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Résumé 

L’industrie automobile fournie de plus en plus d’effort pour optimiser l’aérodynamique 

externe des véhicules afin de réduire son empreinte écologique. Dans ce cadre, l’objectif de ce 

projet est d’examiner les structures tourbillonnaires responsables de la dégradation de traînée 

et de proposer une solution de contrôle actif permettant d’améliorer l’efficacité 

aérodynamique d’un véhicule SUV. Après une étude expérimentale de la maquette POSUV 

échelle réduite, une analyse modale croisée permet d’identifier les structures périodiques 

corrélées de l’écoulement qui pilotent la dépression sur le hayon. Une solution de contrôle 

optimale par jets pulsés sur le parechoc arrière, est obtenue avec un algorithme génétique. 

Celle-ci permet de réduire la dépression du hayon de 20% et l’analyse croisée des résultats 

instationnaires avec contrôle montre un changement significatif de la distribution spectrale. 

Après deux études préliminaires sur la rampe inclinée à 25° et sur le Corps d’Ahmed à 47°, la 

simulation de POSUV à partir d’un solveur LES, en éléments finis, est validé par rapport aux 

résultats expérimentaux. L’approfondissement des résultats 3D permet de comprendre les 

pertes aérodynamiques. La simulation de l’écoulement contrôlé permet également d’identifier 

les mécanismes du contrôle d’écoulements. 

 

Mots-clés: Aérodynamique externe, Réduction de trainée, Contrôle d’écoulement, 

Décomposition Modale Dynamique, Analyse modale, Simulation LES, Écoulements 

détachés, Sillage turbulent, algorithme génétique 

 

Abstract 

The automotive industry dedicates a lot of effort to improve the aerodynamical performances 

of road vehicles in order to reduce its carbon footprint. In this context, the target of the present 

work is to analyze the origin of aerodynamic losses on a reduced scale generic Sport Utility 

Vehicle and to achieve a drag reduction using an active flow control strategy. After an 

experimental characterization of the flow past the POSUV, a cross-modal DMD analysis is 

used to identify the correlated periodical features responsible for the tailgate pressure loss. 

Thanks to a genetic algorithm procedure, 20% gain on the tailgate pressure is obtained with 

optimal pulsed blowing jets on the rear bumper. The same cross-modal methodology allows 

to improve our understanding of the actuation mechanism. After a preliminary study of the 

25° inclined ramp and of the Ahmed Body computations, the numerical simulation of the 

POSUV is corroborated with experiments using the cross-modal method. Deeper 

investigations on the three-dimensional flow characteristics explain more accurately the wake 

flow behavior. Finally, the controlled flow simulations propose additional insights on the 

actuation mechanisms allowing to reduce the aerodynamic losses. 

 

Keywords: External aerodynamic, Drag reduction, Flow control, Dynamic Modal 

Decomposition, Modal analysis, Large Eddy Simulation, Detached flow, Turbulent wake, 

Genetic algorithm  
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Résumé étendu 

Introduction 

L’optimisation aérodynamique des véhicules terrestres est un défi majeur pour l’industrie 

automobile pour réduire son impact écologique.  

Dans ce contexte, l’objectif de ce projet de thèse est d’améliorer notre compréhension des 

mécanismes responsables des pertes aérodynamiques sur un véhicule réaliste de type « Sport 

Utility Vehicle », sujet à un détachement massif induit par le design du hayon avec une 

lunette à 47°. Il s’agira aussi de proposer une solution de contrôle actif permettant de réduire 

efficacement les efforts de traînée inhérent à ce type de design.  

Cette étude se concentre sur une maquette générique communément appelé « POSUV » 

reproduisant les caractéristiques moyennes des différents SUV existant dans la rue. Celle-ci a 

été réalisée à partir de l’exploration expérimentale et numérique de l’écoulement autour de 

cette géométrie en passant par des études corolaires sur les cas simplifiés de la rampe inclinée 

à 25° et le Corps d’Ahmed avec une lunette inclinée à 47°.  

I. Etats de l’art 

Le premier chapitre est consacré à un état de l’art autour du contrôle d’écoulement pour la 

réduction de traînée sur un véhicule terrestre. 

L’optimisation d’un véhicule SUV nécessite la compréhension de mécanismes complexes qui 

se développent autour d’une maquette donnée. De manière générale, les pertes 

aérodynamiques sont dues aux efforts de pression, aux frottements visqueux mais également 

due aux pertes de charges générées par l’écoulement sous capot ainsi qu’aux pertes créées par 

les structures turbulentes au niveau des roues, des rétroviseurs et du plancher du véhicule. Le 

bilan intégral de ces efforts permet de quantifier le coefficient de traînée associé à une 

maquette donnée par rapport à une surface frontale et une vitesse d’écoulement lointain. Les 

relevés effectués sur des voitures montrent que la catégorie des « Sport Utility Vehicle », 

appelé plus communément SUV sont associé à un coefficient de traînée autour de 0.32 

(Eulalie et al., 2018a; Grandemange, 2013; I. Heft et al., 2012; Wieser et al., 2014; Wolf, 

2018). Des études plus approfondies mettent en évidence l’importance de l’angle de la lunette 

sur le détachement de sillage (Hucho, 1987). Les véhicules de la catégorie SUV 

majoritairement associés à des lunettes inclinées à 45° sont donc soumis à un large 

détachement tourbillonnaire associé à une forte zone dépressionnaire dans le sillage. 

Parallèlement, les détachements tourbillonnaires pouvant avoir lieu sur un design réaliste 

participent à la complexité de l’écoulement turbulent avec entre autre les tourbillons du « A-

pillar », ainsi que les instationnarités générées par l’écoulement de soubassement (Theissen, 

2012; Wojciak, 2012; Yuan et al., 2018).  

Les fondamentaux de la mécanique des fluides et des écoulements turbulents permettent de 

mettre en lumière les différents phénomènes intervenant dans ce type d’écoulement détaché à 

haut Reynolds. Le régime d’écoulement turbulent induit notamment une dissipation régis par 

la cascade turbulente en -5/3 dans la zone inertielle où s’opère la turbulence homogène 

isotrope. Le développement de la couche limite, région soumise aux effets d’adhérence à la 

paroi, est également fortement régi par l’énergie cinétique turbulente transportée, ce qui 

favorise le fort gradient à la paroi. L’apparition d’un fort gradient de pression adverse ou d’un 

fort effet de courbure de la surface entraîne la séparation de la couche limite et le 

développement de la couche de cisaillement dont le fort gradient de vitesse génère des 



6 Résumé étendu  

instabilités de Kelvin-Helmholtz. La dynamique de l’écoulement de sillage qui se forme 

derrière l’obstacle est pilotée par des fréquences caractéristiques identifiées par le nombre de 

Strouhal. L’interaction entre ces mécanismes turbulents a été mise en évidence à partir de 

différents cas tests. L’étude de l’écoulement détaché sur une rampe inclinée effectuée par 

(Kourta et al., 2015; Stella et al., 2017a; Thacker, 2010) à 25° et (Creusé et al., 2009; Heenan 

and Morrison, 1998; Spazzini et al., 2001; Varon, 2017) à 90°, montre entre autre l’influence 

de la quantité de mouvement portée par la couche limite sur le développement de la couche de 

cisaillement et sur la longueur de la zone de recirculation résultante. Dans le cas plus 

complexe du Corps d’Ahmed proposée pour la première fois dans l’étude de (Ahmed et al., 

1984a), la topologie du sillage pour un véhicule simplifié est gouverné par le détachement sur 

la lunette, attaché jusqu’à 10°, partiellement détaché entre 10 et 30° et entièrement détaché 

au-delà de 30°. Dans le cas spécifique du Corps d’Ahmed à 90°, la dynamique du sillage est 

gouvernée par le phénomène de bi-stabilité décrit par (Bonnavion, 2018; Grandemange, 2013; 

Li, 2017a; Varon et al., 2017a; Volpe et al., 2015).  

Diverses stratégies ont été adoptées afin de réduire les pertes aérodynamiques. Parmi les 

solutions existantes, l’intégration de systèmes type passifs tels que les déflecteurs 

(Bonnavion, 2018; Grandemange, 2013), l’effet de rétreint (Beaudoin and Aider, 2008; Perry 

et al., 2016), les milieux poreux (Bruneau et al., 2014, 2010; Mimeau et al., 2017) ou les 

générateurs de vortex montrent l’impact du contrôle de la séparation de la couche limite sur 

l’arrière corps pour réduire la dépression du sillage. En outre, les solutions de contrôle actifs 

comme le plasma (Boucinha et al., 2010; Khalighi et al., 2016; Shadmani et al., 2018; Vernet 

et al., 2018), les jets stationnaires (Aubrun et al., 2011; McNally et al., 2015; Wassen et al., 

2010), les oscillateurs fluidiques (Arwatz et al., 2008; Metka and Gregory, 2015; von Gosen 

et al., 2015), les jets synthétiques (Eulalie, 2014; Leclerc, 2008; Minelli et al., 2018) ou les 

jets pulsés montrent un fort potentiel pour la réduction de traînée mais permettent également 

d’approfondir la compréhension du mécanisme de séparation de la couche limite et comment 

il impact la zone dépressionnaire du sillage. Une analyse approfondie proposée par 

(Parezanovic et al., 2014) souligne l’importance des fréquences d’actionnement dans le 

contrôle de la couche de cisaillement.  

Il apparait ainsi judicieux d’implémenter des lois de contrôle permettant d’identifier les 

paramètres des actionneurs en vue d’optimiser l’efficacité du système. On peut mentionner les 

stratégies de contrôle boucle fermée en temps réel telles que l’opposition (Bruneau et al., 

2010), la recherche d’extremum, la recherche de pentes (Parezanovic et al., 2014; Pastoor et 

al., 2008), les observateurs dynamiques (Pastoor et al., 2008; Tadmor, 2004, Varon, 2017). 

L’intérêt des méthodes d’apprentissage pour la recherche d’un point de fonctionnement 

optimal doit également être mentionné avec en temps réel des algorithmes tel que « Learning 

Genetic Programming Conrol » (Li, 2017b; Li et al., 2017a).  

Dans le cadre de l’analyse de la sensibilité de l’écoulement au contrôle, il apparait nécessaire 

d’introduire des outils mathématiques permettant d’extraire les structures cohérentes ainsi que 

les phénomènes périodiques qui gouvernent le sillage. La décomposition orthogonale en mode 

propre introduite par (Lumley, 1981, 1967), a été largement utilisée pour mettre en évidence 

les cohérences de l’écoulement. Parallèlement, on fait mention de l’intérêt de la 

Décomposition Modale Dynamique (Schmid, 2012) comme méthode permettant d’extraire les 

périodicités de l’écoulement. L’algorithme basé sur une étape préliminaire de décomposition 

en valeur singulière puis l’application combiné avec l’algorithme de sélection « Sparse 

Promoting » (Jovanović et al., 2014a) apparait pertinent pour l’identification des fréquences 

caractéristiques de l’écoulement. 

Enfin, l’exploration des méthodes numériques utilisées pour l’étude de ce type problème fait 

apparaitre un large panel de potentielles stratégies. Cela passe par un choix sur le niveau de 
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résolution des échelles de la turbulence, allant de l’approche « Reynolds-Average Navier-

Stokes » où l’intégralité des fluctuations turbulentes est modélisée jusqu’à la « Direct Navier-

Stokes » où l’intégralité des fluctuations turbulentes est résolue, en passant par les approches 

hybrides « Detached Eddy Simulation », « Partially Average Navier Stokes » ou « Large 

Eddy Simulation ». Après exploration des différentes approches, il est convenu de se 

concentrer sur l’approche LES comme étant un compromis pertinent afin de résoudre les 

échelles de la turbulence nécessaire pour l’étude de l’écoulement sur une maquette à échelle 

réduite couplé avec le modèle de sous-maille Dynamique Smagorinsky (M Germano et al., 

1991). De plus, la robustesse et la précision apportée par la méthode des éléments finis avec la 

technique d’approximation Galerkin moindre carrés (Shakib, 1991) est discutée par rapport à 

d’autres stratégies tels différences finies ou volumes finies qui sont très couteuses et moins 

dissipatives. Notons toutefois qu’une méthode Lattice Boltzmann aurait également pu être 

adoptée compte tenu des hautes capacités de parallélisation de cette technique. 

Tous les éléments explorés dans ce paragraphe permettent de poser les fondements des 

travaux effectués. 

II. Etudes expérimentales et contrôle d’écoulement sur un 

véhicule SUV échelle réduite 

Les travaux expérimentaux ont été effectués sur une maquette échelle 1/6 par rapport à un 

véhicule réaliste avec une lunette inclinée à 47° comme illustré en Fig. 1. La longueur de 

référence est définie par rapport à la hauteur du véhicule égale à 200mm et la surface de 

référence associée à l’aire frontale du véhicule est égale à 0.06m². 

 

La maquette est placée dans le tunnel de la soufflerie de Berlin de section 1.4m de hauteur sur 

2m de largeur ce qui correspond à un taux de blocage de la maquette de 2%. L’écoulement 

externe est caractérisé par un tube de Pitot où la pression de référence est mesurée. Le débit 

passant dans le convergent est calibré de façon à avoir une vitesse de référence au tube de 

Pitot de 30m/s. Ceci permet d’établir un écoulement associé à un nombre de Reynolds de 

400 000 par rapport à la hauteur de la maquette ce qui correspond à un régime de vitesse de 

110km/h sur autoroute. De plus, une intensité turbulente de 0.5% est injectée en entrée de 

convergent de la soufflerie. Enfin, le campagne a été effectué avec des roues fixes et un sol 

non défilant. 

 

Fig. 1: Géométrie de la maquette du SUV générique à l’échelle réduite avec les dimensions 

caractéristiques en millimètres: (a) Vue latéral; (b) Vue 3D avec une projection montrant la 

surface frontale. 
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L’analyse expérimentale est effectuée à partir de 48 capteurs de pression distribués sur 

l’arrière du véhicule. La pression statique est ainsi capturée avec un échantillonnage de 

2000Hz sur une période d’acquisition de 1 minute. Des mesures PIV complémentaires ont 

permis de compléter l’analyse de l’écoulement de référence non contrôlé. 

 

Les actionneurs de type jets pulsés ont été placés sur les côtés latéraux et inférieur du 

parechoc arrière de la maquette comme illustré en Fig. 4. Les fentes, de dimension 0,5mm sur 

2,5mm sont distribuées avec un espacement de 14mm.  

 

En outre, les circuits d’alimentation du système pneumatique ont été mis en place de façon à 

ce que les débits dans les fentes latérales soient égaux et les débits dans les fentes en partie 

basse soient égaux. De plus quatre électrovannes ont été intégrées au circuit afin d’appliquer 

quatre fréquences différentes de façon à avoir une fréquence par groupe de fentes 

respectivement sur les côtés droit et gauche pour les fentes latérales et sur les moitiés droite et 

gauche des fentes inférieures. Ceci permet de définir des actionneurs pilotés par 4 fréquences, 

 

Fig. 2: (a) Photo de la maquette du POSUV placée dans le tunnel principal de la 

soufflerie de Berlin de section 1.4m x 2m avec le tube de Pitot où la pression de référence 

et la vitesse de référence sont prises. (b) Schéma de la maquette du SUV avec la position 

du Pitot par rapport au nez du véhicule. 

 

Fig. 3: (a) Photo des capteurs de pression distribués sur le hayon; (b) Photo du système 

PIV utilise pour caractériser la dynamique du sillage. 

 

Fig. 4: Photo de la pièce parechoc arrière intégrant les jets discontinus; (b) Schéma 

illustrant les caractéristiques géométriques des fentes en millimètre. Celles-ci sont 

distribuées sur les côtés latéraux et sur la partie inférieure du parechoc avec un espacement 

de 14mm. Chaque fente fait 2,5mm de large sur 0,5mm de long. 
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4 phases et 2 débits. L’espace du plan d’expérience est donc défini par 10 paramètres de 

contrôle. Une caractérisation à l’aide de débitmètre permet de caractériser les débits 

équivalents en sortie de buses en fonction de la fréquence et du pourcentage d’ouverte de 

vanne. 

Les capteurs et actionneurs sont connectés à une carte pilote μ − Dacq gérée par Labview. Ce 

programme est en communication avec Matlab sur lequel a été implémenté l’outil 

d’optimisation.  

 

L’algorithme de recherche de type contrôle réactif est une adaptation du programme 

« Machine Learning Control » proposé par (Gautier et al., 2015). Il s’agit d’une méthode de 

recherche, n’impliquant pas de modèle de comportement qui consiste à identifier la meilleure 

combinaison de paramètres de contrôle permettant de minimiser une fonction coût. Dans la 

logique de l’algorithme génétique, l’algorithme de recherche consiste à faire évoluer une 

population d’individus auxquels on attribue des caractères (4 fréquences et 2 débits) de façon 

à sélectionner les meilleurs individus. Un taux de mutation permet d’introduire de nouveaux 

caractères aléatoires ce qui assure le caractère global de l’algorithme de recherche. Outre la 

mutation, le processus d’évolution fait intervenir les mécanismes d’élitisme qui duplique le 

meilleur individu, de « cross-over » qui crée une nouvel individu en croisant les caractères de 

deux individus de la génération précédente et de réplication qui applique une redondance sur 

certains individus de la génération précédente (Fig. 6).  

 

Fig. 5: (a) Photo des actionneurs et capteurs à l’intérieur de la maquette; (b) Diagramme du 

système de commande et d’acquisition pilotant les actionneurs et les capteurs sur Labview 

et Matlab. 
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Ainsi, à partir d’un plan d’expérience initial, les fréquences des jets pulsés et leur amplitudes 

sont optimisés afin maximiser la pression moyenne s’exerçant sur les capteurs du Hayon 

comme illustré en Fig. 7. Pendant cette campagne expérimentale, le processus d’évolution par 

algorithme génétique est exécuté sur une population de 51 individus par génération évoluant 

sur 16 générations correspondant à un total de 816 acquisitions. Le processus d’évolution est 

pondéré par 19% de mutations, 69% de « cross-over », 10% de réplications et 2% d’élitisme. 

 

Après ces 16 générations, le meilleur individu a été sélectionné et comparé à l’écoulement 

non contrôlé. Au-delà du gain obtenu, le but de l’étude vise à comprendre comment le 

contrôle actif modifie le comportement de l’écoulement comparé à l’écoulement non contrôlé. 

 Topologie moyenne de l’écoulement avec et sans contrôle 

La distribution du coefficient de pression moyen sur le hayon pour l’écoulement non contrôlé 

est caractérisée par une zone de basse pression en partie basse et une zone de haute pression 

sur la lunette comme illustré sur la Fig. 8a. Le coefficient de pression moyen appliqué sur 

cette surface est égal à 𝐶𝑝 =-0,23. Le coefficient de traînée sur le véhicule mesuré par la 

 

Fig. 6: Processus d’évolution intégré dans l’algorithme génétique, permettant de générer 

une nouvelle population d’individus associée à la génération i+1 (un ensemble de 

combinaison de paramètres) à partir des gains obtenus au sein de la population de la 

génération i. 

 

Fig. 7: Schéma de l’algorithme de contrôle implémenter afin d’identifier le meilleur point 

de fonctionnement sur les paramètres de fréquences et de débits des actionneurs. 
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balance est égal à 𝐶𝑑 = 0.36. En outre, la zone de basse pression mesurée en partie basse du 

hayon se superpose avec la zone marquée par d’importante fluctuation de pression illustré par 

la distribution de RMS de 𝐶𝑝 en Fig. 8b. 

 

L’amplitude des pertes aérodynamiques apparait être élevée comparée aux mesures usuelles 

autour de 𝐶𝑑 = 0.32 ainsi que l’intensité de la dépression s’exerçant sur le culot qui s’élève à 

64% de l’effort total. Notons cependant que le sol fixe de la soufflerie induit un taux de 

blocage plus important dans le sous-bassement de la maquette, ce qui modifie de façon 

significatif le gradient de pression adverse et par conséquent le détachement sur le parechoc 

arrière. En réduisant la section efficace de l’écoulement du soubassement, l’effet du diffuseur 

du parechoc arrière est accru et la dépression du sillage est plus accentuée. Ceci ne modifie 

pas la topologie générale de l’écoulement qui est en accord avec les observations à l’échelle 1 

et sur route vue dans la section de l’étude bibliographique.  

Des mesures de Vélocimétrie par Images de Particules (PIV) dans les plans 2D du sillage, ont 

permis d’approfondir la compréhension de la topologie de l’écoulement de référence. La 

figure Fig. 9a présente la distribution moyenne de vitesse dans le plan verticale Y0 et la figure 

Fig. 9b présente le champs de vitesses moyen dans le plan horizontale placé à 140mm du sol 

(Z140). Les champs moyens mettent en évidence une zone de recirculation marquée par une 

symétrie selon le plan vertical Y0. 

 

Les fluctuations de vitesses mesurées par la caméra rapide soulignent également l’intensité 

des fluctuations de vitesses particulièrement marquée au niveau des couches de cisaillement 

induit par les détachements du becquet en partie haute et sur le parechoc en partie basse dans 

le plan Y0 (Fig. 10a). Ces fluctuations turbulentes sont également mesurées dans les couches 

de cisaillement induit par les détachements latéraux du parechoc (Fig. 10b).  

 

Fig. 8: (a) Distribution moyenne du coefficient de pression de l’écoulement non contrôlé; 

(b) Distribution de la RMS du coefficient de pression de l’écoulement non contrôlé.  

 

Fig. 9: Distribution moyenne de vitesse dans: (a) le plan vertical en Y0; (b) le plan 

horizontal à 140mm du sol. 
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Ces observations permettent de pressentir l’interaction entre les mécanismes de détachements, 

de cisaillements et de recirculation dans le cas de l’écoulement non contrôlé. 

La comparaison avec les résultats obtenus avec le contrôle a été effectué à partir du point de 

fonctionnement le plus efficace identifié à l’aide de l’algorithme de recherche détaillé 

précédemment. Les paramètres de fréquences et débits associés sont illustrés en Fig. 11. En 

effet, l’algorithme de recherche a identifié une augmentation du niveau de pression moyen 

avec une combinaison de hautes fréquences à 294Hz et 93Hz sur les fentes latérales et à 

430Hz et 374Hz sur les fentes en partie basse. Les jets pulsés sont pondérés par un faible 

débit à 15% d’ouverture de vanne en latéral et de 50% d’ouverture de vanne en partie basse. 

Selon l’abaque caractérisant le débit équivalent en fonction du pourcentage d’ouverture et de 

la fréquence d’actionnement, ces pourcentages d’ouverture correspondent à des débits de 

15L/min sur les côtés et de 30L/min en partie basse. 

 

Ce point de fonctionnement permet d’obtenir une pression moyenne sur le hayon de 𝐶𝑝 =

−0.19, correspondant à un gain de 20% par rapport au niveau de pression du hayon sans 

contrôle. La distribution moyenne du coefficient de pression est tracée sur Fig. 12a et la RMS 

en Fig. 12b. Similairement à la distribution de 𝐶𝑝 moyen dans le cas sans contrôle, le champ 

de 𝐶𝑝 moyen avec le contrôle est marqué par une zone de basse pression en partie basse. Si la 

topologie moyenne est conservée, l’intensité de la zone dépressionnaire a significativement 

été réduite. La RMS de 𝐶𝑝 mesurée sur le hayon met en évidence un amortissement du niveau 

de fluctuations  

 

 

Fig. 10: Distribution de la RMS de vitesse : (a) le plan vertical en Y0; (b) le plan 

horizontal à 140mm du sol. 

 

Fig. 11: Meilleur point de fonctionnement identifié à la fin de l’algorithme génétique. 

 

Fig. 12: (a) Distribution moyenne du coefficient de pression de l’écoulement contrôlé ; 

(b) Distribution de la RMS du coefficient de pression de l’écoulement contrôlé.  
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 Analyse modale et mise en évidence de la dynamique de l’écoulement avec et sans 

contrôle 

L’outil d’analyse utilisé ici pour extraire la dynamique de l’écoulement est basé sur la 

méthode de Décomposition Modale Dynamique (DMD). Cet algorithme permet d’isoler des 

motifs se propageant de façon périodique dans l’écoulement. Il est basé sur une hypothèse de 

linéarité de l’information transmise d’un instantané à l’autre dans une base de données 

caractérisant l’évolution espace-temps d’un système dynamique. La matrice rassemblant ces 

déphasages entre instantanés est dénommé A, matrice carré de taille égal au nombre de 

capteurs / nœuds (Fig. 13). Les périodicités de l’écoulement sont extraites à partir des valeurs 

propres et modes propres de A.  

 

La matrice A étant dense et non-symétrique, la résolution des modes propres nécessite une 

projection préliminaire dans la base des modes propres orthogonaux (matrice U), obtenu après 

décomposition en valeurs singulières de Ψ1. La résolution des valeurs propres 𝜇 et vecteurs 

propres 𝑌 de la matrice réduite �̃�, issue de cette projection, sont à valeur complexe et 

contiennent les composantes spectrales de l’écoulement. Les modes DMD Φ sont ensuite 

obtenus par projection des vecteurs propres Y sur les modes propres orthogonaux U.  

Ψ1 = 𝑈Σ𝑉∗ 
𝐴 = Ψ2Ψ1

−1 = Ψ2𝑉Σ
−1𝑈∗ 

�̃� = 𝑈∗𝐴𝑈 = 𝑈∗Ψ2𝑉Σ
−1 

�̃�𝑌 = 𝑌𝐷𝜇 

Φ = 𝑈𝑌 

(a) 

(b) 

(c) 

(d) 

(e) 

Eq.1 

Avec  

U matrice unitaire des vecteurs propres gauches de Ψ1  

          (𝑈∗𝑈 = 𝐼𝑛) 

𝑉∗ matrice unitaire, adjointe de 𝑉, contenant les vecteurs propres à droite de Ψ1  

          (𝑉∗𝑉 = 𝐼𝑛) 

Σ = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, … , 𝜎𝑟)  la matrice diagonal des valeurs singulières de Ψ1,  

           avec 𝑟 = 𝑟𝑎𝑛𝑔(Ψ1) 
�̃� la matrice DMD réduite obtenu par projection sur U 

𝐷𝜇 la matrice diagonale is the diagonal matrix of complex eigenvalues 𝜇𝑘 of �̃� 

𝑌 are the complex eigenvectors of �̃�. 

Cette décomposition permet de reconstruire l’écoulement à partir d’une suite de composantes 

périodiques auxquelles on associe des fréquences caractéristiques et des taux de croissance ou 

décroissance 𝜎 (Fig. 14). Les amplitudes 𝛼 associées aux modes DMD dans l’écoulement est 

calculé à l’aide de l’algorithme « Sparse Promoting » (Jovanović et al., 2014a) visant à 

 

Fig. 13: Formulation matricielle de l’hypothèse de linéarité permettant de définir la 

matricide A contenant contenant les déphasages d’un instantanné à l’autre. 
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minimiser le résidu entre la base de données reconstruite et la base de données initiale, sous 

contrainte de minimiser le nombre de modes permettant de décrire la dynamique du système. 

Cette technique permet de réduire la dimension du système, ce qui est particulièrement 

pertinent pour des écoulements de sillages turbulents.  

𝑃𝑘 = ∑ 𝑒𝑘.𝜎𝑗.𝛿𝑡. [cos(2πf𝑗 . k. δt) × ℜ(𝛼𝑗Φj) − sin(2πf𝑗 . k. δt) × ℑ(𝛼𝑗Φj)]

𝑚−1

𝑗=1

 Eq.2 

Avec :  

𝑓𝑖 =
ℑ(ln(𝜇𝑖))

2𝜋.𝛿𝑡
 la fréquence associée à la valeur propre 𝜇𝑖 

𝜎𝑖 =
ℜ(ln(𝜇𝑖))

𝛿𝑡
 le taux de croissance/décroissance associé à la valeur propre 𝜇𝑖 

𝛼𝑖 l’amplitude associée au mode Φ𝑖 

𝛿𝑡 le pas de temps séparant deux instantannés.  

 

 

Cette méthode d’analyse modale a été appliquée afin de caractériser la dynamique du sillage. 

Après exploration des comportements périodiques caractéristiques impactant le hayon de la 

maquette, une analyse croisée a été appliquée pour identifier quels sont les mouvements de 

circulation du sillage régissent ces même fréquences. Puis une analyse modale croisée avec 

les résultats obtenus avec le contrôle a été effectué afin de mettre en évidence quels sont les 

phénomènes atténués et quels sont ceux qui ont été accrus par les jets. Cette démarche a pour 

but d’identifier les mécanismes turbulents qui accentuent les pertes aérodynamiques afin 

d’affiner la compréhension du contrôle d’écoulement.  

Dans un premier temps, l’étude basée sur la dynamique des capteurs de pression sur le hayon 

(Fig. 15) dans le cas de l’écoulement non contrôlé, a permis d’identifier la signature spectrale 

de mouvements oscillants à 4.3Hz ainsi qu’à 8.2Hz, couplé à des phénomènes de pulsations 

de fluctuations de pression réparties de façon homogène sur le culot à 1.8 et 9.3Hz. De plus, la 

décomposition modale a mis en évidence une composante statique, associé à un mode à 0Hz 

dont l’amplitude représente 95% de l’ensemble des caractéristiques modales.  

 

 

Fig. 14: Equation de la reconstruction des champs instantanés de pression à partir de la 

décomposition modale. 

 

Fig. 15: Distribution d’énergie des composantes DMD en fonction de la fréquence. 
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Ensuite une analyse DMD croisée avec les mesures PIV rapides dans les plans Z140 et Y0 a 

été proposée afin d’identifier l’interaction entre la dynamique du sillage et la zone 

dépressionnaire agissant sur le culot.  

En outre, l’application de cette méthodologie pour approfondir les changements de répartition 

d’énergie opérée par le contrôle d’écoulement permet de conclure sur l’interaction du jet pulsé 

à haute fréquence sur les structures énergétiques basses fréquences. 

III. Etudes numériques et contrôle d’écoulement  

L’étude expérimentale a permis d’extraire les caractéristiques principales de la topologie de 

l’écoulement de sillage l’impact sur le hayon. L’étude numérique effectuée conjointement a 

ainsi été validée grâce à ces éléments et l’exploration du comportement 3D à haute fréquence 

a été effectuée en vue d’approfondir la compréhension des phénomènes en jeu. 

Dans cette optique, des simulations préliminaires ont été mise en place pour le 

dimensionnement du modèle numérique. Dans un premier temps, la simulation de 

l’écoulement au-dessus d’une rampe inclinée à 25° a été utilisée pour appréhender les 

mécanismes turbulents intervenant dans la couche de cisaillement et l’interaction avec la zone 

de recirculation. Dans un second temps, la simulation de l’écoulement autour d’un corps 

d’Ahmed avec un culot à 90° a été utilisée pour calibrer les phénomènes périodiques du 

sillage. Ces cas d’études ont parallèlement été exploités avec la méthode de Décomposition 

Modale Dynamique afin de valider une méthodologie efficace pour l’analyse d’écoulements 

turbulents complexes. 

Après ces études préliminaires, la simulation de l’écoulement autour de la maquette SUV 

générique placée dans la soufflerie de l’Université de Berlin a été mise en place 

conformément aux conclusions ressortant des études préliminaires. Après un travail de 

validation et de critique des résultats obtenus, une étude du comportement de l’écoulement été 

effectué avec et sans contrôle. 

 Modèles mathématiques et techniques d’approximations pour la simulation des 

grandes échelles (LES) 

Les travaux effectués au cours de cette étude sont basé sur le solveur AcuSolve de la suite 

ALTAIR. Il s’agit d’un code éléments finis qui propose une approche LES largement détaillé 

dans la publication de (Shakib, 1991). Les équations de Navier-Stokes sont résolus jusqu’à la 

fréquence de filtrage du maillage. Les contributions de sous mailles sont modélisées avec le 

modèle de Smagorinsky Dynamique qui quantifie l’énergie turbulente à modéliser localement 

et à tout instant, à partir l’énergie résolue entre un filtre numérique et le filtre du maillage 

(Fig. 16). Cette technique garantit une estimation adaptée de la dissipation turbulente 

contrairement à la version du modèle de Smagorinsky classique dont la dissipation turbulente 

est pondérée par un facteur fixé de façon empirique.  
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De plus, un modèle de traitement à la paroi est utilisé pour reproduire le profil de couche 

limite turbulent basé sur un modèle linéaire lorsque la première maille à la paroi se situe dans 

la sous-couche visqueuse (𝑦+ < 5) et une loi logarithmique lorsque la première couche de 

maille à la paroi se situe dans la couche externe (𝑦+ > 30). Entre ces deux régions, une 

fonction pont est utilisée. Une modélisation de la sous-couche visqueuse est préconisée afin 

de garantir une bonne reproduction de la quantité de mouvement dans la couche limite. 

Les équations de Navier-Stokes filtrées sont ensuite résolues à l’aide de la méthode 

d’approximation Galerkin moindre carré, qui consiste à minimiser le résidu. L’algorithme de 

minimisation est basé sur une combinaison d’un terme de Galerkin qui garantit la précision de 

la solution avec un terme moindre carré qui permet d’amortir les instabilités potentiellement 

générés par les éléments distordus. Ce terme est notamment particulièrement nécessaire afin 

d’assurer la robustesse des simulations des écoulements autour de géométries complexes tel 

que le SUV réaliste. Une attention particulière doit cependant être portée dans les zones à 

faible vitesse mais fortement turbulentes ou la contrainte du terme moindre carré est très 

restrictive (Fig. 17). C’est notamment le cas dans la zone « d’eau morte » du sillage et la zone 

de la couche de cisaillement où une nappe à vitesse nulle se développe.  

 

 

Fig. 16: (a) Illustration des signaux de vitesses en DNS compares avec les signaux 

filtrés utilisés en LES avec et sans le filtre numérique. (b) Graphique schématisant la 

répartition d’énergie turbulente totale (surface sous la courbe noire), résolue en LES 

(surface verte) et l’écart d’énergie turbulentes entre le filtre du maillage et le filtre 

numérique permettant de dimensionner le taux de dissipation dans le modèle de 

Smagorinsky dynamique. 

 

Fig. 17: Relation entre le rayon spectral de la matrice moindre carré 𝜏𝑃𝑒 qui pondère le 

terme de régularisation en function de la vitesse de convection mesuré sur la base d’un 

problème 1D. 
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Enfin, le solveur intègre un schéma d’ordre 2 en espace sur toutes les variables avec un 

algorithme semi-discret d’ordre 2 en temps. 

 Etudes préliminaires sur la rampe inclinée à 25° 

La simulation de l’écoulement au-dessus de la rampe a été effectué et validé à partir des 

résultats expérimentaux disponibles dans les publications de  (Kourta et al., 2015; Stella et al., 

2017a; Thacker, 2010). Le domaine de simulation 3D a été restreint à une zone de 4h en 

amont de la rampe, 12h en aval, 6h en hauteur et 4h en profondeur. En prenant en compte les 

critères de qualité de la discrétisation de la couche limite, et résolution de la turbulence avec 

l’approche LES, plus le modèle de Smagorinsky dynamique, un maillage final de 60 millions 

d’éléments et 9 millions de nœuds a été généré.  

L’analyse comparative des résultats avec les mesures expérimentales de la littérature a fait 

apparaitre plusieurs points importants. En effet, en dépit d’une sous-évaluation des 

fluctuations de vitesse en amont de la rampe dû à l’absence de condition limite avec injection 

de turbulence synthétique, le profil moyen de la couche limite a montré une bonne 

reproduction du comportement expérimental associé à une bonne qualité de résolution du 

phénomène de séparation sur le bord de la rampe. L’écart d’énergie cinétique turbulente en 

amont de la rampe entraine une différence sur l’épaisseur de la couche de cisaillement très 

localement au niveau du bord. La courbe de tendance définissant l’évolution de l’épaisseur de 

quantité de mouvement 𝜃𝑆𝐻 en fonction de x est en accord avec les observations de la 

littérature.  

De plus, les topologies moyennes de la zone de recirculation en numérique et en 

expérimental, en terme de champ de vitesses moyennes, ainsi que de pression à la paroi (Fig. 

18 a et b) permettent de valider l’écoulement non contrôlé. 

 

La simulation de l’écoulement avec du contrôle actif par jet synthétique a ensuite été 

effectuée et validée conformément aux observations expérimentales. La physique du contrôle 

a donc ainsi pu être capturée par le modèle numérique. Ceci a été vérifié grâce au meilleur 

point de fonctionnement proposé dans l’étude de experimental (Kourta et al., 2015) avec un 

soufflage correspondant à un nombre de Strouhal de 0,6 (adimensionnalisé avec la hauteur de 

la rampe de 0,1m et la vitesse infinie de 30m/s). La visualisation des champs de fluctuations 

de vitesses (Fig.19), suggère une injection de quantité de mouvement par les jets qui modifie 

le comportement de la couche de cisaillement.  

 

Fig. 18: Comparaison des champs moyens de vitesses: (a) en experimental (Kourta et al., 

2015b); (b) en numérique; (c) Comparaison du profils de pression montrant une zone 

dépressionnaire jusqu’à 3h suivie d’une zone de recompression qui s’opère de façon plus 

viotente en calcul par rapport aux mesures expérimentales. 
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Une analyse plus approfondie avec la Décomposition Modale Dynamique a permis de mettre 

en évidence ce phénomène et l’interaction avec la longueur de la zone de recirculation  

(Fig. 20). En effet, un amortissement des caractéristiques spectrales à basse fréquences 

(St=0,02 ; St=0,08) a été montré entre l’écoulement non contrôlé et celui avec contrôle. La 

répartition spectrale de l’énergie suggère un apport accru de l’énergie sur le mode à St=0,6 

qui favorise le mécanisme de mélange turbulent et de dissipation. Ainsi les structures à 

échelle intégrale portent moins d’énergie expliquant la diminution de la longueur 

caractéristique de la zone de recirculation. 

 

 Etudes préliminaires sur le corps d’Ahmed avec un culot à 47° 

Les travaux ont été effectués sur une version modifiée du Corps de Ahmed à 47° afin de 

reproduire les principaux rapports d’aspect d’un véhicule SUV (Fig. 21) par rapport à la 

version originale proposée par (Ahmed et al., 1984b). Cette étude a pour objectif de 

dimensionner une simulation 3D LES d’une maquette équivalente au SUV dans une soufflerie 

à un nombre de Reynolds de 420 000. 

 

Sur la base d’un maillage à 160 millions d’éléments, la simulation de l’écoulement non 

contrôlé a permis de retrouver le coefficient de traînée de 0,272 correspondant à un écart de 

3% par rapport à ce qui a été obtenu expérimentalement dans les études de (Metka, 2013). 

 

Fig. 19: Comparaison des champs RMS de vitesses dans le plan Y0: (a) écoulement non 

contrôlé; (b) écoulement contrôlé. 

 

 

Fig. 20: Modes DMD participant au mécanisme de dissipation turbulente favorisé par 

l’actionnement. 

        

Fig. 21: Comparaison des géométries du SUV générique avec le Corps d’Ahmed avec une 

lunette incline à 47°. 

 
  = 160 
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Après analyse de la topologie de l’écoulement (Fig. 22), l’application de la SPDMD, a permis 

de faire ressortir les structures caractéristiques du sillage et notamment un mode 

particulièrement énergétique à St=0,22 associé à un mouvement de balancier asymétrique 

impactant la dépression du culot.  

 

Sur cette base, une loi de contrôle boucle fermée a été proposé afin de suivre la dynamique de 

ce mode énergétique. Ce contrôle d’écoulement a permis de modifier de façon significative la 

topologie de la zone dépressionnaire sur le culot (Fig. 23). 

 

Cette étude a permis de mettre en lumière le potentiel d’une loi de contrôle basée sur un 

modèle DMD intégrant une loi physique sur la dynamique de l’écoulement. 

 Etude numérique de l’écoulement non contrôlé autour du SUV générique 

La mise en place de la simulation de l’écoulement autour de la maquette du SUV a abouti à 

un maillage de 300 millions d’éléments, et 53 millions de nœuds de façon à avoir une 

résolution spatiale dans le sillage de 2mm et une première couche de maille à 0,05mm sur les 

parois du SUV. L’analyse des résultats a été effectuée sur 1,2 secondes de simulation 

échantillonnées à 2000Hz, après 0,3secondes de convergence. 

A partir de ce modèle numérique, les comparaisons des caractéristiques aérodynamiques 

simulées avec les observations obtenues expérimentalement  ont permis de valider la 

pertinence et la représentativité de l’écoulement moyen sur le hayon (Fig. 24), le sillage (Fig. 

25) et le coefficient de traînée de 0,36.  

 

 

Fig. 22: Distribution moyenne et RMS de Cp de l’écoulement non contrôlé. 

 

Fig. 23: Distribution moyenne et RMS de Cp de l’écoulement avec le contrôle 

d’écoulement par jets discontinus. 

 

Fig. 24: Comparaison des champs moyens de pression sur le hayon: (a) expérimental, 

 (b) calcul. 
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Pour aller plus loin, l’analyse de l’écoulement moyen 3D a permis de mettre en évidence les 

structures 3D expliquant les distributions 2D des plans de coupes PIV. On peut mentionner 

notamment les deux tourbillons latéraux qui semblent impacter considérablement la zone 

dépressionnaire en partie basse du hayon et le tourbillon horizontal impactant la dépression du 

parechoc (Fig. 26). 

 

L’examen des grandeurs turbulentes et fluctuantes a cependant fait apparaitre des niveau 

d’énergie surévalué notamment dans les couches de cisaillement (Fig. 27). De plus, la cascade 

de dissipation turbulente qui s’exerce dans le sillage a mis en évidence une surestimation des 

structures basses fréquences associées à une pente de décroissance plus forte comparer à la loi 

en -5/3 mesurée en essais. 

 

Après une exploration des restrictions du modèle numérique (modèle de turbulence, loi de 

paroi, maillage), l’impact du terme de régularisation inhérent à la formulation éléments finis a 

été démontré au niveau de la nappe de la couche de cisaillement englobant le sillage.  

Un estimateur exact des différences de dynamique de l’écoulement entre les résultats 

expérimentaux et les résultats numériques grâce à l’application de la DMD croisée sur les 

champs PIV avec les plans de coupe du calcul. Ceci a permis de mettre en évidence l’écart 

d’énergie portée par la structure associée au Strouhal de 0,2 dans le sillage. Le mécanisme de 

détachement tourbillonnaire porté par la fréquence naturelle de l’écoulement a donc été 

surévalué.  

 

Fig. 25: Comparaison des champs de vitesses moyennes Vx (m/s) dans le plan Z140 en 

(a) expérimental et (b) calcul. 

 

Fig. 26: Lignes de courant moyenne mettant en évidence les 3 principaux tourbillons du 

sillage; (b) Superposition avec l’iso-contour à Cp égal à -0,1. 

 

Fig. 27: Comparaison de la RMS de Vx (m/s) dans le plan Z140 en (a) expérimental et 

(b) calcul. 
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En dépit de cette différence d’énergie, la représentativité de l’écoulement moyen, et de la 

dynamique du sillage a permis d’approfondir l’analyse d’écoulement étendue tout autour de la 

maquette, entre autre avec la SPDMD. 

L’analyse modale des résultats numériques appliquée sur la pression tout autour du SUV avec 

les plans de coupe Y0 et Z140 englobant le véhicule, a pu faire ressortir entre autre 

l’importance du phénomène au Strouhal 0,12 dues aux détachements sur les pièces de 

carrosseries latérales (ailes avant, portes et arche de roues) avec les structures turbulentes 

portées dans les couches de cisaillement. Ces structures ont pu être identifiées comme des 

termes sources de turbulence qui interagissent avec le détachement tourbillonnaire au Strouhal 

0,2 et avec la dynamique du sillage au Strouhal 0,04 associée à une forte zone dépressionnaire 

(Fig. 28).  

 

Ces observations permettent de converger vers l’intérêt d’une solution de contrôle permettant 

soit de limiter la propagation des structures émises les flancs du véhicule soit de lisser 

l’énergie turbulente des couches de cisaillement issues de la séparation sur le parechoc arrière. 

 Etude numérique de l’écoulement contrôlé autour du SUV générique 

La simulation intégrant le contrôle d’écoulement à partir du jeu de paramètres de contrôle 

identifié expérimentalement a été réalisée. Des difficultés ont été rencontrées pour reproduire 

l’action du contrôle actif par jet pulsé à hautes fréquences. Si une modification des centres 

tourbillonnaires du sillage a pu être identifiée (Fig. 29), les gains n’atteignent pas les 

performances relevées expérimentalement.  

 

Fig. 28: 3ème et 4ème modes POD montrant les corrélations entre (a) les fluctuations de 

pression sur le parechoc arrière et sur le hayon avec (b) les fluctuations de vitesses dues 

aux détachements sur les flancs du véhicule. 



22 Résumé étendu  

 

Des hypothèses ont été proposées pour expliquer ces écarts avec les résultats expérimentaux 

notamment sur la précision de la résolution des mécanismes de turbulence en sortie de buses 

nécessaire pour reproduire l’interaction avec les couches de cisaillement et la zone de 

recirculation. 

Conclusions et perspectives 

Dans un contexte environnemental où l’industrie automobile a une empreinte écologique 

majeure, la question de l’optimisation aérodynamique des véhicules urbains est 

prépondérante. Dans ce cadre, l’objectif de cette thèse a été d’intégrer une stratégie de 

contrôle d’écoulement permettant de réduire l’effort aérodynamique sur une maquette SUV 

générique à échelle réduite.  

Les travaux effectués ont permis de mettre en exergue les mécanismes de contrôle 

d’écoulement permettant de réduire les pertes aérodynamiques. 

Dans un premier temps, grâce à l’étude expérimentale réalisée, la topologie de l’écoulement 

non contrôlé a pu être appréhendée de façon précise. Après identification d’un point de 

contrôle efficace issu du résultat de l’algorithme génétique, l’analyse modale a permis de 

mettre en lumière le mécanisme de contrôle d’écoulement permettant de réduire 

significativement la dépression agissant sur le hayon. 

Après études préliminaires sur les cas simplifiés de la rampe inclinées à 25° et le Corps 

d’Ahmed avec une lunette inclinée à 47°, les simulations numériques de l’écoulement autour 

du SUV générique ont pu être validées conformément aux mesures expérimentales. La 

méthodologie d’analyse modale croisée a été repris dans le cadre de l’analyse comparative 

entre les résultats de pression et PIV mesurés en expérimental et la simulation numérique afin 

de corroborer la dynamique de l’écoulement simulé. Enfin une étude approfondie de 

l’écoulement tout autour du véhicule a été proposé et à permis de mettre en évidence 

l’importance les interactions entre les différents mécanismes de turbulence en jeu et 

responsables des pertes aérodynamique.  

Enfin, des difficultés ont été rencontrées pour la simulation de l’écoulement contrôlé, ce qui a 

mis en exergue la complexité des mécanismes de contrôle d’écoulement et leur simulation. 

Pour terminer, une discussion a été proposée sur les potentielles nouvelles pistes à explorer 

qui permettraient d’aller plus loin dans la recherche de stratégies de contrôle d’écoulement 

pour la réduction de traînée de véhicules SUV.  

 

 

Fig. 29: Champs moyen de vitesses: (a) écoulement non contrôlé en Y0; (b) écoulement 

contrôlé en Y0; (c) écoulement non contrôlé en Z140; (d) écoulement contrôlé en Z140. 
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36 Nomenclature  

Nomenclature  

Aerodynamics: 

𝑉𝑥  Stream-wise velocity [m/s] 

𝑉𝑦  Transverse velocity [m/s] 

𝑉𝑧  Vertical velocity [m/s] 

𝐹𝑥  Drag force [N] 

𝐹𝑦  Side force [N] 

𝐹𝑧  Lift force [N] 

𝑀𝑥  Roll torque [N.m] 

𝑀𝑦  Pitch torque [N.m] 

𝑀𝑧  Yaw torque [N.m] 

𝑃𝑠𝑡𝑎𝑡  Static pressure [Pa] 

𝑃𝑟𝑒𝑓  Atmospheric pressure [Pa] 

𝑞  Dynamic pressure [Pa] 

𝑃𝑡  Total pressure [Pa] 

𝜏  Shear stress tensor [Pa] 

𝐶𝑑  Drag coefficient [-] 

𝐶𝑀  Side force coefficient [-] 

𝐶𝐿  Lift force coefficient [-] 

𝐶𝑙  Roll coefficient [-] 

𝐶𝑚  Pitch coefficient [-] 

𝐶𝑛  Yaw coefficient [-] 

𝐶𝑝  Pressure coefficient [-] 

𝐶𝜇  Jet quantity momentum coefficient [-] 

Ω𝑧
−, Ω𝑧

+ Vertical vortices on the left and right sides of the tailgate  

Ω𝑦  Horizontal vortex on the rear bumper  

POSUV characteristics 

𝐻  Height [m] 

𝑊  Width [m] 

ℎ𝑢  Ground clearance [m] 

𝑆𝑟𝑒𝑓  Frontal area [m²] 
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𝑉𝑟𝑒𝑓  Far field velocity [m/s] 

𝑉𝑗  Jet velocity [m/s] 

𝑓𝑗  Jet forcing frequency [Hz] 

Fluid mechanics and turbulence 

𝜌  Fluid density [kg/m
3
] 

𝜇  Dynamic viscosity [Pa.s] 

𝜈  Kinematic viscosity [m²/s] 

𝑅𝑒  Reynolds number [-] 

𝑓  Frequency [Hz] 

𝜖  Dissipation rate [m
²
/s

3
] 

𝑈  Velocity of the integral scale [m
2
/s] 

𝐿  Integral scale [m] 

𝜏𝑤  Wall shear stress [Pa] 

𝑢𝜏  Skin friction velocity [m/s] 

𝐶𝑓  Friction coefficient [-] 

𝑦+  Normalized wall distance [-] 

𝑢+  Normalized boundary layer velocity [-] 

𝛿1  Boundary layer displacement thickness [m] 

𝛿99  Boundary layer thickness [m] 

𝜃  Boundary layer momentum thickness [m] 

𝜃𝑆𝐿   Shear layer momentum thickness [m] 

𝑆𝑡  Strouhal number [-] 

𝐿𝑟  Recirculation length [m] 

𝐹+  Normalized frequency based on the recirculation length  [-] 

Numerical methods 

�̅�  Averaged velocity [m/s] 

𝑢′  Velocity fluctuation [m/s] 

�̃�  Filtered velocity [m/s] 

�̅�  Averaged pressure [Pa] 

𝑝′  Pressure fluctuation [Pa] 

𝑝  Filtered pressure [Pa] 

𝐺  Test filter  

𝜏𝑖𝑗
′   Subgrid scale stress tensor [Pa] 



38 Nomenclature  

𝜇𝑠  Turbulent viscosity [Pa.s] 

𝐶𝑠  Smagorinsky coefficient [-] 

Δ  Mesh grid cutoff [m] 

Δ̃  Numerical test filter cutoff [m] 

𝑆𝑖�̃�  Resolved strain rate tensor  

𝐿𝑖𝑗  Resolved stress tensor between Δ and Δ̅ [Pa.s] 

𝑦+  Normalized wall distance [-] 

𝑢+  Normalized boundary layer velocity [-] 

ℒ  State equations  

𝑄𝑛  Discretized space -time domain  

𝑃𝑛  Discretized space-time boundary  

𝑁𝑖  Prescribed shape function  

𝑣  Trial function  

𝜑𝑖  Unknown state value at the nodal points of the elements  

𝑤𝑖  Prescribed weight function  

𝜏  Least-Square matrix  

𝑃𝑒  Element Peclet number  

Optimization 

𝒥  Cost function  

𝐹  State equations  

ℒ  Lagrangian functional  

Modal Decomposition 

Ψ  Database of all snapshots  

Ψ1  Initial database  

Ψ2   Delayed database  

𝑅𝑥  Spatial correlation matrix  

𝑅𝑡  Temporal correlation matrix  

Φ𝑝𝑜𝑑  POD modes  

𝐶  Companion matrix  

𝑈  Left singular vectors and POD matrix  

Σ  Singular value diagonal matrix  

𝑉  Right singular vectors  

𝜇  Eigenvalues   
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𝑌  Eigenvectors  

𝐴  Phase shift matrix  

�̃�  Reduced phase shift matrix  

Φ  Unit DMD mode [-] 

𝑓  DMD frequency [Hz] 

𝜎  DMD growth rate [s
-1

] 

𝛿𝑡  Time delay between snapshots [s] 

𝑉𝑎𝑛𝑑  Vandermond matrix  

ℒ  Lagrangian functional  

𝛼  DMD modes magnitude  

𝛽  Dual vector  

𝛾  Weight of sparsity constraint  

𝜆  Vector of Lagrange multipliers  

𝜌  Quadratic penalty coefficient  

𝛼𝑠𝑡𝑎𝑡𝑖𝑐   DMD magnitude of the static mode  

𝛼𝑟𝑚𝑠  DMD magnitude of the fluctuation modes  

𝛼𝑡𝑜𝑡  Total DMD magnitude  

Φ𝑟𝑒𝑓  Modal block matrix of the baseline flow  

Φ𝑎𝑓𝑐  Modal block matrix of the controlled flow  

𝛼𝑟𝑒𝑓  Modal contribution vector of the baseline flow   

𝛼𝑎𝑓𝑐  Modal contribution vector of the controlled flow  

𝑟𝑎𝑓𝑐  Modal ratio vector of AFC against baseline contributions  

𝑊  Transfer matrix between POD and DMD  

𝑤𝑖𝑗  Weight of each DMD mode I in the POD mode j  

Abbreviations 

SUV Sport Utility Vehicle 

POSUV Generic SUV mockup 

TKE Turbulent Kinetic Energy 

RMS Root Mean Square 

PSD  Power Spectra Density 

PDF Power Density Function 

AFC Active Flow Control 

DOE Design of Experiment 

MLC Machine Learning Control 
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ROM Reduced Order Model 

DMD Dynamic Modal Decomposition 

SPDMD Sparsity Promoting Dynamic Modal Decomposition 

DMDc Dynamic Modal Decomposition with Control 

SVD Singular Value Decomposition 

HODMD High Order Dynamic Modal Decomposition 

POD Proper Orthogonal Decomposition 

SPOD Spectral Proper Orthogonal Decomposition 

CFD Computational Fluid Dynamic 

DNS Direct Numerical Simulation 

RANS Reynolds Average Navier-Stokes 

LES Large Eddy Simulation 

DES Detached Eddy Simulation 

LBM Lattice Boltzmann Method 

FEM Finite Element Method 

PIV Particle Image Velocimetry 

WLTP Worldwide Harmonized light vehicles Test Procedure 

 

 

  



 

Introduction 
  



2 Introduction  

Despite the climate change awareness, the consumption of fossil resources still carries on to 

increase in order to answer to the energy demand in the world. This consumption depends on 

the local region and the last statistics show that effort done in Europe is already visible 

especially in electricity and heat production due to alternative energy. The transport industry 

is still a growing factor in CO2 emission (Figure I.1): in Europe, despite a slowdown of the 

market growth; in North America, similar phenomenon exists; in Asia, automotive market is 

still highly increasing and becomes a major actor of CO2 emissions (Figure I.2) as described 

in the European report (Birol, 2017).  

This trend in automotive industry is related to the growth of vehicle sales but also to the 

increase of the mass and frontal area of road vehicles. Worldwide regulations enforced with 

the WLTP cycles still remain a challenge in order for the transport sector to reduce the fuel 

consumption. The regulation of 130gCO2/km, applied in Europe in 2015, is not visible on the 

2017 statistics. This can be explained by an anticipation of vehicles consumption 

improvement before 2015. However, the future constraint of 95gCO2/km, starting in 2021, 

should have a statistic impact in the report of 2023 and after. 

In this context, the contribution of the mass and the frontal area have to be reduced meanwhile 

the development of alternative energy modes such as fuel cells suitable for road vehicles. 

Thus, drag reduction is still a challenge in order to reduce aerodynamic loss characterized by 

the ACd property of each vehicle version especially for Sport Utility Vehicles (SUV) 

corresponding to the current growth market. 

 

 

 

 

 

Figure I.1: (a) European CO2 emissions from fuel combustion by sector, 2015 from (“CO2 

Emissions from Fuel Combustion 2017 Highlights,”.); (b) CO2 emission breakdown in 

transport industry. 

 

Figure I.2: Evolution of worldwide automotive production per region using data from 

(“CO2 Emissions from Fuel Combustion 2017 Highlights,”.) and (Gao et al., n.d.). 
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As an automotive supplier for exterior body panels such as bumpers and tailgate, Plastic 

Omnium is interested in flow control modules integration designed in order to improve the 

aerodynamical performances. 

The work focuses on drag reduction of a reduced scale generic mockup dealing with a Sport 

Utility Vehicle (SUV) geometry. The objective is to identify the sources of aerodynamical 

losses by numerical simulations and to quantify the capability to reduce the pressure losses 

thanks to experimental measurements. The generic mockup proposed here has been designed 

in order to match realistic features of road SUVs (Figure I.a). The test of several modular 

parts (Figure I.b) has led to the definition of the generic version used in this work, commonly 

called POSUV. 

 

Knowing that the aerodynamic losses are mostly concentrated in wake flow driven by the 

boundary layer separations, the detachment phenomena in the flow past the POSUV are 

targeted. In fact, the major part of drag forces is concentrated on the rear window and the back 

wall of the car model. Therefore, a good understanding of the near wake dynamics helps to 

think efficient flow control strategies. Interactions between shear layer developments and 

characteristic frequencies are captured with experimental flow measurements thanks to high 

sampling frequency acquisition of wall pressure and velocity planes and correlated to 

Computational Fluid Dynamics (CFD) results performed with a Large Eddy Simulation (LES) 

solver. 

To better understand and manipulate the flow detachment and the near wake behaviour two 

numerical corollary studies are also performed to complement the POSUV wake analysis and 

control. First, the flow over a ramp is deeply analyzed and controlled as the ramp produces 

some main characteristics similar to the rear window detachment. Second the flow around a 

47° Ahmed body is studied. This later geometry has some similarities with SUV cars and its 

understanding and control seemed to be a necessary path towards the car simulation and 

control. These studies are of course directly correlated to the POSUV experiments and 

simulations with or without control as common tools as Dynamic Mode Decomposition 

(DMD) are used to achieve straightforward results. 

The PhD manuscript is structured around three chapters. 

In the first chapter, an overview of the existing knowledge on the main topics mentioned in 

this domain of research is achieved. After a wide exploration of existing flow control studies 

on real car and simplified mockup aerodynamics, a reminder of most important fluid 

mechanics and turbulence involved in road vehicle will be explained. Then a focus will be 

done on mathematical techniques used for turbulent flow simulation, optimization, model 

reduction and modal analysis. 

 

Figure I.3: (a) Reduced scale POSUV mockup in TU-Berlin wind tunnel; (b) Different 

modules in green can be changed on the basis of the mockup in blue.  



4 Introduction  

The second chapter is dedicated to experimental measurements performed on the reduced 

scale generic SUV mockup. The baseline flow will be fully analyzed focusing on the 

identification of the flow features responsible of aerodynamic loss. An original method will 

be proposed to highlight turbulence characteristics thanks to a Proper Orthogonal 

Decomposition (POD) with respect to flow periodical motion observed with Dynamic Modal 

Decomposition (DMD). After a presentation of the reactive optimization control achieved 

during the experimental campaign using machine learning, a deeper analysis of the best 

operating point is proposed using a multivariate modal decomposition. A first objective is to 

find a relation on the tailgate between averaged wall pressure level and the spectral 

information contained in the pressure fluctuations. A second objective is to demonstrate the 

change of energy transfer process depending on the actuation frequencies. According to this 

work, a discussion is proposed on the role of actuation frequencies used to damp periodical 

coherent structures emerging in the detachment zones. 

The third and larger chapter of this work gathers the numerical investigations of the flow 

control performed in order to identify the origin of the aerodynamic losses. All bench 

simulations are validated with experiments and satisfy the numerical convergence needs. 

The starting point of the numerical work relies on preliminary computations of a flow control 

benchmark dealing with a detached flow over a 25° inclined ramp. This test case allowed an 

understanding of the requirements for an accurate numerical simulation of detached flows. 

Criteria for a correct resolution of the boundary layer and the shear layer will be identified. In 

regards to experimental results from the literature, an analysis of the active flow control is 

proposed in order to improve our knowledge on the physics of periodic jets. This preliminary 

work will provide the guidelines for simulation and control of detached flows.  

Then, a second numerical study of a flow control case around a 47 degrees Ahmed body will 

be performed in order to move closer to a simplified version of the SUV benchmark. The goal 

is to extend the knowledge obtained on the ramp into a 3 dimensional wake flow in order to 

extract the flow topology and the dynamic of the vortices. Premise of real-time closed loop 

control will be proposed using Dynamic Modal Decomposition. 

It is in this framework that the numerical LES simulation of the flow around the reduced scale 

POSUV will be achieved. Energy transfer between coherent structures subjected to the 

turbulent cascade in the inertia zone is analyzed thanks to a Sparse Promoting Dynamic 

Modal Decomposition (SPDMD). Cross-correlations between experiments and CFD will help 

to quantify the periodical flow structures that have to be accurately reproduced in numerical 

LES simulations. These numerical results will enable to focus on the coupling mechanism 

between boundary layers separation and dynamic of the wake flow. Finally, the numerical 

simulation results obtained with boundary conditions reproducing the best experimental 

configuration of the active flow control case will be discussed.  

To conclude, a discussion on the outlooks emerging from this study will be proposed. The 

prospects for future work and for the application on a full scale model will be examined.  

 

 



 

  Chapitre 1:

Literature survey 

  



6 Aerodynamic loss identification on realistic cars  

According to literature review, we will look at the regions of the flow responsible for energy 

losses and affecting the steady state topology of the recirculating zone on realistic car. This 

concerns regions such as the A-pillar, rear flow and underbody. This will give us some insight 

on the natural frequencies and the length scales of the vortices. 

This first review will help to explain the passive solutions that were introduced in order to 

reduce the energy generates in these structures. However, drag reduction obtained with this 

steady state analysis is now limited and dynamical description of the flow need to be better 

understood in order to find some new optimization possibilities in this constraint 

environment. The second review will focus on the investigation on detached flow mechanics.  

Application of flow control solutions will be then presented with an explanation of their 

impact on the flow mechanisms. Results obtained with control loop solutions used to stabilize 

large vortex structures position in symmetric state will be highlighted. This review will also 

help us to select active flow control solutions working on shear layers modification leading to 

energy decrease in the wake leading to drag reduction of a vehicle mockup.  

Periodical behavior can be described with modal decomposition techniques such as POD, 

SVD and DMD. These methods will be detailed and discussed in the third section in order to 

select the most suitable algorithm appropriate for a coherent structure description of the 

turbulent wake flow. 

Unsteady Navier-Stokes computation is an efficient way to describe the coherent flow 

structures in the wake. However, special care has to be taken in the inertia zones to ensure 

accurate energy transfer. Different simulation techniques will be review from literature in 

order to model the turbulent energy in the subgrid scale of the wake flow and in the turbulent 

wall boundary layer.  

1.1. Aerodynamic loss identification on realistic cars 

Analyses of the aerodynamic flow around vehicle are of prime interest in order to understand 

the physics of the flow. This knowledge will enable to define passive or active solutions for 

drag reduction in the main regions of detachment, thanks to a good description of these 

phenomena. 

Several sources are responsible for the aerodynamic loss on a real car (Figure I.4) as 

described by (Hucho and Sovran, 1993). The main component is due to the pressure force 

coming from the detached wake flow and the stagnation point at the front. This is defined as 

the pressure drag contributing until 33% of the total aerodynamic loss according to the study 

of (Barnard, 2001). The skin friction is the results of the viscous stress applied by the flow on 

the car body panels, contribution to 27%. Additional aerodynamic contributions appear from 

the flow going through the engine and the radiator corresponding to the internal drag, 

contributing to 13%. The turbulent structures generate on wheels, wheelhouses and mirrors 

are assimilated to the excrescence drag, contributing to 27%. 
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The complete force is obtained by integration of the pressure and viscous stress on the car 

surface.  

�⃗� = ∫𝑃𝑠𝑡𝑎𝑡 �⃗⃗�. 𝑑𝑆
𝑆

+∫𝜏
𝑆

�⃗⃗�𝑑𝑆 
 

Eq.3 

Where  

𝑃𝑠𝑡𝑎𝑡 = 𝑃 − 𝑃∞ is the static pressure in [Pa] 

𝜏 = 𝜇(𝜕𝑢 𝜕𝑦⁄ )𝑦=0 is the shear stress tensor [Pa]. 

�⃗⃗� is the unit normal vector to the surface 

 

It is demonstrated in the work of (Onorato, 1984) that the overall aerodynamic loss can be 

evaluated thanks the momentum equation integration in a stream tube domain surrounding the 

mockup (Σ𝑖 , Σ𝐿 , Σ𝑜 in Figure I.4). This leads to an aerodynamic force definition driven by total 

pressure difference (1
st
 term in Eq.4), streamwise velocity deficit (2

nd
 term in Eq.4), and a 

vortex drag quantified by the transverse velocities (3
rd

 term in Eq.4). 

𝐹𝑥 = ∫ (𝑃𝑡,∞ − 𝑃𝑡,𝑜)𝑑𝑠
Σ𝑜

+
𝜌

2
∫ (𝑉∞ − 𝑢𝑜(𝑦, 𝑧))𝑑𝑠
Σ𝑜

+
𝜌

2
∫ (𝑣𝑜

2 + 𝑤2
2)𝑑𝑠

Σ𝑜

 Eq.4 

Where: 

𝑃𝑡 = 𝑃 + 0.5𝜌𝑉
2 is the total pressure in [Pa] 

Σ𝑜 is the downstream section of the fluid tube. 

𝑢𝑜 , 𝑣𝑜 , 𝑤𝑜 are the velocity components of the flow 𝑉𝑜⃗⃗⃗⃗  going through Σ𝑜 

𝑉∞ and 𝑃𝑡,∞ are the farfield velocity and total pressure measured on the 

upstream section Σ𝑖. 
𝜌 is the density. 

 

Since the flow disturbances measured downstream of the bluff body contains the aerodynamic 

loss information (illustrated in the fictive surface 𝑆𝑤 of Figure I.4), the aerodynamic 

efficiency of a car can be redefined as its imprint on the downstream flow. One can mention 

the transparency of a bluff body in the flow. This efficiency is calculated with the normalized 

drag force 𝐶𝑑 and the normalized pressure contribution 𝐶𝑝.  

 

Figure I.4: Aerodynamic loss components observed on a real car. The theory of the 

quantity momentum integration on a fluid stream tube surrounding the car quantifies the 

aerodynamic loss. 
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𝐶𝑑 =
𝐹𝑥

0.5𝜌𝑉∞
2 𝑆𝑟𝑒𝑓

 ;           𝐶𝑝 =
𝑃−𝑃∞

0.5𝜌𝑉∞
2 𝑆𝑟𝑒𝑓

 ; Eq.5 

Where:  

𝐹𝑥 is the drag force along respectively x axis 

𝜌 the fluid density with 𝜌𝑎𝑖𝑟 = 1.225 [kg/m
3
] 

𝑆𝑟𝑒𝑓 the reference surface 

 

Looking at synthesis presentation of French OEM (Parpais, 2015) and to the drag history of 

car of (Hucho and Sovran, 1993), the drag coefficients of ground vehicles are distributed 

between 0.42 for large SUV and 0.15 for concept cars depending on design features (Figure 

I.5). 

 

1.1.1 Flow characteristics of realistic cars 

According to this classification, automotive geometric features can be categorized depending 

on the top geometry of the rear end (Figure I. 6a). Fastback shape relates to vehicle with a rear 

window slopes extending smoothly from the roof until the back tail. Notchback geometry has 

a smooth angle between the roof and the slant window connected to a square trunk. The 

hatchback geometry relates to vehicle with a rear end window merging with the trunk with a 

sharp angle between the roof and the window.  

These geometrical features and especially the slant angle directly drive vortices appearing on 

the rear end between the roof and the rear window (Figure I. 6b). For Notchback and fastback, 

the flow tends to remain attached to the rear window and pressure loss developing in the wake 

flow will act only on the tail of the vehicle. These shapes will be associated to low drag 

coefficient.  

For higher slant angle, vortices appear on the rear window leading to a pressure loss 

impacting all the rear end. The drag coefficient increases drastically with this type of vehicle 

due to an unsteady and partially detached flow above the rear window. Hatchback vehicles are 

associated to fully detached flow with a pressure loss acting on all the tailgate area. 

 

Figure I.5: Drag coefficient measured for different obstacle from the flat plate with high drag 

coefficient to the profiled body with an optimal drag coefficient. 
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SUV vehicles correspond to the hatchback configuration with a rear window inclined at 45° 

(Figure I.7a). However, there is a new trend in SUV market dealing with big SUV designed as 

fastback with a rear window inclined at around 25° (Figure I.7b).  

 

There is similitude between these versions of SUV and the Hatchback/Fastback Drivaer 

versions proposed by (I. Heft et al., 2012; Wieser et al., 2014). The Drivaer is a 1/4 reduced 

scale mockup proposed by TU-Munich in order to compare the wake flow of Hatchback, 

Fastback and Notchback vehicle (Figure I.8). It should be mentioned that the dimension of the 

original fastback version of the Drivaer mockup is closer to sedan vehicle than SUV with 22° 

inclined rear window. Regardless, 14% drag difference is measured between the 22° and the 

47° slant angle version of the Drivaer. The flow characteristic around this mockup was 

measured in the TU-Berlin. The measurement methods used for the pressure, velocity and 

forces acquisitions ensure our confidence on the quality of the measurements described in the 

PhD work of (Wieser et al., 2014). Additional flow measurement techniques to characterize 

more precisely the dynamics of the flow such as high speed PIV are presented in the work of 

(Martinat et al., 2008). This technique can be improve with flow optic method solved on 

GPU, allowing the tracking of dynamical structures in the wake as presented by (Varon, 

2017). 

 

Figure I. 6: Influence of the design on the drag coefficient: (a) Illustration of rear end types; 

(b) Drag coefficient as a function of the rear slant angle 𝛼 (Hucho, 1987);  

 

Figure I.7:(a) Hatchback versions of the SUV with a rear window inclined at 45°; (b) New 

SUVs with a rear window inclined at 22°; 
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Recently, influence of the slant angle was highlighted on the Porsche Cayenne at 1/6 scale 

model (Wolf, 2018). An appendix was added in order to vary the rear window slant angle 

(Figure I.9).  

 

The result of this study (red line on Figure I.10) reveals that the 45° slant angle yields the best 

drag coefficient of 0.32 (blue circle). The critical slant angle associated to the worst drag 

coefficient is obtained at 32° (pink circle on Figure I.10). A difference of 6% aerodynamic 

loss compared to 45° angle is measured.  

These measurements also give a comparison of the two generic slant angles at 22° (green 

circle) and 45° (blue circle). An increase of 4% drag coefficient is captured between these two 

configurations instead of 14% drag reduction measured between the fastback and the 

hatchback Drivaer mockup. Consequently, it seems that the benefit of the fastback SUV is not 

as obvious as it is commonly stated on simplified mockup. 

 

 

Figure I.8: Drivaer model and drag coefficient depending on the rear end geometry, 

measured by (I. Heft et al., 2012a). 

 

Figure I.9: Picture of experimental campaign presented in (Wolf, 2018) to characterized the 

impact of the rear end slant angle on a Porsche Cayenne mockup at 1/6 scale. 

 

Figure I.10: Drag coefficient measurements on the reduced scale Porsche Cayenne as a 

function of the slant angle 𝜑. The critical angle at 32° with the worst drag coefficient is 

highlighted with a pink circle. The two generic configurations at 22° and 45° are 

highlighted respectively with the green and blue circles. 
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It was decided for this work to focus on the 45° configuration, as it is still the most common 

design in the street. Moreover the fully detached flow brings more potential for an 

aerodynamic optimization. It is important to mention the experimental work of 

(Grandemange, 2013) on a full scale Peugeot 3008 model and the numerical study of (Eulalie 

et al., 2018a) on a full scale BMW X5 mockup. They proposed an exhaustive description of 

the flow past SUV model with a slant window at 45°. For both cases, the rear end pressure 

distribution reveals a higher pressure loss in the region of the rear bumper (Figure I.11a and 

Figure I.12a). Massive recirculation region in the ware flow is mainly responsible for the 

aerodynamic loss (Figure I.11b and Figure I.12b,c).  

 

 

To go further, several studies show the impact of flow detachments and unsteadiness in the 

aerodynamic loss of realistic cars. 

1.1.2 Flow detachments for a realistic SUV 

The turbulent structures generated on the body panel discontinuities assimilated to the 

excrescence drag, due to mirror, wheels and underbody flow, contributes to 27% of the 

aerodynamic loss. More generally, each curved discontinuities introduce disturbances in the 

fluid flow. Vortices are commonly observed in the region of the front bumper, hood-

windshield junction, A-pillar, side window, and wheels (Figure I.13). One can question about 

the interaction between these structures. It would be particularly interesting to understand 

their impact on the detached wake flow. 

 

Figure I.11: Time averaged pressure coefficients distribution measured on (a) the rear end 

and (b) transverse vertical Y0 cut-plane of a full scale 3008 mockup (Grandemange, 2013). 

 

Figure I.12: Numerical results of a full scale BMW X5 model from (Eulalie et al., 2018): 

(a) Time averaged pressure distribution on the rear end; (b) in the wake in the Y0 cut-

plane;(c) in a horizontal cut section. 
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The 3D complexity of the flow is important for the drag control but also for the definition of 

the vehicle behavior on road. This turbulent unsteadiness explains the interests of three 

directional forces and torques measurements to maintain car handling and stability features. 

Figure I.14a shows the lift force 𝐹𝑧⃗⃗⃗⃗  and pitch moment 𝑀𝑦
⃗⃗ ⃗⃗ ⃗⃗  (in blue) characterizing the handling 

which is defined as the car sensitivity to external disturbances. The side force and yaw 

moment (in green) is associated to the stability which is defined as the sensitivity to cross 

wind and lateral unsteadiness. The corresponding normalized lift, pitch, side force and yaw 

coefficients are defined in Figure I.14b. 

 

 

Figure I.13: Turbulent structures participating to the excrescence drag observed on the 

body panel proposed by (Hucho and Sovran, 1993). 

 

Figure I.14: (a) Forces and torques defined in automotive coordinates; (b) Normalized 

forces coefficients defining handling and stability criteria. 
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In the following paragraph, we will focus first on the flow detachments impacting the 

handling and then on the turbulent structures impacting the stability. 

The handling is mainly impacted by turbulent structures in the underbody flow since vertical 

ascending lift due to ground effect tends to decrease the load on the wheels. Moreover, the 

pitch 𝑀𝑦
⃗⃗ ⃗⃗ ⃗⃗  is associated to the load distribution between the front wheels and the rear wheel. 

When it becomes negative, the nose of the vehicle tends to pitch downward, the load on the 

rear wheels is lightened and there is a risk to oversteer. In addition studies from reported 13% 

drag reduction can be obtained with suitable optimization of the underbody floor according to 

(“Audi Technology Portal - Underbody,” n.d.). Figure I.15a and b show the time averaged 

flow in a horizontal cut plane going through the underbody obtained on the Audi Q5 and on a 

complex car design obtained in the numerical simulation of (Wojciak, 2012). We can see the 

impact of the detachment around the wheels and the pressure loss induced by the exhaust. 

 

The detachments affecting the car stability are highlighted thanks to the flow sensitivity to 

side effects. Figure I.16 shows the rear end pressure distribution and the drag force as a 

function of the yaw angle from the experimental study of a full scale BMW X5 model 

(Eulalie et al., 2018a). If the centered configuration exhibits high rear end pressure, 2° 

deviation on the yaw angle leads to 3% aerodynamic loss compared to the baseline flow 

associated to a decrease of the rear end pressure map. 

Figure I.17 shows the influence of the yaw deviation on the wake flow topology from the 

numerical study of a simplified realistic car (Yuan et al., 2018). The streamlines track the 

importance of the underbody flow propagating in the wake while in 6° yaw deviation, the 

detachments on the fender and wheelhouses become dominant. 

 

Figure I.15: (a) Turbulent structures simulated on a realistic underbody from (“Audi 

Technology Portal - Underbody,”); (b) Underbody flow through a complex car floor 

design, subjected to a yaw deviation of  3.3° (Wojciak, 2012);  

 

Figure I.16: Experimental measurements performed by (Eulalie et al., 2018): (a) Full scale 

BMW X5 prototype; (b) Sensitivity of the rear end pressure to yaw angle deviation. 
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Additionally, the work of (Theissen, 2012; Wojciak, 2012) stresses out the impact of unsteady 

periodical crosswind fluctuations on the aerodynamic of a full scale BMW mockup especially 

on the natural vortex shedding in the wake flow. All these observations are significant 

especially in case of sudden crosswind gust for security matter. 

We need to have a closer look on the physics of turbulent flows and separation mechanisms, 

which occur in the wake flow of realistic cars. 

1.2. Description of detached flow mechanisms  

The complexity of the flow surrounding a car in highway driving condition is mainly 

explained by a strong turbulence level. In this environment, the physics of the flow is 

governed by vortices with a wide range of length scales. In the following section, the flow 

pattern observed around a vehicle will be discussed based on the fundamentals of turbulent 

flows.  

One can briefly remind some classical turbulent structures visible in complex flows. Figure 

I.18a illustrates the development of Tollmien-Schlichting wave instability emerging in 

laminar boundary layer and leading to turbulent transition burst. Figure I.18b shows the 3D 

breakdown of the wave instability into horseshoes decaying into complex flow pattern of the 

turbulent boundary layer. Figure I.18c exhibits the Kelvin Helmholtz instability created by the 

boundary layer separation on a cylinder and propagating in the shear layer. This instability is 

associated to high frequency signature. The wake dynamics of the flow past an obstacle is 

driven by the Karman vortex shedding, also visible in Figure I.18c, and is generally 

associated to low frequency pulsation.  

 

 

Figure I.17: Streamlines in the underbody flow and around the body panels propagating in 

the wake: (a) at 0° yaw angle; (b) 6° yaw angle (Yuan et al., 2018). 

 

Figure I.18: Some classical structures observed in fluid mechanics: (a) Tollmien-Schlichting 

instability developing in a laminar boundary layer; (b) Horseshoes and turbulent boundary 

layer pattern; (c) Kelvin-Helmholtz of the shear layer and Karman vortices 
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The following section will go further in the description of the turbulent behavior in the 

detached flow past an obstacle. First a focus on the turbulent boundary layers developing on 

the body panels will be done. This part relies on observations from the boundary layers 

developing over a flat plate. External parameters responsible for the boundary layer separation 

will be investigated and the resulting disturbances propagating in the shear layers will be 

explored. The detachment will be more wisely described thanks to the test case of the flow 

past a circular cylinder for a better understanding of the wake dynamics driven by Karman 

vortex shedding at natural frequencies. The interactions between all these phenomena will be 

then investigated with the 25° inclined ramp benchmark. Finally, the correlation between the 

shear layer and the more complex 3D wake flow of the Ahmed Body will be examined. 

1.2.1 Fundamentals of turbulence 

 Turbulent flow 

The pattern in turbulent flows is governed by inertia forces while the viscous effect is minimal 

contrary to what is observed in laminar flow. The scale of the turbulence level is estimated by 

the Reynolds number (Eq.6) corresponding to the normalized ratio between inertia effect and 

the viscous dissipation forces. It should be mentioned that the flow past a full scale car in high 

speed condition is at a Reynolds number of 4.106 and for a 1/6 reduced scale model at a 

Reynolds number of 4 × 105. 

𝑅𝑒 =
𝜌𝑈∞𝐻

𝜇
=
𝑈∞𝐻

𝜈
 Eq.6 

where  

𝑈∞ the reference velocity [m/s] 

𝜌 the fluid density with 𝜌𝑎𝑖𝑟 = 1.225 [kg/m3] 

𝜇 the dynamic viscosity with 𝜇𝑎𝑖𝑟 = 1.8𝑒−5 [Pa.s] 

𝜈 = 𝜇/𝜌 the kinematic viscosity 𝜈𝑎𝑖𝑟 = 1.5𝑒−5 [m²/s] 

 

Turbulent flows are described as a set of eddies associated to a large range of characteristic 

length scales, velocity scales and time scales (Figure I.19b). Large scale eddies observed in 

turbulent flows are submitted to unstable behavior leading to breakup of the structures. The 

kinetic energy carry by them are transfer to smaller eddies. This phenomenon is called the 

turbulent kinetic energy decay, illustrated in Figure I.19b. It occurs as long as the inertial 

forces are predominant on viscous forces. The turbulent kinetic energy of the smaller eddies 

are dissipated by heat dissipation. 

 

 

Figure I.19: (a) Scheme of eddies in turbulent flow and (b) turbulent kinetic energy 

occurring in homogeneous isotropic turbulent flow. 
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The Kolmogorov theory states that, at high Reynolds number, the small eddies are isotropic 

and determined only by the kinematic viscosity 𝜈 and the dissipation rate. This gives the 

Kolmogorov length scale defined as in Eq.7 defining eddies dissipated by heat.  

𝜂 = (
𝜈3

𝜖
)
1/4

    𝜖 = 𝑈3/𝐿 Eq.7 

Where  

𝜂 is the Kolmogorov scale [m] 

𝜈 is the kinematic viscosity [m²/s] 

𝜖 is the dissipation rate [m²/s
3
] 

𝐿 is the integral scale 

𝑈 is the reference velocity of the integral scale. 

 

In cases of Homogeneous Isotropic Turbulence hypothesis (HIT), where the statistical 

quantities are invariant by translations and under rotation, turbulent kinetic energy decay 

occurs according to a -5/3 law as shown in Figure I.19b.  

 Turbulent boundary layer 

The boundary layer is the thin fluid layer in the vicinity of a bounding surface where the flow 

expands from a zeros velocity at the wall due to adherence effects until the freestream 

velocity. It is described by a flow stream, which is statistically tangential to the bounding 

surface with a strong gradient effect acting normally to the wall as shown in Figure I.20. Plus, 

this fluid layer is mainly driven by viscosity effect as it is associated to a really small 

characteristic scales. 

 

There is different ways to measure the boundary layer thickness. The length 𝛿99 is the 

distance between the wall and the point where the flow reach 99% of the freestream values. 

The displacement thickness (Eq.8a) or the momentum thickness (Eq.8b) are also classically 

used to measure precisely the boundary layer thickness. 

𝛿1 = ∫ (1 −
𝑈(𝑥,𝑦)

𝑈∞(𝑥)
) 𝑑𝑦

∞

0
       (𝑎)            𝜃 = ∫

𝑈(𝑥,𝑦)

𝑈∞(𝑥)
(1 −

𝑈(𝑥,𝑦)

𝑈∞(𝑥)
)𝑑𝑦

∞

0
       (𝑏) Eq.8 

Where: 

𝛿1 is the displacement thickness. 

𝜃 is the quantity momentum thickness. 

x and y are respectively the tangential, normal direction to the wall 

𝑈∞(𝑥) is the freestream velocity 

𝑈(𝑥, 𝑦) is the tangential velocity 

 

 

Figure I.20: Sketch of a boundary layer profile developing over a plate plane. 
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The gradient induced by the boundary layer on the wall leads to a wall shear stress 𝜏𝑤 (Eq.9a) 

and the equivalent friction velocity 𝑢∗ (Eq.9b).  

𝜏𝑤 = 𝜇 (
𝜕𝑈(𝑥,𝑦)

𝜕𝑦
)
𝑦=0

      (a)                𝑢∗ = √
𝜏𝑤

𝜌
      (b) Eq.9 

where : 

x and y are respectively the tangential, normal direction to the wall 

𝜇 is the dynamic viscosity 

𝜌 is the fluid density 

𝑈(𝑥, 𝑦) is the tangential velocity 

𝜏𝑤 is the wall shear stress 

𝑢∗ is the friction velocity 

 

The friction induced by a boundary layer is dimensioned thanks to the normalized friction 

coefficient 𝐶𝑓. The normalized wall distance  𝑦+ gives an estimation of the fluid flow 

thickness impacted by the wall roughness and the normalized velocity 𝑢+ gives an estimation 

of the velocity ratio in the shear gradient (Eq.10). 

𝑦+ =
𝑢∗𝑦

𝜈
       𝑢+ =

𝑢

𝑢∗
      𝐶𝑓 =

𝜏𝑤

0.5𝜌𝑈∞
2  Eq.10 

where : 

x and y are respectively the tangential, normal direction to the wall 

𝑈∞(𝑥) is the freestream velocity 

𝑈(𝑥, 𝑦) is the tangential velocity 

 

Turbulent regimen changes the energy balance in the boundary layer. Turbulent boundary 

layer is statistically tangential to a bounding surface but additional eddies are involved. These 

eddies are the results of horseshoe structures developed in the transition region. They 

propagated until the turbulent burst where the flow is mainly driven by the inertia of these 

structures (Figure I.21a). Thus, the turbulent kinetic energy increases and reinforces the flow 

gradient at the wall, as well as the induced friction at the wall (Figure I.21b).  

 

The turbulent boundary layer is constituted of three layers (Figure I.22 a and b) identified by 

characteristics normalized wall distance: the viscous layer in the close vicinity of the wall 

 

Figure I.21: Boundary layer development from laminar to turbulent on a flat plate: (a) 

Emergence of horseshoes in the transition region, impacting the averaged velocity 

profile and leading to the turbulent burst (Hinze, 1975); (b) Friction coefficient as a 

function of the Reynolds number. 
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(𝑦+ < 5) where eddies are driven by viscous effect, the turbulent layer (𝑦+ > 60) where 

eddies are driven by inertia and the buffer layer between them (5 < 𝑦+ < 60).  

 

Turbulent eddies embedded in the boundary layer are driven by important energy transfer. 

The studies of (Hutchins and Marusic, 2007; Smits et al., 2011) investigate on the power 

spectra density evolution along the wall normal in high turbulent boundary layers at Reynolds 

number of 7300. Figure I.23b displays the stream wise velocity spectrogram as a function of 

the normalized wall distance 𝑦/𝛿. The wave number 𝜆𝑥
+ is computed as 2𝜋𝑈/𝑓. The 

spectrogram outlines two significant peaks. The first peak emerges in the inner layer. In this 

region, the turbulent production energy is driven by low wave lengths and high frequency 

eddies. Another peak arises in the outer layer with turbulent production energy at high wave 

lengths and low frequency eddies. In addition, (Hunt and Morrison, 2000) highlights the 

turbulent decay in the boundary impacted by the wall. The small eddies at high frequency are 

not disturbed nearby the wall so that the dissipation rate in the inertia zone is not altered. The 

larger eddies are subjected to a blockage effect between the freestream and the bounded 

surface. Thus, the turbulent production energy is reduced when the distance to the wall 

decreases as shown in Figure I.23b. 

 

 

 

Figure I.22:  (a) Sketch of a boundary layer profile developing over a flat plate. The 

transition is triggered at a critical position 𝑥𝑐 leading to a turbulent boundary layer; (b) 

Normalized boundary layer velocity profile as a function of the normalized wall 

distance 𝑦+. 

 

Figure I.23: (a) Contour maps of velocity spectra with wall normal at Reynolds number 

7300 from DNS computation of (Hutchins and Marusic, 2007; Smits et al., 2011); (b) 

Blocking effect highlights with velocity spectra in outer region of the boundary layer as a 

function of the wall distance z from (Hunt and Morrison, 2000). 
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 Boundary layer separation and shear layer  

Flow separation is the detachment of the boundary layer from the bounding surface. It is 

triggered when an adverse pressure gradient resisting to the fluid stream, tends to overcome 

the inertia of the boundary layer (Figure I.24a). It occurs in regions of curved walls or shape 

discontinuities. The induced suction effect tends to thicken the boundary layer and to weaken 

the shear stress acting in the viscous sublayer, until the flow close to the wall changes 

direction. The skin friction drops down to zero which defined the separation line (red dotted 

line on (Figure I.24b). It should be noted that the kinetic energy contained in the boundary 

layer tends to delay the separation, meaning that laminar boundary layers are more willing to 

detach than turbulent boundary layers. 

 

The resulting flow evolved in a shear layer defined as an anisotropic flow with a strong 

velocity profile gradient. The shear layer thickness is defined in Eq.11, as a function of the 

velocity difference between the freestream and the recirculation bubble. 

𝜃𝑠𝑙 = ∫
𝑈(𝑥, 𝑦) − 𝑈𝑚𝑖𝑛(𝑥)

𝑈∞(𝑥) − 𝑈𝑚𝑖𝑛(𝑥)
(1 −

𝑈(𝑥, 𝑦) − 𝑈𝑚𝑖𝑛(𝑥)

𝑈∞(𝑥) − 𝑈𝑚𝑖𝑛(𝑥)
)𝑑𝑦

∞

0

   
Eq.11 

where : 

x and y are respectively the tangential, normal direction to the wall 

𝑈∞(𝑥) is the freestream velocity 

𝑈𝑚𝑖𝑛(𝑥) is a local minimum streamwise velocity 

𝑈(𝑥, 𝑦) is the tangential velocity 

 

 Vortex shedding and wake flow 

In the test case of the flow past a cylinder, the flow separation is due to the obstacle shape 

curvature. The adverse pressure gradient required to enforce the separation depends on the 

energy contained in the upstream boundary layer. Thus, the wake vortex topology depends on 

the flow regimen. Figure I.25 shows the flow pattern observed behind a cylinder as a function 

of the Reynolds number. If in laminar configuration (𝑅𝑒 < 40), the wake flow tends to be 

stable and symmetric (Figure I.25a), for Reynolds number in the range of [40; 400], 

disturbances emerged and typical structures called Von Karman Vortex Street are observed 

(Figure I.25b). It is an alternating periodical vortices pattern due to the separated flow. The 

vortex shedding is characterized by a characteristic frequency only depending on the bluff 

body reference length and the free stream velocity. Thus, the Strouhal number, defining the 

normalized frequency in Eq.12, is constant and equal to 0.2 for this typical flow regimen. At 

higher Reynolds number (𝑅𝑒 > 400), the vortex shedding becomes fully complex and 

unstable and the flow pattern cannot be described anymore by a unique scale and a unique 

frequency (Figure I.25c). The flow behavior becomes a lot more difficult to predict. 

 

Figure I.24: Sketch of (a) flow separation on a curved surface (Epifanov, n.d.) and (b)interaction 

between the boundary layer and the shear layer as proposed in (Varon, 2017b). 
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𝑆𝑡 =
𝑓𝐻

𝑉∞
 

Eq.12 

where  

𝑓 is the frequency 

𝑉∞ the freestream velocity 

𝐻 is the reference length 

 

In turbulent wake flow, the shedding frequency is an additional production source term which 

is dissipated by the turbulence decay as shown in Figure I.26a. In this type of complex flow, 

the energy transfer between eddies measured at a monitoring point, is altered if the local flow 

condition differs from the Homogeneous Isotropic Turbulence. For instance, the dissipation at 

the center of the wake past the cylinder follows the -5/3 rule but the energy transfer becomes 

more complex depending on the flow behavior. Characteristic scaling identified by (Boudet et 

al., 2016) highlights the action of the sheared turbulence in the dissipation rate according to 

𝑓−1 law (Figure I.26b).  

 

1.2.2 Detachments and vortex shedding of the wake flow past an 

inclined ramp 

The complexity of detached flows is particularly observed in the simplified benchmark of the 

backward facing step (Creusé et al., 2009; Heenan and Morrison, 1998; Spazzini et al., 2001; 

Varon, 2017) or the 25° inclined ramp (Kourta et al., 2015; Stella et al., 2017a; Thacker, 

2010). The following paragraph reviews how the turbulence due to flow detachments 

 

Figure I.25: Flow pattern captured experimentally behind a circular cylinder by (Van Dyke, 

1982): (a) Laminar wake flow at Reynolds number 26; (b) Von Karman vortex street observed 

at 𝑅𝑒 = 140; (c) Turbulent wake flow observed at 𝑅𝑒 = 10 000. 

 

Figure I.26 : Spectral signatures measured in the turbulent flow past a cylinder at 

Reynolds number 4.7.10
4
: (a) at the center in the wake ; (b) in the shear layer past the 

cylinder from (Boudet et al., 2016). 



Description of detached flow mechanisms 21 

influences the wake topology. The mechanisms highlighted here will bring the main keys to 

evaluate the role of the flow dynamics in the wake of a realistic car. 

Figure I.27 summarizes the turbulent structures emerging in this test case. The upstream 

boundary layer is characterized by a quantity momentum thickness 𝜃𝑏𝑙 containing eddies of 

different wavelengths and frequencies. The boundary layer separation forced by the geometric 

discontinuity leads to the shear layer development driven by the fluid momentum. The shear 

stress induces the apparition of Kelvin Helmholtz instabilities, which is unstable waves 

growing along the separation interface. They are responsible for the shear layer roll-up and 

turbulent mixing. The amplification of the waves generates vortical structures transported 

with the flow momentum. The vortices interaction results in a pairing process by rolling 

around each other, enhancing the turbulent mixing intensity in the shear layer. All these 

phenomena drive the growth of the shear layer quantity momentum thickness 𝜃𝑠𝑙 . The latter 

surrounds the recirculation bubble behind the backward facing step until the reattachment 

point where the freestream flow overcomes the wake pressure drop. (Kourta et al., 2015) 

demonstrates empirically the relation between 𝜃𝑠𝑙  and the recirculation length 𝐿𝑟. Finally, the 

vortical structures embedded in the shear layer lead to a vortex shedding downstream the 

reattachment.  

 

This gives a global overview of the inter-correlation existing between the boundary layer 

momentum, the separation, the shear layer momentum, the Kelvin-Helmholtz instabilities and 

the wake topology. It is deeply investigated in the analysis of the scaling of the shear layer 

performed by (Stella et al., 2017b) on the 25° inclined ramp. It proves the dependency of the 

shear layer characteristic thickness (Figure I.28a) and the dependency of the recirculation 

length (Figure I.28b) with the upstream boundary layer momentum thickness. 

 

Figure I.27: Sketch of the turbulent structures observed in the flow over a backward facing 

step: the turbulent boundary layer evolved in a shear layer leading to Kelvin-Helmholtz 

instabilities. The roll-up of the shear layer generate vortex structures sheds downstream the 

recirculation area. 
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All these observations are used to understand the wake flow behavior on a simplified car even 

if they are much more difficult to highlight. Indeed, the three-dimensionality brings an 

additional feature modifying the interaction of the turbulent structures. 

1.2.3 Detachments and vortex shedding of the wake flow past the 

Ahmed Body 

A classic example of wake stability analysis comes from the Ahmed Body mockup (Figure 

I.29). It is a well-known benchmark used in external aerodynamic automotive research. As 

proposed by (Ahmed et al., 1984a), it is used to reproduce characteristic vortices observed 

around a simplified car. This benchmark extensively explored by (Brunn and Nitsche, 2006; 

Dobrev and Massouh, 2014; Martinat et al., 2008; Metka, 2013), exhibits the importance of 

the slant angle on the wake features and the influence on the drag coefficient long before the 

measurements on realistic car presented in the paragraph 1.1. 

 

 Wake topology as a function of the slant angle 

Three main vortex types were described in the wake flow of the Ahmed body. The shear 

layers from the lateral edges of the slant window roll-up into longitudinal vortices 𝜔𝐶 (in 

yellow on Figure I.30). They develop from the top slant corners until the wake, overlapping 

the recirculating flow. The separation bubble formed behind the vertical base of the mock-up 

encloses two recirculation regions. The lower vortex 𝜔𝐵 (in pink on  Figure I.30b) is due to 

 

Figure I.28: Influence of the upstream boundary layer quantity momentum on: (a) the shear layer 

characteristic thickness and (b) the recirculation length (Stella et al., 2017b). 

 

Figure I.29: Geometry of the Ahmed Body according to (Ahmed et al., 1984a). 
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the roll-up of the shear layer generated at the lower edge of the vertical base and is mainly 

driven by the structures coming from the ground clearance. The vortex 𝜔𝐴 (in blue on Figure 

I.30b) comes from the roll-up of the shear layer coming from the roof. The vortex 𝜔𝐴 mainly 

depends on the strength of the boundary layer on the slant window, itself governed by the 

adverse pressure gradient due to the slant break angle.  

 

For a slant angle 𝛼 below 10°, the boundary layer remains attached, the aerodynamic loss is 

only due to the recirculation on the vertical base and the drag coefficient is significantly low 

(Figure I.30a). For a slant angle 𝛼 between 10° and 30°, the boundary layer detaches at the 

edge between the roof and the slant, generating the vortex 𝜔𝐸 (in red on Figure I.30c) until 

the reattachment point on the slant window. In this configuration, additional aerodynamic loss 

comes from the slant recirculation and the drag coefficient increases as the angle 𝛼 grows. For 

a slant angle 𝛼 beyond 30°, the flow over the slant is fully detached and vortices 𝜔𝐴 shifts 

upstream and merged with 𝜔𝐸 to form one unique vortex (in blue on Figure I.30d). The wake 

flow topology is similar to the attached boundary layer configuration (Figure I.30a) and the 

aerodynamic loss is only related to the recirculation except that the separation bubble is 

extended to the slant plus the vertical base. 

Shear layers developing on the side edges of the vertical base also feed both vortices 𝜔𝐴 

and 𝜔𝐵 and participate to the three dimensionality of the wake. The balance between all 

vortices determined the time averaged wake flow topology. For the square back Ahmed Body, 

it is often described as an O-ring structure (Figure I.31). (Wassen et al., 2010) shown the 

 

Figure I.30: (a) Variation of the drag coefficient as a function of the slant angle with the 

contribution of the vertical base 𝐶𝐵 compared to the contribution of the slant area 𝐶𝑆; (b) 

Horseshoe vortex in wake for slant angle below 10° with low drag  coefficient; (c) Partially 

detached flow observed for slant angle between 10° and 30° with high drag coefficient 

(Ahmed et al., 1984); (d) Fully detached flow for a slant angle beyond 30° leading to a 

wake topology and a drag coefficient similar to the attached boundary layer configuration. 
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sensitivity of this balance to the ground clearance conditions exhibiting 4% drag reduction 

with moving floor instead of static floor. 

 

The benchmark of the Ahmed Body was created with the objective to minimize the 

complexity of the front in order to generate a wake flow free of disturbances coming from the 

upstream flow. However, experimental visualization of the separation in the front part of the 

mockup performed by (Spohn and Gilliéron, 2002) demonstrates the existence of periodical 

vortex shedding displayed in Figure I.32, which increases the wake unsteadiness and 

deteriorates aerodynamic features.  

 

 Bi-stability of the square back wake flow 

(Bonnavion, 2018; Grandemange, 2013; Li, 2017a; Varon et al., 2017a; Volpe et al., 2015) 

describe the wake dynamics with stochastic approach and highlight the bi-stability behavior 

behind a square back Ahmed body. A wake dynamic is defined stable if the fluctuations are 

varying around a unique time averaged topology and the flow observers are statistically 

described by Gaussian distributions. In the case of bi-stability, the wake dynamics vary 

around two uncorrelated states and the resulting flow observers outline two disjointed 

Gaussian distributions. In bi-stable flow, the straightforward time averaged field does not 

correspond to the most probable flow topology physically observable but it is a visualization 

of the mathematical superposition of the two most probable states occurring in the wake. This 

brings out the interest of methods computing statistical average instead of time averaged 

computation. It is generally done thanks to conditional averaged as shown in Figure I.33a on a 

square back Ahmed Body. The statistical discrimination reveals that the rear end pressure is a 

combination of two off-centered states with a low pressure area located on the bottom corners 

of the mockup. 

 

Figure I.31: O-ring structure observed in time averaged pressure iso-value: (a) in the wake 

of a square back Ahmed Body (Eulalie, 2014a); (b) in the wake of an Ahmed Body with a 

47° slant angle. 

 

Figure I.32: Flow structure in the separation zone of the front part: (a) Top view; (b) Side 

view from (Spohn and Gilliéron, 2002). 
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The switch between each state occurs randomly but (Grandemange et al., 2013) exhibits a 

time scale exceeding a second duration. Thus, more than 1Hz frequency window is required 

to capture this phenomenon (Figure I.34). In addition, it should be mentioned that no 

periodical law can modeled this unstable behavior but as proposed by (Varon et al., 2017b), 

the flow can be approximated by a chaotic dynamic behavior varying around two uncorrelated 

topology.  

 

For now on, no real frequency estimates the time delay of the switch between the two states. 

The current available studies using modal analysis on the fluctuating database do not give 

either a clear evidence of the spectral information responsible for the bi-stability. An approach 

using coherent decomposition on the direct flow data instead of the fluctuating data may give 

more insight on the dynamic modal behavior of the bi-stable flow. This study would be 

required in the case of square back vehicle such as van vehicles. 

 

Figure I.33: Identification of the bi-modal component from (Varon et al., 2017b): (a) From 

left to right, comparison of the left state averaged, total averaged and right state averaged 

on the rear end pressure and in the wake velocity from PIV measurements; (b) Normalized 

2D Probability Function of pressure barycenter measured on the squared back Ahmed 

Body. 

 

Figure I.34: Time scales of the bi-stability behavior measured on pressure transversal 

gradient on the square back correlated with the PDF highlighting the characteristics 2 

disjointed Gaussian distributions (Grandemange et al., 2013b). 
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1.3. Flow control and optimization techniques 

The flow control can be performed either in order to define optimum parameter of passive 

solutions, or in order to continuously improve the efficiency of adaptive solutions or active 

flow control solutions. Active flow control refers to techniques using an external source of 

energy in order to modify the wake flow while the passive or adaptive solutions refer to 

solutions, which do not inject any additional energy in the system.  

In this section, after a non-exhaustive description of the mechanism leading to aerodynamic 

loss reduction in open-loop which use frozen set of parameters, we will present closed loop 

and optimization techniques, either model-free or model based, in real time or in adaptive. 

1.3.1 Flow control solutions 

Both passive and active flow control solutions can be applied to modify the flow topology. 

Passive control can be achieved with porous media, deflector, vortex generators and active 

flow control is achieved with steady blowing, pulsed, synthetic jets, fluidic oscillators and 

plasma. 

1.3.1.1 Passive flow control solutions 

The exploration of passive solution shows how external appendices change the flow topology. 

The solutions presents here are the results of Design of Experiments or shape optimization. 

Devices such as porous media, boat tailing, vortex generators or spoilers were explored in 

many studies for automotive applications. The interests of each of these will be discussed 

here. It worth mentioning other techniques developed for aeronautic applications such as 

compliant walls (Ehrenstein and Eloy, 2013) or shape memory alloy (Scheller et al., 2016) but 

we will focus in this section on solutions already tested on automotive benchmarks. The 

following section deals with open-loop investigation of different types of control solutions.  

 Boat-tailing, deflectors and spoilers 

The boat tailing appendix was proposed in order to control the bi-stability behavior of the 

wake behind a square back mockup. This is highlighted in the study of the deflector influence 

for simplified and industrial models (Bonnavion, 2018). The application of this solution on an 

Ahmed Body (Figure I. 35a) leads to an optimal design reducing the drag coefficient of 16% 

with a roof deflector inclined at 7.5° and a bottom deflector inclined at 5°. In the same study, 

the application of the boat-tailing technique on a full scale Peugeot Partner (Figure I. 35b) 

reveals a 6% drag reduction.  

 

 

Figure I. 35: (a) Picture of a boat tailing appendices integrated on a reduced scale Ahmed 

Body, (b) Picture of the lateral deflectors integrated on the full scale Peugeot Partner 

(Bonnavion, 2018). 
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The study of the tapered effect of the rear end of a simplified car (Perry et al., 2016) also 

shows the wake bi-stability damping associated due to a reduction of the coupling between 

lateral vortices. flaps (Beaudoin and Aider, 2008) 

In addition, in the analysis of turbulent 3D wake of road vehicles of (Grandemange, 2013) the 

drastic influence of the roof spoiler on the wake topology is demonstrated on a full scale 

Citroën C4 mockup. For this type of rounded rear shape, no roof spoiler leads to a wake flow 

topology (Figure I.36a and b) characterized by a short recirculation and with two strong 

counter-rotating vortices. This results in poor aerodynamical performance. The integration of 

the roof spoiler allows a development of the recirculation area associated to a weakening of 

the counter-rotating vortices (Figure I.36b and c). 

 

This shape optimization is nowadays integrated on almost all passenger cars but this proves 

the sensitivity of the wake flow to separation control techniques. 

 Porous media 

Other techniques are proposed to optimize the wake flow based on the alteration of the 

boundary layer characteristics around the body panel. Among them, there is the solution of 

porous media relying on the theory that the weakening of the turbulent energy in the boundary 

layer through a diffusive region reduces the aerodynamic loss in the wake. It is investigated in 

(Bruneau et al., 2014, 2010) on a square back Ahmed body with 2D DNS computation at a 

Reynolds number of 8500. Two controlled configurations were tested: one with a porous slice 

on the roof of the mockup (Figure I.37a) and another one with an additional porous layer on 

the bottom (Figure I.37b). 

 

These studies confirm the benefit of this type of strategies displaying 25% drag reduction in 

the configuration b. So far, the porous media technique was mainly tested for mirror 

aerodynamical optimization (Mimeau et al., 2017). These results also underline the 

importance of the turbulent intensity of the boundary layer around the body panels in the 

wake aerodynamic loss. 

 Vortex generators 

The vortex generators are another technique used to modify the boundary layer. They are 

based on the forcing of the flow separation at a predefined position. Several studies of vortex 

generators over a flat plate describe the mechanism involved in this control solution. (Brunet 

 

Figure I.36: Wake topologies past a Citroën C4 (a,b) without spoiler and (c, d) with roof 

spoiler (Grandemange, 2013). 

 

Figure I.37: Two configurations of porous media control integrated on a square back 

Ahmed Body from (Bruneau et al., 2010b). 
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et al., 2006) exhibits the generation of longitudinal transient vortices adding momentum in the 

boundary layer close to the wall. Time averaged PIV measurements achieved by (Duriez, 

2009; Duriez et al., 2008) bring out the alteration of the boundary layer profile close to the 

wall. It can be assimilated to a “comb effect” weakening the boundary layer stress. This 

control solution was also tested on a modified Ahmed Body (Figure I.38a) with a rounded 

rear (Aider et al., 2010). The detachment is forced and the separation line is shifted upstream 

(black solid line in Figure I.38b). The controlled wake recirculation is larger than in the 

baseline case and the low pressure region acting on the rear end surface is significantly 

reduced (Figure I.38c).  

 

The efficiency of the vortex generators was also proven on a full scale C4 car (Figure I.39a) 

by (Aider et al., 2014). As show in Figure I.39b, the flow past a rounded rear shape without 

spoiler remains attached on the rear window and the recirculation area affecting the rear end is 

drastically short. The wake flow with the vortex generators (Figure I.39c) is fully detached 

similarly to the wake topology observed on hatchback vehicles. The recirculation area 

becomes larger, which yields to 14% drag reduction.  

 

1.3.1.2 Active flow control solutions 

 Plasma actuators 

Dielectric Barrier Discharge (DBD) plasma actuators is another control device consisting to 

create a ionized gas call plasma, tending to feed the local quantity momentum of the passing 

flow used by (Boucinha et al., 2010; Khalighi et al., 2016). Recently, (Shadmani et al., 2018) 

shown 7% drag reduction on a 25° slant angle Ahmed Body. The actuation maintains the flow 

over the rear window attached and reduced the recirculation bubble (Figure I.40). 

 

Figure I.38: Vortex generator used on a round rear end Ahmed Body: (a) Picture of the 

device mounted on the mockup, (b) Baseline flow with a short recirculation bubble close to 

the rear end; (b) Controlled flow with a larger recirculation bubble and vortex center shifted 

away from the rear end. 

 

Figure I.39: (a) Picture of a full scale PSA C4 characterized with a 35° rear window; (b) 

PIV measurements of the baseline flow; (c) PIV measurements of the controlled flow with 

vortex generator from (Aider et al., 2014). 



Flow control and optimization techniques 29 

 

The integration of steady blowing plasma actuators on the A-pillar of a front truck cabin 

(Figure I.41) shows the feasibility of this solution on a realistic mockup (Vernet et al., 2018) 

and a potential of 20% gain is measured with lateral blowing wind condition.  

 

 Steady blowing jets 

(Wassen et al., 2010) investigates numerically the efficiency of steady blowing jets with 

discontinuous slots on a square back Ahmed Body. Thanks to LES simulation, a comparative 

study of uncontrolled and controlled flow yields 11 % drags reduction. 3% drag reduction was 

also observed with numerical simulation of square back Ahmed body in (McNally et al., 

2015) with steady blowing micro-jets. The interaction between the jet momentum and the 

shear layer was highlighted (Figure I.42). 

 

Experimentally, steady micro-jets were tested by (Aubrun et al., 2011) at the roof-slant edge 

of a 25° Ahmed Body. 9 to 14/% drag reduction were measured at different Reynolds number. 

PIV measurements in the transverse vertical plane Y0 show the topology change. The active 

flow control induced a growth of the recirculation bubble acting on the rear end and the 

vortices centers were shifted away from the rear base (Figure I.43). 

 

Figure I.40: Pattern of the flow passing through the 25° Ahmed Body behind the model at 

10m/s: (a) Baseline wake flow; (b) Steady plasma actuation leading to a drag reduction of 

7.3%; (c) Unsteady plasma actuation leading to a drag reduction of 4.88% (Shadmani et al., 

2018). 

 

Figure I.41: (a) Picture of the reduced scale truck mockup with the unactive DBD 

actuatuators, (b) Focus on the A-pillar with the active DBD actuators. 

 

Figure I.42: (a) 3D view of the blowing jets integrated on the square back Ahmed body; (b) 

Interaction of micro-jet quantity momentum with the shear layer observed with iso-

Qcriterion. 
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 Fluidic oscillator 

Other researches such as (Arwatz et al., 2008; von Gosen et al., 2015), propose to take benefit 

of the fluid flow instability in a mixing chamber to generate a sweeping jet (Figure I.44).  

 

7.5% drag reduction on the 25° Ahmed Body were measured with fluidic oscillators at the 

roof-slant edge by (Metka and Gregory, 2015). This actuator yields 5% power saving ensuring 

the viability of the system. In this study, the effect of the fluidic oscillator actuators is 

described as a sweeping mechanism mixed with the outer boundary layer. This enhances the 

convection above the slant window and the controlled flow remains fully attached (Figure I. 

45). 

 

 

 

 

 

 

Figure I.43: PIV measurements of the (a) baseline and (b) controlled flow behind a 25° 

Ahmed Body in (Aubrun et al., 2011). 

 

Figure I.44: The flow in a fluidic oscillator: (a) with air; (b) with water (von Gosen et al., 2015). 

 

Figure I. 45: Comparison of baseline and controlled flow measured in the PIV transverse 

vertical cut-plane Y0 by  (Metka and Gregory, 2015). 
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 Synthetic jets  

Synthetic jet is an active flow control solution based on a sinusoidal variation of the quantity 

momentum with an alternate blowing/suction phase. A description of the vortices injected by 

the synthetic jets is performed by (Leclerc, 2008) on a 25° slant angle Ahmed Body. PIV 

measurements highlighted counter-rotating vortices (Figure I.46) spreading into the fluid 

flow. 8% drag reduction is reached with this control.  

 

Similar behavior is described by (Eulalie, 2014) on a square back Ahmed body. In this case, 

the sinusoidal pulse combined with discontinuous slots generates 3D torus structures 

transported into the wake flow (Figure I.47c). These small structures tend to prevent the 

development of the shear layer into large structures responsible for the aerodynamic loss as 

shown in the comparison of the baseline iso-Qcriterion snapshots versus the controlled 

snapshots (Figure I.47a and b). 

 

This technique was also used to control the boundary layer detachment on the A-pillar of a 

full-scale front truck cabin (Figure I.48a) by (Minelli et al., 2018). The experimental PIV 

results evidence the control efficiency to damp the transient turbulent structures (Figure I.48b 

and c). The time averaged field displays a partially detached lateral flow with the control 

configuration contrary to the fully detached lateral flow in the baseline configuration. The 

recirculation area developing on the rear end is significantly reduced.  

 

Figure I.46: (a) Synthetic jet system; (b) PIV snapshots close to the synthetic jets at the 

maximum blowing phase (Φ = 90°), the zeros blowing phase (Φ = 0°) and at the 

maximum suction phase (Φ = 270°) measured by (Leclerc, 2008b). 

 

Figure I.47: iso-contour of Qcriterion for (a) baseline flow; (b) Controlled flow; (c) 

Vortex rings blown on the top edge of the square back Ahmed Body (Eulalie, 2014b). 



32 Flow control and optimization techniques  

 

(Minelli et al., 2018) also performed a numerical investigation of the reduced scale front truck 

cabin. 3D Partially Average Navier-Stokes simulations (PANS) were in accordance with the 

experimental observations. For the baseline flow, 2D structures emerging from the boundary 

layer detachment expands into large scale structures (Figure I.49a). The resulting turbulent 

energy prevents the reattachment of the boundary layer. For the controlled configuration, the 

blown quantity momentum forces the decay of the 2D structures, allowing the reattachment of 

the boundary layer (Figure I.49b). 

 

 Pulsed jets 

Pulsed jets are efficient actuators to control the wake flow shedding. Periodical forcing was 

explored in the work of (Barros et al., 2016) with continuous slot along the top edge of the 

square back Ahmed Body. The flow appears to be extremely sensitive to the frequency setup. 

Actuation around the natural flow frequency tends to increase the aerodynamic loss while 

high frequency actuation (St=12) promotes the pairing, merging and convection of the blown 

structures. The enhancement of the shear layer momentum increases the recirculation length 

leading to 10% drag reduction. 

Discontinuous pulsed jets with different flow rates and frequencies were tested on the 35° 

Ahmed Body by (Bideaux et al., 2011; Gilliéron and Kourta, 2013). A maximum drag 

reduction of 20% was obtained in the configuration of low flow rate and high frequency of 

500Hz (Figure I.50). 

 

Figure I.48: (a) Pictures of Volvo front Truck cabin; Time averaged streamlines and 

transient snapshot of velocity field of PIV measurements: (b) Baseline, (c) Synthetic 

control at the shear layer frequency  (Minelli et al., 2018). 

 

Figure I.49: Comparison of iso-contour of second invariant of the velocity for : (a) Baseline 

flow around a the Volvo Truck cabin; (b) with synthetic jets on the A-pillar of the Front 

cabin (Minelli et al., 2018). 
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Influence of discontinuous pulsed jets on a full scale C6 mockup (Aider et al., 2014) was 

demonstrated at high frequency (St=2.91). An increase of the pressure coefficients are 

measured (Figure I.51). Even if the drag reduction was not consistent, 9% reduction of the lift 

component proves the aerodynamic impact of this control solution. 

 

 Discussion  

In this section, a large variety of control solutions was explored. The main conclusion of the 

examination of the control solutions is the importance of the actuation frequency for the 

modification of the wake stability. Two operating modes are observed at low and high 

frequency. It is highlighted thanks to the flow visualizations of the controlled mixing layer 

performed by (Parezanovic et al., 2014). If the low frequency jet actuation tends to promote 

the generation of large scale structures (Figure I.52b) compared to the unactuated flow 

(Figure I.52a), the high frequency periodic jet tends to smooth these turbulent structures and 

prevent the generation of wake vortex shedding (Figure I.52c).  

 

 

Figure I.50: Comparison of the (a) baseline and (b) controlled flow at 500Hz behind a 35° 

Ahmed Body from (Bideaux et al., 2011). 

 

Figure I.51: (a) Pulsed jet actuators integrated on a full scale C6 car; (b) Pressure coefficient 

profiles measured over the rear end (Aider et al., 2014). 

 

Figure I.52: Smoke laser visualization of the mixing layer after a splitter plate: (a) Baseline 

flow; (b) 10Hz low frequency control configuration; (c) 400Hz high frequency control 

configuration from (Parezanovic et al., 2014). 
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Research studies tend to promote the efficiency of the control of the shear layer for 

automotive applications. It is interesting to notice how several high frequency control 

solutions such as, synthetic, pulsed blowing or oscillating jets, tends toward similar effects on 

the shear layer. However, some solutions seem more suitable for the automotive benchmark. 

In this work, the pulsed jet actuators are selected because of its demonstrated capabilities on 

full-scale realistic car. 

More generally, the interest of active flow control relies on the fact that it is a useful tool to 

improve our knowledge of the flow sensitivity to the boundary conditions. On one hand, this 

sensitivity can be done by the mean of quantity momentum injection (with jet). On another 

hand, similar effects can be achieved using passive solutions once the knowledge of the 

sources of aerodynamic loss is assimilated. At this stage, mathematical algorithms are of 

major interest to determine the optimal setup of the active flow control solution.  

1.3.2 Closed-loop and automatic control/optimization methods 

Multiple solutions exist for aerodynamic optimization for automotive applications. On a first 

hand, closed-loop flow control strategies based on the coupling of sensors/actuators are 

implemented to optimize active control solutions. It is particularly suitable for experimental 

applications, as it often requires a long period of acquisition. These strategies are even more 

appealing since they can be embedded in production vehicles. On the other hand, optimization 

algorithms based on sensitivity computations are particularly interesting for the definition of 

an optimal passive solution to reduce the aerodynamic loss during the early design stage.  

1.3.2.1 Strategies for active flow control 

For active flow control solutions, optimization strategy would be focus on closed loop control 

between sensors and actuators. Figure I. 53 illustrates the block diagram with automation 

system terminology defining the feedback coupling between the sensors (denotes by the 

measurement signal 𝑦𝑚) and the actuators (denotes by the control signal 𝑢) for the control of a 

system (denotes by “plant). 

 

The optimal control algorithms can be achieved with closed loop control with reactive or real 

time algorithms. Reactive algorithms are based on time averaged cost function evaluation and 

can be subdivided in two main techniques: extremum seeking and genetic algorithms using 

time averaged cost function.  

Real time control algorithms based on transient cost-function evaluation, are also subdivided 

in two categories. Model based approaches gathered the methods requiring a preliminary 

knowledge of the sensors and actuators behavior. They are presumably more difficult to 

dimension but they are interesting as they efficiently adapt to physical flow dynamic. Among 

these techniques, there are for automotive applications, Linear Quadratic Regulation 

 

Figure I. 53: Block diagram of a closed-loop control system using automation 

terminology (Bewley and Liu, 1998). 
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(Bergmann, 2004a), time resolved sensitivities or Reduced Order Model (Barbagallo et al., 

2009; Bergmann and Cordier, 2008; Proctor et al., 2014a). Model-free real time approaches 

are self-updating algorithms fitting the actuators/sensors behavior without any preliminary 

assumptions on the flow dynamic. Among them, there are opposition control ((Bruneau et al., 

2010; Chovet, 2018; Varon, 2017)), and Machine Learning Control (Li, 2017a; Li et al., 

2017b).  

 Feedback, opposition or tracking techniques 

These techniques consist in the definition of a dynamically updating actuation controller 

based on the flow state identification using flow sensors measurements. The most 

straightforward law is the opposition control linking the actuation parameters to the sensors 

signals with an analytic functional. The efficiency of this control to reduce the rear end 

pressure of a square back Ahmed Body using blowing jet (Bruneau et al., 2010) was validated 

at low Reynolds number with 31% drag reduction. However, it is difficult to implement for 

higher Reynolds number flow since the turbulence unsteadiness and chaotic behavior 

complicate the identification of the flow state based on few local sensors.  

Extremum seeking or slope seeking algorithms are more suitable to identify the state of a 

complex dynamic system. They consist in a dynamic feedback controller coupled with a 

model identification of the steady state flow (Figure I.54). The integration of the slope 

seeking algorithm to control a mixing layer (Parezanovic et al., 2014) or the shear layers of 

the D-shaped bluff body (Pastoor et al., 2008), shows how the mapping of the system 

response to actuation periodic forcing converged toward an optimal solution. A gain up to 

40% of rear end pressure has achieved on the D-shape mockup. This technique may result in a 

local minimization but a wide range of actuation parameters has to be tested to ensure the 

convergence toward a global minimum.  

 

There are also several solutions based on the tracking of vortex dynamics in the wake flow. 

Observers theory and Kalman filters algorithms were applied for the phase control of the 

vortex shedding (Pastoor et al., 2008; Tadmor, 2004). This type of control algorithm is 

particularly appropriate for the synchronization of the actuator on a unique characteristic 

frequency measured in the wake flow. However, a long convergence step is required to 

 

Figure I.54: Block diagram of the slope seeking algorithm using high-pass and low-pass 

filters for the identification of the dynamic model (Pastoor et al., 2008). The arrow on the 

left indicates the feedback between the sensor < 𝐶𝑝 > toward the controller blocks and the 

arrow on the right indicates the input control signal 𝐶𝜇 used to the physical system. 
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stabilize the controller on the wake motion. Similarly, the implementation of dynamic 

observers to control the chaotic bi-stable behavior of the wake flow behind a square back 

Ahmed body (Varon, 2017) was tested using time resolved PIV measurements for a feedback 

on the transient wake state. The algorithm is presented in Figure I.55a. The observer is 

defined as the wake recirculation velocity barycenter. Three rows of discontinuous slots were 

integrated on the roof edge. The flow rate magnitude of the 3 pulsed blowing signals at St=0.2 

were spatially modulated as a function of the wake barycenter coordinate. The objective was 

to activate the actuation on the side of the pressure loss. Figure I.55b shows the comparison of 

the statistical analysis of the baseline rear end pressure compared to the control configuration. 

The pressure barycenter impacting the rear end is more widely distributed over the rear 

surface in the controlled flow. In addition, the controlled transient wake also exhibits a 

periodic oscillation dynamics contrary to the chaotic span wise motion observed in the 

baseline flow. 

 

The vortex shedding is efficiently controlled but this technique requires a wake flow observer, 

which may be hard to obtain for a road vehicle. 

Sliding mode control (Chovet, 2018) is a closed loop strategy for the phase and frequency 

optimization. It was tested on a square back Ahmed Body leading a pulsed Coanda jet located 

on the top of the mockup. 

 Machine learning techniques 

Machine learning is the mathematical domain derived from the computer logical system 

science. It gathers algorithms used to boost the performances of a system based on a 

progressive study of the benchmark capabilities. The most used machine learning models are 

the neural network, Bayesian network or support vector machine but in automotive 

applications, the genetic algorithm is the most recurrent solution. The control of the wake 

flow behind a square back Ahmed Body, based on the Learning Genetic Programming 

Control (Li, 2017b; Li et al., 2017a) was tested using rear end pressure cost function and 

pulsed blowing Coanda jet actuators. Figure I.56a illustrates the LGPC algorithm with a dual 

closed-loop system. A real time feedback is used for the dynamic update of the actuators 

parameters depending on the transient sensors measurements. Simultaneously, a phase 

averaged learning loop is integrated to design the optimal control law (denoted by K) between 

actuators/sensors. Figure I.56b summarizes learning process allowing the design of an optimal 

control law. The result of this flow control strategy leads to 33% base pressure recovery and 

22% drag reduction. 

 

Figure I.55: (a) Sketch of the opposition closed-loop control law based on the detection of 

the horizontal position of the recirculation barycenter (white diamond) integrated from the 

transient wake PIV measurement; (b) 2D Power Density Function of the rear end pressure 

barycenter: the blue distribution corresponds to the baseline mapping, the yellow contour 

corresponds to the closed-loop control of the pulsed jet magnitude (St=0.2) (Varon, 2017). 
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The genetic programming control is a powerful optimization tool for the identification of the 

best operating point contained in a large Design of Experiment, in an unsupervised manner. 

1.3.2.2 Shape optimization with sensitivities 

For shape optimization, the research of an optimal point in a large Design of Experiments 

(DOE) is challenging in the case of highly turbulent detached flow. Gradient based algorithms 

with sensitivities are computed in order to converge toward an efficient operating point. This 

is performed thanks to adjoint method (El Shrif, 2008; Karpouzas et al., 2016, 2016; 

Kavvadias et al., n.d.; Zaya, 2013) or discrete differentiation. 

In this approach, the optimization problem consists in the definition of an optimal boundary 

condition minimizing the cost function computed with the drag force or the pressure loss as 

formulated. The objective is to find the state variable (�⃗⃗�, 𝑝) and the control parameter A 

minimizing the cost function 𝒥(𝑝) constraint to the state-space equation 𝐹(�⃗⃗�, 𝑝, 𝐴). The 

Lagrange Multiplier is a suitable method to reduce the optimization problem with constraint 

into an optimization problem without constraint only based on the Lagrange functional. The 

idea is to associate to each constraint equation, an adjoint variable of same dimension. The 

equation system is reduced to a unique, one component, equation gathering the contribution 

of the cost function plus the state-space equations  

ℒ(�⃗⃗�, 𝑝, 𝐴, �⃗⃗�∗, 𝑝∗, 𝜉∗) = 𝒥(𝑝) − ⟨(�⃗⃗�∗, 𝑝∗, 𝜉𝑗
∗, 𝜉𝑐

∗, 𝜉𝑖𝑛
∗ , 𝜉𝑤

∗ , 𝜉𝑜𝑢𝑡
∗ ); 𝐹(�⃗⃗�, 𝑝, 𝐴)⟩ Eq.13 

Where:  

𝑝 is the pressure 

Γ𝐵 is the surface where the cost function is integrated. 

𝒥 = ∫
p2

2
 dΓ 

Γ𝐵
 is the cost function 

 

The optimal set of parameters (�⃗⃗�, 𝑝, 𝐴, �⃗⃗�∗, 𝑝∗, 𝜁∗) is obtained by computation of the Frechet 

derivative of ℒ. This strategy can be performed thanks to numerical simulations with steady 

state cost function to help freezing the optimal design of realistic cars on specific range of 

Reynolds number. This numerical optimization method could be an alternative to move 

backward the detachments around the car responsible for the aerodynamic loss propagating in 

the wake. Figure I.57 shows the sensitivity map computed on the RANS numerical solution 

compared to the sensitivity computed with the time averaged results of a DES computation. 

 

Figure I.56: Linear Genetic Programming Control (LGPC) algorithm: (a) closed loop 

control with a real time feedback combined with a phase averaged learning loop. (b) 

Genetic algorithm learning process (Li et al., 2017a). 
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For transient state-space equations, the solution of the optimization problem has to satisfy the 

zero variational condition at any time, increasing drastically the complexity of the problem. 

An algorithm with backward time integration is proposed in (Bergmann, 2004b). The 

requirements for the resolution of this optimization on highly turbulent and unsteady flow 

appear to be unreachable knowing that there is an additional 4 component adjoint equations 

system. Reduced Order Model provides an alternative to the Navier-stokes equations allowing 

an easier way to compute the flow sensitivity (Bergmann and Cordier, 2008) but this requires 

a preliminary model construction.  

It should be mentioned that adjoint solver can also be extended for active flow control 

optimization. Figure I.58 shows the sensitivity map used to evaluate the optimal jet actuation 

location leading to the best drag reduction.  

 

 Discussion  

In this section, we reviewed a preselection of existing closed loop control and optimization 

techniques which show interesting potential to reduce aerodynamic loss in the field of ground 

transportation. These techniques can be classified according to several criteria (Figure I.59) 

such as the modeling effort, the time scale definition and the domain of application (CFD or 

experiment). Model-free solutions seem attractive for highly turbulent flows since they update 

automatically to any environment variation and required less mathematical assumptions on 

the physical flow behavior. They seem particularly suitable for experimental applications 

because of the long convergence time generally required. The model-based methods allow the 

reduction of this convergence duration using predictive law to describe the flow behavior but 

they are particularly difficult to implement on highly turbulent flow around complex 

geometries. We can conclude on the benefit of learning methods, such as genetic algorithm, 

allowing the improvement of the flow description while the algorithm run.  

One can also question the choice of real-time algorithms compared to adaptive ones. In the 

case of real-time algorithm, high frequency update of the control parameters depending on 

instantaneous measurements seems to be promising since the system is continuously 

constraint to remain in its optimized topology (such as tracking using dynamic observers). It 

is often considered as a pertinent choice for energy saving considerations with active flow 

control. However, these schemes also bring difficulties dealing with consistency or stability 

 

Figure I.57: Comparison of RANS and DES sensitivities to compute the optimal morphing 

of lateral tapering of the rear end on the Audi A7. 

 

Figure I.58: Drag force sensitivities to active flow control blowing symmetrically in the 

region of the pink circle. 
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considerations. A brief exploration of real-time control is presented and discussed in the 

following work in section 2.1.3.  

 

Finally, model-free adaptive algorithms appear to be turnkey solutions deployable for highly 

turbulent flows for such a complex benchmark. This explains the selection of genetic 

algorithm applied for experimental optimization of the aerodynamics of the generic SUV. 

1.4. Modal decompositions 

According to the previous sections of this review, different reasons lead to the development of 

a dynamic model. It may help to identify periodic phenomena underlying in statistical flow 

description and also to construct a Reduced Order Model. This model should enable our 

understanding of the energy transfer. In addition, this model should allow the optimization 

computation based on the experimental database. It must result in an identification of 

periodicity and coherence information in the flow. In this perspective, the Dynamic Modal 

Decomposition with Control (DMDc) is a good candidate for the development of a dynamic 

model.  

Indeed, this algorithm quantifies the energy transfer between actuation and sensors. It requires 

a preliminary orthogonal Singular Value Decomposition (SVD) for spatial coherent structures 

identification. This decomposition enable to evaluate the energy per mode associated to the 

flow dynamic. 

1.4.1 Orthogonal Decompositions 

Introduced for the first time in (Lumley, 1981, 1967), Proper Orthogonal Decomposition is a 

method used to identify correlated coherent structures in turbulent flow. Different approaches 

are available depending on the initial database characteristics. The algorithm is extensively 

described in (Cordier and Bergmann, 2008; Tissot, 2018). It relies on the construction of a 

transient database [P1…𝑃𝑚] constituted of m snapshots with n measurement points (Figure 

I.60). The analyzed database Ψ is a concatenation of fluctuating part defined in (Eq.14).  

Ψ = [𝑃1
′…𝑃𝑚

′  ]  Eq.14 

Where : 

P𝑖
′(�⃗�) = P𝑖(�⃗�) − P̅(�⃗�) is the fluctuating part of 𝑖𝑡ℎ snapshot 

 

 

Figure I.59: Classification optimization methods as a function of model requirements and 

of the time scale consideration. The purple, blue and green colored boxes refer 

respectively to method used in experiment, CFD or both. 
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There are two methods leading to the orthogonal decomposition of the flow. The classical 

POD method is based on eigenvalues and eigenvectors decomposition of the spatial 

correlation matrices computed as shown in Eq.15a.  

𝑅𝑥 = ΨΨ∗ (a)                  𝑅𝑡 = Ψ∗Ψ (b) Eq.15 

Where 

Ψ = [𝑃1
′…𝑃𝑚

′  ] the database containing the fluctuating data. 
 

The modes Φ are obtained by projection of the eigenvectors on the initial database Ψ. As the 

POD modes form an orthogonal base of the database, the temporal contribution 𝜁𝑘(𝑡) of each 

mode Φ𝑘 can be easily evaluated by projection on the database. This approach is suitable for 

database with higher temporal information than spatial information so that the correlation 

matrix 𝑅𝑥 of size 𝑛 × 𝑛 is not too large for limited computers resources.  

CFD applications do not reach this criterion because there is much more spatial information 

due to mesh discretization than temporal information. The suitable approach for CFD 

database is the snapshots methods, introduced by (Sirovich, 1987). It consists in the Eigen 

decomposition of temporal correlation matrix 𝑅𝑡 defined in Eq.15b.  

In classical POD, the 𝑖𝑡ℎ column of 𝑅𝑥 gives an estimation of the dependence of coherent 

structures measured in points �⃗�𝑖 with all other turbulent coherent structures of the fluid flow. 

Thus it is a spatial statistical analysis. In the snapshots POD, the 𝑖𝑡ℎ column of 𝑅𝑡 gives the 

dependence of all coherent structures observed in the snapshot of the 𝑖𝑡ℎ iteration with 

coherent structures observed in all other snapshots as displayed in Figure I.60. The modes are 

obtained by projection on the database Ψ and associated transient evolution of modes k is 

computed. 

Proper Orthogonal Decomposition is particularly relevant to highlight coherent structures in 

turbulent flows. It has the advantage to isolate in few modes main contributions in turbulent 

flows and it is a pure statistic tools without any physical assumption. The reconstructed field 

can be reassemble as Eq.16 

Ψ𝑟𝑒𝑐 = ΤΦ = ∑𝑎𝑘(𝑡)Φ𝑘

𝑚

𝑘=1

 Eq.16 

 Applications and interests 

Several studies use POD analysis to highlight the coherence existing in the wake and the flow 

modification induced by the control.  

 

Figure I.60: Sketch of the snapshot sequence for a (a) temporal (b) spatial modal 

analysis (Schmid, 2012). 
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In the test case of the square back Ahmed Body, the POD is used to highlight the bi-stability 

sensitivity to the taper shape optimization (Perry et al., 2016). (Varon et al., 2017a) also 

investigates the influence of two closed-loop control strategies on the first POD modes of the 

rear end pressure compared to the baseline decomposition. Figure I.61 shows the three 

dominant orthogonal modes obtained in the case of the baseline flow, low frequency closed 

loop control (denotes by CL-CONT) and high frequency closed loop control (denotes by CL-

HF). The baseline modes are characterized by the vertical symmetry correlated to horizontal 

wake flow fluctuations. This analysis reveals how periodic actuation changes the 2
nd

 and 3
rd

 

POD modes. Indeed, low frequency closed-loop control promotes vertical rear end pressure 

fluctuations while the high frequency control tends to reinforce the horizontal fluctuations. 

This method is powerful to extract the coherence of the flow and more precisely to identify 

the main fluctuations direction defining the wake stability. It is used as a Reduced Order 

Model for gradient based optimization (Bergmann and Cordier, 2008) or as a wave length 

identification method for the closed loop control of a mixing layer (Parezanovic et al., 2014).  

 

However, with the POD approach, the transient evolution of the modal behavior remains 

chaotic, which limit the spectral analysis of the flow coherence. Some methods propose to 

improve the transient flow decomposition based on phase averaging of the temporal 

projection of the POD (Oberleithner et al., 2011; Sieber et al., 2016). Despite this, POD 

cannot be use for the real time tracking of isolated periodic vortex shedding since there is no 

phase discrimination of the flow feature. 

1.4.2 Dynamic Modal Decomposition 

 DMD based on correlation matrix 

The Dynamic Modal Decomposition consists in the decomposition of phase synchronized 

structure in the flow. It has the advantages to associate a unique frequency to each mode plus 

a growth rate value related to the mode energy behavior. With this approach, exact periodic 

structures are isolated in modes with growth rate value close to zero, decaying flow features 

are captured in modes with negative growth rate value and energy producing structures are 

catch in positive growth rate modes. 

The algorithm is based on the assumption of the existence of a linear decomposition of the 

snapshots. These linear features are estimated thanks to the temporal correlation matrix 𝑅𝑡 of 

 

Figure I.61: POD results of pressure measurements on square back Ahmed Body and 

comparison of the baseline decomposition with the closed loop continuous blowing and 

with the closed-loop high frequency pulsed jet from (Varon et al., 2017a). 
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size 𝑚 × 𝑚. For a better understanding, the notation 𝑅 will stand for 𝑅𝑡 in the following 

section. As shown in (Frederich and Luchtenburg, 2018), the flow linearity can be obtained 

from the linear decomposition of the last column of 𝑅 with respect to the 𝑚 − 1 first column 

of 𝑅. Then, the companion matrix is constructed. It should be mentioned that the companion 

matrix verifies Eq.17 and contains the information of delay between snapshots correlation. In 

addition, the  𝑚 − 1 × 𝑚 − 1 matrix 𝐶 is square but not definite positive.  

𝑅2
𝑚 = 𝑅1

𝑚−1𝐶 Eq.17 

Where 

𝑅2
𝑚 is the matrix of the last m-1 columns of 𝑅. 

𝑅1
𝑚−1 is the matrix of the last m-1 columns of . 𝑅 

𝐶 is the companion matrix constructed with the linear coefficient 𝑐𝑖 of the last 

column of 𝑅 as a function of the m-1 first column of 𝑅. 

 

But the complex eigenvalues 𝜇 and complex eigenvectors 𝑌 can be easily obtained as it is a 

sparse matrix  

If this algorithm gives a direct technique to obtain frequency identification, there is also an 

important sensitivity due to the choice of the last snapshot. Indeed, it enables the propagation 

of uncertainty and generates noise in modal energy distribution. Consequently, the selection 

of relevant modes for low order model is problematic. 

 DMD based on SVD 

The SVD based DMD proposed by (Schmid, 2012)is an enhancement of the original DMD 

algorithm allowing to estimate the phase shift Eq.18 between each snapshot using a projection 

in an orthogonal base. This solves the problem of the uncertainties propagation mentioned in 

the classical algorithm.  

Ψ1 = 𝐴Ψ0 Eq.18 

Where 

Ψ0 is the first bloc of snapshots 

Ψ1 is the delayed bloc of snapshots. 

𝐴 is the phase shift between each snapshots. 

 

The complete algorithm is summarized in Figure I. 62. The preliminary Singular Value 

Decomposition of Ψ0 allows an inversion of the matrix Ψ0 for the evaluation of the phase 

shift matrix A. It should be mentioned that the matrix U obtained with the SVD of Ψ0 

corresponds to the spatial orthogonal base obtained in classical POD (Cordier, 2008). In 

practice, the Eigen computation is performed on �̃�, the reduced projection of the matrix A into 

the POD matrix 𝑈. The eigenvectors are then projected on the POD for the spatial 

visualization of the DMD mode Φ. The complex eigenvalues contained the periodicity 

information associated to each mode.  
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The modal magnitude is evaluated thanks to the resolution of a sparsity optimization problem 

based on the residual of the reconstructed field (Jovanovic et al., 2010; Jovanović et al., 

2014a). The augmented Lagrangian formulation ℒ coupling the reconstructed residual with 

the sparsity constaint (Eq.19) is solved with the Alternating Direction Method of Multiplier 

(ADMM).  

 

Eq.19 

Where 

𝛼 is the vector of modal magnitude. 

𝛽 is the dual vector used for the application of the sparsity constraint. 

𝛾 : Weight of the sparsity promoting constraint 

𝜆 : Vector of Lagrange multipliers 

𝜌 : Quadratic penalty coefficient (for convex problem) 

 

 High Order DMD for experimental applications 

The domain dimension in numerical simulation is associated to a large number of probes with 

small number of snapshots. In experiments, the spatial discretization can be lower than the 

temporal discretization. A direct application of the SVD based DMD algorithm on 

experimental database leads to a phase shift matrix constraint by the low number of sensors as 

shown in Figure I.63a. The resulting DMD modes extracted is restricted by the size of A, 

there not enough spectral information to decompose the flow. High Order Dynamic Modal 

Decomposition proposed by (Le Clainche and Vega, 2017) is an update of the SVD based 

DMD allowing to increase the order of the phase shift matrix A for experimental applications. 

The idea is to extend fictively the database dimension with sliding time windows slice 

contained in the original database. The matrix length is increased by concatenation along the 

spatial direction as illustrated on Figure I.63b. 

 

Figure I. 62: Sparsity promoting DMD algorithm from (Jovanović et al., 2014b) source 

code. 
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The parameter d defined the number of stacked slices used to increase the rank of the 

database. The consistency of the resulting DMD base when d is gradually increased, gives the 

optimal parameter to capture the overall spectral information. The investigation of (Le 

Clainche and Vega, 2017) shows that depending on the application, the optimal value of d is 

between 1 and m/3 (with m the number of snapshots). It can also be set in order to obtain an 

extended database close to a square matrix. Even if it is not the optimal parameter, this choice 

ensures the computation of a maximum range of spectral information.  

On this basis, the DMD algorithm is applied replacing the original database Ψ by the 

extended database. After the projection of the eigenvectors on the POD base, the DMD modes 

are obtained using the last n rows of the extended modes (with n the number of sensors). This 

technic shows interesting prospects for experimental applications such as local pressure 

sensors. 

 Applications and interests 

The classical DMD is used to identify low frequency periodic behavior on the pressure 

sensors of the experimental analysis of a full scale BMW mockup (Eulalie et al., 2018b). 

Pressure fluctuations located on the bottom of the tailgate were correlated to the normalized 

spectral characteristics at 𝑆𝑡 = 0.0036, 𝑆𝑡 = 0.006 and 𝑆𝑡 = 0.013 (Figure I.64). This leads 

to the extrapolation of a swirling motion of the rear pressure loss. It would have been 

interesting to enhance these observations with the SVD based and sparsity promoting 

optimization. 

 

The SPDMD was applied to characterize the detached flow behind bluff bodies (Parkin et al., 

2014; Tu, 2013) and for jets flow analysis (Jovanovic et al., 2010; Jovanović et al., 2014a; 

Schmid, 2011). Figure I.65 shows the results of the DMD analysis performed on the wake of 

 

Figure I.63: Illustration of the rank of the phase shift matrix A in experiments with  

(a) DMD, (b) High Order DMD. 

 

Figure I.64: Results of classical DMD obtained on transient rear end pressure on a full scale 

BMW X5 mockup (Eulalie et al., 2018). 
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a bluff body (Tu et al., 2014). The result successfully exhibits the change of flow topology 

depending on the actuation frequency. 

 

To go further in the evaluation of the actuation efficiency, (Proctor et al., 2014b) proposed the 

Dynamic Modal Decomposition with control consisting in a concatenation of synchronized 

sensors and actuators signals. In this extension of the DMD, the snapshots are constructed 

based on the original database 𝑋, the delayed database 𝑋′ and the actuation signals Υ as shown 

in Figure I.66. This technique is an efficient way to estimate the transfer function between 

actuators and sensors per modal component. 

 

 Discussion 

This review provides a comparison of interests and limitations of orthogonal and dynamic 

decompositions to capture the flow complexity measured in experiments or obtained in CFD. 

They both give an important description of flow features based on correlation discrimination 

in POD and spectral isolation in DMD. Even if some methods, such as SPOD, attempt to 

combine the benefit of the POD and DMD, the result does not allow a proper tracking of the 

dynamic vortex shedding. 

We can conclude on the interest of the SVD-based DMD to apprehend the fluid flow 

mechanic. The additional application of the sparsity optimization gives an efficient way to 

reduce the size of the problem. The High Order DMD also provides a practical solution for 

low space resolution databases. It also gives good prospect to evaluate the flow sensitivity to 

actuation as it was already demonstrated with active flow control using DMDc algorithm.  

 

Figure I.65: DMD results obtained on a controlled blunt body wake: (a) DMD spectra on 

continuous blowing jet with main mode iso-contour; (b) DMD spectra of obtained on 

best actuation frequency from (Tu, 2013; Tu et al., 2014).  

 

Figure I.66: scheme of periodic decomposition obtained with the DMD with control. 
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To our knowledge, the application of the orthogonal decomposition embedded in the SVD 

algorithm has never been used to correlate the periodic dynamic features extracted thanks to 

DMD. In this work, we will try to go deeper in this matter starting from sparsity promoting, 

SVD based and High Order DMD algorithms. 

The modal analysis performed on experimental results gives a realistic description of the flow 

features limited to the measurement windows. On the opposite, numerical simulations provide 

an exhaustive description of the 3D state flow behavior computed with approximation 

techniques. A good knowledge of the numerical methods is required to set up an accurate 

simulation of the flow around the POSUV. 

1.5. Numerical methods 

Numerical simulations provide more detailed flow description for the flow control and the 

aerodynamic optimization. This explains the interest of the resolution of the Navier-Stokes 

equations (Eq.20) for the simulation of the three dimensions transient flow features around the 

car.  

{𝜌
𝜕�⃗⃗�

𝜕𝑡
+ 𝜌�⃗⃗� ⋅ ∇�⃗⃗� = −∇𝑝 + ∇⃗⃗⃗ ⋅ 𝜏 + 𝜌�⃗�

∇ ⋅ �⃗⃗� = 0

 Eq.20 

where  

�⃗⃗� the velocity vector [m/s] 

𝑝 the pressure [Pa] 

𝜌 the fluid density with 𝜌𝑎𝑖𝑟 = 1.225 [kg/m
3
] 

𝜇 the dynamic viscosity with 𝜇𝑎𝑖𝑟 = 1.8𝑒−5 [Pa.s] 

𝜏 = 𝜇(∇�⃗⃗� + (∇�⃗⃗�)𝑇) = 𝜇∇2�⃗⃗� the shear stress tensor 

�⃗� external forces 

 

These types of simulations are known to be expensive. The implementation of turbulent 

model provides convenient solutions for a partial resolution of the turbulent scales in the 3D 

unsteady flow. After a brief description of the existing numerical approaches, this section 

details the Large Eddy Simulation (LES) approach used in this work. The selected Dynamic 

Smagorinsky subgrid scale model will also be discussed. Finally, the interests and constraints 

of the Finite Element Method (FEM) which is the selected numerical approximation 

technique used in this work will be investigated. 

1.5.1 Numerical approaches  

Computational Fluid Dynamics (CFD) embraces three main approaches to simulate turbulent 

flows. The most straightforward one is the Direct Numerical Simulation (DNS) consisting in 

the resolution of the discretized Navier-Stokes equations. As it was stated in the theory of 

(Kolmogorov, 1991), high Reynolds number flows involve a large range of turbulence scales 

so that the spatial and temporal discretization have to be precise enough to capture smallest 

structures. Hence, this solution appears to be, in most cases, expensive or unrealistic with 

limited CPU restriction. Figure I.67 shows the resolved spectral range depending on the 

numerical approaches, RANS, Hybrid, LES or DNS. 



Numerical methods 47 

 

Computational cost is typically reduced in CFD by solving only the averaged quantities 

constraint to the Reynolds Average Navier-Stokes equations (RANS). In this approach, the 

governing equations are obtained introducing the state variables Reynolds decomposition 

(Eq.21) into the Navier-Stokes equations (Eq.20). 

𝑢𝑖 = 𝑢�̅� + 𝑢𝑖
′

𝑝 = �̅� + 𝑝′
  Eq.21 

where  

𝑢𝑖, 𝑝 are the transient velocity and pressure variables 

𝑢�̅�, �̅� are respectively the time averaged velocity and pressure variables 

𝑢𝑖′, 𝑝
′ are the fluctuating part of velocity and pressure variables 

 

From the RANS equations emerged the Reynolds stress tensor 𝜏𝑅 wrapping the contribution 

of the fluctuating turbulent velocity. The closure problem consists in the evaluation of this 

unknown tensor as function of Reynolds averaged quantities. Analogously to the dissipation 

generated by molecular viscosity, It is postulated in (Boussinesq, 1877) that the dissipation 

induced by turbulent eddies momentum is proportional to an eddy viscosity.  

It was the privileged approach used in the past for industrial applications but hybrid methods 

tend to replace RANS for a better resolution of detached flows.  

Large Eddy Simulation (LES) approach appears to be a better solution because smallest 

structures are managed by a subgrid-scale model. The remaining scales are computed solving 

Navier-Stokes equations in the same way as DNS. Consequently, the mesh does not have to 

be as fine as the DNS one.  

Hybrid approaches are developed in order to optimize the simulation cost such as Detached 

Eddy Simulation (DES), derived methods (Delay DES, Attached DES, Improved DES), or 

Partially Average Navier-Stokes method. A whole range of possibilities are proposed around 

hybrid methods as discussed in (Delassaux et al., 2018; Krajnovic et al., 2012; Krajnović et 

al., 2016; Martinat et al., 2008; Serre et al., 2013). However, the cost reduction with the 

hybrid approach is obtained thanks to the modeling assumption enforced within the boundary 

layer. Thus, they show limitations for applications, which required a high level of information 

in the nearfield fluctuations.  

Considering the importance of the turbulent features in the mockup boundary layers and the 

frequency range needed for the aerodynamic optimization, the LES approach appears to be 

suitable for the numerical simulation of the reduced scale SUV. This is the tradeoff chosen 

considering CPUs, time limitations and the required accuracy level. It is the solution used for 

 

Figure I.67: Sketch of the resolved turbulent energy as a function of the length scale 

depending on the numerical approaches. 
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the numerical simulation of the flow past the Ahmed using LES (Hinterberger et al., 2004; 

Howard and Pourquie, 2002; Krajnovic and Davidson, 2004). Even if this solution will have 

to be reconsidered for full-scale simulation where the trends go toward hybrids, we will now 

focus on the LES method. 

1.5.2 Large Eddy Simulation 

The Large Eddy Simulation approach is based on the resolution of the filtered Navier-Stokes 

equations. 

𝑢𝑖 = 𝑢�̃� + 𝑢𝑖
′

𝑝 = 𝑝 + 𝑝′
  Eq.22 

Where;  

𝑢𝑖, 𝑝 are the transient velocity and pressure variables 

𝑢�̃� =∭𝐺(�⃗�, �⃗�′)𝑢𝑖(�⃗�
′, 𝑡)𝑑�⃗�′ is the filtered velocity and pressure variables 

𝑢𝑖′, 𝑝
′ are the sub filtered velocity and pressure variables 

𝐺(�⃗�, �⃗�′) is the test filter dimensioning the resolved cut-off frequency. 

 

There are different methods used to model the non-resolved turbulence due to the grid cutoff 

frequency. One can mentioned the viscosity models based on molecular dissipation analogy 

such as the Wale model (Nicoud and Ducros, 1999), Lilly model (Lilly, 1967), wave number 

dependent eddy viscosity (Chollet and Lesieur, 1981), spectral vanishing viscosity technique 

(Minguez et al., 2008) or the structure function (Lesieur and Metais, 1996). Otherwise, there 

is similarity model (Bardina et al., 1980), deconvolution model (Adams and Stolz, 2001), 

regularized deconvolution models (Sagaut, 2006). In the following, we will focus in the 

Smagorinsky type models. 

The constant Smagorinsky subgrid scale model defined the subgrid stress tensor as a function 

of the resolved strain rate tensor and the mesh cutoff frequency, as shown in Eq.23. 

𝜏𝑖𝑗
′ = −2𝜇𝑠𝑆𝑖�̃� Eq.23 

where  

𝜇𝑠 = 𝜌(𝐶𝑠Δ)
2√2𝑆𝑖�̃�𝑆𝑖�̃� is the subgrid turbulent viscosity  

 

In this model, the dissipation induced by the unresolved contribution is related to the mesh 

cutoff frequency with a constant factor 𝐶𝑠 estimated empirically between 0.17 and 0.21. The 

dynamic Smagorinsky subgrid scale model, proposed by (Massimo Germano et al., 1991) and 

(Ghosal et al., 1995), is an adaptation of the previous approach with an additional estimation 

of the local and transient turbulent energy, as shown in Figure I.68. 
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This model is based on the theory that the difference between the modeled turbulent stress 

tensor 𝜏 below the mesh cutoff frequency Δ and the modeled turbulent stress tensor Τ that 

would be calculated with a test filter Δ̅ is equal to the resolved stress tensors 𝐿 of turbulent 

contribution in the scale length range of Δ and Δ̅. This leads to the Germano identity of Eq.24: 

           𝑇𝑖𝑗              =           𝜏𝑖𝑗                 +          𝐿𝑖𝑗

 𝑢𝑖𝑢𝑗  ̃̅̅ ̅̅ ̅̅ − 𝑢�̅̃�𝑢�̅̃�      =  𝑢𝑖𝑢𝑗  ̃̅̅ ̅̅ ̅̅ − 𝑢�̃�𝑢�̃�̅̅ ̅̅ ̅          +  𝑢�̃�𝑢�̃�̅̅ ̅̅ ̅̅ − 𝑢�̅̃�𝑢�̅̃�

−2(𝐶𝑠Δ̅)
2|�̃�̅|�̃�̅𝑖𝑗 = −2(𝐶𝑠Δ)

2 |�̃�|�̃�𝑖𝑗
̅̅ ̅̅ ̅̅ ̅  +  𝐿𝑖𝑗

 

Eq.24 

The dynamic 𝐶𝑠 factor can be deduced by substituting the Smagorinsky model of Eq.23 into 

𝑇𝑖𝑗 and 𝜏𝑖𝑗 in Eq.24 leading to the final equation of the dynamic constant expressed as a 

function of the local resolved turbulent stress tensor and two scales filtered subgrid turbulent 

stress tensors in Eq.25.  

𝐶𝑠
2 = 𝐿𝑖𝑗/𝑀𝑖𝑗 Eq.25 

Where  

𝐿𝑖𝑗 the resolved stress tensor between Δ and Δ̅ 

𝑀𝑖𝑗 = 2Δ
2 ( |�̃�|�̃�𝑖𝑗
̅̅ ̅̅ ̅̅ ̅ − 𝛼2|�̃�̅|�̃�̅𝑖𝑗)   

𝛼 = Δ̅/Δ. 

 

A comparison of the constant and dynamic Smagorinsky models will be performed in the 

section 3.2.1. 

 Wall models 

The wall profile is enforced depending in the normalized wall distance 𝑦+ of the first mesh 

point to the bounding surface. The linear profile is applied in the viscous layer when 𝑦+ is 

below 5 (Eq.26a). The logarithmic law is applied in the outer region when 𝑦+ is above 30 and 

below 500 (Eq.26b). The definition of the first layer in the buffer layer at 𝑦+ between 5 and 

 

Figure I.68: (a) Illustration of filtered velocities used in LES; (b) Scheme of the 

turbulent energy distribution with the subgrid stress tensors contribution used to model 

the filtered dissipated energy according to the dynamic Smagorinsky subgrid scale 

model. 
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30 is generally avoided since the boundary layer in this region is not analytically defined. The 

turbulence modeling is then estimated using the eddy viscosity formulation (Eq.26c). 

𝑈+ = 𝑦+ if y+ < 5 (a)

𝑈+ =
1

𝜅
log(𝑦+) + 𝐵 if 30 < y+ < 500 (b)

𝜇𝑡 = 𝜌𝜅𝑦𝑢𝜏 (c)

 Eq.26 

Where: 

𝑦+ = 𝑦𝑢𝜏/𝜈 is the normalized wall distance 

𝑈+ = �̅�/𝑢𝜏 is the normalized tangential velocity over the wall. 

𝑢𝜏 = √𝜏𝑤/𝜌  is the skin friction velocity. 

𝜅 = 0.4 , 𝐵 = 5.5  

 

If we want to capture accurately the boundary layer quantity momentum, the first mesh cell 

has to be placed in the viscous layer. This is a strong constraint in the mesh quality leading to 

a really thin element size close to the wall. However, it is a primal condition for an accurate 

simulation of separated flow. 

1.5.3 Numerical approximation techniques  

Several methods exist to approach the numerical solutions of the equations stated in previous 

paragraph.  

Finite Difference Method consists in the evaluation of the derivative terms in the governing 

equations with truncated Taylor approximation. This gives an efficient, easy to implement and 

low cost technique in order to solve the governing equations but it requires a structured grid 

point discretization of the computational fluid domain that is difficult to achieve for complex 

geometry. Some techniques as penalty method or immersed boundary method allow more 

flexibility on the domain discretization but the boundary layer refinement constraint is still 

too expensive. 

With Finite Volume Method, the fluid domain is discretized in small volumes and the 

numerical solution is approximated by applying conservation law on state variables (mass, 

momentum, energy) in each volume. This technique has the advantage to work efficiently 

with unstructured mesh suitable with complex geometry but can lead to numeric diffusivity in 

case of mesh quality lack in strong gradient region. This approximation technique is still 

widely used in industry and supports a lot of turbulent subgrid scale models. 

The Finite Element Method was historically implemented for solid structure simulations. It 

consists in the approximation of the numerical solution by solving a minimization problem on 

the variational formulation of the governing equations. It was applied on fluid application 

thanks to the work of (Shakib, 1991) ensuring robustness quality with the integration of 

combined with a permissibility on the mesh complexity thanks to a new formulation of the 

residual operator.  

However, we cannot bypass the potential of Lattice Boltzmann Method (LBM) based on 

stochastic assumptions on gas kinetic equations for automotive applications. This is 

demonstrated for instance in the comparison of the LBM simulation with experiments on a 

full scale realistic car by (Eulalie et al., 2018a). This approximation technique yields to 

efficient simulations because of high parallelization of the distribution functions even if a LES 

turbulence model is still required for the estimation of the subgrid scale energy. For this 

reason, this numerical technique is now highly used for flow dynamical computation at full 

scale.  
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We can also mention spectral methods and particularly the spectral element method proposed 

by (Karniadakis and Sherwin, 1999)which solves directly the spectral decomposition of the 

flow. Algorithm based on High Order LES with spectral vanishing viscosity subgrid scale 

model is also proposed by (Minguez et al., 2008). This spectral approximation technique 

remains difficult to use for three-dimensional flows due to the CPU time performances. 

In the case of the reduced scale model developed here, we retained the solution FEM 

techniques. This choice is mainly explained by the confidence developed with the previous 

numerical studies on simplified car mockup (Eulalie, 2014). In the following, we will explore 

the mathematical assumptions behind this method and we will focus on the critical points that 

must be take care of in order to ensure the simulation accuracy. The Navier-Stokes equation 

in its conservation form is Eq.27. 

ℒ(𝑈) =
𝜕𝑈

𝜕𝑡
+
𝜕𝐹𝑖
𝜕𝑥𝑖

−
𝜕𝐹𝑖

𝑑

𝜕𝑥𝑖
− ℱ = 0 Eq.27 

Where:  

Conservative 

variables:  

𝑈 = 𝜌{

1
𝑢1
𝑢2
𝑢3

} 

Euler flux: 

 

𝐹𝑖 = 𝜌𝑢𝑖 {

1
𝑢1
𝑢2
𝑢3

} + 𝑝{

0
𝛿1𝑖
𝛿2𝑖
𝛿3𝑖

} 

Diffusive flux: 

 

𝐹𝑖
𝑑 = {

1
𝜏1𝑖
𝜏2𝑖
𝜏3𝑖

} 

Source vector: 

 

ℱ = 𝜌{

0
𝑏1
𝑏2
𝑏3

} 

 

The space time computational domain is subdivided into 𝑛𝑒𝑙 finite elements, and in 𝑛𝑡 time 

intervals (Eq.28). Each finite element defined in this space-time domain is associated to a trial 

function 𝑉ℎ and a weighted function 𝑊ℎ approximated by a k
th

-order polynomial 𝒫𝑘. These 

functions are 𝐶0 continuous within each element and discontinuous in 𝑄𝑛.  

𝑄𝑛 = Ω𝑛
𝑒 × 𝐼𝑛             |            𝑃𝑛 = Γ × 𝐼𝑛   
𝑢. ≈ 𝑣. = Σi𝑁𝑖𝜑𝑖(𝑥) 

Eq.28 

Where: 

𝑄𝑛 is the discretized time space domain. 

𝑃𝑛 is the time-space boundary. 

𝑢. are the state variables. 

𝑣. ∈ 𝑉ℎ = {𝒫𝑘(𝑄𝑛)
3} is the trial function approaching 𝑢. 

𝑁𝑖 is the prescribed shape function. 

𝜑𝑖 the unknown value of the state variable at the nodal points of the element. 

 

Replacing the trial function into Eq.27, and considering the induced error 𝜖, the residual 

function in its strong form can be expressed as ℒ(𝑣) = 𝜖. This residual minimization problem 

is managed thanks to a Galerkin Least Square method: It is a Galerkin weighted residual 

function (first term in Eq.29) combined with a least square operator ℒ (second term in Eq.29). 

The least square operator applied to ℒ is constructed by taking the inner product of the 

residual function with itself pondered by the stabilization matrix 𝜏.  

∫ℒ(𝑣)𝑤𝑖𝑑Ω
Ω

+∑∫ ℒ(𝑤𝑖) ⋅ 𝜏[ℒ(𝑣)] 𝑑𝑄
𝑄𝑛

𝑛𝑒𝑙

𝑒=1

= 0 Eq.29 

Where: 

𝑣 is the trial function. 

𝑤𝑖 ∈ 𝑊ℎ = {𝒫𝑘(𝑄𝑛)
3} is the prescribed weighted function. 
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𝜏 = 𝑓(𝑃𝑒) is the symmetric positive-semidefinite least-squares matrix. 

𝑃𝑒 = ‖𝑢‖ℎ/𝜈 is the element Peclet number (ℎ is the element edge length). 

If the Galerkin term ensures the accuracy of the approximation, the regularization operator 

prevents the oscillatory behavior frequently observed with Galerkin formulation in the 

vicinity of discontinuities. This guarantees the robustness of FEM applied to highly turbulent 

flows. However, a special care has to be taken in the regions of high regularizations since it 

can result in a numerical error.  

 Discussion 

The elements explored here confirm the relevance of Large Eddy Simulation with Finite 

Element Method to compute the flow around the generic SUV. Even if other options could 

have been selected, this choice is also explained by the background acquired on the numerical 

solver which has validated on the Ahmed Body simulations (Eulalie, 2014). These review of 

the mathematical definitions behind the solver, allows being aware of the sensitive points that 

have to be take care of. 

1.6. Partial conclusions 

The flow surrounding the car in high-speed driving conditions reveals the importance of 

turbulence in the aerodynamic loss. This turbulent behavior was shown to be complex with 

strong interactions between turbulent boundary layers, separations, shear layers and detached 

flow shedding vortices. The exploration of control solutions brings non negligible prospects 

to enhance the wake pressure loss responsible for the aerodynamic loss. We mentioned the 

interest of active flow control to understand the wake flow sensitivity to control system even 

if the potential extrapolation to adaptive optimization were identified for integration in 

production. This was particularly demonstrated for the control of the shear layers, which 

seems to be an efficient strategy for automotive applications. This leads to the choice of the 

pulsed blowing jet actuation for this work. The question of the selection of the optimal control 

parameters such as the jet flowrate and the periodic forcing frequency was raised. The 

exploration of closed-loop control strategies underlined the potential of machine learning 

using genetic algorithm for experimental applications. To go further in the understanding of 

the physics of flow control, modal analysis methods were introduced. The benefit of SPDMD 

using preliminary SVD was suggested. Finally, the numerical methods used to simulate the 

wake flow behind a reduced scale model were explored. A focus on the strengths and 

weaknesses of LES with FEM approximation techniques provided the background to 

implement the numerical simulation of the reduced scale generic SUV. All these points lay 

the foundations of the following work, which aims to identify the flow features responsible 

for the aerodynamic loss on the POSUV mockup and to minimize their influence.  



 

  Chapitre 2:

Experimental investigation and control on a 

reduced scale generic SUV 

  



54 Experimental setup of the POSUV  

The objective of this study is to explore the aerodynamic features of a generic Sport Utility 

Vehicle for an optimization of the wake flow loss. It will be based on a reduced scale mockup 

reproducing the flow around a realistic car. This will provide a benchmark for the 

investigation in experiments as well as in numerical simulation with the available tools.  

This chapter details the experimental results obtained on the POSUV mockup in TU-Berlin 

reduced scale wind tunnel. The experimental conditions in agreement with the full-scale 

observations will be defined ensuring a correct baseline flow. The implementation of a 

reactive control with machine learning using genetic algorithm was achieved in order to 

extract an efficient operating point for the minimization of the aerodynamic loss thanks to 

micro-jets active flow control. The results will be deeply analyzed thanks to a cross-modal 

method in order to bring out the actuation mechanism. 

2.1 Experimental setup of the POSUV 

2.1.1 Wind tunnel characteristics and POSUV mockup 

The POSUV mockup was designed at Plastic Omnium, in order to match the characteristic 

features of Sport Utility Vehicles with a specific rear end window angle of 47° (Figure II.1a). 

A scale of 1/6 compared to a real car was applied leading to a reference height of 200mm 

used for the normalization of the Reynolds number and force coefficients. An averaged 

ground clearance of 50mm was set associated with a 3° pitch angle. This configuration was 

selected thanks to preliminary experiments in order to begin this active flow control 

campaign, with a passive optimized design. The corresponding frontal area is about 0.06m² as 

shown in Figure II.1b.  

 

The experiments were realized in the TU-Berlin wind tunnel (Figure II.2a). The dimensions of 

the tunnel are sketched in the figure below (Figure II.2b). The main section measures 2m 

width over 1.4m height and 10m in the stream wise direction. The blockage ratio induced by 

the model in the main section is evaluated at 2%. Effect of this blockage on the wall pressure, 

the Cd values and the velocity fields were evaluated thanks to previous measurements 

performed on the Drivaer model with equivalent dimensions (Wieser et al., 2014) in the same 

wind tunnel (Figure II.2b). The reference velocity measured at the Pitot tube remains constant 

in the far field around 30m/s. As the wind tunnel is not regulated, the internal temperature is 

measured it in order to correct the density deviation. Following numerical simulation will also 

validate the velocity acceleration due to this blockage. 

 

Figure II.1: Geometric features of the reduced scale generic SUV in millimeter: (a) 

Side view; (b) 3D view with a projected frontal area visualization. 
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The external flow conditions were defined with a Pitot reference point located at 63cm in 

front of the mockup nose and 1.084m from the floor (Figure II.3a and b). The wind tunnel 

flow rate was setup in order to have a reference velocity of 30m/s at the Pitot. This leads to a 

Reynolds number of 400 000 based on the mockup height. The static pressure is computed by 

applying an offset of the atmospheric pressure also measured at the Pitot tube. Turbulence 

intensity in the measurement section of the wind tunnel is below 0.5%. 

 

The campaign was achieved without moving floor condition and without rotating wheels. 

Therefore, the underbody flow is not completely similar to real driving condition but an 

evaluation of this discrepancy will be more widely discussed later on.  

2.1.2 Pressure sensors, PIV and actuators setup 

The flow description is realized with time resolved sensors, synchronized at high sampling 

frequency in order to capture spectral and cross-correlations information. The acquisition 

system used to characterize the pressure variations is constituted of 48 local pressure, 

distributed on the rear end tailgate (Figure II.4a) and sampled at 1600Hz during 1 minute 

(0.0167Hz frequency window). Additional wake measurements were achieved on the baseline 

flow with a synchronized two-dimensional high speed PIV. 

 

Figure II.2: (a) Picture of TU-Berlin wind tunnel; (b) Sketch of the wind tunnel dimensions. 

 

Figure II.3: (a) Picture of the POSUV mockup placed in the main section with the Pitot 

tube probe; (b) Sketch of the main section of the wind tunnel with a highlight on the Pitot 

tube located at 63cm from the nose of the mockup and 1.08m from the floor. 
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A steady-state external balance system was also used to measure the forces and torques 

applying on the mockup. 

The actuators selection was based on 2 different preliminary studies. Integration efficiency of 

the pulsed blowing micro-jets control were validated on previous experiments performed on a 

square back Ahmed body and on two different vehicle prototypes (see chapter 1). A detailed 

flow characterization of this pulsed jets behind a SUV vehicle prototype is presented in the 

work of (Eulalie et al., 2018a). However, efficiency on the wake losses of theses actuators 

integrated on the roof spoiler were not clearly evidence as the shear layer separation was 

already controlled by the sharp edge design. The other preliminary study performed on the 

Ahmed Body with a 47° slant angle (Edwige et al., 2018), reveals interesting prospects of the 

micro-pulsed jet placed on the lateral and bottom rear end in order to control the strong 

vortices impacting the rear end vertical base. This is the selected solution integrated on the 

POSUV mockup (Figure II.5a). 

Micro-jets of 2.5x0.5mm were evenly distributed along the edges of the rear bumper. The jets 

arrays are organized in 4 independent actuators placed on each lateral side and on lower edge 

(Figure II.5).  

 

The jet actuation consists in a pulsed blowing signal characterized by a frequency fi, a 

magnitude  Ai and a phase ϕi. Figure II.6b displays the command-acquisition system 

implemented during the experimental campaign. Two pneumatic circuits were setup providing 

the air flowrates separately for the lateral jet and the bottom jet groups (black and orange 

connection of Figure II.6b). Both circuits are symmetric according to the middle vertical plane 

of the mockup, which means that the same flow rate passes through the right and the left 

sides. According to Figure II.6b, this symmetrical constraint on the flow rate distribution 

 

Figure II.4: (a) Picture of experimental 48 pressure sensors distributed on the rear tailgate; 

(b) Time resolved 2D PIV acquisitions. 

 

Figure II.5: (a) Pictures of the rear end module with the discontinuous slots; (b) Sketch of 

the geometry of the slots in millimeter. 
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leads to the following conditions: Vj3 and Vj1 on the lateral edges and Vj2 and Vj4 on the lower 

edge. 

 

Both flow circuits were again subdivided in order to pass through 2 solenoids more. This 

setup enables to control 4 independent actuation frequencies: 2 on the lateral sides and 2 on 

the bottom edge. Therefore as presented on figure 75b, a total of 6 actuation parameters 

defined the design of experiment.  

The flow valve commands are defined as an opening percent. The resulting averaged flow rate 

value is deduced by a preliminary calibration thanks to the flowmeters. The characterization 

of the flow circuits as a function of the solenoid frequency and the valve opening is presented 

in (Figure II.7). The flow circuits are globally equilibrated. A maximum averaged flow rate 

value of 78L/min is measured for an actuation frequency between 50 and 150 Hz in the 

bottom circuit and at 50Hz in the lateral circuit. The measurements of the flowrate losses in 

the circuits give 18% reduction above 200 Hz. These abaqus will be used later in order to 

compare the flow rate magnitude of the optimal actuation solution. 

 

Finally, all sensors and actuators were connected to an acquisition card piloted driven by a 

Labview program preliminary implemented during the work of a previous PhD thesis (Varon 

et al., 2017c) and enhanced thanks to TU-Berlin development competencies. A bi-directional 

communication system was implemented between the Labview program and the optimization 

tool in Matlab. This allows the automated process between the sensors data and the reactive 

control parameters.  

 

Figure II.6: (a) Picture of actuators and sensors system; (b) Diagram of command-

acquisition system. 

 

Figure II.7: Surface distribution of flowmeter measurements in each pneumatic circuit: (a) 

Bottom circuit, (b) Lateral circuit. 
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2.1.3 Reactive flow control by machine learning with a genetic 

evolution process 

The research of an optimal operating point in order to increase the tailgate wall pressure and 

therefore to reduce the drag, is particularly challenging considering the size of the Design of 

Experiments (DOE). The spectral domain explored in a discretized logarithmic scale in the 

range of 0Hz (steady blowing) to 500Hz (according to the equipment feasibility) leads to 100 

frequency possibilities per solenoid. If we suppose a flow magnitude resolution of 5% in the 

range of 1% to 100%, this leads to 20 possibilities per flow valve. The resulting number of 

combinations in the DOE reaches 1004 × 202 = 4.1010 candidates. This is therefore essential 

to choose an efficient optimization strategy to identify a good operating point. 

Several options were considered. A machine learning technique based on a DMDc algorithm 

was tested (Figure II.8). The objective was to adjust dynamically the actuator command law 

to the pressure sensors behavior. However, some difficulties were encountered to converge 

toward a set of stable frequencies for the 4 valves. The calibration of the high frequency 

feedback loop was issuing robustness restriction in order to maintain the system in the range 

of the bounding domain conformed to the equipment limitation.  

 

The reactive control strategy appears to be more appropriate for the identification of an 

optimal control solution. The optimization procedure used in this work is a modification of 

the Machine Learning Control (MLC) algorithm developed by (Gautier et al., 2015) in 

Matlab. It is a model-free optimization tool suitable for the identification of the best operating 

point in a multi-parameters Design of Experiments (DOE). Contrary to a straightforward DOE 

exploration, the choice of the control parameters is determined by the previous measurements. 

Simultaneously, the injection of random input through mutation process, ensure a global 

exploration of the DOE for the research of an optimal solution. The initial input only requires 

the domain range of the control parameters. The exploration domain is then naturally bounded 

through generation evolution by the initial user settings. This prevents any risk of divergence. 

Except for the initial input, this method does not require any physical assumption and can be 

apply to any system. However, the model-free approaches are known to outcome non-trivial 

solutions which are often difficult to explain afterward. The result of the machine learning 

solution obtained in this campaign will be deeply analyzed thought cross-analysis 

investigations in sections 2.2.2 and 2.3.3. 

The jet actuations signals 𝑉𝑗 are defined as pulsed blowing jets based on the machine learning 

magnitude 𝐴𝑘and frequency parameters 𝑓𝑘 according to the function in Eq.30. This restriction 

comes from the characteristics of the available experimental solenoids. 

 

 

Figure II.8: System diagram of potential application of the DMDc for closed loop control. 
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𝑉𝑗𝑘 = 𝐴𝑘  . 𝐻(𝑓𝑘) Eq.30 

Where:  

H is the Heaviside function defining the pulsed blowing signal associated to the 

frequency 𝑓𝑘 and the flow magnitude 𝐴𝑘. 

 

First, the objective is defined in order to maximize the mean pressure on the tailgate during a 

measurement window of one minute of acquisition. The optimization problem is formulated 

as:  

Find the best combination of actuation parameters for the minimization of the cost 

function 𝒥 = −1 × 𝐶𝑝̅̅ ̅ from Eq.31. 

𝐶𝑝̅̅ ̅ =
1

𝑇
∫ 𝐶𝑝(𝑡)𝑑𝑡
𝑇

𝑡=0

 Eq.31 

Figure II.9 summarizes the Machine Learning algorithm used to determine the best actuation 

operating point in order to minimize the tailgate pressure loss. The workflow of the research 

algorithm consists in the evaluation of the cost function 𝒥 for multiple sets of actuation 

parameters. The evolutionary process based on the genetic algorithm selects the best sets and 

proposes new sets by evolution of the actuation solutions bringing the most potential. The 

new selection is then evaluated during the next generation. 

 

During the genetic evolution process, the control parameters are assimilated to characters 

defining an individual and a population is defined as a group of individuals. The genetic 

algorithm proceeds in three steps as shown in Figure II.10. Each individual in the population 

is tested during the first evaluation step yielding a cost function table. This is followed by a 

tournament step performed to sort the population. Then, the evolution processes are based on 

the transmission of best characters through elitism mechanism, replication to ensure the 

superiority of certain characters, cross-over in order to check if a combination of 2 individuals 

can yield better gain and mutation to inject new random characters in the population. The 

modified population gives the following generation to evaluate. 

 

Figure II.9: Reactive flow control algorithm used for the research of an efficient operating 

point for the reduction of the rear end pressure. 
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In this work, the genetic algorithm is operated on a population of 51 individuals per 

generation, evolved at 19% by mutation, 69% by cross-over, 10% by replication and 2% by 

elitism. A total of 16 generations, corresponding to 816 acquisitions, was tested in order to 

converge towards the optimal solution. 

2.2 Comparison of the time averaged flow topology 

First, a global description of the baseline flow is achieved in order to ensure the physical 

reproduction of the flow developing around a realistic car mockup despite the static wheels 

and floor. Once we validated the representativeness of the flow behavior around the POSUV, 

we will present the results of the best active flow control solution on the time averaged rear 

end pressure topology. 

2.2.1 Topology of the time averaged baseline flow  

According to paragraph 2.1.2, the pressure averaged and RMS are computed on 96000 

snapshots sampled during 1 min. The baseline flow is characterized by a low pressure area 

localized on the rear bumper and the lower part of the tailgate while there is higher pressure 

level on the rear window (Figure II.11a). This pressure distribution is in accordance with 

averaged pressure fields measured behind realistic SUV vehicles, presented in the literature 

survey in paragraph 1.1.  

A mean value of 𝐶𝑝̅̅ ̅ = −0.23 was measured on the rear end with a total drag force of 

𝐶𝑑 = 0.36, which is higher than the value of 0.32 generally obtained on SUV cars. The ratio 

between the rear pressure loss and the total aerodynamic force reaches 64% instead of 40% 

for realistic cars. The high value of drag coefficient can be correlated to the over contribution 

of the rear end pressure loss. 

 

Figure II.10: Evolution process implemented in the genetic program.  
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However, the tunnel effect and the no-moving floor are known to affect the strength of the 

rear end vortices. Usually, the moving road condition induces a ripple effect on the boundary 

layer of the floor. Without this condition, there is presumably higher blockage in the 

underbody flow affecting the detachment on the rear bumper corners. Despite this 

discrepancy, the time averaged rear end distribution is representative of the realistic flow.  

To go further, the baseline wake flow was characterized thanks to high speed 2D PIV 

measurements performed by TU-Berlin team on the vertical transverse cut-plane Y0 and the 

horizontal transverse cut-plane at 140mm from the floor. The image processing from the PIV 

measurements exhibits noises due to laser reflection in the close vicinity of the mockup. The 

final cut-planes were restricted at a distance of 10mm from the rear bumper. The time 

averaged field, in Figure II.12, displays the recirculation zone responsible of the pressure loss 

in the wake. The Y0 cut-plane reveals a backflow generated from the detachment of the 

bottom rear bumper (Figure II.12a). There is no clear evidence of backflow from the roof 

spoiler separation. The wake topology in the horizontal cut-plane (Figure II.12b) is 

symmetrical and two main vortices emerged from the lateral rear bumper separation. The 

backflow pointing toward the tailgate explains the pressure drop on the rear end pressure. 

 

The velocity fluctuations measured in the wake show a high contribution of the shear layer 

mixing effect from the bottom rear bumper separation but even more from the roof spoiler 

separation (Figure II.13a). However, the turbulence induced in the bottom shear layer has 

more effect on the rear bumper pressure fluctuations reaching a RMS magnitude of 0.024 on 

the rear bumper as shown in (Figure II.11b). In addition, pressure fluctuations measured on 

the lateral sides of the rear bumper can also be related to the velocity fluctuations induced in 

the Z140 cut-plane (Figure II.13b). 

 

Figure II.11: Time averaged rear end pressure coefficient distribution corresponding to a 

mean value of 𝐶𝑝̅̅ ̅ = −0.23. 

 

Figure II.12: Time averaged PIV measurements of the stream wise velocity in: (a) Y0 

cut-plane; (b) Z140 cut-plane. 
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Even, if the maximum of velocity fluctuations are situated on the roof shear layer, the top 

shear layer fluctuations do not significantly affect the pressure distribution on the tailgate. The 

pressure fluctuations on the rear bumper prove the important effect of the bottom and lateral 

shear layers on the pressure loss. The vicinity of the vortices on the bottom part of the rear 

bumper confirms the choice of the active flow control placed on the rear bumper corners. 

2.2.2 Time averaged results of the active flow control  

Description of the baseline flow explains the selected blowing jet geometry presented in a 

previous paragraph. The reactive flow control optimum Cd result based on genetic algorithm 

leads to the active flow control parameters displays in Figure II.14. The algorithm promoted 

high frequency parameters especially on the underbody slots. In addition, the jet flow 

magnitude was set at 15% valve opening on the sides instead of 50% on the bottom. This 

means that the control system does not require as much momentum for the control of the 

lateral detachment then for the underbody flow. Depending on the pressure loss in the bumper 

ducts, abaqus of Figure II.7 suggests that the flowrate in the lateral jets reaches 15L/min while 

the flowrate on the bottom jets is estimated at 30L/min.  

We can also notice that without any constraint imposed on the AFC parameters, the algorithm 

did not converge toward a symmetrical control configuration despite the symmetrical time 

averaged baseline flow. The setup imposed a symmetric flowrate but frequencies do not 

follow the symmetry condition. We can question the sensitivity of the system to the 

unsymmetrical actuation. To argue on this point, we have to investigate on how the 

introduction of a bias in the lateral shear layers contributes to the modification of the wake 

balance. 

 

The time averaged rear end distribution remains approximately symmetrical as shown in 

Figure II.15a. The active flow control leads to a mean pressure coefficient of -0.19 

corresponding to a gain of 20% compared to the baseline pressure loss.  

 

Figure II.13: RMS of PIV measurements of the stream wise velocity in: (a) Y0 cut-plane; 

(b) Z140 cut-plane. 

 

Figure II.14: Best operating point identified with the machine-learning algorithm. 
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A deviation of 0.018 on the RMS of the pressure coefficient (Figure II.15b) is measured 

around the averaged  𝐶𝑝 instead of 0.024 in the baseline flow.  

To go deeper in the understanding of the influence of the active flow control on the tailgate 

pressure behavior, Dynamic Modal Decomposition is achieved. 

2.3 Modal cross-analysis  

The previous paragraph shows the global characteristics of the wake flow behind the SUV in 

the baseline and the controlled cases. The analysis of the temporal flow behavior requires 

more sophisticated mathematical tools. This work is particularly pertinent to understand the 

non-trivial result of the machine learning. 

In this paragraph, we will begin with a presentation of the Sparsity Promoting Dynamic 

Modal Decomposition applied on the experimental results. A first modal analysis will be 

performed on the baseline flow in order to capture the reference flow dynamics. Then, an 

extension of the modal decomposition will be proposed to enhance the identification of 

singularities and changes between the modal decompositions of the baseline and controlled 

flow. 

2.3.1 Hypothesis and method  

The modal analysis proposed in this work is based on multiple assumptions. 

Synchronized variables measuring different physical quantities (for instance velocity and 

pressure) may have shared deterministic information, which can be bring out by a cross-

correlation analysis. For instance, acoustic studies often use pressure-displacement 

correlations to extrapolate noise sources. 

(𝑓 ∗ 𝑔)(𝜏) = ∫ 𝑓∗(𝑡). 𝑔(𝑡 + 𝜏 )𝑑𝑡
∞

−∞

 Eq.32 

Where : 

𝑓 and 𝑔 are 2 continuous functions. 

𝑓∗ is the complex conjugate of 𝑓 

 

 

Figure II.15: (a) Time averaged pressure coefficient and (b) RMS of the pressure coefficient 

of the controlled flow. 
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If 2 non-synchronized databases, obtained by different techniques (whether by different 

sensors equipment or by different computation solvers), contains a shared information, it can 

be extracted by statistic correlation analysis. This assumption allows the concatenation of the 

PIV database from the horizontal cut-plane Z140 and the vertical cut-plane Y0 plus the rear 

end pressure. 

The Dynamic Modal Decomposition provides an interpretation of the flow behavior 

emphasizing the periodicity existing in the data dynamic. It is based on the discrimination of 

the phased synchronized information contained in a database. If two non-synchronized 

databases contained shared spectral information, the in-phase signals discrimination extracts 

the shared periodic features, assuming that all sensors and probes have the same acquisition 

sampling frequency. This means that the application of the DMD on the concatenation of 

experiments and numerical databases should exhibit the synchronized periodic mechanisms in 

both experiments and CFD results. The DMD matrix A contains the phase shift information 

of the flow and can be formulated as shown in Figure II.16. It corresponds to the linear 

decomposition of each snapshot in the shifted database Ψ2 as a function of the previous 

snapshot in the original database Ψ1. Giving the size of the problem, the computation of A by 

inversion of Ψ1 is not a conceivable option.  

 

However, a projection of the matrix A can be obtained thanks to a preliminary Singular Value 

Decomposition (SVD) decomposition of Ψ1 (Eq.34). The SVD is a factorization process, 

which can be applied on any matrix type. For a database Ψ1 defined as time-space 

fluctuations, the SVD factorization can be formulated as in Eq.33. Statistically, column 

vectors of U can be understood as the spatial distribution of main varying mechanism extract 

in the database. The associated singular values decomposition corresponds to the 

representativeness of the mechanism in the initial sample and the matrix V can be associated 

to the occurrence signal of the mechanism during the acquisition.  

Ψ1 = 𝑈Σ𝑉∗ Eq.33 

Where 

U the unit matrix containing the left eigenvectors of Ψ  

          (𝑈∗𝑈 = 𝐼𝑛) 

𝑉∗ the adjoint of 𝑉, a unit matrix containing the right eigenvectors of Ψ  

                                 (𝑉∗𝑉 = 𝐼𝑛) 

Σ = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, … , 𝜎𝑟)  the diagonal matrix containing the singular values of 

Ψ, with 𝑟 = 𝑟𝑎𝑛𝑘(Ψ) 

 

 

Figure II.16: Linear decomposition formulation used for DMD analysis; the matrix A 

corresponds to the phase shift matrix measured between each snapshot. 
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There is a straightforward relation between SVD and Proper Orthogonal Decompositions 

(POD) since the matrix U corresponds to the spatial POD modes, the matrix V corresponds to 

the snapshots POD eigenvectors and the singular values are equal to the square roots of the 

POD eigenvalues. This gives a powerful tool to extract the statistically correlated information 

in the database (Figure II.17). In the following section, the matrix 𝑈 will denote the POD 

matrix. 

 

The computation of the matrix A can be obtained by replacing Ψ1 with its SVD formulation. 

This leads to a 𝑛 × 𝑛 dense matrix, which is almost impossible to decompose in eigenvectors. 

A low order (𝑚 − 1 × 𝑚 − 1) matrix �̃�, is obtained by projection in the POD orthogonal 

basis (Eq.35). �̃� is called the DMD matrix and have similar eigenvalues than 𝐴.  

�̃� = 𝑈∗𝐴𝑈 = 𝑈∗Ψ2𝑉Σ
−1 Eq.35 

Where : 

�̃� is the DMD matrix projected in the POD base. 
 

The phase decomposition is computed with the 𝑚 − 1 eigenvalues 𝜇𝑘 and eigenvectors 𝑌𝑘 of 

matrix �̃� (Eq.36). Since �̃� is not definite positive, these eigenvalues and eigenvectors are 

complex. 

�̃�𝑌 = 𝑌𝐷𝜇 Eq.36 

Where : 

𝐷𝜇 is the diagonal matrix of complex eigenvalues 𝜇𝑘 of �̃� 

𝑌 are the complex eigenvectors of �̃�.  

 

The associated DMD spatial modes Φ are obtained by projection of the eigenvectors on the 

POD matrix U (Eq.37). 

Φ = 𝑈𝑌 Eq.37 

𝐴 = Ψ2Ψ1
−1 = Ψ2𝑉Σ

−1𝑈∗ Eq.34 

Where : 

Ψ1 = 𝑈Σ𝑉∗ and Ψ1
−1 = 𝑉Σ−1𝑈∗ 

 

 

Figure II.17: Scheme of the SVD of a database decomposed into POD modes associated to an 

energy level and a dynamic signal. 
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The phase shift matrix 𝐴 can be reduced to a simple expression depending on the dmd mode 

Φ and the eigenvalues as demonstrated in Eq.38. 

𝐴 = 𝑈�̃�𝑈∗  ⟺  𝐴 = Φ𝐷𝜇Φ
−1 Eq.38 

Based on the linear formulation of Ψ2 = 𝐴Ψ1, 𝐴 appears to be the ratio in the geometric series 

of the snapshot 𝑃𝑘 as shown in Eq.39.  

∀ 𝑘 ∈ [2;𝑚], 𝑃𝑘 = 𝐴𝑃𝑘−1 = 𝐴𝑘−1𝑃1 

𝑃𝑘 = Φ𝐷𝜇
𝑘−1Φ−1𝑃1 

Eq.39 

An analytic formulation can be found by recurrence, iterating until the initial snapshot, based 

on the eigenvalues 𝐷𝜇, the DMD modes Φ and a constant magnitude vector 𝐷𝛼 (Eq.40). 

𝑃𝑘 = Φ𝐷𝜇
𝑘−1𝐷𝛼 Eq.40 

Where :  

𝐷𝛼 is a diagonal matrix of complex coefficients 
 

The complex part of the eigenvalues 𝜇𝑗 gives the periodic pulsation per mode while the real 

part gives the temporal damping or growing of the mode.  

𝜇𝑗 = 𝑒
(𝜎𝑗+𝑖2𝜋𝑓𝑗) 𝛿𝑡 Eq.41 

Where :  

𝑓𝑗 =
ℑ(ln(𝜇𝑗))

2𝜋.𝛿𝑡
 is the frequency associated to the eigenvalue 𝜇𝑗 

𝜎𝑗 =
ℜ(ln(𝜇𝑗))

𝛿𝑡
 is the growth or decay rate associated to the eigenvalue 𝜇𝑗 

𝛿𝑡 is the time step between the snapshots 

 

Taking the real part of Eq.40, any snapshots of the database can be expressed as Eq.42 and 

illustrated in Figure II.18. 

𝑃𝑘 = ∑ 𝑒𝑘.𝜎𝑗.𝛿𝑡. [cos(2πf𝑗 . k. δt) × ℜ(𝛼𝑗Φj) − sin(2πf𝑗 . k. δt) × ℑ(𝛼𝑗Φj)]

𝑚−1

𝑗=1

 Eq.42 

Where :  

𝑓𝑖 =
ℑ(ln(𝜇𝑖))

2𝜋.𝛿𝑡
 is the frequency associated to the eigenvalue 𝜇𝑖 

𝜎𝑖 =
ℜ(ln (𝜇𝑖))

𝛿𝑡
 is the growth or decay rate associated to the eigenvalue 𝜇𝑖 

𝛼𝑖 the magnitude associated to the mode Φ𝑖 

𝛿𝑡 is the time step between the snapshots 

 

 

 

Figure II.18: Interpretation of the database reconstruction based on the DMD decomposition. 
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DMD is a powerful tool to perform spectral decomposition related to a 3D map of where the 

identified frequencies are significant. In addition, the complex modes Φ give the information 

of phase delay between the different sample nodes in the fluid flow.  

At this stage, the magnitudes are still unknown. They are obtained by resolving the 

minimization problem on the residual between the initial database and the reconstructed 

database (Eq.43).  

𝜖 = ‖Ψ1 −ΦDαVand‖ Eq.43 

Where : 

ϵ is the residual between the initial and the reconstructed. 

𝑟 is the rank of the SVD decomposition. 

𝑉𝑎𝑛𝑑 is the Vandermond matrix obtained by stacking the column vectors 𝜇𝑘−1:  

                 𝑉𝑎𝑛𝑑 =

[
 
 
 
1 𝜇1 ⋯ 𝜇1

𝑚−1

1 𝜇2 ⋯ 𝜇2
𝑚−1

⋮ ⋮ ⋱ ⋮
1 𝜇𝑟 ⋯ 𝜇𝑟

𝑚−1]
 
 
 
   

 

Introducing the SVD decomposition into Eq.43, and the mode definition of Eq.37, the 

residual can be expressed as Eq.44. 

𝜖 = ‖𝑈Σ𝑉∗ − 𝑈𝑌𝐷𝛼𝑉𝑎𝑛𝑑 ‖ Eq.44 

By factorization of 𝑈, the magnitude vector 𝐷𝛼, solution of the minimization problem Eq.43, 

is also the solution of the minimization of 𝜖̃ defined as Eq.45. 

𝜖̃ = ‖Σ𝑉∗ − 𝑌𝐷𝛼𝑉𝑎𝑛𝑑‖ Eq.45 

(Jovanović et al., 2014b) demonstrated that the magnitudes vector of Eq.46 is the optimal 

solution of this minimization problem.  

𝛼 = ((𝑌∗ 𝑌) ∘ (𝑉𝑎𝑛𝑑 𝑉𝑎𝑛𝑑
∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

−1
 𝑑𝑖𝑎𝑔(𝑉𝑎𝑛𝑑 𝑉 Σ∗𝑌)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ Eq.46 

 Sparsity optimization problem  

The Sparse Promoting DMD goes further and suggests resolving this minimization problem 

with an additional constraint on the number of non-zeros contribution. To do so, as shown in 

(Jovanović et al., 2014a), this minimization problem is equivalent to the unconstraint problem 

of minimization of the Lagrange functional: 

ℒ = 𝐽(𝑎) + 𝛾 ∑|𝑎𝑚|

𝑁−1

𝑚=1

 Eq.47 

Where :  

𝐽(𝛼) is the cost function associated with the reconstruction residual. 

𝛾 is the Lagrange multiplier vector. 

 

The cost function can be expressed as:  

𝐽(𝑎) = 𝑎∗�̃�𝑎 − 𝑞∗𝑎 − 𝑎∗𝑞 + 𝑠 Eq.48 

Where :  

�̃� = (𝑌∗𝑌) ∘ (𝑉𝑎𝑛𝑑𝑉𝑎𝑛𝑑
∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  
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𝑞 = 𝑑𝑖𝑎𝑔 (𝑉𝑎𝑛𝑑𝑉Σ∗𝑌)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

𝑠 = 𝑡𝑟𝑎𝑐𝑒(Σ∗Σ)  
𝑉𝑎𝑛𝑑 the Vandermonde matrix constructed with the eigenvalues 

𝑉𝑎𝑛𝑑 =

[
 
 
 
1 𝜇1 ⋯ 𝜇1

𝑁−1

1 𝜇2 ⋯ 𝜇2
𝑁−1

⋮ ⋮ ⋱ ⋮
1 𝜇𝑟 ⋯ 𝜇𝑟

𝑁−1]
 
 
 
 

This optimization problem is resolved with a dual ascend method iterative algorithm provided 

in (www.umn.edu/~mihailo/software/dmdsp/).  

2.3.2 Pressure-velocity cross-analysis of the baseline flow 

The objective is to understand the flow behavior responsible for the pressure loss on the rear 

tailgate for the baseline flow. The correlation with the wake velocity dynamic behavior is then 

obtained with a cross analysis between PIV measurements synchronized at 2000Hz with the 

rear end pressure probes. This gives a dynamic model of the wake flow. 

 DMD of the rear pressure baseline flow 

First, a DMD analysis is applied on the rear end only. The Sparsity Optimization algorithm 

converged toward a minimal error with a Lagrangian multiplier at 𝛾 = 7 corresponding to a 

512 non-zero modes required to characterize the pressure dynamic (Figure II.19).  

 

The modal magnitude contributions are normalized thanks to an overall modal energy 

estimation 𝛼𝑡𝑜𝑡 gathering the steady state contributions 𝛼𝑠𝑡𝑒𝑎𝑑𝑦 plus the contribution brought 

by the fluctuating part. It is an analogy to the evaluation of total kinetic energy as a 

summation of the energy from the time averaged quantity and the energy due to the 

fluctuations due to the turbulence.  

𝛼𝑡𝑜𝑡 = 𝛼𝑠𝑡𝑎𝑡𝑖𝑐 + 𝛼𝑟𝑚𝑠 Eq.49 

Where: 

𝛼𝑠𝑡𝑎𝑡𝑖𝑐 = ∑ [|𝛼𝑚|. (𝑖𝑓 𝑓𝑚 = 0)] 𝑚  is the contribution of the static mode. 

𝛼𝑟𝑚𝑠 = ∑ [√𝛼𝑚 𝛼𝑚∗. (𝑖𝑓 𝑓𝑚 ≠ 0)] 𝑚  is the contribution of the oscillating 

 

 

Figure II.19: Sparsity optimization convergence. 

http://www.umn.edu/~mihailo/software/dmdsp/


Modal cross-analysis 69 

modes. 

This formulation gives a direct estimation of the modal intensity 𝛼/𝛼𝑡𝑜𝑡 per mode. The results 

of the DMD on the baseline rear end pressure highlight the ratio between the static mode 

compared to the overall modal energy. Indeed 95% of the total DMD magnitude is embedded 

in this static component, displayed on the yellow box of Figure II.20. The pressure 

fluctuations responsible for the oscillation around the static mode are distributed between 

several frequencies mainly below 10Hz. Important DMD modes at 1.8Hz and 9.3Hz appear to 

be symmetrical homogeneous pressure fluctuations on the rear tailgate while 4.3Hz and 8.2Hz 

are antisymmetric components associated to vertical oscillations. High frequency modes at 

81Hz, 90Hz influence the rear end pressure especially on the sides of the tailgate. This is 

presumably the spectral signature induced by the shear layer turbulence from the separation 

on the sides of the rear bumper. 

 

This result gives a pertinent description of the rear end pressure spectral characteristics. A 

deeper investigation is required to understand the relation between the low and high frequency 

modes. We also need to explain the amount of energy bring in the static mode.  

 From coherent wake velocity fluctuations to tailgate periodic behavior 

According to the assumptions discussed in section 2.3.1, a cross modal analysis based on the 

PIV measurements plus the rear end pressure gives the correlated periodical modes between 

the wake and the rear end pressure fluctuation. The resulting modal distribution is 

significantly different compared to the rear end pressure alone. In the horizontal cut-plane at 

Z140 (Figure II.21), the modal energy is governed by low frequency fluctuations at 0.8Hz, 2.5 

and 7Hz. Between 10Hz and 100Hz, the modal fluctuations are more widely distributed 

between the DMD modes except for the peak at 17Hz. 

 

Figure II.20: Energy distribution as a function of the frequency obtained on the Dynamic 

Modal Decomposition of the rear end pressure sensors distributed on the tailgate on the 

database of the uncontrolled flow sampled at 2000Hz during one minute of acquisition. 

Main DMD components are highlighted and the associated DMD modes are plotted. (See 

Appendix 1 for a larger view). 
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The motion due to the low frequency modes is analyzed thanks to the field reconstruction 

with the DMD frequencies below 10Hz. The rear end pressure dynamics evidence a swirling 

motion affecting the position and the intensity of the low pressure area on the tailgate (Figure 

II.22). This is associated to a horizontal flapping motion of the wake recirculation especially 

visible thanks to the backflow centerline direction (pink arrows on Z140 cut-planes of Figure 

II.22). The straight wake orientation generates a high pressure on the rear window and on the 

cavity of the license plate. The swirling motion tends to push the low pressure area 

alternatively on each side of the tailgate and slightly affect the rear window. The oscillation 

magnitude of this motion is not perfectly balanced around the centered position since the 

motion on the right goes higher than on the left side. This could mean that the flow is 

sensitive to side effects explaining that the wake motion was more constraint on the passenger 

side during the experimental measurements. 

 

The DMD results with the vertical Y0 cut-plane give additional information on the wake 

behavior (Figure II.23). In this cut-plane, the low frequency modes are less dominant and the 

 

Figure II.21: Projection of the cross modal decomposition as a function of the frequency on 

the horizontal Z140 cut-plane synchronized with the rear end pressure. (See Appendix 2 

for a larger view). 

 

Figure II.22: Reconstruction of the cross-DMD pressure coefficient correlated to the wake 

velocity based on the DMD modes below 10Hz. 
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vertical wake motion is driven by 38Hz and 50Hz modes even if low frequency modes at 2Hz 

and 9Hz are still visible. 

 

Thanks to the field reconstruction, the low frequency components observed on the rear end 

pressure are correlated to the vertical sweeping motion of the backflow coming from the 

underbody (Figure II.24).  

 

 Discussion 

We can already conclude on the impact of the low frequency motion applied on the rear end 

pressure. However, the wake analysis reveals the existence of much complex flow dynamics 

with the frequency of 17Hz contained in the velocity fluctuations of the Z140 cut-plane and 

until 50Hz in the Y0 cut-plane. This demonstrates the complexity of the wake despite the 

finite number of periodic components required to characterize the flow dynamic. This shows 

the interaction between the tailgate pressure dynamics and the wake turbulent behavior. The 

following analysis based on the controlled flow allows the identification of the energy transfer 

process applied on the tailgate pressure loss. 

  

 

Figure II.23: Projection of the cross modal decomposition on the vertical Y0 cut-plane. 

(See Appendix 3 for a larger view). 

 

Figure II.24: Periodic vertical motion observed on the reconstruction of the 2Hz DMD 

mode. 
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2.3.3 AFC and baseline pressure cross-analysis  

The previous section highlights the dynamics of the rear end pressure and the interaction with 

the wake motion. Based on the previous understanding, we can now emphasize how the 

actuation changes the pressure dynamics and how injected momentum in specific frequency 

range is an efficient solution to reduce pressure loss.  

In this section, the pressure dynamics of the rear end baseline flow will be investigated. The 

DMD results applied on the controlled flow will be used to demonstrate the change of energy 

distribution between the low and the high frequency. Finally, the cross modal analysis will 

highlight the singularities emerging with the control and the contribution damped based on a 

common spectral base. 

 DMD of the controlled rear end pressure 

The rear end pressure DMD of the controlled flow is displayed in Figure II.25. First, in the 

case of the controlled flow, the static mode contributes to 94% of the total energy. The 

spectral distribution reveals that the low frequency modes below 10Hz, that were dominant in 

the baseline flow decreased below 1% of the modal energy breakdown. The actuation 

frequencies emerged on the pressure DMD spectra at 293Hz, 374Hz and 430Hz but most 

importantly at 93Hz. The associated spatial DMD modes reveal which pressure probes carries 

the actuation frequencies. The high frequency of the bottom jet at 374Hz and 430Hz is 

directly measurable on the probes of the rear bumper and most importantly at the center of the 

tailgate (green and blue boxes on Figure II.25). The pulsed jets from the lateral slots have a 

wider impact on the rear end pressure sensors. The pulsed jet on the right side at 293Hz (red 

box on Figure II.25) is visible on the probe at the bottom right but also on the probe of the 

centerline. The pulsation of the jet on the left slots at 93Hz (pink box on Figure II.25) is also 

synchronized with the pressure modal fluctuations acting on both sides of the rear bumper. 

 

The DMD analysis shows a damping of 19% of the static mode in the controlled flow 

compared to the baseline database. This is in accordance with the gain measured on the time 

averaged cost function but we still have to understand the energy transfer occurring between 

frequencies explaining influence of the actuation on the static mode. The method developed in 

the following section provides answers to this question. 

  

 

Figure II.25: DMD spectra of the rear end pressure for the controlled flow. (See Appendix 

4 for a larger view). 
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 Cross DMD with and without control on the pressure 

The change in energy transfer occurring between the baseline and controlled flow can be 

estimated thanks to correlate quantities between periodic components. First, the modal 

decomposition applied to the concatenation of the baseline and controlled data gives a 

common spectral base between the two acquisitions. It should be mentioned that even if the 

two databases were measured separately, the cross-analysis is valid since there is a common 

sampling frequency between each snapshots and the phase delay is maintained constant.  

A block decomposition of the resulting DMD modes highlights shared spectral components or 

singularities belonging to only one component. Since the matrix Φ is a unit matrix, the 

evaluation of the magnitudes of each vector in the block matrices Φ𝑟𝑒𝑓 and Φ𝑎𝑓𝑐 gives an 

estimation of the energy distribution between the baseline flow and the controlled per DMD 

mode as shown in Eq.50. 

Φ = [  
Φ𝑟𝑒𝑓

Φ𝑎𝑓𝑐

  ] = [
𝐸𝑟𝑒𝑓
dmd 0

0 𝐸𝑎𝑓𝑐
dmd 

] × [
Φ𝑟𝑒𝑓
1

Φ𝑎𝑓𝑐
1 ]  Eq.50 

Where: 

Φ is the DMD modes matrix. 

Φ𝑟𝑒𝑓 and Φ𝑎𝑓𝑐 are respectively the baseline/controlled block matrices. 

Φ𝑟𝑒𝑓
1  and Φ𝑎𝑓𝑐

1  are the normalized baseline/controlled modes. 

𝐸𝑟𝑒𝑓
𝑑𝑚𝑑  and 𝐸𝑎𝑓𝑐

𝑑𝑚𝑑  are 𝑚 ×𝑚 diagonal matrices containing the energy contribution of 

respectively baseline/afc database in DMD modes. 

The contribution of baseline and AFC is obtained using the energy evaluation from the block 

matrix. The ratio between numerical and experimental contributions in cross-DMD analysis is 

obtained as shown in Eq.51. 

𝛼𝑟𝑒𝑓 = 𝐸𝑟𝑒𝑓
𝑑𝑚𝑑 × 𝛼 𝛼𝑎𝑓𝑐 = 𝐸𝑎𝑓𝑐

𝑑𝑚𝑑 × 𝛼 𝑟𝑎𝑓𝑐 =
‖𝐸𝑎𝑓𝑐

dmd‖

‖𝐸𝑟𝑒𝑓
dmd‖

 Eq.51 

Where:  

𝛼 is the magnitude from the cross DMD 

𝛼𝑟𝑒𝑓 and 𝛼𝑎𝑓𝑐 are respectively the magnitudes of the baseline/afc mode. 

𝑟𝑎𝑓𝑐 is the ratio of afc/baseline contribution in each DMD mode. 

 

The energy per case is plotted in Figure II.26 and Figure II.27. Here, the cross-DMD exhibits 

the emergence of modal oscillation at the actuation frequencies. In addition, the low 

frequency components driving the baseline pressure dynamics show the damping at 0.9Hz, 

8Hz and 11Hz. This demonstrates how the actuation efficiently changed the energy 

distribution per spectral component. 

 

 

Figure II.26: Synchronized periodic components emerging from the cross-DMD analysis. 
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This method has the benefit to identify which spectral components are responsible for the 

increase or the damping of baseline periodic features compared to the control flow. We want 

to go further to demonstrate the energy transfer occurring with the actuation and responsible 

for the change of the static mode contribution. 

 Relation between frequency and turbulent coherence 

As we performed a preliminary SVD decomposition, the matrix U provides an orthogonal 

decomposition of the flow dynamics and the square of the singular values give an evaluation 

of the POD energy. Thus, the coherent behavior embedded in the two databases is also 

extracted. In addition, as the SVD is directly performed on the transient data instead of the 

fluctuating data (obtained by suppression of the time averaged field), the first orthogonal 

mode gives the time averaged distribution because it is statistically the most representative 

state of the flow (Figure II.28).  

 

  

 

Figure II.27: Result of cross DMD between baseline and controlled rear end pressure 

database. The components highlighted in blue in the background correspond to the 

frequencies, which were vanished with control. 

 

Figure II.28: (a) Correlated POD energy distribution obtained on the concatenated baseline 

and controlled rear end pressure; (b) ratio of the controlled flow energy compared to the 

baseline modal energy 



Modal cross-analysis 75 

In this cross-analysis, each mode gives the correlated information between controlled and 

baseline flow. The AFC ratio per POD mode (Figure II.28b) is extracted in a same way as for 

the concatenate cross-DMD analysis. Indeed, peaks above 100% means that the correlated 

modes are stronger in the controlled flow compared to the baseline, while those below 100% 

correspond to modal components that were damped with the control. We can see how the 

energy brought by the correlated modes is reduced for the static component but increased for 

the first energetic POD modes index 2, 4, 5 and 6 (Figure II.28b). This provides an exact 

estimation of the flow modification, not even on the time averaged and RMS comparison but 

on the coherent behavior existing in both databases. 

In addition, the decomposition of the flow fluctuations based on periodicity criterion for 

DMD and coherence for POD gives two descriptions for the same database. These two 

descriptions are both pertinent but do not give the same information. That is why we propose 

to compute the transfer matrix between these two basis in order to give a combination of the 

periodic behavior with the coherent structures of the flow. This is done by projection of the 

DMD base into the POD base as shown in Eq.52. 

𝑈 = Φ𝑊                      𝑈𝑗 = ∑ 𝑤𝑖𝑗Φ𝑖
𝑚−1
𝑖=1  

𝑊𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑑𝑖𝑎𝑔(𝛼𝑟𝑒𝑓)𝑊 𝑊𝑎𝑓𝑐 = 𝑑𝑖𝑎𝑔(𝛼𝑎𝑓𝑐)𝑊 
Eq.52 

Where : 

𝑊 = 𝑌−1 is the weight matrix balancing DMD modes contribution in POD 

decomposition 

𝑤𝑖𝑗 are the weight of each DMD mode 𝑖 in the POD mode 𝑈𝑗. 

 

Thanks to that method, we can extract the correlated periodic allowing the characterization of 

the pressure dynamic. Contrary to the POD temporal evolution, which cannot be model by an 

analytic formulation, the correlated periodic mechanism, associated to each POD mode, is a 

combination of several frequencies weighted by a correlation factor 𝑊𝑘 as shown in Figure 

II.29. 

 

This approach applied to the concatenate controlled and baseline rear end pressure leads to the 

transfer matrix 𝑊 displayed in Figure II.30 with a logarithmic color scale. This gives a 

complete visualization of the energy transfer occurring in the wake flow. Indeed, we can see 

that a significant amount of energy measured in the first 10 POD modes is brought by the low 

frequency DMD components below 50Hz while the higher frequencies behave as dissipative 

mechanisms. Moreover, the transfer matrix also gives a criterion on the physics of the modal 

components since the region where no coherence is measured can be related to residual noise. 

 

Figure II.29: Correlated periodic mechanisms model associated to each POD mode and 

based on the transfer matrix coefficient. 
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The great advantage of the POD/DMD transfer matrix is that we can determine the influence 

of the fluctuating coherent modes with the 0Hz DMD static mode. The goal is to propose a 

definition of the turbulent mechanisms responsible for the aerodynamic loss thanks to a modal 

formulation taking into account the multi-frequency energy transfer. 

 Modal cascade driving the wake motion involved in the static mode 

Figure II.31 and Figure II.32 present the research procedure developed to analyze the modal 

energy transfer process. The benefit of this methodology is also to apprehend the flow 

coherence emerging in the control flow and responsible for the aerodynamic loss reduction. 

The projection of the DMD 0Hz static mode on the POD base results in the identification of 

correlated mechanisms associated with the POD modes Φ𝑝𝑜𝑑(2), Φ𝑝𝑜𝑑(4) and Φ𝑝𝑜𝑑(8). 
These are the fluctuating contributions affecting the time averaged flow topology. The ratio of 

the controlled flow, displays in Figure II.31a, demonstrates that these components were 

amplified thanks to the actuation. The correlated POD modes are displayed in Figure II.32a. 

Φ𝑝𝑜𝑑(2) appears to be a vertical motion of the pressure fluctuations distributed between the 

slant and the bottom tailgate. The projection of the spectral components driving Φ𝑝𝑜𝑑(2) in 

Figure II.32b, highlights low frequency oscillations at 1.8Hz and 9.3Hz. The spatial mode 

Φ𝑝𝑜𝑑(4) exhibits pressure fluctuations located on the bottom of the rear end tailgate in 

opposition to the pressure fluctuation on the sensors on license plate at the center of the 

pressure map. Φ𝑝𝑜𝑑(4) is a combination of low frequency oscillating motions at 4.3Hz and 

8.2Hz. In addition, Φ𝑝𝑜𝑑(8) is the first mode coupling high frequency fluctuation above 80Hz 

localized on the lateral edges of the rear bumper and the low frequency 9.3Hz. 

 

Figure II.30: Logarithm of the weight matrix W highlighting the energy production and decay 

as a function of the POD index and of the DMD frequency. 
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The flow description, performed here, underlines the complexity of the spectral information 

existing on the rear tailgate. The transfer function between POD and DMD gives however an 

appropriate way to interpret the interactions between the spectral signatures existing in the 

flow. This leads us to the idea that the low frequency behavior responsible for the static 

pressure loss on the rear end is strongly correlated to high frequency features through a chain 

reaction. The fact that the correlated modes Φ𝑝𝑜𝑑(2), Φ𝑝𝑜𝑑(4) and Φ𝑝𝑜𝑑(8) are reinforced by 

the control, proves that the associated coherent mechanisms were enhanced by the pulsed 

blowing jet. Since it was demonstrated that the energy distribution has been reallocated in the 

control flow, we can assume that the jet high frequency quantity momentum changed the 

cascade transfer process. Consequently, we can conclude that the high frequency actuation 

participates to the damping of the low frequency motion on the tailgate. 

 

Figure II.31: Correlations with the 0Hz static DMD mode showing the influence of the 2nd, 

the 4th, and the 8th POD modes. 

 

Figure II.32: (a) Spatial distribution of the POD modes affecting the 0Hz static DMD 

component; (b) Correlated spectra obtained with the row vectors of the transfer matrix. In 

green, the controlled flow contributions and in blue the baseline contributions. (See 

Appendix 5 for a larger view). 
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2.4 Partial conclusions 

The experimental exploration of the aerodynamic features of the generic reduced scale 

POSUV model was successfully performed. The experimental campaign provided a full 

description of the flow features around the POSUV required for the validation of the 

numerical simulation in the following chapter. This is also particularly valuable since high 

frequency time resolved acquisitions give the synchronized dynamical behavior between the 

wake flow and the tailgate pressure loss. The first Dynamic Modal Decomposition on the 

synchronized multi-variate pressure-velocity database showed the influence of the low 

frequency motion on the tailgate dynamics while the wake velocity has much more complex 

spectral information dealing with 17Hz pulsation in the Z140 cut-plane and high frequency 

signals until 60Hz in the Y0 cut-plane. 

An optimal flow control strategy was deployed using machine learning with genetic algorithm 

leading to the identification of the optimal set of parameters. A pressure increase of 19% was 

obtained. As the optimal parameters were not trivial, a cross modal analysis of the baseline 

and controlled pressure databases was realized. This showed a reduction of 19% of the static 

component between the baseline and the controlled configurations. The result also outcomes 

the change of energy distribution between high and low frequencyies on the rear tailgate. 

Finally, the correlation analysis exhibited an enhancement of the energy transfer by the flow 

control occurring on the most significant fluctuating POD modes affecting the static 

component. This is interpreted as a cascade effect occurring in the wake flow and stabilizing 

the low frequency behavior and responsible for the pressure loss. The methodology proposed 

here gives an innovative way to describe the modal relation between periodicity and turbulent 

coherence in the flow. This is a brand-new way to evaluate the flow sensitivity to the 

actuation. 

Concerning the optimization phase, the fact that the machine-learning algorithm did not 

converged toward a symmetrical actuation solution on the frequency parameters, raises some 

interrogations. Indeed, it has been decided to leave the frequency optimization process free of 

any symmetry constraint between the left and the right side. It should be mentioned that the 

evaluation of 816 individuals comforts us on the exploration of a large range of the design 

space. In addition, we questioned the benefit of synchronization of the fluctuations coming 

from the shear layers and the impact on the wake stabilization.  

There are still some questions on the flow behavior due to the restricted information measured 

in experiment. The numerical studies will go further on the understanding of the aerodynamic 

loss. The application of this methodology on the numerical results will help the identification 

of the transfer mechanism between the wake velocity and the tailgate pressure. 

 



 

  Chapitre 3:

Numerical investigations and wake flow 

control on different test cases 
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The experiments give the foundations of the pressure-velocity flow features in the wake of the 

POSUV and how they are related to the modal fluctuations. We will now reproduce the 

experimental results by numerical simulation with an appropriate LES, Finite Element solver. 

This choice was justified in the literature survey in chapter 1.5. The aim is to go further in the 

understanding of the correlations between the wake, the shear layers and the tailgate pressure 

losses thanks to a more detailed flow discretization than what is permit with PIV and pressure 

sensors. 

The numerical simulation of highly turbulent 3D flows is very challenging because of the 

level of accuracy required to get a solution in accordance with the reality considering the 

CPUs limitations. This chapter details the numerical study achieved during the PhD work. 

Two preliminary studies are developed to reach the objective of the numerical simulation of 

the POSUV in TU-Berlin wind tunnel. 

First, the benchmark of the 25° ramp flow has multiple interests. It is a simplified test case 

reproducing the main features of highly turbulent detached flows. This will give the 

guidelines for an accurate simulation of the generic SUV. The second objective of the ramp 

flow analysis is to describe the mechanisms involved in the pressure loss and the interaction 

with the boundary layer and the shear layer. Then, a close look on the physics of the active 

flow control provides some insights for the analysis of the POSUV actuation results. 

The second benchmark is the Ahmed body with 47° slant angle. This mockup is used to 

apprehend the relation between wake pressure losses and shear layers. This is also an 

opportunity to explore some closed-loop control strategy in numerical simulations. 

At last, the numerical simulation of the reduced scale POSUV is detailed. Time averaged 

comparison and cross modal analysis with experiments validate the flow behavior. Three-

dimensional results are then extensively analyzed to identify the phenomena responsible for 

the aerodynamic loss in accordance with what was observed in experiments. The simulation 

of the control flow on the POSUV will finally help to apprehend how the control solution 

leads to a wake flow modification. 

3.1. Numerical simulations with Large Eddy Simulation 

The solver used for the numerical simulation of the flow past the POSUV is AcuSolve, from 

the ALTAIR distribution software. It is a finite element method using Galerkin Least Square 

(GLS) method. The algorithm was fully described in (Shakib, 1991). The following details the 

mathematical model used in LES simulations.  

The transient state variables 𝑢𝑖, 𝑝 can be decomposed into a resolved contribution and a 

fluctuating part as shown in Eq.53. 

𝑢𝑖 = 𝑢�̃� + 𝑢𝑖
′

𝑝 = 𝑝 + 𝑝′
  Eq.53 

where  

𝑢𝑖, 𝑝 are the transient velocity and pressure variables 

𝑢�̃� =∭𝐺(�⃗�, �⃗�′)𝑢𝑖(�⃗�
′, 𝑡)𝑑�⃗�′ is the filtered velocity and pressure variables 

𝑢𝑖′, 𝑝
′ are the sub filtered velocity and pressure variables 

 

A top-hat filtered associated to the mesh cutoff frequency Δ is expressed as in Eq.54. The 

choice of Δ depends on the subgrid scale model. (Pope, 2001a) shows that a spatial cutoff 
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frequency around 60𝜂, 𝜂 the Kolmogorov scale, is a suitable criteria to model appropriately 

the unresolved dissipative scales with LES approach.  

𝐺(�⃗�, �⃗�′) = {
1 Δ⁄     ∀ |�⃗� − �⃗�′| ≤ 0.5Δ

0          ∀ |�⃗� − �⃗�′| > 0.5Δ
  Eq.54 

The filtered Navier-Stokes equations are formulated in Filtered Navier-Stokes equations 

Eq.55. 

ℒ ∶

{
 
 

 
 𝜌

𝜕𝑢�̃�
𝜕𝑡

+ 𝜌
𝜕𝑢�̃�𝑢�̃�

𝜕𝑥𝑗
= −

𝜕𝑝

𝜕𝑥𝑗
+ 2𝜇

𝜕𝑆𝑖�̃�

𝜕𝑥𝑗
+
𝜕𝜏𝑖𝑗

′

𝜕𝑥𝑗
𝜕𝑢�̃�
𝜕𝑥𝑖

= 0

𝜏𝑖𝑗
′ = −2𝜇𝑠𝑆𝑖�̃�

 Eq.55 

Where 

Sij̃ =
1

2
(
∂uĩ

∂xj
+
∂uj̃

∂xi
) is the filtered strain rate tensor 

𝜏𝑖𝑗
′  is the subgrid stress tensor 

𝜇𝑠 = 𝜌(𝐶𝑠Δ)
2√2𝑆𝑖�̃�𝑆𝑖�̃� is the subgrid turbulent viscosity model 

 

If the coefficient 𝐶𝑠 is constant and set to 0.2 with the Smagorinsky subgrid scale model, the 

Dynamic subgrid scale model evaluates locally and dynamically the subgrid dissipated energy 

using the Germano entity presented in the literature review 1.5.1. Hence, the dimensioning of 

𝐶𝑠 is based on the ratio of the local resolved stress tensor 𝐿𝑖𝑗 captured with the numerical test 

filter Δ̅ = 𝛼Δ and the modeled stress tensor evaluated by the Smagorinsky formulation 

between Δ̅ and Δ (Eq.56). The grid ratio 𝛼 is set to a value of 2 in our solver. 

𝐶𝑠
2 = 𝐿𝑖𝑗/𝑀𝑖𝑗 Eq.56 

where  

𝐿𝑖𝑗 the resolved stress tensor of the eddies between Δ and Δ̅ 

𝑀𝑖𝑗 = 2Δ
2 ( |�̃�|�̃�𝑖𝑗
̅̅ ̅̅ ̅̅ ̅ − 𝛼2|�̃�̅|�̃�̅𝑖𝑗)   

𝛼 = Δ̅/Δ  

 

The wall model is defined in order to reproduce the turbulent boundary layer profile using a 

linearity assumption (Eq.57a) in the viscous sublayer (𝑦+ < 5) and logarithmic assumption 

(Eq.57b) in the outer layer (30 < 𝑦+ < 500). In between (5 < 𝑦+ < 30), the velocity profile 

within the buffer layer is defined using a bridge function. The eddy viscosity profile within 

the turbulent boundary layer is derived using (Eq.57c). 

𝑈+ = 𝑦+ if y+ < 5 (a)

𝑈+ =
1

𝜅
log(𝑦+) + 𝐵 if 30 < y+ < 500 (b)

𝜇𝑡 = 𝜌𝜅𝑦𝑢𝜏 (c)

 Eq.57 

Where : 

𝑦+ = 𝑦𝑢𝜏/𝜈 is the normalized wall distance 

𝑈+ = �̅�/𝑢𝜏 is the normalized tangenetial velocity over the wall. 

𝑢𝜏 = √𝜏𝑤/𝜌  is the skin friction velocity. 
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𝜅 = 0.4 , 𝐵 = 5.5  

Thanks to the Finite Element approximation technique, the governing equations ℒ are solved 

in their weak form using a Galerkin Least Square (GLS) operator to minimize the residual 

function (Eq.58).  

∫ℒ(𝑣)𝑤𝑖𝑑Ω
Ω

+∑∫ ℒ(𝑤𝑖) ⋅ 𝜏[ℒ(𝑣)] 𝑑𝑄
𝑄𝑛

𝑛𝑒𝑙

𝑒=1

= 0 Eq.58 

Where: 

𝑣 is the trial function. 

𝑤𝑖 ∈ 𝑊ℎ = {𝒫𝑘(𝑄𝑛)
3} is the prescribed weighted function of the Galerkin term 

𝜏 is the symmetric positive-semidefinite least-squares matrix. 

 

As discussed in the literature survey 1.5.3, the Finite Element Methods using GLS imply high 

accuracy level thanks to the Galerkin minimization term while the Least-Square regularization 

term ensure the robustness of the simulation even with distorted element. Figure III.1 shows 

the contribution of the regularization term as a function of the convective velocity 𝛽. The 

Least-Square matrix (purple dashed curve on Figure III.1) is defined as a function of the 

element Peclet number 𝑃𝑒. This normalized coefficient measures the ratio between the 

convective and diffusive effects inside an element. 𝛽 is the convective velocity, c is the 

diffusion coefficient and h is the element size. When the Peclet number is higher than 1, the 

numerical instabilities generated by the Galerkin term are damped by the Least-Square matrix. 

The consequences of this approximation technique will be further analyzed in section 3.4.3. 

 
This solver includes a preconditioned iterative linear implementation for the resolution of the 

coupled pressure-velocity matrix system. The implemented scheme provides a 2
nd

 order 

spatial accuracy on all variables and a semi-discrete generalized alpha algorithm ensures 2
nd

 

order accuracy for time integration.  

 

 

Figure III.1: Dependency of the least square term as a function of the convective 

velocity 𝛽 measured for a 1D problem. The curve shows the impact of the 

regularization term in the low velocity regions (𝛽 < 0.2). 
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3.2. First Preliminary study: Detached flow over a 25° 

inclined ramp 

The numerical study of the flow over the 25° inclined ramp is performed on a reduced fluid 

domain surrounding the ramp wake flow. The upstream flow condition is defined according to 

experimental measurements. Comparison with some published experimental results (Kourta et 

al., 2015; Stella et al., 2017a; Thacker, 2010) validates the accurate resolution of the main 

turbulent flow characteristics. The flow control simulation is used to exhibit the mechanisms 

of periodic actuation for the control of the shear layer. The impact on the wake flow topology 

is then demonstrated. The 25° inclined ramp was chosen because we needed straightforward 

comparisons to experiments and it was only available for this angle. The available numerical 

results are treated according to the methodology developed in chapter II in order to correlate 

the actuation forcing to the resultant averaged field. This benchmark is a good example in 

order to observe how the control of the shear layer fluctuations induces an increase of the wall 

pressure on the ramp. 

3.2.1 Numerical setup and convergence according to experimental 

conditions 

The experimental ramp model is presented in Figure III.2. Length is normalized according to 

the height of the ramp. Inlet velocity is equal to 30 m/s and turbulence intensity to 0,1 % 

(Stella et al., 2017a). Height of the ramp is h= 0,1m leading to a Reynolds number of 170 000. 

The slant angle of the ramp is at 25°.  

 

Inlet boundary conditions are fixed at x/h = 15 upstream the detachment point of the ramp. 

The wake flow is computed until x/h = 18 and the width is equal to x/h = 20. Inlet velocity is 

equal to 30 m/s and turbulence intensity to 0,1 %. (Stella et al., 2017a). Height of the ramp is 

h= 0,1m leading to a Reynolds number of 170 000. The slant angle of the ramp is at 25°.  

According to a dimensional analysis, turbulence intensity in the boundary layer is fixed from 

velocity profile measurements related to DNS simulation performed by Schlatter (Schlatter 

and Örlü, 2010) as explained by Stella (Stella et al., 2017a). 

 Numerical setup description 

As these experimental dimensions are quite large, a more compact geometry is chosen for the 

simulation. Dimension of the numerical model is reduced to x/h = 4 upstream the detachment 

point, and width is equal to x/h =4 as presented in Figure III.3.  

 

Figure III.2: Scheme of the experiments of the 25° inclined ramp model presented in 

(Kourta et al., 2015b) . 
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As illustrated in Figure III.4, mesh size of the computation domain is dimensioned in order to 

reach the LES constraints and Van DRIEST wall function. A logarithmic law will be used for 

Y+ comprise between 10 and 500 and the Van Driest dumping function will be used below 

Y+= 30 in the buffer and viscous sublayer in order to impose a zero value at the wall 

boundary. The boundary layer is discretized with a first layer thickness at 0.2mm with a total 

thickness of 40mm according to experimental measurements of the boundary layer velocity 

profile. 

Most of the kinetic energy is solved by the filtered LES equations with a mesh cutoff 

frequency between 1 and 3mm. The closure relation for the turbulent stress tensor is used to 

compute the eddy viscosity in the core region with the dynamic Smagorinsky turbulence 

subgrid scale model (Eq. 2). This model proposed by (Massimo Germano et al., 1991) enables 

to have a more accurate estimation of the dissipative scales correlated to the local level of 

turbulence. Thus there is a lower dependence on the grid cutoff frequency at 60. η as proposed 

empirically by (Pope, 2001b) for LES simulation (with η the Kolmogorov scale). According 

to the numerical domain, these constraints lead to a total number of nodes of 9 million 

corresponding to 60 million tetrahedral elements. A refinement region is also been defined at 

1mm from the detachment edge to discretize inflow synthetic jet conditions. Two other 

meshes were used to corroborate the numerical results. A coarser one with 6 million of nodes, 

corresponding to 39 million of elements, showed to weak quality in the resolution of the 

boundary layer and the shear layer. A thinner mesh with 20 million of nodes, corresponding 

to 99 million of elements was also tested. However, this is not the final choice selected for the 

following work. Since the goal of the ramp benchmark was to determine the best trade-off for 

the numerical setup of the POSUV simulation, a maximum mesh resolution of 1 millimeter 

imposed in the wake was not a realistic option considering the cluster memory limitation 

 

 

Figure III.3: (a) Boundary layer profile imposed at inlet boundary condition; (b) Scheme of 

the domain dimensions and boundary condition. 

 

Figure III.4: Domain discretization corresponding to 60 million cells mesh 
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As mentioned in the introduction, special care needs to be taken on the physical computation 

time according to the shear layer dynamics. Mean velocity and pressure fields were averaged 

on a time scale of 1 s at a sampling frequency of 2000Hz. 0.5 seconds of convergence time is 

require before averaging. 

 Incoming boundary layer agreement and discrepancy compared to the experiment 

The inlet boundary condition is imposed in order to respect the time averaged turbulent 

boundary layer profile measured at x=-4h (Kourta et al., 2015). The second experimental 

profile at -2.5h shows that this turbulent boundary layer is still growing according to the value 

Rex Figure III.5. 

 

Figure III.6a shows the non-dimensional velocity U+ = U̅/uτ  according to the non-

dimensional distance to the wall y+ = y. uτ ν⁄ . Computational averaged value is well 

computed in the logarithmic region with the computed friction velocity (in blue) but is 

slightly too small with the analytical friction velocity measured by (Stella et al., 2017a) (in 

green). Friction value was computed in the first cell layer as it should be in the viscous 

sublayer at y+=5. But the first layer based on the analytical friction velocity is at y+ of 24. 

Therefore, the first cell layer should be at y=0.05 mm instead of 0.2 mm in order to compute 

the correct modelled Reynolds tensor value. However the normalized velocity fluctuations 

𝑈′+ = √𝑢′2/𝑢𝜏 displays in Figure III.6b reveals that if the inflow boundary condition allows 

the reproduction of the time averaged profile, the resolved part of the turbulent intensity is not 

sufficiently computed. 

 

 

Figure III.5: Boundary layer velocity profile: (a) at x=-4h, (b) at x=-2.5h and (c) and 

turbulence intensity measured by PRISM compared to CFD results 

 

Figure III.6: (a) Normalized averaged velocity profile in the boundary layer as a function of 

the normalized wall distance; (c) Normalized turbulent intensity profile in the boundary 

layer. 
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Despite this discrepancy, the time averaged quantity momentum of the boundary layer is in 

accordance with experiment. The following investigation is achieved keeping in mind the 

difference in the upcoming fluctuations. 

 Numerical convergence and comparison of subgrid scale model  

The selection of the subgrid scale model is determined after a comparison of the numerical 

simulation with classical Smagorinsky and Dynamic Smagorinsky model. The results of the 

simulation yield a much more important turbulent intensity with the Dynamic model as shown 

in Figure III.7a. A monitoring point at the peak of the turbulent intensity measured in 

experiments is defined to evaluate the dissipation rate occurring in the simulation. The 

comparison of the Power Spectra Density computed on the velocity signal at this point is 

presented in Figure III.7b. The Dynamic Smagorinsky model yields a better computation of 

the turbulent decay process. The magnitude of the low frequency eddies association to the 

TKE production term is also higher. This is related to the velocity fluctuations distribution 

observed in the transverse cut-plane and explains why the mixing mechanism is closer to the 

experimental observations. 

 

3.2.2 Analysis of the baseline wake flow compared to literature 

The numerical results were compared to the experimental measurements from (Kourta et al., 

2015). In this study, the main features of the ramp flow were described thanks to PIV in the 

vertical transverse Y0 cut-plane (Figure III.8a) and local pressure sensors distributed in the 

stream-wise and cross-wise directions (Figure III.8b).  

 

 

Figure III.7: (a) Comparison of a the resolved turbulent kinetic energy with the constant 

Smagorinsky subgrid scale model; (b) Comparison of the PSD downstream of the 

recirculation (white circle on the tke field). 

 

Figure III.8: (a) Scheme  of the PIV system capturing the separated flow in the Y0 cut 

plane; (b) the pressure sensors on the ramp wall used in experiments of (Kourta et al., 

2015b). 
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The time averaged results of the ramp flow obtained win CFD compared to experimental 

results is illustrated in Figure III.9. The time averaged wake flow topology is globally in 

agreement with the literature result. The recirculation length is estimated with the iso-contour 

at zero velocity on the time averaged velocity Y0 cut plane. The characteristic length of 

𝐿𝑟 =6h is obtained in CFD while the experiments exhibit a reattachment around 5.5h.  

 

The stream-wise wall pressure coefficient profile reveals a low pressure region until 2.5h for 

both experiments and CFD. However, the following adverse pressure gradient is stronger in 

computation than in experiment. 

As there is no resolved fluctuation in the boundary layer in the upstream flow (cf. discussion 

in 3.2.1), it is important to check if the shear layer profiles generated by the separation at the 

sharp edge of the ramp reproduce the experimental behavior described by (Stella et al., 

2017a). The shear layer momentum thickness 𝜃 is plotted in Figure III.10. In the close 

vicinity of the edge, there is a lack of shear momentum but it is overcome at 0.3𝐿𝑟. The 

breakdown at 0.5𝐿𝑟 is correctly reproduced and the following shear momentum at the 

reattachment point 𝑥 = 𝐿𝑟 matches with the experiment. 

 

 

Figure III.9: Time averaged velocity in central cut plane: (a) Experiments (Kourta et al., 

2015b); (b) CFD; (c) Profile measured on wall ramp monitoring point and comparison with 

experiments (Kourta et al., 2015b). 

 

Figure III.10: Shear layer quantity momentum profile along the x axis compared with 

experiments (Stella et al., 2017b). 
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The deficit in shear momentum in the close vicinity of the ramp edge can be explained by the 

turbulence intensity displayed in Figure III.11a. The PIV result exhibits 0.2 turbulent intensity 

at x=0.1h while the computed fluctuation from the numerical simulation is below 0.1 

turbulent intensity. Downstream, the turbulence peak due to the mixing effect of the shear 

layer occurs at 3.5h instead of 5h in experiment. The turbulent kinetic energy decay measured 

at the monitoring point of 5h, compared the spectral distribution in experiments with CFD 

(Figure III.11b). The energy level at the monitoring point is slightly lower. One can question 

the turbulent decay at high frequency (above 400Hz) which is stronger than in experiment. In 

addition, the start of the inertial zone around 60Hz in experiments compared to 120Hz in the 

numerical simulation, indicates a more significant  

 

The difference of energy decay in the PSD analysis can be interpreted with the approximation 

limitation due to our numerical scheme. We will explore more deeply the impact of the 

regularization term in the validation of the POSUV simulation in section 3.4.3. 

3.2.3 Physics of periodic jet actuation 

The active flow control strategy was defined based on the design of experiments performed in 

the study of (Kourta et al., 2015). Here, we will go further in the understanding of the 

actuation process thanks to the modal analysis. The actuation is operated using synthetic jets 

injected in a thin slot of 1mm width and placed at 1mm from the ramp edge (Figure III. 12a). 

The design of experiments measured the influence of the jet momentum coefficient 𝐶𝜇 and of 

the normalized actuation frequency 𝐹+ (Eq.59).  

𝐶𝜇 =
𝑑𝑠𝑙𝑜𝑡𝑉𝑗𝑒𝑡

2

ℎ𝑈∞
2 𝐹+ =

𝑓.xr

𝑈∞
         𝑆𝑡 =

𝑓ℎ

𝑈∞
 Eq.59 

Where : 

𝑑𝑠𝑙𝑜𝑡 is the width of the slot [m]. 

𝑉𝑗𝑒𝑡
2 =

1

𝑇
∫ 𝑉𝑗𝑒𝑡(𝑡)

2𝑑𝑡
𝑇

0
 is the time averaged square jet velocity [m²/s²]. 

𝑓 is the actuation frequency [Hz]. 

ℎ is the reference height of the ramp [m]. 

𝑥𝑟 is the recirculation length 

 

 

Figure III.11: (a) Comparison of the turbulent intensity between experiments and resolved 

velocity fluctuations. The white circle indicates the probe location for the spectral analysis; 

(b) PSD comparison at the reference probe in the wake flow, the blue curve is the 

numerical results, the red curve is the experimental results. 



First Preliminary study: Detached flow over a 25  inclined ramp 89 

𝑈∞ is the reference far field velocity [m/s]. 

In this work, we will focus on the response surface (Figure III. 12b) defined on the pressure 

coefficient value measured at the critical point x=2h on the ramp wall. The selected solution 

at 𝐶𝜇 = 0.01 and 𝑆𝑡 = 0.6 leads to the higher pressure increase of 0.3. The computed time 

averaged velocity, shown in (Figure III. 12a), gives a significant reduction of the recirculation 

length at 𝐿𝑟 = 4ℎ compared to the baseline results at 𝐿𝑟 = 6ℎ.  

 

The comparison of the time averaged pressure coefficient reveals a drop of pressure a x=0h in 

the region of the jet boundary condition (Figure III.13b), also visible on the experimental 

results (Figure III.13a). It is a suction effect due to the quantity momentum injection. A strong 

pressure recovery occurs from x=0.1h until 3.5h contrary to the baseline flow were the 

adverse pressure gradient start at 2.5h. The resulting critical pressure coefficient is increased 

of 0.13, instead of 0.27 in experiment. 

There is often debate around the relation between the recirculation length and the resultant 

pressure drop. In the literature survey, we mentioned a lot of examples showing how the flow 

control on different bluff bodies, leads to a growth of the recirculation length associated to an 

increase of the pressure. It can be surprising that, in the case of the ramp flow control, the 

pressure increase is associated to 33% reduction of the recirculation length.  

 

 

Figure III. 12: (a) Description of the active flow control boundary condition; (b) Design of 

experiments explored in literature. The star indicated the best operating point based on the 

pressure coefficient.  
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This question is more deeply investigate thanks to the comparison of the recirculating flow 

topology (Figure III.14a and b). In the flow control case, the vortex span is lower but the 

pressure drop at the vortex center does not go below 𝐶𝑝 =-0.1 instead of -0.17 in the baseline 

flow (Figure III.14c). In addition, the vortex center seems to be closer to the wall with the 

flow control but thanks to a strong pressure gradient along the ramp normal, the resulting 𝐶𝑝 

value acting on the wall is about -0.045 instead of -0.15 for the baseline. 

 

These observations underline the importance of the chosen criteria to characterize the wake 

flow for aerodynamic optimization. The time averaged pressure gradient along the normal to 

the wall combined with the minimum of pressure give pertinent insight on the aerodynamic 

loss.  

To go further, a description of the transient flow is performed to compare the baseline and the 

controlled behavior. Figure III.15 displays the transient iso-contour of zero velocity. If the 

time averaged flow is anisotropic with an invariance along the Y direction, the structures 

emerging from the separation line on the edge of the ramp in the transient flow evolve into 3D 

structures in the wake flow. These transverse contributions balanced each other in average 

leading to the 2D topology wake flow commonly observed behind the ramp. The development 

 

Figure III.13: Comparison of the time averaged pressure coefficient profile along the ramp 

wall for baseline and AFC: (a) in experiment; (b) in CFD.  

 

Figure III.14: Time averaged recirculation streamlines colored by pressure coefficient for (a) 

Baseline flow; (b) AFC flow; (c) Pressure coefficient profiles along the normal axis of the 

ramp and going through the vortex center 𝑂𝑚. 
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of 3D structures in the recirculation is also associated to a mixing effect with high velocity 

fluctuation.  

 

In addition, zero velocity fluctuation at the ramp breakup angle, in the baseline flow (Figure 

III.16a) suggests that the separation line is maintained on the edge of the ramp. Hence, the 

flow over the ramp flow is permanently fully detached. The observation of the velocity 

fluctuations in the controlled flow (Figure III.16b) reveals a strong forcing operating on the 

separation line. Velocity fluctuations close to the edge are much more important but the 

energetic turbulent area is smaller than in the baseline flow. 

 

Transient flow observations reveal a periodic generation of fluid rolls at the jet boundary 

condition in accordance with the pressure drop observed in Figure III.17. The injected fluid 

roll is transported downstream thanks to the flow inertia. Between two successive fluid rolls, 

the flow remains attached and the separation line is periodically shifted along the ramp wall. 

The trigger of the 3D mixing mechanisms occurs after the burst of the fluid roll due to the 

turbulent decay process, contrary to the baseline flow where it occurs immediately at the edge 

of the ramp. 

 

Thus, the periodic forcing tends to constraint the turbulent energy production after the break-

up of the blown vortex leading to a faster pressure recovery. A parallel can be done with the 

 

Figure III.15: Transient iso-contour of zeros velocity in the baseline flow. 

 

Figure III.16: Comparison of turbulent intensity in the Y0 cut-plane: (a) Baseline flow; (b) 

Controlled flow. 

 

Figure III.17: Visualization of transient iso-contour of zero velocity: (a) baseline; (b) AFC 
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high frequency control of the shear layer as discussed in the literature review 1.3.1 and 

particularly with the observations of (Parezanovic et al., 2014). 

 

 Modal analysis of the periodic forcing 

The Dynamic Modal Decomposition is applied on 1000 snapshots of the Y0 cut-plane 

sampled at 2000Hz. Figure III. 18 shows the comparison of the DMD spectra obtained in the 

baseline and controlled flow. The actuation frequency is significantly increased. 

Simultaneously, the contribution of the low frequency modes is damped at 𝑆𝑡 = 0.01 

and 𝑆𝑡 = 0.02. The change of frequency distribution enforced by the flow control is similar to 

what was observed in the DMD of the controlled flow of the POSUV performed in 

experiment. 

 

To go further, the comparison of the periodic structures associated to the previous spectral 

characteristics is presented in Figure III.19. The low frequency periodic pulsations at St=0.02 

and St=0.08 are related to the recirculation area. We can see that the actuation managed to 

change the wake oscillating fluctuations. The mode at St=0.02 seems to be a homogeneous 

fluctuations of the wake velocity intensity (blue region in Figure III.19a). The actuation 

expanded the region governed by this pulsation. The periodic motion due to St=0.08 (Figure 

III.19b) is related to the feedback flow in the recirculation area. The associated recirculation 

oscillation (red/blue area in Figure III.19b) appears to be more structured in the controlled 

case. It can be interpreted as a stabilization effect of the recirculating bubble.  

The frequency at St=0.6 (Figure III.19c) exhibits in the baseline case, the shear layer 

fluctuations triggered by the detachment on the edge of the ramp and propagating along the 

separation line but also in the overall recirculation area. This means that all the wake flow 

impacted by the turbulent structures induced by the mixing layer. The actuation tends to force 

the shear layer fluctuations near the separation line but it is quickly dissipated. 

 

Figure III. 18: Comparison of the DMD spectra obtained with the baseline flow and the 

controlled flow. The low frequency components are damped with the actuation while a 

high frequency peak at 𝑆𝑡 = 0.6 emerges. The remaining low frequency peaks identified 

in the controlled flow are at 𝑆𝑡 = 0.02 and 𝑆𝑡 = 0.08. 
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The fact that the mixing effect is more localized is consistent with the assumption that the 

wake recirculation is stabilized by the periodic forcing. The flow coherence analysis is 

required to understand why the periodic forcing prevents further propagation of shear layer 

fluctuations and the correlation with the recirculation pulsation. Similarly to the DMD/POD 

projection performed in 2.3.3, the transfer matrix is computed based on the controlled flow 

decomposition (Figure III.20). This projection allows the identification of the 4
th

 POD mode 

impacting the static 0Hz DMD component. The projection of the periodic structures 

embedded in this POD mode is used to describe the actuation process into the static 

component. 

 

The spectral projection of the 4
th

 POD mode on the DMD base is plotted in Figure III.21. It 

gives the correlated periodic mechanisms affecting the static mode. We can see the 

correlations between low frequency 𝑆𝑡 = 0.02, a periodic feature at 𝑆𝑡 = 0.15 and the 

actuation mode at 𝑆𝑡 = 0.6. It is interesting to see how the actuation promote the high 

frequency fluctuations at 𝑆𝑡 = 0.6, 𝑆𝑡 = 0.9, 𝑆𝑡 = 1 and 𝑆𝑡 = 2.37. The energy produced by 

these high frequency structures is low but they participate to the turbulent dissipation cascade 

due to the pulsed jet. 

 

 

Figure III.19: Vx DMD modes showing of the frequencies highlighted in the DMD 

spectra. 

  

Figure III.20: Weight matrix between DMD base and POD base. The low frequency 

modes are strong within the POD components below 10. 
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The visualization of the spatial DMD modes in Figure III.22, describe the correlated periodic 

flow fluctuations identified with 𝑊𝑝𝑜𝑑(4). The jet quantity momentum induced an increase of 

the decaying process due to the mixing effect at 𝑆𝑡 = 0.9, 𝑆𝑡 = 1 and 𝑆𝑡 = 2.37. This 

prevents the spreading of the shear layer turbulent energy in larger scale structures at 𝑆𝑡 =
0.15 and at  𝑆𝑡 = 0.02. 

 

These observations corroborate the assumptions of the wake stabilization achieved by the 

high frequency periodic jet. It results in a lower energy production coming from the large-

scale structures responsible for the wake aerodynamic loss. 

  

 

Figure III.21: Spectral projection of the correlated mechanisms associated with POD(4). The 

dissipation process triggered by the actuation frequency is identified by the logarithmic 

energy decay between 𝑆𝑡 = 0.6, 𝑆𝑡 = 0.9, 𝑆𝑡 = 1, 𝑆𝑡 = 2.37. 

 

 

Figure III.22: DMD modes participating to the 4
th

 POD mode displaying the actuation 

dissipation process. 
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3.2.4 Partial conclusions and guidelines for detached flow simulation 

The numerical simulation of the flow over the 25° inclined ramp demonstrates the capability 

of the LES approach with Dynamic Smagorinsky subgrid scale model to compute the 

turbulent detachment. Even if, the turbulent kinetic energy in the upstream boundary layer 

does not reach the same intensity than in experiment, the time averaged boundary layer was 

sufficiently simulated in order to produce a similar separation phenomenon. The difference in 

the upstream flow features induces a lack of turbulence in the close vicinity of the ramp edge 

after the separation. We should mention that the lack of turbulence in the upstream flow is 

only a consequence of the boundary condition definition without injection of any synthetic 

transient velocity fluctuations. This is not a limitation for the simulation of the flow around 

3D round geometry inside a wind tunnel, where flow separation governed the turbulent 

kinetic energy of the boundary layer. In addition, the comparison of the control flow with the 

best operating point obtained from experiments suggests that the selected numerical approach 

capture the physics of the flow actuation.  

Modal analysis shows that the actuation mechanism can be linked to an energy reduction at 

the natural frequency, transferred by the higher frequency. One may remark the similitude in 

the actuation frequency with the flow control optimal forcing at 𝑆𝑡 = 0.6 identified in the 

study of (Minelli et al., 2018). In the baseline flow, the free turbulent decay leads to high 

energy production at low frequency associated with strong aerodynamic loss. In the controlled 

flow, the quantity momentum due to high frequency periodic forcing constraints and 

accelerates the mixing effect in the shear layer. This prevents the propagation of the shear 

layer turbulence impacting the wake flow topology. 

3.3. Second preliminary study: The Ahmed body with 

47° slant angle 

The benchmark of the Ahmed Body with a 47° slant angle is introduced in order to evaluate 

the feasibility of the numerical simulation of the flow around a reduced scale model within a 

wind tunnel. 

PAPER 

 

WAKE FLOW ANALYSIS AND CONTROL ON A 47° SLANT ANGLE 

AHMED BODY 

3.3.1 Introduction 

This paper focuses on the numerical investigation of the flow characteristics for a 47° Ahmed 

Body in order to have a better understanding of wake behavior of SUV type vehicles (Figure 

III. 23). This modified version of the Ahmed body was proposed in order to reproduce rear 

proportions that can be observed on commercial cars. The dimensions of the Ahmed body are 

presented in Figure III. 23 in millimeter. After a numerical validation of this benchmark at 

Reynolds number of 420 000 corresponding to a velocity of V∞ = 30m/s (based on the body 

height), time averaged wake features and fluctuations analysis of the uncontrolled flow thanks 

to dynamic and spectral analysis of forces and torques is performed.  
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Then, the Sparse Promoting Dynamic Modal Decomposition method is discussed and 

compared to other modal approaches. This method is relevant in order to emphasize the rear 

pressure modal behavior related to their energy contributions in pressure, pitch and yaw and 

the energy transfer quantified in growth rate quantity that occur between modes. Also, based 

on pitch and yaw wake motion, it permits to explore the correlation with the wake flow modal 

behavior. This flow analysis and characterization is very useful to design appropriate closed 

loop flow control strategies. 

Then active flow control strategy based on micro-slots is then analyzed. This work also 

includes a sensitivity analysis on rear Strouhal number and wake flow behavior with the 

active flow control. 

 

3.3.2 Numerical setup 

The geometry, illustrated in Figure III. 23, consists in a 0.7 scale model (compared to the 

original one of (Ahmed et al., 1984b)) in a 4𝑚2 section wind tunnel. This later is a 

reproduction of the experimental wind tunnel. 

The simulation is achieved with a Large Eddy Simulation approach resolved with the finite 

element solver. This approach consists in the resolution of the filtered Navier-Stokes 

equations for incompressible flow. The resolution of these equations requires a closure 

relation for the turbulent stress tensor. A subgrid scale model is required to estimate the 

turbulent viscosity. In this work, it is computed with the classical Smagorinsky model. The 

mesh cutoff frequency was chosen thanks to mesh scale criteria defined by (Pope, 2001b)for 

LES simulation. Indeed, assuming that 90% of dissipation occurs for scale structures 

above 60𝜂, with 𝜂 the Kolmogorov scale, the mesh resolution for this simulation has to be at 

1mm. 

These considerations lead to a mesh discretization constituted of 160 million unstructured 

tetrahedral elements illustrated in Figure III.24a. It should be noted that the grid convergence 

study using the same numerical solver, was previously performed for the square back version 

of the Ahmed Body, which confirms the final mesh choice (Eulalie, 2014). 

As shown in Figure III.24b, we measure a turbulent kinetic energy with an energy decay of -

5/3 before the LES cutoff filter. For a flow at Reynolds number 420 000, turbulent scales in 

the production area and inertial area are resolved and dissipative scales are estimated by the 

subgrid scale model.  

Wind tunnel conditions were reproduced so that the same effective blocking cross-section is 

applied. A pitot probe measuring pressure value at a specific location is used as a reference 

point to ensure the cross-section integrity. Discrete numerical resolution and experimental 

data are therefore comparable.  

 

        

Figure III. 23: Geometry comparison of a generic SUV and the 47° Ahmed Body (in mm) 
 

  = 160 
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Finally, 0.8 seconds of converged simulation were processed with a sampling frequency of 

8000Hz. 

3.3.3 Baseline flow 

 Averaged results 

Time averaged forces and pressure coefficients are computed as presented in Eq.60. 

𝐶𝑖 =
𝐹𝑖

0.5𝜌𝑉∞
2 𝑆𝑟𝑒𝑓

;  𝐶𝑝 =
𝑃−𝑃𝑝𝑖𝑡𝑜𝑡

0.5.𝜌.𝑉∞
2  Eq.60 

Where: 

𝑖 corresponds to the 𝑥, 𝑦, 𝑧 directions. 

𝜌 = 1.225𝑘𝑔/𝑚3 is the air density. 

𝐻 = 0.2𝑚 is the reference height. 

𝑉∞ = 30 m/s is the reference velocity. 

𝑆𝑟𝑒𝑓 = 0.06𝑚2 is reference section of the Ahmed Body. 

 

A drag coefficient Cd of 0.272 is measured on this simulation as shown in Figure III.25. It is 

in good agreement with 3% error compared to the experimental value of 0.28 obtained by 

(Metka, 2013) at a Reynolds number of 4.10
5
 and 0.31 (Dobrev and Massouh, 2014) at 

Reynolds number of 4.7.10
5
. The drag force distribution also indicates that the rear is 

responsible for 75% of aerodynamic loss. 

 

 

Figure III.24: (a) Ahmed body tetrahedral mesh with active flow control refinement; (b) 

turbulent kinetic energy PSD in wake flow. 

 

Figure III.25: Computed time averaged drag coefficient per surface and comparison with 

experimental results of literature marked by * .Rear end surface contributes to 75% of total 

drag 
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The time averaged rear pressure distribution displayed in Figure III.26, reveals the low-

pressure area located on the lower part of the rear end with important pressure fluctuations at 

horizontal middle and lower edges. 

 

The Table 1 summarizes forces and their RMS on the overall Ahmed Body. Even if the drag 

force is the most important averaged contribution, significant fluctuations were measured on 

lateral and horizontal leading to important torque variations in the transversal directions that 

are analyzed in the paragraph bellow. 

 

 Torques and body dynamics 

Torque coefficients are defined in Eq.61:  

𝐶𝑚𝑖 =
𝑀𝑖

0.5𝜌𝑉∞
2𝐻𝑆𝑟𝑒𝑓

 Eq.61 

Where: 

𝑖 corresponds respectively to the x, y and z directions: roll, pitch and yaw 

torque as illustrated in Figure III.27. 

 

 

Torque components were also computed on the rear basis, as shown in Table 2. Only the pitch 

motion is relevant on this surface in average and in RMS values.  

 

Figure III.26: Time averaged Cp mean value of -0.21 (75% of total Cd and its RMS of 

0.007; 

 

Table 1: Time averaged forces and torques coefficients. 

 

Figure III.27: Axes orientation for forces and torques definition at center of rear. 
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 Spectral analysis 

Figure III. 28 presents the spectral analysis performed on the overall body forces as a function 

of this Strouhal number. The Strouhal number 𝑆𝑡𝑊 used in this work is based on the width 

between feet 𝑊𝑢 (Figure III. 23) as we expect a major contribution of structures coming from 

the underbody flow. 

𝑆𝑡𝑤 =
𝑓𝑊𝑢
𝑉∞

 Eq.62 

Main forces fluctuations are in lateral contributions 𝐶𝑦 at Strouhal number of 1.2 whereas lift 

force 𝐶𝑧are at low Strouhal number 𝑆𝑡𝑊 of 0.01 and 0.03. When we focus on the rear end and 

slant window, displayed in Figure III.29a and b, an additional peak in pitch direction 𝐶𝑚𝑦 

appears at Strouhal 𝑆𝑡𝑊 =0.22. 

 

 

Figure III. 30 shows the correlation with detachments near lateral and lower edge dynamics as 

function of the Strouhal number S𝑡𝑊. The Strouhal number 𝑆𝑡𝑊= 0.2 appears in the lower 

edge horizontal probes so that there is a relation between the lower edge detachment and the 

pitch torques measured on the rear end. The Strouhal number 𝑆𝑡𝑊 of 1.2 corresponds to the 

foot shedding. The Strouhal number of 𝑆𝑡𝑤 = 0.03 corresponding to a low frequency of 

5.6Hz, measured in vertical probes in regards to the C-pillar vortex. 

 

Table 2: Torques coefficients and RMS at rear center. 

 

Figure III. 28: PSD forces on Ahmed body as a function of Strouhal 𝑆𝑡𝑊 

 

Figure III.29: PSD of rear pressure (a) and torques (b) coefficients at the rear center as a 

function of Strouhal 𝑆𝑡𝑊. 
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 Wake flow dynamics 

As shown in Figure III.31, the pressure minima during the 0.8 seconds of simulation have a 

probability density function centered at 250mm from rear. This x value is used to compute the 

virtual torque of the wake flow in pitch 𝐶𝑚𝑦 and yaw 𝐶𝑚𝑧 direction. 

 

Thus, the dynamics of the low pressure area can be defined by pressure fluctuation in the 

transverse cut plane in this position. The time averaged and RMS of the pressure coefficient 

displayed in Figure III.32, show a circular low-pressure area with energetic RMS peaks 

localized on the layer corresponding to the strong averaged pressure gradient. 

(a)  

 (b)  

Figure III. 30: PSD of normal velocity in the boundary layer detachment at 3mm to wall, 

as a function of Strouhal 𝑆𝑡𝑊: (a) On vertical edge; (b) On horizontal edge. 

 

Figure III.31: Pressure minima distribution in wake flow during simulation time. 
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Virtual torques 𝐶𝑚𝑦|
𝑆𝑥 and 𝐶𝑚𝑧|

𝑆𝑥 defined in Eq.63a and b, are also estimated in this 

transversal cut plane in order to quantify the pitch and yaw motion of the wake. 

𝐶𝑚𝑦|
𝑆𝑥 = ∫ 𝑧. 𝑃(𝑦, 𝑧)𝑑𝑦𝑑𝑧

𝑆𝑥
 (a) 

𝐶𝑚𝑧|
𝑆𝑥 = ∫ 𝑦. 𝑃(𝑦, 𝑧)𝑑𝑦𝑑𝑧

𝑆𝑥
 (b) Eq.63 

We observe that there is a similar behavior in this cut plane and on the rear end on averaged 

and RMS values of pitch and yaw coefficients detailed in Table 3.  

 

Indeed, there is a major component on averaged pitch coefficients associated with equivalent 

order of magnitude on both pitch and yaw fluctuations. This is correlated to a varying wake 

motion perfectly balanced on yaw direction plus an unbalanced wake motion in pitch 

direction. This is in agreement with the RMS distribution of pressure in the transverse cut 

plane displaying symmetry along the Y direction but an unbalanced distribution along the Z 

direction. Moreover, the positive averaged pitch coefficients mean that the low pressure tends 

to rotate counter clock-wise in the wake flow (trigonometric direction). 

Concerning the spectral characteristics of these virtual torque coefficient shown in Figure 

III.33, the momentum spectrum obtained in the transversal cut plane, reveals that the 

maximum components of the wake are measured on the pitch torque in average as shown in 

table 4, and on fluctuations at Strouhal number of 0.22 based on 𝑊𝑢. 

 

Figure III.32: Time averaged pressure coefficient and RMS transversal cut-plane at 250mm 

from rear. 

 

Table 3: Torques coefficients for the uncontrolled flow computed at the of the cut plane. 
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Next, the modal analysis will be used to highlight the frequencies and forces directions 

associated to 3D mechanisms. The next paragraph will detail the modal behavior on the rear 

end and on the wake flow with a frequency comparison of Dynamic Modes Decomposition 

and previous PSD results. 

3.3.4 Modal analysis 

 Modal Decomposition: Methods and discussion 

The Dynamic Modal Decomposition consists in the decomposition of phase correlated 

structures in the flow. The SVD based DMD is an algorithm allowing to distribute snapshot 

uncertainties on the overall database contrary to the classical DMD algorithm based on last 

snapshot linearization leading to DMD matrix construction. The Sparse Promoting DMD 

method detailed in (Schmid, 2012) is an enhancement of the SVD based DMD with a 

resolution of residual minimization between the reconstructed and real snapshot constraint to 

maximization of the number of modes with zero amplitude. 

The solution 𝑎𝑚 gives the mode amplitude, and associated frequency 𝑓𝑚 and growth rate 𝜎𝑚 

are defined in Eq.64a leading to reconstructed field in Eq.64b. 

𝑓𝑚 =
ℑ(ln (𝜇𝑚))

2𝜋Δ𝑡
; 𝜎𝑚 =

𝑅𝑒(ln(𝜇𝑚))

Δ𝑡
  (a) 

𝑃(𝑡𝑘) = ∑ 𝛼𝑚(𝑡𝑘)Φ𝑚(�⃗�)
𝑁−1
𝑚=1   (b) 

Eq.64 

Where: 

𝛼𝑚(𝑡𝑘) = 𝑎𝑚. ℜ(𝜇𝑚
𝑘 ) is the temporal evolution of each mode. 

 

This optimization problem is solved by dual ascending iterative algorithm detailed in 

(Jovanović et al., 2014a). 

 DMD of pressure in the wake 

The Sparse Promoting DMD is achieved on the pressure results in the wake at a sampling 

frequency of 2000Hz in an averaging window of 2.5Hz. Figure III.34 displays the amplitude 

and growth rate as a function of the Strouhal number 𝑆𝑡𝑊. The mode amplitude is related to 

its energy contribution in the overall wake flow dynamic. The growth rate denotes the 

unsteadiness associated to the corresponding Strouhal number. Indeed, a growth rate setting 

towards zero, is assimilated to an exact periodic phenomenon while a strictly positive growth 

 

Figure III.33: PSD of virtual torques 𝐶𝑚𝑦|
𝑆𝑥  𝐶𝑚𝑧|

𝑆𝑥 computed in this cut plane as a 

function of Strouhal 𝑆𝑡𝑊. 
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rate is assimilated to growing energy and a strictly negative one is assimilated to decaying 

energy.  

For the uncontrolled flow case, the main contributions are at Strouhal 𝑆𝑡𝑊 of 1.167 and 0.126. 

These modes have significant amplitudes and significant negative growth rates meaning that 

they correspond to decaying processes. We can also notice that there is a mode at a Strouhal 

number 𝑆𝑡𝑊 of 0.22 with positive amplitude, meaning that it sets to increase the pressure 

level but with a negative growth rate. 

Analysis will now focus on these relevant modes mentioned above even if other modes at 

Strouhal number 𝑆𝑡𝑊 of 0.48, 0.7 and 0.85 seem also to participate to the energy balance. 

 

Figure III.35 presents the residual error  between the real snapshots and the reconstructed 

field computed with Eq.65.  

𝜖 = ||𝐶𝑝𝑟𝑒𝑐 − 𝐶𝑝|| Eq.65 

This residual error appears to be small compared to the Cp RMS, thus convergence is reached. 

 

Temporal reconstruction with the averaged field mode in Figure III.36a shows a linear 

pressure decrease in time due to a negative growth rate. Figure III.36b displayed same kind of 

reconstruction with pressure modes highlighted in Figure III.34. This second reconstruction 

 

Figure III.34: DMD modes energy and growth rate. 

 

Figure III.35: Residual between reconstructed field and real snapshots. 
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reveals that their positive growth rates are in opposition with the averaged mode growth rate. 

This can be interpreted as an energy transfer from the fluctuating part to the averaged flow.  

 

It could be therefore interesting to check, if the flow control increases the energy of the modes 

with positive growth rate when we observed an increase of the pressure level on the rear end. 

 DMD of pressure on the rear end 

According to Eq.66a, contribution of each mode is estimated using the time and spatial 

integration leading to a modal contribution on the rear end estimated as in Eq.66b. 

𝐴𝑅𝑒𝑎𝑟
𝑑𝑚𝑑 (𝑚) =

1

𝑇
∫ ∫ 𝛼𝑚(𝑡) Φ(�⃗�)𝑑𝑆𝑅𝑒𝑎𝑟

 𝑑𝑡
𝑇

   (a) 

𝐴𝑅𝑒𝑎𝑟
𝑑𝑚𝑑 (𝑚) = ℜ(𝑎𝑚

1

𝑁−1
∑ 𝜇𝑚

𝑘−1𝑁−1
𝑘=1 × ∫ Φ𝑚(�⃗�)𝑑𝑆𝑅𝑒𝑎𝑟

) (b) Eq.66 

Figure III.37 presents the obtained modal distribution on the rear wall pressure. 

 

If we compare the mode energy distribution on the rear end in Figure III.37 to the wake mode 

distribution in Figure III.34, we see that the modes at Strouhal 𝑆𝑡𝑊 of 0.13, 0.22 and 1.16 still 

remain important. Mode at Strouhal 𝑆𝑡𝑊 of 0.13 at the rear end has replaced mode at 1.16 in 

the wake in term of energy. This mode of 𝑆𝑡𝑊 = 0.13 has negative amplitude meaning that it 

greatly contributes to decrease the rear of the wall pressure. 

(a)  (b)  

Figure III.36: (a) Reconstruction based on averaged mode with time averaged 

reconstructed Cp on rear of -0.200; (b) Reconstruction based on fluctuating modes 

highlighted in Figure III.34 with time averaged reconstructed Cp of -0.01. 

 

Figure III.37: Modes contributions in rear pressure fluctuations. Highlighted modes at 

𝑆𝑡𝑊=[0.13; 0.15; 0.22; 1.16]. 
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The mode at Strouhal 𝑆𝑡𝑊 of 0.22 is also measurable and appears to have positive amplitude 

so that it participates to increase the rear pressure. 

The distributions of these three modes on the rear end are plotted in Figure III.38, Figure 

III.39 and Figure III.40. The real part is amplitude of the mode whereas the imaginary and the 

conjugate imaginary parts quantify the phase change of the mode during the period of the 

characteristic Strouhal number.  

 

 

 

We now look at the mode contribution to the rear torque in pitch 𝑀𝑅𝑒𝑎𝑟
𝑑𝑚𝑑(𝑚)|𝑦 and in yaw 

𝑀𝑅𝑒𝑎𝑟
𝑑𝑚𝑑(𝑚)|𝑧 estimated as is Eq.67a and Eq.67b. 

𝑀𝑅𝑒𝑎𝑟
𝑑𝑚𝑑(𝑚)|𝑦 =

1

𝑇
∫ ∫ (𝑧 − 𝑧0) . 𝛼𝑚(𝑡) Φm(�⃗�)𝑑𝑆𝑅𝑒𝑎𝑟

 𝑑𝑡
𝑇

 (a) 

𝑀𝑅𝑒𝑎𝑟
𝑑𝑚𝑑(𝑚)|𝑦 =

1

𝑇
∫ ∫ (𝑧 − 𝑧0) . 𝛼𝑚(𝑡) Φm(�⃗�)𝑑𝑆𝑅𝑒𝑎𝑟

 𝑑𝑡
𝑇

 (b) 
Eq.67 

Where: 

𝑦0 and 𝑧0 the coordinates rear wall centre. 
 

 

Figure III.38: Mode at Strouhal 0.13 projected on rear with time averaged Cp=-0.0079: (a) 

Real (b) Imaginary (c) Conjugate imaginary parts; 

 

Figure III.39: Mode at Strouhal 0.22 projected on rear with time averaged Cp=0.0001: (a) 

Real (b) Imaginary (c) Conjugate imaginary parts; 

 

Figure III.40: Mode at Strouhal 1.16 projected on rear end with time averaged Cp=-0.0014: 

(a) Real (b) Imaginary (c) Conjugate imaginary parts; 
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From Figure III.41, we notice that the amplitude of the mode at Strouhal 𝑆𝑡𝑊 of 0.22 is the 

highest one, especially on the yaw axis corresponding to an important vertical dissymmetric 

phase averaged on the real part of the wall pressure that could be interesting to control.  

We can also notice that this dissymmetric mode at Strouhal 𝑆𝑡𝑤 of 0.22 corresponds to a high 

energy level in the power spectra density displays presented in Figure III.29b. This 

observation confirms the interest to control the effect of this mode on the torque in yaw. 

 

 DMD of pressure in low pressure region 

In addition to the PSD of  the virtual torque  in the wake presented in Figure III.33, 

contribution of each mode can be estimated by 𝑀𝑊𝑎𝑘𝑒
𝑑𝑚𝑑 (𝑚), 𝑀𝑤𝑎𝑘𝑒

𝑑𝑚𝑑 (𝑚), defined in a same way 

as the rear torques of Eq.67a, b but spatially integrated in the X=250mm cut plane. 

As shown in Figure III.42, we notice positive amplitude of the torque in the pitch direction 

corresponding to horizontal dissymmetric phase averaged on the imaginary part of the wall 

pressure shown in Figure III.43. 

 

 

Figure III.41: modes contribution to the rear torques especially at 𝑆𝑡𝑊= 0.22 on pitch and 

yaw. 

 

Figure III.42: Mode contribution on the virtual torques in wake flow especially at 𝑆𝑡𝑊 = 

0.22 on pitch and yaw. 
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3.3.5 Controlled flow 

 Active flow control strategy  

We will focus on the flow control of the strong dissymmetric mode at 𝑆𝑡𝑤=0.22. 

The active flow control presented here is based on micro-slots illustrated in Figure III.44 

located near each edge of the rear end. Jets characteristics were selected in accordance to 

previous work performed on a 90° Ahmed Body (Eulalie, 2014). 

 

 

 

As illustrated in Figure III.45, a feedback law between the transient yaw coefficient on the 

rear end and the injected jets momentum was implemented. The actuation strategy consists in 

an alternate lateral pulsed jet, blowing proportionally to the sign of the torque in yaw. The 

real-time closed loop control is designed in order to track the horizontal oscillation of the 

wake pressure drop. This technic allows the synchronization the jet boundary condition with 

the wake horizontal motion. This time resolved information is computed on the high pressure 

RMS region, located on the bottom the square back, in order to capture accurate yaw 

variations. 

 

Figure III.43: Mode at Strouhal 0.22 in wake in Y0 and at Z=150 mm cut sections: (a) Real 

(b) Imaginary (c) Conjugate imaginary parts; 

         

Figure III.44: Dimensions and positions of jets located on lateral and bottom edges of the 

basis. 
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The jet signal and sensor PSD obtained with this closed loop control are displayed in Figure 

III.46. Jets actuation was triggered at low Strouhal number 𝑆𝑡𝑊 of 0.015 and around 𝑆𝑡𝑤 =
 0.1. PSD on sensor, shows a frequency emergence in yaw at 𝑆𝑡𝑤=0.15 instead of 0.22. 

 

 

Figure III.45: Closed-loop control law. 

      (a)  

(b)  

Figure III.46: (a) Jets signals PSD as a function of Strouhal 𝑆𝑡𝑊; (b) Sensor PSD as a 

function of Strouhal 𝑆𝑡𝑊. 
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 Control effect 

A drag reduction of 1.4% is obtained with this control law with an important decrease of 

lateral forces fluctuations (Table 4). 

 

Considering Figure III.47 compared to the uncontrolled results in Figure III.29, the power 

spectra on the rear end at Strouhal number 𝑆𝑡𝑤 of 0.22 is completely vanished to enhance the 

power spectra at Strouhal number 0.03, already present in the wake fluctuations of the 

uncontrolled flow in Figure III. 28 and Figure III.29a. 

 

As shown in Figure III.48a, the low pressure area on the rear end is slightly increased, 

symmetrized and shifted close to the central edge compared to Figure III.26.  

The RMS is mainly associated to power spectra frequency of 𝑆𝑡𝑊=0.03 according to Figure 

III.48b.  

 

 

Table 4: Time averaged and RMS of forces on the Ahmed Body and difference with 

uncontrolled flow. 

 

Figure III.47: PSD of pressure coefficients on rear end as a function of Strouhal 𝑆𝑡𝑊. 

 

Figure III.48: Time averaged pressure (a) and RMS (b) of the controlled flow  

with Cp = -0.20. 
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3.3.6 Discussion 

In this work the flow around a 47 degrees Ahmed body, corresponding to a simplified SUV, 

was analyzed. Not only classical flow analysis tools as the spectral and field quantification 

was used to perform the study, but also reduced order technique of Sparse Promoting 

Dynamic Mode Decomposition was applied to better capture the flow topology and to design 

an appropriate control approach. Especially, a strong dissymmetric structure dynamics was 

observed and a closed loop control was proposed to symmetrize this energetic mode at 

𝑆𝑡𝑊 = 0.22. 

This work also revealed some capabilities of the Sparse Promoting DMD for flow topology 

and dynamics understanding and to identify main flow characteristics and associated Strouhal 

numbers. This capability is in fact very useful as it allows to design a pertinent closed loop 

flow control and to measure modal sensitivity of the jet actuators. 

To go further, Dynamic Modal Decomposition with Control presented by (Proctor et al., 

2014a) appears to be the appropriate direction to move towards the study and control of a 

reduced size realistic SUV geometry. Indeed, the closed loop flow control based on a reduced 

order model makes us able to integrate Strouhal characteristics, energy balance and actuators 

sensitivity. 

A more sophisticated control law, dealing with several regions of interest has to be 

implemented in order to control this energy transfer. 

3.4. Numerical investigation of the reduced scale 

generic SUV 

The experimental investigations of the flow behavior around the mockup performed in 

chapter II define the background of the numerical study of the POSUV benchmark. The 

experimental characterization achieved in the context of this PhD work, provides time 

resolved pressure sensors distributed on the tailgate and time resolved 2D PIV measurements, 

the main wake flow features. This gives the foundations for the validation of the numerical 

simulation. This numerical study was achieved in the continuity of the preliminary 

simulations for an efficient implementation of the computational setup. The ramp flow 

increased our best practices ensuring the accurate simulation of detached flows benchmark. 

The in-depth examination of the shear layer control on the ramp flow improved our 

knowledge of the physics of an efficient actuation. This gives the premise explanations of the 

experimental efficiency measured on the optimal flow control. The second preliminary study 

of the 47° Ahmed Body were an opportunity to highlight how the 3D features drastically 

increase the complexity of the wake flow. This benchmark gives the first observations of the 

relation between the shear layer fluctuations and the wake flow dynamics and the interest of 

the shear layer control is emphasized. 

It is within this framework that the numerical study of the flow around the POSUV is 

performed. The objective is to use the 3D transient results to identify the process responsible 

for the aerodynamic loss. After a validation of the time averaged flow topology, a 

comparative study of the wake dynamics is performed based on the comparison of turbulent 

quantities and their spectra. A more sophisticated cross-modal analysis between experimental 

measurements and numerical probes provides an accurate evaluation of the representativeness 

of the computed flow dynamic. Finally, the 3D analysis of the detachments around the body 

panels and the correlation with the wake flow is explored with spectral analysis and modal 
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decomposition. These observations will be used to corroborate the role of the boundary layer 

separation on the dynamics of the wake vortices. This statement will also help to understand 

how the control of these turbulent structures results in a pressure recovery.  

Finally, the implementation of the numerical simulation of the active flow control 

configuration appears to be really challenging. The reduction of the pressure loss with the jet 

boundary condition was hardly reproduced. An investigation is proposed in order to reach an 

efficient active flow control boundary condition yielding similar aerodynamical gain than in 

experiment.  

3.4.1 Numerical setup and convergence according to turbulent model 

The previous preliminary study of the Ahmed Body in the Orleans wind tunnel shows how 

the external flow is reproduced with the Pitot calibration. A similar approach is used here for 

the numerical setup of the POSUV mockup in TU-Berlin wind tunnel. The reader may refer to 

the section 2.1.1 for a complete description of TU-Berlin wind tunnel characteristics. The 

numerical domain is reduced to the main section of the wind tunnel (Figure III.49). The 

definition of a probe at the same location than the Pitot tube ensures the reproduction of the 

experimental wind tunnel condition. The flow rate at the inflow boundary condition is 

enforced in order to reach a stabilized velocity value of 30m/s at the Pitot probe. The outflow 

boundary condition is also enforced in order to fix a zeros reference pressure at the Pitot 

probe. 

 

Similarly to what was done in the preliminary studies, the mesh cutoff frequency is chosen 

based on the dimensional analysis of the turbulent quantities. Based on a Reynolds number of 

400 000, similitude principles inherit from the Kolmogorov theory approximate the 

dissipative length scales of the flow at 0.7mm associated to the cutoff frequency around 

6000Hz  required for Large Eddy Simulation. 

 

Figure III.49: Simulation domain defining the wind tunnel environment around the POSUV. A 

monitoring point captures the reference zero pressure and the reference velocity of 30m/s at the 

Pitot tube.  
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As discussed on the preliminary study of the ramp flow benchmark, the choice of the 

Dynamic Smagorinsky subgrid scale model ensures a better management of the turbulent 

dissipation according to the local turbulence scale in the transient flow. This justifies the 

selection of a 2mm minimum mesh resolution in the highly turbulent regions associated to a 

cutoff frequency of 2000Hz. The resulting time step of 0.5 milliseconds is in accordance with 

the experimental observation showing no significant energy contribution above 1000Hz. The 

associated CFL number is estimated at 7.5 which suit the semi-implicit solver restriction. It 

should also be mentioned that a maximum number of 4 non-linear staggered iterations per 

time step was allowed in order to capture accurately the flow dynamic.  

Figure III.50 displays the refinement boxes used for the unstructured mesh discretization of 

the fluid volume around the mockup. The thinner discretization level of 2mm is applied in the 

region of the wake flow to capture accurately the shear layers gradients and in the region of 

the underbody flow for the resolution of the turbulence scale from the wheels vortex 

shedding. The surrounding of the mockup is computed with a refinement box at 4mm. An 

additional refinement box at 8mm mesh resolution is used to achieve a smooth transition until 

the rough external mesh at 32mm. 8 tetrahedral layers ensured the mesh size continuity at the 

boxes interfaces.  

 

A special care is taken for the generation of the surface mesh and the extruded boundary layer 

mesh. Figure III. 51 illustrates the boundary layer mesh discretization. A maximum 2D mesh 

size of 2mm is set on the POSUV wall surface to capture the geometric design complexity. 

 

Table 5: Dimensional analysis of the turbulent quantities applies to the POSUV wake flow. 

 

Figure III.50: Refinement boxes dimensions with the final mesh discretization. 
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The first mesh layer is imposed at 0.05mm in order to compute the boundary layer gradient 

from 𝑦+ = 5 in accordance with the wall model constraint. The total boundary layer mesh is 

extruded on 4mm thickness discretized with 12 layers and a growing ratio of 1.3. These are 

the selected choices ensuring the accurate resolution of the wall turbulence level. They will be 

validated with the hot wires measurements in the boundary layer performed in experiment.  

 

The final converged mesh is constituted of 300 million tetrahedral elements corresponding to 

53 million of nodes. Figure III.52 shows the mesh convergence result using a first coarse 

mesh of 15 million of nodes with 8mm minimum resolution and an intermediate mesh of 29 

million of nodes with 4mm minimum resolution. The slope tendency validated the 

convergence with the final mesh of 53 million of nodes. 

 

Finally, the converged flow analysis was performed on 1.2 seconds of simulation after 0.3 

seconds of flow establishment. The simulation corresponds to a total computation time of 270 

hours on a cluster of 72 CPUs using 128Gbytes of RAM, which means 19440 hCPU. 

According to this computational time window, we expect to capture dynamical phenomena 

described in chapter II.3 until above the frequency of 1.6Hz, considering the Shannon 

theorem. Below this frequency, the DMD will not detect the periodicity of the oscillation. 

3.4.2 Time averaged flow topology compared with experiment 

The analysis starts with an exploration of the time averaged flow features. It is based on the 

experimental rear end pressure (Figure III.53a), 2D PIV velocity (Figure III.53b) and force 

measurements. 

 

Figure III. 51: Mesh discretization in the Y0 cut plane with a focus on the boundary layer 

definitions. 

 

Figure III.52: Mesh convergence based on the error on the drag coefficient as a function of 

the number of nodes. 
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 Aerodynamic loss 

A time averaged drag coefficient of 0.352 is obtained in the numerical simulation instead of 

0.358 in experiment. This corresponds to a numerical error of 1.2%. The force breakdown by 

surface is presented in Figure III.54b based on the design decomposition of Figure III.54a. 

The most important contribution is localized on the rear tailgate until 55% even if the front 

bumper and the wheels also have a strong part of the aerodynamic loss. As measured in 

experiment, we compute a ratio of the tailgate force compared to the overall drag coefficient 

in accordance with what is generally observed on the Ahmed body. However, it is 

significantly high compare to what is usually measured on realistic SUV. The non-moving 

floor and the non-rotating wheels should modify the wake and the resulting pressure loss on 

the tailgate.  

 

The aerodynamic loss due to the rear end is validated thanks to the time averaged pressure 

sensors measurement. Figure III.55a shows the comparison of the time averaged rear end 

pressure sensors measured in experiments compared to the numerical results displays in 

Figure III.55b. In both CFD and experiment, the same pressure distribution is observable 

governed by the strong pressure loss on the rear bumper and a high pressure coefficient on the 

rear bumper. The mean pressure coefficient integrated on the rear end surface is evaluated at -

0.216 in CFD compared to the value of -0.23 in experiment. The 6% discrepancy measured on 

the rear end contribution indicates a slight difference in the force breakdown per body panel.  

 

Figure III.53: Picture of experimental sensors: (a) 47 rear end pressure sensors; (b) Time 

resolved 2D PIV acquisitions. 

 

Figure III.54: (a) Breakdown of the body panels;(b) Forces breakdown per body panel. 

Simulated total drag force and tailgate contribution are in agreement with experiments. In 

both cases, the tailgate generates 55% of the total aerodynamic loss. 
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The understanding of the phenomenon responsible for the rear end pressure loss required the 

analysis of the time averaged wake flow topology. 

 Time averaged 2D wake comparison 

The comparison of the time averaged velocity in the wake flow is achieved thanks to the PIV 

measurements. The PIV instrument was not able to capture the wake closed to the mockup 

and above the slant window because of the noise induced by laser reflection. Despite this 

limitation, quality results in the wake were obtained. Figure III. 56 displays the comparison of 

the time averaged velocities in the transverse vertical cut-plane Y0. The stream wise velocity 

(Figure III. 56a and b) illustrates a similar recirculation area between experiments and CFD. 

The vertical velocity component (Figure III. 56c and d) reveals the importance of the 

ascending flow coming from the underbody. In addition, the vortex generated in lower part of 

the recirculation is closer to the rear bumper than the distance of the vortex in the upper part 

to the slant window. This is in accordance with the low pressure distribution which is higher 

on the rear bumper as shown in Figure III.55. 

 

Figure III. 57 shows the time averaged velocities in the horizontal cut-plane Z140. The span 

of the recirculation area estimated with the stream wise velocity component (Figure III. 57a 

 

Figure III.55: Comparison of the time averaged pressure coefficient obtained in (a) 

experiments; (b) CFD. 

 

 

Figure III. 56: Comparison of time averaged velocity components Vx and Vz in the Y0 

cut-plane: (a) and (c) experiments; (b) and (d) CFD; 
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and b) is still in agreement with the experimental observation. The transverse velocity 

component (Figure III. 57 and d) proves the symmetry of the wake flow, which is also in 

agreement with the symmetrical rear end pressure distribution (Figure III.55). 

 

These comparisons ensure our confidence in the results obtained with the numerical 

simulation. We can know take advantage of the 3D numerical results all around the car to go 

further on the analysis of the flow topology. 

 Time averaged 3D wake flow  

The 3D time averaged wake flow topology is described in Figure III.58a thanks to the 

streamlines plot. Three main structures emerged in the wake flow. The one on the bottom of 

the rear bumper, named Ω𝑦 is a horizontal structure (rotation axis orient by the Y direction) 

generated by the roll-up of the shear layer coming from the underbody flow.  

There are also two lateral vortices Ω𝑧
− and Ω𝑧

+ due to the roll-up of the shear layers from the 

rear bumper sides. They are counter-rotating large vertical structures (rotating axis close to z 

direction) extended from the rear bumper until the side corners of the rear window. The span 

of each of these vortices is approximated around 0.5H along the x direction, 0.75H along the z 

direction and 0.4H along the y direction. It is interesting to point out how the typical torus 

pressure contour, often observed behind a bluff body, is shaped by the 3 vortices (Figure 

III.58a and b). Moreover, the S-shape flow path, visible in the Y0 cut-plane (Figure III. 56 a 

and b), is explained by the coupling between the backflow of Ω𝑦 with the stream wise shear 

layer from the roof spoiler. 

 

 

Figure III. 57: Comparison of time averaged velocity components: (a) Vx in experiment; 

(b) Vx in CFD, (c) Vy in experiments, (d) Vy in CFD. 
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The centers of the vortices are estimated thanks to the pressure minima measured in the wake. 

Figure III. 59a and b show the time averaged pressure coefficient field in the Y0 and Z140 

cut-planes. The recirculation due to Ω𝑦 leads to the pressure drop visible in the Y0 cut plane 

and affecting the bottom rear bumper. Another pressure drop in the upper part of the wake is 

generated because of the S-shape structure. Two profile lines at z=100 and z=220 will be used 

to measure the pressure minima and the pressure gradient separating the centers of the wake 

vortices and the bumper. The recirculation due to Ω𝑧
− and Ω𝑧

+ also leads to the pressure drop 

visible in the Z140 cut-plane. The profile lines at y=+/-90 will also be used for the 

characterization of the strength of Ω𝑧. 

 

The stronger pressure drop induced by Ω𝑦 occurs at a distance of 0.3H from the rear bumper 

and it is associated to a pressure coefficient of -0.3. The reversed flow on the upper part of the 

wake leads to a pressure drop at the center of the recirculation area, at a distance of 0.4H from 

the rear window. A minimum pressure coefficient of -0.36 is captured. It is stronger than in 

the lower part but it is further away from the rear window and the pressure is also higher. In 

the Z140 horizontal cut-plane, the centers of the vortices exhibit a dissymmetry between Ω𝑧
− 

at 0.2H and Ω𝑧
+ at 0.12H from the tailgate. In addition, the pressure loss at Ω𝑧

− dropped at 

−0.31 instead of -0.33 at the center of Ω𝑧
+. The vortex on the driver side is weaker and further 

away from the tailgate than the vortex on the passenger side.  

To go deeper in the understanding of the wake flow topology, it is interesting to characterize 

the velocity-pressure coupling occurring in this type of 3D highly turbulent flow. Three-

dimensional incompressible flow are subjected to the Poisson pressure equation (Eq.69a). The 

vorticity and the shear stress are combined within the Q-criterion (Eq.69b), which is a source 

term in the pressure Poisson equation (Lesieur et al., 2005). 

 

Figure III.58: (a) Time averaged velocity streamlines showing one horizontal vortex 

denoted by Ω𝑦 on the bottom of the rear bumper, and 2 lateral vortices Ω𝑧
− and Ω𝑧

+ on each 

side of the tailgate; (b) Superposition of the streamlines with the iso-contour of Cp at -0.1. 

 

Figure III. 59: Time averaged pressure coefficient in (a) the Y0 cut plane and (b) in the 

Z140 cut-plane superposed with the time averaged velocity streamlines. 
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To go further in the discussion on the relation between velocity and pressure, we can analyze 

the Q-criterion in the wake. The Q-criterion can be interpreted as a source term in the pressure 

balance from the Poisson equation. The positive contributions of the Q-criteria are assimilated 

to rotating structures while the negative contributions are assimilated to shear mechanism. 

The Q-criterion of the time averaged field highlights the vorticity structures of the wake flow 

(Figure III.60a). The focus on the rear bumper detachment (Figure III.60b) shows how the 

shear layer coming from the underbody flow (in blue) evolves in the vortex Ω𝑦 in red. The 

impact on the tailgate is due to the shear constraint generated by the backflow of Ω𝑦 and 

resulting in a strong skin friction.  

 

The two lateral vortices Ω𝑧
− and Ω𝑧

+, are also visible on the Q-criterion field in the horizontal 

Z140 cut-plane (Figure III.61a). The focus on the rear bumper corner (Figure III.61b) reveals 

the roll-up of the shear emerging from the lateral body panel separation.  

 

We expect to have a strong correlation between the velocity and pressure characteristics since 

the Q-criterion field shows the correspondence between the wake pressure minima and the 

vortices. 

Δ𝑃 = 2𝜌𝑄 in Ω (a)

𝑄 =
1

2
(|�⃗⃗⃗�|2 − |𝑆|2) in Ω (b)  

Eq.68 

Where: 

𝑄 is the Q-criterion. 

�⃗⃗⃗� = ∇⃗⃗⃗ ∧ �⃗⃗� is the vorticity 

𝑆 = 0.5 (∇⃗⃗⃗�⃗⃗� + (∇⃗⃗⃗�⃗⃗�)
𝑇
) is the shear stress tensor. 

 

 

Figure III.60: Q-criterion of the time averaged field: (a) Y0 cut-plane; (b) Focus on the 

separation at the rear bumper.  

 

Figure III.61: Q-criterion of the time averaged field: (a) Z140 cut-plane; (b) Focus on the 

separation on the lateral corner of the rear bumper. 
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Similarly to the 2D projection on a slip wall, the projection of the Poisson equation on a 

fictive slice surrounding the body gives the imprint of the wake velocity on the wall pressure 

(Eq.69c). With this formulation, the skin friction velocity can be interpreted as the driving 

momentum in the viscous layer responsible for the pressure distribution. 

The observation of the time averaged rear end skin friction streamlines (Figure III.62). gives 

the path of the backflow impacting the rear end pressure Diverging streamlines starting from 

zeros skin friction velocity proves the existence of 3 stagnation points on the rear end surface. 

Two are located in the region of the license plate cavity (𝑝1 at z=117mm and 𝑝2 at z=153mm) 

and the third one is underneath the spoiler (𝑝3 at z=230mm displayed).  

The vortex Ω𝑦 has presumably a strong interaction with the stagnation point 𝑝1 and has a 

ripple effect on the fluid flow going downward on the bottom rear bumper. There is also an 

interaction between Ω𝑦 and the stagnation points 𝑝2 and 𝑝3 meaning that the flow over the 

rear window is affected by the underbody flow. This is a consequence of the roof spoiler 

preventing the roll-up of the shear layer combined with the impact of the 47° slant angle, 

which tends to promote a fully detached flow.  

There is no apparent interaction of Ω𝑧
− and Ω𝑧

+ with the stagnation points 𝑝1 and 𝑝3 but the 

orientation of the streamlines emerging from 𝑝2 toward the sides of the tailgate suggests that 

Ω𝑧
− and Ω𝑧

+ tends have a ripple effect pushing the fluid outward. 

 

 Discussion 

The comparison of the aerodynamical features with experiments validates the 

representativeness of the time averaged results and ensures the simulation quality. The 3D 

wake characterization also confirms the choice of the 2D cut-plane Z140 to capture the 

behavior of Ω𝑧
− and Ω𝑧

+and the choice of Y0 cut-plane to capture the behavior of Ω𝑦 inside the 

S-shape structure. 

𝜕𝑃

𝜕𝜏
|
𝑏𝑙
~
1

𝑅𝑒
Δ𝑢𝜏⃗⃗⃗⃗⃗ − (

𝜕𝑢𝜏⃗⃗⃗⃗⃗

𝜕𝑡
+ �⃗⃗� ⋅ ∇𝑢𝜏⃗⃗⃗⃗⃗) in the fluid layer close to the wall  Eq.69 

Where: 

�⃗⃗� and 𝜏 are respectively the normal and tangential vectors of the wall. 

𝑢𝜏 is the skin friction. 

 

                 

Figure III.62: (a) Time averaged skin friction velocity streamlines on the rear end wall 

highlighting the backflow path on the rear end. The black dot circles indicate the 3 

stagnation points with low velocity and diverging streamlines. 
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It should be mentioned that, at these stage, there is no information on the hypothetical 

steadiness, periodicity or on the stability of Ω𝑦, Ω𝑧
− and Ω𝑧

+. There is also a real challenge to 

perform an accurate evaluation of the transient flow discrepancies between the experiments 

and numerical simulation. To do so, an efficient method will be proposed in the following 

paragraph 3.4.3 thanks to a cross-modal analysis.  

Moreover, the previous observations make us suspect on the importance of the boundary layer 

quantity momentum in the mechanism of roll-up responsible for the wake dynamic. The 

interaction between the boundary layers separation around the body panels and the wake 

motion will be highlight in paragraph 3.4.4. 

The time averaged wake flow description also brings out the interest of the active flow control 

in the region of the detachment on the corners of the rear bumper. Paragraph 3.4.5 will 

investigate on how jet quantity momentum controls this turbulent fluctuations and efficiently 

modify the wake flow.  

3.4.3 Validation of the wake flow dynamics compared to experiments 

Two methods will be used to compare the turbulent quantities between experiments and 

numerical simulation. The root mean square of the transient fields provides an evaluation of 

the turbulent fluctuations. The dynamics of the flow are extracted thanks to a cross-modal 

analysis between the experiments and CFD databases. This workflow leads to an accurate 

evaluation of the correlated dynamical behaviors for a validation of the transient flow.  

 Comparison of the turbulent characteristics with experiment 

Figure III.63 presents the comparison of the experiments and CFD pressure fluctuations on 

the tailgate. The intensity of the pressure coefficient RMS mainly localized on the bottom of 

the tailgate is higher in the numerical simulation. 

 

Figure III.64 displays the comparison of the power spectral density computed at the probes 

identified in Figure III.63. The spectral distributions show higher energy magnitude in CFD 

than experiments at 9Hz and at 25Hz and 30Hz.  

The computation time is not able to capture the 1Hz peak observed in experiment. The feature 

at 30Hz will be analyzed in the modal decomposition of the tailgate pressure in order to 

identify the difference in the velocity cross-correlations between experiments and CFD. The 

discussion on the numerical flow simulation presented in section 3.4.5 will deal with the 

quality of the turbulent model used in our computation, which can explain this difference. 

 

 

 

(a)  (b)  

Figure III.63: RMS of pressure coefficient on the tailgate in (a) experiments and (b) CFD. 
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This can be linked to the pressure fluctuations in the wake flow obtained thanks to the 

numerical simulations in the Y0 cut plane (Figure III.65a) and in the Z140 cut plane (Figure 

III.65b). We can see that the shear layers are subjected to important pressure fluctuations. If 

the separation on the roof spoiler generates a high RMS of pressure, it does not affect 

significantly the slant window. The separation on the bottom rear bumper and on the sides of 

the rear bumper seems to have more impact on the tailgate.  

 

Figure III.66 displays the comparison of the velocity fluctuations plotted in the Y0 cut-planes. 

The velocity RMS reveals the area of high turbulence in the wake flow generated in the 

region of the shear layer. In both experiments and CFD, the turbulence induces by the 

separation is more energetic on the top shear layer compared to the bottom shear layer. 

However, if a maximum velocity fluctuation of 7m/s is measured in experiment, it reaches a 

maximum value of 9m/s in the numerical simulation. 

 

Figure III.64: Power spectra density of the pressure measured at the probe highlighted in 

Figure III.63. The black curve associated to experimental results is plotted on the left axis 

and the blue curve associated to CFD, is plotted based on the right axis. 

 

Figure III.65: RMS of pressure measured in the wake flow: (a) in the Y0 cut-plane, (b) in 

the Z140 cut plane. 
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Figure III.67 displays the comparison of the velocity fluctuations in the horizontal Z140 cut-

planes. The turbulence induces by the lateral corners of the rear bumper leads to 6m/s velocity 

fluctuations in experiments compared to the value of 7m/s in the numerical simulation.  

 

A first identification of the turbulent scales explaining the energy difference is obtained with 

the analysis of the velocity spectra in the wake flow. Figure III.68b shows turbulent decay 

 

 

Figure III.66: Comparison of velocity fluctuations in the Y0 cut-plane: (a) stream wise 

velocity in experiment, (b) in CFD, (c) vertical velocity component in experiment, (d) in 

CFD. The white circle indicates the position of the maximum velocity fluctuation. 

 

 

Figure III.67: Comparison of velocity fluctuations in the Z140 cut-plane: (a) Vx RMS in 

experiments, (b) Vx RMS in CFD, (c) Vy RMS in experiments, (d) Vy RMS in CFD. 
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based on the Power Spectra Density (PSD) computed at the maximum velocity RMS 

indicated by the white circle on Figure III.68a and b. At this local monitoring point, the 

experimental PSD reveals a turbulent decay driven by a dissipation rate of -5/3, which is in 

accordance with the literature knowledge. However, the numerical result exhibits more energy 

production from the low frequency eddies while the turbulent decay is governed by a more 

intense dissipation rate closer to -7/3. 

 

One may recall the similitudes with the velocity spectra obtained in the preliminary ramp 

simulation. Similar overestimation of overestimation of the turbulent production term 

associated with stronger dissipation rate was observed. This energy decay suggests that there 

is a numerical bias, which may modify the process of dissipation in the numerical solver. The 

accuracy of the numerical subgrid scale model can be questioned but it should presumably 

affect only the end of the inertial zone. The discrepancy on the overall frequency range of the 

turbulent energy suggests that there is a numerical effect due to the approximation technique 

used to compute the resolved scales in the LES approach. One can question the influence of 

the regularization term of the Least-Square Galerkin operator used to enforce the weight 

residual constraint on the variational formulation of the LES equations. This term ensures the 

robustness of the simulation by a numerical smoothing of the artificial waves generated by the 

Galerkin constraint inside distorted elements. It is a crucial condition for the simulation of the 

flow around a complex design such as the POSUV.  

If the Least-Square operator tends to damp the numerical instabilities generated by the 

Galerkin term, it also induces a numerical constraint in the region of low velocity magnitude 

as shown in Figure III.1 computed with a 1D simulation. In our case, Figure III.69a presents 

an estimation of the area subjected to high regularization term. We can see that the bound of 

the recirculation corresponding to a thin layer of small velocity is actually concerned by the 

numerical treatment produced by the Least-Square operator.  

A recent simulation based on zonal mesh refinement was tested in order to validate the 

previous assumptions. A tetrahedral split was applied in the region subjected to the Least 

Square operator (Figure III.69b) and successfully managed to limit the regularization impact. 

However, numerical noises were generated because of the mesh interface treatment between 

the splitted elements and the outer mesh. 

 

Figure III.68: (a) Focus on the velocity RMS downstream the roof spoiler superposed with 

the mesh grid; (b) PSD of PIV velocity magnitude and simulation velocity magnitude at the 

maximum turbulence intensity in Y0 vertical cut-plane.  
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The turbulent energy decay solved in the bounding fluid layer of the recirculation zone is 

stronger due to the regularization term. This induces a lower resolved stress tensor 𝐿𝑖𝑗 in the 

spectral range of [500Hz-2000Hz] estimated between the numerical test filter Δ̅ and the grid 

cutoff frequency Δ. Thus, the dissipated energy due to the subgrid scale Dynamic 

Smagorinsky model is probably underestimated. This explains the establishment of an 

unbalanced energy between the numerical dissipation due to the approximation technique in 

FEM and the turbulent model estimation based on the resolved stress tensor. This numerical 

behavior can be related to the overestimation of the resolved low frequency scales. 

We have correct time averaged values but the turbulent intensity is too high. It is then 

interesting to understand the origin of the fluctuations and to compare their modal magnitudes 

to the experimental decomposition. The numerical treatment applied in the regions of high 

turbulence remains of major concerns. Even if these discussions around the numerical 

approximations clarify the spectral behavior observed in the numerical simulations of 

detached flows, the overall transient flow dynamics have to be corroborated with experiment. 

This is achieved thanks to a cross-modal analysis with the experimental data for an accurate 

evaluation of the fluctuating components. 

 

 Cross modal analysis of numerical and experimental results 

The methodology presented in this paragraph was developed in order to identify the 

similarities and the discrepancies existing in the dynamical behavior between experiments and 

CFD. This method also has the advantage to output an exact estimator of the energy ratio 

associated to a common dynamical mechanism. Figure III.70 shows the definition of the 

concatenate databases used for the cross modal analysis. It is applied on the superposition of 

the transient databases in the pressure tailgate and the velocity data in the Y0 and Z140 cut 

planes. A total of 2001 snapshots, sampled at 2000Hz, from both experimental and CFD 

results was used. 

 

 

Figure III.69: Estimation of the Least-Square regularization intensity: (a) Reference mesh 

showing the sensitivity to the recirculation bound to the regularization term; (b) Zonal mesh 

refinement showing the reduction of the Least-Square matrix around the recirculation. 
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The DMD spectrum presented in Figure III.71, reveals the periodic characteristics commonly 

embedded in the concatenate database. If the energy is distributed between the low frequency 

until 135Hz, two major peaks stand out at 25Hz. It is associated to a Strouhal number of 

𝑆𝑡𝐻 = 0.167 based on the mockup height or a Strouhal number of 𝑆𝑡𝐿 = 0.2 based on the 

root mean square of the frontal area (𝐿 = √𝑆𝑟𝑒𝑓 = 0.24m). This DMD mode can be related to 

the natural frequency of the 3D wake vortex shedding. 

 

 

The synchronized DMD spectra between the experimental and CFD of the tailgate dynamical 

behavior is presented in Figure III.72. We can see that the low frequency behavior is 

reproduced despite the additional peak due to the vortex shedding contribution at 25Hz. 

 

Figure III.70: Illustration of the database assembly for cross-dmd analysis between CFD 

results and experiments. 

 

Figure III.71: DMD energy intensity as a function of the DMD frequency. In this spectrum, 

peaks are outlined at 25Hz, 31H, 33Hz, 61Hz, 70Hz, 80Hz, 135Hz, 210Hz and 400Hz. 



126 Numerical investigation of the reduced scale generic SUV  

 

The correlations in the database are analyzed thanks to the preliminary SVD computation 

performed in the DMD algorithm. The matrix U contained the correlated features between 

experiments and CFD. The spatial POD modes corresponding respectively to the 

CFD/experimental contributions are extracted using a block decomposition of the matrix U as 

shown in Eq.70. As U is a unit matrix, the relative energies 𝐸𝑐𝑓𝑑 and 𝐸𝑒𝑥𝑝 respectively 

associated to the CFD/experimental blocks are obtained by normalization of 𝑈𝑐𝑓𝑑 and 𝑈𝑒𝑥𝑝.  

𝑈 = [  
U𝑐𝑓𝑑
U𝑒𝑥𝑝

  ] = [
𝐸𝑐𝑓𝑑
pod
 0

0 𝐸𝑒𝑥𝑝
pod
 
] × [

U𝑐𝑓𝑑
1

U𝑒𝑥𝑝
1 ]  Eq.70 

Where:  

U is the POD modes matrix. 

U𝑐𝑓𝑑 and 𝑈𝑒𝑥𝑝  are respectively the CFD/Exp block matrices. 

U𝑐𝑓𝑑
1  and U𝑒𝑥𝑝

1   are the normalized CFD/Exp modes. 

𝐸𝑐𝑓𝑑
𝑝𝑜𝑑

 and 𝐸𝑒𝑥𝑝
𝑝𝑜𝑑

 are 𝑚 ×𝑚 diagonal matrices containing the energy contribution of 

respectively CFD and experimental database. 

Consequently, the ratio between numerical and experimental contributions in the correlated 

POD modes are computed obtained with Eq.71. 

𝑟𝑝𝑜𝑑 =
‖𝐸𝑐𝑓𝑑

pod
 ‖

‖𝐸𝑒𝑥𝑝
pod
 ‖

𝑟𝑑𝑚𝑑 =
‖𝐸𝑐𝑓𝑑

dmd ‖

‖𝐸𝑒𝑥𝑝
dmd ‖

 Eq.71 

Figure III.73a shows the energy ratio per POD mode. POD modes associated to a ratio of 

100% means that there is as much correlated information in the CFD block as in the 

experimental one. POD modes associated to a ratio above 100% means that the CFD block is 

too intense and below 100%, the CFD block is too weak. The POD modes are sorted by 

energy computed with the square of the singular values as shown in Figure III.73b. It should 

be noted that the SVD is applied on the transient database and not the fluctuating database 

(without time averaged contribution). The statistical average carrying the most energy in the 

flow is extracted in the first POD mode and will be denoted as the static mode. The remaining 

POD modes constitute a decomposition of the main fluctuation directions observable in the 

flow. The static mode is evaluated at 97% of the total modal energy and is associated to a 

ratio of 115% between CFD and experiment. The two most significant fluctuating POD 

modes (index 2 and 3) are about 4 times stronger in CFD than experiment. We can notice the 

evolution of the ratio as a function of the POD index. It is high for the first energetic POD 

 

Figure III.72: Comparison of the synchronized DMD spectra on the rear tailgate between 

experiments and CFD. 
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modes and it drops starting from the POD index 200 while the associated energy production 

decreases. A parallel can be drawn between above observations on the Power Spectra Density 

showing stronger production at low frequencies and weaker contribution of dissipative scales 

at high frequencies in CFD. This suggests that there is a relation between the orthogonal 

decomposition and the wake decaying energy. 

 

The spectral information embedded in each POD mode is obtained by computation of the 

transfer matrix between the DMD and the POD base (Eq.72).  

𝑈 = Φ𝑊 {
𝑊𝑐𝑓𝑑 = 𝑊.𝐸𝑐𝑓𝑑

𝑝𝑜𝑑

𝑊𝑒𝑥𝑝 = 𝑊.𝐸𝑒𝑥𝑝
𝑝𝑜𝑑

 Eq.72 

Where:  

𝑈 is the matrix of the POD modes 

Φ is the matrix of the DMD modes. 

𝑊 is the transfer matrix. 

𝐸𝑐𝑓𝑑 and 𝐸𝑒𝑥𝑝 are the relative energy per block. 

𝑊𝑐𝑓𝑑 and 𝑊𝑒𝑥𝑝 are the relative transfer matrix per block. 

 

Figure III. 74 displays the transfer matrix W obtained between the POD and DMD bases. 

Each column of the matrix W gives the weight of the spectral decomposition per POD mode. 

Each line of the matrix W relates to one frequency and gives the list of POD mechanisms 

where this frequency is involved. The profile line at 0Hz gives all the POD modes correlated 

with in the static contribution. 

 

Figure III.73: (a) CFD/Exp ratio measured in POD modes. An overestimation of the energy 

contained in the 2
nd

 and 3
rd

 POD modes, is measured in the numerical simulation.  

(b) Energy distribution per POD mode showing the ratio of the static component in the first 

POD mode at 97% of the total modal energy.  
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Figure III.75 shows the change of spectral energy distribution per POD mode obtained thanks 

to the DMD projection on the POD base. The transfer matrix reveals that the first POD modes 

are mainly driven by low frequency dynamic modes but the frequency distribution quickly 

evolves depending on the POD index. The POD mode 2 (Figure III.76), associated with high 

energy production, is actually correlated to dynamic modes until 60Hz. The contribution of 

the frequency between 100Hz and 110 significantly growths in the POD modes index 100. 

The POD modes 1000 is correlated with the DMD modes until 400Hz. The change of spectral 

distribution can be interpreted as a modification of the turbulent production contributions 

compared to the contribution of the dissipative scales. Figure III.76 presents the spatial 

distribution of the 2
nd

, 10
th

 and 100
th

 POD modes. This shows the decrease of the 

characteristic wavelengths in the wake as a function of the POD index and consequently as a 

function of the coherent energy production. This methodology is particularly interesting in 

order to identify turbulent constitutive laws per correlated components in the wake flow. 

 

 

Figure III. 74: Visualization of the transfer matrix measured between DMD modes and POD 

modes. 

 

Figure III.75: DMD spectral projection per POD mode showing the change of energy 

distribution per frequency depending on the POD mode. The 2
nd

 POD mode is the most 

energetic components and mainly driven by low frequencies. The high frequencies have more 

impact on the low energy POD modes such as the 100
th

 and 1000 modes. 
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If the concatenation method provides an estimation of correlated signals between experiments 

and CFD, one can remark the differences on the spatial POD modes projected on the tailgate. 

Indeed, the spatial resolution of the pressure sensors limits the identification of spatial 

coherence. This is explained by the fact that the computation of orthogonal decomposition 

performed with the SVD is based on a Euclidian scalar product. The use of a ℒ1 scalar 

product taking into account the mesh resolution could improve the spatial definition of the 

POD modes. However, this does not affect the periodic features extracted in both databases. 

 

Focusing on the second POD mode, an investigation of the length scales and correlated 

frequencies is performed to understand this first fluctuating component of the flow. Figure 

III.77 presents the corresponding spatial mode in the Y0 and Z140 cut-planes in experiments 

and numerical simulation. In both cases, the spatial distributions denote a large scale structure 

describing a vertical recirculation combined with a horizontal oscillatory motion. This shared 

behavior validates the first fluctuating component measured in experiments is reproduced by 

the numerical simulation.  

 

The experimental/CFD comparison of the spectral energy ratio contained in the POD mode 2 

is presented in Figure III.78. If there is a consistency in the spectral decomposition between 

experiments and CFD, the energy ratio showing stronger modal fluctuation in CFD is 

explained by the contribution of the periodic components at 25Hz and 30Hz. 

 

Figure III.76: Spatial correlated POD modes between CFD and experiments. If the POD 

mode 2 is associated to a large-scale structure, the characteristic lengths decrease as the 

associated POD energy decreases. 

 

Figure III.77: Cross-POD mode 2: (a) Y0 cut-plane experiment; Y0 cut-plane CFD; (c) 

Z140 cut-plane experiment; Z140 cut-plane CFD. 
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These peaks corresponds to the vortex shedding natural frequency (St=0.2 based on the square 

root of the frontal area).  

We may refer to the previous discussion on the numerical approximation technique to explain 

the overestimation of these peaks. However, we should mention that the cross-correlation 

analysis suggests that this natural frequency due to the wake vortex shedding is captured in 

both CFD and experiment. The difference remains in the too high intensity associated to this 

mechanism in the numerical simulation.  

 Modal optimization of the numerical simulation 

An original algorithm is introduced here for an optimal correction of the discrepancies 

between the numerical simulation and the experimental results. It consists in the application 

of a penalty term in the reconstructed field of the modal decomposition (Eq.73).  

Ψ𝑜𝑝𝑡 = ∑ 𝜌𝑚
∗ × [𝛼(cos (2𝜋𝑓𝑚𝑡) × ℜ(Φm) + sin(2𝜋𝑓𝑚𝑡) × ℑ(Φm)]

𝑀

𝑚=1

 Eq.73 

Where:  

𝜌∗ = (𝑟𝑝𝑜𝑑)
−1
𝑊 is the penalty term defined with correlated energy ratio 

between experiments and CFD (𝜌𝑚 is the m
th

 column vector of 𝜌∗). 

 

The application of this numerical optimization allows a dynamical correction of the flow 

behavior. Figure III.79 shows the velocity RMS in experiments compared to the numerical 

results before and after the cross-modal correction. The modal penalization manages an 

optimal adjustment of the turbulent quantities. 

 

Figure III.78: DMD weights in the 2
nd

 POD mode showing the numerical contribution 

compared to experiments. The frequencies at 25Hz and 30Hz appear to be too energetic in 

CFD. 
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This correction has the advantage to modify the spectral signature of the transient flow. Figure 

III.80 outlines the comparison of the power spectra density at the monitoring point displays in 

Figure III.79. We can see that the low frequency contributions are damped at a similar energy 

level than experiments while the high frequency contributions are slightly increased. The 

difference of dissipation rate is reduced below 400Hz.  

 

It should be mentioned that this method could be extended to correct the overall 3D fluid flow 

by estimating a penalty factor computed with the energy ratio between sub-blocks of common 

spatial sensors (Eq.74). Thus, it is a powerful tool to force the convergence of the numerical 

simulation toward experimental results. 

𝑈 =

[
 
 
 

  

𝑈𝑐𝑓𝑑
𝑓𝑙𝑢𝑖𝑑

U𝑐𝑓𝑑
𝑠𝑒𝑛𝑠𝑜𝑟𝑠

U𝑒𝑥𝑝
𝑠𝑒𝑛𝑠𝑜𝑟𝑠

  

]
 
 
 

=

[
 
 
 𝐸𝑐𝑓𝑑

𝑓𝑙𝑢𝑖𝑑
0 0

0 𝐸𝑐𝑓𝑑
sensors 0

0 0 𝐸𝑒𝑥𝑝
sensors ]

 
 
 

×

[
 
 
 
𝑈𝑐𝑓𝑑
1

U𝑐𝑓𝑑
1

U𝑒𝑥𝑝
1 ]
 
 
 
 ⟹ 𝑟𝑝𝑜𝑑 =

‖𝐸𝑐𝑓𝑑
sensor ‖

‖𝐸𝑒𝑥𝑝
sensor ‖

 Eq.74 

Where:  

U is the POD modes matrix. 

U𝑐𝑓𝑑 and 𝑈𝑒𝑥𝑝  are respectively the CFD/Exp block matrices. 

𝐸𝑐𝑓𝑑
𝑠𝑒𝑛𝑠𝑜𝑟𝑠 and 𝐸𝑒𝑥𝑝

𝑠𝑒𝑛𝑠𝑜𝑟𝑠 are 𝑚 ×𝑚 diagonal matrices containing the energy contribution 

of respectively CFD and experiments database. 

 

Figure III.79: Comparison of the velocity RMS: (a) in experiment, (b) in CFD, (c) in CFD 

after the application of the cross-modal correction. The white dot is a monitoring point 

used for spectral analysis 

 

Figure III.80: Comparison of the velocity PSD computed at the white dot monitoring 

point of Figure III.79. The low frequencies of the CFD spectra corrected with the modal 

penalty term were adjusted at the level of the experimental spectrum. 
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To go further, it could be relevant to investigate the interest of co-simulation DMD algorithm 

such as “On-the-fly algorithm for DMD” proposed by (Matsumoto and Indinger, 2017) to 

enforce a penalty optimization as a direct mathematical constraint on the numerical solver. 

This underscores the interest of Reduced Order Model to improve our numerical simulation 

due to computational limitations. 

 Discussion 

In this section, the correlations with experiments corroborate the detached flow obtained in 

the numerical simulation. The cross-modal analysis validated coherent dynamical behavior 

between CFD and measurements. The energy ratio related to these coherent motions reveals 

too strong energy production from the numerical simulation. Based on previous investigations 

on the resolution of the turbulence decay performed on the ramp benchmark, a numerical bias 

is identified explaining the difference in the spectral and modal energy distributions. 

Except for the modal magnitude, the cross analysis validates the coherence between the 

dynamical flow in numerical simulation and in experiment. A new numerical optimization 

was proposed to correct the numerical discrepancy. 

We can now focus on the analysis of the mechanisms responsible for the aerodynamic loss. 

3.4.4 Boundary layer and detachments correlations with the wake flow 

The objective of this section is to understand how the development of unstable vortices 

around the body panel interacts with the wake flow. The interest of this analysis provides 

insights on how the management of these structures with flow control results in wake 

stabilization. After a validation of the boundary layer features around the body panels thanks 

to hot-wires measurements, the correlation between the flow detachments and the wake 

motion will be highlighted. Then the interaction with the tailgate pressure behavior will be 

extracted.  

 Validation of the flow around the body panels 

The flow around the body panel is validated thanks to hot-wires measurements achieved in 

experiments at a sampling frequency of 2000Hz during a period of 1 minute of acquisition. 

Figure III.81 describes the measured profiles lines used to characterize the transverse flow 

behavior along the lateral body panel. A first profile at x=-637mm captured the boundary 

layer on the front of the body panel before the front wheel and wheelhouse. The second 

profile was set on the center of the front wheel at x=-577mm. The third and fourth ones were 

set at x=-200mm and x=-100mm in order to define the boundary layer state feeding the shear 

layer. The fifth one was set at x=0mm for the shear layer description. 
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The following analysis will focus on the lateral body panel comparison. Figure III.82 displays 

the normalized time averaged velocity in experiments and CFD. The time averaged boundary 

layer at x=-637mm is characterized by an overshoot of velocity higher than the free stream 

velocity. This could indicate the existence of a turbulent source generated by the front bumper 

curved shape. The time averaged profiles at x=-577mm, x=-200 and x=-100mm captured 

typical turbulent boundary layer behavior: The boundary layer thickness tends to grow 

through the body panel and the gradient close to the wall gets stronger.  

 

The velocity fluctuations, shown in Figure III.83, display sevearal peaks around 0.2 × 𝛿99. It 
appears that the numerical simulations give slightly higher energy in the vicinity of the wall 

than what is measured in experiment. Once again, the first boundary layer turbulent intensity 

profile differs from the others. The turbulent intensity is condensed close to the wall with a 

peaks located below 0.1 × 𝛿99 for both experiments and simulation. The fluctuations level is 

too strong in the numerical simulation compared to the experimental value. The penalty 

method proposed in the previous section could help to correct the boundary layer fluctuations 

intensity. 

 

Figure III.81: (a) Picture of the hot-wires setup measured with the horizontal arm; (b) 

location of the measured profiles on the front fender; (c) location of the measured 

profiles on the rear fender. 

             

 

Figure III.82: Comparison of hot-wires and computed time averaged normalized boundary 

layer velocity magnitude profiles along the body panel in the Z80 cut-plane for the first 2 

profiles and in the Z140 cut-plane for the last 3 profiles. 
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Three dimensional time averaged observations from the numerical results show the existence 

of a vertical vortex in this region caused by the abrupt design of the front bumper (Figure 

III.84). The intensity of this structure is probably driven by the adverse pressure gradient 

surrounding the mockup. 

 

 Origin of the vortex fluctuations  

The experimental investigations presented in section 2.2.1, gives some insight on the relation 

between the wake oscillatory motion and the rear end dynamics thanks to the cross analysis of 

pressure sensors and velocity measurements in the Y0 and Z140 2D cut-planes. The analysis 

of the time averaged flow performed in section 3.4.2 on the numerical simulation, also 

exhibits the importance of the boundary layer separation with the wake topology. In addition, 

the observations of the separation mechanism in the benchmark of the 25° inclined ramp 

demonstrate the importance of the boundary layer quantity momentum governing the shear 

layer and the recirculation behavior. In the case of the POSUV benchmark, we will try to 

elucidate the interaction of the vortices generated on the lateral panels with the wake 

dynamics based on the 3D streamlines along the car (Figure III.85). We will focus on the 

structures coming from fender separation as the flow over the roof spoiler has a minor 

influence on the wake recirculation. Two pairs of monitoring points were used to identify the 

synchronized periodic characteristics (A1 and A2 in the Z80 cut-plane). 

             

 

Figure III.83: Comparison of hot-wires and computed velocity fluctuations along the 

lateral body panel in the Z80 cut-plane for the first 2 profiles and in the Z140 cut-plane for 

the last 3 profiles. 

 

Figure III.84: Time averaged 3D structure responsible for the turbulent kinetic energy in 

the boundary layer of the front bumper. 
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The cross-correlation between these sensors is displayed in Figure III.86. There is shared 

spectral information carried out by the frequencies of at 16Hz. Other components are also 

measured at 6Hz and 90Hz in the Z80 cut-planes.  

 

The flow analysis using the numerical database with the Y0, Z80 and Z140 cut-planes 

extended all around the car (Figure III.87) provides more information on the sources 

responsible for these periodic oscillations.  

 

 

Figure III.85: Time averaged velocity streamlines of the flow around the POSUV: the 

circles indicate the monitoring points used to correlate the lateral detachments with the 

wake vortices 

 

Figure III.86: Cross correlation between A1 and A2 in the Z80 cut-plane showing the 

synchronized characteristic at 16Hz. 

 

Figure III.87: Spatial data used for the 3D modal analysis. 
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The DMD spectra obtained with this database is analyzed in order to understand the modal 

behavior highlighted in experiment. Figure III.88 shows the spatial DMD modes at the 

frequency of 17Hz, identified in experiment, in respectively the Z140 cut-plane and the Z80 

cut-plane. One can remark the periodic synchronization of the turbulent structures around the 

body panel with the wake motion. 

 

The reconstruction isolates the dynamics of the component at 17Hz and shows the periodical 

interaction between the lateral detachments with the shear layer development. Figure III.89 

displays the reconstruction in the Z140 and Z80 cut-planes, of the flow fluctuations (without 

the static component), induced by the periodic dynamical behavior at 17Hz. In the Z80 cut-

plane, the flow exhibits a synchronized motion between the structures coming from the 

wheelhouse detachments and the shear layer developing from the rear bumper separation. 

When the body panel vortex induces an increase of the boundary layer velocity, the following 

shear layer tends to be weaker and when the body panel vortex reduces the boundary layer 

velocity, the following shear layer is get stronger. In the Z140 cut-plane, there is a strong flow 

fluctuation near the bumper corner, which evolves in opposition with the shear layer flapping. 

This is related to the feedback flow due to Ω𝑧
− visible in the Z140 cut plane. In the periodic 

behavior at 17Hz, when the shear layer velocity increases, the backflow is constraint, while it 

is strengthen when the shear layer momentum decreases. 

 

 

Figure III.88: DMD velocity X modes in the Z140 cut-plane at 16Hz in the Z140 and Z180 

cut-planes. 

 

Figure III.89: Snapshots of the reconstruction in Z140 and Z80 cut-planes with the dynamic 

behavior of the periodic component at 17Hz during the phase (t=0s) and the opposition 

(t=0.028s). 
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It is difficult to conclude on the phase or opposition synchronization of the identified 

mechanism between the left and right hand side of the car. Indeed, the spatial DMD mode 

presented in Figure III.88, is not perfectly symmetric but the local velocity fluctuations in the 

shear layer of the Z80 cut-plane, has the same sign. This suggests a phased synchronized 

velocity pulsation coming from both lateral boundary layer fluctuations. However, the 

intensity of the pulsation is not exactly balanced. We can assume that there is a delay between 

the left and right hand side or there is another mode with a close frequency counter-balancing 

this motion. 

These observations validate the assumption that the separation occurring on the rear bumper is 

governed by the turbulent vortices coming from the lateral boundary layer detachment. The 

momentum in the shear layers is increased by the recirculation emerging from the wheelhouse 

and fender panels. In addition, the increase of the shear layer momentum tends to compete 

against the circulation of the wake vortices.  

We have now to understand how the wake motion drives the transient pressure loss on the 

rear tailgate. We previously mentioned the relation between the pressure and the velocity 

through the Poisson equation in 3D flow and its projection of 2D driven flow. Similar 

statements will be used to relate the wake motion to the pressure loss transient evolution. 

 Correlation between pressure body panel fluctuations and wake dynamic 

In a similar way than the correlations analysis obtained from the concatenation of two 

databases, the same method is used to evaluate the correlations between the velocity 

fluctuations in the wake and the pressure fluctuations around the SUV. The database gathered 

a first block matrix associated to the wake velocity data and a second block matrix associated 

to the SUV pressure data. The block decomposition of the modal matrices gives an estimation 

of the ratio of the modal fluctuations contains in the pressure or in the velocity (Eq.75).  

Φ = [  
Φ𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

Φ𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒

  ] = [
𝐸𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
dmd  0

0 𝐸𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
dmd  

] × [
Φ𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
1

Φ𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
1 ]  Eq.75 

Where : 

Φ is the DMD modes matrix. 

Φ𝑣𝑒𝑙 and Φ𝑝𝑟𝑒𝑠 are respectively the wake velocity and SUV pressure blocks. 

Φ𝑣𝑒𝑙
1  and Φ𝑝𝑟𝑒𝑠

1  are the normalized velocity/pressure modes. 

𝐸𝑣𝑒𝑙
𝑑𝑚𝑑  and 𝐸𝑝𝑟𝑒𝑠

𝑑𝑚𝑑  are the diagonal matrices containing the modal energy of 

velocity/pressure. 

The projection of the POD base into the DMD base yield the transfer matrices dimensioning 

the correlations between the periodic behaviors. Figure III.90 shows the transfer matrix 

associated to the velocity and pressure contributions. The pressure transfer matrix is 

unexpectedly close to the velocity weight matrix. We still have on both maps, the significant 

amount of energy brought by low frequency pulsations within the first POD modes.  

The velocity and pressure weight matrix distribution are similar which means that these two 

state variables carry a common spectral information. This velocity-pressure coupling can be 

related to the Q-criterion definition, which can also be decompose on the same DMD mode of 

velocity/pressure. The extension of this statement could be done to isolate the shear and 

vorticity modes. 
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The projection on the 0Hz static DMD modes gives the reflection of the pressure/velocity 

correlated fluctuations. Figure III.91a reveals the importance of the fluctuations associated to 

the POD index 3, 4 and 6. The associated spatial coherent fluctuations are displayed in Figure 

III.91b. The spatial coherent structures affecting the pressure on the body panels denote the 

interference between the lateral and underbody detached structures with the fluctuations 

generated on the rear bumper separation. We will first have a closer look on the coherent 

structures of the POD modes 2, 3, 4 and 6 and then we will investigates more deeply on the 

associated DMD periodic correlations. 

 

 

As a first step, we will examine Φ𝑝𝑜𝑑(2) and Φ𝑝𝑜𝑑(6), which are related to global wake 

oscillations. Then, we will focus on Φ𝑝𝑜𝑑(3) and Φ𝑝𝑜𝑑(4) which appear to be 

complementary paired modes affecting the aerodynamic loss in the static component. 

 

Figure III.90: Transfer matrices between POD and DMD matrices: (a) wake velocity 

transfer matrix; (b) SUV pressure transfer matrix. 

 

Figure III.91: (a) Projection of the velocity and pressure POD contributions into the 0Hz 

static component. The POD modes 3, 4 and 6, highlighted by the green box, are the main 

fluctuations correlated with the 0Hz static component; (b) POD modes 3, 4 and 6 

correlated with the static 0Hz DMD modes. 
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Figure III.92 shows the distribution of the fluctuations due to the 2
nd

 and 6
th

 POD on the 

tailgate and in the wake cut-planes. It appears that Φ𝑝𝑜𝑑(2) can be associated to a horizontal 

oscillation of the pressure fluctuations. The associated modal velocity in the Z140 cut-plane 

indicates that there is a phase opposition between the flow velocity fluctuations in the wake. 

This validates the predominance of the wake horizontal motion. The 6
th

 mode is related to a 

vertical pressure variation as shown in Figure III.92b. It is correlated with the modal wake 

velocity in the Y0 cut-plane. The modal intensity below the rear bumper underlines the 

influence of the underbody flow in the wake, which can be related to the time averaged S-

shape structure observed in the wake topology (section 3.4.2). Even if the 2
nd

 POD mode 

carries more energy than the 6
th

 one, the feature highlighted in Φ𝑝𝑜𝑑(6) is still interesting 

because it indicates the existence of a pressure oscillating fluctuation varying between the 

slant window and the tailgate.  

 

This can be related to some observations showing a switch of the pressure minima on the slant 

angle depending to ground clearance, the pitch and under large yaw conditions. It was 

observed in the stability study of the full scale Peugeot 5008 and Renault Mégane mockups 

(Bonnavion and Cadot, 2018). The threshold conditions when this vertical component 

becomes predominant remains an important question for the control of road vehicles. 

The DMD spectral projections detail the periodic motions involved in the mechanisms 

responsible for the 2
nd

, 6
th

 POD modes. Figure III.93a, Figure III.94a, show the result of the 

column vectors 𝑊2, 𝑊6 of the transfer matrix between the DMD and the coherence contained 

in Φ𝑝𝑜𝑑(2), Φ𝑝𝑜𝑑(6). Concerning the 2
nd

 POD mode, the resulting spectrum is governed by a 

combination of the low frequency pulsation at 6.4Hz (Figure III.93b) with the natural wake 

frequency of 23Hz (Figure III.93c) and 31Hz (Figure III.93d).  

In Φ𝑝𝑜𝑑(6), the spectral projection of (Figure III.94b) validate that this mode isolates the 

wake vortex shedding driving the vertical wake motion at 𝑆𝑡 = 0.2. The configurations where 

the pressure drop is measured on the slant window, could be explained by a change of energy 

ratio between Φ𝑝𝑜𝑑(6) and Φ𝑝𝑜𝑑(2). The balance between these modal components is 

probably governed by the flux going below the car depending on the ground clearance or the 

pitch. 

 

Figure III.92: 2
nd

 and 6
th

 POD modes of the modal pressure fluctuations on the rear tailgate 

and of the associated modal wake velocity. 
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Figure III.93: (a) DMD weight corresponding to the 2
nd

 column vector of the transfer matrix 

between periodic decomposition and POD. Velocity DMD modes in the Z140 cut-plane 

associated to the correlated mechanisms identified Φ𝑝𝑜𝑑(2) at (b) 6.4Hz, (c) 23Hz, (d) 

31Hz. The frequencies in bold indicate common features with 𝑊3, 𝑊4 and 𝑊6. 

 

Figure III.94: (a) DMD weight corresponding to the 6
th

 column vector of the transfer matrix 

between periodic decomposition and POD. Velocity DMD modes in the Y0 cut-plane 

associated to the correlated mechanisms identified Φ𝑝𝑜𝑑(6) at (b) 23Hz, (c) 31Hz. The 

frequencies in bold indicate common features with 𝑊2, 𝑊3 and 𝑊4. 
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We will now focus on the complementarity of the coherent structures described by the 3
rd

 and 

4
th

 POD modes. It is especially visible on the tailgate pressure mode presented in Figure 

III.95a. The tailgate pressure mode Φ𝑝𝑜𝑑(3) is driven by the fluctuations on the left side in 

opposition with the tailgate pressure mode Φ𝑝𝑜𝑑(4) driven by the fluctuations on the right 

side. Consequently, these components can be related to the large scale structures Ω𝑧
− and Ω𝑧

+ 

identified in the time averaged flow topology. Figure III.95b exhibits the correlation with the 

velocity fluctuations contains in Φ𝑝𝑜𝑑(3) and Φ𝑝𝑜𝑑(4) in the Z140 cut-plane. Indeed, if there 

is a strong detachment on the right side of the SUV, the velocity fluctuations in the rear 

bumper shear layer increase. This is in agreement with the demonstration of the periodic 

synchronization of the body panel detachments with the rear bumper separation performed in 

the previous paragraph. With the modal wake velocity presented in Figure III.95b, we can go 

further and state that the increase of the shear layer momentum accentuate the recirculation 

intensity of the vertical structures Ω𝑧
− and Ω𝑧

+.  

The dissociation of the fluctuations due to Ω𝑧
− and Ω𝑧

+ in two separated orthogonal modes is 

unexpected. This raises once again the question of the lateral synchronization of the shear 

layer fluctuations. If, Φ𝑝𝑜𝑑(2) contains the large scale horizontal wake motion, Φ𝑝𝑜𝑑(3) and 

Φ𝑝𝑜𝑑(4) represent the intensity of the velocity fluctuations driving the strength of the 

vortices.  

 

Figure III.96a and Figure III.97a show the result of the column vectors 𝑊3 and 𝑊4 of the 

transfer matrix in Φ𝑝𝑜𝑑(3) Φ𝑝𝑜𝑑(4). The 3
rd

 and 4
th

 correlated mechanisms are more likely 

governed by higher frequency signals. We measure common frequencies at 63Hz, 146Hz and 

168Hz. There are also some singularities with the frequencies at 106Hz emerging in Φ𝑝𝑜𝑑(3) 

and at 182Hz emerging in Φ𝑝𝑜𝑑(4). The differences of the periodic DMD weights between 

Φ𝑝𝑜𝑑(3) and Φ𝑝𝑜𝑑(4) emphasize the spectral sensitivity to the flow disturbances. This leads 

to correlated mechanisms, which are significantly more complicated than the ones observed in 

the simplified benchmarks of the 25° ramp flow or the Ahmed Body. Therefore, in the case of 

 

Figure III.95: 3
rd

 and 4
th

 POD modes showing the correlation of (a) pressure modes on the 

tailgate and (b) velocity modes in Z140 cut-plane. 
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the realistic car, the process of energy transfer involved a wider range of modal components 

that we managed to extract thanks to the DMD/POD methodology.  

 

 

 

Figure III.96: (a) DMD weight corresponding to the 3
th

 column vector of the transfer matrix 

between periodic decomposition and POD. Velocity DMD modes in the Z140 cut-plane 

associated to the correlated mechanisms identified Φ𝑝𝑜𝑑(3) at (b) 23Hz, (c) 31Hz, (d) 

63Hz, (e) 106Hz, (f) 148Hz, (g) 168Hz. The frequencies in bold indicate common features 

with 𝑊4. 

 

Figure III.97: (a) DMD weight corresponding to the 4
th

 column vector of the transfer matrix 

between periodic decomposition and POD. Velocity DMD modes in the Z140 cut-plane 

associated to the correlated mechanisms identified Φ𝑝𝑜𝑑(4) at (b) 23Hz, (c) 31Hz, (d) 

63Hz, (e) 146Hz, (f) 168Hz, (g) 182Hz. The frequencies in bold indicate common features 

with 𝑊4. 
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Thanks to the normalized Strouhal number based on the mockup height, we can interpret 

origin of these features. The low frequency at 6.4Hz associated to the Strouhal number of 0.04 

is assimilated to the wake horizontal oscillation. The modes at 23Hz and 31Hz are related to 

the wake shedding mechanisms corresponding to the Strouhal number of [0.15-0.2]. The 

shear layer fluctuations are described by the modes between 85Hz and 182Hz equivalent to 

the Strouhal number range of [0.58-0.66]. 

Based on the analysis of the coherence between all the periodic features, we can state that the 

shear layers fluctuations are source terms affecting the intensity of the wake vortices. The 

deviation of the computed spectral signatures around the characteristic values of 𝑆𝑡 = 0.2 and 

𝑆𝑡 = 0.6 is explained by the complexity of the POSUV design. The lack of symmetry in these 

periodic components denotes the flow sensitivity to body panel disturbances. 

 Discussion 

Many structures emerged around the complex design of the POSUV. We discussed in the 

literature review of the importance of detachment disturbances in the excrescence drag. In the 

numerical simulations, similar vortices to those observed by (Hucho and Sovran, 1993) on 

realistic cars, were computed. Figure III.98 summarizes the detached structures observed in 

our numerical simulation. We can mentioned the hood detachments (Figure III.98a), the hood-

windshield junction (Figure III.98b), the longitudinal A-pillar vortices (Figure III.98c), the 

detachment on the fender (Figure III.98f), and on the bottom front bumper (Figure III.98e). If 

the roof spoiler (Figure III.98d) prevents the impact of the structures on the roof, the 

separation on the rear bumper (Figure III.98g) has a major influence on the vortical 

structures Ω𝑦, Ω𝑧
− and Ω𝑧

+.  

 

 

Figure III.98: Time averaged skin friction velocity computed on the generic SUV body 

panels with focus on separated flow vortices observed on time averaged velocity 

streamlines. Main detachment regions are located on (a) front end, (b) Hood-windshield 

junction, (c) A-pillar, (d) Spoiler, (e) Rear bumper edges, (f) Front corners, (g) Lower front 

bumper. 



144 Numerical investigation of the reduced scale generic SUV  

The application of the modal analysis on the overall SUV, plus the cut-planes surrounding the 

mockup in the numerical simulation provided a lot of information on the separation process. 

This completes the wake velocity analysis performed on the finite PIV cut-planes from 

experimental measurements. We identified the phase opposition at St=0.12 between the 

velocity due to the detachments on the body panel and the shear layer quantity momentum on 

the rear bumper. Then, the modal analysis has successfully extracted the interaction between 

the wake horizontal motion at St=0.04, the vortex shedding at St=0.2 and the turbulent source 

term induced by the shear layers fluctuations at St=0.6. 

In addition, the spectral deviation associated with the shear layer (between 0.58 and 0.66) 

demonstrates the impact of the uncertainties resulting from the separation on the rear bumper.  

One may recall the optimal flow control solution obtained in experiment. Indeed, free of any 

symmetry constraint, the optimization converged toward different forcing frequencies on the 

left and right jets. The uncertainties obtained in the numerical spectral decomposition helps to 

understand why we manage to change the pressure loss on the tailgate despite the 

unsynchronized shear layer control. 

At this stage, two flow control strategies seem to be efficient for the reduction of the 

aerodynamic loss on a realistic car. On one hand, it appears pertinent to minimize the 

generation of detachments with shape optimization on the fender and wheelhouses surfaces. 

For an application on production cars, this has to be achieved preliminary to the design step. 

On another hand, it seems relevant to perform a regulation of the shear layer turbulent energy 

with active flow control on the rear bumper. In the following, we present the first result of 

flow control based on the experimental actuation setup. 

3.4.5 Flow control simulations with Large Eddy Simulation 

The flow control simulations are achieved according to the actuation characteristics described 

in 2.2.2. Figure III.99a shows the geometry of the discontinuous slots spaced each 10mm on 

the lateral sides and on the bottom of the rear bumper. A length of 2.5mm and a width of 

0.5mm define the geometry of each slot. Then the flow rate nodal boundary condition was 

defined based on the optimal flow solution identified by experiments. Figure III.99b reminds 

the flow rates and the frequency parameters obtained at the end of the machine learning 

procedure. A flowrate of 15L/min was evenly distributed between the lateral slots and a flow 

rate of 30L/min is distributed on the bottom slots. Then, the pulsed signal is reproduced using 

a temporal Heaviside multiplier function. 

 

 

Figure III.99: (a) Geometry of the discontinuous slots in millimeter; (b) Optimal set of 

parameters identified in experiments with the machine-learning algorithm. A flowrate of 

15L/min is distributed on the lateral boundary conditions and a flowrate of 30L/min is 

distributed between the bottom boundary conditions. 
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However, the time averaged rear end pressure achieved in simulation did not yield similar 

gain than in experiment. Figure III.100a shows the comparison of the baseline/AFC time 

averaged pressure distribution on the tailgate. Except for local pressure disturbances around 

the jets, the change on the tailgate is not significant. The comparison of the pressure RMS on 

the tailgate is presented in Figure III.101. A slight change near the bumper corners is 

captured. 

 

 

Despite the limited impact of the actuation on the time averaged pressure, a difference is 

observed in the wake flow topology. It is particularly visible on the position of the vortex 

centers in the Y0 cut-plane (Figure III. 102a and b) and Z140cut planes (Figure III. 102a and 

d). 

 

 

Figure III.100: Time averaged tailgate pressure coefficient in (a) baseline flow, (b) 

controlled flow. 

 

Figure III.101: Pressure coefficient RMS on the tailgate in (a) baseline flow, (b) controlled 

flow. 

 

Figure III. 102: Time averaged flow showing a change of flow topology from the 

recirculation of Ω𝑦 to the S-shape structure between: (a) Y0 Baseline, (b) Y0 AFC; (c) Z140 

Baseline; (d) Z140 AFC. 
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The examination of the time averaged jet velocity in the transverse vertical cut-planes going 

through the right and left slots (Figure III.103) reveals the injection of quantity momentum at 

5m/s. Similarly, the velocity injected is evaluated at 4m/s in the bottom jets (Figure III.104). 

This is in concordance with the inlet boundary condition introduced for the control flow 

configuration given in chapter II. 

 

 

 

 

The comparison of the velocity fluctuations (Figure III.105) tends to confirm that the periodic 

jets increased the shear layer intensity. The periodic jet coming from the bottom slots leads to 

an increase of bottom shear layer about 2m/s compared to the baseline configuration. The 

impact into the S-shape structure in the Y0 cut-plane is noticeable by the reduction of the top 

shear layer. 

 

Figure III.103: Time averaged velocity field focus in the region of the pulsed jets (a) left 

side, (b) right side. A velocity of 5m/s is obtained near the lateral jets in accordance with 

the flowrate of experiments. Actuation flux is evenly distributed between all the slots.  

 

Figure III.104: Time averaged  velocity field focus in the region of the bottom jets in the 

horizontal cut-plane going through the slots. A velocity of 4m/s is obtained near the bottom 

jets. Actuation flux is evenly distributed between each slot.  
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Focusing on the region of the jet boundary conditions, we measured a velocity fluctuation of 

9m/s coming from the lateral jets (Figure III.106) and a velocity fluctuations about 5m/s 

coming from the bottom jets (Figure III.107). This means that the high frequency actuation in 

the bottom jets generates less energy than the periodic forcing on the lateral jets. The high 

level of velocity fluctuations comes from a combination of the pulsed jet with the shear layers 

turbulence. 

 

 

 

Figure III.105: Velocity RMS showing the increase of turbulent energy in the shear layers: (a) 

Y0 baseline; (b) Y0 AFC; (c) Z140 baseline; (d) Z140 AFC. The color map starts at 3m/s in 

order to capture the difference between the baseline and the controlled results. 

 

Figure III.106: Longitudinal velocity fluctuations in the vertical transverse cut-plane going 

through the slots: (a) right jets, (b) left jets. The inlet boundary conditions associated to the 

pulsed blowing jets generate 9m/s velocity RMS near the slots.  

 

Figure III.107: Longitudinal velocity fluctuations measured in the horizontal transverse 

cut-plane going through the bottom slots. The inlet boundary conditions associated to the 

pulsed blowing jets generate 5m/s velocity RMS near the slots.  
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A proper estimation of the actuation efficiency is obtained thanks to the POD/DMD 

correlations methodology. The cross-modal analysis is performed on the concatenation of the 

baseline and controlled databases (1200 snapshots sampled at 2000H) using the velocity in 

the Y0, Z140 cut-planes and the pressure on the POSUV. Figure III.108 shows the ratio of the 

correlated modes between the two simulations. If the ratio associated to the static POD mode 

(index 1) is maintained at 1, the fluctuating modes associated to the POD indexes 2 and 3 are 

damped about 20% while the 5
th

 and 6
th

 modes are increased about 42% compared to 

experiments. This demonstrates the change of the flow coherent mechanisms.  

 

It should be mentioned that the POD modes of the controlled flow are sorted depending on the 

energy of the coherent decomposition. The indexes can differ from the baseline results. 

Indeed, we managed to extract the pair of modes Φ𝑝𝑜𝑑(8) and Φ𝑝𝑜𝑑(9) (Figure III.109), 

which are similar to the modes Φ𝑝𝑜𝑑(3) and Φ𝑝𝑜𝑑(4) obtained in the baseline flow. We can 

deduce that these components are strongly decreased.  

 

The energy ratio measured in the synchronized DMD components is also plotted in Figure 

III.110. Most of the low frequency components are increased below 30Hz except for the 2Hz 

and 30Hz components. We can also notice that due to the simulation time, the lowest 

frequency begins at 2Hz. In addition, the actuation forcing frequencies at 93Hz, 294Hz, 

374Hz and 430Hz do not emerge as shown in experiments even if we measure a slight 

 

Figure III.108: POD ratio comparing the energy of the correlated mechanisms in the 

baseline and the controlled simulations. 

 

Figure III.109: Tailgate pressure POD modes obtained in the controlled simulation. The 8
th

 

and 9
th

 POD modes can be related to the complementary paired modes Φ𝑝𝑜𝑑(3) and 

Φ𝑝𝑜𝑑(4) previously observed in the baseline flow. 
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increase of the periodic components at 100Hz, 160Hz, 243Hz and 504Hz, especially in the 

lateral shear layers in the Z140 horizontal cut-plane (Figure III.111). One can question the 

accuracy of the jet resolution. A more precise experimental characterization of the pulsed 

blowing jet will be helpful in order to validate the boundary inlet conditions. Since energy at 

25Hz and 30Hz is higher in the numerical simulations, the amount of jet momentum required 

for the boundary conditions should be increased compared to experiments. 

 

The modal distributions in the horizontal cut-plane (Figure III.111) show the injected 

structures coming from the boundary conditions. It is especially significant in the Z140 cut-

plane at 243Hz showing the turbulence injection induced by the actuation into the lateral 

shear layers. Similarly to what was demonstrated on the ramp simulation, we can assume that 

this should increase the mixing effect in order to decrease the aerodynamic loss.  

 

Figure III.110: DMD magnitude ratio between controlled and baseline flow in (a) CFD; (b) 

experiments. 
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To conclude, we managed to modify the flow dynamics thanks to the active flow control 

strategy even if the impact on the static component was not significant. The damping of low 

frequency components tends to confirm that we manage to take benefit of the transfer 

mechanisms between the shear layer and the wake dynamics. However, the fact that the 

periodic features of the actuation forcing frequencies do not significantly emerge in the 

spectra means that the jet effect is not exactly reproduced.  

One may recall the numerical analysis of the high frequency control of the shear layer 

performed on the ramp flow. In this simplified test case, we managed to control the 

detachment thanks to the injection of periodic 2D structures within the turbulent mixing layer. 

In the case of the POSUV, the flow separation on the rear bumper generates strong 3D 

vortices. In addition, we have shown in the modal description of the baseline flow that a large 

range of modal periodic features carries the shear layer turbulent energy.  

Further investigations need to be done to improve the efficiency of the active flow control in 

numerical simulation. However, we can already state that the uncertainties in the resolution of 

the shear layer make this objective highly challenging. Instead of one shot control simulation, 

it might be more appropriate to integrate a spectral detection of the shear layer fluctuation in 

order to dimension a closed loop flow control combined with an evaluation of the efficient 

actuation energy transfer. This could potentially yield a control strategy suitable for a large 

range of flow conditions in numerical simulation and in experiment. The difficulty that we 

can see here is the requirement of a self-updating Reduced Order Model capable to detect any 

 

Figure III.111: DMD modes enhanced by the actuation : (a) 243Hz in Z140 cut-plane,  

(b) 504Hz in Z140 cut-plane, (c) 243Hz in Z80 cut-plane, (d) 504Hz in Z80 cut-plane. 
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change in the shear layer behavior. In order to get a more accurate control using numerical 

simulations, the computations of the flow mechanisms linked to actuators should be 

improved. Despite the accuracy of the simulations, some vulnerability is observed in regions 

with high shear effects close to jets and solid boundaries. 

3.4.6 Partial conclusions 

The numerical simulation of the flow around the POSUV was successfully achieved. The time 

averaged results were in good agreement with the experimental measurements. The 

methodology of cross-modal analysis provided a comparison of the resolved dynamical 

features compared to what was captured during the experimental campaign. Some issues 

related to the approximation approach and the turbulent subgrid scale model leads to some 

discrepancies in the spectral behavior in the numerical simulation. A penalty method was 

proposed as a post-processing correction in order to constraint the dynamical features to 

converge toward the realistic physical behavior. 

In addition, thanks to the 3D analysis of the flow behavior around the POSUV, we managed 

to identify the main vortex structures driving the pressure loss in the wake flow. The phase 

opposition at a Strouhal number of 0.12 was extracted between the body panel detachments 

and the shear layer quantity momentum on the rear bumper. The resulting shear layer 

fluctuations, around St=0.6, also has been identified as a major source term in the flow 

momentum of the wake vortices. The interaction with the low frequency pulsation at St=0.04 

on the tailgate has been proven thanks to the energy transfer evaluation. These observations 

will help in future research studies to extend our knowledge on correlated mechanisms to full-

scale benchmarks. 

The flow control simulation was also performed based on the optimal actuation solution 

obtained in experiment. Even if, some issues were encountered in order to reproduce the 

control efficiency, a significant impact on the shear layers dynamics is obtained. The 

complexity of the modal flow features around the POSUV can explain the change of actuation 

capabilities compared to the experimental results. Sensibility of the flow control results seems 

to be strongly related to the boundary inlet conditions. Therefore, sensibility study should be 

performed before to conclude on the efficiency and robustness of the numerical flow control 

solution. The improvement of our knowledge on the origin of the aerodynamic loss gives 

good prospects on further implementation of optimization solutions.  

  



 

Concluding remarks, discussion and 

perspectives 
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Conclusions 

In the context of the environmental issues brought by the automotive industry, the 

aerodynamic optimization of road vehicles is still a primary concern. In this framework, the 

purpose of this PhD work was to propose a flow control strategy for the drag reduction of 

road vehicles. The aim was then to apprehend the sources of aerodynamic losses on the 

reduced scale POSUV benchmark and to achieve a drag reduction using active flow control 

solutions.  

As a starting point, the existing knowledge in the field of drag reduction for automotive 

applications was explored. After a review of fluid mechanics fundamentals, control strategies, 

modal analysis and numerical methods, this literature survey provided the layout and the 

foundations needed for the experimental and numerical analysis and control of the flow 

around the POSUV.  

Then, the flow dynamics around the POSUV has been fully described thanks to a deep 

experimental investigation involving high speed PIV for the wake flow acquisition 

synchronized with the pressure sensors for the characterization of the tailgate pressure loss. 

This was successfully achieved thanks to the collaboration with TU-Berlin team. The 

characterization of the baseline flow gave a drag coefficient of 0.36 and a mean pressure loss 

on the tailgate of -0.23. The time averaged pressure distribution obtained on the tailgate 

demonstrated the importance of the aerodynamic loss applied on the bottom part. A 

methodology based on the application of the Sparsity Promoting Dynamic Modal 

Decomposition was implemented in order to identify the cross correlation and the main 

frequencies which emerged from the experimental synchronized velocity-pressure database. 

The low frequency oscillation of the pressure loss on the tailgate was correlated to a 

horizontal swiping motion of the wake combined with a vortex shedding pulsation in the 

symmetric vertical plan. This dynamic decomposition provided valuable insights for further 

numerical investigations of the flow features around the POSUV. 

Active flow control was then achieved using discontinuous micro-slots distributed around the 

rear bumper in order to reduce the pressure loss on the tailgate. Even if, high expectation was 

made in real-time closed loop control, the complexity of the implementation did not ensure 

robustness and consistency. Therefore, adaptive closed-loop strategies appeared to be more 

suitable for integration on a realistic car and especially model-free techniques such as 

machine learning. The implemented genetic evolutionary process demonstrated really good 

capabilities for the identification of the optimal operating point. Based on non-symmetrical 

high frequency forcing with moderate flowrate magnitudes, the actuation solution led to a rear 

pressure profit of 20%. 

The application of modal decompositions of the controlled flow provided more information 

on the process of the flow control. A cross-modal decomposition method was proposed in 

order to capture the energy transfer mechanism induced by the actuation. This methodology 

takes advantage of the preliminary orthogonal decomposition performed with the SVD in 

order to extract the energy modification between the baseline and the controlled databases. 

Using this modal approach, we identified high frequency mechanisms allowing to damp 

energetic pressure oscillations at low frequency on the tailgate. This result led to a useful 

insight in order to explore the mechanisms of the flow control. Based on this methodology, 

the amount of information needed to extract the control technique underlined the necessity to 

perform accurate unsteady 3D turbulent simulations. 

Further investigations were performed using LES approach with Dynamic Smagorinsky 

subgrid scale model and a Finite Element solver. The 25° inclined ramp was introduced as a 
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preliminary test case for the analysis of detached flows simulations. Despite some 

discrepancies in the dissipation slope of the computed turbulent decay, the main flow features 

were in agreement with experimental literature results and the interactions between the 

recirculation, the shear layers and the vortex shedding was reproduced. The benefit obtained 

with the flow control solution, identified in experiments, was also reproduced. Further 

numerical investigations of the flow behavior submitted to the high frequency forcing were 

achieved using the methodology of the cross-correlations on the periodic DMD features. 

Thanks to this methodology, the mixing effect induced by the injected anisotropic vortices 

was demonstrated. This was correlated to an efficient damping of the turbulence coming from 

the shear layer which resulted in a reduction of the flapping motion at low frequency. Similar 

behaviors to the experimental study of the POSUV were also identified on the ramp flow 

control simulations.  

The second test case of the 47° Ahmed Body was useful to examine the dynamics of a fully 

detached 3D wake flow. Dynamic Mode Decomposition was applied to better capture the 

flow topology and to define the most appropriate control strategy. This work revealed very 

useful capabilities of the Sparse Promoting DMD to measure modal sensitivity of jet 

actuations and to design pertinent closed loops for flow control. 

The numerical LES simulation of POSUV reduced scale model was then achieved. The time 

averaged aerodynamical features were validated thanks to the experimental results. Thanks to 

the cross-modal correlation method, the computed dynamical behavior was in agreement with 

the experimental wake motion, despite an overestimation of the energy of the vortex shedding 

at the natural frequency at Strouhal number of 0.2. Further investigations on the 

approximation technique coupled with the Dynamic Smagorinsky subgrid scale model 

revealed numerical bias inherent to the numerical solver. The assumption on the influence of 

the regularization term was pointed out in the region of the velocity drop around the 

recirculation zone and submitted to high turbulence level. A post-processing numerical 

optimization was introduced based on a penalty correction method applied on the correlated 

periodic modal components. This proposed correction of the numerical solution managed to 

constraint the numerical results to converge toward the experimental flow behavior.  

On this basis, the 3D flow features were used to improve our understanding of the wake 

dynamics. The description of the wake flow topology demonstrated the importance of three 

large vortices applying strong pressure loss on the bottom and on the lateral sides of the 

tailgate and the rear bumper. Thanks to the Q-criterion analysis, the strength of the 

recirculating flow responsible for the aerodynamic losses was related to the shear layers roll-

up induced by the boundary layer separation on the rear bumper. The influence of the periodic 

detached structures on the fender and the wheelhouses on the boundary layers separation were 

evidenced based on the DMD mode at Strouhal number of 0.12. The emitted turbulent 

structures coming from the front of the mockup were proved to be source terms enhancing the 

turbulent fluctuations of the separation on the rear bumper.  

The deeper analysis of the wake flow behavior showed the existence of 4 main coherent 

features impacting significantly the aerodynamic losses. An interaction was pointed out 

between the low frequency horizontal oscillation at a Strouhal number of 0.04 and the vertical 

vortex shedding at a Strouhal number of 0.2. In addition, two distinct coherent modes were 

related to the flow fluctuations of each lateral vortex governing the tailgate pressure loss. The 

correlation between the shear layer development at Strouhal number of 0.6 and the vortices 

fluctuations underscored the interest of turbulent smoothing control strategies in the region of 

the boundary layer separation. 
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Finally, the numerical simulation of the controlled flow was particularly challenging. A 

limited effect was computed on the time averaged pressure increase compared to experiments. 

However, significant change on the modal distribution was emphasized. The impact on the 

wake topology showed the modification of the vertical S-shape structure. Comparing with the 

control analysis performed on the ramp flow, the POSUV test case revealed a complex modal 

definition driven by a large range of periodical features. In addition, the disturbances due to 

the detachments on the lateral body panels appeared to be much more difficult to damp 

compared to the simplified upstream boundary layer of the ramp flow. 

Perspectives 

This analysis performed on a reduced scaled mockup led to normalized length scale 

indications, which are interesting to confirm at full scale for the aerodynamic control and 

optimization of realistic cars. Multiple solutions can be proposed to go further in this research. 

With experiments, even if we identified the importance of the pressure loss on the tailgate, the 

role of the pressure fluctuations on the rear bumper still should be considered in order to 

capture the sources of the detached flow. Additional pressure sensors distributed on the rear 

bumper would help to enhance our understanding of the flow separation. In addition, it is 

interesting to improve the experimental flow description using more PIV planes for an 

exhaustive wake flow analysis. This could be particularly interesting thanks to 

synchronization capabilities of the cross-modal method, applied in the fluid flow with and 

without control. In addition, the cross-modal analysis developed here can be extended for 

shape optimization based on modal sensitivity estimation.  

This seems particularly interesting in order to optimize the detachments on the fender or the 

rear bumper tapered effect. 

In numerical simulations, the investigations on the numerical approximation approach should 

to be carried on in order to set the same turbulence behavior than in experiment. On the basis 

of more reliable simulations, the implementation of efficient active flow control will provide 

the additional data required for the numerical cross-modal analysis. Also, a more precise 

definition of the discontinuous micro-jet actuators is required for a better implementation of 

the flow control boundary conditions. To go further, the computation of modal sensitivity to 

inlet boundary conditions or wall surface morphing appears to be an interesting option for 

unsteady flow optimization with reasonable simulation time. This will involve a preliminary 

evaluation of the consistency of the Reduced-Order-Model to the boundary conditions 

modifications. However, we should mention that even if the 2D modal characterization gives 

a significant amount of information of the flow behavior, the analysis of 3D databases should 

provide an exhaustive modal characterization of the flow. Sophisticated parallelization and 

memory management techniques for huge data processing should be implemented to reach 

this objective. Further developments are on the way for future implementation of the 3 

dimensional DMD on numerical simulations. A short-term solution can already be achieved 

using thick fluid sections around the mockup in order to capture more precisely the sources of 

the aerodynamic losses. This could lead to an optimization of the location of the actuation 

boundary conditions. 

Finally, the cross-modal methodology can be applied in future work on full-scale mockup. 

The extension of our knowledge on the sources of aerodynamic losses will require some 

preliminary validations in the full-scale configuration. For instance, we have to ensure if the 

rotating wheels tend to promote the propagation of disturbances generated by the detachments 

on the body panels, in the shear layers. In addition, a comparative study should be performed 
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in order to evaluate the contribution of turbulent structures generated by the realistic complex 

underbody floor existing in all vehicles except for electrical cars. Three-dimensional unsteady 

numerical simulations will be needed to perform these validation studies. In view of the 

simulation cost of the Finite Element Method with LES, other methods should be considered 

in order to reduce CPU time, either hybrid methods which are more permissive in the region 

of the boundary layer or Lattice Boltzmann Method which can perform LES simulation with 

efficient parallelization technique. 

This gives some blueprints for future research projects on the aerodynamical optimization of 

realistic cars. 
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Appendix 1: DMD results 

 DMD results of the pressure sensors on the uncontrolled flow. 

 

Energy distribution as a function of the frequency obtained on the Dynamic Modal Decomposition of the rear end pressure sensors distributed on 

the tailgate on the database of the uncontrolled flow sampled at 2000Hz during one minute of acquisition. Main DMD components are 

highlighted and the associated DMD modes are plotted. 
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 DMD results on the synchronized pressure-velocity measurements for the uncontrolled flow in the Z140 cut-plane. 

 

Energy distribution of the DMD applied on the synchronized pressure sensors and the wake velocity captured with PIV in the horizontal cut-

plane Z140. The analysis is performed on transient data sampled at 2000Hz during an acquisition window of one minute. 
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 DMD results on pressure-velocity measurements for the uncontrolled flow in the Y0 cut-plane. 

 

Energy distribution of the DMD applied on the synchronized pressure sensors and the wake velocity captured with PIV in the horizontal cut-

plane Y0. The analysis is performed on transient data sampled at 2000Hz during an acquisition window of one minute. 
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 DMD results of the pressure sensors on the controlled flow. 

 

Energy distribution as a function of the frequency obtained on the Dynamic Modal Decomposition of the rear end pressure sensors distributed on 

the tailgate on the database of the controlled flow sampled at 2000Hz during one minute of acquisition. Main DMD components are highlighted 

and the associated DMD modes are plotted. 
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 Correlated DMD modes obtained on the concatenation of the uncontrolled and controlled pressure databases. 

 

Spatial distribution of the POD modes affecting the 0Hz static DMD component and correlated spectra obtained with the row vectors of the 

transfer matrix. In green, the controlled flow contributions and in blue the baseline contributions. 

 

 
 

 



 

 

 

Stéphie EDWIGE 

Modal analysis and flow control  

for drag reduction  

on a Sport Utility Vehicle 

 

Résumé 

L’industrie automobile fournie de plus en plus d’effort pour optimiser l’aérodynamique externe des véhicules 

afin de réduire son empreinte écologique. Dans ce cadre, l’objectif de ce projet est d’examiner les structures 

tourbillonnaires responsables de la dégradation de traînée et de proposer une solution de contrôle actif 

permettant d’améliorer l’efficacité aérodynamique d’un véhicule SUV. Après une étude expérimentale de la 

maquette POSUV échelle réduite, une analyse modale croisée permet d’identifier les structures périodiques 

corrélées de l’écoulement qui pilotent la dépression sur le hayon. Une solution de contrôle optimale par jets 

pulsés sur le parechoc arrière, est obtenue avec un algorithme génétique. Celle-ci permet de réduire la 

dépression du hayon de 20% et l’analyse croisée des résultats instationnaires avec contrôle montre un 

changement significatif de la distribution spectrale. Après deux études préliminaires sur la rampe inclinée à 25° 

et sur le Corps d’Ahmed à 47°, la simulation de POSUV à partir d’un solveur LES, en éléments finis, est validé 

par rapport aux résultats expérimentaux. L’approfondissement des résultats 3D permet de comprendre les 

pertes aérodynamiques. La simulation de l’écoulement contrôlé permet également d’identifier les mécanismes 

du contrôle d’écoulements. 

 

Mots-clés: Aérodynamique externe, Réduction de trainée, Contrôle d’écoulement, Décomposition Modale 

Dynamique, Analyse modale, Simulation LES, Écoulements détachés, Sillage turbulent, algorithme génétique 

 

Résumé en anglais 

The automotive industry dedicates a lot of effort to improve the aerodynamical performances of road vehicles 

in order to reduce its carbon footprint. In this context, the target of the present work is to analyze the origin of 

aerodynamic losses on a reduced scale generic Sport Utility Vehicle and to achieve a drag reduction using an 

active flow control strategy. After an experimental characterization of the flow past the POSUV, a cross-modal 

DMD analysis is used to identify the correlated periodical features responsible for the tailgate pressure loss. 

Thanks to a genetic algorithm procedure, 20% gain on the tailgate pressure is obtained with optimal pulsed 

blowing jets on the rear bumper. The same cross-modal methodology allows to improve our understanding of 

the actuation mechanism. After a preliminary study of the 25° inclined ramp and of the Ahmed Body 

computations, the numerical simulation of the POSUV is corroborated with experiments using the cross-modal 

method. Deeper investigations on the three-dimensional flow characteristics explain more accurately the wake 

flow behavior. Finally, the controlled flow simulations propose additional insights on the actuation 

mechanisms allowing to reduce the aerodynamic losses. 

 

Keywords: External aerodynamic, Drag reduction, Flow control, Dynamic Modal Decomposition, Modal 

analysis, Large Eddy Simulation, Detached flow, Turbulent wake, Genetic algorithm 


	Remerciements
	Résumé
	Abstract
	Résumé étendu
	Table of contents
	List of tables
	List of figures
	Nomenclature
	Introduction
	Chapitre 1:  Literature survey
	1.1. Aerodynamic loss identification on realistic cars
	1.1.1 Flow characteristics of realistic cars
	1.1.2 Flow detachments for a realistic SUV

	1.2. Description of detached flow mechanisms
	1.2.1 Fundamentals of turbulence
	1.2.2 Detachments and vortex shedding of the wake flow past an inclined ramp
	1.2.3 Detachments and vortex shedding of the wake flow past the Ahmed Body

	1.3. Flow control and optimization techniques
	1.3.1 Flow control solutions
	1.3.1.1 Passive flow control solutions
	1.3.1.2 Active flow control solutions

	1.3.2 Closed-loop and automatic control/optimization methods
	1.3.2.1 Strategies for active flow control
	1.3.2.2 Shape optimization with sensitivities


	1.4. Modal decompositions
	1.4.1 Orthogonal Decompositions
	1.4.2 Dynamic Modal Decomposition

	1.5. Numerical methods
	1.5.1 Numerical approaches
	1.5.2 Large Eddy Simulation
	1.5.3 Numerical approximation techniques

	1.6. Partial conclusions
	Chapitre 2:  Experimental investigation and control on a reduced scale generic SUV
	2.1 Experimental setup of the POSUV
	2.1.1 Wind tunnel characteristics and POSUV mockup
	2.1.2 Pressure sensors, PIV and actuators setup
	2.1.3 Reactive flow control by machine learning with a genetic evolution process

	2.2 Comparison of the time averaged flow topology
	2.2.1 Topology of the time averaged baseline flow
	2.2.2 Time averaged results of the active flow control

	2.3 Modal cross-analysis
	2.3.1 Hypothesis and method
	2.3.2 Pressure-velocity cross-analysis of the baseline flow
	2.3.3 AFC and baseline pressure cross-analysis

	2.4 Partial conclusions
	Chapitre 3:  Numerical investigations and wake flow control on different test cases
	3.1. Numerical simulations with Large Eddy Simulation
	3.2. First Preliminary study: Detached flow over a 25  inclined ramp
	3.2.1 Numerical setup and convergence according to experimental conditions
	3.2.2 Analysis of the baseline wake flow compared to literature
	3.2.3 Physics of periodic jet actuation
	3.2.4 Partial conclusions and guidelines for detached flow simulation

	3.3. Second preliminary study: The Ahmed body with 47  slant angle
	3.3.1 Introduction
	3.3.2 Numerical setup
	3.3.3 Baseline flow
	3.3.4 Modal analysis
	3.3.5 Controlled flow
	3.3.6 Discussion

	3.4. Numerical investigation of the reduced scale generic SUV
	3.4.1 Numerical setup and convergence according to turbulent model
	3.4.2 Time averaged flow topology compared with experiment
	3.4.3 Validation of the wake flow dynamics compared to experiments
	3.4.4 Boundary layer and detachments correlations with the wake flow
	3.4.5 Flow control simulations with Large Eddy Simulation
	3.4.6 Partial conclusions

	Concluding remarks, discussion and perspectives
	Bibliography
	Appendices

