P. A. Aarts, M. Robert, J. J. Heethaar, and . Sixma, Red Blood Cell Deformability Influences Platelets-Vessel Wall Interaction in Flowing Blood, pp.1228-1233, 1984.

O. Aouane, Modeling and simulation of the motion of deformable interfaces in a confined geometry: application to the study of the flow of red blood cells in microcirculation, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01686225

P. Bagchi, Mesoscale simulation of blood flow in small vessels, Biophysical Journal, vol.92, pp.1858-1877, 2007.

Y. Bao and J. Meskas, Lattice Boltzmann Method for Fluid Simulations, 2014.

G. A. Barabino, V. Larry, S. G. Mcintire, . Eskin, A. David et al., Sickle Trait, Mechanically Injured, and Normal Erythrocytes Under Controlled Flow, pp.152-157, 1987.

A. I. Barakat, Responsiveness of vascular endothelium to shear stress: Potential role of ion channels and cellular cytoskeleton (review, International journal of molecular medicine, vol.4, pp.323-332, 1999.

K. Barbee, . Mundel, P. Lal, and . Davies, Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers, American Journal of Physiology-Heart and Circulatory Physiology, vol.268, pp.1765-1772, 1995.

K. A. Barbee, F. Peter, R. Davies, and . Lal, Shear Stress-Induced Reorganization of the Surface Topography of Living Endothelial Cells Imaged by Atomic Force Microscopy, Cardiovascular Research, vol.74, pp.163-171, 1994.

O. Baskurt, Red Blood Cell Mechanical Stability, 2012 World Congress on Engineering and Technology, pp.8-10, 2012.

M. Bouzidi, M. 'hamed, P. Firdaouss, and . Lallemand, Momentum transfer of a Boltzmann-lattice fluid with boundaries, Physics of Fluids, vol.13, pp.3452-3459, 2001.

J. F. Brady, The Einstein Viscosity Correction in n Dimensions, Multiphase Flows 10.I, pp.113-114, 1984.

L. A. Chtcheglova, L. Wildling, J. Waschke, D. Drenckhahn, and P. Afm, AFM Functional Imaging on Vascular Endothelial Cells, Journal of Molecular Recognition, vol.23, p.589, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00589483

L. S. Costanzo, Physiology, 2007.

J. C. Culver and M. E. Dickinson, The effects of hemodynamic force on embryonic development, pp.164-178, 2010.

P. F. Davies, Flow-Mediated Endothelial Mechanotransduction, Physiol Rev, vol.75, pp.519-560, 1995.

J. A. Davis, W. David, . Inglis, J. Keith, D. A. Morton et al., Deterministic hydrodynamics : Taking blood apart, pp.14779-14784, 2006.

M. Diez-silva, M. Dao, J. Han, C. Lim, and S. Suresh, Shape and Biomechanical Characteristics of Human Red Blood Cells in Health and Disease, MRS bulletin / Materials Research Society, vol.35, pp.382-388, 2010.

E. Dominguez-de-villota, M. T. Garcia-carmona, J. J. Rubio, S. Ruiz-de, and A. , Equality of the in vivo and in vitro oxygen-binding capacity of hemoglobin in patients with severe respiratory disease, Br. J. Anaesth. 53, vol.12, pp.1325-1328, 1981.

A. M. Dondorp, N. J. Emsri-pongponratn, and . White, Reduced microcirculatory flow in severe falciparum malaria: Pathophysiology and electron-microscopic pathology, Acta Tropica, vol.89, pp.309-317, 2004.

R. Fahraeus, The suspension stability of the blood, Physiol Rev, vol.9, pp.241-274, 1929.

R. Fahraeus and T. Lindqvist, The viscosity of the blood in narrow capillary tubes, American Journal of Physiology, vol.96, pp.562-568, 1931.

A. Farutin, Z. Shen, G. Prado, V. Audemar, H. Ez-zahraouy et al., Optimal cell transport in straight channels and networks, Physical Review Fluids, vol.3, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01898243

D. A. Fedosov, B. Caswell, S. Suresh, and G. E. Karniadakis, Quantifying the biophysical characteristics of Plasmodium-falciparum-parasitized red blood cells in microcirculation, Proceedings of the National Academy of Sciences 108.1, pp.35-39, 2011.

D. Fedosov, B. Caswell, A. Popel, and G. Karniadakis, Blood Flow and Cell-Free Layer in Microvessels, vol.8, pp.615-628, 2010.

D. A. Fedosov, B. Caswell, and G. E. Karniadakis, Wall shear stressbased model for adhesive dynamics of red blood cells in malaria, Biophysical Journal, vol.100, pp.2084-2093, 2011.

A. M. Forsyth, J. Wan, P. D. Owrutsky, M. Abkarian, and H. A. Stone, Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release, Proceedings of the National Academy of Sciences 108, vol.27, pp.10986-91, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00630755

S. Frangos, B. Gahtan, and . Sumpio, Localization of atherosclerosis: role of hemodynamics, Arch Surg, vol.134, pp.1142-1151, 1999.

J. B. Freund and J. Vermot, The wall-stress footprint of blood cells flowing in microvessels, Biophysical Journal, vol.106, pp.752-762, 2014.

Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues, 1993.

M. D. Garcia, V. Irina, and . Larina, Vascular development and hemodynamic force in the mouse yolk sac, Frontiers in Physiology, vol.5, pp.1-10, 2014.

. García-cardeña and . Slegtenhorst, Hemodynamic Control of Endothelial Cell Fates in Development, Annual Review of Cell and Developmental Biology, vol.6, pp.633-648, 2016.

S. Gekle, Dispersion of solute released from a sphere flowing in a microchannel, Journal of Fluid Mechanics, vol.819, pp.104-120, 2017.

G. Ghigliotti, H. Selmi, L. E. Asmi, and C. Misbah, Why and how does collective red blood cells motion occur in the blood microcirculation?, Physics of Fluids, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00909441

I. Ginzburg, D. D. Humieres, and A. Kuzmin, Optimal Stability of Advection-Diffusion Lattice Boltzmann Models with Two Relaxation Times for Positive / Negative Equilibrium, J Stat Phys, vol.139, pp.1090-1143, 2010.

H. Goldsmith, G. Cokelet, and P. Gaehtgens, Robin Fåhraeus: evolution of his concepts in cardiovascular physiology, The American journal of physiology, vol.257, pp.1005-1015, 1989.

H. Goldsmith, D. Bell, F. Spain, and . Mcintosh, Effect of red blood cells and their aggregates on platelets and white cells in flowing blood, Biorheology, vol.36, pp.461-468, 1999.

X. Gong, Z. Gong, and H. Huang, An immersed boundary method for mass transfer across permeable moving interfaces, Journal of Computational Physics, vol.278, pp.148-168, 2014.

Z. Guo, B. Shi, and N. Wang, Lattice BGK Model for Incompressible Navier-Stokes Equation, Journal of Computational Physics, vol.165, pp.288-306, 2000.

Z. Guo, C. Zheng, and B. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method, Physical Review E -Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, vol.65, p.6, 2002.

C. Hahn and M. Schwartz, Mechanotransduction in vascular physiology and atherogenesis, Nat Rev Mol Cell Biol, vol.10, pp.53-62, 2009.

B. Hogan, Z. Shen, H. Zhang, C. Misbah, and A. I. Barakat, Shear Stress in the Microvasculature: Influence of Red Blood Cell Morphology and Endothelial Wall Undulation, 2019.

B. Kaoui, Flow and mass transfer around a core-shell reservoir, Physical Review E, vol.95, p.63310, 2017.

B. Kaoui, J. Harting, and C. Misbah, Two-dimensional vesicle dynamics under shear flow: Effect of confinement, Nonlinear, and Soft Matter Physics, vol.83, issue.6, 2011.

S. Kim, R. L. Kong, A. S. Popel, M. Intaglietta, and P. C. Johnson, Temporal and spatial variations of cell-free layer width in arterioles, AJP: Heart and Circulatory Physiology, vol.293, pp.1526-1535, 2007.

I. M. Krieger, J. Thomas, and . Dougherty, A Mechanism for NonNewtonian Flow in Suspensions of Rigid Spheres, Trans. Soc. Rheol. 3, p.137, 1959.

M. H. Kroll, J. D. Hellums, L. V. Mcintire, A. I. Schafer, and J. L. Moake, Platelets and Shear Stress, pp.1525-1542, 1996.

T. Krüger, H. Kusumaatmaja, . Kuzmin, . Shardt, E. Silva et al., The Lattice Boltzmann Method -Principles and Practice, 2016.

T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva et al., The Lattice Boltzmann Method, 2017.

T. Krüger, F. Varnik, and D. Raabe, Shear stress in lattice Boltzmann simulations, Physical Review E, vol.79, pp.1-15, 2009.

T. Kruger, D. Holmes, and P. V. Coveney, Deformability-based red blood cell separation in deterministic lateral displacement devices -A simulation study, Biomicrofluidics, vol.8, 2014.

Y. Liu, L. Zhang, X. Wang, and W. Liu, Coupling of Navier-Stokes equations with protein molecular dynamics and its application to hemodynamics, International Journal for Numerical Methods in Fluids, vol.46, pp.1237-1252, 2004.

N. Maeda, Y. Suzuki, J. Tanaka, and N. Tateishi, Erythrocyte flow and elasticity of microvessels evaluated by marginal cell-free layer and flow resistance, Am J Physiol, vol.271, pp.2454-2461, 1996.

B. Namgung, K. Peng, P. C. Ong, S. Johnson, and . Kim, Effect of cell-free layer variation on arteriolar wall shear stress, Annals of Biomedical Engineering, vol.39, pp.359-366, 2011.

H. Oberleithner, T. Ludwig, C. Riethmüller, U. Hillebrand, L. Albermann et al., Human Endothelium: Target for Aldosterone, pp.952-956, 2004.

O. Oulaid and J. Zhang, Temporal and Spatial Variations of Wall Shear Stress in the Entrance Region of Microvessels, Journal of Biomechanical Engineering, vol.137, p.61008, 2015.

S. Perrotta, G. Patrick, N. Gallagher, and . Mohandas, Hereditary spherocytosis". The Lancet 372, vol.9647, pp.1411-1426, 2008.

C. S. Peskin, The immersed boundary method, Acta Numerica, vol.11, pp.479-517, 2002.

G. Pontrelli, C. S. König, I. Halliday, T. J. Spencer, M. W. Collins et al., Modelling wall shear stress in small arteries using the Lattice Boltzmann method: Influence of the endothelial wall profile, Medical Engineering and Physics, vol.33, pp.832-839, 2011.

A. S. Popel and P. C. Johnson, Microcirculation and Hemorheology, Annual Review of Fluid Mechanics, vol.37, pp.43-69, 2005.

A. R. Pries, P. Neuhaus, and . Gaehtgens, Blood viscosity in tube flow: dependence on diameter and hematocrit, The American journal of physiology 263.6 Pt, vol.2, pp.1770-1778, 1992.

A. R. Pries, T. W. Secomb, T. Geßner, M. B. Sperandio, J. F. Gross et al., Resistance to blood flow in microvessels in vivo, Circulation Research, vol.75, pp.904-915, 1994.

A. R. Pries, T. W. Secomb, and P. Gaehtgens, The endothelial surface layer, Pflügers Archiv -European Journal of Physiology, vol.440, pp.653-666, 2000.

W. Reinke, P. C. Gaehtgens, and . Johnson, Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation, Am J Physiol, vol.253, pp.540-547, 1987.

B. L. Roman and K. Pekkan, Mechanotransduction in Embryonic Vascular Development, Biomech Model Mechanobiol, vol.11, pp.1149-1168, 2015.

C. Rorai, A. Touchard, L. Zhu, and L. Brandt, Motion of an elastic capsule in a constricted microchannel, The European physical journal. E, Soft matter, vol.38, p.134, 2015.

R. L. Satcher, S. R. Bussolari, M. A. Gimbrone, and C. F. Dewey, The Distribution of Fluid Forces on Model Arterial Endothelium Using Computational Fluid Dynamics, J Biomech Eng, vol.114, pp.309-316, 1992.

L. Scheffer, A. Bitler, E. Ben-jacob, and R. Korenstein, Atomic Force Pulling : Probing the Local Elasticity of the Cell Membrane Atomic force pulling : probing the local elasticity of the cell membrane, Eur. Biophys J, vol.30, pp.83-90, 2001.

A. S. Sharan and . Popel, A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall, Biorheology, vol.38, pp.415-428, 2001.

Z. Shen, Blood flow in microfluidic architectures: collective behavoirs of deformable particles in confined flow, 2016.

Z. Shen, A. Farutin, M. Thiébaud, and C. Misbah, Interaction and rheology of vesicle suspensions in confined shear flow, Phys. Rev. Fluids, vol.2, p.103101, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01930097

S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, 2001.

C. Sun and L. L. Munn, Particulate nature of blood determines macroscopic rheology: A 2-D lattice Boltzmann analysis, Biophysical Journal, vol.88, pp.1635-1645, 2005.

N. Tahiri, T. Biben, H. Ez-zahraouy, A. Benyoussef, and C. Misbah, On the problem of slipper shapes of red blood cells in the microvasculature, Microvascular Research, vol.85, pp.40-45, 2013.

M. Thiébaud, Z. Shen, J. Harting, and C. Misbah, Prediction of anomalous blood viscosity in confined shear flow, Physical Review Letters, vol.112, p.238304, 2014.

K. Tsubota, S. Ichi, and . Wada, Effect of the natural state of an elastic cellular membrane on tank-treading and tumbling motions of a single red blood cell, Nonlinear, and Soft Matter Physics, vol.81, 2010.

K. Tsubota, S. Wada, and T. Yamaguchi, Particle method for computer simulation of red blood cell motion in blood flow, Computer Methods and Programs in Biomedicine, vol.83, pp.139-146, 2006.

J. S. Uzarski, W. Edward, . Scott, and . Peter-s-mcfetridge, Adaptation of Endothelial Cells to Physiologically-Modeled , Variable Shear Stress, PLoS One, vol.8, issue.2, 2013.

T. Wu and J. J. Feng, Simulation of malaria-infected red blood cells in microfluidic channels: Passage and blockage, pp.1-18, 2013.

W. Xiong and J. Zhang, Shear stress variation induced by red blood cell motion in microvessel, Annals of Biomedical Engineering, vol.38, pp.2649-2659, 2010.

Z. Xu, Y. Zheng, X. Wang, N. Shehata, C. Wang et al., Stiffness increase of red blood cells during storage". Microsystems & Nanoengineering 4, p.17103, 2017.

X. Yang, X. Zhang, Z. Li, and G. Wei-he, A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations, Journal of Computational Physics, vol.228, pp.7821-7836, 2009.

T. Ye, N. Phan-thien, B. Khoo, and C. Lim, Numerical modelling of a healthy/malariainfected erythrocyte in shear flow using dissipative particle dynamics method, Journal of Applied Physics, vol.115, p.224701, 2014.

T. Ye, N. Phan-thien, and C. Lim, Particle-based simulations of red blood cells-A review, Journal of Biomechanics, vol.49, pp.2255-2266, 2015.

X. Yin and J. Zhang, Cell-free layer and wall shear stress variation in microvessels, Biorheology, vol.49, pp.261-270, 2012.

H. Zhang, Z. Shen, B. Hogan, A. I. Barakat, and C. Misbah, ATP Release by Red Blood Cells under Flow : Model and Simulations, Biophysical Journal 115, vol.12, pp.1-12, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02003984

J. Zhang, P. C. Johnson, and A. S. Popel, An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows, pp.285-295, 2007.

J. Zhang, P. Johnson, and A. Popel, Effects of Erythrocyte Deformability and Aggregation on the Cell Free Layer and Apparent Viscosity of Microscopic Blood Flows, Microvascular Research, vol.77, pp.265-272, 2009.