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Notations

Unless otherwise stated, the main conventions used in the notation of this Thesis are
described in the following.

General
� F: Cartesian frame.

� a: scalar.

� a: column vector.

� a>: row vector and the transpose of column vector a.

� A: matrix.

� A−1: inverse of matrix A.

� A>: transpose of matrix A.

� a.b = ab: scalar product of column vectors a and b.

� a × b: cross product of column vectors a and b.

Euclidean Geometry
� X̄ = (X,Y, Z)>: coordinates of a point in the Euclidean space.

� X = (X,Y, Z, 1)>: homogeneous coordinates of a point in the Euclidean space.

� iX: coordinates X expressed in frame Fi.

� x̄ = (x, y)>: image point coordinates in pixels.

� x = (x, y, 1)>: image point coordinates in homogeneous pixels formulation.

� iTj : homogeneous transformation matrix from Fj to Fi.

� iRj : rotation matrix from frame Fj to frame Fi.

� itj : translation vector from frame Fj to frame Fi.
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Notations

Reflection Model
The color of each pixel is represented by a normalized RGB column vector and rescaled
into the range from 0 to 255 for visualization.

� p: point in the scene.

� ωpi : light direction vector with
respect to light source i.

� np: normal vector of point p.

� rpi : perfect reflection vector
with respect to light source i.

� vp: viewpoint vector.
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1Introduction

Since the late 1960s, the creation of realistic computer-generated images (CGI) has
been a major focus of the computer graphics research. Achieved work has led to

various algorithms which deliver outsandingly realistic images of fully modeled virtual
worlds. The possibility of creating any virtual world has contributed, 30 years later, to
the emergence of the first Mixed Reality (MR) system [Rosenberg, 1993]. In 1992, Louis
Rosenberg introduced the concept of virtual fixtures as an overlay of virtual information
on a given workspace in the context of military tasks. The core idea of superimposing
or mixing real and virtual information was first coined by Tom Caudell [Caudell and
Mizell, 1992] and later referred to as Mixed Reality (MR) within the Reality-Virtuality
(RV) continuum framework [Milgram and Kishino, 1994] .

Figure 1.1 – The Reality-Virtuality Continuum goes from the Physcical Reality (real
environment) which does not contain any virtual data to the Virtual Reality world where
everything is virtual and fully modeled.

The RV continuum (Figure 1.1), as presented by Milgram and Kishino in [Milgram
and Kishino, 1994], goes from the physical real world where no virtual data exists to
a Virtual Reality (VR) world where everything is virtual and modeled. Within this
continuum, MR was defined as "...anywhere between the extrema of the RV continuum".
Hence, it comprises all the configurations which span the continuum from Augmented
Reality (AR) where the virtual augments the real to Augmented Virtuality (AV), where
the real augments the virtual.

In this Thesis, we are interested in MR systems which are positioned along the segment
between AR and AV technologies in the RV continuum. These systems are known to
achieve a seamless visual blending between physical and digital worlds. Specifically,
computer-generated data in the context of this thesis are never considered to be 2D
figures, text or basic geometric primitives (e.g., lines, circles, etc.). In our case, the
virtual world can be composed of one or multiple 3D objects. In addition to the virtual
world’s content, such MR systems must consistently align, in 3D and in real time, both
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Chapter 1. Introduction

real and virtual worlds [Azuma, 1997] [Schmalstieg and Hollerer, 2016].

Experiencing MR requires the use of a display device through which the blending
of the physical world with the digital world can be visualized. These devices have
been mainly categorized into head mounted (HMD) and non-head mounted displays
[Azuma, 1997][Fuchs and Ackerman, 1999][Costanza et al., 2009]. The former were
introduced by Ivan Sutherland [Sutherland, 1968] in the late 1960s and have been the
mainstay of a significant number of MR systems to date. They owe their popularity
to the amount of freedom they provide while experiencing MR applications. Efforts in
this research area have led to various high-end wearables that offer outstanding MR
experiences thanks to their high resolution, low latency and sensory components [Mi-
crosoft, 2016][MetaVision, 2017][Leap, 2018]. On the other hand, non-Head Mounted
Displays such as phones and tablets have become commonly used in MR applications
thanks to their pricing point and increasing computational power capabilities.

As the involved technology in MR matures, such systems move towards being afford-
able and user-friendly products. Consequently, the number of scenarios and contexts in
which MR can be useful is limitless [Costanza et al., 2009][Mekni and Lemieux, 2014].
Perhaps, the first objective behind the information conveyed by the virtual objects is
to make a task easier for a human to perform [Brooks, 1996]. Accordingly, the first
field to welcome this technology was the military one through the work of Rosenberg
[Rosenberg, 1993] where virtual data was overlaid to enhance the user’s telerobotic
experience. Since then, MR systems have been used to help operators better locate
points of interest (e.g., streets, airports, railroads) and improve their situational aware-
ness [Calhoun et al., 2005]. In the medical field, Mixed reality can be a useful tool
for doctors and surgeons [Botella et al., 2010]. For instance, it can provide them with
crucial overlayed information regarding their patient (e.g., records, imaging tumors)
[Thomas, 2016]. Also, it has been massively considered as an efficient tool for certain
phobia treatments and cooperative surgical scenarios (Figure 1.2).

Figure 1.2 – Examples of mixed reality applications: (left) a cooperative surgical
scenario, (middle) a capture of Chemistry AR application and (right) the most successful
gaming application (PokémonGO).

Mixed reality is without any doubt going to play a major role in shaping our realities
in the near future, not only because of its various use cases but also because of the
time-saving, productivity and economic growth that it brings. In [Tang et al., 2003],
authors found that when integrating MR in the manufacturing field, the error rate for
an assembly task was reduced by 82% compared to using a printed manual. Enhancing
the user’s surrounding with an adequate and adaptive amount of information helps
better understand the assembly task. In [Herpich et al., 2017], a comparative analysis

2



1.1. Thesis Context

demonstrates how MR frameworks can help improve traditional classroom techniques
by offering more individualized and flexible learning. To illustrate, Chemistry AR (Fig-
ure 1.2) allows student to visualize and interact with virtual molecules. All scenarios
being considered, the most impacted field is the entertainment one. According to a
recent Goldman Sachs report [GoldmanSachs, 2016], the MR consumer market in en-
tertainment was the first to develop and is believed to grow to 216 million users by 2025.
By offering outstanding virtual contents, MR has impacted most of the entertainment
industries such as gaming, cinema and live events.

1.1 Thesis Context

This work belongs to the entertainment field. It has been conducted within the frame
of a CIFRE1 industrial partnership with Technicolor, a multinational company that
delivers services and products to entertainment industries, and the IRISA laboratory.
This thesis was carried out in the MR technical area which focuses on providing inno-
vative solutions with an emphasis on interactive, real-time and realistic content.

Although several industrial actors have already proposed real-time MR solutions (ARKit,
Vuforia, Wikitude) able to geometrically align the real world with the digital world,
none of them tackled the problem of achieving a seamless and realistic blending. Indeed,
when using such systems, the virtual objects are often easily distinguishable from the
real ones as their appearances do not match. Since immersion is an important aspect
of MR systems [Roussou and Drettakis, 2003], this is clearly a problem. In fact, human
visual cues are sensitive to the global coherence within an image. Hence, absence or
incorrectly rendered virtual shadows, confused color perception such as an exuberantly
bright virtual object are all elements which may not help an MR user interact and
commit to a target application.

To illustrate, within the large panel of existing gaming applications, PokémonGO has
remained the first one to bring MR widely to the mainstream since 2016. As shown in
figure 1.3-a, this application has accomplished in a very short period of time what all
previously proposed applications did not: over 750 million global downloads. Never-
theless, its success has drastically fallen down after a short period following its launch.
According to [Polygon, 2018][Gamerant, 2018], it is mainly because it lacked essential
immersion features such as real-world occlusions and realism.

It is only recently that Google presented the ARCore Software Development Kit (SDK)
as an example of what realistic MR could be. In their demonstration (Figure 1.3-b),
one can see that the virtual object’s appearance approximately fits the global lighting
in the scene. The overall rendering of the virtual object is adapted by estimating an
average brightness over the current image of the real world. Nonetheless, this is clearly
not sufficient since primary cues to achieve realistic MR such as shadows, are still
missing. These cues not only improve the realism of the virtual object itself but also
help the user determine spatial relationships between real and digital worlds (in figure

1Convention Industrielle de Formation par la Recherche
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Chapter 1. Introduction

Figure 1.3 – (a) The image represents the impact of PokémonGO compared to previ-
ously existing gaming applications. (b) The images show an augmented scene (virtual
white object) using ARCore. The synthetic object fits the overall brightness with the
capture of the scene. Nonetheless, it is still distinguishable from the real environment.

1.3-b, the virtual object appears to be "floating" even though it is geometrically well
located on the planar surface).

1.2 Problem Description
The goal of a realistic mixed reality application is to make computer-generated objects
almost indistinguishable from the real environment when merged into a single image.
In order to achieve this goal, several challenging tasks must be handled. Figure 1.4
shows the key steps within the workflow of a mixed reality ecosystem:

Figure 1.4 – Achieving realistic mixed reality requires modeling the camera (field of
view, position, orientation) and the real world (geometry, illumination and reflectance).
Hence, recovered models can be used within the virtual world to make both worlds seem
as if they coexisted in the same environment and were seen through the same camera.

The image captured by any camera (Cr or Cv in figure 1.4) is the result of an interac-
tion between three main quantities: geometry, illumination and reflectance. Geometry

4



1.2. Problem Description

corresponds to the underlying 3D structure of the scene. This structure is often rep-
resented by a set of 3D points or oriented polygons. Illumination corresponds to all
sources of light in the scene which include direct illumination (bulbs, neon lights, the
sun) and indirect illumination (e.g., very reflective surfaces such as mirrors). Illumi-
nation is often represented by a set of 3D rays which travel through the 3D space to
interact with scene geometry. When an incident light ray hits the surface of a given
geometry, the amount of light reflected depends on the reflectance property of the sur-
face. The captured image represents therefore the amount of incident light reflected
from the scene towards the camera. In order to achieve realistic MR two challenges
must be handled:

1. Geometric Registration: the main goal of this registration is to give the MR
user the illusion that real and synthetic objects coexist in the same 3D space.
In order to achieve this goal, we must first recover the geometry of the real
scene. This is an important step as it allows us to handle collisions and occlusions
between both worlds (which of the real or synthetic object must be rendered in the
camera frustum). Furthermore, the virtual camera Cv which is used to generate
a 2D image of the synthetic 3D world must retain the same properties as the real
camera Cr (field of view, 3D position, orientation). This step concerns camera
calibration and pose estimation.

2. Photometric Registration: real objects are illuminated by light sources in the
real environment. The way these objects interact with light sources depends on
their reflectance properties. In order to achieve a seamlessly realistic compositing
between real and digital worlds, we must recover the illumination and reflectance
of the real scene. This is important as we aim at illuminating virtual objects with
virtual light sources which mimic the real ones. Also, to enhance the immersion
experience of the MR user, illumination-based interactions between both worlds
must be accounted for (e.g., a virtual object casting a shadows that occludes a real
specular reflection, color bleeding). When both illumination and reflectance are
estimated, we can then virtually add a synthetic object and render the mixed scene
using existing computer-graphics rendering techniques [Ritschel et al., 2012]. Such
techniques can be global by considering both direct and indirect illumination, or
local when only direct illumination is considered.

Throughout the past decade, the depth sensing technology evolved and is nowadays part
of several consumer smart-phones/tablets (Google Tango tablet, Intel RealSense sen-
sors, Microsoft Kinect) and HMD devices (Hololens, Magic Leap). This breakthrough
has moved geometric and photometric registrations closer providing new possible ap-
proaches to achieve realistic MR. In this thesis, we take advantage of existing 3D sensors
and adequate existing geometric registration solutions to handle the 3D alignment of
the real and digital worlds. Hence, we focus our work on proposing novel ap-
proaches to the estimation of reflectance and illumination using an RGB-D
camera.

Photometric reconstruction can be achieved using laboratory measurement equipment
[Loscos et al., 1999]. However, such equipment are not suitable for mixed reality sys-
tems because of their limited practicability and out-of-reach pricing. An alternative is
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Chapter 1. Introduction

to consider modeling real-world reflectance and illumination using a sequence of RGB-D
images of the real scene (RGB images along with Depth maps). The process of recov-
ering these photometric properties from RGB-D images is often referred to as inverse
rendering. The latter is a highly ill-posed problem with unknowns outnumbering input
information provided by the sensor. To tackle this problem, a trade-off is often made
between the following points:

� Additional devices: when experiencing MR, the user/camera is looking towards
the augmented scene. In this configuration, both illumination and reflectance
properties must be recovered from captured images. In order to handle this
under-constrained problem, a solution consists in introducing a light probe to
capture the illumination in the scene. Light probes correspond to a variety of
devices that either look towards the illumination (e.g., fish-eye lenses) or reflect
the illumination (e.g., chrome spheres). Such devices are not practical for MR
systems that target large-public entertainment applications.

� Scene content: to constrain this inverse rendering problem, assumptions within
scene properties can be considered. Regarding reflectance, assuming a uniform
color surface simplifies the reflectance model. Hence, complex reflectances such
as specular or glossy surfaces (shiny objects) and textured surfaces are often
discarded. Illumination constraints mainly concern the number of light sources
in the scene (reduced to a single one or provided by the user) or their properties.
For instance, light sources in indoor scenes can be approximated by a distant
distribution where only the orientation has to be recovered. This assumption is
often invalid, especially in indoor scenes, where light sources are, unlike the sun,
close to the real scene.

� Dynamic changes: in the real world, light sources can be switched on/off or moved.
It is therefore necessary to be able to take these changes into account without
apparent latency. When assuming static lighting, the user is forced to remain in
a controlled environment. This type of configuration is not always suitable for
mixed reality applications.

� Processing time: unlike video editing applications where the objective is to pro-
vide a visually coherent result without any real-time constraints, MR has to be
achieved in real-time (near-instantaneous output). Specifically, photometric re-
construction approaches must not introduce any latency within the MR experi-
ence. The involved computation, along with the renderings, must be handled in
a satisfyingly short period of time (referred to as near real-time or interactive
frame rate).

The objective of this thesis is to develop, using a single RGB-D sensor, novel photo-
metric registration algorithms for indoor real scenes. Proposed approaches must be
user-friendly, compatible with MR consumer applications and run at interactive frame
rate (the user must not notice any visual shift or inaccuracy between real and digi-
tal worlds while experiencing the MR scenario). Also, proposed methods must handle
scenes with different reflectance properties (e.g., specular surfaces, challenging textures)
and recover the properties of a non-distant illumination distribution (3D position, color,
intensity). Finally, dynamic changes occurring in the real world must be accounted for.

6



1.3. Contributions Summary

1.3 Contributions Summary

The considered scenario within the scope of this thesis is the following: using an RGB-D
camera, we browse an indoor real scene to acquire its geometry. Light probes or user in-
teraction are not considered. Consequently, by analyzing the color images and acquired
model of the scene, our proposed approaches recover surface reflectance properties and
illumination characteristics (3D position, intensity, color). Our goal is to handle a large
variety of indoor real scene. We therefore consider very few constraints with regard to
the content of the scene. Specifically, we do not assume that the scene is composed of
uniform-color 3D objects nor that the illumination is distant from the scene or reduced
to a single light source. Finally, light sources can be dynamic and our approaches
must take into account these changes when illuminating virtual objects. In this work,
we are interested in delivering functional realism rather than physically-simulated one
[Ferwerda, 2003]. Indeed, our goal is to produce a convincing and aesthetic blending
between real and digital worlds.

To achieve photometric registration, this thesis focuses on analyzing RGB-D images
provided by the sensor. We thus considered four main axes of research that are: (1)
Photometric registration using specular reflections. (2) Photometric regis-
tration using cast shadows. (3) Photometric registration using both specular
reflections and cast shadows. (4) Detection of specular reflections and cast
shadows of indoor real scenes using a deep learning approach. These four
axes of research led to four main contributions that are illustrated in figure 1.5 and are
detailed in the following.

(1) Photometric registration using specular reflections.
Within our first contribution, we consider indoor real scenes where both geometry and
illumination are static. As the sensor browses the scene, specular reflections can be
observed through a sequence of RGB-D images (Figure 1.5). These visual cues are very
informative about the scene’s illumination and reflectance and have been long consid-
ered within photometric registration approaches. In this context, existing techniques
often recover specularities as saturated regions in the image. Consequently, bright and
white surfaces can be mistakenly considered. Moreover, light sources are often assumed
to be distant and only their directions are recovered. However, within indoor real scenes,
this assumption is not always valid. Our first contribution addresses these limitations.
Specifically, we consider arbitrary real scenes composed of one or more objects with
varying textures. We estimate both diffuse and specular reflectance properties using
a robust spatio-temporal analysis of the acquired RGB-D sequence. Furthermore, we
recover the 3D position of multiple light sources in the scene. Our algorithm has been
evaluated on various indoor scenes and allows convincing MR results such as realistic
virtual shadows as well as correct real specularity removal.

(2) Photometric registration using cast shadows.
In this contribution, the analysis is based on observed cast shadows in the scene (Fig-
ure 1.5). Shadows are omnipresent and result from the occlusion of light by existing
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Figure 1.5 – The four contributions of this thesis are depicted in this figure. Contribu-
tion (1) corresponds to our photometric registration using specular reflections. Contri-
bution (2) corresponds to our photometric registration using cast shadows. Contribution
(3) aimed at estimating reflectance and illumination using both specular reflections and
cast shadows. Contribution (4) aimed at detecting specular reflections and cast shadows
using a deep learning framework.

geometry. They therefore represent interesting cues to reconstruct the photometric
properties of the scene. When indoor scenes are considered, existing solutions often
assume uniform-color surfaces to detect shadows. Presence of texture in this context
is a challenging scenario. In fact, separating texture from illumination effects is of-
ten handled via approaches which require extensive user interaction (e.g., indication of
shadows location) or do not satisfy mixed reality requirements (few minutes to detect
shadows within a single image). In this contribution, we present a method which tackles
these constraints. The proposed approach is twofold: we first separate texture and illu-
mination by considering pairs of points with the same reflectance property but subject
to different illumination conditions. Then, from recovered illumination, we estimate
the 3D position and intensity of light sources within an iterative process. Our method
handles dynamic illumination and runs at an interactive frame rate. Consequently, it
is adapted to MR scenarios where the user can freely turn on/off and move the light
sources.

(3) Photometric registration using both specular reflections and cast shad-
ows.

8



1.3. Contributions Summary

In this contribution, we tackle the problem of illumination and reflectance estimation
by jointly analysing specular reflections and cast shadows (Figure 1.5). The proposed
approach takes advantage of information brought by both cues to handle a large variety
of scenes. To illustrate, weak cast shadows are difficult to detect using only shadow-
based approaches, however, when specular reflections are available, it is possible to
effectively combine both cues to recover illumination. In this contribution, we pro-
pose a method which takes advantage of both cues to recover the position and color
of multiple light sources. Our approach is capable of handling any textured surface
and considers both static and dynamic light sources. Its effectiveness is demonstrated
through a range of applications including real-time mixed reality scenarios where the
rendering of synthetic objects is consistent with the real environment (e.g., correct real
specularity removal, visually coherent shadows) and retexturing where the texture of
the scene is altered whereas the incident lighting is preserved.

(4) Detection of specular reflections and cast shadows of indoor real scenes
using a deep learning approach.
In the previously mentioned contributions, we have explored approaches to effectively
detect and model specular reflections as well as cast shadows in order to achieve the
photometric registration of real scenes. A last contribution of this thesis was to propose
a deep-learning framework to jointly detect specularities and cast shadows in indoor
real scenes. Furthermore, within data driven approaches, a key factor to generalization
consists in having a dataset with a large variety of scenarios. With regard to our target
task, datasets for specular reflection detection are not available and most shadow de-
tection datasets consider outdoor scenes where the sun is the only light source. Hence,
we have built a comprehensive and large dataset with the purpose of handling indoor
real scene scenarios. Our framework was tested on both our dataset and available
benchmarks and achieves good results in both indoor and outdoor scenes.

Publications
The complete publication list is provided below:

� S. Jiddi, P. Robert, E. Marchand. Using Specular Reflections and Cast Shadows
to Recover Surface Reflectance and Illumination properties in Dynamic Indoor
Scenes. In IEEE Transactions on Visualization and Computer Graphics, TVCG.
(Submitted)

� S. Jiddi, P. Robert, E. Marchand. Estimation of position and intensity of dy-
namic light sources using cast shadows on textured real surfaces. In IEEE In-
ternational Conference on Image Processing, ICIP’18, Athens, Greece, October
2018.

� S. Jiddi, P. Robert, E. Marchand. Photometric Registration using Specular
Reflections and Application to Augmented Reality. In Asia Pacific Workshop on
Mixed and Augmented Reality, APMAR’18, Taipe, Taiwan, April 2018.

� S. Jiddi, P. Robert, E. Marchand. Illumination Estimation using Cast Shadows
for Realistic Augmented Reality Applications. In IEEE International Symposium
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on Mixed and Augmented Reality(ISMAR-Adjunct), ISMAR’17, Nantes, France,
October 2017.

� S. Jiddi, P. Robert, E. Marchand. Reflectance and Illumination Estimation for
Realistic Augmentations of Real Scenes. In IEEE International Symposium on
Mixed and Augmented Reality(ISMAR-Adjunct), ISMAR’16, Merida, Mexico,
September 2016.

Demonstrations

The complete demonstrator list is provided below:

� S. Jiddi, P. Robert, E. Marchand, A. Laurent, M. Fradet, P. Jouet, C. Baillard.
Probeless and Realistic Mixed Reality Application in Presence of Dynamic Light
Sources. In IEEE International Symposium on Mixed and Augmented Reality,
ISMAR’18, Munich, Germany, October 2018. Demo session: https://youtu.be/

sENETegDHnQ

� S. Jiddi, P. Robert, E. Marchand, A. Laurent, M. Fradet, C. Baillard. Realistic
Mixed Reality Scenarios under Dynamic Lighting and Moving Geometry. In Asia
Pacific Workshop on Mixed and Augmented Reality, APMAR’18, Taipe, Taiwan,
April 2018. (Best Demo Award). Demo session: https://youtu.be/l6Phgm6C-D8

Patents

This work has been conducted within the MR technical area at Technicolor, where
collaborations in several industrial projects have led to the following patents:

Published:

� P. Robert, S. Jiddi, M. Hudon. Estimation of specular light source and surface
reflectance in a scene from a RGBD sequence, 2015, (EP3144893).

� P. Robert, S. Jiddi, M. Hudon. Reflectance parameter estimation in real scenes
using an RGBD sequence, 2015, (EP3144893).

Filled:

� P. Robert, S. Jiddi, A. Laurent. Matching environment maps from various
sources, 2016.

� S. Jiddi, P. Robert, L. Tao. Estimation of the 3D position and intensity of light
sources using cast shadows, 2017.

� P. Robert, S. Jiddi, A. Laurent. Estimation of point light source 3D location
and occlusion attenuation, 2017.

� P. Robert, S. Jiddi, L. Tao. Estimation of 3D lighting parameters from reference
virtual viewpoints, 2018.
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� P. Robert, S. Jiddi, G. Nieto. Intrinsic image decomposition in presence of
textured surfaces for lighting estimation, 2018.

� G. Nieto, P. Robert, S. Jiddi. Differentiable Shadow Casting for Point Light
Source Estimation, 2018.

1.4 Thesis Structure
This dissertation is divided into 6 technical chapters. The remaining chapters are
structured as follows: In Chapter 2, the theoretical background related to the main
components of mixed reality is laid out. In Chapter 3, we propose a photometric
registration classification and provide an overview of relevant prior art. In Chapter 4,
we present our specularity-based approach for photometric registration. In Chapter
5, we present our approach to estimate illumination properties using cast shadows on
uniform and/or textured real surfaces. In Chapter 6, we present our generic method
to recover both reflectance and illumination in dynamic real scenes with arbitrary
material properties. In Chapter 7, we present a data driven approach to detect specular
reflections and cast shadows using a deep learning framework. Finally, we provide a
review of our research and conclude this thesis.
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The overarching goal of Mixed Reality (MR) is to provide users with the illusion that
virtual and real objects coexist indistinguishably in the same space. An effective il-
lusion requires an accurate registration between both worlds. This registration must
be geometrically and photometrically coherent. In this chapter, we present the main
concepts and theoretical background related to the ecosystem of realistic MR.

2.1 Mixed Reality Framework
In order to deliver a realistic MR experience, virtual objects must be accurately aligned,
in 3D, with the real world. Also, their rendering must be visually consistent with the
real environment. This requires modeling the real world and using model properties
within the virtual world. Figure 2.1 illustrates how these two worlds can be realisti-
cally mixed within a single image. Specifically, the following four components must be
modeled:

� Geometry: the real world is composed of several 3D objects with different
shapes. The position of these objects is expressed in the world frame Fw. The
virtual world contains a 3D model which represents the geometry of the real scene
as well as virtual objects which augment the real scene. These 3D models can
be represented by a set of 3D points whose positions are expressed in a virtual
world frame Fvw. In the following and without loss of generality, we assume that
frames Fw and Fvw are aligned. Hence, both real and virtual scenes are expressed
in the world frame Fw. The creation of a 3D virtual model which matches the
real-world environement is of interest within MR scenarios. For instance, when
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Figure 2.1 – In order to achieve realistic MR scenarios, the digital world must be aligned
in 3D with the real world and the appearance of synthetic objects must be consistent
with the real environment. These processes are respectively geometric and photometric
registrations.

virtual objects are added to the model of the real scene, we are able to handle geo-
metric occlusions between both worlds. The process of recovering scene geometry
is referred to as 3D Surface Reconstruction.

� Camera: on the real-world side, a camera captures an image of the real scene.
The position of the real camera is expressed in the camera frame Fc. Equally,
the virtual scene is viewed through a virtual camera whose position is expressed
in the virtual camera frame Fvc. To create an image of the virtual world that
is consistent with the real camera’s current view, virtual and real cameras must
be located at the same position, identically oriented and have the same intrinsic
parameters (focal, field of view, etc.). Within this process, referred to as camera
pose estimation, the unknowns are the real camera’s position and orientation
in the world frame Fw (the intrinsic parameters are often recovered within a
calibration step). This is an important step as inaccurate camera poses result
into inconsistencies within the MR scenario (e.g, misalignment errors). When
both scene geometry and camera position are estimated, a compositing procedure
provides a basic augmented image where real and virtual worlds are geometrically
aligned.

� Illumination: in order to achieve a realistic compositing, virtual objects must
be illuminated by a virtual lighting which mimics the real one. In the real-world,
the interaction between existing light sources and scene is automatically captured
within the camera’s sensor which delivers a 2D color image of the scene. In the
virtual world, light sources must retain the same characteristics as the real light
sources (number, shape, color, position, etc.). Then, the interaction between
virtual light sources, geometry and reflectance is described using a mathematical
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reflection model.

� Reflectance: The amount of reflected light depends on the surface on which
the incident light falls off. This property corresponds to surface reflectance. For
instance, a rough surface such as wood reflects light differently compared to a
shiny surface such as metal. Estimating real scene reflectance is an important
step to achieve realistic mixed reality scenarios. To illustrate, when real specular
reflections are occluded by a virtual object’s shadow (virtual green sphere in figure
2.1), the reflectance must be accurately reconstructed in this modified region.

Geometric registration corresponds to geometric processes, including 3D surface recon-
struction and camera pose estimation. The goal of this registration is to achieve an
accurate geometric blending between virtual and real worlds. Algorithms and available
tools with regard to geometric registration are presented in section 2.2. Photometric
registration or reconstruction is the process of estimating the illumination and surface
reflectance properties of an environment, given a geometric model of the scene and a
set of photographs of its surfaces [Gibson et al., 2001]. Algorithms and available tools
with regard to photometric registration are presented in section 2.3.

2.2 Geometric Registration

In this section, we review the main concepts and algorithms that concern 3D surface
reconstruction and camera pose estimation.

2.2.1 Scene Surface Reconstruction

In computer vision, 3D surface reconstruction refers to the process of recovering 3D
information of a given scene. This process is very complex due to the diversity of each of
the involved parts. These parts concern the scene itself, its lighting, and the sensor that
is used for data acquisition. 3D surface reconstruction has been extensively examined
since Horn’s introduction of Shape from Shading [Horn and Brooks, 1989]. Research
in this area led to various approaches and techniques which can be categorized into
passive and active methods.

Passive Methods

Passive 3D reconstruction approaches initially originated from the field of photogram-
metry and, later on, from the field of computer vision. In contrast to photogrammetry,
computer vision applications rely on fast, automatic techniques, sometimes at the ex-
pense of precision. Proposed passive 3D reconstruction techniques can be categorized
into multiple view and single view approaches.

Within multiple view approaches, the scene is observed from two or more viewpoints.
This is achieved by either a single moving camera at different times (structure from
motion) or multiple cameras at the same time (stereo). From the collected images,
the system aims at recovering the 3D structure of the scene. Figure 2.2 illustrates the
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Figure 2.2 – First and second columns are views of a stereo pair. Third column is
an outline of the operation of a simple stereo rig using stereo images to recover the 3D
structure of the scene.

general concept of inferring the 3D structure of the scene using two viewpoints.

Provided that we can determine the correspondences between left and right image
points (x and x′) referring to the same 3D point, we can determine two directions
along which this 3D point lies. The intersection of the these two rays corresponds to
the 3D position of the scene point.

Figure 2.3 – (a) Example of synthetic shape from shading image (left) and correspond-
ing shape from shading reconstruction (right) - Figure of [Horn and Brooks, 1989]. (b)
Example of synthetic shape from a texture image (left) and corresponding surface normal
estimate (right)- Figure of [Garding, 1992].

Within single view approaches, involved computations are more complex. Such meth-
ods are generally based on the analysis of 2D features (e.g., shading, texture, focus)
to recover 3D information. For instance, shape from shading techniques [Horn and
Brooks, 1989][Huang and Smith, 2009] use the shades in a grayscale image to infer the
shape of the surfaces (Figure 2.3). Shape from texture [Garding, 1992] estimates the
shape of the observed surface from the distortion of the texture created by the imaging
process (Figure 2.3). In shape from focus [Nayar and Nakagawa, 1994], proposed algo-
rithms estimate depth using two input images captured from the same viewpoint but
with different camera depths of field. While 3D recovery from a single view is possible,
such methods are often not practical in terms of either robustness or speed.
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Active Methods

In contrast to passive reconstruction approaches, active 3D sensing measures depth by
illuminating the scene with a controlled light source and measuring the backscattered
light. Practically, 3D sensors directly provide the geometry of the scene and require
minimal operator assistance. There are two types of such sensors: Structured-Light
(SL) sensors and Time-Of-Flight (ToF) sensors.

SL sensors are based on a fairly easy principle to understand. In addition to the
camera itself, a structured light system adds a light source to illuminate the scene be-
ing imaged with patterns. The regular patterns of this light are distorted by the surface
of the object, and from this distortion the depth map of the object can be calculated.
This core idea was integrated in several end-user sensors such as the Microsoft Kinect
v1 and the Intel R200. The Kinect v1 sensor is composed of two cameras, a color RGB
and a monochrome infrared (IR) camera, as well as an IR projector. The baseline be-
tween the IR projector and the IR camera is 7.5cm (Figure 2.4). The IR projector uses
a known and fixed dot pattern to illuminate the scene. Simple triangulation techniques
are later on used to compute the depth information between the projected pattern seen
by the IR camera and the input pattern stored on the unit. In contrast to the Kinect
v1, Intel R200 sensor is a very compact depth camera that can be mounted on laptops
and mobile devices (Figure 2.4). It comes with a color camera and a depth camera
system. This depth system is composed of two IR cameras and an IR projector.

Figure 2.4 – Examples of 3D sensors: (left) Microsoft Kinect v1, Kinect v2 and R200
are represented row-wise (scaled) (center) Main components of the Kinect v1 (right)
Main components of Intel R200 sensor.

Time-of-flight sensors measure depth by estimating the time delay between light emis-
sion and reflected light detection. In the last decade, this principle has found realization
in various microelectronic devices resulting in new range-sensing devices. For instance,
the second version of the Kinect sensor (v2) integrated this technology (Figure 2.4).
The basic hardware used for Kinect v2 is very similar to the structured-light system
(Kinect v1), using a light source and a camera. However, the difference consists in
using the Continuous Wave (CW) Intensity Modulation approach. The general idea is
to actively illuminate the scene under observation using near infrared (IR) intensity-
modulated, periodic light. Due to the distance between the camera and the scene point,
and the finite speed of light, a time shift is caused in the optical signal which is equiva-
lent to a phase shift in the periodic signal. The time shift is then transformed into the
sensor-object distance as the light has to travel the distance twice.

17



Chapter 2. Background Knowledge

Representation of 3D information

There are different manners of representing the 3D structure of a given scene. In the
following, we present three of the most used and known representations.

The simplest way of representing and storing the 3D coordinates of a scene is a depth
map (Figure 2.5). It is a grey scale image generated by a 2D camera except that the
depth information replaces the intensity information. This representation is considered
to be convenient because retrieving both intensity and depth information can be simul-
taneously achieved by accessing the same pixel location within respectively the RGB
color image and depth measurement image.

Figure 2.5 – From left to right, RGB image of the scene, its depth map with a specific
color-scale (from red: near to blue: far - Black pixels correspond to missing depth due
to occlusion), its point cloud and polygon-mesh representations.

In general, 3D active approaches produce a set of points lying on the surface of the
scanned scene. The resulting set contains only 3D points and is referred to as a point
cloud (Figure 2.5). This model representation can be obtained by merging information
from depth maps or by sampling a voxel volume as well.

For mixed reality purposes, point clouds are often converted to polygon (generally
triangle) mesh models (Figure 2.5). Techniques to achieve this conversion include De-
launay triangulation, alpha shapes and ball pivoting. This representation is commonly
used in computer graphics rendering tasks because it contains a more self-contained
representation of the scene (vertices linked by edges and forming shaded polygonal
faces) and nowadays graphics boards are optimized for rendering such meshes.

2.2.2 Camera Pose Estimation
Camera pose estimation consists in computing the position and orientation of the cam-
era with respect to the world frame, given a set of correspondences between 3D features
(e.g., points, edges) and their projections in the image plane. Solving this ill-posed
problem requires modeling the camera and determining the 2D-3D correspondences.

Camera Model

A camera is a device in which the 3D scene is projected down onto a 2D image. Specif-
ically, it maps 3D world points whose coordinates are expressed in standard metric
units into the pixel coordinates in the image plane. It is convenient to think of this
mapping as a cascade of three successive stages (Figure 2.6): (i) a 6 degree-of-freedom
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(DoF) transformation cTw which maps points expressed in the world frame Fw to the
same points expressed in the camera frame Fc. (ii) a projection operation from the
3D world to the 2D image plane. (iii) a mapping from metric image coordinates to
pixels coordinates. In the following, we will discuss each of these transformations and
mappings.

Figure 2.6 – A cascade of three transformations must be applied in order to convert a
3D world point into a pixel in the image.

Camera Model: From World to Camera Coordinates

3D surface reconstruction approaches provide a set of 3D points which represent scene
surfaces. Using Euclidean geometry, we can express the position of a given 3D point
in the 3D space within a basis of 3 orthonormal unitary vectors (i, j,k). The three
coordinates wX̄ = ( wX, wY, wZ)> are likely defined first in the world frame Fw as
follows:

wX̄ = wXi + wY j + wZk (2.1)

In order to define the coordinates of the point in the camera frame Fc, we must know
the rigid transformation which models the change in position and orientation between
both frames Fw and Fc. The change in position is defined by a 3D translation ctw which
transforms the origin of the world frame Fw into the center of the camera frame Fc. The
change in orientation is defined by a 3D rotation cRw which defines the transformation
from the axes of the world frame to the axes of the camera frame. Consequently, the
coordinates of the 3D point in the camera frame are given by:

cX̄ = cRw
wX̄ + ctw (2.2)

In the following, we will use the homogeneous coordinates to define the 3D position
of a point in a given frame as they allow transformations to be represented as linear
mappings. Hence, the Cartesian coordinates wX̄ = ( wX, wY, wZ)> in the Euclidean
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space can be defined in a protective space by wX = (wX̄, 1)>. Using the homogeneous
coordinate formulation, equation 2.2 can be rewritten as:

cX = cTw
wX with : cTw =

(
cRw

ctw
01×3 1

)
(2.3)

where the homogeneous matrix cTw represents the transformation from the world frame
Fw to the camera frame Fc. cRw is a 3× 3 matrix and ctw is a 3× 1 vector.

Camera Model: Image Plane Projection

The most commonly used projection in computer vision is the 3D perspective projec-
tion. It has its roots in photography where a device, called camera obscura, was used
to image the 3D world. The pinhole camera model relies on perspective projection to
describe the mathematical relationship between the coordinates of a point in three-
dimensional space and its projection onto the image plane. The image is formed on the
plane Z = f where f is the distance from the center C of the camera to its focal plane.
The 2D coordinates x̄m = (xm, ym)> in the image are given by the Thales theorem:

(
xm
ym

)
= f

cZ

(
cX
cY

)
(2.4)

where cX̄ = ( cX, cY, cZ) are the coordinates of the point in the camera frame Fc.
Using the homogeneous coordinates, we rewrite the projection operation in a linear
form:

xm = AcX with : A =

 f 0 0 0
0 f 0 0
0 0 1 0

 (2.5)

where xm = (x̄m, 1)> are the 2D homogeneous coordinates corresponding to the loca-
tion of the 3D point on the projection image plane.

Camera Model: Pixel Space

An image is basically a grid of pixels. It is defined by its width w, its height h and its
origin located at the corner of the sensor. To convert the 2D coordinates of a point’s
projection from meters to pixels, we need to apply the following transformation which
takes into account the coordinates (u0, v0) of the principal point (corresponds to (0, 0)
in the 2D meter space) and the pixel size (lx, ly) on the sensor:

{
u = u0 + 1

lx
x

v = v0 + 1
ly
y

(2.6)
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Finally, to convert a 3D point from the camera frame Fc to its 2D pixel coordinates,
the following transformation is applied:

x = KΠcX with : Π =

 1 0 0 0
0 1 0 0
0 0 1 0


and : K =

 px 0 u0
0 py v0
0 0 1


(2.7)

where px (respectively py) is the ratio between the focal length f and the pixel width
(respectively height). K contains all the parameters peculiar to the camera, and is
called the intrinsic matrix. To sum up, the projection in the image plane of a given 3D
point defined in the world frame Fw is a concatenation of the following three mappings:

x = KΠcTw
wX (2.8)

Typical cameras have a lens distortion, which disrupts the assumed linear projective
model (equation 2.4). Thus a camera may not be accurately represented by the pinhole
camera model that we have described, particularly if a low-cost lens or a wide field-of-
view(short focal length) lens such as a fisheye lens is employed. The effect is non-linear
and, if significant, it must be corrected so that the camera can again be modeled as
a linear device. The process of finding the camera’s intrinsic parameters K is referred
to as camera calibration. It is generally performed using a set of images where some
known 3D points wX are projected at known positions x (identified via detection). This
defines a system of equations from which the parameters (u0, v0, px, py) are recovered. A
number of publicly available camera calibration packages (including the non-linear case)
is available on the web, such as the Caltech camera calibration toolbox for MATLAB
and in the OpenCV computer vision library.

2.2.2.1 Approaches Overview for Pose Estimation

Given a calibrated camera (known intrinsic matrix K) and a 3D model of the scene, the
camera pose estimation consists in recovering the full transformation cTw which maps
2D image coordinates x (or their corresponding 3D points cX) to 3D world points wX.
In the following, we will review various approaches allowing to solve this problem.

3D-3D Registration

When 3D coordinates of observed points are available in both camera Fc and world
Fw frames, the registration can be done directly in the 3D space, also referred to as
3D-3D registration. Denoting q a minimal representation of cTw (e.g., q = (ctw, θu),
where θ and u are the angle and the axis of the rotation cRw) , the problem can be
reformulated as follows:

q̂ = arg min
q

N∑
i=1

(cXi − cTw
wXi)2 (2.9)
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Solving equation 2.9 can be achieved using an iterative minimization algorithm such
as Gauss-Newton or Levenberg-Marquart methods. When the 3D correspondences are
unknown, the Iterative Closest Point (ICP) technique [Besl and McKay, 1992] can be
considered to solve this problem.

2D-3D Registration

Within 2D-3D registration, the problem of camera pose estimation consists in recover-
ing the transformation cTw which maps a set of N correspondences between 2D image
coordinates x and 3D world points wX. Proposed methods can be categorized into
marker-based (or keypoint-based) approaches and marker-less approaches.

Keypoint-based approaches rely on a two-step solution. First an estimation of the
unknown depth of each keypoint in the camera frame is achieved (3D model is usu-
ally expressed in the world frame). Once the N points coordinates are known in the
camera frame, the second step consists in estimating the rigid transformation cTw that
maps the coordinates expressed in the camera frame to the coordinates expressed in the
world frame (3D-3D registration). In addition to these two-step solutions, there exist
direct (or one-step) approaches such as the Direct Linear Transform (DLT) [Hartley
and Zisserman, 2003] which recover camera pose by solving a linear system built by
considering N correspondences within equation 2.8. These solutions are not accurate
because this problem is intrinsically non-linear. Consequently, a more accurate solution
consists in minimizing the norm of the re-projection error as follows:

q̂ = arg min
q

N∑
i=1

d(xi,KΠcTw
wXi) (2.10)

where d(x1,x2) is the Euclidean distance between two points x1 and x2. The solution
to this problem can be achieved using a non-linear minimization algorithm such Gauss-
Newton or Levenberg-Marquart.

On the other hand, markerless approaches do not require any marker or keypoints
matching process. In fact, they mainly rely on the following key idea: instead of con-
sidering distance between the image coordinates of two keypoints , the distance between
a contour point in the image and the projected 3D line L(q), using the 3D model and
camera pose q, is considered (Figure 2.7). Recovering camera pose is achieved by
considering the following minimization:

q̂ = arg min
q

N∑
i=1

d∗(L(q),xi) (2.11)

where d∗(L(q),xi) is the squared distance between the point xi and the projection of
the contour L of the model for the pose q. This core idea has been extensively used
to propose various markerless camera pose estimators [Choi and Christensen, 2012],
[Comport et al., 2006], [Drummond and Cipolla, 2002], [Lowe, 1991].

Simultaneous Localization And Mapping (SLAM)
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Figure 2.7 – Core idea of markerless approaches where geometric contours are consid-
ered to recover the camera pose - Figure from [Marchand et al., 2016].

As previously described, 3D-3D and 2D-3D registration approaches require a 3D model
of the observed points to recover camera pose. When 3D data is not available, methods
which do not require any 3D knowledge about the observed scene can be considered.
The idea consists in estimating, from a sequence of images, the scene structure and the
camera position at the same time. Denoting [q]t = (q1...qt) a sequence of t camera
positions and [wX]N = (wX1...

wXN ) a set of N points, the problem can be formulated
as follows:

([q̂]t, [ ˆwX]N ) = arg min
([q]t,[wX]N )

t∑
j=1

N∑
i=1

d(xi,KΠjTw
wXi) (2.12)

This problem originally known as the structure from motion issue was handled off-line
due to the high computational complexity of the solution. Research in this area has
led to more efficient and fast SLAM solutions [Triggs et al., 1999][Klein and Murray,
2007] [Mouragnon et al., 2006].

Recently, several techniques tackled the same problem and additionnaly used an RGB-D
sensor to acquire partial 3D knowledge about the scene [Newcombe et al., 2011b][Newcombe
et al., 2011a]. The latter are more adequate for MR specifications (Figure 2.8-a) as they
can run in real-time and require light-weighted hand-held devices instead of previously
considered complex setups (e.g., laser range sensors, rotary encoders, inertial sensors,
cameras).

2D-2D Registration

All previously described geometric registrations rely on some knowledge of the 3D
structure of the observed scene. An alternative is to infer the camera pose using image
processing techniques. The appearance-based approaches, also known as template-
based approaches, only rely on captured 2D images of the scene. Specifically, these
techniques use a 2D model (reference image or reference template) to estimate the
camera motion between the current and reference images at the pixel intensity level
(Figure 2.8-b). In the following, we consider that the 2D template model is represented
by a region w(x) in a reference image I0. The goal is to find, within the current image
I, the template’s new location w(x,h) where h are the parameters of the motion model
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Figure 2.8 – (a) Results of KinectFusion [Newcombe et al., 2011a], a fast SLAM ap-
proach, where green particles interact with the recovered geometry of the scene. (b)
2D-2D registration example where the painting (framed by virtual green lines) repre-
sents the considered template - Figure of [Tillon et al., 2010].

(usually described using the homography). This problem can be formulated as follows:

ĥ = arg min
h

∑
x∈w

f(I0(w(x)), I(w(x,h)) (2.13)

where f is the dissimilarity function. A basic choice of f corresponds to considering
the sum of squared differences (SSD) within pixels intensities [Lucas and Kanade,
1981]. More sophisticated template trackers have been proposed in order to efficiently
handle image blur [Park et al., 2012], illumination and occlusions [Irani and Anandan,
1998][Dame and Marchand, 2010].

2.2.2.2 2D-2D Correspondences

Within several camera pose estimation methods, we need to establish correspondences
between 2D points in images. This is usually achieved by considering a set of salient
points or keypoints. The procedure is threefold: the basic idea is to first detect key-
points. Then, an invariant feature representation (descriptor) for image data around
the detected keypoint is built. Finally, a step of features matching is performed.

In general, within a captured image, two types of image features can be extracted,
namely global features and local features. Global features (e.g., color and texture) aim
to describe an image as a whole and can be interpreted as a particular property of the
image involving all pixels. On the other hand, local features aim to detect keypoints
or interest regions in an image and describe them. As real time applications have to
handle large amounts of data and/or run on mobile devices with limited computational
capabilities, there is a growing need for local descriptors that are fast to compute,
fast to match, memory efficient, and yet exhibiting good accuracy. Historically, Harris
detector [Harris and Stephens, 1988] is a commonly used local feature detector that
computes the cornerness score of each pixel from gradients of an image patch. The
cornerness score is then classified into flat, edge and corner according to the intensity
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structure of the patch. Various alternatives to this detector have been proposed to
handle cornerness detection differently [Smith and Brady, 1997], lower the processing
time [Rosten et al., 2010] and deal with scale-invariance within images [Lindeberg,
1998][Lowe, 2004][Bay et al., 2006][Alcantarilla et al., 2012].

Once a keypoint is detected, the next step consists in computing a feature vector
that fully describes the keypoint along with its local neighbors. These vectors can be
classified into two main categories: histogram of oriented gradients approaches and
intensity approaches. Histograms of oriented gradients are computed within small
patches in the image and are then concatenated to represent the whole image. Thus,
shape and intensity information are preseved within this image representation. This
process has been extensively used in common descriptors such as SIFT [Lowe, 2004],
SURF[Bay et al., 2006] and CARD[Ambai and Yoshida, 2011]. Intensity comparisons
based approach consists in computing and storing comparisons between pairwise pixels
intensities. For instance, this approach has been considered within BRIEF [Chaumette
and Hutchinson, 2006], ORB [Rublee et al., 2011] and BRISK [Leutenegger et al., 2011].

The last step consists in matching the detected keypoints using the computed de-
scriptors. Within this process, a nearest neighbor searching approach is considered in
order to find the closest descriptor in the reference image that matches the current
descriptor.

2.3 Photometric Registration

The previous section describes the main geometric registration components (3D surface
reconstruction and camera pose estimation). These processes allow a 3D alignment
between the real world with the digital world. In order to realistically blend both
worlds, one must handle the photometric registration problem as well. This requires
modeling the interaction between geometry, light and surface reflectance in both the
physical and virtual worlds. In this section, we give an overview of the imaging pipeline
that starts with the acquisition of a real world scene or with the rendering of an abstract
model using computer graphics techniques and results in a 2D image of the considered
scene.

2.3.1 Terminology

In the following, we present several physical and perceptual quantities important for
digital imaging.

Radiometry

Radiometry is the science concerned with light measurement. In this context, light
is represented by a radiant energy Qe which is measured in Joules (J). Since light
propagates through different media (e.g., space, air, water), it is necessary to model
the way it propagates through these environments within time and space. Integrating
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radiant energy over time is referred to as radiant flux or radiant power Pe:

Pe = dQe
dt

(2.14)

It is measured in Joules per second (J/s) or Watts (W) and represents therefore a
measure of energy per unit of time. Integrating radiant flux over space, per unit area
dA, is referred to as radiant flux density. Radiant flux density is also known as irradiance
Ee if we are considering the flux arriving from all possible directions at a point on a
surface ( Figure 2.9 - a) and as radiant exitance Me for the flux leaving a point on a
surface in all possible directions (Figure 2.9 - b):

Ee = dPe
dA

Me = dPe
dA

(2.15)

Both irradiance and radiant exitance are measured in Watts per square meter (W/m2).
They are thus measures of energy per unit of time and per unit of area.

Figure 2.9 – (a) Irradiance: radiant flux density considering flux arriving from all
possible directions upon unit area dA. (b) Radiant exitance: radiant flux density con-
sidering flux leaving the unit area dA. (c) Radiant intensity: light power emitted per unit
solid angle dω. (d) Radiance: incident light upon a unit area dA from a unit direction
represented by the solid angle dω.

If we consider a point light source (Figure 2.9 - c), the light emitted into a particular
direction is called radiant intensity Ie:

Ie = dPe
dω

(2.16)

and is measured in Watts per steradian (W/sr). A steradian is a measure of solid angle
corresponding to area on the unit sphere. The flux leaving or arriving at a point in a
particular direction is known as radiance Le:

Le = d2Pe
dAcosθdω

(2.17)

and is measured in Watts per square meter per steradian (Figure 2.9 - d) and represents
a measure of energy per unit of time as well as per unit of area and per unit of direction.

Photometry

The human eye is sensitive to wavelengths λ varying between 380 and 830 nm. Within
this range, it is not equally sensitive to all wavelengths and the sensitivity is not the
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same for all individuals. Nevertheless, these variations are small enough to approx-
imate the spectral sensitivity of any human observer with a single curve, known as
"V (λ) curve" (Figure 2.10). Since, we are interested in the way a human observer per-
ceives light, its spectral composition may be weighted according to V (λ). The science
of measuring light weighted with regard to V (λ) is called photometry.

All previously presented radiometric quantities have their photometric counterparts.
By spectrally weighting radiometric quantities with V (λ), they are converted into pho-
tometric quantities. For instance, luminous flux or luminous power Pv is the photo-
metrically weighted radiant flux Pe and it is measured in lumens (lm). One of the most

Figure 2.10 – CIE photoptic luminous efficiency curve, also known as the V (λ), which
represents the sensitivity of any human observer with regard to visible light.

important light derivatives is luminance. It corresponds to photometrically weighted
radiance and constitutes an approximate measure of how bright a surface appears. Spec-
trally weighting radiance corresponds to multiplying each spectral component with the
corresponding value given by the weight function V (λ) and then integrating over all
visible wavelengths.

Bidirectional Reflection Distribution Function (BRDF)

As previously stated, radiance (or luminance) corresponds to the flow of light traveling
between two surfaces. When light, represented by a set of light rays, hits an opaque
surface, it can be either absorbed and converted into thermal energy, or reflected into
some direction. The amount of light reflected as well as the direction in which it is
reflected depends on a particular surface property named reflectance. To illustrate,
matte surfaces reflect light almost evently in all directions, whereas glossy and shiny
surfaces reflect light in a preferred direction. Mirrors are the opposite of matte surfaces
and emit light into almost a single direction (Figure 2.11).

For the purpose of image formation, the exact distribution of light reflected off sur-
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Figure 2.11 – (a) Matte surfaces, referred to as Lambertian or diffuse surfaces, reflect
light equally in all directions. (b) Glossy surfaces reflect light in a preferred direction,
generally comprised within a lobe. (c) Mirror surfaces reflect light in a single direction.

faces is modeled with a bidirectional reflection distribution function fr(X, ω, ωo) which
depends on the incident light direction ω and outgoing light direction ωo at a surface
point X:

fr(X, ω, ωo) = dLo(X, ωo)
L(X, ω)cosθdω (2.18)

where L is the incident radiance and Lo is the outgoing reflected radiance. A physically
plausible BRDF must maintain three important properties:

1. The BRDF is a positive function:

fr(X, ω, ωo) ≥ 0 (2.19)

2. The BRDF must follow the Helmholtz reciprocity principle: if the incident and
reflected light directions are reversed, the BRDF must stay the same:

fr(X, ω, ωo) = fr(X, ωo, ω) (2.20)

3. The BRDF must uphold the law of conservation of energy. Therefore the outgoing
radiance must be less than or equal to the incoming radiance:∫

Ω
fr(X, ω, ωo)cosθdω ≤ 1.0 (2.21)

where Ω comprises all incoming/incident light directions and θ is the angle between
the incident light direction ω and the point’s normal direction n. When the BRDF is
integrated over the entire space of incident directions, we obtain the total reflectance
of the surface point X.
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Rendering Equation

The rendering equation was first introduced by [Kajiya, 1986]. It is an analytic for-
mulation which fully describes the interaction between light, geometry and surface
reflectance. Using equation 2.18, the flow of light throughout an environment can be
rewritten as:

dLo(X, ωr) = fr(X, ω, ωo)L(X, ω)cosθdω (2.22)

where dLo is the outgoing reflected radiance with regard to the incoming radiance L of
one light ray. The total reflected radiance at a scene point X, in the outgoing direction
ωo , is referred to as surface radiance Rs and can be described by the rendering equation
here after:

Rs(X, ωo) = Le(X, ωo) +
∫

Ω
fr(X, ω, ωo)L(X, ω)cosθdω (2.23)

where Le is the emitted radiance. In fact, some scene surfaces (e.g., light sources) can
reflect and emit light at the same time. The term cosθ is equal to the dot product
(n · −ω) where n is the normal vector of point X and ω is the incident/incoming light
direction.

Figure 2.12 – Geometry of the Rendering Equation: light rays originating from the
unit surface dA′ and traveling in the direction ω hit the scene point X. These light rays
are then reflected in direction ωo.

Equation 2.23 can be expressed using geometric relationships between emitting and
receiving surfaces (Figure 2.12):

Rs(X, ωo) = Le(X, ωo) +
∫

Ω
g(X,X′)fr(X, ω, ωo)L(X, ω)cosθcosθ

′dA

‖X −X′‖2
(2.24)

where ‖X −X′‖2 is the distance from point X to point X′ and g(X,X′) is the occlusion
term (equal to 0 if X is visible to X′ and 0 otherwise). g is used to account for the fact
that some surfaces might be blocked with regard to light rays.
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2.3.2 Virtual Image Formation
One of the computer graphics goals is the production of realistic synthetic images
from digital object models (Figure 2.13). The generation of such realistic images relies
on the numerical computation of approximations to the rendering equation 2.24. In
fact, solving this equation analytically is impossible in most 3D scenes [Dutre et al.,
2006]. One way to approximate the solution of this problem is by using Monte Carlo

Figure 2.13 – Modeled virtual scene in terms of geometry and reflectance (left) com-
bined with illumination and its photorealistic created image using computer graphics
rendering techniques - Figure from [Vorba and Karlik, 2012]

integration where N random samples of light ray paths are generated according to a
probability density function. Because evaluating these samples can be computationally
expensive, high-quality images can therefore take hours, or even days to compute.
An alternative consists in modeling light, reflectance and geometry interactions within
simplified reflection models that respect the time-constraints for real-time applications
such as MR.

Light Models

In the physical world, light sources are 3D objects which have the property of emitting
light. Hence, they retain the same characteristics as any common object in the scene
(position, orientation, size, shape). When light rays originating from a light source
illuminate an object, this object is considered to be lit by a direct illumination or direct
lighting. On the other hand, when the emitted light falls on a surface A which reflects
a proportional amount of light towards surface B, surface B is then lit by an indirect
illumination (Figure 2.14).

In the following, we present some of the most known and used light source models
(Figure 2.15):

� Ambient light does not have any identifiable source position or orientation. It
is often used as a secondary light source to mimic the effect of indirect lighting,
where light is scattered off surfaces. When using only an ambient light source to
illuminate a scene, the latter appears to be flat.
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Figure 2.14 – Direct illumination (left): the human observer (or camera) sees the light
reflected by the objects directly lit by light sources. indirect Illumination (right): the
light, emitted by the source, is reflected first at surface A, then surface B reflects the
incident light towards the observer.

� Directional light, also referred to as distant or infinite light, simulates a light
source which is located far away from the lit scene (e.g., the sun). It is considered
to be so far from the scene that its rays reach the surface in a parallel form. It does
not have any identifiable source position and only retains a defined orientation.

Figure 2.15 – Examples of light source models where (a) is a directional light, (b) is a
point light, (c) is a spot light and (d) corresponds to a rectangular area light.

� Point light, also referred to as omni-directional light, simulates rays shining out
from a single point in space in all directions. It can mimic the effect given by an
omni-directional local light source such as light bulbs and candles. It is located
at a point in space and sends light out in all directions equally. The intensity
diminishes with distance from the light, reaching zero at a specified range.

� Spot light simulates light radiating from a single point in space and has a cone
of influence in a specific direction. It can be controlled conveniently to aim at a
specific target. Like a point light, a spot light has a specified location and range
over which the light falls off.

� Area light has a definable size. It simulates a realistic soft lighting distribution
and realistic shadows that vary from hard to soft. It is defined by a rectangle in
space and emits in all directions uniformly across its surface area.
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Another interesting way of representing illumination in the scene is an environment
map, also referred to as reflection map. It is an efficient way for approximating the ap-
pearance of a reflective surface by means of a pre-computed texture image of the distant
environment surrounding the rendered object. Several ways of storing an environment

Figure 2.16 – Examples of environment map textures with sphere mapping in (a) and
cube mapping in (b) representing the surrounding environment of the captured scene.

map can be employed: the first technique is sphere mapping, in which a single texture
contains the image of the surroundings as reflected on a mirror ball. It has been almost
entirely surpassed by cube mapping, in which the environment is projected onto the
six faces of a cube and stored as six square textures or unfolded into six square regions
of a single texture (Figure 2.16).

BRDF Models

Various BRDF models have been proposed in order to cover different surface reflective
properties that one might encounter in the real world. Some of these are data-driven,
some are analytic. In the following, we will give an overview of the analytic models
which can be categorized into physical and empirical models. Figure 2.17 shows the
vector system involved in these BRDF models description for a point located at X in
the 3D space: ω is the incident light source direction, n is the normal vector of the point
and r is the perfect reflection vector with regard to ω. Also, ωo is the outgoing direc-
tion and, it generally corresponds to the observation viewpoint v (in this case ωo = v).

Figure 2.17 – Considered vectors within the BRDF model description.
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Physically-based models try to accurately simulate light scattering by using physics
laws. They usually lead to complex formulations and high computational effort. The
simplest ones are the ideal specular and ideal diffuse reflections. In case of ideal spec-
ular reflection, light coming from a given direction is reflected into a single direction
following the law of reflection. The BRDF in this case is a delta dirac distribution δ,
giving always zero, except when r and ωo are aligned:

fr(X, ω, ωo) = ksδ(r, ωo) (2.25)

where ks is the specular reflectance at point X. A diffuse surface has a BRDF that has
the same value for all incident and outgoing directions. This substantially reduces the
computations and thus it is commonly used to model diffuse surfaces as it is physically
plausible, even though there are no pure diffuse materials in the real world. This BRDF
is expressed as:

fr(X, ω, ωo) = kd
π

(2.26)

where kd is the diffuse reflectance at point X. One of the most complete physical
reflection models is the Torrance-Sparrow BRDF. The roughness is modeled using mi-
croscopic concavities in V-form of equal length called microfacets. Their orientation is
random and their distribution is controlled by parameters, so it is possible to simulate
different degrees of roughness. The complete BRDF function is :

fr(X, ω, ωo) = kd
π

+DFG
ks

4π(n · ω) (2.27)

D is the microfacets distribution, F is the Fresnel factor which gives the fraction of
light that is reflected from the entire surface and G is the geometric attenuation factor
representing the ratio of light that is not occluded by the surface due to geometric
occlusions. This microfacet model was the basis for many other works who offered
variations on the calculation of the functions D, F and G [Maxwell et al., 1973][Cook
and Torrance, 1981].

For empirical models, the main aim is to provide a simple formulation specifically de-
signed to mimic a kind of reflection. Consequently, we get a fast computational model
adjustable by parameters, but without considering the physics behind it. A widely
used empirical model is Phong model [Phong, 1975]. It obeys neither energy conserva-
tion nor reciprocity, but its simplicity has made it one of the most used in Computer
Graphics. In [Phong, 1975], the way a surface point reflects light is described as follows:

fr(X, ω, ωo) = kd
π

+ ks(r · ωo)α (2.28)

where the parameter α ∈ [0,∞[ characterizes the shape of the specular highlight (from
dull to more glossy surface) and is often referred to as shininess. Within this model,
kd, ks and α are parameters which can be chosen in order to simulate different types
of surface materials (Figure 2.18).
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Figure 2.18 – Results of a rendered synthetic object using Phong reflection model with
varying specular reflectance ks and shininess α.

Rendering Approaches

Existing approaches to the production of synthetic images from 3D modeled scenes can
be categorized into geometry-based (GB) and image-based (IB) techniques.

In geometry based approaches, the illumination of a scene is simulated by applying
a shading model. These models can be local, such as Gouraud shading [Gouraud,
1971], which is a very simple technique that linearly interpolates color intensities cal-
culated at the vertices of a rendered polygon across the interior of the polygon (Figure
2.20-a). Also, Phong [Phong, 1975] introduced a more accurate model that is able to
simulate specular reflections. Specifically, in [Phong, 1975], the way a point p in the
scene reflects light is described as a linear combination of three reflection components:

Ip = Ipa + Ipd + Ips (2.29)

where Ip is the color of p and, Ipa, Ipd and Ips are respectively ambient, diffuse and spec-
ular reflection components of point p (Figure 2.19). The ambient reflection is a simple
way of modeling indirect reflections. When using only ambient lighting, all surfaces
are equally illuminated. Diffuse reflection is the property that defines an ideal matte
surface, also called Lambertian surface. Its apparent brightness to an observer is the
same regardless of his angle of view (view-independent). Specular reflection is the
mirror-like reflection of light from a surface. This component is view-dependent since
such reflections are only observed when the viewpoint v and perfect reflection r vectors
are roughly aligned.

Figure 2.19 – The color of a point p described as a linear combination of ambient,
diffuse and specular reflection components using Phong model [Phong, 1975]
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Using [Phong, 1975], each reflection component in equation 2.29 is further described as
follows:

Ip = kpdLa + kpd
M∑
i=1

(np · ωpi )LiO
p
i + kps

M∑
i=1

(rpi · vp)αpLiOp
i (2.30)

where La, Li are respectively the color vectors of ambient and light source i. kpd and kps
are respectively the diffuse and specular reflectances of point p, np is its normal vector,
vp is its viewpoint vector, and αp is its shininess parameter (roughness of the surface).
rpi is the ideal reflection vector at point p with regard to light source i and ωpi is the
direction of the light source i from point p. M is the number of light sources present
in the scene. Op

i is a binary visibility term that is equal to 1 if light i is visible from
the 3D point p and equal to 0 if occluded.

Previously described models ([Gouraud, 1971] and [Phong, 1975]) are local in the sense
that they do not model global illumination effects such as indirect reflections. To
achieve more sophisticated renderings, there is a second class of illumination models
that can be applied to polygonal scenes, which is referred to as global illumination.
Unlike local approaches, these methods are able to simulate the inter-reflections be-
tween surfaces. For instance, diffuse inter-reflections (Figure 2.20-b) can be simulated
by the radiosity method [Greenberg et al., 1986][Pattanaik and Bouatouch, 1994], and
specular reflections can be handled by recursive ray-tracing techniques [Schmitt et al.,
1988]. Nonetheless, these techniques are computationally too complex to be used for
real time image synthesis on common MR devices.

Figure 2.20 – (a) Rendered triangle using Gouraud shading [Gouraud, 1971] where
the color intensities at the triangle’s vertices are linearly interpolated. (b) Examples
of the Cornell box scene rendered using radiosity techniques which allow diffuse inter-
reflections (e.g., green color bleeding on the side of the patched box) - Figure of [Sheng
et al., 2014]. (c) Example of a virtual sphere rendered using an image-based technique
(rendering using an environment map).

Image based approaches (IB) involve capturing an omnidirectional representation of
real-world light information as an image, typically using a specialized camera (Figure
2.20-c). This image is then projected onto a sphere or cube analogously to environment
mapping. This map is finally used to simulate the lighting for the objects in the scene.
This technique often produces results that are similar to those generated by raytracing,
but is less computationally expensive since the radiance value of the reflection comes
from calculating the angles of incidence and reflection, followed by a texture lookup,
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rather than followed by tracing a ray against the scene geometry and computing the
radiance of the ray.

2.3.3 Real Image Formation

Light that hits a point on a surface from a particular direction is at the heart of image
formation. When a picture is taken, the shutter (piece of the camera which allows light
through the lens) is open for a small amount of time. During that time, light originating
from the visible scene (e.g., light sources, reflective surfaces) is focused through a lens
and reaches the camera’s image sensor, where the actual scene image is formed. The
image sensor is partitioned into small pixels (photosites) where each pixel records light
received over a small area. The recorded light corresponds to scene radiance which is
first recovered as voltages and then converted ,within the image processing unit, into
pixel values. In fact, scene radiance becomes pixel values through several linear and
nonlinear transformations which can be modeled using the camera response function
(CRF). This function is the aggregate mapping from sensor exposure (luminance) to
pixel values. In most imaging systems, it usually follows an S-shaped curve (Figure
2.21), which tends to saturate both the highest and the lowest luminance values.

Figure 2.21 – (a) Example of a recovered camera response function (CRF) which maps
exposure values to pixels values. (b) Nine photographs of an indoor scene acquired with
varying shutter speeds in order to recover the camera response function of the sensor.
Figures of [Debevec and Malik, 1997]

Knowing the camera response function is of interest for photometric registration al-
gorithms. In fact, because of limited dynamic range in common cameras, one has to
choose the range of radiance values which are of interest and determine the exposure
time suitably. For instance, scenes with glossy materials and artificial light sources, of-
ten have extreme differences in radiance values that are impossible to capture without
either under-exposing or saturating the sensor. Hence, one ends up either loosing de-
tails in shadowed regions or saturating specular reflections. However, when the goal is
to estimate surface materials, having access to an accurate radiance information of such
surfaces is an important step toward estimating scene reflectance propeties. Thus, by
recovering the camera response function of the sensor, the exposure can be first manu-
ally or automatically adapted to the current dynamic range of the scene, and recorded
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pixel values can be later converted to radiance maps which are independent of the cur-
rent camera settings (shutter speed, aperture, ISO, etc.). Several approaches have been
proposed to recover the CRF of a given sensor [Debevec and Malik, 1997][Grossberg and
Nayar, 2003][Aimone and Mann, 2007], the core idea consists in a pre-calibration step
where overlapped images with different exposure images are acquired (Figure 2.21).

2.4 Conclusion
In this chapter, we presented the main theoretical and practical components involved in
mixed reality frameworks. Specifically, two main aspects need to be addressed, namely
geometric registration and photometric registration.

The goal of geometric registration is to align in 3D both real and digital worlds. To
achieve this goal, the geometry of the scene as well as the camera’s model (intrinsic
and extrinsic parameters) need to be, as much as possible, precisely recovered. Several
existing solutions have been presented with regard to both tasks. An accurate regis-
tration results in a geometric compositing of real and digital worlds where occlusions
and collisions can be correctly handled.

As far as photometric registration is concerned, the aim is to realistically blend real and
digital worlds. To achieve this task, a trade off is made with regard to the choice of the
reflection model used to model both real and digital scenes. On one hand, sophisticated
reflection models are capable of delivering outstanding renderings of synthetic scenes.
Nonetheless, since such models usually involve many parameters, they are not adequate
when the estimation of illumination and reflectance is achieved using low quality images
provided by an end-user sensor.

In this thesis, our goal is to propose photometric registration approaches using a com-
mon RGB-D camera. The 3D model and color images of the scene, acquired using a
calibrated sensor (intrinsic parameters and camera response function), represent our
input data to estimate both reflectance and illumination of real scene surfaces.
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A mixed reality scenario is convincingly real when it is impossible to separate the
virtual elements from the real elements in the resulting mixed environment. In order
to achieve such realism, real and virtual worlds must be photometrically registered.
This mainly requires the estimation of surface reflectance (e.g., diffuse, specular) and
illumination characteristics (e.g., position, color).

Extensive work has been carried out within the photometric registration task. A com-
prehensive classification of these methods is proposed by Jacobs et al. [Jacobs and
Loscos, 2006]. The existing approaches are grouped into three different classes: the
first class corresponds to techniques where the 3D model of the real scene is unknown
and only a single image is available. The second class comprises techniques where both
the 3D model and a single image of the scene are known. The third class corresponds
to approaches where the 3D model is known in addition to a set of images of the scene.

In this thesis, our goal is to achieve realistic mixed reality scenarios. As in most cases,
MR is experienced through a camera’s stream, we generally dispose of a sequence of
color images. In the following, we present state-of-the-art methods, grouped with re-
gard to the required input devices. Specifically, we present methods which respectively
use an RGB camera (the 3D model is not necessary or reduced to basic geometry such
as a plane), an RGB camera along with one or more light probes and, an RGB-D cam-
era (the 3D model is either reconstructed using depth maps or a single depth map is
sufficient for the processing).

3.1 Approaches using an RGB Camera
Early work considered the problem of separating diffuse and specular reflection compo-
nents within a single color image using the dichromatic model [Shafer, 1992]. Within
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this model, the color Ip of a pixel p is described as follows:

Ip = αpIpd + βpIps (3.1)

where Ipd, Ips are respectively the diffuse and specular reflection components. αp and
βp are respectively factors (proportions) of these two reflections at pixel p. Within
equation 3.1, provided that the illumination color is known (e.g., by imaging a white
object surface), the proportions of diffuse and specular reflection components, αp and
βp, can be easily computed by solving the dichromatic equation using least squares.
For robustness reasons, Tan et al. [Tan and Ikeuchi, 2003] introduced the concept
of Specular Free images (SF) to solve equation 3.1. In fact, by producing an image
which is free from specularities, the pixels retaining only the diffuse reflection are con-
sidered separately from pixels exhibiting both reflections. Shen et al. [Shen and Cai,
2009] used similar separation mechanism and proposed a new SF image, referred to as
Modified Specular Free (MSF), which proved to be more robust in presence of image
noise. The diffuse and specular candidates are identified therefore according to the
difference between the MSF and original images. Experimental results showed promis-
ing results with regard to separating both diffuse and specular reflections (Figure 3.1).
Nonetheless, such methods deliver good results for special setups which do not satisfy
MR requirements (e.g., a single isolated object, locally small-sized specular reflections).
Furthermore, there is no estimation of the illumination within these approaches (e.g.,
number, position) as the main target application is specularity removal in input images.

Figure 3.1 – Decomposition of a color image (a) into its diffuse reflection component
(b) and its specular reflection component (c). Figures from [Shen and Cai, 2009]

Several works considered, instead of a single image, a set of color images of real scenes.
Machita et al. [Mashita et al., 2013] presented an in-situ lighting and reflectance esti-
mation method which uses images of the scene taken from multiple viewpoints. The
estimation is achieved in a two-pass procedure: initial values of reflectance and illumi-
nation parameters are roughly recovered then, a non-linear optimization which consid-
ers the difference between real and synthesized images is carried. The convergence of
such systems highly depends on the initial values. Consequently, by recovering light
sources direction from high intensity image areas (e.g., saturated pixels), the initializa-
tion is prone to errors (e.g., bright and white surfaces can be confused with specular
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reflections). For parameters whose initial values are difficult to estimate, values were
assigned heuristically: the light distance is defined based on the height of the ceiling,
while the components of the ambient, diffuse and specular reflections as well as the
shininess coefficient are arbitrary chosen as the center of each range.

Jachnik et al. [Jachnik et al., 2012] presented an algorithm which is able to capture
surface light-field from a single hand-held RGB camera by moving it around a specular
planar object (e.g., shiny book). The captured surface light-field for each point p is then
split into its diffuse and specular components (Figure 3.2-a). Moreover, the recovered
specular reflection is used to estimate an environment map representing illumination in
the scene (Figure 3.2-b). The core idea of retrieving the diffuse and specular reflection

Figure 3.2 – (a) Input color image (left) and recovered diffuse reflection component
(right). (b) Captured (left) and estimated (right) environment maps. Figures from
[Jachnik et al., 2012].

components using color variations resulting from a moving camera shows robustness
in comparison to recovering specular reflections as saturated regions. Convincing pla-
nar augmentations such as generating shadows for virtual objects and removing real
specularities are achieved (Figure 3.3, video). Though this method provides good MR
renderings, it considers only a planar and small surface. Furthermore, the illumination
is recovered using an environment map which implies the assumption of distant light
sources.

Figure 3.3 – Augmented scenes (a) and (b) without (left) and with (right) using re-
covered reflectance and illumination: the most important aspect is the oclusion of real
specularities by the virtual cube. Figures from [Jachnik et al., 2012].

Recently, several data driven approaches have been proposed to estimate reflectance and
illumination from a single image. Deep lambertian networks [Tang et al., 2012] apply
deep belief networks to the joint estimation of a surface’s reflectance and the direction
of a single point light source. They rely on Gaussian Restricted Boltzmann Machines
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to model the prior of surface albedos. In [Georgoulis et al., 2018], the Lambertian con-
straint is further relaxed and several specular materials under general illumination are
handled. The approach uses a novel deep learning architecture which achieves sparse
data interpolation and infers high dynamic range data from low dynamic inputs in
order to recover accurate specular parameters.

3.2 Approaches using an RGB Camera and Light probes

A light probe is an omni-directional high-dynamic range image. Because light probes
are ’supposed’ to capture light sources intensities (radiance) from all directions, they
are useful for providing measurements of the incident illumination. Consequently, they
can be used to provide interesting and realistic lighting environments and backgrounds
for rendered graphics.

One method of obtaining a light probe is to produce a high-dynamic range image
of a chrome sphere (Figure 3.4), usually carefully positioned at the center of the target
real scene. Early work was proposed by Debevec et al. [Debevec, 1998] where they
photographed a chrome sphere under three exposure settings in order to recover its
high-dynamic range image using [Debevec and Malik, 1997].

Figure 3.4 – Three photographs of a mirrored ball (chrome sphere) used to recover a
high dynamic range of a light probe image. Figures from [Debevec, 1998].

In [Debevec, 1998], the light probe is used to render the scene which is partitioned
into three components. The first is the distant scene, which is the visible part of the
background environment, too distant to be perceptibly affected by the synthetic ob-
ject. The second is the local scene, which is the part of the environment which will
be significantly affected by the presence of the virtual objects. The third component
is the synthetic objects. Using such scene partition along with a novel global illumina-
tion method referred to as differential rendering, the approach produces perceptually
convincing results such as realistic shadows and inter-reflections (Figure 3.5).

Another method of obtaining a light probe consists in using a wide-angle lens cam-
era (e.g., fish-eye lens). Knecht et al. [Knecht et al., 2012] proposed a method that
reconstructs the surrounding environment using this type of light probe (Figure 3.6-a).
The proposed approach uses a Kinect sensor to acquire scene’s geometry and a fisheye
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Figure 3.5 – Results of Debevec et al. [Debevec, 1998] where (a) is the input color
image, (b) is a capture from the scene calibration step where the light probe (chrome
sphere) is placed at the center of the scene and (c) is the achieved rendering of mixed
reality. Figures from [Debevec, 1998].

camera to capture the incident illumination. Diffuse reflectance is recovered per cluster
(and not per pixel) as the mean color of pixels belonging to the same cluster after
a color-segmentation of the scene. Furthermore, specular reflectance is recovered as
the maximum color intensity within detected highlight regions using [Ortiz and Tor-
res, 2006]. The method runs in real-time and achieves convincing renderings such as
inter-reflections between real and virtual objects (Figures 3.6-b). Nonetheless, it only
handles scenes where each object holds a single color. Most importantly, specular re-
flections can be erroneously clustered when the highlight removal step does not succeed
and subsequently, are recovered as the diffuse component within these regions (Figure
3.6-c).

Figure 3.6 – (a) Example of a camera with fish-eye lenses used in [Knecht et al., 2012]
(Figure from this link). (b) Mixed reality scenario using the approach of [Knecht et al.,
2012]: one can notice the yellow inter-reflections between the virtual statue and the
real yellow bucket. (c) Critical scenario with regard to the method in (b) where the
specularity is recovered as the difffuse reflection component. Figure from [Knecht et al.,
2012].

Several works using one or more light probes have been proposed. Recently, Rohmer
et al. [Rohmer et al., 2014] proposed a novel distributed illumination approach for MR
where scene analysis is achieved using a stationary PC and MR rendering is experi-
enced through a Surface Pro Tablet. The method uses four HDR cameras equipped
with fish-eye lenses and placed in the scene, such that all regions are visible in at least
one camera image. The proposed framework allows for an interactive illumination of
virtual objects with a consistent appearance (e.g., realistic shadows, color bleeding)

43

https://www.stemmer-imaging.com/fr-fr/produits/serie/avt-stingray/


Chapter 3. State-Of-the-Art of Photometric Registration

under temporally varying real illumination conditions as shown in this video. The
downside of this approach is mainly related to the complexity of the setup and, the
manual and offline estimation of geometry and diffuse reflectance using common Digital
Content Creation (DCC) tools.

3.3 Approaches using an RGB-D Camera
Generally speaking, proposed photometric registration approaches using an RGB-D
camera handle more complex scenes geometry-wise. The fact that depth maps are pro-
vided in real-time within the RGB-D stream allows for more generic 3D reconstruction
of real scenes. Also, such approaches usually take advantage of observed cues such as
shading, shadows and specularities to estimate the reflectance and illumination of scene
surfaces.

Specularity-based Methods

Early work using specular cues was proposed by Nishino et al. [Nishino et al., 2001]
where they separate diffuse and specular reflection components using a sparse image set
and a geometric model. Since the real scene (a single object) and the light sources are
assumed to be fixed and only the camera is moving, only the viewing direction changes
through the image sequence. This means that only the specular reflection component
varies from image to image for each point on the object surface, while the diffuse reflec-
tion component is view-independent and constant. The curve in figure 3.7-b shows how
the intensity value of a particular surface point varies while the camera moves around
the object depicted in 3.7-a.

Figure 3.7 – (a) Input color image of a specular object from a sparse set of images. (b)
Theoretical curve demonstrating the evolution of a point’s color intensity, under static
lighting, when the camera moves. (c) Estimated diffuse reflection component with regard
to (a). Figures from [Nishino et al., 2001].

As the diffuse reflection is theoretically constant throughout the image sequence, it is
recovered as the minimum of the color intensity curve (Figure 3.7-(b,c)). Furthermore,
residual images, generated by subtracting the diffuse reflection component from each
original input image, are considered as an initial estimation of the specular reflection
component. Finally, using recovered specular components, illumination is estimated
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as a hemisphere over the object and both reflectance and lighting are refined using
a non-linear optimization which minimizes the difference between input and rendered
images. Although the method assumes that light sources are distant from the object, it
provides a dense representation of the reflectance properties (per pixel estimates) and
illumination conditions of the object.

Plopski et al. [Plopski et al., 2014] proposed a method based on the analysis of spec-
ularities as well. In [Plopski et al., 2014], the input image is first decomposed into
its diffuse and specular reflection components using [Shen and Cai, 2009]. Then, the
highlight regions from the recovered specular component are used to estimate the direc-
tion of light sources in the scene. Finally, a refinement of reflectance and illumination
properties is achieved by minimizing the error between input and rendered images. In
this work, both scene analysis and mixed reality application run in real-time using the
Kinect sensor.

Shadow-based Methods

Early work using shadows to recover illumination in the scene was proposed by Sato et
al. [Sato et al., 1999][Sato et al., 2003]. The authors proposed a method that estimates
the illumination distribution using cast shadows by an object of known geometry. The
illumination distribution is first approximated by discrete sampling of a hemisphere
where virtual point lights are equally positioned. Then by considering pixels lumi-
nance within shadowed regions and, under the assumption of known reflectance, the
light sources intensities are recovered using least squares. The main drawback of this
method consists in requiring extensive user intervention. In fact, in order to identiy the
shadowed regions within the image, two captures of the scene are required: with and
without occluding objects (Figure 3.8-(a,b)). Using a fine sampling of the hemisphere,
the approach reconstructs convincing synthetic shadows (Figure 3.8-c).

Figure 3.8 – Captures of the scene without (a) and with (b) occluding objects, used
to detect shadows. (c) Reconstructed virtual shadows using a fine sampling of the
illumination hemisphere. Figures from [Sato et al., 2003].

Extensive work has been carried in order to automatically detect shadows and inte-
grate these cues within a photometric registration task. Arief et al. [Arief et al., 2012]
estimate the position of a single strong light source in a controlled environment. By
considering an object with simple and known geometry (e.g., cube), they analyze the
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shadows which it casts on a single-color surface. The algorithm first detect the con-
tours of the cast shadow. Then, using cornerness features, they recover the lines which
relate shadow corners to their corresponding 3D points. The intersection of these lines
corresponds to the 3D position of the light source (Figure 3.9).

Figure 3.9 – Detection of the corners of the cast shadow and estimation of the 3D
position of the light source in the scene. Figure from [Arief et al., 2012].

Panagopoulos et al. [Panagopoulos et al., 2009][Panagopoulos et al., 2011] proposed
an approach which detects shadows in less constraining environments. In fact, their
approach handles textured surfaces (Figure 3.10) and further recovers multiple light
sources directions. The innovation is in the formulation of a Markov Random Field
(MRF) model, where the energy to minimize in order to detect shadows contains sev-
eral terms favoring consistency between neighboring pixels and, pixels corresponding to
points with the same material property but subject to different illumination conditions.
The proposed approach only handles Lambertian surfaces and takes 3 to 5 minutes to
process a single image.

Figure 3.10 – (a) Input color image of the scene. (b) Detected shadows for the image
in (a). Figures from [Panagopoulos et al., 2009].

Intrinsic Image Decomposition

Several methods are based on intrinsic image decomposition techniques. Their objective
is to separate an image into its reflectance and illumination components. Within such
approaches, the color Ip of a point p is described as follows:

Ip = RpLp (3.2)
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where Rp and Lp are respectively the unknown reflectance and illumination compo-
nents at pixel p. The term R contains the intrinsic color/texture of depicted surfaces
while the illumination component encodes the incident illumination in the scene (e.g.,
shading, shadows and specular reflections). With regard to solving equation 3.2 for
all scene points, Land and McCann proposed in 1971 the Retinex theory [Land and
McCann, 1971] assuming that reflectance is characterized by sharp edges while illumi-
nation varies slowly.

Inspired by [Land and McCann, 1971], several approaches have been proposed since
then to improve the intrinsic decomposition. For instance, often within intrinsic im-
age decomposition methods, surface scenes are assumed to be Lambertian. Hence, the
illumination term L is often referred to as shading because it only comprises shading
and shadowing. Lee et al. [Lee et al., 2012] presented a technique to solve the intrinsic
decomposition problem using an RGB-D sequence in presence of specular effects. This
technique proposed two new types of constraints derived from available viewpoints and
reconstructed geometry of the scene. While the former provides shading constraints
based on surface orientation similarity, the latter imposes temporal constraints that
enforce consistency within the intrinsic color of a surface point. This method uses both
local and non-local, shading and temporal constraints, and yields interesting results
(Figure 3.11).

Figure 3.11 – (a) Input color image of the scene. (b) and (c) are respectively recovered
reflectance and illumination components with regard to the image in (a). Figures from
[Lee et al., 2012].

Neverova et al. [Neverova et al., 2012] presented an approach which consists in de-
composing an original input into its reflectance (diffuse and specular) and illumination
components. First, they used [Shen and Cai, 2009] to decompose the input image
into its diffuse and specular components. Then, within the recovered diffuse reflec-
tion component, they applied a Retinex based decomposition to estimate the shading
and albedo images. The initially obtained components represent the inputs of an op-
timization process aiming at finding the 3D position of the light sources. Though this
method gives good estimation results on low quality images, a weak point is the use
of the dichromatic decomposition of Shen et al. [Shen and Cai, 2009] to separate the
diffuse and specular components. In fact, this approach is not very robust as it can not
handle large specular effect (in this case, the diffuse component is not well estimated).
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Using Geometry as a Light Probe

Using a single RGB-D camera, Gruber et al. [Gruber et al., 2012][Gruber et al., 2014]
developed an approach for real-time global illumination based on the reconstructed 3D
model of the real scene. The method uses scene geometry as a light probe in com-
bination with Spherical Harmonics (SH) to model the illumination in the scene. The
proposed estimation procedure is further strengthened using visibility and normals
information and, delivers convincing mixed reality results (Figure 3.12) using differ-
ential rendering [Debevec and Malik, 1997]. Such methods often assume Lambertian
surfaces and SH-based recovered illumination exhibits a soft rendering of shadows (low-
frequency) as shown within the grey virtual sphere in figure 3.12.

Figure 3.12 – Augmented real scenes (a) and (b) with a virtual grey sphere (left) and
their recovered illumination (right). Figures from [Gruber et al., 2012].

Recently, Mandl et al. [Mandl et al., 2017] proposed learned light probes as an al-
ternative to the probeless method of Gruber et al. [Gruber et al., 2012]. The core idea
is, similarily to [Gruber et al., 2012], to use geometry as a learned light probe since
it provides unobtrusive user experience in comparison with active light probes (e.g.,
chrome sphere, fish-eye lens). In this work, the incident lighting is estimated with a
pre-trained convolutional neural network, which analyzes the appearance of a known
object in the scene. Such methods require an object with a rich distribution of surface
normals (ideally a sphere) in order to recover accurate illumination of the scene.

3.4 Conclusion

In this chapter, we presented several photometric registration approaches grouped with
regard to their required input devices. Although the proposed approaches which use ac-
tive light probes (e.g., chrome sphere, fish-eye lenses) deliver convincing results within
MR scenarios (e.g., inter-reflections), the use of such additional devices is cumbersome
for an end-user. Consequently, an RGB or RGB-D camera is usually more convenient
for scene-analysis, especially that nowadays phones are commonly integrating depth
sensing within their technology.

Furthermore, we favor RGB-D cameras since they provide online recovery of 3D in-
formation which allows to handle more complex real scene geometry-wise. Within this
category of approaches, our goal is to estimate both diffuse and specular reflectance
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properties for scene surfaces where texture/color can spatially vary. Also, we aim at
estimating the 3D position (and not only the direction) and color of multiple light
sources.

49





4Photometric Registration using
Specular Reflections

Contents

4.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Our Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Sequence Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Luminance Profiles (LP) . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.3 Diffuse and Specular Reflectance Estimation . . . . . . . . . . . . . . . 62

4.2.4 Light Sources 3D Position Estimation . . . . . . . . . . . . . . . . . . . 64

4.2.5 Photometry-based Classification of the Scene . . . . . . . . . . . . . . 65

4.2.6 Reflectance and Illumination Refinement . . . . . . . . . . . . . . . . . 67

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Conclusions and Future Research Directions . . . . . . . . . . . . . . . . 74

51



Chapter 4. Photometric Registration using Specular Reflections

The word specular is derived from the latin word speculum, which means mir-
ror. In the real world, many materials including leaves, plastic, and chrome exhibit
specular reflections. When light hits such surfaces, it is reflected at a definite angle
which obeys the Law of Reflection. Visually, the surface appears to be brighter and
details/texture can be partially or completely obscured. Modeling such visual cues is
evidently necessary to model the specular reflectance of real surfaces. Equally, it is key
to probelessly recovering the illumination in the scene. In fact, many photometric reg-
istration approaches focus on deriving scene reflectance and illumination by detecting
[Knecht et al., 2012] or predicting [Morgand et al., 2017] specularities within captured
images. Nonetheless, existing solutions often address scenes with simple geometry (e.g.,
an isolated single object [Nishino et al., 2001], a planar surface [Morgand et al., 2018])
and/or simple textures (e.g., per-object constant color [Boom et al., 2013][Knecht et al.,
2012]). Furthermore, the illumination is usually recovered as a distant lighting [Jachnik
et al., 2012] or reduced to a single light source [Boom et al., 2013].

In this thesis, we are interested in relaxing these constraints. Specifically, our goal
is to estimate both diffuse and specular reflectance properties of complex real scenes.
The reflectance can spatially vary from one object to another and/or within the same
object. Moreover, we aim at recovering the 3D position of existing light sources without
using any light probe or external assistance. We only consider as input the RGB-D
data provided by an RGB-D camera. To summarize, the main contributions of this
chapter are:

� Estimation of specular reflections in complex real scenes using spatio-temporal
data analysis.

� Recovery of spatially varying diffuse reflectance for 3D scene points.

� Estimation of the 3D position of light sources using only specular reflections
observed in the scene.

� Photometry-based classification of all scene points (shadowed areas, diffuse and
glossy surfaces).

In the remainder of this chapter, we first present the results of other approaches when
considering our captured scenes. In particular, we highlight failure cases in accurately
detecting specular reflections and estimating diffuse reflectance. Then, we present our
approach to handle these challenges. Finally, results are discussed and our reflectance
and illumination estimates are used to show realistic MR scenarios such as real specular
reflections removed by the insertion of a virtual object and visually coherent virtual
shadows.

4.1 Problem Description
Specular reflections refer to bright pixels with unsaturated colors which can occur in
captured images. As previously stated, such reflections represent interesting cues from
which we can derive the reflectance and illumination of a real scene. Detecting and
localizing these cues is a great challenge in the computer vision field because, unlike
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other materials, the appearance of a specular surface changes as function of its surface
property, the lighting environment (e.g., light sources, other shiny surrounding surfaces)
as well as the position of the observer. The specularity detection problem has been ex-
tensively studied, especially in the context of considering only a single image as input
[Alsaleh et al., 2015][Ganz et al., 2012][Ortiz and Torres, 2006]. Within this configu-
ration, different color spaces have been used. For instance, the Hue-Saturation-Value
(HSV) color space is very informative in terms of detection of specular reflections. One
of the characteristics of these reflections is that colors are unsaturated and the value (V)
component is saturated. In [Ortiz and Torres, 2006], specular reflections are detected
at pixels where the color has high value (V) but low saturation (S). In a first pass, the
highlight detection result is written into a binary mask with a ’one’ where the value
and saturation criteria are met and a ’zero’ otherwise. Then a morphological operation
is performed in order to deal with noisy detections resulting from the thresholding step.
In figure 4.1-(a,b), we can see that the specular reflections have been properly detected.

Figure 4.1 – (a) Input image. (b) Detected specular reflections for the input image
(a). (a) and (b) are figures from [Ortiz and Torres, 2006]. (c) Our input captured image.
(d) Results of [Ortiz and Torres, 2006] for our image (c): cyan pixels correspond to
detected specular reflections. Red circles underline failure cases of this method such as
weak specular effects and white surfaces.

Nonetheless, such algorithms often misinterpret a bright white-color surface with an
actual specular reflection (Figure 4.1-(c,d): the top surface of the white/blue box). Ad-
ditionally, such approaches can not handle weak specular reflections unless the thresh-
olds are fine-tuned for each image independently (Figure 4.1-(c,d): only the specular
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reflection located near the specular book is detected). Obviously, this process is not
adequate for MR scenarios where the end-user does not have the knowledge of such pa-
rameters. Beside the problem of accurately detecting specular effects, another challenge
rises when considering the reconstruction of the texture/details within these regions. In
fact, various approaches consider the problem of recovering both diffuse and specular
components within a single image [Shen and Cai, 2009][Tan and Ikeuchi, 2003][Mallick
et al., 2006]. For instance, Shen et al. [Shen and Cai, 2009] proposed a method to
separate diffuse and specular reflections in a color image based on the analysis of chro-
maticity at the pixel level (Figure 4.2-(a,b,c)). The proposed approach does not require
any image segmentation or local interactions between neighboring pixels.

Figure 4.2 – (a) Input image. (b) Estimated diffuse component using [Shen and Cai,
2009]. (c) Estimated specular component using the same method. (a), (b) and (c)
are figures from [Shen and Cai, 2009]. (d) Our captured input image. (e) and (f) are
respectively the estimated diffuse and specular components using Shen et al.

Although Shen et al. [Shen and Cai, 2009] succeed in detecting the specular reflec-
tions within our captured images (Figure 4.2-(d,f)), the method fails at recovering the
diffuse component (Figure 4.2-(d,e)). In fact, such algorithms usually rely on the closely
surrounding pixels to recover the diffuse component. Hence, in presence of significantly
large regions exhibiting specular reflections, the algorithm fails at recovering scene re-
flectance.

Our first contribution consists in robustly handling both specularities detection and
diffuse reflectance reconstruction. In order to achieve this goal, we take advantage of
the fact that within MR scenarios, the scene is observed through a sequence of images
captured from various viewpoints and not only a single image. Let us consider a point
p in the scene (e.g., a point on the shiny book) observed from two different viewpoints
(Figure 4.3). The geometry and the lighting are assumed to be static.
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Figure 4.3 – The color intensity of a point p located on the shiny book’s surface varies
when seen from two different viewpoints due to its specular reflection component.

The color Ip of a point p in the scene can be described by Phong reflection model
[Phong, 1975] as follows:

Ip = Ipd + Ips (4.1)

where Ipd and Ips are respectively the diffuse and specular components. Throughout the
sequence, both reflection components can be described, at each frame t, using Phong
model [Phong, 1975]:

Ip(t) =
M∑
i=1

kpdLi(n
p · ωpi ) +

M∑
i=1

kpsLi(r
p
i · v

p
t )αp (4.2)

Since we assume that the geometry and the light sources are fixed and only the camera
is moving, only the viewing direction vpt changes through the image sequence. This
means that only the specular reflection component varies from image to image for each
point on the scene surface, while the diffuse reflection component is view-independent
and remains the same. Consequently, by retrieving the evolution of scene points lumi-
nance through the sequence, we obtain a luminance profile (LP), shaped as a lobe, as
depicted in figure 4.4. The lobe’s peak value occurs when the viewpoint vector vp and
the perfect reflection vector rpi are (roughly) aligned.

Luminance profiles contain contain valuable information about the reflectance and il-
lumination within the scene. In this contribution, we therefore consider such profiles
to robustly detect specularities and reconstruct diffuse reflectance. Specifically, from
recovered luminance profiles, we estimate diffuse and specular reflection properties as
well as the 3D position of light sources.

4.2 Our Proposed Approach
Our method is an offline photometric analysis of 3D real scenes (Figure 4.5). We use
a calibrated RGB-D sensor to capture the scene under various viewing angles in order
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Figure 4.4 – Luminance profile (LP) of a point p located on the shiny book in the scene:
the peak of the curve corresponds to an observed specularity when the angle between
the viewpoint vp and the perfect reflection rp

i vectors is minimum.

to bring out specular and diffuse reflections with respect to each scene point. For this
purpose, we track the 3D points of the scene along the sequence and retrieve their re-
spective luminance profiles. Practically, using camera positions, we register the entire
sequence with regard to a reference frame. We propose a simple and efficient statistical
method to classify recovered luminance profiles and estimate both, view-independent
(diffuse) reflection and view-dependent (specular) reflection components. Furthermore,
we estimate the 3D position of light sources responsible for specular effects and pro-
vide a photometry-based classification of the scene’s 3D points to distinguish between
various surfaces (shadowed areas, Lambertian and/or specular surfaces).

Our algorithm deals with a variety of scenes where the texture spatially varies and
several objects with different shapes can be present. We use our estimates to demon-
strate specular occlusions between real and virtual objects (disappearance of real spec-
ularity due to a cast virtual shadow) as well as realistic virtual shadows. In terms
of assumptions, scene geometry and illumination are supposed to be static. Only the
sensor moves. The 3D model of the scene is represented by depth maps, no necessary
reconstruction (mesh) is needed within our algorithm pipeline. The light sources are
supposed to be sparse and are modeled as white point lights. Therefore, only one light
source locally creates a specular effect at a time.

4.2.1 Sequence Registration

Using the Kinect v1 sensor

In a first phase, we used the Microsoft Kinect v1 sensor to capture the scene. This
sensor provides both color and depth streams (Figure 4.6) at 30Hz with a 640×480
pixel resolution. Our first objective is to extract the evolution of luminance for all
observed scene points. This requires tracking all pixels over the sequence. Practically,
this is achieved by registering the images with regard to a reference one using camera
poses and depth maps. The aim of image registration is to geometrically align two
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Figure 4.5 – Outline of our proposed photometric registration approach.

images acquired at different times and from different camera viewpoints. In order to
obtain accurate results, we implemented a three-pass registration procedure: first, we
use a robust 2D displacement estimator (marker based), then recover the camera’s 3D
position and finally use it to register all color images.

The first step consists in estimating the displacement of a 2D model, inserted in the
scene, throughout the entire acquired sequence. The 2D model here, is an image with
known dimensions. Hence, we use a template tracking method, also referred to as Differ-
ential Image Alignment [Baker and Matthews, 2004]. The basic principle is -assuming
that two consecutive images are slightly different- to estimate the displacement h of the
reference template Ir in a sequence of images. The problem can be written as follows:

ĥ = arg max
h

f(Ir, ω(Ic,h)) (4.3)

57



Chapter 4. Photometric Registration using Specular Reflections

Figure 4.6 – RGB-D capture of the scene using the Kinect v1 sensor: the left image
shows the input depth map. The right image shows the input color image.

where ĥ is the current displacement which we aim to estimate in order to maximize the
similarity function between the reference template Ir and the warped current template
Ic. Various similarity functions exist such as the Sum of Squared Difference (SSD)
or the Normalized Crossed Correlation (NCC). Because of its accurate, robust and
real-time demonstrated results, we chose the Mutual Information (MI) as a metric for
image alignment [Dame and Marchand, 2012]. MI is the quantity of information shared
between two signals. It uses the entropy of both, the reference and current warped
templates. In [Dame and Marchand, 2012], they proposed a novel optimization process
for the MI cost function and used an inverse compositional approach. Subsequently,
equation 4.3 is then described as follows:

ĥ = arg max
h

MI(Ir(x), Ic(ω(x,h))) (4.4)

where x is a point that belongs to the region of interest which is here the reference
template, and ω(x,h) is the location of x in the warped current region. In our case, the
displacement parameters correspond to an homography transformation. The results
(Figure 4.7) show accurate and robust displacement estimation in presence of impor-
tant illumination changes.

Figure 4.7 – MI-based tracking. The world frame related to our 2D model is projected
using the recovered 3D camera pose from the MI-based tracking. The right image shows
the robustness of our tracking with regard to strong illumination changes.

The second pass consists in recovering the 3D camera pose. As we have previously
pointed out, the 2D tracked model is an image, where the coordinates of its four cor-
ners are known in a chosen reference frame. Therefore, using the estimated homography
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parameters, we are able to update the corners 2D coordinates for every input image of
the sequence:

xki = kH0x0
i (4.5)

where x0
i is the ith corner’s 2D coordinates in the reference image, xki is the updated

ith corner in image k and i = 1..4. Using the intrinsic parameters of the sensor, we
estimate the camera pose, within a non-linear Gauss-Newton minimization process:

(ĉRw,
ct̂w) = arg min

(cRw,ctw)

4∑
j=1

d(xj ,KΠcTw
wXj)2 (4.6)

where d(.) is the distance between the homogeneous 2D coordinates xj in the camera
frame and 3D coordinates wXj in the reference frame, K is the camera’s intrinsic pa-
rameters matrix, Π is the perspective projection matrix and cTw is the transformation
that fully defines the reference frame in the camera frame. The estimates are both, the
rotation matrix ĉRw and the translation vector ct̂w which define the camera’s position
with regard to the reference frame.

The aim of the third pass is to align all the sequence images with a chosen refer-
ence image. Using the recovered 3D camera positions, we compute the transformation
between each image and the reference one as follows:

c0Tci = c0Tw
wTci = c0Tw(ciTw)−1 (4.7)

Subsequently, we use the 3D model of the scene at each frame, retrieved from the color
and depth sequences, and re-project it on the reference image using the combined 3D
transformation c0Tci :

xc0 = KΠc0Tci
ciX (4.8)

where xc0 is a pixel, observed at image i, and re-projected using its model ciX , on
the reference image using c0Tci . Figure 4.8 shows extracted images from the registered
sequence: the color of some pixels was set to 0 because their corresponding 3D points
were either geometrically occluded or simply out of the field of view in the current
image.

Using the R200 sensor

By 2016, Intel released a new RGB-D sensor, the R200, which is more adequate for MR
applications. In fact, the Kinect requires a separate power cable which is not conve-
nient for mobile applications. On the other hand, the R200 only needs a USB 3.0 port
which is very common in nowadays tablets. Additionally, the R200 sensor comes with
an SDK which offers various features such as real-time 3D reconstruction, 3D camera
pose estimation and provides a 3D mesh of the reconstructed scene model.

Using the R200, we developed a three times faster GPU-based implementation of equa-
tion 4.8 where the 3D model of the scene as well as the camera poses are provided
by the sensor. Furthermore, the use of the 3D model instead of a single depth map
delivers better results within the registered sequence (Figure 4.9) since the geometry is
available for most scene surfaces.
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Figure 4.8 – Registered images using RGB-D images provided by the Kinect v1 sensor.
The black pixels are 3D points which are either occluded or out of the field of view in
the current image.

Figure 4.9 – (a) Reference color image. (b) Registered image from another viewpoint
using a depth map. (c) Registered image from the same viewpoint as (b) using the 3D
model provided by the R200.

4.2.2 Luminance Profiles (LP)

In the following, we will equally talk about the pixels of the reference image and the 3D
scene points they correspond to. Considering all the sequence frames, we are able to
track and estimate the luminance variations of a given pixel. These variations consti-
tute a spatio-temporal Luminance Profile (LP). Practically, our set of registered images
provides for each 3D point/pixel observed in the reference frame the evolution of its
luminance along the video, described by Ip(t), where t is the index of the image in the
sequence and p is a given pixel of fixed 2D coordinates along the sequence.

A particular curve is retrieved for each pixel p and corresponds to a linear combi-
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nation of the three RGB color channels. Various and differently shaped profile curves
can be obtained (Figure 4.10). For instance, if the values of the profile significantly
vary, the 3D point is bound to belong to a specular surface. On the other hand, we
have observed three main cases where a 3D point p holds an invariant profile: (1) p
is Lambertian and never exhibits specular effects; (2) the point is not subject to spec-
ular effects because the observer’s trajectory never meets the ideal specular reflection
direction or simply because it is geometrically occluded by another scene object; (3) a
specular effect exists all along the acquired sequence due for example to a large-surface
light source.

Figure 4.10 – Luminance Profiles: (a) corresponds to a point on the wood table which
retains a roughly constant profile because the observer’s trajectory never met the ideal
specular reflection direction. (b) demonstrates strong luminance variations for a 3D
point located on the specular black book in figure 4.8.

The amount of information brought by these luminance profiles is essential to our
reflectance and illumination estimation process. Thus, in order to make the best use
of it, we propose to separate these profiles into two main categories: Constant Lumi-
nane Profiles (CLP) and Variable Luminance Profiles (VLP). The former represents
3D points with weak luminance variations. The latter represents 3D points which hold
both, diffuse and specular reflectance components. In order to correctly apply this
LP-classification, we propose a simple and efficient statistical analysis.

First, we consider the profiles whose length is above half the total of frames (some
points may be visible only on a part of the sequence). If a pixel’s LP satisfies this first
condition, we apply a gaussian filter in order to smooth the curve. For all the selected
profiles, we compute the minimum mp and maximum Mp luminance value, the mean
MNp and median MDp values of all stored variations, and the standard deviation of the
distribution SDp. Based on our data analysis and observations, we propose a simple
separation criterion to distinguish variable profiles from constant ones:{

|MDp −MNp| ≥ ξ1 or |SDp| ≥ ξ2 , p ∈ VLP
else , p ∈ CLP (4.9)

Using these criteria, we quantify the amount of luminance variations and dispersion
throughout the entire sequence. Thus, when a profile holds significant variations, the
difference between the mean and median values is expected to be significant as well.
Furthermore, a VLP corresponds to a curve that demonstrates dispersion with regard
to the mean value.
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As far as the VLP points are concerned, we are mainly interested in estimating their
specular reflectance parameters which we will further use to recover the 3D position of
the scene light sources. For CLP-points, the specular component is set to 0 provided
that their constancy comes from their Lambertian property or constant geometry oc-
clusion. In fact, as the light sources are sparse and the camera’s trajectory is supposed
to significantly cover the scene, we do not observe the case of a specular reflection all
along the sequence. The results of our LP-based classification (Figure 4.11) matches
our initial observations.

Figure 4.11 – (a): color image of the scene. (b): Luminance Profile based classification:
the black pixels represent the discarded points (mostly occluded within the sequence),
the grey ones correspond to constant luminance profiles and the white ones hold variable
luminance profiles.

In figure 4.11, the 3D points which are classified as VLP (white color pixels), have
actually exhibited specular effects during our scene capture. One can notice some
noisy VLP classifications mainly due to registration errors. On the other hand, points
which are constantly occluded by an object with regard to a light source or that simply
were not observed in the ideal specular reflection direction appear in the CLP group
(grey color pixels).

4.2.3 Diffuse and Specular Reflectance Estimation

Recovered luminance profiles retrain valuable information about the reflectance of the
scene. Our goal is to take advantage of the profile’s variations to robustly estimate
both diffuse and specular reflection components. As previously mentioned, the color Ip
of a point p, along the sequence, can be described by Phong reflection model [Phong,
1975] as follows:

Ip(t) = Ipd + Ips(t) (4.10)

where Ipd and Ips are respectively the diffuse and specular components at frame t. Since
scene illumination and geometry are supposed to be static, the luminance variations
present in the LP can only originate from the specular component which is view-
dependent. In [Jachnik et al., 2012] and [Wood et al., 2000], the diffuse component
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Ipd is recovered as the median of the observed profile values. Although this value is
robust in presence of shadows or bad registration errors, it gives an over-estimation of
the view-independent component. Hence, we have chosen as in [Nishino et al., 2001],
to estimate the diffuse component, for points belonging to either VLP or CLP group,
as the minimum observed value in the LP since it should be closer to the correct diffuse
component value (Figure 4.12).

Figure 4.12 – (a) Captured reference image. (b) Recovered diffuse component. (c)
Close captures of specular surfaces in considered indoor scenes. (d) Recovered diffuse
component for captures in (c). Our approach correctly reconstructs the diffuse compo-
nent within the regions with specular reflections.

The specular component is set to 0 for points with a constant LP since they do not
exhibit any specular effects. On the other hand, for points holding a variable LP, it is
retrieved for each frame t, as the difference between the diffuse component estimate Ipd
and the observed color intensity Ip(t) (Figure 4.13-(a,b)). Furthermore, the retrieved
specular component can be described using Phong model as follows:

Ips(t) =
M∑
i=1

kpsLi(r
p
i · v

p
t )αp (4.11)

where kps is the specular reflectance of point p, vpt is its viewpoint vector at frame
t, αp is its shininess parameter, Li is the intensity of the point light source i, rpi is
its ideal reflection vector, and M is the number of light sources present in the scene
(Figure 4.13-c). The unknown parameters are the combination of both, the specular
reflectance and the intensity of the light source (kpsLi), the reflection vector rpi , the
shininess coefficient αp and the number of light sources in the scene i.

If the pixel’s luminance at the peak of the LP is not saturated, the product (kpsLi)
can be recovered as the lobe’s peak luminance value. We refer to the index of the frame
where the maximum is reached as tm. In fact, when the specular effect occurs, the
viewpoint vector and the reflection vector are roughly aligned (their scalar product is
roughly equal to 1). Subsequently, for every 3D point of the scene that holds a variable
profile, we have: {

kpsLi = Ips(tm)
rpi = vptm

(4.12)

Estimated specular components can contain errors due to registration misalignments.
Hence, we apply a morphological erosion to the recovered specular component image
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Figure 4.13 – (a) A registered captured image t of the scene. (b) Recovered specular
component for the frame t. (c) Description of the 3D vectors used in the Phong reflection
model. (d) Initial estimate of (kp

sLi).

Ips(tm) and recover the specular intensities kpsLi and reflection vectors rpi (Figure 4.13-
(a,d)). Since we have no guarantee that the luminance lobe has reached its maximum
possible value, we will be refining these estimates further in this work (Section 4.2.6.2).

4.2.4 Light Sources 3D Position Estimation

In this section, our goal is to estimate the 3D position of the light sources represented
by point lights. To begin with, we compute for each VLP-point p the light direction
vector ωpi using the estimated reflection vector rpi :

ωpi = 2.(rpi · np) · np − rpi (4.13)

where np is the normal vector of point p estimated using [PCL, 2013]. Light rays origi-
nating from specular reflections that fall within the same specular area in the scene are
clustered using Euclidean distance. Consequently, small clusters are processed as out-
liers since they generally result from registration errors or inaccurate normals. Then,
a mean light direction vector is computed for each significant cluster (Figure 4.14).

Finally, the problem of finding the position of light sources is similar to computing
the intersection points of a set of 3D lines using least squares.
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Figure 4.14 – Our approach to estimating the real light sources 3D position represented
by point lights. The intersection of recovered light direction vectors ωp

i corresponds to
the 3D position of the point light source i.

4.2.5 Photometry-based Classification of the Scene
In section 4.2.2, we proposed a first classification within the luminance profiles which
separates them into VLP and CLP groups. Within the CLP class, we can encounter
points with different reflectance properties. Hence, they need to be processed differently
in order to obtain accurate diffuse reflectance estimates. To illustrate, we will consider
in the following the scenario of a single light source (i = 1), Phong model [Phong, 1975]
is rewritten as:

Ip(t) = Ipd +Opi kpsLi(r
p
i · v

p
t )αp (4.14)

where Opi is the occlusion parameter, equal to 1 if light source i is visible from point p
and 0 otherwise. This parameter is used to take account of visibility within the scene
with regard to the light source i. According to equation 4.14, a profile’s constancy is
observed when the specular component is equal to 0. This can be due to four possible
reasons: the 3D point is not visible from the light source i because an object occludes
it (Opi = 0). The 3D point belongs to a Lambertian surface (kps = 0). The trajectory of
the camera with respect to point p and to the light source i is such that the reflection
vector rpi and the viewpoint vector vpt have significantly different directions (rpi · v

p
t

is always equal or close to 0). Last, the 3D point has a constant specular effect all
along the sequence, however as our light sources are sparse and the camera trajectory
is significantly varying, this case is not met.

Based on these observations, we categorize the points with a constant luminance profile
into three main classes: Diffuse Points (DP) which are 3D points lit by all light sources
and showing no specular reflections (kps = 0). Occluded Points (OP) are 3D points
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which are constantly occluded with respect to the estimated light source i (Opi = 0).
Non-Occluded Points (NOP) such that (rpi · v

p
t ) is equal or close to 0 all along the se-

quence. In the following, our objective is to fully classify CLP-points with regard to the
previously defined subgroups (DP, OP and NOP). The results of our 3D classification
are shown in (Figure 4.15).

Figure 4.15 – (a) Reference image of the scene. (b) Photometry-based classification
results: white color pixels corresponds to 3D points with variable profiles, green color
pixels are 3D points which belong to the NOP subgroup (the reflection vector rp

i and
the viewpoint vector vp

t have significantly different directions) and blue color pixels are
occluded points with regard to light sources (OP).

Our classification is a two-pass procedure. The first pass consists in computing a
visibility map with regard to the identified point lights. We perform the shadow map-
ping technique, a standard computer graphics algorithm. We refer to the shadow map
as Opi where: {

Opi = 1, p is a visible point
Opi = 0, p is an occluded point (4.15)

If point p is detected as an occluded point with regard to light source i, it is then
classified as a OP point. Otherwise, it can belong to either NOP or DP subgroups. The
second pass consists in separating these two sub-classes by detecting 3D points which
might be subject to a specular effect but still conserve a constant profile, e.g. diffuse
surfaces. To begin with, using the estimated reflection vector rpi and the viewpoint
vector vpt , we retrieve a novel profile εpi (t) such as:

εpi (t) = rpi · v
p
t (4.16)

We use a method similar to the one described in section 4.2.2, with different thresholds,
to distinguish variable and constant profiles. If εpi (t) is significantly variable, then we
conclude that kps = 0 and that point p belongs then to the DP subgroup. If εpi (t) is a
constant intensity profile, the point belongs to the NOP subgroup.
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4.2.6 Reflectance and Illumination Refinement
4.2.6.1 Diffuse Component Refinement

In section 4.2.3, we have recovered the diffuse component of all observed points within
the reference frame. The accuracy of this component estimate is of paramount impor-
tance when considering MR and relighting scenarios. Within these scenarios, the diffuse
reflectance kpd represents the intrinsic color (texture) of the surface which must be inde-
pendent from the illumination present when the scene was initially captured. However,
in the previous section 4.2.5, we encountered several points which are occluded with
regard to the current light sources in the scene (OP). Hence, the previously recovered
diffuse component does not include the contribution of occluded light sources for points
belonging to the OP group. Our objective is to correctly estimate the diffuse component
for such points. The proposed approach is based on the comparison between points
with the same diffuse reflectance but subject to different lighting conditions: visible
(points belonging to NOP and DP) and occluded (points belonging to OP) points.
Using [Phong, 1975], the color of these points differs as follows:{

Ip = Ipd = Ipd,O + Ipd,V , if p ∈ (NOP or DP)
Ip = Ipd = Ipd,O , if p ∈ OP (4.17)

where Ipd,V corresponds to the diffuse component due to the light sources that are
visible from NOP and DP points only, and Ipd,O corresponds to the diffuse component
due to the light sources that are visible from all points. To begin with, we suppose -for
now- that we are able to identify two points p1 and p2 with the same unknown diffuse
parameter (kpd = kp1

d = kp2
d ). Point p1 is supposed to belong to the visible subgroups

(NOP,DP) whereas p2 belongs to the OP subgroup. Since p1 and p2 are assumed to
have the same diffuse parameter, we can write:{

Ip1
d = kpdl

p
O + kpdl

p1
V

Ip2
d = kpdl

p
O

(4.18)

where lp1
V refers to the intensity of the light sources occluded from OP points and lpO

refers to the intensity of the light sources visible from both types of points. Hence,
both kpd and lpO can be estimated for the selected points:

kpd = Ip1
d
−Ip2

d

l
p1
V

lpO = Ip2
d

kp
d

(4.19)

Except close to shadow edges, lighting is locally constant and there is interest to consider
a group of points as far as they are identified as having the same diffuse parameter kpd:

k̂pd =
Ipd,V − Ipd,O

l
p
V

(4.20)

where Ipd,V and l
p
V correspond respectively to average diffuse component and visible

light sources intensities computed over all points belonging to the visible subgroups,

67



Chapter 4. Photometric Registration using Specular Reflections

and Ipd,O is the average diffuse component intensity computed over all points belonging
to the OP group (e.g. constantly occluded points). lpO is then estimated as:

l̂pO =
∑
p Ipd,OP∑
p k̂pd

(4.21)

Using the estimated k̂pd, we are able to recover the contribution of the occluded light
sources with regard to OP points (Figure 4.16).

Figure 4.16 – Refined diffuse component. The left image is the diffuse component
estimate. The right image demonstrates the results of our diffuse recovery for occluded
points. Because the area light source was approximated by a point light source, we can
observe that the edges of the soft shadows were not correctly recovered.

The main challenge in estimating the parameter kpd remains in identifying visible and
occluded surfaces corresponding to points with the same unknown diffuse reflectance.
To achieve this goal, we propose to group points with regard to several strong simi-
larity metrics: chromaticity values, color intensities, normal vectors and 3D locations.
Chromaticity values are computed using the Modified Specular Free (MSF) image that
is more robust than Specular Free images [Shen and Cai, 2009].

Figure 4.17 – Chromaticity images. The left image represents chromaticity values
computed using a Specular Free (SF) image whereas the right image shows chromaticity
values using a Modified Specular Free (MSF) image.
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In order to compute the average diffuse values Ipd,V and Ipd,O, we propose a feature-
weighted filter defined as follows:

Ipd =
∑
q(ωp,qI

q
d)∑

q ωp,q
(4.22)

Ipd,V and Ipd,O use a set of points q located respectively in visible and occluded areas.
These areas are known thanks to our photometry-based classification results. The
weights ωp,q consider all the previously mentioned similarity features:

ωp,q = exp−
∑

f
cost(f) (4.23)

where index f refers to a feature and cost(f) refers to the norm of dissimilarity between
features attached to points p and q.

4.2.6.2 Specular Component and Light Sources Position Refinement

Specular reflectance parameters have been previously recovered only for 3D points
roughly viewed along the observed reflection direction. Our goal is to estimate dense
reflectance maps. To achieve this, we initially assume uniform specular reflectance for
each 3D object in the scene. A first step consists then in clustering the 3D mesh of
the scene using Euclidean distance between vertices and normals smoothness constraint
[PCL, 2013]. Then, provided that each cluster contains at least one 3D point with its
specular reflectance estimate ksLi, we spread its value to all the cluster points.

We now address the possibility that an object/cluster may not exhibit a unique spec-
ular reflectance. First, we render specular reflections using previously recovered ksLi
values and light sources position. Rendered specular maps are correlated with observed
specular maps. If correlation fails, we proceeed to a color-based segmentation using the
k-means algorithm and set final ksLi values to each color segment as follows: observed
points in the direction of light sources that do not exhibit specular effects are consid-
ered to be Lambertian (ks = 0), points that are left keep the recovered ks value.

Finally, we estimate the shininess parameter αp, and refine ksLi alternatively with the
refinement of light sources position. The optimization is achieved using the Levenberg
Marquardt algorithm with the following cost functions:{

Fj =
∑
i[Ii − (Iid +

∑
m ksLm(rim · vit)αi)]2

G =
∑
u[Iu − (Iud +

∑
m ksLm(rum · vut )αu)]2 (4.24)

where i andm respectively iterate over pixels that belong to cluster j and over recovered
light sources. u iterates over all the reference image pixels. Ii and Iu correspond to
observed pixels color. In Fj , the diffuse component Iid is fixed and only ksLm and
αi can be varied by the solver. In G, all parameters are fixed and only the specular
reflection vector rum is updated.
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4.3 Experimental Results

We photometrically calibrate our sensor as in [Robertson et al., 1999] by taking three
images of a color checker with patches of known reflectance at three different shutter
speeds. Hence, a calibrated camera with fixed aperture, shutter speed and color gain
browses the scene. The proposed approach takes an average time of 2.4 minutes to
process a sequence of 400 images.

Reflectance Evaluation

Our approach was tested on various indoor real scenes. In figure 4.18, we present
the photometric registration results for three different scenes (S1, S2 and S3). Our
algorithm succeeds in correctly recovering the diffuse component in regions initially
exhibiting specular effects (Figure 4.18-b). Furthermore, our approach recovers accu-
rate specular maps (Figure 4.18-d). In fact, we are able to infer the difference within
the specular reflectance in various indoor real surfaces (e.g., in the second column of
figure 4.18-d, the shiny books retrain a higher specular reflectance (brighter intensity)
in comparison with the wood table). In figure 4.19, we use recovered reflectance and
illumination to virtually relight the specular book. One can notice that the rendered
specularity is well estimated as it is visually coherent with the real one.

Illumination Evaluation

Using a fish-eye lens, we capture the environment map and qualitatively compare it
to the recovered lighting distribution (Figure 4.20) for three scenes (S1, S2 and S3
with respectively one, two and three light sources). Our algorithm estimates correct
illumination distribution as it recovers the correct number of light sources responsi-
ble for specular reflections. Furthermore, we use salient control points and evaluate
the accuracy of recovered positions. Table 4.1 shows a comparison between measured
(Measured D) and recovered distances to light sources (Estimated D). Our algorithm
is tested on various indoor scenes under various lighting (e.g single and multiple spot
lights and/or led lights) and recovers light sources positions with an average error of
16cm for a mean distance of 1.95m to the light source.

Scenes Measured D (cm) Estimated D (cm)
S1 72.2 - - 86.1 - -
S2 94.7 105.6 - 88.9 127.1 -
S3 314.7 293.6 306 297.1 261.6 283.2

Table 4.1 – Comparison between measured and estimated distances to light sources for
scenes (S1, S2 and S3) under different lighting conditions.
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Figure 4.18 – (a) Camera views of three indoor scenes (S1, S2 and S3). (b) Recovered
diffuse maps for surfaces with various textures and reflective properties. (c) 3D mesh
clustering. (d) Estimated specular reflectance parameter kj

s for each cluster j. Blue
pixels correspond to 3D points frequently occluded during scene browsing. Brighter kj

s

values correspond to more specular surfaces.

Figure 4.19 – Comparison between input image (a) and virtually rendered image using
estimated reflectance and illumination (b).

Mixed Reality
Using recovered reflectance and illumiation, we realistically blend virtual objects within
the real scene. This is achieved in a two-step procedure: first, using the estimated
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Figure 4.20 – (a) Captured environment maps using a fish-eye lens. (b) Recovered
lighting respectively for S1 (row-1), S2 (row-2) and S3 (row-3) with respectively one,
two and three main light sources.

average diffuse components in both visible and occluded surfaces (section 4.2.6.1), we
compute an attenuation coefficient β as the ratio of both recovered values:

β =
Ipd,O

Ipd,O + Ipd,V
(4.25)

The second step consists in handling the rendering of virtual shadows using our photometry-
classification (section 4.2.5). If the virtual object occludes an OP point, no shadow is
rendered. On the other hand, if the virtual object occludes a point p belonging to
another subgroup, we render the virtual shadow by multiplying its diffuse component
Ipd by the attenuation factor β. Figure 4.21 shows a variety of augmented scenes where
virtual shadows and specularity removal are correctly rendered. The most important
aspects of realism are the synthetic shadows (same attenuation as the spatially-close
real shadows) and the removal of real specular reflections by virtual objects to observe
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the recovered diffuse component. Further results and rendering comparisons are shown
in this video.

Figure 4.21 – Augmented scenes, with different reflectance and illumination condi-
tions. We demonstrate correctly rendered virtual objects as they occlude real specular
reflections (note the presence of the recovered diffuse component in the occluded region)
and cast realistic shadows on real surfaces.
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4.4 Conclusions and Future Research Directions
In this chapter, we presented a method to recover diffuse and specular reflection com-
ponents for indoor real scenes from an RGB-D sequence. Moreover, we estimated the
3D position of light sources responsible for specular effects within the scene. Our pho-
tometric estimates were then used to correctly insert virtual objects in the real scene
and deliver realistic MR scenarios. The proposed approach handles indoor real scenes
with one or more objects and does not make any assumption with regard to the texture
of the scene (e.g., we do not assume a per-object constant color). Furthermore, our
illumination estimation is not reduced to a single point light nor to a distant lighting
representation.

As demonstrated within this chapter, visual cues observed through acquired image
sequences can be efficiently used to recover reflectance and illumination properties. We
are therefore interested in considering even further cues. Also, the proposed approach
does not run in real-time and does not handle dynamic light sources. Nonetheless, such
requirements must be fulfilled within MR scenarios.
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Chapter 5. Photometric Registration using Cast Shadows

Our goal is to achieve a realistic blending between virtual objects and real-world
scenes for MR applications. A key step consists in recovering the photometric properties
of the real scene, namely reflectance and illumination. In this work, we are specifically
interested in probeless photometric registration approaches which rely on the use of a
single sensor to capture the scene. Such methods take advantage of the information
brought by the sensor’s RGB or RGB-D stream to infer reflectance and/or illumina-
tion. In the previous chapter 4, we proposed a method which, based on observed
specular reflections, estimates both diffuse and specular components of scene surfaces
and recovers the 3D position of light sources responsible for specular effects in the scene.

The proposed approach in chapter 4 represents an offline process which is performed
prior to the MR scenario. In fact, the core idea consists in recovering luminance vari-
ations due to specular effects through a sequence of images captured from different
viewpoints. The end-user must therefore browse the scene in order to bring out these
specular reflections. This rises two practical constraints: first, the light sources in the
scene must be static. Preserving the same illumination throughout the MR scenario
can be constraining for a user who might need to change the lighting conditions; in
this case, the scene’s photometric registration must be performed again. Also, specular
reflections are view-dependent cues which are observed only at a definite angle. Hence,
capturing them might be, in some cases, laborious since the camera/observer’s view-
point must be roughly aligned with the ideal specular reflection direction.

Most importantly, two critical scenarios can not be handled by the previous approach.
The first scenario consists in considering a real scene with mainly Lambertian surfaces
(Figure 5.1-a). In this case, recovered luminance profiles do not retain enough varia-
tions to accurately achieve the photometric registration. The second scenario consists
in considering a real scene where the specular effects that a light source creates are
never or hardly observed. For instance, in figure 5.1-b, two light sources are responsi-
ble for the illumination in the scene. Nonetheless, only the specular effect due to one of
them is captured (green-circled), the second one is mostly occluded by the brown box
(red-circled). Within both described critical scenarios, one can notice the presence of
another interesting cue from which the scene’s photometric properties can be inferred:
shadows. In fact, in figure 5.1-b, in presence of two light sources, both cast shadows
are observed on the table.

In order to understand the information content of shadows, one must first recognize
that shadows come in two types, depending on how they are formed on surfaces. We
will refer to the two types as cast and self-shadows. Shadows are regions of a surface
which receive no illumination from a light source. Self shadows are formed when a
surface obstructs the light falling on itself. Cast shadows are formed on a surface when
another surface occludes it from the light source. As such, shadows are potentially
informative about the illumination in the scene. Furthermore, they represent strong
and reliable visual cues since they are view-independent and omnipresent when real
scenes are observed.

Several scenarios and applications, including MR, can benefit from the information
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Figure 5.1 – Critical scenarios for the method described in chapter 4. (a) Capture of a
real scene where most surfaces hold only a Lambertian property. (b) Capture of a real
scene with two main light sources: the specular effect created by the first light source
is captured (green-circled) whereas the second one is mostly occluded by the brown box
(red-circled).

brought by shadows. Consequently, detecting and deriving illumination from these
cues has been extensively studied within the computer vision community [Sato et al.,
1999][Finlayson et al., 2009][Panagopoulos et al., 2009][Zhu et al., 2010][Panagopou-
los et al., 2011][Arief et al., 2012][Guo et al., 2013]. Nonetheless, it still remains an
extremely challenging problem and no generic solution exists. For instance, in [Arief
et al., 2012], scene geometry is reduced to a single cube casting a shadow on a single-
color surface: the cuboid shape is used to establish correspondences between the sharp
corners of the cast shadow and the upper corners of the cube. From these correspon-
dences, lines are formed and their interesection corresponds to the 3D position of a
single light source. Other approaches such as [Sato et al., 1999] consider scenes with
textured surfaces but require a heavy user intervention such as removing the occluding
objects from the scene and inserting them back. When both scene content and user
intervention constraints are relaxed, processing time requirements for MR scenarios are
not satisfied. For instance, in [Panagopoulos et al., 2009][Panagopoulos et al., 2011],
it takes 3 to 5 minutes to process a single color image. Finally, within all these ap-
proaches, the dynamic lighting case is not addressed.

In this chapter, we propose a method which addresses these limitations. Specifically,
we consider the problem of estimating the 3D position and intensity of multiple light
sources without using any light probe. The light sources can be static and/or dynamic
(e.g., turned on/off, moved, etc.). Moreover, considered real scenes can be composed of
one or more 3D objects which can be of arbitrary shapes. Most importantly, no assump-
tion is made with regard to the intrinsic color of scene surfaces: the method handles
both single-color and textured surfaces. Finally, our approach recovers illumination
characteristics (position and intensity) at an interactive frame rate. To summarize, the
main contributions of this chapter are:

� Detection of cast shadows on textured surfaces using a coarse 3D model and color
images of the scene.
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� Estimation of the 3D position of static and/or dynamic light sources for each
incoming frame using the information brought by the detected cast shadows.

� Estimation of the intensity of the recovered light sources.

� Near real-time implementation of the proposed method in order to meet MR
scenarios requirements.

In the remainder of this chapter, we first describe the main challenges within the
shadow detection task, especially for indoor real scenes with textured surfaces. Then,
we describe our proposed approach to tackle these challenges. Finally, results are
discussed and our estimates are used to show realistic MR scenarios.

5.1 Problem Description

A shadow occurs when illumination coming from a light source is partially or totally
obstructed by one or more objects. Since less illumination reaches these regions, both
cast and self-shadows have a lower luminance in comparison with their surrounding
regions (Figure 5.2). Nonetheless, one can not precisely tell if a surface is "dark" due
to its intrinsic color/texture or its shadowing/shading by considering only its local ap-
pearance. To illustrate, in figure 5.2, a patch located in a shadowed region retains
-to some extent- the same color as a non-shadowed region (red boxes). Another case
where such regions can be misinterpreted occurs when the real scene is lit by a spot
light. This type of light source has a cone of influence: points outside of this cone
do not receive illumination from the light source. Consequently, their local-appearance
can be easily confused with shadowed regions (e.g., the green-box patches in figure 5.2).

Figure 5.2 – The local appearance of surfaces can be ambiguous to recognize shadows
within an image: red-box patches correspond to points under different lighting con-
ditions, yet they have similar colors. The upper green-box patch is often erroneously
detected as a shadowed region.
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In presence of textured surfaces, such misinterpretations occur more often. For in-
stance, in figure 5.3-a, within a small window (W), patches A and B have a similar
local appearance although they are subject to different lighting conditions (A is in
a shadowed region). The problem of separating the intrinsic color of surfaces from
their shading/shadowing effects within an image, also referred to as intrinsic image
decomposition (chapter 3), has been extensively studied [Grosse et al., 2009]. These
approaches rely on the Retinex theory, proposed by [Land and McCann, 1971], stating
that the intrinsic color is characterized by sharp edges while shading/shadowing varies
slowly. However, these assumptions do not usually hold: in figure 5.3-b, both texture
and shadowing exhibit strong discontinuities.

Figure 5.3 – Challenging shadow detection scenarios: (a) patches A and B have sim-
ilar local appearance but A belongs to a shadowed region and B does not. (b) The
Retinex theory assumptions [Land and McCann, 1971] do not hold since both texture
and shadows have sharp edges.

An interesting alternative to detect shadows in captured image consists in compar-
ing paired regions that are likely to be of the same material but are subject to different
lighting conditions [Guo et al., 2013][Duchêne et al., 2015]. To illustrate, in [Guo et al.,
2013], a shadowed region is detected by considering both its local appearance and
surrounding regions. The local analysis is achieved by representing the color with a
histogram in the L*a*b space (21 bins per channel) and texture with a texton his-
togram (128 textons) [Martin et al., 2004]. For the surrounding regions analysis, the
image is first segmented into a set of regions using the mean shift algorithm [Comaniciu
and Meer, 2002]. The recognition of same-reflectance regions is achieved using various
similarity metrics such as the ratio of their intensities, their chromatic alignment, and
their distance in the image. Pairwise relationships, together with local appearance fea-
tures are incorporated in a shadow/non-shadow graph. Finally, the regions are jointly
classified as shadow/non-shadow using graphcut inference (Figure 5.4).

The method proposed by Guo et al. [Guo et al., 2013] was tested on our captured
indoor scenes images (Figure 5.5). Based on the generated results, we can see that the
shadow detector is generally good at detecting shadows within regions with a roughly
single color (green boxes). However, as demonstrated by the failure cases (red boxes),
the detector delivers poor results in presence of textured surfaces (Figure 5.5- second
row). Furthermore, the detector does not handle the presence of two cast shadows with
different intensities as it only detects the darkest one (first row).
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Figure 5.4 – Results of [Guo et al., 2013]: (a) input color images. (b) Dark blue pixels
correspond to the detected shadows. Figures from [Guo et al., 2013].

Our contribution consists in addressing the problem of deriving illumination infor-
mation from cast shadows within real scenes with arbitrary textures. To achieve this
goal, we incorporate geometry into a framework which relies on the comparison of
paired-regions with similar reflectance but subject to different lighting conditions. In
fact, since shadows are caused by the occlusion of light sources by scene geometry,
combining 3D information along with 2D analysis results in a more robust photometric
registration (e.g., textured surfaces, multiple shadows, spot-cone effect, etc.).

5.2 Our Proposed Approach

The proposed framework takes three inputs: (a) 3D model of the scene (e.g., coarse
model acquired with an RGB-D sensor (Intel R200)). (b) near-ambient reference image
to which we will refer as reference image. The latter is acquired by simulating an ambi-
ent lighting which, in theory, does not generate any shading or shadowing. In practice,
it can be easily produced by considering a fairly uniform indirect lighting. (c) color
images of the scene from which illumination will be recovered overtime (Figure 5.6).

The assumptions we made for the proposed approach are: (i) scene geometry is as-
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Figure 5.5 – (a) our input color images. (b) Dark blue pixels correspond to the detected
shadows. Green and red boxes highlight respectively successful and failure cases of Guo
et al. method for our captured indoor scenes. The code is available here.

Figure 5.6 – (a) Acquired 3D model of the scene using the Intel R200 sensor. (b)
reference image of the real scene. (c) color image of the captured scene.

sumed to be static and contains a main planar surface on which shadows are cast (e.g.,
table, desk, floor). As previously mentioned, our framework uses the 3D model, ac-
quired by the Intel R200, to recover illumination. This sensor internally refines planar
surfaces within the scene [Keselman et al., 2017] and delivers accurate and smooth
meshes (Figure 5.7). We therefore take advantage of this feature for robustness consid-
erations. (ii) scene reflectance is described by the Lambertian reflection model. Hence,
the way a diffuse point p in the scene reflects light can be described by [Phong, 1975]
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as follows:

Ip = kpd(La +
M∑
i=1

(np · ωpi )LiO
p
i ) (5.1)

where Ip is the color of 3D point p, kpd is its albedo and np is its normal vector. La
and Li are respectively the intensities of ambient lighting and light source i, ωpi is the
incoming light direction vector of light source i, and M is the number of light sources
present in the scene. Op

i is a binary visibility term, equal to 1 if point light i is visible
from the 3D point p and equal to 0 if occluded. (iii) the viewpoint is fixed within the
analysis part but can vary within MR scenarios.

Figure 5.7 – (a) Color image of the captured scenes. (b) Acquired 3D model of the
scenes in (a) using the Intel R200 sensor: the planar surface corresponding to the table
within the scene is smooth. The reconstructed geometry of the specular cylinder and
the black GoPro camera (red boxes) is of lower quality.

To recover the illumination in the scene, our approach relies on two key ideas (Fig-
ure 5.8):

� For every input color image, we separate texture/color variations from shadowing
effects. This is achieved using a voting scheme where a 3D point p is compared,
in terms of shadowing/shading, to 3D points holding similar diffuse reflectance
as point p. In fact, if we consider a pair of points p and p̂ with similar reflectance
kpd but subject to different illumination conditions (p is occluded with regard to
lighting whereas p̂ is not), the ratio of their respective colors using [Phong, 1975]
is described as follows:

δ(p) = Ip
Ip̂ = kd(La +

∑M
i=1(np · ωpi )LiO

p
i )

kd(La +
∑M
i=1(np · ωpi )Li)

= La +
∑M
i=1(np · ωpi )LiO

p
i

La +
∑M
i=1(np · ωpi )Li

(5.2)
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Consequently, δ corresponds to a ratio of illumination since diffuse reflectance kpd
cancels outs. In the following, we will refer to δ as the illumination ratio map.
The identification of point pairs retaining the same diffuse reflectance is robustly
achieved using the reference image. In fact, the color of a point p within this
image Ipref is described as follows:

Ipref = kpdLa (5.3)

Since all scene points are equally illuminated by the pseudo-ambient lighting La,
the color of scene points within this image mainly contains texture/color (no
apparent cast shadows) and represents a robust similarity feature.

� Using the 3D model of the scene and a set of hypothetical point light sources,
we render a shadow map for every light source. By considering dense matching
techniques, the 3D position of light sources corresponds to the best matches
between the illumination ratio map and the generated shadow maps.

In the following sections, we describe in details the main components of the proposed
photometric registration approach.

Figure 5.8 – Outline of our photometric registration approach using cast shadows.

5.2.1 Estimation of Illumination Ratio Maps

Shadows are caused by the occlusion of incoming light, and thus contain various pieces
of information about the illumination of the scene. In this section, our goal is to sepa-
rate texture variations from cast shadows. The considered inputs are the 3D model of
the scene and the reference image. To achieve the texture and illumination separation
for each incoming color image, we follow a two-fold procedure:

The first step is achieved only once since geometry is static: we detect the main planar
surface on which shadows are cast. Specifically, we compute surface normals n using
[PCL, 2013] and apply a region growing algorithm to cluster similarly oriented surfaces
together (a deviation value of 3 degrees is typically allowed between normals). Then,
we use a RANSAC estimator to fit each cluster to a planar surface model. Finally, the
cluster including the largest number of inliers is considered as the main plane. Points
above the detected plane are further grouped as belonging to the occluding objects
(Figure 5.9).
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Figure 5.9 – (a) Color image of real scenes. (b) Clustered 3D models of scenes in
(a): white pixels correspond to 3D points belonging to the planar surface. Points which
belong to an occluding 3D object are represented by pixels with similar grayscale values.
Black pixels correspond to either the background (the geometry of the background is
not available) or points with noisy normals.

Secondly, we aim at separating texture/albedo and illumination in the current frame.
The analysis is limited within the 2D projection of the previously detected plane where
cast shadows can be encountered. Our separation is achieved through a voting scheme
using pairs of points (p, p̂) with the same reflectance kd but subject to different lighting
conditions (Figure 5.10).

The selection of pairs (p, p̂) is based on two features: (i) L2 norm of pixels color
in the CIELAB color space within the reference image Iref as it provides accurate
similarity measures compared to using only the current frame (Figure 5.11). In fact,
the use of the reference image Iref makes our algorithm robust in presence of challeng-
ing textures, poor lighitng conditions and/or sensor noise. (ii) the lightness channel
L of the CIELAB color space within the current image enables us to compare pairs
illumination-wise. Hence, points with lower lightness values are prone to belong to
shadowed regions. Using these two features, the voting scheme is applied as follows:

v(p) =
{

+1, if
∥∥∥Ipref − Ip̂ref

∥∥∥ ≤ εref and Lp̂ ≥ Lp + εL

0, otherwise
(5.4)

where εref and εL are respectively thresholds with respect to color vectors distance in
Iref and lightness difference in L. A value of 2.5 is chosen for εref as it corresponds to
an almost noticeable difference [Sharma, 2002]. εL is kept at a low value (typically 10)
to handle both weak and strong shadows. Finally, pixels holding a significant voting
value v(p) are further considered to estimate their respective illumination ratio map
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Figure 5.10 – Voting scheme to detect cast shadows: points paired with p correspond
to 3D points p̂ which belong to the detected planar surface and hold a similar diffuse
reflectance as point p. In this scenario, point p received one vote out of three performed
comparisons.

value δ(p):

δ(p) = Lp

L̄
with: L̄ =

∑
p̂ L

p̂

v(p) (5.5)

where L̄ is the mean lightness value of matched points p̂. Furthermore, pixels for which
similar-reflectance pairs are found but received a low voting value hold an illumination
ratio value equal to 1. In fact, when these points are compared with their similar-
reflectance points, they are never found to have a lower lightness value which implies
that they must not be occluded with regard to the light sources in the scene. Last but
not least, pixels for which no match is found are discarded (green pixels in figure 5.11).

5.2.2 Estimation of Light Sources 3D Position
In this section, our goal is to recover the 3D position of light sources responsible of
cast shadows in the scene. An initial illumination distribution corresponds to a set of
virtual point lights equally distributed in the 3D space above the detected plane (Fig-
ure 5.12-a). The core idea, with regard to estimating the 3D position of light sources,
consists in extracting a subset (S) of point lights whose shadow maps (Figure 5.12-b)
correlate with the estimated illumination ratio map in section 5.2.1.

The identification of subset (S) is carried within an iterative process as follows:

1. We initially compute correlation values by matching the illumination ratio map
with the shadow maps of the sampled light candidates. The light source whose
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Figure 5.11 – (a): reference image Iref of the scene. (b): current scene capture. (c)(d):
recovered illumination ratio maps using respectively (b) and (a). (d) demonstrates a
better separation of texture and lighting. Note the shadow of the front book in (d)
compared to (c) as well as discarded pixels (green).

Figure 5.12 – (a) Initial distribution of candidate light sources. They are represented
by point lights located at the center of the green spheres. (b) An example of a generated
shadow map using the 3D model of the scene and a candidate light source from (a).

shadow map has the best correlation value is selected.

2. For each iteration, previously selected light sources are discarded. Also, the

88



5.2. Our Proposed Approach

matching operation within the current iteration is carried out by discarding pre-
viously matched pixels.

3. The process ends either when the currently selected shadow map has a signifi-
cantly low matching value or if the number of selected lights is higher than N .
In practice, we set N to be equal to 4.

The chosen correlation metric corresponds to Pearson’s correlation coefficient given by
the following formula:

Φi =
∑P
j=1(δ(pj)− δ̄)(O

pj

i − Ōi)√∑P
j=1(δ(pj)− δ̄)2

√∑P
j=1(Opj

i − Ōi)2
(5.6)

where i iterates over the initial set of candidate light sources and j iterates over the
set of pixels which belong to the 2D projection of the principle plane P . δ(p) and Op

i

are respectively the illumination ratio map and ith shadow map values for pixel p and,
δ̄ and Ōi represent their respective mean values. The coefficient Φi corresponds to the
correlation value between the current illumination ratio map and the ith shadow map.
Φi has a range between 0 and 1: perfectly matching maps have a coefficient equal to 1.

The light sources in the scene can be turned on/off and moved within the MR sce-
nario. We therefore recover illumination for each incoming frame. Note that only the
correlation procedure is performed for each input frame. In fact, the initial distribution
of virtual point lights along with their rendered shadow maps need to be generated only
once since the geometry is static.

5.2.3 Estimation of Light Sources Intensity
In order to correctly render virtual shadows that are consistent with the observed
cast shadows in the real scene, we must recover the characteristics of the light sources
illuminating the real-world. Specifically, in addition to the 3D position of the light
sources (Section 5.2.2), we must recover their respective intensities. As we consider
small to middle scale scenes, we assume that the shading ((np ·ωp) = cos θ) in equation
5.1 is equal across selected pairs. Subsequently, equation 5.1 can be rewritten as follows:

Ip = kpd(La +
M∑
i=1

LiOp
i ) (5.7)

Consequently, the recovered illumination ratio map, previously described in equation
5.2, is rewritten as:

δ(p) = La +
∑M
i=1(LiOp

i )
La +

∑M
i=1 Li

(5.8)

The normalized color vector of a pure Lambertian white pixel is Ip = (1, 1, 1)>. As its
diffuse reflectance kpd = (1, 1, 1)> [Ward, 1992], we set La +

∑M
i=1 Li = 1 and rewrite

equation 5.8 as follows:

La +
M∑
i=1

(LiOp
i ) = δ(p) (5.9)
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Finally, by considering all the points within the detected planar surface, we obtain a
linear system:

AL = δ (5.10)

where:

A =


1 Op1

1 · · · Op1
M

1 Op2
1 · · · Op2

M
...

... . . . ...
1 OpN

1 · · · OpN
M

L =


La
L1
...

LM

 δ =


δ(p1)
δ(p2)
...

δ(pN )

 (5.11)

The linear system 5.11 is solved using an iterative Least Squares with bounds and
equality constraints:

L̂ = arg minL(1
2 ‖W(AL− δ)‖)2) subject to:{

0 ≤ Li ≤ 1 and 0 ≤ La ≤ 1
La +

∑M
i=1 Li = 1

(5.12)

where W is a diagonal matrix whose weights are computed using Tukey′s bisquare loss
function [Yu et al., 2014]. Hence, small weights are discarded throughout iterations.

5.3 Experimental Results

The proposed approach has been tested on various real scenes with varying texture and
lighting conditions. In figure 5.13, we illustrate our results within a selection of four
scenes (S1, S2, S3 and S4). Further results are shown in this video.

In figure 5.13, scenes are grouped row-wise. In the first column, we overlay the contours
of shadow maps generated by the recovered light sources on the input color images. For
instance, red and green contours are used respectively for the first and second detected
lights. In the second column, we demonstrate estimated illumination ratio maps where
background/noise are represented by red color pixels and occluding objects by blue
color pixels. On the detected planar surface, green color pixels represent 3D points
for which no pairs are found. Finally, grayscale pixels are the illumination ratio maps
values. These pixels correspond to 3D points partially or fully occluded with regard to
lighting. For instance, white color pixels represent fully lit 3D points (their illumination
ratio maps value δ is equal to 1).

As illustrated in figure 5.13-b, our algorithm estimates illumination ratio maps where
texture/albedo is accurately separated from illumination effects. The proposed frame-
work handles both uniform surfaces (S1) and challenging textured surfaces (S2, S3 and
S4). Also, we demonstrate robustness in presence of poor geometry, especially when
the scene contains specular objects (cylinser and books in S1 and, tea box in S3). In
fact, the Lambertian assumption must mainly hold on the principal plane. Finally,
the use of the reference image Iref enables us to be robust even when lighting and/or
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Figure 5.13 – (a) Overlay of the contours of selected shadow maps (i.e. selected point
lights) on the input color image. (b) Estimated illumination ratio maps δ for real scenes
in (a) with fairly uniform (S1) and textured surfaces (S2, S3 and S4).

image quality lack (S4). In fact, in case of low lighting, the information within shad-
owed regions can be noisy (sensor noise). Consequently, considering the color within
the current image as a similarity feature is not as robust as considering the image Iref
captured under a pseudo-ambient lighting.
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Recovered 3D Position of Light Sources

In figure 5.13-a, we overlay the contours of the selected shadow maps on the current
color frame. For S2, the illumination ratio map contains shadows but also the effects
corresponding to a narrow spot light cone. Nonetheless, our algorithm succeeds in
recovering an accurate light position. Furthermore, our approach demonstrates good
results in the presence of overlapping shadows (S3 and S4). In fact, since we perform
a dense matching between shadowed regions in both the illumination ratio map δ and
generated shadow maps, our iterative process efficiently matches the shadow pixels
originating from the occlusion of light sources in the scene.

In order to evaluate the precision of recovered light sources positions, we used a special
setup for several experimental scenes. First, we choose a world frame on the main
plane and measure distance to real lights using a telemeter. Our algorithm is tested on
various scenes and recovers light sources position with an average error of 17cm for a
mean distance of 2.55m to the light source and a standard deviation of 3.5cm.

As mixed reality is our target application, temporal stability with regard to recov-
ered light sources is of paramount importance. When the lighting is static, recovered
lighting properties (position and intensity) must be temporally stable, otherwise vir-
tual shadows might suffer from apparent flickering. In figure 5.14, we can notice that
under the same lighting conditions, the selected light source (ID98) remains the same
throughout the sequence with slightly different correlation values. The second best
shadow map holds a low correlation value and is thus discarded (it corresponds to a
matching with few noisy pixels within the illumination ratio map).

Figure 5.14 – First and second best correlation coefficients for a scene under static
lighting.

Estimated Light Sources Intensity

In this section, we demonstrate the effectiveness of our approach with regard to the
estimated intensity of light sources. First, we show the temporal stability of the inten-
sity estimates throughout a sampled sequence for scenes S2 and S4 under moving light
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sources (Figure 5.15). In fact, when the scenes are illuminated by a dynamic lighting,
the 3D position of light sources changes but their intensity is fairly constant.

Figure 5.15 – Recovered ambient intensity La and point light sources intensity L1 and
L2 for scenes S2 and S4.

Furthermore, recovered lighting intensities are used to render virtual shadows. In fig-
ure 5.16, the second column represents reconstructed shading (La+

∑M
i=1(np ·ωpi )LiO

p
i )

using scene geometry, light sources 3D position and intensity for scenes S3 and S4 (de-
picted in the first column). A virtual sphere is introduced as well to demonstrate its
interaction with the real scene.

Mixed Reality Applications

The proposed photometric registration approach runs at an interactive frame rate (4fps)
and recovers both 3D position and intensity of light sources in the real scene. These
estimates are used within a rendering pipeline to illuminate virtual objects inserted in
the mixed scene. In figure 5.17, we show augmented real scenes where virtual shadows
are visually coherent with real shadows in terms of shape and intensity.

Moreover, as stated in section 5.2, the viewpoint is fixed. This is mainly because
the generation of shadow maps with regard to different viewpoints (in case the camera
moves) is time-expensive (20 seconds to generate 1176 shadow maps). Consequently, in
order to allow the end-user to freely move the camera, we can either re-project the cur-
rent color image, using camera pose, onto a reference viewpoint within which shadow
maps are generated or follows the setup described in appendix A. In fact, the proposed
approach in this chapter has been integrated within an industrial project at Technicolor
(appendix A). The goal of this project is to deliver a realistic MR experience where
the end-user can freely turn on/off and move the light sources in the real world and
witness the changes within the virtual objects as well. In figure 5.18, we show captures
of the MR demonstration running, in real-time, on a tablet. More details about the
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Figure 5.16 – (a) Reconstructed shading using scene geometry and recovered lighting
properties (position and intensity) for S3 (a) and S4 (b).

Figure 5.17 – Mixed reality scenarios with visually coherent virtual shadows such as
the red capsule in S1 (a) and the brown cube in S2 (b).

demonstrator can be found in appendix A, video1 and video2.
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Figure 5.18 – Mixed reality scenarios where a virtual bunny augments scenes with
uniform-color surfaces (a) and textured surfaces (b). Light conditions are various: a
single spot light (b), two spot lights (c) and both a spot light and a phone’s flash light
(d).

5.4 Conclusions and Future Research Directions
In this chapter, we presented a probeless photometric approach which recovers both
position and intensity of multiple light sources for indoor real scenes. The algorithm
is based on a detection of cast shadows within surfaces where texture can spatially
vary. The proposed method runs at interactive frame rate (4fps) which satisfies MR
requirements. Furthermore, the dynamic aspect of lighting was tackled, which allows
the end-user to freely turn on/off or move lights within the scene and notice near real-
time changes with regard to the synthetic objects.

In the proposed framework, we assumed a Lambertian property for the main planar
surface of the scene. This is due to the fact that specular reflections can disturb our cast
shadow detection. Nonetheless, in real-world scenes, specularities are often encountered
and must be handled. Consequently, we are interested in relaxing the Lambertian con-
straint and efficiently use the information brought by both cast shadows and specular
reflections.
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Our goal is to achieve a realistic blending between real and virtual worlds. This re-
quires the estimation of the reflectance properties as well as the characteristics of light
sources illuminating the real scene. One of the challenges within this task consists in
recovering these properties using a single RGB-D sensor. In chapters 4 and 5, we pre-
sented two probeless photometric approaches which derive reflectance and illumination
from the analysis of the scene’s RGB-D stream. In fact, the first approach considers the
information brought by observed specular reflections while the second method relies on
the detection of cast shadows. In this chapter, we address the following question: how
can we combine both of these cues to achieve a robust photometric registration ?

6.1 Problem Description

An important aspect of photometric registration approaches consists in their usability.
Proposed approaches must be, as much as possible, independent from the scene’s con-
tent (e.g., geometry, reflectance, illumination). In fact, constraining the MR user to
have a single light source or a textureless surface reduces the range of possible scenarios.
Hence, instead of enhancing the immersion, it adds cumbersomeness to the experience.

Our goal is to achieve a photometric registration which handles a variety of real scenes
using a single sensor. In the previous chapter 5, we presented an approach that recovers
the 3D position and intensity of multiple light sources in the scene. Moreover, the user
can freely turn on/off and move the light sources since the dynamic aspect is tackled
as well. However, we assumed that the surfaces hold a Lambertian property. This is
mainly because specular reflections can disturb the cast shadow detection procedure.
To illustrate, in figure 6.1-a, point p does not belong to a shadowed region. Nonetheless,
when compared to its surrounding points (illumination-wise), it holds a lower lightness
value. Hence, it can be erroneously recovered as a cast shadow point. To tackle this is-
sue, a simple and commonly used technique consists in detecting these highlight regions
within the image and discarding them within the analysis phase. While this procedure
resolves the problem depicted in 6.1-a, it is not always as effective: in figure 6.1-b,
handling the specular reflection (green-circled) as an outlier results in an inaccurate
estimate of the 3D position of the light source. In fact, by discarding the specularity,
only the cast shadow points within the red contours are recovered while the cast shadow
actually extends within the blue-contoured region.

As demonstrated in chapter 4, specular reflections are informative in terms of sur-
face reflectance and scene illumination. In fact, they represent interesting cues with
regard to the direction of the light source creating them. Hence, they must be taken
into account for this purpose within the photometric registration task. Moreover, when
cast shadows can not be easily detected, specular reflections can be efficiently used
to handle such scenarios. To illustrate, in figure 6.2-(a,b), cast shadows (red boxes)
hold a significantly low intensity. It can be due to the presence of a spatially close
specular effect or an additional light source with stronger intensity. In these scenarios,
where weak cast shadows can be hard to detect, photometric registration approaches
can benefit from the information brought by the observed specularities in the scene.
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Figure 6.1 – (a) Example of a point p which can be erroneously recovered as a cast
shadow point due to the presence of specular effects (using the method described in
chapter 5). (b) An example where discarding specular reflections from the analysis can
result in inaccurate estimates of the 3D position of light sources: recovering the 3D
position only from the points within the red contours instead of considering the points
within the blue contour.

Figure 6.2 – Examples of weak cast shadows, which can be hard to detect, due to the
presence of close specular effects (a) and an additional stronger light source (b).

Generally speaking, most existing approaches either use specular reflections or cast
shadows to derive reflectance and/or illumination. Nonetheless, the existence of a light
source is more likely if it is supported by more than one cue. In fact, consistency
among both cues and within each cue can lead to more robustness. To our knowledge,
there are only two related works which jointly use within their photometric registration
framework both specular reflections and cast shadows [Anusorn and Nopporn, 2016][Li
et al., 2003]. In [Anusorn and Nopporn, 2016], specular highlights are used to estimate
the light source direction. This is achieved by considering the ideal specular reflection
direction roughly aligned, at the center of the detected specularity, with the view direc-
tion. Then, a search of the light source’s 3D position is considered along the recovered
direction. The final estimate of the light source position is achieved using the corners of
a shadow cast on a single-color and Lambertian surface. Beside the imposed constraints
of this method with regard to having a scene reduced to a simple known object and a
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Lambertian surface, recovering the light source position along the estimated light direc-
tion can be inaccurate. To illustrate, in figure 6.3-a, depending on the thresholds used
to recognize the highlights within the image, the direction of the light source can be
recovered using either the red-circled specularity or the green-circled specularity. Con-
sequently, this results in an error with regard to the estimated 3D position of the light.

Figure 6.3 – (a) Resulting error within the position of the light source due to an
inaccurate detection of specular effects. (b,c) Scenarios of weak cast shadows where
applying a simple Canny edge filter does not deliver accurate results.

The second method proposed by [Li et al., 2003] considers the critical case of tex-
tured surfaces. The approach determines the expected positions of shadow edges and
specularities for hypothetical lighting directions sampled from a hemisphere. After
computing the expected positions of these cues for a given light direction, the method
then checks whether these cues are present in the image at the predicted locations. For
instance, shadow boundary points in the image are computed by a Canny edge filter
and are compared to the generated hypothetical shadows using Euclidean distance.
Beside the fact that this method considers the illumination within indoor real scenes to
be distant and only recovers its direction, the information derived from the cast shad-
ows is not robust. To illustrate, in figure 6.3-b, due to the presence of soft shadows,
the thresholds used within the Canny edge detector must be lowered to detect smooth
discontinuities. However, this results in noisy contours, especially in case of low-quality
images (the camera’s sensor noise can be detected as well). In presence of challenging
textures and weak shadows (Figure 6.3-c), the detection of cast shadows is even more
complex.

In this chapter, we propose a method which addresses these critical scenarios and
robustly incorporates both shadow and specularity cues within a photometric regis-
tration framework. Specifically, we consider indoor real scenes composed of one or
more objects with arbitrary shapes. Most importantly, scene surfaces can hold arbi-
trary textures and retain Lambertian and/or specular properties. Also, multiple light
sources are handled and their respective locations can be freely changed by the user
overtime. The proposed approach jointly exploits specular reflections and cast shadows
to estimate the specular reflectance of scene surfaces and illumination characterisitcs
(number of light sources, their respective 3D positions and colors). To summarize, the
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main contributions of this chapter are:

� Detection of specular reflections and challenging cast shadows (e.g., weak shad-
ows, overlapping shadows with different intensities) on arbitrary textured surfaces
from a coarse 3D model and color images of the scene.

� Estimation of the 3D position of static and/or dynamic light sources for each
incoming frame by robustly exploiting the information brought by specularities
and shadows.

� Estimation of the color of recovered light sources.

� Estimation of the specular component of scene surfaces, namely the specular
reflectance and the shininess coefficient.

� Near real-time implementation of the proposed method in order to meet MR
scenario requirements.

The remainder of this chapter is organized as follows: we first present the inputs, as-
sumptions and an overview of the proposed approach. Then, we describe the procedure
of jointly exploiting specular reflections and cast shadows to estimate the reflectance
and illumination of the scene. Finally, experimental results are presented and discussed
along with two applications: realistic mixed reality and retexturing.

6.2 Our Proposed Method
Similarly to the approach described in chapter 5, the proposed method takes three
inputs: (a) coarse 3D model of the scene acquired with an RGB-D sensor (Intel R200).
(b) a color image of the scene captured under a near-ambient lighting which can be
produced by considering a fairly uniform indirect lighting. This color image mainly
contains the color and texture of scene surfaces and does not exhibit any shadowing
or specular effects. We will refer to this image as the reference image (Iref ). (c)
color images of the scene from which illumination will be recovered (Figure 6.4). In
comparison to the assumptions made within the previous approach (chapter 5), in
this chapter we only retain the assumption of having a main planar surface on which
arbitrary-shaped objects cast shadows. Consequently, the color of a scene point p is
described using Phong model [Phong, 1975] as a combination of three components:

Ip = Ipa + Ipd + Ips (6.1)

where Ip, Ipa, Ipd and Ips are respectively the color, the ambient, the diffuse and the
specular components of point p. Using Phong model [Phong, 1975], ambient, diffuse
and specular components in equation 6.1 are described as follows:

Ip = kpdLa + kpd(
M∑
i=1

(np · ωpi )LiO
p
i ) + kps

M∑
i=1

(rpi · vp)αpLiOp
i (6.2)

where La, Li are respectively the color vectors of ambient and light source i. kpd and kps
are respectively the diffuse and specular reflectances of point p, np is its normal vector,
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vp is its viewpoint vector, and αp is its shininess parameter. rpi is the ideal reflection
vector at point p with regard to light source i and ωpi is the direction of the light source
i from point p. M is the number of light sources present in the scene. Op

i is a binary
visibility term that is equal to 1 if light i is visible from the 3D point p and equal to 0
if occluded.

Figure 6.4 – (a) Acquired 3D model of the scene using the Intel R200 sensor. (b)
reference image (Iref ) of the scene. One can notice the presence of mainly the surface’s
color/texture and hardly any shadowing or specular effects. (c) color image of the
captured scene.

Given the color of a scene point p, its normal vector np and its current view vec-
tor vp (all acquired or derived from the sensor’s data), our goal is to estimate its
reflectance properties (kpd, kps , αp) and the illumination in the scene (M , La, Li, rpi ,
ωpi , O

p
i ) under which the current color image is captured. In order to robustly resolve

this ill-posed problem, we jointly use the information brought by specular reflections
and cast shadows as follows (Figure 6.5): using the reference image (Iref ), we separate,
for each incoming color image I, surface texture from illumination effects (e.g., shad-
ing, shadowing and specular reflections). This step results in an image of the scene
which mainly contains illumination-dependent variations and we will refer to it as the
illumination map. From this illumination map, we detect the specular reflections and
use them to estimate a rough direction of the light sources in the scene. Then, using
detected specular effects and recovered lights directions, an adaptive and robust cast
shadow detection is achieved and light sources positions and colors are estimated. Fi-
nally, using recovered scene illumination, specular reflectance parameters are estimated
for scene points.

In the following sections, we describe in detail the main components of the proposed
photometric registration approach.

6.2.1 Per-frame Texture Removal

In this section, our goal is to accurately separate texture/color variations from illumination-
dependent effects such as shading, shadowing and specular reflections, within scene
surfaces which can retain diffuse and/or specular properties. This is of interest for
our photometric registration framework for two main reasons: (i) As previously stated,
our approach uses both specular reflections and cast shadows to recover the reflectance
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Figure 6.5 – Outline of the proposed photometric registration approach which jointly
uses specular reflections and cast shadows to estimate the reflectance and illumination
of the captured scene.
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and illumination of the scene. Hence, to robustly detect and model these cues, it is
important to isolate their effects from any color or texture changes. For instance, if
one considers the main planar surface of the scene (Figure 6.6), the shading (np · ωpi )
smoothly varies (green box). Hence, if the texture variations (blue box) are accurately
removed from the image, remaining abrupt and harsh discontinuities can be primarily
associated to cast shadows (red box). (ii) The task of separating texture/color from
illumination-dependent effects, also referred to as intrinsic image decomposition (Chap-
ter 3), is a key step for many computer vision applications, especially retexturing. In
fact, the core idea of this application consists in preserving illumination while partially
or completely altering the texture of the scene. It is evidently important to accurately
isolate both of these components.

Figure 6.6 – A key step within our photometric registration approach consists in sepa-
rating texture variation (blue box) from illumination-dependent variations such as shad-
ing (green box) and shadowing (red box)

The proposed approach for texture and illumination separation is two-fold. To be-
gin with, we are interested in recovering the diffuse reflectance, corresponding to the
intrinsic color/texture, for all scene points. Let us consider a pixel p within the refer-
ence image (Iref ) shown in figure 6.7-a. The color of pixel p, corresponding to a 3D
point in the scene, is described using Phong model [Phong, 1975] as:

Ipref = kpdL
′
a (6.3)

where Ipref and L′a are respectively the color vectors of point p and near-ambient
lighting (used to produce the reference color image). We are interested in recovering
the texture/color of the scene which is independent from the lighting conditions under
which the image is captured. To achieve this task, the unknown color of the near-
ambient lighting L′a must be estimated. In this work, we use available constant-color
regions within the scene (red boxes in figure 6.7-(a,b)) to estimate this unknown as
follows:

L′a =
∑
p∈W Ipref
#W (6.4)
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where W is a constant-color (grayscale) region within the reference image and #W is
the pixels count within W . If no such region is available, one can use a color constancy
algorithm, such as [Thai et al., 2017] to estimate L′a. Consequently, using equation
6.3, the albedo/texture kpd of scene points (Figure 6.8-c) can be recovered within the
scene as follows:

kpd =
Ipref
L′a

(6.5)

Figure 6.7 – (a,b) are examples of reference images of the scene with constant-color
(e.g., white) regions (W) from which the color of lighting can be estimated using equation
6.4. (c) intrinsic texture/color of the scene which is independent from the lighting
conditions under which it was produced (a).

Now that we have recovered the diffuse reflectance kpd of scene points, the second step
of the proposed texture/illumination separation consists in recovering an illumination
map δ for each incoming color image. This map must be texture-free and contain
mainly shading, shadowing and specular reflections. The map δ is recovered, for each
point p, using the diffuse reflectance estimate as follows:

δp = Ip
kpd

= kpd(La +
∑M
i=1(np · ωpi )LiO

p
i ) + kps

∑M
i=1(rpi · vp)αpLiOp

i

kpd
(6.6)

Within equation 6.6, kpd cancels out with regard to the ambient and diffuse components.
Also, since specular reflections do not cover significantly large regions of the image, and
for clarity reasons, the equation 6.6 is rewritten as follows:

δp = La +
M∑
i=1

(np · ωpi )LiO
p
i + εpS (6.7)

where δp represents the illumination map value at pixel p and εpS corresponds to present
specular highlights (Figure 6.8-b) at pixel p. As depicted in figure 6.8-b, δ contains
mainly shading effects (green boxes) which correspond to the scalar product (np · ωpi )
in equation 6.7, cast shadows (blue boxes) results from the occlusion term Op

i and
specular effects (red box) correspond to the term εpS . One can notice that in case of
a Lambertian scene (kps = 0), the εpS term is equal to 0 and no specular effects are
recovered (Second row in figure 6.8-b).

In the following sections, this recovered illumination map δ is used to detect and model
both specular reflections and cast shadows within the scene.
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Figure 6.8 – (a) Input color image of captured scenes. (b) Recovered illumination maps
for images in (a). Red, green, and blue boxes correspond respectively to specular, shading
and shadowing variations in the scene. Yellow box are examples of noisy estimations due
to low quality images or very shiny surfaces.

6.2.2 Specular Highlights Detection for Lights Direction Estimation
Specular reflections represent view-dependent cues which are informative about the
direction of the light source in the scene. In fact, these cues are observed when the
camera or the user’s view direction is roughly aligned with the ideal specular reflection.
In this section, our goal is to detect specularities within the recovered illumination map
and use them to estimate the light sources direction.

To begin with, we detect specular highlights using [Ortiz and Torres, 2006]. By con-
sidering the Hue Saturation Value (HSV) color space, the approach recovers specular
reflections at pixels where the color has high value (V) but low saturation (S). The
value (V) corresponds to the maximum within the three-channel color vector (R,G,B)
and the saturation (S) component is computed as follows:

S =
{
V−min(R,G,B)

V , if V 6= 0
0, otherwise

(6.8)

The chosen thresholds for minimum value and maximum saturation are respectively 0.8
and 0.2. The results are written into a binary mask (H) with 1 where the specularity is
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detected and 0 otherwise. Because white surfaces may be misinterpreted as highlights,
we make use of the reference image to improve our detection as follows:

Hp =
{

1, if Ipref < Ip + ε

0, otherwise
(6.9)

where ε is a threshold of color intensity (linear combination of the three color channels)
difference between the reference and current frames at p. In fact, since the reference
image Iref mainly contains the intrinsic color of scene surfaces, when specular effects
are captured within the current frame, point p holds a significantly more important
brightness value in Ip than in Ipref . Both detected specularities and discarded bright
regions are shown in figure 6.9.

Figure 6.9 – (a) Input color image of the scene with two specular effects. (b) Detection
of specular reflections: red pixels correspond to the detected specularities after discarding
(magenta) pixels that do not check equation 6.9.

The second step consists in recovering the direction of light sources using the detected
specularities (retrieved in the binary mask H). First, due to thresholding noise, small
and/or isolated highlights can be detected. We handle these noisy regions using a sim-
ple blob detector: localy connected regions are initially recovered using [Teh and Chin,
1989] (Figure 6.10-a) and, each connected region is referred to as blob (Binary Large
OBject). Blobs with significantly low points count are discarded (yellow ellipse) and
the center of each kept blob is computed along with its euclidean distance with regard
to other groups. Close blobs are merged to form one specular effect (green and red
ellipses near the specular book) and its center and radius are computed.

Finally, for each detected specularity, the ideal specular reflection direction rc, at the
center c of each blob, is recovered as roughly aligned with the view direction vector vc
(computed using camera pose and coordinates of the corresponding 3D point to pixel
c). Consequently, an initial estimate of light sources direction, at the center of each
blob c, is recovered as follows:

ωck
= 2.(rck · nck) · nck − rck (6.10)
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Figure 6.10 – (a) Detected specularities: blobs with a small pixels count (yellow ellipse)
are discarded. Spatially close detected regions are merged to form a single detected
specularity (green ellipse with regard to the near red ellipse). (b) Recovered light sources
directions using the recovered specular effects (blue boxes) in (a).

where k iterates over the number of recovered blobs, ωck
is the light direction vector

estimated using the kith blob, rck is its ideal specular reflection vector and nck is its
normal vector. In figure 6.10-b, the scene is represented by a point cloud (red dots) and
the recovered light directions are reported as white lines. In this scenario, the number
of recovered blobs is equal to the number of light sources in the scene. Nonetheless,
in case of recovering a number of blobs which is different from the light sources count
(non-merged groups, noisy detection), we consider two iterators: k iterates over the
recovered directions using specularities and i over the actual light sources present in
the scene.

Unlike [Anusorn and Nopporn, 2016], we do not use recovered lights directions as
search lines for their positions since it does not always deliver robust estimates (section
6.1). Our approach is described in the next section.

6.2.3 Cast Shadows Analysis for Lights Position Estimation

In this section, our goal is to efficiently incorporate the information brought by spec-
ular effects within an analysis approach of cast shadows in order to robustly estimate
the position of light sources in the scene. This goal is achieved by considering two key
steps: (i) the lighting in the scene is approximated by a set of equally distributed point
lights (S0). By using recovered lights directions in section 6.2.2, we are able to con-
sider a small set within (S0) which is more likely to contain actual real light sources.
(ii) Using detected specular reflections along with the recovered illumination map δ
(section 6.2.1), we robustly recover the 3D position of light sources in the scene. The
core idea consists in an iterative matching procedure between δ and a set of synthetic
illumination maps δ̃ proper to the hypothetical point lights. The approach to recover
the light sources position is achieved in a three-pass procedure and described in detail
in the rest of this section.
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The first step consists in recovering a set (S) of hypothetical point lights among which
actual light sources will be identified later on. Within this task, we initially approxi-
mate the lighting in the scene by a set (S0) of point lights equally distributed in the
scene (Figure 6.11). Then, for each recovered light direction ωck

(section 6.2.2), we de-
fine a cone originating from the detected specularity’s center ck and oriented using ωck

.
Finally, point lights located within the cone’s volume constitute the set (S) as illus-
trated in figure 6.11. Beside the fact that, in comparison to the approach in [Anusorn
and Nopporn, 2016], this method takes into account the inaccuracies which might exist
within the roughly estimated lights direction, it also allows us to consider a smaller
point lights set than the initial one (S0). This is of interest for MR scenarios where the
processing time requirements must be considered as well. For instance, from an initial
set (S0) counting 1176 point lights, only 352 are comprised within the set (S) using a
cone-angle β of 10◦.

Figure 6.11 – Definition of a set of hypothetical point lights from which actual real
light sources are recovered.

The second step consists in producing a synthetic illumination map δ̃ for every point
light in the set (S). Let us first consider equation 6.7, previously described to define
the real illumination map δ, in presence of one point light:

δpi = La + (np · ωpi )LiO
p
i + εpS (6.11)

where δpi represents the illumination map value at pixel p and εpS corresponds to present
specular highlight at pixel p. The scalar product (np ·ωpi ) represents the scene’s shading
and cast shadows result from the occlusion term Op

i with regard to light source i. When
a point p is occluded with regard to point light i, its illumination map value δpi is equal
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to La and it is located within a shadowed region (Op
i = 0). On the contrary, when a

point p is not occluded with regard to light i, its δpi value is defined by equation 6.11
and it does not belong to a cast shadow (Op

i = 1). By isolating the cast shadows effect,
equation 6.11 can be rewritten as follows:{

δpi = La, if p is occluded
δpi = La + (np · ωpi )Li + εpS , otherwise

(6.12)

In order to render a synthetic illumination map δ̃, we must know all the parameters
present in equation 6.12. However, since lighting characteristics (La, Li, ωpi ) are not
known in our case (our goal is to estimate them), we recover rough estimates of these
parameters as follows:{

La = Lo, if p is occluded
(La + (np · ωpi )Li) + εpS = Lv + σSpi , otherwise

(6.13)

where:

� σ is a binary term, equal to 1 if specular reflections are present and 0 otherwise.
Specifically, specular reflections are considered to be present if the detected pixels
count within the recovered specularity mask (H) in section 6.2.2 is not null.

� Spi is a synthetic specular map rendered, for a point light i, using Phong model
[Phong, 1975]:

Spi = kps(r
p
i · vp)αpLiOp

i (6.14)

Because the 3D sensor (R200) delivers a coarse geometry of the scene, the ren-
dering of Spi is achieved as follows: to begin with, the 3D model of the scene
is clustered using the method described in chapter 5.2.1 where the main planar
surface is detected along with 3D objects lying on it (Figure 6.12-a). The ren-
dering of the specular map Spi is then limited within the main planar surface,
which is substituted by a perfect plane, in order to take account of the geom-
etry’s inaccuracies. To illustrate, in figure 6.12-(b,c), one can notice the effects
of noisy geometric data in comparison with a perfectly modeled planar surface.
The specular parameters value used to render the synthetic specular maps are
respectively 1.0, 1.0 and 0.9 for kps , Li and αp.

� The terms Lv and Lo correspond respectively to the overall brightness in non-
occluded/visible and occluded regions. Their computation is achieved in a three-
step procedure: (i) for each clustered object, we define a proportional region
of interested (ROI) recovered as the intersection of a sphere comprising the 3D
object and the detected plane (Figure 6.13). (ii) illumination map values δp,
within the ROI, are increasingly sorted out and, Lo is recovered as the value
at 25%. In fact, since these regions represent potential shadowed regions, the
underlying assumption corresponds to having at least 25% of the ROI within a
shadowed region. (iii) Lv is recovered as the mean of illumination values of pixels
outside the ROI and detected highlights map H.
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Figure 6.12 – (a) Segmented 3D model of the scene: white pixels correspond to the
detected plane, grayscale pixels represent 3D objects and black pixels represent back-
ground or noisy data. (b) Rendered specular map using the 3D model of the scene.
(c) Rendered specular map using a perfect plane corresponding to the detected planar
surface in the scene.

Figure 6.13 – (a) Color image of the scene. (b) Definition of the ROI: white pixels
represent the ROI, grayscale pixels correspond to 3D objects in the scene and black
pixels represent background or noisy data. (c) Recovered Illumination map with regard
to (a).

Finally, for every point light i in the set (S), the rendering of its synthetic illumination
map δ̃i (Figure 6.14-a) is achieved as follows:

δ̃pi =
{
Lo, if p is occluded
Lv + σSpi , otherwise

(6.15)

In practice, since the geometry is static, occlusion Op
i and specular maps Spi (Figure

6.14-(b,c)) are rendered only once. Only Lo, Lv and σ are evaluated for each incoming
frame since lighting conditions may change over time.

The final step consists in identifying the actual real light sources within the subset
(S). The identification is carried within an iterative process as follows:

� We initially compute correlation values by matching recovered illumination map
δ and the rendered ones δ̃. The light source whose synthetic illumination map
has the best correlation value is selected.

� For each iteration, previously selected light sources are discarded. Also, previ-
ously matched pixels are not considered and point lights which are close to the
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Figure 6.14 – (a) Example of a synthetic illumination map δ̃ using rendered occlusion
Op

i (b) and specular Sp
i maps (c).

previously selected ones are discarded. Both Lo, Lv are re-considered to be able
to take account of shadows with different intensities (Figure 6.15)

� The process ends either when the currently selected δ̃ has a significantly low
matching value or if the number of selected lights is higher than N . The chosen
correlation corresponds to Pearson’s correlation coefficient ranging between 0 and
1 and, N is set to 4.

Figure 6.15 – (a) Color image of the scene. (b,c) Cast shadows and specular effects
corresponding to the first (b) and second recovered light sources (c).

The proposed approach in this section recovers the 3D position of light sources in the
scene. In the following section, we estimate their respective colors.

6.2.4 Light Sources Color Estimation

Illuminating virtual objects within MR scenarios requires recovering the characteristics
of light sources in the scene, namely the 3D position and three-channel color vector
(R,G,B). In the previous section, we used both specular highlights and cast shadows
to recover the number of light sources along with their 3D positions. In this section,
our goal is to estimate their respective colors. To achieve this task, we consider both
the recovered illumination map δ (Section 6.2.1) and subset (S) of point lights (Section
6.2.3). By considering equation 6.7 for a set of points p which belong to the main planar
surface and are not detected as specular highlights (if the sensor saturates, their colors
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are not accurate), we obtain:

La +
∑M
i=1(np1 · ωp1

i )LiOp1
i = δp1

La +
∑M
i=1(np1 · ωp1

i )LiOp2
i = δp2

...
...

...

La +
∑M
i=1(np1 · ωp1

i )LiOpN
i = δpN

⇒ AL = δ (6.16)

where:

A =


1 (np1 · ωp1

1 )Op1
1 · · · (np1 · ωp1

M )Op1
M

1 (np2 · ωp2
1 )Op2

1 · · · (np2 · ωp2
M )Op2

M
...

... . . . ...
1 (npN · ωpN

1 )OpN
1 · · · (npN · ωpN

M )OpN
M



L =


La
L1
...

LM

 ; δ =


δp1
δp2
...
δpN


where M is the number of recovered light sources and N is the number of considered
pixels within equation 6.16. The linear system 6.16 is solved, for each color channel,
using iterative Least Squares with bounds and equality constraints:

L̂ = arg minL(1
2 ‖W(AL− δ)‖2) subject to:{

0 ≤ Li ≤ 1 and 0 ≤ La ≤ 1
La +

∑M
i=1 Li = 1

(6.17)

where W is a diagonal matrix with weights computed using Tukey′s bisquare loss
function. Small weights are discarded throughout iterations and we recover color vectors
for each light source in the scene.

6.2.5 Scene Specular Reflectance Estimation
The estimation of scene reflectance is of interest for MR scenarios. For instance, if
one considers adding a virtual light source in the real scene, real surfaces which retain
a specular property must exhibit specular effects when viewed near the ideal specu-
lar reflection r of the virtual lighting. Hence, in order to correctly render the virtual
specularity, we must recover the surface’s specular parameters, namely the specular
reflectance kps and shininess coefficient αp for points p in the scene. Our approach to
estimate these parameters is two-fold:

In section 6.2.2, we recovered a mask H where detected specular reflections are re-
trieved. In the following, our goal is to estimate the specular reflection component
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within detected specularities in H. By considering Phong model [Phong, 1975], the
specular component Ips is described as follows:

Ips = Ip − Ipd = Ip − kpd(La +
M∑
i=1

(np · ωpi )LiO
p
i ) (6.18)

where Ip is the color of point p within the input color image and (kpd, La, ωpi , Li, Op
i ) are

all parameters which we have estimated. Examples of recovered specular components
Ips are shown in figure 6.16-b.

Figure 6.16 – (a) Input color images of the scene. (b) Recovered specular component
for input images in (a).

In order to estimate the specular reflectance kps of point p, we use Phong model [Phong,
1975] as follows:

kps = Ips∑M
i=1(rpi · vp)αpLiOp

i

(6.19)

In fact, since specular reflections are viewed near the perfect specular reflection direc-
tion, vectors rpi and vp are assumed to be roughly aligned. This assumption simplifies
the denominator within equation 6.19 where the parameter αp is unknown. Conse-
quently, equation 6.19 can be rewritten as:

kps = Ips∑M
i=1 LiOp

i

(6.20)
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Furthermore, because specular reflections are often observed only within parts of the
scene, and we aim at estimating kps for all scene points, we assume that each 3D object in
the scene retains a unique specular reflectance. Consequently, the specular reflectance
is recovered, for each object, as the maximum value of recovered kps within points p
belonging to the same object (Figure 6.17).

Figure 6.17 – (a) Input color image of the scene. (b) Estimated specular reflectance
for each 3D object in the scene: the higher the brightness value, the more the surface is
specular.

Finally, for each 3D object in the scene, the shininess parameter α is recovered us-
ing the following loss function:

F (α,ks, ω) =
∑
j

(Ij − Ĩj(α,ks, ω))2 (6.21)

where j iterates over pixels that belong to the considered object/cluster, I is the input
color image and Ĩ is a rendered color image using Phong model (equation 6.2). The
optimization of function F is achieved using a Levenberg Marquardt algorithm where
only the shininess coefficient α, specular reflectance ks and light sources positions ω are
varied by the solver. In fact, we refine ks in order to take account for the approximation
introduced in equation 6.20. Also, since our light sources are recovered from a discrete
set of hypothetical point lights (section 6.2.3), a trade-off between fine sampling and
real-time constraints must be considered. Hence, we initially define a coarse sampling
(1176 point lights with a sampling step of 20cm) and refine the recovered positions
using equation 6.21.

6.3 Experimental Results
A calibrated RGB-D sensor browses the scene with a fixed aperture, shutter speed and
gain. Using the acquired 3D model, we recover for each incoming color image, the
reflectance and illumination of the scene. The framework runs at an interactive frame
rate of 4fps. In the following, we evaluate the accuracy of the proposed framework
within both synthetic and real scenes.
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Synthetic Data

We consider synthetic scenes where ground-truth reflectance and illumination are avail-
able for comparison with our estimates. The synthetic dataset is composed of six scenes
(’SynS1’to ’SynS6’) with various shapes of 3D objects located on a main planar surface
(Figure 6.18) with various textures.

Figure 6.18 – Color image of six synthetic scenes (’SynS1’to ’SynS6’) with various
textures and geometries.

For each virtual 3D scene, the same inputs acquired or derived from the R200 sen-
sor are rendered, namely color images of the scene and the reference image using an
ambient lighting (Figure 6.19). With regard to the scene’s lighting, we dispose of three
point lights which we freely move and turn on/off in the scene. Furthermore, we con-
sider different lighting color vectors (R,G,B) in order to evaluate the accuracy of our
illumination estimation. The rendering is achieved in Unity engine [Unity, 2018] us-
ing Phong model [Phong, 1975]. In the following, we evaluate both illumination and
reflectance using the Root Mean Square Error (RMSE) between the ground truth and
estimated parameters.

Our first test consists in evaluating the position of light sources. Table 6.1 shows a
comparison between ground-truth and recovered positions for the six virtual scenes
presented in figure 6.18. The results demonstrate the robustness of our approach in
presence of challenging textures and lighting conditions. For instance, for scenes SynS1
and SynS2 lit by one point light, the average RMSE within the 3D coordinates (x,y,z)
of the light source is respectively 0.026 for x, 0.035 for y and 0.0254 for the z coordi-
nate. Another interesting scenario is reported for SynS5: the scene is illuminated by
three point lights which create overlapping cast shadows with different intensities. The
approach recovers the correct number of light sources along with their 3D positions.
Scene SynS6 is very challenging both in terms of texture and lighting: the cast shadows
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Figure 6.19 – Ground-truth images: (a) color image of scenes SynS1, SynS3 and SynS6.
(b) reference image of scenes in (a).

are weak due to a strong lighting in the scene. Although the 3D position of the sec-
ond and third recovered light sources is not as accurate in comparison with the other
scenes, we recover the correct number and orientations of light sources by exploiting
the observed specular reflections.

Scene Ground truth position (x,y,z) Estimated position (x,y,z) Distance error
SynS1 -0.78 3.89 2.54 -0.75 3.85 2.57 0.058
SynS2 0.92 2.01 2.23 0.94 2.04 2.21 0.041
SynS3 -1.38 2.71 2.62 -1.37 2.66 2.69 0.086

1.57 2.65 2.16 1.62 2.67 2.11 0.073
SynS4 1.01 1.59 2.98 0.98 1.51 3.04 0.104

-0.84 1.95 2.79 -0.86 1.89 2.71 0.101
SynS5 0.54 2.91 -1.62 0.59 2.87 -1.69 0.094

0.67 1.59 1.98 0.72 1.51 2.04 0.111
-0.87 1.12 2.79 -0.92 1.07 2.71 0.106

SynS6 -1.12 2.26 2.29 -1.19 2.21 2.37 0.117
-1.32 2.41 2.47 -1.47 2.72 2.65 0.388
-1.48 2.54 2.40 -1.65 2.69 2.57 0.283

Table 6.1 – Comparison between ground truth and estimated 3D position of light
sources in the virtual scenes.

The second evaluation concerns the color vector (R,G,B) of light sources as well as
the specular reflectance of the scene. Within this task, we compare ground-truth im-
ages with rendered images using our estimates (Figure 6.20). The RMSE between input
and rendered images for synthetic scenes lit by one point light (SynS2), two point lights
(SynS5) and three point lights (SynS6) is reported in table 6.2.

We observe a general agreement between input and rendered views with a RMSE less
than 5%. In scene SynS2, the color of lighting as well as the specular reflectance are
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Figure 6.20 – Input color images of scene SynS2, SynS4 and SynS6. (b) Rendered
images using our reflectance and illumination estimates. (c) RMSE of the difference
between images in (a) and (b).

accurately recovered. The error is mainly present within the shadow contours resulting
from the recovered 3D position of the light source. The most noticeable error is re-
ported for scene SynS6 where the difference between cast shadows created by the third
light source is significant due an error within its recovered position.

Scene RMSE (%)
SynS2 2.79
SynS4 3.47
SynS6 4.54

Table 6.2 – RMSE of difference between ground truth and rendered virtual scenes using
our reflectance and illumination estimates.

Real Data
In the following, we illustrate our results within a selection of five real scenes ’S1’ to
’S5’ grouped row-wise in figure 6.21. The considered scenes are composed of more than
two objects located on a main planar surface. Both texture and reflectance proper-
ties vary within scene surfaces. For instance, scenes S1, S3 and S5 contain a planar
surface with challenging textures. Also, scenes S2 and S4 exhibit specular reflections.
Illumination-wise, scenes S1 and S2 are lit by one light source whereas scenes S3, S4
and S5 are lit by two light sources.
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In figure 6.21-a, we present the captured reference images under a near-ambient light-
ing. These images are used to achieve the task of texture removal within color images
from which illumination is recovered (Figure 6.21-b). This results in an illumination
map δ which mainly contains shading, shadowing and specular effects. As illustrated
in figure 6.21-c, our algorithm recovers accurate illumination maps where the intrinsic
texture/albedo is accurately separated from illumination-dependent effects.

Figure 6.21 – (a) Reference image of the scene captured using an ambient lighting. (b)
Input color image of the scene from which illumination is recovered. (c) Estimated illu-
mination maps for uniform (S2,S4) and textured surfaces (S1,S3,S5): background/noise
are represented by red pixels and occluding objects by blue pixels. Grayscale values
correspond to the intensity of illumination values δ (Section 6.2.1).
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Recovered illumination maps are considered to estimate the 3D position of light sources
in the scene. This is achieved by initially using specular reflections, when available,
to estimate a rough direction of light sources. Then, within a matching process, we
recover the position of light sources represented by point lights. In figure 6.22-b, we
show detected specular effects (cyan pixels) for the five real scenes. While the method
delivers good results for scenes (S1, S2, S3 and S4), it erroneously detects a light source
captured within the color image but since it is not part of the acquired 3D model, this
detected area is discarded. Furthermore, in figure 6.22-c, we overlay the shadow maps
of recovered light sources on the current color image. Our approach robustly recovers
illumination in the scene in presence of specular effects (S2,S4) and challenging textures
(S1,S3,S5). Furthermore, within (S2, S4), the detected specular reflections allow us to
consider less than 30% of the initial hypothetical point lights within the cast-shadow
analysis. The proposed method handles overlapping shadows (S3), weak cast shadows
(green pixels in S4) as well as shadows which do not retain a uniform intensity due to
a strong near lighting (S5). In fact, in contrast to the method proposed in chapter 5,
scenarios such as (S4) could not be addressed before since the synthetic illumination
map used within the matching procedure was a binary map (specular effects non taken
into account within this map).

In order to evaluate the precision of recovered light sources positions, we used a teleme-
ter to measure the distance from a chosen world coordinate system to the light sources
in the scene. Results for the five real scenes are shown in table 6.3. Our algorithm
recovers light sources position with an average error of 9cm for a mean distance of
1.62m to the light source and a standard deviation of 3.2cm.

Scene Measured Distance (m) Estimated Distance (m) Distance error (m)
S1 1.83 1.92 0.09
S2 1.68 1.61 0.07
S3 1.74 1.81 0.07

1.72 1.83 0.11
S4 1.44 1.52 0.08

1.63 1.75 0.12
S5 1.12 1.19 0.07

1.52 1.61 0.09

Table 6.3 – Comparison between measured and estimated distances using our proposed
approach.

The goal of photometric registration algorithms consists in achieving realistic mixed
reality scenarios. In figure 6.23, we show realistic augmentations of real scenes using
our photometric estimates. For instance, for scenes (S1,S3,S5), virtual shadows cast by
a sphere are consistent with real shadows in terms of shape and color. Furthermore,
within scene S2, we show a correct occlusion of a real specularity by a virtual object.
One can notice the reconstructed texture within the specular area.
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Figure 6.22 – (a) Color image of captured scenes. (b) Detected specular reflections
are represented by cyan pixels. (c) Overlay of shadow maps corresponding to estimated
light sources: first and second best matches are respectively represented by red and green
pixels.

We further consider the scenario of retexturing the scene while preserving the cur-
rent illumination. This is achieved in real-time and corresponds to the product of the
illumination map δ and a target texture T (target diffuse reflectance):

Ipretex = δpTp (6.22)
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Figure 6.23 – Realistic augmentations of real scenes using our reflectance and illumi-
nation estimates. We demonstrate visually consistent virtual shadows in terms of shape
and color with regard to real cast shadows. The second row is an example of a virtual
object occluding a real specularity. One can notice a correct reconstruction of texture
within the specular region.

where Ipretex is the color of the re-textured scene and p corresponds to points which
belong to the main planar surface in the example shown in figure 6.24. Inaccuracies
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are mainly due to coarse or unavailable geometry (red pixels in figure 6.21-c).

Figure 6.24 – (a) Input color image of the scene with the target texture T (top right).
(b) Retextured main planar surface using the illumination map δ and texture T.

6.4 Conclusions and Future Research Directions
We presented a photometric registration approach which jointly incorporates the in-
formation brought by specular reflections and cast shadows to recover reflectance and
illumination in the scene. Specifically, our method estimates both 3D position and
color of dynamic light sources as well as the specular reflectance of scene surfaces. Our
experimental results show satisfactory results on both synthetic and real data where
challenging textures are correctly handled and the presence of specular effects is effi-
ciently used within the framework instead of being discarded.

Although the assumption of having a main planar surface is not very constraining
for MR scenarios (e.g., table, desk, playground, floor, etc.), one may encounter con-
figurations where this assumption does not hold. In fact, the main reason behind this
assumption is related to the coarse geometry provided by common RGB-D sensors. We
are therefore interested in handling more generic 3D models.

Finally, the proposed approach requires to capture the scene under an indirect light-
ing in order to accurately separate texture from illumination within color images. An
interesting and challenging research direction corresponds to achieving this task using
only the color image of the scene and its 3D model.

123





7Specularity and Cast Shadow
Detection using a Deep Learning
Approach

Contents

7.1 Problem Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.2 Our Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2.1 Built Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2.2 Network Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

125



Chapter 7. Specularity and Cast Shadow Detection using a Deep Learning Approach

In previous chapters, we presented three photometric registration approaches which
exploit specular reflections and cast shadows to estimate reflectance and illumination
of real scenes. An accurate detection of these cues is at the heart of our work. For
instance, in the previous chapter 6, we presented an approach based on speculariy and
cast shadow analysis with the aim of estimating the scene’s specular reflectance and
illumination characteristics. The approach requires three inputs: a 3D model of the
scene, a color image captured from a static camera and a reference image which cor-
responds to a capture of the scene from the same viewpoint under a pseudo-ambient
lighting. Acquiring this reference image is key to robustly separating texture/color from
illumination variations. Although this image can be easily produced by an end-user,
we are interested in relaxing this constraint.

In the last three years, data driven approaches, especially deep Convolutional Neu-
ral Networks (CNN) based methods have outperformed the state of the art in many
visual recognition tasks [Girshick et al., 2014][Krizhevsky et al., 2012]. Specifically,
several works considered the problem of detecting cast shadows from a single image
[Hu et al., 2017][Hosseinzadeh et al., 2017][Shen et al., 2015][Khan et al., 2014] and the
results showed significant advances with regard to previous related works [Vicente et al.,
2013][Guo et al., 2013]. In this chapter, we address the following question: can deep
learning based approaches robustly detect, within our indoor scenes, both specularities
and cast shadows from a single image ?

7.1 Problem Overview

Various approaches for shadow detection have been proposed in recent years. Guo et
al. [Guo et al., 2013] proposed to model interaction between pairs of regions of the
same material, with two types of pairwise classifiers: same illumination condition and
different illumination condition. These pairwise classifiers and a shadow region classi-
fier were combined within a Conditional Random Field (CRF) in order to label shadow
and non-shadow regions. Similarly, Vicente et al. [Vicente et al., 2013] proposed a
Markov Random Field (MRF) that combines a unary region classifier with pairwise
and shadow boundary classifiers. These approaches achieved good shadow detection
results, but required expensive ground-truth annotation.

Throughout the last four years, convolutional neural networks (CNN) proved to be
a very powerful tool to learn pertinent features for detecting shadows, with results
clearly outperforming the previous approaches. Khan et al. [Khan et al., 2014] were
the first to use deep learning for shadow detection. They combined a CNN for shadow
patches and a CNN for shadow boundaries with a Conditional Random Field (CRF),
achieving state-of-the-art results at the time. Vicente et al. [Vicente et al., 2017]
optimized a multi-kernel model for shadow detection, obtaining even better shadow
predictions than [Khan et al., 2014]. Hosseinzadeh et al. [Hosseinzadeh et al., 2017]
detected shadows using a patch-level CNN and a shadow prior map generated from
handcrafted features. Nguyen et al. [Nguyen et al., 2017] developed scGAN, a novel
extension of conditional Generative Adversarial Networks (GAN) tailored for shadow
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detection in images. More recently, Hu etl al. [Hu et al., 2017] proposed a novel
network for single-image shadow detection and removal by harvesting direction-aware
spatial context. The core idea consists in analyzing multi-level spatial context within
a spatial Recurrent Neural Network (RNN).

We have tested the proposed shadow detection approaches of [Guo et al., 2013] and [Hu
et al., 2017] within our captured images of indoor scenes (Figure 7.1). Although the
accuracy keeps improving on the benchmarks [Zhu et al., 2010][Vicente et al., 2016],
existing methods still misrecognize dark regions as shadows and poorly handle the crit-
ical scenario of textured surfaces (red boxes). False shadow detection includes specular
reflections as well (blue boxes).

Figure 7.1 – Critical scenarios within the shadow detection task. (a) Color image of the
scene. (b) Results using [Guo et al., 2013]: white and black pixels correspond respectively
to shadow and non-shadow labels. (c) Results using [Hu et al., 2017]. Red and blue boxes
correspond respectively to false detected shadows (dark regions and specularities).

One of the reasons behind such poor results is related to the used dataset during the
training phase. For instance, [Hu et al., 2017] use the ImageNet dataset [Deng et al.,
2009] which corresponds to a large database with over 14 million of images grouped in
20 thousand categories. Typical groups correspond to semantic objects (e.g., cat, dog,
car, etc.) which are very different, in terms of content, from the considered scenes in
our case. With regard to specularity detection, to the best of our knowledge, there are
no related works which address this task using deep learning approaches.

In this chapter, our goal is to address these challenges. Specifically, we build a large
dataset for the task of specularity and shadow detection where scene surfaces retain
various, simple and challenging, textures. Also, we jointly detect both cues within cap-
tured images using CNN based networks. Moreover, since depth sensing is nowadays
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available within consumer phones and tablets, we further incorporate the 3D model of
the scene to achieve robust detection. To summarize, the main contributions of this
chapter are:

� A large dataset comprising synthetic and real scenes for specularity and shadow
detection tasks.

� Joint detection of specular reflections and cast shadows using a deep learning
framework.

� Incorporation of the 3D model of the scene to improve our classifier.

The remainder of this chapter is organized as follows: we first present our built dataset.
Then, we describe the considered networks architecture to jointly detect specular re-
flections and cast shadows and demonstrate the effectiveness of incorporating the 3D
model. Finally, experimental results are presented and discussed within both our pro-
posed dataset and available benchmarks.

7.2 Our Proposed Method
Our goal is to detect both specular reflections and cast shadows within real scenes. This
task is achieved within a classification procedure which takes as input a color image
of the scene and results in a map with three labels: cast shadows, specularities and a
third class which represents points that are neither cast shadows nor specularities (e.g.,
self-shadows, background, etc.). In the following, we present our built dataset and
demonstrate the effectiveness of incorporating the 3D model within the classification
procedure.

7.2.1 Built Dataset
The success of deep convolutional neural networks is dependent on the availability of
annotated large-scale datasets [Russakovsky et al., 2014][Lin et al., 2014]. Collecting
and annotating large-scale datasets of real scenes takes considerable time and effort for
most of the deep learning related classification tasks. An alternative consists in the
use of synthetic data which proved to produce competitive performance [Mayer et al.,
2015]. Nonetheless, to achieve better generalization, real data must be considered as
well.

With regard to the shadow detection task, available datasets [Zhu et al., 2010][Vicente
et al., 2016] mainly contain images of outdoor scenes (Figure 7.2-(a,b)). Consequently,
since the sun is the primary light source in these scenarios, one often encounters a single
shadowed region within the images of these datasets. Furthermore, considered surfaces
on which shadows are cast often retain fairly simple textures. However, in indoor real
scenes composed of one or more objects, several shadows cast on arbitrary textures
can be present (Figure 7.2-c). With regard to the specularity detection task, to our
knowledge, there is not any dataset available. Consequently, in order to address the
task of jointly detecting specular and shadow cues, we must built an adequate dataset.
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Figure 7.2 – Examples of images from [Zhu et al., 2010] (a), [Vicente et al., 2016] (b)
and an image of considered indoor scenes in our work (c).

To create a comprehensive dataset of specularity and shadow cues, we consider both
synthetic and real scenes where various geometries, textures and illumination condi-
tions are present. In the following, we present our data crafting procedure along with
the produced ground-truth images.

Synthetic Scenes

Our synthetic dataset contains 11956 images of virtual scenes. The production of
these images is achieved using Unity [Unity, 2018] where 80 virtual scenes with various
shaped-objects are located on a main planar surface (Figure 7.3).

Figure 7.3 – Examples of virtual scenes from our dataset where differently shaped
objects are located on a main planar surface. The images correspond to illumination
maps which contain shading, shadowing and specular effects.

Furthermore, we consider 80 texture maps (Figure 7.4, Appendix B.1) used along with
different specular reflectance properties to render the virtual scenes. This large collec-
tion of textures results in various challenging cast shadow scenarios. Equally, specular
reflections are rendered in order to address indoor scenes where both cues can be
present.

For each virtual scene, we randomly vary the viewpoint and freely move 3 point lights
with different intensities in the scene. Consequently, for each color image, we derive the
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Figure 7.4 – Examples of collected texture maps which are used to create our synthetic
dataset. Further examples are shown in Appendix B.1.

following ground-truth data (Figure 7.5): (1) Depth map of the scene rendered from a
given viewpoint. (2) 3D segmentation of the scene retrieved in a 2D map with three la-
bels: main planar surface, 3D objects located on the plane and background. (3) Diffuse
reflectance map which contains only the intrinsic color/texture of scene surfaces. (4)
Illumination map which contains illumination-dependent effects (shading, shadowing
and specular reflections). (5) Mask of cast shadows represented by white pixels. (6)
Mask of specular reflections represented by white pixels. (7) Light sources positions.
(8) Camera parameters (intrinsic and extrinsic).

Figure 7.5 – Example of produced ground-truth data. (a) color image of the scene.
(b) 16-bits depth map. (c) Segmented scene map where white pixels correspond to
the main planar surface, grayscale pixels are objects located on the plane and black
pixels correspond to background. (d) Diffuse reflectance map which retains the intrinsic
color/texture of the scene. (e) Illumination map which retains shading, shadowing and
specular effects with regard to the color image (a). Specularities and cast shadows are
respectively retrieved in the binary maps (f) and (g) where they are represented by white
pixels.
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7.2. Our Proposed Method

Real Scenes

Our real dataset contains 3052 images of real indoor scenes (Figure 7.6). The produc-
tion of ground-truth images is achieved using the method described in chapter 6 where
color images and 3D model of the scene are acquired using an RGB-D sensor (R200).

Figure 7.6 – Example of acquired and estimated ground-truth data using an RGB-D
sensor (R200). (a) color image of the scene. (b) 16-bits depth map. (c) Segmented
scene map where white pixels correspond to the main planar surface, grayscale pixels
are objects located on the plane and black pixels correspond to the background/noise.
(d) Diffuse reflectance map which mainly retains the intrinsic color/texture of the scene.
(e) Illumination map which mainly retains shading, shadowing and specular effects with
regard to the color image (a). Specularities and cast shadows are respectively retrieved
in the binary maps (f) and (g) where they are represented by white pixels.

Some inaccuracies can be noticed within our real dataset when compared to the syn-
thetic one. For instance, the diffuse reflectance map corresponds to a captured image
of the scene under a pseudo-ambient lighting (Figure 7.6-d). Also, the coarse geometry
provided by the R200 introduces inaccuracies with regard to the segmented scene map
(Figure 7.6-c). Nonetheless, this data brings valuable information to the task of specu-
larity and shadow detection for indoor real scenes and its effectiveness is demonstrated
later on in this chapter.

7.2.2 Network Architectures

The typical use of convolutional neural networks is within classification tasks, where the
output to a 2D image is a single class label (e.g., an image of a car would have the label
’car’). However, since we are interested in a per-pixel labeling, we consider two recently
proposed network architectures which are adequate for this task: U-Net [Ronneberger
et al., 2015] and Ternaus-Net [Iglovikov and Shvets, 2018]. These architectures work
with fewer training images and yield more precise classification results in comparison
with previous proposed networks [Long et al., 2014].
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U-Net Architecture

The U-Net network architecture proposed by [Ronneberger et al., 2015] is illustrated
in figure 7.7. It consists of a contracting path (left side) and an expansive path (right
side). The contracting path (encoder) follows the typical architecture of a convolu-
tional network. It consists of the repeated application of two 3×3 convolutions, each
followed by a rectified linear unit (ReLU) and a 2×2 max pooling operation with stride
2 for downsampling. At each downsampling step, the number of feature channels is
doubled. Every step in the expansive path (decoder) consists of an upsampling of the
feature map followed by a 2×2 convolution that halves the number of feature channels,
a concatenation with the correspondingly cropped feature map from the contracting
path, and two 3×3 convolutions, each followed by a ReLU. At the final layer a 1×1
convolution is used to map each feature vector to the desired number of classes. In
total the network has 23 convolutional layers.

Figure 7.7 – U-net architecture: blue boxes corresponds to multichannel feature maps.
White boxes represent copied feature maps. Figure from [Ronneberger et al., 2015].

As illustrated in figure 7.7, the output to a 2D image from our dataset is a 2D map,
with the same resolution of the input image, where the color corresponds to the prob-
ability of belonging to three classes: green and blue channels represent respectively
shadow and specularity classes. Red channel corresponds to the probability to belong
to neither shadows nor specularity.

Ternaus-Net Architecture

Recently, an improvement of the U-Net architecture was proposed in [Iglovikov and
Shvets, 2018]. Typically, neural networks initialized with weights from a network pre-
trained on a large dataset like ImageNet [Deng et al., 2009] show better performance
than those trained from scratch on a small dataset. Hence, Iglovikov et al. [Iglovikov
and Shvets, 2018] proposed Ternaus-Net, a U-Net architecture where the encoder is
pre-trained using ImageNet. Specifically, the pretrained encoder corresponds to the
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convolutional network VGG-16 [Simonyan and Zisserman, 2014] consisting of 16 con-
volutional layers which proved to well perform for the extraction of image features.

Training

The input images and their corresponding ground-truth classification maps are used to
train the networks. The loss function corresponds to the Cross Entropy between input
images and ground-truth labels. The obtained output is an image where each pixel
color channel corresponds to the probability to belong to a class.

In our work, the classification output is of interest because an accurate detection of
specularities and cast shadows can be incorporated in the photometric registration
method described in chapter 6. Consequently, since the 3D model of the scene is avail-
able, we further consider incorporating 3D information within our training. This is
achieved by considering a 4th channel within the input RGB image which corresponds
to the map of the segmented scene (Figures 7.5-c and 7.6-c). In this case, only the
pixels belonging to the plane within which we aim at detecting specular and shadow
cues are considered within the loss function.

7.3 Experimental Results

In this section, we present experiments to evaluate our classification results. The built
dataset is split into training, validation and test sets with the respective following
proportions: 80%, 10% and 10%. For each evaluation, we perform 40 epochs which
lasts approximately 10 hours on an NVIDIA GTX 1080. Within each epoch, we apply
scaling, rotation and mirroring operations to augment our data variety. Saved models
for considered networks correspond to the minimum validation loss. The framework
used in this work is PyTorch [PyTorch, 2018].

With and without the segmentation map

Since the 3D model of both synthetic and real scenes is available, we dispose of a
map with three labels representing a clustering of the scene into the main planar sur-
face (white pixels), 3D objects located on the plane (grayscale pixels) and background
points represented by black pixels (Section 7.2.1). Considered networks are trained
using first only the color image as input an then using both the color image and the
corresponding segmentation map. The classification results within the U-Net architec-
ture are shown in figure 7.8. The output is a 2D color map where the pixel’s color
channels correspond to the probability to belong respectively to cast shadows (green),
specularities (blue) and the rest of the scene (red). Thus, a pixel’s dominant color
channel corresponds to the most likely class it belongs to.

In figure 7.8, one can notice the improvement of the classification when using the
segmentation map. In fact, cast shadows as well as specular effects are better detected
within the principal planar surface (first row). Furthermore, the use of the segmenta-
tion shows its effectiveness with regard to discarding black regions as shadows such as
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Figure 7.8 – Comparison of classification results with regard to the use of the scene’s
segmentation map. (a) Input color images from our test set. (b) Classification results
without the segmentation map: pixel color corresponds to the probability to belong
to specularity (blue), cast shadows (green) or the rest of the scene (e.g., background,
objects). (c) Classification results using the segmentation map.

the brown box (second row) and background chairs (third row). The results in figure
7.8 are obtained by training the networks on synthetic data only. Although it performs
well even in presence of challenging textures (fourth row), the classifier does not handle
weak and soft shadows (third row) and specular reflections can be erroneously detected
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(second row).

With and without real data

In the following, we demonstrate the effectiveness of our real dataset with regard to
improving the classification results. The U-Net network is trained, using color images
and segmentation maps as input, by considering first only synthetic data and then both
synthetic and real data. The results are shown in figure 7.9 within a selection of test
images from our built database.

Figure 7.9 – Comparison of classification results with regard to the use of our real
dataset (the segmentation map is used as well for (b) and (c)). (a) Input color images
from the test set. (b) Classification results using synthetic data for the train set: pixel
color corresponds to the probability to belong to specularity (blue channel), cast shadows
(green channel) or the rest of the scene (e.g., background, objects) (red channel). (c)
Classification results using synthetic and real data for the train set.

The classifier achieves better results when trained on both synthetic and real data.
In fact, cast shadows are better detected on both single-color (first row) and textured
surfaces (second row). Although the classifier does not perform as good with regard
to very weak shadows (first row), the use of real data shows improvement in detecting
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soft shadows (third row). With regard to specularity detection, the pixels classified
within this class have a lower probability when using real data. Nonetheless, since the
output maps are usually converted into binary maps using a max operator within the
three labels, these pixels are eventually detected as specular effects. Further results are
shown in Appendix B.2.

U-Net and Ternaus-Net performances

We evaluated the performance of a lighter trained-from-scratch architecture (U-Net)
and a pre-trained architecture (Ternaus-Net) where the initial weights within the en-
coder correspond to VGG-16 and only the decoder is trained with our dataset. Results
of the classification are shown in figure 7.10.

Figure 7.10 – Classification results for images in (a) using U-Net which is trained
from scratch with our dataset and (b) Ternaus-Net where the encoder is pre-trained on
ImageNet [Deng et al., 2009] and only the decoder is trained using our dataset.

The U-Net architecture outperforms the pre-trained Ternaus-Net. In fact, one can
notice in the first and second rows that the cast shadows are better detected using U-
Net (Figure 7.10-b) than Ternaus-Net (7.10-c). Although, in the last row, Ternaus-Net
delivers good results, the achieved classification is not as good as using U-Net. The
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reason behind such results is explained by the fact that the U-Net counts 3.5 million
model parameters, all trained using our dataset. On the other hand, the Ternaus-Net
counts 18 million parameters where only 3.4 million (decoder) are trained using our
dataset. The rest of the parameters are retrieved from a pre-training on the ImageNet
dataset containing significantly different images than ours.

Evaluation within Available Benchmarks

We evaluate our classifier within two available shadow detection benchmarks. The
first one is the SBU Shadow Dataset [Zhu et al., 2010], which is the largest publicly
available annotated shadow dataset with 4089 training images and 638 testing images.
The second dataset is the UCF [Vicente et al., 2016]. It includes 145 training images
and 76 testing images, and covers outdoor scenes with various backgrounds. The only
available ground-truth data within these benchmarks corresponds to shadows. Hence,
in order to test our trained U-Net using the segmentation map, we manually created
such maps for a selection of images (Figure 7.11).

Figure 7.11 – (a) Images from available benchmarks [Zhu et al., 2010][Vicente et al.,
2016]. (b) Manually crafted segmentation map for images in (a).

Although these images are different from our indoor scenes, the classifier achieves good
results with regard to detecting cast shadows. The effectiveness of the segmentation
map is stressed again within the fifth row where the results are not as good as the other
shown images. In fact, since the occluding object is not captured within the image,
the segmentation map only contains white pixels representing the plane (ground floor).
Further classification results are shown in Appendix B.3 .

A quantitative comparison with regard to state-of-the-art methods on the available
benchmarks requires crafting the segmentation map for several images which is very la-
borious. Another way of comparison consists in changing the considered inputs within
related work architectures [Hu et al., 2017][Nguyen et al., 2017] from only the color
image to both the color image and segmentation map, and training them using our
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Figure 7.12 – Results of our classifer (U-Net with color image and segmentation map as
inputs) within a selection of images from the (SBU) [Zhu et al., 2010] and (UCF)[Vicente
et al., 2016] datasets.

dataset. This evaluation represents a good measure of the effectiveness of our dataset
as well as incorporating 3D information and should be considered within future work.
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7.4 Conclusions
In this chapter, we presented a deep learning approach to detect both specularities and
cast shadows within indoor real scenes. Since available datasets for this task mainly
contain outdoor scenes where the sun is the primary light source, we built a new
dataset comprising synthetic and real scenes where challenging textures and lighting
conditions can be encountered. Furthermore, we demonstrated the effectiveness of
using 3D information about the scene to improve the classification results. In fact,
by constraining the loss function within pixels belonging to the projection of the main
planar surface, specularities and cast shadows are robustly detected.
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8Conclusion and Perspectives

In this thesis, entitled "Photometric Registration of Indoor Real Scenes using
an RGB-D Camera with Application to Mixed Reality", we focused on develop-
ing, using a single RGB-D camera, novel photometric registration approaches for indoor
real scenes. The goal of such algorithms is to estimate the reflectance and illumination
of the scene. These estimates are key to achieving realistic mixed reality scenarios
where virtual shadows are visually coherent with shadows cast by real objects and, real
specularities occluded by virtual objects are correctly rendered. Existing approaches
either introduce additional devices (e.g., chrome sphere, camera equipped with fish-eye
lenses) which can be cumbersome within the MR experience or constrain the scene’s
content (e.g., scene reduced to a single object, illumination represented by a single light
source, Lambertian surfaces). Furthermore, scene illumination is often assumed to be
static. Nonetheless, within MR scenarios, an end-user might necessitate to change the
lighting indoors. In this thesis, we addressed these limitations by taking advantage of
acquired RGB-D information.

In chapter 4, we presented a probeless photometric registration method which recovers
reflectance and illumination by analyzing observed specular reflections throughout an
RGB-D sequence. In contrast to methods that recover specular reflections as saturated
regions in input images, we robustly handle specularities by retrieving a luminance pro-
file which retains the evolution of the pixel’s luminance when the camera browses the
scene. The proposed approach handles real scenes where the texture spatially varies
and several objects with different shapes can be encountered. Furthermore, it recovers
the position of multiple light sources without any user intervention. Our estimates
were integrated within a rendering pipeline to demonstrate realistic MR scenarios such
as virtual objects correctly occluding real specularities (accurate reconstruction of the
specularity region using estimated diffuse reflectance) as well as realistic virtual shad-
ows in terms of shape and intensity.

In chapter 5, we addressed the problem of deriving illumination characteristics, namely
the 3D position and intensity, from cast shadows. Most importantly, we tackled the
critical scenario of textured surfaces. The proposed approach handles multiple light
sources which can be static and/or dynamic and runs at an interactive frame rate (4
fps). Consequently, the MR user can freely move or turn on/off the lights in the scene
and notice the online changes within synthetic objects as well. Finally, the proposed
approach was integrated within an industrial project at Technicolor aiming at demon-
strating the effectiveness of realistically rendering virtual objects in indoor real scenes.

In chapter 6, we proposed a method which efficiently incorporates the information
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brought by both specular reflections and cast shadows. This approach covers a large
panel of indoor scenes since it handles both Lambertian and glossy surfaces. More-
over, it considers scenes which can be composed of one or more objects with arbitrary
shapes and textures. The proposed approach recovers multiple light sources charac-
teristics (3D position and color) and estimates specular reflectance of scene surfaces.
The framework runs at an interactive frame rate (4fps) and tackles the dynamic aspect
of lighting which is of interest in MR scenarios. We demonstrated the effectiveness of
our method through a range of applications including real-time mixed reality scenarios
where the rendering of synthetic objects is consistent with the real environment (e.g.,
correct specularity removal, visually coherent shadows) and retexturing where the tex-
ture of the scene is altered whereas the incident lighting is preserved.

Finally, since the detection of specular reflections and cast shadows is at the heart
of our work, we proposed in chapter 7 a deep-learning framework to jointly detect both
cues. To achieve this, we built a large and comprehensive dataset which comprises
synthetic and real scenes with various textures, specular reflectance properties and
lighting conditions. An additional advantage of this dataset consists in containing not
only specularity and cast shadow ground-truth images but further useful information
about the scene (e.g., depth map, diffuse reflectance, segmented scene). Moreover, we
demonstrated the effectiveness of incorporating the 3D model of the scene in our clas-
sifier to robustly detect specular reflections and cast shadows. The proposed approach
was tested within a variety of synthetic scenes and challenging indoor real scenes. Fur-
thermore, it achieved good results within available benchmarks despite their content
difference with regard to our dataset (e.g., outdoor scenes).

Short-term perspectives

Several improvements can be considered in the short-term with regard to the proposed
photometric registration approaches:

Main planar surface assumption (Chapters 5 and 6): in most of the presented
work, we considered the scenario of an indoor real scene with a main planar surface on
which are located objects with arbitrary shapes. Although this assumption still allows
us to cover a large panel of real scenes (e.g., table, desk, floor), we are interested in more
generic photometric registration solutions. The main reason behind this assumption
consists in taking advantage of the surface-smoothing feature with regard to planar
surfaces that numerous RGB-D sensors provide. An alternative consists in refining the
coarse geometry of any scene acquired using an RGB-D camera. For instance, algo-
rithms such as [Choe et al., 2016][OrEl et al., 2015] can be considered for this task.

Retexturing application (Chapter 6): we demonstrated the utility and convenience
of recovering the illumination maps within a retexturing application. In fact, since the
estimation of these maps is achieved in real-time, the retexturing application runs in
real-time as well. The main inaccuracies within the shown scenarios (Figure 6.24) are
due to coarse geometry. Similarily to the previously discussed short-term perspective,
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this application can benefit from a refined 3D model of the scene. Furthermore, an
interesting aspect to address within this scenario is the interaction of the user with the
scene. For instance, using texture-mapping techniques, we can establish an atlas of the
scene (Figure 8.1) where the user can freely choose which part of the real scene he/she
would like to alter.

Figure 8.1 – (a) 3D view of a virtual scene. (b) Atlas of the scene in (a) containing
the texture of each object separately.

Illumination estimation using deep learning approaches: in chapter 7, we pre-
sented a deep learning framework to jointly detect specular reflections and cast shad-
ows. In fact, this framework was considered in order to relax the constraint made within
chapters 5 and 6 with regard to acquiring a capture of the scene under a pseudo-ambient
lighting. Although capturing this image is only getting easier with the increasing cam-
era capabilities integrated in common end-user phones (Figure 8.2), we are interested
in deriving illumination properties using the classification results.

Figure 8.2 – (a) Capture of the scene using a pseudo-ambient lighting (top): the lighting
corresponds to a soft distant window lighting. (b) Capture of the scene with the lights
turned off (top) using a Samsung S8.

Joint Specularity and Shadow Detection (JSSD) dataset: in chapter 7, we
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presented a large dataset adequate for the task of specular reflections and cast shadows
detection. The latter mainly comprises scenarios of indoor real scenes. Within our
experimental results, we further evaluated our framework on two available datasets.
However, since the inputs are not similar, it was laborious to manually craft the seg-
mented scene map. A next step consists in integrating outdoor real scenes in our
dataset. Also, we are interested in modifying the inputs of already existing shadow
detection networks to take into account both the color image and segmentation map in
order to evaluate the accuracy of the classifcation. Finally, the built dataset should be
prepared for free access within the research community.

Long-term perspectives
Realism assessment: in [Jacobs and Loscos, 2006], several quality criteria have been
proposed to assess existing photometric registration approaches: input requirements,
processing time, level of automation, level of interaction and amount of realism. Most
of these criteria can be measured or precisely listed except for the amount of realism.
In fact, the concept of realism can be subjective and differs within individuals. In
order to better assess it, several perceptual metrics within an available and exhaustive
benchmark should be carried out using statistical measures.

Advanced reflection models: in this thesis, we mainly considered Phong reflec-
tion model [Phong, 1975] to describe the way a point in the scene reflects incident
light. This model owes its popularity to its simplicity and convenience with regard to
scene analysis and real-time rendering of MR scenarios. Nonetheless, this reflection
model uses point light representation for real light sources. Such representation pro-
duces only hard shadows while soft shadows cast by real objects can be encountered.
An interesting improvement consists in considering more sophisticated models such as
[Cook and Torrance, 1981] and addressing accurate soft shadows modeling and detec-
tion. Furthermore, since several recently proposed global illumination techniques run
in real-time on common end-user devices [Lecocq et al., 2016], a next step consists
in considering such approaches for more realistic effects (e.g., inter-reflections between
real and virtual objects, soft shadows).

Dynamic scene geometry: in this work, we tackled the dynamic aspect of light
sources in the scene which allows the end-user to experience MR in less constraining
environments. Equally, addressing the problem of dynamic geometry is an important
improvement with regard to MR requirement, especially for scenarios where the scene
is often subject to changes (e.g., gaming). Consequently, proposed approaches within
this task such as [Newcombe et al., 2015] could be considered.
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AAppendix: Realistic Mixed Reality
Demonstrator

Within an industrial project at Technicolor aiming at delivering realistic Mixed Reality
(MR) scenarios in the context of dynamic lighting, we have integrated, for this purpose,
the framework described in chapter 5. Specifically, we have designed and implemented
an interactive demonstrator that shows a realistic MR application without using any
light probe. The proposed demonstrator was presented at both ISMAR and APMAR
conferences in 2018. The proposed system takes as input the RGB stream of the real
scene, and uses these data to recover both the position and intensity of light sources.
The lighting can be static and/or dynamic and the geometry of the scene can be
partially altered. Our system is robust in presence of specular effects and handles both
uniform and/or textured surfaces.

Figure A.1 – Captures of our Mixed Reality (MR) application for real scenes with a
uniform and Lambertian surface (left), a uniform and specular surface (center) and a
challenging textured surface (right). The lighting condition can be changed within the
MR experience.

A.1 Introduction
Although MR technology is already present in the consumer-product market for a num-
ber of industrial applications such as training and entertainment, it still lacks realism
[Jacobs and Loscos, 2006]. For instance, in most cases, virtual objects are rendered us-
ing an arbitrary and static lighting that does not correspond to the real-world lighting
condition. In order to address this problem, proposed algorithms and systems must re-
cover real-world lighting and surface reflectance properties in order to achieve realistic
computer-graphics renderings (e.g., realistic shadows in terms of orientation and inten-
sity, specular reflections, etc.). Furthermore, if the real lighting changes, the system
must be able to detect these changes and update, in real-time, the virtual lighting char-
acteristics. In this demonstrator, we have designed and implemented a system which
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analyzes the real scene in order to recover its photometric properties. This mainly
corresponds to the work presented in chapter 5 where:

� Without using any light probe, we recover both the 3D position and intensity of
light sources present in the scene. The lighting can be static and/or dynamic.

� Our system handles both uniform and challenging textured surfaces.

� The MR application runs in real-time on a tablet and delivers interactive and
visually coherent augmentations.

The remainder of this chapter is structured as follows: we first specify the main require-
ments of our demonstrator, then describe the overall architecture of our system and
briefly present its components. Finally, we overview the experience which an end-user
has as well as the features that our demonstrator offers.

A.2 Demonstrator Description

A.2.1 Requirements
The main requirements of our demonstrator are depicted in figure A.2. The considered
scenario is the following:

Figure A.2 – The overall setup of our Mixed Reality demonstrator.

� (1) An end-user stands in front of a real scene, holding a tablet through which
he/she sees the augmentations.

� (2) The scene is mainly composed of a principal planar surface (table, desk, etc.)
and two objects. One of the considered objects can be freely moved within the
user’s experience whereas the remaining one is fixed.
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� (3) In addition to the tablet, a static camera observes the scene from the top.
The RGB stream of this camera is used for scene analysis.

� (4) Finally, expensive computations are launched on a laptop that communicates
the results using wireless network , in real-time, to the tablet.

A.2.2 Architecture Overview

In our system requirements described in section A.2.1, we mentioned a shared process-
ing between a PC and an Android tablet. The application running on the tablet is
developed using Unity [Unity, 2018] whereas the modules running on the laptop are
developed in C++. In figure A.3, a diagram depicts the overall architecture of the
proposed system:

Figure A.3 – Main components of our MR demonstrator’s architecture.

The architecture contains three main components:

� Scene Analyzer: it mainly handles lighting and geometry changes in the scene.

� MR Application: it is the only module running on the tablet and it handles the
rendering of the virtual world using updated lighting and geometry characteristics.

� Unity Server: it manages the communication between the Scene Analyzer and
the MR application.

The Scene Analyzer contains five different modules:

� Camera manager controls the stream of the static camera.

� Demo manager updates the changes that might occur in the scene’s lighting
and/or geometry.
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� Message manager is the interface between the Scene Analyzer and the Unity
Server. The communication between these modules is achieved via messages
delivered over a TCP socket.

� Geometry manager aims at detecting and tracking the objects on the principal
planar surface. This is achieved using the Vuforia SDK [Vuforia, 2018]. Changes
are detected with regard to the initial position and orientation of the second
object and updates are sent to the Demo manager module.

� Lighting estimator uses the RGB stream provided by the static camera as well
as the 3D model recovered using Geometry manager in order to estimate both
the 3D position and intensity of light sources. The processing is achieved for each
captured image using the approach described in chapter 5.

A.2.3 Experience
An end-user stands in front of a real scene holding a tablet through which the MR
scenario can be viewed. Our demonstrator runs in real-time and takes into account
changes that can occur in lighting (lights switched on/off or moved) and geometry
(moving an object on the planar surface). For instance, using a remote control, the
user can switch on/off the lights in the scene and see the changes occur on the virtual
objects as well. Furthermore, the user can interact with the virtual object in two
different ways: (1) by moving its finger on the tablet screen, he changes the position
of the virtual object on the planar surface. (2) several animations are accessible via
the UI-toggles located on the left side of the tablet screen. The Amount of realism
achieved by our demonstrator [Jacobs and Loscos, 2006] is convincing. For instance,
the orientation and intensity of virtual shadows are consistent with real cast shadows.
Also, real lighting conditions are automatically detected and used to update the virtual
lighting model. Our demonstrator is able to detect up to three light sources (Figure
A.4) and handles, to some extent, windows lighting by recovering it as a distant point
light (Figure A.5). Further results of our demonstrator are shown in this video.
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Figure A.4 – Captures from the proposed mixed reality demonstrator: the real scene
is illuminated by artificial indoors lighting.

Figure A.5 – Captures from the proposed mixed reality demonstrator: the real scene
is illuminated by natural windows lighting.
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BAppendix: Joint Specularity and
Cast Shadow Detection using a
Deep Learning Approach

Figure B.1 – Examples of collected texture maps which are used to create our synthetic
dataset.
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Figure B.2 – (a) Input color images from the test set. (b) Classification results using
our dataset: pixel color corresponds to the probability to belong to specularity (blue
channel), cast shadows (green channel) or the rest of the scene (e.g., background, objects)
(red channel).

154



Figure B.3 – Results (b) of our classifer (U-Net with color image and segmentation
map as inputs) within a selection of images (a) from the (SBU) [Zhu et al., 2010] and
(UCF)[Vicente et al., 2016] datasets.
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Résumé

Vers la fin des années soixante, la création d’images de synthèse réalistes avait fait
l’objet de plusieurs projets de recherche. Les travaux réalisés ont abouti à divers algo-
rithmes permettant de générer des rendus incroyablement réalistes de scènes virtuelles
entièrement modélisées. Ainsi, la possibilité de créer un monde numérique photoréal-
iste a contribué, 30 ans plus tard, à l’émergence du premier système de Réalité Mixte
(RM) [Rosenberg, 1993]. En 1992, Louis Rosenberg introduit le concept de montages
virtuels, une superposition d’informations virtuelles sur un espace réel dans le contexte
de tâches militaires. L’idée centrale de la superposition ou du mélange d’informations
réelles et virtuelles a d’abord été inventée par Tom Caudell [Caudell and Mizell, 1992],
puis appelée réalité mixte dans le cadre du continuum réalité-virtualité [Milgram and
Kishino, 1994].

Le réalité-virtualité continuum [Milgram and Kishino, 1994] introduit la notion de
plusieurs types de réalités. Il va du monde physique réel où aucune donnée virtuelle
n’existe à un monde de réalité virtuelle (RV) où tout est virtuel et modélisé. Dans ce
continuum, la réalité mixte (RM) a été définie comme "...tout segment entre les deux
extrémités du continuum...". Elle comprend donc toutes les configurations allant de la
réalité augmentée (RA) où le virtuel augmente le réel à la virtualité augmentée (VA),
où le réel augmente le virtuel. Dans cette thèse, nous abordons un segment de la réalité
mixte permettant d’insérer des objets 3D virtuels dans le monde réel de l’utilisateur
tout en se focalisant sur le côté interactif, temps réel et réaliste de l’application.

La réalité mixte va sans aucun doute jouer un rôle majeur dans le façonnement de
notre avenir proche, non seulement en raison de ses divers cas d’utilisation mais aussi
en raison du gain de temps, de productivité et de croissance économique qu’elle ap-
porte. Au fur et à mesure que la technologie impliquée mûrisse, les systèmes basés sur
la RM deviennent des produits abordables et conviviaux. Par conséquent, le nombre de
scénarios dans lesquels cette technologie peut être utile est sans limite [Costanza et al.,
2009][Mekni and Lemieux, 2014]. Historiquement, l’objectif primaire de l’information
véhiculée par les objets virtuels est de rendre une tâche plus facile à accomplir pour un
humain [Brooks, 1996]. Le premier domaine à accueillir ce concept a été le domaine
militaire grâce aux travaux de Rosenberg [Rosenberg, 1993] permettant d’améliorer
l’expérience télérobotique de l’utilisateur. Depuis, les systèmes de RM ont été utilisés
dans divers domaines tels que le médical [Botella et al., 2010][Thomas, 2016], l’éducation
[Herpich et al., 2017] et la formation industrielle [Tang et al., 2003]. Cette thèse appar-
tient au domaine du divertissement et s’inscrit dans le cadre d’un partenariat industriel
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CIFRE1 avec Technicolor, une multinationale qui fournit des services et des produits
aux industries du divertissement, et l’Institut de Recherche en Informatique et Sys-
tèmes Aléatoire (IRISA).

Dans ce contexte, bien que plusieurs acteurs industriels aient déjà proposé des so-
lutions (ARKit, Vuforia, Wikitude) capables d’aligner géométriquement le monde réel
avec le monde numérique, aucun d’entre eux n’a abordé le problème d’un mélange
homogène et réaliste. En effet, lors de l’utilisation des systèmes existants, les objets
virtuels se distinguent souvent facilement des objets réels à cause de leurs apparences
incohérentes. Comme l’immersion de l’utilisateur représente un aspect important de
ces systèmes [Roussou and Drettakis, 2003], cela pose un problème majeur. Les repères
visuels humains sont sensibles à la cohérence globale d’une image. L’absence des om-
bres virtuelles ou la perception confuse des couleurs causée par un objet virtuel exces-
sivement lumineux sont des éléments pouvant empêcher l’utilisateur d’interagir et de
s’engager dans une application cible.

Afin d’apporter une solution à cette problématique, le scénario considéré dans le cadre
de ce travail est le suivant: à l’aide d’une caméra RVB-P produisant des images couleurs
et des cartes de profondeur, nous parcourons une scène réelle d’intérieur pour en ac-
quérir la géométrie. L’introduction de sondes lumineuses ou la necessité d’une inter-
action excessive de l’utilisateur ne sont guère envisagées. En analysant uniquement
les images couleur et le modèle acquis de la scène, les approches proposées permettent
d’estimer les propriétés de réflectance de surface et les caractéristiques d’illumination
(position 3D, intensité, couleur). Notre but étant de gérer une grande variété de scènes
d’intérieur réelles, nous considérons très peu de contraintes relatives au contenu de la
scène. Plus précisément, nous ne supposons guère que la scène est composée d’objets
3D de couleur uniforme ni que l’éclairage est éloigné de la scène ou réduit à une seule
source lumineuse. Enfin, les sources lumineuses peuvent être dynamiques et nos ap-
proches doivent tenir compte de ces changements dans l’éclairage et le rendu final des
objets virtuels. Dans ce travail, nous sommes intéressés par le réalisme fonctionnel
plutôt qu’un réalisme physiquement simulé. Notre but est de produire un mélange
convaincant et esthétique entre le réel et le numérique.

Dans la littérature, les approches existantes introduisent souvent soit des dispositifs
supplémentaires (une sphère chromée et/ou une caméra équipée d’un objectif fish-eye)
qui peuvent être encombrants dans l’expérience-utilisateur, soit contraignent le contenu
de la scène (une scène réduite à un seul objet, un éclairage représenté par une seule
source lumineuse, des surfaces Lambertiennes). De plus, elles supposent souvent que
l’éclairage de la scène est statique. Cela introduit une contrainte forte étant donné que
l’utilisateur peut avoir besoin de changer l’éclairage de son environnement. Dans cette
thèse, nous avons abordé ces limites en tirant parti de l’information RVB-P acquise.

Pour réaliser le recalage photométrique, nous avons considéré quatre principaux axes
de recherche: (1) Recalage photométrique utilisant des réflexions spéculaires. (2) Re-
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calage photométrique utilisant des ombres portées. (3) Recalage photométrique util-
isant à la fois des réflexions spéculaires et des ombres portées. (4) Détection de réflex-
ions spéculaires et d’ombres portées de scènes réelles intérieur à l’aide d’une approche
d’apprentissage profond. Ces quatre axes de recherche ont donné lieu à quatre contri-
butions principales détaillées ci-après.

(1) Recalage photométrique utilisant des réflexions spéculaires.

Dans une première contribution, nous considérons des scènes intérieures réelles où la
géométrie et l’éclairage sont statiques. Au fur et à mesure que le capteur parcourt la
scène, des réflexions spéculaires peuvent être observées à travers une séquence d’images
RVB-P. Ces repères visuels sont très instructifs sur l’éclairage et la réflectance de la
scène et ont longtemps été pris en compte dans les approches de recalage photométrique.
Dans ce contexte, les techniques existantes estiment souvent les spécularités comme des
régions saturées dans l’image. Par conséquent, les surfaces brillantes et blanches peu-
vent être considérées à tort. De plus, on suppose souvent que les sources lumineuses
sont éloignées et seules leurs directions sont estimées. Cependant, dans les scènes réelles
d’intérieur, cette hypothèse n’est pas toujours valable. Notre première contribution
aborde ces limites. Plus précisément, nous considérons des scènes réelles arbitraires
composées d’un ou plusieurs objets aux textures variées. Nous estimons les propriétés
de réflectance diffuse et spéculaire à l’aide d’une analyse spatio-temporelle robuste de
la séquence RVB-P acquise. Cette analyse repose sur la construction de profils de lumi-
nance qui conservent l’évolution de la luminance d’un pixel donné lors de mouvement
de la caméra. De plus, nous estimons la position 3D de plusieurs sources de lumière
sans aucune intervention de l’utilisateur. Nos estimations ont été intégrées dans un
pipeline de rendu présentant des scénarios réalistes de RM tels que des objets virtuels
occultant correctement des spécularités réelles (reconstruction précise de la région de
spécularité en utilisant la réflectance diffuse estimée) ainsi que des ombres virtuelles
réalistes en termes de forme et d’intensité.

(2) Recalage photométrique utilisant des ombres portées.

Dans cette contribution, l’analyse est basée sur les ombres portées observées dans la
scène. Les ombres sont omniprésentes et résultent de l’occutation de la lumière par la
géométrie existante. Elles représentent donc des indices intéressants pour reconstituer
les propriétés photométriques de la scène. Lorsqu’il s’agit de scènes d’intérieur, les so-
lutions existantes supposent souvent la présence de surfaces de couleur uniforme pour
détecter les ombres. La présence de texture dans ce contexte est un scénario difficile.
En effet, la séparation de la texture et des effets d’éclairage est souvent traitée par
des approches qui nécessitent une grande interaction de l’utilisateur (l’indication de
l’emplacement des ombres) ou qui ne répondent pas aux exigences de la réalité mixte
(quelques minutes pour détecter les ombres dans une seule image). Dans cette contri-
bution, nous présentons une méthode qui aborde ces contraintes. L’approche proposée
est double: nous séparons d’abord la texture et l’éclairage en considérant des paires de
points ayant la même propriété de réflectance mais soumis à des conditions d’éclairage
différentes. Ensuite, à partir de l’illumination estimée, nous obtenons la position 3D



et l’intensité des sources lumineuses via un processus itératif. Notre méthode permet
de gèrer également l’éclairage dynamique et fonctionne à une fréquence d’image inter-
active (4 images par seconde). Par conséquent, elle est adaptée aux scénarios RM où
l’utilisateur peut librement allumer, éteindre et déplacer les sources lumineuses.

(3) Recalage photométrique utilisant à la fois des réflexions spéculaires et
des ombres portées.

Dans cette contribution, nous abordons le problème de l’estimation de l’illumination
et de la réflectance en analysant conjointement les réflexions spéculaires et les ombres
portées. L’approche proposée tire parti de l’information apportée par les deux indices
visuels pour traiter une grande variété de scènes. Par exemple, les ombres portées
faibles sont difficiles à détecter en utilisant uniquement des approches basées sur les
ombres; cependant, lorsque des réflexions spéculaires sont disponibles, il est possible de
combiner efficacement les deux informations pour estimer l’éclairage. Dans cette con-
tribution, nous proposons une méthode qui permet d’estimer la position et la couleur
de sources lumineuses multiples dans la scène. Notre approche est capable de traiter
n’importe quelle surface texturée et prend en compte à la fois les sources de lumière
statiques et dynamiques. Son efficacité est démontrée par une gamme d’applications, y
compris des scénarios de réalité mixte en temps réel où le rendu d’objets synthétiques
est cohérent avec l’environnement réel (une occultation de spécularité réelle par un
objet virtuel, des ombres virtuelles visuellement cohérentes) et la re-texturation où la
texture de la scène est modifiée tandis que l’éclairage incident est conservé.

(4) Détection de réflexions spéculaires et d’ombres portées de scènes réelles
intérieures par une approche d’apprentissage profond.

Dans les contributions mentionnées précédemment, nous avons exploré des approches
permettant de détecter et modéliser efficacement les réflexions spéculaires et les ombres
portées afin d’obtenir le recalage photométrique des scènes réelles. Une dernière con-
tribution de cette thèse a été de proposer un cadre d’apprentissage en profondeur pour
détecter conjointement les spécularités et les ombres portées dans les scènes. Dans le
cadre de ce type d’approches, un facteur clé de la généralisation consiste à disposer d’un
ensemble de données avec une grande variété de scénarios. En ce qui concerne notre
tâche cible, les bases de données relatives à la détection de réflexions spéculaires ne sont
pas disponibles et la majorité des bases de données relatives à la détection d’ombres
prennent en compte les scènes extérieures où le soleil est la seule source lumineuse.
Aussi, nous avons construit une base de données complète et exhaustive dans le but de
traiter des scénarios de scènes réelles intérieures et extérieures. Notre technique a été
testée sur une variété d’images et produit de bons résultats.
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Résumé :  
L'objectif principale de la Réalité Mixte (RM) est de donner aux 
utilisateurs l'illusion que les objets virtuels et réels coexistent 
indistinctement dans le même espace. Une illusion efficace 
nécessite un recalage précis entre les deux mondes. Ce 
recalage doit être cohérent du point de vue géométrique et 
photométrique. Dans cette thèse, nous proposons de 
nouvelles méthodes de recalage photométrique pour estimer 
l'illumination et la réflectance de scènes réelles. Plus 
précisément, nous proposons des approches en nous 
attaquant à trois grands défis : (1) utilisation d'une seule 
caméra RGB-D. (2) estimation des propriétés de réflectance 
diffuse et spéculaire. (3) estimation de la position 3D et de la 
couleur de sources lumineuses dynamiques multiples. 
 
    Dans notre première contribution, nous considérons des 
scènes réelles d’intérieurs où la géométrie et l'éclairage sont 
statiques. En observant la scène à partir d’une caméra mobile, 
des réflexions spéculaires peuvent être détectées tout au long 
de la séquence d'images RGB-D. Ces indices visuels sont très 
instructifs sur l'éclairage et la réflectance des surfaces des 
scènes. Par conséquent, nous les modélisons pour estimer à 
la fois les propriétés de réflectance diffuse et spéculaire ainsi 
que la position 3D de sources lumineuses multiples. Notre 
algorithme permet d'obtenir des résultats de RM convaincants 
tels que des ombres virtuelles réalistes ainsi qu'une 
suppression correcte de la spécularité réelle. 

 
    Les ombres sont omniprésentes et représentent 
l’occultation de la lumière par la géométrie existante. Elles 
représentent donc des indices intéressants pour reconstituer 
les propriétés photométriques de la scène. La présence de 
texture dans ce contexte est un scénario critique. En effet, la 
séparation de la texture et des effets d'éclairage est souvent 
gérée par des approches qui nécessitent l’intervention de 
l'utilisateur ou qui ne répondent pas aux exigences du temps 
de traitement de la réalité mixte. Nous abordons ces 
limitations et proposons une méthode d'estimation de la 
position et de l'intensité des sources lumineuses. L'approche 
proposée gère les lumières dynamiques et fonctionne en 
temps quasi-réel. 
    L'existence d'une source lumineuse est plus probable si 
elle est soutenue par plus d'un indice visuel. Nous abordons 
donc le problème de l'estimation des propriétés d’éclairage et 
de réflectance en analysant conjointement les réflexions 
spéculaires et les ombres projetées. L'approche proposée tire 
parti de l'information apportée par les deux indices pour 
traiter une grande variété de scènes. Notre approche est 
capable de traiter n'importe quelle surface texturée et tient 
compte à la fois des sources lumineuses statiques et 
dynamiques. Son efficacité est démontrée par une gamme 
d'applications, incluant la réalité mixte et la re-texturation. 
    La détection des ombres projetées et des réflexions 
spéculaires étant au cœur de cette thèse, nous proposons 
finalement une méthode d'apprentissage approfondi pour 
détecter conjointement les deux indices visuels dans des 
scènes réelles d’intérieurs. 
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Abstract: 
 
The overarching goal of Mixed Reality (MR) is to provide the 
users with the illusion that virtual and real objects coexist 
indistinguishably in the same space. An effective illusion 
requires an accurate registration between both worlds. This 
registration must be geometrically and photometrically 
coherent. In this thesis, we propose novel photometric 
registration methods to estimate the illumination and 
reflectance of real scenes. Specifically, we propose new 
approaches which address three main challenges: (1) use of a 
single RGB-D camera. (2) estimation of both diffuse and 
specular reflectance properties. (3) estimation of the 3D 
position and color of multiple dynamic light sources. 

 
    Within our first contribution, we consider indoor real 
scenes where both geometry and illumination are static. As 
the sensor browses the scene, specular reflections can be 
observed throughout a sequence of RGB-D images. These 
visual cues are very informative about the illumination and 
reflectance of scene surfaces. Hence, we model these cues 
to recover both diffuse and specular reflectance properties as 
well as the 3D position of multiple light sources. Our 
algorithm allows convincing MR results such as realistic 
virtual shadows and correct real specularity removal. 

    Shadows are omnipresent and result from the occlusion of 
light by existing geometry. They therefore represent 
interesting cues to reconstruct the photometric properties of 
the scene. Presence of texture in this context is a critical 
scenario. In fact, separating texture from illumination effects 
is often handled via approaches which require user 
interaction or do not satisfy mixed reality processing-time 
requirements. We address these limitations and propose a 
method which estimates the 3D position and intensity of light 
sources. The proposed approach handles dynamic light 
sources and runs at an interactive frame rate.  
    The existence of a light source is more likely if it is 
supported by more than one cue. We therefore address the 
problem of estimating illumination and reflectance properties 
by jointly analysing specular reflections and cast shadows. 
The proposed approach takes advantage of information 
brought by both cues to handle a large variety of scenes. Our 
approach is capable of handling any textured surface and 
considers both static and dynamic light sources. Its 
effectiveness is demonstrated through a range of 
applications including real-time mixed reality and retexturing. 
    Since the detection of cast shadows and specular 
reflctions are at the heart of this thesis, we further propose a 
deep-learning framework to jointly detect both cues in indoor 
real scenes.  
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