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ECOLE POLYTECHNIQUE

DOCTORAL THESIS

Studying the variability of
bacterial growth in microfluidic

droplets

Author:
Antoine BARIZIEN

Supervisor:
Dr. Charles BAROUD

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

Physical Microfluidics and Bio-Engineering
LADHYX

March 28, 2019

https://research.pasteur.fr/fr/member/antoine-barizien/
https://research.pasteur.fr/fr/member/charles-baroud/
https://research.pasteur.fr/fr/team/physical-microfluidics-bioengineering/


iv

Cette œuvre, création, site ou texte est sous licence Creative Commons
Attribution - Pas d’Utilisation Commerciale - Partage dans les Mêmes Con-
ditions 4.0 International. Pour accéder à une copie de cette licence, merci de
vous rendre à l’adresse suivante http://creativecommons.org/licenses/

by-nc-sa/4.0/ ou envoyez un courrier à Creative Commons, 444 Castro
Street, Suite 900, Mountain View, California, 94041, USA.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/


v

“À la science, et en avant ! crie l’Ecclésiaste moderne, c’est-à-dire Tout le monde”

A.Rimbaud



vi

Remerciements

Beaucoup de personnes m’ont aidé au cours de cette thèse, et je tiens à les
remercier. Il y en a d’ailleurs tellement que je vais sûrement en oublier, alors
merci à elleux aussi.

Tout d’abord, je tiens à remercier vraiment tout.e.s celles et ceux qui ont
rendu ce travail possible, sans qu’on les remercie assez au quotidien : celles
et ceux qui font le ménage derrière nous, assurent l’entretien des locaux, la
livraison des colis, préparent à manger à la cantine. . . Mais aussi tout.e.s
celles et ceux, un peu plus proches de notre travail, qui s’occupent des ques-
tions techniques, en particulier au Ladhyx Avin pour la bio, et Caroline pour
la micro-fabrication. Merci aussi à Dani et Toaï pour m’avoir sorti de mul-
tiples trous noirs issus des mystères insolubles de l’informatique. Et merci
à tout le personnel administratif, en particulier Marie à Pasteur, pour avoir
tout fait pour que notre installation se passe au mieux.

Je voudrais aussi, bien sûr, remercier toute l’équipe de microfluidique.
Déjà, Charles, pour m’avoir encadré pendant ces trois années, en me laissant
une liberté à laquelle je suis attaché, tout en me donnant de bons conseils.
Ensuite, merci Gabriel, pour t’être intéressé à absolument tout ce que je fai-
sais avec bonne humeur et optimisme (ce qui contrastait pas mal avec moi),
et aussi merci pour tes relectures de chapitres de cette thèse. Merci aussi à
Cyprien pour m’avoir passé le flambeau en douceur, et avoir fait un super
code Matlab bien plus propre que les miens, que je ne serai pas le dernier à
utiliser. Merci à Benoît pour m’avoir enseigné les ficelles de la microbiolo-
gie. Merci beaucoup Adrien, pour avoir partagé mon bureau, pour tous les
carreaux de chocolat, et parce qu’on sous-estime beaucoup l’impact positif
sur le moral d’entendre un accent chantant du sud tous les matins. Merci
aussi à Raphaël pour avoir été toujours disponible, Sebastien pour les signal-
ing pathways expliqués avec clarté. Une pensée aussi pour Micaela avec qui
ce fut super sympa de travailler, comme avec tout.e.s les autres d’ailleurs :
Tiphaine, Roméo, Irma, et puis les dernier.e.s arrivé.e.s : Salomé, Christelle,
Gustave et Aimee, bon courage à vous.

Vient maintenant le tour du reste du labo, avec un grand merci en partic-
ulier à toutes les filles de l’équipe d’Abdul (et Carlo), avec qui on a passé de
supers moments dans le 65 (et en dehors, aussi). En particulier merci à Olga
pour les shots de Tequila, merci à Thevy pour ta bonne humeur, et à Anna
pour avoir commencé la thèse en même temps que moi et donné envie de
finir six mois avant. Alex, merci beaucoup pour avoir partagé mon bureau,
redonné vie à la plante verte et pour toutes les discussions qu’on a eu. Et
merci à tout le Ladhyx, en particulier l’équipe de foot !

Je voudrais aussi remercier les gens du CMAP qui m’ont beaucoup aidé
sur la partie théorique, et avec qui ce fut vraiment sympa de collaborer. Je
pense à Vincent en particulier, qui a donné pas mal de son temps avec une
super bonne humeur, et aussi à Tristan, Aline qui m’a initié aux mystères de
Bellman-Harris, et Sylvie. Un grand merci aussi à l’équipe de Didier Mazel: à



vii

Zeynep, pour avoir accepté de suivre ma thèse, à Julia pour sa disponibilité,
et à Sébastien et Didier.

Enfin, je voudrais remercier ma famille et mes ami.e.s, qui me soutiennent
tout le temps. Merci Maman, je ne crois pas que j’en serais là sans pV =
nRT, ni que j’aurais tenu trois ans sans la mozzarella et les arancinis, t’es la
meilleure, à égalité avec ma petite sœur qui est peut être ma petite sœur mais
qui m’ouvre les yeux sur plein de sujets. J’adore parler avec toi Cam-cam.
Merci aussi à mon petit frère qui est devenu vachement grand, au point de
me rendre le plus heureux des tontons bientôt (avec l’aide non-négligeable de
Marine, qu’on remercie de tolérer les soupes de kiwi). D’ailleurs en parlant
de Tonton j’en ai un à remercier aussi, pour avoir toujours été là pour moi.
Merci à mes grands-parents, Jean-Pi pour toutes ces soirées qui changent les
idées, Minette pour toutes les petites attentions, Mémé pour toutes les tartes
qui font chaud au ventre et au cœur et Pépé pour m’avoir initié à la haute
œnologie et au patois savoyard.

Au tour des michel.le.s en tout genre. Merci à mon ours en chocolat,
c’est fou qu’on se connaisse depuis aussi longtemps. Merci à la DTDG pour
m’avoir fait gagner plus au poker qu’en faisant ma thèse. Merci à Louis de
me faire déculpabiliser sur ma propre consommation de thé. Merci à Gianlu
pour les soirées au Chinois. Merci à Nico de nous avoir invité au château.
Merci à Severino pour m’avoir appris à recoudre mes pantalons avec un
point infaillible. Merci Doudou pour m’avoir supporté ces derniers mois
(dans tous les sens du terme), et m’avoir donné envie de venir au labo. T’es
la meilleure des caullaigueuh. Et puis merci à l’apartheid, parce que si la vie
était un pédalo à Lausanne, elle serait plus belle, je vous aime.

Quelques autres remerciements pour des choses qui me tiennent à cœur.
Merci à Basket Pop’ Paname d’ouvrir des brèches dans le monde sur-compétitif
du sport contemporain. Merci à Lundi Matin d’avoir rendu attractifs mes
lundis matins. Merci à PLI, les poto.es qui sont encore mieux que Lundi
Matin, bien sûr. Merci à tout.e.s celles et ceux qui ont rendu magiques les
manifs pendant ces trois années de thèse (et demi). Et pour finir merci à Cab
(Calloway, j’aime bien le jazz), à Cab (ma sœur, quand je suis enrhumé),
à CAB (Constructions Aéronautiques du Béarn, j’ai quand même un master
d’aéronautique...).



viii

Résumé de la thèse en français

Cette thèse porte sur l’étude de la variabilité de la croissance de bactéries
en gouttes microfluidiques.

Dans un premier temps, la puce microfluidique utilisée pour mener des
expériences tout au long de la thèse est présentée. Elle a été développée au
sein de l’équipe de Charles Baroud, au Ladhyx, et permet la création d’un
tableau de 1500 gouttes d’un volume de l’ordre du nanolitre. Les gouttes sont
constituées de milieu de croissance aqueux, dans de l’huile fluorée, et des
bactéries peuvent y être encapsulées. La croissance des bactéries dans cha-
cune des gouttes peut alors être suivie au cours du temps par mesure de fluo-
rescence, celle-ci étant proportionnelle au nombre de bactéries dans la goutte.
Cette relation de proportionnalité est d’ailleurs démontrée expérimentale-
ment et discutée, la valeur de la constante de proportionnalité étant difficile
à obtenir dans les conditions de l’expérience de croissance. Les autres limi-
tations de la puce microfluidique sont également discutées dans ce premier
chapitre, en particulier la variabilité de la taille des gouttes. L’hétérogéneité
de la fluorescence individuelle des bactéries est aussi mesurée, et son impact
pour la mesure de croissance en goutte modélisé.

Dans un deuxième temps, nous revenons sur le résultat de la mesure de
croissance en gouttes pour le modéliser. En effet, nous constatons une grande
variation entre les gouttes en terme de fluorescence mesurée, et donc de taille
de population de bactéries. A partir d’un modèle stochastique de croissance
connu, le modèle de Bellman-Harris, qui prend en compte la variabilité des
temps de division entre les bactéries individuelles, nous pouvons obtenir une
estimation de la variabilité de taille de population. Nous montrons comment
ajouter à ce modèle connu les contraintes expérimentales dues à notre puce,
en particulier la distribution initiale du nombre de bactéries par goutte, qui
est une distribution de Poisson. Cette variabilité initiale est en fait domi-
nante par rapport à la variabilité inter-cellulaire dans le calcul de la vari-
abilité de taille de population entre les gouttes. Les résultats expérimentaux
en puce microfluidique sont en accord avec les prévisions du modèle, non
seulement en ce qui concerne la variance mais également pour la forme de
la distribution de taille de population entre les gouttes, qui peut être estimée
numériquement.

Dans le troisième chapitre, nous nous attaquons au problème inverse,
c’est à dire celui de retrouver la variabilité des temps de division des cellules
individuelles à partir des mesures de croissance en goutte. Notre précédent
modèle ne nous est ici d’aucune utilité, à cause de la domination de la vari-
abilité initiale. Il nous faut donc élaborer un schéma d’inférence qui nous
libère cette contrainte. Pour ce faire, nous suivons la trajectoire de chaque
goutte au cours du temps, et quantifions la déviation stochastique de cette
trajectoire par rapport à une pure croissance exponentielle. Cette déviation,
qui dépend du temps, est appelée résidu de la trajectoire. Nous démontrons
que la variance de ces résidus dépend fortement de la variabilité des temps
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de divisions individuels. Ainsi, en mesurant cette variance, on peut accéder
à ces temps de divisions. Ce schéma d’inférence fonctionne sur des simula-
tions reproduisant les expériences en gouttes microfluidiques. Malheureuse-
ment, il ne peut pas être appliqué à ces expériences, en raison de la trop
grande incertitude existante sur la constante de proportionnalité entre flu-
orescence et nombre de bactéries dans une goutte. Cependant, les résidus
des trajectoires expérimentales se comportent en accord avec la théorie, ce
qui démontre la validité de cette dernière. La méthode pourra être utilisée
par d’autres groupes de recherche ayant des systèmes expérimentaux où la
mesure est plus directe.

Enfin, dans le dernier chapitre de cette thèse, nous montrons comment la
puce microfluidique peut être utilisée pour des mesures de susceptibilité de
bactéries aux antibiotiques. L’emploi de la puce représente un gain de temps
et de place par rapport aux techniques de mesure classiques, grâce en parti-
culier à la possibilité, non utilisée dans les chapitres précédents, de contrôler
l’environnement des bactéries au cours du temps. L’antibiotique peut donc
être retiré, par exemple, pour mesurer l’influence du temps d’exposition sur
la survie des bactéries. Le concept de mesure digitale est développé dans
ce chapitre. Une mesure digitale se base sur le comptage du pourcentage
de gouttes positives (la goutte est remplie de bactéries) ou négatives (au-
cune bactérie n’a poussé), pour en déduire mathématiquement combien de
bactéries ont survécu au traitement. La puce est également utilisée dans ce
dernier chapitre pour étudier le lien entre réponse SoS des bactéries individu-
elles et capacité de survivre à un traitement antibiotique, la réponse SoS étant
une réponse bactérienne induite quand l’ADN de la bactérie est endommagé,
en particulier sous l’effet de certains antibiotiques.
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Chapter 1

Introduction

J’aime pas l’humain, j’préfère les espèces
DAMSO, Introduction à Lithopédion

Heterogeneity is ubiquitous within biological systems. Admiring the ex-
treme diversity of human faces, although they are all representatives of the
same species, is enough to be convinced of this. However, human beings
are a quite complex and evolved organism, but even at smaller scales, or
for simpler biological systems, heterogeneity plays a determinant role. For
years, biology was mostly based on measurements of population averages,
but recent discoveries have proven that taking heterogeneity into account
was not superfluous, if not critical. Cancer, for instance, is known to be
a highly heterogeneous disease [1], with huge intra-tumor and inter-tumor
variablity, and this poses clinical problems for designing effective treatments
from models that are based on population averages [2]. Moreover, cancer
is not the only example in which the heterogeneity in a population of cells
plays a key role. As we will discuss in the first part of this introduction, it
is also crucial to understand the heterogeneity among bacteria. We will see
thereafter that microfluidics has emerged as a powerful experimental tool to
study this heterogeneity, and finish with a focus on the exponential growth
of bacteria.

1.1 Cell to cell heterogeneity in bacteria

Let us start by defining what is meant by heterogeneity in a population of
bacterial cells. It encompasses two different scenarios [3]: it can be pheno-
typic (genetically identical cells have different phenotypes, see Fig. 1.1) or
genetic (genetically different cells in a population). Let us first examine the
latter. If the emergence and selection of genetic mutants have been explained
by Darwin in his classical theory of evolution [4], a strong selective pressure
is required in this classical view to select for an individual phenotype cor-
responding to a genotypic change. But a lot of mechanisms are known to
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increase the mutation rates of bacterial species, and favor genetic diversity.
A well-known example is the SoS response, that will be described in depth
in Chapter 5. It is a bacterial stress response induced when the DNA of the
cell is damaged. It promotes, among other effects, the repair of DNA in an
error-prone fashion [5], which paves the way for the emergence of resistant
mutants [6].

Another mechanism that generates phenotypic diversity through genetic
changes is phase variation. It encompasses several molecular mechanism in
which some particular loci in the bacterial chromosome are subject to genetic
changes at high frequency [7]. Those changes are heritable but reversible,
in contrast with mutations selected by selective pressure that are fixed in the
population. Some species can phase vary, for instance, to change their surface
structure in order to escape the host immune system [8].

FIGURE 1.1: Taken from [9]. Emergence of phenotypic het-
erogeneity from a single-cell. Time-lapse analysis with a strain
of Salmonella Typhimurium carrying a transcriptional gfp re-
porter for the promoter controlling the expression of the flag-
ellin gene fliC [10]. The left panel shows a still image from a
time-lapse microscopy experiment. The right panel shows a re-
construction of the lineage tree, based on the same time-lapse
microscopy experiment. The root of the lineage tree is the sin-
gle cell that founded the microcolony. Branching points corre-
spond to cell division events, and the terminal branches cor-
respond to the 35 cells that are shown in the left panel. The
colour of the cells and of the branches represents the intensity
of the fluorescence signal. X and Y refer to spatial dimensions,
and vertical grid lines indicate 1 hour intervals. Analysis and

images courtesy of S. van Vliet and M.Ackermann.

Let us come back now to phenotypic heterogeneity. The most famous
example of such heterogeneity in bacterial populations is probably the exis-
tence of persister cells, which are individual dormant cells in an otherwise
dividing population. It was shown that their existence is due to a pheno-
typic switch [11], and not to genetic divergence. These cells have the par-
ticularity to be more tolerant to antibiotics treatment because of their low
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metabolism, this is how they were first discovered by Bigger, as early as
1944 [12]. These cells can switch back to a dividing state once the antibiotic
treatment is stopped and may then be a cause of the failure of some antibiotic
treatments.

Another example of phenotypic heterogeneity among bacteria can be found
in biofilms, which are bacterial communities living on surfaces, created by
the self-production of an exopolymer matrix [13]. Thanks to this matrix and
the complex spatial organization of biofilms, the cells are protected from ex-
ternal stresses. In particular, biofilms are more tolerant to antibiotic treat-
ments [14], or to host immune responses [15]. They have been shown to be in-
volved in the infection mechanism of several important bacterial pathogens,
such as Vibrio Cholerae [16]. The heterogeneity of the cells is a key in this case,
some individual cells were shown to create the adhesive matrix components
for the early stage of biofilm formation, with the rest of the population taking
advantage of these early producers.

The question that arises then is to know how this phenotypic heterogene-
ity can emerge among cells that all have the same genetic background. It
all comes down to the fact that a lot of important molecules, such as DNA
or regulatory molecules are present in the cells in a very low copy num-
ber [17]. Hence biochemicals reactions involving these components are very
noisy [18]. These reactions include all the reactions that are necessary for
the production of a protein from a gene, such as transcription and transla-
tion. Thus single gene expression appears to be noisy, which in turn cre-
ates phenotypic variability among isoclonal cells [19]. Two sources of noise
have to be distinguished to account for the stochasticity in gene expression.
The extrinsic noise is due to fluctuations, from cell to cell, in concentration,
location and conformal state of the molecules involved in gene expression
(DNA polymerases, regulatory proteins..). But even if two cells had exactly
the same molecular content, the random nature of the microscopic events
leading to the expression of a gene would still create variation: this is the
intrinsic noise. Both have to be taken into account [19].

Once this single-cell noise in gene expression is known, there are a lot of
ways in witch it can be translated into phenotypic variability. The simplest is
of course that the level of a certain protein gradually depends on the level of
expression of a single gene that controls the production of this protein. But
a small change in gene expression can also have dramatic phenotypic con-
sequences [20], this is for instance the case for bistable switches, in which a
gene expression can have two very different states, the "on" state in which
it is activated and the "off" state in which it is almost silent (see Fig. 1.2).
Thus, two phenotypically distinct sub-populations can be created. Those
bistable motifs can be due to simple gene networks: if a single repressor has
a very low on and off rates, for instance, a bistable switch is possible [23].
But they can also be due to more complicated gene networks, including in
particular feedback loops. A double negative feedback loop, in which two
repressors repress each other’s gene, creates bistablity as long as there is co-
operativity in between the two repressors [24]. A positive feedback loop can
also create bistability in gene expression, as soon as a protein activates its



4 Chapter 1. Introduction

FIGURE 1.2: Taken and adapted from [20]. Mechanisms of
stochastic phenotype switching. (a) When exposed to an in-
ducer such as methyl-β-Dthiogalactoside (TMG), individual E.
coli cells respond in an all-or-none fashion in which only some
express the lac operon. This bifurcation in phenotype is medi-
ated by rare complete dissociations of the Lac repressor (LacI)
from its multiple operator sites. The resulting large bursts
of transcription can be visualized directly by imaging sin-
gle molecules of LacY-YFP (yellow fluorescent protein) (right;
reprinted from [21]). (b) Bistable positive feedback loops in
which a key component (X) reinforces its own production un-
derlie many stochastic switches. A common architecture is the
double negative loop composed of a pair of mutually repress-
ing repressors such as CI and Cro from phage λ [22]. Once
dominant, either repressor reinforces its own expression by re-
pressing its counterpart, which leads to two stable steady states.
These states are visualized here as wells in a potential land-
scape; the system’s trajectory (red sphere) continues until it falls
into one of the wells, where it is then stuck for long periods of
time. Rare, large fluctuations can push the system back out of

the well, which allows switching to occur.

own production with great sensibility [25]. Such bistable switches are widely
spread among bacteria, and responsible for the expression of virulence fac-
tors, for instance in Vibrio Cholerae [26]. Another very famous class of bistable
switches is the toxin/antitoxin systems, in which a stable toxin is inhibited
by a unstable antitoxin, both encoded in closely linked genes [27]. Such sys-
tems are known to be involved in the formation of persisters cells [28, 29],
and the regulation of a lot of bacterial stress responses [30].

Another characteristic of these bistable switches is that they can create
heritable phenotypes without genetic changes [31]. Thanks to the regulary
network, a stochastic gene expression can then be turned into a heritable



1.1. Cell to cell heterogeneity in bacteria 5

phenotypical difference. Indeed, one must not confuse phenotypic variabil-
ity with inheritable variability. In E. coli, for instance, a biased partitioning
of a multidrug efflux pump, called Acab-TolC, causes distinct and herita-
ble drug tolerance phenotypes in a population [32]. This mechanism is here
based on the fact that the efflux pumps are not transmitted equally between
mother and daughter cells at division, but biased towards the mother. This
is heritable, as the older cell will keep the phenotype.

Understanding the heterogeneity among seemingly similar bacteria is also
of critical clinical importance: infections caused by bacterial pathogens often
involve heterogeneous populations. A well-known example is the intesti-
nal pathogen Salmonella Typhimurium. This bacteria is known to be involved
in many food-borne illnesses, it was even found to be the leading cause of
deaths due to food-borne diseases in the United States [33]. Its ability to in-
fect hosts relies on the existence a small sub-population of cells that grow
more slowly than the rest of the population, but express a virulence factor
that is necessary for the early competition with the host’s flora [34]. Once
an infectious niche has been established thanks to this small sub-population,
faster growing cells, that do not express the virulence factor, can take over.
This is then an example of heterogeneity leading to cooperation in between
the different cell types. Moreover, the bacteria expressing the virulence factor
are known to be more tolerant to antibiotic treatment [35], which is another
problem to efficiently cure patients. Understanding the heterogeneity in bac-
terial populations is therefore important for clinical reasons.

Last but not least, bacterial heterogeneity plays a key role in bacterial
adaptation to new environments. A heterogeneous population is indeed
more likely to survive if the environmental conditions change, as there may
be a sub-population of cells that is well-suited for the new environment.
It has been demonstrated for both phenotypic [36] and genetic heterogene-
ity [37]. This strategy is known as bet hedging, as the bacteria bet on future
changes in the environment, maintaining less fit individuals in the popula-
tion to have a better chance of survival if the environment changes.

So far, we have explained the origins of heterogeneity among bacterial
cells and given examples of its importance for some microbiology problems,
many of which have clinical implications, and also for bacterial evolution.
This heterogeneity can create variability in the results of an experiment, which
must not be disregarded. Indeed, if carefully analyzed, it can help answer
fundamental biological questions. The most famous example of how observ-
ing variability was helpful for fundamental biological knowledge is probably
the Luria-Delbruck experiment [38]. Luria has observed that the number of
resistant mutants to a bacterial phage (a virus infecting bacteria) was highly
variable from one experiment to another. Instead of just throwing away the
data, he used this observation to answer the question of whether the resis-
tance mutations were randomly acquired prior to the phage attack or would
appear as a response to the aggression. Together with Delbruck, they built
a mathematical model predicting the variance of the number of mutants in
a culture in the two scenarios. It was shown that the observed variability
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could only be explained by the random mutation scheme. Luria and Del-
bruck won the Nobel Prize together for solving this question. The concepts
developed by Luria and Delbruck are used today, particularly the deviations
from their original predictions. For instance, in a very nice paper, Kessler and
Austin [39] showed that the variability of drug-response curves of tumors in
patients could only be explained by adding a non-uniform death rate for sen-
sitive cells to the Luria-Delbruck distribution of resistant mutants.

If Luria and Delbruck managed to extract information from the exper-
imental variability with basic experimental tools (they just used plating of
bacteria on agar plates), more advanced experimental tools are needed to be
able to observe and quantify the heterogeneity at the single-cell level. This
was made possible thanks to advances in microscopy techniques and also to
the emergence of new experimental tools known as microfluidics, that has
emerged during the last 20 years [40].

1.2 Microfluidics as a tool to study bacterial het-
erogeneity

What is microfluidics ? Let us quote directly one of the founders of the field,
GM Whitesides: " It is the science and technology of systems that process or
manipulate small (10−9 to 10−18 litres) amounts of fluids, using channels with
dimensions of tens to hundreds of micrometres" [41]. Microfluidics is then at
the same time a scientific and a technological field. We will focus on the lat-
ter here. The application of this technology to the study of biological systems
was natural for one main reason: many biological systems can be studied at
scales that are compatible with the length scales evoked by Whitesides. For
the case that interests us, bacteria are usually a few µm long, so they can enter
microfluidic channels and be studied in such systems. But microfluidic tech-
nologies have another decisive advantage over classical ones. Thanks to the
miniaturization enabled by the small length scales, a lot of experiments can
often be conducted in parallel in microfluidic devices: the throughput is of-
ten much higher than with classical experiments. And if a lot of experiments
can be followed in parallel, the statistics on the variability of the experiments
can be characterized with higher precision. This is why microfluidics is a
natural tool to study the heterogeneity of biological systems.

Historically, the firsts examples of using microfluidics to study the cell to
cell variability of bacteria were done using single-phase microfluidics tech-
nologies [42]. This means that there is only one fluid that is manipulated in
those devices. The micro-scale in those systems is then mostly used as a way
to geometrically constrain the bacteria to stay in a desired location in space, in
order to be able to easily image them over time under a microscope. But the
environment of the bacteria can also be finely controlled over time, and this
turned out to be a great advantage over classical microbiology techniques.
The first example of the use such a device to study cell to cell variability was
the seminal study of persister cells by Balaban et al. [11]. It dates back to
2004. Straight trenches patterned in polymethylsiloxane (PDMS) were used
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to force E. coli to grow in those trenches in one dimension, as the width of the
trench was just enough for one bacteria to grow, see Fig. 1.3(a). The trenches
were sealed with a permeable membrane to allow a precise control of the
environment in which the bacteria grow. Thus, the differential sensitivity
of individual cells to an antibiotic could be analyzed and persistence was
proven to be due to a phenotypic switch. 2D chambers appeared soon af-
ter [43] (and Fig. 1.3(b)). Once again, it was made possible thanks to the
precision of fabrication of microfluidic devices: the height of those chambers
is comparable to the height of a single bacteria, forcing the bacteria to grow
in a monolayer, which is perfect for microscopy. The advantage of the 2D
device over the linear groove is that more generations can be traced thanks
to the two dimensional aspect. Hence, they were first used to track the oscil-
lations of gene expression over multiple generations [43]. However, because
of the exponential growth of bacteria, even a two dimensional chamber is
completely crowded after some time. The long-term monitoring of bacterial
growth required therefore another technological advance.

This is where the most famous microfluidic device for the study of bac-
terial cell-to-cell heterogeneity comes into play. It is known as the "mother
machine", see Fig. 1.3(c). It is once again based on constraining the bacteria
to grow in one-dimension, but this time one end of the trench is closed, so
that the mother cell is bound to stay in the trench, and the characteristics of
the division events of this single-cell can be observed for hundreds of gener-
ations [44]. The other end of the trench is open to free flowing media, so that
daughter cells get flushed away and the growth condition can be controlled
over time. Hundreds of similar linear channels can be made on one microflu-
idic device, so that hundred of mother cells can be observed in parallel. This
device proved to be useful for the deciphering of the cell division mechanism
and cell-size control of E. coli [45], as we will see in more details in Chapter 2.
But the mother machine has had numerous other applications, including for
instance fast antibiotic susceptibility testing [46] or noise reduction in syn-
thetic biology networks [47].

More recently, other single-phases microfluidic devices have been devel-
oped for the study of cell-to-cell heterogeneity. For instance, the MACS,
which stands for Microfluidics Assisted Cell Screening [48]. In this very
ingenious device, the cells flow continuously through the device, and are
pumped from a reservoir into an observation chamber where the external
pressure is very finely controlled. Thus, if the pressure is increase, the PDMS
ceiling of the chamber collapses and bacteria get squeezed in between this
ceiling and the bottom glass coverslip (Fig. 1.3(d)). They can be imaged with
very high resolution (Fig. 1.3(e)): it was shown that single fluorescent pro-
teins could be detected, keeping also a high throughput, as 105− 106 cells can
be imaged per hour. The control mechanism of RPoS, an important promoter
of the E. coli stress response could be quantified thanks to this device [49].

Single-phase microfluidic devices have then proven to be very useful in
the study of bacterial heterogeneity. However, these devices have a few
drawbacks. First of all, as their is only one fluid phase, all the bacteria are
mixed up in this single fluid in the microfluidic device. As a consequence, if
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FIGURE 1.3: Taken from [42]. Microfluidic devices for single-
cell analyses. (a) Diagram of the first device to support growth
of bacteria in linear colonies with continuous time-lapse imag-
ing. Cells grow and divide in strait grooves etched in PDMS
(top panel, top-down view). Trenches are enclosed by a per-
meable membrane and fed diffusely from flowing media above
(bottom panel, cross-sectional view). (b) Top-down depiction
of monolayer growth device. Bacteria are confined to a two-
dimensional monolayer, fed by flowing media on both sides of
the colony. (c) Top-down schematic of the mother machine de-
vice. Cells are confined to dead-end linear trenches and fed
by flowing media. Red dotted line represents segmentation of
old-pole mother cells; yellow dotted line marks a single lineage
with daughter cells sharing the same mother. (d) Top-down
cartoon of the single-cell chemostat device. Bacteria are geo-
metrically constrained to a single dimension, but no old pole
accumulates due to the open-ended structure. Flowing media
feeds the trapped bacteria and washes away daughter cells. (e)
Cross-sectional view of the MACS platform. A soft ceiling is
expanded by controlled pressure to trap single bacteria from a
liquid culture. Squeezing the cells aids single-molecule detec-
tion (inset). (f) Single field-of-view from MACS. Bacteria with
a constitutive segmentation reporter (red) are captured and im-
aged with MACS. A rare transient phenotype is observed in

yellow.

one single bacteria is found to have special characteristics through imaging,
and the experimenter wants to retrieve it from the device for further analy-
sis (genome sequencing, for instance), this bacteria cannot be isolated from
the others. A particular case is the one where this bacteria of interest can be
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selected by selectively killing the others, which is the case for bacterial per-
sistence. But even then, all the persisters are recovered together, lacking the
ability to perform off-chip single cell analysis. Another drawback of these de-
vices is that one way or another, descendants of the bacteria initially seeded
into the observation chamber have to be flushed away. This is a consequence
of the exponential growth of the bacteria: the observation chamber is rapidly
filled. This implies that only a few generations can be completely tracked.
Furthermore, descendants are mixed when they are flushed away, hence lin-
eages are not kept separated, once again, for recovery and off-chip analysis.
Finally, if the growth conditions are controlled in such devices, they are often
the same for all bacteria, as they are all growing in the same medium. This
can be a drawback for screening applications.

We see that this issues could be solved if the bacteria were separated from
one another: this is where two-phases microfluidics comes into play. Indeed,
in two-phases microfluidics, bacteria are encapsulated in droplets, more of-
ten droplets of aqueous medium in oil (although systems based on double
emulsion also exist [50]). Hence single bacteria can be isolated from one an-
other when encapsulated in the droplets. Because of the immiscibility of the
two fluids, the lineages of these single bacteria are also kept separated. It
was made possible thanks to recent chemical advances, such as the intro-
duction of fluorinated oils as the carrier phase. They are biologically inert,
limiting in particular the diffusion of biological molecule from one drop to
another [51]. Biocompatible surfactants that stabilize the droplet interface
while not interacting with the biological processes inside the droplet have
also been developed [52].

The idea to grow bacteria in droplets is in fact not that new. Back in 1954,
Lederberg already described a protocol to isolate and observe single bacteria
in droplets placed on a glass slide covered with mineral oil [53]. Antoinette
Gutman and André Lwoff also cultured bacteria in micro-droplets at Institut
Pasteur in the 1950s [54]. What interested these precursors was the ability to
encapsulate a single-cell and to observe the division tree emerging from this
single cell. But they didn’t have the multiple possibilities offered by modern
droplet microfluidics.

What are these possibilities ? They can be summarized in three axes [55].
First, huge numbers (up to 106 [56]) of monodisperse droplets can be gen-
erated in parallel. The state of the art attains currently the generation of
droplets at more than 104 Hz [57]. These droplets can be used as reactors
for the parallel study of biological reactions. Second, these droplets can be
monitored, sorted, recovered off the chip for further analysis. The fluores-
cence of up to 250 000 droplets per second can thus be monitored [58]. The
sorting techniques are diverse, relying on electromagnetics, accoustics, me-
chanics... (see [59] for a recent review). Third, their chemical content can be
controlled over time for complex study of bacterial responses. Of course, not
all droplet microfluidic devices combine these three advantages. Let us ex-
amine though how some of them combine these possibilities for the study of
cell to cell variability.
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The high-throughput is of course a great advantage to study the cell-to-
cell variability. Cottinet et al. [60] used for instance the parallel growth of
hundreds of colonies from single E. coli cells in a millifluidic device to study
the influence of starvation on the growth phenotype. Thanks to the high
throughput, the variability of growth phenotypes could be proven and quan-
tified. Furthermore, thanks to droplet-sorting, droplets with different growth
phenotypes could be separated, and sequenced off-chip to detect changes in
the genome of the bacteria. Using the same system, the encapsulation of sin-
gle algae cells in droplets demonstrated the existence of a subpopulation of
slow-growing cells, that would have been difficult to detect in bulk growth,
as starting from a hundred cells in the droplet completely hides this pheno-
type [61]. It seems this time that this is due to a stochastic phenotypic switch
rather than a different genotype.

Antibiotics susceptibility at the single cell level can also be explored using
droplet microfluidics. The diversity of responses at the single-cell level can
be quantified, and analyzed off-chip for the determination of the resistance
mechanism [62]. Contrary to single-phase microfluidics, the morphology of
the colonies growing from those single cell under antibiotic pressure can also
be observed [63]. The control of the composition of the droplets over time
can also be of great use for the study of antibiotics. The adaptation of a bac-
terial population to a changing concentration of antibiotics over time was for
instance demonstrated [64].

Encapsulating bacteria in droplets also allows to separate one species
from another in a sample of unknown composition [65]. It may allow the
isolation of rare or very slow growing species from the environment, which
is one of the most exciting challenges of microbiology, as most of the earth
microbiome is for now "unculturable" [66]. The species variability is here
investigated.

Last, droplet microfluidics is useful because it allows the screening of sin-
gle cell contents in a very short time. The classical genomics techniques can
nowadays be applied to single cells, which allows to explore the cell-to-cell
variability in gene contents in a population. Real-time PCR was performed
on different species of Mycobacterium Tuberculosis, that are of clinical impor-
tance, and identification of the different species was possible in a very short
time [67]. Uniform amplification of the genome of single E. coli cells is also
possible in droplets [68].

There are of course a few drawbacks of using droplet microfluidics. The
one that matters the most for us is that compared to the single-phase devices
that were evoked before, the growth of bacteria in droplets is not stringently
spatially constrained. Bacteria can grow anywhere they want in the droplet,
and thus it is much more difficult to track single cells, for instance. Usually,
what is obtained with droplet-based microfluidics is then a measurement at
the level of a small population growing in the droplet. So if we want to
obtain some single-cell information from such experiments, they will have to
be statistically inferred from population-level measurements. This approach
will be developed in this thesis, in particular in Chapter 4.
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To summarize, we have seen that both single-phase and droplet based mi-
crofluidics could be useful for the study of the heterogeneity of populations
of bacteria. In the next part, we will show how this happy wedding could
be used to study one case of cell-to-cell variability, which interests us in this
thesis: the case of cell-to-cell variability in exponential growth.

1.3 Exponential growth

The question that arises at this point is why would we choose to focus on the
exponential growth of bacteria ? Many answers can be given. The first one
is a practical question. It has been known to micro-biologists for a long time
that in order to prepare bacterial samples in a reproducible way, bacteria have
to be in exponential phase. In order to build predictive models, this is then
what has to be done. Another answer that we could give is that it has been
shown that bacteria grow exponentially for several days in a host during an
infection. Exponential growth then has a clinical importance.

But if bacterial physiologists have been obsessed with the growth curves
of bacteria in exponential phase for more than 50 years, as ironically admit-
ted by Neidhardt in a very nice commentary [69], it is for more fundamental
reasons. It all began with Monod, who first put the bacterial growth in equa-
tion [70] (see also Fig. 1.4(D)), and declared: "The study of the growth of bac-
terial culture does not constitute a specialized subject or branch or research:
it is the basic method of Microbiology". A lot of research in the physiology
of bacterial cells has followed this intuition. In particular, the Copenhagen
School, led by Maaloe, has shown that a lot of characteristics of the cells were
directly dependent on the growth rate. The cell size, as well as its ribosomal
content, are hence uniquely determined by the growth rate [71], which only
depends on the quality of nutrients of the medium.

These growth laws, relating the ribosomal content and size of the cells to
the growth rate, have recently been revisited as a analogy to Ohm’s law in
electronics [73] (see Fig. 1.4). In fact, these relations indicate that the protein
content of a cell is determined by the growth rate [72]: gene expression and
growth are thus intrinsically linked, and studying the growth of bacteria can
thus help understand gene expression. But this is not the only application of
these growth laws: they have been successfully used, for instance, to predict
the effect of ribosome-targeting antibiotics on the growth of E. coli [74].

Nevertheless, these relations do not include any cell-to-cell heterogene-
ity. It is precisely by studying the single-cell deviations from these growth
laws in the "mother machine" that the question mechanism of cell division
in E. coli was recently deciphered [45]. The single-cell deviations from these
growth laws are then of critical importance. It has been shown, also, that at
the single-cell level, stochasticity of metabolism and growth are related [75].
Learning more on the variability of growth during exponential growth could
hence help biologists to learn more on the variability of gene expression.

In parallel with these biological discoveries, exponential growth has re-
ceived a lot of attention from mathematicians. Bellman and Harris, as early
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Monod's equation: 
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FIGURE 1.4: Adapted from [72, 73]: presentation of the modern growth
law and comparison with Monod’s classical equation. (A) The growth
theory comprises three key ingredients: (i) a three-component partition
of the protein content of the cell, consisting of a fixed core sector (Q)
and two adjustable sectors (R and P) whose fractions (mass fractions:
φR and φP) must add up to a constant (Embedded Image). (ii) A riboso-
mal fraction φR containing all the ribosomal proteins and their affiliates
and exerting a positive effect on growth (with growth rate λ ∝ φR− φ0).
φ0 is an offset depending on the bacterial strain. κt is the "translational
efficiency", it quantifies how efficient a microorganism is at translat-
ing DNA into proteins. ρ is the coefficient of proportionality between
the mass fraction of ribosomal proteins φR and the ratio of the number
of ribosomes to the total number of proteins. (iii) A remaining frac-
tion φP exerting a similarly positive effect on growth (with growth rate
λ ∝ φP) by providing an influx of nutrients. This fraction includes all
the metabolic proteins. κn reflects the nutrient quality of the medium
and is known as the "nutritional efficiency". (B) During steady-state ex-
ponential growth, efficient resource allocation requires that the nutrient
influx (κn · φP) be flux-matched to the amino-acid outflux κt(φR − φ0).
This can be coordinated by ppGpp, which up-regulates ribosome syn-
thesis and hence amino acid outflux in response to increase in the amino
acid pools, and has the opposite effect in response to decrease in the
amino acid pools. (C) Analogy with Ohm’s law: the value of the growth
rate obtained by mixing the three previous equations, is mathematically
identical to the description of electric current flow through a pair of re-
sistors connected in series to a battery with fixed voltage (1− φQ − φ0).
In this analogy, the growth rate λ is the current through the resistors.
λC = (1− φQ − φ0) · κt/ρ. (D) Monod’s classical equation relating the
growth rate of a strain λ to the concentration of the limiting sugar [S]
and the maximal growth rate λmax. K is the saturation constant. K and
λmax depend on the strain and the medium. We see that there is a formal
analogy with equation (C). In fact, Monod’s equation can be retrieved
from (C) by supposing Micaelis-Menten kinetics for the transport of a

sole sugar source inside the cell.
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as 1952 [76], have set the mathematical basis of a description of exponen-
tial growth, taking into account the variability of division times of the cells.
In this model, the cells are considered to be independent, and their divi-
sion times are picked from a fixed distribution. In particular, the population
growth rate and the mean growth could be computed for multiple distribu-
tions of the division times. This model was used soon after by Powell [77],
who derived the age distribution of the bacteria in the culture and compared
it to experimental data. He also compared the predicted growth rate of the
population to the experimental one.

What is interesting about these early models of exponential growth is that
they include a cell-to-cell variability. However, what was lacking is that this
cell-to-cell stochasticity was not linked to any biological mechanism of cell
division nor biochemical mechanism of noise production. Nevertheless, such
phenomenological models are still used nowadays [78, 79, 80, 81], because
they can be simulated easily. The link between the variability of individual
division times and the variability in population size can thus be explored
numerically [80]. The increase of the initial number of bacteria has also been
shown to reduce the variability in terms of population size [81, 78]. It is also
possible to also add to this simulation scheme a death rate [78] and study
its effect on the population growth. We will see how such a model can be
adapted to match our experimental constrains in Chapter 3, in order to be
able to compare the prediction of this kind of model to experimental data,
which is generally lacking in those simulation-oriented articles.

It is only very recently that the gap between population dynamics and
biologically-relevant single-cell division mechanism has begun to be filled. In
particular, Lin and Amir [82] have proposed a model that takes into account
the recent biological findings on the cell division and size control mecha-
nisms and include variability at the single-cell level. They have studied the
effects of this model on the population growth rate. Another very interesting
approach was developed by Iyer-Biswas in a series of articles [83, 84, 85, 86].
She describes of the cell cycle as a closed circle of stochastic autocatalytic re-
actions (reaction products catalyze the next reaction in the circle) [83]. Some
scaling laws can be retrieved from this description [84], in particular the fluc-
tuations in cell division times, that are found to scale with the mean division
time. These scaling law were found to be in agreement with single cell obser-
vations on Caulobacter Crescentus. Similar scalings were also observed on E.
coli [87]. To go further, the link between single cell variability and population
dynamics was investigated in the case of an asymmetric cell division such as
Caulobacter Crescentus [86]. The authors also evoke the possibility to use these
relations to infer data on the single-cell from population measurements, but
without any experimental confrontation.

We have already evoked this inference problem when discussing the draw-
backs of droplet-based microfluidics. It is remarkable to note that it has
been discussed for a long time in the mathematical literature, soon after the
Bellman-Harris model was exposed. The estimation of the parameters of the
single-cell distribution of division times from the mean population growth
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was proven to be possible, in the case of a Gamma distribution of the divi-
sion times [88], but not really applied to experimental cases: the point was
more to prove the mathematical convergence of the estimators. Other ap-
proaches were developed, but for a continuous observation of the division
process [89, 90], which is difficult to obtain experimentally. For discretely
observed branching processes, maximum likelihood estimators were built,
even in the case of multi-type processes [91], but they are usable only if the
explicit distribution of the number of cells is available, which is not the case
in a Bellman-Harris process. A pseudo-likelihood estimator, based on nu-
merical simulations for the estimation of the time-dependent distribution of
the number of cells, can then be used [92], and we will use it in Chapter 3.

This question of inference of single-cell parameters from the observation
of dividing populations has regained a lot of attention in the last years [93], as
the recent experimental developments allowed the production of more and
more of these kinds of data. The fitness landscape of a resistance-conferring
protein under drug pressure was for instance inferred from fluorescence data
and observation of the division tree of E. coli [94]. In the context of gene ex-
pression, exploiting the structure of the lineage tree can lead to estimations
of stochastic cell fate-switching parameters [95]. The observation of the divi-
sion tree can also be used to get gene expression parameters for each single
cell [96]. Notwithstanding, all these inference schemes rely on the the direct
observation of the lineage tree, which is not what is usually obtained with
droplet based measurements. We will see in chapter 4 how an inference prob-
lem on the parameters of the distribution of the division times of individual
cells can be solved without any observation at the single-cell level.

1.4 Plan of the thesis

This thesis is composed of 4 chapters following this introduction.
In Chapter 2, we will present the microfluidic chip used throughout this

thesis for microbiology experiments. We will expose the droplet generation
technique that was developed in the lab and the way it was transferred into
an easy-to-use microfluidic chip, where more than a thousand growth exper-
iments can be followed in parallel. The rest of the chapter is dedicated to
the technical questions related to the growth of bacteria on the chip, starting
by explaining how a growth experiment is performed. We will then explore
how bacterial growth can be quantified by measuring the fluorescence of the
droplets, how the experimental noise has to be treated. We will also expose
the difference between on-chip and batch growth, and try to quantify the
volume heterogeneity of the droplets, as well as their shrinkage during an
experiment.

The following chapter 3 is dedicated to the description of a stochastic
model of the growth of the bacteria from a few cells to small colonies in the
droplets that encompasses cell to cell variability. The exponential phase of
the growth will be modeled, by extending the Bellman-Harris model to fit
our experimental constrains. We will show that the variability in the early
stages of growth, which is due to our experimental constrains, dominates
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over the cell-to-cell variability to account for the observed variability in pop-
ulation size. Those theoretical predictions will be compared with the experi-
mental results of growth of E. coli and B. subtilis on-chip. Besides, we will see
that because of our experimental constrains, it is difficult to use the results
of our extended Bellman-Harris model to learn information about the single
cells from our populations based measurements.

This inference problem will be tackled in another way in Chapter 4: we
will try to obtain the cell-to-cell variability of division times from the observa-
tion of the growth in droplets. Instead of using the distribution of the number
of cells at the observation points, we will develop a theoretical and numeri-
cal inference approach based on following the trajectory of each droplet over
time. The deviation from a pure exponential growth will be quantified and
linked back to the cell-to-cell variability. This relation will be used for suc-
cessful inference on simulations, and we will study how it could be used with
experimental data.

The last chapter is dedicated to a slightly different subject: we will try to
show how our microfluidic chip can be used to investigate how the bacteria
respond to an antibiotic stress. We will show that the experimental possibil-
ities offered by the chip can be of great use in this context. For instance, we
will show how digital measurements can be used to study the survival rate
to antibiotics varying the concentration and the exposure time, and compare
the measurements that we get with our chip to more classical measurements
of antibiotic susceptibility. Finally, we will demonstrate how our chip can
be used for the study of a particular bacterial stress response to antibiotics,
known as the SoS response.
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Chapter 2

Presentation of the experimental
platform

Jme présente, je m’apppelle Henri
Michel

In this chapter, we describe the microfluidic chip used throughout this
thesis for microbiology applications. The emphasis will be on the technical
questions related to the chip: what is measured, how, and what are the lim-
itations when we run an experiment. But we will also try to conceptualize
what it means to conduct experiments in a device like this one. We will de-
scribe as well the typical growth experiments that will be analyzed in more
depth in the following Chapters.

2.1 An original microfluidic chip for parallel mea-
surements of bacterial growth

2.1.1 Design of the chip

The breaking process

The microfluidic chip that is used in this thesis was designed in our lab and
is described in-depth in [97]. We are just going to give here its main charac-
teristics for the reader to understand the experiments presented later on.

To be concise, the chip comes down to a big chamber, with two inlets and
one outlet, that contains a static array of about 1500 nano-liter sized water-
in-oil droplets immobilized in anchors, or traps, in which cells can be encap-
sulated (Fig. 2.1(A),(B)). Its originality lies in the way by which the droplets
are created. Indeed, the droplets are created directly on the anchors thanks to
the so-called "breaking" technique [98], which is based on a surface-tension
effect. In fact, the anchors are holes that are patterned in the PDMS ceiling of
the chamber, and they act as wells of surface energy [99].
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This principle was at first designed to keep a droplet trapped in an exter-
nal oil flow [100]. Let us imagine a big microfluidic chamber, with a small
height difference between the glass floor and the PDMS ceiling, and infinite
dimensions in the other directions. If a big water-in-oil droplet is introduced
in such a chamber, it will be squeezed between the floor and the ceiling and
adopt a pancake-like shape. However, the most energetically favorable shape
for a droplet is a sphere, which minimizes its surface and thus its surface en-
ergy. If now a hole is patterned in the ceiling of the chamber, the the droplet
can enter the hole. By doing so, it releases some of its surface energy thanks
to the height difference: if the dimensions of the trap are correctly chosen, the
surface of the trapped droplet can be smaller than its surface when squeezed
in the chamber. Thus it is more energetically favorable for the droplet to
remain in the trap, and this trapping force can be quantified.

The same principle is extended in the chip to create droplets in the traps.
In fact, let us go back to the big droplet trapped in the anchor that we have
described in the last paragraph. If the external oil flow is increased above the
trapping force, under certain conditions the droplet will break into two parts.
Most of it is flushed away by the oil flow, and a small part remains trapped
in the anchor, creating a smaller droplet with a predictable volume [98].

This is then an efficient and robust way of creating droplets directly on the
anchors, and the chip used here is the generalization of this simple principle
to a an array of 1500 anchors in a big chamber. Hence, an array of 1500 water-
in-oil droplets can be created in less than ten minutes.

The method to create the droplets is described in Fig. 2.1(C),(D). First, the
chamber is completely filled with fluorinated oil through inlet 1. Then, it is
filled with a suspension of bacteria at the desired concentration in bacterial
growth medium through inlet 2. This creates a big plug of aqueous solu-
tion in the chamber and the anchors, surrounded by an oil lubrication film
(thanks to the first step). Finally, an oil flow is applied again through inlet 1.
It pushes the aqueous plug and "breaks" it, leaving a droplet in each anchor,
encapsulating at the same time the bacteria in these droplets.

The multiple possibilities of this microfluidic device are fully described
in [97], we will just give the reader a quick summary here. First of all, this
whole "breaking" process can be realized with liquid agarose instead of pure
culture medium. After the loading, the agarose can be gelified, and the exter-
nal oil can be removed by replacing it with an aqueous solution. Hence, the
droplets containing bacteria can be perfused with any solution: the micro-
environment of the bacteria can be controlled over time. For instance, an-
tibiotics can be added to study the stress response of bacteria. We can also
perfuse the chip with a gradient of any compound, with a different concen-
tration for each row of the droplet array. Finally, with the agarose droplets, a
particular droplet can be selectively retrieved from the chip: we can precisely
melt it with a laser and retrieve its content by pushing it out of the chip with
an external oil flow. Its content is then viable and available for any off-chip
analysis (sequencing, susceptibility testing..).
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FIGURE 2.1: Taken from [97] Description of the microfluidic
device and protocol for droplet production: (a) design of the
microdroplet multiwell device. The central chamber has di-
mensions 0.5 × 4.8 cm and contains a 2D array of 115 × 13
surface-tension anchors. Square anchors have side dimension
d = 120 µm, spaced by δ = 240 µm. The chamber height is
h1 = 35 µm and the anchor height h2 = 135 µm. (b) The device,
which fits on a microscope slide, is connected to two inlets and
one outlet. (c) Time-lapse of the drop formation process. At t =
0, the cell sample fills the microfluidic chamber entirely, and is
being pushed by fluorinated oil (FC40 + 0.5% surfactant) using
a hand-pushed syringe. The arrow indicates the oil flow direc-
tion. When the interface penetrates between two anchors, it de-
forms and then breaks, which leaves a well-calibrated droplet
in the anchor. The cell sample is colored in red for better visu-
alization. Scale bar: 200 µm. (d) Cross-sectional schematic of
the breaking process on anchors. The aqueous sample initially
fills large regions and then gets divided into isolated droplets
that fill each of the anchors. (e) Experimental histogram of the
normalized droplet volumes on one chip. The orange line is
the best Gaussian fit to the data, leading a standard deviation

σ = 0.02.



20 Chapter 2. Presentation of the experimental platform

Encapsulation of the bacteria

When bacteria are diluted in suspension, and then encapsulated in small
droplets, the number of bacteria per droplet follows a Poisson distribution [101].
This is true as long as there is no interaction between the bacteria.

Theoretically, this Poisson distribution comes from the simple fact that
the probability for a given bacterium to be encapsulated in a given droplet
of volume v, taken from a bigger volume of medium V, is just the ratio of
the volumes v/V. In maths, this is known as a Bernoulli trial: a random
experiment with exactly two possible outcomes, "success" and "failure". The
probability of getting a success (the bacterium is encapsulated in the droplet)
is the ratio of the volumes v/V.

If there are N bacteria passing through our microfluidic chip during load-
ing, then the number of bacteria in a given droplet is the sum of N inde-
pendent Bernoulli experiments of parameters v/V: it follows a binomial dis-
tribution of parameters (N,v/V), and the product of the two parameters is
λ = c0v where c0 is the concentration of bacteria in the medium. Then, if the
bacteria are independent (which we believe to be true as they are diluted),
since N � 1 and v/V ≈ 10−3, we can apply Le Cam’s theorem [102], which
states that the number of bacteria per droplet converges in law to a Poisson
distribution of parameter λ.

The probability of finding k bacteria in a droplet is then:

P(N0 = k) =
λke−k

k!
. (2.1)

Amselem et al. [97] have checked that this was verified in our chip by
counting the final number of colonies in each droplet.

One important thing to note about the Poisson distribution is that the
probability of having an empty droplet is:

P(N0 = 0) = e−λ. (2.2)

As we can see, there is a direct relationship between this probability and
the Poisson parameter λ. This is very useful for us, as then the number of
empty droplets on the chip can be used as an estimator for finding the Pois-
son parameter used in a experiment:

λ̂ = − ln ( p̂0) = − ln
(

Nempty

Ntot

)
, (2.3)

where Nempty and Ntot are the number of empty droplets and the total num-
ber of droplets, respectively, and p̂0 represents the estimated probability of
having an empty droplet.

The 95% confidence interval on the estimated value of p̂0 is then [103]:

p̂0 ∈
[
p̂+0 , p̂−0

]
where p̂±0 ≈ p̂0 ± 1.96

√
p̂0(1− p̂0)

Ntot
, (2.4)
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which we can translate into a confidence interval on λ̂:

λ̂± = − ln
(

p̂∓0
)

. (2.5)

In our case, we have approximately 1000 droplets, and we can plot the
ratio of the width of the confidence interval over λ̂ (see Fig. 2.2). The width
of the confidence interval is smaller than 20% of λ̂ only if we are between
λ ≈ 0.5 and λ ≈ 4. This gives us a range of concentration that can be used
if we want to be able to estimate λ, as the droplet size is approximately 2 nL:
the range of concentration goes from 2.5× 105 to 2× 106 cells/mL. Of course,
it is not always of interest to be able to evaluate λ, as we will discuss later on.

FIGURE 2.2: Relative confidence interval when estimating λ by
counting the number of empty droplets

2.1.2 A conceptual approach to microfluidics experiments

Many different experiments can be conducted with this microfluidic plat-
form. However, the interpretation of the results is often delicate because of
this Poisson distribution and the fact that the number of cells per droplet is
not known exactly but as a statistics. Experiments have to be well designed
to avoid mistakes. We will try to explore here the different possibilities.

In the limit of very low λ, the chip allows us to encapsulate almost only
single cells. But as λ is very low, the number of empty droplets will be large.
For instance, if one wants to statistically achieve that 95% of the droplets
contain only one bacteria, she has to choose λ ≈ 0.1. In this case, the expected
number of droplets containing bacteria is only≈ 100. The statistics of such an
experiment are then not the same at all as when the whole 1500 droplets are
filled with bacteria. This relatively low number of droplets can be sufficient
for a lot of applications, such as isolating unknown bacterial species in a
sample for further analysis [104]. But it seems to be too low if one wants to
test the systematic response of single cells to antibiotics, for instance, where
the heterogeneity plays a central role [105] and makes it often preferable to
have a lot of data. Studies using other microfluidic technologies, like the well
known "mother-machine" [44] seem to be preferable in this case [106].

However, the droplet technology that we have developed has an advan-
tage over technologies resembling the "mother-machine": the progeny of the
initial cell is kept in a closed micro-reactor and not thrown away. In a sense,
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the lineage of the first cell encapsulated in the droplet can be tracked for a
much longer time. However, we are in our droplets in a very peculiar situ-
ation: this lineage can be enclosed, but the division tree is not accessible, as
the bacteria don’t grow in 2D and cannot be individually tracked. The only
observable that we have, if we want to take advantage of the relatively high
throughput of our droplets, is the number of cells per droplet as a function
of time, that is measured indirectly through the fluorescence signal (see next
section). Our advantage, once again, is that the whole lineage is kept. The
stochastic effects of the division at each generation accumulate in the droplet,
even if we will see in the next chapter that the early stages dominate over the
later generations. In a 2D system, because of the exponential growth, the
bacteria very rapidly invade the whole chamber, and only a few generations
(up to 7) can be tracked [107], or part of the descendants has to be thrown
away [87]. In our droplets, we can observe, for E. coli, we can estimate that
more than 12 generations can be observed, simply because the growth is ex-
ponential for ≈ 250 min, with a mean division time of ≈ 20 min.

In our experiments, we often choose the initial concentration of bacteria
such that λ ≈ 1. This ensures that only ≈ 30% of the droplets are empty,
while keeping the number of bacteria per droplet quite low, to still have a
trace of the cell-to-cell variability. Indeed, if the initial number of bacteria per
droplet is too high, the population-size variability due to the stochasticity of
the division process is hidden, as we will see in the next chapter.

As such, experiments in micro-droplets can be seen as an experimental
Monte-Carlo process: it gives us the ability to repeat and follow in parallel the
same stochastic experiment a large number of times. The distribution of the
responses in the population can be obtained thanks to the statistics of this
system, especially when compared to classical microbiology methods. We
know through the Central Limit Theorem that the convergence to the solu-
tion in this kind of method goes as

√
n, where n is the number of repetitions

of the experiment. Going from a 96 well plate to a chip like ours with ≈ 1000
droplets increases then the precision on the final solution by a factor ≈ 3.

There are in fact two ways of applying this Monte-Carlo analogy to our
droplets. The first one is to see the droplets as micro-reactors, a little bit like
an expanded 96 well plate, with more and smaller wells, and to use them as
growth reactors as we have explained above: the stochastic effects accumu-
late in the droplet, and thanks to the big number of droplets, the distribution
of growth responses can be obtained. This is the approach that we will de-
velop in Chapters 3 to 4. The second one is to have a "digital biology" ap-
proach [108], and to use the droplets as binary probes, 0 or 1, for instance to
test the survival rate of the bacteria to a stress (antibiotic, oxidative..). This
kind of approach is already widely used, for instance, for digital PCR [109].
We will see in the last chapter how it can be applied in our case.
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2.2 Time-lapse measurements of bacterial growth

We are going to focus now on the experiments of bacterial growth conducted
with this microfluidic platform.

0h

8h

4h

120μm

FIGURE 2.3: Example of the growth of E. coli in 7 droplets of
our microfluidic chip, at 37 °C in LB medium. Fluorescence and
bright field images are superposed, with artificial red color for

fluorescence.
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2.2.1 Principle of the experiment

The principle of the experiment is the following. The chip is loaded with
bacteria as described above, with a Poisson parameter λ close to 1. The bac-
teria come from an overnight culture, and are re-diluted in fresh medium in
the morning. They are loaded on the chip in exponential phase (OD ≈ 0.2).
Then the chip is placed in a temperature-controlled motorized microscope at
37°C. The chip is scanned every 5 min, with a 10X magnification. The images
are acquired with an EMCCD camera (ANDOR), with an exposure time of 40
ms and a numerical gain of 100. Those values are a compromise between the
early stages and the final state. In the early stages, we want to increase the
measurement sensitivity as there a few bacteria in the droplets, by increasing
the exposure time and/or the gain. However, if we do not want to get com-
pletely saturated images at the end, when there are a lot of bacteria in the
droplets, we must keep those settings not too high.

By running this experiment, we wish to obtain growth curves of the bac-
teria in each of the droplets that reflect, as least partially, the cell-to-cell vari-
ability of the population, as we will study in the next chapter. We can see on
Fig.2.3 that the growth is indeed variable in between the droplets. We can
also observe that the droplet are shrinking throughout the experiment, with
variability as well. We will come back to this point at the end of this chapter.
Similar results can be obtained for B. subtilis, and with agarose gel instead
of pure liquid medium inside the droplets, as displayed on supplementary
movies 1 and 2 (see links in Appendix E).

Note that the whole chip can be scanned, but it takes approximately 12
minutes to do so (for one fluorescent channel plus the bright field images).
We were more interested about reducing the time interval between two ob-
servations than by scanning the 1500 droplets at each point, which explains
why only ≈ 900 droplets were scanned for this experiment.

2.2.2 Measuring the fluorescence

Once the data of our growth experiments have been acquired, we would like
to analyze them. For each time point, two images of the chip are taken, one
in fluorescence that we will use as a proxy for the number of cells in the drop,
and one in bright field that we will use for the detection of the wells. Indeed,
to gain time, we do not take one image per trap, but the whole chip is scanned
with several traps on one image. We have written a home-built Matlab code
to process the bright-field images, detect and track the wells over time, for
a full description see [110]. We will focus in this part on the fluorescence
measurement.

As we have already said, we want to use the fluorescence measurement
as a proxy for the number of cells in the droplets. As each cell is fluorescent,
it is intuitive to think that the more cells there are in the droplet, the more in-
tense the fluorescent signal. The fluorescence signal that we measure is then
the sum of the contributions of the fluorescence signals of all the cells in the
droplet. If we simplify things even more, all cells have the same fluorescent
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signal and then we obtain a proportionality relation between the number of
cells per droplet and the number of cells in the droplet:

Fluo = a f N, (2.6)

where N is the number of cells in the droplet, Fluo is the intensity of the
fluorescence signal that we measure, averaged over the droplet, and a f is the
proportionality coefficient between fluorescence and number of cells.

Of course, in real life things are not that simple. First of all, all cells do not
have the same fluorescent signal, even in an isogenic population [111]. This
heterogeneity in the fluorescence signal of the cell will be discussed later on.
Second, we have to deal with the existence of a measurement noise, and we
are going to see how in the next paragraph.

Dealing with the background

Indeed, even outside of the droplet, the measured fluorescent signal is not
strictly equal to zero, and this background can vary from image to image,
but also between time points. If we want to be able to compare one well with
another, we have to remove the contribution of this background, which is due
to the experimental noise. This is especially important for the beginning of
the growth curves, when the number of bacteria is low, and the fluorescent
signal of the droplet is quite low as well. The question that then arises is
how to cope with that background, and two solutions come to mind: we can
divide the fluorescence signal of the droplet by the mean background value,
or we can subtract the background value to the signal.

Let us examine an example to see which of the two solutions is better. First
of all, we can see (Fig. 2.4(B)) that the background signal changes over time,
and that its variations are correlated with variations of the measured signal
of the droplet. If we take the difference between the two signals, those vari-
ations due to the measurement noise are not completely removed, whereas
if we take the ratio, the obtained curve is much smoother (Fig. 2.4(C)). This
is even more clear if the same curves are plotted in log scale, which makes
sense as the growth of the bacteria is supposed to be exponential, at least
while nutrients are abundant in the droplet [112]. We can see a quite noisy
curve if we subtract the background (Fig. 2.4(E)), whereas the curve obtained
by taking the ratio displays a well defined exponential phase (Fig. 2.4(F)):
the noisy variations due to the experimental acquisition are removed from
the signal. These observations lead us to think that the ratio is the best way
to deal with the experimental noise, which seems to be multiplicative in this
case.

However, if we want our signal to be purely proportional to the number
of cells in the droplet, then the signal must be translated to zero when there
are not bacterial in the droplet, or at least while the number of bacteria is
too low to be detected. For now, it is set at 1 as the fluorescence signal of
the droplet was divided by the fluorescence signal of the background. The
easiest way to translate it back to zero is then to subtract 1 to the obtained
signal. We can note that the effective computation that we make in this case is
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FIGURE 2.4: (A) Example image of one well after cropping of
the image: bright field, bright field with detected trap (red),
fluorescent image (TRITC) (B) Average of the fluorescent signal
inside the red square ("droplet") and outside ("background") (C)
ratio of the two signals over time (D),(E) : same, but in log scale.
We see that the curves obtained by taking the ratio are much
smoother than the one obtained y taking the difference of the

background and the droplet fluorescence.

(Fluodrop − Background)/Background, which is the fold change of the signal
when compared to the background, that is used by other authors to quantify
the fluorescence [113]. This is the method that we will apply if we have a
single time-point measurement.

If we have a time-lapse of the growth of the bacteria in the droplets, in-
stead of using just 1 as the reference value, we will subtract from the signal
of each droplet its value at the beginning of the measurement, before the
bacterial growth is detectable.

To summarize, in the rest of this thesis, what we will call the fluorescent
signal of a droplet is:

Fluo(t) =
< Fluodrop(t) >

< Background(t) >
−

< Fluodrop(t = 0) >
< Background(t = 0) >

. (2.7)
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Proportionality to the number of cells

We can now check if the fluorescence signal is proportional to the number of
bacteria. To check this dependency, we run the following experiment. Bacte-
ria are cultured to exponential phase (OD ≈ 0.2 in LB liquid medium) from
an overnight culture, to be in the same conditions as for the growth experi-
ment on-chip. Then they are put in the freezer for one minute (−18°C) and
in the fridge (+4°C) for one hour, to stop the division process.

Then, five chips are loaded with successive dilution of this initial culture.
As we know the dilution factor for each chip, we can check the proportional-
ity between the mean number of cells per droplet and the measured fluores-
cence signal (Fig. 2.5).

FIGURE 2.5: Calibration curve between the number of cells
per droplet and the measured fluorescence signal: mean of the
fluorescence signal of the droplets on chips loaded with a series
of dilution of the same initial culture stopped in exponential
phase, as a function of the estimated mean number of cells per
droplet. Error bars: standard deviation of the fluorescent signal

of the droplets of each chip.

However, if we want to know the absolute value of the proportionality
constant between the fluorescence signal and the number of cells, we have
to know the mean number of cells per droplet not only relatively from one
chip to another, but as an absolute number. To do this, we load another chip,
but with a much higher dilution: by doing this, we can get to the range of λ
where λ is estimable by counting the number of empty droplets (as discussed
in the previous paragraph). So we incubate this last chip to let the bacteria
divide, in order to be able to distinguish easily droplets in which bacteria
have grown and empty droplets. We obtain the following estimation for the
Poisson parameter in this chip: λ0 ≈ 1.5.

As we know λ0 and the dilution factor in between all the chips, we are
able to give an absolute value of λ for all the chips, and as we have using
eq. 2.7:

< Fluo >= a f λ. (2.8)

We can get an estimation of the proportionality constant between the mea-
sured fluorescence signal and the number of cells in the droplet. We get here:

a f ≈ 1.7 · 10−4. (2.9)
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As such, it is difficult to know whether this value is relevant or not. Of
course, other authors have measured such a proportionality ( [114], [61]), but
the value in itself is very dependent on the acquisition setup, the microfluidic
design, and even the bacterial strain and fluorescence construction. Here the
settings of the microscope and the camera are the same as for the growth
experiments of Fig. 2.7. The camera is an ANDOR EMCCD, with an exposure
time of 40 ms an a numerical gain of 100.

There is one thing that we can note though: the values of fluorescence
found in the calibration curve above are very low when compared with the
values reached by the fluorescence of the droplets when the bacteria are al-
lowed to grow directly on the chip (Fig. 2.7).

To check if this difference in fluorescence signal was due to our protocol
for the calibration, we conducted the same calibration experiment, but with
bacteria in stationary phase, in order to remove the refrigerating steps. With
this culture in stationary phase, we are supposed to have a concentration of
bacteria that is similar to the final one reached in the growth experiment on-
chip: even of the culture conditions were not exactly the same (microfluidic
droplets vs 1 mL tube), we used the same growth medium (LB rich medium)
at the same temperature. Besides, the growth the growth of E. coli in LB
is supposed to be carbon-limited [115]. As the same LB medium is used in
the chips or in batch, the concentration of carbon sources is the same, and the
bacterial biomass yield should be the same. However, we still obtained a very
low fluorescence signal of the droplets in this case when compared with the
final fluorescent signal of the droplets in our microfluidic growth experiment
(Fig. 2.7). This seems to indicate that the growth, or at least the production
of fluorescent proteins, are not the same on chip or in batch. Hence, if the
proportionality between fluorescence and number of cells is verified, the ab-
solute value of the coefficient a f that we have measured here is probably not
the relevant one for our on-chip growth experiment.

Exploring the difference between on-chip and batch fluorescence yield

Another very surprising and interesting result is the following. From an
overnight culture, we cultured some bacteria to exponential phase and sep-
arate the culture into two parts: some of the bacteria were loaded on a chip
(chip 1: on-chip growth), which was put in the incubator, and the rest of the
culture was left in the 1 mL tube, stirred in the same incubator. The day
after, some of these bacteria were loaded directly, without any dilution or re-
placement of the medium, on a chip (chip 2: batch growth), see Fig. 2.6(A).
The fluorescence of the two chips were compared and it was found, not
surprisingly considering what we have just said, that the droplets in chip
1 were much more fluorescent than those in chip 2 (Fig. 2.6(B,C)). Then, both
chips were re-put in the incubator for one day, and re-scanned 24 hours later.
This time, surprisingly, the fluorescence signal of both chips was comparable
(Fig. 2.6(B,D)).

This proves once again that there is a big difference between on chip
growth and batch growth. This result is very surprising because the growth
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FIGURE 2.6: Parallel experiment of on-chip and batch growth
(A) principle of the experiment : at day 0, bacteria in exponen-
tial phase are loaded on a chip or let to grow in batch liquid
culture (1 mL tube). Everything is put at 37°C. At day 1, the
chip is scanned and the batch bacteria are loaded on another
chip, which is also scanned. After another 24 hours at 37 °C,
both chips are scanned once again (day 2). (B) Fluorescence
and bright field images of an example well at day 1 and day
2, for both chips. (C) Fluorescence signal measured at day 1,
for both chips (D) Same at day 2. The fluorescence signal of
the two chips is similar at day 2, whereas at day 1 the bacteria
grown on chip were much more fluorescent than those grown

in batch liquid culture.

of E. coli in LB is supposed to be carbon-limited [115]. After 24 hours in a 1
mL flask, there should not be any carbon left in the medium for the bacteria
to grow when they are put into the droplets. The question that arises is to
know if this is due to a difference in biomass yield, or in the production of
the fluorescent protein, or even its accumulation in the droplets. To answer
the question, the only way would be to be able to measure the number of
cells per droplet in a different way than by fluorescence, but we have not
yet developed such techniques for our micro-droplets. Many reasons could
account for this difference: the oxygen availability, for instance, is known to
be a key factor for the growth of E. coli [116], and is probably different in
the micro-droplets than in batch culture. The PDMS with which the chip is
made is very permeable to oxygen [117], which is also highly soluble in the
fluorinated oil that surrounds the chip [118]. It has already been observed
that with well-oxygenated micro-droplets, the biomass yield could be higher
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than in batch liquid culture [119]. The oxygenation could be better in the chip
than in a batch culture, but this remains an open question.

To sum things up, we have shown in this section that once the background
is correctly removed, the average fluorescent signal of the droplet is propor-
tional to the number of cells contained in the droplet. However, the exact
value of the proportionality constant is difficult to measure because of the
differences in growth conditions between droplets and classic batch growth.

2.2.3 Analysis of the results

The results of a typical time-lapse measurement of bacterial growth on chip
are presented on Fig. 2.7.
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FIGURE 2.7: Results of the growth of E. coli on chip (A) Time-
lapse in bright-field (top) and fluorescence (bottom) imaging
of a droplet that contains bacteria. (B) Fluorescence curves ob-
tained during a growth experiment of E. coli at 37°C. Time res-
olution: 5 min, number of droplets: 915. The green curves
are droplets containing bacteria, the red ones are the empty
droplets. The blackbold line is the mean of bacteria-containing
droplets. (C) Same as (B) but plotted on log-lin scale. The red
dotted line represents the limit of detection, the blue one in-
dicates the end of the exponential phase. (D) A typical indi-
vidual growth curve from the previous set. (E) Distribution of
the growth rates in exponential phase measured on each of the

droplets.

The first thing that we can say about these growth curves of E. coli in
droplets is the fact that they display the three classical stages of bacterial
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growth (Fig. 2.7(B)), described quite a long time ago by Monod [70]. At first,
no growth is apparent, this is the lag phase, that comprises both the micro-
scopic lag phase and the fact that the number of bacteria per droplet is at
first to low to be detected [120]. Then the growth is exponential, which can
be checked by plotting the curves in log scale (Fig. 2.7(C),(D)): the trajectories
are straight lines, which means that the number of cells evolves exponentially
with time. Finally, the growth slows down and the cells enter the stationary
phase of growth.

An important parameter of the bacterial growth is the growth rate in ex-
ponential phase. It is defined as the slope of the log of the number of cells as
a function of time during this exponential phase. It is measured routinely in
microbiology labs because it quantifies the fitness of a strain [121]. To obtain
it from the time-lapse images of bacteria in droplets, we proceed as follows.
First, we set once and for all for all the droplets a detection and saturation
threshold in log scale (see the red and blue dotted lines in Fig 2.7). Then we fit
the trajectory of each droplet in log scale in between these lines with a straight
line, and we obtain the growth rate by measuring the slope (Fig 2.7(E)). Ac-
cording to the classical Monod equation [70], as well as more recent works
on balanced growth [82, 122], all droplets should display the same growth
rate, because its value depends only on the strain and the medium. This is
what we see experimentally (the standard deviation of the growth rates that
we have measured is only 7%). The mean value that we find is 2.16 h−1,
which corresponds to a doubling time of 19 min, close to the value of ≈ 20
min found in the literature [115].

Another interesting feature of these growth curves is the variability that
they display at each time point. Indeed, if one looks at the distribution of flu-
orescence signal at a given time, we can see a quite large variability, both in
the exponential phase and at the end of the measurement, when the cells en-
ter stationary phase. The variability in the exponential phase will be studied
in depth in the next Chapter of this thesis.

The variability at the end is also quite surprising, because the growth of
E. coli in LB broth is supposed to be limited by the carbon source [115]. Then
the only effect that should play a role on the variability of final size is the
amount of carbon available for the growth, which is directly proportional
to the volume of the droplet. However, the dispersion in droplet volumes
was thought to be very low in our system (Amselem et al. [97] measured a
standard deviation of 2 to 5%). In the next part, we will try to quantify once
again this dispersion in volume and see how we can explore the relation
between volume and number of cells in the droplet.

2.2.4 Volume and size of the colony

Measuring the volume of the droplets in-situ

To explore the relation between number of cells and volume in a droplet, we
need to be able to measure these two quantities at the same time. There is
a trick that will allow us to measure them simultaneously: the LB broth is
slightly auto-fluorescent in the green fluorescent channel (excitation at 490
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FIGURE 2.8: (A) Histogram of the projected area of the droplets
at the beginning of the experiment, for empty droplets and
droplets containing bacteria. The black dotted vertical line in-
dicate the projected area of the trap. (B) Example of a droplet
that is smaller than the trap, bright field and fluorescence image
in FITC. We see the auto-fluorescence of the LB medium. (C)
same, but for a droplet that is bigger than the trap. (D) Relation
between the final fluorescence intensity of the droplets and the
initial projected area of the droplets, for both empty droplets
and droplet containing bacteria. (E) Box plot of the same data,
but for droplets containing bacteria only. The data is binned
into 10 equally spaced bins according to the droplet area. The
box indicate the standard deviation, while the central line is the
median of each bin. The whiskers indicate the 95% confidence
interval. The projected area and the final fluorescence seem to
be correlated for small droplets, but for bigger ones the correla-

tion vanishes.

nm, emission at 520 nm). This means that the droplet of LB medium has
a fluorescent signal higher than the background noise, because some of its
components emit some light in this channel when they are excited by the LED
of the microscope, as we can see on Fig. 2.8(B,C). Hence, to get a measure of
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the volume of a given droplet, we measure the projected area of the droplet
in the green channel, by thresholding the fluorescence image of the droplet in
this channel. It does not interfere with the measurement of the fluorescence
produced by the bacteria, as this latter one is measured in the red fluorescent
channel.

When we do this in one of our chip, we obtain a right-skewed distribution
for the area of the droplets, as we can see on Fig. 2.8(A). Most of the droplets
are smaller than the projected area of the trap (back dotted line, Fig. 2.8(B)),
while some are bigger (Fig. 2.8(C)).

Let us now look at the correlation between this projected area and the fi-
nal fluorescence value measured in the droplet. We take into account the ini-
tial projected area, at the beginning of the experiment, because the droplets
shrink during an experiment, as we will discuss at the end of this section.
Hence, if we still consider the fact that the growth of E. coli in LB broth is
limited by the carbon source [115], what matters to account for the variabil-
ity of bacteria at the end is the initial amount of carbon encapsulated in the
droplet. This amount is proportional to the initial volume of the droplet,
which is supposed to be related to this initial projected area.

The correlation between the initial area of the droplet and the final fluo-
rescence value at the end of the growth is not really clear if we consider the
raw data displayed on Fig. 2.8(D). There is a lot of variability in fluorescence
for a given area of the droplet. If we bin the data (Fig. 2.8(E)), we obtain a cor-
relation, especially for the smallest droplets, that are much smaller than the
traps. Indeed, we see that the median fluorescence of each box increases with
the area of the droplets. For bigger droplets, this correlation seems to vanish.
However, what is really striking is that the variability in final fluorescence is
huge for a given droplet area. Let us try to understand this by discussing a
little bit more the relation between the projected area and the volume of the
droplet.

Simulations of the shape of the droplets

To try to better understand this relation, we simulated the shape of the droplet
with an open-source software for the modeling of fluid interfaces, called Sur-
face Evolver [123]. We implemented the geometry of our anchors in the soft-
ware and ran simulations for droplets of different volumes. The results are
summarized in Fig. 2.9: we can obtain the shape of the droplets of different
volumes in the traps, and the corresponding projected area.

Three regimes can be distinguished in Fig. 2.9(B). First of all, very small
droplets do not even touch the vertical walls of the anchor (far-left droplet on
Fig. 2.9(A)). In this case, they have a spherical shape (which minimizes their
surface energy). We can manually compute the relation between the volume
and the projected area in this case. For a sphere of radius R, we have:

Area = πR2,

Volume =
4
3

πR3.
(2.10)
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Therefore the relation between the projected area and the volume of the droplet
is the following:

Volume =
4

3
√

π
Area

3
2 . (2.11)

This theoretical relation for small droplets is indeed verified on the simula-
tions (Fig. 2.9(B), orange dotted line). For those small droplets, we can see
that the projected area is indeed a good proxy for the volume of the drop, as
the volume increases with the projected area.

1 nL 1.35 nL 1.75 nL 2.15 nLVolume

FIGURE 2.9: (A) Simulations of the shape of the droplets for
4 different droplet volumes, from small droplets (left, 1 nL) to
bigger ones (right, 2.15 nL), made with Surface Evolver [123],
perspective view (top line) and bottom view (bottom line). (B)
Simulated volume of the droplet as a function of their maxi-
mal projected area in a horizontal plane, with comparison to
theoretical volumes in two asymptotic regimes, small droplets

(eq. (2.11)), and big droplets (Appendix C).

At the other end of the volume range, for big droplets, the volume also
depends nicely on the projected area of the droplet. For these droplets, an ap-
proximate relation between these two quantities can be obtained. It would be
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a little long to demonstrate it here, but the computation is presented in Ap-
pendix C. Rapidly, we can just say that these big droplets almost completely
feel the anchor, and the variation in volume and in projected area is mostly
due to the pancake-shaped squeezed part that extends in the chamber, as we
can see on the far-right droplet in Fig. 2.9(A).

The problematic part happens for droplets that are in between those two
extremities. For these droplets, that are close to the size of the trap, the
projected area is not a good proxy for the volume. Indeed, we can see on
Fig. 2.9(B) that for those droplets, there is a big variation in volume for a
small variation in projected area. This is problematic because it means that
droplets with the same projected area (measured with fluorescence thresh-
old) can in fact have quite different volumes. Thus, a part of the variability
that we observed on Fig. 2.8 could be an artifact of our volume estimation.

To summarize, it is difficult to obtain a trustworthy in-situ measurement
of the volume of the droplets. However, it seems that for the range of droplet
sizes for which we can have a correct estimation of the volume, the dispersion
in final size of the colonies, measured by the fluorescence intensity of the
droplet, is related on average to the initial volume of the droplets.

Mathematical modeling of the volume heterogeneity

Even if it is difficult to measure the heterogeneity of the volume of the droplets,
we are going to say a few words about how it can affect the distribution of
the number of bacteria per cell during loading.

We will model the heterogeneity of the volumes of the droplet by a Gaus-
sian distribution:

v ∼ v0 · N (1, σv) . (2.12)

We know that for a given volume v, the number of cells in a droplet fol-
lows a Poisson distribution, and the parameter of this Poisson distribution is
just proportional to the volume. The Gaussian distribution of the volumes
will then yield a Gaussian distribution of Poisson parameters, and the num-
ber of cells in the droplets is a mixture of different Poisson laws with nor-
mally distributed parameters:

λ ∼ λ0 · N (1, σv) . (2.13)

Hence, we can easily get the mean number of cells per droplet and its
variance by using the law of total probability:

E(N0) = Eλ (E (N0|λ))
= Eλ (λ)

= λ0. (2.14)

The mean number of cells per droplet is then not affected by the hetero-
geneity of the volume of the droplet. This remains true even if the volume of
the droplet is not Gaussian. Let us now examine the variance:
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Var(N0) = Varλ (E (N0|λ)) + Eλ (Var (N0|λ))
= Varλ (λ) + Eλ (λ)

= λ2
0 · σ2

v + λ0. (2.15)

So the variance of the number of cells per droplet is increased by an ad-
ditional term, that grows as λ2

0. The effect of the heterogeneity of the volume
will then be more visible when the mean number of cells per droplet is high.
This result would also remain true if the volume distribution was not Gaus-
sian.

We can obtain an approximate value of σv thanks to our numerical simu-
lations of the shape of the droplet and our measurements of the droplet size
in-situ. Indeed, even if it is difficult to have a trustworthy measurement of
the volume for each droplet, our numerical results can still roughly be used to
compute a volume distribution of the droplets, using the numerical relation
that we have found between the measured projected area and the volume.
The measurement may not be very accurate for each droplet, but the stan-
dard deviation of the volume distribution can be approximated. We obtain
thanks to our fluorescence measurements:

σv ≈ 0.25. (2.16)

This is a quite high value when compared to the one published in [97], that
was below 5%. However, in this reference, the authors only obtained droplets
that were bigger than the trap. We do not see this kind of droplets a lot
in our experiments, perhaps because the microfluidic molds used for micro-
fabrication were older. Hence the volume distribution is completely different
in our case.

FIGURE 2.10: Variance of the fluorescence signal measured in
chips loaded with a series of dilution, as a function of the mean
number of cells per droplet, with model of eq. 2.15, that takes

into account the dispersion of volume of the droplets.

With this mathematical model, we can take another look at the data of the
experiment made to measure the proportionality between the fluorescence
and the number of cells (Fig. 2.5), but looking this time at the variance instead
of the mean. We can see on Fig. 2.10 that the variance of the fluorescence
signal of the droplets does not evolve linearly with the concentration, as it
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would in the absence of any volume heterogeneity. Instead, it can be slightly
better modeled by eq. 2.15, taking for the volume coefficient of variation the
value: σv ≈ 0.3. We can note that this value is quite close to the one that we
have found in our experiments, that was σv ≈ 0.25.

Of course this is only a weak approximation, as we do not have many
experimental points here and more would be necessary to really validate the
model. However, this seems to indicate that there is a trace of the hetero-
geneity of the volume of the droplets that cannot be completely neglected.
The good thing is that this has an effect only for very high initial number
of cells per droplet, and most of the time we will work around λ ≈ 1, so
the effect of the heterogeneity of the volume on the initial distribution of the
number of cells per droplet is very limited.

Volume shrinkage

In the previous parts, we evoked the initial volume of the droplets, because
the volume of the droplets in a chip placed at 37°C, in a water bath, is not
constant over time: the droplets are shrinking, as we can see if we plot the
projected area of the droplets in the previous experiment (Fig. 2.11(A)). We
believe that this is due to the porosity of the PDMS, which is porous to gas
and thus to water vapor through the mechanism of pervaporation [124]. We
can also see that the droplets on the outskirts of the chip shrink more than
those on the center (Fig. 2.11(B)).

The shrinkage of the droplet was limited by placing the chip in water
during incubation, but we see here that the efficiency of this technique is
quite low. In fact, other people in the group were placing the chip during
incubation in a bath of Phosphate-buffered saline (PBS [125]), instead of a
water bath, but we can see that this change has a quite low effect: the relative
change in projected area is almost the same for the chip placed in a water
bath or the one placed in a PBS bath (Fig. 2.11(C,D)). Instead, to really limit
the shrinkage of the droplet, the chip has to be pre-soaked in water prior to
loading (Fig. 2.11(C,D)); we just put the chip in a water bath at 37°C for three
hours prior to loading. By doing this, we saturate the PDMS with water
vapor, and the droplet shrinkage is prevented.

2.2.5 Fluorescence Heterogeneity

When we evoked the fluorescence measurement in the droplet, we made the
approximation that the contributions of all cells were equal. However, even
in balanced growth conditions and for isogenic bacteria, there are fluctua-
tions of the level of expression of proteins (in this case the fluorescent ones)
from one cell to another. This is true even if the fluorescent protein is inte-
grated, as in our E. coli strain [126], directly in the bacterial chromosome and
not in a plasmid [111].
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FIGURE 2.11: Shrinkage of the droplets (A) Measured area of
the droplets over time, for a chip placed in water at 37°C. (B)
Relative diminution of the area of the droplets with respect to
the position of the well in the chip. (C) Mean projected area of
the droplets in 3 chips loaded simultaneously, then placed at
37°C for 3 days: one in water, one in PBS, and one in water that
was pre-soaked in water for 3 hours prior to loading. (D) Rel-
ative diminution of the mean area of the droplets in the three
cases. We see that the only method to really decrease the rela-
tive diminution of the projected area of the droplets, and hence

their volume, is to pre-soak them in water prior to loading.

To measure the fluorescence heterogeneity of our strain, we took some
cells in exponential phase and observed under the microscope, with a 40X ob-
jective (Fig. 2.12(A)). The bright field image were segmented using a machine-
learning based segmentation algorithm called Weka [127], that is freely avail-
able on Fiji [128]. This algorithm can be trained to recognize rod-like struc-
tures like bacteria. Then this segmentation was used for the measurement
of the mean fluorescence intensity if the bacteria. It is more robust to do so,
as segmenting directly on the fluorescence image could introduce a bias: the
fluorescence of the brighter bacteria spreads a little bit on the neighboring
pixels, which would be then considered as part of the bacteria, and that im-
pacts then the measured value of the fluorescence.

We apply this method and find a distribution of fluorescence signal of
the bacteria that is skewed to the right (Fig. 2.12(B)), as expected from the
literature [111]. The coefficient of variation that we found in our case was
≈ 0.18.
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FIGURE 2.12: Heterogeneity of the fluorescence signal of indi-
vidual cells (A) Bright field image, with example of the seg-
mentation using the Weka [127] algorithm, and fluorescence
image. 12 images were analyzed, for a total of 102 bacteria. (B)
Distribution of the rescaled fluorescence signal and Frechet fit

from [111].

Salman et al. [111] demonstrated that there exists a universal shape of the
distribution for protein expression, when rescaled as follows:

f (x) = φ

(
x− µ

σ

)
, (2.17)

where µ denotes the mean and σ the standard deviation of the distribution
of the fluorescence of the cells, and φ, which is skewed to the right and could
be close to a Gamma or Log-Normal distribution, but is found to be better
approximated by a Frechet distribution, of the form:

φ(x; k, m, s) =
1
ks

(
x−m

s

)− 1
k−1

e−((x−m)/s)−1/k
. (2.18)

This scaling shape fits indeed our data quite well, as we can see in Fig. 2.12(B).
The fluctuations in the fluorescence signal of our cells are then the one com-
monly expected. But how does it impact the link between the mean fluores-
cence signal of a droplet and the number of cells in this droplet ?

We consider that the bacteria are all independent. Their individual fluo-
rescence is picked from the above distribution, with mean a f and standard
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deviation σf . Let us compute in this case the mean and variance of the fluo-
rescence signal of the droplet, which is just the sum of all the signals from all
the bacteria in the droplet:

Fluo(t) =
N

∑
i=1

ai
f , (2.19)

where ai
f is the signal of bacteria i. We have a sum of independent and iden-

tically distributed variables, hence we can apply the Lemma of Appendix B.4
to find the mean and the variance:

E (Fluo) = E(ai
f )E(N), (2.20)

E (Fluo) = a f E(N). (2.21)

As we could have expected intuitively, the mean fluorescence remains
proportional to the mean number of cells even with a fluorescence hetero-
geneity. The convergence of the measured fluorescence (eq. 2.19) to this
mean goes once again as 1/

√
N, where N is the number of bacteria in the

droplet. For the proportionality coefficient (Fig. 2.5) the number of bacteria
per droplet is quite high, so we can consider that the heterogeneity in fluo-
rescence has little effect on the mean. Let us now see what the variance looks
like, still using Lemma B.4:

Var (Fluo) = Var (N)E(ai
f )

2 + Var(ai
f )E(N), (2.22)

Var (Fluo) = a2
f Var (N) + σ2

f E(N). (2.23)

The variance obtained is then the sum of two terms. The first one is just
proportional to the variance of the number of cells, and the second one is an
additional variance, which is proportional to the fluorescence heterogeneity
of the cells. It is proportional to the mean number of cells. In particular, in
our calibration experiment, we obtain:

Var (Fluo) = a2
f λ + σ2

f λ. (2.24)

We see here that this additional term goes as λ, and not λ2 as the term due to
the heterogeneity of the volume of the droplets (eq. 2.15). It is therefore negli-
gible for the analysis of the variance in our calibration experiment (Fig. 2.10).
We will see in the following chapters how this term can affect more accurate
measurements of the number of cells in the droplets.
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2.2.6 Summary of the Chapter

To summarize, we have presented in this Chapter the microfluidic chip that
will be used throughout this thesis for measurements of bacterial growth.
It allows us to obtain an array of 1500 micro-reactors in which bacteria can
grow, and the growth can be followed in parallel over time. We can thus re-
peat a growth experiment a huge number of times, which is a kind of exper-
imental Monte-Carlo method. We have quantified and discussed the initial
encapsulation of the bacteria in micro-droplets.

The fluorescence of each droplet can then be used as a proxy for the num-
ber of cells in the droplet. We have shown that those two quantities are pro-
portional. However, it is difficult to have access to the value of this propor-
tionality constant, because of the differences in growth conditions between
growth in batch liquid culture and in nano-liter sized droplets. In this chap-
ter, we have tried to explore those differences experimentally. We have ob-
served, in particular, that a saturated batch culture of E. coli could increase its
fluorescence signal when encapsulated in our droplets.

Other limitations exist for the repeatable growth of bacteria on this chip:
the heterogeneity of the volume of the droplets, for instance, is probably
higher in practice than what was previously measured in ref. [97]. We have
shown that it is difficult to accurately estimate the volume of the droplets in
experimental conditions, with the help of numerical simulations of the shape
of the droplets for different droplet volumes. The influence of this volume
heterogeneity on the number of bacteria per droplet was modeled and quan-
tified in our experimental conditions.

The fluorescence of the bacteria is also heterogeneous at the single-cell
level. We have measured it on our bacterial strain and shown that the fluo-
rescence distribution was in agreement with the literature. We have modeled
mathematically the influence of this heterogeneity of fluorescence and shown
how it could impact our measurements. This model will be used throughout
this thesis and applied to the more advanced data analysis that will be car-
ried out in the following chapters.
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Chapter 3

Distribution of the number of cells
with time : the Bellman-Harris
model

Ma question préférée, qu’est ce jvais faire de toute cette oseille ?
The Booba-Kaaris model

3.1 Introduction

In this chapter, we are going to try to understand the variability observed
among the growth curves that we obtained in our growth experiment in mi-
crofluidic droplets (see Chapter 2). To recall, for a given time, the droplets
displayed a quite big dispersion in fluorescence signal, which is supposed to
be proportional the number of bacteria in the droplet. In fact, when we first
showed these growth curves to biologists, explaining that these were all ob-
tained starting from a low number of isogenic bacteria in each droplet, they
were very surprised by the droplet-to-droplet variability. We will here focus
on the droplet to droplet variability in exponential phase and try to see how
it can be related to the cell to cell variability. The question is to know whether
it is due to the cell to cell variability or is an artifact of our microfluidic ex-
periment.

For this purpose, we will first study the different stochastic models of di-
vision at the single cell level, and examine how they affect the population
growth. We will show that the outcomes of these models discussed in the
literature [129, 130, 45] are similar at the scale of the growth of small popula-
tions in droplets, and that a well-known mathematical model can be used to
accurately predict the variability of exponential growth at this scale from the
cell-to-cell variability: the Bellman-Harris model [76]. We will use this model
to quantify the droplet-to-droplet variability, adding to previously known
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mathematical results the impact of our experimental constrains. These ex-
perimental constrains, that are for instance the Poisson distribution for the
initial number of cells per droplet, act as additional sources of stochasticity.
Therefore we will show that the variability among droplets can be quantita-
tively predicted if all those sources of randomness are taken into account.

There is also another objective to this study. Indeed, if the droplet-to-
droplet variability carries a trace of the cell-to-cell variability, it could be
possible to infer this cell-to-cell variability from the droplets measurements.
This is a kind of inverse problem that we have mentioned in the introduc-
tion to this thesis. It would be a very interesting way to indirectly measure
the cell-to-cell variability as our microfluidic experiments are much easier
and cheaper to do than direct single-cell measurements made with more ad-
vanced experimental tools, such as the "mother machine" [44] that we have
described in the introduction. To tackle this inverse problem, we will try to
use both our results obtained from the extended Bellman-Harris model and
pseudo-likelihood methods that can be found in the literature [92].

Most of the results of this section were submitted for publication in the
Journal of Royal Society Interface, and should be published during the next
few weeks.

3.2 Theoretical and numerical results

3.2.1 Comparing the three models of cell division

Bacterial division and growth at the single-cell level have been described by
three different models: (i) The “timer” model, in which the cells divide once
they’ve reached a given age [129]; (ii) the “sizer” model that supposes that
cells divide once they have reached a given size [130]; (iii) the “adder” model
in which the cells divide once they have added a certain length to their size
at the previous division [45]. However, it is still an active topic of research
to know how these different single-cell models determine the growth at the
population scale [82]. Here, rather than considering the behavior of each cell
in balanced growth, we wish to understand how this single cell behavior
affects the growth of a population: if we encapsulate bacteria in a thousand
isolated microdroplets according to a Poisson distribution of parameter ≈ 1,
and let them divide over a few hours according to the rules of each of the
single-cell models, will the distributions of number of bacteria be different
for the three models?

In all three models, the volume (or, equivalently, the length, as rod-shaped
bacteria like E. coli were shown to elongate mostly in one dimension [45]) of
individual bacteria grows exponentially with a rate µ. The difference be-
tween the three models lies in the criterion for cell division, as described
above. The three models are stochastic to account for the individual variabil-
ity of bacterial cells [131]. There are two sources of noise, both of which are
modeled by Gaussian variations: one on the division time, ξ ∼ N

(
0, σξ

)
,

and one on the elongation rate µ ∼ N
(
µ0, σµ

)
. All three models can be sum-

marized in two equations for the volume of the cell at division vd and for the
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division time τd [132, 82]:

vd = 2pv0 + 2(1− p)vb, (3.1)

τd =
1
µ

ln
(

vd
vb

)
+ ξ, (3.2)

where vb is the volume at birth and v0 is the constant volume after which
division takes place in the adder model. In the equations above the value of
the parameter p defines the regulation strategy of a cell: for p = 0, 0.5, 1, the
cell follows a timer, adder or sizer model respectively. Indeed, if p = 1, we
get vd = 2v0, so the volume at division is constant (sizer model). If p = 0.5,
we get vd = v0 + vb so all cells will add a volume v0 to their original size
vb (adder model). If p = 1, we get vd = 2vb, and by substituting in eq(3.2),
τd = ln(2)/µ + ξ. The division time of the cells is then fixed at ln(2)/µ plus
a stochastic noise ξ, which is the timer model.

At the population level, all models lead to an exponentially growing num-
ber of bacteria N(t) ∼ eαpt, where the growth rate αp depends on the model.
In the case of weak noises (µ0σξ � 1), the growth rates of the adder and sizer
models are the same, while the growth rate for the timer model is very simi-
lar to the one of the other two models, with a difference smaller than 4% [82].
Such small differences are extremely hard, if not impossible, to detect exper-
imentally on measurements at the population scale.
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FIGURE 3.1: Comparison between the three models: timer,
adder and sizer, with an initial Poisson distribution. σt =
0.2 ln(2)/µ0, µ0 = 0.031 min−1(τ0 ∼ 22 min), σl = 0.1µ0, num-
ber of realizations= 1000, λ = 0.75. (A) Distributions of the
number of cells at t=120, 160 and 200 min respectively. (B)
Mean number of bacteria, and (C) standard deviation of the

number of bacteria per simulation, in log scale.
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In the general case of arbitrary noise, analytical predictions are difficult to
make and one has to rely on numerical simulations to know the growth be-
havior of the population. Here, we carry out Monte-Carlo simulations mim-
icking the microfluidic experiment: identical simulations of bacterial growth
are run in parallel 1000 times, with the initial number of cells n0 being cho-
sen according to a Poisson distribution: Pλ(n0) = λn0e−λ/n0! with a Poisson
parameter λ = 0.75. We choose σξ ∼ 0.25ln(2)/µ0 and σµ = 7%, in accor-
dance with our experimental values and those of Ref. [45]. The three models
yield very similar distributions of the number of cells as a function of time,
see Fig. 3.1.
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FIGURE 3.2: Principle of the test to compare the three differ-
ent models at the population scale. First a grid of simulations is
built for experimentally possible values of σl and σt, for all three
models. Then each point on the grid is compared to all other
points of the grid: the final distributions of number of cells,
rescaled by their means, are compared through a two sample
Kolmogorov-Smirnov test. As an example, the distribution of
the number of cells obtained by an adder model at the position
indicated by the red dot is compared to the distributions ob-
tained by the sizer and timer models at the position indicated
by the green dot. In this particular example, the results of the
adder model at the red position are indistinguishable from that
of the timer model at the green position, but distinguishable
from that of the sizer (p < 0.05). The same method is applied
to all points and all models of the grid of simulations. We find
that, for each point (σl , σt) and each model, there is always at
least one set of parameters (σl , σt) of one of the other models

leading to similar results with p < 0.05.

For further comparison with the microfluidic experiments, we run a com-
plete set of simulations covering the range of experimental values of σµ and
σξ found by Taheri et al. [45]: 0.1 ≤ σξ ≤ 0.3, and 0.025 ≤ σµ ≤ 0.15. The ini-
tial number of bacteria is sampled from a Poisson distribution with a Poisson
parameter λ = 1. Bacteria are allowed to grow and divide for ∼ 4 h, a time
close to the duration of the exponential phase in our experiments. The final
distributions of the number of bacteria, rescaled by their mean, are compared
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using a two-sampled Kolmogorov-Smirnov test [133] to know whether the
outputs of the three models are distinguishable. For each point of the [σµ, σξ ]
mesh and each of the three models, we find that there always exists a distri-
bution belonging to another model that is statistically indistinguishable at a
5% significance level, as shown in Fig. 3.2. For experimental purposes, the
three division models are therefore indistinguishable at the population level
and give the same results. Therefore, any model can be used to predict the
growth of a population. In the following, we extend the classical timer model
of Bellman and Harris [76] to describe a larger set of experimental conditions,
which allows us to obtain analytical predictions on the population behavior.

3.2.2 Classical case studied by Bellman and Harris

Bellman-Harris equations

The timer model was studied by Bellman and Harris in their classic pa-
per [76]. Their original assumption is that the division times of all bacteria are
independent and picked from a continuous stochastic distribution which is
constant over time. Starting from one cell at t = 0, the Bellman-Harris (B-H)
model derives several properties of the probability distribution of the num-
ber of cells as a function of time N(t). For instance it shows that all moments
of N(t) grow exponentially with the same growth rate α, such that the k−th
moment µk of the distribution of N(t) is equivalent to ñkekαt when t goes to
infinity, which we will write as µk ∼ ñkekαt in what follows (see AppendixB.1
for precise definition).

In particular, we will note n1 and n2 the prefactors of the mean (MN) and
standard deviation (SDN) of the distribution, respectively:

MN(t) ∼ n1eαt, (3.3)

SDN(t) ∼ n2eαt. (3.4)

It is important for what follows to remark that the coefficient of variation
of the number of cells CVN(t) = SDN(t)/MN(t) therefore converges to a
constant as t goes to infinity, which is just the ratio n2/n1.

The value of the growth rate α is given by the unique solution of the equa-
tion: ∫ ∞

0
e−αtG(t)dt =

1
2

, (3.5)

where G is the density function related to the division time τd. We can note
that this equation is equivalent to the following:

E(X) =
1
2

with X = e−ατd . (3.6)

The value of n1 is given by

n1 =
1

4α
∫ ∞

0 te−αtG(t)dt
, (3.7)
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and the value of n2 is:

n2 = n1

√
4E(X2)− 1
1− 2E(X2)

, (3.8)

which implies that the coefficient of the number of cells for long times is then:

CVN(∞) =

√
4E(X2)− 1
1− 2E(X2)

. (3.9)

We can remark that the computation of CVN and α rely solely on the com-
putation of the first two moments of the variable X = e−ατd .

Another important property derived by Bellman and Harris is that for
every realization of the model N(t), there exists a random variable W such
that

N(t) ∼Wn1eαt. (3.10)

Several properties of W are derived by Bellman and Harris, but what interests
us the most is that every trajectory N(t) should then have the same growth
rate α.

Gaussian Division Times

Here we consider that bacteria divide after a time τd, which is normally dis-
tributed around a mean value τ0 with standard deviation σ. This distribution
allows us to define a microscopic coefficient of variation that describes the
variability between individual cells:

cvµ =
σ

τ0
. (3.11)

In this case, as τd follows a normal law, X follows a rescaled log-normal
law and we can easily find the first two moments of X:

E(X) = e−ατ0+
α2σ2

2 , (3.12)

E(X2) = e−2ατ0+2α2σ2
. (3.13)

If we insert equation (3.12) into equation (3.6), we get the theoretical value
of α:

α =
ln(2)

τ0

2

1 +
√

1− 2 ln(2)cv2
µ

. (3.14)

The growth rate is therefore a product of two terms: The first term is the
ratio ln(2)/τ0, which is the growth rate when the heterogeneity of division
times is neglected. The second term is larger than one and increases with cvµ.
It predicts that the cell-to-cell variability of the division times increases the
apparent growth rate of the whole population. Although this dependence of
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α on cvµ is verified as shown in Fig. 3.3(A), the net effect on the growth rate
is weak, remaining below 5% for any value of cvµ within a realistic range.

These observations are confirmed by Monte-Carlo simulations, whose re-
sults are in excellent agreement with the analytical prediction of eq. (3.14),
thus validating the theoretical result, as shown in Fig. 3.3(A). The divergence
that is observed between the numerical and theoretical results for cvµ > 0.3
is due to the increased apparition of negative division times in the theory,
which are removed from the simulations.

The complete expressions of n1 and n2 can also be obtained using the
above equations (3.7,3.8), but we will just give here the asymptotic value of
the coefficient of variation :

CV2
N(∞) =

(
n2

n1

)2

BH
=

eα2σ2 − 1

1− eα2σ2

2

. (3.15)

This expression depends strongly on cvµ, as shown in Fig. 3.3(B).Therefore
although the cell-to-cell variability has only a small effect on the total growth
rate, its signature is clear on the macroscopic coefficient of variation between
different realizations. Again, the theoretical prediction is validated by the
numerical Monte Carlo simulations, see Fig. 3.3(B).

Note that, if the coefficient of variation of the division time is small (cvµ �
1), we get:

α ∼ ln(2)
τ0

(
1 +

ln(2)
2

cv2
µ

)
, (3.16)

E(X2) ∼ 1 +
ln(2)2

4
cv2

µ. (3.17)

For the coefficient of variation of the number of cells in exponential phase,
we can compute the following approximation:

CVN(∞) ∼
√

2 ln(2)cvµ ≈ cvµ, (3.18)

because
√

2 ln(2) ≈ 1, as observed numerically by Stukalin [78], and proven
here theoretically. For small cvµ, we almost have an equality between the mi-
croscopic and macroscopic coefficients of variations, which proves that cell-
to-cell variability strongly influences the behavior at the population scale.

Another consequence of the B-H model is that the asymptotic distribu-
tion of the number of cells is self-similar in time, when re-scaled by exp(αt).
This means that the distribution of N(t)/ exp(αt) converges to a stationary
distribution at late times, which is also recovered by the numerical simula-
tions, as seen on the movie 3 in Appendix E. Similarly to CVN, the shape
of this distribution depends strongly on the single-cell parameters, as plot-
ted on Fig. 3.3(C). Quite intuitively, when cvµ increases, it also increases the
variance of the rescaled distribution.

To say a little bit more about the shape of this distribution, we find that it
is close to a log-normal distribution, see Fig. 3.3(D). We get a p-value p < 0.05
in a Kolmogorov-Smirnov test for normality [133] for all values of cvµ > 0.1.
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FIGURE 3.3: Theory and simulations for the Bellman-Harris
model with a Gaussian distribution for the division times. Sim-
ulations were made with τ0 = 21 min, 2000 simulations going
from t = 0 to t = 5 h. (A) and (B) theory (lines) and simulations
(stars) (A) Gain in the exponential growth rate as a function of
the cellular-level coefficient of variation cvµ. Orange circles :
growth rate gain computed by numerical solving of eq.(3.6) (B)
Macroscopic coefficient of variation CVN as a function of cvµ.
(C) Asymptotic shape of the distribution of N(t)/exp(αt). The
curves show a kernel fit of the simulated curves. (D) For two
values of cvµ, distribution of the log of N(t)/exp(αt) and Gaus-
sian fit. We get a p-value p < 0.05 in a Kolmogorov-Smirnov

test for normality [133] for all values of cvµ > 0.1.

For smaller values of cvµ, cells are almost synchronized, and it is more diffi-
cult to assess the converging shape of the stationary distribution for t going
to infinity, but we believe that the log-normal shape must hold. The shape
of the rescaled distribution is then skewed to the right, and as expected for a
log-normal distribution, the bigger its variance, the more it is asymmetrical.
The shape of the resulting distributions in noisy exponential processes was
studied in detail, for a slightly different formal background, in ref. [85].

Hitting Times in a Bellman-Harris model

Another interesting feature of the Bellman-Harris model is the distribution
of the hitting times, which is the time required to reach a certain number
of cells in the droplet. We have not made analytical predictions for these
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hitting times, but we will see how they behave on the simulations and try to
relate this behavior to the predictions we have made on the distribution of
the number of cells. On the simulations, we find that for long times, or to
be more precise, for large values of N, the distribution of the hitting times
is constant, but translated because of the mean exponential growth of the
population (see Fig. 3.3(A)). In particular, the variance of the time needed
to reach 200 or 2000 cells is the same. The difference is just the mean time,
which is directly related to the mean exponential growth of the population.
The hitting-times distribution seems to be Gaussian (see Fig. 3.3(B)), we get
a p-value p < 0.05 in a Kolmogorov-Smirnov test for normality [133] for
all values of cvµ. The variance of the distribution of hitting times depends
strongly on cvµ (see Fig. 3.3(C)): the larger cvµ, the more variable the hitting
times.
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FIGURE 3.4: Hitting Times in a Bellman-Harris simulation
(same simulation as Fig. 3.3). (A) Histogram plot of the time
needed for each simulation to reach a fixed number of cells. We
see that the distribution for the different times is the same, but
translated. (B) Distribution of the hitting times to reach 2000
cells for two example values of cvµ, with Gaussian fit. (C) Evo-
lution of the standard deviation (SD) of the hitting times with

cvµ.

Now that we have seen what the hitting times looked like on the simu-
lations, we can try to explain these results a little bit, not with precise math-
ematical demonstrations, but appealing to intuition and the results we have
for the behavior of the number of cells as a function of time thanks to the
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Bellamn-Harris model. One of these results, that is very important, is the
one of eq. (3.10): it states that the population in each droplet grows exponen-
tially with the same growth rate. If we look at the trajectories N(t) in log
scale, we then have a set of parallel lines, as confirmed numerically. It is then
not surprising that the distribution of the hitting times is the same, but trans-
lated because of the mean growth: the hitting times are indeed just translated
along those parallel lines for each droplet, as we can see in Fig. 3.5(B).

FIGURE 3.5: Geometrical approach to understand the hitting
times in a Bellman-Harris model. (A) Individual trajectories in
a Bellman-Harris simulation (same as in Fig. 3.3, in log scale).
(B) Schematic zoom on some curves, and distribution of the hit-
ting times for three different values of N. As the individual
trajectories N(t) are just parallel lines, we see that the distribu-
tion of the hitting times is the same, but translated to account
for the mean growth. (C) Schematic zoom on some curves, and
link between the distribution of N(t) at a fixed time (in red) and
distribution of the hitting times (in black). As all the individual
trajectories are parallel lines, we see that the two distributions
are the same, because of the symmetry with respect to the blue

line, which is perpendicular to the trajectories.

Similarly, the same kind of geometrical approach can help us understand
why the distribution of the hitting times is Gaussian. Once again, all trajec-
tories, in log scale, are just parallel lines. If we consider the symmetry with
respect to a perpendicular line (in blue on Fig 3.5(C)), we see that the distri-
bution of hitting times is just the same as the distribution of log(N(t)), and as
we have seen in the previous part that this distribution was Gaussian (as the
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distribution of N(t) is log-normal), it is logical to find a Gaussian distribution
for the hitting times.

In summary, the hitting times are a kind of dual problem to the distribu-
tion of N(t), and both are directly related because of the exponential growth
of all the trajectories. In the rest of this chapter, we will then focus on the
distribution of N(t), but a lot of the results could be translated to the hit-
ting times. The link between hitting times and individual lag time (i.e. the
distribution of the first division for the individual cells) is not straightfor-
ward mathematically and was studied in a series of article by Baranyi et al.,
see [134], [135] and [120].

Taken together, the above results show the effects of the cell-to-cell vari-
ability on the population-scale growth. While the impact on the exponent α
is always weak, the shape of the asymptotic probability distribution of N(t)
is very sensitive to the value of cvµ. This observation suggests that the vari-
ability between cells can be inferred from a large number of population-scale
measurements without the need for single-cell resolution. However taking
into account other sources of variability in the practical situations will limit
such inference, as demonstrated in the following sections.

To be (a little bit more) rigorous

If we want to be rigorous from a mathematical point of view, we have to
come back on one point. Indeed, the division times that we consider in this
model can only be positive, as it makes no sense for a cell to have a negative
division time. When we say that the division times are Gaussian, what we
mean in fact is that they are picked from a Gaussian distribution truncated at
zero of cumulative probability function G̃, that has to be re-normalized :

G̃(τd) =
Gτ0,σ(τd)

1− Gτ0,σ(0)
, (3.19)

where Gτ0,σ is the cumulative probability function of the Gaussian law of
mean τ0 and standard deviation σ. But the relative difference, for the positive
times, depends only on Gτ0,σ(0), which is very close to 0, especially for small
cvµ, as we can see on Fig. 3.6.

Hence, we cannot rigorously use the fact that the variable X = E(e−ατd)
is a log-normal variable in eq.(3.6). But we can still solve numerically this
equation and obtain a numerical value for the growth rate α. As we can see
on Fig. 3.3(A) (orange circles), the direct numerical value is very close to the
B-H theoretical one for small values of cvµ. For high values of cvµ, we recover
the value of the growth rate found on the simulations, that deviates from the
B-H theoretical value.

In fact, one of the hypothesis imposed by Bellman and Harris is not satis-
fied by the function G̃ :

G̃(0+) =
Gτ0,σ(0)

1− Gτ0,σ(0)
6= 0. (3.20)
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FIGURE 3.6: G(0): probability of finding negative values in a
Gaussian distribution of mean τ0 = 21 min, varying the coeffi-

cient of variation cvµ.

However, we have already seen that Gτ0,σ(0) is very close to zero for rea-
sonable cvµ (Fig. 3.6), and so G̃(0+) as well. The very good match for the
interesting observable quantities and the simulations presented on Fig. 3.3
shows anyway that we can still use the Bellman-Harris theory to model what
happens in our simulations and experiments.

3.2.3 Poisson distributed initial number of cells

When bacteria are encapsulated in droplets, the initial number of bacteria per
droplet follows a Poisson distribution of parameter λ [97]. The probability of
having N0 bacteria in a droplet is given by: Pλ(N0) = λN0e−λ/N0! [101],
where λ is the average number of bacteria per droplet. In a microfluidic
setup, the Poisson distribution leads to some droplets being empty, but we
solely consider the evolution of droplets containing bacteria. As bacteria are
assumed to be independent from one another, this modification of the initial
number of bacteria does not change the asymptotic behavior of the distribu-
tion: the k-th moment of the distribution of N(t) grows exponentially with
the same growth rate kα as previously, but the values of the prefactors in front
of the exponential are different from the classical case.

To derive the values of the prefactors, consider a droplet containing ini-
tially N0 bacteria, with N0 > 0. We call Nk(t) the size of the offspring of
bacteria k at time t. The total number of bacteria Nλ(t) in the droplet at time
t is then given by:

Nλ(t) =
N0

∑
k=1

Nk(t). (3.21)

Since we suppose that bacteria grow independently from one another,
the terms of the sum are independent and identically distributed: each Nk(t)
follows just a simple Bellman-Harris model, with N0 = 1. We can then use
the lemma of Appendix B.4 and we directly get:

E (Nλ(t)) = MN(t)E (N0) , (3.22)
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Var (Nλ(t)) = SDN(t)2E (N0) + MN(t)2Var (N0) , (3.23)

where MN(t) and SDN(t) are the mean and the standard deviation of the
simple Bellman-Harris case, that were defined in the previous section.

To go further, we just have to pay attention to the fact that we want to
consider only the droplets that contain bacteria, so N0 doesn’t really follow a
Poisson distribution here, but the restriction of a Poisson distribution to N∗.
Since the probability of having an empty droplet is e−λ, we have:

P (N0 = k) =
1

1− e−λ

λke−λ

k!
. (3.24)

To compute the expected value and the variance of N0, we can use the
probability generating function, that is defined as:

G(s) = E
(

sN0
)

. (3.25)

In our case, we get:

G(s) =
∞

∑
k=1

sk 1
1− e−λ

λke−λ

k!
,

=
e−λ

1− e−λ

∞

∑
k=1

(λs)k

(k)!
,

=
e−λ

1− e−λ

(
eλs − 1

)
. (3.26)

Then the expected value and the variance can be computed from the val-
ues in s = 1 of the first and second derivative of this function, with the for-
mula:

E (N0) = G′(1), (3.27)

Var (N0) = G′′(1) + G′(1)− G′(1)2. (3.28)

Hence, we easily get :

E (N0) =
λ

1− e−λ
, (3.29)

Var (N0) =
λ

1− e−λ

1− (λ + 1) e−λ

1− e−λ
. (3.30)

We can now inject these expressions into equations (3.22) and (3.23), and
take the equivalent for t going to infinity. This leads to a mean Mλ(t) ∼
n1(λ)eαt with:

n1(λ) =
λ

1− e−λ
n1, (3.31)
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while the pre-factor of the standard deviation SDλ(t) ∼ n2(λ)eαt is:

n2(λ) =

√
λ

1− e−λ

(
n22 +

1− (λ + 1) e−λ

1− e−λ
n1

2
)

. (3.32)

The expression for n1(λ) is expected because of the independence of the
bacterial division times: the mean number of cells at time t is simply the
product of the mean number of cells per non-empty droplet and the mean
of the classical Bellman-Harris case. These expressions are systematically
checked numerically on Fig. 3.7(A).

n1

n2

n1

n2

FIGURE 3.7: Comparison between the theoretical predictions
(straight lines) of the Bellman-Harris model and Monte-Carlo
simulations (stars). The law for the division time of individual
bacteria is a Gaussian with mean τ0 = 23 min and standard
deviation σ = 0.25τ0. (A) n1(λ) and n2(λ) as a function of the
Poisson parameter λ (2000 simulations for each λ). (B) Effect
of an evolving distribution of division times. The first bacterial
generation divides with a mean time τ1 = 2τ0, and a standard
deviation σ1. Subsequent division times follow a normal law of
mean τ0 and standard deviation σ0. n1 and n2 depend on σ1/τ1.
The initial number of cells follows a Poisson distribution with a
parameter λ = 0.5. Result of 2000 independent simulations for

each σ1.

To understand the expression for the standard deviation better, it is useful
to divide it by the mean and take the square. Doing so, we obtain the square
of the coefficient of variation CVλ for t going to infinity:

CV2
λ (∞) =

(
n2

n1

)2

λ

=
1− e−λ

λ

(
n2

n1

)2

BH︸ ︷︷ ︸
(1)

+
1− (λ + 1) e−λ

λ︸ ︷︷ ︸
(2)

. (3.33)

The variance of the population size is thus the sum of two terms. The
first one is the variance due to the stochastic nature of the Bellman-Harris
process, corrected to take into account only the wells that contain bacteria.
The second term is an additional variance due to the initial Poisson distri-
bution. The contribution of the initial Poisson distribution becomes greater
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than the intrinsic variance of the Bellman-Harris process when the Poisson
parameter is larger than ≈ 0.5, see black line in Fig. 3.8(A). The dominant
effect on the variance of the number of cells is then the variance due to the
initial distribution, and not the heterogeneity of the division times. This can
be seen clearly in Fig. 3.8(B): the coefficient of variation of the population
now depends weakly on cvµ but cases with different values of λ can clearly
be distinguished. Simulations confirm this results, and highlight another sur-
prising effect: the numerically computed values tend to differ more from the
theoretical prediction for small values than for large values of λ. Indeed, for
small values of λ, fewer droplets contain bacteria, and the stochastic diver-
gence from the prediction is bigger, even with 2000 simulations.

FIGURE 3.8: Theory and simulations for the Bellman-Harris
model with a Gaussian distribution for the division times and
a Poisson distribution for the initial number of cells. (A) Con-
tributions of the Bellman-Harris process (colored lines, term (1)
in eq. (3.33)) and of the initial Poisson distribution (black line,
term (2) in eq. (3.33)) to the square of CVN , as a function of
the parameter of the Poisson distribution and for different val-
ues of cvµ. (B) CVN , asymptotic value coefficient of variation
of the number of cells as a function of cvµ, theory (lines) and
simulations (stars). (C) Asymptotic shape of the distribution of

N(t)/ exp(αt) (kernel fit, simulations only), for λ = 1

Note that, as in the classical Bellman-Harris case, the asymptotic distri-
bution of the number of cells remains self-similar (see Supp. Movie 4 in
Appendix E). The shape of the self-similar distribution now shows peaks,
each peak corresponds to the initial number of bacteria in the droplet, see
Fig. 3.8(C). The width of each peak stills depends on the variability of the
division times. Indeed, if we consider only the droplets containing initially
N0 bacteria,

NN0(t) =
N0

∑
k=1

Nk(t). (3.34)

All the Nk(t) are independent and identically distributed, thus we have, as
N0 is fixed :

E (Nk(t)) =
N0

∑
k=1

E (Nk(t)) ∼ N0n1eαt, (3.35)
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Var (Nk(t)) =
N0

∑
k=1

Var (Nk(t)) ∼ N0n2
2e2αt. (3.36)

Thus, for the asymptotic coefficient of variation, we get:

CVN0(∞) =
1√
N0

(
n2

n2

)
BH

. (3.37)

This means that the impact of cell-to-cell variability on the population
variance can still be observed in the presence of an initial Poisson distribution
of cells, but only if one is able to count the initial number of bacteria in the
droplet, and to sort the droplets according to this number. Moreover, because
of the term in 1√

N0
, determining the population variance is only possible for

droplets that contain very few bacteria. Note that this dependence in 1√
N0

was also found numerically in [78], and is here proven mathematically.

3.2.4 Generation-dependent division time

A final ingredient that must be added to the model is to account for the
generation-dependent division time of bacteria. Indeed, when bacteria are
set to grow in fresh medium the mean and variance of their division time
changes with the generation number [80, 81]. Once again, we consider that
bacteria grow independently from each other, so that modifying the first
generation does not change the asymptotic exponential behavior of the mo-
ments, but the prefactors n1 and n2 are modified compared to the classical
case.

Let τi and σi be the mean division time and its standard deviation for the
i−th generation, where division times are always picked from a Gaussian
distribution. To understand how to derive the prefactors, let us study the
simpler case where only the first generation time is picked from a different
distribution than the steady-state. Let ρ1 be the density function of the first
division time, and ρs that of the steady-state division times. The process
starts at time t = 0 from a single bacterium that divides according to ρ1. The
two daughter bacteria divide according to ρs and give birth to an offspring
of size N1 and N2, as shown in Fig. 3.9.

The total number of bacteria at time t is then N(t) = N1(t) + N2(t), where
N1 and N2 are independent and follow the same law. Therefore, the mean
number of bacteria is E(N) = E(N1) + E(N2) = 2E(N1). Calling t1 the
time at which the initial bacterium has divided, we know that for t > t1, all
daughter bacteria divide according to the classical Bellman-Harris process.
The asymptotic equivalent of N1(t) for t→ ∞ is then given by:

E(N1(t)) ∼ n1eα(t−t1). (3.38)
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FIGURE 3.9: Schematic view of the division scheme in the case
where the first division time is different: a single bacterium di-
vides into 2 bacteria according to a division law with density
function ρ1, with mean τ1 and standard deviation σ1. The two
daughter bacteria divide according to ρs and give birth to an

offspring of size N1 and N2.

To obtain the expected value E (N(t)) of N(t), we multiply by ρ1 and inte-
grate over all possible values of t1:

E(N(t)) ∼ 2n1eαt
∫ ∞

0
e−αt1ρ1(t1)dt1. (3.39)

Calling X1 = e−αt1 , the mean number of bacteria can be expressed as:

E(N(t)) ∼ 2n1E(X1)eαt. (3.40)

Similarly, we obtain:

E(N2
1 ) ∼ n2

1
2E(X2)

1− 2E(X2)
e2α(t−t1), (3.41)

which leads to

E(N(t)2) ∼ 2n2
1

E
(
X2

1
)

1− 2E(X2)
e2αt. (3.42)

These expressions are systematically compared to the simulations on Fig. 3.7(B).
In the case of Gaussian division times, we know that the random variable X1
is a log-normal variable, and its moments can be easily computed.

From this last result we obtain the expression of the square of the coef-
ficient of variation in the case where only the first generation is changing,
and compare it to the classical Bellman-Harris expression. The coefficient of
variation does not depend on τ1 but solely on σ1:

CV2
σ1
(∞) =

(
n2

n1

)2

σ1

= eα2(σ2
1−σ2)

(
n2

n1

)2

BH︸ ︷︷ ︸
(1)

+ eα2(σ2
1−σ2) − 1︸ ︷︷ ︸
(2)

. (3.43)

This is again the sum of two terms, the first one being directly linked
to the intrinsic variance of the Bellman-Harris process, and the second one
being an additional variance due to a first generation time that is different
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from the following ones. The effect is then similar to the Poisson case: the
variance of the distribution of the number of cells is increased when σ1 > σ,
which is generally the case in experiments. When this variance increases,
the contribution of the first generation rapidly becomes dominant over the
contribution of the Bellman-Harris process (see Fig. 3.10(A)), meaning that
the variance of the distribution is mostly due to the early times, and not to
the cell-to-cell heterogeneity of division times, see Fig. 3.10(B). Another way
to see this result is look at the shape of the self-similar distribution, which is
almost independent of the value of the coefficient of variation of the division
times, see Fig. 3.10(C).

FIGURE 3.10: Bellman-Harris model and simulations for a dif-
ferent first generation with τ1 = 2τ0, varying σ1. (A) Theoretical
plot of the contributions to CV2

N , when varying σ1, for different
values of cvµ. Straight lines: contribution of the Bellman-Harris
process, term (1) in eq. (3.43). Dotted lines: contribution of the
different distribution of division times for the first generation,
term (2) in eq. (3.43). (B) CVN , asymptotic value coefficient of
variation of the number of cells as a function of cvµ: theory
(lines) and simulations (stars), for different values of cv1 = σ1

τ1
.

(C) Shape of the distribution of N(t)/exp(αt) (kernel fit, simu-
lations only), for cv1 = 0.3.

3.2.5 Putting it all together: Three sources of stochasticity

Now what happens when we mix the two effects, i.e. have an initial number
of cells per droplet following a Poisson distribution, and the first generation
of bacteria having a different generation time? To answer this question, we
inject eqs. (3.42) and (3.40) into eq. (3.23). We find that the two effects add up,
leading to the following formula for CV2

N:

CV2
σ1,λ(∞) =

(
n2

n1

)2

σ1,λ
=

1− e−λ

λ
eα2(σ2

1−σ2)
(

n2

n1

)2

BH

+
1− e−λ

λ

(
eα2(σ2

1−σ2) − 1
)

+
1− (λ + 1) e−λ

λ
. (3.44)
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We thus have the sum of three terms. The first one corresponds to the
contribution due to the variation of the division times of the cells. The sec-
ond one is the additional variance due to the first division time, but corrected
to take into account only the wells that contain bacteria because of the Pois-
son distribution. And the third one is the supplemental variance due to this
Poisson distribution. In this case, the intrinsic variance of the Bellman-Harris
process is now masked by two terms, and as a consequence, the coefficient
of variation CVN is even less dependent on the heterogeneity of the division
times cvµ, see Fig. 3.11(A). The shape of the distribution of N(t)/exp(αt),
which is constant in time, is also almost independent of cvµ, see Fig. 3.11(B).

FIGURE 3.11: Theory and simulations for the mixed case where
the first generation is different and the cells are initially dis-
tributed following a Poisson distribution. (A) CVN , asymptotic
value coefficient of variation of the number of cells as a func-
tion of cvµ, theory (lines) and simulations (stars). (B) Shape of
the distribution of N(t)/exp(αt) (kernel fit, simulations only),

for λ = 1 and cv1 = 0.3.

The same analysis can be extended to the arbitrary case where the first
k generations follow different division laws, and combined with an initial
number of bacteria following a Poisson distribution. In the particular case
of our experiments, the distribution of division times reaches steady-state at
the fourth generation, and we find that at steady-state, the mean Mτn,σn(t) ∼
n1(τn, σn)eαt and the standard deviation SDτn,σn(t) ∼ n2(τn, σn)eαt with:

n1(τn, σn) = 8n1
λ

1− eλ

3

∏
i=1

e−ατi+
α2σ2

i
2 , (3.45)

CV2
τn,σn(∞) =

(
n2

n1

)2

τn,σn

=
1− e−λ

λ

(
1
8

eα2σ2
1

(
eα2σ2

2

(
eα2σ2

3

1− 1
2 eα2σ2 + 2

)
+ 4

)
− λe−λ

1− e−λ

)
.

(3.46)
Although these formulas are complex, they are the reflection of simple

ingredients and can easily and reliably be computed for a given set of pa-
rameters. Now let us try to see how they compare with the results of the
microfluidic experiments
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3.3 Experimental results

In this part, we are going to see how the results of microfluidics time-lapse
growth experiments, that were described in the previous chapter, are in agree-
ment with the predictions of the Bellman-Harris model that we have de-
scribed numerically and theoretically. As explained in the previous chap-
ter, the fluorescence signal of the droplet is used as a proxy for the number
of bacterial cells in the droplet, and we will consider first that it is exactly
proportional to the number of cells in a droplet (this hypothesis will be ques-
tioned in section 3.3.5). We first discuss in depth the results for E. coli, and
those for B. subtilis will be exposed later.

3.3.1 Growth Rate, Mean and Standard Deviation

The first prediction of the Bellman-Harris model that we can check on the
experiment is that all droplets containing bacteria should exhibit the same
growth rate. As explained in the previous chapter, we set manually and once
and for all for all the droplets the detection and saturation limits. Between
these two limits the growth rate is obtained for each droplet by fitting the
growth curve with an exponential. We obtain a standard deviation of only
≈ 7% among the growth rates of all the droplets, which is very good taking
into account the experimental noise and fitting errors. Thus we can say that
the first prediction of the B-H model is satisfied by the experiments. This
prediction is, of course, also the classical belief in microbiology [112], at least
while nutrients are abundant in the droplet.

The second prediction that we can check is that both the mean and the
standard deviation should evolve exponentially with the same growth rate.
Indeed, if we take the mean and standard deviations of all the fluorescent
curves of the droplets that contain bacteria, we obtain a very well defined
exponential phase, for approximately 2 hours (see Fig. 3.12).
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FIGURE 3.12: Mean (A) and Standard Deviation (B) of the flu-
orescence signal of the droplets in a typical E. coli experiment
(described in Chapter 2), in log scale, as a function of time, with

linear fit (orange).

If we compare the slopes of the two fits, we obtain αM ≈ 2.19h−1 for the
mean, and αSD ≈ 2.22h−1 for the standard deviation. The relative difference
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between these two values is then only of about 1%, we can thus say that the
experiments agree with the B-H model on that point. Note that the mean
of the growth rates of the droplets is also very close, since its value is <

αdrop >≈ 2.14± 0.08h−1.
Hence, we have checked that all droplets grew exponentially with the

same growth rate, as well as the mean and standard deviation of the fluo-
rescence signal. To push the comparison further, we need to know if this
growth rate that we have found really means something for the bacteria in-
side the droplets, by having an idea of the distribution of their division times.
Thus we could use these division times as inputs for our full Bellman-Harris
model. This will allow us to have a comparison for the value of the growth
rate, but not only, as the coefficient of variation of the distribution of N(t)
could also be computed and compared with the experiments.

3.3.2 Individual division times

To find the individual division times and their distributions, we confine bac-
teria between a glass slide and a thin homemade agarose pad (mixed with
LB2X at 50/50), and then observe them under the microscope every 3 min-
utes for 3 hours, with a 90X magnification, kept at 37°C (see Fig. 3.13(A) for
an example). The division times were determined with a segmentation algo-
rithm [136]. The pre-culture conditions were the same as on the chip, in order
to obtain the more relevant division times to use as inputs for our Bellman-
Harris model. However, since the bacteria are here growing in agarose under
mechanical constrain and not in liquid, we know that the comparison with
the microfluidic experiment is not perfect, but this will give us an idea of the
mean division time and its variability.

We find that the distribution of division times can be well approximated
by a Gaussian with mean τ and standard deviation σ, see Fig. 3.13(B,C).
Moreover, the parameters of the Gaussian distribution evolve with the gen-
eration number, a sign of the adaptation of bacteria to their new environ-
ment [137]. For E. coli, the average generation time decreases from 33 to 21
minutes between the first and the fourth generation, while the coefficient of
variation cvµ = σ/τ decreases from 0.28 to 0.19 over the same time. This is
in agreement with results previously reported in the literature on E. coli [81]
and Salmonella enterica [80]. In full exponential phase, Taheri-Araghi et al. [45]
reported coefficients of variations ranging from 0.14 to 0.22 for E. coli.

Some references in the literature, such as refs. [78, 87], suggest to take
gamma distributions instead of Gaussian distributions for the cell division
times. However, we have not measured enough division events to statisti-
cally distinguish between the two distributions, and switching from one to
another does not qualitatively affect our results, see Fig. 3.14.

We can use then these distributions of division times as inputs for our
Bellman-Harris model. We will consider that after the fourth generation, the
cells are in exponential phase and the distribution of their division times is
constant. We could not really check this hypothesis because after four or five
division, the field of view of the camera was filled with bacteria, and those
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FIGURE 3.13: (A) Time-lapse image of E. coli cells dividing un-
der a 90X objective. The images correspond to t=0, 21, 42, 63,
84, and 105 min respectively. (B) Density of the division times
obtained from the time-lapse images, for E. coli, and for the first
four generations. (C) Density of the division times obtained
from the time-lapse images, for B. subtilis and for the first four
generations. (D) Fitted values of the mean division times and

their standard deviations, for both strains.

begun to grow in 3D, out of focus... Note though that even between the third
and fourth generation, the difference is already quite low (Fig. 3.13(B)). This
simulation scheme as already been used in the literature ([80],[81]).

3.3.3 Full comparison

The distribution of division times from the single-cell experiments can now
be used as inputs to obtain theoretical and numerical predictions. The Pois-
son parameter is obtained directly from the chip experiment by counting the
number of positive droplets, as explained in Chapter 2.

Growth rate

The first thing that we can compare is the value of the growth rate. If we take
the theoretical formula (3.14), and inject the values of tau0 and cvµ that we
have found for the individual cells, we obtain αB-H = 2.01h−1. This is very
close to the values discussed above (to recall,〈αdrop〉 ≈ 2.14± 0.08h−1 for the
mean of all the droplets). This bolsters us in our hope that the division times
that we have found in our agar pads are relevant for the comparison with
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FIGURE 3.14: Comparison of fits for the experimental distribu-
tion of division times shown in Fig. 3.13, for the first 4 genera-
tions. Blue: fit to a Gaussian distribution. Red: fit to a Gamma

distribution.

the on-chip growth. Note though that we find a slightly bigger growth rate
when measuring in the droplets, this could indicate that the cells had not
completely reached their full exponential phase at their fourth division.

This good match in terms of growth rate is clear if we plot on the same
graph the experimental, numerical and theoretical mean and standard de-
viation (Fig. 3.15(A),(B)). However, the experimental data is in fluorescence
and not in number of cells. To gather the curves on the same plot, we had to
manually adjust vertically the experimental curves, which gives us in fact a
measure of the proportionality between the fluorescence of the droplets and
the number of cells. The same coefficient was used for the mean and the stan-
dard deviation. Here, we find that a f ≈ 7 · 10−4, where Fluo(t) = a f N(t).

We also recover an exponential growth for higher moments of the distri-
bution, at least up to the fifth central moment, as shown on Fig. 3.16. The
fluorescence coefficient used here is the one found on the mean. We can see
that the growth rate found on those higher moments is also correct, even if
it starts to deviate for the fifth moment. Higher (>5) moments don’t present
this exponential growth, as they are more sensitive to the saturation limit.

Coefficient of variation

However the value of this growth rate cannot distinguish between the sim-
ple Bellman-Harris model of Section 3.2.2 and the complete model of Sec-
tion 3.2.5. This distinction can be made by measuring the coefficient of vari-
ation CVN of the number of bacteria, which is predicted to be constant in the
exponential phase. Such a behavior is indeed observed in the simulations
(see Fig. 3.15(C)). The experimental coefficient of variation is also approxi-
mately constant, but only for a short time of 1 hour see Fig. 3.15(C), even
though the exponential growth of the mean and standard deviation makes it
difficult to obtain a real plateau: a slight difference in the observed growth
rates of theses two quantities leads to an exponentially increasing difference
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FIGURE 3.15: Comparison between the model (yellow), nu-
merical (orange) and experimental results (blue)(same experi-
ment as in Chapter 2). (A) Mean number of cells as a function
of time MN(t), (B) Standard deviation of the number of cells
as a function of time SDN(t), (C) Coefficient of variation of the
number of cells as a function of time CVN . Dashed lines corre-
spond to the asymptotic value of CVN when the sole source of
variability is the cell division time (classical B-H theory, purple),
in the presence of an initial Poisson distribution of cells (cyan),
and in the presence of both a Poisson distribution of cells and
an evolving distribution of division times (green). (D) Shape of
the distribution of N(t)/ exp(αt), numerical and experimental,

kernel fit.

between the values of the mean and standard deviation. Yet, the experimen-
tal value of the plateau during this period is in good agreement with the ex-
pected theoretical value, see Fig. 3.15(C). Note that all sources of variability
need to be taken into account to obtain a good agreement between the exper-
imental and theoretical CVN. Considering solely stochastic cell division, as in
the classical Bellman-Harris model, significantly underestimates the experi-
mental CVN (dashed purple line). As more sources of variability are added
to the model, the coefficient of variation increases. The effect of both the ini-
tial Poisson distribution (cyan dashed line), and of the generation-dependent
division times (green dashed line) on the value of the coefficient of variation
are shown in Fig. 3.15(C).
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Experiment
Simulation

FIGURE 3.16: Comparison between experiments and simula-
tions for the evolution of the 3rd (A), 4th (B) and 5th (C) central
moments of the distribution of the number of cells. Data shown

are for E. coli.

Note that the proportionality constant between the fluorescent signal and
the number of bacteria cancels out when computing the ratio CVN = n2/n1.
As such raw experimental data can be directly compared with the simula-
tions and the theory with no fitting parameter. The agreement that is ob-
served between experimental data and theory shows that all sources of vari-
ability have to be taken into account to understand the variability in behav-
iors between droplets: the initial Poisson distribution, the first generations
times and the cell-to-cell variability through a Bellman-Harris process. When
one of these sources of variability is not taken into account, the error between
experimental results and the theoretical ones is larger, see dashed lines in
Fig. 3.15(C).

Self-similarity

Finally, we verify that the shape of the experimental distribution of fluores-
cence is self-similar in time, when rescaled by its mean value (see Supple-
mentary Movie 5 in Appendix E). The self-similar behavior is limited to the
exponential phase, before saturation of bacterial growth. Furthermore the
shape of this distribution is in very good agreement with the numerical pre-
diction of the full model, as shown in Fig. 3.15(D). The distribution is here
rescaled by the mean and not by exp(αt) to get rid of the coefficient of pro-
portionality between the fluorescence and the number of cells. Thus, the
distribution of the number of cells in the microfluidic droplet is indeed the
one expected from the microscopic cell-to-cell variability and the additional
sources of randomness.

Results for B. subtilis

We have presented above only the on-chip comparison for E. coli, but we
obtain similar results for B. subtilis, as we can see on Fig. 3.17. We do ob-
tain an exponential growth phase for the mean and standard deviation, with
the expected growth rate (3.17(A),(B)). The results are a bit less satisfying for



68 Chapter 3. Distribution of the number of cells with time : the
Bellman-Harris model

the coefficient of variation: it deviates more form the expected theoretical
value (3.17(C)) than what we had for E. coli (3.17(A),(B)). Part of the error is
due to the fact that we have used Gaussian division times instead of Gamma-
distributed ones. As we can see on Fig. 3.13(C), the division times of B. subtilis
are more skewed to the right than those of E. coli, especially for the first gener-
ation, so if we use Gamma-distributed division times in our Bellman-Harris
model, it yields slightly better results (3.17(D)). The theoretical computation
of the Bellman Harris model with a Gamma law are very easy to make, they
are even presented in the original paper[76] (see Appendix B). However, part
of the error remains even with that modification. Perhaps B. subtilis, which
is a bacteria normally living in the soil [138], has a more different growth in
liquid, and thus the individual division times obtained with the agar pad ex-
periment are less comparable to those happening on-chip, contrary to what
happens with E. coli, where they seem to be a good input for our Bellman-
Harris model.
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FIGURE 3.17: Comparison between the model (yellow), nu-
merical (orange) and experimental results (blue)(same experi-
ment as in Chapter 2). (A) Mean number of cells as a function
of time MN(t), (B) Standard deviation of the number of cells
as a function of time SDN(t), (C) Coefficient of variation of the
number of cells as a function of time CVN (D) Same, but using

Gamma division times instead of Gaussian.
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3.3.4 Towards inference ?

However, if we obtain a good match between our microfluidic experiments
and the theory and simulations of the Bellman-Harris model, those necessi-
tated to make single cell measurements of the division times. Those experi-
ments are quite painful to realize when compared with microfluidic experi-
ments. Another great possibility of the Bellman-Harris model is the follow-
ing: it can theoretically be used the other way round, in the sense that the
observations made on the population can be used to infer data on the single
cells. Indeed, with Gaussian division times, there are only two unknowns
that characterize the bacteria in the exponential phase : the mean division
time τ0 and the coefficient of variation cvµ. And we also have two observ-
ables that characterize the growth of the population in the droplets, which
are the growth rate α and the coefficient of variation CVN, and we know how
they depend on the microscopic parameters. Thus the equations (3.14) and
(3.44) can theoretically be inverted, and the microscopic values characteriz-
ing the growth of the bacteria be found from the distribution of the popula-
tion in the droplets.

Unfortunately, it does not work that well in practice. As we have dis-
cussed in the theoretical part, the variability that we observe among the
droplets depends much less on the cell-to-cell variability than on the other
sources of variability such as the initial Poisson distribution or the differ-
ent first generation time. This is indeed very clear on Fig. 3.8(B), 3.10(B),
and 3.11(A), where we see that the dependence in cvµ is quite low for CVN.
This is also true for the self-similar shape of the distribution (Fig. 3.10(C) and
Fig. 3.11(B)), which depends weakly on cvµ. Hence, even if the equations can
be theoretically inverted, the result will be of no use in practice: because of
this loose dependence, an error of a few percent in terms of CVN will give a
huge error in terms of cvµ.

Of course, this is only true for cvµ, and an approximation of the mean divi-
sion time of the bacteria can be found, using the growth rate, which depends
mostly on τ0 (Fig. 3.3(A)), but this can be made routinely with classical OD
measurements. In our case, using just the classical formula α = log(2)/τ0,
we can estimate τ0 ≈ 19.5min, which is very close to the value of 21 min
found in the single cell measurements.

Getting rid of these external influences on CVN can be quite challenging.
To decrease the influence of the Poisson distribution, we would have to lower
the Poisson parameter λ (see Fig. 3.8(A)). But as a consequence, as our droplet
number is limited, the deviation from the model would be bigger, simply
because of the stochasticity, as we discussed previously using the simulations
(Fig. 3.8(B)), and it is not sure that reliable measurements of CVN could be
made. To decrease the influence of the first generations, the bacteria should
be collected in exponential phase and not diluted before being loaded on to
the chip, and the loading made at 37°C. This is doable, but even by doing
this, there would still be an issue: the cells would not be synchronized when
loaded on to the chip, and even this is sufficient to lower the dependence of
CVN on cvµ, as we can see on Fig. 3.18. Solutions to synchronize cells exist
in the literature, but as we want to keep the cells in exponential phase, the
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only way would be the so-called "baby-machine" [139]. However, it would be
difficult to get it to a sufficient efficiency and to couple it with a microfluidic
device.

FIGURE 3.18: Effect of the initial non-synchronization of the
cells on the relation between the cell to cell variability and the
heterogeneity among droplets: CVN as a function of cvµ, sim-
ulations (stars) and theory (line) for a fully non-synchronized
Bellman-Harris model (orange) and a simple Bellman-Harris

model (blue).

The theoretical computation for the non-synchronized case can be made
quite easily. If the cells are not synchronized, then the first division time
is the product of two terms: the Gaussian law that we normally use in our
Bellman-Harris model is multiplied by an independent uniform variable be-
tween 0 and 1, that represents the moment in the cell cycle at which the cell
was encapsulated in the droplet. To compute what happens in this case, we
can use the same trick as for the different first generation, because after the
first generation, every cell behaves as in a simple Bellman-Harris model. We
condition the variable N by this first division time to get:

E (N(t)|T1 = t1) ∼ 2n1eα(t−t1), (3.47)

which implies, by the law of total probability,

E (N(t)) ∼ 2n1eαtE
(

e−αT1
)

. (3.48)

Once again, it all comes down to computing the expected value of X1 =
e−αT1 , where T1 is random variable for the first division time. But we know
that T1 is the product of an independent uniform variable U by a Gaussian
law of distribution N (τ0, σ). Hence, T1 knowing U is just a normal law of
distribution N (uτ0, uσ). Therefore, the variable X, conditioned by U is once
again a rescaled log-normal law, and we have:

E
(

e−αT1 |U = u
)
= e−αuτ0+

α2u2σ2
2 . (3.49)
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Then, we use the law of total probability to get:

E
(

e−αT1
)
=
∫ 1

0
e−αuτ0+

α2u2σ2
2 du. (3.50)

This last integral can be computed numerically. Exactly the same analysis
can be conducted with N2 instead of N, and thus we obtain the theoretical
value of CVN that is plotted on Fig. 3.18.

Another try: log-likelihood method

Considering what we have described above, it seems difficult to use the di-
rect equation of the Bellman-Harris model and to use them for inference.
However, this is not the only possibility for inferring the parameters for in-
dividual cell division, namely τ0 and cvµ, using the measured distribution of
N(t). A classical tool for statistical inference are maximum likelihood esti-
mators (MLE) [140].

Those methods are based on the following principle: we consider a model
that depends on a set of parameters θ, and we have a set of observed empir-
ical data x. The idea is to estimate the correct parameters θ by selecting the
value of θ that maximizes the probability of observing the data set x in the
model. To do this, a likelihood function is computed and maximized over
the range of possible parameters θ. The value of the likelihood function is
the probability of observing x in the model, given a set of parameters θ. For
practical reasons, the log of the likelihood function is often considered.

Such estimators have already been built for binary processes resembling
the Bellman-Harris process considered in this Chapter (see for instance refs. [91,
141, 142]), but they only apply to models where there is an explicit expres-
sions of the distribution of the number of cells as a function of time. We
do not have access to such an explicit expression in our Bellman-Harris pro-
cess, and another difficulty is that we only have a few available observation
points, that are not the same for all the droplets, because of the experimen-
tal conditions: for each droplet, we have to be in between the detection and
saturation limits, see Chaper 2.

However, Hyrien [92] developed a method that matches our experimen-
tal constrains. It is called a pseudo-likelihood method, as the estimation is
based on a numerical approximation of the likelihood function, to bypass
the unavailability of an explicit expression of the distribution of the number
of cells. This method also takes into account the fact that the observation
points are not the same for every droplet. We will not enter too much into
details here, but the method is based on a numerical estimation of the mean
and variance-covariance cell counts by Monte-Carlo simulations. Therefore,
a numerical likelihood function can be computed, and maximized also nu-
merically.

Therefore, we tried to apply this estimation method in our case. But be-
fore trying with the experimental data, we tried on a simulation. The prin-
ciple is the following. On the one had, we consider a test simulation of the
growth of E. coli, that mimics what can be observed on our chip, thanks to
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FIGURE 3.19: Simulated results of the pseudo log-likelihood
method described in [92]. A full simulation of the growth of
E. coli (same as on Fig. 3.11) was used as a test for inference of
the growth parameters τ0 and cvµ, using the pseudo-likelihood
method, and a grid of Monte-Carlo simulations. For each point
the (τ0, cvµ) grid, 2000 simulations were computed. (A) General
shape of the likelihood estimation function G, as a function of
the parameters τ0 and cvµ. If we consider the maximum of G,
we find the correct values of τ0 and cvµ that were used in the
test simulation, respectively τ0 = 21 min and cvµ = 0.19. (B)
Variation of log(G) as a function of τ0 when cvµ is fixed at 0.19.
(C) Variation of log(G) as a function of cvµ when τ0 is fixed at
21 min. We see that the function G is much more peaked when

τ0 is varied than when cvµ is varied.

our full Bellman-Harris model, already used for Fig. 3.11. Our goal is to esti-
mate the values of τ0 and cvµ that were used for the simulation. On the other
hand, we run simulations of this full Bellman-Harris model for a grid of the
parameters (τ0, cvµ) that covers the possible values of these parameters. This
grid is used for the computation of the pseudo-likelihood function, and we
look at the value of the parameters that maximize this function given the test
simulation. For this, we set ourselves a number of observation points that
mimic those that we have experimentally.

The results are presented on Fig. 3.19. The positive result is that we are
able to estimate the correct value of the parameters: the maximum of the
pseudo-likelihood function is found for τ0 = 21 min and cvµ = 0.19, which
are the values that were indeed used for the test simulation. However, if
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we look more closely at the shape of the likelihood function that we get
(Fig. 3.19(A)), we note that the estimation is very selective on the value of
τ0 (Fig. 3.19(B)), but not on cvµ. Indeed, for varying cvµ, the shape of the like-
lihood function is almost flat (Fig. 3.19(C)), whereas the maximum is very
peaked for τ0. In a sense, this is not surprising, as we have already explained
that the shape of the distribution of N(t) was weakly dependent on cvµ.

As a consequence, it is almost impossible that this method will work for
the experimental estimation of cvµ, because a slight noise on the data, for
instance will probably have huge consequences on the estimation of cvµ. In-
deed, we could never get this method to work with our experimental data,
the estimation that we got on cvµ was always far from the one measured on
single cells on an agar pad. Another difficulty lies in the fact that we only
have an indirect estimation of the number of cells through the measurement
of fluorescence, and the link in between those two quantities can be difficult
to quantify, as we have discussed in Chapter 2.

As a whole, these results on the inference of cvµ through the inversion of
the Bellman-Harris equation or pseudo-likelihood methods suggest that be-
cause of our experimental constrains, it might be difficult to infer cvµ from
the experiment using only the distribution of the number of cells at the differ-
ent observation points. In the next Chapter, we will try an inference method
rather based on following the individual trajectories of each droplet with
time.

3.3.5 Experimental noise

If we take another look at the comparison between the experimental and the-
oretical coefficient of variation, we see that there is a little error in between
them. The experimental one is indeed constant, but slightly bigger than the
expected value. This error could come from a bad estimation of the indi-
vidual division times of the bacteria: as we have already said, they were
estimated in different culture conditions than the on-chip ones. However,
they could also come from the measurement noise, particularly when mea-
suring the fluorescence of the droplets. This is what we are going to explore
theoretically and numerically in this part.

Additive noise

The first kind of noise that we can think of is a simple additive noise, which
can be written as follows:

Fluo(t) = a f N(t) + η(t). (3.51)

Where η models the noise and can be at first approximation taken as a
Gaussian: η(t) ∼ N

(
0, σ2

η

)
. We will make two hypotheses on η. First, we

consider that η is independent of N. Second, we consider that, as a random
noise, it is also not correlated in time, which means that for our observations
η(ti) and η(ti + 1) are independent.
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In this case, we simply have, by independence of N and η:

E (Fluo(t)) = a f E(N(t)) + E(η(t))

= a f E(N(t)), (3.52)

Var (Fluo(t)) = a2
f Var(N(t)) + Var(η(t))

= a2
f Var(N(t)) + σ2

η . (3.53)

Therefore, if we compute the coefficient of variation, we get:

CV2
f luo = CV2

N +
σ2

η

a2
f E(N(t))2

. (3.54)

This is the sum of two terms. The first one is just the coefficient of vari-
ation for the number of cells, and the second one is the corrective term due
to the noise. As we can see, it will rapidly vanish, because the numerator is
constant but the number of cells evolves exponentially. This is confirmed by
the simulations (Fig. 3.20(A)). There is then little chance that it can account
for a constant increase of the experimental coefficient of variation in the ex-
ponential phase.
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FIGURE 3.20: Effect of different kind of noise on the measured
coefficient of variation of the fluorescence. The simulation used
is the full simulation of E. coli growth presented on Fig. 3.15,
with division times taken from the single cell experiment, then
the noise is added with a f = 1, and varying its variance (A)
Additive noise (B) Heterogeneity of the fluorescence (C) Multi-
plicative noise, with theory (straight lines) and simulations (cir-

cles).

Heterogeneity of the fluorescence

Another source of noise in the experiment can come from the heterogeneity
of the fluorescence signal, which is not homogeneous among the cells but
varies from one bacteria to another, even if the cells are isogenic [111]. In this
case, the relation between the fluorescence and the number of cells can be
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written as:

Fluo(t) =
N(t)

∑
i=1

ai
f (t), (3.55)

where ai
f (t) represents the fluorescence signal of cell i at time t. To simplify

the computations, we will consider that the fluorescence signals of the cells
are independent, and that they are also independent in time. These are of
course simplifying hypotheses, as the fluorescence signal of two sister cells
is probably related for instance. The fluorescence is also probably correlated
for one cell from time ti to time ti+1, but as we average on a lot of cells, these
effects are negligible compared to the heterogeneity in itself. We will note σ2

f

the variance of ai
f and a f their mean.

Then we have, using Appendix B.4:

E (Fluo(t)) = a f E(N(t)), (3.56)

Var (Fluo(t)) = E(N(t))σ2
f + a2

f Var(N(t)). (3.57)

This yields for the coefficient of variation:

CV2
f luo = CV2

N +
cv2

f

E(N(t))
. (3.58)

We can see that we have the same effect as for the additive noise : the
correction term due to the noise is vanishing at long times, even if it vanishes
a little bit less rapidly here (in e−αt instead of e−2αt). This is confirmed by
the simulations, see Fig. 3.20(B). Once again, the heterogeneity of the fluo-
rescence among cells is unlikely to account for the observed increase of the
coefficient of variation.

Multiplicative noise

The experimental noise could be not only additive, but also multiplicative,
meaning that we could have :

Fluo(t) = a f η(t)N(t). (3.59)

With η(t) being a random variable, independent of N(t), with mean 1 and
standard deviation ση. This multiplicative modeling of the experimental
noise may sound stranger than the more common additive one, but it could
make sense if we think that the background in the fluorescent images had to
be divided and not subtracted to get the correct signal. We will also consider
that the noise is not correlated in time.

In this case, we simply have, by independence of N and η:

E (Fluo(t)) = a f E(N(t)), (3.60)

Var (Fluo(t)) = a2
f Var(N(t))σ2

η + a2
f Var(N(t)) + a2

f E(N(t))2σ2
η . (3.61)
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and for the coefficient of variation:

CV2
f luo = CV2

N + CV2
Nσ2

η + σ2
η . (3.62)

In this case, we can see that the measured coefficient of variation is indeed
increased when compared with the coefficient of variation of the population.
It could then be the explanation of the observed increase. But as we can see
on Fig. 3.20(C), this increase is very low and has another effect that we don’t
see at all in the experiments : it increases the dispersion of the obtained CV
around the theoretical value a lot. There are then few chances that this is the
correct explanation for what we see experimentally.

Heterogeneity of the droplet initial volume

Another source of experimental variability that we have not taken into ac-
count at all for now is the little heterogeneity that exists in the droplet initial
volume, as described in the previous chapter.

To recall, we will consider that the initial volume of the droplets follows a
Gaussian distribution, which implies that the number of cells in each droplet
follows a Poisson distribution, but with a Gaussian distribution of Poisson
parameters λ.

λ ∼ N (λ0, σλ) . (3.63)

To see how that impacts the droplet to droplet variability in exponential
phase, we will use the lemma of Appendix B.4, just as we did for the case
of the initial Poisson distribution, to recall we got the following equations
(eq. (3.22),(3.23)) :

E (N(t)) = MN(t)E (N0) , (3.64)

Var (N(t)) = SDN(t)2E (N0) + MN(t)2Var (N0) . (3.65)

The only difference with this simple Poisson case is that we don’t have
an exact Poisson law for N0 any more but instead a mixture of Poisson law
of normally distributed parameters. By using the law of total probability, we
get:

E (N0) = Eλ (E (N0|λ)) , (3.66)

and we know that N0 knowing λ is the restriction of a Poisson law to the
positive numbers (as we consider the droplet that contain bacteria), so:

E (N0) = Eλ

(
λ

1− e−λ

)
. (3.67)

The expression of this expected value is not that simple, as it depends on the
density of the Gaussian distribution of λ, we will just state the integral form
here, and then it can be computed numerically for a given set of parameters
(λ0, σλ):

Eλ

(
λ

1− e−λ

)
=
∫ ∞

−∞

λ

1− e−λ

e
− (λ−λ0)

2

2σ2
λ

σλ

√
2π

dλ. (3.68)
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Similarly, the expression of the variance of N0 can be obtained and com-
puted numerically:

Var (N0) = Eλ (Var (N0|λ)) + Varλ (E (N0|λ))

= Eλ

(
λ

1− e−λ

1− (λ + 1) e−λ

1− e−λ

)
+ Varλ

(
λ

1− e−λ

)
.

(3.69)

Now that we have the expressions of the expected value and variance of
N0, we can go back to the expression of the variance and expected value of
N(t) to find the square of the coefficient of variation, and we get :

CV2
λ0,σλ

=
1

E (N0)
CV2

BH +
Var (N0)

E (N0)
2 . (3.70)

We can study how this coefficient of variation varies with the variability
of the initial volume of the droplets, and the result is that the initial vari-
ability of the volume increases the coefficient of variation when compared
with a simple Poisson case (σλ = 0), but the relative increase is very low (see
Fig. 3.21). Even with quite high variations of the initial volume (σλ = 0.2λ0),
we still get a relative increase of only 1%. The heterogeneity of the volume of
the droplet thus have a very low impact on the coefficient of variation.

FIGURE 3.21: Theoretical effect of the heterogeneity of the vol-
ume of the droplets on the coefficient of variation of the num-
ber of cells in exponential phase, relatively to the case where

the Poisson parameter is fixed.
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3.4 Summary and conclusion

In summary, we showed first that the three models of bacterial growth (adder,
sizer, timer) were indistinguishable at the scale of the small populations that
grow in our droplets (from a few individuals to a few thousands). This is
not surprising since single-cell measurements were required to discriminate
between the three models [45]. Realizing this however allows us to develop
a theoretical description based on the Bellman-Harris model, which has the
advantage of providing several analytical predictions. The mean growth and
the variance in population size among droplets in which bacteria divide from
a single individual with a defined cell-to-cell variability can be predicted.
These predictions are extended here to account for additional sources of vari-
ability in the droplet experiments, including a variable number of cells per
droplet initially and a division time that varies with the generation num-
ber. The analytics are validated with Monte-Carlo simulations that show ex-
cellent agreement for the different parameters. This is, to our knowledge,
a quite new modeling approach, that takes into account both experimental
constrains and advanced stochastic results to quantify the distribution of the
number of bacteria exponentially growing in microfluidic droplets. Indeed,
if the analytic predictions of the Bellman-Harris model have already been
extensively studied numerically [78, 79, 80, 81], the comparison with exper-
imental data, in particular for the variance of the distribution of population
size, was lacking in the literature.

The four predictions of the expanded Bellman-Harris model where then
verified in our microfluidics experiments: (i) The exponential growth in each
droplet with a constant exponential growth rate; (ii) the exponential growth
of the mean, standard deviation, and higher moments of the cell number dis-
tribution, all with the same exponent; (iii) a constant value of the coefficient
of variation CVN of the population size that shows a strong dependence on
the model details; (iv) a self-similar shape of the distribution of number of
bacteria in all droplets. Although the value of the growth rate (3.14) is un-
modified compared with the classic Bellman-Harris model, recovering the
shape of the self-similar distribution and therefore the coefficient of variation
requires the full model presented in eqs. (3.45) and (3.46).

Our analysis shows that the effect of cell-to-cell variability on the distri-
bution of population sizes is dominated by other sources of randomness in
the experiments. This is quite intuitive, as these other sources of stochasticity
come into play at the beginning of the growth: the differences get amplified
by the exponential growth afterwards. This can be improved in the future by
reducing the uncertainty due to the variable division times (e.g. by synchro-
nising the cells initially) or from the Poisson distribution (e.g. by working at
smaller values of λ).

Because the effect of the cell-to-cell variability on the growth of popula-
tions is dominated by these external sources or randomness, it seems difficult
to infer the cell-to-cell variability from the population measurements. Both
a direct inference method using our results and a pseudo-likelihood method
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found in the literature [92] proved to be difficult to apply to our experimen-
tal system. In the following Chapter, we will try to develop a new inference
method to tackle this inverse problem.

More interestingly, however, the current results provide a baseline for
the expected behavior when the bacterial phenotype is normally distributed.
This baseline can then be compared with measurements of growth under
stress conditions or by looking at interactions between different strains in
order to detect departures from the normal behavior. This will enable mea-
surements of the heterogeneity of cellular response to external factors, with-
out the need to observe the cells individually.
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Chapter 4

Following individual trajectories:
the residuals

Des figures s’enchaînent mais des souvenirs m’enchaînent, gros
J’envoie des manchettes, wesh, l’armée des enfers rôde

VALD, Résidus

4.1 Introduction

In this chapter, we will develop a new method to infer the cell-to-cell variabil-
ity of division times from the measurement of the growth of small bacterial
populations in droplets. As we have already discussed in the introduction
of this thesis, this is interesting for several reasons. The growth variability
of bacteria is related to many other phenomena, such as the stochasticity in
gene expression [75] for instance, and this in turns creates phenotypic vari-
ability among genetically identical cells. This variability plays a key role in
many clinically important cases, such as biofilm formation [16], expression
of virulence factors during infections by pathogens [34]...

We have seen in the previous chapter that is was almost impossible to
infer this cell-to-cell variability of division times in exponential growth from
the study of the distribution of the number of cells per droplet at given obser-
vation times, because the shape of this distribution is mostly due to external
sources of variability, occurring at the early stages of the growth in microflu-
idic droplets, and not to the cell-to-cell biological variability.

A few methods exist in the literature to address this inference problem.
However, most of them are not suited for our experimental data. In partic-
ular, the methods based on a continuous observation [89, 90] of the lineage
tree can not be used here, as we only observe the droplets at discrete obser-
vation points. Moreover the whole tree is not observable in our case, we just
have access to the number of bacteria in each droplet. A method based on
pseudo-likelihood estimation [92], adapted to this observation pattern, was
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tested in the previous chapter, but could not be applied in our case, once
again because of the impact of the early stages of the growth.

We have then developed a new method, based on following the trajec-
tories of individual droplets in time, and analyzing the deviation from pure
exponential growth. Droplets are followed throughout the exponential phase
of growth, and this allows us to get rid of the deleterious influence of the ran-
domness at early times. In this chapter, we expose how this theoretical and
numerical method works, sketch its mathematical proof, and demonstrate its
efficiency on numerical simulations. We will then study its applicability in
our experimental case.

4.2 Evolution of the residuals with time

4.2.1 Idea and definition

The idea developed here is to follow the individual trajectories of the droplets
with time. By trajectory, we mean the number of cells as a function of time
N(t). Indeed, these trajectories are not purely exponential, as would be the
case in a simple deterministic growth model. The deviation from the pure ex-
ponential growth is due to the stochasticity of the division process and thus
is linked to the variability of the individual division times. To quantify this
deviation from the pure exponential growth, we are going to measure cer-
tain quantities that we will call the residuals of the trajectories. Our hope is
to be able to infer the individual variability of the division times from this
measurement of the residuals. As this measure relies only on the stochastic
evolution of the trajectory, we can intuitively think that it will not be im-
pacted by the events happening at the initial stages of the division process
that caused the inference to fail in the previous chapter, such as the initial
Poisson distribution or the different division times for the first generations.

The idea that we will implement to measure the residuals is the follow-
ing: for a given trajectory N(t), we can estimate the exponential growth rate
α by fitting the log of the curve with a straight line. Then, to measure the
residual at some time t, we will measure the difference between the value of
the trajectory at time t + ∆t and the expected value if the growth was purely
exponential, which is N(t)eα∆t, as we can see on Fig. 4.1. The value of the
residual at time t is then:

Res(t) = N(t + ∆t)− N(t)exp (α∆t) . (4.1)

In the experiments, we have a set of observation points for each trajectory:
{ti}i∈1..n, that are equally spaced in time, with ∆t = ti+1 − ti, and we will
define the residual at each observation point ti by:

Resi = Res(ti) = N(ti+1)− N(ti)exp (α∆t) . (4.2)
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FIGURE 4.1: [Left] Simulated example of a trajectory for one
droplet: number of cells N(t) as a function of time(blue), and
exponential fit (orange), in log scale. [Right] Zoom and defini-
tion of the residual of the trajectory at time t, for a given time
step ∆t. We first fit the growth rate α on the whole trajectory: it
is just the slope of the trajectory in log scale. Then, if the growth
was purely exponential, with rate α, from N(t), the value of the
trajectory in t + ∆t would be N(t) exp(α∆t). The residual is the
difference between this pure exponential growth and the actual

value of the trajectory in t + ∆t, which is N(t + ∆t).

4.2.2 Mathematical Properties

The residuals of the trajectories have two main properties, that we are going
to prove in this section for the simpler case of a Yule process (see defini-
tion below). The proof of the more complicated Bellman-Harris case will be
sketched, and the properties only checked on simulations. The two proper-
ties are the following:

1. The residuals are normally distributed, and centered around 0.

2. The variance increases exponentially with time, with rate α, and the
prefactor depends on the variability of the individual division times.

These two properties can be mathematically summarized as follows:

Resi ∼ N
(
0, f

(
cvµ

)
exp (αti)

)
. (4.3)

Note that the form of the function f is unknown for the moment, and will be
discussed in the next section.

Exponential division times: Markov case

Let us first prove those properties in the simpler case of a Yule process [143].
A Yule process is a particular case of the more general Bellman-Harris pro-
cess that we have described in the previous chapter. In this case, the division
times of the bacteria are not Gaussian. Instead, the division times are picked
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from an exponential distribution of density g(t) = aexp(−at), where a is a
positive number. This case is simpler because the Yule process verifies the
Markov property, which states that the process is memory-less: the prob-
ability for a bacteria to divide at time t does not depend on its age. This
hypothesis is not very biologically relevant, as we have seen in the previous
chapter, however it simplifies a lot the mathematical proof.

To study the residuals Res(t) = N(t + ∆t)− N(t)exp (α∆t), we are going
to re-write the number of bacteria at time t + ∆t as the sum of the number of
descendants of the N(t) bacteria that were present at time t:

N(t + ∆t) =
N(t)

∑
i=1

Xi,t,∆t, (4.4)

where Xi,t,∆t is the number of descendants of cell i at time t + ∆t, with i ∈
[1..N(t)]. Thanks to the independence of all cells, the random variables Xi,t,∆t
are all independent (branching property). And because we are in the Markov
case, they are all identically distributed, and independent of t: Xi,t,∆t = Xi,∆t.
Thus we have:

Res(t) =
N(t)

∑
i=1

(
Xi,∆t − eα∆t

)
, (4.5)

which can be re-written as:

Res(t)√
N(t)

=
1√
N(t)

N(t)

∑
i=1

(
Xi,∆t − eα∆t

)
. (4.6)

Where Xi,∆t − eα∆t are independent, and identically distributed. We can
then apply the Central Limit Theorem. This well-known theorem of stochas-
tic calculus states that, if (Yi) is a sequence of independent and identically
distributed random variables, then with E(Yi) = µ and Var(Yi) = σ2, then
the random variable defined as:

Sn =
1√
n

n

∑
i=1

(Yi − µ), (4.7)

converges in distribution as n goes to infinity to a Gaussian variable of vari-
ance σ2. The definition of the convergence in distribution can be found in
Appendix B.3. We will note this as:

Sn
d−−−→

n→∞
N
(

0, σ2
)

. (4.8)

We can then come back to our case, and apply the Central Limit Theorem
for Yi = Xi,∆t − eα∆t. By definition of the growth rate α, we have E(Yi) = 0.
We get:

1√
n

n

∑
i=1

(
Xi,∆t − eα∆t

)
d−−−→

n→∞
N
(

0, Var
(

X∆t − eα∆t
))

. (4.9)
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We are almost done with the demonstration. The only remaining issue is
that for the computation of the residual at time t (eq. (4.6)), the number of
terms in the sum is itself a random variable N(t), and not any natural integer
n as in the statement of the Central Limit Theorem. However, as N(t) goes to
infinity when t goes to infinity, and N(t) is independent of Xi,∆t, we can show
that the result of the Central Limit Theorem is conserved, see lemma B.4 in
Appendix. We can then conclude that:

Res(t)√
N(t)

d−−→
t→∞

N
(

0, Var
(

X∆t − eα∆t
))

. (4.10)

We can see here that the residuals are Gaussian, not exactly for a fixed
time, but if we fix the number of cells N at which they are observed. We will
see on the simulations, for the non-Markov case, that even for a fixed time t,
they are close to being normally distributed.

In this Markovian case, the distribution of N(t) is completely known [143]:
it is a geometrical law of parameter exp(−αt). We can then have an explicit
expression of the right-side variance of the equation below:

Var
(

X∆t − eα∆t
)
=

1− e−α∆t

e−2α∆t . (4.11)

And we see that it is linked to the variance of the individual division
times, which is in this case 1/α2.

Gaussian division times

For the non Markov case, the proof is much more difficult, because the age of
the cells at time t influences the number of daughter cells that they produce
at time t + ∆t. We are just going to sketch here how the proof could be done,
and check on the simulations that these properties are conserved in the full
Bellmann-Harris model.

To prove these properties in the non-Markov case, we would have to work
with the age structure of the population.

Let (Ai)i∈[1,N(t)] be the ages of the N(t) cells at time t. It can be shown
that the age distribution is stationary at long times [144]. The ages are also
almost independent, as two sister cells of course have correlated ages, but the
probability to pick up two sister cells (or even closely related cells) decreases
very fast because of the exponential increase of the population size. Thus, we
also almost recover the independence and identical distribution, and:

Res(t) =
√

N(t)
1√
N(t)

N(t)

∑
i=1

[
Xi,t,∆t − hieα∆t

]
. (4.12)

Here hi depends on the age of the parent cell i. By conditioning on the ages,
we still obtain a sum of independent and centered variables on the right side
of the equation, and we can still apply a form of the Central Limit Theorem.
The key is that the variance of the right-side terms is a function of the ages,
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which are distributed following a stationary distribution. The problem is
much more complicated as we have to condition on the ages, which are con-
tinuous. We would then have to work in infinite dimension to recover a kind
of Markov property applying to the ages, but this is beyond our mathemati-
cal capabilities. In the end, we still obtain the same shape and time-evolution
of the residuals.
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FIGURE 4.2: Simulation: [A] Distribution of the residuals for
different times ti, with Gaussian fit in red. The stars indicate a
p-value p < 0.05 in the Kolmogorov-Smirnov test for normal-
ity. [B] Mean of the residuals as a function of time. [C] Variance
of the residuals as a function of time, in log scale. The black
dashed line has a slope α. The simulation is the one already de-
scribed in the previous chapter, for the full E. coli experimental

parameters and λ = 0.75 (1000 traps).

We can check that these properties are verified on the Bellman-Harris sim-
ulations, directly on a full simulation of the growth of E. coli, with an initial
Poisson distribution (λ = 0.75) and the division times changing with the
generation, as measured in the previous chapter. The results are presented
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on Fig. 4.2. As we can see, the residuals are rapidly (after ≈ 100 min) very
close to being normally distributed when t is fixed (this is confirmed, for
t ≥ 147 min, by a Kolmogorov-smirnov test [133]), and their mean remains
close to 0. Their variance, on the other hand, evolves exponentially with a
rate equal to the growth rate of the population α.

4.2.3 Choosing ∆t

Synchronicity

Now that we know that the residuals are normally distributed, and that their
variance increases exponentially with rate α, we can begin to study the pref-
actor function f in front of the exponential, which encompasses the depen-
dence of the residuals on the individual division times of the bacteria. We
will do so by computing the residuals of simulated growth experiments, that
were already described in the previous chapter (Bellman-Harris model with
truncated Gaussian laws for the division times of the bacteria). We have to
keep in mind that what we want is to be able to infer the variability of the
individual division times from the measurement of the residuals. Thus we
would like this function f to be very dependent on the variability of the di-
vision times of the bacteria cvµ. Moreover, it would be make sense for f to be
an increasing function of cvµ, as the more individual variability there is, the
more widely spread the residuals should be.

However, these two requirements are not that easy to fulfill. Indeed, the
choice of the parameter ∆t is critical for f to have the desired properties. To
understand this, let us take a look at the example presented on Fig. 4.3.

t1

Δt1

Δt2

FIGURE 4.3: Simulated trajectories N(t) (plain blue), for two
values of cvµ, with exponential fit (dashed orange): [Left] cvµ =
0.05, [Right] cvµ = 0.25. We see that if ∆t = ∆t1, the value of the
residuals can be quite big for the smaller value of cvµ, whereas

if ∆t = ∆t2, the residuals will be much smaller.

Two simulated trajectories are presented here, with cvµ that is the only
difference in between them. Comparing these two graphs shows that the
trajectory with the smallest cvµ deviates in fact more from the exponential
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fit then the one with the bigger individual variability. This is due to a syn-
chronicity effect: as the variability of division times is very low, all the cells
divide more or less at the same time. A bad choice of ∆t can then lead to a
very big value for the residual, as shown in red on the graph. To avoid this,
we can see that the only possibility is to take a time step ∆t that is equal to a
multiple of the period of synchronicity of the cells, as for instance ∆t2 on the
graph. This period is of course the mean division time of the cells τ0, which
can be approximated by τ0 ≈ log(2)/α, see Chapter 3.

To check these intuitive guesses, we can compare the variance of the resid-
uals on different Bellman-Harris simulations, with the same τ0 but varying
cvµ, for two values of the time step ∆t. If we take a time step that is equal
to τ0, the variance of the residuals are straight lines with a slope close to
α ≈ log(2)/τ0, and the bigger cvµ, the bigger the variance of the residuals
(Fig. 4.4[B]). At the opposite, if we take a different time step, for instance
here ∆t = τ0/2, we get completely different results (Fig. 4.4[A]). For small
cvµ, because of the synchronicity problems, the slope of the variance of the
residuals is not equal to α any more. For larger cvµ, the variance of the resid-
uals is not very sensitive to cvµ, which is not good for the inference problem.
Moreover, the variance of the residuals is bigger for small cvµ, which is not
intuitive at first sight, and is also not good for the backwards inference.

FIGURE 4.4: Variance of the residuals (log scale) for two values
of the time step ∆t, ∆t = τ0/2 [Left] and ∆t = τ0 [Right], and
varying cvµ ∈ [0.05, 0.4]. The parameters for the simulation are
τ0 = 21 min, 2000 droplets in each simulation, N0 = 1. The

black dashed line indicates the slope α = log(2)/τ0.

As the variance of the residuals evolves with time with an exponential
rate α, the ratio of this variance to the mean number of cells 〈N〉 is a constant,
and this ratio is directly linked to the variability of the division times of the
cells. If we choose a good ∆t, as explained above, this ratio evolves almost
linearly with cvµ, see Fig. 4.5[A], which makes it a very good candidate as
the quantity to use for the inference of cvµ.

Another question that arises from this choice is how close to τ0 do we
have to choose ∆t if we want the inference to work ? The answer can be
read on Fig. 4.5[A], where ∆t was varied around the value τ0. For small
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values of cvµ < 0.15, the inference does not work any more as soon as ∆t is
different from τ0. This is due once again to the synchronicity of the cells for
those small variability values. However, those values are quite unlikely to
happen in the experiments, see Chapter 3, Fig. 3.13. For the values that we
expect (cvµ > 0.15), the inference is still possible even if we approximate τ0
by ±5%, which is a precision that we can achieve in the experiments. This
method of inference seems therefore to be promising.

FIGURE 4.5: Mean of the ratio of the Variance of the residuals
to the mean number of cells. [A] Varying the time step for the
residuals ∆t. [B] Comparison between the simple evaluation of
the residuals (eq. (4.2), with ∆t = τ0) and the under-sampled

evaluation (eq. (4.13), with ∆t = 0.25τ0, k = 3)

Changing the Sampling Rate

However, in the experiments the minimum interval between two observa-
tions is set by the scanning speed of the microscope. For a typical experiment,
we have ∆t = 5 min, and the mean division time of E. coli is around 21 min.
We could of course increase the time interval between two observations to
this value, but then we would have very few observations in the exponential
phase for each droplet, as we are limited by the detection threshold at the
beginning and the saturation at the end.

The simplest solution to still get a nice inference curve is the following: we
keep the time interval between two points at its lowest experimental value
in order to get as many observations as we can, but we slightly change the
computation of the residuals. Instead of computing the residual between ti
and ti+1, we are going to compute the residual between ti and ti+k, such that
k∆t ≈ τ0. For our example with E. coli for instance, we will set k = 4, and
thus the effective time interval in the residuals will be 20 min, which is close
to the estimated value of τ0. The exact formula for the residual is then:

Resi = N(ti+k)− N(ti)exp (αk∆t) . (4.13)

We can see on Fig. 4.5 that this does not change the shape of the inference
curve, and thus this is the method that we are going to use for the rest of this
section.
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At this point, we have proven that the residuals are Gaussian and that
their variance increases exponentially with the same growth rate as the pop-
ulation. We have also seen on the simulations that if we want this variance
to depend nicely on the microscopic variability of division times, we had to
choose a time step close to τ0, or to change the sampling rate of the residuals
such that k∆t ≈ τ0. We can now go back to the experiments.

4.3 Experimental residuals

4.3.1 A slope problem

Let us now examine the residuals in the experiments. If the fluorescence sig-
nal that we measure is proportional to the number of cells in the droplet,
it is easy to see that the residuals of this fluorescent signal are also propor-
tional to the residuals in terms of number of cells. They should then display a
Gaussian and centered distribution as well, and their variance should evolve
exponentially with the same growth rate as the mean of the fluorescence.

To compute these residuals, we have to be sure though that we are in the
exponential phase in the droplet. We will apply for this the same method
as in Chapter 2. The detection and saturation threshold are set manually
and once and for all for all the droplets. Then, for each of them, only the
points in between those limits are taken into account for the computation of
the residuals. For each observation point ti, the distribution of the residuals
encompasses only the droplets that are in exponential phase. As we can see
on Fig. 4.6, this distribution is close to a Gaussian, as expected. It deviates a
little bit from the distribution towards the end of the considered time points,
probably because the effect of the saturation can already be observed. It can
also explain why the center of the distribution changes from zero to negative
values at the end: the growth rate is slightly over-estimated, and the residuals
become negative.

If we now look at the variance of those experimental residuals, it seems
indeed to evolve exponentially with time (see Fig 4.7, top line). However,
if we re-normalize this variance by the mean of the fluorescence, we don’t
obtain a constant value as expected, but a time decrease(Fig 4.7, bottom line):
the exponential rate of growth of the variance of the experimental residu-
als is lower than the one expected with the theory and simulations. This is
reproducible for several monitoring conditions and the two bacterial strains
that we have studied (see the three different plot in Fig. 4.7). There is then no
chance of inferring the variability of division times with those experimental
data as such, and we will try to understand why the variance growth rate is
low in the next section.

4.3.2 Residuals and noise

The first source of error that comes to mind when we try to account for a devi-
ation of the experimental residuals from the theory is the experimental noise.
The detailed computations for different kinds of measurement noise can be
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FIGURE 4.6: Histogram of the residuals, in a typical experiment
(same as Chapter 2, E. coli in droplets of LB medium), at differ-
ent time points, with a time step such that k∆t ≈ τ0 (k = 4),
with Gaussian fit (red). The stars indicate a p-value p < 0.05 in

the Kolmogorov-Smirnov test for normality.

found in Appendix D. To summarize, the existence of an experimental noise
does affect the residuals. However, it does not account for the slope decrease
that we have mentioned. Indeed, if we take into account the heterogeneity
of the fluorescence, we find that the variance of the residuals is increased by
a constant factor, but its rate of growth is unchanged. If we consider an ad-
ditive noise, the exponential rate of growth of the variance of the residuals
is indeed lowered for a specific time-window that could match the one of
the experiments. However, the fact that the decrease in the exponential rate
of growth of the variance is reproducible for different bacterial strains and
settings of the camera makes us doubt that an additive noise could be re-
sponsible. Moreover, the measurement noise was found to be multiplicative
in Chapter 2. Finally, a multiplicative noise increases the exponential rate of
growth of the variance instead of decreasing it.

We then have to try to find another reason to account for the deviation of
the variance of the experimental residuals from the theory mentioned in the
previous paragraph.
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FIGURE 4.7: Variance of the residuals for three independent
growth experiments on chip. Experimental conditions: [A] E.
coli in LB (same experiment as Chapter 2), [B] same strain, same
medium, but different settings of the camera [C] B. subtilis in
LB (same experiment as in 3). Top line: Variance of the experi-
mental residuals (log scale,blue) as function of time, with linear
fit in orange. Bottom line: same, but divided by the mean of the

fluorescence signal.

4.3.3 Experimental sampling

If the noise or the heterogeneity of the fluorescence are not enough to explain
the behavior of the experimental residuals, there is something else that dif-
fers from the simulations in the experiments: the way we sample the data.
Indeed, in the experiments, at each observation time ti, we consider only the
droplets that are in exponential phase. The droplets are considered to be
in exponential phase if and only if Fluo(ti) is between the limits of detection
and saturation, which are set once and for all for every droplet. We can do the
same thing in the simulations, setting for instance N = 100 and N = 2500 as
the lower and upper limits for the computation of the residuals (Fig. 4.8[A]).
The residuals seem to behave very closely to what happens in the experi-
ments: they are still close to being Gaussian (Fig. 4.8[B]), and their variance
increases exponentially with time (Fig. 4.8[C]), but its rate of growth is lower
than the growth rate of the bacteria, which causes the ratio of the variance of
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the residuals to the mean number of cells to be time-decreasing (Fig. 4.8[D]).
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FIGURE 4.8: Residuals in a simulation of E. coli (same as
Fig. 4.2) when we set fake limits for the detection and satura-
tion, to mimic the experimental situation. [A] Growth curves
as a function of time, in log scale, with the lower and upper
limit in black. [B] Histograms of the residuals, with Gaussian
fits, for several time points. [C] Variance of the residuals (log
scale,blue) as function of time, with linear fit in orange. [D]
Variance of the residuals divided by the mean number of cells
as a function of time, in log scale. This ratio decreases with time

instead of being constant.

Thus just by sampling the simulated data like we do in the experiments,
we can see that this sampling causes the variance of the residuals to deviate
from the theory. However, we cannot completely remove this sampling in
the experimental part, because we have to study only the droplets in the
exponential phase. We are going to see in the next section a method to keep
the sampling but recover the correct exponential growth of the variance.
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4.4 Binning the residuals by the number of cells

4.4.1 Definition, numerical results and inference method

Idea and definition

The sampling of the exponential data causes the variance of the residuals to
be underestimated if we look at the time-distribution of the residuals. This is
indeed intuitive, because the sampling truncates the distribution for a fixed
t. Let us take the example of Fig. 4.8[A], and consider only the growth curves
in between the two black lines. If we look at the distribution of the residuals
for t ≈ 150 min, only some of the trajectories will be taken into account, and
this can reduce the rate of growth of the variance when compared with the
theory.

The idea in this part is then to stop working on time-distribution of the
residuals, but rather to bin the residuals by the value of N. Then, as the
selection of the exponential phase is based on the value of N as well, the
distribution of the residuals for a fixed N will be unaffected by this selection.
To go back to the example, if you consider horizontal slices of the curves on
Fig. 4.8[A] between the two black lines, all the curves are taken into account
for all the slices.

The principle is then the following: if we set Ndet and Nsat as the detection
and saturation limits, respectively, we are going to choose a finite sequence
(Nj) such that:

∪j
[
Nj, Nj+1

[
= [Ndet, Nsat[ . (4.14)

Then, for every observation time ti, and every trajectory Nk(t), there ex-
ists a unique j such that:

Nk(ti) ∈
[
Nj, Nj+1

[
. (4.15)

t

N

N1=Ndet

Nb=Nsat

ti

Nj

Nj+1
Nk(ti)

FIGURE 4.9: Schematic definition of the principle for binning
the residuals. The limits for the detection Ndet and the satu-
ration Nsat are set once and for all for all the droplets. In be-
tween these two limits, we set bins

[
Nj, Nj+1

[
such that ev-

ery observed point of every trajectory can be indexed in one
of those bins.
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We can define, for every trajectory Nk(t), the instantaneous growth rate:

αk
j =

1
∆t

log

(
Nk (ti+1)

Nk (ti)

)
. (4.16)

We are mainly going to study the mean of those instantaneous growth
rates for all the bins, that we will note αj:

αj = 〈αk
j 〉k. (4.17)

According to Bellman and Harris [76], we should have αk
j ∼ α in expo-

nential phase.
The other quantity that we are going to study is the residuals, as defined

by eq. (4.2), and we will index them by j as well:

Resk
j = Nk(ti+1)− Nk(ti)exp (α∆t) . (4.18)

All the properties that we have shown for the residuals in time still hold
for the residuals binned by the number of cells. In fact, the mathematical
proofs are even more straightforward, as eq. (4.10) gives us directly that for
a fixed N, the residuals are Gaussian and their variance increases as N, with
a prefactor depending on the variability of division times.

As a consequence, if we look at the mean:

Resj = 〈Resk
j 〉k, (4.19)

we should have Resj ≈ 0 in exponential phase.
We will note Var (Res)j the variance of the residuals in the j− th bin:

Var (Res)j = Var
(

Resk
j

)
. (4.20)

We have, for j such that we are in exponential growth,

Var (Res)j ∼ Nj f (cvµ). (4.21)

where f is an unknown function of the microscopic coefficient of variation
cvµ. In particular, we see that if we rescale the variance of each bin by com-
puting the ratio Var (Res)j /Nj, we get a quantity that is constant over the
bins and depends only on the microscopic coefficient of variation. This is
what we will use for inference.

Numerical results

To match the exponential growth of the number of bacteria, we will choose
logarithmically spaced bins. We can go back to the numerical example of the
last section to check the properties that we have just listed.
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The results are plotted on Fig. 4.10. First of all, the instantaneous growth
rate Fig. 4.10[A] does converge to a constant value, but it is slightly lower
than the one expected by the theory of Bellman and Harris. This is due to the
numerical error in the simulation, and the error is below 2%. As we can see
on Fig. 4.10[B], the binned residuals are Gaussian, and their mean is close to
zero (Fig. 4.10[C]). If we look at the variance as a function of the N-bin value
(Fig. 4.10[D]), we do obtain a straight line with the desired slope, which is 1.

[B]

* *

**

FIGURE 4.10: Residuals in a simulation of E. coli (same as
Fig. 4.2), binned by N. We have here 20 bins, logarithmically
spaced between Ndet = 100 and Nsat = 2500. [A] Mean In-
stantaneous Growth Rate, with the Belmman-Harris theoretical
value (orange, see chapter 3) and the growth rate of the sim-
ulated mean. [B] Histograms of the residuals for 4 bins, with
Gaussian fit (red). The stars indicate a p-value p < 0.05 in the
Kolmogorov-Smirnov test for normality. [C] Residuals in each
bin and their mean as a function of Nj (log scale for Nj). [D]
Variance of the residuals (log scale,blue) as function of Nj, with

a black line indicating the slope 1 (log-log scale).

Hence, we have recovered the theoretical rate of growth of the variance,
even with a sampling of the trajectories between a detection and saturation
limit. We can check now that this variance is still suitable for inference of the
variability of the individual division times: we want the variance to depend
strongly on the variability on the division times, as on Fig. 4.3. The results
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are plotted on Fig. 4.11. On the left-side graph, we can see that the variance
mostly behaves as predicted, except for very low cvµ. This is due once again
to the synchronicity of the cells in those cases, and we are not going to focus
on them as they are not likely to happen in real experiments with bacteria
(see Fig. 3.13). If we focus on cvµ ≥ 0.15, then the variance of the residuals
of each bin behaves as predicted (Var (Res)j ∝ Nj). We can rescale the vari-
ance by dividing it it by the bin value Nj, and we obtain a ratio that does not
depend on j any more. The value of this rescaled variance strongly depends
on the microscopic coefficient of variation cvµ, which gives us a nice curve
to infer cvµ from the computed variance of the residuals (Fig. 4.11[B]). This
inference curve, contrary to what we obtained in the previous Chapter, is al-
most insensitive to the initial conditions (Poisson distribution, different first
generation). It is then a very good candidate for the inference of cvµ in our
experimental conditions.
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FIGURE 4.11: Variance of the residuals binned by N, when
varying cvµ: same simulations as on Fig. 4.3, with 30 bins loga-
rithmically spaced between Ndet = 10 and Nsat = 10000. [A]
Variance of each bin as a function of the bin value (log-log
scale). The black dotted line indicates the line y = x. [B] Mean
value of Var (Res)j /Nj as a function of the microscopic coef-
ficient of variation cvµ, for cvµ ∈ [0.15, 0.4], for the Bellman-
Harris classical case (blue circles), and adding a Poisson distri-
bution (orange stars), a different first generation-time (yellow

diamonds) or both (purple squares)

Summary of the inference method

If we sum up what we have obtained until now, we can describe an inference
method for the microscopic variability of the division times based on the
residuals, for given observation points ti spaced by ∆t:

1. Define for all curves a detection and saturation limit Ndet and Nsat.

2. Fit all curves in the exponential phase to get the growth rate α, and thus
an approximate value of τ0 ≈ log(2)

α .
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3. Use this value of τ0 to determine how to evaluate the residuals, choos-
ing k such that k∆t ≈ τ0.

4. Compute the residuals at each time point.

5. Choose a finite sequence
(

Nj
)

that covers [Ndet, Nsat[ and bin the resid-
uals of all the trajectories.

6. Compute the variance of the binned residuals, divide it by the value of
the bin to rescale it and take the mean of this ratio across the bins.

7. Read on the inference curve Fig. 4.11[B] the value of cvµ .

For this last point, we can use a linear approximation of the relation be-
tween the ratio and the microscopic cvµ. If we fit the curves of Fig. 4.11[B]
with a linear curve, we obtain the equation:

y = 1.6x + 0.02, (4.22)

with an excellent r2 = 0.99. We can use then this relation for the inference.

An example

We can very easily apply this, for instance, to the full simulation of the E.
coli growth used on the previous figure 4.2.

We set Ndet = 100 and Nsat = 2500. Then we fit the trajectories between
these two limits to obtain α ≈ 0.033min−1 (yellow line on Fig. 4.2[B]), which
gives us τ0 ≈ 20.8 min.

To mimic the experiments, we set ∆t = 5 min. Then to have k∆t ≈ τ0, we
choose k = 4.

We compute the residuals, bin them in 20 N-bins, and if we compute the
mean ratio of the variance to Nj (rescaled variance), we obtain

〈
Var (Res)j

Nj
〉j ≈ 0.295 (4.23)

Which gives us, using Fig. 4.11[B]:

cvµ ≈ 0.17. (4.24)

We used in the simulations was cvµ = 3.9/21 ≈ 0.185, so our inference
method works very well, with an error of ≈ 7%.

We can also try to estimate the confidence interval for the estimation that
we just made. The only parameter that we used for the estimation was finally
the ratio of the variance of the residuals in each bin divided by the bin value
Nj, which we call the rescaled variance of the residuals. The estimation was
made using the mean value of this parameter, which is theoretically constant.
Hence a confidence interval can be found by looking at how this rescaled
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variance varies across the bins. Let us compute the standard deviation of this
ratio over the bins, we get:

∆j

(
Var (Res)j

Nj

)
≈ 0.019, (4.25)

where ∆ is the standard deviation. This yields a precision on the microscopic
coefficient of variation of, using the approximated linear inference relation:

∆cvµ

cvµ
≈ 2%. (4.26)

The confidence interval of the inference is then very narrow.

Convergence to the solution

A question that arises when studying this example is the speed of conver-
gence to the final result: how many simulated trajectories do we need to get
the correct estimation of cvµ ? To answer this question, we vary the number
of parallel growth trajectories that we take into account for the inference. By
analogy with the experimental case, in which each trajectory corresponds to
a droplet in a trap of the microfluidic array, we will use the word "trap" for a
trajectory. We will then vary the number of traps (Ntraps) taken into account
for the inference, from 10 traps to the full simulation (Ntraps = 1000).

The more traps are taken into account, the more the ratio of the variance
of the residuals to the number of cells is close to a constant, see Fig. 4.12[A].

There are then two quantities to study to see how accurate our inference
is. The first one is the error made when we estimate cvµ with fewer traps:
how much does the estimated value deviate from the correct value of cvµ?
The second one is the confidence interval of this estimation: what is the range
in which this estimated cvµ lies ?

First, let us study the relative error made on the estimated cvµ, which
compares the cvµ estimated with Ntraps to the cvµ estimated with the full
simulation (Ntraps = 1000):

ε(cvµ)

cvµ
(Ntraps) =

cvµ(Ntraps)− cvµ(1000)
cvµ(1000)

. (4.27)

The results are presented on Fig. 4.12[B], and it seems that with only 100
traps, we could get a correct estimation of cvµ, since the relative error drops
below 10% for Ntraps > 100, which is already a good accuracy.

However, the relative error is not the only parameter to take into account:
the precision of the inference also depends on the confidence interval that
we have for this estimated cvµ, as we vary the number of traps taken into
account for the inference. As we have seen on Fig. 4.12[A], if we don’t have
a lot of traps, the ratio of the variance of the residuals to the bin value is not
really a constant, and the confidence interval of the estimation is quite wide.
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FIGURE 4.12: Influence of the number of simulations (Ntraps)
on the inference of cvµ. [A] Variance of the residuals divided
by Nj for 5 different number of traps. [B] Relative error made
when estimating cvµ as a function of the number of traps taken
into account for the inference (x-log scale). [C] Relative confi-
dence interval on the estimated cvµ as a function of the number
of traps taken into account for the inference (log-log scale), with
linear fit. The slope of the fit is ≈ −0.5. [D] Estimated cvµ as a
function of the number of traps taken into account for the infer-
ence, with error bars corresponding to the confidence interval

of plot [C] (x-log scale)

We will quantify this confidence interval as the standard deviation of this
ratio over the bins:

∆cvµ

cvµ
= ∆

(
Var (Res)j

Nj

)
1

〈Var(Res)j
Nj
〉j

. (4.28)

The symbol ∆ is here used to note the standard deviation. If we accept the
linear inference relation (4.22), the confidence interval that we have on cvµ is
indeed directly related to the confidence interval that we have on the ratio
of the variance of the residuals to Nj, which is how much this ratio remains
constant across the bins.

This confidence interval seems to decrease as 1/
√

Ntraps(see Fig. 4.12[C]),
which is a quite slow decrease with Ntraps, and this forces us to increase the
number of traps way above 100 to have a trustworthy estimation.

This appears even more clearly when we gather these last two results
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on the same graph (Fig. 4.12[D]). We can see that we rapidly get a correct
estimation of the value of cvµ, but if we want this estimation to be reliable,
we really have to get to high values of Ntraps, at least above 500. This is
why we keep the number of traps as high as ≈ 1000 in the experiments,
knowing that this confidence interval will probably be widened because of
the experimental noise.

Now let us try to see if we can apply this method to the experiments.

4.4.2 Back to the experiments

The method of inference has been designed to be directly applicable for our
microfluidic experiments, using the fluorescence instead of the number of
cells N(t). We can in the same way define a finite sequence

(
Fluoj

)
j such

that:
∪j
[
Fluoj, Fluoj+1

[
= [Fluodet, Fluosat[ . (4.29)

Then for every fluorescence trajectory Fluok(t) and for every observation
time ti, there exist a unique j such that:

Fluok(ti) ∈
[
Fluoj, Fluoj+1

[
. (4.30)

Instantaneous Growth Rate

One of the main differences between our experiments and the simulations is
the existence of a real detection threshold at the beginning of the trajectory,
and a saturation limit and the end. This is taken into account by our infer-
ence method, which allows us to set these limits and infer on the exponential
phase. But even in the exponential phase, the experimental trajectories are
not pure exponential, or only for a very short time. This can be seen by plot-
ting the instantaneous growth rates of all the trajectories as a function of the
bin value (see Fig. 4.13[A]). It remains constant only for a very small number
of bins, that are in the middle of the exponential phase. As a consequence,
the α that we use in the formula of the residuals is not well-estimated, espe-
cially at the end of the exponential phase, and the residuals are not centered
around zero, but rather negative (see Fig. 4.13[B]).

Corrected residuals

To solve this problem, we will slightly change the way that we compute the
residuals. Instead of using α, we will use the mean of the instantaneous
growth rates of the j− th bin:

Resk
j = Fluok(ti+1)− Fluok(ti) exp(αj∆t). (4.31)

The experimental residuals computed with this correction are centered
around zero (Fig. 4.14[A]). They are almost Gaussian (Fig. 4.14[B]). Their vari-
ance plotted as a function of Fluoj increases with a slope 1 (Fig. 4.14[C]), as
expected theoretically, but only for a small number of bins. This is confirmed
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FIGURE 4.13: [A] Instantaneous growth rate in an E. coli
growth experiment in droplets (same as in Chapter 3), binned
by fluorescence value, with mean of each bin (dark bold line).
[B] Residuals in the same experiment, binned by fluorescence

value, with mean of each bin (dark bold line)

if we plot directly the ratio of the variance over Fluoj, we obtain an approx-
imately constant ratio in the middle of the exponential phase (Fig. 4.14[D]).
Indeed for the 6 bins in between Fluo f = −2.43 and Fluoj = −1.36, we get:

∆

(
Var

(
ResFluo)

Fluo

)
≈ 0.053〈

Var
(

ResFluo)
Fluo

〉j. (4.32)

Which allows us to say that this ratio is approximately constant for the
considered fluorescence values. Note that this accuracy is comparable to the
one we had in the simulations (eq. (4.25)), where we had an accuracy of≈ 6%.

What about the inference ?

At this point, we have been able to compute experimental residuals that be-
have in agreement with the classical branching theory. So we can in principle
use them to infer the microscopic variability of division times. But a problem
remains: the residuals that we have computed are computed on the fluores-
cence value and not directly on the number of cells in the droplets.

If we consider that the fluorescence is exactly proportional to the number
of cells, we have:

Fluo(t) = a f N(t). (4.33)

It is easy to see with eq. (4.2) that the residuals computed on the fluores-
cence are proportional to the residuals computed on the number of cells:

ResFluo(t) = a f ResN(t). (4.34)
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FIGURE 4.14: [A] Residuals obtained by eq. (4.31) in a typical
E. coli experiment (same as previously), binned by the fluo-
rescence value, with mean value for each bin (dark bold line).
[B] Histograms of the residuals for 6 bins, with Gaussian fit
(red). The stars indicate a p-value p < 0.05 in the Kolmogorov-
Smirnov test for normality. [C] Variance of the residuals in each
bin. The dark line indicates a slope 1. [D] Variance of the resid-

uals in each bin divided by the fluorescence value of the bin.

Then if we compute the ratio of variance to the fluorescence, we get the
same proportionality:

Var
(

ResFluo)
Fluo

= a f
Var (ResN)

N
. (4.35)

Therefore, if we want to use the residuals that we have computed to read
the value of cvµ on the curve of Fig. 4.11[B], we have to know precisely the
value of a f . Unfortunately, as we have seen in Chapter 2, it is very difficult
to accurately estimate the value of a f .

If we use for instance the value that we have inferred using the Bellman-
Harris model, we have a f ≈ 7 · 10−4. If we compute the mean ratio of the
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variance of the residuals to the fluorescence in the experiments, we get:

Var
(

ResFluo)
Fluo

≈ 1.1 · 10−3. (4.36)

Thus, we get the following estimation for the rescaled variance of the resid-
uals:

Var (ResN)

N
≈ 1.57 (4.37)

This value obtained from the experiment is completely out of range if we
want to use the inference relation of Fig. 4.11[B]. In fact, we have a factor 10
here between the rescaled variance of the residuals in the experiments and
the estimated variance in the simulations.

Of course, the difference is not only due to the fluorescence coefficient
a f . The heterogeneity of the fluorescence signal of the cells could also play a
role, as we have seen that it artificially increased the variance of the residuals
measured in fluorescence. Indeed, according to eq. (D.26) of Appendix C, it
would lead us to decrease the rescaled variance by the quantity:

Var (ResN)

N
=

1
a f

Var
(

ResFluo)
Fluo

−
σ2

f

a2
f

ekα∆t
(

ekα∆t + 1
)

. (4.38)

If we want to estimate this, we can use the estimation of the heterogeneity
of the fluorescence made in Chapter 2, which yielded

σf
a f
≈ 0.2. As here we

have chosen k such that k∆t ≈ τ0, which implies ekα∆t ≈ 2, we get:

σ2
f

a2
f

ekα∆t
(

ekα∆t + 1
)
≈ 0.24 (4.39)

As we have previously estimated the first term of eq. (4.38) to be ≈ 1.57, we
can see that the contribution of the heterogeneity of the fluorescence is not
negligible.

But the main problem remains to accurately measure the coefficient of
proportionality between the measured fluorescence of a droplet and the num-
ber of cells in this droplet. It prevents us from using our inference method
based on following the individual trajectories of the droplets to get an abso-
lute measurement of the microscopic coefficient of variation of the individ-
ual division times cvµ. However, this method could still be used to measure
the relative difference in between two growth conditions: for instance, how
does the use of an antibiotic at sub-lethal concentrations changes cvµ ? The
problem though remains that one has to be sure that a f is not affected by
the change of growth condition, which makes the antibiotic example evoked
here a little unrealistic, but other biological questions could maybe take ad-
vantage of this relative measurement.

The theoretical and numerical framework could also be used in other sit-
uations, in which the relation between the observable quantity (fluorescence,
optical density [145]...) and the number of cells is better controlled. It is not
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specific to our microfluidic system, although it requires to have a lot of ob-
servations of parallel bacterial growth.

4.5 Summary and Conclusion

We have developed in this chapter a novel theoretical and numerical frame-
work for the inference of the cell-to-cell variability of division times from the
growth curves of populations. This inference method is based on following
individual growth trajectories: the stochasticity of the individual division
times makes them deviate from a pure exponential growth, and this devia-
tion can be quantified through quantities that we have called the residuals.
The variance of these residuals can be linked back to the individual vari-
ability of division times, and thus used for inference. This inference method
allows us to free ourselves from the experimental constrains that caused in-
ference methods based on measurements of the distribution of number of
cells in the droplets to fail in the previous chapter, in particular the initial
stochasticity in the number of cells per droplet and the generation depen-
dent division times in the early stages of the growth.

The analysis carried out in this chapter showed also that one has to be
quite careful if she wants to apply this theoretical framework to experimen-
tal data. The way that experimental data are sampled, in particular, plays
a great role. But this can be solved by correctly binning the experimental
data, and we have proven our inference method to be successful to recover
the cell-to-cell variability in a simulation of bacterial growth that mimicked
our experimental constrains. We also quantified how the experimental noise
could impact the measurement of the residuals, and showed that our infer-
ence model was quite robust, at least for an experimental noise without any
time correlation.

We retrieve the theoretically predicted behavior of the residuals in the ex-
periments. In particular, the experimental residuals are normally distributed,
and their variance increases exponentially with the fluorescence signal of the
droplets, with the same growth rate as the bacteria. This is a very nice agree-
ment of experimental data with advanced statistical predictions from the the-
ory of branching processes.

Unfortunately, the actual state of our knowledge on our experimental
system does not allow us to completely apply this inference method. In
our case, it is indeed quite complicated to accurately know the relation be-
tween our fluorescence measurements and the number of cells contained in
the droplets, as we have demonstrated in Chapter 2. This inference scheme
requires a precise quantification of this relation, and hence could not be suc-
cessfully applied to our experiments.

However, the analysis developed here could maybe be used in a differ-
ent manner in the future experiments of the lab. For instance, we have
done recently preliminary experiments of yeast growth in the microfluidic
chip. Yeast cells are bigger than bacteria, and can be directly counted in
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the droplets, without any fluorescence measurements. The theoretical frame-
work developed here could thus be employed to infer the cell to cell variabil-
ity of yeast cells, without any direct or continuous observation of the lineage
tree, as required by existing methods [89, 90], even if work still needs to be
done on the image analysis side. Division in yeast is also known to be asym-
metrical, which could complicate a little bit the model.

This theoretical framework could also be of great use for other microflu-
idic systems, in which the measurement of bacterial growth is made with
other means than fluorescence. For instance, the growth of the colony in mi-
crofluidic droplets can be measured by monitoring changes in optical den-
sity, and some authors have already proven such systems to be useful for the
study of bacterial growth [146, 145]. In particular, the growth of Actinobacteria
was proven to be suitable for this kind of measurement [146]. Our theoreti-
cal inference method could hence be used for a biotechnologically important
system, since the majority of modern antibiotics are derived from these mi-
croorganisms [146]. This brings us to our next chapter, which focuses on how
our microfluidic system could be used to study the effects of antibiotics on
bacteria.
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Chapter 5

Antibiotics and SoS response

... — ...
E. coli on the Titanic

5.1 Introduction

Since penicillin was discovered in the 1940s and antibiotics became clinically
used, bacterial resistance has spread in a spectacular way [147]. This has
become a critical issue for some infections, such as tuberculosis, because of
the emergence of multi-drug resistant pathogens that are much more difficult
to eradicate [148]. This is, in a way, the dark side of Darwinian evolution:
as more bacteria are exposed to antibiotics, more resistance pathways are
evolved, and given the rate of dissemination of resistance mechanisms [149],
and the poor rate at which new antibiotics are being discovered [150], we
are unlikely to win this evolutionary arms race against bacterial resistance to
antibiotics [151].

There is then a need for a more reasoned use of antibiotics. This involves
in particular new experimental tools to test the susceptibility of a bacterial
strain to an antibiotic more rapidly: patients could be treated quicker, and
more efficiently [152]. Classical methods of antibiotic susceptibility testing
often require a few days of incubation [153] before yielding a result. New
PCR methods have been developed to reduce the diagnosis time to 1 to 4
hours [154], but they only provide a genetic profile of the strain, and not its
direct phenotypic susceptibility to a given antibiotic.

Microfluidics has emerged as a natural tool for this kind of application.
Indeed, thanks to the very low volumes that are used, and the high degree
of confinement [113], the time needed to determine the susceptibility of a
strain to an antibiotic can be drastically reduced compared to classical meth-
ods. For instance, in the case of Urinary Track Infections (UTIs), that are of
critical clinical importance [155], but often overlooked as they mostly con-
cern the oppressed half of humanity, namely women, it has been shown that
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the antibiotic testing time could be reduced to 30 minutes using single-cell
microfluidic technology [46]. More generally, a lot of microfluidic devices to
test microbial susceptibility have been developed in the past few years, rang-
ing from single-cell technologies to millifluidic systems [156], while some
authors put their efforts in developing very elegant and easy to use devices.
A device to test the susceptibility of a strain in only five pipetting steps has
hence been designed [157]. In the first part of this chapter, we are going to
see how our microfluidic chip can be used in this context.

However, antibiotic susceptibility testing is not the only application of
microfluidics for the study of interactions between antibiotics and bacteria.
They have proven to be useful, for instance, for the characterization of per-
sister cells [158, 11], that are able to survive an antibiotic treatment thanks
to their dormant state [159], and not thanks to a hereditary resistance gene.
Single-cell approaches are often needed to characterize this kind of pheno-
typic survival, as they are often due to heterogeneity in the population, both
for persister cells [105] or non-dormant tolerant cells [32], that are able to
survive an antibiotic treatment while being still metabolically active. In the
context, evoked above, of the global antibiotic crisis, a better understanding
of these persistence states is critical, as they often pave the way to the emer-
gence of resistant mutants [160]. One bacterial response that is known to
induce persistence to antibiotics, at least in some cases [161], is the SoS re-
sponse. In the second part of this chapter, we will try to see how our chip can
be useful for the study of this specific pathway.

5.2 Using the chip to test the response of bacteria
to antibiotics

5.2.1 Multi-Chip MIC testing and digital measurements

The first measurement that is routinely made in microbiology labs to char-
acterize the susceptibility of a bacterial strain to an antibiotic is the Minimal
Inhibitory Concentration (MIC) [162]. This is the minimal concentration of
the antibiotic for which no growth of the strain is observed. In classical mi-
crobiology labs, it is measured by plating a bacterial culture on a series of
agar plates infused with different concentrations of antibiotic. The plates
are then set to incubate to see on which ones bacteria can grow [162]. The
same can also be made with liquid cultures instead of agar plates, this is
called the broth dilution method [163]: liquid tubes containing a series of di-
lution of the antibiotic are inoculated with the same bacterial culture. These
classical techniques are still commonly used today in hospitals [164]. More
advanced techniques can also be used, such as the Etest® commercialized
by BioMerieux [165]. It is based on a strip containing a step-like gradient of
antibiotics that is put on an agar plate inoculated with bacteria. The MIC is
read as the point of the strip where bacteria cannot grow on the agar plate,
see Fig. 5.1. For a review of these techniques, see Ref. [153]. In this section,
we are going to see how this measurement can be made with our chip, and
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how this technique would compare with the classical techniques described
above.

We do not mean to conduct here a systematic measurement of the MIC for
a particular strain and a particular antibiotic, but rather to expose in a concep-
tual way the advantages and drawbacks of a measurement of the MIC with
our chip. For this purpose, we will use the results of two experiments made
with two antibiotics during this PhD, both with E. coli. The first antibiotic is
Gentamicin (Gm), which belongs to the Aminoglycoside class. It is a bacte-
ricidal antibiotic that irreversibly binds the 30S subunit of the bacterial ribo-
some, preventing protein synthesis. The second antibiotic is Ciprofloxacine
(Cip), belonging to the Fluoroquinolone class. Its mechanism of action is
to inhibit the bacterial DNA gyrase, hence preventing the replication of the
DNA. It is a crucial antibiotic for clinical use, and is on the World Health Or-
ganization’s list of essential medicines [166]. We will also use it further down
as an inducer of the SoS response.

MIC

[AB]

FIGURE 5.1: Taken and adapted from [153]. A Staphylococ-
cus aureus isolate tested by the Etest gradient diffusion method
with vancomycin (VA), daptomycin (DM), and linezolid (LZ)
on Mueller-Hinton agar. The minimum inhibitory concentra-
tion of each agent is determined by the intersection of the or-
ganism growth with the strip as measured using the scale in-

scribed on the strip.

Estimating the MIC

How can we measure the MIC on our chip ? The simplest way is to load sev-
eral chips in parallel with the same concentration of bacteria, but different
concentrations of antibiotics. The bacteria all come from the same antibiotic-
free pre-culture. The chips are then incubated at 37°C overnight to see in
which chips bacteria have grown. This is still done by fluorescence measure-
ment. A first example of the results that we can get with this method is found
in Fig. 5.2(A), featuring E. coli and Gentamicin. We can thus read the MIC on
this graph, which is the minimal concentration for which no droplet exhibits
bacterial growth. For this strain, the MIC is between 5 and 10 µg/mL.
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FIGURE 5.2: Multi-Chip Antibiogram. 5 chips are loaded
with the same bacterial suspension of E. coli, but with differ-
ent concentrations of Gentamicin (Gm) in LB medium (A) Flu-
orescence images obtained with a slide scanner (SensoSpot®-
Fluorescence, Sensovation AG, Germany), and percentage of
positive droplets in each chip, after a 24h hour incubation
at 37°C (B) Measured percentage of positive droplets (blue),
and computed percentage of growing bacteria (orange), with

eq. (5.5)), as a function of the concentration of Gentamicin

How does this measurement compare with the classical measurements
of the MIC ? The main difference between the measurement done with our
chips and the classical methods of determining the MIC is the inoculum size,
which is the number of bacteria on which the antibiotic is tested at the be-
ginning of the experiment. It is known that the inoculum size influences
the results of an antibiotic susceptibility test: this is called the inoculum ef-
fect [167]. Intuitively, it comes down to the fact that the more bacteria there
are in a culture when the antibiotic is applied, the more there is a chance that
one of them will grow despite the antibiotic. Indeed, the more bacteria there
are, the more there is a chance that one of them will have a particular pheno-
type or a particular genotype that will allow it to grow despite the antibiotic
stress. The cell-to-cell heterogeneity discussed in the introduction plays a key
role here.

Because of this inoculum effect, standards have been set to measure the
MIC. For the plating method, it is recommended to inoculate the agar plates
with 104 colony forming units (CFU) [162]. For the broth dilution method,
each tube has to be inoculate with 105 CFU/mL [162]. For the Etest, the
inoculum size is even higher, as all the bacteria growing at a lower concen-
tration of antibiotic on the agar plate can try to make the bacterial front grow
in the higher concentration.

In our chip, the inoculum size is lower, at least on the experiment pre-
sented on Fig. 5.2. On the one hand, we have ≈ 1500 droplets on our chip.
On the other hand, we can estimate the mean number of bacteria per droplet
from the chip in which no antibiotic was used, using the method that we have
described in Chapter 2. We get for the mean number of bacteria per droplet:
λ ≈ 2. This means that our inoculum size is here ≈ 3 · 103, which is less
than what is commonly used to determine the MIC. Because of the inoculum
effect, we expect that the MIC found in our chip is lower than what can be
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found with the classical susceptibility methods.
To illustrate this, we can examine the results of an experiment where both

measurements are made in parallel. The drug used here is Ciprofloxacine.
We allow some E. coli to grow to exponential phase (OD600 ≈ 0.2) in an
antibiotic free medium. Then we inoculate them at 3/1000 in a series of
six 1 mL tubes containing different concentrations of another drug called
Ciprofloxacin. These tubes are directly used to load 6 chips. Then the tubes
and the chips are put at 37°C for incubation. The bacteria are then initially
at the same concentration in the tubes and in the chips. After 24 hours of
incubation, the chips are scanned to know the number of positive droplets,
and we also measure the optical density of the liquid cultures in the tubes.
The results are presented on Fig. 5.3.

0 5 10
[Cipro] (ng/mL)

0

0.2

0.4

0.6

0.8

1

O
D

6
0

0

48h

0 5 10
[Cipro] (ng/mL)

0

0.2

0.4

0.6

0.8

1

O
D

6
0

0

24h

0 5 10
[Cipro] (ng/mL)

0

20

40

60

80

100

120

%
 o

f 
p

o
si

ti
v
e
 d

ro
p

le
ts

0

20

40

60

80

100

120

%
 o

f 
g

ro
w

in
g

 b
a
ct

e
ri

a

24h

(A)

Chip testing

Tube testing

(B)

FIGURE 5.3: Comparison between a multi-chip MIC test and
a MIC test in 1 mL tubes (broth dilution method). (A) Upper
row : (Blue) Percentage of positive droplets in a series of chips
loaded with the same bacterial suspension of E. coli, and differ-
ent concentrations of Ciprofloxacin, after 24h (left) or 48h (right)
of incubation at 37°C. (Orange) percentage of growing bacte-
ria, computed from the percentage of positive droplets with
eq. (5.5). (B) Lower row : optical density of the tubes used orig-
inally to load the chips, after 24h (left) or 48h (right) of incuba-

tion at 37°C

The results are slightly more complicated than what we expected. If we
look at the results after 24 hours, we see that the chips with a Ciprofloxacine
concentration lower than 8 ng/mL have some positive droplets, in which
bacteria have grown. The same thing is found in the tube, with all tubes
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below 8 ng/mL displaying a non-negligible optical density which indicates
that bacteria have grown in this tube. Both for the chips and the tube, the
MIC would be 8 ng/mL. However, if we look at the results after 48 hours,
we see that while the chip results are unchanged, bacteria have finally grown
in all tubes. The concentration needed to really inhibit the growth in tube is
then superior to 10 ng/mL. Interesting conclusions can then be drawn from
this experiment:

• First, the growth dynamics are impacted by the antibiotic stress. Bacte-
ria grow more slowly when this stress is increased, this is why they take
longer to be detected in tubes at concentrations approaching the MIC.
The static measure of the MIC is therefore not a sufficient measurement
to characterize the effect of an antibiotic. This idea will be developed in
the next section.

• We see the impact of the inoculum effect when we measure the MIC
in our chip, with a higher value of the MIC found in tube. The MIC
measured in our chip is under-estimated.

• However, the measurement of the MIC in our chips yields a final result
after 24 hours, contrary to the broth dilution method that requires 48
hours. We see here an effect that we have already evoked a few times
in this thesis. Thanks to the low volumes used with microfluidic tech-
nologies, the final state is reached quicker, and measurements are made
faster.

Let us come back to the inoculum effect. The MIC found for the same
strain and Ciprofloxacine, using an Etest is 16 ng/mL, which confirms that
the value found with our chip is underestimated. If we want to determine
the MIC using our chips with a inoculum size that is comparable to the ones
recommended for the classical methods of MIC testing, we can just increase
the initial concentration of bacteria loaded on our chips. Indeed, we just
have to tune our dilution of the pre-culture used to load the chips so that
the mean number of bacteria per droplet is around 10. By doing this, we
will have around 104 bacteria loaded on each chip. This is an inoculum size
comparable to the one recommended for testing the MIC with the plating
method [162]. However, everything comes at a cost, and we will see in the
next section that this increase in inoculum size can be prejudicial if we want
to retrieve more information on the bacteria from those multi-chip experi-
ments.

Digital measurement of the growth probability under antibiotic stress

Indeed, with these multi-chip experiments, we can not only estimate the MIC
but also the probability for a bacteria to grow at a given concentration of
antibiotic. Indeed, for each concentration, we don’t only have a global binary
response (growth or no growth on the chip): we can also count the number
of droplets in which bacteria have grown. This is a typical digital approach:
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the droplets are used as binary probes for the response to antibiotics, to infer
an individual cell response.

We can note that the percentage of growing bacteria is directly accessible
as well if the plating method is used to determine the MIC. In this case, the
number of colony forming bacteria can just be counted on each plate, and
compared to the number of bacteria growing when plating the same culture
on an antibiotic-free agar plate. An example of this kind of measurement can
be found on Fig. 5.4, which was taken from ref. [168]. On this figure, the
percentage of growing bacteria as a function of the antibiotic concentration
is found for two E. coli strains, a wild-type strain and a resistant mutant. We
can see that the profile of this percentage of viable cells as a function of the
antibiotic concentration is not the same at all for the two strains. For the wild-
type strain, there is a sharp decrease near the MIC, whereas for the resistant
strain, the decrease in percentage of viable cells is smoother. This observation
was used as a basis in ref. [168] to demonstrate that the growth phenotype of
the resistant mutant under antibiotic stress was bistable: there exist a range
of concentration of the antibiotic for which these mutants can stochastically
grow or not. We will not go deeper into those concepts here, but it shows
that the percentage of viable cells is a valuable information.

FIGURE 5.4: Taken from [168] Heterogeneous response of
Chloramphenicol (Cm) resistant cells.E. coli cells were diluted
from log phase batch cultures lacking Cm, and were spread
onto LB agar at densities of several hundred cells per plate be-
fore overnight incubation at 37°C. (A) Typical plate images of
Cm-resistant Cat1 (top row) and Cm-sensitive wild type (bot-
tom row) cells, with Cm concentration indicated below each
plate and also given above as approximate fraction of the em-
pirically determined MIC plate for each strain. (B) Percentage
of viable cells grown on Cm-LB plates; CAT-expressing cells
(Cat1, green) and wild type cells (EQ4, blue). Error bars esti-
mate SD of CFU, assuming Poisson-distributed colony appear-

ance

At the opposite, if the MIC is measured with the broth dilution method
or with an Etest, this percentage of viable cells for each concentration cannot
be obtained. Indeed, one only obtains a binary information on the growth at
each concentration: growth in a tube or no observable growth; growth at a
given concentration on the agar plate or no observable growth. This is there-
fore an advantage of the plating method or of our chip-based method. But
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let us go back to our multi-chips measurements and see how the probability
for a cell to grow can be inferred.

Let us call µ the probability for a cell to grow into a colony despite the
antibiotic stress, that we will consider to be the same for all cells, and p+ the
probability for a droplet to be positive, i.e. to contain bacteria at the end of
the experiment. We will consider here that if a cell grows, all the daughter
cells grow as well. We want to get the relation between p+ and µ. Let us
first use the law of total probability, conditioning p+ by the number of cells
encapsulated in the droplet N0:

p+ =
∞

∑
k=0

p(N0 = k)p+N0=k, (5.1)

where p+N0=k is the probability of having a positive droplet if the number of
bacteria in the droplet is exactly k. We know that the number of cells per
droplet when the chip is loaded follows a Poisson distribution, hence we
have:

p+ =
∞

∑
k=0

e−λ λk

k!
p+N0=k, (5.2)

If we know that N0 = k, we have, since a droplet is positive if and only if at
least one cell that has grown despite the antibiotic treatment:

p+N0=k = 1− p−N0=k

= 1− (1− µ)k. (5.3)

Therefore, by inserting this expression into the previous sum, we get:

p+ =
∞

∑
k=0

e−λ λk

k!

(
1− (1− µ)k

)
= e−λ

(
∞

∑
k=0

λk

k!
−

∞

∑
k=0

((1− µ)λ)k

k!

)
= e−λ

(
eλ − eλ(1−µ)

)
= 1− e−λµ. (5.4)

Thus, by counting the number of positive droplet N+, we can estimate
p+ ≈ N+/Ntot. We can also estimate λ by counting the number of positive
droplets when there are no antibiotics, as we have explained in Chapter 2.
Hence we can estimate to the probability for bacteria to grow despite the
antibiotic stress:

µ = − 1
λ

ln
(
1− p+

)
. (5.5)

We can therefore apply this method to our previous experiments pre-
sented on Fig. 5.2 and 5.3. For each chip, we can count the number of positive
droplets and hence estimate µ with eq. (5.5). For clarity, this probability is
plotted as a percentage on the figures 5.2 and 5.3 (orange axes). As we can
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see, in our experiment, the percentage of positive droplet is superior to the
percentage of surviving bacteria. This is simply due to the fact that there is
more than one bacteria encapsulated per droplet when the chip is loaded.

What is the error that we make when making this estimation ? There are
in fact two sources of error. The first one is the error made when estimating
λ by counting the number of positive droplets on the chip without antibiotic,
that has been computed in Chapter 2. The second one is the error made by
estimating p+ by counting the number of positive droplets, which is in fact
of the same nature: it is the error made when estimating a probability with
a digital measurement. We can also estimate it by using the Central Limit
Theorem, and obtain a confidence interval on p+. We can combine the two
effects to obtain the confidence intervals plotted on Fig. 5.2(B). We can see
that the error made with the agar method (Fig. 5.4(B)) is similar.

However, this confidence interval depends on the value of µ and λ. As
we have explained in Chapter 2, if λ is too big, all the droplets are filled with
bacteria, and the mean number of cells per droplet cannot be estimated any
more. The same thing happens for µ. If µ is very close to 1, then all the
droplets contain growing bacteria, and p+ can not be used to estimate µ. The
two effects are in fact mixed in this case, as the value of λ also influences
the estimation of µ. Indeed, if λ is increased, droplets are more likely to be
positive, as there are more bacteria per droplets, the probability that one of
them will grow is higher. The estimation of µ will then be less precise if λ
increases.

This sounds a bit technical as it stands, so let us illustrate this with a theo-
retical example inspired by the results presented on Fig. 5.4. The question is
the following: can we retrieve the two profiles of the percentage of growing
bacteria using our digital measurements? To answer, we impose two pro-
files for the percentage of growing cells when the antibiotic concentration is
varied: one very sharp profile, with the percentage of growing bacteria drop-
ping suddenly at a critical concentration, and a linear profile, with the per-
centage of growing bacteria linearly decreasing with the concentration. This
mimics the different viability percentages of, respectively, wild-type and re-
sistant cells of Fig. 5.4. Then, for these two profiles, we compute the resulting
number of positive droplets on the chip according to eq. (5.4). We repeat the
theoretical computation for two values of the Poisson parameter λ: λ = 2,
which is close to what we had on Fig. 5.2, and λ = 10, which is closer to the
standards for MIC determination.

If the percentage of surviving cells decreases sharply close to the MIC, as
for the wild type cells in Fig. 5.4(B), the two values of λ are almost equiva-
lent. However, at 60% of the MIC, for instance, all droplets are still positive if
λ = 10: the determination of the percentage of growing bacteria will then be
less accurate with this higher value of λ. This is even clearer if we consider
a linear decrease of the percentage of growing cells with the concentration of
antibiotics, which mimics the case of resistant cells (Cat1) on Fig. 5.4(B). The
decrease in percentage of surviving cells is not detected at all on the percent-
age of positive droplets for the case λ = 10, until the concentration of antibi-
otic reaches 75% of the MIC. Indeed, there are so many bacteria per droplet
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FIGURE 5.5: Theoretical percentage of positive droplets for
two profiles of the percentage of growing bacteria when vary-
ing the antibiotic concentration (black bold line): (A) sigmoidal
shape with rapid decrease of the percentage of growing cells,
like on Fig. 5.4(B), for the wild type cells; (B) linear decrease of
the percentage of growing cells, like on Fig. 5.4(B), for the Cat1
cells. The percentage of positive droplets is then computed with
eq. (5.4) for two values of the Poisson parameter λ, which cor-
responds to the mean number of cells per droplet. The results
are plotted in green for λ = 2, and in red for λ = 10. Some par-
ticular points of the obtained theoretical curves are highlighted
with stars. These are the points that would be obtained if an

experiment was run with 6 chips in parallel, as in Fig. 5.3.

that there is always one that statistically grows. It is therefore impossible in
this case to use the digital measurement of positive droplets for inference of
the percentage of growing bacteria, whereas if λ = 2, this is doable.

There is then a trade-off between the measurement of the MIC and the
measurement of the percentage of bacteria growing under an antibiotic stress.
To measure the MIC according to the classical standards, it is better to in-
crease λ, whereas to measure the survival rate of antibiotics, it is preferable
to decrease it.

At this point, we have demonstrated that the MIC of a strain can be deter-
mined with our chip. However, the MIC only quantifies the ability of a strain
to grow under a constant antibiotic stress, but as we have seen on Fig. 5.3,
the dynamics also plays a great role. In the next section, we will see how we
can use our chips to study the efficiency of an antibiotic treatment over time.

5.2.2 Exposure time to antibiotics

Indeed, the MIC does not provide any indication on the dynamics of the ac-
tion of the antibiotics [169]. It just quantifies the intuitive fact that the more
antibiotic there is in a culture, the more it is difficult for bacteria to grow.
It is also intuitive to think that the longer bacteria are exposed to an antibi-
otic, the more bacteria are killed. This is traditionally quantified by time-kill
curves, which are the percentage of surviving bacteria as a function of the ex-
posure time to the antibiotic. These measurements that contain information
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about the dynamics of the response have proven to be useful for designing
efficient treatments against pathogens [170], and have also been studied the-
oretically [171]. Contrary to the measurement of the MIC, they are useful
for the study of bacterial persistence, which we have already defined. Bala-
ban [11] used for instance time-kill curves to show that bacterial persistence
was due to a phenotypic switch. As we can see on Fig. 5.6, the time-kill
curves of wild-type bacteria are well described by a double exponential ki-
netics. Indeed, the number of viable cells in a culture under antibiotic stress
decays exponentially with time, but at some point there is a change in the
rate of decay. If we fit the exponential decay in number of viable cells with
an exponential function exp(−t/τ0), the majority of the cells is killed with a
characteristic time τ0 of 25 min, whereas after the slope shift the characteristic
time is 6 hours. This indicates that there are some cells that are much more
difficult to kill with an antibiotic than the vast majority of the cells. The same
behavior is observed for hipA7 mutants, that are known to exhibit a higher
proportion of persisters, but the change in killing rate is attained faster, and
the proportion of persisters is indeed higher. We will now compare these
findings with data obtained on our chips.

FIGURE 5.6: Taken from [11] Killing curves of wild-type and
hipA7 mutant cells. Black symbols and dashed curve indicate
wild type (wt); red symbols and solid curve, hipA7 mutant.
HipA7 mutants are known to display a higher proportion of

persister cells.

In microbiology labs, these time-kill measurements rely once again on
plating [172]: bacteria are exposed to a drug in a liquid culture, and at the de-
sired time points, the culture is sampled, diluted, and plated on agar plates
to count the number of CFU and thus the number of viable cells in the cul-
ture. This method is very demanding in terms of space (a lot of agar plates
are needed) and time (colonies take usually a few days to be countable). A
simpler and faster method with chips would be then very valuable.

To measure time-kill curves with our chip, we take advantage of a feature
that we have not described yet in this PhD, which is the possibility to control
the environment of the bacteria over time by replacing the oil surrounding
the droplets with an aqueous medium. In fact, the loading process can be
performed with a mixture of ultra-low gelling agarose and liquid medium
instead of pure liquid medium. Then the chip is placed in a fridge for 30min
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to allow the agarose to gelify. As a consequence, the oil phase can be re-
moved and replaced by any aqueous phase: the droplets and their content
will remain stuck in the traps because of the gelification.

Therefore, to measure time-kill curve with our chips, we can load several
chips in parallel with the same bacterial culture and the same concentration
of antibiotic. The chips are then all put at 37°C for incubation with the an-
tibiotic. Each chip corresponds to a time point in the time kill curve: at each
time point, we take one chip, remove the surrounding oil and replace it with
antibiotic-free medium. The droplets remain in the traps because they were
made with agarose gel. Then, once enough fresh medium has been flowed
through the chip to remove the antibiotic, we reintroduce oil to isolate each
droplet from one another. In fact, the aqueous phase is pushed by the oil
and droplets are generated once again through a "breaking" process, as de-
scribed in Chapter 2. Throughout this whole process, the bacterial content of
the droplets does not change, because bacteria are embedded in the agarose
gel. The chips are put back in the incubator, and after 24 hours, the number of
positive droplets in each chip can be measured (see Fig. 5.7(A)). Each positive
droplet corresponds to at least one bacteria that has survived the antibiotic
treatment.

Using eq. (5.5), we can once again obtain an estimation of the time-kill
curves (Fig. 5.7(B)). The variation of the fraction of viable cells is close to the
expected exponential decay with time, with a characteristic time τ0 ≈ 90 min
(Fig. 5.7(C)), even if more time points would be necessary to confirm it. How-
ever, we don’t see a decrease of the rate of decay, which would indicate the
presence of persister cells, as we have explained previously. This once again
would need confirmation with more time points. The absence of persister
cells in the chip is confirmed by the fact that there was no positive droplet on
the chip incubated for 12 hours with Gentamycin. We can explain that by the
fact that the frequency of persister cells in wild-type E. coli is known to range
between 10−4 and 10−6 [159]. We are therefore not likely to see them on our
chip if we don’t increase the mean number of cells per droplet up to λ ≈ 10.

However, with this relatively high value of λ, all the droplets of the antibiotic-
free chip would be positive. As explained in Chapter 2, the estimation of λ is
then impossible. This challenge can be easily overcome, as already discussed
in Fig. 2.5: another chip can be loaded in parallel with a higher dilution of
the same pre-culture. We can estimate λ in this chip, and as the dilution ratio
is known, λ can also be retrieved for the other chips.

Besides, for the early times of the time-kill curves, many bacteria can sur-
vive. If a high value of λ is used, we will once again run into the same es-
timation problem. To solve this issue, the concentration of bacteria used for
loading can be adjusted for the different time points of the time-kill curves,
which correspond in our case to different chips. On the one hand, for the
early times, a low number of bacteria per droplet is preferable, to not have
only positive droplets. On the other hand, for the late times, few bacteria can
survive. It is then preferable to increase the number of bacteria per droplet,
in order to obtain positive droplets. As long as the relative dilution between
the different chips is known, the whole time-kill curve can be reconstructed.
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FIGURE 5.7: Multiple chip time-kill curve of E. coli when the
exposure time to Gentamycin is varying. (A) Principle of the ex-
periment: all the chips were loaded with bacteria coming from
the same pre-culture of E. coli. Chip 1 is the control chip, for
which no Gentamycin was used. The blue number indicate the
number of positive droplets (B) Results for the percentage of
positive droplets (blue) and computed percentage of growing
bacteria for each exposure time with eq. (5.5) (orange). (C) In
log scale, result for the percentage of growing bacteria and lin-

ear fit.

Overall, these results show that the time-kill curves of an antibiotic can be
obtained with our chips. The concentration of bacteria used to load the chip
has to be adjusted depending on the regime that we want to observe.

5.2.3 Growth under antibiotic stress

Until now, we have only studied the effect of antibiotics as a matter of life
or death of the bacteria: the study of the MIC or the time-kill curve both
quantify the ability for the bacteria to survive (or be killed) by the antibiotic,
when the concentration or the exposure time is varied. But another approach
matters at least as much: if some bacteria are not killed, what is the nature of
the growth of the bacteria under an antibiotic stress ? This plays a crucial role,
for instance, in the emergence of antibiotic resistance: even at concentrations
of drug far below the MIC, de novo resisting mutants can be selected [173].

Furthermore, it has been known for a long time that growth and antibiotic
susceptibility are correlated: a slow bacterial growth is often correlated with
a decreased sensitivity to antibiotics [174]. The most extreme case is the one
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of bacterial persister cells, that are able to survive an antibiotic treatment by
being in a dormant state [159].

However, although these effects have been known for a long time, there
is still a lack of mathematical models relating the molecular mechanism of
action of antibiotics to the growth rate of the bacteria under antibiotic stress.
These models could be of key importance for designing optimal antibiotic
treatments, in particular for drug combinations, that can be used to fight the
emergence of resistance [175, 176].

One of the first predictive models for the growth rate under antibiotic
stress was proposed only a few years ago by Greulich et al. [74] for ribosome
targeting antibiotics. These antibiotics can be classified into two classes, those
binding reversibly to the ribosomes and those binding irreversibly. From this
detailed study of the mechanism of action, and using the growth law relating
the ribosomal content of the cell to its growth rate [177], the growth rate of
the bacteria could be predicted under antibiotic pressure. It was shown that
the two classes of antibiotics had different effects on the growth rate, with
increased susceptibility with the growth rate for reversibly binding antibiotic
and the inverse effect for irreversibly binding antibiotic.

Nevertheless, this model only considered a fixed dose of antibiotic, al-
though the dynamics can be of crucial importance to better design antibiotics
treatments [178]. The same authors recently extended their model to take into
account a time-dependent antibiotic concentration [179], and showed that the
two classes of antibiotics that have been described also displayed different re-
sponses to time-varying antibiotic concentrations, see Fig. 5.8. They studied
several time profiles of antibiotic exposure, and different concentrations of
the drug. Antibiotics that have a low binding affinity with the ribosomes
were found to cause a sharp decrease in growth rate when a step concentra-
tion is suddenly applied. At the opposite, for the high affinity antibiotics,
the decrease in growth rate was found to be slower. For a time-finite an-
tibiotic pulse, the dynamics are also very different (Fig. 5.8). However, this
second work was only numerical and theoretical, and there is still a need, to
our knowledge, for experimental confirmation: a device is needed in which
the growth rate can be monitored while the micro-environment of the bacte-
ria, in particular the antibiotic stress, is controlled. A few devices have been
developed [180], but we believe that our chip could be of great interest here.

Indeed, we have already mentioned the fact that we can control over time
the concentration of antibiotic thanks to a phase change. The different time
profiles of exposure to antibiotic could thus be tested, as the chip can be
placed under a motorized and temperature-controlled microscope, with the
concentration of antibiotic controlled by flow rate controllers, and scanned
for growth rate measurement at the same time. That imposes though the use
of a strain producing a fluorescent protein for growth rate measurement as
in Chapter 2.

There is another feature of the chip that we have not mentioned yet in this
manuscript that could be of great use here: a gradient of antibiotics can be
created on the chip, each row of the two-dimensional array of anchors being
perfused by a different concentration of antibiotic. This only requires a slight
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FIGURE 5.8: Taken and adapted from [179] Numerical trajec-
tories showing the dynamics of growth inhibition after a step
increase (upper row), or a transient step increase (lower row),
for antibiotics that have a low affinity with ribosomes (left) or
a high affinity (right). What is plotted is the relative growth
rate λ(t )/λ0 as a function of time after the step increase in an-
tibiotic concentration. For the step increase, the final antibiotic
concentration aex final is indicated by the line colour, ranging
from 0.4 · IC50 (purple) to 1.3 · IC50(red), in steps of 0.1 · IC50.
The IC50 is the concentration of antibiotic needed to halve the
growth rate of the strain in steady-state, see [74]. For the tran-
sient step increase (lower row), the antibiotic concentration is
switched suddenly to a value S at the start of the dose, and is
switched back to zero after a time T. The total dose S × T is

fixed at 4 · IC50

modification of the design of the chip, as described on Fig. 5.9. This concept
has proven to be useful, for instance, for the determination of MIC directly
on-chip [97].

Hence, with this modified chip for gradient production, different con-
centrations could be tested on the same chip, which is a great advantage
compared to existing systems such as the morbidostat [180]. Different con-
centrations for a step profile of antibiotic concentration could be tested, to be
compared with the theoretical results of Fig. 5.8. However, one has to be a
little bit careful with the experimental protocol if she wants to compare the
results with the theoretical predictions: the bacteria have to be in exponential
phase before the antibiotic is applied. As the chip has to be put in a fridge
prior to phase change for gelification of the droplet, the bacteria may take
longer than 3 or four generations, as found in Chapter 3, to be in full expo-
nential phase. But by waiting a little bit more, the effect of several different
doses of antibiotic could be tested and compared with the theoretical predic-
tions of [179]. The whole chip can be scanned in approximately 12 min, so the
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FIGURE 5.9: Taken from [110] a) General chip geometry for the
production of a continuous concentration gradient within the
chip. Inlets 1 and 2 are used for breaking the droplets on the
anchors. The modification relies on the addition of inlets 3 and
4, which are used to produce the antibiotic concentration gra-
dient thanks to the big height difference between the inlets and
the chamber, as described in [181]. We used different heights
for the main chamber: both 35µm and 15µm can be used. b)
large scan of a concentration gradient produced on chip with
pure water and a solution of fluorescein. The fluorescein con-
centration increases gradually from top to bottom rows of the
array. c) Calibration curve for the 15 µm chamber presented in
b) with an inlet flow rate of 3 µL/min. The error bars are cal-
culated for the standard deviation of each concentration along

each row.

main dynamic features presented in this paper should be observable experi-
mentally, even if some of them will probably be missed, such as the peaks in
the case of a transient step-like dose. If one wants to have a better temporal
resolution, fewer rows can be scanned. Instead of 13 different concentrations,
8 can be scanned every 5 minutes, for instance.

This dynamical growth response of bacteria to ribosome targeting antibi-
otics is then one case where the experimental possibilities of the chip used
throughout this PhD could be of great utility. Time was missing during this
present PhD to conduct the experiments, but it is a suggestion for further
experimental work in the group.

In the first part of this Chapter, we have shown how our chip could be
used to carry out routine measurements made in microbiology labs, such as
the MIC and the time-kill curves of antibiotics. Through a careful digital
analysis, the use of a chip can lead to a gain of space and time compared
to classical plating techniques. We have also tried to suggest a way to use
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the full possibilities of the chip in order to address very recent experimental
challenges for the understanding of the dynamics of the growth inhibition
of bacteria by antibiotics. In the next part, we will expose some preliminary
results showing how our chip can be used to study a challenging bacterial
stress response called the SoS response.

5.3 Using microfluidics to study the SoS Response
of bacteria

5.3.1 A little introduction

The SoS response of bacteria has now been known for more than 40 years [182],
but is still challenging for researchers nowadays. It is a broad and transient
response that is activated when the DNA of the bacterial cell is damaged.
A short overview of the SoS response will be exposed here, for an excellent
review read [183].

To go more into details, the SoS response is triggered when there is an
abnormally high amount of single-strand DNA (ssDNA) in the cell. Those
single-strand DNA are created following DNA damage, from double-strand
DNA breaks, but can also be due to stalled replication [184]. The induction
pathway is then the following [185]: this triggers the binding of RecA to these
single-strand filaments, which in turns catalyzes the cleavage of the LexA
repressor. This causes the derepression of the SoS genes, which are about 40
in E. coli for instance [186].

The induction of the SoS response can be due to multiple factors: UV
radiation [187], reactive oxygen species [188], or even high pressure [189].
What interests us more is the fact that antibiotics can also induce the SoS re-
ponse. This is not surprising for antibiotics that directly target the replication
of DNA, such as Fluoroquinolones [190]. But there are also more complex
pathways that can come into play. For instance, β-lactams, that target the cell
wall, have been shown to be able to induce the SoS response of E. coli [191].
The activation of the SoS response can also be due to doses of antibiotics that
are far below the MIC, and don’t even affect the growth of the bacteria [192].

What are then the effects of this SoS reponse? The two main effects are
growth inhibition [193] and DNA repair. Indeed, the LexA regulon includes
a lot of genes involved in DNA repair, such as the recombination and repair
genes recA, recN, but also genes that codes for DNA polymerases that are
known to be error-prone [5, 194]. Therefore, it has been shown that the SoS
response increases the rate of mutagenesis [6], paving the way for the emer-
gence of resistant mutants to antibiotics [195].

However, this is not the only way by which the SoS response increases
the resilience of bacteria to antibiotics treatments. For instance, it can also
induce the formation of dormant persister cells [161]. Some resistance genes
to Fluoroquinolones have also been proven to be under the direct control
of LexA [196]. The SoS reponse is also involved in stress-induced biofilm
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formation [197], that are known to affect the efficiency of antibiotic treat-
ment [198]. Finally, the SoS response has been shown to promote the hori-
zontal gene transfer of resistance genes [199]. Molecules involved in the SoS
response have then naturally become a potential target for new treatment
strategies [200].

A better understanding of the SoS response is then crucial in the context of
the global antibiotic resistance crisis. A lot is already known, but a lot of the
studies referenced here are based on population-scale approaches. A single-
cell approach is globally lacking, although it has been shown to be useful, for
instance, for the discovery of the dynamics of the SoS response [201], which
encourages for the use of stochastic models to describe this response [202].
Other bacterial stress responses, and the ability of bacteria to survive to a
stress, have been shown to depend a lot on the cell to cell variability [106].
It is intuitive to believe that the SoS response will behave similarly, and thus
single-cell approaches are necessary.

Our microfluidic chip, in this perspective, is a useful tool because it en-
ables us to isolate individual cells in droplets. This enables us not only to
characterize the SoS response of individual cells, but also to relate it to the
phenotypic ability to survive an antibiotic treatment. Indeed, as the descen-
dants of the mother cell stay in the droplet, the ability for a single cell to
re-grow after an antibiotic stress inducing the SoS response can be quanti-
fied and linked to the intensity of the SoS response. We will present in the
next part the experiments that we conducted in this direction in collaboration
with the Mazel group of Institut Pasteur. They have been working on the SoS
response in E. coli and Vibrio Cholerae for a long time, and provided strains
expressing fluorescence when the SoS response is activated. In the first part,
we will show preliminary results obtained with an E. coli strain that they
kindly let us use in 2016. These preliminary findings led to the obtention of a
grant to pursue the collaboration between the two research groups. Another
strain was constructed, with more fluorescent reporters, and the results of
more recent experiments will be discussed in the second part.

5.3.2 Preliminary results

The experiments that presented here were conducted using a strain engi-
neered from E. coli MG1655, with a GfP fluorescent reporter for SoS response
(GfP under the control of recN, see complete description in Ref. [6]). The ob-
jective of these experiments was to demonstrate the utility of our microfluidic
chip to study the SoS response of individual cells, particularly, as we have
already mentioned, the ability to survive an antibiotic treatment in relation
with the intensity of the SoS response of the cell. We will use Ciprofloxacin
(Cip) as the inducer of SoS response. It is known to induce the SoS re-
sponse [161], even at sub-MIC concentrations [203]. The experiments were
conducted in LB medium.
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FIGURE 5.10: Fluorescence measurement of the SoS response
of single cells. Two liquid cultures are submitted to an antibi-
otic stress (Ciprofloxacine) at two different concentrations, and
sampled over time to measure the SoS response of single cells
between a glass slide and a cover slip (A),(B) Fluorescence sig-
nal of the cells sampled at different times, with mean in red, for
(A) [Cip] = 0.2 µg/mL (MIC), and (B) [Cip] = 0.02 µg/mL. (C)
Comparison of the mean fluorescence measured over time at
the two concentrations of Cip. (D) Mean fluorescence rescaled
by the value of the final plateau. Error bars are ± standard de-
viation (SD) (E) Comparison of the coefficient of variation of
the fluorescence, which is the ratio of the standard deviation to
the mean, for the two concentrations. (F) Rescaled fluorescence
distribution: (Fluo-Mean)/SD, as in [111], and best Frechet Fit,

for the [Cip] = 0.2 µg/mL case.

SoS response of single cells

Before studying how the ability of cells to recover from an antibiotic stress
is related to their individual SoS response, we need first to study this SoS
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response at the single-cell level. For this purpose, we use classical measure-
ments between a glass slide and a cover slip. We culture some E. coli to ex-
ponential phase (OD600 ≈ 0.2), and then add Ciprofloxacin at two different
concentrations, 0.2 µg/mL, which is the MIC, and 0.02 µg/mL. The cultures
were incubated at 37°C. Then every hour, the cultures were sampled and the
SoS response of individual cells was measured by thresholding the image in
the green channel and measuring the mean fluorescence of each cell. The
results are presented on Fig. 5.10.

We see that for both concentrations of the antibiotic, the SoS response is
indeed induced, as the mean fluorescence signal of the cells increase over
time (Fig. 5.10(A),(B)). This confirms in particular that it can be induced be-
low the MIC. The dynamics of the induction of the SoS response for the two
concentrations is similar in the sense that the mean fluorescence signal in-
creases before reaching a final plateau (Fig. 5.10(C)). Of course, the value of
this plateau is higher when the concentration of antibiotics is higher. How-
ever, if we re-scale the mean fluorescence by the value of this plateau, we
notice that the dynamics are not exactly the same: the final value is reached
more rapidly when the antibiotics concentration is higher (Fig. 5.10(D)). We
can then deduce that the SoS response is induced more rapidly and more
intensely when the antibiotic stress increases.

Until now, we have only used the properties of the mean fluorescence sig-
nal. But these measurements were made to start to study the heterogeneity
of the SoS response. Let us then examine what the distribution of fluores-
cence signal looks like over time. A very interesting result is that although
the variability of the measured fluorescence signal increases over time, it is
constant when rescaled by its mean (Fig. 5.10(E)). These measurements in-
dicate that the relative dispersity of the individual SoS response of the cells
does not increase when the SoS response is induced. The shape of the distri-
bution of the SoS responses of individual cells is rightly skewed, as expected
for any protein, see [111] and Chapter 2 (Fig. 2.12). When we rescale it as
in Chapter 2, by subtracting the mean and dividing by the standard devi-
ation, we do obtain a collapse of the rescaled distributions at the different
times (Fig. 5.10(F)), and the shape of these rescaled distribution is very well
approached by a Frechet distribution [111]. The distribution of expression of
the recN protein involved in SoS response that we measure here seems then
to be similar to the one expected for other proteins.

Re-growth after SoS induction

Now that we have studied the distribution of the SoS response among single
cells, we can try to see how it is correlated with the ability of a cell to survive
the antibiotic stress and re-start to divide once the antibiotic is removed. For
this, we use our microfluidic chip to take advantage of the ability to encap-
sulate individual bacteria in droplets.

The protocol is the following. We culture some bacteria to exponential
phase in bulk and like previously, we add Ciprofloxacine at 0.2 µg/mL. Af-
ter 3.5 hours of growth under antibiotic stress, which is the time needed for
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the SoS induction to reach its final state, see Fig. 5.10(C), we remove the an-
tibiotic by centrifugation and re-suspension in fresh LB medium, and load
the bacteria in a chip with agarose. Then, we manually detect wells contain-
ing one single bacteria and take an image with a 30X magnification. About
30 wells could be imaged. We take one initial image and one image after 6
hours of incubation at 37°C.

FIGURE 5.11: Final size of the colony grown from a single cell,
after 6 hours of incubation at 37°C, as a function of the initial
fluorescence intensity of this single cell, which is linked to its
SoS response. Prior to loading, the cells were exposed to Cip at
0.2 µg/mL for 3 and a half hours to induce the SoS response.
Then the antibiotic was removed and the cells were allowed to

re-start growing in pure LB media.

The results are presented on Fig. 5.11. It is of course difficult to draw
definitive conclusions because of the small amount of experimental points,
but it seems from this experiment that the more intense the SoS response of
the single-cell initially encapsulated in the droplet, the more chance it has to
re-start growing and form a large colony. It would mean that a more intense
SoS response actually means a more efficient repair of the DNA, and not that
the DNA was more damaged by the antibiotic. Of course, controls would be
needed, but those initial experiments gave us the will to push this approach
further.

Limitations of these preliminary experiments

However, these experiments have a few limitations that we have to take into
account if we want to get more definitive results. First of all, they were
made in LB medium, which is not a very well controlled medium. In order
to get more repeatable results, we decided to switch to MOPS rich defined
medium [204].

Secondly, we only have one fluorescent reporter on this strain. It would be
very useful to be able to measure growth separately from the SoS response,
particularly if we want to obtain the dynamics of the recovery after an an-
tibiotic treatment. For instance, if we want to know if the lag time or the
growth rate of the colony growing from a cell that has survived the antibiotic
treatment is correlated with its SoS response, we would need a second flu-
orescent reporter to quantify the growth. This would also allow us to get a
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better measurement of the SoS response of single cells, as the thresholding of
the fluorescence images could be made on this second fluorescent reporter.
Indeed, in those preliminary experiments, as the detection of the cells and
the measure of this SoS response was made with the same channel, bacteria
that had a very low level of expression of the SoS response were not detected.

5.3.3 Pursuing experiments

A new strain

A new strain was built in the Mazel group, still engineered from E. coli MG1655.
This time, two fluorescent reporters were integrated, directly on the bacterial
chromosome. For the measurement of the SoS response, a PsfiA-mGFP inte-
gration plasmid was integrated at HK022 site of the E.coli MG1655 genome,
following the protocol described in [205]. SfiA (or SulA) is the SOS-induced
division inhibitor that depolymerises the FtsZ ring and thus triggers filamen-
tous growth when cells are exposed to DNA damage [206]. It has already
been used for single-cell studies of the SoS response [207], as it is known to
be induced 100-fold during the SoS reponse [208].

The second fluorescent reporter (mCherry) was placed at the Lac site of
the genome, and is inducible by addition of IPTG to the medium. It will
allow us to measure the size and the growth of the colonies.

This strain, for the following experiments, is cultured in MOPS rich de-
fined medium, supplemented with 0.4% glucose and IPTG at 1mM.

The MIC of this train in MOPS rich was measured to be at 16 ng/mL, with
the broth dilution method (series of dilution in 1 mL liquid culture [163]).

Individual SoS response

We can then run the same experiment that we did with the previous strain, in
paragraph 5.3.2, in order to measure the SoS response of single cells and its
distribution. This time, the cells are detected by thresholding in the red chan-
nel .The measure of the SoS response is still done in the green channel, using
the segmentation of the images made in the red channel. This segmentation
is also used to measure the size of each cell, by taking the major axis length of
each segmented region, as shown in Fig. 5.12. We still use the concentrations
corresponding to the MIC and MIC/10, but this time the MIC is around 16
ng/mL. The results are presented on Fig. 5.13.

Let us compare these results with Fig. 5.10. For the lethal concentration,
we see a increase in the SoS response of the cells (Fig. 5.13(A)). However,
with this new strain, for an antibiotic concentration that is one tenth of the
MIC, the increase in the SoS response is very low (Fig. 5.13(B)), at least for the
mean response (Fig. 5.13(C)). But at his sub-MIC concentration, we notice the
presence of a few cells with a very high SoS response in the population, that
we did not see that clearly with the previous strain.

The relative dispersion is once again almost constant over time, for both
concentrations (Fig. 5.13(D)). It is higher than what we had with the previous
strain and cell detection method. This was expected, as we are now detecting
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Bright Field Red Channel Green Channel

20μm

FIGURE 5.12: Example images of the measurement of the SoS
responses of single cells, taken here after 1 hour exposure to
Cip at 16ng/mL, at 37 °C. Top row: raw images. Bottom row:
segmented images. The segmentation is done by thresholding
the images in the red channel, with the bacteria expressing a
mCherry fluorescent reporter induced by the addition of IPTG

to the culture medium.

cells using another fluorescent channel. Cells with a very low SoS induction
can now be detected, and the variability is globally increased.

Finally, we see that the distribution of the SoS response among the cells,
once rescaled by subtracting the mean and dividing by the standard devia-
tion, collapse once again onto a constant distribution that is rightly skewed
and corresponds quite well to a Frechet fit, as described in ref [111].

With this experiment, we also have access to the distribution of size of the
cells in the stressed population. For the lethal concentration, we see that the
size increases with time (Fig. 5.14(A)). This was expected, as the SoS response
is known to inhibit cellular division and causes the appearance of long fila-
mentous cells [193]. However, if we compare the dynamics of the mean size
increase (Fig. 5.14(C)) with the mean increase of the SoS fluorescent reporter
Fig. 5.13(C)), we notice that the size increase is slower. There is therefore a
delay between the induction of the SoS response and its effect on the mean
size of the cells.

For the sub-MIC concentration tested here, the increase in size is almost
null (Fig. 5.14(B)), which makes sense as the SoS response is not really in-
duced in this case. But just as for the SoS response distribution, we notice
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FIGURE 5.13: Fluorescence measurement of the SoS response
of single cells, with the new strain. Two liquid cultures are sub-
mitted to an antibiotic stress (Ciprofloxacine) at two different
concentrations, and sampled over time to measure the SoS re-
sponse of single cells between a glass slide and a cover slip
(A),(B) Fluorescence of the cells sampled at different times, with
mean in red, for (A) [Cip] = 16 ng/mL (MIC), and (B) [Cip] =
1.6 ng/mL. (C) Comparison of the mean fluorescence measured
over time at the two concentrations of Cip. (D) Comparison of
the coefficient of variation of the fluorescence, which is the ratio
of the standard deviation to the mean, for the two concentra-
tions. (E) Rescaled fluorescence distribution: (Fluo-Mean)/SD,
as in [111], and best Frechet Fit, for the [Cip] = 16 ng/mL (MIC)

case.
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FIGURE 5.14: Size of the cells under antibiotic stress.
Two liquid cultures are submitted to an antibiotic stress
(Ciprofloxacine) at two different concentrations, and sampled
over time. (A),(B) Size of the cells sampled at different times,
with mean in red, for (A) [Cip] = 16 ng/mL (MIC), and (B) [Cip]
= 1.6 ng/mL. (C) Comparison of the mean size measured over
time at the two concentrations of Cip. (D) Comparison of the
coefficient of variation of the size of the cells. (E) Rescaled size
distribution: (Size-Mean)/SD, for the [Cip] = 16 ng/mL (MIC)

case.

that there are some cells that are much longer than the others : the right hand
queue of the distribution is quite large.

The relative variability of the sizes is once against almost constant with
time (Fig. 5.14(D)), and if we rescaled the distribution of sizes as we have al-
ready explained, we get once again a collapse of the distributions at different
times (Fig. 5.14(E)). The distribution of sizes is rightly skewed, just like the
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distribution of the SoS response.
There is then a lot of similarities between the SoS response distribution

and the size distribution. The question that arises is to know whether these
quantities are correlated at the single-cell level. The answer, singularly, seems
to be negative: the correlation coefficient between the size and the intensity
of the fluorescence of the cells in green is quite low (Fig. 5.15(A),(C)). We
see here an interesting case of correlation at the scale of the population but
not at the single-cell level, at least not in our measurements. Other authors
have noticed this increase in mean cell size when the SoS response is induced
without any clear correlation at the single-cell level [207].

Even if the correlation is not true for all cells, we have noticed, both for
the size and the SoS response, that the right-side queue of the distribution
was quite long, especially for the sub-MIC case. We can then wonder if those
cells are the same: are the very long cells also the very bright cells ? To an-
swer this question, we need to select "long" or "bright" cells. We do so by
selecting the cells that have a size (respectively a fluorescence) that is higher
than the sum of the mean and the standard deviation of the sizes (respec-
tively fluorescence). It seems then that only ≈ 20% of the "very long" cells
are also "very bright" (Fig. 5.15(B)). The answer is then once again negative:
the very long cells are not the ones where the SoS response is induced the
most. Looking at the percentage of "very long" cells among the "very bright"
cells yields similar results.

However, we have to be aware that something is lacking in those mea-
surements to be able to draw definitive conclusions, which is the ability to
follow single cells over time. With this experiments, we only have samples
of the culture at every time, but the dynamics of the single-cell SoS induc-
tion and size increases are completely missed. For instance, the very bright
cells at the beginning could become the very long cells a few hours later be-
cause of the effect of sulA. The dynamics of the induction of the SoS response
are known to be complex and very precise at the single-cell level [201]. This
could explain the apparently counter-intuitive results that we get for the cor-
relation between the size and SoS response of the cells.

Cell Recovery after antibiotic treatment

Let us come back now on the question of the recovery after treatment. We
would like to see if the preliminary results that we got (see Fig. 5.11) are
reproducible. We would also like to see if the dynamics of the recovery, such
as the lag time or the growth rate of the colony emerging from a cell that has
survived are correlated with the initial SoS response of the cell.

Unfortunately, with the new strain, those measurements turned out to be
much more difficult. Indeed, the individual fluorescence of the cells was on
average much lower than with the previous strain, which makes them im-
possible to detect with a 30X magnification in the wells. To overcome this
challenge, we had to switch to a bigger magnification, to enhance the fluo-
rescence signal. The problem is that it meant switching to a 60X oil objective,
that has a much lower working distance. Therefore, to use this objective, the
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FIGURE 5.15: Correlation between size and fluorescence of the
single cells. (A) Correlation coefficient between the sizes and
the SoS fluorescence intensity of the single-cells over time. (B)
Percentage of "very bright" cells among the "very long" cells.
Cells are supposed to be very bright when their fluorescence
is superior to the sum of mean fluorescence plus the standard
deviation, and the same criterion is applied for the size. (C)
Scatter plot of the individual cell SoS fluorescence signal as a
function of their size, for the experiment with [Cip]=16 ng/mL,

for the different observation points.

PDMS part of the chip has to be attached onto a 100 µm cover slip, because
the 1 mm glass slides that we were usually using are too thick.

Moreover, if we want to record images of the growth of the colony at
37°C, we have to put the chip in a water bath to prevent the evaporation of
the droplets. This was usually made by placing the chip in a petri dish filled
with water, but with a 60X objective the thickness of the petri dish makes this
method unusable. We solved this issue by laser cutting a rectangular hole in
the bottom of the petri dish. Then, the PDMS chip, attached on the cover slip,
was bonded to the bottom of the petri dish, from below, by UV-activated glue
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that was deposed on the coverslip, see Fig. 5.16. Hence, the petri dish could
be filled with water, and the distance between the objective and the chip was
reduced enough to use the 60X oil objective.

PDMS chip attached 

on a thin cover slip

Laser cutting of the bottom

of a petri dish 

Chip attahced to a t
UV light

Surface covered with

UV-activated glue

UV-activated glue

(1)

(2)

(3)

(4)

FIGURE 5.16: Protocol to make the device for the recovery ex-
periment with a 60X objective. (1) A hole is cut with a laser in
the bottom of a petri dish. (2) A chip is attached onto a thin
cover slip, which is then covered with UV-activated glue on the
sides of the PDMS and (3) put from below in the hole of the
petri dish (4) UV light is shined on the whole system to stick
the cover slip to the bottom of the petri dish, making the whole
system impermeable when the petri dish is filled with water.
As the coverslip was sticked below the petri dish, it is accessi-
ble for direct wetting of the optical oil necessary to grab images

with a 60X objective.

Thanks to this experimental improvement, we could take images of the
growth in the chip with a 60X objective. We repeated then the experiment
described in section 5.3.2: we cultured some E. coli to exponential phase, and
then exposed them to Cipro at 5 ng/mL for three hours, before washing the
antibiotic and recording the growth. Not all of the bacteria were growing
into colonies after the treatment (see Fig. 5.17(A)). In this experiment, 19 of
the 34 monitored droplets exhibited bacterial growth. The growth after the
treatment was exponential (Fig. 5.17(B)).

However, it turns out to be difficult to find any correlations between the
growth parameters and the SoS response of the mother cell after the antibiotic
treatment. Neither the growth rate of the colony growing from this mother
cell (Fig. 5.18(A)), nor its lag time (Fig. 5.18(B)) seem to be correlated with
the initial green fluorescent signal of the mother cell, used as a proxy for the
SoS response. Even for the final size of the colony, that we have previously
found to be correlated in section 5.3.2, no correlation is found with this new
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FIGURE 5.17: Growth of the colonies after antibiotic treatment,
recorded with a 60X objective. The growth is measured using
the red fluorescence channel. (A) Fluorescence signal of the
drops over time. (B) Same, but in log scale for drops with grow-

ing cells only

bacterial strain (Fig. 5.18(C)). The correlations found previously could not be
confirmed.
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FIGURE 5.18: Correlation between the growth parameters and
the initial GfP fluorescence of the cell after antibiotic treatment,
which is related to the intensity of the SoS response of the cell.
(A) Growth rate as a function of the initial GfP fluorescence. (B)
Lag Time as a function of the initial GfP fluorescence. (C) Final
fluorescence signal of the drop (in the red channel) as a function

of the initial GfP fluorescence of the cell.

To see if some correlations were appearing, we tried to increase the con-
centration of antibiotic. However, the number of surviving and growing bac-
teria after the antibiotic treatment was then very low (for 10ng/mL, only 2
bacteria out of 30 were surviving). The number of bacteria that we can follow
in this experiment is very limited because we have to manually detect them,
and this is a very tedious task because their level of individual fluorescence is
low. Moreover, as the focal depth is low with the 60X objective, it is frequent
not to detect of a second bacteria is in the same droplet, but in another focal
plane, and then the growth parameters of the two colonies interfere and the
data have to be thrown away. For the same reason, bacteria can grow out
of the thin focal plane even if they grow in agarose, and it is hard to make
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sure that the whole colony is taken into account in the final measurement,
which could also be a reason for the lack of correlation. Overall, this experi-
ment may have to be re-thought to yield better results. For instance, bacteria
could be loaded on the chip together with the antibiotic. The fluorescence
signal of single bacteria could thus be monitored over time in the agarose
droplets during the antibiotic treatment. The antibiotic would afterwards be
directly removed in the chip through a phase change, and the monitoring of
the bacterial recovery would follow. By doing this, we could see if the indi-
vidual increase in fluorescent signal has to be taken into account instead of
the raw value at the end of the antibiotic treatment. A correlation between
this increase in fluorescent signal and the cell survival and recovery to the
antibiotic treatment may be found. The traps could also be made slightly
smaller to reduce the microscopy-related problems.

5.4 Summary and Conclusion

In this last Chapter, we have shown how our chip can be used to test the re-
sponse of bacteria to an antibiotic stress. First of all, we have discussed how
the minimal inhibitory concentration (MIC) of an antibiotic can be found by
loading several chips in parallel with the same bacterial inoculum but dif-
ferent concentrations of antibiotics. This methods represents a gain of space
and time when compared to classical MIC determination methods, such as
plating or the broth dilution method. Indeed, the chip measurement yields
a final result faster than those classical methods thanks to the low volumes
that are used. However, we have to increase the concentration of bacteria
with respect to what was used in the previous chapters in order to respect
the standardized inoculum size for MIC testing [162].

These experiments where several chips are loaded in parallel with differ-
ent concentrations of antibiotics can also be used to infer the chance for a
bacteria to grow despite the antibiotic stress. This can be made using basic
stochastic calculus and a digital analysis, which means counting the number
of droplets where bacteria have grown despite the antibiotics. This digital
measurement is accurate only for a finite range of bacterial concentration and
for a finite range of probability to survive the antibiotic stress. This limitation
have been illustrated with an example inspired by the literature [168].

Thanks to the ability offered by our microfluidic technology to control
the environment of the bacteria over time,the time-kill curves of an antibi-
otic with our chip can also be obtained. Once again a digital analysis is used
to infer the fraction of viable cells as a function of the exposure time to the
antibiotics from the chips measurements. Another great experimental possi-
bility offered by our chip is to perfuse the droplet array with a concentration
gradient of any compound, each row of the droplet array being submitted to
a different concentration. We have also suggested how this possibility could
be used in the future in the lab to confirm some theoretical and numerical
results of the literature [179] about the dynamical effects of antibiotics on the
growth rate of bacteria.
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Finally, some preliminary experiments to study the SoS response of bac-
teria in our chip have been conducted, in collaboration with the Mazel lab
in Institut Pasteur. We have shown that our chip could be used to study
the recovery of individual bacteria to an antibiotic treatment and correlate
it with the individual SoS response of the bacteria. Experimental improve-
ments were made, both on the microbiology side in the Mazel group and on
the microfluidics and microscopy side in our group. The preliminary results
have yet to be confirmed, but this project has led to obtain a common grant
to continue the collaboration between the two labs on this subject.
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Chapter 6

Conclusion

Mais oui mais ouiiii, l’école est finie !
Sheila

It is now the time to conclude this thesis. We will try first to give an
overview of what has been done in this PhD. Then we will propose some
ideas of future research in the group, and finally expose personal perspec-
tives on some problems that have been discussed throughout this work.

Let us begin with the advances that have been completed during this PhD.
My work in the lab begun a few months after the microfluidic platform used
throughout this whole project had begun to be used to cultivate bacteria.
The design was already in its final state and some data had already been ob-
tained for the parallel growth curves of bacteria in the droplets [97]. On the
pure technological microfluidic side, the work had in some way already been
done before I begun my PhD, and no major improvements were still needed.
My personal contribution was to precisely quantify and discuss some aspects
of this technology that are important to conduct microbiology experiments
in the chip. These aspects were a little bit left aside in the previous works
of the group as the focus was to develop the microfluidic chip, which is not
simple, and to establish a proof-of-concept of its efficiency. In particular, we
have seen in Chapter 2 that the relation between the measured droplet flu-
orescence and the number of cells per droplet was deciphered, leading to
new questions on how the growth of bacteria in droplets could be compared
with batch growth in liquid flasks. The image analysis aspect was also one of
the constant investigation themes in this work, notably the background noise
question that is evoked in Chapter 2. The question of the volume heterogene-
ity of the droplets was also investigated both numerically and theoretically.
Its consequence on the distribution of the number of bacteria per droplet was
hence modeled. Last but not least, the question of the importance of the cell-
to-cell fluorescence heterogeneity of the bacteria for the droplet measurement
was also treated quantitatively and related to single-cell experiments. As a
whole, even if they do not represent ground breaking scientific advances, it
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was important for the group to treat these technical questions, in order to be
able to serenely push further the microbiology experiments in droplets.

Nevertheless, the core of this thesis was the modeling of the variability of
the growth curves obtained in the microfluidic droplets. As we have already
mentioned, some growth curves had already been obtained in the group be-
fore, but their measurement was systematized and improved in terms of re-
producibility and time-resolution. The variability in terms of population size
between the droplets was a mystery, and it was resolved during this PhD. We
have shown that using a pre-existing mathematical model encompassing the
cell-to-cell variability of division times, and adding to this stochastic model
other sources of randomness due to our experimental system, the variability
between the growth curves could be quantitatively explained, at least dur-
ing the exponential phase of the growth. Moreover, not only the variability,
but the shape of the distribution of number of cells per droplet could be pre-
dicted. Our extended stochastic growth model could be used to model the
growth of bacteria in micro-droplets, which is itself a booming field [55]. As
a phenomenological model, it can also be used as a basis for any situation
in which the growth of a quantity is exponential and stochastic. There are
countless examples, from the spread of epidemics to the growth of cancerous
tissues [85]. We have also shown numerically that the models of single-cell
division discussed in the literature yield similar results at the scale of rel-
atively small populations of bacteria microfluidic in droplets, which could
interest both the microfluidcs and microbiology communities working with
these models. It is indeed a question of intense current research to try to
bridge the gap between stochastic individual division and population dy-
namics [82, 86].

The initial objective of this study, however, was to go backwards in this
scheme: if the droplet-to-droplet variability is related to the cell-to-cell vari-
ability, can we quantify the cell-to-cell variability from the droplet measure-
ments ? It turns out to be difficult, because the variability among droplets
in population size is dominated by the other sources of stochasticity that we
have evoked. The equations of our stochastic model relating the cell-to-cell
variability to the population variability in exponential phase are then not
usable for inference. We have also tried some advanced mathematical meth-
ods existing in the literature, based on pseudo-likelihood method [92], that
matched our experimental observation scheme, but they failed for the same
reason.

To overcome these difficulties, and try by other means to retrieve the
cell-to-cell variability of exponential times from the growth measurement in
droplets, we developed a de novo inference scheme based on following each
individual droplet in time. In fact, the growth trajectory of each droplet de-
viates from a pure exponential growth because of the stochasticity of divi-
sion times at the single-cell level. We quantified this deviation by computing
quantities that we called the residuals of the trajectory, and showed that the
variance of these residuals, if properly measured, can be used for inferring
the variability of division times at the single cell scale. This inference model
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proved to be efficient despite our experimental constrains such as the ini-
tial Poisson distribution for the number of cells per droplet: we validated
it on simulations of bacterial growth mimicking these constrains. Unfortu-
nately, we could not get it to work on our experiments because of the un-
certainty that we have on the relation between fluorescence and number of
cells. Notwithstanding, as we have already said, this new inference method
could still be used by other groups that have different measurement methods
for the growth of bacteria, or even for populations of cells for which a direct
measurement of the number of cells could be available, such as yeast.

Last but not least, some experiments with antibiotics were conducted dur-
ing the course of this PhD. It was the beginning of microbiology in the lab, so
there was a lot to learn, particularly on the methodology side. A lot of mea-
surements were therefore done without systematic protocols, particularly at
the beginning of the thesis.

Having our microfluidic chip is in a sense both a advantage and a draw-
back. An advantage, because it allows us to collect a lot of data in a brand
new way, so previously unknown data about bacteria and antibiotic can be
produced. However, as it is a new way to look at those interactions, it is
sometimes hard to compare those results with the literature. Nevertheless,
we have proved that using our chip could result in a gain of space and time
for testing the minimal inhibitory concentration of a strain, for instance. We
have also shown how to compare our digital measurements with direct plat-
ing measurements of the number of viable cells, for instance, showing that
if the correct range of dilution was chosen, using the chip could result once
again in a gain of space and time.

The chip was also used to study the SoS response of bacteria, which is
a broad bacterial stress response induced when the DNA of the cell is dam-
aged. A fruitful collaboration between our group and Didier Mazel’s group,
which has been studying these questions at Institut Pasteur for a long time,
was started. The chip could be used to encapsulate single cells, monitor
their stress response and see how this influences the colony that can grow,
or not, from this single cell once the antibiotic stress was removed. While
some preliminary results seemed to indicate that there indeed was a corre-
lation between the SoS response of the mother cell, measured at the end of
the antibiotic treatment, and the size of the colony growing from this cell,
more systematic experiments done at the end of the PhD could not confirm
this correlation. But along the way, new strains have been engineered on the
microbiology side and new experimental techniques to observe them on the
microfluidic side, and this project is on-going in the lab.

This brings us to the future projects that could be made in continuation
of this PhD. We have already mentioned in Chapter 5 how the chip could
be used to confirm numerical results [179] about the dynamical growth of
response of bacteria submitted to a sub-lethal antibiotic stress. The chip could
also be used to study other stress responses than the SoS response, based
on the same method (encapsulation of individual cells and correlation of its
stress response to the growth parameters of the colony growing from this
stress response). New strains would need to be engineered, but for instance
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the general stress response of the bacteria, mediated by RpoS, could hence be
studied [209].

In fact, other interesting works have been conducted during this PhD,
but did not make it to the final contents of the thesis because they are still at
the stage of preliminary results and would need continuation. In particular,
a collaboration with the lab of Guy-Franck Richard of Institut Pasteur has
been started in order to study yeast cells with the microfluidic chip. The
aim is to characterize the dynamics of DNA double strand breaks repair in
yeast cells. The cells are engineered so that they become fluorescent when
they have repaired their DNA, as shown in an example time-lapse image in
Fig. 6.1. The characteristics of the DNA repair already have been studied at
a population level [210], and the objective was to study it at the cell level in
the chip. The growth in itself in microfluidic droplets turned out to be much
more variable than what was expected, with some cells that randomly stop
growing. New questions could thus emerge from these preliminary results.

FIGURE 6.1: Saccharomyces cerevisiae yeast cells dividing and
repairing their DNA in a microfluidic droplet. One image every

2 hours for 34 hours.

This yeast cell example also illustrates how the skills acquired during this
PhD by studying bacteria in micro-droplets were easily transferable to other
biological subjects. The image analysis techniques and the statistical analysis
of the data developed initially for the growth of bacteria turned out to be use-
ful, for instance, for the analysis of the transfection of mammalian cells cells
with liposomes [211]. They were also useful to characterize the link between
spatial organization and regulation of important proteins in 3D human cells
aggregates [212] (submitted to Science Advances).

Let us finish by sharing some personal thoughts about some subjects
treated in this PhD. First, about the use of microfluidics. The approach devel-
oped in this PhD was to use microfluidics as a tool to increase the statistics
of classical microbiology experiments. Hence, data about the variability of
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the very classical exponential growth of bacteria in a well defined medium
could be obtained, and inference methods developed. However, I think that
microfluidics can be used in a different and maybe more fruitful way: it can
be used to mimic more complicated micro-environments than well-stirred
lab-defined culture medium. This kind of work is for instance developed in
the lab of Robert Austin. They have shown that wild-type E. coli could evolve
resistance to Ciprofloxacin in a very short time (a few hours), provided that
they are cultivated in a microfluidic system called the "Death Galaxy" [214].
This system consists of poorly connected micro-chambers. On both sides of
the micro-chamber array, culture medium flows, with pure culture medium
on one side an antibiotics on the other. This medium can diffuse slowly in
the array through nanoslits that are 100nm deep, see Fig. 6.2. It mimics how
small ecological niches, in nature, can evolve resistance much more rapidly

FIGURE 6.2: Taken and adapted from [213]. The "death galaxy"
microfluidic system developed in Austin’s lab. Left Column:
design of the system. Small chambers (10 microns height), in
red, are connected by small channels that have the same height
but are only 10 microns wide. Bottom: Scanning electron mi-
croscope image of the array. Right Column: apparition of the
resistance to Ciprofloxacine after only 4 hours in the device, and
subsequent spreading in the system (the green color indicates

the presence of bacteria thanks to a fluorescent reporter).
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then a globally mixed population. It is due to the fact that the fitness land-
scape is explored very differently. Very interesting concepts about evolution
are therefore illustrated by this experiment [213]. Microfluidics are here used
to test concepts rather than increasing statistics.

This is, to my opinion, a direction that would be interesting for the use of
microfluidics for fundamental research. But microfluidics are not only used
for this purpose. These technologies are also more and more transferred and
becoming available for clinical use. With a market that is thought to be val-
ued at more than 25 billion dollars in 2025 [215], it is a booming sector. Un-
fortunately, it seems that the goal of the vast majority of people working on
getting microfluidic technologies out of the research labs is to make their
share in this big pie by patenting and commercializing these technologies at
a high cost. Multiple examples can be found, such as the now multi-million
valued microfluidic start-up Fluidigm. I personally think that this capitalistic
approach is a bit of a shame. Other approaches could be much more valu-
able for everyone but financial investors. Open-source, community-driven
approaches exist though, such as Metafluidic [216].

Another subject that we have evoked in this PhD was the antibiotic crisis:
there is a very fast and global spread of antibiotic resistance [147]. we need
to reduce our misuse of antibiotics, because the more we use them, the more
new resistant strains emerge. That’s why new susceptibility tests, based for
instance on microfluidic technologies such as ours, could be of great help.
But if we take another look, the biggest misuse of antibiotics does not come
from human therapeutic use. More than 50% of the antibiotics used in the
US are used in agriculture [217], and not even to treat animals but mostly
as growth promoting factors. This is very dangerous, as these antibiotics
spread in the environment, and resistant mutants can emerge, that can be
harmful to humans as well [218]. To reduce these risks, as classical country
farming cannot provide an exponentially growing human population with
enough animal products, we have no choice but to reduce our dependence
to animal products in our diet. This would, moreover, also have a positive
impact on climate change, as we recall that agriculture alone is responsible
for≈ 15% of the global emissions of greenhouse gases [219], while switching
to a less animal-dependent diet could reduce these emissions by as much as
80% [220].
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Materials and Methods

A.1 Bacterial strains and media

Chapters 2, 3 and 4
Two strains were used in these chapters, one Escherichia coli (referred to as

E. coli) and one Bacillus subtilis.
The strain E. coli AV04 is a gift from Antoine Vigouroux at Institut Pas-

teur (Paris, France) and constitutively expresses an mCherry fluorescent re-
porter [126].

Bacillus subtilis strain GM2938, a kind gift from Dominique Le Coq (Mi-
calis Institute, INRA, Université Paris-Saclay), has an mCherry fluorescent
reporter integrated by double crossing in amyE, and a resistance gene for
spectinomycin [amyE::PhyperSpank-mCherry "Rudner", lacI/SpecR]. The flu-
orescence is induced by the addition of IPTG (SIGMA-ALDRICH, St. Louis,
Missouri). All growth media used for this strain contain IPTG at a concen-
tration of 1 mM.

Bacteria are grown in rich LB medium (SIGMA-ALDRICH L3022), sup-
plemented with IPTG at a concentration of 1 mM in the case of B. subtilis.
For all experiments, bacteria are grown overnight in fresh liquid medium
from an LB-agar plate, then re-diluted at 1/200 in fresh medium until they
reach an OD600 ∼ 0.2 (Amersham, Little Chalfont, UK). Bacteria are then
used for the on-chip or single cell experiments. For B. subtilis, we also added
spectinomycin (SIGMA) at 0.1 mg/ml in the overnight culture to avoid con-
taminations. All culturing steps were conducted at 37°C.

Chapter 5
Two other E. coli strains were used in this chapter.
The first one is a nice gift from Zeynep Baharoglu at Institut Pasteur

(Paris, France). It was engineered from E. coli MG1655, with a GfP fluores-
cent reporter for SoS response (GfP under the control of recN, see complete
description in Ref. [6]). It was used for all experiments with Gentamicin and
the preliminary experiments of SoS response. Those were conducted in LB
medium.

The second one was still engineered from E. coli MG1655 in the group
of Didier Mazel, but by Julia Bos. This time, two fluorescent reporters were
integrated, directly on the bacterial chromosome. For the measurement of the
SoS response, a PsfiA-mGFP integration plasmid was integrated at HK022
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site of the E.coli MG1655 genome, following the protocol described in [205].
SfiA (or SulA) is the SOS-induced division inhibitor that depolymerises the
FtsZ ring and thus triggers filamentous growth when cells are exposed to
DNA damage [206]. It has already been used for single-cell studies of the
SoS response [207], as it is known to be induced 100-fold during the SoS
reponse [208]. The second fluorescent reporter (mCherry) was placed at the
Lac site of the genome, and is inducible by addition of IPTG to the medium.
It will allow us to measure the size and the growth of the colonies.

This second strain was used for the later experiments about the SoS re-
sponse and the comparison between tube and chip MIC testing with Ciprofloxacine.
These experiments were made using MOPS rich defined medium, supple-
mented with 0.4% glucose [204].

A.2 Microscopy

For all experiments, the chips were placed on the motorized stage of an epi-
fluorescence Nikon-Ti microscope, with a temperature control at 37°C. Flu-
orescence images of the droplets are taken at a 10X magnification with an
EMCCD Camera (Andor Technologies, Belfast, UK). About 800 droplets can
be scanned in 5 minutes. The resolution is 1.6µm/pixel.

For binary counting of the droplets in the MIC testing experiments of
Chapter 5, instead of using an epi-fluorescence motorized microscope, we
can use a simpler and faster slide scanner (SensoSpot®-Fluorescence, Senso-
vation AG, Germany). We can obtain a low-resolution image of the chip in a
few minutes, at a resolution of 6.5µm/pixel, and up to 4 chips can be scanned
at the same time.
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Mathematical complements

B.1 Equivalence

Throughout this thesis, the notation ∼ is used in its mathematical sense, "is
equivalent to", meaning that :

f (t) ∼ g(t)⇔ f (t)
g(t)

t−→∞−−−→ 1. (B.1)

B.2 Moments of a distribution

The moments of a random variable X are defined as follows:

µk = E
[
(X− µ)k

]
. (B.2)

B.3 Convergence in distribution : definition and
lemma

Let (Xn)n∈N be a sequence of random variables. (Xn)n∈N convergences in
distribution to a random variable X if and only if for every function f that is
continuous and bounded, E ( f (Xn)) −−−→n→∞

E ( f (X)). We will note this:

Xn
d−−−→

n→∞
X. (B.3)

We are also going to state here a lemma that is useful for the demonstra-
tion of the Gaussian distribution of the residues.

If

• (Xn)n is a sequence of random variables such that Xn
d−−−→

n→∞
X

• Nt is a random variable with integer values, such that Nt
d−−→

t→∞
Y

• Nt,Xn are independent

Then
XNt

d−−→
t→∞

XY. (B.4)
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The proof is very easy to do, it is enough to understand that as Xn and Nt
are independent

E( f (XNt)) = E( f (XNt)|Nt) for every bounded and continous function f

Then we can apply to the right side the convergence in distribution of (Xn),
and we obtain naturally the convergence in distribution of (XNt)t.

B.4 Sum of independent and identically distributed
variables

Let’s consider a discrete random variable N, and (Xi)i∈(1..N), a collection of
i.i.d random variables, that are also independent of N. We want to study the
random variable Y defined as:

Y =
N

∑
i=1

Xi. (B.5)

We would like to compute the variance and expected value of Y. Let’s
start with the expected value, and use the law of total expectation to write:

E(Y) = E (E(Y|N)) = ∑
n

E(Y|N = n)P(n), (B.6)

with E(Y|N = n) = E

(
n

∑
i=1

Xi|N = n

)
, (B.7)

and as the Xi are identically distributed, and thanks to the conditioning, we
get simply:

E(Y|N = n) = nE(X). (B.8)

Therefore we get the value of the expected value:

E(Y) = ∑ nP(n)E(X) = E(X)E(N). (B.9)

Now let’s examine the expected value of Y2:

E
(

Y2
)
= E

(
N

∑
i=1

N

∑
j=1

XiXj

)
, (B.10)

and by linearity:

E
(

Y2
)
= E

(
N

∑
i=1

X2
i

)
+ E

(
N

∑
i,j,i 6=j

XiXj

)
. (B.11)
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The first term of the sum can be simplified by using once again the law of
total expectation:

E

(
N

∑
i=1

X2
i

)
= ∑

n
E

(
n

∑
i=1

X2
i |N = n

)
P(n)

= ∑
n

E
(

X2
)

nP(n)

= E
(

X2
)

E(N). (B.12)

The second term is slightly more complicated, but we sill apply the sale rule,
keeping in mind that Xi and Xj are independent as i 6= j:

E

(
N

∑
i,j,i 6=j

XiXj

)
= ∑

n
E

(
n

∑
i,j,i 6=j

XiXj|N = n

)
P(n)

= ∑
n

(
n

∑
i,j,i 6=j

E(X)2

)
P(n)

= E(X)2 ∑
n
(n(n− 1))P(n)

= E(X)2
(

E
(

N2
)
−E(N)

)
. (B.13)

We can gather the two terms to obtain:

Var(Y) = E
(

Y2
)
−E(Y)2 = E

(
Y2
)
−E(X)2E(N)2

= E
(

X2
)

E(N) + E(X)2
(

E
(

N2
)
−E(N)

)
−E(X)2N2

= E(N)
(

E
(

X2
)
−E(X)2

)
+ E(X)2

(
E
(

N2
)
−N2

)
, (B.14)

which gives us the final result:

Var(Y) = E(N)Var(X) + E(X)2Var(N). (B.15)

B.5 Gamma division times in a Bellman-Harris model

We will present here what the Bellman-Harris model yields when we use
division times τ that follow a Gamma distribution. The Gamma distribution
has the following density function that relies on two parameters a and b, such
that:

Γa,b(t) =
1

baΓ(a)
ta−1e

−t
b , (B.16)

where Γ(a) is the value of the Gamma function in a:

Γ(a) =
∫ ∞

0
ta−1e−tdt. (B.17)
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Foe the computation of the results of the Bellman-Harris model, we know
that a lot depends on the random variable X = e−ατ. And in this case, it is
very easy to compute the expected value of X, because:

E(X) =
∫ ∞

0
e−αtΓa,b(t)dt

=
∫ ∞

0
e−αt 1

baΓ(a)
ta−1e

−t
b dt

=
(1/b + α)a

ba

∫ ∞

0

1
(1/b + α)a Γ(a)

ta−1e−t(1/b+α)dt

=
(1/b + α)a

ba

∫ ∞

0
Γa,b/(1+bα)(t)dt

=
(1/b + α)a

ba . (B.18)

Therefore we have, for the value of the growth rate α, that is solutione of
E(X) = 1/2:

α =
1
b

(
2

1
a − 1

)
. (B.19)

The same trick as the one used in the above computation (exhibiting ex-
pected values of other Gamma distribution) can be also used to compute
E(X2) and the value of n1, and hence we get all the desired integral compu-
tations of the Bellman-Harris model.

We will just show the results here, we have

n1 =
1
2a

2
1
a

2
1
a − 1

, (B.20)

E(X2) =
1

(2αb + 1)a . (B.21)

This last equation can be injected into eq. (3.9) to get the coefficient of
variation for the number of cells in the exponential phase.

The same trick works also very well for the more complicated cases of
different division times, the same kind of integral computation appears.
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Approximated volume of a big
droplet

In this Appendix, we are going to compute an approximation for the volume
of droplets that are bigger than the trap. Numerical simulations of the shape
of this kind of droplet, along with the parameters of the problem, can be
found on Fig. C.1.

V0

R

r

a

h2

h1 = 2r

(C)

z

ρV1

V2

h(ρ)

r

(D)

FIGURE C.1: (A) and (B) numerical simulation of a droplet big-
ger than the trap (volume 2.3 nL): (A) bottom view and (B) side
view. (C) Geometrical parameters of the problem. (D) Zoom on
the semi-spherical crown and definition of the cylindrical coor-

dinates.
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For this purpose, we are going to make some approximations. We will
first consider that the volume variation of this kind of droplet is mostly due
to the squeezed part of the droplet that extends in the chamber. The volume
of the part of the droplet that is in the trap will be considered to be constant.
With our parameters, that means that V0 is a constant. Moreover, we will
approximate the value of V0 by the volume of the trap, which has a cuboid
shape, we will therefore use:

V0 ≈ a2 · h2. (C.1)

The other part of the droplet is the pancake-like part in the chamber of
the chip. Its real shape is complex, as we can see on the simulations C.1. We
will approximate it as a circularly symmetric shape composed of two parts.
First, a cylindrical center of volume V1. Its radius is R and its height is the
height of the chamber h1. Then, a crown that surrounds this cylinder, and
has a semi-circular section of radius r = h1/2. This crown has volume V2.

The volume of the cylindrical central part can be easily computed:

V1 = πR2h1. (C.2)

The last part of the droplet is the semi-spherical crown around the cylin-
der. The volume of this part is a little bit more difficult to compute. We will
place ourselves in cylindrical coordinates, and we have:

V2 =
∫ 2π

0

∫ r+R

R

∫ h(ρ)

−h(ρ)
ρdρdzdθ, (C.3)

where ρ is the radial distance, θ the azimuth angle and z the height, see
Fig. C.1(D). Since the crown shape is circularly symmetric, but also symmet-
ric with respect to the plane z=0, we can get rid of the integrate over θ, and
consider only the upper part of the crown:

V2 = 4π
∫ r+R

R

∫ h(ρ)

0
ρdzdρ. (C.4)

As we consider that the shape of the crown is semi-spherical, we have the
following relation between the height of the crown and the radial coordinate
ρ:

h(ρ) =
√

r2 − (ρ− R)2. (C.5)

We can then integrate over z to get:

V2 = 4π
∫ r+R

R
ρ [z]
√

r2−(ρ−R)2

0 dρ. (C.6)

We substitute the coordinate ρ by s = ρ− R to get:

V2 = 4π
∫ r

0
(s + R)

√
r2 − s2ds, (C.7)
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V2 = 4π

(∫ r

0
s
√

r2 − s2ds + R
∫ r

0

√
r2 − s2ds

)
. (C.8)

To compute the second term of the sum, we have to set u = s/r:

V2 = 4π

([
−1

3
(r2 − s2)

3
2

]r

0
+ Rr2

∫ 1

0

√
1− u2du

)
, (C.9)

and with u = sin(t):

V2 = 4π

(
r3

3
+ Rr2

∫ π/2

0
cos2(t)dt

)
. (C.10)

To compute
∫ π/2

0 cos2(t)dt, we use the well-known formula:

cos2(t) =
1 + cos(2t)

2
, (C.11)

which yields the final result:

V2 = 4π

(
r3

3
+ Rr2 π

4

)
. (C.12)

Therefore the total volume of the droplet is the following:

V =
4π

3
r3 + π2Rr2 + 2πR2r + a2 · h2, (C.13)

and the projected area measured from below the droplet is the projected area
of the squeezed part, which is:

A = π (R + r)2 . (C.14)

R can be varied and those two equations combined to get the dotted yellow
line of Fig. 2.9(B).
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Appendix D

Residuals and Noise

D.1 Additive noise

The first kind of noise that we can think of is a simple additive noise, which
can be written as follows:

Fluo(t) = a f N(t) + η(t). (D.1)

Where η models the noise and can be at first approximation taken as a
Gaussian: η(t) ∼ N

(
0, σ2

η

)
. We will make two hypotheses on η. First, we

consider that η is independent of N. Second, we consider that, as a random
noise, it is also not correlated in time, which means that for our observations
η(ti) and η(ti+1) are independent.

In this case, the residuals can be simply computed as follows:

ResFluo
i = Fluo(ti+1)− Fluo(ti). (D.2)

ResFluo
i = a f N(ti+1) + η(ti+1)− a f N(ti)eα∆t − η(t)eα∆t. (D.3)

And, because of the independence hypothesis that we mentioned above,
if we take the variance of the last equation, we get:

Var
(

ResFluo
i

)
= a2

f Var (Resi) + σ2
η

(
1 + e2α∆t

)
. (D.4)

The additive noise thus adds a constant part to the expression of the resid-
uals. This constant part is directly proportional to the variance of the noise.
As the residuals increase exponentially with time, at long times the addi-
tional variance due to the noise will be completely negligible, but for short
times, it can overcome the contribution of the residuals, see Fig. D.1. There
are thus two asymptotic regimes: at short times, the variance of the residuals
is constant and proportional to the variance of the noise, and at long times,
it is exponentially growing with rate α. At the transition between those two
regimes, the residuals do not evolve exponentially, but if, unfortunately, this
is the only region that we can see in the experiments, this could explain the
decrease of the slope that we see in the experiments.

Hence, if we choose manually the value of a f , the experimental results
match these numerical ones quite closely (Fig. D.1[A],[B], black plain line),
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for an estimated ση ≈ 2. However, the fact that this difference of slope hap-
pens in a similar way for different bacterial strains and different settings of
the microscope, which are parameters that would change the importance of
the additive noise, leads us to think that their might be another explanation.
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FIGURE D.1: Colors: Influence of the additive noise on the
residuals: for a full E. coli simulation (same as Fig. 4.2), when
varying the variance of the noise ση . Plain line: theory (eq. D.4),
circles: simulations. [A] Variance of the residuals in log scale
[B] Variance of the residuals divided by the mean number of
cells. In black, the results of a typical experiment (same as in

chapter 2, 3), with an arbitrary chosen value of a f .

D.2 Multiplicative noise

The experimental noise could be not only additive, but also multiplicative,
meaning that we could have:

Fluo(t) = a f η(t)N(t). (D.5)

With η(t) being a random variable, independent of N(t), with mean 1 and
standard deviation ση. This multiplicative modelization of the experimental
noise may sound stranger than the more common additive one, but it could
make sense if we think that the background in the fluorescent images had to
be divided and not subtracted to be correctly removed, see Chapter 2. We
will also consider that the noise is not correlated in time.

If we measure the residuals in this case, we would get:

ResFluo
i = a f η(ti+1)N(ti+1)− a f η(ti)N(ti)eα∆t. (D.6)

We are going to use the two following lemmas: if X and Y are indepen-
dent random variables, then the expected value of the product is:

E(XY) = E(X)E(Y). (D.7)

And the variance of the product is:

Var(XY) = Var(X)Var(Y) + Var(X)E(Y)2 + Var(Y)E(X)2. (D.8)
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With lemma D.7, it is easy to see that the residuals keep the same mean
if we multiply them by an independent noise. Let us examine now their
variance:

Var
(

ResFluo
i

)
= a2

f

[
Var(η(ti+1)N(ti+1)) + e2α∆tVar(η(ti)N(ti))

−2eα∆tcov (η(ti)N(ti), η(ti+1)N(ti+1))
]

. (D.9)

For the first two terms, it is easy to see with lemma D.8 that we get, since
E(η(t)) = 1:

Var(η(ti)N(ti)) = σ2
ηVar (N(ti)) + σ2

ηE(N(ti))
2 + Var (N(ti)) . (D.10)

For the covariance term, we get:

cov (η(ti)N(ti), η(ti+1)N(ti+1)) = E (η(ti)N(ti)η(ti+1)N(ti+1))

−E (η(ti)N(ti))E (η(ti+1)N(ti+1)) ,
(D.11)

and because of the independence:

cov (η(ti)N(ti), η(ti+1)N(ti+1)) = E(η(ti))E(η(ti+1))E (N(ti)N(ti+1))

−E(η(ti))E (N(ti))E(η(ti+1))E (N(ti+1))

= cov (N(ti), N(ti+1)) .
(D.12)

We have to use here the expression of the residuals in terms of the covari-
ance:

Var (Resi) = Var(N(ti+1)) + Var(N(ti))e2α∆t − 2cov (N(ti+1), N(ti)) .
(D.13)

We gather the three terms of the sum to get:

Var
(

ResFluo
i

)
= a2

f

[
Var (Resi) + σ2

η

(
e2α∆tE(N(ti))

2 + E(N(ti+1))
2

+e2α∆tVar (N(ti)) + Var (N(ti+1))
)]

= a2
f

[
Var (Resi) + σ2

η

(
e2α∆tE(N(ti)

2) + E(N(ti+1)
2)
)]

.
(D.14)

Here we will have to use equivalents and not real equalities, but for long
times, we know thanks to Bellman and Harris (see Chapter 3) that:

E(N(ti+1)
2) ∼ ñ2e2αti+1 ∼ ñ2e2α(ti+∆t) ∼ E(N(ti)

2)e2α∆t. (D.15)

Therefore, we obtain:

Var
(

ResFluo
i

)
∼ a2

f

(
Var (Resi) + 2σ2

ηe2α∆tE(N(ti)
2)
)

. (D.16)
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We thus obtain a corrective term that is not constant, contrary to the ad-
ditive noise, but rather proportional to the expected value of the square of
N(t), which evolves in e2αt. We can check the influence of this noise terms
numerically (Fig. D.2)
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FIGURE D.2: Influence of the multiplicative noise on the resid-
uals: for a full E. coli simulation (same as Fig. 4.2), when vary-
ing the SD of the noise ση . Plain line: theory (eq. D.16), circles:

simulations. Variance of the residuals in log scale

The multiplicative noise will then increase the rate of growth of the vari-
ance of the residuals (that is proportional to eαt) rather then decreasing it.
Hence it cannot explain what we see in the experiments.

D.3 Heterogeneity of the fluorescence

Another source of noise in the experiment can come from the heterogeneity
of the fluorescence signal, which is not homogeneous among the cells but
varies from one bacteria to another, even if the cells are isogenic [111]. In this
case, the relation between the fluorescence and the number of cells can be
written as:

Fluo(t) =
N(t)

∑
i=1

ai
f (t). (D.17)

Where ai
f (t) represents the fluorescence signal of cell i at time t. To sim-

plify the computations, we will consider that the fluorescence signals of the
cells are independent, and that they are also independent in time. These are
of course simplifying hypotheses, as the fluorescence signal is probably cor-
related for one cell from time ti to time ti+1 for instance, but as we average
on a lot of cells, these effects are negligible compared to the heterogeneity in
itself.

We can then compute the residuals as follows:

ResFluo
i = Fluo(ti+1)− Fluo(ti)eα∆t. (D.18)
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FIGURE D.3: Influence of the fluorescence heterogeneity on
the residuals: for a full E. coli simulation (same as Fig. 4.2),
when varying the SD of the fluo σf . Plain line: theory (eq. D.26),

circles: simulations. Variance of the residuals in log scale

If we compute the variance of the residuals, we get

Var
(

ResFluo
i

)
= Var (Fluo(ti+1)) + Var (Fluo(ti)) e2α∆t

− 2cov (Fluo(ti+1), Fluo(ti)) . (D.19)

For the first two terms, we can just use the formula of the sum of i.i.d
variables (Appendix B.4) to get:

Var (Fluo(ti)) = Var

(
N(ti)

∑
i=1

ai
f (ti)

)
(D.20)

= a2
f Var(N(t)) + σ2

f E(N(t)). (D.21)

For the covariance term, we are going to use the law of total probability.
First we can note that, because the ai

f (t) are independent, if we condition by
N(t), N(t + 1), we have:

E (Fluo(ti+1)Fluo(ti)|N(ti+1), N(ti)) = E (Fluo(ti+1)|N(ti+1), N(ti))

×E (Fluo(ti)|N(ti+1), N(ti))

= a2
f N(ti)N(ti+1).

(D.22)
Then we see that with the law of total probability:

E (Fluo(ti+1)Fluo(ti)) = E (E (Fluo(ti+1)Fluo(ti)|N(ti+1), N(ti))) (D.23)

= a2
f E (N(t)N(t + 1)) . (D.24)

Therefore we have simply:

cov (Fluo(ti+1), Fluo(ti)) = a2
f cov (N(ti+1, N(ti)) . (D.25)
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And we can inject this expression in the formula of the variance, using
eq. (D.13):

Var
(

ResFluo
i

)
= a2

f

[
Var (Resi) +

σ2
f

a2
f
E(N(t))eα∆t

(
eα∆t + 1

)]
. (D.26)

Therefore, the heterogeneity of the fluorescence does not change the rate
of growth of the residuals, since the second term of the sum is proportional
to E(N(t)), but rather adds a constant value (in log scale). This is verified on
the simulations (Fig. D.3). The heterogeneity of the fluorescence is also not a
good candidate to account for what we wee in the experiments.
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Appendix E

URLs for Supplementary Movies

The movies presented in the text of this PhD can be found at the following
links:

Supplementary Movie 1 https://figshare.com/s/44346599fd0cf67b50db

Time-lapse movie of the growth of B. subtilis in microfluidic droplets (LB
medium). One image every 10 minutes, 8 hours of growth are displayed.
Bright field and fluorescence images are superposed with fake red colors for
fluorescence images.

Supplementary Movie 2 https://figshare.com/s/26a198938d6ea166e387

Time-lapse movie of the growth of E. coli in microfluidic droplets (LB medium
with agarose gel). One image every 30 minutes, 12 hours of growth are dis-
played. Bright field and fluorescence images are superposed with fake green
color for fluorescence images.

Supplementary Movie 3 https://figshare.com/s/0c874766dac94012ce2f

Numerical shape (kernel fit) of the distribution of the number of cells rescaled
by exp(αt), for a time varying from 0 to 300 min, with a 5 min time step.
Bellamn-Harris classical case with Gaussian division times: same simulation
as on Fig. 3.3, with a coefficient of variation for the division times of 0.2.

Supplementary Movie 4 https://figshare.com/s/e7f3062444e272cfda41

Numerical shape (kernel fit) of the distribution of the number of cells rescaled
by exp(αt), for a time varying from 0 to 300 min, with a 5 min time step.
Bellamn-Harris classical case with Gaussian division times: same simulation
as on Fig. 3.8, with a coefficient of variation for the division times of 0.2.

Supplementary Movie 5 https://figshare.com/s/aa0c94a1f04c9067e42f

Description: Shape (kernel fit) of the distribution of the fluorescence of the
droplets in the experiment described in Fig 2.7 rescaled by the mean fluores-
cence signal, for a time varying from 74 to 274 min, with a 5 min time step.

https://figshare.com/s/44346599fd0cf67b50db
https://figshare.com/s/26a198938d6ea166e387
https://figshare.com/s/0c874766dac94012ce2f
https://figshare.com/s/e7f3062444e272cfda41
https://figshare.com/s/aa0c94a1f04c9067e42f
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Titre : Etude de la variabilité de la croissance de bactéries en gouttes microfluidiques

Mots clés : Microfluidique, Bactéries, Croissance, Variabilité

Résumé : Cette thèse porte sur l’étude de la variabi-
lité de la croissance de bactéries en gouttes micro-
fluidiques. Dans un premier temps, la puce micro-
fluidique utilisée au cours de la thèse est présentée.
Elle permet d’encapsuler des bactéries individuelles
dans 1500 gouttes d’un nano litre, et de suivre leur
croissance en parallèle grâce à la mesure de leur
fluorescence par microscopie. La relation entre fluo-
rescence mesurée et nombre de bactérie est dis-
cutée, et plusieurs questions techniques, comme la
variabilité de taille des gouttes, l’hétérogénéité de
fluorescence des bactéries, sont mesurées et leurs
conséquences sur les mesures de croissance quan-
tifiées. Dans un second temps, nous développons
un modèle probabiliste qui permet, à partir de la
variabilité des temps de divisions des bactéries, de
prédire la variabilité de croissance entre les gouttes.
Pour ce faire, nous adaptons le modèle classique de
Bellman-Harris. La distribution aléatoire du nombre
initial de bactérie par gouttes, ainsi que les temps
de divisions différents des premières générations de
bactéries sont ajoutées au modèle pour l’adapter
à notre système expérimental. Les contributions de
ces différentes sources de variabilité à la variabi-

lité inter-gouttes de croissance des populations de
bactéries sont quantifiées, et le modèle permet bien
d’expliquer la variabilité de la croissance entre les
gouttes. Dans un troisième temps, nous proposons
un schéma d’inférence pour résoudre le problème in-
verse, qui est de retrouver, à partir des courbes de
croissance, la variabilité des temps de division des
bactéries individuelles. Le modèle précédent ne peut
être utilisé à cause des sources externes de varia-
bilité, nous proposons donc un schéma d’inférence
basé sur le suivi dans le temps de chacune des tra-
jectoires des gouttes. Grâce à des simulations repro-
duisant les conditions expérimentales, nous prouvons
que l’inférence est possible. Elle ne peut être ap-
pliquée à nos expériences en raison de la précision
insuffisante de notre mesure de fluorescence. En-
fin, la même puce micro-fluidique est utilisée pour
quantifier l’action d’antibiotiques sur des bactéries,
notamment la réponse Sos qui est induite lorsque
l’ADN de la bactérie est endommagé. La technologie
d’encapsulation en goutte est utilisée pour mesurer
l’hétérogénéité de réponse des bactéries et la relier à
leur capacité à survivre au stress dû à l’antibiotique,
et à reformer une colonie.

Title : Studying the varibility of bacterial growth in microfluidic droplets

Keywords : Microfluidics, Bacterial Growth, Variability

Abstract : This thesis presents some results about
the variability of the growth of bacteria in microfluidics
droplets. In the first chapter, the microfluidic chip used
throughout the PhD is presented. It allows to encap-
sulate bacteria in an array of 1.500 nano-liter sized
droplets, and to follow their growth in each droplet
in parallel through fluorescence microscopy. The link
between the measured fluorescence and the number
of bacteria in a droplet is discussed, and other tech-
nical questions are addressed, such as the variability
in droplet size and the cell-to-cell fluorescence varia-
bility. Next, we develop a stochastic model to account
for the observed variability of population size in the
droplet during the exponential phase of growth. A well-
known stochastic model, the Bellman-Harris model, is
adapted to take into account the external sources of
randomness due to our experimental system (initial
distribution of bacteria per droplet, different division
time of the first generations). They are taken into ac-
count, along with the effects of the cell-to-cell variabi-
lity of division times in our model, which is success-

ful to predict the variability observed in the microflui-
dics experiments. Then we tackle the inverse problem,
which is to recover the cell-to-cell variability from the
observation of the growth in droplets. We propose an
inference scheme based on following each droplet in
time. The deviation from pure exponential growth is
linked back to the cell-to-cell variability, and this infe-
rence scheme is proven to be successful on simula-
tions that mimic the experimental constrains. Howe-
ver, we cannot completely apply it to our experiments
because of a lack of accuracy in our fluorescence
measurements. Finally, we demonstrate how our chip
can represent a gain of space and time to quantify
the effect of antibiotics on a bacterial strain compared
to classical susceptibility measurement methods. We
also show how it can be used to study the variability
of the SOS response of bacteria, which is a bacterial
stress response induced when the DNA of the cell is
damaged, and relate it to the ability to survive an an-
tibiotic treatment.

Université Paris-Saclay
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