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Résumé

Le problème de tournées de véhicules (Vehicle Routing Problem - VRP) est un pro-

blème d'optimisation combinatoire utilisé généralement pour modéliser et résoudre

des di�érents problèmes rencontrés dans les systèmes logistiques et de transport.

Dans cette thèse, nous nous sommes intéressés à l'étude et la résolution d'une classe

de problèmes du VRP appelée les problèmes de courses d'orientation (Team Orien-

teering Problem - TOP). Dans cette catégorie de problèmes, il est a priori impos-

sible de visiter tous les clients en raison de ressources limitées. On associe plutôt

un pro�t à chaque client qui représente sa valeur. Ce pro�t est collecté lorsque le

client est visité par l'un des véhicules disponibles. L'objectif est donc de sélection-

ner un sous ensemble de clients à servir tout en maximisant le pro�t total collecté.

Dans un premier temps, nous avons introduit une nouvelle généralisation pour le

TOP que nous avons appelée le Clustered TOP ou CluTOP. Dans cette variante,

les clients sont regroupés en sous-ensembles appelés clusters auxquels nous asso-

cions des pro�ts. Pour résoudre cette variante, nous avons proposé un schéma exact

basé sur l'approche des plans sécants avec des inégalités valides supplémentaires

et des pré-traitements. Nous avons également conçu une méthode heuristique ba-

sée sur l'approche order �rst-cluster second. Cette heuristique hybride combine une

heuristique de type Adaptive Large Neighborhood Search qui explore l'espace des

solutions et une procédure de découpage qui explore l'espace de recherche des tours

géants. De plus, la procédure de découpage est renforcée par une recherche locale

a�n de mieux explorer l'espace de recherche. Le deuxième problème traité dans ce

travail s'appelle le Synchronized Team Orienteering Problem with Time Windows

(STOPTW). Cette variante avait été initialement proposée a�n de modéliser des

scénarios liés à la protection des infrastructures stratégiques menacées par l'avan-

cée des feux de forêts. En plus des contraintes de fenêtres de temps et des visites

synchronisées, cette variante considère le cas d'une �otte de véhicules hétérogène.

Pour résoudre ce problème, nous avons proposé une méthode heuristique basée sur

l'approche GRASP×ILS qui est parvenue à dominer la seule approche existante

dans la littérature. La dernière variante du TOP abordée dans cette thèse s'appelle

le Set Orienteering Problem (SOP). Les clients dans cette variante sont regroupés

en sous-ensembles appelés clusters. Un pro�t est associé à chaque groupe qui n'est

xiii



obtenu que si au moins un client est desservi par le véhicule disponible. Nous avons

proposé une méthode de coupes avec deux procédures de séparation pour séparer

les contraintes d'élimination des sous-tours. Nous avons également proposé un algo-

rithme Memetique avec une procédure de découpage optimale calculée à l'aide de la

programmation dynamique.

Mots Clés : Problèmes de Tournées de Véhicules Sélectives, Cluster, Synchro-

nisation, Méthode de découpage, Méthode de plans sécants.



Abstract

The Vehicle Routing Problem (VRP) is a family of Combinatorial Optimization

Problems generally used to solve di�erent issues related to transportation systems

and logistics. In this thesis, we focused our attention on a variant of the VRP called

the Team Orienteering Problem (TOP). In this family of problems, it is a priory im-

possible to visit all the customers due to travel time limitation on vehicles. Instead,

a pro�t is associated with each customer to represent its value and it is collected

once the customer is visited by one of the available vehicles. The objective function

is then to maximize the total collected pro�t with respect to the maximum travel

time. Firstly, we introduced a new generalization for the TOP that we called the

Clustered TOP (CluTOP). In this variant, the customers are grouped into subsets

called clusters to which we associate pro�ts. To solve this variant, we proposed an

exact scheme based on the cutting plane approach with additional valid inequalities

and pre-processing techniques. We also designed a heuristic method based on the

order �rst-cluster second approach for the CluTOP. This Hybrid Heuristic combines

between an ANLS heuristic that explores the solutions space and a splitting proce-

dure that explores the giant tours search space. In addition, the splitting procedure is

enhanced by local search procedure in order to enhance its coverage of search space.

The second problem treated in this work is called the Synchronized Team Orientee-

ring Problem with Time Windows (STOPTW). This variant was initially proposed

in order to model scenarios related to asset protection during escaped wild�res. It

considers the case of a heterogeneous �eet of vehicles along with time windows and

synchronized visits. To solve this problem, we proposed a heuristic method based

on the GRASP×ILS approach that led to a very outstanding results compared to

the literature. The last variant of the TOP tackled in this thesis called the Set

Orienteering Problem (SOP). Customers in this variant are grouped into subsets

called clusters. Each cluster is associated with a pro�t which is gained if at least one

customer is served by the single available vehicle. We proposed a Branch-and-Cut

with two separation procedures to separate subtours elimination constraints. We

also proposed a Memetic Algorithm with an optimal splitting procedure based on

dynamic programming.

Key Words : Team Orienteering Problem, Cluster , Cutting Planes, Synchro-

xv



nization, Splitting procedure.



Introduction

Transportation and logistics is a major component of the economy of today's society.

Statistics estimate at 5% to 20% the part of transportation costs in the GDP of

developed countries. This percentage tends to be higher in the next few years due

to the increasing number of businesses based on the transportation of persons and

goods, like e-commerce, home health care, etc. As a result, optimizing the operations

costs and resource consumption becomes a major issue in order to guarantee a long

term growth of the whole economy. Combinatorial Optimization is an academic

�eld that provides a set of tools to help designers optimizing the consumption of

resources in transportation and logistics systems. The main idea is to design e�cient

algorithmic procedures for planning the distribution process. Any improvement

achieved by these procedures in a computer-simulation-based environment can lead

to a substantial reduction of costs in real-life applications.

Vehicle Routing Problems (VRPs) is a family of Combinatorial Optimization

Problems generally used to solve di�erent issues in transportation systems. Since the

�rst de�nition of the VRP by Dantzig and Ramser in [Dantzig and Ramser, 1959],

several variants have been proposed throughout the years in order to deal with

various practical applications and challenges related to transportation. This includes

the original VRP with additional characteristics used to model customers' prefe-

rences and requirements like time windows, pickup and delivery services, as well

as constraints imposed on the vehicles like limited travel times, multiple depots,

multiple periods, etc.

Vehicle routing problems or Combinatorial Optimization Problems in general can

naively be solved by exhaustive enumeration of all feasible solutions. However, this

approach requires exponential computational times. The challenge in Combinatorial

Optimization consists in designing intelligent techniques to �nd the best solutions

without enumerating all the search space. Such approaches are easy to �nd for some

problems, whereas for the vast majority of them it is di�cult to �nd a good one.

Consequently, optimization problems are grouped into two formal classes, those

which are easy to solve and those which are not. In the context of this thesis,

we are interested in resolution approaches for hard optimization problems. We

distinguish two categories of approaches : exact methods that aim at �nding the best

1
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solution, whereas heuristic methods try to �nd good quality solutions at reasonable

computational times.

In this thesis, we propose to tackle a speci�c class of VRPs called the Team

Orienteering Problem (TOP) and its variants. This class of problems is characterized

by some additional constraints and resource limitations, which make it impossible

to serve all the customers. In the TOP for example, a limited �eet of vehicles is

available to visit the potential set of customers. Each vehicle must start from a

departure and ends in the arrival depot without exceeding a travel time limit. In

order to discriminate between customers, each one is assigned a value called pro�t.

The objective is therefore to select a subset of customers to serve in such a way that

the total collected pro�t is maximized while respecting the resource limitation.

We focus in this thesis on some variants of the TOP with some additional

constraints derived from real-life applications. A main characteristic of the studied

problems is that pro�ts are associated with subsets of customers rather than

individual customers. In the Clustered Team Orienteering Problem (CluTOP) for

example, subsets are called clusters, and in order to collect the pro�t of a given

cluster, vehicles must visit all of its customers. Another variant tackled in this thesis

is the Set Orienteering Problem (SOP), in which the pro�t of a cluster is gained if at

least one of its customers is served. Finally, in the Synchronized Team Orienteering

Problem with Time Windows (STOPTW), one customer may require to be visited

by multiple vehicles at the same time in order to gain its pro�t. Time windows are

used here to model the availability of customers to receive the service performed by

the vehicles.

Several e�cient methods, exact and approximate, were proposed to solve these

problems. In chapter 1, we provide the reader with an overview of the combinatorial

optimization �eld. We start by giving a brief and concise description of the main

concepts and terminologies used in combinatorial optimization. We also present a

number of exact and approximate solution methods generally used to tackle vehicle

routing problems. We describe at the end the most studied variants of vehicle routing

problems as well as the selective case.

In chapter 2, we introduce the Clustered Team Orienteering Problem (CluTOP).

This new problem is in fact a generalization to multiple vehicles of the Clustered

Orienteering Problem (COP) proposed in [Angelelli et al., 2014]. After reviewing

the literature and introducing a mathematical model for the CluTOP, we propose

an e�cient exact method based on cutting planes approach. In this method, we �rst

remove subtour elimination constraints from the original model yielding to a new

one with a polynomial number of variables and constraints. The new model is then

solved and the needed subour elimination constraints are added progressively. The
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model is enhanced by a pre-processing procedure deduced after computing cliques

on particular graphs that represent incompatibility between customers or clusters.

Furthermore, valid inequalities including symmetry breaking cuts and bounds on

pro�ts and the number of clusters are added to the model. The exact method shows

very good performance in the case of single vehicle by �nding the optimal solution

for a large number of instances still unsolved in the literature [Angelelli et al., 2014].

In chapter 3, we propose a hybrid heuristic method to solve the CluTOP.

Only one method was proposed for the problem in the case of a single vehicle

[Angelelli et al., 2014]. Our method explores both solution and giant tour search

spaces. The method incorporates an Adaptive Large Neighborhood Search heuristic

used to explore solutions space. An optimal splitting procedure is proposed in order

to extract solutions from giant tours. It is based on a branch-and-bound scheme

enhanced by a knapsack-based upper bound to fathom inferior nodes. Our hybrid

heuristic outperforms the existing method and achieves to improve strictly a large

number of instances.

Then, in chapter 4, we explore a recent variant of the TOP called the Synchroni-

zed Team Orienteering Problem with Time Windows (STOPTW). This problem is

addressed as part of the European project GEOSAFE carried out in collaboration

with Australia. The STOPTW is used to model the asset protection problem during

escaped wild�res [Roozbeh et al., 2018], where customers represent vital assets

endangered by the progression of wild�res. In this problem, protection activities are

carried out by �re�ghting teams that use a limited �eet of heterogeneous vehicles.

Each asset has a time window which estimates the time to impact of �re fronts. Each

asset requires a speci�c number of vehicles of di�erent types in order to ensure its

protection. In addition, the required vehicles must visit the asset in a synchronized

manner, i.e. simultaneously within the corresponding time window. The objective in

STOPTW is to maximize the total collected pro�t with respect to synchronization

and time window constraints. After reviewing some literature about vehicle routing

problems applications in disaster management, we propose a new mathematical

formulation for the problem along with a constraint programming model. We then

present a heuristic method of type Greedy Randomized Adaptive Search Procedure

(GRASP) couple with an Iterated Local Search and enhanced by CP-based insertion

module. Also, a post optimization phase is performed using a set cover formulation

that extracts the best solution from a pool of routes generated by the GRASP. The

results achieved by our method prove its e�ciency. It succeeds to dominate the

literature on all the benchmark instances.

The last variant of the TOP tackled in the chapter 5 is the Set Orienteering

Problem (SOP) proposed in [Archetti et al., 2018]. We present a Memetic Algorithm
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to solve the SOP. Our method incorporates an optimal splitting procedure based

on dynamic programming and label propagation used to evaluate chromosomes.

The split method is enhanced by a Knapsack-based upper bound used to prune

unpromising labels at early stages of the method. Moreover, we use a combination

of local search techniques and an iterative destructive/constructive heuristic in order

to improve o�spring after the crossover operation.

This manuscript �nishes with a general conclusion. We summarize the major

contributions presented in this thesis and highlight the main results achieved, as

well as some perspectives on our future work.
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1.1 Introduction

Combinatorial Optimization is at the heart of this work. Many problems of

theoretical as well as practical importance consist in searching for the �best�

con�guration or a set of parameter values to achieve a certain goal. An extensive

work has been carried out during the past few decades leading to the de�nition of a

considerable number of such problems. We present in this chapter the optimization

basics as well as a quick overview of the objectives of this thesis. We start

by giving the main de�nitions related to Combinatorial Optimization Problems.

Then, we provide a list of mathematical tools and algorithms used to solve this

kind of problems. At the end of this chapter, we give a general presentation of

Team Orienteering Problems with more emphasis on the variants tackled in this

manuscript.

1.2 De�nitions and terminology

The goal of this section is to introduce the main de�nitions and the terminology

used in the manuscript. A formal de�nition of Combinatorial Optimization Problem

(COP) is �rst presented. Next, we recall the notions of graph, algorithm and

complexity.

5
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1.2.1 Combinatorial optimization problem

An optimization problem consists in �nding the best solution from a set of available

alternatives (called optimum) [Resende and Pardalos, 2008]. An optimal solution

is represented by the best variable values with regard to an objective function

while respecting a set of constraints. We distinguish two categories of optimization

problems : those with continuous variables, and those with discrete variables.

In this thesis, we focus on problems with discrete variables called combinatorial

[Papadimitriou and Steiglitz, 1998]. A formal de�nition of Combinatorial Optimiza-

tion Problem is provided in De�nition 3.3.1.

De�nition 1.2.1. A combinatorial optimization problem Φ = (Ω, f) is de�ned by :

• A set n of variables X = {X1, . . . , Xn} where each variable Xi is associated to

a domain Di.

• A set of constraints on the variables.

• An objective function to minimize (or maximize) f : D1 × . . .×Dn → IR.

The set Ω is called the search space. A feasible solution for Φ is an element s ∈ Ω

where

s = {v1, . . . , vn|vi ∈ Di and all the constraints of Φ are satis�ed}

Solving a COP with a minimization (or a maximization) objective function

consists in �nding a solution s∗ ∈ Ω such that ∀s ∈ Ω, f(s∗) ≤ f(s) (or f(s∗) ≥ f(s)

with a maximization objective function).

1.2.2 Algorithm complexity

The formal de�nition of an �algorithm� was introduced by [Turing, 1937]. This

de�nition is founded on the concept of a formal language of an abstract machine

called Turing machine. Without going into the details of this complex de�nition, an

algorithm A is simply a �nite sequence of unambiguous instructions to solve a given

problem Φ. For instance, to solve a COP , we need to provide in details all the steps

needed to calculate the values of s∗. An algorithm is exact method if it returns the

optimal solution s∗, while it is approximate method if it does not necessarily return

s∗, instead it returns a solution s. The quality of such solution is measured using

the relative error |f(s∗)− f(s)|. Several criteria exist to measure the performance of

an algorithm A :

• Runtime : computational time needed by A to �nd the solution.
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• Memory : the size of memory space necessary to run A.

• Quality of the solution : calculated by |f(s∗)− f(s)|.

• Robustness : ability of the algorithm to adapt to any small change to the

original instance problem.

Since the runtime is tightly related to the characteristics of the machine, the

theory of complexity has been introduced in order to study the complexity of

algorithms regardless the performance of the computing machine. In this theory, each

instruction represents an elementary operation (e.g. an addition, a multiplication,

an assignment, a test, etc).

De�nition 1.2.2. The algorithmic complexity CA of an algorithm A on a problem

Φ is de�ned as the number of instructions necessary to solve any instance of Φ of

size n.

CA is often expressed asymptotically as a function of n using the big O notation

O. A is said to be of complexity O(g(n)) if ∃M > 0,∃n0 such that ∀n ≥ n0, CA ≤
Mg(n). The most used algorithmic complexities are :

• O(1) : constant and independent of the size of Φ.

• O(log n) : logarithmic in the size of Φ.

• O(n) : linear in the size of Φ.

• O(np) : (with p ≥ 2 a constant) polynomial in the size of Φ.

• O(bn) : (with b > 1 a constant) exponential in the size of Φ.

Another case is when complexity is polynomial to the size of the problem and in

the same time to the input values, e.g. g(n) = np× uq with u is a value of the input

and q is a constant. The algorithm is called then pseudo-polynomial.

1.2.3 NP-Completeness theory

During the past years, algorithm designers have been always seeking e�cient

algorithms (with polynomial complexity) to solve combinatorial problems. However,

many of the confronted problems are inherently intractable and no algorithm could

possibly solve them e�ciently. Unfortunately, proving inherent intractability of

problems can be as hard as �nding e�cient algorithms to them. In this context,

the theory of NP-Completeness [Garey and Johnson, 2002] provides many simple
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methods for proving that a given problem is as hard as a large number of problems

that have been confounding researchers for years. Of course, recognizing that a

problem is inherently intractable is just the starting point for algorithm designers,

since it provides important information about the most e�ective solution approach.

Before going further, let us �rst introduce the de�nition of decision problems.

De�nition 1.2.3. A decision problem is a problem where its solution is either YES

or NO.

It is noteworthy to mention that for each optimization problem with an objective

function f , there is a corresponding decision version. It is formulated as follows :

given a real k ∈ IR, does there exist a solution s∗ for which f(s∗) = k ?

De�nition 1.2.4. A problem is in class P (polynomial time) if there is an e�cient

algorithm (with polynomial complexity) that solves it.

De�nition 1.2.5. A decision problem is in class NP (non-deterministic polynomial

time) if there is an algorithm that can verify in a polynomial time whether a solution

is valid.

De�nition 1.2.6. A decision problem is in class NP-Complete if it is in NP but

not in P , which means that no polynomial algorithm has been found yet to solve

it. Moreover, every NP problem can be reduced into this problem in a polynomial

time.

De�nition 1.2.7. An optimization problem is in the NP-Hard class if its

corresponding decision problem is an NP-Complete problem.

Based on these de�nitions, we can easily deduce that P ⊆ NP . However, the
millennium prize problem whether P = NP or P ⊂ NP is still an open question.

If P = NP then NP-Complete is empty, in other words, there exist polynomial

algorithms to solve NP problems. This possibility is hard to accept, and hence,

researchers consider always the hypothesis P 6= NP .

1.2.4 Graph classes

A graph structure is a scheme used to model di�erent relationships between elements

of the problem. Each element of the problem is associated with a mathematical

abstraction called vertices, and each related pairs of vertices is called an edge

(or an arc). Graphs represent a powerful tools to model and solve Combinatorial

Optimization Problems.
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De�nition 1.2.8. In graph theory, a graph G is de�ned by a couple (V,E) where

V is the set of vertices and E ⊆ V ×V the set of edges connecting between vertices.

The graph is said to be complete if E = V × V . The neighborhood of a node i is

de�ned as N(i) = {j|(i, j) ∈ E} and the degree of node i is |N(i)|.

A graph is called non-oriented if the edges do not specify any direction.

Otherwise, it is called directed graph.

De�nition 1.2.9. In a directed graph G, a path is an ordered list of vertices

(v1, v2, . . . , vk) such that (vi, vi+1) ∈ E ∀i < k. Moreover, If v1 = vk, the path

is called a directed cycle.

De�nition 1.2.10. Given a graph G = (V,E), G′ = (V ′, E ′) is a sub-graph of G if

it is obtained after removing some vertices and/or some edges from G, i.e. V ′ ⊆ V

and E ′ ⊆ E.

De�nition 1.2.11. Let G = (V,E) be a graph and let S be a subset of vertices in

V . The induced graph G[S] is a graph whose the vertex set is S and whose edge set

consists of edges of E that have both endpoints in S.

De�nition 1.2.12. Given a graph G = (V,E), a clique of G is a subset of vertices

S ⊆ V such that G[S] is a complete graph.

De�nition 1.2.13. Given a graph G = (V,E), an independent set of G is a subset

of nodes I ⊆ V such that G[I] does not contain any edges.

De�nition 1.2.14. Given a graph G = (V,E), a vertex-cover of G is a subset of

nodes S ⊆ V such that the set Es = {(i, j) ∈ E|i ∈ S or j ∈ S} is equal to E.

1.3 Resolution methods

Since solving NP-Hard problems using polynomial algorithms seems to be im-

possible, e�orts have been oriented toward the design of intelligent and e�ective

methods. We provide in this section an overview on some of the di�erent methods

proposed during the past decades. Two main approaches exist to solve Combinatorial

Optimization Problems : exact and approximate. Exact methods aim at �nding

the optimal solution, but when solving large-scale instances, they need much

higher computational times. To tackle this problem, approximate methods are used.

Although they do not guarantee the optimal solution, well-designed approximate

methods can provide near optimal solutions in a polynomial time. Before introducing

some methods of the two approaches, let us start �rst with preprocessing.
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Preprocessing is a preliminary phase carried out on instances of a given COP in

order to reduce the search space and probably ease the solution process. For example,

by analyzing the nature of the objective function and the constraints along with the

input data, the values of some variables Xi can be �xed or the size of Di can be

reduced. It is noteworthy to mention that the optimal solution after performing the

preprocessing phase should also be the optimal solution for the original one.

1.3.1 Exact methods

Exact methods are designed in the purpose of �nding the optimal solution for the

problem being solved. In case where �nding optimal solutions could be di�cult,

exact methods can also be used to obtain theoretical bounds. We present in the

following the de�nition of theoretical bounds and also a brief description of the most

used exact methods for solving vehicle routing problems.

Theoretical bounds

Bounds of a COP de�ne boundaries between which the value of the optimal solution

should occur. The tighter the boundaries are, the better are the bounds. Thus, the

upper and the lower bound are de�ned.

De�nition 1.3.1. For a given COP Φ = (Ω, f) with a maximization objective

function, an upper bound UB on the objective function is a value such that ∀s ∈
Ω, f(s) ≤ UB. In the other hand, a lower bound on the optimal objective value s∗

is a value LB such that s∗ ≥ LB.

De�nition 1.3.2. For a given COP Φ = (Ω, f) with a minimization objective

function, a lower bound LB on the objective function is a value such that ∀s ∈
Ω, f(s) ≥ LB). In the other hand, an upper bound UB on the optimal objective

value s∗ is a value such that s∗ ≤ UB.

For a maximization problem, upper bounds (UB) are obtained by solving a

relaxed version of the problem, whereas lower bounds (LB) can be obtained using

approximate methods. In the case where UB = LB for an instance of the problem,

the bounds represent also the optimal objective value.

Branch and bound scheme

The branch and bound scheme, proposed by [Clausen, 1999], is based on the idea of

enumerating the solutions of the search space of a given COP Φ = (Ω, f). The key

feature of this method is to divide Ω into sub-spaces (S1, . . . , Sk) which correspond
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respectively to sub-problems {Φ1, . . . ,Φk} (branching). Each sub-space is in its turn

divided recursively into sub-spaces. Evaluating (bounding) all the sub-problems and

taking the global best solution is equivalent to solving the original problem. The

sub-spaces generated during the search process can be assimilated to a tree search

or a decision tree where each node represents a sub-problem of its parent node and

the original problem is represented by the root node. The evaluation of each node i

is carried out by computing LBi and UBi of the corresponding sub-problem Φi. For

a maximization problem for example, if the UBi of a given sub-problem Φi is lower

than the best upper bound found LBbest, the corresponding node can be pruned.

Hence, this method is generally faster than the brute force enumeration.

The e�ciency of the method is generally mesured to the following factors :

• Bounds : upper and lower bounds.

• Dominance rules : a set of constraints used to reduce the search space. Note

that the optimal solution must be guaranteed.

• Branching rules : strategies used to generate sub-spaces for possible explora-

tion.

• Selection strategies : methods used to choose the most promising sub-spaces

to explore �rst.

Linear programming - LP

Linear Programming (LP) is a method used to model continuous optimization

problems where the objective function and problem constraints are modeled using

linear expressions. Several methods have been proposed to solve LP models, mainly

the ellipsoid method [Khachiyan, 1979] which has a polynomial time complexity.

The most used method is the simplex method. Although proved to have exponential

worst case complexity, it is widely used thanks to its quick convergence. Most of

the commercial software (CPLEX, GUROBI, XPress, SCIP, etc.) implements this

method.

By considering integrety constraints, LP can also be used to model COPs and
it is called in this case Integer Linear Programming (ILP). Adding such constraints

makes solving ILP more di�cult, generally NP-Hard. Figure 1.1 points out the

di�erence between ILP and its associated LP (variables have real values). Since the

LP is a relaxation for the original ILP, the search space of the LP includes that of the

ILP. Figure 1.1 shows the di�erence between the search space of the ILP and that

of the LP. Among the methods proposed to solve ILP models was the cutting plane
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Figure 1.1 � Example of Mixed Integer Programming (MIP)

approach proposed by [Gomory et al., 1958]. The basic idea consists in solving ILP

using simplex method. If the obtained solution is not in integers, a new constraint is

systematically generated using the method called Gomory cuts. The new constraint

is still satis�ed by the optimal integer solution but not by the current non-integer

solution. Once the additional constraint is added to the model, the current solution

becomes non-feasible and the new model is solved again using simplex. This process

is repeated until an integer solution is found.

Branch and cut algorithm - B&C

Although the proof of convergence of the cutting plane algorithm is given,

the method has shown its limits in many cases. To overcome this problem, a

combination of the cutting plane and the branch and bound methods was proposed

[Mitchell, 2002] : cutting plane method is used to bring the relaxation closer to

the integer programming problem, and the branch and bound uses a sophisticated

divide and conquer strategy to solve the problem. Typically, the linear relaxation

of the original ILP is solved using the simplex method. Subsequent relaxations in

the search tree nodes are solved using the dual simplex method. In each node of the

search tree, a set of separation routines are used to identify violated inequalities. If

any of the inequalities is violated, it is added to the LP to cut o� the non-feasible

solution. Then the new LP is solved. The cuts can be dominance properties or valid

inequalities. These cuts are satis�ed by all the integer possible solutions. Branching

occurs when no inequality is violated by the LP solution.

Column generation - CG

Some ILP formulations have an exponential number of variables. Solving such models

using previous techniques leads to an exponential time complexity. Column Genera-
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tion (CG) method proposed by [Dantzig and Wolfe, 1960] presents an e�cient exact

method for solving large linear problems. The main idea is to avoid the representation

of all the variables (columns) of the whole problem, since at the optimum most

of these variables will be non-basic. Only variables that potentially improve the

objective function will be generated. The problem being solved is modeled by two

problems : the master problem and the sub-problem. The master problem is the

original problem with only a subset of variables being considered. The sub-problem,

called the pricer, is the column generation procedure. It generates new variables that

are likely to improve the current solution of the master problem. To achieve that,

only variables with negative reduced costs are considered and added to the master

problem. After adding the new variables to the master problem, the new ILP is

solved. This process is repeated until no variables with negative reduced costs are

found. The obtained solution is then optimal. The performance of the CG depends

mainly on the technique used to generate columns at each iteration.

Branch and price - B&P

Branch and price method combines between the branch and bound technique with

the column generation method [Barnhart et al., 1998]. The principle of the method

is similar to that of the branch and cut, except that instead of generating rows in the

nodes of the search tree (constraints), the focus is on column generation (variables).

In each node the search tree, the linear relaxation of the problem is solved while

considering only a subset of variables. Then, column generation technique is used

to solve optimally the LP solution. First, the separation problem for the dual LP

called the pricing problem is solved to check the optimality of the current solution.

If new columns are identi�ed to enter the basis, the LP is re-optimized. This process

is repeated as long as columns price out to enter the basis. If the LP solution found

at the end of the process does not satisfy the integrality constraints, the branching

occurs.

Dynamic programming - DP

Dynamic Programming is a method used to solve a COP by breaking it down into

a collection of sub-problems [Bellman, 1954]. In order to �nd the solution for the

whole problem, we need �rst to solve the di�erent parts of the problem and combine

their solutions in a recursive fashion. A naive method would generate sub-problems

many times, whereas in Dynamic Programming, each sub-problem is solved only

once and stored in memory. To solve larger sub-problems, we need only to look up

for smaller sub-problem solutions and combine them to get the new solution.
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Constraint programming - CP

Constraint programming [Rossi et al., 2006] is a powerful programming paradigm

for solving COPs. CP relies on a wide range of techniques from operations research,

computer science, arti�cial intelligence, graph theory, etc. CP was shown to be

most e�ective on many combinatorial problems, such as timetabling, sequencing

and resource-constrained scheduling. To model a COP using CP, a set of decision

variables, each with a given domain of values, are de�ned. A set of constraints

relating between the decision variables specify the properties of feasible solutions.

Constraints in CP are of various forms : logical predicates, linear inequalities and

others. Constraint solvers aim at �nding an assignment to all the decision variables

that satis�es the constraints in such a way that optimizes a given objective function.

Constraint solvers incorporate generally several techniques, like backtracking, branch

and bound algorithms, local search and constraint propagation. The latter is one

of the most important concepts in CP paradigm [Rossi et al., 2006]. It consists in

the propagation of the information contained in a constraint to the neighboring

constraints. This techniques help to reduce the domain of values of decision variables

and so the search space.

1.3.2 approximate methods

Advances in metaheuristics [Glover and Kochenberger, 2006] is one of the most

outstanding achievements during the last decades in the �eld of the combinatorial

optimization. Metaheuristics generally combine between several local search pro-

cedures and manage through higher level strategies in order to escape from local

optima and perform a robust search of the solution space. We distinguish two main

classes, metaheuristics that operates on one solution at time, called mono-solution,

and those that operates on a set of solutions, called population-based metaheuristics.

We provide in the following a rapid description of a sample of metaheuristics proven

to be e�cient to tackle COPs in general and Vehicle Routing Problems in particular.

Greedy randomized adaptive search procedure - GRASP

First introduced by [Feo and Resende, 1995], it is basically a multistart process,

where each iteration is made up from a randomized greedy construction heuristic

to create a new solution, local search procedure is then applied on this solution to

improve its quality. The best overall solution is then selected.
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Iterated local search - ILS

ILS method [Lourenço et al., 2003] is based on the following idea : in each iteration,

a solution is built using an embedded heuristic, but, instead of starting each time

from scratch, the solution obtained in the previous iteration is used in the next

one as an initial solution. This process can be seen as a single chain (sequence)

of solutions being followed by the ILS. The search for a better solution is carried

out in the neighborhood de�ned by the embedded heuristic. The latter is generally

composed of a local search and a perturbation procedure.

Simulated annealing - SA

This heuristic [Kirkpatrick et al., 1983] is inspired from the physical annealing in

metallurgy, a process that combines between heating and slow cooling of a material

to �nd the wright temperature so that its atoms form crystals with no defects.

By analogy, a solution s in combinatorial optimization corresponds to a state of

the physical system and its objective value f(s) to the energy of the system. In

each iteration of the SA, the solution undergo a transformation (corresponding to

a neighborhood operator). If the new solution s′ improves the objective function,

then it is accepted and becomes the current solution. Otherwise, the solution is

accepted according to a probability called the Metropolis criterion e
f(s′)−f(s)

T where

the parameter T represents the �temperature�. The latter evolves during the search

process by imitating the cooling process in metallurgy. When the temperature is

high, it is more likely to accept the new solution even with a cost increase. Whereas

when the temperature becomes low, only improving solutions are accepted.

Tabu search - TS

Tabu Search [Glover and Laguna, 1998] is a deterministic method. The main idea

of TS is to enumerate at each iteration all the neighborhood of the incumbent

solution and select the best one as the new solution, even if it increases the cost.

In this way, TS can easily escape from local optima. To avoid cyclic behavior of

such approach, a short term memory called tabu list is used to store recently visited

solutions (or particular attributes of the recently visited solutions). The method

stops after a certain number of iterations or after a maximum number of iterations

without improvement to the best solution. TS performance can be improved by the

introduction of intensi�cation and diversi�cation techniques. The implementation of

those techniques is mainly based on long-term memories.
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Variable neighborhood search - VNS

The key idea of VNS [Mladenovi¢ and Hansen, 1997] is the use of multiple

neighborhoods instead of a single neighborhood as it is the case in local search

heuristics. By having the ability to switch from a neighborhood to another, VNS

can e�ciently escape from local optima. The general scheme is as follows. A set

of neighborhood structures (N1, . . . , Nk), which are often nested, are de�ned and

ordered according to their increasing size. An initial solution is randomly generated

in the �rst neighborhood and improved by a local descent. If no improvement is

found, the heuristic go to the next larger neighborhood. The local search returns

to the �rst neighborhood when either the incumbent solution is improved or all

the neighborhoods are explored. Upon termination, the returned solution is locally

optimal with respect to all the neighborhoods. Many variant of VNS exist in the

literature, we cite the reduced VNS, the skewed VNS and the Variable Neighborhood

Descent (VND).

Adaptive large neighborhood search - ALNS

Adaptive large neighborhood search [Ropke and Pisinger, 2006] combines between

several neighborhoods in a parallel fashion in order to explore the search space.

Each neighborhood is de�ned implicitly by a destroy and a repair operator. The

destroy operator removes part of the incumbent solution in a probabilistic way, and

the repair operator is used to rebuild it. The set of solutions that can be generated

by applying these two methods de�nes a neighborhood of solutions. In the ALNS,

the choice of the destroy and the repair operator in each iteration is performed in

a dynamic way based on their contribution to the search progress. Technically, a

weight is assigned to each operator to control how often the operator is used during

the search. The weights are modi�ed and adjusted according to the e�ectiveness of

each operator in order to allow the ALNS to adapt to the instance being solved and

to the state of the search.

Genetic algorithm - GA

Genetic algorithm [Holland, 1992] is a population-based metaheuristic widely used

in many �elds of computer science. This method belongs to the class of evolutionary

algorithms which simulate natural evolution by the use of operators that imitate

those found in nature, namely, selection, mutation, inheritance and crossover. GA

precisely is motivated by the Darwinian principle of natural selection in genetics.

The basic idea is to evolve a population of individuals from one generation to the

next through crossover and mutation phenomena. Technically, the initial population
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is composed of individuals represented by �chromosomes�, a bit or integer strings.

In each iteration, a subset of chromosomes called �parents� are selected through

a probabilistic selection process and used for reproduction. The reproduction

mechanism, called crossover, combines between two parents to create one or two

o�spring chromosomes having the best traits of their parents. With a low probability,

the new children will be modi�ed using a mutation operator in order to diversify

the population and avoid early convergence. Two main approaches are used to

update the current population. The �rst one, called generational genetic algorithm,

in which only o�spring population are used to form the new population. In the second

approach, called steady-state genetic algorithm, o�spring chromosomes compete with

the current population and the best ones, according to their �tness, are used to form

the new population.

Memetic algorithm - MA

Despite the fact that the average quality of the population is improved over the

generations, GAs fail to �nd near-optimal solutions. The main reason is that

crossover and mutation operators are used mainly as diversi�cation techniques and

do not reinforce enough the intensi�cation of the search procedure. Based on these

observation, [Moscato et al., 2004] introduced an improved scheme of GA called the

Memetic algorithm (MA). The MA consists of a hybrid between a global search,

carried out by a classical metaheuristic, and the local search procedures. The two

components are in fact complementary, the GA is used to detect the most promising

regions in the search space, whereas the local search enhance the intensi�cation

process in these regions.

Particle swarm optimization - PSO

Particle swarm optimization [Eberhart and Kennedy, 1995] is one of the metaheu-

ristics inspired from the social behavior of animals evolving in swarm. Its basic idea

is to simulates the way animals �nd the food and how they elaborate collectively the

orientation from the nest to food sources. An individual of the group is represented

by a particle and the solutions represent the positions or the search areas to be

explored by the particles. Each particle stores its current position as well as the

best position found so far during the search. The latter represents the individual

experience of the particle, whereas the best position found by the population

represents the group experience. Each particle is characterized by a movement speed

which indicates the degree of change to be made on its current position. This speed

is updated in each iteration with respect to the following factors : 1) its current
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speed weighted by a constant w, called the inertia factor, 2) the trend to return to

its personal experience weighted by a constant c1 (cognitive factor), 3) the trend to

join the group experience weighted by a factor c2 (social factor).

Ants colony optimization - ACO

This metaheuristic [Dorigo et al., 1996] simulates the behavior of ants while looking

for the shortest path to the food sources. This process is based on lying down

on ground a chemical compound called �pheromone� in order to communicate

information about the good paths. Basically, a number of ants construct solutions

using a randomized and greedy heuristic. The selection of the next element to be

incorporated in the current solution is based mainly on a heuristic evaluation, but

also the amount of pheromone related to that element. The pheromone models

the memory of the system related to the presence of that element in previously

constructed solutions. That is, elements with good heuristic evaluations and a high

level of pheromone are more likely to be chosen.

1.4 Vehicle routing problems and its variants

Vehicle routing problem- VRP [Toth and Vigo, 2014] is one of the most studied

problems in combinatorial optimization. The attention paid for VRPs is justi�ed

by the several applications mainly found in transportation and logistics. These

�elds are vital to modern economy, since they guarantee the �ow of goods and

services. Basically, in a VRP problem, a �eet of vehicles is available to visit a set of

customers. A visit of a customer by a given vehicle is used to model the ful�llment

of a service. The customers are generally situated on the plane, but also in the

space. The objective in VRP and its variants is generally to schedule the visits of

the customers in a way that optimizes the use of the available resources and with

respect to some constraints.

In this section, we introduce the problems of vehicle routing in general and we

give some necessary details used later in this manuscript. We discuss then some of

its main variants that exist in the literature. After that, we will take a closer look

into routing problems with pro�ts and di�erent related aspects treated in this thesis.

Traveling salesman problem - TSP The most classic and the simplest among

routing problems is the Traveling Salesman Problem (TSP) [Laporte, 1992]. It

describes the situation where a salesman must visit N cities and return back to

its departure city while minimizing the total travel distance of the journey. TSP has
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been proven to be NP-Hard using a reduction to the Hamiltonian Cycle Problem

HCP [Laporte, 1992]. Formally, TSP can be modeled using a complete directed

graph G = (V,A) where V = {1, . . . , n} are the vertices representing the set of

cities and A = {(i, j) ∈ V 2} is the set of arcs which represents the routes relating

between each couple of cities. A cost cij is associated with each arc to model the

distance or the travel time needed to traverse it. The objective in TSP is to �nd the

shortest cycle that visits each city exactly once.

Vehicle routing problem - VRP The vehicle routing problem is a generalization

of the TSP where m identical vehicles with a limited capacity Q are used to visit

the customers. Each vehicle starts from a node-depot, visits a subset of customers

with respect to the capacity limitation, and returns to the depot. The objective is to

satisfy the demand of all the customers while minimizing the overall transport costs

of the vehicles. Many exact methods have been proposed for VRP, mainly based

on branch-and-cut and column generation [Toth and Vigo, 2014]. Regarding ap-

proximate methods, TS [Gendreau et al., 1994] [Taillard, 1993], SA [Osman, 1993]

and ACO [Bullnheimer et al., 1999] [Kawamura et al., 1998] [Yu et al., 2009] were

proposed.

Vehicle routing problem with time windows - VRPTW The vehicle

routing problem with time windows is the most studied variant of VRP

[Toth and Vigo, 2014]. In this variant, the service of each customer must start within

a given time interval, called a time window. A time window is de�ned for each

customer i by an earliest service time oi and a latest service time ci. Moreover,

a service time si is commonly associated with the visit of each customer i. If a

vehicle arrives at customer i before oi, it results in a waiting time. On the other

hand, a vehicle is not allowed to visit a customer after the speci�ed latest time

ci. Some variants of VRPTW consider soft time windows. In this case, a time

window is only a preference which may be violated at the expense of penalty costs.

Many exact and heuristic methods have been proposed for the VRPTW. The main

exact methods proposed are : branch and cut [Bard et al., 2002], branch and price

[Feillet et al., 2007] and branch and cut and price [Jepsen et al., 2008]. Regarding

metaheuristics, we can �nd TS [Cordeau et al., 2001], SA [Czech and Czarnas, 2002]

and GA [Berger and Barkaoui, 2004].

In this thesis, we focused on vehicle routing problem with pro�ts. This class of

problems are described in the next section.
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Vehicle routing problems with pro�ts - VRPPs

VRP with pro�ts (VRPPs) is a variant in which it is usually impossible to serve

all the customers. To discriminate between customers, the visit of each customer

is rewarded with a pro�t. Pro�ts represent in this context the value gained by

serving the customers. In addition, like VRPs in general, tours should be of the

minimum cost. Hence, VRPPs can be seen as a bi-objective problems where the

collected pro�t is to maximize and the the cost of tours to be minimized. According

to this de�nition, many variants can �gure in this class of problems. Three main

categories are identi�ed [Archetti et al., 2014] : the Orienteering Problem - OP,

where the objective is to maximize the collected pro�t with respect to a travel

distance limitation. The Prize Collecting TSP - PCTSP, which aims to minimize

the travel cost while guaranteeing a minimum collected pro�t. The Pro�table Tour

Problem - PTP where the goal is to maximize the di�erence between collected pro�t

and costs.

Among these three categories, the OP, known also as the Selective Tra-

veling Salesman Problem, is one of the most studied problems in the lite-

rature [Angelelli et al., 2014]. This problem is inspired from the sport game

of orienteering as described in [Chao et al., 1996]. Many exact and heuris-

tic methods have been proposed for the problem. The reader can refer to

[Feillet et al., 2005],[Archetti et al., 2014] and [Vansteenwegen et al., 2011] for ex-

cellent surveys on these variants, applications and also resolution methods.

The generalization of OP to multiple vehicles gives rise to the Team Orien-

teering Problem - TOP [Chao et al., 1996]. This problem was �rst proposed in

[Butt and Cavalier, 1994] under the name of Multiple Tour Maximum Collection

Problem. In this problem, a set of customers N need to be served, and a pro�t

is associated with each customer. A �eet of m identical vehicles with a limited

travel time Tmax is available to serve the set of customers. Each customer can

be visited at most one time, and its pro�t is gained in return. The objective

then of the TOP is to �nd a subset of customers to visit by the vehicles so that

total collected pro�t is maximized. The main exact methods proposed for solving

the TOP are CG [Butt and Ryan, 1999], B&P [Boussier et al., 2007], branch and

cut and price [Poggi et al., 2010] and cutting planes [El-Hajj et al., 2016]. Several

metaheuristics have been also proposed for the TOP, we cite MA [Bouly et al., 2010],

PSO [Dang et al., 2013], VNS/TS [Archetti et al., 2007], ACO [Ke et al., 2008] and

PR [Sou�riau et al., 2010].

We give in the following a brief description of the variants treated in this

manuscript. The �rst one is called the Clustered Team Orienteering Problem. The
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second variant is the Set Orienteering Problem. The last variant is called the

Synchronized Team Orienteering Problem with Time Windows.

Clustered Team Orienteering Problem - CluTOP

The Clustered Team Orienteering Problem (CluTOP) is a generalization of the

TOP, and in the same time a generalization to multiple vehicles for the Clustered

Orienteering Problem (COP), recently introduced in [Angelelli et al., 2014]. The

COP is a variant of the OP in which, customers are grouped into subsets called

clusters. Each cluster is characterized by a pro�t which is gained only if all of its

customers are served. The single available vehicle in the COP has a limited travel

time Tmax in order to visit the customers. The objective is to visit the customers of

a subset of clusters in order to maximize the total collected pro�t while respecting

the time limit constraint. Note that there is no restriction on the order of visits, i.e.

the vehicle can visit customers from cluster a, visits customers from cluster b and

then returns and continues to visit other customers from cluster a. In the case of

multiple vehicles (CluTOP), a �eet of m of identical vehicles is used to serve the

clusters. To that end, the vehicles collaborate in order to visit the customers of the

chosen clusters. One vehicle can visit customers from several clusters, in arbitrary

order, and the customers of a given cluster can be visited by using more than one

vehicle.

Set Orienteering Problem

The Set Orienteering Problem (SOP) is a new variant of the OP recently introduced

by [Archetti et al., 2018]. Customers are grouped into subsets called clusters. Each

cluster is assigned a pro�t which is gained only if at least one of its customers is

served. A single vehicle is available to serve the customers. The vehicle starts the

journey from the depot, visits the customers and returns back to the depot while

respecting a limited travel time. Due to this constraint, it is impossible to serve all

the clusters. The objective then is to visit as much customers as possible in order

to maximize the total collected pro�t. the SOP can be seen also as the selective

version of the Generalized Traveling Salesman Problem (GTSP). The SOP �nds

its applications in mass distribution products where a carrier should serve a set of

retailers belonging to di�erent supply chains. In order to reduce distribution costs,

a chain can stipulate in the contract to receive the required quantity of products all

at once in one of its retailers instead of visiting all of them. The inner distribution

is let to the chain. Another application is when the customers are clustered into

sub-areas, and the service of one sub-area is achieved by visiting only one of its
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customers.

Synchronized Team Orienteering Problem with Time Windows

The Synchronized Team Orienteering Problem with Time Windows (STOPTW)

is a recent variant of TOP with additional constraints, namely the time win-

dows and the synchronized visits. The STOPTW was originally introduced by

[Roozbeh et al., 2018] in order to model the asset protection problem during escaped

wild�res. In this problem, a �eet of heterogeneous vehicles is available to serve a

given set of customers. Each type of vehicles has a limited number of vehicles and

its own transportation network. A customer is characterized by a pro�t, a service

duration and a time window. Each customer requires to be served by a certain

number of vehicle per type. In order to gain the pro�t of a given customer, it must be

simultaneously visited by the required number of vehicles. The objective is to serve

as much customers as possible while respecting time windows and synchronization

constraints. The STOPTW was originally proposed as a tool to model the situation

where a set of assets need to be protected during escaped wild�res. Each customer

represents an asset. The pro�t of each customer is used to model the importance

of its associated asset. Time windows are used to simulate the propagation of �re

fronts across the landscape. In order to protect a given asset, a speci�c equipment

and �re�ghting trucks are needed to perform protection activities simultaneously

within the corresponding time window. The objective is to protect as much assets

as possible in a such a way that the total value of saved assets is maximized under

synchronization and time window constraints.

1.5 Conclusion

We recalled in this �rst chapter some fundamental and necessary concepts in

combinatorial optimization research �eld. We started by giving a formal de�nition

for Combinatorial Optimization Problem. Then, we presented algorithms complexity

and the NP-Completeness theory. We also listed the most used resolution methods

to solve COPs. Finally, we gave a brief description of Vehicle Routing Problems,

and focused on Team Orienteering Problem. In the next chapters, we present our

contribution and resolution methods proposed for the TOP variants tackled in this

thesis.
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2.1 Introduction

In this paper, we propose a new variant of the vehicle routing problems with pro�ts

which we refer to as the Clustered Team Orienteering Problem (CluTOP). In this

problem, customers are grouped into subsets called clusters. A pro�t is assigned to

each cluster, which is gained only if all of the customers in the cluster are visited.

A set of identical vehicles cooperates in order to maximize the total collected pro�t

w.r.t. the limited travel time imposed on each vehicle.

A special case of the CluTOP is when all the clusters are formed by single custo-

mers. This problem is known as the Team Orienteering Problem (TOP), one of the

most studied routing problems with pro�ts in the literature [Archetti et al., 2014].

The TOP is inspired from the sport game of orienteering, in which a set of

players of the same team work together in order to collect as many rewards

as possible from a set of locations w.r.t. a time limit imposed for each player

[Chao et al., 1996]. Many exact and heuristic methods have been proposed for

the problem. The reader can refer to [Archetti et al., 2014], [Feillet et al., 2005],

23
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[Gunawan et al., 2016] and [Vansteenwegen et al., 2011] for surveys on variants,

applications and solution methods as well.

The CluTOP is also a generalization of the Clustered Orienteering Problem

(COP) proposed in Angelelli et al. [Angelelli et al., 2014]. In this problem, a single

vehicle is used to serve the selected clusters. The authors in [Angelelli et al., 2014]

proposed two approaches to solve the COP. The �rst approach is based on a

branch-and-cut algorithm. They proposed two branching schemes and suitable valid

inequalities in order to enhance the solution process. The second approach consists

of a Tabu Search heuristic. Several insertion and removal operators were proposed.

Three versions of this heuristic were introduced and compared.

The concept of cluster has been used in several variants of vehicle routing

problems to denote a subset of customers. However, the signi�cation of this concept

di�ers depending on the problem. In the Generalized Traveling Salesman Problem

(GTSP) [Fischetti et al., 1997], for example, the customers are grouped into subsets

called clusters, and the salesman has to visit at least one customer from each clus-

ter. In the Clustered Traveling Salesman Problem [Jongens and Volgenant, 1985],

customers belonging to the same cluster must be visited contiguously. An extension

of these two problems has been introduced in [Defryn and Sörensen, 2017], in which

a given vehicle can alternate visits between the customers of di�erent clusters, i.e.

it is not mandatory to consecutively visit customers of the same cluster. Recently, a

new variant of the OP called the Set Orienteering Problem (SOP) was proposed in

[Archetti et al., 2018]. In this problem, a single vehicle can visit one customer per

cluster at most. To the best of our knowledge, no paper in the literature has ever

studied the CluTOP as de�ned in this chapter.

In real life, the CluTOP can be used to model many applications in logistic

systems and transportation. Some interesting applications were introduced in

[Angelelli et al., 2014] for the COP, which are still relevant for the CluTOP. An

example of these applications is related to the distribution of mass products. In this

application, each supply chain contains a set of retailers (customers), and if a carrier

agrees to supply a chain with a product, it has to serve all the retailers belonging

to this chain.

The contributions in this chapter are two-fold :

• We propose an exact algorithm based on a cutting planes approach. This

algorithm includes the implementation of a pre-processing procedure together

with the consideration of valid inequalities. These components are introduced

in order to reduce the computational-burden of the exact method. Interestin-

gly, these components are deduced by computing cliques on particular graphs

that represent incompatibility between customers or clusters.
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• In terms of computational experiments, tests were conducted on benchmarks

proposed by [Angelelli et al., 2014] to show the e�ciency of our methods.

Eighty additional instances were solved to optimality by the cutting plane.

Furthermore, we present the results of extensive computational experiments

on new proposed CluTOP instances where m ≥ 2.

2.2 Problem description and mathematical formu-

lations

An instance of the CluTOP, ICluTOP , is modeled using a complete undirected graph

G = (V,E). The set of vertices is V = {1, . . . , n} ∪ {0}, i.e. a vertex i, where i > 0,

is associated with each customer in addition to the depot (vertex 0). For each edge

e = (i, j) ∈ E is de�ned a travel time denoted, as appropriate, ce or c(i,j). These

travel times are assumed to satisfy the triangle inequality and to be symmetric. A set

of K clusters S = {S1, S2, . . . , SK} form a cover of V \{0} where ∪Kk=1Sk = V \{0}.
We note that it is possible to have customers shared between several clusters. A

pro�t Pk is associated with each cluster Sk and collected only if all the customers of

the cluster Sk are served. A �eet of m identical vehicles with a limited travel time

Tmax is available to serve the customers. It is worth mentioning that any vehicle can

visit customers from di�erent clusters, and the customers of a given cluster can be

visited by di�erent vehicles. Furthermore, there is no requirement as to the order of

the visits, i.e. a vehicle can alternate visits between customers belonging to di�erent

clusters.

Figure 2.1 shows an example of a feasible solution for a CluTOP instance with

11 customers. In this example, there are four clusters S1, S2, S3 and S4 which are

represented in the �gure by a triangle, rectangle, pentagon and hexagon, respectively.

Customers are represented by nodes. If a customer belongs to a cluster, the frame

that represents this cluster is added inside the node. In this solution, only the

customers of clusters S1, S3 and S4 are served.

Before proceeding further, let �rst consider the following notation. Given U a

subset of V , we denote the set of edges with one endpoint in U and one endpoint

in V \U by δ(U). E(U) is used to denote the edges with both endpoints in U . For

the ease of notation, when U = {i} we will write δ(i) instead of δ({i}). Finally, ζ(i)

represents the set of clusters to which customer i belongs.

We present a mathematical formulation for the new problem. For that purpose,

we introduce the following decision variables :
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Figure 2.1 � Example of a CluTOP solution

• zk : equal to 1 if all customers in cluster Sk ∈ S are visited, 0 otherwise.

• yir : equal to 1 if vertex i ∈ V is visited by vehicle r ∈ {1, . . . ,m}, 0 otherwise.

• xer : equal to 1 if edge e ∈ E is traversed by vehicle r ∈ {1, . . . ,m}, 0 otherwise.

The mathematical model, hereafter denoted by (ILP0), is written as follows :

max
∑
Sk∈S

Pkzk (2.1)

m∑
r=1

yir ≤ 1 ∀i ∈ V \{0} (2.2)

∑
e∈δ(i)

xer = 2yir ∀i ∈ V, r ∈ {1, . . . ,m} (2.3)

∑
e∈E

cexer ≤ Tmax ∀r ∈ {1, . . . ,m} (2.4)

∑
e∈E(U)

m∑
r=1

xer ≤
∑

i∈U\{t}

m∑
r=1

yir ∀U ⊆ V \{0}, ∀t ∈ U (2.5)

zk ≤
m∑
r=1

yir ∀Sk ∈ S, ∀i ∈ Sk (2.6)

zk ∈ {0, 1} ∀Sk ∈ S (2.7)

xer ∈ {0, 1} ∀e ∈ E, ∀r ∈ {1, . . . ,m} (2.8)

yir ∈ {0, 1} ∀i ∈ V, ∀r ∈ {1, . . . ,m} (2.9)
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The objective function (2.1) maximizes the total collected pro�t. Constraints

(2.2) ensure that a customer is visited by one vehicle at most. It should be speci�ed

that this constraint is not de�ned for the depot. Therefore, the depot can be

visited by the m vehicles. Constraints (2.3) are the �ow conservation constraints.

Constraints (2.4) guarantee that the travel time of each vehicle does not exceed

Tmax. Constraints (2.5) are subtour elimination constraints (SECs). Constraints (2.6)

together with the objective function state that the pro�t of a cluster is gained only

if all of its customers are served. Constraints(2.7)-(2.9) are domain de�nition.

2.3 Valid inequalities

In this section, we propose valid inequalities based on symmetry breaking and

bounding approaches. We also introduce valid inequalities that take advantage

of the properties of the CluTOP instance such as inaccessible customers and

incompatibility between customers or clusters.

To begin with, we introduce a valid inequality, that states that a customer should

not be visited if no cluster among those where it belongs is selected.

m∑
r=1

yir ≤
∑

Sk∈ζ(i)

zk ∀i ∈ V \{0} (2.10)

This constraint can be considered as part of the basic model. In fact, when

triangle inequality is veri�ed, any additional customer in the optimal solution cannot

improve the total travel time, and hence, it does not improve the objective value.

2.3.1 Cuts based on incompatibilities

In this section we compute incompatibilities between components of a CluTOP

instance such as customers and clusters. We use undirected graphs to represent the

computed incompatibilities and we derive valid inequalities for the ILP0. Before

proceeding further we recall that :

• A clique in an undirected graph is a subset of vertices that are pairwise

adjacent ;

• A clique is maximal if it cannot be extended to a bigger one by adding more

vertices.

In the following, we propose a set of valid inequalities based on computing subsets

of mutually incompatible vertices.
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De�nition 2.3.1. Two customers i and j are said to be incompatible if and only

if they cannot be visited by the same vehicle due to the travel time constraint, i.e.

c(0,i) + c(i,j) + c(j,0) > Tmax. We note that c(i,j) = c(j,i) ∀(i, j) ∈ E since travel times

are symmetric.

In order to represent di�erent incompatibilities that can exist between each pair

of customers, we de�ne customer-incompatibility graph Ginc = (V,Einc). The set of

arcs Einc is constructed as follows. Let i, j ∈ V \{0}, (i, j) ∈ Einc if and only if i

and j are incompatible. Clearly, a clique extracted from the graph Ginc includes a

set of customers that cannot be served by the same vehicle. Hence, the following

proposition holds :

Proposition 2.3.1. Let C denote the set of maximal cliques of the incompatibility

graph Ginc. The following inequalities :∑
i∈C

yir ≤ 1 ∀C ∈ C,∀r ∈ {1, . . . ,m} (2.11)

are valid for ILP0

In the following, we extend the concept of incompatibility between customers to

cover the case of clusters.

De�nition 2.3.2. Two clusters Sk and Sl are said incompatible if and only if it is

impossible to serve all their customers using the m available vehicles.

In order to compute the cliques of incompatible clusters, we de�ne the graph of

incompatibility Ginc
cl = (S,Einc

cl ) where Einc
cl is constructed as follows. Let Sk, Sl ∈ S,

(Sk, Sl) ∈ Einc
cl if and only if Sk and Sl are incompatible. Clearly, a clique extracted

from Ginc
cl includes a set of clusters that cannot be served using the m available

vehicles. Hence the following proposition holds :

Proposition 2.3.2. Let Ccl be the set of maximal cliques of the incompatibility graph

Ginc
cl . The following inequalities are valid for ILP0.∑

Sk∈C

zk ≤ 1 C ∈ Ccl (2.12)

2.3.2 Symmetry breaking cuts

In order to reduce the search space, we propose to consider symmetry breaking

constraints that eliminate many equivalent solutions. In our model, equivalent

solutions occur for example by interchanging any pair of routes. To avoid such
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con�gurations, we consider constraints that impose a lexicographical order between

the routes. In this paper, we introduce a speci�c criterion for the CluTOP. We

propose associating a score pi with each customer i. This score is calculated as

pi =
∑

i∈Sk ρik where ρik is the contribution of customer i to cluster Sk, and it is

calculated as ρik = Pk
|Sk|

if i ∈ Sk and ρik = 0 otherwise. The symmetry breaking cut

is :

∑
i∈V \{0}

yi(r+1)pi −
∑

i∈V \{0}

yirpi ≤ 0 ∀r = {1, . . . ,m− 1} (2.13)

2.3.3 Bounding cuts

We propose two bounding valid inequalities. The �rst is based on computing an

upper bound on the total pro�t while the second is based on computing a lower

bound on the number of selected clusters.

De�nition 2.3.3. Two clusters Sk and Sl are said to be compatible if and only if a

feasible solution exists using the m available vehicles, where all their customers are

served.

Let Φ be a collection of subsets of mutually compatible clusters and φ∗ ∈ Φ such

that :

∑
l:Sl∈φ∗

Pl = max
φ∈Φ

∑
k:Sk∈φ

Pk

Clearly,
∑

l:Sl∈φ∗ Pl is a valid upper bound on the total pro�t that might be

collected. Therefore, the following valid inequality holds :

K∑
k=1

Pkzk ≤
∑
l:Sl∈φ∗

Pl (2.14)

Interestingly, computing φ∗ turns out to be the maximum weighted independent

set in the graph Ginc
cl , where the weight of vertex Sk is set to Pk.

The second bounding valid inequality is described as follows. Let LBcl be a lower

bound value on the number of clusters that should be served on a feasible solution

of ICluTOP with at least Pr as total pro�t. Therefore, the following constraint holds :

∑
Sk∈S

zk ≥ LBcl (2.15)
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2.4 Cutting plane algorithm

In this section, we describe our exact algorithm. This algorithm is based on cutting

plane approach that includes a preprocessing procedure and a heuristic approach

that aims to repair unfeasible solutions.

2.4.1 Global scheme

We start by describing the global scheme of our algorithm. In order to solve

the CluTOP, we are interested in solving ILP0. Moreover, we include the valid

inequalities (2.10)-(2.15). Our algorithm is based on the cutting plane approach.

Indeed, a MIP-solver is used to solve to optimality a relaxation version of ILP0

(called ILP1) where subtour elimination constraints (SECs) are relaxed. Clearly, an

integer solution (S∗ILP1) is obtained . If this solution does not contain any subtour,

then the solution is optimal for ILP0, otherwise the set of subtours are extracted

and necessary subtour elimination constraints are generated and added to ILP1.

This process is iteratively applied until either an optimal solution without subtours

is found or the time limit has been reached.

In order to verify if any subtours exist, we use a Depth-First Search algorithm

(DFS) to detect connected components in an undirected graph. The DFS should

detect two types of connected components. The �rst type are components that

contain the depot, hereafter refered to as main tours. The other connected

components are considered as subtours (tours separated from the depot). Once the

subtours are extracted, suitable SECs are generated and added to the model. In

our work, we use a speci�c type of SECs called Generalized Subtour Elimination

Constraints (GSECs) proposed in [Fischetti et al., 1997]. The GSECs are de�ned as

follows :

∑
e∈δ(U)

xer ≥ 2yir, ∀U ⊂ V, 0 ∈ U,∀i ∈ V \U, r ∈ {1, . . . ,m} (2.16)

∑
e∈E(U)

xer ≤
∑
i∈U

yir − yjr, ∀U ⊂ V, 0 ∈ U,∀j ∈ V \U, r ∈ {1, . . . ,m} (2.17)

∑
e∈E(U)

xer ≤
∑
i∈U

yir − yjr, ∀U ⊆ V \{0},∀j ∈ U, r ∈ {1, . . . ,m} (2.18)

Moreover for a better performance the cutting plane algorithm includes the

following features :

• A pre-processing procedure that aims to reduce the number of decision

variables and to initialize and �ll the customer and cluster incompatibility
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graphs with more edges.

• A local repair solution heuristic that aims to repair S∗ILP1 if it contains any

subtour.

Furthermore, the adopted branching rules for the resolution of ILP1 prioritize

zi �rst, then yir and �nally xer. This can be motivated by the fact that the objective

function in CluTOP aims to maximize the collected pro�t from the visited clusters

[El-Hajj et al., 2016].

The global scheme of our model is described in Algorithm 1.

Algorithm 1: Global Scheme

Input: instance I
Output: solution for I

1 Construct the model ILP0
2 Execute the pre-processing procedure(see Section 2.4.3)
3 Add the computed valid inequalities and relax constraints (2.5) to obtain the

model ILP1
4 repeat
5 Compute S∗ILP1 the optimal solution of ILP1
6 if S∗ILP1 does not contain any subtour then
7 Set S∗ILP1 as optimal for CluTOP

8 else
9 Calculate all subtours and add the corresponding GSECs to ILP1
10 From S∗ILP1 construct a partial solution using only the main tours
11 Repair the partial solution (See Section 2.4.2)

12 until (S∗ILP1 is optimal for CluTOP or time expired)

2.4.2 Solution repair

Recall that if S∗ILP1 is not optimal for ILP0, then it is composed of two types

of tours : the main tours and subtours that are not related to the depot. A

trivial feasible solution X can be constructed from S∗ILP1 using only main tours.

Unfortunately, this partial solution is often of poor quality. This is mainly due to

the nature of CluTOP in which the pro�t of a given cluster is collected only if all

of its customers are served. As a result, if at least one customer of a given cluster

belongs to one of the subtours, the whole pro�t of the cluster will be discarded.

In this section, we propose a greedy procedure to repair the solution X extracted

from S∗ILP1. First, the clusters of S∗ILP1 are sorted according to a non-increasing

order of the following criterion : Pk
N(Sk)+1

, where N(Sk) is the number of customers of

cluster Sk located in subtours. This criterion favors, on the one hand, clusters with
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higher pro�ts, and on the other those with a small number of customers located

in the subtours. The insertion of customers in the current solution X is carried out

iteratively cluster by cluster. The customers of a given cluster are inserted one by

one using a best insertion approach. If the procedure fails to insert at least one

customer of a given cluster, then all its customers will be omitted from the solution

X except those shared with already inserted clusters.

2.4.3 Pre-processing phase

In this section, we describe the pre-processing procedure that aims to �x some

decision variables and to compute incompatibility graphs.

Below, we denote by :

• UB(I) : the value of the upper bound delivered by the cutting plane procedure

within a small time budget for a CluTOP instance I,

• LB(I) : the value delivered by the hybrid heuristic ( provided later Section

3.1).

2.4.3.1 Inaccessible components

De�nition 2.4.1. A customer i is considered to be inaccessible if the tour that starts

and ends at the depot and exclusively serves this customer has a length greater than

Tmax, i.e. c(0,i) + c(i,0) > Tmax.

De�nition 2.4.2. A cluster is said to be inaccessible if it is impossible to visit all

of its customers using all available vehicles.

On the basis of these de�nitions, we should �x some of the decision variables

yir and zk as proposed in the following two equations. The �rst is related to the

inaccessible customers, while the second concerns the inaccessible clusters.

yir = 0 ∀i ∈ V \{0}, and c(0,i) + c(i,0) > Tmax,∀r = 1 . . .m (2.19)

zk = 0 ∀k = 1, . . . , K and Sk is inaccessible (2.20)

At this point it should be speci�ed that checking whether a customer is inaccessible

or not requires O(1)-time. However, in the case of a cluster, this procedure requires

solving a multiple travel salesman problem (MTSP). This problem is NP-complete

even in the case where only one salesman is available. For this reason, we consider a

trivial relaxation instead of MTSP. This relaxation is based on exploring inaccessible
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customers. Indeed, if a customer is inaccessible then all clusters that share it could

be considered as inaccessible.

2.4.3.2 Mandatory clusters

The basic idea to compute mandatory clusters is as follows. Given an instance I of

CluTOP, an instance Īk is derived from I by ignoring the cluster Sk. The cluster Sk
is considered as mandatory if UB(Ik) < LB(I). Therefore, the variable zk should

be �xed to 1.

2.4.3.3 Useful pre-computations

In addition to these pre-processing features, we perform some pre-computations such

as the incompatibility graphs and some speci�c lower and upper bounds that are

useful to generate the considered cuts.

In the following we describe the computation of the incompatibility-graphs. The

customers-incompatibility graph is calculated as follows : for each vertex in the

graph, we calculate the maximal clique containing this vertex using metaheuristic

proposed in [Dang and Moukrim, 2012].

However, the construction of clusters-incompatibility graph requires more

computational e�ort. Recall that computing incompatibility between a pair of

clusters needs to solve mTSP problem. Solving such problem several times can

be very time consuming. We therefore propose to proceed heuristically to deduce

incompatibilities. To do this, let us introduce the following proposition.

Proposition 2.4.1. Let Ginc
kl be the subgraph induced in Ginc by the subset Sk ∪ Sl.

Let Ckl be a maximum clique extracted from Ginc
lk . If |Ckl| > m, then Sk and Sl are

incompatible.

To further enhance the density of the incompatibility graph between clusters, we

propose the following improvement. Given an instance I, two clusters Sk and Sl, the

aim is to solve the sub-instance in which we consider only the customers of these

two clusters. We denote this sub-instance by Ikl. Therefore the following proposition

holds :

Proposition 2.4.2. If UB(Ikl) < Pk + Pl then Sk and Sl are incompatible.

Finally, we describe the lower bound on the number of clusters LBcl that should

be served in the optimal solution. From a CluTOP instance I, we derive an instance

Icl in which each cluster has a pro�t 1. To solve this instance, we use the same

approach used to solve ILP0. Indeed, we consider a modi�ed version of ILP0,
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where the constraint (2.22) is added to the model and the objective function is

(2.21) instead of (2.1).

min
∑
Sk∈S

zk (2.21)

∑
Sk∈S

Pkzk ≥ LB(I) (2.22)

Algorithm 2 details the pre-processing phase.

Algorithm 2: Preprocessing

Input: instance I, Lower bound LB
Output: C The set of valid inequalities ; the set of inaccessible customers

and clusters ; the set of mandatory clusters
1 Initialize C by the symmetry breaking and bounding valid inequalities(See

Sections 2.3.3 and 2.3.3)
2 Calculate inaccessible customers and clusters (See Section 2.4.3.1)
3 Calculate mandatory clusters (See Section 2.4.3.2)

4 Calculate Ginc(V,Einc) the incompatibility graph of customers
5 Calculate maximal cliques in Ginc(V,Einc) and derive the valid inequalities

based on incompatibilities between customers Add these valid inequalities to
the set C

6 Initialize Ginc
cl (S,Einc

cl ) the graph of incompatibility between clusters
7 foreach ((Sk, Sl) ∈ S2) do
8 Extract the graph Ginc

kl the sub graph induced in Ginc by the subset
Sk ∪ Sl Qkl ← calculate maximum clique in Ginc

kl

9 if (|Qkl| > m) then Add (Sk, Sl) to Einc
cl

10 else if (UB(Ikl) < Pk + Pl) then
11 Add (Sk, Sl) to Einc

cl

12 Calculate maximal cliques in Ginc
kl and derive the valid inequalities based on

incompatibilities between clusters
13 Add these valid inequalities to the set C

2.5 Computational tests

In this section, we present a detailed description of the tests we made in order

to evaluate the performance of our algorithms. Our algorithms are coded in C++

using the Standard Template Library (STL) for data structures. Experiments were

conducted on a Linux OS 64-bit computer with Intel Xeon(R) E2-2670 16-core

CPU@2.60 GHz and 128 gigabytes RAM. The cutting plane is implemented using
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Cplex 12.6 and Concert technology.

We tested our algorithm on two di�erent problem sets. The �rst set (Set A)

concerns the instances introduced in [Angelelli et al., 2014] for the case of a single

vehicle. The second set (Set B) is related to the multiple vehicles. In the following,

we provide a detailed description of these sets and we report the results of our

computational experiments.

2.5.1 Set A : single vehicle problem set

In this section, we focus on the single vehicle case of the CluTOP . We propose

a general comparison between our methods and the methods from the literature

presented in [Angelelli et al., 2014].

To do this, we use benchmark instances introduced in [Angelelli et al., 2014].

2.5.1.1 Description of the instances

The benchmark is derived from 50 instances of TSPLIB with a number of vertices

ranging from 42 to 318. For each base instance of TSPLIB, a set of derived instances

for the COP is constructed according to di�erent values assigned to the following

parameters :

1. Number of clusters : the number of clusters K takes values of 10, 15, 20 or 25.

Clusters were generated in order to have approximately the same number of

customers.

2. Pro�ts of clusters : the pro�ts of clusters are generated as follows . First, a

pro�t is assigned to each customer and the pro�t of a given cluster is then

calculated as the sum of the pro�ts of its customers. Two patterns are used

to generate the pro�ts of the customers [Fischetti et al., 1998]. In the �rst one

the pro�t of each customer is equal to one. In the second pattern, the pro�t of

each customer is generated using the formula 1+(7141j+73)mod(100), where

j is the index of the customer.

3. Tmax : Given TSP ∗ the optimal value of TSP over all vertices of the base

instance, the value of Tmax is set at θ ∗ TSP ∗, where θ takes two possible

values : 1
2
and 3

4
.

As a result, 16 di�erent instances are derived from each TSP benchmark

instance. As a result, 800 instances are used to evaluate the proposed methods.

The instances can be found at the following URL : http ://or-brescia.unibs.it/. For
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a detailed description of instance generation, the reader can refer to Angelelli et al.

[Angelelli et al., 2014].

2.5.1.2 Performance of the exact method

We conducted a set of comparisons of our exact algorithm with the two

branch-and-cut algorithms namely COP-BASIC and COP-CUT of Angelelli et

al. [Angelelli et al., 2014]. In Table 2.1, we present the results of the three exact

methods. For each method, we report :

• #Opt : the number of times for which it yields the optimal solution within a

time limit of 3600 seconds.

• OptGap : the average percentage deviation optimal gap that is computed as
UB−LB
UB

, where UB and LB are the upper bound and the lower bound found

the exact method respectively.

• CPU : average CPU time in seconds.

From Table 2.1, we observe that :

• The cutting plane algorithm succeeds in optimally solving more instances

than COP-BASIC and COP-CUT, with 643 instances. COP-BASIC solved

602 instances and COP-CUT solved 558. Interestingly, our algorithm reached

the optimilaty gap of 0.043, while requiring less computational time. This gap

jumps to 0.09 and 0.12 for COP-BASIC and COP-CUT, respectively.

• The three algorithms succeed to solve all the instances with a number of

customers less than 100 except for class pr76, where COP-BASIC fails to

close one (1) instance, whereas the cutting plane fails to close one (1) instance

from the class kroC100.

• Regarding larger instances, we can observe that the performance of the exact

methods depends on the class of instances. For the classes of instances ch130,

ch150, kroA150 and kroB150, COP-BASIC and COP-CUT struggle to �nd the

optimal solution, whereas our cutting plane succeeds to close a large number

of them. On the other hand, the performance of our algorithm decreases for

the classes pr226, pr264 compared to COP-BASIC and COP-CUT.
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Tableau 2.1 � Performance of the cutting plane

Class
COP-BASIC COP-CUT Cutting plane

#OPT OptGap CPU #OPT OptGap CPU #OPT OptGap CPU

dantzig42 16 0 8.13 16 0 0.61 16 0 2.90

swiss42 16 0 6.58 16 0 0.95 16 0 4.08

att48 16 0 13.18 16 0 8.45 16 0 34.80

gr48 16 0 11.88 16 0 4.86 16 0 12.46

hk48 16 0 10.87 16 0 5.54 16 0 12.42

eil51 16 0 16.71 16 0 6.76 16 0 16.56

berlin52 16 0 12.02 16 0 2.30 16 0 9.96

brazil58 16 0 16.44 16 0 5.47 16 0 26.67

st70 16 0 52.68 16 0 57.70 16 0 95.71

eil76 16 0 20.16 16 0 18.17 16 0 25.83

pr76 16 0 94.41 15 0.005 501.65 16 0 196.43

gr96 16 0 34.80 16 0 23.26 16 0 37.23

rat99 16 0 232.35 16 0 93.09 16 0 159.30

kroA100 14 0.037 1112.48 16 0 279.00 16 0 240.96

kroB100 11 0.070 1386.00 16 0 468.64 16 0 272.45

kroC100 11 0.072 1967.99 16 0 602.79 15 0.005 746.34

kroD100 14 0.021 1613.80 16 0 647.23 16 0 581.61

kroE100 13 0.028 1107.84 15 0.021 562.51 16 0 179.06

rd100 10 0.038 1702.83 16 0 537.00 16 0 225.11

eil101 16 0 93.98 16 0 50.94 16 0 115.96

lin105 16 0 104.36 16 0 59.40 16 0 72.66

pr107 16 0 171.29 16 0 61.62 15 0.019 332.52

gr120 10 0.048 1854.87 15 0.018 948.18 15 0.006 688.78

pr124 16 0 139.67 16 0 78.51 16 0 100.51

bier127 16 0 283.76 16 0 97.43 16 0 92.16

ch130 5 0.117 2717.58 12 0.026 1844.03 15 0.0042 767.34

pr136 11 0.046 2024.14 16 0 765.13 16 0 326.29

gr137 16 0 144.86 16 0 62.89 16 0 149.90

pr144 16 0 229.02 16 0 119.39 16 0 135.73

ch150 1 0.372 3438.73 0 0.444 3600.71 9 0.0584 2098.01

kroA150 2 0.325 3488.52 3 0.328 3232.80 10 0.0583 1713.36

kroB150 1 0.333 3591.24 1 0.346 3571.16 11 0.0563 1913.78

pr152 16 0 266.37 16 0 129.95 16 0 559.19

u159 13 0.013 923.46 16 0 442.11 14 0.0109 1185.79

si175 16 0 844.04 16 0 424.51 16 0 315.50

brg180 16 0 597.49 16 0 141.47 16 0 155.60

rat195 5 0.075 3020.09 7 0.081 3003.96 10 0.0447 1757.66

d198 16 0 179.49 14 0.014 1035.47 12 0.0332 1431.59

kroA200 0 0.625 3600.76 0 0.746 3600.97 6 0.1473 2562.21

kroB200 2 0.456 3471.47 0 0.642 3600.41 6 0.1767 2550.03

gr202 13 0.013 814.35 13 0.014 1255.61 16 0 557.13

ts225 0 0.369 3600.52 0 0.712 3600.40 0 0.2729 3600.73

tsp225 1 0.262 3504.62 3 0.148 3335.69 10 0.0681 2461.35

pr226 10 0.110 1782.04 14 0.019 1485.83 5 0.1441 3066.90

gr229 16 0 299.62 13 0.021 1645.25 16 0 1063.57

gil262 0 0.614 3601.48 0 0.918 3601.64 4 0.1986 3084.40

pr264 8 0.066 2499.76 10 0.175 2105.14 2 0.3496 3155.57

a280 1 0.176 3415.74 1 0.235 3464.00 2 0.1768 3357.49

pr299 1 0.176 3569.61 2 0.548 3554.80 1 0.2837 3449.92

lin318 1 0.153 3543.92 0 0.531 3600.58 1 0.1547 3430.73

Mean 558 0.092 1344.76 602 0.120 1166.92 643 0.0454 982.64
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In order to bring a more detailed picture of the performance of the cutting plane

algorithm, we present in Table 2.2, a pairwise comparison between the considered

methods. In this Table, we provide for each pair of exact method (EM) EMrow and

EMcol that are displayed in some given row and column, respectively, the number

of instances solved by EMrow but not by EMcol. From Table 2.2 we see that our

method succeed to solve 75 instances against 34 solved by the COP-BASIC. Whereas

for the cutting plane solves 107 instances against 22 solved by COP-CUT.

Tableau 2.2 � Pairwise comparison between exact methods

COP-BASIC COP-CUT Cutting plane

COP-BASIC - 60 34

COP-CUT 16 - 22

Cutting plane 75 107

The authers in [Angelelli et al., 2014] reported a comparison study between

COP-BASIC and COP-CUT while considering only 192 instances with a number of

customers ranging from 200 to 318. They presented a detailed analysis of the COP-

CUT and COP-BASIC without considering instances with less than 200 vertices. In

this section, we proceed similarly in order to have a better picture of the performance

of each method and to study their behavior according to the instances characteristics.

We start this study by giving, in Table 2.3, a general picture of the three methods

on the subset of considered instances. Clearly, the results depicted in 2.3 strongly

support the �rst results. Indeed, our method is still performing better than the

branch-and-cut algorithms in terms of optimality gap and the total number of solved

instances while requiring less CPU -time.

Tableau 2.3 � Results for large-scale instances

COP-BASIC COP-CUT Cutting plane

Optimality Gap 0.393 0.251 0.164

#Opt 56 53 69

Average CPU 2904.19 2808.66 2695

Figures 2.2 to 2.7 show a comparison in terms of optimality gap and compu-

tational time with respect to di�erent criteria : the number of clusters, the pro�t
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generation pattern and the value of θ. In �gure 2.3, g1 stands for the �rst type of

pro�t generation pattern, whereas g2 are instances with the second type of pro�ts.

In �gure 2.4, q2 and q3 stand respectively for values 1
2
and 3

4
of θ.

From Figures 2.2, 2.3 and 2.5, we remark that the performance of methods vary

according to the di�erent studied characteristics. Interestingly, the performance

of our method does not seem to re�ect these characteristics. For example, the

percentage gap of cutting plane is quietly the same (between 4% and 7%) while

the number of clusters varies from 10 to 25 (�gure 2.2).

However, from �gures 2.5, 2.6 and 2.7, we observe a slight disparity in

computational time performance of our method when studying the impact of the

di�erent parameter instances on the CPU time.

• The pro�t generation has less impact on computational time in the case of

COP-BASIC and COP-CUT as shown in �gure 2.6, whereas computational

time of the cutting plane increases for the second type of pro�t generation.

However, our method remains competitive with the other methods. We note

that in these instances, the pro�ts are more heterogeneous than those of

the �rst pattern. This may explain the fact that our method needs more

computational time to solve these instances.

• Regarding the values of θ, we note from �gure 2.7 that computational time of

COP-BASIC and COP-CUT decrease as the value of θ increases from 1
2
to 3

4
.

The authors in [Angelelli et al., 2014] suggested that when θ = 1
2
, the travel

time constraint is more binding. As a result, the number of clusters to serve

is smaller and the number of clusters to discard from the solution becomes

bigger. According to the authors, this situation makes decisions about clusters

to serve or not more complex than the case with θ = 3
4
. On the contrary,

computational time of our method increases as the value of θ increases. This is

due to the fact when the Tmax is bigger, the more the routing problem becomes

hard to the cutting plane. In selective routing problems, there are two main

sub-problems, the selection problem and the routing problem. Based on the

observations above, we can deduce that COP-BASIC and COP-CUT are more

sensitive to the complexity of the selection problem, whereas, the cutting plane

is more sensitive to the complexity of the routing problem.

According to the performance of the three exact methods, we identify three

categories of classes of instances. The �rst category (Category 1) is composed of the

classes where our exact method outperforms COP-BASIC and COP-CUT, namely

ch150, kroA150, kroB150, kroA200, kroB200, and tsp225. Indeed, our exact method
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Figure 2.2 � Optimality Gap with res-
pect to the number of clusters

Figure 2.3 � Optimality Gap with res-
pect to the pro�t generation

Figure 2.4 � Optimality Gap with res-
pect to θ

Figure 2.5 � Computational time with
respect to the number of clusters

Figure 2.6 � Computational time with
respect to pro�t generation

Figure 2.7 � Computational time with
respect to to θ
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solved 52 instances. On the other hand COP-BASIC and COP-CUT failed to solve

89 out of 96 instances. Interestingly, Angelleli et al. pointed out the poor performance

of their methods on classes kroA200, kroB200. They highlighted the fact that their

methods failed to achieve good feasible solutions. At this point, it is noteworthy to

indicate that our exact method and COP-CUT yield no null pro�t-feasible solutions

on all the instances of Category 1. However, COP-BASIC failed to retrieve such

feasible solutions 16 times. The second category (Category 2) contains the classes

pr226, pr264. For these classes, COP-BASIC or/and COP-CUT outperform our

cutting plane. Actually, COP-CUT (respc. COP-BASIC) solved 24 (resp. 18) out of

32 instances to optimality, whereas our exact method solved only 7 instances. This

is mainly related to the distribution of customers in these instances, which is in the

form of substructures like meshes or even a set of co-linear points. Pferschy et al.

pointed out in [Pferschy and Stan¥k, 2017] that these type of instances are hard to

solve using the cutting plane approach, since they are relatively unstable in terms of

computational times, number of iterations, and the number of subtours generated

in each iteration as well. Finally, the third category (Category 3) is composed of all

the other classes where all the methods of Angelleli et al. [Angelelli et al., 2014] on

the one hand, and our exact method on the other, present the same either good or

poor performance.

In order to provide more detailed picture of the performance of the di�erent exact

methods on Category 1 and Category 2, in Table 2.4, we present a more detailed

comparison between them. In this table, we report the average percentage gap of

the upper bound (resp. lower bound) delivered by our exact method with respect to

those obtained by COP-BASIC and COP-CUT. These values are given in columns

UBGAP (resp. LBGAP ).

On the basis of Table 2.4, we observe that :

• The poor performance of the exact methods presented in Angelleli et al.

[Angelelli et al., 2014] is explained not only by the quality of the feasible

solution (as suggested by [Angelelli et al., 2014]) but also by the weakness

of the upper bound. Indeed, our exact method improved the feasible solution

delivered by COP-BASIC and COP-CUT by 35.4% and 15.5%, respectively.

Surprisingly, the improvement of the quality of the upper bounds is much

larger reaching 67.8% compared to COP-CUT upper bound.

• The weak results of our method on the instances in Category 2 are due to the

poor performance of both the lower and upper bound compared to Angelleli

et al. [Angelelli et al., 2014].
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Tableau 2.4 � GAP Cutting plane vs. the literature

Class
UB GAP LB GAP

C-P vs. C-B C-P vs. C-C C-P vs. C-B C-P vs. C-C

ch150 −0.447 −0.454 0.257 0.131

kroA150 −0.447 −0.458 0.618 0.080

kroB150 −0.386 −0.433 0.135 0.092

kroA200 −0.504 −0.678 0.622 0.321

kroB200 −0.484 −0.503 0.435 0.124

tsp225 −0.037 −0.095 0.056 0.181

pr226 0.041 −0.018 −0.111 −0.043

pr264 0.155 0.174 −0.032 −0.193

2.5.2 Set B : multiple vehicles problem set

2.5.2.1 Description of the instances

Since there are no instances for CluTOP in the literature, we generated a new set of

instances to evaluate the e�ectiveness of our methods in the case of multiple vehicles.

We proceeded in the same way as in [Chao et al., 1996]. The authors generated

new instances of the TOP from instances of the OP by dividing the Tmax by the

number of vehicles in such a way that each vehicle has a time limit equal to Tmax
m

.

As a result, from each benchmark instance in [Angelelli et al., 2014], we derived

two instances with a number of vehicles two or three, knowing that Tmax values in

[Angelelli et al., 2014] were calculated as θ ∗ TSP , where θ takes two values : 1
2
and

3
4
. Hence, the total number of the new instances is 800 for each number of vehicles.

2.5.2.2 Performance of the exact method

Like in Section 2.5.1, performance evaluation of the cutting plane in the case of

multiple vehicles was restricted to instances with up to 318 vertices and 25 clusters.

Therefore, 800 instances were considered for each class. In this section, we attempted

to study the impact of the number of vehicles on the behavior of the exact method.

Table 2.5 shows the performance of the cutting plane when considering one, two

and three vehicles. From Table 2.5, we observe that the instances become more

di�cult to solve when considering multiple vehicles. For instance, in the case of

a single vehicle, all of the instances with less than 100 customers were solved to

optimality by the cutting plane, whereas for two and three vehicles, the number of

solved instances per class is remarkably. For example, the instances of class rat99
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were all solved to optimality in the case of a single vehicle, but only eight of them

were solved when the number of vehicles is equal to two or three.

Our exact method exhibits a percentage gap of 26% for two vehicles, 30.1% for

three vehicles compared to 4.5% with a single vehicle. Moreover, we observe the

same trend for the number of solved instances and computational times. Regarding

the case of three vehicles, the cutting plane succeeded to solve more instances than

the case with two vehicles. This is mainly due to the fact that the routing sub-

problem becomes relatively easier since the Tmax is divided by the number of vehicles.

Furthermore, many instances have an objective value equal to zero or they at least

contain the pro�t of a very small number of clusters.

Tableau 2.5 � Performance of the cutting plane with respect to the number vehicles

Class
Single vehicle Two vehicles Three vehicles

#OPT OptGap CPU #OPT OptGap CPU #OPT OptGap CPU

dantzig42 16 0 2.90 16 0 60.25 16 0 0.4

swiss42 16 0 4.08 16 0 71.8 16 0 129.3

att48 16 0 34.80 16 0 377.6 16 0 10.29

gr48 16 0 12.46 11 0.060 1323.46 16 0 1.13

hk48 16 0 12.42 12 0.065 1208.14 16 0 2.23

eil51 16 0 16.56 15 0.004 702.63 10 0.097 1619.76

berlin52 16 0 9.96 16 0 700.98 16 0 703.23

brazil58 16 0 26.67 15 0.005 793.99 16 0 165.53

st70 16 0 95.71 8 0.214 1800.12 16 0 59.91

eil76 16 0 25.83 8 0.069 2271.91 8 0.241 1909.14

pr76 16 0 196.43 10 0.058 1853.91 8 0.128 1802.68

gr96 16 0 37.23 7 0.079 2353.22 13 0.030 1270.34

rat99 16 0 159.30 8 0.114 1991.96 8 0.140 1805.56

kroA100 16 0 240.96 8 0.280 1808.33 12 0.061 941.89

kroB100 16 0 272.45 8 0.255 1812.47 15 0.012 458.12

kroC100 15 0.005 746.34 8 0.307 1803.14 14 0.023 550.91

kroD100 16 0 581.61 8 0.276 1803.88 14 0.090 488.04

kroE100 16 0 179.06 8 0.394 1800.26 16 0 0.14

rd100 16 0 225.11 8 0.207 1832.97 12 0.173 995.38

eil101 16 0 115.96 5 0.123 3198.43 0 0.386 3600.03

lin105 16 0 72.66 10 0.038 1737.53 8 0.131 1800.17

pr107 15 0.019 332.52 16 0.000 6.81 16 0 0.15

gr120 15 0.006 688.78 2 0.341 3169.59 8 0.367 1800.31

pr124 16 0 100.51 14 0.016 1132.63 13 0.018 1144.92

bier127 16 0 92.16 3 0.170 3257.18 0 0.289 3600.16

ch130 15 0.0042 767.34 4 0.328 2823.47 6 0.348 2594.12

pr136 16 0 326.29 1 0.356 3544.06 8 0.309 1800.65

gr137 16 0 149.90 6 0.170 2587.61 9 0.130 1784.16

pr144 16 0 135.73 8 0.127 1843.67 14 0.041 934.23

ch150 9 0.0584 2098.01 4 0.414 2758.08 8 0.453 1800.74

kroA150 10 0.0583 1713.36 4 0.381 2722.32 8 0.547 1807.96

kroB150 11 0.0563 1913.78 6 0.396 2569.58 8 0.539 1800.4

pr152 16 0 559.19 8 0.205 1800.49 16 0 0.49

u159 14 0.0109 1185.79 0 0.264 3600.14 3 0.218 2999.66

si175 16 0 315.50 2 0.095 3187.11 0 0.192 3600.07

continued on next page
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Class
Single vehicle Two Vehicles 3 Vehicles

#OPT OptGap CPU #OPT OptGap CPU #OPT OptGap CPU

brg180 16 0 155.60 10 0.024 2589.05 2 0.149 3328.89

rat195 10 0.0447 1757.66 0 0.334 3600.18 0 0.447 3600.15

d198 12 0.0332 1431.59 8 0.191 1801.94 16 0 2.27

kroA200 6 0.1473 2562.21 2 0.594 3171.66 8 0.583 1802.31

kroB200 6 0.1767 2550.03 2 0.622 3164.14 8 0.601 1802.45

gr202 16 0 557.13 0 0.397 3600.87 2 0.351 3436.75

ts225 0 0.2729 3600.73 0 0.742 3601.16 8 0.496 1908.84

tsp225 10 0.0681 2461.35 0 0.499 3600.76 0 0.607 3600.47

pr226 5 0.1441 3066.90 8 0.179 2014.41 16 0 210.16

gr229 16 0 1063.57 0 0.605 3601.41 0 0.686 3602.57

gil262 4 0.1986 3084.40 0 0.827 3600.66 8 0.711 1801.03

pr264 2 0.3496 3155.57 8 0.281 1817.96 10 0.049 1358.66

a280 2 0.1768 3357.49 0 0.461 3600.39 0 0.518 3600.16

pr299 1 0.2837 3449.92 0 0.509 3600.8 2 0.402 3151.43

lin318 1 0.1547 3430.73 0 0.517 3600.81 0 0.746 3600.41

Total 643 0.0454 982.64 337 0.252 2265.52 463 0.226 1615.77

We investigate now the impact of the use of multiple vehicles on the performance

of the cutting plane. Figures 2.8 to 2.13 depict some performance measurements

of the cutting plane with respect to the number of vehicles. We investigated the

variations of the optimality gap and computational time with respect to the number

of clusters, the pro�t generation pattern and the value of θ. Globally, we note that

instances with several vehicles become more di�cult than the case with a single

vehicle.

2.6 Conclusion and future work

In this chapter, we introduced a new variant of the TOP called the Clustered

Team Orienteering Problem (CluTOP). In the CluTOP, customers are grouped into

subsets called clusters, to which we assign pro�ts representing the value of service.

the CluTOP generalizes also the Clustered Orienteering Problem (COP) where only

a single vehicle is used. In order to solve the CluTOP, we proposed an exact method

based on cutting planes approach. The results for in the case of a single vehicle show

the competitiveness of our method compared to the literature, by achieving minimal

gaps for the majority of classes along with new instances solved to optimality.
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Figure 2.8 � Optimality Gap with res-
pect to the number of clusters and the
number of vehicles.

Figure 2.9 � Optimality Gap with res-
pect to the number of pro�t genera-
tion and the number of vehicles.

Figure 2.10 � Optimality Gap with res-
pect to θ and the number of vehicles.

Figure 2.11 � Computational time with
respect to the number of clusters and
the number of vehicles.

Figure 2.12 � Computational time with
respect to pro�t generation and the
number of vehicles.

Figure 2.13 � Computational time with
respect to θ and the number of ve-
hicles.
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In this chapter, we propose a hybrid heuristic scheme based on the order

�rst-cluster second approach [Prins et al., 2014] to solve the CluTOP. The �rst

component is a metaheuristic scheme called Adaptive Large Neighborhood Search

(ALNS) heuristic, whose aim is to generate giant tours with good quality. The giant

tours are then provided to the second component which is a split procedure in order

to extract solutions with better pro�t. The split is based on a branch and bound

algorithm that incorporates a knapsack-based upper bound to fathom inferior nodes.

The remainder of this chapter is as follows. The global scheme of the proposed

heuristic is introduced in Section 3.1. The ALNS heuristic is detailed in Section 3.2.

Our split algorithm is presented in Section 3.3. Computational results are presented

in Section 3.4. Finally, we conclude by some remarks in Section 3.5.

3.1 Heuristic global scheme

In the last decade, numerous heuristics based on the order �rst-cluster second

approach have been proposed for the VRP and its variants [Prins et al., 2014]. This

approach consists of two phases : the ordering phase in which a giant tour covering

all customers is constructed. In the second phase, a split procedure is used to extract

47
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the optimal solution while respecting the prede�ned order of customers. The �rst

split method was introduced by Beasley in [Beasley, 1983] for the CVRP. Then, this

method was incorporated within a genetic algorithm by Prins in [Prins, 2004].

For selective VRP, in most cases it is impossible to serve all the customers due

to the travel time limit. Thus, the objective of a split procedure is to select a subset

of customers that satis�es the objective function. Vidal et al. [Vidal et al., 2015]

and Vargas et al. [Vargas et al., 2017] studied some selective problems like the

Team Orienteering Problem, Capacitated Pro�table Tour Problem, Covering Tour

Problem, etc. while considering the giant tour. Vidal et al. [Vidal et al., 2015]

modeled the problem as a resource constrained shortest path. To solve the problem,

they proposed an e�cient split procedure based on dynamic programming in order

to maximize the total collected pro�t. Vargas et al. [Vargas et al., 2017] used also in

their heuristic a dynamic programming based split to minimize the total travel time.

For more detailed literature on the order �rst-cluster second approach, we re�er the

reader to [Prins et al., 2014].

Our solution method adopts also the order �rst-cluster second approach.

Algorithm 3 describes the global scheme of our heuristic. It is composed of two main

components : an ALNS metaheuristic and a split procedure. The ALNS generates

solutions with good quality in a short time (line 4). From a given solution, a giant

tour is constructed by randomly inserting the unrouted customers (line 5). Then,

the giant tour is given to the split procedure in order to extract a solution with

better pro�t (line 6). We use Eval(X) to denote the pro�t of a solution X. This

process is iterated until one of the following stop conditions is reached : either a

maximum number of iterations n is reached, where n is the number of customers, or

a maximum number of iterations without improvement is exceeded, which is �xed

at the average number of customers per cluster.

3.2 Adaptive large neighborhood search

The main feature of the ALNS is the use of multiple neighborhoods in parallel

during the search process [Pisinger and Ropke, 2010]. These di�erent neighborhoods

are identi�ed by a set of competing removal and insertion operators. An operator

is de�ned as a fast heuristic that explores a large part of the neighborhood in a

polynomial time. In each iteration, the algorithm selects a removal and an insertion

operator based on statistics gathered during the search process. This characteristic

improves the �exibility of the heuristic to tackle a wide variety of instances.

Our ALNS scheme includes one removal operator and a set of three insertion

operators. We use a local search operator called 2-opt to improve the travel time of
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Algorithm 3: Global scheme

Input: Solution X
Output: Solution Xbest

1 Xbest ← X
2 LB ← Eval(X)
3 repeat
4 ALNS(X)(see Section 3.2)
5 Construct a giant tour GT from X
6 X ← SPLIT (GT,LB)(see Section 3.3)
7 if (Eval(X) > Eval(Xbest)) then
8 Xbest ← X
9 LB ← Eval(X)

10 until (stop condition is reached)
11 return Xbest

the current solution. This operator is called at each iteration between the removal

and the insertion operator.

Random removal operator

This operator selects a random number of clusters between 1 and dmax and removes

their customers from the current solution. Note that customers which are shared

with other clusters in the solution are not removed. The worst-case complexity of

this operator is O(n ∗K).

The parameter dmax is a diversi�cation/intensi�cation parameter. If it is small,

the heuristic tries to intensify the search in a limited neighborhood. On the other

hand, if dmax is large, it helps the heuristic to modify a large part of the solution

in order to escape from local optima. In our heuristic, dmax is set to initial value

equal to 3, then it is increased by 1 after each iteration without improvement. Note

that dmax must not exceed the current number of routed clusters. Once the current

solution is improved, dmax is set to 3.

Insertion operators

Insertion operators are incorporated in a global scheme that inserts unrouted clusters

one by one in the current solution. A cluster is unrouted if and only if at least one

of its customers is unrouted. At each iteration, an unrouted cluster is randomly

selected, then its unrouted customers are identi�ed (probably some of its customers

have been already inserted) and given to one of the insertion operators. The process

is iterated until either no further insertions are possible because of the time limit or
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all the clusters are inserted.

Best insertion operator (BIO)

This operator evaluates all feasible insertions for each unrouted customer. Then the

best insertion with the smallest travel time gap is selected. The process is iterated

until either all customers are inserted or the solution cannot accept other customers.

The complexity of this operator is O(n3).

Insertion with regret Operator (IRO)

IRO evaluates all feasible insertions for each unrouted customer. It calculates the

gap in terms of travel time between the two best insertions of each customer. We

call this gap regret. Then it selects the customer with the highest regret and inserts

it in the solution. The process is iterated until either all customers are inserted or

no customer can be added to the solution. The complexity of this operator is O(n3).

Random Best Insertion Operator (RBIO)

RBIO randomly selects one unrouted customer then evaluates all of its feasible

insertions that respect the travel time limit. The best insertion is selected. The

process is iterated until either all customers are inserted or no customer can be

added to the solution. The complexity of this operator is O(n2).

Adaptive weight adjustment

An important aspect of the ALNS is the dynamic weight adjustment carried out

during the search process. Weights are associated with insertion operators and

initialized using the same value. Then, these weights are dynamically changed during

the search progress according to the performance of each operator. The aim is to give

larger weights to operators which have contributed the best to the solution process.

The criteria used to measure how much an operator contributes during the search

process is based on the quality of the solution found after each iteration :

• if it is a new best solution, it gives a large weight to the operator.

• if it is better than the current solution, it gives a medium weight to the

operator.

• if it is worse than the current solution, it gives a small weight.

For more details about the update procedure, the reader is referred to Pisinger and

Ropke [Pisinger and Ropke, 2010].
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Algorithm 4: ALNS

Input: Solution X
Output: Solution Xbest

1 dmax ← 1 + rand()%3
2 Xbest ← X
3 repeat
4 Remove dmax clusters from X
5 Apply 2-opt on X
6 Select an insertion operator i
7 Apply i on X
8 if (Eval(X) > Eval(Xbest)) then
9 Xbest ← X
10 dmax ← 1 + rand()%3

11 else dmax ← dmax + 1
12

13 Update weights using the adaptive weight adjustment procedure
14 until (stop condition is reached)
15 return Xbest

3.3 Split procedure

We propose in the following a split procedure based on a branch and bound

scheme. The aim of the split is to �nd the subset of clusters that maximizes

the collected pro�t while respecting the order of customers in a given giant tour

π = (π1, π2, . . . , πn) and the travel time limit. Before detailing our split procedure,

let us �rst introduce a preliminary result. This result is used afterwards in the upper

bound.

3.3.1 Preliminary result

In this subsection, we present a relaxation scheme for the CluTOP based on the

TOP.

De�nition 3.3.1. Given a CluTOP instance I with its undirected graph G=(V,E),

we de�ne a TOP instance ITOP de�ned by the same graph G=(V,E). The pro�t of

each customer in ITOP is calculated as follows : ρj =
∑

k:j∈Sk
Pk
|Sk|

, where the ratio
Pk
|Sk|

could be interpreted as the contribution of customer j to the cluster Sk. The

maximal travel time of ITOP is the same as instance I, which is Tmax. We also de�ne

the following notation :

• P ∗(I) is used to denote the optimal objective value of instance I.
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• Let S ′ ⊆ S be a subset of clusters. We denote the sum of their pro�ts by

PCluTOP (S ′). Hence, PCluTOP (S ′) =
∑

k:Sk∈S′ Pk.

• Let V ′ ∈ V be a subset of customers in ITOP . We denote the sum of their

pro�ts by PTOP (V ′). Hence, PTOP (V ′) =
∑

j∈V ′ ρj.

Proposition 3.3.1. The optimal objective value of the associated instance ITOP

represents an upper bound on the pro�t of I (P ∗(ITOP ) ≥ P ∗(I)).

Proof. Let S∗ be the set of clusters of the optimal solution of CluTOP instance I.
The total collected pro�t is calculated as PCluTOP (S∗) =

∑
i:Sk∈S∗ Pk = P ∗(I). On

the other hand, let V ∗ be the set of customers of S∗. It is obvious that the optimal
solution of ICluTOP is feasible for ITOP and its pro�t is PTOP (V ∗) =

∑
j∈V ∗ ρj. We

also denote the optimal objective value for ITOP by P ∗(ITOP ). We have,

PTOP (V
∗) =

∑
j∈V ∗

ρj =
∑
j∈V ∗

∑
k:j∈Sk

Pk

|Sk|

=
∑
j∈V ∗

∑
k:j∈Sk andSk∈S∗

Pk

|Sk|
+

∑
j∈V ∗

∑
k:j∈Sk andSk /∈S∗

Pi

|Si|

= PCluTOP (S
∗) +

∑
j∈V ∗

∑
k:j∈Sk andSk /∈S∗

Pk

|Sk|

= P ∗(I) +
∑
j∈V ∗

∑
k:j∈Sk andSi /∈S∗

Pk

|Sk|
(3.1)

As a result, the optimal solution for I is feasible for the ITOP . Furthermore,

P ∗(I) ≤ PTOP (V ∗) ≤ P ∗(ITOP ).

Let us consider now a giant tour π = (π1, π2, ..., πn) that covers all the customers

of ICluTOP . The giant tour π imposes an order of visit among all the customers of

ICluTOP . This can be seen as a derived instance I ′CluTOP , in which arcs that do not

respect this ordering are not considered. Hence, the following corollary holds.

Corollary 3.3.1. The optimal objective value of the associated instance ITOP w.r.t

a given giant tour π represents an upper bound on the pro�t of I w.r.t π.

3.3.2 Principle of the split

The goal is to calculate a partial sequence σ that visits the customers of a subset of

clusters in order to maximize the total collected pro�t while preserving the original

order of customers in π. To that end, the branch and bound algorithm explores a

search tree generated according to decisions made on clusters.

In the root node, an arbitrary order of branching is established among clusters.

In each node of the search tree, the possible decision that can be made regarding a
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given cluster is whether it is selected or rejected. This leads to a binary search tree

with at most 2K+1 − 1 nodes.

Several components are embedded within the branch and bound algorithm in

order to achieve high performance. These components include in addition to the

branching scheme, a suitable node selection strategy, an upper bound to fathom

inferior nodes as well as a feasibility test to discard unfeasible nodes. Before

proceeding further, we distinguish in each node η three subsets of clusters : the

selected clusters denoted by Sηs , the removed clusters denoted by Sηr and the potential

clusters denoted by Sηp representing the remainder set of clusters on which decision

has not been made yet.

In what follows, we describe the di�erent components implemented in our branch

and bound algorithm.

3.3.3 Feasibility check

A feasibility check (FC) is performed every time a potential cluster is added to

the set of selected clusters Sηs . A given node is feasible if all the customers of its

selected clusters can be visited using m vehicles at most. To do this, we consider

the partial sequence πη = (π1, . . . , π|πη |) extracted from the giant tour π by keeping

only customers of the selected clusters.

The procedure FC can be described as follows. At each iteration i, the ith

customer in the partial sequence πη, is inserted at the end of the last route. If

this insertion fails, either because the travel time exceeds Tmax or no route has yet

been initialized, the customer is inserted in a new initialized route. This process

is reiterated until all customers of the sequence πη are served. Thanks to the

triangular inequality, the number of visited customers per route is maximized and

the number of used vehicles (mσ) is then minimized. Therefore, if mπη > m, then

the partial solution is unfeasible and the node should be pruned. The complexity of

this procedure is O(n).

3.3.4 Knapsack-based upper bound

We propose in this section an upper bound based on the Fractional Knapsack

Problem (FKSP) and we take advantage of the cluster constraint in order to improve

this upper bound.

Given now a node η in the search tree, we assume that the partial solution

retrieved by the procedure FC is feasible. Otherwise the node should be pruned.

We consider the following Knapsack instance IFKSP in which we associate an item

with each potential customer. A customer is considered as potential if it belongs to
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at least one of the potential clusters Sηp and does not belong to any of the selected

clusters Sηs .

The pro�t of an item πj is calculated using De�nition 3.3.1. Note that to calculate

these pro�ts in a node η, we consider only contributions related to potential clusters

Sηp and we discard contributions related to removed clusters Sηr . As a result, the

pro�t of πj is calculated as follows : ρηπj =
∑

i:πj∈Si and Si∈Sηp
Pi
|Sηi |

, where |Sηi | is the
number of potential customers belonging to cluster Si in node η.

The weight wηπj of the item πj is the minimal insertion cost. Let Iηj be the set of

all the insertion positions of πj, where each position is de�ned by one predecessor

and one successor of πj in π, i.e. Iηj = {(πl, πr)|l < j < r, πl, πr ∈ Sηs ∪ Sηp}.
Thus, the minimal insertion cost is calculated as wηπj = min{c(πl, πj) + c(πj, πr) −
c(πl, πr)|(πl, πr) ∈ Iηj } where c(πl, πr) is the travel time between customers πl and

πr.

To model the size of the knapsack W η, we proceed as follows. We consider the

sub-sequence formed by the customers of the selected clusters Sηs . Knowing that the

node is feasible, i.e. all the customers in the sub-sequence can be visited using at

most m vehicles, the aim is to �nd the set of tours that minimizes the total distance.

This can be seen as solving a Distance Constrained VRP with a limited �eet on a

given permutation of customers. This problem can be e�ciently solved by applying a

modi�ed version of the split procedure proposed in [Beasley, 1983] for VRP. In our

study we use an e�cient implementation proposed by Vidal in [Vidal, 2016] with

O(nm) time and space complexity. Assuming now that Cη is the total distance, W η

is simply modeled as the residual distance, i.e. W η = mTmax − Cη.

Proposition 3.3.2. Given a giant tour π and a node η in the search tree, the optimal

objective value of the IFKSP is an upper bound on the optimal objective value of the

I.

Proof. Given a giant tour π covering all the customers of I and a node η, we construct

a knapsack instance IFKSP in which, each item πj has a weight w
η
j and a pro�t ρηπj .

Assume ση is the optimal partial sequence in the node η and δη(πj) is the

insertion cost of the customer πj in ση. According to the de�nition of the minimal

cost insertion, it is obvious that wηj ≤ δη(πj) for any potential customer πj in Sηp .

Consequently, the optimal solution for the IFKSP is an upper bound on the pro�t

of ITOP while considering π and η. According to Corollary 3.3.1, IFKSP is also an

upper bound on ICluTOP while considering π and η.

Each customer can have n2 possible insertion positions. In the following, we

propose to reduce this number. Assume that πj is a potential customer and (πl, πr) ∈
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Iηj a possible insertion position. This couple of customers must satisfy the following

rules.

• The �rst rule is that (πl, πr) must not skip any visited customer, i.e. (πl, πr) is

considered only if :

6 ∃j′/(l < j′ < j or j < j′ < r) and πj′ ∈ Sηs (3.2)

• The second rule is that for any skipped customer, its cluster set must not

include the cluster set of any of the involved customers in the insertion (πl, πr
or πj). Let us de�ne Ω(i) as the set of clusters which customer i is included

in, i.e. (πl, πr) is considered only if :

6 ∃j′/(l < j′ < j or j < j′ < r)

and (Ω(πl) ⊆ Ω(πj′) or Ω(πr) ⊆ Ω(πj′) or Ω(πj) ⊆ Ω(πj′)) (3.3)

For computational e�ciency, the best insertion for each customer is pre-

computed beforehand and kept at hand. Each time a cluster is selected or rejected,

the list of possible insertions is updated.

3.3.5 Local search procedure

We propose to improve the split procedure by integrating a Local Search heuristic

(LS). The LS uses some relevant information from the enumeration tree in order

to e�ciently explore the search space alongside with the branch and bound. The

solution value obtained by LS is used also as a lower bound in the branch and

bound.

Each time the LS is called in a given node η, it considers only the selected and the

potential sets of clusters Sηs ∪Sηp . The LS consists of two phases : a destruction phase
which is used as a perturbation technique. It removes a small number of clusters from

the current solution. This number is chosen randomly between 1 and 3. The second

phase, which is depicted in Algorithm 5, is a constructive heuristic which tries to

insert clusters one by one until either the solution cannot accept additional clusters

or there is no clusters left (line 3). It randomly selects in each iteration one unrouted

cluster (line 5) and tries to insert its customers in the current solution. To check

the feasibility of a cluster insertion, this procedure calls an Iterative Destructive

Constructive Heuristic (IDCH) proposed in [Bouly et al., 2010]. If IDCH fails to

insert the customers, the Lin-Kernighan TSP heuristic [Lin and Kernighan, 1973] is

used (line 6).
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Algorithm 5: Iterative insertion

Input: Solution X
Output: Solution X

1 ∆← unrouted clusters of X
2 insert← true
3 while (∆ 6= ∅ and insert = true) do
4 insert← false
5 foreach (k ∈ ∆) do
6 if (IDCH(X, k) = true) or (LinKernighan(X, k) = true) then
7 ∆← ∆\{k}
8 insert← true
9 break

10 return X

3.3.6 Beam search

When the number of clusters becomes large, computational time dramatically

increases. To cope with this problem, we propose to limit the number of nodes

generated during the search process. The main idea is to explore the search tree

using a breadth-�rst search (BFS) and impose a limit on the number of nodes

expanded in each level of the tree (See Algorithm 6). Consequently, this scheme

does not guarantee that the solution found is optimal. Therefore, it is important to

select in each level the most promising nodes to be expanded, so that a good-quality

solution could be found. To this end, we use the knapsack upper bound described

in Section (3.3.4) as a selection criteria. Another important aspect is the number of

nodes selected at each level. This parameter was �xed after experimentation at K

(the number of clusters) nodes per level.

Algorithm 6 describes the whole split procedure. We use in Algorithm 6 two

ordered lists (line 1), one called actList that contains the nodes of the current level,

whereas the second list tmpList contains the nodes of the next level. The lower

bound LB is initialized by the best current best solution of the global heuristic.
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Algorithm 6: SPLIT

Input: giant tour GT , Lower bound LB, current best solution Xbest

Output: best solution Xbest

Data: Ordered lists of size K : actList, tmpList
1 Initialization : ordered list of the clusters Order used as branching strategy,

current level L← 1, current node e← rootNode, actList← e, tmpList← ∅
2 while (actList 6= ∅ and L ≤ K) do
3 Select the best node e in actList based on Knapsack UB (See Section

3.3.4)
4 Expand e to two nodes e1 and e2 based on Order(L) (See Section 3.3.2)
5 foreach (e ∈ {e1, e2}) do
6 if (e is infeasible) then continue (See Section 3.3.3)
7 if (Knapsack UB of (e) ≤ LB) then continue (See Section 3.3.4)
8 tmpList← tmpList ∪ {e}
9 Extract solution X from e
10 Apply LS on X (See Section 3.3.5)
11 if (Eval(X) > Eval(Xbest)) then
12 Xbest ← X
13 if (Eval(X) > LB) then LB ← Eval(X)

14 if (actList = ∅) then
15 actList← tmpList
16 tmpList← ∅
17 L+ +

18 Select the best node e in actList and Extract solution Xbest

19 (See Section 3.3.4)
20 return Xbest

3.4 Performance of the heuristic method

Our heuristic is coded in C++ using the Standard Template Library (STL) for

data structures. Experiments were conducted on a computer with Intel Xeon X7542

CPU@2.66 GHz and a Linux OS 64 bits.

In order to verify the e�ciency of our approach, we used benchmark instances

designed in [Angelelli et al., 2014]. The benchmark is derived from 57 instances of

TSPLIB with the number of vertices ranging from 42 to 532. For each base instance

of TSPLIB, a set of derived instances for the COP is constructed according to

di�erent values assigned to the following parameters :

1. Number of clusters : It varies between the values 10, 15, 20 and 25.

2. Pro�ts of clusters : Two models are used, the �rst is deterministic while the

second is random.
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3. Tmax : Given TSP ∗ the optimal value of TSP over all vertices of the base

instance, Tmax is set to the values 1
2
TSP ∗ and 3

4
TSP ∗.

As a result, 16 di�erent instances are derived from each TSP instance. Furthermore,

12 other instances are added to the biggest class with 532 vertices. These instances

have a larger number of clusters (50, 75 and 100). Thus, the total number of instances

is 924. The instances can be found at the following URL : http ://or-brescia.unibs.it/.

For detailed description of instance generation, the reader can refer to Angelelli et

al. [Angelelli et al., 2014].

3.4.1 Single vehicle

We propose in the following to verify the performance of the hybrid heuristic. We

compared our method with a tabu search based heuristic called COP-TABU, which

was proposed in [Angelelli et al., 2014]. Three variants of COP-TABU were im-

plemented : COP-TABU-Basic, COP-TABU-Multistart and COP-TABU-Reactive.

Tests were conducted on all the 57 classes of the benchmark [Angelelli et al., 2014]

(924 instances). We ran our algorithm 10 times per instance and we recorded the

best solution found.

Table 3.1 summarizes the obtained results. In this table, for each method, we

provide :

• #BEST : The number of times it yields the best known solution.

• RPE : Average percentage error. The RPE for each instance is calculated

using the following expression :

RPE =
Zbest − Zmax

Zbest
× 100 (3.4)

where Zbest is the best solution found among the 10 runs and Zmax is the best

solution in the literature, including our method.

• CPU : The average CPU time.

Tableau 3.1 � Performance of the Hybrid Heuristic

Class
COP-TABU-Basic COP-TABU-Multistart COP-TABU-Reactive Hybrid Heuristic

#BEST RPE CPU #BEST RPE CPU #BEST RPE CPU #BEST RPE CPU

dantzig42 16 0.000 13.27 16 0.000 17.77 16 0 38.95 16 0 2.42

swiss42 13 0.719 15.38 14 0.281 23.09 15 0.013 31.93 16 0 1.56

att48 16 0.000 18.24 16 0.000 26.08 15 0.062 38.76 16 0 5.44

gr48 11 5.709 13.74 12 3.184 26.02 16 0 37.96 16 0 2.06

continued on next page
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Table 3.1 � continued from previous page

Class
COP-TABU-Basic COP-TABU-Multistart COP-TABU-Reactive Hybrid Heuristic

#BEST RPE CPU #BEST RPE CPU #BEST RPE CPU #BEST RPE CPU

hk48 15 1.250 20.58 16 0.000 30.76 15 0.315 37.68 16 0 3.08

eil51 11 2.181 15.92 11 2.181 24.46 15 0.242 36.83 15 0.059 2.71

berlin52 15 0.548 38.88 15 0.120 53.39 15 0.120 60.41 16 0 6.55

brazil58 13 0.573 58.99 14 0.115 75.72 16 0 83.97 16 0 12.58

st70 11 1.303 23.18 11 1.012 38.95 12 0.639 48.01 16 0 5.09

eil76 9 6.407 24.50 10 4.050 33.74 15 0.125 45.84 16 0 4.04

pr76 11 1.014 21.40 13 0.105 30.88 15 0.009 54.76 16 0 8.82

gr96 12 0.612 44.07 13 0.116 51.35 14 0.025 68.19 16 0 9.24

rat99 12 1.752 32.99 12 0.127 52.03 15 0.034 63.65 16 0 11.48

kroA100 11 6.013 44.65 14 0.123 50.98 14 0.429 52.62 16 0 6.22

kroB100 15 0.714 47.96 16 0.000 58.94 16 0 62.20 16 0 7.04

kroC100 10 3.687 37.55 15 0.269 48.74 14 0.452 59.42 16 0 7.35

kroD100 10 1.879 36.85 11 1.247 56.70 13 0.520 69.57 16 0 9.08

kroE100 12 2.889 46.59 12 1.374 48.83 14 0.270 62.77 16 0 6.47

rd100 12 1.431 36.51 13 1.030 47.81 15 0.568 82.29 16 0 8.02

eil101 7 2.495 32.97 12 0.729 44.62 16 0 79 15 0.030 9.46

lin105 11 1.393 36.06 13 0.461 52.48 14 0.348 105.21 16 0 20.80

pr107 13 6.350 72.19 15 0.203 86.35 15 0.160 135.39 16 0 60.38

gr120 10 2.917 50.87 11 2.856 66.36 14 0.185 105.25 16 0 17.78

pr124 14 1.180 80.33 16 0.000 88.26 16 0 150.15 16 0 25.90

bier127 12 0.873 63.05 14 0.108 94.57 15 0.005 149.64 16 0 23.89

ch130 7 4.016 49.79 9 2.949 64.58 12 1.376 106.57 16 0 13.88

pr136 12 1.588 59.86 14 0.949 71.37 15 0.694 121.5 16 0 17.50

gr137 15 0.156 82.07 16 0.000 104.45 16 0 181.54 16 0 19.93

pr144 16 0.000 168.25 16 0.000 175.28 16 0 247.29 16 0 39.90

ch150 8 2.684 34.19 8 2.543 53.97 14 0.554 101.37 16 0 19.29

kroA150 9 1.002 36.84 13 0.228 50.6 14 0.074 102.11 16 0 18.40

kroB150 8 2.456 40.06 10 2.127 56.69 14 0.621 107.93 16 0 15.27

pr152 15 0.545 120.08 16 0.000 164.81 16 0 248.1 16 0 38.57

u159 6 3.300 113.36 9 2.373 125.51 8 1.447 184.68 16 0 54.53

si175 16 0.000 47.69 16 0.000 63.36 16 0 126.80 16 0 274.37

brg180 12 0.656 54.29 13 0.578 72.18 15 0.091 127.74 16 0 177.20

rat195 12 0.531 68.18 10 0.209 78.52 14 0.401 172 16 0 45.40

d198 15 0.062 172.56 16 0.000 217.29 16 0 368.98 16 0 43.81

kroA200 11 1.130 55.09 12 1.093 76.17 14 1.052 139.43 16 0 33.13

kroB200 8 2.610 71.45 10 1.978 87.73 13 0.129 142.43 16 0 32.43

gr202 11 1.256 88.17 12 1.001 121.27 16 0 236.24 16 0 47.86

ts225 12 0.259 162.94 12 0.158 189.13 15 0.019 234.81 16 0 61.22

tsp225 9 1.583 87.78 9 0.495 102.99 11 0.142 180.26 16 0 59.03

pr226 12 0.872 244.84 12 0.787 268.33 15 0.042 331.10 16 0 96.38

gr229 15 0.023 109.99 15 0.023 121.07 15 0.023 170.85 16 0 30.45

gil262 7 8.107 57.09 6 4.296 84.20 10 2.441 135.48 15 0.032 63.58

pr264 11 4.230 151.96 10 4.243 208.51 14 0.323 304.70 16 0 79.42

a280 11 0.159 99.98 12 0.156 150.54 10 0.255 191.39 14 0.029 199.93

pr299 10 1.097 105.14 10 1.089 125.98 12 0.614 205.23 16 0 184.52

lin318 8 1.009 247.01 9 0.870 260.81 11 0.492 311.25 16 0 234.81

rd400 9 2.387 100.44 10 1.808 147.13 11 1.784 203.08 16 0 203.84

fl417 11 1.055 518.97 12 0.397 577.53 13 0.079 708.57 16 0 194.10

gr431 12 0.788 236.75 15 0.009 252.35 16 0 280.53 16 0 152.84

pr439 11 0.685 180.16 13 0.074 221.23 14 0.058 324.17 16 0 202.01

pcb442 12 0.331 151.28 11 0.549 199.82 13 0.532 274.18 16 0 306.97

d493 7 1.157 418.35 9 1.208 419.66 12 1.051 515.84 16 0 362.25

continued on next page
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Table 3.1 � continued from previous page

Class
COP-TABU-Basic COP-TABU-Multistart COP-TABU-Reactive Hybrid Heuristic

#BEST RPE CPU #BEST RPE CPU #BEST RPE CPU #BEST RPE CPU

att532 17 1.725 1707.99 20 1.415 2180.37 25 0.888 2244.39 25 0.074 1848.53

Total 657 1.499 153.719 720 0.843 174.37 816 0.328 223.88 916 0.005 118.36

On the basis of Table 3.1, we observe that our heuristic algorithm outperforms

all COP-TABU versions. It delivers 82 new BKS to reach 916 BKS. On the other

hand the three tabu versions heuristics yield 656, 720 and 816 BKS. Moreover,

our heuristic exhibits a very small relative percentage error of 0.005 compared to

0.328 for COP-TABU (Reactive). Finally, we observe that our method improves the

results of several classes of instances namely : ch150, u159, tsp225, gil262, a280, . . ..

To have more insight, we propose in the following to study the impact of the

number of clusters on the performance of the heuristic methods. We note that the

pro�t generation pattern and the value of θ did not re�ect any evident impact on

the behavior of neither COP-TABU [Angelelli et al., 2014] nor the hybrid heuristic.

We compare in a �rst step the heuristic results with the optimal solutions and the

best upper bounds obtained by the exact methods (the cutting plane of the branch-

and-cut algorithms).

Figures 3.1 and 3.3 show the heuristics' results related to instances with up to 318

vertices (800 small instances) compared with the results of exact methods presented

in [Angelelli et al., 2014] and Chapter 2. Figures 3.1 reports the average gap with

respect to the upper bound while �gure 3.3 illustrates the gap to the optimal solution

while considering optimally solved instances only. According to �gure 3.1, the hybrid

heuristic achieved an average gap below 1.2%, whilst the best tabu variant, the COP-

TABU-Reactive, has an average gap below 1.7%. The other COP-TABU variants

achieved relatively higher gaps with less than 3.4% for COP-TABU-Basic and less

than 2.2% for COP-TABU-Multistart. It is noteworthy to mention that the gaps of

COP-TABU are less than those reported in [Angelelli et al., 2014], which were about

4.8% for COP-TABU-Reactive. This is due mainly to the substantial improvement

made by the cutting plane, and hence, gaps to the upper bound are more related

to the performance of the heuristic methods rather than the quality of the upper

bound.

Regarding the gap to the optimal solution, our heuristic achieved almost 0% on

instances with up to 318 vertices, while COP-TABU-Reactive succeeded to have a

gap less than 0.3%. More in detail, among 679 instances solved to optimality by all

the exact methods, the hybrid heuristic �nds 677 optimal solutions, COP-TABU-
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Figure 3.1 � Gap with respect to the
upper bound

Figure 3.2 � Gap with respect to the
best solution found

Figure 3.3 � Gap with respect to the
optimal solution

Figure 3.4 � Computational time

Reactive �nds 626, COP-TABU-Multistart and COP-TABU-Basic �nd 565 and 514

respectively.

Figures 3.2 and 3.4 illustrate a comparison between all the heuristics while

considering all the benchmark instances. Figure 3.2 depicts the average error with

respect to the best solution found by the four heuristics. We notice that the hybrid

heuristic succeeded to maintain a gap close to 0% regardless of the number of

clusters, except for K = 100, where the gap did not exceed 0.5%, whereas COP-

TABU-Reactive, which the best COP-TABU variant, achieved a gap of 5.9% for

the same number of clusters. Results concerning computational time depicts the

same behavior for all the heuristics : the more the number of clusters, the more are

computational times. We notice also a slight advantage for our heuristic when the

number of clusters goes up.
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3.4.2 Multiple vehicles

In this last section, we discuss the performance of our proposed heuristic in the case

of multiple vehicles. In Table. 3.2, we provide the following measurements for our

heuristic :

• UBGap : Average deviation gap with respect to an upper bound ;

• OptGap : Average deviation gap with respect to the optimal solution value ;

• #Opt : Number of times it yields the optimal solution ;

• CPU : Average CPU time ;

• AV G : the error gap between the average solution value and the best solution

value among the ten executions of each instance.

The results depicted in Table 3.2 con�rm the robustness of our heuristic method

in the case of multiple vehicles. Computational times remain relatively stable and

very close to the instances with a single vehicle . We can also observe a slight

increase in the value of AV G when the number of vehicles increases but still has

small values (2.1% for three vehicles and 0.3% with a single vehicle). We observe

that UBGap drastically increases in the case of multiple vehicles compared to a

single vehicle. This is mainly due to the poorness of the upper bounds rather than

to the performance of the heuristic since the gap to the optimal solution (OptGap)

is close to 0. In addition, the heuristic method succeeds in �nding almost all the

optimal solutions found by the exact method : 400/405 with two vehicles, 496/502

with three vehicles and 677/679 in the case of a single vehicle.

Tableau 3.2 � Multiple vehicles

UBGap OptGap #Opt CPU AV G

1 vehicle 0.8% ≈ 0% 677/679 118.46s 0.3%

2 vehicles 10.1% 0.03% 333/337 108.4s 1.06%

3 vehicles 11.61% 0.55% 459/463 109.65s 2.49%

Figures 3.5, 3.6 and 3.7 depict the performance of the heuristic with respect

to the number of vehicles and the number of clusters. According to �g. 3.5, the

gap to the upper bound does not show any clear behavior since the gap remains

relatively high regardless of the number of clusters for two and three vehicles. This

is mainly due to the poorness of the upper bounds as described earlier. Regarding

computational times, we can observe that the number of vehicles does not a�ect the
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Figure 3.5 � Average gap to the best
upper bound.

Figure 3.6 � Computational times with
respect to the number of clusters.

Figure 3.7 � Computational times with respect to the number of clusters on instances
with 532 vertices.

behavior of the heuristic for instances with up to 25 clusters (�g. 3.6). Interestingly,

for instances with 532 vertices (att532), we notice that the behavior of the heuristic

incurs some changes especially for 50, 75 and 100 clusters, as shown in �g. 3.7.

Computational times of the heuristic tend to stabilize in the case of two and three

vehicles, but continues to increase in the case of a single vehicle.

3.5 Conclusion and future work

In this chapter, we proposed a hybrid heuristic for the Clustered Orienteering

Problem. This heuristic is composed of a split procedure that evaluates e�ciently

giant tours and an Adaptive Large Neighborhood Search heuristic. The split

procedure is based on a branch and bound scheme, in which an e�cient upper

bound based on the Knapsack Problem is used. A Local Search procedure is

also incorporated inside the split procedure. The LS is applied each time on a

subset of clusters in order to �nd better combination of clusters quickly. The
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computational results show clearly the e�ciency of our method compared to the

existing heuristic methods. As future work, our aim is to propose di�erent extensions

for the CluTOP. Also, additional constraints like time windows or vehicle capacity

should be considered.
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4.1 Introduction

Wild�res have become in the last decade a frequent phenomenon causing important

damages to private properties, community assets as well as human life. Many

countries have witnessed the devastating impact of wild�res on the nature and

human activities. Asset protection activities performed by Incident Management

Teams (IMT) during wild�res are therefore of a crucial importance in order to

minimize risks of losing vital infrastructure. However, several challenging tasks

and di�culties complicate the working environment of IMT's in which they

must make critical and complex decisions. Thus, the application of operations

research techniques, like mathematical programming and heuristics, can enhance

the management of wild�res in such hostile situations.

65
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We consider the case of an out of control wild�res spreading across a landscape

and threatening a number of assets like bridges, electric substations, schools and

factories. Defensive activities carried out by IMT near of assets before �re impact

are important to reduce the risk of losing them. Examples of defensive tasks are

removing debris and combustible materials, wetting down buildings or putting out

�res. To be successful, IMT activities should take action before �re fronts reach

endangered assets, but not too early otherwise the intervention would be ine�ective.

To that end, �re progression can be estimated by using meteorological data and �re

propagation models. Moreover, some assets may require the intervention of several

trucks and equipment with speci�c capabilities. These trucks should collaborate

together in a timely manner to carry out protection activities.

Such situation can be modeled using vehicle routing problems with additional

constraints such as time windows and synchronized visits. A �eet of heterogeneous

vehicles is available to visit a set of assets. Each asset is associated with a time

window representing �re fronts progression. An asset is also assigned a service

time duration which models the time necessary to perform the protection activities.

Finally, each asset has a resource requirements which are expressed by the number

and type of required vehicles. Due to these constraints, protecting all the assets

might be impossible. Hence, a value, called pro�t, is associated with each asset in

order to distinguish between di�erent assets according to their relative importance.

In order to gain the pro�t of a given asset, it must be visited by the required resources

in a synchronized manner, i.e. the visits should be performed simultaneously and

cooperatively by the vehicles within the corresponding time window. As a result, the

objective function aims at maximizing the amount of pro�t collected. In the rest of

the paper, we denote this problem as the Synchronized Team Orienteering Problem

with Time Windows (STOPTW).

The STOPTW was �rst proposed by [van der Merwe et al., 2014] under the

Asset Protection Problem During Escaped Wild�re. The authors introduced

a mixed integer programming model for the asset protection problem during

escaped wild�res, which was demonstrated on a realistic wild�re scenario in

Tasmania. [Roozbeh et al., 2018] proposed an Adaptive Large Neighborhood Search

Heuristic (ALNS) for the problem along with new set of benchmark instances.

[van der Merwe et al., 2017] developed a dynamic approach to reroute vehicles

during �re�ghting once disruptions occur. The method aims at maximizing the total

value of protected assets while minimizing the number of changes on rescue plans

elaborated earlier.

In this paper, we propose a new constraint programming model for the

STOPTW. The CP model succeeds to solve to optimality all the small instances.
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For medium-size instances, the CP model �nds very competitive results compared

to the ALNS method proposed in [Roozbeh et al., 2018]. We also propose a Greedy

Randomized Adaptive Search Procedure (GRASP) coupled with an Iterated Local

Search (ILS) as a heuristic method. The GRASP×ILS incorporates an insertion

method based on a constraint programming model which is used to repair partially

destroyed solutions. A post-optimization module based on a set covering formulation

is used to extract the best solution from a pool of feasible tours.

The remainder of this paper is organized as follows. The mathematical formula-

tion of the problem is given in Section 4.2. A new formulation that uses only binary

and real decision variables is provided in Section 4.3. The Constraint Programming

model is described in Section 4.4. The GRASP×ILS method is introduced in Section

4.5. Computational tests carried out on the methods proposed in this paper are

extensively described in Section 4.6. Finally, a conclusion and some perspectives are

given in Section 4.7.

4.2 Problem description and mathematical formu-

lation

A mixed integer programming model (MIP) for the STOPTW was proposed in

[van der Merwe et al., 2014]. Let G = (V,A) be a directed graph where V =

{0, 1, . . . , n + 1} is the vertex set and A = {(i, j) : i, j ∈ V, i 6= j} is the arc

set. The set V − = {1, . . . , n} represents the set of assets to be protected whereas

0 and n + 1 represent the departure and arrival depots. For convenience, we de�ne

two index sets V d = {0, 1, . . . , n} and V a = {1, 2, . . . , n + 1}. A �eet with di�erent

vehicle types q ∈ Q is used to serve the assets with Pq vehicles of each type q are

available. A cost tijk is used to model the travel time necessary for a vehicle of type

q ∈ Q to traverse arc (i, j) ∈ A. Each asset i ∈ V − is associated with the following

data :

• a time window [oi, ci], where oi represents the earliest service time and ci the

latest service time.

• a resource requirements vector Ri =< ri1, ri2, . . . , ri|Q| >, where riq is the

number of vehicles of type q (1 < q < |Q|) required by asset i.

• a service duration ai, which is the time needed to protect asset i during wild�re.

• a pro�t pi that represents the value of asset i.
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Before detailing the mathematical programming model, we �rst introduce the

decision variables.

• yi : binary decision variable, it takes the value 1 if vertex i is protected, 0

otherwise.

• si : real decision variable in [oi, ci] associated with each vertex i ∈ V , at which
the service must start in order to protect asset i and gain its pro�t.

• zijq : binary decision variable, equal to 1 if the arc (i, j) is traversed by at least

one vehicle of type q, 0 otherwise.

• xijq : integer decision variable, it indicates the number of vehicles of type q

that traversed the arc (i, j).

We introduce in the following the mathematical formulation of the problem :

max
n∑
i=1

piyi (4.1)

∑
i∈V a

x0iq =
∑
j∈V d

xj,n+1,q = Pq ∀q ∈ Q (4.2)

∑
j∈V d

xjiq =
∑
h∈V a

xihq ∀q ∈ Q,∀i ∈ V − (4.3)

∑
j∈V d

xjiq = Riqyi ∀q ∈ Q, ∀i ∈ V − (4.4)

xijq ≤ Pqzijq ∀q ∈ Q,∀(i, j) ∈ A (4.5)

zijq ≤ xijq ∀q ∈ Q,∀(i, j) ∈ A (4.6)

si + tijq + ai − sj ≤M(1− zijq) ∀q ∈ Q, ∀(i, j) ∈ A (4.7)

oi ≤ si ≤ ci ∀i ∈ V (4.8)

xijq ∈ {0, 1, 2, . . . , Pq} ∀q ∈ Q, ∀(i, j) ∈ A (4.9)

yi ∈ {0, 1} ∀i ∈ V − (4.10)
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zijq ∈ {0, 1} ∀q ∈ Q, ∀(i, j) ∈ A (4.11)

The objective function (4.1) is to maximize the total collected pro�t. Constraints

(4.2) ensure that all the Pq available vehicles start from the departure depot and

end at the arrival depot. Constraints (4.3) impose that the number of incoming and

outgoing vehicles is the same at each asset and for each vehicle type. Constraints

(4.4) ensure that if a customer is served, then all of its requirements in terms of

number of vehicles are met. Constraints (4.5) limit the capacity of each arc of

type q to at most Pq vehicles. Constraints (4.6) are coupling constraints between

z and x variables. Constraints (4.7) guarantee the connectivity of each tour whereas

constraints (4.8) are the time windows constraints. Constraints (4.9),(4.10) and

(4.11) are domain de�nitions.

4.3 New formulation

The mathematical model provided in previous section contains, in addition to real

and binary decision variables, an integer variable z. We propose in this section a

mathematical formulation that uses real and binary decision variables only. Let us

�rst consider an auxiliary directed graphH = (X,A), whereX = {0, 1, . . . , N,N+1}
is the set of vertices with 0 and N + 1 are, respectively, the departure and the

arrival depots, and A is the set of arcs. Each asset is represented in H by a set of

superposed vertices, whose the number depends on the resources required by this

asset. For instance, if a given asset needs one vehicle of type q ∈ Q and one vehicle

of type q′ ∈ Q, two superposed vertices will be associated with it. As a result, the

set of vertices X is the union of |Q| disjoint sets X = ∪q∈QXq, where each set Xq

contains the vertices related to the type q ∈ Q of vehicles. We denote by X−q , X
d
q

and Xa
q , respectively, the set of vertices of type q ∈ Q without the depots, the set of

vertices of type q ∈ Q without the arrival depot and the set of vertices of type q ∈ Q
without the departure depot. We denote by Syncj the set of vertices associated with

asset i ∈ V , whereas Sync−1
j is used to denote the asset associated with the vertex

j ∈ X. We also use the additional following decision variables described as follows :

• uj binary variable equal to 1 if vertex j is visited, 0 otherwise.

• wij binary variable equal to 1 if the arc (i, j) is traversed by a vehicle, 0

otherwise.

max
n∑
i=1

piyi (4.12)
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∑
i∈Xq

w0i =
∑
j∈Xq

wj,N+1 = Pq ∀q ∈ Q (4.13)

∑
j∈Xd

q

wji =
∑
h∈Xa

q

wih ∀i ∈ Xq,∀q ∈ Q (4.14)

∑
j∈Xd

q

wji = ui ∀i ∈ Xq ∀q ∈ Q (4.15)

uj = yi ∀j ∈ Synci,∀i ∈ V (4.16)

sSync−1
i

+ tij + ai − sSync−1
j
≤M(1− wij) ∀i, j ∈ Xq|(i, j) ∈ A ∀q ∈ Q (4.17)

oi ≤ si ≤ ci ∀i ∈ V (4.18)

yi ∈ {0, 1} ∀i ∈ V (4.19)

ui ∈ {0, 1} ∀i ∈ X (4.20)

wij ∈ {0, 1} ∀i, j ∈ Xq|(i, j) ∈ A ∀q ∈ Q (4.21)

The objective function (4.12) aims to maximize the total collected pro�t.

Constraints (4.13) impose a limit on the number of vehicles of each type q ∈ Q,

whereas �ow conservation constraints are imposed by (4.14). Constraints (4.15)

along with (4.16) guarantee the respect of resource requirements in case an asset is

served. Temporal constraints are assured by (4.17) and (4.18). Domain de�nitions

are described by (4.19-4.21).

4.4 Constraint programming model

We propose in the following a constraint programming (CP) based model for

the STOPTW. CP is a powerful paradigm able to �nd good quality solutions in

short computational times. The key feature of CP is the mechanism of constraint

propagation which is used to �lter out variable values that cause infeasibility.

More speci�cally, complex relationships between variables are expressed using
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global constraints. These constraints are associated with e�ective �ltering domain

algorithms, which are triggered whenever a change occurs in the domain of a shared

variable. The aim is to propagate the new information to other constraints so that

domain values of other decision variables can be reduced.

This paradigm has been widely used to solve scheduling and timetabling

problems. However, few works that use CP for routing problems have been published.

Gedik et al. [Gedik et al., 2017] proposed a CP model for the Team Orienteering

Problem with Time Windows (TOPTW), in which they tested di�erent branching

strategies. The CP model succeeded to solve to optimality a large number of

instances and found a new optimal solution for one benchmark instances. Rousseau

et al. [Rousseau et al., 2013] proposed a �exible heuristic based on a CP model to

solve an online variant of vehicle routing problem with synchronized visits called

the Synchronized Dynamic Vehicle Dispatching Problem (SDVDP). The same CP

model was used to solve the o�ine version of the problem in [Hojabri et al., 2018].

The proposed CP model is based on interval decision variables. This type of

variables, initially designed to solve scheduling problems, is capable of representing

several critical decisions such as start times, services/jobs duration and end times

in a single decision variable [IBM, 2018]. This characteristic allows to considerably

reduce the number of decision variables compared to the traditional mathematical

programming. Another important characteristic of interval variables is their inherent

boolean behavior. By declaring an interval variable as optional, it may or it may not

appear in the �nal solution. This feature is very useful in order to model assignment

decisions in scheduling problems or the selectivity aspect in team orienteering

problems. In addition, binary relationships that involve optional interval variables

are systematically discarded when one of the sides is absent in the solution, which

avoids the need to additional decision variables or constraints.

We present in the following some necessary notation and decision variables used

in the CP model.

• asti : an optional interval variable associated with asset i ∈ V −. This interval
variable is associated with the earliest start time oi, the latest end time ci + ai

and the service time duration ai. If asset i is present in the optimal solution,

asti provides then its starting service time si within [oi, ci].

• vstiqp : an interval variable which indicates whether the asset i ∈ V is visited

by vehicle p ∈ {1, . . . , Pq} of type q ∈ Q. Variables vstnqp and vst(n+1)qp are

mandatory and they represent the departure and the arrival depots, whereas

interval variables vstiqp, i ∈ V − are optional. We set for each i ∈ V − an

earliest start time oi and a latest end time ci + ai. If i = n, the latest start
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time is set to 0.

• vhclqp : an interval sequence variable de�ned on the set Sqp of interval variables
where Sqp = {vst0qp, . . . , vst(n+1)qp}, p ∈ {1, . . . , Pq}, q ∈ Q. The variable

vhclqp indicates the assets visited by vehicle p ∈ {1, . . . , Pq} of type q ∈ Q as

well as the ordering of these visits. Absent interval variables are not considered

in the ordering.

• Giq = {vstiq1, vstiq2, . . . , vstiqPq} : a set of interval variables that contains the

possible vehicles of type q ∈ Q that can visit the asset i ∈ V −.

Despite the several initiatives launched over the past years, there is no

standardized formalism for CP. As a result, we adopted a syntax close to that of

the implementation. In addition, some decision variables as well as some global

constraints used in our model are extracted from IBM's CP Optimizer solver and

may not be provided by other solvers such as Gecode.

Alternative(b0, {b1, b2, . . . , bn}, k) global constraint establishes an exclusive rela-

tionship among interval variables {b1, b2, . . . , bn}. If interval variable b0 is present,

then exactly k interval variables in {b1, b2, . . . , bn} must be present. Moreover, the

selected variables must start and end at the same time as b0.

NoOverlap(B, TansitionDistance(.)) global constraint assures that the interval

variables in the interval sequence variable B must be ordered in a such way that

there is no overlapped variables, i.e. if bi precedes bj in B, then bi must end before bj
starts. In addition, the function TransitionDistance(.) imposes a minimum distance

between every couple of interval variables in B present in the �nal solution.

The CP model for STOPTW, denoted by CP-STOPTW, is as follows :

max
∑
i∈V −

pi · PresenseOf(asti) (4.22)

Alternative(asti, Giq, riq) ∀i ∈ V −,∀q ∈ Q (4.23)

NoOverlap(vhclqp, T ransitionDistance(tij|i ∈ V d, j ∈ V a)) ∀q ∈ Q,∀p ∈ {1, . . . , Pq}
(4.24)

vhclqp.F irst(vstnqp) ∀q ∈ Q,∀p ∈ {1, . . . , Pq} (4.25)

vhclqp.Last(vst(n+1)qp) ∀q ∈ Q,∀p ∈ {1, . . . , Pq} (4.26)
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The objective function is to maximize the total collected pro�t (4.22). The

function PresenceOf is used to verify whether the interval variable in argument

is present in the �nal solution or not. Constraints (4.23) guarantee that the resource

requirements are satis�ed in terms of number and type of vehicles. At the same

time, they assure the synchronization between di�erent vehicles visiting the same

asset using the global constraint Alternative. Constraints (4.24) guarantee that

the routes assigned to vehicles are feasible in terms of time windows and travel

times through the global constraint NoOverlap. TransitionDistance(i, j) return

the minimal travel time between every couple of assets. These constraints help also

to prevent the existence of sub-tours in the �nal solution. Constraints (4.25) and

(4.26) impose that the vehicles should start and end at the depot.

4.5 GRASP×ILS

Greedy Randomized Adaptive Search Procedure (GRASP) is a multi-start local

search metaheuristic introduced by Feo and Resende in [Feo and Resende, 1995]. In

each iteration, a new solution is generated using a greedy randomized heuristic. A

local search procedure is then applied in order to improve the current solution.

The best solution is recorded and updated each time a new best solution is

found. The Iterated Local Search (ILS) is a heuristic scheme introduced in

[Lourenço et al., 2003]. The basic idea of this method is to construct in each iteration

a new solution using an embedded heuristic, but instead of starting each time from

scratch or from a random solution, the embedded heuristic uses the solution of the

previous iteration. The series of locally optimal solutions produced by this process

can be seen as a single chain followed by the ILS. In GRASP×ILS, the local search
phase in GRASP is replaced by the ILS in order to diversify the search and cover a

larger search space. GRASP×ILS was successfully applied on many vehicle routing

problems such as two-echelon location-routing problem [Nguyen et al., 2012], the

periodic VRP with time windows [Michallet et al., 2014], and recently applied on a

VRP with synchronization and precedence constraints [Haddadene et al., 2016]. In

this section, we present our GRASP×ILS global framework to solve the STOPTW.

Two ILS stages are embedded inside the GRASP, the �rst stage is based on a

heuristic insertion method based on a candidate list (see Section 4.5.2). In the second

stage ILS, a CP based insertion is used to repair partially destroyed solutions (see

Section 4.5.3). At the end of each iteration of the GRASP, a post-optimization phase

based on a set cover formulation is launched on a set of routes generated during ILS

stages. The aim is to �nd the best combination that maximizes the total collected

pro�t.
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4.5.1 General �ow

The key feature of our method is the use of two di�erent insertion algorithms

inside the GRASP. The �rst method is heuristic. It constructs the solution in

a greedy fashion by iteratively inserting unrouted assets one by one based on a

candidate list. The second approach is based on constraint programming, which

tries to insert the maximum of assets in an exact fashion having as global objective

the maximization of the total collected pro�t. CP-based construction proved to

be very e�ective especially in routing problems with synchronization constraints

[Hojabri et al., 2018, Rousseau et al., 2013]. Although the CP-based insertion is

expensive in terms of computational time, it allows the ILS to cover larger

neighborhood than the heuristic approach. Hence, a good compromise between

the two methods would be interesting. The GRASP×ILS metaheuristic is sketched

in Algorithm 7. The outer loop describes the structure of the GRASP in which

IterMaxG initial solutions are generated from scratch using candidate list-based

insertion algorithm, described in Section 4.5.2. Each initial solution S is then

improved using two blocks of iterative local search ILS. The �rst ILS block (lines 5-

14) incorporates a perturbation phase, which partially destroys the current solution,

and a repair phase performed by the candidate list-based insertion. Each time a new

best solution is found, Sbest is updated. The process is completed after IterMaxCL

iteration without improvement. The second ILS block (lines 18-25) starts also by

removing a subset of assets from the solution. The repair phase is performed by the

CP-based insertion described in Section 4.5.3. This process is repeated until a new

best solution is found or IterMaxCP iterations are expired. After the two ILS are

completed, the global best solution S∗ is updated.

A suitable perturbation technique is necessary for the ILS in order to improve the

quality of its solutions. To that end, in each iteration of the ILS, a number of assets

are randomly selected and removed from the current solution. The perturbation

parameter (dCL or dCP ) is initialized to 3 and is incremented after each iteration

without improvement. Once a new best solution is found, the perturbation parameter

is reset to 3. The number of assets to remove is important for the overall performance

of the heuristic. When it has small values, it allows the ILS to explore the close

neighborhood of the passed solution. On the other hand, when it has a large value,

it gives the ability to the ILS to escape from local optima.

4.5.2 Candidate list-based insertion

The main component of ILS is the insertion algorithm. This algorithm starts from

an initial solution, that can be empty, and add unrouted assets one by one. The
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Algorithm 7: GRASP×ILS
Input: Solution S∗

1 for i← 1 to IterMaxG do
2 S ← CandidateListInsertion(S)
3 Sbest ← S
4 IterCL ← 0
5 while IterCL < IterMaxCL do
6 dCL ← U(1, dmax) Remove d assets from S
7 S ← CandidateListInsertion(S) (see Section 4.5.2)
8 if (Profit(S) > Profit(Sbest)) then
9 Sbest ← S
10 dCL ← 3
11 IterCL ← 0

12 else
13 dCL ← dCL + 1
14 IterCL ← IterCL + 1

15 S ← Sbest
16 IterCP ← 0
17 NoImpr ← true
18 while (IterCP < IterMaxCP ) and (NoImpr = true) do
19 Remove dCP assets from S
20 S ← CPBasedInsertion(S) (see Section 4.5.3)
21 if (Profit(S) > Profit(Sbest)) then
22 Sbest ← S
23 NoImpr ← false

24 else dCP ← dCP + 1
25 IterCP ← IterCP + 1

26 Sc ← setCover() (see Section 4.5.4)
27 if (Sc > Sbest) then Sbest ← Sc
28 if (Sbest > S∗) then S∗ ← Sbest

29 return S∗

insertion process stops when all the assets are inserted or no more insertions are

possible. The order of insertions is based on a preceding sorting of assets according

to non-decreasing values of a speci�c criterion. We consider in the insertion criterion

the following factors :

• Since the objective function is to maximize the collected pro�t, this criterion

favors the assets with higher values of pro�t to be inserted.

• We also consider in the sorting criterion the width of the time windows.

Intuitively, assets with large time windows are likely more �exible to insert.

Thus, assets with tight time windows have the priority to be inserted �rst in
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the solution.

• An other factor is considered in the criterion which is the number of required

resources : it might be more di�cult to �nd enough feasible positions for assets

with a large number of resource requirements. Hence, it is more interesting to

insert them during the early stages.

It is noteworthy to mention that it is more interesting to evaluate these factors

at the same scale size. Hence, we propose to divided each factor by its maximum

possible value in order to have it within the interval [0, 1].

Let tmax be the length of the longest time window, Pmax be the best pro�t among

all the assets and rmax be the maximum number of vehicles required by the assets.

The insertion criterion is calculated for each asset as follows :

Cri(α, β, γ) =
( ci−oi
tmax

)β

( pi
pmax

)α( ri
rmax

)γ
(4.27)

As shown in equation (4.27), the three factors are weighted using the parameters

α, β and γ. These parameters are adjusted through the solution process in order to

control the relative importance of di�erent factors, and hence, enable the insertion

heuristic to cover a large part of the search space. Moreover, several combinations

of (α,β,γ) are separately generated at each iteration of ILS in order to boost the

convergence of the heuristic. The process used to generate the weights is described

as follows : the initial values of α, β and γ are set to 0.5. Then, six functions

fl, l ∈ {1, . . . , 6} are used to calculate six new combinations of (α,β,γ) at each

iteration. In the �rst four functions fl, l ∈ {1, . . . , 4}, the value of α is set to 1,

whereas the values of β and γ in the previous execution are slightly modi�ed within

the interval [0, 1]. They are either increased or decreased by a step of 0.1. This results

in four di�erent combinations of (β,γ). In the �fth function f5, β and γ are randomly

generated while α is always set to 1. The last function randomly generates all the

parameters within [0, 1]. At the end of each iteration of the ILS, the combination

that led to the solution with the best collected pro�t is used in the next iteration.

In each iteration of the insertion algorithm, the �rst asset is chosen from the

insertion list. Then, feasible positions in terms of time windows are calculated and

one position is randomly selected. The process is reiterated until all the assets in the

list are inserted or no feasible insertion is found. Since the feasibility of time windows

is checked many times during the search process, an e�cient way to verify the

feasibility in a constant time is of great importance. To reach that, some information

need to be archived and updated after each insertion. We de�ne Maxshifti as

the maximum delay allowed for the service of asset i in case an unrouted asset
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get inserted before i. Let us also denote by Arrki the arrival time of vehicle k at

asset i, and let Stri be the service starting time of asset i. Due to synchronization

constraints, the starting time service may be delayed so that all the assigned vehicles

are present at the asset. It holds that :

Stri = max{oi,max
k∈R
{Arrki }} (4.28)

Following this, if an asset i is visited by vehicle k, the waiting time is :

Waitki = Stri − Arrki (4.29)

If vehicle k does not visit the asset i, Waitki is set to +∞. We denote by k(p)

the pth asset visited by vehicle k. In order to calculate the Maxshifti of asset i, we

calculate �rst di�erent Maxshiftki for each vehicle k ∈ Ri, where Ri is the set of

vehicles that visit asset i :

Maxshiftki=k(p) = min{ck(p) − Strk(p),Waitkk(p+1) +Maxshiftk(p+1)} k ∈ Ri

(4.30)

Hence, the value of Maxshifti is calculated as follows :

Maxshifti = min
k∈Ri
{Maxshiftki } (4.31)

On the other hand, if an asset i get inserted in route k between p and p+ 1, the

generated shift (Shiftk,pi ) is calculated as :

Shiftk,pi = tk(p)i +Waitki + ai + tik(p+1) − tk(p)k(p+1) (4.32)

Subsequently, an insertion is feasible if the value of Shiftk,pi is less than or equal

to the sum of Waitk(p+1) +Maxshiftk(p+1).

Since the routes are interdependent, an update needs to be propagated through

all the solutions after each insertion. However, the propagation may loop in�nitely

if cross synchronizations are not prohibited : when asset j is visited before i in a

route, visiting i before j should be prohibited in any other routes. To avoid such

situations, another feasibility check called the cross-synchro-feasibility is performed

before the insertion of assets that require multiple vehicles. This test is carried out

in a constant time (O(1)) thanks to the transitive closures [Aho et al., 1972].

The insertion algorithm is described in Algorithm 8.
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Algorithm 8: Insertion Algorithm

Input: Solution S, parameters (α,β,γ)
1 σ ← Sort unrouted assets to non-decreasing values of Cri(α, β, γ)
2 insert = true
3 while (insert AND σ 6= ∅) do
4 insert = false
5 for (i = 0; i < |σ|; i+ +) do
6 k = 1
7 while (k ≤ rσi) do
8 Pos← all positions in S // depends on the type the vehicle
9 foundPos = false
10 foreach ((r, p) ∈ Pos randomly selected) do
11 //(r : a route of S, p : position in r)
12 if (k > 1) then
13 if ((r, p) is not cross-synchro-feasible for σi) then continue

14 if ((r, p) is not time-window-feasible for σi)) then continue
15 Insert σi in position (r, p)
16 Update S
17 foundPos = true break

18 if (foundPos = false) then break
19 k + +

20 if (k ≤ ri) then Remove σi and update S
21 else insert = true

22 return S

4.5.3 CP-based insertion

The reconstruction phase in based on the CP model, introduced in Section 4.4.

The basic idea behind is to use the constraint propagation mechanism of CP in

order to further reduce the feasible region of the search space. Given a partial

solution S with P is the set of served assets and {Vqp | q ∈ Q, p ∈ P} is the set of
routes, performing the insertion is simply solving CP-STOPTW with the additional

following constraints.

The �rst set of constraints are the selection constraints, which are used to impose

the presence of the assets that exist in the partial solution S. Let P be the set of

served assets in S, the constraints are :

PresenceOf(asti) = 1 ∀i ∈ P (4.33)

The second family is the assignment constraints. it imposes which vehicles are

used to visit a given asset i. Assume that asset i is visited by vehicle p of type q,

the resulted constraint is :
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PresenceOf(vstipq) = 1 (4.34)

The third family is the routing constraints. It is used to impose the order of visits

carried out by a single vehicle.

EndBeforeStart(vstipq, vstjpq) = 1 ∀q ∈ Q,∀p ∈ {1, . . . , Pq},∀i ∈ V d, j ∈ V a : i
qp−→ j

(4.35)

Where constraint EndBeforeStart(u, v) = 1 imposes that interval variable u

ends before the start of interval variable v, whereas i
qp−→ j indicates that asset i is

visited before asset j by the vehicle p of type q.

In order to strengthen the model and help the CP solver to �nd inconsistencies in

earlier stages of the search tree, we propose to add the bounds on the time windows

calculated in Section 4.5.2. Hence, for each asset i ∈ P ,

asti.StartMin(S.Stri) (4.36)

asti.StartMax(S.Maxshifti) (4.37)

4.5.4 Post optimization phase

The ILS generates throughout the solving process a set of good solutions. Single

tours are then saved in a pool Tq = {T1q, T2q, . . . , T|Tq |q}|q ∈ Q. Tour recombination
phase consists in solving a modi�ed set cover formulation over Tq|q ∈ Q in order to

extract a combination of routes that de�nes the best possible solution for STOPTW.

In the following, we propose a mixed integer programming formulation to solve the

set cover problem. Let θqk, 1 < q < |Q|, 1 < k < |Tq| be a decision variable which

indicates whether route Tqk is selected or not. We denote by i
qk−→ j two consecutive

visits (visit of asset i precedes the visit of asset j) in a given route Tqk.

We de�ne also the set matrices Aq|q ∈ Q as follows :

Aq = (aiqk) with aiqk =

{
1 if asset i ∈ kth route of Tq
0 otherwise

The mathematical formulation, MIP2, is as follows :

max

n∑
i=1

piyi (4.38)
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∑
k:Tqk∈Tq

aiqkθqk ≥ riqyi ∀q ∈ Q,∀i ∈ V − (4.39)

∑
k:Tqk∈Tq

θqk ≤ Pq ∀q ∈ Q (4.40)

si+tij+ai−sj ≤M(1−θqk) ∀q ∈ Q, ∀k : Tqk ∈ Tq,∀i ∈ V d, j ∈ V a : i
qk−→ j (4.41)

oi ≤ si ≤ ci ∀i ∈ V (4.42)

MIP2 aims at maximizing the total collected pro�t (4.38) subject to to the set of

constraints (4.39-4.42). Constraints (4.39) are the resource requirement constraints

whereas (4.40) impose an upper limit on the number of vehicles. Time constraints

are initially veri�ed by all the tours present in the pool. However, the combination of

di�erent tours can cause a violation of the synchronization constraints. To avoid such

issue, we add constraints (4.41) in which only one starting time decision variable si
is used per asset i. In this way, we impose that a given asset i must be visited by

the requested vehicles at the same time.

The pool size is a critical performance parameter. Adding all the feasible tours

to the pool may lead to a long computational time. We impose in our case an upper

limit on the size of the pool. Furthermore, in order to diversify the tours and to

avoid duplicates, we use a hash-based function that determines duplicated solutions

and avoids the insertion of their tours in the pool.

We propose also to accelerate the post-optimization phase by computing the

upper bound from the LP relaxation of MIP2. The motivation for such approach is

two-fold. First, formulations with a large number of variables generally have a tighter

relaxation [Barnhart et al., 1998]. Second, since the size of the pool is limited and

all the tours are generated by the ILS, the solution returned by MIP2 could be no

better than the best solution already found. If it is the case, the solution of MIP2 is

skipped and hence, computational e�orts are saved for other parts of the algorithm.

4.6 Computational tests

We investigate in this section the performance of the GRASP×ILS method. It was

implemented using C++ and STD library, whereas the CP model and the set cover

were both solved using the IBM ILOG suite (CP Optimizer 12.6 and IBM ILOG

Cplex 12.6 solver) through IBM ILOG Concert Technology. The experimental tests
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were conducted on a Linux server running Centos 5.4 and equipped with an Intel

Xeon E5420 with 2.66 GHz and 128 GB RAM.

4.6.1 Benchmark instances

Test instances for the STOPTW are generated based on 60 problem instances propo-

sed initially for the VRPTW in [Gehring and Homberger, 1999]. These instances are

divided into six main classes : R1, C1, RC1, R2, C2 and RC2 with ten instances under

each class. Time windows were modi�ed in the original instances in order to simulate

the propagation of the �re fronts across a landscape, whereas the requirements in

terms of vehicles was randomly generated and added as a vector of three components,

that is, three types of vehicles are considered. Instances in the benchmark are all

composed of 200 vertices in addition to the depot, and each instance was used to

derive two additional instances by truncating 35 and 100 vertices. When solving these

instances, two di�erent con�gurations of vehicle numbers are used at each size. We

obtain then 360 instances, with 120 instances for each size (35, 100 and 200). Test

instances are available at http: //www.sites.google.com/site/imanrzbh/datasets.

4.6.2 Performance comparison

In the following, we compare the results of the GRASP×ILS with those of the

ALNS proposed in [Roozbeh et al., 2018]. We run our algorithm ten times on each

instance and we recorded the average as well as the best result. We consider in a

�rst step small instances (35 assets) with two sets of vehicle numbers (< 4, 3, 2 >

and < 5, 4, 3 >). Table 4.1 shows a comparison between ALNS and GRASP×ILS
with respect to the optimal objective value obtained by CPLEX solver. Results are

presented per class and set of vehicle numbers. For each set, we report the average

computational time (CPU) in seconds, the gap between optimal solutions and the

average objective value (Avg) and �nally the gap between the optimal solution and

the best run (Best).

According to the results depicted in Table 4.1, GRASP×ILS and ALNS have

more or less the same computational times with 9.26sec for GRASP×ILS and 9.68sec

for ALNS. Regarding the optimality gaps, our method succeeded to reduce the

overall gap between the best result and the optimal solution on all the sets. In fact,

GRASP×ILS achieved 0% of optimality gap on all the sets except for sets R100 with

< 5, 4, 3> and R200 with < 5, 4, 3>. However, these gaps are still less than those

of ALNS (0.17 and 0.29 respectively) for the same sets. This good performance of

GRAPS×ILS was con�rmed by the gap between the average results and the optimal

solutions. Here, our method showed a robust behavior with 0.33% of overall gap

http: //www.sites.google.com/site/imanrzbh/datasets
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against 1.91% for ALNS. Note that the worst overall gap realized by GRASP×ILS
was 0.53% for RC100 with < 5, 4, 3> vehicles, whereas ALNS reaches the overall

gap of 2.38% for the set C200 with <5, 4, 3> vehicles.

Tableau 4.1 � Comparison between ALNS and GRASP×ILS for 35-node instances

Class #Vehicles
ALNS GRASP×ILS

CPU Avg (%) Best(%) CPU Avg (%) Best(%)

C100
<4, 3, 2> 9.37 1.49 0 8.78 0.34 0

<5, 4, 3> 10.09 2.03 0 9.13 0.31 0

C200
<4, 3, 2> 9.09 1.49 0 12.11 0.45 0

<5, 4, 3> 9.48 2.38 0 14.23 0.39 0

R100
<4, 3, 2> 9.84 1.85 0.38 8.46 0.23 0

<5, 4, 3> 10.37 2.31 0.17 9.64 0.23 0.07

R200
<4, 3, 2> 9.30 2.20 0.23 8.03 0.27 0

<5, 4, 3> 9.42 1.85 0.29 6.63 0.36 0.05

RC100
<4, 3, 2> 9.44 1.34 0 9.76 0.21 0

<5, 4, 3> 9.9 1.62 0 6.80 0.53 0

RC200
<4, 3, 2> 9.59 2.10 0.39 9.65 0.42 0

<5, 4, 3> 10.24 2.22 0 7.93 0 0

Mean 9.68 1.91 0.12 9.26 0.33 0.01

Table 4.2 shows a result comparison between GRASP×ILS and ALNS while

considering instances with 100 assets. The set of vehicle numbers chosen are

proportional to the size of instances in order to cover a considerable portion of

assets. The two sets are (<6, 5, 4> and <7, 6, 5>). In addition to columns de�ned in

Table 4.1, we added a new column GAP (%) that displays the average improvement

achieved by our method compared to the ALNS. According to results showed in

Table 4.2, our method succeeded to achieve substantial improvements compared

to ALNS. Computational times were divided by factor 2.9, decreasing from 141.66

seconds for ALNS to only 49.22 seconds. The overall percentage of protected assets

was also substantially improved, raising from 68.03% to 76.47%, yielding an overall

improvement gap of −12.38%.

Table 4.3 presents the results of both methods while considering large-scale ins-

tances with 200 assets. The set of vehicle numbers are (<9, 8, 7> and <12, 11, 10>).

Results depicted in Table 4.3 con�rms the out-performance of the proposed method.

Overall computational times achieved by GRASP×ILS are 3.3 times better than
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Tableau 4.2 � Comparison between ALNS and GRASP×ILS for 100-node instances

Class #Vehicles
ALNS GRASP×ILS

CPU Avg (%) Best(%) CPU Avg (%) Best(%) GAP(%)

C100
< 6.5.4 > 136.12 60.14 61.82 62.82 68.72 70.16 −13.49

< 7.6.5 > 147.59 66.87 68.47 58.41 76.54 77.90 −13.77

C200
< 6.5.4 > 133.19 59.18 60.83 57.16 65.99 67.08 −10.26

< 7.6.5 > 143.87 65.11 66.88 54.52 73.31 74.58 −11.51

R100
< 6.5.4 > 135.96 61.92 63.27 45.67 69.16 70.59 −11.56

<5, 4, 3> 139.72 68.80 70.22 44.04 77.55 79.03 −12.54

R200
< 6.5.4 > 135.75 63.89 65.58 44.38 72.13 73.45 −12.00

< 7.6.5 > 144.16 70.02 71.51 39.80 80.07 81.38 −13.80

RC100
< 6.5.4 > 144.43 66.49 68.32 48.18 75.34 76.60 −12.11

< 7.6.5 > 149.24 73.21 75.17 45.14 83.05 84.16 −11.96

RC200
< 6.5.4 > 142.88 67.42 69.32 46.75 76.44 77.79 −12.21

< 7.6.5 > 146.97 73.33 74.97 43.82 83.86 84.97 −13.34

Mean 141.66 66.37 68.03 49.22 75.18 76.47 −12.38

that of ALNS, with 176.36 seconds against 578.93 seconds. The overall percentage

of saved assets was also improved which attains 74.40% against 64.04% realized by

ALNS, yielding an overall improvement gap of −16.26%.

4.7 Conclusion and perspectives

In this chapter, we were interested to a new variant of the Team Orienteering

Problem called the Synchronized Team Orienteering Problem with Time Windows.

This problem was originally proposed in order to model and solve asset protection

problem during escaped wild�res. To solve this problem, we proposed a metaheuristic

scheme of type GRASP×ILS that incorporates a CP-based insertion module. A

post optimization phase is also added to the GRASP×ILS in order to improve the

best solution. Computational results proves the e�ciency of our approach when

compared to the literature. As future work, we will consider an additional criterion

in the objective function which is the load balancing. This criterion is relevant when

we intend to equally distribute activities on protection teams and avoid them to

be overwhelmed. Another research direction is the elaboration of an exact method
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Tableau 4.3 � Comparison between ALNS and GRASP×ILS for 200-node instances

Class #Vehicles
ALNS GRASP×ILS

CPU Avg (%) Best(%) CPU Avg (%) Best(%) GAP(%)

C100
< 9.8.7 > 589.60 56.13 57.68 199.06 65.41 66.37 −15.08

< 12.11.10 > 619.33 65.11 66.57 213.02 76.88 77.65 −16.64

C200
< 9.8.7 > 542.64 51.06 52.60 187.57 60.81 62.07 −18.00

< 12.11.10 > 566.36 60.34 61.46 209.98 72.67 73.66 −19.85

R100
< 9.8.7 > 539.19 58.23 59.60 134.92 67.83 68.92 −15.63

< 12.11.10 > 585.49 69.04 70.29 163.12 81.13 82.26 −17.03

R200
< 9.8.7 > 542.78 57.75 59.27 148.60 67.76 68.94 −16.32

< 12.11.10 > 589.75 68.74 70.17 170.68 80.78 81.84 −16.63

RC100
< 9.8.7 > 561.80 60.90 62.18 158.75 71.38 72.30 −16.29

< 12.11.10 > 607.04 71.21 72.46 185.83 84.23 85.19 −17.56

RC200
< 9.8.7 > 570.06 61.45 62.66 157.70 71.95 73.14 −16.72

< 12.11.10 > 633.17 72.14 73.58 187.14 84.78 80.44 −9.32

Mean 578.93 62.68 64.04 176.36 73.80 74.40 −16.26

based on the new formulation proposed in this chapter.



Chapitre 5

Memetic Algorithm with a dynamic

programming-based splitting

procedure for the Set Orienteering

Problem

Sommaire

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Basic mathematical model . . . . . . . . . . . . . . . . . . 86

5.3 Memetic Algorithm . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Preliminary results . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 Introduction

The Traveling Salesman Problem (TSP) is a well-studied combinatorial optimization

problem. It aims to �nd a circuit visiting all customers from a central depot while

minimizing the travel distance. TSP with pro�t (TSPP) is a variant of TSP in

which each customer is associated with a pro�t to represent the value of service and

this pro�t is gained only if the customer is visited. This characteristic leads to the

de�nition of three main categories of TSPPs [Archetti et al., 2014] : the Orienteering

Problem (OP), where the objective is to maximize the collected pro�t with respect

to a limited travel time. The Prize Collecting TSP (PCTSP) which aims to minimize

the travel cost while guaranteeing a minimum collected pro�t. The Pro�table Tour

Problem (PTP) where the goal is to maximize the di�erence between collected pro�t

and costs.

85
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Among these three categories, the OP, also known as the Selective Traveling Sa-

lesman Problem, is the most studied problem in the literature [Angelelli et al., 2014].

This problem is inspired from the sport game of orienteering as described in

[Chao et al., 1996]. Many exact and heuristic methods have been proposed for

the problem. The reader can refer to [Feillet et al., 2005],[Archetti et al., 2014] and

[Vansteenwegen et al., 2011] for excellent surveys on variants, applications and also

resolution methods.

Recently, a new variant of the OP was proposed in [Archetti et al., 2018] called

the Set Orienteering Problem (SOP). In this variant, the set of customers are grouped

into subsets called clusters. A pro�t is assigned to each cluster and it is gained if

at least one of its customers is visited. A single vehicle with a limited travel time is

available to serve the clusters. The objective is to select a subset of clusters to serve

in a way that the total collected pro�t is maximized with respect to the travel time

constraint.

Some relevant applications for the SOP can be found in the distribution of

mass products. For example, consider the case of a carrier that signs contracts

with di�erent supply chains, each one composed of a set of retailers. In order to

reduce transportation costs, supply chains may stipulate in the contract that it

is not necessary to serve all its retailers. Instead, the carrier had to deliver the

entire quantity requested by the chain to only one of its retailers, while the inner

distribution is performed by the internal logistic network.

5.2 Basic mathematical model

We consider a complete directed graph G = (V,A) where V = {1, . . . , n}∪{0, n+1}
is the vertex set representing the customers and the depots. For convenience, we use

the sets V d, V a and V − to denote respectively the vertex set without the arrival

depot, the vertex set without the departure depot as well as the vertex set without

depots. The arc set A = {(i, j)|i, j ∈ V, i 6= j} represents the connections between
customers and each arc (i, j) ∈ A is associated with the travel time tij. The travel

times are assumed to be asymmetric and satisfy triangular inequality. A partition

S = {S1, S2, . . . , SK} of V is given where a node subset Sl is called a cluster. A pro�t

Pl is associated with each cluster Sl and it is gained if at least one of its customers

is visited. A single vehicle with a limited travel time Tmax is available to serve the

customers.

Before introducing the mathematical model, let us �rst present some useful

notation. For each set U ⊆ V −, let
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• A(U) = {(i, j) ∈ A|i ∈ U, j ∈ V ∈ U},

• δ+(U) = {(i, j) ∈ A|i ∈ U, j ∈ V a\U},

• δ−(U) = {(i, j) ∈ A|i ∈ V d\U, j ∈ U}.

For the ease of notation, if U = {j}, we simply write δ+(j) or δ−(j) instead of

δ+({j}) or δ−({j}).
Decision variables used in the model are :

• zl : equal to 1 if cluster Sl ∈ S is served, 0 otherwise,

• yi : equal to 1 if customer i ∈ V is visited, 0 otherwise,

• xij : equal to 1 if arc (i, j) ∈ A is traversed by the vehicle, 0 otherwise.

The mathematical formulation for the SOP, ILP1, is as follows :

max
∑
l:Sl∈S

zlPl (5.1)

∑
(h,i)∈δ−(i)

xhi = yi ∀i ∈ V a (5.2)

∑
(i,j)∈δ+(i)

xij = yi i ∈ V d (5.3)

∑
(i,j)∈E(U)

xij ≤ |U | − 1 ∀U ⊆ V − (5.4)

∑
(i,j)∈A

tijxij ≤ Tmax (5.5)

zl ≤
∑
i∈Sl

yi ∀Sl ∈ S (5.6)

zl ∈ {0, 1} ∀Sl ∈ S (5.7)

yi ∈ {0, 1} ∀i ∈ V (5.8)

xij ∈ A ∀(i, j) ∈ A (5.9)

The objective function (5.1) aims at maximizing the total collected pro�t.

Constraints (5.2) and (5.3) are �ow conservation constraints. Subtours elimination is
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guaranteed by constraints (5.4). Constraint (5.5) imposes a travel time limit on the

vehicle. Constraints (5.6) impose that the vehicle must visit at least one customer

per cluster. Constraints (5.7)-(5.9) are domain de�nitions.

Clearly, this formulation has an exponential number of subtour elimination

constraints (5.4). In practice, these constraints are initially removed from the model

and inserted dynamically once violated during the solution process. The process of

identi�cation of violated SECs in a branch-and-cut method is commonly referred

to as separation procedure. Several procedures have been proposed to separate the

SECs. We present in this section three methods. The �rst one is based on the well-

know maximum �ow/minimum-cut algorithm applied usually on fractional solutions

inside the branch-and-bound tree. The second approach is based on the computation

of the strong components of the support digraph of integral solutions. In the third

approach, we propose to combine the two previous separation procedures. These

methods are detailed in the following.

5.2.1 Branch-and-cut algorithm

Subtour elimination constraints are replaced by the well-known MTZ formulation

which has a polynomial number of constraints. To that end, an additional decision

variable ui is considered. The MTZ constraints are :

u0 = 1 (5.10)

ui − uj + 1 ≤ (n− 1)(1− xij) ∀i, j ∈ V − (5.11)

2 ≤ ui ≤ n ∀i ∈ V − (5.12)

Clearly, MTZ constraints guarantee the elimination of subtours. To further

strengthen the formulation, we propose to add another type of SECs called the

Generalized Subtour Elimination Constraints (GSECs).

∑
(i,j)∈δ+(U)

xij ≥ yv ∀U ∈ V −, v ∈ U (5.13)

Of course, as the number of the GSECs is exponential, they are dynamically

added to the model once violated. The separation of GSECs is applied on fractional

solutions in the branch-and-bound tree using the following exact procedure.

Let (x∗, y∗, z∗) be an optimal fractional solution in a given node of the branch-

and-bound tree. Let G∗ = (V,A∗) be a directed graph where we consider only
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arcs (i, j) ∈ A for which the corresponding x∗ij has a non-zero value. Each arc

in (i, j) ∈ A∗ is associated with a capacity equal to the value of x∗ij. For each

vertices i ∈ V , we solve the max-�ow/min-cut from i as a source to n + 1 as a

sink on the graph G∗. Vertices in G∗ are considered in a non-increasing order of

the associated y∗i . If the min-cut induces a partition U where i ∈ U and n + 1 /∈
U and the value of the maximum �ow is less than y∗i , then a violated GSEC is

identi�ed. After the separation of a GSEC, an additional capacity equal to 1 −∑
(i,j)∈δ+(i) x

∗
ij is added to x

∗
i,n+1 in order to prevent the identi�cation of the same cut

in subsequent iterations. In our procedure, the max-�ow/min-cut problem is solved

using the algorithm proposed in [Boykov and Kolmogorov, 2004]. The complexity of

this algorithm is O(|C||A∗|V 2) where |C| is the min-cut. Trying all possible vertices

in V yields to an overall complexity of O(|C||A∗||V |3).

5.2.2 Cutting planes algorithm

In the cutting planes approach, constraints (5.4) are relaxed from the basic

formulation. The new compact model is then solved to integer optimality. Clearly, the

resulted solution may contain subtours. If it is the case, violated SECs are added to

the model and the process is repeated until no subtour is found. The identi�cation of

subtour in this case can be easily done by computing strong components in a directed

graph. In fact, a subtour in an integral solution is equivalent to a sub-diagraph with

one non-trivial strong component in the support digraph. Strong components can

be calculated using Tarjan algorithm introduced in [Tarjan, 1972] which is based on

the Depth First Search algorithm with time complexity of O(|V |2). Obviously, the

e�ciency of this approach is tightly related to the performance of ILP-solvers, which

have been considerably improved during the last decades.

In the purpose of eliminating the identi�ed subtours, we use the Generalized

SECs introduced in [Fischetti et al., 1998].

∑
(i,j)∈δ+(U)

xij ≥ yv ∀U ∈ V, {0, n+ 1} ⊆ U, v ∈ V \U (5.14)

∑
(i,j)∈A(U)

xij ≤
∑

u∈U\{0,n+1}

yu − yv + 1 ∀U ∈ V, {0, n+ 1} ⊆ U, v ∈ V \U (5.15)

∑
(i,j)∈A(U)

xij ≤
∑

u∈U\{0,n+1}

yu − yv ∀U ∈ V −, v ∈ U (5.16)
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5.2.3 Enhanced branch-and-cut algorithm

In this approach, we combine between the two separation procedures. We use max-

�ow/min-cut to separate SECs in fractional solutions, while we use Tarjan algorithm

to identify SECs in integral solutions. That is, instead of adding MTZ constraints

to the basic model as in Section 5.2.1, we solve the model with MTZ and once an

integral solution is found in a given node of the branch-and-bound tree, we verify if

there are any strong components. If it is the case, the corresponding GSECs (5.14),

(5.15) and (5.16) are added to the model and ILP-solver pursues then the branching

process.

5.3 Memetic Algorithm

Memetic Algorithm (MA) is a combination of Genetic Algorithm (GA) with local

search techniques. The GA is a population-based metaheuristic that explores the

search space using a population of individuals or solutions. This population evolves

throughout the search process as new individuals are generated using a crossover

operator. The latter picks up two or more individuals from the population and

combines them to produce a new one. In MA, a local search method is used to

improve the new generated individuals. In other words, MA uses the GA crossover

operator to explore promising regions of the search space, whereas the local search

is used to concentrate the search around these regions. In MA/GA, solutions are

encoded into a uniform structure called chromosome. A chromosome is generally

associated with a unique solution, but it can also represent a neighborhood of

solutions. In this case, the chromosome can be seen as an indirect representation of

solutions which needs a decoding procedure in order to retrieve a feasible solution.

In our method, we use an indirect representation called the giant tour which is

a tour that covers all the customers. It represents a neighborhood of solutions with

a common characteristic : the visiting order of customers should be the same as

the giant tour. The extraction of a solution (decoding) is performed by an optimal

splitting procedure that extracts the best feasible solution in the neighborhood of

the giant tour.

The splitting procedure is a core component of memetic algorithms proposed to

solve VRPs. The �rst splitting procedure was proposed by Beasley in [Beasley, 1983]

for the Capacitated Vehicle Routing Problem (CVRP). It was then incorporated by

Prins [Prins, 2004] into a complete framework (a genetic algorithm) to solve the

general CVRP. Since then, numerous splitting procedures have been proposed for

di�erent variants of VRP and they showed an outstanding performance compared
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Figure 5.1 � Auxiliary graph representing some of the possible arcs

to other state-of-the-art approaches. We propose in this section a new splitting

procedure speci�c for the SOP based on dynamic programming. This method

explores a neighborhood covering an exponential number of solutions in a pseudo-

polynomial time and space complexity.

5.3.1 Splitting procedure

A giant tour in our case is a sequence of nodes σ = {σ0, σ1, σ2, . . . , σK , σ|σ|} where
each node σj represents the cluster Sσj ∈ S|1 < σj < K whereas σ0 and σ|σ| are the

departure and the arrival depots. A node σj|1 ≤ j ≤ K contains a set of sub-nodes

that represent the customers belonging to the associated cluster. The aim of the

splitting procedure is to select at most one customer to visit per cluster in order

to maximize the total collected pro�t while respecting the original routing order of

clusters and the time constraint. This sub-problem can be modeled by a shortest

path problem with resource constraints on a directed acyclic graph H = (V,Aσ)

where Aσ = {(σ(i), σ(j)) ∈ A|i < j} as illustrated in Fig. 5.1.

Figure 5.1 depicts a giant tour σ composed of K clusters in addition to the

departure and the arrival depots, each cluster is represented by a grey ellipsoidal

node within which are represented its customers. Continued arrows represent arcs

between customers belonging to consecutive clusters in σ, whereas discontinued

arrows represent arcs that skip at least one cluster in σ. Note that only a subset of

arcs are represented in order not to overload the illustration.

We solve the shortest path problem with resource constraints using dynamic

programming and label propagation technique. A label is used to represent a path

from the departure to a given node σi. Each label records all the visited customers

as well as the collected pro�t and the travel time.

We de�ne a label L by the following attributes :

• Lp : the pro�t of clusters covered in the path
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• Lt : the travel time of the path

For performance reasons, instead of storing all the labels in one queue, each

customer u ∈ Sσ(i) maintains a separate queue Qiu. Note that the departure node is
initialized by a single queue with a single label Q0

0 = {(0, 0)}. The extension of a

label L ∈ Qiu to any other customer v in a successor node σi+k|1 ≤ k yields to the

creation of a new label R ∈ Qi+kv with Rp = Lp + pσi and R
t = Lt + cu,v. Indeed,

before creating the new label, the travel time constraint should be respected, that

is Lt + cu,v + cv,n+1 ≤ Tmax. Otherwise, the label is fathomed.

In order to reduce the number of labels, a dominance property is used to detect

and remove inferior labels. Given two labels L = (Lp, Lt) and R = (Rp, Rt) stored

at the same queue Qiu, L dominates R if and only if : Lp > Rp and Lt ≤ Rt.

5.3.1.1 Knapsack-based upper bound

In order to reduce the number of labels and accelerate the splitting procedure,

we propose to calculate an upper bound based on the Knapsack Problem (KP).

This bound helps to detect and fathom unpromising labels and hence, limit their

proliferation in earlier stages of the procedure.

Let σi be the last node visited by label L. Also, let S ′ = {Sσi+1
, . . . , SσK} be the

set of clusters associated with the remained nodes that lie after the node σi in σ.

The KP model can be described as follows. Each cluster Sj ∈ S ′ is represented by

an item j in the KP model and it is associated with a pro�t pj. The weight wj of

item j is modeled by the minimum cost insertion among all the possible insertions

of the customers of its associated cluster Sσj . wj is calculated as :

wj = min
u∈Sσj

{1

2
min
v∈Sσk

0<k<j−1

{cvu}+
1

2
min
v∈Sσk

j+1<k<|σ|

{cuv}} (5.17)

Let W i
u be an upper bound on the remaining travel time incurred to cover the

clusters of S ′. Assume that L ∈ Qiu, W i
u is calculated as :

W i
u = Tmax − (Lt +

1

2
min
v∈Sσk

i+1≤k≤|σ|

{cu,v}+
1

2
min
v∈Sσk
0≤k<i

{cv,n+1}) (5.18)

According to the KP model, it is clear that all the weights are underestimated,

whereas the knapsack size is overestimated. Hence, solving this model yields to an

upper bound γ on the pro�t that can be collected by any sub-path extended from

L. Given now the best-found pro�t Pbest, the label L is fathomed i� Lp + γ ≤ Pbest.

It is clear that solving a large number of small KP models can dramatically

increase the computational burden of the splitting procedure. To deal with this
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drawback, we propose to calculate at the beginning and once for all a larger

KP model using dynamic programming procedure and use intermediate results as

solutions for the smaller KP models. The key idea behind is to solve the KP in

a backward manner. Let us �rst denote by Γ(j, w) the maximum pro�t gained

by solving a KP on the nodes of the sub-sequence φ = {σj, . . . , σK} with a

knapsack size equal to w. The largest KP model is solved by computing iteratively

Γ(j, w)|1 < j ≤ K + 1, 0 ≤ w ≤ Tmax in a recursive fashion using the following

equation :

Γ(j − 1, w) =

{
Γ(j, w) if w < wj

max{Γ(j, w),Γ(j, w − wj) + pj−1} otherwise
(5.19)

where Γ(K + 1, w) = 0 for a dummy node K + 1 and for all 0 ≤ w ≤ Tmax. As a

result, in order to know whether a label L ∈ Qju should be fathomed, we only need

to verify in O(1) if Lp + Γ(j + 1,W j
u) ≤ Pbest.

5.3.1.2 Quick evaluation

Computational complexity of the splitting procedure isO(n2D), whereD is an upper

bound on the number of labels per sub-node. Applying such method each time could

have a substantial impact on computational times. We propose a faster version with

a reduced complexity that we can use in neighborhood search operators that need

a considerable number of evaluations.

The quick evaluation is based on the assumption that a path cannot skip more

than J nodes in the giant tour, i.e. any arc (i, j) ∈ Aσ is systematically fathomed if

i+ J < j. As a result, the complexity of the quick evaluation becomes O(nJD).

5.3.2 Algorithm initialization

Random initialization of the population is crucial for the MA to avoid premature

convergence and allows to explore large parts of the search space. However, it is

always interesting to incorporate some good individuals to guide the global search

process and reduce the algorithm time. To that end, we propose to use an Iterative

Construction/Destruction (IDCH) heuristic to generate a small part of the initial

population.

The main components of IDCH is the Best Insertion Algorithm (BIA) and

the Destruction Algorithm (DA). The BIA tries to construct feasible solutions by

inserting customers in their best positions according to a greedy criterion. On the

other hand, the DA disturbs the constructed solution by removing a subset of the

inserted customers.
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The insertion of customers in the current solution is carried out iteratively. At

each iteration, BIA calculates the best position with the minimal cost insertion for

each customer j. The insertion of customer j between two successive customers u

and v incurs an insertion cost ∆j
u,v = cuj + cjv − cuv. Possible insertions are then

ordered according to the sorting criterion
(∆u,v

j )α

Pi
, i ∈ Sj, where α is a randomly

generated value at each iteration using a uniform distribution in [0.5, 1]. In case

of ex-aequo, one insertion is chosen at random. Note that once a cluster has an

inserted customer, the remainder set of its customers are no longer considered in

the following iterations. The insertion process is repeated until all the clusters are

served or no feasible insertion is found.

After the construction of an initial solution from scratch using BIA, IDCH

applies the DA to disturb the current solution. A number of customers are

randomly selected and removed. This number is randomly chosen between 1 and

a diversi�cation parameter denoted by dmax. After the partial destruction, the

neighborhood search operator 2-opt is used to reduce the total travel time of the

solution. A repair phase is then performed by applying the BIA and then a new phase

of destruction/construction is launched again. In the same time, IDCH records the

best solution found so far and updates it after each iteration. In case where this best

solution is not improved after K2 iterations, the search process is terminated. Note

that the diversi�cation parameter dmax is crucial for the performance of IDCH : if it

is too small, the heuristic may not be able to escape from local optima, whereas if

it is too large, IDCH would restart each time the construction from scratch. Hence,

we proposed an adaptive mechanism to update dmax. It is �rst initialized at 3, then

increased by one after each iteration without improvement. Once a new best solution

is found, dmax is reset to 3.

5.3.3 Local search

To enhance the genetic algorithm, we integrate a local search engine inside to apply

mutations on giant tours after the crossover operator with pm probability. The

LS is composed of three operators selected in a random order. In each iteration the

algorithm selects an operator randomly which is stopped as soon as an improvement

is found. This process ends when all the operators fail to improve the current

solution. In the following a brief description of the operators :

• Shift operator : Randomly selected customer is extracted from the giant

tour and inserted in all other positions.

• Swap operator : Randomly selected couple of customers are exchanged.
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The evaluation of the giant tour is called in each iteration of the previous operators.

In order to reduce the impact on execution time, we use the fast version of the

evaluation.

• Destruction/repair operator : After the extraction of a solution from a

given giant tour, the operator randomly selects at most γ customers and

remove them from the solution. Then, clusters are inserted randomly one by

one as much as possible using the BIA. Finally, a giant tour is reconstructed

from the solution.

5.3.4 General �ow

We have chosen the MA as an outer metaheuristic to guide the search process.

In other words, the MA generates giant tours and provide them to the splitting

procedure for evaluation. The algorithm starts with an initial population of giant

tours. At each iteration, two giant tours are selected by binary tournament, on which

a crossover operator called Linear Order Crossover LOX is applied to generate a new

individual. The latter is evaluated using the dynamic programming based splitting

procedure. If there is a giant tour with the same pro�t and the same length, it is

replaced by the new child. Otherwise, the child is inserted in the population and the

worst individual in the new pool is removed.

Algorithm 9 summarizes the MA.

5.4 Preliminary results

In this section, we present preliminary computational tests carried out to evaluate

the performance of our methods. The implementation was done in C++ using

the STD library. Both algorithms were tested on a Linux server running Centos

7 and equipped with an Intel Xeon Gold 6138 @ 2.00 GHz and 180 GB RAM. The

mathematical model was implemented using IBM ILOG CPLEX 12.6 solver through

Concert Technology.

In the following, we present benchmark instances of the SOP, then we provide

preliminary results for the proposed methods.

5.4.1 Test instances

Benchmark instances of the SOP [Archetti et al., 2018] were derived from

those proposed for the Generalized Traveling Salesman Problem (GTSP)

[Fischetti et al., 1997]. Fifty one class of instances were generated from 51 GTSP
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Algorithm 9: Memetic Algorithm

Input: Solution POP
Output: Solution Xbest

1 Initialize population with N giant tour ;
2 repeat
3 select 2 parents P1 and P2 using binary tournament;
4 Gt ← LOX(POP[P1],POP[P2]);
5 if rand(0, 1) < pm then
6 LS(Gt);

7 if fit(Gt) ≥ fit(POP[0]) then
8 if ∃p||fit(POP[p])==fit(Gt) then
9 eject POP[p] from POP;
10 update stopping condition;

11 else
12 eject POP[0] from POP;
13 reset stopping condition;

14 insert or replace Gt in right place in POP;

15 else
16 update stopping condition;

17 until (stop condition);
18 return Xbest

instances with a number of vertices ranging from 51 to 1084, whereas the number of

clusters of each instance is equal to one �fth the number of customers. As the

customers are already grouped into clusters in GTSP instances, it remains the

assignment of a pro�t to each cluster and the determination of a suitable Tmax.

Authors in [Archetti et al., 2018] proposed two patterns to generated pro�ts : in

the �rst pattern p1, each cluster was assigned a pro�t equal to the number of its

customers. Pro�ts in the second pattern p2 are generated in a pseudo-random way

where each customer j is assigned a pro�t equal to (7141j)mod(100). The pro�t of

a given cluster is calculated by summing up the pro�ts of its customers. Regarding

Tmax, three values were considered. Let GTSP ∗ be the GTSP solution value of a

given instance, Tmax is calculated as θ×GTSP ∗ where θ takes the following values :
2
5
, 3

5
and 4

5
. In total, 306 SOP instances are generated. In addition, another set of

instances is generated through the same process described above, but on the basis

of modi�ed instances of the GTSP. The di�erence consists in the partition of the

customers on di�erent clusters which is performed in a random manner. Thus, the

total number of instances generated for the SOP is 612.

Preliminary tests were conducted only on a subset of instances with up to 200

vertices and 40 clusters, that is 348 instances.
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5.4.2 Computational resutls for the exact method

Table 5.1 depicts the overall performance of each method. The �rst column reports

the name of the separation methods where Mf/Mc stands for the max-�ow/min-

cut method, SCC stands for the strong connected components method and MTZ

for the MTZ subtour elimination constraints. The second column GAP provide the

gap between the lower and the upper bound achieved by each method and it is

calculated as UB−LB
UB

. The two last column CPU and #OPT reports respectively

the average computational times and the number of instances solved to optimality

by each method. From Table 5.1, it is easy to notice that the combination of the

two separation schemes succeeds to obtain the best results. the "Mf/Mc and SCC"

approach achieves an average computational time of 2260.42s against 2461.89s for

the "Mf/Mc and MTZ" and 2746.86s for "SCC". Similarly, the number of solved

instances by "Mf/Mc and SCC" is equal to 156 against 140 achieved by "Mf/Mc

and MTZ" and only 99 instances by "SCC". However, "Mf/Mc and SCC" has a

major drawback which is the poorness of its feasible solutions in case where it fails

to �nd the optimal solution. This drawback leads obviously to a larger overall gap

compared to "Mf/Mc and MTZ", with 41.56% for "Mf/Mc and SCC" against 31.68%

for "Mf/Mc and MTZ".

Tableau 5.1 � Comparison between separation procedures

GAP (%) CPU(s) #OPT

Mf/Mc and MTZ 31.68 2461.89 144

SCC 58.68 2746.86 99

Mf/Mc and SCC 41.56 2260.42 156

5.4.3 Preliminary results of the Memetic Algorithm

Authors in [Archetti et al., 2018] proposed a mathheuristic approach to solve the

SOP called the MASOP. We provide in this section some preliminary results of our

method in comparison with the MASOP.

Table 5.2 shows some performance measures of the heuristic methods. Instances

from both sets are considered where each set is divided into three subsets according

to the value of θ. We report for the MASOP the average computational times "CPU"

in seconds, the gap to the best upper bound found by the exact methods "GAP UB"

and the number of instances for which the MASOP found the best solution "#Best".
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Tableau 5.2 � Comparison between Memetic Algorithm and MASOP

Class MASOP Memetic Algorithm

SET θ CPU(s) GAP UB (%) #Best CPU(s) GAP UB (%) GAP MASOP (%) #Best

1 T40 7.57 12.97 4 1.46 12.87 −0.15 4

1 T60 8.95 15.09 1 17.46 15.08 −0.02 4

1 T80 8.41 11.32 3 39.00 11.25 −0.09 6

2 T40 6.79 3.99 6 7.66 3.99 −0.46 11

2 T60 13.70 1.63 11 8.58 1.66 0.02 4

2 T80 14.68 0.02 0 2.94 0.02 0.00 0

Mean 10.02 7.50 25 12.85 7.48 −0.12 29

Regarding the Memetic algorithm, in addition to "CPU", "GAP UB" and "#Best",

we report also the gap to the best results obtained by the MASOP, the number of

instances for which the Memetic algorithm found the best solution.

From Table 5.2, we note that the MASOP and the Memetic Algorithm have

approximately the same computational times with less that 10.02s for MASOP

against 12.85s for the Memetic algorithm. The observation can be made when

considering the gap to the best upper bound, as they have approximately the

same value. However, the Memetic Algorithm succeeds to achieve an overall gap

of −0.12% compared to the best solutions obtained by the MASOP. Finally, our

method improved the best solution for 29 instances of the literature, whereas it

failed to �nd the best solution for 25 instances.

5.5 Conclusion

In this chapter, we tackled a new variant of the OP called the Set Orienteering

Problem (SOP). In a �rst step, we investigated several separation procedures used to

identify violated subtour elimination constraints. Tests carried out on small instances

showed that the combination between the max-�ow/min-cut separation procedure

used in fractional nodes in one hand, and in the other hand, the strong connected

component based separation procedure used in integral nodes, yields to best results.

In a the second part, we proposed a Memetic algorithm (MA) to solve the SOP. The

MA incorporates an e�cient splitting procedure based on dynamic programming and

enhanced by a knapsack-based upper bound. In preliminary tests, the MA improved

the best solution for some instances and succeeded to achieve a good gap to the
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best results. Further parameter tuning experiments will be carried out in order to

achieve the best performance of out method.





Conclusion and future work

In this dissertation, we presented a number of solution methods to solve some

variants of the Team Orienteering Problem. The studied problems are widely used

in transportation systems in order to maximize the gain while minimizing the total

costs. The proposed methods include a number of mathematical models, exact

methods as well as heuristics. To prove the performance of the proposed methods,

computational tests and comparison with the best results in the literature were

provided.

After introducing some useful de�nitions related to combinatorial optimization

in Chapter 1, we introduced in Chapter 2 a new variant of the Team Orienteering

Problem that we called the Clustered Team Orienteering Problem (CluTOP). We

�rst introduced the mathematical formulation of the problem. In order to solve

the CluTOP, we proposed an exact method based on the cutting plane approach.

This method includes the consideration of a set of valid inequalities. In particular

an incompatibility-cluster-based valid inequality is proposed. Moreover, a pre-

processing procedure is considered in order to reduce the number of variables in

the mathematical model. Pre-processing techniques include the identi�cation of

inaccessible components (customers or clusters), mandatory clusters and incompati-

bilities between customers and clusters. In addition, valid inequalities like symmetry

breaking cuts, bounds on the number of clusters and the collected pro�t are also

considered. The cutting plane algorithm aims at solving a mathematical formulation

of CluTOP with a polynomial number of variables and constraints. Initially, subtour

elimination constraints are removed from the model, then added progressively once

they are not respected. Experimental results con�rmed the performance of our

approach. A large number of instances were solved to optimality still unsolved by

the method in the literature. Moreover, the upper bound of several instances were

substantially improved.

In Chapter 3, we were interested in solving the CluTOP using a heuristic method.

Our method is based on the order �rst-cluster second approach. We proposed an

e�cient splitting procedure in order to extract an improved solution from a given

giant tour. This method is based on a branch-and-bound scheme that incorporates

a feasibility check to fathom unfeasible nodes and a knapsack-based upper bound

101
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to discard unpromising nodes. The splitting procedure was incorporated in a global

scheme alongside an Adaptive Large Neighborhood Search heuristic used to generate

giant tours of a good quality. According to experimental results conducted on

benchmark instances from the literature, our approach outperforms the existing

methods where the solution of many instances were improved in less computational

time.

The second problem treated in this thesis is the Synchronized Team Orienteering

Problem with Time Windows (STOPTW). This variant was recently proposed to

model situations of asset protection during escaped wild�re. we presented in Chapter

4 a new mathematical formulation for the STOPTW along with a Constraint

Programming based model. We proposed then a metaheuristic approach based

on Greedy Randomized Adaptive Search Procedure with Iterated Local Search -

GRASP couple with an Iterated Local Search - ILS. This method incorporates

two insertion methods : the �rst one is based on an adaptive candidate list-based

insertion procedure that inserts customers iteratively in the incumbent solution. The

ordering of customers in the list is continuously modi�ed during the search progress

in order to cover a larger space. Our method incorporates also a CP-based insertion

procedure that tries to insert optimally the unrouted customers in the incumbent

solution. A post optimization phase is performed using a set cover formulation to

improve the results. Experimental results showed that our approach dominates the

literature by improving the best results of all most all the benchmark instances with

a less computational time.

Finally, in Chapter 5, we tackle a recent variant of the Orienteering Problem

called the Set Orienteering Problem (SOP). After presenting the mathematical

model with an exponential number of constraints, we investigated the di�erent

approaches to separate subtour elimination constraints in the purpose of exactly

solving the mathematical formulation. Among the three presented approaches, we

deduced that the best approach is to combine the two methods of separation, i.e. the

max-�ow/min-cut method in fractional nodes and the strong connected components

method in integral nodes. In addition to the exact method, we proposed as a Memetic

Algorithm approach to solve the SOP. An optimal splitting procedure was also

proposed in order to extract the best solution from a given giant tour. This procedure

is based on a dynamic programming algorithm with label propagation. We proposed

also a knapsack-based upper bound in order to prune inferior labels an limit their

proliferation. Only a preliminary results were presented for the Memetic algorithm.

We intend to carry out an extensive computational tests in order to �ne tune di�erent

parameters of the algorithm.
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Future work

In the following, we outline some directions for further research based on the

observations made in this thesis.

A �rst relevant direction is the consolidation of the work carried out on

the Synchronized Team Orienteering Problem with Time Windows. Extended

computational tests and sensitivity analyses are planned in order to investigate

the contribution of di�erent components in the search process. Another ongoing

direction consists in the elaboration of an exact method to solve STOPTW based

on the new formulation proposed in Chapter 4. An e�cient pre-processing procedure

is in construction in order to reduce the search space of the problems. Several

interesting components are embedded, mainly incompatibility-cuts based on cliques

and energetic reasoning. In addition, further cuts from the literature are planned to

be embedded in the framework. This includes Comb Inequalities, Box Inequalities,

etc. [Bard et al., 2002].

Regarding the Set Orienteering Problem, extensive computational tests will be

carried out to �ne tune the proposed algorithm. We will further integrate additional

components to our method such as local search operators. We face also to continue

improving the branch-and-cut method for the SOP. Besides the separation proce-

dures for subour elimination constraints, we plan to integrate di�erent inequalities

that have been proposed for the OP and its variants, like incompatibility cuts,

Comb Inequalities, Box Inequalities, Matching constraints, Cover inequalities and

Path Inequalities [Fischetti et al., 1998], [Fischetti et al., 1997].

We intend also to extend our research to cover new variants of the TOP as

the Capacitated Team Orienteering Problem, the Split Delivery Capacitated Team

Orienteering Problem and the Incomplete Service and Split Deliveries in a Routing

Problem with Pro�ts. We are also interested in a new class of vehicle routing

problems called Rich Vehicle Routing Problems. Problems of this class consider

more complex constraints and objectives inspired from real life applications.

On the other hand, we are interested in the multi-objective optimization

approach. Such approach is so relevant, especially in vehicle routing problems with

pro�ts where the aim is to maximize the total collected pro�t, but also minimize

the total travel costs. Anther relevant application of multi-objective optimization

appears in the STOPTW, where it may be interesting to optimize both collected

pro�t and workload balance. Another interesting approach is the use ILP solver

within heuristic schemes in order to produce solution of good quality in a limited

computational times. These methods are generally called math-heuristics.
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