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Introduction 
 

Our today life is governed by the use of electromagnetic fields for various 

applications such as communication, transport, cooking, etc. Yet the impact of 

electromagnetic fields on the human body is still an important field of research. 

Due to the complex structure of human beings, mathematical models are still 

in development to better understand the impact of electromagnetic fields on 

living matter. Involuntary exposition to an intense electric field might lead to 

detrimental consequences but using an electric field in a controlled way can be 

beneficial in, for example, the biomedical field with applications for diagnostics 

as well as for cancer treatment. However, this implies to understand the 

interaction between electromagnetic fields and the living which requires to first 

know the field values at the cellular and tissue level while they are generated 

at the macroscopic scale and second to know the dielectric properties of cells 

and how they are modified in tissues and then in organs and inversely. 

Nowadays the emergence of the field of microfluidics, the handling of small 

amounts of liquids in fluid channels in the order of the µm, has opened new 

ways to study the dielectric properties of cells with the development of different 

strategies using electric field to characterize cells such as electrorotation and 

impedance spectroscopy. In electrorotation, a rotating electric field leads cells 

to rotate at different speeds and directions of rotation. In impedance 

spectroscopy, the electric current flowing between two electrodes is modified by 

cells located in-between and this modification is frequency dependent. Both the 

rotation and impedance spectra can be analyzed to characterize single cells and 

retrieve their dielectric properties since the obtained signals depend on those 

properties. For example, at low frequency, the cell membrane behaves as an 
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insulator with a capacitive effect which no longer exists as the frequency 

increases and the interior of the cell becomes accessible to the electric current. 

For most applications, analyses of isolated cells are no longer sufficient and 

more complex structures such as 3D multicellular constructs shall be created 

and characterized. However, those analyses are more difficult to perform when 

the analyzed objects become multicellular. The properties of the individual cells 

are often unknown and the variability in size and composition of the analyzed 

multicellular construct might limit the characterization and its applicability to 

further formulate theoretical models. Multicellular constructs offer new ways to 

get quantitative modeling of biological systems as they enable to take cell-cell 

contacts and interactions into account. The underlying question is then to 

understand how to relate the dielectric properties of single cells and cell 

aggregates. 

The first step is to be able to reproducibly create such 3D cell aggregates of 

controlled size and properties before characterization. Such technique is today 

still missing. In this thesis, we propose to use the electric field to construct 

those 3D cell aggregates based on the dielectric properties of single cells and 

their suspension medium, a technique called dielectrophoresis, abbreviated 

DEP. Negative DEP offers the possibility to selectively trap cells and confine 

them far from the electric field maxima. Combining DEP with flow conditions, 

we propose a geometry of a microfluidic chip based on an arrangement of 

microelectrodes to create cell aggregates of controlled size. The addition of 

impedance sensors in the chip before and after the “trapping chamber” (where 

aggregation takes place) would allow to characterize the properties of both 

single cells and created cell aggregates. 

Thesis layout 

The objective of this thesis is to design a microfluidic device for the controlled 

formation of cell aggregates using dielectrophoresis under flow conditions. The 

manuscript is structured as follows: 
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Chapter 1 presents the need for 3D cell aggregates of controlled properties. An 

overview of 3D cell aggregates formation methods and the trapping designs with 

dielectrophoresis is presented. Lastly, the requirements to build a platform to 

create controlled-3D cell aggregates under flow conditions is presented. 

Chapter 2 presents an overview of the theories behind dielectrophoresis and 

dielectric modeling of single cell and cell aggregates. MyDEP, our computational 

tool for dielectric modeling of particles and cells, is presented. 

Chapter 3 presents important parameters in DEP trapping of particles and cells. 

The physics of the trapping is discussed as well as the effects of electric fields 

on cells. A microfluidic chip geometry is proposed and COMSOL Multiphysics 

simulations are used to predict the position of the trapped particles. 

Chapter 4 describes the reproducible method we developed for the chip 

fabrication, involving μm precision alignment of PDMS microchannels with 

coplanar electrodes using a conventional mask aligner. 

Chapter 5 presents the experimental trapping results obtained for particles and 

cells. An improved version of the trapping design is proposed as well as a setup 

automation. 

Chapter 6 describes a comprehensive analysis of the geometrical parameters 

influencing the sensitivity of a coplanar electrode layout for electrical impedance 

flow cytometry. Two improved designs for impedance sensing are proposed. 

Chapter 7 reports the conclusions obtained from the trapping experiments and 

proposes an outlook of this thesis. 
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This chapter presents how biology moved from single cells analysis to 

multicellular constructs experiments and the need for 3D cell aggregates of 

controlled properties. An overview of 3D cell aggregates formation methods and 

of existing trapping designs based on dielectrophoresis is presented. Lastly, the 

requirements to build a platform to create controlled-3D cell aggregates under 

flow conditions is presented. 
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 From single cell to cell aggregates 

Cells were first observed and named by Robert Hooke in 1665 (Hooke 

1665). Using a microscope lens, he was able to distinguish the cellular structure 

of plants in a section of cork. Since then cells have been intensively studied and 

are still considered as the basic unit of life. Cells have been grown in bulk but, 

even though it can provide good statistics on the cell population response, the 

risk of observing an “average cell”, not representative of either subpopulation, 

exists (Levsky and Singer 2003). Even though cells may have the same 

morphology and genes, they are heterogeneous in their response (Altschuler and 

Wu 2010). To overcome those limitations, scientists developed some analysis 

methods and tools to study single cells. Fluorescence Activated Cell Sorting 

(FACS), which enables to sort cells based on fluorescent labelling, is widely 

recognized as the gold standard technique for single cell analysis. 

Single cell analysis offers the possibility to see cell-to-cell variations within a 

cell population. It offers the possibility to study rare cells or events as well as 

precious samples (Narayanamurthy, et al. 2017). Protein levels and gene 

expressions for each cell can be studied to reduce the biological noise (Wang 

and Bodovitz 2010). They have been used in various fields such as disease 

studies, drug discoveries and development (Heath, et al. 2016), stem cell 

differentiation (Llorens-Bobadilla, et al. 2015), cancer (Gorges, et al. 2016), 

embryos and adults physiological functions. Thanks to those studies, many 

discoveries have been made. Properties such as cell size and shape can be related 

to the physiological state. More generally cells assays are often providing 

meaningful responses with a higher throughput than costly animal testing and 

without ethical considerations. Animal experiments are also limited and can 

lead to high failure rates in clinical trials since they do not predict well all the 

parameters for humans such as liver toxicity (Sivaraman, et al. 2005). Single-

cell analysis has also been used for example to prove that human embryonic 

stem cells have heterogeneous genetic expression (Zhong, et al. 2008). However, 

studying single cells on their own does not allow to understand how cells 

influence each other in terms of mechanical and biochemical signaling. 
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2D cell structures allow cells to be in contact with neighboring cells. Cell culture 

techniques are usually easy to handle, maintain reproducibility in cell growth 

and consistency over passages (Butler 2004). They often provide significant 

advantages in drug discoveries such as reducing time and cost for screening. 

Cell observation are also possible with a conventional microscope with one focal 

plane. Cells cultivated with conventional culture techniques such as monolayers 

might, however, lose their phenotypic properties (Benya and Shaffer 1982). 

Furthermore, 2D cell culture conditions are very different from the native 

environment of cells where they are exposed to specific 3D features with specific 

mechanical and dynamics properties of the extracellular matrix (ECM) (Tan, et 

al. 2003), signaling molecules and cell-cell interactions. The value of 2D cell 

culture is also limited to predict clinical response as the conditions form a 

limited model of the in-vivo microenvironment (Marx and Sandig 2006). 

Cells are moreover often in contact with a substrate that may differ dramatically 

from their original environment. Nowadays scientists are trying to understand 

how cell-cell interactions and tissue structure might influence cell response. 

Cellular models should now mimic the functions of living tissues hence the 3D 

structures are overseen to bring a better modeling than 2D ones. They proved 

their abilities to restore cell phenotypes (Benya and Shaffer 1982) and cells 

present more resistance to external molecules like cytotoxic agents (Torisawa, 

et al. 2005). 3D models are more fitted to get quantitative modeling of biological 

systems (Pampaloni, et al. 2007). For the case of tumors, 3D cell constructs 

help to mimic in vivo-like conditions and similar drug sensitivity patterns can 

be observed (Torisawa, et al. 2005). 

Performing single cell analysis up to the creation of 3D organoids was enabled 

by the use of microfluidics, the handling of small amounts of liquids in fluid 

channels in the order of the µm. At this scale, cells can be handled individually 

and moved in the device directly with the fluid or in combination with a vast 

majority of forces. The use of miniaturization and more specifically microfluidics 

allowed to increase the throughput by parallelizing analysis and to reduce the 
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quantity of reagents and the cost associated as well as human error via 

automation. 

However, 3D cell cultures are more complex to operate, and the generated 3D 

structures require more expensive methods to be observed and characterized 

such as confocal microscopy and Z-stack images.  

The created 3D models proved their usefulness in a variety of applications. 

 Different fields of application of 3D aggregates and need 

of an intermediary model 

1.2.1 In-vitro therapeutic screening 

3D aggregates are regarded as a more representative model than 2D cell cultures 

on which to perform in vitro drug screening (Zanoni, et al. 2016). Furthermore, 

spheroids present characteristics that are often found in tumor such as nutrient 

and oxygen gradient, extracellular matrix and cell interconnections (Santini, et 

al. 2000). Multicellular heterospheroids have been used by Nakamura et 

al.(Nakamura, et al. 1999) to understand the formation and growth of cancer 

masses. Spheroids, however, do not have any vascularization. 

1.2.2 Electroporation 

Electroporation (EP) is the name used to describe the increase of the 

permeability of a cell membrane following the application of a certain number 

of short and intense electric pulses as presented in Figure 1:1 A) (Calvet and 

Mir 2016). In 1968, Sale and Hamilton used an electric field to lyse red blood 

cells and protoplasts and proved that the electric field could enable the release 

of big molecules by the cells (Sale and Hamilton 1968). The insertion of DNA 

molecules in mouse lyoma cells was performed 15 years later by Neumann and 

collaborators (Neumann, et al. 1982). Today electroporating cells is a technique 

routinely used in laboratories for transfecting cells (Sambrook and Russell 2006). 

Three variations of electroporation in the biomedical field are usually 

distinguished: 
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- Electrochemotherapy or ECT corresponds to the application of 

electroporation in combination with the injection of a cytotoxic drug 

(bleomycin and cisplatin (Breton and Mir 2012, Escoffre and Rols 2012)) 

which is poorly membrane-permeant as presented in Figure 1:1 B). Both 

drugs create DNA lesions (both single-strand and double-strand DNA 

breaks for bleomycin and formation of inter and intra DNA crosslinks for 

cisplatin) that lead to cell death upon cell divisions. Only the cells located 

in the volume exposed to electroporation which are in division, hence 

mostly the cancer cells, are killed by this method. By injecting the drug 

directly into the tumor before application of the EP, ECT allows to 

reduce the drug dose compared to classical chemotherapy protocols. 

- Electrogenetherapy or EGT corresponds to the transfer of DNA into the 

cells via an electroporation delivery. In this two steps process, the cells 

are first permeabilized with short and intense electric pulses and second 

the DNA molecules are driven electrophoretically into the cell with long 

and low-voltage electric pulses as presented in Figure 1:1 C). The 

transmembrane transport mechanism is still debated (Cervia and Yuan 

2018). 

- Irreversible electroporation or IRE corresponds to excessive 

electroporation (too many, too intense or too long pulses) that triggers 

cell death as presented in Figure 1:1 D). This technique is, however, not 

selective, both tumor and normal cells being affected. 



State of the art 

42  

 

Figure 1:1 Principle of application of electroporation in the biomedical field. A) General 
reversible electroporation principle. B) Electrochemotherapy. C) Electrogenetherapy. D) 

Irreversible electroporation. Figures adapted from (Calvet and Mir 2016). 

In both electrochemotherapy and electrogenetherapy, cells should survive the 

electroporation process. This means that the electroporation parameters should 

be carefully chosen in order to avoid excessive electroporation. In the body, the 

environment of each tumor is different, and the electroporation parameters (e.g. 

pulse duration and intensity, number of pulses, etc) should be chosen according 

to the tumor size, the degree of vascularization, fibrosis, and necrosis, otherwise 

the treatment might result in suboptimal transfer of the material (gene, drug) 

in the cell (Marty, et al. 2006, Mir, et al. 2006). The tissue heterogeneity, in 

particular the proximity of blood vessels, will affect the distribution of the 

electric field and reduce its amplitude (Golberg, et al. 2015). 

More recently Brown et al (Brown, et al. 2018) have developed a device 

combining electroporation and electrical impedance spectroscopy. Between each 
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pulse, the tissue is analyzed, and the electroporation parameters are modified 

accordingly thanks to a feedback-controlled loop. Electrorotation has also been 

used to monitor the dielectric properties of spheroid during permeabilization 

(Trainito, et al. 2016). 

Microfluidic devices have been proven to be more efficient for electroporation 

than the bulk-electroporation (Fox, et al. 2006, Valero, et al. 2008). 

The success rate of gene transfer via electrogenetherapy is highly dependent on 

the type of tissue. For example, muscle tissue (Dona, et al. 2003) is more easily 

transfected than tumors (Rols, et al. 1998). Chopinet et al. (Chopinet, et al. 

2012) proposed to use a specific type of cell aggregates called multicellular tumor 

spheroids to study the electrotransfer of DNA molecules. Originally proposed 

by Sutherland (Sutherland 1988), a spheroid can make a good model to 

reproduce the tumor structure in vitro compared to cell suspensions. They have 

been used in the study and optimization of many gene transfection techniques 

(Gil-Cardeza, et al. 2010, Lobjois, et al. 2009, Madsen, et al. 2006, Mellor, et 

al. 2006). Their preparation is based on the hanging drop method. Even when 

EGT is optimized on cell culture, its efficiency is reduced on 3D (Chopinet, et 

al. 2012). Thus, 3D aggregates might be an interesting model to understand and 

to improve ECT and EGT.  

1.2.3 Understanding the dielectric properties of naturally formed aggregates 

Biological cells are commonly observed individually or as part of a suspension. 

In both cases the properties of the single cell play a crucial role in the observed 

dielectric properties. Cells, especially adherent cells, often do not stay separated 

in the suspension but tend to form more compact structures like aggregates. 

The aggregate properties such as its size, shape and compactness can vary 

depending on the original properties of the suspension. Often seen as a side 

product, such aggregates can be used to understand how the properties of a cell 

assembly differ from those of single cells. Cells aggregates can help to 

understand the dielectric properties modification in processes such as mitosis, 

cell contacting as well as cell connection by gap junctions. 
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In the case of mitosis, a mother cell dividing two daughter cells, cells are in 

direct contact joined by a narrow neck (Asami, et al. 1998, Asami, et al. 1999, 

Asami, et al. 2000). Similarly, gap junctions serving as passageways for ions and 

small molecules between cytoplasms of contiguous cells, may influence the low 

frequency dispersion observed in liver (Gersing 1998) and heart (Schaefer, et al. 

2002). 

Another example of such modifications of cell properties is the significant change 

in the dielectric dispersion of human blood when erythrocytes form a disk-like 

shape stack called “rouleau formation” as found by Irimajiri (Irimajiri, et al. 

1996). Raicu et al. have shown that the organization of the liver cells into 

hepatic plates can be approximated by cells tightly packed into an aggregate 

(Raicu, et al. 1998). Most attempts to simulate the dielectric properties of cell 

assemblies are unconvincing due to the difficulty to model the hierarchical 

organization of biological tissues in all its complexity. The development of 

experimental approaches enabling to relate the properties of single cells to that 

of controlled cell assemblies is therefore of great interest. 

 Type of cell aggregates: terminology 

Depending on the literature found, different terms can be used to designate a 

structure composed of cells such as cell cluster, cell aggregate, spheroid, 

mammosphere, micromass, organoid or microfabricated tissues. They can be 

grown directly by cell-cell contact, on a 3D scaffold material (Moroni, et al. 

2008) or embedded in gels (Slaughter, et al. 2009). 

Among the possible terms, aggregates and clusters are more generic terms, not 

only related to cells. Clusters is often seen as a temporary structure while 

aggregates are more permanent structures. 

Mammosphere was used by Dontu et al. (Dontu, et al. 2003) to name spherical 

colonies of human mammary epithelial cells cultivated on non-adherent surfaces 

in the presence of growth factors. 

Micromass refers to a cell aggregate of chondroncytic cells (Greco, et al. 2011). 
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Spheroid are aggregates of non-substrate-adherent cells that mutually adhere to 

each other forming a sphere-like shape (Fennema, et al. 2013). Multicellular 

tumor spheroids or tumorospheres were first described by Sutherland by 

culturing cancer cell lines under non-adherent conditions (Sutherland, et al. 

1971). 

Embryoid body are 3D aggregates of pluripotent stem cells that are undergoing 

the initial developmental specification. 

Organoids corresponds to an assembly of stem cells or adult cells that organize 

to mimic human physiology and diseases in vitro. A definition of an organoid 

was proposed by Lancaster et al. (Lancaster and Knoblich 2014) as: 

“A collection of organ-specific cell types that develops from stem cells or organ 

progenitors and self-organizes through cell sorting and spatially restricted 

lineage commitment in a manner similar to in vivo.” 

An organoid, as the name states, implies that the formed structure should 

resemble an organ. To fit such requirement, they proposed three conditions:  

- “Should be composed of multiple organ specific cell types, 

- Be capable of recapitulating some specific function of the organ (eg. 

excretion, filtration, neural activity and contraction) 

- Grouped together and spatially organized similar to an organ”. 

Microfabricated tissues are spatial arrangements of tissue components with 

similar tissue architectures and functions (Rivron, et al. 2009). 

As stated by Sebastian et al. (Sebastian, et al. 2006), understanding the 

response to signals between different cell types is of paramount importance and 

is limited by our ability to generate those 3D structures with different cell types. 

 Creation methods of 3D aggregates  

Several techniques have been developed to create 3D multicellular structures. 

They can be divided in two categories: contact and non-contact (Rodriguez-

Devora, et al. 2011). Contact methods usually rely on the direct contact with a 
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surface. In the case of non-contact methods, cells can be moved with an 

additional force. 

1.4.1 Contact methods 

1.4.1.1 Micromolding 

Micromolding methods use molds, generally fabricated through either soft 

photolithography or rapid prototyping, where cells are seeded (Guven, et al. 

2015). Using non-adhesive molds such as agarose based, cells self-assemble into 

3D constructs with high cell density (Napolitano, et al. 2007a, Napolitano, et 

al. 2007b). The viability of such aggregates can be up to several weeks. 

1.4.1.2 Liquid overlay 

In this technique, a cell suspension is seeded in agarose-covered dishes (Carlsson 

and Yuhas 1984). Cells are let with medium for several days before inspection. 

Then, if the cells aggregated as sphere, spherical aggregates are sorted for the 

experiments. This solution is suited for mass production of aggregates but offers 

little control of the size of the aggregates. 

1.4.1.3 Hanging drop culture method 

In this method, cells in pipetted droplets are concentrated by gravity at the 

liquid-air interface when the plate is inverted (Kelm, et al. 2003). They form 

aggregates and, after 1 day, spheroids are composed of the original cells pipetted 

in the droplet. This technique can be easily parallelized in 96 and 384-well plates 

(Hsiao, et al. 2012, Tung, et al. 2011) which are commercially available. 

1.4.1.4 Rotary cell culture system:  
This technique was originally developed at NASA to study cell tissues in 

microgravity (Ingram, et al. 1997). The system is based on clinorotation, the 

nullification of the gravity force by slow rotation of the system about one or 

two axes. A single cell suspension is placed in a rotating chamber. As cells 

aggregate are formed, the rotating speed is gradually increased to avoid 

sedimentation. 
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1.4.1.5 Pellet culture system  

In this method, cells are placed in an Eppendorf tube and centrifugated to form 

one pellet spheroid per tube (Johnstone, et al. 1998). 

1.4.1.6 Bioprinting 

Bioprinting is defined as “the use of computer-aided transfer processes for 

patterning and assembling living and non-living materials with a prescribed 2D 

or 3D organization in order to produce bio-engineered structures serving in 

regenerative medicine, pharmacokinetic and basic cell biology studies” 

(Guillemot, et al. 2010). It corresponds to the biomedical application of additive 

manufacturing where living cells and biomaterials are simultaneously “written” 

layer by layer to fabricate structures mimicking living tissues (Dababneh and 

Ozbolat 2014). The printing systems can be divided in three categories: laser-, 

extrusion and inkjet-based printing systems as presented in Figure 1:2. 

Bioprinting has been used to deposit cells and also cell aggregates on a surface 

or in contact with a 3D matrix and will further aggregate and self-organize in a 

final tissue construct (Mironov, et al. 2003). 
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Figure 1:2 Bioprinting techniques. A) Schematic of laser-based bioprinting. B) Schematic of 
extrusion-based bioprinting. C) Schematic of (Left) thermal and (Right) piezoelectric-based 

inkjet bioprinting. All schematics are adapted from (Dababneh and Ozbolat 2014). 

1.4.1.7 Conclusion on the contact methods 

With all the described methods the properties of this formed aggregate are, 

however, not fully controlled and depend on the initial volume of liquid and 

cells dispensed in the drop.  

1.4.2 Non-Contact methods 

More recently the non-contact methods have become increasingly popular since 

the force used can offer more control on the formation of the cell aggregates. 
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Such methods are relying on magnetophoresis, acoustophoresis, optical trapping 

and dielectrophoresis.  

1.4.2.1 Magnetic levitation method 

Magnetic levitation requires the cellular uptake of magnetic nanoparticles to 

confer cells magnetic responsiveness (Haisler, et al. 2013). Then cells can be 

further concentrated and levitated with an external magnetic field to form 3D 

cell aggregates (Souza, et al. 2010). This method requires the use of a label 

(magnetic nanoparticles) to operate. 

 

Figure 1:3 Principle of magnetic cell levitation. A) Cells are put in contact with magnetic 
nanoparticles and incubated. The remaining particle are later washed away. B) After the 
application of an external magnetic field with a magnet, cells are levitating. C) After 12h, 

characteristic structures are formed. Illustrations adapted from (Souza, et al. 2010). 

1.4.2.2 Acoustophoresis 

Acoustic tweezers are using surface acoustic waves (SAW) generated by 

interdigitated electrodes to manipulate particles as illustrated in Figure 1:4. 

When the acoustic field is activated, particles are pushed from the antinode to 

the static node where they can be positioned and, shall several particles be 

located in the area, aggregate. The vertical position of the particle can be tuned 

by adjusting the input acoustic power (Guo, et al. 2016) as well as the position 

of the node by adjusting the relative phase angle between each interdigitated 

electrode. This method is label-free. 
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Figure 1:4 3D acoustic tweezers illustrations. A) Configuration of the planar acoustic wave 
generators with interdigitated electrodes B) Numerical simulation illustrating the acoustic 

trap. Both illustrations are adapted from (Guo, et al. 2016). 

1.4.2.3 Optical trapping 

Optical tweezers are based on the use of a difference in refractive index between 

a particle (or a cell) and the suspension medium (Nieminen, et al. 2007). By 

applying a focused laser beam with a high numerical aperture, the cell is 

attracted towards the focused beam (Ferrari, et al. 2005). As illustrated in 

Figure 1:5 an uncentered particle will be moved to the centre of the beam since 

a more intense momentum is transferred through the center (Lenshof and 

Laurell 2010). It can, therefore, be moved by displacing the beam slowly. The 

first stable optical trap was reported by Ashkin (Ashkin, et al. 1986) and was 

later used to move cells (Ashkin, et al. 1987). However, the use of a focused 

laser beam with high energy density might induce some damage to biological 

cells leading to “opticution” (death by light) (Suehiro and Pethig 1998). The 

equipment used to operate the optical tweezer is also complex and with limited 

portability. Also called laser-guided direct writing (LGDW), this technique has 

been used to assemble different cell types into 3D structures with single-cell 

control (Akselrod, et al. 2006). This method is label-free. 
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Figure 1:5 A) Principle of optical tweezers. Adapted from (Lenshof and Laurell 2010). B) 
Schematic diagram of the optical trapping apparatus used by Akselrod et al. to create 3D 

construct. Adapted from (Akselrod, et al. 2006). 

1.4.2.4 Dielectrophoresis 

Electric field-based methods present many advantages due to their label-free 

nature. They can be used both to form cell assemblies and to characterize them 

using dielectrophoresis and electrical impedance spectroscopy, respectively. The 

physical and dielectric parameters of the cells can be used to move them. 

Originally observed with particles by Pohl (Pohl 1951), dielectrophoresis is 

commonly used to separate various cells as they present different dielectric 

properties (Fiedler, et al. 1998, Gascoyne, et al. 1992). Depending on the 

dielectric properties of the cells and the suspending medium, cells can be 

directed towards areas of maximum field intensity (which is called positive 

dielectrophoresis or pDEP) or repelled in the area of low electric field intensity 

(which is referred to as negative dielectrophoresis or nDEP). More details on 

dielectrophoresis will be given in Chapter 2.  

The following section is dedicated to an extensive review of the dielectrophoresis 

trapping designs. 
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 Dielectrophoresis trapping design 

Since the trapping force is proportional to ∇𝐸2, the geometry of the electrodes 

has a high impact on the trapping of a particle. Many electrode configurations 

are presented in the literature, and pDEP and nDEP are demonstrated in 

various studies for both single cells and cell aggregates. Most of the 

configurations start with an initial solution of cells injected in the chip before 

applying any voltage, thus working between static conditions without fluid flow 

for the trapping. The following section is a summary of the literature. 

1.5.1 For single cells 

1.5.1.1 With pDEp 

1.5.1.1.1 Grid-electrode geometry 

This design, first presented by Suehiro and Pethig in 1998 (Suehiro and Pethig 

1998), uses parallel sets of electrodes, located on the bottom and top of the chip, 

which are individually addressable. Those facing electrodes are perpendicular to 

each other. Bottom and top electrodes are made of gold and indium tin oxide 

(ITO), respectively. A local field maximum is created at the grid intersection 

when a pair of bottom and top electrodes are connected with an AC signal. The 

cell is attracted by this maximum by pDEP as shown in Figure 1:6.  

 

Figure 1:6 A) Schematic of grid-electrode geometry. The particle is trapped at the 
intersection between the two electrodes. Adapted from Voldman (Voldman 2006) B) 

Protoplast being moved from one position to another Adapted from Suehiro and Pethig 
(Suehiro and Pethig 1998). 
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1.5.1.1.2 Concentric ring levitor and feedback 

Another example is a concentric ring levitator developed by Qian (Qian, et al. 

2002) that uses feedback-controlled pDEP to actually trap particles away from 

the electrodes. The voltage is tuned to balance the gravitational force as 

presented in Figure 1:7. 

 

Figure 1:7 A) Example of the concentric ring levitor with a particle in levitation and B) the 
related feedback control. 

1.5.1.1.3 Points-and-lid geometry 

Using pDEP was also used to attract particles directly on the bottom plate by 

Gray from the Voldman group. Based on conducting points in the bottom plate 

and a top conducting lid, particles can be patterned at specific locations on the 

leads. Depending on their size, the points at the bottom can trap from single 

cells Figure 1:8 B to larger group of cells Figure 1:8 C (Gray, et al. 2004b). As 

presented by Albrecht (Albrecht, et al. 2006), this technique can be also 

performed in a photopolymerizable hydrogel such as polyethylene glycol (PEG) 

which allows entrapment of the multicellular structures which can be further 

stacked together. 
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Figure 1:8 A) Schematic of the point-and-lid geometry, adapted from (Voldman 2006) B) 
Endothelial cells patterned using one version of this geometry from (Gray, et al. 2004a) C) 
Fibroblasts patterned using a different version of the geometry and embedded in a hydrogel 

matrix from (Gray, et al. 2004a). 

1.5.1.1.4 Ring-dot geometry 

The ring-dot geometry is based on a similar principle as the points-and-lid 

geometry but this time the second electrode is no longer on the top lid but 

surrounds the dot (Taff and Voldman 2005). This configuration uses two metal 

layers on the bottom plate separated by an insulator as presented in Figure 1:9. 

Cells are attracted by the dot which corresponds to a field maximum. This 

configuration can be used in an array as shown in Figure 1:9 B and C). 

 

Figure 1:9 A) Schematic of the ring-dot geometry from (Voldman 2006). B) and C) are two 
images showing addressable removal of green-labeled human HL-60 in an array from 

(Voldman 2006). 

1.5.1.2 With nDEP 

1.5.1.2.1 Interdigitated electrodes (low cell concentration) 

The interdigitated electrode structure is composed of two electrodes patterned 

on a surface. Cells can be attracted by pDEP on the electrode edges or repelled 

by nDEP between the electrodes. If the patterned electrodes are castellated 



State of the art 

55 

electrodes, as presented in Figure 1:10, the nDEP trapping zone takes a 

triangular shape. 

 

Figure 1:10 A) Principle of interdigitated castellated electrodes capture of cell by DEP. 
Adapted from (Pesch 2018). B) Capture of viable yeasts at the electrode edges by pDEP and 

of non-viable yeast in triangular aggregates by nDEP. Adapted from (Markx, et al. 1994). 

More generally for interdigitated electrodes, reducing the height of the chamber 

will reduce the cell patterning time as presented by (Albrecht, et al. 2004). 

1.5.1.2.2 Insulating-post geometry 

This design uses two electrodes separated by an array of insulating posts which 

are creating field inhomogeneity and, therefore, dielectrophoresis as presented 

in Figure 1:11 A). The fabrication of this design is easier since it does not require 

conducting materials inside the channels and the electrodes can be added later. 

This design is also working under flow conditions as shown in Figure 1:11 B). 

However, this design requires high voltages to operate. 
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Figure 1:11 A) Schematic of the insulating post principle from (Voldman 2006). B) Cells are 
injected from the right to the left and, since the nDEP is larger on viable yeast cells (green) 
than dead yeast cells, they are retained farther from posts. Adapted from (Lapizco-Encinas, 

et al. 2004). 

1.5.1.2.3 Quadrupole electrodes 

Quadrupole electrodes are composed of four electrodes arranged in a circle and 

supplied with alternating voltage polarities in order to obtain a field minimum 

at the center of the inter electrode space as presented in Figure 1:12 A). This 

design was initially developed by the Fuhr group (Fuhr, et al. 1992, Fuhr, et 

al. 1994). Cells located between the electrodes are centered in the design. 

Depending on the applied voltage, cells are concentrated on the bottom of the 

surface or are levitating above. This technique was also used to create small 

aggregates of cortical neurons from rat fetuses by Heida (Heida, et al. 2001). 

 

Figure 1:12 A) Schematic of the quadrupole electrodes from (Voldman 2006) and B) Mouse 
fibroblast trapping from (Fuhr, et al. 1994). 

The trapping capability of this design can be improved by extending the 

electrodes in the third dimension. Thick electrodes can be made of electroplated 
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gold, as proposed by the Voldman group (Voldman, et al. 2002), or of metal 

coated SU-8, as demonstrated recently in the Guiducci group (Kilchenmann, et 

al. 2016). This will result in a higher DEP force but with a more complex 

fabrication process. 

 

Figure 1:13 3D quadrupoles made of A) Electroplated gold on a SU-8 mold from (Voldman, 
et al. 2002) and B) Metal coated SU-8 structures from (Kilchenmann, et al. 2016). 

1.5.1.2.4 Octopole electrodes 

The octopole electrodes provide another way to increase the trapping strength. 

This configuration, developed by the Fuhr group (Reichle, et al. 1999), is 

composed of two quadrupoles located on the top and bottom of the chip as 

presented in Figure 1:14 A). Despite an easier fabrication process than the 

extruded quadrupole, the alignment between both electrode sets can be 

challenging. Cells can be trapped with this design and electrorotation 

experiment can be performed. 
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Figure 1:14 A) Schematic of octupole electrodes, Adapted from (Voldman 2006) B) Jurkat 
cell trapped in the structure, adapted from (Reichle, et al. 1999). 

1.5.1.2.5 Strip Electrodes 

The strip electrodes, which are also facing electrodes, create a non-uniform 

electric field aiming to stop the incoming particles. In this dynamic 

configuration, the nDEP force counterbalances the drag force. It was first 

introduced by Fiedler from the Fuhr group (Fiedler, et al. 1998). Those 

electrodes can also be used to deflect cells as shown in Figure 1:15. 

 

Figure 1:15 A) Schematic of the strip electrode configuration, adapted from (Voldman 2007). 
B) nDEP used to deflect yeast cells in PBS from (Seger-Sauli, et al. 2005). 

1.5.1.2.6 nDEP microwell 

In this design, an interdigitated electrodes geometry is modified to include 

square areas at the center of which the field will be minimum, as presented in 

Figure 1:16. This concept has been developed for specifically trapping single 
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cells in order to pattern them, but it offers room for the cell to proliferate 

afterwards. 

 

Figure 1:16 A) Schematic from the nDEP microwell, adapted from (Voldman 2006) B) HL60 
cells trapped on nDEP electrode array, scalebar 200 µm from (Mittal, et al. 2007). 

1.5.1.2.7 Transistor-based structures 

Another approach, developed by an Italian team from Bologna, uses an array 

of electrodes addressable individually with a transistor and a top conductive lid 

as presented in Figure 1:17 A) and B). Potential cages are created where cells 

can be trapped and later moved. Initially presented by Medoro (Medoro 2000), 

this technology is currently commercialized by Silicon Biosystems. 

 

Figure 1:17 A) Schematic of the transistor-based structure B) zoom on particles trapped in 
potential cages. Both pictures are adapted from (Manaresi, et al. 2002) 
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1.5.2 From individual cells to cell aggregates 

Most of the previous structures have been designed to trap either individual 

cells or an uncontrolled number of cells. Some designs intentionally aim at 

trapping several cells together to study their interactions using either pDEP or 

nDEP. 

1.5.2.1 DEP and physical confinement  

In order to control the number of cells in contact and to understand how those 

cells contact each other, Gray et al. (Gray, et al. 2008) proposed a design where 

the structure is based on the points-and-lid geometry with the addition of a 

patterned layer of agarose with wells as presented in Figure 1:18 A). Once 

trapped in the well thanks to the electric field, cells can adhere to the surface 

and spread as presented in Figure 1:18 B). 

 

Figure 1:18 A) Schematic of a side and top view of the design. B) Phase contrast image of 
groups of four bovine pulmonary arterial endothelial cells in a specifically-designed pattern. 
This image is overlaid with the corresponding nuclear stain (blue), adapted from (Gray, et 

al. 2008). 

This physical confinement in a microcavity was also demonstrated using nDEP 

by Ibrahim and coworkers (Ibrahim, et al. 2012), who proposed to use a 

quadrupole configuration of the electrodes with an opening in the insulating SU-

8 layer and a back contact electrode in the center, as illustrated in Figure 1:19. 

Under nDEP conditions, cells are moved to the center of the quadrupole where 

the cavity is located. 
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Figure 1:19 A) Top and B) Side view of the principle of the trapping with cavities presented 
by Ibrahim et al. Figures adapted from (Ibrahim, et al. 2012) 

1.5.2.2 Use of Octopole electrodes 

The octupole electrodes geometry has also been used to trap a single yeast cell 

and to let it proliferate under the AC field by Jaeger (Jaeger, et al. 2008) as 

illustrated in Figure 1:20 C). The size limit of the cell aggregate is roughly the 

height of the microchannel, in this case 40 µm. The dielectric field cage (DFC) 

microchips (Perkin Elmer, Hamburg, Germany) presented in Figure 1:20 A) 

were used. They reported successful cell culture over several hours while 

suspending cells by nDEP in cell culture medium. They, however, reported that 

cell growth speed might be lower at non-physiological temperature (lower than 

15°C and higher than 37.5°C). 
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Figure 1:20 A) Picture of the electrode layout composed of two funnels (F1, F2) , three field 
cages (C1–C3) and one resistance sensor (S). B) Phase applied on two voltage configurations 
of the electrodes C) Yeast cell proliferation in the nDEP cage. All figures are adapted from 

(Jaeger, et al. 2008). 

1.5.2.3 Array of quadrupole electrodes  

Quadrupole electrodes can be used to fabricate aggregates, but parallelization 

requires a tedious multistep fabrication process with two metal layers as shown 

by Frénéa et al. (Frénéa, et al. 2003). Menad (Menad, et al. 2014) proposed a 

simpler fabrication process based on bond-detach lithography to form selective 
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openings in a thin PDMS layer, used as an insulator for the electric field, 

enabling the conversion of a bipolar castellated ITO electrode array into a 

quadripolar electrodes one as presented in Figure 1:21. This structure was used 

to create aggregates of HEK cells of controlled size (Menad, et al. 2015) which 

proved to be permanent and viable after 10 to 15 minutes of electric field 

exposure. 

 

Figure 1:21 A) (a) to (d) fabrication of the quadrupole array with the bond-detach 
lithography. B) Formation of HEK-293 cell aggregates by nDEP. A) Cell aggregates formed 
in a 𝜎R = 50 𝑚𝑆/𝑚 medium B) reconstruction of the z-stack images. All figures are adapted 

from (Menad, et al. 2015). 
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1.5.2.4 Using transistor 

Using PCB technologies Medoro et al (Medoro, et al. 2003) used their transistor 

array to create aggregates first with beads and then with yeast cells. The 

different steps are presented in Figure 1:22. The suspension is first injected in 

the chip and then, as presented in Figure 1:22 b), the device is powered on and 

cells are trapped in nDEP cages. The particle located in the different nDEP 

cages can be contacted together by merging the nDEP cages to form larger 

aggregates. Interestingly, the authors of the paper suggested to use impedance 

measurement rather than visual control to investigate the position of cells and 

the size of cells and clusters. 
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Figure 1:22 Experiment steps for the creation of aggregates with the DEP array technology. 
Adapted from (Medoro, et al. 2003). 

1.5.3 Conclusion on the trapping design for cell and aggregates. 

As presented many designs are available for trapping with pDEP and nDEP 

from specifically the single cell to the cell aggregates. nDEP designs offer the 

advantage of trapping cells far from the electrodes, hence limiting the impact 
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of the electric induced effects on cells (current induced heating, increase in 

transmembrane potential leading to electroporation) which will be described in 

Chapter 3. 

1.5.4 DEP and cell culture 

Few studies have been done on the impact on the electric field on cell culture. 

Puttawamy (Puttaswamy, et al. 2010) showed that using a modified medium 

with a lower conductivity and corrected osmolarity might reduce the damage 

on the cells caused by DEP, in this case human liver cell line HepG2 patterning 

with nDEP. This effects of the electric field on cells will be discussed in Chapter 

3. Replacing the low conductivity medium by the native culture medium DMEM 

after patterning helped to enhance the viability. A similar conclusion was drawn 

by Sebastian (Sebastian, et al. 2007) for pDEP by using castellated electrodes 

to create aggregates of Jurkat cells in between 10 to 15 minutes. He also noticed 

that the prolonged exposure of the cells to the electric field increased the 

adhesion between them. Layered temporary aggregates made of AC3 stromal 

cells and Jurkat T lymphocytes were successfully constructed with the same 

castellated electrodes and pDEP (Sebastian, et al. 2006). The cell aggregates 

created by Menad using nDEP proved to be viable thanks to a Calcein AM 

assay. Calcein is a compound that permeates living cells and stain the cytoplasm 

of living cells in green. They were also cultivable in DMEM in a poly-L-Lysine 

treated microchip and presented pseusopodia, membrane protrusions showing 

that cells adhered to the substrate and were alive.  

1.5.5 Conclusions on all the trapping designs 

For all the presented design, controlling the number of cells contained in the 

aggregate is a limiting factor. It can be performed but at the expense of 

unretrievable cells in microcavities, or of a complex and expensive transistor 

array. The size and composition of the aggregates are often controlled by the 

cell initial position in the chip, which limits reproducibility. 
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 Requirement for controlled cell aggregate 

None of the existing designs and operation modes has proven efficient for 

creating aggregates controlled in size up to the one cell precision using DEP 

under flow conditions, relatively inexpensively. To achieve this goal, the created 

microchip should meet the following requirements: 

- The cells should arrive with the liquid and be captured in a precise 

position while the flow is maintained during the arrival of the different 

cells. 

- The trap should be activated from the beginning and accept new cells to 

join the cells already present. 

- The size of the trapping area should be adapted to the size of the 

envisioned aggregate. 

- The created device should offer the possibility to create aggregates made 

of different cells in a controlled way. 

- The stability of the trap should be robust to flow variations. 

- The fabrication process should be relatively simple. 

- The applied voltage should be compatible with cell handling. 

- The temperature in the chamber should be compatible with cells. 

- The device should integrate a sensor to characterize single cell and cell 

aggregates. 

This thesis is dedicated to the development and testing of a microsystem 

matching these requirements. 

The following chapter presents an overview of theory behind dielectrophoresis 

and dielectric modeling of single cell and cell aggregates. 

 





  

69 

 Dielectrophoresis theory 
and modeling with MyDEP 

 

This chapter presents an overview of theory behind dielectrophoresis 

and dielectric modeling of single cells and cell aggregates as well as MyDEP, 

our computational tool for dielectric modeling of particles and cells. The content 

of the chapter is partially published in the article (Cottet, et al. 2019a): 

Cottet, J., Fabregue, O., Berger, C., Buret, F., Renaud, P. & Frénéa-Robin, M. 

MyDEP: A New Computational Tool for Dielectric Modeling of Particles and 

Cells. Biophysical Journal 116, 12-18, doi:10.1016/j.bpj.2018.11.021 (2019). 
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 Dielectrophoresis historical overview 

The term “Dielectrophoresis”, abbreviated DEP, was first introduced by Pohl 

in 1951 (Pohl 1951) to describe the motion of dielectric particles due to 

interaction with a non-uniform electric field. It comes from the Greek “phorein” 

and means that the particle is “carried as a result of its dielectric properties” 

(Pethig 2010). One of the effects was the polarization of the particle, effect 

already observed by Thales of Miletus 600 B.C. when a rubbed amber piece was 

able to attract light objects like straws. The mathematical treatment of 

dielectrophoresis was possible, thanks to Maxwell’s theories. The phenomenon 

had also been previously observed in 1923 by Hatschek and Thorne (Hatschek 

and Thorne 1923) and in 1924 Stattford patented the use of what was in fact 

DEP. At the same time, Hatfield used dielectrophoresis to treat tin ores as a 

separation method for cassiterite and quartz (Hatfield 1924). Pohl was 

interested in the industrial application of DEP to remove carbon-black filler 

from polyvinyl chloride samples.  

It was only in 1966 that Pohl and Hawk applied DEP to biological cells for the 

caracterisation and separation of live and dead yeast cells as explained by Pohl 

in his seminal book Dielectrophoresis : the behavior of neutral matter in 
nonuniform electric fields (Pohl 1978). Using a “point and plane” configuration, 

they observed that live cells were attracted towards the electrodes using a 30 

𝑉STU signal at 2.55 MHz and the dead cells remained in solution, actively 

repelled from the electrodes. Until the end of the 1980s, electrodes were 

machined or made of pins and rods and the arrangement of the electrodes was 

the limiting factor for DEP separation. 

Thanks to the use of microfabrication techniques commonly used in the 

semiconductor industry, electrodes could be made smaller and as a consequence, 

large electric field could be generated with lower voltages. The pattern of the 

2D electrodes could be tuned as desired, and small features, in the micrometer 

range, could be fabricated. 
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In the early 1990’s, several new methods could be developed such as traveling-

wave dielectrophoresis (TWD) in 1991 (Fuhr, et al. 1991), dielectrophoresis 

field-flow fractionation (DEP-FFF) in 1997 (Huang, et al. 1997, Markx, et al. 

1997) and electrodeless dielectrophoresis in 1990 (Washizu 1990). 

To overcome the limitation of 2D electrode designs, the third dimension was 

explored either virtually by using 2D electrodes at the top and the bottom of 

the microchannel (Li and Kaler 2004) or physically by electroplating electrodes 

(Voldman, et al. 2002, Wang, et al. 2007), carbonizing (Martinez-Duarte, et al. 

2011) or metal-coating SU-8 pillars. More recently Henslee et al. (Henslee, et 

al. 2011) proposed to used “fluid electrodes”, isolated and capacitively coupled 

with the main channel. 

More historical details on dielectrophoresis can be found in the review by Pethig 

(Pethig 2010) and Hughes (Hughes 2016). 

The following section will be dedicated to the physical explanation of the 

different phenomena previously presented. 

2.1.1 Polarization and dispersion mechanism 

Polarization corresponds to the process of charge redistribution in an electric 

field. When a dielectric, electrically neutral, is exposed to an electric field, the 

positive and negative bound charges move and their centers of charge as well. 

This process is referred to as induced polarization. Since both the particles and 

their suspending medium are dielectrics, they contain charges and get polarized 

when submitted to an external electric field.  

Observation of biomaterials at different frequencies, also called dielectric 

spectroscopy, has led to the observation of three relaxation mechanisms, also 

called dispersions, by Swan in 1957 (Schwan 1957) as presented in Figure 2:1: 

- A very-low frequencies, from the mHz to the kHz, the 𝛼-dispersion is 

observed. It corresponds to the counter-ion effects near the membrane 

surface (Grimnes and Martinsen 2014). Since the cytoplasm and 

extracellular medium are both ionic media, free charges from the medium 
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come to counter balance the charges of the cytoplasm. The mechanism is 

responsible for the ionic environment around the cell and the surface 

conductivity. 

- From 1 kHz to 100 MHz, the 𝛽-dispersion can be observed. It corresponds 

to the relaxation of cell membranes. 

- From 0.1 to 100 GHz, the 𝛾-dispersion is observed. It corresponds to 

dipolar relaxation of water molecules. 

If charges are induced at the interface between different materials, then an 

interfacial polarization appears called the Maxwell-Wagner polarization. 

 

Figure 2:1 Frequency dependence of biological tissues. Adapted from (Meissner 2013). 
Original figure from (Schwan 1994). 

Each particle and cells have a different complex permittivity, frequency 

dependent, which is its signature. Dielectrophoresis mostly investigates the 𝛽-

dispersion. 

In dielectrophoresis, two mechanisms are involved in the polarization: the 

displacement of free charges by conduction and the perturbation of bound 

charges (dielectric displacement). Particles are, hence modeled as lossy 
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dielectrics containing both a conductivity and permittivity as presented in 

equation (4). At low frequency, the polarization is due to conduction since the 

ions have time to move at the interface. However, at high frequency, ions no 

more have time to migrate and the polarization is mostly linked to permittivity 

hence the polarization of bound charges (Gagnon 2011). 

 Dielectrophoresis theory 

2.2.1 DEP basics 

As presented previously, DEP corresponds to the displacement of dielectric 

particles subjected to a non-uniform electric field. Depending on the frequency 

of the applied field and on the dielectric properties of the particle and its 

immersion medium, different polarization mechanisms come into play, the main 

mechanisms being related to the formation of an electric double layer at the 

particle/liquid interface and to charge accumulation at interfaces between media 

of different electrical properties (Maxwell-Wagner interfacial polarization effect) 

(Pethig 2017). The force resulting from the interaction between the induced 

dipole moment 𝐦 and the field gradient is expressed by: 

 𝐅[\] = −∇𝑈_` = (𝐦. ∇)𝐄 (1) 

where 𝑈_` refers to the electric potential energy and E to the electric field. 

For a spherical particle of radius 𝑟bcd, the induced dipolar moment is given by: 

 𝐦 = 4𝜋𝜀R𝜀0𝐶𝑀(𝑓)𝑟bcd
3 𝐄 (2) 

where 𝐶𝑀(𝑓) is the Clausius-Mossotti factor: 

 𝐶𝑀(𝑓) =
𝜀j

∗ − 𝜀R
∗

𝜀j
∗ + 2𝜀R

∗  (3) 

𝜀j
∗  and 𝜀R

∗  refer to the complex permittivities of particle and medium, which 

depend on their respective electrical conductivities and relative permittivities 

and on the field angular frequency 𝜔: 

 𝜀l
∗ = 𝜀l𝜀0 − 𝑗 𝜎l

𝜔  (4) 
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where 𝜀l is the relative permittivity, 𝜀0 the vacuum permittivity, 𝜎l the electrical 

conductivity and 𝜔 = 2𝜋𝑓 with f the frequency. 

Development of equation (1) leads to the expression of the generalized time-

averaged DEP force (Hughes 2002): 

 𝐅[\] = 2𝜋𝜀R𝜀0𝑟bcd
3 (𝑅𝑒[𝐶𝑀(𝑓)]∇𝐸STU

2 + 𝐼𝑚[𝐶𝑀(𝑓)](𝐸c
2∇𝜙c

+ 𝐸p
2∇𝜙p + 𝐸q

2∇𝜙q)) 
(5) 

where 𝜙c, 𝜙p and 𝜙q are the phase shifts of the field components in the Cartesian 

coordinates. 

2.2.2 Conventional dielectrophoresis 

If the electric field applied is stationary, equation (5) simplifies to: 

 𝐅s[\] = 2𝜋𝜀R𝜀0𝑟bcd
3 𝑅𝑒[𝐶𝑀(𝑓)]∇𝐸STU

2  (6) 

This phenomenon is sometimes referred to as “conventional dielectrophoresis”, 

abbreviated cDEP. The force depends on the gradient of the squared electric 

field intensity and exists only in the presence of a non-uniform electric field. It 

is proportional to the volume of the particle, as well as to the real part of the 

Clausius-Mossotti factor, 𝑅𝑒[𝐶𝑀(𝑓)]. This term, reflecting the polarizability 

contrast between the particle and its immersion medium, also determines the 

direction of the force: 

• When the particle is more polarizable than its immersion medium 

(𝑅𝑒[𝐶𝑀(𝑓)] > 0), the force acts in the gradient direction and, therefore, 

drives the particle towards areas of maximum field intensity. This 

corresponds to positive dielectrophoresis (pDEP). 

• On the contrary, when the particle is less polarizable than its immersion 

medium (𝑅𝑒[𝐶𝑀(𝑓)] < 0), the force moves the particle against the gradient, 

towards the regions of minimum field intensity, which is referred to as 

negative dielectrophoresis (nDEP). 

2.2.3 Physical explanation of dielectrophoresis 

Dielectrophoresis can also be explained more graphically.  
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In pDEP the particle is more polarizable than the medum and more charges will 

be moved inside the particle than in the medium. The particle becomes polarized 

since the barycenters of the positive and negative charges are no more the same 

and the particle can be considered as a dipole with a dipolar moment m. In an 

inhomogeneous electric field, the forces on each side of the particle will be 

unbalanced and the particle will move towards the high electric field areas as 

illustrated in Figure 2:2 A). 

In nDEP, the particle is less polarizable than the medium and more charges will 

move around the particle than inside. The created dipole has an opposite 

orientation compared to pDEP and the particle will move towards the low 

electric field regions as illustrated in Figure 2:2 B). 

 

Figure 2:2 Principle of A) pDEP and B) nDEP. E represents the electric field (in green), m 
the dipolar moment and 𝑭t and 𝑭u the Coulomb force (F=qE) on each barycenter of the 

charges (red and blue circles) on each side of the particle. 

Depending on the frequency, the charges involved are the free charges (ions) at 

low frequency (conduction) and the bound charges at high frequency (dielectric 

polarization). 

2.2.4 Electrorotation 

While conventional dielectrophoresis is based on the use of stationary electric 

fields, electrorotation, abbreviated ROT, induces a rotary motion on a 

polarizable particle exposed to a rotating field. This technique was developed in 



Dielectrophoresis theory and modeling with MyDEP 

76  

the 1980s by Arnold and Zimmermann (Arnold and Zimmermann 1988), who 

proposed to use a four-pole electrode structure to generate the field by applying 

90° phase-shifted signals between two adjacent electrodes. 

When a polarizable particle is suspended in a rotating electric field, a dipole 

forms and should rotate synchronously with the field. In practice, when the 

angular frequency of the field is sufficiently high, the dipolar relaxation time is 

too long to allow this synchronism. The temporal shift (or phase delay) between 

the dipole and the field results in a torque exerted on the particle, of expression: 

 ⟨𝚪xyz⟩ = 𝐦 × 𝐄 = −4𝜋𝑟bcd
3 𝜀R𝜀0𝐼𝑚[𝐶𝑀(𝑓)]𝐸2𝐞~ (7) 

where 𝐞~ represents the unit vector normal to the electrode plane and 𝐶𝑀(𝑓) 

the Clausius-Mossotti factor (cf. (3)). 

As the particle rotates, it experiences a resistive viscous torque from the 

surrounding fluid of expression (Lei, et al. 2006) 

 𝜞� = −8𝜋𝜂𝑟bcd
3 𝛺0(𝑓)𝒆� (8) 

Where η is the dynamic viscosity of the medium and Ω"(𝑓) is the constant 

angular velocity of the particle. 

At the equilibrium between induced torque and viscous drag, the rotation rate 

for a spherical particle is given by: 

 𝛺0(𝑓) = − 𝜖0𝜖R
2𝜂 𝐼𝑚[𝐶𝑀(𝑓)]𝐸2 (9) 

where 𝜂 represents the medium viscosity. 

The minus sign indicates that the particle rotates against the field direction for 

𝐼𝑚[𝐶𝑀(𝑓)] > 0. Otherwise the direction of rotation is with the field. Curve 

fitting procedures may be used to obtain the dielectric parameters of a cell, by 

minimizing the deviation between the experimental ROT spectrum (plot of the 

rotation rate with respect to the field frequency) and the theoretical spectrum 

predicted by the appropriate multi-shell model. 
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2.2.5 Travelling-Wave Dielectrophoresis (TWD) 

The Travelling-Wave Dielectrophoresis force, abbreviated TWD, acts on a 

particle subjected to a travelling electric field. It is related to the phase non-

uniformity of the electric field and arises from the interaction of the travelling 

field with the phase-lagging component of the induced dipole moment. Such a 

field can be produced by planar electrodes arranged in rows and driven by a 

polyphase AC voltage. TWD is, therefore, an analogue of ROT, equation (5) 

remains the same, but with electrodes arranged in line, rather than in a circle. 

The resulting translational force propels the particle along the electrodes, with 

or against the field direction, depending on whether 𝐼𝑚[𝐶𝑀(𝑓)] is negative or 

positive, respectively. In practice, cDEP and TWD effects can be observed 

simultaneously: while the particle translates, it is either pushed above the 

electrodes (nDEP) or attracted onto them (pDEP), depending on the sign of 

𝑅𝑒[𝐶𝑀(𝑓)] (Jones 2003). 

2.2.6 Dielectrophoresis Field-Flow Fractionation (DEP-FFF) 

The principle of Dielectrophoresis Field-Flow Fractionation, abbreviated DEP-

FFF, is to use a liquid containing cells and electrodes that will repel the cells 

with nDEP. Cells, typically injected at the bottom of the microchannel, will be 

repelled from the bottom of the chamber and, depending on the magnitude of 

the DEP force they experience, will levitate at a certain height. The speed of 

each particle type will be different and can be used to separate them. 

2.2.7 Electrodeless and insulating dielectrophoresis (iDEP) 

The principle of “electrodeless” dielectrophoresis is to use insulating obstacles 

in the flow, either obstructions or beads, to create field non-uniformities instead 

of the electrode layout. The approached was nicknamed insulating 

dielectrophoresis, abbreviated iDEP, by Cummings (Cummings and Singh 2003) 

and used as a high-throughput separation method. In this approach, very high 

voltages are commonly used with highly conductive medium which can lead to 

significant Joule heating. 
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 Cell modeling and MyDEP 

Most particles, and especially biological cells, are not homogeneous. It is 

therefore mandatory to model the different layers that constitute them (cell 

membrane and cytoplasm in particular). Calculating the Clausius-Mossotti 

factor requires to successively calculate the equivalent permittivities of the inner 

layers to obtain a homogeneous equivalent particle. In this thesis, a 

computational tool, MyDEP (Cottet, et al. 2018), was developed to simulate 

cell dielectrophoretic behavior alone and in a suspension. 

2.3.1 Cell models 

The different models implemented in MyDEP are: “homogeneous particle”, 

“single-shell”, “two-shell”, “three-shell” and “four-shell” are presented in Figure 

2:3. 

 

Figure 2:3 Illustration of the different spherical and ellipsoidal cell and particle models 
implemented in the interface. All the models “homogeneous sphere”, “single-shell”, “two-

shell” and “three-shell” are illustrated with an example. The implemented “four-shell” model 
is not illustrated here.  

For a cell modeled with a “single-shell” model composed of a cytoplasm 

surrounded by a cell membrane, the equivalent complex permittivity (Gascoyne, 

et al. 1995) is: 
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𝜖b�
∗ = 𝜖�R

∗
( 𝑟bcd

𝑟bcd − 𝑡ℎ�R
)

3
+ 2 ( 𝜖�j

∗ − 𝜖�R
∗

𝜖�j
∗ + 2𝜖�R

∗ )

( 𝑟bcd
𝑟bcd − 𝑡ℎ�R

)
3

− (
𝜖�j

∗ − 𝜖�R
∗

𝜖�j
∗ + 2𝜖�R

∗ )
 (10) 

where 𝑡ℎ�R is the thickness of the cell membrane, 𝜀�R
∗  and 𝜀�j

∗  are respectively 

the complex permittivities of the cell membrane and the cytoplasm. As for a 

cell 𝑡ℎ�R << 𝑟bcd, this formula can be approximated as (Gascoyne, et al. 1995): 

 𝜖b�
∗ =

𝑟bcd𝐶�R
∗ 𝜖�j

∗

𝑟bcd𝐶�R
∗ + 𝜖�j

∗  (11) 

With 

 𝐶�R
∗ = 𝐶�R − 𝑗 𝐺�R

𝜔  (12) 

where 𝐶�R = 𝜖�R/𝑡ℎ�R and 𝐺�R = 𝜎�R/𝑡ℎ�R are the membrane specific 

capacitance and conductance respectively. The full development can be found 

in paragraph A.3 in Appendix A.  

A similar principle for the calculation of 𝜖b�
∗  for layered particles can be applied 

for the “two-shell”, “three-shell” and “four-shell” model. The related formulas 

are presented in paragraph A.1 in Appendix A.  

Particles and cells are not always spherical and can be elongated along one axis. 

In this case modeling the particle reaction to the electric field should consider 

its geometry and orientation. For a homogenous ellipsoidal particle randomly 

oriented, equation (6) becomes: 

 𝐹�_� = 2𝜋𝑎bcd𝑏bcd𝑐bcd𝜀R𝑅𝑒[𝐶𝑀(𝑓)]𝛻𝐸2 (13) 

Where the Clausius-Mossotti factor is the average of the Clausius-Mossotti 

factor in each axis: 

 𝐶𝑀(𝑓) =
𝐶𝑀c(𝑓) + 𝐶𝑀p(𝑓) + 𝐶𝑀q(𝑓)

3  (14) 

And 
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 𝐶𝑀� = 1
3

𝜀j
∗ − 𝜖R

∗

𝜖R
∗ + (𝜀j

∗ − 𝜖R
∗ )𝐴0�

 (15) 

With  

 
𝐴0� = 𝑎𝑏𝑐

2 ∫ 𝑑𝑠
(𝑠 + 𝛼2)√(𝑠 + 𝑎2) ∗ (𝑠 + 𝑏2) ∗ (𝑠 + 𝑐2)

∞

0

 (16) 

𝐴0� is the depolarization factor along the 𝛼 axis (x, y or z) and a, b and c are 

the semi-axis along the x-, y- and z axis respectively. 

In his article, Kakutani (Kakutani, et al. 1993) proposed the formula that should 

be used for an multi-shelled ellipsoids depending on the geometry and the 

orientation. The related formulas are presented in paragraph A.2 in Appendix 

A. 

2.3.2 Cell suspension 

In the presence of particles, the effective permittivity of the suspension 𝜖Rlc
∗  

depends on the volume fraction 𝜙 occupied by the particles. It is given by the 

Maxwell-Garnett mixing equation if the volume fraction 𝜙 < 0.1: 

 𝜖Rlc
∗ − 𝜖R

∗

𝜖Rlc
∗ + 2𝜖R

∗ = 𝜙
𝜖j

∗ − 𝜖R
∗

𝜖j
∗ + 2𝜖R

∗  (17) 

which is equivalent, according to (Sihvola and Kong 1988), to the direct 

formulation: 

 

𝜖Rlc
∗ = 𝜖R

∗

⎝
⎜⎜
⎜⎛1 + 3𝜙

𝜖j
∗ − 𝜖R

∗

𝜖j
∗ + 2𝜖R

∗

1 − 𝜙
𝜖j

∗ − 𝜖R
∗

𝜖j
∗ + 2𝜖R

∗ ⎠
⎟⎟
⎟⎞ (18) 

or by the Hanai equation (Hanai 1960), theoretically up to 𝜙 < 0.8 (Hanai 1968, 

Hanai, et al. 1982): 

 
(

𝜖Rlc
∗ − 𝜖j

∗

𝜖R
∗ − 𝜖j

∗ ) (𝜖R
∗

𝜖j
∗ )

1/3

= 1 − 𝜙 (19) 

Unfortunately, there is no direct expression for the calculation of 𝜖Rlc
∗  and the 

value can therefore be obtained either by solving the cubic equation or by 
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numerical integration with the difference equation of the Hanai equation. The 

later has been implemented in MyDEP, with the possibility to choose the 

number of increments. The methodology can be found in (Hanai, et al. 1979, 

Irimajiri, et al. 1991) and is described in paragraph A.4 in Appendix A. 

2.3.3 Aggregate modeling 

Often biological cells tend to form aggregates of various shapes. While 

computing the complex permittivity of a cell suspension is relatively feasible, 

calculating the complex permittivity of touching particles is however not 

straightforward. Most of the time an aggregate is modeled as an equivalent 

elementary particle with a specific shape (commonly a sphere or an ellipsoid) 

and similar electrical properties (Raicu and Feldman 2015). This model has been 

successfully used by Raicu et al. (Raicu, et al. 1998) to approximate the 

organization of the liver cells into hepatic plates. They also showed (Raicu and 

Feldman 2015) that in the specific case of spherical aggregates no differences in 

the analytical model is seen between a suspension of spherical aggregates and 

particles individually dispersed. However, if the aggregate is composed of 

polarized cells interacting electrically with each other or physically connected 

it is difficult to obtain an analytical model. 

Numerical modeling can be used to calculate the electrical potential distribution 

inside the aggregate and can provide a more accurate solution to obtain the 

effective complex permittivity of the aggregate.  

The equation (19) derived by Hanai for concentrated suspension assumed only 

far field interactions and therefore is not normally suited for aggregate modeling. 

However, this equation has qualitatively explained the changed observed during 

rouleaux formation of erythrocytes aggregates (Irimajiri, et al. 1996). The 

mitosis phenomenon has also been simulated by Asami (Asami, et al. 1998) as 

well as the gap junctions in liver (Gersing 1998) and heart (Schaefer, et al. 

2002). However, modeling cells in close proximity or in contact through a narrow 

neck or gap junctions is difficult to perform and requires a lot of computing 

power.  
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 Software for dielectric modeling 

Before performing experiments in the lab with DEP, it is useful to predict the 

particle and cell responses to the electric field. This requires knowledge of 

particles or cells properties, which can be obtained from the literature, and 

implementation of equations related to the particle model. 

2.4.1 Existing tools 

In 1991, Irimajiri and al. (Irimajiri, et al. 1991) published a software for 

dielectric modeling of particles in suspension called “IMPEDANCE ANALYSIS 

mini”, programmed in BASIC and presented in Figure 2:4. This program allowed 

to choose the number of layers for spherical and ellipsoidal models and to 

calculate the relative permittivity and electrical conductivities. Unfortunately, 

this program is not available anymore. 

 

Figure 2:4 Main menu of the “IMPEDANCE ANALYSIS mini” program. Adapted from 
(Irimajiri, et al. 1991) 

Dielectric modeling of particles behavior is often done in MATLAB (Hughes 

2002, Pethig 2017) and some authors have proposed MATLAB based programs 

that are available (Erdem, et al. 2017). Those programs are, however, limited 
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in terms of functionalities implemented, platform dependent and may lack 

stability through the different releases of MATLAB and require an access to 

MATLAB. For those reasons a multiplatform, executable and user-friendly 

program is needed. This software is intended to be used by both the 

dielectrophoresis community and for teaching activities. It does not require any 

prior knowledge of the dielectrophoresis equations. 

2.4.2 MyDEP software 

MyDEP software is a computational software, programmed in Java, aiming to 

study dielectrophoretic behavior of particles and cells in a suspended medium 

that was developed in this thesis in collaboration with Olivier Fabregue. More 

precisely the software can calculate and display the Clausius-Mossotti factor 

(real and imaginary parts) used in DEP for different conditions (medium, 

frequency range, particle model). It can also calculate the equivalent 

permittivities and conductivities of particles alone and in suspension in a 

medium thanks to the Maxwell-Garnett and Hanai equations. Graphs 

representing crossover frequencies versus electrical conductivity of the medium 

are also available. 

MyDEP software is written in Java1 using the swing API and is freely available 

as a standalone .jar file for Windows, Mac or Linux at 

http://doi.org/10.5281/zenodo.1321928. The installation of Java (also known as 

the Java Runtime Environment or JRE) is required 

(https://java.com/en/download).  

A static website, hosted on GitHub Pages, https://mydepsoftware.github.io, 

was built using Jekyll. This website is composed of different sections: 

- “Getting started with MyDEP”: A full manual on how to use MyDEP 

and the different functions 

                                     

 

1 The Java programming was done by Olivier Fabregue. 



Dielectrophoresis theory and modeling with MyDEP 

84  

- “A bit of theory”: Basics of dielectrophoresis and electrorotation 

- “Citing MyDEP”: How to cite the software 

- “Acknowledgments”: Institutional support for the project 

- “Contacts”: Page explaining how to contact the authors 

 Features, different types of analysis and database 

2.5.1 Database 

MyDEP allows the user to specify the electrical as well as the geometrical 

parameters of the investigated particle. No prior knowledge of the equations 

behind is required to use the software, which makes it interesting for users non-

familiar with DEP. A database compiling information from the literature is 

provided to help the user to start with already existing data. The user can also 

enrich the database with new information. A local database is embedded within 

the application using the SQL database engine SQLite. The Java Database 

Connectivity (JDBC) API was used to interact with SQLite. The provided 

database contains for each set of data the name of the model, the authors, the 

title of the article, the journal where it was published, the year of publication 

as well as the DOI or URL to help the users to identify where the model they 

are using is coming from. An example of the database explorer is displayed in 

Figure 2:5. 
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Figure 2:5 Overview of the database explorer (Search) from MyDEP. A click on the desired 
element from the literature shows the values associated in the interface. 

2.5.2 CM factor 

MyDEP allows the user to display different graphs linked to the dielectric 

properties of particles and cells. Real and imaginary parts of the Clausius-

Mossotti factor can be displayed in the interface. Users can get values about 

the displayed curves in the “Results” panel. In particular the values of the 

crossover frequencies, corresponding to the frequencies at which 𝑅𝑒[𝐶𝑀(𝑓)] = 0, 

are directly accessible as well as the frequencies of the minimum and maximum 

of 𝐼𝑚[𝐶𝑀(𝑓)]. This graph can be used to determine the direction of the DEP 

force. As shown in Figure 2:6, viable and non-viable yeast cells will have a 

different behavior for the same medium conductivity, 𝜎R = 7.8 𝑚𝑆/𝑚. The DEP 

force which is proportional to Re[CM(f)] is always higher in magnitude for the 

viable yeast cells. 
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Figure 2:6 Example of Re[CM(f)] and Im[CM(f)] for viable and non-viable yeast cells 
suspended in a low conductivity medium (σm = 7.8 mS/, ϵm = 78). Data from (Talary, et al. 

1996). The black line represents the baseline at 0. 

2.5.3 Parameter sweep 

All the parameters of the medium and of the different models can be swept 

linearly or logarithmically between two values. Figure 2:7 illustrates the graph 

generated by a logarithmic sweep on ten values of 𝜎R for Jurkat cells (Reichle, 

et al. 2000). The more the electrical conductivity increases, the lower the initial 

values of the 𝑅𝑒[𝐶𝑀(𝑓)] and the shorter the frequency range where Jurkat cells 

experience pDEP. As 𝜎R increases, the frequencies of the maximum and 

minimum of 𝐼𝑚[𝐶𝑀(𝑓)] are shifted to higher values up to the point where 

𝐼𝑚[𝐶𝑀(𝑓)] keeps a positive value. 



Dielectrophoresis theory and modeling with MyDEP 

87 

 

Figure 2:7 Example of the evolution of Re[CM(f)] and Im[CM(f)]with a logarithmic sweep on 
ten values of σm from 1 mS/m to 1.6 S/m for a Jurkat cell. Data from (14). The black line 

represents the baseline at 0. 

2.5.4 Cell separation 

Depending on their dielectric properties, different cell types can be separated. 

Figure 2:8 illustrates that HEK cells (Zimmermann, et al. 2008) and MCF7 cells 

(Henslee, et al. 2011) have different responses to the electric field with the 

frequency. The crossover frequency, transition from the nDEP regime to the 

pDEP regime, are respectively 169 kHz and 65 kHz for the HEK and MCF7 

cells in the specified medium. These two cell populations can be separated based 

on their electrical properties between these frequencies. In particular at 100 kHz 

(vertical blue line in Figure 2:8) HEK cells experience nDEP contrary to MCF7 

cells, which experience pDEP. 
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Figure 2:8 Example of the different Re[CM(f)] for a HEK cell (Zimmermann, et al. 2008) and 
a MCF-7 cell (Henslee, et al. 2011) in a medium with σm = 50 mS/m. The crossover 

frequencies are respectively 169 kHz and 65kHz. These two cell populations can be separated 
based on their electrical properties at 100 kHz (vertical blue line). 

2.5.5 Conductivity and permittivity of cell and suspension 

Figure 2:9, Figure 2:10 and Figure 2:11 illustrate how cells and medium 

properties influence the properties of the suspension. In each of those figures 

the orange dotted line corresponds to the properties of the medium alone and 

the blue solid line to the homogenized properties of a HEK cell. The green 

dashed line corresponds to the properties of the suspension at a specific volume 

fraction, 𝜙 = 0.3 for those figures. 
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Figure 2:9 𝜖b�, 𝜖R and 𝜖Rlc corresponding to respectively the equivalent relative permittivity 
of a HEK cell, the relative permittivity of the suspension medium and the equivalent relative 
permittivity of the suspension of HEK cells at a volume fraction 𝜙=0.3 (implemented using 

the Hanai methodology). σm = 0.156 S/m 

 

Figure 2:10 𝜎b�, 𝜎R and 𝜎Rlc corresponding to respectively the equivalent electrical 
conductivity of a HEK cell, the electrical conductivity of the suspension medium and the 

equivalent electrical conductivity of the suspension of HEK cells at a volume fraction 𝜙=0.3 
(implemented using the Hanai methodology). σm = 0.156 S/m 
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Figure 2:11 |𝜀b�
∗ |/𝜀0, |𝜀R

∗ |/𝜀0 and |𝜀Rlc
∗ |/𝜀0 corresponding to respectively the modulus of the 

equivalent complex relative permittivity of a HEK cell, the modulus of the complex relative 
permittivity of the medium and the modulus of the equivalent complex relative permittivity 

of the HEK cells in suspension in the medium at a volume fraction 𝜙=0.3 (implemented using 
the Hanai methodology). σm = 0.156 S/m 

2.5.6 Crossover frequencies 

Crossover frequencies correspond to the frequencies at which 𝑅𝑒[𝐶𝑀(𝑓)] = 0. It 

corresponds to the transition from a nDEP regime to a pDEP regime and vice 

versa. For each electrical conductivity of the medium 𝜎R, this value might differ. 

Figure 2:12 illustrates the evolution of the crossover frequencies with 𝜎R for 

Jurkat cell. In this figure, the lower crossover, in blue, corresponds to the 

transition from nDEP to pDEP and the upper crossover frequency, in orange, 

to the transition from pDEP to nDEP. At approximately 𝜎R = 0.392 𝑆/𝑚, there 

is only one crossover frequency point which means that, at a higher 

conductivity, cells only experience nDEP. 

Crossover frequencies are commonly used as a discriminatory factor between 

different cell types. 
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Figure 2:12 Evolution of the crossover frequencies for a Jurkat cell for 50 conductivities 
logarithmically spaced between 1 mS/m and 0.5 S/m. 

2.5.7 Graph export 

All the graph generated in MyDEP are fully editable. The font style and size, 

the color, the legend content, the curve style and size can all be adjusted directly 

in the interface. The export menu enables the user to directly generate the 

displayed graph as an image file with the possibility to tune the size and 

resolution as well as the file format. A CSV file can be generated if additional 

data processing is required and not already available in the MyDEP software. 

 Conclusions 

MyDEP offers a new software alternative aimed at both DEP specialists and 

beginners. The software, delivered with a database compiling data from the 

literature, which can be updated automatically, aims at centralizing the 

electrical properties published in the literature and making them accessible 

easily to generate graphs. MyDEP also offers the possibility to import the user’s 

own data points to compare them to different cell models. Future developments 

of MyDEP will be towards parameters extraction from the user’s own dataset 

and to impedance calculation. 



Dielectrophoresis theory and modeling with MyDEP 

92  

MyDEP will be used in the next chapter to predict the behavior of different 

kind of particles and cells at different electrical conductivities. 
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 Trapping design and 
simulations 

This chapter presents the important parameters in DEP trapping for 

particles and cells. The physics of the trapping is discussed as well as the effect 

of electric field on cells. COMSOL Multiphysics simulations are used to predict 

the position of the trapped particles. The content of the chapter is partially 

published in the article (Cottet, et al. 2019b): 

Cottet, J., Kehren, A., Lasli, S., van Lintel, H., Buret, F., Frénéa-Robin, M. & 

Renaud, P. Dielectrophoresis-assisted creation of cell aggregates under flow 

conditions using planar electrodes. Electrophoresis 40, 1498-1509, 

doi:10.1002/elps.201800435 (2019). 
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 DEP Trapping 

3.1.1 Physics behind the trapping: 

In order to trap particles and cells with dielectrophoresis in a microchannel, the 

physics of trapping should be properly understood. For a particle to be trapped, 

the net force applied to this particle should be zero. The trapping position is 

stable if the force field brings the particle back to this trapping position after 

small disturbances. 

The forces which may be involved in the trapping are: 

- The DEP force 

- The hydrodynamic viscous drag force 

- The gravitational and buoyancy force 

- The electrothermal forces 

- Brownian motion 

- Particle-particle interaction 

3.1.1.1 The DEP force 

The force exerted by the non-uniform electric field on spherical particle has 

been previously described in Chapter 2: 

 𝐅s[\] = 2𝜋𝜀R𝜀0𝑟bcd
3 𝑅𝑒[𝐶𝑀(𝑓)]𝛁𝑬¡¢£

¤  (20) 

The expression of the force is valid if the field inhomogeneity can be considered 

as constant across the particle.  

For ellipsoidal particles, the expression of the force is given in Chapter 2 and 

Appendix A. 

3.1.1.2 The hydrodynamic viscous drag force 

For a particle immersed in a moving liquid, the fluid will exert a force, called 

hydrodynamic viscous drag force, on the non-moving particle that will affect its 

velocity (Morgan and Green 2003). The fluid motion will cause this force to pull 

the particle along. If the particle is at the fluid velocity, no force is applied on 

the particle. In microsystems, because of the small Reynolds number, the flow 
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can be considered as laminar. This regime is called creeping flow or also Stokes 

flow. 

The expression of the drag force on a spherical particle is: 

 𝑭¥¦t§ = 6𝜋𝑟bcd𝜂𝐯 (21) 

with η the dynamic viscosity of the medium and v the fluid velocity relative to 

the particle. 

The constant term in front of v is called the friction factor and depends on the 

particle geometry (Berg 1993, Morgan and Green 2003). 6𝜋𝑟bcd𝜂 corresponds to 

the friction factor of a sphere. 

3.1.1.3 The gravitational force and buoyancy force 

The expression of the net force between the gravitational and buoyancy force 

on a particle is: 

 𝑭§¦t© = 4
3 𝜋𝑟bcd

3 (𝜌j − 𝜌R)𝒈 (22) 

where ρp and ρm refer to the densities of the particle and the medium 

respectively, and g is the gravitational acceleration constant. Cells and beads 

are usually denser than the medium and will tend to sediment. 

3.1.1.4 The electrothermal forces 

Since the voltage applied on the electrodes will create a power dissipation, a 

thermal gradient will arise in the solution which will in turn generate gradients 

of electrical conductivity and permittivity. Those phenomena are described by 

the field of electrohydrodynamics (EHD) (Castellanos 1998). 

3.1.1.5 Brownian motion 

The Brownian motion, the indeterministic movement of particle in a medium, 

is due to the thermal energy of a system caused by the collisions between 

vibrating molecules of a solution and larger particles. Brownian motion can 

usually be neglected for particle bigger than 1 µm (Morgan and Green 2003). 
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3.1.1.6 Particle-particle interaction  

Particles polarized by the electric field will behave as dipoles and hence might 

interact together due to their induced dipolar moment which may lead to the 

formation of aggregates or the so called “pearl chain” as described by Jones 

(Jones 1995). 

3.1.1.7 Conclusion on the forces  

For a particle in the tens of µm, the most important forces to consider are the 

DEP force and the hydrodynamic forces. 

3.1.2 Effects of electric field on cells 

During dielectrophoretic trapping, cells are exposed to strong electric fields that 

may affect the physiology of cells. The main effects on cells are mostly due to 

current-induced heating and direct interactions with the field (Voldman 2007). 

3.1.2.1 Current-Induced Heating 

The use of electric fields in an electrically conductive medium will cause power 

dissipation per fluid unit volume due to Joule effect equal to (Ramos, et al. 

1998): 

 𝑃 = 𝜎R𝐸2 (23) 

For interdigitated castellated electrodes, the incremental rise of temperature 

can be estimated as: 

 Δ𝑇 ≈ 𝜎R𝑉°R±
2

𝑘  (24) 

With 𝑘 the thermal conductivity of the medium.  

While very-high temperature might lead to cell death, smaller temperature 

increase also have a physiological effect on cells (Weaver, et al. 1999). A 

common rule of thumb is to try to limit those temperature variations under 1°C 

for mammalian cells (Voldman 2006). 

3.1.2.2 Direct Electric-Field Interactions (transmembrane voltage) 

Electric field can also have an effect on cell membranes (Tsong 1992). The 

additional transmembrane voltage added by the electric field, usually in the 
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order on tens of mV, can affect the ions gated channels (Catterall 1995). An 

approximation of the imposed transmembrane voltage is (Foster and Schwan 

1989): 

 |𝑉dR| = 1.5|𝐸|𝑟bcd

√1 + (𝜔𝜏)2
 (25) 

With the time constant 𝜏  

 
𝜏 =

𝑟bcd𝐶�R ( 1
𝜎�j

+ 1
2𝜎R

)

1 + 𝑟bcd𝐺�R ( 1
𝜎�j

+ 1
2𝜎R

)
 (26) 

Where 𝐶�R and 𝐺�R are the membrane specific capacitance and conductance 

respectively, as presented in Chapter 2. 

At low frequencies, |𝑉dR| can be approximated to 1.5|𝐸|𝑟bcd and decreases above 

the characteristic frequency 𝜏−1 which is in the order of the MHz for mammalian 

cells. 

3.1.3 Trapping parameters 

The choice of a given electrode configuration (size, shape, location relative to 

the microchannel, etc) is obviously a critical determinant of trapping efficiency. 

Then, for a given configuration, 4 parameters can be adjusted: 

• The electrical conductivity of the medium 𝜎R  

• The trapping frequency of the electric field 𝑓�_�  

• The voltage applied on the electrode V 

• The flow speed 𝑣 (and flow rate Q) 

For both polystyrene beads and HEK cells, trapping with nDEP with the lowest 

possible voltage requires the real part of the Clausius-Mossotti to be around 

- 0.5 (maximum negative achievable amplitude for a spherical particle). This 

can be performed in highly conductive medium (Fuhr, et al. 1994, Glasser and 

Fuhr 1998) but might lead to Joule heating and electrothermal flow motion 

(Puttaswamy, et al. 2010). Working with a lower electrical conductivity will 

reduce the Joule heating while keeping the same dielectrophoretic response at 
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low frequencies. Polystyrene beads and HEK cells dielectrophoretic behavior 

were predicted in PBS (𝜎R = 1.5 𝑆/𝑚) and 10X PBS (𝜎R = 0.156 𝑆/𝑚) as 

presented in Figure 3:1 and Figure 3:2. The parameters used are 

{𝜎j =  7E −  6 𝑆/𝑚 and  ej = 2.56} for polystyrene beads (Arnold, et al. 1987) 

and {𝑟bcd =  7.5 𝜇𝑚, 𝜎�j = 0.533 S/m, e�j =  71, 𝐺�R =  0 𝑆/m2 𝑎𝑛𝑑   

𝐶�R =  8.5 𝑚𝐹/𝑚2} for HEK cells (Zimmermann, et al. 2008). 

 

Figure 3:1 Real part of the Clausius-Mossotti factor for polystyrene beads in two media 𝜎R =
1.5 S/m (blue dash dotted line) and 𝜎R = 0.156 S/m (red line). The transition from nDEP to 

pDEP is represented by the black dotted line. At 10 kHz, polystyrene beads experience 
nDEP with the maximum amplitude in both media. Graph generated using MyDEP software 

(Cottet, et al. 2019a). 
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Figure 3:2 Real part of the Clausius-Mossotti factor for a HEK cell in two media with 𝜎R =
1.5 S/m (blue dash dotted line) and 𝜎R = 0.156 S/m (red line). The transition from nDEP to 
pDEP is represented by the black dotted line. At 10 kHz, HEK cells experience nDEP with 
the maximum amplitude in both media. Graph generated using MyDEP software (Cottet, et 

al. 2019a). 

As it can be seen on the plots of 𝑅𝑒[𝐶𝑀(𝑓)] in Figure 3:1 and Figure 3:2, 

obtained using the MyDEP software (Cottet, et al. 2019a), the dielectrophoretic 

force stays maximal (nDEP) for frequencies lower than 10 kHz. Thus 𝜎R =

0.156 𝑆/𝑚 was selected as well as 𝑓�_� = 10 𝑘𝐻𝑧. 

3.1.4 Trapping design 

This test design used to investigate the trapping of particles and cells is 

composed of 8 coplanar electrodes arranged in circle as presented in Figure 3:3. 

Each electrode is 100 µm long and 50 µm wide. The fluidic inlet and outlet are 

respectively located at electrodes 1 and 5. A recess of 50 µm separates each 

electrode from the trapping chamber. This design offers a high flexibility to test 

different configurations of the electrodes to trap particles and cells with 

dielectrophoresis. Depending on the number of electrodes used and the operation 

mode (static or flow conditions), different configurations of the electrodes can 

be tested. 
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Figure 3:3 Trapping design composed of 8 electrodes arranged in circle (dark gray 
rectangles). The fluidic inlet and outlet are respectively located at electrodes 1 and 5. All 
electrodes are separated from the trapping chamber by a 50 µm recess. Scalebar 50 µm. 

The electrodes are designed using the so-called “liquid electrodes” principle 

(Demierre, et al. 2007) as illustrated in Figure 3:4. In this configuration, 

coplanar electrodes are positioned at the bottom of dead-end chambers. This 

creates a homogeneous electric field over the channel height, as illustrated in 

Figure 3:4 E, if the distance of the electrodes to the channel is at least equal to 

the channel height (Demierre 2008). 
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Figure 3:4 Design principle of liquid electrodes located on the same side of a microchannel A) 
Coplanar electrodes located on dead-end side chambers are equivalent to B) 3D electrodes 

located in the sidewall of the central channel. C) Top view of the simplified representation of 
the liquid electrodes. A) B) and C are adapted from (Demierre 2008). D) Top and E) side 

view of the liquid electrodes located on both sides of the microchannel. D) and E) are 
adapted from (Shaker, et al. 2014). 

In our design, the “3D equivalent” electrodes, presented in Figure 3:4 are used 

to trap particles and cells in the chamber. With such design the liquid can enter 

and exit the trapping chamber from electrodes 1 and 5, respectively. 

As presented in Figure 3:3, a complex geometry was chosen for the trapping 

chamber, which prevents the use of an analytical model for the field calculation. 

The calculation of the electric field in such geometry requires the use of 

numerical method such as a finite element method. Since with the liquid 

electrodes the electric field is homogeneous vertically at a distance from the 

electrode equal to the channel height (Demierre 2008), 2D simulations can be 

used to get a first insight on the trapping capability of the design. 3D 
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simulations can then be performed afterwards to get the correct values of the 

voltages needed for trapping. 

 Finite element simulations  

3.2.1 COMSOL Multiphysics simulations 

The modeling of cell and particle trapping was performed using COMSOL 

Multiphysics 5.3 and the add-on AC/DC and Particle Tracing modules. 

Simulated particles were configured as single-shell particles (composed of a 

cytoplasm surrounded by a thin membrane as presented in Chapter 2 with HEK 

cell properties from the literature (𝑟bcd = 7.5 𝜇𝑚, 𝜎�j = 0.533 𝑆/𝑚, 𝜖�j =

71, 𝐺�R = 0 𝑆/𝑚2 𝑎𝑛𝑑 𝐶�R = 8.5 𝑚𝐹/𝑚2) (Zimmermann, et al. 2008). The 

equation used to implement the single-shell model with 𝐺�R and 𝐶�R in 

COMSOL Multiphysics are presented in paragraph B.1 in Appendix B. The AC 

signal applied to each electrode was a sine wave of amplitude 10 𝑉j (jb´µ) and 

frequency 10 kHz. 

3.2.2 Trapping simulation and test design 

3.2.2.1 Flow simulations 

For this design the flow speed was set to 500 µm/s and the particles were 

released from the inlet located on the left of each design. Since the channel 

height and width are both 50 µm, such speed will correspond to a flow rate of 

1.25 nl/s (4.5 µl/h). 

The fluid velocity profile in the chip is presented in Figure 3:5 A. The flow 

profile, originally set as constant at the microchannel inlet, will be parabolic 

and established after 40 µm and in the trapping chamber as shown in Figure 

3:5 B. The flow speed will be reduced in the trapping chamber, which will 

facilitate particle trapping. 
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Figure 3:5 A) COMSOL Multiphysics 2D simulation of the fluid velocity profile along the x 
axis, in µm/s, in the chip with an inlet velocity of 500 µm/s. B) Flow velocity profile along y 
at the inlet (in blue), at x = -150 µm (in red) and in the center of the trapping chamber (in 

green). 

Reducing the flow rate enables to reduce the amplitude of the electric field but 

if this value is too low, particles will sediment in the microchannel and will not 

reach the trapping chamber. On the contrary, a high flow rate requires a high 

voltage on the electrode which may lead to overheating of the suspension 

medium. 

If another force is exerted on the particle, then the fluid starts to exert a viscous 

drag force on the particle. 

3.2.2.2 Electric field and dielectrophoresis simulations 

To trap particles in the microchannel, the DEP force should compensate the 

viscous drag force. A sinusoidal trapping voltage 𝑉�_� = 10 𝑉j (𝑉jb´µ) at 10 kHz 

was applied to the electrodes. Various combinations of those 8 electrodes were 

simulated in COMSOL Multiphysics with the particle tracing module. This first 

set of simulations offers the possibility to evaluate qualitatively the trapping 

and to compare the different trapping configurations.  The results are presented 

in Table 1 and with more details in paragraph B.2 in Appendix B. 
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Number of active electrodes 
Electrodes at x trapping position 

+V -V µm 

 

2 4 6  

3 

5 4/6 24 

5 3/7 9 

5 2/8 On electrodes 4 and 6 

4 3/4 6/7  

5 3/5/7 4/6 45 

7 4/5/6 2/3/7/8 -36 

Table 1 Trapping result for each configuration of the electrodes tested in simulation. The 
trapping position is indicated with a number corresponding to the center of the particle of by 

a cross if the particle is not trapped. 

Among the different configurations tested, 5 configurations enabled the trapping 

of 15 µm cells with HEK properties in the simulation under flow conditions: 

• With 3 active electrodes 

a. Electrode 5 at +V and Electrodes 4/6 at -V 

b. Electrode 5 at +V and Electrodes 3/7 at -V 

c. Electrode 5 at +V and Electrodes 2/8 at -V 

• With 5 active electrodes 

a. Electrode 4/5/6 at +V and Electrodes 3/7 at -V 

• With 7 active electrodes 

a. Electrode 4/5/6 at +V and Electrodes 2/3/7/8 at -V 

It is important to notice that trapping with 2 electrodes (4 at +V and 6 at -V) 

or 4 electrodes (3 and 4 at +V and 6 and 7 at -V) does not work for this voltage 

as shown in Table 1. The particles get centered in the trapping chamber and 

slow down but do not get trapped. Some configurations like 3(c) will trap the 

particles but will direct them in the recess of the unused electrodes 4 and 6. 
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3.2.3 All results 

The best trapping configuration is the one that offers the highest DEP force on 

the particle to compensate the drag force. This configuration corresponds to the 

configuration 3(a) displayed in Figure 3:6 A). The evolution of |E2| along the 

axis y=0 is presented in Figure 3:6 B). 

 

Figure 3:6 A) 2D simulation of the electric potential in the chip. B) Evolution of |E| along 
the x axis. C) 2D simulation of the trapping position of a cell using 3 electrodes (4, 5 and 6) 
supplied with V=10 Vp at 10 kHz. The surface represents ¶·2

¶c . The white dot indicates the 
trapping position of a HEK cell (diameter 15 µm). D) Evolution of the DEP and drag forces 
along the AA’ cut. The resulting force is represented with the black dashed line and the red 
dashed vertical line indicates the position where the resulting force is equal to zero. The gray 

dot with the arrow indicates the direction of the force on the particle. E) Side and Top F) 
3D representations of the amplitudes of the DEP (in blue) and drag (in green) forces along 
the x axis in the chip. The white/red dashed line in F) indicates where the x component of 

two forces are equal in the trapping chamber. The electrode numbers are indicated. A 
logarithmic scale is used for both representations. 
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Since the DEP force is linked to 𝛻𝐸STU
2 , the x component of the DEP force, 

proportional to ¶·2

¶c , represented by the surface in Figure 3:6 C), should 

overcome the drag force to allow cell trapping. In this case the particles should 

be stopped at approximately 24 µm of the center of the chamber when the 

resulting force (black dashed line) is equal to zero as shown in Figure 3:6 D), 

marked by the red vertical dashed line 𝑥d°´j. A 3D representation of the 

amplitudes of the DEP and drag force is provided in Figure 3:6 E) and F). The 

intersection between the two surfaces corresponds to a resulting force equal to 

zero. In the chip the particle will first reach the x trapping position indicated 

by the white/red dashed line in Figure 3:6 F). 

Figure 3:7 presents the evolution of the y component of the DEP and drag forces 

for the chosen configuration of the electrodes.  

 

Figure 3:7 Evolution of the DEP and drag forces along the y axis at A) x=0 and B) 
x=xtrap=24 µm. The resulting force is represented with the black dotted line and the red 
dotted line indicates the positions where the resulting force is equal to zero. The gray dot 
with the arrow indicates the direction of the force on the particle. C) Side and D) Top 3D 

representations of the amplitudes of the DEP (in blue) and drag (in green) forces along the y 
axis in the chip. The white/red dashed line in D) indicates where the x component of two 

forces are equal (from Figure 3:6 F) and the black cross the final position of the particle. The 
electrode numbers are indicated. A logarithmic scale is used for both representations. 



Trapping design and simulations 

107 

At x=0, as displayed in Figure 3:7 A), the y component of the drag force is 

much smaller than the y component of the DEP force. In this case the particle 

would be exposed to a resulting force pushing it far from the center depending 

on its initial lateral position, either toward electrode 7 (zone 1) or electrode 3 

(zone 2). 

At the trapping position x=xtrap presented in Figure 3:7 B), both the DEP and 

drag forces push the particle towards the center of the microchannel in a stable 

trapping position (zones 2 and 3). Zones 2 and 3 are delimited by two other 

dashed lines which would correspond to two other equilibrium positions located 

at ±64 𝜇𝑚). However, those two other equilibrium positions are unstable since 

a particle located farther than 50 µm from the center will be pushed either 

towards electrode 7 (zone 1) or electrode 3 (zone 4). Figure 3:7 C) and D) 

present a 3D representation of the amplitude of the y component of the two 

forces. 

The amplitude of the y component is two orders of magnitude smaller than the 

amplitude of the x component. In all cases, the particles will first reach the 

trapping position due to the x component of the force (white/red dashed line in 

Figure 3:7 D) and then get centered in the microchannel due to the y component 

as illustrated in Figure 3:7 D) with the grey particle and the arrow until it 

reaches the black cross. 

The trapping positions are also called holding points (Voldman, et al. 2001) and 

correspond to the positions where both the x and y components of the resulting 

force are equal to zero. This equilibrium position should be stable as long as the 

flow rate is constant. 

3.2.4 Limits of the 2D simulations 

Cells simulated with COMSOL Multiphysics in the particle tracing module are 

considered as point particles. It calculates particle positions based on the forces 

at a specific point and displays the points as particles of specified diameter. 

Similarly, simulated particles do not disturb the flow leading to some inaccuracy 

in the simulations related to the laminar flow. Particles can interpenetrate each 
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other hence releasing many particles at the inlet will only lead to particles 

aggregating at one specific location with their center at this same point. A 

similar conclusion can be drawn for the wall penetration of particles. A possible 

improvement of the simulation to correct this effect would be to use particles 

defined as a material and calculate step by step their position. This would, 

however, require using a moving mesh for the particles and a lot of computing 

power. This computing power should be even bigger if several particles are 

simulated at the same time. Their interactions should also be modeled for 

increased accuracy. 

3.2.5 3D simulations 

3D simulations could be performed to understand how the vertical position of 

the particles would evolve during the trapping. However, those simulations 

require a lot of computing power and should be performed on the final design. 

 Conclusion  

In this chapter the physics of the dielectrophoretic trapping was discussed as 

well as the effect of the electric field on cells. 

The four important parameters for DEP trapping were discussed. MyDEP was 

used to select the electrical conductivity of the medium, 𝜎R = 0.156 S/m, and 

trapping frequency, 𝑓�_� = 10 𝑘𝐻𝑧 to ensure nDEP trapping conditions. A flow 

speed 𝑣 = 500 𝜇𝑚 and a trapping voltage of 𝑉 = 10 𝑉j (𝑉jb´µ) were used as a 

basis of comparison to select the best candidate for the trapping. 

A design composed of 8 electrodes arranged in circle was proposed and COMSOL 

Multiphysics simulations were performed to obtain the drag and DEP forces 

applied on a particle in the microchannel. The best candidate for the trapping, 

involving 3 electrodes (1 in the outlet and two others located at 45° with the 

opposite voltage), was selected and analyzed in detail. The x and y components 

of the two forces were discussed to find the equilibrium position in the design. 

The next chapter is dedicated to the fabrication of this design. 
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 Chip fabrication 
This chapter describes a reproducible method for μm precision alignment 

of PDMS microchannels with coplanar electrodes using a conventional mask 

aligner for lab-on-a-chip applications. It is based on the use of a silicon mold in 

combination with a PMMA sarcophagus for precise control of the parallelism 

between top and bottom surfaces of molded PDMS. The alignment of the 

fabricated PDMS slab with electrodes patterned on a glass chip is then 

performed using a conventional mask aligner with a custom-made steel chuck 

and magnets. This technique allows to bond and align chips with a resolution 

of less than 2 μm. The content of the chapter is based on the published article 

(Cottet, et al. 2017): 

Cottet, J., Vaillier, C., Buret, F., Frenea-Robin, M. & Renaud, P. A 

reproducible method for mum precision alignment of PDMS microchannels with 

on-chip electrodes using a mask aligner. Biomicrofluidics 11, 064111, 

doi:10.1063/1.5001145 (2017). 
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 Introduction 

Polydimethylsiloxane (PDMS) is a polymer widely used in microfluidics. Its 

main advantages are that it is optically transparent, low-cost, chemically 

resistant to many solvents, easily bondable to itself and other materials and 

commercially available (Zhou, et al. 2010). This polymer enables 3D fabrication 

of nano or microscale structures by replica molding from a master that can be 

created in various materials like SU-8, Si or PMMA, or by using PDMS as a 

sensitive photoresist after the addition of various photoinitiators (Bhagat, et al. 

2007, Lotters, et al. 1997). In the field of lab-on chip (LOC) systems, there are 

many situations in which a PDMS structure should be bonded to a patterned 

substrate after an air or oxygen plasma treatment. This operation may require 

precise alignment between the different layers, which can be quite challenging. 

Alignment may for instance be a concern in PDMS multilayer assembly, an 

approach widely used for the fabrication of 3D organ-on-a-chip platforms. For 

example, Huh et al.(Huh, et al. 2010) have designed a lung-on-a-chip system 

consisting of two side channels and a main channel divided by a porous 

membrane, obtained by stacking and bonding of three PDMS layers. Mechanical 

stretching of the membrane is ensured by applying vacuum to side chambers, 

in order to mimic the lung breathing movements. Here a misalignment between 

the different PDMS stacks would result in vacuum leakage and operational 

failure. 

This issue is also particularly relevant for LOC applications implying integration 

of electrodes within a microfluidic chip, such as electrochemical sensors 

(Moreira, et al. 2009), cultured neuronal networks (Kim, et al. 2014), 

microfluidic sorters based on surface acoustic waves (Shi, et al. 2009)  or 

dielectrophoresis (Doh and Cho 2005), capillary electrophoresis chips (Holcomb, 

et al. 2009), etc. To circumvent this technical difficulty, one approach consists 

in replacing the structured PDMS by a thick photoresist layer like SU-8 that 

can be patterned and aligned on top of electrodes using standard 

photolithography process, as proposed by Demierre et al. (Demierre, et al. 2008). 

The use of SU-8 enables to obtain microchannels with a high Young’s modulus 
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that will not deform easily and allow precise alignment with structures already 

present at the wafer scale (Zhu, et al. 2016). However, SU-8 is less prevalent 

for prototyping in microfluidics compared to PDMS. This can be partially 

explained by challenges encountered by SU-8 users such as adhesion issues, a 

high sensitivity of the SU-8 polymerization to humidity as well as the question 

of microchannel sealing with other material such as PDMS with mechanical 

clamping or irreversible bonding (Ren, et al. 2015, Zhang, et al. 2011). 

In some cases, there may also be a requirement for aligning PDMS stamps with 

electrodes, as described by Menad et al. (Menad, et al. 2014), who used bond-

detach lithography to form selective openings in a thin PDMS layer covering an 

electrode array, thereby modifying the electric field pattern generated. 

Another typical example where proper alignment is required is that of 

microfluidic chips dedicated to impedance spectroscopy. In such devices, the 

position of the sensing electrodes in the microchannel will, due to their shape, 

influence the detected signal and the distribution of the electric field, which 

may cause a wrong interpretation of the particle size and properties in case of 

misalignment (Adler 2002).  

A necessary step prior to alignment is the PDMS shrinkage compensation. 

PDMS shrinkage occurs when it is cured and depends mostly on the cure 

temperature and time, the PDMS components ratio and the layer thickness. To 

overcome these problems, some authors proposed to avoid this shrinkage by 

either curing the PDMS at room temperature or to keep the soft PDMS always 

in bound with a stiff substrate (Badshah, et al. 2014, Choonee and Syms 2011). 

Curing at room temperature will decrease mechanical properties and will be 

very sensitive to small changes in temperature (Ye, et al. 2009). Using a stiff 

substrate always in contact with the PDMS requires to perform some alignment 

between layers when the PDMS is transferred on another patterned substrate 

(Moraes, et al. 2009). By precisely characterizing the shrinkage, Lee et al. (Lee 

and Lee 2008) proposed a scaling factor to be applied to the mold during 

fabrication. In this case the shrinkage has to be properly characterized for the 

specific conditions where the mold is used. 
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Another important requirement is to ensure that the parallelism between top 

and bottom surfaces of molded PDMS is effective as well as their flatness, as 

stated by Li (Li, et al. 2007), otherwise, the contact between the PDMS and 

the electrodes will not happen at exactly the same time on the surface and, 

thus, will lead to misalignment errors. Land et al. (Land, et al. 2011) proposed 

to use a PMMA assembly where the thickness of a PMMA part controls the 

thickness of the PDMS and the flatness and parallelism of the surfaces are 

ensured by a top PMMA part used as a smoothing jig. However, the closure 

may lead to the trapping of a thin PDMS layer between the PDMS parts which 

might reduce the control on the PDMS surface parallelism. 

Different alignment methods were proposed in the literature, the simplest one 

being to carry out a manual alignment under a microscope, based on visible 

structures on the chip (Huh, et al. 2013) but it is rather limited both in terms 

of precision and reproducibility (Kim, et al. 2005). Another approach is to use 

mechanical jigs (Chen and Pan 2011) to improve the alignment but it requires 

additional structural features and the thickness variability of the different layers 

will limit the alignment precision. Most systems in the literature intend to 

reproduce the conventional mask aligner used in the cleanroom facilities, that 

allows both alignment between two different levels and a pressure control of the 

bonding. Kim et al. (Kim, et al. 2005) proposed a system based on a 

stereomicroscope and holding pins to hold the top PDMS slab, thereby, 

overcoming the problem of non-uniformity of the PDMS layer. Its effectiveness 

is, however, restricted to a small area because it is limited to the field of view 

of the stereomicroscope (less than 1 cm). An alternative approach, proposed by 

Sivakumarasamy et al. (Punniyakoti, et al. 2017, Sivakumarasamy, et al. 2014), 

is based on PDMS adhesion on an accessory placed on a microscope objective 

that allows precise and reliable alignment. However, the tool used limits the 

alignment to the central zone, which might complicate the correction of the tilt 

if alignment of distant patterns is required. Li et al. (Li, et al. 2015) proposed 

a custom-built desktop aligner capable of both local and global alignments. This 

instrument is based on two digital microscopes with a resolution of 20 μm/cm 

to perform the alignment on structures up to 4 inches in size, but this requires 
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one to build a new machine and to calibrate it. More recently, an automatic 

multilayered integrated microfluidic device fabrication has been proposed by 

Kipper et al. (Kipper, et al. 2017) and relies on computerized control of the 

alignment between the different layers before contact to reach an average 

alignment resolution of 1 μm/cm. However, those approaches require the 

construction and calibration of a dedicated machine. 

Combining all the critical aspects together, from the control of the PDMS 

properties (the parallelism between the surfaces, surface flatness, shrinkage 

compensation and thickness) to the alignment of the PDMS slab with electrodes, 

is necessary to perform a reproducible alignment. Partial elements are presented 

in the literature but there remains a need for a systematic approach addressing 

all these issues at once. 

In this chapter, we describe a full process for fabricating a PDMS slab with 

microfluidic features and a glass chip with patterned electrodes and aligning 

them with a conventional mask aligner with a resolution of more than 10 μm/cm 

on structures up to 4 inches. This process has been used for the fabrication of 

the trapping and impedance sensing modules (presented in Chapter 6). 

 Methods 

4.2.1 Fabrication 

4.2.1.1 Process flow 

4.2.1.1.1 Electrode fabrication  

Electrodes are fabricated through a standard photolithography process. After a 

Piranha bath treatment, 20 nm of titanium and then 200 nm of platinum are 

sputtered on a 4 inches float glass wafer. A 1.5 μm thick layer of positive 

photoresist AZ1512 is then deposited with an automatic wafer coater and 

developer, the ACS 200 (SUSS MicroTec – Garching, Germany), and 

subsequently structured by means of direct writing with a WaferWriter MLA150 

(Heidelberg Instrument – Heidelberg, Germany) before being developed with 

the ACS 200. The wafer is then etched with Ion Beam Etching (IBE) up to the 
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glass layer. Finally, the photoresist is stripped and the glass wafer with Ti/Pt 

electrodes is obtained. Afterwards, the wafer is diced to separate all the chips. 

4.2.1.1.2 Microchannel fabrication 

A PDMS mold is fabricated with a process based on silicon etching starting 

with either a silicon or a Silicon-On-Insulator (SOI) wafer. The use of a Si mold 

was first envisioned but was ruled out as explained in 4.2.1.2. We describe in 

Figure 4:1 the full process starting with a SOI wafer. 

A SOI wafer (handle wafer Si (thickness 380 μm) – buried oxide (thickness 2 

μm)– device wafer Si (thickness 50 μm)) is coated with 2 μm of AZ1512 

photoresist with the ACS 200 coater (Figure 4:1 A). The photoresist is later 

patterned with the MLA 150 (Figure 4:1 B) (with a design scaled of 1.015 to 

compensate the PDMS shrinkage) and further developed with the ACS 200 

(Figure 4:1 C). The top silicon is etched with the Bosch process until the oxide 

layer is reached (with the Adixen AMS200 Deep Reactive Ion Etching (DRIE) 

etcher from Alcatel Micro Machining Systems, Annecy – France) (Figure 4:1 

D). The resist is then stripped from the wafer (Figure 4:1 E), which is later 

silanized with Trichloro(1H,1H,2H,2H-perfluorooctyl)silane (PFOTS from 

Sigma Aldricht) (Figure 4:1 F). PDMS is later poured on the wafer (Figure 4:1 

G), cured at 80°C for 2h before demolding, separating the PDMS slabs and 

punching the access holes (Figure 4:1 H).  

The last step which needs to be performed is the alignment between the PDMS 

slab and the glass chip patterned with electrodes (Figure 4:1 I).  
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Figure 4:1 Process flow for the PDMS mold fabrication (A to F), PDMS molding (G and H) 
and alignment with the glass chip (I). 

4.2.1.2 Mold fabrication 

First trials of PDMS molding using an etched Si mold showed that PDMS walls 

did not bond completely up to the edge. This issue was further explained by 

Scanning Electron Microscope (SEM) pictures which showed that the edge of 

the Si mold structure had a different etched depth as presented in Figure 4:2 A). 

To overcome this issue, a SOI wafer was used so as to stop the etching as soon 

as the oxide would be reached, allowing to obtain a right angle in the mold 

structure as presented in Figure 4:2 B). 
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Figure 4:2 Scanning Electron Microscope (SEM) images of A) a Si mold and B) a SOI mold. 
For sake of clarity, the oxide layer is artificially colored in blue. Scalebar 10 μm. 

4.2.1.3 PDMS molding in PMMA sarcophagus  

To obtain a specific and reproducible thickness of PDMS and perfectly parallel 

surfaces, a PMMA sarcophagus mold was used as shown in Figure 4:3 A). This 

mold is composed of a 10-mm-thick aluminum part with threaded holes for the 

support (1). The wafer mold (3) is fixed with UV sensitive tape (2) to a PMMA 

part (4) defining the thickness of the PDMS. The PMMA cover (6) imposes the 

top surface of the PDMS to be flat and parallel and the combination with the 

closing PMMA part (8) enables a vertical pouring of the PDMS (Figure 4:3 B) 

as well as a horizontal position for PDMS curing (Figure 4:3 C). The gasket (5) 

located in a groove of the PMMA part (6) enables the sealing for both PDMS 

and air during degassing. The inox parts (7) and (9) are here to homogenize the 

stress distribution in the PMMA pieces (6) and (8). 

A 10:1 mix ratio (base/curing agent) of PDMS (Sylgard 184 from Dow Corning) 

is poured in the sarcophagus mold and further degassed in a desiccator. The 

sarcophagus mold is then placed horizontally in the oven for 2h. Exposure of 

the UV sensitive tape to UV light after PDMS curing enables to retrieve the 

wafer mold after each molding. PDMS retrieval is described in paragraph C.1.5 
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in Appendix C. The different PDMS slabs are then separated and access holes 

are punched. 

Here, the PDMS shrinkage (Sylgard 184 from Dow Corning) was characterized 

in the sarcophagus mold after curing at 80°C for 2 hours with a 10:1 mix ratio 

(base/curing agent). We obtained a scaling factor of 1.015 corresponding to the 

shrinkage of 1.5% measured on a 1 cm distance, which is in good agreement 

with previously reported values (Lee and Lee 2008, Marcus, et al. 2006). 

A detail procedure of the sarcophagus mold assembly and final PDMS retrieval 

is provided in paragraph C.1 in Appendix C. All the CAD files and drawings 

are accessible in the supplementary of the article (Cottet, et al. 2017). 

 

Figure 4:3 A) Exploded view of the sarcophagus for PDMS molding. B) Cross section of the 
sarcophagus during PDMS pouring. C) Cross section of the sarcophagus in curing position. 

4.2.2 Alignment  

4.2.2.1 Alignment with mask Aligner 

The alignment is based on a conventional mask aligner MJB4 (SUSS MicroTec 

– Garching, Germany) (Figure 4:4 A). A custom-made steel chuck is used, 

covered with a 10 μm layer of nickel deposited by chemical nickel plating to 

prevent rusting (see Figure S C:1 in Appendix C). The lateral positioning of the 
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glass chip is ensured by magnets, which means that any chip smaller than 4 

inches can be positioned with the magnets and the vacuum is no longer required. 

The PDMS slab is positioned on the glass mask, with the microfluidic features 

side facing the custom-made chuck for the pre-alignment. After plasma 

treatment, the PDMS slab is aligned with the glass chip using alignment marks 

(Figure 4:4 B). Once the rotation angle and the X and Y positions are corrected, 

the chuck is moved up until the contact. The chuck in then moved down leaving 

the bonded assembly PDMS-glass chip in contact with the glass mask (Figure 

4:4 C). The bonded chip is carefully removed from the glass mask using tweezers 

and then placed in the oven at 80°C with a 40 g weight on top of it for 10 min. 

A detail procedure of the alignment with the MJB4 mask aligner is provided in 

paragraph C.2 in Appendix C. All the CAD files and drawings are accessible in 

the supplementary of the article (Cottet, et al. 2017). 

 

Figure 4:4 A) MJB4 mask aligner used in the alignment procedure and eyepiece view (insert). 
B) Scheme (cut view) and picture of the PDMS and chip before contact and C) after plasma 

bonding. 

4.2.2.2 Results and discussion 

The aligned chip is displayed in Figure 4:5 A) and the alignment, illustrated in 

Figure 4:5 B) and C), is quantified using an image made by means of an optical 

microscope. The MJB4 mask aligner has a Top Side Alignment (TSA) accuracy 

of less than 0.5 μm. The typical misalignment is less than 1 μm over 3 mm 

distance which is mostly due to the shrinkage of PDMS corresponding to a 
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resolution of more than 10 μm/cm. The medium misalignment was found to be 

0.4 μm with a sample standard deviation of 0.2 μm. The estimation error of the 

misalignment was in the order of 0.3 μm (see paragraph C.3 in Appendix C for 

more details). To make the design more tolerant to misalignment, the 

microfluidic channels used are 50 μm wide and the electrodes 60 μm wide. Since 

the glass is 700 μm thick, long distance objectives (x20 and x40) have been used 

but a more precise characterization is limited by the thickness of the glass. To 

reduce the misalignment, the shrinkage characterization can be more precise 

and performed on a larger area like the wafer scale. 

The global thickness of the PDMS slab + glass chip should not exceed 6 mm to 

keep the vacuum clamping of the glass mask when the Wedge Error 

Compensation (WEC) knob is lowered down. If thicker PDMS should be used, 

then the mask (standard thickness 2.3 mm) or the chuck (custom-made chuck 

thickness 3 mm) should be thinner. 

No leakage was notice on the chip neither locally as proved by Figure 4:5 B nor 

globally as shown by Figure S C:1 in Appendix C. 
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Figure 4:5 A) Fabricated chip with the PDMS slab bonded on the glass chip patterned with 
electrodes. B) Zoom in the DEP focusing region of the chip with an optical microscope. The 

channel was filled with a blue dye to make sure there was no leak. Scalebar 50 μm. C) 
Trapping design fabricated Scalebar 50 μm. 

 Conclusion 

In this chapter, we have shown a reproducible method for μm precision 

alignment of PDMS microchannels with coplanar electrodes using a mask 

aligner, which is now routinely used to fabricate chips in the lab. This method 

relies on both PDMS molding with a PMMA sarcophagus for precise thickness 

and parallelism between the PDMS surfaces, and the use of a mask aligner with 

a custom-made chuck. This technique can also be used for PDMS-PDMS 

alignment, providing a high accuracy. The experimental testing of the fabricated 

microfluidic chips will be presented in the next chapter. 
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 Experimental trapping 
results 

This chapter presents the experimental results obtained for particles and 

cells. An improved version of the trapping design is proposed as well as a setup 

improvement based on automation with LabVIEWTM
. The content of the 

chapter is partially published in the article (Cottet, et al. 2019b): 

Cottet, J., Kehren, A., Lasli, S., van Lintel, H., Buret, F., Frénéa-Robin, M. & 

Renaud, P. Dielectrophoresis-assisted creation of cell aggregates under flow 

conditions using planar electrodes. Electrophoresis 40, 1498-1509, 

doi:10.1002/elps.201800435 (2019). 
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 Introduction 

Trapping particles and cells requires to understand how the different forces 

compensate each other to create equilibrium positions in a specific design. Such 

equilibrium positions have been discussed in Chapter 3 with a proposed design 

using 3 active electrodes. The proposed design has been successfully fabricated 

as presented in Chapter 4. To validate the trapping capability of the design, 

laboratory experiments need to be performed. Trapping cells can be challenging 

since those living objects have a dispersion of dielectric properties and size, as 

well as it is sensitive to the field and temperature. The first testing of the design 

is performed with polystyrene beads of known size and dielectric properties. 

Once the trapping of such objects is validated then cells can be trapped, 

considering that the medium might need to be adapted. 

 Materials and Methods  

5.2.1 Beads preparation 

Solutions of polystyrene beads of 8 and 15 µm diameters were prepared from a 

bead stock solution of known concentration from Sigma Aldrich. The bead stock 

solution was first diluted ten times in Phosphate Buffer Saline (PBS) to reach 

a desired concentration of 1000 beads/µl. The PBS was than diluted ten times 

in Deionized Water (DIW) to reach an electrical conductivity of 0.156 S/m. 

This diluted solution had a final concentration of 100 beads/µl. Finally, 0.05% 

Tween was added to prevent beads to stick to PDMS. 

5.2.2 Cell culture and preparation 

Experiments were performed using the Human Embryonic Kidney (HEK) cell 

line from ATCC. Cells were cultured in a T75 flask using Dulbecco’s Modified 

Eagle Medium (DMEM - 𝜎R = 1.5 𝑆/𝑚) with 1% Penicillin Streptomycin (PS) 

and 10% Fetal Bovine Serum (FBS). Cells were collected twice per week and 

re-suspended when a confluency of about 80% was reached. 

Experimental medium consisted of DMEM diluted ten times in deionized water 

to reach 𝜎R = 0.156 𝑆/𝑚 in order to reduce thermal heating by Joule effect. The 
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osmolarity of the solution was corrected to reach the physiological value of 300 

mOsm/L by addition of dextrose. Both the electrical conductivity and 

osmolarity were experimentally verified with a conductivity meter (InLab 710 

from Mettler Toledo) and a micro-osmometer (Fiske Model 210). 

5.2.3 BSA preparation 

A 10% Bovine Serum Albumin (BSA) stock solution was prepared by dissolving 

100 mg of BSA lyophilized powder (Sigma Aldrich) in 1 ml of deionized water 

and by gently rocking the capped tube until the BSA was fully dissolved. 

5.2.4 Experimental setup 

The microfluidic chip was placed on a PCB, which enabled the connection of 

DEP-trapping and DEP-centering electrodes to two arbitrary function 

generators (HMF2525 from Rohde & Schwarz), and also detection electrodes 

(design presented in Chapter 6). The PCB presented in Figure 5:1 A) was 

mounted on an inverted microscope (from DMIL Leica), and a uEye camera 

(UI-3060CP Rev. 2 from IDS Imaging Development Systems GmbH) enabled 

the real time visualization with the computer. Fluid was automatically injected 

in the chip using either a flow control pump (Nemesys Syringe Pump) or a 

pressure controller (Flow EZ from Fluigent). The flow control was used to 

validate the trapping at a specific flow rate and the pressure control to reduce 

the flow variation and the flow rate. An impedance counting unit, presented in 

Chapter 6, was placed before and after the trapping chamber. Two flow 

controllers Flow EZ from Fluigent were used temporarily one after the other: a 

1000 mbar to fill the chip with liquid and a 25 mbar for precise flow control. 

Applied frequencies were 𝑓�_�  = 10 kHz for DEP centering and trapping 

electrodes. The schematics of the experimental setup with pressure control is 

presented in Figure 5:1 B). The PDMS chip was first filled with deionized water 

at 100 mbar and then primed by injecting the BSA solution for 10 minutes at 

10 mbar to prevent the adhesion of cells to the PDMS walls and to the glass. 

The cell suspension was then injected at 25 mbar before reducing the pressure 

to 2 mbar for the trapping. 
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Figure 5:1 Experimental setup used for the trapping. A) PCB platform mounted on an 
inverted microscope (Leica) used to supply the chip with the centering and trapping 
voltages. B) Schematic representation of the system controlling by a computer with 

LabVIEWTM all the different instruments: the uEye camera for visualization, the pressure 
controller and two arbitrary function generators. DEP centering electrodes are used to center 

particles laterally and to provide a vertical lift. The grey areas corresponding to our 
impedance sensing unit are presented in the following chapter. 

 Experimental testing of the test design 

First experiments were performed using 8 µm diameter beads with a flow 

controller (syringe pump) with configuration 3(a) presented and discussed in 

Chapter 3 section 3.2.3 for 𝑉�_� = 17.3 𝑉j (𝑉jb´µ) at 𝑓�_� = 10 𝑘𝐻𝑧 as 

illustrated in Figure 5:2 a). The medium conductivity and flow rate were set to 

𝜎R = 0.156 𝑆/𝑚 and 𝑄 = 1 𝜇𝐿/ℎ, respectively. Two other configurations of the 

electrodes with 5 electrodes and 7 electrodes were also tested and are 

respectively presented in Figure 5:2 b) and c). 

 

Figure 5:2 Illustration of the trapping of 8 µm diameter polystyrene beads with 3 different 
configurations of the electrodes. Channel height 50 µm, inlet and outlet width 50 µm, V =

22.5 𝑉j at 𝑓�_� = 10 𝑘𝐻𝑧, 𝜎R = 0.156 𝑆/𝑚 and 𝑄 = 1 𝜇𝐿/ℎ. 
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Polystyrene beads were successfully trapped in the chamber with the 3-electrode 

configuration. In the 5-electrode configuration, the trapped beads were directed 

towards the dead-end volume of electrodes 2 and 7. In the 7-electrode 

configuration, beads were trapped but at the entrance of the trapping chamber.  

For configuration 3(a), polystyrene beads were successfully trapped in the 

chamber and formed clusters that were moved towards the inlet as the size of 

the cluster increased as presented in Figure 5:3. The evolution of the cluster 

position followed the profile of the simulation-predicted position of a particle of 

increasing size presented in Figure 5:4). After stopping the DEP trapping 

voltage, the particles composing the cluster separated from each other. 

 

Figure 5:3 Evolution of the position of 8 µm diameter polystyrene beads with the number of 
beads in the trapping chamber with 3 electrodes. The solution flows in the chip from left to 

right. V = 17.3 𝑉j, 𝑓�_� = 10 𝑘𝐻𝑧, 𝜎R = 0.156 𝑆/𝑚 and 𝑄 = 1 𝜇𝐿/ℎ. 

 

Figure 5:4: For configuration 3(a) Left: Simulated evolution of the position of a polystyrene 
bead with the diameter. Center: Experimental evolution of the position of the cluster with 
the increase of the number of beads. V = 17.3 𝑉j, 𝑓�_� = 10 𝑘𝐻𝑧, 𝜎R = 0.156 𝑆/𝑚 and 𝑄 =

1 𝜇𝐿/ℎ. Right: Sketch of the design with the axis origin and the scale in µm. 
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This approach was repeated successfully for HEK cells, switching from a flow 

controller to a pressure controller to enable to reduce the flow rate and to have 

a better control at small flow rates. Trapping was achieved for the lowest 

possible voltage of 𝑉�_� = 22.5 𝑉j and a pressure 𝑃l¹ = 2 𝑚𝑏𝑎𝑟 as presented in 

Figure 5:5. This time a group of cells could be formed in the chamber as more 

cells arrived in the chamber. The video showing the cell aggregate formation is 

available at (Cottet 2018b). 

 

Figure 5:5 Example of HEK cell aggregation under flow conditions using 3 electrodes. The 
time stamps are in the mm:ss format. Scalebar 50 µm. A) Chip with only fluid inside. B) 
Cells reaching the trapping zone are stopped when the DEP force compensates the drag 

force. C) and D) The aggregate increased in size as more cells were reaching the trapping 
zone with 5 cells (C) and 8 cells and 1 arriving (D). Channel height 50 µm, Inlet and Outlet 

width 50 µm, V = 22.5 𝑉j at 𝑓�_� = 10 𝑘𝐻𝑧, 𝜎R = 0.156 𝑆/𝑚 and 𝑃l¹ = 2 𝑚𝑏𝑎𝑟. 

5.3.1 Initial assessment of the cell viability 

Cell integrity needs to be preserved during the aggregation process. An initial 

assessment was performed using Trypan blue. Trypan blue is a marker of the 

cell membrane permeability: living cells will look normal whereas permeable 

cells (for example dead cells) will be stained in blue. Cells were trapped and the 

resulting aggregates were let in the chamber for more than 5 minutes. Snapshots 

of this experiment are displayed on Figure 5:6. Cells located at the center of the 

chamber survived well, whereas those located in the periphery, close to the 

electrodes in high-field regions appeared in blue. As the number of cells 

increased with time, the aggregate became larger and tended to get closer to 

the electrodes, exposing cells located at the periphery to a larger field and 

temperature. 
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Figure 5:6 Evolution of an HEK aggregate for different number of trapped cells with a 3-
electrode configuration. V = 22.5 𝑉j at 𝑓�_� = 10 𝑘𝐻𝑧, 𝜎R = 0.156 𝑆/𝑚. The solution flows in 

the chip from left to right. 

 Discussion on the test design 

Cells were successfully trapped in the chamber and were forming a small cell 

aggregate. Quantification of the time needed to observe adhesion between the 

cells requires to overcome certain inherent limitations of the design. Out of the 

8 electrodes only 3 were used to perform the trapping. However, large aggregates 

were not stable due to the fact that the outlet of the chamber corresponds to a 

narrowing of the channel thus a re-acceleration zone for the fluid. In addition, 

the trapping zone is close to the electrodes, which due to the higher temperature, 

might lead to cell damage and aggregate disruption. Another limitation of the 

trapping with this configuration is that cells arrive continuously in the trapping 

chamber, increasing the size of the aggregate. Reducing the pressure to prevent 

the arrival of new cells requires to dynamically modify the trapping voltage in 

order to preserve the same position of the cells in the chamber.  

 Design and setup improvement 

Improving the cell trapping requires to improve both the design layout and the 

experimental setup. 

5.5.1 Design improvements 

5.5.1.1 Design 

In order to improve the stability of the trapping and to avoid instabilities such 

as reacceleration in the vicinity of the trapping area, the fluidic design can be 
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modified, based on the previous study, as displayed in Figure 5:7. Since only 3 

electrodes out of 8 were used for trapping, the improved design should only have 

3 (electrodes 2, 3 and 4 in Figure 5:7). 

Doubling the electrodes recess i.e. the distance between the electrode and the 

chamber, will reduce the heat transfer to the trapping zone. Similarly, doubling 

the width of the trapping chamber will reduce the fluid velocity hence the 

particle velocity and drag force. Moving this widening (respectively narrowing 

of the channel) before the trapping chamber (respectively after) will improve 

the stability of the trapping since the drag force will be lower and constant in 

the center of the chamber. 

To further reduce the fluid velocity in the chamber, additional outlets can be 

added to the side electrodes (electrodes 2 and 4 in Figure 5:7) while ensuring a 

high hydrodynamic resistance to prevent particles to go through the auxiliary 

outlets. This can be obtained by having relatively narrow and long 

microchannels. 

 

Figure 5:7 Improved trapping design composed of 4 electrodes (dark gray rectangles) with 1 
inlet/3 outlets located at electrodes 1 and 2/3/4 respectively (Scalebar 50 µm). The trapping 

chamber is colored in yellow. Scalebar 100 µm. 

5.5.1.2 Fluidic simulations 

Figure 5:8 A) presents the fluid velocity profile in the improved design. The 

flow profile, originally set with a constant flow speed of 500 µm/s at the 

microchannel inlet, will be parabolic and established after 40 µm and in the 
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trapping chamber as shown in Figure 5:8 B) (red line). The flow speed will be 

reduced in the entire trapping chamber, which will facilitate particle trapping. 

As predicted, the liquid speed in the central outlet (corresponding to electrode 

3 and x = 400 µm with the black line in Figure 5:8 B) is reduced compared to 

the one at the trapping chamber inlet (red line) thanks to the use of the two 

auxiliary outlets (located at electrodes 2 and 4). By adjusting the ratio of the 

fluidic resistance between the auxiliary outlets and the central outlet, the flow 

can be reduced in the central channel without particles going in the auxiliary 

outlets. 

 

Figure 5:8 A) COMSOL Multiphysics 2D simulation of the fluid velocity profile, in µm/s, in 
the improved chip design with an inlet velocity of 500 µm/s. B) Flow velocity profile along y 
at the inlet (in blue), at x = -400 µm (in red), in the center of the trapping chamber at x = 

0 (in green) and after the trapping chamber at x = 400 µm (in black). 

5.5.1.3 Electric field and dielectrophoresis simulations 

For comparison purpose, the improved design presented in Figure 5:7 was 

simulated with the same voltage, the same channel height and the same inlet 

flow speed as the test design presented in Figure 3:3. The field and trapping 

simulations are presented in Figure 5:9. The voltage distribution in the liquid 

is presented in Figure 5:9 A) while the evolution of |E2| along the axis y=0 is 

presented in Figure 5:9 B). The field value is the same as the one presented for 

the test design. With this design, the particle should be trapped closer to the 

center of the trapping chamber (the center, x=0, corresponds to the geometrical 

center between electrodes 1 and 3) at 𝑥d°´j = 17 µm as presented in Figure 5:9 

C). Two equilibrium positions, where the resulting force is equal to zero, exist 

along the x axis as presented in Figure 5:9 D) but only the one located between 

zones 1 and 2, with the abscissa 𝑥d°´j = 17 µm, is stable. 
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A 3D representation of the amplitudes of the DEP and drag forcee is presented 

in Figure 5:9 E) and F). The intersection between the two surfaces corresponds 

to a resulting force equal to zero. In the chip the particle will first reach the x 

trapping line materialized by the white/red dashed line in Figure 5:9 F) before 

moving along the line under the influence of the y component of the resulting 

force. 
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Figure 5:9 A) 2D simulation of the electric potential in the chip. B) Evolution of |E| along 
the x axis. C) 2D simulation of the trapping position of a cell using 3 electrodes supplied 

with V=10 Vp at 10 kHz. The surface represents ¶·2

¶c . The white dot indicates the trapping 
position, 𝑥d°´j, of a HEK cell (diameter 15 µm). D) Evolution of the DEP and drag forces 

along the BB’ cut. The resulting force is represented with the black dashed line and the red 
dashed vertical lines indicate the position where the resulting force is equal to zero. The gray 
dot with the arrow indicates the direction of the resulting force on the particle and the red 

dashed line between zones 1 and 2 the trapping position. E) Side and Top F) 3D 
representations of the amplitudes of the DEP (in blue) and drag (in green) forces along the y 
axis in the chip. The white/red dashed line in F) indicates where the x component of the two 
forces are equal in the trapping chamber. The electrode numbers are indicated. A logarithmic 

scale is used for both representations. 

Figure 5:10 presents the evolution of the y component of the DEP and drag 

forces for the improved configuration of the design.  
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At x=0 and x=xtrap, as displayed in Figure 5:10 A) and B), the y component of 

the drag force is smaller than the y component of the DEP force. In this case 

the particle would be exposed to a resulting force pushing it to the center (y=0). 

 

Figure 5:10 Evolution of the DEP and drag forces along the y axis at A) x=0 and B) 
x=xtrap=17 µm. The resulting force is represented with the black dotted line and the red 
dotted line indicates the positions where the resulting force is equal to zero. The gray dot 
with the arrow indicates the direction of the force on the particle. C) Side and D) Top 3D 

representations of the amplitudes of the DEP (in blue) and drag (in green) forces along the y 
axis in the chip. The white/red dashed line in D) indicates where the x components of the 

two forces are equal (from Figure 5:9 F) and the white cross the final position of the particle. 
The electrode numbers are indicated. A logarithmic scale is used for both representations. 

The amplitude of the y component is two orders of magnitude smaller than the 

x component. In all cases, the particles will first reach the trapping position due 

to the x component of the resulting force (white/red dashed line in Figure 5:10 

D) and then get centered in the microchannel due to the y component of the 

resulting force as illustrated in Figure 5:10 D until it reaches the white cross. 

This design, while improving the trapping, should, however, not concentrate 

particles at a specific point as predicted but in a wider area (making more of a 

chain) due to the wide zone of low fluid velocity. A 4th electrode (number 1 in 

Figure 5:7) was then added to enable to recenter the cell aggregate and prevent 
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new particles and cells to join the aggregate once the desired number of cells in 

the aggregate is reached.  

5.5.2 Setup Improvements 

To be able to prevent new cells from coming in the trapping chamber, the 

experimental setup was fully controlled with LabVIEWTM (National 

Instruments). This setup, presented in Figure 5:11, provides a control of all the 

instruments through a dedicated interface. When the required number of cells 

in the chamber is reached, the flow can be decreased together with the DEP 

trapping voltage. Once the arrival of new cells is stopped, electrode 1 from 

Figure 5:7 is supplied with the same voltage as electrode 3 using the manual 

switch from Figure 5:11 A), sealing the DEP cage and recentering the cell 

aggregate. Further increase of the voltage can improve the compaction of the 

aggregate. 

 

Figure 5:11 Experimental setup used for the trapping with the improved trapping design. A) 
PCB platform mounted on an inverted microscope (Leica) used to supply the chip with the 

centering and trapping voltages. A manual switch enables to activate a 4th electrode 
(number 1 in Figure 5:7) for compacting the aggregate. B) Schematic representation of the 

system with a computer controlling with LabVIEWTM all the different instruments as 
presented in Figure 5:1. The grey areas corresponding to our impedance sensing unit are 

presented in the following chapter. 

5.5.3 Experiments and trapping with a fully automated setup 

Experiments using the fully automated setup and the improved design are 

presented in Figure 5:12. The chip is first filled with deionized water and then 

primed with BSA as presented in Figure 5:12 A. The suspension of cells is 

injected and once the cells start to reach the trapping chamber, the pressure is 
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decreased to 2 mbar. Cells arrive slowly in the chamber (Figure 5:12 B) forming 

a cell line (Figure 5:12 C). Once the desired number of cells is reached (21 cells 

in Figure 5:12 D) both DEP trapping voltage and flow rate are reduced to 

prevent additional cells to reach the trapping zone. Electrode 1, located on the 

left, is activated leading to the centering of the cell aggregate (Figure 5:12 E). 

The DEP force is also increased to compact the aggregate. As displayed in 

Figure 5:12 F), the aggregate is more compact after 5 minutes. The DEP force 

is cancelled and the flow rate increased to help the formed aggregate to leave 

the trapping chamber as shown in Figure 5:12 G. The aggregate leaves the 

trapping chamber and no cell separation is observed, even in a narrower 

meander (width 40 µm) located after the trapping chamber as shown in Figure 

5:12 H). The video showing the cell aggregate formation is available in (Cottet 

2018a). 

 

Figure 5:12 Example of HEK cell aggregation in flow using the 3 electrodes on the right. The 
time stamps are in the mm:ss format. Scalebar 100 µm. A) Chip with only fluid inside. B) 

Arrival of the first cell in the trapping chamber. C) 10 cells are trapped under flow 
conditions, forming a line, while more cells arrive (4 then 3 cells arriving). D) DEP voltage 

and inlet pressure are reduced to 𝑉º  and 𝑃º  to prevent more cells to reach the 21 cells 
located in the trapping zone. E) The 4th electrode (located on the left) is activated leading to 
the centering of the cell aggregate. The DEP force is also increased back to 𝑉d°´j to compact 
the aggregate. F) After 5 min, the aggregate is more compact. G) The DEP force is cancelled 
and the inlet pressure increased to 𝑃°b`b´±b to help the formed aggregate to leave the trapping 

chamber. H) No cell separation is observed in a narrower meander (width 40 µm) located 
after the trapping chamber. Channel height 50 µm, 𝑉d°´j = 15 𝑉j for the trapping and the 
compacting and 𝑉º = 5 𝑉j when the flow is reduced (both at f = 10 kHz), 𝜎R = 0.156 𝑆/𝑚, 

𝑃d°´j = 2 𝑚𝑏𝑎𝑟, 𝑃º = 1 𝑚𝑏𝑎𝑟 and 𝑃°b`b´±b = 2 𝑚𝑏𝑎𝑟. 
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 Conclusion 

The proposed design offers a new way to create cell aggregates, on chip, with a 

controlled number of cells. It has been obtained with the help of simulations 

that required a few simplifications. 

Simulations of the test design served as a basis for comparison between several 

electrode configurations in order to select the most promising one. The required 

voltage for trapping is higher than that expected from the simulations. These 

discrepancies can be explained by the fact that for the sake of simplifications, 

calculations were performed on a 2D model. In 2D simulations, electrodes are 

considered as equipotential lines located on the side of the microchannel. 

However, those equipotential lines, equivalent to “liquid electrodes” (Demierre, 

et al. 2007) are created by planar electrodes with a higher voltage in the 3D 

device. Furthermore, since the experiments are performed with pressure control, 

the flow speed depends on the design and tubing used. Simulating such system 

would require a 3D model implying lot of computing resources.  

The best configuration has been tested experimentally and proved to be capable 

of trapping polystyrene beads as well as HEK cells under flow conditions. This 

test design was however not optimal for the trapping. An improved design was 

simulated, tested and proved to be capable of trapping the desired number of 

cells. However, creating a real “cell by cell aggregate” requires cells to be 

initially sufficiently separated, which is a point that still needs to be improved. 

As two impedance sensing stages, presented in (Cottet, et al. 2019c), have been 

added upstream and downstream the trapping area, it should also be possible 

to detect pre-aggregated cells and take them into account while evaluating the 

final aggregate size.  

The absolute size limit of the cell assemblies is the size of the trapping chamber 

in both designs. Additionally, the size of the microchannel (50 µm x 50 µm) can 

also be a limitation as cell aggregates with a larger cross-section might get stuck 

in the microchannel. Adding cells to the assembly will lead to two opposite and 

competitive effects. On the one hand, adding cells will create a larger assembly 
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which will behave as a larger particle which has been confirmed experimentally. 

On the other hand, adding cells will reduce the cross-section of the microchannel 

available for the fluid which will lead to a faster flow and thus decrease the 

trapping. Experimentally, the stability of the trapping has shown to be 

increased when the number of polystyrene beads forming a cluster increased. 

This effect can possibly be explained by the dependence of the force on the 

object size: the drag force is proportional to rext while the DEP force is 

proportional to rext
3. 

All cells remained together as a permanent aggregate after 5 min of contact 

between trapped cells. While cell-cell interactions are favored thanks to dipole-

dipole attraction forces between neighboring cells, the nature of the creation of 

permanent aggregates is not yet fully understood. Possibly cadherin-cadherin 

interactions take place as suggested by Menad et al. (Menad, et al. 2015). 

Cadherins are membrane proteins related to the physical linkages between cells. 

Mechanical forces such as compression enhance the protein-mediated adhesion 

as shown by Pontani et al. (Pontani, et al. 2012). 

The number of cells composing the aggregate is controlled visually by means of 

a camera. This number could also be directly obtained using impedance flow 

cytometry. This point will be discussed in the next chapter. The created 

aggregate could be studied in a similar way. 

The here presented set-up offers the possibility to further investigate 

interactions between different cell types by creating composite aggregates. Using 

different inlets for different cell types will offer the possibility to create 

composite aggregates with a known composition; using impedance flow 

cytometry the properties of each cell and of the created aggregates can be 

determined. 

Aggregates created on-chip could also be part of a Lab-on-a-chip by adding the 

possibility to electroporate the created aggregates and observe their properties 

before and after electroporation. The next chapter is dedicated precisely to the 

implementation of an impedance sensing module on the chip. 
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 Design proposition for 
impedance sensing of single 
cells and cell aggregates 

This chapter is dedicated to the analysis of the influence of the geometry 

of a coplanar electrode layout for Electrical Impedance Flow Cytometry (EIFC) 

aimed to be used for the detection of single cells and small cell aggregates. The 

goal of this study is to (1) detect the particle with a signal as high as possible 

and (2) have a signal not sensitive to the particle position (lateral and vertical) 

in the microchannel. The content of the chapter is partially published in the 

article cottet (Cottet, et al. 2019c): 

Cottet, J., Kehren, A., van Lintel, H., Buret, F., Frénéa-Robin, M. & Renaud, 

P. How to improve the sensitivity of coplanar electrodes and micro channel 

design in electrical impedance flow cytometry: a study. Microfluidics and 
Nanofluidics 23, doi:10.1007/s10404-018-2178-6 (2019). 
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 Introduction 

Electrical Impedance Flow Cytometry (EIFC) is a label-free technique for 

characterizing objects in suspension in a flowing liquid. The principle was 

described by Coulter in 1953 (Coulter 1953) and the devices became commonly 

known as Coulter counters. When a particle passes through a small aperture in 

a membrane connecting two reservoirs, the characteristics of the electrical path 

are modified and this modification is linked to the properties of the particle and 

the liquid. Originally used with direct current or low-frequency signals to assess 

the size, the principle was later extended by the use of multiple frequencies to 

enable the characterization of particle dielectric properties at higher frequencies 

(Coulter and Hogg 1970, Coulter and Rodriguez 1988).  

In the late 1990’s, the principle was translated in microsystems in which thick 

electrodes of the size of a microchannel were patterned for fluid analysis (Ayliffe, 

et al. 1999). Gawad et al (Gawad, et al. 2001) alternatively employed thin 

electrodes patterned in a microchannel for cell analysis and particle sizing and 

thereby pioneered the field of on-chip impedance flow cytometry as presented 

in Figure 6:1. Since then, a broad variety of cell types have been investigated 

by impedance spectroscopy, including blood cells (erythrocytes (Cheung, et al. 

2005, Gawad, et al. 2001, Kuttel, et al. 2007), white blood cells (Han, et al. 

2012, Holmes and Morgan 2010, Holmes, et al. 2009) and platelets (Evander, et 

al. 2013)), cancer cells (Spencer, et al. 2014, Zhao, et al. 2016a, Zhao, et al. 

2014), microbes (yeast (Haandbaek, et al. 2014a, Haandbaek, et al. 2016, 

Shaker, et al. 2014), bacteria (Haandbaek, et al. 2014b), plankton (Benazzi, et 

al. 2007)), stem cells (Song, et al. 2016, Song, et al. 2013, Zhao, et al. 2016b), 

sperm (de Wagenaar, et al. 2016) etc. More detailed information can be found 

in the reviews of Morgan et al. (Morgan and Spencer 2015, Sun and Morgan 

2010), Chen et al. (Chen, et al. 2015) and Petchakup et al. (Petchakup, et al. 

2017). 
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Figure 6:1 A a) Principle of differential impedance sensing with coplanar electrodes with b) 
the corresponding differential impedance signal. B a) Electrical equivalent circuit with b) the 
corresponding SPICE simulated complex impedance for a 10 µm diameter cell. All schematics 

are adapted from (Gawad, et al. 2001). 

Two main electrode configurations have been proposed: the coplanar and the 

parallel microelectrodes, also called “facing electrodes”. The coplanar design 

consists of two patterned electrodes located at the bottom of a microchannel. 

This design is sensitive to the height of the particle in the microchannel due to 

the electric field non-uniformity. Facing microelectrodes, presented in Figure 

6:2, were proposed as an alternative by Cheung and Gawad (Cheung, et al. 

2005) and allowed to have a more homogeneous current density around the cell 

under measurement. In this configuration, the electrodes are located at the top 

and the bottom of the microchannel, creating a more homogeneous electric field 

distribution in a smaller volume and thus improving the sensitivity. However, 

this design requires a more complex fabrication process and the signal is still 

dependent on the cell position in the detection volume (Spencer and Morgan 

2011). 
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Figure 6:2 Principle of the facing electrode design. Adapted from (Cheung, et al. 2005). 

The coplanar design has recently been reinvestigated because of its ease of 

fabrication. In order to improve this design, so-called “liquid electrodes”, 

presented in Chapter 3, were utilized to reduce the effect of the field non-

uniformity (Demierre, et al. 2007). In this configuration, the electrodes are 

positioned at the bottom of dead-end chambers placed on each side of the main 

channel. This creates a homogeneous electric field over the channel height if the 

distance of the electrodes to the channel is at least equal to the channel height 

(Demierre 2008). However, the sensitivity is reduced due to a larger detection 

length and thus a larger detection volume. 

More recently, a solution closer to a Coulter counter was proposed by Chen et 

al. (Chen, et al. 2011) who used a constriction channel with a cross-sectional 

area smaller than the investigated cell. In this case, the impedance amplitude 

value obtained is increased due to the fact that the deformed cell occupies most 

of the detection volume. On the other hand, the risk of clogging is higher and 

only a small range of cell sizes can be used for each design. 

In order to mitigate the positional dependence of the particle in the coplanar 

design, Caselli et al. (Caselli and Bisegna 2017, De Ninno, et al. 2017) proposed 

to use multiple electrodes and to analyze the pulse shape to retrieve the position 

of the particle. The geometry was also reinvestigated by Clausen et al. (Clausen, 

et al. 2014), as presented in Figure 6:3, who showed that tuning the design of 

the microchannel could improve the sensitivity of Electrical Impedance Flow 

Cytometry measurements. In their study, they demonstrated that doubling the 
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electrode width allowed to increase the peak amplitude of more than 40 %. 

However, they only considered the effect of this parameter in their analysis. 

 

Figure 6:3 Comparison between two electrode layouts. A) Conventional layout composed of 
the 3 electrodes. B) Improved design proposed by Clausen. Adapted from (Clausen, et al. 

2014). 

The influence of the electrodes geometry on impedance was also studied for a 

design where electrodes had been fonctionnalized and trapped monocytes at 

their surface (Manczak, et al. 2016, Manczak 2016). 

Most of the work described in the literature focuses on analyzing a specific size 

of cell, hence most of the sensors are suited for only a certain range of particles. 

A design capable of sizing and characterizing single cells and small cell 

aggregates is still missing. We are interested in creating cell aggregates of 

controllable size in flow, which requires the capability to analyze both single 

cells and cell aggregates. 

In this chapter, we present a comprehensive study for the improvement of 

electrical impedance sensitivity of coplanar electrodes by investigating the 

influence of the microchannel design. The application is the characterization of 

single cells and small cell aggregates in a chip for dielectrophoresis-assisted 
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creation of cell aggregates under flow conditions. The impedance sensor 

presented in this chapter is a building block of the final chip where cells can be 

counted by impedance as single particles before entering in a DEP-trapping 

chamber where they aggregate and, after release of the DEP voltage used for 

trapping, can be characterized as cell aggregates. 

The general configuration is composed of a 50 μm square microchannel with a 

pair of 50 μm long coplanar electrodes at its bottom, separated by 50 or 150 

μm. A detailed analysis of four designs is first performed through FEM (Finite 

Element Method) simulations with COMSOL Multiphysics and the results are 

confronted with experimental measurements carried out on 8 μm diameter 

polystyrene beads. Frequently, in both facing and coplanar electrode layouts, a 

differential measurement is performed (Cheung, et al. 2005, Clausen, et al. 2014, 

Gawad, et al. 2001). In this chapter, the goal is to study the influence of the 

design of the impedance sensor on the signal. To assess such influence, only an 

absolute measurement scheme is needed without the need of a differential 

measurement since the baseline subtraction can be done numerically. 

 Simulations 

6.2.1 Simulated designs 

A conventional Electrical Impedance Flow Cytometry chip with a straight 

channel design further named “conventional” design is used as a reference design 

and presented in Figure 6:4 A). It consists of two coplanar electrodes located at 

the bottom of the microchannel. A voltage is applied between the two electrodes 

and the current is recorded. The current drops when a particle flows between 

the electrodes. The proposed analysis method consists in studying the variation 

of the current drop while changing several parameters as defined in Figure 6:4 B. 

The height, h, and width, w, of the microchannel are kept constant in the study 

(h = 50 μm and w = 50 μm) as well as the length of the electrodes, lel, while 

the other parameters are varying. 

The influence of the following parameters on the sensitivity is tested: 



Design proposition for impedance sensing of single cells and cell aggregates 

143 

 

Figure 6:4 Top view and 3D view of A) the conventional design and B) the conceptual 
design. 𝑙b` = 50 µ𝑚, ℎ = 50 µ𝑚 and 𝑤 = 50 µ𝑚 are kept constant. 𝑎, 𝑏, 𝑑, 𝑑b` and 𝑤b` are the 

parameters to optimize. Electrodes are represented in blue. 

- The inter-electrode distance, 𝑑b` 

- The width of the electrodes, 𝑤b` 

- The length of the maximum sensitivity area, 𝑑 

- The widening length, 𝑏 

- The widening to electrode distance, 𝑎 

 The dimensions used in this design were selected to allow the sizing of 8 

µm diameter single cells as well as 50 µm diameter cell aggregates. Increasing 

the length of the electrodes, 𝑙b`, can theoretically increase the current between 

the electrodes but would lead to an increase of the capacitance between the 

electrodes. Furthermore, most current lines added by a longer electrode would 

be confined to the top of the microchannel. Therefore, 𝑙b` was fixed to 50 µm for 

the different designs to be equal to the height of the microchannel ℎ. 

6.2.2 Simulation specifications 

The modeling of impedance variation was performed using COMSOL 

Multiphysics 5.3 and the AC/DC Module. COMSOL Multiphysics was used with 

MATLAB R2016a via LiveLink to extend the modeling with scripting 
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programming in the MATLAB environment. All the simulations performed 

aimed at studying the current variation due to an 8 µm diameter polystyrene 

bead positioned at the center of the detection volume (x = 0 µm, y = 0 µm, z 

= h/2 = 25 µm). The bead electrical conductivity and relative permittivity 

values were set to 5 x 10-6 S/m and 2.5, respectively. The conductivity and 

relative permittivity of the liquid between the electrodes were set to 1.6 S/m 

(Phosphate Buffer Saline conductivity) and 80, respectively.  

The relative current variation was considered with respect to the current 

between the electrodes without a particle. A spherical particle was defined as a 

change in material properties instead of a geometrical entity. The particle was 

moved along the channel by displacing its center using a parametric sweep. 

More details on this method are available in paragraph D.1 in Appendix D. An 

AC signal of amplitude 0.8 𝑉jb´µ (𝑉j) at 500 kHz was applied between the two 

electrodes. In the numerical model, the electrode capacitance is not taken into 

account as the frequency used for the impedance measurements is 500 kHz. 

The meshing as well as the corresponding mesh convergence study are described 

in paragraph D.2 in Appendix D, validating the choice of discretization. 

6.2.3 Simulation results 

6.2.3.1 Influence of 𝒅»¼ 

The first parameter examined was the inter-electrode distance, 𝑑b`, in a 

conventional design, with 𝑤 = 𝑤b`. The evolution of the current variation with 

𝑑b` is presented in Figure 6:5. As the distance between the electrodes increases 

from 40 to 180 µm, both the absolute and relative current variations decrease. 

Two different distances were chosen for further study: 𝑑b` = 50 µm, 

corresponding to the height of the microchannel and the diameter of the targeted 

aggregate, and 𝑑b` = 150 µm corresponding to three times the height of the 

microchannel. For 𝑑b` = 50 µm, the electric field is not homogeneous along the 

z axis, leading to a strong height dependence of the current variation but the 

sensitivity to passing particles is significant at any height. For 𝑑b` = 150 µm, 

the electric field is homogeneous along the z axis in the central cube (50 µm x 
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50 µm x 50 µm) offering a theoretically height-independent detection for both 

single particles and the entire aggregate. However, the overall sensitivity to 

single particles is reduced because of the smaller volume occupied by the 

particles compared to the inter-electrode volume. The designs with 𝑑b` = 50 µm 

and 𝑑b` = 150 µm will be referred to as “Short” and as “Long” respectively. The 

order of magnitude of the current variation induced by the passage of a bead, 

0.1%, is in the same order of magnitude as the value reported by Spencer 

(Spencer and Morgan 2011). 

 

Figure 6:5 Simulation of the evolution of the current variation with the inter-electrode 
distance del due to an 8 µm diameter polystyrene bead located at x = 0 µm, y = 0 µm and z 

= h/2 = 25 µm for 𝑤 = 𝑤b` = 50 𝜇𝑚. 

6.2.3.2 Influence of 𝒘»¼ 

Increasing the width of the electrodes 𝑤b` will lead to a larger current flowing 

between the electrodes. For the two designs (Short and Long), the evolution of 

the current variation with 𝑤b` is displayed in Figure 6:6 A) and B). In both 

cases the current variation increases with 𝑤b` until it reaches a final value. From 

the fluidic aspect 𝑤b` cannot be increased too drastically as it would lead to 

vorticity in the dead volumes. In both cases the increase was interpolated with 

an increasing exponential decay as displayed in Figure 6:6 A) and B). 𝑤b` was 

chosen as the time when approximately 95% of the final value was reached, as 

a compromise between the maximum sensitivity and fluidic considerations. This 

corresponds to 𝑤b` = 90 µm and 𝑤b` = 140 µm for 𝑑b` = 50 µm and 150 µm, 

respectively. Details on the fitting parameters are given in paragraph D.6 in 

Appendix D. 



Design proposition for impedance sensing of single cells and cell aggregates 

146  

 

Figure 6:6 Simulation of the current variation due to an 8 µm diameter polystyrene bead 
located at x = 0 µm, y = 0 µm, z = h/2 = 25 µm. Evolution with 𝑤b` for (a) 𝑑b` = 𝑑 = 50 𝜇𝑚 
and (b) 𝑑b` = 150 𝜇𝑚  with 𝑎 = 50 µm, 𝑏 = 0 µm, 𝑑 = 50 µm. Evolution with 𝑏 for (c) 𝑑b`= 50 
µm for 𝑤b`= 90 µm, 𝑎 = 5 µm, 𝑑 = 𝑑b`–  2 ∗ (𝑎 + 𝑏) = 40– 2𝑏 and (d) 𝑑b` = 150 µm for 𝑤 = 50 
µm, 𝑤b` = 140 µm, 𝑑 = 50 µm, 𝑎 = (𝑑 − 𝑑½b`)/2 − 𝑏 = 50– 𝑏. Fitted curves are displayed in 

red. 

6.2.3.3 Influence of 𝒃 

Increasing the widening length, 𝑏, should reduce the current variation as the 

confinement of the electric field lines will be reduced due to a smoother 

transition between the electrode side and the maximum sensitivity area, 𝑑. At 

the same time, a small 𝑏 value will correspond to a geometry presenting corners. 

Figure 6:6 C) and D) shows the results for respectively a “Short” and a “Long” 

design.  

In Figure 6:6 C), 𝑎 is fixed to 5 µm for fabrication considerations, 5 µm being 

the minimum distance for which the electrodes will still be on each side of the 

constriction. 𝑏 is optimized and 𝑑 is deduced from the geometric relation 𝑑 + 2 ∗

(𝑎 + 𝑏) = 𝑑b`. The decrease was interpolated with a polynomial decay and 𝑏 was 

taken as 99% of the maximum value of 𝑏 as a compromise between the maximum 
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sensitivity and fluidic considerations. It corresponds to 𝑏 = 7 µm and 𝑑 = 26 

µm. This design will be referred to as “Short Optimized” (SO) design and the 

original design with 𝑑b` = 50 µm as “Short Conventional” (SC) design. Details 

on the fitting parameters are given in paragraph D.6 in Appendix D. 

In Figure 6:6 D), 𝑑 is fixed to 50 µm, to have the full central sensitive volume 

of the size of the aggregate, 𝑏 is optimized and 𝑎 is deduced from the geometric 

relation 𝑑 +  2 ∗ (𝑎 +  𝑏)  =  𝑑b`. Following the same methodology, we obtained 

𝑏 = 15 µm and 𝑎 = 35 µm. This design will be referred to as “Long Optimized” 

(LO) design and the original design with 𝑑b` = 150 µm as “Long Conventional” 

(LC) design.  

6.2.4 Proposed design for testing  

All the geometrical parameters used for the four designs are summarized in 

Table 2. Figure 6:7 presents the current variation due to an 8 µm diameter 

polystyrene bead located at y = 0 µm and z = h/2 = 25 µm for the four tested 

designs. 

Design h lel w del (*) wel b d a 

 µm µm µm µm µm µm µm µm 

SC 50 50 50 50 50 0 50 0 

SO 50 50 50 50 90 7 26 5 

LC 50 50 50 150 50 0 50 0 

LO 50 50 50 150 140 15 50 35 

Table 2 Geometrical parameters used for each design, optimized parameters values are in 
bold. (*) indicates that the value was chosen but not optimized. 

In an optimized design, the peak amplitude for a centered particle is increased 

with both inter-electrode distances: +14.4% for the Short design and +50.1% 

for the Long design compared to the corresponding conventional designs. In 

both cases, the peaks are sharper for the optimized designs.  
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Figure 6:7 Simulation of the current variation due to an 8 µm diameter polystyrene bead 
located at (y = 0 µm, z = h/2 = 25 µm). Evolution with the x position in the microchannel 

for the 4 designs: Short Optimized (SO), Short Conventional (SC), Long Optimized (LO) and 
Long Conventional (LC). The red cross indicates the point (x=0, y=0) on each design. 

Figure 6:8 shows the evolution of the current variation for each design for an 8 

µm diameter polystyrene bead with A) the y position of the particle located at 

x = 0 µm and z = h/2 = 25 µm and with B) the z position of the particle located 

at x = 0 µm and y = 0 µm. In the case of the Short designs, the current variation 

is very dependent on both the lateral and vertical positions of the particle. 

Concerning the lateral position, for the SO design, the variation of the current 

variation will be 32% greater near the wall in respect to the variation linked to 

a centered particle. For the SC design, it will be of 3.2%. For the Long design, 

those variations will be of 10.9% and 3.2% for the LO and LC designs 

respectively. Optimized designs are more sensitive to the y position hence 

requiring some lateral focusing. 

Concerning the z position, the Short designs are more sensitive to the vertical 

position of the particle than the Long designs. The most sensitive design is the 

SC design with +70.5%/-26.9% of variation of the current variation compared 

to a z-centered particle (z = h/2 = 25 µm), considering the lowest/highest z 

positions of the particle (z = 5 µm and z = 45 µm). The SO design is a bit less 

sensitive with +48.7%/-18.5%. The Long designs are less sensitive to the z 
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position of the particle with +4%/-2.3% and +5.1%/-1.3% for the LO and LC 

designs respectively. 

 

Figure 6:8 Simulation of the current variation due to an 8 µm diameter polystyrene bead for 
the 4 designs. Evolution with (a) the y position in the microchannel (located at x = 0 µm, z 
= h/2 = 25 µm) and with (b) the z position in the microchannel (located at x = 0 µm, y = 0 
µm). The red vertical dotted line represents the position of the particle in the center (x = 0 

µm, y = 0 µm and z = 25 µm). 

6.2.5 Vertical and longitudinal position sensitivity 

As mentioned at the beginning of this chapter, the goal of this study is to (1) 

detect the particle with a signal as high as possible and (2) have a signal not 

sensitive to the particle position (lateral and vertical) in the microchannel. For 

each design, the evolution of the current variation with the x position in the 

channel at different heights is displayed in Figure 6:9. The Short designs are 

very sensitive to the height of the particle, as can be noticed both in the shape 

and in the amplitude compared to the Long designs. 

The Long designs are sensitive to the height of the particle mostly in the shape 

but the amplitude of the current variation in the central zone (x = 0 µm) varies 

little and hence will be mostly linked to the size of the particle.  

For the conventional designs (SC and LC presented in Figure 6:9 A) and C) 

respectively), when the particle passes close to the electrodes (mostly z = 5 µm), 

the shape of the peak is not just a drop but is strongly M-shaped. This is due 

to the fact that when the particle passes near the electrode (low heights) in the 

conventional design, the perturbation is higher than when the particle is in the 

middle of the detection area (x = 0 µm). This particular peak form is also 
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observed in the case of Coulter counters when the particle passes close to the 

wall of the aperture (Allen 1997). For the SO design, presented in Figure 6:9 B), 

the M shape is only present when the particle passes very close to the electrodes. 

In the case of the LO design in Figure 6:9 D), the M-shaped curve is also present 

but the maxima are only local maxima and the global maximum is in the central 

part of the channel (x = 0 µm). In the optimized designs, as the electrode is 

wider, the passing of a particle close to the electrode induces less variation than 

in the conventional designs. 

 

Figure 6:9 Simulation of the current variation due to an 8 µm diameter polystyrene bead. 
Evolution with the x position in the microchannel (located at y = 0 µm) at different heights 
for the 4 designs: (A) SC (B) SO (C) LC (D) LO. Electrode positions (in black) are indicated 

under each graph. 
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 Laboratory experiments 

6.3.1 Fabrication 

The four designs were fabricated on two chips: each chip contains in the middle 

9 electrodes used for DEP centering, and on both sides a combination of the 3 

designs, symmetrically (SC, LC and either SO or LO). The process flow used 

for the fabrication is presented in Chapter 4 and in the article (Cottet, et al. 

2017). 

The different fabricated designs are presented in Figure 6:10. 

 

Figure 6:10 Photographs of the different designs (a) SC (b) SO (c) LC (d) LO. Scalebar 50 
µm. Ti/Pt Electrodes are visible as black stripes. 

6.3.2 Experimental setup 

Figure 6:11 presents the schematic representation of the experimental setup 

used. 10 𝑉j at 100 kHz were applied on the DEP focusing electrodes to center 

the particles laterally (Braschler, et al. 2008, Demierre, et al. 2008) and to 

provide a vertical lifting (Shaker, et al. 2014). 
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Impedance measurements were performed by applying an AC signal of 0.8 𝑉j at 

a frequency of 500 kHz on one electrode and amplifying the current change on 

the other electrode using an HF2TA current amplifier (Zurich Instruments, 

Zurich – Switzerland). The current was demodulated with an HF2LI Lock-In 

amplifier (Zurich Instruments, Zurich – Switzerland). 

The channel was filled first with PBS (1.6 S/m) prior to the experiment using 

a Nemesis syringe pump. A suspension of 8 µm diameter polystyrene beads 

(Sigma Aldrich, Buchs – Switzerland) in PBS at 3.5 x 105 beads/ml was 

prepared and then perfused at 10 µl/h during the experiment to provide a flow 

rate similar to the one that would be used for DEP trapping of cells in flow as 

presented in Chapter 5. Therefore, the DEP centering module enables to have 

a reproducible height of the particles at low flow rates. Experimental data were 

recorded and further processed with MATLAB. 

 

Figure 6:11 Schematic representation of the system with a photograph of the chip showing 3 
designs. Scalebar 100 µm. 

 Results and discussion 

Figure 6:12 presents the experimental results obtained for the four different 

designs. In the SO and LO designs, the velocity of a particle passing through is 

not constant due to the widening of the microchannel. For this reason, the time 

scale in Figure 6:12 was not converted into a distance scale. The laboratory 

experiments are in good agreement with the simulations.  The relative 

amplitudes of the curves at t = 0 ms (particle at x = 0) are similar to what was 

predicted by the simulations (cf Figure 6:7 and Figure 6:9). According to 
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observations with the microscope and to the standard dispersion observed in 

Figure 6:12, the shape of each curve corresponds to a particle centered laterally 

with DEP.  The M-shape curves observed for the conventional designs (SC and 

LC) indicate that the particle is not centered vertically. According to the 

amplitude of the peak and the M-shape we can estimate the height of the center 

of the particles between 5 and 15 µm. At this flow rate (10 µl/h) the DEP force 

overcome sedimentation but are insufficient to lift the particles up to the center 

of the channel. 

 

Figure 6:12 Experimental data showing the evolution with time of the average current 
variation for each design with +/- 2 times the standard deviation (n>=8) due to an 8 µm 

diameter polystyrene bead in the microchannel for the 4 designs. Measurements were 
performed for the 4 designs at a flow rate of 10 µl/h (particle speed in the order of 1000 

µm/s). 

Details on the data processing can be found in paragraph D.3 in Appendix D. 

Both simulations and laboratory experiments provided insights on the 

performances of each design. The “Short” designs provide a higher signal when 

a particle is passing between the electrodes compared to the “Long” ones. The 

Short Conventional design (SC) provides a signal highly dependent both in 

shape and in amplitude on the height of the particle in the microchannel. The 

M shape obtained could be analyzed to determine the height of the particles. 

One of the challenges is to have enough points on the experimental curve to 

determine precisely the amplitude of the M. The signal could, however, be 

misinterpreted as two particles closely following each other. The model 

presented in this chapter is intended to be used with a small cell concentration. 

However, in case of doublets, the current variation is relatively higher than for 
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a single particle passing. Furthermore, the shape of the peak is modified. In case 

of separated particles passing through the detection area at the same time, a 

similar conclusion is still valid: higher variation of the current variation and/or 

two peaks close to each other depending of the distance between the particles. 

The short optimized design (SO) provides a signal amplitude which is still 

dependent on the particle height but the experimentally observed shape is a 

single peak. The peak shape height dependency is less pronounced for this 

design: the M shape only occurs on very low heights and is not observed 

experimentally thanks to the DEP lifting. The long designs provide a broader 

signal because of a longer transition time between the electrodes. In the long 

conventional design (LC), the current variation at the center does not depend 

on the particle height. However, off-center, the current variation is higher and 

the related peak amplitude is height dependent. Finally, for the long optimized 

design (LO), there is only a single peak whose amplitude does not depend on 

the particle height. The current density at x = 0 µm for each design is displayed 

in paragraph D.4 in Appendix D. 

The sensitivities to the longitudinal fabrication misalignment (along the x axis) 

of the optimized designs are presented in paragraph D.5 in Appendix D. For a 

misalignment of 5 µm, this would result in a variation of the current variation 

of 0.5% for SO and 0.02% for LO compared to the respective references without 

longitudinal misalignment. Analysis of fabrication results presented in (Cottet, 

et al. 2017) showed that the maximum misalignment obtained was in all cases 

less than 5 µm as can also be seen in Figure 6:10. 

The best candidate for our application, characterization of particles at very low 

flow rate with a relative insensitivity to the particle height, is the long optimized 

design. Peak detection algorithms, after adjustment, will find central peaks in 

all cases (Brazey, et al. 2018). This design is also insensitive to longitudinal 

misalignment in the fabrication process. As 8 µm polystyrene beads were used 

to perform all the optimization simulations, it was considered as the lower limit 

for the particle diameter. Different diameters were simulated for the long 

optimized (LO) design and the results show that the current variation 
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significantly increases when the particle diameter increases but does not depend 

on the electrical conductivities of the medium as illustrated in Table 3. The 

value of the electrical conductivity should be chosen according to the 

application: a high conductivity to obtain more signal for impedance sensing 

only and a lower conductivity if the sensor should be integrated in a chip with 

for example DEP trapping to reduce Joule heating. 

Particle diameter Current variation (in %) 
(in µm) σm = 1.6 S/m σm = 0.16 S/m 

8 0.1193 0.1193 
10 0.2507 0.2495 
12 0.4194 0.4178 
14 0.6749 0.6732 
16 1.0006 0.9995 
18 1.4375 1.4341 
20 1.9725 1.9638 
22 2.6571 2.6494 
24 3.4516 3.4434 
26 4.4685 4.4558 
28 5.5781 5.5657 
30 6.9738 6.9619 
32 8.5453 8.5241 
34 10.4399 10.4135 
36 12.5886 12.5617 
38 15.1498 15.1200 
40 18.0046 17.9733 
42 21.5098 21.4709 
44 25.4324 25.3903 
46 30.3095 30.2645 
48 36.0182 35.9647 

Table 3 Comparison of the simulated influence of the different diameters of polystyrene 
beads (located at x = 0 µm, y = 0 µm, and z = h/2 = 25 µm) on the current variation for a 
Long Optimized (LO) design for two different electrical conductivities of the medium (σm = 

1.6 S/m and σm = 0.16 S/m). 

The evolution of the current variation for a 30 µm diameter particle in the 

LO design is displayed in Figure S D:8 in Appendix D. 
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 Combining DEP Trapping with impedance 

measurement 

A chip combining both the improved trapping design and the impedance sensing 

unit LO was designed and fabricated as presented in Figure 6:13. 

 

Figure 6:13 Full chip fabricated version with the DEP centering electrodes A) with and B) 
without the auxiliary outlets) and two LO designs located before and after the improved 

trapping chamber. Scalebar 100 µm. 

Preliminary tests were performed using the experimental setup presented in 

Figure 6:14 with the improved trapping design without the auxiliary outlets. 

The electrical conductivity used for the experiment was set to 𝜎R = 0.156 𝑆/𝑚 

to limit the Joule heating and to be in a similar configuration to what was 

presented in Chapter 5 for the trapping. Reducing the electric conductivity will 

reduce the amplitude of the current drop but the relative current drop in 

percentage should remain the same as expected from Table 3. This reduction 

should also come with a lower noise level. 
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Figure 6:14 Schematic representation of the experimental setup with a computer controlling 
with LabVIEWTM all the different instruments: the uEye camera for visualization, the 
pressure controller, and HF2LI and HF2TA from Zurich Instruments and two arbitrary 

function generators. DEP centering electrodes are used to center particles laterally and to 
provide a vertical lift. 

Preliminary experimental results are presented in Figure 6:15. In this 

experiment all the instruments were operated individually and the centering 

was inactive.  

The relative current variations before and after the trapping chamber, 

respectively Signal IN and OUT, are measured during a trapping experiment. 

Groups of cells of various sizes entered the trapping chamber at different 

instant: at t = 40.4 s, a group of 6 cells entering the trapping chamber was 

detected by the “IN” LO design in Figure 6:15 A). Groups of 3 and 2 cells were 

respectively detected at t = 57 s and t = 67 s by the “IN” LO design as presented 

in respectively Figure 6:15 B) and C). At t = 88 s, DEP electrodes were switched 

off, letting the aggregate leave the trapping chamber to be detected by the 

“OUT” LO design at t = 91 s as presented in Figure 6:15 D). At the same time 

another large group of cells was detected by the “IN” LO design. The amplitude 

of the different peaks of current variation measured was sufficient to be detected 

with the combination of the HF2LI + HF2TA. As displayed in all the graphs 

the amplitude of the signal was sensitive to the clusters and more specifically 

to its volume. 
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Figure 6:15 Snapshots of live HEK cells trapping with the improved trapping design without 
auxiliary outlets and detection with the LO design at (a) t = 40.4 s (b) t = 57 s (c) t = 63 s 

and (d) t = 91 s. 𝑉d°´j = 22.5 𝑉j at 𝑓�_� = 10 𝑘𝐻𝑧 for the trapping and centering, 𝑉¾U =
0.8 𝑉j at 𝑓¾U = 500 𝑘𝐻𝑧 for the impedance sensing with the LO design, no centering voltage 

was applied, 𝜎R = 0.156 𝑆/𝑚 and P = 2 𝑚𝑏𝑎𝑟. 

This proves the feasibility of combining the trapping with dielectrophoresis with 

impedance sensing in the same microfluidic chip. 

 Conclusions 

In this chapter, we describe a comprehensive methodology for improving the 

sensitivity of a coplanar electrode design by modifying the microchannel 

geometry. The results of the simulations were tested experimentally. The 

methodology described in this work can be applied for any size of channels. 

More importantly, two optimized designs were proposed and validated: 

depending on the specifications of the application (centering method, flow speed, 

acquisition setup, …) one of the optimized designs would be preferred to the 

other. In particular, the short optimized design (SO) provides a maximum signal 

for centered particles (in all directions) and the long optimized (LO) is relatively 
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insensitive to the particle height while giving more signal than the conventional 

one. This conclusion would be applicable in general. 

For our application, the Signal-to-Noise ratio (SNR) should be sufficient to 

detect single cells in a relatively large channel. For all designs the SNR was 

sufficient to enable good detection of 8 µm diameter particles (Figure S D:4 in 

paragraph D.3 in Appendix D displays the signal obtained with the SO design). 

The designs could be tested at higher flow rates to better overcome 

sedimentation. This should result in a smaller standard variation and better 

assessment of the size of the particle for all designs. However, the transition 

time of the particle between the electrodes will be shorter hence reducing the 

number of points measured. The variation of the current with the particle size 

could be validated experimentally. 

Combining our optimized geometries (SO and LO) with more electrodes, as 

recently proposed by De Ninno et al. (De Ninno, et al. 2017), would enable a 

better characterization of the particles moving between the electrodes, even for 

the lateral position (Reale, et al. 2018). The designs are envisioned to be used 

for sizing and characterizing particles from single cells to cell aggregates as 

presented in paragraph 6.5. In the future, different sizes of particles will be 

used, as well as different cell types. 



 

160 

 Conclusion and Outlook 
This chapter describes the conclusions obtained from the work 

performed in this thesis and proposes an outlook of the use of cell aggregates 

created under flow conditions with dielectrophoresis. 
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 Conclusion 

The work described in this manuscript aimed at creating cell aggregates of 

controlled size and properties under flow conditions in a microsystem with 

dielectrophoresis. 

The state of the art on cell trapping technologies and cell aggregate formation 

technologies showed that a method to create cell aggregates of controlled 

dielectric properties and size is still missing. For its label free capability to 

selectively move and trap cells, dielectrophoresis was selected as the method of 

choice. Most of the articles in the literature proposed either to trap single cells 

or to trap an unknown quantity of cells together with dielectrophoresis. A set 

of requirements to form cell aggregates of controlled size and properties under 

flow conditions in a microsystem with dielectrophoresis was proposed. 

In this thesis, the work covers several fields: 

• Cell modeling: A computational tool, MyDEP, was developed to study 

the dielectrophoretic behavior of particles and cells in a suspension 

medium. The software is also provided with a database where we 

compiled cell dielectric models available in the literature to be used 

by new DEP users as well as experts for their DEP simulations. 

• Fabrication: A reproducible method for μm precision alignment of 

PDMS microchannels with coplanar electrodes using a conventional 

mask aligner was developed. It is based on the use of a silicon mold 

in combination with a PMMA sarcophagus for precise control of the 

parallelism between top and bottom surfaces of molded PDMS. This 

technique allows to bond and align chips with a resolution of less than 

2 μm. 

• Trapping with DEP: A trapping design based on coplanar electrodes 

was proposed, simulated and successfully tested experimentally on 

HEK cells with an automated setup. It proved its capability to create 

aggregates of a controlled number of cells with DEP. The cell 
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aggregates proved to be stable (no disruption) after only 5 minutes of 

contact. 

• Impedance sensing: A comprehensive analysis of the influence of the 

geometry of a coplanar electrode layout for Electrical Impedance Flow 

Cytometry (EIFC) was performed. The goal of this study was to (1) 

detect the particle with a signal as high as possible and (2) have a 

signal not sensitive to the particle position (lateral and vertical) in 

the microchannel. Two optimized designs were proposed and 

validated. One design was combined with the trapping design to create 

a full Lab-On-a-Chip platform. This proves the feasibility of 

combining the trapping with dielectrophoresis with impedance sensing 

in the same microfluidic chip. 

 Outlook 

The work performed in this thesis can be extended in several aspects: 

7.2.1 Theory and MyDEP 

In our computational tool MyDEP, the possibility to import and display 

datasets on each graph has been implemented. This option could be useful 

especially for electrorotation. Today the user can test different sets of values 

for the models and see if the simulated model and the experimental data 

superimpose. The next step is to implement a fitting algorithm to directly find 

the parameters2. 

Another interesting feature to implement in MyDEP is the calculation of the 

volume fraction in a microsystem, which is necessary to be able to predict the 

variation of impedance generated by the passage of a particle between two 

electrodes. Formula can be found in the literature for the facing electrode 

                                     

 

2 Discussions with Kai Hoettges from the University of Liverpool suggest that 
algorithms such as the Levenberg–Marquardt algorithm (LMA or LM) also 
called the Damped Least-Square (DLS) might be the most suitable. 
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configuration (see (Morgan, et al. 2007) and (Gawad, et al. 2004)) but 

unfortunately not for the coplanar electrodes. Such analytical formula would 

allow to perform preliminary predictions of the impedance variation. 

The created database combined at the time of the thesis writing 79 models from 

over 39 articles, each with the full references. Each user of MyDEP can submit 

a new model with all the related reference. We hope this will enable to enrich 

our database. 

Cells DEP crossover frequencies are linked according to (Gascoyne and Shim 

2014), to the cell membrane morphology. Cell membranes are most of the time 

not smooth and contain features such as microvilli, folds and ruffles that cause 

an underestimation of the cell surface membrane compared to an idealized 

spherical cell. Wang et al. (Wang, et al. 1994) introduced the concept of 

“membrane folding factor” as the ratio between the actual cell membrane area 

to the area of a perfectly smooth cell of similar volume. This factor could be 

added in the interface of MyDEP.  

7.2.2 Simulations 

2D FEM simulations were performed to simulate the trapping. In order to be 

able to consider the power dissipation in the chip, 3D simulations could be 

performed. On chip validation of the obtained values with a thermal camera for 

example would be challenging since measured temperature would be either 

above (PDMS) of under (glass) the microfluidic channel. Another possibility 

would be to use a temperature-dependent fluorescent dye such as rhodamine to 

assess the temperature (Ross, et al. 2001). Gravity could also be added in those 

3D simulations. 

As discussed in Chapter 3, particles simulated with the particle tracing module 

in COMSOL Multiphysics are considered as point particles and modify neither 

the flow lines nor the electric field distribution. They also can interpenetrate 

each other. 3D simulations with a moving mesh for each particle could be a way 

to overcome those limitations but would require a lot of computing power. The 
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dipole interaction between particles should also be considered for increased 

accuracy. 

7.2.3 Fabrication 

The fabrication technique developed in this thesis could be further improved by 

characterizing more deeply the shrinkage of PDMS with its curing temperature. 

This would allow to further reduce the mismatch between the PDMS 

microchannel and the electrodes which can occur when larger patterns need to 

be aligned. This would improve the diffusion of our published method, which is 

already used in other facilities. 

7.2.4 Impedance 

As mentioned in Chapter 6, the goal of the study was to (1) detect the particle 

with a signal as high as possible and (2) have a signal not sensitive to the 

particle position (lateral and vertical) in the microchannel. Only one frequency, 

500 kHz was used for the measurements. Multiple frequencies could be used to 

improve the information that could be retrieve from the signal (size but also 

membrane and cytoplasm dielectric properties). Only the geometry of the sensor 

was discussed in this chapter. The treated signal, after removal of the baseline, 

still depends on the data processing used. To better improve the detection, a 

differential pair of sensors could be used as presented in (Gawad, et al. 2001) 

and (Clausen, et al. 2014) which would overcome this previous limitation. It 

would, however, require operating with a very low concentration of cells (real 

single cell suspension) to guarantee that only one cell at a time would pass in 

the sensor composed of three electrodes. Lastly to reduce the experimental noise, 

shielding could be integrated in the chip and in the PCB. 

7.2.5 Design and experiments 

The design of the trapping chamber was improved from the testing configuration 

to a 4-electrode configuration with a trapping chamber twice as large and 

auxiliary outlets. A similar study to what was done in the Chapter 6 on the 

impedance sensor could be performed to optimize the geometry of the chamber 

and the characteristics of the auxiliary outlets (width and length). 
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The proof of concept of impedance sensing together with DEP trapping was 

obtained. More experiments could be performed with a detailed analysis of the 

impedance signal obtained for the different sizes of the aggregates. 

Preliminary assessment of the viability was performed with Trypan blue which 

only assesses the permeability of the cell. A deeper analysis would require 

studying the behavior of the cell aggregates after retrieving them, operation 

that was not initially designed for the chip and which could damage the 

aggregate. A larger chip with more integrated functions could be fabricated. In 

the actual version, all cells go through one path and it is not possible to discard 

only one cell coming between other cells. A possible solution would be to have 

parallel channels and to selectively decide which cell should penetrate the 

trapping chamber and to direct it there with DEP. 

As stated by Gascoyne et al. (Gascoyne and Shim 2014), the modified medium 

used for DEP could alter cell function. In order to reduce this effect, cells could 

be transferred from a cell culture medium to a lower conductivity medium 

through a configuration such as an H-filter and inversely after aggregate 

formation as proposed in (Shim, et al. 2013). 

All experiments were performed under a microscope without any control of the 

atmosphere. To reduce the impact of the experiments on cells, a controlled 

atmosphere (temperature, CO2) environment could be envisioned. 

Parallelization of the creation of aggregates could also be envisioned but would 

require a more complex electronic and flow control which might limit the 

interest in the proposed design. 

7.2.6 Applications 

Many applications can be envisioned for the on-chip created aggregates. 

Composite aggregates made of different cell types could be one of the first step 

towards the use of DEP for organoid formation. More simply the fabricated chip 

offers a possibility to contact 2 cells together and to study their interaction as 

presented in Figure 7:1. 
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Figure 7:1 Proposal for creating composite aggregates. Scalebar 100 µm. 

The created aggregates could also be electroporated on chip and characterized 

before and after electroporation as presented in Figure 7:2. 

 

Figure 7:2 Design proposal of a chip combining cell centering, cell trapping and impedance 
sensing. Scalebar 100 µm. 

 



 

167 

Appendix A Dielectrophoresis theory 
and modeling with 
MyDEP 

Theoretical calculations and formulas used in Chapter 2 are summarized 

hereafter. They also correspond to what was implemented in MyDEP software. 
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A.1 Concentric shell models for a sphere 

A.1.1 Homogeneous particle 

 

The DEP force acting on a homogeneous spherical particle in a medium is: 

𝐹�_� = 2𝜋𝑟bcd
3 𝜀0𝜀R𝑅𝑒[𝐶𝑀(𝑓)]𝛻𝐸°R±

2  
with 𝐶𝑀(𝑓) the Clausius-Mossotti factor: 

𝐶𝑀(𝑓) =
𝜀j

∗ − 𝜀R
∗

𝜀j
∗ + 2𝜀R

∗  

𝜀∗ is the complex permittivity defined as: 

𝜀l
∗ = 𝜀l𝜀0 − 𝑗𝜎l

𝜔  

with 𝜀0 the vacuum permittivity, 𝜀l the particle relative permittivity, 𝜎l the 

particle electrical conductivity and 𝜔 = 2𝜋𝑓 with f the frequency. 

In this case:  

Medium: 𝜀R
∗ = 𝜀R𝜀0 − 𝑗𝜎R

𝜔  

Particle: 𝜀j
∗ = 𝜀j𝜀0 −

𝑗𝜎j

𝜔  

The torque on a homogeneous spherical particle in a medium due to an electric 

field is: 

𝛤�_� = −4𝜋𝑟bcd
3 𝜀0𝜀R𝐼𝑚[𝐶𝑀(𝑓)]|𝐸2|  
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A.1.2 Single-shell 

 

Medium: 𝜀R
∗ = 𝜀R𝜀0 − 𝑗𝜎R

𝜔  

Cell membrane: 𝜀�R
∗ = 𝜀�R𝜀0 − 𝑗𝜎�R

𝜔  

Cytoplasm: 𝜀�j
∗ = 𝜀�j𝜀0 −

𝑗𝜎�j

𝜔  
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A.1.3 Two-shell 

 

Medium: 𝜀R
∗ = 𝜀R𝜀0 − 𝑗𝜎R

𝜔  

Cell wall: 𝜀�À
∗ = 𝜀�À𝜀0 − 𝑗𝜎�À

𝜔  

Cell membrane: 𝜀�R
∗ = 𝜀�R𝜀0 − 𝑗𝜎�R

𝜔  

Cytoplasm: 𝜀�j
∗ = 𝜀�j𝜀0 −

𝑗𝜎�j

𝜔  
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A.1.4 Three-shell 

 

Medium: 𝜀R
∗ = 𝜀R𝜀0 − 𝑗𝜎R

𝜔  

Cell membrane: 𝜀�R
∗ = 𝜀�R𝜀0 − 𝑗𝜎�R

𝜔  

Cytoplasm: 𝜀�j
∗ = 𝜀�j𝜀0 −

𝑗𝜎�j

𝜔  

Nuclear envelope: 𝜀¹b
∗ = 𝜀¹b𝜀0 − 𝑗𝜎¹b

𝜔  

Medium: 𝜀¹j
∗ = 𝜀¹j𝜀0 −

𝑗𝜎¹j

𝜔  
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A.1.5 Four-shell 

A similar procedure can be used for a Four-shell sphere. 

Medium: 𝜀R
∗ = 𝜀R𝜀0 − 𝑗𝜎R

𝜔  

Cell wall: 𝜀�À
∗ = 𝜀�À𝜀0 − 𝑗𝜎�À

𝜔  

Cell membrane: 𝜀�R
∗ = 𝜀�R𝜀0 − 𝑗𝜎�R

𝜔  

Cytoplasm: 𝜀�j
∗ = 𝜀�j𝜀0 −

𝑗𝜎�j

𝜔  

Nuclear envelope: 𝜀¹b
∗ = 𝜀¹b𝜀0 − 𝑗𝜎¹b

𝜔  

Nucleoplasm: 𝜀¹j
∗ = 𝜀¹j𝜀0 −

𝑗𝜎¹j

𝜔  
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A.2 Concentric shell models for an ellipsoid 

All calculation for single-shell, two-shell, three-shell, and four-shell ellipsoids 

are from (Kakutani, et al. 1993): 

𝐹�_� = 2𝜋𝑎bcd𝑏bcd𝑐bcd𝜀R𝑅𝑒[𝐶𝑀(𝑓)]𝛻𝐸2 

𝛤�_� = −4𝜋𝑎bcd𝑏bcd𝑐bcd𝜀0𝜀R𝐼𝑚[𝐶𝑀(𝑓)]|𝐸2| 

if the particle is randomly oriented: 

𝐶𝑀(𝑓) =
𝐶𝑀c(𝑓) + 𝐶𝑀p(𝑓) + 𝐶𝑀q(𝑓)

3
 

With a is the dimension along the x axis, b along y and c along z. 

In this case the Clausius-Mossotti factor is: 

𝐶𝑀�(𝑓) = 1
3

𝜀j
∗ −  𝜀R

∗

(𝜀j
∗ − 𝜀R

∗ )𝐴� + 𝜀R
∗  

𝛼 represents either the 𝑥, 𝑦 or 𝑧 axis and 𝐴� is the depolarization factor. 

𝐴c = 𝑎𝑏𝑐
2 ∫ 𝑑𝑠

(𝑠 + 𝑎2)√(𝑠 + 𝑎2) ∗ (𝑠 + 𝑏2) ∗ (𝑠 + 𝑐2)

∞

0

 

𝐴p = 𝑎𝑏𝑐
2 ∫ 𝑑𝑠

(𝑠 + 𝑏2)√(𝑠 + 𝑎2) ∗ (𝑠 + 𝑏2) ∗ (𝑠 + 𝑐2)

∞

0

 

𝐴q = 𝑎𝑏𝑐
2 ∫ 𝑑𝑠

(𝑠 + 𝑐2)√(𝑠 + 𝑎2) ∗ (𝑠 + 𝑏2) ∗ (𝑠 + 𝑐2)

∞

0
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A.2.1 Homogeneous particle 

 

𝑎 = 𝑎bcd, 𝑏 = 𝑏bcd 𝑎𝑛𝑑 𝑐 = 𝑐bcd 

𝐴0c = 𝑎𝑏𝑐
2 ∫ 𝑑𝑠

(𝑠 + 𝑎2)√(𝑠 + 𝑎2) ∗ (𝑠 + 𝑏2) ∗ (𝑠 + 𝑐2)

∞

0

 

𝐴0p = 𝑎𝑏𝑐
2 ∫ 𝑑𝑠

(𝑠 + 𝑏2)√(𝑠 + 𝑎2) ∗ (𝑠 + 𝑏2) ∗ (𝑠 + 𝑐2)

∞

0

 

𝐴0q = 𝑎𝑏𝑐
2 ∫ 𝑑𝑠

(𝑠 + 𝑐2)√(𝑠 + 𝑎2) ∗ (𝑠 + 𝑏2) ∗ (𝑠 + 𝑐2)

∞

0

 

Medium: 𝜀R
∗ = 𝜀R𝜀0 − 𝑗𝜎R

𝜔  

Particle: 𝜀j
∗ = 𝜀j𝜀0 −

𝑗𝜎j

𝜔  

𝐶𝑀� = 1
3

𝜀j
∗ − 𝜖R

∗

𝜖R
∗ + (𝜀j

∗ − 𝜖R
∗ )𝐴0�

 

If the particle is randomly oriented: 

𝐶𝑀(𝑓) =
𝐶𝑀c(𝑓) + 𝐶𝑀p(𝑓) + 𝐶𝑀q(𝑓)

3
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A.2.2 Single-shell 

 

The dimensions involved in the calculation are: 

𝑎0 = 𝑎bcd 

𝑎1 = 𝑎bcd − 𝑡ℎ�R 

𝑏l and 𝑐l are defined in the same way. 

Medium: 𝜀R
∗ = 𝜀R𝜀0 − 𝑗𝜎R

𝜔  

Cell membrane: 𝜀�R
∗ = 𝜀�R𝜀0 − 𝑗𝜎�R

𝜔  

Cytoplasm: 𝜀�j
∗ = 𝜀�j𝜀0 −

𝑗𝜎�j

𝜔  

𝐴1c = 𝑎1𝑏1𝑐1
2 ∫ 𝑑𝑠

(𝑠 + 𝑎1
2)√(𝑠 + 𝑎1

2) ∗ (𝑠 + 𝑏1
2) ∗ (𝑠 + 𝑐1

2)

∞

0

 

𝐴0c = 𝑎0𝑏0𝑐0
2 ∫ 𝑑𝑠

(𝑠 + 𝑎0
2)√(𝑠 + 𝑎0

2) ∗ (𝑠 + 𝑏0
2) ∗ (𝑠 + 𝑐0

2)

∞

0

 

𝜖1c
∗ = 𝜖�R

∗ 𝜖�R
∗ + (𝜖�j

∗ − 𝜖�R
∗ )(𝐴1c + 𝑙1(1 − 𝐴0c))

𝜖�R
∗ + (𝜖¾

∗ − 𝜖�R
∗ )(𝐴1c − 𝑙1𝐴0c )  

𝐶𝑀� = 1
3

𝜖1c
∗ − 𝜖R

∗

𝜖R
∗ + (𝜖1c

∗ − 𝜖R
∗ )𝐴0c
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𝑙1 = 𝑎1𝑏1𝑐1
𝑎0𝑏0𝑐0
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A.2.3 Two-shell 

 

The dimensions involved in the calculation are: 

𝑎0 = 𝑎bcd 

𝑎1 = 𝑎bcd − 𝑡ℎ�À 

𝑎2 = 𝑎bcd − 𝑡ℎ�À − 𝑡ℎ�R 

𝑏l and 𝑐l are defined in the same way. 

The depolarizations factors are: 

𝐴2c = 𝑎2𝑏2𝑐2
2 ∫ 𝑑𝑠

(𝑠 + 𝑎2
2)√(𝑠 + 𝑎2

2) ∗ (𝑠 + 𝑏2
2) ∗ (𝑠 + 𝑐2

2)

∞

0

 

𝐴1c = 𝑎1𝑏1𝑐1
2 ∫ 𝑑𝑠

(𝑠 + 𝑎1
2)√(𝑠 + 𝑎1

2) ∗ (𝑠 + 𝑏1
2) ∗ (𝑠 + 𝑐1

2)

∞

0

 

𝐴0c = 𝑎0𝑏0𝑐0
2 ∫ 𝑑𝑠

(𝑠 + 𝑎0
2)√(𝑠 + 𝑎0

2) ∗ (𝑠 + 𝑏0
2) ∗ (𝑠 + 𝑐0

2)

∞

0

 

Same procedure for 𝐴lc, 𝐴lp and 𝐴lq used with 𝑎l, 𝑏l and 𝑐l: 

𝑙1 = 𝑎1𝑏1𝑐1
𝑎0𝑏0𝑐0

 

𝑙2 = 𝑎2𝑏2𝑐2
𝑎1𝑏1𝑐1
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Medium: 𝜀R
∗ = 𝜀R𝜀0 − 𝑗𝜎R

𝜔  

Cell wall: 𝜀�À
∗ = 𝜀�À𝜀0 − 𝑗𝜎�À

𝜔  

Cell membrane: 𝜀�R
∗ = 𝜀�R𝜀0 − 𝑗𝜎�R

𝜔  

Cytoplasm: 𝜀�j
∗ = 𝜀�j𝜀0 −

𝑗𝜎�j

𝜔  

𝜖2c
∗ = 𝜖�R

∗ 𝜖�R
∗ + (𝜖�j

∗ − 𝜖�R
∗ )(𝐴2c + 𝑙2(1 − 𝐴1c))

𝜖�R
∗ + (𝜖�j

∗ − 𝜖�R
∗ )(𝐴2c − 𝑙2𝐴1c )  

𝜖1c
∗ = 𝜖�À

∗ 𝜖�À
∗ + (𝜖2c

∗ − 𝜖�À
∗ )(𝐴1c + 𝑙1(1 − 𝐴0c))

𝜖�À
∗ + (𝜖2c

∗ − 𝜖�À
∗ )(𝐴1c − 𝑙1𝐴0c )  

𝐶𝑀c(𝑓) = 1
3

𝜖1c
∗ − 𝜀R

∗

(𝜖1c
∗ − 𝜀R

∗ )𝐴0c + 𝜀R
∗  

Same procedure for the calculation of 𝐶𝑀p(𝑓) and 𝐶𝑀q(𝑓). 

If the particle is randomly oriented: 

𝐶𝑀(𝑓) =
𝐶𝑀c(𝑓) + 𝐶𝑀p(𝑓) + 𝐶𝑀q(𝑓)

3
 

Then 𝑅𝑒(𝐶𝑀(𝑓)) and 𝐼𝑚(𝐶𝑀(𝑓)) can be used for the calculation for the 

calculation of respectively the DEP force and the torque. 

If the particle is oriented in the x axis, 𝜖1c
∗  is the permittivity of the particle. 

If the particle is randomly oriented, 𝜖1_b�
∗ = Å1Ç

∗ +Å1È
∗ +Å1É

∗

3  should be used. 
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A.2.4 Three-shell 

 

The dimensions involved in the calculation are 

𝑎0 = 𝑎bcd 

𝑎1 = 𝑎bcd − 𝑡ℎ�R 

𝑎2 = 𝑎¹ 

𝑎3 = 𝑎¹ − 𝑡ℎ¹b 

𝑏l and 𝑐l are defined in the same way. 

The depolarizations factors are:  

𝐴3c = 𝑎3𝑏3𝑐3
2 ∫ 𝑑𝑠

(𝑠 + 𝑎3
2)√(𝑠 + 𝑎3

2) ∗ (𝑠 + 𝑏3
2) ∗ (𝑠 + 𝑐3

2)

∞

0

 

𝐴3p = 𝑎3𝑏3𝑐3
2 ∫ 𝑑𝑠

(𝑠 + 𝑏3
2)√(𝑠 + 𝑎3

2) ∗ (𝑠 + 𝑏3
2) ∗ (𝑠 + 𝑐3

2)

∞

0

 

𝐴3q = 𝑎3𝑏3𝑐3
2 ∫ 𝑑𝑠

(𝑠 + 𝑐3
2)√(𝑠 + 𝑎3

2) ∗ (𝑠 + 𝑏3
2) ∗ (𝑠 + 𝑐3

2)

∞

0

 

Same procedure for 𝐴lc, 𝐴lp and 𝐴lq used with 𝑎l, 𝑏l and 𝑐l  

𝑙1 = 𝑎1𝑏1𝑐1
𝑎0𝑏0𝑐0
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𝑙2 = 𝑎2𝑏2𝑐2
𝑎1𝑏1𝑐1

 

𝑙3 = 𝑎3𝑏3𝑐3
𝑎2𝑏2𝑐2

 

Medium: 𝜀R
∗ = 𝜀R𝜀0 − 𝑗𝜎R

𝜔  

Cell membrane: 𝜀�R
∗ = 𝜀�R𝜀0 − 𝑗𝜎�R

𝜔  

Cytoplasm: 𝜀�j
∗ = 𝜀�j𝜀0 −

𝑗𝜎�j

𝜔  

Nuclear envelope: 𝜀¹b
∗ = 𝜀¹b𝜀0 − 𝑗𝜎¹b

𝜔  

Nucleoplasm: 𝜀¹j
∗ = 𝜀¹j𝜀0 −

𝑗𝜎¹j

𝜔  

𝜖3c
∗ = 𝜖¹b

∗ ∗
𝜖¹b

∗ + (𝜖¹j
∗ − 𝜖¹b

∗ )(𝐴3c + 𝑙3(1 − 𝐴2c))
𝜖¹b

∗ + (𝜖¹j
∗ − 𝜖¹b

∗ )(𝐴3c − 𝑙3𝐴2c )  

𝜖2c
∗ = 𝜖�j

∗ ∗
𝜖�j

∗ + (𝜖3c
∗ − 𝜖�j

∗ )(𝐴2c + 𝑙2(1 − 𝐴1c))
𝜖�j

∗ + (𝜖3c
∗ − 𝜖�j

∗ )(𝐴2c − 𝑙2𝐴1c )  

𝜖1c
∗ = 𝜖�R

∗ ∗
𝜖�R

∗ + (𝜖2c
∗ − 𝜖�R

∗ )(𝐴1c + 𝑙1(1 − 𝐴0c))
𝜖�R

∗ + (𝜖2c
∗ − 𝜖�R

∗ )(𝐴1c − 𝑙1𝐴0c )  

𝐶𝑀c(𝑓) = 1
3

𝜖1c
∗ − 𝜀R

∗

(𝜖1c
∗ − 𝜀R

∗ )𝐴0c + 𝜀R
∗  

Same procedure for the calculation of 𝐶𝑀p(𝑓) and 𝐶𝑀q(𝑓). 

If the particle is randomly oriented: 

𝐶𝑀(𝑓) =
𝐶𝑀c(𝑓) + 𝐶𝑀p(𝑓) + 𝐶𝑀q(𝑓)

3
 

Then 𝑅𝑒(𝐶𝑀(𝑓)) and 𝐼𝑚(𝐶𝑀(𝑓)) can be used for the calculation of the DEP 

force and the torque, respectively. 

If the particle is oriented in the x axis, 𝜖1c
∗  is the permittivity of the particle. 



Dielectrophoresis theory and modeling with MyDEP 

181 

If the particle is randomly oriented, 𝜖1_b�
∗ = Å1Ç

∗ +Å1È
∗ +Å1É

∗

3  should be used. 
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A.2.5 Four-shell 

A similar procedure can be used for a Four-shell sphere. 

Medium: 𝜀R
∗ = 𝜀R𝜀0 − 𝑗𝜎R

𝜔  

Cell wall: 𝜀�À
∗ = 𝜀�À𝜀0 − 𝑗𝜎�À

𝜔  

Cell membrane: 𝜀�R
∗ = 𝜀�R𝜀0 − 𝑗𝜎�R

𝜔  

Cytoplasm: 𝜀�j
∗ = 𝜀�j𝜀0 −

𝑗𝜎�j

𝜔  

Nuclear envelope: 𝜀¹b
∗ = 𝜀¹b𝜀0 − 𝑗𝜎¹b

𝜔  

Nucleoplasm: 𝜀¹j
∗ = 𝜀¹j𝜀0 −

𝑗𝜎¹j

𝜔  
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A.3 Development of the equation of a single shell model 

using 𝑪𝒄𝒎 and 𝑮𝒄𝒎 

For a cell modeled with the “single-shell” structure, which consists of a 

cytoplasm surrounded by a thin membrane, the equivalent complex permittivity 

is (Irimajiri, et al. 1979): 

𝜖b�
∗ = 𝜖�R

∗
( 𝑟bcd

𝑟bcd − 𝑡ℎ�R
)

3
+ 2 ( 𝜖�j

∗ − 𝜖�R
∗

𝜖�j
∗ + 2𝜖�R

∗ )

( 𝑟bcd
𝑟bcd − 𝑡ℎ�R

)
3

− (
𝜖�j

∗ − 𝜖�R
∗

𝜖�j
∗ + 2𝜖�R

∗ )
 

where 𝑡ℎ�R is the thickness of the cell membrane, 𝜀�R
∗  and 𝜀�j

∗  are respectively 

the complex permittivities of the cell membrane and of the cytoplasm. As for a 

cell 𝑡ℎ�R << 𝑟bcd, we can rewrite this equation with: 

( 𝑟bcd
𝑟bcd − 𝑡ℎ�R

)
3

= (1 + 𝑥)3 

and 

𝑥 = 𝑡ℎ�R
𝑟bcd − 𝑡ℎ�R

 

𝜖b�
∗  becomes: 

𝜖b�
∗ = 𝜖�R

∗ (1 + 𝑥)3(𝜖�j
∗ + 2𝜖�R

∗ ) + 2(𝜖�j
∗ − 𝜖�R

∗ )
(1 + 𝑥)3(𝜖�j

∗ + 2𝜖�R
∗ ) − (𝜖�j

∗ − 𝜖�R
∗ )  

Using a limited development for 𝑥 << 1 to the first order: 

(1 + 𝑥)3 ≃ 1 + 3𝑥 

So 

𝜖b�
∗ = 𝜖�R

∗ (1 + 3𝑥)(𝜖�j
∗ + 2𝜖�R

∗ ) + 2(𝜖�j
∗ − 𝜖�R

∗ )
(1 + 3𝑥)(𝜖�j

∗ + 2𝜖�R
∗ ) − (𝜖�j

∗ − 𝜖�R
∗ )  

Reordering the terms, we obtain 
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𝜖b�
∗ = 𝜖�R

∗ 𝜖�j
∗ ((1 + 3𝑥) + 2) + 𝜖�R

∗ (2(1 + 3𝑥) − 2)
𝜖�j

∗ ((1 + 3𝑥) − 1) + 𝜖�R
∗ (2(1 + 3𝑥) + 1) 

So 

𝜖b�
∗ = 𝜖�R

∗ 𝜖�j
∗ (3 + 3𝑥) + 𝜖�R

∗ (6𝑥)
𝜖�j

∗ (3𝑥) + 𝜖�R
∗ (3 + 6𝑥) 

𝜖b�
∗ = 𝜖�R

∗ 3(1 + 𝑥)𝜖�j
∗ + 6𝑥𝜖�R

∗

3𝑥𝜖�j
∗ + 3(1 + 2𝑥)𝜖�R

∗  

As 𝑥 << 1, equation 𝜖b�
∗  simplifies as: 

𝜖b�
∗ = 𝜖�R

∗ 3𝜖�j
∗ + 6𝑥𝜖�R

∗

3𝑥𝜖�j
∗ + 3𝜖�R

∗ = 𝜖�R
∗ 𝜖�j

∗ + 2𝑥𝜖�R
∗

𝑥𝜖�j
∗ + 𝜖�R

∗  

With the hypothesis that 2𝑥𝜖�R
∗ << 𝜖�j

∗ , 𝜖b�
∗  becomes: 

𝜖b�
∗ = 𝜖�R

∗ 𝜖�j
∗

𝑥𝜖�j
∗ + 𝜖�R

∗  

If we pose 𝐶�R
∗  the complex capacitance: 

𝐶�R
∗ = 𝐶�R − 𝑗 𝐺�R

𝜔  

where 𝐶�R = ÅËÌÅ0
dℎËÌ

 and 𝐺�R = ÏËÌ
dℎËÌ

 are the membrane specific capacitance and 

conductance respectively. Then: 

𝜖�R
∗ = 𝑡ℎ�R𝐶�R

∗  

and, since 𝑥 = dℎËÌ
°ÐÇÑ−dℎËÌ

≃ dℎËÌ
°ÐÇÑ

: 

𝜖b�
∗ = 𝑡ℎ�R𝐶�R

∗ 𝜖�j
∗

𝑡ℎ�R𝑟bcd
𝜖�j

∗ + 𝑡ℎ�R𝐶�R
∗

= 𝐶�R
∗ 𝑟bcd𝜖�j

∗

𝜖�j
∗ + 𝑟bcd𝐶�R

∗  

The final formula for 𝜖b�
∗  can also be found in (Gascoyne, et al. 1995). 
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A.4 Cell suspension 

A.4.1 For low volume fraction 𝝓 < 𝟎. 𝟏 

Maxwell Garnett formula can be applied 

From (Sihvola and Kong 1988), the two following equations are equivalent: 

𝜖Rlc
∗ − 𝜖R

∗

𝜖Rlc
∗ + 2𝜖R

∗ = 𝜙
𝜖j

∗ − 𝜖R
∗

𝜖j
∗ + 2𝜖R

∗  

𝜖Rlc
∗ = 𝜖R

∗

⎝
⎜⎜
⎜⎛1 +

3𝜙 𝜖j
∗ − 𝜖R

∗

𝜖j
∗ + 2𝜖R

∗

1 − 𝜙
𝜖j

∗ − 𝜖R
∗

𝜖j
∗ + 2𝜖R

∗ ⎠
⎟⎟
⎟⎞ 

Demonstration 

𝜖Rlc
∗ − 𝜖R

∗

𝜖Rlc
∗ + 2𝜖R

∗ = 𝜙
𝜖j

∗ − 𝜖R
∗

𝜖j
∗ + 2𝜖R

∗  

can be rewritten 

(𝜖Rlc
∗ − 𝜖R

∗ )(𝜖j
∗ + 2𝜖R

∗ ) = 𝜙(𝜖j
∗ − 𝜖R

∗ )(𝜖Rlc
∗ + 2𝜖R

∗ ) 

𝜖Rlc
∗ (𝜖j

∗ + 2𝜖R
∗ − 𝜙(𝜖j

∗ − 𝜖R
∗ )) = 𝜖R

∗ (𝜖j
∗ + 2𝜖R

∗ ) + 2𝜖R
∗ 𝜙(𝜖j

∗ − 𝜖R
∗ ) 

𝜖Rlc
∗ = 𝜖R

∗ (𝜖j
∗ + 2𝜖R

∗ ) + 2𝜙(𝜖j
∗ − 𝜖R

∗ )
(𝜖j

∗ + 2𝜖R
∗ − 𝜙(𝜖j

∗ − 𝜖R
∗ ))

 

𝜖Rlc
∗ = 𝜖R

∗ (1 +
3𝜙(𝜖j

∗ − 𝜖R
∗ )

(𝜖j
∗ + 2𝜖R

∗ − 𝜙(𝜖j
∗ − 𝜖R

∗ ))
) 

𝜖Rlc
∗ = 𝜖R

∗ (1 + 3𝜙𝐶𝑀(𝑓)
1 − 𝜙𝐶𝑀(𝑓)) 

with  

𝐶𝑀(𝑓) =
𝜖j

∗ − 𝜖R
∗

𝜖j
∗ + 2𝜖R

∗  
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A.4.2 For volume fraction 𝝓 < 𝟎. 𝟖 

The Hanai equation (Hanai 1960) should be used: 

𝜖Rlc
∗ − 𝜖j

∗

𝜖R
∗ − 𝜖j

∗ ∗ ( 𝜖R
∗

𝜖Rlc
∗ )

1
3

= 1 − 𝜙 

Theoretically the equation should be used up to 𝜙 =0.74. However, it was 

experimentally confirmed that the dielectric behavior of some emulsions at 

volume fractions up to 0.8 was explained by the Hanai equation (Hanai 1968, 

Hanai, et al. 1982). 

Unfortunately, there is no direct expression for the calculation of 𝜖Rlc
∗ . 

For calculation of 𝜖Rlc
∗  with Hanai’s equation we can use two methods: 

- Method 1 is to solve the cubic equation derived from Hanai’s equation 

- Method 2 is to use numerical integration with the difference equation of 

Hanai’s equation. 

A.4.2.1 Method 1: Analytical 

From (Asami 2002), (Hanai, et al. 1979) and (Irimajiri, et al. 1991): high volume 

fraction. 

Both sides of Hanai’s equation are cubed as: 

(𝜖Rlc
∗ − 𝜖j

∗ )3𝜖R
∗ = (1 − 𝜙)3(𝜖R

∗ − 𝜖j
∗ )3𝜖Rlc

∗  

(𝜖Rlc
∗ )3 − 3(𝜖Rlc

∗ )2𝜖j
∗ + 3𝜖Rlc

∗ (𝜖j
∗ )2 − (𝜖j

∗ )3 =
(1 − 𝜙)3(𝜖R

∗ − 𝜖j
∗ )3𝜖Rlc

∗

𝜖R
∗  

(𝜖Rlc
∗ )3 − 3(𝜖Rlc

∗ )2𝜖j
∗ + 3 [(𝜖j

∗ )2 +
(𝜙 − 1)3(𝜖R

∗ − 𝜖j
∗)3

𝜖R
∗ ] 𝜖Rlc

∗ − (𝜖j
∗ )3 = 0 

(𝜖Rlc
∗ )3 − 3(𝜖Rlc

∗ )2𝜖j
∗ + 3[(𝜖j

∗ )2 + 𝐵]𝜖Rlc
∗ − (𝜖j

∗ )3 = 0 

with 

𝐵 =
(𝜙 − 1)3(𝜖R

∗ − 𝜖j
∗ )3

𝜖R
∗  
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The cubic equation can be solved by Cardano’s method as follows. 

Substituting: 

𝜖Rlc
∗ = 𝑋 + 𝜖j

∗  

(𝜖Rlc
∗ )3 − 3(𝜖Rlc

∗ )2𝜖j
∗ + 3[(𝜖j

∗ )2 + 𝐵]𝜖Rlc
∗ − (𝜖j

∗ )3 = 0 

becomes 

(𝑋 + 𝜖j
∗ )3 − 3(𝑋 + 𝜖j

∗)2𝜖j
∗ + 3[(𝜖j

∗ )2 + 𝐵](𝑋 + 𝜖j
∗) − (𝜖j

∗)3 = 0 

[𝑋3 + 3𝑋2𝜖j
∗ + 3𝑋(𝜖j

∗)2 + (𝜖j
∗ )3]−3𝑋2𝜖j

∗ + 6𝑋(𝜖j
∗ )2 + 3(𝜖j

∗ )33[(𝜖j
∗ )2 + 𝐵]𝑋

+ 3[(𝜖j
∗ )2 + 𝐵]𝜖j

∗ − (𝜖j
∗)3 = 0 

𝑋3 + 3𝐵𝑋 + 3𝐵𝜖j
∗ = 0 

Substituting 

𝑋 = 𝑈 − 𝐵
𝑈  

𝑋3 + 3𝐵𝑋 + 3𝐵𝜖j
∗ = 0 

becomes 

(𝑈 − 𝐵
𝑈)

3
+ 3𝐵 (𝑈 − 𝐵

𝑈) + 3𝐵𝜖j
∗ = 0 

(𝑈 − 𝐵
𝑈)

3
= 𝑈3 − 3𝑈𝐵 + 3𝐵2

𝑈 − 𝐵3

𝑈3 

𝑈3 − 3𝑈𝐵 + 3𝐵2

𝑈 − 𝐵3

𝑈3 + 3𝐵 (𝑈 − 𝐵
𝑈) + 3𝐵𝜖j

∗ = 0 

we multiply all the equation by 𝑈3 

𝑈6 − 3𝑈4𝐵 + 3𝐵2𝑈2 − 𝐵3 + 3𝐵𝑈4 − 3𝐵2𝑈2 + 3𝐵𝑈3𝜖j
∗ = 0 

𝑈6 + 3𝐵𝑈3𝜖j
∗ − 𝐵3 = 0 

which can be rewritten 
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(𝑈3)2 + 3𝐵𝑈3𝜖j
∗ − 𝐵3 = 0 

Substituting 

𝑌 = 𝑈3 

𝑌 2 + 3𝐵𝑌 𝜖j
∗ − 𝐵3 = 0 

𝑌 = −
3𝐵𝜖j

∗

2 [1 ± √1 + 4𝐵
9(𝜖j

∗ )2] 

So 

𝑈3 = −
3𝐵𝜖j

∗

2 [1 ± √1 + 4𝐵
9(𝜖j

∗)2] 

Either of the roots can be chosen because both roots provide the same result. 

We then obtain 3 roots for 𝑈 , if 𝑈æ is one of the roots then the other roots 

become 

𝑈ç = 𝑈æ𝑒è2é
3  and 𝑈ê = 𝑈ç𝑒è2é

3  

Three values of 𝜖Rlc
∗  are obtained from 𝜖Rlc

∗ = 𝑋 + 𝜖j
∗ = 𝑈 − ç

ë + 𝜖j
∗  

To select the true value of 𝜖Rlc
∗ , the following function F derived from Hanai’s 

equation is used: 

𝐹 = (1 − 𝜙)
𝜖R

∗ − 𝜖j
∗

𝜖Rlc
∗ − 𝜖j

∗ (𝜖Rlc
∗

𝜖R
∗ )

1
3

= 1 

Putting the value of 𝜖Rlc
∗  obtained previously, the value of F becomes 1, − 1

2 +
è
√

3
2  or − 1

2 − è
√

3
2 . The true value of 𝜖Rlc

∗  is obtained when the conditions that 𝐹 =

1, 𝑅𝑒(𝜖Rlc
∗ ) > 0 and 𝐼𝑚(𝜖Rlc

∗ ) > 0 are satisfied. 

A.4.2.2 Method 2: Numerical 

Numerical implementation of Hanai’s equation 
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𝜖Rlc
∗ − 𝜖j

∗

𝜖R
∗ − 𝜖j

∗ ∗ ( 𝜖R
∗

𝜖Rlc
∗ )

1
3

= 1 − 𝜙 

logarithmic differential form obtained by applying ln 

𝑙𝑛 (
𝜖Rlc

∗ − 𝜖j
∗

𝜖R
∗ − 𝜖j

∗ ∗ ( 𝜖R
∗

𝜖Rlc
∗ )

1
3
) = 𝑙𝑛(1 − 𝜙) 

so 

𝑙𝑛(𝜖Rlc
∗ − 𝜖j

∗ ) − 𝑙𝑛(𝜖R
∗ − 𝜖j

∗ ) + 1
3 𝑙𝑛(𝜖R

∗ ) − 1
3 𝑙𝑛(𝜖Rlc

∗ ) = 𝑙𝑛(1 − 𝜙) 

differentiate (variable 𝜖Rlc
∗  and 𝜙) 

𝑑𝜖Rlc
∗

𝜖Rlc
∗ − 𝜖j

∗ − 𝑑𝜖Rlc
∗

3𝜖Rlc
∗ = −𝑑𝜙

1 − 𝜙 

(
2𝜖Rlc

∗ + 𝜖j
∗

3𝜖Rlc
∗ (𝜖Rlc

∗ − 𝜖j
∗ )) 𝑑𝜖Rlc

∗ = −𝑑𝜙
1 − 𝜙 

(
2𝜖Rlc

∗ + 𝜖j
∗

3𝜖Rlc
∗ (𝜖Rlc

∗ − 𝜖j
∗ )) 𝑑𝜖Rlc

∗ = −𝑑𝜙
1 − 𝜙 

𝑑𝜖Rlc
∗ = −𝑑𝜙

1 − 𝜙
3𝜖Rlc

∗ (𝜖Rlc
∗ − 𝜖j

∗ )
2𝜖Rlc

∗ + 𝜖j
∗  

𝑑𝜖Rlc
∗ = 𝑑𝜙

1 − 𝜙
3𝜖Rlc

∗ (𝜖j
∗ − 𝜖Rlc

∗ )
2𝜖Rlc

∗ + 𝜖j
∗  

For numerical integration with the previous equation we have: 

𝑑𝜖Rlc
∗ = 𝜖Rlcí+1

∗ − 𝜖Rlcí
∗  

For sake of clarity we will note 𝜖Rlcí+1
∗ = 𝜖¹+1

∗  and 𝜖Rlcí
∗ = 𝜖¹

∗  

Hence, we use the following form: 

𝜖¹+1
∗ = 𝜖¹

∗ +
ℎî

1 − 𝜙¹

3𝜖¹
∗ (𝜖j

∗ − 𝜖¹
∗ )

2𝜖¹
∗ + 𝜖j

∗  
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where subscript n refers to the n-th increment step and ℎî is the increment of 

volume fraction. 

The procedure is the following: 

(1) Calculate the value of 𝜖j
∗  and 𝜖R

∗  with 𝜀R
∗ = 𝜀R𝜀0 − èÏÌ

ï  and 𝜀j
∗ = 𝜀j𝜀0 − èÏð

ï . 

(2) Set hϕ as ℎî = î
R with the final volume 𝜙 and the number m of increments 

steps; Usually calculation with 𝑚 ≥ 100 provides satisfactory results. 

(3) For n=0, the value of 𝜖¹+1
∗  is calculated with 𝜙¹ = 0 and 𝜖¹

∗ = 𝜖R
∗ . 

(4) For 𝑛 ≥ 1, 𝜖¹+1
∗  is calculated with 𝜙¹ = 𝑛ℎî and 𝜖¹

∗ . 

(5) After repeating Step (4) until n=m, the final value of 𝜖Rlc
∗  at 𝜙 is 

obtained. 
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Appendix B Trapping design and 
simulations 
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B.1 COMSOL Multiphysics model for a single shell using 

𝑪ôõ and 𝑮ôõ 

To be able to use the single-shell model with Ccm and Gcm in COMSOL 

Multiphysics, the internal equation of the dielectrophoresis force was modified. 

More precisely, the equivalent complex relative permittivity of the particle was 

modified. 

After enabling the Equation View in the Model Buider, the equations used to 

model dielectrophoresis can be modified in Component -> Particle Tracing for 
Fluid Flow -> Dielectrophoresis Force 1 -> Equation View as illustrated in 

Figure S B:1. 

 

Figure S B:1 COMSOL Multiphysics location to change the equation used for dielectrophoresis 
to implement the single-shell model with Ccm and Gcm 

The equation fpt.deff1.shl1.ereq corresponding to the equivalent complex 

relative permittivity of the particle can be modified. 

Originally: 

fpt.deff1.shl1.ereq = 

fpt.deff1.shl1.ercs*((fpt.deff1.shl1.ro/fpt.deff1.shl1.ri)^3 
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+2*(fpt.deff1.ercp-fpt.deff1.shl1.ercs)/(fpt.deff1.ercp+2*fpt.deff1.shl1.ercs)) 

/((fpt.deff1.shl1.ro/fpt.deff1.shl1.ri)^3-(fpt.deff1.ercp-fpt.deff1.shl1.ercs) 

/(fpt.deff1.ercp+2*fpt.deff1.shl1.ercs)) 

After: 

fpt.deff1.shl1.ereq = 

(((ccm+gcm/(fpt.deff1.iomega)) 

*(fpt.deff1.shl1.ro/(epsilon0_const)))*(fpt.deff1.ercp)) 

/(((ccm+gcm/(fpt.deff1.iomega))*fpt.deff1.shl1.ro/(epsilon0_const))+(fpt.deff1

.ercp)) 

where ccm and gcm are the membrane specific capacitance and conductance 

respectively. 
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B.2 Tested configurations 

 

Figure S B:2 Graphs for all the tested trapping configurations 
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Appendix C  Chip fabrication 
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C.1 Sarcophagus Molding Assembly  

Equipment: 

- Manual wafer mounter P-200 from Powatec (Hünenberg, Switzerland) 

- Cutting mat 

- UV curing machine U-200 from Powatec (Hünenberg, Switzerland) 

- Thinky Mixer (optional) (from Thinky Co - Japan) 

C.1.1 Preparing the PMMA frame for wafer holding with manual wafer 

mounter P-200 from Powatec 

- Place the PMMA frame (4) defining the height of the PDMS on the chuck 

of the P-200 (6 inches chuck). 

- Pull the extremity of the UV tape until the full frame (4) is covered. 

- Use the manual rolling pad to stick the tape (2) to the frame (4). 

- Cut the tape loose from the roll (depending on the height of the frame the 

cutting system from the machine might be possible to use or not). 

- Flip the tape+PMMA frame (2+4) on a cutting mat and cut the tape 

located at the outer periphery of the PMMA frame. 

- Flip the tape+PMMA frame (2+4) and cut the tape located in each hole. 

è At this step, the assembly PMMA frame + UV sensitive tape (4+2) is ready 

to hold the wafer. 

è The UV sensitive (2) tape will:  

o Maintain the wafer in position while pouring the PDMS vertically. 

o Prevent PDMS from flowing under the wafer. 

o Be removed after each use -> wafer recovered after each use. 

è The PMMA frame (4) will: 

o Help to control the height of the PDMS and make the PDMS height 

reproducible.  

o Help to hold the wafer in place (3). 



Chip fabrication 

197 

C.1.2 Positioning of the wafer 

- Using tweezers, place the back-side of the wafer in contact with the sticking 

part of the tape at a small angle, the wafer should touch the tape only from 

the side. 

- Release the wafer. The wafer should stick to the tape. 

- Flip the ensemble (PMMA frame + UV sensitive tape + wafer) (4+2+3). 

- Carefully remove the air from under the wafer by pressing with your hand 

from the exterior to the interior of the wafer. 

- Carefully poke the air bubbles and then press the remaining tape with your 

hand. Repeat the procedure until all the big bubbles are gone. 

è At this step, the ensemble PMMA frame + UV sensitive tape + wafer 

(4+2+3) is ready to be closed. 

C.1.3 Closing of the mold: 

- Place the gasket (5) in the groove of the PMMA cover (6). 

- Place on top of the ensemble (5+6) the flipped piece (4+2+3) and the 

aluminum back support (1). 

- Flip the ensemble (1+2+3+4+5+6). 

- Place the Inox part (7) on top of piece (6). 

- Place on top of the Inox piece (7) the closing PMMA part (8). 

- Place on top of the PMMA part (8) the two inox parts (9). 

- Close everything with screws+washers: press enough to seal the assembly 

but not too much in order to avoid damaging the PMMA. The closing can 

be assessed by looking at the deformation of the gasket in the groove. 

è At this step, the sarcophagus is complete and is ready for PDMS pouring! 

è The aluminum support (1) has threaded holes (no nuts needed). 

è The PMMA part (8) enables the sarcophagus to be placed vertically for 

PDMS pouring and desiccation. 

è The ensemble (6+8) makes it possible to place the sarcophagus horizontally 

in the oven. for PDMS curing without modifying the height of the PDMS 

inside the sarcophagus. 
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è The inox parts (7) and (9) are here to homogenize the stress distribution in 

respectively the PMMA piece (6) and (9). 

C.1.4 Pouring of PDMS: 

- Prepare the appropriate quantity of PDMS (10:1 ratio) (approximately 90 

g -> two plastic cups of 45g if use of the Thinky Mixer) and degas it. 

- Remove the bottom part of two other plastic cups, place them in the top 

opening of the sarcophagus: they will serve as funnels for PDMS pouring 

and as expansion zones for PDMS degassing. 

- Stop pouring the PDMS once the PDMS reaches the middle of the slit of 

the PMMA part (6). 

- Place the sarcophagus vertically in the desiccator for final degassing. If 

PDMS bubbles go too high in the funnels, vent the desiccator, explode the 

bubbles, and put everything under vacuum again. Repeat the procedure if 

necessary. 

è If air bubbles are coming from the side part of the frame, it means that the 

sealing of the sarcophagus is insufficient and the related screws should be 

retightened. 

- Once all the bubbles are gone, remove the plastics cups used as funnels and 

place the mold horizontally in the oven. To ensure that the PDMS height 

is kept constant it is advised to still keep a small angle of the sarcophagus 

with the horizontal 

Place the sarcophagus in the oven at 80°C for at least two hours for PDMS curing. 

C.1.5 Unmolding of PDMS: 

- Take the sarcophagus outside of the oven and wait until its temperature is 

back to room temperature. 

- Take out the screws of the sarcophagus and remove the different parts. The 

PDMS should only be present within the frame (4) on top of the wafer (3) 

and UV sensitive tape (2) 
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C.1.6 Removal of the UV sensitive tape with the UV curing U-200 from 

Powatec 

- Unscrew the internal blue cover piece of the U-200 (because of the height 

of the frame (4 mm) and the PDMS part molded from the slit of the PMMA 

piece (6), the frame can not go under the internal blue cover piece). 

- Place the frame such that the UV sensitive tape faces the LEDs (PDMS 

facing up). 

- Close the lid and start the system pressing the green button. 

- Wait for the frame to reach the right end part of the travel. If the tape is 

still sticking to the frame repeat the operation. 

- Remove the UV tape from the frame and wafer 

- Place the assembly PDMS+wafer on the cutting mat, wafer touching the 

mat (PDMS facing up) 

- Peel off the PDMS from the wafer 

- Separate the PDMS slabs with a razor blade and punch the necessary holes 

è The size of the PDMS is important, it is recommended making marks in the 

wafer to help for PDMS chip dicing 

C.2 Alignment Procedure 

The following procedure assumes the bonding of multiple chips. 

Material and equipment used: 

- Custom-made chuck in steel (CK45 steel covered with a 10-μm layer of 

nickel deposited by chemical nickel plating to prevent rusting) 

- Neodymium magnet (10 mm x 10 mm x 1 mm)  

- MJB4 Mask Aligner from SUSS MicroTec (Garching, Germany) 

- Transparent mask (2.3 mm thick or thinner) 

C.2.1 Alignment of the 1st chip: 

- Pull the chuck holder 

- Replace the standard chuck of the MJB4 by the custom-made chuck (Figure 

S C:1 A) 
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- Place the glass chip patterned with electrodes in the center of the custom-

made chuck (Figure S C:1  B). 

- Place three magnets at the bottom left corner of the chip in order to make 

a L shape corner that will help to reposition the chip in the same position 

all the time. Add more magnets on the side of the L to improve the support 

as shown in (Figure S C:1 B). 

- Place two magnets on the opposite corner to maintain the chip: the chip 

should now be completely held. (Figure S C:1 C)  

è The magnets hold the chip in plane but allow the chip to be moved vertically 

after the bonding is performed. 

- Push the chuck holder back in the machine. 

- Place the PDMS slab on the transparent glass mask approximately in the 

center, feature side up, and mark the corners with a felt pen on the other 

side of the mask (Figure S C:1 D). 

è In order to reduce the distance between the expected position of the PDMS 

slab on the mask and its actual position, the previous procedure can be done 

with an already bonded PDMS+electrodes chip until the previous step. In 

this case put the full chip (PDMS + electrodes) in contact with the mask 

by lifting the handle. Then mark corners with a felt pen on the other side 

of the mask and remove the full chip. Place the glass chip patterned with 

electrodes on the chuck (Figure S C:1 A, B and C) and the PDMS slab on 

the mask and repeat the procedure. 

- Put the machine in contact position by lifting the handle on the MJB4 and 

adjusting the WEC so that glass chip and PDMS slab are about 1 mm apart 

è Everything is ready for pre-alignment.  

è This previous procedure will be performed only for the first chip 

C.2.2 Prealignment: 

- Adjust the distance between the camera to fit the distance between the 

markers. 

- Focus on the PDMS slab and find the top markers by moving the mask in 

X and Y direction, then adjust the rotation angle of cameras on microscope. 
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The split field can be used to visualize both left and right markers at the 

same time. 

- Correct the angle of the mask. 

- Move down the microscope as a whole and focus on glass chip. 

- Correct the angle of the chip and then align the X and Y position of the 

chip by finding both cross markers that are on the top right and left corners 

of the chip with the corresponding one of the PDMS slab. 

è The machine is now ready for the final alignment. 

C.2.3 Plasma: 

- Take the glass chip out of the chuck and the full mask with the PDMS slab. 

- Put everything in the plasma chamber at 29 W for 45 s at 530 mTor of O2 

è Go quickly to the alignment after plasma treatment 

C.2.4 Alignment and Full contact: 

- Replace the mask with the PDMS slab in the MJB4 and the glass chip in 

the custom-made chuck 

- Align the PDMS slab and glass chip again on MJB4, first on cross markers 

and then directly on the electrode patterns or zone of interest. 

- Move up the chuck until the glass chip is in contact with the PDMS. 

è A front line will appear when the contact between the PDMS slab and the 

glass chip is occurring. Do not move neither the mask nor the chuck in X 

and Y after. 

- Lower down the chuck by lifting down the handle of the MJB4. The glass 

chip should now be bonded to the PDMS and therefore should still be in 

contact with the PDMS. 

- Flip the mask holder and carefully remove the full chip by gently detaching 

the PDMS slab from the mask from the side with tweezers. (Figure S C:1 

E). The operation is even more straightforward as the PDMS slab is thick, 

4 mm in our case. 

- Put a 40-g weight on the chip and put it in the oven at 80°C for 10 min to 

enhance the bonding.  

è Once all those steps are done a second chip can be bonded much faster. 
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Figure S C:1 A) Custom-made steel chuck with magnets for positioning. B) Positioning of the 
class chip at the center of the custom-made chuck. C) Positioning on the opposite corner of the 
chip of the two magnets. D) Positioning of the PDMS slab on the glass mask. E) Retrieval of the 
bonded chip with tweezers. F) Chip filled with blue ink: no leakage is visible. 

 



Chip fabrication 

203 

C.3 Characterization of the misalignment 

The measurement of the misalignment was performed by looking at two 

symmetric patterns located 2.3 mm from each other. The misalignment of the 

center of each pattern was quantified. The procedure was repeated for 4 chips, 

leading to 8 measurement points. The medium misalignment was found to be 

0.4 μm (standard deviation 0.2 μm) with a maximum misalignment of 0.6 μm. 

The error of estimation of the misalignment was in the order of 0.3 μm. The 

measurements are presented in Table S C:1. 

.  

Chip Point 
Misalignment (Absolute) 

μm 

1 
A 0.575 

B 0.539 

2 
A 0.574 

B 0.190 

3 
A 0.573 

B 0.424 

4 
A 0.507 

B 0.079 

 
Mean 0.43 

 
Std 0.19 

Table S C:1 Quantification of the misalignment 
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Appendix D Design proposition for 
impedance sensing of 
single cells and cell 
aggregates 

This appendix contains all the supplementary material for Chapter 6 

about design proposition for impedance sensing of single cells and cell 

aggregates. 
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D.1 Material definition 

A spherical particle was defined as a change in material properties instead of a 

geometrical entity. The particle was moved along the channel by displacing its 

center (coordinate x0, y0 and z0) using a parametric sweep.  

To do so a variable, rsq, is used to compute the distance from the center of a 

cavity and the points: 

rsq=((x-x0)^2+(y-y0)^2+(z-z0)^2) 

and the electrical properties of the material in the channel are defined as follow: 

sigma = sigma_par+(sigma_sol-sigma_par)*(rsq>r0^2) 

epsilonr = eps_r_par+(eps_r_sol-eps_r_par)*(rsq>r0^2) 

were sigma_par, sigma_sol, eps_r_par and eps_r_sol are respectively the electrical 

conductivity and the relative permittivity of the particle and the solution and 

r0 is the radius of the particle. 

The expression (rsq>r0^2) is a comparison, evaluating to 1 (for TRUE) outside 

the cavity and 0 (for FALSE) inside the cavity. The following settings give the 

particle properties inside the cavity (centered in (x0, y0, z0) and with a radius 

of r0), and the properties of the solution outside of it. 

The method was inspired by the tutorial “Electric Impedance Sensor” available 

on COMSOL Multiphysics website: https://www.comsol.com/model/electric-

impedance-sensor-7704  
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D.2 Meshing and Mesh convergence study 

The domain was divided in the following way: a 12 µm wide slide (centered 

around the axis y = 0) was discretized with a swept mesh of maximum element 

size 2 µm and the remaining region was meshed using free tetrahedral with a 

maximum element size of 37.4 µm as presented. For the optimization 

simulations (with a particle at a constant height z = 25 µm), the principle of 

the meshing was similar, with this time a swept mesh tube (maximum element 

size of 2 µm) with a square cross section of 12 µm x 12 µm around the particle, 

and the rest of the geometry meshed with free tetrahedral as presented in Figure 

S D:1. The reason for this separation in two distinct meshing regions is that the 

region where the particle evolves must be finely meshed. Conversely, regions 

that do not contain the particle can afford a coarser meshing without impacting 

the result in a significant manner. 

 

Figure S D:1 Mesh used for the optimization simulations in this study, presented on the 
conceptual design. 

To determine the maximum Element Size to use in the Swept Mesh area, a mesh 

convergence study was performed using a Long Conventional (LC) design with 

an 8 µm diameter polystyrene bead located at x = 0 µm, y = 0 µm, and z = 

h/2 = 25 µm. The results of this study are presented in Figure S D:2 and show 

convergence of current value for mesh element size below 3 µm. Therefore, we 

selected a maximum element size for the central (fine) region of 2 µm. 
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Figure S D:2 Mesh convergence study for a Long Conventional (LC) design with an 8 µm 
diameter polystyrene bead located at x = 0 µm, y = 0 µm, and z = h/2 = 25 µm. Evolution 
of the current between the two electrodes with the maximum size of the elements (ES) using 

a Swept Mesh on all the design. 

The rest of the design was meshed with free tetrahedral elements, whose 

dimensions were also optimized by a convergence study. Figure S D:3 shows a 

strong stability of results across mesh subdivisions. We settled for of a maximum 

size of 37.4 µm which provided similar results to what could have been obtained 

with finer values (<0.1% error) and showed greater efficiency in terms of 

computation time. 

 

Figure S D:3 Mesh convergence study for a Long Conventional (LC) design with an 8 µm 
diameter polystyrene bead located at x = 0 µm, y = 0 µm, and z = h/2 = 25 µm. Evolution 

of the current between the two electrodes with the maximum size of the free tetrahedral 
elements (ES) (the central part of the design is meshed with the swept mesh with 2 µm as 

the Maximum Element Size). 
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D.3 Data processing 

Experimental data were acquired at a sampling frequency of 1800 Hz. Baseline 

variations were removed using a moving-average filter with a sampling window 

of 5000 points. Local noise was attenuated by the mean of a third-order Savitzy-

Golay filter with a frame length of 51 points. Experimental data were normalized 

in relation to the baseline current value (no particle flowing in the channel). An 

example of data acquisition is displayed on Figure S D:4 for the Short Optimized 

(SO) design. 

 

Figure S D:4 Evolution of the current with time for a SO design. (A) and (C) Raw data after 
acquisition (B) and (D) Processed signal after application of a moving average filter and a 
Savitzky-Golay filter and normalization of the value. Peaks are detected and marked with 

the red dots. 

  



Design proposition for impedance sensing of single cells and cell aggregates 

210 

D.4 Current density 

 

Figure S D:5 Figure S D:6 Current density line plot in the plane x = 0 for the four designs 
(A) SC (B) SO (C) LC (D) LO 
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D.5 Sensitivity to misalignment 

 

Figure S D:7 Evolution of the current variation with the longitudinal misalignment for (A) 
the SO and (B) LO designs. 

D.6 Fitting parameters 

Parameter Design Fitting Equation R2 Coefficient 

 A 𝝉 

wel 
Short 

Exponential A * [1-exp(𝜏 * wel)] 
0,9992 1,912 x 10-3 3,663 x 10-2 

Long 0,9995 1,355 x 10-3 1,946 x 10-2 

 p1 p2 p3 

b 
Short 

Polynomial 
p1 * b2 + p2 * b + 

p3 

0,9979 -1,285 x 10-6 8,657 x 10-6 1,835 x 10-3 

Long 0,9998 -1,607 x 10-8 -9,120 x 10-7 1,268 x 10-3 

Table S D:1 Parameters used for the fitting of the curves displayed in Figure 6:6 

 



Design proposition for impedance sensing of single cells and cell aggregates 

212 

D.7 Simulated current variation for a 30 µm particle at 

different heights in the LO design 

 

Figure S D:8 Simulation of the current variation due to a 30 µm diameter polystyrene bead 
with the LO design. Evolution with the x position in the microchannel (located at y = 0 μm) 
at 3 different heights (z = 16 µm, z = 25 µm and z = 34 µm). Electrode positions (in black) 
are indicated under the graph.
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Titre de la thèse : Développement de microsystèmes pour la formation contrôlée d’agrégats de cellules 
par diélectrophorèse 
Résumé 
Les agrégats cellulaires constituent un modèle intermédiaire entre les cellules uniques et les tissus cellulaires 
et sont utilisés dans de nombreux domaines tels que l’ingénierie tissulaire et le criblage de médicaments in 
vitro. La création de tels agrégats cellulaires dont les propriétés et la taille seraient contrôlées nécessite 
cependant le développement de nouvelles approches ascendantes. Le travail présenté dans ce manuscrit vise 
à développer des microsystèmes pour la formation contrôlée d’agrégats de cellules sous flux via des champs 
électriques. Cette approche se base sur la diélectrophorèse (DEP), un phénomène induisant le déplacement 
des particules diélectriques lorsqu’elles sont placées dans un champ électrique non-uniforme. Un outil de 
calcul, MyDEP, a tout d’abord été développé afin d’être en mesure de prédire le comportement des cellules 
en suspension dans un certain milieu. Cet outil permet d’étudier la réponse diélectrique des particules et des 
cellules en fonction de la fréquence du champ. Il contient une base de données regroupant les propriétés 
diélectriques des cellules publiées dans la littérature afin d’aider tant les spécialistes que les utilisateurs 
néophytes à comprendre le comportement diélectrophorétique des particules et des cellules ainsi qu’à choisir 
les paramètres expérimentaux tels que la conductivité électrique du milieu et la fréquence du champ 
préalablement aux manipulations expérimentales en laboratoire. Différents designs pour le piégeage de cellules 
sont proposés avec les simulations, par la méthode des éléments finis en utilisant COMSOL Multiphysics, 
associées. Leur fabrication a nécessité le développement d’une méthode d’alignement reproductible, précise au 
micromètre, des microcanaux d’un polymère appelé le polydiméthylsiloxane (PDMS) avec des électrodes 
coplanaires en titane/platine déposées sur du verre via l’utilisation d’une aligneuse de masques 
conventionnelle. La méthode est basée sur l’utilisation d’un moule en silicium associé à un sarcophage en 
Poly(methyl methacrylate) (PMMA) afin de garantir le contrôle du parallélisme entre les parties supérieure 
et inférieure du PDMS moulé. Les puces contenant les différents designs de piégeage ainsi fabriquées ont été 
testées avec succès sur des cellules rénales embryonnaires humaines (HEK) à l’aide d’une installation 
expérimentale démontrant par là même la capacité des puces à créer des agrégats constitués d’un nombre 
contrôlé de cellules par diélectrophorèse. Les agrégats ainsi formés se sont avérés stables après 5 minutes de 
contact cellule à cellule sans qu’une séparation des cellules n’ait été observée. Le design d’un capteur par 
impédance a par ailleurs été proposé pour caractériser tant les cellules uniques que les agrégats cellulaires 
avant et après la chambre de piégeage. Celui-ci, associé au design de piégeage par DEP, a été testé 
expérimentalement avec succès pour détecter leur passage. 
Mots-Clés: Diélectrophorèse, Piégeage de cellules, Agrégats cellulaires, Microfluidique, Approche ascendante, 
Alignement du PDMS, Modélisation diélectrique, Spectroscopie d’impédance. 

Title in English: Development of microsystems for the controlled formation of cell aggregates by 
dielectrophoresis 
Abstract: 
Cell aggregates are an intermediary model between single cells and cell tissues used in many applications such 
as tissue engineering and in vitro drug screening. The creation of cells aggregates of controlled size and 
properties requires the development of new bottom-up strategies. The work developed in this manuscript aims 
at presenting the development of microsystems for the electric force-driven controlled formation of cell 
aggregates under flow conditions. This approach is based on dielectrophoresis, a phenomenon that causes 
induced motion on dielectric particles placed in a non-uniform electric field. A computational tool, MyDEP, 
was first developed in order to predict the behavior of cells in a specific medium. It allows to study the 
dielectric response of particles and cells as a function of frequency. The software also includes a database 
gathering cell dielectric models available in the literature to help experienced users as well as neophytes to 
understand the dielectrophoretic behavior of particles and cells and to choose parameters such as electric 
conductivity of the medium and frequency before performing laboratory experiments. Different designs for 
cell trapping are proposed and simulated in 2D with FEM using COMSOL Multiphysics. Their fabrication 
implied the development of a reproducible method for µm precision alignment of microchannels in a polymer 
called polydimethylsiloxane (PDMS) with coplanar titanium/platinum electrodes deposited on glass, using a 
conventional mask aligner. It is based on the use of a silicon mold in combination with a Poly(methyl 
methacrylate) (PMMA) sarcophagus for precise control of the parallelism between top and bottom surfaces 
of molded PDMS. The trapping design based on coplanar electrodes was successfully tested experimentally 
on human embryonic kidney cells (HEK) with an automated setup. It proves its capability to create aggregates 
of a controlled number of cells with DEP. The cell aggregates proved to be stable (no disruption) after only 
5 minutes of cell-cell contact. An impedance-based sensor design was proposed for characterizing single cells 
and cells aggregates before and after the trapping chamber. This sensor was successfully tested experimentally 
to detect particle passage in combination with the dielectrophoretic trapping design. 
Keywords: Dielectrophoresis, Cell trapping, Cell aggregates, Microfluidics, Bottom-up assembly, PDMS 
Alignment, Dielectric modelling, Impedance spectroscopy 


