INTRODUCTION 1.1 Abstract (EN)

In recent years, the extensive use of fossil fuels has triggered a global crisis due to high pollution and resource reduction. The wide use of fossil fuels has led to the production of high amounts of CO2, as a result is a trigger of the global warming issue.

Microbial fuel cells (MFCs) is an energy harvesting technology that converts chemical energy from organic compounds to electrical energy through catalytic actions of microorganisms. MFC can be considered as an example of archetypical microbial Bioelectrochemical Systems (BESs), that exploit the bio-electrocatalytic activity of living microorganisms for the generation of electric current.

In the past decade, the evolution of low power electronics has made MFCs technology more attractive, because it has become suitable for low-power devices forming complete systems, such as the nodes of a wireless sensor network (WSN).

Moreover, MFCs gained more interest because they can generate electric power while treating wastes. Unlike other fuel cells, MFCs can continuously generate clean energy at normal temperature, atmospheric pressure, and neutral pH values without any supplementary maintenance. The only by-products are CO2 and H2O, which do not require additional handling. The production of CO2 is part of the intermediate carbon cycle. The CO2 produced is biogenic, which is included in the biogeochemical carbon cycle, avoiding net carbon emission into the atmosphere. This manuscript examines many aspects related to microbial fuel cell technology from chemical reactions inside the cells to the energy management systems required to exploit energy delivered from MFCs for practical usage in autonomous sensors. The line of experiments was performed on MFCs regarding electrical characterization, multiple connections of MFCs and influence of main parameters that affect the energy conversion performance.

The experimental tests were performed on two different lab-scale reactor typologies: terrestrial microbial fuel cell and waste water microbial fuel cell.

A survey is presented about different proposed energy management systems and other devices able to supply a node of a WSN powered by MFCs.

Abstract (IT)

Negli ultimi anni, l'uso estensivo di combustibili fossili ha scatenato una crisi globale a causa sia degli elevati livelli di inquinamento prodotti sia della riduzione delle scorte, come effetto della sua natura di fonte d'energia non rinnovabile.

L'ampio uso di combustibili fossili ha portato alla produzione di elevate quantità di CO2, con il risultato conseguente del riscaldamento globale. Le celle a combustibile microbiologico (MFC) sono una tecnica di energy harvesting che converte l'energia chimica da composti organici in energia elettrica attraverso reazioni chimiche catalizzate da microrganismi. Le MFCs possono essere considerate come forme archetipiche di sistemi microbici bioelettrochimici (BESs), che sfruttano l'attività bioelettrocatalitica dei microrganismi viventi per la generazione di corrente elettrica. Nell'ultimo decennio, l'evoluzione dell'elettronica a bassa potenza ha reso la tecnologia MFC più attraente, perché ha iniziato ad essere in grado di alimentare dispositivi a bassa potenza formanti sistemi completi, quali i nodi di una rete di sensori wireless (WSN). Inoltre, le MFC hanno acquisito maggiore interesse per la possibilità di generare energia elettrica mentre trattano i rifiuti. A differenza di altre celle a combustibile, le MFC possono generare continuamente energia pulita a temperatura ambiente, pressione atmosferica e valore di pH neutro senza manutenzione supplementare. Gli unici sottoprodotti sono CO2 e H2O, che non richiedono ulteriore trattamento, perché la CO2 prodotta è biogenica, che è inclusa nel ciclo del carbonio biogeochimico, evitando emissioni nette di carbonio nell'atmosfera.

In questa tesi vengono esaminati tutti gli aspetti relativi alla tecnologia delle MFC, dalla reazione chimica che avviene all'interno delle celle ai sistemi di gestione dell'energia necessari per sfruttarne l'energia convertita. Una campagna sperimentale è stata condotta sulle MFCs riguardante la caratterizzazione elettrica, la connessione multipla e l'influenza dei parametri principali sulle prestazioni nella conversione dell'energia. I test sperimentali sono stati condotti in laboratorio, con la progettazione e realizzazione anche di dispositivi di misura custom, su due diverse tipologie di reattore: cella a combustibile microbiologico terrestre e cella a combustibile microbiologico con acque reflue. Inoltre, nella tesi si indagano i diversi sistemi di gestione dell'energia sostenibile con MFC, finalizzandoli alla progettazione dei nodi di una WSN, realizzati con i più recenti dispositivi low voltage e low power.

Abstract (FR)

Dans les dernières années, l'utilisation intensive des combustibles fossiles a déclenché une crise mondiale due à la forte production de polluants et à la réduction des stocks, en raison de sa nature de source d'énergie non renouvelable.

Parce que l'utilisation généralisée des combustibles fossiles a entraîné la production de grandes quantités de CO2, ce qui est un facteur aggravant du réchauffement de la planète.

Les piles à combustible microbiennes (MFC) représentent une technique de récupération d'énergie qui convertit l'énergie chimique des composés organiques en énergie électrique par le biais de réactions catalytiques de micro-organismes. La MFC peut être considérée comme un archétypique de système microbien bioélectrochimique (BES), qui exploite l'activité bio-électrocatalytique de microorganismes vivants pour la génération de courant électrique.

Durant la dernière décennie, l'évolution de l'électronique de faible consommation a rendu la technologie des MFC plus attrayante, car elle commence à pouvoir fournir une énergie comparable à celle consommée par des périphériques dit à faible consommation, comme un noeud de réseau de capteurs sans fil (WSN). En plus, les MFC ont gagné en intérêt car elles peuvent générer de l'énergie électrique tout en traitant des déchets. Contrairement aux autres piles à combustible, les MFC peuvent générer en permanence une énergie propre à une température ambiante, à la pression atmosphérique et à un pH neutre, sans entretien supplémentaire. Les seuls sous-produits sont le CO2 et H2O, qui ne nécessitent aucune manipulation supplémentaire, car le CO2 produit est biogénique, ce qui est inclus dans le cycle du carbone biogéochimique, évitant l'émission nette de carbone dans l'atmosphère.

Ce manuscrit examine certains aspects liés à la technologie des piles à combustible microbiennes, depuis les réactions chimiques jusqu'aux systèmes de gestion de l'énergie requis pour exploiter la puissance fournie par les MFC. Une campagne expérimentale a été menée sur les MFCs concernant la caractérisation électrique, la connexion multiple des MFCs et l'influence des principaux paramètres qui affectent les performances de conversion de l'énergie.

Les essais expérimentaux ont été effectués sur deux types de réacteurs : la pile à combustible microbienne terrestre et la pile à combustible microbienne à eau usée.

Une enquête est menée sur différents systèmes de gestion de l'énergie proposés et sur d'autres systèmes de gestion de l'énergie capables de constituer un noeud de réseau WSN alimenté par des MFC.

Energy harvesting techniques

The reduction of energy required by electronic devices, allows the use of clean renewable sources with low power generation. In fact, energy harvesting technologies have become increasingly popular. They are based on energy conversion from a primary energy source harvested from the environment, such as: chemical [START_REF] Du | A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy[END_REF], solar thermal [START_REF] Borello | Experimental and computational investigation of a new solar integrated collector storage system[END_REF], vibrational [4], Radio Frequency (RF) [123] or/and natural flow of water [START_REF] Micangeli | Micro Hydro in Emergency Situations: A Sustainable Energy Solution at La Realidad (Chiapas, Mexico)[END_REF]. Available ambient energy could be harvested, converted into usable electrical energy, stored and used for many purposes depending on energy production, from systems that required high power values to small scale electronics and low-power devices, for applications such as wireless monitoring and mobile electronics.

Small-scale energy harvesting techniques from ambient energy (such as vibrational, thermal, chemical, RF, etc.) are receiving increasing attention. The improvements in low power design and CMOS technologies have led to the development of many micropower electronic applications. Energy harvesting presents thus an important role for alternative low power technology as it can reduce the dependency on batteries which have a number of limitations.

Among limitations of batteries, there's the possibility of complete discharge that brings negative consequences (for the battery and with respect to safety-critical systems) and the fact that batteries contain chemical materials which are hazardous both to the environment and to public health if not carefully handled.

Moreover, batteries have limited lifetime: it means that a battery replacement will be needed. It leads to service disruptions during battery replacement and maintenance costs, especially when the system contains many electronic devices or is in inaccessible zone. Otherwise, rechargeable batteries have a high cost usually.

Furthermore, the size of the batteries can often exceed that of the system components in the electronic device. Usually, batteries are non-operational in exceptional environmental conditions. So, alternative energy production methods based on harvesting or scavenging, to help design energy-autonomous systems is needed. Internet-of-Things is calling for such solutions. In certain conditions, the microbial fuel cell is a strong candidate.

Context of Biofuel cell

Biomass is the totality of living or dead organic substances, of vegetable or animal origin. It can come from different environments such as agricultural, aquatic and forest.

It can also come from wastewater, livestock effluents or even waste generated by industries and cities. This organic material is always made up of carbon elements whose chemical bonds prove to be a potential energy reservoir. This energy can be recovered by combustion, thus converting this chemical energy into thermal energy, which can itself be converted into electrical energy. In addition, biomass can be transformed into biogas (like methane) or biofuel (like ethanol) through various processes as fermentation, digestion, pyrolysis, etc. The product of these reactions can then be converted to electricity by combustion as before. However, combustion processes are generally not without environmental impact .

A fuel cell is a system capable of transforming directly electrical energy from chemical energy without an intermediate step of energy conversion. This process of energy conversion is based on the electrochemical transformation of a chemical substance by oxidation and reduction processes.

As a matter of fact, a combustion is also an oxidation-reduction process, in an MFC this process is controlled by the electron flow in the electrical circuit.

Biofuel cell are electrochemical systems that convert the energy available in biomass directly into electrical energy through the spatial separation of chemical reactions belonging to the same oxidation-reduction pair.

These reactions require the presence of catalysts as chemical, enzymatic or bacterial to increase their natural kinetics. In point of fact, life forms, as microorganisms from mitochondria to microbe, can be exploited as catalysts to perform these transformation processes. So, organic substances and microscopic living beings can therefore be exploited in a complementary and sustainable way to harvest electrical energy.

Enzymatic fuel cell

These cells use enzymes to catalyse reactions and perform the energy transformation. Glucose fuel cells are an example of these. The enzymes can be extracted or synthesized. The current and power densities obtained by these redox proteins are often higher than those obtained by MFCs. In the case of these bioelectrodes (enzymatic electrodes), the diffusion of the substrates is facilitated compared to the microorganism electrodes, such as bacteria or yeasts. Thanks to the absence of a biofilm and cell membrane and considering that the enzymes are specific for their substrates, in some cases they permit the removal of the separating membrane [START_REF] Leech | Enzymatic fuel cells: Recent progress[END_REF] between the two bioelectrodes, unlike other types of fuel cells. Nevertheless, their stability depends greatly on the immobilization of the enzymes on the surface of the electrodes. The biocatalyst charge is not renewed within the bioelectrode, which leads to a limited stability over time. As a result, they are currently suffering from a short lifespan (7-10 days) [START_REF] Minteer | Enzyme-based biofuel cells[END_REF], which limits their long-term use and applications compared to MFC.

Mitochondrial fuel cell

This new category of bioreactors uses whole organelles as catalysts. In cell biology, an organelle is a specialized subunit within a cell that has a specific function, vital for the life of the cell. There are many types of organelles, particularly in eukaryotic cells. Eukaryotic cells have a nucleus enclosed within membranes, unlike prokaryotes (as bacteria and archaea). The mitochondrion is a doublemembrane-bound organelle found in most eukaryotic organisms. Mitochondrial fuel cell use mitochondria as catalysts. These mitochondria present in eukaryotic cells are composed of enzymes and coenzymes that will be able to oxidize biofuels.

Just like enzymes, these cannot reproduce, unlike bacteria in microbial fuel cell. This will therefore affect their stability.

Microbial Fuel Cell

The microbial fuel cell recovers the chemical energy of organic matter through the metabolism of certain bacteria to produce electrical energy. These reactors use micro-organisms as catalysts. They are also of interest because of their potential longevity. In addition, these fuel cells make it possible to directly convert biomass into electricity, without requiring a pre-transformation by fermentation or any other chemical process. The energy present in biomass, although very abundant, is still very largely under-exploited due to the lack of suitable technology.

Microbial Fuel Cell is an energy harvesting technology now well introduced in literature [START_REF] Davis | Biofuel cells-recent advances and applications[END_REF][START_REF] Du | A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy[END_REF][START_REF] Ge | Recovery of electrical energy in microbial fuel cells: brief review[END_REF][START_REF] He | Electron acceptors for energy generation in microbial fuel cells fed with wastewaters: A mini-review[END_REF]108,114,127,132,137].

MFCs are based on the simple principle of the circulation of electrons between the anode, where an oxidation reaction catalysed by microorganisms will occur, a loss of one or more electrons, and the cathode, where a reduction reaction of an oxidant takes place, with an electron gain. These two reactions, oxidation and reduction then allow the flow of electrons when the two electrodes are connected by an external circuit. The electrode material also plays an important role as it must be stable enough to keep on the reaction. So, in Microbial Fuel Cell the microorganisms have the role of biocatalyst.

The microbial fuel cell technology offers a way to develop this energy and thus allow the autonomous power supply nodes of a wireless sensor network. It can permit monitoring of rural, marine or urban areas as well as factories or treatment plants that needs distributed and self-powered sensors.

In fig 1 .2 was shows the interrelationship occurring in MFC between operating condition, input parameters and output power delivered [START_REF] Degrenne | Power management for microbial fuel cells[END_REF]. 

Bioelectricity and a brief history of MFC

The bioelectricity obtained from the work of microorganisms has been known since the beginning of the last century but has received renewed attention only recently.

In 1791 the bioelectric phenomenon had been observed first from Luigi Galvani [START_REF] Galvani | D viribus electricitatis in motu musculari: Commentarius[END_REF]: he is considered a pioneer of electrochemistry and bioelectricity. In a famous experiment, he discovered that the muscles of dead frog legs moved when struck by an electrical spark and coined the term "animal electricity" to describe the force that activated the muscles of his specimens as being generated by an electrical fluid that is carried out to the muscles by the nerves.

In 1839, Grove and Schoebein built the first hydrogen-dioxygen fuel cell. This H2-O2 battery system attracted the attention of NASA in the 1960s for electricity generation in orbital vehicles. The hydrogen fuel cell is extensively studied today.

In this case, the hydrogen plays the role of fuel and is oxidized at the anode to produce protons (H+) and O2 is the reduced oxidant at the cathode to produce water. Protons provide transport through membranes.

In 1911, Potter observed that Escherichia coli bacteria produced electricity. It was then shown that many common bacteria produce electricity by natural catabolism of sugars, that is, by degradation of some organic molecules by releasing electrons that can be recovered by the anode of the cell [100].

In 1983, Bennetto added electron mediators to enhance the yield of these bacterial cells. He monitored the electrical effects associated with fermentation in a galvanic cell based on platinum wires and a pure culture of yeast, developing the first biobased battery [6].

In 1999, the first report was published that species Shewanella could transfer electrons directly in mediator-less microbial fuel cells [START_REF] Kim | Direct electrode reaction of Fe (III)-reducing bacterium, Shewanella putrefaciens[END_REF] [START_REF] Kim | A mediator-less microbial fuel cell using a metal reducing bacterium, shewanella putrefaciens[END_REF]. It led to eliminate the mediator in MFCs. An improvement that was attributed to the minimized distance between the electrode and bacteria, that a mediator had to travel.

Consequently, the distance between electrodes of the MFC was minimized. This design exhibits improved electrical performance of reactors.

The research on MFCs field of fundamentals, methods and materials started to have contributions from material science, environmental engineering, electrical engineering, electronics, biology, microbial physiology and electrochemistry in the course of new century. This has recently made the study of MFCs truly interdisciplinary. As a matter of fact, this kind of research invests many science fields and requires a strong interconnection of knowledge following interdisciplinary paths.

MICROBIAL FUEL CELL

MFC principles

A microbial fuel cell is a bioreactor that turns energy stored in chemical bonds of organic compounds into electrical energy. The cell is generally composed of two chambers, one anode and one cathode, each of which includes an electrode.

There are some types of reactors that combine the two chambers in one [START_REF] Lorenzo | A single-chamber microbial fuel cell as a biosensor for wastewaters[END_REF].

In the anode chamber, under anaerobic conditions and in a nutrient-enriched environment, the organic matter oxidized into carbon dioxide by microorganisms, produces electrons by means of an equivalent reduction operation (Fig. 2.1). These charges are transferred to the cathode through an external circuit connecting the electrodes and a simultaneous generation of protons, which are then passively transferred to the cathode electrode. The protons, transferred to the cathode chamber in aerobic condition, react together with oxygen to form water molecules.

A semipermeable Proton Exchange Membrane (PEM) can divide the two chambers to ensure the transfer of protons. The proton exchange membrane allows the transport of positively charged ions (protons) from the anode to the cathode, thereby maintaining pH and electro-neutrality and blocks the migration of oxygen.

Fig. 2.1: Microbial fuel cell basic principles

An MFC can be in double-chamber or single-chamber configuration. In a single chamber MFC design, the proton exchange membrane is either removed or pressed against the anode or cathode to form Membrane Electrode Assemblies. Indeed, a simpler design where the proton exchange membrane could be eliminated will offer more perspective for energy harvesting. It is the case of reactor configuration as Terrestrial Microbial Fuel cell (TMFC) lab-scale.

A double-chamber MFC is composed of two compartments separated by an Ion Exchange Membrane (IEM) which can be either a proton or a cation exchange membrane. The anodic compartment contains the organic substrate and the bacteria, whereas the cathodic compartment contains an electrolyte rich in electron acceptor (oxygen).

A single-chamber MFC is composed of an anodic compartment alone. The cathode is merged with the reactor such that it interfaces the internal electrolyte and the external air. A membrane can be placed on the internal side of the cathode to limit the diffusion of oxygen within the reactor.

The basic advantage of exposing the cathode directly to air is to eliminate any limitation in oxygen supply to the electrode due to mass transport issues. These modifications minimize the internal resistance and increase the power generation [START_REF] Logan | Microbial fuel cells: methodology and technology[END_REF]. The main advantage of this type of MFC is that it does not require any aeration of the cathodic electrolyte, reducing thus the hydraulic flow. This design is more suitable for large geometry scale and wastewater treatment [START_REF] Liu | Production of electricity during wastewater treatment using a single chamber microbial fuel cell[END_REF].

The single-chamber configuration has been used for the Waste Water Microbial Fuel Cell (WWMFCs) lab-scale reactors.

Acetate is commonly used as substrate in MFC. Acetate is an organic anion, a negatively electric ion. It is the strong conjugated base of acetic acid, an organic molecule very common in living systems and widely used in industry and in the chemical laboratory. The chemical formula of Acetate is CH3COO -. Acetic acid, also named ethanoic acid, is a colourless liquid organic compound.

Its chemical formula is CH3COOH.

In detail, it is possible to observe the reactions occurring within a cell using acetate as substrate [START_REF] Logan | Microbial fuel cells: methodology and technology[END_REF]: Anodic reaction:

CH 3 COO -+ 4H 2 O ⟶ 2CO 3 -+ 9H + + 8e - (1) 
Cathodic reaction:

2O 2 + 8H + + 8e -⟶ 4H 2 O (2) 
The carbon dioxide is generated as a product of oxidation. However, there are no net carbon emissions into the atmosphere, because the CO2 produced is biogenic, which is included in the biogeochemical carbon cycle.

Compared to traditional inorganic fuel cells, which use energy generated from fossil fuel conversion, an MFC bases its operational mode on biofuel and biocatalyst as the essential elements: they therefore represent a sustainable zero emissions technology. The only parts that could be not nature-based, may be some MFC construction materials and any electronic components necessary for its operation. It is out of the scope here, but net balance of energy is in favor of MFCs.

The energy balance, as the embodied, is a retrospect figure at the end of life of an electricity generator to verify if the total amount of energy produced is higher than the energy necessary to build the system (ecological impact is also converted in energy). An MFC could work a very long time, as the electronic part is not submitted to electro-thermal stress. The electrical performances are low, but the degradation of waste(even polluting waste) is a favorable add-on that correct in a positive way the energy balance.

Microorganisms are the biocatalysts used in this technology because of both their wide abundance in the biosphere and the ability to self-sustain of some microbial species. Particularly for the latter feature, the production of energy by an MFC is continuous, and it is limited only by the availability of nutrients within the anode support.

The transfer mechanism of electrons into the cell can occur in three different ways (fig. 2.2):

1) direct transfer from the molecule to the anode surface;

2) transfer of electrons through external mediators, employing a secondary biomolecule that carries electrons to the anode (e.g., Pseudomonas aeruginosa, which produces the pyocyanin);

3) electron transfer through bacterial appendages, named nano-wires. The presence of oxygen moves the electrical potential of the cathode to a higher value, typically from 0.4 V to 0.8 V vs. SHE. The working voltage of the MFC is merely the potential of the anode subtracted from the potential of the cathode. It should be noted that MFCs have a theoretical maximum voltage, approximately 1.2

V between the two electrodes, since the redox potential of reduced biomolecules has a minimum of around -0.4 V vs. SHE and the redox potential of oxygen is 0.8 V vs. SHE [START_REF] Cooke | BackyardNet™: Distributed Sensor Network Powered by Terrestrial Microbial Fuel Cell[END_REF].

However, the laboratory performance of MFCs is usually lower than the ideal performance. The energy converted in an MFC is a function of numerous factors, such as the possible geometries of the system and the types of involved bacteria.

The main operating parameters influencing the overall performance of MFC systems are: pH and temperature, which directly influence the microbial metabolic activities; the water content in Terrestrial Microbial Fuel Cell, which influences the diffusion of both the nutrients and of the protons, the type and concentration of biomass and substrate used, the electrode materials and its surface area.

The MFC typologies as TMFCs, WWMFCs and Benthic Microbial Fuel Cells (BMFCs) are influenced by these parameters in different way: it was tested the influence of pH and temperature and substrate concentration on MFC. The temperature plays an important role for WWMFCs and the pH value of soil is important for TMFCs.

In WWMFC, it is possible to consider also the waste water/sludge degradation as an output of the system. Considering that the total organic carbon (TOC) present in an organic substrate inside a water solution generally decaying over time (not inside soil), if the solution is feeding a WWMFC it happens faster than usually. So, the cell can clean the water from organic carbon or other specific compounds the same time as it produces energy.

MCF operation and main application

Microbial fuel cell can be viewed from different perspectives other than an energy source. It can be considered as a Bio-fuel cell, Bio-sensor and Bio-decontaminators with different and wide application fields.

Bio-fuel cell

Microbial fuel cell can be exploited in terms of Bio-fuel cell as clean power source useful to supply low power electronics devices able to empower a node of a wireless sensor network for environmental and agricultural monitoring.

Also, MFCs arranged in the form of a cluster to be use as a small power plant allow more complex applications like the chance to supply energy independent robots and drones.

Bio-sensor

A biosensor is a device that combines microorganisms with a transducer to produce a measurable signal such as voltage or current intensity proportional to parameters such as substrate concentration. An example of transducer is like Bioluminescence used as biosensors [107].

MFCs can be used to report, through the monitoring of the energy produced, the evolution of an environmental parameter. A variation of a parameter corresponds to a variation of voltage or current signal delivered by the bioreactor.

Therefore, it is possible to use an MFC as a bio-sensor, for example to measure values as pH, temperature, biological oxygen demand or also called Biochemical Oxygen Demand (BOD) [START_REF] Kang | Amicrobial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor[END_REF][87], which makes it possible to evaluate the organic pollution of a water), Chemical Oxygen Demand (COD) [START_REF] Del Campo | Short-term effects of temperature and COD in a microbial fuel cell[END_REF] or water quality monitoring [14][79]. Biosensors based on MFCs can suffer from the low sensitivity because of the low power generated by MFCs.

The BOD is a measure of the oxygen amount required by bacteria to degrade the organic components present in water/waste water. It is a measure of the capacity of organic matter to consume oxygen.

The BOD removal rates are indicators of how fast the organic matter is consumed.

It is directly linked to the reaction rate and as such to the output current.

Instead, COD or Chemical Oxygen Demand is the total measurement of all chemicals (organics & in-organics) in the water/waste water. The COD removal rate represents the consumption of all organic and inorganic matter.

The COD effectively is a measure of the number of electrons available in the organic carbon for reduction of oxygen to water. TOC is the amount of total organic carbon. The ratio is therefore a measure for the degree of reduction of the carbon compounds.

BOD is similar in function to COD, in that both measure the number of organic compounds in water. However, COD is less specific, since it measures everything that can be chemically oxidized, rather than just levels of biodegradable organic matter.

The most common application of COD is in quantifying the amount of oxidizable pollutants found in surface water (e.g. lakes and rivers) or wastewater. COD is useful in terms of water quality sensing by providing a metric to determine the effect an effluent will have on the receiving body, much like BOD.

The quality of wastewater generated in any industrial process is generally indicated by performance indices namely BOD, COD and TOC, expressed in mg/L.

The use of TOC as an analytical parameter has become more common in recent years especially for the treatment of industrial wastewater.

Bio-remediator

Microbial fuel cell as bio-remediator offers the possibility to decontaminate polluted soils or wastewater by chemical degradation in addiction to convert at the same time the chemical energy of organic materials presents inside soils and wastewater into electricity by the metabolism of bacteria.

In the context of water treatment, pointing the decontamination of certain compounds, an example is the Shortcut Biological Nitrogen Removal (SBNR) using wastewater microbial fuel cell [3] or the bioremediation of Polycyclic Aromatic Hydrocarbons (PAHs) [119].

In [3], a short removal of nitrite and nitrate was observed when fumaric acid was used as organic carbon source with acetate.

The efficiency of a WWMFC can be improved in Waste Water Treatment Plants (WWTPs) using wastewater rich in organic matters such as sanitary wastes, food processing wastewater, swine and corn stove wastewaters. MFC can also be used to produce bio-hydrogen instead of electricity.

Bacteria involved in MFCs

The most interesting class of bacteria is one that can produce electricity without requiring the addition of mediators. Known as electroactive species, these bacteria directly transfer electrons to chemical species or a substance that is not an immediate electron-acceptor. Among the major strains of electroactive bacteria, can count Geobacter metallireducens, Geobacter sulfurreducens [START_REF] Bond | Electricity production by Geobacter sulfurreducens attached to electrodes[END_REF] and

Desulfuromonas acetoxidans in the family of Geobacteraceae, while among Shewanella, we mention Shewanella putrefaciens [START_REF] Kim | A mediator-less microbial fuel cell using a metal reducing bacterium, shewanella putrefaciens[END_REF] and Shewanella oneidensis [START_REF] Gorby | Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms[END_REF].

The MFC voltage is determined by the difference in redox potential between the two distinct electrodes. Redox potential discloses the tendency of a chemical species to be reduced that is to acquire electrons. Its value is expressed in volt (V).

Many MFC researchers are evaluating the benefits related to the inoculation of certain species of electroactive bacteria. However, for MFCs that use natural substrates such as soil, sediments or effluents, inoculation is not necessary, since these species of electroactive bacteria are already present in abundance, along with complex sugars and other nutrients that have accumulated during millions of years due to the decay of plants and material of animal origin.

The current research has not yet given results regarding the existence of an isolated bacterial strain able to guarantee a higher energy production compared to that obtained from other strains or compared to mixed cultures.

Identifying a potential strain capable of ensuring higher current densities and understanding the synergy or antagonism taking place between different bacterial strains is the goal of current research.

The following table in Fig 2 .3 shows some of the bacterial strains that have been identified in literature within the substrates used in MFCs. Some studies have shown, for example, that the use of pure cultures can facilitate the formation of electroactive biofilms and, therefore, allow the achievement of better performance. In another researches, the use of complexes of mixed cultures allows the use of the substratum in a much wider way since, in an MFC with mixed cultures, there are both electroactive groups and groups that use natural mediators [START_REF] Ieropoulos | Comparative study of three types of microbial fuel cell[END_REF].

However, it must also be kept in mind that a high value of the internal resistance of the cells does not allow high current production.

From this point of view, a future research will therefore be the evaluation of the convenience of cultivating isolated bacterial strains, favoring mixed cultures or rather concentrating the interventions on improving the intrinsic characteristics of the cell.

Different typologies of Microbial fuel cell

There are different typologies of microbial fuel cells, depending on reactor configuration, membrane and substrates used. One is named the terrestrial microbial fuel cell and is founded on the same basic MFC principles described above; whereby, standard topsoil is the nutrient-rich anodic medium, the bacteria inoculum and the proton-exchange membrane. Another type of bioreactor is the waste water microbial fuel cell where waste water acts as flow of nutrient and bacteria. Moreover, there are some different types of MFCs, like benthic or plant MFCs.

Benthic Microbial Fuel Cell

Benthic microbial fuel cells (BMFCs) are MFCs that recover energy from marine sediments. BMFCs can be deployed in all types of aquatic environments with a carbon-rich substrate where electroactive bacteria can grow and proliferate.

In the case of the BMFC (Fig. 2.4), the sediment is related to the anode compartment and the supernatant water (on the sediment surface) to the cathode compartment.

The naturally created interface between water and sediments play the role of the proton exchange membrane. This interface thus passes ions and filters oxygen present in the water. This filtration is even more effective because some of the bacteria present in the anodic chamber are aerobic, i.e. they consume oxygen. With a sufficiently deep immersion of the electrode (a minimum of few centimeters), the anode compartment is therefore assumed to be anaerobic.

Oxygen dissolved in water comes from both surface oxygen that diffuses into the surface layers and photosynthesis from nearby plants. The distribution of this oxygen is ensured by the continuous flow of water thanks to the waves and the wind.

The layers close to the surface are thus generally saturated with oxygen.

In addition, the ocean floor has a very rich and diverse bacterial flora among which electro-active bacteria necessary for the functioning of the BMFC.

Moreover, it is full of organic matter resulting from animal, plant and bacterial degradation, accumulated and constantly renewed.

Finally, although it is accepted that the rate of oxygen in the water decreases with depth, it has been shown that the continuous flow of water ensures a circulation of (free) oxygen, enough to maintain a good operation of the cathode about 1 km deep [START_REF] Nielsen | Sustainable energy from deep ocean cold seeps[END_REF].

This perfusion of fuel thus lends the Benthic microbial fuel cell a potentially infinite lifespan. In the case of benthic microbial fuel cells, ocean sediment acts as the nutrient-rich anodic media, the inoculum and the proton-exchange membrane the anodic redox potential typically leveling at approximately -0.4 V vs. SHE and the cathode may still exhibit a potential of 0.4 V vs. SHE at depths in excess of 950 meters [START_REF] Guzman | Benthic Microbial Fuel Cells: Long-Term Power Sources for Wireless Marine Sensor Networks[END_REF].

Generally, the anodic redox potential could be up to -0.54 V (oxidation of CO2/Acetate) and the cathodic redox potential could reach +0.56 V (reduction O2/H20) for a maximum voltage between electrodes of 1.1V [START_REF] Armande | Récupération d'énergie à partir de piles à combustible microbiennes benthiques[END_REF].

BMFCs can be useful for a wide range of applications and are particularly advantageous in areas that are difficult to access, such as deep water, where devices need to be installed over long periods and fed intermittently, where battery replacement and regular maintenance are problematic.

These BMFCs were able to feed sensors for various purposes, as sensors for water monitoring, climatic and pollution control and as submarine magnetometer to detect the passage of boats. So, a WSN powered by BMFCs can perform marine environment monitoring from boat traffic control and security [5] to water monitoring and disaster prevention. Furthermore, BMFCs can be exploited in many environments over sea, including rivers, to power a wider variety of sensors.

Moreover, naval warfare research departments are taking increasing interest in this technology, due to its applications in naval traffic monitoring from boats to submarines [5].

Terrestrial Microbial Fuel Cell

The terrestrial microbial fuel cell (TMFC) is founded on the same basic MFC principles described above; whereby, standard topsoil is the nutrient-rich anodic medium, the inoculum and the PEM.

As a matter of fact, it is possible to harvest energy from the soil present in the entire earth using proper electrodes, in any moment everywhere and forever.

Microbial fuel cells in configurations such as BMFC or WMFC must work

principally in a marine environment or in presence of waste water, which limits the MFCs' application fields. Terrestrial microbial fuel cells can be inoculated by soil or even work on land, which can overcome the disadvantages and extend the MFCs' application range. TMFC can be used as a closed reactor with a controlled environment able to self-maintain its functioning for years or installed directly on a land with or without presence of plants.

In a terrestrial microbial fuel cell (Fig. 2.5), the anode is placed at a working depth, generally about 8 cm into the ground, while the cathode is preferable on top of the soil, in order to expose it to the oxygen in the air.

In the classical configuration the two electrodes, the anode and the cathode, of an MFC are made of graphite felt. Besides being an appropriate conductor, graphite is also a very economical material.

Located in the soil, the aerobic microbes act as an oxygen filter, consuming oxygen and, thus, preventing infiltration into the anode compartment.

Also, microbial communities that degrade the nutrients present and trigger the reactions necessary for the generation of energy.

One of the main advantages of TMFCs is that it does not require the use of a semipermeable cation exchange membrane, usually made of very expensive materials.

As a matter of fact, the aerobic microbes, naturally contained in the ground, which behave like a filter, consuming oxygen and thus preventing infiltration into the anodic compartment. At the same time the soil, having its own electrical conductivity, allows the migration of hydrogen ions to the cathode.

Fig. 2.5: Main operation of a TMFC

The typical electrical potentials achieved in TMFCs are 0.2 V to 0.6 V vs. SHE for the cathode and in a range from -0.2 V to 0.0 V vs. SHE for the anode [START_REF] Cooke | BackyardNet™: Distributed Sensor Network Powered by Terrestrial Microbial Fuel Cell[END_REF]. Therefore, the theoretical maximum voltage of TMFC that can be achieved between the two electrodes is approximately 0.8 V.

Another typology of MFC is plant microbial fuel cell (PMFC), where living plants transport substantial amounts of organic material into the soil. The release of organic compounds from plant roots into the surrounding environment, called rhizodeposition, provides the substrate for the rhizospheric microbial community. 

Continuous flow and batch mode

There are different possible operation modes for a WWMFC, under continuous flow or in batch mode [START_REF] Pannell | Effect of fed-batch vs. continuous mode of operation on microbial fuel cell performance treating biorefinery wastewater[END_REF], and also semi-continuous, semi-batch and re-circulation mode.

When a microbial fuel cell is in continuous flow operation, it means that it is under continuous feeding conditions. Therefore, a hydraulic connection is needed between the reactor and a waste water source, so the water solution keeps flowing in the reactor and feeding it.

Otherwise, a microbial fuel cell under batch mode, is a closed reactor filled with a water solution, which remains in the reactor without being modified but can be recirculated. The lack of a continuous flow, besides not continuously providing a renewed fresh waste water, leads the reactor to suffer from substrate sedimentation phenomena at the bottom of the cell, making the process less efficient due to the reduced available substrate. Also, the organic substrate decays faster. Recirculation overcomes the latter issue but necessitates a pumping effect, that requires the production of electricity (consumption).

Moreover, a fed-batch mode is possible [START_REF] Liu | Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration[END_REF], often conducted by adding a fresh dose of substrate when the electrical output falls below a baseline, or by replacing the whole solution or a part of the solution. Fed-batch mode is being the most common practice so far for laboratory works [114].

The effect of fed-batch vs. continuous mode of operation on microbial fuel cell performance treating biorefinery wastewater was analysed in [START_REF] Pannell | Effect of fed-batch vs. continuous mode of operation on microbial fuel cell performance treating biorefinery wastewater[END_REF], the fed-batch MFC achieved a similar current density of continuous flow mode, however, its performance dropped significantly after 36 days of operation due to substrate degradation. In comparison, anode conversion efficiencies of the continuously-fed MFC remained almost stable after 48 days of operation. In [103], a dual chamber configuration MFC fed by glucose attained the highest obtained voltage of 760 mV in batch system and it was stable for duration time of 72 h. The WWMFCs lab-scale are operated in batch and fed-batch mode for the experiments, also monitoring the substrate concentration role and substrate degradation effect on MFC efficiency.

Substrates

The substrate has an important biological factor affecting the performance and the electricity generation. Different substrates have been used in MFCs ranging from pure compounds to complex mixtures of organic matter [START_REF] Lee | Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates[END_REF].

All organisms can be classified in base of their primary source of carbon and their primary source of energy. For heterotrophic organisms, organic compounds are metabolized to get carbon for growth and development. For autotrophs organism instead, the carbon dioxide (CO2) is used as source of carbon.

A heterotroph is an organism that relying on the intake of nutrition from sources of organic carbon, mainly plant or animal matter.

Heterotrophs may be subdivided according to their primary energy source, if the heterotroph uses chemical energy, it is a chemotroph. Instead they are called phototroph if they use photosynthesis to acquire energy (sunlight energy).

All animals (herbivores, carnivores and omnivores) are chemoheterotrophs (meaning they oxidize chemical compounds as a source of energy and carbon), as are fungi, protozoa, and some bacteria.

Chemotrophs bacteria are the most interesting. They oxidize chemical substances with their respiratory organisms and in the presence of electron acceptor, such as oxygen, this reaction releases energy. When the oxidation and reduction reactions in the respiratory mechanisms can be separated, can be harvested a part of the energy available from these reactions.

Chemotroph organism are called chemoorganotrophs when their energy source (electron donors' molecules) are organic or chemolithotrophs for inorganic.

These chemoorganotrophic bacteria are capable of oxidizing a wide variety of organic molecules (substrates) by producing useful energy for their growth and maintenance of their metabolism. The substrate then serves for the bacteria as a source of carbon and energy.

The substrates used by biofilms can be any kind of organic matter from simple molecules (as glucose, acetate, carbohydrates) to complex compounds (as cellulose, composed of many glucose molecules) as well as the organic matter contained in the wastewater treatment plants, agricultural, animal and domestic wastes and any type of fermentable substrates. Acetate and glucose are two common typologies of substrates utilized in MFCs.

The efficiency of the bioelectrochemical conversion of the organic substrate into energy depends on composition, characteristics and concentration. The nature of the substrates affects the composition of bacterial populations that grow within the biofilms, but also the bioelectrochemical performance, in the term of current density or the coulombic efficiency of bioanodes.

In most of the MFC studies, acetate has been chosen as substrate for electricity generation [START_REF] Liu | Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell[END_REF]. Acetate is a simple substrate, an intermediate product which appears in many oxidation reaction chain. Also, it is used as carbon source to induce electroactive bacteria. It was reported that using acetate in a singlechamber MFC offers a maximum power density of 506 mW/m2 at 0.8 g/L, compared to 305 mW/m 2 at 1 g/L produced with butyrate [START_REF] Liu | Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell[END_REF].

Glucose is also a commonly used substrate in MFCs [134]. The energy conversion efficiency (ECE) of acetate and glucose as substrates in MFC was compared at 42% with acetate but was only 3% with glucose [START_REF] Lee | Effect of substrate diffusion and anode potential on kinetic parameters for anode-respiring bacteria[END_REF].

Using complex mixtures of organic matter offers the possibility of enriching more diverse microbial communities, leading to better power generation [START_REF] Pant | A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production[END_REF].

Results in literature demonstrate that limiting substrate to the equivalent maximum current that the anode can generate, maintains MFC performance over a long term for high strength wastewaters, such as those generated in the biorefinery [START_REF] Pannell | Effect of fed-batch vs. continuous mode of operation on microbial fuel cell performance treating biorefinery wastewater[END_REF].

The substrate used to feed the lab-scale WWMFCs was acetate, considering the better performance than glucose as substrates. Generally, the solution used to fill the reactors was taken from urban waste water treatment or synthetized starting from a purified potable water, useful to isolate or controlling desiderable parameters, with the addiction of 1 g/l concentration of acetate, but other concentration values as 2 g/l was tested with similar results.

Electrodes

The materials used as anode electrodes must have several specific characteristics for improving interactions between the biofilm and the material surface Carbon cloth is a carbonaceous material used very often as anode in MFCs [136].

This material guarantees high surface area and relatively high porosity demonstrating also high electrical conductivity, as well as flexibility and mechanical strength but the negative aspect is related to the cost that is generally quite high.

Carbon felt is a carbonaceous material that is commonly used as anode in MFC, it was used for the electrodes of lab-scale TMFCs. Its characteristics are high porosity and high electrical conductivity.

Similar to carbon veil, the large pores allow bacteria to penetrate through the structure and to build and colonize the biofilm also internally. The cost is relatively low, and the mechanical strength is high depending on the thickness of the material [120].

Carbon brush is a very interesting material based on a titanium core in which carbon fibers are twisted [START_REF] Logan | Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells[END_REF]. It was chosen as anode for WWMFCs lab-scale. The surface area is quite high with an optimal area to volume ratio. The high electrical conductivity is guaranteed by the central titanium metal that at the same time increases the material cost. Carbon brushes are heavily used as anodes and ongoing investigations are looking to bring down the overall costs [START_REF] Liu | Production of electricity during wastewater treatment using a single chamber microbial fuel cell[END_REF].

Lab-scale MFC prototypes

In this paragraph, an economical way to build MFCs and the specific design labscale MFCs is presented. It was used two different kinds of MFC for experimentations: one is a terrestrial microbial fuel cell (TMFC) based on soil that acts as the membrane, inoculum of bacteria and as flow of nutrient, the other one is a waste water microbial fuel cell (WWMFC) where waste water acts as flow of nutrient and bacteria inoculum. Usually in an MFC reactor, the anode is placed at a working distance of about 4 cm up to 8 cm with respect to the cathode. The materials chosen for the anode and the cathode have to be electrically conductive and chemically inert, so normally the electrodes are made of graphite fiber felt and carbon cloth or brush with a diameter that varies from 8 cm to 13 cm. The structure of the reactor is usually made of PVC with cylindrical shape. All the electrical cables are made of titanium wire.

TMFC lab-scale

Lab-scale TMFCs (Fig. 2.8) are built from PCV with a height of 10 cm and a cylindrical shape. The reactors are filled with topsoil, preventing air bubbles inside the ground to avoid oxygen pervading into the anodic chamber. The reactor diameter measures 10 cm. The reactors are fed with 0.7 g of sodium acetate (1g/l). WWMFCs lab-scale were operated in batch-mode and they were inoculated with urban wastewater (Limonest wastewater treatment plant, Grand Lyon, France) or synthetic waste water made with purified potable water. Chemoorganotrophs are organisms, which oxidize the chemical bonds in organic compounds as their energy source. So, a chemoorganotrophs organism is one that requires organic substrates to get its carbon for growth and development, and that produces its energy from the oxidation and reduction (redox) of an organic compound.

These mechanisms involve the transformation of reactants (as organic matter and oxygen) into products (as water and carbon dioxide). Oxygen is the electron acceptor of aerobic organisms. Other inorganic compounds, such as nitrate, are the electron acceptors of anaerobic organisms.

The theoretical energy available for the bacteria is related to the difference between the energy content of the reactants and the products.

The reaction can be evaluated in terms of Gibbs free energy (G), which is a measure of the maximal work that can be derived from the overall reaction. The Gibbs free energy equation (3) represent the energy content that can be expressed as the product of the electromotive force (EMF) and the corresponding charge flow nF [2].

𝐺 = 𝑛𝐹(𝐸 𝑅𝐸𝐷 -𝐸 𝑂𝑋 ) (3) 
where n is the number of electrons involved in the reaction, F is the constant of Faraday, and ERED and EOX are the reduction and oxidation potentials respectively which difference corresponds to the EMF as in equation (4).

𝐸𝑀𝐹 = 𝐸 𝑅𝐸𝐷 -𝐸 𝑂𝑋 = 𝐸 𝐴𝐶𝐶𝐸𝑃𝑇𝑂𝑅 -𝐸 𝐷𝑂𝑁𝑂𝑅 = 𝐸 𝑐𝑎𝑡ℎ𝑜𝑑𝑒 -𝐸 𝑎𝑛𝑜𝑑𝑒 (4) 
So, the electromotive force (EMF) is the maximum potential achievable, equal to the difference between the half reactions of the electron donor and acceptor under ideal conditions.

A part of this energy, GBIO is used by the microbes for growth and maintenance in the MFC as electrochemical and biological process. Therefore, the total available energy (G) of an electrochemical system significantly decreases, and the available electrical energy (GELEC) could be given by (5).

GELEC = G -GBIO (5) 
If the biological energy (GBIO) becomes too large, the output electric energy will decrease. In an MFC, bacteria transfer electrons from the substrate at a low potential to the anode. Thus, the energy gain for the bacteria is determined by the anode potential. To obtain a higher metabolic energy gain for the bacteria, a higher difference between the redox potential of the substrate and the anode potential is required.

In equation ( 3), the variable n denotes the number of electrons transferred via electron transfer mechanisms. For acetate, the maximum number of electrons transferable is 8. In a microbial metabolism, only a limited number of electrons are transferable to the anode via a certain mechanism [START_REF] Logan | Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells[END_REF][117].

Depending on the presence or absence of terminal electron acceptors, two major metabolic pathways can be distinguished: respiration in the presence of oxygen and fermentation in the absence of oxygen and exogenous oxidants.

In fermentation, electrons taken from the reduced substrates are transferred to oxidized intermediates to generate reduced fermentation products (as lactate, ethanol, hydrogen). In the presence of oxygen, fermentation is generally shut down since the energy gain through fermentation is less than with respiration of oxygen.

In fact, oxygen is the electron acceptor with the highest redox potential, and as such, electrons will react with it.

Acetate is one of the most effective and common electroactive substrates. As a matter of fact, it is often used to fuel lab-scale MFCs.

When oxidized, acetate is degraded into bicarbonate according to equation (6), which is counterbalanced by equation (7).

(Eanode = 0.187V)

CH 3 COO -+ 4H 2 O ⟶ 2CO 3 -+ 9H + + 8e - (6) 
(Ecathode = 1.229V)

2O 2 + 8H + + 8e -⟶ 4H 2 O (7) 
The corresponding standard potentials E0 were determined from the Gibbs free energy data tabulated in [122] for the acetate/bicarbonate couple and in [2] for the oxygen/water couple. Therefore, the resultant EMF is 1.042V in standard conditions.

The theoretical potential of the electrode in a given typical condition can be calculated using the Nernst equation, that relates the reduction potential of an electrochemical reaction (half-cell or full cell reaction) to the standard electrode potential, temperature, and activities (often approximated by concentrations) of the chemical species undergoing reduction and oxidation, as given in equation ( 8)

𝐸 = 𝐸 0 + ( 𝑅𝑇 𝑛𝐹 ) ln 𝛽 (8) 
where E0 is the standard cell potential ( free energy at 298 K, 1 bar, 1 Mol, reported versus standard hydrogen electrode), R is the ideal gas constant (8.314 J/Kmol), T is the temperature (K), F is the Faraday constant, n is the number of moles of electrons transferred and β is the reaction quotient which is the ratio between the chemical activity of the reduced form and the chemical activity of the oxidized form.

The Nernst Equation is derived from the Gibbs free energy under standard conditions associated with an electrochemical transformation. The theoretical redox potential value of the anode and the cathode are 0.187 V and 1.229 V respectively at standard conditions (298 K, [H+] =1 M) as in ( 6) e (7).

In [START_REF] Logan | Microbial fuel cells: methodology and technology[END_REF] the theoretical anode and cathode potentials under specific conditions in a microbial fuel cell was calculated, with an acetate oxidizing anode (HCO3 -= 5 mM, CH3COO -= 5 mM, pH = 7) and an oxygen reducing cathode (partial pressure pO2 = 0:2, pH = 7) and shown to have the theoretical anode potential of -0.296 V and the theoretical cathode potential of 0.805. Accordingly, the EMF is 0.805-(-0.296) = 1.101V.

So, the maximum voltage difference reachable with MFC, which uses the acetate as substrate and the oxygen as electron acceptor is equal to EMF = 1.101 V. Anyway, the maximum theoretical value can't be achieved in practice due to various possible losses in term of current and voltage.

Voltage losses

In bioelectrochemical systems, voltage losses can be divided into bacterial metabolic losses, ohmic and electrode over-potentials losses of the system.

-Activation losses: as described in the previous section bacteria capture a fraction of the energy content of the substrate for their growth and maintenance Moreover, a raise of operative temperature can reduce activation losses.

-Ohmic losses is caused by resistance in interconnections and in the electrolyte.

This drop has a fast dynamic with an instant change of the output current. The ohmic voltage losses is the linear resistance to the flow of electrons through the material of the electrodes and the various interconnections, as well as the resistance to the flow of ions through the electrolyte. This voltage drop is essentially proportional to current density following Ohm's low. Ohmic limitation is mostly due to the resistance of electrolytes and the various interconnections.

The ohmic resistance can be reduced by optimizing the distance between the electrodes, increasing solution conductivity and by checking thoroughly all electric contacts.

-Concentration losses or mass transport losses is a resistance caused by the delayed diffusion of reactants and products to the reaction site and out of it. Also, it is caused by the change in concentration of the reactants at the surface of the electrodes, where the substrate is used as fuel. Concentration drops are amplified for high current densities, when the reactants are consumed at high rates at the surface of the electrodes. So, it is possible to limit the effect of the concentration losses by controlling current density.

Local concentrations directly affect the electrode potentials according to the Nernst Equation (9) [2].

𝐸 = 𝐸 0 + ( 𝑅𝑇 𝑛𝐹 ) ln (𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠) (𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) (9) 
For each electron involved in the redox reactions, the total theoretical energy available is shared between the bacteria, the electrical load and the losses.

The unit that represents the voltage losses is the Potential Efficiency (PE). It decreases at high current densities.

PE is defined in [START_REF] Bond | Electricity production by Geobacter sulfurreducens attached to electrodes[END_REF] as the fraction of the actual output voltage versus the theoretical potential of the involved reaction.

𝑃𝐸 =

𝑉𝑜𝑢𝑡 𝐸 𝑟𝑒𝑑 -𝐸 𝑜𝑥 [START_REF] Bond | Electricity production by Geobacter sulfurreducens attached to electrodes[END_REF] considering VOUT as the MFC output voltage.

The potential efficiency may vary with respect to different designs and operating conditions. Very low values of PE of 2-6% were reported with glucose, whereas better performance was reported with acetate for a resulting PE of 26-59% [START_REF] Logan | Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell[END_REF].

Current losses

In an ideal MFC, the anode is the unique ultimate electron acceptor available to bacteria for the oxidation of the substrate.

In practice however, a fraction of electrons may well migrate to the cathode through the electrolyte or react with alternative electron acceptors like oxygen and non-organic oxidants.

It can happen due to eventually the presence of oxygen diffusing in the anodic compartment, in particular when some air bubbles remain inside the soil in TMFC.

Another reason can be the naturally present in the substrate of non-organic electron-accepting molecules as nitrate and sulfate [START_REF] Kim | Enhanced coulombic efficiency in glucose-fed microbial fuel cells by reducing metabolite electron losses using dual-anode electrodes[END_REF][133], especially when the substrate is wastewater.

Finally, in the absence of viable electron acceptor, some bacteria are able to develop fermentative metabolic pathways, in place of respiration pathways.

When the MFC is in short-circuit condition, the potential of the anode is close to the potential at the cathode, and the anode is therefore strongly attractive. Bacteria will mostly use the anode as an electron acceptor. Other comparatively strong alternative electron acceptors such as diffused oxygen will divert electrons.

When the MFC is in open-circuit condition, the anode does not attract any electrons, and bacteria are more likely to select alternative electron acceptors, in the order of diffused oxygen, non-organic acceptors, and eventually also fermentation.

As a matter of facts, the higher the output voltage VOUT, the less attractive the anode, and the more electrons to be quenched by competitive electron acceptors.

[29].

The Coulombic Efficiency (CE) is a unit representative of electron losses within MFC as defined by [START_REF] Borello | Experimental and computational investigation of a new solar integrated collector storage system[END_REF].

𝐶𝐸 =

𝑛 𝑒𝑓𝑓 𝑛 𝑡𝑜𝑡𝑎𝑙 [START_REF] Borello | Experimental and computational investigation of a new solar integrated collector storage system[END_REF] It represents the percentage of electrons recovered from the organic matter (neff )

versus the theoretical maximum number of electrons (ntot) involved in the oxidation reaction.

The unit representative of current losses is the Coulombic Efficiency (CE) that could also be defined as in [START_REF] Bullen | Biofuel cells and their development[END_REF]. It is the fraction of electrons effectively used as current versus the total number of electrons n (mol) involved in the internal reactions.

𝐶𝐸 = 𝑄

𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑄 𝑡𝑜𝑡𝑎𝑙 = ∫ 𝐼𝑑𝑇 𝑛×𝐹 (12) 
where Qeffective corresponds to the amount of charge transferred to the anode and Qtotal corresponds to the total amount of charge produced by the oxidation reaction. The term I is the output current. The electrons that are not transferred to the anode are called "quenched electrons" and can be represented as a current IQ.

Load influence

In an ideal microbial fuel cell, the potential difference between the fuel and the terminal electron acceptor is shared between the bacteria and the outer electrical load. The potential difference available for the bacteria corresponds to the one between the anode and the fuel. The potential difference available for the outer electrical load corresponds to the one between the cathode and the anode.

The output voltage and energy conversion efficiency are functions of the given output load of the MFC. This suggests that the efficiency of the MFC is optimal for a given external load value. The output load, therefore, should be, adjusted in order 

Internal resistance

The internal resistance of a cell is dependent on its size, chemical properties, age, temperature, and the discharge current. The constructive parameters of a cell define its internal resistance value.

The electrochemical limitations on the performance of microbial fuel cells (MFCs) are due to the internal resistance (Rint), which is caused by different mechanisms including ohmic, activation, and mass transport losses.

As a matter of fact, the open circuit voltage measured is lower than the theoretical value although there is no current through the MFC. When a load is connected to the MFC, a current start to flow in the circuit.

The output voltage decreases due to the losses in the Rint. The internal resistance is a critical factor to determine the output voltage of MFC. A wide literature concerns the minimization of Rint relying on its structural and operational affecting parameters [START_REF] Larminie | Fuel cell systems explained[END_REF].

Ohmic, activation and concentration resistance affecting the internal load of MFC.

The output voltage and energy conversion efficiency are functions of the given output load of the MFC. The Maximum Power Point (MPP) value can be find under impedance matching condition to maximize the output power, so the output load needs to be given at the same value of the internal resistance.

Also, for a multiple connection of MFCs, the impedance matching of MFCs is crucial to avoid losses. Ideally, the maximum power transfer for MFCs in connection, the MFCs need to have the same internal load value.

The efficiency of MFCs is optimal for a given external load value that match the internal load value. The output load, therefore, should be, adjusted in order to maximize the efficiency. It usually requires a maximum power point tracking (MPPT) algorithm to find the best impedance matching.

Also, another important parameter is the fact that MFC can operate both during biofilm maturation and when the biofilm is mature. The electrical operating point is interlinked with the metabolism of bacteria and to other internal mechanisms such as mass transport phenomena and as such it influences the short-term and long-term production of electrical energy and consumption of organic matter.

Reduction the value of the Rint can increase the maximum currents observed during polarization because it decreases the phenomena associated with mass transfer or kinetic limitations. In the removal rate was investigated for different output resistances [START_REF] Degrenne | Power management for microbial fuel cells[END_REF].

Also, as was observed in [START_REF] Katuri | Microbial fuel cells meet with external resistance[END_REF] for high resistance values (low current densities) the chemical oxygen demand (COD) is reduced more slowly. The COD removal rates are indicators of how fast the organic matter is consumed. It is directly linked to the reaction rate and as such to the output current. In addition, at high resistance value, a difference in bacterial metabolism is observed with an increase in the production of short chain fatty acids [110].

Main measurement and electrical issues

The electrical behaviour of an MFC is influenced from many factors, some relate the single reactor performance and other concerning multiple reactors that are connected together.

Many parameters such as pH value of soil in TMFCs and of the solution in

WWMFCs, the temperature, the substrate concentration, the biofilm regeneration, the bacteria metabolism and population grown must be taken into account and checked.

Reducing internal load and MFC limitations

Reducing the internal resistance is also crucial for single reactor electrical performance.

The Ohmic resistance can be reduced by checking carefully all contacts and increasing solution conductivity. Activation resistance can be reduced by increasing the electrode surface area and increasing the operating temperature until it is tolerated by the bacteria. The effect of the concentration resistance can be limited by control of the current density. [START_REF] Degrenne | Power management for microbial fuel cells[END_REF] Increasing available electrons on the electrodes by imposing a voltage from an external source on the cathode seems to improve the current production and electrical performance probably due to a reduction on activation losses. This polarization process can be done by imposing an external voltage to the cathode, because this leads the cell to be instantly charged to the imposed voltage.

Large stack of MFCs: issues and impedance mismatching

When MFCs are more than one, different connections are conceivable: serial or parallel connection, or a combination of both (series/parallel).

The parallel connection usually can increase currents and is similar to scaling-up MFC in volume, voltage value tends to the mean of voltage value of cells. The series connection instead provides an increase in the resultant voltage, but currents can be easily affected from cable resistance of long wires and imperfect connections.

Also, design parameters of reactors are important. Non-uniformity in manufacturing process of reactors can result in an impedance mismatch among cells. Whether it is caused by fuel supply, microbial or reactor non-uniformities, the impedance mismatch is the reason for voltage reversal.

Voltage reversal is detrimental to power generation because the concerned MFC absorbs the energy produced from the others.

Avoid oxygen presence in the anodic chamber

It is appropriate to prevent the presence of oxygen in the anodic compartment, to avoid it to react as alternative electron acceptors instead of the electrode.

Usually non-organic electron-accepting molecules as nitrate and sulfate are naturally present in the substrate in waste water. An artificial waste water was properly synthetized from purified potable water to avoid their presence for experimentations on lab-scale WWMFCs. The presence of non-organic electron acceptor molecules can be avoided if previously a depollution is carried out to waste water, before fuelling the reactors.

Considering terrestrial microbial fuel cell is important to keep away the presence of air bubbles within the soil present in the anodic chamber.

Maximum power point tracking (MPPT)

In any energy harvesting system from low-power transducers (photovoltaic, thermoelectric generators, fuel cells, etc.), the system should be able to extract as much energy as possible from the source.

So, power management systems must operate at their maximum power point (MPP). MPP varies with the operating conditions. An example is the operation of photovoltaic that varies with insolation, temperature and other effects.

On the power curve of the source (power-voltage), there is only one point between the open circuit and the short circuit, called maximum power point (MPP) where power is maximum.

A power DC/DC (buck/boost/buck-boost/flyback) converter is usually used also to achieve the MPPT, placed between the source and the load. 

MEASURING BOARD

Introduction

An original measuring board dedicated to the electrical characterization of MFC was developed to allow automatic and self-managed long-time tests (Fig. 3.1).

Performing an electrical characterization enables to understand the dynamics of the cell and its electrical performance. It is possible to find many parameters related to the cell as the internal resistance values and so the maximum power point, the voltage, current and power values in every desired boundary conditions.

Moreover, it enables to reproduce long-time experiments in automation and can be useful to understand the sensitivity of major parameters on MFC behaviour during the charge and discharge phase or using a wide collection of loads, collecting easily the steady-state, pseudo steady-state and real time values. 

Design of a measuring instrument dedicated to MFC

Power supply and accurate voltage reference

The custom measuring board is supplied by a +5 Vcc provided through USB port that must be connected to a computer. The USB port can provide a 5 V supply on a single wire to power connected USB devices. A device may draw usually a maximum of 500 mA from a USB 2.0.

A voltage reference "REF192 Series" by Analog Device is used to obtain an accurate reference voltage of 2.5V exploited by the circuit for the comparison of the input data.

Rail-to-rail operational amplifier "TS921" is used as buffer amplifier to maintain an accurate value of reference voltage by supplying the necessary current to the circuit.

In the case of a load coupled directly, as the demand for current from the load increases, the reference voltage changes showing a REF192's load regulation of some units of ppm/mA. Therefore, the "TS921" acts as a current buffer to prevent REF192 directly supply the current to the load. "TS921" avoids an inappropriate "REF192" bias point.

Measurement phase selector (Charge, Discharge, Power analysis)

Three electromagnetic relays "LEG-5" by RAYEX ELEC permit to switch between the three options for the measurement:

1) a discharge phase by imposing zero voltage value to the reactor (V=0 V, R=0 , short-circuit), measuring current intensity.

2) a charge phase by imposing zero current intensity value to the cell (I=0 A,

R=∞, open-circuit), measuring voltage.

3) a power analysis phase, operating as resistorstat by switching load values. It can be considered as a case of discharge phase but with a varying load value applied and both current and voltage measurement.

The three relays are managed by the user choosing between the options of the graphical unit interface (GUI).

Among the features of the GUI there is the possibility to switch the on-going measurement phase, the user command is sent to the microcontroller that switches the proper relay. A schematic of the board is provided in Fig. 3.3.

In the schematic of the system in Fig. 3.4 shows the main operation of the measuring system.

The Relay 2 is placed between the positive input of the cell and, in case of switch ON, to the negative input of the "LMP7721" and the transimpedance block or, in case of switch OFF, to the analog input of the "AD7706" .

The Relay 3 is placed between the negative input of the cell and in case of switch OFF, to the "AD7706" and the negative pole of the voltage reference or in case of switch ON to the Relay 1.

When the charge phase is selected from the features of the GUI, both the Relays 2 and 3 will give the connection lines to the "ADC AD7706" for differential comparison of the input voltage (Fig. 3.5). When in discharge phase, the Relay 3 enables the connection line to the negative pole of the 2.5V reference and the Relay 2 enables the connection line to the transimpedance block, composed of the "LMP7721" and the "TS912", to measure the current that is flowing out of the MFC (Fig. 3.6).

The Relay 1 has the role of enabling the power analysis phase (Fig. When the Relay 1 is switched on, the pin 3 will be connected to the pin 2 (case switch ON), it allows the operation of the digital potentiometer "MCP4241". It can switch the resistance values applied as load to the input. In this way it is possible to perform the power analysis of the cell by measuring voltage and current corresponding to each load value and find the maximum power point (MPP).

When the Relay 1 is switched off, the pin 3 will be connected to the pin 5 (case switch OFF) the "MCP4241" is bypassed so the phase turns into a normal discharge phase with zero load to enable the cell to be discharged.

In the following switching table are described the different relays position in base of the current measurement configuration. 

Relays

Current and voltage measurements

A reference voltage of 2.5V is an input to the "ADC AD7706" from the "REF192";

the ADC has three lines that were used for the input.

Two input lines were used for the voltage measurement ( As shown in Fig. 3.8 the equation represented at the input of "AD7706" from the adder element is:

𝑉 = (𝑉 𝑟𝑒𝑓 -𝐼 * 𝑅) -𝑉 𝑜𝑓𝑓1
The max possible voltage readable from the ADC is VmaxReadable=0.625 V, but the voltage value at the input of the ADC can be Vmax=0.6 V, considering that Vref=2.5 V, Voff1=1.9 V and R=50 Ω.

The readable range of voltage values from the ADC is from V=0.1 V to V=0.625 V, in correspondence with a current intensity measurement of I=Imax and I=0 A flowing in the transimpedance block.

It is possible to consider a maximum current of Imax= 10 mA before system saturation (could be up to 12 mA for 0,625 V/50 Ω).

Offset voltage, amplifier and transimpedance block

A precision operational amplifier LMP7721 with ultra-low input bias current of 3 fA is used to compare the input values. The package used was SOIC8. The voltage supply range is from 1.8 V and 5.5 V. The supply current needed is 1.3 mA.

The LMP7721 is active in the discharge phase to perform current measurements,

and it has been used as transimpedance.

The transimpedance block (Fig. 3.8) has an output that follows equation: 

𝑉 𝑜𝑢𝑡 =

Instrument advantages and GUI features

One original advantage is the sensitivity of the resistorstat, and it can automatically switch load value after the measured value is stabilized. It means that the last measured value is checked if in respect to the precedent one (desired delta value), this can be set by the feature of the graphical unit interface (GUI). That feature allows to collect the best correct measurements avoiding wasting time or collecting useless measurements. The GUI (Fig. 3.9) was developed in C++ code.

Fig. 3.9: Graphical user interface (GUI) to manage the measurements

Another important feature is the possibility to choose for the power analysis phase

to alternate a phase of charge after each discharge phase with a certain load to return the voltage value to the OCV value before switch to the next load.

The range of the dynamics of the measurement is optimized with respect to the MFC electrical behaviour. The current range is from 0 to 10 mA.

Instead, the voltage range is from 0 to 1.15 V, considering the theoretical maximum value reached from an MFC is not more than 1.2 V, the device is able to test any kind of microbial fuel cell. Moreover, it is possible to perform test a stack of many MFCs in parallel connection and some cells in series connection (max voltage 1.15 V).

Considering the range in current and voltage, it is possible to characterize microbial fuel cell as a single reactor or in parallel connection for a stack of reactors or in series configuration up to two or three reactors.

The board resolution is high. In particular, for current intensity measurement the resolution is 0.2 µA and regarding voltage is about 18 µV, considering a 16-bit ADC.

Performing tests with different configurations and setup leads to improving the comprehension of the influence of the main parameters on the cell electrical behaviour.

All data and graphs were automatically saved after the end of each measurement.

A WWMFC can be fed with synthetic wastewater to isolate parameters or controlling their desired values to perform full electrical characterization tests using the measuring instrument to collect and store results. 

I-V EXPERIMENTAL RESULTS

TMFC

The electrical performance of TMFC was examined focusing to achieve best value of power generation and the possibility to use as a biosensor. Acting on several parameters as type of soil, pH, temperature, water content and type of bacteria, it was reached best value for lab-scale TMFC. The maximum power point MPP was found with an external load of 1 kΩ: it does mean that the internal resistance was of the same value. The terrestrial microbial fuel cell suffers from a higher internal resistance value with respect to other WWMFC due to the presence of soil instead of a liquid substrate.

Fig. 4.2: OCV chart results of 2 TMFCs

The presence of bacteria on electrodes was observed and analysed to evaluate any benefits, in terms of energy yield, related to the occurrence of a single bacterial strain acting inside the MFCs. TMFCs were tested to establish which were the most present and active bacterial species within the MFCs made.

In this regard, electrode samples were taken from an active TMFC, through sterilized metal tongs, ten days after the start of the experiment, a time interval sufficient for the formation of the bacterial colony and a biofilm around the anode.

The electrode samples were analysed with a microscope. A photo of the gramnegative bacteria was obtained with microscope before and after a process for isolation of the Pseudomonas bacterial strain (Fig. 4.3). The isolated species was then stored in a nutrient agar awaiting the results from the PCR (Polymerase chain reaction) analysis, necessary to confirm the presence of the identified bacteria.

PCR analysis is a DNA amplification technique that allows to obtain "molecular fingerprinting", that is a sort of digital molecular mark that allows to distinguish a given microorganism from "individuals" related from the genetic point of view.

The analysis PCR confirmed the presence of Pseudomonas bacteria family on the TMFC electrode and that it was the most popular bacteria.

Influence of pH

The voltage generated by MFC can be exploited to analyze some parameters, particularly the pH value, allowing environmental monitoring through a sensor without environmental impact.

MFC performance depends on the pH because it causes alterations in concentration of ions, biofilm formation, membrane potential and proton-motive force. It was performed a series of test to study the usability of a TMFC also as a pH biosensor.

For a new experimentation, it was set up four reactors under different conditions to perform the test of pH dependence.

In the first one, specimen A, was used a soil from bean cultivation, with pH value of 6.29, which we measured with a pH meter [121]. Second reactor, specimen B, was prepared with soil taken from a jasmine plant with pH value of 6.8.

The third and fourth reactors, specimens C and D, were prepared with the same type of soil, used for agricultural purposes and taken from Abruzzi Region, with a pH value of 6, but in the fourth reactor 5 mL of a phosphate buffer solution, pH The process of synthetizing of the artificial solution to feed the cells and the analysis of the real urban wastewater was performed using the following equipment:

-Total Organic Carbon analyzer TOC-L Shimadzu for the TOC -Crison GLP21 for pH

Single reactor

The capacitive behaviour of a WWMFC was analysed to test and improve the electrical performance of lab-scale reactors. Various experiments were performed with WWMFCs fed with urban real waste water or artificial waste water.

Synthetic waste water as fuel

In the beginning experimentations were done with a Keithley device able to impose short-circuit condition to the cell. It was used to get data of a complete discharge phase of a WWMFC fuelled with a stable synthetic waste water with imposed pH value of 7.2 and acetate concentration of 1 g/l. A cell needs a certain time to reach again the OCV after a load is applied. This time increases when the value of the applied resistance is smaller than the previous due to a greater voltage drop. A dedicated algorithm manages this time and permits to wait until the measurement is stable. It can be set from the feature of the GUI. So, the sampling time can be set as a fixed time or can vary between measurements, in case of the automatic option chosen, to reach the stability of measure.

In Fig. 4.13 is shown the measurement system for the reactor. It is connected to a multimeter and to the custom measuring board which is connected to a computer where the graphical unit interface (GUI) dedicated to the board is running and collecting data. 

Real urban waste water as fuel

The following figures 4.14 and 4.15 show the results with waste water collected in Lyon with another custom measuring instrument [START_REF] Degrenne | Power management for microbial fuel cells[END_REF], for a lab scale WWWFC fuelled with 0.7l. The waste water was used after two months that it was collected from the waste water treatment in Lyon and stored in tanks in lab. An amount of 0.7g of acetate was added.

The external load covers 10 values and the measurement time for each load value was 3s. The best value of power production was found at 400 Ω and was 123 µW. The temperature is also a key factor that acts on the performance of MFCs.

Temperature variation changes the conductivity of the substrate and the microorganism activity of microbial community. It was observed that there is a slight reduction in power density (9%) when the temperature was reduced from 32°C to 20°C [START_REF] Liu | Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration[END_REF]. Reference [START_REF] Larrosa-Guerrero | Effect of temperature on the performance of microbial fuel cells[END_REF] recently has reported the performance of single and double chamber MFCs tested in batch mode at different operating temperatures ranging from 4°C to 35°C. The internal resistance of the MFC decreases when increasing temperature. The reason of this effect is due to the fact that ionic conductivity increases with temperature and therefore decreases the resistance [START_REF] Del Campo | Short-term effects of temperature and COD in a microbial fuel cell[END_REF]. Increasing temperature results in higher open circuit voltage and higher maximum power point. That can be explained by the following consideration: the higher the temperature, the higher the microbial metabolism and the higher the performance. Temperature plays a crucial factor on the biological activity and electricity production, so MFCs could be used as a temperature sensor.

A series of tests was performed in past experiments in Lyon [START_REF] Khaled | Contribution to electrical valorization of microbial fuel cells[END_REF] to analyze the temperature influence on the behavior of WWMFCs fed with urban waste water:

the effect was studied on WWMFCs reactor by changing the operating temperature in a controlled temperature chamber ranging from 15°C to 40°C.

Experimental results are illustrated in Fig. 4.16 and show clearly that power generation by WWMFCs was significantly affected by higher temperature. Output power curves were evaluated with maximum values of 485 μW, 490 μW, 607 μW and 812 μW for 15°C, 20°C, 30°C and 40°C respectively.

The increase in performance of WWMFCs as a function of the temperature can be explained by improving the biological activity, which will contribute to lower the internal resistance of the cells. By increasing the reaction temperature, the thermal energy available in the system is increased, which makes reactants obtaining enough energy to reach the activated state. Temperature increase is also propitious to anaerobic organisms, which then have a better environment for electricity production.

The best value of harvested power from lab scale WWMFC, fed with fresh urban waste water (taken in a waste water treatment plant in Lyon), was 812 µW at 40°C.

Instead, the best result at ambient temperature of 20°C was 490 µW.

Effect of organic substrate decay

The effect of substrate acts over time because its value decreases during time. This process can be faster if the waste water is fuelling an MFC. The average open circuit voltage of a lab-scale WWMFC fuelled with urban real wastewater is 0.6 V.

Usually, the value is between 0.5 V and 0.7 V in the beginning and it goes down to 0.3 V three months later due to a reduced concentration of organic substrate. As described in 4.2.1, it was observed after three months that the organic content of a real urban waste water was reduced to 0.3 g/l (311mg/l of TOC).

As described before, the best result at ambient temperature of 20°C was 490 µW for a reactor fueled with fresh urban real waste water.

Instead using the same waste water but after two months, the value of power at MPP achieved during tests of 3s of measurement time was 123 µW.

Also, for a synthetic waste water created in lab the effect was monitored during time. The value of acetate as organic substrate was 1g/l for the artificial water. The average of OCV value was monitored around 300 mV with an output power of 36 µW and reduced down after one/two months at 200 mV and a power of 27 µW at MPP (measured during 3s on a 400 Ω load).

Effect of pH

An experimental campaign was done on WWMFC reactors to study the effect of pH on energy conversion performance. The results (Fig. 4.17) show a slight effect of the pH value on WWMFC, when compared to TMFC. The pH value of the soil has a critical influence on TMFC, instead in a WWMFC with a solution of pH value between of 6.5 and 7.5 the effect on energy production seems not to be great. The WWMFC used in the experiments was fuelled with the synthetic waste water made with the technique described before: four lab-scale reactors were tested with different imposed pH values: 6.5, 7, 7.2, 7.5. 

MFCs arranged in form of a pack

Concerning WWMFC applications, it was arranged WWMFCs in the form of pack devices in order to use them as a small power generator. Pointing to a massive utilization of bioreactors as energy source like a small power generator, it was performed a series of tests to study the best configurations for multiple connections of WWMFCs.

Multiple connections of bioreactor can lead to a greater energy production with respect to a big size single reactor. The increase of reactor's size does not lead to an improvement in performance because of the distance between electrodes.

Therefore, it was performed a series of tests to analyze the performance of WWMFCs in multiple connections with different configurations as series and parallel for two or more cells. The parallel configuration can be considered as an interesting way to use MFCs arranged in a form of cluster to increase the value of current and power. 

Connection of multiple MFCs

Experiments with a large number of MFCs was done with WWMFCs arranged in series configuration, fed with urban real wastewater after 3 months it was taken, so with decreased organic content, but with the addiction of 0.7g of acetate directly in the reactor. When MFCs are in a stack in large number, for current intensity analysis some issues can arise as problems of short-circuit, bad connections, long cable resistance. Also, it is mandatory to use of a proper system able to monitor high voltage reactors in connection as 10V/30V, bigger than the measuring instruments present in Rome and Lyon (1.2V/2V max).

An efficient system for a large stack of MFCs should minimize the cell geometry and the stack geometry. The space occupied by cells should be minimized as the length of wires, to avoid drops and short-circuits. Starting from that and considering these phenomena, a new experiment was set up. One reactor was connected to the cathode with a digital supply device as external voltage source set at 2 V.

At the moment of the connection, a current of 0. The decrease in internal resistance will occur in parallel configuration also after imposing a voltage on cathode: MPPT was found at 200 Ω as internal resistance with 140 µW of power.

In this way, two WWMFCs in parallel configuration, though with a stabilized synthetic waste water made from potable water with reduced performance, in place of a real urban waste water, can deliver a considerable amount of power able to easily empower an ultra-low power sensor or a node of a WSN with the proper energy management system. 

MFC APPLICATION

Harvesting energy from available sources is an effective solution for powering ultra-low power devices. Due to its properties, MFC could be useful to many different applications. As a matter of fact, the energy converted by MFC can be utilized in a wide range of domains. One can consider powering a node of a WSN, allowing the realization of applications such as continuous monitoring like in precision farming without environmental impact. Every network node includes a transceiver for communication and generally a microcontroller for local operation and signal processing [START_REF] Adami | Autonomous ultra-low power DC/DC converter for Microbial Fuel Cells[END_REF].

Field of application

Usually, these devices require a minimum voltage of 3 V or less for proper operation. Considering low levels of voltage and current delivered by MFC, an interface circuit is needed to increase the voltage level and to accumulate the amount of electrical charge required for system operation. In this case system operation is not continuous but many applications support this operating mode. As an example, a WSN could only work in the short time required for collecting, transferring and storing environment information. Thus, a power management system includes a step-up DC/DC converter to boost voltage and to support the proper operation of WSN node [1][99].

In wastewater treatment plant (WWTP), a high efficiency can be obtained as wastewater is rich in organic matter such as sanitary waste, food processing wastewater, swine and corn stove wastewaters [124]. Furthermore, it is possible to use MFC as a biosensor [START_REF] Lorenzo | A single-chamber microbial fuel cell as a biosensor for wastewaters[END_REF], for example to measure the biological oxygen demand [START_REF] Logroño | A terrestrial single chamber microbial fuel cell-based biosensor for biochemical oxygen demand of synthetic rice washed wastewater[END_REF] or water quality monitoring [START_REF] Chouler | Water quality monitoring in developing countries; can microbial fuel cells be the answer?[END_REF][START_REF] Lorenzo | A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality[END_REF]. Generally, each network node of a wireless sensor network includes a sensor device to collect information from the environment and transmits data to the central node. Therefore, the use of MFC as a biosensor device and not only as a power supply allows minimizing the environmental impact of a network node.

Energy management system to supply WSN

Each node of a wireless network includes a transceiver for communication and a microcontroller for local management of the information. An MFC delivers current and voltage values that are lower than those needed for the operation of these devices. In order to reach adequate levels of current and voltage, an energy management system is required.

Since MFCs produce a level of voltage not enough to support what a WSN node requires, it is needed to store the energy during the standby/idle time of the system. The operation mode of "energy storage" is needed until the stored energy reaches the amount required to support the proper operation of WSN node, does it mean the data elaboration and transmission. For these reasons, the design of power management system includes a step-up DC/DC converter to boost voltage.

The energy produced by TMFC can be used to power a node of a WSN, allowing the realization of applications such as ambient monitoring and precision farming without environmental impact. Every network node includes a transceiver for communication, and generally a microcontroller for local operation and signal processing.

The electric current required by these type of devices changes depending on the specific operating while the voltage level necessary for the operation is equal to The CC2533 is an optimized system-on-chip (SoC) solution for IEEE 802.15.4 based remote-control systems as ZigBee. The RN131C, the ATMEL ATA8510 and the MRF24J40MA are produced by Microchip.

WSN powered by TMFC

As mentioned above, the interface circuit must generate sufficient power for supplying a WSN node during the operating phases characterized by higher consumption, such as the transmitting phase. Therefore, normally the circuit includes a boost converter for power management.

In literature, there are two main ways to address the problem: a first method, which uses a configuration that provides for the presence of a transformer in the step-up converter, and a second method which instead using a transformer-less configuration. In the one with transformer [START_REF] Adami | Autonomous ultra-low power DC/DC converter for Microbial Fuel Cells[END_REF], the start-up circuit uses JFET rather than a MOSFET, because JFET's gate cut-off voltage is very low compared to the MOSFET's one (Fig. 5.1). Moreover, JFET's gate capacitor is so small as to reduce the switching losses.

However, DC/DC converter with a transformer does not use JFET as principal power switch, because a high value of its drain-source on-resistance (Rds) increases converter losses. As a matter of fact, most converter losses are due to the JFET, unlike those of the transformer that are negligible. In this configuration, the conversion efficiency is expected to be about 65% in the case of an input power of 310 µW supplied from lab scale-TMFC. In the other configuration without a transformer [START_REF] Park | High efficiency energy harvesting from microbial fuel cells using a synchronous boost converter[END_REF] [95], for implementing the DC/DC converter, the energy harvesting electrical scheme uses essentially a two-stage circuit (Fig. 5.2). They are two feedback converters, the first one dedicated to energy harvesting conversion, the second one to output voltage boost transformation.

The latter configuration is without a transformer, but in order to properly operate the comparator, included into the controller section of harvesting and boost, it must be provided the use of reference voltages and power values that could be greater than those produced by the MFC. It is the preferred solution when input voltage is higher than about 250 mV. Adopting the step-up DC/DC converter circuit implemented in [START_REF] Degrenne | Self-starting DC: DC boost converter for low-power and low-voltage microbial electric generators[END_REF], based on a model with transformer, the circuit was optimized in order to make it suitable to TMFC (Fig 5 .4). The converter is optimized for an input voltage from 0.6 V. (Fig. 5.3), corresponding to the supply voltage of a lab-scale TMFC. In this configuration the converter however requires an excessive amount of current. At the end of this time the capacitor will have accumulated an amount of charge such that the voltage across its terminals is equal to about 700mV. An integrated TPS61221 was used as a converter inside the second stage and an output capacitor with a value of 10 µF. The step-up ratio should be high to reach output voltages above 1 V. Because MFCs are strongly non-uniform generators, the converter should operate between 3 mW and 30 mW of input power with a nominal power level of 10 mW.

Efficiency has to be as high as possible. Finally, a galvanic insulation was required in order to facilitate the serial association of the outputs of the converters.

Switching losses are addressed by a relatively low switching frequency (around 10 kHz), which is possible through the use of a transformer with a high primary inductance L1 (thus a large magnetic material volume).

T1 is a low threshold-voltage transistor that was selected as a trade-off between on-resistance and parasitic gate capacitance. The wire used for the two power The pulse-width modulation (PWM) block determines the frequency and duty cycle of the flyback conversion. A commercial, off-the-shelf DC/DC buck converter block provides power (μW-level) to the power management system at 2.5 V.

Long range WSN with BQ2550x series

The block diagram in 

Voltage polarization method for energy management

A system able to exploit the advantage of the voltage polarization method on WWMFC is provided in Fig 5 .15. The energy management system can be controlled and driven appropriately to appoint it. It is possible to drive the energy harvested from MFCs, usually delivered to the load, back to cell in a certain time. Moreover, the possibility of using more cells with alternating operation can support the system to provide power to the load and at the same time to self-sustain and improve electrical performance of the same cells. The start-up voltage of LTC3108 is lower than the BQ25504 by Texas, that is 80mV, but a maximum power point tracking (MPPT) is not provided.

The maximum charging voltage can be chosen to be 50 mV and the minimum voltage to which the supercapacitor can be discharged can be selected as 20 mV, considering that the proposed boost converter operates down to 20mV. The maximum can be put to 50 mV because it is the minimum voltage required to obtain continuous power output by the DC-DC boost converter.

The charging and discharging voltage values can simply be adjusted to fit the converter and supercapacitor.

Limiting the discharging and charging voltage of the supercapacitor (20mV to 50 mV) is the requirement for continuous power produced by the energy management system with four MFCs in alternation as sources (Fig. 5.18). In this way it is possible to supply low power devices in a continuous power supply mode without require freezing repetitively the WSN node. supplying the converter until the switch will be open.

Conclusions and future development

Microbial fuel cell is a rising energy harvesting technology that can be used to supply low power devices for many purposes and applications or directly as biosensor. As a matter of fact, it is now a platform technology due to its effectively multiple possible applications. 

Perspectives

Considering the advances in the fields of fluid dynamics and nanotechnology in recent and next years, the combination of these disciplines will could open new frontiers in electronics in the future, when components and wires will be made using the property of water as conductor in place of materials as copper for wires and cables, overcoming also the great issues of dispersion due to the joule effect.

Then, bioelectricity from BESs will be able to supply most of the devices.

Efforts are needed to improve the energy conversion in microbial fuel cells with various set ups, operations, electrode and membrane materials, substrates and microorganisms. As a matter of fact, main issues are related to the fact that MFCs produce a wide range of performance in different configurations and measurement setup, a large database of MFC behaviour is needed, especially about the MFC kinetics and sampling time. As future development, the results about electrical behaviour of MFCs will be compared with tests of in different conditions or reactors configurations.

For the terrestrial microbial fuel cell, a large work of classification is needed for all existing soil types in different boundary condition with respect to the electrical behaviour of the reactor filled with the soils. This classification is useful to exploit the use as biosensor of TMFC and also to find best way to improve energy conversion rate. For waste water microbial fuel cell, a different issues with respect of TMFC is the batch or continuous flow mode, the batch mode is more suitable for bioremediation instead a continuous flow is more suitable for energy recovery or the use as biosensor.

Properly designed measurement systems are necessary to test MFCs, as the one presented in this thesis. Contrarywise, the tests can suffer of many issues from the accuracy of the measurement time to the appropriate collection of data. In case of large stack of MFCs, the measuring system has to be improved to assure the accuracy to test high level of energy, especially for voltage measurement for large number of connections in series.

The connection of a big number of MFCs as a cluster suffers from issues directly related to the number of MFCs. More is the number of MFCs more is needed a reduction of the space occupied by the cell and in particular is needed to reduce the distance between the reactors to minimize the length of connecting wires and avoid losses.

The collaboration among Laboratoire Ampère of University of Lyon and DIET department of University of Rome has allowed the sharing of knowledge and expertise on MFC technology.

The multidisciplinary nature of the research makes it particularly stimulating and interesting, combined with the importance and vastness of the topics covered: from microbiology to chemistry and engineering.

Strengthening international cooperation on sustainable urbanisation is one of the most futuristic topics for European Union as indeed are sustainable energy recovery systems and bioremediation systems. In the measurer instrument project, the AD7706 is supplied from the USB port with Vcc=+5V 
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 11 Fig 1.1: Various energy harvesting techniques It is possible to regroup the various energy harvesting techniques in four main fields: thermal, radiation, mechanical and chemical energy as shown in Fig. 1.1.
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 12 Fig. 1.2: Relations between operating condition, main parameters and power generation in microbial fuel cell[START_REF] Degrenne | Power management for microbial fuel cells[END_REF] 
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 22 Fig 2.2: Three different ways of transfer mechanism of electrons into MFC When a microbial community forms and begins to respire at the anode surface, the highly reduced biomolecules start to accumulate around the anode. This build-up of metabolic by-products decreases the electrical potential of the anode, settling on values typically between -0.4 V and -0.1 V vs. SHE (Standard Hydrogen Electrode).
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 23 Fig 2.3: bacterial strains identified within the substrates used in MFCs [104]
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 24 Fig 2.4: Typical operation of a Benthic Microbial Fuel cell[START_REF] Bond | Electrodereducing microorganisms that harvest energy from marine sediments[END_REF] 
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 243 An example is an MFC planted with rice, which can reach open circuit voltage (OCV) of 0.8 V with an anodic redox potential of -0.34 V vs. SHE. [116] Waste Water Microbial fuel cell The waste water fuel cell (WWMFC) is equally based on the same basic MFC principles, where the waste water plays the role of flow of nutrient (biofuel) and inoculum of bacteria (biocatalysts) [132]. These cells are generally is singlechamber configuration (Fig. 2.6). The chamber is filled with waste water and the anode is placed inside water. Usually, an air-cathode is used for WWMFCs, which is useful to eliminate any limitation in oxygen supply to the electrode due to mass transport issues.
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 26 Fig. 2.6: Scheme of a single-chamber MFC

  . The most important characteristics are: electrical conductivity, resistance to corrosion, high mechanical strength, developed surface area, biocompatibility, environmentally friendly and low cost [108][114]. Carbonaceous-and metallic-based materials are the main types of electrode adopted, which possess all the above-mentioned characteristics [128]. Among carbonaceous materials, carbon cloth (Fig. 2.7 a), carbon brush (Fig. 2.7 b), carbon rod (Fig. 2.7 c), carbon mesh (Fig. 2.7 d), carbon veil (Fig. 2.7 e), carbon paper (Fig. 2.7 f), carbon felt (Fig. 2.7 g), granular activated carbon (Fig. 2.7 h), granular graphite(Fig. 2.7 i), carbonized cardboard (Fig. 2.7 j), graphite plate (Fig. 2.7 k) and reticulated vitreous carbon (Fig. 2.7 l) are used as commercially available materials. Among metal-based materials, stainless steel plate (Fig. 2.7 m), stainless steel mesh (Fig. 2.7 n), stainless steel scrubber (Fig. 2.7 o), silver sheet (Fig. 2.7 p), nickel sheet (Fig. 2.7 q), copper sheet (Fig. 2.7 r), gold sheet (Fig. 2.7 s) and titanium plate (Fig. 2.7 t) are used as commercially available materials [114].

Fig. 2 . 7 :

 27 Fig. 2.7: Digital photographs of carbon cloth (a), carbon brush (b), carbon rod (c), carbon mesh (d), carbon veil (e), carbon paper (f), carbon felt (g), granular activated carbon (h), granular graphite (i), carbonized cardboard (j), graphite plate (k), reticulated vitreous carbon (l),stainless steel plate (m), stainless steel mesh (n), stainless steel scrubber (o), silver sheet (p), nickel sheet (q), copper sheet (r), gold sheet (s), titanium plate (t)(Santoro et al. [114]).

Fig. 2 . 8 :

 28 Fig. 2.8: 3D Graphical cross section of a lab-scale TMFC

Fig. 2 . 9 :

 29 Fig. 2.9: Photo of the electrodes used for lab-scale TMFC made of carbon felt

Fig. 2 .

 2 Fig. 2.11: Photo of carbon fiber brush anode

Fig. 2 .

 2 Fig. 2.12: Air cathode of lab-scale WWMFC

Fig. 2 .

 2 Fig. 2.13: lab-scale WWMFC dimensions

Figure 2 .

 2 Figure 2.14 shows a 3D graphical section of lab-scale WWMFC and Fig 2.15 shows a photo of the reactor.

Fig. 2 .

 2 Fig. 2.14: 3D graphical section of a lab-scale WWMFC

  and it causes in part a voltage losses. The voltage losses VBAC have to be deduced from the EMF. Considering that bacteria activate the reaction at the anode, the voltage drop VBAC can be included in the more general definition of activation losses that also includes phenomena at the cathode. A proportion of the voltage generated is lost in the beginning of chemical reactions that transfer electrons to or from the electrode. It results from the large local potential difference necessary to allow a reaction at the electrodes. The dynamics of phenomenon are diverse and are related to the storage of energy by bacteria, metabolic shifts, and evolution of the microbial community. Activation losses occur in abiotic conditions and in chemical fuel cells since these are related to overcoming the initial energy barriers that are involved at the start of chemical reactions. This voltage drop is highly nonlinear. The activation voltage losses are one of the most relevant causes of voltage drop. An increase of the electrode surface area can lower the activation resistance.

  to maximize the efficiency. The output voltage of the MFC increases with the load. When the load reaches high values, the output voltage begins to saturate. The output voltage and efficiency are affected in a different way as shown in Fig 2.16 and Fig. 2.17 respectively. The set up was a WWMFC lab-scale fed by real urban waste water.

Fig. 2 . 16 :Fig. 2 . 17 :

 216217 Fig.2.16: Typical effect of load on MFC output voltage[START_REF] Degrenne | Power management for microbial fuel cells[END_REF] 

Fig. 2 . 18 :

 218 Fig. 2.18: Qualitative graph of the voltage drop in the different parts of MFC when electrical load is applied[START_REF] Degrenne | Power management for microbial fuel cells[END_REF] 

Fig 2 .

 2 [START_REF] Cohen | The bacterial culture as an electrical half-cell[END_REF] shows a block diagram of a MPPT controller for energy harvesting systems. These systems use complex algorithms to ensure that the transducer always operates at its MPP.These algorithms are called maximum power point techniques (MPPTs). A digital controller is generally used to control the converter. A number of MPPT methods have been reported in literature[START_REF] Molognoni | Reducing start-up time and minimizing energy losses of Microbial Fuel Cells using Maximum Power Point Tracking strategy[END_REF] 125] and some commercial DC/DC converters include one, e.g. as the BQ25504 converter.

Fig. 2 .

 2 Fig. 2.19: MPPT controller for energy harvesting systems block scheme

Fig. 3 . 1 :

 31 Fig. 3.1: Photo of the top layer of the Measuring Board

  3.7), where the measurement instrument works also as an automatic resistorstat. It is placed between the "MCP4241", 10k Digital potentiometer, the Relay 3 and the positive input of a precision operational amplifier "LMP7721" used to compare the input values. The Relay 1 is piloted by the Relay 3. In fact, only if the Relay 3 is switched on to perform voltage measurement, the Relay 1 can function properly.

Fig. 3 . 3 :Fig. 3 . 7 :

 3337 Fig. 3.3: Schematics of the custom measuring instrument

Fig 3 . 5 )

 35 with a value of gain of the ADC set to 2. The resolution of voltage measurement is 18 µV and the maximum readable voltage is 1.15 V, considering that the max value is Vmax =1.25 V but over Voff2=0.1 V One input line was used for the current measurement (Fig 3.6) with a value of gain set to 4. It was chosen 4 as gain value instead of 2 to maintain adequate precision in the measurement. In this way the maximum readable current is 10 mA with enough resolution on current measurement of 0.2 µA.

  𝐼 * 𝑅 with R=50 Ω, this value was used in the circuit. The possible values of Vout are: 𝑉 𝑜𝑢𝑡 = 0.5 𝑉 = 10 𝑚𝐴 * 50 Ω when I=10 mA=Imax, or: 𝑉 𝑜𝑢𝑡 = 0 𝑉 when I=0 mA.

Fig. 3 . 8 :

 38 Fig. 3.8: Transimpedance block schematic

  The custom instrument board dedicated to the electrical characterization of the MFC can analyse electrical parameters as instantaneous power, open circuit voltage, instant current, internal resistance and electric charge. Electric charge is the measurement of capacitance behaviour of the cell.

Figure 4 .

 4 1 and 4.2 show the results with the best power generation and OCV value generated by lab-scale TMFC, for which different configurations have been tested. A clay soil was used with a pH value of 6.3 for the first sample (Test A) and a peaty soil for the second sample with a pH value of 7.2 (Test B). It was obtained best values of voltage with test B, of about 660 mV with the sample characterized by a value of pH = 7.2 and temperature value of 28°C and no external bacteria inoculation, the soil acts as source of microorganisms The maximum production of power, with a load resistance of 1000 ohms, is equal to 0.31 mW, corresponding to a current level of around 0.5 mA. A power density of 46.58 mW/m 2 has been obtained.

Figure 4 . 1 .

 41 Figure 4.1. Chart results of power generation achieved by 2 TMFCs

Fig. 4 . 3 :

 43 Fig. 4.3: photo with microscope of bacteria before and after isolation process of the Pseudomonas bacterial strain.

=7. 5 (

 5 10 mM) was added, what brought the soil pH value of specimen D to increase to 6.63 [121]. In this way we monitored the influence of pH on the output voltage, in the case of reactors with different soils at diverse pH values and in the case of two reactors containing the same soil type separate pH values. The open circuit voltage (OCV) of all reactors were tested every day for a period of 10 days. Experimental results in Fig. 4.4 clearly show that a higher pH value determines a higher voltage production both in the case of reactors with different soil at diverse pH values and in the case of reactors with same soil but different pH values. The figure 4.4 shows how the specimen D produces a higher voltage compared to the specimen C even if the soil and the condition was the same apart from the pH value. The reactor is therefore influenced by different values of pH which increases the voltage in case of a higher pH value.

Fig 4 . 4 :

 44 Fig 4.4: Open Circuit Potential evolution chart results.

Fig 4 . 5 :

 45 Fig 4.5: Result of the analysis on real waste water

Fig 4 . 6 :

 46 Fig 4.6: Parameters of the artificial waste water created in Lab

Figure 4 .

 4 Figure 4.7 shows a behaviour similar to that produced by a capacitor. It required a minimum of 36 hours for a complete discharge. The cell reaches a minimum value of 0.4 µA and never goes to zero. The discharge phase has a capacitive behaviour starting with a peak of 4 mA.

Fig. 4 . 7 :

 47 Fig. 4.7: Test of complete discharge of an operating WWMFC (36H)Better and accurate results were obtained with the custom boards dedicated to MFC as the one designed and described in chapter 3. The reactors were fuelled

Fig 4 . 8 :

 48 Fig 4.8: A sequence of charge and discharge phase

Fig 4 . 9 :

 49 Fig 4.9: The discharge phase of a single WWMFC

Fig 4 . 11 :

 411 Fig 4.11: Results of I(mA) and V(mV) over time (s) of a WWMFC

Fig. 4 .

 4 Fig. 4.13: Measurement configuration

Fig 4 . 14

 414 Fig 4.14 Voltage and current intensity for 10 load values

Fig 4 . 16 :

 416 Fig 4.16: Power curves for different values of ambient temperature.

Fig 4 .

 4 Fig 4.17 pH influence on OCV of WWMFC

5 4. 2 . 4

 524 Parallel configurationA decrease in internal resistance was observed that occurs when two reactors are put in parallel configuration: MPP was found at an external load of 200 Ω. The reduced value of internal impedance can bring better performances in term of power and current delivered due to the reduced ohmic drop. The ohmic losses is the linear resistance to the flow of electrons through the material of the electrodes and the various interconnections, as well as the resistance to the flow of ions through the electrolyte The maximum power of 112 µW at MPP was found at 200 Ω, as represented in Fig. 4.18. The figure shows the value of power for 8 different external load values applied from 100 Ω to 800 Ω. It delivered 148 mV and 600 µA at MPP in parallel configuration. The value of power from two WMMFCs in parallel configuration was increased with respect to the value of a single reactor. In fact, the internal resistance was decreased to half the value of a single WWMFC, from 400 Ω to 200 Ω. Also, the current intensity had the same improvement.

Fig 4 . 18 : 4 . 2 . 5

 418425 Fig 4.18: WWMFCs in parallel configuration power chart

Fig 4 .

 4 Fig 4.19: OCV during time until stabilization

Fig 4 .

 4 Fig 4.20 shows the results for serial connection of 6, 10, 16, 20 and 25 reactors. The results in the figure are an average from experiments done with WWMFCs reactors fed by real urban waste water.

Fig 4 . 20 :

 420 Fig 4.20: Chart of series connection of WWMFCs up to 25 reactors

  4 A instantly flows in the reactor from the digital source and immediately the open circuit voltage reached the voltage value of 2 V imposed. It was monitored on-line with a digital multimeter. In terms of time, the charge phase of the reactor was immediate; after that the WWMFC doesn't continue to draw any current and the digital supply shows a current level of O A. At this point the voltage is still at 2V until the digital supply is disconnected. When the disconnection between the external voltage source and the cell was carried out, immediately the cell voltage starts to decrease, so the open circuit voltage of the reactor beginning to discharge with a capacitive behaviour. The discharge phase was monitored with the custom measurement instrument as in Fig. 4.21.

Fig 4 . 21 :

 421 Fig 4.21: Discharge phase of the cell after polarization method was applied

Fig 4 . 22 :

 422 Fig 4.22: Discharge phase of the cell tested during time for 1800sAt the end of the discharge phase the voltage usually reaches an average level of 330mV better than the previous one before applying the voltage polarization method.

Fig. 4 . 23 :

 423 Fig. 4.23: Results of power analysis (3s) of a single reactor after polarization applied

Fig 4 . 24 :

 424 Fig 4.24: Results in term of voltage and current delivered during time (3 minutes measurement time) for a WWMFC after polarization method applied

Fig. 4 .

 4 Fig. 4.28 Results of power production with 8 values of load applied: results of I(mA) and V(mV) over time (s) of a WWMFC

Fig. 5 . 1 :

 51 Fig. 5.1: Converter scheme: configuration with a transformer.

Fig. 5 . 2 :

 52 Fig. 5.2: Two-stage transformer-less converter.

Fig 5 . 3 :

 53 Fig 5.3: Step-up DC/DC converter optimal duty cycle experimental system (simulation).

Fig 5 . 4 :

 54 Fig 5.4: OrCAD schematic of the adapted circuit for TMFC A series of transformer-less converter configurations using commercial converters, like LTC3105 by Linear Technology Company or TPS61221 by Texas Instruments was observed. The TPS61221 need 0.7 V as input voltage for a proper operation.

Fig 5 . 5 :Fig 5 . 6 :

 5556 Fig 5.5: The output voltage of stage two reaches 3.3 V.

Fig. 5 . 7 :

 57 Fig. 5.7: Three-stage block diagram, the second switch in the output block close the circuit after a time of T+1.5ms to connect and supply the load

Fig 5 . 9 :

 59 Fig 5.9: Scheme block of the feedback control loop

Fig. 5 . 10 : 5 . 2 . 3

 510523 Fig. 5.10: Results of the simulation of the proposed feedback control loop

  windings, L1 and L2, are 0.56 mm external diameter and 0.20 mm external diameter for the control winding L3. The number of turns is 10 for L1, 20 for L2 (1:2 ratio) and 60 for L3 (1:6 ratio). The parameters for the coupled inductances are L1= 277 µH and L2 =1110 µH, R1=81 mΩ and R2 162 mΩ at 10 kHz (Fig. 5.11b).

Fig. 5 .

 5 Fig. 5.11a: Simplified circuit of the flyback converter

Fig 5 .

 5 13 shows a proposed system with BQ25505 in combination with a transceiver CC1310 and a microcontroller MSP430 to perform a WSN node with various sensors [112]. The system is based on the DC/DC boost converted by Texas Instr., which also has an integrated MPPT function. The converter harvests the energy delivered from MFC to charge a supercapacitor. Its stores the energy needed to the operation of the microcontroller and the transceiver. The sensors provide data to the RF systems that allow the node to transmit.

Fig 5 . 13 :

 513 Fig 5.13: Block diagram for a long range WSN powered by MFC [112]

Fig 5 . 14 :

 514 Fig 5.14: Schematic of the proposed long range WSN system

Fig. 5 .

 5 Fig. 5.16: Power management system for Continuous mode supply with 2 MFCs [56] A continuous powering could be achieved by alternatively connect the MFCs (MFC1 and MFC2) as shown in Fig. 5.16. One MFC supplies the sensor while the second MFC is in the recovery mode. A power management unit with a commercially available DC/DC converter is considered to step-up the voltage and controls the operation of an MFC. Moreover, a capacitor is connected directly to the MFC to filter the output voltage fluctuation. A second capacitor at the output of the converter is needed to store the required energy for start-up of a low power device as a sensor.

Fig.: 5 . 18 :

 518 Fig.: 5.18: Schematic of the proposed system with 4 MFCs

  The application fields of MFCs can vary from bioremediation and energy recovering in urban waste-water treatment plants to precision farming monitoring. The possibilities to use MFCs in different environments open other way to exploit the energy recovery and bioremediations abilities, as well as the use as biosensors. From open sea to harsh environments the reactors can be properly configured case by case using Benthic or Waste water or Terrestrial microbial fuel cells. Furthermore, the MFC energy harvesting technique can be considered as the only technology to recover electricity from waste without the addiction of an external source.The contributions to the dissemination of MFCs are the following.In chapter 2 the context of biofuel cell is introduced and the basic principles of operation and the main application of MFCs are explained. In the chapter are listed the numerous parameters that define the MFC in all its aspects. A perspective is to tune these parameters for maximizing the production of electricity. The survey includes an evaluation of the impact of different electrode materials, substrate used, and bacteria involved in the chemical process. Also, the specific design of labscale MFCs is presented. Two different lab-scale MFCs typologies were built: TMFCs and WWMFCs. Moreover, the two mode of use of WWMFCs as continuous flow or batch mode was examined. At the end of the chapter, the main issues regarding MFCs functioning and testing are inspected.In Chapter 3 a proper measurement system designed specifically for tests on MFCs is presented. It is able to assure an accurate measure of any electrical values and parameters needed for the electrical characterization of reactors in single configuration or in multiple connection.The Chapter 4 includes all I/V experimental results done on MFCs. Tests were performed on lab scale version of WWMFCs and TMFCs. The solutions used to feed WWMFCs were different and in some cases was used real waste water, in others proper synthetized solutions were made on purpose. The methods for synthesizing the solutions is described. The influence of the main parameters as pH and temperature was analysed for both type of cells. The experimental campaign includes measurements of reactor in single configuration or arranged in pack in series or parallel connections.Chapter 5 contains a survey on the possible application of MFCs in many fields. It is described the possible solutions for energy management systems able to exploit the energy delivered by MFCs to supply ultra-low power devices, like those used for a node of a WSN. Also, it is present a comparison between the most recent low power devices required to build a WSN. Many different systems are proposed according to the types of reactors used and the exploitation of the energy provided by the cells in a timed or continuous supply mode.

  schemes. A PCB layout of the board is shown in Fig.7.2.

Fig. 7 . 1 :

 71 Fig. 7.1: Photo of the measuring board dedicated to MFC with connections

Fig. 7 . 8 :

 78 Fig. 7.8: AD7706 pin configurations Furthermore, another component used was a MCP4241 10kΩ Digital potentiometer by Microchip (Fig. 7.7), it permits to switch load value in the power analysis phase for measurements of cells power performance. The MCP4241 devices are non-volatile, 7-bit (129 wiper steps) digital potentiometers with EEPROM and an SPI compatible interface. The operating temperature range is from -40°C to +125°C, and operating voltage from 2.7V to 5.5V. Low-Power Operation: 1µA Max Static Current.
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1: Switching table explain the relays position in base of current measurement configuration

1 Comparison of DC/DC converters and transceivers for WSN

  

	5.2.In the following table 5.1 is a comparison of principal properties and voltage
	requirement for some low power converter. The converters LTC 3108 and LTC
	3105 by Linear Technologies are presented with the Enocean ECT 310 DC/DC
	converter. Moreover, the S-882Z, which has a start-up input voltage of 300mV is
	produced by Seiko.				
	Instead, the BQ25504 by Texas instruments is a boost converter which can be
	started with VIN as low as 330 mV but once started, can continue to harvest energy
	down to VIN = 80 mV. Also, it has an integrated programmable dynamic maximum
	power point tracking (MPPT). The TSP61221 by Texas instruments has an
	efficiency of 0.9 and an input voltage of 700mV.		
	Energy harvesting DC/DC converter comparison	
	Converter	Start-up VIN	VOUT	MPPT	Efficiency
	LTC 3108	20mV	2.35/3.3/4.1/5V	No	0.6
	LTC 3105	250mV	1.6V to 5.25V	Yes	0.6
	ECT 310	20mV	3V to 5V	No	0.3
	3.3V, but this level is ever reducing. The transmission devices included in a
	network node powered by MFCs, and chosen according to the communication S-882Z 300mV 1.4V to 2.4V No 0.2
	protocols used, must necessarily be ultra-low consumption. Possible solutions are the IEEE 802.15.4 standard communication protocol, as ZigBee protocol, and the Pollak [99] 70mV 2.5V to 5V No 0.7
	IEEE 802.11 standard protocol, e.g., Wi-Fi. Also, wireless personal area network TSP61221 700mV 1.8V to 6V No 0.9
	(PAN) technology as Bluetooth Low Energy (BLE) 2.4GHZ can be also a suitable
	solution. Another wireless data communication technology useful is BQ25504 330mV 1.8V to 5V Yes 0.8
	LoRa (Long Range) which uses license-free sub-gigahertz radio frequency bands
	like 169 MHz, 433 MHz, 868 MHz (Europe). LoRa is a modulation technique
	developed by Cycleo in Grenoble and enables very-long-range transmissions (more
	than 10 km in rural areas) with low power consumption [80].	

Table 5 .

 5 1: Energy Harvesting low power DC/DC converter comparisonThe transceiver systems by Texas Instruments are the CC1310 Wireless MCU containing an ARM Cortex-M3 (CM3) 32-bit CPU and the CC2533 combines the performance of RF transceiver with a single-cycle 8051 compliant CPU.

7.3.2 Conferences, Symposia and PhD school attended:

  -AISEM Conference XVIII, sensors and microsystems, February 2015, Trento. -PhD Training school: Applications of Ground Penetrating Radar in Urban Areas-the Sensitive Case of Historical Cities, May 2015, Cracow University of Technology, Poland -1 st International Conference on Metrology for Archaeology, October 2015, Benevento, Italy -ApplePies international conference -Applications in Electronics Pervading Industry, Environment and Society, May 2016, Rome, Italy -EU-ISMET 3, International Society for Microbial Electrochemistry and Technology European edition, 26 th -28 th September 2016, Rome , Italy -EXPERIMENTA 2016, Minatec, Scientific Forum, MFC stand, October 2016. ICFCET 2017 : 19th International Conference on Fuel Cell Engineering and Technology on November 2017, London, United Kingdom. -Maker Faire -European Edition 4.0, Roma, December 2017, Italy -SIE 2018 (50th Annual Meeting of the Associazione Società Italiana di Elettronica ) Napoli, annual conference, June 2018, Napoli, Italy -SGE 2018, Symposium de Génie Electrique, July 2018 Nancy, France -EU-ISMET 4 2018, International Society for Microbial Electrochemistry and Technology European edition, 12 th -14 th September, Newcastle, UK

Grenoble, France

-15 th International Conference on Environment and Electrical Engineering (EEEIC), October 2016, Florence, Italy -SIE 2017 (49th Annual Meeting of the Associazione Società Italiana di Elettronica), annual conference + PhD school, June 2017, Palermo, Italy -Final Conference EU COST Action TU1208: September 2017 Warsaw, Poland -Evobliss Triple Autumn PhD School, IUT University of Copenhagen, September 2017, Copenhagen, Denmark -

Moreover, TS912 device, a rail-to-rail CMOS dual operational amplifier is used to build the amplifier block. Channel A acts as a negative reference and the channel B acts as an adder between current and offset voltage of Voff1=1.9 V. Two 3224W-1-103E Trimmer Resistors 10 kΩ (TR1 and TR2, Bourns) were put inside the circuit to obtain an offset voltage value of 1.9 V from the reference voltage of 2.5V provided from REF192. The trimmer is a 4 mm SMD Trimming Potentiometer. This is due to the fact that optimal growth of bacteria requires a pH close to value between 6 and 9 [START_REF] He | Bioelectrochemistry Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell[END_REF]. As a matter of fact, an environment with neutral pH value is the best condition for the proliferation of microorganisms: this is the reason that explains the improving of the voltage level produced by TMFC reactor.

WWMFC

Synthetic wastewater

A synthetic waste water was made to feed the reactors starting from purified potable water in the labs of chemical engineering of Sapienza University.

Considering that only bacteria and organic matter are present, the reactors should have minor performance in place of a real urban waste water. Anyway, the synthetic waste water created in lab contain only what is desirable and controlled.

The pH value of the water can be imposed as other parameters.

The pH value of the synthetic waste water was imposed at 7.2: this value was the same of that of the waste water taken from the urban waste water treatment in Lyon. The waste water used for some experiment in Lyon was analysed in chemical engineering labs at Sapienza University.

The resulting value of the test made on the real waste water was 7.2 pH, so the value of a common real urban waste water was near to the neutral value, the best for the environment of bacteria.

The test on the real urban waste water provided the total organic carbon value (TOC). Figure 4.5 shows the results of the test on real waste water. The test was performed on the waste water after three months it was taken from Lyon urban waste water treatment. The resultant value was: pH value of 7.2, total carbon (TC) of 320mg/l, total organic carbon (TOC)= 311mg/l and inorganic carbon (IC) of 9mg/l. 

Continuous power supply mode

The energy harvested from MFCs can be exploited in a continuous mode operation using more cells in alternative way. Using two cells in alternation as in [START_REF] Khaled | Contribution to electrical valorization of microbial fuel cells[END_REF], is possible to supply a sensor drawing power from a single cell and then giving the time to the MFC to recover from MPP operation.

The key point to address this task is the use of a capacitance between the MFC source and a DC/DC converter in the energy harvesting system and its adaptation to the system by limiting its maximum possible charge.

In Fig 5 .16 is shown a proposed system with a power management unit including two capacitors and a commercial DC/DC converter to supply a temperature sensor.

A schematic of the basic functions of the device is reported in Fig. 5.17. The LTC3108 uses a step-up transformer with a turn ratio of 1:100 and a MOSFET to form a resonant oscillator able to operate from very low input voltages. The value of the supercapacitor Cin is 1 F. The capacitor Cout has a value of 470 µF and Cstore is equal to 1 mF. The capacitor C3 has a value of 1 µF and the value of C4 is 2.2 µF. The transformer secondary winding voltage is boosted and rectified using capacitors C1

and C2: they have respectively a value of 1 nF and 1 pF.

Working on the electrical charge given to a capacitor by a cell is possible to assure a continuous mode operation. It is possible to limit the charge of a capacitor taken from MFC in a primary stage before DC/DC converter such as up to 50 mV, in this way every switch time a cell will be not heavy discharged and after loading, it can be restored in a sleeping mode when another cell is working. When the switch SW opens, a super capacitor of 1 F is isolated from the circuit and the MFC is directly connected with the super capacitor. During discharging, the switch SW is closed, and the supercapacitor is connected to the boost converter which uses the charge accumulated so far.

The charging time of a supercapacitor is influenced by the energy generation of MFC, the capacitance value, the characteristics of the DC-DC boost converter and the connected load.

Relays and accurate voltage reference

The relays chosen for the project were LEG-5 relays by RAYEX ELEC (Fig. 7.3). The LEG-5 is an electromagnetic relay with SPDT configuration (Fig. 7.4) and rated coil voltage of 5V. The operating temperature is from -25°C to 80°C and the operate and release time is 8 ms. When pin 3 is connected to pin 5 the condition is switched OFF or in case of pin 3 connected to pin 2 the condition is switched ON. -Pietrelli, A., Micangeli, A., Ferrara, V., Raffi, A. (2014). Wireless sensor network powered by a terrestrial microbial fuel cell as a sustainable land monitoring energy system. Sustainability, 6 [START_REF] Bond | Electricity production by Geobacter sulfurreducens attached to electrodes[END_REF],7263-7275.

-Ferrara, V., Pietrelli, A., Chicarella, S., Pajewski, L. (2018). GPR/GPS/IMU system as buried objects locator. Measurement, 114, 534-541.

Proceedings:

-Pietrelli, A., Ferrara, V., Micangeli A proposal for a European Horizon 2020 project is currently in preparation with MFCs as nature-based solution for rehabilitation of urban and rural ecosystems and electricity recovery.

Prizes, projects and awards

In