CARET MODEL-CHECKING D'AUTOMATES À PILES: APPLI-CATION A LA DETECTION DE MALWARE

Keywords: détection de malware, automates à pile, vérification, automates malware detection, pushdown systems, model-checking, automata

Cette thèse s'attaque au problème de détection de malware en utilisant des techniques de model-checking: les automates à pile sont utilisés pour modéliser les programmes binaires, et la logique CARET (et ses variantes) sont utilisées pour représenter les comportements malicieux. La détection de malware est alors réduite au problème de model-checking des automates à pile par rapport à ces logiques CARET.

Cette thèse propose alors différents algorithmes de model-checking des automates à pile par rapport à ces logiques CARET et montre comment ceci peut s'appliquer pour la détection de malware.

Chapter 1

Introduction

The number of malware is growing fast recently. Traditional malware detection techniques including signature matching and code emulation are not efficient enough. While malware writers can use obfuscation techniques to bypass the signature based malware detectors easily, code emulation can only monitor programs in certain execution paths during a short time. To overcome these limitations, model-checking emerges as an efficient technique for malware detection, as model-checking allows to check the behaviors of a program in all its execution traces without executing it.

A lof of efforts have been made to apply model-checking for malware detection [BDD + 01, KKSV05, CJ03, ST13a, [START_REF] Song | Efficient malware detection using model-checking[END_REF][START_REF] Song | Pushdown model checking for malware detection[END_REF]. In [START_REF] Kinder | Detecting malicious code by model checking[END_REF], the authors proposed to use finite state graphs to model the program and use the temporal logic CTPL to describe malicious behaviours. However, finite graphs are not precise enough to model programs, as they don't allow to keep track of the program's stack.

Being able to record the program's stack is very important for malware detection as explained in [START_REF] Lakhotia | A method for detecting obfuscated calls in malicious binaries[END_REF]. Indeed, push and pop instructions are frequently used by malware writers for code obfuscation. Moreover, in binary codes and assembly programs, parameters are passed to functions via the stack (i.e., they are pushed on the stack before invoking the function). The values of these parameters determine whether the program has a malicious behavior or not. Thus, it is very important to track the program's stack for malware detection. To this aim, [START_REF] Song | LTL model-checking for malware detection[END_REF][START_REF] Song | Efficient malware detection using model-checking[END_REF][START_REF] Song | Pushdown model checking for malware detection[END_REF][START_REF] Song | Pommade: pushdown model-checking for malware detection[END_REF] proposed to use pushdown systems (PDSs) to model programs, and defined extensions of LTL and CTL (called SLTPL and SCTPL) to precisely and succinctly represent malicious behaviors. However, these logics cannot describe properties that require matchings of calls and returns, which is necessary to specify malicious behaviours. For instance, let us consider a typical behaviour of a spyware: it consists in hunting for personal information (emails, bank account information,...) on local drives by searching files matching certain conditions. To do this, the spyware first calls the API function FindFirstFileA to obtain the first matching file. FindFirstFileA will return a search handle h. To obtain all matching files, the spyware must continuously call the function FindNextFileA with h as parameter. This behaviour cannot be specified by LTL or CTL since it requires that the return value of the API FindFirstFileA must be used as the input of the function FindNextFileA. CARET was introduced to express these properties that involve matchings of calls and returns [START_REF] Alur | A temporal logic of nested calls and returns[END_REF]. However, only CARET model-checking for Recursive State Machines (RSMs) was considered. RSMs can be seen as a natural model to express the control flow graph of sequential programs with recursive procedure calls. Each procedure is modelled as a module. The invocation to a procedure is modelled as a call node; the return from a module corresponds to a ret node; and the remaining statements are considered as internal nodes in the RSMs. Thus, RSMs are a good formalism to model sequential programs written in structured programming languages like C or Java. However, they become non suitable for modelling binary or assembly programs; since, in these programs, explicit push and pop instructions can occur. This makes impossible the use of RSMs to model assembly programs and binary codes directly.

Thus, it is very important to be able to model check binary and assembly programs against CARET formulas. One can argue that from a binary/assembly program, one can compute a PDS as described in [START_REF] Song | Efficient malware detection using model-checking[END_REF] and then apply the translation in [ABE + 05] to obtain a RSM and then apply the CARET model-checking algorithm of [START_REF] Alur | A temporal logic of nested calls and returns[END_REF] on this RSM. However, by doing so, we loose the explicit manipulation of the program's stack. Explicit push and pop instructions are not represented in a natural way anymore, and the stack of the RSM does not correspond to the stack of the assembly program anymore. Thus, it is not possible to state intuitive formulas that correspond to properties of the program's behaviors on the obtained RSM. Especially, when these formulas talk about the content of the program's stack. Thus, it is very important to have a direct algorithm for CARET model-checking of PDSs.

CARET Model Checking For Pushdown Systems

In this thesis, we first consider CARET model-checking for Pushdown Systems.

We also consider CARET model checking with regular valuations, where the set of configurations in which an atomic proposition holds is a regular language.

Our main contributions in this part are:

1. We propose an algorithm to model-check PDSs against CARET formulas. We also consider CARET model checking for PDSs with regular valuations. We reduce these problems to the emptiness problem of Büchi Pushdown Systems. This latter problem is already solved in [START_REF] Bouajjani | Reachability analysis of pushdown automata: Application to model-checking[END_REF][START_REF] Esparza | A bdd-based model checker for recursive programs[END_REF].

1.2. CARET Model Checking for Malware Detection 3 2. We implemented our techniques in a tool, and we applied it to different case studies. Our results are encouraging. In particular, we were able to apply our tool to detect several malwares.

The results of this part were published in [START_REF] Nguyen | CARET model checking for pushdown systems[END_REF]. They are discussed in Chapter 2.

CARET Model Checking for Malware Detection

Using CARET, the behavior of a spyware (described above) can be expressed by the following formula:

ψ sf = d∈D F g call(FindFirstFileA) ∧ X a (eax = d) ∧ F a call(FindNextFileA) ∧ dΓ *
where the is taken over all possible memory addresses d which contain the values of search handles h in the program. F g is the standard LTL F operator (in the future), while F a is a CARET operator that means "in the future, in the same procedural context", and X a is a CARET operator that means "at the return point of the called procedure" if it is applied at a call point.

In binary codes and assembly programs, the return value of an API function is put in the register eax. Thus, the return value of F indF irstF ileA is the value of eax at its corresponding return-point. Then, the subformula F g (call(FindFirstFileA) ∧ X a (eax = d)) expresses that there is a call to the API F indF irstF ileA and the return value of this function is d. When Find-NextFileA is invoked, one of its required parameters is the search handle and this search handle must be put on top of the program stack (since parameters are passed through the stack in assembly). The requirement that d is on top of the program stack is expressed by the regular valuation dΓ * . Thus, the subformula call(FindNextFileA) ∧ dΓ * expresses that FindNextFileA is called with d as parameter (d stores the information of the search handle). Thus, ψ sf expresses then that there is a call to the API F indF irstF ileA with the return value d (the search handle), followed by a call to the function F indN extF ileA with d on the top of the stack.

However, this formula is huge, as it considers the disjunction (of different CARET formulas) over all possible memory addresses d which contain the information of search handles h in the program. To represent it in a more succinct fashion, we follow the idea of [START_REF] Kinder | Detecting malicious code by model checking[END_REF][START_REF] Song | LTL model-checking for malware detection[END_REF][START_REF] Song | Pushdown model checking for malware detection[END_REF] and extend CARET with variables, quantifiers, and predicates over the stack. We call our new logic SPCARET. We define also PCARET formulas to be SPCARET formulas that do not use predicates over the stack. The above formula can be compactly represented in SPCARET as follows:

ψ sf 2 = ∃xF g call(FindFirstFileA) ∧ X a (eax = x) ∧ F a call(FindNextFileA) ∧ xΓ *
Our main contributions in this part are:

1. We introduce the PCARET and SPCARET logics and show how they can be used to succinctly and precisely describe different malicious behaviors. We identify the sublogics PCARET \c and SPCARET \c , which are subclasses of PCARET and SPCARET respectively where the time operators on caller paths are removed. We show that PCARET \c and SPCARET \c are sufficient to describe most malicious behaviors.

2. We propose efficient algorithms to model check PCARET \c and SPCARET \c formulas for PDSs. Our algorithms are based on reducing the model checking problem to the emptiness problem of Symbolic Büchi Pushdown Systems. This latter problem is solved in [START_REF] Esparza | A bdd-based model checker for recursive programs[END_REF].

3. We implemented our techniques in a tool for malware detection. We obtained encouraging results. Our tool was able to detect several malwares and to determine that benign programs are benign. We compared the performance of our new SPCARET tool against our CARET model checking tool. Our new tool behaves much better, as the CARET tool timeout in most cases.

The results of this part were published in [START_REF] Nguyen | CARET model checking for malware detection[END_REF]. They are discussed in Chapter 3.

Branching Temporal Logic of Calls and Returns for Pushdown Systems

However, CARET and SPCARET are not sufficient to describe several kinds of properties, such as branching-time properties that require matchings of calls and returns. In [START_REF] Alur | A fixpoint calculus for local and global program flows[END_REF], the authors introduced VP-µ, a branching-time temporal logic that allows to talk about matchings between calls and returns, and proposed an algorithm to model-check VP-µ formulas for Recursive State Machines (RSMs) [ABE + 05]. VP-µ can be seen as an extension of the modal µcalculus which allows to talk about matching of calls and returns. However, as discussed before, RSMs become non suitable for modelling binary or assembly programs; since, in these programs, explicit push and pop instructions can occur. Thus, it is very important to have a direct algorithm for model-checking a branching-time temporal logic with matching of calls and returns for PDSs.

In addition, VP-µ is a heavy formalism that can't be used by novice users. Indeed, VP-µ can be seen as an extension of the modal µ-calculus with 1.3. Branching Temporal Logic of Calls and Returns for Pushdown Systems 5 several modalities loc , [loc], call , [call], ret , [ret] that allow to distinguish between calls, returns, and other statements (neither calls nor returns). Writing a simple specification in VP-µ is complicated. For example, the following simple property stating that "the configuration e can be reached in the same procedural context as the current configuration" can be described (as shown in [START_REF] Alur | A fixpoint calculus for local and global program flows[END_REF]) by the complex VP-µ formula ϕ 2 = µX(e ∨ loc X ∨ call ϕ 3 {X}) where ϕ 3 = µY (ret R 1 ∨ loc Y ∨ call Y {Y }). Thus, we need to define a more intuitive branching-time temporal logic (in the style of CTL) that allows to talk naturally and intuitively about matching calls and returns.

Therefore, we define in the third part of the thesis the Branching temporal logic of CAlls and RETurns BCARET. BCARET can be seen as an extension of CTL with operators that allow to talk about matchings between calls and returns. Using BCARET, the above reachability property can be described in a simple way by the formula EF a e where EF a is a BCARET operator that means "there exists a run on which eventually in the future in the same procedural context". We consider the model-checking problem of PDSs against BCARET formulas with "standard" valuations (where an atomic proposition holds at a configuration c or not depends only on the control state of c, not on its stack) as well as regular valuations (where the set of configurations in which an atomic proposition holds is a regular set of configurations). We show that these problems can be effectively solved by a reduction to the emptiness problem of Alternating Büchi Pushdown Systems (ABPDSs). The latter problem can be solved effectively in [START_REF] Song | Efficient CTL model-checking for pushdown systems[END_REF]. Note that the regular valuation case cannot be solved by translating the PDSs to RSMs since as said previously, by doing the translation of PDSs to obtain RSMs, we loose the structure of the program's stack. Our main contributions in this part are:

1. We define the Branching temporal logic of CAlls and RETurns BCARET and show how it can be used to specify malicious behaviors.

2. We propose algorithms to model-check PDSs against BCARET formulas. We also consider BCARET model checking for PDSs with regular valuations, where the set of configurations in which an atomic proposition holds is a regular language. We reduce these problems to the emptiness problem of Alternating Büchi Pushdown Systems.

The results of this part were published in [START_REF] Nguyen | Branching temporal logic of calls and returns for pushdown systems[END_REF]. They are discussed in Chapter 4.

BCARET Model Checking for Malware Detection

As for CARET, in order to write efficient and succinct BCARET formulas to specify malicious behaviors, we extend BCARET with variables, quantifiers, and predicates over the stack. We call our new logic Stack Branching temporal Predicate logic of CAlls and RETurns (SBPCARET). Our main contributions in this part are:

1. We introduce the SBPCARET logic and show how it can be used to succinctly and precisely describe different malicious behaviors.

2. We propose a symbolic algorithm to model check SBPCARET formulas for PDSs. Our algorithm is based on reducing the model checking problem to the emptiness problem of Symbolic Alternating Büchi Pushdown Systems.

The results of this part are discussed in Chapter 5.

CARET analysis of multithreaded programs

As mentioned previously, Pushdown Systems (PDSs) are known to be a natural model for sequential programs [START_REF] Schwoon | Model-Checking Pushdown Systems[END_REF]. Therefore, networks of pushdown systems are a natural model for concurrent programs where each PDS represents a sequential component of the system. In this context, Dynamic pushdown Networks (DPNs) [START_REF] Bouajjani | Regular symbolic analysis of dynamic networks of pushdown systems[END_REF] were introduced by Bouajjani et al. as a natural model of multithreaded programs with procedure calls and thread creation. Intuitively, a DPN is a network of pushdown processes {P 1 , ..., P n } where each process, represented by a Pushdown system (PDS), can perform basic pushdown actions, call procedures, and spawn new instances of pushdown processes. A lot of previous researches focused on investigating automated methods to verify DPNs. In [BMT05, Lug11, LMW09, GLM + 11], the reachability analysis of DPNs are considered. While the model-checking problem for DPNs against double-indexed properties is undecidable, i.e., properties where the satisfiability of an atomic proposition depends on control states of two or more threads [START_REF] Kahlon | An automata-theoretic approach for model checking threads for LTL propert[END_REF], it is decidable to model-check DPNs against the linear temporal logic (LTL) and the computation tree logic (CTL) with single-indexed properties [START_REF] Song | Model checking dynamic pushdown networks[END_REF], i.e., properties where the satisfiability of an atomic proposition depends on control states of only one thread.

Thesis Organization

As mentioned before, CARET is needed to describe several important properties such as malicious behaviors. Thus, to be able to analyse such properties for multithreaded programs, we need to be able to check CARET formulas for DPNs. We tackle this problem in this part. As LTL is a subclass of CARET, CARET model-checking for DPNs with double-indexed properties is also undecidable. Thus, in this part, we consider the model-checking problem for DPNs against single-indexed CARET formulas and show that it is decidable. A single-indexed CARET formula is a formula in the form f i where f i is a CARET formula over a certain PDS P i . A DPN satisfies f i iff all instances of the PDS P i created in the network satisfy the subformula f i .

The model-checking problem of DPNs against single-indexed CARET formulas is non-trivial because the number of instances of pushdown processes in DPNs can be unbounded. It is not sufficient to check if every PDS P i satisfies the corresponding formula f i . Indeed, we need to ensure that all instances of P i created during a run of DPN satisfy the formula f i . Also, an instance of P i should not be checked if it is not created during the run of DPNs. In this part, we solve these problems. Our main contributions in this part are:

1. We show how to use single-indexed CARET formulas to specify malicious behaviors.

2. We show that single-indexed CARET model checking is decidable for DPNs. We reduce the problem of checking whether Dynamic Pushdown Networks satisfy single-indexed CARET formulas to the membership problem for Büchi Dynamic Pushdown Networks (BDPNs).

3. We show that single-indexed CARET model checking is decidable for Dynamic Pushdown Networks communicating via nested locks

The results of this part were published in [START_REF] Nguyen | CARET analysis of multithreaded programs[END_REF]. They are discussed in Chapter 6.

Thesis Organization

In Chapter 2, we show how to model-check CARET formulas for PDSs with both simple valuations and regular valuations. This chapter contains several definitions that are used in the rest of the thesis. Chapter 3 shows how SPCARET can be useful and effective for malware detection. In Chapter 4, we go one step further and define BCARET. Our algorithm for BCARET model-checking for PDSs is described in this chapter. Chapter 5 shows how SBPCARET can be useful and effective for detecting malware. Chapter 6

Chapter 2

CARET Model Checking For Pushdown Systems

CARET (A temporal logic of calls and returns) was introduced by Alur et al. This logic allows to write linear temporal logic formulas while taking into account matching of calls and returns. However, CARET model checking for Pushdown Systems (PDSs) was never considered in the literature. Previous works only dealt with the model checking problem for Recursive State Machine (RSMs). While RSMs are a good formalism to model sequential programs written in structured programming languages like C or Java, they become non suitable for modeling binary or assembly programs, since, in these programs, explicit push and pop of the stack can occur. Thus, it is very important to have a CARET model checking algorithm for PDSs. We tackle this problem in this chapter. We also consider CARET model checking with regular valuations, where the set of configurations in which an atomic proposition holds is a regular language. We reduce these problems to the emptiness problem of Büchi Pushdown Systems (BPDSs). We implemented our technique in a tool, and we applied it to different case studies. Our results are encouraging. In particular, we were able to apply our tool to detect several malwares.

Outline. In Section 2.1, we recall the definition of CARET. In Section 2.2, we define the CARET model-checking problem for PDSs. In Section 2.3, we present our algorithm to reduce the CARET model-checking problem to the emptiness problem of BPDSs. Model checking for PDSs with regular valuations is discussed in Section 2.4. Section 2.5 shows how CARET can be used to specify different malicious behaviors and to describe API usage rules. Our experiments are presented in Section 2.6. Finally, we conclude in Section 2.7.

Linear Temporal Logic of Calls and Returns -CARET

In this section, we recall the definition of CARET with respect to sequential programs. A CARET formula is interpreted on an infinite path where each state on the path is associated with a tag in the set {call, ret, int} Let ω = s 0 s 1 ... be an infinite path where each state on the path is associated with a tag in the set {call, ret, int}. Over ω, three kinds of successors are defined for every position s i :

• global-successor : The global-successor of s i is s i+1 .

• abstract-successor : The abstract-successor of s i is determined by its associated tag.

-If s i is a call, there are two cases: (1) if s i has s k as a corresponding return-point in ω, then, the abstract successor of s i is s k ; (2) if s i does not have any corresponding return-point in ω, then, the abstract successor of s i is ⊥.

-If s i is a int, the abstract successor of s i is s i+1 .

-If s i is a ret, the abstract successor of s i is defined as ⊥.

• caller-successor : The caller-successor of s i is the most inner unmatched call if there is such a call. Otherwise, it is defined as ⊥.

For example, in Figure 2.1:

• The global-successor of s 1 and s 2 are s 2 and s 3 respectively.

• The abstract-successor of s 2 and s 5 are s k and s 9 respectively.

• The caller-successor of s 6 , s 7 , s 8 is s 5 while the caller-successor of s 3 , s 4 , s 5 , s 9 is s 2 . Note that the caller-successor of s 0 , s 1 , s 2 , s k is ⊥.

A global-path is obtained by applying repeatedly the global-successor operator.

Similarly, an abstract-path or a caller-path are obtained by repeatedly applying the abstract-successor and caller-successor respectively. In Figure 2.1, from s 4 , the global-path is s 4 s 5 s 6 s 7 s 8 s 9 s 10 ..., the abstract-path is s 4 s 5 s 9 s 10 ... while the caller-path is s 4 s 2 . Note that the caller-path is always finite.

Given a state s, let P(s) be the procedure to which s belongs. For example, in Figure 2.1, all states on the abstract-path starting from s 3 belong to the procedure proc, i.e., P(s 3) = proc, P(s 9) = proc, ... Given a finite set of atomic propositions AP. Let AP = AP ∪ {call, ret, int}.

A CARET formula over AP is defined as follows (where e ∈ AP):

ψ := e | ψ ∨ ψ | ¬ψ | X g ψ | X a ψ | X c ψ | ψU a ψ | ψU g ψ | ψU c ψ
Let Σ = 2 AP × {call, ret, int}. Let π = π(0)π(1)π(2)... be an ω-word over Σ. Let (π, i) be the suffix of π starting from π(i). Let next g i , next a i , next c i be the global-successor, abstract-successor and caller-successor of π(i) respectively. The satisfiability relation is defined inductively as follows:

• (π, i) e, where e ∈ AP , iff π(i) = (Y, d) and e ∈ Y or e = d

• (π, i) ψ 1 ∨ ψ 2 iff (π, i) ψ 1 or (π, i) ψ 2 • (π, i) ¬ψ iff (π, i) ψ • (π, i) X g ψ iff (π, next g i) ψ
• (π, i) X a ψ iff next a i = ⊥ and (π, next a i) ψ

• (π, i) X c ψ iff next c i = ⊥ and (π, next c i) ψ

• (π, i) ψ 1 U b ψ 2 (with b ∈ {g, a, c}) iff there exists a sequence of positions h 0 , h 1 , ..., h k-1 , h k where h 0 = i, for every 0 ≤ j ≤ k -1 : h j+1 = next b h j , (π, h j) ψ 1 and (π, h k) ψ 2

Then, π ψ iff (π, 0) ψ. Other CARET operators can be expressed by the above operators:

F g ψ = true U g ψ, G g ψ = ¬F g ¬ψ, F a ψ = true U a ψ, G a ψ = ¬F a ¬ψ, F c ψ = true U c ψ, G c ψ = ¬F c ¬ψ.
Remark 1. LTL can be seen as the subclass of CARET where the operators X c , U c , X a , U a are not considered.

Let ψ be a CARET formula over AP . The closure of ψ, denoted Cl(ψ), is the smallest set that contains ψ, call, ret and int and satisfies the following properties:

• if ¬ψ ∈ Cl(ψ), then ψ ∈ Cl(ψ)

• if X b ψ ∈ Cl(ψ) (with b ∈ {g, a, c}), then ψ ∈ Cl(ψ)

• if ψ 1 ∨ ψ 2 ∈ Cl(ψ), then ψ 1 ∈ Cl(ψ), ψ 2 ∈ Cl(ψ) • if ψ 1 U b ψ 2 ∈ Cl(ψ) (with b ∈ {g, a, c}), then ψ 1 ∈ Cl(ψ), ψ 2 ∈ Cl(ψ), X b (ψ 1 U b ψ 2) ∈ Cl(ψ)
• if ψ ∈ Cl(ψ), and ψ is not in the form ¬ψ then ¬ψ ∈ Cl(ψ)

A set A ⊆ Cl(ψ) is an atom of ψ if it satisfies the following properties:

• ∀ψ ∈ Cl(ψ), ψ ∈ A ⇔ ¬ψ / ∈ A • ∀ψ ∨ ψ ∈ Cl(ψ), ψ ∨ ψ ∈ A ⇔ ψ ∈ A or ψ ∈ A • ∀ψ U b ψ ∈ Cl(ψ), where b ∈ {g, a, c}, ψ U b ψ ∈ A ⇔ ψ ∈ A or (ψ ∈ A and X b (ψ U b ψ) ∈ A)
• A includes exactly one element of the set {call, ret, int} Let Atoms(ψ) be the set of atoms of ψ. Let A and A be two atoms, we define the following predicates:

• AbsN ext(A, A) = true iff for every X a φ ∈ Cl(ψ) : (X a φ ∈ A iff φ ∈ A).

• GlN ext(A, A) = true iff for every X g φ ∈ Cl(ψ) : (X g φ ∈ A iff φ ∈ A)

• CallerN ext(A, A) = true iff for every X c φ ∈ Cl(ψ) : (X c φ ∈ A iff φ ∈ A).

We define N exCallerF orms(A) to be a function which returns the callerformulas in A. Formally, N exCallerF orms(A) = {X c φ | X c φ ∈ A}. Similarly, let N exAbsF orms(A) = {X a φ | X a φ ∈ A} be a function which returns the abstract-formulas in A.

CARET for Pushdown Systems

Pushdown Systems: A model for sequential programs

Pushdown systems is a standard model that was extensively used to model sequential programs. Translations from sequential programs to PDSs can be 2.2. CARET for Pushdown Systems found e.g. in [START_REF] Schwoon | Model-Checking Pushdown Systems[END_REF]. We apply the translation of [START_REF] Song | Efficient malware detection using model-checking[END_REF] together with the tools IDA Pro [IDA] and Jakstab [START_REF] Kinder | Jakstab: A static analysis platform for binaries[END_REF] to obtain Pushdown Systems from binary programs. In order to be able to define CARET formulas on PDSs, we need to adapt the PDS model in order to record whether a rule of a PDS corresponds to a call, a return, or another statement:

Definition 1. A Labelled Pushdown System (PDS) P is a tuple (P, Γ, ∆), where P is a finite set of control locations, Γ is a finite set of stack alphabet, and ∆ is a finite subset of ((P ×Γ)×(P ×Γ *)×{call, ret, int}). If ((p, γ), (q, ω), t) ∈ ∆ (t ∈ {call, ret, int}), we also write p, γ t -→ q, ω ∈ ∆. Rules of ∆ are of the following form, where p ∈ P, q ∈ P, γ, γ 1 , γ 2 ∈ Γ, and ω ∈ Γ * :

• (r 1): p, γ call --→ q, γ 1 γ 2 • (r 2): p, γ ret -→ q, ε • (r 3): p, γ int -→ q, ω
Intuitively, a rule of the form p, γ call --→ q, γ 1 γ 2 corresponds to a call statement. Such a rule usually models a statement of the form γ call proc -----→ γ 2 . In this rule, γ is the control point of the program where the function call is made, γ 1 is the entry point of the called procedure, and γ 2 is the return point of the call. A rule r 2 models a return statement, whereas a rule r 3 corresponds to a simple statement (neither a call nor a return). A configuration of P is a pair p, ω , where p is a control location and ω ∈ Γ * is the stack content. P defines a transition relation = ⇒ P as follows: If p, γ t -→ q, ω (t ∈ {call, ret, int}), then for every ω ∈ Γ * , p, γω = ⇒ P q, ωω . In other words, q, ωω is an immediate successor of p, γω . A run (or an execution) of P from p 0 , ω 0 is an infinite sequence p 0 , ω 0 p 1 , ω 1 ... where p i , ω i ∈ P × Γ * and for every i ≥ 0, p i+1 , ω i+1 is an immediate successor of p i , ω i . Let = ⇒ P be the reflexive and transitive closure of = ⇒ P . Given a configuration p, ω , let T races(p, ω) be the set of all possible runs starting from p, ω .

CARET for Pushdown Systems

Our goal in this chapter is to define and perform CARET model checking for PDSs. Let then λ : P → 2 AP be a labeling function that assigns to each control point of P a set of atomic propositions. Let π = p 0 , ω 0 p 1 , ω 1 ... be an execution of P. We associate to each configuration p i , ω i of π a tag t i in {call, int, ret} as follows:

• If p i , ω i = ⇒ P p i+1
, ω i+1 corresponds to a call statement, then t i = call.

• If p i , ω i = ⇒ P p i+1 , ω i+1 corresponds to a return statement, then t i = ret.

• If p i , ω i = ⇒ P p i+1 , ω i+1 corresponds to a simple statement (neither a call statement nor a return statement), then t i = int.

Let ψ be a CARET formula over AP . Then we say that

π ψ iff (λ(p 0), t 0)(λ(p 1), t 1) • • • ψ
Let p, ω be a configuration of P. We say that p, ω ψ iff there exists a path π that starts at p, ω such that π ψ.

CARET Model-Checking for Pushdown Systems

In this section, we show how to reduce the CARET model checking problem for Pushdown Systems to the emptiness problem of Büchi Pushdown Systems. The latter problem is already solved in [START_REF] Bouajjani | Reachability analysis of pushdown automata: Application to model-checking[END_REF][START_REF] Esparza | A bdd-based model checker for recursive programs[END_REF].

Büchi Pushdown Systems

Definition 2. A Büchi Pushdown System (BPDS) is a tuple (P, Γ, ∆, F) where (P, Γ, ∆) is a Pushdown System (PDS) and F ⊆ P is a finite set of accepting control locations. A run of a BPDS is accepted iff it visits infinitely often some control locations in F .

Definition 3. A Generalized Büchi Pushdown System (GBPDS) is a tuple (P, Γ, ∆, F), where (P, Γ, ∆) is a PDS and F = {F 1 , ..., F k } is a set of sets of accepting control locations. A run of a GBPDS is accepting iff it visits infinitely often some control locations in F i for every

1 ≤ i ≤ k.
For a BPDS or a GBPDS BP, we let L(BP) be the set of configurations p, ω such that BP has an accepting run from p, ω . We have the following properties:

From CARET Model-Checking for PDSs to the Emptiness Problem of BPDSs

Let P = (P, Γ, ∆) be a PDS, λ : P → 2 AP be a labeling function, ψ be a CARET formula over AP . In this section, we show how to build a Generalized Büchi Pushdown System BP ψ s.t. P has an execution π from p, ω s.t. π satisfies ψ iff there exists an atom A ∈ Atoms(ψ), ψ ∈ A and N exCallerF orms(A) = ∅, such that BP ψ has an accepting run from p, A, unexit , ω where unexit is a label expressing that from the configuration p, ω , the execution of the procedure of p, ω , P(p, ω), in π is never finished (since π is an infinite run and p, ω is the initial configuration of π). Note that the requirement N exCallerF orms(A) = ∅ comes from the fact that on BP ψ , p, A , ω is the initial configuration, thus, it has no callersuccessor. This requirement does not make any restriction for our algorithm.

Let cl U g (ψ) = {φ 1 U g χ 1 , ..., φ k U g χ k } and cl U a (ψ) = {ξ 1 U a τ 1 , ..., ξ k U a τ k }
be the set of U g -formulas and U a -formulas of Cl(ψ) respectively. Let Label = {exit, unexit}. We define BP ψ = (P , Γ , ∆ , F) as follows:

• P = { p, A, l | p ∈ P, l ∈ Label, A ∈ Atoms(ψ) and A ∩ AP = λ(p) } is the finite set of control locations of BP ψ • Γ = Γ ∪ (Γ × Atoms(ψ) × Label) is the finite set of stack symbols of BP ψ .
The transition relation ∆ of BP ψ is the smallest set of transition rules satisfying the following:

• (α 1) for every p, γ call --→ q, γ γ ∈ ∆: p, A, l , γ -→ q, A , l , γ γ , A, l ∈ ∆ for every A, A ∈ Atoms(ψ); l, l ∈ Label such that:

-(β 0) A ∩ {call, ret, int} = {call} -(β 1) A ∩ AP = λ(p) -(β 2) A ∩ AP = λ(q) -(β 3) GlN ext(A, A) -(β 4) CallerN ext(A , A) -(β 5) l = unexit implies (l = unexit and N exAbsF orms(A) = ∅) • (α 2) for every p, γ ret -→ q, ε ∈ ∆:
-(α 2.1) p, A, exit , γ -→ q, A , l , ε ∈ ∆ for every A, A ∈ Atoms(ψ); l ∈ Label such that:

The generalized Büchi accepting condition F of BP ψ is defined as:

F = {F 1 } ∪ F 2 ∪ F 3 where • F 1 = P × 2 Cl(ψ) × {unexit} • F 2 = {F g 1 , ..., F g k } where F g i = {P × F φ i U g χ i × Label} s.t. F φ i U g χ i = {A ∈ Atoms(ψ) | if φ i U g χ i ∈ A then χ i ∈ A} for every 1 ≤ i ≤ k. • F 3 = {F a 1 , ..., F a k } where F a i = {P × F ξ i U a τ i × {unexit}} s.t. F ξ i U a τ i = {A ∈ Atoms(ψ) | if ξ i U a τ i ∈ A then τ i ∈ A} for every 1 ≤ i ≤ k .
Intuition. Roughly speaking, we construct BP ψ as a kind of product of P and ψ which ensures that BP ψ has an accepting run from p, A, unexit , ω where ψ ∈ A and N exCallerF orms(A) = ∅ iff P has an execution π starting at p, ω s.t. π ψ. The form of control locations of BP ψ is p, A, l where A contains all sub formulas of ψ which are satisfied at the configuration p, ω , l is a label to determine whether the execution of the procedure of p, ω ,

call A 0 A i A i+1 proc ret return-point γ , A i encoded & passed down p 0 , ω 0 p i , ω i p i+1 , ω i+1 p k-2 , ω k-2 p k-1 , ω k-1 p k , ω k Figure 2.2: Case of X a φ ∈ A i P(p, ω
) (as defined in Section 2.1), terminates on π. A configuration p, ω is labeled with exit means that the execution of P(p, ω) is finished in π, i.e., the run π will run through the procedure P(p, ω), reaches its ret statement and exits P(p, ω) after that. On the contrary, p, ω is labeled with unexit means that in π, the execution of the procedure P(p, ω) never terminates, i.e., the run π will be stuck in and never exits the procedure P(p, ω). Let π = p 0 , ω 0 p 1 , ω 1 ... be a run of P and let p 0 , A 0 , l 0 , ω 0 p 1 , A 1 , l 1 , ω 1 be a corresponding run of BP ψ . Our construction aims to obtain a BP ψ such that BP ψ has an accepting run from p i , A i , l i , ω i iff p i , ω i φ for every φ ∈ A i . To obtain such a BP ψ , in rules (α 1), (α 2) and (α 3), the first class of conditions (β 0) ensures that the tags {call, ret, int} assigned to each configuration of the run are guessed correctly. The second class of conditions (β 1) and (β 2) expresses that for every e ∈ AP , (π, i) e iff e ∈ λ(p i), and the class of conditions (β 3) expresses that (π, i) X g φ iff (π, i + 1) φ . Now, let us consider the two most delicate cases:

1. If φ = X a φ ∈ A i . There are two possibilities:

• p i , ω i = ⇒ P p i+1
, ω i+1 corresponds to a call statement. Let us consider Figure 2.2 to explain this case. Let p k , ω k be the abstractsuccessor of p i , ω i . (π, i) X a φ iff (π, k) φ . Thus, we must have φ ∈ A k . This is ensured by rules α 1 and α 2 : rules α 1 allow to record X a φ in the return point of the call, and rules α 2 allow to extract and validate φ when the return-point is reached. In what follows, we show in more details how this works: Let p i , γ call --→ p i+1 , γ γ be the rule associated with the transition p i , ω i ⇒ P p i+1 , ω i+1 , then we have ω i = γω and ω i+1 = γ γ ω . Let p k-1 , ω k-1 ⇒ P p k , ω k be the transition that corresponds to the ret statement of this call. Let then p k-1 , β ret -→ p k , ε ∈ ∆ be the corresponding return rule. Then, we have necessarily ω k-1 = βγ ω , since as explained in Section 2.2.1, γ is the return address of the call. After applying this rule, ω k = γ ω . In other words, γ will be the topmost stack symbol at the corresponding return point of the call.

Chapter 2. CARET Model Checking For Pushdown Systems

So, in order to recover φ in A k , we proceed as follows: At the call p i , γ call --→ p i+1 , γ γ , we encode A i into γ by the rule (α 1) stating that p i , A i , l i , γ -→ p i+1 , A i+1 , l i+1 , γ γ , A i , l i ∈ ∆ . This allows to record X a φ in the corresponding return point of the stack. After that, γ , A i , l i will be the topmost stack symbol at the corresponding return-point of this call. At the return-point, the condition (β 5) in (α 2.2) stating that AbsN ext(A i , A k) and the fact that φ = X a φ ∈ A i imply that φ ∈ A k .

• p i , ω i = ⇒ P p i+1 , ω i+1 corresponds to a simple statement. Then, the abstract successor of p i , ω i is p i+1 , ω i+1 (see Figure 2.3). (π, i) X a φ iff (π, i+1) φ . Thus, we must have φ ∈ A i+1 . This is ensured by condition (β 4) in (α 3) stating that AbsN ext(A i , A i+1) = true 2. The other delicate case is when φ = X c φ ∈ A i . This means that (π, i) X c φ . This case is handled by the conditions (β 4) in (α 1), (β 6) in (α 2) and (β 5) in (α 3). Let us consider the example in Figure 2.3 to illustrate this case. In this figure, the caller-successor of p i , ω i is p i-t , ω i-t . Thus, (π, i) X c φ iff (π, i -t) φ . Then we need to ensure that φ ∈ A i-t . This is done as follows:

• p i-1 , ω i-1 ⇒ P p i , ω i corresponds to a simple statement, so we require N exCallerF orms(A i-1) = N exCallerF orms(A i) (by the condition (β 5) in (α 3)). This implies X c φ ∈ A i-1 . Similarly, we have X c φ ∈ A i-k 2 .

• p i-k 1 , ω i-k 1 and p i-k 2 , ω i-k 2 is a pair of call and returnpoint. Then, by applying the condition (β 6) in (α 2), we have

N exCallerF orms(A i-k 1) = N exCallerF orms(A i-k 2). This im- plies X c φ ∈ A i-k 1 . • The transitions from p i-(t-1) , ω i-(t-1) to p i-k 1 , ω i-k 1 correspond to simple statements. By the condition (β 5) in (α 3), we obtain X c φ ∈ A i-(t-1) . • p i-t , ω i-t ⇒ P p i-(t-1) , ω i-(t-1) corresponds to a call statement, so we require CallerN ext(A i-(t-1) , A i-t) (by the condition (β 4) in (α 1)) which means that if X c φ ∈ A i-(t-1) then φ ∈ A i-t .
The labels. Now, let us explain how the label l is used in the transition rules to ensure the correctness of the formulas. Note that our explanation above makes implicitly the assumption that along the run π, every call to a procedure proc will eventually reach its corresponding return point, i.e., the

call proc A 0 p 0 , ω 0 p i-t , ω i-t A i-t p i-(t-1) , ω i-(t-1) A i-(t-1) p i-k 1 , ω i-k 1 call A i-k 1 ret p i-k 2 , ω i-k 2 A i-k 2 p i-1 , ω i-1 A i-1 p i , ω i A i p i+1 , ω i+1 A i+1 Figure 2.3: Case of X c φ ∈ A i call A 0 A i A i+1 proc γ , A i encoded & passed down p 0 , ω 0 p i , ω i p i+1 , ω i+1 p i-1 , ω i-1 A i-1
Figure 2.4: p i , ω i never reach its corresponding return-point run π will finally exit proc, then, we can encode formulas at the call and validate them at its corresponding return-point. However, it might be the case that at a certain point in the procedure proc, there will be a loop, and π never exits proc. To solve this problem, we annotate the control states by the label l ∈ {exit, unexit} to determine whether π can complete the execution of the procedure P(p, ω). In the following, we explain three cases corresponding to three kinds of statements:

• Let us consider Figure 2.2. p i , ω i = ⇒ P p i+1 , ω i+1 corresponds to a call statement. Note that P(p i+1 , ω i+1) = proc in this case. There are two possibilities. If proc terminates, then the call at p i , ω i will reach its corresponding return-point. In this case, p i+1 , ω i+1 is labelled by exit. If proc never terminates, then the call at p i , ω i will never reach its corresponding return-point. In this case, p i+1 , ω i+1 is labelled by unexit. If p i+1 , ω i+1 is labelled by exit, then p i , ω i can be labelled by exit or unexit. However, if p i+1 , ω i+1 is labelled by unexit, then p i , ω i must be labelled by unexit. This is ensured by the condition (l = unexit implies l = unexit) in the rule (α 1). In addition, if p i+1 , ω i+1 is labelled by unexit, then p i , ω i never reaches its corresponding return-point. Thus, p i , ω i does not satify any formula in the form X a φ. This is ensured by the condition (l = unexit implies N exAbsF orms(A) = ∅) in the rule (α 1).

• Again, let us consider Figure 2.2. p k-1 , ω k-1 = ⇒ P p k , ω k corresponds to a ret statement. At p k-1 , ω k-1 , we are sure that proc will terminate. In this case, p k-1 , ω k-1 must be always labelled by exit and p k , ω k can be labelled by exit or unexit. This is ensured by the rule (α 2.1). Also, the abstract-successor of p k-1 , ω k-1 is ⊥, then, p k-1 , ω k-1 does not satify any formula in the form X a φ. This is ensured by the condition (N exAbsF orms(A) = ∅) in the rule (α 2.1).

• Finally, let us consider Figure 2.3. p i , ω i = ⇒ P p i+1 , ω i+1 corresponds to a simple statement. Then, p i , ω i and p i+1 , ω i+1 are in the same procedure proc. Thus, the labels assigned to p i , ω i and p i+1 , ω i+1 should be the same. This is ensured by the transition rule (α 3).

The Büchi accepting condition.

The generalized Büchi accepting condition F of BP ψ consists of three families of accepting conditions F 1 , F 2 and F 3 . The first set F 1 guarantees that an accepting run should go infinitely often through the label unexit. The sets F 2 and F 3 ensure the liveness requirements of until-formulas on the infinite global path and the infinite abstract path:

• With regards to the second set of sets F 2 , each set of F 2 ensures that the liveness requirement

φ 2 in φ 1 U g φ 2 is eventually satisfied in P. Note that if φ 1 U g φ 2 ∈ A i , then, (π, i) φ 1 U g φ 2 iff (π, i) φ 2 or ((π, i) φ 1 and (π, i) X g (φ 1 U g φ 2)
). Because φ 2 should hold eventually, to avoid the case where the run of BP ψ always carries (φ 1 and X g (φ 1 U g φ 2)) and never reaches φ 2 , we set

P × F φ 1 U g φ 2 = P × {A ∈ Atoms(ψ) | if φ 1 U g φ 2 ∈ A then φ 2 ∈ A} ×
Label as a set of Büchi generalized accepting condition. By this setting, the accepting run of BP ψ will infinitely often visit some control locations in P × {A ∈ Atoms(ψ) | if φ 1 U g φ 2 ∈ A then φ 2 ∈ A} × Label which ensures that φ 2 will eventually hold.

• The idea behind the set F 3 is similar to the set F 2 except that we only need to ensure the liveness requirement for abstract-until formulas φ 1 U a φ 2 on the infinite abstract path. Thus, the label in F 3 is always unexit.

Finite caller and abstract paths. The liveness requirements of caller-until formulas on finite caller paths and abstract-until formulas on finite abstract paths are ensured by conditions in transition rules:

• With respect to caller-until formulas, note that caller paths are always finite. The liveness requirements of caller-until formulas are ensured by the condition N exCallerF orms(A) = ∅. This requirement guarantees the liveness requirement φ 2 in φ 1 U c φ 2 eventually happens. Look at Figure 2.2 for an illustration. Assume that

φ 1 U c φ 2 ∈ A i , then, (π, i) φ 1 U c φ 2 iff (π, i) φ 2 or ((π, i) φ 1 and (π, i) X c (φ 1 U c φ 2)). In other words, φ 1 U c φ 2 ∈ A i iff φ 2 ∈ A i or (φ 1 ∈ A i and X c (φ 1 U c φ 2) ∈ A i).
Since φ 2 should eventually hold, φ 2 should hold at π(i) because next c i = ⊥. To ensure this, we require that N exCallerF orms(A 0) = ∅ which guarantees that N exCallerF orms

(A i) = ∅. N exCallerF orms(A i) = ∅ ensures that the case φ 2 ∈ A i occurs instead of (φ 1 ∈ A i and X c (φ 1 U c φ 2) ∈ A i);
which means that (π, i) φ 2 and φ 2 eventually holds. Notice that this requirement does not make any restriction for our algorithm: given a CARET formula ψ, we can always obtain at least one atom A containing ψ such that N exCallerF orms(A) = ∅.

• The liveness requirements of abstract-until formulas on finite abstract paths p z 0 , ω z 0 p z 1 , ω z 1 ... p zm , ω zm where p zm , ω zm is associated with a tag t zm = ret are ensured by the condition N exAbsF orms(A) = ∅ in the transition rule (α 2). This requirement guarantees the liveness requirement φ 2 in φ 1 U a φ 2 eventually happens. Look at Figure 2.2 for an illustration. In this figure, for every i

+ 1 ≤ u ≤ k -1, the abstract path starting from p u , ω u is finite. Assume that φ 1 U a φ 2 ∈ A k-1 , then, (π, k -1) φ 1 U a φ 2 iff (π, k -1) φ 2 or ((π, k -1) φ 1 and (π, k -1) X a (φ 1 U a φ 2)). In other words, φ 1 U a φ 2 ∈ A k-1 iff φ 2 ∈ A k-1 or (φ 1 ∈ A k-1 and X a (φ 1 U a φ 2) ∈ A k-1
). Since φ 2 should eventually hold, φ 2 should hold at π(k -1) because next a k-1 = ⊥. To ensure this, we require that N exAbsF orms(A k-1) = ∅ at return statements by the condition (β 4) in the transition rule (α 2). N exAbsF orms(A k-1) = ∅ ensures that the case φ 2 ∈ A k-1 occurs instead of (φ 1 ∈ A k-1 and X a (φ 1 U a φ 2) ∈ A k-1); which means that (π, k -1) φ 2 and φ 2 eventually holds.

• The liveness requirements of abstract-until formulas on finite abstract paths p z 0 , ω z 0 p z 1 , ω z 1 ... p zm , ω zm where p zm , ω zm is associated with a tag t zm = call but this call never reaches its corresponding return-point are ensured by the condition (l = unexit implies N exAbsF orms(A) = ∅) in the transition rule (α 1). This requirement guarantees the liveness requirement φ 2 in φ 1 U a φ 2 eventually happens. Look at Figure 2.4 for an illustration. In this figure, for every 0 ≤ u ≤ i, the abstract path starting from p u , ω u is finite. Assume that

φ 1 U a φ 2 ∈ A i , then, (π, i) φ 1 U a φ 2 iff (π, i) φ 2 or ((π, i) φ 1 and (π, i) X a (φ 1 U a φ 2)). In other words, φ 1 U a φ 2 ∈ A i iff φ 2 ∈ A i or (φ 1 ∈ A i and X a (φ 1 U a φ 2) ∈ A i).
Since φ 2 should eventually hold, φ 2 should hold at π(i) because next a i = ⊥. To ensure this, we require that N exAbsF orms(A i) = ∅ by the condition (β 5) in the transition rule (α 1). N exAbsF orms(A i) = ∅ ensures that the case φ 2 ∈ A i occurs instead of (φ 1 ∈ A i and X a (φ 1 U a φ 2) ∈ A i); which means that (π, i) φ 2 and φ 2 eventually holds. Thus, we can show that: Theorem 2. Given a PDS P = (P, Γ, ∆), a labeling function λ : P → 2 AP , and a CARET formula ψ, we can construct a Generalized Büchi Pushdown System BP ψ = (P , Γ , ∆ , F) such that for every configuration p, ω ∈ P × Γ * , p, ω ψ iff there exists an atom A ∈ Atoms(ψ) where ψ ∈ A and

N exCallerF orms(A) = ∅ s.t p, A, unexit , ω ∈ L(BP ψ).
Formal proof. To prove formally this result, we need the following definitions: Definition 4. Let π be a run of BP ψ . Let π (i) = p i , γ 0 γ 1 ...γ n where p i is of the form p i , A i , l i , γ i is of the form γ i or γ i , A i , l i , be a configuration of π . The projection of π (i) on P; pr(π (i)) := p i , γ 0 γ 1 ...γ n ; is obtained by removing the atoms A i and the labels l i from the control location and the stack symbols of π (i).

Let π = p 0 , A 0 , l 0 , ω 0 p 1 , A 1 , l 1 , ω 1 ... be a run of BP ψ . Let π = p 0 , ω 0 p 1 , ω 1 ... be the run obtained by projecting on P all the configurations of π , then, it is easy to see that for every i ≥ 0, either p i , ω i = p i+1 , ω i+1 (in case p i+1 , A i+1 , l i+1 , ω i+1 is obtained from p i , A i , l i , ω i using a transition corresponding to the rule (α 2.2)), or p i , ω i = ⇒ P p i+1 , ω i+1 in the other cases. Then, to obtain from π a run of P, we need to get rid of these duplicated configurations. Thus, we define the projection as follows:

Definition 5. Let π = p 0 , A 0 , l 0 , ω 0 p 1 , A 1 , l 1 , ω 1 ... be a run of BP ψ . The projection of π on P; pr(π

) := p z 0 , ω z 0 p z 1 , ω z 1 ... where p z i , ω z i = pr(p z i , A z i , l z i , ω z i), for i >= 0 • z 0 = 0 • for j > 0, if the transition p z j , A z j , l z j , ω z j = ⇒ BP ψ p z j +1 , A z j +1 , l z j +1 , ω z j +1
corresponds to a transition of the form

(α 2.2) in BP ψ , then z j+1 = z j + 2. Otherwise, z j+1 = z j + 1.
Then, it is easy to see that:

Lemma 1. Let π = p 0 , A 0 , l 0 , ω 0 p 1 , A 1 , l 1 , ω 1 ... be a run of BP ψ , let pr(π) = p z 0 , ω z 0 p z 1 , ω z 1 ... be the projection of π on P, then, pr(π) is a run in P.

Lemma 2. Let π = p 0 , A 0 , l 0 , ω 0 p 1 , A 1 , l 1 , ω 1 ... be an accepting run of BP ψ . Let π = p z 0 , ω z 0 p z 1 , ω z 1 ... be the projection of π on P. We prove that for every i ≥ 0 : GlN ext(A z i , A z i+1) = true.

Proof. There are different cases depending on the nature of the transition

p z i , ω z i = ⇒ P p z i+1 , ω z i+1 • If p z i , ω z i = ⇒ P p z i+1 , ω z i+1 corresponds to a call statement. The prop- erty is ensured by (β 3) in (α 1) stating that GlN ext(A z i , A z i+1) = true • If p z i , ω z i = ⇒ P p z i+1 , ω z i+1 corresponds to a return statement. The property is ensured by (β 3) in (α 2.1) stating that GlN ext(A z i , A z i+1) = true • If p z i , ω z i = ⇒ P p z i+1 , ω z i+1 corresponds to a simple statement. The property is ensured by (β 3) in (α 3) stating that GlN ext(A z i , A z i+1) = true
Lemma 3. Let π = p 0 , A 0 , l 0 , ω 0 p 1 , A 1 , l 1 , ω 1 ... be an accepting run of BP ψ . Let π = p z 0 , ω z 0 p z 1 , ω z 1 ... be the projection of π on P. Let i ≥ 0. Let π(z k) be the abstract successor of π(z i). We prove that if

π(z k) = ⊥ then AbsN ext(A z i , A z k) = true.
Proof. There are different cases depending on the nature of the transition p z i , ω z i = ⇒ P p z i+1 , ω z i+1 . Since π(z k) = ⊥, this transition does not correspond to a return statement.

• If p z i , ω z i = ⇒ P p z i+1
, ω z i+1 corresponds to a call statement. As presented before, let us consider Figure 2.2 to explain this case. Let p z i , γ call --→ p z i+1 , γ γ be the rule associated with the transition

p z i , ω z i = ⇒ P p z i+1 , ω z i+1 , then we have ω z i = γω and ω z i+1 = γ γ ω . Let p z k-1 , ω z k-1 = ⇒ P p z k
, ω z k be the transition that corresponds to the ret statement of this call. Let then p z k-1 , β ret -→ p z k , ε ∈ ∆ be the corresponding return rule. Then, we have necessarily ω z k-1 = βγ ω , since as explained in Section 2.2.1, γ is the return address of the call. After applying this rule, ω z k = γ ω . In other words, γ will be the topmost stack symbol at the corresponding return point of the call. So, in order to recover φ in A z k , we proceed as follows: At the call p z i , γ call --→ p z i+1 , γ γ , we encode A z i into γ by the rule (α 1) stating that p z i , A z i , l z i , γ -→ p z i+1 , A z i+1 , l z i+1 , γ γ , A z i , l z i ∈ ∆ . After that, γ , A z i , l z i will be the topmost stack symbol at the corresponding return-point of this call. At this point, we apply (β 5) in (α 2.2) stating that AbsN ext(A z i , A z k) = true. The property holds for this case.

• If p z i , ω z i = ⇒ P p z i+1
, ω z i+1 corresponds to a simple statement. As presented before, the abstract successor of

p z i , ω z i is p z i+1 , ω z i+1 (see Figure 2.5). (π, z i) X a φ iff (π, z i+1)
φ . Thus, we must have φ ∈ A z i+1 . This is ensured by condition (β 4) in (α 3) stating that AbsN ext(A z i , A z i+1) = true. The property holds for this case.

Lemma 4. Let π = p 0 , A 0 , l 0 , ω 0 p 1 , A 1 , l 1 , ω 1 ... be an accepting run of BP ψ . Let π = p z 0 , ω z 0 p z 1 , ω z 1 ... be the projection of π on P. Let i ≥ 0. Let π(z i-t) be the caller successor of π(z i) (t ≥ 1). We prove that for every i > 0 :

CallerN ext(A z i , A z i-t) = true.
Proof. There are two cases:

1. If there is no matched pair of calls and returns between π(z i-t) and π(z i).

Let us consider Figure 2.5 to prove this case. We need to prove that CallerN ext(A z i , A z i-t) = true. We apply a second induction on t to show that CallerN ext(A z i , A z i-t) = true.

• Base case: (t = 1) (t = 1), then, p z i-t , ω z i-t and p z i , ω z i are two consequent configurations on P. Since π(z i-t) is the caller successor of π(z i), then,

p z i-t , ω z i-t = ⇒ P p z i , ω z i must correspond to a call statement. As a result, CallerN ext(A z i , A z i-t) = true (by the condition (β 4) in (α 1)). The property holds. • Induction step: (t > 1)
-Since there is no matched pair of calls and returns between π(z i-t) and π(z i), then,

p z i-1 , ω z i-1 = ⇒ P p z i , ω z i must correspond to a simple statement, so we have N exCallerF orms(A z i-1) = N exCallerF orms(A z i) (by the condition (β 5) in (α 3)) -CallerN ext(A i-1 , A z i-t) = true (by the second induction hy- pothesis) call A z i-t proc ret return-point p z i-t , ω z i-t p z i-(t-1) , ω z i-(t-1) p z i , ω z i
=⇒ CallerN ext(A z i , A z i-t) = true.
The property holds.

2. If there are matched pairs of calls and returns between π(z i-t) and π(z i)

(see Figure 2.6). Let π(z i-k 1) and π(z i-k 2) (1 ≤ k 1 ≤ (t -1
)) be a matched pair of call and ret. Since π is an accepting run of BP ψ , we obtain N exCallerF orms(A

z i-k 1) = N exCallerF orms(A z i-k 2) (by the condition (β 6) in (α 2.2)). Secondly, N exCallerF orms(A z i-k 2) = N exCallerF orms(A z i) (since p z i-k 2 , ω z i-k 2 ... p z i , ω z i is a sequence of simple statements) Thirdly, N exCallerF orms(A z i-(t-1)) = N exCallerF orms(A z i-k 1) (since p z i-(t-1) , ω z i-(t-1) ... p z i-k 1 , ω z i-k 1 is a sequence of simple statements)
Thus, we have:

N exCallerF orms(A z i-(t-1)) = N exCallerF orms(A z i) (2.1) Also, p z i-t , ω z i-t = ⇒ P p z i-(t-1)
, ω z i-(t-1) corresponds to a call statement, then, by the condition (β 4) in (α 1), we have

CallerN ext(A z i-(t-1) , A z i-t) = true (2.2)
From (2.1) and (2.2), we obtain CallerN ext(A z i , A z i-t). The property holds for this case.

Proof of Theorem 2. Now, we are ready to prove Theorem 2. We prove these 2 directions:

call proc A z0 p z0 , ω z0 p zi-t , ω zi-t A zi-t p z i-(t-1) , ω z i-(t-1) A z i-(t-1) p z i-k 1 , ω z i-k 1 call A z i-k 1 ret p z i-k 2 , ω z i-k 2 A z i-k 2 p zi-1 , ω zi-1 A zi-1 p zi , ω zi p zi+1 , ω zi+1 A zi+1 Figure 2.6: Case of X c φ ∈ A i (⇐=)
Assume that there exists an atom A 0 ∈ Atoms(ψ) where ψ ∈ A 0 and N exCallerF orms(A 0) = ∅ s.t p, A 0 , unexit , ω ∈ L(BP ψ). In other words, there exists an accepting run

π = p 0 , A 0 , l 0 , ω 0 p 1 , A 1 , l 1 , ω 1 ... of BP ψ where l 0 = unexit, ψ ∈ A 0 and N exCallerF orms(A 0) = ∅. Let π = p z 0 , ω z 0 p z 1 , ω z 1 .
.. be the projection of π on P, note that π is a run of P (by Lemma 1). We need to prove that π ψ.

Proof. It is sufficient to show that for every i ≥ 0, φ ∈ A z i iff (π, z i) φ. This is proved by induction on the structure of φ.

• Base case:

φ = e (e ∈ AP): e ∈ A z i iff e ∈ λ(p z i) (by the condition A z i ∩ AP = λ(p z i) in (α 1), (α 2) and (α 3)) iff (π, z i) φ (by the semantics of CARET). The property holds for this case.

-φ = d ∈ A z i (d ∈ {call, ret, int}) * d = call call ∈ A z i iff p z i , ω z i = ⇒ P p z i+1
, ω z i+1 corresponds to a call statement (by the conditions (β 0) in (α 1), (α 2) and (α 3)) iff p z i , ω z i is tagged with a call (by the definition in Section 2.2.2) iff (π, z i) call (by the semantics of CARET). The property holds for this case. * d = ret and d = int. Similarly, we obtain d ∈ A z i iff (π, z i) d. The property holds for these cases.

• Induction Step:

2.3. CARET Model-Checking for Pushdown Systems 27 -φ = ¬φ φ = ¬φ ∈ A z i iff φ / ∈ A z i (by the definition of Atom) iff (π, z i) φ (by induction hypothesis) iff (π, z i)
¬φ (by the semantics of CARET) iff (π, z i) φ. The property holds.

-φ = φ 1 ∨ φ 2 φ = φ 1 ∨ φ 2 ∈ A z i iff φ 1 ∈ A z i or φ 2 ∈ A z i (by the definition of atom) iff (π, z i) φ 1 or (π, z i) φ 2 (by induction hypothesis) iff (π, z i) φ 1 ∨ φ 2
(by the semantics of CARET). In other words, (π, z i) φ. The property holds.

φ = X g φ By Lemma 2, we have GlN ext

(A z i , A z i+1) = true. Note that π(z i+1) is the global-successor of π(z i). * φ = X g φ ∈ A z i iff φ ∈ A z i+1 (by GlN ext(A z i , A z i+1)) iff (π, z i+1) φ (by induction hypothesis) iff (π, z i) X g φ (by the fact that π(z i+1) = next g π(z i)
). The property holds for this case.

φ = X a φ Let π(z u) be the abstract-successor of π(z i). Note that u > i. By Lemma 3, we have AbsN ext(A z i , A zu) = true. * φ = X a φ ∈ A z i iff φ ∈ A zu (by AbsN ext(A z i , A zu)) iff (π, z u) φ (by induction hypothesis) iff (π, z i) X a φ (by the fact that π(z u) = next a π(z i)). The property holds for this case.

φ = X c φ Let π(z u) be the caller-successor of π(z i). Note that u < i. By Lemma 4, we have CallerN ext

(A z i , A zu) = true. * φ = X c φ ∈ A z i iff φ ∈ A zu (by CallerN ext(A z i , A zu)) iff (π, z u) φ (by induction hypothesis) iff (π, z i) X c φ (by the fact that π(z u) = next c π(z i)
). The property holds for this case.

-φ = φ 1 U g φ 2 a) Firstly, let φ 1 U g φ 2 ∈ A z i , we prove that (π, z i) φ 1 U g φ 2 .
Note that π(z i+1) is the global-successor of π(z i). By Lemma 2, we have GlN ext(A z i , A z i+1) = true. Since (π , z i) is also an accepting run of BP ψ , there must exist a k ≥ z i such that the control location of π (k) belongs to F x where F x is an element (a set) in the Büchi accepting condition set of BP ψ corresponding to the formula φ 1 U g φ 2 .

Choose the least such k. We apply a second induction on (k -z i) to show that (π, z i) φ. * Base case:

(k -z i = 0) k -z i = 0 =⇒ p z i , A z i ∈ F x . Since φ 1 U g φ 2 ∈ A z i ,
(k -z i > 0) • k-z i > 0 =⇒ p z i , A z i / ∈ F x =⇒ φ 2 / ∈ A z i since if φ 2 ∈ A z i , then p z i , A z i must belong to F x (
by the definition of generalized Büchi accepting condition of BP ψ).

• φ 1 U g φ 2 ∈ A z i and φ 2 / ∈ A z i =⇒ both (φ 1 and X g (φ 1 U g φ 2)) must be in A z i (by the definition of Atom) • φ 1 ∈ A z i =⇒ (π, z i) φ 1 (by the main induction hypothe- sis). • X g (φ 1 U g φ 2) ∈ A z i =⇒ φ 1 U g φ 2 ∈ A z i+1 (by GlN ext(A z i , A z i+1)) =⇒ (π, l i+1
) φ 1 U g φ 2 (by the second induction hypothesis).

• (π, z i) φ 1 and (π, l i+1) φ 1 U g φ 2 imply (π, z i) φ 1 U g φ 2 (by the semantic of the modality U g). =⇒ The property holds for this case.

b) Conversely, suppose (π,

z i) φ 1 U g φ 2 , we must show that φ = φ 1 U g φ 2 ∈ A z i .
Based on the semantic of U g , there exists k ≥ i such that (π, z k) φ 2 and for all i ≤ j < k: (π, z j) φ 1 . We apply a second induction on

(k -i) to prove that φ ∈ A z i . * Base case: (k -i = 0) k -i = 0 =⇒ (π, z i) φ 2 =⇒ φ 2 ∈ A z i (by the main induction hypothesis) =⇒φ 1 U g φ 2 ∈ A z i (
by the definition of Atom). The property holds for the base case. * Induction step:

(k -i > 0) From the semantics of U g , (π, z i) φ 1 U g φ 2 imply (π, z i) φ 1 and (π, l i+1) φ 1 U g φ 2 .
• (π, z i) φ 1 =⇒ φ 1 ∈ A z i (by the main induction hypothesis).

• (π, l i+1) φ 1 U g φ 2 =⇒ φ 1 U g φ 2 ∈ A z i+1 (by second induction on (k -i) since k -(i + 1) < k -i) =⇒ X g (φ 1 U g φ 2) ∈ A z i (by GlN ext(A z i , A z i+1)) • φ 1 ∈ A z i and X g (φ 1 U g φ 2) ∈ A z i =⇒ φ 1 U g φ 2 ∈ A z i (
by the definition of Atom) =⇒ The property holds for this case.

-φ = φ 1 U a φ 2 a) Firstly, let φ 1 U a φ 2 ∈ A z i , we prove that (π, z i) φ 1 U a φ 2 .
Let π a = p j 0 , ω j 0 p j 1 , ω j 1 ... be the abstract path starting from π(z i), then, we get that j 0 = z i , j m+1 = {t | next a jm = π(t)} for every 0 ≤ m ≤ k -1. There are three possibilities:

Case 1: π a = p j 0 , ω j 0 p j 1 , ω j 1 ... p j k , ω j k is finite and p j k , ω j k is associated with a tag t j k = ret.

We apply a second induction on k to show that (π, z i) φ. * Base case: (k = 0)

• k = 0 =⇒ N exAbsF orms(A j 0) = ∅ (by the condition (β 4)
in the transition rule (α 2)) which means that there are no formulas of the form X a ψ ∈ A z i (since

z i = j 0). In addition, φ 1 U a φ 2 ∈ A z i =⇒ φ 2 ∈ A z i or (φ 1 ∈ A z i and X a (φ 1 U a φ 2) ∈ A z i)
(by the definition of Atom). So, the only way for A z i in this case is that φ 2 ∈ A z i . φ 2 ∈ A z i =⇒ (π, z i) φ 2 (by the main induction hypothesis) =⇒ (π, z i) φ 1 U a φ 2 (by the semantics of the U a modality). * Induction Step:

(k > 0) φ 1 U a φ 2 ∈ A z i =⇒ φ 2 ∈ A z i or (φ 1 ∈ A z i and X a (φ 1 U a φ 2) ∈ A z i) (by the definition of Atom) • Case φ 2 ∈ A z i =⇒ (π, z i)
φ 2 (by the main induction hypothesis) =⇒ (π, z i) φ 1 U a φ 2 (by the semantics of the U a modality). The property holds.

• Case φ 1 ∈ A z i and X a (φ 1 U a φ 2) ∈ A z i . X a (φ 1 U a φ 2) ∈ A z i =⇒ φ 1 U a φ 2 ∈ A j 1 (by Lemma 3) =⇒ (π, j 1)
φ 1 U a φ 2 (by the second induction hypothesis). Combining with the fact φ 1 ∈ A z i , we obtain (π, z i) φ 1 U a φ 2 (by the semantics of U a modality). In other words, (π, z i) φ 1 U a φ 2 . The property holds.

Case 2: π a = p j 0 , ω j 0 p j 1 , ω j 1 ... p j k , ω j k is finite and p j k , ω j k is associated with a tag t j k = call where this call never reaches its matching return-point. . We apply a second induction on k to show that (π, z i) φ. * Base case: (k = 0)

• k = 0 =⇒ N exAbsF orms(A j 0) = ∅ (by the condition (β 5) in the transition rule (α 1)) which means that there are no formulas of the form X a ψ ∈ A z i (since

z i = j 0). In addition, φ 1 U a φ 2 ∈ A z i =⇒ φ 2 ∈ A z i or (φ 1 ∈ A z i and X a (φ 1 U a φ 2) ∈ A z i) (
(k > 0) φ 1 U a φ 2 ∈ A z i =⇒ φ 2 ∈ A z i or (φ 1 ∈ A z i and X a (φ 1 U a φ 2) ∈ A z i) (by the definition of Atom) • Case φ 2 ∈ A z i =⇒ (π, z i)
φ 2 (by the main induction hypothesis) =⇒ (π, z i) φ 1 U a φ 2 (by the semantics of the U a modality). The property holds.

• Case φ 1 ∈ A z i and X a (φ 1 U a φ 2) ∈ A z i . X a (φ 1 U a φ 2) ∈ A z i =⇒ φ 1 U a φ 2 ∈ A j 1 (by Lemma 3) =⇒ (π, j 1)
φ 1 U a φ 2 (by the second induction hypothesis). Combining with the fact φ 1 ∈ A z i , we obtain (π, z i) φ 1 U a φ 2 (by the semantics of U a modality). In other words, (π, z i) φ 1 U a φ 2 . The property holds.

Case 3: π a = p j 0 , ω j 0 p j 1 , ω j 1 ... is infinite.

By Lemma 3, we have AbsN ext(A z i , A j 1) = true. Since (π , z i) is also an accepting run, there must exist a k ≥ 0 such that the control location of π (j k) ∈ F x where F x is an element (a set) in the Büchi accepting condition set of BP ψ (by the generalized Büchi accepting condition of BP ψ). Choose the least such k. We apply a second induction on k to show that (π, z i) φ. * Base case:

(k = 0) k = 0 =⇒ p z i , A z i ∈ F x . Since φ 1 U a φ 2 ∈ A z i , the only way for p z i , A z i ∈ F x is that φ 2 must also belong to A z i .
Consequently, by applying the main induction hypothesis, we obtain (π, z i) φ 2 =⇒ (π, z i) φ 1 U a φ 2 (by the semantics of the modality U a). The property holds for this case. * Induction Step:

(k > 0) • k > 0 =⇒ p z i , A z i / ∈ F x =⇒ φ 2 / ∈ A z i since if φ 2 ∈ A z i , then p z i , A z i must belong to F x (
by the definition of the generalized Büchi accepting condition of BP ψ).

• φ 1 U a φ 2 ∈ A z i and φ 2 / ∈ A z i =⇒ both (φ 1 and X a (φ 1 U a φ 2)) must be in A z i (by the definition of Atom)

• φ 1 ∈ A z i =⇒ (π, z i) φ 1 (by the main induction hypothe- sis). • X a (φ 1 U a φ 2) ∈ A z i =⇒ φ 1 U a φ 2 ∈ A j 1 (by AbsN ext(A z i , A j 1)) =⇒ (π, j 1)
φ 1 U a φ 2 (by the second induction hypothesis). • (π, z i) φ 1 , and (π, j 1) φ 1 U a φ 2 =⇒ (π, z i) φ 1 U a φ 2 (by the semantics of the modality U a). The property holds. =⇒ The property holds for this case.

b) Conversely, suppose (π,

z i) φ 1 U a φ 2 , we must show that φ = φ 1 U a φ 2 ∈ A z i . From Lemma 3, we have AbsN ext(A z i , A j 1) = true.
Based on the semantic of U a , there exists k ≥ 0 such that (π, j k) φ 2 and for all 0 ≤ m < k: (π, j m) φ 1 . We apply a second induction on k to prove that φ ∈ A z i . * Base case: (k = 0) k = 0 =⇒ (π, j 0) |= φ 2 =⇒ φ 2 ∈ A j 0 (by the main induction hypothesis) =⇒ φ 1 U a φ 2 ∈ A j 0 (by the definition of Atom) =⇒ φ 1 U a φ 2 ∈ A z i (since z i = j 0). The property holds for this case. * Induction step: (k > 0)

From the semantics of U a , we have (π, j 0) φ 1 and (π, j 1) φ 1 U a φ 2 .

• (π, j 0) φ 1 =⇒ φ 1 ∈ A z i (by the main induction hypothesis and the fact that

A j 0 = A z i). • (π, j 1) φ 1 U a φ 2 =⇒ φ 1 U a φ 2 ∈ A j 1 (by the second induc- tion hypothesis)=⇒ X a (φ 1 U a φ 2) ∈ A z i (by the fact that AbsN ext(A j 0 , A j 1) = true and A j 0 = A z i) • φ 1 ∈ A z i and X a (φ 1 U a φ 2) ∈ A z i =⇒ φ 1 U a φ 2 ∈ A z i (
by the definition of Atom) =⇒ The property holds for this case.

-φ = φ 1 U c φ 2 . a) Firstly, let φ 1 U c φ 2 ∈ A z i , we prove that (π, z i) φ 1 U c φ 2 .
Let j 0 , j 1 , ..., j k be the maximum sequence of positions of π where

j 0 = z i , j m+1 = {t | next c jm = π(t)} for every 0 ≤ m ≤ k -1.
Note that the caller-path is always finite. We apply a second induction on k to show that (π, z i) φ. * Base case: (k = 0)

• k = 0 =⇒ N exCallerF orms(A j 0) = ∅ which means that there are no formulas of the form X c ψ ∈ A z i (since z i = j 0). In addition,

φ 1 U c φ 2 ∈ A z i =⇒ φ 2 ∈ A z i or (φ 1 ∈ A z i and X c (φ 1 U c φ 2) ∈ A z i) (
(k > 0) φ 1 U c φ 2 ∈ A z i =⇒ φ 2 ∈ A z i or (φ 1 ∈ A z i and X c (φ 1 U c φ 2) ∈ A z i) (by the definition of Atom) • Case φ 2 ∈ A z i =⇒ (π, z i)
φ 2 (by the main induction hypothesis) =⇒ (π, z i) φ 1 U c φ 2 (by the semantics of the U c modality). The property holds.

• Case φ 1 ∈ A z i and X c (φ 1 U c φ 2) ∈ A z i . X c (φ 1 U c φ 2) ∈ A z i =⇒ φ 1 U c φ 2 ∈ A j 1 (by Lemma 4) =⇒ (π, j 1)
φ 1 U c φ 2 (by the second induction hypothesis). Combining with the fact φ 1 ∈ A z i , we obtain (π, z i) φ 1 U c φ 2 (by the semantics of U c modality). In other words, (π,

z i) φ 1 U c φ 2 . The property holds. b) Conversely, suppose (π, z i) φ 1 U c φ 2 , we must show that φ = φ 1 U c φ 2 ∈ A z i . From Lemma 4, we have CallerN ext(A z i , A j 1) = true.
Based on the semantic of U c , there exists k ≥ 0 such that (π, j k) φ 2 and for all 0 ≤ m < k: (π, j m) φ 1 . We apply a second induction on k to prove that φ ∈ A z i . * Base case:

(k = 0) k = 0 =⇒ (π, j 0) |= φ 2 =⇒ φ 2 ∈ A j 0 (by the main induction hypothesis) =⇒ φ 1 U c φ 2 ∈ A j 0 (by the definition of Atom) =⇒ φ 1 U c φ 2 ∈ A z i (since z i = j 0).
The property holds for this case. * Induction step:

(k > 0)
From the semantics of U c , we have (π, j 0) φ 1 and (π, j 1) φ 1 U c φ 2 .

• (π, j 0) φ 1 =⇒ φ 1 ∈ A z i (by the main induction hypothesis and the fact that A j 0 = A z i).

• (π, j 1) φ 1 U c φ 2 =⇒ φ 1 U c φ 2 ∈ A j 1 (by the second induction hypothesis)=⇒ X c (φ 1 U c φ 2) ∈ A z i (by the fact that CallerN ext(A j 0 , A j 1) = true and

A j 0 = A z i) • φ 1 ∈ A z i and X c (φ 1 U c φ 2) ∈ A z i =⇒ φ 1 U c φ 2 ∈ A z i (
by the definition of Atom) =⇒ The property holds for this case.

(=⇒) Assume that there exists an execution π = p 0 , ω 0 p 1 , ω 1 p n , ω n of P such that π ψ, we have to show that there exists an atom A 0 where ψ ∈ A 0 and N exCallerF orms(A 0) = ∅ such that p 0 , A 0 , unexit , ω 0 ∈ L(BP ψ). In other words, we have to show an accepting run of BP ψ starting from p 0 , A 0 , unexit , ω 0 where ψ ∈ A 0 and N exCallerF orms(A 0) = ∅. In the following, we show how we can compute such an accepting run of BP ψ .

Proof.

For every i ≥ 0, let A i = {φ ∈ Cl(ψ) | (π, i) φ} ∪ {t i } where t i is the tag associated with the configuration p i , ω i . Firstly, we prove that each A i is an atom:

• For every φ ∈ A i (φ ∈ Cl(ψ)), we need to show that φ ∈ A i iff ¬φ / ∈ A i φ ∈ A i iff (π, i) φ (by the way we choose A i) iff (π, i) ¬φ (by the semantics of CARET) iff ¬φ / ∈ A i (by the way we choose A i). The property holds.

• For every φ 1 ∨ φ 2 ∈ A i , we need to show that φ 1 ∨ φ 2 ∈ A i iff φ 1 ∈ A i or φ 2 ∈ A i φ 1 ∨ φ 2 ∈ A i iff (π, i) φ 1 ∨ φ 2 (by the way we choose A i) iff (π, i) φ 1 or (π, i) φ 2 (by the semantics of CARET) iff (φ 1 ∈ A i or φ 2 ∈ A i)
(by the way we choose A i). The property holds.

• For every φ 1 U b φ 2 ∈ A i where b ∈ {g, a}, we need to show that

φ 1 U b φ 2 ∈ A i iff φ 2 ∈ A i or (φ 1 ∈ A i and X b (φ 1 U b φ 2) ∈ A i) Let i 0 , i 1 , i 2 ... be a sequence of positions of π where i 0 = i, i m+1 = next b im for every m ≥ 0. φ 1 U b φ 2 ∈ A i iff (π, i) φ 1 U b φ 2 iff (π, i) φ 2 or ((π, i) φ 1 and (π, i 1) φ 1 U b φ 2) (by the semantice of U b) iff (π, i) φ 2 or ((π, i) φ 1 and (π, i) X b φ 1 U b φ 2) (since π(i 1) = next b i (π(i))) iff φ 2 ∈ A i or (φ 1 ∈ A i and X b (φ 1 U b φ 2) ∈ A i)
(by the way we choose Ai). The property holds.

• For every φ 1 U c φ 2 ∈ A i , we need to show that φ 1 U c φ 2 ∈ A i iff φ 2 ∈ A i or (φ 1 ∈ A i and X c (φ 1 U c φ 2) ∈ A i)
Let i 0 , i 1 , ..., i k be a sequence of positions of π where

i 0 = i, i m+1 = next c im for every 0 ≤ m ≤ (k -1). φ 1 U c φ 2 ∈ A i iff (π, i) φ 1 U c φ 2 iff (π, i) φ 2 or ((π, i) φ 1 and (π, i 1) φ 1 U c φ 2) (by the semantices of U b) iff (π, i) φ 2 or ((π, i) φ 1 and (π, i) X c (φ 1 U c φ 2)) (since π(i 1) = next c i (π(i))) iff φ 2 ∈ A i or (φ 1 ∈ A i and X c (φ 1 U c φ 2) ∈ A i)
(by the way we choose A i). The property holds.

• We need to show that A i includes exactly one element of the set {call, int, ret}. Note that by the definition in Section 2.2.2 , each transition p i , ω i = ⇒ P p i+1 , ω i+1 is tagged with only one element in the set {call, int, ret}. So, this property holds.

Let π (0) = p 0 , A 0 , unexit , ω 0 where

A 0 = {φ ∈ Cl(ψ) | (π, 0) φ} ∪ {t 0 }. Let π (k) = p i , A i , l i , γ m γ m-1 ...γ 0 where A i ∈ Atoms(ψ), l i ∈ Label,
γ t is of the form γ t or γ t , A t , l t for every 0 ≤ t ≤ m. We get that pr(π (k)) = p i , γ m γ m-1 ...γ 0 . Let ω i = γ m γ m-1 ...γ 0 , we get that pr(π (k)) = p i , ω i . Now we show that for every k ≥ 0, we can compute from π (k) its immediate successor π (k + 1) = q, A , l , ω . During this construction, we maintain the following property:

"For every k + 1 ≥ 0, l is the label expressing whether the execution of the procedure P(pr(π (k + 1))) terminates or not from pr(π (k + 1)); and for every φ ∈ A , pr((π , k + 1)) satisfies φ"

The construction is shown by induction on k + 1.

• Base case (k + 1 = 0). We prove that π (0) = p 0 , A 0 , unexit , ω 0 satisfies the above property. In other words, we need to show that the above property is satisfied with A = A 0 , l = unexit.

-Since π is an infinite run and p 0 , ω 0 is the initial configuration of π, then, the execution of the procedure P(p 0 , ω 0) never terminates. =⇒ unexit is the label expressing whether the execution of the procedure P(p 0 , ω 0) terminates or not from p 0 , ω 0 =⇒ l = unexit is the label expressing whether the execution of the procedure P(pr(π (0))) terminates or not from pr(π (0)) (since pr(π (0)) = p 0 , ω 0). In other words, the property related to l in the above property is satisfied.

-Since A 0 = {φ ∈ Cl(ψ) | (π, 0) φ} ∪ {t 0 }, we get that for every φ ∈ A 0 , (π, 0) satisfies φ. Therefore, for every φ ∈ A 0 , pr((π , 0)) satisfies φ (since pr((π , 0)) = (π, 0)). In other words, for every φ ∈ A , pr((π , 0)) satisfies φ (since A = A 0). The property related to A in the above property is satisfied.

=⇒ The property holds for this case.

• Induction Step (k + 1 > 0)
There are two cases:

γ m = γ m or γ m = γ m , A , l where γ m ∈ Γ, A ∈ Atoms(ψ), l ∈ Label. 1. γ m = γ m , then, π (k) = p i , A i , l i , γ m γ m-1 ...γ 0 . Let A = {φ ∈ Cl(ψ) | (π, i + 1) φ} ∪ {t i+1 }. Let l = exit if the execution of the procedure P(p i+1 , ω i+1) from p i+1 , ω i+1 terminates; otherwise l = unexit.
In what follows, we use A and l to compute π (k + 1).

Our construction is based on different kinds of statements corresponding to the transition p i , ω i = ⇒ P p i+1 , ω i+1 . There are three possibilities:

if p i , ω i = ⇒ P p i+1 , ω i+1 corresponds to a call statement. In this case, we will use the transition rules in (α 1) to compute π (k + 1). Firstly, we show that A i and A satisfy the required conditions related to atoms in (α 1). * The conditions (β 0), (β 1), (β 2) in (α 1) are true based on the way we choose A i and A . * If X g φ ∈ A i , then (π, i) X g φ (by the way we choose A i) =⇒ (π, i + 1) φ (by the semantics of CARET) =⇒ φ ∈ A (by the way we choose A). (X

g φ ∈ A i =⇒ φ ∈ A) implies that GlN ext(A i , A) = true. Then, the condition (β 3) in (α 1) is true. * If X c φ ∈ A =⇒ (π, i +
1) X c φ (by the way we choose A and the fact that π(i) is the caller-sucessor of π(i + 1)) =⇒ (π, i) φ (by the semantics of CARET) =⇒ φ ∈ A i (by the way we choose A

i). (X c φ ∈ A =⇒ φ ∈ A i) implies that CallerN ext(A , A i) = true.
Then, the condition (β 4) in (α 1) is true. * We need to show that if l = unexit then N exAbsF orms(A i) = ∅ (by (β 5) in (α 1)). l = unexit implies that the execution of the procedure P(p i+1 , ω i+1) from p i+1 , ω i+1 never terminates =⇒ p i , ω i can never reach its corresponding return-point =⇒ the abstract successor of p i , ω i is ⊥ (by the definition of abstract successor) =⇒ p i , ω i X a φ (by the semantics of CARET) =⇒ N exAbsF orms(A i) = ∅. Then, this condition holds. Now, we need to show that the conditions related to labels in the transition rule (α 1) are satisfied. In other words, we need to show that if l = unexit then l i = unexit. l = unexit implies that the execution of the procedure P(p i+1 , ω i+1) from p i+1 , ω i+1 never terminates. In addition, we get that p i , ω i = ⇒ P p i+1 , ω i+1 . Thus, the execution of the procedure P(p i , ω i) from p i , ω i never terminates. As a result, l i = unexit. The property is proved. Therefore, if p i , ω i = ⇒ P p i+1 , ω i+1 corresponds to a call statement, let p i , γ m call --→ p i+1 , γ γ be the rule associated to this transition. Then, we apply the rules in (α 1) with the pair of atoms (A i , A), the pair of labels (l i , l), and we select π (k + 1) = p i+1 , A , l , γ γ , A i , l i γ m-1 ...γ 0 . By the way we select A and l , we get that for every φ ∈ A , pr((π , k + 1)) satisfies φ; and l is the label expressing the execution of the procedure P(pr(π (k + 1))) from pr(π (k + 1)) can terminate or not. The property holds for this case.

if p i , ω i = ⇒ P p i+1 , ω i+1 corresponds to a return statement. In this case, we will use the transition rules in (α 2.1) to compute π (k + 1). Firstly, we show that A i and A satisfy the required conditions related to atoms in (α 2.1).

* The conditions (β 0), (β 1), (β 2) in (α 2.1) are true based on the way we choose

A i and A * If X g φ ∈ A i =⇒ (π, i)
X g φ (by the way we choose A i) =⇒ (π, i + 1) φ (by the semantics of CARET) =⇒ φ ∈ A (by the way we choose A). (X g φ ∈ A i =⇒ φ ∈ A) implies that GlN ext(A , A i) = true. Then, the condition (β 3) in (α 2.1) is true. * p i , ω i = ⇒ P p i+1 , ω i+1 corresponds to a return statement =⇒ t i = ret (by the way we associate a tag to a configuration) =⇒ the abstract successor of p i , ω i is ⊥ (by the definition of abstract successor) =⇒ p i , ω i X a φ (by the semantics of CARET) =⇒ N exAbsF orms(A i) = ∅.

Then, the condition (β 4) in (α 2.1) is true. Now, we need to show that the condition related to labels in the transition rule (α 2.1) is satisfied. In other words, we need to prove that l i = exit, this is ensured because p i , ω i = ⇒ P p i+1 , ω i+1 corresponds to a return statement, then, at this point, we know that the execution of the procedure P(p i , ω i) can terminate. Therefore, if p i , ω i = ⇒ P p i+1 , ω i+1 corresponds to a ret statement, let p i , γ m ret -→ p i+1 , ε be the rule associated with this transition. Then, we apply the rules in (α 2.1) with the pair of atoms (A i , A), the pair of labels (l i , l), and we select π (k + 1) = p i+1 , A , l , γ m-1 ...γ 0 . By the way we select A and l , we get that for every φ ∈ A , pr((π , k + 1)) satisfies φ; and l is the label expressing whether the execution of the procedure P(pr(π (k + 1))) from pr(π (k + 1)) can terminate or not. The property holds for this case.

if p i , ω i = ⇒ P p i+1 , ω i+1 corresponds to a simple statement. In this case, we will use the transition rules in (α 3) to compute π (k + 1). Firstly, we show that A i and A satisfy the required conditions related to atoms in (α 3). * The conditions (β 0), (β 1), (β 2) in (α 3) are true based on the way we choose A i and A . * If X g φ ∈ A i =⇒ (π, i) X g φ (by the way we choose A i) =⇒ (π, i+1) φ (by the semantics of CARET) =⇒ φ ∈ A (by the way we choose A) =⇒ GlN ext(A i , A) = true. Then, the condition (β 3) in (α 3) is true. * If X a φ ∈ A i =⇒ (π, i) X a φ (by the way we choose A i) =⇒ (π, i + 1) φ (by the semantics of CARET and the fact that π(i + 1) is the abstract-successor of π(i) when this corrensponds to a simple statement) =⇒ φ ∈ A (by the way we choose A). Thus, we obtain AbsN ext(A i , A) = true. Then, the condition (β 4) in (α 3) is true. * Now, we prove the condition (β 5) in (α 3). Note that π(i) and π(i + 1) have the same caller-successor. Let denote this caller-successor be π(x). If X c φ ∈ A i =⇒ (π, i) X c φ (by the way we choose A i) =⇒ (π, x) φ (by the semantics of CARET) =⇒ (π, i + 1) X c φ (because π(x) is the caller-successor of π(i + 1)) =⇒ X c φ ∈ A (by the way we choose A). Consequently, N extCallerF orms(A i) = N extCallerF orms(A), the condition (β 5) in (α 3) is true. Now, we need to show that the conditions related to labels in the transition rule (α 3) are satisfied. In other words, we need to prove that l = l i . This is always ensured by the fact that P(p i , ω i) = P(p i+1 , ω i+1) since this transition corresponds to a simple statement, i.e., the procedural context doesn't change. Therefore, if p i , ω i = ⇒ P p i+1 , ω i+1 corresponds to a ret statement, let p i , γ m int -→ p i+1 , ω be the rule associated with this transition. Then, we apply the rules in (α 2.1) with the pair of atoms (A i , A), the pair of labels (l i , l), and we select π (k + 1) = p i+1 , A , l , ωγ m-1 ...γ 0 . By the way we select A and l , we get that for every φ ∈ A , pr((π , k + 1)) satisfies φ; and l is the label expressing whether the execution of the procedure P(pr(π (k + 1))) from pr(π (k + 1)) can terminate or not. The property holds for this case.

γ

m = γ m , A , l , then, π (k) = p i , A i , l i , γ m , A , l γ m-1 ...γ 0
Note that this case only occurs at return-points. Let π(u) = p u , ω u be the corresponding call of this ret. Then, we get that A and l are the atom and the label of π(u), i.e, A = A u and l = l u .

In this case, we will use the transition rules in (α 2.2) to compute π (k + 1). Firstly, we show that the required conditions related to atoms in (α 2.2) are satisfied.

-If X a φ ∈ A =⇒ (π, u) X a φ (by the way we choose A at π(u)) =⇒ (π, i + 1) φ (by the semantics of CARET and the fact that π(i + 1) is the return-point of π(u)) =⇒ φ ∈ A (by the way we choose A). (X a φ ∈ A =⇒ φ ∈ A) implies that AbsN ext(A , A) = true. Then, the condition (β 5) in (α 2.2) is true.

-Now, we prove the condition (β 6) in (α 2.2). Notice that π(i) and π(u) have the same caller-successor. Let us denote this callersuccessor by π(x). If X c φ ∈ A =⇒ (π, i) X c φ (by the way we choose A) =⇒ (π, x) φ (by the semantics of CARET) =⇒ (π, u) X c φ (because π(x) is the caller-successor of π(u)) =⇒ X c φ ∈ A u (by the way we choose A u) =⇒ X c φ ∈ A (because A = A u). Thus, we have Let l = l i in this case. Now, we need to show that the condition related to labels in the transition rule (α 2.2) is satisfied. In other words, we need to prove that l i = l where l is the label of p u , ω u . This is always satisfied because a call point p u , ω u and its corresponding return point p i , ω i always belong to the same procedure. Therefore, we always obtain that

X c φ ∈ A =⇒ X c φ ∈ A .
l i = l . Therefore, if π (k) is of the form p i , A i , l i , γ m , A , l γ m-1 ...γ 0 , we apply the transition rules in (α 2.2) and select π (k + 1) = p i , A i , l i , γ m γ m-1 ...γ 0 .
By applying the induction hypothesis, we obtain that for every φ ∈ A i , pr((π , k)) satisfies φ. Since pr((π , k + 1)) = pr((π , k)), we get that for every φ ∈ A i , pr((π , k + 1)) satisfies φ. In addition, by the way we choose l , l is the label expressing whether the execution of the procedure P(pr(π (k +1))) from pr(π (k +1)) can terminate or not. Therefore, the property holds for this case.

Moreover, π ψ implies the following properties:

• ψ ∈ A 0 (by the way we choose A i)

• N exCallerF orms(A 0) = ∅ (by the way we choose A i) and by the fact that p 0 , ω 0 is the root, then, it has no caller-sucessor)

Now, we prove that π is an accepting run of BP ψ . We prove that each set of the Büchi accepting condition of BP ψ is visited infinitely often by π . Suppose that this is not the case, then there exists a set F φ 1 U b φ 2 where b ∈ {g, a} such that π does not visit infinitely often any control location in P ×F φ 1 U b φ 2 ×Label. This means that there exists k where the suffix of π starting from π (k) (denoted (π , k)) does not visit any control location in

P × F φ 1 U b φ 2 × Label. It implies that for every t ≥ k, where π (t) = (p t , A t , l t , ω t), we must have φ 2 / ∈ A t and φ 1 U b φ 2 ∈ A t (otherwise, p t , A t , l t belongs to P × F φ 1 U b φ 2 × Label). • φ 1 U b φ 2 ∈ A t =⇒ pr((π , t)) φ 1 U b φ 2 . pr((π , t)) φ 1 U b φ 2 implies that φ 2 eventually holds. • φ 2 / ∈ A t =⇒ pr((π , t)) φ 2 .
Note that the second fact that for every t ≥ k, pr((π , t)) φ 2 contradicts with the first fact that φ 2 eventually holds. Thus, this cannot be the case. Consequently, the run π visits infinitely often some control locations in P × F φ 1 U b φ 2 . π visits infinitely often each set of the Büchi accepting condition of BP ψ implies that π is an accepting run of BP ψ .

In conclusion, from a run π of P such that π ψ, we can always obtain an accepting run π of BP ψ starting from p 0 , A 0 , unexit , ω 0 such that ψ ∈ A 0 and N exCallerF orms(A 0) = ∅.

The number of control locations of BP is at most |P | × 2 O(|ψ|) and the number of transitions is at most |∆||Γ| × 2 O(|ψ|) . From Theorem 1, the membership problem can be solved in time |ψ|) . Thus, we get: Theorem 3. Given a PDS P = (P, Γ, ∆), a labeling function λ : P → 2 AP and a CARET formula ψ, for every configuration p, ω , whether or not p, ω satisfies ψ can be solved in time

|P |.|∆| 2 .|Γ| 2 .2 O(
|P |.|∆| 2 .|Γ| 2 .2 O(|ψ|) .

CARET Model Checking for PDS with Regular Valuations

In this section, we discuss how to do CARET model-checking for PDSs with regular valuations, where the set of configurations in which an atomic proposition holds is a regular language.

Definition 6. Let P = (P, Γ, ∆) be a PDS. A set of configurations is regular if it can be written as the union of sets of the form E p , where p ∈ P and E p = {(p, w)|w ∈ L p }, where L p is a regular set over Γ * .

Definition 7. Let P = (P, Γ, ∆) be a PDS. Let AP be a finite set of atomic propositions. Let ν : AP → 2 P ×Γ * be a valuation. ν is called regular if for every e ∈ AP , ν(e) is a regular set of configurations.

Let ν : AP → 2 P ×Γ * be a regular valuation. We define λ ν :

P × Γ * → 2 AP such that λ ν (p, ω) = {e ∈ AP | p, ω ∈ ν(e)}. Let π = p 0 , ω 0 p 1 , ω 1 .
.. be an execution of P. We associate to each configuration p i , ω i of π a tag t i in {call, int, ret} as done in Section 2.2.2 . Let ψ be a CARET formula over AP . The satisfiability relation wrt the regular valuation ν is defined as follows:

π |= ν ψ iff (λ ν (p 0 , ω 0), t 0)(λ ν (p 1 , ω 1), t 1) • • • ψ Theorem 4. [EKS03]
LTL model-checking with regular valuations for PDSs can be reduced to standard LTL model checking for PDSs.

Given a PDS P = (P, Γ, ∆) and a regular valuation ν : AP → 2 P ×Γ * , the above result is based on translating the PDS P into a PDS P = P , Γ, ∆ where the regular valuation requirements are encoded in P . The same reduction is still valid for CARET with regular valuations. We refer the reader to [START_REF] Esparza | Model checking LTL with regular valuations for pushdown systems[END_REF] for details. Thus, given a CARET formula with regular valuations and a PDS P = (P, Γ, ∆), we apply the reduction of [START_REF] Esparza | Model checking LTL with regular valuations for pushdown systems[END_REF] to get a PDS P = P , Γ, ∆ such that CARET model checking of P wrt the regular valuation ν can be reduced to standard CARET model checking of P . Thus, we get that:

Theorem 5. CARET model-checking with regular valuations for PDSs can be reduced to standard CARET model checking for PDSs.

Applications

In this section, we show how CARET can be used to describe various kinds of properties.

Modeling Malicious Behaviors using CARET

CARET is more expressive than LTL, thus, all the malicious behaviors that are expressible in LTL [START_REF] Song | LTL model-checking for malware detection[END_REF] can always be specified by CARET. We showed in the introduction how we can use CARET to describe the typical malicious behavior of a spyware. Now, we show in this section how CARET allows to precisely specify several malicious behaviors that cannot be described by LTL. We also show how describing some malicious behaviors using LTL as done in [START_REF] Song | LTL model-checking for malware detection[END_REF] may lead to false alarms which can be avoided if we use CARET instead of LTL.

Most of the malicious behaviors that we consider need to be expressed using CARET with regular valuations. For succinctness, we write dΓ * (resp. 0dΓ *) to express the regular valuation that means "the content of the stack is in dΓ * (resp. in 0dΓ *)".

Open and listen on a specific port: Malware writers often configure the malware to listen to a specific port to receive information (such as updates, new attack targets,...). To do this, it needs to invoke the API socket to create a socket, followed by a call to the API bind to associate a local address with the socket and a call to listen to put the socket in the listening state. The call to the API socket returns a descriptor referencing the new socket which is used as input of the calls to the APIs bind and listen. Thus, when bind and listen are invoked, the socket descriptor must be on top of the program's stack. This malicious behavior can be specified by CARET as follows:

ψ lp = d∈D F g call(socket) ∧ X a (eax = d) ∧ F a call(bind) ∧ dΓ * ∧ F a call(listen) ∧ dΓ *
where the is taken over all possible memory addresses d which contain the values of descriptors referencing the new socket.

As mentioned before, in binary codes and assembly programs, the return value of an API function is put in the register eax. Thus, the return value of socket is the value of eax at its corresponding return-point. Then, the subformula F g (call(socket) ∧ X a (eax = d)) states that there is a call to the API socket and the return value of this function is d (the abstract successor of a call is its return-point). When bind and listen are invoked, one of their required parameters is the socket descriptor and this socket descriptor must be put on top of the program stack (since parameters are passed through the stack in assembly). The requirement that d is on top of the program stack is expressed by the regular valuation dΓ * . Thus, the subformula call(bind) ∧ dΓ * expresses that bind is called with d as parameter (d stores the information of the descriptor). Similarly, the subformula call(listen) ∧ dΓ * expresses that listen is called with d as parameter. Thus, ψ lp expresses then that there is a call to the API socket with the return value d (the descriptor), followed by a call to the function bind and a call to the function listen with d on the top of the stack. These behaviors ψ lp allow the malware to open and listen on a port.

Remark 2. In our experiments, the domain D of possible values of memory addresses d is computed using the tool Jakstab [START_REF] Kinder | Jakstab: A static analysis platform for binaries[END_REF].

Registry Key Injecting: Malware writers often create registry entries to set the malware as an authenticated program or make it started at the boot time.

To do that, it calls the API GetM oduleF ileN ameA with 0 and a memory address d as parameters; followed by a call to the API RegSetV alueExA with the same parameter d. After execution of GetM oduleF ileN ameA, the file name of the malware is stored at the address d. After that, the API RegSetV alueExA is invoked and adds the file name stored in d to the registry key listing. This malicious behavior can be expressed by the following CARET formula:

ψ rk2 = d∈D F g call(GetModuleFileNameA) ∧ 0dΓ * ∧ F a call(RegSetValueExA) ∧ dΓ *
where the is taken over all possible memory addresses d which can store the file name of the malware. This formula states that the API function GetM oduleF ileN ameA is called with 0 and a value d on the top of the stack (i.e., with 0 and d as parameters), followed by a call to the API function RegSetV alueExA with the same d on the top of the stack. This behavior was described in [START_REF] Song | LTL model-checking for malware detection[END_REF] using the following LTL formula:

ψ rk = d∈D F g call(GetModuleFileNameA) ∧ 0dΓ * ∧ F g call(RegSetValueExA) ∧ dΓ *
that uses the standard F g operator instead of CARET's F a . It can be seen that this LTL formula ψ rk is not as precise as the CARET formula ψ rk2 , as it may be satisfied even for paths where the call to RegSetV alueExA is made e.g. before the function GetM oduleF ileN ameA returns. Thus, this LTL formula ψ rk may lead to false alarms that can be avoided using our CARET formula ψ rk2 .

Email Worm: The typical characteristic of an email worm is to copy itself to other locations. To do this, the worm first calls the API GetM oduleF ileN ameA with 0 and d as parameters (d is a memory address which is used to store the file name of the current executable when the API is executed). After that, the worm calls CopyF ileA with the same d as parameter. CopyF ileA will use the file name stored at d to copy itself to another location. This malicious behavior can be expressed by CARET as follows:

ψ em2 = d∈D F g call(GetModuleFileNameA) ∧ 0dΓ * ∧ F a call(CopyFileA) ∧ dΓ *
where the is taken over all possible memory addresses d which can store the file name of the current executable. This behavior was described in [START_REF] Song | LTL model-checking for malware detection[END_REF] using the following LTL formula where the standard F g operator is used instead of F a :

ψ em = d∈D F g call(GetModuleFileNameA) ∧ 0dΓ * ∧ F g call(CopyFileA) ∧ dΓ *
As previously, this formula ψ em is not as precise as our CARET formula ψ em2 since ψ em does not discard e.g. the case where CopyF ileA is called before GetM oduleF ileN ameA returns. Thus, ψ em may lead to false alarms that can be avoided using our CARET formula ψ em2 .

Checking API Usage rules

Modern softwares increasingly utilize third-party libraries which can be accessed through application programming interfaces (APIs) to shorten development time. These libraries usually impose several constraints on how APIs should be used (API usage rules). Following these rules in programming is very important to avoid unexpected side-effects. Therefore, it is crucial to check API usage rule correctness for programs. We show in what follows how these rules can be described by CARET formulas.

File Operation Using Rules. One typical constraint for operations on files is that the opened files should be closed after being used. Note that closing files is very critical to maintain performance since longtime running programs will absorb a huge amount of resources if the opened files are not closed. This requirement can be expressed by the API rule "Calling the API fopen in some procedure proc must be followed by a call to the function fclose before the procedure proc terminates".This API usage rule can be described in CARET by the following succinct formula: φ = G g (fopen =⇒ F a fclose). φ 2 states that in any execution path, at a certain point of a certain procedure proc, if the function f open is invoked, then, in the same function proc, there must be a call to the API f close to close the opened file. Note that the operator F a allows us to ensure that f open and f close are called in the same function proc.

Socket Using Rules. The socket library is popularly used in server programs. When a client sends a connection request, the server creates a new socket by calling the API function socket to communicate with that client. When the communication ends, the socket should be closed by calling the API close. Note that if the socket is not closed, the address to which the socket is bound cannot be used by other sockets. If the bound address is a popular one, it will lead to a serious problem. To avoid this problem, one typical API usage rule for socket operations is that "The socket should be closed by calling the API function close whenever that socket is created by calling the API socket". Similar to the file operation usage rules, we can specify this API usage rule by the CARET formula: φ = G g (socket =⇒ F a close).

Security Properties

The basic security mechanism of Java Development Kit JDK is based on permissions. In this mechanism, a piece of code is assigned to a set of permissions. If a critical operation op is invoked by a method p 1 , then, p 1 must have the permission to do that. Also, if p 1 is invoked in the body of another method p 2 , then p 2 is also required to have the permission to execute op. In general, to execute a critical operation op, all the code leading to the position where op is executed must have the corresponding permissions. We show in what follows how CARET can be used to represent this property. Let per be the permission to execute the operation op. Then, the requirement above can be described by the following CARET formula:

φ = G g (per =⇒ G c per)
Note that the subformula G c per ensures that all the methods that lead to the current execution of the operation op also have the permission per.

Experiments

We implemented our algorithms in a tool and carried out different experiments. We use Moped [START_REF] Esparza | A bdd-based model checker for recursive programs[END_REF] as a tool to check emptiness of BPDSs. We first applied Then, we applied our tool for malware detection. A program is declared as a malware if it satisfies one of the CARET formulas described previously. For each CARET formula, if we consider the disjunction over all possible values of the domain D, our tool does not terminate. Thus, we consider only some values of D (these values are determined by Jakstab [START_REF] Kinder | Jakstab: A static analysis platform for binaries[END_REF]). We obtained encouraging results. As malwares are executables, i.e., binary codes, we use the translation of [START_REF] Song | Efficient malware detection using model-checking[END_REF] together with the tools IDAPRO [IDA] and Jakstab [START_REF] Kinder | Jakstab: A static analysis platform for binaries[END_REF] to generate a PDS from a binary code. Our tool was able to detect several malwares and to show that benign programs are benign as described in Table 2.2. The result Yes (resp. No) denotes that the program is a malware (resp. is benign). The malware samples are taken from "http://vxheaven.org/". Benign programs are taken from Microsoft Windows operating system. Note that, as mentioned in the introduction, it is not possible to obtain a RSM from these binary codes because they contain explicit push and pop instructions. Moreover, if we apply the translation in [ABE + 05] to compute a bisimilar RSM, then we still cannot apply malware detection on these RSMs since the malicious behaviors need CARET with regular valuations on the stack content, and by doing the translation from PDSs to RSMs the stack of the RSM does not correspond to the stack of the assembly program anymore. Thus, our techniques are crucial for malware detection.

Conclusion

In this chapter, we present an algorithm for model-checking PDSs against CARET formulas where whether a configuration of a PDS satisfies an atomic proposition or not depends only on the control location of that configuration. In addition, we consider CARET model-checking for PDSs with regular valuations where whether a configuration of a PDS satisfies an atomic proposition or not depends on both the control location and the stack content of that configuration. Our approach consists of reducing these problems to the emptiness problem of Büchi Pushdown Systems. The techniques are implemented in a tool that we applied to different case studies. Our experimental results are encouraging.

Samples

CARET Model Checking for Malware Detection

The number of malware is growing significantly fast. Traditional malware detectors based on signature matching or code emulation are easy to get around.

To overcome this problem, model-checking emerges as a technique that has been extensively applied for malware detection recently. Pushdown systems were proposed as a natural model for programs, since they allow to keep track of the stack, while extensions of LTL and CTL were considered for malicious behavior specification. However, LTL and CTL like formulas don't allow to express behaviors with matching calls and returns. In this thesis, we propose to use CARET for malicious behavior specification. Since CARET formulas for malicious behaviors are huge, we propose in this chapter to extend CARET with variables, quantifiers and predicates over the stack. Our new logic is called Stack linear temporal Predicate logic of CAlls and RETurns (SPCARET). We reduce the malware detection problem to the model checking problem of PDSs against SPCARET formulas, and we propose efficient algorithms to model check SPCARET formulas for PDSs. We implemented our algorithms in a tool for malware detection. We obtained encouraging results.

Outline. Section 3.1 introduces our logic SPCARET and shows how it can be used to precisely and succinctly describe malicious behaviors. Model checking SPCARET is discussed in Sections 3.2, 3.3 and 3.4. In Section 3.5, we present our experimental results. Finally, we conclude in Section 3.6.

Malicious Behaviour Specification

In this section, we define the Stack linear temporal Predicate logic of CAlls and RETurns (SPCARET) as an extension of the linear temporal logic of CAlls and RETurns (CARET) with variables and regular predicates over the stack contents. The predicates contain variables that can be quantified existentially or universally. Regular predicates are expressed by regular variable expressions and are used to describe the stack content of PDSs.

Environments, Predicates and Regular Variable Expressions

≤ i ≤ m. Let AP X be a finite set of atomic predicates b(α 1 , ..., α n) such that b ∈ AP and α i ∈ X ∪ D for every 1 ≤ i ≤ n.
Let P = (P, Γ, ∆) be a Labelled PDS. A Regular Variable Expression (RVE) e over X ∪ Γ is defined by e

::= ε | a ∈ X ∪ Γ | e + e | e.
e | e * . The language L(e) of a RVE e is a subset of P × Γ * × B and is defined as follows:

• L(ε) = {(p, ε , B) | p ∈ P, B ∈ B} • for x ∈ X , L(x) = {(p, γ , B) | p ∈ P, γ ∈ Γ, B ∈ B s.t B(x) = γ} • for γ ∈ Γ, L(γ) = {(p, γ , B) | p ∈ P, B ∈ B} • L(e 1 .e 2) = {(p, ω ω , B) | (p, ω , B) ∈ L(e 1); (p, ω , B) ∈ L(e 2)} • L(e *) = {(p, ω , B) | ω ∈ {v ∈ Γ * | (p, v , B) ∈ L(e)} * }

The Stack linear temporal Predicate logic of CAlls and RETurns -SPCARET

A SPCARET formula is a CARET [START_REF] Alur | A temporal logic of nested calls and returns[END_REF] formula where predicates and RVEs are used as atomic propositions and where quantifiers are applied to variables. For technical reasons, we assume w.l.o.g. that formulas are written in positive normal form, where negations are applied only to atomic predicates, and we use the release operator R as the dual of the until operator U . From now on, we fix a finite set of variables X , a finite set of atomic propositions AP , a finite domain D, and a finite set of RVEs V. A SPCARET formula is defined as follows, where v ∈ {g, a, c}, x ∈ X , e ∈ V, b(α 1 , ..., α n) ∈ AP X :

ψ := b(α 1 , ..., α n) | ¬b(α 1 , ..., α n) | e | ¬e | ψ ∨ ψ | ψ ∧ ψ | ∀xψ | ∃xψ | X v ψ | ψU v ψ | ψR v ψ
Let λ : P -→ 2 AP D be a labelling function which associates each control location to a set of atomic predicates. Let ψ be a SPCARET formula over 3.1. Malicious Behaviour Specification 51 AP . Let p, ω be a configuration of P. Then we say that P satisfies ψ at p, ω (denoted by p, ω |= λ ψ) iff there exists an environment B ∈ B, a path π = p 0 , ω 0 p 1 , ω 1 ... starting from p, ω such that π satisfies ψ under B (denoted by π |= B λ ψ). Let next g i , next a i and next c i be the global-successor, abstract-successor and caller-successor of p i , ω i respectively. Let (π, i) be the suffix of π starting from

p i , ω i . Then, π |= B λ ψ iff (π, 0) |= B λ ψ where (π, i) |= B
λ ψ is defined inductively as follows:

• (π, i) |= B λ b(α 1 , ..., α n), iff b(B(α 1), ..., B(α n)) ∈ λ(p i) • (π, i) |= B λ ¬b(α 1 , ..., α n), iff b(B(α 1), ..., B(α n)) / ∈ λ(p i) • (π, i) |= B λ e iff (p i , ω i , B) ∈ L(e) • (π, i) |= B λ ¬e iff (p i , ω i , B) / ∈ L(e) • (π, i) |= B λ ψ 1 ∨ ψ 2 iff ((π, i) |= B λ ψ 1 or (π, i) |= B λ ψ 2) • (π, i) |= B λ ψ 1 ∧ ψ 2 iff ((π, i) |= B λ ψ 1 and (π, i) |= B λ ψ 2) • (π, i) |= B λ X g ψ iff (π, next g i) |= B λ ψ • (π, i) |= B λ X a ψ iff next a i = ⊥ and (π, next a i) |= B λ ψ • (π, i) |= B λ X c ψ iff next c i = ⊥ and (π, next c i) |= B λ ψ • (π, i) |= B λ ∀xψ iff for every d ∈ D, (π, i) |= B[x←d] λ ψ • (π, i) |= B λ ∃xψ iff there exists d ∈ D, (π, i) |= B[x←d] λ ψ • (π, i) |= B λ ψ 1 U v ψ 2 (with v ∈ {g, a, c}) iff there exists a sequence of positions h 0 , h 1 , ..., h k-1 , h k where h 0 = i, for every 0 ≤ j ≤ k -1: h j+1 = next v h j , (π, h j) |= B λ ψ 1 and (π, h k) |= B λ ψ 2 • (π, i) |= B λ ψ 1 R v ψ 2 (with v ∈ {g, a, c}) iff there exists a sequence of positions h 0 , h 1 , ..., h k-1 , h k where h 0 = i, for every 0 ≤ j ≤ k: h j+1 = next v h j , (π, h j) |= B λ ψ 2 and (π, h k) |= B λ ψ 1
Other CARET operators can be represented by the above operators:

F g ψ = true U g ψ, G g ψ = false R g ψ, F a ψ = true U a ψ, G a ψ = false R a ψ, F c ψ = true U c ψ, G c ψ = false R c ψ,....

Let a PCARET formula be an SPCARET formula that does not use any regular variable expression.

CARET with regular valuations is an extension of CARET where the set of configurations where an atomic proposition hold can be expressed by a regular language. Since the domain D is finite, we get: Proposition 2. PCARET and CARET (resp. SPCARET and CARET with regular valuations) have the same expressive power. SPCARET is more expressive than CARET.

Let ψ be a SPCARET formula. The closure of ψ, denoted Cl(ψ), is the smallest set that contains ψ and satisfies the following properties:

• if X v ψ ∈ Cl(ψ) (with v ∈ {g, a, c}), then ψ ∈ Cl(ψ) • if ∀xψ ∈ Cl(ψ), then, ψ ∈ Cl(ψ) and for every d ∈ D, ψ d ∈ Cl(ψ)
where

ψ d is ψ in which x is substituted by d • if ∃xψ ∈ Cl(ψ), then, ψ ∈ Cl(ψ) and for every d ∈ D, ψ d ∈ Cl(ψ) where ψ d is ψ in which x is substituted by d • if ψ 1 ∨ ψ 2 ∈ Cl(ψ), then ψ 1 ∈ Cl(ψ), ψ 2 ∈ Cl(ψ) • if ψ 1 ∧ ψ 2 ∈ Cl(ψ), then ψ 1 ∈ Cl(ψ), ψ 2 ∈ Cl(ψ) • if ψ 1 U v ψ 2 ∈ Cl(ψ) (with v ∈ {g, a, c}), then ψ 1 ∈ Cl(ψ), ψ 2 ∈ Cl(ψ), X v (ψ 1 U v ψ 2) ∈ Cl(ψ) • if ψ 1 R v ψ 2 ∈ Cl(ψ) (with v ∈ {g, a, c}), then ψ 1 ∈ Cl(ψ), ψ 2 ∈ Cl(ψ), X v (ψ 1 R v ψ 2) ∈ Cl(ψ)

Modelling Malicious Behaviours Using SPCARET

In this section, we show how SPCARET can be used to succinctly specify the malicious behaviors presented in Section 2.5.1.

Open and listen on a specific port: The CARET formula ψ lp described in Section 2.5.1 can be represented by the SPCARET formula:

ψ lp = ∃xF g call(socket) ∧ X a (eax = x) ∧ F a call(bind) ∧ xΓ * ∧ F a call(listen) ∧ xΓ *
ψ lp expresses that there is a call to the API socket with a return value x, followed by a call to the function bind and a call to the function listen with x on top of the stack. Note that in this case, x is the memory address storing the socket descriptor. It can be seen that ψ lp is much more compact than ψ lp .

Registry Key Injecting: The CARET formula ψ rk2 described in Section 2.5.1 can be represented by the SPCARET formula:

ψ rk2 = ∃xF g call(GetM oduleF ileN ameA) ∧ 0xΓ * ∧ F a call(RegSetV alueExA) ∧ xΓ *
This formula states that there is a call to the API GetModuleFileNameA with 0 and x on the top of the stack (i.e., with 0 and x as parameters), followed by 3.2. SPCARET Model-Checking for Pushdown Systems 53 a call to the API RegSetV alueExA with x on the top of the stack. Note that in this case, x is the memory address containing the file name of the malware. It can be seen that ψ rk2 is much more compact than ψ rk2 .

Email Worm: The CARET formula ψ em2 described in Section 2.5.1 can be represented by the SPCARET formula:

ψ em2 = ∃xF g call(GetModuleFileNameA) ∧ 0xΓ * ∧ F a call(CopyFileA) ∧ xΓ *
This formula states that there is a call to the API function GetModuleFile-NameA with 0 and x on the top of the stack, followed by a call to the API CopyFileA with the same x on the top of stack. Note that in this case, x is the memory address containing the file name of the current executable. It can be seen that ψ em2 is much more compact than ψ em2 .

SPCARET Model-Checking for Pushdown Systems

Using CARET Model-Checking

We can show that: Theorem 6. Model-checking a PCARET formula against PDSs can be reduced to model-checking a CARET formula against PDSs. Model-checking a SPCARET formula against PDSs can be reduced to model-checking a CARET formula with regular valuations against PDSs.

The reduction underlying this theorem is based on enumerating all possible values for each variable that occurs in the given SPCARET (PCARET) formula. For example, the PCARET formula ψ = ∃x 1 ∃x 2 push(x 1) ∧ X g push(x 2) where x 1 and x 2 are variables over the domain D = {eax, ebx, ecx, ...} can be rewritten as the huge CARET formula d 1 ,d 2 ∈D push(d 1) ∧ X g push(d 2).

More precisely, we get: CARET model checking for PDSs was solved in the previous chapter. From Theorem 3 and Proposition 3, we get:

Theorem 7. Given a PDS P = (P, Γ, ∆), a labeling function λ : P → 2 AP D and a SP CARET formula ψ, for every configuration p, ω , checking whether p, ω satisfies ψ by translating ψ to an equivalent CARET formula ψ can be solved in time

|P |.|∆| 2 .|Γ| 2 .2 O(|ψ||D| |X |) .

SPCARET \c

It is obvious to see that the above approach that consists in translating a SPCARET formula to an equivalent CARET formula is not efficient since the size of the domain D is big when the formula specifies a malicious behavior, where D is usually all possible register names, or all possible values of the memory addresses or all possible values of the stack. Thus, we need a direct model checking algorithm that does not go through the translation to CARET and that is more efficient than the above approach. One possible idea to have a direct algorithm consists in reducing the model checking problem to the emptiness problem of Symbolic Büchi Pushdown Systems (SBPDSs), by computing a kind of product between the SPCARET formula ψ and the PDS P, which gives a Symbolic Büchi Pushdown System. The key idea would be the use of Symbolic BPDSs. This allows to move the complexity of dealing with variables over a big domain to the symbolic transitions of the BPDS, which can be efficiently dealt with using BDDs as described in [START_REF] Esparza | A bdd-based model checker for recursive programs[END_REF].

Intuitively, when computing the product, each state of the computed Symbolic BPDS ensures the satisfiability of a certain subformula at some state of the PDS. To be able to apply this approach in the presence of variables, the semantic correctness of a certain subformula at one state is ensured by the semantic correctness of the formulas of its successor state. However, this cannot apply for caller-paths since from a state, the correctness of X c , U c , and R c are ensured backward not forward (i.e., by looking at the predecessors, not the successors). Thus, to be able to apply this idea, we define a subclass of SPCARET that does not involve the X c , U c , and R c operators. This subclass is called SPCARET \c : Definition 8. A SPCARET \c (PCARET \c) formula is a SPCARET (PCARET) formula that does not use the operators X c , U c , and R c . We believe that these operators X c , U c , and R c are not useful to specify malicious behaviours. Indeed, a malicous behaviour can often be described as a sequence of API function calls with corresponding register as well as stack values at calls and matching return-points, combined with a sequence of certain assembly instructions (mov, push, pop,...). The operators X g , U g , R g , X a , U a , and R a are sufficient to express such behaviors.

PCARET \c Model-Checking for Pushdown Systems

In this section, we show how to reduce PDSs model-checking for PCARET \c to the emptiness problem of Symbolic Büchi Pushdown Systems. The latter problem is already solved in [START_REF] Esparza | A bdd-based model checker for recursive programs[END_REF].

Symbolic Büchi Pushdown Systems

Definition 9. A Symbolic Pushdown System (SPDS) P is a tuple (P, Γ, ∆) where P is a finite set of control locations, Γ is a finite set of stack alphabet and ∆ is a finite set of symbolic transition rules in the form p, γ θ -→ q, ω where p, q ∈ P, γ ∈ Γ, ω ∈ Γ * and θ ⊆ B × B.

A symbolic transition rule p, γ θ -→ q, ω represents the set of transition rules: (p, B), γ -→ (q, B), ω such that B, B ∈ B and (B, B) ∈ θ. For every ω ∈ Γ , (q, B), ωω is an immediate successor of (p, B), γω . A run of P starting from (p 0 , B 0), ω 0 is a sequence (p 0 , B 0), ω 0 (p 1 , B 1), ω 1 ... s.t. (p i+1 , B i+1), ω i+1 is an immediate successor of (p i , B i), ω i for every i ≥ 0. Definition 10. A Symbolic Büchi Pushdown System (SBPDS) is a tuple (P, Γ, ∆, F), where (P, Γ, ∆) is a SPDS and F ⊆ P is a set of accepting control locations. A run of a SBPDS is accepting iff it visits infinitely often some control locations in F . Definition 11. A Generalized Symbolic Büchi Pushdown System (GSBPDS) is a tuple (P, Γ, ∆, F), where (P, Γ, ∆) is a SPDS and F = {F 1 , ..., F k } is a set of sets of accepting control locations. A run of a GSBPDS is accepting iff it visits infinitely often some control locations in F i for every 1 ≤ i ≤ k.

Let BP be a SBPDS (resp. GSBPDS), L(BP) is the set of configurations (p, B), ω ∈ P × B × Γ * such that BP has an accepting run from p, ω . We have the following properties:

Proposition 4. [ST13a] Given a GSBPDS BP, we can compute a SBPDS BP s.t. L(BP) = L(BP). Theorem 8. [ES01, ST13a] Given a SBPDS BP = (P, Γ, ∆, F), for every configuration (p, B), ω ∈ P × B × Γ * , whether or not (p, B), ω is in L(BP) can be decided in time O(|P |.|∆| 2 .|D| 3|X |).

From PCARET \c Model-Checking for PDSs to the Emptiness Problem of SBPDSs

Let P = (P, Γ, ∆) be a PDS, λ : P → 2 AP D be a labelling function, ψ be a PCARET \c formula. In this section, we show how to build a Generalized Symbolic Büchi Pushdown System BP ψ s.t. P has an execution π from p, ω s.t. π satisfies ψ under B iff BP ψ has an accepting run from (p, {ψ}, unexit , B), ω where unexit is a label expressing that from the configuration p, ω , the execution of the procedure of p, ω , P(p, ω), in π is never finished (since π is an infinite run and p, ω is the initial configuration of π). Let Label = {exit, unexit}.

We define BP ψ = (P , Γ , ∆ , F) as follows:

• P = P × 2 Cl(ψ) × Label • Γ = Γ ∪ (Γ × 2 Cl(ψ) × Label) is the finite set of stack symbols of BP ψ .
∆ is the smallest set of transition rules defined as follows 1 : for every Φ ⊆ Cl(ψ), p ∈ P, γ ∈ Γ; l, l ∈ Label:

(β 1) if φ = b(α 1 , .., α n) ∈ Φ, then, p, Φ, l , γ θ - → p, Φ \ {φ}, l , γ ∈ ∆ where θ = {(B, B) | B ∈ B ∧ b(B(α 1), ..., B(α n)) ∈ λ(p)} (β 2) if φ = ¬b(α 1 , .., α n) ∈ Φ, then, p, Φ, l , γ θ - → p, Φ \ {φ}, l , γ ∈ ∆ where θ = {(B, B) | B ∈ B ∧ b(B(α 1), ..., B(α n)) / ∈ λ(p)} (β 3) if φ = φ 1 ∧ φ 2 ∈ Φ, then, p, Φ, l , γ θ id -→ p, Φ \ {φ} ∪ {φ 1 , φ 2 }, l , γ ∈ ∆ (β 4) if φ = φ 1 ∨ φ 2 ∈ Φ, then, p, Φ, l , γ θ id -→ p, Φ \ {φ} ∪ {φ 1 }, l , γ ∈ ∆ and p, Φ, l , γ θ id -→ p, Φ \ {φ} ∪ {φ 2 }, l , γ ∈ ∆ (β 5) if φ = ∃xφ ∈ Φ, then: (β 5.1) if x is not a free variable of any formula in Φ, then, p, Φ, l , γ θx -→ p, Φ ∪ {φ } \ {φ}, l , γ ∈ ∆ (β 5.2) otherwise, for every c ∈ D, p, Φ, l , γ θ id -→ p, Φ ∪ {φ c } \ {φ}, l , γ ∈ ∆ where φ c is φ where x is substituted by c. (β 6) if φ = ∀xφ ∈ Φ, then, p, Φ, l , γ θ id -→ p, Φ∪{φ c | c ∈ D}\{φ}, l , γ ∈ ∆ where φ c is φ such that x is replaced by c. (β 7) if φ = φ 1 U v φ 2 ∈ Φ (v ∈ {g, a}), then, p, Φ, l , γ θ id -→ p, Φ ∪ {φ 2 } \ {φ}, l , γ ∈ ∆ and p, Φ, l , γ θ id -→ p, Φ ∪ {φ 1 , X v φ} \ {φ}, l , γ ∈ ∆ (β 8) if φ = φ 1 R v φ 2 ∈ Φ (v ∈ {g, a}), then, p, Φ, l , γ θ id -→ p, Φ ∪ {φ 1 , φ 2 } \ {φ}, l , γ ∈ ∆ and p, Φ, l , γ θ id -→ p, Φ ∪ {φ 2 , X v φ} \ {φ}, l , γ ∈ ∆ 1 θ
x and θ id are as defined in Section 3.1.1 3.3. PCARET \c Model-Checking for Pushdown Systems 57

(β 9) if Φ = Φ g ∪ Φ a where Φ g = {X g φ 1 , ..., X g φ n }, Φ a = {X a ϕ 1 , ..., X a ϕ m }
(Φ g or Φ a can be empty), then:

(β 9.1) for every p, γ call --→ q, γ γ ∈ ∆: p, Φ, l , γ θ id -→ q, {φ 1 , ..., φ n }, l , γ γ , {ϕ 1 , ..., ϕ m }, l ∈ ∆ iff (l = unexit) implies (l = unexit and Φ a = ∅) (β 9.2) for every p, γ ret -→ q, ε ∈ ∆: (β 9.2.1) p, Φ, exit , γ θ id -→ q, {φ 1 , ..., φ n }, l , ε ∈ ∆ iff Φ a = ∅ (β 9.2.2) q, {φ 1 , ..., φ n }, l , γ 0 , Φ 0 , l 0 θ id -→ q, {φ 1 , ..., φ n } ∪ Φ 0 , l , γ 0 ∈ ∆ for every γ 0 ∈ Γ iff l 0 = l (β 9.3) for every p, γ int -→ q, ω ∈ ∆: p, Φ, l , γ θ id -→ q, {φ 1 , ..., φ n , ϕ 1 , ..., ϕ m }, l , ω ∈ ∆ call {X g φ 1 , ..., X g φ n , X a ϕ 1 , ..., X a ϕ m } proc ret return-point γ , {ϕ 1 , ..., ϕ m } encoded & passed down p i , ω i p i+1 , ω i+1 p k-1 , ω k-1 p k , ω k Figure 3.1: p i , ω i = ⇒ P p i+1 , ω i+1 corresponds to a call statement Let cl U g (ψ) = {φ 1 U g χ 1 , ..., φ k U g χ k } and cl U a (ψ) = {ξ 1 U a τ 1 , ..., ξ k U a τ k } be
the set of U g -formulas and U a -formulas of Cl(ψ) respectively. The generalized Büchi accepting condition F of BP ψ is defined as:

F = {F 1 } ∪ F 2 ∪ F 3 where • F 1 = P × 2 Cl(ψ) × {unexit} • F 2 = {F g 1 , ..., F g k } where F g i = P × F φ i U g χ i × Label where F φ i U g χ i = {Φ ⊆ Cl(ψ) | φ i U g χ i / ∈ Φ and X g (φ i U g χ i) / ∈ Φ} for every 1 ≤ i ≤ k. • F 3 = {F a 1 , ..., F a k } where F a i = P × F ξ i U a τ i × {unexit} where F ξ i U a τ i = {Φ ⊆ Cl(ψ) | ξ i U a τ i / ∈ Φ and X a (ξ i U a τ i) / ∈ Φ} for every 1 ≤ i ≤ k .
Intuition. Roughly speaking, we construct BP ψ as a kind of product between P and ψ which ensures that BP ψ has an accepting run from (p, {ψ}, unexit , B), ω iff P has an execution π starting at p, ω s.t. π satisifies ψ under B. The form of the control locations of BP ψ is p, Φ, l where Φ is a set of formulas that are satisfied (under B) at the configuration p, ω , l is a label to determine whether the execution of the procedure of p, ω , P(p, ω) (as defined in Section 2.1), can be terminated on π. A configuration p, ω is labeled with exit means that the execution of P(p, ω) is finished in π, i.e., the run π will run through the procedure P(p, ω), reaches its ret statement and exits P(p, ω) after that. On the contrary, p, ω is labeled with unexit means that in π, the execution of the procedure P(p, ω) never terminates, i.e., the run π will be stuck in and never exits the procedure P(p, ω). Let π = p 0 , ω 0 p 1 , ω 1 ... be a run of P. Let us write π |= B λ Φ to express that π satisfies all formulas φ ∈ Φ under B. To obtain such a BP ψ , intuitively, we proceed as follows:

• If b(α 1 , .., α n) ∈ Φ, then π |= B λ Φ iff π satisfies b(α 1 , .
., α n) and π satisfies all the remaining formulas in Φ under B. This is ensured by the transition rules in (β 1) stating that BP ψ has an accepting run from (p, Φ, l , B), ω iff b(B(α 1), .., B(α n)) ∈ λ(p) and BP ψ has an accepting run from (p, Φ\ {b(α 1 , .., α n)}, l , B), ω .

• If ¬b(α 1 , .., α n) ∈ Φ, then π |= B λ Φ iff π satisfies ¬b(α 1 , .
., α n) and π satisfies all the remaining formulas in Φ under B. This is ensured by the transition rules in (β 2) stating that BP ψ has an accepting run from

(p, Φ, l , B), ω iff b(B(α 1), .., B(α n)) / ∈ λ(p)
and BP ψ has an accepting run from (p, Φ \ {¬b(α 1 , .., α n)}, l , B), ω .

• If φ 1 ∧ φ 2 ∈ Φ, then π |= B λ Φ iff π satisfies φ 1 ∧ φ 2 and π satisfies all the remaining formulas in Φ under B. Note that π |= B λ φ 1 ∧ φ 2 iff π |= B λ φ 1 and π |= B λ φ 2
. This is ensured by the transition rules in (β 3) stating that BP ψ has an accepting run from (p, Φ, l , B), ω iff BP ψ has an accepting run from

(p, Φ ∪ {φ 1 , φ 2 } \ {φ 1 ∧ φ 2 }, l , B), ω . Item (β 4) is similar to (β 3) • If ∀xφ ∈ Φ, then π |= B λ Φ iff π
• If ∃xφ ∈ Φ, then, π |= B λ Φ iff π |= B λ ∃xφ and π |= B λ Φ \ {∃xφ }. In other words, π |= B λ Φ iff there exists c ∈ D s.t. π |= B[x←c] λ φ and π |= B λ Φ \ {∃xφ }.
We consider two possibilities: Φ \ {∃xφ }. This is ensured by the transition rules in (β 5.1) stating that BP ψ has an accepting run from (p, Φ, l , B), ω iff there exists c ∈ D s.t. BP ψ has an accepting run from

-if x is not a free variable of any formula in Φ, then, π |= B λ Φ \ {∃xφ } iff π |= B[x←c] λ Φ\{∃xφ } for every c ∈ D. This means that π |= B λ Φ iff call proc ret return-point p 0 , ω 0 p 1 , ω 1 p 2 , ω 2 p 3 , ω 3 p 4 , ω 4 p i , ω i p i+1 , ω i+1
(p, Φ ∪ {φ } \ {∃xφ }, l , B[x ← c]), ω (as (B, B[x ← c]) ∈ θ x)
if x is a free variable of some formula in Φ, then, it may occur the case that φ is satisfied only when

x = c (π |= B[x←c] λ φ), φ is not satisfied when x = c (π B[x←c] λ φ), while π |= B
λ {∃xφ , φ }. Thus, we cannot apply the transition rules in (β 5.1) for this case. Note that

π |= B λ Φ iff there exists c ∈ D s.t. π |= B[x←c] λ
φ and π |= B λ Φ\{∃xφ }. This is ensured by the transition rule (β 5.2) stating that BP ψ has an accepting run from (p, Φ, l , B), ω iff there exists c ∈ D s.t. BP ψ has an accepting run from (p, Φ ∪ {φ c } \ {∃xφ }, l , B), ω (since (B, B) ∈ θ id).

• If φ 1 U v φ 2 ∈ Φ, then π |= B λ Φ iff π |= B λ φ 1 U v φ 2 and π |= B λ Φ \ {φ 1 U v φ 2 }. Note that π |= B λ φ 1 U v φ 2 iff π |= B λ φ 2 or (π |= B λ φ 1 and π |= B λ X v (φ 1 U v φ 2)
). This is ensured by the transition rules in (β 7) stating that BP ψ has an accepting run from (p, Φ, l , B), ω iff either BP ψ has an accepting run from

(p, Φ ∪ {φ 2 } \ {φ 1 U v φ 2 }, l , B), ω , or BP ψ has an accepting run from (p, Φ ∪ {φ 1 , X v (φ 1 U v φ 2)} \ {φ 1 U v φ 2 }, l , B), ω . Item (β 8) is similar to (β 7). • If Φ = {X g φ 1 , ..., X g φ n , X a ϕ 1 , ..., X a ϕ m }. Let p k , ω k be the abstract- successor of p i , ω i , then, (π, i) |= B λ Φ iff ((π, i + 1) |= B λ {φ 1 , ..., φ n } and (π, k) |= B λ {ϕ 1 , ..., ϕ m })
. Now we show how we can ensure these:

-(π, i + 1) |= B λ {φ 1 , ..., φ m } is ensured by the transition rules corresponding to different cases in (β 9.1), (β 9.2) and (β 9.3) which guarantee that BP ψ has an accepting run from (p, {X g φ 1 , ..., X g φ n , X a ϕ 1 , ..., X a ϕ m }, l , B), ω iff BP ψ has an accepting run from (q, {φ 1 , ..., φ m }, l , B), ω .

-To ensure (π, k) |= B λ {ϕ 1 , ..., ϕ m } There are two possibilities: * If p i , ω i = ⇒ P p i+1 , ω i+1 corresponds to a call statement. Let us consider Figure 3.1 to explain this case.

(π, i) |= B λ {X a ϕ 1 , ..., X a ϕ m } if (π, k) |= B
λ {ϕ 1 , ..., ϕ m }. This is ensured by rules (β 9.1) and (β 9.2): rules (β 9.1) allow to record {ϕ 1 , ..., ϕ m } in the return point of the call, and rules (β 9.2) allow to extract and validate {ϕ 1 , ..., ϕ m } when the return-point is reached. In what follows, we show in more details how this works: Let p i , γ call --→ p i+1 , γ γ be the rule associated with the transition p i , ω i ⇒ P p i+1 , ω i+1 , then we have ω i = γω and ω i+1 = γ γ ω . Let p k-1 , ω k-1 ⇒ P p k , ω k be the transition that corresponds to the ret statement of this call. Let then p k-1 , β ret -→ p k , ε ∈ ∆ be the corresponding return rule. Then, we have necessarily ω k-1 = βγ ω , since as explained in Section 2.2.1, γ is the return address of the call. After applying this rule, ω k = γ ω . In other words, γ will be the topmost stack symbol at the corresponding return point of the call. So, in order to ensure that (π, k) |= B λ {ϕ 1 , ..., ϕ m }, we proceed as follows: At the call p i , γ call --→ p i+1 , γ γ , we encode formulas which are required to be true at the corresponding return-point of the call {ϕ 1 , ..., ϕ m } into γ by the rule (β 9.1) stating that p i , {X g φ 1 , ..., X g φ n , X a ϕ 1 , ..., X a ϕ m } , γ θ id -→ p i+1 , {φ 1 , ..., φ n } , γ γ , {ϕ 1 , ..., ϕ m } ∈ ∆ . This allows to record {ϕ 1 , ..., ϕ m } in the corresponding return point of the stack. After that, γ , {ϕ 1 , ..., ϕ m } will be the topmost stack symbol at the corresponding return-point of this call. At the return-point, the transition rule (β 9.2.2) ensures that (π, k) |= B λ {ϕ 1 , ..., ϕ m } by adding {ϕ 1 , ..., ϕ m } to the set of formulas which are required to be satisified at p k , ω k . * If p i , ω i = ⇒ P p i+1 , ω i+1 corresponds to a simple statement (see Figure 3.2). Then, the abstract successor of p i , ω i is p i+1 , ω i+1 . Thus, we must have (π, i + 1) |= B λ {ϕ 1 , ..., ϕ m }. This is ensured by the rules in (β 9.3) stating that BP ψ has an accepting run from (p i , Φ i , B i), ω i iff BP ψ has an accepting run from (p i+1 , {φ 1 , ..., φ n , ϕ 1 , ..., ϕ m } , B i+1), ω i+1 .

The labels. Now, let us explain how the label l is used in the transition rules to ensure the correctness of the formulas. Note that our explanation above makes implicitly the assumption that along the run π, every call to a procedure proc will eventually reach its corresponding return point, i.e., the run π will finally exit proc, then, we can encode formulas at the call and validate them at its corresponding return-point. However, it might be the case that at a certain point in the procedure proc, there will be a loop, and π never exits proc. To solve this problem, we annotate the control states by the label l ∈ {exit, unexit} to determine whether π can complete the execution of the procedure P(p, ω). In the following, we explain three cases corresponding to three kinds of statements:

• Let us consider Figure 3.1. p i , ω i = ⇒ P p i+1 , ω i+1 corresponds to a call statement. Note that P(p i+1 , ω i+1) = proc in this case. There are two possibilities. If proc terminates, then the call at p i , ω i will reach its corresponding return-point. In this case, p i+1 , ω i+1 is labelled by exit. If proc never terminates, then the call at p i , ω i will never reach its corresponding return-point. In this case, p i+1 , ω i+1 is labelled by unexit. If p i+1 , ω i+1 is labelled by exit, then p i , ω i can be labelled by exit or unexit. However, if p i+1 , ω i+1 is labelled by unexit, then p i , ω i must be labelled by unexit. This is ensured by the condition (l = unexit implies l = unexit) in the rule (β 9.1). In addition, if p i+1 , ω i+1 is labelled by unexit, then p i , ω i never reaches its corresponding return-point. Thus, p i , ω i does not satify any formula in the form X a φ. This is ensured by the condition (l = unexit implies Φ a = ∅) in the rule (β 9.1).

• Again, let us consider Figure 3.1. p k-1 , ω k-1 = ⇒ P p k , ω k corresponds to a ret statement. At p k-1 , ω k-1 , we are sure that proc will terminate. In this case, p k-1 , ω k-1 must be always labelled by exit and p k , ω k can be labelled by exit or unexit. This is ensured by the rule (β 9.2.1). Also, the abstract-successor of p k-1 , ω k-1 is ⊥, then, p k-1 , ω k-1 does not satify any formula in the form X a φ. This is ensured by the condition (Φ a = ∅) in the rule (β 9.2.1).

• Finally, let us consider Figure 3.2. p i , ω i = ⇒ P p i+1 , ω i+1 corresponds to a simple statement. Then, p i , ω i and p i+1 , ω i+1 are in the same procedure proc. Thus, the labels assigned to p i , ω i and p i+1 , ω i+1 should be the same. This is ensured by the transition rule (β 9.3)

The Büchi accepting condition. The generalized Büchi accepting condition F of BP ψ consists of three families of accepting conditions F 1 , F 2 and F 3 . The first set F 1 guarantees that an accepting run should go infinitely often through the label unexit. The sets F 2 and F 3 ensure the liveness requirements of until-formulas on the infinite global path and the infinite abstract path:

call φ 0 φ i φ i+1 proc γ , φ i encoded & passed down p 0 , ω 0 p i , ω i p i+1 , ω i+1 Figure 3.3: p i , ω i never reach its corresponding return-point • Each set of F 2 ensures that the liveness requirement φ 2 in φ 1 U g φ 2 is eventually satisfied in P. Note that (π, i) |= B λ φ 1 U g φ 2 iff (π, i) |= B λ φ 2 or ((π, i) |= B λ φ 1 and (π, i) |= B λ X g (φ 1 U g φ 2)
). Because φ 2 should hold eventually, to avoid the case where the run of BP ψ always follow the latter and never reaches φ 2 , we set

P × {Φ ⊆ Cl(ψ) | φ 1 U g φ 2 / ∈ Φ and X g (φ 1 U g φ 2) /
∈ Φ} × Label as an accepting set. By this setting, the accepting run of BP ψ will infinitely often visit some control locations in

P × {Φ ⊆ Cl(ψ) | φ 1 U g φ 2 /
∈ Φ and X g (φ 1 U g φ 2) / ∈ Φ} × Label which ensures that φ 2 will eventually hold.

• The idea behind the set F 3 is similar to the set F 2 except that the liveness requirement for a U a -formula φ 1 U a φ 2 is only required on the infinite abstract path (labelled by unexit).

Finite abstract paths. The liveness requirements of abstract-until formulas on finite abstract paths are ensured by conditions in transition rules:

• The liveness requirements of abstract-until formulas on finite abstract paths p z 0 , ω z 0 p z 1 , ω z 1 ... p zm , ω zm where p zm , ω zm is associated with a tag t zm = ret are ensured by the condition φ a = ∅ in the transition rule (β 9.2.1). This requirement guarantees the liveness requirement φ 2 in φ 1 U a φ 2 eventually happens. Look at Figure 3.1 for an illustration. In this figure, for every i + 1 ≤ u ≤ k -1, the abstract path starting from p u , ω u is finite. Suppose that we want to determine whether

(π, k -1) |= B λ {φ 1 U a φ 2 }, then, we get that (π, k -1) |= B λ φ 1 U a φ 2 iff (π, k -1) |= B λ φ 2 or ((π, k -1) |= B λ φ 1 and (π, k -1) |= B λ X a (φ 1 U a φ 2)). In other words, (π, k -1) |= B λ {φ 1 U a φ 2 } iff (π, k -1) |= B λ {φ 2 } or (π, k - 1) |= B λ {φ 1 , X a (φ 1 U a φ 2)}. Since φ 2 should eventually hold, φ 2 should hold at π(k -1) because next a k-1 = ⊥.
To ensure this, we require that φ a = ∅ at return statements in the transition rule (β 9.2.1). φ a = ∅ will ensure that the case (π, k -1)

|= B λ {φ 1 U a φ 2 } if (π, k -1) |= B λ {φ 2 } occurs instead of (π, k -1) |= B λ {φ 1 U a φ 2 } if (π, k -1) |= B λ {φ 1 , X a (φ 1 U a φ 2)}; which means that (π, k -1) |= B
λ φ 2 and φ 2 eventually holds.

• The liveness requirements of abstract-until formulas on finite abstract paths p z 0 , ω z 0 p z 1 , ω z 1 ... p zm , ω zm where p zm , ω zm is associated with a call t zm = call but this call never reaches its corresponding return-point are ensured by the condition φ a = ∅ in the transition rule (β 9.1). This requirement guarantees the liveness requirement φ 2 in φ 1 U a φ 2 eventually happens. Look at Figure 3.3 for an illustration. In this figure, for every 0 ≤ u ≤ i, the abstract path starting from p u , ω u is finite. Suppose that we want to determine whether (π, i)

|= B λ {φ 1 U a φ 2 }, then, we get that (π, i) φ 1 U a φ 2 iff (π, i) φ 2 or ((π, i) φ 1 and (π, i) X a (φ 1 U a φ 2)). In other words, (π, i) |= B λ {φ 1 U a φ 2 } iff (π, i) |= B λ {φ 2 } or (π, i) |= B λ {φ 1 , X a (φ 1 U a φ 2)}. Since φ 2 should eventually hold, φ 2 should hold at π(i) because next a i = ⊥.
To ensure this, we require that φ a = ∅ in the transition rule (β 9.1). φ a = ∅ will ensure that the case (π, i)

|= B λ {φ 1 U a φ 2 } if (π, i) |= B λ {φ 2 }occurs instead of (π, i) |= B λ {φ 1 U a φ 2 } if (π, i) |= B λ {φ 1 , X a (φ 1 U a φ 2)}; which means that (π, i) |= B λ φ 2 and φ 2 eventually holds.
Thus, we can show that: Theorem 9. Given a PDS P = (P, Γ, ∆), a labeling function λ : P → 2 AP D , and a PCARET \c formula ψ, we can construct a GSBPDS BP ψ = (P , Γ , ∆ , F) such that for every configuration p, ω ∈ P × Γ * and every B ∈ B, p, ω satisfies ψ under B iff (p, {ψ}, unexit , B), ω ∈ L(BP ψ).

Formal proof. To prove formally this result, we need the following definitions: Definition 12. Let π be a run of BP ψ . Let π (i) = p i , γ 0 γ 1 ...γ n where p i is of the form p i , Φ i , l i , γ i is of the form γ i or γ i , Φ i , l i , be a configuration of π . The projection of π (i) on P; pr(π (i)) := p i , γ 0 γ 1 ...γ n ; is obtained by removing the set of formulas Φ i and the labels l i from the control location and the stack symbols of π (i).

Let π = p 0 , Φ 0 , l 0 , ω 0 p 1 , Φ 1 , l 1 , ω 1 ... be a run of BP ψ . Let π = p 0 , ω 0 p 1 , ω 1 ... be the run obtained by projecting on P all the configurations of π , then, it is easy to see that for every i ≥ 0, either p i , ω i = ⇒ P p i+1 , ω i+1 (in case p i+1 , Φ i+1 , l i+1 , ω i+1 is obtained from p i , Φ i , l i , ω i using a transition corresponding to the rule (β 9.1), (β 9.2.1) and (β 9.3)), or p i , ω i = p i+1 , ω i+1 in the other cases. Then, to obtain from π a run of P, we need to get rid of these duplicated configurations. Let pr(π) be the run obtained after removing these duplicated configurations. Then, it is easy to see that: Lemma 5. Let π = p 0 , A 0 , l 0 , ω 0 p 1 , A 1 , l 1 , ω 1 ... be a run of BP ψ , let pr(π) = p z 0 , ω z 0 p z 1 , ω z 1 ... be the projection of π on P, then, pr(π) is a run in P.

Proof of Theorem 9. Now, we are ready to prove Theorem 9. We prove these 2 directions:

(⇐=) Assume that (p 0 , {ψ}, unexit , B 0), ω 0 ∈ L(BP ψ). In other words, there exists an accepting run

π = (p 0 , Φ 0 , l 0 , B 0), ω 0 (p 1 , Φ 1 , l 1 , B 1), ω 1 ...
of BP ψ where Φ 0 = {ψ}, l 0 = unexit. Let π = p z 0 , ω z 0 p z 1 , ω z 1 ... be the projection of π on P, then, π is a run of P (by Lemma 5). We need to prove that π |= B 0 λ ψ.

Proof. Assume that π(z i) corresponds to π (z i)...π (z i + k i) for every i ≥ 0. It is sufficient to prove that (π, z i) |= Bz i λ φ for every φ ∈ Φ z i .
The proof is by induction on the structure of φ.

• Base case:

-φ = b(α 1 , ..., α n) (b(α 1 , ..., α n) ∈ AP X), then, π (z i + 1) is de-
termined by the rule (β 1), we get that π φ = ¬b(α 1 , ..., α n) (b(α 1 , ..., α n) ∈ AP X), then, π (z i + 1) is determined by the rule (β 2), we get that π

(z i + 1) = (p z i , Φ z i \ {b(α 1 , ..., α n)}, l z i , B z i), ω z i . Also,
(z i + 1) = (p z i , Φ z i \ {¬b(α 1 , ..., α n)}, l z i , B z i), ω z i . Also, we have b(B(α 1), ..., B(α n)) / ∈ λ(p z i) (by the condition in the rule (β 2)). Thus we get (π, z i) |= Bz i λ ¬b(α 1 , ..., α n) (by the definition of SPCARET). In other words, (π, z i) |= Bz i λ φ.
The property holds for this case.

• Induction Step:

-φ = φ 1 ∧ φ 2 , then, π (z i + 1) is determined by the rule (β 3), we get π (z i + 1) = (p z i , Φ z i ∪ {φ 1 , φ 2 } \ {φ}, l z i , B z i), ω z i . Note that (π , z i + 1
) is also an accepting run of BP ψ , so, we obtain (π, z i) |=

Bz i λ φ 1 and (π, z i) |= Bz i λ
φ 2 (by the induction hypothesis). Thus, (π, z i) |= Bz i λ φ 1 ∧ φ 2 . The property holds.

PCARET \c Model-Checking for Pushdown Systems

65

φ = φ 1 ∨ φ 2 , then, π (z i + 1) is determined by the rule (β 4), there are two possibilities:

* If π (z i + 1) = (p z i , Φ z i ∪ {φ 1 } \ {φ}, l z i , B z i), ω z i . Since (π , z i + 1
) is also an accepting run of BP ψ , then, by applying the induction hypothesis, we get (π, z i) |=

Bz i λ φ 1 . * If π (z i + 1) = (p z i , Φ z i ∪ {φ 2 } \ {φ}, l z i , B z i), ω z i . Since (π , z i + 1
) is also an accepting run of BP ψ , then, by applying the induction hypothesis, we get (π, z i) |=

Bz i λ φ 2 .
Thus, we always have (π, z i) |=

Bz i λ φ 1 or (π, z i) |= Bz i λ φ 2 . In other words, (π, z i) |= Bz i λ φ 1 ∨ φ 2 .
The property holds for this case.

φ = ∀xφ , then, π (z i + 1) is determined by the rule (β 6), we get

π (z i + 1) = (p z i , Φ z i ∪ {φ c | c ∈ D} \ {∀xφ }, l z i , B z i)
, ω z i where φ c is φ where x is replaced by c. Since (π , z i +1) is also an accepting run of BP ψ , then, by applying the induction hypothesis, we get

(π, z i) |= Bz i λ φ c for every c ∈ D. This implies that (π, z i) |= Bz i λ
∀xφ . The property holds.

φ = ∃xφ , then, there are two possibilities: * π (z i + 1) is determined by the rule (β 5.1) if Φ z i contains no formulas ϕ where x is a free variable, we get that π

(z i + 1) = (p z i , Φ z i ∪ {φ } \ {∃xφ }, l z i , B z i [x ← c])
, ω z i for some c ∈ D. Since (π , z i + 1) is also an accepting run of BP ψ , then, by applying the induction hypothesis, we get (π, z i) |=

Bz i [x←c] λ φ for some c ∈ D. Since (B z i , B z i [x ← c]) ∈ θ x , we obtain that (π, z i) |= Bz i λ
∃xφ . The property holds. * π (z i + 1) is determined by the rule (β 5.2) if Φ z i contains some formulas ϕ where x is a free variable, we get that π

(z i + 1) = (p z i , Φ z i ∪{φ c | c ∈ D}\{∃xφ }, l z i , B z i), ω z i . Since (π , z i +1
) is also an accepting run of BP ψ , then, by applying the induction hypothesis, we get (π, z i) |=

Bz i λ φ c . Thus, (π, z i) |= Bz i λ
∃xφ . The property holds.

-For the case Φ = {X g φ 1 , ..., X g φ n , X a ϕ 1 , ..., X a ϕ m }. Note that this is always the case, since if Φ contains a formula that is not in the form X v φ , we will process that formula first. In this case, π (z i + 1) is determined by the nature of the statements: * If p z i , ω z i = ⇒ P p z i+1 , ω z i+1 corresponds to a call statement, then, π (z i + 1) is determined by the rule (β 9.1) which means that π (z i + 1) = (p z i+1 , {φ 1 , ..., φ n }, l z i+1 , B z i), ω z i . Since (π , z i + 1) is also an accepting run of BP ψ , then, by applying the induction hypothesis, we get that (π, z i+1) |= Bz i λ φ t for every 1 ≤ t ≤ n. Thus, (π, z i) |= Bz i λ X g φ t for every 1 ≤ t ≤ n. Let π(z u) be the abstract-successor of π(z i). Since π is an accepting run of BP ψ , we get that ϕ 1 , ..., ϕ m is validated at π(z u). In other words, (π,

z i) |= Bz i λ X a ϕ x for every 1 ≤ x ≤ m. Therefore, (π, z i) |= Bz i λ {X g φ 1 , ..., X g φ n , X a ϕ 1 , ..., X a ϕ m }. The property holds for this case. * If p z i , ω z i = ⇒ P p z i+1
, ω z i+1 corresponds to a return statement, then, π (z i + 1) is determined by the rule (β 9.2) which means that π (z i + 1) = (p z i+1 , {φ 1 , ..., φ n }, l z i+1 , B z i), ω z i . Since (π , z i + 1) is also an accepting run of BP ψ , then, by applying the induction hypothesis, we get that (π, z i+1) |=

Bz i λ φ t for every 1 ≤ t ≤ n. Thus, (π, z i) |= Bz i λ X g φ t for every 1 ≤ t ≤ n. The property holds. * If p z i , ω z i = ⇒ P p z i+1 , ω z i+1 corresponds to a simple statement, then, π (z i + 1) is determined by the rule (β 9.3) which means that π (z i +1) = (p z i+1 , {φ 1 , ..., φ n , ϕ 1 , ..., ϕ m }, l z i+1 , B z i), ω z i . Since (π , z i + 1
) is also an accepting run of BP ψ , then, by applying the induction hypothesis, we get that (π, z i+1) |= Bz i λ φ t for every 1 ≤ t ≤ n and (π, z i+1) |= Bz i λ ϕ x for every 1 ≤ x ≤ m. Thus, (π, z i) |= Bz i λ X g φ t for every 1 ≤ t ≤ n. Also, since π(z i+1) is the abstract-successor of π(z i) in this case, we get (π, z i) |= Bz i λ X a φ x for every 1 ≤ x ≤ m. Therefore, (π, z i) |= Bz i λ {X g φ 1 , ..., X g φ n , X a ϕ 1 , ..., X a ϕ m }. The property holds for this case.

φ = φ 1 U v φ 2 (v ∈ {g, a}), then, π (z i + 1) is determined by the rule (β 7), there are two possibilities:

* If π (z i + 1) = (p z i , Φ z i ∪ {φ 2 } \ {φ}, l z i , B z i), ω z i , then, since (π , z i + 1
) is also an accepting run of BP ψ , by applying the induction hypothesis, we get (π, z i) |=

Bz i λ φ 2 * If π (z i + 1) = (p z i , Φ z i ∪ {φ 1 , X v φ 1 U v φ 2 } \ {φ}, l z i , B z i), ω z i .
• Firstly, since (π , z i + 1) is also an accepting run of BP ψ , by applying the induction hypothesis, we get (π, z i) |=

Bz i λ φ 1 .
• Secondly, note that all the formulas φ ∈ Φ z i +1 which are not in the form X v φ will be processed until Φ z i +1 is in the form Φ = {X g φ 1 , ..., X g φ n , X a ϕ 1 , ..., X a ϕ m }. For this case, we already prove above that (π, z i) |=

Bz i λ X v φ for 3.3. PCARET \c Model-Checking for Pushdown Systems 67 every X v φ ∈ Φ z i +1 . Thus, we obtain (π, z i) |= Bz i λ X v φ for this case.
In conclusion, we always have (π, z i) |=

Bz i λ φ 2 or ((π, z i) |= Bz i λ φ 1 and (π, z i) |= Bz i λ X v φ 1 U v φ 2). In other words, (π, z i) |= Bz i λ φ 1 U v φ 2
(by the semantics of U v). The property holds.

-φ = φ 1 R v φ 2 (v ∈ {g, a}), then, π (z i + 1) is determined by the rule (β 8). Similar to the case φ = φ 1 U v φ 2 , we obtain that (π, z i) |= Bz i λ φ (=⇒)
Assume that there exists an execution π = p 0 , ω 0 p 1 , ω 1 ... of P such that π |= B λ ψ, we have to show that (p 0 , {ψ}, unexit , B), ω 0 ∈ L(BP ψ). In other words, we have to show an accepting run of BP ψ starting from (p 0 , {ψ}, unexit , B), ω 0 .

Proof. Let π (0) = (p 0 , {ψ}, unexit , B), ω 0 .

Let π (i) = (p j , Φ j , l j , B j), γ m γ m-1 ...γ 0 where γ t is of the form γ t or γ t , Φ t , l t for every 0 ≤ t ≤ m. Now we show that for every i ≥ 0, we can compute from π (i) its immediate successor π (i + 1) = (q, Φ , l , B), ω .

During this computation, we maintain the following property:

"(A) For every i + 1 ≥ 0, l is the label expressing whether the execution of the procedure P(pr(π (i + 1))) terminates or not from pr(π (i + 1)); and for every χ ∈ Φ , pr((π , i + 1)) |= B λ χ".

The computation is shown by induction on i + 1.

• Base case (i + 1 = 0). We prove that π (0) = (p 0 , {ψ}, unexit , B), ω 0 satisfies the property (A). In other words, we need to show that

(A) is satisfied with Φ = {ψ}, l = unexit, B = B.
-Since π is an infinite run and p 0 , ω 0 is the initial configuration of π, then, the execution of the procedure P(p 0 , ω 0) never terminates. =⇒ unexit is the label expressing whether the execution of the procedure P(p 0 , ω 0) terminates or not from p 0 , ω 0 =⇒ l = unexit is the label expressing whether the execution of the procedure P(pr(π (0))) terminates or not from pr(π (0)) (since pr(π (0)) = p 0 , ω 0). In other words, the property related to l in (A) is satisfied. =⇒ The property (A) holds for this case.

• Induction Step (i + 1 > 0). There are two cases:

γ m = γ m or γ m = γ m , Φ , l where γ m ∈ Γ, Φ ⊆ Cl(ψ), l ∈ Label. 1. γ m = γ m , then, π (i) = (p j , Φ j , l j , B j), γ m γ m-1 ...γ 0 .
Assume that the property (A) is satisfied at π (i). Now, we show how we can compute the immediate successor π (i+1) of π (i) which maintain (A). This depends on the nature of φ ∈ Φ j :

-Case φ = b(α 1 , ..., α n) ∈ Φ j , then, by applying the induction hypothesis, we obtain that for every χ ∈ Φ j , pr((π , i)) |=

B j λ χ (1) =⇒ for every χ ∈ Φ j , (π, j) |= B j λ χ (since pr((π , i)) = (π, j)) =⇒ (π, j) |= B j λ b(α 1 , ..., α n) (since b(α 1 , ..., α n) ∈ Φ j) =⇒ b(B(α 1), ..., B(α n)) ∈ λ(p j).
Thus, by applying the rules in (β 1), let Φ = Φ j \ {b(α 1 , ..., α n)}, l = l j , B = B j , we obtain that π (i + 1) = (p j , Φ j \ {b(α 1 , ..., α n)}, l j , B j), γ m γ m-1 ...γ 0 . Firstly, we show that the property related to Φ in (A) is satisfied. * According to the way we select π (i + 1), we get that pr((π , i+1)) = (π, j). Therefore, pr((π , i)) = pr((π , i+1)) (since pr((π , i)) = (π, j)) (2) * From (2) and (1), we get that for every χ ∈ Φ j , pr((π , i + 1))

|= B j λ χ. Thus, for every χ ∈ Φ j \ {b(α 1 , ..., α n)}, pr((π , i + 1)) |= B j λ χ. Therefore, for every χ ∈ Φ j \ {b(α 1 , ..., α n)}, pr((π , i + 1)) |= B λ χ (since B = B j).
In other words, for every χ ∈ Φ , pr((π , i + 1)) |= B λ χ. The property related to Φ in (A) is satisfied in this case (3) . Now, we show that the property related to l in (A) is satisfied. * According to the way we select π (i+1), we get that pr(π (i+ 1)) = π(j). Therefore, pr(π (i + 1)) = pr(π (i)) (since pr(π (i)) = π(j)) (4) * By applying the induction hypothesis, we obtain that l j is the label expressing whether the execution of the procedure P(pr(π (i))) terminates or not from pr(π (i)) (5) * From (4) and (5), we get that l j is the label expressing whether the execution of the procedure P(pr(π (i + 1))) terminates or not from pr(π (i + 1)). In addition, we get that l = l j (by the way we select l). Therefore, we obtain that l is the label expressing whether the execution of the procedure P(pr(π (i + 1))) terminates or not from pr(π (i + 1)). The property related to l in (A) is satisfied in this case (6) .

From (3) and (6), we get that the property (A) holds for this case.

-Case φ = ¬b(α 1 , ..., α n) ∈ Φ j , then, by applying the induction hypothesis, we obtain that for every χ ∈ Φ j , pr((π , i)) |=

B j λ χ (7) =⇒ for every χ ∈ Φ j , (π, j) |= B j λ χ (since pr((π , i)) = (π, j)) =⇒ (π, j) |= B j λ ¬b(α 1 , ..., α n) (since ¬b(α 1 , ..., α n) ∈ Φ j) =⇒ b(B(α 1), ..., B(α n)) /
∈ λ(p j). Thus, by applying the rules in

(β 2), let Φ = Φ j \ {¬b(α 1 , ..., α n)}, l = l j , B = B j , we obtain that π (i + 1) = (p j , Φ j \ {¬b(α 1 , ..., α n)}, l j , B j), γ m γ m-1 ...γ 0 .
Firstly, we show that the property related to Φ in (A) is satisfied. * According to the way we select π (i + 1), we get that pr((π , i+1)) = (π, j). Therefore, pr((π , i)) = pr((π , i+1)) (since pr((π , i)) = (π, j)) (8) * From (8) and (7), we get that for every χ ∈ Φ j , pr((π , i + 1)) |= B j λ χ. Thus, for every χ ∈ Φ j \ {¬b(α 1 , ..., α n)}, pr((π , i + 1)) |= B j λ χ. Therefore, for every χ ∈ Φ j \ {¬b(α 1 , ..., α n)}, pr((π , i + 1)) |= B λ χ (since B = B j). In other words, for every χ ∈ Φ , pr((π , i + 1)) |= B λ χ. The property related to Φ in (A) is satisfied in this case (9) .

Secondly, similar to the case φ = b(α 1 , ..., α n), it can be seen that the property related to l in (A) is satisfied (10) . From (9) and (10), we get that the property (A) holds for this case.

-Case φ = φ 1 ∧ φ 2 ∈ Φ j , then, by applying the rules in (β 3), let

Φ = Φ j ∪ {φ 1 , φ 2 } \ {φ 1 ∧ φ 2 }, l = l j , B = B j , we obtain that π (i + 1) = (p j , Φ j ∪ {φ 1 , φ 2 } \ {φ 1 ∧ φ 2 }, l j , B j), γ m γ m-1 ...γ 0 .
By applying the induction hypothesis, we obtain that for every χ ∈ Φ j , pr((π , i)) |=

B j λ χ (11) =⇒ for every χ ∈ Φ j , (π, j) |= B j λ χ (since pr((π , i)) = (π, j)) =⇒ (π, j) |= B j λ φ 1 ∧ φ 2 (since φ 1 ∧ φ 2 ∈ Φ j) =⇒ (π, j) |= B j λ φ 1 and (π, j) |= B j λ φ 2 =⇒ pr((π , i)) |= B j λ φ 1 and pr((π , i)) |= B j λ φ 2 (since pr((π , i)) = (π, j)) (12)
Firstly, we show that the property related to Φ in (A) is satisfied. * According to the way we select π (i + 1), we get that pr((π , i+1)) = (π, j). Therefore, pr((π , i)) = pr((π , i+1)) (since pr((π , i)) = (π, j)) (13) * From (13) and (11), we get that for every χ ∈ Φ j , pr((π , i + 1)) 13) and (12), we get that pr((π , i + 1)) |= B j λ φ 1 and pr((π , i + 1)) |= B j λ φ 2 . Thus, we obtain that pr((π , i + 1)) |= B λ φ 1 and pr((π , i + 1)) |= B λ φ 2 (since B = B j) (15) * From (14) and (15), we get that for every χ ∈ Φ j ∪{φ 1 , φ 2 }\ {φ 1 ∧ φ 2 }, pr((π , i + 1)) |= B λ χ. In other words, for every χ ∈ Φ , pr((π , i + 1)) |= B λ χ. The property related to Φ in (A) is satisfied in this case (16) .

|= B j λ χ. Thus, for every χ ∈ Φ j \ {φ 1 ∧ φ 2 }, pr((π , i + 1)) |= B j λ χ. Therefore, for every χ ∈ Φ j \{φ 1 ∧φ 2 }, pr((π , i+ 1)) |= B λ χ (since B = B j) (14) . * From (
Secondly, similar to the case φ = b(α 1 , ..., α n), it can be seen that the property related to l in (A) is satisfied (17) . From (16) and (17), we get that the property (A) holds for this case.

-Case φ = φ 1 ∨ φ 2 ∈ Φ j ,
By applying the induction hypothesis, we obtain that for every χ ∈ Φ j , pr((π , i)) |=

B j λ χ (18) =⇒ for every χ ∈ Φ j , (π, j) |= B j λ χ (since pr((π , i)) = (π, j)) =⇒ (π, j) |= B j λ φ 1 ∨ φ 2 (since φ 1 ∨ φ 2 ∈ Φ j) =⇒ (π, j) |= B j λ φ 1 or (π, j) |= B j λ φ 2 =⇒ pr((π , i)) |= B j λ φ 1 or pr((π , i)) |= B j λ φ 2 (since pr((π , i)) = (π, j)) (a) Case pr((π , i)) |= B j λ φ 1 (19) , then, by applying the rules in (β 4), let Φ = Φ j ∪ {φ 1 } \ {φ 1 ∨ φ 2 }, l = l j , B = B j , we obtain that π (i + 1) = (p j , Φ j ∪ {φ 1 } \ {φ 1 ∨ φ 2 }, l j , B j), γ m γ m-1 ...γ 0 .
Firstly, we show that the property related to Φ in (A) is satisfied. * According to the way we select π (i + 1), we get that pr((π , i + 1)) = (π, j). Therefore, pr((π , i)) = pr((π , i + 1)) (since pr((π , i)) = (π, j)) (20) * From (20) and (18), we get that for every χ ∈ Φ j , pr((π , i + 1)) 20) and (19), we get that pr((π , i + 1)) |= B j λ φ 1 . Thus, we obtain that pr((π , i + 1)) 21) and (22), we get that for every χ ∈

|= B j λ χ. Thus, for every χ ∈ Φ j \ {φ 1 ∨ φ 2 }, pr((π , i + 1)) |= B j λ χ. Therefore, for every χ ∈ Φ j \ {φ 1 ∨ φ 2 }, pr((π , i + 1)) |= B λ χ (since B = B j) (21) . * From (
|= B λ φ 1 (since B = B j) (22) * From (
Φ j ∪ {φ 1 } \ {φ 1 ∨ φ 2 }, pr((π , i + 1)) |= B λ χ.
In other words, for every χ ∈ Φ , pr((π , i + 1)) |= B λ χ. The property related to Φ in (A) is satisfied in this case (23) . Secondly, similar to the case φ = b(α 1 , ..., α n), it can be seen that the property related to l in (A) is satisfied (24) . From (23) and (24), we get that the property (A) holds for this case. (b) Case pr((π , i)) |= B j λ φ 2 , then, by applying the rules in (β 4), let Φ = Φ j ∪{φ 2 }\{φ 1 ∨φ 2 }, l = l j , B = B j , we obtain that -Case φ = ∃xφ ∈ Φ j . We consider two possibilities:

π (i + 1) = (p j , Φ j ∪ {φ 2 } \ {φ 1 ∨ φ 2 }, l j , B j), γ m γ m-1 ...
* If there exists a formula ϕ ∈ Φ j s.t. x is a free variable of ϕ, then, by applying the rules in (β 5.2), let π (i + 1) = (p j , Φ j ∪ {φ c } \ {∃xφ }, l j , B j), γ m γ m-1 ...γ 0 where φ c is φ where x is substitued by c and (π, j) |=

B j λ φ c . Since (π, j) |= B j
λ φ for every φ ∈ Φ j \ {∃xφ } (by the induction assumption), the property holds. * If there are no formula ϕ ∈ Φ j s.t. x is a free variable of ϕ, then, by applying the rules in (β 5.1), let π

(i + 1) = (p j , Φ j ∪ {φ } \ {∃xφ }, l j , B j [x ← c]), γ m γ m-1 ...γ 0 s.t. (π, j) |= B j [x←c] λ
φ for c ∈ D. Since x is not free variable of any formula in Φ j \{∃xφ }, we obtain that (π, j) |= B j [x←c] λ φ for every φ ∈ Φ j \ {∃xφ }. Therefore, the property holds.

-Case φ = φ 1 U v φ 2 ∈ Φ j (v ∈ {g, a}), then, by applying the rules in (β 7), we select π (i + 1) = (p j , Φ j ∪ {φ 2 } \ {φ 1 U v φ 2 }, l j , B j), γ m γ m-1 ...γ 0 if (π, j) |= B j λ φ 2 , otherwise π (i + 1) = (p j , Φ j ∪ {φ 1 , X v φ} \ {φ 1 U v φ 2 }, l j , B j), γ m γ m-1 ...γ 0 . Since (π, j) |= B j λ φ 1 U v φ 2 , we get that (π, j) |= B j λ φ 2 or ((π, j) |= B j λ φ 1 and (π, j) |= B j λ X v φ 1 U v φ 2)
. Therefore, the property holds.

-Case φ = φ 1 R v φ 2 ∈ Φ j (v ∈ {g, a}), then, similar to the case φ = φ 1 U v φ 2 ∈ Φ j
, we obtain that the property holds for this case.

-

Case Φ = {X g φ 1 , ..., X g φ n , X a ϕ 1 , ..., X a ϕ m } Let Φ g = {X g φ 1 , ..., X g φ n }, Φ a = {X a ϕ 1 , ..., X a ϕ m }.
Let l = exit if the execution of the procedure P(p j+1 , ω j+1) from p j+1 , ω j+1 terminates; otherwise l = unexit. There are different cases depending on the nature of the transition p j , ω j = ⇒ P p j+1 , ω j+1 * If p j , ω j = ⇒ P p j+1 , ω j+1 corresponds to a call statement. Let p j , γ m call --→ p j+1 , γ γ be the rule associated with the transition p j , ω j = ⇒ P p j+1 , ω j+1 . Firstly, we show that the conditions in the transition rule (β 9.1) are satisfied. In other words, we need to show that if l = unexit then (l j = unexit and Φ a = ∅).

• l = unexit implies that the execution of the procedure P(p j+1 , ω j+1) from p j+1 , ω j+1 never terminates. In addition, we get p j , ω j ⇒ P p j+1 , ω j+1 . Thus, the execution of the procedure P(p j , ω j) from p j , ω j never terminates. As a result, l j = unexit.

• l = unexit implies that the execution of the procedure P(p j+1 , ω j+1) from p j+1 , ω j+1 never terminates =⇒ p j , ω j can never reach its corresponding return-point =⇒ the abstract successor of p j , ω j is ⊥ (by the definition of abstract successor) =⇒ p j , ω j X a φ (by the semantics of SPCARET) =⇒ Φ a = ∅.

=⇒

the conditions in the transition rule (β 9.1) holds. Then, we apply the rules in (β 9.1) and we select π (i + 1) = (p j+1 , {φ 1 ...φ n }, l , B j), γ γ , {ϕ 1 , ..., ϕ m }, l j γ m-1 ...γ 0 . Since (π, j) |= B j λ X g φ t for every 1 ≤ t ≤ n, then, (π, j + 1) |= B j λ φ t for every 1 ≤ t ≤ n. Therefore, the property holds for this case. * If p j , ω j = ⇒ P p j+1 , ω j+1 corresponds to a return state-ment. Let p j , γ m ret -→ p j+1 , ε be the rule associated with the transition p j , ω j = ⇒ P p j+1 , ω j+1 . Firstly, we need to show that the conditions in (β 9.2) are satisfied.

• p j , ω j ⇒ P p j+1 , ω j+1 corresponds to a return statement =⇒ t j = ret (by the way we associate a tag to a configuration) =⇒ the abstract successor of p j , ω j is ⊥ (by the definition of abstract successor) =⇒ p j , ω j X a φ (by the semantics of SPCARET) =⇒ Φ a = ∅. Then, the condition related to the set of formulas in (β 9.2) is satisfied.

• Also, we need to show that the condition related to labels in the transition rule (β 9.2) is satisfied. In other words, we need to prove that l j = exit, this is ensured because p j , ω j ⇒ P p j+1 , ω j+1 corresponds to a return statement, then, at this point, we know that the execution of the procedure P(p j , ω j) can terminate. Therefore l j = exit.

Therefore, we can apply the transition rule in (β 9.2) and we select π

(i + 1) = (p j+1 , {φ 1 ...φ n }, l , B j), γ m-1 ...γ 0 . Since (π, j) |= B j
λ X g φ t for every 1 ≤ t ≤ n, then, (π, j + 1) |= B j λ φ t for every 1 ≤ t ≤ n. Therefore, the property holds for this case. * If p j , ω j = ⇒ P p j+1 , ω j+1 corresponds to a simple statement. Let p j , γ int -→ p j+1 , ω be the rule associated with the transition p j , ω j = ⇒ P p j+1 , ω j+1 . Then, we apply the rules in (β 9.3) and we select π (i + 1) = (p j+1 , {φ 1 ...φ n , ϕ 1 ...ϕ m }, l , B j), ωγ m-1 ...γ 0 . For this case, the rule corresponds to a simple statement, then (π, j) |=

B j λ X g φ t for every 1 ≤ t ≤ n and (π, j) |= B j λ X a ϕ x for every 1 ≤ x ≤ m.
Thus, (π, j + 1) |= B j λ φ t for every 1 ≤ t ≤ n. Also, since (π, j + 1) is the abstract-successor of (π, j) in this case, we have (π, j + 1) |= B j λ ϕ x for every 1 ≤ x ≤ m. Thus, we obtain (π, j + 1) |= B j λ φ t for every 1 ≤ t ≤ n and (π, j + 1) |= B j λ ϕ x for every 1 ≤ x ≤ m. Therefore, the property holds for this case.

γ m =

γ m , Φ , l , then, π (i) = (p j , Φ j , l j , B j), γ m , Φ , l γ m-1 ...γ 0 Note that this case only occurs at return-points. Let π(u) be the corresponding call of this return. From the transition rules of call statements in (β 9.1), we get that l is the label expressing whether the execution of the procedure P(π(u)) can be terminated or not; and for every φ ∈ Φ , pr((π , i + 1)) satisfies φ.

Let l = l j . In this case, we will use the transition rules in (β 9.2.2) to compute π (k + 1). Firstly, we show that the required conditions in (β 9.2.2) are satisfied. In other words, we need to prove that l j = l where l is the label of the caller of P(p j , γ m γ m-1 ...γ 0). This is always satisfied because a call and its corresponding return point always belong to a same procedure. Therefore, we always obtain that l j = l . Therefore, if π (i) is of the form (p j , Φ j , l j , B j), γ m , Φ , l γ m-1 ...γ 0 , we apply the transition rules in (β 9.2.2) and select π (i + 1) = (p j , Φ j ∪ Φ , l j , B j), γ m γ m-1 ...γ 0 . From the way we select π (i + 1), it is obvious to see that pr((π , i)) = pr((π , i + 1)). Also, by applying the induction hypothesis, we obtain that for every φ ∈ Φ j , pr((π , i)) satisfies φ =⇒ for every φ ∈ Φ j , pr((π , i+1)) satisfies φ (since pr((π , i)) = pr((π , i+1))) =⇒ for every φ ∈ Φ j ∪Φ pr((π , i + 1)) satisfies φ =⇒ the property related to the set of formulas Φ j ∪ Φ is satisfied. In addition, since l = l j , we get that l is the label expressing whether the execution of the procedure P(p j , γ m γ m-1 ...γ 0) from p j , γ m γ m-1 ...γ 0 terminates or not. Therefore, the property holds for this case.

By this computation, we obtain an infinite run π of BP ψ corresponding to a run of P. Now, we prove that the computed run π is an accepting run of BP ψ . To do that, we prove that each set of the Büchi accepting condition of BP ψ is visited infinitely often by π . Suppose that this is not the case, then there exists a set F φ 1 U v φ 2 where v ∈ {g, a} such that π does not visit infinitely often any control location in P × F φ 1 U v φ 2 . This means that there exists k where pr((π , i + 1)) the suffix of π starting from π (k) (denoted (π , k)) does not visit any control location in P × F φ 1 U v φ 2 . It implies that for every t ≥ k, where

π (t) = (p u , Φ u , ω u), we must have φ 2 / ∈ Φ u and φ 1 U v φ 2 ∈ Φ u (otherwise, p u , Φ u belongs to P × F φ 1 U v φ 2). • φ 1 U v φ 2 ∈ Φ u =⇒ pr((π, u)) |= B λ φ 1 U v φ 2 . pr((π, u)) |= B λ φ 1 U v φ 2 implies that φ 2 eventually holds. • φ 2 / ∈ Φ u =⇒ pr((π, u)) B λ φ 2 .
Note that the second fact that φ 2 never happens contradicts with the first fact that φ 2 eventually holds. Thus, this cannot be the case. Consequently, the run π visits infinitely often some control locations in P × F φ 1 U v φ 2 . π visits infinitely often each set of the Büchi accepting condition of BP ψ implies that π is an accepting run of BP ψ .

In conclusion, from a run π = p 0 , ω 0 p 1 ω 1 ... of P such that π |= B λ ψ, we can always obtain an accepting run π of BP ψ starting from (p 0 , {ψ}, unexit , B), ω 0 .

Remark 3. Note that the above procedure could not be applied if we consider the operators X c , U c and R c . Indeed, the key point of our construction is that we use the symbolic transitions of SBPDS to express different possible values of variables which allow us to obtain a better complexity. To do that, our construction is based on the fact that the satisfiability of a given formula at a certain state is ensured by the satisfiability of several formulas at the successor state. However, if we allow X c , this does not hold anymore. Let us consider Figure 3.2 to illustrate this. For instance, we want to determine whether

p 0 , ω 0 |= B λ X g X g X g X g X c φ. This holds iff p 1 , ω 1 |= B λ X g X g X g X c φ (this is expressed by rules (β 9.3)), iff p 2 , ω 2 |= B λ X g X g X c φ, iff p 3 , ω 3 |= B λ X g X c φ, iff p 4 , ω 4 |= B λ X c φ, iff p 2 , ω 2 |= B λ φ .
The four first requirements are ensured by rules (β 9.3)), since they consider the immediate successor state. However, the last requirement cannot be ensured by a rule like the (β) rules above since the caller successor of a state is a predecessor of that state.

Remark 4. One can wonder why we do not apply the approach proposed in Chapter 2 which uses atoms (maximally consistent subsets of Cl(ψ)) to deal with all CARET operators (including X c , U c and R c). The reason is that SPCARET contains variables and quantifiers over variables, which makes it impossible to compute atoms without enumerating all possible values of variables. We could do this, but this has exactly the same complexity as translating the SPCARET formula into CARET and then model checking the CARET formula, since it is based on enumerating all possible values. Thus, we cannot benefit from the symbolic representation of variables using this approach.

Remark 5. Note that the transition rules in (β 5.2) are never applied if there are no free variables in the formula ψ. The key point of our construction lies in the case ∃xφ ∈ Φ. Indeed, for this case, our construction have moved the complexity from the formula to the transitions of the symbolic Büchi pushdown system, where all possible values of the variable x are symbolically encoded within the symbolic relation θ x . Let us take a simple example to illustrate this case. Consider this simple PCARET \c formula ψ = ∃x∃y mov(x, y). To model check this formula against Pushdown Systems, we have two approaches:

• Translate ψ to an equivalent CARET formula and apply the algorithm presented in Chapter 2. We obtain the equivalent CARET formula ψ = x∈D y∈D mov(x, y). Note that |ψ | = |ψ| × O(|D| |X|). Roughly speaking, we will consider all possible combinations of values of the tuple of variables (x, y) which is very large.

• Apply our above algorithm. For the case ψ = ∃x∃y mov(x, y), by applying the transition rules in (β 5.1), the different values of x are represented by one symbolic relation θ x , and the different values of y are represented by one symbolic relation θ y . These relations can be efficiently represented using BDDs as explained in [START_REF] Esparza | A bdd-based model checker for recursive programs[END_REF]. Thus, our algorithms works very well for this case.

The complexity of the above algorithm depends on whether the formula contains universal quantifiers or not: Remark 6. Formulas that describe malicious behaviors do not involve free variables and contain only existential quantifiers since the malware detection problem consists in determining whether there exists a path or a value of a variable for which the malicious behaviour occurs. Thus, for malware detection, our algorithm has a better complexity than translating the PCARET formula into a CARET formula, and then applying the CARET model checking algorithm.

• If ψ contains

SPCARET \c

Model-Checking For PDS 77

SPCARET \c Model-Checking For PDS

In this section, we discuss how to do SPCARET \c model-checking for PDSs. Let then P be a PDS, ψ be a SPCARET \c formula, and V be the set of RVEs occuring in ψ. We follow the idea of [START_REF] Song | LTL model-checking for malware detection[END_REF] and use Extended Finite Automata to represent RVEs.

Definition 13. Let P = (P, Γ, ∆) be a PDS, let

= {α, ¬α | α ∈ Γ ∪ X }, an Extended Finite Automaton (EFA) K is a tuple (Q, Λ, Γ, q 0 , Q f) s.t Q is a finite set of states, q 0 is the initial state, Q f ⊆ Q is a finite set of final states,
Γ is a finite set of letters, Λ is a finite set of transition rules in the form q 1 l -→ q 2 where q 1 , q 2 ∈ Q, l ⊆ .

Let B ∈ B be an environment, γ ∈ Γ be the input letter, t = q 1 l -→ q 2 be a transition rule in Λ, assume that K is at state q 1 , then, K can move to the state q 2 under B (denoted q 1 γ -→ B q 2) iff for every α ∈ l, B(α) = γ and for every ¬α ∈ l, B(α) = γ. K accepts a word γ 0 ...γ n under B iff K has a run q 0 γ 0 -→ B q 1 ...q n γn -→ B q n+1 where q n+1 ∈ Q f . Let L(K) be the set of all configurations (p, ω , B) ∈ P × Γ * × B s.t K accepts ω under B. Proposition 5. [START_REF] Song | LTL model-checking for malware detection[END_REF] For every RVE e ∈ V, we can compute in polynomial time an EFA K e s.t L(e) = L(K e).

To do SPCARET \c model-checking for PDSs, we first need to represent each RVE e ∈ V by an EFA K s.t K recognizes all the configurations (p, ω , B) ∈ P × Γ * × B in L(e). Let K 1 , ..., K n be the set of automata corresponding to all the RVEs of V. Then, we compute a Symbolic Pushdown System (SPDS) P 0 which is a kind of product between P and K 1 , ..., K n which allows us to determine whether the stack predicates hold or not only by looking at the top of the stack of P 0 . Computing the SPDS can be done by adapting the construction of [START_REF] Song | LTL model-checking for malware detection[END_REF]. Then, SPCARET model checking for P is reduced to PCARET model-checking for P 0 . We adapt then the algorithms in Section 3.3.2 to deal with Symbolic PDSs. Thus, we get that:

Theorem 11. Given a PDS P = (P, Γ, ∆), a labeling function λ : P → 2 AP D , and a SPCARET \c formula ψ, we can construct a GSBPDS BP ψ = (P , Γ , ∆ , F) such that for every configuration p, ω ∈ P × Γ * and every B ∈ B, p, ω satisfies ψ under B iff (p, {ψ} , B), ω ∈ L(BP ψ) where ω is obtained by performing the product between ω and the EFAs K 1 , ..., K n .

Experiments

We implemented our algorithms in a tool for malware detection. We use IDA Pro [IDA], Jakstab [START_REF] Kinder | Jakstab: A static analysis platform for binaries[END_REF] and the translation of [START_REF] Song | Efficient malware detection using model-checking[END_REF] to obtain PDSs from binary code or assembly programs. We use Moped [START_REF] Esparza | A bdd-based model checker for recursive programs[END_REF] to check the emptiness of SBPDSs. A program is considered to be a malware if it satisfies one of the SPCARET formulas presented previously, otherwise, it is a benign program. Our tool was able to detect several malwares and to determine that benign programs are benign as reported in Table 3.1. The #LOC column shows the number of instructions of the assembly program. The result Y es expresses that the binary program is detected as a malware, N o means the program is found as benign.

Moreover, we compared the performance of our algorithms against the approach that consists in translating SPCARET into CARET with regular valuations, and applying the model checking algorithm for CARET. We set the time limit to 20 minutes. You can see in Table 3.1 that we perform much better in all cases, and that in most cases, the approach that consists in translating SPCARET to CARET timeout.

Conclusion

In this chapter, we introduce the logics PCARET and SPCARET and show how they can precisely and succinctly describe several malicious behaviors that cannot be expressed by other existing specification formalisms. We define the sublogics PCARET \c and SPCARET \c , which are subclasses of PCARET and SPCARET respectively where the time operators on caller paths are removed. We then propose an efficient algorithm for PCARET \c model-checking for PDSs and we show that SPCARET \c model-checking for PDSs can be reduced to PCARET \c model-checking for PDSs. Our algorithms are based on reducing the model checking problem to the emptiness problem of Symbolic Büchi Pushdown Systems. The techniques are implemented in a tool for malware detection. We compared the performance of our new SPCARET tool against our CARET model checking tool. Our new tool behaves much better.

ϕ := true | f alse | e | ¬e | ϕ ∨ ϕ | ϕ ∧ ϕ | EX b ϕ | AX b ϕ | E[ϕU b ϕ] | A[ϕU b ϕ] | E[ϕR b ϕ] | A[ϕR b ϕ]
Let P = (P, Γ, ∆) be a PDS, λ : AP → 2 P ×Γ * be a labelling function that assigns to each atomic proposition e ∈ AP a set of configurations of P. The satisfiability relation of a BCARET formula ϕ at a configuration p 0 , ω 0 w.r.t. the labelling function λ, denoted by p 0 , ω 0 λ ϕ, is defined inductively as follows:

• p 0 , ω 0 λ true for every p 0 , ω 0 • p 0 , ω 0 λ f alse for every p 0 , ω 0 • p 0 , ω 0 λ e (e ∈ AP) iff p 0 , ω 0 ∈ λ(e)

• p 0 , ω 0 λ ¬e (e ∈ AP) iff p 0 , ω 0 / ∈ λ(e)

• p 0 , ω 0 λ ϕ 1 ∨ ϕ 2 iff (p 0 , ω 0 λ ϕ 1 or p 0 , ω 0 λ ϕ 2) • p 0 , ω 0 λ ϕ 1 ∧ ϕ 2 iff (p 0 , ω 0 λ ϕ 1 and p 0 , ω 0 λ ϕ 2)
• p 0 , ω 0 λ EX g ϕ iff there exists a global-successor p , ω of p 0 , ω 0 such that p , ω λ ϕ

• p 0 , ω 0 λ AX g ϕ iff p , ω λ ϕ for every global-successor p , ω of p 0 , ω 0

• p 0 , ω 0 λ E[ϕ 1 U g ϕ 2]
iff there exists a global-path π = p 0 , ω 0 p 1 , ω 1 p 2 , ω 2 ... of P starting from p 0 , ω 0 s.t. ∃i ≥ 0, p i , ω i λ ϕ 2 and for every 0 ≤ j < i, p j , ω j λ ϕ 1

• p 0 , ω 0 λ A[ϕ 1 U g ϕ 2]
iff for every global-path π = p 0 , ω 0 p 1 , ω 1 p 2 , ω 2 ...of P starting from p 0 , ω 0 , ∃i ≥ 0, p i , ω i λ ϕ 2 and for every 0 ≤ j < i, p j , ω j λ ϕ 1

• p 0 , ω 0 λ E[ϕ 1 R g ϕ 2]
iff there exists a global-path π = p 0 , ω 0 p 1 , ω 1 p 2 , ω 2 ... of P starting from p 0 , ω 0 s.t. for every i ≥ 0, if p i , ω i λ ϕ 2 then there exists 0 ≤ j < i s.t. p j , ω j λ ϕ 1

• p 0 , ω 0 λ A[ϕ 1 R g ϕ 2]
iff for every global-path π = p 0 , ω 0 p 1 , ω 1 p 2 , ω 2 ... of P starting from p 0 , ω 0 , for every i ≥ 0, if p i , ω i λ ϕ 2 then there exists 0 ≤ j < i s.t. p j , ω j λ ϕ 1

• p 0 , ω 0 λ EX a ϕ iff there exists an abstract-successor p , ω of p 0 , ω 0 such that p , ω λ ϕ

Application

• p 0 , ω 0 λ AX a ϕ iff p , ω λ ϕ for every abstract-successor p , ω of p 0 , ω 0

• p 0 , ω 0 λ E[ϕ 1 U a ϕ 2]
iff there exists an abstract-path π = p 0 , ω 0 p 1 , ω 1 p 2 , ω 2 ... of P starting from p 0 , ω 0 s.t. ∃i ≥ 0, p i , ω i λ ϕ 2 and for every 0 ≤ j < i, p j , ω j λ ϕ 1

• p 0 , ω 0 λ A[ϕ 1 U a ϕ 2]
iff for every abstract-path π = p 0 , ω 0 p 1 , ω 1 p 2 , ω 2 ... of P, ∃i ≥ 0, p i , ω i λ ϕ 2 and for every 0 ≤ j < i, p j , ω j λ ϕ 1

• p 0 , ω 0 λ E[ϕ 1 R a ϕ 2]
iff there exists an abstract-path π = p 0 , ω 0 p 1 , ω 1 p 2 , ω 2 ... of P starting from p 0 , ω 0 s.t. for every i ≥ 0, if p i , ω i λ ϕ 2 then there exists 0 ≤ j < i s.t. p j , ω j λ ϕ 1

• p 0 , ω 0 λ A[ϕ 1 R a ϕ 2]
iff for every abstract-path π = p 0 , ω 0 p 1 , ω 1 p 2 , ω 2 ... of P starting from p 0 , ω 0 , for every i ≥ 0, if p i , ω i λ ϕ 2 then there exists 0 ≤ j < i s.t. p j , ω j λ ϕ 1

Other BCARET operators can be expressed by the above operators:

EF g ϕ = E[true U g ϕ], EF a ϕ = E[true U a ϕ], AF g ϕ = A[true U g ϕ], AF a ϕ = A[trueU a ϕ],...
Closure. Given a BCARET formula ϕ, the closure Cl(ϕ) is the set of all subformulae of ϕ, including ϕ.

Regular Valuations.

As previously, we talk about regular valuations when for every e ∈ AP , λ(e) is a regular language.

Remark 7. CTL can be seen as the subclass of BCARET where the operators EX a ϕ, AX a ϕ, E[ϕU a ϕ], A[ϕU a ϕ], E[ϕR a ϕ], A[ϕR a ϕ] are not considered.

Application

In this section, we show how BCARET can be used to describe branching-time malicious behaviors.

Spyware Behavior. The typical behaviour of a spyware is hunting for personal information (emails, bank account information,...) on local drives by searching files matching certain conditions. To do that, it has to search directories of the host to look for interesting files whose names match a specific condition. When a file is found, the spyware will invoke a payload to steal the information, then continue looking for the remaining matching files. When a folder is found, it will enter the folder path and continue scanning Chapter 4. Branching Temporal Logic of Calls and Returns for Pushdown Systems that folder recursively. To achieve this behavior, the spyware first calls the API function F indF irstF ileA to search for the first matching file in a given folder path. After that, it has to check whether the call to the API function F indF irstF ileA succeeds or not. If the function call fails, the spyware will call the function GetLastError. Otherwise, if the function call is successful, F indF irstF ileA will return a search handle h. There are two possibilities in this case. If the returned result is a folder, it will call the API function F indF irstF ileA again to search for matching results in the found folder. If the returned result is a file, it will call the API function F indN extF ileA using h as first parameter to look for the remaining matching files. This behavior cannot be expressed by LTL or CTL because it requires to express that the return value of the function F indF irstF ileA should be used as input to the API function F indN extF ileA. It cannot be described by CARET neither (because this is a branching-time property). Using BCARET, the above behavior can be expressed by the following formula:

ϕ sb = d∈D EF g call(F indF irstF ileA) ∧ EX a (eax = d) ∧ AF a call(GetLastError) ∨ call(F indF irstF ileA) ∨ call(F indN extF ileA) ∧ dΓ *
where the is taken over all possible memory addresses d which contain the values of search handles h in the program, EX a is a BCARET operator that means "next in some run, in the same procedural context"; EF g is the standard CTL EF operator (eventually in some run), while AF a is a BCARET operator that means "eventually in all runs, in the same procedural context".

As mentioned previously, in binary codes and assembly programs, the return value of an API function is put in the register eax. Thus, the return value of F indF irstF ileA is the value of eax at its corresponding return-point. Then, the subformula (call(FindFirstFileA) ∧ EX a (eax = d)) states that there is a call to the API F indF irstF ileA and the return value of this function is d (the abstract successor of a call is its corresponding return-point). When FindNextFileA is invoked, it requires a search handle as parameter and this search handle must be put on top of the program stack (since parameters are passed through the stack in assembly). The requirement that d is on top of the program stack is expressed by the regular expression dΓ * . Thus, the subformula [call(FindNextFileA) ∧ dΓ *] expresses that FindNextFileA is called with d as parameter (d stores the information of the search handle). Therefore, ϕ sb expresses then that there is a call to the API F indF irstF ileA with the return value d (the search handle), then, in all runs starting from that call, there will be either a call to the API function GetLastError or a call to the function F indF irstF ileA or a call to the function F indN extF ileA in which d is used as a parameter. Note that this specification of spyware is more precise than the one described in the introduction since the description in the introduction does not deal with the case when the returned result of F indF irstF ileA is a folder or an error. BCARET can deal with it because BCARET is a branching-time temporal logic. For example, AF a allows us to take into account all possible abstract-paths from a certain state in the computation tree. By using AF a , ϕ sb can deal with different returned values of F indF irstF ileA as presented above.

BCARET Model-Checking for Pushdown Systems

In this section, we consider "standard" BCARET model-checking for pushdown systems where an atomic proposition holds at a configuration c or not depends only on the control state of c, not on its stack.

Alternating Büchi Pushdown Systems (ABPDSs).

Definition 15. An Alternating Büchi Pushdown System (ABPDS) is a tuple BP = (P, Γ, ∆, F), where P is a set of control locations, Γ is the stack alphabet, F ⊆ P is a set of accepting control locations and ∆ is a transition function that maps each element of P × Γ with a positive boolean formula over P × Γ * .

A configuration of BP is a pair p, ω , where p ∈ P is the current control location and ω ∈ Γ * is the current stack content. Without loss of generality, we suppose that the boolean formulas of ABPDSs are in disjunctive normal form n j=1 m j i=1 p j i , ω j i . Then, we can see ∆ as a subset of (P × Γ) × 2 P ×Γ * by rewriting the rules of ∆ in the form p, γ → n j=1 m j i=1 p j i , ω j i as n rules of the form p, γ → { p j 1 , ω j 1 , ..., p j m j , ω j m j }, where 1 ≤ j ≤ n. Let p, γ → { p 1 , ω 1 , ..., p n , ω n } be a rule of ∆, then, for every ω ∈ Γ * , the configuration p, γω (resp. { p 1 , ω 1 ω , ..., p n , ω n ω }) is an immediate predecessor (resp. successor) of { p 1 , ω 1 ω , ..., p n , ω n ω } (resp. p, γω). A run ρ of BP starting form an initial configuration p 0 , ω 0 is a tree whose root is labelled by p 0 , ω 0 , and whose other nodes are labelled by elements in P × Γ * . If a node of ρ is labelled by a configuration p, ω and has n children labelled by p 1 , ω 1 , ..., p n , ω n respectively, then, p, ω must be a predecessor Pushdown Systems of { p 1 , ω 1 , ..., p n , ω n } in BP. A path of a run ρ is an infinite sequence of configurations c 0 c 1 c 2 ... s.t. c 0 is the root of ρ and c i+1 is one of the children of c i for every i ≥ 0. A path is accepting iff it visits infinitely often configurations with control locations in F . A run ρ is accepting iff every path of ρ is accepting. The language of BP, L(BP), is the set of configurations c s.t. BP has an accepting run starting from c.

BP defines the reachability relation = ⇒ BP as follows:

(1) c = ⇒ BP {c} for every c ∈ P × Γ * , (2) c = ⇒ BP C if C is an immediate successor of c; (3) if c = ⇒ BP {c 1 , c 2 , ..., c n } and c i = ⇒ BP C i for every 1 ≤ i ≤ n, then c = ⇒ BP n i=1 C i . Given c 0 = ⇒ BP C ,

From BCARET model checking of PDSs to the membership problem in ABPDSs

Let P = (P, Γ, ∆) be a pushdown system with an initial configuration c 0 . Given a set of atomic propositions AP , let ϕ be a BCARET formula. Let f : AP → 2 P be a function that associates each atomic proposition with a set of control states, and λ f : AP → 2 P ×Γ * be a labelling function s.t.

for every e ∈ AP , λ f (e) = { p, ω | p ∈ f (e), ω ∈ Γ * }. In this section, we propose an algorithm to check whether c 0 λ f ϕ. Intuitively, we construct an Alternating Büchi Pushdown System BP ϕ which recognizes a configuration c iff c λ f ϕ. Then to check whether c 0 λ f ϕ, we will check if c 0 ∈ L(BP ϕ).

The membership problem of an ABPDS can be solved effectively by Theorem 12.

Let BP ϕ = (P , Γ , ∆ , F) be the ABPDS defined as follows:

• P = P ∪ (P × Cl(ϕ)) ∪ {p ⊥ } • Γ = Γ ∪ (Γ × Cl(ϕ)) ∪ {γ ⊥ } • F = F 1 ∪ F 2 ∪ F 3 where -F 1 = { p, e | e ∈ Cl(ϕ), e ∈ AP and p ∈ f (e)} -F 2 = { p, ¬e | ¬e ∈ Cl(ϕ), e ∈ AP and p / ∈ f (e)} -F 3 = {P × Cl R (ϕ)} where Cl R (ϕ) is the set of formulas of Cl(ϕ) in the form E[ϕ 1 R b ϕ 2] or A[ϕ 1 R b ϕ 2] (b ∈ {g, a})
The transition relation ∆ is the smallest set of transition rules defined as follows: ∆ ⊆ ∆ and for every p ∈ P , φ ∈ Cl(ϕ), γ ∈ Γ, b ∈ {g, a} and t ∈ {call, ret, int}:

(α3) If φ = φ 1 ∧ φ 2 , then, p, φ , γ → p, φ 1 , γ ∧ p, φ 2 , γ ∈ ∆ (α4) If φ = φ 1 ∨ φ 2 , then, p, φ , γ → p, φ 1 , γ ∨ p, φ 2 , γ ∈ ∆ (α5) If φ = EX g φ 1 , then p, φ , γ → p,γ t - → q,ω ∈∆ q, φ 1 , ω ∈ ∆ where t ∈ {call, int, ret} (α6) If φ = AX g φ 1 , then, p, φ , γ → p,γ t - → q,ω ∈∆ q, φ 1 , ω ∈ ∆ (α7) If φ = EX a φ 1 , then, p, φ , γ → h 1 ∨ h 2 ∨ h 3 ∈ ∆ , where • h 1 = p,γ call --→ q,γ 1 γ 2 ∈∆ q, γ 1 γ 2 , φ 1 • h 2 = p,γ int -→ q,ω ∈∆ q, φ 1 , ω • h 3 = p,γ ret -→ q,ε ∈∆ p ⊥ , γ ⊥ (α8) If φ = AX a φ 1 , then, p, φ , γ → h 1 ∧ h 2 ∧ h 3 ∈ ∆ , where • h 1 = p,γ call --→ q,γ 1 γ 2 ∈∆ q, γ 1 γ 2 , φ 1 • h 2 = p,γ int -→ q,ω ∈∆ q, φ 1 , ω • h 3 = p,γ ret -→ q,ε ∈∆ p ⊥ , γ ⊥ (α9) If φ = E[φ 1 U g φ 2], then, p, φ , γ → p, φ 2 , γ ∨ p,γ t - → q,ω ∈∆ (p, φ 1 , γ ∧ q, φ , ω) ∈ ∆ (α10) If φ = E[φ 1 U a φ 2], then, p, φ , γ → p, φ 2 , γ ∨ h 1 ∨ h 2 ∨ h 3 ∈ ∆ , where • h 1 = p,γ call --→ q,γ 1 γ 2 ∈∆ p, φ 1 , γ ∧ q, γ 1 γ 2 , φ • h 2 = p,γ int -→ q,ω ∈∆ p, φ 1 , γ ∧ q, φ , ω • h 3 = p,γ ret -→ q,ε ∈∆ p ⊥ , γ ⊥ Pushdown Systems (α11) If φ = A[φ 1 U g φ 2], then, p, φ , γ → p, φ 2 , γ ∨ p,γ t - → q,ω ∈∆ (p, φ 1 , γ ∧ q, φ , ω) ∈ ∆ (α12) If φ = A[φ 1 U a φ 2], then, p, φ , γ → p, φ 2 , γ ∨ (h 1 ∧ h 2 ∧ h 3) ∈ ∆
, where

• h 1 = p,γ call --→ q,γ 1 γ 2 ∈∆ p, φ 1 , γ ∧ q, γ 1 γ 2 , φ • h 2 = p,γ int -→ q,ω ∈∆ p, φ 1 , γ ∧ q, φ , ω • h 3 = p,γ ret -→ q,ε ∈∆ p ⊥ , γ ⊥ (α13) If φ = E[φ 1 R g φ 2]
, then, we add to ∆ the rule:

p, φ , γ → (p, φ 2 , γ ∧ p, φ 1 , γ) ∨ (p,γ t - → q,ω ∈∆ (p, φ 2 , γ ∧ q, φ , ω) (α14) If φ = A[φ 1 R g φ 2]
, then, we add to ∆ the rule:

p, φ , γ → (p, φ 2 , γ ∧ p, φ 1 , γ) ∨ (p,γ t - → q,ω ∈∆ (p, φ 2 , γ ∧ q, φ , ω) (α15) If φ = E[φ 1 R a φ 2]: p, φ , γ → (p, φ 2 , γ ∧ p, φ 1 , γ) ∨ h 1 ∨ h 2 ∨ h 3 ∈ ∆ , where • h 1 = p,γ call --→ q,γ 1 γ 2 ∈∆ p, φ 2 , γ ∧ q, γ 1 γ 2 , φ • h 2 = p,γ int -→ q,ω ∈∆ p, φ 2 , γ ∧ q, φ , ω • h 3 = p,γ ret -→ q,ε ∈∆ p ⊥ , γ ⊥ (α16) If φ = A[φ 1 R a φ 2], p, φ , γ → (p, φ 2 , γ ∧ p, φ 1 , γ)∨(h 1 ∧h 2 ∧h 3) ∈ ∆ , where • h 1 = p,γ call --→ q,γ 1 γ 2 ∈∆ p, φ 2 , γ ∧ q, γ 1 γ 2 , φ • h 2 = p,γ int -→ q,ω ∈∆ p, φ 2 , γ ∧ q, φ , ω • h 3 = p,γ ret -→ q,ε ∈∆ p ⊥ , γ ⊥ (α17) for every p, γ ret -→ q, ε ∈ ∆: • q, γ , φ 1 → q, φ 1 , γ ∈ ∆ for every γ ∈ Γ, φ 1 ∈ Cl(ϕ) (α18) p ⊥ , γ ⊥ → p ⊥ , γ ⊥ ∈ ∆
Roughly speaking, the ABPDS BP ϕ is a kind of product between P and the BCARET formula ϕ which ensures that BP ϕ has an accepting run from p, ϕ , ω iff the configuration p, ω satisfies ϕ. The form of the control locations of BP ϕ is p, φ where φ ∈ Cl(ϕ). Let us explain the intuition behind our construction:

• If φ = e ∈ AP , then, for every ω ∈ Γ * , p, ω λ f φ iff p ∈ f (e).
In other words, BP ϕ should have an accepting run from p, e , ω iff p ∈ f (e). This is ensured by the transition rules in (α1) which add a loop at p, e , ω where p ∈ f (e) and the fact that p, e ∈ F .

• If φ = ¬e (e ∈ AP), then, for every ω ∈ Γ * , p, ω λ f φ iff p / ∈ f (e). In other words, BP ϕ should have an accepting run from p, ¬e , ω iff p / ∈ f (e). This is ensured by the transition rules in (α2) which add a loop at p, ¬e , ω where p / ∈ f (e) and the fact that p, ¬e ∈ F .

• If φ = φ 1 ∧ φ 2 , then, for every ω ∈ Γ * , p, ω λ f φ iff (p, ω λ f φ 1 and p, ω λ f φ 2)
. This is ensured by the transition rules in (α3) stating that BP ϕ has an accepting run from p, φ 1 ∧ φ 2 , ω iff BP ϕ has an accepting run from both p, φ 1 , ω and p, φ 2 , ω . (α4) is similar to (α3).

• If φ = E[φ 1 U g φ 2]
, then, for every ω ∈ Γ * , p, ω λ f φ iff p, ω λ f φ 2 or (p, ω λ f φ 1 and there exists an immediate successor p , ω of p, ω s.t. p , ω λ f φ). This is ensured by the transition rules in (α9) stating that BP ϕ has an accepting run from p, E[φ 1 U g φ 2] , ω iff BP ϕ has an accepting run from p, φ 2 , ω or (BP ϕ has an accepting run from both p, φ 1 , ω and p , φ , ω where p , ω is an immediate successor of p, ω). (α11) is similar to (α9).

• If φ = E[φ 1 R g φ 2], then, for every ω ∈ Γ * , p, ω λ f φ iff (p, ω λ f φ 2
and p, ω λ f φ 1) or (p, ω λ f φ 2 and there exists an immediate successor p , ω of p, ω s.t. p , ω λ f φ). This is ensured by the transition rules in (α13) stating that BP ϕ has an accepting run from

p, E[φ 1 R g φ 2]
, ω iff BP ϕ has an accepting run from both p, φ 2 , ω and p, φ 1 , ω ; or BP ϕ has an accepting run from both p, φ 2 , ω and p , φ , ω where p , ω is an immediate successor of p, ω . In addition, for R g formulas, the stop condition is not required, i.e, for a formula φ 1 R g φ 2 that is applied to a specific run, we don't require that φ 1 must eventually hold. To ensure that the runs on which φ 2 always holds are accepted, we add p, φ to the Büchi accepting condition F (via the subset F 3 of F). (α14) is similar to (α13).

• If φ = EX g φ 1 , then, for every ω ∈ Γ * , p, ω λ f φ iff there exists an immediate successor p , ω of p, ω s.t. p , ω λ f φ 1 . This is ensured by the transition rules in (α5) stating that BP ϕ has an accepting run from p, EX g φ 1 , ω iff there exists an immediate successor p , ω of p, ω s.t. BP ϕ has an accepting run from p , φ 1 , ω . (α6) is similar to (α5).

call • If φ = EX a φ 1 , then, for every ω ∈ Γ * , p, ω λ f φ iff there exists an abstract-successor p k , ω k of p, ω s.t. p k , ω k λ f φ 1 (A1) . Let π ∈ T races(p, ω) be a run starting from p, ω on which p k , ω k is the abstract-successor of p, ω . Over π, let p , ω be the immediate successor of p, ω . In what follows, we explain how we can ensure (A1).

EX a φ 1 ret return-point γ , φ 1 encoded & passed down p, ω p , ω p k-1 , ω k-1 p k , ω k
1. Firstly, we show that for every abstract-successor p k , ω k = ⊥ of p, ω , p, EX a φ 1 , ω = ⇒ BPϕ p k , φ 1 , ω k . There are two possibilities:

-If p, ω = ⇒ P p , ω corresponds to a call statement. Let us consider Figure 4.1 to explain this case. p, φ , ω = ⇒ BPϕ p k , φ 1 , ω k is ensured by rules corresponding to h 1 in (α7), the rules in ∆ ⊆ ∆ and the rules in (α17) as follows: rules corresponding to h 1 in (α7) allow to record φ 1 in the return point of the call, rules in ∆ ⊆ ∆ allow to mimic the run of the PDS P and rules in (α17) allow to extract and put back φ 1 when the return-point is reached. In what follows, we show in more details how this works: Let p, γ call --→ p , γ γ be the rule associated with the transition p, ω = ⇒ P p , ω , then we have ω = γω and ω = γ γ ω . Let p k-1 , ω k-1 = ⇒ P p k , ω k be the transition that corresponds to the ret statement of this call on π. Let then p k-1 , β ret -→ p k , ε ∈ ∆ be the corresponding return rule. Then, we have necessarily ω k-1 = βγ ω , since as explained in Section 2.2.1 , γ is the return address of the call. After applying this rule, ω k = γ ω . In other words, γ will be the topmost stack symbol at the corresponding return point of the call. So, in order to ensure that p, φ , ω = ⇒ BPϕ p k , φ 1 , ω k , we proceed as follows: At the call p, γ call --→ p , γ γ , we encode the formula φ 1 into γ by the rule corresponding to h 1 in (α7) stating that p, EX a φ 1 , γ -→ p , γ γ , φ 1 ∈ ∆ . This allows to record φ 1 in the corresponding return point of the stack. After that, the rules in ∆ ⊆ ∆ allow BP ϕ to mimic the run π of P from p , ω till the corresponding return-point of this call, where γ , φ 1 is the topmost stack symbol. More specifically, the following sequence of P: p , γ γ ω *

= ⇒ P p k-1 , βγ ω * = ⇒ P p k , γ ω
will be mimicked by the following sequence of BP ϕ :

p , γ γ , φ 1 ω = ⇒ BPϕ p k-1 , β γ , φ 1 ω = ⇒ BPϕ p k , γ
, φ 1 ω using the rules of ∆. At the return-point, we extract φ 1 from the stack and encode it into p k by adding the transition rules in (α17) p k , γ , φ 1 → p k , φ 1 , γ . Therefore, we obtain that p, φ , ω = ⇒ BPϕ p k , φ 1 , ω k . The property holds for this case.

-If p, ω = ⇒ P p , ω corresponds to a simple statement. Then, the abstract successor of p, ω is its immediate successor p , ω . Thus, we get that p k , ω k = p , ω . From the transition rules corresponding to h 2 in (α7), we get that p, EX a φ 1 , ω = ⇒ BPϕ p , φ 1 , ω . Therefore, p, EX a φ 1 , ω = ⇒ BPϕ p k , φ 1 , ω k . The property holds for this case.

2. Now, let us consider the case where p k , ω k , the abstract successor of p, ω , is ⊥. This case occurs when p, ω = ⇒ P p , ω corresponds to a return statement. Then, one abstract successor of p, ω is ⊥. Note that ⊥ does not satisfy any formula, i.e., ⊥ does not satisfy φ 1 . Therefore, from p, EX a φ 1 , ω , we need to ensure that the path of BP ϕ reflecting the possibility in (A1) that p k , ω k λ f φ 1 is not accepted. To do this, we exploit additional trap configurations. We use p ⊥ and γ ⊥ as trap control location and trap stack symbol to obtain these trap configurations. To be more specific, let p, γ ret -→ p , ε be the rule associated with the transition p, ω = ⇒ P p , ω , then we have ω = γω and ω = ω . We add the transition rule corresponding to h 3 in (α7) to allow p, EX a φ 1 , ω = ⇒ BPϕ p ⊥ , γ ⊥ ω . Since a run of BP ϕ includes only infinite paths, we equip these trap configurations with self-loops by the transition rules in (α18), i.e., p ⊥ , γ ⊥ ω = ⇒ BPϕ p ⊥ , γ ⊥ ω . As a result, we obtain a corresponding path in

BP ϕ : p, EX a φ 1 , ω = ⇒ BPϕ p ⊥ , γ ⊥ ω = ⇒ BPϕ p ⊥ , γ ⊥ ω .
Note that this path is not accepted by BP ϕ because p ⊥ / ∈ F .

In summary, for every abstract-successor p k , ω k of p, ω , if Pushdown Systems

p k , ω k = ⊥, then, p, EX a φ 1 , ω = ⇒ BPϕ p k , φ 1 , ω k ; otherwise p, EX a φ 1 , ω = ⇒ BPϕ p ⊥ , γ ⊥ ω = ⇒ BPϕ p ⊥ , γ
⊥ ω which is not accepted by BP ϕ . Therefore, (A1) is ensured by the transition rules in (α7) stating that BP ϕ has an accepting run from p, EX a φ 1 , ω iff there exists an abstract successor p k , ω k of p, ω s.t. BP ϕ has an accepting run from p k , φ 1 , ω k .

As a result, we get that: Lemma 6. Let p k , ω k be an abstract-successor of p, ω on P. For every φ = EX a φ 1 ∈ Cl(ϕ), p, φ , ω = ⇒ BPϕ p k , φ 1 , ω k .

• If φ = AX a φ 1 : this case is ensured by the transition rules in (α8) together with (α17) and ∆ ⊆ ∆ . The intuition of (α8) is similar to that of (α7).

• If φ = E[φ 1 U a φ 2],
then, for every ω ∈ Γ * , p, ω λ f φ iff p, ω λ f φ 2 or (p, ω λ f φ 1 and there exists an abstract successor p k , ω k of p, ω s.t. p k , ω k λ f φ) (A2) . Let π ∈ T races(p, ω) be a run starting from p, ω on which p k , ω k is the abstract-successor of p, ω . Over π, let p , ω be the immediate successor of p, ω .

1. Firstly, we show that for every abstract-successor p k , ω k = ⊥ of p, ω , p, φ , ω = ⇒ BPϕ { p, φ 1 , ω , p k , φ , ω k }. There are two possibilities:

-If p, ω = ⇒ P p , ω corresponds to a call statement. From the rules corresponding to h 1 in (α10), we get that p, φ , ω = ⇒ BPϕ { p, φ 1 , ω , p , ω } where p , ω is the immediate successor of p, ω . Thus, to ensure that p, φ , ω = ⇒ BPϕ { p, φ 1 , ω , p k , φ , ω k }, we only need to ensure that p , ω = ⇒ BPϕ p k , φ , ω k . As for the case φ = EX a φ 1 , p , ω = ⇒ BPϕ p k , φ , ω k is ensured by the rules in ∆ ⊆ ∆ and the rules in (α17): rules in ∆ ⊆ ∆ allow to mimic the run of the PDS P before the return and rules in (α17) allow to extract and put back φ 1 when the return-point is reached.

-If p, ω = ⇒ P p , ω corresponds to a simple statement. Then, the abstract successor of p, ω is its immediate successor p , ω . Thus, we get that p k , ω k = p , ω . From the transition rules corresponding to h 2 in (α10), we get that p

, E[φ 1 U a φ 2] , ω = ⇒ BPϕ { p, φ 1 , ω , p , φ , ω }. Therefore, p, E[φ 1 U a φ 2] , ω = ⇒ BPϕ { p, φ 1 , ω , p k , φ , ω k }.
In other words, BP ϕ has an accepting run from both p, φ 1 , ω and p k , φ , ω k where p k , ω k is an abstract successor of p, ω . The property holds for this case.

Chapter 4. Branching Temporal Logic of Calls and Returns for

Pushdown Systems -If p, ω = ⇒ P p , ω corresponds to a simple statement. Then, the abstract successor of p, ω is its immediate successor p , ω . Thus, we get that p k , ω k = p , ω . From the transition rules corresponding to h 2 in (α15), we get that p

, E[φ 1 R a φ 2] , ω = ⇒ BPϕ { p, φ 2 , ω , p , φ , ω }. Therefore, p, E[φ 1 R a φ 2] , ω = ⇒ BPϕ { p, φ 2 , ω , p k , φ , ω k }.
2. Now, let us consider the case where p k , ω k = ⊥. As explained previously, this case occurs when p, ω = ⇒ P p , ω corresponds to a return statement. Then, the abstract successor of p, ω is ⊥. Note that ⊥ does not satisfy any formula, i.e., ⊥ does not satisfy φ. Therefore, from p, E[φ 1 R a φ 2] , ω , we need to ensure that the path reflecting the possibility in (A3) that (p, ω λ f φ 2 and p k , ω k λ f φ) is not accepted by BP ϕ . This is ensured as for the case φ = EX a φ 1 by the transition rules corresponding to h 3 in (α15).

In summary, for every abstract-successor

p k , ω k of p, ω , if p k , ω k = ⊥, then, p, E[φ 1 R a φ 2] , ω = ⇒ BPϕ { p, φ 2 , ω , p k , E[φ 1 R a φ 2] , ω k }; oth- erwise p, E[φ 1 R a φ 2] , ω = ⇒ BPϕ p ⊥ , γ ⊥ ω = ⇒ BPϕ p ⊥ , γ ⊥ ω
which is not accepted by BP ϕ . Therefore, (A3) is ensured by the transition rules in (α15) stating that BP ϕ has an accepting run from p, E[φ 1 R a φ 2] , ω iff BP ϕ has an accepting run from both p, φ 1 , ω and p, φ 2 , ω ; or BP ϕ has an accepting run from both p, φ 2 , ω and p k , E[φ 1 R a φ 2] , ω k where p k , ω k is an abstract successor of p, ω .

As a result, we get that: Lemma 8. Let p k , ω k be an abstract-successor of p, ω on P. For every

φ = E[φ 1 R a φ 2] ∈ Cl(ϕ), p, φ , ω = ⇒ BPϕ { p, φ 2 , ω , p k , φ , ω k }.
• The intuition behind the rules corresponding to the cases

φ = A[φ 1 U a φ 2], φ = A[φ 1 R a φ 2]
are similar to the previous case.

The Büchi accepting condition.

The elements of the Büchi accepting condition set F of BP ϕ ensure the liveness requirements of until-formulas on infinite global paths, infinite abstract paths as well as on finite abstract paths.

• With regards to infinite global paths, the fact that the liveness requirement

φ 2 in E[φ 1 U g φ 2] is eventually satisfied in P is ensured by the fact that p, E[φ 1 U g φ 2] doesn't belong to F . Note that p, ω λ f E[φ 1 U g φ 2]
iff p, ω λ f φ 2 or there exists a global-successor p , ω s.t. (p, ω λ f φ 1 and p , ω

λ f E[φ 1 U g φ 2]). Because φ 2 should hold eventually, to call EX a φ 1 proc ret return-point γ , φ 1 encoded & passed down p 0 , ω 0 p i , ω i p i+1 , ω i+1 p k-2 , ω k-2 p k-1 , ω k-1 p k , ω k Figure 4.2: p i , ω i finally reach its corresponding return-point call EX a φ 1 proc γ , φ 1 encoded & passed down p 0 , ω 0 p i , ω i p i+1 , ω i+1 p i-1 , ω i-1
Figure 4.3: p i , ω i never reach its corresponding return-point avoid the case where a run of BP ϕ always carries E[φ 1 U g φ 2] and never reaches φ 2 , we don't set p, E[φ 1 U g φ 2] as an element of the Büchi accepting condition set. This guarantees that the accepting run of BP ϕ must visit some control locations in p, φ 2 which ensures that φ 2 will eventually hold. The liveness requirements of A[φ 1 U g φ 2] are ensured as for the case of E[φ 1 U g φ 2].

• With regards to infinite abstract paths, the fact that the liveness requirement φ 2 in E[φ 1 U a φ 2] is eventually satisfied in P is ensured by the fact that p, E[φ 1 U a φ 2] doesn't belong to F . The intuition behind this case is similar to the intuition of

E[φ 1 U g φ 2]. The liveness requirements of A[φ 1 U a φ 2] are ensured as for the case of E[φ 1 U a φ 2].
• With regards to finite abstract paths p 0 , ω 0 p 1 , ω 1 ... p m , ω m where p m , ω m = ⇒ P p m+1 , ω m+1 corresponds to a return statement, the fact that the liveness requirement φ 2 in E[φ 1 U a φ 2] is eventually satisfied in P is ensured by the fact that p ⊥ doesn't belong to F . Look at Figure 4.2 for an illustration. In this figure, for every i + 1 ≤ u ≤ k -1, the abstract path starting from p u , ω u is finite because the abstract successor of p k-1 , ω k-1 is ⊥ since p k-1 , ω k-1 = ⇒ P p k , ω k corresponds to a return statement. Suppose that we want to check whether

p k-1 , ω k-1 λ f E[φ 1 U a φ 2], then, we get that p k-1 , ω k-1 λ f E[φ 1 U a φ 2] iff p k-1 , ω k-1 λ f φ 2 or there exists an abstract-successor p , ω s.t. (p k-1 , ω k-1 λ f φ 1 and p , ω λ f E[φ 1 U a φ 2]
). Since φ 2 should eventually hold, φ 2 should hold at p k-1 , ω k-1 because the Pushdown Systems abstract-successor of p k-1 , ω k-1 on this abstract-path is ⊥. To ensure this, we move p k-1 , ω k-1 to the trap configuration p ⊥ , γ ⊥ and add a loop here by the transition rule (α18). In addition, we don't set p ⊥ as an element of the Büchi accepting condition set, which means that

p k-1 , ω k-1 λ f E[φ 1 U a φ 2] iff p k-1 , ω k-1 λ f φ 2
by the transition rules in (α10). This ensures the liveness requirement φ 2 in E[φ 1 U a φ 2] is eventually satisfied.

• With regards to finite abstract paths p 0 , ω 0 p 1 , ω 1 ... p m , ω m where p m , ω m = ⇒ P p m+1 , ω m+1 corresponds to a call statement but this call never reaches its corresponding return-point, the fact that the liveness requirement φ 2 in E[φ 1 U a φ 2] is eventually satisfied in P is ensured by the fact that p / ∈ F . Look at Figure 4.3 where the procedure proc never terminates. In this figure, for every 0 ≤ u ≤ i, the abstract path starting from p u , ω u is finite. Suppose that we want to check whether

p i , ω i λ f E[φ 1 U a φ 2], then, we get that p i , ω i λ f E[φ 1 U a φ 2] iff p i , ω i λ f φ 2 or there exists an abstract-successor p , ω s.t. (p i , ω i λ f φ 1 and p , ω λ f E[φ 1 U a φ 2]
). Since φ 2 should eventually hold, φ 2 should hold at p i , ω i because the abstract-successor of p i , ω i on this abstractpath is ⊥. As explained above, at p i , ω i , we will encode the formula E[φ 1 U a φ 2] into the stack and mimic the run of P on BP ϕ until it reaches the corresponding return-point of the call. In other words, if the call is never reached, the run of BP ϕ will infinitely visit the control locations of P. To ensure this path unaccepted, we don't set p ∈ P as an element of the Büchi accepting condition set, which means that p i , ω i λ f E[φ 1 U a φ 2] iff p i , ω i λ f φ 2 by the transition rules in (α10). This ensures the liveness requirement φ 2 in E[φ 1 U a φ 2] is eventually satisfied.

Thus, we can show that:

Theorem 13. Given a PDS P = (P, Γ, ∆), a set of atomic propositions AP , a labelling function f : AP → 2 P and a BCARET formula ϕ, we can compute an ABPDS BP ϕ such that for every configuration p, ω , p, ω λ f ϕ iff BP ϕ has an accepting run from the configuration p, ϕ , ω .

Formal proof: Given c 0 = ⇒ BPϕ {c 1 , c 2 , ..., c n } where for every 0 ≤ i ≤ n, c i is a configuration of the ABPDS BP ϕ . For presentation reasons, we also write

c 0 = ⇒ BPϕ c 1 ∧ c 2 ∧ ... ∧ c n .
We prove the following two directions:

(=⇒) Assume that p, ω λ f ϕ, we need to prove that BP ϕ has an accepting run from p, ϕ , ω . In what follows, we show how this is ensured by induction on the structure for the BCARET formula ϕ.

Proof.

• Base case:

ϕ = e (e ∈ AP): p, ω λ f ϕ =⇒ p ∈ f (e). According to the transition rule in (α1), we get p, e , ω = ⇒ BPϕ p, e , ω . In addition, we get that p, e ∈ F for every p ∈ f (e). Therefore, BP ϕ has an accepting run from p, e , ω . In other words, BP ϕ has an accepting run from p, ϕ , ω . The property holds for this case.

-ϕ = ¬e (e ∈ AP): p, ω λ f ϕ =⇒ p / ∈ f (e).
According to the transition rule in (α2), we get p, ¬e , ω = ⇒ BPϕ p, ¬e , ω . In addition, we get that p, ¬e ∈ F for every p / ∈ f (e). Therefore, BP ϕ has an accepting run from p, ¬e , ω . In other words, BP ϕ has an accepting run from p, ϕ , ω The property holds for this case.

• Induction Step:

-Case ϕ = ϕ 1 ∨ ϕ 2 : * Since p, ω λ f ϕ, we obtain that p, ω λ f ϕ 1 or p, ω λ f ϕ 2 .
By applying the induction hypothesis, we get that BP ϕ has an accepting run from p, ϕ 1 , ω or p, ϕ 2 , ω (1) . * According to the transition rule in (α4), we obtain p, ϕ , ω =

⇒ BPϕ { p, ϕ 1 , ω }, p, ϕ , ω = ⇒ BPϕ { p, ϕ 2 , ω } (2) .
From (1) and (2), we get that BP ϕ has an accepting run from the configuration p, ϕ , ω .

-Case ϕ = ϕ 1 ∧ ϕ 2 : * Since p, ω λ f ϕ, we obtain that p, ω λ f ϕ 1 and p, ω λ f ϕ 2 . By applying the induction hypothesis, we get that BP ϕ has an accepting run from p, ϕ 1 , ω and p, ϕ 2 , ω (3) . * According to the transition rule in (α3), we obtain p, ϕ , ω = ⇒ BPϕ { p, ϕ 1 , ω , p, ϕ 2 , ω } (4) .

From (3) and (4), we get that BP ϕ has an accepting run from the configuration p, ϕ , ω .

-Case ϕ = EX g φ 1 : * Since p, ω λ f ϕ, then, there exists a global successor p , ω of p, ω s.t. p , ω λ f ϕ 1 . Note that the global successor of a configuration is its immediate successor. Thus, there exists an immediate successor p , ω of p, ω s.t. p , ω λ f ϕ 1 . Therefore, by applying the induction hypothesis, BP ϕ has an accepting run from p , ϕ 1 , ω (5) .

Chapter 4. Branching Temporal Logic of Calls and Returns for

Pushdown Systems * According to the transition rule in (α5), we obtain p, ϕ , ω = ⇒ BPϕ { p , ϕ 1 , ω } (6) .

From (5) and (6), we get that BP ϕ has an accepting run from the configuration p, ϕ , ω .

-Case ϕ = EX a φ 1 : * Since p, ω λ f ϕ, then, there exists an abstract successor p k , ω k of p, ω s.t. p k , ω k λ f ϕ 1 . Therefore, by applying the induction hypothesis, BP ϕ has an accepting run from p k , ϕ 1 , ω k (7) . * According to Lemma 6, we obtain p, ϕ , ω

= ⇒ BPϕ { p k , ϕ 1 , ω k } (8) .
From (7) and (8), we get that BP ϕ has an accepting run from the configuration p, ϕ , ω .

-Case ϕ = E[ϕ 1 U g ϕ 2]: p, ω λ f E[ϕ 1 U g ϕ 2]
, then, there exists a run p 0 , ω 0 p 1 , ω 1 p 2 , ω 2 ... starting from p, ω where p, ω = p 0 , ω 0 on which there exists i ≥ 0 s.t. p i , ω i λ f ϕ 2 and for every 0 ≤ j < i, p j , ω j λ f ϕ 1 (since the global successor of a configuration is its immediate successor). By applying the induction hypothesis, we get that: * BP ϕ has an accepting run from p i , ϕ 2 , ω i (9) . * for every 0 ≤ j < i, BP ϕ has an accepting run from p j , ϕ 1 , ω j (10) .

According to the rules in (α9), we get p i , ϕ , ω i = ⇒ BPϕ p i , ϕ 2 , ω i (11) . From (9) and (11), BP ϕ has an accepting run from p i , ϕ , ω i (12) . Now, we prove that BP ϕ has an accepting run from p, ϕ , ω . There are two cases: a) If i = 0; then p, ϕ , ω = p i , ϕ , ω i . Therefore, from (12), BP ϕ has an accepting run from p, ϕ , ω . b) If i > 0. Firstly, we show that for every 0 ≤ j < i, BP ϕ has an accepting run from p j , ϕ , ω j by induction on l = i -j. * Basis. l = 1, which means that p i , ω i is an immediate successor of p j , ω j . p j , ϕ , ω j = ⇒ BPϕ p j , ϕ 1 , ω j ∧ p i , ϕ , ω i (by the rules in (α9) and the fact that p i , ω i is an immediate successor of p j , ω j). Also, BP ϕ has an accepting run from p j , ϕ 1 , ω j (by (10)) and p i , ϕ , ω i (by (12)). Therefore, BP ϕ has an accepting run from p j , ϕ , ω j . The property holds for this case. * Step. l > 1, we get that p j , ω j * = ⇒ P p j+1 , ω j+1 * = ⇒ P p i , ω i . By applying the induction hypothesis on l, we get that BP ϕ has an accepting run from p j+1 , ϕ , ω j+1 (13) . According to the rules in (α9) and the fact that p j+1 , ω j+1 is an immediate successor of p j , ω j , we get that p j , ϕ , ω j = ⇒ BPϕ p j , ϕ 1 , ω j ∧ p j+1 , ϕ , ω j+1 . In addition, BP ϕ has an accepting run from p j , ϕ 1 , ω j (by (10)) and p j+1 , ϕ , ω j+1 (by (13)). Thus, BP ϕ has an accepting run from p j , ϕ , ω j . The property holds for this case.

Note that p, ω = p j , ω j when j = 0. As a result, we obtain that BP ϕ has an accepting run from p, ϕ , ω . The property holds for this case.

-Case ϕ = E[ϕ 1 U a ϕ 2]: p, ω λ f E[ϕ 1 U a ϕ 2]
implies that there exists an (finite or infinite) abstract path π a = p z 0 , ω z 0 p z 1 , ω z 1 p z 2 , ω z 2 ... starting from p, ω where p, ω = p z 0 , ω z 0 on which there exists i ≥ 0 s.t. p z i , ω z i λ f ϕ 2 and for every 0 ≤ j < i, p z j , ω z j λ f ϕ 1 . By applying the induction hypothesis, we get that: * BP ϕ has an accepting run from p z i , ϕ 2 , ω z i (14) .

* for every 0 ≤ j < i, BP ϕ has an accepting run from p z j , ϕ 1 , ω z j (15) .

According to the rules in (α10), we get p z i , ϕ , ω z i = ⇒ BPϕ p z i , ϕ 2 , ω z i (16) . From (14) and (16), BP ϕ has an accepting run from p z i , ϕ , ω z i (17) . Now, we prove that BP ϕ has an accepting run from p, ϕ , ω . There are two cases: a) If i = 0; then p, ϕ , ω = p z i , ϕ , ω z i . Therefore, BP ϕ has an accepting run from p, ϕ , ω . b) If i > 0. Firstly, we show that for every 0 ≤ j < i, BP ϕ has an accepting run from p z j , ϕ , ω z j by induction on l = i -j. * Basis. l = 1, which means that p z i , ω z i is an abstract successor of p z j , ω z j . Thus, we obtain that p z j , ϕ , ω z j = ⇒ BPϕ { p z j , ϕ 1 , ω z j , p z i , ϕ , ω z i } (by Lemma 7 and the fact that p z i , ω z i is an abstract successor of p z j , ω z j). Also, BP ϕ has an accepting run from p z j , ϕ 1 , ω z j (by (15)) and p z i , ϕ , ω z i (by (17)). Therefore, BP ϕ has an accepting run from p z j , ϕ , ω z j . The property holds for this case. * Step. l > 1, we get that p z j , ω z j * = ⇒ P p z j+1 , ω z j+1 * = ⇒ P 100 Chapter 4. Branching Temporal Logic of Calls and Returns for Pushdown Systems p z i , ω z i . By applying the induction hypothesis on l, we get that BP ϕ has an accepting run from p z j+1 , ϕ , ω z j+1 (18) . According to Lemma 7 and the fact that p z j+1 , ω z j+1 is an abstract successor of p z j , ω z j , we get that p z j , ϕ , ω z j = ⇒ BPϕ { p z j , ϕ 1 , ω z j , p z j+1 , ϕ , ω z j+1 }. In addition, BP ϕ has an accepting run from p z j , ϕ 1 , ω z j (by (15)) and p z j+1 , ϕ , ω z j+1 (by (18)). Thus, BP ϕ has an accepting run from p z j , ϕ , ω z j . The property holds for this case.

Note that p, ω = p z j , ω z j when j = 0. As a result, we obtain that BP ϕ has an accepting run from p, ϕ , ω . The property holds for this case.

-Case ϕ = A[ϕ 1 U g ϕ 2]: This case is similar to the case ϕ = E[ϕ 1 U g ϕ 2]
.

-Case ϕ = E[ϕ 1 R g ϕ 2]: Based on the semantic of BCARET, p, ω λ f E[ϕ 1 R g ϕ 2]
implies that P has a run p 0 , ω 0 p 1 , ω 1 p 2 , ω 2 ... starting from p, ω (since the global successor of a configuration is its immediate successor) such that:

1. there exists i ≥ 0 s.t. p i , ω i λ f ϕ 1 and for every 0 ≤ j ≤ i, p j , ω j λ f ϕ 2 ; 2. or for every i ≥ 0, p i , ω i λ f ϕ 2 .

For the first case, we can prove that BP ϕ has an accepting run from p, ϕ , ω by applying the induction on i -j similar to the case

ϕ = E[ϕ 1 U g ϕ 2].
Now let us consider the second case, where P has an infinite run π = p 0 , ω 0 p 1 , ω 1 p 2 , ω 2 ... starting from p, ω where p, ω = p 0 , ω 0 such that p i , ω i λ f ϕ 2 for every i ≥ 0 (19) . We need to show that BP ϕ has an accepting run from p, ϕ , ω . * From the transition rules in (α13), we get that 19)), we get that BP ϕ has an accepting run from p i , ϕ 2 , ω i for every i ≥ 0 (by the induction hypothesis) (21) . * In addition, for every i ≥ 0, p i , ϕ is an accepting control location, then, the path p 0 , ϕ , ω 0 p 1 , ϕ , ω 1 p 2 , ϕ , ω 2 ... is accepted (22) .

p i , ϕ , ω i = ⇒ BPϕ p i , ϕ 2 , ω i ∧ p i+1 , ϕ , ω i+1 for ev- ery i ≥ 0. Therefore, p 0 , ϕ , ω 0 = ⇒ BPϕ i≥0 p i , ϕ 2 , ω i ∧ i≥1 p i+1 , ϕ , ω i+1 (20) . * Since p i , ω i λ f ϕ 2 (by (
From (20), (21), (22), we obtain that BP ϕ has an accepting run from p 0 , ϕ , ω 0 . In other words, BP ϕ has an accepting run from p, ϕ , ω . The property holds for this case.

-

Case ϕ = E[ϕ 1 R a ϕ 2]: Based on the semantic of BCARET, p, ω λ f E[ϕ 1 R a ϕ 2]
implies that P has an abstract path p z 0 , ω z 0 p z 1 , ω z 1 p z 2 , ω z 2 ... starting from p, ω where p, ω = p z 0 , ω z 0 s.t.

1. there exists i ≥ 0 s.t. p z i , ω z i λ f ϕ 1 and for every 0 ≤ j ≤ i, p z j , ω z j λ f ϕ 2 2. or for every i ≥ 0,

p z i , ω z i λ f ϕ 2
For the first case, we can prove that BP ϕ has an accepting run from p, ϕ , ω by applying the induction on i -j similar to the case ϕ = E[ϕ 1 U a ϕ 2] by applying Lemma 8. Now let us consider the second case, where P has an abstract path π = p z 0 , ω z 0 p z 1 , ω z 1 p z 2 , ω z 2 ... starting from p, ω where p, ω = p z 0 , ω z 0 such that p z i , ω z i λ f ϕ 2 for every i ≥ 0 (23) . We need to show that BP ϕ has an accepting run from p, ϕ , ω . * According to Lemma 8 and the fact that p z i+1 , ω z i+1 is an abstract-successor of p z i , ω z i , we get that p z i , ϕ , ω 23)), we get that BP ϕ has an accepting run from p z i , ϕ 2 , ω z i for every i ≥ 0 (by the induction hypothesis) (25) . * In addition, for every i ≥ 0, p z i , ϕ is an accepting control location, then, the path p z 0 , ϕ , ω z 0 p z 1 , ϕ , ω z 1 p z 2 , ϕ , ω z 2 ... is accepted (26) .

z i = ⇒ BPϕ p z i , ϕ 2 , ω z i ∧ p z i+1 , ϕ , ω z i+1 for every i ≥ 0. Therefore, p z 0 , ϕ , ω z 0 = ⇒ BPϕ i≥0 p z i , ϕ 2 , ω z i ∧ i≥1 p z i+1 , ϕ , ω z i+1 (24) * Since p z i , ω z i λ f ϕ 2 (by (
From (24), (25), (26), we obtain that BP ϕ has an accepting run from p z 0 , ϕ , ω z 0 . In other words, BP ϕ has an accepting run from p, ϕ , ω . The property holds for this case.

(⇐=) Assume that BP ϕ has an accepting run from the configuration p, ϕ , ω , we need to prove that p, ω λ f ϕ. In what follows, we prove this by induction on the structure of ϕ.

Proof.

• Base case:

Chapter 4. Branching Temporal Logic of Calls and Returns for Pushdown Systems ϕ = e(e ∈ AP). BP ϕ has an accepting run from p, e , ω =⇒ p, e , ω must have immediate successors. From all transition rules of BP ϕ , the unique way to have immediate successors of p, e , ω is from the rules in (α1), which means that p, e , ω = ⇒ BPϕ p, e , ω . Thus, from the condition in the transition rules in (α1), we obtain that p ∈ f (e). Therefore, p, ω λ f e. In other words, p, ω λ f ϕ. The property holds for this case.

ϕ = ¬e(e ∈ AP). BP ϕ has an accepting run from p, ¬e , ω =⇒ p, ¬e , ω must have immediate successors. From all transition rules of BP ϕ , the unique way to have immediate successors of p, ¬e , ω is from the rules in (α2), which means that p, ¬e , ω = ⇒ BPϕ p, ¬e , ω . Thus, from the condition in the transition rules in (α2), we obtain that p / ∈ f (e). Therefore, p, ω λ f ¬e. In other words, p, ω λ f ϕ. The property holds for this case.

• Induction Step:

-ϕ = ϕ 1 ∨ ϕ 2
From the transition rules in (α4), we get that p, ϕ , ω = ⇒ BPϕ p, φ 1 , ω and p, ϕ , ω = ⇒ BPϕ p, φ 2 , ω . Thus, BP ϕ has an accepting run from p, ϕ , ω iff BP ϕ has an accepting run from p, ϕ 1 , ω or BP ϕ has an accepting run from p, ϕ 2 , ω (27) . By applying the induction hypothesis, we obtain that: * BP ϕ has an accepting run from p, ϕ 1 , ω implies that p, ω λ f ϕ 1 (28) * BP ϕ has an accepting run from p, ϕ 2 , ω implies that p, ω λ f ϕ 2 (29)

From (27), (28), (29), we get that BP ϕ has an accepting run from p, ϕ , ω implies p, ω λ f ϕ 1 or p, ω λ f ϕ 2 . In other words, BP ϕ has an accepting run from p, ϕ , ω implies p, ω λ f ϕ 1 ∨ϕ 2 . The property holds for this case.

-ϕ = ϕ 1 ∧ ϕ 2
From the transition rules in (α3), we get that p, ϕ , ω = ⇒ BPϕ p, φ 1 , ω ∧ p, φ 2 , ω . Thus, BP ϕ has an accepting run from p, ϕ , ω iff BP ϕ has an accepting run from p, ϕ 1 , ω and BP ϕ has an accepting run from p, ϕ 2 , ω (30) . By applying the induction hypothesis, we obtain that: * BP ϕ has an accepting run from p, ϕ 1 , ω implies that p, ω λ f ϕ 1 (31) * BP ϕ has an accepting run from p, ϕ 2 , ω implies that p, ω λ f ϕ 2 (32) From (30), (31), (32), we get that BP ϕ has an accepting run from p, ϕ , ω implies p, ω λ f ϕ 1 and p, ω λ f ϕ 2 . In other words, BP ϕ has an accepting run from p, ϕ , ω implies p, ω λ f ϕ 1 ∧ϕ 2 . The property holds for this case.

ϕ = AX g ϕ 1

From the transition rules in (α6), we get that p, ϕ , ω = ⇒ BPϕ { p 1 , ϕ 1 , ω 1 , ..., p n , ϕ 1 , ω n } where for every 1 ≤ i ≤ n, p i , ω i is an immediate successor (since the global-successor is the immediate successor) of p, ω on P. Thus, BP ϕ has an accepting run from p, ϕ , ω iff for every 1 ≤ i ≤ n, BP ϕ has an accepting run from p i , ϕ 1 , ω i (33) .

By applying the induction hypothesis, we obtain that: * For every 1 ≤ i ≤ n, BP ϕ has an accepting run from p i , ϕ 1 , ω i implies that p i , ω i λ f ϕ 1 (34) .

From (33), (34), we get that BP ϕ has an accepting run from p, ϕ , ω implies p i , ω i λ f ϕ 1 for every 1 ≤ i ≤ n. In other words, BP ϕ has an accepting run from p, ϕ , ω implies p, ω λ f AX g φ 1 (by the semantic of BCARET). The property holds for this case.

ϕ = EX g ϕ 1 . This case is similar to the case ϕ = AX g ϕ 1 .

ϕ = EX a ϕ 1

From the transition rules in (α7) and Lemma 6, we get that p, ϕ , ω = ⇒ BPϕ { p k , ϕ 1 , ω k } where p k , ω k is an abstract successor of p, ω on P. Thus, BP ϕ has an accepting run from p, ϕ , ω iff there exists an abstract successor p k , ω k of p, ω s.t. BP ϕ has an accepting run from p k , ϕ 1 , ω k (35) .

By applying the induction hypothesis, we obtain that: * BP ϕ has an accepting run from p k , ϕ 1 , ω k implies that p k , ω k λ f ϕ 1 (36) .

From (35), (36), we get that BP ϕ has an accepting run from p, ϕ , ω implies that there exists an abstract successor p k , ω k of p, ω s.t. p k , ω k λ f ϕ 1 . Therefore, BP ϕ has an accepting run from p, ϕ , ω implies that p, ω λ f EX a ϕ 1 (by the semantic of BCARET). The property holds for this case.

ϕ = AX a ϕ 1 . This case is similar to the case ϕ = EX g ϕ 1 Chapter 4. Branching Temporal Logic of Calls and Returns for Pushdown Systems -Case ϕ = E[ϕ 1 U g ϕ 2]: Let ρ be an accepting run of BP ϕ starting from p, ϕ , ω (37) . Note that ρ is a tree. We need to show that p, ω λ f ϕ.

From transition rules in (α9), each configuration p i , ϕ , ω i in ρ has either (38) two children { p i , ϕ 1 , ω i , p i+1 , ϕ , ω i+1 } or (39) one child { p i , ϕ 2 , ω i }.

Let's take Figure 4.4a for an illustration in this case. Let π be the run of P corresponding to the run ρ of BP ϕ . Firstly, we show that there must exist a configuration p n , ϕ , ω n in ρ s.t. p n , ϕ , ω n has only one child p n , ϕ 2 , ω n . Suppose that this is not the case, then, the path of ρ π = p 0 , ϕ , ω 0 p 1 , ϕ , ω 1 p 3 , ϕ , ω 3 ... is not accepted because p, ϕ / ∈ F for every

p ∈ P , ϕ = E[ϕ 1 U g ϕ 2]
. One path of ρ is not accepted implies that ρ is not an accepting run. This contradicts with (37). Thus, there must exist a configuration p n , ϕ , ω n in ρ s.t. p n , ϕ , ω n has only one child p n , ϕ 2 , ω n . Therefore, ρ has a path π = p 0 , ϕ , ω 0 p 1 , ϕ , ω 1 ... p n , ϕ , ω n p n , ϕ 2 , ω n ... where p 0 , ϕ , ω 0 = p, ϕ , ω s.t. for every 0 ≤ i < n, p i , ϕ , ω i has two children { p i , ϕ 1 , ω i , p i+1 , ϕ , ω i+1 } and p n , ϕ , ω n has only one child p n , ϕ 2 , ω n (see Figure 4.4a). Since ρ is an accepting run of BP ϕ , we obtain that: * for every 0 ≤ i < n, BP ϕ has an accepting run from p i , ϕ 1 , ω i (40) * BP ϕ has an accepting run from p n , ϕ 2 , ω n (41) .

By applying the induction hypothesis, we get that: * (40) implies that p i , ω i λ f ϕ 1 for every 0 ≤ i < n (42) * (41) implies that p n , ω n λ f ϕ 2 (43)

From (42), (43), we get that p, ω λ f ϕ. The property holds for this case.

-Case ϕ = E[ϕ 1 U a ϕ 2]: Let ρ be an accepting run of BP ϕ starting from p, ϕ , ω (44) . Note that ρ is a tree. We need to show that p, ω λ f ϕ.

From transition rules in (α10) and Lemma 7, we get that for each configuration p z i , ϕ , ω z i in ρ: either (45)

p z i , ϕ , ω z i = ⇒ BPϕ { p z i , ϕ 1 , ω z i , p z i+1 , ϕ , ω z i+1 } where p z i+1 , ω z i+1 is the abstract successor of p z i , ω z i or (46) p z i , ϕ , ω z i = ⇒ BPϕ { p z i , ϕ 2 , ω z i }.
Let's take Figure 4.4b for an illustration in this case. Let π be the run of P corresponding to ρ. Firstly, we show that there must exist a configuration p zn , ϕ , ω zn in ρ s.t. p zn , ϕ , ω zn = ⇒ BPϕ

π of P ρ of BP ϕ p 0 , ω 0 p 1 , ω 1 ... p n , ω n p n+1 , ω n+1 ... p 0 , ϕ , ω 0 p 0 , ϕ 1 , ω 0 p 1 , ϕ , ω 1 p 1 , ϕ 1 , ω 1 ... p n , ϕ , ω n p n , ϕ 2 , ω n ... (a) ϕ = E[ϕ 1 U g ϕ 2] π of P ρ of BP ϕ p 0 , ω 0 p 1 , ω 1 ... p n , ω n p n+1 , ω n+1 ... p z0 , ϕ , ω z0 p z0 , ϕ 1 , ω z0 p z1 , ϕ , ω z1 p z1 , ϕ 1 , ω z1 ... p zn , ϕ , ω zn p zn , ϕ 2 , ω zn ... (b) ϕ = E[ϕ 1 U a ϕ 2]
Figure 4.4: BP ϕ has an accepting run ρ from p, ϕ , ω Pushdown Systems { p zn , ϕ 2 , ω zn }. Suppose that this is not the case, then, the path of ρ π = p z 0 , ϕ , ω z 0 ... p z 1 , ϕ , ω z 1 ... p z 3 , ϕ , ω z 3 ... is not accepted because p, ϕ / ∈ F for every p ∈ P , ϕ = E[ϕ 1 U a ϕ 2]. One path of ρ is not accepted implies that ρ is not an accepting run. This contradicts with (44). Thus, there must exist a configuration p zn , ϕ , ω zn in ρ s.t.

p zn , ϕ , ω zn = ⇒ BPϕ { p zn , ϕ 2 , ω zn }. Therefore, ρ has a path π = p z 0 , ϕ , ω z 0 ... p z 1 , ϕ , ω z 1 ... p zn , ϕ , ω zn p zn , ϕ 2 , ω zn ... where p z 0 , ϕ , ω z 0 = p, ϕ , ω s.t. for every

0 ≤ i < n, p z i , ϕ , ω z i = ⇒ BPϕ { p z i , ϕ 1 , ω z i , p z i+1 , ϕ
, ω z i+1 } and p zn , ϕ , ω zn has only one child p zn , ϕ 2 , ω zn (see Figure 4.4b). Since ρ is an accepting run of BP ϕ , we obtain that: * for every 0 ≤ i < n, BP ϕ has an accepting run from p z i , ϕ 1 , ω z i (47) * BP ϕ has an accepting run from p zn , ϕ 2 , ω zn (48) By applying the induction hypothesis, we get that: * (47) implies that p z i , ω z i λ f ϕ 1 for every 0 ≤ i < n (49) * (48) implies that p zn , ω zn λ f ϕ 2 (50)

From (49), (50), we get that p z 0 , ω z 0 λ f ϕ. In other words, p, ω λ f ϕ. The property holds for this case.

• Case ϕ = A[ϕ 1 U g ϕ 2]: This case is similar to the case ϕ = E[ϕ 1 U g ϕ 2].
The property holds.

• Case ϕ = E[ϕ 1 R g ϕ 2]: Let ρ be an accepting run of BP ϕ starting from p, ϕ , ω . We need to show that p, ω λ f ϕ.

From transition rules in (α13), each configuration p i , ϕ , ω i in ρ has two children (51

) { p i , ϕ 2 , ω i , p i+1 , ϕ , ω i+1 } or (52) { p i , ϕ 2 , ω i , p i , ϕ 1 , ω i }.
There are two possibilities:

1. ϕ 1 eventually occurs. In other words, there exists a configuration p n , ϕ , ω n in ρ whose two children are p n , ϕ 1 , ω n and p n , ϕ 2 , ω n . Therefore, ρ has a path π = p 0 , ϕ , ω 0 p 1 , ϕ , ω 1 ... p n , ϕ , ω n ... starting from p, ϕ , ω where p, ϕ , ω = p 0 , ϕ , ω 0 s.t. for every 0 ≤ i < n, p i , ϕ , ω i has two children { p i , ϕ 2 , ω i , p i+1 , ϕ , ω i+1 } and p n , ϕ , ω n has two children { p n , ϕ 2 , ω n , p n , ϕ 1 , ω n }. Since ρ is an accepting run of BP ϕ , we obtain that: 4.3. BCARET Model-Checking for Pushdown Systems 107 for every 0 ≤ i < n, BP ϕ has an accepting run from p i , ϕ 2 , ω i (53) -BP ϕ has an accepting run from p n , ϕ 1 , ω n and p n , ϕ 2 , ω n

By applying the induction hypothesis, we get that:

-(53) implies that p i , ω i λ f ϕ 2 for every 0 ≤ i < n (55) -(54) implies that p n , ω n λ f ϕ 1 and p n , ω n λ f ϕ 2 (56)
From (55), (56), we get that p 0 , ω 0 λ f ϕ. In other words, p, ω λ f ϕ. The property holds for this case.

2. ϕ 1 never occurs. In other words, every configuration p i , ϕ , ω i in ρ has two children { p i , ϕ 2 , ω i , p i+1 , ϕ , ω i+1 }. Therefore, ρ has a path π = p 0 , ϕ , ω 0 p 1 , ϕ , ω 1 ... starting from p, ϕ , ω where p, ϕ , ω = p 0 , ϕ , ω 0 s.t. for every i ≥ 0, p i , ϕ , ω i has two children { p i , ϕ 2 , ω i , p i+1 , ϕ , ω i+1 }. Since ρ is an accepting run, we get that BP ϕ has an accepting run from the configuration p i , ϕ 2 , ω i for every i ≥ 0. Then, by applying the induction hypothesis, we obtain p i , ω i λ f ϕ 2 for every i ≥ 0. According to the semantic of BCARET, we get that p 0 , ω 0 λ f ϕ. In other words, p, ω λ f ϕ. The property holds for this case.

• Case ϕ = E[ϕ 1 R a ϕ 2]: Let ρ be an accepting run of BP ϕ starting from p, ϕ , ω . We need to show that p, ω λ f ϕ.

From transition rules in (α15) and Lemma 8, we get that for each configuration p z i , ϕ , ω z i in ρ: either (57)

p z i , ϕ , ω z i = ⇒ BPϕ { p z i , ϕ 2 , ω z i , p z k , ϕ , ω z k } where p z k , ω z k is the abstract successor of p z i , ω z i or (58) p z i , ϕ , ω z i = ⇒ BPϕ { p z i , ϕ 2 , ω z i , p z i , ϕ 1 , ω z i }.
There are two possibilities:

1. ϕ 1 eventually occurs. In other words, there exists a configuration p zn , ϕ , ω zn in ρ s.t.

p zn , ϕ , ω zn = ⇒ BPϕ { p zn , ϕ 2 , ω zn , p zn , ϕ 1 , ω zn }.
Therefore, ρ has a path π = p z 0 , ϕ , ω z 0 ... p z 1 , ϕ , ω z 1 ... p zn , ϕ , ω zn ... where

p z 0 , ϕ , ω z 0 = p, ϕ , ω s.t. for every 0 ≤ i < n, p z i , ϕ , ω z i = ⇒ BPϕ { p z i , ϕ 2 , ω z i , p z i+1 , ϕ , ω z i+1 } where p z i+1 , ω z i+1
is the abstract successor of p z i , ω z i and p zn , ϕ , ω zn = ⇒ BPϕ { p zn , ϕ 2 , ω zn , p zn , ϕ 1 , ω zn }. Since ρ is an accepting run of BP ϕ , we obtain that:

for every 0 ≤ i < n, BP ϕ has an accepting run from p z i , ϕ 2 , ω z i (59)

Chapter 4. Branching Temporal Logic of Calls and Returns for Pushdown Systems -BP ϕ has an accepting run from p zn , ϕ 1 , ω zn and p zn , ϕ 2 , ω zn (60) By applying the induction hypothesis, we get that:

-(59) implies that p z i , ω z i λ f ϕ 2 for every 0 ≤ i < n (61) -(60) implies that p zn , ω zn λ f ϕ 1 and p zn , ω zn λ f ϕ 2 (62) From (61), (62), we get that p, ω λ f ϕ. The property holds for this case.

2. ϕ 1 never occurs.

In other words, for every configuration

p z i , ϕ , ω z i in ρ p z i , ϕ , ω z i = ⇒ BPϕ { p z i , ϕ 2 , ω z i , p k , ϕ , ω k }. Therefore, ρ has a path π = p z 0 , ϕ , ω z 0 ... p z 1 , ϕ , ω z 1 ... where p z 0 , ϕ , ω z 0 = p, ϕ , ω s.t. for every i ≥ 0, p z i , ϕ , ω z i = ⇒ BPϕ { p z i , ϕ 2 , ω z i , p z i+1 , ϕ , ω z i+1 }.
Since ρ is an accepting run, we get that BP ϕ has an accepting run from the configuration p z i , ϕ 2 , ω z i for every i ≥ 0. Then, by applying the induction hypothesis, we obtain p z i , ω z i λ f ϕ 2 for every i ≥ 0. According to the semantic of BCARET, we get that p z 0 , ω z 0 λ f ϕ. In other words, p, ω λ f ϕ. The property holds for this case.

• Case ϕ = A[ϕ 1 R g ϕ 2]: This case is similar to the case ϕ = E[ϕ 1 R g ϕ 2].
The property holds for this case.

• Case ϕ = A[ϕ 1 R a ϕ 2]: This case is similar to the case ϕ = E[ϕ 1 R a ϕ 2].
The property holds for this case.

The number of control locations of BP ϕ is at most O(|P ||ϕ|), the number of stack symbols is at most O(|Γ||ϕ|) and the number of transitions is at most O(|P ||Γ||∆||ϕ|). Therefore, we get from Theorems 12 and 13:

Theorem 14. Given a PDS P = (P, Γ, ∆), a set of atomic propositions AP , a labelling function f : AP → 2 P and a BCARET formula ϕ, for every configuration p, ω ∈ P × Γ * , whether or not p, ω satisfies ϕ can be solved in time

O(|P | 2 |ϕ| 3 .|Γ|(|P ||Γ||∆|.|ϕ|.2 5|P ||ϕ| + 2 |P ||ϕ| .|ω|))

BCARET model-checking for PDSs with regular valuations

Up to now, we have considered the standard model-checking problem for BCARET, where the validity of an atomic proposition depends only on the 4.4. BCARET model-checking for PDSs with regular valuations 109 control state, not on the stack. In this section, we go further and consider model-checking with regular valuations where the set of configurations in which an atomic proposition holds is a regular set of configurations (see Sections 2.4 and 4.1 for a formal definition of regular valuations).

Multi Automata

Definition 16.

[BEM97] Let P = (P, Γ, ∆) be a PDS. A P-Multi-Automaton

(MA for short) is a tuple A = (Q, Γ, δ, I, Q f), where Q is a finite set of states, δ ⊆ Q × Γ × Q is a finite set of transition rules, I = P ⊆ Q is a set of initial states, Q f ⊆ Q is a set of final states. The transition relation - → δ ⊆ Q × Γ * × Q is defined as follows: • q ε - → δ q for every q ∈ Q • q γ - → δ q if (q, γ, q) ∈ δ • if q ω -→ δ q and q γ - → δ q , then, q ωγ -→ δ q
A recognizes a configuration p, ω where p ∈ P , ω ∈ Γ * iff p ω -→ δ q for some q ∈ Q f . The language of A, L(A), is the set of all configurations which are recognized by A. A set of configurations is regular if it is recognized by some Multi-Automaton.

From BCARET model checking of PDSs with regular valuations to the membership problem in ABPDSs

Let P = (P, Γ, ∆) be a PDS. We suppose w.l.o.g. that P has a bottom stack symbol that is never popped from the stack. Let AP be a set of atomic propositions. Let ϕ be a BCARET formula over AP , λ : AP → 2 P ×Γ * be a labelling function s.t. for every e ∈ AP , λ(e) is a regular set of configurations. Given a configuration c 0 , we propose in this section an algorithm to check whether c 0 λ ϕ. Intuitively, we compute an ABPDS BP ϕ s.t. BP ϕ recognizes a configuration c of P iff c λ ϕ. Then, to check if c 0 satisfies ϕ, we will check whether BP ϕ recognizes c 0 .

For every e ∈ AP , since λ(e) is a regular set of configurations, let M e = (Q e , Γ, δ e , I e , F e) be a multi-automaton s.t. L(M e) = λ(e), M ¬e = (Q ¬e , Γ, δ ¬e , I ¬e , F ¬e) be a multi-automaton s.t. L(M ¬e) = P × Γ * \ λ(e), which means M ¬e will recognize the complement of λ(e) that is the set of configurations in which e doesn't hold. Note that for every e ∈ AP , the initial Pushdown Systems states of M e and M ¬e are the control locations p ∈ P. Thus, to distinguish between the initial states of these two automata, we will denote the initial state corresponding to the control location p in M e (resp. M ¬e) by p e (resp. p ¬e).

Let AP + (ϕ) = {e ∈ AP | e ∈ Cl(ϕ)} and AP -(ϕ) = {e ∈ AP | ¬e ∈ Cl(ϕ)}.
Let BP ϕ = (P , Γ , ∆ , F) be the ABPDS defined as follows:

• P = P ∪ P × Cl(ϕ) ∪ {p ⊥ } ∪ e∈AP + (ϕ) Q e ∪ e∈AP -(ϕ) Q ¬e • Γ = Γ ∪ (Γ × Cl(ϕ)) ∪ {γ ⊥ } • F = F 1 ∪ F 2 ∪ F 3 where -F 1 = e∈AP + (ϕ) F e -F 2 = e∈AP -(ϕ) F ¬e -F 3 = {P × Cl R (ϕ)} where Cl R (ϕ) is the set of formulas of Cl(ϕ) in the form E[ϕ 1 R b ϕ 2] or A[ϕ 1 R b ϕ 2] (b ∈ {g, a})
The transition relation ∆ is the smallest set of transition rules defined as follows: ∆ ⊆ ∆ , ∆ 0 ⊆ ∆ where ∆ 0 is the transitions of ∆ that are created by the rules from (α3) to (α17) and such that: (β1) for every p ∈ P , e ∈ AP + (ϕ), γ ∈ Γ: p, e , γ → p e , γ ∈ ∆ (β2) for every p ∈ P , e ∈ AP -(ϕ), γ ∈ Γ: p, ¬e , γ → p ¬e , γ ∈ ∆ (β3) for every (q 1 , γ, q 2) ∈ (e∈AP + (ϕ) δ e)∪(e∈AP -(ϕ) δ ¬e): q 1 , γ → q 2 , ε ∈ ∆ (β4) for every q ∈ (e∈AP + (ϕ) F e) ∪ (e∈AP -(ϕ) F ¬e): q, → q, ∈ ∆ Intuitively, we compute the ABPDS BP ϕ such that BP ϕ has an accepting run from p, φ , ω iff the configuration p, ω satisfies φ according to the regular labellings M e for every e ∈ AP . The only difference with the previous case of standard valuations, where an atomic proposition holds at a configuration depends only on the control location of that configuration, not on its stack, comes from the interpretation of the atomic proposition e. This is why ∆ contains ∆ and ∆ 0 (which are the transitions of BP ϕ that don't consider the atomic propositions). Here the rules (β 1) -(β 4) deal with the cases e, ¬e (e ∈ AP). Given p ∈ P , φ = e ∈ AP , ω ∈ Γ * , we get that the ABPDS BP ϕ should accept p, e , ω iff p, ω ∈ L(M e). To check whether p, ω ∈ L(M e), we let BP ϕ go to state p e , the initial state corresponding to p in M e by adding rules in (β1); and then, from this state, we will check whether ω is accepted by M e . This is ensured by the transition rules in (β3) and (β4). (β3) lets BP ϕ mimic a run of M e on ω, i.e., if BP ϕ is in a state q 1 with γ on the top of the stack, and if (q 1 , γ, q 2) is a transition rule in M e , then, BP ϕ will move to state q 2 and pop γ from its stack. Note that popping γ allows us to check the rest of the word. In M e , a configuration is accepted if the run with the word ω reaches the final state in F e ; i.e., if BP ϕ reaches a state q ∈ F e with an empty stack, i.e., with a stack containing the bottom stack symbol . Thus, we add F e as a set of accepting control locations in BP ϕ . Since BP ϕ only recognizes infinite paths, (β4) adds a loop on every configuration q, where q ∈ F e . The intuition behind the transition rules in (β2) is similar to that of (β1). They correspond to the case where φ = ¬e.

Theorem 15. Given a PDS P = (P, Γ, ∆), a set of atomic propositions AP , a regular labelling function λ : AP → 2 P ×Γ * and a BCARET formula ϕ, we can compute an ABPDS BP ϕ such that for every configuration p, ω , p, ω λ ϕ iff BP ϕ has an accepting run from the configuration p, ϕ , ω .

Formal proof. The only difference with the previous case of standard valuations, where an atomic proposition holds at a configuration depends only on the control location of that configuration, not on its stack, comes from the interpretation of the atomic proposition e. We prove the following two directions.

(=⇒) Assume that p, ω λ ϕ, we need to prove that BP ϕ has an accepting run from p, ϕ , ω . In what follows, we show how this is ensured by induction on the structure of the BCARET formula ϕ.

Proof.

• Base case:

ϕ = e(e ∈ AP): p, ω λ ϕ =⇒ p, ω ∈ λ(e) =⇒ M e has an accepting run from the corresponding initial state p e =⇒ p e ω -→ δ q f where q f ∈ F e . We show that BP ϕ has an accepting run from p e , ω by induction on the length m of the stack ω, where m ≥ 0. Note that the bottom stack symbol is not counted in the length of ω. * m = 1 (note that will never be popped), then ω = . Therefore p e -→ δe q f . We obtain that p e , = ⇒ BP ϕ q f , = ⇒ BP ϕ q f , . As q f is an accepting control location (by F 1), we get that BP ϕ has an accepting run from p e , . In other words, BP ϕ has an accepting run from p e , ω . The property holds for this case. * Step. m >= 2, then, there exists γ ∈ Γ, u ∈ Γ * , q ∈ Q e s.t. ω = γu and Pushdown Systems

p e γ - → δe q u - → δe q f in M e
By applying the induction hypothesis on m, we get that BP ϕ has an accepting run from q, u . Also, we have p e , γu = ⇒ BP ϕ q, u (by the transition rules in (β3)). Therefore, BP ϕ has an accepting run from p e , ω . The property holds for this case.

Since BP ϕ has an accepting run from p e , ω and the fact that p, e , ω = ⇒ BP ϕ p e , ω (by transition rules in (α1)), we obtain that BP ϕ has an accepting run from p, e , ω . In other words, BP ϕ has an accepting run from p, ϕ , ω . The property holds for this case.

ϕ = ¬e(e ∈ AP). This case is similar to the case ϕ = e(e ∈ AP).

The property holds for this case.

• Induction Step: The proof is similar to the previous case of standard valuations. This is why ∆ contains ∆ and ∆ 0 (which are the transitions of BP ϕ that don't consider the atomic propositions).

(⇐=) Assume that BP ϕ has an accepting run from the configuration p, ϕ , ω , we need to prove that p, ω λ ϕ. In what follows, we prove this by induction on the structure of ϕ.

Proof.

• Base case:

ϕ = e(e ∈ AP).

Firstly, we will prove that for every q ∈ Q e , BP ϕ has an accepting run from q, ω implies that q ω -→ δe q f where q f ∈ F e . We show this by induction on the length m of the stack ω. * Basis. m = 1 (note that will never be popped), then, ω = .

Since BP ϕ has an accepting run from q, , we get that q, must have immediate successors. From all transition rules of BP ϕ , the unique way to have immediate successors of q, is from the rules in (β4), which means that q, = ⇒ BP ϕ q, . By the condition in (β4), we must have q ∈ F e =⇒ q -→ δe q f . The property holds in this case. * Step. m ≥ 2, then, there exists γ ∈ Γ, u ∈ Γ * , q ∈ Q e s.t. ω = γu. We need to show that q γu -→ δe q f where q f ∈ F e .

• BP ϕ has an accepting run from q, γu =⇒ q, γu must have immediate successors. From all transition rules of BP ϕ , the unique way to have immediate successors of q, γ is from the rules in (β3), which means that q, γu = ⇒ BP ϕ q , u where (q, γ, q) ∈ δ e =⇒ q γ -→ δe q . Therefore, BP ϕ has an accepting run iff (1) q γ -→ δe q (2) BP ϕ must have an accepting run from q , u .

• From (2), and by applying the induction hypothesis on m, we get that BP ϕ has an accepting run from q , u . This implies q u -→ δe q f where q f ∈ F e . • q γ -→ δe q and q u -→ δe q f where q f ∈ F e implies that q γu -→ δe q f where q f ∈ F e . The property holds for this case.

BP ϕ has an accepting run from p, e , ω =⇒ p, e , ω must have immediate successors. From all transition rules of BP ϕ , the unique way to have immediate successors of p, e , ω is from the rules in (α1), which means that p, e , ω = ⇒ BP ϕ p e , ω . In addition, BP ϕ must have an accepting run from p e , ω . From the above result, we obtain that p e ω -→ δe q f where q f ∈ F e , which means that p, ω ∈ L(M e) =⇒ p, ω ∈ λ(e) =⇒ p, ω λ e. In other words, p, ω λ ϕ. The property holds for this case.

• Induction Step: The proof is similar to the previous case of standard valuations. This is why ∆ contains ∆ and ∆ 0 (which are the transitions of BP ϕ that don't consider the atomic propositions).

Conclusion

In this chapter, we introduce the Branching temporal logic of CAlls and RETurns BCARET and show how it can be used to describe malicious behaviors that CARET and other specification formalisms cannot. We present an algorithm for "standard" BCARET model checking for PDSs where whether a configuration of a PDS satisfies an atomic proposition or not depends only on the control location of that configuration. Moreover, we consider BCARET model-checking for PDSs with regular valuations where the set of configurations on which an atomic proposition holds is a regular language. Our approach is based on reducing these problems to the emptiness problem of Alternating Büchi Pushdown Systems. Let AP = {a, b, c, ...} be a finite set of atomic propositions. Let AP D be a finite set of atomic predicates of the form b(α 1 , ..., α m) such that b ∈ AP and α i ∈ D for every 1 ≤ i ≤ m. Let AP X be a finite set of atomic predicates b(α 1 , ..., α n) such that b ∈ AP and α i ∈ X ∪ D for every 1 ≤ i ≤ n.

Let P = (P, Γ, ∆) be a Labelled PDS. Regular Variable Expressions (RVEs) over X ∪ Γ ar as defined in Section 3.1.1.

The Stack Branching temporal Predicate logic of CAlls and RETurns -SBPCARET

A SBPCARET formula is a BCARET formula where predicates and RVEs are used as atomic propositions and where quantifiers are applied to variables.

For technical reasons, we assume w.l.o.g. that formulas are written in positive normal form, where negations are applied only to atomic predicates, and we use the release operator R as the dual of the until operator U . From now on, we fix a finite set of variables X , a finite set of atomic propositions AP , a finite domain D, and a finite set of RVEs V. A SBPCARET formula is defined as follows, where v ∈ {g, a}, x ∈ X , e ∈ V, b(α 1 , ..., α n) ∈ AP X :

ϕ := true | f alse | b(α 1 , ..., α n) | ¬b(α 1 , ..., α n) | e | ¬e | ϕ ∨ ϕ | ϕ ∧ ϕ | ∀xϕ | ∃xϕ | EX v ϕ | AX v ϕ | E[ϕU v ϕ] | A[ϕU v ϕ] | E[ϕR v ϕ] | A[ϕR v ϕ]
Let λ : P -→ 2 AP D be a labelling function which associates each control location to a set of atomic predicates. Let ϕ be a SBPCARET formula over AP . Let p, ω be a configuration of P. Then we say that P satisfies ϕ at p, ω (denoted by p, ω |= λ ϕ) iff there exists an environment B ∈ B such that p, ω satisfies ϕ under B (denoted by p, ω |= B λ ϕ). The satisfiability relation of a SBPCARET formula ϕ at a configuration p 0 , ω 0 under the environment B w.r.t. the labelling function λ, denoted by p 0 , ω 0 B λ ϕ, is defined inductively as follows:

• p 0 , ω 0

• p 0 , ω 0 B λ E[ϕ 1 U g ϕ 2]
iff there exists a global-path π = p 0 , ω 0 p 1 , ω 1 p 2 , ω 2 ... of P starting from p 0 , ω 0 s.t. ∃i ≥ 0, p i , ω i B λ ϕ 2 and for every 0 ≤ j < i, p j , ω j B λ ϕ 1

• p 0 , ω 0 B λ A[ϕ 1 U g ϕ 2]
iff for every global-path π = p 0 , ω 0 p 1 , ω 1 p 2 , ω 2 ...of P starting from p 0 , ω 0 , ∃i ≥ 0, p i , ω i B λ ϕ 2 and for every 0 ≤ j < i, p j , ω j B λ ϕ 1

• p 0 , ω 0 B λ E[ϕ 1 R g ϕ 2]
iff there exists a global-path π = p 0 , ω 0 p 1 , ω 1 p 2 , ω 2 ... of P starting from p 0 , ω 0 s.t. for every i ≥ 0, if p i , ω i B λ ϕ 2 then there exists 0 ≤ j < i s.t. p j , ω j B λ ϕ 1

• p 0 , ω 0 B λ A[ϕ 1 R g ϕ 2]
iff for every global-path π = p 0 , ω 0 p 1 , ω 1 p 2 , ω 2 ... of P starting from p 0 , ω 0 , for every i ≥ 0, if p i , ω i B λ ϕ 2 then there exists 0 ≤ j < i s.t. p j , ω j B λ ϕ 1 • p 0 , ω 0 B λ EX a ϕ iff there exists an abstract-successor p , ω of p 0 , ω 0 such that p , ω

B λ ϕ • p 0 , ω 0 B λ AX a ϕ iff p , ω B λ ϕ for every abstract-successor p , ω of p 0 , ω 0 • p 0 , ω 0 B λ E[ϕ 1 U a ϕ 2]
iff there exists an abstract-path π = p 0 , ω 0 p 1 , ω 1 p 2 , ω 2 ... of P starting from p 0 , ω 0 s.t. ∃i ≥ 0, p i , ω i B λ ϕ 2 and for every 0 ≤ j < i, p j , ω j B λ ϕ 1

• p 0 , ω 0 B λ A[ϕ 1 U a ϕ 2]
iff for every abstract-path π = p 0 , ω 0 p 1 , ω 1 p 2 , ω 2 ... of P, ∃i ≥ 0, p i , ω i B λ ϕ 2 and for every 0 ≤ j < i, p j , ω j B λ ϕ 1 118 Chapter 5. BCARET Model Checking for Malware Detection

• p 0 , ω 0 B λ E[ϕ 1 R a ϕ 2]
iff there exists an abstract-path π = p 0 , ω 0 p 1 , ω 1 p 2 , ω 2 ... of P starting from p 0 , ω 0 s.t. for every i ≥ 0, if p i , ω i B λ ϕ 2 then there exists 0 ≤ j < i s.t. p j , ω j B λ ϕ 1

• p 0 , ω 0 B λ A[ϕ 1 R a ϕ 2]
iff for every abstract-path π = p 0 , ω 0 p 1 , ω 1 p 2 , ω 2 ... of P starting from p 0 , ω 0 , for every i ≥ 0, if p i , ω i B λ ϕ 2 then there exists 0 ≤ j < i s.t. p j , ω j B λ ϕ 1

Other SBPCARET operators can be expressed by the above operators:

EF g ϕ = E[true U g ϕ], EF a ϕ = E[true U a ϕ], AF g ϕ = A[true U g ϕ], AF a ϕ = A[trueU a ϕ],...

Closure.

Given a SBPCARET formula ϕ, the closure Cl(ϕ) is the set of all subformulae of ϕ, including ϕ.

Let AP + (ϕ) = {b(α 1 , ..., α n) ∈ AP X | b(α 1 , ..., α n) ∈ Cl(ϕ)}; AP -(ϕ) = {b(α 1 , ..., α n) ∈ AP X | ¬b(α 1 , ..., α n) ∈ Cl(ϕ)}, Reg + (ϕ) = {e ∈ V | e ∈ Cl(ϕ)}, Reg -(ϕ) = {e ∈ V | ¬e ∈ Cl(ϕ)}

Modelling Malicious Behaviours Using SBP-CARET

In this section, we show how SBPCARET can be used to succinctly specify the malicious behavior presented in Section 4.2.

Spyware Behavior. The BCARET formula ϕ sb described in Section 4.2 can be represented by the SBPCARET formula:

ϕ sb = ∃xEF g call(F indF irstF ileA) ∧ EX a (eax = x) ∧ AF a call(GetLastError) ∨ call(F indF irstF ileA) ∨ call(F indN extF ileA) ∧ xΓ *
This formula states that there is a call to the API F indF irstF ileA with the return value x (the search handle), then, in all runs starting from that call, there will be a either a call to the API function GetLastError or a call to the function F indF irstF ileA or a call to the function F indN extF ileA in which x is used as a parameter. Note that in this case, x is the memory address containing the values of search handles. It can be seen that ϕ sb is much more compact than ϕ sb .

SBPCARET Model-Checking for Pushdown Systems

In this section, we show how to do SBPCARET model-checking for PDSs. Let then P be a PDS, ϕ be a SBPCARET formula, and V be the set of RVEs occuring in ϕ. We follow the idea of [START_REF] Song | Pushdown model checking for malware detection[END_REF] and use Variable Automata to represent RVEs.

Variable Automata

Given a PDS P = (P, Γ, ∆) s.t. Γ ⊆ D, a Variable Automaton (VA) [START_REF] Song | Pushdown model checking for malware detection[END_REF] is a tuple (Q, Γ, δ, s, F), where Q is a finite set of states, Γ is the input alphabet, s ∈ Q is an initial state; F ⊆ Q is a finite set of accepting states; and δ is a finite set of transition rules of the form p α -→ {q 1 , ..., q n } where α can be x, ¬x, or γ, for any x ∈ X and γ ∈ Γ.

Let B ∈ B. A run of VA on a word γ 1 , ..., γ m under B is a tree of height m whose root is labelled by the initial state s, and each node at depth k labelled by a state q has h children labelled by p 1 , ..., p h respectively, such that:

• either q γ k -→ {p 1 , ..., p h } ∈ δ and γ k ∈ Γ;
• or q x -→ {p 1 , ..., p h } ∈ δ, x ∈ X and B(x) = γ k ;

• or q ¬x -→ {p 1 , ..., p h } ∈ δ, x ∈ X and B(x) = γ k .

A branch of the tree is accepting iff the leaf of the branch is an accepting state. A run is accepting iff all its branches are accepting. A word ω ∈ Γ * is accepted by a VA under an environment B ∈ B iff the VA has an accepting run on the word ω under the environment B.

The language of a VA M , denoted by L(M), is a subset of (P × Γ *) × B. (p, ω , B) ∈ L(M) iff M accepts the word ω under the environment B.

Theorem 17. [START_REF] Song | Pushdown model checking for malware detection[END_REF] For every regular expression e ∈ V, we can compute in polynomial time a Variable Automaton M s.t. L(M) = L(e).

Theorem 18. [START_REF] Song | Pushdown model checking for malware detection[END_REF] VAs are closed under boolean operations.

Symbolic Alternating Büchi Pushdown Systems (SABPDSs).

Definition 17. A Symbolic Alternating Büchi Pushdown System (SABPDS) is a tuple BP = (P, Γ, ∆, F), where P is a set of control locations, Γ ⊆ D is stack alphabet, F ⊆ P × 2 B is a set of accepting control locations and ∆ is a finite set of transitions of the form p, γ R -→ { p 1 , ω 1 , ..., p n , ω n } where p ∈ P , γ ∈ Γ, for every 1 ≤ i ≤ n: p i ∈ P , ω i ∈ Γ * ; and R : (B) n → 2 B is a function that maps a tuple of environments (B 1 , ..., B n) to a set of environments.

A configuration of a SABPDS BP is a tuple p, B , ω , where p ∈ P is the current control location, B ∈ B is an environment and ω ∈ Γ * is the current stack content. Let p, γ R -→ { p 1 , ω 1 , ..., p n , ω n } be a rule of ∆, then, for every ω ∈ Γ * , B, B 1 , ..., B n ∈ B, if B ∈ R(B 1 , ..., B n), then the configuration p, B , γω (resp. { p 1 , B 1 , ω 1 ω , ..., p n , B n , ω n ω }) is an immediate predecessor (resp. successor) of { p 1 , B 1 , ω 1 ω , ..., p n , B n , ω n ω } (resp. p, B , γω).

A run ρ of a SABPDS BP starting form an initial configuration p 0 , B 0 , ω 0 is a tree whose root is labelled by p 0 , B 0 , ω 0 , and whose other nodes are labelled by elements in P × B × Γ * . If a node of ρ is labelled by a configuration p, B , ω and has n children labelled by p 1 , B 1 , ω 1 , ..., p n , B n , ω n respectively, then, p, B , ω must be a predecessor of { p 1 , B 1 , ω 1 , ..., p n , B n , ω n } in BP. A path of a run ρ is an infinite sequence of configurations c 0 c 1 c 2 ... s.t. c 0 is the root of ρ and c i+1 is one of the children of c i for every i ≥ 0. A path is accepting iff it visits infinitely often configurations with control locations in F . A run ρ is accepting iff every path of ρ is accepting. The language of BP, L(BP), is the set of configurations c s.t. BP has an accepting run starting from c.

BP defines the reachability relation = ⇒ BP : 2 (P ×B)×Γ * → 2 (P ×B)×Γ * as follows:

(1) c = ⇒ BP {c} for every c ∈ P × B × Γ * , (2) c = ⇒ BP C if C is an immediate successor of c; (3) if c = ⇒ BP {c 1 , c 2 , ..., c n } and c i = ⇒ BP C i for every 1 ≤ i ≤ n, then c = ⇒ BP n i=1 C i . Given c 0 = ⇒ BP C
, then, BP has an accepting run from c 0 iff BP has an accepting run from c for every c ∈ C . Theorem 19. [START_REF] Song | Pushdown model checking for malware detection[END_REF] The membership problem of SABPDS can be solved effectively.

Functions of R.

In what follows, we define several functions of R which will be used in the next sections. These functions were first defined in [START_REF] Song | Pushdown model checking for malware detection[END_REF].

1. id(B) = {B}. This is the identity function.

2.

equal(B 1 , ..., B n) = {B 1 } if B i = B j for every 1 ≤ i, j ≤ n,

∅ otherwise

This function checks whether all the environments are equal and returns {B 1 } (which is also equal to B i for every i). Otherwise, it returns the emptyset.

3.

meet x {c 1 ,...,cn} (B 1 , ..., B n) =      Abs x (B 1) if B i (x) = c i for 1 ≤ i ≤ n,
and B i (y) = B j (y) for y = x, 1 ≤ i, j ≤ n;

∅ otherwise This function checks whether (1) B i (x) = c i for every 1 ≤ i ≤ n (2) for every y = x; every 1 ≤ i, j ≤ n B i (y) = B j (y). If the conditions are satisfied, it returns Abs x (B 1)1 , otherwise it returns the emptyset.

4.

join x c (B 1 , ..., B n) =      B 1 if B i (x) = c for 1 ≤ i ≤ n and B i = B j for 1 ≤ i, j ≤ n;
∅ otherwise This function checks whether B i (x) = c for every i. If this condition is satisfied, equal(B 1 , ..., B n) is returned, otherwise, the emptyset is returned.

5

.

join ¬x c (B 1 , ..., B n) =            B 1 if B i (x) = c for 1 ≤ i ≤ n and B i = B j for 1 ≤ i, j ≤ n;
∅ otherwise This function checks whether B i (x) = c for every i. If this condition is satisfied, equal(B 1 , ..., B n) is returned, otherwise, the emptyset is returned.

From SBPCARET model checking of PDSs to the membership problem in SABPDSs

Let P = (P, Γ, ∆) be a PDS. We suppose w.l.o.g. that P has a bottom stack symbol that is never popped from the stack. Let AP be a set of atomic propositions. Let ϕ be a SBPCARET formula over AP , λ : P -→ 2 AP D be a labelling function. Given a configuration p 0 , ω 0 , we propose in this section an algorithm to check whether p 0 , ω 0 λ ϕ, i.e., whether there exists an environment B s.) = L(e i). In addition, for every k + 1 ≤ j ≤ m, we can compute a VA M ¬e j = (Q ¬e j , Γ, δ ¬e j , s ¬e j , F ¬e j) s.t. L(M ¬e j) = (P × Γ *) × B \ L(e j). Let M be the union of all these automata, S and F be respectively the union of all states and final states of these automata.

Let BP ϕ = (P , Γ , ∆ , F) be the SABPDS defined as follows:

• P = P ∪ (P × Cl(ϕ)) ∪ S ∪ {p ⊥ } • Γ = Γ ∪ (Γ × Cl(ϕ)) ∪ {γ ⊥ } • F = F 1 ∪ F 2 ∪ F 3 ∪ F 4 where -F 1 = { p, b(α 1 , ..., α n) , β | b(α 1 , ..., α n) ∈ AP + (ϕ), and β = {B ∈ B | b(B(α 1), ..., B(α n)) ∈ λ(p)} -F 2 = { p, ¬b(α 1 , ..., α n) , β | b(α 1 , ..., α n) ∈ AP -(ϕ), and β = {B ∈ B | b(B(α 1), ..., B(α n)) / ∈ λ(p)} -F 3 = P × Cl R (ϕ) × B where Cl R (ϕ) is the set of formulas of Cl(ϕ) in the form E[ϕ 1 R v ϕ 2] or A[ϕ 1 R v ϕ 2] (v ∈ {g, a}) -F 4 = F × B
The transition relation ∆ is the smallest set of transition rules defined as follows: For every p ∈ P , φ ∈ Cl(ϕ), γ ∈ Γ and t ∈ {call, ret, int}:

(1) If φ = b(α 1 , ..., α n), then, p, φ , γ id -→ p, φ , γ ∈ ∆ (2) If φ = ¬b(α 1 , ..., α n), then, p, φ , γ id -→ p, φ , γ ∈ ∆ (3) If φ = φ 1 ∧ φ 2 , then, p, φ , γ equal ---→ [p, φ 1 , γ , p, φ 2 , γ] ∈ ∆
(7) If φ = EX g φ 1 , then p, φ , γ id -→ q, φ 1 , ω ∈ ∆ for every p, γ t - → q, ω ∈ ∆ (8) If φ = AX g φ 1 , then, p, φ , γ equal ---→ [q 1 ,
φ 1 , ω 1 , ..., q n , φ 1 , ω n] ∈ ∆ , where for every 1 ≤ i ≤ n, p, γ t -→ q i , ω i ∈ ∆ and these transitions are all the transitions of ∆ that are in the form p, γ t -→ q, ω that have p, γ on the left hand side.

(9) If φ = EX a φ 1 , then, (a) p, φ , γ id -→ q, γ γ , φ 1 ∈ ∆ for every p, γ call --→ q, γ γ ∈ ∆

(b) p, φ , γ id -→ q, φ 1 , ω ∈ ∆ for every p, γ int -→ q, ω ∈ ∆ (c) p, φ , γ id -→ p ⊥ , γ ⊥ ∈ ∆ for every p, γ ret -→ q , ε ∈ ∆ (10) If φ = AX a φ 1 , then, p, φ , γ equal ---→ [p 1 , γ 1 γ 1 , φ 1 , ..., p m , γ m γ m , φ 1 , q 1 ,
φ 1 , ω 1 , ..., q n , φ 1 , ω n , p ⊥ , γ ⊥ , ..., p ⊥ , γ ⊥] ∈ ∆ , where p ⊥ , γ ⊥ is repeated k times in the right-hand side s.t.:

(a) for every 1 ≤ i ≤ m, p, γ call --→ p i , γ i γ i ∈ ∆ and these transitions are all the transitions of ∆ that are in the form p, γ call --→ q, γ γ that have p, γ on the left hand side.

(b) for every 1 ≤ i ≤ n, p, γ int -→ q i , ω i ∈ ∆ and these transitions are all the transitions of ∆ that are in the form p, γ int -→ q, ω that have p, γ on the left hand side.

(c) for every 1 ≤ i ≤ k, p, γ ret -→ q i , ε ∈ ∆ and these transitions are all the transitions of ∆ that are in the form p, γ ret -→ q , ε that have p, γ on the left hand side.

124 Chapter 5. BCARET Model Checking for Malware Detection

(11) If φ = E[φ 1 U g φ 2], then, (a) p, φ , γ id -→ p, φ 2 , γ ∈ ∆ (b) p, φ , γ equal ---→ [p, φ 1 , γ , q, φ , ω] ∈ ∆ for every p, γ t - → q, ω ∈ ∆ (12) If φ = E[φ 1 U a φ 2], then, (a) p, φ , γ id -→ p, φ 2 , γ ∈ ∆ (b) p, φ , γ equal ---→ [p, φ 1 , γ , q, γ γ , φ] ∈ ∆ for every p, γ call --→ q, γ γ ∈ ∆ (c) p, φ , γ equal ---→ [p, φ 1 , γ , q, φ , ω] ∈ ∆ for every p, γ int -→ q, ω ∈ ∆ (d) p, φ , γ id -→ p ⊥ , γ ⊥ ∈ ∆ for every p, γ ret -→ q , ε ∈ ∆ (13) If φ = A[φ 1 U g φ 2], then, (a) p, φ , γ id -→ p, φ 2 , γ ∈ ∆ (b) p, φ , γ equal ---→ [p, φ 1 , γ ; q 1 ,
φ , ω 1 , ..., q n , φ , ω n] ∈ ∆ where for every 1 ≤ i ≤ n, p, γ t -→ q i , ω i ∈ ∆ and these transitions are all the transitions of ∆ that are in the form p, γ t -→ q, ω that have p, γ on the left hand side.

(14) If φ = A[φ 1 U a φ 2], then, (a) p, φ , γ id -→ p, φ 2 , γ ∈ ∆ (b) p, φ , γ equal ---→ [p, φ 1 , γ ; p 1 , γ 1 γ 1 , φ , ..., p m , γ m γ m , φ ; q 1 ,
φ , ω 1 , ..., q n , φ , ω n , p ⊥ , γ ⊥ , ..., p ⊥ , γ ⊥] ∈ ∆ , where p ⊥ , γ ⊥ is repeated k times in the right-hand side s.t.:

• for every 1 ≤ i ≤ m, p, γ call --→ p i , γ i γ i ∈ ∆ and these transitions are all the transitions of ∆ that are in the form p, γ call --→ q, γ γ that have p, γ on the left hand side.

• for every 1 ≤ i ≤ n, p, γ int -→ q i , ω i ∈ ∆ and these transitions are all the transitions of ∆ that are in the form p, γ int -→ q, ω that have p, γ on the left hand side.

• for every 1 ≤ i ≤ k, p, γ ret -→ q i , ε ∈ ∆ and these transitions are all the transitions of ∆ that are in the form p, γ ret -→ q , ε that have p, γ on the left hand side.

(15

) If φ = E[φ 1 R g φ 2]
, then, we add to ∆ the rule:

(a) p, φ , γ equal ---→ [p, φ 2 , γ , p, φ 1 , γ] ∈ ∆ (b) p, φ , γ equal ---→ [p, φ 2 , γ , q, φ , ω] ∈ ∆ for every p, γ t - → q, ω ∈ ∆ (16) If φ = A[φ 1 R g φ 2]
, then, we add to ∆ the rule:

(a) p, φ , γ equal ---→ [p, φ 2 , γ , p, φ 1 , γ] ∈ ∆ (b) p, φ , γ equal ---→ [p, φ 2 , γ ; q 1 ,
φ , ω 1 , ..., q n , φ , ω n] ∈ ∆ where for every 1 ≤ i ≤ n, p, γ t -→ q i , ω i ∈ ∆ and these transitions are all the transitions of ∆ that are in the form p, γ t -→ q, ω that have p, γ on the left hand side.

(17

) If φ = E[φ 1 R a φ 2], then, (a) p, φ , γ equal ---→ [p, φ 2 , γ , p, φ 1 , γ] ∈ ∆ (b) p, φ , γ equal ---→ [p, φ 2 , γ , q, γ γ , φ] ∈ ∆ for every p, γ call --→ q, γ γ ∈ ∆ (c) p, φ , γ equal ---→ [p, φ 2 , γ , q, φ , ω] ∈ ∆ for every p, γ int -→ q, ω ∈ ∆ (d) p, φ , γ id -→ p ⊥ , γ ⊥ ∈ ∆ for every p, γ ret -→ q , ε ∈ ∆ (18) If φ = A[φ 1 R a φ 2], then, (a) p, φ , γ equal ---→ [p, φ 2 , γ , p, φ 1 , γ] ∈ ∆ (b) p, φ , γ equal ---→ [p, φ 2 , γ ; p 1 , γ 1 γ 1 , φ , .
.., p m , γ m γ m , φ ; q 1 , φ , ω 1 , ..., q n , φ , ω n , p ⊥ , γ ⊥ , ..., p ⊥ , γ ⊥] ∈ ∆ , where p ⊥ , γ ⊥ is repeated k times in the right-hand side s.t.:

• for every 1 ≤ i ≤ m, p, γ call --→ p i , γ i γ i ∈ ∆ and these transitions are all the transitions of ∆ that are in the form p, γ call --→ q, γ γ that have p, γ on the left hand side.

• for every 1 ≤ i ≤ n, p, γ int -→ q i , ω i ∈ ∆ and these transitions are all the transitions of ∆ that are in the form p, γ int -→ q, ω that have p, γ on the left hand side.

• for every 1 ≤ i ≤ k, p, γ ret -→ q i , ε ∈ ∆ and these transitions are all the transitions of ∆ that are in the form p, γ ret -→ q , ε that have p, γ on the left hand side.

(19) for every p, γ ret -→ q, ε ∈ ∆:

• q, γ , φ 1 id -→ q, φ 1 , γ ∈ ∆ for every γ ∈ Γ, φ 1 ∈ Cl(ϕ) (20) p ⊥ , γ ⊥ id -→ p ⊥ , γ ⊥ ∈ ∆ (21) for every p, γ t - → q, ω ∈ ∆: p, γ id -→ q, ω ∈ ∆ (22) If φ = e,
-→ {q 1 , .., q n } in M: q, γ R - → [q 1 , ε , ..., q n , ε] ∈ ∆ , where: (a) R = equal iff α = γ (b) R = join x γ iff α = x ∈ X (c) R = join ¬x
γ iff α = ¬x and x ∈ X (25) for every q ∈ F, q, id -→ q, ∈ ∆ Roughly speaking, the SABPDS BP ϕ is a kind of product between P and the SBPCARET formula ϕ which ensures that BP ϕ has an accepting run from p, ϕ , B , ω iff the configuration p, ω satisfies ϕ under the environment B. The form of the control locations of BP ϕ is p, φ , B where φ ∈ Cl(ϕ), B ∈ B. Let us explain the intuition behind our construction:

• If φ = b(α 1 , ..., α n), then, for every ω ∈ Γ * , p, ω B λ φ iff b(B(α 1), ..., B(α n)) ∈ λ(p).
Thus, for such a B, BP ϕ should have an accepting run from p, b(α 1 , ..., α n) , B , ω iff b(B(α 1), ..., B(α n)) ∈ λ(p). This is ensured by the transition rules in (1) which add a loop at p, b(α 1 , ..., α n) , B , ω and the fact that p, b(α 1 , ..., α n) , B ∈ F (because it is in F 1). The function id in (1) ensures that the environments before and after are the same.

• If φ = ¬b(α 1 , ..., α n), then, for every ω ∈ Γ * , p, ω B λ φ iff b(B(α 1), ..., B(α n)) / ∈ λ(p). Thus, for such a B, BP ϕ should have an accepting run from p, ¬b(α 1 , ..., α n) , B , ω iff b(B(α 1), ..., B(α n)) / ∈ λ(p). This is ensured by the transition rules in (2) which add a loop at p, ¬b(α 1 , ..., α n) , B , ω and the fact that p, ¬b(α 1 , ..., α n) , B ∈ F (because it is in F 2). The function id in (2) ensures that the environments before and after are the same.

• If φ = φ 1 ∧ φ 2 , then, for every ω ∈ Γ * , p, ω B λ φ iff (p, ω B λ φ 1 and p, ω B λ φ 2)
. This is ensured by the transition rules in (3) stating that BP ϕ has an accepting run from p, φ 1 ∧ φ 2 , B , ω iff BP ϕ has an accepting run from both p, φ 1 , B , ω and p, φ 2 , B , ω . (4) is similar to (3). • If φ = EX g φ 1 , then, for every ω ∈ Γ * , p, ω B λ φ iff there exists an immediate successor p , ω of p, ω s.t. p , ω B λ φ 1 . This is ensured by the transition rules in (7) stating that BP ϕ has an accepting run from p, EX g φ 1 , B , ω iff there exists an immediate successor p , ω of p, ω s.t. BP ϕ has an accepting run from p , φ 1 , B , ω . (8) is similar to (7).

• If φ = E[φ 1 U g φ 2], then, for every ω ∈ Γ * , p, ω B λ φ iff p, ω B λ φ 2 or (p, ω B
λ φ 1 and there exists an immediate successor p , ω of p, ω s.t. p , ω B λ φ). This is ensured by the transition rules in (11) stating that BP ϕ has an accepting run from p, E[φ 1 U g φ 2] , B , ω iff BP ϕ has an accepting run from p, φ 2 , B , ω (by the rules in (11)(a)) or (BP ϕ has an accepting run from both p, φ 1 , B , ω and p , φ , B , ω where p , ω is an immediate successor of p, ω) (by the rules in (11)(b)). (13) is similar to (11).

• If φ = E[φ 1 R g φ 2]
, then, for every ω ∈ Γ * , p, ω B λ φ iff (p, ω B λ φ 2 and p, ω B λ φ 1) or (p, ω B λ φ 2 and there exists an immediate successor p , ω of p, ω s.t. p , ω B λ φ). This is ensured by the transition rules in (15) stating that BP ϕ has an accepting run from p, E[φ 1 R g φ 2] , B , ω iff BP ϕ has an accepting run from both p, φ 2 , B , ω and p, φ 1 , B , ω (by the rules in (15)(a)); or BP ϕ has an accepting run from both p, φ 2 , B , ω and p , φ , B , ω where p , ω is an immediate successor of p, ω (by the rules in (15)(b)). In addition, for R g formulas, the stop condition is not required, i.e, for a formula φ 1 R g φ 2 that is applied to a specific run, we don't require that φ 1 must eventually hold. To ensure that the runs on which φ 2 always holds are accepted, we add p, φ , B to the Büchi accepting condition F (via the subset F 3 of F). (16) is similar to (15).

• If φ = EX a φ 1 , then, for every ω ∈ Γ * , p, ω B λ φ iff there exists an abstract-successor p k , ω k of p, ω s.t. p k , ω k B λ φ 1 (A1) . Let π ∈ T races(p, ω) be a run starting from p, ω on which p k , ω k is the abstract-successor of p, ω . Over π, let p , ω be the immediate successor of p, ω . In what follows, we explain how we can ensure this.

1. Firstly, we show that for every abstract-successor p k , ω k = ⊥ of p, ω , p, EX a φ 1 , B , ω = ⇒ BPϕ p k , φ 1 , B , ω k where B ∈ B. There are two possibilities:

-If p, ω = ⇒ P p , ω corresponds to a call statement. p, φ , B , ω = ⇒ BPϕ p k , φ 1 , B , ω k is ensured by the rules in (9)(a), the rules in (21) and the rules in (19) as follows: rules in (9)(a) allow to record φ 1 in the return point of the call, rules in (21) allow to mimic the run of the PDS P and rules in (19) allow to extract and put back φ 1 when the return-point is reached. The details of how this works are similar to the corresponding case in Section 4.3.2.

-If p, ω = ⇒ P p , ω corresponds to a simple statement. Then, the abstract successor of p, ω is its immediate successor p , ω . Thus, we get that p k , ω k = p , ω . From the transition rules (9)(b), we get that p, EX a φ 1 , B , ω = ⇒ BPϕ p , φ 1 , B , ω . Therefore, p, EX a φ 1 , B , ω = ⇒ BPϕ p k , φ 1 , B , ω k . The property holds for this case.

2. Now, let us consider the case where p k , ω k , the abstract successor of p, ω , is ⊥. This case occurs when p, ω = ⇒ P p , ω corresponds to a return statement. Then, one abstract successor of p, ω is ⊥. Note that ⊥ does not satisfy any formula, i.e., ⊥ does not satisfy φ 1 . Therefore, from p, EX a φ 1 , B , ω , we need to ensure that the path of BP ϕ reflecting the possibility in (A1) that p k , ω k B λ φ 1 is not accepted. To do this, we exploit additional trap configurations. We use p ⊥ and γ ⊥ as trap control location and trap stack symbol to obtain these trap configurations. The details of how this works are similar to the corresponding case in Section 4.3.2.

In summary, for every abstract-successor

p k , ω k of p, ω , if p k , ω k = ⊥, then, p, EX a φ 1 , B , ω = ⇒ BPϕ p k , φ 1 , B , ω k ; otherwise p, EX a φ 1 , B , ω = ⇒ BPϕ p ⊥ , B , γ ⊥ ω = ⇒ BPϕ p ⊥ , B , γ ⊥ ω
which is not accepted by BP ϕ . Therefore, (A1) is ensured by the transition rules in (9) stating that BP ϕ has an accepting run from p, EX a φ 1 , B , ω iff there exists an abstract successor p k , ω k of p, ω s.t. BP ϕ has an accepting run from p k , φ 1 , B , ω k .

• If φ = AX a φ 1 : this case is ensured by the transition rules in (10) together with (19) and (21). The intuition of (10) is similar to that of (9).

• If φ = E[φ 1 U a φ 2], then, for every ω ∈ Γ * , p, ω B λ φ iff p, ω B λ φ 2 or (p, ω
k , ω k of p, ω , if p k , ω k = ⊥, then, p, E[φ 1 U a φ 2] , B , ω = ⇒ BPϕ { p, φ 1 , B , ω , p k , E[φ 1 U a φ 2] , B , ω k }; otherwise p, E[φ 1 U a φ 2] , B , ω = ⇒ BPϕ p ⊥ , B , γ ⊥ ω = ⇒ BPϕ p ⊥ , B
, γ ⊥ ω which is not accepted by BP ϕ . Therefore, (A2) is ensured by the transition rules in (12) stating that BP ϕ has an accepting run from p, E[φ 1 U a φ 2] , B , ω iff BP ϕ has an accepting run from p, φ 2 , B , ω ; or BP ϕ has an accepting run from both p, φ 1 , B , ω and p k , E[φ 1 U a φ 2] , B , ω k where p k , ω k is an abstract successor of p, ω . • The intuition behind the rules corresponding to the cases φ

• If φ = E[φ 1 R a φ 2], then, for every ω ∈ Γ * , p, ω B λ φ iff (p, ω B λ φ 1 and p, ω B λ φ 2) or (p, ω B λ φ 1 and there exists an abstract successor p k , ω k of p, ω s.t. p k , ω k B λ φ) (A3) . Similar to the case φ = E[φ 1 R a φ 2] in Section 4.3.2, we get that for every abstract-successor p k , ω k of p, ω , if p k , ω k = ⊥, then, p, E[φ 1 R a φ 2] , B , ω = ⇒ BPϕ { p, φ 2 , B , ω , p k , E[φ 1 R a φ 2] , B , ω k }; otherwise p, E[φ 1 R a φ 2] , B , ω = ⇒ BPϕ p ⊥ , B , γ ⊥ ω = ⇒ BPϕ p ⊥ , B ,
= A[φ 1 U a φ 2], φ = A[φ 1 R a φ 2]
are similar to the previous case.

• If φ = e(e ∈ V). Given p ∈ P , e ∈ V, ω ∈ Γ * , we get that the SABPDS BP ϕ should accept p, e , B , ω iff (p, ω , B) ∈ L(M e). To check whether (p, ω , B) ∈ L(M e), we let BP ϕ go to state s e , the initial state corresponding to p in M e by adding rules in (22); and then, from this state, we will check whether ω is accepted by M e under B. This is ensured by the transition rules in (24) and (25). (24) lets BP ϕ mimic a run of M e on ω under B, which includes three possibilities:

if BP ϕ is in a state q, B with γ on the top of the stack where γ ∈ Γ, and if q γ -→ {q 1 , ..., q n } is a transition rule in M e , then, BP ϕ will move to states q 1 , B , ..., q n , B and pop γ from its stack. Note that popping γ allows us to check the rest of the word. This is ensured by the rules corresponding to (24)(a). Then function equal ensures that all these environments are the same.

if BP ϕ is in a state q, B with γ on the top of the stack, and if q

x -→ {q 1 , ..., q n } is a transition rule in M e where x ∈ X , then, BP ϕ can mimic a run of M e under B iff B(x) = γ. If this condition is guaranteed, BP ϕ will move to states q 1 , B , ..., q n , B and pop γ from its stack. Again, popping γ allows us to check the rest of the word. This is ensured by the rules corresponding to (24)(b). Then function join x γ ensures that all these environments are the same B and B(x) = γ.

-Similar to (24)(b), (24)(c) deals with the cases where q ¬x -→ {q 1 , ..., q n } is a transition rule in M e where x ∈ X .

In each VA M e , a configuration is accepted if the run with the word ω reaches a final state in F e ; i.e., if BP ϕ reaches a state q ∈ F e with an empty stack, i.e., with a stack containing the bottom stack symbol . Thus, we should add F e × B as a set of accepting control locations in BP ϕ . This is why F 4 is a set of accepting control locations. In addition, since BP ϕ only recognizes infinite paths, (25) adds a loop on every configuration q, B , where q ∈ F e .

• If φ = ¬e(e ∈ V). This case is ensured by the transition rules in (23), (24) and (25). The intuition behind this case is similar to the case φ = e.

The Büchi accepting condition.

The elements of the Büchi accepting condition set F of BP ϕ ensure the liveness requirements of until-formulas on infinite global paths, infinite abstract paths as well as on finite abstract paths.

• With regards to infinite global paths, the fact that the liveness requirement φ 2 in E[φ 1 U g φ 2] is eventually satisfied in P is ensured by the fact that p, E[φ 1 U g φ 2] , B doesn't belong to F . The intuition behind this case is similar to the corresponding case in Section 4.3.2.

• With regards to infinite abstract paths, the fact that the liveness requirement φ 2 in E[φ 1 U a φ 2] is eventually satisfied in P is ensured by the fact that p, E[φ 1 U a φ 2] , B doesn't belong to F . The intuition behind this case is similar to the intuition of

E[φ 1 U g φ 2]. The liveness requirements of A[φ 1 U a φ 2] are ensured as for the case of E[φ 1 U a φ 2].
• With regards to finite abstract paths p 0 , ω 0 p 1 , ω 1 ... p m , ω m where p m , ω m = ⇒ P p m+1 , ω m+1 corresponds to a return statement, the fact that the liveness requirement φ 2 in E[φ 1 U a φ 2] is eventually satisfied in P is ensured by the fact that p ⊥ , B doesn't belong to F . The intuition behind this case is similar to the corresponding case in Section 4.3.2.

• With regards to finite abstract paths p 0 , ω 0 p 1 , ω 1 ... p m , ω m where p m , ω m = ⇒ P p m+1 , ω m+1 corresponds to a call statement but this call never reaches its corresponding return-point, the fact that the liveness requirement φ 2 in E[φ 1 U a φ 2] is eventually satisfied in P is ensured by the fact that p, B / ∈ F where p ∈ P , B ∈ B. The intuition behind this case is similar to the corresponding case in Section 4.3.2.

Theorem 20. Given a PDS P = (P, Γ, ∆), a set of atomic propositions AP , a labelling function λ : AP D → 2 P and a SBPCARET formula ϕ, we can compute an SABPDS BP ϕ such that for every configuration p, ω , for every B ∈ B, p, ω B λ ϕ iff BP ϕ has an accepting run from the configuration p, ϕ , B , ω .

Formal proof: Given c 0 = ⇒ BPϕ {c 1 , c 2 , ..., c n } where for every 0 ≤ i ≤ n, c i is a configuration of the SABPDS BP ϕ . For presentation reasons, we also write c 0 = ⇒ BPϕ c 1 ∧ c 2 ∧ ... ∧ c n . We prove the following two directions:

(=⇒) Assume that p, ω B λ ϕ, we need to prove that BP ϕ has an accepting run from p, ϕ , B , ω . In what follows, we show how this is ensured by induction on the structure for the SBPCARET formula ϕ.

Proof.

• Base case:

-ϕ = b(α 1 , ..., α n): p, ω B λ ϕ =⇒ b(B(α 1), ..., B(α n)) ∈ λ(p).
According to the transition rule in (1), we get p, b(α 1 , ..., α n) , B , ω = ⇒ BPϕ p, b(α 1 , ..., α n) , B , ω . In addition, we get that p, b(α 1 , ..., α n) , B ∈ F for every b(B(α 1), ..., B(α n)) ∈ λ(p). Therefore, BP ϕ has an accepting run from p, b(α 1 , ..., α n) , B , ω . In other words, BP ϕ has an accepting run from p, ϕ , B , ω The property holds for this case.

-ϕ = ¬b(α 1 , ..., α n): p, ω B λ ϕ =⇒ b(B(α 1), ..., B(α n)) / ∈ λ(p).
According to the transition rule in (2), we get p, ¬b(α 1 , ..., α n) , B , ω = ⇒ BPϕ p, ¬b(α 1 , ..., α n) , B , ω . In addition, we get that p, ¬b(α 1 , ..., α n) , B ∈ F for every b(B(α 1), ..., B(α n)) / ∈ λ(p). Therefore, BP ϕ has an accepting run from p, ¬b(α 1 , ..., α n) , B , ω . In other words, BP ϕ has an accepting run from p, ϕ , B , ω The property holds for this case.

ϕ = e(e ∈ V): p, ω B λ ϕ =⇒ (p, ω , B) ∈ L(M e) =⇒ M e has an accepting run from the corresponding initial state s e on the word ω under B (1) . Firstly, we show that if M e has an accepting run from a state q ∈ Q e over the word u under the environment B, then, BP ϕ has an accepting run from q, B , u by induction on the length of u (denoted by |u|). * Basis. |u| = 1 (note that will never be popped) =⇒ u = =⇒ q ∈ F e =⇒ q, B is an accepting control location of BP ϕ (by the accepting condition et F 4). In addition, according to (25), we get that q, B , = ⇒ BPϕ q, B , . Therefore, BP ϕ has an accepting run from q, B , . In other words, BP ϕ has an accepting run from q, B , u . The property holds for this case. * Step. |u| >= 2, then, there exists γ ∈ Γ, v ∈ Γ * s.t. u = γv and M e has an accepting run from q over the word γv under the environment B (2) . Let t be the first transition rule used by that accepting run from q in M e . There are three possibilities:

• Case t = q γ -→ {q 1 , .., q n }, where γ ∈ Γ. From (2), we get that for 1 ≤ i ≤ n, M e has an accepting run from q i over the word v under the environment B. By applying the induction hypothesis, we get that BP ϕ has an accepting run from q i , B , v for every 1 ≤ i ≤ n (3) . Also, from the transition rules in (24)(a), we get that: q, γ equal ---→ { q 1 , ε , ..., q n , ε } ∈ ∆ (4) . From (4) and (3), we obtain that BP ϕ has an accepting run from q, B , γv . In other words, BP ϕ has an accepting run from q, B , u . The property holds for this case.

• Case t = q x -→ {q 1 , .., q n }, where x ∈ X . From (2) and the definition of an accepting run of a VA, we get that B(x) = γ and for every 1 ≤ i ≤ n, M e has an accepting run from q i over the word v under the environment B. By applying the induction hypothesis, we get that BP ϕ has an accepting run from q i , B , v for every 1 ≤ i ≤ n (5) . From the transition rules in (24)(b), we get that: q, γ join x γ ---→ { q 1 , ε , ..., q n , ε } ∈ ∆ (6) . From (6) and (5), we obtain that BP ϕ has an accepting run from q, B , γv

(since join x γ (B, ..., B) = {B | B(x) = γ}).
In other words, BP ϕ has an accepting run from q, B , u . The property holds for this case.

• Case t = q ¬x -→ {q 1 , .., q n }, where x ∈ X . This case is similar to the case t = q x -→ {q 1 , .., q n }. The property holds for this case.

In conclusion, we get that if M e has an accepting run from a state q ∈ Q e over the word u under the environment B, then, BP ϕ has an accepting run from q, B , u (7) .

From (1) and (7), we get that BP ϕ has an accepting run from s e , B , ω . Therefore, BP ϕ has an accepting run from p, e , B , ω (by the rules in (22)). The property holds for this case.

• Induction Step:

-Case ϕ = ∃xϕ 1 : * Since p, ω B λ ϕ, we obtain that there exists d ∈ D s.t. p, ω

[B←d] λ ϕ 1 . By applying the induction hypothesis, we get that BP ϕ has an accepting run from p, ϕ 1 , [B ← d] , ω (8) .

134 Chapter 5. BCARET Model Checking for Malware Detection * From the transition rule in (5), we get that p, ϕ , γ

meet x {d} ----→ p, ϕ 1 , γ is a transition rule in BP ϕ . Also, note that B ∈ meet x {d} (B[x ← d]). Therefore, p, ϕ , B , ω is an immediate predecessor of p, ϕ 1 , B[x ← d] , ω (9)
From (8) and (9), we get that BP ϕ has an accepting run from the configuration p, ϕ , B , ω . The property holds for this case.

-Case ϕ = ∀xϕ 1 : * Suppose D = {d 1 , ..., d n }. Since p, ω B λ ϕ, we obtain that for every 1 ≤ i ≤ n, p, ω

[B←d i] λ ϕ 1
. By applying the induction hypothesis, we get that BP ϕ has an accepting run from p, ϕ 1 , [B ← d i] , ω for every 1 ≤ i ≤ n (10) . * From the transition rule in (6), we get that p, ϕ , γ

meet x D ---→ [p, ϕ 1 , γ , ..., p, ϕ 1 , γ] is a transition rule in BP ϕ . Also, note that B ∈ meet x D (B[x ← d 1], ..., (B[x ← d n]). Therefore, p, ϕ , B , ω is an immediate predecessor of { p, ϕ 1 , B[x ← d 1] , ω , ..., p, ϕ 1 , B[x ← d n] , ω } (11) .
From (10) and (11), we get that BP ϕ has an accepting run from the configuration p, ϕ , B , ω . The property holds for this case.

-Remaining cases: The proof is similar to the proof of the corresponding cases of Theorem 13 in Section 4.3.2.

(⇐=) Assume that BP ϕ has an accepting run from the configuration p, ϕ , B , ω , we need to prove that p, ω B λ ϕ. In what follows, we prove this by induction on the structure of ϕ.

Proof.

• Base case:

-ϕ = b(α 1 , ..., α n): Since BP ϕ has an accepting run from p, b(α 1 , ..., α n) , B , ω =⇒ p, b(α 1 , ..., α n) , B , ω must have immediate successors.
From all transition rules of BP ϕ , the unique way to have immediate successors of p, b(α 1 , ..., α n) , B , ω is from the rules in (1), which means that p, b(α 1 , ..., α n) , B , ω = ⇒ BPϕ p, b(α 1 , ..., α n) , B , ω . In addition, this run is accepting implies that p, b(α 1 , ..., α n) , B must be an accepting control location of BP ϕ . Therefore, we obtain that b(B(α 1), ..., B(α n)) ∈ λ(p) (by the condition of the accepting set F 1). In other words, p, ω B λ b(α 1 , ..., α n). The property holds for this case.

SBPCARET Model-Checking for Pushdown Systems

135

ϕ = ¬b(α 1 , ..., α n): Since BP ϕ has an accepting run from p, ¬b(α 1 , ..., α n) , B , ω =⇒ p, ¬b(α 1 , ..., α n) , B , ω must have immediate successors. From all transition rules of BP ϕ , the unique way to have immediate successors of p, ¬b(α 1 , ..., α n) , B , ω is from the rules in (2), which means that p, ¬b(α 1 , ..., α n) , B , ω = ⇒ BPϕ p, ¬b(α 1 , ..., α n) , B , ω . In addition, this run is accepting implies that p, ¬b(α 1 , ..., α n) , B must be an accepting control location of BP ϕ . Therefore, we obtain that b(B(α 1), ..., B(α n)) / ∈ λ(p) (by the condition of the accepting set F 2). In other words, p, ω B λ ¬b(α 1 , ..., α n). The property holds for this case.

ϕ = e(e ∈ V).

Firstly, we will prove that for every q ∈ Q e , BP ϕ has an accepting run from q, B , u implies that M e has an accepting run from q over the word u under the environment B. We show this by induction on the length of u (denoted by |u|). * Basis. |u| = 1, then, u = . Since BP ϕ has an accepting run from q, B , , we get that q, B , must have immediate successors. From all transition rules of BP ϕ , the unique way to have immediate successors of q, B , is from the rules in (25), which means that q, B , = ⇒ BPϕ q, B , . By the condition in (25), we must have q ∈ F =⇒ M e has an accepting run from the state q over the word u under B. The property holds in this case. * Step. |u| >= 2, then, there exists γ ∈ Γ, v ∈ Γ * s.t. u = γv and BP ϕ has an accepting run from q, B , u (12) . Let t be the first transition rule used by that accepting run in BP ϕ . There are three possibilities:

• Case t = q, γ equal ---→ { q 1 ,
ε , ..., q n , ε }, then, we get that q γ -→ {q 1 , .., q n } ∈ δ e (by the transition rules in (24)(a)) (13) . From (12), we get that BP ϕ has an accepting run from q, B , γv =⇒ BP ϕ has an accepting run from q i , B , v for every 1 ≤ i ≤ m. By applying the induction hypothesis, we get that M e has an accepting run from q i over the word v under B for every 1 ≤ i ≤ m (14) . From (13) and (14), we obtain that M e has an accepting run from q over the word γv under B. In other words, M e has an accepting run from q over the word u under B. The property holds for this case.

Chapter 5. BCARET Model Checking for Malware Detection

• Case t = q, γ join x γ ---→ { q 1 , ε , ..., q n , ε }, then, we get that q x -→ {q 1 , .., q n } ∈ δ e and B(x) = γ (by the transition rules in (24)(b)) (15) . From (12), we get that BP ϕ has an accepting run from q, B , γv =⇒ BP ϕ has an accepting run from q i , B , v for every 1 ≤ i ≤ m. By applying the induction hypothesis, we get that M e has an accepting run from q i over the word v under B for every 1 ≤ i ≤ m (16) . From (15) and (16), we obtain that M e has an accepting run from q over the word γv under B. In other words, M e has an accepting run from q over the word u under B. The property holds for this case.

• Case t = q, γ join ¬x γ ---→ { q 1 , ε , ..., q n , ε }, where x ∈ X . This case is similar to the case t = q, γ join x γ ---→ { q 1 , ε , ..., q n , ε }. The property holds for this case.

BP ϕ has an accepting run from

p, e , B , ω =⇒ p, e , B , ω must have immediate successors. From all transition rules of BP ϕ , the unique way to have immediate successors of p, e , B , ω is from the rules in (22), which means that p, e , B , ω = ⇒ BPϕ s e , B , ω . Therefore, BP ϕ must have an accepting run from s e , B , ω . From the above result, we obtain that M e has an accepting run from s e over the word ω under the environment B which means that (p, ω , B) ∈ L(e). In other words, p, ω B λ e. The property holds for this case.

• Induction Step:

-Case ϕ = ∃xϕ 1 : * Suppose D = {d 1 , .

Conclusion

In this chapter, we present the logic SBPCARET and show how it can precisely and succinctly specify malicious behaviors. We then propose an efficient algorithm for SBPCARET model-checking for PDSs. Our algorithm is based on reducing the model checking problem to the emptiness problem of Symbolic Alternating Büchi Pushdown Systems.

• (r 1) pγ call --→ i p 1 γ 1 γ 2 d • (r 2) pγ ret -→ i p 1 ε d • (r 3) pγ int -→ i p 1 ω 1 d
Intuitively, there are two kinds of transition rules depending on the nature of d. A rule with a suffix of the form is a nonspawn rule (does not spawn a new process), while a rule with a suffix p s ω s describes a spawn rule (a new process is spawned). A nonspawn step describes pushdown operations of one single process in the network. Roughly speaking, a call statement is described by a rule in the form pγ call --→ i p 1 γ 1 γ 2 d ∈ ∆ i . This rule usually models a statement of the form γ call proc -----→ γ 2 where γ is the control point of the program where the function call is made, γ 1 is the entry point of the called procedure proc, and γ 2 is the return point of the call; p and p 1 can be used to encode various information, such as the return values of functions, shared data between procedures, etc. A return statement is modeled by a rule (r 2) , while a rule (r 3) is used to model a simple statement (neither a call nor a return). A spawn step allows in addition the creation of a new process. For instance, a rule of the form pγ t -→ i p 1 ω 1 p s ω s ∈ ∆ i where t ∈ {call, ret, int} describes that a process P i at control location p and having γ on top of the stack can (1) change the control location to p 1 and modify the stack by replacing γ with ω 1 and also (2) create a new instance of a process P j (1 ≤ j ≤ n) starting at p s ω s . Note that in this case, if t is call, then ω 1 is γ 1 γ 2 , and if t is ret, then ω 1 is ε.

A DPDS P i can be seen as a Pushdown System (PDS) if there are no spawn rules in ∆ i . Generally speaking, a DPN consists of a set of PDSs {P 1 , ..., P n } running in parallel where each PDS can dynamically spawn new instances of PDSs in the set {P 1 , ..., P n } during the run. An initial local configuration of a newly created instance p s ω s is called a Dynamically Created Local Initial Configuration (DCLIC). For every i ∈ {1...n}, let

D i = {p s ω s ∈ 1≤j≤n P j × Γ * j | pγ t - → i p 1 ω 1 p s ω s ∈ ∆ i }
be the set of DCLICs that can be created by the DPDS P i .

A local configuration of an instance of a DPDS P i is a tuple pω where p ∈ P i is the control location, ω ∈ Γ * i is the stack content. A global configuration of M is a multiset over 1≤i≤n P i × Γ * i , in which pω ∈ P i × Γ * i is a local configuration of an instance of P i which is running in parallel in the network M.

A DPDS P i defines a transition relation =

⇒ i as follows: if pγ t - → i p 1 ω 1 d then pγω = ⇒ i p 1 ω 1 ω D for every ω ∈ Γ * i where D = ∅ if d = , D = {p s ω s } if d = p s ω s . Let =
⇒ * i be the transitive and reflexive closure of = ⇒ i , then, for every pω ∈ P i × Γ * i :

• pω = ⇒ * i pω ∅ 6.2. Applications 141 • if pω = ⇒ * i p 1 ω 1 D 1 and p 1 ω 1 = ⇒ * i p 2 ω 2 D 2 , then, pω = ⇒ * i p 2 ω 2 D 1 ∪ D 2
A local run of an instance of a DPDS P i starting at a local configuration c 0 is a sequence c 0 c 1 ... s.t. for every x ≥ 0, c x ∈ P i × Γ * i is a local configuration of P i , c x = ⇒ i c x+1 D for some D. A global run ρ of M from a global configuration G = {p 0 ω 0 , ..., p k ω k } is a set of local runs (possibly infinite) where each local run describes the execution of one instance of a certain DPDS P i . Initially, ρ consists of k local runs of k instances starting from {p 0 ω 0 , ..., p k ω k }, when a new instance is created, a new local run of this instance is added to ρ. For example, when a DCLIC c is created by a certain local run of ρ, a new local run that starts at c is added to ρ. Note that from a global configuration, we can obtain a set of global runs because from a local configuration, we can have different local runs.

Single-indexed CARET for DPNs

Given a DPN M = {P 1 , ..., P n }, a single-indexed CARET formula f is a formula in the form n i=1 f i s.t. for every 1 ≤ i ≤ n, f i is a CARET formula in which the satisfiability of its atomic propositions depends only on the DPDS P i .

Given a set of atomic propositions AP , let λ : n i=1 P i → 2 AP be a labeling function that associates each control location with a set of atomic propositions.

Let π = p 0 ω 0 p 1 ω 1 be a local run of the DPDS P i . We associate to each local configuration p x ω x of π a tag t x in {call, int, ret} as follows, where D = ∅ or D = {p s ω s }:

• If p x ω x = ⇒ i p x+1 ω x+1 D corresponds to a transition rule pγ t - → i p 1 ω 1 d, then t x = t.
Then, we say that π satisfies f i iff the ω-word (λ(p 0), t 0)(λ(p 1), t 1)... satisfies f i . A local configuration c of P i satisfies f i (denoted c f i) iff there exists a local run π starting from c such that π satisfies f i . If D is the set of DCLICs created during the run π, then, we write c D f i . A DPN M satisfies a single-indexed CARET formula f iff there exist a global run ρ s.t. for every 1 ≤ i ≤ n, each local run of P i in ρ satisfies the formula f i .

Applications

Several malwares are multithreaded programs that involve recursive procedures and dynamic thread creation. Therefore, DPNs can be used to model such programs. We show in what follows how single-indexed CARET for DPNs can describe malicious behaviors of concurrent malwares.

More precisely, we show how this logic can specify email worms. To this aim, let us consider a typical email worm: the worm Bagle. Bagle is a multithreaded email worm. In the main thread, one of the first things the worm does is to register itself into the registry listing to be started at the boot time. Then, it does some different actions to hide itself from users. After this, the malware creates one thread (named Thread2) that listens on the port 6777 to receive different commands and also allow the attacker to upload a new file and execute it. This grants the attacker the ability to update new versions for his malware. In addition, the attacker can send a crafted byte sequence to this port to force the malware to kill itself and delete it from the system. Thus, the attacker can remove his malware remotely. In the next step, the malware creates one more thread (named Thread3) which contacts a list of websites every 10 minutes to announce the infection of the current machine. The malware sends the port it is listening to as well as the IP of the infected machine to these sites. At some point in the program, the malware continues to spawn a thread named Thread4 to search on local drives to look for valid email addresses. In this thread, for each email address found, the malware attaches itself and sends itself to this email address.

Thus, you can see that Bagle is a mutithreaded malware with dynamic thread creation, i.e., the main process can create threads to fulfill various tasks. To model Bagle, DPNs is a good candidate since DPNs allow dynamic thread creation. Let M = {P 1 , P 2 , P 3 , P 4 } be a model of Bagle where P 1 is a PDS that represents the main process of the malware; P 2 , P 3 , P 4 are PDSs that model the code segments corresponding to Thread1, Thread2, Thread3 respectively. Note that P 2 , P 3 , P 4 are designed to execute specific tasks, while P 1 is a main process able to dynamically create an arbitrary number of instances of P 2 , P 3 , P 4 to fulfill tasks in need.

We show now how the malicious behavior of the different threads can be described by a CARET formula. Let us start with the main process. The typical behaviour of this process is to add its own executable name to the registry listing so that it can be started at the boot time. As already explained in Section 2.5.1, to do this, the malware needs to invoke the API function GetM oduleF ileN ameA with 0 and x as parameters. GetM oduleF ileN ameA will put the file name of its current executable on the memory address pointed by x. After that, the malware calls the API function RegSetV alueExA with the same x as parameter. RegSetV alueExA will use the file name stored at x to add itself into the registry key listing. This malicious behaviour can be specified by CARET as follows: where the is taken over all possible memory addresses x over domain K.

Note that parameters are passed via the stack in binary programs. For succinctness, we use regular variable expression xΓ * (resp. 0xΓ *) to describe the requirement that x (resp. 0x) is on top of the stack. Then, this formula states that there is a call to the API GetModuleFileNameA with 0 and x on the top of the stack (i.e., with 0 and x as parameters), followed by a call to the API RegSetV alueExA with x on the top of the stack. Using the operator F a guarantees that GetModuleFileNameA and RegSetValueExA are invoked in the same function. This allows to avoid the case where RegSetValueExA is invoked before the function GetModuleFileNameA terminates.

The primary behavior of Thread2 is to set up the malware to listen to a certain port to get updated information (new attack targets, ...). As already explained in Section 2.5.1, to achieve this task, it needs to call the API socket to create a socket, followed by a call to the API bind to associate a local address with the socket and a call to listen to put the socket in the listening state. The call to the API socket returns a descriptor referencing the new socket which is used as input of the calls to the APIs bind and listen. Thus, when bind and listen are invoked, the socket descriptor must be on top of the program's stack (since parameters are passed via the stack in binary programs). Using CARET, this malicious behaviour can be specified as follows:

ψ 2 = x∈K F g call(socket) ∧ X a (eax = x) ∧ F a call(bind) ∧ xΓ * ∧ F a call(listen) ∧ xΓ * where the is taken over all possible memory addresses x over the domain K which stores the socket descriptors in the program.

Remember that the return value of an API function is put in eax when the function terminates. Thus, the return value of an API function is the value of eax at its return-point. Then, the subformula call(socket) ∧ X a (eax = x) states that there is a call to the API function socket whose return value is x (since the return-point of a call is its abstract successor). When bind is invoked, one required parameter is the socket descriptor and this descriptor must be put on top of the stack (since parameters are passed via the stack in binary programs). The regular expression xΓ * describes the requirement that x is on top of the stack. Then, the subformulas call(bind) ∧ xΓ * and call(listen) ∧ xΓ * state that there are calls to bind and listen whose socket descriptor is x. Thus, ψ 2 expresses that there is a call to the API socket with a return value x, followed by a call to the function bind and a call to the function listen with x on top of the stack. Note that in this case, x is the memory address storing the descriptor.

The main malicious behavior of Thread3 is to contact several specific websites to inform them about the infection or the IP number of the victim computer, ... To do this, the malware needs to check if the Internet connection is up or not. If yes, the malware sets up a connection to specific urls. For the first task, the malware needs to invoke the API function InternetGetConnectedState to obtain the Internet connection state. The second task is obtained by an invocation to InternetOpen to open the connection, followed by a call to InternetOpenU rl to contact specific urls. This malicious behaviour can be specified by the following formula:

ψ 3 = F g call(InternetGetConnectedState) ∧ X a (eax = 1) ∧ F a call(InternetOpen) ∧ F a (call(InternetOpenUrl))
The sub-formula call(InternetGetConnectedState) ∧ X a (eax = 1) expresses that a call to the API InternetGetConnectedState returns the value 1 (stored in eax) which implies that the Internet connection is up. The sub-formula F a (call(InternetOpen) ∧ F a (call(InternetOpenUrl)) expresses that the malware first opens a connection (via API InternetOpen), then contacts specific websites (by calling API InternetOpenUrl) to inform them about the infection.

The typical behavior of Thread4 is to hunt for emails on local drives by searching files matching certain conditions. As presented before, to do this, the malware first calls the API function FindFirstFileA to obtain the first matching file. FindFirstFileA will return a search handle h. To obtain all matching files, the malware must continuously call the function FindNextFileA with h as parameter. Similarly, this behaviour cannot be specified by LTL or CTL since it requires that the return value of the API FindFirstFileA must be used as the input of the function FindNextFileA. Using CARET, the above behavior can be expressed by the following formula:

ψ 4 = d∈K F g call(FindFirstFileA) ∧ X a (eax = d) ∧ F a call(FindNextFileA) ∧ dΓ *
where the is taken over all possible memory addresses d over domain K which contain the values of search handles h in the program.

Similarly, the return value of FindFirstFileA is the value of eax at its corresponding return-point. Then, the subformula F g (call(FindFirstFileA) ∧ X a (eax = d)) states that there is a call to the API F indF irstF ileA and the return value of this function is d. When FindNextFileA is invoked, it requires a search handle as parameter. The requirement that d is on top of the program stack is expressed by the regular expression dΓ * . Thus, the subformula call(FindNextFileA) ∧ dΓ * expresses that FindNextFileA is called with d as parameter (d stores the information of the search handle). ψ 4 expresses then that there is a call to the API F indF irstF ileA with the return value d (the search handle), followed by a call to the function F indN extF ileA with d on the top of the stack. Thus, the malicious behavior of the concurrent worm Bagle can be described 6.3. Single-indexed CARET model-checking for DPNs 145 by the single-indexded CARET formula ψ = ψ 1 ∧ ψ 2 ∧ ψ 3 ∧ ψ 4 .

Single-indexed CARET model-checking for DPNs

In this section, we consider the CARET model-checking problem of DPNs. Let λ : n i=1 P i → 2 AP be a labeling function that associates each control location with a set of atomic propositions. Let M = {P 1 , ..., P n } be a DPN, f = n i=1 f i be a single-indexed CARET formula.

Büchi DPNs (BDPNs)

Definition 19. A Büchi DPDS (BDPDS) is a tuple BP i = (P i , Γ i , ∆ i , F i) s.t. P i = (P i , Γ i , ∆ i) is a DPDS, F i ⊆ P i is the set of accepting control locations. A run of a BDPDS is accepted iff it visits infinitely often some control locations in F i .

Definition 20. A Generalized Büchi DPDS (GBDPDS) is a tuple BP i = (P i , Γ i , ∆ i , F i), where P i = (P i , Γ i , ∆ i) is a DPDS and F i = {F 1 i , ..., F k i } is a set of sets of accepting control locations. A run of a GBDPDS is accepted iff it visits infinitely often some control locations in F j i for every 1 ≤ j ≤ k. Given a BDPDS or a GBDPDS BP i = (P i , Γ i , ∆ i , F i), let c ∈ P i × Γ * i be a local configuration of BP i . Then, let L(BP i) be the set of all pairs (c, D) ∈ P i × Γ * i × 2 D i s.t. BP i has an accepting run from c and D is the set of DCLICs generated during that run. We get the following properties: Proposition 6. Given a GBDPDS BP i , we can effectively compute a BDPDS BP i s.t. L(BP i) = L(BP i).

This result comes from the fact that we can translate a GBDPDS to a corresponding BDPDS by applying the similar approach as the translation from a Generalized Büchi automaton to a corresponding Büchi automaton [START_REF] Orna Grumberg | Model Checking[END_REF].

Definition 21. A Büchi Dynamic Pushdown Network (BDPN) is a set {BP 1 , ..., BP n } s.t. for every 1 ≤ i ≤ n, BP i = (P i , Γ i , ∆ i , F i) is a BDPDS. A (global) run ρ of a BDPN is accepted iff all local runs in ρ are accepting (local) runs. Definition 22. A Generalized Büchi Dynamic Pushdown Network (GBDPN) is a set {BP 1 , ..., BP n } s.t. for every 1 ≤ i ≤ n, BP i = (P i , Γ i , ∆ i , F i) is a GBDPDS. A (global) run ρ of a GBDPN is accepted iff all local runs in ρ are accepting (local) runs.

Given a BDPN or a GBDPN BM = {BP 1 , ..., BP n }, let L(BM) be the set of all global configurations G s.t. BM has an accepting run from G. We get the following properties: Proposition 7. Given a GBDPN BM, we can effectively compute a BDPN BM s.t. L(BM) = L(BM).

This result is obtained due to the fact that we can translate each GBDPDS in BM to a corresponding BDPDS in BM . Thus, from Proposition 7 and Theorem 21, we get that the membership problem of a GBDPN is decidable.

Theorem 22. The membership problem of GBDPNs is decidable.

From CARET model checking of DPNs to the membership problem in BDPNs

Given a local run π, let ϑ(π) be the index of the DPDS corresponding to π.

Let G be an initial global configuration of the DPN M, then we say that G satisfies f iff M has a global run ρ starting from G s.t. every local run π in ρ satisfies f ϑ(π) . Determining whether G satisfies f is a non-trivial problem since the number of global runs can be unbounded and the number of local runs of each global run can also be unbounded. Note that it is not sufficient to check whether every pushdown process P i satisfies the corresponding CARET formula f i . Indeed, we need to ensure that all instances of P i created during a global run satisfy the formula f i . Also, it is not correct to check whether all possible instances of P i satisfy the formula f i . Indeed, an instance of P i should not be checked if it is not created during a global run. To solve these problems, we reduce the CARET model-checking problem for DPNs to the membership problem for GBDPNs. To do this, we compute a GBDPN BM = {BP 1 , ..., BP n } where BP i (i ∈ {1..n}) is a GBDPDS s.t. (1) the problem of checking whether each instance of P i satisfies a CARET formula f i can be reduced to the membership problem of BP i ; (2) if P i creates a new instance of P j starting from p s ω s , which requires that p s ω s f j ; BP i must also create an instance of BP j starting from a certain configuration (computed from p s ω s) from which BP j has an accepting run. In what follows, we present how to compute such GBDPDSs. Let Label = {exit, unexit} (we explain later the need to these labels). Given a DPDS P i (i ∈ {1..n}), a corresponding CARET formula f i , we define Initial i as the set of atoms A (A ∈ Atoms(f i)) such that f i ∈ A and N extCallerF ormulas(A) = ∅. Our goal is that for every P i (i ∈ {1..n}), we compute a GBDPDS BP i s.t. for every pω ∈ P i × Γ * i , pω satisfies f i iff there exists an atom A where A ∈ Initial i s.t. BP i has an accepting run from p, A, unexit ω.

GBDPDSs Computation.

Let us fix a DPDS P i = (P, Γ, ∆) in the DPN M, a CARET formula f i in f = n i=1 f i corresponding to the DPDS P i . In this section, we show how to compute such a GBDPDS BP i corresponding to P i . Given a local configuration pω, let δ(pω) be the index of the DPDS corresponding to pω. We define BP i = (P , Γ , ∆ , F) as follows:

• P = { p, A, l | p ∈ P, l ∈ Label, A ∈ Atoms(f i) and A ∩ AP = λ(p) } is the finite set of control locations of BP i

• Γ = Γ ∪ (Γ × Atoms(f i) × Label) is the finite set of stack symbols of BP i .

The transition relation ∆ of BP i is the smallest set of transition rules satisfying the following:

• (α 1) for every pγ call --→ i qγ γ d ∈ ∆: p, A, l γ -→ i q, A , l γ γ , A, l d 0 ∈ ∆ for every A, A ∈ Atoms(f i); l, l ∈ Label such that:

-(β 0) A ∩ {call

Single-indexed CARET model-checking for DPNs with regular valuations

In this section, we consider the single-indexed CARET model-checking problem for DPNs with regular valuations, in which the set of configurations where an atomic proposition is satisfied is a regular language.

Definition 23. Let M = {P 1 , ..., P n } be a DPN. For every i ∈ {1..n}, a set of configurations of a pushdown process P i = (P i , ∆ i , Γ i) is regular if it can be written as the union of sets of the form E p , where p ∈ P i and E p = {(p, w)|w ∈ L p }, where L p is a regular set over Γ * i .

Definition 24. Let M = {P 1 , ..., P n } be a DPN. Let AP be a finite set of atomic propositions. Let ν : AP → 2 n i=1 P i ×Γ * i be a valuation. ν is called regular if for every e ∈ AP , ν(e) is a regular set of configurations.

Let ν : AP → 2 n i=1 P i ×Γ * i be a regular valuation. We define λ ν : P × Γ * → 2 AP such that λ ν (pω) = {e ∈ AP | pω ∈ ν(e)}. Let π = p 0 ω 0 p 1 ω 1 ... be a local path of P i . We associate each configuration p x ω x of π with a tag t x in {call, int, ret} as presented in Section 6.1.2. Let f i be a CARET formula over AP . The satisfiability relation w.r.t. the regular valuation ν is defined as follows:

π ν f i iff (λ ν (p 0 ω 0), t 0)(λ ν (p 1 ω 1), t 1) • • • f i Theorem 24. [START_REF] Song | Model checking dynamic pushdown networks[END_REF] Single-indexed LTL model-checking with regular valuations for DPNs can be reduced to standard LTL model checking for DPNs.

Given a DPN M = {P 1 , ..., P n } and a regular valuation ν : AP → 2 n i=1 P i ×Γ * i , this result is based on translating every DPDS P i (i ∈ {1..n}) into a DPDS P i = (P i , Γ i , ∆ i) where the regular valuation requirements are encoded in Γ i . The same reduction is still true for single-indexed CARET with regular valuations. For details about this reduction, we refer readers to [START_REF] Song | Model checking dynamic pushdown networks[END_REF]. Therefore, given a single-indexed CARET formula with regular valuations and a DPN M = {P 1 , ..., P n }, we apply the reduction of [START_REF] Song | Model checking dynamic pushdown networks[END_REF] to obtain a new DPN M = {P 1 , ..., P n } in which for every i ∈ {1..n}, P i = (P i , Γ i , ∆ i) s.t. the satisfiability of a CARET formula over P i w.r.t. the regular valuation ν can be reduced to the satisfiability of a CARET formula over P i with simple valuations. Therefore, we can show that: Theorem 25. Single-indexed CARET model-checking with regular valuations for DPNs can be reduced to standard single-indexed CARET model checking for DPNs. Definition 25. A Dynamic Pushdown Network with Locks (L-DPN) M is a set {L, Act, P 1 , ..., P n } where L is a set of locks, Act = {acq(l), rel(l), τ | l ∈ L} is a set of actions on locks s.t. acq(l) (resp. rel(l)) for l ∈ L represents an acquisition (resp. release) of the lock l and the action τ describes internal actions (neither acquire nor release locks); for every 1 ≤ i ≤ n, P i = (P i , Γ i , ∆ i) is a Labelled Dynamic Pushdown System with Locks (L-DPDS), where P i is a finite set of control locations and P i ∩ P j = ∅ for all j = i, Γ i is a finite set of stack alphabets, and ∆ i is a finite set of transitions rules. Rules of ∆ i are of the following form, where a ∈ Act, p, p 1 ∈ P i , γ ∈ Γ i , ω 1 ∈ Γ * i , d ∈ { , p s ω s | p s ω s ∈ 1≤j≤n P j × Γ * j }:

• (r 1) pγ

(a,call) ----→ i p 1 γ 1 γ 2 d • (r 2) pγ (a,ret)
---→ i p 1 ε d

• (r 3) pγ (a,int) ---→ i p 1 ω d
Intuitively, a L-DPN is a DPN where processes communicate via locks. The transition rules of L-DPNs are similar to DPNs where each rule is associated with an element in the set {call, ret, int} to denote whether the rule corresponds to a call, ret or a simple statement (neither call nor ret). The difference is that each transition rule of L-DPNs is assigned to one additional action a ∈ Act. Depending on the nature of the associated action a, each transition step of L-DPDSs include one additional operation on a given lock l. acq(l) (resp. rel(l)) represents an acquisition (resp. release) of the lock l and the action τ describe internal actions (neither acquire nor release locks).

A local configuration of an instance of a L-DPDS P i is a tuple (pω, L) where p ∈ P i is the control location, ω ∈ Γ * i is the stack content and L ⊆ L is a set of locks owned by the instance. A global configuration of M is a multiset over 1≤i≤n P i × Γ * i × 2 L , in which (pω, L) ∈ P i × Γ * i × 2 L represents the local configuration of an instance of a pushdown process P i which is running in the network.

A L-DPDS P i defines a transition relation = ⇒ i as follows where t ∈ {call, ret, int}: -----→ i p 1 ω 1 d then (pγω, L) = ⇒ i (p 1 ω 1 ω, L ∪ {l}) D 0 where D 0 = ∅ if d = , D 0 = {(p s ω s , ∅)} if d = p s ω s for every ω ∈ Γ * i , L ⊆ L. This expresses that the current instance can move from (pγω, L) to (p 1 ω 1 ω, L ∪ {l}). This ensures that the current instance owns the lock l after the action acq(l).

• if pγ
• if pγ (rel(l),t) ----→ i p 1 ω 1 d then (pγω, L) = ⇒ i (p 1 ω 1 ω, L \ {l}) D 0 where D 0 = ∅ if d = , D 0 = {(p s ω s , ∅)} if d = p s ω s for every ω ∈ Γ * i , L ⊆ L. This means that the current instance can move from (pγω, L) to (p 1 ω 1 ω, L \ {l}). This ensures that the current instance releases the lock l after the action rel(l).

Roughly speaking, if d = p s ω s , then the current instance not only does local move but also creates a new instance of the pushdown process P j starting at (p s ω s , ∅). Note that we suppose that the new instance holds no locks when it is created.

A local run of an instance of a L-DPDS P i starting at a local configuration c 0 is a sequence c 0 c 1 ... s.t. for every j ≥ 0, c j ∈ P i × Γ * i × 2 L is a local configuration of P i , c j = ⇒ i c j+1 D 0 . The definition of global run of a L-DPNs M is similar to the one for DPNs.

Nested Lock Access. In this work, we suppose that in all local runs, the locks are accessed in a well-nested and no-reentrant manner, i.e. a local run can only release the latest lock it acquired that is not released yet. Indeed, if we allow arbitrary locks, then reachability becomes undecidable [START_REF] Kahlon | An automata-theoretic approach for model checking threads for LTL propert[END_REF].

Theorem 26. [START_REF] Song | LTL model-checking for dynamic pushdown networks communicating via locks[END_REF]Single-indexed LTL model-checking for L-DPNs can be reduced to single-indexed LTL model checking for DPNs.

Given a L-DPN M = {P 1 , ..., P n }, this result is based on translating every P i (i ∈ {1..n}) into a DPDS P i = (P i , Γ i , ∆ i) s.t. P i is a kind of product between the DPDS P i and the acquisition structure, where an acquisition structure (encoded in control locations of P i) stores information about how locks are used such as the number of held locks, the order of acquisition and release of locks. We can compute a DPN M = {P 1 , ..., P n } s.t. the global runs of M mimic the global runs of M and the acquisition structures reflect the lock usages. Thus, the global runs of M correspond to global runs of M in which the locks are accessed in a nested manner. The same reduction is still true for single-indexed CARET formulas. For details of this reduction, we refer readers to [START_REF] Song | LTL model-checking for dynamic pushdown networks communicating via locks[END_REF]. Therefore, given a single-indexed CARET formula and a L-DPN M = {P 1 , ..., P n }, we apply the reduction of [START_REF] Song | LTL model-checking for dynamic pushdown networks communicating via locks[END_REF] to obtain a DPN M = {P 1 , ..., P n } s.t. the satisfiability of a CARET formula over P i 6.6. Related Works 153 can be reduced to the satisfiability of a CARET formula over P i . Therefore, we can show that: Theorem 27. Single-indexed CARET model-checking for L-DPNs can be reduced to single-indexed CARET model checking for DPNs.

Related Works

[BET03, CCK + 06, ABT08, AT09] considered Pushdown networks with communications between processes. However, these works consider only networks with a fixed number of threads. The model-checking problem for pushdown networks where synchronization between threads is ensured by a set of nested locks is considered in [KIG05, KG06, KG07] for single-indexed LTL/CTL and double-indexed LTL. These works do not handle dynamic thread creation.

Multi-pushdown systems were considered in [START_REF] La | A temporal logic for multi-threaded programs[END_REF][START_REF] Bansal | Model-checking bounded multi-pushdown systems[END_REF] to represent multithreaded programs. [START_REF] Bansal | A note on the complexity of model-checking bounded multi-pushdown systems[END_REF] introduced Multi-CaRet, an extension of CARET dedicated for multi-pushdown systems, and considered Multi-CaRet model-checking for multi-pushdown systems with some bounds. These systems have only a finite number of stacks, and thus, they cannot handle dynamic thread creation.

Pushdown Networks with dynamic thread creation (DPNs) were introduced in [START_REF] Bouajjani | Regular symbolic analysis of dynamic networks of pushdown systems[END_REF]. The reachability problems of DPNs and its extensions are considered in [BMT05, GLM + 11, LMW09, Lug11, Wen10]. [START_REF] Song | Model checking dynamic pushdown networks[END_REF] considers the model-checking problem of DPNs against single-indexed LTL and CTL, while [START_REF] Song | LTL model-checking for dynamic pushdown networks communicating via locks[END_REF] investigates the single-indexed LTL model checking problem for DPNs with locks.

Conclusion

In this chapter, we present an algorithm for single-indexed CARET modelchecking for DPNs. We reduce this problem to the membership problem for Büchi Dynamic Pushdown Networks. In addition, we show that single-indexed CARET model checking for L-DPNs with nested lock access can be reduced to single-indexed CARET model checking for DPNs.

Chapter 7

Conclusion and Future Work

Conclusion

In this thesis, we presented several temporal logics that take into account matching of calls and returns and we proposed model-checking algorithms for Pushdown Systems against these logics. We showed how these logics can be applied to specify malicious behaviors and applied our model-checking algorithms to malware detection.

In Chapter 2, we proposed an algorithm to model-check PDSs against CARET formulas. We reduced this problem to the emptiness problem of Büchi Pushdown Systems. This latter problem is already solved in [START_REF] Bouajjani | Reachability analysis of pushdown automata: Application to model-checking[END_REF][START_REF] Esparza | A bdd-based model checker for recursive programs[END_REF]. We reduced the malware detection problem to the CARET model-checking problem for PDSs. We showed that by using CARET formulas, we can describe behaviors that LTL, CTL and their extensions cannot describe.

In Chapter 3, we defined the new logic SPCARET and showed how it can be used to succinctly and precisely describe different malicious behaviors. We identified the sublogic SPCARET \c , which is a subclass of SPCARET that does not use the caller operator. We proposed an algorithm to model-check PDSs against SPCARET \c formulas. We reduced malware detection to the SPCARET \c model-checking problem for PDSs. Our algorithms are based on reducing the model checking problem to the emptiness problem of Symbolic Büchi Pushdown Systems. This makes our algorithms more efficient.

In Chapters 4, we defined the new logic BCARET which allows to describe branching-time properties that require matchings of calls and returns and showed how it can be used to describe branching-time malicious behaviors. We proposed an algorithm to model-check PDSs against BCARET formulas. Our algorithms are based on reducing the model checking problem to the emptiness problem of Alternating Büchi Pushdown Systems.

In Chapter 5, we defined the new logic SBPCARET and showed how it can be used to succinctly and precisely describe branching-time malicious behaviors. We proposed an algorithm to model-check PDSs for SBPCARET formulas. Our algorithm is based on reducing the model checking problem to the emptiness problem of Symbolic Alternating Büchi Pushdown Systems.

In Chapter 6, we proposed to use Dynamic Pushdown Networks to model concurrent binary programs and single-indexed CARET formulas to describe

Proposition 1 .

 1 [START_REF] Song | LTL model-checking for malware detection[END_REF] Given a Generalized Büchi Pushdown System BP, we can effectively compute a Büchi Pushdown System BP s.t L(BP) = L(BP). Theorem 1. [ES01] Given a Büchi Pushdown System P = (P, Γ, ∆, F), for every configuration p, ω ∈ P × Γ * , whether or not p, ω is in L(BP) can be decided in time O(|P |.|∆| 2)

Figure 2 . 5 :

 25 Figure 2.5: Caller Path without matched pairs of calls and rets

Let X = {x 1

 1 , ..., x n } be a finite set of variables over a finite domain D. Let B : X ∪ D → D be an environment that associates each variable x ∈ X with a value d ∈ D s.t B(d) = d for every d ∈ D. Let B[x ← d] be an environment obtained from B such that B[x ← d](x) = d and B[x ← d](y) = B(y) for every y = x. Let B be the set of all environments. Let θ id = {(B, B) ∈ B × B | B = B } be the identity relation for environments, and for x ∈ X , let θ x = {(B, B) ∈ B × B | ∀y ∈ X , y = x, B(y) = B (y)} be the relation that abstracts away the value of x. Let AP = {a, b, c, ...} be a finite set of atomic propositions. Let AP D be a finite set of atomic predicates of the form b(α 1 , ..., α m) such that b ∈ AP and α i ∈ D for every 1

Proposition 3 .

 3 Let ψ be a SPCARET formula, let |X | be the number of variables in ψ, let D be the domain of variables, we can compute an equivalent CARET formula with regular valuations ψ such that |ψ | = |ψ| × O(|D| |X |).

 satisfies ∀xφ and π satisfies all the remaining formulas in Φ under B. Note that π |= B λ ∀xφ iff π |= B λ c∈D φ c where φ c is φ in which x is replaced by c. Thus, this is ensured by the transition rules in (β 6) stating that BP ψ has an accepting run from (p, Φ, l , B), ω iff BP ψ has an accepting run from (p, Φ ∪ {φ c |c ∈ D} \ {∀xφ }, l , B), ω .

Figure 3

 3 Figure 3.2: p i , ω i = ⇒ P p i+1 , ω i+1 corresponds to a simple statement

 we have b(B(α 1), ..., B(α n)) ∈ λ(p z i) (by the condition in the rule (β 1)). Thus we get (π, z i) |= Bz i λ φ (by the definition of SPCARET). The property holds for this case.

Chapter 3 .

 3 CARET Model Checking for Malware Detection -Since π |= B λ ψ, we get that (π, 0) |= B λ ψ =⇒ pr((π , 0)) |= B λ ψ (since pr((π , 0)) = (π, 0)) =⇒ for every χ ∈ {ψ}, pr((π , 0)) |= B λ χ =⇒ for every χ ∈ Φ , pr((π , 0)) |= B λ χ (since Φ = {ψ}). Therefore, the property related to Φ in (A) is satisfied.

 γ 0 . Similar to the above case, we get that the property (A) holds for this case.-Case φ = ∀xφ ∈ Φ j , then, by applying the rules in (β 6), let π (i+1) = (p j , Φ j ∪{φ c | c ∈ D}\{∀xφ }, l j , B j), γ m γ m-1 ...γ 0 where φ c is φ where x is replaced by c. Since (π, j) |= B j λ ∀xφ , we get that (π, j) |= B j λ φ c for all c ∈ D. Therefore, the property holds.

 then, BP has an accepting run from c 0 iff BP has an accepting run from c for every c ∈ C . Theorem 12. [ST11] Given an ABPDS BP = (P, Γ, ∆, F), for every configuration p, ω ∈ P × Γ * , whether or not p, ω ∈ L(BP) can be decided in time O(|P | 2 .|Γ|.(|∆|2 5|P | + 2 |P | |ω|)).

(α1)

 α1 If φ = e, e ∈ AP and p ∈ f (e), then, p, φ , γ → p, φ , γ ∈ ∆ (α2) If φ = ¬e, e ∈ AP and p / ∈ f (e), then, p, φ , γ → p, φ , γ ∈ ∆

Figure 4

 4 Figure 4.1: p, ω = ⇒ P p , ω corresponds to a call statement

B

 [x ← d](y) = B(y) for every y = x. Let Abs x (B) = {B ∈ B | ∀y ∈ X , y = x, B(y) = B (y)} be the function that abstracts away the value of x. Let B be the set of all environments.

Bλ• p 0 , ω 0 BλB λ ϕ 1 or p 0 , ω 0 B λ ϕ 2)• p 0 , ω 0 B λ ϕ 1 B λ ϕ 1 and p 0 , ω 0 B λ ϕ 2)• p 0 , ω 0 Bλ• p 0 , ω 0 Bλ• p 0 , ω 0 Bλ

 0020102000 true for every p 0 , ω 0 • p 0 , ω 0 B λ f alse for every p 0 , ω 0• p 0 , ω 0 B λ b(α 1 , ..., α n), iff b(B(α 1), ..., B(α n)) ∈ λ(p 0) • p 0 , ω 0 B λ ¬b(α 1 , ..., α n), iff b(B(α 1), ..., B(α n)) / ∈ λ(p 0) • p 0 , ω 0 B λ e iff (p 0 , ω 0 , B) ∈ L(e)5.1. Stack Branching temporal Predicate logic of CAlls and RETurns 117 ¬e iff (p 0 , ω 0 , B) / ∈ L(e) • p 0 , ω 0 B λ ϕ 1 ∨ ϕ 2 iff (p 0 , ω 0 ∧ ϕ 2 iff (p 0 , ω 0 ∀xϕ iff for every d ∈ D, p 0 , ω 0 B[x←d] λ ϕ ∃xϕ iff there exists d ∈ D, p 0 , ω 0 B[x←d] λ ϕ EX g ϕ iff there exists a global-successor p , ω of p 0 , ω 0 such that p , ω B λ ϕ • p 0 , ω 0 B λ AX g ϕ iff p , ω B λ ϕ for every global-successor p , ω of p 0 , ω 0

5. 2 .

 2 SBPCARET Model-Checking for Pushdown Systems 123(4) If φ = φ 1 ∨ φ 2 , then, p, φ , γ id -→ p, φ 1 , γ ∈ ∆ and p, φ , γ id -→ p, φ 2 , γ ∈ ∆ (5) If φ = ∃xφ 1 , then, p, φ , γ meet x {c} ----→ p, φ 1 , γ ∈ ∆ for every c ∈ D (6) If φ = ∀xφ 1 , then, p, φ , γ meet x D ---→ [p, φ 1 , γ , ..., p, φ 1 , γ] ∈ ∆where p, φ 1 , γ is repeated m times in the right-hand side, where m is the number of elements in D

 e is a regular expression, then, p, φ , γ id -→ s e , γ ∈ ∆ (23) If φ = ¬e, e is a regular expression, then, p, φ , γ id -→ s ¬e , γ ∈ ∆ (24) for every transition q α

••

 If φ = ∃xφ 1 , then, for every ω ∈ Γ * , p, ω B λ φ iff there exists c ∈ D s.t. p, ω B[x←c] λ φ 1 . This is ensured by the transition rules in (5) stating that BP ϕ has an accepting run from p, ∃xφ 1 , B , ω iff there exists c ∈ D s.t. BP ϕ has an accepting run from p, φ 1 , B[x ← c] , ω since B ∈ meet x {c} (B[x ← c]) If φ = ∀xφ 1 , then, for every ω ∈ Γ * , p, ω B λ φ iff for every c ∈ D, p, ω B[x←c] λ φ 1 . This is ensured by the transition rules in (6) stating that BP ϕ has an accepting run from p, ∀xφ 1 , B , ω iff for every c ∈ D, BP ϕ has an accepting run from p, φ 1 , B[x ← c] , ω since if D = {c 1 , ..., c m }, then, B ∈ meet x D (B[x ← c 1], ..., B[x ← c m])

B λ φ 1

 1 and there exists an abstract successor p k , ω k of p, ω s.t. p k , ω k B λ φ) (A2) . Similar to the case φ = E[φ 1 U a φ 2] in Section 4.3.2, we get that for every abstract-successor p

ψ 1 =

 1 x∈K F g call(GetM oduleF ileN ameA) ∧ 0xΓ * ∧ F a call(RegSetV alueExA) ∧ xΓ *

 Given a BDPN BM = {BP 1 , ..., BP n } whereBP i = (P i , Γ i , ∆ i , F i). Let I(c) be the index i of the local configuration c ∈ P i × Γ * i . Let D = n i=1 D i .Then, we get the following theorem:Theorem 21. [ST13b, ST16] The membership problem of a BDPN is decidable in time O(Σ n i=1 |∆ i |.|Γ i |.|P i | 3 .2 |D i | + Σ c∈D (|c|.|P I(c) | 3 .|Γ I(c) |.2 2|D I(c) | + |D| 2 .2 |D|).

 , ret, int} = {call} -(β 1) A ∩ AP = λ(p) -(β 2) A ∩ AP = λ(q) -(β 3) GlN ext(A, A) -(β 4) CallerN ext(A , A) -(β 5) l = unexit implies (l = unexit and N exAbsF orms(A) = ∅) -(β 6) d 0 = if d = ; d 0 = p s , A 0 , unexit ω s where A 0 ∈ Initial δ(psωs) if d = p s ω s • (α 2) for every pγ ret -→ i qε d ∈ ∆:

6. 5 .

 5 DPNs Communicating via Locks 151 6.5 DPNs Communicating via Locks Dynamic Pushdown Network with Locks (L-DPNs) is a natural formalism for multithreaded programs communicating via locks [LMW09, ST16]:

 (τ,t)--→ i p 1 ω 1 d then (pγω, L) = ⇒ i (p 1 ω 1 ω, L) D 0 where D 0 = ∅ if d = , D 0 = {(p s ω s , ∅)} if d = p s ω s for every ω ∈ Γ * i , L ⊆ L 152Chapter 6. CARET analysis of multithreaded programs• if pγ (acq(l),t)

 the only way for p z i , A z i ∈ F x is that φ 2 must also belong to A z i (by the definition of F of BP ψ). Consequently, by applying the main induction hypothesis, we obtain (π, z i) φ 2 . (π, z i) φ 2 implies that (π, z i) φ 1 U g φ 2 (by the semantics of the modality U g). The property holds for this case. * Induction Step:

 by the definition of Atom). So, the only way forA z i in this case is that φ 2 ∈ A z i . φ 2 ∈ A z i =⇒ (π, z i) φ 2 (by the main induction hypothesis) =⇒ (π, z i) φ 1 U a φ 2 (by the semantics of the U a modality). * Induction Step:

 by the definition of Atom). So, the only way forA z i in this case is that φ 2 ∈ A z i . φ 2 ∈ A z i =⇒ (π, z i) φ 2 (by the main induction hypothesis) =⇒ (π, z i) φ 1 U c φ 2 (by the semantics of the U c modality). * Induction Step:

Table 2

 2

	|P | |Γ|	|∆| |ψ| Time(s) |P | |Γ|	|∆| |ψ| Time(s)
	549 286 3050 11	12.5	89 126	47	15	44.7
	344 532 3658 11	14.1	328 432 194 15	48.1
	338 56	514 12	16.0	817 636 936 14	49.8
	50 210 3286 9	16.8	852 928 3306 12	54.2
	230 305 1618 14	17.4	13	77 2217 11	58.0
	455 349 907 14	18.3	514 490 990 12	61.1
	466 302 1162 12	21.1	657 907 3329 11	65.2
	377 695 1394 12	24.5	363 194 4949 11	67.2
	465 249 2105 11	27.4	850 740 3255 12	72.7
	304 288 3495 11	28.9	770 520 4751 11	77.9
	432 61 1030 12	30.5	341 39 4448 11	79.9
	802 149 2330 15	32.8	349 89 1129 14	81.4
	421 916 1359 7	34.1	863 946 3560 12	85.6
	205 637 2887 6	35.3	645 923 3865 12	89.3
	233 330 134 12	36.2	215 218 4988 15	92.5
	197 331 2398 13	37.2	798 458 4936 12	96.4
	856 353 3159 12	42.1	587 46 3592 12	99.3
	487 392 4927 15	101.3	194 286 111 14	103.1

.1: Model Checking random PDSs against CARET formulas our tool on randomly generated PDSs to see the efficiency of our procedure. The results are reported in Table

2

.1.

 only existential quantifiers and no free variables, then, the number of control locations of BP |∆| 2 .|Γ| 2 .2 O(|ψ||D| |X |) |D| 3|X | . Moreover, if ψ contains only existential quantifiers, and no free variables, then this problem can be solved in time |P |.|∆| 2 .|Γ| 2 .2 O(|ψ|) |D| 3|X | .

ψ is at most |P | × 2 O(|ψ|) and the number of transitions is at most |∆||Γ| × 2 O(|ψ|) . From Theorem 8, the membership problem can be solved in time |P |.|∆| 2 .|Γ| 2 .2 O(|ψ|) |D| 3|X | . • If ψ contains universal quantifiers or free variables, for the worst case, the number of control locations of BP ψ is at most |P | × 2 O(|ψ||D| |X |) and the number of transitions is at most |∆||Γ| × 2 O(|ψ||D| |X |) . From Theorem 8, the membership problem can be solved in time |P |.|∆| 2 .|Γ| 2 .2 O(|ψ||D| |X |) |D| 3|X | . Thus, we get: Theorem 10. Given a PDS P = (P, Γ, ∆), a labeling function λ : P → 2 AP D and a PCARET \c formula ψ, for every configuration p, ω and every B ∈ B, whether or not p, ω satisfies ψ under B can be solved in time |P |.

Table 3 .

 3 1: Detection of real malwares

	Samples	#LOC	SPCARET Times(s) Result Times (s) Result CARET

 Theorem 16. Given a PDS P = (P, Γ, ∆), a set of atomic propositions AP , a regular labelling function λ : AP → 2 P ×Γ * and a BCARET formula ϕ, for every configuration p, ω ∈ P × Γ * , whether or not p, ω satisfies ϕ can be solved in time O((|P ||ϕ| + k) 2 .|Γ||ϕ|((|P ||Γ||∆||ϕ| + d).2 5(|P ||ϕ|+k) + 2 |P ||ϕ|+k .|ω|))

The number of control locations of BP ϕ is at most O(|P ||ϕ| + k) where k = e∈AP + (ϕ) |Q e | + e∈AP -(ϕ) |Q ¬e |, the number of stack symbols is at most O(|Γ||ϕ|) and the number of transitions is at most O(|P ||Γ||∆||ϕ| + d) where d = e∈AP + (ϕ) |δ e | + e∈AP -(ϕ) |δ ¬e |. Therefore, we get from Theorems 12 and 15:

 t. p 0 , ω 0 B λ ϕ. Intuitively, we compute an SABPDS BP ϕ s.t. p, ω B λ ϕ iff p, ϕ , B , ω ∈ L(BP ϕ) for every p ∈ P , ω ∈ Γ * , B ∈ B. Then, to check if p 0 , ω 0 λ ϕ, we will check whether there exists a B ∈ B s.t. p 0 , ϕ , B , ω 0 ∈ L(BP ϕ). Let Reg + (ϕ) = {e 1 , ..., e k } and Reg -(ϕ) = {e k+1 , ..., e m }. Using Theorems 17 and 18; for every 1 ≤ i ≤ k, we can compute a VA M e i = (Q e i , Γ, δ e i , s e i , F e i) s.t. L(M e i

 γ ⊥ ω which is not accepted by BP ϕ . Therefore, (A3) is ensured by the transition rules in (17) stating that BP ϕ has an accepting run 130 Chapter 5. BCARET Model Checking for Malware Detection from p, E[φ 1 R a φ 2] , B , ω iff BP ϕ has an accepting run from both p, φ 1 , B , ω and p, φ 2 , B , ω ; or BP ϕ has an accepting run from both p, φ 2 , B , ω and p k , E[φ 1 R a φ 2] , B , ω k where p k , ω k is an abstract successor of p, ω .

 .., d n }. Since BP ϕ has an accepting run from p, ∃xϕ 1 , B , ω =⇒ p, ∃xϕ 1 , B , ω must have immediate successors. From all transition rules of BP ϕ , the unique way to have immediate successors of p, ∃xϕ 1 , B , ω is from the rules in (5), which means that for every 1 ≤ i ≤ n, p, ϕ 1 , B[x ← d i] , ω can be the child of the configuration p, ϕ , B , ω in the accepting run of BP ϕ (17) . * From (17), and the fact that BP ϕ has an accepting run from p, ∃xϕ 1 , B , ω , we get that there exits an i, 1 ≤ i ≤ n s.t. BP ϕ has an accepting run from p, ϕ 1 , B[x ← d i] , ω . By applying the induction hypothesis, we get that there exists 1 ≤ i ≤ n s.t. p, ω Suppose D = {d 1 , ..., d n }. Since BP ϕ has an accepting run from p, ∀xϕ 1 , B , ω =⇒ p, ∀xϕ 1 , B , ω must have immediate successors. From all transition rules of BP ϕ , the unique way to have immediate successors of p, ∀xϕ 1 , B , ω is from the rules in (6), which means that p, ∀xϕ 1 , γ , γ , ..., p, ϕ 1 , γ] is the a transition rule applied in the accepting run of BP ϕ. Since B ∈ meet x D (B[x ← d 1], ..., (B[x ← d n]), we get that { p, ϕ 1 , B[x ← d 1] , ω , ..., p, ϕ 1 , B[x ← d n], ω } is an immediate successor of p, ϕ , B , ω . Therefore, BP ϕ has an accepting run from p, ϕ 1 , [B ← d i] , ω for every 1 ≤ i ≤ n. By applying the induction hypothesis, we get that p, ω[B←d i] λ ϕ 1 for every 1 ≤ i ≤ n. Therefore, p, ω B λ ϕ.The property holds for this case. -Remaining cases: The proof is similar to the proof of the corresponding cases of Theorem 13 in Section 4.3.2.

	semantic definition of SBPCARET). The property holds for
	this case.	
		meet x D ---→
	[p, ϕ 1	
	[B←d i] λ	ϕ 1 . Therefore, p, ω B λ ϕ (by the

-Case ϕ = ∀xϕ 1 : *

Abs x (B 1) is as defined in Section 5.1.1

Acknowledgements

This thesis would have been impossible without the guidance, aid and support of many people. I cannot thank them enough for all their help. First of all, I would like to express my deepest gratitude and appreciation for Prof. Tayssir Touili, my supervisor, for her patient guidance, enthusiastic encouragement and kind advices. It was an honor for me to share her immense scientific knowledge during years as her student. Her positive outlook and confidence in research inspired me a lot and made me more confident. Her detailed comments contributed enormously to the production of this thesis.

Chapter 4

Branching Temporal Logic of Calls and Returns for Pushdown Systems

In this chapter, we define the Branching temporal logic of CAlls and RE-Turns (BCARET) that allows to write branching temporal formulas while taking into account the matching between calls and returns. We consider the model-checking problem of PDSs against BCARET formulas with "standard" valuations (where an atomic proposition holds at a configuration c or not depends only on the control state of c, not on its stack) as well as regular valuations (where the set of configurations in which an atomic proposition holds is regular). We show that these problems can be effectively solved by a reduction to the emptiness problem of Alternating Büchi Pushdown Systems (ABPDSs). We show that our results can be applied for malware detection.

Outline. In Section 4.1, we define the logic BCARET. Section 4.2 shows how BCARET can be used to specify branching-time malicious behaviors. Our algorithm to reduce BCARET model-checking to the membership problem of ABPDSs is presented in Section 4.3. Section 4.4 presents the model-checking problem for PDSs against BCARET formulas with regular valuations. Finally, we conclude in Section 4.5.

Branching Temporal Logic of Calls and Returns -BCARET

In this section, we define the Branching temporal logic of CAlls and RETurns BCARET. For technical reasons, we assume w.l.o.g. that BCARET formulas are given in positive normal form, i.e. negations are applied only to atomic propositions. To do that, we use the release operator R as a dual of the until operator U .

Definition 14. Syntax of BCARET Let AP be a finite set of atomic propositions, a BCARET formula ϕ is defined as follows, where b ∈ {g, a}, e ∈ AP :

As a result, we get that:

Lemma 7. Let p k , ω k be an abstract-successor of p, ω on P. For every

2. Now, let us consider the case where p k , ω k = ⊥. As explained previously, this case occurs when p, ω = ⇒ P p , ω corresponds to a return statement. Then, the abstract successor of p, ω is ⊥. Note that ⊥ does not satisfy any formula, i.e., ⊥ does not satisfy φ. Therefore, from p, E[φ 1 U a φ 2] , ω , we need to ensure that the path reflecting the possibility in (A2) that (p, ω λ f φ 1 and p k , ω k λ f φ) is not accepted by BP ϕ . This is ensured as for the case φ = EX a φ 1 by the transition rules corresponding to h 3 in (α10).

In summary, for every abstract-successor

which is not accepted by BP ϕ . Therefore, (A2) is ensured by the transition rules in (α10) stating that BP ϕ has an accepting run from p, E[φ 1 U a φ 2] , ω iff BP ϕ has an accepting run from p, φ 2 , ω ; or BP ϕ has an accepting run from both p, φ 1 , ω and p k , E[φ 1 U a φ 2] , ω k where p k , ω k is an abstract successor of p, ω .

and p, ω λ f φ 2) or (p, ω λ f φ 1 and there exists an abstract successor p k , ω k of p, ω s.t. p k , ω k λ f φ) (A3) . Let π ∈ T races(p, ω) be a run starting from p, ω on which p k , ω k is the abstract-successor of p, ω . Over π, let p , ω be the immediate successor of p, ω .

1. Firstly, we show that for every abstract-successor p k , ω k = ⊥ of p, ω , p, φ , ω = ⇒ BPϕ { p, φ 1 , ω , p k , φ , ω k }. There are two possibilities:

-If p, ω = ⇒ P p , ω corresponds to a call statement. From the rules corresponding to h 1 in (α15), we get that p, φ , ω = ⇒ BPϕ { p, φ 2 , ω , p , ω } where p , ω is the immediate successor of p, ω . Thus, to ensure that p, φ , ω

, ω k is ensured by the rules in ∆ ⊆ ∆ and the rules in (α17): rules in ∆ ⊆ ∆ allow to mimic the run of the PDS P before the return and rules in (α17) allow to extract and put back φ 1 when the return-point is reached. Outline. In Section 5.1, we introduce the new logic SBPCARET and shows how SBPCARET can be used to succinctly specify branching-time malicious behaviors. Section 5.2 shows how to model-check SBPCARET formulas against PDSs. Finally, we conclude in Section 5.3.

Stack Branching temporal Predicate logic of CAlls and RETurns

In this section, we define the Stack Branching temporal Predicate logic of CAlls and RETurns (SBPCARET) as an extension of BCARET (as presented in Chapter 4) with variables and regular predicates over the stack contents. The predicates contain variables that can be quantified existentially or universally. Regular predicates are expressed by regular variable expressions and are used to describe the stack content of PDSs.

Environments, Predicates and Regular Variable Expressions

CARET analysis of multithreaded programs

Dynamic Pushdown Networks (DPNs) are a natural model for multithreaded programs with (recursive) procedure calls and thread creation. We consider in this chapter the model-checking problem of DPNs against CARET formulas. We show that this problem can be effectively solved by a reduction to the emptiness problem of Büchi Dynamic Pushdown Systems. We then show that CARET model checking is also decidable for DPNs communicating with locks.

Our results can, in particular, be used for the detection of concurrent malware.

Outline. In Section 6.1, we define DPNs and single-indexed CARET formulas for DPNs. Section 6.2 shows how single-indexed CARET for DPNs can be applied to detect concurrent malware. Section 6.3 presents how to model check DPNs against single-indexed CARET formulas. The model checking for DPNs with regular valuations is dicussed in Section 6.4. Section 6.5 presents the model-checking problem for DPNs with nested locks against single-indexed CARET formulas. We discuss the related work in Section 6.6 and conclude in Section 6.7.

6.1 Dynamic Pushdown Networks (DPNs)

, where P i is a finite set of control locations, P i ∩ P j = ∅ for all j = i, Γ i is a finite set of stack alphabet, and ∆ i is a finite set of transition rules. Rules of ∆ i are of the following form, where p, p

Chapter 6. CARET analysis of multithreaded programs -(α 2.1) p, A, exit γ -→ i q, A , l ε d 0 ∈ ∆ for every A, A ∈ Atoms(f i) ; l, l ∈ Label such that:

be the set of U g -formulas and U a -formulas of Cl(f i) respectively. The generalized Büchi accepting condition F of BP i is defined as:

Single-indexed CARET model-checking for DPNs 149

A DPDS P i = (P, Γ, ∆) can be seen as a Pushdown System (PDS) if there are no spawn rules in ∆. Similarly, a GBDPDS BP i = (P , Γ , ∆ , F) can be seen as a Generalized Büchi Pushdown System (GBPDS) if there are no spawn rules in ∆ . Let BP i = (P , Γ , ∆ , F) be a GBDPDS obtained by the above computation. Then, it is easy to see that if we don't take into account spawn actions and conditions related to spawn actions, the way we obtain a GBDPDS BP i from a DPDS P i is the same as the way we obtain a GBPDS BP ψ from a PDS P as presented in Section 2.3. Therefore, from Theorem 2 and the fact that

we obtain the following lemma: Lemma 9. Given a DPDS P i = (P, Γ, ∆), and a CARET formula f i , we can construct a GBDPDS BP i = (P , Γ , ∆ , F) such that for every configuration pω ∈ P i × Γ * i , pω f i iff there exists an atom A ∈ Initial i s.t. BP i has an accepting run from p, A, unexit ω.

Spawning new instances. Lemma 9 guarantees that the problem of checking whether an instance of P i starting from pω satisfies f i can be reduced to the problem of checking if BP i has an accepting run from p, A, unexit ω where A ∈ Initial i . Now, we need to ensure the satisfiability on instances created dynamically. Suppose that P i spawns a new instance of P j starting from p s ω s , this means that we need to guarantee that p s ω s f j . Note that by applying Lemma 9 for the DPDS P j , we get that p s ω s f j iff there exists an atom A ∈ Initial j s.t. BP j has an accepting run from p s , A, unexit ω s . Then, the requirement p s ω s f j is ensured by the conditions (β 6) in (α 1), (β 5) in (α 2) and (β 6) in (α 3) stating that for every pγ t -→ i qω d ∈ ∆ (t ∈ {call, ret, int}), we have p, A, l γ -→ i q, A , l ω d 0 ∈ ∆ such that if d = p s ω s , then, d 0 = p s , A 0 , unexit ω s where A 0 ∈ Initial j (since δ(p s ω s) = j in this case).

Given a global configuration

} be the set of initial configurations of the Büchi pushdown process BP δ(pxωx) such that p x ω x f δ(pxωx) iff there exist a configuration p x , A x 0 , unexit ω x ∈ IC x from which BP δ(pxωx) has an accepting run. Let GC = IC 0 × ... × IC k . We can show that: Theorem 23. Given a DPN M = {P 1 , ..., P n }, a single-indexed CARET formula f = n i=1 f i , we can compute a GBDPN BM = {BP 1 , ..., BP n } such that the global configuration G of M satisfies f iff ∃G ∈ GC s.t. G ∈ L(BM).

Chapter 7. Conclusion and Future Work malicious behaviors. We reduced the concurrent malware detection problem to the single-indexed CARET model-checking problem for DPNs. We showed that the latter problem is decidable. We reduced the problem of checking whether DPNs satisfy single-indexed CARET formulas to the membership problem for Büchi Dynamic Pushdown Networks (BDPNs). In addition, we showed that single-indexed CARET model checking is decidable for Dynamic Pushdown Networks communicating via nested locks.

Future Work

The results presented in this thesis can be extended in several directions as follows:

Performance Improvement of the tools. In the algorithms proposed in Chapters 2 and 3, we must consider all possible atoms of CARET formulas and all possible sub-formula subsets of SPCARET formulas when computing the Büchi Pushdown Systems. The number of atoms and sub-formula subsets is huge. To improve the efficiency of our tools, we plan to propose algorithms to compute only needed atoms/subsets in an effective manner. The idea is to determine "reachable" atoms/subsets from a CARET/SPCARET formula.

Extensions of the Tools. Currently, the input of our tools described in Chapter 2 and 3 is pushdown systems and binary codes. Our plan is to extend our tools to be able to take boolean, C/C++ and Java programs as input. Indeed, sequential boolean programs can naturally be translated to equivalent symbolic PDSs. To obtain equivalent boolean programs for C/C++ programs, we can for example use Satabs [START_REF] Clarke | SATABS: sat-based predicate abstraction for ANSI-C. In Tools and Algorithms for the Construction and Analysis of Systems[END_REF]. For Java programs, we can use JimpleToPDSolver [START_REF] Hague | Analysing mu-calculus properties of pushdown systems[END_REF] to retrieve its corresponding PDSs.

Model-Checking Tools for BCARET, SBPCARET and for DPNs. In this thesis, we defined the new logics BCARET, SBPCARET and proposed model-checking algorithms for these logics against PDSs. In addition, we considered single-indexed CARET model-checking for DPNs. These algorithms were not implemented. Our plan is to implement these algorithms in tools and apply them for malware detection.

Model-Checking DPNs for double-indexed properties. In Chapter 6, we considered single-indexed CARET model-checking for DPNs and DPNs with nested locks access. The model-checking problem for DPNs against double-indexed properties is undecidable in general. Therefore, our plan is to determine fragments of double-indexed CARET that are decidable for DPNs and DPNs with nested lock access.

Future Work 157

Android Malware Detection. In this thesis, we only considered Windows malwares. Since the number of android malware is increasing significantly in recent years, we plan to extend our tools for Android malware detection.

BCARET for DPNs. In this thesis, we considered CARET model-checking for DPNs. We believe that BCARET model-checking for DPNs is also decidable. We plan to investigate this problem in the future.