations observed during the

process of Antigen Affinity Maturation, hence be even smaller than 10. On the

other hand, each mutational event implies a change in the B-cell affinity, slight

or not if it is a key mutation. In this case the affinity can be modeled as a con-

tinuous function, hence N corresponds to a possible discretization [143, 146].

To this choice corresponds an appropriate choice of the transition probability

matrix defining the mutational model over the affinity classes, QN . In most

numerical simulations we set N = 10, which is a sensible value since experi-

mentalists observe that high-affinity B-cells differ in their BCR coding gene by

about 9 mutations from germline genes [64, 148]. Nevertheless all mathemati-

cal results are independent from this choice and hold true for all N ≥ 1. The

selection, division and death rates have also an important impact in the GC

and selected pool dynamics: in the simulations we set them in order to be in a

case of explosion of the GC hence appreciate the effects of all parameters over

the main quantities, but they are not biologically justified. For instance, if we

suppose that a single time step corresponds to one day, then the typical prolif-

eration rate of a B-cell has been estimated between 2 and 4 per day and in the

literature we found B-cell death rates of the order of 0.5-0.8 per day [96, 148, 77].

In Section 4.3.3 we have explicitly determined the optimal value of the selec-
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if t > t1, where Mrs,i
is the matrix containing the expectations of each type

for an evolutionary process with constant selection rate rs,i, i = 1, 2. In Fig-

ure 4.9 we plot the expected evolution during time of all types considering an

increasing selection rate. We evaluate the expectations of all types following a

process with positive and negative selection. We set rs = 0 until t = 5, rs = 0.1

from t = 6 to t = 15 and rs = 0.3 for t > 15. Numerical simulations show that

a time dependent selection rate allows initial explosion of the GC, and then

progressive extinction, while when parameters are fixed, a GW process gives

only rise either to explosion or to extinction, as shown above. The regulation

and termination of the GC reaction has not yet been fully understood. In the

literature, an increasing differentiation rate of the GC B-cells is thought to be a

good explanation [100], here we show that other reasons could be of importance

as well. Similarly, we can let other parameters vary for fixed time intervals, as

well as decide to alternatively switch on and off the mutation mechanism, as

already proposed in [108]. This can be obtained by alternatively use the identity

matrix in place of QN .
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Chapter 5

Discussion

The aim of the work developed in this report is to introduce a very flexible math-

ematical environment which could be variously modified in order to pattern and

study different mutation-division-selection processes. We want to contribute to

the mathematical foundations of AAM, a key process in adaptive immunity.

AAM produces high-affinity antibodies against immunizing antigens through

iterative rounds of SHM, clonal expansion and selection for improved affinity.

We enrich the model adding further fundamental bricks, which we analyse using

probabilistic tools and numerical simulations. Although the evolutionary model

we consider is highly simplified, it already leads to interesting mathematical

problems, which we rigorously analyze in Chapters 2-4. Of course it is possible

to argue many modeling assumptions and envisage improvements in order to

make these models more coherent with the biological process under considera-

tion.

In Chapter 2, we introduce and analyze several mutational processes, seen as

RWs on graphs. Each mutation rule defines a specific graph. For each graph we

compute the characteristic time-scales of the state-space exploration. This char-

acterizes the efficiency of these mutational processes modeling SHM in AAM.

We define the state-space of B-cell traits as the set of N -length binary strings.

From one side this assumption is justified as these two amino acid classes could

represent amino acids positively charged and negatively charged. These are ef-

fectively the most responsible amino-acids in creating the non-covalent bonds

which determine the antigen-antibody interaction. Nevertheless it implies a

great simplification and in other papers (e.g. [108, 101]) models with an alpha-

bet of 3 or more amino acids have already been proposed.

151



In Chapter 2 and 3 we model the BCR-antigen interaction as a linear con-

tact between BCR and antigen representing strings. This allows us to solve the

problem of defining the affinity between BCR and antigen. We are aware that

the effects of genetic mutations on the new generated protein could be even

more complex. It could be interesting to consider the creation of bonds among

amino-acids of the BCR (resp. the antigen) itself, which determines the geomet-

rical structure of the corresponding proteins and consequently the portion of the

BCR and the antigen that can actually be in contact. To consider the tridimen-

sional contact between two proteins is a really hard challenge and would lead us

to another class of very interesting and complicated mathematical problems [23].

We define the affinity between strings in the most natural way through the

Hamming distance. Other definitions of affinity are often constructed as func-

tions of the state-space distance, given for instance by the Gaussian probability

density function (e.g. [92]). Nevertheless in our models the choice of the affinity

function does not have any influence on results. Indeed in Chapters 2 and 3,

the graph structures reflecting the mutational rules are not predefined and the

RWs (resp. BRWs) we perform on them are not biased by the affinity gradient.

Moreover, in Chapter 4, we simply refer to affinity classes without specifying

how the affinity between the antigen and B-cells belonging to the same affinity

class are evaluated.

In both Chapter 2 and 3 we essentially consider mutational processes given

by combinations of single point mutation mechanisms. SHM introduces mostly

single nucleotide exchanges, together with small deletions and duplications, i.e.

the insertion of extra copies of a portion of genetic material already present

within the DNA code [63, 26, 27]. Allowing for indels mutations has two main

consequences. Firstly it means that the length of the BCR representing string

could actually change during the process, while we consider it as constant and

equal to the length of the antigen representing string. We overcome this prob-

lem considering that the chain in our model corresponds to a portion of BCR

in contact with the antigen, and this is approximately composed by 15 amino-

acids [80]. Moreover these mutations can imply substantial changes into the

amino-acid chain, enabling for long range connections in the BCR state-space.

Therefore, even if these are rare mutational events, they may have an important

effect in AAM and consequently it could be interesting to take also insertions

and deletions into account. Another possibility is to consider that mutations

at one site are influenced by other amino acids composing the string. This

assumption has been firstly proposed in a highly theoretical context by S. A.

Kauffman and E. D. Weinberger in [70], where they have introduced the NK
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models. More recently Y. Elhanati et al in [45] have found biological evidence

for an evolutionary model where substitution rates strictly depend on the con-

text. Nevertheless, they only consider SHM events at the DNA level, without

taking into account the effects of nucleotide substitutions on the expressed BCR

and its affinity for the target antigen.

In Chapter 3 we enrich the previously analyzed mutational models by con-

sidering the division of B-cell clones. This allows to evaluate the efficiency of

different mutational rules in determining the variety of the repertoire of an ex-

ponentially growing B-cell population. We observe that strong expansion prop-

erties of the graph characterizing the mutational mechanism, enable a faster

invasion of the state-space. From a biological viewpoint, this property is sig-

nificant since it ensures that starting from a few seeder B-cells, the GC can

produce, hence test a huge variety of BCRs against the target antigen. Indeed,

GCs seem to be oligoclonal [81, 88], which means that they develop from very

few initial naive B-cells. Therefore, starting from a single clonal population, it is

of interest to understand how a B-cells population invades the BCR state-space.

We show that if we simply consider the expansion properties of the structure

built over the BCR state-space, the covering in O(N) is limited at a half the

state-space. This suggests that the expansion property is not enough to insure

a quick covering of a large portion of the state-space: considering self-avoiding

BRWs on connected graphs could be more efficient, although these are not nec-

essarily good expanders. On the other hand, from a biological point of view, it

may not be so efficient to explore the whole state-space, but rather to steer mu-

tations toward a specific region of the state-space with the best affinity. Indeed,

the production of new clones has a cost in terms of time and energy, therefore it

does not make sense to produce a huge variety of cells with any possible fitness

with the presented antigen. It is for this reason and since SHMs are random

events, that during the GCR B-cells are submitted to powerful selection mech-

anisms.

We discuss the consequences of defining an affinity-dependent division rate.

We show that this allows to privilege individuals with good fitness. Another

possibility is to consider transition probability matrices whose stationary dis-

tributions are concentrated on a specific region of the state-space containing

the fittest traits. Indeed, we prove that, without any biasing mechanism, the

distribution of traits for a 2-BRW only depends on the stationary distribution

of the transition probability matrix under consideration.
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Another way to drive mutations towards a specific region of the state-space

is, of course, the introduction of a selection mechanism, which we investigate in

Chapter 4. There we introduce and analyze some variants of an evolutionary

model including mutation, division and affinity-dependent selection, based on

the assumption that all B-cell traits can be classified into some affinity classes

with respect to their binding abilities for the immunizing antigen. We use multi-

type Galton Watson processes modeling the evolution of each affinity class of the

B-cell population, together with dead and differentiated B-cells. In addition, we

exhibited an optimal value of the selection rate maximizing the expected num-

ber of selected clones for the tth-generation.

The mathematical tools used in Chapter 4 can be applied to define and study

other selection mechanisms. From a biological viewpoint there exist many pos-

sibilities to improve these models. First of all it is extremely important to fix

the system parameters, which have to be consistent with the real biological

process. The choice of N defines the number of affinity levels with respect to

a given antigen. This value can be interpreted in different ways. On the one

hand it may correspond to the number of key mutations observed during the

process of AAM, hence be even smaller than 10. On the other hand, each mu-

tational event implies a change in the B-cell affinity, slight or not if it is a key

mutation. In this case the affinity can be modeled as a continuous function

[98], hence N corresponds to a possible discretization [143, 146]. To this choice

corresponds an appropriate choice of the transition probability matrix defining

the mutational model over the affinity classes. In most numerical simulations

we set N = 10, which is a sensible value since experimentalists observe that

high-affinity B-cells differ in their BCR coding gene by about 9 mutations from

germline genes [64, 148].

The selection, division and death rates have also an important impact on

the GC and selected pool dynamics. In the simulations we fix the parameters

such that the GC’s population grows exponentially, this is not biologically sound

for the whole GC duration. The typical proliferation rate of a B-cell has been

estimated between 2 and 4 per day and in the literature we found B-cell death

rates of the order of 0.5-0.8 per day [96, 148, 77]. Depending on the selection

strength we can obtain either explosion or extinction of the GC. It can be in-

teresting to determine a reasonable parameter choice for our model to observe

e.g. a realistic evolution of the GC size.

In the models set and studied here, all rates are kept constant during time:

this implies that we shall observe either explosion or extinction of the GC only.
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It is of course mandatory to allow one ore more parameters be time dependent.

For instance, letting the selection pressure increase during time would account

for the early GC phase in which simple clonal expansion of B-cells with no

selection occurs [36]. Moreover, in the literature, an increasing differentiation

rate of the GC B-cells is thought to be a good explanation for GC termination

[100]. The hypothesis of a selection pressure changing over time can be easily

integrated in our model. Similarly, we can let other parameters vary for fixed

time intervals, as well as decide to alternatively switch on and off the mutation

mechanism, as already proposed in [108].

We do not include in our models all details and biological facts discussed

above, since the aim of this project was not to build a comprehensive model of

AAM. Our objective is to simplify this learning evolutionary process focusing on

its fundamental features and be able to provide a rigorous mathematical analy-

sis. Hence our results remain theoretical by means of a high simplification of the

biological process under examination. Nevertheless all biologically motivated

improvements proposed here can be included within our models and analyzed

numerically, even if they sometimes depend on experimental data which is still

hard to gather. Another essential specificity of this work is that it is based

on probabilistic models including B-cell traits and the evolution their affinity

due to mutations. Most of the models of GCR that have been proposed in the

literature are based on ODE systems (e.g. [77, 100]). The deterministic contin-

uum approach has certainly many advantages, but it is not able to capture the

stochastic fluctuations of reactions nor take into account the discrete nature of

cells.

It is possible to add further bricks to our models and enrich them in many

directions. For example, since both the selection and death rates have an impact

on the regulation of the GC reaction, we can define models in which in a single

time step a B-cell can undergo only one among these two mechanisms. This

could be studied in a similar way as in Chapter 4. Another possibility is to

increase the size of the matrix containing the average behavior of each type

and define types which can only proliferate and mutate and types which can

only be submitted to selection. This would allows us to take into account the

compartmentalization of the GC in DZ and LZ, in which B-cells undergo distinct

genetic programs. These improvements are matters of forthcoming works.
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Résumé

Le système immunitaire adaptatif est capable de produire une réponse spécifique contre
presque tous le pathogènes qui agressent notre organisme. Ceci est du aux anticorps qui
sont des protéines sécrétées par les cellules B. Les molécules qui provoquent cette réaction
sont appelées antigènes : pendant une réponse immunitaire, les cellules B sont soumises à un
processus d’apprentissage afin d’améliorer leur capacité à reconnaître un antigène donné. Ce
processus est appelé maturation d’affinité des anticorps.

Nous établissons un cadre mathématique très flexible dans lequel nous définissons et étu-
dions des modèles évolutionnaires simplifiés inspirés par la maturation d’affinité des anticorps.
Nous identifions les éléments constitutifs fondamentaux de ce mécanisme d’évolution extrême-
ment rapide et efficace : mutation, division et sélection. En commençant par une analyse
rigoureuse du mécanisme de mutation dans le Chapitre 2, nous procédons à l’enrichissement
progressif du modèle en ajoutant et analysant le processus de division dans le Chapitre 3, puis
des pressions sélectives dépendantes de l’affinité dans le Chapitre 4.

Notre objectif n’est pas de construire un modèle mathématique très détaillé et exhaustif
de la maturation d’affinité des anticorps, mais plutôt d’enquêter sur les interactions entre
mutation, division et sélection dans un contexte théorique simplifié. On cherche à compren-
dre comment les différents paramètres biologiques influencent la fonctionnalité du système,
ainsi qu’à estimer les temps caractéristiques de l’exploration de l’espace d’états des traits des
cellules B.

Au-delà des motivations biologiques de la modélisation de la maturation d’affinité des
anticorps, l’analyse de ce processus d’apprentissage nous a amenée à concevoir un modèle
mathématique qui peut également s’appliquer à d’autres systèmes d’évolution, mais aussi
à l’étude de la propagation de rumeurs ou de virus. Notre travail théorique s’accompagne
de nombreuses simulations numériques qui viennent soit l’illustrer soit montrer que certains
résultats demeurent extensibles à des situations plus compliquées.

Mots clés Marches aléatoires sur des graphes, Hypercube, Temps d’attente, Marches aléa-
toires branchantes, Graphes expanseurs, Processus de Galton-Watson multi-type, Réaction du
centre germinatif, Paysage évolutif

Abstract

The adaptive immune system is able to produce a specific response against almost any
pathogen that could penetrate our organism and inflict diseases. This task is assured by
the production of antigen-specific antibodies secreted by B-cells. The agents which causes
this reaction are called antigens: during an immune response B-cells are submitted to a learn-
ing process in order to improve their ability to recognize the immunizing antigen. This process
is called antibody affinity maturation.

We set a highly flexible mathematical environment in which we define and study simpli-
fied mathematical evolutionary models inspired by antibody affinity maturation. We identify
the fundamental building blocks of this extremely efficient and rapid evolutionary mechanism:
mutation, division and selection. Starting by a rigorous analysis of the mutational mechanism
in Chapter 2, we proceed by successively enriching the model by adding and analyzing the
division process in Chapter 3 and affinity-dependent selection pressures in Chapter 4.

Our aim is not to build a very detailed and comprehensive mathematical model of an-
tibody affinity maturation, but rather to investigate interactions between mutation, division
and selection in a simplified theoretical context. We want to understand how the different
biological parameters affect the system’s functionality, as well as estimate the typical time-
scales of the exploration of the state-space of B-cell traits.

Beyond the biological motivations of antibody affinity maturation modeling, the analysis
of this learning process leads us to build a mathematical model which could be relevant to
model other evolutionary systems, but also gossip or virus propagation. Our method is based
on the complementarity between probabilistic tools and numerical simulations.

Keywords: Random walks on graphs, Hypercube, Hitting times, Branching random walks,

Expander graphs, Multi-type Galton-Watson process, Germinal center reaction, Evolutionary

landscape
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